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ABSTRACT

Ecological systems such as forest and lakes can exhibit multiple stable states, abrupt

transitions and self-organization as a control parameter is varied. Understanding the dy-

namics of these systems and devising easily quantifiable measures with predictive capabili-

ties using the theoretical tools of stochastic dynamics and nonequilibrium statistical physics

form the focus of this thesis.

First, we study simple ecological models with no spatial degrees of freedom, that show a

catastrophic transition as a control parameter is varied and propose a novel early warning

signal that exploits two ubiquitous features of ecological systems: nonlinearity and large

external fluctuations. It is shown that changes in asymmetry in the distribution of time

series data, quantified by changing skewness, is an early warning signal of impending regime

shifts. Using simple analytical calculations, model simulations that mimic field measure-

ments and an analysis of real data from abrupt climate change in the Sahara, we study the

feasibility of skewness calculations using data available from routine monitoring.

Next, we consider a spatially explicit model of collapse of vegetation in one and two

spatial dimensions. An analytical calculation based on the mean-field approximation shows

that spatial variance and spatial skewness (with an appropriate sign) increase as one ap-

proaches the threshold of vegetation collapse. Our numerical calculations show that an

increasing spatial variance in conjunction with a reversal in the initial changing trend of

spatial skewness is a superior indicator of an impending spatial ecological regime shift when
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spatially explicit data are available. These results are shown to hold under several different

dispersal kernels such as Gaussian, fat tailed and Cauchy.

Vegetation in semi-arid regions exhibits striking spatial patterns. Theoretical models

often ignore the strong fluctuations in parameters such as those arising from seasonality. We

present a fully seasonal rainfall model that produces vegetation patterns based on Turing

mechanism. We present results for the mean-field and spatially extended versions of the

model. We find that the patterns depend on the duration of the wet season even with fixed

total annual precipitation (PPT) and our results of maximum vegetation cover as function

of PPT is consistent with field observations.

In summary, using theoretical tools of stochastic and nonequilibrium dynamics, we have

studied the dynamics of ecological systems showing catastrophic transitions and devised

predictive measures which have the potential of practical applications in ecological systems.
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CHAPTER 1

INTRODUCTION

Ecological systems exhibit fascinating dynamical behaviors and spatial patterns such

as cycles in populations of snowshoe hare[4], chaotic population dynamics of crabs, flour

beetles and planktonic communities [5, 6, 7], threshold dynamics in diseases, invasive species

and ecosystems states of coral reefs, lakes and forests [8, 9, 10, 11], regular spatial patterns

in vegetation, salt marshes, mussel beds and coat of animals [12, 13, 14, 15]. These examples

form only the tip of the iceberg. These behaviors are governed by nonlinear and stochastic

dynamics with interactions occurring at multiple scales and exhibiting emergent properties

at macroscopic scales.

One of the foremost challenges in ecology involves understanding the complex systems

using simple mathematical models and devising theories which can be helpful in making

reliable predictions. Nonlinear dynamics and statistical physics provide an excellent set of

tools in that direction. The focus of this thesis is to devise such predictive measures and

to understand the dynamics of ecological systems which show abrupt transitions between

their states, using techniques of nonequilibrium statistical physics. In the next section, I

will motivate the topic of the thesis by providing theoretical and empirical support for the

’existence of multiple stable states and threshold dynamics in ecosystems.
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1.1 Background

Consider a tropical forest ecosystem, for example, where a large number of individuals

interact with each other through processes such as birth, death, competition and spatial

spreading to maintain biodiversity and processes such as water and nutrient cycles at the

ecosystem scale. Identifying an appropriate spatial and temporal scale is a key step if one is

interested in applying the tools of physics and mathematics in studying them [16]. Clearly,

the systems under consideration show complex dynamics, but the importance of studying

such systems through simple ideas of nonlinear dynamics and statistical physics has been

appreciated only recently [17]. Ecology (more generally, biology) has often been considered

as a descriptive science looking for seemingly endless details. However, ecology is perhaps

the most quantitative branch of all of biology and some of the most profound and successful

ideas are based on strong theoretical foundations.

The earliest theoretical work in ecology on the growth of population were developed

by Thomas Malthus in 1798 and Pierre-Francois Verhulst in 1835. This was later followed

by the work on spread of infectious diseases by Donald Ross and the predator prey dy-

namics by Lotka and Volterra during early 20th century [18, 19, 20]. The work of Evelyn

Hutchinson and Robert MacArthur during 1960’s provided a major thrust on theoretical

work in ecology [21, 22, 23, 24]. The phenomenon of deterministic chaos which arose from

studies of simple mathematical models of population dynamics in 1976 by Robert May

attracted wide attention not only of ecologists, but also the physicists and mathemati-

cians [17]. Since then a number of empirical and theoretical studies have underlined the

role of nonlinearity leading to multiple stable states [9, 25, 26, 27, 28] and the importance

of spatial scale [16, 29, 30, 31, 32, 33, 34] in ecological systems.
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In multistable systems the initial conditions or the history along with randomness decide

which of those available states is occupied by the system. Importance of multiple stable

states and the role of chance in deciding the fate of the final state of the system is well

established in statistical mechanics [35, 36, 37]. The classical example of a physical system

Figure 1.1: Hysteresis in a ferromagnetic material. Photo-Credits: HyperPhysics by Rod
Nave, Georgia State University

showing hysteresis is a ferromagnetic material. When an external field is applied, the

magnetic domains of the material align themselves along the direction of the field. The

alignment continues to sustain itself substantially even when the magnetic field is turned

off because it costs energy to disalign the domains. When the magnetic field is reversed

beyond a certain threshold, the alignment switches to the new direction of the magnetic

3



field. This hysteretic property, a nonequilibrium phenomena, is at the heart of innumerable

applications including magnetic tapes and hard discs. This is shown in Fig. 1.1.

In a ferromagnetic system, the magnetic domains or spins interact in such a way that

aligning along the same direction as its neighbors is energetically favorable. For a coarse
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Figure 1.2: Landau free energy density for the homogeneous system for different values of
applied external magnetic field. The arrows represent the stable macroscopic magnetization
for a given applied field. Here, α = 1.0, β = 1.0.

grained magnetic spin density denoted by M(x, t), the Landau free energy can be written

as:

F =

∫

V

ddx[−HM − αM 2 + βM 4 + (∇M)2] (1.1)

and the free energy density for the homogeneous system is shown in Fig 1.2 as the external

magnetic field varies.

The global minima of the Landau free energy, for any given magnetic field, corresponds

to the thermodynamically stable state. In thermodynamic limit, as the magnetic field

changes sign, the macroscopic magnetization changes discontinuously leading to a first

order phase transition. However, the system can stay in a metastable state for substantially

long times because of the low probability in being able to cross the strong barrier to reach
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the global stable state. In other words, when the metastable state has long lifetimes, we

may consider it as ‘stable’ on the timescales of interest. This leads to the nonequilibrium

phenomena of hysteresis where the reversal of magnetic field does not lead to immediate

reversal of alignment of magnetic domains. An ‘effective potential’ analogous to the Landau

free energy (even though a free energy itself has no interpretation in an ecological system)

can be defined for simple models of dynamical systems. We repeatedly use this intuitive

picture of the effective potential in this thesis to study the dynamics of ecological systems.

1.2 Multiple stable states, hysteresis and abrupt flips in ecolog-
ical systems

The plausibility of multiple stable states in ecological systems was perhaps first sug-

gested by Lewontin in 1969 in order to explain the observed structure of communities [25]

(community is defined as “an assemblage of populations of different species, interacting

with one another” [38]). In his own words “...that history is relevant to present state of

populations, species and communities, and that their present state can not be adequately

explained without reference to specific historical events. This is equivalent to saying that

multiple state states...exist”. One of the first empirical studies to evaluate such a hypothe-

sis was performed by Sutherland in 1974 on a fouling community – a complex assembly of

living organisms such as ascidians, bryozoans and muscles found on sides of docks, marinas,

harbors, etc. This work, however, was severely criticized by Connell and Sousa in 1983 for

not considering the criteria of stability carefully [39]. The main argument being that in

most of those studies an alternative state did seem to occur, but within relatively short

time scales it settled back to the original state. Such a dynamics can occur even in presence

of a limit cycle or as transient dynamics and hence the stability of the alternative state was

not convincingly established.
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It is clear from the effective potential picture that signatures of multiple stable states

can be established by showing the following: (i) Different initial states lead to different

final states and those states are stable with respect to (small) perturbations. (ii) (Large)

perturbations can trigger shift to another permanent state. (iii) Hysteresis in response to

changing conditions in forward and backward directions. Demonstrating these conditions

through controlled experiments in real ecological systems is difficult. Additionally, false

positives can not be easily ruled out because the results obtained at shorter time and length

scales typical to experimental studies may not necessarily be extrapolated to ecosystem

scales.

Long term studies now provide better evidence for the existence of multiple stable states

and abrupt changes between them. Some of the well studied systems are marine, lake and

semi-arid ecosystems. An analysis of 100 environmental time series in North Pacific ocean

showed evidence for abrupt changes in several variables on two occasions: first in 1977

and the second in 1989. Remarkably, the latter shift did not lead the system to return to

pre-1977 conditions [40].

Lakes are perhaps the best studied ecosystems in this context. Long data sets are

available from a number of shallow lakes in the world. The main driving parameter of

ecosystem functioning is the nutrient input (such as Phosphorus and Nitrogen) which can be

easily measured. A pristine lake is transparent with low nutrient and algal concentrations,

high fish and macrophyte vegetation. Such a state can make a transition to a turbid

water state due to increased nutrients into the lake. A study of 100 year long data from

Lake Takern and Lake Krankesjon in Sweden is reported to have “spontaneously switched”

between two states of “clear” and “turbid” water [41]. The large shallow lake Apopka in

Florida (USA) underwent a transition to a turbid state during a hurricane in 1948 where as
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Lake Tamnaren near Stockholm and Rice Lake near Wisconsin turned turbid due to changes

in water levels [42, 43, 44]. In many of these observations, the clear water state could only be

restored at much lowers levels of nutrient inputs than the critical value at which transition

to turbid water state took place [45, 46, 9]. These examples provide evidence for abrupt

transitions and hysteresis, thus strengthening the hypothesis of alternative stable states.

Experimental work show that a clear water state is stabilized by macrophyte vegetation

which promote processes to clear the water and therefore provide themselves an access to

better sunlight at the bottom of lakes. On the other hand, a turbid water leads to poor

availability of light killing nearly all of the macrophyte vegetation and the life supported by

it [47]. Such positive feedback mechanisms in which each state self-stabilizes are common

features of ecosystems showing multiple stable states.

The most striking example of large scale change in the ecosystem state occurred in the

Sahara (North Africa), the most recent one being at around 5500 years before present day

(BP) [1]. Geological data support that Sahara was sufficiently humid and even hosted large

perennial lakes such as Lake MegaChad spanning 330, 000km2 area [48, 49, 50]. The data

shown in Fig. 1.3 corresponds to a well-dated record of terrigenous sediment deposition

and it indicates an abrupt termination of humid periods resulting in collapse of vegetation

and desertification. Note that the terrigenous sediment acts as a proxy to the climate of

Sahara. The complete transition from a vegetated state to the current arid state happened

in a span of decades to centuries, a relatively short time period if compared with the time

scales at which each of the state is stable. The driving force of the transition is the summer

insolation which is known to slowly change due to earth’s orbital precession [51]. Climate

models indicate a strong sensitivity of monsoons to summer insolation: an 8% reduction

in insolation (expected change due to orbital precession) can lead to 40% reduction in the
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rainfall [52, 53]. The abrupt response of the ecosystem is attributed to the highly nonlinear

positive feedbacks between reduced regional precipitation and loss of vegetation cover [54].
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Figure 1.3: Terrigenous sediment data indicating climatic shift in Sahara. Circles represent
data while connecting line is meant to guide the eye. Note the regime shift occurred around
5500 years before the present day (BP).

It is now widely accepted that many ecological systems as well as social and economic

systems undergo abrupt transitions beyond a threshold, also referred to as a tipping point [9,

10, 55, 56, 57]. Other examples include marine ecosystems [58, 59, 60, 61], ponds [62, 63],

forests [64, 65], rivers [66] abrupt loss of biodiversity in coral reefs [67, 68, 69, 70], pref-

erential states of soil moisture [71], and trophic cascades [72, 73]. Existence of alter-

native stable states has been shown in many lab cultures containing single or multiple

species [74, 75, 76, 77, 78, 79].

Simple mathematical models in conjunction with empirical studies have provided useful

insights into both the feedback mechanisms that stabilize alternative stable states in a

number of ecosystems and the occurrence of critical thresholds beyond which regime shifts

occur [8, 45, 80, 81, 82, 83, 84]. However, such a thorough enumeration across wide spectrum
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of ecological systems is practically an impossible task. Therefore, an important task in

ecology is to develop predictive measures of proximity to a tipping point which do not

depend on the detailed understanding of ecological processes. If these indicators can be

easily and reliably computed by a simple analysis of data available from routine monitoring,

they can be employed as early warning signals of impending catastrophic transitions with

potential applications in conservation of ecosystems.

1.3 Focus of the thesis and organization of results

The aim of this thesis is two fold. The first aim is to develop leading indicators of prox-

imity to a threshold which can serve as early warning signals of an impending transition.

The second one is to study the dynamics of bistable ecological systems in presence of tem-

poral and spatial fluctuations. We don’t necessarily, however, separate the two aspects and

they are often intertwined and presented simultaneously. To study these issues, we will em-

ploy the mean-field-models with stochasticity and the spatially extended stochastic models

using reaction-diffusion and integro-differential equations. We perform a combination of

analytical and numerical calculations to establish various results.

The main theme of the next two chapters is on developing leading indicators of regime

shifts in ecological systems. In chapter 2, using simple nonspatial models of bistable ecolog-

ical systems, we propose that changing skewness of the time series distribution is an early

warning signal of impending regime shifts. In chapter 3, we consider a spatially explicit

model of regime shifts in ecosystems. Using a mean-field approximation and numerical

simulations, we show that spatial variance and spatial skewness calculated from the prob-

ability distribution of the instantaneous spatial pattern are reliable indicators of proximity

to a threshold. While establishing these results on the predictive measures, we also present
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results on the dynamics of bistable systems under the influence of space and noise. We show

that the qualitative nature of the bifurcation diagram (specifically, the coexistence or the

bistable region) remains unchanged on spatial and temporal scales of ecological interest,

although there is only one stable state in the thermodynamic limit.

In chapter 4, we switch to a spatially extended model of semi-arid ecosystems where

the vegetation exhibits self-organization due to limited resource availability. We adopt a

model that produces spatial patterns due to Turing instability and study the implications

of strong seasonal fluctuations in the driving parameter and the limiting resource, which is

rainfall.

We compare our results with field data in two instances. In chapter 2, we calculate the

moving average skewness of Sahara climatic data which exhibited catastrophic transition

from a vegetated to desert state around 5500 years ago. We find that the data is not

sufficiently resolved and hence we were unable to find a trend in skewness prior to the

regime shift. In chapter 4, we compare the results of maximum vegetation cover with the

recently published data from Savanna grasslands and find a reasonably good agreement [85].

Chapter five presents a brief summary of the research work and scope for future work.
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CHAPTER 2

CHANGING SKEWNESS: AN EARLY WARNING SIGNAL
OF REGIME SHIFTS IN ECOLOGICAL SYSTEMS

2.1 Background

In this chapter, using simple models of ecological systems showing bistability, we present

changing skewness of time series distribution to be a leading indicator of an impending

regime shift. This section provides the background and present several recently proposed

indicators. This will be followed by establishing changing skewness as an early warning

signal of regime shifts by studying three different ecological models of varying complexity.

In section 2.2, we will present analysis for one variable model where an effective potential

can be defined. In section 2.3, we present results for a more complex two variable model

of vegetation collapse where no effective potential exists and we analyze a case of failure of

skewness to detect an impending regime shift. Next, in section 2.4, we present results for

a two variable model of a lake model parameterized to a real lake. This is followed by a

simple analysis of real data in section 2.5 followed by discussion and concluding remarks.

The results of work has been published in Ecology Letters.

Several indicators that can potentially determine the proximity to a transition point

have been recently suggested in simple models. A common aspect of all the models is
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that they show a regime shift via a saddle node bifurcation in which a stable fixed point

disappears by merging with an unstable fixed point as we vary one of the model parame-

ters. Saddle node bifurcations, also referred to as fold bifurcation or blue sky bifurcation,

are widely employed to model regime shifts in ecology. A prototypical example of this

bifurcation is given by [86]:

Ẋ = r − X2 (2.1)

where r is the control parameter of the system. The fixed points of the system are obtained

by setting the right hand side to zero. This system has two fixed points for r > 0; one stable

(X∗
s =

√
r) and the other unstable (X∗

u = −√
r). As shown in Fig. 2.1, the bifurcation

occurs at r = 0. Even though this model does not have any fixed points for r < 0, in a full

model of the ecological system of interest to us (i.e., the ones which show bistability) there

will be a discontinuous jump to a new fixed point for negative values of r.
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Figure 2.1: Example of a prototypical saddle node bifurcation. The solid lines are stable
states, whereas the broken lines are unstable. Arrows indicate the direction of flow of the
state variable.
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As we approach the bifurcation from positive values of r, the dynamics of perturbation

from the stable fixed point within a linear approximation can be written as:

ẋ = −αx + η(t) (2.2)

where x = X − X∗
u, α = 2

√
r > 0 and η(t) is a Gaussian white noise process satisfying

〈η(t)η(t′)〉 = σ2 δ(t − t′). The noise term represents random fluctuations acting on the

ecological system (originally not included in Eq. 2.1). In terms of the new parameter α,

the bifurcation occurs at α = 0. The Eq. 2.2 is the famous Ornstein-Uhlenbeck stochastic

process [87, 88]. The correlation function (C(τ)) and the spectral function (S(ω)) for this

process in the steady state are given by [88, 89]:

C(τ) = 〈x(t)x(t + τ)〉 =
σ2

2α
e−α|τ | S(ω) =

∫ ∞

−∞
e−iωτC(τ)dτ =

σ2

ω2 + α2
(2.3)

where the angular brackets represents average over all realizations of noise.

The variance or the amplitude of fluctuation of the time series is given by C(τ = 0) =

σ2
x = σ2

2α
. The correlation time τc can be defined by C(τ) = C(0)e−τ/τc; hence τc = 1/α and

this can be interpreted as the typical recovery time of the system when perturbed from

the stable state. From these expressions it is clear that the variance σ2
x, the recovery time

τc and the strength of the peak of power spectrum S(ω = 0) increase as we go towards

the bifurcation. All these quantities can be easily evaluated from the time series of the

dynamical variable, more specifically the ecological variable of interest and they have been

suggested to be leading indicators of regime shifts in ecological systems [90, 91, 92, 93, 94].

Since these indicators were obtained through a linear analysis, we refer to them as ’linear

indicators’. Note that even though the expression in Eq 2.3 show that these indicators

diverge in steady state as we go towards a threshold (i.e., α → 0), this is not true when
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the system shows an alternative stable state for r > 0, a scenario applicable to ecosystems.

See the section 2.2.3 for a discussion.

These features of indicators which arise near a threshold can be intuitively understood

by the reduction in the curvature (flattening) of the potential that determines the dynamics

as the bifurcation point is approached in one-variable models. The potential for the system

in the linear approximation is given by U(x) = α
2
x2 (see next section) and its curvature by

α which goes to zero at the bifurcation. This flattening leads to a substantial reduction

in the recovery rate of the system from a perturbation. In addition, as one approaches

a regime shift, the potential picture of the ecosystem dynamics exhibits a pronounced

asymmetry around the stable state. In contrast to the flattening of the potential which

is obtained by a linear analysis, the asymmetry arises due to nonlinear effects and hence

presents a new way of devising an early warning signal. We exploit the impact of large

external fluctuations and asymmetry in the landscape on the dynamics of the ecosystem

and show that a changing skewness (a measure of the changing asymmetry) of the time

series can be an effective early warning signal of regime shifts. In general, regime shifts can

occur either due to the approach to a threshold point as an external parameter is varied

or due to increased width of the external noise distribution [9, 95]. Whereas the existing

set of indicators can serve as warning signals typically only for the former scenario, it is

shown that a changing skewness is a promising indicator for both routes to regime shift.

We provide an intuitive understanding of these results and discuss the issues related to the

feasibility of computing skewness in empirical data sets by analyzing data from climatic

shift in the Sahara and total phosphorus concentration data from a tributary to Lake Erie.

Three ecological model systems we consider differ in their complexity, the nature of the

noise, the details of ecological feedback mechanisms: two of them model the vegetation
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collapse in semi-arid regions and another, a parameterized model of lake eutrophication [8,

96, 97, 95]. More specifically, an effective potential can be obtained for a simple one variable

model of vegetation collapse whereas the two variable model does not have this feature, but

incorporates important ecological feedback mechanism. The lake model is parameterized to

a lake in Wisconsin. This allows us to check the utility of asymmetric indicator in different

contexts and at different levels of modeling approximations.

2.2 May’s one variable model of vegetation collapse

The first model describes the dynamics of a logistically growing population V with rate

r and carrying capacity K under a grazing pressure which is quadratically increasing for

small population densities and saturates to a maximum rate of c for higher population

densities [8, 96]:

dV

dt
= rV (1 − V

K
) − c

V 2

V 2 + V 2
0

+ ηV (t) (2.4)

where ηV (t) is Gaussian white noise i.e., 〈ηV (t)ηV (t′)〉 = σ2
V δ(t − t′). The bifurcation

diagram for the deterministic limit of the model (henceforth referred to as the mean-field

model) is shown in Fig. 2.2. The mean-field version has been applied in a variety of

ecological contexts [8, 98, 99, 100, 101], but we view it as a model of vegetation (V denotes

the biomass density) in semi-arid regions so as to make contact with the second model we

have studied. The vegetation biomass is measured in the units of V0 and the system exhibits

abrupt vegetation collapse as the maximum grazing rate, c, increases beyond a threshold

given by r(1 + K2/4)/K. For the specific values of parameters we have chosen, the system

exhibits a bistable region with coexisting bare and vegetated states for 1.8 < c < 2.6.

We are interested in predicting the vegetation collapse that occurs as we approach the

bifurcation at c∗ = 2.6.
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We justify our choice of additive noise fluctuations as follows: The grazing parameter

c represents the density of an herbivore population, for example [8]. The population of

the herbivore is a dynamical variable in itself, but we have not written down an explicit

governing equation for its dynamics. Instead, we assume that the time scale on which

grazing population changes is relatively short compared to time scales of interest in the

dynamics of vegetation. We then approximate it to be fluctuating around a mean value,

like a Gaussian. The resulting noise structure would then be ηV (t)V 2/(V 2
0 + V 2) ≈ ηV (t)

since we are only interested in the dynamics of the fully vegetated (V ≫ V0) system

prior to a transition. Such an approximation to additive noise has the advantage that

we can interpret it as occurring due to variety of external fluctuations, including those in

grazing, that affect the growth rate of the vegetation. If we are in the low vegetated state,

a similar approximation yields an additive noise, but with a prefactor of ≈ 0.2 for the

specific parameter values we have chosen in the model. However, with the additive noise

fluctuations in the low vegetated state, the system may fluctuate to negative values of V

which is not ecologically meaningful. Thus, one must include the multiplicative noise term.

2.2.1 Fokker-Planck analysis: asymmetry in effective potential
and time series distribution

The description of the stochastic system such as Eq. 2.4 is obtained by the probability

density of the state variable. In order to avoid writing the full expression from Eq 2.4,

we consider following simpler notation and this can be easily applied to other one variable

models. We denote the state of the ecosystem by x and let the dynamics be described by:

ẋ = f(x) + g(x)η(t) (2.5)
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where η(t) is a Gaussian white noise process with variance σ2, i.e., 〈η(t) η(t′)〉 = σ2δ(t− t′).

When g(x) is a constant, the noise enters the dynamical equation additively independent

on the state of the system x; for example, the noise term ηV (t) in May’s vegetation model.

Such a noise is said to be additive. If, on the other hand, g(x) is not a constant, then the

strength of the noise depends on the state of the system and it is said to be multiplicative

(see the lake model in section 2.4).

Next, we describe the evolution of the probability density of the state variable by

Fokker-Planck equation [102]. Using the Ito-interpretation for the stochastic differential

equation 2.5, the probability density evolves in time according to [88, 102]:

∂P (x, t)

∂t
= − ∂

∂x

[

f(x)P (x, t)
]

+
σ2

2

∂2

∂x2

[

g(x)2P (x, t)
]

. (2.6)

See section 2.6 for a discussion on the choice of Ito versus the Stratanovich calculus. To

obtain the stationary probability distribution, we set ∂Ps(x, t)/∂t = 0. We can then solve

the above equation to obtain

Ps(x) = N exp
(

− 2

σ2
U(x)

)

(2.7)

where N is the normalization constant and U(x) is the effective potential given by

U(x) = −
∫ x

x0

f(x) − σ2g(x)g′(x)

g(x)2
dx. (2.8)

For the case of additive noise, taking g(x) = 1, we find U(x) = −
∫

x
f(y)dy which

gives us the shape of the potential. For the multiplicative noise, as is clear from the full

expression of the effective potential in Eq. 2.8, the shape of the cup can be nontrivially

altered depending on the functional form of g(x) and the strength of the fluctuations σ [89].

Let us now turn back our attention to analyzing the dynamics of the system near the

bifurcation, but now include nonlinear term (in contrast to Eq. 2.2) to obtain:

ẋ = −αx + βx2 + η(t) (2.9)
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Figure 2.2: At the center is the bifurcation diagram for May’s model (Eq 2.4). The thick
lines indicate stable ecological states whereas the dotted line represents the unstable equi-
libria. The top row shows the change in the effective potential as the control parameter
c → c∗. The bottom row of figures shows that as σ increases, the extent of the region
around the minimum explored by the system widens leading to asymmetry. The parameter
values are: r = 1,K = 10, V0 = 1.

The corresponding potential is given by: U(x) = α
2
x2 − β

3
x3. Clearly, the potential is

not an even function of x anymore and hence exhibits an asymmetry. The expression for

steady-state probability distribution of time series, Ps(x) = N exp(− 2
σ2 U(x)), clearly shows

that an asymmetric potential leads to an asymmetric stationary time series distribution.

It is illustrated in Fig. 2.2 which shows how the asymmetry arises in two different routes

to regime shift for May’s model. As one approaches the threshold, the basin of attraction

shrinks and flattens and the asymmetry in the bowl becomes pronounced. Therefore for a
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fixed small variance of an additive noise term, the measured asymmetry will increase. On

the other hand, consider the case in which the system is relatively far from the threshold.

For small noise, the system explores a relatively narrow region which is symmetric around

the minima. However, as the external fluctuations increase, the asymmetric effects of the

effective potential on the dynamics can become measurable. Next, we focus on measuring

this asymmetry.

2.2.2 Skewness as a measure of asymmetry

The skewness, denoted by γ, is a dimensionless measure of the degree of asymmetry of a

probability distribution. Given a probability distribution P (x), with mean µ and standard

deviation σ, the skewness is defined as the scaled third moment about the mean:

γ =

∫

R
(x − µ)3 P (x)dx

σ3
(2.10)

where R is the range or support of the probability distribution. The skewness vanishes

for distribution symmetric about the mean and is positive or negative for an asymmetric

distribution with a tail above or below the mean respectively.

We begin by showing that qualitative changes in the shape of the distribution are

observed in the time series of the state variable as one approaches a threshold point. We

illustrate this using the results of numerical simulations of the one-variable vegetation

model of Eq 2.4. The stochastic differential equation is solved numerically by a simple

Euler algorithm which is first order accurate in time [88, 102]. The solution for a particular

time sequence of noise values obtained by our numerical simulation corresponds to the time

series data of the ecological variable collected in field. The plots of time series of the state

variable, the vegetation biomass density, and the corresponding probability distributions are

shown in Fig. 2.3. The distribution is symmetric at c = 1.5 far from the threshold. As the
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Figure 2.3: The plot at the bottom of the panel shows the bifurcation diagram for Eq 2.4.
Four subplots at the top of the panel show representative numerical simulation results for
the time series and its probability density when the ecosystem is far from and close to the
threshold of collapse (c∗ = 2.6). The asymmetry in the distribution that is clearly visible
underlies the indicator of regime shift proposed in thepaper. Simulations were started with
the vegetation in the high density state. We choose σV = 0.75, a time step of dt = 0.01 for
numerical integration and rest of the parameters are as in Fig. 2.2.

threshold value is approached, the distribution develops a visible asymmetric tail. For this

specific model simulation, substantial asymmetry is observed at c = 2.1, relatively far away

from the bifurcation ((c∗ − c)/c∗ ≈ 20%). We emphasize that the probability distributions

being shown in this and the later ones below are not the steady state distributions, but

only a local equilibrium or transient distribution. See section 2.2.3 for a discussion.

In Fig. 2.4, we plot the absolute value of the average skewness in two scenarios cor-

responding to different routes to a regime shift. The skewness is calculated for a time

series of length 2000 time units. We then average the skewness over 100 such realizations.
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In both the plots, the open circles represent the average values of skewness obtained by

numerical simulations. The solid line represents the analytical calculations obtained by a

direct evaluation of skewness of the corresponding stationary probability distributions. We

have calculated the analytical value of skewness by performing the integration (Eq. 2.10)

in the region R = (xl, xm) around the stable fixed point x∗ such that xl = x∗− 2σV and xr

is determined by numerically solving the equation Ps(xr) = Ps(xl) (see section 2.2.3).
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Figure 2.4: Increase in skewness as the ecosystem approaches regime shift via different
routes for May’s model of vegetation collapse considered in Figure 1. The thick line is the
analytical result obtained directly from the stationary probability distribution. The open
circles are the average values of skewness obtained by the numerical simulations. Note that
we have plotted the absolute value of the average skewness. (a) Approaching the threshold
of vegetation collapse by increasing the grazing pressure with fixed external fluctuations
σV = 0.25. (b) Approaching regime shift by increasing (noise) fluctuations in the system
at c = 2.0 (far from threshold). We choose dt = 0.1 and rest of the parameters are as in
Figure 2.2.
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In the first scenario, the variance of the external noise is held constant and the grazing

rate c is varied. The skewness of the time series distribution as a function of the bifurcation

parameter c, shown in Fig. 2.4(a), increases slowly up to c = 2.0. However, as the grazing

rate is tuned closer to the threshold value from c = 2.0 to 2.6, the skewness increases

substantially. Thus, an increase in skewness foreshadows the vegetation collapse and serves

as an early warning signal of the regime shift.

In the second route, increasing the external noise by increasing the standard deviation,

σ, of the Gaussian noise distribution, leads to a regime shift even if the system is far

from the bifurcation [95]. In Fig. 2.4(b), we plot the skewness, with a fixed grazing rate

at c = 2.0, as σ is varied. Clearly, the skewness increases as the noise level increases.

This is an intrinsic dynamical effect since the external noise distribution is Gaussian and

symmetric.

We have checked that the features reported above hold for the model with no additive

noise but noise in either the growth rate r or the grazing rate c. In the former case the

skewness though large far from equilibrium, increases substantially as the bifurcation is

approached, thus serving as an early warning signal.

2.2.3 Transient or steady state distributions?

In all the calculations shown above, we have calculated the skewness of non-steady state

probability distributions. This applies if one were to calculate other indicators as well, even

though the theoretical calculations (Eq 2.3) were based on a steady state analysis. The

steady state calculation of probability distributions (Eq. 2.7) for a bistable system includes

the ecological transition itself. Obviously, such a calculation is not useful for the purposes

of ecological forecasting. We refer to the non-steady state probability distribution prior
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to the transition as the transient distribution. In the transient approximation, the ‘linear

indicators’ do not possess the divergences as predicted by Eq. 2.3. Note that skewness is not

divergent even under those ideal conditions. However, if we are not too close to a regime

shift, the trends of changes in the indicators calculated from the transient distribution may

be observable and this has been demonstrated for skewness in this paper and for other

indicators in earlier studies [91, 93, 94].

Clearly, as we move closer to the threshold, there are higher chances that the system

escapes to an alternative stable state much before the characteristics of the transient state

can be reliably measured. For this reason, we do not show data for σ > 0.8 in Fig. 2.4(b).

A simple heuristic argument suggests that if the strength of noise fluctuations σ2
V > ∆U ,

where ∆U is the potential barrier (analogous to activation energy in reaction kinetics),

the time required to make a transition can be relatively small. We have studied this more

carefully as follows: Starting from the vegetated state the system will eventually make a

transition to the bare state in the presence of Gaussian noise. In a random process with

a given initial condition the first occurrence of an event such as reaching a specific value

is known as the “first passage time” [88, 103]. When averaged over many realizations, we

obtain the mean first passage time (MFPT). The MFPT in our problem is the average

time interval over which the system remains in the vegetated state; more generally, the

time scale on which a regime change is likely to occur. In all of our calculations if the

MFPT is smaller than a certain length of time interval we have chosen (2000 time units for

May’s model), we do not compute skewness. The details of MFPT are calculated as below.

Once again we resort to a simpler notation. We suppose that the dynamics of a system

is described by the following stochastic differential equation:

ẋ = f(x) + η(t) (2.11)
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where η(t) is as usual taken to be a Gaussian white noise with variance σ2. We assume that

U(x) is a bistable potential (the results hold for any other potential as well). Fig. 2.5(a)

shows a representative bistable potential with stable fixed points at a and c and an unstable

fixed point at b. Our interest is in calculating the average time the system stays in the

basin of attraction of one of the stable states, say that of state a.
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Figure 2.5: (a) A representative bistable potential. The labels a, b and c correspond to
fixed points of the system (b) From left to right: (i) The MFPT to the unstable fixed point
from the value V (on x axes). Here, c (maximum grazing rate) = 2.0 and σV = 0.75. The
unstable fixed point b is at V = 2 for this set of parameter values. (ii) The MFPT to
the unstable fixed point from the stable fixed point as the grazing rate increases. Here,
σV = 0.75. (iii) The MFPT to unstable fixed point from the stable fixed point as the
strength of the external fluctuations increase. Here, c = 2.0.
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To do so, we assume that the basin of attraction of state a extends from ∞ up to b.

Define T (x) as the mean first passage time to state b starting at x > b. Then it can be

shown that T (x) follows the following ordinary differential equation [88]:

f(x)
dT (x)

dx
+

σ2

2

d2T (x)

dx2
= −1 (2.12)

with the boundary conditions: T (b) = 0 and dT (x=∞)
dx

= 0 (i.e., a reflecting boundary at

+∞).

We use Mathematica to solve the above equation for the May’s vegetation model of

Eq. 2.4 [8]. The results for MFPT are shown in Fig 2.5. Note that MFPT drops substan-

tially as one approaches a threshold keeping the fluctuations constant or as the external

fluctuations increase at a fixed distance from threshold. If the time scale of observation is

more than the MFPT, then the transient approximation fails and we do not show results

corresponding to those.

2.3 Two variable model of vegetation collapse

We check the applicability of our proposal in a more complex model of vegetation

dynamics given by:

dw

dt
= R − αw − λwB + ηw(t) (2.13)

dB

dt
= ρwB(1 − B

wBc
) − µ

B

B + B0
+ ηB(t) (2.14)

Here the soil water w increases due to rainfall at a rate R, decreases due to evaporation

(−αw term) and uptake by vegetation(−λwB term.) The vegetation biomass B grows logis-

tically under the grazing pressure as in the previous model. We have included fluctuations

in the rainfall rate whose standard deviation is σw and the effect of external fluctuations

(with strength σB) on the biomass growth rate.
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This model obviously differs from the one variable model by including an explicit water-

vegetation feedback mechanism. An important technical difference, however, is that an

effective potential can not be defined for this model. This can be seen as follows: Using

a simpler notation of ẋ1 = f1(x1, x2) + η1(t) and ẋ2 = f2(x1, x2) + η2(t), we can write the

Fokker-Planck equation for this coupled system:

∂P (x1, x2, t)

∂t
= −

∑

i

∂

∂xi
fi P +

1

2

∑

i,j

σ2
i,j

∂

∂xi∂xj
P (2.15)

where 〈ηi(t)ηj(t
′)〉 = γijδ(t− t′). For Eq. 2.13, γi,j = δijσ

2
i . The condition for the existence

of potential is that we can write f = {f1, f2} = −∇U(x1, x2). A necessary condition for

the existence of potential function U is:

∂fj

∂xi

=
∂fi

∂xj

∀ i, j (2.16)

It can be easily verified that the above condition is not satisfied for Eq 2.13. However,

we recall that our proposal of skewness as an indicator of regime shift depended on the

existence of asymmetry in the potential. Nevertheless our calculations (see Appendix A.1)

show that the results of skewness continue to hold for this model as well. It is possible to

devise an intuitive understanding of how the asymmetry arises by considering the vector

field that represents the “forces” that determine the rate of the change of the dynamical

variables (see Appendix A.2).

2.3.1 Analysis of failure of skewness as an early warning signal

Our calculations for the two variable model show that skewness may fail to signal

a regime shift in certain circumstances, especially when large external fluctuations are

drivers. We find that for large, but constant values of fluctuations in rainfall σB, an

increasing external fluctuations σw can easily drive a regime shift. However, skewness fails
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to increase as the strength of the fluctuations increase(shown in Fig. 2.6). In this section,

we present a heuristic argument and its mathematical underpinning to understand the

failure of skewness as an early warning signal.
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Figure 2.6: An instance where the skewness fails to detect the regime shift. Increase in
rainfall rate fluctuations, w, keeping R = 1.5 and σB = 0.25.

In the model above, the soil water w equilibrates on time scales of a few hours to days

which is much faster compared to the biomass density which grows on the scale of months

to years. Thus, we make the so called quasi-static approximation by setting dw/dt = 0

and substitute the corresponding equilibrium value of w in Eq. 2.13 to obtain the reduced

equation:

dB

dt
= ρB

( R

1 + λB
− B

Bc

)

− µ
B

B + B0

+ σB ηB(t) + σ̃wη̃w(t)ρ
B

1 + λB
(2.17)

= f(B) + σB ηB(t) + σ̃w η̃w(t)g(B) (2.18)

s.t. f(B) = ρB
( R

1 + λB
− B

Bc

)

− µ
B

B + B0

& g(B) = ρ
B

1 + λB
(2.19)

where σ̃w and η̃w are appropriately renormalized quantities representing the fluctuation in

rainfall rate in the reduced equation. The reduced equation for the biomass density has a

multiplicative as well as the additive noise term. We explain below how the multiplicative
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noise term reduces asymmetry in the time series distribution by heuristic arguments as well

as a direct calculation of the effective potential for the reduced equation given above.

Since above equation consists of both an additive and multiplicative noise, consider a

case of stochastic one variable model given by: ẋ = f(x) + g(x)η(t) + ξ(t) where η(t) and

ξ(t) are independent Gaussian white noise processes with zero mean and variances σ2
η and

σ2
ξ . The Fokker-Planck equation for this system can be shown to be:

∂P (x, t)

∂t
= − ∂

∂x

[

f(x)P (x, t)
]

+
1

2

∂2

∂x2

[

(σ2
ξ + σ2

ηg(x)2)P (x, t)
]

. (2.20)

The effective potential for this system can be obtained by:

Ue(x) = −
∫ x

x0

f(y)

σ2
ηg(y)2 + σ2

ξ

+ log(σ2
ηg(y)2 + σ2

ξ )|xx0
(2.21)

The stationary probability density (solution of time independent Fokker Planck equation)

is then given by Pst(x) = N ′ exp(−2Ue(x)) where N ′ is the normalization factor.

The potential for the reduced equation with σw = 0 is shown in Fig 2.7(a). Clearly,

the potential is asymmetric and we expect a tail at small values of B that can serve as

an indicator of regime shift. When σw > 0, the effect of multiplicative noise term begins

to affect the shape of the potential. In contrast to fluctuations arising from the additive

noise term, the multiplicative noise term has lower amplitude for smaller values of B and

it increases in strength as B increases (Fig. 2.7(b)). Thus, σwηw(t)g(B) contributes to

fluctuations with an asymmetric tail towards larger values of B. The resulting fluctuations

in the vegetation biomass with both the additive and multiplicative noise terms is nearly

symmetric leading to a reduced (or nearly zero) skewness in the time series distribution.

This explains the failure of skewness in predicting a regime shift when the fluctuations in

the rainfall term are included.
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The Fig. 2.7(c-e) shows the effective potential for the full equation Eq (2.19) (calculated

using Eq. 2.21) for different values of σw. Clearly, the extent of asymmetry in the presence

of fluctuations in rainfall is substantially reduced as σw is increased. This is consistent with

the observed behavior of skewness with increase in σw, displayed in Fig. A.2(c).
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Figure 2.7: Analyzing the failure of skewness as an early warning signal when σw increases
leading to a regime shift. In all the plots below R = 1.5, σB = 0.25 and rest of the
parameters are: ρ = 1.0, α = 1.0, λ = 0.12, Bc = 10, B0 = 1. (a) Effective potential when
the fluctuations in the rainfall rate are absent (i.e. σw = 0). (b) The function which
modulates the strength of the multiplicative noise. (c)-(e): Effective potential when the
fluctuations in the rainfall are present and increasing (from left to right): σw = 0.01, 0.10
and σw = 0.25.

Finally, we make a technical remark on the quasi-static approximation. Eliminating

a degree of freedom (i.e, the variable w) by a the quasi-static approximation leads to a

renormalized strength and correlations (i.e, frequency dependence) of the noise term η̃w.

We are tacitly assuming that the noise ηw in the dynamics of w is not white and more

specifically, the time scale of fluctuations in rainfall is larger than the typical equilibrium
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time for soil-water interaction processes. Since the time scale on which the vegetation

biomass dynamics occurs is much longer than that of soil water or rain water fluctuations,

a white noise structure (and hence no frequency dependence) for η̃w is justified. We take

for simplicity σ̃w = σw to perform effective potential calculations for Eq. 2.18 since our

focus is the calculation of the trends in the asymmetry and average skewness.

2.4 Two variable parameterized lake model

In this section, we consider a parameterized lake eutrophication model and mimic a

plausible scenario of field measurements. We show that a trend of increasing skewness can

be detected well in advance of a regime shift despite constraints of sparse data availability.

Our results allow us to make useful observations and provide insights on the analysis of

real data sets.

The model is a slightly modified version of [93]):

dP

dt
= l − (s + h)P + rMR(P ) + σrηr(t)rMR(P ) + σlηl(t) (2.22)

dM

dt
= sP − bM − rMR(P ) − σrηr(t)rMR(P ) (2.23)

This system of equations describes the dynamics of coupled variables of water phosphorus

concentration, P , and the sediment phosphorus, M . Here l is the nutrient loading rate to

the lake, s is the sedimentation loss rate, h is the outflow rate, r is the recycling coefficient

and b is the permanent burial rate of phosphorus in sediments. The function R(P ) is the

nonlinear recycling function where P0 is the value of phosphorus concentration at which

the recycling is half its maximum rate and q is the so-called Hill coefficient. In addition,

there are two Gaussian white noise terms in this model: an additive noise term ηl that

corresponds to fluctuations in the phosphorus loading to the lake and a multiplicative

noise term ηrrMR(P ) that models the fluctuating recycling of sediment phosphorus due
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to stochastic events such as those driven by wind in summer [104]. Note that this system

of equations does not satisfy Eq. 2.16 and hence we can not define an effective potential.

Appendix A.3 contains the bifurcation diagram and the results for the skewness. Here,

we consider a scenario in which the mean nutrient inputs increase as a function of time

which can occur with economic growth. We perform a ‘dynamic simulation’ to see if

we can observe a trend of increasing skewness under such conditions. In our numerical

calculations the mean nutrient loading is increased from 0.5 to 1.28 gm−2y−1 in 40 years

time with constant increments every year and kept constant thereafter. We compute a

simple moving average skewness from the data obtained by numerical simulation for the

previous five years.

The results of the model calculations are presented in Fig 2.8 a and b. The phosphorus

concentration data indicates that a regime shift occurred around year 45. Moving average

skewness shows an increasing trend starting from year 34 and by the beginning of year 40 the

trend is unmistakable (around 100% increase) and hence, this can serve as an early warning

signal nearly five years in advance. We added a practical constraint of limited data sets by

comparing the results of a dense data set (100 water phosphorus measurements per year)

with those for a sparse data set of 33 measurements per year. We find that thinning the

data set had negligible effect on the trend of changing skewness, thus providing confidence

in its utility as an early warning signal. We note that for a specific set of parameters values

(nutrient loading taken to be constant at 1gm−2y−1 with the initial conditions P0 = 1gm−2

and M0 = 800gm−2), the skewness failed to detect a regime shift in nearly 30% of the cases.

More importantly, these model calculations suggest that skewness can fluctuate for short

time periods and then relax to the background value; such behavior, observable far from a

regime shift, should not be misinterpreted as signaling an impending transition. However,
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Figure 2.8: The figures show that changes in the skewness (denoted by γ) can be detected
well in advance for a model system which mimics a field measurement scenario. These
results are obtained by numerical simulation for the lake model when the nutrient inputs
are increased as a function of time towards the eutrophication threshold as described in the
text. The initial conditions for simulation are P (t = 0) = 0.58gm−2 & M(t = 0) = 410gm−2

and a time step of dt = 0.01. The moving average skewness has been calculated from data
for the previous five years. The dense and the sparse data sets correspond to 100 and 33
measurements of lake water phosphorus concentration (P) per year respectively. Rest of the
parameters are:s = 0.7y−1, h = 0.15y−1, b = 0.001y−1, P0 = 2.4gm−2, q = 8, σl = 0.01, σr =
0.01

significant changes on a time scale larger than the background fluctuation time scale act

as reliable early warning signals of an impending regime shift.

2.5 Analysis of Sahara data

We consider a well-dated record of terrigenous sediment deposition at Ocean Drilling

Program Site 658C off Cap Blanc, Mauritania which indicates an abrupt termination of
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North African (Sahara region) humid periods resulting in collapse of vegetation and deser-

tification [1]. See Appendix A.4 for the analysis of the complete Sahara data set from 25000

years before present (BP) to the present. An abrupt change in the sediment concentration

corresponding to the most recent regime shift in Sahara is found around year 5500 BP as

shown in Fig. 2.9a. Our interest is to determine whether skewness of the data showed any

reliable trends prior to the regime shift. We note that the data are relatively sparse and

have errors both in the determination of the time and the sediment. Nevertheless, in an

effort to illustrate the difficulties encountered in the prediction of regime shifts from avail-

able data we have performed a simple analysis of the data. The moving average skewness

(calculated for the previous 10 data points) up to the year of the shift is shown in Fig. 2.9b.

An increasing trend of moving skewness is clearly identifiable and occurred around 1000

years prior to the collapse. However we need to establish that this change is statistically

significant in order to interpret it as an early warning signal. To do so we perform a simple

diagnostic test based on the idea that an AR(1) process defined by x(t+1) = βx(t)+ση(t)

(where η(t) is a Gaussian white noise) acts as a null model for measuring changes in skew-

ness. This is reasonable because an AR(1) process follows from a linear analysis around the

fixed point and therefore, yields zero (long-time average) skewness. For finite sized time

series, the moving skewness of an AR(1) process can therefore act as a reference to measure

changes in skewness near a bifurcation.

We fit the data prior to the regime shift to the AR(1) process to obtain coefficients β

and σ to be 0.59 and 1.51 units respectively. We then generated 100 time series each of

length comparable to the real data (66 data points) and computed the moving skewness. In

a typical simulation we find, unfortunately, that the changes in skewness are comparable to

those in the Sahara data set. Hence we are unable to conclude that the changes in skewness
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Figure 2.9: Analysis of terrigenous sediment data indicating climatic shift in Sahara (a)
Time series of terrigenous sediment percentage record from Site 658C off Cap Blanc, Mau-
ritania. Circles represent data while connecting line is meant to guide the eye. Note the
regime shift which occurred around 5500 years before the present day (BP). (b) The mov-
ing average skewness: for any given time, skewness is calculated from the previous 10 data
points. Squares represent computed skewness values with the connecting line meant to
guide the eye.

observed in the Sahara data set arise from the proximity to a regime shift. These results,

however, do not mean that the indices of regime shifts will always fail, but indicate the

limitations involved in applying to an extremely sparse data set such as this one. As we show

in the Appendix A.4, with a finer resolution data such as the Phosphorus concentration

data available from Sandusky Bay [2] one can calculate changes in skewness more reliably.

We further note that we have not considered a variety of statistical data analysis issues

such as missing data, effects of seasonality, obtaining confidence intervals and detrending

the data. One may also need to consider a dynamic AR(1) model in which parameters β

and σ are time-varying.
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2.6 Discussion

Our analysis of simple ecological models shows that changes in the asymmetry, quan-

tified by changes in the skewness of the time series data, can be a generic indicator of an

impending regime shift. We have shown that the skewness of the time series data increases

as we approach a regime shift in one-variable and more complex ecological models. Al-

though we have illustrated the case of skewness increasing from zero to non-zero values,

in general, changing skewness (from non-zero skewness to even larger skewness, etc.) can

serve as an indicator of regime shifts. The origin of asymmetry lies in the contribution

of nonlinear terms to the dynamics of the system and hence changing skewness may be

referred to as a ‘nonlinear indicator’ of regime shift; in contrast variance, recovery time

and reddened power spectra can be derived by a linear analysis, and constitute ‘linear in-

dicators’ of regime shift. In the following paragraphs, we discuss some of the simplifying

assumptions of our model calculations and make suggestions for future research.

An important assumption in our calculations is that the stochastic dynamics of the

model systems are a complete representation of the ecological data. Real ecological data are

prone to multiple sources of errors including external and observational errors in addition to

the uncertainty involved in identifying and modeling the dynamical processes. One possible

pitfall is that the observed changes in asymmetry in the time series do not necessarily

imply proximity to a regime shift since it may not be due to intrinsic dynamics but due

to asymmetry in the exogenous noise, for example. Technically, this means that modeling

all the uncertainties and errors by a simple Gaussian white noise is an oversimplification.

This problem has to be addressed on a case by case basis by various statistical methods: If

data are available for the noisy external variable that drives the system (such as nutrient

input and rainfall data), we can remove associated trends from the time series of the state
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variable. It has been shown that one can successfully separate true variance from other

sources of noise by using dynamical linear modeling techniques of time series data [93]

and such a calculation, at least in principle, can be extended to extract true skewness

as well. More generally, the problem of detecting regime shifts as well as distinguishing

environmental fluctuations from the true dynamics of the system is an issue of immense

practical importance and has also been addressed by other techniques [105, 92, 106, 107,

108, 109, 110].

Next, we discuss the implications of choice of Ito calculus in solving stochastic differ-

ential equations and how the results may in general to differ if one chooses an alternative

rule, namely the Stratonovich calculus. An equation of the form ẋ = f(x) + g(x)η(t) when

g(x) 6= a constant, is meaningful only if we attach an interpretation rule to evaluate the

multiplicative noise term. This is due to the random nature of η(t) which can be thought

of as a sequence of extremely short interval pulses. Such a pulse induces a jump in ẋ which

in turn leads to a jump in x. Hence a question arises as to what value of x should be

used to evaluate the stochastic equation at time t which will in turn determine the value

of the jump. In Ito calculus, we assign a value of x which is just prior to the jump. On

the other hand, Stratanovich convention assigns a value of x which is an average value of

the state variable before and after the jump. The results can be different depending on the

choice of the calculus one uses. This is easily seen by the Fokker-Planck equation for the

Stratanovich calculus:

∂P (x, t)

∂t
= − ∂

∂x
f(x)P +

1

2

∂

∂x
g(x)

∂

∂x
g(x)P (2.24)

= − ∂

∂x

[

f(x) +
1

2
g(x)g′(x)

]

P +
1

2

∂2

∂x2
g(x)2P (2.25)

Eq 2.25 shows the contrast between Ito and Stratanovich rules of calculus in the drift term

for the “same” stochastic equation. Note that such a discrepancy does not arise when
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g(x) is not a function of the state variable or obviously, when there is no stochastic term.

The Ito calculus we have employed is relatively easier to implement numerically. This

rule is ecologically relevant because the state of an ecological system at time t + ∆t is

determined by the state at time t and an access to the ‘future’ values of state variable

is not meaningful in ecological systems. We have compared effective potential obtained

by these two interpretations for the May’s model with multiplicative noise term (in the

grazing parameter, c). We find that the qualitative nature of the effective potential is

independent of the choice of interpretation used in the rage V ∈ [0.1, 12]. Hence the results

of skewness will continue to hold for the Stratonovich scheme of interpretation as well. Such

an effective potential calculation is not possible for the lake model where noise in recycling

led to a multiplicative noise term. However, it is possible to make some speculation based

on the following heuristic arguments. Eq. 2.25 and a Fokker-Planck equation for the two

variable lake model suggest that the derivative term will play an important role in deciding

how the two rules of calculus differ in their results. The recycling function R(P ) is a

sigmoidal function that has zero value for its derivative when the system is in either of

the stable states. But recycling is strongly nonlinear for intermediate values of Phosphorus

concentration and hence can be important for calculations involving the transition between

two stable states. Our focus is on the characteristics of the transient state prior to the

occurrence of a transition. Hence we can expect that the specific rule of calculus we chose

is unlikely to affect the results we have presented in this chapter. Numerical simulations,

however, are needed to confirm these speculations.

Future research work on the theoretical analysis of skewness under non-stationary con-

ditions, the statistical issues of estimation and errors and developing simple methods to
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extract true skewness from an error-prone data are needed which make this indicator fur-

ther useful for practical applications. Other indices of nonlinearities such as S-maps and

anisotropic variances in the time-1 return map [111] can also be explored as measures of

changing asymmetry. Another area for future investigations is the study of early warning

signals in spatially explicit models of regime shift and elucidating the relative merits of

different indicators.
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CHAPTER 3

LEADING INDICATORS OF REGIME SHIFTS IN SPATIAL
ECOLOGICAL SYSTEMS

In developing an early warning signal for abrupt regime shifts in ecosystems in the

previous chapter, we have ignored the spatial fluctuations. In this chapter, we propose that

increase in the variance and changes in the skewness of the spatial probability distribution,

i.e., of a spatial snapshot of the relevant ecological variable can be leading indicators of

catastrophic regime shifts.

In section 3.1, we show how our proposal of the spatial variance is motivated from the

behavior of equal time correlation function near the critical point of a second-order phase

transition. In section 3.2, we show analytical and numerical results of increasing spatial

variance and spatial skewness in a reaction diffusion model of vegetation collapse. We

present the results on how the mean-field bifurcation diagram as well as the results on

indicators are affected by the strength of spatial interactions. We show that an increas-

ing spatial variance in conjunction with a reversal in the initial changing trend of spatial

skewness is an unambiguous indicator of an impending ecological regime shift in the model

system. This warning signal appears sufficiently early to initiate conservation strategies.

In section 3.3, it is shown that the results of spatial variance and skewness are independent

of details of dispersal kernels such as Gaussian, fat-tailed and heavily fat-tailed.
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3.1 Near the critical point of second order phase transition

Studies on second order phase transition in physical systems show that quantities such

as correlation length and susceptibility diverge at the critical point and the system exhibits

universal properties independent of the details of the system under consideration. We take

a leaf out of these studies and apply it to spatially extended ecological model systems to

devise leading indicators of impending regime shifts. In this section, we present calculations

for the correlation function near the critical point and connect it to our proposal of spatial

variance as an indicator.

Consider the Landau free-energy functional as a function of the coarse-grained scalar

order parameter φ(x, t):

F [φ] =

∫

ddx[
D

2
|∇φ|2 + U(φ)] (3.1)

where U(φ) = α
2
φ2 + βφ4 is a symmetric potential and β > 0. As α → 0+, the system

undergoes a disorder-order phase transition. The equation for the time evolution of the

order parameter is given by:

∂φ

∂t
= − δF

δφ
+ η(x, t) = −U ′(φ) + D∇2φ + η(x, t) (3.2)

≈ − αφ(x, t) + D∇2φ + η(x, t) up to linear order (3.3)

where η(x, t) is a Gaussian white noise whose variance σ2 is proportional to the temperature.

In Landau’s theory, the coefficient α is phenomenologically taken to be α = α0(T − Tc)

where Tc is the critical temperature, α0 > 0, T > Tc. In our calculations, we study the

equal time correlation function C(r, τ = 0) = 〈φ(x + r, t + τ)φ(x, t)〉|τ=0 as α → 0.

To obtain that quantity, we first calculate the spectral function defined by S(q, ω) =

∫ ∫

C(r, τ)ei(qr−ωτ)drdτ . Take the spatial and temporal fourier transforms of Eq. 3.2 by

setting φ(x, t) =
∫

exp(iωt − iqx)φ̃(q, ω) dq
2π

dω
2π

and η(x, t) =
∫

exp(iωt − iqx)η̃(q, ω) dq
2π

dω
2π

to
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obtain:

φ̃(q, ω) =
η̃(q, ω)

iω + α + Dq2
(3.4)

The spatio-temporal power spectrum is given by:

S(q, ω) = 〈|φ̃(q, ω)|2〉 =
σ2

ω2 + (α + Dq2)2
(3.5)

The steady state spatial power spectra can then be obtained as:

S(q) =

∫ ∞

−∞
〈|φ̃(q, ω)|2〉dω

2π
=

σ2

2(α + Dq2)
(3.6)

Now the equal time correlation function is easily obtained for one spatial dimension by:

C(r, τ = 0) =

∫ ∞

−∞
S(q)e−iqr dq

2π
=

σ2ξ

4D
e−|r|/ξ (3.7)

where ξ =
√

D/α is the correlation length. A quantity that is often measured in the

context of magnetic materials is the susceptibility χ = 2
∫∞
0

C(r, τ = 0)dr = σ2ξ/(2D).

As we approach the critical point by α → 0, the correlation length ξ → ∞ and therefore

the correlation function as well as the susceptibility diverge. We draw attention to the fact

that the equal time and equal space correlation function C(r = 0, τ = 0) = σ2ξ/(4D)

is nothing but the spatio-temporal variance of an extended system. If the system size is

sufficiently large we may expect that spatial variance, a quantity easily measured in an

ecological system (for example through satellite imagery), to show qualitatively similar be-

havior. These divergences are hallmarks of second order phase transitions where the order

parameter changes continuously near a critical point. However, the abrupt transitions of

interest in ecology are best modeled by the first order phase transitions where, unfortu-

nately, no such divergences occur. Nevertheless, we show that the signatures of ‘apparent

divergence’ can be found in the ecological systems of interest to us under a ‘transient

approximation’.
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3.2 Indicators of transitions in diffusion model

We retain the one variable model of vegetation collapse in semi-arid ecosystems studied

in previous chapter [8, 96]:

dV (t)

dt
= rV

(

1 − V

Vc

)

− c
V 2

V 2 + V 2
0

(3.8)

where V is the logistically growing population with growth rate r and carrying capacity Vc

under a mean-grazing-rate which can reach the maximum value of c. This model has been

applied to study variety of ecological systems such as exploitation of fish communities [98],

vegetation in a semi-arid ecosystem [96], spruce budworm dynamics [8, 99] and harvesting of

macrophytes [100], but typically in a non-spatial context. We recall that the deterministic

non-spatial model exhibits a bistable region with coexisting high density and low density

vegetated states. For c > c∗ = 26, the system collapses from a densely vegetated state to

a low-density state (see Fig 3.1).

We now include stochasticity and spatial interactions in the model. The fluctuations

arising from variations in grazing population density, denoted by ηc(x, t), is modeled by

a spatially and temporally uncorrelated Gaussian noise with variance σ2
c . Since ηc(x, t)

is a Gaussian, the grazing rate c + ηc(x, t) can fluctuate to negative values which is not

ecologically meaningful. In general, a cutoff can be imposed. However, for the relatively

small values of σc/c we have chosen, we do not obtain a negative grazing rate in any of our

simulations. We assume the simplest form of spatial interactions through random diffusive

dispersal of seeds leading to:

∂V (x, t)

∂t
= rV (1 − V

Vc
) − (c + ηc(x, t))

V 2

V 2 + V 2
0

+ D∇2V (x, t) (3.9)

where D is the diffusion constant. In order for us to be able to exploit the features of critical

fluctuations of second order transition, we need to go sufficiently close to the bifurcation
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α → 0. However, from the studies of nonequilibrium phase transitions, we know that this

model exhibits first order phase transitions where the bifurcation diagram does not show

bistability and no divergences of the kind found in the previous section can be applicable.

But this result is true only in the thermodynamic limit and the metastable state has

lifetimes substantially large so as to be able to go sufficiently close to the bifurcation of the

mean field model (where α → 0). We justify these claims in the next few sections.

3.2.1 Bifurcation diagram with space and noise

First, we show that the bifurcation structure remains qualitatively similar to the mean-

field model results in the presence of spatial and stochastic fluctuations for the timescales

of ecological interest. In order to do so, we define a ‘transient bifurcation diagram’ that

holds true on a specified time scale of observation and show that its qualitative nature

is same as that for the mean-field model through numerical simulations. The lifetime of

the metastable state depends on various factors including the level of the noise, the initial

conditions, and other factors including the size of the system. Thus, depending on its

lifetime the metastable state can be stable on the time scale of observation. Therefore,

the range of grazing parameters over which we find coexisting stable states depend on the

specific numerical “experiment”. We consider two definitions below.

Homogeneous initial conditions: First, we perform our simulations with spatially ho-

mogenous initial conditions (IC). For a given value of the grazing parameter c, we chose

one of the stable equilibria suggested by the mean-field model as the IC. We then let the

system evolve according to Eq. 3.9 for 1000 time units. The spatial average of V (x, t) at

t = 1000 units defines the stable state of the spatially extended system.
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The results of such a bifurcation diagram for different values of diffusion constant is

shown in Fig 3.1 along with the mean-field bifurcation diagram. When D = 0, we are effec-

tively simulating a large number of mean-field models with noise. The resulting bifurcation

diagram shows considerably reduced region of bistability, consistent with the results of our

recent work on nonspatial bistable models with noise [95]. If the observation time were

shorter or the strength of the noise were smaller, the region of bistability will be increased.

For a fixed strength of noise, when we increase the strength of the diffusive coupling the

region of bistability increases. This result is easy to understand intuitively because the

effect of diffusion is to smoothen and reduce the fluctuations. This effect of the diffusive

coupling is also reflected in the results shown in a later section 3.2.3.
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Figure 3.1: The ‘transient’ bifurcation diagram for the May’s model with space and noise.
(a) This plot shows that the qualitative nature of the bifurcation is not affected by the spa-
tial and stochastic fluctuations (b) This plot illustrates that if we wait sufficiently long, the
bifurcation diagram shows characteristics of phase diagram of a first order phase transition.
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Patchy initial conditions: We perform numerical simulations to obtain the long time

behavior of the bifurcation diagram. The motivation for these calculations arises from the

studies on first order phase transitions where we expect no hysteresis in the thermodynamic

equilibrium. We address the question whether our spatial model with multiplicative noise

also fails to exhibit hysteresis if we wait sufficiently long.

In order to answer this, we did numerical simulations on a two dimensional lattice with

128×128 lattice with the following initial conditions: 64×64 patch of the one of the stable

state was embedded in the alternative stable state, for a given grazing rate c. We then let

the system evolve according to Eq. 3.9 up to 4000 time units and the spatial mean at this

time is chosen as the stable state of the ecosystem. The choice of initial condition ensures

that we have avoided the exponentially long times required for the patches to be generated

spontaneously by noise fluctuations in simulations of the type performed for obtaining

Fig. 3.1(a). Results in Fig. 3.1(b) clearly show that the region of bistability is reduced in

comparison to the short time simulations. This is an indicative of the fact that if one were

to perform even longer time simulations, the region of bistability and hence the hysteresis

will completely vanish leading to a first order transition in the limit of system size going

to infinity. These calculations exemplify our statements about the transient nature of the

bifurcation diagrams discussed earlier.

3.2.2 Mean field approximation (MFA) to obtain behavior of in-
dicators

In this section, we establish that changes in spatial variance and skewness occur as we

move close to the threshold of vegetation collapse. We do so by an analytical calculation

based on the mean-field approximation of the spatial model developed by Van den Broeck

et al along with the local equilibrium or transient approximation on the stability of the
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fixed point [112]. Both these approximations do not hold as we approach the bifurcation

point and hence in order to check the extent of validity of these results, we compare with

the results of numerical simulations.

Continuing with the simpler notation for analytical calculations, we consider the fol-

lowing spatial model:

∂v

∂t
= f(v) + g(v)η(x, t) + D∇2v (3.10)

For a spatial model the state variable is a continuous function of the spatial coordinates:

v(x). If we discretize the space into N cells each of linear size ∆x whose position is denoted

by the discrete subscript i, we have the evolution equation for vi(t) in d-dimensions:

dvi

dt
= f(vi) + g(vi)ηi(t) +

D

∆x2

∑

j∈n(i)

(vj − vi) (3.11)

where n(i) represents the nearest neighbors of site i. The discretized noise has the cor-

relation structure given by 〈ηi(t)ηj(t
′)〉 = (σ2/∆xd)δ(t − t′). We denote the variance by

σ2
d = σ2/∆xd. In the continuum limit N → ∞. We then need to solve a system of infinite

number of variables or infinite degrees of freedom coupled to each other.

We are interested in evaluating various moments of v and they can be obtained if we

can find an ‘effective potential’ for this system of equations. To do so, we write the Fokker-

Planck equation for the probability density of all the variables, P ({vi}, t) :

∂P ({vi}, t)
∂t

=
∑

i

∂

∂vi

[−f(vi) +
D

∆x2

∑

j∈n(i)

(vj − vi) +
σ2

d

2

∂

∂vi

g(vi)
2]P ({vi}, t) (3.12)

Since we are interested in local moments we integrate the above equation over all variables

other than a particular vi. Using the boundary condition that P (vi = ±∞, t) = 0 for all i,

we obtain:

∂P (vi, t)

∂t
=

∂

∂vi

[−f(vi) +
D

∆x2

∑

j∈n(i)

(E(vj|vi) − vi) +
σ2

d

2

∂

∂vi

g(vi)
2]P (vi, t) (3.13)

46



Note that P (vi, t) is the marginal distribution since all other variables have been integrated

out from the joint distribution and E(vj |vi) =
∫

dvjvjP (vj|vi) is a conditional expectation

value.

Mean field approximation (MFA): The above equation for the probability distribution

of vi couples all the variables due to the occurrence of the conditional expectation value

and remains analytically intractable. The mean-field approximation is based on the key

approximation making E(vj|vi) independent of vj. It amounts to assuming that the dy-

namics of the patch i is determined as if it is embedded in an “effective medium” that is

homogeneous. Therefore, we have E(vj|vi) = E(vi) = E(v) independent of j. The un-

known quantity E(vi) is determined self-consistently given P (vi) which depends on E(vi).

The self-consistent mean-field equation is:

E(v) =

∫

v Pmft(v, E(v))dv (3.14)

where Pmft(v) =
1

N exp
[ 2

σ2
d

∫ v

v0

du
f(u) − σ2

dg(u)g′(u) − zD
(∆x2)

(E(v) − u)

g(u)2

]

(3.15)

N is the normalization constant and z is the number of nearest neighbors.

Local equilibrium or transient approximation: We make a simple approximation to

evaluate the stationary probability distribution without having to solve the self-consistent

equations 3.14 and 3.15. We assume that the local stability of equilibrium state (i.e. the

stable fixed point of the deterministic nonspatial model) is not affected by the spatial

interactions on the time and spatial scales of ecological interest. This is supported by

results of previous section that such a local equilibrium or transient approximation holds

as long as we are not too close to the threshold determined by the deterministic nonspatial

model (see Fig 3.1(a)).
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Within this approximation we set E(v) = v∗(c) where v∗(c) is obtained by solving

f(v∗; c) = 0. The effective potential, defined as Pmft(v) = 1/N e−2Umfa(V ;c)/σ2

d , can thus be

written as:

Umfa(V ; c) = −
∫ V

V0

du
f(u) − σ2

dg(u)g′(u) − zD
(∆x)2

(v∗(c) − u)

g(u)2
(3.16)

The results of calculation of effective potential for May’s model with diffusion and noise
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Figure 3.2: The panels of figures show how the asymmetry in the potential in the landscape
picture evolves in the different pathways to regime shifts for a spatially explicit model with
diffusion. This is strikingly similar to the ones obtained for the nonspatial model with noise
(see Fig. 2.2 in chapter 2)
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in the grazing term is shown in Fig 3.2. The qualitative features of the effective potential

are strikingly similar to the ones obtained for the nonspatial model with noise (see Fig 2.2

in chapter 2).

We then calculate the moments corresponding to spatial mean, variance and skewness

of the effective probability distribution Pmfa(V ; c) = 1/N e−2Umfa(V ;c)/σ2

d by performing

appropriate integrations in the region R = (xl, xr) around the stable fixed point v∗ such

that vl = v∗ − 2σd and vr is determined by solving the equation Umfa(vr; c) = Umfa(vl; c).

The results are shown along with those of numerical simulations on a two dimensional

lattice in Fig 3.3. To numerically solve the Eq. 3.9, we use the fully explicit forward-time,

centered-space differencing scheme on a two-dimensional spatial grid of 128 × 128 squares

with periodic boundary conditions, using MATLAB and C++ [113]. For a fixed value

of grazing rate c, we let the system evolve up to 100 time units. As the system evolves

in time, we take a snapshot of the spatial pattern at regular time intervals and evaluate

spatial variance and spatial skewness at each of those individual time steps. The temporal

average for 100 time units is plotted. Fig. 3.3 shows that the numerics and the analytical

calculations agree qualitatively. They also agree semi-quantitatively when the grazing rate

is not too close to the threshold. This is expected because the mean field calculations

ignore the spatial fluctuations which dominate the dynamics near a transition leading to

increasing discrepancy near the bifurcation point.

3.2.3 Dependence of the results on the strength of spatial inter-
actions

In this section, we study the implications of the strength of spatial interactions on the

spatial indicators. The strength of spatial interactions can vary significantly for several

reasons. Obvious scenarios include when the ecological systems under consideration are
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Figure 3.3: The rising spatial variance and skewness as the threshold of vegetation collapse
is approached in model of Eq 3.9. Parameter values are: r = 10,K = 10, Vc = 1.0, σd =
1.0, dx = 0.1, dt = 0.001. The thick line corresponds to analytical result obtained from the
mean field approximation.

different or the same ecological system from different geographical regions are considered.

It can also arise through a subtler way of “coarse-graining” approximation that a field

ecologist (or a modeler) employs while taking and/or analyzing the spatial data. For

example, the interactions between two patches of vegetation can be significantly different

depending on their dimensions: for e.g., 1m × 1m, 10m × 10m or 100m × 100m.

We treat the diffusion constant D to be a measure of the strength of spatial interaction.

As the diffusion constant increases, the patches interact relatively strongly with nearby

patches. Fig. 3.3 show that as the strength of the spatial interactions increase, the absolute

value of the indicator decreases. However, Fig. 3.4 show that the scaled values of both the

variance and the skewness roughly increase at least by a factor of two before the catastrophic

vegetation collapse occur.

As we saw in Fig 3.2, the MFA provides us with an effective potential landscape picture

for the fully spatial system. We can calculate how effective potential changes as the strength
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Figure 3.4: Same as Fig 3.3, but scaled by their respective values at c = 15.

of diffusive coupling D increases (see Fig. 3.4): we observe that the local curvature is getting

larger (thus reduced variance) and potential is more symmetric (thus reduced skewness)

as D increases. This can be intuitively understood by recalling that the basic nature of

diffusion is to smoothen the spatial fluctuations. A stronger spatial coupling would hence

lead to reduced amplitude of fluctuations (i.e. reduced variance). A reduced fluctuation in

turn has the implication that asymmetric part of the effective landscape not fully explored,

thus leading to reduced skewness as well.

The results of a single time calculation, a quantity which a field ecologist is most likely

to measure, exhibit qualitatively similar behavior. However, the temporal average shown

here provides a smooth curve which allowed us to make better comparison with the re-

sults obtained for different spatial interactions and with the analytical calculations. See

appendix B.1 to see how indicators can vary with time even for fixed grazing if the system

is close to the threshold.
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Figure 3.5: Effective potential for the spatially explicit model obtained using the mean-field
approximation. The potential is shown around the vegetated fixed point as the diffusion
constant increases.

3.2.4 Detection and prevention of an impending regime shift in
a numerical experiment

In this section, we show that spatial indicators can be used to detect an impending

vegetation collapse even with limited availability of spatial and temporal data by simulat-

ing a scenario that is likely to occur in field. We show that a joint monitoring of spatial

variance and skewness can be helpful in obtaining an unambiguous measure of an impend-

ing catastrophic transition. Furthermore, the warning occurs sufficiently in advance that

management practices can be initiated to prevent the undesirable collapse of vegetation.

We have chosen dx = 0.1 and dt = 0.001 for the simulation of diffusion model (same

values were used for results shown in previous section too). We interpret each square grid

of the two dimensional lattice to be of the area 100m2 and one unit to step to be 1 year.

In these units, the time step of integration corresponds to approximately 1/3 of a day for

Eq. 3.9. The values of diffusion constants used in this study which range from D = 0.001 to

0.1 units correspond approximately to the range 0.03m2day−1 to 3m2day−1 which covers the

typical values of plant dispersal coefficients used in the previous studies [114]. However, we
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are coarse graining the system on scales such that the spatial patterns observed in semi-arid

regions are not important.

We consider a scenario in which the grazing rate c is increasing with time, a widely

observed consequence of enhanced human influence on ecosystems. We begin with a high

density vegetated state with the mean grazing rate c = 21 which undergoes a discrete

increment of 0.1 units (approximately 0.5%) every year. The evolution of spatial patterns

is depicted in Fig. 3.9(a). The ecosystem continues in the high vegetation state, albeit slowly

declining in its density till the year 46. Within next six years the vegetation undergoes a

dramatic collapse to a low density state. During this interval of abrupt collapse, a number

of tiny low density patches emerge which are clearly identifiable if the complete spatial data

is available at 48th year. These patches grow bigger in size with time and they coalesce

with nearby patches leading to rapid decline in vegetated areas.

The abrupt nature of collapse is readily captured in the plot of spatial mean, V̄ in

Fig 3.9b(i) and the spatial indicators in Fig 3.9b(ii-iii), exhibit substantial changes during

the period of transition. The key issue is the ability to predict proximity to a transition

and hence the question of interest is whether these indicators show observable changes

prior to the obvious collapse shown either by the drop in the spatial mean V̄ or the visual

observation of patches. In order to answer this question, we have plotted a magnified

version of spatial mean, variance and skewness in an adjoining plot from year 40 to 56

(Fig 3.9b(iv-vi)). The spatial mean is decreasing slightly with time up to year 46 and

a very small number of patches are visible. On the other hand, the spatial variance has

increased by nearly 300% and the skewness has changed from zero to one by this time,

therefore offering us two potential early warning signals of an impending transition when

the spatial mean does not display a clear sign of the collapse.
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Figure 3.6: Temporal evolution of the system on a two dimensional lattice with (Eq. 3.9)
for a situation simulating increasing grazing rate (of 0.1 units every year) observed in the
field. Parameter values are as in earlier figures. (a) Temporal evolution of spatial patterns
while the grazing rate increases towards the threshold. The brighter color corresponds to
higher vegetation densities. (b) Spatial mean, variance and skewness as a function of time.

Next, we argue that a joint monitoring of spatial variance and skewness can be used

deduce an impending transition unambiguously. Results in Fig 3.9b show that spatial

skewness peaks at year 47 even as the spatial variance continues to increase and the spatial

mean shows quick decline beginning year 48. We suggest that a peak in skewness when

observed with a continued increase in variance can constitute an additional signature of an

imminent catastrophic vegetation collapse. We performed additional simulations to check

if this sign occurs sufficiently early to be utilized for the prevention of the regime shift by

beginning to reduce the grazing activity from year 48 The results for different conservation

strategies are shown in Fig 3.7. These sample simulations suggest the plausibility of a
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maintaining ecosystem in the highly vegetated state if the reduction rate in the grazing

activity are beyond a certain threshold.
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Figure 3.7: This plot demonstrates the plausibility of preventing a catastrophic vegetation
collapse. Thick line is “business as usual” with an increase of 0.1 units/yr. For the rest,
the reduction in grazing rate is initiated an year after the peak of skewness is observed and
they are as follows: circles 0.1 units/yr, diamonds 0.2 units/yr, triangles 0.5 units/yr and
stars 0.75 units/yr until they decrease to 21 units/yr.

For ecosystems such as vegetation a high resolution data may be available due to satellite

images [115, 116], but it is not difficult to imagine systems such as lakes having only a few

ground data collecting stations. To mimic such a scenario, we utilized only a part of the

data available from simulation and evaluated the indicators based on sparse data. More

specifically, we looked at data collected at grid points separated by 8 sites (hence, a total

of 16×16 data points), 16 sites (8×8) and 32 sites (4×4). It is striking that the temporal

trends of indicators largely remain unaffected even for as small a data set as 8 × 8, but at

further lower resolutions they may not be statistically significant and this may depend on

the diffusion constant (see appendix B.2).
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3.2.5 Semianalytic arguments to show peaking of skewness in a
bistable model

In this section, we discuss the generality of the result for May’s model that skewness

shows a peak while the variance is still rising as we approach the bifurcation point. We argue

that this feature is not restricted to the specific model by studying the following generic

bistable effective potential often used to study phase transitions in physical systems [117,

118]:

U(M ;h) = M 2(M − 1)(M + 1) + hM . (3.17)

When h = 0, the potential has two equal minima at M = ±1 and as h is increased we

-2 -1 0 1 2
M

0

0.5

1

1.5

2

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

h=-4
h=-2
h=-1

Figure 3.8: The probability distribution for different values of the control parameter value
h.

have one stable and one metastable minimum. We study the probability density given

by P (M ;h) = (1/N )e−U(M ;h). As the control parameter h increases from negative values

towards 0, the probability density in Fig 3.8 shows a behavior qualitatively similar to that of

time evolution of spatial probability density of the vegetation for the dynamic simulations

we have performed. If h is varying slowly, within an adiabatic approximation we can treat
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the parameter h itself to play the role of time whereas the P (M ;h) can be viewed as the

instantaneous spatial probability distribution.

For this probability distribution, we evaluate the mean, variance and skewness as a

function of the parameter h and show the results in Fig 3.9(i-iii). It is clear from the

figure that the peak in skewness occurs even as the variance is increasing and prior to the

transition in the state of M .
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Figure 3.9: Variation of mean, variance and skewness. (i-iii) correspond to the potential
function of Eq. 3.17 whereas (iv-vi) correspond to Eq 3.18.

For the bistable potential of Eq 3.17, the two stable states (of M ∗
s ≈ +1 or -1) are

nearly symmetrically disposed around the unstable fixed point (M ∗
u = 0). Next, we choose
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a slightly modified bistable potential which resembles the scenario corresponding to May’s

vegetation model where the two stable states are asymmetrically placed around the unstable

fixed point:

U(M ;h) = M 2(M − 6)(M + 1) + hM (3.18)

The results for the mean, variance and skewness of the probability distribution as the

parameter h is varied are shown in Fig 3.9(iv-vi). Clearly, the transition is more abrupt

and the skewness peaks much earlier even as the variance continues to increase and the

collapse is just about to begin. In these calculations the only important criterion used

in the constructing the potential was that it has to be bistable. Thus we believe that

our suggestion to study correlations between two indicators can be applicable to different

ecological systems.

3.3 Indicators in stochastic partial integro-differential model

Diffusion approximation for the seed dispersal, or more generally the spatial interaction

kernel is often considered an oversimplification of representing the complex processes in-

volved in the ecological systems. Several empirical and theoretical studies demonstrate the

inadequacy of short ranged dispersal in determining the dynamics of populations, communi-

ties and ecosystems [119, 120, 121, 122, 123]. Therefore, we include the spatial interactions

arising from the dispersal of seeds from the position y to x through different dispersal ker-

nels k(x, y) in a continuous one dimensional space. The resulting spatially explicit model

is a stochastic partial integro-differential equation:

∂V (x, t)

∂t
= rV

(

1 − V

Vc

)

− (c + η(x, t))
V 2

V 2 + V 2
0

+

∫

Ω

k(x, y)[V (y, t) − V (x, t)]dy (3.19)

where the prefactor of the kernel term contains a time scale which we have set to unity.

The spatial interactions determine how the vegetation interacts with the surroundings and
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spreads in space. We assume that the spatial habitat is homogeneous, the interactions are

isotropic and depend only on the relative distance between the plant (at x) and the spatial

region of interest (at y), i.e. k(x, y) = k(|y − x|). We refer to k(y) as the dispersal kernel

and this is analogous to the dispersal kernel that is usually referred to in spatially explicit

models of population dynamics based on integro-difference equations, for e.g. see [119].

The kernel k(y) in our model has units of 1/length.

We assume that the kernel is always nonnegative and
∫

Ω
k(y)dy = 1 where Ω is the

spatial region over which the dispersal occurs: this normalization condition implies that

the seed from the parent tree falls within the spatial region Ω. With these characteristics

of the kernel, the spatial interaction term in Eq 3.19 leads to an increase in the growth rate

when the local vegetation density is lower than the neighbors or a decrease in the growth

rate if the local density is higher. In other words, the spatial kernels of the form assumed

tend to make the vegetation density uniform.

3.3.1 Mean field approximation (MFA)

The calculations of mean-field approximation shown for the diffusion approximation can

be easily extended to the case of a kernel. We have shown that the self-consistent equations

for the mean-field approximation are:

E(v) =

∫

v Pmft(v, E(v))dv (3.20)

where Pmft(v) =
1

N exp
[ 2

σ2
d

∫ v

v0

du
f(u) − σ2

dg(u)g′(u) − (1 − k0)(E(v) − u)

g(u)2

]

(3.21)

where k0 = k(0)(∆x)d, N is the normalization constant and we have used the condition for

the kernel
∑

j∈Ω kij(∆x)d = 1. The expression for the steady state probability was found

by setting ∂P (vi,t)
∂t

= 0 in Eq 3.13.
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In the continuum limit, ∆x → 0 and hence k0 = 0. A striking feature of this result is

that the expression for the steady state density is independent of the spatial kernel within

MFA. The effective potential can then be defined by:

Umfa(V ; c) = −
∫ V

V0

du
f(u) − σ2

dg(u)g′(u) − (v∗(c) − u)

g(u)2
(3.22)

For the purpose of numerical simulations, we explicitly consider four dispersal kernels

that have been commonly employed to study population dynamics and studies of inva-

sive species. They are Gaussian, exponential, fat-tailed and heavily fat-tailed Cauchy or

Lorentzian function [119]. A general feature of these kernels is that the effect of nearby

neighbors is greater than that of the distant ones; but they differ in their characteristics in

the tails i.e., the range over which the seed dispersal occurs.

Table 3.1: Redistribution kernels and their properties

Name k(x) Moments k̃(s)
(Generating
function)

Gaussian 1√
2πσ2

e−
x2

2σ2 k2 = σ2, k4 = 3σ4 e
σ2s2

2

Exponential 1
2θ

e−|x|/θ k2 = 2θ2, k4 = 24θ4 (1 − θ2s2)−1

Fat tailed 1
4α

e−
√

|x|/α k2 = 5!α2, k4 = 9!α4 Does not exist

Heavily fat-tailed 1
π

β
β2+x2 Does not exist Does not exist

3.3.2 Semianalytic arguments for spatial indicators

Before we move onto discussing results of numerical simulations, we show the power

spectra, S(q, ω), which can be calculated for the case of generic kernel as we did for the
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diffusion model. The steady state spatial power spectrum can then be obtained as:

S(q) ≡
∫ ∞

−∞
〈|ṽ(q, ω)|2〉dω

2π
=

σ2/2

α + (1 − K(q))
(3.23)

As the system approaches bifurcation, i.e. α decreases in magnitude and therefore the

denominator of the spectral function decreases for all values of the wave vector q. In

particular, spatial fluctuations on large length scales given by S(q = 0) = σ2/(2α) increases

when the system approaches the threshold of a regime shift. Moreover, the spatio-temporal

variance σ2
V =

∫

S(q)dq which includes contributions from all q, increases as α decreases in

magnitude.

Next we turn our attention to spatial skewness for which we need to include the nonlinear

terms in analyzing the dynamics of perturbation from the equilibrium to obtain:

∂v(x, t)

∂t
= −αv(x, t) + βv2(x, t) +

∫

Ω

k(y − x)[v(y, t) − v(x, t)]dy + η(x, t) (3.24)

where β = f ′′(V ∗, c)/2! > 0. Using Fourier analysis as shown above in the linear problem

the is difficult. Here we spatially discretize this system, write a Fokker-Planck equation and

obtain the ‘effective potential’ uisng the mean-field and local equilibrium approximations

described in Appendices C and D, but with an additive noise (i.e., g(u) = 1). The resulting

expression for the effective potential is:

Umfa(v) =
α + 1

2
v2 − β

3
v2 (3.25)

This potential goes to negative infinity and hence in the spirit of the local equilibrium

approximation we are interested only in the interval (−vm, vm) where vm = (α + 1)/β.

We can then calculate the moments (spatial mean, variance and skewness) of the effective

probability distribution Pmfa(V ; c) = 1/N e−2Umfa(V ;c)/σ2

d by performing integrations around

the stable fixed point v∗ such that vl = v∗−2σd > −vm and vr is determined by solving the
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equation Umfa(vr; c) = Umfa(vl; c). As we approach the bifurcation α → 0 and the cubic

nonlinear term dominates the potential leading to an increasing magnitude of the skewness.

3.3.3 Numerical calculations and comparison with results of MFA

The spatially extended system of Eq 3.19 under different dispersal kernels is solved

numerically on a one dimensional lattice of size N = 16384 with periodic boundary condi-

tions. We employ Ito calculus and the equation is discretized using an Euler forward time

scheme which is first order accurate in time when averaged over many realizations or
√

dt

accurate for a single simulation. The spatial discretization used to calculate the dispersal

integral follows differencing scheme which is first order accurate. The time required for the

computation can grow proportional to N2 owing to the dispersal term which is an integral

over the complete spatial domain and hence, the method is computationally expensive.

The computation cost of evaluation of this term is reduced by the following approximation.

We evaluate a cutoff distance such that 95% of the dispersal occurs within this range and

renormalize the kernel to unity. We then perform the integration of dispersal term only

within this range from the source tree. Introducing this cutoff improves the computational

efficiency tremendously since the time required for the computation now grows linearly with

lattice size. Comparison with analytical results confirms that such a cut-off approximation

doesn’t affect the qualitative nature of the results obtained.

For each simulation, the value of grazing rate c is held constant. As the system evolves

in time, we take a snapshot of the spatial pattern at regular time intervals and evaluate

spatial variance and spatial skewness at each of those individual time steps. The average

of those indicators is then calculated in one dimension and shown for different kernels as
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Figure 3.10: Results of spatial indicators for integro-differential model. Comparison be-
tween results of mean field approximation and the numerical simulations of Eq 3.19

a function of grazing rate in Fig 3.10. Both the spatial variance and the spatial skewness

increase as the grazing rate approaches the threshold at c∗ = 26.

The results are of numerical simulations are clearly independent of the details of the

kernel used, in agreement with the prediction of MFA and holds true independent of di-

mension. More specifically, the results of this analytical approximation obtained for spatial

indicators shown in Fig 3.10(a-b) (thick line) are in semi-quantitative agreement with the

results of numerical simulations in one dimension. Small deviations (of the order of 10%)

found between results of the different kernels and from the mean-field conclusions are due

to discretization of the space in the numerical simulations. This correction which depends

on the kernel under study can be included in the mean-field-analysis which further improves

the match between analytical and numerical results (up to 2%: dotted line in Fig 3.10(a-b)).
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3.4 Discussion

The study of spatially explicit models to study regime shifts is important because the

dynamics of the transition from the metastable state to the stable state depends on the

spatial degrees of freedom [117, 118]. For example, the mechanism of nucleation of a droplet

or patch of the other phase in an initially homogeneous phased and its subsequent growth

leading to the transition is absent in an aspatial model [124, 125]. Our study of a spatially

explicit model of a bistable ecological system has shown that an increase in spatial variance

and the spatial skewness in the snapshot of the ecological system are leading indicators of

impending regime shifts. Although spatial coupling tends to make the spatial distribution of

the variable more homogeneous and hence, narrower, we show that scaled spatial variances

and skewness are clearly observable and can serve as leading indicators of regime shift. We

showed that a novel feature that an observation of an increasing spatial variance together

the reversal in the initial changing trend (i.e., a peak) in the spatial skewness is a nonrelative

measure of proximity to an impending catastrophic regime shift. We comment on various

features of spatial indicators along with their limitations below.

Catastrophic transitions occur in wide array of aquatic, terrestrial, region climatic as

well as complex socio-economic systems [9, 57]. It is obvious that the scale of interac-

tions can vary significantly between, and even within any of these complex systems. The

spread of nutrients or algae in lake is driven by local mixing (diffusion) for short time

scales; but a complex hydrodynamics or an unexpected storm can lead to an occasional

longer ranged mixing. Empirical data on animals and seeds indicate that their dispersal

can be strongly leptokurtic, i.e., the concentration of dispersal at the source and the tails

is larger than what a Gaussian dispersal with comparable mean and variance would pre-

dict [119, 120, 121]. Theoretical studies show that even infrequent long range dispersal
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can disproportionately influence the structure of the population, community and ecosys-

tems [119, 122, 123]. Clearly, a reaction diffusion equation would be an oversimplification

to model the spatial processes of such systems. For the purpose of detecting an impending

regime shift, we have shown that spatial indicators proposed in this paper are insensitive

to the details of the specific dispersal kernel and thus they can be applied to wide range of

spatial ecological systems where abrupt flips between alternative stable states can occur.

We argue that, in comparison to nonspatial indicators [93, 126] the spatial indicators can

provide a more reliable warning signal of a regime shift even for substantially shorter time

scales of observation. We note that the values of non-spatial indicators such as variance

and skewness, calculated as moving averages, reflect the state of the system over the entire

interval over which the moving average was calculated. This can potentially underestimate

the actual proximity to a threshold. On the other hand, to evaluate the spatial indicators,

we look at the instantaneous spatial pattern that provides a more accurate measure of the

state of the system at that time.

Next, for the calculations corresponding to Fig 3.6, we find that the nonspatial indica-

tors cannot provide an early warning signal in more than 65% of the simulations even at

higher temporal resolution (10 times) of data collection. When we slowed down the rate of

approach to the threshold by a factor of ten and reduced the external noise fluctuations by

a factor of two, the results were better with at least one of the indicators exhibiting early

warning in 50% of the cases. However, we never observed any clear peaking of moving

average skewness along with increasing variance as suggested by the study of the spatially

extended data. Since all ecological systems are spatially extended and the nonspatial in-

dicators can be referred to as ’one point indicators’ since they take measurements at only

one spatial point (Appendix B.3). On the other hand, calculations of mean escape time to
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an alternative state show that the nonspatial models, often used by a ecosystem modelers,

can lead to transitions more frequently. Our numerical simulations (Appendix B.3) and

the mean-field approximation of the spatial model show that the spatial fluctuations are

reduced due to smoothing effects of a kernel and hence one should use a renormalized value

for the external fluctuations when modeling an ecosystem without space.

Spatial variance is considered an important quantity to understand ecological pat-

terns [127, 128] and has been measured in the contexts such as populations and abundance

of species [129, 130, 131]. Availability of remotely sensed data for semi-arid vegetation

systems provides an excellent candidate ecosystem to test the aspects of measurability and

applicability of indicators suggested in our work [116, 115, 132]. However, few cautionary

remarks regarding the application of these indicators are needed. In our calculations we

have always plotted the negative of skewness which increases as we approach the proximity

of the threshold. More generally, it is the change in skewness from zero to negative, negative

to positive and so on) which needs to be interpreted as an early warning signal [126]. There

are several sources of errors associated with the ecological variable as well as measurement

of ecological data. Limited spatial data availability can render the evaluations of indicators

inaccurate. We refer reader to recently published literature on issues related to real field

applications of indicators( [93, 94, 126, 133]; also Appendix B.2). We wish to emphasize

that monitoring multiple indicators of regime shift in any field applications can lead to

greater confidence in our results.

We have made several simplifying assumptions in our model calculations. We have made

semianalytic arguments that suggest that the main features we have observed continue

to hold provided the qualitative features of bifurcation diagram of the nonspatial model

calculated using an effective potential approximation remain unaltered. We have checked
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that this holds true for our model if we include noise in the growth rate r. The possibility

of spatially and temporally correlated noise in grazing rates may have to be considered.

One way of including this is by altering the coarse-graining length and time scales and

the scales of observation. This warrants further study with specific assumptions on the

correlations. Next, we have ignored the spatial heterogeneity which can be very important

depending on the scale of interest [39, 56, 134, 135]. Studies on phase transition from

liquid to solid/crystalline phase of ice in the physics literature show that heterogeneity

plays a key catalytic role in initiating the nucleation: a step in which the first crystal of

ice forms triggering a process of relatively quick transition thereafter [117, 118]. Analogous

situations can occur in ecological systems and the potential of direct observation of growth

of bare patches, for example, as a candidate for early warning signal in such scenarios needs

further investigation. Many variable models with space can nontrivially alter the stability

of spatially uniform state leading to spatial patterns and they can be used as fingerprints

of an impending regime shift as suggested from studies of models on vegetation patterns of

semi-arid ecosystems [12, 13, 115]. Applicability of the simple indicators suggested in this

study in such scenarios needs further study.

67



CHAPTER 4

SELF-ORGANIZATION AND PRODUCTIVITY IN
SEMI-ARID ECOSYSTEMS: IMPLICATIONS OF

SEASONALITY IN RAINFALL

4.1 Motivation

Seasonality, despite being an obvious and most significant source of external variability,

has been studied only in selected few systems such as population dynamics and spread of

infectious diseases, but only in nonspatial context [47, 100, 136, 137, 138, 139, 140, 141,

142, 143]. Vegetation in semi-arid regions is driven by a strongly seasonal rainfall. They

show striking self-organizing patterns such as gaps, labyrinths, spots and bands. A picture

from Google Earth is shown in Fig. 4.1. We had ignored these factors in previous chapters

where the focus was on developing the indicators for regime shift. In this chapter, we turn

our attention to the spatial and temporal scales in which the spatial patterns as well as

the seasonality in the driving parameter are relevant. We begin by introducing a spatially

extended model of pattern formation in these systems. This will be followed by a detailed

study of impact of seasonality in rainfall on the ecosystem patterns and productivity. The

main aim of this study is to understand the dynamics of the self-organizing ecosystems

when driven by a seasonal parameter. The work is published in Journal of Theoretical

Biology [144].
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(a) (b)

Figure 4.1: Patterns of vegetation from Niger (Africa), 12043′N, 3008′E. Length scale cor-
responds to (a) 1 mile (b) 400m (East to West or North to South). Credit Google Earth.
Accessed on March 17th 2008.

4.2 A model for pattern formation in semi-arid vegetation

A number of models have been developed which produce the observed patterns of veg-

etation in semi-arid regions. They are based on cellular automata, partial differential

equations (one and multi variable models) and integro-differential equations [13, 114, 115,

145, 146, 147, 148, 149, 150, 151, 152, 153, 154]. Most of these studies agree on the key

role played by the positive feedback between water and vegetation. However, they differ in

details such as precise mechanism leading to positive feedback and how it is incorporated in

mathematical models. For our study, we consider a model based on the partial differential

equations which gives raise to regular spatial patterns for part of the parameter region

based on Turing mechanism. More specifically, we adopt a model developed by Hilleris-

lambers, et al [114, 155] which assumes that water infiltrates better into vegetated regions

leading to a net flow of water towards them. The model describes the dynamics of three
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coupled variables: the plant biomass, P , soil water, W , and surface water, O driven by

uniform rainfall R throughout the year. The time evolution of our model is determined by

the following partial differential equations:

∂O

∂t
= R − αO

P + W0k2

P + k2
+ Do∇2O (4.1)

∂W

∂t
= αO

P + W0k2

P + k2
− gmax

W

W + k1
P − rwW + Dw∇2W (4.2)

∂P

∂t
=

(

cgmax
W

W + k1
− d

)

P + Dp∇2P (4.3)

A brief description of biophysical interpretation of various terms in the model is presented

below. The surface water O increases according to the rainfall, R, and decreases due to

(vertical) water infiltration that is an increasing but saturating function of the local plant

density, P reaching a maximum value of α. The soil water W increases due to surface

water infiltration and decreases due to uptake by plants (up to a maximum rate of gmax)

and evaporation at a rate of rw. The plants exhibit saturated growth from water intake

(with a conversion factor c) and there is a simple decay due to mortality or herbivory (at

a rate d). k1 is value of soil water density at which the water uptake by plants is half

maximum and k2 is a plant density scale that determines how surface water infiltration

increases with P . To perform a stability analysis, we rescale various parameters and obtain

the non-dimensionalized version of the model:

cgmax

α

∂Os

∂τ
= Rs − Os

Ps + W0

Ps + 1
+ ∇2

sOs (4.4)

∂Ws

∂τ
= Os

Ps + W0

Ps + 1
− Ws

Ws + 1
kPs − rWs + Dws∇2

sWs (4.5)

∂Ps

∂τ
=

(

Ws

Ws + 1
− ds

)

Ps + Dps∇2
sPs (4.6)
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where we have chosen τ = tcgmax, xs = x
√

Do/α, Ps = P/k2, Ws = W/k1, Os =

Oα/(k1cgmax), Rs = R/(k1cgmax), k = k2/(k1c), r = rw/(ck1), ds = d/(cggmax), Dws =

Dwα/(Docgmax) and Dps = Dpα/(Docgmax).

The mean-field version of this model (i.e., with all the diffusion coefficients set to zero)

has two equilibria. The bare state equilibrium is given by:

P b
s = 0 W b

s = Rs/r Ob
s = Rs/W0. (4.7)

The vegetated state equilibrium is given by:

P v
s =

Rs − rW v
s

kds

W v
s =

ds

1 − ds

Ov
s = Rs

P v
s + 1

P v
s + W0

(4.8)

Next, we perform a stability analysis of both mean-field and spatially extended models.

Spatial analysis requires that we introduce a spatially heterogeneous perturbation and find

out if the homogeneous state is unstable to any one such perturbation (also known as

Turing analysis). We adopt a simpler notation of ∂P (x, t)/∂t = fp(P,W,O) + Dpo∇2P

and so on. Small perturbation of the type δO(x, t) = δO(t)eiqx, from the fixed point (upto

linear order) obeys:

d

dt







δO

δW

δP






=







f o
o − q2 f o

w f o
p

fw
o fw

w − Dwsq
2 fw

p

fp
o fp

w fp
p − Dpsq

2













δO

δW

δP






(4.9)

= Jq







δO

δW

δP






(4.10)

where f o
o = ∂f o(O,W,P )/∂O and so on. We now make a quasi-static approximation which

simplifies the problem: the surface water dynamics occurs on time scales much faster than

soil water and plant growth dynamics. Hence, we set ∂δO/∂t = 0 leading to:

δO =
f o

wδW + f o
p δP

q2 − f o
o

(4.11)
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Substituting this in Eq. 4.9 leads to:

d

dt

(

δW

δP

)

=

(

fo
w

q2−fo
o
fw

o + fw
w − Dwsq

2 fo
p

q2−fo
o
fw

o + fw
p

fo
w

q2−fo
o
fp

o + fp
w

fo
p

q2−fo
o
fp

o + fp
p − Dpsq

2

)(

δW

δP

)

(4.12)

= Jred
q

(

δW

δP

)

(4.13)

With the quasi-static approximation, we have effectively reduced the system of three cou-

pled variables to a two variable problem.

We now impose the stability conditions on this reduced system. For the stability of

the mean-field or spatially homogeneous solutions, the eigenvalues of the Jacobian matrix

J(q = 0) must be negative. This requires that Tr[Jred(q = 0)] < 0, Det[Jred(q = 0)] > 0

when evaluated at the stable fixed points. The resulting conditions for the bare state is:

W b
s

W b
s + 1

< ds
W b

s

W b
s + 1

< ds + r (4.14)

Clearly, the second condition is redundant. This condition simplifies to Rs < rds/(1 − ds)

for the stability of bare state. In other words, the bifurcation occurs at Rsc = rds/(1− ds)

and for the parameters chosen in this work its 1 mm d−1 (note that Rc is in the original

unscaled units).

Our interest is in checking if this system has Turing instability, i.e., if there exists a q

vector such that either or both of the Tr[Jred(q)] < 0, Det[Jred(q)] > 0 is violated when

evaluated at the fixed point. It is easy to check that the stability conditions hold given the

Eq 4.14. In other words, the bare state is not unstable to any small spatially heterogeneous

perturbations.

Similar calculations yield mean-field stability criteria for the vegetated state to be:

−
(

r + k
P v

s

(1 + W v
s )2

)

< 0 ds
P v

s

(1 + W v
s )2

> 0 (4.15)
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which are satisfied if Rs > rW v
s or R > Rc = 1mm d−1. A similar analysis on the reduced

Jacobian shows that the vegetated state is unstable to a q mode perturbation satisfying:

D(q2) = Dpsq
2(kf o

w + r + Dwsq
2) − (fw

p +
f o

p

q2 − f o
o

fw
o )f o

w < 0 (4.16)

The expressions for various elements of the Jacobian matrices are provided in the Ap-

pendix C.1. We plot (not shown) the function D(q2) numerically and find that when

1 < R < 1.29, there exists q modes for which the function D(q2) is negative, thus leading

to Turing instability. This expression however, does not provide any useful insights on the

ecological interpretation of the conditions required. However, we can device a simpler two

variable model (for example, based on the two variable model presented in the Chapter

2) and we find that the Turing instability occurs when Dp/Dw ≪ 1: i.e., the plant (seed)

dispersal should occur on much smaller spatial scales (or larger time scales) compared to

the motion of water.

Fig 4.2 shows the spatial patterns obtained from the model simulations along with

the mean-field bifurcation diagram. As the rainfall reduces, one finds gaps, labyrinths

and spotted vegetation patterns. In addition the figure reveals a striking feature: for

R < Rc = 1mm d−1 the spatial patterns continue to appear even though our analysis

shows spatially homogeneous bare state is stable. These patterns are occur due to (non-

Turing) nonlinear instabilities. Numerical numerical simulations show that small spatially

heterogeneous perturbations on the bare state does not lead to patterns where as large

perturbations for which nonlinear effects can be prominent often lead to spatial patterns

as shown in the figure.
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Figure 4.2: Bifurcation diagram for the model Eq 4.1 with:c = 10, gmax = 0.05, k1 = 5, k2 =
5, rw = 0.2,W0 = 0.2, α = 0.2, d = 0.25, Dp = 0.1, Dw = 0.1, Do = 100, N = 256 × 256
and dx = 1. For spotted patterns, R=0.75. For Labyrinths, R=1.00. For gapped patterns,
R = 1.25.

4.3 The modified model including adaptive nature of plants

In this section, we present a modified version of the above model with which we study the

role of seasonality in rainfall on the spatial patterns and productivity. Typically, different

models that produce these patterns assume that the rainfall is uniform throughout the

year [114, 145, 146, 148, 149, 150]. If one introduces a dry season into this model, the low

productivity leads to a bare state: any pre-existing vegetation pattern decays to a bare

state rapidly within a time scale of a month (for the parameters used in their paper) of the

start of the dry season; the vegetation is unable to recover even if the dry season is followed

by a wet season with very good rainfall. Dry seasons in most arid regions last much longer

than a month and nevertheless, the productivity is sufficient to yield vegetation patterns

similar to those found in the models.
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The key feature that we incorporate into the model is the seasonal variation of plant

growth rates due to the adaptation of plants to the dry and wet seasons. In nature, as

the seasons change, various physical factors affecting the vegetation growth can also be

expected to change. For instance, in the dry season the rates of evaporation of surface and

soil water are higher than in the wet season. This results in rapid loss of surface water and

soil water available for plant growth. Physiology is found to play an important role in the

context of aquatic vegetation having alternative stable attractors [47, 100]. In arid regions,

it is well-known that xerophytes (plants adapted to arid conditions) exhibit water stress

tolerance and display various adaptive features that enable them to survive the extended

dry season. Morphological and physiological changes can occur down to the cellular level

to adapt to the water stress. Primarily, during dry spells, plants exhibit a significantly

decreased growth rate [156]. The plants can decrease the amount of transpiration by

shedding or rolling of leaves [157, 158] and reducing the stomatal apertures that also serves

to decrease carbon assimilation. In essence, therefore, the plants exhibit seasonal dormancy

entering into an anabiotic state or becoming metabolically less active in the absence of

water [156, 157, 158, 159]. These seasonal changes in the attributes of plants enable them

to survive during the long spells of hot and dry seasons.

The modified model with the seasonal rainfall R(t) is given by:

∂O

∂t
= R(t) − αO

P + W0k2

P + k2

+ Do∇2O (4.17)

∂W

∂t
= αO

P + W0k2

P + k2
− gmax

W

W + k1
P − rwW + Dw∇2W (4.18)

∂P

∂t
=

1

τp(W )

(

cgmax
W

W + k1

− d

)

P + Dp∇2P (4.19)

1

τp(W )
=

1

4

W 2 + fk2
3

W 2 + k2
3

(4.20)
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The key difference with the original model is the introduction of the adaptation term τp(W ).

This model with R constant in time and the coefficient τp(W )−1 set to unity, is the model

studied by [114] and [155] (apart from the changes in the values in some of the parameters

we have introduced). Note that we have now reverted back to the original unscaled system

of equations.
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Figure 4.3: Soil water dependent or seasonal adaptation term τp(W )−1. This modulates
the growth and decay of plants depending on soil water availability. The markers D and
W indicate typical value of this adaptation term during dry and wet seasons, respectively.

We numerically study this model in the presence of seasonal rainfall, R(t) chosen as

follows: the total number of days in a year is fixed to be N = 350, the wet season is

assumed to last Nw consecutive days with the rest of the N −Nw days constituting the dry

season in a year. The rainfall R is assumed to be constant during the entire wet season,

and therefore, R is given by PPT/Nw during the wet season where PPT is the total annual

precipitation and is zero during the dry season (R as a function of time is a square wave).

We study the model both for the mean field version (with all the diffusion coefficients set

to zero) and the spatially extended version, as a function of the total annual precipitation,
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PPT and the number of wet days, Nw. Having a more realistic model of rainfall events,

such as a Poisson process, is not expected to change the qualitative nature of our results.

When intense rainfall events occur as Nw is decreased, we expect the amount of water that

infiltrates the soil to be limited by runoff of the water from the region of interest. While this

is a complex process we will model it as follows: the amount of water available for infiltration

increases linearly with R up to a critical value Rrc and saturates at Rrc for larger values of

R. We chose Rrc = 10mm day−1 for the mean field model and Rrc = 3.25mm day−1 for

the spatially extended model.

We discuss the new soil-water dependent term τp(W )−1 in the equation for plant growth

(Eqs. 4.19-4.20) It determines the time scale on which the local plant dynamics occurs. The

key ecological consequence of the form of the function chosen is that the dynamics of the

plant growth is considerably slower in the absence of soil water while normal growth rate

occurs when there is good soil moisture (see Fig. 4.3). We note that this time scale affects

both the growth rate and the mortality rate. The mortality term, represented by −dP in

Eq. 4.19, describes both natural mortality and plant loss due to herbivory; it is reasonable

to modulate this term even in the case of herbivory since plants show seasonal adaptation

to avoid grazing [156, 157]. Seasonal variations can also occur in other parameters such as

the rate of evaporation of water. We neglect these in our study since their inclusion does

not alter the basic qualitative conclusions that we present below.

Another difference in comparison to the original model of [155] is that we choose the

parameters so that the critical value of R at which the mean-field bare state becomes

unstable at a transcritical bifurcation occurs at Rc = 2; this corresponds to 350mm of

rainfall if the rainy season lasts half an year (note that we have chosen the number of days

in an year to be 350 for convenience). In addition, the plant diffusion constant, Dp, was
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chosen to be smaller. We have checked that the qualitative conclusions we draw are not

sensitive to the specific functional form of τp(W ) that we have chosen as long as the key

features are the same: for example, the value of τ−1
p (W = 0) is small (0.01 for the results

in this paper); this sets the scale for the slowing down of metabolic processes when there is

no soil moisture. We have checked that a Gaussian functional form for τp(W ) yields similar

results to those for the form given above.

4.4 Methods

The mean field model (ordinary differential equations) was solved numerically using

MATLAB; for the spatially extended case, the partial differential equations were solved

numerically by a forward-time, centered-space differencing scheme on a two-dimensional

spatial grid of 128× 128 squares with periodic boundary conditions, using C++ and FOR-

TRAN. Each square element of the grid corresponds to 1m2 area. The typical time step

chosen was 10−3 of a day which satisfies the stability criterion [113]. The numerical solu-

tion was obtained with different initial conditions: (i) plant peaks (P = 20) at 10% of the

randomly chosen grid elements; the initial values of surface and soil water were set to zero

at all spatial elements to mimic the end of dry season (or the onset of wet season); and

(ii) well-developed spatial patterns. The results are not sensitive to the initial conditions

in most of the cases.

4.4.1 Discussion on convergence

The fully explicit scheme used for our calculations is first order accurate in time and

second order accurate in space [113] and stable for the time discretization used. Never-

theless, we have performed additional calculations as a check on our results to confirm the

convergence to the correct equilibrium solution. First, we used much finer spatial grids
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with 256 × 256 and 512 × 512 square spatial elements where each element corresponds to

0.25m2 of area. Then the system was evolved on finer time steps of 2 × 10−4 of a day.

The results of these finer spatial and temporal grid simulations are consistent with those

of coarser simulations reported in this paper.
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Figure 4.4: Comparison between simulations of pattern formation on a 1 dimensional lattice
of 128 spatial grids by two different numerical integration schemes (i) Crank Nicolson
implicit scheme and (ii) Fully explicit scheme. For this specific simulation, the rainfall
was assumed to be uniform (Nw = 350d). The time step for implicit scheme was chosen
to be 0.01 of a day where as that for the explicit scheme was chosen to be 0.0001 of a
day. Similarly, the results for the seasonal rainfall case with Nw = 150d obtained by
different schemes of integration show excellent agreement with each other (within 0.1%).
Parameters are: c = 5, gmax = 0.1, k1 = 5, k2 = 5, rw = 0.4,W0 = 0.2, α = 0.4, d =
0.25, Dp = 0.01, Dw = 0.1, Do = 100, N = 256 × 256 and dx=1.

Second, we have performed calculations using the Crank-Nicolson implicit numerical

integration scheme [160]. This method is second order accurate in space and time. More-

over, this scheme is unconditionally stable, i.e. the correct equilibrium solution is obtained

for any time step ∆t. However, for large ∆t, the details of small time scale evolution from

a given initial condition can be inaccurate. Performing this calculation in two dimensions
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is computationally prohibitive: for each time step, we need to solve a set of 3N2 nonlinear

coupled algebraic equations (approximately 50,000 equations for N = 128, i.e., a 128× 128

spatial grid). Fortunately, the one-dimensional version of the model also exhibits qualita-

tive features that are the same as those of the two-dimensional system. For instance, both

of them show Turing patterns on the same length scales and as the rainfall increases the

patterns occur in the order of bare, patchy and fully vegetated patterns. Therefore, as a

computational compromise we have implemented the implicit scheme on a one-dimensional

spatial lattice of 128 grid points with the grid spacing corresponding to 1m and a time step

of one day. The resulting 3 × 128 coupled nonlinear equations were solved using a multi-

root solver available from the GNU Scientific Library [160]. Comparison between sample

equilibrium solutions obtained with the implicit scheme and the explicit scheme when the

system was evolved from identical initial conditions show numerical agreement at the level

of 0.1% (see Fig. 4.4). Based on the excellent agreement between the implicit and explicit

calculations in the one-dimensional problem we believe that our numerical simulations in

2 dimensions space yield the correct equilibrium solution. In addition to the numerical

checks it is worth emphasizing that the original set of partial differential equations have

been shown to have a Turing instability leading to the patterns seen numerically; the length

scale of the instability is consistent with the scale of the patterns observed numerically.

4.5 Results and Discussion

We present the results of the numerical solution of both the mean-field (non-spatial)

and the spatially extended version of the model and discuss various implications of sea-

sonality in rainfall. In the case of uniform rainfall (Nw = 350 and Nd = 0), we obtain the

following sequence of patterns which are in agreement with those in the original model:
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homogeneously vegetated, gapped, labyrinthine, spotted and homogeneously bare as the

rainfall is decreased (see Fig. 4.5). We note also that in the limit when the soil and surface

water levels are at their wet season levels, the behavior of our model is similar to that

exhibited by the model of [155]. We begin with a description of how the self-organized

patterns are affected with seasonality in rainfall. We then provide a detailed discussion of

the implications of seasonal rainfall for productivity and the effect of the variation of the

length of the wet season for the same annual precipitation. We compare our results with

field data. We also discuss the implications due to year-to-year fluctuations in the number

of wet days as might arise due to climatic changes and make comments on the limitations

of our model.

4.5.1 Self-organized pattern formation

We discuss results for how the spatial self-organization of the vegetation system is

affected when the resource necessary for growth, water, shows seasonal variations. We

show the results for the patterns when we switch on seasonality in the rainfall with the

length of the wet season set to be 150 days and keep the daily rainfall rate, R, uniform

during the wet season. We look at the pattern development for different values of R. The

temporal development of patterns during the wet season is similar to that produced by the

model of [155]. However, the transients are different in detail because of the diffusive time

scale and the slow increase in the plant growth rate. In contrast to the original model, the

plants survive the dry season albeit with a reduced biomass density. Moreover, the same

sequence of patterns is obtained as the total rainfall is reduced keeping the number of wet

days the same. Thus, the model accomplishes the goal of maintaining the results for the

patterns in the presence of seasonality. The mechanism for the stability of self-organized
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patterns is the adaptive features of the plants encapsulated in τ−1
p (W ). The absence of

soil moisture in dry season leads to substantial reduction in the metabolic activity of the

plants and this results in a much slower decay of vegetation. Hence the vegetation survives

the dry season with reduced density of biomass. These patterns, as a snapshot at the end

of the rainy season, are shown in Fig 4.5 and in the Appendix C.2. Whereas the patterns

reach a steady state (independent of time) for the models with no seasonality, here patterns

obviously do not reach a steady state due to the presence of a time-dependent driving term,

the rainfall R. The spatial patterns eventually reach a stable periodic state and oscillate

with a period of 350 days (same as the period of the driving term R) asymptotically.

Figure 4.5: These figures show the vegetation patterns with and without seasonality in rain-
fall at the end of 6800 days. The equations 4.17-4.20 were numerically simulated starting
with several plant patches on the grid, with soil and surface water set to zero everywhere.
Periodic boundary conditions were chosen for all these cases. In this grey scaled picture,
darker patch represents bareness whereas the brighter patch indicates presence of vegeta-
tion. The length scale of the spatial grid is 128m × 128m. Rest of the parameters are as
given in Fig. 4.4.
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4.5.2 Insufficiency of PPT in determining the system behavior

We present results for the behavior of the model, the productivity (biomass or area

covered by vegetation) and the nature of the patterns, as we vary the parameters that

characterize the seasonal rainfall. In the previous section, we have followed the evolution of

the system as a function of R, the rainfall rate during the wet season given a fixed length

for the wet season. We can, alternatively, study the behavior of our model as the number

of rainy days, Nw, is varied. Altering R or Nw changes the total annual precipitation

(PPT = Nw R). It is customary to use the mean annual precipitation (MAP) or PPT as

the key variable [85]. This leads to the following interesting question: Is the total annual

precipitation PPT alone sufficient to determine the system behavior? We have investigated

this question systematically by keeping PPT fixed and varying the number of wet days Nw

and the daily rainfall R such that NwR = PPT = constant. The results of the primary

productivity calculations and the patterns formed suggest that the answer is no.

Mean-field model: We first present results for the model without spatial fluctuations by

setting the diffusion constants to zero in Eqs 4.17-4.20. We compute the plant biomass

density at the end of the rainy season and call this the productivity of the system. Since

the model does not explicitly include competition (for example, a term such as −d1P
2

in the evolution equation for P ), the value of the plant biomass continues to increase as

R increases. We have therefore used the rescaled productivity, the plant biomass scaled

by the saturation biomass. We calculate the productivity for a fixed annual precipitation

(PPT = 350mm), but for different seasonal rainfall distributions with a cutoff in R due to

runoff effects. The results are displayed in Fig. 4.6(a). The productivity remains at zero

for small amounts of rainfall spread over a long wet season. As we decrease the number of

days, the productivity increases and reaches a maximum. Further reduction in the rainy
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days leads to intense rainfall showers resulting in heavy runoff and consequent decline in the

productivity to zero. The length of the wet season for which there is maximum productivity

shows nearly a linear dependance on the total annual precipitation.
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Figure 4.6: Variation in the productivity of the system as a function of the number of rainy
days (Nw) for a given annual precipitation (PPT). (a) The mean-field model productivity
is the (rescaled) plant biomass density calculated at the end of 100th rainy season (t =
34800 days) starting with a nonzero plant density. Here, Rrc = 10 mm day−1, Pscaling =
160 g m−2 (b) The productivity in the spatial model computed as the percentage of land
area covered by plants at the end of the 20th rainy season (t = 6800 days). Here, Rrc =
3.25mm day−1. For both the plots, we have set the total number of days in an year to be
350, PPT = 350 mm year−1 and all other parameters are as indicated in 4.4. The circles
are the data points obtained from numerical simulations and the dotted line, obtained by
linear interpolation between two consecutive data points, is meant to guide the eye.

Spatially extended model: We address the dependence of the mean-field conclusions

when we include spatial fluctuations and the development of patterns. To do so, we solve

Eqs. 4.17-4.20 numerically with nonzero diffusion coefficients. The percentage of land

covered by plant biomass, an average measure of ecosystem productivity, is plotted as a

function of number of rainy days for in Fig. 4.6(b). We emphasize that the behavior is
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similar to that of the mean-field model even though we have used a different measure for

the productivity. The productivity measure used here does not contain much information

about the corresponding spatial patterns. This will be discussed in the next subsection.

Spatial patterns: We now ask the question as to how do the patterns change as the

length of the wet season is varied for a given PPT? As Fig. 4.6 indicates, we get a bare

pattern for Nw = 350 days and a vegetated patch when we decrease the number of days to

Nw = 150 days while keeping PPT fixed at 350 mm year−1. In fact, we find that for the

range of parameters used, the same sequence of patterns that are observed for nonseasonal

model occur as Nw and R are varied. As Nw decreases one goes from the bare state to a state

with vegetated spots and then to the labyrinthine states and so on. However, decreasing

Nw below a critical value (corresponding to productivity maximum in Fig. 4.6 (b)) leads to

excessive runoff and hence, patterns now occur in the reverse order eventually leading to

a bare pattern. This leads to the conclusion that we cannot determine the pattern formed

from the value of the annual precipitation PPT alone or the mean daily rainfall R in the

wet season alone. We need to have the knowledge of both R and PPT (or R and Nw or

PPT and Nw). In other words, given the total annual precipitation or the average rainfall

during the rainy season, the distribution of the rainfall (i.e. the number of wet/dry days)

within the year is critical in determining the exact pattern formed.

4.5.3 Maximum productivity as a function of PPT

We have noted the dependence of the productivity on the distribution of the rainfall for

a given annual precipitation in Fig. 4.6. From these data we have extracted the maximum

productivity for a given annual precipitation, PPT, and studied its behavior as a function

of PPT. A considerable amount of data for this quantity has been assembled from Savanna
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grasslands in Africa [85]. Our results for the mean-field model are shown in Fig. 4.7(a). The

behavior displays the same general features as the experimental data in a qualitative way.

This is reasonable given that the experimental data are for the percentage area of woody

cover and we have used a re-scaled productivity in a mean-field setting. We recall the

occurrence of a transcritical bifurcation in the mean-field model without seasonality [114].

The fixed point corresponding to the bare state is stable for small values of PPT and

exchanges stability with the fixed point corresponding to the vegetated state for larger

values of PPT. This accounts for the basic behavior reported in [85] in a rudimentary

way. The behavior in the seasonal model is more subtle since the maximum value of the

productivity is being considered.
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Figure 4.7: The maximum productivity of the system as a function of the annual precipita-
tion (PPT). For a given PPT, we calculate the productivity (as in Fig 4.6) as a function of
Nw and extract the maximum value and display it as a function of PPT. (a) The mean-field
results, where productivity is the (rescaled) plant biomass density. (b) The spatial model
results, where the productivity is the percentage of land area covered by plants. For both
the plots, all parameters are as of those in Fig 4.6.
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The results for the spatially extended model are shown in Fig. 4.7(b). The maximum

productivity, measured by the fraction of the vegetated area, is plotted as a function of

the annual precipitation. The maximum value is obtained by varying the number of rainy

days for a fixed PPT, as described earlier for the mean-field case. The results of numerical

simulations indicate a nearly linear trend of woody cover as a function of PPT (from

100mm to 500mm). The general agreement of our model calculations with the results of

[85] is extremely good. While the trends in the data are obtained even in a model without

spatial extent and thus without patterns in the vegetation cover, the results for the spatially

extended model show more satisfactory agreement with the field data.

We make a few additional remarks about productivity in the model with seasonality.

An interesting consequence of our study is that for the same annual precipitation different

levels of productivity are possible, as also is seen in the field observations. The variations

can also occur for a variety of reasons and most certainly, due to soil heterogeneities such

as clay vs sand. Our model shows that variations in the length of the rainy season can

independently lead to a distribution of productivity. In other words, fluctuations in the

number of wet days alone can be a major contributing factor to variations in the vegetation

cover. Even though the patterns observed are attributed to self organization and not due to

preexisting heterogeneity [132], soil heterogeneity may have a crucial role constraining the

self-organization [161]. We note that such heterogeneity in soil characteristics corresponds

to variations in some of the parameters in the model. Quantitative characterization of such

heterogeneities is difficult. The parameters most likely to vary due to soil characteristics

are α, the proportion of surface water available for infiltration, rW , the rate of soil water

loss due to drainage, evaporation, etc., and Rrc, the saturation value of the daily rainfall

due to overflow. We have checked that the maximum productivity is relatively insensitive
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to changes in α of the order of ±10%. We find that the results are more sensitive to

an independent variation of rW only. However, as rW decreases there is more soil water

available after rainfall and therefore, for a given rate of infiltration more of the surface

water will be lost due to overflow. Thus, if we increase or decrease rW and Rrc together,

our results are quantitatively unaltered. A careful comparison with the experimental data

would need a better understanding of soil mechanics and hydrology.

Clearly, Fig. 4.6 indicate that for the same annual precipitation, seasonality enhances

average biological productivity in arid ecosystems. By concentrating the rainfall for a

shorter duration, we are able to produce patterns that would otherwise go bare. We recall

that the productivity depends on the initial spatial distribution of plant biomass as noted

even in the original model [155]: self-organized vegetation patterns can exist in highly

arid regions where the homogeneous initial condition decays to a bare state. These results

suggest that even temporal variations in the rainfall, in particular a seasonal distribution,

can also lead to a higher plant cover.

4.5.4 Effect of perturbations on the behavior of the system

We discuss the robustness of the results obtained in the seasonal model: by this we

mean whether the behavior of the system persists under different kinds of disturbances

or perturbations. In an obvious sense the patterns produced by our seasonal model are

considerably more robust with respect to temporal perturbations than those in the original

model. For example, if the rainfall shows variability so that during the wet season there is

a period of a few weeks with no rain then the vegetation pattern can survive and recover

since we have built in adaptability. We have also checked the robustness of the patterns in

the model with respect to a variety of other random perturbations in the rainfall amount R.
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However, care must be exercised in making such comparisons because the conclusion can

depend on what quantities are being varied. For example, if we vary the rainfall per day

during the wet season, PPT will change and the non-seasonal model can be more robust.
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Figure 4.8: Productivity in the spatial model, i.e, fraction of area covered by plants, as a
function of time in the scenario of increased variation in interannual rainfall fluctuations
(Nw). We have chosen PPT = 250 mm year−1. The number of rainy days is generated ac-
cording to uniform random number distribution with mean 〈Nw〉 = 75 days and a variation
of 75% around the mean.

We consider the following application of our model in the context of robustness and

regime shifts: It is known that drylands exhibit large inter-annual variations in the number

of rainy days and total annual precipitation [157]. Extreme climatic events such as extended

droughts or large interannual rainfall fluctuations associated with El Nino Southern Oscil-

lation phenomena play a critical role in shaping the arid and semiarid ecosystems [162].

Climate changes brought about by global warming can be expected to increase such fluc-

tuations in Nw, as also extreme precipitation events [163]. As an example, we discuss

results for the spatially extended model in which the number of rainy days vary annually,

but keeping the PPT fixed at 250mm. The interannual variations of Nw are chosen to
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be uncorrelated and with a uniform distribution between m/4 and 7m/4, with m = 75

days. In other words, m is the mean number of rainy days and the variation of random

number distribution is 75% around the mean. For illustrative purposes we have chosen

the width of the distribution to be large. The consequent fluctuations in the productivity

are large (see Fig. 4.8) and point to the possibility of irreversible regime shifts in those

years when the productivity is small due to other environmental stressors. We note that

the mean-field model shows similar results. However, these calculations cannot be used for

prediction of such regime shifts, but are only meant to illustrate the plausible impact of

increased interannual variations in rainfall induced by climatic changes. A recent math-

ematical modeling study shows that climatic fluctuations can enhance the resilience in a

dryland ecosystem [164]. Thus, understanding the causes for such regime shifts is crucial

for building predictive theories and better management of these resources. We wish to

emphasize that the increased robustness of the plants due to their adaptability and more

realistic description of biophysical processes (see below), apart from large scale feedback

processes such as those between vegetation and water cycle [165, 166], in the models are

necessary features that must be included if one wants to investigate regime shifts.

4.5.5 Limitations

We add a few cautionary remarks about the specific limitations of our seasonal model.

Various mechanisms have been proposed to explain spatial patterns found in semi-arid

ecosystems as discussed in the introduction. Our goal is to understand the implications of

seasonality within a detailed calculation and we choose to do so in a model that is based

on enhanced soil water infiltration [13]. As discussed earlier, the inclusion of the soil-water

dependent time scale for plant growth improves the time behavior of the plant biomass
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during the change of seasons. However, the present model is still not designed to capture

the transient dynamics in detail, particularly at the onset of wet and dry seasons. This is

due to the simplification of biophysical processes involved; for example, the surface and soil

water flows which has been approximated to be a diffusion process. The diffusion constants

in the terms that arise from Darcy’s law can also depend on the degree of wetness. The

vertical infiltration rate depends on whether the soil is wet or dry and thus this term

depends directly on the water level W in addition to the dependence on P . A realistic

model should include these complex flow processes. On the biological side, the adaptability

of the vegetation assumed in the model must be modified to include a threshold effect so

that there is mortality if the plant biomass level falls below a certain minimum, particularly

during the dry season. These and other effects that affect transients and hence, determine

the survival of the vegetation, must be included if one is to further our understanding of

the disturbance and recovery aspects of vegetation on shorter time scales. For predictions

on larger spatial scales, both intrinsic spatial heterogeneity and spatial variation in rainfall

must be included [135]. Nevertheless, since our focus is on long term dynamics of vegetation

pattern formation and productivity of the ecosystem, including the detailed description

of realistic processes are unlikely to affect the qualitative nature of the results we have

obtained, as we show below for one particular case.

We have investigated the effect of including a threshold in the biomass below which

mortality occurs as follows. We retain the dynamics of the wet season as defined by

Eqs. 4.17-4.20. However, the dry season is modeled by a discrete event: at the end of

the dry season all the surface water is set to zero, all the soil water is set at Wd = 1mm

and plant densities less than a threshold (Pth = 10g/m2) are set to zero and those above

the threshold is reduced to fP where f = 0.5. We find that the qualitative features of
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self-organization we have obtained for our model without a threshold hold for this model.

For the ranges of values we have checked the results are not sensitive to the precise values

of Wd, Pth and f . However, in our simulations we find that the threshold behavior in the

survival of vegetation during the dry season increases the chances of a regime shift from a

spotted to a homogeneously bare pattern.

4.6 Summary and Concluding remarks

In summary, we have studied the effect of seasonality in an ecosystem model that is

resource-limited; specifically, we report results for a model of vegetation pattern formation

in arid ecosystems with seasonality in the rainfall that determines productivity. We have

devised a model with seasonality by including variations in the intrinsic characteristics of

the ecosystem (plants, in our case) in response to external variations. The self-organization

manifested in the various patterns survives long dry seasons due to the inclusion of natural

metabolic adaptation of the plants. Our results lead to the conclusion that the vegetation

patterns and the productivity can be significantly altered due to variations in the duration

of the wet season even if the mean annual precipitation (PPT) remains constant. Indeed,

different patterns can be obtained for the same PPT depending on the number of wet days;

thus there is a subtle relation between seasonality and self-organization that is not easily

predicted without an explicit calculation like the one we have done. This also leads us to

observe that a simple characterization of a time-varying resource in an ecosystem using

just the temporal average is insufficient. We also found that the maximum productivity

for a given annual precipitation (obtained by varying the number of wet days) varies as a

function of PPT possibly accounting for field observations. This reflects a general result
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that large variations in the productivity can occur due to variations in the resource during

the year keeping the annual total constant.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we have applied ideas and techniques from nonequilibrium statistical

physics and have proposed leading indicators of proximity to a threshold of abrupt tran-

sition in ecological systems. We showed that when a time series data from a system is

available, an unidirectional change in the skewness of time series distribution can be used

as an early warning signal of a nearby transition. A novel feature of the proposed indicator

is that its based on a nonlinear analysis of the (meta) stable fixed point and exploits large

fluctuations ubiquitous to ecological systems.

When the spatially extended data is available, we proposed that the variance and skew-

ness of the distribution obtained from the snap shot of a spatial pattern can be used as

an early warning signal. The idea of spatial variance being an indicator was motivated by

the studies on phase transitions which show that the correlation length and susceptibility

diverge at the critical point. The proposed indicators, however, qualitatively differ from

them. First, the diverging nature of correlation length and the derived quantities occur

only in a second order phase transition where the order parameter varies continuously as

the control parameter changes. Secondly, those quantities are obtained for steady state and

in the thermodynamic limit. On the other hand, ecological systems of interest are those

94



which show discontinuous transitions or the first order phase transitions where no such

divergences occur. In addition, we are calculating non-steady state properties of quantities

such as variance and skewness. However, we showed that the non-steady state quantities

show some of the features expected in a second order transition due to substantially long

life times associated with the meta stable states. This feature was exploited in devising

indicators of the transition.

We have studied the implications of temporal fluctuations in the driving parameter on

a self-organizing ecosystem. More specifically, we studied the role of seasonal fluctuations

in rainfall on the patterns of vegetation. We find that the sequence of patterns obtained

with the seasonal forcing remains the same. However, with seasonal forcing the patterns

are shifted towards higher values of daily rainfall.

We compared our results with field data in two cases. In chapter 2, we calculate the

moving average skewness of Sahara climatic data which exhibits catastrophic transition

from a vegetated to desert state around 5500 years ago. We find that the data is not

sufficiently resolved and hence we were unable to find a trend in skewness prior to the regime

shift. Second, in chapter 4, we compare the results of maximum vegetation cover with the

recently published data from Savanna grasslands to a reasonably good agreement [85].

5.2 Future work

The non-diverging nature of indicators for our model systems suggests a limitation in

their applicability. It is plausible that the transition to the alternative stable state occurs

earlier than any changing trends in the indicators are detectable. Study is needed to obtain

conditions when such effects can mask the utility of indicators in the model as well as real

systems.

95



In most of our results on indicators of regime shifts, especially in the spatially extended

systems, we have restricted ourselves to models where an effective potential could be de-

fined. In multivariable models we often can not define such a potential and hence our

intuition of a potential which helped device various indicators does not hold. Obtaining

conditions for applicability of these results in such non-potential systems and devising new

indicators forms an important direction for further study.

Ecological systems are patchy and heterogeneous in nature. They are governed by dy-

namics of a large number of coupled variables on spatially extended systems. In our spatial

models, we coarse grained the system and observed it on a scale such that the patchiness

and heterogeneity were not important. We have implicitly assumed that the coupled mul-

tivariable system can be approximated by a dynamics of a few variables, sometimes even

ignoring the spatial degrees of freedom. In lieu of such simplifying approximations, several

important questions are needed to be addressed to enhance our theoretical understanding

as well as the practical application of early warning signals. Starting from microscopic

scales where a number of key variables interact with each other and heterogeneity and

patchiness can be important, can we obtain coarse grained equations of dynamics for a

reduced number of variables relevant to devising indicators of regime shifts? Is there an

optimal scale for coarse graining and are there universal features which can be applicable

to different ecological systems? It will also be useful to take raw spatial data and analyze

it at different scales of coarse grained approximations.

In well mixed systems where the spatial fluctuations are correlated on the time scales of

measurements, the time series indicators such as variance, recovery time, spectral function

and skewness can be useful indicators [90, 91, 92, 93, 94, 126]. For spatially extended

systems with a number of kernels and diffusive coupling, spatial variance [167] and skewness
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can be leading indicators. Based on the regular patterns of vegetation found in semi-arid

regions, two indicators of catastrophic regime shifts have been suggested [148, 13, 153, 115,

116]. If the feedback is scale dependent (short range facilitation and long range inhibition),

the regular spotted patterns appear prior to a catastrophic vegetation collapse [13]. On the

other hand, if the positive feedback is a local effect and constraints are global, a deviation

from the power law distribution of patches has been suggested as an indicator [115]. These

studies hint that the scale and strength on which the feedback occurs may hold the key

to devising early warning signals for impending regime shifts. Integrating these ideas to

provide a framework based on the spatial scale and strength of interactions for developing

indicators can be theoretically interesting and practically useful.

Last but not the least, field testing of the proposed indicators is the need of the hour.

Ecological data are often difficult and expensive collect. Our results suggest that although

we do need well resolved data, finer resolution does not always mean a better confidence in

our results. The data must in fact be separated by the correlation time and length to be

considered as independent measurements. Thus, a key question that needs to be addressed

is how to obtain the relevant time and spatial scales of measurement in model and real

ecological systems.

To conclude, this thesis addresses issues related to multistable ecological systems, a

topic of critical importance in ecology. We show that the techniques of nonequilibrium

statistical mechanics can be very useful in understanding the dynamics of these complex

systems. We make important contributions to this field by devising early warning signals

for catastrophic transitions in ecological systems.
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APPENDIX A

SUPPORTING MATERIALS FOR CHANGING SKEWNESS:
AN EARLY WARNING SIGNAL FOR REGIME SHIFTS IN

ECOSYSTEMS
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A.1 Results for the two-variable vegetation model

Here we report results of the two variable vegetation model which does not have the

potential (see section 2.3). The rainfall rate, R, is a natural control parameter with a stable

high density vegetation state at large values of R that collapses to a desert below a critical

threshold. We include the stochastic fluctuations in the rainfall rate and an additive term

in the dynamics of the biomass density B. The bifurcation diagram is shown in Fig A.1a.

The results of the simulation yield a time series for {B(t), w(t)} that constitutes a

sampling of the joint probability distribution for B and w. We looked at the time series

of the biomass density B alone motivated by the fact that in a real ecological system

data are restricted to a (small) subset of the relevant variables. With the available data

from the simulations, we compute the skewness of marginal distribution of the biomass

density B, i.e. the probability distribution of B averaged over all possible values of the

coupled variable w since the latter evolves on a fast time scale (if on the other hand, the

unobserved variables vary on a much slower scale than the interval of observation we would

be measuring a conditional probability distribution). The results plotted in Fig. A.1b and

c show that skewness rises as one approaches a regime shift either due to proximity to the

threshold or enhanced external fluctuations. Thus we confirm the role of skewness as a

warning signal in a more complex ecological model.

More results for the two-variable vegetation model described by are shown in Fig. A.2.
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Figure A.1: (a) The bifurcation diagram as a function of the rainfall rate R. Here, R1 = 1.06
and R2 = 2.0. Increase in the skewness as the threshold to regime shift is approached in
different ways for the two variable vegetation model. The open circles are the average
value of skewness obtained by the numerical simulations. The dotted line is meant to
guide the eye. Note that we have plotted the absolute value of the (average) skewness.
(b) Approaching the threshold by reduction in rainfall rate with σB = 0.25 and σw = 0.01
(c) Increase in external fluctuations (σB) with R = 1.5 (far from threshold of vegetation
collapse) and σw = 0.01.
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A.2 Validity of asymmetric arguments for coupled multivariable
models

As we discussed in chapter 2, for multivariable dynamical systems, an effective potential

exists only under extremely restrictive conditions [88]. It is nevertheless possible to devise

an intuitive understanding of how the asymmetry arises by considering the vector field

that represents the “forces” that determine the dynamics of the coupled variables. This is

explained in this appendix with the help of Fig A.3.

We consider the representation of the dynamics of the two-variable vegetation model

in the phase plane defined by the two variables (w,B). The direction field (sometimes

referred to as the velocity field) is a vector field that specifies the rate at which the two

variables change as a function of time at each point in the phase plane. If the dynamics of

the system is described by

dw

dt
= f(w,B)

dB

dt
= g(w,B) (A.1)

then the direction field at any point in the phase plane x = (w,B) is given by the vector

(f(x), g(x)). This is represented in the diagram as follows: draw short segments of lines

whose length is proportional the strength of the field (i.e. velocity) at that point. Ad-

ditionally, arrows are used to indicate the direction of the local flow ( not shown in our

figure). With the help of this picture, one can visualize the evolution of the dynamical

system.

In Fig. A.3, the two dotted lines represent the nullclines (f = 0 and g = 0) which are

contours in the phase plane along which the rate of evolution of one of the variables vanishes.

The intersection of nullclines is the stable vegetated fixed point. Fig. A.3(a) represents the

case where the system is far from the bifurcation for the two-variable vegetation model.
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Here, the direction field is nearly “symmetric”: consider two points which are equidistant

but diametrically opposite from the fixed point. At these two points the arrow lengths

are nearly the same which means that the magnitude of velocities are the same. This

leads the system to spend equal amount of time sampling small and large biomass values.

The marginal distribution of the biomass density B (i.e. B averaged over all directions of

movement along w) would thus be symmetric.

On the other hand, consider Fig. A.3(b) which represents the behavior close to the

bifurcation. It clearly shows that strength of the field is asymmetric along at least one

direction in phase place: consider a line which passes through the fixed point and passes

through the region where the nullclines make a closed loop. When the system enters this

closed loop region it spends relatively more time inside (smaller magnitude of the direction

field as indicated by shorter segments) than compared to the diametrically opposite direc-

tion from the fixed point. This results in an asymmetric marginal distribution of B when

averaged over all possible realizations of w.

103



0.6

0.7

0.8

0.9

1

1.1

1.2
Soil water

4 4.5 5 5.5 6 6.5 7 7.5
Biomass density

(a)

0.7

0.75

0.8

0.85

0.9

0.95

Soil water

2 2.5 3 3.5 4 4.5
Biomass density

(b)

Figure A.3: Plots of the direction field for the two variable vegetation model. The dottel
lines represent the nullclines of the system. The point of intersection of nullclines is the
vegetated fixed point. The short segment of lines represent the strength of the direction
field (i.e. velocity at any point n the phase plane. (a) Far from bifurcation: R=1.5 (b)
Close to the bifurcation: R=1.10. The bifurcation occurs at R=1.06.
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A.3 Results for the parameterized lake model
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Figure A.4: Results for the parameterized lake eutrophication model (see chapter 2, sec-
tion 2.4) (a) The bifurcation diagram for Lake eutrophication model as a function of nutri-
ent loading. The thick lines represent the stable oligotrophic and eutrophic states whereas
the broken lines represent the unstable state. The two bifurcation points correspond to
l ≈ 0.5 and l ≈ 0.95. (b) Absolute value of the average skewness of lake model as obtained
by numerical simulations, as we approach the threshold due to increased nutrient loading.
Calculation of skewness are performed for 500 time units and then averaged over 200 such
simulations.
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A.4 Analysis of real data sets

In this section we calculate skewness for two data sets: the Sahara climatic shift data

available from 25000 before present (BP) to present [1] and a 10 year data of very good

resolution from 1997 to 2006 for total phosphorus concentration taken at the Sandusky

Bay where the Sandusky river drains into Lake Erie [2]. We also compute variance for the

Sahara data set.

Sahara data set: During the past 25000 years, the Sahara has witnessed three large scale

regime shifts which have been very well documented by the terrigenous sediment data [1]:

the first around 14800 years BP, second at 12300 years BP and the most recent one being

at 5500 years BP. The full data are shown in Fig. A.5(a) which we have divided into four

different intervals for the analysis of indicators. For the regime shift at 14800 yrs BP,

the data immediately prior to the shift is unavailable and hence does not form a suitable

candidate for testing the indicators. The data prior to the second regime shift at 12300

yrs BP are too few (interval (ii) in Figure) to perform any reliable analysis. There is

no regime shift in interval (iv) yet and hence again this data cannot be directly used for

testing the indicators (it can serve as a reference, however). Thus the main text showed the

average moving skewness only for the data preceding the most recent regime shift (interval

(iii)). However, it is an useful and instructive exercise to look at the average fluctuation

of skewness in the entire data set. In addition, we have also studied variance - another

recently proposed indicator of regime shift [93] - and checked its behavior for this data

set. Evaluating two other important indicators, recovery time and spectra, usually require

longer time series and hence we did not compute them. Moreover the (linear) indicators

variance, recovery time and spectra all arise from the same underlying mechanism.
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A visual inspection of the variance and skewness clearly suggests that both these indi-

cators show fluctuations comparable in magnitude to those found in interval (iii) even in

other parts of the data set. Hence we are unable to conclude whether fluctuations that

occur in interval (iii) of the Figure can be attributed to proximity to the regime shift which

eventually occurred at 5500 yrs BP. This conclusion for the behavior of the skewness is also

consistent with the results from a simulation AR(1) model (for parameters obtained from

original data fitting an AR(1) process: see maintext) where the fluctuations of this order

were commonplace for 10 point moving skewness.

However we would like to mention important caveats with regards to comparing indi-

cators across different parts of time series separated by very long time intervals. In nature

various parameters that determine the dynamics of system do not remain constant and

hence comparison of variance/skewness between different time intervals (or even within an

interval) need to take this into account. For example, not only can the mean value of the

driving parameters vary but also the strength of their fluctuations around the mean value

may vary. In such instances true value of indicator will be difficult to extract (see [93] for

a model system where it was possible to extract true variance when the data for driving

parameter is approximately known). Furthermore, we can expect that the error associated

with obtaining the age as well as the composition of sediment is likely to increase as we go

back in time. Hence the data in interval (i) is more prone to error than the one in interval

(iii) implying that a direct comparison of skewness (as well as variance) fluctuations in dif-

ferent intervals may not be appropriate. Also note that relatively large skewness observed

in interval (iv) dies out quickly. A detailed comparative analysis of moving skewness and

variance incorporating standard statistical techniques for model systems as well as data
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sets such as this can be an important direction of future research.

Lake loading data: We have analyzed a 10 year data set (1997 to 2006) of total phospho-

rus concentration taken at the Sandusky Bay where the Sandusky river drains into Lake

Erie. The primary purpose of this specific data collection is to obtain detailed data on

pollutant loading patterns to Lake Erie and not for regime shift investigations at the site

of data collection [2]. However, our goal is to demonstrate that skewness calculations can

be done with data obtained from routine monitoring if the data is sufficiently resolved.

The total phosphorus data is plotted in Fig A.6a and results for the moving skewness is

shown in Figs. A.6b. Relatively large changes in skewness are observed for this time series.

To check if this changes in skewness are statistically significant, we perform the diagnostic

test presented in the main text where we compare the skewness of real data to a data set

generated from an AR(1) process. To parameterize the AR(1) model, we chose the total

phosphorus concentration data from 09/07/1998 to 01/17/1999: a total of 131 data points

and these data do not show substantial asymmetry and hence can act as a reference or

null model . We find β = 0.185 and σ = 0.028 units. An AR(1) model with these model

parameter values is simulated and in a typical simulation we find that the moving average

skewness of 100 previous data points fluctuates within the range of (−0.75, 0.75). Clearly

the skewness observed in real data is much larger (upto 4) indicating that early warning

signal such as skewness can be reliably calculated using long and finely resolved data sets.

Results for moving averages calculated for lengths of 75 and 50 data points show qualita-

tively similar results, but the width of fluctuation for the moving skewness increases as we

reduce the window of averaging. Clearly, for 10 data points on which the Sahara data was

averaged, the window is large and hence we were unable to make reasonable predictions
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for the impending regime shift. We expect that conclusions based on standard statistical

significance tests will confirm these inferences based on simple heuristic analysis.
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Figure A.5: Analysis of terrigenous sediment data indicating climatic shift in Sahara (a)
Time series of terrigenous sediment percentage record from Site 658C off Cap Blanc, Mau-
ritania [1]. Circles represent data while connecting line is meant to guide the eye. BP
stands for ‘before present’. (b) The moving average variance: for any given time, variance
is calculated from the previous 10 data points. (c) The moving average skewness: for any
given time, skewness is calculated from the previous 10 data points.

109



0

0.5

1

1.5

2
T

ot
al

 P
ho

sp
ho

ru
s

Lake loading data

1997 2000 2003 2006
Years

0

2

4

6

8

M
ov

in
g 

A
ve

ra
ge

 γ
a

b

Figure A.6: Analysis of total phosphorous concentration data obtained at one station
(Sandusky Bay) in Lake Erie [2] (a) The time series of the data from 1997 to 2006 in units
of mg/litre. (b) The moving average skewness, calculated from the preceding 100 data
points.

110



APPENDIX B

SUPPORTING MATERIAL FOR SPATIAL INDICATOR
CHAPTER

111



B.1 Time dependence of indicators for fixed grazing
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Figure B.1: Spatial mean, variance and skewness for different kernels. (a) Gaussian Kernel:
Parameters are: dx = 0.1, dt = 0.1, N = 16384, σ = 0.1, σc = 1.0. (b) Fat tailed kernel:
θ = 0.1 and all other parameter values are same as the previous plot.
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Figure B.2: To study the temporal dependence of mean, variance and skewness for far
from and close to bifurcation for spatial model with diffusion. Parameter values: N =
128 × 128, dx = 0.1, dt = 0.001, D = 0.001, r = 10,K = 10, σc = 4.0. As (b) clearly
indicates, even if the grazing parameter is a constant and has not yet crossed the mean-field
threshold for collapse, various moments show a time dependence and the system ultimately
collapse to a low density vegetated state.
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B.2 Results of dynamic grazing simulations
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Figure B.3: Spatial variance and skewness with 95% CI for D = 0.01. The full results
are shown in Chapter 3, Fig. 3.6. We assume that the data points thus obtained form
independent set of random numbers. The error bars for the skewness are obtained by
γactual ± 1.96 ∗ sde where sde is the standard error given by sde =

√

6/N where N is the
total number of data points available for the calculation [3]. For this specific simulation,
we find that changes in variance and skewness can be reliably detected for data collection
at 16 × 16 or more spatial points.
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Figure B.4: Results of dynamic simulation with D=0.001. Parameters are: r = 10,K =
10, V0 = 1, σc = 4.0, c(t = 0) = 15.0. The grazing rate is incremented discretely by 0.2 units
every year until it reaches 26 and is kept constant thereafter. (a) Full spatial patterns. (b)
Moments as a function time, with right panel zoomed in just prior to the transition. (c)
Variance and skewness with 95% CI. 115
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Figure B.5: Same as Fig B.4, except for D = 0.1, σc = 2.0. Unlike previous cases, we find
that changes in variance and skewness can be reliably detected for fewer data collection
points (at 8 × 8 or more).
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B.3 One point indicators

In this Appendix we report results for data collected at a single grid point: for each mean

grazing rate c, we run the simulation for the full spatial model. The variance and skewness

are evaluated from the time series data for 2000 time units and a further averaging over

100 realizations. The time interval corresponds to 2000 years and the results demonstrate

that at least in some situations this is an unrealistic procedure. The numerical simulations

are not shown if the system starts collapsing to the alternative state within the time period

of simulation (i.e., 2000 time units). The results for the mean variance and the magnitude

of mean skewness are shown in Fig. B.6.
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Figure B.6: One point indicators (variance and skewness) with diffusion.

As the system approaches the threshold c∗, both the mean variance and the (magnitude

of) mean skewness increase for different strengths of spatial interaction determined by the

diffusion constant D. The results of numerical simulations match fairly well with those of

analytical calculations based on a mean field approximation of the full spatial system. Hence
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the non-spatial indicators developed under the assumption of a well-mixed system can serve

as an early warning signal for the full spatial system with local diffusive interactions. We

expect that these results will continue to hold even for other dispersal kernels discussed in

the paper, including the heavily fat tailed Cauchy kernel.
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C.1 Jacobian matrix elements

Recall that the three functions are given by:

f o = Rs − Os
Ps + W0

Ps + 1
(C.1)

fw = Os
Ps + W0

Ps + 1
− Ws

Ws + 1
kPs − rWs (C.2)

fp =

(

Ws

Ws + 1
− ds

)

Ps (C.3)

The matrix elements for a fixed point P ∗,W ∗ and O∗.

f o
o = − fw

o f o
w = 0 f o

p = O∗ W0 − 1

(1 + P ∗)2
(C.4)

fw
o =

P ∗ + W0

1 + P ∗ fw
w = −r − kfp

w fw
p = − W ∗

W ∗ + 1
k − f o

p (C.5)

fp
o = 0 fp

w =
P ∗

(1 + W ∗)2
fp

p =
W ∗

W ∗ + 1
− ds (C.6)

Bare state: Many of the expressions can be simplified and we obtain:

f o
o = − W0 f o

w = 0 f o
p = Ob

s(W0 − 1) (C.7)

fw
o = W0 fw

w = −r fw
p = − W b

s

W b
s + 1

k − Ob
s(W0 − 1) (C.8)

fp
o = 0 fp

w = 0 fp
p =

W b
s

1 + W b
s

− ds (C.9)

We also evaluate the elements of the reduced Jacobian matrix. They are denoted by aij .

aww = − r − q2Dws , awp = − W b
s

W b
s + 1

k − Ob
s(W0 − 1) +

Ob
s(W0 − 1)

W0 + q2
W0 (C.10)

apw = 0 app =
W b

s

1 + W b
s

− ds − q2Dps (C.11)

Vegetated state: Many of the expressions can be simplified and we obtain:

f o
o = − fw

o f o
w = 0 f o

p = O∗ W0 − 1

(1 + P ∗)2
(C.12)

fw
o =

P ∗ + W0

1 + P ∗ fw
w = −r − kfp

w fw
p = −dsk − f o

p (C.13)

fp
o = 0 fp

w =
P ∗

(1 + W ∗)2
fp

p = 0 (C.14)
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We now evaluate the elements reduced Jacobian matrix for the vegetated state:

aww = − r − k
P ∗

(1 + W ∗)2
− Dwsq

2 awp = −dsk − f o
p

f o
o − q2

fw
o (C.15)

apw =
P ∗

(1 + W ∗)2
app = −q2Dps (C.16)
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C.2 Patterns plotted with scale and in color

(a) (b) (c)

Figure C.1: These figures show the state of the vegetation patterns at the end of 20th rainy
season (t=6800 days). The equations (1-3) were numerically simulated using fully explicit
scheme on a 128m × 128m spatial grid starting with plant peaks (P=20) at 10% of the
grids, with soil and surface water set to zero everywhere. Periodic boundary conditions were
chosen for all these cases. The animation showing how the pattern varies with seasonality
is available as online. The length of the rainy season was set to Nw = 150 days. All other
parameter values are as indicated earlier. (a) Spotted pattern at R = 2.4 mm d−1. (b)
Labyrinthine pattern at R = 2.8 mm d−1 and (c) Gap pattern at R = 3.25 mm d−1.

122



BIBLIOGRAPHY

[1] P. deMenocal, J. Ortiz, T. Guilderson, J. Adkins, M. Sarnthein, L. Baker, and

M. Yarusinsky, “Abrupt onset and termination of the african humid period: rapid
climate responses to gradual insolation forcing,” Quarterly Science Reviews 19
(2000) 347–361.

[2] Heidelberg-College, “National center for water quality research, ohio tributary
loading program,” Website: http://wql-data.heidelberg.edu/ (2006) Accessed Oct
2006.

[3] B. Tabachnick and L. S. Fidell, Using multivariate statistics. Allyn and Bacon,
Boston, MA, 2001.

[4] S. Newey, T. Willebrand, D. T. Haydon, F. Dahl, N. J. Aebischer, A. A. Smith, and
S. J. Thirgood, “Do mountain hare populations cycle?,” Oikos 116 (2007)
1547–1557.

[5] K. Higgins, A. Hastings, J. N. Sarvela, and L. W. Botsford, “Stochastic Dynamics

and Deterministic Skeletons: Population Behavior of Dungeness Crab,” Science 276
(1997), no. 5317, 1431–1435.

[6] R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis, “Chaotic
Dynamics in an Insect Population,” Science 275 (1997), no. 5298, 389–391.

[7] E. Beninc, J. Huisman, R. Heerkloss, K. D. Jhnk, P. Branco, E. H. V. Nes,
M. Scheffer, and S. P. Ellner, “Chaos in a long-term experiment with a plankton
community,” Nature 451 (2008) 822–825.

[8] R. M. May, “Thresholds and breakpoints in ecosystems with a multiplicity of stable
states,” Nature 269 (1977) 471–477.

[9] M. Scheffer, S. R. Carpenter, J. A. Foley, C. Folke, and B. Walker, “Catastrophic
shifts in ecosystems,” Nature 413 (2001) 591–596.

[10] A. Schroder, L. Persson, and A. M. D. Roos, “Direct experimental evidence for

alternative stable states: a review,” Oikos 110 (2005) 3–19.

123



[11] C. Taylor and A. Hastings, “Allee effects in biological invasions,” Ecology Letters 8
(2005) 895–908.

[12] J. Murray, Mathematical Biology. Springer, Heidelberg, Germany, 2nd ed., 1993.

[13] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel, “Self-organized
patchiness and catastrophic regime shifts in ecosystems,” Science 305 (2004)
1926–1929.

[14] J. van de Koppel, D. van der Wal, J. P. Bakker, and P. M. J. Herman,
“Self-Organization and Vegetation Collapse in Salt Marsh Ecosystems,” American
Naturalist 165 (2005) E1–E12.

[15] J. Van de Koppel, A. Altieri, B. Silliman, J. Bruno, and M. Bertness,
“Scale-dependent interactions and community structure on cobble beaches,” Ecology
Letters 9 (2006) 45–50.

[16] S. Levin, “The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur
Award Lecture,” Ecology 73 (1992) 1943–1967.

[17] R. May, “Simple mathematical models with very complicated dynamics,” Nature

261 (1976) 459–467.

[18] A. J. Lodka, Elements of Physical Biology. Williams and Wilkins, Baltimore, MD,
1925.

[19] V. Volterra, “Variazioni e fluttazioni del numero d’individui in specie animale
conviventi,” Mem R Accad Nazionale del Lincei 2 (1926) 31–113.

[20] V. Volterra, “Fluctuations in the abundance of a species considered
mathematically,” Nature 118 (1926), no. 558-60,.

[21] R. MacArthur, “Fluctuations of Animal Populations and a Measure of Community
Stability,” Ecology 36 (1955) 533–536.

[22] R. MacArthur, “Population Ecology of Some Warblers of Northeastern Coniferous
Forests,” Ecology 39 (1958) 599–619.

[23] R. MacArthur, Geographical Ecology: Patterns in the Distribution of Species.

Princeton University Press, Princeton, NJ, 1984.

[24] R. MacArthur and E. Wilson, The Theory of Island Biogeography. Princeton
University Press, Princeton, NJ, 2001.

[25] R. Lewontin, “The meaning of stability.,” Brookhaven Symp Biol 22 (1969) 13–24.

124



[26] J. Sutherland, “Multiple Stable Points in Natural Communities,” The American
Naturalist 108 (1974), no. 964, 859–873.

[27] A. Hastings, C. Hom, S. Ellner, P. Turchin, and H. Godfray, “Chaos in Ecology: Is
Mother Nature a Strange Attractor?,” Annual Review of Ecology and Systematics

24 (1993) 1–33.

[28] S. Levin, “Ecosystems and the Biosphere as Complex Adaptive Systems,”
Ecosystems 1 (1998), no. 5, 431–436.

[29] H. Andrewartha and L. Birch, The Distribution and Abundance of Animals.
University of Chicago Press, Chicago, IL, 1954.

[30] C. Huffaker, “Experimental studies on predation: dispersion factors and
predator-prey oscillations,” Hilgardia 27 (1958), no. 14, 343–383.

[31] S. Levin, “Dispersion and Population Interactions,” The American Naturalist 108
(1974) 207–228.

[32] R. Paine and S. Levin, “Intertidal Landscapes: Disturbance and the Dynamics of
Pattern,” Ecological Monographs 51 (1981) 145–178.

[33] C. Neuhauser, “Mathematical challenges in spatial ecology,” Notices of the
American Mathematical Society 48 (2001) 1304–1314.

[34] J. A. Wiens, “Spatial Scaling in Ecology,” Functional Ecology 3 (1989), no. 4,
385–397.

[35] S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Reviews of
Modern Physics 15 (1943), no. 1, 1–89.

[36] S. Weinberg, The First Three Minutes: A Modern View of the Origin of the
Universe. Basic Books, 1993.

[37] S. Ma, Statistical Mechanics. World Scientific, 1985.

[38] Wikipedia, “Community (ecology) — wikipedia, the free encyclopedia,” 2007.
[Online; accessed 9-March-2008].

[39] J. Connell and W. Sousa, “On the Evidence Needed to Judge Ecological Stability or
Persistence,” The American Naturalist 121 (1983), no. 6, 789–824.

[40] S. Hare and N. Mantua, “Empirical evidence for North Pacific regime shifts in 1977
and 1989,” Progress in Oceanography 47 (2000), no. 2-4, 103–145.

125



[41] I. Blindow, G. Andersson, A. Hargeby, and S. Johansson, “Long-term pattern of
alternative stable states in two shallow eutrophic lakes.,” Freshwater biology. Oxford
30 (1993), no. 1, 159–167.

[42] C. Schelske and P. Brezonik, “Can Lake Apopka be restored,” Restoration of

Aquatic Ecosystems (Maurizi, S. et al., eds) (1992) 393–398.

[43] L. Bengtsson and T. Hellström, “Wild-induced resuspension in a small shallow
lake,” Hydrobiologia 241 (1992), no. 3, 163–172.

[44] S. Engel and S. Nichols, “Aquatic macrophyte growth in a turbid windswept lake,”
Journal of Freshwater Ecology 9 (1994), no. 2, 97–109.

[45] S. Carpenter, D. Ludwig, and W. Brock, “Management of Eutrophication for Lakes
Subject to Potentially Irreversible Change,” Ecological Applications 9 (1999), no. 3,
751–771.

[46] M. Meijer, Biomanipulation in the Netherlands: 15 years of experience. Wageningen
University, Wageningen, 2000.

[47] M. Scheffer, A. H. Bakema, and F. G. Wortelboer, “Megaplant: a simulation model

of the dynamics of submerged plants,” Aquatic Botany 45 (1993) 341–356.

[48] M. Coe and G. Bonan, “Feedbacks between climate and surface water in northern
Africa during the middle Holocene,” Journal of Geophysical Research 102 (1997),
no. D10, 11087–11102.

[49] J. Kutzbach, G. Bonan, J. Foley, and S. Harrison, “Vegetation and soil feedbacks on
the response of the African monsoon to orbital forcing in the early to middle
Holocene,” Nature 384 (1996), no. 6610, 623–626.

[50] A. Broström, M. Coe, S. Harrison, R. Gallimore, J. Kutzbach, J. Foley, I. Prentice,
and P. Behling, “Land surface feedbacks and palaeomonsoons in northern Africa,”
Geophysical Research Letters 25 (1998), no. 19, 3615–3618.

[51] A. Berger and M. Loutre, “Insolation values for the climate of the last 10,000,000
years,” Quaternary Science Reviews 10 (1991), no. 4, 297–317.

[52] P. DEMENOCAL and D. RIND, “Sensitivity of Asian and African climate to
variations in seasonal insolation, glacial ice cover, sea surface temperature, and
Asian orography,” Journal of Geophysical Research 98 (1993), no. D4, 7265–7287.

[53] W. Prell and J. Kutzbach, “Monsoon variability over the past 150, 000 years,”
Journal of Geophysical Research 92 (1987), no. D7, 8411–8425.

126



[54] M. Claussen, C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and
H. Pachur, “Simulation of an abrupt change in Saharan vegetation in the
mid-Holocene,” Geophysical Research Letters 26 (1999), no. 14, 2037–2040.

[55] M. Gladwell, The Tipping Point: How Little Things Can Make a Big Difference.

Back Bay, 2000.

[56] M. Scheffer and S. R. Carpenter, “Catastrophic regime shifts in ecosystems: linking
theory and observation,” TRENDS in Ecology and Evolution 18 (2003) 648–656.

[57] W. Brock, “Tipping points, abrupt opinion changes, and punctuated policy
change,” in Punctuated equilibrium and the Dynamics of US Environmental Policy,
R. P. Repetto, ed. 2006.

[58] C. Simenstad, J. Estes, and K. Kenyon, “Aleuts, Sea Otters, and Alternate
Stable-State Communities,” Science 200 (1978), no. 4340, 403–411.

[59] J. Steele, “Regime shifts in fisheries management,” Fisheries Research 25 (1996),
no. 1, 19–23.

[60] P. Petraitis and S. Dudgeon, “Detection of alternative stable states in marine

communities,” Journal of Experimental Marine Biology and Ecology 300 (2004),
no. 1-2, 343–371.

[61] C. Walters and S. Martell, Fisheries Ecology and Management. Princeton
University Press, Princeton, NJ, 2004.

[62] K. Cottenie, N. Nuytten, E. Michels, and L. De Meester, “Zooplankton community
structure and environmental conditions in a set of interconnected ponds,”
Hydrobiologia 442 (2001), no. 1, 339–350.

[63] J. M. Chase, “Experimental evidence for alternative stable equilibria in a benthic
pond food web,” Ecology Letters 6 (2003) 733–741.

[64] B. McCune and T. Allen, “Will similar forests develop on similar sites?,” Canadian
Journal of Botany 63 (1985), no. 3, 367–376.

[65] D. Lawrence, P. DOdorico, L. Diekmann, M. DeLonge, R. Das, and J. Eaton,

“Ecological feedbacks following deforestation create the potential for a catastrophic
ecosystem shift in tropical dry forest.,” Proceedings of National Academy of
Sciences, USA 104 (2007) 20696–20701.

[66] C. Dent, “Multiple states in river and lake ecosystems,” Philosophical Transactions:
Biological Sciences 357 (2002), no. 1421, 635–645.

127



[67] N. Knowlton, “Thresholds and Multiple Stable States in Coral Reef Community
Dynamics,” Integrative and Comparative Biology 32 (1992), no. 6, 674.

[68] T. Done, “Phase shifts in coral reef communities and their ecological significance,”
Hydrobiologia 247 (1991), no. 1, 121–132.

[69] T. Hughes, “Catastrophes, Phase Shifts, and Large-Scale Degradation of a

Caribbean Coral Reef,” Science 265 (1994), no. 5178, 1547–1551.

[70] L. McCook, “Macroalgae, nutrients and phase shifts on coral reefs: scientific issues
and management consequences for the Great Barrier Reef,” Coral Reefs 18 (1999),
no. 4, 357–367.

[71] P. D’Odorico and A. Porporato, “Preferential states in soil moisture and climate
dynamics,” Proceedings of the National Academy of Sciences 101 (2004), no. 24,
8848–8851.

[72] G. T. Narisma, J. A. Foley, R. Licker, and N. Ramankutty, “Abrupt changes in
rainfall during the twentieth century,” Geophysical Research Letters 34 (2007)
L06710.

[73] G. M. Daskalov, A. N. Grishin, S. Rodionov, and V. Mihneva, “Trophic cascades
triggered by overfishing reveal possible mechanisms of ecosystem regime shifts,”
Proceedings of National Academy of Sciences 104 (2007) 10518–10523.

[74] E. Mccauley, R. M. Nisbe, W. W. Murdoch, A. M. de Roos, and W. S. C. Gurney,
“Large-amplitude cycles of Daphnia and its algal prey in enriched environments,”
Nature 402 (1999), no. 6762, 653–656.

[75] W. Nelson, E. McCauley, and F. J. Wrona, “Multiple dynamics in a single
predator-prey system: experimental effects of food quality,” Proceedings: Biological
Sciences 268 (2001), no. 1473, 1223–1230.

[76] J. Drake, “Community-Assembly Mechanics and the Structure of an Experimental
Species Ensemble,” The American Naturalist 137 (1991), no. 1, 1–26.

[77] S. Sait, W. Liu, D. Thompson, H. Godfray, and M. Begon, “Invasion sequence
affects predator-prey dynamics in a multi-species interaction.,” Nature 405 (2000),
no. 6785, 448–50.

[78] M. Scheffer, S. Szabo, A. Gragnani, E. van Nes, S. Rinaldi, N. Kautsky, J. Norberg,
R. Roijackers, and R. Franken, “Floating plant dominance as a stable state,” Proc
Natl Acad Sci US A 100 (2003), no. 7, 4040–4045.

[79] J. Price and P. Morin, “Colonization history determines alternate community states
in a food web of intraguild predators,” Ecology 85 (2004).

128



[80] G. Harrison, “Multiple stable equilibria in a predator-prey system,” Bulletin of
Mathematical Biology 48 (1986), no. 2, 137–148.

[81] J. van de Koppel, M. Rietkerk, and F. J. Weissing, “Catastrophic vegetation shifts
and soil degradation in terrestrial grazing systems,” Trends in Ecology and

Evolution 12 (1997) 352–356.

[82] M. Rietkerk and J. van de Koppel, “Alternate stable states and threshold effects in
semi-arid grazing systems,” Oikos 79 (1997) 69–76.

[83] M. Rietkerk, F. van den Bosch, and J. van de Koppel, “Site-specific properties and
irreversible vegetation changes in semi-arid grazing systems,” Oikos 80 (1997)
241–252.

[84] M. Genkai-Kato, “Macrophyte refuges, prey behaviour and trophic interactions:
consequences for lake water clarity,” Ecology Letters 10 (2007), no. 2, 105–114.

[85] M. Sankaran, N. P. Hanan, R. J. Scholes, J. Ratnam, D. J. Augustine, B. S. Cade,
J. Gignoux, S. I. Higgins, X. L. Roux, F. Ludwig, J. Ardo, F. Banyikwa, A. Bronn,
G. Bucini, K. K. Caylor, M. B. Coughenour, A. Diouf, W. Ekaya, C. J. Feral, E. C.
February, P. G. H. Frost, P. Hiernaux, H. Hrabar, K. L. Metzger, H. H. T. Prins,

S. Ringrose, W. Sea, J. Tews, J. Worden, and N. Zambatis, “Determinants of
woody cover in african savannas,” Nature 438 (2005) 846–849.

[86] S. Strogatz, Nonlinear Dynamics and Chaos. WestView Press, U.S.A., 1994.

[87] G. Uhlenbeck and L. Ornstein, “On the Theory of the Brownian Motion,” Physical
Review 36 (1930) 823–841.

[88] C. W. Gardiner, Handbook of stochastic methods for Physics, Chemistry and the
Natural Sciences. Springler-Verlag, 3rd edition ed., 2003.

[89] W. Horsthemke and R. Lefever, Noise-Induced Transitions. Springer-Verlag, New
York, NY, 1984.

[90] C. Wissel, “A universal law of the characteristic return time near thresholds,”
Oecologia 65 (1984), no. 1, 101–107.

[91] T. Kleinen, H. Held, and G. Petschel-Held, “The potential role of spectral
properties in detecting thresholds in the Earth system: application to the
thermohaline circulation,” Ocean Dynamics 53 (2003), no. 2, 53–63.

[92] H. Held and T. Kleinen, “Detection of climate system bifurcations by degenerate
fingerprinting,” Geophysical Research Letters 31 (2004), no. 23, L020972.

129



[93] S. R. Carpenter and W. A. Brock, “Rising variance: a leading indicator of
ecological transition.,” Ecology Letters 9 (2006) 308–315.

[94] E. H. van Nes and M. Scheffer, “Slow recovery from perurbations as a generic
indicator of a nearby catastrophic regime shift,” American Naturalist 169 (2007)

738–747.

[95] V. Guttal and C. Jayaprakash, “Impact of noise on bistable ecological systems,”
Ecological Modelling 201 (2007) 420–428.

[96] I. Noy-Meir, “Stabilty of grazing systems: An application of predator-prey graphs,”
Journal of Ecology 63 (1975) 459–482.

[97] S. R. Carpenter, “Eutrophication of aquatic ecosystems: Bistability and soil
phosphorus,” Proceedings of the National Academy of Sciences 102 (2005)
10002–10005.

[98] J. H. Steele and E. W. Henderson, “Modelling long-term fluctuations in fish
stocks,” Science 224 (1984) 985–987.

[99] D. Ludwig, D. D. Jones, and C. S. Holling, “Qualitative analysis of insect outbreak

systems: the spruce budworm and forest,” Journal of Animal Ecology 47 (1978)
315–332.

[100] E. van Nes, M. Scheffer, M. van den Berg, and H. Coops, “Dominance of
charophytes in eutrophic shallow lakes– when should we expect it to be an
alternative stable state?,” Aquatic Botany 72 (2002), no. 3, 275–296.

[101] J. van de Koppel, M. Rietkerk, and F. J. Weissing, “Catastrophic vegetation shifts
and soil degradation in terrestrial grazing systems,” Trends in Ecology and
Evolution 12 (1997) 352–356.

[102] H. Risken, The Fokker-Planck Equation: Methods of solution and applications.
Springer-Verlag, 1984.

[103] K. L. Drury, “Shot noise perturbations and mean first passage times between stable
states,” Theoretical Population Biology 72 (2007), no. 1, 153–166.

[104] P. A. Soranno, S. R. Carpenter, and R. C. Lathrop, “Internal phosphorus loading in
lake mandota: response to external loads and weather,” Can. J. Fish. Aquat. Sci.
54 (1997) 1883–1893.

[105] A. Ives, “Measuring Resilience in Stochastic Systems,” Ecological Monographs 65
(1995), no. 2, 217–233.

130



[106] N. Mantua, “Methods for detecting regime shifts in large marine ecosystems: a
review with approaches applied to North Pacific data,” Progress in Oceanography
60 (2004), no. 2-4,.

[107] S. Rodionov, “A sequential algorithm for testing climate regime shifts,” Geophysical

Research Letters 31 (2004), no. 9, L09204.

[108] C. Hsieh, S. Glaser, A. Lucas, and G. Sugihara, “Distinguishing random
environmental fluctuations from ecological catastrophes for the North Pacific
Ocean,” Nature 435 (2005), no. 7040, 336–340.

[109] A. Mayer, C. Pawlowski, and H. Cabezas, “Fisher Information and dynamic regime
changes in ecological systems,” Ecological Modelling 195 (2006), no. 1, 72–82.

[110] S. Rodionov, “Use of prewhitening in climate regime shift detection,” Geophysical
Research Letters 33 (2006), no. 12, L12707.

[111] G. Sugihara, M. Casdagli, E. Habjan, D. Hess, P. Dixon, and G. Holland, “Residual
delay maps unveil global patterns of atmospheric nonlinearity and produce
improved local forecasts,” Proceedings of the National Academy of Sciences of the
United States of America 96 (1999), no. 25, 14210.

[112] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, “Noise-induced
nonequilibrium phase transition,” Phys. Rev. Lett. 73 (Dec, 1994) 3395–3398.

[113] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
recipes C++. Cambridge university press, UK, 2nd edition ed., 2002.

[114] R. HilleRisLambers, M. Rietkerk, F. van den Bosch, H. H. T. Prins, and
H. de Kroon, “Vegetation pattern formation in semi-arid grazing systems,” Ecology
82 (2001) 50–61.
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