
ENERGY EFFICIENT MAC LAYER DESIGN FOR

WIRELESS SENSOR NETWORKS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Sha Liu, B.S., M.E., M.A.S.

* * * * *

The Ohio State University

2008

Dissertation Committee:

Prasun Sinha, Adviser

Anish Arora

Dong Xuan

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Sha Liu

2008

ABSTRACT

Energy efficient communication is a critical design objective for wireless sensor

networks which are usually highly energy constrained. In addition, the throughput

and latency performance is also important for several sensor network applications. To

simultaneously achieve the seemingly contradictory goals, this dissertation identifies

the three major sources of energy wastage in communications, i.e., idle listening,

overhearing, and packet retransmissions, and proposes three mechanisms to optimize

the energy consumption while maintaining high throughput and low latency.

To deal with the idle listening problem, we design a new low duty-cycle MAC

layer protocol called Convergent MAC (CMAC). CMAC can work at low duty

cycles and requires no synchronization when there is no traffic. When carrying traffic,

CMAC first uses anycast to wake up forwarding nodes, and then converges gradually

from route-suboptimal anycast to route-optimal unicast. Experiments and simu-

lations show that CMAC significantly outperforms other duty cycling protocols in

terms of latency, throughput and energy efficiency.

The MAC layer anycast technique is also an efficient technique to cope with low

link quality and interference in wireless sensor networks. By utilizing the nature of

broadcast wireless communication medium and allowing multiple nodes in the for-

warding set to compete to be the packet forwarder, links with poor reception quality

but good progress in a given routing metric space can be opportunistically used to

ii

forward packets. However, the impact of unreliable communication in the reverse

channel on anycasting has not been studied before. The second part of this disserta-

tion analyzes the impact of unreliability of reverse links on the performance of existing

anycast protocols, proposes a new metric characterizing the number of transmissions

in the network for anycast based MAC protocols, and presents an efficient solution

for computing the forwarding sets.

The third part of this dissertation is dedicated to optimizing the schedule of packet

retransmissions. CSMA relies on carrier sensing to decide if retransmissions should

be performed immediately. However, in cases where the poor channel quality persists

or packet losses are due to interference undetectable by carrier sensing, the channel

assessment alone is not a good indicator of successful transmissions. To schedule

retransmissions at appropriate moments, we propose a new technique called trans-

mission pushback to reduce such losses by delaying retransmissions. This technique

overcomes periods of poor channel quality while ensuring a throughput matching the

incoming packet rate. In order to determine the optimal pushback period, we devise

an adaptive channel prediction technique based on estimating the parameters of a

simple hidden Markov model (HMM) which represents the channel. We dynamically

update the parameters of the HMM based solely on the ACK sequence for the pre-

vious packet transmissions. By considering both the packet incoming rate and the

packet loss pattern, the appropriate pushback period is calculated and applied for

future retransmissions.

iii

To my parents and friends.

iv

ACKNOWLEDGMENTS

Upon completing my Ph.D. study, I would like to express my sincere gratitude to

my advisor, colleagues, parents and friends. They have given me enormous help in

both study and life.

It is my honor to be able to work with Dr. Prasun Sinha for the past four years.

It is him who led me to the research area of wireless sensor networks, and it is also

him who guided me the way to high quality research work. I sincerely appreciate the

freedom Dr. Sinha gave me in research, and his countless insightful suggestions are

what I can benefit from for life. Beyond the materials, Dr. Sinha also impresses me

by his highly professional attitude in research, which is also critical for me to learn

in the future.

I would like to express my gratitude to Dr. Anish Arora, Dr. Ten H. Lai, and

Dr. Dong Xuan. They provided many valuable suggestions for my candidacy proposal

and dissertation, which broadened my vision and encouraged much deeper thinking

in my research area.

I would also like to thank my colleague Kai-Wei Fan, Zizhan Zheng, and Ren-Shiou

Liu. They provided insightful comments and suggestions on my research. Special

thanks must be expressed to Kai-Wei Fan, who provided enormous help in both ideas

and simulations for my research.

v

Four-year Ph.D. study has not been easy. There have been many moments when I

felt frustrated and depressed. It was my parents, Yangchun Liu and Shoushu Zheng,

and friends, Jing Li, Na Li, Lijia Wei, Bo Gu, Jialiang Li, and many more, who helped

me out during these times. I would like to thank them for being so supportive.

vi

VITA

January 10, 1979 . Born - Chongqing, China

July 2001 .B.S.
Statistics,
University of Science and Technology
of China, China

July 2004 .M.E.
Computer Science,
University of Science and Technology
of China, China

August 2007 .M.A.S.
Applied Statistics,
The Ohio State University, U.S.A.

September 2004-present . Graduate Teaching & Research Asso-
ciate,
The Ohio State University

PUBLICATIONS

Research Publications

Sha Liu, and Prasun Sinha. “Reverse Channel Aware MAC Layer Anycast for
Wireless Sensor Networks”. Under submission.

Sha Liu, Kai-Wei Fan and Prasun Sinha. “CMAC: Energy Efficient MAC Layer

Design for Sensor Networks with Anycast”. Under submission.

Sha Liu, Rahul Srivastava, Can Emre Koksal, and Prasun Sinha. “Achieving Energy
Efficiency with Transmission Pushbacks in Sensor Networks”. To appear in Proc.

IWQoS, June 2008.

vii

Kai-Wei Fan, Sha Liu, and Prasun Sinha. “Dynamic Forwarding over Tree-on-DAG

for Scalable Data Aggregation in Sensor Networks”. To appear in IEEE Transactions
on Mobile Computing (TMC).

Sha Liu, Kai-Wei Fan, and Prasun Sinha. “CMAC: An Energy Efficient MAC Layer

Protocol Using Convergent Packet Forwarding for Wireless Sensor Networks”. In
Proc. SECON, pages 11–20, June 2007.

Kai-Wei Fan, Sha Liu, and Prasun Sinha. “Scalable Data Aggregation for Dynamic

Events in Sensor Networks”. In Proc. SenSys, pages 181–194, November 2006.

Kai-Wei Fan, Sha Liu, and Prasun Sinha. “Structure-free Data Aggregation in Sensor

Networks”. In IEEE Transactions on Mobile Computing (TMC), Volume 6, Issue 8,
pages 929-942, August 2007.

Kai-Wei Fan, Sha Liu, and Prasun Sinha. “On the Potential of Structure-free Data

Aggregation in Sensor Networks”. In Proc. INFOCOM, pages 1–12, April 2006.

Sha Liu, Kai-Wei Fan, and Prasun Sinha. “Dynamic Sleep Scheduling using Online
Experimentation for Wireless Sensor Networks”. In Proc. SenMetrics, pages 166–174,

July 2005.

Sha Liu, Shoubao Yang, and Weifeng Sun. “Collaborative SCTP: A Collaborative
Approach to Improve the Performance of SCTP over Wired-cum-Wireless Networks”.

In Proc. LCN, pages 276–283, November 2004.

Sha Liu, and Shoubao Yang. “The Impact of DAD on Handoff Performance of Mobile

IPv6 and Test of MLD-Based DAD”. In Proc. the 1st International Conference on
Mobile Computing and Ubiquitous Networking (ICMU), pages 192–195, January 2004.

Sha Liu, Kai-Wei Fan, and Prasun Sinha. “Protocols for Data Aggregation in Sensor

Networks”. Chapter in book titled Wireless Sensor Networks and Applications,
Editors: Yingshu Li, My Thai, and Weili Wu, Springer Verlag’s book series Network

Theory and Applications, 2005.

Kai-Wei Fan, Sha Liu, and Prasun Sinha. “Ad-hoc Routing Protocols”. Chapter in
book titled Algorithms and Protocols for Wireless and Mobile Networks, Editor: A.

Boukerche, CRC/Hall Publisher, 2004.

viii

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Networking Prof. Prasun Sinha
Prof. Anish Arora
Prof. Dong Xuan
Prof. Steve H. Lai
Prof. Can Emre Koksal

Probability Models Prof. Douglas E. Critchlow
Statistics Prof. Chris Hans

ix

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Figures . xiii

List of Tables . xvii

Chapters:

1. Introduction . 1

1.1 Challenges in Energy Efficiency 1

1.2 Contributions . 6
1.3 Organization of The Dissertation 10

2. CMAC: An Energy Efficient MAC Layer Protocol Using Convergent Packet

Forwarding . 11

2.1 Introduction . 11

2.1.1 Synchronization Overhead 12
2.1.2 Spatial Diversity . 15

2.1.3 Contributions . 16
2.2 Convergent MAC (CMAC) . 17

2.2.1 Aggressive RTS . 18
2.2.2 Anycast Based Forwarding 23

2.2.3 Performance Analysis of Anycast 25

x

2.2.4 Optimizing the Forwarding Set 29
2.2.5 Converging from Anycast to Unicast 33

2.2.6 Awake Period after Receiving a Packet 36
2.2.7 Synchronized Wake-up Schedule 38

2.3 Experimental Evaluation . 43
2.3.1 Static Event Scenarios . 45

2.3.2 Moving Event Scenario . 47
2.3.3 Anycast Performance . 47

2.4 Simulation Based Evaluation . 51
2.4.1 Duty Cycle . 52

2.4.2 Data Rate . 54
2.4.3 Node Density . 56

2.4.4 Event Size . 58

2.4.5 Event Moving Speed . 58
2.5 Summary . 58

3. Reverse Channel Aware MAC Layer Anycast 63

3.1 Motivation . 63
3.2 Related Work . 69

3.3 Anycast Routing Metric EATX . 71
3.3.1 Model and Notations . 72

3.3.2 Expected Number of Transmissions (E[Ti]) 74
3.3.3 Expected Number of Transmissions from Each Forwarder

(E[Cij]) . 74
3.3.4 EATX . 75

3.4 Anycast Route Construction . 76

3.4.1 Forwarding Set Selection Algorithm 77
3.4.2 Distributed Anycast Route Construction 79

3.5 Performance Evaluation . 82
3.5.1 Study on Bidirectional Link Reliability 83

3.5.2 Emulating the Motelab Testbed 84
3.5.3 Random Topology . 97

3.6 Conclusion and Future Work . 100

4. Achieving Energy Efficiency with Transmission Pushbacks 105

4.1 Introduction . 105

4.2 Related Work . 109
4.3 Channel Modeling . 110

4.3.1 Channel Model . 110
4.3.2 Channel Parameters . 113

xi

4.4 The Pushback Algorithm . 116
4.4.1 Remedial Mechanisms . 118

4.5 Simulation Evaluation . 120
4.5.1 Radio Model . 120

4.5.2 Simulation Evaluations . 122
4.6 Conclusions and Future Research 137

5. Conclusion and Future Work . 138

Bibliography . 142

xii

LIST OF FIGURES

Figure Page

1.1 Performance degradation of the anycast protocol in [35] due to the

ignorance of the reverse link quality). 5

2.1 Illustration of the disadvantages of using long preambles 14

2.2 The double channel check mechanism in CMAC. 21

2.3 CCA in each aggressive RTS burst. 22

2.4 Subetting the forwarding region in CMAC. 25

2.5 CTS contention resolution in CMAC. 26

2.6 Calculation of E[1
X

] in the analysis of the anycast protocol in CMAC. 28

2.7 Performance analysis of the anycast protocol in CMAC. 30

2.8 Numerical results for convergence latency. 36

2.9 Numerical results for convergence performance analysis in CMAC. . . 39

2.10 Synchronization Schedule in CMAC-S. 40

2.11 Staggered synchronization schedules in CMAC-S. 40

2.12 The synchronization initiated by the source in CMAC-S. 41

2.13 The synchronization initiated by intermediate nodes in CMAC-S. . . 41

2.14 Accommodation of upstream schedules in CMAC-S. 42

xiii

2.15 Accommodation of downstream schedules in CMAC-S. 43

2.16 Experiment results of throughput, latency and energy efficiency per-

formance of CMAC and BMAC under different data rates. 46

2.17 Experiment results of throughput, latency and energy efficiency per-
formance of CMAC and BMAC for moving events. 48

2.18 Experiment results of anycast latency performance of CMAC 1% and

CMAC 0.1% under different node densities. 50

2.19 Simulation results for CMAC, SMAC, DMAC, XMAC and GeRaF un-

der different duty cycles. The data points of GeRaF and SMAC have
duty cycles 10 times of the corresponding X coordinates (due to their

inability to deliver any packet for duty cycles lower than 1%. The data
points on the latency of SMAC and DMAC are not plotted because it

is more than 10 times higher than other protocols.). 55

2.20 Simulation results for throughput, latency and energy efficiency per-
formance of CMAC, SMAC, GeRaF under different data rates. 57

2.21 Simulation results for CMAC, CMAC-S, XMAC, anycast and CSMA/CA

under different node densities. 59

2.22 Simulation results for throughput, latency and energy efficiency per-
formance of CMAC, CMAC-S and XMAC for different event size. . . 60

2.23 Simulation results for throughput, latency and energy efficiency perfor-
mance of CMAC, CMAC-S and XMAC under different event moving

speeds. 61

3.1 Illustration on how duplicates are created in MAC layer anycast. . . . 65

3.2 Ratio of EATX metrics (anycast in [35] versus unicast). 66

3.3 3-node example to show why anycast algorithms that are reverse link
unaware perform suboptimally. 67

3.4 Data packet and acknowledgement reliability data from the Motelab

testbed [65]. (Transmission Power Level: 0dBm.) 85

xiv

3.5 Data packet and acknowledgement reliability data from the Motelab

testbed [65]. (Packet size: 40 bytes. Transmission Power Level: -25dBm.) 86

3.6 Comparison of Anycast-EATX and Anyast-JK (packet size: 40 bytes;
power: -25dBm). 89

3.7 Comparison of Anycast-EATX and unicast (packet size: 40 bytes;

power: -25dBm). 90

3.8 Comparison of Anycast-EATX-1/2 and optimum (packet size: 40 bytes;
power: -25dBm). 92

3.9 Comparison of Anycast-EATX-1/2 to Anyast-JK, unicast and opti-
mum (packet size: 126 bytes; power: 0dBm). 93

3.10 Comparison of Anycast-EATX and Anyast-JK (packet size: 40 bytes;

power: 0dBm). 95

3.11 Comparison of Anycast-EATX and unicast (packet size: 40 bytes;
power: 0dBm). 96

3.12 Comparison of Anycast-EATX and optimum (packet size: 40 bytes;

power: 0dBm). 98

3.13 Comparison of Anycast-EATX to Anyast-JK, unicast and optimum
(packet size: 126 bytes; power: -25dBm). 99

3.14 Comparison of Anycast-EATX and Anyast-JK in random topologies
with different node densities. 101

3.15 Comparison of Anycast-EATX and unicast in random topologies with

different node densities. 102

3.16 Comparison of Anycast-EATX and optimum in random topologies with
different node densities. 103

4.1 Avoid periods with poor link quality using transmission pushbacks. . 106

4.2 Conditional probability of failure as a function of deferred time slots

setting p = 0.6 and α = 0.8. 111

xv

4.3 Markov chain representation of the channel. 114

4.4 Comparison of the actual PSR gain achieved by our pushback algo-

rithm and the theoretical fit using Eqn. (4.7). 116

4.5 Simulation results for various data rates. 124

4.6 Simulation results for various channel coherence coefficients φ in a 5×5
network. 125

4.7 Simulation results for various shadowing deviations σdB in a 5 × 5

network. 127

4.8 Simulation results for various network sizes. 129

4.9 Simulation results for various node densities. 130

4.10 Simulation results for various node densities in a random topology. . . 132

4.11 Simulation results for various packet sizes. 133

4.12 Simulation results for various bandwidth. 135

4.13 Simulation results for the cooperation of the pushback algorithm and

RC/BP. 136

xvi

LIST OF TABLES

Table Page

2.1 Default experiment parameters for CMAC 44

2.2 Default Simulation Parameters . 53

3.1 Performance of various protocols for the 3-node example in Fig. 3.3. . 68

4.1 Lookup tables used in the pushback algorithm. 118

4.2 Default simulation parameters for the pushback algorithm 123

xvii

CHAPTER 1

Introduction

1.1 Challenges in Energy Efficiency

Energy efficiency is a critical performance metric in wireless sensor networks.

Since the radio consumes much higher power than other components such as sensing

or processing, it is critical to conserve energy spent on all radio activities especially

on idle listening, overhearing and transmissions. Idle listening happens when nodes

have their radio transceivers turned on but have no communication activities. Since

idle listening consumes energy at almost the same rate as receptions, for applications

incurring only sporadic traffic, having transceivers always on consumes significant

amount of energy, and thus should be avoided. Overhearing happens when nodes are

receiving packets not destined for them due to the broadcast nature of the wireless

medium, which should also be avoided as much as possible. To ensure reliability,

retransmissions are performed when transmissions fail or acknowledgements do not

reach the sender. Due to the unreliability of wireless links, retransmissions are in-

evitable, but how to select the right moments for retransmissions is a challenging

problem. In this dissertation, we try to address the challenges involving all three

aspects above. More specifically, the challenges include:

1

Using low duty cycling to reduce idle listening: Since the power consumption

during idle listening is of the same order as in transmitting and receiving states,

saving energy during idle listening is critical. Among various techniques, radio

duty cycling is considered as an effective way to reduce the power consumption

when there is no traffic, and many MAC layer protocols have been proposed to

deal with this problem [70, 63, 41, 48, 11, 51, 54]. However, existing MAC layer

protocols usually cause performance degradation in throughput and latency

which are critical metrics for various applications such as event tracking and

surveillance. Current duty cycling MAC layer protocols for wireless sensor net-

works are either synchronized using explicit schedule exchanges or totally unsyn-

chronized. However, both have their weaknesses and deficiencies. SMAC [70],

TMAC [63] and DMAC [41] use periodic synchronization messages to schedule

duty cycling and packet transmissions. Such message exchanges consume sig-

nificant energy even when no traffic is present. BMAC [48] uses unsynchronized

duty cycling and uses long preambles to wake up receivers. However, the long

preamble mechanism leads to high latency and unnecessary preamble transmis-

sions, receptions, and overhearing. Polastre et. al. propose a link abstraction

called Sensornet Protocol (SP) [49] to adjust the preamble length by observing

recent and nearby traffic. However, SP still relies on long preambles to initiate

data flows, and it cannot dynamically select the next hop if the intended next

hop is currently unavailable because of sleeping or interference.

Combating unreliable links using MAC layer anycast: Limited energy resources

equipped in sensor nodes poses significant challenges in wireless communica-

tions. For low power devices high packet loss rates have been reported in

2

various studies [69, 69]. In order to provide robustness against transmission

failures, MAC layer anycast [35, 38, 77, 76, 27] based solutions have been ex-

plored. The key idea is to leverage the broadcast nature of the channel, the

density of the network, and the lack of perfect correlation of the channels to the

neighboring nodes. Anycasting generalizes the concept of a next-hop node to a

subset of neighboring nodes, among which the forwarder is elected dynamically

from the nodes that successfully receive the packet transmission. Such elections

require reliable acknowledgments from the elected forwarders and a mechanism

for arbitration among the receivers, both of which are heavily dependent on the

reliability of the reverse links. Although it has been reported that the reverse

link is often more reliable immediately after a packet transmission [58, 14, 73],

we find that for anycast the performance impact of unreliability in the reverse

link is significant. In anycast, an inaccurate arbitration may lead to the election

of multiple forwarders which can result in packet duplication. The farther the

point of duplication from the sink, the more the wastage of energy. Unreliabil-

ity in the reverse link can also cause unnecessary packet retransmissions. Thus,

reverse links are critical to consider in the design of anycast based MAC layer

solutions.

The existing MAC layer anycast protocols ignore the quality of the reverse

link. The selection of the forwarding set and the assignment of priorities for

arbitration are based either on geographic distance to the sink [77, 76, 27, 38] or

the delay metric advertised by the neighboring nodes [35]. A naive forwarding

set computation technique is to include all nodes [77, 76] that are better than

the current node according to a metric such as geographic progress or delay. In

3

[38], a simple threshold based approach is used for the selection where nodes

with a certain minimum geographical progress are selected in the forwarding

set. Observing the sub-optimality of such techniques, an algorithm for optimal

selection of forwarding nodes is proposed in [35], which however assumes that

the reverse link is reliable. Using data from the testbed for packets of 40 bytes

transmitted at −25dBm, we construct the anycast forwarding sets and compute

the number of transmissions for all source-destination pairs on the Motelab

testbed [65]. The expected number of transmissions of a packet originating

at a node is represented by the metric EATX (Expected number of Anycast

Transmissions), which includes the duplicate copies that can be created due to

poor reverse link qualities. As the baseline of comparison, unicast routes along

with ETX metrics [20] are also computed. Fig. 3.2 shows the ratio of the EATX

of the anycast protocol in [35] to that of unicast. It can be observed that for

more than 50% of the source-destination pairs, the performance of unicast is

better. For some cases, the anycast protocol in [35] may even result in up to 7

times more transmissions than unicast.

Scheduling of retransmissions: High variability in channel quality caused by fac-

tors such as fading, mobility, and time-varying multiuser interference makes it

difficult to achieve both energy efficiency and high throughput. Without any

effort for adapting to the variability, the system resources are consumed highly

inefficiently. Due to high packet loss rates, a high fraction of the energy of a

node is consumed by multiple retransmissions per packet. The prevailing CSMA

based protocols use carrier sensing to avoid collisions and backoffs to address

the problem of contention among nearby nodes. However, packet transmissions

4

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio of Number of Transmissions

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 1.1: Performance degradation of the anycast protocol in [35] due to the igno-
rance of the reverse link quality).

may fail due to cumulative interference from other nodes in the network. In-

deed in our testbed experiments with Mica2 nodes, we have observed that with

interfering sources that are sufficiently far away, 69% of the packets for which

the CSMA granted a transmission permit are lost. From this example, we can

conclude that the combined effect of a large number of interfering sources can

be very detrimental and the CSMA based protocols - designed to suppress col-

lisions - are not effective in avoiding such losses. Immediate solution to this

problem is reducing the carrier sense threshold that triggers a backoff and con-

sequently increases the carrier sense range. This, in effect, would enable a node

to sense this combined interference and hidden terminals to some extent, and

avoid some of the losses. However, the increase in carrier sense range makes a

5

node overly conservative with respect to interference and leads to lower effec-

tive throughput. Therefore, simple adjustment of the carrier sense range is not

sufficient to avoid transmissions during poor channel conditions. To combat the

highly variable wireless channel, rate adaptation techniques have been widely

studied for wireless LANs. However, in the currently available sensor hardware

platforms, the limited computational power rules out sophisticated control ac-

tions for adaptation, and thus only very simple strategies (e.g., transmit or do

not transmit a packet at a given time) are implementable, which poses further

challenges in protocol design.

1.2 Contributions

In answer to the challenges listed in Section 1.1, this dissertation makes the fol-

lowing contributions.

Convergent MAC (CMAC): The challenges in achieving both low duty cycling

and high throughput motivate our design of an energy efficient MAC layer proto-

col called Convergent MAC (CMAC) (Chapter 2). CMAC uses unsynchronized

sleep scheduling when there are no packets to transmit. While transmitting

packets, CMAC first uses aggressive RTS to anycast packets to potential for-

warders which wake up first and detect the traffic using a mechanism called

double channel check. Once the sender is able to transmit packets to a node

with an acceptable routing metric, CMAC converges from anycast forwarding to

unicast to avoid the overhead of anycast. To characterize the operating region

of the CMAC protocol, we analytically model the performance of anycast based

forwarding and the performance of convergent packet forwarding. To validate

6

the practicability of CMAC, we implement CMAC in TinyOS [7] and compare

it with BMAC on the Kansei testbed [9]. We also evaluate CMAC in ns2 [6]

against SMAC [70], DMAC [41], XMAC [11], a variant of GeRaF [77, 76, 13],

and an 802.11 based CSMA/CA protocol at 100% duty cycle. The results show

that CMAC outperforms other duty cycle scheduling protocols in all aspects

while providing throughput and latency performance comparable to the fully

awake CSMA/CA protocol. The key contributions of the CMAC design are

summarized as follows.

• We propose CMAC, a novel MAC layer protocol, which improves latency

and energy efficiency by utilizing the proposed aggressive RTS, anycasting

and convergent packet forwarding mechanisms.

• We analytically model the performance of both anycast and unicast based

forwarding, and the performance of convergent packet forwarding.

• Using experiments on the Kansei testbed [9, 23], we validate the design

goals for CMAC.

Reverse Link Aware Anycast: Motivated by the suboptimal performance of ex-

isting anycast protocols due to the ignorance of reverse link quality, in Chapter 3

we characterize the impact of unreliable reverse links on the performance of

anycast protocols, introduce a new metric to characterize the number of trans-

missions in the network, and propose an efficient solution for computing the

forwarding sets for all nodes.

7

• We propose a new anycast routing metric called EATX to guide forwarding

set selection and route construction. We formulate the computation of

EATX considering both forward and reverse link reliability.

• We propose an algorithmic framework for forwarding set selection which

takes bidirectional channel quality into consideration. We also propose an

anycast route construction mechanism suitable for the prevailing converge-

cast traffic pattern in wireless sensor networks.

• By analyzing data for unicast transmissions collected from the testbed,

we exhibit the nature of unreliability of data packets and corresponding

acknowledgments.

• Using simulations driven by data from the Motelab testbed [65], we show

that our anycast protocol that uses the proposed forwarding set selection

algorithmic framework and the route construction mechanism outperforms

unicast and the anycast protocol in [35].

Transmission Pushback: To determine the right moments for packet retransmis-

sions, we propose a binary control technique over CSMA. Our approach is based

on exploiting the temporal correlations of the interference process. We introduce

a new concept called transmission pushbacks, which refers to an appropri-

ately computed delay introduced at the MAC layer in order to avoid periods

with bad-channel quality while considering a node’s throughput requirement.

Therefore, we reduce the number of transmissions per packet as well as the num-

ber of transmission attempts per unit time. In case of bursty losses, avoiding

the bad channel state may also lead to a higher throughput (visible at higher

8

layers) despite lower number of transmission attempts. The main idea of trans-

mission pushbacks is to defer packet transmission attempts for an appropriately

selected period upon failed packet transmissions. Plain CSMA leads to failed

transmissions, and thus wastes energy, during periods with poor channel qual-

ity. CSMA with exponential backoff may reduce such failed transmissions, but

it also cuts down the transmission attempts, even at times of improved channel

quality. In contrast, our proposed transmission pushback mechanism predicts

the duration for which the channel quality will remain poor. Thus, unnecessary

transmissions can be avoided to conserve energy and the good channel states

are taken advantage of.

To determine the pushback time, we need to estimate the channel quality and

how it varies over time. We use an adaptive channel prediction technique based

on estimating the parameters of a simple hidden Markov model (HMM) which

represents the channel. We dynamically update the parameters of the HMM

based solely on the binary ACK sequence (transmission success or failure) for

the previous packet transmissions. We choose the appropriate pushback period

by considering the throughput requirement posed by the incoming data rate,

and the predicted quality of the channel. The proposed approach is simple

to implement over existing CSMA based MAC solutions, as well as queue and

congestion control algorithms. Therefore it is highly suited for existing sensor

network platforms. In summary, the following contributions are made by the

design of the pushback technique:

• Using data collected from a sensor network testbed, temporal characteris-

tics of channel variations and interference are studied.

9

• A novel concept called transmission pushbacks is introduced, that is

used to increase the packet success rate while considering the throughput

constraint at each node.

• Through simulations it is shown that significant gains in energy and/or

throughput can be observed in all scenarios using the proposed technique.

1.3 Organization of The Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, the design

and evaluation of the CMAC protocol is presented. In Chapter 3, we formulate

the performance of MAC layer anycast protocols in presence of reverse link losses

and propose a forwarding set selection algorithm to optimize the required number of

transmissions in the network. In Chapter 4, the transmission pushback technique is

proposed and studied. Finally, Chapter 5 concludes the dissertation.

10

CHAPTER 2

CMAC: An Energy Efficient MAC Layer Protocol Using
Convergent Packet Forwarding

Duty cycling the radio is important to achieve long lifetime in wireless sensor net-

work, but it usually causes performance degradation in throughput and latency which

are critical metrics for various applications such as event tracking and surveillance.

These conflicting objectives motivate our design of a new MAC layer protocol called

Convergent MAC (CMAC). Compared to other MAC layer protocols like BMAC

[48] and SMAC [70], CMAC can significantly reduce latency and improve throughput

while supporting very low duty cycles.

2.1 Introduction

In this section, we present the motivation of the CMAC protocol design by analyz-

ing the shortcomings of existing protocols. In Section 2.1.1, we discuss the synchro-

nization overhead of existing duty cycling MAC layer protocols. In Section 2.1.2, we

discuss the potential of utilizing spatial diversity in wireless sensor networks to reduce

latency and improve energy efficiency, and the disadvantages of existing protocols.

11

2.1.1 Synchronization Overhead

Current duty cycling MAC layer protocols for wireless sensor networks are either

synchronized using explicit schedule exchanges or totally unsynchronized. However,

both have their weaknesses and deficiencies.

SMAC [70], TMAC [63] and DMAC [41] belongs to the category of synchronized

protocols. SMAC [70] uses periodic synchronization messages to schedule duty cy-

cling and packet transmissions. TMAC [63] uses the same mechanism as SMAC to

synchronize nodes, but TMAC saves more energy by ending the listening period dy-

namically to reduce idle listening. DMAC [41] and the approach proposed in [60]

schedule wake-up periods in a staggered fashion from sources to the sink such that

packets can be forwarded without waiting for the next active period. In addition,

the active period is divided into receiving and transmitting slots in DMAC to avoid

interference with the upstream and downstream nodes. However, these approaches

suffer unnecessary energy consumption on synchronization message exchanges when

there is no traffic. OMAC [12] schedules transmissions according to receivers’ wake-

up schedules which are spread across time so that the contention and interference

can be minimized. The analysis in [12] exhibits the advantage in energy efficiency of

such a receiver-centric scheduling scheme, but this scheme does not take the latency

performance into account. Simple calculation for SMAC on Mica2 [4] shows that syn-

chronization messages consume almost 18% of the total energy in the absence of data

traffic for 1% duty cycle, which implies 22% potential improvement to the lifetime by

eliminating such message exchanges. Note that for duty cycle as low as 0.1%, this

improvement could be 225%. Thus for operation at low duty cycles, synchronization

messages should be eliminated.

12

Another paradigm of scheduling sleep and wake-up is to use unsynchronized duty

cycling, and wakes up receivers by transmitting long preambles like in BMAC [48]

and WiseMAC [22]. Using this technique, the synchronization overhead is delayed

until there is traffic. However, the long preamble mechanism has the following three

problems.

• The latency accumulated along multihop routes could be overwhelming due to

the use of long preambles on each hop.

• The energy consumed on preamble transmission and reception after the receiver

has woken up is wasted. This is due to lack of information at the sender side

about the wake-up schedule of the receiver, and thus the preamble length is

chosen conservatively.

• Neighbor nodes other than the intended receiver will also be kept awake by the

long preamble until the data packet transmission finishes, which is also wasteful

due to the overhearing of long preambles not destined to them.

Fig. 2.1 shows an example where node A intends to send packets to node C. Due to the

long preamble mechanism, both node A and node B uses long preambles even though

their intended receivers wake up much earlier than the end of the preambles. Hence,

the latency for delivering one packet along the two hops is at least twice the preamble

length. If retransmissions are performed, the latency further increases proportionally

with the number of transmissions.

Polastre et al. propose a link abstraction called Sensornet Protocol (SP) [49]

to adjust the preamble length by observing recent and nearby traffic. However, SP

still relies on long preambles to initiate data flows, and long preambles have to be

13

A B C

preamble data

preamble dataack

ack

A

B

C

wake-up time

receiving

receiving

wake-up wake-up

Figure 2.1: Illustration of the disadvantages of using long preambles

used again if such implicit synchronization is lost due to low data rate or interference.

XMAC [11] reduces the overhead caused by long preambles by breaking a long pream-

ble into small strobed packets, and thus allows receivers to send feedbacks quickly.

But to receive the strobed packets, XMAC introduces much longer awake time than

BMAC, which implies higher duty cycles or longer duty cycle length. SCP-MAC [71]

is a hybrid protocol utilizing both explicit synchronization and the preamble based

technique. In SCP-MAC, nodes exchange synchronization messages at a frequency

lower than SMAC, and preambles that are long enough to overcome the clock drift are

transmitted before the data. Since SCP-MAC also requires synchronization, energy

is still consumed on message exchanges for this purpose. In addition, SP, XMAC and

SCP-MAC cannot utilize the spatial diversity (Section 2.1.2) to dynamically select

the next hop if the intended next hop is currently not available because of sleeping

or interference.

14

2.1.2 Spatial Diversity

In a sensor network, usually multiple nodes are deployed within the transmission

range of each node to improve robustness in communications and event sensing. By

exploiting such a spatial diversity, it is possible to make quick routing progress by

contacting a potential forwarder which wakes up earlier than the best one. GeRaF [77,

76, 13] is a typical example utilizing this idea. In GeRaF, the forwarding region (closer

to the destination and within transmission range) is divided into a few sub-regions

according to their distances to the destination. Upon forwarding a packet, the sender

broadcasts an RTS packet to all nodes in the sub-region closest to the destination

and expects a CTS reply. If there is no reply, the sender will broadcast another RTS

packet to the sub-region that is the second closest to the destination. This process

continues until a CTS is received or all sub-regions have been searched in which case

the forwarding fails. If more than one node in the same sub-region happen to wake

up and reply to the RTS packet at the same time, the sender detects the collision

and directs nodes in that sub-region to send CTS packets probabilistically. After the

RTS/CTS handshake, the sender can start to transmit the data packet to the one

from which the valid CTS packet is received. Contention based forwarding protocols

investigated in [27, 29, 30, 61, 16, 17, 15, 67] share similar idea as GeRaF, but they

resolve the contention among receivers by letting receivers delay CTS transmissions

for different amount of time and monitor the channel to decide if they should send

CTS packets. To favor receivers closer to the destination, they are assigned higher

reply priorities (shorter waiting time before sending CTS packets). These contention

based forwarding protocols have smaller forwarding overhead compared to GeRaF,

but are proposed to circumvent the hot spot of the network and focus on eliminating

15

the state (location of neighbors) maintenance, and thus they have not been employed

to cooperate with low duty cycling. There are some other anycast protocols studied in

this context, which either list potential receivers and their CTS transmission priorities

in RTS packets [33], or probe neighbors in a round-robin manner to find an awake

one [19]. RAW [46] has similar idea as the basic anycast scheme described above, but

it still requires explicit schedule exchange which should be avoided.

These anycast based approaches provides the potential of low duty cycles and

low latency performance by exploiting the spatial diversity, but they still have the

following three disadvantages.

• They either are not designed to work at low duty cycles [27, 29, 30, 61, 16,

17, 15, 67], or rely on the receivers to detect the start of an RTS transmission

[77, 76, 13], which implies more frequent wake-up or longer active period than

BMAC.

• The anycast route could be longer since the optimal forwarding nodes may be

asleep during anycasts.

• The overhead of anycast RTS/CTS exchange is higher than unicast. Hence,

although these anycast based protocols do not suffer from the overhead of syn-

chronization messages, they incur higher overhead during data transmissions.

2.1.3 Contributions

The above problems with existing MAC layer protocols and anycast protocols

motivate our design of an energy efficient MAC layer protocol called Convergent MAC

(CMAC). We summarize the main contributions of the CMAC design as follows.

16

• We propose CMAC, a novel MAC layer protocol, which improves latency and

energy efficiency by utilizing the proposed aggressive RTS, anycast and conver-

gent packet forwarding mechanisms.

• We analytically model the performance of both anycast and unicast based for-

warding, and the performance of convergent packet forwarding;

• We present details of the implementation and experimental evaluation of CMAC

on the Kansei testbed [23, 9] to validate our design goals.

The rest of the chapter is organized as follows. Section 2.2 presents the design

and analysis of the CMAC protocol. In Section 2.3, we discuss the implementation

issues and experimental evaluations on Kansei testbed [9, 23] comparing CMAC with

BMAC. Section 2.4 exhibits simulation results comparing CMAC with other proto-

cols. Finally, Section 2.5 summarizes this chapter.

2.2 Convergent MAC (CMAC)

Motivated by the limitations of current approaches, we propose a MAC layer

protocol called Convergent MAC (CMAC) that supports low latency and high

throughput as well as low duty cycle operation. When there is no traffic in the

network, CMAC uses unsynchronized wake-up scheduling with a pre-defined idle duty

cycle. In this wake-up scheduling scheme, the duration between successive wake-ups

is fixed according to the duty cycle and active period. However, to spread out the

wake-ups of neighboring nodes across time such that the mechanisms in CMAC can

benefit from it, we uniformly randomize the wake-up time of each node for the first

times it goes back to sleep after receiving a packet. While transmitting packets,

17

the transmitter uses aggressive RTS (Section 2.2.1) instead of a long preamble to

activate the receiver. To detect aggressive RTS, nodes periodically wake up and

“double check” the channel for activities (Section 2.2.1). Unlike other unicast MAC

layer protocols, CMAC initially uses anycast (Section 2.2.2) to transmit the packet

to a potential forwarder that wakes up first. Awake candidate receivers will contend

to be the anycast receiver by prioritizing their CTS transmissions according to their

routing metrics to the sink. After receiving a CTS packet, the data packet will be

sent to the sender of the CTS packet immediately. Nodes will keep their radios “on”

for a short duration anticipating more packets whenever they successfully receive

data packets destined to them. This reduces the overhead of searching for awake

forwarders in subsequent transmissions. To overcome the disadvantage of anycast

such as higher RTS/CTS overhead and longer route stretch, CMAC converges from

anycast to unicast once it establishes contact with a receiver having sufficiently good

routing metric.

2.2.1 Aggressive RTS

The long preamble mechanism of BMAC incurs high latency in order to ensure

that the receiver is awake before sending data packets. However, the receiver may

wake up much earlier than the end of the preamble, which makes part of the preamble

transmission wasteful. By observing such a disadvantage, we propose to use aggressive

RTS to replace the long preamble, which breaks up the long preamble into multiple

RTS packets (thus also called an RTS burst). The RTS packets do not use long

preambles, and are separated by fixed short gaps each of which allows receivers to

start sending back CTS packets. Once the transmitter receives a CTS packet, it

18

sends the data packet immediately. Each RTS gap need not accommodate an entire

CTS transmission as long as the RTS sender can detect the preamble and cancel

the next RTS transmission accordingly. The number of RTS packets to be sent in

one RTS burst depends on the duty cycle length. For the same duty cycle length,

the duration of one RTS burst is roughly the same as the long preamble used by

BMAC. If nodes uniformly randomly wake up, the expected latency at each hop can

be roughly reduced by half. Using pseudo-code, the operations of the RTS sender are

summarized as Algorithms 1 and 2.

Algorithm 1: OnBackoffEnds(pkt)

// Try to initiate an RTS burst for packet pkt.
RSSI ← GetRSSI();1

if (RSSI < CSThreshold) then2

rts.src← GetMyLocation();3

rts.dst← pkt.dst;4

rts.dist← Distance(rts.src, rts.dst);5

rts.nav ← GetNav();6

Send(rts);7

rts cnt← 1;8

InterRTSTimer.start(Tinter−RTS);9

else10

BackoffTimer.start(RandomUnifrom(0,maxBackoff));11

end12

Aggressive RTS can provide the opportunity for receivers to send feedbacks quickly,

but if the receiver wakes up and finishes the channel assessment within a single RTS

gap, the RTS burst may become undetected. One way to resolve this issue is to

lengthen the awake time at each node. But to maintain a certain duty cycle, longer

19

Algorithm 2: OnInterRTSEnds()

// Decide if more RTS packets should be sent

Td ← GetDutyCycleLength();1

maxRTS ← Td

TxTime(rts)+TinterRTS

;
2

if (rts cnt ≤ maxRTS) then3

if (RadioState 6= IDLE) then //Already detected a valid preamble4

// Cancel all following RTS transmissions

return;5

else6

Send(rts);7

rts cnt + +;8

InterRTSTimer.start(Tinter−RTS);9

end10

end11

awake time also leads to longer sleep time, which can potentially introduce higher la-

tency. Hence, we propose to use a mechanism called double channel check to reliably

detect ongoing RTS bursts. Double channel check works by assessing the channel

twice with a fixed short separation between them each time a node wakes up. The

positive conclusion on busy channel from either check will keep the node awake an-

ticipating an RTS. Between these two channel checks, the radio can be put to sleep

mode to save energy.

To ensure that the double channel check can reliably detect RTS bursts, it is

important to examine the timings of channel assessments and RTS packets. Without

any constraint, there are four possible interactions between double channel check and

aggressive RTS.

1. The first channel check overlaps with an RTS packet. In this case, the second

check is canceled (Fig. 2.2(a)) and the node keeps awake for a while expecting

an RTS packet.

20

2. The first channel check falls into a gap of RTS packets, but the second check

reports a busy channel (Fig. 2.2(b)). In this case, the node also keeps awake for

a while expecting an RTS packet.

3. The two channel checks fall into two RTS gaps (Fig. 2.2(c)).

4. Both channel checks fall into the same RTS gap (Fig. 2.2(d)).

RTS RTS

Channel check

(a) Case 1

RTS RTS

Channel check

(b) Case 2

RTS RTS

Channel check

(c) Case 3

RTS RTS

Channel check

(d) Case 4

Figure 2.2: The double channel check mechanism in CMAC.

To ensure the correctness of the aggressive RTS and double channel check mech-

anism, case 3 (Fig. 2.2(c)) and 4 (Fig. 2.2(d)) should be avoided. To prevent case 3

from happening, the interval between the two channel assessments must be shorter

than the RTS transmission time. This can be satisfied by padding RTS packets with

extra bytes if needed. We discuss the choice of these parameters in Section 2.3 where

the implementation details are presented. To avoid case 4, firstly the RTS gap should

be fixed, which is achieved in CMAC by sending all RTS packets without assessing

the channel except the first one (Fig. 2.3). Secondly, the channel check interval should

also be fixed and must be longer than an RTS gap. Such a “double-check” mechanism

21

RTS RTS RTS RTS RTS RTS

time

CCA No CCA

Figure 2.3: CCA in each aggressive RTS burst.

ensures that nodes will not miss any RTS burst in their vicinity. The operations of

double channel check are summarized in the pseudo-code shown in Algorithms 3 and

4.

Algorithm 3: OnWakeUp()

// Perform the first channel check after waking up.

Td ← GetDutyCycleLength();1

Ti ← GetDoubleCheckInterval();2

// Same as BMAC, use up to 5 samples to improve the robustness

maxSamples ← 5;3

i← 1;4

repeat5

RSSI ← GetRSSI();6

if (RSSI < CSThreshold) then7

ChannelCheckTimer.start(Ti);8

return;9

end10

i + +;11

until (i = maxSamples) ;12

// No second channel check since the first one is positive

Recv(pkt);13

To avoid the scenario where a node wakes up and detects the energy of the last

RTS packet in a burst, the entire duration of an aggressive RTS burst is set to be

one more RTS packet longer than receiver’s duty cycle length. Let d, r, g, n denotes

22

Algorithm 4: OnChannelCheckTimerExpire()

// Perform the second channel check.

Td ← GetDutyCycleLenght();1

maxSamples ← 5;2

i← 1;3

repeat4

RSSI ← GetRSSI();5

if (RSSI < CSThreshold) then6

Sleep(Td);7

return;8

end9

i + +;10

until (i = maxSamples) ;11

// The second channel check is positive, start to receive the

packet

Recv(pkt);12

the duty cycle length, the time to transmit an RTS packet, the interval between two

RTS packets, and the number of RTS packets in a burst, respectively. Then n must

satisfy

n ≥ d d

r + g
e+ 1. (2.1)

2.2.2 Anycast Based Forwarding

For unicast packet forwarding, the next-hop node is chosen among a set of nodes

that can make routing progresses towards the destination (the sink in most sensor

networks), and the node that can minimize some routing metric such as geographical

distance is chosen as the next-hop node. But if nodes work at low duty cycles,

the latency of waiting for the next-hop node to wake up may still be high even if

Aggressive RTS is used. To mitigate such an impact on performance, we observe that

among nodes that can make routing progresses, some of them may wake up much

23

earlier than the next-hop node. Hence, if these nodes can forward packets before

the next-hop node is available, the delay in packet forwarding can be reduced. For

example, suppose the duty cycle length is 1 and there are n such potential forwarders,

it takes on average 1
n+1

to get in contact with at least one of them. To exploit this

kind of spatial diversity, the sender needs to be notified when such a node wakes

up. CMAC achieves this by using a extended Aggressive RTS technique (Section

2.2.1 which allows potential forwarders to send CTS packets. We define the neighbor

nodes with smaller routing metrics to the destination than the sender as a forwarding

set.

However, more than one node in the forwarding set may try to reply to the same

RTS, and the one closest to the destination should be elected to receive the data

packet. In CMAC, the CTS transmissions are prioritized according to the routing

metrics of contending nodes. Nodes with better routing metrics can send CTS packets

earlier, while other overhearing nodes cancel their CTS transmissions accordingly.

Our approach can work with routing metrics such as geographical distance, hop count,

ETX[20], ETT[44] and PRR×Dist[59]. In this chapter, we only investigate the use of

geographical distance to resolve CTS contentions.

CMAC partitions the forwarding region into k subregions, R1, R2, . . . , R3, such

that nodes in Ri are closer to the destination than nodes in Rj for 1 ≤ i < j ≤ k

(Fig. 2.4). Each gap between two consecutive RTS packets is divided into k sub-

intervals called CTS slots. Nodes in region closer to the destination can send CTS

packets in earlier CTS slots. Each CTS slot is further divided into several mini-slots

to resolve the contention within each region, and each receiver will randomly choose

one mini-slot to start its CTS transmission. On detecting a busy channel, pending

24

Figure 2.4: Subetting the forwarding region in CMAC.

CTS transmissions will be canceled assuming the existence of another CTS (Fig. 2.5).

Note that even though the contention for sending CTS packets is low for very low

duty cycles, the above scheme is still necessary as the number of awake nodes will

increase with persistent traffic. The optimal selection of the number of CTS slots

and the number of mini slots depends on various factors including node density and

distance to the sink, and is an open problem. In the rest of this chapter, we use 3

CTS slots and 6 mini slots according to empirical performance measurement using

XSM nodes [21] on the Kansei testbed [9, 23]. The operations of the receiver are

summarized in pseudo-code in Algorithms 5 and 6.

2.2.3 Performance Analysis of Anycast

Anycast can establish contact with a forwarding candidate node faster than uni-

cast, but this is achieved at the cost of higher overhead and less routing progress

for each individual transmission. In this subsection, we analytically model the per-

formance of anycast. The metric used in this analysis is the normalized latency

representing the average latency of each transmission normalized by its geographical

25

CTS slot

RTS

mini-slot

Canceled RTS

CTS

Sender

Canceled CTS

Node in R1

Node in R1

Node in R2 Canceled CTS

Node in R3 Canceled CTS

Figure 2.5: CTS contention resolution in CMAC.

Algorithm 5: OnRecvRTS(rts)

// Operations after receiving RTS packet rts.
dst← rts.dst;1

src← rts.src;2

ds ← rts.dist; // Distance from RTS sender to the destination ;3

loc← GetMyLocation();4

d← Distance(loc, dst);5

if (d > ds) then // No participation if farther away than RTS sender6

nav = rts.nav; // Set network allocation vector (NAV) ;7

return;8

else// Participate the anycast9

if (Receiver is in region Rj) then10

MiniSlots← RandomUniform(0,maxMiniSlots);11

cts.src = GetMyAddress();12

cts.dst = src;13

cts.nav = rts.nav - TxTime(rts);14

CTSBackoffTimer.start(j − 1 + MiniSlots);15

end16

end17

Algorithm 6: OnCTSBackoffEnds()

// Operations when the CTS backoff ends

RSSI ← GetRSSI();1

if (RSSI > CSThreshold) then2

return;3

else4

Send(cts);5

end6

26

routing progress. For the rest of the analysis, the length of a duty cycle is normalized

to 1, and the notations used are summarized as follows.

• L: normalized latency.

• ρ: node density.

• S: area of the forwarding region.

• X: geographical progress made by anycast.

• Y : the latency of finding the first awake node in the forwarding set. Its CDF

is F (y) = 1− (1− y)n. Since the locations of nodes do no affect their wake-up

scheduling, Y is independent of X.

• r: transmission range.

• r0: the minimum progress required for a neighbor node to be present in the

forwarding set.

• d: distance from the transmitter to the destination.

Note that lower duty cycle leads to longer duty cycle length since the time to check the

channel is fixed. Then for very low duty cycles, the RTS and data packet transmission

times could be ignored. Hence, E[Y] ≈ ∫ 1
0 ydF (y) = 1

ρS+1
. Then the expected

normalized latency could be expressed as

E[L] = E[
Y

X
] = E[Y]E[

1

X
] =

1

ρS + 1
E[

1

X
], (2.2)

where the second equality is due to the independence of X and Y .

To compute E[1
X

], consider the upper half of the forwarding region as region OAR

in Fig. 2.6, where O is the sender and D is the sink. As illustrated in Fig. 2.6, for

27

D(d,0)R(r,0)

B

O

A
C

x
r0

Figure 2.6: Calculation of E[1
X

] in the analysis of the anycast protocol in CMAC.

any point B between O and R with x coordinate no less than r0, its weight is 1
x

times

the length of arc
_
BC (Fig. 2.6), while the length of

_
BC is

| _BC| = |CD| × 6 CDO (2.3)

= |CD| arccos
|CD|2 + |OD|2 − |OC|2

2|CD||OD| (2.4)

= (d− x) arccos
(d− x)2 + d2 − r2

2d(d− x)
. (2.5)

Hence,

S =
∫ r

r0

| _BC|dx (2.6)

=
∫ r

r0

(d− x) arccos
(d− x)2 + d2 − r2

2d(d− x)
dx, (2.7)

and

E[
1

X
] =

∫ r
r0

1
x
| _BC|dx

S
(2.8)

=

∫ r
r0

1
x
(d− x) arccos (d−x)2+d2−r2

2d(d−x)
dx

∫ r
r0

(d− x) arccos (d−x)2+d2−r2

2d(d−x)
dx

. (2.9)

There are three parameters affecting E[L]: r0, S and ρ. S depends on r0 and d.

Fig. 2.7(a) plots E[L] versus r0 for various d values when ρ = 10. It can be seen that

28

for a certain node density, larger d leads to smaller E[L], but d only affects E[L] a

little. In Fig. 2.7(b) d is fixed to be 10, while ρ is varied from 5 to 15. It can be seen

that higher node density clearly leads to smaller E[L]. In addition, for certain d and

node density, there is an optimal value of r0 to optimize E[L] (the minimum points

of the curves in Fig. 2.7(a) and 2.7(b)). This behavior is expected since small r0 may

lead to little routing progresses, while large r0 may exclude too many good potential

forwarders and thus may limit the benefit of spatial diversity.

After finding the optimal r0, nodes still need to decide to use anycast or unicast.

For unicast, the normalized latency is bounded by 1
2r

. Hence, for anycast to be

superior than unicast on average, it should have lower expected normalized latency.

Using Equation (2.2), this criterion leads to the following critical node density above

which anycast is better

ρ >
2rE[1

X
]− 1

S
. (2.10)

Using this formula, we can compute if nodes should use anycast or unicast given

the parameters of the network or a region of the network. Note that if a node knows

the number of nodes in its forwarding set, it can locally make the decision using a

similar approach. Specifically, for a node with n neighboring nodes in its forwarding

set with each node making ri progress (1 ≤ i ≤ n), it can decide if anycast is better

if

1

n(n + 1)

n
∑

i=1

1

ri

<
1

2 max1≤i≤n{r}
. (2.11)

2.2.4 Optimizing the Forwarding Set

Using anycast, nodes that are closer to the destination and that wake up earlier

can pick up the packet and make some progresses in routing. However, as shown

29

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
[L

]

r0

d=5r, rho=10
d=10r, rho=10
d=15r, rho=10

(a) Anycast Performance, vary d

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[L

]

r0

d=10r, rho=5
d=10r, rho=10
d=10r, rho=15

(b) Anycast Performance, vary ρ

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14 16 18 20

N
od

e
D

en
si

ty
 (

rh
o)

d/r Ratio

r0=0.01r
r0=0.1r
r0=0.2r
r0=0.3r
r0=0.4r
r0=0.5r

(c) Critical Density

Figure 2.7: Performance analysis of the anycast protocol in CMAC.

30

in Section 2.2.3, including every node in the forwarding region may not be optimal,

and the performance can be improved if the nodes included in the forwarding set

are chosen carefully. In this section, we present two algorithms to select the optimal

forwarding set. The first one chooses the forwarding set to optimize the normalized

latency defined in Section 2.2.3, and the second one attempts to optimize the end-to-

end latency.

Optimizing Expected Normalized Latency

Given m nodes {Ni1 , Ni2 , . . . , Nim} in the forwarding set with node Nik , k =

1, . . . , m, making geographical progress of ri, the normalized latency is

E[L({ri1 , ri2, . . . , rim})] =
1

m(m + 1)

m
∑

j=1

1

rij

. (2.12)

Hence if a sender has n candidate nodes in its forwarding region, there are totally

2n − 1 possible forwarding sets for this node. However, computing the expected

normalized latency for all these sets are computational inefficient. To reduce such

computation overhead, we propose Algorithm 7 to find the optimal forwarding set.

This algorithm adds one node to the forwarding set each time and computes the

expected normalized latency provided by the current set. The nodes are added into

the set in a way such that nodes closer to the sink are added earlier. In other words,

Algorithm 7 computes the normalized latencies of all prefix sets, instead of all subsets,

of the sorted candidate set, and selects the prefix set that has the lowest expected

normalized latency.

Even though Algorithm 7 does not search all possible subsets, it can find the

optimal forwarding set. This can be seen simply by a substitution argument. Suppose

the optimal set S1 is not a prefix set, then there exists a node Nj in the forwarding

31

Algorithm 7: Choosing forwarding set to optimize local expected normalized
latency

Input: Nodes {(N1, r1), (N2, r2), . . . , (Nn, rn)} with rj > rk for j < k
Result: Optimal forwarding set in terms of expected normalized latency
OptimalSet← {};1

max←∞;2

i← 1;3

while (i ≤ n) do4

if (E[L({r1, r2, . . . , ri})] < max) then5

max← E[L({r1, r2, . . . , ri})];6

OptimalSet← L({r1, r2, . . . , ri});7

end8

end9

return OptimalSet;10

region that is closer to the destination than at least one node, say node Nk, in S1.

Then if we substitute Nk in S1 by Nj to form a new set S2, then the expected

normalized latency of set S2 will be lower than that of set S1. Hence, it follows that

checking all prefix sets is sufficient for finding the optimal forwarding set as done by

Algorithm 7.

Optimizing Expected End-to-End Latency

The ultimate goal of finding optimal forwarding set is to minimize the end-to-

end latency from the sender to the receiver. Hence, if the sender has the knowledge

on the expected latencies from all nodes in its forwarding region to the destination,

then it can use such information to select the optimal forwarding set. Given m nodes

{Ni1 , Ni2, . . . , Nim} included in the forwarding set, and the average end-to-end latency

from node Nik , k = 1, . . . , m, to be li, then the expected end-to-end latency from the

32

sender is

E[L({li1 , li2 , . . . , lim})] =
1

m + 1
+

1

m

m
∑

j=1

1

lij
. (2.13)

If the nodes included in the forwarding set are sorted in ascending order of their

average end-to-end latency to the destination, it can be shown that checking all

prefix sets is sufficient for finding the optimal forwarding set. The proof is also by

the substitution argument similar as the one for Algorithm 7. Hence, we propose

Algorithm 8 to choose the optimal forwarding set if the average end-to-end latencies

from all nodes in the forwarding region are known.

Algorithm 8: Choosing forwarding set to optimize expected end-to-end latency

Input: Nodes {(N1, l1), (N2, l2), . . . , (Nn, ln)} with lj < lk for j < k
Result: Optimal forwarding set in terms of expected end-to-end latency
OptimalSet← {};1

max←∞;2

i← 1;3

while (i ≤ n) do4

if (E[L({l1, l2, . . . , li})] < max) then5

max← E[L({l1, l2, . . . , li})];6

OptimalSet← L({l1, l2, . . . , li});7

end8

end9

return OptimalSet;10

2.2.5 Converging from Anycast to Unicast

Although anycast obviates the need for synchronization messages and has better

chance to make progress in packet forwarding than unicast, it has two main short-

comings. First, anycast may choose suboptimal routes because the best next hop is

sleeping or due to interference. Second, the overhead of anycast RTS/CTS exchange

33

is usually higher than its unicast counterpart. Hence, a mechanism is needed to re-

duce the overhead incurred by anycast, and we propose convergent packet forwarding

to resolve these problems as follows.

In CMAC, the node will remain awake for a short duration after receiving a data

packet (The choice of this duration is analyzed in Section 2.2.6). During this period,

a node with better routing metric may wake up and become the receiver of the next

anycast. If the latest anycast receiver has a routing metric close to the best one

(both falling in the same CTS slot), CMAC will use unicast instead to reduce the

overhead. Taking Fig. 2.4 as an example, node C might be the earliest to wake up,

followed by B and then by node A. Since A is already in the optimal region (region

R1 in Fig. 2.4), the transmitter starts to unicast to A regardless if there is any other

sleeping node in R1 with greater progress. However, it is possible that there is no

node in region R1 in Fig. 2.4. Hence, if the transmitter cannot find a better next hop

than the current one after a full duty cycle, it switches to unicast. In this way, the

packet forwarding converges from anycast to unicast for each link. After some time

without successful data packet reception, CMAC will timeout and nodes will again

start following unsynchronized idle duty cycles.

The unicast after the convergence process may or may not use RTS/CTS. In our

experiments, CMAC does not use RTS/CTS after convergence for fair comparison

with BMAC. In our simulations, CMAC uses RTS/CTS that is similar to 802.11

after convergence for comparison with 802.11, SMAC and GeRaF.

If the sensed event moves, the source nodes may continuously change with each of

them generating only a small number of packets. In this case, the convergence may

still happen at places closer to the destination where the routes may be more stable.

34

For some other cases such as low data rates, the convergence may not happen, but

CMAC can still use aggressive RTS and anycast to make quick progress towards the

sink.

Convergence Time

If the sender is backlogged, the convergence from anycast to unicast either when

the sender can not find a better node than current one, or when a node in the best

forwarding subregion (R1 in Fig. 2.4) wakes up and its CTS packet is received by the

sender. For the former case, the convergence takes one duty cycle to finish since this

duration is needed to learn that there are no better forwarders. For the latter case,

using the notations in Section 2.2.3, the expected latency Lc for at least one node is

this region to wake up is

Lc =
1

ρS1 + 1
, (2.14)

where S1 is the area of the best forwarding subregion and is derived similarly as

Eqn. (2.7). Let r1 denote the minimum geographic progress made by nodes in this

region, then

S1 =
∫ r

r1

(d− x) arccos
(d− x)2 + d2 − r2

2d(d− x)
dx. (2.15)

Using the forwarding region division scheme in Fig. 2.4, the latency from sending the

first RTS packet until the convergence finishes is plotted in Fig. 2.8. From the figure,

it can be observed that the convergence latency decreases slowly with the increase in d

due to the slow change of the forwarding region shapes. Density ρ has more significant

impact on the convergence time with higher density leading to faster convergence.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
on

ve
rg

en
ce

 L
at

en
cy

 (
N

or
m

al
iz

ed
 to

 1
 D

ut
y

C
yc

le
)

Distance to the Sink (Normalized to Transmission Range)

rho=10
rho=15
rho=50

rho=100

Figure 2.8: Numerical results for convergence latency.

2.2.6 Awake Period after Receiving a Packet

To reduce the packet delivery latency, a long awake duration after receiving each

packet is preferred. But longer awake period also leads to more energy consumption.

Hence, nodes need to optimize the length of this period based on the observed traffic

information such as average packet arrival rate to accommodate latency or energy

consumption requirements. In what follows, we use a simple model to analyze the

latency and power consumption for different awake durations. The duty cycle length

is normalized to 1, and other notations are listed below.

• A: active duration after receiving a packet.

• Z: packet arrival interval (a random variable).

• G: the CDF of Z.

• λ: average packet arrival rate.

36

• pr: power for idle listening and receiving.

• pt: power for transmitting.

If the next packet arrives at the sender before the active duration A times out, which

happens with probability P{Z < A} = G(A), unicast will be used. Hence the latency

is 0 (before transmitting the data packet), and the idle listening for period Z is the

single source of energy consumption. Here the energy consumption on the data packet

transmissions and receptions is omitted since it is the same regardless of the choice of

the awake period. Otherwise, if the next packet arrives at the sender after the active

duration times out, which happens with probability P{Z ≥ A} = 1−G(A), anycast

will be used. Hence the average latency is the average time needed to contact at least

one receiver which is 1
n+1

, and the average energy consumption has two components,

idle listening for duration A and transmitting aggressive RTS for 1
n+1

. Therefore, the

average latency La and average energy consumption Ea are

La =
1

n + 1
(1−G(A)),

Ea = G(A)prE[z|z < A]

+(1−G(A))(prA + pt

1

n + 1
).

If the packet arrival process is Poisson with parameter λ, then G(A) = 1− e−λA, and

E[z|z < A] =

∫A
0 zλe−λzdz
∫A
0 λe−λzdz

=
1
λ
− (A + 1

λ
)e−λA

1− e−λA
. (2.16)

Hence,

La =
e−λA

n + 1
, (2.17)

Ea =
pr

λ
+ (

pt

n + 1
− pr

λ
)e−λA. (2.18)

37

We plot in Fig. 2.9(a) and Fig. 2.9(b), La and Ea versus A for different λ and n (pr = 1

and pt = 1.5 for simplicity). It can be seen that La decreases with the increase of

A given a certain n, but Ea has more complex variation patterns. Using Equation

(2.18) we can see that there are three cases as follows.

1. If pt

n+1
< pr

λ
, Ea increases with A up to pr

λ
. This is because with sufficient node

density, the sender can get in contact with a receiver quickly, and thus keeping

awake for long time after receiving a packet wastes energy.

2. If pt

n+1
= pr

λ
, Ea = pr

λ
, in which cases the packet arrival rate and node den-

sity reach the equilibrium related to the ratio between transmission power and

reception power.

3. If pt

n+1
> pr

λ
, Ea decreases with A down to pr

λ
. This is because with packet

arrival rate increases, the average idle listening time before receiving another

packet decreases, and thus if the sender does not have a forwarding set that is

sufficiently large (large n), the energy consumed in idle listening may become

insignificant compared to the energy consumed by transmitting RTS packets.

2.2.7 Synchronized Wake-up Schedule

In order to save more energy after convergence, nodes can synchronize with their

upstream and downstream nodes to use synchronized wake-up schedule instead of

keeping fully awake. In this section, we present a CMAC variant called CMAC-S

using a staggered scheduling idea similar to DMAC [41] after convergence. When the

transmitter intends to converge from anycast to unicast, it synchronizes its schedule

with the receiver. The two nodes will maintain the staggered schedule as long as

38

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.1 0.2 0.3 0.4 0.5

L
a

A

(lambda=10,n=9)
(lambda=10,n=14)
(lambda=10,n=19)
(lambda=20,n=19)
(lambda=20,n=29)
(lambda=20,n=39)

(a) Impact of A on Latency

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

E
a

A

(lambda=10,n=9)
(lambda=10,n=14)
(lambda=10,n=19)
(lambda=20,n=19)
(lambda=20,n=29)
(lambda=20,n=39)

(b) Impact of A on Energy

Figure 2.9: Numerical results for convergence performance analysis in CMAC.

there is traffic between them. After a certain duration without traffic, the nodes go

back to using unsynchronized duty cycling.

In CMAC-S, the transmission and reception slots are split. The synchronized

schedule is illustrated in Fig. 2.10. Each wakeup cycle has a sleep time slot and

an active time slot. In active time slot, time is divided into a receiving slot and

a transmitting slot. Nodes can only transmit data during the transmitting slot.

Therefore, the downstream nodes must schedule their receiving time slot to match

their upstream node’s transmitting slot. Fig. 2.11 illustrates the synchronization

schedules of a few synchronized nodes. The receiving and transmitting slots are

staggered such that the upstream nodes can transmit to downstream nodes without

contention between them. The staggered schedule allows nodes to forward packets

from the source to the sink with low delay.

When two nodes agree to synchronize, they must schedule their wakeup periods

in a staggered way. We consider the following two cases for synchronization.

39

Figure 2.10: Synchronization Schedule in CMAC-S.

Figure 2.11: Staggered synchronization schedules in CMAC-S.

• The sender is the source and is not synchronized. When a sender is not synchro-

nized, the schedule can be started at any time. Fig. 2.12 illustrates a scenario

where an unsynchronized sender wants to synchronize with the receiver. The

schedule will be started as of the time the sender sends the RTS packet for the

first successful data transmission.

• The sender is an intermediate node, and is already synchronized with its up-

stream node. As the sender is already synchronized, it can not change its sched-

ule. So when it needs to synchronize, it explicitly indicates the time elapsed

since the beginning of the current transmitting slot (see Fig. 2.13). The receiver

uses this offset to determine its staggered wakeup schedule to properly match

40

Figure 2.12: The synchronization initiated by the source in CMAC-S.

Figure 2.13: The synchronization initiated by intermediate nodes in CMAC-S.

the sender. Therefore even if the transmission failed for the first few tries, the

receiver can still know the time to start the schedule.

Multiple sources may simultaneously send data in case of a static event that

triggers multiple nodes or in case of a mobile event. When multiple sources need to

report data to the sink synchronization needs to be managed across merging routes.

If a sender is not synchronized but the receiver is already synchronized with an-

other sender (at the junction of two merging flows), it follows the receiver’s schedule.

The receiver indicates the time elapsed since the beginning of the last receiving time

slot in the CTS header, and the sender learns when to start its transmitting slot. If

41

Figure 2.14: Accommodation of upstream schedules in CMAC-S.

both the sender and the receiver are synchronized with their upstream nodes (receiver

is synchronized with another sender) but they are not synchronized with each other,

the following approaches can be used to adjust their synchronization:

• The sender can match the receiver’s schedule and request its upstream nodes to

adjust their wakeup schedules. However, this causes a ripple effect that needs

to be propagated to the leaf nodes of the tree.

• The receiver switches to a wakeup schedule that satisfies the new sender as well

as the old sender(s). However, this requires the receiver to maintain a higher

active duty cycle (see Fig. 2.14).

• The sender splits its receiving and transmitting slots to match with its up-

stream as well as downstream nodes as shown in Fig. 2.15. We have chosen

this approach to implement as it incurs lower overhead compared to the other

approaches.

42

Figure 2.15: Accommodation of downstream schedules in CMAC-S.

2.3 Experimental Evaluation

Our TinyOS [7] implementation1 of CMAC is based on XSM [21] which is similar

to Mica2 mote [4] using the same CC1000 radio [1] and microcontroller. We set the

mini-slot length to the transmission time of 1 byte on CC1000 radio which is 416µs, a

period long enough to accommodate the propagation delay and busy channel detection

(One channel sampling takes about 265µ to finish). Other parameters are summarized

in Table 2.3. The Kansei testbed consists of 105 XSM nodes forming a 15×7 topology

with node separation of 3 feet. The transmission range is set to 4 rows/columns in

the testbed. Each XSM node is attached to a Linux-based stargate [5] through which

command messages are sent to trigger the generation of packets.

We evaluate the throughput, latency, and energy efficiency of CMAC against

BMAC for two basic event scenarios, static event and moving event. Here through-

put refers to the total number of packets received at the sink in 600 seconds, latency is

the average delay experienced by a packet, and energy efficiency refers to the energy

consumption of the entire network for delivering one 36-byte packet to the sink (called

1Code available at http://www.cse.ohio-state.edu/~liusha/cmac.

43

CTS-slot length 7.488ms
Number of CTS-slots 3
Mini-slot length 416µs
Number of mini-slots 6
RTS packet size 44 bytes
Double channel check interval 10ms
Sensing range 4ft

Table 2.1: Default experiment parameters for CMAC

normalized energy). We measure the energy consumption by keeping track of the du-

ration nodes spend on idle, receiving, transmitting and sleeping states, and the power

consumption rate presented in [48] is used to calculate the total energy consumption.

Since CMAC uses geographical progress as the metric to classify potential forwarding

nodes, we run greedy geographic routing on top of BMAC. Since the network topology

on the testbed a grid, routing void in greedy forwarding is eliminated.

Note that the double channel check almost doubles the times of channel sampling

in BMAC. Thus CMAC consumes more energy on channel assessment than BMAC

if the duty cycle length is the same. To be fair, we evaluate CMAC with duty cycle

length double that of BMAC in this section. For example, if BMAC uses 300ms duty

cycle length, CMAC will use 600ms. Since using 300ms duty cycle length in BMAC

is roughly 1% duty cycle, we denote it by BMAC 1%, and denote CMAC using 600ms

duty cycle length as CMAC 1%. To provide the baseline for throughput and latency

evaluation, we also gathered the data for BMAC and CMAC without duty cycling,

denoted by BMAC 100% and CMAC 100% respectively.

44

2.3.1 Static Event Scenarios

In this set of experiments, we emulate an event happening at one corner of the

testbed. The source node sends all packets to the sink located at the diagonally

opposite corner. We vary the data rate at source nodes, and the results are shown in

Fig. 2.16.

For low data rates (0.2 ∼ 0.5 packets/sec.), both CMAC 1% and BMAC 1% can

deliver all packets (Fig. 2.16(a)), but Fig. 2.16(b) shows that CMAC 1% exhibits

better latency performance than BMAC 1% due to the capability of aggressive RTS

and anycast to discover awake potential forwarders.

Under high data rates (≥ 1 packet per second), BMAC 1% can not deliver all

packets to the sink, and the flat curve shows that the channel capacity is reached due

to the use of long preambles and multihop contention. CMAC 1% saves unnecessary

long preambles, and thus not only significantly outperforms BMAC 1% but also pro-

vides similar throughput as BMAC 100% and CMAC 100% (Fig. 2.16(a)). In some

cases, e.g., data rates of 2 and 5 packets per second, CMAC 1% even provides latency

performance very close to that of BMAC 100% (Fig. 2.16(b)). This is due to the

convergence of CMAC from anycast to unicast and the saving on anycast overhead.

At the data rate of 10 packets per second, CMAC 1% does not provide throughput

and latency very close to BMAC 100% or CMAC 100% because the high contention

leads to some convergence duration timeouts which result in more RTS/CTS packets,

but CMAC 1% still exhibits significant improvement over BMAC 1%.

Fig. 2.16(c) shows CMAC 1% utilizes the energy more efficiently than BMAC 1%

and BMAC 100%, and the energy efficiency becomes better as the data rate increases.

45

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

pa
ck

et
s

in
 6

00
 s

ec
.)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(a) Throughput

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

L
at

en
cy

 (
se

c.
)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

 1.7

 1

 0.05
 0.5 0.2

(b) Latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9 10N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s/
Pa

ck
et

)

Data Rate (packets/sec.)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(c) Energy Efficiency

Figure 2.16: Experiment results of throughput, latency and energy efficiency perfor-
mance of CMAC and BMAC under different data rates.

46

Hence, we conclude that CMAC is more suitable for providing high throughput and

low latency when the idle duty cycle is low.

2.3.2 Moving Event Scenario

To evaluate the performance of CMAC for moving events, we let the emulated

event move along the bottom edge of the testbed at different speeds where faster

speed triggers more packets. The results of throughput, latency and energy efficiency

are shown in Fig. 2.17.

Fig. 2.17(a) exhibits the advantage of CMAC 1% over BMAC 1% in terms of

throughput. The throughput of BMAC 1% increases with the increase of the moving

speed for slow speeds, but it gradually drops after the moving speed exceeds 1 row/sec.

However, the throughput increase of CMAC 1% shows that it can accommodate the

packets generated due to faster event moving speed. Fig. 2.17(b) shows remarkable

advantage of CMAC 1% over BMAC 1% in latency (less than 1s compared to more

than 100s). For BMAC 1%, the queueing delay contributes to most of the latency and

is due to the use of long preambles. Fig. 2.17(c) shows the advantage of CMAC 1%

in energy efficiency. CMAC 1% saves 75% ∼ 95% normalized energy of BMAC 1%.

In addition, the normalized energy consumption of CMAC 1% decreases gradually

with the increase of moving speed because there are more opportunities for CMAC

to converge when there are more active flows. But for BMAC 1%, the normalized

energy consumption increases sharply due to the inefficiency of long preambles.

2.3.3 Anycast Performance

For low data rates, CMAC may not be able to converge from anycast to unicast

because the traffic may not be enough. In such cases, the performance of CMAC

47

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2.5 2 1.5 1 0.5 0.1
T

hr
ou

gh
pu

t (
pa

ck
et

s
in

 6
00

 s
ec

.)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(a) Throughput

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2.5 2 1.5 1 0.5 0.1

L
at

en
cy

 (
se

c.
)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(b) Latency

 0

 1

 2

 3

 4

 5

 6

 2.5 2 1.5 1 0.5 0.1N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s/
Pa

ck
et

)

Event moving speed (rows/sec.)

BMAC 1%
CMAC 1%

(c) Energy Efficiency

Figure 2.17: Experiment results of throughput, latency and energy efficiency perfor-
mance of CMAC and BMAC for moving events.

48

depends on the aggressive RTS and anycast mechanisms. So, we evaluate the per-

formance of the aggressive RTS and anycast mechanism in this section. The duty

cycles are 1% and 0.1%, where each cycle is 3000ms and 6000ms respectively for

BMAC 0.1% and CMAC 0.1%. The source node is located at one corner, and the

sink is at the diagonally opposite corner. We vary the node density by adjusting the

transmission range from 3 rows/columns to 8 rows/columns and run each experiment

for 600 seconds. The data rate is chosen such that every packet is purely anycast

enroute without any convergence or queuing delay. Due to the limited size of the

Kansei testbed, we present the latency normalized by the hop count of unicast, i.e.,

Latency
Hops

, and the results are shown in Fig. 2.18(a) and 2.18(b) (Fig. for throughput are

omitted since all protocols can deliver all packets to the sink).

CMAC reduces the latency of BMAC by about 33% at both 1% and 0.1% duty

cycles except for transmission range of 8 rows with 1% duty cycle, where the improve-

ment is not very significant. The reason for this is that the packet can take as few as

2 hops to reach the destination while the last-hop transmission does not use anycast

since the destination is already in range.

We also collect the route stretch of anycast, which is represented by the average

number of hops of anycast normalized by the hop count of unicast. Fig. 2.18(c) shows

CMAC 0.1% has larger stretch than 1%. This is because for higher duty cycles, there

are more choices in next hop nodes and thus the elected next hop is also better in

terms of the routing metric. As Figs. 2.18(a) and 2.18(b) show, even with route

stretch, CMAC 1% can still outperform BMAC 1% due to the use of aggressive RTS

and anycast.

49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 7 6 5 4 3
L

at
en

cy
/H

op
 (

se
c.

/h
op

)

Transmission Range (rows/columns)

BMAC 100%
CMAC 100%

BMAC 1%
CMAC 1%

(a) Per Hop Latency for 1% Duty Cycle

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 7 6 5 4 3

L
at

en
cy

/H
op

 (
se

c.
/h

op
)

Transmission Range (rows/columns)

BMAC 100%
CMAC 100%
BMAC 0.1%
CMAC 0.1%

(b) Per Hop Latency for 0.1% Duty Cycle

 0

 0.5

 1

 1.5

 2

 8 7 6 5 4 3

H
op

 C
ou

nt
 R

at
io

Transmission Range

CMAC 1%
CMAC 0.1%

(c) Route Stretch

Figure 2.18: Experiment results of anycast latency performance of CMAC 1% and
CMAC 0.1% under different node densities.

50

2.4 Simulation Based Evaluation

We also conduct simulations2 for large networks to compare the throughput, la-

tency and normalized energy consumption of CMAC with other protocols using ns2

[6]. Our study is based on the following six protocols:

• CMAC: Our proposed scheme described in Section 2.2.

• CMAC-S: Similar to CMAC, but a DMAC-like [41] staggered scheduling is

used after convergence.

• XMAC: The XMAC protocol proposed in [11] without automatic duty cycle

adaptation.

• GeRaF: Using the anycast protocol in Section 2.2.2 with 3ms active period,

which is similar in essence to [77, 76].

• SMAC: A full SMAC implementation as proposed in [70] with adaptive listen-

ing enabled. The active period is set to accommodate one packet transmission,

and thus the message passing is not activated.3

• DMAC: The DMAC protocol with all mechanisms proposed in [41] imple-

mented, but the wake-up schedules along with the data collection tree are as-

sumed to be predetermined.4

• CSMA/CA: Fully awake CSMA/CA protocol adapted from the 802.11 code

in ns2 distribution version 2.29.

2Code available at http://www.cse.ohio-state.edu/~liusha/cmac.

3The code is adapted from the ns2 distribution version 2.29.

4The code is adapted from the one from the authors that is downloadable at http://anrg.usc.
edu/www/index.php/Downloads.

51

• Anycast: Using the anycast mechanism described in Section 2.2.2 with radio

fully awake.

All simulations are conducted in a grid network deployed in an area of 2000m ×

2000m. The performance metrics include throughput, latency and energy efficiency

(or normalized energy consumption) which is defined as the energy consumed by

the entire network to deliver one byte of application data to the sink. We emulate

an event moving randomly at 10m/s in this area. Once the event is within the

sensing range, nodes continue sending reports about the event at the assigned data

rate. We use 250m as the transmission range, but our protocol works for any radio

transmission range. The routing protocol on top of unicast based MAC protocols is

greedy geographic routing where the local minimum is avoided due to the use of grid

topology. In this section, we present the performance comparison for various duty

cycles, data rates, node densities, sensing ranges, and event moving speeds. Unless

otherwise mentioned, the default parameters are set as shown in Table 2.2. All data

points are averaged over 10 simulations with different random seeds, and we also plot

the 95% confidence interval for each of them.

2.4.1 Duty Cycle

In this section, we evaluate the impact of the duty cycle on MAC layer protocols

by varying it from 0.1% to 1%. (GeRaF and SMAC use 1% to 10% duty cycles instead

because they can barely deliver any packet for lower duty cycles.) Fig. 2.19 shows

the comparison in throughput, latency and energy efficiency for CMAC, CMAC-S,

SMAC, DMAC, XMAC and GeRaF.

52

Table 2.2: Default Simulation Parameters
Simulation Running Time 400s RTS size 20 bytes

Bandwidth 38.4Kbps CTS size 14 bytes

Tx power 27mA ACK size 14 bytes

Rx power 10mA Data header 28 bytes

Idle power 10mA Data payload 50 bytes

CTS slot 0.2ms Anycast CTS 20 bytes

Active period 3ms Preamble+PLCP 24 bytes

Transmission Range 250m Interference Range 550m

Sensing Range 75m Node Separation 100m

Event Moving Speed 10m/s Number of Nodes 20× 20

Duty Cycle 0.1% Data Rate 1 packet/sec.

DMAC has the best energy efficiency because the maximum duty cycle in DMAC

is 40% [41] even when nodes are actively communicating. However, the advantage is

obtained at the cost of low throughput and high latency. With the increase in duty

cycle, DMAC’s throughput also increases, but it is still significantly lower than CMAC

and XMAC even for a duty cycle of 1%. Fig. 2.19(b) does not show the data points

for SMAC and DMAC because they incur latency more than 10 times higher than

CMAC and XMAC (not shown in for the sake of clarity). Such poor performance in

latency is due to the use of large transmitting and receiving slots (about 48ms each)

which leads to 32 times longer sleep time than CMAC and XMAC. SMAC has similar

trend as DMAC but even worse performance in throughput and latency, and thus we

exclude SMAC and DMAC in following evaluations to show clearer performance plots.

We also observe that GeRaF with 1% duty cycle has lower latency than CMAC

and XMAC with 0.1% duty cycle, but the throughput of GeRaF is extremely low

at such an low duty cycle. Due to the lack of mechanisms competitive to aggressive

53

RTS or strobed preambles [11], GeRaF may exhaust its RTS retry limit before any

potential forwarder wakes up and thus drop the packet. Since GeRaF also performs

much worse than CMAC or XMAC even though they use significantly higher duty

cycles, We exclude it from following discussions on performance comparisons.

For CMAC, it can be observed that CMAC outperforms other protocols in terms

of both throughput and energy efficiency (except for DMAC in energy efficiency).

Compared to XMAC, the benefit of using anycast is more significant for lower duty

cycles (from 0.1% to 0.3%), and such benefit also translates to more energy savings.

CMAC has better performance in throughput and latency than CMAC-S, but CMAC-

S is slightly more energy efficient due to the use of the staggered scheduling after

convergence.

2.4.2 Data Rate

In this section, we evaluate the performance of CMAC for various data rates from

0.05 packet/sec to 1 packet/sec. Fig. 2.20 shows the simulation results for through-

put, latency and normalized energy consumption for CSMA/CA, Anycast,CMAC,

CMAC-S and XMAC. CSMA/CA and Anycast have the highest throughput and

lowest latency, but they achieve these by using significantly more energy. XMAC can

not achieve performance close to these two 100% awake protocols in throughput and

latency because of the low duty cycle (1%), where the strobed preamble sequence

consumes significant amount of time. CMAC and CMAC-S, however, can achieve

throughput similar to CSMA/CA and Anycast. For latency performance, CMAC

and CMAC-S not only significantly outperform XMAC but also approach the low

latency provided by CSMA/CA and Anycast when the packet rate is higher than

54

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t (

bp
s)

Duty Cycle (%)

GeRaF
CMAC

CMAC-S
SMAC
XMAC
DMAC

(a) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
at

en
cy

 (
s)

Duty Cycle (%)

GeRaF
CMAC

CMAC-S
SMAC
XMAC
DMAC

(b) Latency

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Duty Cycle (%)

GeRaF
CMAC

CMAC-S
SMAC
XMAC
DMAC

(c) Energy Efficiency

Figure 2.19: Simulation results for CMAC, SMAC, DMAC, XMAC and GeRaF under
different duty cycles. The data points of GeRaF and SMAC have duty cycles 10 times
of the corresponding X coordinates (due to their inability to deliver any packet for
duty cycles lower than 1%. The data points on the latency of SMAC and DMAC are
not plotted because it is more than 10 times higher than other protocols.).

55

0.4 packets/sec. The performance gain in CMAC compared to XMAC is due to the

anycast component which reduces the amount of time seeking for the receiver from 1
2

to 1
n+1

where n is the number of nodes in forwarding region. When energy efficiency is

considered, CMAC is also much more significant than other protocols (Fig. 2.20(c)).

Similar to Section 2.4.1, CMAC has better throughput and latency performance than

CMAC-S, but CMAC-S is more energy efficient.

2.4.3 Node Density

Out analysis results in Section 2.2.3 and 2.2.5 show that node density has signifi-

cant impact on the performance of anycast and convergence from anycast to unicast.

In this section, we evaluate the performance of CMAC in networks with different

node densities. We vary the number of nodes in the network from 100 to 625 while

keeping the area and sensing range unchanged. Fig. 2.21 shows that the through-

put, latency and normalized energy consumption all increase with the increase of

node density. This is because for the same sensing range, more nodes are generat-

ing packets with higher node density. Fig. 2.21(a)) shows the results in throughput,

latency and energy efficiency for CMAC, CMAC-S and XMAC. It can be observed

that the throughput for CMAC and CMAC-S increases with higher density, but the

throughput of XMAC saturates the channel when the density is high (for scenarios

with more than 400 nodes in the network). The trends in latency performance for

CMAC and XMAC even diverges (Fig. 2.21(b)). The reason behind such different

trends is because CMAC utilizes anycast which benefits from higher node densities,

while it is difficult for XMAC to sustain increased traffic rate under high densities.

56

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

hr
ou

gh
pu

t (
bp

s)

Packet Rate (pkt/s)

CSMA/CA
Anycast
CMAC

CMAC-S
XMAC

(a) Throughput

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
at

en
cy

 (
s)

Packet Rate (pkt/s)

CSMA/CA
Anycast
CMAC

CMAC-S
XMAC

(b) Latency

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Packet Rate (pkt/s)

CSMA/CA
Anycast
CMAC

CMAC-S
XMAC

(c) Energy Efficiency

Figure 2.20: Simulation results for throughput, latency and energy efficiency perfor-
mance of CMAC, SMAC, GeRaF under different data rates.

57

Fig. 2.21(c) shows that CMAC and CMAC-S also significantly outperforms XMAC

in terms of energy efficiency.

2.4.4 Event Size

In this section, the performance of CMAC is compared to other protocols under

different event sizes. The event radius is varied from 50m to 200m with larger event

triggering more nodes to generate packets. The results for CMAC, CMAC-S and

XMAC are shown in Fig. 2.22. We can see that CMAC and CMAC-S outperform

XMAC in all aspects. Such performance gain can also be attributed to the benefit of

using anycast to quickly forward packets, which reduces both the channel contention

from excessive strobed preambles and queueing latency.

2.4.5 Event Moving Speed

In this section, the performance of CMAC is compared to XMAC for various event

moving speeds. The sensing range/event size is varied from 5m/s to 20m/s. With

increase in moving speed, a wider range of nodes are triggered to generate packets

in any given period. Fig. 2.23 shows the performance comparison, from which it can

be seen that for higher speed, CMAC has greater benefit over XMAC in terms of

latency and energy efficiency. Again this can be attributed to faster routing progress

achieved by anycast than strobed preambles, and the saving in strobed preambles

also translates to lower energy consumption.

2.5 Summary

Existing MAC layer solutions for low duty cycling either consume a lot of en-

ergy on periodic synchronization messages or incur high latency due to the lack of

58

 0

 200

 400

 600

 800

 1000

 1200

 625 400 225 100
T

hr
ou

gh
pu

t (
bp

s)

Number of Nodes

CMAC
CMAC-S

XMAC

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 625 400 225 100

L
at

en
cy

 (
s)

Number of Nodes

CMAC
CMAC-S

XMAC

(b) Latency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 625 400 225 100

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Number of Nodes

CMAC
CMAC-S

XMAC

(c) Energy Efficiency

Figure 2.21: Simulation results for CMAC, CMAC-S, XMAC, anycast and CSMA/CA
under different node densities.

59

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 175 150 125 100 75 50
T

hr
ou

gh
pu

t (
bp

s)

Event Size (m)

CMAC
CMAC-S

XMAC

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 200 175 150 125 100 75 50

L
at

en
cy

 (
s)

Event Size (m)

CMAC
CMAC-S

XMAC

(b) Latency

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 200 175 150 125 100 75 50

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Event Size (m)

CMAC
CMAC-S

XMAC

(c) Energy Efficiency

Figure 2.22: Simulation results for throughput, latency and energy efficiency perfor-
mance of CMAC, CMAC-S and XMAC for different event size.

60

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 15 10 5
T

hr
ou

gh
pu

t (
bp

s)

Speed (m/s)

CMAC
CMAC-S

XMAC

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 20 15 10 5

L
at

en
cy

 (
s)

Speed (m/s)

CMAC
CMAC-S

XMAC

(b) Latency

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 20 15 10 5

N
or

m
al

iz
ed

 E
ne

rg
y

(J
/b

yt
e)

Speed (m/s)

CMAC
CMAC-S

XMAC

(c) Energy Efficiency

Figure 2.23: Simulation results for throughput, latency and energy efficiency perfor-
mance of CMAC, CMAC-S and XMAC under different event moving speeds.

61

synchronization. To address such problems, we propose a MAC layer protocol called

CMAC that comprises of three mechanisms, aggressive RTS, anycast and convergence.

We also implement CMAC in TinyOS and evaluate it extensively. The experiment

and simulation results show that CMAC at low duty cycles can achieve comparable

throughput and latency performance as fully awake CSMA protocol, while greatly

outperforming other energy efficient protocols like BMAC, SMAC and GeRaF. Hence,

we conclude that CMAC is highly suitable for wireless sensor networks that require

low latency and high throughput as well as long network lifetime.

62

CHAPTER 3

Reverse Channel Aware MAC Layer Anycast

3.1 Motivation

The limitation in energy resources has posed significant challenges in deploying

large-scale unattended sensor networks. One of the key causes for energy wastage

is lost packet transmissions, which needs to be minimized to improve the network

lifetime. Packet transmissions may be lost due to various phenomena including time-

varying channel conditions, collisions, and interference. For low power devices high

packet loss rates have been reported in various studies [69, 69]. In order to provide

robustness against transmission failures, MAC layer anycast [35, 38, 55, 57, 33, 19, 77,

76, 67, 15, 16, 61, 30, 27, 29, 36, 42] based solutions have been explored. The key idea

is to leverage the broadcast nature of the channel, the density of the network, and

the lack of perfect correlation of the channels to the neighboring nodes. Anycasting

generalizes the concept of a next-hop node to a subset of neighboring nodes, among

which the forwarder is elected dynamically from the nodes that successfully receive

the packet transmission.

Anycasting requires a reliable acknowledgment from the elected forwarder which

is heavily dependent on the reliability of the reverse links. Even though it has been

reported in the literature that the reliability of synchronous acknowledgements is

63

higher than unicasting data packets through the same link [58, 14], which is confirmed

in our experiments, we find that for anycasting the performance impact of unreliable

reverse link is significant. In anycasting, failed acknowledgements and retransmissions

may cause multiple nodes to forward the duplicates of the same packet. The farther

the point of duplication from the sink, the more the wastage of energy since the total

cost is the summed-up cost of all paths taken by all duplicates. In addition, the

unreliability of the reverse link can also lead to unnecessary packet retransmissions.

Therefore, it is critical to consider reverse links in the design of anycast based MAC

layer solutions.

Fig. 3.1 gives an example illustrating how duplicates are created in MAC layer

anycast, where the priority numbers decide the order in which nodes send acknowl-

edgements. In Fig. 3.1, nodes B and C compete to forward packets for node A, and B

sends acknowledgements earlier than C. The first transmission from A does not reach

B, but C receives it and sends an acknowledgement. Even though the acknowledge-

ment is not received by A, C still starts to forward it. A then retransmits the same

packet, but this time B instead of C receives it, resulting in a duplication. Because

node A still receives no response, it retransmits again. This time both B and C re-

ceive it, and they suppress the duplicates according to their packet caches in MAC

layer. Suppose 40 transmissions are required for each copy to reach the sink from

either B or C, the total cost from A in this case will be 83 transmissions (3 for A to

anycast to B or C, 40 each from either B or C to the sink). Considering that further

duplicates may be created by downstream nodes of B and C, the actual cost could be

even higher.

64

B A C

time

Sender
Receiver

priority=2

Receiver

priority=1

C gets a copy and

forwards it

B gets a copy and

forwards it

failed ack

retransmission

B gets a copy,

suppresses this

duplicate

retransmission

failed ack

C gets a copy,

suppresses this

duplicatesuccessful ack

Successful transmission Failed transmission

Figure 3.1: Illustration on how duplicates are created in MAC layer anycast.

The existing MAC layer anycast protocols ignore the quality of the reverse link.

The selection of the forwarding set and the assignment of priorities for arbitration

is based either on geographic distance to the sink [38, 57, 77, 76, 67, 15, 16, 61, 30,

27, 29, 36, 42] or the delay metric advertised by the neighboring nodes [35]. A naive

forwarding set computation technique is to include all nodes [77, 76] that are better

than the current node according to a metric such as geographic progress or delay. In

[38], a simple threshold based approach is used for the selection where nodes with a

certain minimum geographical progress were selected in the forwarding set. Observing

the sub-optimality of such techniques, an algorithm for optimal selection of forwarding

nodes is studied in [35], which however assumes that the reverse link is reliable.

Using data from the testbed for packet size of 40 bytes transmitted at −25dBm

(details of the data are in Section 3.5.1), we construct the anycast forwarding sets and

compute the number of transmissions for all source-destination pairs on the Motelab

65

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio of Number of Transmissions

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 3.2: Ratio of EATX metrics (anycast in [35] versus unicast).

testbed [65]. The expected number of transmissions of a packet originating at a node

is represented by the metric EATX (Expected number of Anycast Transmissions),

which includes the duplicate copies that can be created due to poor reverse link

qualities. As the baseline of comparison, unicast routes along with ETX metrics [20]

are also computed. Fig. 3.2 shows the ratio of the EATX of the anycast protocol in

[35] to that of unicast. It can be observed that for more than 50% of the source-

destination pairs, the performance of unicast is better. For some cases, the anycast

protocol in [35] may even result in up to 7 times more transmissions than unicast.

To understand the reason for the poor performance in Fig. 3.2, we use the scenario

shown in Fig. 3.3 as an example. Node A needs to select its forwarding set from

candidate pool {B, C, D}. The packet reception rate and acknowledgement reception

rate pair (PRR, ARR) along with the EATX values of the candidates are also shown in

66

A

B

C

(0.28, 0.95)

(0.54, 0.98)

EATXC=8.5

EATXB=7.7

D

(0.33, 0.43)

EATXC=7.5

Figure 3.3: 3-node example to show why anycast algorithms that are reverse link
unaware perform suboptimally.

the figure. The resulting EATX performance and forwarding sets of various algorithms

are shown in Table 3.1. Using the algorithm in [35] which is reverse link unaware, the

resulting forwarding set is {D, B, C} with nodes listed according to their priorities,

and EATXA = 11.29 (the calculation of EATX is discussed in Section 3.3). However,

such performance is even worse than unicast using ETX [20] as the metric which gives

EATXA = 10.38 by using C as the next-hop node. In addition, examinations of all

possible forwarding sets show that a forwarding set containing both B and C with B

having higher priority is optimal with EATXA = 9.88. The anycast forwarding set

selection algorithm proposed in Section 3.4 can also successfully choose the optimal

forwarding set. In fact, evaluations in Section 3.5 show that the proposed algorithm

can achieve optimum for 80% of the cases. The reason for the poor performance

of the reverse link unaware anycast in [35] is because node D, which has the lowest

EATX value, is selected as the first node in the forwarding set regardless of its low

reliability in acknowledgements (ARR=0.43). Hence, the probability of duplication

is high once node D receives the packet.

67

Protocol Forwarding set sorted in priorities EATXA

Unicast C 10.38
Anycast in [35] D B C 11.29
Anycast in Section 3.4 B C 9.88
Optimal anycast B C 9.88

Table 3.1: Performance of various protocols for the 3-node example in Fig. 3.3.

The objective of this chapter is to characterize the impact of the unreliability of

reverse links on the performance of anycast protocols, and to design an efficient so-

lution for computing the forwarding sets for all nodes. To this end, we propose a

new metric to characterize the number of transmissions in the network for anycast

based MAC protocols, and design a forwarding set selection algorithm along with a

distributed anycast route construction protocol based on it. The key contributions of

this chapter are as follows.

• We propose a new anycast routing metric called EATX to guide the forwarding

set selection and route construction. We formulate the computation of EATX

considering forward and reverse link reliability.

• We propose an algorithm framework for forwarding set selection which takes

bidirectional channel quality into consideration. We also propose an anycast

route construction mechanism suitable for the prevailing convergecast traffic

pattern in wireless sensor networks.

• By analyzing data for unicast transmissions collected from the testbed, we ex-

hibit the nature of unreliability of data packets and corresponding acknowledg-

ments.

68

• Using simulations driven by data from the testbed, we show that our anycast

protocol that uses the forwarding set selection algorithm framework and the

route construction mechanism outperforms unicast and the anycast protocol in

[35].

The rest of this chapter is organized as follows. Section 3.2 summarizes related

work. In Section 3.3, we present the EATX metric formulation. In Section 3.4, we

propose the forwarding set selection algorithm framework and the route construction

mechanism with the reverse link quality taken into consideration. Section 3.5 provides

our study on the bidirectional link reliability and the performance evaluation com-

paring our algorithm with unicast and an adaption of the algorithm in [35]. Finally

Section 3.6 concludes this chapter.

3.2 Related Work

MAC layer anycast is originally proposed for wireless ad hoc networks in which

nodes are mobile [33, 19, 36, 27, 30, 61, 57]. To reduce the impact of outdated neighbor

information due to mobility, nodes do not rely on beacon messages to learn their

neighborhood or to determine the next hop forwarding nodes. Instead, neighboring

nodes that are closer to the destination contend to send acknowledgments according to

the geographical progresses they can make towards the destination. These protocols

use the RTS-CTS-DATA-ACK 4-way handshake and are mainly designed to reduce

the delay to learn that the current next-hop node has moved out of range. Similar

schemes are also proposed for wireless sensor networks to combat low packet reception

rate [15, 16, 29]. These papers also analyze various shapes of the forwarding region

69

in which forwarding nodes should reside, but they do not take the bidirectional link

quality into consideration.

MAC layer anycast is also proposed to work with low duty-cycling wireless sensor

networks [35, 38, 77, 76], where neighbor nodes that wake up earlier and are closer to

the sink can compete for the channel to send acknowledgments. To decide which nodes

have shorter delays before sending acknowledgments, CMAC [38] and GeRaF [77, 76]

divide the forwarding region into several subregions and allow nodes in subregions

closer to the sink to respond earlier. GeRaF [77, 76] simply put all nodes closer

to the sink into the forwarding region. CMAC [38] defines a minimum progress

requirement for each node to be in the forwarding region. This requirement is based

on several factors like node density and distance to the sink, but it still does not

take the link reliability into consideration. In [35], the probability for each neighbor

node to be awake is known by every node, which is used to compute the forwarding

set that optimizes the end-to-end delay to the sink. To characterize the impact

of packet losses, the algorithm in [35] can also be applied by converting neighbors’

awake probabilities into packet reception rates. However, as shown in Section 3.1,

the algorithm in [35] often performs worse than unicast due to the ignorance of the

reliability in acknowledgements.

Opportunistic routing [10, 75] is another paradigm utilizing the broadcast nature

of wireless transmissions. But instead of canceling acknowledgement transmissions

based on carrier sensing, protocols in this category rely on the receptions of acknowl-

edgements from nodes with higher priorities to do so. The difference in design is due

to the different communication patterns they are designed for. Opportunistic rout-

ing is designed for wireless mesh networks where the traffic is bursty, and thus some

70

batching techniques are used to improve the robustness as well as reducing the over-

head. In contrast, for wireless sensor networks which usually have low data rates, the

batched communication is not suitable, and thus the arbitration on packet forwarding

needs to be done on packet-by-packet basis.

In the literature, the reliability of unicast transmissions has been shown to be quite

different from the predicted values measured using broadcast packets [58, 73, 14].

More specifically, acknowledgments are most likely to be successful because of their

smaller sizes and the higher likelihood of a clearer channel following data packet

transmissions. Our bidirectional link quality data measured for the 154 nodes in the

Motelab testbed are in agreement with [58] (Section 3.5.1), but we also reveal that

the performance of anycast can still be severely impacted regardless of this common

finding (Section 3.1 and 3.5).

3.3 Anycast Routing Metric EATX

The number of packet transmissions in a network is directly related to the energy

consumption and the network lifetime. In addition, excessive unnecessary transmis-

sions leads to high interference and thus high packet loss rate. Hence, it is critical to

reduce the total number of transmissions in the network. Due to the lack of coordi-

nation among all potential forwarders in MAC layer anycast, packet duplicates may

be created, and multiple paths may be taken by them to reach the sink. To design

an efficient anycast forwarding set selection algorithm with this factor considered, we

introduce a metric called EATX in this section to characterize the total number of

anycast transmissions in the network. The ETX metric [20] was designed for a similar

71

objective, but it is applicable only for unicast. To facilitate further discussion, we

first introduce our anycast model and define several terms used in the formulation:

3.3.1 Model and Notations

We present the MAC layer framework which is similar to the framework used in

[35].

Each sender maintains a subset of neighboring nodes, called the forwarding set

in which each node is assigned a priority. The packet transmission is followed by a

sequence of slots, one for each node in the forwarding set. A node with higher priority

owns an earlier slot. Each potential forwarder except the first one monitors the

energy level in the channel in slots preceding its own to determine if a higher priority

forwarding node has acknowledged its reception of the packet. If so, it cancels its

own acknowledgement. In [55], optimizations are proposed for the contention based

arbitration approaches used in MAC layer anycast protocols, but the mechanism is

orthogonal to the topic of this chapter since the causes of acknowledgement failures

are different (ACK collision versus channel losses). For the sake of simplicity of

modeling, like in [77, 76, 38, 35], we assume that all link loss probabilities (forward as

well as reverse) are independent. We also assume nodes that receive the same packet

for more than once can suppress the duplications by using some techniques such as

packet caching at the MAC layer.

• Si: forwarding set of node i.

• rSi

ij : number of slots delayed before sending acknowledgements. A node with

smaller rSi

ij has higher priority or earlier slot in Si to send acknowledgements.

• pij: packet reception rate (PRR) for link i→ j.

72

• aij : acknowledgment reception rate (ARR) for link i → j given that node j

receives the packet. Note that aij is different from pji as shown in [58, 14].

• P Si

i : probability for node i to get a valid acknowledgment in one transmission

given forwarding set Si.

• T Si

i : number of transmissions from node i until a valid acknowledgment is

received given forwarding set Si.

• P Si

ij : probability for node j to get a packet and take the forwarding responsibility

in one transmission from node i given forwarding set Si.

• F Si

ij : number of packet copies forwarded by node j ∈ Si in Ti transmissions from

node i. Note that 0 ≤ F Si

ij ≤ 1.

• EATXSi

i : expected number of end-to-end anycast transmissions to forward one

packet to the sink.

To improve the readability, when the forwarding set Si is clear from the context, rSi

ij ,

P Si

i , T Si

i , P Si

ij , F Si

ij and EATXSi

i can be written as rij , Pi, Ti, Pij , Fij and EATXi,

respectively.

We derive the expression for EATX in three steps. First, we calculate the number

of transmissions needed for the sender to transmit one packet. Second, the expected

end-to-end number of transmissions for any forwarder is presented. Finally, we for-

mulate the EATX metric of the sender.

73

3.3.2 Expected Number of Transmissions (E[Ti])

The number of transmissions for one packet from node i is geometrically dis-

tributed with success probability

Pi =
∑

j∈Si

pijaij

∏

k∈Si:rik<rij

(1− pik)

. (3.1)

Hence, the expected number of transmissions from node i is

E[Ti] =
1

Pi

(3.2)

=
1

∑

j∈Si

[

pijaij

∏

k∈Si:rik<rij
(1− pik)

] . (3.3)

3.3.3 Expected Number of Transmissions from Each For-

warder (E[Cij])

Node j ∈ Si forwards the packet received from node i if and only if it has higher

priority than all other nodes in Si that also receive this packet. Therefore, for one

transmission from node i, the probability for node j to become a forwarder is

Pij = pij

∏

k∈Si:rik<rij

(1− pik). (3.4)

To calculate E[Fij], the expected number of packets forwarded by candidate j, we

consider the conditional probability for node j to forward one packet given that the

total number of transmissions is T . In other words, for the first T − 1 transmissions,

the sender (node i) gets no acknowledgment while getting a valid acknowledgment for

the T -th transmission. For any of the first T −1 transmissions to fail, the probability

is 1 − Pi. For node j to forward one packet in any of the first T − 1 transmissions,

the probability is (1− aij)Pij because its acknowledgement does not reach the sender

according to the base of the conditioning. Hence, in each of the first T − 1 transmis-

sions, the probability for node j to forward one packet is
(1−aij)Pij

1−Pi
. Given that the

74

sender gets a valid acknowledgment in the T -th transmission, which happens with

probability Pi, the probability for node j to forward the packet in this round is then

aijPij

Pi
.

Since each potential forwarder forwards the same packet at most once, for node

j to forward at least one packet (Fij = 1), it must become the forwarder in at least

one of the T transmissions, the probability for which is thus given by:

P{Fij = 1|Ti = T} = 1−
[

1− (1− aij)Pij

1− Pi

]T−1 (

1− aijPij

Pi

)

, (3.5)

and the expected number of packet copies forwarded by node j is

E[Fij] = E[E[Fij |Ti]]

= E[P{Fij = 1|Ti}]

= E

1−
[

1− (1− aij)Pij

1− Pi

]Ti−1 (

1− aijPij

Pi

)

= 1−
(

1− aijPij

Pi

)

∑∞
k=1

[

1− (1−aij)Pij

1−Pi

]k−1
(1− Pi)

k−1Pi

= 1− Pi − aijPij

1− [1− Pi − (1− aij)Pij]

=
Pij

Pi + (1− aij)Pij

3.3.4 EATX

Given E[Ti] and E[Fij], the EATX metric of node i is

EATXi = E[Ti] +
∑

j∈Si

E[Fij]EATXj (3.6)

=
1

Pi

+
∑

j∈Si

Pij

Pi + (1− aij)Pij

EATXj, (3.7)

which can be computed recursively from the sink by assigning EATX = 0 to it.

Note that if there is only one node in the forwarding set, anycast degenerates to

unicast, and EATXi = ETXi. To see this, we have Pi = pijaij and Pij = pij for such

75

cases, and thus

EATXi =
1

pijaij

+
pij

pijaij + (1− aij)pij

EATXj

=
1

pijaij

+ EATXj,

which is the same formula as in unicast.

If the anycast protocol in [35] is adapted by converting the awake probability of

forwarding candidates to packet reception rate, then the anycast metric therein is a

special case of EATX when aij = 1, j ∈ Si. In such cases,

Pi =
∑

j∈Si

pij

∏

k∈Si:rik<rij

(1− pik)

= 1−
∏

j∈Si

(1− pij),

and thus,

EATXi =
1

Pi

+
∑

j∈Si

Pij ×EATXj

Pi + (1− aij)Pij

|
aij=1

=
1 +

∑

j∈Si

[

(EATXj × pij

∏

k∈Si:rik<rij
(1− pik))

]

1−∏j∈Si
(1− pij)

.

3.4 Anycast Route Construction

To choose the optimal forwarding set, the sender needs to decide which neighboring

nodes to be included as well as their priorities. For a neighborhood of n nodes, there

are 2n− 1 non-empty subsets, and for a non-empty subset of cardinality k ≤ n, there

are k! possible priority assignments. Therefore, it is a computation intensive operation

to compute the optimal solution by enumerating all possibilities. In this section, we

first propose a forwarding set selection algorithm based on an ordering mechanism

which sorts nodes according to certain criteria. By consulting the formulation of

76

EATX, we propose two ordering criteria for further evaluation in Section 3.5. In

Section 3.4.2, we exhibit how to construct anycast routes for the entire network.

3.4.1 Forwarding Set Selection Algorithm

Once the EATX values of all neighbors are obtained, each node can use Algo-

rithm 9 to decide which nodes should be included in its forwarding set and the pri-

orities. For the sake of readability, the global ID’s of neighbor nodes are renumbered

locally. The principle of our forwarding set selection framework is to sort all neigh-

bors according to some criteria that characterizes their goodness to be an anycast

forwarder, where nodes with better goodness are placed in the front the sorted list.

The metric to decide the ordering can be any cost metric suitable for reducing the

EATX of the selected forwarding set. Algorithm 9 starts from an empty forward-

ing set (lines 1–3), and gradually adds nodes according to the ordering (lines 4–12).

Each time a node is added, the EATX value of the resulting set is calculated (line 6).

The set that has the minimum EATX value is chosen as the forwarding set, and the

priorities are assigned according to the ordering of the nodes in the list (lines 7–11).

Algorithm 9 runs in O(n) time dominated by the single loop examining all prefixes

of the sorted node list. Note that the calculation of EATX for any prefix of the sorted

node list can finish within O(1) time. This is because even though it requires the

calculation of the cumulative product term
∏k

j=1 (1− pj) which seems to need O(n)

time, the latest result at the end of each iteration of k can be saved so that it takes

only one instead of k multiplications for the next iteration. But for better readability,

this detail is not shown in Algorithm 9.

77

Algorithm 9: Forwarding-Set-Selection()

input : N = {1, . . . , n}: sorted neighbor list,
(p1, a1), . . . , (pn, an): bidirectional reliability
EATX1, . . . , EATXn: neighbors’ EATX metrics

output: S: forwarding set
R = (r1, . . . , rn): priorities
EATX: EATX value of current node.

S ← Φ // Initialize the forwarding set1

R← Φ // Initialize the priority assignment2

EATX ←∞ // Initialize the EATX metric3

foreach (k = 1 . . . n) do4

Stmp ← {1, . . . , k}5

EATXtmp ← EATX(Stmp)6

if (EATXtmp < EATX) then7

S ← Stmp8

R← {1, . . . , k}9

EATX ← EATXtmp10

end11

end12

return (S, R, EATX)13

There are many choices for the criteria to sort the neighbor nodes, but the for-

mulation of EATX in Equation (3.7) suggests that nodes with lower EATX values

and higher acknowledgement reliability (aj) are more preferred. The data packet re-

liability (pj) is also important as it is related to the local number of retransmissions.

Equation (3.7) also reveals that the EATX metric consists of two components, local

number of transmission attempts and the expected total cost from nodes that for-

ward packets. Hence, one natural candidate for the sorting criterion is to use each

neighbor j’s EATXj + 1
pjaj

value. This metric also measures the goodness for each

neighbor to be the unicast nexthop. However, combining the pj term with the aj

term leads to underestimation of the chance of losing acknowledgements since pjaj

can still be large when aj is small. Since acknowledgement losses are the main reason

78

for duplicated forwarding by multiple nodes, we also evaluate another metric for node

ordering which considers neighbor j’s EATXj + 1
aj

value. The reason for ignoring

the pj term can also be explained using the data collected from the Motelab testbed

[65] from which it can be seen that pj ’s and aj ’s are usually positively correlated, i.e.,

links with high aj’s usually also have high pj ’s. In summary, we evaluate the following

two metrics as the sorting criteria for Algorithm 9 in this chapter.

EATXj +
1

pjaj

, j = 1, . . . , n, (3.8)

and

EATXj +
1

aj

, j = 1, . . . , n. (3.9)

3.4.2 Distributed Anycast Route Construction

For each node to compute its forwarding set using Algorithm 9, neighbors’ EATX

metrics must have been learned. But during network initialization, none of the nodes

knows its EATX metric except the sink (EATX=0 for the sink). Hence, it is natural

to build anycast routes from the sink in a recursive way similar to distance vector

routing [47][20]. Algorithms 10 and 11 summarize the operations needed at each node

upon different events. The neighbors of the sink will be the first ones to compute

their forwarding sets and EATX metrics after receiving broadcast advertisements

from the sink; nodes two hops away from the sink will do the computation next; and

so on until all nodes in the network have their forwarding sets and EATX metrics

computed. This process may take several iterations since nodes may learn more

information about their neighborhood after sending their own advertisements.

79

Algorithm 10: On-Recv-New-Adv()

input : Seqcurr: current latest sequence number
Seq: sequence number in the advertisement
ID: ID of the advertisement sender
EATXID: EATX value of this neighbor
N : known and sorted neighbors with the latest sequence number
EATX: current EATX metric.

output: S: Forwarding Set
R: Priorities of nodes in S
EATX: new EATX metric.

if (Seq > Seqcurr) then1

Seqcurr ← Seq2

N ← {ID}3

if (Packets pending) then4

(S, R, EATX)← Greedy-Selection(N ,{(pID, aID)},{EATXID})5

end6

StartTimer;7

else8

if (Seq = Seqcurr) then9

N ← N ∪ {ID}10

if (Timer not running) then11

call On-Timeout()12

else13

if (Packet pending) then14

(S, R, EATX)← Greedy-Selection(N ,{(pj , aj) : j ∈ N},15

{EATXj : j ∈ N})
end16

end17

end18

end19

80

Algorithm 11: On-Timeout()

input : S: current forwarding set
R: current priority assignment
EATX: current EATX metric
N : sorted neighbor nodes with the latest sequence number.

output: S: Forwarding Set
R: Priorities of nodes in S
EATX: new EATX metric.

(Sold, Rold, EATXold)← (S, R, EATX)1

(S, R, EATX)← Greedy-Selection(N ,{(pj , aj) : j ∈ N}, {EATXj : j ∈ N})2

if ((S, R, EATX) 6= (Sold, Rold, EATXold)) then3

Broadcast (S, R, EATX)4

end5

It is important to notice that usually nodes can not expect advertisements from

all neighbors because the information for some nodes (usually farther away from the

sink) is simply unavailable or outdated. Hence, each node can compute its forwarding

set and EATX metric after receiving any new information. However, the computa-

tion and the following advertisement broadcasts should be postponed in anticipation

of more incoming advertisements to conserve the energy consumed on computations

before sufficient information has been collected. The delay in broadcast is also nec-

essary to reduce the amount of broadcast traffic and to dampen route fluctuations.

To do this, during the route construction, each node waits on a timer while trying to

receive more advertisements before starting computation and broadcasting (lines 7,

13–17 in Algorithm 10). The length for the timer can be learned from historical

records of the delay between receiving the first advertisement and receiving all in-

formation from nodes currently in the forwarding set. If any packet is pending to

be transmitted, the packet holder has to compute its forwarding set according to all

the information collected so far, but advertisement can still be postponed until the

81

timer fires (lines 4–6, 14–16 in Algorithm 10). When the timer set therein fires, the

latest EATX metric and forwarding set are calculated and broadcast (Algorithm 11).

Priority assignment is also included in the advertisement for receivers to learn their

slots to send acknowledgements.

To ensure that the anycast routing paths are loop-free, we utilize a sequence

number based technique similar to DSDV [47]. The sink, the single destination of

the usual convergecast traffic pattern prevailing in wireless sensor networks, tags its

advertisements with even sequence numbers. Other nodes compute their forwarding

sets and EATX metrics using advertisements with the latest sequence number. For

significant topology changes, odd sequence numbers will be used by non-sink nodes

in advertisements to avoid conflicts with the information populated from the sink.

Algorithm 10 summarizes the steps taken when receiving an advertisement. Each

node only uses information tagged with the latest sequence number for forwarding

set computation (lines 1, 9 in Algorithm 10).

Our anycast route construction procedure generates loop-free routes. To see this,

assume there is at least one circular path between node A and B for the same se-

quence number, i.e., path A → N1 → . . . → Nk → B → Nk+1 → . . . → Nl → A

exists for some k and l. However, Algorithm 9 ensures that for the same sequence

number, EATXA > EATXN1
> · · · > EATXNk

> EATXB > EATXNk+1
> · · · >

EATXNl
> EATXA, which is self-contradictory.

3.5 Performance Evaluation

In this section, we evaluate performance of our anycast route construction using

the two proposed ordering criteria. To reflect the true bidirectional link quality in

82

real sensor networks, we use unicast to measure the link reliability on the Motelab

testbed (Section 3.5.1) and use the data to drive our simulations. In Section 3.5.1, we

present our measurement results and some discussion. In Section 3.5.2, we replicate

the topology of the testbed and compare the EATX performance of our algorithms

with the anycast algorithm in [35] and unicast.

3.5.1 Study on Bidirectional Link Reliability

In this section, we show and discuss the bidirectional unicast reliability measure-

ments from the MoteLab testbed. This testbed consists of 184 Tmote Sky [8] nodes

with 154 of them available during our experiments. The Tmote Sky node is equipped

with a CC2420 [2] radio which is IEEE 802.15.4-2003 [3] compliant and supports

hardware automatic acknowledgement transmssion. To obtain the unicast data, we

firstly use broadcast commands through serial forwarder to discover the neighbors

of each node with different transmission power levels. Then all discovered links are

tested in a round-robin manner to avoid internal interference with different packet

sizes and transmission power levels. We record the packet reception rates (PRR) and

the acknowledgement reception rates (ARR) and show the results in Fig. 3.4-3.5 for

two packet sizes, 40 bytes and 126 bytes, and two transmission power levels, 0dBm

and -25dBm. The Loess curve fitting [43] is also plotted to show the variation pattern.

Other packet sizes and power levels exhibit similar patterns.

From Fig. 3.4 and 3.5, we can have the following observations.

• ARR increases with PRR for most links, and on average ARR is higher than

PRR.

83

• It can also be observed that no matter which packet size or transmission power

level is used, there are always links with good PRR’s but highly variable ARR’s.

Some nodes with near perfect PRR’s still have poor ARR’s even though the

reverse channel is expected to be good after a packet transmission.

• The ECDF plots also suggest that there are significant number of links with

imperfect acknowledgement reliability, where 15%−20% links have ARR’s lower

than 80%.

• Compared to smaller packets (40 bytes) transmitted as the same power level,

the reliability of acknowledgements are on average higher for larger packet size

(126 bytes). This is because for larger packets to be received uncorrupted, they

usually require better condition for the forward channel, and better forward

channels usually correspond to better reverse channels.

It is worthwhile noting that although the proportion of links with poor ARR

is not high, even a small number of unreliable reverse links can cause performance

degradation in MAC layer anycast protocols due to extra local retransmissions and

duplicated forwarding.

3.5.2 Emulating the Motelab Testbed

Using the link reliability data collected from the Motelab testbed (Section 3.5.1),

we compare the EATX performance of our anycast construction with the two pro-

posed metrics against with the anycast algorithm in [35] and unicast. The optimal

solutions are also obtained and compared for certain cases. In summary, the evaluated

algorithms include,

84

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

PRR

A
R

R

(a) Scatter plot (packet size: 126 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reception Rate

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ARR
PRR

(b) ECDF (packet size: 126 bytes)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

PRR

A
R

R

(c) Scatter plot (packet size: 40 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reception Rate

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ARR
PRR

(d) ECDF (packet size: 40 bytes)

Figure 3.4: Data packet and acknowledgement reliability data from the Motelab
testbed [65]. (Transmission Power Level: 0dBm.)

85

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

PRR

A
R

R

(a) Scatter plot (packet size: 126 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reception Rate

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ARR
PRR

(b) ECDF (packet size: 126 bytes)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

PRR

A
R

R

(c) Scatter plot (packet size: 40 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reception Rate

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ARR
PRR

(d) ECDF (packet size: 40 bytes)

Figure 3.5: Data packet and acknowledgement reliability data from the Motelab
testbed [65]. (Packet size: 40 bytes. Transmission Power Level: -25dBm.)

86

• Anycast-EATX-1: our anycast algorithm with EATX + 1
ARR

as the metric

in Algorithm 9.

• Anycast-EATX-2: our anycast algorithm with EATX + 1
PRR×ARR

as the

metric in Algorithm 9.

• Anycast-JK: the anycast algorithm proposed by Kim et. al. in [35].

• Anycast-Opt: the optimal forwarding set computed by enumerating all non-

empty subsets and all possible permutations.

• Unicast: distance-vector based unicast routing with ETX [20] as the routing

metric.

All algorithms are evaluated by constructing exactly the same topology as in the

Motelab testbed. Reliability for data packets and acknowledgements are retrieved

from the experimental data described in Section 3.5.1.

Low Transmission Power

On the Motelab testbed [65], because there are finite number of nodes deployed at

fixed locations, the number of neighbor nodes decreases with the transmission power.

In this section, we set the transmission power to the lowest level (-25dBm) supported

by Tmote Sky motes [8], thus generating a topology with minimum average node

degree. The simulation results for this topology are shown in Fig. 3.6, 3.7 and 3.8.

Fig. 3.6 shows the comparison among Anycast-EATX-1, Anycast-EATX-2 and

Anycast-JK. The ECDF plot in Fig. 3.6(a) shows that compared to Anycast-JK,

Anycast-EATX-1/2 bring reduction in EATX for more than 70% of the source-

destination pairs. The median and mean reduction are about 10% and 20%, and

87

the maximum reduction could be as high as 80%. When Anycast-EATX-1/2 both

outperform Anycast-JK, they provide similar EATX reduction with Anycast-EATX-1

slightly performing better. Anycast-EATX-2 leads to higher EATX than Anycast-JK

for less than 10% of the time, while Anycast-EATX-1 has only negligible number of

such node pairs. Such a performance difference is attributed to the underestimation

of reverse channel quality as discussed in Section 3.4.1. Fig. 3.7 and 3.8 show the scat-

ter plots for Anycast-EATX-1/2 versus Anycast-JK, where it can be seen that most

points are below the y = x line, implying smaller number of required transmissions

using our algorithm.

The comparison among Anycast-EATX-1/2 and unicast is shown in Fig. 3.7. Even

though the scatter plots in Fig. 3.7(b) and 3.7(c) show slight improvement, Fig. 3.7(a)

shows that for about 70% of the source-destination pairs, Anycast-EATX-1/2 per-

forms better than unicast. The average saving is about 5%, and the maximum is

about 15%. The marginal improvement for most cases is expected, since using trans-

mission power level as low as -25dBm, nodes have small candidate pools and the link

quality is typically poor. Due to the low degree, many nodes do not have more than

one or two “good enough” candidates and thus the even optimal performance is close

to unicast.

To understand what is the performance limit for MAC layer anycast, we calculate

the optimal forwarding sets for nodes in the topology that have at most 5 nodes

with smaller EATX values. By enumerating all subsets and their permutations, we

calculate the optimal EATX values for them and compare the results with what we get

from Anycast-EATX-1/2. Fig. 3.8(a) shows the ECDF functions for the percentages

of extra transmissions needed compared to the optimal results. It can be seen that

88

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-JK

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-JK

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-JK

Figure 3.6: Comparison of Anycast-EATX and Anyast-JK (packet size: 40 bytes;
power: -25dBm).

89

−0.05 0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX vs. Unicast

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Unicast

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Unicast

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Unicast

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Unicast

Figure 3.7: Comparison of Anycast-EATX and unicast (packet size: 40 bytes; power:
-25dBm).

90

for nearly 90% of these node pairs, Anycast-EATX-1 achieves optimal results, and

for nearly 100% of time Anycast-EATX-1 uses less than 5% extra transmissions. As

for Anycast-EATX-2, it performs the same as optimum in 50% of the cases, but for

99% of the cases it uses only 10% more transmissions. The close performance of

Anycast-EATX-1/2 and optimum also explains the closeness of Anycast-EATX-1/2

and unicast.

Overall, when the transmission power level is low, Anycast-EATX-1 performs

better than Anycast-EATX-2, while both of them perform better than Anycast-JK

and unicast for majority of the cases. Both Anycast-EATX-1 and Anycast-EATX-

2 perform close to the optimum. For large packet sizes, we also conducted similar

simulations. The results are similar and the ECDF plots of all comparisons are shown

in Fig. 3.9.

High Transmission Power

In this section, we use the data for the highest transmission power level, 0dBm,

supported by Tmote Sky motes [8]. In the resulting topology nodes have maximum

achievable degrees. The simulation results for this topology and 40-byte packets are

shown in Fig. 3.10, 3.11 and 3.12.

Fig. 3.10 shows the comparison among Anycast-EATX-1/2 and Anycast-JK. The

ECDF plot in Fig. 3.10(a) shows that compared to Anycast-JK, Anycast-EATX-1/2

brings reduction in EATX for more than 50% of the source-destination pairs. The

median and mean reduction are also about 10% and 20%, and the maximum reduction

could be as high as 80%. When Anycast-EATX-1/2 both outperform Anycast-JK,

they provide similar EATX reduction with Anycast-EATX-1 slightly performing bet-

ter. Anycast-EATX-2 leads to higher EATX than Anycast-JK for less than 10% of the

91

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Increase in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-Opt

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Anycast−OPT

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-Opt

0 20 40 60 80 100 120

0
20

40
60

80
10

0

EATX of Anycast−OPT

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-Opt

Figure 3.8: Comparison of Anycast-EATX-1/2 and optimum (packet size: 40 bytes;
power: -25dBm).

92

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-JK

−0.1 0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(b) Anycast-EATX-1 vs. Unicast

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Increase in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(c) Anycast-EATX-2 vs. Anycast-Opt

Figure 3.9: Comparison of Anycast-EATX-1/2 to Anyast-JK, unicast and optimum
(packet size: 126 bytes; power: 0dBm).

93

cases, while Anycast-EATX-1 has only negligible number of such node pairs. Such a

performance difference can still be attributed to the underestimation of reverse chan-

nel quality as discussed in Section 3.4.1. Fig. 3.11 and 3.12 show the scatter plots for

Anycast-EATX-1/2 versus Anycast-JK, where it can be seen that most of the points

are below the y = x line implying smaller number of required transmissions using our

algorithm. Compared to the results for transmission power of -25dBm (Fig. 3.6(b)

and 3.6(c)), the scatter plots show that Anycast-EATX-1/2 can achieve greater ad-

vantages for more nodes by leveraging multiple choices in the neighborhood.

The comparison among Anycast-EATX-1/2 and unicast is shown in Fig. 3.11.

Compared to the results for transmission power level at -25dBm, the scatter plots

in Fig. 3.11(b) and 3.11(c) show higher improvement. The percentage of source-

destination pairs benefiting from Anycast-EATX-1/2 is about 50%, while the maxi-

mum savings in EATX can be as high as 60% (Fig. 3.11(a)). An important reason

for the difference is the high node degree. Fig. 3.11(a) shows that Anycast-EATX-1

brings more benefit than Anycast-EATX-2. This is because Anycast-EATX-1 does

not underestimate ARR as in Anycast-EATX-2 which couples ARR and PRR to-

gether.

We calculate the optimal forwarding sets for nodes with at most 5 neighbors with

smaller EATX values, and the results are compared with those of Anycast-EATX-

1/2. Fig. 3.8(a) shows the ECDF functions for the percentages of extra transmissions

needed compared to the optimum. It can be seen that for nearly 80% of the source-

destination pairs, Anycast-EATX-1 achieves optimal results, and for 100% of the cases

Anycast-EATX-1 uses less than 5% extra transmissions. As for Anycast-EATX-2,

it performs much worse than Anycast-EATX-1 in this case. Anycast-EATX-2 can

94

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-JK

5 10 15

0
2

4
6

8
10

12
14

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-JK

5 10 15

0
2

4
6

8
10

12
14

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-JK

Figure 3.10: Comparison of Anycast-EATX and Anyast-JK (packet size: 40 bytes;
power: 0dBm).

95

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Unicast

0 5 10

2
4

6
8

10
12

EATX of Unicast

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Unicast

0 5 10

2
4

6
8

10
12

EATX of Unicast

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Unicast

Figure 3.11: Comparison of Anycast-EATX and unicast (packet size: 40 bytes; power:
0dBm).

96

achieve optimum for only 20% of the cases, but it still uses less than 20% more

transmissions than optimum. In Fig. 3.12(b) and 3.12(c), the performance of Anycast-

EATX-1/2 is still very close to the y = x line, but the difference is visually noticeable.

Overall, in the case of high transmission power, Anycast-EATX-1 performs better

than Anycast-EATX-2, while both of them performs better than Anycast-JK and

unicast for majority of the source-destination pairs. In such cases, Anycast-EATX-

1/2 can also perform closely to the optimum. For large packet sizes, we also conducted

similar simulations. The results are similar and the ECDF plots of all comparisons

are shown in Fig. 3.13.

3.5.3 Random Topology

On the Motelab testbed 3.5.2, changing the transmission power level can result

in different node densities in the neighborhood, but the network size is also reduced

at the same time. In this section, we evaluate the performance of our algorithm

framework using randomly generated topologies. The data packet loss probabilities

are generated using the model in [78]. To generate acknowledgement loss probabilities

in compliance to the data collected from the Motelab testbed (Section 3.5.1), we

evenly divide the interval (0,1) into 20 subintervals, and then the reverse link data are

placed into the 20 subintervals according to the corresponding forward link reliability

data. For example, if a link has 0.33 and 0.8 forward and reverse link reliability

respectively, it is put into the 7-th interval (0.3, 0.35].

The evaluations for different densities are all conducted in a 50m×50m area with

transmission range of 10m. In this section, we present the results for densities of 5

and 9 nodes per 10m× 10m. To reduce the impact of randomness on the results, we

97

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Increase in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-Opt

0 5 10 15

2
4

6
8

10
12

EATX of Anycast−OPT

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-Opt

0 5 10

2
4

6
8

10
12

EATX of Anycast−OPT

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-Opt

Figure 3.12: Comparison of Anycast-EATX and optimum (packet size: 40 bytes;
power: 0dBm).

98

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(a) Anycast-EATX-1/2 vs. Anycast-JK

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(b) Anycast-EATX-1 vs. Unicast

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Increase in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Anycast−EATX−1
Anycast−EATX−2

(c) Anycast-EATX-2 vs. Anycast-Opt

Figure 3.13: Comparison of Anycast-EATX to Anyast-JK, unicast and optimum
(packet size: 126 bytes; power: -25dBm).

99

use the same 10 random seeds to generate topologies for all algorithms, and collect

the data for all runs.

For the clarity of figures, we omit the performance curves of Anycast-EATX-2 in

this section as it performs worse than Anycast-EATX-1 most of the time. Figs. 3.14

to 3.16 show the results. It can be observed that the improvement over Anycast-JK

is significant and similar for both densities (5 and 9). But when compared to unicast,

higher density leads to more improvement due to the existence of more candidates

in the neighborhood. For the comparison with optimum, higher density also leads to

performance closer to optimum, but all of them perform within 110% of the optimum.

3.6 Conclusion and Future Work

Existing MAC layer anycast protocols in the literature fail to consider the impact

of acknowledgement losses, and thus lead to duplicated forwarding along multiple

paths to the sink. In this chapter, we identify this problem and use experimental data

to show that using the anycast protocols that are reverse channel unaware like in [35],

the number of transmissions taken by the entire network to deliver one packet can

be significantly more than unicast. For energy constrained wireless sensor networks,

such duplicated transmissions are wasteful. In this chapter, we propose to use the

expected number of end-to-end transmissions (EATX) to take the reverse link into

consideration, and provide the formulation of the EATX metric. Based on this metric,

we propose an anycast forwarding set selection algorithm which works by prioritize

neighbor nodes in company with a distributed anycast route construction protocol.

Through simulations driven by the data collected on the Motelab testbed, we evaluate

two criteria based on the formulation of the EATX metric. The results show that

100

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

rho=9
rho=5

(a) Anycast-EATX-1/2 vs. Anycast-JK

0 10 20 30 40 50

0
10

20
30

40
50

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-JK

0 10 20 30 40 50 60

0
10

20
30

40

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-JK

Figure 3.14: Comparison of Anycast-EATX and Anyast-JK in random topologies
with different node densities.

101

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Reduction in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

rho=9
rho=5

(a) Anycast-EATX-1/2 vs. Unicast

2 4 6 8 10 12

2
4

6
8

10

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Unicast

0 10 20 30 40

0
10

20
30

40

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Unicast

Figure 3.15: Comparison of Anycast-EATX and unicast in random topologies with
different node densities.

102

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportional Increase in EATX

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

rho=9
rho=5

(a) Anycast-EATX-1/2 vs. Anycast-Opt

0 5 10

2
4

6
8

10
12

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(b) Anycast-EATX-1 vs. Anycast-Opt

0 10 20 30 40 50

0
10

20
30

40

EATX of Anycast−JK

E
A

T
X

 o
f A

ny
ca

st
−

E
A

T
X

(c) Anycast-EATX-2 vs. Anycast-Opt

Figure 3.16: Comparison of Anycast-EATX and optimum in random topologies with
different node densities.

103

our algorithm performs better than unicast and the anycast algorithm in [35] for a

majority of cases. We also present results showing that our algorithmic framework

works close to the optimum. Especially when the criterion in Formula (3.8) is used,

the selected forwarding sets agree with the optimum for at least 80% of evaluated

cases.

The proposed algorithmic framework in this chapter assumes the knowledge of

PRR and ARR to each neighbor node, but in a network with these parameters change

over time, it is still an open problem to adapt quickly to such dynamics. Network

dynamics may be caused by varying traffic patterns, node deployments and failures,

and significant changes in link quality. Our current solution (Section 3.4.2) depends

on broadcasting advertisements and to construct new forwarding sets in such cases,

but the speed of convergence for large scale networks is still a challenging issue to

address.

104

CHAPTER 4

Achieving Energy Efficiency with Transmission Pushbacks

4.1 Introduction

Energy consumption is one of the key considerations in the design of multi-hop

wireless sensor networks. Since a high percentage of the energy is spent on data

communication, support for efficient and reliable communication is critical. How-

ever, high variability in channel quality caused by factors such as fading, mobility

and time-varying multiuser interference makes it difficult to achieve those objectives.

Indeed, Woo et al. [69], and Zhao and Govindan [74] have both observed a significant

variability in link quality in wireless sensor networks. The former paper points out

that the instantaneous packet error probability varies by approximately 30% around

its mean. The latter paper and [66] both show that the packet-error stochastic process

exhibits significant long-term dependence.

Without any effort for adapting to the variability, the system resources are con-

sumed highly inefficiently. Due to high packet loss rates, a large fraction of the energy

of a node is consumed by multiple retransmissions per packet. However, in the cur-

rently available sensor hardware platforms, the limited computational power rules

out sophisticated control actions for adaptation. Only very simple strategies (e.g.,

transmit or do not transmit a packet at a given time) are implementable.

105

CSMA with
Exponential Backoff

Plain CSMA

CSMA with
Exponential Backoff and
Transmission Pushback Pushback period

(based on
channel estimation)

Channel Quality
Indicator

(for illustration only)
Poor

Transmitted packet Transmitted but dropped packet

Time

Good

CSMA
Resumed

Figure 4.1: Avoid periods with poor link quality using transmission pushbacks.

The prevailing CSMA protocol uses carrier sensing to avoid collisions and backoffs

to address the problem of contention among nearby nodes. However, packet trans-

missions may fail due to cumulative interference from other nodes in the network.

Indeed in our testbed experiments with XSM nodes [21], we have observed that with

interfering sources that are sufficiently far away, 69% of the packets which CSMA

grants to transmit are lost. From this example, we can conclude that the combined

effect of a large number of interfering sources can be detrimental and the CSMA

based protocols – designed to suppress collisions – are not effective in avoiding such

losses. An immediate solution to this problem is to reduce the carrier sense threshold

that triggers a backoff, and consequently increase the carrier sense range. This, in

effect, would increase the capability of sensing interference and reduce packet losses.

However, the increase of carrier sense range makes a node overly conservative with

respect to interference and leads to lower effective throughput. Therefore, simple

adjustment of the carrier sense range is not sufficient and a separate mechanism is

needed over CSMA to avoid transmissions when the channel condition is poor.

106

In this chapter, we systematically study the problem of addressing packet losses

due to cumulative interference, and propose a binary control technique over CSMA.

Our approach is based on exploiting the temporal correlations of the interference

process. We introduce a new concept called transmission pushbacks, which refers

to an appropriately computed delay introduced at the MAC layer in order to avoid

periods with bad-channel quality while considering a node’s throughput requirement.

Therefore, we reduce the number of transmissions per packet as well as the number

of transmission attempts per unit time. In case of bursty losses, avoiding the bad

channel state may also lead to a higher throughput (visible at higher layers) despite

fewer number of transmission attempts.

The main idea of transmission pushbacks is to defer packet transmission attempts

for an appropriately selected period upon failed packet transmissions. Fig. 4.1 il-

lustrates the benefits of using transmission pushbacks in comparison with CSMA

based approaches in the presence of time-varying channels. Plain CSMA leads to

failed transmissions, and thus wastes energy, during periods with poor channel qual-

ity. CSMA with exponential backoff may reduce such failed transmissions, but it

also cuts down the transmission attempts, even at times of improved channel quality.

Our proposed transmission pushback mechanism predicts the duration for which the

channel quality will remain poor. Thus, unnecessary transmissions can be avoided to

conserve energy and the good channel states are taken advantage of.

To determine the pushback time, we need to estimate the channel quality and how

it varies over time. We use an adaptive channel prediction technique, based on esti-

mating the parameters of a simple hidden Markov model (HMM), which represents

our channel. We dynamically update the parameters of the HMM based solely on the

107

binary ACK sequence (transmission success or failure) for the previous packet trans-

missions. We choose the appropriate pushback period by considering the throughput

requirement measured by the incoming data rate, and the predicted quality of the

channel. Such an adjustment in rate, based on the throughput requirement is also

seen in lazy packet schedulers [50]. The proposed approach is simple to implement

over existing CSMA based MAC solutions, as well as queue and congestion control

algorithms. Therefore it is highly suitable for existing sensor network platforms.

The design of the transmission pushback mechanism makes the following contri-

butions:

• Using data collected from a sensor network testbed, temporal characteristics of

the channel variations and the interference are studied.

• A novel concept called pushbacks is introduced, that is used to increase the

packet success rate while considering the throughput constraint at each node.

• Through simulations it is shown that significant gains in energy and/or through-

put can be observed in all scenarios using the proposed technique.

The rest of this chapter is organized as follows. Section 4.2 summarizes related

work. Section 4.3 presents our approach to model the channel losses. Section 4.4

presents a description of our pushback algorithm. Section 4.5 presents evaluation of

the proposed scheme. Finally, Section 4.6 concludes this chapter and presents pointers

to future research directions.

108

4.2 Related Work

Transmission Rate Adaptation: Transmission strategies based on channel esti-

mation has been considered in the context of 802.11 networks [34, 31, 56, 68]. More

specifically, the past packet success and failure reports have been used to design

strategies to dynamically adapt the physical layer transmission rate to optimize the

throughput. ARF [34] uses a heuristic to predict the channel quality based on past

transmission success and failure records, but it is ignorant of the underlying time-

varying properties of the channel. RBAR [31] uses RTS/CTS to get immediate feed-

back from the destination to learn about the quality of the channel and determine

the transmission rate. However, these packets have high overhead especially in sensor

networks where the data packet sizes are comparable to the size of RTS/CTS packets.

In OAR [56] during good channel periods the transmitter opportunistically transmits

multiple packets back-to-back at a high data rate. In contrast to the opportunistic

nature of [56], our solution uses a rigorous channel model to predict the duration for

which the channel will continue in a poor state. In [68], authors present a history

based mechanism to predict the quality of the channel and adjust the transmission

rate. Our objective of optimizing energy consumption for a given throughput con-

straint is different from the past work. Our solution methodology is also different as

it uses rigorous estimation of dynamic channel properties.

In order to address high interference and network congestion, several back-pressure

based mechanisms have been proposed for sensor networks [64, 32, 52, 37]. CODA

[64] uses a moving average of channel samples to detect the onset of congestion and

sends back-pressure messages to control the data rate of upstream nodes. Fusion

[32] uses the concept of hop-by-hop flow control and prioritized MAC along with

109

token buckets to control the packet rate at each node. IFRC [52] and RAIN [37] use

variations of the AIMD (Additive Increase Multiplicative Decrease) and the back-

pressure mechanisms. Various schemes have been proposed that select the backoff

counter [18] and the backoff window [45] based on the channel state.

We conclude this section by observing that these solutions are unaware of the

time-varying characteristics of the channel, and hence still do blind retransmissions

ignorant of current channel condition. In addition, MAC protocols with backoffs

tuned to channel conditions do not address the time-scales associated with channel

variations as shown in Figure 4.1. On contrary, the pushback algorithm proposed

in this chapter can learn the channel characteristics and schedule retransmissions

accordingly. In fact, our solutions can be used in conjunction with the above link

layer mechanisms and bring extra benefit as shown in our simulation results.

4.3 Channel Modeling

In this section we describe our channel loss model and its parameters and give an

experimental justification for our model. We use this channel loss model to derive the

theoretical expressions for Packet Success Ratio (PSR) and throughput as functions

of channel and system parameters. We describe how to estimate these parameters

based on the available measurements at the sensor nodes in the next section.

4.3.1 Channel Model

One way to model (bit or packet level) errors in wireless communication channel

is to use Hidden Markov Models (HMMs) [28, 26, 62]. While not as simple as a

Bernoulli or an independent loss channel model, Markov models are more capable of

characterizing the statistical dependencies which might occur in a wireless channel.

110

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deferred Time Slots (k)

C
o
n
d
it

io
n
a
l
P

ro
b
a
b
il
it
y

o
f
F
a
il
u
re

P(A
n+k

=F|A
n
=S)

P(A
n+k

=F|A
n
=F)

Figure 4.2: Conditional probability of failure as a function of deferred time slots
setting p = 0.6 and α = 0.8.

The Gilbert-Elliott channel model [28] was first used to derive the bit-level channel

model. This model is a Markov chain which has two states namely, “Good” and

“Bad”, which have fixed channel characteristics, respectively. To analyze the channel,

we use a modified version of the Gilbert-Elliott channel model with unknown channel

parameters for the Good and Bad states. In addition, the transition probabilities are

unknowns to be specified.

At this level of generality, given a set of channel observations, the calculation of

these unknown parameters requires a substantial amount of computation. To simplify

the model, we assume that the statistics of the packet error stochastic process is wide-

sense Markov of order 1. A sequence An, n ≥ 1 is said to be wide-sense Markov if the

probability of an event An+m is completely determined by its most recent value, i.e. An

and the time difference (m) between the two events. The autocovariance structure

111

for such a process is exponential. More specifically, if the unconditioned packet loss

probability is p, then the autocovariance function of An is defined as KA(m) = p(1−

p)α|m|. For this wide-sense Markov process, the probability of successful (failed)

transmission in a future time slot, conditioned on successful (failed) transmission in

the present slot, is unique (Appendix I in [40]):

P (An+m = F|An = S) = p(1− αm) (4.1)

P (An+m = S|An = S) = 1− p(1− αm) (4.2)

P (An+m = F|An = F) = p + (1− p)αm (4.3)

P (An+m = S|An = F) = 1− p− (1− p)αm, (4.4)

where An is the event of a success (‘S’) or a failure (‘F’) in transmission, in the nth

time slot; p and α are the temporal parameters of the model to be estimated. For a

multi-hop wireless network, p is the parameter that indicates the effect of the total

number of interferers for a given link.

For a larger number of interfering users, we will have a higher value of p and

consequently a higher failure probability due to interference. On the other hand, α

is representative of the average burst length of the interfering users. Longer burst

lengths will lead to larger values of α as there will be a stronger correlation between

probability estimates over longer periods. For the purpose of illustration, the condi-

tional probabilities of failure for p = 0.6 and α = 0.8 are plotted in Fig. 4.2. The

“deferred time slots” represents the number, k, of time slots waited after an event

S or F. Here, one time slot is the duration it takes to transmit one packet over the

channel.

112

Note that we reduced the number of unknown parameters to two with the first or-

der Markov process. Compared to the aforementioned model, in our case a successful

transmission corresponds to the Good state and a failed transmission corresponds to

a Bad state. Now the model has become numerically tractable and flexible enough

to handle the channel model.

From the two curves in Fig. 4.2, one can see the reasoning behind choosing a

pushback duration conditional on an event F only. If we schedule the next packet for

immediate transmission (i.e., k = 1) after an S, we have the best chance of observing

another S. Intuitively, we are taking advantage of the good channel state. On the

other hand, if we defer scheduling the transmission (i.e.,k > 1) of the next packet after

an F, we lower the probability of failing in that transmission. The longer the deferral

time, the higher the probability of an S in the next transmission. However, a long

wait can cause the throughput to drop. Thus we need to strike a balance between the

two requirements, throughput and probability of success. Hence, with the Markov

channel model, the problem reduces to finding the appropriate pushback period after

a failed transmission. In the next subsection, we will derive the expressions for the

throughput and packet success rate for this scheme using our channel model.

4.3.2 Channel Parameters

To find the channel parameters, packet success ratio and throughput, we solve the

Markov chain associated with our first order Markov process. Our main objective

here is to find the throughput as a function of the number of deferred time slots, k,

on a transmission failure5. Once we have this expression, we can choose k according

5Upon a successful transmission, the deferral time is 1 (no deferral).

113

S F

x
y

1−y

1−x

Figure 4.3: Markov chain representation of the channel.

to the desired throughput based on the incoming data rate. To validate this model

using real data, we also find the expression for the PSR.

Our Markov chain has two states, S and F as illustrated in Fig. 4.3. The current

state is S if the final packet transmission is successful and F, otherwise. Note that

a transition does not necessarily occur in every time slot, rather it occurs for every

packet transmission attempt. Since we schedule a transmission immediately after a

successful event, the expression for x is obtained by substituting k = 1 in (4.1). Direct

application of (4.3) gives the expression for y.

x = P (An+1 = F|An = S) = p(1− α) (4.5)

y = P (An+k = F|An = F) = p + (1− p)αk (4.6)

Notice that the transition probabilities at state F are functions of k as well as p

and α. This is due to the effect of the pushback period of k time slots after the

failed transmission attempts. The associated steady state probabilities are therefore

functions of k as well and these probabilities for state S and state F are respectively,

πS(k) =
(1− p)(1− αk)

p(1− α) + (1− p)(1− αk)
(4.7)

πF(k) = 1− πS(k).

114

We define the packet success ratio (PSR) as the total fraction of the packets that are

successfully transmitted, i.e., it is equal to the steady state probability, πS(k) of state

S.

To formulate an expression for throughput, consider the following: on a transmis-

sion attempt, the sender waits for k time slots in state F and 1 time slot in state S

for the next transmission attempt. Thus, the average number of slots per attempt is

πS(k) + kπF (k). Consequently the number of packet transmissions per slot,

X(k) =
1

πS(k) + kπF (k)
=

p(1− α) + (1− p)(1− αk)

kp(1− α) + (1− p)(1− αk)
. (4.8)

The resulting throughput, ρ(k), is thus

ρ(k) = πS(k)X(k)

=
(1− p)(1− αk)

kp(1− α) + (1− p)(1− αk)
. (4.9)

We tested the validity of our Markov model using an experimental setup in the

Kansei testbed [9] by setting up a wireless link between two sensor motes. This link

was encircled with seven sensor motes spread around the perimeter of a 20 m2 area.

We measured the packet success rate between two motes, while the rest of the motes

acted as sources of interference. For this experiment, the wireless link transmitted 36

byte packets at 100 ms interval. We programmed the nodes causing interference to

transmit bursts of packets once every second. The burst size was selected according

to a uniform distribution between [0,15]. We estimated the two parameters, α and p

using the ACK-level data of the entire trace of 30 mins. Note that the purpose of this

experiment was to validate the model. In our actual algorithm, the estimation of the

two parameters is much simpler and does not depend on a long trace of data. The

theoretical packet success rate based on the estimated α and its actual experimental

115

0 5 10 15 20 25
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Skipped Time Slots on Packet Loss (k)

A
ct

u
a
l
a
n
d

T
h
eo

re
ti

ca
l
P

S
R

Actual PSR

Theoretical PSR Fit

Figure 4.4: Comparison of the actual PSR gain achieved by our pushback algorithm
and the theoretical fit using Eqn. (4.7).

value are plotted in Fig. 4.4 as a function of k. This plot gives credence to the Markov

model.

4.4 The Pushback Algorithm

The objective of the pushback algorithm is to estimate the period for which the

channel will remain in a poor state and defer retransmissions accordingly in order

to conserve energy. In addition, the algorithm must provide similar throughput as

CSMA for a reduced number of transmission attempts.

The proposed pushback algorithm is based on CSMA. If a transmission is suc-

cessful, the next transmission is scheduled by CSMA. However, in case of a failed

transmission, the next transmission is pushed back by k slots. Note that the push-

back “slot” is the time it takes to transmit a packet and therefore it is different

116

from the contention slot of CSMA. When nodes boot up, an initial value kinit is

assigned to k, and then k is recalculated periodically each time the m-th (predefined)

transmission failure happens using a simple mechanism based on the estimates of the

channel parameters and throughput constraint. Our computation is both practical

to implement and is also shown to perform well using simulations in Section 4.5.

The proposed mechanism for computing k is based on the formulation presented

in Section 4.3.1. First, k is set to an initial value kinit, and based on the ACK-

level observations of success and failure in the recent past, a maximum likelihood

(ML) estimation of parameters α and p is made. In fact, estimating the transition

probabilities of the Markov chain (parameters x and y in Fig. 4.3) is sufficient for

the desired ML estimation. Indeed, given the ML estimates x̂ and ŷ (of x and y

respectively), we show in Appendix B in [39] that the solution (α̂, p̂) to the system

of Eqns (4.5) and (4.6) gives the ML estimates of α and p which characterize the

channel. In addition, to ensure that a node can sustain the incoming rate of packets,

the computation of k must take the incoming packet rate into account. We use the

running average of the incoming packet rate, ρnew = γ/te +(1− γ)ρold, to represent

the throughput constraint. Here ρnew (ρold) is the new (previous) estimate of the

throughput requirement, te is the time elapsed since the last packet arrival, and γ is

the smoothing factor. Using ρnew (throughput constraint), α̂ and p̂, Equation (4.9)

can be used to compute the new value of k.

To avoid the complexity of direct computation of k, we propose the use of look-

up tables. The first table Tα̂(x, y, k) contains the values of α̂ corresponding to k,

and discretized x and y. The second table Tk(p̂, α̂, ρ) contains the values of ρ(k)

corresponding to k, and discretized α and p. A brief description of the two tables

117

Table Equations Purpose
Tα(x, y, k) Eqns. (4.5), (4.6) To compute α for given x, y and k.
Tk(p, α, ρ) Eqn. (4.9) To compute k for given p, α and ρ.

Table 4.1: Lookup tables used in the pushback algorithm.

used is given in Table 4.4. These tables will not change during the operation of the

node, so they can be computed offline and stored in all nodes. The available storage

space on the nodes will determine the size of the tables. From our experimental

experience, it should suffice to have a 10× 20× 20 table. For instance, this table can

have 10 values of k (2 to 11), 20 values of p (0 to 0.95 in increments of 0.05), and

20 values of α (0 to 0.95 in increments of 0.05). These numbers could be stored as

integers between 0 and 100. Hence, the two tables would take 8K bytes.

In summary, upon the m-th transmission failure, function Pushback() (Algo-

rithm 12) is called. In this algorithm, The ML estimates x̂ and ŷ are calculated in

lines 3 and 4. A table lookup is employed to find the value of α̂ corresponding to x̂,

ŷ and k, and then p̂ can be calculated according to Equation (4.5). Finally the push-

back period k is estimated using another table lookup with the appropriate values of

p̂, α̂ and ρ.

4.4.1 Remedial Mechanisms

The pushback algorithm above can work well if the real packet loss pattern is

captured well by our channel model introduced earlier and the transition probabilities

are accurately measured. However, either of them may deviate from reality, in which

118

Algorithm 12: Pushback()

if (failureCount = m) then1

failureCount← 0;2

x̂← Number of S→F transitions
Total number of stays in S states ;

3

ŷ ← Number of F→F transitions
Total number of stays in F states

;
4

α̂← Tα̂(x̂, ŷ, k);5

p̂← x̂/(1− α̂);6

k ← Tk(p̂, α̂, ρ);7

end8

Delay the retransmission for k slots;9

case the throughput may not be maintained if k is chosen too aggressively. Hence,

we introduce two remedial mechanisms to solve such problems.

Measuring Actual Pushback Amount

In our pushback algorithm, the delay amount, k slots, is calculated according to the

state transition probabilities and the throughput constraint. However, after delaying

for k slots, nodes may need to delay their retransmissions further due to contention

from other senders. This could lead to loss in throughput since the delaying amount

is longer than expected by the model. Hence, the running average of the difference

between the calculated delay amount and the actual delay amount is maintained, and

subtracted from the newly calculated k.

Controlling the Pushback Amount at the Interface Queue

Once our channel model deviates from the actual channel, adjusting k as in Section

4.4.1 may not work well. To cope with such situations, we let the interface queue

impose a pushback control policy to speed up packet forwarding once the queue

is backlogged. This policy simply commands the pushback algorithm to fall back

119

to CSMA (using k = 1) if the queue length is above a certain threshold. In our

evaluations, this value is set to half of the queue capacity.

4.5 Simulation Evaluation

We conduct simulations in ns2 [6] to compare the performance of our pushback

algorithm with plain CSMA with and without binary exponential backoff in wireless

sensor networks. Here the CSMA without exponential backoff (denoted as CSMA)

simulates BMAC, the default MAC layer protocol, while CSMA with exponential

backoff (denoted as CSMA/EB) represents other general CSMA protocols. We also

study the performance improvement when the pushback algorithm cooperates with

other congestion control mechanisms such as rate limiting and back pressure. In this

section, the radio propagation model used in our simulations is introduced, followed

by the simulation results.

4.5.1 Radio Model

To make the wireless radio model and MAC layer in ns2 more real, we make the

following two modifications.

Accumulative Interference and SNR calculation

The CSMA (MAC and PHY) protocol simulated in ns2 differs from reality in two

ways. First, it fails to consider interference from nodes outside the carrier sensing

range. However, the cumulative interference from more than one node sufficiently

far away may still affect packet receptions. Second, it does not calculate the packet

loss probability according to the Signal-to-Noise Ratio (SNR). In our simulations, we

modified the physical layer of ns2 to combine all sources of noise and interference to

120

calculate the SNR and then use Equation (9) in [78] to calculate the packet success

rate.

Radio Propagation Model

In our simulations, we use a radio propagation model based on the shadowing

model implemented in ns2. Consequently, the received power level at a receiver is

determined by

[

Prec(d)

P rec(d0)

]

dB
= −10β log

(

d

d0

)

+ XdB,

where Prec(d) is the received power at this receiver which is a distance d away from

the sender, β is the path loss exponent, P rec(d0) is the average received power level

at a reference distance d0, and XdB is a Gaussian random variable with mean 0 and

standard deviation σdB (called shadowing deviation).

In standard ns2, XdB is independent for different packets. However, XdB usu-

ally varies according to some random process [78, 53]. Hence, we use an order 1

autoregressive model (AR(1)) for XdB as follows.

XdB(t) = φXdB(t− 1) + Z(t),

where φ is called the channel coherence coefficient which quantifies the memory in

channel variations and Z(t), the error term, is independently and identically dis-

tributed with normal distribution N (0, σ2
Z). To make the variance of XdB(t) inde-

pendent of φ, we choose σZ = σdB
√

1− φ2. In our simulations, the time is discretized

such that 1 slot is roughly equal to the average time to transmit a packet, and the

value of XdB(t) is constant within a time slot. Note that in the modified shadowing

model, if the autoregression coefficient φ = 0, then the model just falls back to the

default shadowing model provided by ns2.

121

4.5.2 Simulation Evaluations

We conduct simulation evaluations on our pushback algorithm in data gathering

networks. The node located at one corner of the area serves as the sink, while all

other nodes generate data periodically to be sent to the sink. We evaluate the perfor-

mance of all the three protocols (CSMA, CSMA/EB and CSMA/EB with Pushback)

under different data rates, channel coherence coefficients φ, shadowing deviations,

network sizes, node densities in grid and random topology, packet sizes, and packet

transmission rates. The metrics focused on in this study include the following four.

• Throughput: number of packets received at the sink in 500 seconds.

• Packet success rate (PSR): average success rate for each transmission at-

tempt in the network.

• Energy tax: average number of transmissions needed to deliver one packet to

the sink.

• Normalized delay: average delay per hop.

Each set of simulations is carried out for 10 times with different random seeds, and

the error bar denoting the minimum and maximum values of each simulation set is

also plotted. In all simulations, the default parameter values simulating the XSM

nodes [21] are summarized in Table 4.5.2.

Data Rates

The pushback algorithm takes advantage of the flexibility provided by nodes that

afford to delay the retransmissions (e.g., the ones away from the sink) without reduc-

ing the throughput. On the other hand, some nodes (e.g., those close to the sink)

122

Packet Size 100 bytes Ack Size 5 bytes
Bandwidth 19.2 Kbps Transmit Power 0 dBm
Backoff Slot 0.4167 µs Pushback Slot 18.33 ms
β 4 [78] σdB 4
φ 0.8 Data Rate 0.1 packet/sec.
Number of nodes 25 (5× 5) Node separation 45 m

Table 4.2: Default simulation parameters for the pushback algorithm

may have very small room for pushback (i.e., k ≈ 1) since they need to accommodate

higher data rates. In this section, we evaluate the pushback algorithm for data gener-

ation rate at each non-sink node from 0.01 packets/second (pps) to 0.2 pps. Fig. 4.5

shows the simulation results, from which it can be observed that for low data rate

(< 0.15 pps in this case), the pushback algorithm can improve the PSR by 51% and

71% when compared to CSMA/EB and CSMA respectively. For higher data rate,

the improvement is less, but higher throughput is achieved at the same time. This

implies that with pushbacks the queue drop rates are reduced. Similar improvement

in energy tax can also be observed. Note that the higher normalized delay for data

rates ≥ 0.18 pps is partially due to the queueing delay for delivering more packets.

Channel Coherence Coefficient

The pushback algorithm is very effective in the presence of temporal correlation in

channel losses. Such correlations may be caused by channel coherence or correlated

interference. In this section, we evaluate the performance of the pushback algorithm

under channel coherence coefficients φ ranging from 0 to 0.8. Fig. 4.6 shows the

simulation results. It can be seen that by utilizing the pushback algorithm, the

improvement in PSR over CSMA/EB is between 46% to 63%, and it increases with

123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.15 0.1 0.05

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 5

 10

 15

 20

 0.2 0.15 0.1 0.05

E
ne

rg
y

T
ax

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.2 0.15 0.1 0.05

T
hr

ou
gh

pu
t

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 0.2 0.15 0.1 0.05

N
or

m
al

iz
ed

 D
el

ay

Data Rate (Packets/Second)

Pushback
CSMA/EB
CSMA

(d) Normalized Delay

Figure 4.5: Simulation results for various data rates.

124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

T
ax

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
hr

ou
gh

pu
t

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 D
el

ay

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.6: Simulation results for various channel coherence coefficients φ in a 5× 5
network.

φ. Similarly, there is a reduction in energy tax between 33% to 38%, which increases

with φ. The throughput is similar for various values of φ. Although the latency is

higher, the difference is small for large φ. As expected, the pushback algorithm is

more effective when the channel is more coherent. Moreover, the results also show

that even in the case of low channel coherence, the pushback algorithm improves PSR

and energy tax because the pushback mechanism also avoids retransmissions when

the interference is high.

125

Shadowing Deviation

In our simulations, the shadowing deviation σdB is a major factor besides the

interference that affects packet receptions. According to the shadowing radio propa-

gation model, larger shadowing deviation causes more packet losses. In this section,

we evaluate the performance of the pushback algorithm for various typical σdB values

[53]. Fig. 4.7 shows the results for the four evaluation metrics. The results show that

the PSR for all three protocols decreases with σdB, but the pushback algorithm can

provide improvement of up to 91% compared to CSMA/EB. For σdB = 0 in which

case the shadowing model does not directly cause packet losses, our pushback algo-

rithm can still improve the PSR from 66% to 76% (or 15% improvement). For energy

tax, the percentage reduction increases with σdB by up to a factor of 8 and becomes

steady for higher values of σdB. For throughput, we can observe that the channel ca-

pacity is reached for larger σdB with the pushback algorithm, which results in steady

improvement of up to 27% over CSMA and CSMA/EB. It can observed that for large

σdB, CSMA/EB has lower throughput than CSMA due to the inefficiency of the

exponential backoff mechanism. Fig. 4.7(d) shows the pushback algorithm does not

result in deterioration of the delay performance. In fact, the normalized delay can be

improved when σdB is around 8, where the throughput improvement is maximized.

Even for σdB ≥ 10, the overlapping of the error bars indicates insignificant difference

in delay.

Network Size

The benefit of the pushback algorithm depends on the amount of delay that nodes

can afford before retransmissions as discussed in Section 4.5.2. In a large network,

126

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Shadowing Deviation

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

E
ne

rg
y

T
ax

Shadowing Deviation

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12

T
hr

ou
gh

pu
t

Shadowing Deviation

Pushback
CSMA/EB
CSMA

(c) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 D
el

ay

Shadowing Deviation

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.7: Simulation results for various shadowing deviations σdB in a 5×5 network.

127

even though the rate of data generated at each node may be low, the cumulative data

rates at nodes closer to the sink may still be high. Hence, we evaluate the pushback

algorithm for various network sizes in this section. The number of rows and columns

in a grid network is varied from 2 to 10 ,i.e., the network size varies from 4 to 100

nodes, while keeping other parameters fixed as in Table 4.5.2. The results are shown

Fig. 4.8. Observe that the pushback algorithm results in higher benefit in PSR when

the network size is smaller than 64. For larger networks, the pushback algorithm can

still provide overall improvement due to the relatively lower data rates at nodes not in

the hot-spots. Throughput for large network sizes can also be improved even though

the delay is higher due to queueing at nodes for delivering more packets.

Node Density in Grid Topology

Node density is another potential factor that affects the cumulative data rates

at nodes in the hot spots. In this section, we evaluate the performance of the three

protocols with different number of nodes placed within a fixed area. With σdB = 8,

we vary the number of nodes from 25 to 100 by varying the node separation while

keeping other parameters fixed as in Table 4.5.2. Fig. 4.9 shows the results. The

lack of smoothness in performance curves is due to the grid placement of nodes. The

improvement in PSR and energy tax decrease with the increase of node density while

the throughput is still maintained as higher density also implies higher accumulated

data rates at nodes in hot spots. Hence, it can be concluded that the pushback algo-

rithm can fulfill the throughput constraint well, and take advantage of opportunities

for pushback to save energy.

128

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 10 20 30 40 50 60 70 80 90 100

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Network Size

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

T
ax

Network Size

Pushback
CSMA/EB
CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t

Network Size

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 D
el

ay

Network Size

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.8: Simulation results for various network sizes.

129

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 81 64 49 36 25

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Nodes in 180mx180m Area

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 10

 20

 30

 40

 50

 100 81 64 49 36 25

E
ne

rg
y

T
ax

Nodes in 180mx180m Area

Pushback
CSMA/EB
CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 81 64 49 36 25

T
hr

ou
gh

pu
t

Nodes in 180mx180m Area

Pushback
CSMA/EB

CSMA

(c) Throughput

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 100 81 64 49 36 25

N
or

m
al

iz
ed

 D
el

ay

Nodes in 180mx180m Area

Pushback
CSMA/EB
CSMA

(d) Normalized Delay

Figure 4.9: Simulation results for various node densities.

130

Node Density in Random Topology

In a network with nodes placed in a grid, many nodes have homogeneous neighbor

sets. Hence in this section, we evaluate the performance of the pushback algorithm

with nodes randomly placed in a 150 m × 150 m area. We vary the number of

nodes from 25 to 100 with other parameters fixed as in Table 4.5.2. As shown by the

results in Fig. 4.10, even though the absolute improvement in PSR decreases with the

increase of node density, steady improvement of about 33% is maintained except for

the case of 100 nodes which represents quite high node density and thus high data

rates at nodes in hot-spots. The absolute reduction in energy tax is stable except

for the case of 100 nodes. In addition, the pushback algorithm can lead to higher

throughput and similar delay as CSMA.

Packet Size

Larger packet size implies smaller control overhead of header size and acknowl-

edgement. But using larger packet size usually also means the transmission is more

vulnerable to errors. Hence, we evaluate the performance of the three protocols with

various payload sizes in this section and the results are summarized in Fig. 4.11. It

can be seen that with the increase in packet size, the PSR decreases and the energy

tax increases for CSMA and CSMA/EB. But for the pushback algorithm, the PSR

and energy tax are steady, except for packet sizes as large as 250 bytes, and the im-

provement is more significant for medium packet sizes. For packet size of 250 bytes,

the SNR with fixed node separation is not sufficient to sustain a high success rate,

which leaves smaller room for improvement.

131

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 100 81 64 49 36 25

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Number of Nodes

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 5

 10

 15

 20

 100 81 64 49 36 25

E
ne

rg
y

T
ax

Number of Nodes

Pushback
Pushback

CSMA

(b) Energy Tax

 0

 500

 1000

 1500

 2000

 100 81 64 49 36 25

T
hr

ou
gh

pu
t

Number of Nodes

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 81 64 49 36 25

N
or

m
al

iz
ed

 D
el

ay

Number of Nodes

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.10: Simulation results for various node densities in a random topology.

132

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 200 150 100 50 29

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Packet Size (Bytes)

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 5

 10

 15

 20

 200 150 100 50 29

E
ne

rg
y

T
ax

Packet Size (Bytes)

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 200 150 100 50 29

T
hr

ou
gh

pu
t

Packet Size (Bytes)

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 200 150 100 50 29

N
or

m
al

iz
ed

 D
el

ay

Packet Size (Bytes)

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.11: Simulation results for various packet sizes.

133

Bandwidth

In this section, we evaluate the performance of the pushback algorithm with dif-

ferent bandwidths ranging from 19.2 kbps provided by XSM nodes [21] to 250 kbps

supported by IEEE 802.15.4. The results plotted in Fig. 4.12 show that the pushback

algorithm can provide improvement in PSR and energy tax, but the improvement

is smaller for higher rates. To understand this, observe that even though the band-

width increases, the size of backoff slots remains similar because it takes similar time

to perform clear channel assessment. Therefore, the CSMA backoffs fulfill part of

the task of pushbacks. However, for radios with higher rates, if the packet size is

proportionally increased, we can still observe similar improvement as small packet

sizes in Fig. 4.12.

Cooperation with Rate Control and Back Pressure

Many link layer protocols [64, 32, 52, 37] use packet rate control and back pressure

techniques to mitigate the congestion in the network. These techniques can work

in conjunction with and benefit from the pushback algorithm. To show this, we

implement and test the rate limiting and back pressure mechanisms (denoted as

RC/BP) proposed in [32] along with the pushback algorithm. Fig. 4.13 shows the

PSR and energy tax when CSMA/EB and RC/BP are used with and without the

pushback algorithm under different data rates. It can be seen that the two metrics

have similar variation trends as in Fig. 4.5, which shows that the pushback algorithm

can still result in significant benefit when other congestion control mechanisms are

used in conjunction. The results for throughput and delay (Fig. 4.13 also shows

similar trends as in Fig. 4.5.

134

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 250 200 150 100 76.8 38.4 19.2

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Bandwidth (kbps)

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 2

 4

 6

 8

 10

 12

 250 200 150 100 76.8 38.4 19.2

E
ne

rg
y

T
ax

Bandwidth (kbps)

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 250 200 150 100 76.8 38.4 19.2

T
hr

ou
gh

pu
t

Bandwidth (kbps)

Pushback
CSMA/EB

CSMA

(c) Throughput

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 250 200 150 100 76.8 38.4 19.2

N
or

m
al

iz
ed

 D
el

ay

Bandwidth (kbps)

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Figure 4.12: Simulation results for various bandwidth.

135

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.15 0.1 0.05

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(a) Packet Success Rate

 0

 5

 10

 15

 20

 0.2 0.15 0.1 0.05

E
ne

rg
y

T
ax

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(b) Energy Tax

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.2 0.15 0.1 0.05

T
hr

ou
gh

pu
t

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(c) Throughput

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.2 0.15 0.1 0.05

N
or

m
al

iz
ed

 D
el

ay

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(d) Normalized Delay

Figure 4.13: Simulation results for the cooperation of the pushback algorithm and
RC/BP.

136

4.6 Conclusions and Future Research

This chapter introduces a channel aware transmission pushback mechanism to op-

timize energy efficiency. Using a simple but effective packet loss model, this approach

does not incur high computational overhead on the sensor nodes. Using simulations

we show that the pushback algorithm can significantly improve the packet success rate

and the energy tax without degrading the throughput. In addition, this algorithm is

easy to implement over existing MAC and link layer protocols. Hence, we conclude

that the pushback algorithm is highly suitable for energy constrained wireless sensor

networks.

Future research directions based on the concepts introduced in this chapter are

described below.

Push-Backs in Other Networks: This chapter has focused on the application

of the novel concept of pushbacks in the context of sensor networks. However, the

concept of pushbacks when applied to other networking scenarios such as ad-hoc

networks and mesh networks, can be used to optimize other parameters such as the

number of transmissions. In these networks, reduced interference due to reduction in

number of transmission is expected to result in increased throughput.

Joint Optimization of Transmission Parameters: In this work we have used

channel quality prediction to appropriately delay transmissions. However, channel

quality prediction can be used to adjust other parameters such as physical layer data

rate, transmission power, and carrier-sense threshold, some of which are inter-related.

137

CHAPTER 5

Conclusion and Future Work

In this dissertation, we identify the three major energy consumption sources, i.e.,

idle listening, overhearing, and retransmissions, and propose three approaches to

achieve energy efficiency in wireless sensor networks. CMAC (Chapter 2) achieves

low duty cycle, low latency and high throughput. The aggressive RTS and anycast in

CMAC reduce the idle listening and overhearing, while convergent packet forwarding

optimizes route stretch caused by anycast, thus saving the number of transmissions.

By taking the reverse channel into consideration, our anycast forwarding set algo-

rithm (Chapter 3) addresses the duplicated forwarding problem of existing anycast

algorithms which are reverse link unaware. In Chapter 4, we exploit the temporal

correlation in channel condition, and propose to use transmission pushbacks to avoid

retransmissions when the channel quality is still poor. Experimental and simula-

tion results have shown that the proposed approaches achieve the design goal and

outperform other existing protocols.

Despite the performance improvement brought by the proposed approaches, there

are still some open problems to be addressed, which are listed below:

138

Optimal receiver contention scheme in anycast: In Chapter 2, we choose the

number of CTS slots and number of mini slots according to empirical mea-

surements. But to make the algorithm more robust for various applications

and scenarios, it is worthwhile to investigate the choices of such parameters.

In addition, the basic question of how the contention resolution among re-

ceivers should be done leads to many other open problems. For example, in

some protocols such as ExOR [10, 75], receivers cancel their forwarding tasks

by receiving acknowledgements, while in the community of MAC layer anycast

[35, 38, 77, 76, 27, 29, 30, 61, 16, 17, 15, 67], the cancellation is performed

upon detecting a busy channel. Both mechanisms have their advantages and

disadvantages, but rigorous measurements and analysis are needed for better

designs.

Adaptation to network dynamics in anycast forwarding set selection: The al-

gorithmic framework proposed in Chapter 3 assumes the knowledge of PRR and

ARR to each neighbor node, but in a network with these parameters change over

time, it is still an open problem to adapt quickly to such dynamics. Network

dynamics may be caused by varying traffic patterns, node deployments and

failures, and significant changes in link quality. Our current solution (Section

3.4.2) depends on broadcasting advertisements and to construct new forwarding

sets in such cases, but the speed of convergence for large scale networks is still

a challenging issue to address.

139

Joint optimization of transmission parameters: In Chapter 4, we use channel

quality prediction to appropriately delay transmissions. However, channel qual-

ity prediction can be used to adjust other parameters such as physical layer

data rate, transmission power, and carrier-sense threshold, some of which are

inter-related. The joint optimization should consider various factors such as

application types and traffic patterns.

Even though various protocols have been proposed to conserve the precious en-

ergy resource in sensor nodes in different ways, energy efficient MAC layer design

for wireless sensor networks still faces a lot of challenges. Among all challenges, it

is worthwhile pointing out that current protocol designs have the problem of inte-

gration with other communication components. More specifically, different design

goals usually require conflicting assumptions or lead to incompatible features in pro-

tocols. For example, protocols for fairness, congestion control [32, 64, 52], data ag-

gregation [25, 24] and our pushback algorithm (Chapter 4) are designed to minimize

packet losses, but they also require the sender or receiver to wait a significant amount

of time before carrying out further forwarding or transmission to obtain optimal per-

formance. However, idle listening also consumes energy during such waiting periods,

while the lack of coordination among the sender and the receiver makes it inefficient

to apply duty cycling protocols. Another example is like the DMAC protocol [41]

and its variants, which are designed to improve the performance of convergecast [72],

but its staggered on wake-up scheduling also incurs high latency for traffic originating

from the sink. Hence, protocol designs that optimize one aspect may have suboptimal

performance when they are used to build a complete system. In addition, the various

traffic patterns introduced by different application types also make the cooperation

140

of protocols inefficient or suboptimal. Therefore, we believe that in the future, the

protocol design for wireless sensor networks should take the whole system including

all supportive features into consideration. When tradeoffs are necessary, the perfor-

mance gain and loss from all components under different situations must be analyzed

to optimize the entire system.

141

BIBLIOGRAPHY

[1] CC1000. http://www.chipcon.com/files/CC1000 Data Sheet 2 2.pdf.

[2] CC2420. http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[3] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-

WPANs). http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf.

[4] Mica2. http://www.xbow.com/Products/productsdetails.aspx?sid=72.

[5] Stargate. http://platformx.sourceforge.net/home.html.

[6] The Network Simulator – ns-2. http://www.isi.edu/nsnam/ns/.

[7] TinyOS. http://www.tinyos.net.

[8] Tmote sky. http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.

[9] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko. Kansei: A High-

Fidelity Sensing Testbed. IEEE Internet Computing, 10(2):35–47, Mar. 2006.

[10] S. Biswas and R. Morris. ExOR: opportunistic multi-hop routing for wireless

networks. In Proc. SIGCOMM, pages 133–144, Aug. 2005.

[11] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: A Short Preamble

MAC Protocol for Duty-Cycled Wireless Sensor Networks. In Proc. SenSys,
pages 307–320, Nov. 2006.

[12] H. Cao, K. W. Parker, and A. Arora. O-MAC: A Receiver Centric Power Man-

agement Protocol. In Proc. ICNP, pages 311–320, Nov. 2006.

[13] P. Casari, A. Marcucci, M. Nati, C. Petrioli, and M. Zorzi. A Detailed Simulation

Study of Geographic Random Forwarding (GeRaF) in Wireless Sensor Networks.
In Proc. MILCOM, pages 17–20, Oct. 2005.

142

[14] A. Cerpa, J. L. W. M. Potkonjak, and D. Estrin. Temporal Properties of Low
Power Wireless Links: Modeling and Implications on Multi-Hop Routing. In

Proc. MobiHoc, pages 414–425, May 2005.

[15] D. Chen, G. Cao, and L. Zuo. A Multihop Data Relay Scheme for Wireless

Networked Sensors. In Proc. VTC, volume 3, pages 1814–1818, Sept. 2005.

[16] D. Chen, J. Deng, and P. K. Varshney. A State-Free Data Delivery Protocol for

Multihop Wireless Sensor Networks. In Proc. WCNC, volume 3, pages 1818–
1823, Mar. 2005.

[17] D. Chen, J. Deng, and P. K. Varshney. On the Forwarding Area of Contention-
Based Geographic Forwarding for Ad Hoc and Sensor Networks. In Proc.

SECON, pages 130–141, Sept. 2005.

[18] J.-G. Choi and S. Bahk. Channel aware MAC scheme based on CSMA/CA. In
Proc. VTC, pages 1559–1563, May 2004.

[19] R. R. Choudhury and N. H. Vaidya. MAC-Layer Anycasting in Ad Hoc Networks.
SIGCOMM Computer Communication Review, 34(1):75–80, Jan. 2004.

[20] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput
Path Metric for Multi-Hop Wireless Routing. In Proc. MobiCom, pages 134–146,

Sept. 2003.

[21] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a Wireless

Sensor Network Platform for Detecting Rare, Random, and Ephemeral Events.
In Proc. IPSN, pages 497–502, Apr. 2005.

[22] A. El-Hoiydi and J.-D. Decotignie. Low Power Downlink MAC Protocols for

Infrastructure Wireless Sensor Networks. Mobile Networks and Applications,
10(5):675–690, oct 2005.

[23] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat, V. Kulathu-
mani, M. Sridharan, H. Zhang, and H. Cao. Kansei: A Testbed for Sensing at

Scale. In Proc. IPSN SPOTS), pages 399–406, Apr. 2006.

[24] K.-W. Fan, S. Liu, and P. Sinha. Scalable Data Aggregation for Dynamic Events

in Sensor Networks. In Proc. SenSys’06, pages 181–194, Nov. 2006.

[25] K.-W. Fan, S. Liu, and P. Sinha. Structure-Free Data Aggregation in Sensor

Networks. IEEE Trans. Mobile Computing, 6(8):929–942, Aug. 2007.

[26] B. D. Fritchman. A Binary Characterization Using Partitioned Markov Chains.

IEEE Trans. Inform. Theory, 13(2):221–227, Apr. 1967.

143

[27] H. Füßler, J. Widmer, M. Käsemann, M. Mauve, and H. Hartenstein.
Contention-Based Forwarding for Mobile Ad Hoc Networks. Ad Hoc Networks,

1(4):351–369, Nov. 2003.

[28] E. N. Gilbert. Capacity of a burst-noise channel. Bell Syst. Tech. J., 39:1253–
1266, sep 1960.

[29] T. He, B. M. Blum, Q. Cao, J. A. Stankovic, S. H. Son, and T. F. Abdelzaher.

Robust and Timely Communication over Highly Dynamic Sensor Networks. Real-
Time Systems, 37(3):261–289, 12 2007.

[30] M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli. BLR: Beacon-Less

Routing Algorithm for Mobile Ad-Hoc Networks. Computer Communications,
27(11):1076–1086, July 2004.

[31] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol for Multi-

Hop Wireless Networks. In Proc. MobiCom, pages 236–251, July 2001.

[32] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating Congestion in Wireless
Sensor Networks. In Proc. SenSys, pages 134–147, Nov. 2004.

[33] S. Jain and S. R. Das. Exploiting Path Diversity in the Link Layer in Wireless
Ad Hoc Networks. In Proc. WoWMoM, pages 22–30, Jun. 2005.

[34] A. Kamerman and L. Monteban. WaveLAN II: A High-performance Wireless

LAN for the Unlicensed Band. In Bell Labs Technical Journal, volume 2, pages
118–133, 1997.

[35] J. Kim, X. Lin, N. Shroff, and P. Sinha. On Maximizing the Lifetime of Delay-

Sensitive Wireless Sensor Networks with Anycast. In Proc. INFOCOM, Apr.
2008.

[36] P. Larsson. Selection Diversity Forwarding in a Multihop Packet Radio Network

with Fading Channel and Capture. SIGMOBILE Mob. Comput. Commun. Rev.,
5(4):47–54, Oct. 2001.

[37] C. Lim, H. Luo, and C.-H. Choi. RAIN: A Reliable Wireless Network Architec-

ture. In Proc. ICNP, pages 228–237, Nov. 2006.

[38] S. Liu, K.-W. Fan, and P. Sinha. CMAC: An Energy Efficient MAC Layer
Protocol Using Convergent Packet Forwarding for Wireless Sensor Networks. In

Proc. SECON, pages 11–20, June 2007.

[39] S. Liu, R. Srivastava, C. E. Koksal, and P. Sinha. Achieving Energy Efficiency
with Transmission Pushbacks in Sensor Networks. OSU Technical Report, July

2007.

144

[40] S. Liu, R. Srivastava, C. E. Koksal, and P. Sinha. Achieving Energy Efficiency
with Transmission Pushbacks in Sensor Networks. In Proc. IWQoS, June 2008.

[41] G. Lu, B. Krishnamachari, and C. S. Raghavendra. An Adaptive Energy-Efficient

and Low-Latency MAC for Data Gathering in Wireless Sensor Networks. In Proc.
IPDPS, pages 224–231, Apr. 2004.

[42] L. G. Matheson and E. A. Whitehill. Probabilistic Contention Based Forwarding

in Multihop Packet Radio Networks. In Proc. 1994 Tactical Communications
Conference, volume 1, pages 355–364, May 1994.

[43] J. Neter, M. H. Kutner, W. Wasserman, and C. J. Nachtsheim. ”Applied Linear

Regression Models”. McGraw Hill, 4th edition, 2004.

[44] J. Padhye, R. Draves, and B. Zill. Routing in Multi-Radio, Multi-Hop Wireless
Mesh Networks. In Proc. MobiCom, pages 114–128, Sept. 2004.

[45] P. Papadimitratos, A. Mishra, and D. Rosenburgh. A Cross-Layer Design Ap-

proach to Enhance 802.15.4. In Proc. MILCOM, pages 1719–1726, Oct. 2005.

[46] V. Paruchuri, S. Basavaraju, A. Durresi, R. Kannan, and S. Iyengar. Random

Asynchronous Wakeup Protocol for Sensor Networks. In Proc. BroadNets, pages
710–717, Oct. 2004.

[47] C. E. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers. In Proc. SIGCOMM, pages 234–
244, Aug. 1994.

[48] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for Wireless

Sensor Networks. In Proc. SenSys, pages 95–107, Nov. 2004.

[49] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A
Unifying Link Abstraction for Wireless Sensor Networks. In Proc. SenSys, pages

76–89, Nov. 2005.

[50] B. Prabhakar, E. U. Biyikoglu, and A. E. Gamal. Energy-Efficient Transmission
over a Wireless Link via Lazy Packet Scheduling. In Proc. INFOCOM, pages

386–394, Apr. 2001.

[51] V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-Efficient,
Collision-Free Medium Access Control for Wireless Sensor Networks. In Proc.

SenSys, pages 181–192, Nov. 2003.

[52] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware
Fair Rate Control in Wireless Sensor Networks. In Proc. SIGCOMM, pages

63–74, Sept. 2006.

145

[53] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice
Hall, second edition, 2001.

[54] I. Rhee, A. Warrier, M. Aia, and J. Min. ZMAC: a Hybrid MAC for Wireless

Sensor Networks. In Proc. SenSys, pages 90–101, Nov. 2005.

[55] M. Rossi, N. Bui, and M. Zorzi. Cost and Collision Minimizing Forwarding

Schemes for Wireless Sensor Networks. In Proc. INFOCOM, pages 276–284,
Apr. 2007.

[56] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knighlty. Opportunistic Media

Access for Multirate Ad Hoc Networks. In Proc. MobiCom, pages 24–35, July
2002.

[57] J. A. Sanchez, R. Marin-Perez, and P. M. Ruiz. BOSS: Beacon-less On Demand

Strategy for Geographic Routing inWireless Sensor Networks. In Proc. MASS,
pages 1–10, Oct. 2007.

[58] L. Sang, A. Arora, and H. Zhang. On Exploiting Asymmetric Wireless Links via

One-Way Estimation. In Proc. MobiHoc, pages 11–21, Sept. 2007.

[59] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-Efficient For-

warding Strategies for Geographic Routing in Lossy Wireless Sensor Networks.
In Proc. SenSys, pages 108–121, Nov. 2004.

[60] M. L. Sichitiu. Cross-Layer Scheduling for Power Efficiency in Wireless Sensor

Networks. In Proc. INFOCOM, volume 3, pages 1740–1750, Mar. 2004.

[61] P. Škraba, H. Aghajan, and A. Bahai. Distributed Passive Routing Decisions
in Mobile Ad-Hoc Networks. In Proc. VTC, volume 4, pages 2814–2818, Sept.

2004.

[62] W. Turin and M. M. Sondhi. Modeling Error Sources in Digital Channels. IEEE
J. Select. Areas Commun., 11(3):340–347, Apr. 1993.

[63] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC Procotol
for Wireless Sensor Networks. In Proc. SenSys, pages 171–180, Nov. 2003.

[64] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. CODA: Congestion Detection

and Avoidance in Sensor Networks. In Proc. SenSys, pages 266–279, Oct. 2003.

[65] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless Sensor
Network Testbed. In Proc. IPSN SPOTS, pages 483–488, Apr. 2005.

[66] A. Willig, M. Kubisch, H. Christian, and A. Wolisz. Measurements of a Wireless
Link in an Industrial Environment Using an 802.11-Compilant Physical Layer.

IEEE Trans. Ind. Electron., 49(6):1265–1282, Dec. 2002.

146

[67] M. Witt and V. Turau. BGR: Blind Geographic Routing for Sensor Networks.
In Proc. WISES, pages 51–61, May 2005.

[68] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate Adaptation
for 802.11 Wireless Networks. In Proc. MOBICOM, pages 146–157, Sept. 2006.

[69] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In Proc. SenSys, pages 14–27, Nov. 2003.

[70] W. Ye, J. Heidemann, and D. Estrin. Medium Access Control with Coordinated
Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Trans. Networking,

12(3):493–506, June 2004.

[71] W. Ye, F. Silva, and J. Heidemann. Ultra-Low Duty Cycle MAC with Scheduled
Channel Polling. In Proc. SenSys, pages 321–334, Nov. 2006.

[72] H. Zhang, A. Arora, Y. ri Choi, and M. G. Gouda. Reliable Bursty Convergecast
in Wireless Sensor Networks. In Proc. MobiHoc’05, pages 266–276, May 2005.

[73] H. Zhang, A. Arora, and P. Sinha. Learn on the Fly: Data-Driven Link Esti-
mation and Routing in Sensor Network Backbones. In Proc. INFOCOM, pages

1–12, Apr. 2007.

[74] J. Zhao and R. Govindan. Understanding Packet Delivery Performance in Dense

Wireless Sensor Networks. In Proc. SenSys, pages 1–13, Oct. 2003.

[75] Z. Zhong and S. Nelakuditi. On the Efficacy of Opportunistic Routing. In Proc.

SECON, pages 441–450, June 2007.

[76] M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) for Ad Hoc

and Sensor Networks: Energy and Latency Performance. IEEE Trans. Mobile

Comput., 2(4):349–365, Oct. 2003.

[77] M. Zorzi and R. R. Rao. Geographic Random Forwarding (GeRaF) for Ad Hoc

and Sensor Networks: Multihop Performance. IEEE Trans. Mobile Comput.,
2(4):337–348, Oct. 2003.

[78] M. Zuniga and B. Krishnamachari. Analyzing the Transitional Region in Low
Power Wireless Links. In Proc. SECON, pages 517–526, Oct. 2004.

147

