
VOLUME VISUALIZATION USING ADVANCED GRAPHICS 

HARDWARE SHADERS 

 

DISSERTATION 

 

Presented in Partial Fulfillment of the Requirements for 

the Degree Doctor of Philosophy in the Graduate 

School of The Ohio State University 

 

By 

Daqing Xue, M.S. 

***** 

 

The Ohio State University 
2008 

 

Dissertation Committee: 

Professor Roger Crawfis, Adviser 

Professor Raghu Machiraju 

Professor Han-Wei Shen  

 

Approved by 
 
 
 

Adviser 
Computer Science and Engineering  

Graduate Program 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 

Daqing Xue 

2008 

 

 

 
 
 



 
ii 

 
 
 

 

 
 
 
 

ABSTRACT 
 
 
 
 

Graphics hardware based volume visualization techniques have been the active research 

topic over the last decade. With the more powerful computation ability, the availability of 

large texture memory, and the high programmability, modern graphics hardware has been 

playing a more and more important role in volume visualization. 

In the first part of the thesis, we focus on the graphics hardware acceleration 

techniques. Particularly, we develop a fast X-Ray volume rendering technique using 

point-convolution. An X-ray image is generated by convolving the voxel projection in the 

rendering buffer with a reconstruction kernel. Our technique allows users to interactively 

view large datasets at their original resolutions on standard PC hardware.  Later, an 

acceleration technique for slice based volume rendering (SBVR) is examined. By means 

of the early z-culling feature from the modern graphics hardware, we can properly set up 

the z-buffer from isosurfaces to gain significant improvement in rendering speed for 

SBVR. 

The high programmability of the graphics processing unit (GPU) incurs a great 

deal of research work on exploring this advanced graphics hardware feature.  In the 

second part of the thesis, we first revisit the texture splat for flow visualization.  We 

develop a texture splat vertex shader to achieve fast animated flow visualization.  



 
iii 

 
 
 

 

Furthermore, we develop a new rendering shader of the implicit flow. By careful tracking 

and encoding of the advection parameters into a three-dimensional texture, we achieve 

high appearance control and flow representation in real time rendering. Finally, we 

present an indirect shader synthesizer to combine different shader rendering effects to 

create a highly informative image to visualize the investigating data. One or more 

different shaders are associated with the voxels or geometries.  The shader is resolved at 

run time to be selected for rendering. Our indirect shader synthesizer provides a novel 

method to control the appearance of the rendering over multi-shaders. 



 
iv 

 
 
 

 

 

 

 

 

 

 

 

 

 

To my daughters and wife with love 

 

 

 

 

 

 

 

 

 

 

 



 
v 

 
 
 

 

 
 
 
 

ACKNOWLEDGMENTS 
 
 

I would like first to thank my advisor, Roger Crawfis, for taking me as his student and 

allowing me to pursue my research interests, and for his guidance, encouragement and 

friendship during the course of this work. 

I would like to thank my committee members Han-Wei Shen and Raghu 

Machiraju for helping make this thesis happen and their valuable suggestions. I must 

thank professor Rephael Wenger to help me understand the high-dimensional iso-

contouring. 

I am very thankful for the many people at graphics lab that have offered help and 

insightful discussions. In particular, I thank Udeepta Bordoloi, Antonio Garcia, Jinzhu 

Gao, Samrat Goswami, Yuan Hong, Guangfeng Ji, Ming Jiang, Jinho Lee, Guo-Shi Li, 

Liya Li, Naeem Shareef, Jian Sun, Chaoli Wang, Lining Yang, Caixia Zhang, and Wulue 

Zhao.  

I wish to thank all my co-workers at Siemens Medical that have offered help and 

friendly work environment. Special thanks to Min Xie for keeping me the top-line 

graphics hardware on doing research in this thesis. 

Finally I thank to my wife, Fang Yuan, for her love and support, and my two 

daughters, Yinbing and Wenchan, who bring me a great deal of fun and happiness to go 

through the tough process of finishing this thesis.  



 
vi 

 
 
 

 

 
 
 
 

VITA 
 
 

October 3, 1971 ……………………... Born - Wuhu, China 

1999 …………………………………. M.S. Computer Science,  
                                                               Nankai University, China 

1999-2001 …………………………... Graduate Research Associate, 
                                                               Department of Biomedical Engineering, 
                                                               Cleveland Clinic Foundation, 
                                                               The Ohio State University 

2001-2005 …………………………... Graduate Research and Administrative Associate, 
                                                               Department of Computer Science and Engineering, 
                                                               The Ohio State University 

2005 - present ………………………... Sr. Scientist, 
                                                               Siemens Medical Solutions, USA 

 
 
 
 

PUBLICATIONS 

 
 
Research publication related to this work: 

 
1. Daqing Xue, Caixia Zhang, Roger Crawfis, “iSBVR: Isosurface-aided Hardware 

Acceleration Techniques for 3D Slice-Based Volume Rendering,” International 
Workshop on Volume Graphics 2005. 

 
2. Daqing Xue, Caixia Zhang, Roger Crawfis, “Rendering Implicit Flow Volumes,” 

Proceedings of IEEE Visualization 2004, pages 99-106, Austin, TX, October 2004. 
 
3. Praveen Baniramka, Caixia Zhang, Daqing Xue, Roger Crawfis, Rephael Wenger, 

“Volume Interval Segmentation and Rendering,” IEEE/SIGGRAPH Symposium on 
Volume Visualization 2004, pages 55-62, Austin, TX, 2004. (Best Paper Award) 

 



 
vii 

 
 
 

 

4. Roger Crawfis, Daqing Xue, Caixia Zhang, “Volume Rendering Using Splatting,” 
Visualization Handbook, eds. Charles Hansen, Christopher Johnson, pages 175-188, 
Academic Press, 2004. 

 
5. Daqing Xue and Roger Crawfis, “Fast Dynamic Flow Volume Rendering Using 

Textured Splats on Modern Graphics Hardware,” Proceedings of SPIE EI 2004, 
pages 133-140, San Jose, CA, 2004. 

 
6. Daqing Xue and Roger Crawfis, “Efficient Splatting Using Modern Graphics 

Hardware,” Journal of Graphics Tools, Vol. 8, No. 3, pages 1-21, 2003. 
 
 

 
 

FIELDS OF STUDY  

 
Major Field: Computer Science and Engineering 



 
viii 

 
 
 

 

 
 
 
 

TABLE OF CONTENTS 
 
 

Abstract.............................................................................................................................. ii 

Acknowledgments ............................................................................................................. v 

Vita .................................................................................................................................... vi 

List of Tables .................................................................................................................... xi 

List of Figures.................................................................................................................. xii 

 

Chapters: 

 
1. Volume Visualization Fundamentals....................................................................... 1 

1.1 Volume Data Representation.............................................................................. 1 
1.2 Volume Reconstruction...................................................................................... 3 
1.3 Indirect Volume Rendering ................................................................................ 4 
1.4 Direct Volume Rendering .................................................................................. 6 

1.4.1 The Volume Rendering Integral .............................................................. 6 
1.4.2 Direct Volume Rendering Techniques................................................... 10 

1.5 Classification .................................................................................................... 11 
 

Part I  Graphics Hardware Acceleration Techniques ................................................. 13 

 
2. Fast X-Ray Volume Rendering .............................................................................. 14 

2.1 Introduction ...................................................................................................... 14 
2.2 X-ray Convolution............................................................................................ 16 
2.3 Time Complexity Analysis............................................................................... 18 
2.4 Implementation................................................................................................. 18 

2.4.1 Point-based Rendering and Convolution in OpenGL ............................ 18 
2.4.2 Memory Management for Large Datasets ............................................. 21 

2.5 Experimental Results and Discussion .............................................................. 23 
2.6 Conclusions ...................................................................................................... 23 

 
3. Isosurface-Aided Slice Based Volume Rendering ................................................ 28 

3.1 Introduction ...................................................................................................... 28 
3.2 Early Z-culling for Volume Rendering ............................................................ 31 
3.3 Time Complexity Analysis............................................................................... 33 



 
ix 

 
 
 

 

3.4 Isosurface-aided Hardware Acceleration ......................................................... 35 
3.4.1 Pseudo Early Ray-Termination.............................................................. 37 
3.4.2 Empty Space Leaping ............................................................................ 37 
3.4.3 Combined Space-Leaping and Early Ray-Termination......................... 38 
3.4.4 Empty Ray Removal .............................................................................. 39 
3.4.5 Culling Efficiency.................................................................................. 39 

3.5 Isosurface Extraction........................................................................................ 41 
3.5.1 Isosurface for Empty Space Leaping ..................................................... 43 
3.5.2 Isosurface for Early Ray-Termination ................................................... 44 

3.6 Results and Discussions ................................................................................... 48 
3.7 Conclusions ...................................................................................................... 49 

 

Part II  Graphics Hardware Volume Shaders ............................................................. 52 

 
4. Texture Splat Shader .............................................................................................. 53 

4.1 Introduction ...................................................................................................... 53 
4.2 Textured Splats................................................................................................. 54 

4.2.1 Multi-Variate and Multi-Glyphic Textured Splats ................................ 55 
4.2.2 Foreshortening of the Vector Icons........................................................ 59 
4.2.3 Dynamic Representation........................................................................ 60 

4.3 Vertex Shader ................................................................................................... 62 
4.4 Experimental Results and Discussion .............................................................. 64 

 
5. Implicit Flow Volume Shader ................................................................................ 67 

5.1 Introduction ...................................................................................................... 67 
5.2 Related Work.................................................................................................... 68 
5.3 Functional Mapping and Implicit Flows .......................................................... 70 
5.4 Rendering of Flow Volumes ............................................................................ 72 
5.5 3D Texture Mapping Volume Shader .............................................................. 73 

5.5.1 User-Controlled Painting ....................................................................... 76 
5.5.2 Dual Inflow Textures ............................................................................. 80 
5.5.3 Inflow Texture Animation ..................................................................... 81 

5.6 Experimental Results and Discussion .............................................................. 84 
5.6.1 Volumetric Details ................................................................................. 85 

5.7 Conclusions ...................................................................................................... 86 
 
6. Indirect Shader Synthesizer ................................................................................... 88 

6.1 Introduction ...................................................................................................... 88 
6.2 Related Work.................................................................................................... 89 
6.3 Shader As Function Mapping........................................................................... 91 
6.4 Shader Classification........................................................................................ 92 

6.4.1 Null Shader ............................................................................................ 93 
6.4.2 Photorealistic Shader ............................................................................. 93 
6.4.3 NPR Shader............................................................................................ 93 



 
x 

 
 
 

 

6.4.4 Procedural Shader .................................................................................. 93 
6.4.5 Volume Rendering Shader..................................................................... 94 

6.5 Shader Design................................................................................................... 94 
6.5.1 Granite Shader ....................................................................................... 94 
6.5.2 Toon Shader ........................................................................................... 95 
6.5.3 Layered X-Ray Shader........................................................................... 95 

6.6 Shader Synthesizer ........................................................................................... 96 
6.6.1 Indirect Shader ....................................................................................... 96 
6.6.2 Shader Texture ....................................................................................... 97 
6.6.3 Layer-Based Shader Synthesizer ......................................................... 101 

6.7 User-Controlled Shader Painting.................................................................... 103 
6.7.1 Paint on UV-Mapping.......................................................................... 103 
6.7.2 Volumetric Painting............................................................................. 104 
6.7.3 Brush Stroke Union.............................................................................. 106 
6.7.4 Painting Order...................................................................................... 106 

6.8 Experimental Results and Conclusions .......................................................... 107 
 
7. Summary and Conclusion..................................................................................... 116 

 

Bibliography .................................................................................................................. 118 



 
xi 

 
 
 

 

 
 
 
 

LIST OF TABLES 
 
 
Table                         Page 

Table 4.1: FPS for four vector field datasets. ................................................................... 65 
Table 5.1: Implicit flow volume shader vs. traditional flow volume rendering technique.

.......................................................................................................................... 87 
 
 



 
xii 

 
 
 

 

 
 
 
 

LIST OF FIGURES 
 
 
Figure                         Page 

Figure 1.1: A voxlized object (left) and a cell (right) with eight neighboring voxels on a 
rectilinear grid................................................................................................... 2 

Figure 1.2: The 2D computational grids: regular, rectilinear, curvilinear, and unstructured.
........................................................................................................................... 3 

Figure 1.3: 1D reconstruction filters. From left to right: sinc, Gaussian, box, and triangle.
........................................................................................................................... 4 

Figure 1.4: The 15 reduced triangulated cube cases [LC87]. ............................................. 5 
Figure 1.5: Isosurfaces for CT datasets of bonsai, engine, and head.................................. 6 
Figure 1.6: Two different transfer functions for a CT head dataset.................................. 12 
Figure 2.1: The pipeline for point convolution................................................................. 20 
Figure 2.2: (a) The projection image in the P-buffer; (b) The convolved X-ray image. .. 21 
Figure 2.3: Point rendering time vs. the number of voxels............................................... 25 
Figure 2.4: Convolution time vs. image resolution........................................................... 25 
Figure 2.5: The X-ray image of foot dataset with perfect projection (top) and the aliased 

image (bottom) due to ill projection. .............................................................. 26 
Figure 2.6: VisFemale X-ray image.................................................................................. 27 
Figure 3.1: The proxy geometries of image-aligned slicing planes. (a) 2D diagram of slice 

planes. (b) The slicing planes intersecting with the volume box.................... 30 
Figure 3.2: The back faces of isosurfaces Φt and the front faces of isosurface Φp are 

rendered with parallel projection and their corresponding z-buffer (right).  
Only the slices in bold pass the depth test and contribute to the final image. 36 

Figure 3.3: Isosurfaces and their reduced form in cube faces. Left: isocontouring, Φt and 
Φp. Right: Φt is inflated to the outer faces of the cubes containing it. Φp is 
shrunk to the outer faces of the inter cubes..................................................... 42 

Figure 3.4: (a) Generated from the original isosurface. There are holes in the image due 
to the incorrect occlustion.  (b) Generated from the reduced isosurface with 
holes removed. ................................................................................................ 43 

Figure 3.5: Left: iso-contouring for 7x7 grid. Right: the grid is generated from left with 
quad-tree node of 2x2.  The vertex value is determined by the minimal value 
of each 2x2 node from the left grid................................................................. 45 

Figure 3.6: The isosurface shrinks drastically when using the minimal value to perform 
contour on different octree levels. .................................................................. 45 

Figure 3.7: (a) The back faces of isosurface Φt; (b) The z-buffer after rendering the 
isofurace in (a); (c) The front faces of isosurface Φp; (d) The z-buffer after 
rendering the isosurface in (c); (e) the transfer function for two isosurfaces; (f) 



 
xiii 

 
 
 

 

The z-buffer is rendering after the two initialization passes. Note: the values in 
the z-buffer images (right column) are rescaled to highlight the difference... 47 

Figure 3.8: All images are of resolution by 512x512. (a): CT head dataset I (2563); (b): 
CT head dataset II (2563); (c): aneurism dataset (2563); (d): bonsai dataset 
(2563)............................................................................................................... 50 

Figure 4.1: Percent cloudiness and wind velocities. The wind velocities are color coded 
by altitude.  Courtesy to Roger Crawfis.......................................................... 56 

Figure 4.2: the register combiner diagram for producing the splat color using our BLEND 
equation........................................................................................................... 57 

Figure 4.3: The dummy test tornado dataset [CM93]. The tornado core is rendered with 
the inset vector icon texture in (a)(b)(c), respectively. The full dataset is 
rendered with 3 different icon textures (strokes, lines, and particles) 
corresponding to different velocity magnitudes. ............................................ 58 

Figure 4.4: 2×2 periods of the vector icon textures. ......................................................... 61 
Figure 4.5: The close-up view of the vortex from figure 3(a).  The framed regions in the 

top image show the shift of the vector icon on the tornado at the four 
successive time stamps.  The bottom images show the corresponding shift of 
the vector icon texture..................................................................................... 62 

Figure 4.6: The image is rendered from aerogel dataset with two vector glyphs (lines, 
arrows).  The vector field is coded not only by its color but also by the vector 
glyphs.............................................................................................................. 64 

Figure 4.7: Wind on North America dataset.  The left images are generated with their 
right texture icons, respectively.  The velocity is coded by the vector icon 
color. ............................................................................................................... 66 

Figure 5.1: Visualization diagrams for van Wijk’s implicit stream surfaces (top), and our 
implicit flow volumes (bottom). ..................................................................... 68 

Figure 5.2: Backwards advection. Left: Three points, a, b and c, and their streamlines 
from the termination face. Right: each point (streamline) is assigned a 4-tuple, 
(f,u,v,t), according to its advected (backwards) position on the termination 
face.................................................................................................................. 70 

Figure 5.3: The volume shader with inflow texture to render implicit volume................ 75 
Figure 5.4: Volume shader for inflow mapping Φ(f,u,v,t) = 2D Texture (color + opacity) .

......................................................................................................................... 76 
Figure 5.5:  Two different inflow textures advected thru a same flow volume................ 78 
Figure 5.6: Inflow mapping on a cube map texture ((left column)) for tornado dataset. . 79 
Figure 5.7: Volume shader for dual inflow mapping and animation................................ 80 
Figure 5.8: Complex cross-section for the inflow with dual-texture support. .................. 81 
Figure 5.9: a) The inflow texture specified by the user. b) A particle distribution. c) The 

result from the inflow texture only. d) The result obtained by combing the 
inflow texture and texture b)........................................................................... 83 

Figure 6.1: The granite and toon shading on a Klein bottle. Courtesy of 3D Labs [Ros06].
......................................................................................................................... 96 

Figure 6.2: The rendering framework for indirect shader................................................. 97 
Figure 6.3: Top: Silhouette enhanced NPR shader and DVR shader for a CT Head dataset. 



 
xiv 

 
 
 

 

Bottom: The transfer function is used as the shader selector.......................... 99 
Figure 6.4: An NPR shader (toon) and a photorealistic shader (texture mapping) are 

rendered on the Head model. Top: A simple shader texture is used with hard 
edge between different shaders. Bottom: The layer-based synthesizer is used 
with the over operator to produce a smooth transition. ................................ 100 

Figure 6.5: A shader texture with 4 channels. Each channel is encoded with shader ID, 
operator ID, and an optional parameter. This allows for the combination of 4 
shaders........................................................................................................... 102 

Figure 6.6: The rendering pipeline uses a rich shader texture for the Head geometry and 
the over operator is applied between two image layers. ............................... 102 

Figure 6.7: The four brush stroke balls modulated by the different Gaussian functions.
....................................................................................................................... 105 

Figure 6.8: One channel of shader texture with painting order. ..................................... 106 
Figure 6.9: The different operators between two shaders: granite procedure shader and 

toon NPR shader. (a)  min operator; (b) max operator; (c) over operator; (d) 
weight operator with both coefficients as 0.5. .............................................. 108 

Figure 6.10: Top: The composited layer X-Ray image. Bottom: layered X-ray shader is 
embedded into an image space mask in the conventional X-ray image. ...... 109 

Figure 6.11: Multi-shader rendering. (a) silhouette shader + 3D brush shader.  (b) 
silhouette shader + DVR shader for bonsai dataset. (c) silhouetter shader + 
DVR shader for engine dataset. (d) granite shader + DVR shader for bonsai 
data................................................................................................................ 110 

Figure 6.12: The toon, granite, and gooch shaders are drawn on the head by user. ....... 111 
Figure 6.13: Volumetric painting with granite shader(top) and NPR shader (bottom). . 112 
Figure 6.14: Volumetric painting with MIP shader(top) and peel shader (bottom). ...... 113 
Figure 6.15: Volumetric painting with multi-shaders..................................................... 114 
Figure 6.16: Volumetric painting with granite shader + silhouette only NPR shader.... 115 
 

 
 



 
1 

 
 
 

 

 
 
 
 

CHAPTER 1 
 
 

 VOLUME VISUALIZATION FUNDAMENTALS  
 
 
 
 

1.1 Volume Data Representation 

Unlike polygons defining an object model in surface-based computer graphics, volume 

data is typically defined as a set, V, of samples. This is a function representing the 

information v of the data at the position (x, y, z) in three-dimensional space ℜ3.   This 

information can be a scalar (such as density in a CT scan), a vector (such as velocity in a 

flow), or a tensor (such as density, energy, and temperature in computational fluid 

dynamics).  In addition, if the volume data is time-varying, the volume is then defined in 

4D space with samples v (x, y, z, t). 

In many scientific applications, the volume is sampled on a rectilinear grid, of 

which each volume element is called a voxel.  For such a rectilinear grid, the voxel set, V, 

can be redefined as an array of data values V(i, j, k), which are sampled only at the grid 

points indexed by (i, j, k) in volume space, and the dataset is thus depicted by a 3D array. 

Figure  1.1 shows a voxelized object and a cell with eight neighboring voxels on a 

rectilinear grid.  If all the voxels are spaced equally in all dimensions, the dataset is called 



 
2 

 
 
 

 

regular or isotropic.  Other types of datasets include curvilinear and unstructured based 

on underlying computational grids for sampling. Curvilinear grids are non-linear 

transformations from rectilinear grids while preserving the grid topology.  Curvilinear 

grids are useful to describe the simulations with variable resolution.  An unstructured 

volume consists of polyhedral cells whose connectivity has to be specified explicitly. 

These cells can be tetrahedra, pyramids, hexahedra, or other shapes.  Many datasets for 

finite element simulation (FEM) are provided in unstructured grids. Figure  1.2 

demonstrates the different computational grids for volume datasets.  

 

 

 
 

Figure  1.1: A voxlized object (left) and a cell (right) with eight neighboring voxels on 
a rectilinear grid.  
 

 

vi,j,k vi+1,j,

vi,j,k+ vi+1,j,k

vi+1,j,+1k+1 vi,j+1,k+

vi+1,j+1,k vi,j+1,



 
3 

 
 
 

 

 

 

Figure  1.2: The 2D computational grids: regular, rectilinear, curvilinear, and 
unstructured. 
 

1.2 Volume Reconstruction 

A scalar field volume can be interpreted as a scalar function, ℜ→ℜ3:f , and the 

volumetric dataset, V, is a collection of samples from the continuous function f at the grid 

points.  The continuum of the volume can be reconstructed by convolving these discrete 

samples with a reconstruction filter.  According to sampling theory, this reconstruction 

can be lossless, provided that the original function f is band-limited and the sampling 

frequency is at least twice the highest frequency (Nyquist frequency) in the function f.  An 

ideal reconstruction filter must be employed to achieve such a lossless reconstruction, 

such as the “sinc” function (in equation 1.1). 

 x
x

π
π )sin(

sinc(x) =   (1.1) 

The graph of the sinc function is shown in Figure  1.3a.  Note this function has 

infinite spatial extent.  This implies that all samples must be considered for the 

reconstruction of any point in the volume space.  Thus a lossless reconstruction is 



 
4 

 
 
 

 

computationally expensive.  A truncated sinc or other reconstruction filters such as a box, 

triangle, and truncated Gaussian filters can be used instead.  This can lead to artifacts in 

the reconstructed volume.  Figure  1.3 shows the graphs of these 1D filters.  On the other 

hand, such a continuous function f can be approximated by a piecewise linear function 

that defines on the underlying grid.  In this case, a tri-linear interpolation can be used to 

compute the function values on the non-grid points. 

 

 

Figure  1.3: 1D reconstruction filters. From left to right: sinc, Gaussian, box, and 
triangle. 
 

1.3 Indirect Volume Rendering 

For a scalar function, f(x,y,z), that defines a volume in ℜ3, f(x,y,z)=c defines an isosurface  

that describes the boundary with data value c.   Extracting and rendering such surface 

primitives provides a way to indirectly render the volume.  The Marching-cubes 

algorithm developed by Lorensen and Cline [LC87] creates an elegant approximation to 

an isosurface with a triangle mesh.  In the marching-cubes algorithm, cubes containing 

0 

1 1 

0 

1 

0 0 

1 



 
5 

 
 
 

 

isosurface manifolds are segmented according to the iso-value c to generate surface 

patches. Finally these patches are triangulated and form a triangle mesh that 

approximates the underlying isosurface. Figure  1.4 shows the 15 reduced segmented cube 

cases used in [LC87].  Figure  1.5 demonstrates isosurface images from some sample 

datasets. 

 

 

 

Figure  1.4: The 15 reduced triangulated cube cases [LC87]. 

 



 
6 

 
 
 

 

 

Figure  1.5: Isosurfaces for CT datasets of bonsai, engine, and head. 
 

1.4 Direct Volume Rendering 

Direct volume rendering (DVR) generates an image of the volume by integrating the light 

effect along viewing rays that traverse the entire volume based on a given optical model.  

No intermediate geometric primitives are extracted to represent a volume object.  The 

rendering time complexity is o(n3), which makes real-time volume rendering difficult. 

This has lead to many research efforts on accelerated direct volume rendering [Lev90, 

DH92, YS93, FS97, ASK92, SA95].  

1.4.1 The Volume Rendering Integral 

In the volume rendering integral, optical models describe the light interaction (absorption, 

emission, and/or scattering) amongst particles in the volume and scattered forwards to the 

eye-point. Max [Max95] examined five optical models: absorption-only, emission-only, 

absorption-plus-emission, scattering/shadow, and multi-scattering, in his survey paper.  



 
7 

 
 
 

 

The most commonly-used models: absorption-only and absorption-plus-emission, are 

briefly described in the following two sub-sections. More details for the other models can 

be found in [Max95]. 

1.4.1.1 X-Ray and the Absorption-only Model 

For the absorption-only model, the function, f(x,y,z), can be mapped to an extinction 

coefficient, τ, that controls the rate that light is occluded. Max [Max95] derives the 

mathematical formula for this simple model. The differential change of the light intensity, 

I, along a ray can be written as: 

 ( ) ( )dI s I s
ds

τ= −  (1.2) 

where s is a length parameter along a ray in the direction of the light flow.  This equation 

states that the change in the intensity (dI/ds) decreases, hence the negative multiplier, 

proportionally to the incoming intensity as determined by the extinction coefficient. The 

analytical solution for this formula is given by: 

 ( )
( )

0
0

s

t dt

I s I e
τ−∫

=  (1.3) 

where I0 is the intensity at s=0, where the ray enters the volume. This indicates the 

attenuation of the high energy source or backlight as it propagates from the background, 

s=0, towards the eye. If τ  is zero along the ray, then no attenuation occurs and the 

intensity at the pixel is I0. If τ is a constant along this ray, then the attenuation is given by: 



 
8 

 
 
 

 

 ( ) 0
0 0

s

dt
sI s I e I e

τ
τ

−
−

∫
= =  (1.4) 

Using a Taylor’s series expansion for the exponential and simplifying for the case where 

τs is small leads to the familiar compositing operator, over, from Porter and Duff [PD84]: 

 
( ) ( )

( )sI

sssIeI

           

s

τ

ττττ

−≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−=−

1

!3!2
1

0

32

00 "  (1.5) 

Here, τs represents the opacity, α, expressed as a function of the traversing ray length. As 

Max [Max95] and Wilhelms and van Gelder [WvG91] point out, this relationship of 

increased opacity for longer ray integration segments is crucial when considering 

different sampling resolutions of the volume. This equation implies that for volume 

rendering using relatively low opacity values, the simple over operator is probably 

sufficient. Note low opacity results from small values of s and/or τ in equation 1.5. 

When performing the integration in equation 1.3 for all rays propagating a volume, 

the integral result is an X-Ray image. X-ray imaging is one of most popular visualization 

techniques used in clinical diagnosis and in material defect detection in industrial 

applications. The advantage of X-ray volume rendering is that no sorting of the voxels is 

needed. This is particularly beneficial for object-order rendering techniques like splatting 

[Wes90]. 

1.4.1.2 The Absorption-plus-emission Model 

The absorption-plus-emission model is introduced by Sabella [Seb88] and elaborated by 



 
9 

 
 
 

 

Max [Max95]. The volume rendering integral for this model is: 

  dtetgeIsI
s drrdrr

s

t

s

∫
∫

+
∫

=
−−

0

)()(

0 )()( 0

ττ

 (1.6) 

Here, the background light is attenuated, as in the absorption-only model, but new 

energy is scattered towards the eye along the ray according to the glow function, g(t). 

This newly added energy is then attenuated based on the length of material that still exists 

between it and the eye. Equation 1.6 can be solved by numerical integration. A Riemann 

sum is used to approximate the integral with ∑
=

ΔΔ
n

i

ttif
0

)( , where the integral length is 

discretized into n=s/Δt intervals of width Δt.  Thus the solution to equation 1.6 can be 

approximated as: 

 
( ) ( )∑ ∏∏

∑∑∑

= +==

+===

ΔΔ−ΔΔ+ΔΔ−=

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΔ−Δ+⎟

⎠

⎞
⎜
⎝

⎛
ΔΔ−≈

n

i

n

ij

n

i

n

ij

n

i

n

i

ttjttigttiI

tttjtigttiIsI

        
1 11

0

111
0

)(exp)()(exp

)(exp)()(exp)(

ττ

ττ
 (1.7) 

Let gi= g(iΔt)Δt and exp(-τ(iΔt)Δt) be 1-αi, where αi is the material opacity of the ith 

interval along the ray.  Then equation 1.7 can be rewritten as:  

 

nn

n

i

n

ij
ji

n

i
i

gggI

gIsI

        +−++−+−=

−+−=

−

= +==
∑ ∏∏

)1)())1)()1((((

)1()1()(

122110

1 11
0

ααα

αα

""

 (1.8) 

Equation 1.8 indicates that volume integral on this optical model can be performed by 

means of an over operator in a back-to-front order or a front-to-back order (see [Max95]). 



 
10 

 
 
 

 

1.4.2 Direct Volume Rendering Techniques 

The direct volume rendering methods can be divided into image-order and object-order 

techniques. Image-order techniques compute the volume integral along the ray for each 

pixel of the resulting image. Rays shoot through pixels on the image plane into the 

volumetric dataset and Riemann summation in equation 1.8 is taken for the volume 

integrals along rays. This is a typical way to perform DVR termed Ray-casting [Seb88, 

KvH84]. On the other hand, object-order techniques project each voxel of the volume 

onto the image plane and distribute its contribution to the final image. Volume samples 

(voxels) are convolved with a pre-integrated reconstruction filter (or called footprints) 

and composited into the frame buffer. Westover [Wes89, Wes90] introduced such a 

splatting technique to implement an object-order algorithm. Another object-order based 

algorithm is shear-warp introduced by Lacroute and Levoy [LL94], in which samples in a 

dataset are traversed in an object-order and Riemann summation in equation 1.8 is taken 

along rays that shoot through the sheared volume.  The integral result is then warped to 

generate the final image.  

Another category for direct volume rendering techniques is frequency-domain 

volume rendering (FVR) developed by Malzbender [Mal93] and Totusk and Levoy 

[TL93].  The entire volume is transformed into frequency domain in a pre-processing step.  

A view-dependent projection image of the input volume in spatial space is computed by 

extracting a slice in frequency domain and transforming back to spatial domain with the 

inverse 2D Fourier transformation. The main advantage of FVR techniques is their 

runtime computational complexity of o(n2) for inverse 2D Fourier transformations. 



 
11 

 
 
 

 

However, frequency domain techniques are limited to parallel projection and X-ray-like 

compositing. 

1.5 Classification 

In direct volume rendering, classification is a process that maps the physical properties of 

the volume, such as density in a CT-scanned dataset, to optical properties like emission 

(color) and absorption (opacity). This mapping is usually performed via a transfer 

function. A transfer function is defined as: 

 Θ→℘:)(ω
G

T   (1.9) 

where ℘ denotes a physical property space, and  Θ denotes an optical property space in 

which each element is a 4-tuple as RGBA. In the simplest case, ωG  is only the intensity of 

the volume at a sampling point. Other physical properties, such as the magnitude of the 

gradient, can be included to make a multi-dimensional transfer function [KKH01]. When 

different transfer functions are applied to the same volume, different interior structures of 

the volume can be visualized (see Figure  1.6). Depending on the stage in which 

classification is applied, we can distinguish between pre-classification and post-

classification.  In pre-classification, the voxels are classified and associated with a RGBA 

color (optical property) such that the color is interpolated in the following volume 

rendering integral.  On the other hand, voxel values (physical property) are interpolated 

first and then the per-sample interpolated values are mapped to their optical property 

(RGBA) in a post-classification.  These two classifications lead to different visual effects 

with blurred features in the former and sharp features in the latter.  



 
12 

 
 
 

 

 

 

Figure  1.6: Two different transfer functions for a CT head dataset. 



 
13 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART I 

 

GRAPHICS HARDWARE ACCELERATION TECHNIQUES 



 
14 

 
 
 

 

 
 
 
 

CHAPTER 2 
 
 

 FAST X-RAY VOLUME RENDERING  
 
 
 
 

2.1 Introduction 

X-ray imaging is one of most popular visualization techniques used in clinical diagnosis 

and in material defect detection in industry. X-ray images can be generated from 

volumetric data using an X-ray (absorption only) optical model [Max95, XC03]. The 

advantage of X-ray volume rendering is that sorting of the voxels is not needed for 

monochrome color image due to the X-Ray model [Cra96]. This algorithm is especially 

beneficial for object-order rendering techniques such as splatting [Wes89], because it is 

simply to maintain a sorted list of data values along with their corresponding coordinate 

positions. Rendering these X-ray like images is equivalent to solving the integrals along 

the view direction, since the exponential function needs to be computed only once per 

output pixel. Malzbender [Mal93] and Totsuka and Levoy [TL93] have shown how to use 

the Fourier projection slice theorem and fast Fourier transforms to compute these 

integrals very rapidly. 

Computational time complexity is a crucial factor to determine the frame rate and 

evaluate the performance of a specified volume rendering technique. In general, the time 



 
15 

 
 
 

 

complexity for object-order based volume rendering algorithms is O(N3) for a volume 

with size of N3; for the image-order algorithm such as ray-casting, the time complexity is 

determined by the image resolution and the number of samples along the rays. The basic 

operation unit measured in time complexity can be the tri-linear interpolation sampling 

the volume for ray-casting or the sample point scattering for splatting. Per-fragment 

operations like lighting could be included in the operation unit. Such unit computation 

time varies greatly from the software-based rendering to the hardware-accelerated 

rendering. The frame rate can reach 5-10 FPS for volumes with sizes of 2563 on the latest 

graphics hardware [XZC05, KW03] if no other acceleration techniques are used. The 

main drawback of the hardware techniques is that the volume size is limited by the 

expensive texture memory on the graphics hardware. The maximum volume size cannot 

easily exceed 5123 for the latest NVIDIA GeForce 6800 [NVIDIAa] hardware due to its 

limited amount of texture memory. The same problems also arise for special-purpose 

graphics hardware like the Volume Pro [PHK*99]. By transforming the input volume 

into frequency domain, Malzbender [Mal93] and Totusk and Levoy [TL93] developed 

Fourier volume rendering (FVR) which reduces the time complexity to O(N2logN). More 

recently, a Quasi-Monte Carlo volume rendering technique [CS03] was introduced with a 

time complexity of O(N2). 

In this chapter, we provide a pragmatic and efficient X-ray image visualization 

technique to allow users to interactively view such large datasets at their original 

resolutions on standard PC hardware.  



 
16 

 
 
 

 

2.2 X-ray Convolution 

Considering the input volume, V, as a finite number of samples, f(xi, j, k), sampling from a 

continuous 3D density function, f(x), at regular grid points in ℜ3, the continuum of the 

volume can be reconstructed with an appropriate kernel, h(x), as in equation 2.1:  

∑
∈

−=
V

kjikji
kji

hff
,,

)()()( ,,,,
x

xxxx  (2.1) 

Where ),,( zyx∈x is in volume space. 

In a standard X-ray volume rendering model [Max95], a ray from the eye to each 

pixel in the image is cast through the volume and the volume integral along the ray l is 

calculated as the density absorption.  The volume integral for an arbitrary view direction 

w is described in equation 2.2: 

∫ ∑∫
∈

−==
w

V
kjikji

w
dhfdfI

kji

ll
,,

)()()( ,,,,
x

xxxx  (2.2) 

Samples in eye space can be represented as )()(~
,,,, kjirts ff Mxx = , where M is the 

transformation matrix from volume space to eye space. Thus, for a parallel projection, the 

volume integral at the position (u, v) on the image plane can be rewritten from equation 

2.2 as follows: 

∑ ∫

∫ ∑

∈

∈

−=

−=

V

w

rtsrts

w

V
rtsrts

rts

rts

dwhf

dwhf

,,

,,

)()(~          

)()(~ v)I(u,  

,,,,

,,,,

x

x

xxx

xxx

 (2.3) 

Where ),,( wvu∈x is in eye space. 



 
17 

 
 
 

 

The 2D footprint, ),( vufootprinth  of a 3D reconstruction kernel, ),,( wvuh  is given 

by [Wes89]: 

∫
∞

∞−

= dwwvuhvufootprinth ),,(),(  (2.4) 

If the kernel is restricted to be rotationally symmetric, equation 2.3 can be 

reduced to: 

∑
∈

−−=
Vrts

h tvsufootprintrtsfvuI
),,(

),(),,(~),(  (2.5) 

We define a projection function wp~  by projecting f~  on the image plane P along 

the view direction w as in equation 2.6: 

∑ −−−=
r

w rwtvsuwvufvup ),,(),,(~),(~ δ  (2.6) 

Substituting equation 2.6 into 2.5, equation 2.5 can be reduced as follows:  

),(*),(~

),(),(~          

),(),,(),,(~

),(),,(~),(

),(

),(

),,(

vufootprintvup

tvsufootprintvup

tvsufootprintrwtvsuwvuf

tvsufootprintrtsfvuI

hw

Pvu
hw

Pvu r
h

Vrts
h

=

−−=

−−−−−=

−−=

∑

∑ ∑

∑

∈

∈

∈

δ
 (2.7) 

Here, * is the convolution operator. Since the convolution operation is supported 

in the OpenGL convolution extension, we can perform all operations in hardware. We 

project all sample points from the input volume onto the image plane and then perform a 

convolution operation on the image to create an X-ray image. 



 
18 

 
 
 

 

2.3 Time Complexity Analysis 

The computation time of X-ray convolution can be mainly classified into two parts: 1) the 

time to project and rasterize the points; 2) the time to convolve the image generated from 

part 1. Let the time to render and rasterize a point be tp and the time to do per-pixel 

convolution be tc. For an input volume with size of N3 voxels and an output image 

resolution of M2 pixels, the computation time T can be formulated as follows: 

cp tMtNT 23 +=  (2.8) 

In equation 2.8, the point rendering time, tp, is determined by the graphics 

hardware rendering capabilities and is a constant for a given graphics hardware.  The per-

pixel convolution, tc, varies significantly from the convolution kernel sizes. In general, tp 

<< tc, however, due to the very large number of samples from the volumetric dataset, the 

total point rendering time (N3tp) is not trivial and can even be much greater than the total 

convolution time (M2tc) for large datasets. This fact has been demonstrated in our 

experimental results. Note the total convolution time is independent of the data size.  

2.4 Implementation 

2.4.1 Point-based Rendering and Convolution in OpenGL 

The OpenGL primitive, GL_POINTS, is used to render all sample points in the volume 

onto a rendering target (e.g., a P-Buffer) to generate the projection image according to 

equation 2.6. After rendering all sample points in a P-buffer, it holds a projection image. 

To generate the final X-ray image from equation 2.7, convolution is performed by 



 
19 

 
 
 

 

copying the P-buffer to a target texture with a pre-defined convolution kernel enabled. 

The target texture thus contains the final X-ray image and is pasted to the frame buffer 

for visualization. This pasting of the texture adds an extra cost of tqM2 to the complexity, 

where tq<<tc. The pseudo OpenGL code to perform point convolution is listed as follows: 

(1) Timer.Set(); 

(2) Render all sample points with GL_POINTS; 

(3) glFinish(); Timer.Record() for point rendering time; 

(4) Timer.Set(); 

(5) glEnable(GL_CONVOLUTION_2D); 

(6) Copy P-buffer to the target texture; 

(7) glDisable(GL_CONVOLUTION_2D); 

(8) glFinish(); Timer.Record() for convolution time; 

(9) Paste the target texture into the frame buffer. 

Figure  2.1 shows the pipeline of this method. The transformed voxels are first 

projected to a rendering target, called a P-Buffer or a frame buffer object, with the 

GL_POINTS primitive. The P-Buffer is copied into a shared texture with a convolution 

filter enabled, and the convolution operation is applied at each pixel. This produces a 

final X-Ray image as the output of the convolution between its corresponding pixel in the 

P-buffer and the kernel filter. The X-Ray image in the shared texture is finally pasted into 

the on-screen frame buffer for visualization. A floating point rendering target is used to 



 
20 

 
 
 

 

eliminate the alias due to truncation when projecting many points on a same pixel in the 

P-buffer. Note for our purposes, we use a point size = 1 and anti-alias of the point. 

Figure  2.2 shows the projection image in the P-buffer (Figure  2.2a) and its final 

convolved X-ray image in the shared texture (Figure  2.2b). Figure  2.2b shows the image 

copied from the P-buffer with convolution for each pixel. Since the P-buffer is on the 

graphics hardware memory and the texture is shared between the P-buffer and on-screen 

frame buffer, there is no latency due to the bandwidth limitation for the memory transfer 

between the CPU and the GPU. All operations are performed on the graphics hardware. 

 

 

 
 

Figure  2.1: The pipeline for point convolution. 
 
 
 

Graphics 
Context 

Shared 
Texture 

Frame 
Buffer 

Graphics 
Context 

P-buffer 

Render with 
GL_POINTS 

Convolution 
enabled 

Paste the 
texture to the 
frame buffer 

Volume 
Data



 
21 

 
 
 

 

 

         
(a)     (b) 

 
 

Figure  2.2: (a) The projection image in the P-buffer; (b) The convolved X-ray image. 
 

 

2.4.2 Memory Management for Large Datasets 

To gain high performance for rendering points, we use the vertex buffer object to store 

the point geometry and intensity information on the graphics hardware memory. The 

memory for vertex positions must be pre-allocated to be sent down to the graphics 

hardware when the CPU issues the OpenGL draw primitive array command. One 

challenge to render large datasets, such as the NIH VisFemale of 512x512x1728, is to 

allocate the large continuous memory block to hold vertex positions. For example, using 

a triple of 2-byte short integers to locate vertex positions at regular grid point (i, j, k) or 

the point index of 4-byte integer to locate point position as in [vRHJ*04] requires 2.6GB 

and 1.7GB, respectively, for the VisFemale. This is beyond the memory capacity for 

most 32-bit PCs if we also include the memory for the dataset itself. 



 
22 

 
 
 

 

To render such a dataset on a standard PC, we apply an instancing mechanism 

[NVIDIAc] to render all point primitives. In instancing, a canonical instance of a 

repeatable set of geometric primitives are grouped into a vertex buffer object and sent 

down to the graphics memory first. The entire dataset, such as a forest, is represented by 

repeatedly cloning the instance with different positions, orientations and other attributes 

like texture coordinates. When rendering a dataset, only the instance-wise attributes and 

transformation matrices are issued to the GPU, and the vertices in the new instances are 

re-used from the first instance. 

For regularly grid data as in the VisFemale, we can use an m×l×n block as the 

instance to chop the volume. The entire volume is chopped into blocks of 16×16×16. We 

only allocate the memory block for a single instance and an intensity array for all points. 

In our case, we use a simplified instancing strategy since all instances have the same 

orientation and size. A transformation matrix (translation indeed here) is issued for the 

different instances.  

Figure  2.6 shows the rendering result of the VisFemale X-ray image using the 

Instancing mechanism. 

Instancing mechanism is also supported in the DirectX 9.0 SDK released in 2004. 

The DirectX technology developed by Microsoft, is a collection of APIs for developing 

high-performance, real-time Windows applications. This technique uses two vertex 

buffers: one to supply geometry data and one to supply per-object instance data.  



 
23 

 
 
 

 

2.5 Experimental Results and Discussion 

All resultant performance data were obtained on a PC equipped with the Pentium4 

processor of 3.2GHz, 3.0 GB main memory, and NVIDIA GeForce 6800, 8x AGP based 

graphics board. 

Figure  2.6 shows the rendered X-ray image of size 2048 by 512.  

Figure  2.3 plots the performance data for the point projection time vs. the number 

of sample voxels. The total point rendering time is linearly increased when the dataset 

size grows. Figure  2.4 shows the point convolution time vs. the image resolutions. The 

time for convolution solely depends on the image resolution and the convolution kernel 

size. The bigger the image resolution and the kernel size, the more time for convolution. 

The image quality heavily depends on the projection image in the p-buffer from 

the sample points.  Equation 2.7 expects the sample point projection would exactly match 

their pixel locations in the p-buffer. However, due to the limited resolution of the p-buffer, 

the ill-projection occurs when the sample point projection is truncated with partial 

alignment to the pixel in the p-buffer. In our experiment, we can see the alias patterns 

appear at some view direction when we rotate the volume (see Figure  2.5 bottom).  

2.6 Conclusions 

We have developed a fast X-ray image generation technique to interactively render very 

large volumetric datasets. An instancing mechanism is used in our method to handle the 

very large dataset. Our technique shows the timing for X-ray image generation can be 

decoupled into the point rendering time and the point convolution time. The two parts can 



 
24 

 
 
 

 

be accelerated using different techniques. Our convolution is performed for all pixels in 

the image. However, it is not necessary for some datasets with sparse representation in 

which many empty regions exist. We can develop a partition strategy to perform 

convolution for the pixels contributing to the final image.  

 



 
25 

 
 
 

 

Point Rendering Time

16, 300

128, 2300

432, 6100

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500

Voxels (Million)

R
en

de
rin

g 
Ti

m
e 

(m
ill

is
ec

on
d)

 

 

Figure  2.3: Point rendering time vs. the number of voxels. 

 
 

convolution time vs. image resolution

0

200

400

600

800

1000

1200

256x256 512x512 1024x1024
image resolution

co
nv

ol
ut

io
n 

tim
e 

(m
ill

is
ec

on
d)

Kernel size 3

 
 

Figure  2.4: Convolution time vs. image resolution. 
 



 
26 

 
 
 

 

 

 
 

 

 
 

 

Figure  2.5: The X-ray image of foot dataset with perfect projection (top) and the 
aliased image (bottom) due to ill projection.  



 
27 

 
 
 

 

 

 

 

Figure  2.6: VisFemale X-ray image. 



 
28 

 
 
 

 

 
 
 
 

CHAPTER 3 
 
 

 ISOSURFACE-AIDED SLICE BASED VOLUME RENDERING  
 
 
 
 

3.1 Introduction 

Using graphics hardware to accelerate volume rendering is continuously exploited by 

researchers with the advances of new hardware techniques. Cullip and Neumann [CN93] 

first addressed the capability to render a volume on the 3D texture hardware. Akeley 

[Ake93] and Cabral et al. [CCF94] described slice-based volume rendering (SBVR).  

SBVR is a direct mimic of ray-casting, but samples the volume for all rays at once when 

advancing the rays. The original SBVR slices the whole volume. Engel et al. [EKE01] 

developed a pre-integrated volume rendering technique for high quality images using 

multi-texturing. This improves the quality, but not the performance, unless a lower 

sampling rate can be applied to the volume integration. To improve rendering 

performance for fairly large dataset, Li et al. [LMK03] split the volume into small bricks. 

The bricks in empty space are removed and only the non-empty bricks are rendered with 

SBVR. With the powerful programmability of graphical processing units (GPU) today, 

many software-based acceleration techniques like empty space skipping and early ray 

termination [Lev90, DH92, YS93, FS97] can be implemented on the GPU directly.  



 
29 

 
 
 

 

Krüger and Westermann [KW03] and Roettger et al. [RGW*03] develop their algorithms 

to perform ray-casting using a pixel shader 2.0 program [Mic02] on the GPU with early 

ray termination and space-leaping. Krüger and Westermann propose an ingenious 

encoding of the ray direction and length into floating point render targets. These textures 

are then used to determine where to sample the 3D texture (volume).  The early z-culling 

feature on the latest graphics hardware makes early ray termination possible in their 

algorithms.  

In a typical slice-based volume rendering, the volume is sliced by the object-

aligned or image-aligned planes (see Figure  3.1).  These planes are rendered in a back-to-

front or front-to-back order, textured by the 3D texture (volumetric dataset) during 

rasterization, and finally composited into the frame buffer to generate the final image.  A 

main drawback of SBVR is that, for each slice during rasterization, all fragments are 

sampled from the 3D texture even though some fragments do not contribute to the final 

image at all.  This greatly reduces the rendering speed, especially when a complex 

fragment shader including lighting or high-order gradient computation is employed. This 

is very inefficient since the empty space usually occupies more than one-third of many 

volumetric datasets.  

In this chapter we present an isosurface-aided hardware acceleration technique for 

slice-based volume rendering (iSBVR). The acceleration is based on the early z-culling 

feature provided by the latest consumer level graphics hardware. Given a transfer 

function, we can analyze it to determine values where the resulting opacity is completely 

opaque. Extracting iso-contours corresponding to these values provides a blocking 



 
30 

 
 
 

 

surface, where any sample of the volume along the ray that is behind (or within) this 

surface is not visible. Isosurfaces can also be extracted corresponding to any minimal 

thresholds in the specified transfer function (i.e., where the transfer function goes to zero 

opacity). These surfaces do not block the rays as in early ray termination, but can provide 

a simple space-leaping as we will show later in the chapter. More importantly, the 

minimal isosurfaces can be used to flag areas on the screen where the ray passes entirely 

through volume without hitting any values that would contribute to the volume integral. 

We call these rays empty rays and our algorithm provides an efficient solution for empty 

ray removal. It should be noted, that these isosurfaces are rendered only to initialize the 

z-buffer. Nothing is ever skipped, but with early z-culling enabled, the hardware quickly 

processes these areas resulting in a substantial performance improvement. 

 

 

Figure  3.1: The proxy geometries of image-aligned slicing planes. (a) 2D diagram of 
slice planes. (b) The slicing planes intersecting with the volume box. 

Image 
plane 

eye 



 
31 

 
 
 

 

 

3.2 Early Z-culling for Volume Rendering 

A key observation of brute-force texture-based volume rendering is probably the sheer 

number of fragment and pixel operations which do not contribute to the final image. This 

problem becomes more serious with a complex fragment shader, which includes texture 

accesses for volume sampling, transfer function lookups, gradient and lighting 

calculations, and blending operations.  

Effective utilization of the early z-culling feature on graphics hardware is the 

impetus for our isosurface-aided acceleration technique.  The key criterion here is that the 

z-buffer must be set up properly such that only fragments on the slicing plane that 

contribute to the final image can pass the depth test. By means of early z-culling, the 

fragments that do not contribute to the final image will exit from the graphics processing 

pipeline immediately. As pointed out by Krüger and Westermann [KW03] and our own 

experiments, this early termination greatly reduces the rendering time, particularly when 

complex shaders are desired. 

Assume that for each pixel a z-value can be determined such that further samples 

will be occluded. Ideally, we would like to set our z-buffer to these values. Furthermore, 

if the ray passes entirely through empty space or air, then the processed fragments can be 

skipped. Our goal is to set the z-value to the front of the volume for these rays. By setting 

the z-buffer as such, the rendering speed can be benefited from the early z-culling feature 

of modern graphics hardware. 



 
32 

 
 
 

 

A two pass rendering process is used in most games containing complex shaders. 

In the first pass, a simple shader is performed to set up the z-buffer.  If the color frame 

buffer is not being changed, newer hardware can actually render this pass twice as fast. In 

the second pass, a final complex shader is performed. Theoretically, this shader is 

performed for all fragments. Any fragments which fail the depth test, are then simply 

discarded. The early z-culling feature of the hardware performs the depth test first, and 

only if it passes does the resulting complex shader get processed. Hence, only the visible 

fragments are rendered in the second pass (note, the hardware is a little more complicated 

than this).  The remaining non-effective fragments are occluded and the shader on them is 

skipped.  

For direct volume rendering, things are much more complex, as opaque surfaces 

(or positions) are not clearly defined. Kruger and Westermann [KW03], developed a ray-

caster in the graphics hardware. An early ray termination was implemented using the 

early z-culling feature, by processing the rays in slabs. After each slab, a rendered texture 

from the opacity buffer would be examined in a fragment shader, and pixels which were 

fully opaque would have their z-values set to the current slab position. Roettger, et al 

[RGW*03], do a similar thing, with a slab width of 4 samples and an occlusion query test 

for region of entire image termination. Newer hardware, such as nVidia’s 8800 allows for 

better looping and branching [NVIDIAb] and a true implementation of ray-casting with 

early ray termination. This does not need, nor use the early z-culling feature of the 

hardware. 



 
33 

 
 
 

 

3.3 Time Complexity Analysis 

We classify all fragments, F, into either affecting the volume integral or not. Those 

affecting the integral will need to execute their corresponding fragment shader. Thus, we 

have Fc fragments for which a complete and potentially complex shader needs to execute, 

taking on average Tc time per fragment. Our goal is not to remove or ignore any 

superfluous fragments, but to reduce their shader time to the minimal execution time Tz 

by the early z-culling. Essentially, there are three main computational parts for a two pass 

volume rendering: 

1. Time to set up the z-buffer in the first pass: Fs*Ts; 

2. Rendering fragments that are discarded by early z-culling in the second pass: 

(F-Fc)*Tz; 

3. Fragments rendered with the complex shader in the second pass: Fc*Tc. 

The above three parts lead to Equation 3.1 as a computational model for the 2-

pass volume rendering time, T2-pass, with a maximal potential speedup, δ, given in 

equation 3.2. This is provided we can control the hardware to only execute the complex 

shader on the affective fragments.  

cczcsspass TFTFFTFT **)(*2 +−+=−  (3.1) 

cczcss

c

TFTFFTF
TF

**)(*
*

+−+
=δ  (3.2) 

Where, 

F: the total number of fragments generated from the volume; 

Fs: the number of fragments to set up the z-buffer in the first pass;  



 
34 

 
 
 

 

Fc: the number of fragments fed into the complex shader in the second pass;  

Ts: the operation time of a simple shader to set up the z-buffer in the first pass; 

Tz: the operation time for a fragment discarded by the early z-culling (with no 

fragment program at all) in the second pass; 

Tc: the operation time of a complex shader to render the final image in the 

second pass. 

For slice-based volume rendering, each slice is rendered twice.  In the first pass, a 

simple shader is applied to modify the z-buffer if a pixel reaches opaque in the opacity 

buffer. This slice is rendered again by a complex shader with early z-culling enabled.  In 

this case, the number of fragments, Fs, in the first pass to set up the z-buffer equals to the 

total number of fragments, F. In general, the simple shader time, Ts, is close to Tz and we 

will use Ts to approximate Tz in our later discussion.  Equation 3.1 and 3.2 can thus be 

approximated by: 

ccscspass TFTFFTFT **)(*2 +−+=−  (3.3) 

ccscs

c

TFTFFTF
TF

**)(*
*

+−+
=δ  (3.4) 

The simple shader time Ts is fixed for a given graphics hardware, and the complex 

shader time Tc varies upon different shaders. Let the fragment culling rate be 

FFF c /)( −=α  and the simple shader speed-up be cs TT /=γ . Equation 3.4 can then be 

simplified as: 

γααγ
δ

+−+
=

1
1  (3.5) 



 
35 

 
 
 

 

Two pass rendering is beneficial when the speedup, δ, is greater than 1.  

Substituting 1>δ into Equation 3.5, we obtain our desired property: 

1)1)(1( >+− αγ  (3.6) 

Inequality 3.6 describes for a given shader (γ is fixed), how many fragments must 

be occluded to gain a speedup in any two pass SBVR of the volume. For example, if a 

more complicated SBVR shader has γ = 0.2, the fragment culling rate, α, must be greater 

than 25% to gain a speedup. The goal of the next section is to provide a fast and efficient 

scheme for setting the z-buffer such that Fc is as close to the number of affecting 

fragments, Fa, as possible. 

3.4 Isosurface-aided Hardware Acceleration 

While our algorithm will work with any opacity-based volume shader, it relies on the 

mapping from function values to opacities (i.e., the transfer function), to have certain 

characteristics. Not like the regular early ray-termination which occurs when the 

accumulated opacity from the transfer function reaches to the maximum of one, pseudo 

early ray-termination will only occur when the transfer function reaches a maximum 

opacity of one or other value selected as opaque opacity. Space-leaping and empty ray 

removal, provide greater benefits when the transfer function contains regions with zero 

opacity. In other words, if opacity does not equal zero, there will be no empty space that 

we can remove. If the transfer function does not have either of these properties, then it 

should be noted that there is no overhead associated in the volume rendering due to this 

technique. 



 
36 

 
 
 

 

 

Figure  3.2: The back faces of isosurfaces Φt and the front faces of isosurface Φp are 
rendered with parallel projection and their corresponding z-buffer (right).  Only the 
slices in bold pass the depth test and contribute to the final image. 

 

For simplicity in the discussion, we will assume we have only two isosurfaces, Φt 

and Φp, given by a boundary threshold where the opacity goes from zero to a non-zero 

value and an opaque threshold where the opacity reaches one. A very simple example is 

given in Figure  3.7e. In general, several iso-values can be used, albeit at a potential 

rendering cost. The resulting isosurfaces are extracted in either a pre-processing stage, or 

whenever the transfer function is changed. Figure  3.2 illustrates a cross-section of the 

volume rendering process containing an opaque iso-contour (red solid line), and the 

boundary iso-contour (blue dashed line). For discussion, we will also assume that all 

isosurfaces are closed for now, and that the interior of these closed isosurfaces have 

values greater than the isovalue. This former assumption will be discussed and removed 

in later sections. If the later assumption is violated, then only an opaque surface will be 

Φt 

z=0 

z-buffer 

Φp 

ray 



 
37 

 
 
 

 

visible. Note, these assumptions are on the opacity values, not the actual function values. 

3.4.1 Pseudo Early Ray-Termination 

Clearly, any fragments which lie behind another fragment which is opaque, will not 

contribute to the volume integral. If we set the z-buffer to the front-faces of this 

isosurface, we will enable early z-culling on the remaining fragments. This is not true 

early ray-termination, in that the ray could reach maximal opacity long before reaching 

an opaque isosurface. This region is depicted by the depth buffer between the two rays 

(red color) in Figure  3.2. The main steps to initialize the z-buffer for pseudo early ray-

termination are thus: 

• z-Buffer Initialization: for early ray termination. 

1. Disable the output to the color buffer; 

2. Set the depth function to GL_LESS (the default); 

3. Render the front faces of Φp. 

This simple process provides a speed-up from 30% to 50% in our tests. 

3.4.2 Empty Space Leaping 

A typical volume will have many pockets of empty space, some between the eye and the 

volume material, some within the volume and some between the volume and the 

background. Culling away all of these fragments is a challenging research question. 

Space-leaping typically concentrates on removing the material between the eye and 

volume. This corresponds to the first crossing of the ray with the minimal iso-contour 

value or Φt surface. We can set the z-buffer to these crossing, by rendering the front faces 



 
38 

 
 
 

 

of the isosurface. Early z-culling can then be achieved by using a GL_GREATER depth 

test on the fragments. The main steps to initialize the z-buffer for space-leaping are thus: 

• z-Buffer Initialization: for space-leaping. 

1. Disable the output to the color buffer; 

2. Render the front faces of Φt. 

3. Set the depth function to GL_GREATER. 

3.4.3 Combined Space-Leaping and Early Ray-Termination  

Early ray-termination requires a GL_LESS test, while space-leaping, a GL_GREATER 

test, seeming to preclude the use of both accelerations in the same rendering. Space-

leaping is usually associated with setting the initial sample location for a ray. We can 

reverse the ray direction, and test if the current sample location is the last contributing 

sample along the ray. Here, we remove the material between the volume and the 

background, and call this exit-based space-leaping. This corresponds to the last crossing 

of the ray with the minimal iso-contour value or Φt surface. This is the region between 

the two rays (blue color) in Figure  3.2. The main steps to initialize the z-buffer for exit-

based space-leaping are thus: 

• z-Buffer Initialization: for exit-based space-leaping. 

1. Disable the output to the color buffer; 

2. Render the front faces of the volume’s bounding box. 

3. Set the depth function to GL_GREATER; 

4. Render the back faces of Φt. 

5. Set the depth function back to GL_LESS. 



 
39 

 
 
 

 

Now, to combine this with the early ray-termination, we simply need to perform the 

initialization for exit-based space-leaping before the initialization for early ray-

termination. After the exit-based space-leaping initialization, the z-buffer will either have 

values corresponding to the front faces of the bounding box, or the last surface of the 

minimal iso-value. For our assumptions with closed iso-contours, the early ray-

termination surfaces, Φp, will project only to areas already covered by the isosurface, Φt. 

Since the z-buffer was pushed away from the cube faces in these regions, the early ray-

termination initialization will pull these back towards the viewer. 

3.4.4 Empty Ray Removal 

For sparse values, many rays do not intersect any meaningful data in the volume. The 

rays end up being set to the background color. This implies that a ray never crosses 

through the minimal isosurface, Φt, (and by the closed assumption the opaque isosurface, 

Φp, as well). Early z-culling for the fragments in these areas will work if the z-buffer is 

set to a minimal value (zero or the front faces of the volume). The exit-based space-

leaping algorithm above actually accomplishes this already. The region (in yellow color) 

in Figure  3.2 represents the empty rays, and the resulting z-buffer is set to zero in this 

case. Combining the empty ray removal and the exit-based space-leaping provides a 

substantial speed-up between 200%-300%. 

3.4.5 Culling Efficiency 

Our final, and significant, result is that only the fragments on the bold portion of the 

slices in Figure  3.2 will pass the depth test and execute any complex shader associated 



 
40 

 
 
 

 

with them.  The performance improvements from both empty space skipping and early 

ray termination, achievable with most software-based ray-casting algorithms [Lev90, 

DH92, YS93, FS97], are now accomplished in the context of slice-based volume 

rendering by leveraging the early z-culling feature of modern graphics hardware. We still 

have some fragments which do not contribute to the final image, but pass through the z-

cull operation. Hopefully this set is greatly reduced. The actual results will be data set 

and transfer function dependent. To render the volume, we simply need to turn on depth 

testing as usual and process the volume slices. The algorithm works equally well using a 

back-to-front or a front-to-back slicing order. The volume is rendered as usual: 

• Volume Pass: render the proxy geometries. 

1. Enable the output to color buffer; 

2. Set the depth function to GL_LESS; 

3. Enable the fragment or volume shader; 

4. Render the proxy geometry. 

Figure  3.7 shows the isosurfaces and the resultant z-buffer after the initialization passes. 

A black or darker value indicates 0=z while a white value indicates 1=z . Darker values 

indicate the depth is closer to the eye. 

In order to characterize our algorithm, we need to consider the rendering time, Ta, 

from the two initialization passes (Equation 3.7) and the rendering time, Tm, for the 

volume shader (Equation 3.8).  Any resulting speedup is characterized by Equation 3.9. 

spsta TFTFT ** +=  (3.7) 



 
41 

 
 
 

 

ccscm TFTFFT **)( ′+′−=  (3.8) 

ccscspst

c

ma

c

TFTFFTFTF
TF

TT
TF

**)(**
*

*

′+′−++
=

+
=δ

 (3.9) 

Where, 

Ft: the total fragments generated from the back faces of Φt ; 

Fp: the total fragments generated from the front faces of Φp; 

F: the total fragments generated from the volume; 

F’c: the number of fragments fed into the complex shader in iSBVR.  

Obviously, if the time it takes to render the isosurfaces approaches the volume rendering 

time, and potential speed-ups in the volume rendering are lost. The next section examines 

the issues associated in generating and rendering the isosurfaces. 

3.5 Isosurface Extraction 

For a typical dataset of 2563, there could be more than a million triangles on the 

isosurface (see Figure  3.6a) for a reasonable transfer function. The rendering time for this 

large number of triangles offsets any speedup from early z-culling. To reduce the 

isosurface rendering time, an octree is generated from the underlying volume to extract 

the isosurface. Each octree node contains a min-max value pair representing the minimal 

and maximal voxel values it includes.   



 
42 

 
 
 

 

 

Figure  3.3: Isosurfaces and their reduced form in cube faces. Left: isocontouring, Φt 
and Φp. Right: Φt is inflated to the outer faces of the cubes containing it. Φp is 
shrunk to the outer faces of the inter cubes.  
 

However, when generating the isosurface from the octree using the maximal value in the 

octree node, the iso-suface, Φt, may occlude some voxels even though their values are 

greater than the iso-value since the voxel with the maximal value is not necessarily the 

vertex in the node for iso-contouring.  The voxel labelled B in Figure  3.3 (left) shows this 

case.  Similarly, the isosurface, Φp, may contain the non-opaque area as A in Figure  3.3 

(left).  The holes in Φp will produce serious aliases since the rays will stop at the Φp due 

to early z-culling.  To solve these problems, the isosurface, Φt, is inflated to fill the 

outmost cubes that containing it and the Φp is shrunk to the maximal set of the cubes 

completely included inside Φp. Figure  3.3 (right) shows the reduced isosurfaces for Φt 

and Φp. Figure  3.4 show the bonsai dataset rendered by the original isosurface and its 

reduced isosurface.  The holes in the original one (Figure  3.4a) have been removed in 

Figure  3.4b.  

Φt 

Φp 

Φt 

Φp 

A

B



 
43 

 
 
 

 

 

Figure  3.4: (a) Generated from the original isosurface. There are holes in the image 
due to the incorrect occlustion.  (b) Generated from the reduced isosurface with 
holes removed. 

 

3.5.1 Isosurface for Empty Space Leaping 

As shown in Figure  3.2, only the back faces of Φt are used to set up the z-buffer for front 

empty space leaping. Thus, we can generate a set of cubes which contain the manifold of 

the isosurface, and render these cubes with back faces and with GL_GREATER for depth 

testing. 

The isosurface must be closed to correctly set up the z-buffer in the two 

initialization rendering passes in section  3.4.1 and  3.4.3. Otherwise, there are the 

undesired z-values from the front faces for the open area in the z-buffer that will 

incorrectly occlude the fragments in the final image. However, if the value of the voxel 

on the volume boundary is greater than the input isovalue, the final output surface will be 

  



 
44 

 
 
 

 

open around such voxels.  To create the close isosurface, the cube on the volume 

boundary is also added to the cube set if it is inside of the isosurface. The algorithm to 

create the cube set is listed as following:  

 

3.5.2 Isosurface for Early Ray-Termination 

To create isosurface, Φp, for the opaque values, we use the minimal value in each octree 

node.  When the octree node size is big (accordingly low resolution with respect to the 

original volume), some parts of the isosurface could be missed.  This is not desired since 

we want more fragments can be rendered to set up the z-buffer for early ray termination.  

This problem becomes more serious, especially for medical datasets in which the skull or 

thin bones cannot contain a complete cube from the octree node.  Figure  3.5 shows a 2D 

diagram where the iso-contour shrinks when iso-contouring using the minimal value from 

the min-max pair in the octree node.  Figure  3.6 shows the isosurface of Φp from a 

Siemens CT head dataset. It shrinks drastically when octree node size increases from 1 to 

8. There are almost no pixels to be set with the z-values for early ray termination in the 

Input:  the cubes of the octree 
Output: the cube set S containing Φt.  
1) Set the cube set S = ∅; 
2) For each cube d in the octree of the volume 
3)     If d contains isosurface 
4)          S = S ∪ {d}; 
5)     Else if d is inside the isosurface and on the volume boundary 
6)          S = S ∪ {d}; 
7)    Endif 
8) Endfor 
9) Return S. 



 
45 

 
 
 

 

 

Figure  3.5: Left: iso-contouring for 7x7 grid. Right: the grid is generated from left 
with quad-tree node of 2x2.  The vertex value is determined by the minimal value of 
each 2x2 node from the left grid.  

 
 
 
 

 

 

Figure  3.6: The isosurface shrinks drastically when using the minimal value to 
perform contour on different octree levels. 
 

 
                    (a)                                 (b)                              (c)                               (d) 

             original                      2x2x2 node                4x4x4 node                  8x8x8 node 
   1,059,856 Triangles      213,416 Triangles      16,792 Triangles          80 Triangles       



 
46 

 
 
 

 

initialization pass if using octree node of 8x8x8.  In our experiments, the octree node of 

2x2x2 for Φp provides the good balance between the overhead to rendering the triangles 

on Φp and the benefit from the early ray termination.  

To shrink the isosurface as shown in the Figure  3.3 (right), we shrink the cube set 

containing isosurface, Φp, until it only includes the cubes which are completely inside Φp. 

The algorithm for creating such cube set, T, is as following:  

 

Input: the cube set E containing Φp 
Output: the shrinking cube set T  
1) Set the cube set T = ∅; 
2) Repeat each cube d in E 
3)     E = E - {d}; 
4)     For all d’s neighbour nj along shrinking direction 
5)          If nj is completely inside Φp and nj∉T 
6)              T = T ∪ { nj }; 
7)          Else  
8)             E = E ∪ { nj }; 
9)          Endif 
10)      Endfor 
11) Until E = ∅ 
12) Return T. 



 
47 

 
 
 

 

 

Figure  3.7: (a) The back faces of isosurface Φt; (b) The z-buffer after rendering the 
isofurace in (a); (c) The front faces of isosurface Φp; (d) The z-buffer after 
rendering the isosurface in (c); (e) the transfer function for two isosurfaces; (f) The 
z-buffer is rendering after the two initialization passes. Note: the values in the z-
buffer images (right column) are rescaled to highlight the difference. 

   
(a) Φt                                        (b) 

   
(c) Φp                                       (d) 

Transfer 
function

Output 
alpha 

input  

Empty  Opaque 
   

(e)                                                (f) 



 
48 

 
 
 

 

3.6 Results and Discussions 

All performance data were obtained on a standard PC equipped with an ATI 9800 pro 

graphics card with 128 MB video memory.  All four datasets are of 2563 in our tests and 

the slice spacing was set to the voxel interval distance. The resultant imagery from a 

gradient-based shader is shown in Figure  3.8.  The performance results are drawn in 

Figure  3.9. Our results show that we obtain on average 2 to 3 times speedup against the 

brute-force SBVR. Figure  3.9 shows that the performance of early ray termination (ERT) 

for the CT head dataset II is greatly reduced due to the large fuzzy area in the volume 

(Figure  3.8b), while the performance of empty ray removal (ERR) for aneurism dataset is 

significant due to the sparse representation of the dataset (see Figure  3.8c). 

The slices in front of any front face of Φt are still fully rasterized and executed by 

the fragment program (see Figure  3.2) since their depths are always less than the pre-

rendered depth value in the z-buffer.  This problem can be solved by rendering each slice 

with one more pass as in [KW03], in which a simple shader is performed to modify the z-

buffer to occlude pixels reaching opaque. On the other hand, considering the large 

number of slices, the overhead of the additional rendering passes for all the slices partly 

offsets the performance improvement. If OpenGL would support a depth band-test with 

dual z-buffers, this would further improve the current frame-rates by culling all fragments 

outside of the two z-buffers without additional overhead (assuming the additional depth 

test is free).   The newly introduced GL_DEPTH_BOUNDS_TEST_EXT provides a 

similar but much simplified function, in which a user specified depth range test between 

[0..1] is applied to fragments in addition to the  normal depth test.  This OpenGL 



 
49 

 
 
 

 

extension can help the performance improvement of the iSBVR by excluding all the 

voxels beyond the depth bound. 

The iso-contouring is performed in either a pre-processing stage, or whenever the 

transfer function is changed. Since we only apply iso-contouring to volume octrees 

(8x8x8 and 2x2x2 nodes for Φt and Φp, respectively), this greatly reduces the number of 

cells for iso-contouring. We can still obtain interactive rendering speed when changing 

transfer functions. In our experiments, the timings for isosurface extraction are 10 ms and 

210 ms for Φt and Φp, respectively. The other well-studied accelerated isosurface 

extraction techniques [SHLJ96, vRHJ*04] can be used to further enhance the 

performance.  

3.7 Conclusions 

By means of the early z-culling feature, we have developed an isosurface-aided hardware 

acceleration technique for slice-based volume rendering to gain the improved frame-rates 

of two to three times. The advantages of early z-culling become more pronounced for 

hardware accelerated volume rendering. This isosurface-aided acceleration can be easily 

fit into the other existing GPU volume rendering pipeline like Krüger and Westermann’s 

GPU-based ray caster [KW03] and the pre-integrated volume rendering [EKE01]. 



 
50 

 
 
 

 

 
Figure  3.8: All images are of resolution by 512x512. (a): CT head dataset I (2563); 
(b): CT head dataset II (2563); (c): aneurism dataset (2563); (d): bonsai dataset 
(2563). 

     
 
 

(a)                                                              (b) 
 
 

     
 
 

(c)                                                              (d) 
 
 



 
51 

 
 
 

 

 

5.
07

6.
07

6.
56

6.
79

12
.2

5.
06

5.
77

6.
28

5.
11

7.
58

5.
2

7.
95

7.
36

5.
64

12
.8

5.
2

7.
09

6.
53

6.
31

13
.1

02468101214 Frames per second

P
la

in
 

E
m

pt
y 

sp
ac

e 
le

ap
 (E

S
L)

 

E
m

pt
y 

ra
y 

re
m

ov
al

 (E
R

R
) 

E
ar

ly
 ra

y 
te

rm
in

at
io

n 
(E

R
T)

 

E
R

R
+E

S
L+

ER
T 

Fi
gu

re
  3

.9
: T

he
 r

en
de

ri
ng

 F
PS

 w
ith

 d
iff

er
en

t a
cc

el
er

at
io

n 
te

ch
ni

qu
es

 fo
r 

fo
ur

 d
at

as
et

s u
si

ng
 iS

B
V

R
. 



 
52 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART II 

 

GRAPHICS HARDWARE VOLUME SHADERS  



 
53 

 
 
 

 

 
 
 
 

CHAPTER 4 
 
 

 TEXTURE SPLAT SHADER  
 
 
 
 

4.1 Introduction 

Texture mapping hardware has been used in splatting algorithms [LH91, CM93] to 

visualize scalar and vector field volumetric datasets. Interactive rates are only achievable 

with rather small datasets.  With the development of advanced graphics hardware in 

recent years, it is worthwhile to develop a more efficient texture splat shader for fast 

interactive and dynamical flow volume rendering [XC04].   

Crawfis and Max [CM93] explore anisotropic textured splats to represent multi-

variate vector fields by using a large set of textures adding different length vector icons to 

the reconstruction kernel texture.  King et al. [KCR99] and Wei et al. [WLMK02] 

develop another set of textured splats with gaseous details to represent amorphous 

volumes like fire. They both generate a table of textures with different phase-shifts to 

achieve animation for vector fields and gaseous volumes.   

In OpenGL, hardware accelerated splatting for vector fields is achieved with the 

following steps:  

 



 
54 

 
 
 

 

1. Create a texture image from the reconstruction kernel function as the 

splat footprint;  

2. Create a set of anisotropic textures for the vector field, fire or smoke 

rendering; 

3. Create a quadrilateral which is centered about the voxel location for 

each voxel in the volume;  

4. Sort all voxels along the view direction;  

5. Reorient each voxel quadrilateral to be perpendicular to the viewing 

ray;  

6. Select the appropriate texture based upon the vector field direction at 

the current voxel; 

7. Render the quads with texture mapping in a back-to-front order.   

 

In this chapter, we present a dynamic, multi-glyphic textured splatting technique 

to render multi-variate flow volumes with the support of vertex shaders on graphics 

hardware.  We implement a vertex program, using the OpenGL multi-texture and register 

combiner extensions to construct anisotropic textured splats, which can represent vector 

fields, and to dynamically visualize the flow volume. We achieve the animation effect in 

a very efficient way, while using only one or two small textures.  In addition, we provide 

multi-glyphic textured splats to classify and visualize the vector field. 

4.2 Textured Splats 

For vector field representations, we embed directional icons or glyphs into the texture 

used for the footprint integration [LH91, Wes89, Wes90].  Two textures, one for the 

scalar kernel map and one for anisotropic vector icons, are generated with only an alpha 

channel.  To represent the vector field correctly, the quadrilateral splat must be rotated 



 
55 

 
 
 

 

according to its vector field direction in eye space.  The view-dependent reorientation of 

the splat is performed in the vertex program of vertex shader [Wyn], which will be 

discussed in the next section.  This adds an additional complexity to the vertex program 

which normally only handles the transformation and lighting stage of the OpenGL 

pipeline [LKM01]. The splat is then rotated according to its projected vector direction in 

eye space, such that the mapped anisotropic vector icon aligns with its projected vector 

direction. 

Specifically, we investigate vector field animation, multi-variate color-coding of 

the vector icons and multi-glyphic textured splats, and vector icon foreshortening due to 

its projection on the plane orthogonal to the view direction in this section.   

4.2.1 Multi-Variate and Multi-Glyphic Textured Splats 

Representing data sets with both scalar values and vector icons offers us more cues and 

insights about the relationship between these fields [CM93]. Figure  4.1 shows an image 

reprinted from [CM93], where the percent cloudiness is rendered using a traditional 

scalar field volume renderer via splatting, and the wind velocity is rendered using the 

textured splats icons. Here, the vector icons are color-coded by an independent variable. 

In this case, the altitude was used to provide additional positional information. To 

accomplish this, we use a BLEND operator to create a splat’s color as a dissolve between 

the quad color ),,( pripripri BGR and a vector icon secondary color ),,( secsecsec BGR .  The splat’s 

resulting color is represented as:  



 
56 

 
 
 

 

 

Figure  4.1: Percent cloudiness and wind velocities. The wind velocities are color 
coded by altitude.  Courtesy to Roger Crawfis. 

 

))*)1((*

*)1(*

*)1(*

*)1(*

101

1sec1

1sec1

1sec1

textextexpri

textexpri

textexpri

textexpri

AAAAA

ABABB

AGAGG

ARARR

+−=

+−=

+−=

+−=

 (4.1) 

Here, 0texA , 1texA are the alpha channels of the reconstruction kernel texture and the vector 

icon texture, respectively.  The splat’s color is then attenuated by its opacity and 

composited into the final image with the blending function 

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) in a back-to-front 

rendering order [MHB*00, Max95].  

Figure  4.2 shows the blending operation between the two textures used by the 

hardware [Spi].  Both the reconstruction kernel map and the vector icon are generated as 

only one channel (alpha channel) textures and they are assigned as texture unit 0 and 

texture unit 1 respectively.  The primary color is assigned using the voxel intensity with a 

proper transfer function, while the secondary color is assigned as the vector icon color. 

Figure  4.2 demonstrates the register combiner diagram to compute the splat’s color and 

 



 
57 

 
 
 

 

 

Figure  4.2: the register combiner diagram for producing the splat color using our 
BLEND equation. 

 

opacity.  Its final color (modulated by its opacity) is also presented at the bottom right. 

In the above discussion, we use color to code the vector tensor.  To obtain better 

insight of vector fields, we can use different vector icon textures to represent the flow in 

the same volume rendering (multi-glyphic textured splats). Each textured splat is 

associated with a specific vector icon texture;  the splat will be mapped with this texture 

during rasterization and presents the visual property of its vector icon texture. 

The vector glyph accounts for the final image rendered from the flow. We explore 

four vector glyphs: stroked lines, stream lines, particles, and arrows.  The first three are 

demonstrated as the insets in Figure  4.3 (a), (b) and (c).  The last (arrows) are 

demonstrated in Figure  4.6. Figure  4.3 (a), (b) and (c) show the vectors in the core part of 

the test dummy dataset [CM93] are rendered with stroked line, stream line, and particle 

glyphs, respectively. Figure  4.3 (d) shows the application of multi-glyphic texture splats. 

The vectors with different tensorial values are mapped with different vector glyphs. 

 

 

 

Texture unit 0

A 

B 

C 

D 

AB 

Spare 0

ALPHA 
portion 

 
A

B

C

D

AB+CD 

Spare 0

ALPHA 
portion 

A RGB 

RGB A 

 
A

B

C

D

AB+(1-A)C+D 

RGB 
portion

ZERO 

RGB A

A RGB 

Texture unit 1 RGB 

Secondary color 

Primary color 

Combiner0 Combiner1 Final Combiner

A 

1-A 

A 

RGB RGBA A

A 

Output 
fragment 

   
 

 

 



 
58 

 
 
 

 

 

Figure  4.3: The dummy test tornado dataset [CM93]. The tornado core is rendered 
with the inset vector icon texture in (a)(b)(c), respectively. The full dataset is 
rendered with 3 different icon textures (strokes, lines, and particles) corresponding 
to different velocity magnitudes. 

   
 
 

(a)      (b) 
 
 

   
 
 

(c)      (d) 
 



 
59 

 
 
 

 

4.2.2 Foreshortening of the Vector Icons 

To represent the vector direction more accurately, we must foreshorten the anisotropic 

vector icons inversely-proportional to their projected length on the x-y plane in eye space.  

In other words, long vector icons should be used when the flow is parallel to the viewing 

plane while short vector icons should be used otherwise. Two plausible solutions for this 

are that we either rotate the textured splat such that it is always parallel to the vector field 

direction or that we simply shorten the quadrilateral geometry in the projected vector 

field direction.  Unfortunately, neither method works for multi-variate vector fields, 

where the scalar reconstruction kernel needs to be preserved.  Crawfis and Max [CM93] 

built a table containing the vector icon textures with different lengths.  The z component, 

vz, of the vector direction in eye space is used to index into the table.  This again, required 

several repeated textures and wasted a large amount of texture memory. Our alternative is 

to shrink the vector texture by changing the texture mapping coordinates.  It foreshortens 

the vector icon length by increasing its occurrence frequency. This foreshortening is 

view-dependent and hence, precludes any efficient strategy for calculating the texture 

coordinates and saving them in a display list or vertex buffer object. Fortunately, we can 

modify the texture mapping coordinates in the vertex program to implement this method. 

Since the vector icon texture is separate from the reconstruction kernel texture, we can 

treat their texture coordinates separately as well. When focusing on the flow direction 

visualization, a normalized vector direction is used to calculate the output texture 

coordinate. For the normalized vector direction, we interpolate the output texture 

coordinate, output_xtex1, on the x-axis from the following equation: 



 
60 

 
 
 

 

⎪⎩

⎪
⎨
⎧

=

=
=

0_0

1_),/1min(
_

1

1max

1

tex

tex

tex

xinputif

xinputiffd
xoutput  (4.2) 

Here, d is the projection length of the vector direction on the x-y plane and fmax is 

the maximum occurrence frequency of the icon.  To prevent from producing an infinite 

number of vector icons when d approaches 0, the output x-coordinate is limited to fmax , or  

no more than fmax copies of the vector icon texture mapped to the same splat quadrilateral.  

There is no foreshortening for the vector icon if the projection length d is one, while the 

shortened vector icon repeats fmax times in the x-axis direction if d is equal to or smaller 

than 1/fmax. According to our numerical experiments, the maximum occurrence of fmax=3 

delivers a satisfactory visualization. We use normalized vectors to show the direction 

only, relying on other techniques to show the magnitude. 

4.2.3 Dynamic Representation 

Animation can be achieved by using a phase-shift through the overlapping vector icon 

textures [CM93].  Crawfis and Max [CM93] developed a set of textures and cycled 

through these textures to achieve the animation. Each texture was a cyclical shift of the 

vector icon in the negative flow direction represented by the texture. This presented 

problems in that all textured splats either had to move at the same speed, or a slight pause 

could be introduced to delay the texture movement and discrete jumps were made.  These 

discrete jumps can be mitigated by using a larger set of textures, but at the cost of 

additional texture memory.  Here, we have been able to reduce this to the use of only a 

single vector icon texture.  To obtain the illusion of coherent motion, we design a vector 



 
61 

 
 
 

 

icon texture that is cyclically in the desired flow direction (we use the x-axis as the 

primary direction) and shift the texture coordinates in this direction for each time stamp. 

To reduce the hard edge between the overlap of the different splats, the splat texture is 

windowed. Crawfis and Max [CM93] used a larger Gaussian window to smoothly have 

the textures become transparent. This windowing was applied after they phase shifted the 

texture pattern and was pre-computed and stored with the set of textures. Applying this 

window to our phase shifted texture icons requires the opacity mask for the window to 

remain fixed on the textured quad.  We only shift the vector icon texture coordinates 

along the desired direction in the vertex program.  This requires separate textures, one for 

the reconstruction kernel, which also serves as the vector icon windowing mask, and one 

for the vector icon.  These are then combined by the register combiners.  This could not 

be achieved with OpenGL 1.1. Figure  4.4 shows a 2×2 tiling of the stroked vector icon 

texture.  There is no seam between the adjacent textures. We consider an infinite texture 

created from these tilings, from which we roam through to produce the animation. The 

vector icon texture is shifted for each time stamp and then windowed while keeping the 

reconstruction texture untouched. 

  

Figure  4.4: 2×2 periods of the vector icon textures. 

 
 

 
 



 
62 

 
 
 

 

 

Figure  4.5: The close-up view of the vortex from figure 3(a).  The framed regions in 
the top image show the shift of the vector icon on the tornado at the four successive 
time stamps.  The bottom images show the corresponding shift of the vector icon 
texture. 

 

Figure  4.5 shows the vortex part of the dummy test tornado dataset at four 

successive time steps in the four top images.  The framed regions demonstrate the shift of 

the vector icons.   The four bottom images are the shifted vector icon texture. 

Unlike the static representation of the vector field like color or multi-glyphic 

texture, we map the velocity magnitude into the phase-shift step in the vertex program.   

The vector icons with different velocity magnitudes will move at their own speeds.  This 

gives us a more intuitive understanding of the vector field. 

4.3 Vertex Shader 

To achieve volume rendering using 2D texture mapping hardware, we use a billboard 

technique [Lig] to orient splats, whenever the view direction changes, such that the splats 

always face toward the viewer.  The OpenGL 2.0 vertex shader provides a vertex 

program to perform per-vertex operations, including the vertex transformation [LKM01, 

    

                                                    



 
63 

 
 
 

 

Wyn].  To gain the interactive rendering rate, we need to avoid the overhead associated 

with per-splat computations on the CPU. The coordinates of the quadrilateral splat and 

the vector direction are first transformed into eye space.  The rotation matrix in eye space 

is constructed to orient the textured icons aligned with the projected vector direction. The 

coordinates of the quadrilateral are then re-rotated to lie parallel to the screen.  The 

pseudo code for the vertex program is as following: 

1) Transform vector direction from object space into eye space; 

2) Construct rotation matrix from the model view matrix; 

3) Transform vertex from object space into the eye space; 

4) Rotate splat from the rotation matrix in 2); 

5) Perturb the starting position of texture mapping; 

6) Index the proper vector glyph texture; 

7) Calculate the shift for the vector icon; 

8) Shift and foreshorten the x-coordinate of the vector icon texture. 

 

We use a vertex shader program to orient the splat toward the viewer, rotate it to 

its projected vector direction, calculate the shifted icon texture coordinates, and index its 

vector glyph texture.  All of these operations are performed on the GPU. This offers a 

significant improvement in rendering speed.  In order to remove the artifacts due to the 

regular repetition of the vector icon texture, we randomly select an origin into the 

logically infinite tiled texture for each splat.   



 
64 

 
 
 

 

 

Figure  4.6: The image is rendered from aerogel dataset with two vector glyphs (lines, 
arrows).  The vector field is coded not only by its color but also by the vector glyphs. 

 

4.4 Experimental Results and Discussion 

All performance results are generated on a Dell Precision 530 workstation equipped with 

2.0 GHz Intel P4 and GeForce4 Ti 4600 with 128 MB video memory. Figure  4.6 shows 

the line and arrow vectors flowing through the volume rendering of the magnitude of an 

airflow through an aerogel (ultra light weight insulator) substance. Polygon data (sphere, 

cube, octahedron) representing the aerogel fibers are embedded into the volume rendering.  

The air flow velocity is coded by both color and the vector glyphs for static 

representation.  In the animation, the velocity is also coded into the vector icon shift 

speed.  Figure  4.7 shows a vector field of winds over the North America.  The different 

   



 
65 

 
 
 

 

vector icons are selected to present different visual effects. 

The rendering rates for the discussed datasets are listed in Table  4.1.  From Table 

 4.1, today’s consumer-level graphics hardware provides an acceptable FPS for 

interactive/dynamical flow volume rendering. More importantly, our method only uses 

one 64×64 texture for the scalar reconstruction kernel and one 64×64×m (m is the 

number of multi-glyphic vector icon textures).  Both only use a single alpha channel 

component.  Since the video memory is still a bottleneck for many applications, our 

vertex-shader-based texture splat shader reduces the large video memory usage as in 

[CM93]. Although modern graphics hardware has seen a tremendous increase in the 

available video memory, this reduction is still significant, freeing up video memory for 

other applications.   

 

 
Table  4.1: FPS for four vector field datasets. 

Dataset Size FPS 

Tornado 963 8 

Tornado 483 60 

Aerogel 323 75 

NA 128×64×16 12 
 



 
66 

 
 
 

 

 
 

Figure  4.7: Wind on North America dataset.  The left images are generated with 
their right texture icons, respectively.  The velocity is coded by the vector icon color. 

  
 

  
 

  



 
67 

 
 
 

 

 
 
 
 

CHAPTER 5 
 
 

 IMPLICIT FLOW VOLUME SHADER  
 
 
 
 

5.1 Introduction 

Traditional flow volume rendering, as proposed by Max et al. [MBC93], constructs an 

explicit geometrical representation of the separating volume using a streamline advection 

operator applied to the underlying vector field.  The geometry is rendered using an 

unstructured rendering technique. Information within the flow volume boundary is 

usually incorrect unless a detailed refinement of the interior volume is specified. Van 

Wijk [vW93] extracts implicit stream surfaces from a three-dimensional vector field 

which are rendered using traditional polygonal rendering methods. Although the flow 

structure can be well-tracked by the stream surfaces, the flow information inside or 

behind the surface is not visible. Multiple stream surfaces could be generated, but these 

would either occlude each other or a polygonal rendering system that can accurately 

support semi-transparent rendering of surfaces would be needed. We examine the 

problem of extending the implicit stream surfaces to that of implicit flow volumes. We 

develop a new rendering shader of the implicit flow. By careful tracking and encoding of 

the advection parameters into a three-dimensional texture, we achieve high appearance 



 
68 

 
 
 

 

 

Figure  5.1: Visualization diagrams for van Wijk’s implicit stream surfaces (top), 
and our implicit flow volumes (bottom). 

 

control and flow representation with real time rendering.  

Our overall goals in this study include the examination of more dynamic and 

detailed flow visualizations in three-dimensions, in particular, as it relates to advection-

based flow volumes. Our criteria, thus includes real-time interaction with the advection 

operation, support for animation through the flow, and visualization of large areas of the 

flow with minimal clutter. 

5.2 Related Work 

Various techniques have been proposed to render vector fields.  We focus on the work for 

rendering 3D vector fields. Crawfis and Max [CM93] introduce a textured splat method 

to provide a dense global visualization of the 3D vector field.  Line Integral Convolution, 

   Flow 
field 

v 

Pre
advection

Inflow 
mapping 

Scalar
field

g

Iso
contouring 

Implicit 
stream 
surface

      F low   
field 

v 
Pre 

advection 
Multi-attribute

scalar field
(f, u, v, t)

3D texture
mapping

Implicit 
stream 
volume

Inflow
mapping

 



 
69 

 
 
 

 

LIC [CL93], provides another dense visualization with more accurate local features. 

Rezk-Salama et al. [RHTE99] explore rendering volumetric LIC using 3D texture 

mapping hardware to examine the flow fields.  Auxiliary clipping geometries are used to 

reveal the LIC pattern.  Another dense visualization technique is the Image-Based Flow 

Visualization (IBFV) technique [vW01, LJH03].  Telea and van Wijk [TvW03] extend 

the IBFV method to 3D IBFV to visualize three-dimensional flow fields.  These methods 

provide fine-grain localization of the flow, with the aim of texture synthesis for a more 

global perception of the vector fields. Avoiding excessive clutter through tuning the 

various parameters, or restricting the range of the visualization can be difficult with these 

systems.  

In contrast to the above dense visualization techniques, Zöckler et al. [ZSH96] use 

illuminated streamlines to depict the 3D vector field. Other geometry-based methods 

include the stream polyhedron [SVL91], stream surfaces [Hul92], implicit stream 

surfaces [vW93], flow volumes [MBC93], streamballs [BHR*94] and saddle connectors 

[TWHS03]. Li et al. [LBS03, SLB04] propose a hybrid method, where geometry is first 

constructed and voxelized into a coarse mesh. Each voxel in this coarse mesh is replaced 

with a dense 3D volume texture. The voxelized geometry, streamlines in their case, is 

fixed during the rendering and cannot be changed interactively. 

 



 
70 

 
 
 

 

 

Figure  5.2: Backwards advection. Left: Three points, a, b and c, and their 
streamlines from the termination face. Right: each point (streamline) is assigned a 
4-tuple, (f,u,v,t), according to its advected (backwards) position on the termination 
face. 

 

5.3 Functional Mapping and Implicit Flows 

Given a flow field (vector field), we first determine a multi-variate field in which each 

sample point in the field is assigned attributes from the flow.  The basis of our implicit 

flow volumes extends from the implicit surface definition of van Wijk [vW93]. The 

visualization diagrams for van Wijk’s implicit stream surface and our implicit flow 

volume are illustrated in Figure  5.1. He associates a scalar field with the inflow boundary 

of the computational grid, and then for each remaining grid point, he traces a streamline 

backwards in the flow until it reaches the boundary (ignoring critical points within the 

flow). The scalar field is evaluated at this location, and the grid point is assigned this 

a

b

c

a'

b'

c'

 

b’ (f, u, v, t) 

c’ (f, u, v, t) 

a’(f, u, v, t) 

 

 



 
71 

 
 
 

 

scalar value. This amounts to a mapping of the 3D vector field to a 3D scalar field, 

e3−>e. An iso-contour surface is then extracted from this resulting scalar field to 

provide the stream surface. In addition to the obvious volume versus surface difference1, 

three major differences exist between our technique and that of van Wijk. First, we either 

delay the specification of the scalar field on the inflow boundary, or eliminate the 

mapping onto a scalar field entirely. This allows us to develop new flow volumes without 

having to recompute the costly advection operations. Secondly, we associate several 

additional attributes with each sample point which allow for better user interaction, 

complex feature specification and enhanced surface representations. Finally, we allow for 

the user specification of many arbitrary boundary surfaces, which we call termination 

surfaces, indicating the termination of the backwards advection process. These can be 

used to place a termination surface around each critical point, allow for the specification 

of inflow and outflow boundaries [MBS*04] or as a user-controlled segmentation of the 

flow. Westermann et al. [WJE00] also use an implicit method to convert the vector field 

to the scalar field by storing the advection time. They render time surfaces using a level-

set method by taking advantage of 3D texture mapping hardware. Their method is pretty 

similar to van Wijk’s implicit method, but without the need for the inflow mapping. 

A general functional mapping is associated with each sample point. Here we 

define a sample point as any location in three-dimensional space, preserving a continuous 

mapping operation. In practice, we will generally associate a sample point with each 

vertex in either the underlying computation grid or a superimposed voxel grid. There are 

many attributes that can be derived or mapped onto each sample point. Local operations, 
                                                 
1 Van Wijk actually points out the extension of implicit stream surfaces to stream volumes, as well as a 
flow of ink metaphor. 



 
72 

 
 
 

 

such as velocity magnitude, vorticity, etc. provide simple filters. For implicit flows, we 

associate, at a minimum, a termination surface ID indicating which surface the backward 

streamline intersected first, the coordinates on the termination surface in a local 

coordinate frame to the surface, as well as the advection time required for the flow to 

reach the termination surface (backwards, or conversely, the time required for a point on 

the boundary to reach the sample point). This is illustrated in Figure  5.2. Additional 

attributes, such as the maximum velocity magnitude along the streamline, average density 

along the streamline, etc., can also be calculated and stored in this preprocessing stage. 

Thus, in general, we have an operation computing a mapping from e3−>en. The focus 

in this chapter will be restricted to maintaining the four attributes mentioned above: 

termination surface ID, parametric position on the surface, and the advection time. Hence, 

for each sample point we store a 4-tuple, (f,u,v,t), containing these values. This 4-tuple 

representation will be the basis for all of our future renderings in this chapter. 

5.4 Rendering of Flow Volumes 

Our task now is to examine methods for either rendering such a field or extracting more 

meaningful regions from this space. This suggests another mapping, one from the 

attribute space to optical properties for rendering. In the sections that follow, we will 

define a few such mappings. A primary criterion for such a mapping rests in providing 

flexible and robust mappings that provide an intuitive and simple interface. In order to 

better explore the flow, the user needs to be able to interactively adjust and control this 

mapping. This also suggests that a graphics hardware shader be suitable for such flow 



 
73 

 
 
 

 

manipulation and rendering, considering the high performance and the high 

programmability of today’s graphics hadware. 

In this chapter, we present a 3D texture mapping volume shader to model and 

render the implicit flow volumes. This technique renders the implicit 4-tuple flow field 

directly without the inflow mapping to a scalar field, taking advantage of modern 

graphics hardware. With the support of the dependent texture as the inflow mapping, we 

can change the appearance and representation of the 3D flow volume using advanced 

volume shaders. The advantages of this rendering method are high interactivity and fine 

texture details rendered throughout the 3D flow volume.  

5.5 3D Texture Mapping Volume Shader 

Traditional three-dimensional texture-based volume rendering takes as input a pre-shaded 

RGBA voxel grid. This is loaded into three-dimensional texture-memory and image-

aligned proxy geometry is rasterized with three-dimensional texture coordinates specified, 

such that an interpolation of the texture-map values is painted across the proxy geometry. 

This set of proxy geometry is rendered in a back-to-front (or front-to-back) order, 

compositing the next slice over the partially computed image. Recent research [WE98, 

MMC99, KKH01] illustrate the benefits of using post-classification. Here, the original 

scalar field is mapped into the three-dimensional texture memory. The proxy geometry is 

then used to interpolate a slice of the underlying scalar field. Each interpolated value on 

this slice, then needs to be mapped to an appropriate RGBA value for compositing. This 

is supported through dependent textures in most modern graphics hardware. 

Dependent textures allow both the representation and appearance of the 3D 



 
74 

 
 
 

 

volume to change. Li et al. [LBS03] use small three-dimensional dependent textures, 

indexed using a trace volume generated from voxelized streamlines. The dependent 

texture allows for colorful volumetric textures along the streamlines, and due to its small 

size is more easily replaced, allowing for animation effects along the streamlines. We 

extend their concept of a trace volume to an implicit flow volume in which each voxel is 

an n-tuple as defined in section  5.3. For interactive user-controlled exploration, the 

system must support re-painting the dependent texture in real time.  In order to 

accomplish this, the number of texels being updated in the dependent texture needs to be 

limited. Our underlying functional mapping is a 4-tuple mapped to an RGBA normalized 

format. OpenGL supports up to four texture coordinates, but does not support four-

dimensional textures, so a 4-component dependent texture is only theoretically possible. 

Besides, changing every value in a 4-dimensional texture becomes prohibitively 

expensive as the resolution of the dependent texture grows. Three-dimensional dependent 

textures are supported, but if our goal is to allow the user to control the appearance of the 

flow throughout the entire volume, a dependent texture of at least the same size as the 

underlying voxel grid would be required. This differs from Li et al. [LBS03], in that our 

goal is to change the underlying trace volume dynamically. Updating the entire volume in 

real-time is not feasible for large volumes. This also would greatly reduce the amount of 

texture memory available for the implicit flow volume. 

Our focus instead, has been on reducing the mapping down to a 2D 

parameterization of a single termination surface. Our approach, allows the user to paint 

the dependent texture colors and opacities directly on this surface [HH90]. We call this 



 
75 

 
 
 

 

dependent texture, the inflow texture in the subsequent sections, as it dictates the paint 

that is carried from the termination surface into the flow. The next few sections provide 

details on a few of these choices, as well as additional techniques which extend this 

parameterization to utilize more attributes from the underlying 4-tuple in the implicit 

flow representation. 

Figure  5.3 shows the general diagram for a volume shader to render the implicit 

flow volume using inflow texture.  The implicit flow field is loaded into a 3D texture and 

the inflow texture is loaded into a dependent texture as look-up table to produce different 

flow representation and visual effects. 

 

 

Figure  5.3: The volume shader with inflow texture to render implicit volume. 

 

 

 

 

 
 

Implicit 
flow field 

(f_id, u, v, t) 
Final 
image 

Fragment 
shader

Load
3D texture

Load 
Inflow texture

Volume Shader

Implicit 
flow field 

(f_id, u, v, t) 
Final 
image 

Fragment 
shader

Load
3D texture

Load 
Inflow texture

Volume Shader

 



 
76 

 
 
 

 

 

Figure  5.4: Volume shader for inflow mapping Φ(f,u,v,t) = 2D Texture (color + 
opacity) . 
 

5.5.1 User-Controlled Painting 

Without loss of generality, we consider an implicit flow volume which only one 

termination surface exists, i.e., the backward advections of all sampling points terminate 

on this surface. The simplest such surface would be the bounding box for the flow field. 

A dependent texture mapped to this box is used as our lookup table.  The (u, v) in the 4-

tuple, (f, u, v, t), is employed to index into the dependent texture, producing the current 

fragment’s color and opacity.  By changing the alpha mask, we can dynamically change 

the three-dimensional representation of the flow. Figure  5.4 shows the volume shader for 

inflow mapping Φ(f,u,v,t) defined by a  2D Texture (color + opacity). The implicit flow 

field is loaded into the 3D texture and the inflow mapping is loaded into the 2D 

dependent texture in Figure  5.4. 

With our user interface, we can brush the inflow texture to get arbitrary 

representations of the flow. Figure  5.5 (top) shows an image in which the user hand-

painted vis 2004 on the inflow texture on one face of a bounding box. In addition to hand 

3D Tex (f, u, v, t)

2D Tex lookup

Fragment shader

R, G, B, A

3D Tex (f, u, v, t)

2D Tex lookup

Fragment shader

3D Tex (f, u, v, t)

2D Tex lookuplookup

Fragment shader

R, G, B, AR, G, B, A



 
77 

 
 
 

 

painting, the user can import any image for use as the inflow texture. Figure  5.5 (bottom) 

has the IEEE Visualization 2004 conference logo used as an opacity and color texture. 

The painting modes are supported for adding paint to the inflow texture. The previous 

texture can be cleared and new paint added from the user’s current brush, providing a 

moving flow volume. The previous texture can simply be added to, building out regions 

of interest in the flow. An eraser (a brush that reduces the opacity) is also supported for 

refining these regions of interest. Finally, the previous texture can be faded out over time 

by first reducing its opacity and then adding new paint under the user’s control. This 

provides a motion blur of the flow volume as it moves through the field.  

More complex termination surfaces can easily be supported, provided a 

parameterization exists. This is in general, a hard problem. In addition to flat planes, we 

currently support spherical and cylindrical termination surfaces (useful for bounding a 

neighborhood of a source), and a rectangular box termination surface. The 

parameterization of the box is supported through the use of OpenGL’s cube-maps. This 

allows for six independent termination surfaces, onto which the user can paint an inflow 

texture. Figure  5.6 shows two images generated with a cube map for inflow texture on the 

tornado dataset.  By drawing spots on the cube map, we can easily change the flow 

representation of the dataset. 



 
78 

 
 
 

 

 

 

Figure  5.5:  Two different inflow textures advected thru a same flow volume. 
 

 
 

     
 
 
 
 

     



 
79 

 
 
 

 

 

Figure  5.6: Inflow mapping on a cube map texture ((left column)) for tornado 
dataset. 

 

 
 

 

  
 
 
 
 
 

  
 
 



 
80 

 
 
 

 

 

Figure  5.7: Volume shader for dual inflow mapping and animation. 
 

5.5.2 Dual Inflow Textures 

Periodic dye injection can help understand the interior structure and highlight local 

features in the flow. Shen et al. [SJM96] use a “smeared” noise texture to simulate dye. 

Instead, we use a multi-texture technique. In addition to the user defined inflow texture, 

we create a separate dual-inflow texture. The support for dual inflow textures, allows for 

a separate high-frequency texture without requiring the user to painstakingly paint in such 

details. A high-resolution dependent texture can be used for this purpose. This does not 

require a large amount of texture space, provided the high-frequency texture is periodic 

and tile-able. Figure  5.7 shows the volume shader diagram for dual inflow texture 

mapping. An additional 1D texture in the diagram is attached for flow animation which 

will be discussed in the next section. Figure  5.8 (left) embeds a dual inflow texture with a 

regular grid pattern and a Poisson disc pattern. By changing the frequencies of the noise 

and grid texture, the flow is visualized to assume different details inside the volume as in 

Figure  5.8 (middle and right).  

3D Tex

2D Tex lookup

Fragment shader

2D Tex
1D Tex

),,,( tvuf

lookup
lookup

r
g
b
aInflow 

Noise

3D Tex

2D Tex lookuplookup

Fragment shader

2D Tex
1D Tex

),,,( tvuf ),,,( tvuf ),,,( tvuf

lookuplookup
lookuplookup

r
g
b
a

r
g
b
aInflow 

Noise



 
81 

 
 
 

 

 

Figure  5.8: Complex cross-section for the inflow with dual-texture support. 
 
 

5.5.3 Inflow Texture Animation 

Max, Becker and Crawfis [MBC93] included a simple modulation of the opacity as a 

function of the advection time for their flow volumes. By phase shifting this modulation 

function, they were able to animate smoke puffs along their flow volumes. In our implicit 

flow volume representation, the advection time has been encoded into the 4-tuple for 

each sampling point.  We define a one-dimensional opacity table containing an opacity 

modulation. For animation, we phase-shift this opacity modulation for each time step.  

The advection time information of the sample point is used to index into the opacity table.  

This is combined with the dependent textures for the inflow texture, using multi-textures. 

This produces a puff-like motion in the flow. By adding another dependent texture, we 

can also encode the age of the paint on the inflow texture. Adding this age to the 

   
 



 
82 

 
 
 

 

advection time releases the paint from the inflow texture through the flow field (see the 

shader diagram in Figure  5.7). We can also automate this to provide flow representations 

using particles, animated streamlines and propagating time fronts. Each inflow texture 

can be animated separately. This allows one to model a periodic dripping or injection of 

colored dye into the flow volume. The underlying flow volume retains its global 

characteristics and multi-colored sub-flows are passed through the flow volume. For the 

images in Figure  5.9, an initial inflow texture, as shown in Figure  5.9a and a dual inflow 

texture as shown in Figure  5.9b were used to generate the image in Figure  5.9d. The 

image in Figure  5.9c shows the flow volume without a high-frequency detail texture. 

Here, two dependent textures are used, both indexed similarly, with a multi-texturing 

operation that replaces the paint from the inflow texture with the dual inflow texture.  



 
83 

 
 
 

 

 

Figure  5.9: a) The inflow texture specified by the user. b) A particle distribution. c) 
The result from the inflow texture only. d) The result obtained by combing the 
inflow texture and texture b). 
 

     
 
 

(a)                                               (b) 
 
 

     
 
 

(c)                                        (d) 
 



 
84 

 
 
 

 

5.6 Experimental Results and Discussion 

In this chapter, we have described an inflow texture based volume shader for implicit 

flow volume rendering. In this section, we compare the advantages and disadvantages of 

this technique with respect to explicit flow volumes [MBC93]. Table  5.1 summarizes our 

comparison between these two techniques. 

The implicit flow is generated by pre-advecting the flow field and storing the 

advection information for each voxel in the implicit flow. When we subsequently 

construct a stream volume, no integrator is required to compute streamlines through the 

flow field. Since this is a pre-computation, care can be taken to ensure accurate 

streamline advection. We use an adaptive fourth-order Runga-Kutta algorithm. The 3D 

texture mapping method renders stream volumes using a dependent texture. Explicit flow 

volumes are constructed using an advection algorithm during run-time. The 3D texture 

mapping has an advantage when the inflow boundary is changed, as it does not require 

any re-computation. The other technique needs to re-compute their flow volumes through 

advection, which can be a costly operation. In our experiments, the 3D texture mapping 

can achieve roughly 10 FPS for a 1283 implicit flow dataset. All experiments are 

performed on a PC with a QuadroFX 3000 graphics hardware and a Pentium IV 3.2 GHz 

processor. Although, it should be pointed out that our technique runs fairly interactive for 

the datasets we have tested, a true performance comparison is not provided, due to the 

many parameters each technique requires for the specification. For any given technique, 

we can find a case where it would be the fastest, or the slowest. Nevertheless, there is a 

key differentiating factor that we wish to highlight among these flow techniques. 



 
85 

 
 
 

 

5.6.1 Volumetric Details 

In the traditional method, a cross section is specified by a low-resolution polygon. The 

quality of the cross section and the flow boundary is limited by user specification. 

Typically, the quality is poor. Furthermore, the distribution of any optical properties 

across the cross section is ill-specified. In order to allow for changes of the optical 

properties across the initial smoke generator, a subdivision of the cross section (and 

hence the resulting explicit flow volume) is required. Most explicit flow volume 

renderings utilize a constant color and extinction coefficient. 

For the implicit methods, the cross section is specified using a general inflow 

texture. The complexity of the cross section and the resulting flow boundary is thus 

determined by the resolution of the dependent texture for the 3D texture mapping 

technique. An extremely high virtual resolution is possible with the dependent textures. 

No assumptions about the underlying volume rendering model are made in our system. In 

fact, an arbitrary fragment program can be used to compute the volume rendering. This 

allows for volumetric straw textures, etc.  

The implicit stream volume includes flow properties at all sampling points within 

the flow. This flow detail information is stored in the implicit flow volume representation 

and can be used to modify the color and opacity in a 3D texture based graphics hardware 

rendering shader. Such shader can easily provide the representation and appearance 

control of the flow (see Figure  5.5, Figure  5.6, and the images in [LBS03]). 



 
86 

 
 
 

 

5.7 Conclusions 

We have developed a set of graphics hardware shader for implicit flow volume rendering. 

The inflow textures are explored in these shaders to control the flow appearance, change 

the flow representation, and add the volumetric details inside the volume. We compare 

our technique with the traditional explicit flow volume rendering on many aspects 

(summarized in Table  5.1) and highlight the most important feature of our 3D texture 

based implicit flow volume shaders. Our experimental results show that our graphics 

hardware based shaders are very suitable for visualizing the implicit flow with high 

performance and on-the-fly control on flow representation and appearance. 

 



 
87 

 
 
 

 

 
 Traditional Flow Volume Implicit Stream Volume Shader 

Requires pre-processing No Yes 

Advection Advection during the volume 
construction 

Pre-advection 

Flow volume construction Through advection Using dependent textures 

Representation Explicit  Implicit  
Initial Starting Location Anywhere User-defined Termination 

surfaces (pre-computed) 

Stream surface / time 
surface 

Easily added No 

Rasterization / rendering 
range 

Render only the flow area Rasterize the entire volume 

Requires recomputation Yes No 

Non-regular grids Easily supported Requires voxelization 
Cross section specification Polygon Per-pixel mask function 

Cross section quality Limited by user specification, 
typically poor 

Resolution of the dependent 
texture 

Boundary quality Dependent on polygon Dependent on dependent texture 

Details / correctness Without mesh refinement, misses 
details in flow. 

More accurate 

Rendering performance Dependent on the number of 
tetrahedra 

Dependent on voxel grid size 

Volume size Arbitrarily large volume Limited by the  texture memory 
of the display card 

Source, sink critical points Fine Requires critical point detection 

 

Table  5.1: Implicit flow volume shader vs. traditional flow volume rendering 
technique. 



 
88 

 
 
 

 

 
 
 
 

CHAPTER 6 
 
 

 INDIRECT SHADER SYNTHESIZER  
 
 
 
 

6.1 Introduction 

A shader in computer graphics normally indicates the rendering program to produce a 3D 

image from volumetric data and/or surface geometries. The shader can be implemented to 

run on both CPU and GPU. The modern graphics hardware provides the high 

programmability on GPU [ATI, NVIDIAa, NVIDIAb]. The GPU-based shader has been 

becoming more and more efficient, flexible, and popular.  

Generally speaking, in a rendering pipeline, there are two kinds of shaders: vertex 

shaders and pixel shaders (or fragment shaders in OpenGL) [Mic02, SA04]. The vertex 

shader is responsible for transforming the input vertex into clip space; the pixel shader is 

responsible for processing the pixels from rasterization and outputting the color into the 

frame buffer. Most recently, a geometry shader is introduced into the latest graphics 

hardware [NVIDIAb] to generate new geometry primitives from those that were sent to 

the beginning of the graphics pipeline. We are more interested in using a shader program 

to produce the color for a pixel in the final image. Hence, in this chapter, we limit our 

discussion to the pixel shader and the term “shader” refers to a pixel shader if not 



 
89 

 
 
 

 

specified. 

 In a single shader application, all pixels in the output image are created via the 

same shader and rendering setup (light, texture, camera, etc).  In this chapter, we present 

a shader synthesizer to combine different shader rendering effects to create a highly 

informative visualization of the input data. The idea for shader synthesizer is that the 

different pixels may be computed with different shaders and the final color of the pixel is 

the combination of the multi-shaders.   

6.2 Related Work 

In this section we will focus on previous work about multi-shader rendering and the 

synthesis between the different shading results.  

McGuire [McG05] describes a shader framework called “SuperShader” that 

renders many effects on surfaces. It allows arbitrary combinations of the rendering effects 

to be applied to surfaces simultaneously. The effect shaders are generated and optimized 

at runtime. One key problem in multi-shader rendering system is to manage the rendering 

order of the shaders (a.k.a permutation problem). McGuire [McG05] solves this problem 

by generating various shader source codes from source code snippets. Hargreaves [Har05] 

shows how to automatically expand large numbers of shader permutations from a smaller 

set of input shader fragments. McGuire et al. [MSPK06] present an “abstract shader tree” 

system for generating complex GPU shaders through automatic combination of primitive 

shading functions. In [MDTP*04], McCool demonstrate an approach to connect and 

combine shader programs using algebraic operators. In a more recent work [TD07], 



 
90 

 
 
 

 

Trapp and Döllner transform the shader source code fragment into an intermediate 

representation which is associated with the predefined semantics for combination at run 

time. 

In visualization community, many multi-shader rendering work had been done in 

the field of focus+context rendering and importance-driven rendering. Kruger et al. 

[KSR06] developed an interactive context preserving volume rendering to achieve 

focus+context rendering.  They use multi-shaders to depict the different body parts like 

skin and bone.  The final color is a weighted average of all shaders involved. Viola et al. 

[VKG04] propose an importance-driven volume rendering. The voxel in the data is 

assigned an object importance which encodes a visibility priority. This property 

determines whether a more-important region is behind a less-important region. When this 

occurs, the less-important-region will be rendered with a reduced opacity. Thus the 

objects of interest are always clearly visible. They use Maximum Importance Projection 

(MImP) to determine the most important object location for each ray and the less-

importance objects in the front are removed or become more transparent to achieve a cut-

away view. Most recently, Plate et al. [PHF07] developed a multi-volume shader 

framework to render the intersection between the datasets with different resolution.  They 

define a set of convex polyhedral volume lenses associated with one or more volumetric 

datasets. The lenses can be interactively moved around while the region inside each lens 

is rendered using interactively defined multi-volume shaders. Their result shows the very 

promising shading behavior of the combination of the resultant imagery from multi-

shaders. 



 
91 

 
 
 

 

Texture image synthesis has been well-studied in the past few years. We will 

focus the related work on the stitch or blend between multiple image patch on the 

arbitrary surface. Praun et al. [PFH00] proposed a lapped texture technique for surface 

texture synthesis in 2000.  They used an irregular texture patch and iteratively pasted it 

onto the surface. The placement of the patches is oriented according to a pre-defined 

vector field on the surface. An alpha-mask for the patch is created for further alpha-

blending to smooth the transition between the overlapped patches.  Their approach can 

create very nice result. However, the method is sensitive to input textures and is 

unsuitable for textures with strong low-frequency components, boundary mismatches, or 

a singularity point.  Most recently, Takayama et al. [TOII08] extend this work into 

“lapped solid texture”.  They classify the solid texture according to its 

tilability/anisotropy and a tensor field is created to match this tilability to guide the solid 

texture fill-in orientation inside the mesh. Similarly to 2D lapped texture, they created a 

3D alpha mask for alpha blending between the lapped solid textures. 

6.3 Shader As Function Mapping 

We generalize a shader as a function mapping: 

cvx →×:Φ  (6.1) 

where x  is the 3-tuple of the input pixel position, v  is a vector of attributes associated 

with each pixel, and  c  is the output color (RGBA) for the input pixel.  The attributes in 

equation (6.1) include, but are not limited to, normal, texture, texture coordinates, and 

view direction.  These attributes are used in the shader program to compute the output 

pixel color c . 



 
92 

 
 
 

 

We apply the unary or binary operations between one or more shaders attached to 

the same pixel.  In our study, we explore the following operators:  

• Complement. The final color is the complement of the shader output.  
 
• Min. The final color is the component-wise minimum between the outputs of the 

two shaders.  
 
• Max. The final color is the component-wise maximum between the outputs of the 

two shaders. 
 
• Over. The final color is the blending composition between the outputs of the two 

shaders. 
 
• Replace. One shader output replaces the other shader output as the final output. 
 
• Weight. The two shader outputs are weighted and added together. 
 
• Sum.  The final color is the addition (with clamp) of the two input shader outputs. 

The Sum operator is the special case of Weight with the two weight coefficients 
equal to one for both shaders. 

 
The outputs from the above operations are normalized (clamp) to fit the rendering 

pipeline. In addition, the shader operations can be cascaded. 

6.4 Shader Classification 

A pixel shader can be an arbitrary function mapping to generate the output color for any 

input pixel. We classify the shaders into several types such that we can use a different 

user interface to handle the synthesis between the shaders. Our classification is based on 

the functionality of the shaders.  These shaders include: 

• Null shader 

• Photorealistic shader 

• NPR shader 



 
93 

 
 
 

 

• Procedural shader 

• Volume rendering shader 

6.4.1 Null Shader 

A null shader indicates no shading occurs for the input pixels. The shader ID of 0 is 

reserved for the null shader in our shader synthesizer system. The null shader is 

especially useful to produce an erosion-like object [PH89].  

6.4.2 Photorealistic Shader 

The photorealistic shader is most commonly used in graphics applications.  The output 

color for each pixel is computed based on local shading models [Pho75, BN76] or global 

illumination [PH04, DBB06].  Texture mapping can be applied in the shader program.  In 

most cases, this shader tries to generate a photo-realistic effect image. 

6.4.3 NPR Shader 

Non-photorealistic rendering (NPR) focuses on enabling a wide variety of expressive 

styles to convey the most important information in the output image. In contrast to a 

photorealistic shader, which focuses on photorealism, NPR is inspired by artistic styles 

such as drawing, painting, technical illustration, and animated cartoons [DS00, KMT*97, 

LME*02].  

6.4.4 Procedural Shader 

In a procedural shader, the pixel color is calculated by the procedural function such as the 

well-known Perlin’s noise, turbulence functions [Per85, PH89]. The procedural shader is 



 
94 

 
 
 

 

very suitable for modeling and visualizing the realistic texturing of complex surfaces, 

especially simulating a sculpted appearance of objects. Marble color, wood ring, and the 

gaseous phenomenon can be generated from such procedural functions [EMP*03, 

KCR99]. 

6.4.5 Volume Rendering Shader 

A volume rendering shader creates the image directly from volumetric data without 

generating the geometry. In volume rendering, by changing the blending mode to 

composite the samples along the ray casting into the volume, we can create an image with 

distinguished appearance to convey the different information of the data. Commonly used 

shaders include direct volume rendering (DVR), X-Ray, and maximum intensity 

projection (MIP) [Lev90, XC03, DCH88].  A transfer function can be applied to perform 

post-classification [EKE01] in DVR.   

6.5 Shader Design 

We investigate some typical procedural, NPR, and volume shaders used in our study. 

6.5.1 Granite Shader 

Granite is defined via the well-known Perlin noise [Per85, PH89]. In our study, we define 

the granite as in equation 6.2: 

)0.1 ),*(*min()( frequencyNoiseintensityGranite xx =  (6.2) 

where frequency determines the number of occurrences and the spot size in the granite; 

intensity determines the granite gray intensity.  The above equation returns the granite 



 
95 

 
 
 

 

color at the given position.  Figure  6.1 (left) shows the granite appearance on a Klein 

bottle [Ros06]. 

6.5.2 Toon Shader 

Toon shading is a technique to render objects in a "cartoon-style". The silhouette of the 

geometry is enhanced and normally rendered in black. In addition, the smooth lighting 

values are calculated for each pixel and then mapped to a small number of discrete shades 

to produce the characteristic flat look (see Figure  6.1 right [Ros06]). 

6.5.3  Layered X-Ray Shader 

An X-ray image is very suited for visualizing high density materials, such as bone in 

medical datasets. However, depth information is undefined in the classical X-Ray 

integration.  We can create the X-Ray image layers for different image-aligned slabs in 

the volumetric data.  These image layers can later be blended together to generate a new  

layered X-Ray image with more depth cue information (see Figure  6.10 Top).  



 
96 

 
 
 

 

 

 

Figure  6.1: The granite and toon shading on a Klein bottle. Courtesy of 3D Labs 
[Ros06]. 
 

6.6 Shader Synthesizer 

6.6.1 Indirect Shader 

We use the concept of indirect shader to perform shader synthesis. A shader is not 

directly associated with the pixel. In contrast, all shaders are stored in a lookup table and 

the proper shader is selected at run time using a shader ID. Our shader synthesizer 

framework is shown in Figure  6.2.  A main shader is used to resolve the shader ID and 

the shading process is executed on the selected shaders. The outputs from the shaders are 

composited in the main shader according to the shader operators discussed in section  6.3. 

With the support of OpenGL 2.0 [SA04], each shader is compiled into an independent 

shader object and linked into the main shader program.  

                    



 
97 

 
 
 

 

 

Figure  6.2: The rendering framework for indirect shader. 
 
 

6.6.2 Shader Texture 

A Shader texture stores shader IDs and other metadata information in the texture. A 

simple shader texture is a 1D lookup table storing all applicable shader IDs. A simple 

shader synthesizer can be implemented using a 1D shader texture.  In the main shader, 

the shader solver in Figure  6.2 is simplified as a shader selector to index into the shader 

texture.  Since the shader texture only contains the shader ID, the interpolation between 

the two adjacent entries in the texture is undefined and a NEAREST interpolation mode 

is used to locate the proper shader ID.  Figure  6.3 shows a volume rendering image for a 

r
g
b
a

Pixel  
position x 

Per-Pixel  
Attributes v 

Main Shader

Shader
Solver

r
g
b
a

r
g
b
a

Shader_1 

Shader_n 

Shader_2 

 c 



 
98 

 
 
 

 

CT head dataset.  The transfer function is used as the shader selector in which the 

silhouette enhanced NPR shader is applied if the opacity is greater than a given threshold 

otherwise the DVR shader is used. This simple shader texture technique may cause a 

sharp transition between the visual effects from different shaders (see Figure  6.4 Top).  

 



 
99 

 
 
 

 

 

Figure  6.3: Top: Silhouette enhanced NPR shader and DVR shader for a CT Head 
dataset. Bottom: The transfer function is used as the shader selector. 
 

 

 
 

 
 
 

 

   
NPR 
shader 

DVR 
shader 

 
 

Threshold 



 
100 

 
 
 

 

 

Figure  6.4: An NPR shader (toon) and a photorealistic shader (texture mapping) are 
rendered on the Head model. Top: A simple shader texture is used with hard edge 
between different shaders. Bottom: The layer-based synthesizer is used with the over 
operator to produce a smooth transition. 
 

 
 
 

 
 



 
101 

 
 
 

 

6.6.3 Layer-Based Shader Synthesizer 

In our layer-based shader synthesizer, an image layer is generated for each shader.  These 

image layers are then blended together. Furthermore, we extend the shader operators 

defined in section  6.3 to gain more visual effects.   

Multi-shaders are supported in our layer-based shader synthesizer. Each texel 

value in the shader texture is associated with a k-tuple defining the shader attributes. 

Generally speaking, a higher dimension of k-tuple can provide more properties for the 

underlying shader; however, it is limited by the hardware texture capability. In our study, 

we resolve shader attributes via a triple: shader ID, shader operator ID, and an optional 

operator parameter. In our OpenGL implementation, this shader triple information can be 

encoded into a texture with the support of the integer internal format 

(GL_EXT_texture_integer) [OGL]. Integer texture guarantees the input integer data 

(texel value) will not be altered when downloaded into texture memory and fed into the 

shader. The integer texel value can be arbitrarily evaluated in the shader program. Figure 

 6.5 shows the diagram of the shader texture with four channels of a 16-bit integer.  The 

shader ID and the shader operator ID are both encoded with 3 bits each, supporting up to 

8 applicable shaders and 8 operators in the same pass rendering. The remaining 10 bits 

can be optionally encoded for the weight coefficients used in the weight operator or for 

other purposes. Figure  6.4 (bottom) shows a smooth transition between toon and 

photorealistic shaders using the over operator. 



 
102 

 
 
 

 

 

Figure  6.5: A shader texture with 4 channels. Each channel is encoded with shader 
ID, operator ID, and an optional parameter. This allows for the combination of 4 
shaders. 
 

 

 

Figure  6.6: The rendering pipeline uses a rich shader texture for the Head geometry 
and the over operator is applied between two image layers. 
 

Toon Shader

Texture Map 
Shader

Shader 
Operator

(over)

Shader
Texture

Image processing

 

  Shader ID

  Operator ID

  Operator Parameter

0 15

 



 
103 

 
 
 

 

In volume shaders, there is no real image layer since we perform the shader 

operations between multi-shaders for each sample along the ray cast into the volume. We 

can imagine that there are virtual image layers of 1x1 pixels from the different shaders 

for all samples along the ray and perform a shader operation between these virtual image 

layers for all samples.  The combination of the multi-shader output is finally blended into 

the frame buffer according to the rendering mode. 

To improve the performance, we do not run all shaders on a given input pixel. 

Instead, only the non-zero shader ID specified in the shader texture is executed. The 

shader ID of 0 is viewed as a null shader and it is simply ignored.  

6.7 User-Controlled Shader Painting 

Our shader synthesizer system allows the user to paint the shader onto a 2D surface or 

into the volume to produce an arbitrary shading effect.  We discuss the techniques used in 

our system in this section. 

6.7.1 Paint on UV-Mapping 

To support user-controlled shader painting on a surface, our system draws on a shader 

texture with UV-mapping. The UV-mapping can be generated manually or automatically. 

We use the VAMP mapping [RHL] in Right Hemisphere’s Deep Paint 3D to generate the 

UV-mapping. For simple geometry, an adaptive unwrapping technique [IC01] can be 

used to generate the UV-mapping directly.   

Painting the shader ID onto the surface is equivalent to generate a 2D shader 

texture with the same as UV-Mapping, in which each texel contain the shader metadata 



 
104 

 
 
 

 

as shown in Figure  6.5. We use an intermediate rendering buffer to record the shader 

texture coordinates (u, v) in the UV-mapping for every pixel in the frame buffer.  We call 

this rendering buffer an I-buffer only updated when painting. When drawing on the 

surface, the shader texture is updated from the shader painting stroke.  The shader ID in 

the shader texture is set to the new shader ID according to the painting stroke as shown in 

equation 6.3.  

shaderIdPixelPosbufferIureShaderText =]][_[  (6.3) 

The updated shader texture is then fed into the main shader to render the geometry with 

the new shaders.  Figure  6.12 shows the shader ID is painted on the surface by user. 

6.7.2 Volumetric Painting 

6.7.2.1 Brush Stroke 

Unlike surface geometry, there is no well-defined boundary inside a volumetric dataset. 

Instead, a transfer function is used to determine the opacity everywhere. It is difficult to 

determine the brush stroke depth when painting into a fuzzy volume. To solve this 

problem, we define the brush stroke as a ball-shaped mask with a fixed opacity value 

between 0 and 1 at the ball center. The opacity of the stroke ball is modulated by a three 

dimensional Gaussian function. Figure  6.7 shows the four brush strokes used in our 

system modulated by the different Gaussian functions. Note, the four strokes have the 

same size but with different modulated coefficients from Gaussian functions. 

 



 
105 

 
 
 

 

 

Figure  6.7: The four brush stroke balls modulated by the different Gaussian 
functions. 
 

6.7.2.2 Brush Stroke Placement 

To find out the voxels painted by the brush, the brush (ball) center is placed at the sample 

point in the volume matching the brush opacity.  Thus all voxels covered by the brush are 

associated with the shader ID.  

To locate the point matching the brush’s center opacity, we use a ray caster to 

pick the matched point inside the volume. When the user paints into the volume using our 

painting widget, a single ray casting is sampled starting from the volume boundary. Once 

the first sample opacity is met with greater opacity than the stroke opacity, the ray casting 

is immediately stopped and the position of the sample is recorded. The voxels covered by 

the ball centering at the sample is associated with the shader ID of the brush stroke, as 

well as other information. Our method follows the instinct of “What You See Is What 

You Get” [HH90] in 3D painting. 

For the other rendering modes, such as MIP, normally the pixel depth information 

is undefined. In this case, our user interface allows user to create a mask in image space. 

The other rendering mode can be applied inside this mask (see Figure  6.10 Bottom). 



 
106 

 
 
 

 

6.7.3 Brush Stroke Union 

The brush stroke is generated when the surface intersection point is determined or the 

point inside the volume is picked by ray caster. When there are overlapped region from 

multiple brush strokes, care needs to be taken to compute the shader parameters for the 

overlapped region.  To preserve the continuity, we compute the union operation (see 

Equation 6.4) using the algebraic sum and algebraic product to represent the shader 

parameters within the overlapped region. 

)()()()( xxxx babaBA −+=∪  (6.4) 

Here, )(xa and )(xb  are the shader parameters from brush stroke A and B. 

6.7.4 Painting Order 

Painting order needs to be maintained for user-controlled shader painting within the 

overlapped region. The outputs of the shaders from shader texture will not be composited 

according to their order in the bit mask of the shader texture (see Figure  6.5).  A painting 

order is specified and stored in the shader texture as shown in Figure  6.8. 

 

 

Figure  6.8: One channel of shader texture with painting order. 



 
107 

 
 
 

 

6.8 Experimental Results and Conclusions 

All experimental images are generated on a PC with a GeForce 8800 graphics hardware 

and a Pentium Core 2 Q6600 2.6 GHz processor.   

Figure  6.9 shows the combination between two shaders (granite and toon) using 

four operators: min, max, over, and weight. A smooth transition between two shaders 

only occurs for the over operator which combines the two shader results using alpha 

blending. Figure  6.10 top shows an image generated by a 3-layer X-Ray shader and the 

bottom image is generated by applying a replace operator between the top image and an 

image from a conventional X-Ray shader. Figure  6.11 shows a multi-shader rendering for 

volumetric datasets.  A transfer function is used as a shader selector as in Figure  6.3. 

Figure  6.12 illustrates the user painting toon, gooch, and granite shader ID’s onto the 

surface and they are stored in a shader texture.  The surface is later rendered using the 

proper shaders from the shader texture. The volumetric painting with multiple shaders is 

shown in Figure  6.13, Figure  6.14, Figure  6.15, and Figure  6.16. 

The resultant imagery indicates our indirect shader synthesizer provides a rich 

appearance control for the investigating data, including both surface geometries and 

volumetric datasets.  The indirect shader synthesizer provides a novel and effective way 

to control the appearance of the rendering over the multi-shaders.   

 



 
108 

 
 
 

 

 

Figure  6.9: The different operators between two shaders: granite procedure shader 
and toon NPR shader. (a)  min operator; (b) max operator; (c) over operator; (d) 
weight operator with both coefficients as 0.5. 
 

 

   
 
 

(a)                                                              (b) 
 
 

   
 
 

(c)                                                              (d) 



 
109 

 
 
 

 

 
 

Figure  6.10: Top: The composited layer X-Ray image. Bottom: layered X-ray 
shader is embedded into an image space mask in the conventional X-ray image.  
 

 
 

 
 
 
 

 



 
110 

 
 
 

 

 
 

Figure  6.11: Multi-shader rendering. (a) silhouette shader + 3D brush shader.  (b) 
silhouette shader + DVR shader for bonsai dataset. (c) silhouetter shader + DVR 
shader for engine dataset. (d) granite shader + DVR shader for bonsai data. 

 
 

  
 
 

(a)                                                                         (b) 
 
 

  
 
 

(c) (d) 



 
111 

 
 
 

 

 
 

Figure  6.12: The toon, granite, and gooch shaders are drawn on the head by user. 

 
 

 
 
 
 
 

 
 



 
112 

 
 
 

 

 
Figure  6.13: Volumetric painting with granite shader(top) and NPR shader (bottom). 

 
 

 
 
 
 
 

   
 
 



 
113 

 
 
 

 

 
Figure  6.14: Volumetric painting with MIP shader(top) and peel shader (bottom). 

 
 

 
 
 
 
 

 
 
 



 
114 

 
 
 

 

 
Figure  6.15: Volumetric painting with multi-shaders. 

 
 

 
 
 

 
 
 



 
115 

 
 
 

 

 
Figure  6.16: Volumetric painting with granite shader + silhouette only NPR shader. 

 
 

 



 
116 

 
 
 

 

 
 
 
 

CHAPTER 7 
 
 

 SUMMARY AND CONCLUSION  
 
 
 
 
Graphics hardware based volume visualization techniques have been the active research 

topic over the last decade. The goal of this work is to investigate the graphics hardware 

acceleration techniques and to explore the programmable graphics hardware shaders for 

volume visualization. The work of this thesis has made the several contributions to the 

fields of computer graphics and visualization, particularly using the graphics hardware 

techniques. 

For acceleration on volume visualization, we present a fast X-ray image 

generation technique using point convolution to interactively render very large 

volumetric datasets. Our technique can decouple the timing for X-ray image generation 

into the point rendering time and the point convolution time. The two stages can be 

further optimized and accelerated using different techniques, respectively.  

The latest graphics hardware introduces the early z-culling feature. This feature 

allows us to setup the z-buffer of the isosurfaces segmenting the volume into empty and 

opaque regions. When applying slice based volume rendering (SBVR) with the pre-setup 

z-buffer from the isosurfaces, our technique shows the rendering performance can be 



 
117 

 
 
 

 

improved significantly, comparing the brute-force SBVR.  

Interactive rendering and animation are the important ways to convey the 

dynamic information for vector field visualization. We develop several graphics 

hardware based volume shaders to visualize vector scalar fields.  A vertex shader is 

presented to revisit the textured splat for fast interactive and dynamic vector field 

visualization.  Furthermore, we generate the implicit flow fields and develop a few 3D 

texture based volume shaders to gain on-the-fly flow representation and appearance 

control. 

The programmability of the graphics hardware provides many possible ways to 

explore the volumetric datasets and/or surface geometries. We present an indirect shader 

synthesis framework to composite the different shader output for the same pixel. We have 

shown the shader synthesizer is a well-defined tool to handle the appearance visualization 

for both surface geometry and volumetric data. 

 



 
118 

 
 
 

 

 
 
 
 

BIBLIOGRAPHY 
 
 
 
 
[ABC*01] ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D., 

AND SILVA, C. T. 2001. Point Set Surfaces. In Proc. 
Visualization ’01, IEEE, 21–28. 

 
[Ake93] AKELEY, K.: Reality Engine Graphics. Computer Graphics 

(SIGGRAPH ’93 Proceedings), 27:109–116, 1993. 
 
[ASK92] AVILA, R., SOBIERAJSKI, L. AND KAUFMAN, A.: Towards a 

comprehensive volume visualization system. Proceedings of IEEE 
Visualization ’92, 1992. 

 
[ATI] ATI: http://ati.amd.com/products/radeonhd4800/specs.html. 
 
[BHR*94] BRILL, M., HAGEN, H., RODRIAN, H.-C., DJATSCHIN, W. AND 

KLIMENKO, S.: Streamball Techniques for Flow Visualization, In 
Proc. of IEEE Visualization ’94, IEEE CS Press, 225-231, 1994. 

 
[Bli82] BLINN, J., Light Reflection Functions for Simulation of Clouds and 

Dusty Surfaces. Proceedings of SIGGRAPH ’82, Computer 
Graphics (16:3, 1982), 21-29.  

 
[BN76] BLINN, J. AND NEWELL, M.: Texture and Reflection in Computer 

Generated Images. Communcations of the ACM, 19(10):362–367, 
1976. 

 
[BWC00] BHANIRAMKA, P., WENGER, R. AND CRAWFIS, R.: Isosurfacing In 

Higher Dimensions, In Proc. of IEEE Visualization 2000, IEEE CS 
Press, 15-22, 2000. 

 
[BWC04] BHANIRAMKA, P., WENGER, R. AND CRAWFIS, R.: Isosurface 

Construction in Any Dimension Using Convex Hulls, IEEE 
Transactions on Visualization and Computer Graphics, Vol. 10, 
No. 2, pp. 130-141, 2004. 



 
119 

 
 
 

 

 
[BZX*04] BHANIRAMKA, P., ZHANG, C., XUE, D., CRAWFIS, R. AND WENGER, 

R.: Volume Interval Segmentation and Rendering, In Proc. Of 
Volume Visualization and Graphics Symposium 2004, pp. 55-62, 
Austin, TX, 2004. 

 
[CCF94] CABRAL, B., CAM, N., AND FORAN, J.: Accelerated volume 

rendering and tomographic reconstruction using texture mapping 
hardware. In Proceedings ACM Symposium on Volume 
Visualization 94, 91–98. 

 
[CL93] CABRAL, B., AND LEEDOM, C.: Imaging vector fields using line 

integral convolution. In Proceedings of SIGGRAPH ’93, ACM 
SIGGRAPH, 263.270, 1993. 

 
[CM93] CRAWFIS, R. AND MAX, N.: Texture Splats for 3D Vector and 

Scalar Field Visualization, Proc. Visualization’93, IEEE CS Press, 
pp. 261-266, Los Alamitos, 1993. 

 
[CN93] CULLIP, T. AND NEUMANN., U.: Accelerating volume 

reconstruction with 3D texture hardware. Tech. Rep. TR93-027, 
University of North Carolina, Chapel Hill N.C. 

 
[CMS99] CARD, S., MACKINLAY, J., AND SHNEIDERMAN, B. 1999. Readings 

in Information Visualization: Using Vision to Think, Morgan 
Kaufmann Publishers. 

 
[Cra96] CRAWFIS, R., Real-Time Slicing of Data Space. Proceedings of 

Visualization ’96 , pp. 271—277.  
 
[CS03] CSEBFALVI. B., AND SZIRMAY-KALOS, L. 2003. Monte Carlo 

Volume Rendering. In Proc. IEEE Visualization ’03, pp. 449-456. 
 
[DBB06] DUTRÉ, P., BALA, K. AND BEKAERT, P.: Advanced Global 

Illumination, Second Edition, A K Peters Ltd., 2006. 
 
[DCH88]  DREBIN, R.A., CARPENTER, L. AND HANRAHAN, P., Volume 

Rendering, Computer Graphics, SIGGRAPH’88, 1988. 
 
[DH92] DANSKIN, K. AND HANRAHAN, P. Fast Algorithms for Volume Ray 

Tracing. In ACM Workshop on Volume Visualization ’92, 91-98, 
1992. 



 
120 

 
 
 

 

 
[DS00] Deussen, O. and Strothotte, T.: Computer-Generated Pen-and-Ink 

Illustration of Trees,  In Proceedings of SIGGRAPH’00, July 2000. 
 
[EKE01] ENGEL, K., KRAUS, M., AND ERTL, T.: High-Quality Pre-Integrated 

Volume Rendering Using Hardware-Accelerated Pixel Shading.  In 
Eurographics Workshop on Graphics Hardware ’01, pages 9–16. 
ACM SIGGRAPH, 2001. 

 
[FMH95] FUJISHIRO, I., MAEDA, Y., AND SATO, H.: Interval volume: a solid 

fitting technique for volumetric data display and analysis, In IEEE 
Visualization’95, Atlanta, GA, 1995. 

 
[EMP*03] EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K., AND WORLEY, 

S.: Texturing and Modeling: A Procedural Approach. Third edition. 
Academic Press. 2003. 

 
[FS97] FREUND, J. AND SLOAN, K.: Accelerated Volume Rendering Using 

Homogeneous Region Encoding. In Proceedings IEEE 
Visualization ’97, 191-197,  1997. 

 
[GIS03] GORLA, G.,  INTERRANTE, V. AND SHAPIRO, G.: Texture synthesis 

for 3D Shape Representation, IEEE Transactions on Visualization 
and Computer Graphics, Vol. 9, No. 4 (Oct-Dec. 2003), pp. 217-
242, 2003. 

 
[GW92] GONZALEZ, R. AND WOODS, R. 1992. Digital Image Processing, 

Addison Wesley, pp 414 - 428. 
 
[Har05] HARGREAVES S.: Generating shaders from hlsl fragments. In 

ShaderX3: Advanced rendering with DirectX and OpenGL, 
EngelW. F., (Ed.). Thomson Learning, 2005. 

 
[HE03] HOPF, M., AND ERTL, T. 2003. Hierarchical Splatting of Scattered 

Data. In Proc. IEEE Visualization ’03, pp. 433-440 
 
[HH90] HANRAHAN, P., AND HAEBERLI, P.: Direct WYSIWYG painting 

and Texturing on 3D Shapes, Computer Graphics (SIGGRAPH 90), 
Vol 24, pp. 215-223, 1990. 

 
[Hul92] HULTQUIST, J.: Constructing stream surfaces in steady 3d vector 

fields. In Proc. IEEE Visualization ’92, IEEE CS Press, 171-178, 
1992. 



 
121 

 
 
 

 

 
[IC01] IGARASHI, T. AND COSGROVE, D.: Adaptive Unwrapping for 

Interactive Texture Painting, In Proceedings of the 2001 
symposium on Interactive 3D graphics, 209-216, 2001. 

 
[IK95] ITOH, T., AND KOYAMADA, K.: Automatic isosurface propagation 

using an extrema graph and sorted boundary cells, IEEE 
Transactions on Visualization and Computer Graphics, Vol. 1, No. 
4 (Dec. 1995), pp. 319-327, 1995. 

 
[KCP*02] KÄHLER, R., COX, D., PATTERSON, R., LEVY, S., HEGE, H.-C., AND 

ABEL, T. 2002. Rendering the First Star in the Universe - A Case 
Study. In Proc. Visualization’ 02, IEEE, 537–540. 

 
[KCR99] KING, S., CRAWFIS, R. AND REID, W.: Fast Animation of 

Amorphous and Gaseous Volumes, Volume Graphics '99, Swansea, 
UK, pp. 336-346, 1999. 

 
[KKH01] KNISS, J., KINDLMANN., G., AND HANSEN., C.:. Interactive Volume 

Rendering Using Multi-Dimensional Transfer Functions and Direct 
Manipulation Widgets. In Proc. IEEE Visualization ’01, IEEE CS 
Press, 241-248, 2001. 

 
[KSR06] KRUGER, J., SCHNEIDER, J. AND WESTERMANN, R.: ClearView: An 

Interactive Conetxt Preserving Hotspot Visualization Technique. 
In Proceedings of IEEE Visualization’04, 2004. 

 
 
[KvH84] KAJIYA, J. AND VON HERZEN, B.: Ray Tracing Volume Densities. 

In Proc. SIGGRAPH, 1984. 
 
[KW03] KRÜGER, J., AND WESTERMANN, R. 2003. Acceleration Techniques 

for GPU-based Volume Rendering. In IEEE Visualization, Seattle, 
WA. 

 
[IL95] IHM, I. AND LEE, R. K.: On Enhancing the Speed of Splatting with 

Indexing. IEEE Visualization1995, Alanta, GA, 69-76, 1995. 
 
 
 
[LBS03] LI, G.-S., BORDOLOI, U., AND SHEN, H.-W.: Chameleon: An 

Interactive Texture Based Rendering Framework for Visualizing 
Three-Dimensional Vector Fields. In Proc. IEEE Visualization ’03, 
IEEE CS Press, 241-248, 2003. 

 



 
122 

 
 
 

 

[LC87] LORENSEN, W. AND CLINE., H.: A High Resolution 3D Surface 
Construction Algorithm. Computer Graphics, Vol. 21, No. 4, July, 
1987. 

 
[Lev90] LEVOY, M.: Efficient Ray Tracing of Volume Data. ACM 

Transactions on Graphics 9, 3(July), 245-261, 1990. 
 
[LH91] LAUR, D. AND HANRAHAN, P.: Hierarchical Splatting: A 

Progressive Refinement Algorithm for Volume Rendering, 
SIGGRAPH’91, pp. 285-288, 1991. 

 
[Lig] http://www.lighthouse3d.com/opengl/billboarding/ 
 
[LJH03] LARAMEE, R., JOBARD, B., AND HAUSER, H.: Image Space Based 

Visualization of Unsteady Flow on Surfaces. In Proc. IEEE 
Visualization ’03, IEEE CS Press, 131-138, 2003. 

 
[LKM01] LINDHOLM, E., KILGARD, M. J. AND MORETON, H.: A User-

Programmable Vertex Engine, SIGGRAPH’01, pp. 12-17, 2001. 
 
[LL01] LEE., T.-Y. AND LIN, C.-H.: Growing-cube isosurface extraction 

algorithm for medical volume data. Comput Med Imaging Graph. 
2001 Sep-Oct;25(5):405-15. 

 
[LL94] LACROUTE, P. AND LEVOY, M.: Fast Volume Rendering Using a 

Shear-Warp Factorization of the Viewing Transform . Comp. 
Graphics, 28(4), 1994. 

 
 [LME*02] LU, A., MORRIS, C.J., EBERT, D.S., RHEINGANS, P. AND HANSEN, C.: 

Non-Photorealistic Volume Rendering Using Stippling Techniques. 
Proceedings of IEEE Visualization’02, 2002. 

 
[LMK03] LI, W., MUELLER, K., AND KAUFMAN, A.: Empty Space Skipping 

and Occlusion Clipping for Texture-based Volume Rendering. In 
IEEE Visualization, Seattle, WA, 2003. 

 
[LW85] LEVOY, M., AND WHITTED, T. 1985. The use of points as display 

primitives. Technical report, The University of North Carolina at 
Chapel Hill, Department of  Computer Science. 

 
[Mal93] MALZBENDER, T.: Fourier volume rendering. ACM Transactions 

on Graphics, Vol.12, No.3, 233–250, 1993. 
 
[Max91] MAX, N., Sorting for Polyhedron Compositing. Focus on Scientific 



 
123 

 
 
 

 

Visualization,  1991, pp. 259-268.  
 
[Max95] MAX, N.: Optical model for direct volume rendering, IEEE Trans. 

Vis. and Comp. Graph., vol. 1, no. 2, pp. 99-108, 1995. 
 
[MBC93] MAX, N., BECKER, B., AND CRAWFIS, R.: Flow Volumes For 

Interactive Vector Field Visualization, In Proc. of IEEE 
Visualization ’93, IEEE CS Press, 19-24, 1993. 

 
[MBS*04] MAHROUS, K., BENNETT, J., SCHEUERMANN, G., HAMANN, B. AND 

JOY, K.: Topological Segmentation in Three-Dimensional Vector 
Fields, IEEE Transactions on Visualization and Computer 
Graphics, Vol. 10, No. 2 (March 2004), pp. 198-205, 2004. 

 
[MCG05] MCGUIRE M.: The SuperShader. In Shader X4: Advanced 

Rendering Techniques. Chapter 8.1, pp. 485–498, 2005. 
 
[MDTP*04] MCCOOL, M., DU TOIT, S., POPA, T., CHAN, B., AND MOULE, K.: 

Shader Algebra. In SIGGRAPH ’04. ACM Press, pp. 787–795. 
2004. 

 
[Mic02] MICROSOFT. DirectX9 SDK. http://www.microsoft.com/DirectX. 

2002 
 
[MHB*00] MEIßNER, M., HUANG, J., BARTZ, D., MULLER, K. AND CRAWFIS, 

R.: A Practical Evaluation of Popular Volume Rendering 
Algorithms, Proc. of Volume Vis. Sym., 2000. 

 
[MKT*97] MARKOSIAN, L., KOWALSKI, M., TRYCHI, S., BOURDEV, L., 

GOLDSTEIN, D. AND HUGHES, J.: Real-Time Nonphotorealistic 
Rendering. In Proceedings of ACM SIGGRAPH 97, pages 113-122. 
1997. 

 
[MMC99] MUELLER, K., MOELLER, T., AND CRAWFIS, R.: Splatting without 

the Blur. In Proc of IEEE Visualization ’99, IEEE CS Press, 363-
370, 1999. 

 
[MSPK06] MCGUIRE, M., STATHIS, G., PFISTER, H., AND KRISHNAMURTHI, S.: 

Abstract shade trees. In Symposium on Interactive 3D Graphics 
and Games, march 2006. 

 
[NS97] NIELSON, G., AND SUNG, J.: Interval Volume Tetrahedrization, In 

Proc. of IEEE Visualization ’97. IEEE CS Press, 221-228, 1997. 
 
[NVIDIAa] NVIDIA: http://www.nvidia.com/page/geforce_6800.html. 



 
124 

 
 
 

 

 
[NVIDIAb] NVIDIA: http://www.nvidia.com/page/geforce_8800.html. 
 
 
[NVIDIAc] NVIDIA: http://developer.nvidia.com/object/sdk_home.html. 
 
[OGL] OpengGL: http://www.opengl.org/registry/ 
 
[PBS02] PARK, S., BAJAJ, C., AND SIDDAVANAHALLI, V. 2002. Case Study: 

Interactive Rendering of Adaptive Mesh Refinement Data. In Proc. 
Visualization 02, IEEE Computer Society Press, IEEE Computer 
Society, 521–524. 

 
[PD84] PORTER, T.,  AND DU., T., Compositing Digital Images. Computer 

Graphics (Proceedings of  SIGGRAPH ’84) 18:3 (1984), 253-259. 
 
[Per85] PERLIN, K.: An Image Synthesizer. In Proc. SIGGRAPH, 1985. 
 
[PFH00] PRAUN, E., FINKELSTEIN, A. AND HOPPE, H.: Lapped textures. 

Proceedings of SIGGRAPH2000, 465-470, July 2000. 
 
[PH04] PHARR, M. AND HUMPHREYS, G.: Physically Based Rendering: 

From Theory to Implementation, Morgan Kaufmann, July 2004. 
 
[PH89] PERLIN, K. AND HOFFERT, E.: Hypertexture. In Proc. SIGGRAPH, 

1989. 
 
[PHF07] PLATE, J., HOLTKAEMPER, T. AND FROEHLICH, B.: A Flexible 

Multi-Volume Shader Framework for Arbitrarily Intersecting 
Multi-Resolution Datasets, In Proceedings of IEEE 
Visualization’07, 2007. 

 
[PHK*99] PFISTER, H., HARDENBERGH, J., KNITTEL, J., LAUER, H., AND 

SEILER, L. 1999. The VolumePro real-time ray-casting system. 
Computer Graphics (Proceedings of SIGGRAPH ’99), 251–260. 

 
[Pho75] PHONG, B.T.: Illumination for Computer Generated Pictures. 

Communications of the ACM, 18(6):311–317, June 1975. 
 
[PZvBG00] PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M. 2000. 

Surfels: Surface Elements as Rendering Primitives. In Proc. 
SIGGRAPH ’00, ACM, 335–342. 

 
[REB*00] REZK-SALAMA, C., ENGEL, K., BAUER, M., GREINER, G., AND 

ERTL, T. 2000. Interactive Volume Rendering on Standard PC 



 
125 

 
 
 

 

Graphics Hardware Using Multi-Textures and Multi-Stage-
Rasterization. In EG/SIGGRAPH Workshop on Graphics 
Hardware ’00, ACM, 109–118,147. 

 
[RGW*03] ROETTGER, S., GUTHE, S., WEISKOPF, D., ERTL, T., AND STRASSER, 

W.: Smart Hardware-Accelerated Volume Rendering. In Joint 
EUROGRAPHICS - IEEE TCVG Symposium on Visualization, 
2003. 

 
[RHL] Right Hemisphere Ltd. Deep Paint 3D (Texture Weapons), 

http://www.righthemisphere.com. 
 
[RHTE99] REZK-SALAMA, C., HASTREITER, P., TEITZEL, C., AND ERTL, T.:  

Interactive Exploration of Volume Line Integral Convolution 
Based on 3D-Texture Mapping. In Proc. of IEEE Visualization ’99. 
IEEE CS Press, 233-240, 1999. 

 
[RL00] RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A 

Multiresolution Point Rendering System for Large Meshes. In 
Proc. SIGGRAPH ’00, ACM, 343–352. 

 
[Ros06] ROST, R.: OpenGL(R) Shading Language, Second Edition. 

Addison-Wesley Professional. 2006. 
 
[SA04] SEGAL, M. AND AKELEY, K.: The OpenGL Graphics System: A 

Specification (Version 2.0 - October 22, 2004), online available at 
http://www.opengl.org/, 2004. 

 
[SA95] SOBIERAJSKI, L. AND AVILA, R.: A Hardware Acceleration Method 

for Volumetric Ray Tracing. Proceedings of IEEE 
Visualization ’95, 1995. 

 
[Seb88] SEBELLA, P.: A rendering algorithm for visualizing 3D scalar fields. 

Computer Graphics, 22(4): 51-58, 1988. 
 
[SHLJ96] SHEN, H.-W., HANSEN, C., LIVNAT, Y., AND JOHNSON, C.: 

Isosurfacing in span space with utmost efficiency (ISSUE). IEEE 
Visualization ’96, pages 287-294, 1996. 

 
[SJM96] SHEN, H.-W., JOHNSON, C., AND MA, K.-L.: Visualizing Vector 

Fields Using Line Integral Convolution and Dye Advection. 
Symposium on Volume Visualization’96. IEEE Computer Society 



 
126 

 
 
 

 

and ACM SIGGRAPH, CA, 1996. 
 
[SLB04] SHEN, H.-W., LI, G.-S., BORDOLOI, U.: Interactive Visualization of 

Three-Dimensional Vector Fields with Flexible Appearance 
Control, IEEE Transactions on Visualization and Computer 
Graphics, Vol. 10, No. 4 (July 2004), pp. 434-445, 2004. 

 
[Spi] SPITZER, J.: Texture Compositing With Register Combiners 

Compositing With Register Combiners, 
http://developer.nvidia.com/. 

 
[SVL91] SCHROEDER, W. J., VOLPE, C. R., LORENSEN, W. E.: The Stream 

Polygon: A Technique for 3D Vector Field Visualization. In Proc. 
IEEE Visualization ’91, IEEE CS Press, 126-132, 1991. 

 
[TD07] TRAPP, M. AND DÖLLNER, J.: Automated Combination of Real-

Time Shader Programs, In Proceedings of Eurographics 2007, 
pages 53-56, September 2007. 

 
[TL93] TOTSUKA, T., AND LEVOY, M. 1993. Frequency Domain Volume 

Rendering. Computer Graphics (Proceedings of SIGGRAPH ’93), 
pp 271-278. 

 
[TNK97] TODD, J., NORMAN, F., KOENDERINK, J. AND KAPPERS, A.: Effects 

of Texture, Illumination, and Surface Reflectance on Stereoscopic 
Shape Perception, Perception, 26, pp. 807-822, 1997. 

 
[TOII08] TAKAYAMA, K., OKABE, M., IJIRI, T. AND IGARASHI, T.:Lapped 

Solid Textures: Filling a Model with Anisotropic Textures. In 
Proceedings of ACM SIGGRAPH’08, 2008. 

 
[Tur01] TURK, G.: Texture Synthesis on Surfaces. Computer Graphics 

Proceedings (SIGGRAPH 2001), pp. 347-354, 2001. 
 
[TvW03] TELEA, A., VAN WIJK., J.: 3D IBFV: Hardware-Accelerated 3D 

Flow Visualization. In Proceedings of IEEE Visualization ’03, 
IEEE CS Press, 225-232, 2003. 

 
[TWHS03] THEISEL, H., WEINKAUF, T., HEGE, H.-C., AND SEIDEL, H.-P. 2003. 

Saddle Connectors – An Approach to Visualize the Topological 
Skeleton of Complex 3D Vector Fields. In Proceedings IEEE 
Visualization ’03, IEEE CS Press, 225-232, 2003. 

 
[VKG04] VIOLA, I., KANITSAR, A. AND GROLLER, M: Importance-Driven 

Volume Rendering, In Proceedings of IEEE Visualization’04, 



 
127 

 
 
 

 

2004. 
 
[vRHJ*04] VON RYMON-LIPINSKI, B., HANSSEN, N., JANSEN, T., RITTER, L., 

AND KEEVE, E. 2004. Efficient Point-Based Isosurface Exploration 
Using the Span-Triangle. In  Proc. IEEE Visualization ’04, pp. 
441-448. 

 
[vW93] VAN WIJK, J. J.: Implicit Stream Surfaces. In Proc. of IEEE 

Visualization’93. IEEE CS Press, 245-252, 1993. 
 
[vW01] VAN WIJK, J. J.: Image based flow visualization. Computer 

Graphics (Proc. SIGGRAPH ’01), ACM Press, 263-279, 2001. 
 
[WE98] WESTERMANN, R., AND ERTL, T.: Efficiently Using Graphics 

Hardware in Volume Rendering Applications. In Proc. of 
SIGGRAPH ’ 98, ACM Press, 169-177, 1998. 

 
[Wes89] WESTOVER, L. 1989. Interactive Volume Rendering, Proc. of the 

Chapel Hill Workshop on Volume Visualization, C. Upson, ed., pp. 
9-16, Chapel Hill, NC, May, 1989. 

 
[Wes90] WESTOVER, L. A.: Footprint Evaluation for Volume Rendering, 

Computer Graphics (Proceedings of SIGGRAPH), 24(4), pp. 367–
376, August 1990. 

 
[WFP*01] WAND, M., FISCHER, M., PETER, I., MEYER AUF DER HEIDE, F., 

and STRASSER, W.: The Randomized z-Buffer Algorithm. In Proc. 
SIGGRAPH ’01, ACM, 361–370, 2001. 

 
[Wil92] WILLIAMS, P. Visibility Ordering of Meshed Polyhedra. In ACM 

Transactions on Graphics, 11 (4), 103-126, April 1992. 
 
[WJE00] WESTERMANN, R., JOHNSON, C., AND ERTL, T.: A Level-Set 

Method for Flow Visualization. In Proc. of IEEE Visualization 
2000, IEEE CS Press, 147-154, 2000. 

 
[WKE02] WEILER, M., KRAUS, M. AND ERTL, T.: Hardware-Based View-

Independent Cell Projection. In Symposium on Volume 
Visualization’02, pp. 13-22, Boston, MA, 2002. 

 
[WLMK02] WEI, X., LI, W., MUELLER, K. AND KAUFMAN, A.: Simulating Fire 

with Texture Splats, IEEE Visualization 2002, pp. 227-237, Boston, 
MA, 2002. 

 
[WMFC02] WYLIE, B., MORELAND, K., FISK, L. A. AND CROSSNO, P.: 



 
128 

 
 
 

 

Tetrahedral projection using Vertex Shaders. In Symposium on 
Volume Visualization’02, Boston, MA., pp. 7-12, 2002. 

 
[WvG91] WILHELMS, J. AND VAN GELDER, A.: A coherent projection 

approach for direct volume rendering, Cmputer Graphics, vol. 25, 
no. 4, pp. 275-284, 1991. 

 
[Wyn] WYNN, C.: OpenGL Vertex Programming on Future-Generation 

GPUs, http://developer.nvidia.com/. 
 
[XC03] XUE, D., AND CRAWFIS, R. 2003. Efficient Splatting Using Modern 

Graphics Hardware, Journal of Graphics Tools, Vol 8. No. 3, pp. 
1-21. 

 
[XC04] XUE, D. AND CRAWFIS, R.: Fast Dynamic Flow Volume Rendering 

Using Textured Splats on Modern Graphics Hardware, 
Proceedings of SPIE EI 2004, pages 133-140, San Jose, CA, 2004. 

 
[XZC04] XUE, D., ZHANG, C. AND CRAWFIS, R.: Rendering Implicit Flow 

Volumes, Proceedings IEEE Visualization’04, Austin, TX, 2004. 
 
[XZC05] XUE, D., ZHANG, C., AND CRAWFIS, R. 2005. iSBVR: Isosurface-

aided Hardware Acceleration Techniques for Slice-Based Volume 
Rendering. In Proc. Of International Workshop on Volume 
Graphics. 

 
[YS93] YAGEL, R. AND SHI, Z.: Accelearted Volume Animation by Space-

Leaping. In Proceedings IEEE Visualization ’93, 62-69. 
 
[ZPvBG01] ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. 

Surface Splatting. In Proc. SIGGRAPH ’01, ACM, 371–378. 
 
[ZSH96] ZÖCKLER, M., STALLING, D., AND HEGE, H.-C.: Interactive 

visualization of 3d-vector fields using illuminated stream lines. In 
Proc. of Visualization ’96, IEEE CS Press, 107-114, 1996. 

 


