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ABSTRACT 

 

The focus of this research is on location problems where potential facility sites are 

to be located in continuous space and demand is assumed continuously distributed, and 

includes the continuous p-center and coverage maximization problems. Relevant discrete 

location models are reviewed for the purpose of comparative analysis, including the 

vertex p-center problem and the maximal covering locational problem.    

 

First, this dissertation explores a simple but effective approach for solving large 

vertex p-center problems, the results of which are to be used as a benchmark for its 

continuous space counterpart. By introducing a neighborhood facility set, the p-center 

problem can be reformulated such that many redundant variables and constraints are 

removed but characteristics, including optimality, of the problem are preserved. The 

problem size of the reformulated model can be substantially smaller than in the original 

form. This enables the use of general-purpose optimization software to solve large vertex 

p-center instances. Application results are provided and discussed.  

 

The dissertation then studies the continuous space p-center problem. A Voronoi 

diagram heuristic has been proposed for solving the p-center problem in continuous 

space. However, important assumptions underlie this heuristic and may be problematic 

for practical applications. These simplifying assumptions include uniformly distributed 
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demand, representing a region as a rectangle, analysis of a simple Voronoi polygon in 

solving associated one-center problems and no restrictions on potential facility locations. 

In this dissertation, the complexity of solving the continuous space p-center problem in 

location planning is explored. Considering the issue of solution space feasibility, this 

research presents a spatially restricted version of this problem and proposes methods for 

solving it heuristically. The performance of the heuristic is evaluated by comparison with 

the discrete p-center problem. Theoretical and empirical results are provided.  

 

Finally, this dissertation explores approaches for solving the problem of siting 

service facilities to maximize regional coverage when both facility sites and regional 

demand are assumed continuous. Traditionally, coverage maximization has been 

approached using discrete representations of potential facility sites and service demand 

locations. However, such discretizations of space can lead to significant measurement 

and coverage errors. Representing candidate facility sites and service demand locations as 

continuously distributed is more reasonable in many cases. Research on coverage 

maximization in this context has been limited to siting a single facility in a region. This 

dissertation addresses multiple facility siting in continuous space. A Voronoi diagram 

heuristic is proposed to decompose the multiple facility problem into a set of single 

facility problems. The developed approach is applied to emergency warning siren siting 

in a region. The results are compared with those obtained from a discrete approach.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

Whenever a question of where to locate something is raised, a location problem 

arises.  One then wonders where places are available and which of these are the best 

locations based on particular criteria.  In the public sector, there are often concerns about 

the location of facilities or services to be established or extended, such as emergency 

services (ambulances, warning sirens, fire stations, and police units), school systems and 

postal facilities.  The goals of decision making in the public sector usually include social 

cost minimization, universality of service, efficiency and equity (Marianov and Serra, 

2002), while private sector concerns are generally based on maximizing profit or 

increasing market share from competitors.  

 

 

1.1.1 Location models 

In support of decision making processes that involve facility siting, location 

models are generally applied.  The field has seen a rapid growth in past decades, mainly 
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due to the evolution of location theory and the advent of computer technology (Church, 

1999).  Given locations of demand and existing facilities (if relevant), models are 

structured to locate new facilities to optimize some objective. The objectives are often 

expressed in measurable terms, such as minimizing the locational and operational costs 

(e.g., time or distance) needed for service coverage. Many location models have been 

proposed and applied to solve various location problems. Location models can be 

classified into three broad categories (Daskin, 1995): p-median models, p-center models 

and covering models.  The p-median models aim to minimize the average weighted 

distance or time of the system (Hakimi, 1964; ReVelle and Swain, 1970). The p-center 

problem seeks to locate p facilities such that the maximum distance from any demand site 

to its closest service facility is minimized (Hakimi, 1964, 1965).  This minimax model 

has been proposed for public facility planning and emergency services management, such 

as EMS and fire protection, where the distance from sited facilities to their farthest client 

is minimized (Love et al. 1988). The third category of location models classified in 

Daskin (1995) is covering models, and are used to serve/cover demand (e.g., population) 

within a given time or distance standard. A fundamental goal of covering models is to 

provide a particular level of service coverage to demand.  Generally, customers are 

assumed to use the nearest available facility.  A customer is considered covered only if 

the distance between the customer and the facility to which the customer is served is 

within a given effective range of the facility. Covering problems can be approached in 

two basic ways.  One is the Location Set Covering Problem (LSCP), which seeks to 

minimize the number of facilities needed to ensure complete regional coverage of 

demand (Toregas, 1971).  The other is the Maximal Covering Location Problem (MCLP), 
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which aims to maximize service coverage given a fixed number of facilities (Church and 

ReVelle, 1974).  A review of these location models and applications can be found in 

ReVelle et al. (2002).  

  

Other taxonomies of location models are also seen in the location literature, e.g. 

discrete versus continuous demand, discrete versus continuous facility location, median 

versus center, location and routing problems, single versus multiple objectives, stochastic 

versus deterministic problems, etc. (Drezner, 1995). The focus of this dissertation is on 

location models in which both demand locations and facility sites are assumed continuous, 

and is limited to p-center and coverage maximization problems.  

 

 

1.1.2 Spatial representation of location       

In order to formulate a location model, it is necessary to identify where demand is 

located and where facilities can be sited. This is related to the representation of 

geographic space, either discrete or continuous.  A discrete approach is based on the 

assumption that available facility sites and the demand region are represented as a finite 

set of objects (e.g. points, lines, polygons), while a continuous approach treats demand 

and candidate facility space as continuous.  

 

Traditionally location models are approached through discrete representation of 

facility sites and service demand (Bennett and Mirakhor, 1973; ReVelle, 1991; Miller, 

1996; Church, 1999). This is mainly due to limited geometric capabilities, data 
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availability, and simplification from a modeling perspective. A continuous demand area, 

such as an administrative or census unit, is often simplified and/or aggregated into a 

discrete point, such as the central location of the area. The service facility sites are also 

considered as point-based. In this context, facilities are to be sited among a finite set of 

available locations to serve or cover discrete demand points so that particular criteria are 

satisfied.  However, there may be problems with the use of discrete points to represent 

potential facility sites and demand locations since the point-based assumption about 

facility location may be too simplistic to represent vector or areal objects as discussed in 

Miller (1996). On the facility side, the discretization of facility location space limits the 

search for an optimal solution to the finite and discrete locations.  On the demand or 

service consumption side, representation of space as discrete could lead to pronounced 

measurement and coverage errors, including imprecise distance measurement and 

uncertainty in assessing coverage (Daskin et al. 1989; Current and Schilling, 1990; 

Drezner and Drezner, 1997; Murray et al.  2002, 2008).  Murray and O’Kelly (2002) 

found that a point-based representation of regional demand in a coverage optimization 

model generally results in an over-estimation of the actual coverage provided to a region 

by a service facility configuration.  These inaccuracies are the results of inappropriate 

spatial representation of regional demand in coverage modeling, supporting the 

representational issues raised in Miller (1996). Thus, there is a need for coverage 

modeling approaches in which potential facility sites and demand locations are 

represented as more realistic spatial entities, e.g. lines, polygons or other areal objects. 
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Another approach for representing geographic space in location modeling is to 

treat demand locations and/or facility sites as continuous.  This assumes that demand is 

distributed throughout an area and potential facilities can be located anywhere in the 

analysis region or network.  For example, emergency warning sirens need to be audible at 

all locations of human activity and they can be sited anywhere given their size. This type 

of location problem has been of interest for a long time in the literature. Continuous space 

siting problem can be traced back to the Weber problem (Weber, 1909), which is also 

known in the literature as the minisum problem (Wesolowsky, 1993).  The problem aims 

to find the “minisum” facility location in the continuous plane that minimizes the sum of 

weighted Euclidean distance from itself to a number of fixed demand points.  The Weber 

problem has given rise to a large number of spatial optimization approaches for 

formulating and solving continuous space siting problems.  

 

Although representing space as continuous seems to be more reasonable in many 

situations, it is difficult to extend traditional discrete methods for solving continuous 

problems. In the discrete case, both demand locations and candidate facilities sites are 

finite so that standard optimization techniques can be applied. When location space is 

represented as continuous, it is impossible to enumerate all demand locations and 

potential places for siting facilities. This makes the continuous location problem 

challenging to solve.  The ability to address this problem has been limited by analytical 

capabilities associated with geometric computation (Suzuki and Okabe, 1995; Plastria, 

2002).  A number of solution approaches have been developed in an attempt to solve 

continuous location problems.  Many utilize mathematical properties of the objective 
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function (i.e., the first order conditions for optimality) and formulate the solution as an 

iterative procedure. For instance, developed by Weiszfeld (1937), the so-called 

“Weiszfeld procedure” is the most commonly used technique to solve the Weber problem, 

and falls into this class.  Other approaches make use of geometric properties of the region 

to attack continuous space siting problems.  Examples include the solution approach to 

the 1-center problem (Elzinga and Hearn, 1972; Plastria, 2002), a Voronoi diagram 

heuristic developed to solve the continuous space p-center problem (Suzuki and Okabe, 

1995; Okabe and Suzuki, 1997), and the use of the medial axis to search for the location 

of a facility in a continuous plane that maximizes the coverage of a facility (Matisziw and 

Murray, 2008). Other geometric solution approaches for solving continuous location 

problems can be found in the work of Hershberger (1993), Hochbaum and Shmoys 

(1985), Khuller and Sussmann (2000) and Sharir and Welzl (1996).   

 

Much of the above continuous space work focus on single-facility siting and/or 

assumes generally idealized conditions.  This limits the application of the proposed 

methods in practice.  This dissertation explores approaches for solving general 

continuous space multi-facility location problems in which some simplifying assumptions 

are relaxed.   
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1.2 Research objectives 

 

The focus of this research is on location problems where potential facility sites are 

to be located in continuous space and demand is assumed continuously distributed.  There 

are two main objectives in the research.  The first objective is to develop an efficient and 

effective heuristic approach for solving the continuous space p-center problem.  The 

Voronoi diagram heuristic has been proposed for solving the p-center problem in 

continuous space (Suzuki and Okabe, 1995).  However, important assumptions 

underlying this heuristic may be problematic for practical application, e.g. uniformly 

distributed demand, representing a region as a rectangle, and no restrictions on potential 

facility sites.  In this research the complexity of solving the continuous space p-center 

problem in location planning is explored. Considering the issue of solution space 

feasibility, a spatially restricted version of the p-center problem and methods for solving 

it heuristically are developed. The second objective of this research is to develop a 

heuristic approach for solving a continuous space maximal coverage problem. Even in 

the simplest case where a single facility is considered, the problem is highly non-linear 

and cannot be solved analytically. Recently, Matisziw and Murray (2008) propose a 

method to solve a one-facility problem, and rely on exploiting the geometric properties of 

a region. In a general case where multiple facilities are to be located, the continuous 

maximal coverage problem is more challenging and few methods for solving it have been 

developed in the literature. In this research, a geocomputational approach for solving the 

general case of the continuous maximal coverage problem is proposed based on Voronoi 

diagrams and geometric properties of a region.  This can be considered an extension of 
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the Voronoi diagram heuristic approach for solving the continuous space complete 

covering problem as well as an extension to the single facility work of Matisziw and 

Murray (2008).  

 

 

1.3 Organization of research 

 

This research explores heuristic approaches for solving continuous space location 

problems, including the p-center problem, complete and partial coverage problems.  It is 

organized as follows.   

 

Following the introduction, Chapter 2 develops a simple and efficient approach 

for solving large vertex p-center problems. The issues of variable reduction and 

optimality are discussed. A reformulated model is applied to warning siren siting in the 

City of Dublin, Ohio. This is carried out by experiments of several point representations 

of demand locations and potential facility sites.  

 

Following the discussion of the vertex p-center problem, the dissertation then 

explores approaches to solve the p-center problem in continuous space in Chapter 3.  

Simplified assumptions in existing approaches and several practical issues are addressed. 

The complexity of solving the problem is explored. A spatially restricted version of the p-

center problem is presented, and methods for solving it are proposed. This is followed by 

an application of the developed model to warning siren siting in the City of Dublin, Ohio. 
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Application results are then provided and discussed, with comparison to the results 

obtained for the vertex p-center model. The extension of the p-center model to the 

continuous set covering problem and its application are also presented.   

 

Another continuous location problem investigated in the dissertation is a general 

continuous space maximal covering problem with focus on multiple facility siting.  

Chapter 4 starts with presenting the rational to approach the problem with the use of a 

Voronoi diagram.  Relevant computational geometry based techniques are then discussed. 

Next, the proposed solution approach is detailed.  The developed method is then applied 

to warning siren siting in the City of Dublin, Ohio.  Following this, application results 

and discussion are provided.     

 

Finally, Chapter 5 concludes the dissertation by summarizing research results and 

contributions to the literature. Future research work is also discussed.  
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CHAPTER 2  

 

THE VERTEX P-CENTER PROBLEM 

 

 

2.1 Introduction 

 

This chapter reviews the vertex p-center problem and proposes a simple and 

efficient approach for solving it. Several point representations of location space are 

studied and extensive computational results are reported. This discrete model provides a 

comparative basis for evaluating the continuous space counterpart of the p-center 

problem.  

 

The p-center problem was originally defined in Hakimi (1964, 1965). Given the 

locations of demand points, the objective of the p-center problem is to site a given 

number of facilities so that the maximum distance a demand is from its closest facility is 

minimized. Thus, it is also known as a minmax location-allocation problem. It is usually 

assumed that all the facilities provide the same kind of service, and that the amount of 

demand that can be served by a given facility is unlimited. The problem can be 

formulated in several model structures according to the treatment of facility siting and 

demand. In terms of spatial representation, the vertex p-center problem restricts candidate 
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facility sites to a set of predefined discrete points, while the absolute or continuous space 

p-center problem allows facilities to be located anywhere in the region (Daskin, 1995). 

Other variants of the p-center problem are either weighted or unweighted demand, 

depending on whether service points are treated equally (Current et al.  2002). 

 

The p-center problem can also be used for regional service coverage modeling.  

For instance, facility service planning often seeks to identify the minimum number of 

facilities to provide complete service coverage to a region.  Murray et al. (2008) approach 

this problem using the p-center problem and the Location Set Covering Problem (LSCP), 

indicating there is a strong relationship between these two models (see also Daskin, 1995).  

Given this, analysis using one model may somehow facilitate insight for the other model.  

 

 

2.2 Model formulation 

 

In order to formulate the vertex p-center problem mathematically, consider the 

following notation: 

z, the maximum distance between a demand point and its closest facility  

i, index of demand points or service areas, 1,2, ,i n= L , entire set denoted I 

j, index of potential facility locations, 1,2, ,j m= L , entire set denoted J 

p, number of facilities to be sited 

ijd , distance between demand i and facility j 
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1, if demand point  is assigned to a facility at ,
0, otherwise. ij

i j
x ⎧
= ⎨
⎩

 

1, if facility  is sited,
0, otherwise. j

j
y ⎧
= ⎨
⎩

 

 

The vertex p-center problem can be formulated as follows (Daskin, 1995): 

 zMin          (2-1) 

subject to: 

1

 
m

j
j

y  = p
=
∑         (2-2)  

1

1        
m

ij
j

x i I
=

= ∀ ∈∑        (2-3) 

        ,ij jx y i I j J≤ ∀ ∈ ∀ ∈       (2-4) 

1

z        
m

ij ij
j

d x i I
=

≤ ∀ ∈∑       (2-5) 

{ }, 0,1     ,ij jx y i I j J∈ ∀ ∈ ∀ ∈      (2-6) 

 

The objective function (2-1) is to minimize the maximum distance between a 

demand point and its closest facility. The problem is subject to a number of constraints. 

Constraint (2-2) stipulates that p facilities are to be located. Constraint set (2-3) requires 

that each demand point be assigned to exactly one facility. Constraint set (2-4) restricts 

demand point assignments only to open facilities. Constraint set (2-5) defines the lower 

bound on the maximum distance. Constraint set (2-6) establishes the siting decision 
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variables, ijx  and jy , as binary. The non-negativity of ijd  and ijx  implies a non-negative 

value of the objective function, that is, 0z ≥ .   

Since the number of potential facility sites is finite, one could solve the vertex p-

center problem defined in (2-1) to (2-6) by enumerating each possible set of candidate 

facility locations. This naïve way would require computational time in ( )pO m  to solve 

the problem, where m is the total number of candidate facility sites. Clearly, even for 

moderate values of m and p, such enumeration is not realistic and more efficient and 

sophisticated approaches are required for this NP-hard problem1 (Garey and Johnson, 

1979; Daskin, 1995).  

 

As mentioned previously, this research is interested in coverage, so the p-center 

problem is used in the context of service coverage provision. In particular, one can solve 

and use the p-center problem to site facilities when service coverage standards must be 

adhered to. Alternatively, one can solve an LSCP in order to identify a p-center solution 

under certain conditions.  

 

The LSCP was originally developed by Toregas et al. (1971). The LSCP is 

typically applied in the situation when the demand and facility sites are represented as 

finite discrete points and coverage of all demand points is required. The problem seeks to 

identify a minimal set of facilities and their locations so that all demand points are 

covered. This problem is also recognized as the total covering problem (White and Case, 

                                                 
1 NP-hard stands for nondeterministic polynomial-time hard (Daskin, 1995). In computational complexity 
theory, a problem is NP-hard if an algorithm for solving it can be translated into one for solving any NP-
problem, that is, it is “at least as hard as the hardest problems in NP” (Daskin, 1995).  
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1974). Toregas et al. (1971) formulated the LSCP to identify the minimal number of 

emergency service facilities and their locations to ensure travel time response to all areas 

was not longer than a desired maximal response.  

 

Assuming that the demand in a region to be covered is represented as a collection 

of spatial entities, the LSCP can be formulated. In order to mathematically state this 

locational optimization model, consider the following notation, in addition to the indices 

(i and j) as used in the vertex p-center problem: 

 

{ }|i ijN j d S= ≤ , i.e., the set of potential facilities j capable of covering/serving 

demand i, where ijd  is the distance from demand i to potential site j and S 

is the effective coverage distance of a facility; 

1, if potential facility site  is selected for placement,
0, otherwise. j

j
v ⎧
= ⎨
⎩

 

 

Using the above notation, the LSCP can be structured as an integer-linear 

formulation (Toregas et al.  1971): 

min j
j

v∑         (2-7) 

subject to  

1
i

j
j N

v i I
∈

≥ ∀ ∈∑        (2-8) 

{0,1}jv j J= ∀ ∈       (2-9) 
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 The objective (2-7) seeks the minimum number of facilities needed to provide 

complete coverage to all demand. The problem is subject to two sets of constraints. 

Constraints (2-8) require that each demand point is covered/served by at least one facility, 

i.e. the distance between each demand point and its closest facility is less than or equal to 

the desired maximal service distance. Constraints (2-9) specify integer requirements on 

location decision variables, jv .  

 

As indicated previously, there is a close relationship between the p-center 

problem and the LSCP. For a study region, suppose the solution to the LSCP, the 

minimum number of facilities for complete coverage, is ps. Constraints (2-8) of the LSCP 

indicate that with the facility configuration corresponding to the LSCP solution, no 

demand point will be farther than the coverage standard S from a facility. In other words, 

the maximal distance between any demand point and the facility from which service is 

provided will not be larger than the specified coverage standard S. In the vertex p-center 

problem, if the number of facilities to be considered is ps, then its solution, the minmax 

distance, must be no longer than S. On the other hand, assume the optimal solution to the 

vertex p-center problem is dp. In the LSCP if the maximal service distance from a facility 

is specified as dp, then the solution to the LSCP will not exceed p. That is, complete 

coverage of all demand is possible with p facilities for a distance standard of dp. 

Therefore, the facility constraint in one of the two models can be treated as a bound on 

the solution to the other.  
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The connection to the LSCP has been utilized in many algorithms for solving the 

vertex p-center problem because the LSCP is less computationally intensive. Minieka 

(1970) proposed an exact solution procedure for the vertex p-center problem by solving a 

series of LSCPs. The algorithm starts with lower and upper bounds on the value of the p-

center objective function. The average of the lower and upper bounds is used as the 

coverage radius to solve a LSCP. If the number of facilities needed to cover all demand 

points at this radius is less than or equal to p, the value of upper bound is reset to the 

coverage radius. Otherwise, the lower bound is reset to the coverage radius plus one. The 

process is repeated until the lower and upper bounds are equal. Similar to Minieka’s 

approach, those proposed by Daskin (2000) and Elloumi et al. (2001) solve successive 

LSCPs and rely on carrying out an iterative search over coverage distances. Daskin 

(2000) solves the LSCP by lagrangian relaxation and uses the set covering model as a 

sub-problem in solving the vertex p-center problem. Elloumi et al.  (2001) find a solution 

to the p-center problem by a greedy heuristic, using the integer programming formulation 

of the LSCP.  Ilhan et al.  (2002) improve Minieka’s algorithm by searching for a tight 

lower bound on the optimal value in an initial phase. Mladenovic et al. (2003) propose 

variable neighborhood and Tabu search heuristics for the p-center problem without the 

triangle inequality. Chen and Chen (2007) present a variant of an existing relaxation 

algorithm. At each step of the algorithm, instead of solving a LSCP, they solve a slightly 

easier problem with the use of the feasibility sub-problem in Ilhan et al. (2002).    

 

In general, these existing approaches to solve the vertex p-center problem involve 

solving a series of LSCP sub-problems. In order to decrease computational effort, it is 
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necessary to reduce the number of sub-problems solved, and most seek to obtain tight 

lower and upper bounds by investigating the constraint sets of the problem (see Ilhan et 

al.  2002; Chen and Chen, 2007). However, this approach is quite limited and inefficient 

in large problem instances (e.g., n = m = 1000 or more). More discussion on this is 

provided in the following section.  

 

 

2.3 Reformulating the vertex p-center problem  

  

The problem size of a discrete location model is determined by the number of 

decision variables and constraints. In the vertex p-center problem defined in (2-1) 

through (2-6), let the number of demand points be n and the number of potential facility 

locations be m. This gives a total of nm m+  variables, including nm demand assignment 

variables and m facility variables in (2-6). The number of constraints is 2 1nm n+ + , 

including one in (2-2), n  in (2-3), nm  in (2-4), and n  in (2-5). For a large p-center 

problem in which 1000n m= = , this adds up to 1,001,000 decision variables and 

1,002,001 constraints. The large problem size would impose tremendous requirements on 

memory storage and processing time for any existing optimization algorithm. There are 

practical limits in using general-purpose software to solve a problem that has so many 

variables and constraints (Church, 2008). Moreover, the vertex p-center problem is NP-

hard, implying that for specific problem instances, optimality may be unlikely to attain 

within reasonable time, similar to the p-median problem discussed in Church (2003; 

2008). This issue can be resolved if the problem is reformulated using significantly fewer 
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variables and constraints without loss of problem properties, including optimality 

(Sorensen and Church, 1996).   

 

The p-center problem and the p-median problem have almost identical constraints. 

The differences between the two model formulations are twofold. First, their objective 

functions are different. The objective of the p-median problem seeks to minimize the total 

weighted distance of all demand assignments. Secondly, integer restrictions on variables 

ijx  are not necessary in the p-median problem. However, the similarity indicates that 

methods for downsizing the p-median problem can be applied to the p-center problem 

with some modification.   

 

Several approaches have been proposed to trim the problem size of location-

allocation models. Rosing et al. (1979) propose aggregating constraints (2-4) into one 

constraints for each facility as follows: 

1
        

n

ij j
i

x ny j J
=

≤ ∀ ∈∑       (2-10) 

This reduces the number of constraints significantly. However, constraints (2-10) 

lack integer friendly properties. In order to preserve such properties, Rosing et al. (1979) 

look to keep constraints (2-4) associated with the k-closest facilities to a given demand. 

This approach does not trim the problem size considerably since the reduction in 

variables is trivial for most applications.   
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Rosing and Revelle (1997) use heuristic concentration to downsize the p-median 

formulation. The possible site set is reduced using a heuristic to identify the nodes called 

a “concentration set”, which they argue is superior to those sites not used generally. The 

use of the concentration set results in a considerably smaller size integer linear 

programming model. However, this approach does not guarantee that an optimal solution 

will actually be found since it is a heuristic. Church (2003) uses the COBRA model to 

reduce the p-median model size by identifying and combining redundant assignment 

variables. But the reduction is limited, which makes it difficult to apply to large problem 

instances.   

 

Hillsman (1979) proposes a strategy to downsize the formulation of a p-median 

model in a way such that for each demand point only demand-facility assignments in 

relatively close proximity and associated variables are represented in the model. The 

rationale for this type of trimming is that in many location models (such as p-median and 

p-center), demand is unlikely to be served by facilities located a large distance away, thus 

demand-facility assignments of greater distance and corresponding variables can be 

eliminated. Hillsman’s method was subsequently used by Densham and Rushton (1992). 

However, Sorensen and Church (1996) show that this approach does not guarantee 

finding the optimal unconstrained p-median solution.    

 

It is possible to use Hillsman’s method for trimming the vertex p-center model 

size while preserving optimality. The key is to find a reasonable cutoff distance. If a 

small distance is selected as a cutoff, then a demand can only be assigned to a few close 
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facility sites. It is possible that the assignments of the demand points far from the 

facilities cannot be represented in the model and hence optimality would not be 

guaranteed. If the cutoff distance chosen is too large, the unlikely assignments of 

demands to facilities located at a longer distance will also be represented in the model 

and model size is not reduced sufficiently.  

 

As indicated previously, the cutoff distance must not be less than the optimal 

solution to the vertex p-center problem. Otherwise optimality would not be maintained. 

Another question to be answered is whether a cutoff distance equal to or larger than the 

optimal solution to the vertex p-center problem ensures optimality. This is assured 

according to the discussion on the relationship between the vertex p-center problem and 

the LSCP in the previous section. This rational gives rise to the following for trimming 

the p-center formulation while preserving optimality.  

 

The vertex p-center problem is reformulated by replacing constraint set (2-1) 

through (2-6) with (2-11) through (2-16) follows: 

 zMin          (2-11) 

subject to: 

1

   
m

j
j

y p
=

=∑         (2-12)  

1        
i

ij
j N

x i I
∈

= ∀ ∈∑        (2-13) 

        , c
ij j ix y i I j N≤ ∀ ∈ ∀ ∈       (2-14) 
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z        
i

ij ij
j N

d x i I
∈

≤ ∀ ∈∑       (2-15) 

{ } { }0,1 , 0,1c
ij i jx i I j N y j J∈ ∀ ∈ ∀ ∈ ∈ ∀ ∈    (2-16) 

where c
iN  is the set of  candidate facility sites within the cutoff distance cS  from 

demand i, i.e. { }|c c
i ijN j d S= ≤ .  

 

(2-11) and (2-12) are identical to (2-1) and (2-2), respectively, while the others 

are different from their counterparts due to the introduction of neighborhood facility 

set c
iN . On the one hand, if the cutoff distance is large enough to cover the whole facility 

set for any demand point, then the new formulation is identical to the original one. On the 

other hand, if the cutoff distance is small and on average c
iN  is a fraction of J, the 

number of variables and constraints will be substantially reduced in the new formulation. 

In order to specify c
iN , we need to obtain a reasonable cutoff distance that does not hinder 

the optimal solution to the p-center problem from being identified. This can be achieved 

by solving a number of LSCPs as follows: 

 

FINDCUTOFF(S0, λ ) 

1) Start with a small effective coverage distance S0 and solve the LSCP.  

2) If the solution to the LSCP, the minimum number of facilities needed for 

complete coverage, is larger than p, increase Si  by λ , i.e. 1i iS S λ+ = + , and 

solve the LSCP with 1iS + .  

3) Otherwise, stop. 
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 The initial value S0 can be determined in a simple way: compute the radius of a 

circle whose area is equal to 1/p of the total area of the region. Since the cutoff distance 

does not need to be precise, the step sizeλ  can be relatively large so that the number of 

iterations is small.  

 

 

2.4 Application and results 

 

To demonstrate the effectiveness of the solution procedure proposed in Section 3 

for solving the vertex p-center problem, an application to siting emergency warning 

sirens in a central Ohio city is detailed.  Figure 2.1 shows the study area, Dubin, Ohio, a 

northwestern suburb of the city of Columbus, Ohio. This region was utilized in Current 

and O’Kelly (1992), Murray and O’Kelly (2002) and many others.  

 

We will consider discrete representations of regional demand and potential 

facility location in this study. The location space is represented through the use of 

regularly spaced points. Three grid patterns are considered, which are the same as used in 

Murray and O’Kelly (2002), and are shown in Figure 2.2. The spacing values, R, were 

chosen from 200m to 450m in 50m increments, giving six representations for each grid 

representation. This results in 18 regularly spaced representations of the study region. We 

use these same 18 discrete representations for both service demand and potential facility 

locations.  
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Figure 2.1: The City of Dublin, Ohio 
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Figure 2.2 (a-c). Alternative grid representations 

a: Regular spacing. b: Offest regular spacing. c: geometrically associated spacing 

(Source: Murray and O’Kelly, 2002) 
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The analysis was carried out on a personal computer with a Xeon 3.00GHz 

processor and 2.0 GB of RAM. ArcView GIS version 3.2 was utilized to manage and 

manipulate data layers including spatial layers of the service demand, potential facility 

locations, and coverage or spatial proximity. The optimization problems (the LSCP and 

the vertex p-center problem) were programmed in ArcView with Avenue and written to a 

text file. The text file was read in and the problem was solved using ILOG CPLEX 

version 10.1.1, a commercial optimization software package. Results were exported from 

CPLEX and read into ArcView for display and analysis.  

 

The value of p to be considered was chosen as 25. There are several reasons for 

selecting this value. First, previous research has found that 24 to 26 sirens with effective 

service radius of 976m would be needed to provide complete service coverage to the 

Dublin region (Murray et al.  2008). Secondly, from an operational point of view, the 

approach of variable reduction described previously is more effective for a relatively 

large value of p. Moreover, the result based on this value facilitates further study and 

discussion in following chapters. 

 

A cutoff distance first needs to be determined. This requires solving a small 

number of LSCPs using the algorithm FINDCUTOFF. The Dublin region is about 45.88 

square kilometers in size, which is equivalent to the total area of 25 circles with a radius 

of (45.88/25)/ 0.764π = km, i.e., 764m. Considering the region is relatively compact 

and unavoidable overlapped area between service coverage will be encountered, we 

chose 800m as a starting value for the algorithm. The increment was selected as 100m. In 
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all cases, the algorithm stopped after only two or three iterations. This indicates that for 

some representations, 25 facilities with radius of 900m are sufficient to cover the whole 

region, while other representations require 25 facilities with a larger service radius for 

complete coverage. So the cutoff distance could be chosen as 900 m or 1000 m for the 

corresponding situations. The results were consistent with those of Murray and O’Kelly 

(2002): for a service radius of 976 m, 19 to 25 warning sirens were needed to completely 

cover the same region using various regularly spacing representations. For the purpose of 

simplicity and comparison, a cutoff distance of 1000m was chosen for all regular spacing 

representations, which assures the existence of an optimal solution to the p-center 

problem for 25p = .  

 

The cutoff distance of 1000m was then applied to reformulate the p-center 

problem. Table 2.1 to 2.3 reports the results of variable deduction using regular spacing, 

offset regular spacing and geometrically associated spacing representations depicted in 

Figure 2.2. The first column is the discrete representation utilized for demand and 

potential facility sites. This is followed by the number of variables and constraints in 

original form defined in (2-1) through (2-6) and that in reduced form reformulated in (2-

11) through (2-16). For all spatial representations, the reduction of problem size was 

substantial. Approximately 94% of the variables and constraints were detected as 

unnecessary or redundant and thus removed from the formulation. In other words, about 

6% of the variables and constraints are sufficient to represent all characteristics of the 

corresponding p-center problem, and thus contain all information needed for solving the 

problem.  
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R values n (m) Variables Constraints 
Reduced 
variables 

Reduced 
constraints 

200 1,148 1,319,052 1,320,201 77,782 (5.9%) 78,931 (6.0%)
250 731 535,092 535,824 30,450 (5.7%) 31,182 (5.8%)
300 494 244,530 245,025 15,300 (6.3%) 15,795 (6.4%)
350 365 133,590 133,956 7,858 (5.9%) 8,224 (6.1%)
400 290 84,390 84,681 5,420 (6.4%) 5,711 (6.7%)
450 218 47,742 47,961 2,584 (5.4%) 2,803 (5.8%)
 

Table 2.1: Variable deduction using regular spacing representation 

 

R values n (m) Variables Constraints 
Reduced 
variables 

Reduced 
constraints 

200 2,291 5,250,972 5,253,264 305,692 (5.8%) 307,984 (5.9%)
250 1,467 2,153,556 2,155,024 123,818 (5.7%) 125,286 (5.8%)
300 1,010 1,021,110 1,022,121 58,324 (5.7%) 59,335 (5.8%)
350 747 558,756 559,504 31,098 (5.6%) 31,846 (5.7%)
400 574 330,050 330,625 18,160 (5.5%) 18,735 (5.7%)
450 448 201,152 201,601 11,282 (5.6%) 11,731 (5.8%)

 

Table 2.2: Variable deduction using offset regular spacing representation 

 

R values n (m) Variables Constraints 
Reduced 
variables 

Reduced 
constraints 

200 1,322 1,749,006 1,750,329 100,712 (5.8%) 102,035 (5.8%)
250 844 713,180 714,025 43,262 (6.1%) 44,107 (6.2%)
300 585 342,810 343,396 18,648 (5.4%) 19,234 (5.6%)
350 430 185,330 185,761 11,364 (6.1%) 11,795 (6.3%)
400 329 108,570 108,900 5,584 (5.1%) 5,914 (5.4%)
450 264 69,960 70,225 4,452 (6.4%) 4,717 (6.7%)

 

Table 2.3: Variable deduction using geometrically spacing associated representation 
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The reformulated p-center problems were solved using CPLEX. The application 

results are presented in Table 2.4 to 2.6 using the three representations for potential siting 

locations and regional demand. The first column is the discrete representation utilized. 

The next three columns indicate CPLEX solution characteristics for solving the 

associated p-center problem: Iterations, Nodes, Gap, and Time (in seconds). Gap 

represents the distance from the objective function value to the current best MIP bound. 

The last column shows the mixed integer programming (MIP) solution, the value of the 

objective function found. CPLEX was forced to stop solving the problem when no 

significant improvement was found within a large amount of time indicated in the Time 

column.  

 

In four cases, no feasible MIP solution was attained within 20 hours, including R 

= 200m for all three representations and R = 250m for the offset spacing representation, 

which is the most spatially expansive among the three representations. Optimal or near-

optimal solutions were obtained for only two cases, R = 450m regular spacing and R = 

400m geometrically associated spacing representations. With a large positive Gap value, 

the solutions in other cases are feasible and whether they are optimal is unknown. As 

expected, none of the solutions are larger than 1000, the cutoff distance. The original p-

center problems with large R values (450m, 400m and 350m) were also solved using 

CPLEX. CPLEX was allowed to run for 20 hours, much longer than for their counterparts 

in reduced form. Feasible MIP solutions were obtained for only a few cases when R = 

450m and R = 400m using regular spacing and geometrically associated spacing 

representations. Moreover, the MIP solutions were not better than those for reduced form 
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formulation. This somehow implies that reformulated models well preserve the 

characteristics of the p-center problem.  

 

 

R values Iterations Nodes Gap Time Objective
200 3,221,449 210 Inf 83,726 NA
250 26,713,297 10,581 40.38% 163,400 1,000.0
300 15,717,785 17,595 38.32% 47,968 948.7
350 32,467,547 49,497 38.90% 43,443 989.9
400 60,430,473 182,763 30.87% 44,897 894.4
450 5,415,634 27,860 0.01% 2,392 900.0

 

Table 2.4: p-center solutions for the regular spacing representation 

 

R values Iterations Nodes Gap Time Objective
200 NA NA NA NA NA
250 3,268,888 60 Inf 84,188 NA
300 3,986,607 340 36.51% 77,736 948.7
350 39,520,082 13,885 38.89% 161,462 989.9
400 3,549,197 1,669 32.56% 14,981 894.4
450 5,932,159 7,532 36.61% 13,966 954.6

 

Table 2.5: p-center solutions for the offset regular spacing representation 

 

R values Iterations Nodes Gap Time Objective
200 2,577,934 120 Inf 84,013 NA
250 6,945,719 750 40.46% 82,436 1,000.0
300 772,742 262 33.94% 2,074 900.0
350 4,563,954 4,634 35.82% 13,385 926.0
400 3,271,557 4,145 0.00% 3,283 800.0
450 17,578,310 72,467 32.71% 13,621 900.0

 

Table 2.6: p-center solutions for the geometrically associated spacing representation 
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2.5 Summary 

 

This chapter explored a simple but effective approach for solving large vertex p-

center problem. By introducing a neighborhood facility set, the p-center problem can be 

reformulated such that redundant variables and constraints are removed but 

characteristics including the optimality of the problem are preserved. In the application to 

Dublin region, the problem size of the reformulated model was substantially smaller than 

in the original form. This enabled the use of general-purpose optimization software (e.g. 

CPLEX) to solve large vertex p-center problems in which the number of vertices was 

over 1000. This number is larger than that of any recent work on the vertex p-center 

problem attempting to find an optimal solution, as far as we know. On the other hand, a 

finite set of regularly spacing points is used to approximate the region. Theoretically, the 

smaller grid size used to discretize the region, the better the solution. However, this 

would require more intensive computational efforts. More discussion on spatial 

representation and its effect on model solution will be provided in subsequent chapters. In 

particular, the results for the vertex p-center problem are to be used as a benchmark for 

its continuous space counterpart. This is to evaluate the effect of discretizing continuous 

location space.    
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CHAPTER 3 

 
CONTINUOUS SPACE P-CENTER PROBLEM1 

 

 

3.1 Introduction 

 

The p-center problem, a location-allocation model, seeks to locate p facilities such 

that the maximum distance from any demand site to its closest service facility is 

minimized. This minimax model has been proposed for public facility planning and 

emergency services management, such as EMS and fire protection (Love et al.  1988, 

Daskin, 1995).   

 

It is well-known that the discrete p-center problem is NP-hard (Daskin, 1995), 

while the continuous or planar counterpart is at least as difficult to solve given that it 

assumes demand is distributed throughout an area and potential facilities can be located 

anywhere in the analysis region. It is impossible to enumerate all demand locations and 

potential facility sites in the continuous case. Thus, it is difficult to extend traditional 

discrete methods for solving the continuous space p-center problem. Attempts have been 

                                                 
1 This chapter is based upon a paper, “Solving the continuous space p-centre problem: planning application 
issues,” published in IMA Journal of Management Mathematics (17) and co-authored with Dr. Alan T. 
Murray and Dr. Ningchuan Xiao.   
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made to efficiently solve this problem heuristically. However, some limiting conditions 

are assumed in the use of heuristics.   

 

Suzuki and Okabe (1995) propose a Voronoi diagram heuristic to solve the 

continuous space p-center problem. The heuristic iteratively computes a Voronoi diagram 

using p generator points and moves those p points to the centers of resulting Voronoi 

polygons. This process continues until center locations do not change. Several 

simplifying assumptions for applying the Voronoi diagram heuristic are established by 

Suzuki and Okabe (1995): demand is assumed uniformly distributed; the region is 

assumed to be a rectangle; analysis of a simple Voronoi polygon in solving associated 1-

center problems is assumed; and, no restrictions on potential facility locations are 

assumed. The degree to which these are potentially problematic for practical applications 

is unknown.  

 

This chapter addresses application oriented issues in solving the continuous space 

p-center problem in support of practical planning concerns. The next section reviews 

research related to the p-center problem and the Voronoi diagram heuristic. Section 3.3 

addresses associated practical issues. Section 3.4 explores the complexity of solving the 

continuous space p-center problem, which is followed by the presentation of a spatially 

restricted version of the p-center problem and methods proposed for solving it. 

Application results are presented in Section 3.5. Finally, a discussion and concluding 

comments are provided.      
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3.2 Continuous space p-center problem 

 

The continuous space p-center problem may be formally stated as follows 

(Megiddo and Tamir, 1983; Suzuki and Drezner, 1996):  

}}),(min{max{min
),(,...,2,1,)ˆ,ˆ(

yxd jjAyxpjAyx jj ∈=∈
          (3-1) 

where 

A = analysis region; 

p = number of facilities to be located; 

(x, y) = positional reference to a demand location, i.e. Ayx ∈),( ; 

)ˆ,ˆ( jj yx  = geographic coordinates of facility j; and  

),( yxd j  = distance from demand location (x, y) to facility j. 

 

This problem implicitly assumes uniformly distributed demand. The objective of 

the continuous space p-center problem is to site p “centers” in the plane so as to minimize 

the maximum distance between any location in A and its nearest center. Again, centers 

could represent any kind of service facility, public or private, such as a fire station, retail 

outlet, or a warning siren. The problem involves determining the best location for each 

facility. The optimal solution, )ˆ,ˆ( 11 yx , … , )ˆ,ˆ( pp yx , is called a p-center and the 

corresponding longest distance to the closest center is called the p-radius (Megiddo and 

Tamir, 1983). p circles with their centers positioned at )ˆ,ˆ( jj yx  and radius equal to the p-

radius will necessarily enclose (or cover) the entire region A, if measured by Euclidean 

distance. Therefore, the continuous p-center problem is equivalent to finding p equal 
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circles with the smallest possible radius to cover every point in A (Suzuki and Drezner, 

1996).  

 

 

3.2.1 The 1-center problem 

As the simplest case of the continuous space p-center problem, the 1-center 

problem (p = 1) has received much attention. Solving the 1-center problem involves 

determining where a circle with minimum radius should be placed in order to cover the 

entire region. This covering circle is variably referred to as a minimum circle (Hearn and 

Vijay, 1982), minimum spanning circle (Oommen, 1987), smallest enclosing circle (Xu 

et al.  2003), smallest enclosing disc (Welzl, 1991), or a minimal covering circle (MCC) 

(Plastria, 2002). With the assumption that A is a polygon, locations defining the boundary 

of A are often referred to as vertices of A. A circle that covers all the vertices of A 

necessarily covers A. Hence, an approach for solving the continuous space 1-center 

problem can focus on only the vertices of A. Efficient algorithms for solving the 1-center 

problem have been developed, including the work of Elzinga and Hearn (1972), Hearn 

and Vijay (1982), Oommen (1987), Welzl (1991), and Plastria (2002).  

 

 

3.2.2 Voronoi diagram 

The more general continuous space p-center problem remains a challenge to solve. 

The ability to address this problem has been limited by analytical capabilities associated 

with geometric computation (Suzuki and Okabe, 1995). However, progress in 
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computational geometry, particularly the development of efficient algorithms for 

constructing the Voronoi diagram, has enabled researchers to address this problem using 

heuristic techniques. Recent work includes that of Suzuki and Okabe (1995), Suzuki and 

Drezner (1996), Okabe and Suzuki (1997), and Plastria (1995, 2002). In particular, 

Suzuki and Okabe (1995) developed a Voronoi diagram based heuristic to solve the 

continuous p-center problem. 

 

A Voronoi diagram is a spatial tessellation of the plane. Given a finite set of p 

points in the plane, P = {p1,…, pp}, the two dimensional space can be partitioned such 

that each location is associated with its closest member of the point set P (as measured by 

Euclidean distance). The tessellation of the plane consists of a set of polygons, V = 

{V1,…, Vp}, each of which is associated with the corresponding point in P. This 

tessellation is called the Voronoi diagram, the polygons constituting the diagram Voronoi 

polygons, and each member of P is called a generator or generator point. The boundary 

shared by two Toronoi polygons is a Voronoi edge, and the point where three or more 

Voronoi edges meet is a Voronoi point (Okabe et al.  2000). Voronoi edges and Voronoi 

points have a number of special characteristics, which have been used to develop efficient 

algorithms in many locational optimization applications. Figure 3.1 shows an example of 

a Voronoi diagram with generator points bounded by a rectangle. It can be seen that most 

of Voronoi points are the points where exactly three Voronoi edges meet. This is called a 

non-degenerate case (Okabe et al.  2000). 
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Figure 3.1: Voronoi diagram 

 

 A simple, but important, characteristic can be observed from the definition of a 

Voronoi diagram. If location (x, y) is in Voronoi polygon Vi, then pi is the nearest 

generator to this location (Suzuki and Okabe, 1995). For service facilities sited at 

generator points, the Voronoi polygons (V) represent closest-assignment service areas. 

Given this property, the Voronoi diagram has been suggested as a tool for solving many 

continuous space location problems. Okabe and Suzuki (1997) reviewed a class of 

location optimization problems that can be solved using the Voronoi diagram, including 

the continuous space p-median problem and p-center problem.  
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3.2.3 Voronoi diagram based heuristic 

The p-center problem is a non-convex optimization problem and it is challenging 

to find its global optimum. Several heuristic solution methods have been developed to 

provide near-optimal solutions. These include the Voronoi diagram based heuristic 

method developed by Suzuki and Okabe (1995).  

 

In the p-center problem we wish to find a configuration of p facilities that give the 

minimum value of the maximum distance among the distances between users and their 

nearest facility, i.e., p-radius. Stated differently, we wish to find a configuration of the 

centers of p disks that cover the region whose radius is the smallest. Suppose a user 

chooses the closest service facility. Given a configuration of p facilities and 

corresponding Voronoi diagram, it is easy to see that a user in the ith Vororoi polygon, Vi, 

uses the ith facility, pi, because it is the closest facility. Since a Voronoi polygon is 

convex, among the users in Vi, a user whose distance is the longest from pi is located at 

the boundary of Vi. The maximum of the objective function (3-1) is hence achieved at 

one of the Voronoi points or a point on the region’s boundary. Note that the minimum of 

the longest distance to a point in a polygon is attained at the center of the polygon. Hence, 

in a near-optimal configuration of the p-center problem, each facility is placed near the 

center of its Voronoi polygon. This is underlying theory of the Voronoi diagram based 

heuristic (VDH) to solve the continuous space p-center problem. The heuristic method 

consists of following steps (Suzuki and Okabe 1995): 

 

1) Generate p centers randomly in A as an initial configuration of location sites. 
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2) Construct the Voronoi diagram generated by the p centers. 

3) Compute the center of each Voronoi polygon (a 1-center problem). 

4) If no center has moved more than a pre-specified tolerance distance, or the 

maximum number of iterations is exceeded, stop. Otherwise, go to Step 2. 

 

The maximum distance between the generator points (facility locations) and the 

vertices of the associated Voronoi polygons is the maximum distance from a user to its 

closest center. The maximum distance decreases as the centers disperse in subsequent 

iterations. Since the p-center problem is a non-convex optimization model, a local 

minima will be identified by this heuristic upon termination. Suzuki and Okabe (1995) 

indicate that the quality of a heuristic solution depends on the initial configuration used in 

Step 1, so they suggest repeating the above process many times with different initial 

center configurations. Suzuki and Drezner (1996) apply this heuristic to a unit square 

with different p values, followed by a “finishing-up” algorithm to improve convergence 

of the maximum distance.  

 

Worth noting is that the VDH requires a Voronoi diagram to be derived at each 

iteration. Thus, an efficient computational method for constructing the Voronoi diagram 

is critical. Fortunately, a number of algorithms for constructing a Voronoi diagram have 

been developed in computational geometry (Okabe et al.  2000). Major methods include 

the plane sweep method, the divide-and-conquer method and the incremental method. 

The computational time of the divide-and-conquer method is 2( )O p  in the worst case 

and ( log( ))O p p on the average where p is the number of generate points.  
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3.3 Practical issues 

 

Except for uniformly distributed demand, there are three assumptions implicit to 

the VDH for solving the continuous space p-center problem. First, region A is a rectangle 

(or a square). Although Suzuki and Drezner (1996) suggest that there are no restrictions 

on the shape of region A, the VDH is applied to a unit square. Second, a simple Voronoi 

polygon is assumed for the 1-center problems to be solved. The average number of 

vertices for Voronoi polygons is suggested as being approximately six in Suzuki and 

Drezner (1996), but can be significantly more for a non-rectangular region. Finally, there 

is no restriction on center locations. Facilities can be located anywhere in the plane. The 

only restriction in the work of Suzuki and Drezner (1996) is that the initial p centers are 

located in A. With the convexity assumption of A, centers will never migrate outside A in 

the Voronoi diagram heuristic. An important question is what are the implications of 

these simplifying assumptions for complex planning regions. Each of the three 

assumptions is now explored in more detail.   

 

It is generally the case that A is non-convex, possibly with holes. This means that 

one or more Voronoi polygons would necessarily be non-convex. Figure 3.2 shows an 

example of a non-convex region with holes where all four Voronoi polygons are non-

convex.  
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Figure 3.2: A non-convex region  

 

An important issue that arises from the non-convexity of A, and associated 

Voronoi polygons, is that a large number of vertices may be encountered during the 

iterations of the VDH, in which the computation of 1-center solutions must be conducted 

thousands, if not more, times. The non-convexity of A, therefore, will significantly 

increase the computational time of the VDH. Thus, solving 1-center problems must be 

computationally efficient if the VDH is to be successful. For example, the left-most 

Voronoi polygon in Figure 3.2 contains more than 50 vertices. The MCC (solution to the 

1-center problem) is uniquely defined by two or three of the vertices that lie on the circle. 

A naïve method for finding the MCC is to construct all possible circles and choose the 

smallest one that covers all the vertices. With time complexity of )( 3nO  this would 

require examining over 10,000 circles in this case for a relatively small number of 
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vertices. This quickly becomes burdensome in an iterative process, and suggests practical 

limits for solving planning problems. That is, the heuristic might not be able to be applied 

to a complex region unless an efficient approach is utilized.  

 

The final practical issue to be examined is the unrestricted nature of facility 

location in the VDH. The reality of facility siting is that feasible or suitable locations for 

centers may be restricted to A, or sub-regions of A. In this case, the VDH cannot be 

directly applied since a solution may be outside of A. In Figure 3.2, as an example, the 

VDH solution demonstrates this issue. The four dots are the centers created by the VDH 

that does not consider the non-convexity of the area, and the left-most center is not in the 

region. The configuration of these four centers, therefore, is not feasible when their 

locations must be in the region.  

 

 

3.4 Refining the p-center formulation  

 

The issue of region non-convexity does not by itself create a problem in (3-1) nor 

the VDH to solve it. Since the facilities can be located anywhere, this is an unconstrained 

problem and the maximum distance to the facilities converges as the facilities disperse 

more and more evenly in the iterative process. However, we will see that non-convexity 

underlies confounding complexity and feasibility problems.  
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3.4.1 Exploring complexities  

With regard to the issue of complex Voronoi polygons, the implication is that a 

computationally efficient approach is necessary for solving associated 1-center problems. 

The method developed by Welzl (1991) is a good choice. Welzl’s approach is a simple, 

but ingenious, randomized incremental method for finding the MCC. The algorithm 

grows the MCC point by point. A unique circle is initially defined by the first two distinct 

points forming its diameter. At each step, a new vertex is considered. If it lies outside the 

current circle, then the circle must be enlarged with the constraint that this new point is 

on the circle perimeter. The algorithm terminates after a finite number of steps since each 

successively constructed circle increases in size. It has proven to be computationally 

efficient with time complexity of ))log(( nnO , where n is the number of vertices. 

Moreover, Welzl’s method is simple to implement in a geographic information systems 

(GIS) environment. As an example, compared to the naïve method to find the MCC for 

the left-most Voronoi polygon in Figure 3.2, the Welzl approach needs to examine only 

about 60 circles to optimally solve the MCC. This is a reduction in computational effort 

of approximately 160 times!  

 

The issue of solution space feasibility complicates the original problem, (3-1), and 

the Voronoi diagram heuristic. Restricting feasible facility locations in the p-center 

problem makes sense, but actually defines a slightly different optimization problem. Such 

a constrained problem may be formulated as follows:  

}}),(min{max{min
),(,...,2,1,)ˆ,ˆ(

yxd jjAyxpjSyx jj ∈=∈
     (3-2) 
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where S represents the feasible siting region. Imposing constraints on )ˆ,ˆ( jj yx  is the only 

difference from the original formulation. If S is equivalent to A and A is convex, the two 

problems, (2.4) and (2), are identical. In the cases when S is not equivalent to A or A is 

non-convex, the problems are structurally different. 

 

Plastria (2002) suggests an approach to determining the constrained MCC 

(CMCC) for a set of points {Pi}. If the MCC solution does not lie in S, the optimal site of 

the CMCC can only be “… either a point of S closest to some point Pi, and then Pi lies on 

the CMCC, or the point of intersection of the bisector of two points Pi and Pj with the 

boundary of S, closest to Pi and Pj, and then both Pi and Pj lie on the CMCC” (Plastria, 

2002). This argument is problematic for non-convex regions, however. One counter 

example is shown in Figure 3.3, where P1, P2, and P3 are three points lying on the 

boundary of the feasible region, S (i.e., the shaded area). b1, b2, and b3 are three bisectors 

of these three points. According to the method proposed by Plastria (2002), the center of 

the CMCC that covers all the three points (P1, P2, and P3) must be either one of the 

vertices at P1, P2, or P3, because they are points of S closest to Pi, or one of N1, N2, and N3 

because each of N1, N2, and N3 is the point of intersection of the bisector with the 

boundary of S closest to the two points that form the bisector. The covering circles would 

be one of three circles centered at P1, P2, or P3 with zero radii (i.e., Pi itself) or the three 

circles centered at N1, N2, and N3, as shown in Figure 3.3. None of these circles cover all 

three vertices, and hence they are not the CMCC. The CMCC should be the circle 

centering at C1 and P1 and P3 lie on the circle, computed by the algorithm developed in 

next section. In this case, C1 is one of the points of intersection of the bisector b2 with the 
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boundary of S. For comparison, Figure 3.3 also shows the MCC with its center at C0 and 

all three points lying on the circle.  

 

 

Figure 3.3: Constrained MCC (CMCC) 
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3.4.2 Extension to the VDH 

Extending the VDH to solve the contained p-center problem is a logical approach. 

An issue in (3-2) is that facilities must be in S. One way to approach this in the 

framework of the VDH is to focus on the 1-center sub-problems. This means that a 

constrained 1-center problem would need to be solved, where solution feasibility is 

maintained. A circle solving this constrained 1-center problem would then be a 

constrained minimum covering circle (CMCC), as discussed above. Based on the CMCC, 

the constrained Voronoi diagram heuristic (CVDH) for solving the constrained p-center 

problem, (2), is summarized as follows:  

 

1) Generate p centers randomly in S as an initial configuration of location sites. 

2) Construct the Voronoi diagram generated by the p centers. 

3) Compute the CMCC for each Voronoi polygon such that Syx jj ∈)ˆ,ˆ(  for all j. 

4) If no center has moved more than a pre-specified tolerance distance, or the 

maximum number of iterations is exceeded, stop. Otherwise, go to Step 2. 

 

The important issue in the CVDH is to solve the CMCC in Step 3, which is the 

only difference from the original VHD. There are properties of the CMCC that will prove 

useful in developing a solution approach.  

 

Property 1: For a polygon with a set of vertices {Pi} and feasible region S, the 

CMCC is one of two cases:  
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Case (a): The CMCC is equal to the MCC, with its center lying in S, and it’s 

defined by two vertices forming a diameter or three vertices forming an acute 

triangular.  

Case (b): The CMCC is larger than the MCC, with its center lying on the 

boundary of S.  

 

Proof: Case (a) defines the MCC, where facility sites are unconstrained and 

satisfy solution space feasibility. Case (b) states that the CMCC cannot be smaller than 

the MCC. Imposing the siting constraint must result in a larger covering circle being 

required. Moreover, there are at most two vertices lying on the CMCC in case (b). 

Otherwise if three or more vertices lie on the circle, this would be the MCC, which it is 

not. ■ 

 

In order to prove case (b), a second property is necessary:    

 

Property 2: When the CMCC lies on the boundary of S, it is defined by one of 

two possible cases: 

 

Case (i): The CMCC is defined by one vertex (Pi) and its center is one of the 

closest points of boundary line segments of S to Pi.  

Case (ii): The CMCC is defined by two vertices (Pi and Pj) and its center is one of 

the points of intersection of the bisector defined by Pi and Pj with the 

boundary of S.  
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Proof: We first consider case (i) of one vertex (Pi) lying on the CMCC centered at 

C. The radius of the CMCC is then d(Pi, C). If C is not on the boundary of S, moving C 

along the direction from C to Pi would result in a smaller d(Pi, C), and hence a smaller 

covering circle. This is a contradiction with assumption that the covering circle defined 

by Pi centered at C is smallest.  

 

Case (ii) of only two vertices (Pi and Pj) defining the CMCC (with its center at C) 

is more complicated. The radius of the CMCC is d(Pi, C) = d(Pj, C). If Pi and Pj forms 

the diameter of the CMCC, the CMCC is the same as the MCC. Otherwise, C must be on 

the bisector of Pi and Pj. If C is not on the boundary of S, moving C along the bisector in 

the direction closer to both Pi and Pj would result in a smaller d(Pi, C), and hence a 

smaller covering circle. This contradicts the assumption that the covering circle defined 

by Pi and Pj centered at C is smallest. Therefore, the center of the CMCC in case (b) of 

property 1 must be on the boundary of S. Suppose the center is on a line segment of the 

boundary, it must be the closest point of this segment to the one or two vertices defining 

the CMCC. ■  

 

An example of case (i) of property 2 is illustrated in Figure 3.4 where P1, P2, and 

P3 are three demand points lying on S. The center of the CMCC, C1, lies on the line 

segment L1. P1 is the only demand point lying on the CMCC. Each line segment of the 

boundary of S has a closest point to P1. C1 is such a point (the closest point of L1 to P1). 

Figure 3.5 shows an example of case (ii) where the CMCC is centered at C1 with two 
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demand points, P1 and P3, lying on the circle. C1 is one of the points of intersection of the 

bisector defined by P1 and P3 with S.  

 

 

 

 

Figure 3.4: The CMCC with one point lying on the CMCC 
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Figure 3.5: The CMCC with two points lying on the CMCC 

 

Given these properties, solving the CMCC can be accomplished as follows: 

 

1) Solve the unconstrained problem, yielding the MCC. If the center of the MCC 

is in S, stop; the solution to the CMCC has been found.  

2) Compute the convex hull of the demand region.  

3) Evaluate all vertices  ˆ{ }iP of the convex hull in turn. For each iP̂ , find its 

closest point on each line segment of the boundary of S, namely Xj. If 

),ˆ( ji XPd  is larger than the MCC radius, then consider the new circle 
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centered at Xj with a radius ),ˆ( ji XPd . If this is a covering circle, save it as a 

possible candidate CMCC.  

4) Evaluate all pairs of vertices of the convex hull. For each pair, iP̂  and jP̂ , 

construct its bisector. Let }{ intX  be the points of intersection (if they exist) of 

this bisector with the boundary of S. If ),ˆ( intXPd i  is larger than the MCC, 

take the circle centered at Xint with radius ),ˆ( intXPd i  = ),ˆ( intXPd j . If this 

circle is a covering circle, save it as a possible candidate CMCC.  

5) The CMCC is the smallest circle among the candidate circles found in steps 3 

and 4. 

 

This algorithm evaluates all vertices on the convex hull since the covering circle 

for the hull is the same as that for the original shape. Computational time complexity of 

constructing the convex hull for a shape with n vertices is ))log(( nnO . Moreover, the 

algorithm does not check all possible circles with one or two vertices on the circle to 

examine if they are covering circles; instead, only those that are larger than the MCC are 

examined. If a circle is smaller than the MCC, it is not a covering circle.  
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3.5 Analysis results 

 

Again, our study area is Dublin, Ohio, as shown in Figure 2.1. The study region is 

a non-convex polygon with holes and an irregular boundary. The VDH and CVDH 

approaches are first evaluated for solving the associated p-center problems. The analysis 

was carried out on a Pentium IV 3.2 GHz personal computer running Windows XP with 1 

GB RAM. ArcView GIS version 3.2 was utilized to manage and manipulate data layers 

and derive Voronoi diagrams. The VDH and the CVDH were implemented using the 

Avenue script language provided in ArcView GIS.  

 

The performance and solution quality of the heuristics were first evaluated based 

on the solutions for the p value of 25. For this p value, both the VDH and the CVDH 

were applied 50 times with different randomly generated initial siren locations. A 

tolerance of 2.0=ε  meters was used in assessing facility convergence. A maximum 

number of iterations was established at 200.   

 

Initially the VDH was applied for the p value of 25. Although the p centers are 

forced to be within the polygon boundary in Step 1, there are no restrictions on the 

locations of the p centers in subsequent steps of the VDH. Solution time for the VDH was 

1.2 hours (time for all 50 applications). The average maximum radius for 50 runs was 

981.3 meters, with a minimum of 971.8 meters. The results indicate that the maximum 

radius of covering circles always strictly converges. This implies that the performance of 

the VDH is rather stable. However, computational experience indicates a major problem 
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with the VDH approach when a non-convex study area is evaluated, that is, facilities are 

not ensured of being in the region as no constraints enforce this.  

 

The CVDH was also applied to the study region for the p value of 25. Facilities 

are restricted to be in the demand region. Solution time in this case was 2.9 hours to 

complete all 50 runs. As for the VDH, the maximum radius of covering circles for the 

CVDH always strictly converges. The average maximum radius for 50 runs was 983.5 

meters, with a minimum of 973.6 meters, slightly larger than that from the VDH. The 

results imply that the CVDH is successful in terms of performance stability, although it is 

more time consuming. 

 

The performance of the heuristic was further evaluated through the comparison 

with the results from solving the vertex p-center problem by discretizing space discussed 

in Chapter 2. The comparison is based on the solutions for the p value of 25. In terms of 

computational time, it took the CVDH about 210 seconds to complete one run, i.e. return 

a local optima, while the solution time for the discrete p-center problem was hours in 

most cases (see Tables 2.4 to 2.6). In order to compare solution quality, we assessed the 

minmax distance on the continuous space of regional demand for both situations. For the 

discrete case, the objective function value shown in Tables 2.4 to 2.6 was evaluated in the 

case of discrete demand and facility locations. The actual minmax distance for 

continuous demand was obtained in several steps with the use of ArcView GIS. First the 

facility configuration for the vertex p-center problem was used to compute a Voronoi 

diagram, the maximal distance from each facility to the boundary of the corresponding 
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Voronoi polygon was computed, and the minimum is the actual minmax distance. Table 

3.1 shows the results using regular spacing, offset regular spacing and geometrically 

associated spacing representations for regional demand. The column Actual is the actual 

minmax distance and the column Error is the difference from the objective function 

value. Note that the errors for all discrete representations are positive, indicating that the 

assumption of discrete space results in underestimate of the minmax distance in 

continuous space. In general, the error increased with R spacing value, i.e. with the 

degree of abstraction of the space. The actual minmax distance for the continuous 

solution from the CVDH (973.6m) was much smaller than that for any case of 

discretization. The results indicate that the CVDH is an efficient and effective approach 

in solving the p-center problem, in terms of not only computational time but also solution 

quality.    

 

 

Regular Geometrically Offset regular 
R values Actual Error Actual Error Actual Error 

200 NA NA NA NA NA NA
250 1,173.22 173.22 1,282.37 282.37 NA NA
300 1,304.63 355.93 1,168.05 268.05 1,111.00 162.30
350 1,378.41 388.51 1,296.75 370.75 1,246.04 256.14
400 1,257.74 363.34 1,226.57 426.57 1,195.79 301.39
450 1,337.07 437.07 1,852.17 952.17 1,371.69 417.09

 

Table 3.1: Actual minmax distance and absolute error for the vertex p-center problem 
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3.6 Application 

 

The continuous space p-center problem was then utilized for siting emergency 

warning sirens in the region. The objective is to determine the minimum number of 

emergency warning sirens and their locations to provide complete coverage of the city, 

similar to that of Current and O’Kelly (1992) and Murray et al. (2005). This is important 

because of the relatively high cost of purchasing and maintaining sirens. The maximum 

effective range of the omni-directional siren considered here is 976 meters. As shown in 

Figure 5, the study region is a non-convex polygon with holes and an irregular boundary.  

 

Murray et al. (2005) report the use of the p-center problem to ensure complete 

regional coverage with the fewest facilities by incrementally increasing p until the 

resulting maximum closest distance to a facility is less than or equal to an established 

coverage standard. Given this, the p-center problem is solved for various values of p in 

order to find a configuration of warning sirens that provides complete regional coverage. 

The VDH and CVDH approaches are evaluated for solving the associated p-center 

problems. The value of p was incrementally increased from one. For each p value, both 

the VDH and the CVDH were applied 50 times with different randomly generated initial 

siren locations. The tolerance value was 2.0=ε  meters and a maximum number of 

iterations was 200.   

 

Initially the VDH was applied for siting sirens. Complete regional coverage is 

achieved when 25 sirens are sited (i.e., p = 25). Figure 3.6 illustrates a solution for 
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complete coverage. In this case there are two facilities outside city boundary. The CVDH 

was also applied to the Dublin region for siren siting. Sirens are restricted to be in the 

demand region. To provide suitable coverage (the maximum radius of covering circles is 

not larger than 976 meters), the fewest number of sirens was also 25. Figure 3.7 shows a 

solution to the constrained problem. 

 

 

Figure 3.6: Regional coverage of 25 sirens in Dublin (unconstrained) 
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Figure 3.7: Regional coverage of 25 sirens in Dublin (constrained) 
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3.7 Summary 

 

Comparatively, the CVDH is more computationally intensive because of the need 

to compute the CMCC. To speed up this step in the CVDH it is possible to develop a 

heuristic solution to the CMCC. For example, we could move the center of the Voronoi 

polygon to its closest point in S and then define a bigger associated covering circle. Of 

course, such an approach is approximate for the CMCC, so there are no assurances for 

either stability or high-quality solutions. 

 

In this chapter, we addressed application oriented issues in solving the continuous 

space p-center problem: non-convex region, complex Voronoi polygons and certain 

constraints on potential facility locations. Problem complexity in practice is the result of 

region non-convexity and siting feasibility. The VDH requires a computationally efficient 

procedure for solving the 1-center problem for the Voronoi polygons when there are non-

convex sub-regions. The restrictions placed on facility location lead to a constrained p-

centerproblem. In this case, we extended the VDH to the CVDH to solve the constrained 

problem. These heuristics were applied to siren coverage. The CVDH proved to be an 

effective heuristic in terms of performance stability and solution quality, addressing 

limitations with the VDH in practical application.  
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CHAPTER 4  

 

COVERAGE MAXIMIZATION IN CONTINUOUS SPACE1 

 

 

4.1 Introduction 

 

Chapters 2 and 3 discussed the use of p-center for complete coverage of a region, 

identifying the minimal number, and the location, of facilities while ensuring that all 

demand is covered within the maximal service distance from a facility. However, in 

many situations, due to the high cost of acquiring and siting service facilities, it is not 

possible to site a sufficient number of facilities to serve all demand within a desired 

maximal service distance. In such circumstances, one might instead seek to maximize 

demand coverage with whatever facilities are available for siting.  

 

Facility location problems generally rely on certain assumptions about where 

demand is located in a region and where the facilities can be sited. As with other location 

problems, most applications of the maximal covering models use a collection of discrete 

points to represent demand and potential facility locations. Such discrete representations 

                                                 
1 This chapter is based on a paper, “A geocomputational heuristic for coverage maximization in service 
facility siting”, submitted for publication to Transaction in GIS and coauthored with Dr. Alan Murray, Dr. 
Tim Matisziw and Dr. Daoqin Tong.  
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of space make it possible to formulate these types of location problems as linear integer 

models and employ standard optimization techniques to obtain model solution.  However, 

point-based assumptions may be too restrictive and result in pronounced measurement 

and coverage errors (Miller, 1996; Murray et al.  2002). Hence, there is a need for more 

realistic spatial representations of regional demand and potential facility sites. In 

particular, considering both demand locations and facility sites as continuous is 

important, i.e. demand is present everywhere and facilities can be sited anywhere in a 

region. This assumption is not unreasonable in regional planning. For example, some 

services (e.g. emergency warning, cellular signal) are required to reach all population and 

demand for some services (e.g. human activity) can be assumed to exist everywhere 

within a region. Some facilities, like tornado warning sirens, with a relatively small 

geographic footprint, can be sited practically anywhere in a region. Although such an 

assumption of continuous space siting is realistic, it is very challenging to solve a 

continuous space coverage maximization problem.  

 

This chapter focuses on coverage maximization in service facility siting in 

continuous space assuming demand is continuously distributed. The next section 

formulates the problem, followed by a literature review relevant to this research. A 

geocomputational approach is proposed to solve this highly non-linear and non-convex 

problem. Application results are then presented. Finally, a discussion and concluding 

comments are provided.      
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4.2 Background 

 

  To address the covering problem of siting facilities in continuous space in order 

to maximally serve continuously distributed demand, it is necessary to first touch upon 

the historic research on maximal coverage problems in discrete space, which are at the 

root of many approaches for continuous space.   

 

 

 4.2.1 Maximal covering problem in discrete space 

One of the main problems associated with the LSCP is that the number of 

facilities that are needed is likely to be excessive since all the demand points need to be 

covered, regardless of their quantity and density. Complete coverage of demand is 

sometimes economically infeasible due to limited resources available to a service 

provider.  Another problem is that the LSCP considers all demand points identically.  

These concerns lead to the Maximal Covering Location Problem (MCLP) model 

proposed in Church and ReVelle (1974). The MCLP does not require all demand points 

to be covered. Instead, the model fixes the number of facilities that are to be located and 

seeks to maximize the coverage of demand. There have been a wide range of applications 

of the MCLP, including placement of emergency warning sirens (Current and O’Kelly, 

1992), emergency response stations (Eaton et al.  1986; Adenso-Diaz and Rodriguea, 

1997; Kalvenes et al.  2004), health centers (Bennett et al.  1982), bus stops (Gleason, 

1975), bank branches (Sweeney et al.  1979), and air pollution monitors (Hougland and 

Stephens, 1976), to name a few. 
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Similar to the LSCP, a demand point or area is considered to be covered if it is 

within a predefined service distance or time from at least one facility. However, since the 

number of facilities to be located is limited, all demand in the region may not be covered. 

A budget constraint is incorporated in the MCLP to relax the rigid requirement of 

complete coverage of all demand in the LSCP. Consider the following notation for stating 

the problem mathematically: 

i, index of demand points or service areas; 

j, index of potential facility placement locations; 

{ }|i ijN j d R= ≤ , i.e., the set of potential facilities j capable of covering/serving 

demand i, where ijd  is the distance from demand i to potential site j and R 

is the effective coverage distance of a facility; 

iw , importance of demand i; 

 p, number of facilities to be sited. 

1, if potential facility site  is selected for placement,
0, otherwise. j

j
x ⎧
= ⎨
⎩

 

1, if demand point  is covered,
0, otherwise. i

i
y ⎧
= ⎨
⎩

 

 

Using the above notation, the MCLP can be structured as an integer-linear 

formulation (Church and ReVelle, 1974): 

max i i
i

w y∑         (4-1) 

subject to  
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,
i

j i
j N

x y i
∈

≥ ∀∑        (4-2) 

,j
j

x p=∑         (4-3) 

{0,1} ,jx j= ∀  {0,1} .iy i= ∀     (4-4) 

 

 The objective function of the MCLP, (4-1), is to maximize the total covered 

demand. This is subject to several sets of constraints. Constraints (4-2) state whether a 

demand point is covered by sited facilities. Specifically, if a demand point i is covered 

( 1iy = ), then there must be at least one facility placed at locations in the cover set iN . 

The budget constraint (4-3) requires exactly p facilities to be located. Constraints (4-4) 

impose integer requirements on location and coverage decision variables, which, with the 

linear objective function, make the MCLP a linear mixed integer optimization program.   

 

Traditionally, due to limited geometric and spatial data handling capabilities, 

demand locations and potential facility sites have been represented as collections of 

points in the application of the MCLP (Miller, 1996; Church, 1999). A continuous area, 

such as a city or a census unit, is usually simplified and aggregated into discrete points. 

The goal of coverage modeling is based on the evaluation of whether these points are 

covered by a configuration of facilities. This could result in potential measurement and 

coverage errors in location problems, as discussed in the work of Daskin et al. (1989), 

Current and Schilling (1990) and Murray and O’Kelly (2002). Murray and O’Kelly 

(2002) address the abstraction and aggregation of regional demand in a coverage model 

and find that generally over-estimation of the actual coverage of demand provided by a 
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service facility configuration results. Thus, there is a need for representing potential 

facility sites and demand locations as a continuous area in coverage modeling such as the 

MCLP. 

 

 

4.2.2 Extensions to continuous space 

 A number of researchers have extended the MCLP to consider siting facilities in 

continuous space while representing demand as discrete points, including Mehrez (1983), 

Mehrez and Stulman (1982; 1984), and Church (1984). The work along this track is 

known as the planar maximal covering (PMC) location problem, or PMCE under the 

Euclidean distance metric, originally defined in Church (1984). Mehrez and Stulman 

(1984) use the model for siting fire and radar stations to maximally cover demand 

distributed across a service region. Since facilities can be located anywhere in space, the 

relaxation of facility locations makes it possible to increase efficiency in coverage 

modeling. Given a number of facilities, a greater total coverage can be attained than in 

the discrete case since there are many more locations available for facility placement. In 

order to solve the PMCE, Church (1984) exploits the geometric properties of coverage 

and translates the continuous space problem into a discrete one. The strategy is to identify 

a finite dominating set of locations as potential facility sites. The point set is the 

collection of the intersection of all circles with radius equal to maximum service distance 

centered at each discrete demand location. These points are called the circle intersection 

point set (CIPS). Church (1984) proves that the CIPS contains the optimal facility sites of 

the PMCE. The continuous location problem can then be formulated as a mixed integer 
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optimization problem. Although this approach assumes continuous facility location and 

greater efficiency can be achieved, demand is still represented as discrete points. Thus 

potential measurement errors and coverage inaccuracies still exist.  

 

 Another extension of the MCLP has been approached by Murray and Tong (2007), 

which enables more flexibility in demand representation and service standard definition. 

Their approach aims to optimally cover point, line or polygon features representing 

demand for service in a region (Extended Planar Maximal Covering Location Problem or 

EPMC), while allowing facilities to be located in continuous space.  In particular, Murray 

and Tong (2007) exploit geometric aspects of the EMPC and introduce a method for 

identifying a finite set of critical potential facility locations containing an optimal 

solution to the continuous space problem, thereby reducing an infinite number of 

potential facility sites to a finite and discrete set of locations. One can then use the MCLP 

to solve the EPMC with such a discrete set of locations. This method is called Polygon 

Intersection Point Set (PIPS). In order to find the PIPS, spatial demand objects are first 

identified and their vertices are extracted. Covering boundaries (areas) for each demand 

object can then be derived according to the facility service standard. Finally, PIPS, the 

intersection points of covering boundaries, are identified as potential facility locations. 

Finding PIPS involves solving for intersecting points for spatial objects, which is 

supported by standard commercial GIS functionality (Murray and Tong, 2007). One issue 

raised by this approach is that the number of critical facility locations identified may be 

rather large, although an additional step could be used to remove dominated locations 

from the point set, as suggested by Murray and Tong (2007). Thus, computational issues 
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exist if the number of demand objects is large. Another issue is the assumption that 

facilities can be located anywhere in the plane, while in practice facility locations may be 

restricted, e.g., within a region boundary. More importantly, a demand object is evaluated 

in a clear-cut manner, either covered or not covered, by constraints (4-5). This is not an 

issue when demand is represented as zero-dimensional points.  However, when demand is 

represented as an area (or polygon), there is no attempt in the model to account for 

whether an area is partially covered. As a result, service coverage may be underestimated, 

as recognized as an issue for set covering in Murray (2005) and Murray et al. (2007). 

Therefore, there is a need for remedial solutions or an advanced spatial representation to 

more accurately portray demand for service. 

 

 The research on the MCLP, in which both demand and facility locations are 

represented as continuous, has been limited, due to analytical difficulties in handling 

geometrical computation in a continuous plane. The continuous p-center problem has 

been introduced for locating facilities in continuous two-dimensional space to completely 

cover continuously distributed demand (Suzuki and Okabe, 1995; Suzuki and Drezner, 

1996; Murray et al.  2008). For facilities that have specific service standards, a given 

number of facilities cannot always ensure complete coverage to the region. Complete 

coverage can only be attained if the maximum distance from any demand point to its 

closest facility is less than or equal to the facility service standard, and thus at least a 

threshold number of facilities must be located to achieve this goal. For a given value of p 

less than the threshold, demand cannot be completely covered. As a result, the p-center 

problem does not address issues of maximizing the total covered demand.  
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Discussed in Chapter 3, the VDH (CVDH) is an iterative method for solving the 

continuous space p-center problem. However, it is not applicable for coverage 

maximization with a limited number of facilities since the process focuses on maximal 1-

center radius (i.e. distance of demand from a facility), rather than effective service 

distance of the facilities. To illustrate this point, Figure 4.1 depicts a near-optimal p-

center solution for p=15 using the VDH as well as the effective coverage distance of 

warning sirens (976 meters) for the Dublin region. For this service standard, at least 25 

sirens are actually needed to completely cover the region. The p-center solution for p = 

15 is 2516.4 meters, meaning that the region would be completely covered by these 15 

facilities if the effective service radius is equal to or greater than this distance. The 

service standard for the sirens (976 meters) is clearly less than the p-center solution. 

Examining the shown configuration, it is clear that sirens could be shifted to achieve 

greater coverage for this number of facilities.  Given this, the p-center solution clearly 

does not optimize coverage maximization. 
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Figure 4.1: VDH p-center problem for p=15 

 

 

Some researchers solve location problems in which demand is assumed 

continuous with the use of double integration (e.g., Drezner and Drezner, 1997). 

However, such an approach is appropriate for the cases when the region is convex, e.g. 

square in their application. For a non-convex region, integration would be cumbersome. 

Other researchers approach continuous space location problems by exploiting geometric 

properties of a region. For example, Matisziw and Murray (2008) use the medial axes as 
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a geometric representation of a region to solve a continuous single-facility maximal 

covering problem.    

 

 

4.2.3 The use of medial axis to represent continuous space 

The medial axis is often applied in shape analysis. Given a connected geometric 

shape C, the medial axis is defined in Okabe et al. (2000) as the locus of all points with at 

least two closest points on the boundary of C, or alternatively, the locus of the centers of 

all the interior maximal disks of C. Similar definition can be seen in Blum (1967), Pfaltz 

and Rosenfeld (1967) and Brandt (1994). An example of medial axis is shown in Figure 

4.2. The five line segments within the rectangle correspond to the medial axis of the 

rectangle, which is traced out by the centers of the largest inscribed disks. The medial 

axis can be expressed mathematically as follows (Okabe et al.  2000): 

{
}

( ) || || || || min{|| || },

, .

M C = − = − = − ∈

≠ ∈∂ ∈

i j

i j i j

x x x x x x y y C

x x x , x C, x C
  (4-5) 

 

Figure 4.2: The medial axis of a rectangle  
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Thus, the medial axis represents the shape of objects by finding the topological 

skeleton, a set of curves which roughly run along the middle of an object. Let ( )R x  be 

the radius of the maximal disk centered at a point x on the medial axis ( )M C , and the 

function ( )R x  is called the radius function of the maximal disk (Okabe et al.  2000). As 

summarized in Okabe et al. (2000), a medial axis has the following property: a given 

shape C has a unique medial axis and can be exactly regenerated by taking the union of 

all maximal disks with radius equal to the radius function ( )R x  on the medial axis 

( )M C , i.e. ( ) max ( )M CC D∈= ∪x x . This property is detailed by a number of researchers, 

such as Lee (1982), Gursoy and Patrikalakis (1991, 1992), and Brandt (1994).  

 

A number of methods have been developed to compute a medial axis. For a 

polygonal shape, the medial axis can be obtained by the use of the line Voronoi diagram 

(Kirkpatrick, 1979; Lee, 1982; Brandt and Algazi, 1992). Generally, the boundary of C is 

first decomposed into a set of line segments or a set of points. In so doing, all information 

necessary to reconstruct the shape is retained. The Voronoi diagram is then generated 

from the decomposed line segments. Since points on the edges of the Voronoi regions are 

equally distant from generator lines or points forming the boundaries of C, the medial 

axis of C is obtained after removing unnecessary edges of Voronoi regions (See Lee, 

1982). Computational methods for deriving the medial axis are different depending on 

the representation of C, vector or raster data. A summary of relevant approaches can be 

found in Okabe et al.  (2000).  
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There have been various applications in geographical analysis in which the medial 

axis of a polygonal shape is used to represent the region. Examples include the use of the 

medial axis to characterize the topography of watershed areas from river and elevation 

data (Vincent and Soille, 1991), and to extract and represent roads and rivers from aerial 

or satellite images in the automated production of maps (Airault et al.  1996; Leymarie et 

al.  1996). Others applications appear in map generalization (Gold et al.  1996; Gold and 

Snoeyink, 2001), and statistical analysis of relative location of points in a bounded region 

(Sadahiro and Takami, 2001). The use of the medial axis in location optimization 

problems can be seen in recent work of Matisziw and Murray (2008), who consider a 

coverage problem in continuous space.  

 

 

4.2.4 CMCP-1 

The one facility case of continuous maximal covering problem (CMCP-1) has 

been approached by Matisziw and Murray (2008). Unlike traditional methods like the 

MCLP and PMCE (i.e., discretizing the continuous problem and using a linear-integer 

programming approach), Matisziw and Murray (2008) look to exploit geometric 

properties of a region to be covered in order to solve the CMCP-1. With the assumption 

of uniformly distributed demand and a disk-like service area for the facility, Matisziw 

and Murray (2008) consider two distinct cases of the CMCP-1: whether or not the service 

area of a facility can be completely contained within the region. Matisziw and Murray 

(2008) approach the regional coverage problem relying on a geometric representation of 

regions as the medial axis. This is based on the property that the medial axis is the locus 
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of a maximum inscribed disk that covers as much or more area than any other disk locally 

enclosed within the region, which is consistent with the objective of the CMCP-1. 

Matisziw and Murray (2008) consider three special cases. First, when service standard S 

is greater than or equal to the radius of 1-center solution, complete coverage can be 

obtained by solving a 1-center problem. Second, if S is less than or equal to the radius of 

maximum inscribed disk, at least one optimal facility site exists and the sites along the 

medial axis with the maximum distance to the boundary coincide with the largest service 

coverage, i.e. a disk with the radius of S. The algorithm for this case obtains the medial 

axis by generating a line Voronoi diagram, and then identifies points along the medial 

axis having distances to the boundary larger than or equal to S. The third case is in 

between the first two cases, where points along the medial axis do not necessarily 

correspond to optimal siting locations. The algorithm for this case is first to approximate 

the boundary of the region by a set of points, and then apply the CIPS approach of 

Church (1984) to identify an intersection point associated with maximal demand 

coverage.  

 

 

4.3 Formulating continuous maximal covering problem 

 

Matisziw and Murray (2008) address siting a single facility to maximize coverage 

in the case where both service demand and candidate facility sites can exist anywhere. 

Siting multiple facilities simultaneous in continuous space to provide maximal coverage 

of regional demand is no doubt more challenging.  This is the problem of interest in this 
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chapter, namely, a general continuous maximal covering problem (CMCP). Following 

the notation of Matisziw and Murray (2008), the CMCP model can be express as follows:  

, 1, ,
( )

j Cj p
Max dδ

∈= ∫L zx
z z        (4-6) 

where 

G, study region; 

j, index of potential facility sites; 

jx , decision variable, location of siting facility j.  

( )δ z , a continuous density function of demand distribution at location z ;  

p, the number of facilities to be sited; 

jC , service area of facility j. 

1, ,
j

j p
C C G

=
=

L
U I , which is total coverage area of the p facilities in G, i.e. the 

intersection of all service areas jC  and region G. 

 

The objective, (4-6), is to maximize the demand in region G that is suitably 

covered or serviced given p facilities. Demand is considered covered if it is within a 

desired effective coverage distance of sited facilities. Given a continuous distribution of 

demand across the region, (4-6) seeks to determine the placement of p facilities so that 

the total covered demand is maximal. Note that there is no restriction on facility sites in 

the formulation. This means that candidate facility locations are continuous and exist 

everywhere, as assumed for demand. Since the cardinality of the sets of demand and 

candidate facility sites is infinite, it is impossible to evaluate every potential facility 
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location explicitly to determine the demand covered. Thus, standard optimization 

techniques for discrete location models cannot be applied to the CMCP. Moreover, the 

computation of total demand in the region involves integrating demand density over C, 

the intersection between all established service areas and the region G, which is usually 

non-convex. Hence the CMCP is a highly non-linear and non-convex model regardless of 

how simple the demand density is. This makes it challenging to solve. 

 

 

4.4 Solution approach  

 

Matisziw and Murray (2008) approach the single facility CMCP by exploiting 

geometric properties of a region to be covered. Such an approach is also essential to the 

multiple facility siting problem. We propose a geocomputational approach for solving the 

continuous space maximal covering problem using Voronoi diagrams and medial axes. 

Thus this is an extension to previous work on Voronoi diagram heuristics as well as the 

single facility model discussed in Matisziw and Murray (2008). 

 

Equation (4-6) can be reformulated in terms of a Voronoi diagram. Consider the 

following model: 

( )
( )

j j
j j
C V

Max dδ
∈∫ U I Ux

x x       (4-7) 

where jV  is the Voronoi region within G associated with the jth facility.  

This is equivalent to: 
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1
( )

j j
j

p

C V
j

Max dδ
∈

=
∑∫ U Ix

x x       (4-8) 

 

Models (4-7) and (4-8) are equivalent to (4-6) since the Voronoi regions, jV , are 

non-overlapped and their union is equivalent to region G. This research focuses on a 

uniformly distributed demand and thus the problem becomes:   

1
( )

p

j j
jj

Max C V
=
∑ U I       (4-9) 

 

(4-9) seeks to maximize total area of Voronoi regions covered by the p facilities. 

With a Voronoi diagram, the multiple facility siting problem is decomposed into a set of 

sub-problems, each associated with the Voronoi region of a facility and treated as a single 

facility siting problem, similar to that in Matisziw and Murray (2008). Our proposed 

approach is based on the following rational. The heuristic starts with an initial 

configuration of p facilities in a region G. A Voronoi diagram is generated from this set 

of facility sites and region is partitioned into p sub-regions (i.e., p Voronoi polygons). 

Subsequent analysis is based on the exploration of the geometric properties of each 

Voronoi polygon that is not covered by other existing facilities. In particular, for each of 

the p sub-regions uncovered, the position of the facility that maximizes coverage is 

identified as a single facility siting problem. The facility corresponding to the greatest 

increase of regional coverage is relocated and the iteration is complete. If the increase of 

regional coverage is significant, the heuristic continues, generating a Voronoi diagram 

from the new facility configuration. Otherwise, the heuristic stops.    
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Following the notation for the CMCP in (4-6), let S be the facility service 

standard and γ  be a stopping tolerance, and the developed heuristic (MULTICOVER) is 

detailed as follows: 

 

MULTICOVER (G, cG , p, S, γ )  

1. Locate p facilities in the region G.  Compute regional coverage (denoted A) 

associated with the initial facility configuration, i.e., 
1

p

j
j

A C G
=

= ∩U . 

2. Use the set of facility sites to generate a Voronoi diagram (denoted V).  

3. For each Voronoi polygon jV , compute the modified polygon, 

,

ˆ
j j k j

k J k j

V V C V
∈ ≠

= − ∩U .   

4. Compute medial axis ˆ
jM  for the modified Voronoi polygon ˆ

jV . 

5. Identify the point on ˆ
jM  corresponding to the largest enclosed disk for ˆ

jV  (this 

point denoted ˆ
jMλ∈ ) and its associated radius (denoted jR ). 

a. If jS R≤ , compute regional coverage, jA , associated with moving facility 

j toλ  (denote ( )jC λ  as the coverage of facility j at λ ), where 

( )
,

j k j
k J k j

A C C Gλ
∈ ≠

⎛ ⎞
= ∪ ∩⎜ ⎟
⎝ ⎠
U . 

b. If jS R> , then compute the 1-center of ˆ
jV  (denoted θ ) and compute 

regional coverage, jA ,  associated with moving facility j toθ  (denote 
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( )jC θ  as the coverage of facility j at θ ), where 

( )
,

j k j
k J k j

A C C Gθ
∈ ≠

⎛ ⎞
= ∪ ∩⎜ ⎟
⎝ ⎠
U . 

6. Obtain the maximum marginal increase of regional coverage ( max jj
A A− ). If it is 

greater than the specified toleranceγ , then relocate facility associated with 

max jj
A  to the correspondingλ  or θ , set max jj

A A= , and go to Step 2; otherwise 

local maxima is found and proceed to Step 7. 

7. For each facility j, compute the region covered by other existing facilities (i.e., 

,

ˆ
j k

k J k j

V G C
∈ ≠

= − U ) as well as the corresponding medial axis ˆ
jM and the center of 

the largest enclosed disk λ .  Compute regional coverage, jA , associated with 

moving facility j toλ , where ( )
,

j k j
k J k j

A C C Gλ
∈ ≠

⎛ ⎞
= ∪ ∩⎜ ⎟
⎝ ⎠
U .  

8. Obtain ( max jj
A A− ). If it is greater than γ , then relocate facility associated with 

max jj
A  to the correspondingλ , set max jj

A A= , and go to Step 2; otherwise stop.   

 

Step 1 of the heuristic initialises the p facility sites in region G.  The initial facility 

configuration can be generated in many ways, including placing the facilities in a regular 

spaced form, close to the center of the region, or randomly positioning facility sites, as 

illustrated in Figure 4.3, respectively. Intuitively, a more dispersed initial configuration 

would lead to less computational time since the heuristic tend to relocate one facility 

away from others in order to cover more of uncovered area. Computational experience 
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has show that such difference is not significant. Moreover, the heuristic has appeared to 

produce the consistent results, regardless of initialisation method used.  After the initial p 

facilities are sited in region G, the effective coverage of this configuration, A, is evaluated.   

 

 

Figure 4.3: Three ways of initializing facility sites for p = 15 

(Left: regular spacing; Middle: centered; Right: random) 

 

In Step 2 of the heuristic, the p facility sites are used to compute a Voronoi 

diagram. The region is then partitioned into p polygons, each associated with a facility 

site. An example of such a partition is displayed in Figure 4.4, with the Voronoi polygon 

for facility 2, 2V , highlighted. Following analysis is based on the geometric properties of 

the sub-regions.  

 

For each Voronoi polygon and associated facility considered, Step 3 computes the 

portion of the polygon that is not covered by any other existing facility. An example of 

the modified Voronoi polygon is shown in Figure 4.5. Here 2 2 2
2, 2

ˆ
k

k k

V V C V
∈ ≠

= − ∩U  is the 
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area within 2V  that is not covered by any other sited facility. This modified polygon is 

treated as a single facility problem to identify whether a move of associated facility 

increases the coverage.  

 

 

 

Figure 4.4: A Voronoi polygon  

 

 



 78

 

 

Figure 4.5: A modified Voronoi polygon 

 

 

The approach to determine the location of a single facility to maximize its 

coverage is similar to the work of Matisziw and Murray (2008) which explores geometric 

properties of the region, including medial axis for the largest inscribed circle and 1-center 

for the minimum covering circle (MCC). Given a modified Voronoi polygon ˆ
jV , in Step 

4, the heuristic computes its medial axis ˆ
jM . The computation procedure involves first 

discretizing the polygon boundary as points with a pre-specified step size (tolerance), 

calculating the Voronoi diagram based on these points and deleting unnecessary Voronoi 

edges. Thus the medial axis obtained is neither exact nor fully continuous, but an 

approximate one.  Figure 4.6 shows the medial axis for modified polygon 2̂V .  
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Figure 4.6: Medial axis and the largest inscribed circle for modified polygon 

 

 

Given the medial axis, the center of the largest inscribed circle for the modified 

polygon can then be identified by searching the medial axis. This is the task of Step 5. 

The radius of the largest inscribed circle, jR , is also obtained. The largest inscribed circle 

and its center for modified polygon 2̂V  are illustrated in Figure 4.6. jR  is important in 

identifying the location of a facility to maximize its coverage. According to Matisziw and 

Murray (2008), if jR  is larger than the service standard (S) associated with the sited 

facility, the center of the largest inscribed circle is an optimal solution for maximal 

coverage. On the other hand, if jR  is less than S, a circle with radius of S cannot be fully 

enclosed in the region. However, the optimal facility site for maximal coverage can be 

identified as the 1-center in the case when S is larger of equal to the MCC radius. Based 
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on this theory, the heuristic proceeds with the evaluation of the modified Voronoi 

polygon ˆ
jV  according to two criteria. First, if jR S≤ , then calculate the potential 

increase in regional coverage corresponding to moving the associated facility to the 

center of the largest inscribed circle (λ ). This is done in Step 5a. Second, if jR S≤ , then 

compute the 1-center of modified polygon ˆ
jV  (θ ), and calculate the potential increase in 

regional coverage corresponding to moving the associated facility to θ . This is the task 

relegated to Step 5b. Figure 4.7 shows 1-center and MCC for 2̂V . Clearly, MCC is larger 

than the largest inscribed circle shown in Figure 4.6. In sum, Step 5 is to obtain the 

potential increase in regional coverage for each facility.  

 

 

 

Figure 4.7: 1-center and minimum enclosing circle for modified polygon 
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After evaluating the p sub-regions sequentially, the heuristic identifies the largest 

potential increase in regional coverage with respect to the current facility configuration 

(Step 6). If the maximum coverage increase is larger than pre-specified toleranceγ , the 

corresponding shift of the facility is accepted and Steps 2-6 are repeated with the new 

configuration. Otherwise, a local maxima is likely obtained and the heuristic proceed to a 

perturbation step.  

 

The facility configuration can be perturbed out of the local maxima in a number 

of ways. Generally these techniques search for “open” space to relocate facilities in the 

region globally, rather than in local sub-regions. One technique can be shifting some 

facilities toward the region boundary or away from other facilities. Step 7 details another 

technique, which is similar to Step 5a. The process first removes each facility and 

computes the medial axis for the uncovered area of the whole region. This is followed by 

identifying the center of the largest inscribed disk λ  and calculating potential increase in 

regional coverage associated with relocating the removed facility toλ .     

 

After evaluating the p facilities in turn, the heuristic identifies the largest potential 

increase in regional coverage with respect to the current facility configuration (Step 8). If 

the maximal coverage increase is larger than pre-specified tolerance, the corresponding 

shift of the facility is accepted. The heuristic proceeds with the new configuration and 

repeat Steps 2-6. Otherwise, the heuristic completes with the maximum coverage for p 

facilities.  
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4.5  Application and results 

 

The developed geocomputational heuristic (MULTICOVER) proposed in Section 

4.4 is applied to siting emergency warning sirens in an Ohio urban region. Figure 4.8 

shows this area, the City of Dublin, Ohio, with isolated areas (holes) in the center of the 

region removed. The planning concern addressed here is coverage maximization when 

complete coverage is not affordable due to limited budget resources.  

 

Figure 4.8: Study region 

 

The service standard of an emergency warning siren is 976m. Previous studies 

show that 24 to 26 sirens are needed to provide complete regional coverage. A range of p 

values (p=5 to 20) is considered. Clearly for such a smaller number of facilities, complete 



 83

regional coverage cannot be attained. The analysis was carried out on a Xeon 3.00GHz 

GHz personal computer running Windows XP with 2 GB RAM. ArcView GIS version 

3.2 was utilized to manage and manipulate data layers (facility sites and coverage), derive 

Voronoi diagrams, the medial axis and a 1-center solution. The MULTICOVER heuristic 

was programmed with the use of the Avenue script language provided in ArcView GIS.  

 

For each value of p (5 to 20), the heuristic was applied five times, and each time 

the heuristic started with a different random siting configuration. The tolerance used to 

compute a medial axis in the heuristic was 50 meters, which resulted in reasonable 

solution quality and computational time. Figure 4.9 summarizes the solutions attained 

and includes the maximum and minimum percentage of regional coverage during the five 

runs for each value of p. For p less than or equal to 8, the minimum percentage of 

regional coverage is identical to the maximum. Moreover, for these p values, the regional 

coverage is equal to p times of the service coverage of a single facility, which is the 

maximum coverage for p facilities. This indicates that the facility configuration obtained 

by the heuristic is optimal. A MULTICOVER solution for p=8 is shown in Figure 4.10. 

Note that the effective coverage disks of the eight sirens are completely enclosed with the 

region and there is no overlapping area among the disks. In addition, for p larger than 8, 

the coverage in the worst case was very close to that in the best case (see Figure 4.9). The 

findings indicate that the heuristic produced consistent results and its performance was 

stable regardless of the value of p. 
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Figure 4.9: Solutions from the MULTICOVER heuristic  

 
Figure 4.10: A MULTICOVER solution for p=8 
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The effectiveness of the heuristic was further assessed by the comparison with a 

traditional approach for solving coverage maximization problems. The integer MCLP in 

(4-1) to (4-5), developed by Church and ReVelle (1974), was used. The model is based 

on the discretization of the region. Several discrete representations of the region were 

derived. Regular grid lattices with a range of grid size (500, 400, 300, 200, and 150 

meter) were used to generate point representations of the region. Figure 4.10 shows the 

square tessellation of the region for regular spacing of 400 meters, where the regional 

demand was represented as square grids and potential facility sites as the corners of grids. 

The assignment of demand is determined by whether the grid is fully covered by the 

candidate facility, i.e. within the circle centered at the facility site. Figure 4.11 shows 

such an assignment method for square grids with spacing of 200 meters and facility 

service standard of 976 meters. Such an assignment enables programming the MCLP as a 

mixed integer linear program. The MCLP application instances were solved using 

ILOG’s CPLEX 10.1.1, a commercial optimization software package.  
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Figure 4.10: Square tessellation of study region and candidate facility sites ( 400mλ = ) 

 

 

Figure 4.11: Square tessellation packing into a coverage circle (R = 976 m, 200mλ = )  

(Source: Murray et al.  2008, page 346) 
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Clearly, the smaller grid size used to discretize the region, the better the region is 

represented, and in the MCLP better solution can be identified. The 150 meter 

representation of the region consisting of 2,357 demand cells and 2,082 facility sites 

should lead to a better facility configuration than the 500 meter representation of the 

Dublin region consisting of 236 demand cells and 191 facility sites. Considering there is 

a gap between the coverage of facilities in the model and actual coverage as shown in 

Figure 4.11, the coverage for the MCLP was evaluated by computing the actual coverage 

for facility configuration from the MCLP solution.  

 

Figure 4.12 compares the level of coverage that was attained using siting p = 5 to 

20 facilities using the MULTICOVER heuristic with those attained using the MCLP and 

three point representations of the region (150, 200, and 300 meter grid). When siting no 

more than 8 facilities ( 8p ≤ ), the MCLP was not able to identify optimal facility 

configuration. For all values of p using 200 and 300 meter grid representations, the 

MULTICOVER heuristic was able to identify a configuration that provided more 

coverage than the MCLP. Using 150 meter grid representation, the heuristic was able to 

identify solutions better than the MCLP except for three cases when p = 17, 18 and 19.  

The difference in coverage was on average 4.6%, 2.6%, and 0.8% for 300, 200, and 150 

meter grid representation respectively, indicating that a decrease of grid size produced 

better solutions (larger regional coverage). Overall, the solutions of the MULTICOVER 

heuristic are better than those obtained using the MCLP, indicating good performance of 

the heuristic in identifying facility configurations for coverage maximization. Figure 4.13 
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displays a MULTICOVER solution for p=15 using 150 meter grid representation. This 

facility configuration provides service coverage to about 82.7% of the region. 
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(a) 300 meter grid representation of the region 

(continued) 

Figure 4.12:  Solution comparison between MULTICOVER heuristic and MCLP 
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(Figure 4.12 continued) 
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(b) 200 meter grid representation of the region 
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(c) 150 meter grid representation of the region 
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Figure 4.13: A MULTICOVER solution for p=15 

 

 

The computational time was also assessed for the two cases (using the MCLP and 

MULTICOVER approaches), as summarized in Table 4.1 and illustrated in Figure 4.14. 

For each value of p, the solution time for the MULTICOVER approach was obtained by 

averaging over the five runs, with consideration of the variation of initial siting 

configuration and the number of iterations to complete the heuristic. The average solution 
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time for the heuristic was 2,217 seconds, with a minimum of 860 seconds (p = 5) and a 

maximum of 3890 seconds (p = 19). In general, solution time increased with the value of 

p since more sub-problems (single facility problems) needed to solve in an iteration, but 

the change was not significant. In the case of the MCLP, solution times were 

considerably small when solving for all p values using 300 meter grid representation, 

17p ≤  using 200 meter grid representation and 12p ≤  using 150 meter grid 

representation, much less than those in the MULTICOVER heuristic. However, for other 

larger p values, the solution times of the MCLP increased dramatically, resulting in a 

higher average solution time overall. Obviously, the problem size of the MCLP increases 

as the number of demand and potential facility sites increase, so does computational 

effort to solve it. Computational experience has shown that a slight decrease of grid size 

(from 200m to 150m) produced slightly better results (larger regional coverage), but the 

computational time increased dramatically. Therefore, in such cases, the MULTICOVER 

approach performs well in identifying good facility configuration for coverage 

maximization within a reasonable time frame. 
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p value 150m 200m 300m MULTICOVER
5 47.9 3.8 0.2 860
6 40.4 3.6 0.3 970
7 48.8 3.8 0.3 1360
8 41.1 3.9 0.4 1670
9 48.1 4.6 0.4 1730

10 48.9 4.1 0.4 1789
11 89.8 4.5 0.5 2010
12 39.0 4.4 0.4 1687
13 226.9 4.0 0.5 2312
14 2112.8 4.6 3.2 2487
15 240686.0 4.4 0.5 3033
16 240703.7 36.0 4.2 2856
17 242374.8 67.7 7.4 2790
18 241992.8 1520.3 5.2 3120
19 244387.4 5178.6 0.5 3890
20 414402.3 38976.7 0.5 2911

 

Table 4.1: Comparison of solution time between MULTICOVER and MCLP 
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Figure 4.14: Comparison of solution time between MULTICOVER and MCLP (200 

meter grid representation) 
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4.6 Summary 

 

Existing approaches for siting facilities to maximize coverage of regional demand 

generally involve discretizations of space that can result in measurement errors and hence 

biased modelling results.  In this chapter, we relax assumptions of discrete space 

representations and seek to maximize coverage of continuous demand through siting 

facilities in continuous space. The MULTICOVER heuristic was developed to solve such 

a non-linear and non-convex spatial optimization problem, involving geometric 

techniques in GIScience such as the Voronoi diagram heuristic, medial axis and 1-center 

problem. Application results showed that the heuristic performed well in identifying good 

solutions in a reasonable time frame, particularly with respect to the MCLP, the 

traditional discrete approach for coverage maximization.  
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CHAPTER 5  

 

CONCLUSIONS 

 

 

Facility location models rely on certain assumptions about where demand is 

located and where facilities can be sited. Traditionally, facility location space and 

associated demand for service have been represented as a collection of discrete points. 

This is mainly due to limited geometric capabilities, data availability, and simplification 

due to modeling. However, representational issues are known to exist with these 

simplifications. Another approach is to represent location space as continuous, i.e. 

facilities can be located anywhere and/or service demand is assumed continuously 

distributed. Although this assumption seems to be more reasonable in many situations, it 

makes location models more challenging to solve.    

 

The focus of this research was on continuous location problems, including p-

center problem and coverage maximization problem. In both cases, multiple facilities 

were considered and a geocomputational heuristic for problem solution was proposed, 

relying on geometric properties of a region. Relevant discrete location models received 

considerable attention for the purpose of comparative study.  
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5.1 Summary 

 

This dissertation addressed the challenges of continuous space location models. It 

first explored a simple but effective approach for solving large vertex p-center problem in 

Chapter 2. By introducing a neighborhood facility set, the p-center problem was 

reformulated in order to remove redundant variables and constraints while preserving the 

characteristics of the problem including the optimality. The application results showed 

that the problem size of the reformulated model was substantially smaller than in original 

form and large vertex p-center problem could be solved with the use of general-purpose 

optimization software (e.g. CPLEX).     

 

The dissertation then addressed in Chapter 3 application oriented issues in solving 

the continuous space p-center problem: non-convex region, complex Voronoi polygons 

and certain constraints on potential facility locations. Problem complexity in practice was 

explored. A Voronoi diagram heuristic (VDH) was extended for the CVDH to solve the 

constrained p-center problem. These heuristics were applied to siren coverage. The 

CVDH proved to be an effective heuristic in terms of performance stability and solution 

quality, addressing limitations with the VDH in practical application. The results for the 

vertex p-center problem were used as a benchmark for its continuous space counterpart. 

The comparison showed that discretizing continuous location space led to significant 

underestimate of the minmax distance. The application of the VDH and CVDH to siren 

siting indicated that the developed approaches were successful in terms of both 

performance stability and solution quality.     
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Finally this dissertation explored in Chapter 4 approaches for solving the problem 

of siting service facilities in order to maximize regional coverage in continuous space. 

Various approaches exist for addressing this particular planning problem given either 

discrete or continuous representations of potential facility sites and demand to be served.  

In cases where both candidate facility sites and service demand exist continuously 

throughout a region, approaches for maximizing regional coverage have only examined 

the siting of a single facility.  This chapter proposed a geocomputational approach for 

addressing multiple facility siting.  Thus, the problem is to site multiple facilities to 

maximally cover a region, where demand is continuously distributed and facilities may 

be located anywhere in the region. A Voronoi diagram heuristic was developed to 

decompose the problem into a number of sub-problems, each of which was solved by 

exploiting geometric properties of a region. The application results showed that the 

developed heuristic performed well in identifying facility configurations that maximize 

regional coverage, while solution time was satisfactory.  

 

 

5.2 Future research 

 

Existing approaches for solving location problems entail discretizations of space 

that can spatially bias modelling results. This dissertation relaxes assumptions of discrete 

location space and focuses on problems of siting facilities in continuous space to provide 

service to continuous demand. The non-linear and non-convex spatial optimization 
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problems were addressed through geocomputational approaches in this research. While 

appealing results were obtained, several areas are worthy of further research. 

 

The MULTICOVER algorithm developed in Chapter 4 can be refined in two 

respects. The algorithm uses a Voronoi diagram to decompose the multi-facility problem 

into a number of single facility sub-problems. Each sub-problem seeks to relocate the 

facility to either the center of the largest inscribed disk or as a 1-center (i.e. minimum 

enclosing disk) for associated Voronoi region. However the optimal solution for the sub-

problem is guaranteed only in two extreme situations: either the service standard is 

smaller than the radius of the largest inscribed disk or it is larger than the radius of the 

smallest enclosing disk. Clearly, there is a need for further research on identifying an 

optimal solution for other cases. Another possible refinement is on the perturbation step 

in the MULTICOVER algorithm. Step 7 involves incrementally removing each facility 

and computing the medial axis associated with all uncovered areas of the region. This 

could be a time consuming process if the step size for computing a medial axis is small. 

The facility configuration could still be trapped in a local maxima in particular situations, 

e.g. small open space. Other approaches for perturbation are needed to address these 

cases.     

 

The heuristics developed in this dissertation rely on several assumptions. On the 

one hand, it is assumed that all facilities have the same service distance and a service area 

is circular in shape. On the other hand, demand is assumed to be uniformly distributed 
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across space. These assumptions could be simplistic in many applications. Further 

research is needed to consider other situations.  
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