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ABSTRACT

Using a sample of 379 million Υ (4S) → BB events collected with the BABAR

detector at the PEP-II B-factory, I study decays of B− → D0K∗− where K∗− →

K0
sπ

−, K0
s → π+π− and D0 decays into K±π∓ and CP -eigenstates. Both CP+

(K+K−, π+π−) and CP− final states (K0
sπ

0, K0
sφ, K0

sω) are included. Using

the Gronau-London-Wyler (GLW) and Atwood-Dunietz-Soni (ADS) methods, CP -

observables which are sensitive to the CKM angle γ are measured.

ii



ACKNOWLEDGEMENTS

My gratitude must first start with my advisor, Professor Richard Kass. In the

four-plus years that I worked under him, he guided me from being a clueless graduate

student who knew nothing about the field of study he was about to enter to someone

who was able to complete this thesis. His broad and vast knowledge of particle physics

has proven invaluable to my growth as a physicist. From software to hardware, data

analysis to experimental apparatus, he has taught me everything I need to know (and

more) to become a successful experimental particle physicist. I still remember the

time when I did not even know how to use a wrench; yet he was patient enough to

lead me until I was capable of handling the Limited Streamer Tubes Quality Control

project myself. I am greatly indebted to his kindness, patience, guidance, insight and

professionalism.

I cheerfully thank everyone in the OSU BABAR/ATLAS Group that I have worked

with, especially Richard, Professor Klaus Honscheid, and my coworkers Gabriele

Benelli, Amir Rahimi, James Morris, Joe Regensburger, Luke Corwin and Rouben

Ter-Antonian. There were times when I did not understand their jokes; neverthe-

less, their great sense of humor has provided a fun, relaxing and supportive working

environment that I greatly appreciate.

iii



I extend my thanks to the members of the BABAR LST management team: Char-

lie Young, Mark Convery, Jed Biesiada and Gigi Cibinetto, among others. Their

professional knowledge was extremely helpful to my term as an operations manager.

I am grateful for the prayers and fellowship from my brothers and sisters in Christ

at the Abounding Grace Christian Church in the Bay Area and Columbus Chinese

Christian Church. I truly treasure their friendship. I especially thank Lydia for her

love, care and laughter. My life would be so much emptier without her companionship.

From the deepest of my heart I offer my gratitude to the most important persons

in my life: my parents and my younger brother. No words can describe how much

their support and encouragement have meant to me. We are far apart in time (zones)

and space, but nothing weakens the love and bonds between us.

Most importantly, I humbly offer my gratefulness to the Lord of my life, the

Creator of this fascinating universe. God, without Your strength and guidance, I

would still be a lost sheep, living a purposeless life. Thank You for Your everlasting

love, mercy and faithfulness.

iv



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS v

LIST OF FIGURES xii

LIST OF TABLES xix

Chapters:

1. INTRODUCTION 1

2. THEORY 3

2.1 Discrete Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 C and P Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 CP Violation in the K0 System . . . . . . . . . . . . . . . . . . . . . 5

2.4 CP Violation in The Standard Model . . . . . . . . . . . . . . . . . . 6

2.4.1 V-A Theory and the GIM Mechanism . . . . . . . . . . . . . . 6

2.4.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 9

v



2.4.4 The Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . 13

2.5 CP Violation in B Decays . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 CP Violation in Decay . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 CP Violation in Mixing . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 CP violation in the Interference between Decay and Mixing . 20

2.6 Magnitudes of CKM Elements . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 |Vud| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 |Vus| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 |Vcd| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.4 |Vcs| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.5 |Vcb| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.6 |Vub| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.7 |Vtd| and |Vts| . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.8 |Vtb| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Unitarity Triangle Angles . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.2 α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.3 γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 The Global CKM Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 B− → D0K∗− Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.1 The GLW Method . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9.2 The ADS Method . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. THE EXPERIMENTAL ENVIRONMENT 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



3.2 The PEP-II Asymmetric Collider . . . . . . . . . . . . . . . . . . . . 38

3.3 The BABAR Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 The Silicon Vertex Tracker . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Theory of Operations . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 The Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Theory of Operations . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 The Detector of Internally Reflected Cherenkov Light . . . . . . . . . 54

3.6.1 Theory of Operations . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Theory of Operations . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 The Instrumented Flux Return . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Theory of Operations . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.2 Limited Streamer Tubes . . . . . . . . . . . . . . . . . . . . . 67

3.9 The Trigger and Data Acquisition System . . . . . . . . . . . . . . . 73

4. ANALYSIS OF B− → D0K∗− DECAYS USING THE GLW METHOD 78

vii



4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Signal Monte Carlo Samples . . . . . . . . . . . . . . . . . . . 80

4.2.3 Background Monte Carlo Samples . . . . . . . . . . . . . . . . 80

4.3 Reconstruction and Selection . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Reconstruction of K0
S

. . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Reconstruction of K∗± . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Selection of K± . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.4 Reconstruction of π0 . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.5 Reconstruction of φ . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.6 Reconstruction of ω . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.7 Reconstruction of D0 . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.8 Reconstruction of B± . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Topological Variables . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.3 Other Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Multi-Layer Perception . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Neural Network Training . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Input Topological Variables . . . . . . . . . . . . . . . . . . . 93

4.5.4 NN Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.5 NN Output (ONN) . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



4.6 D0 → K0
S
π+π− Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Optimization of Selection Cuts . . . . . . . . . . . . . . . . . . . . . . 98

4.7.1 ∆E Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7.2 |m(D0) −M(D0)PDG| Cut . . . . . . . . . . . . . . . . . . . . 99

4.7.3 D0 → K0
S
π+π− Veto . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Multiple Candidates Selection . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Summary of Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Signal Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11 Extended Maximum Likelihood Fit . . . . . . . . . . . . . . . . . . . 105

4.11.1 The Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.11.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.11.3 ∆E and ∆m(D0) Sidebands . . . . . . . . . . . . . . . . . . . 109

4.11.4 Fake D0 Backgrounds in Signal Region . . . . . . . . . . . . . 109

4.11.5 Fit Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.11.6 Fit Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.12 Systematic Errors of ACP and RCP . . . . . . . . . . . . . . . . . . . 114

4.12.1 Systematics from Same-Final-State Backgrounds . . . . . . . . 115

4.12.2 Systematics from the Interference with B → D0K0
sπ . . . . . . 117

4.12.3 Other Systematics of ACP . . . . . . . . . . . . . . . . . . . . 118

4.12.4 Summary of Systematic Errors of ACP± . . . . . . . . . . . . 119

4.12.5 Summary of Systematic Errors of RCP± . . . . . . . . . . . . 119

4.13 Summary of the GLW Analysis Results . . . . . . . . . . . . . . . . . 120

5. ANALYSIS OF B− → D0K∗− DECAYS USING THE ADS METHOD 129

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



5.2 Discriminating Variables and Optimizations . . . . . . . . . . . . . . 130

5.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Summary of Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Signal Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Peaking Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.1 Right-Sign Pollution . . . . . . . . . . . . . . . . . . . . . . . 134

5.7 Extended Maximum Likelihood Fit . . . . . . . . . . . . . . . . . . . 135

5.7.1 Fit Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7.2 Right-Sign Pollution . . . . . . . . . . . . . . . . . . . . . . . 136

5.7.3 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Systematic Errors of RADS and AADS . . . . . . . . . . . . . . . . . . 137

5.8.1 Asymmetry in the Detection Efficiency . . . . . . . . . . . . . 137

5.8.2 Right-Sign Peaking Background Subtraction . . . . . . . . . . 140

5.8.3 Systematics from the Interference with B → D0K0
S
π . . . . . . 140

5.8.4 Summary of Systematic Errors of RADS . . . . . . . . . . . . . 140

5.8.5 Summary of Systematic Errors of AADS . . . . . . . . . . . . . 141

5.9 Summary of the ADS Analysis Results . . . . . . . . . . . . . . . . . 141

6. COMBINED GLW AND ADS RESULTS 142

7. CONCLUSION 148

Appendices:

A. EFFICIENCY CORRECTIONS TO RCP± 149

A.1 Efficiency Correction to ACP . . . . . . . . . . . . . . . . . . . . . . . 149

x



A.2 Efficiency Correction to RCP . . . . . . . . . . . . . . . . . . . . . . . 149

A.3 Tracking Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.4 PID Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.5 π0 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.6 K0
s Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.7 CP− Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B. SYSTEMATIC ERRORS OF x± 156

B.1 Systematics from Same-Final-State Backgrounds . . . . . . . . . . . . 156

B.2 Systematics from the Interference with B → D0K0
sπ . . . . . . . . . . 157

B.3 Systematics from Fake D0 Background . . . . . . . . . . . . . . . . . 157

B.4 Other Systematics of x± . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.5 Summary of Systematic Errors of x± . . . . . . . . . . . . . . . . . . 158

C. B− → D0X−
s DECAYS 160

BIBLIOGRAPHY 163

xi



LIST OF FIGURES

Figure Page

2.1 The constituents of the Standard Model of particle interactions. . . . 9

2.2 The Unitarity Triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The Unitarity Triangle in Wolfenstein Parameterization. . . . . . . . 15

2.4 Direct CP violation is due to the interference between two amplitudes

A1 and A2 with a relative CP -violating phase φ and a CP conserving

phase δ for the transition between an initial state i and a final state f . 17

2.5 Feynman diagrams mediating B0 −B0 mixing. . . . . . . . . . . . . . 19

2.6 The third type of CP violation results from the interference between

decay (Af and Af ) and mixing (p and q) amplitudes. . . . . . . . . . 20

2.7 Confidence levels in the (ρ,η) plane for the global CKM fit performed

by UTfit are determined by constraints from measurements of |εK|,

|Vub/Vcb|, ∆md, ∆md/∆ms, α, β and γ. Closed contours at 68% and

95% probability are shown. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Feynman diagrams for the color-favored decay of B− → D0K∗− (left)

and the color-suppressed decay of B− → D0K∗− (right). . . . . . . . 29

xii



2.9 Feynman diagrams for the color-suppressed decay of B− → D0K∗−

(left) followed by the Cabibbo-favored decay of D0 → K+π− (right). . 33

2.10 Feynman diagrams for the color-favored decay of B− → D0K∗− (left)

followed by the Doubly-Cabibbo-suppressed decay of D0 → K+π−

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 A schematic depiction of the Linear Accelerator and the PEP-II asym-

metric storage ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Integrated luminosity delivered by PEP-II and recorded by BABAR

since the beginning of operations. . . . . . . . . . . . . . . . . . . . . 41

3.3 Daily luminosity delivered by PEP-II and recorded by BABAR since the

beginning of operations. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Longitudinal cross-section of the BABAR detector. . . . . . . . . . . . 44

3.5 Transverse cross-section of the barrel of the BABAR detector. . . . . . 45

3.6 Longitudinal (r-z) cross-section of the SVT. . . . . . . . . . . . . . . 47

3.7 Transverse (x-y) cross-section of the SVT. . . . . . . . . . . . . . . . 47

3.8 SVT reconstruction efficiency in the z (left) and φ view (right) as

measured in e+e− → µ+µ− events. . . . . . . . . . . . . . . . . . . . . 49

3.9 Longitudinal cross-section of the DCH. The dimensions are in millime-

ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 A schematic of the arrangements of the wires in the hexagonal cells in

the four innermost layers of the DCH. . . . . . . . . . . . . . . . . . . 53

3.11 Isochrones in a typical DCH cell at 1.5 T of magnetic field. . . . . . . 54

xiii



3.12 The track reconstruction efficiency in the DCH at operating voltages

of 1900 V and 1960 V as a function of transverse momentum (top) and

polar angle (bottom). The measurement at the DCH voltage of 1900

V (open circle) and 1960 V (solid circle) are shown. . . . . . . . . . . 55

3.13 Estimated error in the difference ∆z between the B0 meson decay

vertices for a sample of events in which one B0 is fully reconstructed. 56

3.14 A schematic of the DIRC fused silica radiator bar and imaging region. 57

3.15 DIRC π-K separation versus track momentum measured in D0 →

K−π+ decays in units of standard deviations. . . . . . . . . . . . . . 58

3.16 The DIRC kaon identification efficiency versus track momentum is

shown on the top plot. The bottom plot shows the probability of a

pion being mis-identified as a kaon as a function of track momentum. 59

3.17 Schematic of a typical CsI(Tl) crystal (not to scale). . . . . . . . . . . 61

3.18 Longitudinal cross-section of the EMC. All dimensions are in mm. . . 62

3.19 Energy resolution of the EMC measured for photons and electrons from

various processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.20 Angular resolution in the EMC as a function of photon energy. . . . . 64

3.21 Invariant mass of two photons in BB events. The energies of the

photons and the π0 are required to be between 30 MeV and 300 MeV.

The solid line is the fit to data. . . . . . . . . . . . . . . . . . . . . . 65

3.22 Drawings of the barrel sectors and forward and backward end doors in

the IFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.23 Cross-section of a BABAR Resistive Plate Chamber (RPC). . . . . . . 66

xiv



3.24 Deterioration of the average RPC efficiency (red). The green dots show

the fraction of RPCs with efficiency lower than 10%. . . . . . . . . . 69

3.25 Photos of a BABAR limited streamer tube. . . . . . . . . . . . . . . . 70

3.26 Singles rate plateau versus applied voltage for two LSTs. The LST on

the top showed a very good plateau; while the one on the bottom had

bad (no) plateau and was due further HV conditioning before being

tested again. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.27 Plot of source-induced current (nA) versus the Cs137 source position as

it scanned along the length of the LST in a scan test. One of the wires

in the tube showed a self-sustaining discharge and was subjected to

additional HV conditioning and a second scan test. The vertical orange

lines on the plot are “cell” boundaries, with each “cell” representing

two wires of the LST. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.28 Singles rate plateaus from a sample layer of installed LSTs in the IFR. 75

3.29 Color-coded efficiency maps for six sample layers in the barrel. The

scale goes from 0% (red) to 100% (green). All other layers of LSTs

display similarly exceptional efficiencies. . . . . . . . . . . . . . . . . 76

3.30 Muon ID performance plot of the LSTs in the barrel for muons with

momenta between 2.0 and 4.0 GeV/c, represented by pion rejection

versus muon efficiency. Note that the LST performance bested the

initial performance of the RPCs. . . . . . . . . . . . . . . . . . . . . . 77

xv



4.1 A graphical representation of a B decay event (left) and a continuum

background event (right). A B decay event has a more spherical struc-

ture while a continuum event is jet-like. The “signal B” in the B decay

event represents the B candidate of interest in the event. . . . . . . . 79

4.2 Illustration of a Multi-Layer Perceptron NN used in MLPFit. . . . . 92

4.3 Neural Network outputs (ONN) of D0 → K+K− (left) and D0 → π+π−

(right) from signal MC, cuds continuum and off-peak data samples.

Red solid line represents signal and blue represents continuum. The

dots are off-peak data. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Neural Network outputs (ONN) ofD0 → K0
sπ

0 (upper left), D0 → K0
sφ

(upper right), D0 → K0
sω (lower left) and D0 → K−π+ (lower right)

from signal MC, cuds continuum and off-peak data samples. Red solid

line represents signal and blue represents continuum. The dots are

off-peak data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Mass difference between a D0 candidate and its PDG mass in a signal

MC sample of 878000 B− → D0π−, D0 → K0
sπ

+π− events. . . . . . . 100

4.6 Simultaneous fit to mES distributions in signal regions on 344.7 fb−1

of data. First row: CP+ modes (K+K−, π+π−), left(B+), right(B−).

Second row: CP- modes (K0
sπ

0, K0
sφ, K0

sω), left(B+), right(B−).

Third row: Non-CP mode (K−π+), B±. . . . . . . . . . . . . . . . . 121

4.7 Simultaneous fit to mES distributions in sidebands on 344.7 fb−1 of

data. Left column: (∆E sideband), right column: (∆m(D0) sideband).

First row: CP+ modes (K+K−, π+π−), B±. Second row: CP- modes

(K0
sπ

0, K0
sφ, K0

sω), B±. Third row: Non-CP mode (K−π+), B±. . . . 122

xvi



4.8 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data forD0 → K+K− (CP+) mode. First row: Signal

region. Second row: ∆E sideband. Third row: ∆m(D0) sideband. . . 123

4.9 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data for D0 → π+π− (CP+) mode. First row: Signal

region. Second row: ∆E sideband. Third row: ∆m(D0) sideband. . . 124

4.10 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data for D0 → K0
sπ

0 (CP -) mode. First row: Signal

region. Second row: ∆E sideband. Third row: ∆m(D0) sideband. . . 125

4.11 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data for D0 → K0
sφ (CP -) mode. First row: Signal

region. Second row: ∆E sideband. Third row: ∆m(D0) sideband. . . 126

4.12 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data for D0 → K0
sω (CP -) mode. First row: Signal

region. Second row: ∆E sideband. Third row: ∆m(D0) sideband. . . 127

4.13 Simultaneous fit to mES distributions in signal regions and sidebands

on 344.7 fb−1 of data for D0 → K−π+ (Non-CP ) mode. Top: Signal

region (B±). Middle: ∆E sideband (B±). Bottom: ∆m(D0) sideband

(B±). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 ∆E of signal B candidates (left) and D0 invariant mass difference

(right) distributions of D0 → K+π− signal MC with fits. Both distri-

butions are fitted with double Gaussians. . . . . . . . . . . . . . . . . 131

xvii



5.2 .Neural Network output (ONN) of D0 → K+π− from samples of signal,

cuds and off-peak data with 20000 events each. Red solid line repre-

sents signal and blue represents continuum. The dots are off-peak data. 132

5.3 mES distributions in ∆E (left) and ∆m(D0) (right) sideband. The

Argus+Gaussian fit is also shown. The sample is B− → (K+π−)D0K∗−

with Run 1 - 5 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Simultaneous fit to mES distributions in signal regions on Run 1 - 5

data. First row: Left: Wrong-sign D0 → K+π− (the dashed-peak

represents the RS-contamination). Right: Right-sign D0 → K−π+.

Second row: Left: Wrong-sign B+. Right: Wrong-sign B−. . . . . . . 139

6.1 The PDF for rs. The 68 and 95% C.L. are shown. They are extracted

from UTfit [36] using the combined GLW and ADS results in this thesis. 144

6.2 The PDF for γ. The 68 and 95% C.L. are shown. They are extracted

from UTfit [36] using the combined GLW and ADS results in this thesis. 145

6.3 The PDF for γ extracted by UTfit [36] with the most updated results

from all γ-sensitive experiments. The 68 and 95% C.L. are shown.

(Note: results from this thesis were not used.) . . . . . . . . . . . . . 146

6.4 Evolution during the last 15 years of the allowed region in the (ρ, η)

plane from theoretical and experimental constraints [36]. . . . . . . . 147

xviii



LIST OF TABLES

Table Page

3.1 Production cross-sections at
√
s = 10.58 GeV. . . . . . . . . . . . . . 37

4.1 Total branching fractions of the decay modes studied in the GLW anal-

ysis. All numbers are provided by the PDG [16]. . . . . . . . . . . . . 80

4.2 Luminosities of the Run 1 - 5 data samples used in this analysis. The

equivalent luminosity (L) is calculated based on the cross-section of bb

production (1.1 nb) and according to the formula L = N/σ where σ is

the cross-section and N is the number of generated events. . . . . . . 81

4.3 Statistics of signal Monte Carlo samples used in this analysis. K∗−

from B− → D0K∗− decays with K∗− → K0
sπ

− and K0
S
→ π+π− and

various decay modes of D0. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Statistics of Run 1 - 5 background Monte Carlo samples used in the

analysis. The equivalent luminosity is calculated based on the cross-

section of the related process at the resonance: 1.1 nb, 1.30 nb and

2.09 nb for bb, cc and uu/dd/ss production respectively. . . . . . . . . 82

4.5 Sizes of the samples used to produce Neural Network outputs. . . . . 96

xix



4.6 List of ∆E cut windows for various modes. The column “Fraction”

refers to the fraction of the fit in the core Gaussian. The last column

is the ∆E cut value that will be used in this analysis. . . . . . . . . . 98

4.7 The fitted mass resolutions of all reconstructed D0 candidates in signal

MC. The last column is the value of the D0 invariant mass cut that

will be used in this analysis. . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Signal efficiencies of B− → D0π−, D0 → K0
sπ

+π− with different D0

invariant mass cuts. The signal MC sample has 878000 signal events. 101

4.9 Percentage of events with multiple candidates that pass all selection

cuts in signal MC samples. Truth-matching is used to determine the

percentage of correctly-chosen candidates. . . . . . . . . . . . . . . . 102

4.10 Summary of selection criteria of CP+ modes. . . . . . . . . . . . . . 102

4.11 Summary of selection criteria of CP - modes. . . . . . . . . . . . . . . 103

4.12 Summary of selection criteria of Non-CP modes. . . . . . . . . . . . . 103

4.13 Signal efficiencies of the six decay modes studied in this analysis. . . . 104

4.14 Summary of individual cut efficiencies of CP+ modes. . . . . . . . . 105

4.15 Summary of individual cut efficiencies of CP - modes. . . . . . . . . . 106

4.16 Summary of individual cut efficiencies of Non-CP modes. . . . . . . . 106

4.17 Sideband definitions for various modes in this analysis. . . . . . . . . 109

4.18 A summary of the ∆m(D0) signal region and sideband definitions, and

the ratio of the ∆m(D0) signal window to sideband window. . . . . . 110

4.19 CP -asymmetry fit results on 344.7 fb−1 of Run 1 - 5 data. . . . . . . 114

4.20 Results of the B− → D0[K∗− + K0
sπ

−] system modeling presented in

BAD1141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xx



4.21 Systematic errors of ACP±. . . . . . . . . . . . . . . . . . . . . . . . . 119

4.22 Systematic errors of RCP±. . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 The choices of ∆E and ∆m(D0) cut windows are based on the widths

of their signal peaks in signal MC. The column “Fraction” refers to the

fraction of the fit in the core Gaussian. The last column is the ∆E and

D0 invariant mass cut values that will be used in this analysis. . . . . 130

5.2 Selection criteria of WS D0 → K+π− and RS D0 → K−π+. . . . . . . 132

5.3 Signal efficiencies of WS D0 → K+π− and RS D0 → K−π+. . . . . . 133

5.4 Summary of individual cut efficiencies of the two ADS modes. . . . . 133

5.5 εRS and εWS for Run 1 - 5 K+π− signal MC for calculation of RS

pollution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Fit results for RADS on 344.7 fb−1 of Run 1 - 5 data. . . . . . . . . . 137

5.7 Fit results for AADS on 344.7 fb−1 of Run 1 - 5 data. . . . . . . . . . 138

5.8 Results of the B− → D0[K∗− + K0
sπ

−] system modeling presented in

[68]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9 Systematic errors of RADS . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.10 Systematic errors of AADS . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1 The measurement of CP observables with B− → D0K∗− decay using

the GLW and ADS methods. . . . . . . . . . . . . . . . . . . . . . . . 148

A.1 Run-by-run and luminosity-weighted average efficiency corrections due

to K0
s (from K∗) identification and associated systematic errors for

CP+, CP - and Non-CP modes. . . . . . . . . . . . . . . . . . . . . . 152

xxi



A.2 Run-by-run and luminosity-weighted average efficiency corrections due

toK0
s (fromD0) identification and associated systematic errors for CP -

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 A summary of efficiency corrections due to tracking, PID, π0 recon-

struction and K0
s identification and associated systematic errors for

CP+, CP - and Non-CP modes. . . . . . . . . . . . . . . . . . . . . . 153

A.4 Estimation of systematic errors which will be used in the RCP− calcu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.5 Corrections to the relative efficiencies, εRel, which are required to cal-

culate the observables RCP . The raw signal efficiencies are taken from

Section 4.10. Note that for K0
s , only the corrections to K0

s from D0

are recorded. Corrections to K0
s from K∗ in CP and Non-CP modes

cancel each other out. Tracking and PID corrections in CP modes

listed are after dividing by Non-CP numbers as well. . . . . . . . . . 155

B.1 Summary of systematic errors of x±. . . . . . . . . . . . . . . . . . . 159

xxii



CHAPTER 1

INTRODUCTION

Charge-Parity, or CP , violation has been an exciting yet elusive subject in the

field of elementary particle physics for more than forty years. The laws of physics

were thought to be unchanged under a CP -transformation which changes a particle

into its antimatter partner. However, CP -symmetry was observed to be violated in

the neutral kaon system in 1964. Since then, enormous experimental and theoret-

ical efforts have been put into the exploration of this fascinating phenomenon. In

1967, Andrei Sakharov [1] showed that CP violation was one of the three conditions

necessary for the emergence of a matter-antimatter asymmetry in the universe from

an initial symmetric state created from the Big Bang, thereby linking physics in the

smallest to the astronomical scale. About seven years later, Kobayashi and Maskawa

generalized the quark mixing matrix which was first introduced by Cabibbo, in order

to explain CP violation in weak interactions. The so-called CKM matrix has been

very successful, using a model with three families of quarks. It would be another

20-plus years before another experimental discovery was made: CP violation in the

neutral B-meson system.

Today, CP violation is firmly established in the Standard Model through the

aforementioned CKM matrix, and experimental results have shown great consistency
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with the Standard Model predictions in this area. However, people anticipated that

the degree of CP violation in the K-system and B-system (which was going to be

measured in B-meson factories) would be far too small to account for the baryon-

antibaryon asymmetry from astronomical observations, and thus unable to explain

the dominance of matter over antimatter in the universe. This inevitably points to

potential new sources of CP violation beyond the Standard Model. The search for

this “new physics”, along with precision measurements of CP violation parameters

in the Standard Model, has also been performed at the B-meson factories, BABAR in

the United States and Belle in Japan.

This thesis measures physical observables relating to a CP violation parameter,

the CKM angle γ, in the Standard Model, through the decays of B− → D0K∗−.

My measurements, when combined with the results of other similar experiments, will

greatly improve the precision of γ, which in turn will provide a powerful constraint

to the CKM model of CP violation. The measurements are made on data samples

provided by the BABAR experiment, which contain hundreds of millions of B-meson

events.

The structure of this thesis is as follows: In Chapter 2, I provide an overview of the

theoretical background on CP violation in the Standard Model, as well as the methods

which allow the measurement of γ: the GLW and ADS methods. In Chapter 3, a

description of the experimental environment, the PEP-II accelerator and the BABAR

detector, is presented. The analysis procedures of the two γ-extracting techniques are

described in details in Chapters 4 and 5. Finally, the combined results and conclusion

are presented in Chapter 6 and 7, respectively.
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CHAPTER 2

THEORY

2.1 Discrete Symmetries

In contrast to continuous transformations such as translation and rotation, discrete

transformations are ones which cannot be reduced to infinite series of infinitesimal

steps. There are three such types of transformations we are interested in: parity

reversal (P ), charge conjugation (C) and time reversal (T ).

Parity symmetry refers to the invariance of physics under the parity transforma-

tion. P changes the sign of the spatial coordinates (t,x) → (t,−x). This is equivalent

to a mirror reflection plus a 180◦ rotation about the axis perpendicular to the plane

of the mirror. Parity transformation of a particle reverses also its momentum, but its

spin remains unchanged.

Charge conjugation transforms a particle into its anti-particle. The anti-particle

has the same mass, spin and momentum of the particle, but opposite internal quan-

tum numbers like electric charge, baryon and lepton number, and so on. The laws

of physics assume that anti-particles behave in exactly the same way as their corre-

sponding particles.
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Time transformation flips the sign of the time component of a state (t,x) →

(−t,x). Momentum and spin are also reversed.

It was believed that all elementary processes respect the three symmetries indi-

vidually. This is true for strong and electromagnetic interactions in the Standard

Model. However, Lee and Yang [2] suggested that parity violation is present in weak

interactions; and was later confirmed by experiments. Subsequently the combined

CP violation was also observed in weak decays of K and B mesons.

2.2 C and P Violation

Wu et al. [3] discovered parity violation in β emission of polarized Cobalt-60 nu-

clei: 60
27Co → 60

28Ni
∗+ + e− + νe. It was found in the experiment that electrons were

emitted preferentially in the direction opposite to that of the spin of the Cobalt-60

nuclei. Subsequent experiments that examined the electron momentum spectra in

muon decays showed that electrons are preferably left-handed and positrons prefer-

ably right-handed [4]. A left-handed electron means that its spin is opposite to the

direction of the z-component of its momentum.

The discovery of exclusively left-handed neutrinos and right-handed anti-neutrinos

would come not long after [5] and further demonstrate that parity is (maximally)

violated in weak interactions. C is also violated in weak interactions. Both parity

and charge symmetry were observed to be violated individually in π+ → µ+νµ decays

[6]. The muon neutrino νµ from the π+ decay is left-handed. The P -conjugate process

in which the νµ is right-handed and the C-conjugate process in which the the νµ is

left-handed, never occur. Thus parity is violated because of the definite handedness
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of the neutrinos, and C is violated because the neutrinos in the observed decays have

opposite handedness (the decays are not C-conjugate of each other).

2.3 CP Violation in the K0 System

After C and P violations were observed, it was a considerable relief that CP

was still conserved, for CP invariance was considered to be the replacement of the

separate C and P invariance of weak interactions [7]. However, the discovery of CP

violation in neutral K mesons changed all that.

A K0 is a bound state of a quark and an anti-quark (K0 = sd, K
0

= sd). K0 and

K
0

differ in one quantum number, strangeness S, in which S = +1 and −1 for K0 and

K
0

respectively. The K0’s and K
0
’s are produced by strong interactions and decay

via weak interactions. K0 and K
0

themselves are not CP eigenstates. Instead, CP

eigenstates are constructed out of a linear combination of K0 and K
0
, as proposed

by Gell-Mann and Pais [8]:

|K1〉 =
1√
2
(|K0〉 + |K0〉), CP|K1〉 = +|K1〉, (2.1)

|K2〉 =
1√
2
(|K0〉 − |K0〉), CP|K2〉 = −|K2〉. (2.2)

The dominant decays of neutral kaons are 2 or 3 pions. The two-pion system has

P = +1 and C = +1 while the three-pion system has P = −1 and C = +1.

Therefore if CP is to be conserved then only the following decays are allowed:

K1 −→ ππ, CP even,

K2 −→ πππ, CP odd.

Gell-Mann and Pais pointed out that K1 should have a much shorter lifetime than

K2, since there is more decay phase space (energy) available for K1 (mK1 − 2mπ ≈
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219 MeV, mK2 − 3mπ ≈ 80 MeV). Hence we also identify K1 as KS (short) and K2

as KL (long). In 1964, Christenson et al. [9] discovered that KL also decays to ππ

with a branching ratio of ∼ 2×10−3. Thus CP is violated in weak interactions1.

2.4 CP Violation in The Standard Model

Cabibbo [10] first attempted to explain generation-changing charged-current pro-

cesses observed in experiments by the concept of quark mixing, and it was later

extended to three generations of quarks by Kobayashi and Maskawa [11] through the

Cabibbo-Kobayashi-Maskawa (CKM) mechanism in the Standard Model. In essence,

the CKM mechanism suggests that the weak flavor eigenstates in the Standard Model

are not the same as the mass eigenstates of the Hamiltonian. CP violation is also

explained by the CKM model, with the source being a complex phase in the CKM

matrix. I now proceed to discuss how CP violation is incorporated in the Standard

Model.

2.4.1 V-A Theory and the GIM Mechanism

The experimental observation of left-handed neutrinos and right-handed anti-

neutrinos implies that the Lagrangian of weak interactions should be composed of

not only vectors (V) but also axial-vectors (A). This led to a generalization of Fermi’s

theory of β decay [12] by Feynman and Gell-Mann [13]. They proposed that the

Lagrangian that describes weak interactions should be:

L(x) = − GF

2
√

2
J†
λ(x)J

λ(x), (2.3)

1CPT invariance is still obeyed by any local gauge quantum field theory that is Lorentz-invariant.
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where the weak current Jλ(x) consists of a leptonic and a hadronic part:

Jλ(x) = Jlλ(x) + Jhλ(x). (2.4)

The leptonic current can be written as (after the discovery of the tau lepton):

Jlλ(x) = νeγλ(1 − γ5)e + νµγλ(1 − γ5)µ+ ντγλ(1 − γ5)τ. (2.5)

(1 − γ5) is the helicity projection operator. Therefore, only left-handed fermions are

present in weak currents.

Neutron β decays proceed through the quark transformation of d → u (neutron

is composed of udd and proton uud), therefore the hadronic weak current should be:

Jhλ(x) = uγλ(1 − γ5)d. (2.6)

However, strangeness-changing and quark transformation u → s decays (e.g.

K+ → µνµ, Λ
0 → pπ−) discovered in the 1950s indicate that the above expression is

not enough to describe weak interactions. To account for both strangeness-conserving

(∆S = 0) and strangeness-changing (∆S = 1) decays, Cabibbo [10] showed that the

hadronic weak current should instead be:

Jhλ(x) = uγλ(1 − γ5)dc (2.7)

where

dc = d cos θC + s sin θC (2.8)

and θC ∼ 13◦ is the Cabibbo angle, an empirical parameter. The Cabibbo model

provides a full description of two-generation quark mixing.

In 1970, in order to explain the highly suppressed rate of K0
L
→ µ+µ−, a first-

order flavor-changing neutral weak interactions, Glashow, Iliopoulos, and Maiani [14]
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postulated the existence of charm, the fourth quark (at a time when only three quarks:

up, down and strange, were believed to exist) which couples with

sc = −d sin θC + s cos θC . (2.9)

The hadronic weak current is now written as

Jhλ(x) = uγλ(1 − γ5)dc + cγλ(1 − γ5)sc. (2.10)

Note that although Cabibbo’s model and the GIM mechanism fully describe two-

generation quark mixing (until the discovery of the fifth quark, the bottom quark, in

1977 at Fermilab), neither of them could incorporate CP violation in weak interac-

tions.

2.4.2 The Standard Model

The Standard Model is a theory of elementary particles and their interactions (the

strong and electroweak interactions). Together with the theory of quantum chromo-

dynamics (QCD), it has thus far explained all experimental results in elementary

particle physics, with the exception of the generation of neutrino masses and the

unobserved Higgs boson.

In the Standard Model, all matter is made out of fermions and bosons. Fermions

are subdivided into leptons and quarks. Leptons carry integer charge while quarks

carry one-third or two-third integer charge. Leptons are subjected to the electroweak

force and quarks the strong force in addition to the electroweak force. Quarks also

have color charges with each quark coming in three possible colors: red, blue and

green. Each fermion has a corresponding anti-particle (anti-fermion), which has the

same mass as the particle but with opposite electric charge (some particles are their
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own anti-particles, e.g. photon). Anti-quarks have opposite color charge to their

corresponding quarks as well. Figure 2.1 provides an illustration of the constituents

of the Standard Model.

Figure 2.1: The constituents of the Standard Model of particle interactions.

The fundamental interactions of nature are mediated by the exchange of vector

bosons. Photons and three massive intermediate vector bosons, W± and Z0, are

responsible for the electroweak interaction, while the strong force is propagated by

gluons. When two quarks are close to one another, they exchange gluons and create

a very strong color force field that binds the quarks together. They bind either as

mesons, a quark and anti-quark pair, or as baryons, combinations of three quarks

and/or anti-quarks.

2.4.3 The CKM Matrix

The Standard Model is based on the SU(3)×SU(2)×U(1) gauge group, where the

SU(3) subgroup characterizes the strong interaction and the SU(2)× U(1) describes
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the electroweak interaction as formulated in the Glashow-Weinberg-Salam (GWS)

model [15]. The quarks come in families of left-handed doublets and right-handed

singlets:

QL =

(

U
D

)

L

, UR, DR, (2.11)

where QL is the left-handed quark field, and UR and DR are the right-handed up-type

quarks and down-type quarks respectively. The three generations of quarks (a total

of six “flavors”) are:
(

u
d

) (

c
s

) (

t
b

)

. (2.12)

Leptons are described similarly by families of doublets and singlets. There are also

three generations of leptons:

(

νe
e

) (

νµ
µ

) (

ντ
τ

)

. (2.13)

The up and down components of each doublet differ by unit electric charge. Note

that the above doublets are in flavor eigenstates.

The SU(2) component in the GWS model is composed of a triplet of vector bosons,

the carriers of electroweak interaction:

W µ =





W µ1

W µ2

W µ2



 , (2.14)

The interactions of quarks with the W -bosons are given by

LW =
g

2
√

2

∑

i,j

UL,iγ
µDL,jW

+
µ + h.c. (2.15)

The indexes i, j = 1, 2, 3, denote the number of families of quarks. The SM contains a

single SU(2) doublet of Higgs fields. The Yukawa interactions (interactions between
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scalar and Dirac fields) of Higgs fields φ with the quarks are given by

LY =
∑

i,j

(GU)ijQL,i

(

φ0

−φ−

)

UR,j (2.16)

+
∑

i,j

(GD)ijQL,i

(

φ+

φ0

)

DR,j + h.c.

GU and GD are the Yukawa couplings (complex 3×3 matrices). Fermion masses arise

once the neutral Higgs field acquires a vacuum expectation value 〈φ〉 = (0, v/
√

2).

The mass terms for the up-type and down-type quarks are

MU =
vGU√

2
, MD =

vGD√
2
, (2.17)

which are given by

LM =
vGU√

2
UL,iUR,i +

vGD√
2
DL,iDR,i + h.c. (2.18)

To transform the mass matrices from the bases of flavor eigenstates to the bases of

mass eigenstates, we diagonalize them by defining four unitary matrices such that

TU,LMUT
†
U,R = Mdiag

U , TD,LMDT
†
D,R = Mdiag

D . (2.19)

The left-handed and right-handed quark fields are then transformed to their mass

eigenstates:

Um
L = TU,LUL, Um

R = TU,RUR, (2.20)

Dm
L = TU,LDL, Dm

R = TU,RDR. (2.21)

The charged interactions in the mass eigenbasis is then, from Equation 2.15,

LW =
g

2
√

2

∑

i,j

UL,iγ
µDL,jW

+
µ + h.c. (2.22)

=
g

2
√

2

∑

i,j

U
m

L,iTU,L,i,jγ
µT †

D,L,j,iD
m
L,jW

+
µ + h.c.

=
g

2
√

2

∑

i,j

(

VijU
m

L,iγ
µDm

L,jW
+
µ + V ∗

ijD
m

L,jγ
µUm

L,iW
−
µ

)

, (2.23)
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where

V = TU,LT
†
D,L, (2.24)

a 3×3 unitary matrix, is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It can be

written as

V =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (2.25)

The CKM matrix contains 2n2 = 18 free parameters, where n is the number of

columns (generations) of the matrix. Unitarity of the matrix imposes n real normal-

ization constraints and n(n − 1) complex orthogonality constraints on its columns.

In addition, the freedom to arbitrarily choose the global phase of a quark field allows

2n − 1 complex phases to be removed. Thus we are left with (n − 1)2 = 4 indepen-

dent parameters, which are three rotation angles and one irreducible complex phase.

Kobayashi and Maskawa argued that at least three generations of quarks must exist

to have enough physical degrees of freedom to allow for a non-zero and non-trivial

phase. This phase is the origin of CP violation.

The 90% Confidence Level of the absolute values of the CKM matrix elements are

[16]:

—V— =





0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 (3.96+0.09
−0.09) × 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 (42.21+0.10
−0.80) × 10−3

(8.14+0.32
−0.64) × 10−3 (41.61+0.12

−0.78) × 10−3 0.999100+0.000034
−0.000004



 . (2.26)

The CKM matrix is almost diagonal, which means that the weak eigenstates are

almost the same as the mass eigenstates. Hence the coupling between quarks from

different generations is strongly suppressed.

The CKM matrix can be parameterized in a variety of ways. The “standard

parameterization” [17] utilizes the mixing angles (θ12, θ23, θ13) between the three

generations of quarks and an overall phase δ. This phase can not be removed by

12



redefining the quark phases. It is responsible for CP violation in weak interactions.

This parameterization is obtained by the product of three complex rotation matrices:

V =





1 0 0
0 c23 s23

0 −s23 c23









c13 0 s13e
−iδ

0 1 0
−s13e

−iδ 0 c23









c12 s12 0
−s12 c12 0

0 0 1



 (2.27)

=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (2.28)

where cij = cos θij and sij = sin θij for i < j = 1, 2, 3.

Wolfenstein [18] proposed an expansion of the CKM matrix in terms of four vari-

ables, λ, A, ρ and η. Using experimental facts that |Vcb| � |Vub|, |Vcb| ∼ |Vus|2 and

|Vus| � 1, he expanded the CKM elements in powers of λ, with λ defined as s12, the

sine of the Cabibbo angle (|Vus| ≈ s12 ≈ λ, since θ13 ≈ 0). Inserting the other two

definitions, s23 ≡ Aλ2 and s13e
−iδ ≡ Aλ3(ρ − iη), into Equation 2.27, we have the

“Wolfenstein parameterization” to order λ3:

V =





1 − 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



 +O(λ4). (2.29)

The parameters A, ρ and η are of order 1. CP violation exists because of the imagi-

nary parts of the matrix elements Vub and Vtd.

2.4.4 The Unitarity Triangle

Unitarity of the CKM matrix implies that

V †V = V V † = I, (2.30)

which results in six orthogonality equations:

∑

i

VijV
∗
ik = 0, (2.31)
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with j, k = 1, 2, 3, j 6= k. Each equation represents a triangle in the complex plane.

Four of the triangles are nearly degenerate and only two of them have all three sides

with same order of magnitude in lengths. The most useful relation for understand-

ing the Standard Model predictions for CP violation is the orthogonality condition

between the first and third columns of V :

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.32)

Vub and Vtd are complex and can be represented in polar form:

Vtd = |Vtd| e−iβ (2.33)

Vub = |Vub| e−iγ . (2.34)

Equation 2.32 then becomes

|VudV ∗
ub|eiγ + |VcdV ∗

cb| + |VtdV ∗
tb|e−iβ = 0. (2.35)

Each of the three terms in the equation can be represented as a vector in the complex

plane. The requirement that they sum to zero forces them to form a triangle. This

triangle is referred to as the “Unitarity Triangle” (Figure 2.2).

In B physics, the Unitarity Triangle is usually presented with the Wolfenstein

parameterization in the complex (ρ, η) plane. It is convenient to divide Equation 2.35

by |VcdV ∗
cb|. The resulting triangle is shown in Figure 2.3. It has fixed vertices at (0,0)

and (1,0) and coordinates of the remaining vertices depend on the two Wolfenstein

parameters, ρ and η. The three angles of the re-scaled Unitarity Triangle are defined

as:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

; (2.36)
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Figure 2.2: The Unitarity Triangle.

and the lengths of the sides are:

Ru ≡
∣

∣

∣

∣

VudV
∗
ub

VcdV
∗
cb

∣

∣

∣

∣

=
√

ρ2 + η2, Rt ≡
∣

∣

∣

∣

VtdV
∗
tb

VcdV
∗
cb

∣

∣

∣

∣

=
√

(1 − ρ)2 + η2. (2.37)

Figure 2.3: The Unitarity Triangle in Wolfenstein Parameterization.
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We can see that the existence of CP violation keeps the Unitarity Triangle from

collapsing to a line because of a non-zero η. These quantities are measured redun-

dantly from CP asymmetries in B decays to verify and provide a stringent test of the

CKM model of CP violation in the Standard model.

2.5 CP Violation in B Decays

The B meson is a bound state of a b quark and a light (u, d, s, c) anti-quark with

a spin of 0 and parity of -1. B decays via weak interactions with a relatively long

lifetime of approximately 1.5 ps. CP -violating effects are expected to be large in B

decays, therefore the B system provides an excellent probe of CP violation in the

Standard Model.

CP violation can be classified into three categories: CP violation in decay, in

mixing and in the interference between decay and mixing. All these types of CP

violation involve interference between different amplitudes that lead to the same final

state with different phases.

2.5.1 CP Violation in Decay

CP violation in decay is also known as “direct” CP violation (Figure 2.4). It

occurs when B → f and B → f , for some final state f and its charge-conjugate

f , do not proceed at the same rate, i.e.
∣

∣Af/Af
∣

∣ 6= 1, where Af and Af are the

total B → f and B → f decay amplitudes respectively. It is usually expressed as a

branching fraction asymmetry:

ACP ≡ B(B → f) − B(B → f)

B(B → f) + B(B → f)
(2.38)

=

∣

∣Af

∣

∣

2 − |Af |2
∣

∣Af
∣

∣

2
+ |Af |2

. (2.39)
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Figure 2.4: Direct CP violation is due to the interference between two amplitudes
A1 and A2 with a relative CP -violating phase φ and a CP conserving phase δ for the
transition between an initial state i and a final state f .

There are two types of complex phases that can enter the amplitudes Af and Af .

We write Af =
∑

iAie
i(δi+φi) and Af =

∑

iAie
i(δi−φi), where δi is called the strong

phase and φi the weak phase. Weak phases come from complex parameters in the

Lagrangian and enter the transition amplitude for a decay process and the amplitude

for its complex conjugate process. It has opposite signs in the two amplitudes. Strong

phases arise from intermediate on-shell states re-scattering into the final state. It has

the same sign in both Af and Af . Strong phases do not change under CP . CP

violation in decay requires at least two interfering channels with different strong and

weak phases. Therefore,

Af = A1e
i(δ1+φ1) + A2e

i(δ2+φ2), (2.40)

Af = A1e
i(δ1−φ1) + A2e

i(δ2−φ2), (2.41)

so that the numerator of the asymmetry

|Af |2 −
∣

∣Af

∣

∣

2
= −4 |A1| |A2| sin(φ1 − φ2) sin(δ1 − δ2) (2.42)

is proportional to the interference between the amplitudes.
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Direct CP violation has been observed in the kaon system at the level of a few

parts in a million [19], and in the decays B0 → K+π− and B0 → π+π− at the 10%

and 50% levels respectively [20]. My analysis of B− → D0K∗− is also a search for

direct CP violation.

2.5.2 CP Violation in Mixing

CP violation in mixing is also called “indirect” CP violation. It could be present

in B0 and B0 mixing through second-order weak processes as the B mesons propagate

through space. Mixing is a process in which a particle turns into its anti-particle.

Consider the B0 − B0 system. Figure 2.5 shows the Feynman diagrams responsible

for B0 −B0 mixing. The Schrodinger equation gives

i~
∂

∂t
Ψ(t) = HΨ(t), Ψ(t) =

(

B0

B0

)

. (2.43)

The mass matrix in the B0 −B0 basis is given by

H = M − i

2
Γ =

(

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

)

, (2.44)

where Mij = M∗
ji and Γij = Γ∗

ji are obtained by summing over intermediate states

using second-order perturbation theory. Constraints from CP and CPT invariance

give us M11 = M22 ≡ m, Γ11 = Γ22 ≡ Γ and ImM12 = 0 = ImΓ12. The mass

eigenstates and eigenvalues are

|BL〉 = p|B0〉 + q|B0〉, eigenvalue = m− i

2
Γ+

q

p
(M12 −

i

2
Γ12), (2.45)

|BH〉 = p|B0〉 − q|B0〉, eigenvalue = m− i

2
Γ−q

p
(M12 −

i

2
Γ12), (2.46)

with
(

q

p

)2

=
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

(2.47)
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Figure 2.5: Feynman diagrams mediating B0 −B0 mixing.

and |p|2 + |q|2 = 1. L and H refer to the lighter and heavier mass eigenstates.

Now consider the time evolution of the system. We derive,

|B0(t)〉 = f+(t)|B0〉 +
q

p
f−(t)|B0〉, (2.48)

|B0(t)〉 = f+(t)|B0〉 +
p

q
f−(t)|B0〉, (2.49)

where

f±(t) =
1

2
[e(−imL− 1

2
ΓL)t ± e(−imH− 1

2
ΓH)t]. (2.50)

From the above equations we can see that B0 can oscillate to B0 and vice versa, since

∣

∣〈B0(t)|B0(t)〉
∣

∣

2
=

1

4

∣

∣

∣

∣

q

p

∣

∣

∣

∣

[e−ΓLt + e−ΓH t − 2e−
1
2
(ΓL+ΓH)t (2.51)

× cos[(mH −mL)t]],

∣

∣〈B0(t)|B0(t)〉
∣

∣

2
=

1

4

∣

∣

∣

∣

p

q

∣

∣

∣

∣

[e−ΓLt + e−ΓH t − 2e−
1
2
(ΓL+ΓH)t (2.52)

× cos[(mH −mL)t]]. (2.53)

CP conservation requires the rates of B0 → B0 and B0 → B0 to be equal. This

is true if and only if
∣

∣

∣

q
p

∣

∣

∣
= 1.

∣

∣

∣

q
p

∣

∣

∣
6= 1 indicates CP violation in mixing, which

results from the mass eigenstates being different from the flavor eigenstates. This

type of CP violation is negligibly small in the B system with the most current best
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measurements (performed using both inclusive dilepton events [21, 22] or with B

mesons fully reconstructed into flavor or CP eigenstates [23]) averaging [24]

∣

∣

∣

∣

q

p

∣

∣

∣

∣

= 1.0024 ± 0.0023, (2.54)

which is consistent with unity.

2.5.3 CP violation in the Interference between Decay and

Mixing

The third type of CP violation occurs when B0 and B0 decay to the same final

state (Figure 2.6). It is due to the interference between the direct decay of the B0

into the final state and the alternate path of first mixing into B0 and then decay into

the final state. Both decay (Af and Af) and mixing amplitudes (p and q) are involved

and we define:

λCP ≡ ηCP
q

p

ACP
ACP

, (2.55)

where ηCP is the CP eigenvalue of the final state.

Figure 2.6: The third type of CP violation results from the interference between
decay (Af and Af) and mixing (p and q) amplitudes.
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Consider the CP -violating asymmetry in the time-dependent decay rates between

B0 and B0:

ACP (t) ≡ Γ(B0 → f)(t) − Γ(B0 → f)(t)

Γ(B0 → f)(t) + Γ(B0 → f)(t)
(2.56)

=
1 − |λf |2
1 + |λf |2

cos(∆mt) − 2Im(λf)

1 + |λf |2
sin(∆mt) (2.57)

= C cos(∆mt) − S sin(∆mt), (2.58)

where ∆m is the difference in mass between the heavy and light B-meson eigenstates

and

C =
1 − |λ|2

1 + |λ|2
, S =

2Imλ

1 + |λ|2
. (2.59)

In the absence of CP violation, both C and S must be zero, since they occur only

when weak phases do not cancel. C is non-zero only when the ratio of the decay

amplitudes differs from unity, which is the signature of direct CP violation. S is

a measure of CP violation in the interference between decay and mixing. When

Imλ 6= 0, i.e. S 6= 0, even if there is no CP violation in decay or mixing (|q/p| = 1

and |λ| = 1), the CP asymmetry in Equation 2.56 is non-zero. This is the third type

of CP violation and results from a phase in mixing that is not cancelled by the decay.

The first observation of CP violation in B decays and also the first in such in-

terference is the so-called “Golden Mode” B0 → J/ψK0
S

[25]. This mode is a b → c

transition and proceeds primarily through the tree diagram. Penguin diagrams or

virtual D0 exchange involving long distance re-scattering contribute as well. The tree

diagram has the same phase of 2β as the penguin diagrams. The decay amplitudes

have the same weak phase and thus there is no direct CP violation:

SJ/ψK0
S

= sin 2β, (2.60)

CJ/ψK0
S

= 0. (2.61)
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This is considered the cleanest mode to measure sin 2β, with a non-zero observed

value of β and thus a non-zero area of the Unitarity Triangle. Several other charmo-

nium modes have been measured by BABAR and Belle for sin 2β, including J/ψK0
L
,

ψ(2S)K0
S
, χc1K

0
S

and ηcK
0
S
.

2.6 Magnitudes of CKM Elements

The latest values of the magnitudes of CKM matrix elements are summarized in

Equation 2.26. This section briefly describes the methods used to measure each of

the elements. More information can be found in the website of Particle Data Group

[26].

2.6.1 |Vud|

The most precise determination comes from the study of nuclear β decays which

are pure vector transitions. Another precise measurement is also obtained from the

measurement of neutron lifetime.

2.6.2 |Vus|

|Vus| is traditionally extracted from semileptonic kaon decays. Other determina-

tions include leptonic kaon, hyperon and τ decays.

2.6.3 |Vcd|

The most precise measurement is by studying neutrino and antineutrino produc-

tion of charm off valence d quarks.

2.6.4 |Vcs|

Direct determination is possible from semileptonic D or leptonic DS decays.
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2.6.5 |Vcb|

This matrix element can be measured from exclusive and inclusive semileptonic

B decays to charm.

2.6.6 |Vub|

The determination of |Vub| has been obtained by combining measurements from

inclusive and exclusive B → Xulν decays.

2.6.7 |Vtd| and |Vts|

These two CKM elements cannot be measured from tree-level decays of the top

quark, so one has to rely on determinations from B - B oscillations mediated by box

diagrams or loop-mediated rare K and B decays. However, theoretical uncertainties

in hadronic effects limit the accuracy of current determinations. These can be reduced

by taking ratios of processes that are equal in the flavor SU(3) limit to determine

|Vtd/Vts|.

2.6.8 |Vtb|

The direct determination of |Vtb| from top decays uses the ratio of branching

fractions of t→Wb to t→Wq where q = b, s, d.

2.7 Unitarity Triangle Angles

CP violation measurements in B meson decays provide direct information on

the angles of the Unitarity Triangle. These over-constraining measurements serve to

improve the determination of the CKM elements or to reveal effects from new physics

beyond the Standard Model.

23



2.7.1 β

As mentioned previously, the b → ccs decays to CP eigenstates (B0 → char-

monium K0
S,L) are the theoretically cleanest modes. The CP parameters from the

interference between decay and mixing are S and C defined in Equation 2.59. S

is −ηf sin 2β and C is zero in these decays. 2β is the phase difference between the

B0 → f and B0 → B0 → f decay paths and ηf is the CP eigenvalue of f .

The b → s penguin dominated decays such as B0 → φK0 and η′K0 also provide

sin 2β measurements. They have the same CKM phase as the b → c tree level

decays, up to corrections suppressed by λ2 (defined in Equation 2.55), since V ∗
tbVts =

−V ∗
cbVcs[1 + O(λ2)]. These modes are also used to search for new physics. S could

be different than −ηf sin 2β and C different than 0 if new physics contributes to the

b→ s loop diagrams with different weak phases.

The b → ccd decays, such as B0 → J/ψπ0 and B0 → D(∗) +D(∗)−, also measure

sin 2β approximately. However, the effect of penguins could be large, since the domi-

nant component of b→ d penguin amplitude has a different CKM phase (V ∗
tbVtd) than

the tree amplitude (V ∗
cbVcd) and their magnitudes are of the same order in λ. This

could result in S 6= −ηf sin 2β and C 6= 0. The most updated world-averaged results

of S and C are consistent with those from B0 → charmonium K0
S,L decays, although

with sizable uncertainties. The world average of sin 2β is [27]:

sin 2β = 0.681 ± 0.025, (2.62)

which corresponds to β = (42.92 ± 0.72)◦.
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2.7.2 α

α is measured with charmless B decays. Since it is the angle between V ∗
tbVtd and

V ∗
ubVud, only time-dependent CP asymmetries in b → uud dominated tree modes can

directly measure sin 2α. The penguin contribution can be sizable because b → d

penguin amplitudes have a different CKM phase than b→ uud tree amplitudes, and

their magnitudes are of the same order in λ. This complication makes the extraction

of α very difficult. α has been measured in B → ππ, ρπ and ρρ decay modes,

with B → ρρ giving the best precision. Estimating the penguin contribution (or

pollution) with respect to tree contribution requires isospin analysis [28] for ππ and

ρρ, and Dalitz-plot analysis [29] for ρπ. Combining these three decay modes, α is

constrained as

α = (99+13
−8 )◦. (2.63)

2.7.3 γ

γ does not depend on CKM elements involving the top quark, so it can be mea-

sured in tree level B decays. As a result direct measurements of γ are unlikely to be

affected by physics beyond the Standard Model. The methods to determine γ utilize

the measurement of direct CP violation in B− → D(∗)0K(∗)− decays [30, 31, 32, 33],

where the neutral D meson can be D0 or D0. The final states of the D meson

are mostly reconstructed in either CP eigenstates, hadronic modes, or self-conjugate

three-body final state K0
S
π+π− [34]. The last method can be optimized by performing

a Dalitz plot analysis. All variations are sensitive to the same B decay parameters

and therefore can be treated in a combined fit to extract γ.
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This thesis focuses on the study ofB− → D0K∗−, where D0 decays to CP (K+K−,

π+π−, K0
S
π0, K0

S
φ, K0

S
ω) and non-CP modes (K∓π±). The details of the analysis

techniques and formalism will be discussed after next section.

2.8 The Global CKM Fit

Using the independently measured CKM elements mentioned in the previous sec-

tions, the unitarity of the CKM matrix can be checked. The following numbers are

obtained [16]:

|Vud|2 + |Vus|2 + |Vub|2 = 0.9992 ± 0.0011 (1st row) (2.64)

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.003 ± 0.027 (2nd row) (2.65)

|Vud|2 + |Vcd|2 + |Vtd|2 = 1.001 ± 0.005 (1st column). (2.66)

These results are consistent with the unitarity of the CKM matrix.

The sum of the three angles of the Unitarity Triangle is also consistent with the

Standard Model expectation [16]:

α + β + γ = (184+20
−15)

◦. (2.67)

If we recall the Wolfenstein representation of the CKM matrix, the parameters

λ, A, ρ and η parameterize the weak interactions of quarks and CP violation in the

Standard Model. Measurements of semileptonic decays of strange and beauty parti-

cles are the main sources of information on λ and A respectively. ρ and η can be most

precisely constrained by a global fit that uses all available measurements and imposes

the SM constraints (i.e., three generation unitarity). The fit consists of maximiz-

ing a likelihood built upon relevant experimental measurements and their Standard

Model predictions. There are several approaches to combine all the experimental
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data. CKMfitter [35] uses frequentist statistics with different presentations of the

theoretical errors, while UTfit [36] uses a Bayesian approach [37]. These approaches

provide similar results. Viola Sordini [36] of the UTfit group has kindly created plots

of γ and rB from the newest measurements of CP observables in this thesis, which

will be presented in the Combined GLW and ADS Results Chapter. Only UTfit will

be discussed in this thesis.

UTfit uses the values of |εK |, |Vub/Vcb|, ∆md, ∆md/∆ms, α, β and γ to constrain

ρ and η, where ρ = ρ(1 − λ2

2
) and η = η(1 − λ2

2
). ∆md and ∆ms are the mass

differences between the light and heavy mass eigenstates of the B0
d - B0

d and B0
s - B0

s

system respectively, while |εK | parameterizes CP violation in the kaon system. These

constraints are obtained by comparing the most recent experimental measurements

with theoretical calculations, while taking into account different sources of uncertain-

ties. Statistical errors and systematic effects in experiments, as well as theoretical

uncertainties are combined to deduce a global uncertainty for ρ and η. Details of

the method is beyond the scope of this thesis and readers can refer to [38]. The

Wolfenstein parameters determined by UTfit are:

A = 0.815 ± 0.013 λ = 0.2258 ± 0.0014
ρ = 0.197 ± 0.031 η = 0.351 ± 0.020.

(2.68)

The allowed regions for ρ and η using the constraints above at 68% and 95% proba-

bility are shown in Figure 2.7.

2.9 B− → D0K∗− Decays

The search for direct CP violation in B− → D0K∗− decays, where CP asymme-

tries have clean theoretical interpretations in terms of γ, is performed in this thesis.

The D0 corresponds to the leading b → c transition, whereas the D0 is produced
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Figure 2.7: Confidence levels in the (ρ,η) plane for the global CKM fit performed
by UTfit are determined by constraints from measurements of |εK |, |Vub/Vcb|, ∆md,
∆md/∆ms, α, β and γ. Closed contours at 68% and 95% probability are shown.

by a color-suppressed b → u transition. The interference of B− → D0K∗− and

B− → D
0
K∗− transitions are studied in final states accessible in both D0 and D0

decays. The two interfering amplitudes result in observables that are sensitive to γ,

the relative weak phase between the two decays. We will use two different methods

which have different sets of D0 final states to extract γ.
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2.9.1 The GLW Method

The first method is called the GLW method. Gronau, London and Wyler (GLW)

[39, 40] proposed a theoretically clean way to measure the CKM angle γ with B− →

D0K∗− decays, where the D-meson decays into CP -eigenstates (K+K−, π+π−, K0
S
π0,

K0
S
φ, K0

S
ω) and non-CP final state (K−π+). At quark-level, the amplitudes for

B− → D0K∗− and B− → D0K∗− are color-favored b → cus and color-suppressed

b → ucs respectively. When the D0 and D0 decay into the same final state, these

two B-decays are indistinguishable and the quantum interference gives rise to a CP

asymmetry proportional to sin γ. Figure 2.8 shows the Feynman diagrams for the

decays.

Figure 2.8: Feynman diagrams for the color-favored decay of B− → D0K∗− (left) and
the color-suppressed decay of B− → D0K∗− (right).

The amplitudes of the two decays can be expressed as:

A(B− → D0K∗−) = a (2.69)

A(B− → D0K∗−) = arBe
iδe−iγ (2.70)
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where δ is the strong phase difference between the two decays that does not violate

CP ; and γ is the weak phase difference that does. rB is the ratio of the amplitudes

of the color-suppressed to the color-favored process,

rB =
|A(B− → D0K∗−)|
|A(B− → D0K∗−)| . (2.71)

rB has not been measured precisely and it is one of the parameters we want to extract

from this analysis2.

When the D0 and D0 decay to the same CP -eigenstate, D0 and D0 are indistin-

guishable and the two processes in Equation 2.69 interfere. Since

∣

∣D0
CP±

〉

=
1√
2
(
∣

∣D0
〉

±
∣

∣D0
〉

), (2.72)

we can re-write Equation 2.69 as:

A(B− → D0
CP±K

∗−) =
1√
2
(a± arBe

iδe−iγ) (2.73)

A(B+ → D0
CP±K

∗+) =
1√
2
(a± arBe

iδeiγ). (2.74)

Now we add (subtract) the squares of the above two equations, we have

|A(B− → D0
CP±K

∗−)|2 + |A(B+ → D0
CP±K

∗+)|2 = a2(1 + r2
B ± 2rB cos δ cos γ)

(2.75)

|A(B− → D0
CP±K

∗−)|2 − |A(B+ → D0
CP±K

∗+)|2 = ±2a2rB sin δ sin γ. (2.76)

2We are actually measuring rs due to the large K∗ natural width. However for purpose of this
thesis, we will assume that rs is equivalent to rB . Readers can refer to Appendix C for a detailed
discussion.
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The CP -asymmetry ACP and another independent observable RCP are defined

as:

ACP± =
Γ(B− → DCP±K

∗−) − Γ(B+ → DCP±K
∗+)

Γ(B− → DCP±K∗−) + Γ(B+ → DCP±K∗+)
=

±2rB sin δ sin γ

1 ± 2rB cos δ cos γ + r2
B

(2.77)

RCP± =
Γ(B− → DCP±K

∗−) + Γ(B+ → DCP±K
∗+)

Γ(B− → D0
NON−CPK

∗−)
= 1 ± 2rB cos δ cos γ + r2

B

(2.78)

These observables can be measured experimentally,

ACP+ =
N(B−, CP+) −N(B+, CP+)

N(B−, CP+) +N(B+, CP+)
(2.79)

ACP− =
N(B−, CP−) −N(B+, CP−)

N(B−, CP−) +N(B+, CP−)
(2.80)

and

RCP+ =
N(B−, CP+) +N(B+, CP+)

N(Non − CP )
× εNon−CP

εCP+
(2.81)

RCP− =
N(B−, CP−) +N(B+, CP−)

N(Non− CP )
× εNon−CP

εCP−

, (2.82)

where N(B+, CP±) and N(B−, CP±) represent the number of B+ → D0
CP±K

∗+

and B− → D0
CP±K

∗− decays respectively. D0
CP+ includes events where the D0 is

reconstructed in either K+K− or π+π− final states. D0
CP− includes events where the

D0 is reconstructed in either K0
sπ

0, K0
sφ or K0

sω final states. N(Non − CP ) refers

to the number of charged-B decaying to D0K∗ and where the D0 is reconstructed in

K−π+ final state.

In the measurements of RCP±, the raw MC efficiency should be corrected so that

the differences between the MC and real data will be taken into account. The number

of events of each type of decays are corrected by their respective relative reconstruction

efficiency ε:

εrel(K
+K−) = BR(D0 → K+K−) × ε(K+K−) × efficiency correction, (2.83)
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The efficiency correction include tracking, particle identification, π0 and K0
S

correc-

tions, with most of the correction recipes provided by corresponding BABAR special

working groups. The details and calculations of the corrections will be discussed in

Appendix A.

Another set of observables (x±, y±), called the “cartesian coordinates”, are useful

for combining the GLW analysis with the Dalitz B− → [K0
S
π+π−]D0K∗− analysis.

They are defined as:

x± ≡ rB cos(δ ± γ) (2.84)

y± ≡ rB sin(δ ± γ), (2.85)

Since rB has a physics boundary (it must be positive), it is found that its fit values

have a biased distribution and the bias is larger for smaller values of rB and smaller

data sample size [41]. In addition, (rB, δ, γ) are significantly correlated while the

cartesian coordinates are not. Therefore, they have the advantage over rB of be-

ing Gaussian distributed, uncorrelated and unbiased. The cartesian coordinates are

related to ACP± and RCP± through

x± =
RCP+(1 ∓ ACP+) −RCP−(1 ∓ ACP−)

4
, (2.86)

and

r2
B = (x±)2 + (y±)2 =

RCP+ +RCP− − 2

2
. (2.87)

x± are measured experimentally with the GLW method as:

x+ =
N(B+ → D0

CP+K
∗+)/εCP+ −N(B+ → D0

CP−K
∗+)/εCP−

2(N(B− → D0K∗−) +N(B+ → D0K∗+))/εNon−CP
(2.88)

x− =
N(B− → D0

CP+K
∗−)/εCP+ −N(B− → D0

CP−K
∗−)/εCP−

2(N(B− → D0K∗−) +N(B+ → D0K∗+))/εNon−CP
. (2.89)
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Both x± and y± are directly measured in the Dalitz analysis. However only x± can

be extracted from the GLW analysis due to the way ACP± and RCP± are constructed

(y± = rB(sin δ cos γ ± cos δ sin γ), but neither A nor R has a (sin× cos) term).

2.9.2 The ADS Method

In the second part of my thesis, I turn the focus to another method suggested

by Atwood, Dunietz and Soni [42]. The ADS methodology aims to extract the weak

phase γ from the interference of B− → D0K∗− and B− → D0K∗− decays where the

D0 and D0 decay to K+π− final state. This final state may occur by two paths:

either by a color-suppressed B decay, B− → D0K∗−, followed by a Cabibbo-favored

D0 decay, D0 → K+π− (Figure 2.9); or by a color-favored B decay, B− → D0K∗−,

followed by a Doubly-Cabibbo-suppressed D0 decay, D0 → K+π− (also called the

Wrong-Sign (WS) decay) (Figure 2.10). The two processes have similar magnitude

and so one expects a large associated CP asymmetry.

Figure 2.9: Feynman diagrams for the color-suppressed decay of B− → D0K∗− (left)
followed by the Cabibbo-favored decay of D0 → K+π− (right).
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Figure 2.10: Feynman diagrams for the color-favored decay of B− → D0K∗− (left)
followed by the Doubly-Cabibbo-suppressed decay of D0 → K+π− (right).

The amplitudes of the two B decays can be expressed as:

A(B− → D0K∗−) = a (2.90)

A(B− → D0K∗−) = arBe
iδBe−iγ (2.91)

where δB is the strong phase difference between the favored and suppressed B decay.

γ is the weak phase difference. rB is the ratio of the amplitudes of the color-suppressed

to the color-favored process,

rB =
|A(B− → D0K∗−)|
|A(B− → D0K∗−)| . (2.92)

The amplitudes of the two D0 decays are:

A(D0 → K+π−) = b (2.93)

A(D0 → K+π−) = brDe
iδD (2.94)

where δD is the strong phase difference between the favored and suppressed D0 decay

and rD is the ratio of the amplitudes of the Doubly-Cabibbo-suppressed D0 → K+π−

to the Cabibbo-favored D0 → K−π+ decay:

rD =
|A(D0 → K+π−)|
|A(D0 → K−π+)| . (2.95)
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The PDG [43] has r2
D = 0.00362 ± 0.00029.

When the amplitudes interfere, they become:

A(B− → DADSK
∗−) = A(B− → [K+π−]D0K∗−) + A(B− → [K+π−]D0K∗−) (2.96)

= abrDe
−iδD + abrBe

i(δB−γ) (2.97)

A(B+ → DADSK
∗+) = A(B+ → [K−π+]D0K∗+) + A(B+ → [K−π+]D0K∗+) (2.98)

= abrBe
i(δB+γ) + abrDe

−iδD . (2.99)

Adding and subtracting the squares of the amplitudes gives us:

|A(B− → DADSK
∗−)|2 + |A(B+ → DADSK

∗+)|2 = 2a2b2(r2
B + r2

D + 2rBrD cos δ cos γ)
(2.100)

|A(B− → DADSK
∗−)|2 − |A(B+ → DADSK

∗+)|2 = 4a2b2rBrD sin δ sin γ, (2.101)

where δ equals to δD + δB. Finally we have our observables, RADS and AADS. RADS

is the ratio of wrong-sign to right-sign (RS) (D0 → K−π+ or D0 → K+π−) decays.

AADS is the asymmetry in the wrong-sign events. They are defined as:

RADS ≡ Γ(B− → DADSK
∗−) + Γ(B+ → DADSK

∗+)

Γ(B− → [K−π+]D0K∗−) + Γ(B+ → [K+π−]D0K∗+)
(2.102)

= r2
B + r2

D + 2rBrD cos δ cos γ (2.103)

AADS ≡ Γ(B− → DADSK
∗−) − Γ(B+ → DADSK

∗+)

Γ(B− → DADSK∗−) + Γ(B+ → DADSK∗+)
(2.104)

=
2rBrD sin δ sin γ

RADS
. (2.105)

The observables can also be measured experimentally,

RADS =
N(B−,WS) +N(B+,WS)

N(B−, RS) +N(B+, RS)
, (2.106)

and

AADS =
N(B−,WS) −N(B+,WS)

N(B−,WS) +N(B+,WS)
, (2.107)

where N(B−,WS) is the number of B− → [WS]DK
∗− events measured and so on.
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CHAPTER 3

THE EXPERIMENTAL ENVIRONMENT

3.1 Introduction

B mesons are an ideal particle laboratory for CP violation studies within and

beyond the Standard Model. These studies require copious amounts of B mesons,

precise measurement of the B time of flight and flavor, and reasonably low background

in the event sample. The B factory at the Stanford Linear Accelerator Center (SLAC)

in Menlo Park, CA, comprising the PEP-II accelerator complex [44] and the BABAR

detector [45], is designed and optimized with these goals in mind.

The SLAC B factory studies e+e− collisions at a center-of-mass (CM) energy of

10.58 GeV. This energy corresponds to the Υ (4S) resonance, which provides a very

clean environment for B reconstruction. At this energy, about 17% of the hadronic

e+e− cross-section is bb production (Table 3.1). The Υ (4S) resonance is a spin-1

bound state of a b quark and a b anti-quark. The Υ (4S) mass is just above the BB

production threshold, and it decays almost exclusively to BB pairs (equal number of

B+B− and B0B0) through the strong interaction.

A BB pair produced by Υ (4S) decay is in a coherent L=1 state (P-wave). The

two mesons evolve in phase, therefore they have opposite flavor before one of them
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e+e− → Cross-Section (nb)

bb 1.10
cc 1.30
uu 1.39

dd 0.35
ss 0.35

τ+τ− 0.94
µ+µ− 1.16
e+e− ≈ 40

Table 3.1: Production cross-sections at
√
s = 10.58 GeV.

decays. In the measurement of time-dependent CP asymmetries, a key ingredient is

to determine whether the meson decaying to a CP final state at ∆t = 0 is a B or

B. ∆t is the difference in decay times of the two B’s. This can be achieved by the

flavor-tagging technique, which is to infer the flavor from the flavor of the other B in

the event through charge correlations of its daughters. After the flavor of the B is

tagged, ∆t is calculated from the distance between the decay vertices of the two B

mesons. However, in Υ (4S) decays the B’s are produced almost at rest in the CM

frame, resulting in a vertex separation of only about 30 µm, on average, by the time

they decay. Such distance would be too small to be measured by any vertex tracker,

since a typical silicon-vertex detector would only have a spatial vertex resolution of

about 50 µm. The PEP-II B factory solved this problem by colliding asymmetric e+

and e− beams. Head-on collisions between a 9.0 GeV electron beam and a 3.1 GeV

positron beam provide a Lorentz boost of βγ = 0.56 in the laboratory frame to the

B meson pair. The B particles are carried downstream in the direction of the higher

energy beam and this forward boost makes it possible to separate the decay vertices

of the two B mesons. This allows us to observe the distances between their points
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of decay (the resulting Lorentz time dilation of the B-meson lifetime elongates the

average decay-vertex separation in the lab frame to an average of 270 µm).

I now provide a detailed description of the PEP-II accelerator and the BABAR

detector.

3.2 The PEP-II Asymmetric Collider

A schematic representation of the acceleration and storage system at PEP-II is

shown in Figure 3.1. Electrons and positrons are produced by the electron-gun po-

sitioned near the beginning of the two-mile long linear accelerator (LINAC). The

gun is a thermally heated cathode filament held under high voltage. The electrons

are accelerated into copper waveguides by an electric field. They are then collected

into bunches and ejected out of the gun into the LINAC. The electron beam in the

LINAC is accelerated by Klystron tubes which generate high power microwaves in

radio-frequency (RF) cavities.

After the electron beam is accelerated to approximately 1 GeV of energy, it is

directed into a damping ring to be stored for some period of time. The purpose

is to reduce the transverse momentum of the electrons in the beam. As the beam

circulates in the ring, it loses energy through synchrotron radiation and is continuously

re-accelerated by RF cavities. After this process, the electron beam is re-directed back

to the LINAC and accelerated to 8.9 GeV.

To generate positrons a portion of the electron beam is separated, accelerated to

approximately 30 GeV and collided onto a tungsten target to produce electromagnetic

showers that contain large numbers of electron-positron pairs. The positrons are

separated, collected, accelerated and returned to the LINAC. The positron beam in
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Figure 3.1: A schematic depiction of the Linear Accelerator and the PEP-II asym-
metric storage ring.

the LINAC will then be accelerated and directed to its own damping ring like the

electron beam. Finally, it is dumped back into the LINAC and accelerated to its

target energy of 3.1 GeV.

After reaching their respective desired energies at the end of the LINAC, the

electron and positron beams are injected into the PEP-II storage rings. The electron

beam is injected into the High Energy Ring and travel clockwise around the ring while

the positrons are injected into the Low Energy Ring and travel counter-clockwise. As

they circulate, magnets and RF cavities around the storage rings focus the beams and

replace the energy lost due to synchrotron radiation. They are then brought into col-

lision at an interaction point (IP). During data taking, each ring contains about 1600
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circulating bunches colliding every 5 ns. The BABAR detector is constructed around

the IP to detect and analyze the decay products of the resulting e+e− collisions.

Note that about 10% of the time the beams are collided at an energy 40 MeV

below the peak of the Υ (4S) resonance to allow studies of non-resonant background

(continuum, e+e− → qq̄, where q = u, d, s, c) in data. No B mesons are produced

since this energy is below the BB threshold.

The PEP-II collider was designed to operate at an instantaneous luminosity of

3 × 1033 cm−2s−1. The accelerator system has since significantly exceeded the orig-

inal expectation and reached a highest value of 1.2 × 1034 cm−2s−1. The increased

luminosity is achieved by using higher beam currents and by improvements in the

RF cavities, beam-shaping cavities and magnet systems. The original goal of an

integrated luminosity of 3.3 fb−1 per month has also been exceeded with a record

month of 18.84 fb−1 from 07/18/2006 to 08/17/2006. PEP-II has delivered a total

integrated luminosity of 550.45 fb−1 to date, while BABAR has recorded 529.06 fb−1,

a 96% efficiency. Figure 3.2 shows the delivered and recorded integrated luminosity

since operations first began in June 1999 and Figure 3.3 shows the luminosity per

day. With a BB production cross-section of 1.1 nb, this corresponds to 605 million

BB pairs. It is important to note that the data has been collected in seven different

periods (so-called runs), so the actual dataset corresponds to Run 1 to Run 7 (Run

7 was recorded on Υ (3S) and Υ (2S) resonances). The PEP-II B factory and BABAR

detector stopped running in April after the end of Run 7.
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Figure 3.2: Integrated luminosity delivered by PEP-II and recorded by BABAR since
the beginning of operations.

3.3 The BABAR Detector

3.3.1 Overview

The BABAR detector is designed to satisfy the following requirements in order to

measure the CP -asymmetry in the B-system due to the very small branching ratios of

decays of B mesons to CP -eigenstates. The need for full reconstruction of final states
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Figure 3.3: Daily luminosity delivered by PEP-II and recorded by BABAR since the
beginning of operations.

with two or more charged particles and several π0’s adds to the stringent requirements

[45]:

• Large acceptance at small polar angles relative to the boost direction.

• Excellent reconstruction efficiency for low energy charged particles and photons

(< 100 MeV).

• Excellent momentum resolution.
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• Excellent energy and angular resolution for photon detection.

• Excellent vertex resolution, in directions transverse and parallel to the beam.

• Efficient electron and muon identification and accurate hadron identification.

• Detector subsystems that can withstand and operate reliably under large doses

of radiation, especially for the inner-most subsystems.

Figures 3.4 and 3.5 show schematic drawings of the side and front view of the

detector. The BABAR detector consists of two end-caps and a cylindrical barrel sur-

rounding the beam-pipe along the z-direction and roughly symmetric in the azimuth

φ. The detector has five major subsystems, the Silicon Vertex Tracker (SVT), the

Drift Chamber (DCH), the Detector of Internally Reflected Cherenkov Light (DIRC),

the Electromagnetic Calorimeter (EMC), and the Instrumented Flux Return (IFR),

in the order of increasing distance from the beam-pipe. The SVT, the innermost

detector, measures trajectories of charged particles very close to the interaction point

and is the main source of information on their polar angles. The Drift Chamber is

BABAR’s main tracking device. It determines the momentum of charged particles

by measuring the curvature of tracks in a 1.5 T magnetic field created by a super-

conducting solenoid located between the EMC and IFR. The DCH also provides a

measurement of ionization energy loss (dE/dx) for particle identification. The DIRC

is a charged particle identification device and has a primary task of distinguishing

charged pions and charged kaons at high momentum. The EMC is built from CsI(TI)

crystals and is used to determine the position, energy and identity of electrons, pho-

tons and neutral pions. The IFR is BABAR’s outermost subsystem. It is designed to

detect muons and long-lived neutral hadrons.
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Figure 3.4: Longitudinal cross-section of the BABAR detector.

A trigger system uses information from the DCH, EMC and IFR to select useful

data from a particular event to be stored for later analysis.

The BABAR coordinate system is defined as a right-handed system:

• The +z axis is parallel to the magnetic field of the solenoid and in the direction

of the electron beam.

• The +y axis points vertically upward.

• The +x axis points horizontally, away from the center of the PEP-II ring.
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Figure 3.5: Transverse cross-section of the barrel of the BABAR detector.

• The coordinate system origin is the IP, which is offset in the −z direction from

the geometrical center of the detector to increase coverage of the boosted Υ (4S)

decays.

The relevant BABAR subsystems will be described in more details in the follow-

ing sections. Original design of the BABAR detector can be found in [45] and more

technical details in [46].

3.4 The Silicon Vertex Tracker

The SVT [47] was designed to measure the positions and decay vertices of B

mesons and other charged particles near the IP precisely. Good vertexing is par-

ticularly critical to CP violation studies, in particular measurement of the distance
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between the decay positions of two B mesons in an event. It is necessary for the

detector to have a ∆z resolution and single vertex resolution better than 130 µm and

80 µm respectively, for full reconstruction of B decays. In addition, since many of the

B decay products have a low transverse momentum (pT ), the SVT must also provide

track reconstruction for particles with pT < 120 MeV, as the DCH cannot provide

reliable tracking information for these low-momentum tracks.

3.4.1 Design

The SVT consists of five layers of silicon double-sided with conductive strip sen-

sors. The z-side of a layer is oriented perpendicularly to the beam (z) direction on

the inner side of the detector to measure z-coordinates; while the φ-side on the outer

side of the detector runs parallel to the beam-pipe for phi-coordinate measurements.

Figure 3.6 shows the r − z view of the upper half and Figure 3.7 the layout of the

detector in the x− y plane. The SVT covers 90% of the solid angle in the CM frame.

The first three layers of silicon strips are located as close as possible to the beam-pipe

to reduce the effect of multiple scattering within the detector. The effect is more

profound as the particle trajectories are farther away from the IP. The outer two

layers are closer to the DCH to facilitate matching of SVT tracks with DCH ones.

The first three layers of the SVT are divided into sextants. They are to provide

precision measurements of the azimuthal angle (φ), polar angle (θ) and impact param-

eters of a track. The outer layers are required for pattern recognition and stand-alone

tracking. There are 6 modules of silicon wafers in the first 3 layers. Each module in

the first two layers has 4 wafers and 6 each in the third layer. Layers 4 and 5 have 16

and 18 modules with 7 and 8 wafers each, respectively. Each module is divided into
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forward and backward half. The design was chosen to reduce the amount of silica

required to cover the solid angle while maintaining maximum efficiency.

3.4.2 Theory of Operations

The sensors in the strips are 300-µm-thick high-resistivity silicon wafers. When a

high-energy charged particle traverses through the sensor it displaces orbital electrons

and creates positive holes. A bias voltage attracts the electrons and holes in opposite

directions, thus creating a current. The resulting electrical signal is read out from

the strips, amplified, and discriminated by front-end electronics.

As the SVT is the closest subsystem to the IP, it is the most vulnerable to radia-

tion damage. The silicon sensors are designed to have a high threshold for radiation

damage to tolerate an anticipated life-time accumulated doses of 2 Mrad. Neverthe-

less, they are easily damaged by high instantaneous or accumulated doses. Therefore,

a radiation monitoring system with twelve silicon PIN diodes, located at a radius of 3

cm from the beam-pipe, was installed to constantly monitor the radiation doses. The

beams are automatically aborted if radiation levels are above the 1 Rad/s threshold.

However, the PIN diodes have degraded since initial installation and during the 2002

Summer detector shutdown, a system of two Chemical Vapor Deposition (CVD) dia-

mond sensors was installed inside the SVT [48]. The diamond sensors were designed,

tested and assembled by the Ohio State University. They have virtually no leakage

current and are much more radiation hard than the silicon PIN diodes. The SVT is

well below the operational limit of 4 Mrad integrated dose and the monitoring system

has prevented any significant damage from occurring to date.
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3.4.3 Performance

The SVT has been operating efficiently since its installation, with an average

track reconstruction efficiency of over 97% (Figure 3.8) [49]. The average z- and

φ-resolutions for tracks originating from the IP are 20-40 µm. It has satisfied the

original goal for vertex resolution and low transverse momentum hit resolution.

Figure 3.8: SVT reconstruction efficiency in the z (left) and φ view (right) as measured
in e+e− → µ+µ− events.

3.5 The Drift Chamber

The Drift Chamber [50] is the primary tracking device of BABAR for obtaining

trajectory information and the best possible momentum resolution for charged tracks.

The trajectory of a charged particle in a uniform magnetic field is a helix. The

radius of curvature and pitch angle of this helix are related to the magnetic field

strength and the transverse momentum of the particle. The DCH is placed in uniform
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magnetic fields parallel to the beam direction to allow measurement of the transverse

momentum. The DCH is also used for particle identification by measuring track

ionization loss as a function of position (dE/dx), particularly for tracks with momenta

less than 700 MeV/c. The total charge collected by a sense wire for a given track is

proportional to the dE/dx for that track. The particle velocity (βγ) is then calculated

using the dE/dx information. The momentum and velocity are used to determine

the mass of the particle.

3.5.1 Theory of Operations

The DCH is a gas-filled chamber traversed by a series of wires. A high-energy

particle passing through the chamber ionizes the gas along its path of travel. If an

electric potential is maintained between the wires, the ionized electrons are accelerated

toward the positively charged (sense) wires and away from the negatively charged

(field) wires. A “hit” is defined when an avalanche of second ionization caused by the

accelerating electrons amplifies the original signal and produces a pulse in the current

on the sense wire.

The ingredients of the gas mixture has to be chosen carefully to maintain a balance

between ionization energy and radiation length. A low ionization energy is desirable

in order to generate large number of electrons with a minimum reduction in the energy

of the particle passing through the gas. Meanwhile a long radiation length is crucial in

minimizing the reduction in the particle energy when it passes through the chamber.

Another consideration to be taken into account is the potential damage of the

chamber due to accumulated charge. In addition, excited atoms within the DCH

emit photons that have sufficient energy to eject electrons from the field wires. New
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avalanches started by these electrons will disrupt the operation of the chamber. There-

fore a quenching gas capable of absorbing and thermalizing a wide range of photon

energies must be added in the gas mixture.

3.5.2 Design

To facilitate track-matching between the SVT and DCH, the DCH is placed close

to the SVT outer wall and its own walls are made as thin as possible. Figure 3.9

shows a schematic of the Drift Chamber. The chamber is 2.8 m long and contains

40 cylindrical layers of 1.2 cm by 1.9 cm hexagonal cells, each consisting of six gold-

coated aluminum field wires at the corners and one gold-coated tungsten-rhenium

sense wire at the center. The cells are filled with a mixture of 80% helium and 20%

isobutane (as quenching gas). There are a total of 7104 sense wires and 21664 field

wires. The layers are grouped by four into ten superlayers, with the wires in each

superlayer oriented as either axial (directly parallel to the z-axis) or stereo (at a small

angle in phi with respect to the z-axis, in order to obtain longitudinal position info).

Six of the ten superlayers are stereo, and the other four are axial. Figure 3.10 shows

the layout of the four innermost layers. The DCH is asymmetric in z about the IP,

to accommodate the forward boost of the CM of physics events.

The field wires are 120 µm in diameter and the sense wires are 20 µm in diameter.

The field wires are grounded, while the sense wire is held at a nominal operating

voltage at 1930 V. The grounded wires produce a uniform electric field in the cell

with evenly distributed isochrones (contours) of equal drift time, as shown in Figure

3.11. The gain relative to the charge of the primary ionization is about 5× 104. The

chamber has a typical position resolution of 140 µm.
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Figure 3.9: Longitudinal cross-section of the DCH. The dimensions are in millimeters.

3.5.3 Performance

The DCH has demonstrated excellent performance throughout its lifetime. The

transverse momentum resolution is represented by

σpT
/pT = (0.13 ± 0.01)% × pT + (0.45 ± 0.03)%, (3.1)

where pT is in units of GeV/c. The dE/dx measurement resolution has been measured

to be around 7%. Tracking efficiency is a function of transverse momentum and polar

angle. Figure 3.12 shows the measured efficiencies for operating voltages at 1900 V

and 1960 V. The efficiency is measured based on multi-hadron events as the fraction

of tracks detected in the SVT that are also detected in the DCH. The efficiencies for

tracks with pT > 200 MeV/c and polar angle θ > 500 mrad at 1960 V and 1900 V

are well above the 95% and 90% level respectively.

The estimated error in the measurement of the difference between the decay ver-

tices of the two neutral B mesons along the z axis is shown in Figure 3.13. The rms
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Figure 3.10: A schematic of the arrangements of the wires in the hexagonal cells in
the four innermost layers of the DCH.

width of 190 µm is dominated by the reconstruction of the partially reconstructed B0

(170 µm) while the r.m.s. of the resolution for the fully reconstructed B0 is 70 µm.

53



Sense


Field

Guard
 1-2001


8583A16

Figure 3.11: Isochrones in a typical DCH cell at 1.5 T of magnetic field.

3.6 The Detector of Internally Reflected Cherenkov Light

The DIRC [51] is the main particle identification device of BABAR, which uses the

Cherenkov angle of a charged track to determine the track velocity. Combined with

momentum measurements from the SVT and DCH, the velocity is used to determine

the mass and thus the ID of the particle. Additionally, it is particularly crucial for

the DIRC to meet BABAR’s stringent requirements for π-K discrimination (2.5 σ or

more) over a large momentum range (700 MeV/c - 4.2 GeV/c). Good particle ID is

essential for measurements that depend on efficient π-K separation or the need to

identify the B meson flavor.
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Figure 3.12: The track reconstruction efficiency in the DCH at operating voltages
of 1900 V and 1960 V as a function of transverse momentum (top) and polar angle
(bottom). The measurement at the DCH voltage of 1900 V (open circle) and 1960 V
(solid circle) are shown.

3.6.1 Theory of Operations

The DIRC is a ring-imaging Cherenkov detector which uses total internal reflection

to transfer Cherenkov radiation generated by charged particles traversing the detector

to photo-multiplier tubes (PMTs). A particle moving at a velocity greater than the

speed of light in certain medium emits Cherenkov radiation at an angle θC relative
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Figure 3.13: Estimated error in the difference ∆z between the B0 meson decay vertices
for a sample of events in which one B0 is fully reconstructed.

to the particle’s direction. The angle is related to the particle’s velocity (β) by

cos θC =
1

nβ
, (3.2)

where n is the index of refraction of the medium. Through total internal reflections,

the Cherenkov light is carried to a large water tank and is focused onto an array

of PMTs mounted at the outside of the tank. The Cherenkov angle is preserved

by total internal reflections and can be reconstructed from the PMT signals, timing

information, and track momentum vectors obtained by matching the signal with

tracks from the DCH and SVT.

3.6.2 Design

Figure 3.14 illustrates the principles of light production, transportation and imag-

ing in the DIRC. The DIRC uses thin, long rectangular bars made of synthetic fused
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silica (quartz) with a refractive index of n = 1.47. It consists of 144 bars 17 mm

thick, 35 mm wide and 4.9 m long running along the z direction. Each set of 12 bars

are housed in a bar box filled with nitrogen to prevent moisture from condensing on

the bars. The silica serves as the Cherenkov radiator and as a waveguide. A mirror

with ≈ 92% reflectivity is placed on one end of the bar. A 9 mm quartz window at

the other end separates the bar from a water tank filled with 6000 liters of purified

water, called the Standoff Box (SOB). The water has a similar refractive index (n

= 1.35) to the quartz to minimize refraction at the silica-water boundary. The rear

surface of the SOB is instrumented with 12 sectors of 896 PMTs each. Each PMT

has a diameter of 29 mm. The PMTs collect the photons, convert them to electrons

and amplify the signal.
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Figure 3.14: A schematic of the DIRC fused silica radiator bar and imaging region.
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3.6.3 Performance

The DIRC has performed well throughout BABAR’s operational lifetime. The

single-photon Cherenkov angle resolution is about 9.6 mrad, while the resolution for

a track is σγ/
√

Nγ , where σγ is the resolution of a single photon and Nγ the number

of detected photons (about 30 for a normal incidence track). For a dimuon event, the

Cherenkov angle resolution is 2.5 mrad, resulting in a π-K separation of 4.2 σ at 3.3

GeV/c of momentum (Figure 3.15).

0

2

4

6

8

10

2 2.5 3 3.5 4
momentum (GeV/c)

π-
K

 s
ep

ar
at

io
n 

(s
.d

.)

B AB A R

Figure 3.15: DIRC π-K separation versus track momentum measured in D0 → K−π+

decays in units of standard deviations.

A control sample of D0 → K−π+ was used to measure the efficiency for correctly

identifying a charged kaon and the probability of wrongly identifying a π as a K.

Kaon selection efficiency and pion mis-identification probabilities as a function of

momentum are shown in Figure 3.16. The K efficiency is above 90% for the full
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momentum range from 0.6 to 3.4 GeV/c. Pion mis-identification is roughly constant

around 2% for momenta less than 2.4 GeV/c and increases to a little over 10% for

tracks with momenta ≈ 3.2 GeV/c.
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Figure 3.16: The DIRC kaon identification efficiency versus track momentum is shown
on the top plot. The bottom plot shows the probability of a pion being mis-identified
as a kaon as a function of track momentum.

3.7 The Electromagnetic Calorimeter

The main purpose of BABAR’s electromagnetic calorimeter is to determine the

position, energy and identity of electrons and photons with excellent efficiency, energy

and angular resolution over the energy range of 20 MeV to 9 GeV. The EMC is

designed to measure the energy in electromagnetic showers. This capability allows

reconstruction of π0 and η0 mesons that decay to two photons, as well as identification

of high-energy photons from rare radiative B decays. Electron ID is necessary for
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J/ψ reconstruction, flavor-tagging of the non-signal B in semileptonic decays, and

reconstruction of semileptonic and rare B decays.

3.7.1 Theory of Operations

In an electromagnetic calorimeter, particles are distinguished based on how much

they are absorbed and their different shower shapes. Absorption of the particle gener-

ates showers of new particles, and the energy and momentum of the original particle

is distributed among the shower particles. Electrons and photons are fully absorbed

and have short and narrow showers. Hadrons, on the other hand, are only partially

absorbed and generate wide and scattered showers. Muons are not absorbed and do

not shower, despite being electromagnetic particles.

3.7.2 Design

The EMC is composed of 6580 Thallium-doped Cesium iodide (CsI(Tl)) scintillat-

ing crystals, separated into a cylindrical barrel and a conical forward end-cap. Figure

3.17 shows a schematic diagram of a typical crystal including the readout electronics.

The barrel portion has 5760 crystals arranged in 48 polar angle rows with 120 crys-

tals each. The forward end-cap contains 820 crystals grouped into 20 modules of 41

crystals each. The EMC covers a CM solid angle of -0.916 ≤ cos θ ≤ 0.895, with the

backward-forward asymmetry reflecting the boost of the collision in the lab frame.

Figure 3.18 is the schematic of the EMC in longitudinal view.

The crystals have a trapezoidal shape with dimensions of 47 × 47 mm2 at the front

face and 60 × 60 mm2 in the forward and the end-cap regions respectively. They have

radiation lengths of 1.85 cm. The crystals serve as radiators for the traversing elec-

trons and photons. They scintillate under the influence of electromagnetic showers,
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and the light is then passed to the outer face of the crystal through total internal

reflection, where it is read out by silicon PIN diodes. As the electromagnetic showers

spread through several crystals, a reconstruction algorithm is used to associate the

activated crystals into clusters and either to identify them as photon candidates or to

match individual maxima of the deposited energy to the extrapolated tracks from the

DCH-SVT tracker. Additional PID is obtained from the spatial shape of the shower.
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Figure 3.17: Schematic of a typical CsI(Tl) crystal (not to scale).
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3.7.3 Performance

The energy resolution at low energy is calibrated with a radioactive source. At

high energy the resolution is the r.m.s. error in the energy measurement divided by the

energy (σE/E) and is measured from Bhabha scattering events. It is parameterized

by [52]:

σE
E

=
(2.32 ± 0.30)%

4
√

E( GeV)
⊕ (1.85 ± 0.12)%, (3.3)

where E is the photon energy in GeV and ⊕ represents a sum in quadrature. Fig-

ure 3.19 shows a plot of the energy resolution of the EMC for various processes. At

lower energies it is dominated by fluctuations in photon statistics and beam generated

backgrounds; whereas at higher energies (> 1 GeV) the non-uniformity in light col-

lection from leakage or absorption in the material in front of or between the crystals

dominates in the energy resolution.
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various processes.

The angular resolution is determined from analyses of π0 and η0 decays to two

photons of roughly equal energy. The angular resolution (σθ) can be parameterized

by [52]:

σθ = σφ =
(3.87 ± 0.07)mrad

√

E( GeV)
⊕ (0.00 ± 0.04)mrad. (3.4)

The angular resolution is approximately 12 mrad at low energies and 3 mrad

at high energies. Figure 3.20 shows the angular resolution of the EMC for photon

energies between 0 and 3 GeV.

The reconstructed π0 mass has a width of 6.9 MeV/c2 and is shown in Figure 3.21.

Energy resolution dominates the mass resolution at lower energies (< 2 GeV), while

the angular resolution dominates at higher energies.
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3.8 The Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed for detection of muons and long-

lived neutral hadrons, primarily K0
L

and neutrons. It also serves as the flux return

for the solenoid magnet. The principal requirements for IFR are large solid angle

coverage, good efficiency, and high background rejection for muons down to momenta

under 1 GeV/c. For neutral hadrons, good angular resolution and high efficiency are

most important. These capabilities allows identification of kaons with high efficiency

and good purity and detection of neutral hadrons over a wide range of momenta and

angles. Muons are important for flavor tagging of neutral B mesons via semileptonic

decays, for the reconstruction of J/ψ ’s, and for the study of semileptonic decays and

rare decays involving leptons of B and D mesons and τ leptons. K0
L

detection allows

the study of exclusive B decays, in particular CP eigenstates.
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Figure 3.21: Invariant mass of two photons in BB events. The energies of the photons
and the π0 are required to be between 30 MeV and 300 MeV. The solid line is the
fit to data.

The IFR is divided into a hexagonal barrel, which covers 50% of the solid-angle

in the CM frame, and forward and backward end-caps (Figure 3.22). Originally, it

was designed with only Resistive Plate Chambers (RPCs) [53], sandwiched between

layers of steel plates in the barrel and both the two end-caps. Figure 3.23 shows the

cross-section of a RPC. There were 19 and 18 layers of RPCs in the barrel and each

end-cap respectively. The steel serves as a flux return for the solenoidal magnet as

well as a hadron absorber, limiting pion contamination in the muon ID.

3.8.1 Theory of Operations

The RPCs in BABAR detect high-energy particles through gas-avalanche forma-

tion in a high electric field. They operate in the so-called streamer mode. Charged

particles passing through a gas ionize the gas along their paths. An applied electric
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Figure 3.23: Cross-section of a BABAR Resistive Plate Chamber (RPC).
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field causes the ionized electrons to accelerate toward the anode creating additional

ionized electrons and photons through a variety of electromagnetic processes. The

“avalanche” of electrons and photons grows into a streamer, which is a mild, con-

trolled form of electrical discharge in the gas. The streamer charge is then read out in

both the z and φ directions by aluminum strips located outside of the RPCs which are

capacitively coupled to the chambers. One potentially serious problem is that high-

energy photons produced by a streamer of ionized electrons can photo-ionize other

electrons and create secondary avalanches or streamers, which will lead to break-

down of a RPC. Therefore, a quenching gas of freon and isobutane is used, with the

isobutane absorbing high-energy photons and the freon absorbing excess electrons.

The RPCs consist of 2 mm-thin bakelite sheets kept 2 mm apart by an array of

spacers located every 10 cm. The space in between is filled with a non-flammable gas

mixture of 56.7% argon, 38.8% freon, and 4.5% isobutane, while the sheets are held

at a potential of 8000 V. The inside surface of the bakelite is covered with a linseed-oil

coating to ensure the uniformity of the electric field in order to prevent discharges

in the gas and large dark currents. The RPCs performed well in the beginning. It

had over 90% efficiency as expected geometrically from inactive space in the detector,

resulting in a muon detection efficiency of 90% for a pion mis-identification rate of 6

- 8% in the momentum range of 1.5 < p < 3.0 GeV/c.

3.8.2 Limited Streamer Tubes

In 1999, shortly after the beginning of BABAR data-taking, the performance of the

RPCs started to deteriorate rapidly. Many chambers began drawing dark currents and

developing large areas of low efficiency. The overall efficiency of the RPCs started to
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drop and the number of non-functional chambers, defined as chambers with efficiencies

less than 10%, rose dramatically. Figure 3.24 shows the average RPC efficiency since

1999. It is obvious that the deterioration of efficiency, and thus muon ID, had become

a serious problem. After investigations, it was traced to insufficient curing and R&D of

the linseed-oil coating and to the high temperature at which the RPCs were operated.

Uncured oil droplets would form columns under the action of the strong electric field

and the high temperature, up to 37◦C, bridging the bakelite gap and resulting in large

currents and dead space. Various remediation measures were attempted, but none

solved the problem. Extrapolating the efficiency trend showed a clear path towards

losing muon ID capability at BABAR within a couple of years of operations. Therefore

replacement of RPCs, or at least an upgrade of the IFR detector with new and more

reliable RPCs, was deemed essential by the collaboration.

The collaboration decided to upgrade the IFR with Limited Streamer Tubes (LST)

in the barrel region. In Fall 2004, the RPCs in the top and bottom sextant were

removed and replaced by 12 layers of LSTs and 6 layers of brass to improve hadron

absorption. The installation of LSTs in the remaining four sextants was completed

on November 13, 2006. (The forward end-cap was retrofitted with new and improved

RPCs in 2002. The new RPCs were screened much more stringently with Quality

Control (QC) tests and had a much thinner linseed-oil coating. The backward end-cap

was not retrofitted.)

Design

The LSTs consist of a PVC comb of eight 15 mm × 17 mm cells about 3.5 m in

length, encased in a PVC sleeve, with a 100 µm gold-plated beryllium-copper wire

running down the center of each cell. Figure 3.25 shows photos of a LST. The cells
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Figure 3.24: Deterioration of the average RPC efficiency (red). The green dots show
the fraction of RPCs with efficiency lower than 10%.

in the comb are covered with graphite, which is grounded, while the wires are held

at typically 5500 V and held in place by wire holders located every 50 cm. The gas

mixture consists of 3.5% argon, 8% isobutane, and 88.5% carbon dioxide. Like the

RPCs and as their name implies, the LSTs are operated in streamer mode. The signal

is read off directly from the wires through AC-coupled electronics (granularity of two

wires per channel in the φ direction) and from strips running perpendicular to the

tubes and capacitively coupled to the wires (35 mm pitch in the z direction).

The LSTs were constructed at PolHiTech, an Italian company. The construction

and QC procedures were conducted under the supervision of BABAR personnel. Dur-

ing construction, the mechanical quality of the graphite surface was inspected and

the resistivity tested. The chambers were strung with wires tested for thickness and
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tested for gas leaks after sealing. The tubes were then conditioned under progressively

higher applied voltages to burn off any dirt accumulated during construction. Only

tubes that could hold the operational voltage without drawing excessive currents were

accepted.

Figure 3.25: Photos of a BABAR limited streamer tube.
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Quality Control

After construction, the LSTs were shipped to the Ohio State University and

Princeton University to undergo another round of rigorous QC tests and high-voltage

conditioning. An important test was the “singles rate” test. As the streamer signals

are effectively digital, given a constant incident flux of particles, the chamber should

show a counting-rate plateau over a range of applied voltage where the charge of every

streamer is above the read-out threshold. The plateau provides operational tolerance

of the applied HV, allowing operations of the LSTs at the middle of the plateau to

safeguard against fluctuations in efficiency due to changes in the gas gain from pres-

sure or voltage fluctuations. A good LST should have a plateau wider than 300 V

in all of its cells. A short plateau is an indication of poor aging behavior. Defects

in the surface of the graphite or dirt accumulation on the wire can result in large

discharges in the tube that raise the singles rate and spoil the plateau. Examples of a

good and bad plateau are shown in Figure 3.26. Counting rates were recorded every

100 V from 5000 V to 6000 V. Note that the plateau eventually fails at above 5900

V, due to multiple streamers formed from electrons photoelectrically ejected from

the graphite by UV photons radiated by the original streamer. At high voltages,

enough UV photons are produced to overwhelm any signal dead-time imposed by the

electronics, thus raising the singles rate.

Another powerful QC procedure was the scan test, in which the LSTs were scanned

with a localized, focused radioactive source, subjecting small regions of the tube to

intense radiation rates. Although the incident flux is then much higher than what the

tube would experience in the experiment, the stress reveals weak points in the tube,

where the source initiates a self-sustaining discharge of high current that continues
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even when the source is removed while the high-voltage is applied. This happens when

a conductive channel is formed in the gas around a mechanical defect. Only tubes

that do not exhibit this behavior are accepted for installation. A 7 µC Cs137 source

was used in OSU for this purpose. A robot arm, controlled by user via a networking

software, carried the source and scanned each wire of a LST. A tube that displayed a

self-sustaining discharge in any of its wire would be put under HV conditioning for a

few days before a second scan. The tube would not be used for installation in the IFR

if it failed the scan test twice. Figure 3.27 shows a bad tube with a self-sustaining

discharge in one of its wires.

After all QC tests, the tubes were held under high voltage for a month to ensure

no premature aging behavior occurred. Thereafter, they were assembled into modules

of two or three tubes at The Ohio State University and Princeton University and then

shipped to SLAC for yet another round of QC tests and HV conditioning before being

installed in the IFR.

Performance

The project involved the manufacture of 1500 LSTs, with more than 1200 installed

in the detector. It also necessitated the design and fabrication of custom read-out

electronics (done by INFN Ferrara in Italy), HV power supplies (The Ohio State

University), and gas system (SLAC). The project was completed successfully and

ahead of schedule. The LSTs have performed extremely well since installation in

all sextants, with failure rates below 0.5% for both the tubes and z-strips. The

efficiencies of all layers are around 92%, which are consistent with expectation (under

100% due to geometrical limitations). Regular tests of singles rates with cosmic rays

have verified continuing excellent behavior with long singles rate plateaus (Figure

72



Figure 3.26: Singles rate plateau versus applied voltage for two LSTs. The LST
on the top showed a very good plateau; while the one on the bottom had bad (no)
plateau and was due further HV conditioning before being tested again.

3.28). Figure 3.29 and Figure 3.30 show the efficiency maps of a sample layer and the

improved muon ID of the new and fully functional muon system.

3.9 The Trigger and Data Acquisition System

The trigger system [45] for BABAR is designed to collect and store data relevant for

B physics with a high and stable efficiency. It is implemented as a two-tier hierarchy,

the Level 1 (L1) trigger followed by the Level 3 (L3) trigger. The trigger system
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Figure 3.27: Plot of source-induced current (nA) versus the Cs137 source position as
it scanned along the length of the LST in a scan test. One of the wires in the tube
showed a self-sustaining discharge and was subjected to additional HV conditioning
and a second scan test. The vertical orange lines on the plot are “cell” boundaries,
with each “cell” representing two wires of the LST.

must function efficiently under extreme background situations. It should contribute

no more than 1% dead time.

The L1 trigger, a hardware-based trigger system, analyzes data from the front-end

electrons (FEEs) of the DCH, EMC and IFR to make the trigger decision. The L1

trigger must accept or reject an event within a time window of 12.9 µs. The selections

are optimized to maintain nearly perfect BB efficiency while rejecting most of the

beam-induced background events in order to prevent overloading of the downstream

event processing system. The L1 is configured to have an output rate of 1 kHz. It is

> 99.9% efficient for BB events.

The L3 trigger is a software-based trigger running on a farm of commercial PCs

which performs a full event reconstruction and classification. After an event is ac-

cepted by the L1 trigger (L1 accept), the L1 output is passed on to L3. The trigger

at this level is performed in three stages. First, events are classified according to
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Figure 3.28: Singles rate plateaus from a sample layer of installed LSTs in the IFR.

the trigger information from the Fast Control and Timing System (FCTS). Then the

events are applied with BABAR event reconstruction algorithms to find quantities of

interest and filters to test if these quantities satisfy imposed selection criteria. Lastly,

L3 output information, a set of classifications for the events, are generated. The re-

lated data is stored on tapes in collections which will be retrieved later for high-level

analysis by individual users. The L3 trigger maintains the BB selection efficiency at

more than 99% while reducing the data rate to about 200 Hz.
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Figure 3.29: Color-coded efficiency maps for six sample layers in the barrel. The
scale goes from 0% (red) to 100% (green). All other layers of LSTs display similarly
exceptional efficiencies.
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Figure 3.30: Muon ID performance plot of the LSTs in the barrel for muons with
momenta between 2.0 and 4.0 GeV/c, represented by pion rejection versus muon
efficiency. Note that the LST performance bested the initial performance of the
RPCs.
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CHAPTER 4

ANALYSIS OF B− → D0K∗− DECAYS USING THE GLW
METHOD

4.1 Overview

The most important step of this analysis is the separation of signal events from

the backgrounds to achieve a high signal-to-background ratio. This is essential as

the branching fractions of the decay channels in this analysis are of the order of 10−6

or 10−7 (Table 4.1). The main technique is to exploit the kinematic and topological

information of an event. The dominant background in this analysis is continuum qq

events (cc, uu, dd and ss). The event shape of continuum background is distinctively

different from that of a B decay. In the Υ (4S) rest frame, the two B mesons are

produced nearly at rest without a preferred direction because the Υ (4S) is just above

the BB invariant mass. Therefore, B decays are roughly isotropic and spherical in

nature. In contrast, continuum events are more “jet-like”, as shown in Figure 4.1. The

two jets are roughly collinear in the CM frame, conserving momentum in the two-body

process. Thus, event-shape variables which display different distributions for signal

and continuum events can be used to suppress this background. In addition, kinematic

variables which describe the reconstructed B meson kinematically can further separate

signal from background events.
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This analysis proceeds in several steps. First, events in the BABAR dataset which

are reconstructed as the decay chains that we are interested in are selected. Then re-

jection of background and poorly reconstructed signal events is accomplished through

a series of selections on topological and kinematic variables. Only a small sample of

candidate events remains after the selection process. Finally, an extended maximum

likelihood fit to the distributions of discriminating variables of the candidate decays

is performed to extract signal yields and subsequently the CP observables.

Figure 4.1: A graphical representation of a B decay event (left) and a continuum
background event (right). A B decay event has a more spherical structure while a
continuum event is jet-like. The “signal B” in the B decay event represents the B
candidate of interest in the event.
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D0 Mode Total Branching Fraction

K+K− 4.68 × 10−7

π+π− 1.67 × 10−7

K0
S
π0 9.46 × 10−7

K0
S
φ 1.76 × 10−7

K0
S
ω 8.23 × 10−7

K−π+ 4.65 × 10−6

Branching fractions used in the calculations:
B− → D0K∗− 5.3 × 10−4

K∗− → [π+π−]K0
S
π− 2.3 × 10−1

π0 → γγ 9.9 × 10−1

D0 → K0
S [K+K−]φ 2.1 × 10−3

D0 → K0
S [π+π−π0]ω 9.8 × 10−3

Table 4.1: Total branching fractions of the decay modes studied in the GLW analysis.
All numbers are provided by the PDG [16].

4.2 Data and Monte Carlo Samples

4.2.1 Data Samples

This analysis uses the Run 1 - 5 dataset collected by BABAR from 1999 to the

summer of 2006. The total integrated luminosity at the Υ (4S) is 344.7 fb−1 (Table

4.2), corresponding to 379 million BB pairs.

4.2.2 Signal Monte Carlo Samples

Table 4.3 shows the statistics of signal Monte Carlo samples used in this analysis.

4.2.3 Background Monte Carlo Samples

Table 4.4 shows the statistics of the background Monte Carlo samples used in this

analysis.
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Data (Run Period) # BB Pairs Luminosity L ( fb−1)

Run 1 22082143 20.07
Run 2 65968708 59.97
Run 3 35088049 31.90
Run 4 109718240 99.74
Run 5 146326920 133.02

Total 379184060 344.70

Table 4.2: Luminosities of the Run 1 - 5 data samples used in this analysis. The
equivalent luminosity (L) is calculated based on the cross-section of bb production
(1.1 nb) and according to the formula L = N/σ where σ is the cross-section and N
is the number of generated events.

Signal MC (Mode) # events Luminosity ( fb−1)

B− → [K+K−]D0K∗− 704000 1364700
B− → [π+π−]D0K∗− 704000 3832200
B− → [K0

sπ
0]D0K∗− 704000 676560

B− → [K0
sφ]D0K∗− 704000 3645900

B− → [K0
sω]D0K∗− 704000 777550

B− → [K−π+]D0K∗− 175000 34190

Table 4.3: Statistics of signal Monte Carlo samples used in this analysis. K∗− from
B− → D0K∗− decays with K∗− → K0

sπ
− and K0

S
→ π+π− and various decay modes

of D0.

4.3 Reconstruction and Selection

In this section I describe how an event is reconstructed into one of the decay modes

we are interested in and the selection requirements of the related particles. Charged B

mesons are reconstructed in the D0K∗± mode, with the K∗±’s reconstructed in K0
S
π±

and K0
S

in π+π− final states. The D0’s are reconstructed in the final states K+K−,

π+π−, K0
S
π0, K0

S
φ, K0

S
ω and K−π+. Different particles are reconstructed/selected
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Background MC # events or BB pairs Luminosity L ( fb−1)

Υ (4S) → B+B− 612640000 1113.89

Υ (4S) → B0B0 606700000 1103.09
cc 765288000 588.68

uu/dd/ss 791406000 378.66
Off Peak Data - 35.09

Table 4.4: Statistics of Run 1 - 5 background Monte Carlo samples used in the
analysis. The equivalent luminosity is calculated based on the cross-section of the
related process at the resonance: 1.1 nb, 1.30 nb and 2.09 nb for bb, cc and uu/dd/ss
production respectively.

with different mass constraints and/or kinematic requirements. This section details

how π± and K± candidates are selected, and how K0
S
, K∗±, π0, φ, ω, D0 and B±

candidates are reconstructed. Note that additional selection cuts will be applied to

choose events which are more likely to be a signal event than a background. Those

final selection criteria will be discussed in the next section.

4.3.1 Reconstruction of K0
S

K0
s candidates are reconstructed by combining two charged tracks which have zero

net charge (π±’s) with a vertex fit. The π+π− invariant mass is required to be within

±25 MeV/c2 of the K0
S

mass (497.6 MeV/c2) provided by the Particle Data Group

(PDG) [16].

4.3.2 Reconstruction of K∗±

A K0
S

and a charged track (charged pion) are combined with a vertex fit to form

a K∗± candidate. The K∗± mass must be within ±125 MeV/c2 of the PDG mass

(891.66 MeV/c2).
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4.3.3 Selection of K±

The K± in D0 → K+K−, D0 → K−π+ and φ→ K+K− modes are selected from

candidates belonging to the “GoodTracksVeryLoose” list. It is a list of charged tracks

which satisfy the following requirements:

• A maximum momentum of 10 GeV/c,

• Distance of the track in the x-y plane to the z-axis defined by distance of closest

approach (DOCA) has a minimum of -10 cm and maximum of 10 cm.

• Distance of the track in the z direction to the origin of the coordinate system

defined by DOCA to be less than 1.5 cm.

In addition, the K± candidate must pass a likelihood-based selector called “KLH-

NotPion”. The selector uses information of the track from the SVT, DCH and DIRC

to determine if the information is more consistent with the candidate coming from a

kaon than from a pion. More details can be found in [54].

4.3.4 Reconstruction of π0

π0 candidates are reconstructed as π0 → γγ. All local maxima of the deposited

calorimeter energy not matched with any track are contained in a neutral cluster list.

The individual γ selected from the list must have a minimum energy of 30 MeV and

the sum of energies of the two γ’s a minimum of 200 MeV. The invariant mass of the

two photons is required to be in the range of 115 < m(γγ) < 150 MeV/c2. Finally, the

photon pair should have a lateral shower shape (LAT) consistent with the expected

energy deposit pattern for an electromagnetic shower, as determined by a cut of LAT

< 0.8. The LAT variable is described in detail elsewhere [55].
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4.3.5 Reconstruction of φ

φ candidates are reconstructed in the φ → K+K− mode. The charged kaon

candidates are selected with the requirements listed earlier and combined with a

vertex fit. The mass of a φ candidate must be within ±30 MeV/c2 of its PDG mass

(1019.46 MeV/c2).

4.3.6 Reconstruction of ω

ω candidates are reconstructed in the ω → π+π−π0 mode. The two charged pions

are selected from the “GoodTracksVeryLoose” list while the neutral pion has to meet

the requirements listed earlier. The ω’s are required to be within ±50 MeV/c2 of the

PDG mass (788.65 MeV/c2).

4.3.7 Reconstruction of D0

The D0 candidates are reconstructed in the final states mentioned in the beginning

of this section. In the D0 → π+π− and D0 → K+π− modes, the π±’s are selected from

the “GoodTracksVeryLoose” list. Other daughter particles are reconstructed/selected

according to the requirements already mentioned. In addition, the mass of a D0

candidate must be within ±70 MeV/c2 of its PDG mass (1864.5 MeV/c2). The mass

constraint is applied after the D0 is reconstructed from its daughter particles and

before it is combined with a charged K∗ to make a B±. Note that an additional

constraint is applied in D0 → K0
S
π0. This constraint forces the D0 to originate from

the beamspot in the transverse direction. The size of the beamspot in y is increased

by 30 microns, which corresponds to the average transverse flight length of the B

[56]. This extra constraint is used due to the fact that D0 → K0
S
π0 is the only decay
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we study where there is not enough geometrical information to reconstruct the D0

decay point, as neither the production vertex of the K0
S

nor the π0 is well-known.

4.3.8 Reconstruction of B±

A charged B meson is reconstructed by combining a D0 candidate and a K∗±

candidate with a vertex fit.

4.4 Discriminating Variables

In this section I describe the discriminating variables used to separate signal from

background events. Both topological and kinematical variables are considered. Topo-

logical variables describe the spatial structure of the events and furnish separation

between BB events and continuum backgrounds. Kinematic variables, on the other

hand, discriminate signal from non-continuum background, while also assist in addi-

tional continuum rejection.

4.4.1 Topological Variables

Here we introduce three variables for the fight against continuum backgrounds.

More variables will be introduced in the next chapter when we discuss the use of a

Neural Network.

cos θHelicity(K
∗−)

The K∗ helicity angle is the angle between the direction of the K∗ measured in the

parent B meson rest frame and the momentum vector of the daughter pion measured

in the K∗ rest frame. The K∗ is a spin-1 particle, therefore the angular distribution

is a function of the helicity angle. For signal events, dN/d(cos θHelicity) follows a cos2

distribution. It is flat for background events.
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cos θHelicity(ω) and cos θDalitz(ω)

The ω normal helicity angle is the angle between the normal to the plane where

the three π’s decay from the mother ω in the ω rest frame and the direction of the ω

in the mother D0 rest frame. Since it is a spin-0 particle (D0) decaying into a spin-1

particle (ω), the ω normal helicity angle has a cos2 distribution for signal events; it

is flat for background events.

The ω Dalitz angle is the angle between the direction of one of the three daughter

π’s in the ω rest frame and the direction of one of the other two π’s in the rest frame

of those two π’s. For signal events, it follows a sin2 distribution (spin-1 particle decays

into three spin-0 particles). It is flat for background events.

4.4.2 Kinematic Variables

The signal B candidates are characterized by two kinematic variables: mES, the

beam-energy-substituted mass, and ∆E, the energy difference. In the CM frame,

by four-momentum conservation, each B meson has the same energy as the beam

(E∗
B = E∗

beam, the asterisk denotes a variable in the CM frame). This property

will be exploited in the definitions of the kinematic variables. mES is especially

important as the maximum-likelihood fit for signal extraction will be applied on this

very distribution of signal candidates.

Beam-Energy-Substituted Mass

mES is defined as:

mES =
√

E∗2
beam − p∗2

B (CM frame) (4.1)

=

√

(
s

2
+ p0 · pB)2/E2

0 − p2
B (Lab frame), (4.2)
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where the subscripts 0 and B refer to the e+e− system and B-meson candidate re-

spectively.
√
s is the e+e− center-of-mass energy (= 2E∗

beam) and (E0,p0) is the

four-momentum of the e+e− system in the lab frame. In practice, mES is computed

in the lab frame. This is because as the B momentum is measured in the lab frame,

transforming it to the CM frame would require knowledge of the masses of the B

daughters, which would in turn require PID assumptions. The mES distribution is

described by a Gaussian centered at 5.28 GeV/c2 (near the B mass) for signal B

events, and an Argus function for continuum backgrounds. An Argus function is

defined as [57, 58]:

A(mES, ξ, Emax) = A0mmES

√

1 − mES
2

E2
max

· exp(−ξ(1 − mES
2

E2
max

)), (4.3)

where A0 is the normalization constant. ξ is called the shape parameter and Emax

defines the machine’s threshold and equals to
√
s/2. Emax is fixed at the beam energy,

5.2910 GeV/c2, which corresponds to p∗
B = 0.

Energy Difference

The second kinematic variable, the energy difference, is defined as:

∆E = E∗
B −

√
s

2
(4.4)

= E∗
B − E∗

beam. (4.5)

The ∆E distribution is likewise described by a Gaussian (centered at 0) for signal

events and a linear polynomial for continuum events.
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4.4.3 Other Variables

D0 Invariant Mass

A mass cut will be put on the D0 invariant mass, |m(D0) −M(D0)PDG|. The

resolutions of the signal Monte Carlo invariant mass distributions are listed in the

next section in Table 4.7.

K∗ Invariant Mass

The full width of K∗ mass from signal Monte Carlo is 50.8 MeV/c2 and a cut will

be put on |m(K∗) −M(K∗)PDG|.

K0
S

Invariant Mass

The K0
S

candidates which come from K∗’s have a mass resolution of 2.4 ± 0.1

MeV/c2 measured from signal Monte Carlo (with a double Gaussian fit). A mass cut

|m(K0
S
) −M(K0

S
)PDG| will be imposed. We also have the same mass cut for K0

S
’s

which are daughters of D0 in the three CP - modes. These K0
S
’s have the same mass

resolution as the ones from K∗.

φ and ω Invariant Mass

The mass resolutions of φ and ω are fitted with a convoluted Gaussian and Breit-

Wigner (Voigtian) and a double Gaussian, respectively. The mass resolution of φ (the

Breit-Wigner width) is 4.66 ± 0.17 MeV/c2, which includes the φ’s intrinsic width.

The mean and sigma of the Gaussian are 0.37 ± 0.01 MeV/c2 and 0.98 ± 0.09 MeV/c2

respectively. The core sigma of the ω mass resolution is 8.44 ± 0.13 MeV/c2, also

including its intrinsic width. The tail sigma and the fraction of the core Gaussian in
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the fit are 46.3 ± 1.3 and (83.8 ± 9.2)% respectively. A cut on |m(φ) −M(φ)PDG|

and |m(ω) −M(ω)PDG| will be applied.

K0
S

Decay Length

The distance of flight before decay (DOF) is one of the variables used to select

K0
S

candidates. The variable is called “signed, 2D, DOF pull” [59] and is defined as:

signed, 2D, DOF pull =
~p · ~v
|~p · ~v| ·

|~v|2D
σ(~v)2D

, (4.6)

where ~p is the momentum vector of the K0
s candidate and ~v is the distance vector

from the K∗− decay to the K0
s decay. |~v|2D is the projection of this distance vector

on the x-y plane perpendicular to the beam. The “signed” part in the equation refers

to ~p · ~v/|~p · ~v|.

PID Selectors

Standard BABAR PID selectors are used for selecting K’s and π’s from D0 in CP+

mode, and π’s from ω’s in CP - mode. They are likelihood-based selectors with certain

kinematic requirements, similar to the ones described earlier in Section 4.3. The

selectors for charged kaons and pions are called “KLHVeryLoose” and “LHPionLoose”

respectively. More details can be found in [54].

4.5 Neural Network

A Neural Network (NN) is a very powerful technique to discriminate between

signal and background events. It makes use of the different topologies exhibited by

signals and continuum backgrounds. It is extremely useful for this analysis since

majority of the backgrounds in the decay channels studied are of the continuum type.

Moreover, since the number of signal events is small due to small branching ratios of
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the decay modes, background suppression is most essential and the Neural Network

technique is an extremely efficient and powerful tool for this purpose.

A Neural Network is a computer model which attempts to mimic the learning

capability and fault-tolerance of the human brain. The brain is composed of a large

number of neurons which are interconnected via synapses (there are an average of

several hundred thousand of synapses per neuron). When a neuron receives an input,

or is activated, it fires an electrochemical signal to other neurons through the synapses,

which may in turn fire. A neuron only fires if the total signal received exceeds its own

threshold.

An artificial neuron receives inputs either from original data or outputs from

other neurons in the NN. Each input comes via a connection that has a weight. The

weighted sum of all the inputs is calculated and the neuron’s threshold is subtracted.

The number is then passed through a transfer function to produce the output of the

neuron. In biological systems, the transfer function is a step function, which gives an

output of 1 if the input is greater than or equal to 0 and 0 if the input is less than

0. We will not exactly use a step function in the NNs in this analysis, but the above

provides a brief description of an artificial NN.

4.5.1 Multi-Layer Perception

The NN model we use is called the Multi-Layer Perception (MLP). The MLP

network is a simple feed-forward network which has an input layer, one or more

hidden layer(s) and an output layer. All connections within the network are uni-

directional. The input layer serves to introduce the values of the input variables. The
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neurons in the hidden and output layers are each connected to all of the neurons in

the preceding layer.

The software used for creating and training NNs for this analysis is called MLPFit

[60]. In MLPFit, when the network is activated, the input neurons forward the

inputs they receive to the hidden layer. The neuron j of the hidden or output layer

computes a linear combination of the outputs from the neurons of the previous layer

yi. Referring to Figure 4.2 [60], the output of a neuron in the hidden layer is computed

as:

uj = A(w0j +
∑

i

wijxi), (4.7)

where is w0j is a bias and wij are the weights. A is the transfer function and is a

Sigmoid function in our NNs:

A(x) =
1

(1 + e−x)
. (4.8)

The output in the output layer neuron is calculated as:

yk = w0k +
∑

j

wjkuj, (4.9)

where again w0k and wjk are bias and weights respectively.

4.5.2 Neural Network Training

The most important step in setting up a successful NN is to find a set of weights

such that the prediction error made by the network is minimized. This process is

called “training” and a training sample of data is needed. In this analysis, this

sample contains 30000 events each from signal and continuum Monte Carlos (20000

events for K0
Sπ

0 and K−π+ samples). A signal event is denoted 1 and continuum 0.
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Figure 4.2: Illustration of a Multi-Layer Perceptron NN used in MLPFit.

Training is equivalent to fitting the NN model to the training data. Each case is

run through the network, and the actual output generated from the NN is compared

with the desired output. The differences from all training cases are combined together

to give the network error. The weights in the network are then adjusted in order to

minimize this error.

In MLPFit, the weights are initially set to random numbers between -0.5 and

0.5. The NN outputs op are then compared with the desired outputs tp in the training

examples. The error is given by:

E =
∑

p

1

2
(op − tp)

2. (4.10)

As mentioned above, MLPFit changes the values of the weights in the NN to min-

imize this error using a certain training algorithm. There are several algorithms

available in MLPFit and the user has to specify which one to use.

Beside the training sample, the user is also required to provide another “validation

sample” to MLPFit for testing the NN after the weights are adjusted after each
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training cycle. We gather 30000 events each from signal and cuds Monte Carlos for

this validation sample (20000 events for K0
Sπ

0 and K−π+ samples).

4.5.3 Input Topological Variables

Each topological variable described here displays very different distributions be-

tween signal and continuum events, and is thus ideal for use as input variables of the

NNs.

R2

R2 is called the second order Fox-Wolfram moment [61]. It is a ratio of two

Fox-Wolfram moments and is defined as:

R2 =
H2

H0

, (4.11)

where

Hl =
∑

i,j

|~pi||~pj|Pl(cosφi,j), (4.12)

with i, j running over the particles produced in the event, Pl being the l-th order

Legendre polynomials, and φi,j being the angle between the momentum vectors of

particles i and j. The zeroth moment serves as a normalization in the ratio and equals

to 1 by energy and momentum conservation, assuming perfect reconstruction. For

two-jet events, the even moments peak at 1 while the odd moments are approximately

0. Meanwhile R2 tends toward 0 for spherical (signal) events. Therefore an upper cut

can be put on R2 to suppress continuum events.

Thrust Angle

The thrust axis, T̂ , of a collection of particles is the direction in which their

combined longitudinal momentum is maximized in the center-of-mass frame. Thrust,
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T , is related to this direction [62, 63] by

T =

∑

i |T̂ · pi|
∑

i |pi|
. (4.13)

The thrust angle cos θT is defined as the angle between the thrust axis of the recon-

structed B candidate and the thrust axis of particles constituting the rest of the event

(particles not belonging to the reconstructed B candidate). The |cos θT | variable has

a nearly flat distribution for BB events while it is sharply peaked at 1 for continuum

background events. This variable gives a strong discrimination power between signal

and background events.

Monomials

L0 and L2 are the zeroth- and second-order monomial, respectively. A monomial

is a set of momentum-weighted sums of the charged and neutral tracks in the rest of

the event after removal of the tracks and clusters making up the B candidate,

Lj =

ROE
∑

i

p∗i |cosθ∗i |j (4.14)

where j = 0, 1 or 2 and cos θ∗i is the angle of the ith track with respect to the thrust

of the reconstructed B in the CM frame.

cosθMom

θMom is the angle between the momentum vector of the reconstructed B and the

beam axis in the Υ (4S) CM frame. The signal distribution follows a sin2 θ form

whereas the distribution for qq̄ is flat.

cosθHelicity(D
0)

The helicity angle of theD0 decay (angle between aD0 daughter momentum vector

in the D0 rest frame and the direction of the D0 momentum in the B rest frame) is
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flat for two-body decays of true D0 mesons (which are pseudo-scalar particles); while

it peaks toward 1 for fake D0 candidates reconstructed from random combinations of

tracks and clusters in qq̄ background.

4.5.4 NN Settings

One training and one validation sample of each decay modes are prepared from

signal and continuum Monte Carlo samples. The samples are then run byMLPFit for

testing of different configurations. After performing studies on signal and background

efficiencies, the following settings for the NNs are chosen:

• Transfer function: Sigmoid function

• Training method: Hybrid [64]

• Number of hidden layer = 1

• Number of neurons in hidden layer = 8

• Number of epochs (training cycles) = 500

4.5.5 NN Output (ONN)

After setting the NN configurations and training the NNs, another set of data

is put through the NNs to produce visual NN outputs (ONN) for each decay mode.

The contents of the dataset are similar to that of the training and validation samples

(produced from signal Monte Carlo events and cuds continuum backgrounds). In

addition, we run the NNs on off-peak data to check if the NN outputs are consistent

with those of the corresponding continuum samples. Table 4.5 lists the size of various

samples used in producing the NN outputs. The ONN ’s are shown in Figures 4.3
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(CP+ modes) and 4.4 (CP - and Non-CP modes). The continuum and off-peak data

are in very good agreement with each other.

Sample Size (# Events) Signal, cuds MC Off-Peak

D0 → K+K− 30000 5000

D0 → π+π− 30000 20000

D0 → K0
sπ

0 30000 20000

D0 → K0
sφ 20000 2000

D0 → K0
sω 30000 20000

D0 → K−π+ 20000 20000

Table 4.5: Sizes of the samples used to produce Neural Network outputs.
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Figure 4.3: Neural Network outputs (ONN) of D0 → K+K− (left) and D0 → π+π−

(right) from signal MC, cuds continuum and off-peak data samples. Red solid line
represents signal and blue represents continuum. The dots are off-peak data.

4.6 D0 → K0
S
π+π− Veto

Besides the aforementioned selection variables and a Neural Network, another se-

lection cut for the B− → (π+π−)D0(K0
sπ

−)K∗− mode is needed. The main source of
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Figure 4.4: Neural Network outputs (ONN) of D0 → K0
sπ

0 (upper left), D0 → K0
sφ

(upper right), D0 → K0
sω (lower left) and D0 → K−π+ (lower right) from signal MC,

cuds continuum and off-peak data samples. Red solid line represents signal and blue
represents continuum. The dots are off-peak data.

background in this channel is B− → (K0
sπ

+π−)D0π−, which has a 500-times larger

branching ratio than the signal π+π− mode. Therefore the suppression of this back-

ground is of great importance. The main weapon is the D0 → K0
S
π+π− veto cut.

In the veto, we first choose any two of the three pions in the candidate event (ex-

cluding the two daughter pions from K0
S
) and combine them with the K0

S
to calculate

the invariant mass of the three particles. Then a candidate is vetoed if the K0
S
π+π−

invariant mass is within a certain MeV/c2 of the candidate D0 mass. Details of the

choice of this cut window is explained in Section 4.7.3.
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4.7 Optimization of Selection Cuts

All selection cuts (except ∆E, |m(D0) −M(D0)PDG| and D0 → K0
S
π+π− veto)

on the discriminating variables are optimized individually by maximizing the signifi-

cance, which is defined as:

significance =
S√

S +BB +BC

. (4.15)

S, BB and BC are the number of signal Monte Carlo, BB and qq̄ background events

that pass all the applied selection cuts respectively.

4.7.1 ∆E Cut

The choice of the width of a ∆E cut window is based on the width of the signal

peak measured in signal Monte Carlo. We have |∆E| < 25 MeV for all modes except

D0 → K0
sπ

0, for which the window is set at 50 MeV. The worse resolution in K0
S
π0

is due to poor π0 reconstruction in the detector. Table 4.6 records the resolutions of

∆E distributions in signal Monte Carlos.

D0 Mode Fit Type Core σ (MeV) Tail σ (MeV) Fraction (%) Cut (MeV)

K+K− Double Gaus. 11.4 ± 0.1 76.2 ± 0.7 60.0 ± 1.7 < 25
π+π− Double Gaus. 11.5 ± 0.1 77.4 ± 0.6 58.2 ± 1.6 < 25
K0
sπ

0 Double Gaus. 15.5 ± 0.2 81.1 ± 1.0 50.5 ± 3.6 < 50
K0
sφ Double Gaus. 11.9 ± 0.1 79.3 ± 0.8 52.6 ± 2.2 < 25

K0
sω Double Gaus. 12.2 ± 0.3 66.5 ± 3.3 79.4 ± 9.0 < 25

K−π+ Double Gaus. 11.4 ± 0.1 71.9 ± 1.0 54.0 ± 3.3 < 25

Table 4.6: List of ∆E cut windows for various modes. The column “Fraction” refers
to the fraction of the fit in the core Gaussian. The last column is the ∆E cut value
that will be used in this analysis.
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4.7.2 |m(D0) −M(D0)PDG| Cut

The choice of this cut window also depends on the resolution of the D0 invariant

mass. The resolutions of the invariant mass in signal Monte Carlos and the cut

window widths of various modes are summarized in Table 4.7.

D0 Mode Fit Type σ (MeV/c2) Cut (MeV/c2)

K+K− Double Gaus. 5.9 ± 0.1 < 12
π+π− Double Gaus. 7.3 ± 0.2 < 12
K0
sπ

0 Asym. Gaus. + Gaus. 23.6 ± 0.2 (L) < 30
16.4 ± 0.2 (R)

K0
sφ Double Gaus. 3.4 ± 0.1 < 12

K0
sω Double Asym. Gaus. 10.6 ± 0.2 (L) < 20

6.9 ± 0.2 (R)
K−π+ Double Gaus. 6.7 ± 0.1 < 12

Table 4.7: The fitted mass resolutions of all reconstructed D0 candidates in signal
MC. The last column is the value of the D0 invariant mass cut that will be used in
this analysis.

4.7.3 D0 → K0
S
π+π− Veto

Optimization of this cut is a little bit different than others, in that we will resort to

a signal Monte Carlo sample of 878000 B− → D0π−, D0 → K0
sπ

+π− events. Figure

4.5 is a histogram of the difference between the mass of a D0 candidate and the D0

PDG mass in the Monte Carlo sample. The slight cut-off at about ±40 MeV/c2 is the

result of a selection cut at the production stage of the sample (more details in [65]).

Table 4.8 lists the signal efficiencies of different D0 mass cuts. As the cut window on

this sample widens, the signal efficiency increases because more signal D0 → K0
sπ

+π−

events are included. At first glance, a veto window of 80 MeV/c2 seems to be the
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logical choice as all the D0 → K0
sπ

+π− events (the background events we want to

reject in our D0 → π+π− mode) will be discarded. Another check is made on a

1113.9 fb−1 B+B− sample to see how many D0 → π+π− signal events (events that

we want) will be thrown away while we increase the cut window. It shows that we

do not lose any D0 → π+π− signal events even though the veto goes from 25 to 80

MeV/c2. However, the final veto cut window is chosen at 60 MeV/c2 since there is no

evidence that at 80 MeV/c2 more backgrounds will be cut. The risk of unnecessary

loss of signal events is also lessened with a smaller cut window.
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s
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Figure 4.5: Mass difference between a D0 candidate and its PDG mass in a signal
MC sample of 878000 B− → D0π−, D0 → K0

sπ
+π− events.

4.8 Multiple Candidates Selection

In the cases when more than one candidate is found passing all selection cuts in

a single event, a decision is needed to be made on which candidate is the best one to
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|m(D0) − M(D0)PDG| # events after cut Signal ε

< 25 MeV/c2 319330 77.2 ± 0.2%
< 40 MeV/c2 388013 93.8 ± 0.2%
< 50 MeV/c2 401833 97.2 ± 0.2%
< 60 MeV/c2 409116 98.9 ± 0.2%
< 80 MeV/c2 413592 100%

No Cut 413592 100%

Table 4.8: Signal efficiencies of B− → D0π−, D0 → K0
sπ

+π− with different D0 invari-
ant mass cuts. The signal MC sample has 878000 signal events.

use. The decision is based on choosing the candidate with the lowest χ2 determined

from the differences between the measured and PDG values of MD0 and MK∗−. The

χ2 is defined as:

χ2 = χ2
m(D0) + χ2

m(K∗−) =
(m(D0) −M(D0)PDG)2

σ2
m(D0)

+
(m(K∗−) −M(K∗−)PDG)2

σ2
m(K∗−) + Γ(K∗−)2

,

(4.16)

where m(D0) and m(K∗−) are the masses of the candidates in the event, σm(D0) and

σm(K∗−) are their corresponding errors, and Γ(K∗−) is the natural width of K∗− (50.8

MeV/c2 from PDG). Table 4.9 displays the multiplicity rates of the CP+, CP - and

Non-CP modes. We count the number of events in signal Monte Carlo samples which

have more than one candidate that pass all the selection cuts. The table also shows

the success rate of choosing the correct candidates.

4.9 Summary of Analysis Cuts

Tables 4.10 - 4.12 list all the analysis cuts used in the GLW analysis. Here we

want to introduce the term “mES Signal Region.” An event that successfully passes

all the selection cuts and has a mES value between 5.2 and 5.3 GeV/c2 is said to be
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Mode (Signal MC) Multi. Cand. Event Rate Correct %

D0 → K+K− 3.6% 86%
D0 → π+π− 3.6% 86%
D0 → K0

sπ
0 7.8% 86%

D0 → K0
sφ 4.3% 89%

D0 → K0
sω 7.4% 91%

D0 → K−π+ 4.3% 88%

Table 4.9: Percentage of events with multiple candidates that pass all selection cuts in
signal MC samples. Truth-matching is used to determine the percentage of correctly-
chosen candidates.

in the mES signal region. All events in this region are signal candidates and will be

analyzed (with maximum-likelihood fit) for measuring the signal yield of a particular

decay mode.

Selection cut K+K− π+π−

Neural Network > 0.65 > 0.82
| cos θHelicity(K

∗)| > 0.35 > 0.35
signed, 2D, DOF pull (K0

S) > 3σ > 3σ

|m(D0) − M(D0)PDG| (MeV/c2) < 12 < 12
(K∗−) − M(K∗−)PDG| (MeV/c2) < 75 < 75
|m(K0

S) − M(K0
S)PDG| (MeV/c2) < 13 < 13

|m(K0
S
π+π−)D0 | veto (MeV/c2) - > 60

PID on dau. 1 from D0 KLHVeryLoose LHPionLoose
PID on dau. 2 from D0 KLHVeryLoose LHPionLoose

|∆E| (MeV) < 25 < 25

Table 4.10: Summary of selection criteria of CP+ modes.
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Selection cut K0
sπ

0 K0
sφ K0

sω

Neural Network > 0.91 > 0.56 > 0.80
| cos θHelicity(K

∗)| > 0.35 - > 0.35
signed, 2D, DOF pull (K0

S
) > 3σ > 3σ > 3σ

| cos θHelicity(ω)| - - > 0.35
| cos θDalitz(ω)| - - < 0.8

|m(D0) − M(D0)PDG| (MeV/c2) < 30 < 12 < 20
|m(K∗−) − M(K∗−)PDG| (MeV/c2) < 75 < 75 < 75
|m(K0

S) − M(K0
S)PDG| (MeV/c2) < 13 < 13 < 13

|m(K0
S(D0)) − M(K0

S)PDG| (MeV/c2) < 6 < 12 < 6
|m(φ) − M(φ)PDG| (MeV/c2) - < 12 -
|m(ω) − M(ω)PDG| (MeV/c2) - - < 20

PID on dau. 1 from φ/ω - KLHVeryLoose LHPionLoose
PID on dau. 2 from φ/ω - KLHVeryLoose LHPionLoose

|∆E| (MeV) < 50 < 25 < 25

Table 4.11: Summary of selection criteria of CP - modes.

Selection cut K−π+

Neural Network > 0.73
| cos θHelicity(K

∗)| > 0.35
signed, 2D, DOF pull (K0

s ) > 3σ

|m(D0) − M(D0)PDG| (MeV/c2) < 12
|m(K∗−) − M(K∗−)PDG| (MeV/c2) < 75
|m(K0

s ) − M(K0
s )PDG| (MeV/c2) < 13

PID on dau. 1 from D0 KLHVeryLoose

|∆E| (MeV) < 25

Table 4.12: Summary of selection criteria of Non-CP modes.
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4.10 Signal Efficiencies

Efficiencies of selection cuts on signal Monte Carlo samples of each decay mode

are calculated. In each signal Monte Carlo sample, candidates that satisfy all the cuts

listed in last few sections are selected. Then an extended maximum likelihood fit to

the mES distributions of the selected candidates (details of the fit will be described

in Section 4.11) is performed. The number of signal events is then extracted from

the fit and used to calculate the efficiency. The efficiencies are calculated run-by-

run and then averaged with a weighted-sum according to the luminosity of each run.

Table 4.13 shows the Run 1 - 5 signal efficiencies of CP+, CP - and Non-CP modes.

Individual cut efficiencies are also calculated (Tables 4.14 - 4.16). For a specific cut

efficiency, we measure the number of signal events passing all cuts except the one

being studied.

D0 Mode Signal ε

K+K− 12.78 ± 0.05%
π+π− 12.34 ± 0.05%
K0

Sπ0 5.59 ± 0.03%
K0

S
φ 8.90 ± 0.04%

K0
S
ω 2.35 ± 0.02%

K−π+ 12.76 ± 0.09%

Table 4.13: Signal efficiencies of the six decay modes studied in this analysis.
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Selection Cut K+K− π+π−

Neural Network 70.2% 65.9%
| cos θHelicity(K

∗)| 95.1% 95.1%
signed, 2D, DOF pull (K0

s ) 96.2% 96.2%

|m(D0) − M(D0)PDG| 86.2% 81.8%
(K∗−) − M(K∗−)PDG| 91.1% 91.2%
|m(K0

s ) − M(K0
s )PDG| 98.4% 98.4%

|m(K0
sπ

+π−)D0 | veto - 97.7%

PID on dau. 1 from D0 95.7% 96.4%
PID on dau. 2 from D0 95.5% 96.4%

|∆E| 92.5% 92.8%

Table 4.14: Summary of individual cut efficiencies of CP+ modes.

4.11 Extended Maximum Likelihood Fit

4.11.1 The Formalism

The maximum likelihood method is a technique to estimate the parameter value

that makes the observed data most likely. In other words, it is used to calculate the

best way of fitting a model to some data sample. Consider a random variable x (or

a multidimensional random vector x̂ = (x1, ..., xn)) distributed with a distribution

function f(x; θ). Suppose the expression f(x; θ) is well known, but at least one of the

parameters, called θ (or parameters θ̂ = (θ1, ...θn)) is unknown. After a normalization

to 1, the expression f(x; θ) represents the hypothesized probability function (PDF)

for the variable x. Then, suppose an experiment is performed where a measurement

has been repeated N times, with values of x1, ..., xN . The total PDF is:

P (θ) =

N
∏

i=1

f(xi; θ). (4.17)
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Selection Cut K0
sπ

0 K0
sφ K0

sω

Neural Network 54.8% 77.5% 58.1%
| cos θHelicity(K

∗)| 95.1% - 94.8%
signed, 2D, DOF pull (K0

s ) 96.2% 96.6% 96.7%

| cos θHelicity(ω)| - - 69.9%
| cos θDalitz(ω)| - - 93.9%

|m(D0) − M(D0)PDG| 78.7% 90.7% 86.5%
|m(K∗−) − M(K∗−)PDG| 91.3% 91.1% 90.9%
|m(K0

s ) − M(K0
s )PDG| 98.1% 98.5% 98.2%

|m(K0
s (D

0)) − M(K0
s )PDG| 90.2% 97.3% 89.0%

|m(φ) − M(φ)PDG| - 92.3% -
|m(ω) − M(ω)PDG| - - 86.4%

PID on dau. 1 from φ/ω - 94.7% 99.6%
PID on dau. 2 from φ/ω - 94.5% 99.5%

|∆E| 99.0% 95.7% 87.8%

Table 4.15: Summary of individual cut efficiencies of CP - modes.

Selection Cut K−π+

Neural Network 65.3%
| cos θHelicity(K

∗)| 95.0%
signed, 2D, DOF pull (K0

s ) 96.3%

|m(D0) − M(D0)PDG| 83.8%
|m(K∗−) − M(K∗−)PDG| 91.2%
|m(K0

s ) − M(K0
s )PDG| 98.5%

PID on dau. 1 from D0 95.8%

|∆E| 92.8%

Table 4.16: Summary of individual cut efficiencies of Non-CP modes.
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This is also called the likelihood function, L. We want to seek the value of the

parameter that maximizes the likelihood function (i.e. maximum likelihood). If xi

are measured and f(x; θ) is well-known, then L only depends on the parameters we

want to fit.

We may also want to measure the total number of observed events N in an experi-

ment. If the total expected number of events is n, the probability to have N observed

events is given by the Poisson probability:

e−n
nN

N !
. (4.18)

The likelihood function is then given by the product of this Poisson probability and

the function in Equation 4.17 for N values of x,

L(n, θ) =
e−n

N !

N
∏

i=1

nf(xi; θ). (4.19)

This is called the extended likelihood function. Now we will see how the extended

maximum likelihood technique allows us to measure the number of signal and back-

ground events in a data sample where every event has h observable quantities x̂ =

(x1, ...xh). Suppose that the parameters to be evaluated are the number of events

n1, ..., ns, each one corresponding to a particular categories of events (e.g. signal,

continuum background, non-continuum background). To distinguish between events

of different categories, we determine the PDFs that present a high discriminant power

for each observable quantity (e.g. Gaussian, Argus). We fit these distributions with

their corresponding PDFs, indexed with f 1
j , ..., f

h
j , with j = 1, ..., s. As a result, we

have h PDFs for each category and (h×s) PDFs in total. If the observable quantities

are independent (if not, correlation terms are to be considered), we can define the
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total PDF for event i with observable quantities x̂i = (xi1, ..., x
i
h) and category j as

P i
j =

h
∏

l=1

f lj(x
i
l). (4.20)

The extended likelihood function is thus:

L =
e
−(

∑s
j=1 nj)

N !

N
∏

i=1

s
∑

j=1

njP i
j. (4.21)

The extended maximum likelihood fit consists of maximizing this function with re-

spect to the event yields and the floating parameters in P i
j.

4.11.2 Overview

The number of signal events (as well as signal-like and non-peaking background)

of all the decay modes studied in this analysis are obtained by performing a simul-

taneous extended maximum likelihood fit to the mES signal regions, and ∆E and

∆m(D0) sidebands (the sidebands will be discussed below). The signal candidates

and background events of K+K− and π+π− modes will be combined into one CP+

dataset, and likewise for K0
S
π0, K0

S
φ and K0

S
ω, where they will be merged into a sin-

gle CP - sample. Therefore we have a total of three (CP+, CP - and Non-CP ) data

samples.

In the mES signal region, the probability density function (PDF) is a Gaussian for

signal candidates and an Argus threshold function for backgrounds. The ∆E sideband

is modeled with an Argus function only. A Gaussian for fake D0 backgrounds and an

Argus for non-peaking backgrounds are used in the m(D0) sideband (to be explained

later in the “Fake D0 Backgrounds in Signal Region” section). In addition to signal

yields, the CP observables ACP±, RCP± and x± will be extracted from the fit using

Equations 2.79, 2.81 and 2.88.
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4.11.3 ∆E and ∆m(D0) Sidebands

Two “sidebands” are defined to help us better define the background shape in

the mES signal regions. They are the ∆E and |m(D0) −M(D0)PDG| (or ∆m(D0))

sidebands. Their definitions are summarized in Table 4.17.

Sideband (Mode) |∆E| (MeV) |∆m(D0)| (MeV/c2)

D0 → K−π+ 60 < |∆E| < 200 20 < |∆m| < 70
D0 → K+K− 60 < |∆E| < 200 20 < |∆m| < 90
D0 → π+π− 60 < |∆E| < 200 20 < |∆m| < 90
D0 → K0

Sπ0 60 < |∆E| < 200 60 < |∆m| < 90
D0 → K0

Sφ 60 < |∆E| < 200 20 < |∆m| < 70
D0 → K0

Sω 60 < |∆E| < 200 30 < |∆m| < 50
D0 → K−π+ 60 < |∆E| < 200 20 < |∆m| < 70

Table 4.17: Sideband definitions for various modes in this analysis.

4.11.4 Fake D0 Backgrounds in Signal Region

The most dominant source of background comes from events with fake D0 candi-

dates. These events have wrongly-reconstructed D0 candidates which are combined

with a true K∗. Potentially significant peaks may be present in the region away from

the signal ∆m(D0) region. Thus it is necessary to account for these fake candidates

so that signal yields will not be overestimated.

A Gaussian is used to describe the fake D0 backgrounds in the ∆m(D0) sideband.

To extrapolate the number of these background events in the mES signal region, we

multiply the number of peaking background events in the ∆m(D0) sideband obtained

from the Argus+Gaussian fit, by the ratio between the width of the ∆m(D0) signal

and sideband window. A summary of the window widths is shown in Table 4.18. A
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Gaussian will be used to model the fake D0 backgrounds in the mES signal region and

now we have a total of two Gaussians in the region. The Gaussian which represents

the D0 peaking backgrounds has the same parameters as the one representing B± →

D0K∗± signal events. The number of D0 peaking backgrounds in the mES signal

region is fixed in the final simultaneous fit.

D0 Mode Signal Region (MeV/c2) Sideband (MeV/c2) Ratio

D0 → K+K− |∆m| < 12 20 < |∆m| < 90 0.17
D0 → π+π− |∆m| < 12 20 < |∆m| < 90 0.17
D0 → K0

sπ
0 |∆m| < 30 60 < |∆m| < 90 1

D0 → K0
sφ |∆m| < 12 20 < |∆m| < 70 0.24

D0 → K0
sω |∆m| < 20 30 < |∆m| < 50 1

D0 → K−π+ |∆m| < 12 20 < |∆m| < 70 0.24

Table 4.18: A summary of the ∆m(D0) signal region and sideband definitions, and
the ratio of the ∆m(D0) signal window to sideband window.

4.11.5 Fit Strategy

We will fit simultaneously themES distributions of signal candidate events in CP+

(D0 → K+K−, π+π−), CP - (D0 → K0
sπ

0, K0
sφ, K0

sω) and Non-CP (D0 → K−π+)

mode. Each of these three modes (CP+, CP−, Non-CP ) has a mES signal region,

a ∆E sideband and a ∆m(D0) sideband. In order to measure the physical CP

quantities, ACP±, RCP± and x±, from the fit, we need to split the CP+ and CP -

samples in the mES signal region into B+ and B− sub-samples. The sideband samples

will not be split, as we assume that the fake D0 backgrounds do not violate CP . The

peaking background estimation will be divided equally between the B+ and B− sub-

samples. The systematic error associated with this assumption will be discussed in
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a later chapter. In summary, we have eleven (3×3+2) mES datasets contributing to

the extended maximum likelihood fit.

There are a few advantages for using a single simultaneous fit across all regions.

First, the high-statistics Non-CP sample helps constrain the PDF shape of signal

peaks of the low-statistics CP -modes. Second, the ∆E sideband helps define the

background Argus shape in the mES signal region. Third, the ∆m(D0) sideband

provides information on the fake D0 background which are also present in the signal

region.

A few more assumptions are made with the simultaneous fit. To simplify the fit,

we assume that a single Gaussian is sufficient to describe the signal peaks for all decay

modes. This assumption is valid because in the six modes studied in this analysis,

they differ only by the content in the D0 decay. It can be verified by measuring

the means and widths of the individual Gaussians of the different modes using data

or Monte Carlo samples. We use Monte Carlo cocktails composed of signal Monte

Carlos, generic backgrounds and continuum backgrounds for CP+ and CP - modes.

Monte Carlos are more fitting for these two modes (instead of real data) because their

corresponding signal peaks are not as significant as the Non-CP one. The results show

that the Gaussian shapes are consistent among Non-CP , CP+ and CP - modes.

Similarly, we only use a single Argus function to describe the backgrounds in

different modes. To validate, we follow the same procedure as above as we allow the

Argus shape parameter ξ to vary in all nine data subsets. The floating ξ’s in different

modes are all consistent with each other. Therefore it is safe to use only one single

background Argus function in the fit. All in all, there are three floating (mean and
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sigma if the signal is Gaussian and ξ of the background Argus) and one fixed (the

Argus end-point EMax) shape parameters in the fit.

Another assumption to be made is related to fake D0 backgrounds in mES signal

regions. We assume the fake D0’s have the same shape as the signal Gaussian. The

number of that background is extrapolated from the number of signal events measured

in the ∆m(D0) sideband multiplied by the ratio of the widths of the ∆m(D0) signal

to sideband window.

To summarize, we have a total of three types of PDF and three floating parameters

(Gaussian mean and σ, and ξ) for the signal region and two sidebands in the final fit:

• mES signal region: Argus+Gaussian+Gaussian. The first Gaussian represents

theB± → D0K∗± signal and the second one represents the fakeD0 backgrounds.

• ∆E sideband: Argus.

• ∆m(D0) sideband: Argus+Gaussian. The Gaussian models fake D0 back-

grounds.

Likelihood Functions

In the final fit, the natural log of the likelihood function (L) of each region is

maximized. The L of the mES signal region is:

LSR = e−(NSig+N
D0 Bkg

+NBkg)
∏

N

(NSig · G +ND0 Bkg · G +NBkg · A). (4.22)

NSig is the number of signal yields, ND0 Bkg and NBkg are the number of fake D0

backgrounds and Argus backgrounds respectively. The L’s of the ∆E and ∆m(D0)
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sidebands are:

L∆E = e−(NBkg)
∏

N

(NBkg · A) (4.23)

L∆m(D0) = e−(N
D0 Bkg

+NBkg)
∏

N

(ND0 Bkg · G +NBkg · A). (4.24)

4.11.6 Fit Result

The results from the simultaneous fit on 344.7 fb−1 (379 million BB pairs) of data

are shown in Table 4.19. Figure 4.6 shows the plots of mES signal regions of CP+,

CP - and Non-CP data samples. The ones in Figure 4.7 are the ∆E and ∆m(D0)

sidebands. Figures 4.8 - 4.13 are the mES distributions of individual modes. Note

that in the fit to single decay modes, the values of the mean and sigma of the signal

Gaussian and the shape parameter of the background Argus are fixed and taken from

the fit result of the D0 → K−π+ mode. The fixed parameters from the high-statistics

Non-CP mode help the fits in modes without significant signal peaks (CP - modes).

For the purpose of checking for asymmetry, the Non-CP sample is split by B

charge. The result gives 126.8 ± 12.3 and 98.7 ± 11.3 signals for B+ and B− respec-

tively and it corresponds to an asymmetry of (12.5 ± 7.5)%. Using a signal Monte

Carlo sample of 175000 events, the signal yield for B+ is 11333 ± 108 and 10994 ±

107 for B− (an asymmetry of (1.5 ± 0.7)%). Because the same fitting procedure is

used on both the data and signal Monte Carlo samples, the apparent asymmetry in

data is not due to any mistakes in the fit (the signal Monte Carlo samples are created

with no asymmetry).

From Table 4.19, we also see an asymmetry in the number of backgrounds in the

mES signal region of the CP - data sample. A Monte Carlo cocktail of CP - signal,

generic and continuum background normalized to the Run 1 - 5 data luminosity is fit
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to extract the number of background events in the mES signal region. The result is

90.8 ± 10.0 for B+ and 93.3 ± 10.1 for B−. Again, the asymmetry does not indicate

a problem in the fitting procedure.

Asymmetry Fit CP+ CP - Non-CP

Shape Parameters
Argus end-point (MeV/c2) 5291.00 (FIXED)
Argus shape parameter ξ -19.41 ± 2.00
Gaussian mean (MeV/c2) 5278.70 ± 0.16
Gaussian sigma (MeV/c2) 2.40 ± 0.14

Yield (Signal Region)
Gaussian (Signal) 31.15 ± 6.20 (B+) 22.97 ± 4.77 (B+) 230.69 ± 16.80

37.43 ± 6.77 (B−) 15.50 ± 5.16 (B−)
Gaussian (Fake D0 Bkg) 0.34 0 5.03
Argus 71.51 ± 8.85 (B+) 95.00 ± 10.30 (B+) 348.31 ± 19.80

70.23 ± 8.84 (B−) 124.50 ± 11.60 (B−)

Yield (∆E Sideband)
Argus 334.00 ± 18.30 353.99 ± 18.80 888.98 ± 29.80

Yield (∆m(D0) Sideband)
Gaussian (Fake D0 Bkg) 3.96 ± 3.23 0.00 ± 3.04 20.96 ± 7.72
Argus 437.08 ± 21.20 177.01 ± 13.30 579.03 ± 25.00

ACP+ = 0.092 ± 0.134, ACP− = -0.194 ± 0.205
RCP+ = 2.172 ± 0.337, RCP− = 1.170 ± 0.266

x+ = 0.144 ± 0.136, x− = 0.357 ± 0.138

Table 4.19: CP -asymmetry fit results on 344.7 fb−1 of Run 1 - 5 data.

4.12 Systematic Errors of ACP and RCP

In this section, I discuss the systematic errors involved in the calculation of ACP±

and RCP±. Systematic errors of x± can be found in Appendix B.

114



4.12.1 Systematics from Same-Final-State Backgrounds

We need to address the non-resonant background for D0 → K0
sφ and D0 → K0

sω

in CP - modes. K0
sφ suffers from any background that has the K0

sK
+K− final state.

Similarly for K0
sω, there is contamination from decays that have the K0

sπ
+π−π0 same

final state. In Appendix E of [66], a detailed method to correct ACP and RCP due to

these background was deduced.

When we integrate over the full width of the resonating state, i.e. φ/ω, we can

ignore quantum interference effects and consider only the number of decays in the

resonance (NRes) and the number of same-final-state decays that do not belong to the

resonance (NNon). The total asymmetry, which includes both events from resonant

and non-resonant decays, is

A =
(N−

Res +N−
Non) − (N+

Res +N+
Non)

(N−
Res +N−

Non) + (N+
Res +N+

Non)
. (4.25)

The true asymmetry is then, according to [66],

ARes = (1 + ε)A− εANon, (4.26)

ε is defined as NNon/NRes and we assume that to be much smaller than 1.

There is no error if the background is of the same CP eigenstate and exhibits

similar CP asymmetry. If the background is of opposite CP eigenstate, ACP− is

corrected according to the following equation:

ACP− = (1 + ε)AMeas
CP− − εACP+, (4.27)

where AMeas
CP− would be the ACP− we obtain from our simultaneous fit. Similarly, we

adjust RCP− by:

RCP− =
RMeas
CP−

1 + ε
. (4.28)
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For K0
sφ mode, background events mainly come from K0

sa0(980) decays [67]. In

[67], which is a Dalitz plot analysis of D0 → K0
sK

+K−, the ratio of the number of

non-resonant K0
sK

+K− decays to the number of resonant K0
sφ decays is measured to

be (24.7 ± 1.3)%. For K0
sω mode, no information for K0

sπ
+π−π0 decays is available

so we assume a (30 ± 30)% for the background to signal ratio. To calculate ε, we

need the expected (calculated from PDG branching fractions and signal efficiencies)

number of total CP - signal yield, and the expected number of K0
sφ and K0

sω signals.

With 344.7 fb−1 of data, the numbers are 39.7, 7.1 and 8.7 respectively. Hence we

have:

ε =
(24.7 ± 1.3)% × 7.1 + (30 ± 30)% × 8.7

39.7
(4.29)

= 0.110 ± 0.069 (4.30)

The measured values of ACP− and RCP− are thus adjusted as follows:

ACP− = (1 + ε)AMeas
CP− − εACP+ (4.31)

= (1.110 ± 0.069)(−0.305 ± 0.269) − (0.110 ± 0.069)(−0.017 ± 0.168) (4.32)

= (−0.337 ± 0.299) ± 0.020 (4.33)

(4.34)

RCP− =
RMeas
CP−

1 + ε
(4.35)

= (1.106 ± 0.314)/(1.110± 0.069) (4.36)

= (0.996 ± 0.289) ± 0.062 (4.37)

where the second error is the additional systematic error introduced by the uncertainty

on the magnitude of ε.
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4.12.2 Systematics from the Interference with B → D0K0
sπ

Another non-resonant background in the K∗− region is the b→ c process, B− →

D0K0
sπ

−. In Chapter 6 of [66] a detailed model of the B− → D0[K∗−+K0
sπ

−] system

was built and analyzed using Mathematica, where two related variables, ρc and ∆c

were measured. ρc is the ratio of the amplitudes of the three-body background and

the signal for b→ c processes:

ρc =
|A(B− → D0K0

sπ
−)|

|A(B− → D0K∗−)| ; (4.38)

while ∆c is the phase between the three-body background and the signal for b → c

processes. The measured values with 211 fb−1 of data are:

ρc = 0.185+0.045
−0.025 (4.39)

∆c = (−90 ± 37)◦. (4.40)

In [68], using the above measurements, the variation of the observables ACP and

RCP were calculated. We will use those calculated variations (Table 4.20) as the

systematic errors for the non-resonant B → D0K0
sπ background.

ACP± RCP±

Max. Upward Variation 0.051 0.035
Max. Downward Variation -0.051 -0.024

Systematic Error Used 0.051 0.035

Table 4.20: Results of the B− → D0[K∗− + K0
sπ

−] system modeling presented in
BAD1141.
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4.12.3 Other Systematics of ACP

• Charge bias in the analysis: The charge asymmetry of the BABAR detector is the

potential charge bias in tracking efficiency or PID. We adopt results from the

study carried out in [31]. The authors measured the asymmetry in a number of

control samples from data and Monte Carlo. They measured the charge bias on

data for the decays of B− → D0π−[D0 → K−π+], B− → D0K−[D0 → K−π+],

B− → D0π−[D0 → K−K+], B− → D0π−[D0 → π+π−], B− → D0π−[D0 →

K0
Sπ

0], B− → D0π−[D0 → K0
Sφ], B− → D0π−[D0 → K0

Sω]. The same decay

processes were measured on signal Monte Carlo. No evidence of charge asymme-

try was found. The average asymmetry in data control samples is −(1.6±0.6)%

and −(0.4 ± 1.0)% in Monte Carlo samples. We will take (1.6 + 0.6)% = 2.2%

as the systematic error.

• Assumption of charge symmetry in the fake D0 background: The systematic

error introduced by this assumption in the ∆m(D0) sideband is related to the

number of signal and peaking background events in the mES signal region and

the hypothetical CP asymmetry in the background by:

σ = ABkg ×
NBkg

NSig
. (4.41)

I assume the hypothetical CP asymmetry in the background to be 50%. The

number of signal and background events will be taken from the results in the Fit

Result section. In the ∆m(D0) sideband of CP - mode zero fake D0 background

events (0.00 ± 3.04) is measured. To be conservative, I use 3.04 as the number of

peaking background events in the mES signal region. The resulting systematic

errors for ACP+ and ACP− are 0.25% and 3.95% respectively.
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4.12.4 Summary of Systematic Errors of ACP±

Table 4.21 summarizes the systematic error calculation for ACP±. The total

systematic error is calculated by adding the individual systematic error sources in

quadrature. The final numbers are ±0.058 for ACP+ and ±0.089 for ACP−.

ACP+ ACP−

Effect of Same-Final-State Bkg - 0.020
Effect of B → D0K0

sπ Bkg 0.051 0.051
Inherent Asymmetry 0.002 0.002

Asymmetry in fake D0 Bkg 0.003 0.040

Total Systematic Error 0.051 0.068

Table 4.21: Systematic errors of ACP±.

4.12.5 Summary of Systematic Errors of RCP±

Table 4.22 summarizes the systematic error calculation for RCP±. The system-

atics from efficiency corrections are obtained by multiplying the systematic errors of

εCP±/εNCP to the corrected central values of RCP±. The final numbers are ±0.083

and ±0.113 for RCP+ and RCP− respectively.

RCP+ RCP−

Systematic Error in εCP±/εNCP 0.075 0.088
Effect of Same-Final-State Bkg - 0.062

Effect of B → D0K0
sπ Bkg 0.035 0.035

Total Systematic Error 0.083 0.113

Table 4.22: Systematic errors of RCP±.

119



4.13 Summary of the GLW Analysis Results

From the study of B− → D0K∗− decays with 379 million BB events (Run 1 - 5)

the following results of the GLW analysis are presented:

ACP+ = 0.092 ± 0.133(stat.) ± 0.051(syst.)

ACP− = −0.199 ± 0.206(stat.) ± 0.068(syst.)

RCP+ = 2.174 ± 0.352(stat.) ± 0.083(syst.)

RCP− = 1.142 ± 0.273(stat.) ± 0.113(syst.)

x+ = 0.144 ± 0.136(stat.) ± 0.046(syst.)

x− = 0.357 ± 0.138(stat.) ± 0.051(syst.)
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Figure 4.6: Simultaneous fit to mES distributions in signal regions on 344.7 fb−1 of
data. First row: CP+ modes (K+K−, π+π−), left(B+), right(B−). Second row: CP-
modes (K0

sπ
0, K0

sφ, K0
sω), left(B+), right(B−). Third row: Non-CP mode (K−π+),

B±.
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Figure 4.7: Simultaneous fit to mES distributions in sidebands on 344.7 fb−1 of data.
Left column: (∆E sideband), right column: (∆m(D0) sideband). First row: CP+
modes (K+K−, π+π−), B±. Second row: CP- modes (K0

sπ
0, K0

sφ, K0
sω), B±. Third

row: Non-CP mode (K−π+), B±.
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Figure 4.8: Simultaneous fit to mES distributions in signal regions and sidebands on
344.7 fb−1 of data for D0 → K+K− (CP+) mode. First row: Signal region. Second
row: ∆E sideband. Third row: ∆m(D0) sideband.
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Figure 4.9: Simultaneous fit to mES distributions in signal regions and sidebands on
344.7 fb−1 of data for D0 → π+π− (CP+) mode. First row: Signal region. Second
row: ∆E sideband. Third row: ∆m(D0) sideband.
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Figure 4.10: Simultaneous fit to mES distributions in signal regions and sidebands
on 344.7 fb−1 of data for D0 → K0

sπ
0 (CP -) mode. First row: Signal region. Second

row: ∆E sideband. Third row: ∆m(D0) sideband.
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Figure 4.11: Simultaneous fit to mES distributions in signal regions and sidebands
on 344.7 fb−1 of data for D0 → K0

sφ (CP -) mode. First row: Signal region. Second
row: ∆E sideband. Third row: ∆m(D0) sideband.
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Figure 4.12: Simultaneous fit to mES distributions in signal regions and sidebands
on 344.7 fb−1 of data for D0 → K0

sω (CP -) mode. First row: Signal region. Second
row: ∆E sideband. Third row: ∆m(D0) sideband.
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Figure 4.13: Simultaneous fit to mES distributions in signal regions and sidebands
on 344.7 fb−1 of data for D0 → K−π+ (Non-CP ) mode. Top: Signal region (B±).
Middle: ∆E sideband (B±). Bottom: ∆m(D0) sideband (B±).
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CHAPTER 5

ANALYSIS OF B− → D0K∗− DECAYS USING THE ADS
METHOD

5.1 Overview

As already discussed in the Theory section, the ADS method which studies the

D0 → Kπ final states is another clean way to measure the CKM angle γ. It is com-

plementary to the GLW analysis so the results from the two studies will be combined

in Chapter 6 for a more precise determination of rB and γ.

The ADS method analyzes both the Wrong-Sign (B− → D0K∗−, D0 → K+π−)

and Right-Sign (B− → D0K∗−, D0 → K+π−) Kπ decays. Since we have the same

final states, there is quantum interference between these two decays and its size is

sensitive to γ.

The analysis technique is in many ways similar to that of the GLW analysis. Dis-

criminating variables are chosen and the corresponding cuts are optimized to suppress

continuum background. Extended maximum likelihood method is used to fit the mES

distributions of both the Wrong-Sign (WS) and Right-Sign (RS) modes in the signal

region to extract the signal yields. The CP observables RADS and AADS will also be

measured.
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5.2 Discriminating Variables and Optimizations

The discriminating variables in the ADS analysis are the same as the ones used

in the GLW K−π+ analysis. They are ∆E, invariant masses of D0, K∗ and K0
S
, K0

S

decay length, cos θHelicity(K
∗−), a Neural Network and PID selector for K’s.

All of the selection cuts are optimized by maximizing the significance defined in

Equation 4.15, except for ∆E and D0 invariant mass cuts, where the cut windows are

chosen according to their resolutions in signal MC. Table 5.1 records the resolutions

and Figure 5.1 has the corresponding plots.

The multiple candidate selection criteria is also the same as the GLW one, defined

in Equation 4.16.

D0 → K+π− Fit Type Core σ Tail σ Fraction (%) Cut

∆E (MeV) Double Gaus. 10.9 ± 0.1 50.2 ± 0.7 58.0 ± 6.3 < 25

∆m(D0) (MeV/c2) Double Gaus. 6.8 ± 0.1 34.3 ± 0.6 75.4 ± 3.0 < 18

Table 5.1: The choices of ∆E and ∆m(D0) cut windows are based on the widths of
their signal peaks in signal MC. The column “Fraction” refers to the fraction of the
fit in the core Gaussian. The last column is the ∆E and D0 invariant mass cut values
that will be used in this analysis.

5.3 Neural Network

The Neural Network technique will be utilized to suppress continuum backgrounds

in both Wrong-Sign and Right-Sign Kπ modes. The input topological variables are

the same as in GLW: R2, the thrust angle, the zeroth- and second-order Legendre

monomials, cosθMom and cosθHelicity(D
0). The Neural Network settings are:
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Figure 5.1: ∆E of signal B candidates (left) and D0 invariant mass difference (right)
distributions of D0 → K+π− signal MC with fits. Both distributions are fitted with
double Gaussians.

• Transfer function: Sigmoid function

• Training method: Hybrid

• Number of hidden layer = 1

• Number of neurons in hidden layer = 8

• Number of epochs (training cycles) = 500

After setting the NN configurations and training the NN, another set of data is

put through the NN to produce visual NN output (ONN). The contents of the dataset

are similar to that of the training and validation samples in that it has 20000 signal

events and 20000 cuds continuum backgrounds. In addition, we run the NN on off-

peak data to check if the output is consistent with that of the continuum. The ONN

of D0 → K+π− is shown in Figure 5.2. The continuum and off-peak data agree with

each other well.
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Figure 5.2: .Neural Network output (ONN) of D0 → K+π− from samples of signal,
cuds and off-peak data with 20000 events each. Red solid line represents signal and
blue represents continuum. The dots are off-peak data.

5.4 Summary of Analysis Cuts

Table 5.2 lists the selection cuts that will be applied on data for the WS K+π−

mode (as well as the RS K−π+) in the ADS analysis.

Selection cut K+π−

Neural Network > 0.85
|cosθHelicity(K∗)| > 0.35
signed, 2D, DOF pull (K0

s ) > 3σ

|m(D0) − M(D0)PDG| (MeV/c2) < 18
|m(K∗−) − M(K∗−)PDG| (MeV/c2) < 55
|m(K0

s ) − M(K0
s )PDG| (MeV/c2) < 10

PID on dau. 1 from D0 KLHVeryLoose

|∆E| (MeV) < 25

Table 5.2: Selection criteria of WS D0 → K+π− and RS D0 → K−π+.
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5.5 Signal Efficiencies

Table 5.3 shows the total Run 1 - 5 signal efficiencies of the WS and RS modes.

Individual cut efficiencies are shown in Table 5.4.

D0 Mode Signal ε

K+π− 9.59 ± 0.08%
K−π+ 9.45 ± 0.08%

Table 5.3: Signal efficiencies of WS D0 → K+π− and RS D0 → K−π+.

Selection Cut K+π− K−π+

Neural Network 49.2% 48.7%
| cos θHelicity(K

∗)| 95.0% 94.7%
signed, 2D, DOF pull (K0

s ) 96.6% 96.4%

|m(D0) − M(D0)PDG| 92.0% 92.0%
|m(K∗−) − M(K∗−)PDG| 83.6% 83.4%
|m(K0

s ) − M(K0
s )PDG| 96.9% 96.6%

PID on dau. 1 from D0 95.5% 95.6%

|∆E| 92.9% 92.1%

Table 5.4: Summary of individual cut efficiencies of the two ADS modes.

5.6 Peaking Backgrounds

In this section the main source of peaking background in the WS mES signal

region (Right-Sign pollution) is studied. Possible fake D0 (from ∆m(D0) sideband)
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and peaking background (from ∆E sideband) contaminations are also investigated.

First, the ∆E sideband is checked and no evidence of peaking background is found

(Figure 5.3). Next the background in which a fake D0 is combined with a true K∗−

is checked. The mES distribution of the ∆m(D0) sideband of Run 1 - 5 Data (344.7

fb−1) is fit with a PDF of Argus+Gaussian. The plot of the distribution along with

the fit is shown in Figure 5.3. No peak is found and thus fake D0 background is not

a source of background in this analysis.
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Figure 5.3: mES distributions in ∆E (left) and ∆m(D0) (right) sideband. The Ar-
gus+Gaussian fit is also shown. The sample is B− → (K+π−)D0K∗− with Run 1 - 5
data.

5.6.1 Right-Sign Pollution

The ratio of the signal efficiency of the ADS selection cuts on WS events (εWS) to

RS events (εRS) is used to estimate the number of right-sign (Cabibbo-favored D0 →

K−π+ decay) pollution in the wrong-sign (doubly-Cabibbo-suppressed D0 → K+π−

decay) mES signal region. The RS contamination is defined as:

RS contamination =
εWS

εRS
× RS data signal yield. (5.1)
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Selection cuts are applied on a signal MC sample of 175000 RS B− → (K−π+)D0K∗−

events and the number of RS events that are mis-reconstructed into WS events and

survive the cuts is measured to calculate εWS. The RS efficiency (εRS) is taken from

last section. Table 5.5 summarizes εRS and εWS for Run 1 - 5 K+π− signal MC.

This contribution will be subtracted from the wrong-sign peak in the simultaneous

fit. The measured RS contamination will be reported in the next section when the

simultaneous fit for signal extraction is performed.

RS-Pollution Run 1 - 5 (%)

εRS 9.45 ± 0.08
εWS 0.13 ± 0.01

Table 5.5: εRS and εWS for Run 1 - 5 K+π− signal MC for calculation of RS pollution.

5.7 Extended Maximum Likelihood Fit

5.7.1 Fit Strategy

We perform an extended maximum likelihood fit to the mES distributions in the

WS and RS modes simultaneously. A Gaussian is used for modeling both the WS

and RS signals and an Argus function is used for describing the background. The

likelihood function of the fit is:

LSR = e−(NSig+NBkg) ×
∏

N

(NSig · G +NBkg · A). (5.2)

The number of signal events in the WS mES distribution, NSig, contains two parts.

The first is the real WS signal and the second is the RS contamination explained in

last section.
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To simplify the fit, only a single Argus function is used to describe the background

shapes in the WS and RS modes. To validate this, the Argus shape parameters are

allowed to float in the fits to these two mES distributions. The ξ for D0 → K+π−

is -29.0 ± 20.5 and the ξ for D0 → K−π+ is -28.0 ± 18.7. The two numbers are

statistically consistent and the assumption is justified. Hence, there are a total of three

floating (mean and sigma for the signal Gaussian and ξ for the Argus background)

and one fixed (the Argus end-point EMax) shape parameters in the simultaneous fit.

The WS sample is split by the charge of B candidates to measure AADS .

5.7.2 Right-Sign Pollution

As described in Section 5.6, we need to account for the presence of the RS events

in the WS mES signal region. We first run the fit to measure the RS signal yield.

Note that the number of RS pollution does not affect the shapes of the Gaussian and

Argus function, it only reduces the number of K+π− signal events. The fit yields

172.8 ± 14.2 K−π+ right-sign events on Run 1 - 5 data. Therefore, according to

Equation 5.1, the RS pollution is 2.38 ± 0.27 events. We will take 0.27 to be the

associated systematic error.

The signal yields from fits of B+ → [K+π−]D0K∗+ and B− → [K−π+]D0K∗− are

102.3 ± 10.8 and 69.9 ± 9.3 events respectively. Therefore the right-sign contamina-

tions are 1.41 ± 0.18 for B+ and 0.96 ± 0.15 for B−.

5.7.3 Fit Results

The results from the simultaneous fit on 344.7 fb−1 (379 million BB pairs) of data

are shown in Tables 5.6 and 5.7. Figure 5.4 shows the plots of the fits to the WS and

RS samples (for calculation of RADS) and the two WS samples that are separated by
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B charge (for calculation of AADS). An asymmetry of (18.8 ± 8.4)% seen in the RS

K−π+ sample when RS contamination was calculated in last section warrants a check

on the signal MC. A 175000-event K−π+ signal MC sample reads an asymmetry of

(1.6 ± 0.8)%. Again, the asymmetry observed in data is not due to a mistake in the

fitting procedure.

Asymmetry Fit Wrong-Sign Right-Sign

Shape Parameters
Argus end-point (MeV/c2) 5291.00 (FIXED)
Argus shape parameter ξ -30.09 ± 8.60
Gaussian mean (MeV/c2) 5278.50 ± 0.20
Gaussian sigma (MeV/c2) 2.38 ± 0.16

Yield (Signal Region)
Gaussian (Signal) 11.47 ± 4.98 172.79 ± 14.20
RS-Contamination 2.38 ± 0.27 -
Argus 74.15 ± 9.23 154.13 ± 13.50

RADS = 0.066 ± 0.029

Table 5.6: Fit results for RADS on 344.7 fb−1 of Run 1 - 5 data.

5.8 Systematic Errors of RADS and AADS

5.8.1 Asymmetry in the Detection Efficiency

For AADS , we use the same number quoted in [31] for the systematic error due to

detector asymmetry. In the B− → D0K analysis, the authors used several control

samples from data and Monte Carlo to measure the charge asymmetry. The asym-

metry in Monte Carlo is −(0.4 ± 1.0)% and it is −(1.6 ± 0.6)% in the data samples.

We will take (1.6 + 0.6)% = 2.2% as the systematic error.
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Asymmetry Fit Wrong-Sign Right-Sign

Shape Parameters
Argus end-point (MeV/c2 ) 5291.00 (FIXED)
Argus shape parameter ξ -30.09 ± 8.60
Gaussian mean (MeV/c2) 5278.50 ± 0.20
Gaussian sigma (MeV/c2) 2.38 ± 0.16

Yield (Signal Region)
Gaussian (Signal) 7.73 ± 3.84 (B+) 172.79 ± 14.20

3.77 ± 3.05 (B−)
RS-Contamination 1.41 ± 0.18 (B+) -

0.96 ± 0.15 (B−)
Argus 38.86 ± 6.67 (B+) 154.13 ± 13.50

35.27 ± 6.31 (B−)

AADS = -0.344 ± 0.451

Table 5.7: Fit results for AADS on 344.7 fb−1 of Run 1 - 5 data.

For RADS , the derivation of the detector asymmetry is as follows. Let W± and R±

be the measured wrong-sign and right-sign signal yields. εD0 (εD0) is the efficiency

to reconstruct a K+π− (or K−π+) at the D0 (D0) mass. εK∗± is the efficiency to

reconstruct a K∗± which decays to K0
Sπ

±. We also define the detector asymmetry of

D0 and K∗ with the variables AD =
ε
D0−εD0

ε
D0+ε

D0
and AK =

ε
K∗−−ε

K∗+

ε
K∗−+ε

K∗+
. We rewrite RADS

in first order as:

RADS =
W−εD0εK∗− +W+εD0εK∗+

R−εD0εK∗− +R+εD0εK∗+

(5.3)

=
W−(1 + AD)(1 + AK) +W+(1 − AD)(1 − AK)

R−(1 − AD)(1 + AK) +R+(1 + AD)(1 − AK)
(5.4)

=
W− +W+ + (W− −W+)(AD + AK)

R− +R+ − (R− − R+)(AK − AD)
(5.5)

=
W− +W+

R− +R+
×

1 + W−−W+

W−+W+ (AD + AK)

1 − R−−R+

R−+R+ (AK − AD)
(5.6)

= RMeas
ADS (1 + AMeas

ADS (AD + AK) +
R− −R+

R− +R+
(AK − AD)). (5.7)
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Figure 5.4: Simultaneous fit to mES distributions in signal regions on Run 1 - 5
data. First row: Left: Wrong-sign D0 → K+π− (the dashed-peak represents the
RS-contamination). Right: Right-sign D0 → K−π+. Second row: Left: Wrong-sign
B+. Right: Wrong-sign B−.

The last term is negligible because of the small asymmetry in right-sign yields. The

middle term is dominated by the charged pion detection efficiency imbalance AK .

Hence,

RADS = RMeas
ADS (1 + AMeas

ADS × AK) (5.8)

= 0.076(1 + 0.222 × 0.027) (5.9)

= 0.076 + 0.00046. (5.10)

Therefore, the systematic error due to detector asymmetry for RADS is ±0.00046.
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5.8.2 Right-Sign Peaking Background Subtraction

In Section 5.7.2 the associated systematic uncertainty due to right-sign events

being identified as signal wrong-sign events is 0.27. From the fit we have 172.8 right-

sign and 11.5 wrong-sign events. Therefore the systematic errors for RADS and AADS

are 0.0016 (=0.27/172.8) and 0.0235 (=0.27/11.5) respectively.

5.8.3 Systematics from the Interference with B → D0K0
S
π

This source of systematic error will be quantified similarly to that in the GLW

analysis: the results presented in [68] will be used. The biggest variations of RADS and

AADS are quoted as the systematic errors due to the interference with B → D0K0
S
π

(Table 5.8).

RADS AADS

Max. Upward Variation 0.0073 0.126
Max. Downward Variation -0.0023 -0.126

Systematic Error Used 0.0073 0.126

Table 5.8: Results of the B− → D0[K∗− +K0
sπ

−] system modeling presented in [68].

5.8.4 Summary of Systematic Errors of RADS

Table 5.9 summarizes the systematic error calculation for RADS . The final number

is ±0.0075.
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RADS

Inherent Asymmetry 0.0005
Right-Sign Peaking Bkg 0.0016

Effect of B → D0K0
sπ Bkg 0.0073

Total Systematic Error 0.0075

Table 5.9: Systematic errors of RADS .

5.8.5 Summary of Systematic Errors of AADS

Table 5.10 summarizes the systematic error calculation for AADS. The final num-

ber is ±0.130.

AADS

Inherent Asymmetry 0.022
Right-Sign Peaking Bkg 0.024

Effect of B → D0K0
sπ Bkg 0.126

Total Systematic Error 0.130

Table 5.10: Systematic errors of AADS .

5.9 Summary of the ADS Analysis Results

From the study of B− → D0K∗− decays with 379 million BB events (Run 1 - 5)

the following results of the ADS analysis are presented:

RADS = 0.066 ± 0.029(stat.) ± 0.008(syst.)

AADS = −0.344 ± 0.451(stat.) ± 0.130(syst.).
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CHAPTER 6

COMBINED GLW AND ADS RESULTS

Combination of results from the GLW and ADS analyses provide a determination

on rB. In addition, together with other experiments sensitive to γ, which include

B− → D(∗)0K(∗)− (GLW+ADS) and B− → [K0
S
π+π−]D(∗)0K∗− (Dalitz), we can con-

strain the values of γ. The values of rs and γ are extracted by the UTfit group [36]

with our combined GLW and ADS results. Figure 6.1 shows the probability density

function for rB
3 at the 68 and 95% probability intervals. The value at 68% C.L. and

probability range at 95% are:

rB = 0.268 ± 0.07 (68% C.L.), [0.112, 0.397] (95% C.L.). (6.1)

This is the first significant non-zero measurement of the ratio of the color-suppressed

B decay to the color-favored decay among all the GLW and ADS analyses. This

result will produce a meaningful constraint on γ when combined with other analyses

(a zero rB gives no information on γ, according to Equations 2.77 (GLW) and 2.104

(ADS)).

Figure 6.2 is the probability density function for γ. It corresponds to a value

of γ of (0 ± 55)◦ or (180 ± 49)◦ at the 68% C.L. The lack of constraint from the

3The UTfit uses rs but we assume that rs equals to rB in this thesis. More details can be found
in Appendix C.
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GLW and ADS measurements is expected due to the ambiguities introduced by the

strong and weak phases (0 → π). Therefore, our results should be combined with

other γ-sensitive experiments if we want a better constraint on γ. Figure 6.3 is the

determination of γ using the latest published results from all GLW, ADS and Dalitz

experiments [36]. The extracted value is:

γ = (66.7 ± 6.4)◦ (68% C.L.) . (6.2)

All the measurements of the CP observables in this thesis are greatly limited by

statistics, as evident from the statistical errors which are as many as four times larger

than the systematics. The extra BABAR data sample with approximately 95 million

BB pairs, which will be ready in a couple months, will help the continuing effort of

improving the statistical limits of the GLW and ADS modes. For example, with the

additional data, we are expected to see much cleaner signal peaks in the CP - (GLW)

and ADS modes. For the past several years, constant updates of precision measure-

ments of CKM Unitarity Triangle parameters have greatly improved the constraints

on CP -relating parameters (e.g. Figure 6.4 shows the evolution of the allowed region

in the (ρ,η) plane during the past 15 years). With the potential future Super-B fac-

tory targeted at producing about 50 ab−1 of e+e− collision data, the CP violation

picture in the Standard Model will become very clear.
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Figure 6.1: The PDF for rs. The 68 and 95% C.L. are shown. They are extracted
from UTfit [36] using the combined GLW and ADS results in this thesis.
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Figure 6.2: The PDF for γ. The 68 and 95% C.L. are shown. They are extracted
from UTfit [36] using the combined GLW and ADS results in this thesis.
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Figure 6.3: The PDF for γ extracted by UTfit [36] with the most updated results
from all γ-sensitive experiments. The 68 and 95% C.L. are shown. (Note: results
from this thesis were not used.)
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Figure 6.4: Evolution during the last 15 years of the allowed region in the (ρ, η) plane
from theoretical and experimental constraints [36].
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CHAPTER 7

CONCLUSION

This thesis analyzes B− → D0K∗− decay using the GLW and ADS methods. The

measurement of CP observables with 379 million BB events produced by the BABAR

B-factory are summarized in Table 7.1. From the combined GLW and ADS results,

rB is constrained to be 0.268±0.07 at 68% C.L. and γ is constrained to be (0 ± 55)◦ or

(180 ± 49)◦ at the 68% C.L. Our rB measurement is the first non-zero measurement

and will greatly the determination of γ in future experiments.

CP Observables Measurements

GLW:

ACP+ 0.092 ± 0.133(stat.) ± 0.051(syst.)
ACP− -0.199 ± 0.206(stat.) ± 0.068(syst.)
RCP+ 2.174 ± 0.352(stat.) ± 0.083(syst.)
RCP− 1.142 ± 0.273(stat.) ± 0.113(syst.)

x+ 0.144 ± 0.136(stat.) ± 0.046(syst.)
x− 0.357 ± 0.138(stat.) ± 0.050(syst.)

ADS:

RADS 0.066 ± 0.029(stat.) ± 0.008(syst.)
AADS -0.344 ± 0.451(stat.) ± 0.130(syst.)

Table 7.1: The measurement of CP observables with B− → D0K∗− decay using the
GLW and ADS methods.
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APPENDIX A

EFFICIENCY CORRECTIONS TO RCP±

To account for the differences between the data and Monte Carlo samples, the

raw Monte Carlo efficiencies are corrected to that expected in the data.

A.1 Efficiency Correction to ACP

By construction, ACP (Equation 2.79) does not require efficiency corrections.

A.2 Efficiency Correction to RCP

As we see from the definition of RCP (Equation 2.81) in Section 2.9.1, corrections

that belong to decays common to both CP and Non-CP modes (e.g. K∗− → K0
S
π−)

will cancel in the ratio and therefore can be disregarded. These include the efficiency

corrections on the K∗, ∆E and continuum suppression cuts. We will only discuss

systematics that remain after the top-and-bottom cancellation.

We use two methods to correct for the MC and data differences. For tracking effi-

ciency, particle identification, K0
S

identification efficiency and π0 detection efficiency,

we use standard recipes developed by the corresponding BABAR task forces.

For analysis cuts, since we do not have a large sample of B− → D0π−, we are going

to assume the correction to be unity and assign systematic error due to the specific
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cut. To determine the error, we relax the cut by 10% in signal MC and calculate

according to this definition:

σ(cut) =
NMC
Relaxed Cut −NMC

Original Cut

NMC
Original Cut

. (A.1)

A.3 Tracking Corrections

The Tracking Task Force recommends no tracking efficiency correction [69]. Both

K±’s and π±’s from a D0, K∗ or ω are chosen from the GoodTracksV eryLoose list

and the suggested systematic error is 0.22% per track. π±’s coming from a K0
s are

chosen from the ChargedTracks list and has a 0.38% systematic error per track. The

Task Force uses the so-called “Tau3-1 Tracking Efficiency Method”, which utilizes

τ pair events with a 1 vs 3 topology to determine the tracking efficiency and the

associated correction factor. Readers can refer to [69] for more details. Note that the

total systematic of a system of tracks is the sum of the errors of its individual tracks.

For example, the systematic of two GoodTracksV eryLoose tracks is (0.22 + 0.22) =

0.44%.

A.4 PID Corrections

The correction due to PID is calculated using PID weighting. The recipe is pro-

vided by the Particle ID AWG [70]. We use the systematic errors cited in [66]. [66]

compared with several similar analyses which used either Loose or V eryLoose PID

criteria and assigned a systematic error of 2% per use of PID. A systematic error of

4% is taken where PID is used twice.
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A.5 π0 Corrections

The Neutral Reconstruction Analysis Working Group [71] recommends a flat cor-

rection. The correction depends on the list we take our π0 candidates from. We use

the pi0AllDefault list and therefore a correction of 0.968311 will be applied. The

systematic error is 3% per π0.

A.6 K0
s Corrections

The K0
s correction recipe is also provided by the Tracking Task Force [72]. For K0

s

candidates which come fromK∗’s we choose the correction class “3DSign3 3DAlpha”

with the distance of flight and momentum information. For K0
s ’s from D0 in CP−

modes, the correction class of “noSign noAlpha” is used since we do not have a cut

on the distance of flight. The results are shown in Tables A.1 and A.2.

All the above corrections and their systematics for CP+, CP - and Non-CP modes

are summarized in Table A.3.

A.7 CP− Analysis Cuts

We use the second method mentioned earlier in this chapter for studying correc-

tions in CP - modes, i.e. we assume no correction to the efficiency from the K0
sπ

0,

K0
sφ and K0

sω cuts and estimate their corresponding errors by relaxing the cuts by

10%. Those cuts include φ and ω invariant masses, and the cosine of the helicity

and Dalitz angle of the ω candidates. In addition, since the D0 invariant mass cuts

in K0
sπ

0 and K0
sω are different from the Non-CP one, we need to re-calculate the

systematic errors due to this cut in these two modes.
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CP+ K+K− π+π−

Run 1 0.995 2.0% 0.994 2.0%
Run 2 1.012 1.6% 1.012 1.6%
Run 3 0.997 1.7% 0.996 1.9%
Run 4 0.981 1.3% 0.983 1.4%
Run 5 0.985 1.3% 0.987 1.5%

L-weighted average 0.990 1.4% 0.991 1.6%

CP− K0
sπ

0 K0
sφ K0

sω

Run 1 0.993 2.5% 0.994 2.0% 0.993 3.4%
Run 2 1.012 1.8% 1.011 1.5% 1.011 2.2%
Run 3 0.997 2.1% 1.013 1.8% 0.999 2.7%
Run 4 0.981 1.5% 0.982 1.3% 0.982 1.8%
Run 5 0.985 1.4% 0.986 1.4% 0.985 1.6%

L-weighted average 0.990 1.6% 0.992 1.5% 0.990 2.0%

Non-CP K−π+

Run 1 0.994 3.1%
Run 2 1.012 2.0%
Run 3 0.997 2.5%
Run 4 0.982 1.7%
Run 5 0.987 1.7%

L-weighted average 0.991 1.9%

Table A.1: Run-by-run and luminosity-weighted average efficiency corrections due
to K0

s (from K∗) identification and associated systematic errors for CP+, CP - and
Non-CP modes.

The results of the calculation are recorded in Table A.4. The systematic of the

m(D0) cut is added since the cut windows are different in K0
sπ

0 and K0
sω than in

K−π+.

A.8 Summary

A summary of the efficiency corrections required in the calculations of RCP is

shown in Table A.5. Since relative efficiency is defined as a ratio between CP and

Non-CP modes, only corrections that survive the cancellation are listed in the table.
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CP− K0
sπ

0 K0
sφ K0

sω

Run 1 0.987 2.6% 0.998 2.0% 0.992 3.5%
Run 2 1.000 2.0% 1.006 1.6% 0.998 2.2%
Run 3 0.998 2.5% 0.999 1.8% 0.994 2.8%
Run 4 0.956 2.0% 0.966 1.1% 0.954 2.0%
Run 5 0.953 1.9% 0.981 1.1% 0.957 1.8%

L-weighted average 0.968 2.0% 0.984 1.3% 0.969 2.1%

Table A.2: Run-by-run and luminosity-weighted average efficiency corrections due to
K0
s (from D0) identification and associated systematic errors for CP - modes.

CP+ K+K− π+π−

Tracking 1.0000 ± 0.0142 1.4% 1.0000 ± 0.0142 1.4%
PID 0.9946 ± 0.0400 4.0% 1.0183 ± 0.0400 4.0%
K0
s 0.9902 ± 0.0142 1.4% 0.9914 ± 0.0154 1.6%

CP− K0
sπ

0 K0
sφ K0

sω

Tracking 1.0000 ± 0.0174 1.7% 1.0000 ± 0.0218 2.2% 1.0000 ± 0.0218 2.2%
PID - - 1.0209 ± 0.0400 4.0% 0.9917 ± 0.0400 4.0%
K0
s 0.9586 ± 0.0250 2.6% 0.9760 ± 0.0191 1.9% 0.9595 ± 0.0278 2.7%

π0 0.9683 ± 0.0300 3.1% - - 0.9683 ± 0.0300 3.1%

Non-CP K−π+

Tracking 1.0000 ± 0.0142 1.4%
PID 0.9952 ± 0.0200 2.0%
K0
s 0.9912 ± 0.0189 1.9%

Table A.3: A summary of efficiency corrections due to tracking, PID, π0 reconstruc-
tion and K0

s identification and associated systematic errors for CP+, CP - and Non-
CP modes.

The same reasoning is applied in the case of the absence of corrections in K−π+ mode,

as all sources of corrections are cancelled out top-and-bottom.
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K0
sπ

0 K0
sφ K0

sω

m(φ) - 1.2% -
m(ω) - - 2.7%

cos θHelicity - - 1.2%
cos θDalitz - - 3.8%
m(D0) 4.1% - 2.6%

RCP− Systematic 4.1% 1.2% 5.5%

Table A.4: Estimation of systematic errors which will be used in the RCP− calculation.
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CP+ K+K− π+π−

PID 0.9994 ± 0.0200 2.0% 1.0235 ± 0.0600 6.0%
Correction 0.9992 ± 0.0200 2.0% 1.0235 ± 0.0600 6.0%
Raw MC ε 0.1278 ± 0.0005 0.4% 0.1234 ± 0.0005 0.4%

B(D0 → X) 0.00384 ± 0.00010 2.6% 0.00136 ± 0.00003 2.3%
εRel (10−4) 4.90 ± 0.16 3.3% 1.72 ± 0.11 6.3%

Sum 6.63 ± 0.20 2.9%

CP - K0
sπ

0 K0
sφ K0

sω

Tracking 1.0000 ± 0.0120 1.2% 1.0000 ± 0.0076 0.8% 1.0000 ± 0.0076 0.8%
PID 1.0048 ± 0.0200 2.0% 1.0258 ± 0.0200 2.0% 0.9965 ± 0.0600 6.0%
K0
s 0.9682 ± 0.0200 2.0% 0.9837 ± 0.0128 1.3% 0.9687 ± 0.0205 2.1%

π0 0.9683 ± 0.0300 3.1% - - 0.9683 ± 0.0300 3.1%
Anal. Cuts 1.0000 ± 0.0410 4.1% 1.0000 ± 0.0120 1.2% 1.0000 ± 0.0550 5.5%

Correction 0.9420 ± 0.0566 6.0% 1.0090 ± 0.0276 2.7% 0.9347 ± 0.0752 8.4%
Raw MC ε 0.0559 ± 0.0003 0.5% 0.0890 ± 0.0004 0.4% 0.0235 ± 0.0002 0.8%

B(D0 → X) 0.00778 ± 0.00082 10.5% 0.00145 ± 0.00011 7.6% 0.00678 ± 0.00123 18.1%

εRel (10−4) 4.10 ± 0.50 12.2% 1.30 ± 0.11 8.1% 1.49 ± 0.30 19.7%

Sum 6.90 ± 0.59 8.5%

Non-CP K−π+

Correction 1.0000 ± 0.0000 0.0%
Raw MC ε 0.1276 ± 0.0009 0.7%

B(D0 → X) 0.0380 ± 0.0007 1.8%
εRel (10−4) 48.48 ± 0.96 2.0%

Sum 48.48 ± 0.96 2.0%

εCP+/εNCP (13.67 ± 0.49)% 3.6%
εCP−/εNCP (14.21 ± 1.26)% 8.8%

Table A.5: Corrections to the relative efficiencies, εRel, which are required to calculate
the observables RCP . The raw signal efficiencies are taken from Section 4.10. Note
that for K0

s , only the corrections to K0
s from D0 are recorded. Corrections to K0

s from
K∗ in CP and Non-CP modes cancel each other out. Tracking and PID corrections
in CP modes listed are after dividing by Non-CP numbers as well.
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APPENDIX B

SYSTEMATIC ERRORS OF x±

B.1 Systematics from Same-Final-State Backgrounds

As we have seen in the discussion of systematics of ACP and RCP , K0
sφ and K0

sω

modes suffer contaminations from backgrounds that share the same final states of

K0
sK

+K− and K0
sπ

+π−π0 respectively. Following [66], we calculate the biases due to

the non-resonant backgrounds. The errors on the biases are assigned as the systematic

errors of x±.

We note that since N(B+ → D0
CP+K

∗+) as the sum of signal SB
±

CP− and back-

ground WB±

, we can rewrite x±,Meas as:

x±,Meas =
NB±

CP+/εCP+ −NB±

CP−/εCP−

2 ·NNCP/εNCP
(B.1)

= x± − εNCP
εCP−

· WB±

2/εNCP
. (B.2)

The bias can then be written as:

δx± = x± − x±,Meas =
εNCP
εCP−

· WB±

2 ·NNCP
. (B.3)

Since

WB±

=
(WB+

+WB−

)

2
(1 ∓ ACP−) = (ε ·NCP−/(1 + ε)) · 1 ∓ ACP−

2
, (B.4)

156



where ε = NNon/NRes as defined in Section 4.12, we have:

δx± =
εNCP
εCP−

· 1

4 ·NNCP
· ε ·NCP− · (1 ∓ ACP−)

1 + ε
. (B.5)

Plug in the appropriate numbers and we get,

δx+ = 0.035 ± 0.024 (B.6)

δx− = 0.023 ± 0.017. (B.7)

The systematic errors due to same-final-state backgrounds for x+ and x− are thus

±0.024 and ±0.017 and respectively.

B.2 Systematics from the Interference with B → D0K0
sπ

We will use the numbers in [66]. Using their model for the non-resonant component

to calculate the maximum and minimum of (x±NR−x±), the systematic error for both

x+ and x− due to B− → D0K0
sπ

0 background is ±0.0277.

B.3 Systematics from Fake D0 Background

Again, we need to estimate the systematic error due to our assumption that there is

no charge asymmetry in the fake D0 background measured in the m(D0) background.

We define PCP , the number of peaking backgrounds in the signal region,

PCP =
1

2
(PB+

CP + PB−

CP ) (B.8)

ApCPPCP =
1

2
(PB+

CP − PB−

CP ). (B.9)

ApCP is the hypothetical CP asymmetry in the fake D0 backgrounds and we assume

it to be 50% and -50% for Ap
CP+ and ApCP− respectively. We can rewrite the equation

of x± as:

x± =
(NB±

CP+ + PB±

CP+)/εCP+ − (NB±

CP− + PB±

CP−)/εCP−

2 ·NNCP/εNCP
. (B.10)
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The systematic error is then:

∆x± = x±(ApCP± = ±50%) − x±(0%) (B.11)

=
PCP+A

p
CP+/εCP+ − PCP−A

p
CP−/εCP−

2 ·NNCP/εNCP
(B.12)

The systematic from fake D0 background is ±0.026 for both x+ and x−.

B.4 Other Systematics of x±

• Charge bias in the analysis: This is the same error as described in Section 4.12.

We quote the result from the study carried out in [31]. The authors measured

the asymmetry in a number of control samples from data and Monte Carlo. A

2.2% systematic error due to inherent asymmetry will be used.

• Systematic from efficiency corrections: This error is determined by multiplying

the systematic errors of εCP±/εNCP to the central values of x±. The final result

is ±0.006 and ±0.028 for x+ and x− respectively.

B.5 Summary of Systematic Errors of x±

Table B.1 summarizes the systematic error calculation for x±. The final result is

±0.046 and ±0.051 for x+ and x− respectively.
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x+ x−

Effect of Same-Final-State Bkg 0.024 0.017
Effect of B → D0K0

sπ Bkg 0.028 0.028
Inherent Asymmetry 0.002 0.002

Asymmetry in fake D0 Bkg 0.026 0.026
Systematic Error in εCP±/εNCP 0.006 0.028

Total Systematic Error 0.046 0.050

Table B.1: Summary of systematic errors of x±.
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APPENDIX C

B− → D0X−
s DECAYS

In the study of B− → D0K∗− decays, one must consider the effect of the large

K∗− natural width (50.8 MeV/c2) on the relationship between the CKM angle γ and

the experimental observables. In this chapter, we will detail the difference between rS

and rB and the introduction of the observables x±. A brief description of three-body

B− → D0X−
s decay rate is also included.

We will write the amplitudes of the B− → (D0X−
s )p and B− → (D0X−

s )p pro-

cesses, where p indicates a point in the phase space of the final state and X−
s is a

state with strangeness, as:

A(B− → (D0X−
s )p) = Acpe

iδcp (C.1)

A(B− → (D0X−
s )p) = Aupe

iδupe−iγ (C.2)

A(D0 → f) = Afe
iδf (C.3)

A(D0 → f) = Afe
iδ

f , (C.4)

where the index p indicates the position in the D0X−
s phase space, that is, Ac, Au,

δc and δu generally vary as a function of p. The subscript c and u refer to the

b→ c and b→ u transitions respectively. Acp, Aup, Af and Af are real and positive.

The amplitudes Acpe
iδcp and Aupe

iδupe−iγ generally include both the resonant B− →
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D0/D0K∗− and the non-resonant contributions. The non-resonant part will not be

discussed here.

The partial rates Γ(B− → D0X−
s ) and Γ(B− → D0X−

s ) are:

Γ(B− → D0X−
s ) =

∫

dpA2
cp (C.5)

Γ(B− → D0X−
s ) =

∫

dpA2
up. (C.6)

The quantities rs, k and δs are introduced as:

r2
s =

Γ(B− → D0X−
s )

Γ(B− → D0X−
s )

=

∫

dpA2
up

∫

dpA2
cp

(C.7)

keiδs =

∫

dpAcpAupe
iδp

√

∫

dpA2
cp

∫

dpA2
up

, (C.8)

where 0 ≤ k ≤ 1 and δs is between 0 and 2π. k is introduced to include the non-

resonant B− → D0[Kπ]−non−K∗ contributions and the fact that the b → c and b → u

amplitudes may vary over the K∗ phase space (width). In the limit of a B → 2-body

decay, in which the X−
s has a small natural width, such as B− → D0K−, we have:

rs → rB ≡ |A(B− → D0K−)|
|A(B− → D0K−)| , (C.9)

δs → δB, (C.10)

k → 1. (C.11)

In this thesis, we assume that the color-favored B− → D0K∗− and color-suppressed

B− → D0K∗− amplitudes are independent of the phase space in the K∗ mass region,

i.e. rs = rB. This is a reasonable assumption as [73] has shown that the distribution

of k is narrow and its values are no more than 10% smaller than 1.

The amplitude of B∓ → D0X−
s when the D0 decays to two bodies can be written

as:

A(B∓ → D0X−
s ) = Acpe

iδcp + Aupe
iδup∓γ, (C.12)
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and the rate is

Γ(B∓ → D0X−
s ) ∝ 1 + r2

s ± 2krs cos δs cos γ. (C.13)

A set of “cartesian coordinates” is defined as:

x±s = Re[krse
i(δs±γ)] (C.14)

y±s = Im[krse
i(δs±γ)]. (C.15)

In the case of rs → rB and k → 1, we have:

Γ(B∓ → D0X−
s ) ∝ 1 + r2

B ± 2rB cos δB cos γ (C.16)

x± = rB cos(δB ± γ) (C.17)

y± = rB sin(δB ± γ). (C.18)
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