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ABSTRACT

Computer simulations have become increasingly popular as a method for studying

physical processes that are difficult to study directly. These simulations are based on

complex mathematical models that are believed to accurately describe the physical

process. We consider the situation where these simulations take a long time to run

(several hours or days) and hence can only be conducted a limited number of times. As

a result, the inputs (design) at which to run the simulations must be chosen carefully.

For the purpose of fitting a response surface to the output from these simulations, a

variety of designs based on a fixed number of runs have been proposed.

In this thesis, we consider sequential adaptive designs as an “efficient” alternative

to fixed-point designs. We propose new adaptive design criteria based on a cross

validation approach and on an expected improvement criterion, the latter inspired by

a criterion originally proposed for global optimization. We compare these new designs

with others in the literature in an empirical study and they shown to perform well.

The issue of robustness for the proposed sequential adaptive designs is also ad-

dressed in this thesis. While we find that sequential adaptive designs are potentially

more effective and efficient than fixed-point designs, issues such as numerical insta-

bility do arise. We address these concerns and also propose a diagnostic tool based

on cross validation prediction error to improve the performance of sequential designs.

ii



We are also interested in the design of computer experiments where there are

control variables and environmental (noise) variables. We extend the implementation

of the proposed sequential designs to achieve a good fit of the unknown integrated

response surface (i.e., the averaged response surface taken over the distributions of

the environmental variables) using output from the simulations. The goal is to find

an optimal choice of the control variables while taking into account the distributions

of the noise variables.
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CHAPTER 1

ANALYSIS OF COMPUTER EXPERIMENTS

1.1 Introduction to Computer Experiments

In the last decade or so, computer experiments have become very popular with

the advent of affordable computing power. Traditionally, physical experiments have

been used to establish a cause-and-effect relationship between input variables and

the response output. Given the increasingly complex nature of scientific research,

many physical experiments are difficult, if not impossible, to carry out. Computer

simulations have been run to provide a representation of the “real” physical system.

Put in a simplistic way, these simulations are attempts to represent the complex

reality by means of a computer code (or mathematical model). However, for code

that runs slowly, it is not possible to carry out computer simulations at very fine

grids in any realistic time frame. Thus, computer experiments are often performed

to allow one to determine an approximation to the unknown response surface. This

has led to the development of statistical methodologies for predicting the unobserved

responses at selected input points. The approach taken in this thesis assumes that

the response can be modeled as a realization of a Gaussian stochastic process (see

Sacks et al., 1989, and Chapter 2 in Santner et al., 2003).
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While both computer and physical experiments are attempts to collect data for

modeling the relationship between inputs and the response variable, it is important

to note that we are now dealing with two distinctive sets of observations and hence

an appropriate set of design strategies and analysis methods has to be developed.

While random error is inherent in physical experiments, computer experiments

are generally deterministic (i.e., repeated runs of the computer code will give the

same output). Design and analysis of physical experiments must account for sources

of random variability by taking multiple observations at the same site, blocking, and

randomization of assignment. Popular choices of designs include factorial, orthogonal,

randomized block and “optimal” designs (“optimal” designs are constructed accord-

ing to some specific objectives such as minimizing the trace or determinant of the

covariance matrix). However, since the output from the computer code is determinis-

tic, the notion of “uncertainty” in computer experiments is fundamentally different.

Issues such as replication, blocking and randomization, and other principles for con-

trolling bias and noise in physical experiments are no longer relevant. Underlying the

design and analysis of computer experiments is a computer code (also called a sim-

ulator) representing the relationship between the inputs and the response variable.

Uncertainty arises because the modeler may not have full acesss to the simulator.

This may occur either when the simulator is proprietary and not made available to

modelers, or the simulator is highly computer intensive and it is not possible to run

it at all inputs. As a result, computer experiments are attempts to determine the de-

tails of this input-response relationship using an approximate stochastic model with

limited observations.
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Due to this distinctive feature of computer experiments, the basic idea behind

experimental designs is to select input points that will allow us to model and minimize

the discrepancy between the output from the the computer code and predictions from

the stochastic model. Without the presence of random errors, experimental designs for

computer experiment should not take multiple samples at the same input point. And,

experimental designs should also be space-filling to enable an extensive exploration of

the relatively unknown shape of the response function. Designs based on optimality

criteria are also available for computer experiments (for example, the integrated mean

squared prediction error) and are generalizations of the corresponding class of designs

in physical experiments.

Physical experiments and computer experiments also differ in terms of the types

of input variables and how they are dealt with. The three types of variables are the

control variable, environmental variable and model variable (as described in Santner

et al., 2003, Chapter 2). The control and environmental variables are present in both

physical experiments and computer experiments - control variables are settings that

can be controlled by the experimenter, and environmental variables can be thought

of as noise variables. Even though physical experiments may have very few observa-

tions, useful inference is still possible when combined with the outputs from computer

experiments. In cases where physical observations are available and the the response

from the computer code is directly used in the analysis, the third type of model vari-

able may arise due to some unknown constants or parameters in the simulator. The

objective is then to calibrate these model variables with the physical observations so

that the model provides a more accurate representation of reality.
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Modeling and parameter estimation are also very different for the two types of

experiments. For physical experiments, response surface modeling is a popular ap-

proach. Typically, a polynomial model with i.i.d. noise is fitted and least squares

estimates are obtained. In computer experiments, the usual practice is to fit a simple

constant mean model with correlated errors. Departure from the mean is captured

through some parametric class of correlation functions. Estimation of parameters is

usually by maximum likelihood, restricted maximum likelihood or cross validation.

Model validation is also very different in both types of experiments. Without tak-

ing additonal samples, cross validation is a popular method in computer experiments

while other summaries such as F test statistics, R-square values are typically used in

the presence of random errors in physical experiments.

To date, there have been applications of computer experiments in many fields, for

instance:

1. Global response surface model fit and global optimization using the Gaussian

stochastic process model : For global model fit, Sacks et al. (1989) was among

the first to propose the Gaussian process model, while Currin et al. (1991)

looked at applications involving predictions at unobserved inputs for electrical

circuits and thermal storage systems. More recent work by Dirgnei (2006)

studied an approximation to a complex ocean model and proposed a two-stage

method for multivariate outputs. For optimization problems, Jones et al. (1998)

looked at finding the gobal optimum of response surfaces. Ranjan (2007) looked

at contour estimation, while Williams et al. (2000) proposed an algorithm for

global optimization in the presence of both control and environmental variables.
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2. Sensitivity analysis: Oakley and O’Hagan (2004) explored how inputs may affect

the uncertainty in the response and how to screen out input variables that have

little effect on the response.

3. Calibration and predictions: Kennedy and O’Hagan (2001) first proposed the

idea of fusing output from the computer code and physical observations using a

Bayesian framework, and Higdon et al. (2003) developed a fully Bayesian model,

using Markov Chain Monte Carlo methods, to characterize the uncertainty in

predictions made from computer experiments.

1.2 Outline of Thesis

This thesis provides a review of the design and analysis of computer experiments

for constructing (parsimonious) surrogate models to replace the actual complex com-

puter code. These surrogate models may be used for several purposes, such as global

response surface model fit, global optimization, contour estimation and integration

etc.

The focus of this thesis is on the selection of input points at which to run the

simulations so as to obtain a good overall fit (i.e., predictive accuracy) of the Gaussian

stochastic process model (GASP) model which is used as an approximation to the

actual computer code. We propose several sequential adaptive designs and compare

them against one another and also against a fixed-point design.

An overview of the stochastic process model and estimation methods used will be

given in the next two sections. Chapter 2 provides an overview of the experimental

designs commonly used in computer experiments. These include various space-filling
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designs and (statistical) criterion-based designs. Other designs for global model fit

and global optimization will also be introduced.

Following this in Chapter 3, we present several sequential adaptive designs pro-

posed in this thesis and carry out an empirical study to examine the performances

of these designs in terms of how well the selected input points lead to an accurate

predictive GASP model.

Chapter 4 gives a brief review of two studies to highlight some recent work in

the area of design and analysis of computer experiments for non-stationary looking

response surfaces. A new sequential adaptive design criterion is proposed to address

this issue of fitting a single stationary GASP model across the entire input space of

a non-stationary looking response surface.

Chapter 5 highlights potential problems with sequential designs in this thesis and

presents the use of sequential diagnostic tools within the proposed sequential design

algorithms to improve their predictive performances using the GASP model.

Chapter 6 considers the situation where both control and environmental variables

are present and explores the use of sequential adaptive designs for integrated response

surfaces model fit.

We conclude, in Chapter 7, with a discussion of the proposed design criteria and

future research.

1.3 Statistical Model

The computer code for simulation can be thought of as a function h with inputs

denoted by x ∈ X ⊂ ℜp. The output from the computer code is denoted as y =

h(x). In this thesis, we restrict attention to the case of a univariate output from
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the computer code or simulator. One can treat the simulator as a black box and

model the computer ouput as a stochastic process to be described in Section 1.3. For

our approach, the best linear unbiased predictor is used to predict the response at

unobserved x, based on the available training data.

1.3.1 Model and Best Linear Unbiased Predictors

Following the approach of Sacks et al. (1989), it is assumed that the deterministic

output y(x) is a realization of a stochastic process (or random function), Y (x). The

typical model used in computer experiments is

Y (x) = fT (x)β + Z(x), (1.1)

where f(x) = (f1(x), f2(x), ..., fk(x))T is a k×1 vector of known regression functions,

and β = (β1, ..., βk)
T is a k × 1 vector of unknown regression parameters. And, Z(x)

is assumed to be a random process with mean 0, variance σ2 and a known correlation

function R(x1,x2). The Z(·) component models the systematic local trend or bias

from the regression part of (1.1) and the correlation function R(·) essentially controls

the smoothness of the process.

Suppose we have n observations from the computer simulator. Let Y n = (Y (x1), ...,

Y (xn))′ denote the responses from the computer simulator and suppose the goal is

to predict the response Y (x0) at some untried x0 with a linear unbiased predictor

Ŷ (x0) = cT (x0) Y
n.

Cressie (1993) provides more details on linear unbiased predictors in the context of

geostatistical kriging.
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The best linear unbiased predictor (BLUP) finds the vector c(x0) that minimizes

the mean squared prediction error (MSPE)

MSPE[Ŷ (x0)] = E[(cT (x0)Y
n − Y (x0))

2] (1.2)

subject to the unbiasedness constraint E[cT (x0)Y
n] = E[Y (x0)] which can be re-

expressed as

cT (x0)Fβ = fT (x0)β ∀β ∈ ℜk or F T c(x0) = f (x0) (1.3)

where F = [f(x1), ..., f(xn)]
T is the n× k matrix of regressors whose (i, j)th element

is fj(xi) for 1 ≤ i ≤ n, 1 ≤ j ≤ k. Minimizing (1.2) is then equivalent to minimizing

V ar(cT (x0)Y
n − Y (x0)). (1.4)

and leads to minimizing

MSPE[Ŷ (x0)] = σ2[1 + cT (x0)Rc(x0) − 2cT (x0)r(x0)]. (1.5)

Next, a k×1 vector of Langrange multipliers (λ) is introduced and taking the deriva-

tive of

MSPE[Ŷ (x0)]

σ2
− 2λT (x0)[f(x0) − F T c(x0)]

with respect to λ and c(x0), yields (1.3) and σ2Rc(x0) − σ2r(x0) − Fλ = 0. This

system of equations can be expressed in matrix form

(

0 F T

F R

) (

λ(x0)
c(x0)

)

=

(

f(x0)
r(x0)

)

. (1.6)

Assuming that F and R are of full column rank, the solution for c(x0) in (1.6) is

substituted into (1.3) to give the associated BLUP

Ŷ (x0) = cT (x0)Y
n = fT (x0)β̂ + rT (x0)R

−1(Y n − F β̂), (1.7)
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where β̂ = (F TR−1F )−1F TR−1Y n is the generalized least-squares estimate of β.

Similarly, the MSPE of the BLUP (1.5) is then given by

MSPE[Ŷ (x0)] = σ2[1 − rT (x0)R
−1r(x0) + (1.8)

(fT (x0) − rT (x0)R
−1F )(F TR−1F )−1(fT (x0) − rT (x0)R

−1F )T ],

where r(x0) = (R(x1,x0), ..., R(xn,x0))
T is the n × 1 vector of correlations between

observations at the previously sampled points, Y n, and Y (x0). Usually, fT (x)β in

(1.1) is simply assumed to be a constant mean term, β, unless there is strong evidence

that a more complex function (e.g., a polynomial function or even a crude version

of the “simulator”) is needed to capture a global trend. In practice, use of only a

constant mean term has been found to work well if the response surface is not too

highly non-stationary. The stochastic process Z(x) captures the local trend which

usually suffices to produce excellent fit.

Given that the correlation function R(·) is known, the BLUP can be easily cal-

culated using (1.7). Typically, the correlation parameters have to be estimated (for

example, by maximum likelihood estimation) and the resulting predictor is termed

the empirical best linear unbiased predictor (EBLUP).

It is noted that the BLUP in (1.7) is an interpolating predictor as follows. Using

the fact that R−1R = In (identity matrix) and supposing x0 is one of the training

points (say xi), then R−1r(x0) is a unit vector with 1 in the ith position and 0

elsewhere. As a result, (1.7) reduces to Ŷ (x0) = fT (xi)β̂+(Y (xi)−f(xi)β̂) = Y (xi).

1.3.2 Bayesian Approach.

Currin et al. (1991) and Koehler and Owen (1996) presented examples using

the alternative Bayesian approach to Subsection 1.3. The simplest case is when the
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parameters R(.), β and σ2 are known and fixed. From the joint distribution,

(

Y n

Y (x0)

)

∼ N

[

(

F

fT (x0)

)

β, σ2

(

R r(x0)
r(x0) 1

)

]

, (1.9)

we obtain the conditional posterior distribution as

[Y (x0)|Y n] ∼ N
(

fT (x0)β+rT (x0)R
−1(Y n−Fβ), σ2[1−rT (x0)R

−1r(x0)]
)

. (1.10)

Notice that the point predictor (the posterior mean) is the same as the BLUP in (1.7),

while the posterior predictive variance is different from (1.8) because the estimation

of β is ignored. Currin et al. (1991) adopted an empirical Bayesian approach and

estimated the parameters (and hyperparameters) via maximum likelihood.

A fully Bayesian approach is to assign prior distributions to the parameters and

integrate out these parameters to obtain the posterior distribution (1.10). An example

of an informative prior is a normal prior, such as β ∼ N(b0, τ
2V ). Alternatively, one

choice of non-informative prior is [β] ∝ 1 with R(.) and σ2 known, and the posterior

distribution [Y (x0)|Y n] is Gaussian with mean and variance given by the familiar

form in (1.7) and (1.8) respectively.

An extensive study of assigning different priors and the corresponding analytical

form of the posterior distribution can be found in Chapter 4 of Santner et al. (2003)

and Berger et al. (2001).

1.3.3 Parametric Correlation Functions.

As seen from the equations (1.7) and (1.8) above, the correlation function R(·)

plays an important role and has to be specified by the user. This section presents a

review of some of the neccessary restrictions imposed on R(·). We consider correlation
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functions for x1, x2 ∈ S

R(x1,x2) = R(|x1 − x2|) = R(d)

so that Z(·) in (1.1) is stationary. A valid stationary correlation function must satisfy

the following conditions: (i) R(0) = 1, (ii)
n
∑

i=1

n
∑

j=1

wiwjR(xi,xj) ≥ 0, ∀n, ∀x1, . . . ,xn,

and all real w1, . . . , wn, and (iii) R(d) = R(−d) and does not depend on the location.

In higher dimensions (i.e. two or higher), taking the products of correlation across

each dimension j = 1, · · · , m is a common practice for computational convenience,

R(x1,x2) =
m
∏

j=1

R(|x1j − x2j |).

These are sometimes called separable correlation functions. Two popular choices

are the cubic and power exponential correlation functions and their one-dimensional

forms are given below. A third choice, the Matern correlation function, is sometimes

used too but requires more computation time to estimate.

Cubic Correlation. The non-negative cubic correlation function takes the form

R(d) = 1 − 6
(

d
2

)2
+ 6

(

|d|
θ

)3

, |d| < θ
2

= 2
(

1 − |d|
θ

)3

, θ
2
≤ |d| < θ

= 0, |d| ≥ θ

(1.11)

where θ > 0 and d denotes the distance between two points (see Currin et al., 1991,

and Mitchell et al., 1990). This correlation function permits a very local correlation

structure since the range parameter θ can be made very small. Another appealing

feature of this correlation function is that beyond distance θ, the correlation between

two points drops to zero, thus providing some intuition concerning the interpretation

of θ. The prediction function (1.7) is a piecewise cubic spline interpolating predictor

in the context of computer experiment.
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Power Exponential Correlation. Another very popular correlation function takes

the form of

R(d) = exp(−θ|d|p), (1.12)

where 0 < p ≤ 2 and θ ∈ (0,∞). For the special case of p = 2, this corresponds

to the Gaussian correlation function which gives an EBLUP (and BLUP) that is

infinitely differentiable. Taking p = 1 gives the exponential correlation function.

For 0 < p < 2, the BLUP and EBLUP are continuous but not differentiable. As

θ increases, the dependence between the response at two input points decreases but

does not go to zero. See Sacks et al. (1989) for an application with this correlation

function. If one knows that the physical process being modeled by the simulator is

smooth, then p = 2 should be used.

Both the cubic and power exponential (with p = 2) correlation functions will be

used for the examples in later chapters. We will also use the product correlation

structure, R(x1,x2) =
m
∏

j=1

R(|x1j − x2j |
∣

∣θj), and let θ = (θ1, ..., θm)′.

Matérn Correlation. The Matérn class correlation was proposed in Matérn (1960).

R(d) =
1

Γ(ν)2ν−1

(2
√

ν|d|ν
θ

)(

Kν
2
√

ν|d|
θ

)

(1.13)

where ν > 0 is the smoothness parameter (controls the amount of differentibility),

and θ > 0 is the spatial scale parameter (controls the range of the correlation). The

function Kν is the modified Bessel function of the third kind of order ν (see Stein,

1999 Chapter 6). The parameter ν controls the smoothness of the process, while θ

controls the range of correlation in each dimension. R(0) is defined to be 1. The

effect of a change in ν can be clearly seen in a change in the smoothness of the

random function generated with the Matérn correlation function (see pages 41-45 in
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Santner et al., 2003, for plots of random functions generated using various correlation

functions). For computing purposes when d = 0, d is set to a very small value (e.g.,

d = 1e − 10).

As special cases, the power exponential correlation function (1.12) in p dimensions

with α1 = ... = αp = 2 and 1/θ2 in place of θ is the limiting case of the Matern

correlation function (1.13) as ν → ∞.

1.4 Parameter Estimation

The previous sections presented a few approaches to the prediction problem and

so far the correlation parameters in the models have been assumed to be known. We

consider two estimation methods: maximum likelihood and cross validation.

1.4.1 Maximum Likelihood Estimation

Assuming the stochastic model in (1.1) where Z(·) has a Gaussian distribution,

the log likelihood for up to an additive constant is

l(β, σ2
z , θ|Y n) = −1

2
[nlog σ2

z + log|R| + (Y n − Fβ)TR−1(Y n − Fβ)/σ2
z ]. (1.14)

Given θ, the maximum likelihood estimates (MLE) of β and σ2
z are given by

β̂ = (F TR−1F )−1F TR−1Y n (1.15)

and

σ̂2
z =

1

n
(Y n − F β̂)TR−1(Y n − F β̂). (1.16)

After substituting β̂ and σ̂2
z back into (1.14) and some cancellation of terms, we obtain

the MLEs of θ by maximizing −1
2

[ nlogσ̂2
z + log|R| ] numerically.
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1.4.2 Cross validation

Cross validation is an alternative method (prediction oriented) for estimating

model parameters in parametric model settings. Here, we consider the leave-one-

out approach in estimating the correlation parameters in Subsection 1.3.3. The basic

idea is based on leaving the ith observation out and predicting the value of the ith

observation (using the BLUP as shown in (1.7)) based on the remaining (n − 1) ob-

servations. Let ψ denotes the vector of unknown correlation parameters. The cross

validation estimator of ψ is found by minimizing the cross validation prediction error

(XV PEc),

XV PEc(ψ) =

n
∑

i=1

(Ŷ (−i)(ψ,x) − y(xi))
2, (1.17)

where Ŷ (−i)(ψ,x) denotes the BLUP of y(x) based on all observations except {xi, y(xi)}

where i = 1, ..., n sampled points, and y(xi) is the computer output at xi.

1.5 Cross Validation for Model Validation

Cross validation is also a popular method to assess the fit of the estimate (BLUP/

EBLUP) of the stochastic model in Section 1.3. This is an easy and practical approach

since additional observations are not needed (see Morris and Mitchell, 1995). Cross-

validated predictions and corresponding prediction errors are computed at each of

the training sites using a subset of the existing dataset of n observations. Using the

leave-one-out cross validation approach in Chapter 5, we define the cross validated

prediction error (XV PEf) as

XV PEf(xi) = [Ŷ (−i)(x) − y(xi)]
2, (1.18)
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where Ŷ (−i)(x) denotes the BLUP of y(x) based on all observations except {xi, y(xi)}

where i = 1, ..., n are the sampled points, and y(xi) is the computer output at xi.

An assessment of the fit of the model can be performed by comparing the values

of the predicted Ŷ (−i)(x) against y(xi). An application of using the XV PEf is given

in Section 5.1.

1.6 Cross Validation for Prediction Error Assessment

Besides using cross validation for estimating model parameters (Subsection 1.4.2)

and for model validation (Section 1.5), one can also use cross validation to come up

with a semi-parametric (prediction-oriented) measure of the prediction error as an

alternative to the MSPE for the stochastic model specified in (1.8). In turn, this

prediction error will be used as a design criterion to select additional input points.

The main idea of the cross validation approach is as follows. Based on n obser-

vations, first estimate the correlation parameters θ by MLE or any other method.

Suppose x is one of the candidate points to be considered. For each subset of the

n − 1 observations, predict y at x using the EBLUP version of (1.7). The n predic-

tions at x are used to provide an estimate of the prediction error at x instead of the

MSPE (1.8). Subsection 3.2.2 describes how the prediction error is quantified.
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CHAPTER 2

EXPERIMENTAL DESIGNS FOR COMPUTER
EXPERIMENTS

Experimental designs for computer experiments have received a great deal of at-

tention given the increased use of computer simulation models in scientific research.

We consider the situation where these simulations take a long time to run (several

hours or days) and hence can only be conducted a limited number of times. As a

result, the inputs (design) at which to run the simulations must be chosen carefully.

It is important to note that design strategies for computer experiments differ

from traditional physical experiments in that: (i) Designs should not take more than

one observation at any input point due to the fact that the computer output is

deterministic. The same input yields the same response in repeated runs, (ii) Designs

should be flexible enough so that the responses at the sampled points provide sufficient

information on the functional form of the response surface across the entire input

space. This is usually taken to mean designs should be space-filling. The rationale is

that the functional relationship between the inputs and output is typically unknown,

and hence it is not clear where to search for features of interest, such as local/global

optimum, flat contours, subregions where the responses vary significantly etc., in the

input space.
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Experimental designs relevant to computer experiments can be broadly catego-

rized into two classes: space-filling designs and criterion-based designs. Given that

the goal is to achieve good predictive accuracy, it is intuitive to consider a space-filling

design strategy in order to minimize the overall prediction error of the GASP model

across the entire input space. Examples of space-filling designs include methods based

on selecting random samples (e.g., Latin hypercube designs (LHD)), distance-based

designs (e.g., maximin and minimax designs), uniform designs, and even sequential

space-filling designs (e.g., Sobol’ sequences). See Santner et al. (2003), Koehler and

Owen (1996) and Bates et al. (1996) for thorough discussions of different design

strategies. While space-filling designs are good for initial exploratory purposes, they

are constructed based on the assumption that interesting features of the true com-

puter model are equally likely across the entire input space. Selection of input points

for these designs is not adaptive to what we learn about the response surface as we

observe the code, and space-filling designs may result in poor prediction accuracy and

efficiency in many situations. An overview of these designs is provided in Section 2.1.

The second class of designs are constructed based on some statistical criteria rather

than the geometric criteria used in space-filling designs. Designs based on certain

optimality criteria, such as mean squared prediction error and the notion of entropy,

have been used to construct designs for computer experiments. However, they are

not easily implemented because they depend on the unknown correlation parameters

present in the GASP model. More details are given in Section 2.2.

Designs for computer experiments have almost been exclusively restricted to LHDs,

mainly due to availability of software to generate them easily even when the number

of inputs is large. A major limitation of the LHD and fixed-point designs in general is
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that they make no use of information gained about the shape of the response surface

as we add observations. While designs based on certain optimality criteria, such as

mean squared prediction error and entropy, can be converted into sequential designs,

it is not clear whether these designs will result in an accurate predictive model, be-

cause they also make no direct use of what one learns from the observed responses

about the form of the response surface. We describe these sequential optimality-

based designs in Section 2.3. This will be investigated further in the empirical study

in Section 3.4.

In general, we are optimistic that sequential designs can be more effective and ef-

ficient for prediction of responses at unobserved input points than fixed-point designs

if the sequential designs are adaptive (i.e., the GASP model is updated sequentially

and design points are added based on the new information/features of the approxi-

mated response surface). It is worth emphasizing that some space-filling designs are

sequential (e.g., Sobol’ sequences) but not adaptive. Several sequential, as well as

adaptive, designs based on cross validation will be reviewed in Section 2.4. Other

designs for global optimization will also be introduced in Section 2.5.

2.1 Space-Filling Designs

Space-filling designs are intuitively appealing in that observations are spread out

over the entire range of the input space to minimize the prediction error of the GASP

model. LHD, distance-based designs (such as maximin, minimax, etc.) and uniform

designs are examples of such space-filling designs. There exists a number of space-

filling design criteria as mentioned in the introduction of this chapter but studies

(e.g., Marin, 2005) suggest they perform similarly in terms of prediction accuracy.
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2.1.1 Latin Hypercube Designs

Latin hypercube (LH) sampling was first introduced by McKay et al. (1979) as

an alternative to simple random sampling and stratified sampling. LH sampling is

a way to ensure that the input points are spread out over the range of each input

separately.

Suppose we want to generate an n-point LHD based on input points from X =

(X1, ..., Xd) where d denotes the number of dimensions. Assuming independence of

each component (i.e. Xk
iid∼ Fk where k = 1, · · · , d), the range of each Xk is divided

into n equal-probablity strata which are labeled {1, · · · , n}. This creates a total of

nd equal-space partitions in the d-dimension input space. A Latin hypercube sample

of size n cells is sampled from the entire set of nd cells.

The actual construction of a LHD proceeds as follows. Assuming the input region

of X is distributed over [0, 1]d, let Π = {Πjk} be an n × d matrix (j = 1, · · · , n

and k = 1, · · · , d) with columns of d different randomly selected permutations of

{1, 2, ..., n}. The sampled values are

Xjk = F−1
k

(1

n
(Πjk − 1 + Ujk)

)

where j denotes the jth sample value, k denotes the kth component (or dimension),

and Ujk are i.i.d. uniform(0,1) random variables. The d elements in the jth row

of Π identify the partition (in each dimension) that Xjk is selected from, while the

corresponding Ujk determine the location of Xjk. Alternatively, the design point may

be placed in the middle of the selected cell (i.e., Ujk = 0.5, a fixed constant).
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In the context of computer experiments, the distribution Fk is often taken to be

uniform, i.e., F−1
k (x) = x, 0 < x < 1, since the response surface is taken to be

unknown and the goal is to explore the surface over the entire region evenly.

Despite the claim of their marginal space-filling properties, not all LHDs are space-

filling across the entire input space. For example, in a two-dimensional case, a non

space-filling LH sample might have all its points lined up along one of the main diag-

onals across the input space. Attempts are made to improve on this by incorporating

distance-based designs, such as maximin distance, and other criteria-based designs

within the class of LHD (see Chapter 5 in Santner et al., 2003, Koehler and Owen,

1996, and Subsection 2.1.3). Stein (1987) discussed the case of LHD for dependent

X components as an extension.

2.1.2 Distance-based Designs

Johnson, Moore and Ylvisaker (1990) proposed design criteria based on maximin

and minimax distances between input points. The intuition behind these designs is to

consider explicitly the distance between all pairs of points and to specify a criterion

that seeks to spread points out across the input space.

Let the input space be X ⊂ ℜm and define the distance measure for a pair of

points by

dp(x1, x2) =

[

m
∑

j=1

|x1j − x2j |p
]1/p

where the case of p = 2 gives the Euclidean distance between x1 and x2. Defining

Pn ⊂ X to be a potential n-point design, a design P 0
n is said to be a maximin distance

design if

max
Pn

min
x,xT∈Pn

d(x,xT ) = min
x,xT ∈P 0

n

d(x,xT ),
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which ensures the points are located as far apart as possible. Alternatively, P 0
n is a

minimax distance design if

min
Pn

max
x∈X

d(x, Pn) = max
x∈X

d(x, P 0
n),

where d(x, Pn) = minx0∈Pn
d(x,x0). The goal is to ensure all points are not too far

from one another.

2.1.3 Hybrid Latin Hypercube Designs

Attempts are made to improve LHDs by incorporating criteria, such as maximin

distance, and other criteria-based designs within the class of LHDs (see Chapter 5

in Santner et al., 2003, and Koehler and Owen, 1996). Noting that distance-based

maximin designs (Subsection 2.1.2) tend to put points out in the boundaries of the

input space, Morris and Mitchell (1995) proposed maximizing the minimum Euclidean

distance between two points in the input space as a criterion within the class of LHDs,

and called this a maximin LHD. Park (1994) studied the use of optimality criteria,

such as the integrated mean squared error criterion, within the LHD class of designs.

Various software can be used to generate maximin LHDs, for example, MATLAB R©,

ACED (algorithms for the construction of experimental designs) software by Welch

(1985) and JMP R© by SAS Institute.

Handcock (1991) introduced the cascading LHD for exploring both the local trend

(i.e., the scale and smoothess parameters in the correlation function) and overall

global trend in the model. The construction of this two-stage design is to, first,

generate a LHD over the entire input space. A second LHD is then generated in a

small region around each of the points of the first LHD. In the context of the GASP

model, the global coverage of the points (in the first stage) helps to estimate the
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global trend component, i.e. the β term in (1.1), while the “clustered” sites (second

stage) help to estimate the parameters of the correlation function.

2.1.4 Uniform designs

Uniform designs, that seek to spread points uniformly across the input space,

were first introduced in Fang (2000). Popular measures of uniformity include the Lp

or the star discrepancy measure (L∞). The goal is to choose a set of points Pn =

{x1, x2, . . . , xn} to minimize a measure of discrepancy. Let the empirical distribution

be Fn(x) = 1
n

n
∑

i=1

I{xi ≤ x}. The star discrepancy of Pn is defined as D∞(Pn) =

sup
x∈X

|Fn(x)− F (x)|. It measures the extent to which the set of design points P differs

from the uniform distribution function.

An overview of methods for producing low-discrepancy sequential designs will now

be provided. These designs allow points to be added sequentially and aim to spread

any sub-sequence of points over the input space uniformly. They can be grouped

into two classes - pseudorandom and quasirandom sequences. While pseudorandom

sequences aim to produce sequences which “look” like sequences of realisations of

i.i.d. uniform random variables to fill the space, quasirandom sequences aim to fill

the space uniformly in a deterministic fashion. Popular sequences include the Halton,

Niederreriter, Faure and Sobol’ sequences etc.

Halton sequences (see Halton, 1960) are formed by reversing the digits in the

representation of some sequence of integers in a given base. One way of forming these

sequences is to first choose a prime number for base d. Write down the first m integers

in the chosen base d. These m numbers are then “reflected” (i.e., reverse the digits)

and converted back to base 10 format. To add another point, set m = m + 1 and
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continue. For more than one dimension, repeat these steps with a different base d.

Even though Halton sequences perform very well in low dimensions, this uniformity

property is difficult to maintain in dimensions of greater than 10.

Sobol’ Sequences (see Sobol’, 1993) are constructed first by determining a set of

“directional” numbers {vi = mi

2
} and a choice of primitive polynomial of order d,

given by P = xd + a1x
d−1 + · · · + ad−1x + 1 where ai = 0 or 1. An initial set

of integers mi is chosen and a recursive relationship can be obtained for calculating

subsequent mi (using a binary operation). Using this algorithm, additional points can

be added while maintaining the uniformity condition. This can be easily generalized

to higher dimensions by repeating these steps (with distinct choices of mi and the

polynomial for each dimension).

Empirical studies to compare some of the quasirandom sequences listed above

have been inconclusive in terms of the measure of discrepancy defined earlier in this

subsection. The main drawback of Sobol’ sequences and other quasirandom sequences

is that they are not adaptive to what we learn about the response surface as we observe

the code and may result in poor prediction accuracy and efficiency.

2.2 Criterion-based Optimal Designs

An alternative class of designs can be constructed based on statistical criteria. We

begin by discussing two criteria based on the mean squared prediction error and the

notion of entropy. Later in Section 2.3, we adapt these criteria to sequential designs.

As we shall see in the next two subsections, these designs require knowledge of the

unknown correlation parameters present in the GASP model (Section 1.3). One way

of overcoming this problem might be to adopt a two-stage procedure: (i) estimate the
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parameters with observations at input points selected by a non-criterion based design,

such as the LHD or maxmin design, through a small pilot study or knowledge from

previous studies. (ii) use the estimated correlation parameters (and treating them

as known) to subsequently select additional design points using a criterion-based

strategy (see Sacks et al., 1989).

Alternatively, some studies have used a fixed value for the correlation parameters

for design purposes. Currin et al.(1991) used the exponential correlation function

while advocating weak correlation strengths between the responses at different input

points. For example, they used e−θ = 0.0001 in the study. Similarly, Mitchell and

Morris (1992) favored using weak correlation parameters in the initial design phase

although this might result in numerical difficulties in some cases. However, Sacks et

al. (1989) and Lim et al. (2002) recommended using strong correlation strengths in

the design criterion. In contrast, we choose to estimate the correlation parameters in

this thesis and more details will be provided in Subsection 3.4.

2.2.1 Mean Squared Prediction Error Designs

Designs for the GASP model in (1.1) should spread out the input points across

the entire input space to minimize the overall prediction error. The MSPE of the

BLUP (1.8) is a measure of the prediction uncertainty of the GASP model and can

be used as a design criterion. Recall in (1.8) that the MSPE is given by

MSPE[Ŷ (x0)] = σ2[1 − rT (x0)R
−1r(x0) +

(fT (x0) − rT (x0)R
−1F )(F TR−1F )−1(fT (x0) − rT (x0)R

−1F )T ].

where r(x0) = (R(x1,x0), ..., R(xn,x0))
T is the n × 1 vector of correlations between

Y (x0) and observations at the previously sampled points, Y n. In practice, use of only
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a constant mean term, β, in (1.1) has been found to produce an accurate predictive

GASP model and leads to a simplified formula for the MSPE given by

MSPE[Ŷ (x0)] = σ2

[

1 − rT (x0)R
−1r(x0) +

(1 − 1TR−1r(x0))
2

1TR−11

]

. (2.1)

Box and Draper (1959) proposed the normalized integrated mean squared error

(IMSE) as a design criterion for Ŷ (x) over the [0, 1]p domain. Sacks et al. (1989)

considered the integrated mean squared prediction error (IMSPE) criterion

∫

X

MSPE[Ŷ (x)]

σ2
w(x)dx (2.2)

where w(.) is a non-negative function satisfying
∫

X
w(x)dx = 1. Typically, one might

consider a uniform weighting and simply take the average of the MSPE across all x.

An n-point design is said to be IMSPE-optimal if it minimizes (2.2) over the set of

candidate points X .

The maximum mean squared prediction error (MMSPE) criterion is defined by

choosing the set of design points to find

max
x∈X

MSPE[Ŷ (x)]

σ2
. (2.3)

An n-point design is said to be MMSPE-optimal if it minimizes the above quantity

(i.e. the worst prediction error) over X .

To overcome the problem of the unknown correlation parameters present in the

GASP model, one could use a two-stage procedure suggested at the beginning of this

section. Another approach is proposed in Sacks et al. (1989) where they conducted

a robustness study over a range of discrete correlation values to identify reasonable

values to use for the correlation parameters so that the IMSPE design performs well.

Their findings suggested that strong correlation (i.e., small correlation parameters
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θ for the Gaussian correlation function) seemed to have good relative efficiency for

prediction. Lim et al. (2002) followed up from this study and showed that the BLUP

with the Gaussian correlation function can be expressed as a polynomial as θ tends

to zero (i.e., increasing correlation strength). An asymptotic IMSPE criterion based

on this asymptotic form of the Gaussian correlation was derived and they showed

that predictions using this design are better compared to the fixed-point LHD or the

IMSPE criterion using correlation parameters estimated by maximum likelihood.

Sacks and Schiller (1988) implemented the IMSPE and MMSPE criteria for a

discrete input space and commented that the design criterion optimization can be

computationally formidable and suggested a sequential approach to these designs.

However, it is noted that the IMSPE and MMSPE criteria cannot be carried out

sequentially without modification as additional design points tend to clump around

existing points (see Sacks et al., 1989). To overcome this problem, the authors im-

plemented an ad hoc sequential approach by dividing the input space into various

subregions. The subregion with the largest contribution to the IMSPE criterion is

identified and the point with the largest contribution to the criterion in that subregion

will be selected as the next input point.

2.2.2 Maximum Entropy Designs

The amount of information provided by an experiment can also be used as a

design criterion. Shewry and Wynn (1987) introduced the notion of sampling by

maximum entropy when the design space is discrete. They showed that the expected

change in information provided by an experiment is maximized by the design D that

maximizes the entropy of the observed responses. Their idea is based on the measure
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of information introduced in Lindley (1956) and the Shannon’s Entropy (Shannon,

1948). Currin et al. (1991) applied this design in the context of computer experiments.

Recall under the model (1.1) in Subsection 1.3.1 that the training data has the

following conditional distribution

Y n|β, θ ∼ N(Fβ, σ2
zR).

Using a Bayesian approach, one can specify a prior distribution for the β coefficients,

say, β ∼ Np(b0, τ
2V 0). Then, the marginal covariance matrix of the observations

Y n|θ can be expressed as

σ2
zR + τ 2FV 0F

T . (2.4)

A design D0
n is said to be a maximum entropy design if

EY n[−ln P (Y n
D0

n
)] = min

Dn

EY n [−lnP (Y n
Dn

)],

where P (Y n) is the probability density for the responses Y n at n sampled points. One

can show (see Koehler and Owen, 1996) that the maximum entropy design maximizes

the determinant of the observation covariance matrix in (2.4).

The choice of prior distributions for the β coefficients will affect the quantity that

the criterion is maximizing (see Koehler and Owen, 1996). We consider two simple

cases discussed in Koehler and Owen (1996):

(i) If the β are treated as fixed (i.e. τ 2 = 0), the maximum entropy criterion reduces

to

max( det(R) ). (2.5)

(ii) If the β are diffuse (i.e. τ 2 → ∞), one can show the maximum entropy criterion

becomes

max( det(R) det(F T (R)−1F ) ). (2.6)
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Like the MSPE criterion in Subsection 2.2.1, the maximum entropy criterion de-

pends on the unknown correlation parameters. Studies that used the maximum en-

tropy design include Currin et al. (1991), and Mitchell and Scott (1987). Plots of

examples of maximum entropy designs can be found in Koehler and Owen (1996).

Maximum entropy designs have been shown to spread points out and often on the

boundaries of the input space (see Koehler and Owen, 1996). In the limiting case

of extremely weak correlation structures, entropy designs tend to become maximin

distance designs according to Johnson et al. (1990). The maximum entropy criterion

has also been introduced within the class of LHDs in Mitchell and Morris (1995).

2.3 Sequential Criterion-based Optimal Designs

In this section and the subsequent two sections, we introduce several sequential

design criteria that can be used with the GASP model. Recall that the criterion-

based designs in the previous section are not implementable without knowledge of

the unknown correlation parameters. To overcome this problem, a sequential imple-

mentation of these criteria can be considered.

2.3.1 Sequential MSPE Criterion

A design based on the MSPE criterion (2.1) can be modified into a sequential

design. It can be implemented sequentially by selecting a new input point, x0, with

the largest MSPE based on the constant mean GASP model that is fitted using the

existing input points,

max
x0

MSPE(x0) = max
x0

(

σ2

[

1 − rT (x0)R
−1r(x0) +

(1 − 1TR−1r(x0))
2

1TR−11

])

.

(2.7)
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Given that the correlation r(x0) decreases with increasing distance between two input

points (as is the case for the cubic and power exponential correlation functions),

this maximum MSPE design tends to spread points out and often initially on the

boundaries of the input space. Unless important features of the true response surface

are on or near the boundary, the fitted surface can be poor unless the total number of

observations is large enough to guarantee the interior of the design region is adequately

sampled.

Various sequential strategies are reviewed in Jin et al. (2002) and a new approach

was proposed for the GASP model (1.1), which they termed the kriging model, and

the radial basis function method (which is esssentially a stochastic model with the

mean modeled by some basis function and the error term as i.i.d. noise). For the

kriging model, the study compared a few sequential designs (namely MSPE, entropy,

maximin distance and cross validation) with a fixed-point optimal LHD for several

test functions. Their findings suggested there is no clear winner in terms of global

model fit and their reasoning is that earlier information, from the fitted kriging model

(i.e., using less observations), for sequential designs, might be misleading for design

point selection and hence reduce the effectiveness of the sequential designs.

2.3.2 Sequential Maximum Entropy Criterion

The maximum entropy design criterion, either (2.5) or (2.6), can also be modified

for use as a sequential algorithm. The correlation matrix R, which now includes the

candidate point x0, can be partitioned into

R =

(

Rn rn(x0)
rT
n (x0) 1

)

, (2.8)
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where Rn is the correlation matrix based on the existing n design points only. The

cross correlation between the observation at a new candidate point x0 and obser-

vations at the existing design points is denoted by the vector rn(x0). As a result,

det(R) can be written as a product of det(Rn)(1− rT (x0)R
−1
n r(x0)). Note that this

a product of scalar terms. Hence, one can show the sequential maximum entropy

criterion based on (2.5) reduces to selecting a new point that satisfies

max
x0

(1 − rT (x0)R
−1
n r(x0)). (2.9)

Notice that (2.9) is very similar to (2.7) except for the last term. For (2.6), where

the β coefficients have a diffuse prior distribution, the sequential maximum entropy

criterion (2.9) is equivalent to the sequential MSPE criterion in (2.7). The proof is

provided in Appendix A.2.

2.4 Sequential Designs for Model Fit of Response Surfaces

The designs considered so far are very general in that they do not have a specific

objective, such as global optimization or model fit, associated with them. If the

research objective is to achieve a good global model fit of the GASP model, the cross

validation approach offers a promising design strategy.

2.4.1 Cross Validation Prediction Error (XVPE) Criterion

As mentioned in Section 1.6, we may use cross validation to come up with an

alternative measure of the prediction error to the MSPE for the stochastic model

specified in (1.8). In turn, this prediction error will be used as part of the design

criterion to select additional input points. This approach is motivated by noting that

the MSPE of the model depends directly on the distance between sampled input
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points, x, and on the correlation function R(.), but indirectly on the response values

observed at these input points or the predicted values given by the fitted surface (even

though the responses are used to estimate the parameters in the fitted GASP model).

By considering criteria based on cross validation, we use the observed and predicted

responses.

This cross validation approach has been studied by Jin et al. (2002), Keijnen and

Beers (2004), and Beers and Kleijnen (2004). Jin et al. (2002) evaluated the use of

cross validation for design purposes using radial basis function modeling. Unlike the

stochastic model in (1.1), radial basis function modeling does not have a prediction

error associated with the point predictions. This may have motivated the authors to

propose a cross validation approach to estimate the prediction error and they com-

pared the performance of their proposed criterion against various sequential designs.

Their studies reported that there was no clear winner between the cross validation

method and the other designs, including a fixed-point design. They did not use the

cross validation approach for their comparisons with the GASP model.

Let x denote a candidate point and Ŷ (−j)(x) denote the EBLUP of y(x) based on

all the data except {xj, y(xj)} where {xj ; j = 1, . . . , n} are the sampled points, while

Ŷn(x) denotes the EBLUP of y(x) using all the data. To reduce the computational

burden, the correlation parameters for the EBLUP are estimated based on all n

observations. The cross validation prediction error (XVPE) criterion is then to pick

the point, x, that has the largest “mean” prediction error, in senses we now define.

We first consider the (penalized) arithmetic mean in

XV PEA(x) =

√

√

√

√

1

n

n
∑

j=1

(Ŷ (−j)(x) − Ŷn(x))2 × min
j

(d(xj,x)) (2.10)
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which was also considered in Jin et al.(2002) in the context of radial basis function

modeling. A penalty term, d(.), based on Euclidean distance, is incorporated to

penalize candidate points that are close to existing sampled points to prevent the

next point picked from being close to one of the existing design points. To illustrate

the problem of this criterion without the penalty term, first suppose the response

y(xj) is at a high local peak (or a point that has a large effect on the fitted GASP

model). Predictions at candidate points around the point xj will change drastically if

xj is not included in the training set. As a result, these candidate points will have a

large value for the (Ŷ (−j)(x)− Ŷn(x))2 component in (2.10) when the jth observation

is deleted and one is likely to pick xj, or an x close to xj , as the next design point.

Two other studies by Kleijnen and Beers (2004), and Beers and Kleijnen (2004)

proposed the use of cross validation and jackknifing to select the next design point

given n points have already been observed. They first pre-selected c candidate input

points by using a space-filling criterion (ignoring points that are close to existing

design points). For each of these candidate points, they obtained the n − 1 cross

validation predictions. Based on these predicted values, they obtained the jackknife

estimate for each of the candidate points, x, using

ỹ(i)(x) = nŶn(x) − (n − 1)Ŷ (−i)(x) (2.11)

where Ŷn(x) denotes the EBLUP of y(x) based on all the n observations, while

Ŷ (−i)(x) denotes the EBLUP of y(x) based on all the data except {xi, y(xi)} where

i = 1, · · · , n. The corresponding prediction variance is computed as follows:

s̃2(x) =
1

n(n − 1)

n
∑

i=1

(

ỹ(i)(x) − ¯̃y(x)
)2

(2.12)
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where

¯̃y(x) =
1

n

n
∑

i=1

ỹ(i)(x).

The point among the c candidates with the largest prediction error (2.12) was selected

next. The authors claimed that their jackknifing approach outperformed the approach

proposed by Jin et al. (2002). However, it is not clear how the choice of the space-

filling criterion for the pre-selection of the c candidate points might affect the selection

of the final design points and their effectiveness in leading to an accurate predictive

model.

2.5 Sequential Designs for Global Optimization

One of the earlier statistical approaches to global optimization, based on the

stochastic model outlined in Section 1.3, was introduced by Cox and John (1996).

They proposed an algorithm to search for the gobal minimum based on the EBLUP

of y(x) and MSPE in (1.7) and (1.8), respectively. These values were used to compute

a lower confidence bound for each of the candidate points over a regular grid. Suppose

we have a set of candidate points X , the lower confidence bound for each of the points

x was given by

lcb(x) = ŷ(x) − b
√

MSPE(x)

where ŷ(x) is the EBLUP of y(x) and b = 2 or 2.5 are used (pre-specified by the

authors). The isotropic power exponential correlation function (with a fixed weak

correlation parameter θ = 2) was used. The candidate point with the smallest lower

bound will be selected if it is smaller than the existing observed response ymin. The

algorithm was terminated if it either reaches a user-defined maximum number of
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points added, or if ymin < min
x∈X

{lcb(x)}. The results were encouraging and the authors

suggested a probablistic approach to this problem as future research.

2.5.1 Expected Improvement Algorithm

Schonlau (1997) and Jones et al. (1998) subsequently developed a sequential

(probabilistic) design strategy to add one input site at every stage of the sequential

algorithm to search for the global optimum of the response surface. The authors

provided two reasons as motivation for the development of their algorithm. The

search for a global optimum point can be done purely by using the EBLUP version of

(1.7) and sequentially selecting the point that gives the maximum/minimum predicted

value. However, this search is too local and will most likely result in a local minimum

unless the surface is well-fitted. On the other hand, selecting the point with the

largest MSPE (1.8) leads to an overly global search, which will push points out to

the boundaries and will not neccessarily find the optimum point quickly.

Their proposed sequential design strategy for global minimization is follows:

1. Choose a small initial set of n0 sampled input points using a space-filling de-

sign such as a LHD. Fit the GASP model (1.1) to this set of n0 points using

the power-exponential correlation function. The parameters are estimated by

maximum likelihood. The fitted model gives a predictor of y(x) at unobserved

input points x and the corresponding MSPE of the predictor.

2. Diagnostic plots, based on the leave-one-out cross validation approach in Sub-

section 2.4.1, is used to assess the fit of the initial model. For each subset of

the n − 1 sampled points, predict y at each of the sampled points that is left

out using the EBLUP version of (1.7). This gives n − 1 predictions at each
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sampled point and they are plotted against the response y from the computer

simulator at the corresponding sampled point. The points should lie roughly

along a 45 degree line if the model fits well. The authors suggested transforming

the observed response y if the diagnostic plots fail to show a good fit. Unless

one finds a transformation for which the subsequent fitted model fits well, one

would use the original output response without transformation.

3. The algorithm then proceeds with the goal of finding the input point that gives

the global minimum response.

The proposed sequential algorithm is based on a notion of “improvement” defined by

I(x) =

{

fn
min − y(x), if y(x) < fn

min

0 otherwise,
(2.13)

where fn
min is the known minimum point of the response surface evaluated at the n

design points and y(x) is the random quantity in (1.3). Since y(x) is unknown, it

can be shown that the expected improvement at each candidate input point x can be

expressed as

E[I(x)] = (fn
min − ŷ(x)) Φ

(

fn
min − ŷ(x)

s(x)

)

+ s(x) φ

(

fn
min − ŷ(x)

s(x)

)

(2.14)

after integrating (2.13) on both sides with respect to the conditional distribution of

[y|yn,β, θ] ∼ N(ŷ(x), s2(x))

where ŷ(x) denotes the EBLUP version of (1.7), s2(x) is the corresponding MSPE

(1.8), and Φ(·) and φ(·) are the N(0, 1) distribution and density function, respec-

tively. This expected improvement will give large values for candidate points with:

(i) predicted values much less then fn
min (sometimes referred to as the localized search
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component), or (ii) high uncertainty (large s(x)) about the prediction ŷ(x) (some-

times referred to as the global search component). The search for the minimum point

then proceeds by finding the point x that maximizes the expected improvement (EI)

at each stage and the observing the response at this x. It can be shown that EI[x] = 0

if x is an existing design point.

The branch-and-bound algorithm is used for the numerical search for the maxi-

mum likelihood estimates of the correlation parameters. The algorithm is terminated

if the expected improvement is less than a pre-specified cut-off of the best current

function value, i.e., max(EI)
|fn

min
|

< α where α is the pre-specified cut-off value.

Schonlau et al. (1998) extended the EI algorithm by incorporating an additional

parameter, g, that systematically controls the balance between the global and local

search range of the algorithm. The improvement function (2.13) becomes

Ig(x) =

{

(fn
min − y(x))g, if y(x) < fn

min

0 otherwise
(2.15)

where g = 0, 1, 2, 3, . . .. Increasing values of g indicates a more global search. Taking

g = 0 gives E[I0(x)] = P (y(x) < fn
min) = Φ

(

fn
min−ŷ(x)

s(x)

)

which results in a very

localized search and is not reccommended unless the surface is fitted well. A poor fit of

the model, based on the diagnostic tool suggested in Jones et al. (1998), may indicate

that the choice of g = 1 may be undesirable and g should be increased. Intuitively, this

there is a need to improve the fit and hence search for better global model fit rather

than a search for a global optimum. A recursive formula for computing E(Ig(x)|yn) is

given in Jones et al. (1998). It might be interesting to consider periodically assessing

the current model fit and reducing g as the fit improves.

Schonlau et al. (1998) further extended the EI algorithm to add more than one

input point at one time. Given n points, and if q points are to be added at each stage,
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the q-step “improvement” function becomes

Ig(x) = [max(0, ymin − yn+1, . . . , ymin − yn+q)]
g. (2.16)

Computing the q-dimensional integration of Ig(x) to get the expected improvement

is a daunting task. As a simplification, the authors recommended (i) computing the

expectations of Ig(x) sequentially and (ii) updating the s(x) term at each iterate

but not the fmin−ŷ(x)
s(x)

term. The rationale was that updating fmin−ŷ(x)
s(x)

implied that

the difference of fmin − ŷ(x) was known with greater certainty (which is not true).

Prediction ŷ(x) were not updated until the q runs are actually made. Schonlau et al.

(1998) presented an example where they compared the “add one point” sequential

design versus the “add many points” design in terms of how well each method located

the global minimum. Their results showed that the designs were comparable.

2.5.2 Expected Improvement Algorithm with Noise Variables

Williams et al. (2000) futher extended the EI algorithm (2.14) to include input

settings with control and environmental variables. The optimization procedure is

to minimize a weighted average of the response over a discrete set of values for the

environmental variables. Let xc and xe denote the control and environmental vari-

ables respectively and ne denote the number of discrete levels for the environmental

variable. The objective function is given by l(xc) =
ne
∑

i=1

wiy(xc,xe,i). The goal is

to identify the control variable setting x∗
c that minimizes l(xc). This is analogous to

finding the minimum y(x) in the original EI algorithm.

The modified EI algorithm is summarized as:
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1. The initial set of design points are selected using a space-filling maximin LHD,

similar to the procedure in Jones et al. (1998) and Schonlau (1998).

2. The parameters in the model are estimated by maximizing the joint posterior

distribution of the parameters. The key difference here is that Williams et

al. (2000) adopted a Bayesian approach to this problem. The parameters

were assumed to have non-informative prior distributions. Instead of the power

exponential correlation function, the Matérn correlation function (1.13) was

used in this study.

3. Proceed with finding the next control variable input tc,n+1 such that it maxi-

mizes the expected improvement

max
xc

E{In(xc)|Y Sn
, ζn}, (2.17)

where the maximization is taken over the posterior distibution [.|Y Sn
, ζn] and

ζn denotes the correlation parameter(s). And, let Sn = {t1, . . . , tn} denote the

sampled points, Sc
n = {tc,1, . . . , tc,n} denote the control variable portion and

Y Sn
denote the random vector of responses associated with the sampled points

Sn. The modified “improvement” function is

In(xc) =

{

L1:n − L(xc), if L(xc) < L1:n

0 otherwise,
(2.18)

where L1:n = min{L(tc,1), . . . , L(te,n)} at the xc that gives the minimum weighted

average. The term L1:n is a random variable unlike in the original EI algorithm

where the corresponding term fmin is known.

4. Choose the next environmental input corresponding to the control input tc,n+1

to minimize the posterior mean square prediction error given the current data
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(i.e. including the new control input, tc,n+1), by

min
xe

E
{

[L̂n+1(tc,n+1) − L(tc,n+1)]
2 | Y Sn

, ζn

}

where L̂n+1(tc,n+1) is the posterior mean of [L(tc,n+1)|Y Sn
, ζn].

5. The procedure for searching the minimum point is iterated until the stopping

criterion is met.
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CHAPTER 3

COMPARISON OF EXPERIMENTAL DESIGNS
FOR RESPONSE SURFACE MODEL FIT

For the purpose of fitting a response surface to the output from computer sim-

ulations, a variety of designs based on a fixed number of runs have been proposed.

As pointed out in Chapter 2, space-filling designs and (sequential) designs based on

optimality criteria, such as MSPE and entropy, make no use of information gained

about the shape of the predicted response surface from the observed responses and

hence it is not clear if these designs will quickly result in an accurate predictive model.

In this chapter, we consider sequential adaptive designs as “efficient” alternatives

to fixed-point designs and sequential designs that do not make direct use of the

responses. New adaptive design criteria are proposed based on a cross validation

approach and on an expected improvement criterion, the latter inspired by a criterion

originally proposed for global optimization. While many sequential designs have been

proposed (for example, in Chapter 2 and more in this chapter), it is not clear how

the performance of these methods might be affected by the shape of response surface,

choice of correlation function for the GASP model, size of starting designs etc. This

chapter will address some of these issues and compare these new designs (i.e., the cross
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validation approach and the modified expected improvement criterion) with others in

the literature in an empirical study (in Subsections 3.4.1 and 3.4.3).

In general, we are optimistic that sequential designs are more effective and effi-

cient for prediction of responses at unobserved input points than fixed-point designs

if the sequential designs are adaptive (i.e., the GASP model is updated sequentially

and design points are added based on the new information/features of the approxi-

mated response surface). It is worth emphasizing that some space-filling designs are

sequential (e.g., Sobol sequences) but not adaptive.

Sequential algorithms have the desirable property that additional observations

are naturally accomodated if the need to improve the accuracy of the GASP model

arises. Although the diagnostic plots mentioned in Schonlau (1997) briefly discussed

in Subsection 2.5.1 provide a way to assess the fit of the GASP model, it is not clear

what can be done if a poor fit is observed even after taking transformation of the

responses. This motivates a need for designs that will allow input points to be added

to improve the response surface model fit.

3.1 Statistical Model

The computer code for simulation can be thought of as a function h with inputs

denoted by x ∈ X ⊂ ℜp. The output from the computer code is denoted as y =

h(x). In this thesis, attention is restricted to the case of a univariate output from

the computer code or simulator. One can treat the simulator as a black box and

model the computer ouput as a stochastic process to be described in Section 1.3. For

our approach, the best linear unbiased predictor is used to predict the response at

unobserved x, based on the available training data.
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3.1.1 Model and Best Linear Unbiased Predictors

Following the approach in Section 1.3, it is assumed that the deterministic output

y(x) is a realization of a stochastic process (or random function), Y (x). The typical

model used in computer experiments is

Y (x) = fT (x)β + Z(x), (3.1)

where f(x) = (f1(x), f2(x), ..., fk(x))T is a k×1 vector of known regression functions,

and β = (β1, ..., βk)
T is a k × 1 vector of unknown regression parameters. And, Z(x)

is assumed to be a random process with mean 0, variance σ2 and a known correlation

function R(x1,x2). The Z(·) component models the systematic local trend or bias

from the regression part of (3.1) and the correlation function R(·) essentially controls

the smoothness of the process.

Suppose we have n observations from the computer simulator. Let Y n = (Y (x1), ...,

Y (xn))′ denote the responses from the computer simulator and suppose the goal is

to predict the response Y (x0) at some untried x0 with a linear unbiased predictor

Ŷ (x0) = cT (x0) Y
n.

The best linear unbiased predictor (BLUP) is given by

Ŷ (x0) = fT (x0)β̂ + rT (x0)R
−1(Y n − F β̂), (3.2)

where β̂ = (F TR−1F )−1F TR−1Y n is the generalized least-squares estimate of β

and F = [f(x1), ..., f(xn)]T is the n × k matrix of regressors whose (i, j)th element

is fj(xi) for 1 ≤ i ≤ n, 1 ≤ j ≤ k. The mean squared prediction error (MSPE) of the
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BLUP is then given by

MSPE[Ŷ (x0)] = σ2[1 − rT (x0)R
−1r(x0) + (3.3)

(fT (x0) − rT (x0)R
−1F )(F TR−1F )−1(fT (x0) − rT (x0)R

−1F )T ].

where r(x0) = (R(x1,x0), ..., R(xn,x0))
T is the n × 1 vector of correlations between

observations at the previously sampled points, Y n, and Y (x0). Usually, fT (x)β in

(3.1) is simply assumed to be a constant mean term, β, unless there is strong evidence

that a more complex function (e.g., a polynomial function or even a crude version

of the “simulator”) is needed to capture a global trend. In practice, use of only a

constant mean term has been found to work well if the response surface is not too

highly non-stationary. The stochastic process Z(x) captures the local trend which

usually suffices to produce excellent fit.

Given that the correlation function R(·) is known, the BLUP can be easily calcu-

lated using (3.2). In this study, the correlation parameters will be estimated by the

maximum likelihood approach and the resulting predictor is termed as the empirical

best linear unbiased predictor (EBLUP).

3.1.2 Parametric Correlation Functions

As seen from the equations (3.2) and (3.3) above, the correlation function R(·)

plays an important role and has to be specified by the user. Both the cubic and power

exponential (with p = 2 )correlation functions will be used for the examples in Section

3.4. We will also use the product correlation structure, R(x1,x2) =
m
∏

j=1

R(|x1j −

x2j|
∣

∣θj) where m denotes the number of dimensions, and let θ = (θ1, ..., θm)′. The

one-dimensional forms of the cubic and power exponential correlation functions, from

Subsection 1.3.3, are shown again below.
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Cubic Correlation. The non-negative cubic correlation function takes the form of

R(d) = 1 − 6
(

d
2

)2
+ 6

(

|d|
θ

)3

, |d| < θ
2

= 2
(

1 − |d|
θ

)3

, θ
2
≤ |d| < θ

= 0, |d| ≥ θ

(3.4)

where θ > 0 and d denotes the distance between two points (see Currin et al., 1991

and Mitchell et al., 1990). One appealing feature of this correlation function is that

beyond distance θ, the correlation between two points drops to zero, thus providing

some intuition concerning the interpretation of θ. Subsection 3.4 will provide more

details on how this feature of the cubic correlation is used for the examples in this

thesis.

Power Exponential Correlation. Another very popular correlation function takes

the form of

R(d) = exp(−θ|d|p), (3.5)

where 0 < p ≤ 2 and θ ∈ (0,∞). For the special case of p = 2, this corresponds to the

Gaussian correlation function which gives an EBLUP (and BLUP) that is infinitely

differentiable.

3.1.3 Basic Algorithm for Constructing Sequential Designs

One can think of sequential designs in the context of either augmenting an existing

network of input points or selecting a completely new set of input points. In both

cases, it will be assumed that the starting designs will consist of at least two input

points because it is not possible to fit a GASP model with a single point. As a result,

there is really no difference in the implementation of sequential designs for these two

cases.

The sequential algorithm for response surface model fit proceeds as follows:
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1. Identify the set of existing n sampled design points x for either

(a) Augmenting the network of design points: identify the existing design

points.

(b) Selecting a new set of design points: generate a small starting design spread

over the input space X . A space-filling design would be appealing for this initial

fit of the response surface using the GASP model.

2. Run the computer code at the n input points identified in Step 1 and obtain

the response, y(x).

3. Estimate the correlation parameters (see Subsection 3.1.2).

4. Fit a GASP model (see Subsection 3.1.1) using the n observations from the

computer simulator to predict y(x0) at some untried x0.

5. Check the stopping rule, if available. If additional points are needed, search for

the x0 that maximizes the design criterion (see Section 3.4 for criteria used in

the simulation study) and add it to the existing set of sampled points giving a

total of n + 1 points. Repeat from Step 2 onwards with the n + 1 points.

3.2 Proposed Sequential Design Criteria

3.2.1 Sequential Integrated Mean Squared Prediction Error

Design

As alluded to in Subsection 2.2.1, direct implementation of the integrated mean

squared prediction error (IMSPE) criterion sequentially has been found to lead to

clumping of new input points around existing points (see Sacks et al., 1989). In our
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attempt to introduce new sequential sampling designs, we propose a slight modifica-

tion to the IMSPE criterion by taking into account the distance of candidate points

to the existing input points and imposing a penalty to prevent the additional design

points from clustering together. The new criterion is to select the x0 that

min
x0∈X

{IMSPE(x0)/min(d(xi,x0))} (3.6)

where xi denotes an existing input point that is closest to x0. This is proposed as an

alternative to the sequential approach suggested by Sacks, Schiller and Welch (1989)

for (2.2) which is just minimizing the numerator in (3.6). The distance penalty is

incorporated to push subsequent points away from existing input points and hence

prevent the clumping problem.

3.2.2 Cross Validation Prediction Error Criteria

The criteria used in the cross validation approaches in (2.10) and (2.11) are based

on the arithmetic mean of the cross validation prediction errors. The criterion based

on (2.10) is penalized by distance, while (2.11) requires a pre-selection of candidate

points.

We propose three new criteria for the cross validation approach that avoid the

“distance” penalty by using the geometric mean, harmonic mean, and the maximin

error as alternative summaries of the cross validation prediction variability. These

three error summaries also avoid selecting points very close to existing design points.

Unlike the maximum MSPE in (2.7), maximum entropy (2.9), and the cross validation

method (2.10), the new summaries do not make explicit use of the correlation matrix

R(·) or distance from existing points to penalize candidate points.
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The geometric mean is appealing because, unlike the arithmetic mean, candidate

points close to existing design points will not likely be selected as the product term

penalizes the small (Ŷ (−j)(x)− Ŷn(x)) prediction error components. The criterion is

to maximize

XV PEG(x) = n

√

√

√

√

n
∏

j=1

(Ŷ (−j)(x) − Ŷn(x))2. (3.7)

This avoids the need for pre-selection of candidate points as needed in the jackknifing

approach in (2.11).

The harmonic mean of a sequence of numbers tends to be more affected by small

values than large values. Since the harmonic mean of the set of n cross validation

prediction errors tends strongly toward the smallest elements of the set, it tends (com-

pared to the arithmetic mean) to mitigate the impact of larger values and aggravate

the impact of small ones. As a result, it prevents subsequent design points from

clumping together. The criterion is to maximize

XV PEH(x) =
n

n
∑

j=1

1
(Ŷ (−j)(x)−Ŷn(x))2

. (3.8)

As an aside, we note that the harmonic mean is always the smallest of the three types

of means, while the arithmetic mean is always the greatest and the geometric mean

is always in between.

The third summary is to compute the minimum cross validation prediction error

for every candidate point and choosing the next point that has the largest error. We

shall call it the maximin criterion which is to maximize

XV PEM(x) = min
j

(Ŷ (−j)(x) − Ŷn(x))2. (3.9)
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3.2.3 Expected Improvement for Global Fit Criterion

The expected improvement (EI) criterion proposed by Schonlau (1997) was orig-

inally developed as a global optimization design criterion. Instead of locating the

global optimum or optima, we consider a modification of the criterion to obtain a

good global model fit of the GASP model. The objective is to search for “informa-

tive” regions in the domain that will help improve the global fit of the model. By

informative we mean regions with significant variation in the response values.

Suppose we have the computer outputs y(xj) at sampled points xj, j = 1, ..., n.

For each potential input point x, its improvement is defined as

I(x) = (Y (x) − y(xj∗))
2 (3.10)

where y(xj∗) refers to the observed output at the sampled point, xj∗, that is closest

(in distance) to the candidate point x. We shall determine this nearest sampled

design point using Euclidean distance. The expected improvement for global fit (EIGF)

criterion is to choose the next input point that maximizes the expected improvement

E(I(x)) = (Ŷ (x) − y(xj∗))
2 + var(Ŷ (x)). (3.11)

The derivation for the EIGF criterion is given in Appendix A.3. More details and

illustrations of this criterion will be presented in Chapter 4.

3.3 Implementation of Sequential Designs

This section addresses some of the practical issues related to the implementation

of sequential designs under the GASP model framework in general. Successful imple-

mentation of such designs depends on several factors, such as: (i) some knowledge of
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the features of the true response surface to be modeled (ii) choice of correlation func-

tion for the GASP model, (iii) choice of experimental design criterion, (iv) number

of starting design points, (v) how to generate the starting design points, and (vi) the

final number of input points.

Ideally, there should be some knowledge of the response surfaces even though the

actual computer code used to generate the surface may not be known. For instance,

it would be helpful to know whether the main features of the response surface are

located at the boundaries or concentrated in the interior of the input space. This

may help to determine some of the choices from (ii) to (vi) above. The choice of

correlation function is an important component of the GASP model. A few choices

are available (see Section 1.3.3) although the Matérn correlation, which is theoretically

appealing, is typically not preferred because it is computationally more intensive and

a power exponential correlation might do equally well in terms of prediction (see

Lehman, 2002, Chapter 2) . The power exponential correlation with p = 2 (also

called the Gaussian correlation) is a popular choice although we find, based on our

experience, that estimation of the correlation parameters, using maximum likelihood

estimation, tends to be unstable especially in the context of sequential designs. The

cubic correlation function is an alternative that seems to perform rather well in our

study.

We believe the key to a successful implmentation of sequential designs lies in

the choice of the experimental design criterion. In general, we are optimistic that

sequential designs can be more effective and efficient for prediction of responses at

unobserved input points than fixed-point designs if the sequential designs are adaptive
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(i.e., the GASP model is updated sequentially and design points are added based on

the new information/features of the approximated response surface).

The number of starting design points is an important component of sequential

designs, but it is generally not clear exactly what this number should be. A decision

also has to be made on the final number of input points. Although this number has

been fixed in our examples, it is generally not clear exactly what this number should

be too. We will discuss an approach to decide on a stopping criterion in Chapter 5.

There exist a number of space-filling design criteria as mentioned in Section 2.1

but studies (e.g., Marin, 2005) suggest they perform similarly. Thus, in Sections 3.4

(and examples in subsequent chapters) we use a maximin LHD as representative of a

space-filling design and also as the starting designs for the sequential methods.

Following this in Section 3.4, we present various sequential design criteria proposed

in this chapter and give several examples to illustrate the effectiveness of the various

designs.

3.4 Examples: Comparison of Design Criteria

The following examples illustrate the implementation and prediction performance

of the various sequential designs and the fixed-points design. Various functions are

used as “true” functions to compare the prediction performances of these designs

using a small number of sampled points. There are two categories of response surfaces

considered in this study: (i) random surfaces generated from a true stationary GASP

model in Subsection 3.4.1, (ii) response surfaces, mostly generated from mathematical

functions, which display a variety of features in the response in Subsection 3.4.3. In

Subsection 3.4.5, an example is presented to compare the efficiency gained (in terms
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of number of observations to achieve a similar degree of predictive accuracy) across

various designs.

The design strategies to be compared are:

• Sequential maximum mean squared prediction error (m)

• Sequential maximum entropy (e)

• Cross validation approaches: arithmetic mean penalized by distance (xa), geo-

metric mean (xg), harmonic mean (xh), maximin criteria (xm)

• Sequential integrated mean squared prediction error, penalized by distance (id)

• Expected improvement for global fit (ei)

• Fixed-point or fixed sample size maximin Latin hypercube design (s)

(the abbrevations in parenthesis will be used to denote these methods later in the

figures).

The total number of design points is fixed. For this number, N , we consider the

rule of thumb suggested in Jones et al. (1998) for selecting a fixed-point design,

namely to use N = 10 × p points, where p is the number of dimension of the input

space. Due to the complexity of the response surfaces used in our examples, the final

number of input points are at least 20, because this rule of thumb did not always

provide enough points for any method to perform well.

There is not a unique maximin LHD. In addition, the software that we used does

not neccessarily produce a maximin LHD but rather one that is “nearly” a maximin

LHD, and thus adds additional variation to the choice of designs. Our comparisons are

based on 30 runs of our software for generating maximin LHDs (MATLAB R© codes
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for implementing the sequential designs presented in this thesis can be found on the de-

partment’s computer experiment directory at /home/comp exp/SOFTWARE/EIGF).

For sequential designs, this means 30 different starting designs all approximately max-

imin LHDs (see Subsection 3.4.4 where we compared the predictive accuracy of the

various designs based on the “best” maximin LHD as a starting design).

In addition, different numbers of starting design points (denoted as N0) are also

considered for the sequential designs. The initial starting designs are thus generated

using an N0-point (nearly) maximin LHD. N0 is chosen to be 5, 10, 15, 20 or 30

depending on the example. For this study, the smallest number of starting design

points is taken to be 5 for the two-dimensional functions. We would suggest starting

the initial design with at least N0 = number of dimensions + 2 (i.e., 4 in the two-

dimensional functions) so as to capture the non-linearity of the surface at the start

of the algorithm. However in our study, we chose to start with 5 points since the

maximin LHD criterion is used to generate the starting design points and it was

found that starting with 4 points put all points near or on the boundaries and did

not work well. Starting with 5 points tended to ensure at least one point is in the

interior region.

Estimation of Correlation Parameters

The values of the correlation parameters are estimated by maximum likelihood in

this study and they are updated at every stage when a new input point is added. For

the cross validation methods, we choose not to re-estimate the correlation parameters,

θ, for each of the jth observation deletions. The θ are estimated using the entire n

observations at each stage.
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In order for the sequential methods to work well, it is crucial to constrain the

range of the numerical search for the maximum likelihood estimates. Although many

studies have chosen to fix the values for these correlation parameters (as mentioned in

Section 2.2), it is not clear what these values should be in general. Sacks et al. (1989)

conducted a robust study to identify values for the correlation parameters in their

IMSE criterion. The authors suggested very strong correlation parameter values for

the Gaussian correlation function seem to have good relative efficiency for prediction.

Lim et al. (2002) also commented that strong correlation seemed to work well in their

study. In contrast, Currin et al. (1991) used the exponential correlation function with

e−θ = 0.0001 (very weak correlation) for design purpose. And similarly, Mitchell and

Morris (1992) favored using weak correlation parameters in the initial design phase,

although they encountered some numerical difficulties.

Instead of fixing the value of the correlation parameters, we choose to carry out a

numerical search across a wide range of correlation values and select the value that

maximizes the likelihood function. The following constraints, for the cubic correlation

(3.4), are used:

1. The two closest input points, in distance, must be at least weakly correlated.

The lower limits for the range parameters θ, in (3.4), are set to be slightly

larger than the distance between the two closest points. This is fixed at 1.1

times the minimum Euclidean distance between the points and this gives a

correlation strength of about R(·) = 0.0015 between the two closest points in a

two-dimensional input space.
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2. Points must have the chance to be highly correlated. The upper limits for the

range parameters θ, in each dimension, are set to be four times the correspond-

ing range of the input space.

For comparison purposes, similar constraints are specified for the Gaussian correlation

function to match the correlation values used for the cubic correlation. Re-expressing

(3.5) with p = 2 in one dimension, we have

θ =
−lnR

d2

where d denotes the range of the input space. The limits for the Gaussian correlation

parameter θ can be computed by substituting the corresponding R(·) values based on

the limits for the cubic correlation (in the above paragraph).

Prediction accuracy of each of the designs is evaluated using the empirical root

mean squared prediction error (ERMSPE),

ERMSPE =

√

√

√

√

m
∑

i=1

(ŷ(xi) − y(xi))2

m
(3.12)

where xi, i = 1, ...m (m >> N0) are a grid of equally spaced points used for evaluating

the prediction accuracy and m is the total number of grid points; ŷ(xi) is the predicted

value at the xi; y(xi) are the true values at the same set of grid points. We used a

regular grid, but some other method (e.g., maximin LHD) of choosing the m points

could be used provided the points are spread out over X . Boxplots are used for each

of the test functions to show the distribution of the ERMSPE for the 30 runs.
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3.4.1 Test Functions: Random Surfaces Generated from Gaus-
sian Stochastic Process (GASP) Model

Random surfaces are generated from a stationary GASP model (3.1) with covari-

ance matrix Σ = σ2R(θ). For R(θ), the Gaussian correlation function is used. The

surfaces are generated with σ2 = 5 and θ = (5, 5), which give moderately strong cor-

relation and result in rather smooth surfaces. These random surfaces will be referred

to as GASP surfaces. Plots of the five random surfaces (denoted as surfaces G1 to

G5) are shown in Figure 3.1 (page 56) on a grid of m = 30 × 30 = 900 equally spaced

points which coincide with the m points used to evaluate the designs in (3.12). These

plots are used to illustrate the implementation and prediction performance of the

various designs. All sequential designs have N0 = 5 points for the starting designs.

The comparison of predictive accuracy of the different design criteria is based on a

final number of N = 30 points.

This example seeks to examine the impact of the choice of correlation function,

initial starting design and design criterion on the predictive performance across the

five surfaces (realizations) from the GASP model. In addition, we consider the fol-

lowing cases for the estimation of the correlation parameters for fitting the constant

mean GASP model.

1. with the Gaussian correlation function and parameters estimated by maximum

likelihood

2. with the cubic correlation function and parameters estimated by maximum

likelihood

3. with the Gaussian correlation function and parameters known, θ = (5, 5)
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Figure 3.1: GASP surfaces: Plots of random surfaces generated from GASP model
with θ = (5, 5).
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3.4.2 Results: GASP Model Response Surfaces

GASP surfaces: Figure 3.3 (page 69) shows comparative plots of the ERMSPE

for the nine designs. It is not clear from Figures 3.3 (a) and (b) that designs with the

Gaussian correlation will neccessarily result in better predictions than designs with

the cubic correlation. The ERMSPE seems to be slightly lower with the Gaussian

correlation but some extremely poor predictions can result, and this makes designs

with Gaussian correlation less robust in terms of predictive accuracy. Due to their

“adaptive” property, sequential adaptive designs run into problems with estimation

of the Gaussian correlation parameters possibly due to the irregularity of inter-point

distances between the sampled points (unlike the space-filling maximin LHD). The

fixed-point maximin LHD (s) (the top five boxplots shown on each figure) seems to

do better with the Gaussian correlation than with the cubic correlation. This is not

surprising since the surfaces were generated using the Gaussian correlation function

(Subsection 3.4.1).

In Figure 3.3 (c), all designs, except the EIGF criterion (ei), perform better with

θ known compared to (a) and (b) where the correlation parameters are estimated by

maximum likelihood. This provides compelling evidence that some of these sequential

designs fail to predict well due to difficulties in estimating the correlation parameters.

Overall, sequential designs, except the EIGF criterion (ei), tended to do better

than the fixed-point maxmin LHD (s). However, none of these sequential designs seem

to stand out with the Gaussian correlation in Figure 3.3 (a). However when the cubic

correlation is used, the cross validation with the harmonic mean and the maximin

criteria (xh and xm), and EIGF criterion (ei) are the worse performers among the

sequential designs.
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A detailed analysis reveals that the EIGF criterion (ei) tended to place too many

points in regions with high variation in the response and suffers a loss of predictive

accuracy over the other regions of the input space. A generalization of the the EIGF

criterion (ei) is considered in Section 4.4 to address this problem.

3.4.3 Test Functions: Non-GASP Model Response Surfaces

In general, we not expect the simulator to produce GASP model response surfaces.

We consider a few other test functions to evaluate the predictive performance of the

various designs. In Subsections 3.4.3 and 3.4.4, four examples are used to evaluate

the predictive performance of the GASP model with the input points chosen by the

various design criteria. Details about the functions are given below and a plot of the

true response surfaces is shown in Figure 3.2 (page 60).

Boxplots are used for each of the test functions to show the distribution of the

ERMSPE for the 30 runs. Plots of the worst case predicted surface (i.e., the surface

with the maximum ERMSPE among the 30 runs), for both the Gaussian and cubic

correlations, and different number of starting design points are also shown. These

plots are shown on pages 70 to 81.

Function M1: Branin function

The two-dimensional Branin function, also considered in Schonlau (1997), is given by.

f(x1, x2) = (x2 −
5.1

4π2
x2

1 + 5/πx1 − 6)2 + 10(1 − 1

8π
π) cos(x1) + 10

where x1 ∈ [−5, 10], x2 ∈ [0, 15]. The true surface is plotted in Figure 3.2 on a fine

grid of m = 30 × 30 = 900 equally spaced points which coincide with the m points

used to evaluate the designs in (3.12). This surface has peaks in the response at the

boundaries of the input space. We follow the rule of thumb suggested in Jones et al.
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(1998) for selecting a fixed-point design, namely to use N = 10× p points, where p is

the number of dimension of the input space. The final number of input points, N , is

taken to be 20.

Function M2: Simulated surface

Next, we have a surface where most of the features of the surface lie in the middle of

the domain, where x1 ∈ [−5, 10], x2 ∈ [0, 15]. This surface is generated by combining

four bivariate Gaussian density functions each centered at different locations of the

input space. The input domain is finely divided into m = 40 × 40 = 1,600 equally

spaced points. This surface is constructed to examine the performances of the design

strategies in a setting where the boundaries are “flat”. Due to the complexity of the

surface, the final number of input points, N , is taken to be 40.

Function M3: Six-hump camel-back function

This surface has features both at the boundaries and interior region. The function

for the six-hump camel-back surface proposed in Branin (1972) is

f(x1, x2) = (4 − 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2,

where x1 ∈ [−2, 2], x2 ∈ [−1, 1]. The true surface is plotted in Figure 3.2 on m = 30

× 30 = 900 equally spaced points. The final number of input points, N , is 40.

Function M4: Non-polynomial surface

We consider a two-dimensional function that has highly correlated responses but

relatively mild variation in the response. This relatively smooth response function is

given by

f(x1, x2) =
(30 + 5x1sin(5x1)) × (4 + exp−5x2) − 100

6
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where x1, x2 ∈ [0, 1]. This surface is considered in Lim et al. (2002). The true surface

is plotted in Figure 3.2 on m = 30 × 30 = 900 equally spaced points and the final

number of input points, N , is 20.
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Figure 3.2: Surface plots of the true surfaces. (a) Function M1: Branin function, (b)
Function M2: Simulated surface, (c) Function M3: Six-hump camel-back function,
(d) Function M4: Non-polynomial surface.
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3.4.4 Results: Non-GASP Model Response Surfaces

Among the 30 different starting designs (as mentioned on page 51), the “best”

maximin LHD (i.e., the design, among the 30 runs, that has the largest maximin

distance between the input points) is identified and the ERMSPE of the resulting

final design with N points is shown as (×) on the boxplots in Figures 3.4 (page

70), 3.7 (page 73), 3.10 (page 76) and 3.13 (page 79). From these plots, the “best”

maximin LHD for each design criterion does not necessarily result in the most accurate

predictive GASP model (i.e. the smallest ERMSPE shown in the boxplots).

Comparison of correlation function and number of starting design points

Results from our simulation study show that there are significant differences in

the final designs and predictive accuracy depending on whether the cubic or Gaussian

correlation function is used.

Function M1 (Branin function): The boxplots in Figure 3.4 (page 70) show that

although the cubic correlation function tends to result in designs with slightly larger

ERMSPE median, the spread tends to be smaller and with fewer outliers. Figures 3.5

and 3.6 show that designs with the Gaussian correlation tend to result in relatively

poorer predictions of the interior region of the input space.

Function M2 (Simulated surface): In Figure 3.7 (page 73), the Gaussian correla-

tion function seems to perform better (with fewer outlying ERMSPE values) at least

for smaller starting designs (i.e. N0 = 5 and 10). Figures 3.8 and 3.9 show that some

designs (N0 = 20) with the cubic correlation can result in very poor predictions.

Overall with N0 = 20, predictions using the two types of correlation are comparable.
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Function M3 (Six-hump camel-back function): The use of the cubic correlation for

all the designs results in more accurate prediction of the response surfaces compared

to the Gaussian correlation (see Figure 3.10 on page 76). Figures 3.11 and 3.12 show

the worst case predicted surfaces and the Gaussian correlation is found to result in

poor predictions in some cases.

Function M4 (Non-polynomial surface): The use of the cubic correlation tends to

results in relatively smaller ERMSPE median and spread. However, the difference

is not too significant and designs with both correlation functions give comparable

predictions. Designs with the cubic correlation tend to predict the boundaries more

accurately as shown in Figures 3.14 and 3.15 on pages 80 and 81 respectively. This is

somewhat surprising since this is a very smooth surface and the Gaussian correlation

is expected to be more suitable. We suspect that because of the sharp and rapidly

changing edges of some of the surfaces, the cubic correlation tends to give better

predictions since it is a piece-wise cubic spline interpolator. These extreme behaviors

may not be sufficiently captured by the Gaussian correlation function.

In conclusion, for the “best” designs, the cubic performs as well as the Gaussian.

Based on various examples that we have examined, the use of the cubic correlation

function is found to be a more robust option for designs that perform well. For

subsequent discussions, predictive performances of the design criteria will be based

on the cubic correlation function.

Comparison of design criteria

Function M1 (Branin function): The sequential designs are clearly superior to

the fixed-point maximin LHD (s) in Figure 3.4. The EIGF criterion (ei) outperforms

all the other sequential designs and has a bigger advantage with N0 = 5. The fact
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that the maximum MSPE (m) and maximum entropy (e) criteria select more points

on the boundaries seems to give them a slight advantage in this example. Among

cross validation methods, the harmonic mean and the maximin criteria (xh and xm)

look the worst for both N0 = 5 and N0 = 10. Figure 3.5 shows that the surface is

reasonably well predicted by all designs.

Function M2 (Simulated surface): Among the sequential designs, the cross vali-

dation, with the geometric mean (xg) (except for N0 = 5) and the arithmetic mean

(xa), and EIGF (ei) designs are the better performers in this example where most of

the features are in the interior of the input domain. This example again highlights

the tendency of the maximum MSPE (m) and maximum entropy (e) criteria to place

relatively more input points on the boundaries and thus results in a poorer fit for

this function (compared to function 1). Except for the EIGF criterion (ei), the other

sequential designs generally perform better with a larger starting design. The fixed-

point maximin LHD (s) and integrated mean squared prediction error (id) designs do

not perform too badly in this example.

Function M3 (Six-hump camel-back function): The maximin LHD design (s) is the

worst performer among all the designs (see Figure 3.10). Both the maximum MSPE

(m) and maximum entropy (e) criteria outperform other sequential criteria but the

differences are not large. The other sequential procedures are roughly comparable

although the cross validation with the harmonic mean and the maximin criteria (xh

and xm) look the worst given their larger ERMSPE median and spread. The fact

that the maximum MSPE (m) and maximum entropy (e) criteria select more points

on the boundaries seems to be an advantage in this example. Although there are

some larger values of ERMSPE for some of the criteria, the predicted surfaces based
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on these designs reproduce the true surface rather accurately except for the top-right

corner of the surface.

Function M4 (Non-polynomial surface): Overall, the sequential designs outper-

form the fixed-point maximin LHD. The sequential procedures are roughly compara-

ble although the cross validation with the harmonic mean and the maximin criteria

(xh and xm) look the worst given their larger ERMSPE median and spread. With

relatively less points placed on/near the boundaries of the input space, the fixed-point

maximin LHD appears to give poor predictions at the edge of the top right corner

and bottom center regions, shown in Figures 3.14 and 3.15.

Overall conclusion and other issues

Among the sequential adaptive designs for the four functions considered in this

subsection, the cross validation prediction error criterion with the arithmetic mean

and geometric mean (both with larger starting designs), and EIGF criterion with

smaller starting designs are the better performers (in terms of both ERMSPE median

and spread) using the GASP model. In contrast, the fixed-point LHD (s) and cross

validation prediction error criterion with the harmonic mean and maximin criterion

tend to have larger ERMSPE median and/or spread (i.e., less robust to the starting

design).

We have chosen to compare the predictive performances of the designs based

on a fixed sample size, N . It would be interesting to explore the possibility using a

sequential designs with fewer design points to achieve the same predictive performance

as a fixed-point design. An example will be presented next in Subsection 3.4.5.
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3.4.5 Test Function: Comparing The Efficiency of Experi-
mental Designs

In this subsection, we wish to compare the predictive accuracy and efficiency (in

terms of sample size) of various designs as we increase the final number of sampled

points.

Function M5: Hartman 3 Function

We consider the three-dimensional Hartman 3 function given by

f(x1, x2, x3) =
4

∑

i=1

αiexp

[

3
∑

j=1

Aij(xj − Pij)
2

]

where α = [1, 1, 2, 3, 3, 2]T ,A=









3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35









and P = 10−4









6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828









where 0 < xj < 1, j = 1, 2, 3. A total randomly selected m = 4000 points (out of the

30× 30× 30 = 2, 7000 regularly spaced grid points) are used to evaluate the designs.

Suppose we follow the rule of thumb suggested in Jones et al. (1998) for selecting

an initial fixed-point design of N0 = 30 points for the Hartman 3 function. A GASP

model with the cubic correlation function is fitted using the output from the computer

code at these 30 sampled points. We then compare the predictive accuracy of various

designs as we increase the final number of sampled points from N = 40 to N =

90. The designs to be compared are the EIGF criterion, cross validation with the

arithmetic mean and the geometric mean, and the fixed-point maximin LHD. For the

maximin LHD, this means re-generating a new set of design points for any increase

in N . Only the cubic correlation function will be used in this example.
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3.4.6 Results: Three-Dimensional Hartman 3 Function

Results from this simulation study shows that sequential designs tend to be more

efficient in terms of the number of sampled points to achieve the same predictive

accuracy. The cross validation with the arithmetic mean and the geometric mean

(xa and xg) criteria consistently outperform the fixed-point maximin LHD (s) as we

increase the number of sampled points from N = 40 to N = 90 (see Figure 3.16 on

page 82). In addition, the cross validation criteria (xa and xg) tend to require about

10 points fewer than the fixed-point maximin LHD (s) to achieve the same predictive

accuracy. For example with N = 60, the medians of the ERMSPE for the cross

validation criteria (xa and xg) and the maximin LHD (s) are about 0.8, 0.75 and 0.9

respectively. It takes N = 70 for the maximin LHD (s) to reduce the median of the

ERMSPE to about 0.75.

The boxplots in Figure 3.16 for the EIGF criterion (ei) show mixed results. It

performs better than the maximin LHD (s) initially with N = 40 to N = 60, but is

outperformed by the maximin LHD (s) with N = 70 and more. As the sample size

increases, the EIGF criterion (ei) tends to concentrate its sampling effort in regions

with more variation in the response (although not too significant) and this results in

poorer fit for the flatter region.

3.5 Conclusion

For the objective of achieving good global model fit, it has been demonstrated that

sequential adaptive designs typically outperform fixed-point designs such as the max-

imin LHD used in our examples. Studies in Marin (2005) suggest similar results will

occur if other fixed-point designs are used. Among the sequential adaptive designs
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for the examples considered, the cross validation prediction error criterion with the

arithmetic mean and geometric mean (both with larger starting designs), and EIGF

criterion with smaller starting designs are very competitive in terms of prediction ac-

curacy using the GASP model with the cubic correlation. These three criteria with a

cubic correlation function are found to perform well in a variety of examples and are

never significantly outperformed by any of the other designs. The adaptive property

of these design criteria in this study enable the GASP model to identify interest-

ing features in the input space and result in a more accurate statistical predictor.

Also, sequential algorithms have the desirable property that additional observations

are naturally accommodated if an increased budget or the need to improve the ac-

curacy of the GASP model allows or requires additional observations. Subsection

3.4.6 shows potential gains in efficiency (in terms of number sampled points) from

using sequential designs, particularly the cross validation prediction error criterion

with the arithmetic mean and the geometric mean considered in our example, over

the fixed-point maximin LHD.

More examples are presented in Chapter 4 to compare the predictive performances

of the sequential adaptive designs for non-stationary looking response surfaces, while

a single stationary GASP model is still fitted across the entire input space.

Other issues do arise during the implementation of these sequential designs. For

instance in Subsection 3.4.1, it is clear that the estimation of correlation parameters

has a huge impact on the prediction accuracy using the GASP model. Another key

issue in sequential design is the number of starting design points (Subsection 3.4.5 ).

This is crucial to the success of the sequential adaptive designs in surface predictions.

Being the three top performing criteria in the examples, the EIGF criterion seems to
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perform better with smaller starting designs (N0 = 5) while the cross validation with

the arithmetic mean and geometric are superior with a larger starting design (e.g., N0

being half of the final number of points, N). A decision also has to be made on the

final number of input points. Although this number has been fixed in our examples,

it is generally not clear exactly what this number should be but one can make use

of the usual cross validation approach for assessing model fit to decide on a stopping

criterion.

In view of these issues, Chapter 5 presents a newly proposed method for improving

the estimation of the correlation parameters which, in turn, would lead to a more

accurate predictive GASP model. This modified estimation approach also provides

measures for assessing model fit as well as a guide for stopping the design algorithm.
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Figure 3.3: (GASP surfaces: G1 to G5) Boxplots of the empirical root mean squared
prediction error (ERMSPE) for 30 different starting designs and Gaussian/cubic correlation
functions - EIGF (ei), maximum entropy (e), maximum mean squared prediction error (m),
integrated mean squared prediction error with penalty (id), cross validation prediction error
(using arithmetic mean (xa), geometric mean (xg), harmonic mean (xh), maximin criteria
(xm)), fixed-point maximin LHD (s). Vertical axis labels represent design and surface (e.g.,
ei1 denotes design points selected using EIGF criterion for surface G1). The number of
starting input points is N0 = 5 for the sequential methods. A total of N = 30 design points
are selected in all the cases.
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Figure 3.4: (Function M1, Branin function) Boxplots of the empirical root mean squared
prediction error (ERMSPE) for 30 different starting designs and Gaussian/cubic correlation
functions - EIGF (ei), maximum entropy (e), maximum mean squared prediction error (m),
integrated mean squared prediction error with penalty (id), cross validation prediction error
(using arithmetic mean (xa), geometric mean (xg), harmonic mean (xh), maximin criteria
(xm)), fixed-point maximin LHD (s). N0 denotes the number of starting input points for
the sequential methods. (×) denotes ERMSPE for the best (starting) maximin LHD (see
page 51). A total of N = 30 design points are selected in all the cases.
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Figure 3.5: (Function M1, Branin function) Worst case prediction with maximum ERMSPE
among 30 different starting designs and cubic correlation - EIGF (ei), maximum entropy
(e), maximum mean squared prediction error (m), integrated mean squared prediction error
with penalty (id), cross validation prediction error (using arithmetic mean (xa), geometric
mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point maximin LHD (s). N0

denotes the number of starting design points for the sequential methods. A total of N = 20
design points are selected in all the cases. N0 denotes number of starting design points.
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Figure 3.6: (Function M1, Branin function) Worst case prediction with maximum ERMSPE
among 30 different starting designs and Gaussian correlation - EIGF (ei), maximum entropy
(e), maximum mean squared prediction error (m), integrated mean squared prediction error
with penalty (id), cross validation prediction error (using arithmetic mean (xa), geometric
mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point maximin LHD (s). N0

denotes the number of starting design points for the sequential methods. A total of N = 20
design points are selected in all the cases. N0 denotes number of starting design points.
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Figure 3.7: (Function M2, Simulated surface) Boxplots of the empirical root mean squared
prediction error (ERMSPE) for 30 different starting designs and Gaussian/cubic correlation
functions - EIGF (ei), maximum entropy (e), maximum mean squared prediction error (m),
integrated mean squared prediction error with penalty (id), cross validation prediction error
(using arithmetic mean (xa), geometric mean (xg), harmonic mean (xh), maximin criteria
(xm)), fixed-point maximin LHD (s). N0 denotes the number of starting input points for
the sequential methods. (×) denotes ERMSPE for the best (starting) maximin LHD (see
page 51). A total of N = 40 design points are selected in all the cases.
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Figure 3.8: (Function M2, Simulated surface) Worst case prediction with maximum
ERMSPE among 30 different starting designs and cubic correlation - EIGF (ei), maxi-
mum entropy (e), maximum mean squared prediction error (m), integrated mean squared
prediction error with penalty (id), cross validation prediction error (using arithmetic mean
(xa), geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point max-
imin LHD (s). N0 denotes the number of starting design points for the sequential methods.
A total of N = 40 design points are selected in all the cases. N0 denotes number of starting
design points.
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Figure 3.9: (Function M2, Simulated surface) Worst case prediction with maximum
ERMSPE among 30 different starting designs and Gaussian correlation - EIGF (ei), max-
imum entropy (e), maximum mean squared prediction error (m), integrated mean squared
prediction error with penalty (id), cross validation prediction error (using arithmetic mean
(xa), geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point max-
imin LHD (s). N0 denotes the number of starting design points for the sequential methods.
A total of N = 40 design points are selected in all the cases. N0 denotes number of starting
design points.
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Figure 3.10: (Function M3, Six-hump camel-back function) Boxplots of the empirical
root mean squared prediction error (ERMSPE) for 30 different starting designs and Gaus-
sian/cubic correlation functions - EIGF (ei), maximum entropy (e), maximum mean squared
prediction error (m), integrated mean squared prediction error with penalty (id), cross val-
idation prediction error (using arithmetic mean (xa), geometric mean (xg), harmonic mean
(xh), maximin criteria (xm)), fixed-point maximin LHD (s). N0 denotes the number of
starting input points for the sequential methods. (×) denotes ERMSPE for the best (start-
ing) maximin LHD (see page 51). A total of N = 40 design points are selected in all the
cases. 76
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Figure 3.11: (Function M3, Six-hump camel-back function) Worst case prediction with
maximum ERMSPE among 30 different starting designs and cubic correlation - EIGF
(ei), maximum entropy (e), maximum mean squared prediction error (m), integrated mean
squared prediction error with penalty (id), cross validation prediction error (using arithmetic
mean (xa), geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point
maximin LHD (s). N0 denotes the number of starting design points for the sequential meth-
ods. A total of N = 40 design points are selected in all the cases. N0 denotes number of
starting design points.
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Figure 3.12: (Function M3, Six-hump camel-back function) Worst case prediction with
maximum ERMSPE among 30 different starting designs and Gaussian correlation - EIGF
(ei), maximum entropy (e), maximum mean squared prediction error (m), integrated mean
squared prediction error with penalty (id), cross validation prediction error (using arithmetic
mean (xa), geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point
maximin LHD (s). N0 denotes the number of starting design points for the sequential
methods. A total of N = 40 design points are selected in all the cases. N0 denotes number
of starting design points.
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Figure 3.13: (Function M4, Non-polynomial surface) Boxplots of the empirical root mean
squared prediction error (ERMSPE) for 30 different starting designs and Gaussian/cubic
correlation functions - EIGF (ei), maximum entropy (e), maximum mean squared prediction
error (m), integrated mean squared prediction error with penalty (id), cross validation
prediction error (using arithmetic mean (xa), geometric mean (xg), harmonic mean (xh),
maximin criteria (xm)), fixed-point maximin LHD (s). N0 denotes the number of starting
input points for the sequential methods. (×) denotes ERMSPE for the best (starting)
maximin LHD (see page 51). A total of N = 20 design points are selected in all the cases.
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Figure 3.14: (Function M4, Non-polynomial surface) Worst case prediction with maximum
ERMSPE among 30 different starting designs and cubic correlation - EIGF (ei), maximum
entropy (e), maximum mean squared prediction error (m), integrated mean squared predic-
tion error with penalty (id), cross validation prediction error (using arithmetic mean (xa),
geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point maximin
LHD (s). N0 denotes the number of starting design points for the sequential methods. A
total of N = 20 design points are selected in all the cases. N0 denotes number of starting
design points.
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Figure 3.15: (Function M4, Non-polynomial surface) Worst case prediction with maximum
ERMSPE among 30 different starting designs and Gaussian correlation - EIGF (ei), max-
imum entropy (e), maximum mean squared prediction error (m), integrated mean squared
prediction error with penalty (id), cross validation prediction error (using arithmetic mean
(xa), geometric mean (xg), harmonic mean (xh), maximin criteria (xm)), fixed-point max-
imin LHD (s). N0 denotes the number of starting design points for the sequential methods.
A total of N = 20 design points are selected in all the cases. N0 denotes number of starting
design points.
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Figure 3.16: (Function M5, Hartman 3 function) Boxplots of the empirical root mean
squared prediction error (ERMSPE) for 30 different starting designs and cubic correlation
functions - EIGF (ei), cross validation prediction error (using arithmetic mean (xa), geo-
metric mean (xg)), fixed-point maximin LHD (s). The number of starting input points for
the sequential methods is N0 = 30. N denotes the final number of design points.
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CHAPTER 4

SEQUENTIAL ADAPTIVE DESIGNS FOR FITTING
NON-STATIONARY RESPONSE SURFACES

4.1 Introduction

Much of the recent work in the design and analysis of computer experiments has

involved global optimization or achievement of a good response surface model fit.

Most, if not all, have adopted the approach of assuming a single stationary Gaussian

Stochastic Process (GASP) model across the entire input space in the design and

analysis stages. Because they are based on using a stationary model, application of

the various designs from the previous chapters may not be effective when the surface

appears to be highly non-stationary. These designs may not be able to target regions

with high variation in the response and hence may suffer in terms of prediction ability.

In this chapter, we investigate a sequential adaptive design, the expected im-

provement for global fit (EIGF) criterion, for non-stationary looking surface model

fit. This work is in part motivated by the work of Gramacy (2005) where he developed

the Bayesian Treed Gaussian process as a surrogate model for fitting non-stationary

response surfaces.

In Section 4.2, we present the EIGF criterion and illustrate its implementation in

a simple one-dimensional example. Following this in Section 4.3, an example is given
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to compare the EIGF criterion and other designs from Chapter 3. A generalization

of the EIGF criterion is considered in Section 4.4. We conclude with a discussion of

the predictive performance of the various designs based on our simulations.

A brief review of two studies is now given to highlight recent work in fitting

GASP models for non-stationary looking response surfaces in computer experiments.

We view these studies as approaching the problem of fitting a GASP model to a

non-stationary looking surface in two different perspectives: (1) modeling, versus (2)

design.

(1) Modeling: Gramacy (2005) and Gramacy and Lee (2006) proposed the

Bayesian Treed Gaussian process model as a general methodology for fitting non-

stationary response surfaces using the GASP model and they also discussed strategies

for experimental design. Their work involved three main stages: (i) use of trees and

recursive partitioning to identify distinctive subregions of the input space where sep-

arate stationary GASP models can be fitted within each partition. Partitioning was

done by making binary splits on the value of a single input variable so that partition

boundaries were parallel to coordinate axes. The partitioning was recursive such that

each new partition became a sub-partition within the previous one. They imposed

a requirement that there were at least five data points in each new subregion. A

Bayesian approach was adopted using the Classication and Regression Trees (CART)

methodology (see Breiman et al., 1984, Chipman et al., 1998 and Denison et al.,

1998). (ii) fitted a stationary GASP model within each partition of the input space.

A Gaussian correlation function was used and estimation of the correlation param-

eters was carried out using a Markov chain Monte Carlo (MCMC) approach. (iii)

specified an adaptive sampling design to guide the choice of the next design point to
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be added. They took a two-stage approach to selecting the next design point. First,

a set of candidate points was selected by an optimal design (such as D-optimal, max-

imin or Latin hypercube). Given that their design scheme was to be implemented in

an asynchronous parallel supercomputing environment, they mentioned that having

a dense grid for candidate points will lead to clumping of design points. As a so-

lution, they proposed to select a subset of well-spread out candidate points using a

sequential D-optimal design. Next in the second stage, the design point was chosen

from the subset of candidate points via the ALC (Active Learning-Cohn) or ALM

(Active Learning-McKay) algorithm from the machine learning literature. These cri-

teria appear to be similar to the IMSPE and MMSPE criteria described in Subsection

2.2.1.

(2) Design: In another study by Farhang-Mehr and Azarm (2005), the authors

were interested in fitting a GASP model (also called meta-model) that predicted the

response surface at unobserved sites everywhere in the input space by incorporating

an adjustment factor (into the covariance function) to take into account irregularity

in the response of the surface. Their goal was to identify the subregions in which the

correlation decayed faster with distance due to the high variation in the response in

those subregions.

The basic idea behind their approach is as follows: (i) they started with a small

initial set of design points selected using the maximum entropy criterion (2.6) where

diffuse prior distributions were assumed for the parameters, (ii) the responses at these

sampled points were obtained from running the computer code, (iii) a GASP model

with the Gaussian correlation function was fitted using the sampled points to predict

the response y(x0) at same untried x0, (iv) the set of input points associated with all
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local optima based on the fitted GASP model were obtained denoted as P , (v) for each

candidate point, x, a characteristic certainty width (CCW), L(x), was computed as

the length of the diagonal of the smallest hyper-rectangle with its vertices formed by

two of the input points in P . A large adjustment factor,
(

L(x)
L0

)

, where L0 denotes the

diagonal distance of the entire rectangular input space, implies a relatively flat region.

This adjustment factor will be small if x lies in region where the response is highly

varying, i.e. there are two optima close to x in distance. Instead of maximizing

the determinant of σ2
zR in (2.8), the criterion chooses the point that maximizes

σ2
z

(

L(x)
L0

)(

L(xj)

L0

)

R where xj denotes an existing sampled point, as the next design

point. The modifed maximum entropy criterion will concentrate its sampling effort

in regions where candidate points have larger adjustment factors.

Both studies have claimed that their approaches performed well in identifying

regions with high variation in the response for non-stationary looking surfaces and

had targeted their sampling efforts in these regions sufficiently well to obtain a good

fit of the GASP model.

4.2 Sequential Adaptive Design for Non-stationary Looking
Response Surfaces

Results from Farhang-Mehr and Azarm (2005) suggest that the identification of

regions of high variation in the response provides a good indication of where the

sampling effort should be concentrated. Drawing from this idea, we modify the EI

criterion by Schonlau (1997) to search for input points where the response varies

significantly instead of searching for the global optimum or optima, so as to achieve

a fit of the GASP model. Unlike Gramacy (2005), we continue to specify a single

stationary GASP model across the entire input space of a clearly non-stationary
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surface, and avoid the need for partitioning of the input space. Our rationale is that

although fitting a separate stationary GASP model within each distinct partition

of the input space may give more accurate predictions, it is not clear that this can

be achieved using a small number of samples — this is one of the key challenges in

designs for computer experiments.

4.2.1 Expected Improvement for Global Fit Criterion

The expected improvement (EI) criterion proposed by Schonlau (1997) was orig-

inally developed as a global optimization design criterion. Instead of locating the

global optimum or optima, we consider a modification of the criterion to obtain a

good global model fit of the GASP model. The objective is to search for “informa-

tive” regions in the domain that will help improve the global fit of the model. By

informative we mean regions with significant variation in the response values.

Suppose we have the computer outputs y(xj) at sampled points xj, j = 1, ..., n.

For each potential input point x, its improvement is defined as

I(x) = (Y (x) − y(xj∗))
2 (4.1)

where y(xj∗) refers to the observed output at the sampled point, xj∗, that is closest

(in distance) to the candidate point x. We shall determine this nearest sampled

design point using Euclidean distance. The expected improvement for global fit (EIGF)

criterion is to choose the next input point x that maximizes the expected improvement

E(I(x)) = (Ŷ (x) − y(xj∗))
2 + var(Ŷ (x)). (4.2)

The expected improvement in (4.2) consists of two search components — local

and global. The first (local) component of the expected improvement will tend to be
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large at a point where it has the largest (response) increase over its nearest sampled

point. The second (global) component is large for points with the largest prediction

error as defined in (1.8), i.e., points about which there is large uncertainty and, as

mentioned in Subsection 2.3.1, these tend to be far from existing sampled points. The

EIGF algorithm follows Subsection 3.1.3 and its derivation is given in Appendix A.3.

4.2.2 Characteristics of EIGF Criterion

Suppose we start the EIGF algorithm with N0 points and a fine regular grid of

candidate points is laid across the input space. The expected improvement in (4.2)

can be computed for each point in the grid. If the predicted response surface (with

the GASP model) using the N points is smooth, the first (local) component of the

expected improvement in (4.2) tends to be larger for candidate points close to the

midpoint (in Euclidean distance) of any two existing design points. This always

happens if the predicted response function is monotone. For non-monotone surfaces,

this will also happen unless there is a significant optimum at a candidate point that is

not one of the midpoints. For example, the top left plot in Figure 4.1 (page 91) shows

additional point, labeled as 1, is close to the midpoint of two existing sampled points.

However, the final design point to be selected is also affected by the magnitude of the

global component, var(Y ). This will prevent design points from clumping in areas

with steep gradients.

This “close to midpoint” feature of the EIGF criterion seems to make it more

robust with smaller starting designs. If we start the algorithm with a small number

of points from a maximin LHD, for example, the predicted response surface is typically

smooth with minimal variation in the reponse. As a result, the EIGF criterion tends
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to spread out the input points to the midpoint of the two existing sampled points

(in one dimension) and produce a crude “space-filling” design. In higher dimensions,

the EIGF criterion still mantains this nice property of spreading out points although

the notion of “midpoint” does not generalize to higher dimensions. The merit of

this feature is that the EIGF criterion does not suffer as much with problems in

estimating the correlation parameters which in turn negatively impact the predictive

performance of the other sequential criteria, namely the MSPE, maximum entropy

and cross validation. It is clear from the examples in Chapter 3 that the other

sequential designs perform better with larger starting designs.

4.2.3 Illustration of EIGF Criterion

In this subsection, we present a detailed illustration of the EIGF criterion and

evaluate its predictive performance as more input points are added.

Function N1: One-dimensional non-stationary sine-cosine function

We use a simple one-dimensional function taken from Gramacy (2005),

y(x) =

{

sin
(

πx
5

)

+ 1
5
cos

(

4πx
5

)

x < 10

x/10 − .8 otherwise.
(4.3)

A plot of the true function is shown in Figure 4.1. Unlike in Gramacy (2005), we

do not add noise to the response. There is a clear change point in the response at

around x = 10.

We illustrate the implementation of the EIGF criterion in detail. Suppose we have

N0 = 3 observations from the computer simulator (4.3) and the points are denoted by

the � in Figure 4.1. The points are generated from one run of our software using the

maximin LHD. For this run, the three initial points are close to the two endpoints and

the midpoint of the input space x. Figure 4.1 shows a few iterations of the algorithm
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with plots of the true and predicted functions based on N = 4, 8, 15 and 25 input

points.

The first plot (top left) shows the true function (dashed line) and predicted func-

tion (solid line) using the GASP model with 4 input points. The first point added is

labeled as 1. Notice that this point is located at about the midpoint of two existing

design points. The second plot (top right) shows the predicted function with 8 points

and the response varies significantly for the region where x < 10. As the number of

input points increases, the EIGF criterion starts to focus its sampling effort in the

region to the left of the change point where the function is more irregular. With

a total of 15 points (bottom left plot), main features of the function are rather ac-

curately predicted by the GASP model. The last plot (bottom right) in Figure 4.1

shows the EIGF criterion selecting 14 out of the 22 points (not counting the initial 3

points) in the region left of the change point. The overall fit of the predicted func-

tion resembles the true function except for the small hump to right of the change

point. This example shows that the EIGF criterion is able to target the region where

the response varies significantly and produces an accurate prediction of the function.

This is achieved with many fewer observations than the Bayesian Treed approach in

Gramacy (2005) which required close to 100 observations.

4.3 Test Function: Two-dimensional Non-stationary Looking
Response Surface

The following example illustrates the implementation and prediction performace

of the various sequential designs (including the EIGF criterion) and the fixed-point

maximin LHD. The design strategies to be compared are:
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Figure 4.1: Plots of true and predicted curve for Function N1 (One-dimensional
sine-cosine function) using EIGF criterion. True function (dashed lines), predicted
function (solid lines). Initial input points (�), remaining added points (×) labeled
according to their sequence.
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• Sequential maximum mean squared prediction error (m)

• Sequential maximum entropy (e)

• Cross validation approaches: arithmetic mean penalized by distance (xa), geo-

metric mean (xg), harmonic mean (xh), maximin criteria (xm)

• Sequential integrated mean squared prediction error, penalized by distance (id)

• Expected improvement for global fit (ei)

• Fixed-point or fixed sample size maximin Latin hypercube design (s)

(the abbrevations in parentheses will be used to denote these methods later in the

figures).

The total number of design points is fixed. Due to the complexity of the re-

sponse surface used in this section, the final number of input points is taken to be

30. Similar to the examples in Section 3.4, our comparisons are based on 30 runs

of our software for generating maximin LHDs (MATLAB c© codes for implementing

the sequential designs presented in this thesis can be found on the department’s com-

puter experiment directory at /home/comp exp/SOFTWARE/EIGF). For sequential

designs, this means 30 different starting designs all approximately maximin LHDs.

In addition, different numbers of starting design points (denoted as N0) are also con-

sidered for the sequential designs. The initial starting designs are generated using an

N0-point (nearly) maximin LHD, with N0 chosen to be 5 and 15.

The values of the correlation parameters are estimated by maximum likelihood in

this study and they are updated at every stage when a new input point is added. For

the cross validation methods, we choose not to re-estimate the correlation parameters,
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θ, for each of the jth observation deletions. The θ are estimated using the entire n

observations at each stage.

Prediction accuracy of each of the designs is evaluated using the empirical root

mean squared prediction error (ERMSPE),

ERMSPE =

√

√

√

√

m
∑

i=1

(ŷ(xi) − y(xi))2

m
(4.4)

where xi, i = 1, ...m (m >> N0) are a grid of points used for evaluating the prediction

accuracy and m is the total number of grid points; ŷ(xi) is the predicted value at the

xi; y(xi) are the true values at the same set of grid points. We used a regular grid,

but some other method (e.g., maximin LHD) of choosing the m points could be used

provided the points are spread out over X . Boxplots are used for each of the test

functions to show the distribution of the ERMSPE for the 30 runs.

Function N2: Two-dimensional exponential function

We consider the two-dimensional exponential function as an example of a non-

stationary looking response function (also used in Gramacy, 2005) given by

y = x1 exp(−x2
1 − x2

2) (4.5)

for x1, x2 ∈ [−2, 6]. This surface (shown in Figure 4.2) has two distinctively different

regions (i.e. non-stationary) but the transition across the regions is smooth. The

features lie mainly in the region where x1 and x2 are both negative. The input domain

is finely divided into m = 30 × 30 = 900 equally spaced points which coincide with the

m points used to evaluate the designs in (4.4). The final number of input points, N , is

30. The motivation for comparing the various designs in a non-stationary setting arose

from studies by Gramacy (2005) and Farhang-Mehr and Azarm (2005). One might
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expect that procedures based on a model that assumes a stationary process would

not perform well here but, as we will see in Subsection 4.3.1, this is not neccessarily

the case. It suggests that a good design can lead to good fit with a GASP model even

for non-stationary looking functions.
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Figure 4.2: Surface plot of true surface for Function N2 (Two-dimensional exponential
function)

4.3.1 Results: Two-dimensional exponential function

Boxplots of the ERMSPE for the various designs, in Figure 4.3 on page 100, show

similar results for using the Gaussian and cubic correlation.

Here, for both correlation functions, the EIGF criterion (ei) with N0 = 5 stands

out as the best (see Figure 4.3). The closest competitor is the cross validation with

the arithmetic mean (xa) criterion with N0 = 20, while the GASP model based on the

other criteria fails to approximate the response surface well in most of the 30 runs.
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Interestingly, the fixed-point maximin LHD (s) outperforms many of the sequential

designs. Due to its “non-adaptive” space-filling criterion, it manages to detect some

of the non-stationary features in the bottom left region but too much sampling effort

is wasted in the flat region of the surface.

The narrow spread of the ERMSPE (in Figure 4.3) using the EIGF criterion (ei)

shows that it is not too sensitive to the variation in the starting design that seem to

negatively affect the other sequential designs.

Figure 4.4 shows comparative plots of predicted surfaces of Function N2 using the

EIGF criterion (ei), cross validation with the arithmetic mean (xa), and the fixed-

point maximin LHD (s). In the second and third row, it is very encouraging to see

that the worst case prediction using the EIGF criterion (ei) with N0 = 5 does not

perform too badly compared to the best case prediction using the cross validation with

the arithmetic mean (xa) criterion with N0 = 5. The EIGF criterion (ei) manages

to identify the irregular region very quickly and focuses most of the sampling effort

there. Again, the EIGF criterion (ei) performs better with a smaller initial design

of N0 = 5. It is noted that starting the EIGF criterion (ei) with a larger design

(N0 = 15) leaves fewer points (15) to add and can sometimes result in most of the

added sampling effort being concentrated on only one of the two “peaks”, as shown

in the worst predicted surface in the fourth row of Figure 4.4.

As an informal comparison, we note that the predicted surface with N = 30 input

points using the EIGF criterion (ei) is more accurate (graphically) compared to the

Bayesian Treed approach (see Figure 4.12 in Gramacy, 2005, where the predicted

surface with 123 points is shown). This suggests that stationary GASP models with

good designs can fit non-stationary looking surfaces as well as methods that attempt
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to account for nonstationarity. This needs to be investigated further to understand

the roles design and model play, as it may be that the Bayesian Treed model with a

suitable design is very efficient. Overall, the EIGF criterion (ei) with a small starting

design and the cross validation with the arithmetic mean criterion (xa) with a larger

starting design perform well in all examples with the cubic correlation function.

4.4 Generalization of EIGF Criterion

The examples in Sections 3.4, 4.2 and 4.3 have shown that the EIGF criterion

is able to target regions with high variation in the response and gives an accurate

prediction of the response surface using a single stationary GASP model. However,

some of the 30 runs (in Figures 3.3 (page 69) and 3.4 (page 70) for the GASP surfaces

and Branin function, respectively) have relatively large ERMSPE.

For the GASP surfaces in Subsection 3.4.1, Figure 4.6 (page 103) shows the true

surfaces (left column) and the predicted surfaces from one run of the EIGF criterion

with the Gaussian correlation (middle column) for each of the G1-G5 surfaces. Some

of the surface features are not predicted well. Another example is shown in Figure

4.7 for the Branin function where responses in the interior region of the input space

are not very well predicted using the GASP model with the EIGF criterion and cubic

correlation.

4.4.1 Generalized EIGF criterion

We consider an extension of the EIGF criterion to allow for a more global search

capability. Following the generalization of the expected improvement criterion in

Schonlau (1997) (reviewed on page 36), we consider an additional parameter g for

E(Ig(x)) where g = 2, 4, · · · , and recall that the original EIGF criterion is denoted by
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E(I(x)) with g = 1. Suppose we have the computer outputs y(xj) at sampled points

xj, j = 1, ..., n. For each candidate input point x, its improvement with g = 2 for a

more global search is defined as

E(I2(x)) = (Ŷ − y(xj∗))
4 + 6 (Ŷ − y(xj∗))

2 [var(Ŷ (x)] + 3 [var(Ŷ (x)]2 (4.6)

where y(xj∗) refers to the observed output at the sampled point, xj∗, that is closest

(in distance) to the candidate point x. We shall determine this nearest sampled

design point using Euclidean distance. The modified criterion is to choose the next

input point that maximizes the modifed expected improvement (4.6). The derivation

of the generalized EIGF criterion is shown in (A.12).

Instead of two components in the original EIGF in (4.2), there is interaction

between the change in the response, (Ŷ − y(xj∗)), and the prediction error term

var(Ŷ (x)) in (4.6). This drives the search to be more global by giving more weight

to the prediction uncertainty component.

4.4.2 Examples: Generalized EIGF Criterion

GASP model surfaces: (Subsection 3.4.1) The plots in the middle column of Figure

4.6 show the predicted surfaces using the EIGF criterion and Gaussian correlation.

Compared to the true surfaces (left column), some finer features of the response

surfaces are not predicted well. For example, the predicted G2 surface has an extra

hump in the middle of the input space at (x1, x2) = (0.6, 0.3).

Applying the generalized EIGF criterion (4.6) to the same run of the GASP sur-

faces, we show the predicted surfaces in the right column of Figure 4.6. Overall, the

predicted surfaces looks more like the true surfaces (graphically) compared to those

97



using the EIGF criterion but the ERMSPEs do not neccessarily decrease (compare

the ERMSPEs for each row across the middle and right columns in Figure 4.6).

Function M1, Branin function: (Subsection 3.4.3) The true surface and predicted

surface using the EIGF criterion (with the cubic correlation) is shown in the left and

middle columns of Figure 4.7 respectively. It is obvious that the responses at around

(x1, x2) = (4, 3) and (x1, x2) = (10, 3) are not well predicted with 20 input points.

Using the generalized EIGF criterion(4.6), the predicted surface looks more accurate

(right column) with a reduction in ERMSPE from 6.59 to 5.84.

4.5 Conclusion

In applying the various designs to a non-stationary looking response function, we

have also shown that the naive approach of specifying a single stationary GASP model

across the entire input space of a clearly non-stationary surface need not suffer in

terms of prediction if the design criterion is able to target regions with high variation in

the response. Further refinements can be made to the design and/or model approach

taken in this thesis. For example, one might combine sequential adaptive designs

with more complicated stochastic models, such as the Bayesian Treed approach by

Gramacy (2005). However, this is the topic of further research. Here, we have seen

that with an appropriate adaptive design, GASP models can give good fit to even

non-stationary looking surfaces.

Results from our simulation study shows that the EIGF criterion seems to be the

best performer in predicting non-stationary looking response surfaces. Generalization

of the EIGF criterion for a more globalized search also shows promising results in

that it performs well in examples. Further work might consider other approaches
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for controlling/varying the degrees of “globalized search” as input points are being

added.
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Figure 4.3: (Function N2, Two-dimensional exponential function) Boxplots of the empir-
ical root mean squared prediction error (ERMSPE) for 30 different starting designs and
Gaussian/cubic correlation functions - EIGF (ei), maximum entropy (e), maximum mean
squared prediction error (m), integrated mean squared prediction error with penalty (id),
cross validation prediction error (using arithmetic mean (xa), geometric mean (xg), har-
monic mean (xh), maximin criteria (xm)), fixed-point maximin LHD (s). N0 denotes the
number of starting input points for the sequential methods. A total of N = 30 design points
are selected in all the cases.
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Figure 4.4: (Function N2, Two-dimensional exponential function) Contour plots of the true
surface and predicted surfaces with cubic correlation using the fixed-point maximin LHD
(s), EIGF (ei) and cross validation with the arithmetic mean (xa) criteria. The plots show
the best and worst predicted surfaces based on ERMSPE among the 30 runs. N0 denotes
the number of starting input points for the sequential methods. The red squares denote the
location of the inital starting design points and the black dots denote the remaining added
points.
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Figure 4.5: (Function N2, Two-dimensional exponential function) Contour plots of the true
surface and predicted surfaces with Gaussian correlation using the fixed-point maximin LHD
(s), EIGF (ei) and cross validation with the arithmetic mean (xa) criteria. The plots show
the best and worst predicted surfaces based on ERMSPE among the 30 runs. N0 denotes
the number of starting input points for the sequential methods. The red squares denote the
location of the inital starting design points and the black dots denote the remaining added
points.
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Figure 4.6: (GASP surfaces from Subsection 3.4.1: G1 to G5, from top to bottom row)
Contour plots of true surfaces and predicted surfaces using EIGF and Generalized
EIGF. The plots show the worst predicted surfaces based on ERMSPE among the 30
runs for each surface. Number of starting input points is N0 = 5 and final number of
design points is N = 30. True surfaces (left column), predicted surfaces with EIGF
(middle column), predicted surfaces with generalized EIGF (right column).
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Figure 4.7: (Function M1, Branin function from Subsection 3.4.3) Contour plots of
true surface and predicted surfaces using EIGF and generalized EIGF. The plots
show the worst predicted surfaces based on ERMSPE among the 30 runs. Number
of starting input points is N0 = 5 and final number of design points is N = 20.
True surface (left column), predicted surface with EIGF (middle column), predicted
surface with generalized EIGF (right column).
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CHAPTER 5

DIAGNOSTIC CHECKS FOR SEQUENTIAL DESIGNS

Several sequential as well as adaptive designs based on cross validation and a

modified expected improvement criterion have been proposed and are shown in the

previous two chapters to give accurate prediction of the response surfaces using the

GASP model.

In this chapter, we present an exploratory tool to assess the goodness of fit of the

fitted GASP model. In turn, this tool can be used to improve the predictive accuracy

of the GASP model and also to provide a stopping criterion for the sequential designs.

The examples in Subsections 3.4.1 and 3.4.3 reveal that that the GASP model with the

Gaussian correlation function sometimes result in poor predictions as shown by the

relatively larger empirical root mean squared prediction error (ERMSPE) as compared

to the cubic correlation function. For examples, see Figures 3.3, 3.4, 3.10 and 3.13.

Specifically, there is compelling evidence from Figure 3.3 (GASP surfaces) that the

performances of the sequential designs are related to the choice of the correlation

function and it can be seen that many runs of the various designs with the Gaussian

correlation have relatively larger ERMSPE. The sequential designs run into numerical

problems in estimating the correlation parameters, and the effectiveness and efficiency

of the sequential procedures can be negatively affected. This also happens when the
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cubic correlation function is used, although the impact is not as bad as using the

Gaussian correlation.

The results from our simulation study (described in Section 3.4) have been run

with no user intervention, even if some of the estimated correlation parameters may

not be reasonable. The hope is that adding additional design points will correct

the problem. To reduce/eliminate this instability for sequential designs using the

Gaussian correlation function, we present the use of cross validation, described in

Section 1.5, as a diagnostic tool to check the fit of the GASP model at each iteration

when a point is added and to improve the accuracy of the fitted GASP model.

The outline of this chapter is as follows. In Section 5.1, we present the diagnostic

tools used in our simulation study and incorporate them into the sequential design

algorithm outlined in Subsection 3.1.3. Five examples are given in Section 5.2 to illus-

trate the effectiveness of the modified design algorithm with the diagnostic checks. We

conclude with a discussion of the proposed diagnostic checks and simulation results.

5.1 Diagnostic Tools for Assessing Response Surface Model

Fit

Suppose we have the computer outputs y(xi) at sampled points xi, where i =

1, · · · , n. For each of the sampled point xi, we denote Ŷ
(−i)

i as the EBLUP of y(xi)

based on all the data except {xi, y(xi)}, i.e. removing the sampled point itself. We

define the cross validation prediction error (XVPE) for each of the xi as

XV PE(xi) = [Ŷ (xi)
(−i) − y(xi)]

2. (5.1)

Two measures of goodness of fit of the GASP model using the n sampled points are

given by:
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(i) cross validation sum-of-squares of prediction error

XV SSPEn =

n
∑

i=1

XV PE(xi) =

n
∑

i=1

(Ŷ (xi)
(−i) − y(xi))

2, (5.2)

(ii) median cross validation prediction error

MXV PEn = median
i=1,··· ,n

{XV PE(xi)} = median
i=1,··· ,n

{(Ŷ (xi)
(−i) − y(xi))

2}. (5.3)

5.1.1 Modified Design Algorithm with Diagnostic Checks

Similar to the basic algorithm for sequential designs in Subsection 3.1.3, the mod-

ified algorithm proceeds as follows with the diagnostic checks included in Step 3.

A flowchart of the modified algorithm using the GASP model with the Gaussian

correlation function is shown in Figure 5.1 (page 110).

1. Identify the set of n sampled design points x for either

(a) Augmenting the network of design points: identify the existing design

points..

(b) Selecting a new set of design points: generate a small starting design spread

over the input space of x. A space-filling design would be appealing for

this initial fit of the response surface using the GASP model.

2. Run the computer code at the x input points and obtain the response, y(x).

3. Estimate the correlation parameters (see Subsection 3.1.2).

(a) First estimate the correlation parameters using the n observations as be-

fore in Subsection 3.1.2. Recall that, for the Gaussian correlation, the

upper limit of the numerical search is determined by the Euclidean dis-

tance between the two closest sampled points and the lower limit depends
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on the range of the input space. The MLE of the correlation parameters

using these limits is denoted as θF (i.e., “full range” estimates).

Then compute the relative change in θF and the previous estimates θn−1

based on n − 1 observations. If the change is significantly large, we com-

pute the MXV PEF (5.3) using the n observations and compare it to

MXV PEn−1 based on n − 1 observations. If there is a large increase in

MXV PEF over MXV PEn−1, the range of the numerical search for the

MLE will be reduced according to Step 3(b). (Note: if this is the first

iteration of the algorithm where there is no MXV PEn−1, then skip Steps

3(b) and (c), and proceed with Step 4).

(b) restrict the numerical search to a smaller range. We consider lowering the

upper limit for the Gaussian correlation in our examples (see Subsection

5.1.2). The MLE of the correlation parameters using these limits is denoted

as θR. As in Step 3(a), compare the θR versus θn−1, and MXV PER versus

MXV PEn−1. Proceed to Step 3(c) if needed.

(c) further restrict the range or do not update the estimates of the correlation

parameters. The MLE of the correlation parameters using these limits is

denoted as θL. For the later case, θL is set to be the previous estimates

θn−1, based on n − 1 observations (if θn−1 is available).

4. Fit a GASP model (see Subsection 3.1.1) with θn = {θF , θR or θL} using the n

observations from the computer simulator to predict y(x0) at some untried x0.

5. Check stopping rule, if available. In this chapter, we consider the MXV PEn

(5.3) and XV SSPEn (5.2) as an informal guide on the decision of whether to
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stop. If additional points are needed, search for the x0 that maximizes the

design criterion (see Section 3.4 for criteria used in the study) and add it to the

existing set of sampled points giving a total of n + 1 points. Repeat from Step

2 onwards with the n + 1 points.

5.1.2 Details on Diagnostic Checks in Step 3

The diagnostic checks for Step 3 proposed in Subsection 5.1.1 are intended to im-

prove the predictive performance of the sequential designs from the previous chapters.

Recall in Section 3.4, the MLEs of the correlation parameters are estimated using a

numerical search over a range of correlation values. The range for the search is set to

be very wide to accomodate various types of response surfaces (i.e., varying strengths

for the correlation parameters in the GASP model). We noted that this presents

problems in some of the runs (i.e. the 30 different designs) where the estimates are

pushed to the limit of the constraints and hence result in poor predictions using the

GASP model. Here, we focus on the case where the Gaussian correlation parameters

are too large.

Suppose we have the n computer outputs y(x) and are estimating the correla-

tion parameters in Step 3. For Steps 3 (a), (b) and (c), we consider restricting the

range of the numerical search for the MLEs of the correlation parameters. For imple-

menting our modified design algorithm (Subsection 5.1.1), we consider the following

constraints and definitions in the subsequent examples in this chapter:

• Step 3 (b) in Subsection 5.1.1 (restricted range): Specify a smaller range of

the Gaussian correlation parameter values for the numerical optimization. For
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Figure 5.1: Flowchart of modified design algorithm with diagnostic checks
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example, an upper bound of e−θ = 0.0001 is set for the numerical optimization

for the examples in Section 5.2.

• Step 3 (c) (Further restriction): If the fit of the GASP model is still poor

(based on the MXV PE), we then set the upper limit of each of the correlation

parameters to min(θ∗3b, 2 × θn−1), where btθ∗3b denotes the upper limit set in Step

3(b) and θn−1 denotes the previous estimate of θ based on n − 1 observations.

• Step 3 (c) (Do not update the MLEs at this stage): If the MLE of the cor-

relation parameters θ based on the n observations are not reasonable in the

sense that they result in a poorly fitted GASP model, we choose not to update

the MLE but use the estimates, θn−1. A rationale is that the newly added

nth point may be very influential in affecting the predicted surface and might

have caused problems for estimating the correlation parameters. This results in

inaccurate predictions for the other regions of the input space. Since our goal

is an accurate GASP model over the entire input space, temporarily “ignoring”

this observation would seem reasonable.

• Definition of large change in MLE of correlation parameters (Steps 3 a-c): We

define a change in θF , θR or θL as large if any of the estimated parameters,

based on n observations for each dimension, changes by more than 100 percent

from θn−1 based on n − 1 observations.

• Definition of large increase in MXV PE (Steps 3 a-c): We define a change in

MXV PEF , MXV PER and MXV PEL as large if it increases by more than

100 percent over MXV PEn−1.
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5.2 Examples: Illustrations of Modified Algorithm

The following examples illustrate the implementation of the modified design algo-

rithm with the diagnostic checks outlined in Section 5.1.1. The cross validation with

the geometric mean criterion (3.7) will be used in the examples. Recall in Section 3.4

that the examples in Chapters 3 and 4 are based on 30 runs of different designs using

the maximn LHD generated from our software. For the examples in this section,

we identify some of the runs that have relatively large ERMSPE to demonstrate the

modified algorithm. A detailed illustration using the six-hump camel-back function

is given first, followed by four other examples.

• Function M3, six-hump camel-back function: We consider the worst predicted

surface based on ERMSPE (of 0.62) among the 30 runs in Figure 3.10 (page

76) for the cross validation with the geometric mean (xg) and N0 = 20 starting

design points. Plots of the MXV PE and XV SSPE against the final number of

sampled points N (from 20 to 60) are shown in Figure 5.2(a) and (b) respectively

(page 118), for both the Gaussian and cubic correlation functions.

After adding the 27th point, there is an increase in the corresponding XV SSPEF

(Step 3a) without a significant change in the estimated correlation parameters

θF over θn=26 with 26 points. A plot of the predicted surface (not shown) shows

that the increase in the XV SSPEF is due to the 27th point being added at

the top-right corner of the surface at inputs (x1, x2) = (2, 1). No adjustment

is made to the sequential criterion at this point and we proceed with adding

more points. A large change is noted in θF with 38 points over θn=37. After

carrying out Step 3(a), Figure 5.2(a) shows a large increase in the MXV PEF
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(see Figure 5.2(c) for comparative plot of XV PE(x) for each sampled point

x for n = 37 and n = 38). The upper limit for the numerical search for θ is

reduced by restricting the maximum θ such that e−θ = 0.0001 (based on Step

3b). The estimated θR still changed significantly from θn=37 with no significant

dcrease in the MXV PER. We proceed to Step 3(c) and set the upper limit to 2

× θn=37 and it was found that the MXV PEL decreased, shown by the dashed

line (-×-) in Figure 5.2(a). The final estimate, θn=38, is set to be θL.

It is noted that abrupt changes in θ and MXV PE are not clearly reflected in the

corresponding XV SSPE plot in Figure 5.2(b). As a comparison, plots of the

predicted surfaces (using the modified algorithm with the Gaussian correlation,

and the original algorithm with the Gaussian and cubic correlation functions)

are shown in Figure 5.2(d), (e) and (f) respectively with a final sample of N = 40

points. Their ERMSPE are 0.6197, 0.25295 and 0.12541 in the same order.

This example also illustrates the usefulness of using the XV SSPE as a check of

the fitted model in a sequential setting. In this case, the plot reveals very early

in the algorithm that the GASP model with the Gaussian correlation function

might not be a good fit and addition of more design points should proceed with

care on how to deal with poor predictions such as those when the 38th to 40th

points are added. Together, the MXV PE and XV SSPE also offers a guide

to when to stop the sequential algorithm. In Figure 5.2(b), we continue to add

more points beyond N = 40 until N = 60, and the MXV PE and XV SSPE

seem to level off at around the 55th sampled point, suggesting a good fit of the

GASP model.

113



• Function G5a, GASP model surface: (worst case predicted surface based on

ERMSPE) Recall in Figure 3.3(a) that the cross validation with the geometric

mean criterion (xg) and the Gaussian correlation has a few relatively large

ERMSPE for the GASP model surface G5. The worst case predicted surface

has a ERMSPE of 0.9417 (for the design labeled as xg5 in Figure 3.3).

Figure 5.3 (left column) shows the MXV PE and XV SSPE increased signif-

icantly when the 26th point is added. The plot in the third row (left column)

shows the predicted surface with N = 30 points with the original EIGF algo-

rithm. To improve the prediction, we carry out the modified algorithm and

we constrain the numerical search to an upper limit of e−θ = 0.0001 (Step 3b)

starting from the 26th point onwards. Significant improvement is evident in the

predicted surface (plot in fourth row, left column) with a signficantly smaller

ERMSPE of 0.0654. And, the MXV PE and XV SSPE plots (based on the

modified algorithm) seem to stabilize after the 30th point suggesting a good fit

of the GASP model.

• Function G5b: (second worst case predicted surface based on ERMSPE) We use

Function G5 again but for the 2nd worst predicted surface with an ERMSPE

of 0.8095. The MXV PE and XV SSPE plots (see Figure 3.3 right column),

based on the original algorithm, show large ERMSPE values for the 22th, 23th,

24th and 30th observations. The final predicted surface with N = 30 points is

displayed in the third row (right column). As with the previous example, we

constrain the search to an upper bound of e−θ = 0.0001 (Step 3b of the modified

algorithm) from the 22th observation onwards when neccessary (Note: Steps 3

(b) and (c) are not implemented when the 26th and 28th-30th observations are
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added). The predicted surface, based on the modified algorithm, is shown in

the bottom row with a smaller ERMSPE of 0.0907. Again, the MXV PE and

XV SSPE plots (based on the modified algorithm) seem to stabilize after the

30th point suggesting a good fit of the GASP model.

The significant decreases in ERMSPE for these two GASP model surfaces (Func-

tion G5a and G5b) are not surprising since the random surfaces were generated

from the GASP model using the Gaussian correlation function. With the mod-

ifed algorithm, the cross validation with the geometric mean criterion and the

Gaussian correlation outperforms the same criterion with the cubic correlation.

• Function M4, non-polynomial surface: The boxplot in Figure 3.13 shows an

outlier ERMSPE value of 0.2988 for the cross validation with the geometric

mean (xg) criterion with the Gaussian correlation and N0 = 10. The pre-

dicted surface for this run is shown in Figure 3.15 and also in Figure 5.4 (left

column). The MXV PE and XV SSPE plots show the large errors when th e

11th to 13th observations are added. Despite the large errors, the estimated the

correlation parameters did not change significantly with each additional point.

The increases in the MXV PE and XV SSPE are due to the GASP model

detecting new features of the response surface and not due to the instability

of estimating the correlation parameters. Steps 3 (b) and (c) are not imple-

mented. Additional points are then added and it is noted that the MXV PE

and XV SSPE gradually decrease after the 13th observation. The addition of

the 20th observation caused a significant change in the estimated correlation

parameters, θF , over θn=19, and the corresponding MXV PE increased from

about MXV PEn=19 = 4 to MXV PEF = 14. Carrying out Steps 3(b) and (c)
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of the modified algorithm, the final θn=20 is set to θn=19 based on the previ-

ous 19 observations. The predicted surface (shown in the last row) using the

modified algorithm shows a smoother predicted surface with lower ERMSPE of

0.0824. According to thhe MXV PE and XV SSPE plots, it would be more

conservative to take a final sample of at least N = 25 points for a better fit of

the GASP model.

• Function M1, Branin function: The worst predicted surface, based on the

ERMSPE in Figure 3.4 for the Gaussian correlation function and a initial de-

sign of N0 = 10 points, is shown in Figure 5.4 (right column). Large values

of MXV PE and XV SSPE can be seen in the initial stage of the algorithm

and gradually decrease as more observations are added. The large values are

primarily due to the addition of points at the bottom left of the Branin sur-

face (presence of a sharp peak) but the estimated correlation parameters did

not change significantly. The modified algorithm (i.e., Steps 3b and 3c) is not

implemented for this example. The MXV PE and XV SSPE plots suggest

stopping the algorithm with about N = 25 observations.

5.3 Discussion and Conclusion

The examples in Section 5.2 show that the modified design algorithm with the

diagnostic checks improves the predictive performance of the cross validation with

the geometric mean criterion and the Gaussian correlation function. We have con-

sidered the use of the median cross validation prediction error (MXV PE) and cross

validation sum-of-squares of prediction error (XV SSPE) as diagnostic tools in this

study for improving response surface model fit. Further refinements can be made to

116



consider other error summaries. The primary advantage of the proposed diagnostic

checks is that we can quantify the goodness of fit of the GASP model at each iteration

when an observation is added without having to plot the predicted surfaces, which

can be difficult to visualize in higher dimensions. The MXV PE and XV SSPE can

also be used as indicators for stopping the design algorithm. The idea is to predict

the response surface with the GASP model and stop adding obseravtions when the

MXV PE and XV SSPE are “small”. More extensive simulation studies are needed

to provide more insight and directions on how to extend the methodologies.
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Figure 5.2: Diagnostic summaries and predicted surfaces for Function M3 (six-hump camel-
back function). (a) MXVPE, (b) XVSSPE for original algorithm and Gaussian correla-
tion (-·-), modified algorithm and Gaussian correlation (-×-), original algorithm and cu-
bic correlation (-o-), (c) XVPE(x) for each sampled point x, (×) for XV PEF (x), (·) for
XV PEn=37(x) .
Predicted surfaces with EIGF and N = 40 points for (d) original algorithm, Gaussian
correlation, (e) modified algorithm, Gaussian correlation, (f) original algorithm, cubic cor-
relation.
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Figure 5.3: Plots of sequential diagnostics and predicted surfaces for GASP Function G5a
(left column) and Function G5b (right column).
(1st row) MXV PE, (2nd row) XV SSE for original algorithm with Gaussian (-·-) and cubic
(-o-) correlations, modified algorithm with Gaussian(-×-), (3rd row) predicted surface with
original algorithm with N = 30 points, (4th row) predicted surface with modified algorithm.
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Figure 5.4: Plots of sequential diagnostics and predicted surfaces for Function M4, Non-
polynomial surface (left column) and Function M1, Branin function (right column) .
(1st row) MXV PE, (2nd row) XV SSE for original algorithm with Gaussian (-·-) and cubic
(-o-) correlations, modified algorithm with Gaussian(-×-), (3rd row) predicted surface with
original algorithm with N = 20 points, (4th row) predicted surface with modified algorithm
(not available for Branin function).
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CHAPTER 6

SEQUENTIAL ADAPTIVE DESIGNS FOR MODEL FIT
OF

INTEGRATED RESPONSE SURFACES

This chapter considers sequential design criteria for response surface model fit in

situations where the input variables in computer experiments consist of both control

and environmental variables. We consider control variables as those that can be

precisely controlled by the experimenter in a physical experiment, or can be precisely

controlled in a manufacturing process, while environmental variables are beyond the

experimenter’s or manufacturer’s control. However, in a lab setting (as assumed in

this chapter), we assume that the experimenter has control over the environmental

variables and that the values of the input points can be described by probability

density functions.

We define the input points to be x = {xc,xe} where xc and xe denotes the

control and environmental input points, respectively. We assume that the values of

the environmental input points vary according to some specified probablity density

function F (xe). In the presence of both control and environmental variables, we

focus on the selection of input points (for both control and environmental variables)

at which to run the simulations so as to obtain good fit of the GASP model for the
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integrated response surface,

µF (xc) = EF (xe)[y(xc,xe)] (6.1)

For computational feasibility, we further assume that the environmental variables

have finite support. Suppose xc is one of the control variable input point. Let

{xc,xe,j} denote the jth support point for the environmental variables, xe,j, paired

with xc, where j = 1, · · · , ne and ne denotes the number of support points for the

environmental variables. In this chapter, we consider the specific case where the

quantities of interest are

µ(xc) =

ne
∑

j=1

wj y(xc,xe,j) (6.2)

where {wj}ne

j=1 = P (xe = xe,j) denotes the corresponding non-negative weights and

such that
ne
∑

j=1

wj = 1. Our objective is to obtain a good model fit of the response

surface of y(·) averaged over the distribution of the environmental variables xe using

(6.2).

6.1 Statistical Model

As before, it is assumed that the deterministic output y(x) is a realization of a

stochastic process (or random function), Y (x). The model used is

Y (x) = fT (x)β + Z(x), (6.3)

where f(x) = (f1(x), f2(x), ..., fk(x))T is a k×1 vector of known regression functions,

and β = (β1, ..., βk)
T is a k × 1 vector of unknown regression parameters. And, Z(x)

is assumed to be a random process with mean 0, variance σ2 and a known correlation

function R(x1,x2). The Z(·) component models the systematic local trend or bias
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from the regression part of (6.3) and the correlation function R(·) essentially controls

the smoothness of the process.

We consider a Bayesian approach which provides a more general approach to the

prediction problem in computer experiments. Recall in Subsection 1.3.2, we have the

joint distribution of the responses Y n at the sampled points and some untried x0

given by
(

Y n

Y (x0)

)

∼ N

[

(

F

fT (x0)

)

β, σ2

(

R r(x0)
r(x0) 1

)

]

. (6.4)

Assuming a non-informative prior distribution of [β] ∝ 1 with R(.) and σ2 known, we

obtain the conditional posterior distribution [Y (x0)|Y n] by applying Theorem (A.1)

[Y (x0)|Y n] ∼ N
(

β + rT (x0)R
−1(Y n − Fβ),

σ2

[

1 − rT (x0)R
−1r(x0) +

“

1−1TR
−1

r(x0)
”2

1TR
−11

]

) (6.5)

where r(x0) = (R(x1,x0), ..., R(xn,x0))
T is the n × 1 vector of correlations between

observations at the previously sampled points, Y n, and Y (x0). One can recognize that

the posterior distribution, [Y (x0)|Y n], is Gaussian with mean and variance identical

to the BLUP and MSPE in (1.7) and (1.8) respectively for a constant mean term

model.

We adopt an empirical Bayesian approach by substituting for the unknown pa-

rameters their maximum likelihood estimates. If R(·) is known and the estimate of

β is taken to be β̂ = (F TR−1F )−1F TR−1Y n (generalized least-squares estimate).

6.2 Design Criteria for Integrated Response Surfaces

In the previous chapters, the expected improvement for global fit (EIGF) criterion

was introduced as one of the sequential design criteria for response surface model

fit. The EIGF criterion can be easily implemented in this situation, where both
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control and environmental variables are present, by simply treating the environmental

variables as additional variables to be evaluated as part of the criterion computation.

We do not distinguish between the types of variables, i.e., whether they are control

or environmental variables (see Subsection 6.2.1).

Under the assumption that the environmental variables vary according to some

specified probablity density function, we extend the EIGF criterion by incorporating

some form of weighting in the selection of the input points in Subsection 6.2.2 for

predicting the integrated response surface, µ(xc), given in (6.2).

In Subsection 6.2.3, an extension of the EIGF criterion is proposed where the

improvement function is taken over the sum of the response over the support points

of the environmental variables according to the wj in (6.2).

6.2.1 EIGF Criterion

Following Subsection 4.2.1, we have the computer outputs y(xk) at sampled points

xk, k = 1, · · · , n. For each potential input point x, its improvement is defined as

I(x) = (Y (x) − y(xk∗))2 (6.6)

where y(xk∗) refers to the observed output at the sampled point, xk∗ , that is closest

(in Euclidean distance) to the candidate point x. The EIGF criterion is to choose

the next input point that maximises the expected improvement

E(I(x)) = (Ŷ (x) − y(xk∗))2 + var(Ŷ (x)). (6.7)

6.2.2 Weighted EIGF Criterion

We consider an extension of the EIGF criterion in (6.7) by incorporating the

weights, wj, from the objective function (6.2) into the selection of the the next input
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point. If the probablity distribution F (xe) is not uniform, we would like the design

criterion to place more “emphasis” on the candidate point where its environmental

variable input point has more weight (i.e., larger values of wj). We consider a simple

case where

E(I(x)) = wj

{

(Ŷ (x) − y(xk∗(j)))2 + var(Ŷ (x))
}

. (6.8)

where yk∗(j) denotes the observed output at the sampled point, xk∗(j), that has the

same jth support point for the environmental variable inputs and is closest (in Eu-

clidean distance) to the candidate point x. The key difference is that the set of {yk∗(j)}

is a subset of {yk∗} in (6.7). The idea is to indirectly select x by considering the fitted

response surface for each support point of the environmental variables separately but

still making use of the GASP model fitted with all inputs.

6.2.3 Integrated EIGF Criterion

Williams et al. (2000) extended the expected improvement criterion to situations

where both control and environmental variables are present (an overview of the crite-

rion is given in Subsection 2.5.2). Unlike their algorithm, which is intended for global

optimization, we modify the criterion for response surface model fit. The proposed

integrated EIGF criterion consists of the following steps:

1. Generate an initial (space filling) design.

2. Run the computer code at the x input points and obtain the response, y(x).

3. Estimate the correlation parameters (see Subsection 3.1.2), as before.

4. Fit a GASP model using the n observations from the computer simulator to

predict y(x0) at some untried x0.
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5. Suppose we have the computer outputs y(xk) at sampled points xk, k =

1, · · · , n. The integrated EIGF criterion is used to choose the next input point

x = {xc,xe} in two stages as follows:

(a) Select the control variable input point: For each potential control input

point xc, its integrated expected improvement will be computed and the

next point that maximizes the criterion will be selected (details to follow

after these steps).

(b) Select the environmental variable input point: Search for the xe,n+1 corre-

sponding to xc,n+1 that satisfies a specified criterion. The criterion to be

evaluated will depend on the desired robust design formulation (details to

follow after these steps).

6. Check the stopping rule, if available. If additional points are needed, repeat

from step 2 onwards.

More on Step 5(a): Suppose we have the computer outputs yk at sampled points

xk, k = 1, ..., n. For each candidate control input point xc, its improvement function

(“averaged” over the distribution of the environmental variables) is defined by

I(xc) =
[

ne
∑

j=1

wjY (xc,xe,j) −
(

ne
∑

j=1
j 6=m

wjY (xc,k∗,xe,j) + yk∗(m)

)]2

(6.9)

where yk∗(m) refers to the observed output at the sampled point, xk∗ = {xc,k∗,xe,k∗},

of which its control variable input xc,k∗ is closest (in distance) to the control input of

the candidate point xc, and the m in parenthesis is used to index the environmental

input xe,k∗. As before, we shall determine this nearest sampled design point xk∗ using

Euclidean distance.
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The integrated expected improvement criterion is to choose the next control input

point that maximizes the expected improvement

E(I(xc)) = E







ne
∑

j=1

wjY (xc,xe,j) −
( ne

∑

j=1
j 6=m

wjY (xc,k∗,xe,j) + yk∗(m)

)







2

=






E

( ne
∑

j=1

wjY (xc,xe,j) −
ne
∑

j=1
j 6=m

wjY (xc,k∗,xe,j)
)

− yk∗(m)







2

+ V ar







ne
∑

j=1

wjY (xc,xe,j) −
ne
∑

j=1
j 6=m

wjY (xc,k∗,xe,j) − yk∗(m)







=







ne
∑

j=1

wjŶ (xc,xe,j) −
ne
∑

j=1
j 6=m

wjŶ (xc,k∗,xe,j) − yk∗(m)







2

+ V ar







ne
∑

j=1

wjY (xc,xe,j) −
ne
∑

j=1
j 6=m

wjY (xc,k∗,xe,j)







=







ne
∑

j=1

wjŶ (xc,xe,j) −
ne
∑

j=1
j 6=m

wjŶ (xc,k∗,xe,j) − yk∗(m)







2

+
ne
∑

j=1

V ar(wjY (xc,xe,j)) +
ne
∑

j=1
j 6=m

V ar(wjY (xc,k∗,xe,j))

+
ne
∑

j=1
j<m

2 Cov(wjY (xc,xe,j), whY (xc,xe,h))

+
ne
∑

j=1
j<h, h 6=m

2 Cov(wjY (xc,k∗,xe,j), wjY (xc,k∗,xe,h))

−
ne
∑

j,h=1, h 6=m

2 Cov(wjY (xc,xe,j), wjY (xc,k∗,xe,h)).

(6.10)

Similar to the EIGF criterion in (4.2) and (6.6), the expected improvement in (6.10)

consists of two search components — local and global. The first (local) component,

given by the [ · ]2 term, will tend to be large at input point xc where it has the largest

“averaged” (response) increase over its sampled control input point. The second
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(global) component is determined by the variance and covariance terms remaining in

(6.10).

Step 5(b): Let xe denote the set of environmental inputs corresponding to the

selected control variable x∗
c selected in step 5(a). For each potential input point

{x∗
c ,xe}, the design criterion is to choose the next environmental input point that

1. maximizes the prediction error in (6.5),

x∗
e = max

x∗

c ,xe

(V ar(Ŷ (x∗
c ,xe))) (6.11)

2. minimizes the average prediction error (6.5) among the remaining ne − 1 can-

didate input points,

x∗
e = min

xc,xe

( 1

ne − 1

∑

xe,j 6=x∗

e

V ar(Ŷ (x∗
c ,xe,j))

)

(6.12)

3. maximizes the expected improvement given by (4.2), or

x∗
e = max

x∗

c ,xe

E(I(x∗
c ,xe)) (6.13)

4. maximizes the weighted expected improvement,

x∗
e = max

x∗

c ,xe

wjE(I(x∗
c ,xe,j)). (6.14)

Together, the selected values for the control and environmental variables, x∗
c and x∗

e,

respectively, are used as the (new) additional design point and the sequential design

algorithm proceeds as before.
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6.3 Examples

The following examples are intended to illustrate the implementation and pre-

diction performance of the various design strategies. The design strategies to be

compared are:

• EIGF criterion in (6.7)

• weighted EIGF criterion (wEIGF) in (6.8)

• Integrated EIGF criterion with the environmental input points selected by max-

imizing the expected improvement (IEIGF) in (6.13)

• Integrated EIGF criterion with the environmental input points selected by max-

imizing the weighted expected improvement (IEIGFw) in (6.14)

(the abbreviations in parentheses will be used to denote these methods later in the

figures).

The total number of design points is fixed. For this number, N , we consider the

rule of thumb suggested in Jones et al. (1998) of selecting a fixed-point design, namely

with N = 10 × p points, where p is the number of dimensions of the input space.

The number of starting design points is determined by the number of levels of the

environmental variables. Given that the wEIGF criterion in (6.8) requires at least one

sampled point from each environmental input, the number of starting design points

N0 will depend on the number of support points for the environmental variable. For

example, N0 = 3 will be used for our first example with the 2-dimensional Branin

function.

129



Since the input points generated by maximin LHD are not unique, our comparisons

are based on 30 runs of different designs. For each of the 30 runs, we first obtain the

initial starting design using a N0-point approximate maximin LHD for the control

variables only. We then cycle through different permutations of the selected control

variable input with all the support points of the environmental variable and pick the

starting design as the one that gives the maximin distance among the x inputs.

The values of the correlation parameters are estimated by maximum likelihood

in this study and they are updated at every stage when a new input point is added.

Only the cubic correlation function will be used for the examples in this section.

Prediction accuracy of each of the designs is evaluated using the empirical root

mean squared prediction error (ERMSPE).

ERMSPE =

√

m
P

i=1

( ne
P

j=1
Ŷ (xi,j)−

ne
P

j=1
y(xi,j)

)2

m

=

√

m
P

i=1

(

µ̂(xc,i)−µ(xc,i)
)2

m

(6.15)

where xi,j, i = 1, ...m and j = 1, ..., ne are the grid points used for evaluating the

prediction accuracy and m is the total number of grid points; ŷ(xi,j) is the predicted

response at xi,j; y(xi,j) are the true values at the same set of grid points; µ(xc,i) and

µ̂(xc,i) is the observed output and predicted response, respectively, averaged over the

support of the environmental variables using (6.2).

6.3.1 Test Functions and Features

In this study, four examples are used to evaluate the predictive performance of the

GASP model with the input points chosen by the various design criteria. Details of

the functions are given below and plots of the true response surfaces for the different
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support of the environmental variables are shown in Figure 6.1 (left column) on page

137.

Function 1: Two-dimensional Branin function

We assume the response is evaluated via

f(x1, x2) = (x2 −
5.1

4π2
x2

1 + 5/πx1 − 6)2 + 10(1 − 1

8π
π) cos(x1) + 10

where x1 ∈ [−5, 10], x2 ∈ [0, 15]. We take x1 to be the control variable, xc, and x2 to

be the environmental variable xe at support points {0.25, 0.5, 0.75}. Three different

distributions for the environmental variable x2 are considered (in Table 6.1) and are

labeled as unequal, moderate and equal according to the degree of uniformity of the

weights for each of the support points. The entries in the table denote the weights

wj in the objective function (6.2).

x2

0.25 0.5 0.75
unequal 1/10 8/10 1/10
moderate 3/10 4/10 3/10
equal 1/3 1/3 1/3

Table 6.1: (Two-dimensional Branin function) Probablity distributions for environ-
mental variable x2

The true two-dimensional surfaces, for each support point of the environmental

variable, are plotted in Figure 6.1(a) (page 137) on m = 100 equally spaced points

which coincide with the m points used to evaluate the designs in (6.15) and the input

space of the control variable x1. The number of starting design points, N0, is 3 and
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the final number of input points, N , is taken to be 20.

Function 2: Four-dimensional Branin function

Next, we have a surface with two control variables and two environmental variables

(with a total of twelve support points). The response for this surface is evaluated via

y(x) = f(x1, x2) × f(x3, x4) and

f(u, v) = (v − 5.1

4π2
u2 + 5/πu − 6)2 + 10(1 − 1

8π
π) cos(u) + 10

where u ∈ [−5, 10], v ∈ [0, 15]. We take {x1, x4} to be the control variables, xc,

and {x2, x3} to be the environmental variables xe. The joint distribution for the

environmental variables is given in Table 6.2 (this is considered a set of moderate

weights). For equal weights, the entries are replaced by 1/12 (not shown in table).

As before, the input domain for the control variables is finely divided into m =

30× 30 = 900 equally spaced points. The number of starting design points, N0, is 12

and the final number of input points, N , is taken to be 40.

x3

0.2 0.4 0.6 0.8

x2

0.25 0.0375 0.0875 0.0875 0.0375
0.5 0.0750 0.1750 0.1750 0.0750
0.75 0.0375 0.0875 0.0875 0.0375

Table 6.2: (Four-dimensional Branin function) Joint probablity distribution for envi-
ronmental variables x2 and x3
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Function 3: Three-dimensional exponential-sine function

We consider the function

y(x1, x2, x3) = c1exp

(

c2
x1 + x2

3

)

+ c3x2sin(x3x1) + c2x3x2

where c1 = 2, c2 = 1, c3 = 100 are taken as known constants and x1, x2 ∈ [0, 3]

are the control variables. The distributions of the environmental variable x3 are

given in Table 6.3. The input domain for the control variables is finely divided into

m = 30× 30 = 900 equally spaced points. The number of starting design points, N0,

is 5 and the final number of input points, N , is taken to be 30.

x3

0.5 1.0 1.5 2.0 2.5
unequal 1/28 3/28 20/28 3/28 1/28
moderate 2/18 4/18 6/18 4/18 2/18
equal 1/18 1/18 1/18 1/18 1/18

Table 6.3: (Three-dimensional exponential-sine function) Probablity distributions for
environmental variable x3

Function 4: Three-dimensional sine function

Finally, we consider the function

y(x1, x2, x3) = θ1sin(θ2πx1) + θ3sin(x3πx2)

where θ1 = 100, θ2 = 2, θ3 = 100 are taken as known constants and x1, x2 ∈ [0, 3]

are the control variables. The distributions of the environmental variable x3 are

given in Table 6.4. The input domain for the control variables is finely divided into
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m = 30 × 30 = 900 equally spaced points. As with Function 3, N0 = 5 and N , is

taken to be 30.

x3

1.0 1.5 2.0 2.5 3.0
unequal 1/28 3/28 20/28 3/28 1/28
moderate 2/18 4/18 6/18 4/18 2/18
equal 1/18 1/18 1/18 1/18 1/18

Table 6.4: (Three-dimensional sine function) Probablity distributions for environ-
mental variable x3

6.3.2 Results: Comparison of Design Criteria

Results from our simulation studies, in Figure 6.2 (page 138), show that there are

differences in the predictive accuracy of the different designs depending on the shape

of the response surfaces and the distribution of the environmental variables.

We first consider the case of a uniform distribution for the environmental variable

where wj = 1
ne

, j = 1, · · · , ne (it should be noted that the IEIGF and IEIGFw criteria

are equivalent in this case). The leftmost region of the plots in Figure 6.2 (c), (e), (h)

and (k), on page 138, separated by the dotted vertical lines show equal proportions

both positive and negative differences in the ERMSPE. This suggests that there do

not seem to be any significant differences between the EIGF and wEIGF criteria.

The plots suggest that the IEIGF criterion outperforms both the EIGF and wEIGF

criteria. The center and right regions of the plots in Figure 6.2 (c), (e), (h) and (k)
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separated by the dotted vertical lines show larger positive difference in ERMSPE for

the EIGF versus. IEIGF and wEIGF versus IEIGF comparisons.

For the moderate and unequal weight distributions, the weighted versions of the

criteria improves the predictive performance of the designs in most cases (i.e., a larger

number of positive ERMSPE differences among the 30 runs). The extreme left region

in plots (a), (b), (d), (f), (g), (i) and (j) displays the ERMSPE differences between

the EIGF and wEIGF criteria, while the extreme right region shows the IEIGF and

IEIGFw diffferences. There is a clear trend that the improvement increases (i.e.,

change in the magnitude of the positive ERMSPE differences) as the weights become

more unequal.

Given that the wEIGF and IEIGFw criteria are the better performers among the

four designs, we will compare their performances across the different response surfaces

and weight distributions. For the moderate weights situation (see plots (b), (d), (g)

and (j) in Figure 6.2), the IEIGFw criterion dominates the wEIGF criterion in terms

of the number and magnitude of positive ERMSPE differences (see region second

from the right). However, it is not so clear whether the wEIGF criterion or IEIGFw

criterion is better when the weights for the environmental variables become more

unequal in Figure 6.2(a), (f) and (i). A closer look at the true surfaces in Figure 6.1

shows that if the shape of the averaged surface (in the right column) is significantly

different from the shape of the surfaces for the different inputs of the environmental

variables, then the IEIGFw criterion tends to perform better.
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6.4 Discussion and Conclusion

In this chapter we have considered the case of a single deterministic response y(·)

that depends on both control and environmental variables, and we are interested

in achieving good global model fit for the integrated response surface over the dis-

tribution of the environmental input variables. Refinements to the EIGF criterion,

introduced in the previous chapters with appropriate weighting schemes have been

shown to perform well. Among the four sequential adaptive designs, the wEIGF and

IEIGFw criteria are very competitive in terms of predictive accuracy using the GASP

model with the cubic correlation function. Overall, the IEIGFw criterion is our pre-

ferred method given that it performs well for equal and moderate weights, and does

not perform too badly in situations where the weights are highly unequal.

For the IEIGFw criterion, we have only considered selecting the environmental

variables using (6.14) in our examples. Further refinements can be made to this

selection approach. Additional criteria can also be proposed and this is open to

further research.
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Figure 6.1: Plots of true surfaces (left column) for various support points of the environmen-
tal variable(s) and averaged surfaces (right column) for different probability distributions
for the environmental variables.
(a),(b): Function 1, two-dimensional Branin function; (c),(d): Function 2, four-dimensional
Branin function; (e),(f): Function 3, three-dimensional exponential-sine function; (g),(h):
Function 4, three-dimensional sine function.
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Figure 6.2: Plots of ERMSPE differences for pairwise comparisons of design criteria.
(First row) Function 1: Two-dimensional Branin function, (Second row) Function 2: Four-
dimensional Branin function, (Third row) Function 3: Three-dimensional exponential-sine
function, (Fourth row) Function 4: Three-dimensional sine function. (Left column: a,f,i)
unequal weights∗, (Middle column: b,d,g,j) moderate weights∗, (Right column: c,e,h,k)
equal weights+.
∗Unequal and moderate weights: [regions left to right separated by vertical dotted lines]
ERMSPE differences for EIGF-wEIGF, EIGF-IEIGF, EIGF-IEIGFw, wEIGF-IEIGF,
wEIGF-IEIGFw, IEIGF-IEIGFw.
+Equal weights: ERMSPE differences for EIGF-wEIGF, EIGF-IEIGF, wEIGF-IEIGF.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

Williams (2000) and Lehman (2002) have shown that sequential design strategies

are valuable for computer experiments in the context of global optimization. This

thesis continues to contribute to this area of research and, for the objective of achiev-

ing good global model fit of the response surface, has shown that sequential adaptive

designs provide an efficient alternative to fixed-point designs such as the maximin

LHD used in our examples. We have shown in Chapters 3 and 4 that the adaptive

property of the sequential adaptive design criteria enable the GASP model to iden-

tify interesting features in the input space and result in a more accurate statistical

predictor. Also, sequential algorithms have the desirable property that additional

observations are naturally accommodated if an increased budget or the need to im-

prove the accuracy of the GASP model allows or requires additional observation.

Possibilities for future research include incorporating sequential adaptive designs into

the model calibration (i.e. estimation of simulator input parameters) and prediction

process. As part of an overall model verification and validation process, a Bayesian

approach (see Higdon et al., 2004) can be implemented to combine model simulation

output and physical observations to estimate model parameters. These, in turn, can
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be used for predicting the response at some untried input points. One of the goals

would be to reduce prediction uncertainty through more accurate computer outputs.

Most of the research in computer experiments have adopted the approach of as-

suming a single stationary Gaussian Stochastic Process (GASP) model across the

entire input space in the design and analysis stages. In applying the various designs

to a non-stationary looking response function, we have also shown that the naive

approach of specifying a single stationary GASP model across the entire input space

of a clearly non-stationary surface need not suffer in terms of prediction if the de-

sign criterion is able to target regions with high variation in the response. Future

research, as mentioned in Chapter 4, might explore combining sequential adaptive de-

signs with more complicated stochastic models, such as the Bayesian Treed approach

by Gramacy (2005).

Results from our simulation studies have shown that the choice of design is crucial

to the success of building an efficient and accurate GASP model. In addition to

designs, we have considered the use two types of correlation functions, namely the

Gaussian and cubic correlation. Given the instability encountered in fitting GASP

model with the Gaussian correlation, Chapter 5 presents the use of a cross validation

approach for assessing the fit of the GASP model with the Gaussian correlation

and our examples have illustrated improvements in predictive accuracy of the GASP

model with the modified design algorithm. Other types of correlation functions and

diagnostic tools for model goodness of fit can be explored for further research.

In extending the various sequential adaptive designs to more complex problems

such as a situation where both control and environmental (noise) variables may be

present, we have shown that the designs have been effective in achieving good model
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fit for integrated response surfaces averaged over the probability distribution of the

environmental variables. In cases where the probability distribution of the environ-

mental variables are not uniform, it is important that a design criterion should take

into account the weights.

In conclusion, we are encouraged by the positive results in this thesis and opti-

mistic that sequential adaptive designs are potentially more effective and efficient for

prediction of responses at unobserved input points than fixed-point designs.
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APPENDIX A

DERIVATIONS AND THEOREMS

A.1 Theorems for Probablity Distributions

Theorem A.1. Suppose U i for i ∈ 1, 2 denote qi × 1 random vectors having the

Gaussian distribution
(

U 1

U 2

)

| β, σ2 ∼ Nq1,q2

[(

F 1

F 2

)

β, σ2

(

R11 R12

R21 R22

)]

(A.1)

where β ∈ Rk and σ2 > 0. Assuming that each of the elements of F i and Rij are

known, each F i has full column rank, and the correlation matrix is positive denite.

Then

[U 1|U 2,β, σ2] ∼ Nq1(m1|2, σ
2R1|2),

where m1|2 = F 1β +R12R
−1
22 (U 2 − F 2β), and R1|2 = R11 +R12R

−1
22R12.

Proof. The proof can be found in most standard books on linear models such as

Seber(1977).

A.2 Proof of Sequential Maximum MSPE and Maximum En-

tropy Criteria Are Equivalent

Recall that if the prior distribution for β are diffuse (i.e. τ 2 → ∞), the maximum

entropy criterion is given by (2.6),

max( det(R) det(F T (R)−1F ) ). (A.2)
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where F = (F n, 1)T and F n is a n×1 vector of 1’s and n is the number of observations.

Suppose we implement the sequential maximum entropy criterion (Subsection

2.3.2) with one point added at each time. The correlation matrix R (which now

includes the candidate point, x0) can be partitioned into

R =

(

Rn rn(x0)
rn(x0)

T 1

)

, (A.3)

where Rn is the correlation matrix based on the existing n design points only. The

cross correlation between the observation at a new candidate point x0 and observa-

tions at the existing design points is denoted by the vector rn(x0). As a result, the

determinant of R can be written as a product of det(Rn)×det(1−rT (x0)R
−1
n r(x0)).

The inverse of R can be expressed as

R−1 =







R−1
n + R

−1

n rn(x0) r(x0)TR
−1

n

1−rn(x0)TR
−1

rn(x0)

−R
−1

n rn(x0)

1−rn(x0)TR
−1

rn(x0)

−rn(x0)TR
−1

n

1−rn(x0)TR
−1

rn(x0)

1

1−rn(x0)TR
−1

rn(x0)
.






(A.4)

See Rao (2001) page 33 for details on taking inverse of matrices.

Using (A.4), the determinant of R (suppressing the notation rn(x0) as rn) can be

re-expressed as

= det(Rn) × det(1 − rT
nR

−1
n rn)

× det
(

F T
nR

−1
n F n + F

T

nR
−1

rnrT
nF n

1−rT
nR

−1

n rn

− rTR
−1
F n

1−rT
nR

−1

n rn

− F
T

nR
−1

r

1−rT
nR

−1

n rn

+ 1

1−rT
nR

−1

n rn

)

= det(Rn) × F T
nR

−1
n F n

×
[

(1 − rT
nR

−1
n rn) + F

T

nR
−1

rnrT
nF n

F
T

nR
−1

n F n

− rTR
−1
F n

F
T

nR
−1

n F n

− F
T

nR
−1

rn

F
T

nR
−1

n F n

+ 1

F
T

nR
−1

n F n

]

(A.5)

After completing the squares, we get

= det(Rn) × F T
nR

−1
n F n ×

[

(1 − rT
nR

−1
n rn) +

(1 − F T
nR

−1
n rn)2

F T
nR

−1
n F n

]

(A.6)

It is clear from this expression the sequential maximum entropy criterion (assuming

a diffuse prior for β) is the sequential maximum MSPE criterion (2.7) multiplied by a
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constant factor det(Rn)×F T
nR

−1
n F n which are the first two terms in (A.6) . Hence,

the two criteria are equivalent.

A.3 Derivation for Expected Improvement for Global Fit
Criterion

Suppose we have the computer outputs y(xj) at sampled points xj, j = 1, ..., n.

For each potential input point x, its improvement is defined as

I(x) = (Y (x) − y(xj∗))
2 (A.7)

where y(xj∗) refers to the observed output at the sampled point, xj∗, that is closest

(in distance) to the candidate point x. We shall determine this nearest sampled

design point using Euclidean distance. The expected improvement for global fit (EIGF)

criterion is to choose the next input point that maximizes the expected improvement

E(I(x)) = (Ŷ (x) − y(xj∗))
2 + var(Ŷ (x)). (A.8)

Proof: Taking the expected value of (A.7) yields

E(Y (x) − y(xj∗))
2 = E[Y 2(x) − 2y(xj∗)E(Y (x)) + y2(xj∗)]

= var(Ŷ (x)) + Ŷ 2(x) − 2y(xj∗)Ŷ (x) + y2(xj∗)

= var(Ŷ (x)) + (Ŷ 2 − y(xj∗))
2

(A.9)

where we recall that Y (x) ∼ N(Ŷ (x), var(Ŷ (x))) where Ŷ (x) is the BLUP (1.7) and

var(Ŷ (x)) is the MSPE in (1.8).

A.4 Derivation for Generalized Expected Improvement for

Global Fit Criterion

Following Section A.3, the “generalized” expected improvement, for each can-

didate input point x, is derived as follows. First, we let the generalized expected
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improvement, E(Ig(x)) = EIq(x) where

EIq(x) =
+∞
∫

−∞

(Y (x) − y(xj∗))
q φ(y)dy

=
+∞
∫

−∞

q
∑

k=0

(−1)k
(

q
k

)

Y k(x) (y(xj∗))
q−k φ(y)dy

=
q

∑

k=0

(−1)k
(

q
k

)

(y(xj∗))
q−k

+∞
∫

−∞

Y k(x) φ(y)dy

=
q

∑

k=0

(−1)k
( q

k

)

(y(xj∗))
q−kE(yq(x))

(A.10)

where q = 1, 2, ... and E(Y q) denotes qth moments of the Normal distribution. For

notational simplicity, we denote Ŷ (x) and Y (x) as Ŷ and Y respectively. Recall that

Y ∼ N(Ŷ , var(Ŷ )) where Ŷ is the EBLUP version of (1.7) and var(Ŷ ) is the MSPE

given in (1.8). The first four moments are given by

E(Y 0) = 1

E(Y 1) = Ŷ

E(Y 2) = Ŷ 2 + var(Ŷ )

E(Y 3) = Ŷ 3 + 3Ŷ var(Ŷ )

E(Y 4) = Ŷ 4 + 6Ŷ 2var(Ŷ ) + 3(var(Ŷ ))2

(A.11)

Higher moments can be easily derived using a recursive formula. If X ∼ N(µ, 1),

then the (n + 1)th moment is given by

EXn+1 = µEXn +
d

dµ
EXn.

See Casella and Berger (2001) for more details.

Using (A.10) and (A.11) for the special case of q = 4, we obtain the generalized

expected improvement for global fit criterion, E(Ig(x)), for g = q/2 = 2 as

E(I2(x)) = y4(xj∗)E(Y 0) − 4y3(xj∗)E(Y 1) + 6y2(xj∗)E(Y 2) − 4y(xj∗)E(Y 3) + E(Y 4)

= y4(xj∗) − 4y3(xj∗)Ŷ + 6y2(xj∗)Ŷ
2 − 4y(xj∗)Ŷ

3 + Ŷ 4 + · · ·
[ 6y2(xj∗) − 12y(xj∗)Ŷ + 6Ŷ ]var(Ŷ ) + 3(var(Ŷ ))2

= (y(xj∗) − Ŷ )4 + 6(y(xj∗) − Ŷ )2 var(Ŷ ) + 3(var(Ŷ ))2.
(A.12)
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Taking g = 1 (i.e., q = 2), we get the original EIGF criterion, E(I(x)), in (A.8) and

(3.10).

The expected improvement in (A.12) consists of two search components — local

and global. The first (local) component of the expected improvement will tend to be

large at a point where it has the largest (response) increase over its nearest sampled

point. The second (global) component is large for points with the largest prediction

error as defined in (1.8), i.e., points about which there is large uncertainty and, as

mentioned in Subsection 2.3.1, these tend to be far from existing sampled points. The

key difference is that there is now interaction between (y(xj∗) − Ŷ )2 and var(Ŷ ).
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