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ABSTRACT

This dissertation develops two new parametric and nonparametric methods for esti-

mating risk-neutral measures (RNM) which embody important information about market

participants’ sentiments concerning prices of the underlying asset in the future, and inves-

tigates empirical performance of parametric RNM estimation methods.

The first essay, “Estimation of Risk Neutral Measures using the Generalized Two-

Factor Log-Stable Option Pricing Model”, constructs a simple representative agent model

to provide a theoretical framework for the log-stable option pricing model and then im-

plements a new parametric method for estimating the RNM using a generalized two-factor

log-stable option pricing model. Under the generalized two-factor log-stable uncertainty

assumption, the RNM for the log of price is a convolution of two exponentially tilted sta-

ble distributions. Since the RNM for generalized two-factor log-stable uncertainty is ex-

pressed in terms of its Fourier Transform, I introduce a simple extension of the Fast Fourier

Transform inversion procedure in order to reduce computational errors. The generalized

two-factor log-stable RNM has a very flexible parametric form for approximating other

probability distributions. Thus, this model provides a sufficiently accurate tool for estimat-

ing the RNM from observed option prices even if the log-stable assumption might not be

satisfied. I estimate the RNM using the S&P 500 index options and find that the general-

ized two-factor log-stable model gives better performance than the Black-Scholes model

(1973), the finite moment log-stable model (Carr and Wu, 2003), and the orthogonal log-

stable model (McCulloch, 2003) in fitting the observed option prices.
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The second essay, “Parametric Risk Neutral Measure Estimation Methods: A Horse

Race”, implements 12 parametric RNM estimation methods by means of the closed-form

or characteristic function of RNM distributions and then compares the empirical perfor-

mance under three criteria—the root mean squared error (RMSE) for the goodness-of-fit,

likelihood ratio (LR) for the model selection, and the root mean integrated squared error

(RMISE) for the accuracy and stability of the estimated RNMs. The empirical results show

that the generalized two-factor log-stable model outperforms other alternative parametric

RNM estimation methods. Even though the jump diffusion model with stochastic volatili-

ties dominates other models in the RMSEs and the LR tests, it is vulnerable to over-fitting

problems due to a large number of parameters. Monte-Carlo experiments reveal that the

jump diffusion model with stochastic volatilities suffers from serious over-fitting problems

and also show that the generalized two-factor log-stable model outperforms the alternatives.

The third essay, “Nonparametric Estimation of Risk-Neutral Measures using Quartic

B-Spline CDFs with Power Tails”, proposes a new nonparametric (BSP) method which

overcomes the problems with the smoothed implied volatility smile (SML) method which

is the most widely used nonparametric technique for estimating RNMs. I model a RNM

cumulative distribution function (CDF) using quartic B-splines with power tails so that

the resulting RNM probability density function (PDF) has continuity C2 and arbitrage-free

properties. Since the number of knots is selected optimally in constructing the quartic

B-spline RNM CDF, my method avoids both overfitting and oversmoothing. To improve

computational efficiency and accuracy I introduce a 3-step RNM estimation procedure that

transforms a nonlinear optimization problem into a convex quadratic program, which is ef-

ficiently solved by numerical optimization software. The Monte-Carlo experiments suggest

that the BSP method performs considerably better than the SML method as a technique for

estimating option implied RNMs. The BSP method always produces arbitrage-free RNM

estimators and almost perfectly recovers the actual RNM PDFs for all hypothetical distri-

butional assumptions.

iii



To my parents and my family

iv



ACKNOWLEDGMENTS

I wish to thank my adviser, Professor J. Huston McCulloch, for his strong support,

faithful encouragement, and many insightful comments that made this dissertation possible.

I am indebted to my dissertation committee members, Professor Paul Evans and Professor

Pok-sang Lam for their guidance and invaluable comments which were instrumental in

completing the dissertation. I would also like to thank Professor Robert L. Kimmel who

was my advisory committee member and provided me with the theoretical foundations of

asset pricing and fiance.

I am grateful to the Bank of Korea for financial support and the Department of Eco-

nomics for offering me the Graduate Teaching Associate position as well as the JMCB

travel grant.

I would also like to thank my parents, Chunbong Lee and Okmoon Hyun, as well as

mother-in-law, Sungja Kang, for their unconditional love. Perhaps most importantly, I must

thank my dear wife, Jungmin, and two wonderful children Jiwon and Jaehyun. Without

their love and support this dissertation might never have been written.

v



VITA

July 23, 1968 . . . . . . . . . . . . . . . . . . . . . . . . Born - Jeju, Korea

1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.A. Economics, Sogang University, Korea

1993-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . Economist, The Bank of Korea

2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.A. Economics, The Ohio State University

2005-present . . . . . . . . . . . . . . . . . . . . . . . . . Graduate Teaching Associate, The Ohio
State University

FIELDS OF STUDY

Major Field: Economics

Studies in:

Financial Economics

Macroeconomics

Econometrics

vi



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapters:

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. ESTIMATION OF RISK NEUTRAL MEASURES USING THE GENERAL-
IZED TWO-FACTOR LOG-STABLE OPTION PRICING MODEL . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Option prices and the RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 State Prices, Pricing Kernels and the RNM . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Numeraire and Asset Choice Model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 FM and RNM under Random Future Marginal Utilities . . . . . . . 17

2.4 Generalized Two-Factor Log-Stable Option Pricing Model . . . . . . . . . . . . 18
2.4.1 Basic Properties of Stable Distributions . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Generalized Two-Factor Log-Stable RNM . . . . . . . . . . . . . . . . . . . 23
2.4.3 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 RNM Estimation from Option Market Prices . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 OTM Option value functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Modified Least Square Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3 Empirical results of the RNM estimation . . . . . . . . . . . . . . . . . . . . 36

vii



2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3. PARAMETRIC RISK-NEUTRAL MEASURE ESTIMATION METHODS:
A HORSE RACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Option Pricing with the RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Closed Form Distribution Approach . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Characteristic Function Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Parametric Distributions for the RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Specific Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Mixture Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Generalized Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4 Jump Diffusion Risk Neutral Processes . . . . . . . . . . . . . . . . . . . . . . 67
3.3.5 RNM Distribution Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Estimation of the Parametric RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.3 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.4 Monte-Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4. NONPARAMETRIC ESTIMATION OF RISK NEUTRAL MEASURES
USING QUARTIC B-SPLINE CDFS WITH POWER TAILS . . . . . . . . . . . . . . . 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Smoothed Implied Volatility Smile (SML) method . . . . . . . . . . . . . . . . . . . 107
4.3 Quartic B-Spline RNM CDF with Power Tails . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.1 Uniform Quartic B-Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Constructing a Quartic B-spline RNM CDF with Power Tails . . 112

4.4 Option pricing with a B-Spline RNM CDF . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5 Estimation of the RNM CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.2 3-Step Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.1 Recovering the RNM PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.2 Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



Appendices:

A. DERIVATION OF THE GENERALIZED TWO-FACTOR LOG-STABLE
RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B. DERIVATION OF THE OPTION PRICING FUNCTIONS UNDER
THE B-SPLINE RNM CDF WITH POWER TAILS . . . . . . . . . . . . . . . . . . . . . . 149

C. DERIVATION OF THE QUADRATIC PROGRAM FOR B-SPLINE RNM
ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



LIST OF TABLES

Table Page

2.1 Estimated RNM Parameters for S&P 500 Index Options . . . . . . . . . . . . . . . . . . . 45

2.2 Goodness-of-fit of the Option Pricing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Likelihood Ratio Tests for Nested Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Root Mean Squared Errors (RMSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Likelihood Ratio Tests for Non-Nested Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Likelihood Ratio Tests for Nested Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Root Mean Integrated Squared Errors (RMISE) . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5 RMISE under the Black Scholes Log-Normal Scenario . . . . . . . . . . . . . . . . . . . . 98

3.6 RMISE under the Weibull Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 RMISE under the Finite Moment Log-Stable Scenario . . . . . . . . . . . . . . . . . . . . 99

3.8 RMISE under the Mixture of Log-Normal Scenario . . . . . . . . . . . . . . . . . . . . . . . 99

3.9 RMISE under the Mixture of Log-Stable Scenario . . . . . . . . . . . . . . . . . . . . . . . . 100

3.10 RMISE under the Generalized Gamma Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.11 RMISE under the Generalized Beta Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.12 RMISE under the Orthogonal Log-Stable Scenario . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 RMISE under the Two-Factor Generalized Log-Stable Scenario . . . . . . . . . . . . 101

3.14 RMISE under the Variance-Gamma Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.15 RMISE under the Jump Diffusion Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.16 RMISE under the Jump Diffusion-Stochastic Volatility Scenario . . . . . . . . . . . 102

4.1 Kullback-Leibler Information Criterion (KLIC) Divergence . . . . . . . . . . . . . . . 137

4.2 Root Mean Integrated Squared Errors (RMISE) . . . . . . . . . . . . . . . . . . . . . . . . . . 138

x



LIST OF FIGURES

Figure Page

2.1 Illustrations of Stable Distributions with Different Parameter Values . . . . . . . . 42

2.2 Exponentially Tilted Positively Skewed Stable Densities . . . . . . . . . . . . . . . . . . 42

2.3 Option Value Functions for S&P 500 Index Options . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Loss Functions of NLS and MLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Estimated RNM Densities for S&P 500 Index Options . . . . . . . . . . . . . . . . . . . . 43

2.6 Fitted Option Prices and Volatility Smiles for S&P 500 Index Options . . . . . . 44

3.1 RNM Distribution Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Simulation Results under the Black Scholes Log-Normal Scenario . . . . . . . . . 84

3.3 Simulation Results under the Weibull Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Simulation Results under the Finite Moment Log-Stable Scenario . . . . . . . . . . 86

3.5 Simulation Results under the Mixture of Log-Normal Scenario . . . . . . . . . . . . 87

3.6 Simulation Results under the Mixture of Log-Stable Scenario . . . . . . . . . . . . . . 88

3.7 Simulation Results under the Generalized Gamma Scenario . . . . . . . . . . . . . . . 89

3.8 Simulation Results under the Generalized Beta Scenario . . . . . . . . . . . . . . . . . . 90

3.9 Simulation Results under the Orthogonal Log-Stable Scenario . . . . . . . . . . . . . 91

3.10 Simulation Results under the Two-Factor Generalized Log-Stable Scenario . 92

3.11 Simulation Results under the Variance-Gamma Scenario . . . . . . . . . . . . . . . . . . 93

3.12 Simulation Results under the Jump Diffusion Scenario . . . . . . . . . . . . . . . . . . . . 94

3.13 Simulation Results under the Jump Diffusion-Stochastic Volatility Scenario . 95

4.1 Uniform Quartic B-Spline Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xi



4.2 Quartic B-Spline RNM CDF and PDF with Powr Tails . . . . . . . . . . . . . . . . . . . . 132

4.3 BSP method: Recovering the hypothetical actual RNM PDF . . . . . . . . . . . . . . . 133

4.4 SML method: Recovering the hypothetical actual RNM PDF . . . . . . . . . . . . . . 134

4.5 BSP method: Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6 SML method: Monte Carlo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xii



CHAPTER 1

INTRODUCTION

Investors and researchers have long used option prices to infer market expectations

about the volatilities and correlations of the underlying assets by recovering risk neutral

distributions from observed option prices. A European option is a contingent claim whose

value is dependent upon the investor’s risk preference and the statistical probability mea-

sure, the so-called frequency (probability) measure (FM), which governs the empirically

observable distribution of the underlying asset prices at the maturity of the option con-

tract. In a complete arbitrage-free market, the valuation of European options is equivalent

to computing the discounted value of expected payoff under the risk-adjusted probability

measure, the so-called risk-neutral measure (RNM), regardless of the investor’s risk pref-

erence. The RNM allows us to price any derivative of the particular underlying asset with

the same time to maturity by a present value of their expected payoffs at a risk free interest

rate. Inversely, the implied RNM may be extracted from the derivative prices by reversing

the process of obtaining prices from pricing models.

Since the RNM embodies important information about market participants’ sentiments

concerning prices of the underlying asset in the future, a number of methods have been

developed to estimate the RNM from observed option prices. Generally, these methods are

divided into two broad groups of parametric and nonparametric methods. The parametric

methods make particular assumptions on the form or family of the RNM and then typically

use a non-linear regression technique to estimate the parameters of the RNM which mini-
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mizes sum of squared pricing errors. On the other hand, the nonparametric methods make

no strong assumptions about the RNM since they are flexible data-driven methods.

This dissertation implements a new parametric RNM estimation method by using the

generalized two-factor log-stable option pricing model; investigates the empirical perfor-

mance of parametric RNM estimation methods; and also proposes a new non-parametric

RNM estimation method by constructing a quartic B-spline RNM cumulative distribution

function with power tails.

In the first essay, “Estimation of Risk Neutral Measures using the Generalized Two-

Factor Log-Stable Option Pricing Model”, I construct a simple representative agent model

to provide a theoretical framework for the log-stable option pricing model and then im-

plement a new parametric method for estimating the RNM using a generalized two-factor

log-stable option pricing model.

The Generalized Central Limit Theorem (GCLT) provides support for stable distribu-

tions as a financial asset’s log return process since financial asset returns may be considered

as the multiplicatively cumulative outcome of many stochastic events. Furthermore, stable

distributions can easily accommodate heavy tails and skewness of asset returns, which are

commonly observed in the financial data. It is therefore reasonable to assume that log as-

set returns are governed by a stable distribution. In turn, asset prices themselves follow a

log-stable distribution.

I construct a simple representative agent model in an Arrow-Debreu world to provide

a theoretical framework for the log-stable option pricing model. I also introduce the gen-

eralized two-factor log-stable option pricing model by relaxing the orthogonal log-stable

assumption of McCulloch (2003). Since the RNM for generalized two-factor log-stable

uncertainty is expressed in terms of its Fourier Transform, I implement a simple extension

of the Fast Fourier Transform inversion procedure in order to reduce computational errors.

Under the generalized two-factor log-stable uncertainty assumption, the RNM for the log

of price is a convolution of two exponentially tilted stable distributions. The generalized

2



two-factor log-stable RNM has a very flexible parametric form for approximating other

probability distributions. Thus, this model provides a sufficiently accurate tool for estimat-

ing the RNM from observed option prices even if the log-stable assumption might not be

satisfied.

To illustrate the empirical performance of the generalized two-factor log-stable model, I

estimate the RNM from observed S&P 500 index option prices by using four option pricing

models: the BS log-normal model, the finite moment log-stable model, the orthogonal log-

stable model, and the generalized two-factor log-stable model. I evaluate the models on

the basis of the goodness-of-fit and find that the generalized two-factor log-stable model

outperforms the others.

In the second essay, “Parametric Risk Neutral Measure Estimation Methods: A Horse

Race”, I implement 12 parametric RNM estimation methods by means of the closed form

of RNM distributions or RNM characteristic functions and then compare the empirical

performance of the 12 parametric RNM estimation methods. First, the goodness-of-fits are

examined by means of the root mean squared errors (RMSE). Second, I perform likelihood

ratio (LR) tests for the nested and non-nested model selection. Finally, I conduct Monte-

Carol experiments to compare the accuracy and stability of the parametric RNM estimation

methods by focusing the root mean integrated squared error (RMISE) criterion.

The empirical results from the RMSEs and the LR tests show that the generalized two-

factor log-stable model and the jump diffusion model with stochastic volatilities dominate

other models. However, the jump diffusion model with stochastic volatilities has so many

free parameters that it is vulnerable to over-fitting problems, which create spurious oscilla-

tions due to sampling noises. The Monte-Carlo experiments reveal that the jump diffusion

model with stochastic volatilities suffers from serious over-fitting problems and also show

that the two-factor generalized model outperforms the alternatives.

In the final essay, “Nonparametric Estimation of Risk Neutral Measures using Quartic

B-Spline CDFs with Power Tails”, I propose a new nonparametric approach which over-
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comes the drawbacks of the smoothed implied volatility smile (SML) method which is the

most widely used nonparametric technique for estimating RNMs. First, I model a probabil-

ity distribution outside the traded strike range as power tails, which may be estimated from

far-from-the-money option prices. With the power tails, the RNM has the nonnegative tail

probabilities and also reflects information about true tail probabilities. Second, the RNM

cumulative distribution function (CDF) is constructed by using quartic B-spline functions

with power tails so that the resulting RNM PDF has continuity C2. The advantage of con-

structing the RNM CDF with power tails is that the sum of RNM probabilities is guaranteed

to be unity. Lastly, by choosing an optimum number of knots, this method can avoid both

overfitting and oversmoothing. To select optimal tradeoff between smoothness and fit, I

use a minimum number of knots which attains zero bid-ask pricing errors in constructing

the B-spline RNM CDF. This method is termed the B-spline RNM CDF with power tails

(BSP), which is nonparametric because any probability distribution is a possible solution.

This nonparametric method involves solving a highly nonlinear optimization problem

with a number of constraints due to the power tails. To improve computational efficiency

and accuracy I develop a 3-step estimation procedure that transforms a nonlinear optimiza-

tion problem into a convex quadratic program which can be efficiently solved by numerical

optimization software.

To compare the performance of the BSP method with the SML method for estimat-

ing option implied RNMs, I evaluate the two methods on the basis of the flexibility of

the estimated RNM and conduct Monte-Carlo experiments based on 12 hypothetical true

distributions. I find that the BSP method dominates the SML method as a technique for es-

timating option implied RNMs. The SML method violates the no-arbitrage constraints, and

it is significantly biased, particularly under the scenarios that the true RNM is a fat-tailed

distribution. In contrast, the BSP method always produces arbitrage-free RNM estimators,

and it almost perfectly recovers the actual RNM PDFs for all hypothetical distributional

assumptions.
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CHAPTER 2

ESTIMATION OF RISK NEUTRAL MEASURES USING THE
GENERALIZED TWO-FACTOR LOG-STABLE OPTION PRICING

MODEL

2.1 Introduction

Derivative prices provide a valuable source of information for measuring market par-

ticipants’ perception of future development of underlying asset prices. Particularly, cross

section data on options, all of which expire at the same time but have different strike prices,

contain rich information about the underlying asset price distribution in the future. Call

(put) options are only valuable to the extent that there is a chance that the underlying as-

set will be worth more (less) than the strike price so that the option comes to be exercised.

Thus, the market prices of the options provide information about the probability that market

attaches to an asset being within a range of possible prices at maturity date.

The option values are determined by the investors’ risk preference and the statistical

probability distribution of the underlying asset price, the so-called Frequency (probability)

Measure (FM).1 Alternatively, the value of option may be evaluated as a discounted ex-

pected value of the future payoffs of the option under the risk-adjusted distribution of the

underlying asset price, the so-called Risk-Neutral (probability) Measure (RNM), as in the

risk-neutral valuation of Ross (1976) and Cox and Ross (1976). The RNM allows us to
1The FM governs the empirically observable distribution of underlying asset prices. It is also called the

physical probability measure, the objective probability measure, or the real world probability measure.
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price any derivative of the particular underlying asset with the same time to maturity by a

present value of their expected payoffs in an arbitrage-free market. Inversely, the implied

RNM may be extracted from the derivative prices by reversing the process of obtaining

prices from pricing models. In a complete arbitrage-free market, a unique RNM can be

recovered from a complete set of European option prices using the relationship proposed

in Ross (1976) and Breeden and Litzenberger (1978).

The famous Black-Scholes (BS) option pricing model (1973) provides a market’s ex-

ante estimate of the underlying asset’s price distribution at maturity under the log-normal

assumption. The lognormal assumption suggests that implied volatilities2 should be con-

stant for all strike prices because only one volatility parameter governs the underlying

stochastic process on which all options are priced. However, practitioners and researchers

have noted that option prices tend to systematically violate the constant volatility assump-

tion in the BS model. Rubinstein (1985) documented the first such systematic violations

of BS model prices. The typical market volatilities implied from option prices often have

an asymmetric U-shaped structure with respect to strike prices, commonly referred to as

the ”volatility smile” or ”volatility smirk.”3 The observed deviations of implied volatilities

from the Black-Scholes assumption provide some information about the shape of the RNM

density function implied by option prices. The volatility smirk suggests that the log returns

of the underlying asset at maturity should have a skewed and leptokurtic distribution rather

than a normal distribution. Thus, it is necessary to make an alternative assumption for the

asset’s return distribution which is consistent with the implied volatility structure. To relax

the log-normal assumption of the BS model, many option pricing models have been de-

2Among the parameters entering the Black-Scholes formula only the volatility cannot be observed. How-
ever, using an observed option price an implied volatility can be computed by inverting the option pricing
formula. Often the implied volatility is called the Black-Scholes implied volatility.

3Before 1987, the implied volatility of the US equity index options, as a function of strike for a certain
maturity, behaves like a symmetric smiled curve. The phenomenon is called the implied volatility smile.
After the market crash in 1987, the implied volatility as a function of strike price is skewed towards the left.
The phenomenon is regarded as implied volatility smirk.
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veloped by introducing additional factors such as (i) the stochastic interest rate [Amin and

Jarrow (1992)]; (ii) the jump-diffusion [Bates (1991)]; (iii) the stochastic volatility [Heston

(1993)]; (iv) the stochastic volatility and stochastic interest rate [Bakshi and Chen (1997)];

(v) jump diffusion with the stochastic volatility [Bates (1996)].

However, the Generalized Central Limit Theorem (GCLT)4 provides support for sta-

ble distributions as a financial asset’s log return process since financial asset returns may

be considered as the multiplicatively cumulative outcome of many stochastic events. Fur-

thermore, stable distributions can easily accommodate heavy tails and skewness of asset

returns, which are commonly observed in the financial data. It is therefore reasonable

to assume that log asset returns are governed by a stable distribution. In turn, asset prices

themselves follow a log-stable distribution. The normal or Gaussian distribution is the most

familiar member and the only one with finite variance of the stable class, but inappropriate

for modeling extreme events because the probability of a substantial change is considerably

smaller than the frequency observed in financial asset returns. In addition, observed asset

returns are often too skewed to be normal as mentioned above. Thus, the non-Gaussian

stable distributions are preferable for modeling log returns of financial assets.

In the early 1960s the asset pricing models driven by log-stable distributions had al-

ready been proposed by Fama (1963), and Mandelbrot and Taylor (1967) as an alternative

to the log-normal assumption, but the fact that expected payoffs on assets and call op-

tions are infinite under most log-stable distributions led both Paul Samuelson (as quoted by

Smith 1976) and Robert Merton (1976) to conjecture that assets and derivatives could not

be reasonably priced under these distributions, despite their attractive feature as limiting

distributions under the Generalized Central Limit Theorem. These concerns of Samuelson

and Merton come from the misunderstanding about the shape of the RNM. The RNM cor-

4According to the Generalized Central Limit Theorem, if the sum of a large number of identically and
independently distributed (IID) random variables has a non-degenerate limiting distribution after appropriate
scaling and shifting, the limiting distribution must be a member of the stable class. See Zolotarev (1986).
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responding to a log-stable FM is not a simple location shift of the FM. Instead, the RNM in

general has a different shape with finite moments, and leads to reasonable asset and option

prices.

The option pricing model with log-stable distributions was first proposed by McCul-

loch (1978, 1985, 1987, 1996) using a utility maximization setting with the orthogonal

log-stable uncertainty assumption.5 Janicki et al. (1997), Popova and Ritchken (1998),

and Hurst et al. (1999) have developed option pricing models under the symmetric log-

stable assumption. Carr and Wu (2003) propose the finite moment log-stable (FMLS) op-

tion pricing model by making the very restrictive assumption that the RNM for log prices

have maximally negative skewness6, which is a parametric special case of the orthogonal

log-stable assumption. McCulloch (2003) reformulated the orthogonal log-stable option

pricing model in the RNM context and showed how the RNM can be derived from the

underlying distribution of marginal utilities in a simple representative agent model. The

orthogonal log-stable uncertainty assumption allows the RNM of log-stable returns to be

the convolution of two densities: one is a maximally negatively skewed stable density, and

the other is an exponentially tilted maximally positively skewed stable density. However,

the orthogonal assumption is too restrictive for the RNM to fit option prices observed in the

markets, which makes it inappropriate to estimate the RNM from observed option prices.

In this chapter, we construct the numeraire and asset choice model in an Arrow-Debreu

world to provide a theoretical framework for the log-stable option pricing model. We also

introduce the generalized two-factor log-stable option pricing model by relaxing the or-

thogonal assumption. The orthogonal assumption can be generalized by introducing two

factors which are independent maximally negatively skewed standard stable variates and
5It is assumed that the marginal utilities of numeraire and asset follow a log-stable distribution with

maximum negative skewness, respectively, and are also independently distributed so that it is called the
orthogonal log-stable uncertainty assumption.

6They assume the max-negative skewness in order to give the returns themselves finite moments. They
also incorporate max-negative skewness directly into the stable distribution describing the RNM of the un-
derlying asset without assumptions on the frequency measure (FM).
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affect both the log marginal utility of numeraire and the log marginal utility of asset. This

assumption allows the log marginal utilities to be dependent upon each other and also pro-

vides a flexible RNM probability distribution function, which is the convolution of two

exponentially tilted stable distributions. Furthermore, since the generalized two-factor sta-

ble RNM is sufficiently flexible to fit observed option prices, the generalized two-factor

log-stable option pricing model provides a new parametric method for estimating the RNM

from a cross-section of option price data.

Since there are no known closed form expressions for general stable densities, we nu-

merically evaluate log-stable options from the characteristic function (CF) by modifying

the inverse Fourier Transform approach of Carr and Madan (1999). This chapter also in-

troduces a simple extension of the Fast Fourier Transform inversion procedure in order to

reduce computational errors.

To illustrate the empirical performance of the generalized two-factor log-stable model,

we estimate the RNM from observed S&P 500 index option prices. We then conduct model

specification tests and compare the fitting performance of four models: the BS log-normal

model, the finite moment log-stable model, the orthogonal log-stable model, and the gen-

eralized two-factor log-stable model. We evaluate the models on the basis of the goodness-

of-fit and find that the generalized two-factor log-stable model outperforms the others.

The rest of the chapter is organized as follows. Section 2.2 discusses the theoretical

relationship between option prices and the RNM. Section 2.3 presents a simple general

equilibrium model for the log-stable option pricing by constructing a numeraire and asset

choice problem in the Arrow-Debreu world. Section 2.4 introduces the generalized two-

factor log-stable option pricing model. In Section 2.5 we estimate the RNM from S&P 500

index option prices and compare the performance of the models. Section 2.6 concludes.
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2.2 Option prices and the RNM

The fundamental building block in modern financial economic theory is a contingent

claim. The contingent claim is an asset or security whose return depends on the state of

nature at a point in the future. An option is such a contingent claim because the payoff of

the option depends on the price of the underlying asset at maturity date. The price of the

option therefore contains information about the market participants’ probability assessment

of the outcome of the underlying asset price at the future maturity date. This is the basic

idea behind the RNM estimation from option prices.

A particular simple and important example of the contingent claim is the Arrow-Debreu

security, which pays one unit in one specific state of nature and nothing in other state.

For each state, the prices of Arrow-Debreu securities, the so-called state-prices, are pro-

portional to the RNM probability densities for the realization of the state. In a contin-

uum of states the state prices thus are proportional with the continuous RNM probabil-

ity density function (PDF).7 Since the state prices are determined by the combination of

investors’ preferences, budget constraints, information structures, and the imposition of

market-clearing conditions, i.e., general equilibrium, the RNM contains additional infor-

mation than the statistical probability measure (FM).

A number of estimation methods have been developed to back out the RNM from op-

tion prices based on seminal work by Ross (1976), Cox and Ross (1976), and Breeden

and Litzenberger (1978). Ross (1976) showed that a portfolio8 of European call-options

can be used to construct synthetic Arrow-Debreu securities, thereby establishing a relation

between option prices and the RNM. By ruling out arbitrage possibilities, Cox and Ross

7By construction, the RNMs have a probability-like interpretation, which are nonnegative and integrating
to unity. For this reason the RNM density is sometimes called the risk-neutral probability density (RND).

8These portfolios are butterfly spreads that are composed of two long and two short call options. The
strike price of both short calls is halfway in between the strike prices of the two long call options. In the limit
as the difference between the strike prices goes to zero the butterfly spread’s payoff becomes a Dirac-Delta
function, e.g. Merton (1999).
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(1976) showed that options in general, independently of investors’ risk preferences, can be

priced as if investors were risk neutral.9 Consider a general European call option whose

payoff is max(S T − K), where S T is the value of an underlying asset on maturity date T ,

and K is the strike price. In a complete arbitrage-free market, the price of a European call

option C(K) can then be computed as the discounted value of the option’s expected payoff

under the RNM. Formally,

C(K) = e−r f T EQ [max(S T − K, 0)]

= e−r f T
∫ ∞

K
(S T − K) r(S T ) dS T , (2.1)

where r f is the risk free interest rate, r(S T ) is the RNM PDF, and EQ is the conditional

expectation on time 0 information under the RNM. As shown by Breeden and Litzenberger

(1978), the RNM density r(S T ) can be isolated by differentiating (2.1) twice, yielding10

r(S T ) = er f T ∂
2C(K)
∂K2

∣∣∣∣∣∣
K=S T

. (2.2)

Equation (2.2) states that the RNM is proportional to the second derivative of the call

pricing function with respect to the strike price.

Since the RNM might embody important information about market participants’ ex-

pectations concerning prices of the underlying asset in the future, methods have been de-

veloped to estimate the RNM PDF from observed option prices. As pointed out in Chang

and Melick (1999), Equation (2.1) and (2.2) provide two different approaches for estimat-

ing the RNMs from observed option prices. The methods based on Equation (2.1) make

assumptions about the form or family of the RNM for evaluating the integral in (2.1) and

9However, it does not mean that agents are assumed to be risk neutral. We are not assuming that investors
are actually risk-neutral and risky assets are actually expected to earn the risk-free rate of return.

10By similar reasoning, the cumulative distribution function (CDF) can be obtained by differentiating a
single time. This technique is used by Neuhaus (1995).
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then typically use a non-linear optimization method to estimate the parameters of the RNM

that minimize pricing errors, which are differences between the predicted option prices and

the observed option prices. On the other hand, the methods based on Equation (2.2) use a

variety of means to generate the call option price function C(K) and then differentiate the

function (either numerically or analytically) to obtain the RNM PDF. Computing the RNM

by (2.2) requires call prices being available for continuous strike prices, but in reality just a

few discretely spaced strike prices are available. These methods therefore entail directly or

indirectly the construction of a continuous option pricing function from observed prices.

In this chapter, we follow the first approach to estimate the RNM by making a para-

metric assumption that the log marginal utilities of numeraire and asset are affected by two

independent standard stable variates.

2.3 State Prices, Pricing Kernels and the RNM

In this section, we construct a numeraire and asset choice model in the Arrow-Debreu

general equilibrium economy to provide a theoretical framework for the relationship be-

tween state prices, pricing kernels, and the RNM.

2.3.1 Numeraire and Asset Choice Model

The fundamental investment-selection problem for an individual is to determine the

optimal allocation of his/her wealth among the available investment opportunities. Under

the expected utility maximization paradigm, each individual’s consumption and investment

decision is characterized as if he/she determines the probabilities of possible asset pay-offs,

assigns a utility index to each possible consumption outcome, and chooses the consumption

and investment policy to maximize the expected value of the index.

Consider a representative agent model in the Arrow-Debreu world, in which only a

single consumption good N (numeraire) and a single underlying asset A exist. We assume

12



that the utility function of the representative agent is random, given by:

U s(N, A)

with random marginal utility of consumption U s
N and random marginal utility of asset U s

A,

where s is a state variable which represents a state of random utility function.11

Let S T (s), which is affected by the state variable s, be the asset price at future time

T and introduce Arrow-Debreu securities which pay one unit of numeraire in specified

states, S T (s) ∈ [x, x + dx), and no payout in other states, S T (s) < [x, x + dx), with uncon-

ditional payment of p(x)dx unit of numeraire to be made at present time 0. The price of

the Arrow-Debreu security p(x)dx is called the state price, which can be thought of as the

insurance premium that the agent is prepared to pay in order for him/her to enjoy one unit

of consumption if S T (s) ∈ [x, x + dx).

We assume that the representative agent receives one unit of both numeraire and asset as

endowment; makes forward contracts on the asset at the forward price F; and buys/sells the

Arrow-Debreu securities prior to the realization of a state s of the random utility function.

The representative agent then buys/sells the asset, and consumes the numeraire after the

realization of a state s.

Thus, the representative agent faces a consumption-asset choice problem as follow-

ings:12

max
{N(s),A(s),B,G,Q(x)}s∈Ω,x∈[0,∞]

EU(N, A) ≡
∫
Ω

U
(
N(s), A(s)

)
ω(s)ds

s.t. 1 = N0 +

∫ ∞

0
p(x)(B + Q(x))dx

N0 + B + S T (s) (1 − A(s)) + (S T (s) − F) G + 1S T (s)∈[x,x+dx)Q(x) = N(s), ∀s,
11In the analysis of preference for flexibility (Kreps (1979), Dekel, Lipman and Rustichini’s (2001)) the

realization of the agent’s random utility function corresponds to the realization of his subjective (emotional)
state.

12For brevity the superscripts on the utility function U s(N, A) have been suppressed.
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where s is the state of the random utility function, s ∈ Ω; N(s) is the consumption (nu-

meraire); A(s) is the amount of asset holding;13 S T (s) is the spot price of the asset; ω(s)

is the density of the state variable s, which is conditional on time 0 information; N0 is the

amount of numeraire holding before the realization of the state; B is the amount of bond

holding; 1S T (s)∈[x,x+dx) is the payoff of the A − D security (1 if S T (s) ∈ [x, x + dx), 0 oth-

erwise); p(x)dx is the state price of A − D security; Q(x) is the amount of A − D security

holding; F is the forward price of the asset; and G is the amount of forward contracts14 on

the asset. Asset prices, forward prices, state prices, pricing kernels, and the RNM can be

easily derived from the first order conditions for the representative agent problem.

The asset price S T at future time T may be expressed as the ratio of the marginal

utilities:

S T =
UA

UN
, (2.3)

where UN is the random future marginal utility of the numeraire in which the asset is

priced, and UA is the random future marginal utility of the asset itself.

On the other hand, the forward price F at present time 0, which is the numeraire price

to be paid at time T for a contract to deliver 1 unit of the asset at future time T , may be

written as the ratio of the expected marginal utilities:

F =

∫
Ω

UAω(s)ds∫
Ω

UNω(s)ds
=

EUA

EUN
. (2.4)

The state price p(x)dx, which is the unconditional payment of p(x)dx units of numeraire

to be made at time 0 for an Arrow-Debreu security which pays 1 if S T (s) ∈ [x, x + dx),

13Here, we assume no dividend for the underlying asset. Even if we introduced the dividend, the results
would be same.

14The forward contract is an contract between two parties in which the buyer agrees to pay the seller
unconditional payment of F units of numeraire, in exchange for 1 unit of the asset at future time T .
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otherwise 0, can be decomposed in the following way:

p(x)dx = m(x) · f (x)dx, (2.5)

where f (x)dx is the probability of S T (s) ∈ [x, x + dx), i.e., the FM probability, while m(x)

is the price that we would pay to enjoy 1 unit of numeraire at time T under the condition

that we know that future’s state is going to be S T (s) ∈ [x, x+dx).15 We call m(x) the pricing

kernel, which is a stochastic discount factor for the asset pricing formula.

Since the first order conditions imply that the state price is

p(x)dx =
∫ ∞

0
p(x)dx ·

∫
Ω

1S T (s)∈[x,x+dx) UN
ω(s)
f (x) ds∫

Ω
UN ω(s)ds

f (x)dx

=
1

R f

E(UN |UA/UN = x)
EUN

f (x)dx,

where R f (= er f T )16 is the gross risk-free interest rate to time T , the pricing kernel m(x) is

taken to be:

m(x) =
p(x)dx
f (x)dx

=
1

R f

E(UN |UA/UN = x)
EUN

. (2.6)

Equation (2.6) shows how the preferences define the pricing kernel, translating the state

changes into changes in the MRS between conditional and unconditional expected marginal

utilities17 of consumption of the representative agent.

15It is very important to note that although the agent defines m(x) as if she knew S T , it will not be equal to
the price of the bond. This is because different states imply different effects on his/her utility.

16In the Arrow-Debreu economy, the bond price is determined by the sum of state prices:

1
R f

= e−r f T =

∫ ∞

0
p(x)dx.

17Rigorously, the unconditional expected marginal utility, EUN , is a conditional expectation based on
information at time 0. On the other hand, the conditional expected marginal utility, E(UN |UA/UN = x), is
a conditional expectation on time 0 information and the fact that the asset price is going to be x, S T (s) ∈
[x, x + dx).
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Consider a European call option that has state dependent cash flows max(x−K, 0) when

S T (s) ∈ [x, x+dx). The price of this call option C(K) may be determined by the state prices

and the possible cash flows:

C(K) =
∫ ∞

0
max(x − K, 0) p(x) dx. (2.7)

Substituting (2.5) into (2.7), we have

C(K) =
∫ ∞

0
m(x) max(x − K, 0) f (x) dx, (2.8)

= E[m(x) max(x − K, 0)]

where E is the conditional expectation on time 0 information under the FM f (x). Equa-

tion (2.8) implies that the option price should equal the expected discounted value of the

option’s payoff, using the investor’s stochastic marginal utility to discount the payoff.

Let r(x) be the density of the RNM at time 0 for state-contingent claims at time T . By

definition of the RNM,

C(K) =
1

R f

∫ ∞

0
max(x − K, 0) r(x) dx (2.9)

=
1

R f
EQ[max(x − K, 0)]

where EQ is the conditional expectation on time 0 information under the RNM r(x). Com-

bining (2.6), (2.8) and (2.9), we finally get the RNM PDF:

r(x) = R f p(x) = R f m(x) f (x)

=
E(UN |UA/UN = x)

EUN
f (x). (2.10)

Equation (2.10) states that the RNM is simply the FM, adjusted by the risk-free interest
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rate and the pricing kernel.

Further, combining (2.3), (2.4) and (2.10) yields the mean-forward price equality con-

dition (i.e., the mean of the risk neutral distribution should equal the currently observed

forward price of the underlying asset):

F =
EUA

EUN
=

∫ ∞

0
x r(x) dx. (2.11)

2.3.2 FM and RNM under Random Future Marginal Utilities

To derive the RNM from the FM and pricing kernels, we start from the joint distribu-

tions of the random future marginal utilities UN and UA instead of assuming the random

utility function U s(N, A) explicitly.

Let g(UN ,UA) be the joint PDF of UN and UA conditional on information at present

time 0. Equation (2.3) implies that the FM cumulative distribution function (CDF) of S T is

F(x) = Pr(S T ≤ x) = Pr(UA ≤ xUN)

=

∫ ∞

0

∫ xUN

0
g(UN ,UA) dUAdUN .

Therefore, the FM probability density function (PDF) for S T is

f (x) =
∫ ∞

0
UN g(UN ,UA) dUN

=
1
x

∫ ∞

−∞

h(vN , vN + log x) dvN ,

where h(vN , vA) = UNUA g(UN ,UA) is the joint PDF of vN = log UN and vA = log UA.

The FM, in terms of the PDF for log S T , is then

ϕ(z) = ez f (ez)

=

∫ ∞

−∞

h(vN , vN + z) dvN ,
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where z ≡ log x . Since

E(UN |UA/UN = x) = E(evN |vA = vN + log x)

=

∫ ∞
−∞

evN h(vN , vN + log x) dvN∫ ∞
−∞

h(vN , vN + log x) dvN

,

Equation (2.10) follows that

r(x) =
E(UN |UA/UN = x)

EUN
f (x)

=
1

xEUN

∫ ∞

−∞

evN h(vN , vN + log x) dvN .

The RNM PDF for the log of price is then

q(z) = ez r(ez)

=
1

EUN

∫ ∞

−∞

evN h(vN , vN + z) dvN . (2.12)

2.4 Generalized Two-Factor Log-Stable Option Pricing Model

To derive a generalized two-factor log-stable RNM PDF, we rely on basic properties of

stable distributions. In this section, we first present a brief review of the basic properties of

stable distributions, which are essential to construct the log-stable option pricing model.

2.4.1 Basic Properties of Stable Distributions

Stable distributions18 are a rich class of probability distributions that allow skewness

and heavy tails and have many interesting mathematical properties. According to the Gen-

eralized Central Limit Theorem, if the sum of a large number of i.i.d. random variates has

18The stable distribution was developed by Paul Lévy, so it is also called the Lévy skew alpha-stable
distribution.
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a limiting distribution after appropriate shifting and scaling, the limiting distribution must

be a member of the stable class. A random variable X is stable if for X1 and X2 independent

copies of X and any positive constants a and b,

a X1 + b X2
d
= c X + d (2.13)

holds for some positive c and some d ∈ R , where the symbol d
= means equality in distribu-

tion, i.e., both expressions have the same probability law. Equation (2.13) implies that the

shape of the distribution is preserved up to scale and shift under addition.

Stable distributions S (x;α, β, c, δ) are determined by four parameters: the characteristic

exponent α ∈ (0, 2], the skewness parameter β ∈ [−1, 1], the scale parameter c ∈ (0,∞),

and the location parameter δ ∈ (−∞,∞). If X has a distribution S (x;α, β, c, δ), we write

X ∼ S (x;α, β, c, δ) and use s(x;α, β, c, δ) for the corresponding densities.

The characteristic exponent governs the tail behavior and indicates the degree of lep-

tokurtosis. When α = 2, its maximum permissible value, the normal distribution results,

with variance 2c2. For α < 2, the population variance is infinite. When α > 1, the mean of

the distribution E(X) is δ. For α ≤ 1, the mean is undefined. The skewness parameter β is 0

when the distribution is symmetrical, positive when the distribution is skewed to the right,

and negative when the distribution is skewed to the left. As α approaches 2, β loses its

effect, and the distribution becomes symmetrical regardless of β. The location parameter δ

merely shifts the distribution left or right, and the scale parameter c expands or contracts

the distribution about δ in proportion to c. Figure 2.1 depicts stable densities with differ-

ent parameter values. The left panel shows bell-shaped symmetric stable densities with

α = 1.3, 2. When α = 2, the normal density results as mentioned above. As α decreases,

three things occur to the density: the peak gets higher, the regions flanking the peak get

lower, and the tails get heavier. The right panel shows maximally skewed stable densities

with α = 1.5 and β = −1, 1. The stable density is max-negatively skewed when β = −1,

and max-positively skewed when β = 1.
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Since there are no known closed form expressions for general stable densities19, the

most concrete way to describe all possible stable distributions is through the characteristic

function (CF) or Fourier transform (FT).20 The log CF of the general stable distribution

S (x;α, β, c, δ) is

log c fα,β,c,δ(t) = log E[eiXt]

=


iδt − |ct|α

[
1 − iβsgn(t) tan

(
πα
2

)]
, α , 1

iδt + |ct|
[
1 + iβ 2

π
sgn(t) log |ct|

]
, α = 1,

where α ∈ (0, 2] is the characteristic exponent, β ∈ [−1, 1] is the skewness parameter,

c ∈ (0,∞) is the scale parameter, and δ ∈ (−∞,∞) is the location parameter.21

Two properties of stable distributions are important for deriving the generalized two-

factor log-stable RNM:

19There are only three cases where one can write down closed form expressions for the density: stable-
normal, Cauchy and Lévy distributions.

20For a random variable X with density function f (x), the characteristic function is defined by

c f (t) = E[eiXt] =
∫ ∞

−∞

eiXtdx.

The function c f (t) completely determines the distribution of X.

21The sgn function is defined as

sgn(t) =


−1, t < 0
0, t = 0
1, t > 0
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Property 1: Convolution22

X =
n∑

j=1

a jX j, X j ∼ ind. S (α, β j, c j, δ j) ⇒

X ∼
n
N

j=1
S (α, sgn(a j)β j, |a j|c j, a jδ j)

∼ S (α, β, c, δ),

where

β =

∑n
j=1 |a j|

αcαj sgn(a j)β j

cα
,

c =

 n∑
j=1

|a j|
αcαj


1/α

, and

δ =

n∑
j=1

a jδ j.

Property 2: Two-sided Laplace transform

X ∼ S (α, β, c, δ), λ complex with Re(λ) ≥ 0 ⇒

Ee−λX =


−∞, α < 2, β < 1

exp
(
−λδ − λαcα sec

(
πα
2

))
, β = 1,

or equivalently,

EeλX =


∞, α < 2, β > −1

exp
(
λδ − λαcα sec

(
πα
2

))
, β = −1.

22The convolution of f and g is written as fNg. If X and Y are two independent random variables with
probability distributions f and g, respectively, then the probability distribution of the sum z = X + Y is given
by the convolution:

( fNg)(z) =

∫
f (τ)g(z − τ)dτ.
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To describe the generalized two-factor log-stable RNM, it is also necessary to intro-

duce an exponentially tilted stable distribution.23 An exponentially tilted positively skewed

stable density with parameters α, c, δ, and λ > 0 has density

ts+(x;α, c, δ, λ) = ke−λxs(x;α,+1, c, δ),

where k is a normalizing constant to be determined. Its CF, using Property 2(Two-sided

Laplace transform) with α , 1, is

c fts+(t) = k
∫ ∞

−∞

eixte−λxs(x;α,+1, c, δ)dx

= k
∫ ∞

−∞

e−(λ−it)xs(x;α,+1, c, δ)dx

= k exp
(
−(λ − it)δ − (λ − it)αcα sec

(
πα

2

))
.

Since for any CF, c f (0) ≡ 1 , we must have

k = exp
(
λδ + λαcα sec

(
πα

2

))
so that

log c fts+(t) = iδt + cα sec
(
πα

2

)
(λα − (λ − it)α).

Similarly, an exponentially tilted negatively skewed stable density with parameters

α, c, δ, and λ > 0 is expressed as follows:24

ts−(x;α, c, δ, λ) = keλxs(x;α,−1, c, δ),

k = exp
(
−λδ + λαcα sec

(
πα

2

))
, and

log c fts−(t) = iδt + cα sec
(
πα

2

)
(λα − (λ + it)α).

23Tilted stable distributions have already been used in the context of option pricing by Vinogaradov (2002),
and Createa and Howison (2003).

24It is not possible to tilt a stable distribution with β ∈ (−1, 1) in either direction, since then∫
eλxs(α, β, c, δ)dx would be infinite for any value of λ , 0.
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Figure 2.2 illustrates exponentially tilted positively skewed stable densities with differ-

ent tilting parameters λ = 0, 0.5, and 1. As λ increases, the upper tails get thinner. In

contrast, for the exponentially tilted negatively skewed stable densities, as λ increases, the

lower tails get thinner.

2.4.2 Generalized Two-Factor Log-Stable RNM

The generalized two-factor log-stable option pricing formula is based on distributional

assumptions on the log marginal utilities of the asset vA(≡ log UA) and of the numeraire

vN(≡ log UN). Let the two factors u1 and u2 be independent maximally negatively skewed

standard stable variates25, which affect both vA and vN with a scale matrix C and a location

vector D:  vA

vN

 = C

 u1

u2

 + D

=

 cA1 cA2

cN1 cN2


 u1

u2

 +
 δ0

 , u j ∼ ind.S (α,−1, 1, 0), (2.14)

where ∀ci j ≥ 0, i = A,N and j = 1, 2.26 By Property 1 (Convolution) of stable distributions,

both vA and vN are also maximally negatively stable with different scale parameters cA and

25In order for the expectations in (15) to be finite, vN and vA must both be maximally negatively skewed,
i.e., have β = −1. Therefore we have no choice but to make this assumption in order to evaluate log stable
options. Nevertheless, this restriction does not prevent log S T itself from having the general stable distribution
as in (2.16).

26The scale parameters ci j are not annualized. If annualized scale parameters are known, the scale param-
eters ci j can be calculated from the annualized one:

ci j = c̄i jT 1/α,

where c̄i j are the annualized scale parameters and T is the remaining time to maturity.
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cN , but the same exponent α:

vA = cA1u1 + cA2u2 + δ ∼ S (α,−1, cA, δ) and

vN = cN1u1 + cN2u2 ∼ S (α,−1, cN , 0),

where cA = (cαA1 + cαA2)1/α and cN = (cαN1 + cαN2)1/α. By Property 2 (Two-sided Laplace

transform) of stable distributions, the expected marginal utilities of numeraire and asset are

taken to be

EUA = EevA = eδ−cαA sec( πα2 ) and

EUN = EevN = e−cαN sec( πα2 ). (2.15)

Using the forward price equation (2.4), we have

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ),

which is the finite mean of the generalized two-factor log-stable RNM distribution by the

mean-forward price equality condition (2.12).

Since vA and vN are both stable with a same characteristic exponent α , Property 1

implies that the FM for log S T also follows a stable distribution with the same exponent

α:27

log S T = vA − vN =

2∑
j=1

(cA j − cN j)u j + δ

∼
2
N

j=1
S

(
α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
∼ S (α, β, c, δ) , (2.16)

27Carr and Wu (2003) evaluate the option price under log-stable uncertainty, but only by making the very
restrictive assumption that log returns have maximally negative skewness, i.e β = −1, in order to give the
returns themselves finite moments. They incorporate maximum negative skewness directly into the stable
distribution describing the RNM of the underlying asset.
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where

β =

∑2
j=1 sgn(cN j − cA j)|cN j − cA j|

α

cα
,

c =

 2∑
j=1

|cN j − cA j|
α


1/α

,

δ1 = δ, and δ2 = 0.

Finally, the RNM PDF (2.12) and model (2.14) imply that the RNM PDF for log S T is

q(z) =
1

EUN

∫ ∞

−∞

evN h(vN , vN + z)dvN

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
· s(u2;α,−1, 1, 0)

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
du2. (2.17)

The derivation of (2.17) may be found in Appendix A. The RNM PDF q(z) proves to be a

convolution of two exponentially tilted stable distributions:

q(z) =
2
N

j=1
tssgn(cN j−cA j)

(
z j;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

(2.18)

where ts(·) is the exponentially tilted stable density. Since the closed form expression of

stable distributions does not exist, the RNM PDF (2.18) can be described by its log CF:28

log c fq(t) = iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+ |cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α]
.(2.19)

The proof of (2.18) and the derivation of (2.19) are given in Appendix A.

The parameters of the two exponentially tilted stable distributions are determined by

28Unless β = 0, the case α = 1 require special treatment of both the CF and the location parameter.
Therefore, the RNM PDF equation may not apply in that special case. In practice, however, this does cause
problems because α = 1 is irrelevant for an asset return’s distribution.
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the relative magnitude of elements in the scale matrix C: The skewness parameter β j is

determined by the sign of cN j− cA j; the scale parameter c j depends on the absolute value of

cN j − cA j; and the tilting factor λ j is also affected by the relative magnitude of cN j and cA j.

The location parameter δ of the RNM can be solved from the mean-forward price equality

condition:

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ) = S 0e(r f−d)T , (2.20)

where S 0 is the asset price at time 0, d is the dividend rate of asset, and S 0e(r−d)T is the

implicit forward price. This condition always holds if there are no arbitrage opportunities.

Solving (2.20) for the location parameter δ of the RNM yields

δ = log
(
S 0e(r f−d)T

)
− (cαN − cαA) sec

(
πα

2

)
.

Finally, the generalized two-factor log-stable RNM of log S T may be simply expressed as

a function of the five free parameters (α, cN1, cN2, cA1, cA2):

q(z) = q(z;α, cN1, cN2, cA1, cA2|S 0, r f , d,T ),

where S 0 is the asset price at time 0, r f is the risk-free interest rate, d is the dividend rate

of asset, and T is the remaining time to maturity.

The generalized two-factor log-stable RNM has a very flexible parametric form with

five free parameters for approximating other probability distributions, so it provides a new

parametric method for estimating the RNM from a cross-section of option data. As shown

in (18), the generalized two-factor log-stable RNM q(z) has two additional tilting parame-

ters which control the shapes of upper and lower tail respectively. This model thus allows

a considerably accurate tool for estimating the RNM from the observed option prices even

if the log-stable assumption might not be satisfied.
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2.4.3 Special cases

The Black-Scholes log-normal Model (1973), the finite moment log-stable Model [Carr

and Wu (2003)] and the Orthogonal log-Stable Model [McCulloch (1978, 1985, 1987, and

2003) and Hales (1997)] may be considered as special cases of the generalized two-factor

log-stable model. In this section we describe these three models under the generalized

two-factor log-stable model framework.

a. Orthogonal Log-Stable Model

The orthogonal log-stable model of McCulloch (1978, 1985, 1987, 1996 and 2003) and

Hales (1997) assumes that vA and vN are independent with

vA ∼ S (α,−1, cA, δ) and

vN ∼ ind. S (α,−1, cN , 0).

The orthogonal assumption can be expressed as a diagonal scale matrix in terms of the

generalized two-factor framework:

 vA

vN

 =
 cA 0

0 cN


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α,−1, 1, 0), j = 1, 2.

By the convolution property of stable distributions, the FM PDF of the orthogonal log-

stable model, which is a convolution of max-positively stable density and max-negatively

skewed density, is also a stable distribution:

ϕ(z) = s(z1 : α,−1, cA, δ)Ns(z2 : α, 1, cN , 0)

= s(z : α, β, c, δ),

where β = cαN−cαA
cα and c = (cαN + cαA)1/α.
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The generalized log-stable RNM equation (2.18) implies that the RNM of the orthog-

onal log-stable model is a convolution of the max-negatively skewed stable density and

exponentially tilted max-negatively skewed stable density:

q(z) =
2
N

j=1
ts

(
z j;α, sgn(cN j − cA j), |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

= ts−(z1;α, cA, δ, 0)Nts+(z2;α, cN , 0, 1)

= s(z1;α,−1, cA, δ)Nts+(z2;α, cN , 0, 1).

With the mean-forward price equality condition:

F =
EUA

EUN
= eδ+(cαN−cαA) sec( πα2 ) = S 0e(r f−d)T ,

the location parameter of the RNM can be solved as:

δ = log(S 0e(r f−d)T ) − βcα sec
(
πα
2

)
.

Therefore, the orthogonal stable RNM of log S T is directly expressed as a function of the

three parameters (α, β, c) of the FM29:

q(z) = q(z;α, β, c|S 0, r f , d,T ).

b. Finite Moment Log-Stable Model

The finite moment log-stable model of Carr and Wu (2003) assumes that the RNM is a

max-negatively skewed log-stable distribution, i.e., β = −1. When β = −1, the RNM and

FM have common density:

q(z) = ϕ(z) = s
(
z;α,−1, c, log F + cα sec

(
πα

2

))
.

29The free parameters (β, c) are equivalent to (cA, cN), since β = cαN−cαA
cα and c = (cαN + cαA)1/α.
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The finite moment assumption, β = −1, can be expressed as the following scale matrix

under the generalized two-factor framework:

 vA

vN

 =
 c 0

0 0


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α,−1, 1, 0), j = 1, 2.

With the mean-forward price equality condition:

F =
EUA

EUN
= eδ−cα sec( πα2 ) = S 0e(r f−d)T ,

the location parameter of the RNM can be solved as:

δ = log(S 0e(r f−d)T ) + cα sec
(
πα
2

)
.

Therefore, the finite moment log-stable RNM of log S T is simply expressed as a function

of the two free parameters (α, c):

q(z) = q(z;α, c|S 0, r f , d,T ).

c. Black-Scholes Log-Normal Model

The Black-Scholes option pricing model (1973) assumes the log price follows a normal

distribution. When α = 2, a stable distribution results normal with mean δ and variance

σ2 = 2c2. Therefore, the log-normal case can be considered as a special case of the general-

ized two-factor stable model. The log-normal assumption can be expressed as a generalized

form: vA

vN

 =
 cA1 0

cN1 cN2


 u1

u2

 +
 δ0

 , u j ∼ ind. S (α = 2,−1, 1, 0), j = 1, 2.
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We can pin down the location parameter from the mean-forward price equality condition:

δ = log F − (cαN − cαA) sec
(
πα

2

)
= log F −

1
2

(
c2

N1 − c2
A1 + c2

N2

(cN1 − cA1)2 + c2
N2

)
σ2.

Thus, the FM of log S T is

ϕ(z) = s(z;α = 2, β, c, δ)

= φ(z; δ, σ2 = 2c2)

= φ

(
z; log F −

1
2

(
c2

N1 − c2
A1 + c2

N2

(cN1 − cA1)2 + c2
N2

)
σ2, σ2

)
.

The RNM of log S T is

q(z) = tssgn(cN1−cA1)

(
z1; 2, |cN1 − cA1|, δ,

∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣) Nts+ (z2; 2, cN2, 0, 1)

= φ

(
z; log F −

σ2

2
, σ2

)
,

where F = e(r f−d)T S 0 and φ(·) is the PDF of normal distributions.30 Accordingly, the Black-

Scholes log-normal RNM can be expressed as a function of only one free parameter σ:

q(z) = q(z;σ|S 0, r, d,T ).

30In the log-normal case, the RNM and FM therefore both have the same Gaussian shape in terms of log
price, with the same variance. They differ only in location, by the observable risk premium1 − c2

N1 − c2
A1 + c2

N2

(cN1 − cA1)2 + c2
N2

 σ2

2

that is determined by the scale matrix, i.e., by the relative standard deviation of log UN and log UA. This
comes about because a exponentially tilted normal distribution is just another normal back again, with same
variance but different mean.
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2.5 RNM Estimation from Option Market Prices

In this section, we estimate the conditional RNM from a cross-section of S&P 500

index option prices using the BS lognormal model, the finite moment log-stable model, the

orthogonal stable model, and the generalized two-factor stable model under the modified

least square criterion. We also conduct a simple likelihood ratio test for the model selection

among the competing nested models.

2.5.1 OTM Option value functions

Let C(K) be the value, in units of numeraire to be delivered at time 0, of a European call

option which gives right to the holder to purchase 1 unit of the asset in question at time T at

strike price K. By the definition of the RNM, its value must be the discounted expectation

of its payoff under either r(x) or q(z):

C(K) = e−r f T
∫ ∞

0
max(x − K, 0)r(x)dx

= e−r f T
∫ ∞

−∞

max(ez − K, 0)q(z)dz. (2.21)

Similarly, let P(K) be the value of a European put option which allows the owner to sell

one unit of the asset at time T at strike price K so that

P(K) = e−r f T
∫ ∞

0
max(K − x, 0)r(x)dx

= e−r f T
∫ ∞

−∞

max(K − ez, 0)q(z)dz. (2.22)

Define the out-of-the-money (OTM) option value function by

V(K; θ) =


P(K; θ) for K < F

C(K; θ) for K ≥ F
, (2.23)
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where θ is the vector of the RNM parameters. Using the put-call parity31, we can rewrite

(2.23) as:

V(K; θ) = min
(
C(K; θ), P(K; θ)

)
. (2.24)

The OTM option value function V(K) is continuous at F, and is also monotonic and convex

on either side of F under the arbitrage-free condition. Figure 2.3 illustrates option value

functions using S&P 500 index options on Sep 13, 2006 (F=1,325.7). The left panel shows

the call option value function C(K) and the put option value function P(K). The right panel

shows the OTM option value function V(K) = min(C(K), P(K)).

Since there are no known closed form expressions for general stable densities, the op-

tion value function V(K) may be evaluated through the characteristic function (CF) or

Fourier transform (FT). With no loss of generality, we may measure the asset in units such

that F = 1. Modifying Carr and Madan (1999),32 the Fourier Transform of v(z) ≡ V(ez) is

then

φv(t) = e−rT

[
c fq(t − i) − 1

it − t2

]
, t , 0, (2.25)

where c fq is the CF of the RNM pdf q(z). When t = 0, this formula takes the value 0/0,

but the limit may be evaluated by means of l’Hôpital’s rule. In the case of the generalized

31In the absence of arbitrage opportunities, the following relationship holds for European option:

C(K) + e−r f T K = P(K) + e−dT S 0,

so that C(K) = P(K) at K = F. The put-call parity implies that C(K), P(K), and V(K) are equivalent, so we
use V(K) instead of C(K) and P(K).

32Carr and Madan in fact base their (14) on a function which equals P(K) when K is less than the spot
price S 0 and C(K) otherwise. This unnecessarily creates a small discontinuity which can only aggravate the
Fourier inversion. The present function V(K) avoids this problem, with the consequence that (2.25) is in fact
somewhat simpler than their (14).

32



two-factor generalized log-stable model, this becomes

φv(0) = e−rT
c f ′q(−i)

i

= e−rT


− 2∑

j=1

(c α
N j − c αA j ) sec

(
πα

2

) + α 2∑
j=1

sgn(cN j − cA j)|cN j − cA j|
α sec

(
πα

2

)
·

(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)
)α−1 .

Unfortunately, however, the function v(z) has a cusp at z = 0 corresponding to that in

V(K) at K = F, so that numerical inversion of (2.25) by means of the discrete inverse FFT

results in pronounced spurious oscillations in the vicinity of the cusp. The problem is that

the ultra-high frequencies required to fit the cusp and its vicinity are omitted from the dis-

crete Fourier inversion, which only integrates over a finite range of integration instead of the

entire real line. Increasing the range of integration progressively reduces these oscillations,

but never entirely eliminates them. However, the fact that increasing the range of integra-

tion does give improved results allows the FFT inversion results to be “Romberged” to give

satisfactory results, as follows: Start with a large number of points N = N1, with a log-price

step ∆z = c
√

2π/N (or a round number in that vicinity if desired), and a frequency-domain

step ∆t = 2π/(N∆z). Then quadruple N to N2 = 4N1, and then again to N3 = 16N1, halving

both step sizes each time, so as to double the range of integration each time, while obtain-

ing values for the original z grid. Each of the original N1 z values now has 3 approximate

function values v1, v2, and v3 that are converging on the true value at an approximately

geometric rate as the grid fineness and range of integration are successively doubled. The

true value may then be approximated to a high degree of precision at each of these points

simply by extrapolating the geometric series implied by the three values to infinity:

v∞ = v3 +
ρ

1 − ρ
(v3 − v2),
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where ρ = (v3 − v2)/(v2 − v1). The residual error may then be conservatively estimated by

computing v0 using N0 = N1/4, repeating the above procedure using v0, v1, and v2, and

assuming that the absolute discrepancy between the two results is an upper bound on the

error. It was found that for α ≥ 1.3, N1 = 210 usually gives a maximum estimated error

less than .0001 relative to F = 1, though occasionally N1 = 214 is necessary.33 Put-call

parity may then be used to recover C(K) and/or P(K), as desired, from V(K) ≡ v(log K).

The above procedure gives the value of v(z) at N1 closely spaced values of z, and therefore

V(K) at N1 closely spaced values of K. Unfortunately, however, these will ordinarily not

precisely include the desired exercise prices, and because of the convexity of V(K) on each

side of the cusp, linear interpolation may give an interpolation error in excess of the Fourier

inversion computational error. Nevertheless, cubic interpolation on C(K) and/or P(K) using

two points on each side of each desired exercise price gives very satisfactory results.

2.5.2 Modified Least Square Criterion

By using the OTM option value function (2.23), option pricing models can be expressed

as a non-linear regression with the parameters of the RNM:

Vi = V(Ki; θ|S 0, r f , d,T ) + εi, i = 1, . . . ,N

= Vi(θ) + εi, (2.26)

where θ is the vector of the RNM parameters, Vi is an observed OTM option price, Vi(θ) is

the theoretical OTM option price, and εi is the pricing error of the OTM option with strike

price Ki. Consequently, we may apply non-linear regression techniques to the model (2.26)

in order to estimate the parameters θ of the RNM.

33For the financially less relevant values of α < 1.3, the infinite first derivative of the imaginary part of
(2.25) at the origin causes additional computational problems. These problems become even worse for α < 1,
when the imaginary part becomes discontinuous at the origin.
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If we observe transaction prices for all options across strike prices at the same time,

the Non-linear Least Squares (NLS) criterion would be proper for estimating the RNM

parameters:

min
θ∈Θ

L(S S E) =
N∑

i=1

(Vi − Vi(θ))2

= ε>ε,

where ε = [ε1 ε2 · · · εN]> is the vector of pricing errors.34

Unfortunately the transaction prices are recorded with substantial measurement errors

due to non-synchronous trading so that we instead use bid and ask quote prices. The bid-ask

average prices have been used as an alternative of the transaction prices in many studies.

The NLS criterion, however, does not fully exploit the additional information coming from

the individual bid and ask quote prices because it only utilizes the bid-ask average OTM

option prices. In our study we therefore use a modified least squares (MLS) criterion under

which the loss value (Modified SSE, MSSE) increases only when the theoretical prices fall

outside of the bid-ask price range. However, since multiple solutions are possible under the

MLS criterion, we add an arbitrary small ordinary least square term to guarantee a unique

solution:

min
θ∈Θ

L(MS S E) =
N∑

i=1

[ (
VB

i − Vi(θ)
)2

+
+

(
Vi(θ) − VA

i

)2

+
+ λ

(
V̄i − Vi(θ)

)2 ]
,

where VB
i is the OTM option bid price, VA

i is the OTM option ask price, V̄i = (VB
i + VA

i )/2

is the OTM option bid-ask average price at strike price Ki, X+ = max(0, X), and λ is a small

constant35. Figure 2.4 illustrates the loss functions based on the two criteria. The left panel

34We cannot use the weighted least square criterion because the variance structure of pricing errors is not
known. To construct variance structure of pricing errors, it is necessary to consider different source of pricing
errors: non-synchronous trading, price discreteness, and the bid-ask bounce. Unfortunately, there is no simple
or generally accepted manner for modeling all of these effects.

35In our study, we set λ = 0.01.
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shows the NLS loss function, and the right panel presents the MLS loss function.

2.5.3 Empirical results of the RNM estimation

a. Data

We have estimated the parametric risk-neutral density using the cross-section data on

the S&P 500 index options traded at the Chicago Board of Options Exchange (CBOE). The

transaction prices are recorded with substantial measurement errors due to non-synchronous

trading so that we use daily closing bid and ask price quotes. We have obtained 100 sets of

cross-section data on the S&P 500 index options which are transacted with 2 months to ma-

turity in 2006. We have filtered the data using the arbitrage violation conditions since the

existence of arbitrage possibilities can lead to negative risk-neutral probabilities. By check-

ing the monotonicity and convexity of the option pricing functions, we may eliminate op-

tion prices which violate the arbitrage-free condition. After eliminating the violating data,

we have 8,468 option price quotes.

Since risk-free interest rates for a time of maturity exactly matching the options’ time

to maturity generally can not be observed, we compute implicit risk-free interest rates from

the European put-call parity as suggested by Jackwerth and Rubinstein (1996). The esti-

mation of the RNM is conducted by using the four models separately for each cross section

data set.

b. Goodness-of-fit

In this section, we compare the goodness-of-fit of the RNM estimations of the four

option pricing models: the BS log-normal option pricing model (BS), the finite moment

log-stable option pricing model (FS), the orthogonal log-stable option pricing model (OS),

and the generalized two-factor log-stable option model (GS). If option prices are exact

and continuous, and if the pricing model holds exactly for every single option, the RNM
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parameters can be recovered with zero pricing errors between the estimated and observed

prices. However, model and market imperfections introduce pricing errors. In order to

compare these pricing errors, we first estimate the RNM by applying the four option pricing

models to S&P 500 index (European) options under the modified least square criterion

(MLS). Then, the four models are compared by examining the pricing errors associated

with each model in terms of the Modified Root Mean Squared Error (MRMSE), which

represents the average pricing error:

MRMS E =

√
1

N − k
MS S E,

where MS S E is the modified sum of squared errors, N is the number of strike prices, i.e.,

the number of observations, and k is the number of free parameters of the RNM.

The estimated RNM density functions for the four models are illustrated in Figure 2.5,

and the estimated average RNM parameters are reported in Table 2.1. Also, given the

RNM density from the each model, Equation (2.21) and (2.22) give predicted values for

the option prices. These model predictions and the actual bid-ask prices are plotted in the

upper panels in Figure 2.6 for an illustrative date. We calculate the volatility smiles from

the predicted prices and the actual bid-ask prices, and they are plotted in the lower panels in

Figure 2.6. Since the Black-Scholes option price is monotonically increasing in volatility,

deviations of estimated volatilities from actual implied volatilities are also related with

pricing errors of the option pricing model. Options with actual implied volatility above

(below) the estimated volatility are underpriced (overpriced) by the option pricing model.36

The fitting performances of the four models are reported in Table 2.2 in terms of the

Modified Root Mean Squared Error (MRMSE). Table 2.2 shows that the GS model outper-

forms the BS, FS and OS model with respect to the goodness-of-fit for all data sets. Note

36This is based on the assumption that there is no mispricing in the observed option prices. If the model is
correctly specified and the observed option prices are mispriced, options with actual implied volatility above
(below) the estimated volatility are overpriced (underpriced).

37



that the fitting performance of the FS and OS models are identical. This implies that there is

no additional improvement from introducing an additional parameter cN of the OS model

relative to the FS model. That is to say, the S&P 500 returns have maximally negative

skewness.

The BS model overprices options around the ATM price, while it underprices options

with relatively large or small exercise prices. The FS and OS models perform relatively

better around the ATM price, but exhibits pricing bias in both the upper and lower tails. On

the other hand, the GS model shows almost perfect goodness-of-fit for all exercise prices.

The first terms of the MSSE are almost zero for the GS model. This result indicates that

the theoretical option prices based on the estimated RNM could fall into the bid-ask option

price range across almost all strike prices.

c. Likelihood Ratio Test

Using the Kullback-Leibler Information Criterion (KLIC), Vuong (1989) proposed sim-

ple likelihood-ratio tests for the model selection among the competing models, which are

non-nested or nested. We assume that the pricing errors are i.i.d. normally distributed

with variance σ2. Under such assumptions, minimizing the sum of squared pricing error

is equivalent to maximizing the log likelihood function. Thus, the NLS estimates can be

regarded as maximum likelihood estimates.37

Consider two competing models F and G whose log density functions are given by,

respectively:

log f (eθi; θ) = −
1
2

log
(
2πσ2

f

)
−

e2
θi

2σ2
f

and

log g(eγi; γ) = −
1
2

log
(
2πσ2

g

)
−

e2
γi

2σ2
g
,

37Under the MLS criterion it is not possible to compute the LR statistics so that we use NLS criterion for
the model selection test.
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where eθi and eγi denote the pricing error on the ith option under the model F and G,

respectively, and θ and γ are the parameter vectors of F and G, respectively. Since the

maximum likelihood estimate for σ2 is simply the mean squared pricing error: mse =

e>e/N, the log likelihood functions are given by, respectively:

L f (eθ; θ) =
N∑

i=1

log f (eθi; θ) = −
N
2

[
1 + log(2π) + log

(
eθ>eθ

N

)]
and

Lg(eγ; γ) =
N∑

i=1

log g(eγi; γ) = −
N
2

[
1 + log(2π) + log

(
eγ>eγ

N

)]
,

where eθ and eγ are the pricing error vectors for each model. Furthermore, the likelihood

ratio between the two models (F and G) is given by:

LR
(
θ̂, γ̂

)
= L f (êθ; θ̂) − Lg(êγ; γ̂)

= −
N
2

[
log

( ê>
θ

êγ
N

)
− log

( ê>γ êγ
N

)]
= −

N
2

[
log

( ê>
θ

êθ
ê>γ êγ

)]
.

If the model G is nested in the model F, any conditional density g(·; γ) is also a con-

ditional density f (·; θ) for some θ in Θ. Based on the KLIC, we consider the following

hypotheses and definitions:38

H0 : E
[
log

f (eθi; θ)
g(eγi; γ)

]
= 0 : F and G are equivalent

HA : E
[
log

f (eθi; θ)
g(eγi; γ)

]
> 0 : F is better than G.

38Since G can never be better than F, HA does not include the case such that G is better than F.
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If G is nested in F and F is correctly specified, then

under H0 : 2LR(θ̂, γ̂)
D
−→ χ2

p−q,

under HA : 2LR(θ̂, γ̂)
a.s.
−→ +∞,

where p and q are the number of parameters in models F and G, respectively.

The three stable type models (BS, FS, and OS) are nested in the GS model; the BS and

FS model are nested in the OS model; and the BS model is nested in the FS model. The LR

test statistics and the corresponding P-values between nested models are reported in Table

2.3. The test results indicate that the GS model is significantly better the BS, FS, and OS

models and the OS and FS model are significantly better the BS model. However, the OS

model and FS model are equivalent even though the OS model has an additional parameter

relative to the FS model.

2.6 Concluding Remarks

The generalized two-factor log-stable option pricing model is a highly integrated ap-

proach to evaluating contingent claims in the sense that it provides state prices, pricing

kernels, and the risk neutral measure explicitly. The RNM can be simply derived by adjust-

ing the FM for the state-contingent value of the numeraire. Under generalized two-factor

log-stable uncertainty the RNM is expressed as a convolution of two exponentially tilted

stable distributions, while the FM itself is a pure stable distribution. Furthermore, the gen-

eralized two-factor log-stable RNM has a very flexible parametric form for approximating

other probability distributions. Thus, this model also provides a considerably accurate tool

for estimating the RNM from the observed option prices even though the two-factor log-

stable assumption might not be satisfied.
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The empirical results of the RNM estimation from the S&P 500 index options shows

that the generalized two-factor log-stable model gives better performance than the Black-

Scholes log-normal model, the finite moment log-stable model and the orthogonal log-

stable model in fitting the observed option prices. Moreover, the distributional assumption

for the generalized stable model is consistent with the implied volatility structure, which

violates the lognormal assumption of the Black-Scholes model.

The Black-Scholes log-normal model, the finite moment log-stable model, and the or-

thogonal log-stable model are nested by the generalized two-factor log-stable model. In

order to verify the empirical performance of the generalized two-factor log-stable model, it

is necessary to compare it with other parametric models which are not nested by it. Also,

we need to examine the stability or robustness of the RNM parameter through the Monte

Carlo experiment or the Bootstrap technique. Chapter 3 investigates these issues to verify

the empirical performance of the generalized two-factor log-stable option pricing model.39

39See Chapter 3.
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BS FS OSa GSb

σ α c α cN cA α cN1 cN2 cA1 cA2

0.12 1.74 0.08 1.74 0 0.08 1.34 0.41 0.63 0.40 0.75

a Implied FM parameters of the OS model: α = 1.74, β = −1, and c = 0.08.
b Implied FM parameters of the GS model: α = 1.34, β = −0.96, and c = 0.12.
Note: The entries report the sample average of the estimated parameters. The sample contains
100 sets of cross-section data on S&P 500 index options with 2 months to maturity, which are
traded in 2006.

Table 2.1: Estimated RNM Parameters for S&P 500 Index Options

BS FS OS GS
MRMSE 150.848 3.480 3.480 0.013
(1st term) 148.716 3.334 3.334 0.004
(2nd term) 2.132 0.146 0.146 0.009

Note: The 1st term of MSSE is
∑N

i=1

[ (
VB

i − Vi(θ)
)2

+
+

(
Vi(θ) − VA

i

)2

+

]
,

and the 2nd term is the ordinary least square term
∑N

i=1 λ
(
V̄i − Vi(θ)

)2
.

The entries report the sample average of the test statistics and the corre-
sponding P-values. The sample contains 100 sets of cross-section data
on S&P 500 index options with 2 months to maturity, which are traded
in 2006.

Table 2.2: Goodness-of-fit of the Option Pricing Models

Model G
BS FS OS

2LR P-value 2LR P-value 2LR P-value
FS 121.7 0.000 – – – –

Model F OS 121.7 0.000 0.0 1.000 – –
GS 266.3 0.000 144.5 0.000 144.5 0.000

Note: The test statistic is asymptotically chi-square distributed with p− q degree of freedom.
The entries report the sample average of the test statistics and the corresponding P-values.
The sample contains 100 sets of cross-section data on S&P 500 index options with 2 months
to maturity, which are traded in 2006.

Table 2.3: Likelihood Ratio Tests for Nested Models
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CHAPTER 3

PARAMETRIC RISK-NEUTRAL MEASURE ESTIMATION
METHODS: A HORSE RACE

3.1 Introduction

A European option is a contingent claim whose value is dependent upon the investor’s

risk preference and the statistical probability measure, the so-called frequency (probabil-

ity) measure (FM), which governs the empirically observable distribution of the underly-

ing asset prices at the maturity of the option contract. In a complete arbitrage-free market,

the valuation of European options is equivalent to computing the discounted value of ex-

pected payoff under the risk-adjusted probability measure, the so-called risk-neutral mea-

sure (RNM), regardless of the investor’s risk preference. This risk-neutral pricing frame-

work implies that the probability measure used to price assets is adjusted so as to make the

expected return on a risky asset equal to the risk free interest rate.1

The RNM has been used for numerous applications. First, standard or complex deriva-

tive assets, with the same time-to-maturity, can be priced easily under RNMs [Longstaff

(1995) and Rosenberg (1998)]. Second, classical risk management tools, such as Value-

at-Risk (VaR), can be computed using RNMs [Aı̈t-Sahalia and Lo (2000)]. Third, RNMs

can be used to assess the market sentiments about political and economic events [Campa

and Chang (1996), Melick and Thomas (1997), and Söderlind (2000)]. Fourth, RNMs can

1However, it does not mean that agents are assumed to be risk neutral. We are not assuming that investors
are actually risk-neutral and that risky assets are actually expected to earn the risk-free rate of return.
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also be used to estimate the implied risk aversion function from the joint observation of the

risk-neutral and the historical densities [Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and

Rosenberg and Engle (2002)]. Finally, parameters of the underlying stochastic process can

be estimated using the RNM [Bates (1996)].

Recently, various methodologies have been developed to derive the risk-neutral distri-

bution of the future underlying asset price from the observed option prices. Generally, all

methods can be divided into parametric and nonparametric ones. The parametric methods

make particular assumptions on the form or family of the RNM and then typically use a

non-linear regression technique to estimate the parameters of the RNM which minimize

sum of squared pricing errors. On the other hand, the nonparametric methods make no

strong assumptions about the RNM since they are flexible data-driven methods. However,

the nonparametric approaches are so data-intensive that they usually lead to over-fitting

problems and are not effective in small samples. For surveys of existing methods, see May-

hew (1995), Jackwerth (1999), Bliss and Panigirtzoglou (2002), Markose and Alentorn

(2005) among others.

The celebrated Black-Scholes model (1973) evaluate the price of a European option on

the basis of the parametric assumption that the underlying asset price process is the geo-

metric Brownian motion, resulting in the terminal lognormal density as a FM. Girsanov’s

theorem2 states that the RNM corresponding to the geometric Brownian motion is also log-

normal. However, it is common knowledge that the implied RNMs are not lognormal, as

exhibited by the so-called “volatility smirk”. The volatility smirk suggests that the underly-

ing asset prices on maturity should follow a left-skewed and leptokurtic distribution rather

2The Girsanov’s theorem implies that the Black-Scholes model has the unique RNM, which is specified
by:

dQ
dP
= ε

(∫ t

0

r − µ
σ

dW
)
,

where Q is the RNM, P is the FM, ε(X) is the stochastic exponential of X with respect to W, W is the
Brownian motion under the FM.
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than a lognormal distribution.

Parametric estimations of the RNM with non-lognormality assumptions have been at-

tempted to accommodate skewness and excess kurtosis by many researchers. Parametric

RNM estimation methods can be classified into four categories:

• specific distributions—the lognormal distribution [Black and Scholes (1973)], the

Weibull distribution [Savickas (2002)], and the max-negatively skewed stable distri-

bution [Carr and Wu (2003)];

• mixture distributions—the mixture log-normals [Ritchey (1990), Melick and Thomas

(1997), Bahra (1997)] and the mixture of log-stables [Lee (2007)];

• generalized distributions—the generalized gamma distribution [Tunaru and Albota

(2005)], the generalized beta distribution [Rebonato (1999)], the orthogonal log-

stable distribution [McCulloch (1985, 1987, 1996, 2003)], the generalized two-factor

log-stable distribution [McCulloch and Lee (2008)]; and

• jump diffusion risk-neutral processes— the variance-gamma process [Madan and

Milne (1991) and Madan, Carr, and Chang (1998)], the poisson jump diffusion pro-

cess [Merton (1976), Naik and Lee (1990), and Bates (1991)], and the jump diffusion

process with stochastic volatilities [Bates (1996), Bakshi, Cao, and Chen (1997), and

Scott (1997)].

The value of a European option can be easily priced using a parametric option pricing

model if a closed form RNM distribution function exists and is known, but in many cases

a closed form RNM distributions are messy or unknown. However, even though a closed

form of a distribution function is unknown, once an analytical form for the characteristic

function exists, a European option can then be priced by efficient numerical procedures

such as the “Romberged” Inverse Fast Fourier Transform (IFFT) method developed by

Carr and Madan (1999) and McCulloch (2003).
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In this chapter, we investigate the empirical performance of 12 parametric RNM esti-

mation methods reviewed above using observed prices of cross section of S&P500 Index

options traded at Chicago Board Option Exchange (CBOE). First, the goodness-of-fits are

examined by means of the root mean squared errors (RMSE). Second, we perform like-

lihood ratio (LR) tests for nested and non-nested model selection. Finally, we conduct

Monte-Carlo experiments to compare the accuracy and stability of the parametric RNM es-

timation methods by focusing the root mean integrated squared errors (RMISE) criterion.

The empirical results from the RMSEs and the LR tests show that the generalized two-

factor log-stable model and the jump diffusion model with stochastic volatilities dominate

other models. However, the jump diffusion model with stochastic volatilities has so many

free parameters that it is vulnerable to over-fitting problems, which create spurious oscilla-

tions due to sampling noises. The over-fitting problems may be detected by Monte-Carlo

experiments. Our Monte-Carlo experiments reveal that the jump diffusion with stochastic

volatilities suffers from serious over-fitting problems and also show that the generalized

two-factor log-stable model outperforms the alternatives.

The rest of the chapter is organized as follows. Section 3.2 discusses the option pricing

approaches with the RNM. Section 3.3 presents 12 alternative parametric option pricing

models for estimating the RNM. Section 3.4 describes the RNM estimation techniques un-

der the non-linear regression framework. In Section 3.5, we conduct model selection tests

and Monte-Carlo experiments to compare the performance of the alternative parametric

models using S&P 500 index options. Section 3.6 concludes.

3.2 Option Pricing with the RNM

3.2.1 Closed Form Distribution Approach

By ruling out arbitrage possibilities, Cox and Ross (1976) showed that options can be

priced as if investors were risk neutral, regardless of investors’ risk preferences. Consider
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a general European call option whose terminal payoff is max(0, S T − K), where S T is the

underlying asset price at maturity, T is the time to maturity, and K is the strike price. In a

complete arbitrage-free market, the price of a European call option C(K) can then be com-

puted as the discounted value of the option’s expected payoff under the RNM. Formally,

C(K) = e−r f T EQ [max(0, S T − K)]

= e−r f T
∫ ∞

K
(x − K) r(x) dx, (3.1)

where r f is the risk free rate, EQ is the conditional expectation on time 0 information under

the RNM, and r(x) is the risk-neutral density of the underlying asset price at maturity.

In the arbitrage-free market, the expected price at maturity under the RNM should equal

the forward price of the underlying asset with the same time to maturity, i.e. the RNM must

satisfy the so-called mean-forward price equality condition:

EQ(x) =
∫ ∞

0
x r(x)dx = S 0e(r f−d)T , (3.2)

where S 0 is the underlying asset price at time 0, d is the annual dividend rate of the under-

lying asset, and S 0e(r f−d)T is the implicit forward price.

Imposing a no-arbitrage condition (3.2) on (3.1), the call option price may be decom-

posed into two parts:

C(K) = e−r f T
∫ ∞

K
x r(x) dx − Ke−r f T

∫ ∞

K
r(x) dx

= S 0e−dTΠ1 − Ke−r f TΠ2, (3.3)

where

Π1 = 1 −

∫ K

0
x r(x) dx∫ ∞

0
x r(x) dx

and (3.4)

Π2 = 1 −
∫ K

0
r(x) dx. (3.5)
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In a similar manner the price of a European put option P(K) can be decomposed as:

P(K) = e−r f T
∫ K

0
(K − x) r(x) dx

= −e−r f T
∫ K

0
x r(x) dx + Ke−r f T

∫ K

0
r(x) dx

= −S 0e−dT [1 − Π1] + Ke−r f T [1 − Π2].

The option price may be also evaluated in terms of the RNM for the log of price, whose

density is:

q(z) = ezr(ez),

where z = log S T . Accordingly, Π1 and Π2 can be also expressed in terms of q(z) as:

Π1 = 1 −

∫ k

−∞
ez q(z) dz∫ ∞

−∞
ez q(z) dz

and (3.6)

Π2 = 1 −
∫ k

0
q(z) dz, (3.7)

where k = log K.

The first term in (3.3) is the present value of expected the underlying asset upon optimal

exercise, and the second term is the present value of the expected strike-price payment.

Furthermore, e−dTΠ1 can be seen as a delta (∆) of the option which measures sensitivity

to the underlying asset price, while Π2 can be interpreted as a risk-neutral probability of

finishing in-the-money, i.e., Pr(S T > K).3

If the closed form cumulative distribution function (CDF) of the RNM is known, the

option prices can be computed by simply evaluating Π1 and Π2 under the distributional

assumptions for the RNM.

3The Π1 and Π2 can be interpreted as a cumulative funtions of the strike price K. As K → 0, Π1 → 1, and
when K → ∞,Π1 → 0. In a similar manner as K → 0, Π2 → 1, and when K → ∞,Π2 → 0.
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3.2.2 Characteristic Function Approach

If the CDF of the RNM is messy or unknown, it is computationally inefficient or impos-

sible to evaluate Π1 and Π2 directly from the CDF. However, even though the closed form

of the distribution function is unknown, once we have the closed form of the characteristic

function, there exist fast numerical procedures for evaluating Π1 and Π2.

The characteristic function(CF) or Fourier Transform (FT) of density of z = log S T is

defined by:

c fq(u) = E[eiuz]

=

∫ ∞

−∞

eiuzq(z)dz

The risk neutral probabilities, Π1 and Π2, are numerically recovered by inverting the

characteristic function, which is known analytically:4

Π1 =
1
2
+

1
π

∫ ∞

0
Re

[
e−iukc fq(u − i)

iuc fq(−i)

]
du and (3.8)

Π2 =
1
2
+

1
π

∫ ∞

0
Re

[
e−iukc fq(u)

iu

]
du, (3.9)

where k = log K.

The Fast Fourier Transform (FFT) algorithm allows us to invert the characteristic func-

tions with considerable computational speed advantages.5 Unfortunately, as Carr and Madan

4See Heston(1993), Bates(1996), Bakshi and chen(1997), and Scott(1997) for more details.

5The Fast Fourier Transform(FFT) is one of the most fundamental advances in scientific computing,
which allows to compute quickly the discrete Fourier transform (DFT) and its inverse. The FFT is an efficient
algorithm for computing the DFT:

X(k) =

N∑
j=1

e−i 2π
N ( j−1)(k−1)x( j) for k = 1, . . . ,N,

The FFT makes pricing methods that use FFT much faster than other methods by reducing the number of
multiplications from an order of N2 to an order of N log2 N in the DFT. See Carr and Madan (1999) for more
detail.
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(1999) pointed out, the FFT cannot be used to evaluate the two probabilities Π1 and Π2 in

(3.8) and (3.9), since the integrand is singular at u = 0. To take advantage of the com-

putational power of the FFT, Carr and Madan (1999) developed a new technique, which

is designed to use the FFT in the inversion of the FT of the out-of-the-money (OTM) op-

tion prices. However, OTM option price function creates a small discontinuity at the spot

price S 0 which can only aggravate the Fourier inversion. To avoid this problem McCulloch

(2003) defines the OTM option price function V(K) based on the forward price F:

V(K) ≡ F v(k̃) =


P(K) for K < F

C(K) for K ≥ F
(3.10)

where k̃ = log(K/F) and v(k̃) = V(K)/(S 0e(r f−d)T ).

With no loss of generality, we may measure the underlying asset in units such that

F = S 0e(r f−d)T = 1. Let φv(u) denote the FT of v(k̃):6

φv(u) =
∫ ∞

−∞

eiuk̃v(k̃)dk̃

=


e−r f T

[ c fq(u−i)−1
iu−u2

]
, u , 0

e−r f T c f ′q(−i)
i , u = 0.

6When u = 0, φv(u) takes the value 0/0, but the limit may be evaluated by means of l’Hôpital’s rule:

lim
u→0
φv(u) = e−r f T lim

u→0

[
d(c fq(u − i) − 1)/du

d(iu − u2)/du

]
= e−r f T

c f ′q(−i)

i
.

If the RNM CF c fq(u) takes the form of e f (u), it is more useful to use the following expression:

lim
u→0
φv(u) = e−r f T

d log c fq(u)
du

∣∣∣∣
u=−i

i
.
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The prices of OTM options are obtained by inverting this Fourier transform:

V(K) = F v(k̃)

= S 0e(r f−d)T 1
2π

∫ ∞

−∞

e−iuk̃φv(u)du.

We evaluate the OTM option prices by means of the “Romberged” FFT algorithm7 devel-

oped by McCulloch (2003) to improve the accuracy of numerical inversion.

Finally, the put-call parity condition8 allows the call and put option prices to be com-

puted across strike prices as:

C(K) = I[K<F]

(
V(K) + S 0e−dT − Ke−r f T

)
+ I[K≥F] V(K) and

P(K) = I[K<F] V(K) + I[K≥F]

(
V(K) − S 0e−dT + Ke−r f T

)
,

where I[·] is the indicator function.

3.3 Parametric Distributions for the RNM

3.3.1 Specific Distributions

a. Black Scholes Log-Normal (BS) Model

The classic Black-Scholes (1973) model assumes that the price of the underlying asset

follows a geometric Brownian motion (GBM) with a constant drift µ and volatility σ. The

Black-Scholes GBM assumption implies the risk neutral distribution for S T is lognormal:

log S T = z ∼ N(α, β), where β = σ
√

T .

7Since increasing the range of integration results in a higher degree of precision, the ”Romberged” FFT
gives more satisfactory results. For details on the Romberg-FFT see McCulloch (2003).

8In the absence of arbitrage opportunities, the following relationship holds for European option:

C(K) + e−r f T K = P(K) + e−dT S 0.
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The risk neutral density function for log S T is given by:

q(z) =
1

β
√

2π
e−

(z−α)2

2β2 .

By (3.6) and (3.7), the risk neutral probabilities Π1 and Π2 are:

Π1 = Φ

(
−k + α + β2

β

)
and

Π2 = Φ

(
−k + α
β

)
,

where Φ(·) is the cumulative distribution function for a standard normal variable.

Using the mean-forward price equality condition (3.2):

EQ(S T ) = eα+β
2/2 = S 0e(r f−d)T ,

we have:

α = log S 0 +

(
(r f − d) −

1
2
σ2

)
T,

so that the Black Scholes lognormal (BS) model has one free parameter—the volatility

parameter β:

q(z) = bs(z; β),

where bs(·) denotes the risk neutral density of the BS model.

b. Weibull (WB) Model

Savickas (2002) values a European option under the assumption that the risk neutral

distribution for the terminal underlying asset price S T is a Weibull distribution:

S T = x ∼ Weibull(α, β),
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where α > 0 is the scale parameter, and β > 0 is the peakedness parameter of the dis-

tribuiton. The risk neutral density function for S T is given by:

r(x) =


(
β

α

) (
x
α

)β−1
e−(

x
α )
β

, for all x ≥ 0

0, for all x < 0.

By (3.4) and (3.5), the risk neutral probabilities Π1 and Π2 are:

Π1 = 1 − I
(
1 + 1/β,

(K
α

)β)
and

Π2 = e−(
K
α )
β

,

where

Γ(a, b) =
∫ b

0
ua−1e−udu (Incomplete gamma function),

Γ(a) =
∫ ∞

0
ua−1e−udu (Gamma function), and

I(a, b) =
Γ(a, b)
Γ(a)

(Regularized Incomplete gamma function).

Using the mean-forward price equality condition (3.2):

EQ(S T ) = αΓ(1 + 1/β) = S 0e(r f−d)T ,

we have:

α =
S 0e(r f−d)T

Γ(1 + 1/β)
,

so that the Weibull (WB) model has one free parameter—the peakedness parameter β:

r(x) = wb(x; β),

where wb(·) denotes the risk neutral density of the WB model.
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c. Finite Moment Log-Stable (FS) Model

Carr and Wu (2003) are able to price options under log-stable uncertainty, but only by

making the very restrictive assumption that log prices have maximally negative skewness:9

log S T = z ∼ S (α,−1, c T 1/α, δ),

where α ∈ (0, 2] is the peakedness parameter, c ∈ (0,∞) is the scale parameter, and δ ∈

(−∞,∞) is the location parameter. The risk neutral density function for log S T is given by:

q(z) = s
(
z;α,−1, c T 1/α, δ

)
, (3.11)

where s(·) is the stable density function.10

Under the risk neutral density (3.11), the characteristic function of log S T is given by:

c fq(u) = exp
[
iu

(
log S 0 + (r f − d)T + cα sec

(
πα

2

)
T
)
− cα sec

(
πα

2

)
(iu)αT

]
Using the mean-forward price equality condition (3.2):

EQ(S T ) = eδ−cα sec( πα2 )T = S 0e(r f−d)T ,

we have:

δ = log S 0 + (r f − d)T + cα sec
(
πα

2

)
T,

so that the finite moment log-stable (FS) model has two free parameters—the peakedness

9They assume the max-negative skewness in order to give the returns themselves finite moments. They
also incorporate max-negative skewness directly into the stable distribution describing the RNM of the un-
derlying asset without assumptions on the frequency measure (FM).

10Since there are no known closed form expressions for stable density, the most concrete way to describe
all possible stable distributions is through the characteristic function.
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parameter α and the scale parameters c:

q(z) = f s(z;α, c),

where f s(·) denotes the risk neutral density of the FS model.

3.3.2 Mixture Distributions

a. Mixture of Two Log-Normal (DN) Model

Ritchey (1990), Melick and Thomas (1997), and Bahra (1997) assume that the risk-

neutral distribution is a mixture of univariate log-normals:

log S T = z ∼


N(α1, β1) with pr. ω

N(α2, β2) with pr. 1 − ω.

The resulting risk neutral density function for log S T is given by:

q(z) = ωφ(z;α1, β1) + (1 − ω)φ(z;α2, β2)

= ω
1

β1
√

2π
e
−

(z−α1)2

2β21 + (1 − ω)
1

β2
√

2π
e
−

(z−α2)2

2β22 ,

where β j = σ j
√

T .

By (3.6) and (3.7), the risk neutral probabilities Π1 and Π2 are:

Π1 =

ωeα1+1/2β2
1

[
1 − Φ

(
k−(α1+β

2
1)

β1

)]
+ (1 − ω)eα2+1/2β2

2

[
1 − Φ

(
k−(α2+β

2
2)

β2

)]
ωeα1+1/2β2

1 + (1 − ω)eα2+1/2β2
2

and

Π2 = ωΦ

(
−k + α1

β1

)
+ (1 − ω)Φ

(
−k + α2

β2

)
,

where Φ(·) is the cumulative distribution function for a standard normal variate.

58



Using the mean-forward price equality condition (3.2):

EQ(S T ) = ωeα1+
1
2β

2
1 + (1 − ω)eα2+

1
2β2

2
= S 0e(r f−d)T ,

we have:

α2 = log
[

1
1 − ω

(
S 0e(r f−d)T − ωeα1+

1
2β

2
1

)]
−

1
2
β2

2,

so that the mixture of two lognormal (DN) model has four free parameters—the location

parameter α1, the volatility parameters β1 and β2, and the weight parameter ω:

q(z) = dn(z;α1, β1, β2, ω),

where dn(·) denotes the risk neutral density of the DN model.

b. Mixture of Two Log-Stable (DS) Model

Similarly to the mixture of lognormals, we may construct the FM of log S T with a

weighted sum of two maximally skewed log-stables: one is a maximally negatively skewed

one and the other is a maximally positively skewed one. The RNM of the max-negatively

skewed log-stable distribution is the FM itself. On the other hand, the RNM of the max-

positively skewed log-stable distribution is an exponentially tilted positively skewed stable

distribution. Consequently, the resulting RNM is the weighted sum of the max-negatively

skewed log-stable distribution and the exponentially tilted positively skewed log-stable dis-

tribution:

log S T = z ∼


S (α1,−1, c1T 1/α1 , δ1) with pr. ω

TS +(α2, c2T 1/α2 , δ2, 1) with pr. 1 − ω,

where S (·) is a stable distribution, and TS +(·) is an exponentially tilted positively skewed

stable distribution, α1, α2 ∈ (0, 2] are the peakedness parameters, c1, c2 ∈ (0,∞) are the

scale parameters, and δ1, δ2 ∈ (−∞,∞) are the location parameters.
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The risk neutral density function for log S T is given by:

q(z) = ωq1(z) + (1 − ω)q2(z)

= ωs(z;α1,−1, c1T 1/α1 , δ1) + (1 − ω)ts+(z;α2, c2T 1/α2 , δ2, 1)

= ωs(z;α1,−1, c1T 1/α1 , δ1)

+(1 − ω)eδ2+c2
α2 T sec( πα2

2 )e−zs(z;α2, 1, c2T 1/α2 , δ2), (3.12)

where s(·) is a stable density function, and ts+(·) is an exponentially tilted positively skewed

stable density.

Under the risk neutral density (3.12), the characteristic function of log S T is given by:

c fq(u) = ωc fq1(u) + (1 − ω)c fq2(u)

= ωeiuδ1−c α1
1 sec( πα1

2 )(iu)α1 T + (1 − ω)eiuδ2+c α2 sec( πα2
2 )(1−(1−iu)α2 )T

Using the mean-forward price equality condition (3.2):

EQ(S T ) = (1 − ω)eδ2+c2
α2 sec( πα2

2 )T + ωeδ1−c1
α1 sec( πα1

2 )T = S 0e(r f−d)T ,

we have:

δ2 = log
[

1
1 − ω

(
S 0e(r f−d)T − ωeδ1−c1

α1 sec( πα1
2 ))] − c2

α2 sec
(
πα2

2

)
,

so that the mixture of two-logstable (DS) model has six free parameters—the peakedness

parameters α1 and α2, the scale parameters c1 and c2, the location parameter δ1, and the

weight parameter ω:

q(z) = ds(z;α1, α2, c1, c2, δ1, ω),

where ds(·) denotes the risk neutral density of the DS model.
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3.3.3 Generalized Distributions

a. Generalized Gamma (GG) Model

Tunaru and Albota (2005) propose the use of the generalized gamma distribution (GG)

for the risk neutral distribution of the terminal underlying asset price S T :

S T = x ∼ GG(α, β, p),

where α > 0 is the scale parameter, β is the peakedness parameter, and p > 0 is the index

parameter of the distribution. The generalized gamma distribution nests several distribu-

tions: when p = 1, the Weibull distribution results; when β = 1, the gamma distribution

results; when β = p = 1, the exponential distribution results; and when β → 0 we arrive at

the log-normal distribution.

The risk neutral density function for S T is given by:

r(x) =


1
Γ(p)

(
|β|

α

) (
x
α

)βp−1
e−(

x
α )
β

, for all x ≥ 0

0, for all x < 0.

By (3.4) and (3.5), the risk neutral probabilities, Π1 and Π2, are:

Π1 = 1 − I
(
p + 1/β, (K/α)β

)
and

Π2 = 1 − I
(
p, (K/α)β

)
where

Γ(a, b) =
∫ b

0
ua−1e−udu (Incomplete gamma function),

Γ(a) =
∫ ∞

0
ua−1e−udu (Gamma function), and

I(a, b) =
Γ(a, b)
Γ(a)

(Regularized Incomplete gamma function).
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Using the mean-forward price equality condition (3.2):

EQ(S T ) = α
Γ(p + 1/β)
Γ(p)

= S 0e(r f−d)T ,

we have:

α =
Γ(p)

Γ(p + 1/β)
S 0e(r f−d)T ,

so that the generalized gamma (GG) model has two free parameters—the peakedness pa-

rameter β and the index parameter p:

r(x) = gg(x; β, p),

where gg(·) denotes the risk neutral density of the GG model.

b. Generalized Beta (GB) Model

Bookstaber and McDonald (1987) develop a new generalized distribution, called the

Generalized Beta Distribution of the Second Kind (GB2), which accommodates a fat-tail

property and permits skewness as well. Rebonato (1999) valued the call option based on

the assumption that the risk neutral distribution of the terminal underlying asset price S T is

a GB2 distribution:

S T = x ∼ GB2(α, β, p, q),

where α > 0 is the scale parameter, β is the peakedness parameter, and p > 0 and q > 0

control the shape and skewness. The GB model nests the GG model since the generalized

gamma is a limiting case of the GB2 distribution.11

11When q→ ∞, the generalized gamma distribution results:

lim
q→∞

GB2(x; α̃ = αq1/β, β, p, q) = GG(x;α, β, p)
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The risk neutral density function for S T is given by:

r(x) =


|β|xβp−1

αβpB(p,q)[1+(x/α)β]p+q , for all x ≥ 0

0, for all x < 0,

where

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

=

∫ ∞

0

up−1

(1 + u)p+q du (Beta function)

=

∫ 1

0
wp−1(1 − w)q−1dw, w =

1
u + 1

.

By (3.4) and (3.5), the risk neutral probabilities Π1 and Π2 are:

Π1 = I
(
p +

1
β
, q −

1
β
,

1
1 + (K/α)β

)
and

Π2 = I
(
p, q,

1
1 + (K/α)β

)
,

where

I(p, q, z) =
B(p, q, z)
B(p, q)

(Regularized Incomplete Beta function) and,

B(p, q, z) =
∫ z

0
wp−1(1 − w)q−1dw (Incomplete Beta function).

Using the mean-forward price equality condition (3.2):

EQ(S T ) = α
B

(
p + 1

β
, q − 1

β

)
B(p, q)

= S 0e(r f−d)T ,

we have:

α =
B(p, q)

B
(
p + 1

β
, q − 1

β

)S 0e(r f−d)T ,

so that the GB model has three free parameters—the peakedness parameter β, the shape
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and skewness parameters p and q:

r(x) = gb(x; β, p, q),

where gb(·) denotes the risk neutral density of the GB model.

c. Orthogonal Log-Stable Model (OS)

McCulloch (2003) reformulates his orthogonal stable option pricing model12 in the

RNM context. The orthogonal log-stable uncertainty assumption implies that the risk neu-

tral probability distribution of log S T is simply a convolution13 of max-negatively skewed

stable distribution and exponentially tiled positively skewed stable distribution:

log S T = z ∼ S (α,−1, cAT 1/α, δ) ∗ TS +(α, cNT 1/α, 0, 1)

where S (·) is a stable distribution, and TS +(·) is an exponentially tilted positively skewed

stable distribution, α ∈ (0, 2] is the peakedness parameter, cA, cN ∈ (0,∞) are the scale

parameters for the asset and numeraire, respectively, and δ is the location parameter.

The risk neutral density function for the log S T is given by:

q(z) = s
(
z1;α,−1, cAT 1/α, δ

)
∗ ts+

(
z2;α, cNT 1/α, 0, 1

)
(3.13)

= eδ+cαN sec( πα2 )T s
(
z1;α,−1, cAT 1/α, δ

)
∗ e−z2 s

(
z2;α,+1, cNT 1/α, 0

)
,

12The option pricing model with stable distribution was first proposed by McCulloch (1978, 1987, 1996)
using a utility maximization setting under the assumption that the marginal utilities of numeraire and asset
follow a log-stable distribution with maximum negative skewness, respectively, and are also independently
distributed.

13The convolution of f and g is written f ∗ g. If X and Y are two independent random variables with
probability distributions f and g, respectively, then the probability distribution of the sum z = X + Y is given
by the convolution:

( f ∗ g)(z) =

∫
f (τ)g(z − τ)dτ.
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where s(·) is a stable density function, and ts+(·) is an exponentially tilted positively skewed

stable density.

Under the risk neutral density (3.13), the characteristic function of the log price z ≡

log S T is given by:

c fq(u) = exp
[
iu

(
log S 0 + (r f − d)T − (c α

N − c αA ) sec
(
πα

2

)
T
)

−c αA sec
(
πα

2

)
(iu)αT + c α

N sec
(
πα

2

)
(1 − (1 − iu)α) T

]
.

Using the mean-forward price equality condition (3.2):

EQ(S T ) = eδ+(cN
α−cA

α) sec( πα2 )T = S 0e(r f−d)T ,

we have:

δ = log S 0 + (r f − d)T − (cN
α − cA

α) sec
(
πα

2

)
T,

so that the orthogonal log-stable (OS) model has three free parameters—the peakedness

parameter α and the scale parameters cA and cN:

q(z) = os(z;α, cA, cN),

where os(·) denotes the risk neutral density of the OS model.14

d. Generalized Two-Factor Log-Stable Model (GS)

McCulloch and Lee (2008) estimate the RNM using the generalized two-factor log-

stable option pricing model which allows the interdependency between the marginal utili-

14Alternatively, the RNM of the OS model may be expressed using a different parameterization:

q(z) = os(z;α, β, c),

where β = (cαN − cαA)/cα and c = (cαN + cαA)1/α.

65



ties of numeraire and asset.15 The generalized two-factor log-stable model also provides a

flexible RNM probability distribution function as a convolution of two exponentially tilted

stable distributions:

log S T = z ∼ ∗2
j=1TS sgn(cN j−cA j)

(
α, |cN j − cA j|T 1/α, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)
,

where ∗2
j=1TS is the convolution of the two tilted maximally skewed stable distributions,

α ∈ (0, 2] is the peakedness parameter, ci j > 0, i = A,N, j = 1, 2, are the elements of the

scale matrix, and δ1, δ2 are the elements of location vector with δ2 = 0. The risk neutral

density function for log S T is given by:

q(z) = ∗2
j=1tssgn(cN j−cA j)

(
z j;α, |cN j − cA j|T 1/α, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)
, (3.14)

where ts(·) is an exponentially tilted positively skewed stable density if sgn(cN j − cA j) = 1

or an exponentailly tilted negatively skewed stable density if sgn(cN j − cA j) = −1.

Under the risk neutral density (3.14), the characteristic function of log S T is given by:

c fq(u) = exp
{

iu
(

log S 0 + (r f − d)T −
2∑

j=1

(c α
N j − c αA j ) sec

(
πα

2

)
T
)

+

2∑
j=1

|cN j − cA j|
α sec

(
πα

2

) [∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α −
(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)iu
)α]

T
}
.

Using the mean-forward price equality condition (3.2):

EQ(S T ) = eδ1+
(∑2

j=1(cN j
α−cA j

α)
)

sec( πα2 )T = S 0e(r f−d)T ,

we have:

δ1 = logS 0 + (r f − d)T −
( 2∑

j=1

(cN j
α − cA j

α)
)

sec
(
πα

2

)
T,

15The orthogonal assumption can be generalized by introducing two factors which are independent max-
negatively skewed standard stable variates and contribute to both the log marginal utilities of numeraire and
asset.
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so that the generalized two-factor log-stable (GS) model has five free parameters—the

peakedness parameter α and the scale parameters ci j, i = A,N, j = 1, 2:

q(z) = gs(z;α, cA1, cA2, cN1, cN2),

where gs(·) denotes the risk neutral density of the GS model.

3.3.4 Jump Diffusion Risk Neutral Processes

a. Variance-Gamma Model (VG)

Madan and Milne (1991), and Madan, Carr, and Chang (1998) assume that the log price

obeys the variance-gamma (VG) process, under which the log price follows a pure jump

Lévy process. The VG process is obtained by evaluating arithmetic Brownian motion with

drift β and volatility σ at a random time given by a gamma process having a mean rate per

unit time of 1 and a variance rate of α. The resulting risk-neutral process for S T is:

S t = S 0e(r f−d)t+µt+Xt(σ,β,α), t > 0,

where

Xt(σ, β, ν) = b (γ(t; 1, ν); β, σ) (Variance Gamma Process),

b(t; β, σ) = βt + σW(t) (Brownian Motion with drift), and

γ(t; 1, α) (Gamma process with unit mean rate).

Accordingly, the risk neutral process of log S T is given by

log S T ≡ z = log S 0 + (r f − d + µ)T + X(T ;σ, β, α).
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Madan, Carr, and Chang (1998) provide a closed form risk neutral density for log S T :16

q(z) =
∫ ∞

0

1

σ
√

2πg
e−

(z−log S 0−(r f −d+µ)T−βg)2

2σ2g
gt/α−1e−g/α

αt/νΓ(t/α)
dg, (3.15)

where g = γ(t + h; µ, α) − γ(t; µ, α). The additional two parameters α and β relative to the

geometric Brownian motion control over skewness and kurtosis respectively.

Under the risk neutral density (3.15), the characteristic function of the log price z ≡

log S T is given by:

c fq(u) = eiu(log S 0+(r f−d+µ)T)
[
1 −

(
iβu −

1
2
σ2u2

)
α

]−T/α

Using the mean-forward price equality condition (3.2):

EQ(S T ) = S 0e(r f−d)T+µT
[
1 −

(
β +

1
2
σ2

)
α

]−T/α

= S 0e(r f−d)T ,

we have:

µ =
1
α

log
[
1 −

(
β +

1
2
σ2

)
α

]
,

so that the variance-gamma (VG) model has three free parameters—the peakedness param-

eter α, the skewness parameter β, and the scale parameter σ:

q(z) = vg(z;α, β, σ),

where vg(·) denotes the risk neutral density of the VG model.

b. Poisson Jump Diffusion (JD) Model

Option pricing models with jumps have been developed by Merton (1976), Naik and

Lee (1990), and Bates (1991). The jump processes are Poisson jump processes in which the

16Madan, Carr, and Chang (1998) derive the closed form solution, but it is slow because it requires compu-
tation of modified Bessel functions. Therefore, the characteristic function approach is computationally more
efficient for the VG model than the closed form distribution approach.
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occurrence of a jump is determined by a Poisson process, and if a jump occurs, the size of

the jump for the log of the underlying asset price is assumed to have a normal distribution.

The resulting risk-neutral process for S T is:

dS t

S t
=

(
(r f − d) − λµJ

)
dt + σdW s

t + Jtdqt, (3.16)

where W s
t is a standard Brownian motion; Jt is the percentage jump size (conditional on no

jump occuring) with log(1+ Jt) ∼ N(log(1+ µJ)− 1/2σ2
J, σ

2
J); qt is a Poisson jump counter

with intensity λ, i.e., Pr[dqt = 1] = λdt, Pr[dqt = 0] = 1 − λdt. Skewness in the terminal

risk-neutral distribution is controlled by the mean jump µJ, whereas the amount of kurtosis

is regulated by the magnitude (µJ and λ) and variability (σJ) of the jump component.

Under the risk neutral process (3.16), the characteristic function of log S T is given by:

c fq(u) = exp
[
iu

(
log S 0 + (r f − d)T − λµJT −

1
2
σ2

)
−

1
2

u2σ2T + λ
(
eiu(log(1+µJ)−1/2σ2

J)−1/2u2σ2
J − 1

)
T
]
.

The risk neutral procss (3.16) implies that the JD model has four free parameters—the

volatility parameter σ, the mean jump parameter µJ, the jump volatility parameter σJ, and

the jump intensity parameter λ:

q(z) = jd(z;σ, λ, µJ, σJ),

where jd(·) is the risk neutral density of the JD model.

c. Jump Diffusion Model with Stochastic Volatilities (JS)

Bates (1996), Scott (1997), Bakshi, Cao, and Chen (1997) develop closed form solu-

tions for a jump-diffusion model with stochastic volatilities by using the Fourier inversion

formula. Under the risk neutral measure, the price of the underlying asset S t follows a

geometric jump diffusion process with the instantaneous conditional variance Vt, following
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a mean reverting square root process. The resulting risk-neutral process for S T is:

dS t

S t
= ((r f − d) − λµJ)dt +

√
VtdW s

t + Jtdqt (3.17)

dVt = κ(ϑ − Vt)dt + σv

√
VtdWv

t , (3.18)

where Vt is the diffusion component of return variance(conditional on no jump occurring);

W s
t and Wv

t are a standard Brownian motion, respectively, with Covt[dW s
t , dWv

t ] = ρdt; Jt

is the percentage jump size (conditional on no jump occuring) with log(1+ Jt) ∼ N(log(1+

µJ) − 1/2σ2
J, σ

2
J); qt is a Poisson jump counter with intensity λ, i.e., Pr[dqt = 1] = λdt,

Pr[dqt = 0] = 1−λdt; κ, ϑ, and σv are respectively the speed of adjustment, long-run mean

and variation coefficient of the diffusion volatility Vt. These parametric assumptions offer

a sufficiently versatile RNM structure that can accommodate most of the desired features.

For instance, skewness in the distribution is controlled by either the correlation ρ or the

mean jump µJ, whereas the amount of kurtosis is regulated by either the volatility diffusion

parameter σv or the magnitude and variability of the jump component.

Under the risk neutral process (3.17) and (3.18), the characteristic function of the log

price z ≡ log S T is given by:

c fq(u) = exp
{
iu

(
log S 0 + (r f − d)T − λµJT

)
+λ

[
eiu(log(1+µJ)−1/2σ2

J)−1/2u2σ2
J − 1

]
T −C(u)Vt − D(u)

}
,

where

C(u) =
ξ(1 − e−ηT )

2η − (η − κ∗)(1 − e−ηT )

D(u) =
κϑ

σ2
v

[
2 log

(
1 −

(η − κ∗)(1 − e−ηT )
2η

)
+ (η − κ∗)T

]
η =

√
(κ∗)2 + σ2

vξ

κ∗ = κ − iuσvρ

ξ = iu + u2.
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The jump diffusion model with stochastic volatilities (JS) has eight free parameters—the

mean jump µJ, the jump varianceσJ, the volatility diffusion parameterσv, the correlation ρ,

intensity λ, the speed of adjustment κ, the long-run mean ϑ, and the instantaneous variance

Vt:17

q(z) = js(z; λ, µJ, σJ, σv, ρ, κ, ϑ,Vt),

where js(·) denotes the risk neutral density of the JS model.

3.3.5 RNM Distribution Tree

In this section, we discuss interrelationships between the 12 alternative RNM models.

Some RNM models can be seen as a special case or limiting case of other models.

(1) The GS model nests the OS, FS, BS models:

gs
(
z;α, cA1, cA2 = 0, cN1 = 0, cN2

)
= os

(
z;α, β = (cαN2 − cαA1)/cα, c = (cαN2 + cαA1)1/α

)
;

os
(
z;α, β = −1, c, δ

)
= f s

(
z;α, c

)
; and

f s
(
z;α = 2, c =

√
σ2/2, δ

)
= bs

(
z;σ

)
(2) The GB model nests the GG, WB, BS models:18

lim
q→∞

gb
(
x; α̃ = αq1/β, β, p, q

)
= gg

(
x;α, β, p

)
;

lim
q→∞
β→0

gg
(
x;α = (σ2β2)1/βq−1/β, β, p = (βµ + 1)/σ2β2

)
= bs

(
log x; µ, σ

)
; and

gg
(
x;α, β, p = 1

)
= wb

(
x;α, β

)
17The level of the instantaneous variance Vt is a state variable. However, since Vt is unobservable, we treat

Vt as another free parameter in the RNM estimation.

18The scale parameter α can be fixed by mean-forward price equality condition.
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(3) The VG model nests the BS models:

lim
α→0
β→0

vg
(
z;α, β, σ

)
= bs

(
z;σ

)
(4) The DS model nests the DN, FS, BS models:

ds
(
z;α1 = 2, α2 = 2, c1 =

√
σ2

1/2, c2 =

√
σ2

2/2, ω, δ1 = α + cα1 sec(πα1/2) + σ2
1/2

)
= dn

(
z;σ1 = (2c2

1)1/2, σ2 = (2c2
2)1/2, ω, α

)
ds

(
z;α1, α2, c1, c2, ω = 1, δ1 = log F + cα1 sec(πα/2)

)
= f s

(
z;α1, c1

)
dn

(
z;σ1, σ2, ω = 1, α1 = log F − σ2

1/2
)
= bs

(
z;σ

)
(5) The JS model nests the JD, BS models:

js
(
z; λ, µJ, σJ, ϑ = 0, κ = 0, σv = 0, ρ = 0,Vt = σ

2
)
= jd

(
z; λ, µJ, σJ, σ

)
; and

jd
(
z; λ = 0, µJ = 0, σJ = 0, σ

)
= bs

(
z;σ

)
.

Figure 3.1 illustrates a visual summary of some limiting and special cases of the RNM

models and their interrelationships. Greater flexibility for fitting observed option prices

can be obtained as we introduce additional parameters and move up the RNM distribu-

tional tree. The computation involved in estimating additional parameters can generally be

accommodated by recent advances in computational capability and numerical procedures.

However, it is necessary to test whether the extra computations significantly improve the

fitting performance. The hypothesis that there are no additional improvements involving

nested distributions can be tested by using likelihood ratio (LR) tests based on asymptotic

chi-square distributions as in Vuong (1989).
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3.4 Estimation of the Parametric RNM

Since the OTM options are generally more liquid than the in-the-money (ITM) options,

we estimate the RNM parameter vector θ from each cross-section of the OTM option prices

with the different strike prices Ki and the same time to maturity T . The theoretical OTM

option prices are defined as in (3.10):

V(Ki; θ) =
{ P(Ki; θ) for K < F, i = 1, . . . ,N

C(Ki; θ) for K ≥ F,

where

C(Ki; θ) = er f T
∫ ∞

Ki

(x − Ki) r(x; θ)dx, and

P(Ki; θ) = er f T
∫ Ki

0
(Ki − x) r(x; θ)dx,

and θ is the RNM parameter vector.

The put price function P(K; θ) is monotone increasing, the call price function C(K; θ)

is monotone decreasing, and P(F; θ) = C(F; θ) for any RNM by put-call parity, so that

OTM option prices can be defined alternatively as:

V(Ki; θ) = min
[
C(Ki; θ), P(Ki, θ)

]
, i = 1, . . . ,N.

For each cross-section of options with the same time to maturity T , parametric option pric-

ing models may be expressed as a non-linear regression with unknown RNM parameters:

Vi = V(Ki; θ) + εi, i = 1, . . . ,N, (3.19)

where Vi is the OTM option market price associated with the strike price Ki, εi is the pricing

error associated with the OTM option whose strike price is Ki. Consequently, we can apply

non-linear regression techniques to the model (3.19) for estimating the vector of RNM pa-
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rameters θ. The RNM parameters may be estimated by using a nonlinear generalized least

squares (NL-GLS) methodology developed by Engle and Mustafa (1992) to take into ac-

count the heteroskedasticity of the OTM prices across strike prices. However, it is difficult

to estimate the structure of the heteroskedasticity with small cross-section sample data.

Therefore, the vector of RNM parameters has been estimated by the nonlinear ordinary

least squares (NL-OLS) in many researches—Bakshi, Cao, and Chen (1997), Bondarenko

(2003), Carr and Wu (2003), Tunaru and Albota (2005), and Bu and Hadri (2007):19

min
θ∈Θ

L(S S E) =
N∑

i=1

(Vi − V(Ki; θ))2

= ε>ε,

where ε is the vector of pricing errors.

Under the assumption that the pricing errors are i.i.d. normally distributed with variance

σ2, the NL-OLS estimates are equivalent to maximum likelihood estimates (MLE):

max
θ∈Θ

L(ε; θ) =
N∑

i=1

log f (εi; θ)

= −
N
2

[
1 + log(2π) + log

(
ε>ε

N

)]
,

where f is the normal density (= 1
√

2πσ
e−ε

2
i /2σ

2
) and the maximum likelihood estimate for σ2

is the mean squared pricing error, mse = ε>ε/N.

19The NL-OLS criterion with the bid-ask average prices does not fully exploit the information contained
in the bid and ask price quotes because it can not utilize the bid-ask price range. McCulloch and Lee (2008)
modified the NL-OLS criterion by setting the loss function which increases only when the theoretical prices
fall outside of the bid-ask price range. Also this modified NL-OLS criterion contains an arbitrary small OLS
term to guarantee a unique solution:

min
θ∈Θ

L =
N∑

i=1

[ (
VB

i − Vi(θ)
)2

+

(
Vi(θ) − VA

i

)2

+
+ λ (Vi − V(i(θ))2

]
,

where VB
i and VA

i are bid and ask OTM option price quotes respectively, λ is an arbitrary small number, and
X+ = max(0, X). However, in this paper we use the simple NL-OLS criterion since the modified NL-OLS
criterion can not be applied to the model specification tests such as a likelihood ratio test.
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3.5 Empirical Results

3.5.1 Data

We have estimated the parametric risk-neutral density using the cross-section data on

the S&P 500 index options traded at the Chicago Board of Options Exchange (CBOE). The

transaction prices are recorded with substantial measurement errors due to non-synchronous

trading so that we use daily closing bid and ask price quotes. We have obtained 100 sets

of cross-section data on the S&P 500 index options which are transacted with 2 months to

maturity in 2006. We have filtered the data using the arbitrage violation conditions since

the existence of arbitrage possibilities can lead to negative risk-neutral probabilities. By

checking the monotonicity and convexity of the option pricing functions, we may elimi-

nate option prices which violate the arbitrage-free condition. After eliminating the violated

data, we have 8,468 option price quotes.

3.5.2 Goodness of Fit

The goodness-of-fit of the parametric RNM estimation methods are compared by exam-

ining the pricing errors associated with each model on the basis of the Root Mean Squared

Errors (RMSE):

RMSE =

( 1
N

N∑
i=1

(Vi − V(Ki; θ))2
)1/2

.

To take the number of free parameters into account, we may also compare the adjusted

RMSE:

Adj. RMSE =

( 1
N − k

N∑
i=1

(Vi − V(Ki; θ))2
)1/2

.

Table 3.1 reports the RMSE and the adjusted RMSE for each model. Among the 12 al-

ternative parametric models, the JS model shows the smallest RMSE. The JS model seems
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to perform slightly better than the GS model, but the JS model has so many free-parameters

that it may suffer from over-fitting problems in the RNM estimation. The over-fitting prob-

lems may be detected by Monte-Carlo experiments.

3.5.3 Likelihood Ratio Test

Using the Kullback-Leibler Information Criterion (KLIC), Vuong (1989) proposed sim-

ple likelihood-ratio tests for the model selection among the competing models, which are

non-nested or nested. We assume that the pricing errors are i.i.d normally distributed with

variance σ2 as in Carr and Wu (2003). Under such assumptions, minimizing the sum of

squared pricing errors is equivalent to maximizing the log likelihood function. The NL-

OLS estimates can therefore be regarded as maximum likelihood estimates.

Consider two competing models F and G whose log density function are given by,

respectively:

log f (eθi; θ) = −
1
2

log
(
2πσ2

f

)
−

e2
θi

2σ2
f

and

log g(eγi; γ) = −
1
2

log
(
2πσ2

g

)
−

e2
γi

2σ2
g
,

where eθi and eγi denote the pricing error on the ith option under the model F and G,

respectively, and θ and γ are the parameter vectors of F and G, respectively. Since the

maximum likelihood estimate for σ2 is simply the mean squared pricing error: mse =

e>e/N, the log likelihood functions are given by, respectively:

L f (eθ; θ) =
N∑

i=1

log f (eθi; θ) = −
N
2

[
1 + log(2π) + log

(e>
θ

e
θ

N

)]
and

Lg(eγ; γ) =
N∑

i=1

log g(eγi; γ) = −
N
2

[
1 + log(2π) + log

(e>γ eγ
N

)]
,

where eθ and eγ are the pricing error vectors for each model. Furthermore, the likelihood
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ratio between the two models (F and G) is given by:

LR
(
θ̂, γ̂

)
= L f (êθ; θ̂) − Lg(êγ; γ̂)

= −
N
2

[
log

( ê>
θ

ê
θ

N

)
− log

( ê>γ êγ
N

)]
= −

N
2

[
log

( ê>
θ

ê
θ

ê>γ êγ

)]
.

Using the likelihood ratio, we can conduct a test on the model selection between alter-

native models which are nested or non-nested. We set the hypotheses by letting model F

be the GS model and letting model G be the 11 alternative models: BS, WB, FS, DN, DL,

GG, GB, OS, VG, JD, and JS.

a. Test for Non-nested Models

Given the competing non-nested models F and G, the Vuong’s likelihood ratio test

selects the model that is closest to the true model. Based on the KLIC, we consider the

following hypotheses and definitions:

H0 : E
[
log

f (eθi; θ)
g(eγi; γ)

]
= 0 : F and G are equivalent

H f : E
[
log

f (eθi; θ)
g(eγi; γ)

]
> 0 : F is better than G

Hg : E
[
log

f (eθi; θ)
g(eγi; γ)

]
< 0 : F is worse than G.

The test statistic for non-nested model selection can be constructed based on the likelihood

ratio:

ˆ̀ = N−1/2LR(θ̂, γ̂)/ω̂,

where ω̂ is the variance estimate of (log f − log g):

ω̂2 =
1
N

N∑
i=1

[
log

f (êθ; θ̂)
g(êγ; γ̂)

]2

−

 1
N

N∑
i=1

log
f (êθ; θ̂)
g(êγ; γ̂)

2
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with

log
f (êθi; θ̂)
g(êγi; γ̂)

= −
1
2

log
( ê>
θ

ê
θ

ê>γ êγ

)
− N

 ê2
θi

2ê>
θ

ê
θ

−
ê2
γi

2ê>γ êγ

 .

If F and G are non-nested and f (eθi; θ) , g(eγi; γ), then

under H0 : ˆ̀ D
−→ N(0, 1),

under H f : ˆ̀ a.s
−→ +∞,

under Hg : ˆ̀ a.s
−→ −∞.

The likelihood ratio LR can be adjusted for differences in number of free parameters in

each model:

LRA = LR − (p − q), or LRS = LR −
1
2

(p − q) log N,

where p and q are the number of parameters in models F and G, respectively. These adjust-

ments correspond to Akaike (1973) and Schwarz (1978) information criteria, respectively,

and the resulting statistics ˆ̀A and ˆ̀S have the same asymptotic properties as ˆ̀ since both

N−1/2(p − q) and N−1/2 1
2 (p − q) log N are op(1).

As depicted in Figure 3.1, the GS model does not nest the WB, VG, DN, DS, GG,

GB, JD, and JS models, so the LR test for non-nested models can be applied to the model

selection between the GS model and other non-nested models. We compute the the statistics

ˆ̀, ˆ̀A, and ˆ̀S by letting model F be the GS model and letting model G be the WB, VG, DN,

DS, GG, GB, JD, and JS models, which are reported in Table 3.2. Similarly to the RMSE

criterion, the model selection tests show that the GS model significantly outperforms other

non-nested models except for the JS model. The three LR test statistics between the GS

model and JS model indicate that neither model significantly outperforms the other.
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b. Test for Nested Models

If the model G is nested in the model F, any conditional density g(·; γ) is also a condi-

tional density f (·; θ) for some θ in Θ. The null hypothesis in the nested model selection is

the same as H0 in the non-nested model selection. However, the alternative hypothesis HA

is H f since Hg can never occur becasue G can never be better than F:

H0 : E
[
log

f (eθi; θ)
g(eγi; γ)

]
= 0 : F and G are equivalent

HA : E
[
log

f (eθi; θ)
g(eγi; γ)

]
> 0 : F is better than G.

If G is nested in F and F is correctly specified, then

under Hθ0 : 2LR(θ̂, γ̂)
D
−→ χ2

p−q,

under HθA : 2LR(θ̂, γ̂)
a.s.
−→ +∞.

As illustrated in Figure 3.1, the three stable type models (BS, FS, and OS) are nested

in the GS model. The LR test statistics P-values between the GS model and other nested

models are reported in Table 3.3. The test results indicate that the GS model is significantly

better the BS, FS, and OS models.

3.5.4 Monte-Carlo Experiments

We perform Monte-Carlo experiments to compare the capability to recover the simu-

lated actual RNM and to detect the over-fitting problem due to a large number of param-

eters. The accuracy and stability of RNM estimators can be also measured by means of

the Monte-Carlo experiment under the root mean integrated squared errors (RMISE) crite-

rion as in Bondarenko (2003). If r̂(x) is an estimator of risk neutral density r(x), then the
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(normalized) RMISE for the density estimator is defined as:20

RMISE(r̂) =
1
‖r(x)‖

(
E[‖r̂(x) − r(x)‖2]

)1/2

=
1
‖r(x)‖

(
E

[∫ ∞

0
(r̂(x) − r(x))2 dx

])1/2

.

Similarly to the MSE for the point estimator, the RMISE may be decomposed as:

RMISE2(r̂) = RISB2(r̂) + RIV2(r̂),

where

RISB(r̂) =
1
‖r(x)‖

(∫ ∞

0
(E[r̂(x)] − r(x))2 dx

)1/2

,

RIV(r̂) =
1
‖r(x)‖

(∫ ∞

0
E

[
(r̂(x) − E[r̂(x)])2

]
dx

)1/2

,

‖ · ‖ is the L2 norm, RISB is the (normalized) root integrated squared bias, and RIV is

the (normalized) root integrated variance. Intuitively, RMISE is a measure of the overall

quality of the estimator, RISB is a measure of the accuracy, and RIV is a measure of the

stability. This decomposition allows us to study the relative contributions of the bias (RISB)

and variability (RIV) to RMISE of different models.21

20In view of Fubini’s Theorem, RMISE is the same as RIMSE. If the expectation integration can be inter-
changed with the outer integration, then the root integrated mean squared error:

RIMSE[r̂] =
1
‖r(x)‖

(∫ ∞

0
E

[
(r̂(x) − r(x))2 dx

])1/2

=
1
‖r(x)‖

(
E

[∫ ∞

0
(r̂(x) − r(x))2 dx

])1/2

= RMISE[r̂(x)]

is nothing but the root mean integrated squared error.

21Alternatively, we can apply some of the most useful distance measures include: (i) The L1 norm or the
Integrated Absolute Error (IAE): IAE[ f̂ ] =

∫ ∞
0 |r̂(x) − r(x)|dx; (ii) the L2 norm or the Integrated Squared

Error (ISE): ISE[r̂] =
∫ ∞

0 (r̂(x) − r(x))2 dx; (iii) The L∞ norm or Sup Absolute Error (SAE): SAE[r̂] =
supx∈[0,∞] |r̂(x) − r(x)|; (iv) the Kullback-Leibler measure (KL): KL[r̂] =

∫ ∞
0 r(x) log

(
r(x)
r̂(x)

)
dx; and (v) the

Hellinger distance (H): H[r̂] =
(∫ ∞

0

(
r̂1/p(x) − r1/p(x)

)p
dx

)1/p
.
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Monte-Carlo experiments are conducted based on the following 12 scenarios:

Scenario i: i model is true RNM model,

where i=BS, WB, FS, DN, DS, GG, GB, OS, GS, VG, JD, and JS. For each scenario, we

calibrate the actual RNM based on assumed true parametric RNM estimation method using

the closing prices on April 17, 2006 of the S&P 500 options with the maturity date on Jun

17, 2006. The resulting actual RNM density r(x) for each scenario is depicted as a dotted

line in Figure 3.2 through 3.13, respectively. To generate 200 simulated cross-sections of

OTM option prices Vi for each scenario, the theoretical prices computed from the actual

r(x) are perturbed independently by random noises uniformly distributed on the maximum

bid-ask range permitted by the CBOE. For each simulated cross-section, the RNM density

is estimated with the 12 different parametric estimation methods. The estimated RNMs

with the 12 parametric models for each scenario are depicted in Figure 3.2 through 3.13

and the associated RMISE statistics are also reported in Table 3.5 through 3.16. Under the

scenarios that fat-tailed distributions–such as FS, OS, and GS models are true RNMs, the

estimated JS RNMs reveal the over-fitting problems, which create spurious oscillations due

to sampling noise. The over-fitting problem of the JS model can be found in Figure 3.3,

3.4, 3.7, 3.9, 3.10, and 3.13. Panel A of Table 3.4 reports the average RMISE statistics for

all scenarios. Since the RMISE tend to be small under the scenario that the nested model

is true RNM model, we also compute the average RMISE of the scenarios for non-nested

models, which reported in Panel B of Table 3.4. Panel A of Table 3.4 indicates that the

GS model outperforms other alternative models on the basis of RMISE criterion. Further,

Panel B of Table 3.4 implies that even if our comparison is restricted to the non-nested

models, the GS model shows the best performance among alternative models.
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3.6 Concluding Remarks

The risk-neutral measure of the future asset prices can be estimated from the currently

observed cross-section of option prices with the same time-to-maturity. The estimated

RNM of the asset prices provides valuable information about the market’s expectations on

the future movement of asset prices.

We have implemented 12 parametric RNM estimation methods by means of the closed

form of RNM distributions or RNM characteristic functions. We then compared the em-

pirical performance of the 12 parametric RNM estimation methods under three criteria—

the root mean squared error (RMSE) for the goodness-of-fit, likelihood ratio (LR) for the

model selection, and the root mean integrated squared error (RMISE) for the accuracy and

stability of the estimated RNMs.

The empirical results show that the two-factor generalized log-stable model outper-

forms other alternative parametric RNM estimation methods. The RMSEs and the LR tests

indicate that the two-factor generalized log-stable model and the jump diffusion model

with stochastic volatilities dominates other models. However, the jump diffusion model

with stochastic volatilities is vulnerable to over-fitting problems due to a large number

of parameters. Our Monte-Carlo experiments reveal that the jump diffusion model with

stochastic volatilities suffers from the serious over-fitting problems and also show that the

generalized two-factor log-stable model outperforms the alternatives.
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Figure 3.1: RNM Distribution Tree.
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BS WB FS VG DN DS
RMSE 2.135 0.687 0.513 0.276 0.305 0.120
Adj. 2.188 0.704 0.532 0.290 0.325 0.132

GG GB OS GS JD JS
RMSE 0.380 0.342 0.513 0.098 0.246 0.076
Adj. 0.395 0.360 0.539 0.106 0.263 0.086

Note: RMSEs are computed for each set of cross-section data on S&P
500 index options by minimizing the sum of squared pricing errors. The
entries report the sample average of the RMSEs and adjusted RMSEs.
The sample contains 100 sets of cross-section data on S&P 500 index
options with 2 months to maturity, which are traded in 2006.

Table 3.1: Root Mean Squared Errors (RMSE)
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LR Statistics P-values
Models ˆ̀ ˆ̀A ˆ̀S ˆ̀ ˆ̀A ˆ̀S

WB 12.5 11.9 11.3 0.000 0.000 0.000
VG 6.9 6.6 6.3 0.000 0.000 0.000
DN 7.6 7.4 7.3 0.000 0.000 0.000
DS 1.9 2.1 2.3 0.026 0.017 0.011
GG 9.6 9.1 8.7 0.000 0.000 0.000
GB 8.5 8.1 7.9 0.000 0.000 0.000
JD 6.5 6.3 6.2 0.000 0.000 0.000
JS -1.2 -0.4 0.3 0.881 0.654 0.391

Note: Three likelihood ratio statistics ( ˆ̀, ˆ̀A, and ˆ̀S ) are computed by
letting model F be the GS model and letting model G be the WB, VG,
DN, DS, GG, GB, JD, and JS models. All three tests are asymptotically
normally distributed with zero mean and unit variance. The entries re-
port the sample average of the test statistics and the corresponding P-
values. The sample contains 100 sets of cross-section data on S&P 500
index options with 2 months to maturity, which are traded in 2006.

Table 3.2: Likelihood Ratio Tests for Non-Nested Models

BS FS OS
2LR P-value 2LR P-value 2LR P-value
266.3 0.000 144.5 0.000 144.5 0.000

Note: The likelihood ratio statistics (2LR) are computed by letting
model F be the GS model and letting model G be the BS, FS, and OS
models. The test statistic is asymptotically chi-square distributed with
p − q degree of freedom. The entries report the sample average of the
test statistics and the corresponding P-values. The sample contains 100
sets of cross-section data on S&P 500 index options with 2 months to
maturity, which are traded in 2006.

Table 3.3: Likelihood Ratio Tests for Nested Models
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A. Average RMISE of all scenarios
BS WB FS VG DN DS

RMISE 0.2187 0.1004 0.0812 0.0856 0.0598 0.0379
RISB 0.2186 0.1002 0.0809 0.0832 0.0588 0.0354
RIV 0.0012 0.0014 0.0020 0.0108 0.0063 0.0095

GG GB OS GS JD JS
RMISE 0.0793 0.0530 0.0791 0.0314 0.0451 0.1045
RISB 0.0788 0.0514 0.0785 0.0299 0.0434 0.0358
RIV 0.0027 0.0080 0.0022 0.0061 0.0086 0.0927

B. Average RMISE of scenarios for non-nested models
BS WB FS VG DN DS

RMISE 0.2385 0.1093 0.0971 0.1014 0.0707 0.0518
RISB 0.2385 0.1093 0.0970 0.0995 0.0704 0.0507
RIV 0.0012 0.0014 0.0020 0.0118 0.0065 0.0101

GG GB OS GS JD JS
RMISE 0.1031 0.0678 0.1045 0.0448 0.0529 0.1218
RISB 0.1031 0.0675 0.1045 0.0441 0.0518 0.0384
RIV 0.0028 0.0060 0.0020 0.0069 0.0092 0.1105

Note: Panel A reports the average RMISE statistics for all 12 scenarios,
and Panel B reports the average RMISE of the scenarios for non-nested
models. The 12 scenarios are that i model is true RNM model, i=BS,
WB, FS, DN, DS, GG, GB, OS, GS, VG, JD, and JS.

Table 3.4: Root Mean Integrated Squared Errors (RMISE)

BS WB FS VG DN DS
RMISE 0.0012 0.2462 0.0015 0.0046 0.0041 0.0076
RISB 0.0001 0.2462 0.0007 0.0030 0.0005 0.0042
RIV 0.0011 0.0014 0.0014 0.0035 0.0040 0.0064

GG GB OS GS JD JS
RMISE 0.0175 0.0043 0.0019 0.0032 0.0037 0.0072
RISB 0.0175 0.0036 0.0008 0.0011 0.0016 0.0029
RIV 0.0012 0.0023 0.0018 0.0030 0.0034 0.0065

Table 3.5: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the True
RNM is the Black Scholes Log-Normal (BS) Model
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BS WB FS VG DN DS
RMISE 0.2367 0.0016 0.1206 0.0367 0.0876 0.0691
RISB 0.2367 0.0001 0.1206 0.0272 0.0872 0.0680
RIV 0.0013 0.0016 0.0022 0.0246 0.0090 0.0124

GG GB OS GS JD JS
RMISE 0.0029 0.0814 0.1206 0.0234 0.0529 0.0318
RISB 0.0001 0.0714 0.1205 0.0231 0.0516 0.0079
RIV 0.0029 0.0390 0.0022 0.0039 0.0116 0.0308

Table 3.6: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the True
RNM is the Weibull (WB) Model

BS WB FS VG DN DS
RMISE 0.1789 0.1113 0.0022 0.1563 0.0797 0.0133
RISB 0.1789 0.1113 0.0001 0.1559 0.0796 0.0041
RIV 0.0012 0.0015 0.0022 0.0102 0.0043 0.0127

GG GB OS GS JD JS
RMISE 0.1049 0.0921 0.0029 0.0042 0.0635 0.4265
RISB 0.1049 0.0917 0.0008 0.0016 0.0633 0.1044
RIV 0.0029 0.0084 0.0028 0.0039 0.0048 0.4136

Table 3.7: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the True
RNM is the Finite Moment Log-Stable (FS) Model

BS WB FS VG DN DS
RMISE 0.2510 0.1248 0.0897 0.1272 0.0065 0.0127
RISB 0.2510 0.1248 0.0897 0.1269 0.0016 0.0102
RIV 0.0011 0.0014 0.0021 0.0090 0.0063 0.0075

GG GB OS GS JD JS
RMISE 0.1262 0.0755 0.0897 0.0714 0.0160 0.0506
RISB 0.1261 0.0754 0.0897 0.0711 0.0133 0.0497
RIV 0.0029 0.0033 0.0021 0.0067 0.0089 0.0091

Table 3.8: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the True
RNM is the Mixture of Log-Normal (DN) Model
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BS WB FS VG DN DS
RMISE 0.2453 0.0935 0.0854 0.1007 0.0491 0.0067
RISB 0.2453 0.0935 0.0853 0.1002 0.0488 0.0008
RIV 0.0011 0.0013 0.0019 0.0090 0.0054 0.0066

GG GB OS GS JD JS
RMISE 0.0953 0.0464 0.0853 0.0351 0.0343 0.0539
RISB 0.0953 0.0463 0.0853 0.0341 0.0332 0.0432
RIV 0.0026 0.0034 0.0019 0.0079 0.0086 0.0323

Table 3.9: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the True
RNM is the Mixture of Log-Stable (DS) Model

BS WB FS VG DN DS
RMISE 0.2476 0.0126 0.1257 0.0385 0.0930 0.0732
RISB 0.2476 0.0126 0.1257 0.0318 0.0926 0.0723
RIV 0.0012 0.0015 0.0021 0.0217 0.0090 0.0116

GG GB OS GS JD JS
RMISE 0.0029 0.0050 0.1257 0.0250 0.0577 0.0707
RISB 0.0003 0.0024 0.1257 0.0240 0.0565 0.0120
RIV 0.0029 0.0044 0.0021 0.0070 0.0116 0.0697

Table 3.10: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Generalized Gamma (GG) Model

BS WB FS VG DN DS
RMISE 0.2672 0.1000 0.1179 0.0538 0.0643 0.0470
RISB 0.2672 0.1000 0.1179 0.0532 0.0638 0.0458
RIV 0.0011 0.0014 0.0018 0.0076 0.0082 0.0108

GG GB OS GS JD JS
RMISE 0.0982 0.0025 0.1179 0.0381 0.0442 0.0149
RISB 0.0982 0.0000 0.1179 0.0375 0.0426 0.0031
RIV 0.0026 0.0025 0.0018 0.0071 0.0118 0.0146

Table 3.11: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Generalized Beta (GB) Model
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BS WB FS VG DN DS
RMISE 0.1859 0.1318 0.0302 0.1785 0.0746 0.0219
RISB 0.1859 0.1318 0.0302 0.1782 0.0745 0.0210
RIV 0.0012 0.0014 0.0020 0.0101 0.0044 0.0062

GG GB OS GS JD JS
RMISE 0.1196 0.0931 0.0036 0.0054 0.0604 0.3282
RISB 0.1196 0.0916 0.0005 0.0027 0.0603 0.0656
RIV 0.0027 0.0163 0.0036 0.0047 0.0042 0.3215

Table 3.12: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Orthogonal Log-Stable (OS) Model

BS WB FS VG DN DS
RMISE 0.2368 0.0655 0.0772 0.1000 0.0717 0.0404
RISB 0.2368 0.0655 0.0772 0.0997 0.0716 0.0394
RIV 0.0012 0.0014 0.0020 0.0080 0.0043 0.0089

GG GB OS GS JD JS
RMISE 0.0671 0.0508 0.0772 0.0063 0.0609 0.0855
RISB 0.0670 0.0505 0.0771 0.0003 0.0604 0.0397
RIV 0.0028 0.0050 0.0021 0.0063 0.0073 0.0757

Table 3.13: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Two-Factor Generalized Log-Stable (GS) Model

BS WB FS VG DN DS
RMISE 0.2891 0.1342 0.1575 0.0082 0.0926 0.0919
RISB 0.2891 0.1342 0.1574 0.0011 0.0919 0.0909
RIV 0.0013 0.0015 0.0021 0.0081 0.0115 0.0137

GG GB OS GS JD JS
RMISE 0.1320 0.0537 0.1574 0.0799 0.0657 0.0338
RISB 0.1320 0.0536 0.1574 0.0796 0.0640 0.0196
RIV 0.0029 0.0028 0.0021 0.0077 0.0150 0.0275

Table 3.14: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Variance-Gamma (VG) Model
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BS WB FS VG DN DS
RMISE 0.2461 0.1143 0.0825 0.1210 0.0127 0.0170
RISB 0.2461 0.1143 0.0825 0.1207 0.0117 0.0149
RIV 0.0012 0.0014 0.0020 0.0091 0.0049 0.0082

GG GB OS GS JD JS
RMISE 0.1162 0.0722 0.0825 0.0619 0.0089 0.0404
RISB 0.1162 0.0720 0.0825 0.0615 0.0010 0.0395
RIV 0.0027 0.0053 0.0020 0.0073 0.0088 0.0086

Table 3.15: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Jump Diffusion (JD) Model

BS WB FS VG DN DS
RMISE 0.2387 0.0684 0.0840 0.1013 0.0821 0.0538
RISB 0.2387 0.0684 0.0840 0.1009 0.0820 0.0530
RIV 0.0012 0.0015 0.0020 0.0083 0.0044 0.0092

GG GB OS GS JD JS
RMISE 0.0686 0.0588 0.0840 0.0233 0.0735 0.1108
RISB 0.0686 0.0587 0.0840 0.0221 0.0730 0.0419
RIV 0.0028 0.0031 0.0020 0.0072 0.0078 0.1026

Table 3.16: Root Mean Integrated Squared Errors (RMISE) under the Scenario that the
True RNM is the Jump Diffusion Model with Stochastic Volatility (JS)
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CHAPTER 4

NONPARAMETRIC ESTIMATION OF RISK NEUTRAL MEASURES
USING QUARTIC B-SPLINE CDFs WITH POWER TAILS

4.1 Introduction

Investors and researchers have long used option prices to infer market expectations

about the volatilities and correlations of the underlying assets by recovering risk neutral

distributions from observed option prices. Option prices are computed as a present value

of its expected payoffs under the risk neutral (probability) measure (RNM). The RNM

can be estimated from a set of European option prices using the relationship proposed

in Ross (1976) and Breeden and Litzenberger (1978). Since the RNM embodies important

information about market participants’ sentiments concerning prices of the underlying asset

in the future, a number of methods have been developed to estimate the RNM from the

observed option prices. Generally, these methods are divided into two broad groups of

parametric and nonparametric methods.

The parametric methods make particular assumptions on the form or family of the RNM

and then typically use a non-linear regression technique to estimate the parameters of the

RNM which minimizes sum of squared pricing errors. On the other hand, the nonparamet-

ric methods make no strong assumptions about the RNM since they are flexible data-driven

methods. However, the nonparametric approaches are so data-intensive that they usually

lead to over-fitting problems and are not effective in small samples.

The nonparametric methods can be again divided in three groups: kernel methods
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[Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Duarte (2000)], maximum-entropy methods

[Buchen and Kelly (1996), Stutzer (1996)], and curve fitting methods [Shimko (1993), Bliss

and Panigirtzoglou (2002)]. The kernel methods construct a kernel estimator of the option

pricing function without specifying a parametric form. Second, the maximum-entropy

methods find a non-parametric probability distribution that matches the information con-

tent, while at the same time satisfying certain constraints, such as pricing observed options

correctly. Finally, the curve fitting methods fit the implied volatilities or the risk neutral

density with some flexible function such as spline functions or polynomial functions.

The most widely used nonparametric technique for estimating RNMs is the smoothed

implied volatility smile (SML) method which has been discerned as a standard method by

users such as central banks and market participants. The SML method was originally de-

veloped by Shimko (1993), and it explicitly utilizes the results of Breeden and Litzenberger

(1978) on the call option pricing function. Shimko (1993) proposes that the observed op-

tion prices first be converted to implied volatilities using the Black-Scholes option pricing

formula. A continuous smoothing function is then fitted to implied volatilities against the

strike prices. The implied volatility function could then be fitted and the continuum of

fitted implied volatilities converted back to a continuum of fitted option prices. The RNM

probability density function (PDF) can be obtained by applying the results of Breeden and

Litzenberger (1978) on the call option pricing function. The advantage of this method is

that the implied volatilities are much more similar in magnitude across strike prices than

option prices are. Bliss and Panigirtzoglou (2002) follow Malz (1997) in smoothing in

implied volatility/delta space and Campa, Chang and Reider (1998) in using a natural cu-

bic spline to approximate the function. Recently, Bu and Hadry (2007) improve the SML

method by providing an analytic expression for the RNM estimator.

The SML method has some problems in estimating the RNM. First, the natural spline

is restricted to become linear outside the range of observed option prices. As Bliss and

Panigirtzoglou (2002) point out, this restriction can lead to negative tail probabilities if the
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slope of the polynomial is negative at the extreme knot points.1 Further, the estimated tail

probabilities have no information about true ones since they are not estimated by observed

option prices. Second, the SML method cannot guarantee the resulting RNM PDF to be

integrated to unity. The negative probabilities or probabilities not integrating to unity seri-

ously violate no-arbitrage constraints. Lastly, problems with the SML method include the

difficulty of selecting the optimal tradeoff between smoothness and fit since the shape of

RNM PDFs is very sensitive to the smoothing parameter. The SML method is typically un-

able to avoid both overfitting and oversmoothing. To effectively eliminate noise in data, this

method requires substantial smoothing, which considerably distorts the genuine features of

the estimated function.

This chapter proposes a new nonparametric approach which overcomes the drawbacks

of the SML method. First, we model the probability distribution outside the traded strike

range using power tails, which may be estimated from the far-from-the-money option

prices. With the power tails, the RNM has nonnegative tail probabilities and also reflects

information about true tail probabilities. Second, the RNM cumulative distribution func-

tion (CDF) is constructed by using quartic B-spline functions with power tails so that the

resulting RNM PDF has continuity C2. The use of B-splines also improves computational

efficiency and reduces the number of spline parameters since every spline function can be

represented as a linear combination of B-splines. The advantage of constructing the RNM

CDF with power tails is that the integral of RNM probabilities is guaranteed to be unity.

Lastly, by choosing an optimum number of knots, our method can avoid both overfitting

and oversmoothing. A small number of knots may result in a function space which is not

flexible enough to capture the true RNM CDF, but one the other hand a large number may

1To ensure the non-negativity of the estimated PDF, Monterio, Tütüncü, and Vicente (2005) estimate the
cubic spline RNM PDF using the semi-definite programming (SDP) formulation, but they just truncate the
tails of PDF without estimating them from option prices. Fengler (2005) propose an algorithm for estimating
the implied volatility smile under suitable linear inequality constraints, ensuring non-negativity of the RNM
pdf, but this algorithm does not guarantee the resulting RNM PDF to be integrated to unity.

105



lead to serious overfitting. To select optimal tradeoff between smoothness and fit, we use

the minimum number of knots which attains zero bid-ask pricing errors in constructing the

B-spline RNM CDF. The method is termed the B-spline RNM CDF with power tails (BSP),

which is nonparametric because any probability distribution is a possible solution.

Our nonparametric method involves solving a highly nonlinear optimization problem

with a number of constraints due to the power tails. It is computationally difficult and

inaccurate to estimate the B-spline part of the CDF and the power tails simultaneously.

To improve computational efficiency and accuracy we develop a 3-step RNM estimation

technique: (i) estimating the power tail parameters; (ii) selecting the optimum number of

the knots; and (iii) estimating the B-spline control points. The 3-step estimation procedure

transforms a nonlinear optimization problem into a convex quadratic program which is

efficiently solved by numerical optimization software.

To compare the performance of the BSP method with the SML method for estimat-

ing option implied RNMs, we evaluate the two methods on the basis of the flexibility of

the estimated RNM and conduct Monte-Carlo experiments based on 12 hypothetical true

distributions. We find that the BSP method dominates the SML method as a technique

for estimating the option-implied RNM. The SML method violates the no-arbitrage con-

strains, and it is significantly biased, particularly under the scenarios that the true RNM is

a fat-tailed distribution. In contrast, the BSP method always produces arbitrage-free RNM

estimators, and it almost perfectly recovers the actual RNM PDFs for all hypothetical dis-

tributional assumptions.

The rest of the chapter is organized as follows. Section 4.2 briefly reviews the smoothed

implied volatility smile (SML) method. Section 4.3 constructs the quartic B-spline RNM

CDF with power tails. Section 4.4 introduces the 3-step RNM estimation procedure with

the quartic B-spline RNM CDF with power tails. In Section 4.5, we compare the flexibility

of BSP and SML and conduct Monte-Carlo experiments. Section 4.6 concludes.
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4.2 Smoothed Implied Volatility Smile (SML) method

The smoothed implied volatility smile method explicitly utilizes the results of Breeden

and Litzenberger (1978) on the call option pricing function. Breeden and Litzenberger

showed that the RNM PDF of the price of underlying asset at maturity date is related to

call (or put) prices through

R′(S T ) = er f T ∂
2C(K)
∂K2

∣∣∣∣∣∣
K=S T

,

where R(x) is the RNM CDF, S T is the underlying asset price at maturity date, r f is the risk

free interest rate, T is the time to maturity, K is the strike price, and C(K) is the call pricing

function. Thus, if we observed the call pricing function we could differentiate twice to

obtain the RNM PDF. However, we only observe option prices for relatively few discretely

spaced strikes.

Shimko (1993) proposes interpolating in the implied volatility domain instead of the

call price domain since it is technically difficult to fit accurately the shape of the latter

and small fitted price errors tend to have large effects on the resulting RNM PDFs, par-

ticularly in the tails. Shimko chooses to use a simple quadratic polynomial smoothing

function within the span of available strikes and with lognormal tails outside the span of

available strikes. Malz (1997) modifies Shimko’s technique by fitting the implied volatility

against the Black-Scholes option delta (δ = ∂C/∂S ) rather than the strike price, but follows

Shimko in using a low-order polynomial as the smoothing function. Campa, Chang and

Reider (1998) introduce the use of a smoothing spline2 for fitting implied volatility curves.

They apply this to smoothing the implied volatility/strike function. Use of a natural spline,

rather than a low-order polynomial, permits the user to control the smoothness of the fitted

function.
2The curve fitting method based on spline functions was first used by McCulloch (1971, 1975) in financial

economics for modeling the term structure of interest rates.
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In this paper we use the smoothed implied volatility smile (SML) method developed

by Bliss and Panigirtzoglou (2002). This method follows Malz (1997) in smoothing in

implied volatility/delta space and Campa et al. (1998) in using a smoothing cubic spline

to approximate the function. The RNM PDF can be obtained by a five-step estimation

procedure.

Step 1 Converting call option prices C(Ki) into implied volatilities σKi using the inverse

Black-Scholes formula3

σKi = BS −1(C(Ki); Ki, S 0, r f , d,T )

where BS −1(·) is the inverse Black-Scholes formula; σKi and C(Ki) are the implied

volatility and the price of European call option, respectively, associated with the

strike price Ki; S 0 is the underlying asset price at time 0; r is the risk-free interest

rate; d is the dividend rate; and T is the maturity date.

Step 2 Converting implied volatility/strike space into implied volatility/delta space

δi = e−dTΦ

 ln S 0 − ln Ki +
(
r − d + σ2

A/2
)

T

σA
√

T


IV(δi) = σKi

where δi is the delta associated with the strike price Ki
4; σA is the at-the-money

volatility5; IV(δi) is the implied volatility associated with δi; and Φ(·) is the standard

3The use of the Black-Scholes formula to transfer between the call price and implied volatility domains
does not require that the Black-Scholes model is ture. Black-Scholes formula is used as a translation de-
vice that allows us to interpolate implied volatilities rather than the observed option prices themselves for a
computational convenience.

4It should be recalled that 0 ≤ δi ≤ edT , where d is the dividend rate of the underlying asset.

5Transforming each strike into a delta using the at-the-money implied volatility has the advantage that the
ordering of deltas is always the same as that of the strikes. Panigirtzoglou and Skiadopoulos (2004) pointed
out that using the implied volatilities that corresponds to each strike could change the ordering in the delta
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normal CDF.

Step 3 Approximating the implied volatility smile using smoothing cubic spline functions

min
Θ

N∑
i=1

wi (IV(δi) − f (δi;Θ))2 + ω

∫ e−dT

0
f ′′(δ;Θ)2dδ,

where Θ is the matrix of polynomial parameters of the cubic spline; f (Θ) is the

cubic spline function; f (δi,Θ) is the fitted implied volatility at δi given the spline

parameters Θ; wi is the relative weights to each observation6; ω is the smoothing

parameter, which multiplies a measure of the degree of curvature in the function–the

integral of the squared second derivative of the function over its range.7

Step 4 Converting the implied volatility smile into a option pricing function in price/strike

space

δ(K) = e−dTΦ

 ln S 0 − ln K +
(
r − d + σ2

A/2
)

T

σA
√

T


σ(K) = f (δ(K);Θ)

C(K) = BS (K;σ(K), S 0, r, d, ,T )

where σ(K) is the fitted implied volatility smile; C(K) is the fitted call pricing func-

tion; and BS (·) is the Black-Scholes formula.

space, in cases where steep volatility skews are observed. This would result in generating volatility smiles
with artificially created kinks.

6Bliss and Panigirtzoglou (2002) discussed different types of weighting schemes and how the weighting
can account for different sources of pricing errors.

7The objective function suggests that the degree of freedom for the estimation is also related to the smooth-
ing parameter. In particular, the maximum degree of freedom is achieved when ω = 1, which amounts to
fitting a straight line to the data; whereas, when ω = 0, the cubic spline provides an exact fit to the data.
Fisher et al. (1995) gives a rigorous definition of the effective number of parameter of the regression.

109



Step 5 Computing the RNM PDF using numerical methods

R′(x) = erT ∂
2C(x)
∂x2 ,

where R′(x) is the RNM PDF.

4.3 Quartic B-Spline RNM CDF with Power Tails

4.3.1 Uniform Quartic B-Spline

A spline is a piecewise polynomial function. A spline S : [a, b] → R consists of

polynomical pieces Pi : [xi, xi+1)→ R, where

a = x1 < · · · < xn = b.

The given n points xi are called knots. The vector x = (x1, · · · , xn) is called knot vector for

the spline. A spline on [a, b] is of degree m if its first m−1 derivatives exist on each interior

knot and the highest degree of the polynomials defining the spline function is m.

A B-spline is a spline function that has minimal support with respect to a given order,

smoothness, and domain partition. Every spline function of a given degree, smoothness and

domain partition, can be represented as a linear combination of B-splines of which same

order and smoothness, and over that same partition. A B-spline basis function of degree

m is a piecewise polynomial whose pieces are defined over the spans between knots. Each

piece is a polynomial of degree m. The pieces meet with continuity of all derivatives below

the mth and with (possible) discontinuities of the mth derivative. The function is identically

zero outside a range of m + 1 spans, and positive within its non-zero domain.
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The ith B-spline basis of degree m for n knots xi with x1 < x2 < . . . < xn can be

constructed using the Cox-de Boor recursion formula:

Bi,0(x) = I[xi,xi+1)(x), (4.1)

Bi,m(x) =
x − xi

xi+m − xi
Bi,m−1(x) +

xi+m+1 − x
xi+m+1 − xi+1

Bi+1,m−1(x) (4.2)

where I[xi,xi+1)(x) = 1 for x ∈ [xi, xi+1), I[xi,xi+1)(x) = 0 for x < [xi, xi+1), Bi,m(x) > 0 for x ∈

[xi, xi+m+1], and Bi,m(x) = 0 for x < [xi, xi+m+1]. When the knots are equidistant, we say

the B-spline is uniform otherwise we call it non-uniform. In our study, we use a uniform

quartic B-spline basis to construct the risk-neutral CDF.

A quartic spline is a spline of degree 4 with C3 continuity. The quartic spline can be

constructed as a linear combination of 4th degree B-spline basis functions:

f (x) =
n−5∑
i=1

ciBi,4(x), x ∈ [x5, xn−4].

The coefficients ci are called the control points.8 The uniform quartic B-spline basis func-

tion is illustrated in Figure 4.1.

Consider a uniform knot vector x = (x1, · · · , xn) with (xi+1− xi) = h for all i = 1, . . . , n−

1. Since knots are equidistant,

xi+ j − xi

h
= j. (4.3)

In order to simplify notations, let

zi ≡
x − xi

h
, (4.4)

zi+ j ≡
x − xi+ j

h
. (4.5)

8The control points form a sequence which is known as the control polygon which is often visualized by
joining them in sequence by straight lines. This set of straight lines is in fact the B-spline curve of order
1-defined by that set of control points.
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By combining (4.3) and (4.5),

zi+ j = zi − j. (4.6)

By means of (4.4) and (4.2), we can rewrite the Cox-de Boor formula (4.1) and (4.2):

Bi,0(x) = I[xi,xi+1)(x), (4.7)

Bi,m(x) =
zi

m
Bi,m−1(x) +

m + 1 − zi

m
Bi+1,m−1(x). (4.8)

Finally, we may construct the basis of a uniform quartic B-spline recursively by using (4.7)

and (4.8):

Bi,4(x) =
(

z4
i

24

)
I[xi,xi+1)(x)

+

(
−4z4

i + 20z3
i − 30z2

i + 20zi − 5
24

)
I[xi+1,xi+2)(x)

+

(
6z4

i − 60z3
i + 210z2

i − 300zi + 155
24

)
I[xi+2,xi+3)(x)

+

(
−4z4

i + 60z3
i − 330z2

i + 780zi − 655
24

)
I[xi+3,xi+4)(x)

+

(
(5 − zi)4

24

)
I[xi+4,xi+5)(x).

where zi =
x−xi

h , and h = xi+1 − xi.

4.3.2 Constructing a Quartic B-spline RNM CDF with Power Tails

Consider N traded strike price sequence K1 < K2 < · · · < KN . We construct a RNM

CDF by means of the quartic B-spline for the traded strike range [K1, KN], and then extrap-

olate beyond the traded strike range by grafting power tails onto each of the endpoints of

the RNM CDF. To ensure a smooth transition from the traded strike range of the distribu-

tion to the tails, we impose end point constraints for continuity up to the second derivative.

To guarantee non-negativity of the RNM PDF, we also restrict the slope of the RNM CDF
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to be non-negative at all the knots within the traded strike range [K1, KN]. Thus, the quartic

B-spline CDF with power tails is described as:

R(x) = R(x; c1, . . . , cn−5, ρ1, ρ2, λ1, λ2)

= ρ1xλ1 I[0,K1)(x) +
n−5∑
i=1

ciBi,4(x) I[K1,KN ](x) +
(
1 − ρ2x−λ2

)
I(KN ,∞](x) (4.9)

s.t.

(i) Level continuity constraints

ρ1Kλ1
1 =

n−5∑
i=1

ciBi,4(K1) (left end) (4.10)

1 − ρ2K−λ2
N =

n−5∑
i=1

ciBi,4(KN) (right end) (4.11)

(ii) 1st derivative continuity constraints

ρ1λ1Kλ1−1
1 =

n−5∑
i=1

ciB
(1)
i,4 (K1) (left end) (4.12)

ρ2λ2K−λ2−1
N =

n−5∑
i=1

ciB
(1)
i,4 (KN) (right end) (4.13)

(iii) 2nd derivative continuity constraints

ρ1λ1(λ1 − 1)Kλ1−2
1 =

n−5∑
i=1

ciB
(2)
i,4 (K1) (left end) (4.14)

−ρ2λ2(λ2 + 1)K−λ2−2
N =

n−5∑
i=1

ciB
(2)
i,4 (KN) (right end) (4.15)

(iv) Non-negative probability constraints

n−5∑
i=1

ciB
(1)
i,4 (x j) ≥ 0, j = 6, . . . , n − 5. (4.16)
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where x = (x1, · · · , xn) is a uniform knot vector with x5 = K1 and xn−4 = KN , and B( j)

denotes the jth derivative of the B-spline basis.

Once we have the Quartic B-spline RNM CDF with power tails R(x), the RNM PDF

can be derived as a first derivative of R(x):

R′(x) = ρ1λ1xλ1−1 I[0,K1)(x) +
n−5∑
i=1

ciB
(1)
i,4 (x) I[K1,KN ](x) + ρ2λ2x−λ2−1 I(KN ,∞](x) (4.17)

where

B(1)
i,4 (x) =

(
z3

i

6h

)
I[xi,xi+1)(x)

+

(
−4z3

i + 15z2
i − 15zi + 5

6h

)
I[xi+1,xi+2)(x)

+

(
6z3

i − 45z2
i + 105zi − 75
6h

)
I[xi+2,xi+3)(x)

+

(
−4z3

i + 45z2
i − 165zi + 195
6h

)
I[xi+3,xi+4)(x)

+

(
z3

i − 15z2
i + 75zi − 125

6h

)
I[xi+4,xi+5)(x)

with zi =
x−xi

h , h = xi+1 − xi. The quartic B-spline RNM CDF and PDF with power tails are

illustrated in Figure 4.2.

4.4 Option pricing with a B-Spline RNM CDF

By ruling out arbitrage possibilities, Cox and Ross (1976) showed that options can be

priced as if investors’ were risk neutral, regardless of investors risk preferences. Consider a

European call option whose terminal payoff is max(0, S T − K), where S T is the underlying

asset price at maturity, T is the time to maturity, and K is the strike price. In a complete

arbitrage-free market, the price of a European call option C(K) can then be computed as
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the discounted value of the option’s expected payoff under the RNM. Formally,

C(K) = e−r f T
∫ ∞

K
(x − K) R′(x) dx

= e−r f T

[∫ ∞

K
x R′(x) dx + KR(K) − K

]
, (4.18)

where r f is the risk free rate, R′(x) is the risk-neutral density of the underlying asset price

at maturity.

In a similar manner the price of a European put option P(K) can be calculated as:

P(K) = e−r f T
∫ K

0
(K − x) R′(x) dx

= e−r f T

[
−

∫ K

0
x R′(x) dx + KR(K)

]
(4.19)

In the arbitrage-free market, the expected price at maturity under the RNM should equal

the forward price of the underlying asset with the same time to maturity, i.e. the RNM must

satisfy the so-called the mean-forward price equality condition:

EQ(x) =
∫ ∞

0
x R′(x)dx = S 0e(r f−d)T , (4.20)

where S 0 is the underlying asset price at time 0; d is the annual dividend rate of the under-

lying asset; S 0e(r f−d)T is the implicit forward price; and EQ is the conditional expectation

on time 0 information under the RNM.

By applying the B-spline RNM (4.9) and (4.17) to call and put price functions (4.18)

and (4.19), call and put option prices under the B-Spline RNM CDF with power tails are
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written as:

C(K; c, θ)

= e−r f T

 n−5∑
i=1

ci

∫ KN

K
xB(1)

i,4 (x)dx +
ρ1λ1

λ1 + 1
Kλ1+1

1 +
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ1

λ1 + 1
Kλ1+1 − K

 I[0,K1)(K)

+ e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) +

∫ KN

K
x B(1)

i,4 (x) dx
)
+
ρ2λ2

λ2 − 1
K−λ2+1

N − K

 I[K1,KN ](K) (4.21)

+ e−r f T ρ2

λ2 − 1
K−λ2+1 I(KN ,∞](K)

P(K; c, θ)

= e−r f T ρ1λ1

λ1 + 1
Kλ1+1 I[0,K1)(K)

+ e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) −

∫ K

K1

x B(1)
i,4 (x) dx

)
+
ρ1λ1

λ1 + 1
Kλ1+1

1

 I[K1,KN ](K) (4.22)

+ e−r f T

− n−5∑
i=1

ciKBi,4(K) −
ρ1λ1

λ1 + 1
Kλ1+1

1 −
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ2

λ2 − 1
K−λ2+1 + K

 I(KN ,∞](K)

where c = [c1 . . . cn−5]′ and θ = [ρ1 ρ2 λ1 λ2]′. The derivation of the call and put pricing

functions (4.22) and (4.22) is given in Appendix B.

4.5 Estimation of the RNM CDF

4.5.1 Optimization Problem

Since out-of-the-money (OTM) options are generally more liquid than in-the-money

(ITM) options, we estimate the RNM CDF R(x) from each cross-section of the OTM option

prices with the different strike prices Ki and the same time to maturity T . The OTM option

prices are defined as:

V(Ki) =
{ P(Ki) for Ki < F, i = 1, . . . ,N

C(Ki) for Ki ≥ F,
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where P(Ki) and C(Ki) are the traded put and call option prices, respectively, associated

with strike price Ki. By put-call parity, the OTM option prices can be alternatively defined

as:

V(Ki) = min
[
C(Ki), P(Ki)

]
, i = 1, . . . ,N.

Similarly, under the quartic B-spline RNM CDF with power tails R(x; θ, c), the OTM option

model prices are defined as:

V(Ki; c, θ) = min
[
C(Ki; c, θ), P(Ki; c, θ)

]
, i = 1, . . . ,N.

The vector of tail parameters θ and control points c can be simply estimated by the least

squares criterion, i.e., minimizing the sum of squared pricing errors (SSE) given a number

of knots n:

min
c,θ

L(S S E) =
N∑

i=1

(V(Ki) − V(Ki; c, θ))2 .

However, since the least squares criterion can not reduce rapid local variations of the esti-

mated RNM PDF, a roughness penalty is introduced in the loss function to prevent wiggly

RNM PDFs. The roughness penalty for the RNM PDF is defined as the integrated squared

third derivative of the RNM CDF:

∫ KN

K1

[
R′′′(x; c, θ)

]2 dx.

The resulting optimization problem is solved by minimizing the penalized SSE subject to

the constraints of satisfying the quartic B-spline RNM CDF conditions (4.10)-(4.16) and

mean-forward price equality condition (4.20):

min
c,θ

Lω =
N∑

i=1

(V(Ki) − V(Ki; c, θ))2 + ω

∫ KN

K1

[
R′′′(x; c, θ)

]2 dx (4.23)

s.t. (4.10)-(4.16) and (4.20)

117



where ω denotes a smoothing parameter.9 The smoothing parameter represents the rate

of exchange between pricing error and roughness of the RNM PDF.

The optimization problem (4.23) has two computational difficulties in estimating the

RNM. The loss function in (4.23) is highly nonlinear due to the tail parameters θ. It is

computationally inefficient and inaccurate to estimate θ and c simultaneously with a num-

ber of constraints. Another problem is the choice of the optimum number of the knots. A

small number of knots may result in a function space which is not flexible enough to cap-

ture the true RNM CDF. A large number may lead to serious overfitting. In order to avoid

these problems, we develop a 3-step estimation procedure:

Step 1 : Estimating the tail parameters θ.

Step 2 : Selecting the optimum number of the knots n.

Step 3 : Estimating the control points c.

4.5.2 3-Step Estimation Procedure

a. Estimation of Power tail parameters

Since deep out-of-the-money option prices are almost determined by the shape of the

RNM CDF tails, the power tail parameters can be pinned down by the observed deep OTM

option prices. The left power tail parameters are estimated from the deep OTM put option

prices. Under the left power tail of RNM CDF, ρ1xλ1 , the deep OTM put prices can be

expressed as:

P(K) = e−r f T
∫ K

0
(K − x) ρ1λ1xλ1−1 dx

= e−r f T ρ1

λ1 + 1
Kλ1+1

9We set the smoothness penalty parameter ω equal to 10−3 which minimizes the RMISE of SML under
the log-normal RNM PDF.
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Consider two deep observed OTM put option prices P1 and P2 with strikes K1 and K2:

P1 = e−r f T ρ1

λ1 + 1
Kλ1+1

1 (4.24)

P2 = e−r f T ρ1

λ1 + 1
Kλ1+1

2 (4.25)

Solving (4.24) and (4.25) for λ1 and ρ1 then gives

λ∗1 =
log(P2/P1)
log(K2/K1)

− 1

ρ∗1 = er f T (λ∗1 + 1)P1

K
λ∗1+1
1

.

Similarly, the left tail of the RNM CDF, 1− ρ2x−λ2 , can be estimated by deep OTM call

option prices. The deep OTM call option prices are expressed as a function of right tail

parameters:

C(K) = e−r f T
∫ ∞

K
(x − K) ρ2λ2x−λ2−1 dx

= e−r f T ρ2

λ2 − 1
K−λ2+1

Consider two deep observed OTM call option prices CN−1 and CN with strikes KN−1 and

KN:

CN−1 = e−r f T ρ2

λ2 − 1
K−λ2+1

N−1 (4.26)

CN = e−r f T ρ2

λ2 − 1
K−λ2+1

N (4.27)

Solving (4.26) and (4.27) for λ2 and ρ2 then gives

λ∗2 = 1 −
log(CN/CN−1)
log(KN/KN−1)

ρ∗2 = er f T (λ∗2 − 1)CN

K
−λ∗2+1
N

.
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b. Selection of the Number of Knots

With the estimated tail parameter vector θ∗, the OTM option pricing function can be

described only by the control points vector, c:

V(Ki; c|θ∗) = min
[
C(Ki; c|θ∗), P(Ki; c|θ∗)

]
, i = 1, . . . ,N,

where θ∗ = [ρ∗1 ρ
∗
2 λ
∗
1 λ
∗
2]> is the RNM tail parameter vector which are pinned down in the

first step. In order to estimate the control points vector, the number of knots, n, must be

selected. A small number of knots may result in underfitting, but one the other hand a large

number may lead to serious overfitting. To select optimal tradeoff between smoothness and

fit, we choose the minimum number of knots, which attains zero bid-ask pricing errors, in

constructing the B-spline RNM CDF.

Define the bid-ask pricing errors as:

ei =
(
VB

i − V(Ki; c|θ∗)
)
+
+

(
V(Ki; c|θ∗) − VA

i

)
+
,

where VB
i is the bid-quote OTM option price; VA

i is the ask-quote OTM option price asso-

ciated with the strike price Ki; and x+ = max(0, x). If all the estimated OTM prices fell

within the bid-ask price range, the sum of squared bid-ask pricing errors would be zero:

min
c∈Rn−5

e>e = 0, (4.28)

where e = [e1, · · · , eN]> is the bid-ask pricing error vector. To construct the B-spline RNM

CDF, we choose the minimum number of knots n∗ satisfying the zero bid-ask pricing error

condition (4.28):

n∗ = arg min
n∈Z

n

s.t. (4.28) with (4.10)-(4.16), and (4.20).
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c. Estimation of the control points of B-Splines

Once the tail parameter vector θ∗ and the optimum number of knots n∗ are determined

by the step 1 and 2, the nonlinear optimization problem (4.23) is expressed as a convex

quadratic program which is efficiently solved by numerical optimization software. The

optimization problem

min
c∈Rn∗−5

Lω =
N∑

i=1

(
V(Ki) − V(Ki; c|θ∗)

)2
+ ω

∫ KN

K1

[
R′′′(x; c|θ∗)

]2 dx (4.29)

s.t. (4.10)-(4.16) and (4.20)

is equivalent to the following quadratic program:

min
c∈Rn∗−5

1
2

c′Qc + F′c (4.30)

s.t

(i) End points conditions

1 11 11 1 0 . . . 0 0 0 0 0

−1 −3 3 1 0 . . . 0 0 0 0 0

1 −1 −1 1 0 . . . 0 0 0 0 0

0 0 0 0 0 . . . 0 1 11 11 1

0 0 0 0 0 . . . 0 −1 −3 3 1

0 0 0 0 0 . . . 0 1 −1 −1 1


c =



24ρ∗1Kλ
∗
1

1

6hρ∗1λ
∗
1Kλ

∗
1−1

1

2h2ρ∗1λ
∗
1(λ∗1 − 1)Kλ

∗
1−2

1

24(1 − ρ∗2K−λ
∗
2

N )

6hρ∗2λ
∗
2K−λ

∗
2−1

N

−2h2ρ∗2λ
∗
2(λ∗2 + 1)K−λ

∗
2−2

N


(ii) Mean-forward price equality condition[∫ KN

K1

x B(1)
1,4(x) dx . . .

∫ KN

K1

x B(1)
n−5,4(x) dx

]
c = S 0er f T −

ρ∗1λ
∗
1

λ∗1 + 1
Kλ

∗
1+1

1 −
ρ∗2λ

∗
2

λ∗2 − 1
K−λ

∗
2+1

N
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(iii) Non-negativity conditions

0 −1 −3 3 1 0 0 0 . . . 0

0 0 −1 −3 3 1 0 0 . . . 0
...
...

. . .
. . .
. . .
. . .

...
...
...

0 . . . 0 0 −1 −3 3 1 0 0

0 . . . 0 0 0 −1 −3 3 1 0


c ≥ 0.

where

Q = G>G + ωD>RD

F = −G>W,

with

W =



P(K1) + e−r f T ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1
...

P(Kp) + e−r f T ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1

C(Kp+1) − e−r f T
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − Kp+1

)
...

C(KN) − e−r f T
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − KN

)



,
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G =



M′
1
...

M′
p

H′p+1
...

H′N


,

Hi = e−r f T


KiB1,4(Ki) +

∫ KN

Ki
x B(1)

1,4(x) dx
...

KiBn−5,4(Ki) +
∫ KN

Ki
x B(1)

n−5,4(x) dx

 ,

Mi = e−r f T


KiB1,4(Ki) −

∫ Ki

K1
x B(1)

1,4(x) dx
...

KiBn−5,4(Ki) −
∫ Ki

K1
x B(1)

n−5,4(x) dx

 ,

R =



h
3

h
6 0 0 . . . 0

h
6

2h
3

h
6 0 . . . 0

0 h
6
. . .
. . .
. . .

...

0 0 . . .
. . . h

6 0
...
...
. . . h

6
2h
3

h
6

0 0 . . . 0 h
6

h
3


,

D =


B(3)

1,4(x5) · · · B(3)
n−5,4(x5)

...
...

...

B(3)
1,4(x(n−4) · · · B(3)

n−5,4(xn−4)

 ,
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B(3)
i,4 (x) =

( zi

h3

)
I[xi,xi+1)(x)

+

(
−4zi + 5

h3

)
I[xi+1,xi+2)(x)

+

(
6zi − 15

h3

)
I[xi+2,xi+3)(x)

+

(
−4zi + 15

h3

)
I[xi+3,xi+4)(x)

+

(
zi − 5

h3

)
I[xi+4,xi+5)(x),

zi =
x−xi

h , and h = xi+1 − xi. The derivation of the quadratic program (4.30) is given in

Appendix C.

4.6 Results

4.6.1 Recovering the RNM PDF

In this section we compare our Quartic B-spline RNM CDF (BSP) method and the

SML method with respect to their flexibility in recovering hypothetical actual RNM PDFs.

A good RNM estimation technique should be able to recover the true RNMs whatever

the complexity of their shape. Therefore, to compare the ability to recover a wide range

of different shape of PDFs, the following 12 parametric PDFs are assumed to be a actual

RNM PDF.

1. Log-Normal Distribution (LN)

2. Log-Stable Distribution (LS)

3. Double Log-Normal Distribution (DN)

4. Double Log-Stable Distribution (DS)
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5. Generalized Two-Factor Log-stable Distribution (GS)

6. Weibull Distribution (WB)

7. Generalized Gamma Distribution (GG)

8. Generalized Beta Distribution (GB)

9. Finite Moment Log-stable Distribution (FS)

10. Variance Gamma Distribution (VG)

11. Poisson Jump Diffusion Process (JD)

12. Jump Diffusion Process with Stochastic Volatility (VG)

The closed form PDFs (or characteristic functions) for the 12 distributions are given in

Chapter 3.

First, 12 cross-sections of OTM option prices are generated from each hypothetical

actual RNM PDF. The OTM option prices V(Ki), i = 1, 2, . . . ,N are calculated at equally

spaced strike prices K1 < . . . < KN with Ki+1 − Ki = ∆K10 for each hypothetical actual

RNM PDF by using the call and put option price functions:

C(Ki) = e−r f T
∫ ∞

Ki

(x − Ki) p(x) dx,

P(Ki) = e−r f T
∫ Ki

0
(Ki − x) p(x) dx, and

V(Ki) = min [C(Ki), P(Ki)] ,

where r f is the risk-free interest rate, T is the time to maturity, and p(x) is the actual RNM

PDF. The parameters of the hypothetical actual distributions are chosen to approximate

10In our experiment we generate the OTM option prices V(Ki) for 25 strikes Ki in interval [1100, 1800].
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a typical cross-section of OTM option prices on the S&P 500 index with 2 months to

maturity.

With the generated OTM option prices, we then recover the actual RNM PDF using the

BSP method and SML method, respectively. Finally, we measure the closeness between

the actual distribution P and the recovered distribution Q by means of Kullback-Leibler

Information Criterion (KLIC) divergence:11

DKL(P‖Q) =
∫ ∞

0
p(x) log

p(x)
q(x)

dx

where p(x) and q(x) denotes the PDFs of the actual distribution P and the recovered distri-

bution Q, respectively.

The recovered RNM PDFs are plotted against each actual RNM PDFs for the BSP

method in Figure 4.3, and for the SML method in Figure 4.4. These figures suggest that the

BSP method is more flexible than the SML method in recovering the actual distributions.

The BSP method almost perfectly recovers the actual RNM PDFs for all hypothetical dis-

tributional assumptions. In contrast, the SML method is significantly biased and gives neg-

ative probability, particularly for some fat-tailed distributions such as stable distributions:

LS, DS, and GS. The KLIC divergence between the actual and recovered RNM PDFs for

each method are reported in Table 4.1. The KLIC divergence of the BSP method is much

less than those of the SML method except for the cases in which the actual RNM PDF is

log-normal or double log-normal. The SML method recovers the log-normal distributions

relatively well since the biases due to the linear extrapolation property of the natural spline

are very small for thin-tailed distributions such as LN and DN.

11The Kullback-Leibler divergence is a measure of the difference between two probability distributions:
from a ”true” probability distribution to an arbitrary probability distribution. Although it is often intuited as
a distance metric, the KL divergence is not a true metric since it is not symmetric (hence ’divergence’ rather
than ’distance’).
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4.6.2 Monte Carlo Experiments

In the previous section we only compare the accuracy of the two methods using the

theoretical OTM option prices which are generated with no pricing errors from the 12

different hypothetical actual RNM PDFs. However, stability to pricing errors is also desir-

able properties of a good RNM estimation method. Therefore, in this section we perform

Monte-Carlo experiments to compare both accuracy and stability of the two methods in the

RNM estimation. To test the robustness of alternative methods to pricing errors embedded

in OTM option prices, we add noise εi to the theoretical prices computed in the previous

section. Pricing errors εi are introduced to model observational errors that arise from market

imperfections such as non-synchronicity, bid-ask spread, and discreteness, etc.

As pointed out by Andersson and Lomakka (2005), the option pricing errors exhibit

dependence and heteroskedasticity over the range of strike prices. To take into account

the dependency and heteroskedastic characteristics in the pricing error structures, we spec-

ify the pricing errors as a random walk process bounded by the maximum bid-ask spread

permitted by the exchange, which is a function of the option prices:

εi = max
[
min (εi−1 + ξi, 0.5si) ,−0.5si

]
, i = 1, . . . ,N, ε0 = 0,

where ξi is independently and uniformly distributed on [−.5si, 0.5si], and si is the maximum

bid-ask spread which depends on the strike Ki.12 In the experiment, the actual RNM PDFs

are modeled by the 12 parametric distributions as in the previous section. Parameters of

these distributions are chosen to fit a randomly selected cross-section from the S&P 500

12The maximum bid-ask spread permitted by the exchange is linked to the option quotes. For instance, the
CBOE rules state that the maximum bid-ask spread is 1/4 for options with bid quote below $2, 3/8 for bid
quotes between $2 and $5, 1/2 for bid quotes between $5 and $10, . . . ,and so on.

si = M(Ki)

The function M(·) is constructed to represent such rules. See Bondarenko (2003) for details on the construc-
tion of M(·).
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index options dataset. For given an actual RNM PDF, we simulate 500 cross-sections of

OTM option prices with pricing errors for each scenario and apply the two methods to

estimate the corresponding RNM PDFs.

We measure accuracy and stability of RNM estimators by means of the root mean inte-

grated squared errors (RMISE) criterion as in Bondarenko (2003). Let p̂(x) be the estimator

of risk neutral density p(x), then the (normalized) RMISE for the density estimator is de-

fined as:

RMISE(p̂) =
1
‖p(x)‖

(
E[‖p̂(x) − p(x)‖2]

)1/2

=
1
‖p(x)‖

(
E

[∫ ∞

0

(
p̂(x) − p(x)

)2 dx
])1/2

.

Simliarly to the MSE for the point estimator, the RMISE may be decomposed as:

RMISE2(p̂) = RISB2(p̂) + RIV2(p̂),

where

RISB( p̂) =
1
‖p(x)‖

(∫ ∞

0

(
E[p̂(x)] − p(x)

)2 dx
)1/2

,

RIV(p̂) =
1
‖p(x)‖

(∫ ∞

0
E

[(
p̂(x) − E[p̂(x)]

)2
]

dx
)1/2

,

‖ · ‖ is the L2 norm, RISB is the (normalized) root integrated squared bias, and RIV is

the (normalized) root integrated variance. Intuitively, RMISE is a measure of the overall

quality of the estimator, RISB is a measure of the accuracy, and RIV is a measure of the

stability. This decomposition allows us to study the relative contributions of the bias (RISB)

and the variability (RIV) to RMISE of different models.

Monte-Carlo experiments are conducted based on the following 12 scenarios:

Scenario i: i distribution is the true RNM PDF,
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where i=LN, LS, DN, DS, DS, GS, WB, GG, GB, FS, JD, and JS. The resulting true RNM

PDFs p(x) for each scenario are depicted by the dashed lines in Figure 4.5 and Figure 4.6,

respectively. For each scenario, the estimated 500 RNM PDFs from the two method are

plotted against the true RNM PDFs in Figure 4.5 and Figure 4.6, respectively. It can be

seen that the SML is significantly biased, particularly on the left tail of the distribution.

The associated RMISE statistics for the 12 scenarios are also presented in Table 4.2. The

results for the BSP method are displayed on the left panel. Examining the RMISE statistics

from the two methods, we find that the BSP provides lower RMISE than the SML does in

most scenarios except for LN and DN. Particularly, under the scenarios that the true RNM

is fat-tailed distribution such as LS, DS, FS, and GS, the SML method reveals large biases

from the true RNM PDFs. This result indicates better overall quality of the BSP as a RNM

estimator. Examining the RISB and the RIV reveals that the large bias from the true RNM

PDF is the main cause of the relatively poor performance of the SML method.

4.7 Concluding Remarks

In this chapter, we propose a new nonparametric RNM estimation method which over-

comes the problems with the smoothed implied volatility smile (SML) method. In our new

approach, we model a RNM CDF using quartic B-splines with power tails. With the power

tails, the estimated RNM has nonnegative tail probabilities and also reflects information

about true tail probabilities. Since the RNM CDFs are constructed using quartic B-spline

functions, the resulting RNM PDFs have continuity C2. The use of B-spline also improves

computational efficiency and reduces the number of spline parameters. The advantage of

constructing the RNM CDF with power tails is that the sum of RNM probabilities is guar-

anteed to be unity. We also choose the optimum number of knots so that our method avoids

both overfitting and oversmoothing.
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Our nonparametric approach involves solving a highly nonlinear optimization problem

with a number of constraints due to the power tails. It is computationally difficult and in-

accurate to estimate the B-spline part of the CDF and the power tails simultaneously. To

improve computational efficiency and accuracy we develop a 3-step RNM estimation tech-

nique: (i) estimate the power tail parameters; (ii) select the optimum number of the knots;

and (iii) estimate the B-spline control points. The 3-step estimation procedure transforms a

nonlinear optimization problem into a convex quadratic programming which is efficiently

solved by numerical optimization software.

The Monte-Carlo experiments suggest that the BSP method performs considerably bet-

ter than the SML method as a technique for estimating option implied RNM. The SML

method violates the no-arbitrage constrains, and is also significantly biased, particularly

under the scenarios that the ture RNM is a fat-tailed distribution. In contrast, the BSP

method always produces arbitrage-free RNM estimators, and almost perfectly recovers the

actual RNM PDFs for all hypothetical distributional assumptions.
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Actual RNM BSP Method SML Method
LN 0.0006 0.0000
LS 0.0013 0.0305
DN 0.0001 0.0000
DS 0.0013 0.0073
GS 0.0000 0.0042
WB 0.0002 0.0019
GG 0.0000 0.0020
GB 0.0000 0.0020
FS 0.0013 0.0305
VG 0.0004 0.0050
JD 0.0000 0.0016
JS 0.0000 0.0019

AVG 0.0004 0.0072

Note: The KLIC divergences are computed based on 12 sets of cross-
section of the OTM option prices from the 12 hypothetical actual RNM
PDF for each method.

Table 4.1: Kullback-Leibler Information Criterion (KLIC) Divergence
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BSP Method SML Method
Scenario RMISE RISB RIV RMISE RISB RIV

LN 0.0229 0.0091 0.0210 0.0194 0.0024 0.0192
LS 0.0200 0.0068 0.0188 0.0466 0.0459 0.0082
DN 0.0213 0.0114 0.0180 0.0192 0.0162 0.0102
DS 0.0233 0.0149 0.0180 0.0502 0.0495 0.0087
GS 0.0253 0.0116 0.0225 0.0373 0.0363 0.0087
WB 0.0189 0.0048 0.0183 0.0350 0.0333 0.0105
GG 0.0304 0.0204 0.0226 0.0422 0.0410 0.0101
GB 0.0309 0.0207 0.0229 0.0419 0.0407 0.0099
FS 0.0199 0.0068 0.0187 0.0465 0.0458 0.0081
VG 0.1214 0.1202 0.0175 0.1593 0.1591 0.0087
JD 0.0223 0.0138 0.0176 0.0440 0.0430 0.0096
JS 0.0229 0.0134 0.0185 0.0379 0.0368 0.0090

AVG 0.0316 0.0211 0.0195 0.0483 0.0458 0.0101

Note: The RMISE is decomposed as RMISE2(p̂) = RISB2(p̂)+RIV2(p̂).
The RMISEs are computed based on 500 simulated sets of cross-section
data on S&P 500 index options with 2 months to maturity under the 12
scenarios for each method

Table 4.2: Root Mean Integrated Squared Errors (RMISE)
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CHAPTER 5

CONCLUSION

The risk-neutral measure of the future asset prices can be estimated from the currently

observed cross-section of option prices with the same time-to-maturity. The estimated

RNM of the asset prices provides valuable information about the market’s expectations on

the future movement of asset prices.

This dissertation develops two new parametric and nonparametric methods for esti-

mating risk-neutral measures, and investigates empirical performance of parametric RNM

estimation methods.

The generalized two-factor log-stable option pricing model in Chapter 2 is a highly

integrated approach to evaluating contingent claims in the sense that it provides the state

prices, the pricing kernel, and the risk neutral measure explicitly. The RNM can be simply

derived by adjusting the FM for the state-contingent value of the numeraire. Under gen-

eralized two-factor log-stable uncertainty the RNM is expressed as a convolution of two

exponentially tilted stable distributions, while the FM itself is a pure stable distribution.

Furthermore, the generalized two-factor log-stable RNM has a very flexible parametric

form for approximating other probability distributions. Thus, this model also provides a

considerably accurate tool for estimating the RNM from the observed option prices even

though the generalized two-factor log-stable assumption might not be satisfied.

The empirical results of the RNM estimation from the S&P 500 index options shows

that the generalized two-factor log-stable model gives better performance than the Black-
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Scholes log-normal model, the finite moment log-stable model and the orthogonal log-

stable model in fitting the observed option prices. Moreover, the distributional assumption

for the generalized stable model is consistent with the implied volatility structure, which

violates the lognormal assumption of the Black-Scholes model.

In Chapter 2, I implement 12 parametric RNM estimation methods by means of the

closed form of RNM distributions or RNM characteristic functions. I then compared

the empirical performance of the 12 parametric RNM estimation methods under three

criteria—the root mean squared error (RMSE) for the goodness-of-fit, likelihood ratio (LR)

for the model selection, and the root mean integrated squared error (RMISE) for the accu-

racy and stability of the estimated RNMs.

The empirical results show that the generalized two-factor log-stable model in Chapter

2 outperforms other alternative parametric RNM estimation methods. The RMSEs and the

LR tests indicate that the generalized two-factor log-stable model and the jump diffusion

model with stochastic volatilities dominate other models. However, the jump diffusion

model with stochastic volatilities model is vulnerable to over-fitting problems due to a

large number of parameters. Our Monte-Carlo experiments reveal that the jump diffusion

with stochastic volatilities suffers from serious over-fitting problems and also show that the

generalized two-factor log-stable model outperforms the alternatives.

In Chapter 4, I propose a new nonparametric RNM estimation method which over-

comes the problems with the smoothed implied volatility smile (SML) method which is the

most widely used nonparametric technique for estimating RNMs. In this new approach, I

model the RNM CDF using quartic B-spline with power tails. With the power tails, the es-

timated RNM has nonnegative tail probabilities and also reflects information about true tail

probabilities. Since the RNM CDFs are constructed using quartic B-spline functions, the

resulting RNM PDFs have continuity C2. The use of B-spline also improves computational

efficiency and reduces the number of spline parameters. The advantage of constructing the

RNM CDF with power tails is that the sum of RNM probabilities is guaranteed to be unity.
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We also choose the optimum number of knots so that our method avoids both overfitting

and oversmoothing.

Our nonparametric approach involves solving a highly nonlinear optimization problem

with a number of constraints due to the power tails. It is computationally difficult and in-

accurate to estimate the B-spline part of the CDF and the power tails simultaneously. To

improve computational efficiency and accuracy we develop a 3-step RNM estimation tech-

nique: (i) estimate the power tail parameters; (ii) select the optimum number of the knots;

and (iii) estimate the B-spline control points. The 3-step estimation procedure transforms a

nonlinear optimization problem into a convex quadratic programming which is efficiently

solved by numerical optimization software.

The Monte-Carlo experiments suggest that the BSP method performs considerably bet-

ter than the SML method as a technique for estimating option implied RNM. The SML

method violates the no-arbitrage constrains, and is also significantly biased, particularly

under the scenarios that the true RNM is a fat-tailed distribution. In contrast, the BSP

method always produces arbitrage-free RNM estimators, and almost perfectly recovers the

actual RNM PDFs for all hypothetical distributional assumptions.
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APPENDIX A

DERIVATION OF THE GENERALIZED TWO-FACTOR LOG-STABLE
RNM

A.1 Derivation of (2.18)

The joint distribution of vN and vA can be expressed as

h(vN , vA) = h(vN , vN + z)

=
1

|cN1cA2 − cN2cA1|
fU1U2(u1, u2), (A.1)

where fU1U2(u1, u2) is the joint distribution of two factors u1 and u2.

Since

z ≡ log S T = vA − vN

= −(cN1 − cA1)u1 − (cN2 − cA2)u2 + δ (A.2)

and

u1 = −
cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

z +
1

cN1 − cA1
δ

= −
cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

(z − δ), (A.3)
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the log marginal utility of numerarie vN can be written as follows:

vN = cN1

(
−

cN2 − cA2

cN1 − cA1
u2 −

1
cN1 − cA1

(z − δ)
)
+ cN2u2

=

(
cN2cN1 − cN2cA1 − cN1cN2 + cN1cA2

cN1 − cA1
u2

)
−

cN1

cN1 − cA1
(z − δ)

= −
cN2cA1 − cN1cA2

cN1 − cA1
u2 −

cN1

cN1 − cA1
(z − δ) (A.4)

By substituting (A.1), (A.2) and (A.4) into (2.12), we have

q(z) =
1

EUN

∫ ∞

−∞

evN h(vN , vN + z)dvN

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
·

1
|cN1cA2 − cN2cA1|

fU1U2(u1, u2)
∣∣∣∣∣ |cN1cA2 − cN2cA1|

cN1 − cA1

∣∣∣∣∣ du2

=
1

|cN1 − cA1|

1
EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
·

fU1U2

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
, u2

)
du2. (A.5)

By using (A.3), the joint distribution of u1 and u2 can be expressed as:

fU1U2

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
, u2

)
= s(u2;α,−1, 1, 0) s

(
−

z − δ + (cN2 − cA2)u2

cN1 − cA1
;α,−1, 1, 0

)
= |cN1 − cA1|s(u2;α,−1, 1, 0) s

(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ + (cN2 − cA2)u2

)
(A.6)
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Plugging (A.6) into (A.5), we finally have the stable RNM pdf:

q(z) =
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2−

cN1
cN1−cA1

(z−δ)
· s(u2;α,−1, 1, 0)

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
du2. (A.7)

A.2 Proof of (2.19) and Derivation of (2.20)

The generalized two-factor log-stable RNM is a convolution of two exponentially tilted

stable distributions:

q(z) =
2
N

j=1
tssgn(cN j−cA j)

(
z j;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

Proof.

From (A.7), the CF of the generalized two-factor log-stable RNM is written as:

c fq(t) =
∫ ∞

−∞

eitzq(z)dz

=
1

EUN

∫ ∞

−∞

e−
cN2cA1−cN1cA2

cN1−cA1
u2+

cN1
cN1−cA1

δs(u2;α,−1, 1, 0) · (A.8)∫ ∞

−∞

e−
(

cN1
cN1−cA1

−it
)
z s

(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
dz du2.
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Using the properties of sign function, we have:

I. −

(
cN1

cN1 − cA1
− it

)
z

= − sgn(cN1 − cA1)
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)

z (A.9)

II.
(
−

cN2cA1 − cN1cA2

cN1 − cA1
+ sgn(cN1 − cA1)(cN2 − cA2)

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
))

u2

= (cN2 − (cN2 − cA2)) u2 (A.10)

III. −sgn(cN1 − cA1)
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)
δ

−

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

)
+

cN1

cN1 − cA1
δ

= δit −
(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

)
(A.11)

By using (A.9), the inner integration term in (A.8) may be written as:

∫ ∞

−∞

e−sgn(cN1−cA1)
(∣∣∣∣ cN1

cN1−cA1

∣∣∣∣−sgn(cN1−cA1)it
)
z
·

s
(
z;α, sgn(cN1 − cA1), |cN1 − cA1|, δ − (cN2 − cA2)u2

)
dz

= exp
[
− sgn(cN1 − cA1)

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)

(δ − (cN2 − cA2)u2)

−

(∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α
|cN1 − cA1|

α sec
(
πα

2

) ]
(A.12)
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By using (A.10), (A.11), and (A.12), the CF of the RNM may be expressed as:

c fq(t) =
1

EUN
eδit−

(∣∣∣∣ cN1
cN1−cA1

∣∣∣∣−sgn(cN1−cA1)it
)α
|cN1−cA1 |

α sec( πα2 )
·∫ ∞

−∞

ecN2−(cN2−(cN2−cA2)it)u2 s(u2;α,−1, 1, 0) du2. (A.13)

Let

w = (cN2 − cA2)u2, (A.14)

so that

∣∣∣∣∣du2

dw

∣∣∣∣∣ = 1
|cN2 − cA2|

. (A.15)

With (A.14) and (A.15), the integral term of (A.13) is written as:

∫ ∞

−∞

ecN2−(cN2−(cN2−cA2)it)u2 s(u2;α,−1, 1, 0) du2

=

∫ ∞

−∞

e
(

cN2
cN2−(cN2−cA2

−it
)
ws

(
1

cN2 − cA2
w;α,−1, 1, 0

)
1

|cN2 − cA2|
dw

= exp
[
−

(∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α
|cN2 − cA2|

α sec
(
πα

2

) ]
. (A.16)

By Property 2 of stable distributions, the expected marginal utility of numeraire is

EUN = E evN = exp(δ2 − cαN sec
(
πα

2

)
)

= exp
(
−(cαN1 + cαN2) sec

(
πα

2

))
. (A.17)
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By substituting (A.16), and (A.17) into (A.13), the CF of the RNM is taken to be

c fq(t) = exp
{

iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+ |cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α] }
.

Finally, the log CF of the RNM is

log c fq(t) = iδt + |cN1 − cA1|
α sec

(
πα

2

) [∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣α − (∣∣∣∣∣ cN1

cN1 − cA1

∣∣∣∣∣ − sgn(cN1 − cA1)it
)α]

+|cN2 − cA2|
α sec

(
πα

2

) [∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣α − (∣∣∣∣∣ cN2

cN2 − cA2

∣∣∣∣∣ − sgn(cN2 − cA2)it
)α]
.

(A.18)

An exponentially tilted stable distribution

tssgn(cN j−cA j)

(
z;α, |cN j − cA j|, δ j,

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣
)

= k e
−sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣ zs (
x;α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
has the CF:

c fts, j(t) = k
∫ ∞

−∞

e
−

(
sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−it
)

z
s
(
z;α, sgn(cN j − cA j), |cN j − cA j|, δ j

)
dz

= k e
−

(
sgn(cN j−cA j)

∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−it
)
δ j−

(∣∣∣∣∣ cN j
cN j−cA j

∣∣∣∣∣−sgn(cN j−cA j)it
)α
|cN j−cA j |

α sec( πα2 )
.
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Since

c fts, j(0) = k exp
[
− sgn(cN j − cA j)

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ δ j −

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α |cN j − cA j|
α sec

(
πα

2

) ]
≡ 1,

we must have

k = exp
[
sgn(cN j − cA j)

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ δ j +

∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α |cN j − cA j|
α sec

(
πα

2

) ]
,

hence

c fts, j(t) = exp
{

iδ jt + |cN j − cA j|
α sec

(
πα

2

) [∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α −
(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)it
)α] }
.

Finally, the log CF of the tilted stable distribution is

log c fts, j(t) = iδ jt + |cN j − cA j|
α sec

(
πα

2

) [∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣α −
(∣∣∣∣∣∣ cN j

cN j − cA j

∣∣∣∣∣∣ − sgn(cN j − cA j)it
)α]
.

(A.19)

Combining (A.18) and (A.19), we have

log c fq(t) =
2∑

j=1

log c fts, j(t).

Since the log CF of the convolution of two densities is the sum of their respective log
CFs, the generalized RNM q(z) is such a convolution of two exponentially tilted stable
densities. �
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APPENDIX B

DERIVATION OF THE OPTION PRICING FUNCTION UNDER THE
B-SPLINE RNM CDF WITH POWER TAILS

I. The case K < K1

C(K; c, θ)

= e−r f T
∫ ∞

K
x R′(x) dx − Ke−r f T

∫ ∞

K
R′(x) dx

= e−r f T

[∫ ∞

K
x R′(x) dx − K (1 − R(K))

]
= e−r f T

∫ K1

K
ρ1λ1xλ1dx +

∫ KN

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x)dx +

∫ ∞

KN

ρ2λ2x−λ2dx − K
(
1 − ρ1Kλ1

)
= e−r f T

 ρ1λ1

λ1 + 1

(
Kλ1+1

1 − Kλ1+1
)
+

∫ KN

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x)dx +

ρ2λ2

λ2 − 1
K−λ2+1

N − K
(
1 − ρ1Kλ1

)
= e−r f T

 n−5∑
i=1

ci

∫ KN

K
x B(1)

i,4 (x) dx +
ρ1λ1

λ1 + 1
Kλ1+1

1 +
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ1

λ1 + 1
Kλ1+1 − K

 (B.1)

P(K; c, θ)

= −e−r f T
∫ K

0
x R′(x) dx + Ke−r f T

∫ K

0
R′(x) dx

= −e−r f T

[∫ K

0
x R′(x) dx + KR(K)

]
= −e−r f T

[∫ K

0
ρ1λ1xλ1 dx + K

(
ρ1Kλ1

)]
= e−r f T

[
−
ρ1λ1

λ1 + 1
Kλ1+1 + ρ1Kλ1+1

]
= e−r f T ρ1

λ1 + 1
Kλ1+1 (B.2)
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II. The case K1 ≥ K ≥ KN

C(K; c, θ)

= e−r f T
∫ ∞

K
x R′(x) dx − Ke−r f T

∫ ∞

K
R′(x) dx

= e−r f T
∫ ∞

K
x R′(x) dx − Ke−r f T (1 − R(K))

= e−r f T
∫ KN

K
x

n−5∑
i=1

ciB
(1)
i,4 (x) dx + e−r f T

∫ ∞

KN

ρ2λ2x−λ2 dx − Ke−r f T

1 − n−5∑
i=1

ciBi,4(K)


= e−r f T

∫ KN

K
x

n−5∑
i=1

ciB
(1)
i,4 (x) dx + e−r f T ρ2λ2

λ2 − 1
K−λ2+1

N − Ke−r f T

1 − n−5∑
i=1

ciBi,4(K)


= e−r f T

n−5∑
i=1

ci

∫ KN

K
x B(1)

i,4 (x) dx + e−r f T ρ2λ2

λ2 − 1
K−λ2+1

N − Ke−r f T

1 − n−5∑
i=1

ciBi,4(K)


= e−r f T

n−5∑
i=1

ci

∫ KN

K
x B(1)

i,4 (x) dx + e−r f T ρ2λ2

λ2 − 1
K−λ2+1

N − Ke−r f T + e−r f T

 n−5∑
i=1

ciKBi,4(K)


= e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) +

∫ KN

K
x B(1)

i,4 (x) dx
)
+
ρ2λ2

λ2 − 1
K−λ2+1

N − K

 (B.3)

P(K; c, θ)

= −e−r f T
∫ K

0
x R′(x) dx + Ke−r f T

∫ K

0
R′(x) dx

= −e−r f T
∫ K

0
x R′(x) dx + Ke−r f T R(K) − e−r f T

∫ K1

0
ρ1λ1xλ1 dx − e−r f T

∫ K

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x) dx

+Ke−r f T
n−5∑
i=1

ciBi,4(K)

= −e−r f T ρ1λ1

λ1 + 1
Kλ1+1

1 − e−r f T
∫ K

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x) dx + Ke−r f T

n−5∑
i=1

ciBi,4(K)

= −e−r f T ρ1λ1

λ1 + 1
Kλ1+1

1 − e−r f T
n−5∑
i=1

ci

∫ K

K1

x B(1)
i,4 (x) dx + Ke−r f T

n−5∑
i=1

ciBi,4(K)

= e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) −

∫ K

K1

x B(1)
i,4 (x) dx

)
−
ρ1λ1

λ1 + 1
Kλ1+1

1

 (B.4)
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III. The case KN < K

P(K; c, θ)

= −e−r f T
∫ K

0
x R′(x) dx + Ke−r f T

∫ K

0
R′(x) dx

= −e−r f T
∫ K

0
x R′(x) dx + Ke−r f T R(K)

= −e−r f T
∫ K1

0
ρ1λ1xλ1 dx − e−r f T

∫ KN

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x) dx − e−r f T

∫ K

KN

ρ2λ2x−λ2 dx

+Ke−r f T
(
1 − ρ2K−λ2

)
= −e−r f T ρ1λ1

λ1 + 1
Kλ1+1

1 − e−r f T
∫ K

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x) dx + e−r f T ρ2λ2

λ2 − 1

(
K−λ2+1 − K−λ2+1

N

)
+e−r f T

(
K − ρ2K−λ2+1

)
= −e−r f T ρ1λ1

λ1 + 1
Kλ1+1

1 − e−r f T
n−5∑
i=1

ci

∫ K

K1

x B(1)
i,4 (x) dx + e−r f T ρ2λ2

λ2 − 1

(
K−λ2+1 − K−λ2+1

N

)
+e−r f T

(
K − ρ2K−λ2+1

)
= e−r f T

− n−5∑
i=1

ciKBi,4(K) −
ρ1λ1

λ1 + 1
Kλ1+1

1 +
ρ2λ2

λ2 − 1

(
K−λ2+1 − K−λ2+1

N

)
+

(
K − ρ2K−λ2+1

)
= e−r f T

− n−5∑
i=1

ciKBi,4(K) −
ρ1λ1

λ1 + 1
Kλ1+1

1 −
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ2

λ2 − 1
K−λ2+1 + K

 (B.5)

C(K; c, θ)

= e−r f T
∫ ∞

K
x R′(x) dx − Ke−r f T

∫ ∞

K
R′(x) dx

= e−r f T
∫ ∞

K
x R′(x) dx − Ke−r f T (1 − R(K))

= e−r f T
∫ ∞

K
ρ2λ2x−λ2 dx − Ke−r f T

(
1 − (1 − ρ2K−λ2)

)
= e−r f T

[
ρ2λ2

λ2 − 1
K−λ2+1 − ρ2K−λ2+1)

]
= e−r f T ρ2

λ2 − 1
K−λ2+1 (B.6)
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Combining (B.1), (B.3), and (B.5) yields the call price function:

C(K; c, θ)

= e−r f T

 n−5∑
i=1

ci

∫ KN

K
x B(1)

i,4 (x)dx +
ρ1λ1

λ1 + 1
Kλ1+1

1 +
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ1

λ1 + 1
Kλ1+1 − K

 I[0,K1)(K)

+ e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) +

∫ KN

K
x B(1)

i,4 (x) dx
)
+
ρ2λ2

λ2 − 1
K−λ2+1

N − K

 I[K1,KN ](K)

+ e−r f T ρ2

λ2 − 1
K−λ2+1 I(KN ,∞](K)

Similarly, combining (B.2), (B.4), and (B.6) yields the put price function:

P(K; c, θ)

= e−r f T ρ1λ1

λ1 + 1
Kλ1+1 I[0,K1)(K)

+ e−r f T

 n−5∑
i=1

ci

(
KBi,4(K) −

∫ K

K1

x B(1)
i,4 (x) dx

)
+
ρ1λ1

λ1 + 1
Kλ1+1

1

 I[K1,KN ](K)

+ e−r f T

− n−5∑
i=1

ciKBi,4(K) −
ρ1λ1

λ1 + 1
Kλ1+1

1 −
ρ2λ2

λ2 − 1
K−λ2+1

N +
ρ2

λ2 − 1
K−λ2+1 + K

 I(KN ,∞](K).
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APPENDIX C

DERIVATION OF THE QUADRATIC PROGRAM FOR B-SPLINE RNM
ESTIMATION

C.1 Loss function

Lω =
N∑

i=1

(
V(Ki) − V(Ki; c|θ∗)

)2
+ ω

∫ KN

K1

[
R′′′(x; c|θ∗)

]2 dx

= ε>ε + ω

∫ KN

K1

[
R′′′(x; c|θ∗)

]2 dx

where

ε = V − V̂|θ∗

V =



V(K1)

...

V(KN)



=



P(K1)
...

P(Kp)

C(Kp+1)
...

C(KN)



,
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V̂|θ∗ =



V(K1; c|θ∗)

...

V(KN; c|θ∗)



=



P(K1; c|θ∗)
...

P(Kp; c|θ∗)

C(Kp+1; c|θ∗)
...

C(KN; c|θ∗)



.

C.1.1 Sum of Squared Errors (SSE)

Using the option price functions (4.22) and (4.22), we have

C(Ki; c|θ∗) = e−rT

 n−5∑
j=1

ci

(
KiB j,4(K j) +

∫ KN

Ki

x B(1)
j,4(x) dx

)
+
ρ∗2λ

∗
2

λ∗2 − 1
K−λ

∗
2+1

N − Ki

 ,
P(Ki; c|θ∗) = e−rT

 n−5∑
j=1

c j

(
KB j,4(K) −

∫ K

K1

x B(1)
j,4(x) dx

)
+
ρ∗1λ

∗
1

λ∗1 + 1
Kλ

∗
1+1

1

 ,
whence

V̂|θ∗ =



c′M1 − e−rT ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1
...

c′Mp − e−rT ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1

c′Hp+1 + e−rT
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − Kp+1

)
...

c′HN + e−rT
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − KN

)



,
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where

Mi = e−rT


KiB1,4(Ki) −

∫ Ki

K1
x B(1)

1,4(x) dx
...

KiBn−5,4(Ki) −
∫ Ki

K1
x B(1)

n−5,4(x) dx

 ,

Hi = e−rT


KiB1,4(Ki) +

∫ KN

Ki
x B(1)

1,4(x) dx
...

KiBn−5,4(Ki) +
∫ KN

Ki
x B(1)

n−5,4(x) dx

 .

Let

W =



P(K1) + e−rT ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1
...

P(Kp) + e−rT ρ
∗
1λ
∗
1

λ∗1+1 Kλ
∗
1+1

1

C(Kp+1) − e−rT
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − Kp+1

)
...

C(KN) − e−rT
(
ρ∗2λ
∗
2

λ∗2−1 K−λ
∗
2+1

N − KN

)



and G =



M′
1
...

M′
p

H′p+1
...

H′N



,

then

ε = V − V̂|θ∗

= W −Gc

ε>ε = (W −Gc)> (W −Gc)

= c>G>Gc − 2W>Gc +W>W. (C.1)

155



C.1.2 Roughness penalty

∫ KN

K1

[
R′′′(x; c|θ∗)

]2 dx =
∫ KN

K1

[
c>B(3)(x)

]2
dx

=

∫ KN

K1

c>B(3)(x)B(3)(x)>c dx (C.2)

where

B(3)(x) =



B(3)
1,4(x)

B(3)
2,4(x)
...

B(3)
n−6,4(x)

B(3)
n−5,4(x)



.

Since

∫ xi+1

xi

c>B(3)(x)B(3)(x)>c dx = γ3
i+1 − γ

3
i

=
h
3

(
γ2

i + γi γi+1 + γ
2
i+1

)
,

where γi ≡ R′′′(xi; c|θ∗) = c>B(3)(xi),
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the equation (C.2) can be written as a matrix form:

∫ KN

K1

c>B(3)(x)B(3)(x)>c dx =
n−5∑
i=5

[∫ xi+1

xi

c>B(3)(x)B(3)(x)>c dx
]

=

n−5∑
i=5

[
h
3

(
γ2

i + γi γi+1 + γ
2
i+1

)]
= c>D>RDc. (C.3)

where

R =



h
3

h
6 0 0 . . . 0

h
6

2h
3

h
6 0 . . . 0

0 h
6
. . .
. . .
. . .

...

0 0 . . .
. . . h

6 0
...
...
. . . h

6
2h
3

h
6

0 0 . . . 0 h
6

h
3


,

D =


B(3)

1,4(x5) · · · B(3)
n−5,4(x5)

...
...

...

B(3)
1,4(x(n−4) · · · B(3)

n−5,4(xn−4)

 ,

By combining (C.1) and (C.3),

Lω =
N∑

i=1

(
V(Ki) − V(Ki; c|θ∗)

)2
+ ω

∫ KN

K1

[
R′′′(x; c|θ∗)

]2 dx

= c>
[
G>G + ωD>RD

]
c − 2W>Gc +W>W.

Thus, the optimization problem (4.30) is equivalent to the following quadratic program:

min
c∈Rn∗−5

Lω =
1
2

c>Qc + Fc,
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where

Q = G>G + ωD>RD,

F = −W>G.

C.2 Constratints for the B-spline RNM CDF with Power Tails

C.2.1 End Points Conditons

By differentiating the B-spline basis function at knot points, the knot values of the B-

spline basis function up to the 2nd derivative are given by:

B j,4(x) =



1
24 x = x j+1

11
24 x = x j+2

11
24 x = x j+3

1
24 x = x j+4

(C.4)

B(1)
j,4(x) =



1
6h x = x j+1

1
2h x = x j+2

− 1
2h x = x j+3

− 1
6h x = x j+4

(C.5)

B(2)
j,4(x) =



1
2h2 x = x j+1

− 1
2h2 x = x j+2

− 1
2h2 x = x j+3

1
2h2 x = x j+4

(C.6)

158



By using the knot values of the B-spline basis (C.4), (C.5), and (C.6), the RNM can be

written as:

R(x j) =
n−5∑
i=1

ciBi,4(x j)

= c j−4B j−4,4(x j) + c j−3B j−3,4(x j) + c j−2B j−2,4(x j) + c j−1B j−1,4(x j)

=
c j−4 + 11c j−3 + 11c j−2 + c j−1

24
(C.7)

R′(x j) =
n−5∑
i=1

ciB
(1)
i,4 (x j)

= c j−4B(1)
j−4,4(x j) + c j−3B(1)

j−3,4(x j) + c j−2B(1)
j−2,4(x j) + c j−1B(1)

j−1,4(x j)

=
−c j−4 − 3c j−3 + 3c j−2 + c j−1

6h
(C.8)

R′′(x j) =
n−5∑
i=1

ciB
(2)
i,4 (x j)

= c j−4B(2)
j−4,4(x j) + c j−3B(2)

j−3,4(x j) + c j−2B(2)
j−2,4(x j) + c j−1B(2)

j−1,4(x j)

=
c j−4 − c j−3 − c j−2 + c j−1

2h2 (C.9)

With the knot values of the RNM (C.7), (C.8), and (C.9), the end point conditions

(4.10)-(4.15) can be expressed as:

c1 + 11c2 + 11c3 + c4

24
= ρ1Kλ1

1

−c1 − 3c2 + 3c3 + c4

6h
= ρ1λ1Kλ1−1

1

c1 − c2 − c3 + c4

2h2 = ρ1λ1(λ1 − 1)Kλ1−2
1

cn−8 + 11cn−7 + 11cn−6 + cn−5

24
= 1 − ρ2K−λ2

N

−cn−8 − 3cn−7 + 3cn−6 + cn−5

6h
= ρ2λ2K−λ2−1

N

cn−8 − cn−7 − cn−6 + cn−5

2h2 = −ρ2λ2(λ2 + 1)K−λ2−2
N
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The end point conditions (4.10)-(4.15) can then be written as a matrix form:



1 11 11 1 0 . . . 0 0 0 0 0

−1 −3 3 1 0 . . . 0 0 0 0 0

1 −1 −1 1 0 . . . 0 0 0 0 0

0 0 0 0 0 . . . 0 1 11 11 1

0 0 0 0 0 . . . 0 −1 −3 3 1

0 0 0 0 0 . . . 0 1 −1 −1 1





c1

c2

...

cn−6

cn−5


=



24ρ1xλ1
0

6hρ1λ1xλ1−1
0

2h2ρ1λ1(λ1 − 1)xλ1−2
0

24(1 − ρ2x−λ2
n )

6hρ2λ2x−λ2−1
n

−2h2ρ2λ2(λ2 + 1)x−λ2−2
n



C.2.2 Non-negative probability condition

By using (C.8), the non-negative probability condition (4.16) can be expressed as:

R′(x j) =
n−5∑
i=1

ciB
(1)
i,4 (x j)

= c j−4B(1)
j−4,4(x j) + c j−3B(1)

j−3,4(x j) + c j−2B(1)
j−2,4(x j) + c j−1B(1)

j−1,4(x j)

=
−c j−4 − 3c j−3 + 3c j−2 + c j−1

6h
≥ 0, j = 6, . . . , n − 5. (C.10)

The equation (C.10) can then be written as a matrix form:



0 −1 −3 3 1 0 0 0 . . . 0

0 0 −1 −3 3 1 0 0 . . . 0
...
...

. . .
. . .
. . .
. . .

...
...
...

0 . . . 0 0 −1 −3 3 1 0 0

0 . . . 0 0 0 −1 −3 3 1 0





c1

c2

...

cn−6

cn−5


≥ 0
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C.2.3 Mean-Forward Price Equaility Condition

The mean-forward price equality condition (4.20) is given by:

S 0erT = EQ(x)

=

∫ ∞

0
xR′(x) dx

=

∫ K1

0
ρ1λ1xλ1 dx +

∫ KN

K1

x
n−5∑
i=1

ciB
(1)
i,4 (x) dx +

∫ ∞

KN

ρ2λ2x−λ2 dx

=

∫ K1

0
ρ1λ1xλ1 dx +

n−5∑
i=1

ci

∫ KN

K1

x B(1)
i,4 (x) dx +

∫ ∞

KN

ρ2λ2x−λ2 dx

=
ρ1λ1

λ1 + 1
Kλ1+1

1 +

n−5∑
i=1

ci

∫ KN

K1

x B(1)
i,4 (x) dx +

ρ2λ2

λ2 − 1
K−λ2+1

N (C.11)

The equation (C.11) can then be written as a matrix form:

[∫ KN

K1

x B(1)
1,4(x) dx . . .

∫ KN

K1

x B(1)
n−5,4(x) dx

]


c1

c2

...

cn−6

cn−5


= S 0erT −

ρ1λ1

λ1 + 1
Kλ1+1

1 −
ρ2λ2

λ2 − 1
K−λ2+1

N

161



BIBLIOGRAPHY

Aı̈t-Sahalia, Y., Duarte, J., 2003. Nonparametric Option Pricing under Shape Restrictions.
Journal of Econometrics 116, 9-47.

Aı̈t-Sahalia, Y., Lo, A., 1998. Nonparametric Estimation of State-price Densities Implicit
in Financial Asset Prices. Journal of Finance 53, 499-547.

Aı̈t-Sahalia, Y., Lo, A., 2000. Nonparametric Risk Management and Implied Risk Aver-
sion. Journal of Econometrics 94, 9-51.

Akaike, H., 1973. Information Theory and an Extension to the Likelihood Ratio Principle,
in B. N. Petrov and F. Csaki, eds.: Proceedings of the Second International Symposium of
Information Theory

Andersen, A.B., Wagener, T., 2002. Extracting Risk Neutral Probability Densities by Fit-
ting Implied Volatility Smiles: Some Methodological Points and an Application to the 3M
Euribor Futures Option Prices. Working Paper No. 198. European Central Bank.

Anderson, M., Lomakka, M., 2005. Evaluating implied RNDs by some new confidence
interval estimation techniques. Journal of Banking and Finance 29, 1535-1557.

Bahra, B., 1997. Implied Risk-neutral Probability Density Functions from Option Prices:
Theory and Application. Working paper, Bank of England.

Bakshi, G., Cao, C., Chen, J., 1997. Empirical Performance of Alternative Option Pric-
ing Models. Journal of Finance 52, 2003-2049.

Bates, D., 1991. The Crash of ’87: Was It Expected? The Evidence from Options Markets.
Journal of Finance 46, 1009-1044.

Bates, D., 1996. Testing Option Pricing Model, in: G.S Maddala and C.R. Rao (eds.),
Handbook of Statistics, Vol. 14, Elsevier, North Holland 1996, 567-611.

Bates, D., 1996. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in

162



Deutsche Mark Options. Review of Financial Studies 9, 69-107.

Black, F., Scholes, M., 1973. The Pricing of Options and Corporate Liabilities. Journal
of Political Economy 81, 637-654.

Bliss, R., Panigirtzoglou, N., 2002. Testing the Stability of Implied Probability Density
Functions. Journal of Banking and Finance 26, 381-422.

Bondarenko, O., 2003. Estimation of Risk Neutral Densities using Positive Convolution
Approximation. Journal of Econometrics 116, 85-112.

Bookstaber, R.M., McDonald, J.B., 1987. A General Distribution for Describing Secu-
rity Price Returns. Journal of Business 60, 1987.

Breeden, D., Litzenberger, R., 1978. Prices of State Contingent Claims Implicit in op-
tion Prices. Journal of Business 51, 621-652.

Bu, R., Hadri, K., 2007. Estimating Option Implied Risk-Neutral Densities using Spline
and Hypergeometric Functions. Econometrics Journal, Forthcoming.

Buchen, P., Kelly, M., 1996. The Maximum Entropy Distribution of an Asset Inferred
from Option Prices. Journal of Financial and Quantitative Analysis 31, 143-159.

Campa, J.M., Chang, P.H.K., Reider, R.L., 1998. Implied Exchange Rate Distributions:
Evidence from OTC Option Markets. Journal of International Money and Finance 17, 117-
160.

Carr, P., Madan, D., 1999. Option valuation Using the Fast Fourier Transform. Journal
of Computational Finance 2, 61-73.

Carr, P., Wu, L., 2003. The Finite Moment Log Stable Process and Option Pricing. Journal
of Finance 58. 753-777.

Cartea, A., and Howison, S., 2002. Distinguished Limits of Lévy-Stable Processes, and
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