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ABSTRACT

The research effort in this dissertation is targeted to investigate theoretical prop-

erties of some key statistics used in the sequential Monte Carlo (SMC) sampling, and

to extend SMC to model checking, prior smoothing, and constrained state estimation.

A novel application of SMC estimation to population pharmacokinetic models is also

introduced.

Asymptotic properties of two key statistics in the SMC sampling, importance

weights and empirical effective samples size, are discussed in the dissertation. The

sum-normalized nature of importance weights makes it extremely difficult, if not im-

possible, to analytically investigate their properties. By using expectation-normalized

importance weights, we are able to show the theoretical estimate of empirical effective

sample size under various situations. In addition, the superiority of optimal impor-

tance function over prior importance function is verified based on the expectation-

normalized weights.

The usage of SMC is also demonstrated for checking incompatibility between the

prior and the data, using observation’s predictive density value. When the prior is

detected to be incompatible with the data, prior smoothing is proposed with a popular

numerical method, Moving Horizon Estimation (MHE), to obtain a better estimate

of the initial state value. Specifically, the incorporation of MHE smoothing into SMC

estimation is among the first efforts to integrate these two powerful tools.
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Convergence of constrained SMC (Chen, 2004) is verified and its performance is

further illustrated with a more complex model.

SMC estimation is applied to a multi-dimensional population pharmacokinetic

(PK) model. It is shown that the SMC sampling is faster than Markov Chain Monte

Carlo (MCMC), and it doesn’t suffer from the lack of convergence concern for MCMC.
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CHAPTER 1

INTRODUCTION TO SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC), also known as particle filtering, is essentially a

recursive importance sampling/resampling method primarily for Bayesian inference

of dynamic models. During the simulation of the dynamic process, samples, the so

called particles, are drawn from importance function and their weights are updated

according to model specifications and observations to approximate the model’s under-

lying posterior distribution. Such sampling and updating repeat whenever new data

are observed from the model. In the dissertation, the dynamic models are represented

in a state-space form.

Particle filtering has many advantages over other approximating methods. One of

the most important would be its straightforward application to and accurate estima-

tion of nonlinear non-Gaussian dynamic models. Extended Kalman filter (EKF), for

example, is often found to be unreliable and the Moving Horizon Estimate (MHE)

method tends to be less accurate and time-consuming (Chen et al., 2004). The

particles generated through the SMC simulation scheme can be shown to converge

asymptotically to the underlying posterior distribution, under certain conditions, as

the number of particles goes to infinity (Künsch, 2005). Furthermore, several central

limit theorems exist for the convergence of point estimates for SMC (Chopin, 2004,
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Künsch, 2005). Besides its versatility, SMC is more suitable for online estimation than

Markov chain Monte Carlo (MCMC), which needs to run from scratch whenever a

new observation becomes available.

Another powerful estimation method for state-space models, the Moving Horizon

Estimation, is a complex numerical optimization method discussed in Chapters 3 and

4. The combination of MHE and SMC for prior smoothing in Chapter 3 is the first

ever effort to employ both together to exploit their advantages.

The rest of this chapter is organized as follows. In Section 1.1, a general introduc-

tion to Bayesian inference is given under state-space models. The SMC methodology,

including some specific concerns, are discussed in Section 1.2. In the last section,

some extensions to and applications of SMC estimation are briefly summarized, and

the detailed discussions are presented in their respective chapters.

1.1 Bayesian Inference under state-space models

The state-space model is defined as:

xk = f(xk−1, ωk), (1.1a)

yk = h(xk, νk), (1.1b)

where (1.1a) is called state equation and (1.1b) measurement equation. Random

variable xk, the unknown system state at time point k, evolves through the state

equation; while observation yk is a stochastic function of state xk as described in the

measurement equation. Random variable ωk is called the state noise, and νk is called

the measurement noise. Usually it is assumed that {ωj} and {νk} are mutually inde-

pendent for all j, k ∈ N. Equivalently, the above state-space model can be considered

as a discrete-time random process {(xk, yk); k ∈ N}. The sequence of unknown states,
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{xk}, constitute a Markov chain with transition density function defined by the state

equation; observations, {yk}, are conditionally independent given the states {xk}.

We use the notation xi:j ≡ {xi, xi+1, . . . , xj}, and similarly, yi:j, for i ≤ j and i, j ∈

N. A superscript counterpart, {x(i)
k , i = 1, . . . , N} represents a set of (independent)

samples of xk. With an abuse of notation, let p(·) represent the density function of the

random variable(s) explicitly specified as its argument. If the density function itself is

not of interest, notation [·] is used to denote the distribution following the convention

of Wakefield et al. (1994). For example, the random variable xk conditional on the

observations y1, . . . , yk has a density function p(xk|y1:k), or equivalently, is simply

referred to as [xk|y1:k]. Specially, denote the prior distribution on the initial state x1

as π.

Under the framework of the state-space model, either the marginal posterior,

[x`|y1:k], or the joint, [x1:`|y1:k], could be of interest from the Bayesian point of view

and is called the target distribution. Depending on the relationship between ` and

k above, the posterior is often further distinguished as filter for ` = k, prediction

for ` > k, and smoothing for ` < k respectively. Various solutions to the posterior

distribution have been proposed for different specific forms of state-space models.

The simplest form of a state-space model is perhaps the linear Gaussian model as

illustrated below,

xk = Fxk−1 + ωk, (1.2a)

yk = Hxk + νk, (1.2b)

where F and H are scalars or matrices compatible with the state space and the mea-

surement space, process noise ωk ∼ N (0, Q), and measurement noise νk ∼ N (0, R).

The given prior, π on x1, is also Gaussian and distributed as N (µ1, P1). Under
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such settings, the posterior distributions of any type—joint, marginal, filtering, pre-

diction, or smoothing, are all Gaussian, thus it suffices to find their mean and the

covariance values. For simplicity, only marginal filtering posterior at a single time

point is discussed below. Let µ`|k and P`|k denote the mean and the covariance of

state x` conditional on the observations y1:k for any k, ` ∈ N. Note that µ1|0 = µ1

and P1|0 = P1 are implicitly indicated in the above settings. Then the Kalman filter

recursively gives the optimal filtering estimates of states xk, i.e., µk|k and Pk|k, for

the observations y1:k, where k ≥ 1. Details are given in Appendix A.

Other than the linear Gaussian model in (1.2), which has an analytically tractable

form of posterior distribution, approximating the target distribution as accurately as

possible is the best that can be done due to the generality of state-space models.

Various approximating methods are proposed in the literature.

The Extended Kalman Filter is a popular method in analytic approximation. Un-

der the assumption of additive Gaussian noises and Gaussian prior, it approximates

the nonlinear functions in (1.1) by the first-order Taylor series expansion and then

applies the Kalman filter to the linearized system; see, for example, Anderson and

Moore (1979). However, EKF introduces errors to the mean and covariance of the

states when strong nonlinearity exists, possibly leading to a divergence of state esti-

mates from the true values.

Another algorithm, Unscented Kalman filter (UKF) (Julier and Uhlmann, 1995,

van der Merwe et al., 2000), uses a small set of deterministically chosen points to

estimate the mean and covariance value of the system state without linearizing model

equations. UKF is claimed to substantially outperform the EKF at the same order

of computational complexity.
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Numerical approximations to the posterior density are discussed in many papers

(e.g., see Geweke (1988), Naylor and Smith (1982), Tierney and Kadane (1986),

Kitagawa (1987)). These approaches can be very accurate, but implementation either

requires sophisticated numerical skills or is hardly feasible for high dimensions.

Simulation methods are becoming more popular with the increase of computing

power and advances in statistical theory. Markov chain Monte Carlo is a powerful tool

to generate dependent samples that converge to the desired distribution if sampling

function is connivently available. As a matter of fact, its applications in state-space

models are often restricted to some specific models due to availability of sampling

function. Carlin et al. (1992) suggest state space augmentation, and similarly, Carter

and Kohn (1996) discuss a particular conditional Gaussian state-space model to fa-

cilitate the use of Gibbs sampling. For the general state-space models, Hürzeler and

Kunsch (1998) present rejection sampling and Geweke and Tanizaki (2001) recom-

mend the Metropolis-Hastings algorithm within Gibbs sampling. However, these two

methods often suffer from small acceptance rate. In summary, MCMC methods are

suitable for joint posterior estimation, but unfortunately, require a full iteration each

time when a new observation is available.

1.2 Sequential Monte Carlo

Sequential Monte Carlo is essentially a recursive importance sampling and re-

sampling scheme for dynamic models. SMC is also known as particle filter, perhaps

stemming from the fact that Monte Carlo is heavily used in the engineering research.

The word particle was first seen in Kitagawa (1996). Historically, similar algorithms

were reported under different names in independent efforts, see bootstrap filter or
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sequential importance resampling in Rubin (1987), Gordon et al. (1993), sequential

imputation in Kong et al. (1994), Monte Carlo filter in Kitagawa (1996) and conden-

sation algorithm in Isard and Blake (1998). A unified framework covering many of

these methods is proposed in Doucet et al. (2000), and is described in the following

section. Compared to the MCMC, sequential Monte Carlo is inferior at joint state

estimation due to the strong correlation between the generated samples at adjacent

time points. However, its fast marginal state estimation in general state-space models

has made it a more favorite choice than MCMC and other methods. We first intro-

duce importance sampling and then its recursive implementation in dynamic models

with specially structured importance function.

Importance sampling is a useful technique to simulate complex distributions and

make Monte Carlo estimates. Suppose that random variable X is distributed with

density function p(x) and one needs to evaluate the integral E [g(x)] =
∫

g(x)p(x)dx.

It is well known that a Monte Carlo approximation is the sample mean of {g(x(i)), i =

1, . . . , N}, where {x(i), i = 1, . . . , N} are samples from p(x). However, when it is

difficult to draw samples from p(x), one can choose another density function, q(x),

the so called importance function, draw samples x(i), i = 1, . . . , N from q(·), and use

the weighted mean,

E [g(x)] ≈ 1

N

N∑
i=1

w̃(i)g(x(i)), (1.3)

where

w̃(i) =
p(x(i))

q(x(i))
, (1.4)
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as an approximation. The unnormalized importance weights w̃ can be normalized

and Equation (1.3) is further approximated by:

E [g(x)] ≈
N∑

i=1

w(i)g(x(i)), (1.5)

where

w(i) =
w̃(i)

∑N
j=1 w̃(j)

. (1.6)

From now on, w(i) is referred to as sum-normalized weight when it is necessary to dis-

tinguish w(i) from a similar one, expectation-normalized weight introduced in Chap-

ter 2. When there is no confusion under the context, we simply call w(i) normalized

weight. An advantage of the normalized formulation in Equation (1.6) is that one

needs to know p(·) and q(·) only up to proportionality constants. This advantage

is important in the dynamic models, where the proportionality constants vary from

time to time and have to be approximated through Monte Carlo simulations.

Particle filtering is a recursive way to do importance sampling and resampling.

For general state-space models in Equation (1.1), however, some special form of im-

portance function has to be used to implement recursive importance sampling. We

need to understand how state information is propagated and updated in the first step.

One recursive updating formula for the joint posterior is as follows:

p(x1:k|y1:k) ∝ p(x1:k−1|y1:k−1)p(xk|xk−1)p(yk|xk). (1.7)

As indicated by the above expression, the posterior at time k is known up to some con-

stant given the posterior at time k− 1, p(x1:k−1|y1:k−1), transition density p(xk|xk−1)

and likelihood p(yk|xk). The latter two can be easily calculated for the given model

in Equation (1.1). Based on Equation (1.7), Doucet et al. (2000) suggest to use the
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following updating scheme for the importance function:

uk(x1:k; y1:k) = uk−1(x1:k−1; y1:k−1)q(xk; x1:k−1, y1:k), (1.8)

where q(xk; x1:k−1, y1:k) is a density function of xk with some parameters decided by

part or all of x1:k−1, as well as y1:k. Note that the above sampling scheme implicitly

states that new samples of xk are drawn from q(·) based on the state samples at

previous time points and possibly the observations y1:k. Using Equation (1.4), the

unnormalized importance weights become

w̃
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k ; x

(i)
1:k−1, y1:k)

. (1.9)

Thus, the weights can be recursively updated through Equations (1.9) and (1.6).

Clearly, the density function q(·) must be easy to sample from and analytically

tractable. In practice,

q(xk; x1:k−1, y1:k) = p(xk|xk−1), (1.10)

known as the prior importance function, is conveniently available in a closed form for

most of general state-space models. It propagates particles from time k− 1 to time k

through the state equation in (1.1a). Under the prior importance function, Equation

(1.9) is further simplified to

w̃
(i)
k ∝ w

(i)
k−1p(yk|x(i)

k ). (1.11)

Figure 1.1 shows how particles evolve over time under the prior importance function.

1.2.1 Optimal Importance Function

As stated above, the prior importance function can be applied to any state-space

models where the state equation defines a transition density function. However,
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Figure 1.1: Particle evolves through a two-phases process, samples prediction (in the
left half) and weight updating (in the right half)

it depends only on previous samples of x
(i)
k−1, i = 1, . . . , N and inherently previous

observations. Therefore less representative particles could be generated if the current

observation yk is far from what would be expected given the previous samples of xk−1.

A better sampling method is to draw samples also conditional on the current

observation yk, that is, let

q(xk; x1:k−1, y1:k) = p(xk|xk−1, yk). (1.12)

This is called the optimal importance function in that it minimizes the variance of

the importance weights conditioned on x1:k−1 and y1:k (Doucet et al., 2000). The

unnormalized weights are then

w̃
(i)
k = w

(i)
k−1p(yk|x(i)

k−1) (1.13)

9



Unfortunately, either the optimal importance function in (1.12) is not always

available for direct sampling or the density function p(yk|xk−1) does not always have

a closed-form expression as required in (1.13). However, the state-space model with

a linear measurement equation and additive Gaussian noises in both equations does

satisfy the above requirements. Define such model by

xk = f(xk−1) + ωk, (1.14a)

yk = Hxk + νk, (1.14b)

where ωk ∼ N (0, Q), νk ∼ N (0, R) for each k, and H is a compatible matrix with

state space as in the linear Gaussian model (1.2). In fact, the matrices H, QandR in

these models could vary with time k, without adding any complexity to the posterior

distributions. Then it is known that [xk|xk−1, yk] is a normal distribution with mean

µopt,k and variance Σopt,k, where

Σopt,k =
[
R−1 + H ′Q−1H

]−1
, (1.15a)

µopt,k = Σopt,k

(
R−1f(xk−1) + H ′Q−1yk

)
. (1.15b)

The corresponding importance weight is p(yk|xk−1), which is also a Gaussian density

function such that

p(yk|xk−1) ∝ exp{−1

2
(yk −Hf(xk−1))

′ [R + HQH ′]−1
(yk −Hf(xk−1))} (1.16)

Notice that Equation (14) of Doucet et al. (2000) should be the same as Equation

(1.15). However, the former has a typo, where Σν and Σw should be exchanged (please

be advised that our notation is different from that in Doucet et al. (2000)). A more
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computationally efficient expression than (1.15) also exists:

Σopt,k = R−RH ′ [HRH ′ + Q]
−1

HR (1.17a)

µopt,k = f(xk−1) + RH ′ [HRH ′ + Q]
−1

(yk −Hf(xk−1)) (1.17b)

Though seemingly completely different, the two sets of solutions above are the same

since

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (1.18)

for compatible matrices A,B, C, and D. Since the matrix inverse operation in (1.17)

involves only measurement space whose dimension is usually less that of state space,

(1.17) is preferred for the sake of computation even though it looks more complex.

1.2.2 Particle degeneracy and resampling

Repeated updating of importance weights will inevitably lead to particle degener-

acy (Kong et al., 1994, Doucet et al., 2000), when nearly all the normalized weights

are zero. Thus a great deal of computational effort is wasted on updating particles

that make very little contribution toward the estimation. Resampling can be used to

remove small-weighted particles while keeping the underlying distribution unchanged.

However, as unnecessarily frequent resampling would likely cause particle depletion

as discussed in the next section, Liu (1996) proposes the Effective Sample Size (ESS)

statistic, Ñk, to control resampling frequency.

Ñk =
1

N
∑N

i=1(w
(i)
k )2

(1.19)

It can be easily verified that Ñk ≤ 1. Resampling step is performed whenever Ñk gets

below a specified threshold value Nthre, say, 1/3.
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Various resampling schemes have been introduced into SMC simulation process.

Simple random resampling, or multinomial resampling, draws samples with the prob-

ability equal to their weights. Other methods are developed to reduce Monte Carlo

variation or computing time. Stratified resampling (Kitagawa, 1996) aims to avoid

drawing more than one sample from a group of weights whose sum is less than 1/N .

Systematic resampling (Kitagawa, 1996) is a slight modification to the stratified re-

sampling in that it is more time-efficient. Residual resampling (Liu and Chen, 1998)

guarantees that each sample x
(i)
k have at least bNw

(i)
k c replicates of themselves, where

bmc is the integer part of m.

It is worth noting that even though the resampling procedure may increase the

variance of the estimate at the current time, it may provide a better estimate at some

of the future time points (Chopin, 2004).

1.2.3 Particle depletion and moving strategies

Particle depletion or impoverishment happens when a large portions of particles

are identical, making the empirical distribution less representative. In the worst case,

the empirical distribution becomes a single delta function. Particle depletion usually

results from repeatedly resampling the empirical distribution. Particles in dynamic

models are able to evolve into distinct ones when propagated through the system

equation. Consequently, it is more often for static models that one runs into this

problem, when resampling is applied.

Particle moving is designed to reduce this effect, in a way that brings variations

to the identical particles without changing the underlying distribution. Berzuini and
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Gilks (2001) discuss this topic with resample-move. In brief, each particle after re-

sampling is subject to be moved to a new position in the state space by an appropriate

transition kernel. Thus, duplicated particles have a chance to become diversified and

the number of identical particles is smaller than without moving. Chopin (2002) sug-

gests using a normal distribution as the transition kernel in a static model with large

data set. The author claims that an independent normal kernel with the empirical

sample mean and variance is a reasonable choice since posterior tends to be Gaussian

asymptotically. Another strategy that moves each particle around itself, as described

by Goel et al. (2006), has similar performance. In Chapter 5 where SMC is applied

to a static model, particle moving is performed based on a Gibbs sampling scheme.
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1.2.4 SMC algorithm

The general SMC algorithm is listed in the following.

The Sequential Monte Carlo algorithm

1. Initialization

Set w
(i)
0 = 1/N , for i = 1, 2, . . . , N

For time k = 1, 2, . . .
2. Importance sampling

For i = 1, 2, . . . , N

Draw samples x̃
(i)
k ∼ q(·|x(i)

1:k−1, y1:k)

Compute weight w̃
(i)
k

End

3. Resampling

For each i = 1, 2, . . . , N , normalize weight w
(i)
k

Evaluate effective sample size, Ñk

If Ñk < Nthre

For i = 1, 2, . . . , N

Draw x
(i)
k from x̃

(1:N)
k with probability w

(1:N)
k respectively

End

Reset w
(i)
k = 1/N , for i = 1, 2, . . . , N

Else

Set x
(i)
k = x̃

(i)
k , for i = 1, 2, . . . , N

End
End

1.2.5 Convergence Properties

Convergence properties of SMC estimation have been studied by many authors,

see e.g., Del Moral and Miclo (2000), Crisan (2001), Künsch (2005), and in many

references cited therein. A survey of convergence results is provided by Crisan and

Doucet (2002). Two theorems from Künsch (2005) are presented below and are used

in Chapter 2 for the development of asymptotic properties of some statistics.
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Following the convention of Künsch (2005), denote the state transition density

function as ak such that

Pr(xk ∈ dx|x1:k−1) = Pr(xk ∈ dx|xk−1) = ak(xk−1, dx)

Also define bk such that

Pr(yk ∈ dy|xk) = bk(xk, dy).

For example, in the widely used additive noises state-space model, ωk ∼ pω and

νk ∼ pν , the expressions of ak and bk are given by

ak(xk−1, xk) = pω(xk − fk(xk−1)),

bk(xk, yk) = pν(yk − hk(xk)).

Given the measurements y1:k, the posterior density of xk is approximated by the

empirical distribution based on N particles and weights at time k, {x(i)
k , w

(i)
k , i =

1, . . . , N},

p̂N(xk|y1:k) =
N∑

i=1

δ(xk − x
(i)
k )w

(i)
k .

Künsch (2005) provides the following theorems.

Theorem 1. If x from ak(x, ·) is continuous, and if for all k, all x and all y,

0 < bk(x, y) ≤ C(k, y) < ∞,

then for all k and all y1:k,

∥∥∥p̂N(xk|y1:k)− p(xk|y1:k)
∥∥∥

1
→ 0

in probability as N →∞.
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This result states that at each time point, the empirical distribution of the parti-

cles converges to the underlying true posterior density when the number of particles

goes to infinity. The conditions imposed above are quite weak. For example, it is

straightforward to verify that these conditions are satisfied for the widely used addi-

tive Gaussian noise model.

The convergence of SMC sampling shows that the empirical distribution converges

to the true distribution. However, the availability of a particle-based approximation

to the posterior distribution, though critical, does not answer the question of the ap-

proximation error for the particle-based point estimates. The following central limit

theorem (Künsch, 2005) shows that under very weak conditions, the SMC approxi-

mation of the estimate based on the empirical distribution p̂N(xk|y1:k) converges to

the true estimate at the rate of 1/
√

N .

Theorem 2. Under the conditions in Theorem 1, for each finite k, and all y1:k and

functions g(·) that are square integrable with respect to the true posterior distribution,

√
N

(
N∑

i=1

g(x
(i)
k )w(i) − E(g(xk))

)

is asymptotically normal.

This result is a highly simplified version of the one in Künsch (2005). It is im-

portant to note that, as time evolves, the asymptotic variance of the Monte Carlo

estimate stay bounded. See Künsch (2005) for details.

1.3 Insight, Improvement, Extension, and Application

The empirical effective sample size in (1.19) is the primary statistic to control

resampling frequency. However, its properties are rarely discussed. By introducing
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the new expectation-normalized weight, some insights on the empirical effective sam-

ple size are investigated theoretically in Chapter 2. In addition, using this newly

defined weight, we show the advantage of optimal importance function (1.12) over

the prior importance function (1.10). Thus, whenever feasible, it makes sense to use

the optimal importance function.

As a simulation method, performance of SMC is subject to prior settings. An

incompatible prior, e.g. poor initial guess, could adversely affect SMC performance.

We recommend the use of predictive density value to detect the possible existence of

an incompatible prior. If the prior is diagnosed to be incompatible with the observed

data, we suggest a numerical smoothing method, based on the moving horizon esti-

mation, to find a prior compatible with initial observations. Detailed discussions are

in Chapter 3.

Regular SMC methodology does not apply to the estimation of constrained states.

Chen (2004) extends SMC to constrained estimation by an extra acceptance/rejection

step. In Chapter 4, its asymptotic convergence property is verified and its performance

is tested with a more complex model.

SMC has seen many applications in different areas as surveyed in Doucet et al.

(2001). A novel application of SMC is introduced for the population pharmacokinetic

model estimation in Chapter 5, and its performance is compared with the traditional

Gibbs Sampler.

17



CHAPTER 2

SOME INSIGHTS ON IMPORTANCE WEIGHTS AND
EFFECTIVE SAMPLE SIZE

In this chapter some asymptotic properties of the empirical effective sample size,

Ñk, in (1.19), are developed as the particle size N goes to infinity. Two different

resampling control strategies, either resampling at every time point or resampling

when necessary, are considered here.

The sum-normalized nature of wk in Equation (1.6) makes it extremely difficult,

if not impossible, to analytically track the properties of Ñk. We introduce a newly

defined importance weight, w̄k, in Equation (2.1). To distinguish w̄k from wk in

Equation (1.6), we call w̄k the expectation-normalized importance weight. It is shown

in the following that Ñk is a consistent estimate of N̄k and its variations based on

w̄k. We call N̄k and its variations the expectation-normalized effective sample size.

With the use of expectation-normalized importance weight, it is easy to study the

distribution of the effective sample size for the linear Gaussian model, when each new

observation is treated as a random variable before being observed.

In addition, the superiority of optimal importance function over the prior impor-

tance function is established by showing that N̄k is larger under the former importance

sampling scheme. The new effective sample size does not depend on the generated

18



samples, thus making it a good criterion to compare the performance of different im-

portance functions. As a matter of fact, when optimal importance function is used,

the variance of weight w
(i)
k is zero under the distribution [xk|x(i)

k−1, yk] since the im-

portance weight w
(i)
k depends only on x

(i)
k−1 and yk. However, such an argument does

not seem to be convincing. In this chapter, we use the new effective sample size to

formally prove that the optimal importance function leads to a larger N̄k.

The rest of this chapter is organized as follows. The expectation-normalized im-

portance weight is defined at first. Then the asymptotic properties of effective sample

size are introduced under different resampling-control schemes. In the end, the theo-

retical behavior of effective sample size is introduced for the linear Gaussian model,

if we treat a new observation as a random variable before it is obtained.

2.1 Expectation-normalized Importance Weights

Without further repeating, it is assumed from now on that the requirements in

Theorem 1 are satisfied. The new expectation-normalized importance weight w̄k is

given by:

w̄k =
p(xk|y1:k)

p(xk|y1:k−1)
,

=
p(yk|xk)

p(yk|y1:k−1)
.

(2.1)

As seen in its definition (2.1), w̄k is the importance weight of samples drawn from the

importance function p(xk|y1:k−1) for the desired posterior density function p(xk|y1:k).

The second step simplification in (2.1) shows that w̄k is exactly the likelihood value

p(yk|xk) normalized by its expectation with regard to the importance density func-

tion, since p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk. And this justifies the name of

“expectation normalized”.
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In effect, Nwk is a consistent estimate of w̄k if we use the prior importance function

in the SMC sampling and resample particles at every time point. It can be shown that

under the above assumptions w̃
(i)
k =

p(yk|x(i)
k )

N
and w

(i)
k =

p(yk|x(i)
k )

∑N
i=1 p(yk|x(i)

k )/N
using Equation

(1.11) and Equation (1.6), where x
(i)
k is drawn independently from p(xk|y1:k−1) for

i = 1, . . . , N . As N →∞,
∑N

i=1 p(yk|x(i)
k )

N

p→ p(yk|y1:k−1), where
p→ denotes convergence

in probability. As a result, Nw
(i)
k

p→ w̄
(i)
k as N →∞.

2.2 Asymptotic Properties of ESS Based on Expectation-
normalized Weights

Based on the expectation-normalized importance weight, define N̄k as

N̄k =
1

1 + Varxk|y1:k−1 {w̄k}
,

=
1

Exk|y1:k−1 {w̄2
k}

,

=
p2(yk|y1:k−1)

Exk|y1:k−1 {p2(yk|xk)} .

(2.2)

Lemma 2.2.1. For the SMC estimation under general state-space models, if resam-

pling is done at every time point and prior importance function is used, then

Ñk
p→ N̄k, as N →∞.

Proof. With the above discussion, it can be shown that N
∑N

i=1

[
w

(i)
k

]2 p→Exk|y1:k−1 {w̄2
k}.

Then the result follows.

Lemma 2.2.2. Assume that no resampling is done before the current time point k

and prior importance function is used for a general state-space model. Define N̄1:k as

N̄1:k =
p2(y1:k)

Ex1:k {p2(y1:k|x1:k)} . (2.3)

Then

Ñk
p→ N̄1:k, as N →∞.
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Proof. When no resampling is performed and prior importance function is used, it is

equivalent to drawing joint samples x
(i)
1:k, i = 1, . . . , N from [x1, . . . , xk]. Then it can

be shown that the above result holds.

Now we extend the Lemma 2.2.1 or 2.2.2 to the case of controlled resampling.

Proposition 2.2.3. Assume the most recent resampling is done at time point j − 1

with j ≥ 1 before the current time k. Define N̄j:k as

N̄j:k =
p2(yj:k|y1:j−1)

Exj:k|y1:j−1 {p2(yj:k|xj:k)}
. (2.4)

Then

Ñk
p→ N̄j:k, as N →∞.

Proof. When resampling is performed at time point j − 1, the resampled x
(i)
j−1, i =

1, . . . , N is regarded as a realization of the underlying posterior distribution. The

further sampling from the prior importance function is equivalent to drawing from

the true posterior distribution p(xj:k|y1:j−1). Then the above results holds.

The following propositions establish that the effective sample size based on the

expectation-normalized weight for the optimal importance function is larger than

that for the prior importance function. By using expectation-normalized weights, the

effective sample size does not depend on the generated samples, whereas the sum-

normalized effect sample size in Equation (1.19) changes value with different samples.

Therefore, it is now feasible to theoretically compare the performance of importance

functions using the new formulation. A larger effective sample size generally indicates

a better performance in generating samples. It is noted that the effective sample size

serves as a performance comparison criterion in this chapter, but not for the purpose of
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resampling frequency control as described in the SMC sampling algorithm in Chapter

1.

Proposition 2.2.4. For general state-space models, if resampling is done at every

time point and optimal importance function is used, then

Ñk
p→ N̄ o

k , as N →∞.

where N̄ o
k is defined as

N̄ o
k =

p2(yk|y1:k−1)

Exk−1|y1:k−1 {p2(yk|xk−1)} . (2.5)

Proof. With optimal importance function and resampling every time, the unnormal-

ized weight w̃
(i)
k =

p(yk|x(i)
k−1)

N
, which is derived from Equation (1.13) and where x

(i)
k−1, i =

1, . . . , N are drawn from p(xk−1|y1:k). It can be shown that
∑N

i=1 w
(i)
k

N

p→ p(yk|y1:k−1) as

N →∞. By using the sum-normalized equation (1.6), the result can be proved.

Proposition 2.2.5. Assume that resampling is done at every time point in SMC sam-

pling. Let N̄k be the expectation-normalized effective sample size resulted from using

the prior importance function, and N̄ o
k be expectation-normalized effective sample size

obtained with optimal importance function. Then

N̄ o
k > N̄k,

for every k.
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Proof.

Exk|y1:k−1
{
p2(yk|xk)

}

=
[
Exk|y1:k−1 {p(yk|xk)}

]2
+ Varxk|y1:k−1{p(yk|xk)},

≥p2(yk|y1:k−1) + Varxk−1|y1:k−1{Exk|xk−1,y1:k−1{p(yk|xk)}},

=p2(yk|y1:k−1) + Varxk−1|y1:k−1{Exk|xk−1{p(yk|xk, xk−1)}},

=
[
Exk−1|y1:k−1 {p(yk|xk−1)}

]2
+ Varxk−1|y1:k−1{p(yk|xk−1)},

=Exk−1|y1:k−1
{
p2(yk|xk−1)

}
.

Therefore, N̄ o
k > N̄k by using the equations in Lemma 2.2.1 and Proposition 2.2.4.

Note that the above proof uses the following result

Var(U) = Var(E(U |V )) + E(Var(U |V )),

≥ Var(E(U |V )).

for any random variables U and V .

2.3 Expectation-normalized effective sample size in Linear
Gaussian Models

In this section, N̄k is assumed to be a random variable before an observation

becomes available at time point k. That is, yk is treated as a random variable and

its predictive distribution is given as p(yk|y1:k−1) with all the previous observations

y1:k−1 known.

Lemma 2.3.1. Assume that the prior importance function is used with resampling at

every time point. Then the distribution −2 log(N̄k) is equivalent to a weighted sum of

dy independent Chi-square random variables, each of which has one degree of freedom.

Particularly, −2 log(N̄k) is equivalent to a chi-square distribution with one degree of

freedom when dy = 1.

23



Proof. Using the result in Equation (C.3) in Appendix C, we have the solution for

N̄k as

N̄k = ck · e−
1
2
(yk−ξ′

k|k−1
∆−1

k|k−1
(yk−ξk|k−1), (2.6)

where

∆k|k−1 = Ψk|k−1

[
1 +

1

2

(
HPk|k−1H

)−1
R

]
, (2.7)

ck is a proportional constant for time point k, ξk|k−1 = Hµk|k−1, and Ψk|k−1 =

HPk|k−1H
′ + R.

Therefore,

−2 log(N̄k) = −2 log(ck) + (yk −Hµk|k−1)
′∆−1

k|k−1(yk −Hµk|k−1). (2.8)

By Kalman filter theory presented in Appendix A, [yk|y1:k−1] is N (ξk|k−1, Ψk|k−1).

Therefore (yk − Hµk|k−1)
′Ψk|k−1)

−1(yk − Hµk|k−1) is a chi-square distribution of dy

degree of freedom. However, the normalized matrix for (yk −Hµk|k−1) is not its co-

variance matrix in (2.8). As a result, −2 log(N̄k) is equivalent to a linear combination

of chi-square random variables of 1 degree of freedom. The linear coefficients are

eigenvalues of Ψk|k−1.

This property is useful for model checking. A feasible approach is to compute the

value of N̄k for the observed yk and compare to a threshold value which is decided

according to the distribution of N̄k. Detailed discussions are in Chapter 3.
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CHAPTER 3

POOR PRIOR SMOOTHING WITH PREDICTIVE
DENSITY

Model checking is an important component of statistical inference in practice. It

investigates the possibility of the posited model that is assumed to generate the ob-

served data. In practical Bayesian analysis, checking the compatibility of the prior

distribution with the data is also a part of model checking. These two components

of the model can be tested as a whole with some statistics as illustrated in many pa-

pers; see, e.g., Guttman (1967), Box (1980), Bayarri and Berger (2000). One can also

assume that one of these two components is correct and test the validity of the other

one. For example, Evans and Moshonov (2006) discuss how to detect an incompatible

prior, or assess “prior-data conflict”, while assuming that sampling model is appro-

priate. The above methodology is proposed mainly for static models, where closed

form of the posterior predictive density of a sufficient statistics is available. When

extended to dynamic models, these (sufficient) statistics either do not exist or are

hard to compute. Furthermore, appropriate remedies for dealing with incompatible

prior are not fully discussed, once it is detected.

In this chapter, we introduce both prior checking and improvement for state-space

models. Prior checking may seem unnecessary in that its effect usually diminishes
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as the number of observations increase. This happens for static models, when the

dimension of parameter space remains fixed. However, for dynamic models, the di-

mension of state space increases with time and the number of observations at each

time step is limited.

Sequential Monte Carlo sampling has been successfully applied to general state-

space models for Bayesian inference. Being a simulation method, its performance

relies to some extent on the generated samples, or particles. With a poor initial

guess, a large fraction of particles will usually be less representative of the underlying

distribution of the states, which could cause the SMC estimates to diverge from the

true values.

In this Chapter, Moving Horizon Estimate is creatively combined with the se-

quential Monte Carlo method to obtain a stable estimate of initial states. Inside

each window, MHE gives a smoothed estimate of the states at the beginning of the

window, since some “future” data in the same window is used in their estimation.

We find that combining a Moving Horizon Smoother with SMC is very effective for

recovering from a poor prior, and develop an integrated approach that combines these

two powerful tools.

A statistic based on the predictive density value, p(yk|y1:k−1), is proposed to eval-

uate the compatibility of the provided prior distribution with the data model (like-

lihood). When the statistic goes beyond a threshold value, the smoothing step is

triggered to keep SMC estimation on track. Its theoretical properties are discussed in

the context of linear Gaussian model and generalized to nonlinear state-space models
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The rest of this chapter is organized as follows. In the next section, we briefly

describe model validation and smoothing methods. Following the review are discus-

sions of the predictive density and MHE smoothing. Finally, two models are used to

demonstrate the performance of this strategy in a reliable manner. In addition, one

model illustrates situations in which this method could possible fail to improve the

prior. This seems to occur when the measurements do not provide enough information

about the underlying states.

3.1 Background

3.1.1 Model Checking

Model checking can be regarded as a preliminary analysis to tell whether, or to

what extent, a posited model is compatible with observed data. It is important in

that misleading inferences could be obtained under an inappropriate model. Usually,

model checking is performed by finding a statistic which gives a measure of surprise

associated with the observed data under the posited model. Bayarri and Berger (1997)

provide a fairly comprehensive review of the model checking literature. Broadly

speaking, frequentist methods aim to provide a threshold for some statistic, while

Bayesian methods base the evaluation on the posterior distribution, as discussed in

Guttman (1967), Rubin (1984), Bayarri and Berger (2000). Only a brief introduction

is given below.

In a simplified setup for model checking, assume random variable Y is modeled

to follow a probability distribution p(Y). A statistic T (Y) is designed to give a small

value when the observed event leads to a surprise under the posited model. Then the

observed T is compared with a selected threshold value that decides whether or not
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the observed data y is compatible with the assumed model. Several statistics have

been proposed in the literature, for example, the density value itself. In fact, for a

discrete random variable Y , Weaver (1948) defines a surprise index for an observed

event {Y = y} as E{p(Y )}/p(y), where p(y) = Prob{Y = y}. Based on this ratio,

Weaver (1948) points out that a rare event is not necessarily a surprising event, and

that a surprising event is decided relative to other events. Good (1956) generalized

this idea by replacing p(y) with logp(y) in this ratio, and linking the surprise index

to entropy. In fact, one can use g(p(y)), where g() is a monotone convex function.

However, note that since the numerator (expectation value of g()) is a constant, it

does not matter which g() is chosen, if a threshold value is used to assess the extant

of surprise.

In this chapter, we assume that the state-space model (1.1) is valid and the prior

on the initial state is a to-be-verified component of the fully specified model. The

compatibility between the specified prior and the observations is tested through the

frequentist sequential predictive density values, as discussed in section 3.1.5.

3.1.2 Smoothing Methods

Of the many smoothing schemes, the Monte Carlo smoother (Kitagawa, 1994,

1996) is a natural extension to the existing SMC framework in that it resamples some

previously obtained samples with appropriate weights. However, the samples are ac-

tually implicitly assumed to well represent some filtering distribution. Unfortunately,

this is not the case when the prior is poorly specified. Resampling the ill-positioned

samples does not improve their reliability.
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Chen et al. (2004) suggested an approach based on empirical Bayes sequential

importance sampling/resampling (EBSIR). It ignores the given prior and, instead,

samples the initial state from a uniform distribution. After the first observation y1 is

available, a point estimate of the initial state is obtained to replace the given prior

mean. Then the regular SMC sampling begins with the new prior. This method does

compensate for a poor prior, but is limited to models with an invertible observation

function. In addition, it can use only the observation y1 for smoothing, and cannot

go further.

Rauch et al. (1965) presented the well known RTS smoother, which gives an

analytic solution to the smoothed posterior for linear Gaussian state-space models.

Essentially, it performs forward Kalman Filtering or extended Kalman Filtering as

time evolves, saves intermittent data and then performs backward smoothing from the

latest time point to a desired earlier time point, i.e. time 1, in the case of dealing with

a poor initial prior. Like EKF, it uses Taylor series expansion to linearize equations

(1.1a) and (1.1b) for nonlinear Gaussian models. Such approximation could make the

smoothing unreliable as shown via a case study in Section 3.2.2.

Moving Horizon Estimation employs the widely used maximum a posterior (MAP)

criterion to find the joint estimate of states. For the sake of computational feasibility,

the estimation horizon is set to be of a small fixed length, that is,

(x̂k−M+1, . . . , x̂k) = arg max
xk−M+1:k

p(xk−M+1:k|y1:k), (3.1)

where M is the window length. Under widely used assumptions that state noise and

measurement noise are additive Gaussian, this becomes a least squares optimization

problem, and can be solved efficiently with optimization algorithms (Robertson et al.,

1996).
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A poor prior can cause the performance of the SMC method to be significantly

worse than MHE and EKF as illustrated by Chen et al. (2004). Theoretically, the

prior, good or poor, does not impose any problem in the quality of the posterior

calculation. In fact, the forgetting property states that two hidden Markov chains,

with the only difference between them being the initial distribution, approach each

other with the passage of time. That is, the initial prior can have larger effects only

on the estimation of earlier states. However, since SMC is a simulation method under

a finite set of particles, it could fail to recover from the poorly located particles drawn

from the poor initial prior. As time evolves, the error accumulates and the posterior

continues to get worse.

It seems that a poor initial prior could be well compensated by a few early ob-

servations because p(x1|y1:k) contains more information than p(x1) for every value

of k when the model is correct. In this chapter, we explore the use of smoothing

strategies to search for a more compatible prior for reliable future inferences when an

appropriate number of system observations are available.

Since the smoothing operation has to wait for some data to become available,

and performs extra extensive computations to find a compatible prior and then re-

estimate system states, it should be done only when necessary. That said, a statistic

needs to be developed to detect whether or not the given prior is compatible with the

observed data. Furthermore, a strategy should also be provided to decide how many

data are used for smoothing. Detailed discussions on these issues are presented in the

sequel.
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3.1.3 Smoothing under a Linear Gaussian Model

In practice, too few observations do not add much information on the system

states, while a large number of observations usually waste computing resources un-

necessarily, when the forgetting property holds. Some explanations are given for

the linear Gaussian model, under which MHE is equivalent to Kalman Filter and

analytical solutions are recursively available.

Analytical recursive computation of smoothed posterior, p(x`|y1:k), k > `, is avail-

able for linear Gaussian models; see appendix A for details. For simplicity, a 1-

dimensional linear Gaussian model is used, i.e., F and H are both scalers in Equation

(1.2). It has less smoothing effects with increasing smoothing length.

Define ηk = µ1|k − µ1|k−1 for any k > 1, that is, ηk denotes the additional ad-

justment with one more observation being used to do smoothing at time k. If it is

expected that such adjustment is smaller stochastically, smoothing operation might

not help much. It immediately follows from the RTS smoothor in Appendix A that

ηk =

(
k−1∏

i=`

Ci

)
Kk(yk −Hµk|k−1), (3.2)

where Ck is defined in Equation (A.3) and Kk is defined in Equation (A.1). Since

E{ηk} = 0 with respect to yk|y1:k−1, its variance is considered next. Let τk =

E{η2
k|y1:k−1}. Then

τk =

{(
k−1∏
i=1

Ci

)
Kk

}2 (
HPk|k−1H

′
+ R

)
(3.3)

Therefore,

ζk =
τk

τk−1

,

=
R

Pk|k−1H2 + R
· R

Pk−1|k−2H2 + R
,

< 1.

(3.4)
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Thus τk is decreasing and therefore ηk gets more and more concentrated around 0 as

k increases. Theoretically, it is possible to calculate τk and then decide if it is worth

using more data to smooth.

Similarly for general state-space models, one can use smoothing progressively and

then decide if it is enough for the smoothing. The next subsection describes a statistic

that does not only detect an incompatible prior, but also tells how many observations

are needed for smoothing.

3.1.4 MHE Smoothing for Initial State

In this section, we use a robust and accurate smoothing method based on MHE.

This smoother, derived in Tenny (2002), enhances the accuracy of MHE by estimating

the arrival cost (prior) for a window of data based on all the observations in the

window. Current research at the forefront of estimation of nonlinear dynamic systems

includes methods based on optimization like MHE, and based on simulation like SMC.

We propose a novel combination of MHE smoothing with SMC online filtering. MHE

smoothing can guard SMC from slow convergence due to a poor initial guess while still

maintaining SMC’s fast and accurate estimation performance, particularly after the

smoothing operation. The poor initial guess is detected through the use of predictive

density values at each time. Such detection is performed for only a limited duration

of time from the beginning, since SMC is likely to be on a good track when predictive

density values are large for several consecutive time points.

The MHE formulation (Tenny, 2002) will now be tailored to the specific prior

smoothing problem. Assuming that measurement equation is additive Gaussian and

MHE smoothing is performed to a segment of observations y1:M , where M is the
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window length, the objective function for MHE smoothing is:

min Υe(ρ) +
1

2

M∑

k=1

Le(ωj, νk),

where

x1 = µ1 + ρ,

Υe(ρ) =
1

2
ρP−1ρ,

Le = ωT
k Q−1ωk + νT

k R−1νk,

and for each k:

xk = f(xk−1, ωk−1),

yk = h(xk) + νk,

Axk ≤ a,Bωk ≤ b, Cνk ≤ c.

(3.5)

In the above equation, the noises are assumed to be independent Gaussian random

variables with Q and R being the variance of the state noise and measurement noise,

respectively. The prior π(·) on x1 is also Gaussian, N (µ1, P1). After MHE smoothing

is done over a segment of M observations y1:M , the prior mean µ1 is replaced by an

adjusted value, µ1|M = µ1 + ρ, which starts the regular SMC estimation. The new

prior distribution is denoted π1|M , which is N (µ1|M , P1).

Since MHE is a numerical optimization method and not a simple resampling pro-

cess like Monte Carlo smoother, the MHE smoothed prior is robust to a misspecified

prior because observations have been used to learn about the prior hyper-parameters.

MHE smoother is also likely to be better than a noninformative prior because it in-

corporates some prior information. Therefore, MHE estimation may provide valuable

information for the early period of the observations to help its recovery from a poor

prior and using this smoothing estimate presents a good start for simulation methods
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like SMC (Lang et al., 2006). Once the prior is of good quality, the SMC filter can be

used by itself to avoid the time delay due to smoothing. The currently implemented

MHE assumes multivariate Gaussian or other fixed shape of distributions to repre-

sent the prior knowledge or arrival cost at the start of a window (Rao and Rawlings,

2000). This assumption does not hurt the performance because the benefit of a prior

with a continuous distribution outweighs the disadvantages of having a poor prior.

Of course, it is important to be able to detect when smoothing should be used, which

the proposed model checking via predictive density is able to accomplish.

3.1.5 Predictive Density

Prior compatibility detection statistic, predictive density γk, is defined as

γk(yk, π) = p(yk|y1:k−1). (3.6)

Note that the prior π is explicitly included in the above equation (3.6) to indicate

that the posterior predictive density depends on a specific prior, assuming x1 has

been integrated out using the prior. Intuitively, γk is expected to be large if the

specified prior is compatible with the observed data where the specified model is

correct and the observation is not an outlier. Weaver (1948) and Good (1956) used

similar statistic for static models. A direct use of their proposed statistic would be the

joint density value p(y1:k) at time point k. The proposed posterior predictive density

is an extension to the dynamic models and works naturally under the framework of

SMC. In fact,
∏k

`=1 γ` is exactly the joint density p(y1:k). In addition, by treating yk as

a random variable prior to its observing at time k, the distribution of Γk, the random

variable γk, provides valuable information for the realized value of p(yk|y1:k−1) after
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yk is observed in the sense that one can assess if the observed value of yk is surprising

under this density.

When combined with MHE smoothing, predictive density value reflects the effect

of a new prior provided by MHE smoother. New threshold value may be needed.

Intuitively, replacing the original prior distribution with the smoothed tends to in-

crease the predictive density value. This is verified for the linear Gaussian models in

Appendix B, i.e.,

γ1(y1, π1|1) ≥ γ1(y1, π),

where π1|1 is the prior based on the smoothing with only y1. Next, we further discuss

its computation under the linear Gaussian model and apply it to nonlinear model

based on SMC.

Linear Gaussian Model

Using Kalman filter theory presented in Appendix A, we obtain Yk|y1:k−1 ∼

N (ξk|k−1, Ψk|k−1), where ξk|k−1 = Hµk|k−1, and Ψk|k−1 = H ′Pk|k−1H + R. So the

analytical form of γk for any yk is

γk =
1

(2π)dy/2|Ψk|1/2
exp

{
−1

2
(yk − ξk|k−1)

′Ψ−1
k|k−1(yk − ξk|k−1)

}
, (3.7)

where dy is the dimension of the observation yk.

Assume γk to be a random variable before yk is observed. As we know (Yk −

ξk|k−1)
′Ψ−1

k|k−1(Yk − ξk|k−1) ∼ χ2
dy

, we can write the CDF or PDF of Γk in a closed

form. A threshold value can be selected in its lower tail at a predefined significance

level. As a matter of fact, this is equivalent to testing whether the normalized residual

(yk − ξk|k−1)
′Ψ−1

k|k−1(yk − ξk|k−1) is greater than a threshold value χ2(1−α, dy), where

χ2(p, df) is the inverse CDF at the probability value p for a Chi-square random
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Figure 3.1: Theoretical CDF of Γ1 under linear Gaussian model

variable with df degrees of freedom. That said, if the actual γk for the observed yk

is smaller than the selected threshold value, then the given prior is declared to be

incompatible with the observed data at time point k. Smoothing via MHE or RTS,

is then performed to find µ1|` such that new predictive density values exceed their

respective threshold values for all observation y1:` after µ1|` replaces the original prior

mean. The theoretical CDF of Γ1, i.e. p(y1), is drawn in Fig. 3.1. The dot on the

CDF curve is the threshold value at the 5% level.

An important property of the predictive density γk is that its threshold value does

not depend on the prior mean for any k in the linear Gaussian model. This also applies

to γ1 under the state-space model with Gaussian prior and a linear measurement

equation. The case study of the CSTR model in Section 3.2.1 demonstrates this
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feature though the CSTR model has only a truncated Gaussian prior distribution.

See Section 3.2.1 for more details.

Nonlinear Non-Gaussian Models

Under general nonlinear models, ξk|k−1 and Ψk|k−1 can be readily computed by

the EKF when additive Gaussian noises are assumed in Equation (1.1). A more

reliable estimate is also available with the framework of particle filtering through

Rao-Blackwellization:

γk = p(yk|y1:k−1)

=

∫
p(yk, xk|y1:k−1) dxk

= Exk|y1:k−1 {p(yk|xk, y1:k−1)}

= Exk|y1:k−1 {p(yk|xk)}

Then γk can be approximated as:

γ̂k ≈ 1

N

N∑
i=1

p(yk|x(i)
k|k−1) (3.8)

With the above approximation, we can find empirical distribution of Γk by prop-

agating the resampled filtered particles {x(i)
k−1|k−1, i = 1, . . . , N} through the state

equation to generate samples {x(i)
k|k−1, i = 1, . . . , N}. Predictions {y(i)

k , i = 1, . . . , N}

are sampled from the measurement equation. Value γk(y
(i)
k ), i = 1, . . . , N is obtained.

Finally, a threshold value is obtained at some fixed percentile of the resulting empirical

CDF of γk.

3.1.6 Smoothing Length

Smoothing length is also decided by the same statistic, predictive density. It is

done by progressively increasing the number of observations and setting the smoothing
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Let ` = 0
FOR times k = 1, . . ., S

— Make the regular SMC
— Calculate predictive density value γk

— Find the threshold value for time k
— IF γk is less than its threshold value

– ` = ` + 1
– IF ` > S

– Exit Smoothing
– END IF
– Use MHE smoothing to find µ1|`
– Set the Gaussian prior mean to be µ1|`
– Reset k = 1 and restart the SMC estimation

— END IF
END FOR

Table 3.1: Algorithm for poor prior smoothing.

length to be the minimum number of observations such that the predictive density

values exceed their respective threshold value for all the observation used.

Let S denote the time point until which the poor prior detection is performed,

then the algorithm is summarized in Table 3.1. Selection of S needs some consider-

ations. Larger S value provides the opportunity that more observations can be used

to perform smoothing. However, prior checking and smoothing are time-consuming

operations and may delay SMC from fast on-line estimation. In our case studies in

Section 3.2.1 and 3.2.2, S is set to be 15.

3.1.7 Effective Sample Size

Effective sample size Ñk is generally used to indicate whether the generated par-

ticles can give a good estimate in general. When ESS is large, particles are supposed

to fit the model well, thus avoiding unnecessary resamplings as discussed in Section
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1.2.2. It is reasonable to expect that ESS may be very small under a bad model

specification (including prior).

As stated in Chapter 2, under the linear Gaussian model with one dimensional

observation (dy = 1), distribution of −2 log(N̄k) is equivalent to Chi-square with

one degree of freedom before yk is observed. However, for dy ≥ 2, it is distributed

as a linear combination of dy independent Chi-square random variables. Therefore,

ESS will be more difficult to use than −2 log(p(yk|y1:k−1)). Furthermore, for general

state-space models, predictive density value has an intuitive explanation—the density

value of predictive observation conditional on all previous observations. The effective

sample size does not have this convincing explanation.

3.2 Successful Case studies

In this section, prior checking and smoothing are demonstrated via simulations of

two dynamic systems: a CSTR model (Chen et al., 2004) and a McKeithan reaction

network (Chaves and Sontag, 2002). The former case study shows that MHE smooth-

ing has similar performance as RTS smoothing while the latter one demonstrates that

MHE smoothing is better than RTS smoothing. Two prior checking statistics, predic-

tive density value and effective sample size are also tested in the McKeithan example.

The study shows that predictive density value performs well for general state-space

models.

To account for randomness in simulations, a total of L realizations are run for each

model with the methods tested on the generated data. Performance of each method is

measured by mean-squared error averaged across realizations, MSER
k , which is defined
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as

MSER
k =

1

L

L∑
r=1

(xk,r − x̂k,r)
T (xk,r − x̂k,r), (3.9)

for all time k. Examining MSER
k over time is likely to indicate the long term behavior

of the tested method and to provide insight into the distribution of errors over time.

In the above equation, xk,r is the true state value at time point k in the r-th realization

and x̂k,r is its point estimate. For the SMC and its variants, the state estimate is the

mean value of the posterior distribution, whereas for the MHE, it is the mode of the

approximated posterior.

3.2.1 CSTR example

The MHE-smoothing based SMC algorithm is applied to a continuously stirred

tank reactor (CSTR) under poor initial guess, which was also studied in (Chen et al.,

2004). The states C and T are modeled by the following equations:

dC

dt
=

q

V
(C0 − C)− k C e−EA/T ,

dT

dt
=

q

V
(T0 − T )− ∆H

ρ Cp

k C e−EA/T − U A

ρ Cp V
(T − Tc) ,

where C is concentration, T is temperature and others are known model parameters,

whose values are listed in Table 3.2. Discritization of the above differential equations

plus a linear measurement equation give the following state space model:

xk =
[

Ck Tk

]T

=

[
(1− ∆t q

V
−∆t k e−EA/Tk−1) 0

−∆t ∆H k e−EA/Tk−1

ρ Cp
(1− ∆t q

V
− ∆t U A

ρ Cp V
)

]
xk−1+

[
∆t q C0

V
∆t q T0

V
+ ∆t U A Tc

ρ Cp V

]
+ ωk ,

yk = xk + νk ,
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Param. Value Unit Param. Value Unit
q 100 L/min ∆H −50, 000 J/mol
V 100 L r 1000 g/L
C0 1.0 mol/L Cp 0.239 J/g K
k 7.2× 1010 1/min U 5000 J/cm2 min K
EA 8750 K T0 350 K
A 10 cm3 Tc 305 K

Table 3.2: CSTR model parameters (Henson and Seborg, 1997).

The operating conditions are listed in Table 3.2. The system noise at the scale of the

normalized state variables are p(ω) ∼ N (0, Q), where Q = σ2
ωI2, σ

2
ω = 2.5×10−7, and

the measurement noises are p(ν) ∼ N (0, R), where R = σ2
νI2, σ

2
ν = 0.0025. Im is a

m×m identity matrix. The initial condition is assumed to be

x1 =

[
0.5
3.5

]
.

However, a poor choice of the prior is given as N (µ1, P1), where P1 = σ2
v · I2 and

µ1 =

[
2.5
3.7

]
.

Furthermore, K = 400 measurements are available for the model, and system states

need to be estimated at each of these 400 time points.

In this case study, we show that EKF smoothing has relatively similar performance

as MHE smoothing in terms that both have close values of µ1|` and they tend to be

closer to the true value of x1 as ` increases. We also illustrate the prior-checking

process as to how the smoothing length is decided by comparing observed predictive

density value to threshold values.
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Figure 3.2: Smoothing estimate of initial value

Figure 3.2 shows, in a typical run, the smoothed estimate µ1|` for the initial state

under different smoothing length ` = 0, 1, . . . , 16. Note that µ1|0 denotes the given

prior mean. The dashed line represents the true initial state value while dotted solid

line draws the smoothed estimates for RTS smoothing and circled solid line is for

MHE smoothing. In this case study, MHE and EKF have similar performance for

the state C1 while MHE smoother approaches faster and is closer to the true value

of state T1 than RTS smoother. With the increase of smoothing length, i.e., the

number of observations used, the smoothed estimates show a trend in getting closer

and closer to the true values. However, the amount of gain in terms of the decrease

in estimation error |x1 − µ1|`| gets smaller and smaller.
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Figure 3.3: Determine the smoothing length by comparing with threshold value

Figure 3.3 demonstrates the process as to how the smoothing length is determined

by comparing the predictive density values to their respective threshold values. Cir-

cled line represents the predictive density values with increasing smoothing lengths

and solid line is for their corresponding threshold values. In more details, predic-

tive density value γ1 is found to be smaller than its threshold value at time point

1 at the beginning of SMC estimation. MHE or RTS smoother is used to obtain a

smoothed prior mean µ1|` for ` = 1, 2, . . ., which are shown in Figure 3.2. The SMC

sampling restarts with the new prior mean µ1|` and recalculates the new predictive

density value, denoted by γ1|`, at time 1. If γ1|` is still smaller than its threshold

value, smoothing procedure continues to find µ1|`+1 by using one more observation.

Figure 3.3 shows that both MHE smoother and RTS smoother use 8 observations to

find a satisfying prior mean, that is, the predictive density value is larger than its

threshold value after 8 observations are used for smoothing. MHE smoother and RTS

smoother have similar performance as seen in this figure.
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Theoretically approximated threshold values are also drawn as dashed line in

Figure 3.3 by assuming the prior is Gaussian, whereas it is actually a truncated

Gaussian due to constrained state space. These approximated theoretical values are

given by

1

2π|R + P1|1/2
e{−0.5χ2(1−α,df)}. (3.10)

In this study, α is set to be 0.05 and the degree of freedom, df , is 2. Note that these

values are very close to the Monte Carlo estimate, and that they fall on a straight

line as a function of the smoothing length, since the threshold does not depend on

the value of smoothed value of the prior mean µ1|` for any `.

The smoothing length also varies from one simulation to another. In this study

we run the CSTR model 100 times with the same initial state value, however, with

stochastic realizations of the state values and measurements beyond the initial time

point. The resulting 100 empirical smoothing lengths are summarized in Figure 3.4

for both MHE and RTS smoother. The distribution of smoothing length is very

similar for both smoothing methods, and both vary from 7 to 16.

At this point, it is worth noting that EBSIR (Chen et al., 2004) can also be

applied for this model, since the observation equation admits a closed form of [x1|y1].

However, it is limited to smoothing length of one, since p(x1|y1:`) is not known in

closed form when ` > 1. In contrast, MHE smoothing can be implemented for more

observations.

3.2.2 McKeithan Network

The McKeithan reaction network was discussed in McKeithan (1995), Chaves and

Sontag (2002). It exhibits strong nonlinearities in both the state and the measurement
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Figure 3.4: Empirical distribution of observed smoothing length over 100 simulations

equations as shown below:

Ȧ = −k1AB + k3C + k4D,

Ḃ = −k1AB + k3C + k4D,

Ċ = k2AB − (k3 + β3)C,

Ḋ = β3C − k4D,

y = [AB2 AD]T ,

The corresponding discrete time state space representation is as follows:

xk =
[
Ak Bk Ck Dk

]T

= ∆t




1/∆t −kAk−1 k3 k4

−kBk−1 1/∆t k3 k4

kBk−1 0 1/∆t− k3 − β3 0
0 0 β3 1/∆t− k4


 xk−1

+ ωk−1,

yk =
[
Ak−1B

2
k−1 Ak−1Dk−1

]T
+ νk,
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where k1 = k2 = 6, k3 = 0.5, k4 = 7, β3 = 1, and∆t = 0.01. The initial value

is x1 = (1, 3, 3, 2)T , while its prior is set to N (µ, σ2I4),where µ =
[
5 4 8 7

]′
,

σ2 = 0.5. The system noises are iid Gaussian with covariance matrix Q = 10−4I4.

The measurement noises are also iid Gaussian with covariance matrix R = I2.

In this case study, we show that smoothing via RTS does not perform as well

as via MHE. Increasing smoothing length does not help RTS find a closer smoothed

estimate to the true value. Prior checking is compared between predictive density

value and effective sample size, both of which have similar performance. Based on

the newly obtained smoothed prior, mean square error of SMC estimation is smaller

than that of RTS smoothing.

Figure 3.5 shows the smoothed estimate for each component of the initial state

under different smoothing lengths in a typical run of the model simulation. MHE

and RTS smoothing estimate are both drawn for a comparison. The dashed lines

represent the true values of the initial state. It can be seen that, the RTS smoother,

shown in solid line, looks promising only for the state component A1 and D1, but

does not yield any better estimate for the other two components than their original

initial guess. MHE smoother, in dotted line, obtains much accurate estimates and

moves quickly to the true value when only one observation y1 is used. Adding more

observations does not seem to make meaningful contribution.

Figure 3.6(a) depicts the observed predictive density and its threshold value at

each time point without prior smoothing. The predictive density values are drawn in

dotted line, while threshold values are drawn in solid line. As seen in Figure 3.6(a),

nearly all the predictive density values are below the threshold values, provides a

strong evidence indicating the incompatibility between the specified prior and the
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Figure 3.5: Smoothed estimate of the initial state at different smoothing lengths.

observed data. After MHE smoothing for the poor prior, the observed predictive

density and the threshold value are also shown in Figure 3.6(b) above the same

legend. It is seen that there are only 3 out of 150 data below their threshold values.

This is reasonable since the threshold corresponds to a 0.05 level.

Figure 3.7 demonstrates the inability of RTS smoothing to improve upon the initial

poor prior. It shows that, after RTS smoothing is performed with some observations,

the observed predictive density value is above the threshold values corresponding to

only a few smoothing lengths at the beginning, but drops below the threshold quickly

for most of the remaining smoothing lengths. The algorithm in Table 3.1 suggests that

one needs to use several observations for smoothing. However, as shown in Figure 3.5

the smoothed estimate is not getting any closer to the true value. Therefore, model

checking will once again fail later, if RTS smoother was used.
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Prior checking with the effective sample size Ñk is also performed for this model.

The same set of simulated data as in Figure 3.2.2 is used. The dotted line in Figure

3.8(a) represents the Ñk values at each time point k under the original prior setting,

and the solid line is their corresponding threshold values. The threshold value for

effective sample size is obtained in the same way as for predictive density values.

That is, by treating ESS as a random variable before the current observation is

available, we find its empirical CDF and locate the lower 20−quantile value as the

threshold value at current time. Similar to Figure 3.6(a), most of the Ñk values are

below the threshold line. Figure 3.8(b) presents similar information after choosing

a compatible prior based on MHE smoothing according to the algorithm in Table

3.1. It can be seen that nearly all the Ñk values are larger than their corresponding

threshold values. Thus, one could possibly use ESS based criterion for prior checking,

but the amount of computational effort for this criterion would be more than that

for the predictive value criterion, since the former does variance calculation and the

latter computes only mean value.

In order to compare the posterior performance of the MHE and RTS smoothed

priors as well as the plain SMC without any smoothing, we use a smoothing length of

1 for both smoothers for the sake of simplicity as well as to make a fair comparison.

Figure 3.9 presents the MSE for the estimation of each of the four states over 100

simulation runs as a measure of performance of these methods. Here, RTS-SMC de-

notes SMC with RTS smoothing; and MHE-SMC denotes SMC with MHE smoothing,

whereas SMC denotes that only the SMC estimate was used without any smoothing.

Clearly, MHE-SMC has the least mean squared error.
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3.3 Example of an Unsuccessful Smoothed Prior: Constrained
Batch Reactor

When the measurements model outputs provides information about a subspace of

state space, it is fairly well understood that the prior information could have decisive

impact on the state estimates. Specifically for state space models, prior gives the

starting point for the initial state and a direction to begin estimation. If the given

prior is poor, but possibly compatible with the observations that provide information

about a subspace, smoothing might not help at all. An example is illustrated below.

The constrained batch reactor (CBR) model was discussed in Haseltine and Rawl-

ings (2005) with the following specifications:

xk =
[
Ak Bk Ck

]T

= xk−1 + ∆tλγ + ωk

yk =
[−1 1 1

]
xk + νk,

(3.11)

with the stoichiometric matrix

λ =

[−1 1 1
0 −2 1

]
,

the reaction rates

γ =

[
s1Ak−1 − s2Bk−1Ck−1

s3B
2
k−1 − s4Ck−1

]
,

with the vector of constants s given by

s =
[
0.5 0.4 0.2 0.1

]
.

The system noise ωk follows N (0, σ2
ωI3) where σ2

ω = 0.0012, and measurement

noise is N (0, 0.12). Furthermore, the true value of initial state x1 used to generate

simulated states ans measurements is
[
0.5 0.05 0

]T
. All three states in this model
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are constrained to be nonnegative. One of the discussed priors in Haseltine and

Rawlings (2005) is x1 ∼ N (µ, σ2I3), with µ =
[
4 0 4

]T
and σ2 = 0.52.

Clearly, the state vector is three dimensional, while the measurement is just a

linear combination of these three. Thus, only a linear subspace of state space is

observed with independent noise. Furthermore, the prior mean is expected to be

compatible with the observation y1. As a result, the predictive density value testing

usually passes at time 1.

First, we apply SMC directly to the model with the given prior, and the estimation

result is shown in Fig. 3.10. It can be seen that the SMC estimates do not get closer

to the true values at all. MHE smoothing is then applied to the initial state with

increasing smoothing lengths. The smoothed result, shown in Fig. 3.11, does not give

satisfactory result for any length up to 15 and still diverges thereafter. Finally, the

predictive density value is larger than the threshold values with a few observations,

showing that smoothed estimates are compatible with the observations even though,

in fact the estimated state values are very far from the true values.

The McKeithan network model in 3.2.2 may seem to contradict the above analysis,

since this network has a 4-dimensional state vector and a 2-dimensional observation,

but MHE smoothing with only a few observations seems to improve the prior estimate,

and the MSE is quite small. However, a careful examination of the singular value

decomposition (SVD) of its simulated system states indicates that the corresponding

state space seems to have a smaller effective dimension. We simulated the McKeithan

network model 100 times, thus generating 100 sets of simulated ordered singular

values. The log of these singular values are presented in Fig. 3.12. Typically, 2

smallest values are very near zero while the other two are larger. This seems to
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indicate that the states in the McKeithan network effectively live in a two dimensional

space, while the other two dimensions may be considered as noise. Thus a sequence

of two dimensional measurement may be quite informative about a sequence of four

dimensional state space.

3.4 Conclusions

This chapter suggests predictive density as a tool to detect a poor prior in Se-

quential Monte Carlo sampling. A novel combination of MHE smoothing with SMC

filtering is proposed to obtain a compatible empirical prior. The smoothing is only

applied to the first few time points, after which regular SMC takes over. The case

studies have shown that this strategy dramatically improves the performance of SMC,

when the initial state is poorly specified. This work shows how two seemingly dif-

ferent approaches - SMC, suitable for online, recursive state estimation, and MHE,
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that provides point estimates in a non-recursive fashion - can be combined to help

produce more accurate state estimates in a commonly encountered practical situa-

tion. It is also worth noticing that for some models whose observation space has a

lower dimension than the state space, smoothing might not find a reliable estimate

of initial values. Thus caution is needed in this situation. We continue to investigate

various properties of the predictive density, as well as the proposed MHE smoothed

SMC estimation for a variety of dynamic systems.
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CHAPTER 4

CONSTRAINED SMC ESTIMATION

It is quite common to encounter nonlinear and non-Gaussian dynamic processes

with constraints in practice, the so called constrained estimation problems. For ex-

ample, concentration level is inherently nonnegative. Ordered constraints specify

the relative order for some elements of the state vector. Some examples of ordered

constraints for static models are given in Gelfand et al. (1992).

The regular SMC sampling procedure described in Chapter 1 does not consider

constraints on the states. In this chapter, a practical acceptance/rejection approach

is reported to extend the SMC sampling to the constrained state estimation. This

procedure keeps replacing the set of particles that fail to meet the constraints with

newly generated “well behaved” samples until all the particles satisfy the require-

ments. Similar idea is discussed in Gelfand et al. (1992) for constrained parameter

estimation with Gibbs sampler in static problems. Chen (2004) proposed the accep-

tance/rejection scheme for dynamic model estimation through the SMC sampling. In

this chapter, we demonstrate its accuracy and fast estimation capability for a more

complicated model via some meaningful evaluation criteria. Furthermore, it is also
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shown that the constrained SMC algorithm shares the same theoretical properties as

the unconstrained one under certain conditions. 1

4.1 Background

Constrained estimation has been a challenging problem for dynamic models. The

simplest linear Gaussian model (1.2) is still analytically tractable with interval con-

straints for the state variables. However, for more complicated constraints, nonlinear

or non-Gaussian models, methods for solving such problems either rely on crude ap-

proximations to the model or resort to complex numerical algorithms.

Extended Kalman Filter is a convenient method to do Bayesian inference un-

der nonlinear dynamic models with the assumption of additive Gaussian noises. Its

straightforward extension to simple constrained estimation problem is based on a

truncated Gaussian distribution of the system states (Haseltine and Rawlings, 2005).

EKF is usually the fastest method for estimating dynamic models due to its recursive

and closed-form computing. However, its reliability and accuracy are not as good as

other methods introduced below; see the examples in Section 4.3 for an illustration.

Moving Horizon Estimation has a built-in capability of handling the type of con-

straints that limit system states within a convex set. By assuming that system noises

and measurement noises are mutually independent, additive Gaussian or are approx-

imated by Gaussian random variables, an objective function is formulated such that

its least-squares solution can be found by constrained quadratic programming on

special moving windows, as described in Chapter 3. The objective function for the

window at the first time point is listed in Equation (3.5) for the purpose of prior

1A brief summary of this chapter is in Lang et al. (2007)
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smoothing. The objective functions for subsequent windows are similar to the very

first one, except for arrival cost, which summarizes the predictive distribution of the

state at the start of the respective window (Tenny, 2002). Haseltine and Rawlings

(2005) shows that MHE approach outperforms EKF, and constrained EKF, in terms

of smaller estimation error for a variety of constrained estimation problems. However,

three significant shortcomings of MHE still exist. The first most obvious one is that

MHE approach is time-consuming in practice because of its non-recursive formula-

tion and intensive numerical operations. Its performance also suffers due to the fact

that the prior at the beginning of each moving window is assumed to (multivariate)

Gaussian distribution. Figure 4.1 shows prior distributions at a few time points in a

simulation of the McKeithan network model discussed in Section 4.3.2. It is evident

that these distributions do not have symmetric bell shapes, and in fact, some look

like truncated, unimodal or multimodal. As a result, approximation by Gaussian, or

any fixed-shape distribution, tends to reduce accuracy of MHE. Finally, MHE cannot

handle ordered or other complex constraints on the states, unless one uses specially

designed optimization algorithms.

4.2 Constrained SMC

Compared to EKF or MHE, simulation methods like SMC are extremely flexible to

handle constraints. The particles that fail to pass the constraints are invalid samples

and can be readily replaced by another round of sampling until all the samples are

compatible with the constraints. Literally speaking, many more types of constraints

can be processed by this acceptance/rejection scheme, e.g., ordered constraints.
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Figure 4.1: Evolution of the prior of McKeithan reaction network. (Inside each sub-
figure, y-axis is density value obtained from histogram.)
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4.2.1 Acceptance/Rejection Algorithm

In fact, the acceptance/rejection operation guarantees that the underlying distri-

bution of the states is truly represented by the generated samples. Therefore con-

strained SMC shares the same asymptotic property as stated in Theorem 1 with the

regular SMC, if the conditions therein are satisfied. The following proposition is just

a restatement of that result in the context of constrained estimation problem.

Proposition 4.2.1. Under the conditions in Theorem 1, for all k and all y1:k in a

possibly constrained dynamic model, the empirical distribution p̂N(xk|y1:k) obtained

from the constrained SMC sampling has the following asymptotic property:

∥∥∥p̂N(xk|y1:k)− p(xk|y1:k)
∥∥∥

1
→ 0

in probability as N →∞.

Theoretically, setting the invalidated samples’ weights to 0 is equivalent to the

repeated acceptance/rejection steps. However, it is better to have more diversity

among the samples than to have zero-weighted particles and discard them for sure in

the resampling step that will eventually follow.

4.2.2 Constrained SMC algorithm

The proposed approach extends existing SMC algorithms to ensure satisfaction

of inequality constraints. Equality constraints may be imposed by including them in

the state or measurement equations (Ungarala and Bakshi, 2001). This approach,

represented by the pseudo-code in Table 4.1, extends previous work on unconstrained

estimation (Chen et al., 2004).
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• FOR times k = 1, 2, 3, . . .
— FOR i = 1, 2, 3, . . . , N

– Draw samples x̃
(i)
k ∼ q(·|x(i)

1:k−1, y1:k) until x̃
(i)
k ∈ Sk

– Compute weight w̃
(i)
k

— END FOR

— Normalize w̃
(i)
k to find w

(i)
k

• END FOR

Table 4.1: Algorithm for Estimation by Constrained SMC.

The additional step in our acceptance/rejection procedure is in the sampling step

of the existing SMC algorithm, therefore, only the sampling procedure is updated

here. Other steps are described in Chapter 1. In Table 4.1, Sk denotes the set of

states satisfying the constraints at time k. A complete pseudo code description of

this algorithm is seen in Lang et al. (2007) where prior importance function is used.

The modified step shown in bold in Table 4.1 reinforces the constraints for all the

generated samples. Note that, in most cases, the initial samples {x(i)
1 , i = 1, . . . , N}

also need to satisfy some constraints. For example, in Figure 4.1, the first sub-

figure shows that the samples are from a truncated Gaussian distribution. Therefore,

drawing samples from prior distributions needs another acceptance/rejection step.

The steps shown in bold face in Table 4.1 may require a larger number of samples

than unconstrained estimation, but as shown by the illustrative examples in Section

4.3, the computational complexity still remains reasonable and better than MHE.

Usually, the number of rejected samples is not large, mainly because almost all prior

samples already satisfy the constraints.
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4.3 Case Studies

The performance of constrained SMC is compared with EKF and MHE using the

same two models as in last chapter: a continuously stirred tank reactor (CSTR),

and a constrained McKeithan reaction network. Performance evaluations are made

on computing time, the overall mean-squared error (MSE), and mean-squared error

averaged across realizations, MSER
k , in Equation (3.9). MSE is defined as

MSE =
1

L

L∑

k=1

MSER
k ,

where L is the number of simulation times.

Simulations are run on a 2.0 GHz CPU with 512MB RAM personal computer.

MHE is run under GNU/Octave with a special package for computational efficiency

due to Tenny (2002). The constrained SMC is run under Matlab with no particular

design for efficiency. Allowing for uncertainty, L = 100 sets of simulated data are

generated to test each method. Performance evaluation is thus a summary of these

100 sets of estimation results.

4.3.1 Constrained Adiabatic CSTR

We use the same operating conditions as listed in Table 3.2 and the same system

settings as in Section 3.2.1. There are 400 measurements in each realization. A

non-negative constraint is enforced on the concentration Ck at all time points.

As shown in Table 4.2 and Figure 4.2, the MSE values show that SMC is the most

accurate one with performance slightly better than MHE and both are much better

than EKF. However, computation time used by SMC is consistently less than that

used by MHE. Of course, EKF requires the least computing time since it is based on
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Concentration Normalized Temperature CPU time Parameters
(×10−5) (×10−4) (×10−1)

EKF 19.47± 2.5 7.53± 0.76 0.01± 0.00
MHE 3.54± 1.8 1.14± 0.42 0.88± 0.01 h = 2

3.49± 1.8 1.14± 0.41 1.55± 0.02 h = 5
3.46± 1.8 1.14± 0.41 2.40± 0.03 h = 10

SMC 3.29± 2.0 1.09± 0.41 0.06± 0.00 N = 1000
3.25± 1.9 1.07± 0.41 0.11± 0.01 N = 2000

Table 4.2: Performance Comparison under the Constrained CSTR Model.

the closed-form solution in (A.1) and its most time consuming operation, the matrix

inversion, is trivial in this case.

Figure 4.3 confirms the estimation performance for the SMC sampling. As a

matter of fact, EKF performs quite well during the beginning 100 points and then

experiences an abrupt increase in errors. A typical run of the simulation presented

in Figure 4.4 indicates that the CSTR enters rapid state changes at that time and

the concentration level drops nearly to zero, the critical value for the constraint. The

EKF’s poor performance after an abrupt change in the system states reflects the coarse

first-order approximation to the nonlinear state transition equation in this situation.

In contrast, MHE uses the smoothing approach for estimating the arrival cost for

each window. For this nonlinear problem, the smoother does not reduce to EKF,

but utilizes information about the measurements in each window to estimate a more

accurate arrival cost at the beginning of each window than the arrival cost obtained

via filtering (Tenny, 2002). For SMC, the dynamic process is well approximated by

the particles that satisfy the constraint.
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Figure 4.2: MSE and CPU Time Comparison for the Constrained CSTR Model.
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A B C D CPU time Parameter
(×10−3) (×10−2) (×10−2) (×10−3) (×10−1)

EKF 6.4± 4.0 3.6± 3.8 25.8± 10.3 5.1± 2.0 0.01± 0.00
MHE 3.1± 1.7 2.3± 1.5 5.3± 3.5 1.8± 0.8 1.08± 0.02 h = 2

2.9± 1.4 2.3± 1.3 4.7± 3.0 1.7± 0.8 1.69± 0.04 h = 5
2.8± 1.3 2.2± 1.1 4.4± 2.8 1.7± 0.8 2.60± 0.07 h = 10

SMC 2.4± 1.1 2.0± 1.1 3.6± 2.7 1.4± 0.6 0.08± 0.01 N = 1000
2.4± 1.2 1.9± 1.0 3.6± 2.6 1.4± 0.6 0.15± 0.01 N = 2000

Table 4.3: MSE and CPU Time Comparison for the Constrained McKeithan Network.

4.3.2 Constrained McKeithan Network

The McKeithan model as discussed in Section 3.2.2 is also used here to demon-

strate better performance of the constrained SMC than the MHE and EKF methods.

The initial value is set to x1 = (1, 3, 3, 2)T , and the constraint is set to Dk such that

Dk > 0.7 for all k. The initial prior distribution is set to be N(x1, 0.5I4). There are

1000 measurements.

The MSE and CPU-times listed in Table 4.3 and Figure 4.5 demonstrate that the

constrained SMC for general state-space models performs better than the MHE and

the EKF. Once again, the EKF is the fastest method because of the approximated

closed-form solutions. However, it is also the worst one in terms of overall estimation

error. Note that the constrained SMC has the smallest estimation error of the three

methods compared here. The SMC performs better than the MHE in this case,

mainly because this system is highly non-linear and MHE uses Gaussian distribution

to approximate arrival cost at the beginning of each moving window.
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Figure 4.5: MSE and CPU Time Comparison for the Constrained McKeithan Net-
work.

Figure 4.6 shows MSER
k , the mean-squared error averaged across 100 realizations.

It can be seen that the EKF, shown in dotted line, tends to have larger and larger error

values for state components A and B. This indicates a divergence trend for the EKF.

Once again, the constrained SMC shown in solid line is slightly better than MHE,

which is drawn in a dashed line. However, the CPU time of SMC is tremendously

less than that of MHE. Similar conclusion is also backed up by a typical run of these

three methods shown in Figure 4.7.

4.4 Conclusions

A practical approach is introduced to extend the SMC sampling to constrained

dynamic models for Bayesian inference. The new algorithm, constrained SMC, en-

forces constraints through extra acceptance/rejection procedures to ensure that all
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Figure 4.6: MSER
k Comparison for the Constrained McKeithan Network.
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the generated samples represent the target distribution. The proposed algorithm is

also verified to possess the theoretical properties of unconstrained SMC. In addition,

two dynamic models are used to demonstrate its superior performance over EKF in

terms of less estimation error. Its estimation is also shown to be at least as good

as a popular powerful numerical algorithm, Moving Horizon Estimation, which has

a built-in capability of handling constraints. Since MHE assumes additive Gaussian

noises and approximates prior by Gaussian distribution such that point estimate of

states is obtained by constrained quadratic programming, constrained SMC can be

applied to more dynamic models with non-Gaussian noises and is expected to give

more information by providing the posterior distribution. Furthermore, constrained

SMC runs much faster than MHE.
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CHAPTER 5

POPULATION PHARMACOKINETICS MODELING

A novel application of SMC for estimation in Bayesian population Pharmacoki-

netic (PK) model, which is essentially a static model with both population and

individual-specific parameters, is introduced in this chapter. individual-specific pa-

rameters. SMC, as discussed in previous chapters, is a powerful simulation method to

perform Bayesian inference for general dynamic models. Many successful applications

of SMC have been reported in various research areas. Application of regular SMC

to the population PK model offers some advantages, but also creates some concerns,

that must be addressed.

Compared to the popular Bayesian simulation method, Markov Chain Monte

Carlo, SMC’s sequential recursive updating scheme makes it a better choice for fast

estimation. However, regular SMC suffers from particle impoverishment with static

parameters, such as the population parameters in PK models. To handle this con-

cern, an iteration of particle moving with Gibbs sampling is used to diversify particles.

The performance of SMC with particle rejuvenation is well demonstrated in the case

study.

The rest of the chapter is organized as follows. An introduction to PK modeling

and parameter estimation are given in Section 5.1, followed by the specific SMC
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sampling algorithm with particle moving in the context of population PK modeling.

In the end, a one-compartment PK model, used for modeling real data obtained from

Cadralazine study, is given to demonstrate the performance of the suggested SMC

approach.

5.1 Introduction to Population pharmacokinetics Modeling

Pharmacokinetics is the study of physiological process, or the way how a drug

is handled in vivo, within a human or an animal body as a system. Such processes

include absorption, distribution, metabolism, and elimination, which are known as

ADME. A classical approach to investigating ADME is to represent a body as a series

of compartments, leading to differential equations of the kinetics, and possibly their

analytical solutions can be obtained. The resulting model is then fitted to a series

of repeatedly measured concentrations of a drug during a limited time (Gibaldi and

Perrier, 1982). Consider the example of the one-compartment PK model that is used

in the case-study section. The time course of drug concentrations over time is given

by:

Ci(t) =
d

αi

exp

(
−βi

αi

t

)
, (5.1)

where Ci(t) is the modeled drug concentration of the subject i at time t; d is the

initial dose of drug; αi and βi are, respectively, volume distribution and clearance

rate for the ith subject. The parameters αi and βi are unknown, and are assumed to

be governed by the ADME processes. Conditional on the modeled concentration level

Ci(tij), the measured concentration yij of the subject i at time tij is usually assumed

to be either normal,

yij ∼ N (
Ci(tij), τ

−1
)
, (5.2)
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or log-normal,

log yij ∼ N (
log Ci(tij), τ

−1
)
. (5.3)

In either case, estimating θi = (αi, βi) for each i, the so-called individual-specific

parameters, is of central interest in the PK modeling for determining an appropriate

dose for an individual. The precision τ in Equation (5.2) or (5.3) is known as popula-

tion parameter, since it is the property for all the individuals in the study. Note that,

the problem setting in (5.2) or (5.3) essentially means that, conditional on population

parameters, estimation of individual parameter θi depends on the data from subject

i only, i.e., yi1, . . . , yini
.

Population pharmacokinetics, as its name suggests, primarily focuses on popula-

tion parameters, i.e., variability or distribution of the individual-specific parameters,

across the whole target population. Such consideration plays an important role in

policy making. For example, it would be difficult to recommend an appropriate level

of drug dose if its effect and safety has large variability under a targeted popula-

tion. Official guideline for population PK modeling is available online at the web site

http://www.fda.gov/cder/Guidance/1852fnl.pdf. Clearly, once an appropriate prob-

ability distribution for individual-specific parameters is specified, say, multivariate

normal, conditional on the underlying population parameters, one has a hierarchical

model for the drug-concentration measurements involving the individual-specific and

population parameters. Now one can use the measurements to estimate the popula-

tion parameters. In general, we denote population parameter by ϕ, and assume that

the individual-specific parameters [θi|ϕ] are i.i.d., following some specified distribu-

tion; see e.g., Equation (5.4b).
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Bayesian method fits seamlessly into population PK modeling in that its hierarchi-

cal framework is exactly the structure between the individual-specific and population

parameters. Following the convention of Wakefield et al. (1994), a general Bayesian

framework of the population PK model, the so-called three-stage model, is defined

as:

[yij|θi, τ ] ∼N (Ci(tij), τ
−1), i = 1, . . . , n; j = 1, . . . , ni, (5.4a)

[θi|µ, Ω] ∼N (µ, Ω−1), (5.4b)

[τ ] ∼Gamma(a, b), (5.4c)

[µ] ∼N (η, V −1), (5.4d)

[Ω] ∼Wishart(U, ρ). (5.4e)

Note that, the population parameters now are ϕ = (µ, Ω, τ). The problem of interest

is the posterior distribution of ϕ given all the measurements. The values of the prior

hyperparameters a, b, η, U, V, and ρ are assumed to be given as part of the prior infor-

mation. In practice, their values are usually selected to make the prior information

as non-informative as possible to ease the concern of prior’s effect on the estimation

result.

Markov Chain Monte Carlo is a powerful simulation scheme to solve complex

Bayesian integration problems (Geman and Geman, 1984). It constructs a Markov

chain such that the chain’s stationary distribution is the desired joint posterior distri-

bution of the underlying random variables (Tierney, 1994, Robert and Casella, 1998).

Extensive literature is available on the applications of MCMC to a variety of practical

problems; see, e.g., Gilks et al. (1996). In particular, its application to population PK

modeling is discussed in Wakefield et al. (1994), Møuller and Rosner (1997), Lunn
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et al. (2002) and others. A windows software package, WinBUGS (Spiegelhalter et al.,

2000) facilitate Gibbs sampling for MCMC. In addition, PKBugs (Lunn et al., 1999),

an add-on for WinBUGS, is specialized for the population PK model estimation. The

reliability of MCMC relies heavily on its convergence, or the mixing capability of the

chain (Atherya et al., 1996), and a good sampler is expected to have a rapid mixing

time. However, diagnostics for mixing/convergence are not yet satisfying (Brooks and

Gelman, 1998).

The following sections discuss a novel application of SMC to the population PK

model, which is essentially a static model since its individual-specific and population

parameters do not have the dynamic feature. A similar idea of using SMC in static

models was proposed in Chopin (2002). However, the model discussed in Chopin

(2002) is only a two-stage Bayesian hierarchical model consisting of only “population

parameters.”. As a result, the methodology in Chopin (2002) cannot be applied

straightforwardly to the population PK model. In this chapter, we use an augmented

estimation space, (θ1, . . . , θn, ϕ). Then the marginal posterior distribution of ϕ is

automatically obtained from the samples of the augmented state space generated by

SMC estimation. Furthermore, an extra step of Gibbs sampling for the population

parameters is introduced at each step of SMC iteration to avoid some difficulties

which could result from the random-walk moving scheme suggested in Chopin (2002).

Storvik (2002) also introduced a Bayesian parameter estimation scheme, however, to

the dynamic models.
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5.2 Preliminary SMC PK Model Estimation

As discussed in the previous chapters, SMC is predominantly used in state-space

models for Bayesian analysis, see, e.,g., Doucet et al. (2001). Population PK models

do not have dynamically evolving states as state-space models. Furthermore, mea-

surements from different subjects are usually presented all in a batch. However, we

propose to process the subject-wise measurements sequentially, since each subject

brings in independent individual-specific parameters from the underlying population.

For the simplicity of discussion, denote yk = {yk1, . . . , yknk
}, i.e., all the nk mea-

sured data of subject k. Also denote y1:k = {y1, . . . , yk}, that is, all the available

measurements from subject 1 to subject k. Similarly, θ1:k = {θ1, . . . , θk}. The joint

posterior distribution of θ1:k and ϕ is

p(θ1:k, ϕ|y1:k)

∝p(θ1:k, ϕ|y1:k−1)p(yk|θ1:k, ϕ, y1:k−1)

=p(θ1:k−1, ϕ|y1:k−1)p(θk|θ1:k−1, ϕ, y1:k−1)p(yk|θk, ϕ)

=p(θ1:k−1, ϕ|y1:k−1)p(θk|ϕ)p(yk|θk, ϕ).

(5.5)

By the model specification in (5.4), the likelihood value p(yk|θk) is computed as

p(yk|θk, ϕ) =

nk∏
j=1

p(ykj|θk, ϕ). (5.6)

And p(θk|ϕ) = p(θk|µ, Ω) is the specified prior in equation (5.4b);

From Equation (5.5), it is clear that the posterior distribution of θ1:k and ϕ given

all the measurements up to subject k is in a recursive form with regard to index

k. As introduced in Chapter 1, the importance function πk(θ1:k, ϕ) is chosen such

that πk(θ1:k, ϕ) = πk−1(θ1:k−1, ϕ)p(θk|ϕ), with π0 = p(ϕ), the given prior on the

population parameter ϕ as a starting point. We assume that, after the data from
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Sample τ (`), ` = 1, . . . , N using (5.4c).
Sample Ω(`), ` = 1, . . . , N using (5.4e).
Sample µ(`), ` = 1, . . . , N using (5.4d).

Set all weights w
(`)
0 = 1/N .

FOR subject k = 1, . . . , n

— Sample θ
(`)
k using (5.4b) for each µ(`), τ (`); ` = 1, . . . , N

— Calculate weight w
(`)
k for each ` = 1, . . . , N with Equation (5.8)

— Resampling with replacement such that

Prob{particle ` is selected}= w
(`)
k , ` = 1, . . . , N.

END FOR

Table 5.1: A preliminary SMC algorithm for population PK model.

subject (k − 1) have been processed, we have N particles containing sample-weight

pairs {θ(`)
1 , . . . , θ

(`)
k−1, ϕ

(`)}, ` = 1, . . . , N with normalized weights {w(1)
k−1, . . . , w

(N)
k−1}. In

order to process the measurements yk for subject k with this form of importance

function, the previous samples are augmented by {θ(`)
k }, ` = 1, . . . , N , which are

randomly sampled from πθ(θk; ϕ). Then the new unnormalized weights are obtained

by (1.4) as

w̃
(`)
k =

p(θ
(`)
1 , . . . , θ

(`)
k , ϕ(`)|y1:k)

πk(θ
(`)
1 , . . . , θ

(`)
k−1, ϕ

(`))

= w
(`)
k−1p(yk|θ(`)

k , τ (`)).

(5.7)

The new weights are then normalized through (1.6).

Particularly, when resampling is done for each index k, weight updating reduces

to

w
(`)
k =

p(yk|θ(`)
k , τ (`))∑N

`=1 p(yk|θ(`)
k , τ (`))

. (5.8)

A preliminary SMC algorithm for population PK model is listed in Table 5.1.

However, this regular version of SMC sampling does not work well for the population

PK model. An operational approach will be discussed in the next section.
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As can be seen in the Algorithm in Table 5.1, the particles for the population

parameters are only generated from their prior distribution at the beginning of the

SMC estimation. After that, there is no opportunity for them to evolve into new

values (locations). Thus, population parameter particles have less and less distinct

values following each stage of sampling/resampling. As a result, the underlying pos-

terior distribution of population parameters is approximated by only a few delta

functions. Such approximation does not provide useful information on distribution of

the population parameters, and this algorithm needs to be modified.

5.3 SMC PK Model Estimation with Particle Moving

In this section, we introduce particle moving under the convenient conjugate prior

settings in Equation (5.4). Essentially, it is an extra one-iteration of Gibbs sampling

for all the population parameters following particle resampling inside each SMC iter-

ation. Note that resampling is performed every time for an easy implementation of

Gibbs sampling, and after that the particles still represent the underlying posterior

distribution with equal weights, therefore, only one-step Gibbs sampling is needed.

On the other hand, MCMC needs many iterations of Gibbs sampling since it begins

with arbitrary initial state. Section 1.2.3 discussed other moving methods designed

for general static models.
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Let us denote U0 = U, V0 = V, η0 = η, a0 = a, and b0 = b. Define the following

variables recursively:

Uk = Uk−1 + (θk − µ)′(θk − µ), (5.9a)

Vk = Vk−1 + Ω, (5.9b)

ηk = V −1
k (Vk−1ηk−1 + Ωθk), (5.9c)

ak = ak−1 +
1

2
nk, (5.9d)

bk =

(
b−1
k−1 +

nk∑
j=1

(ykj − Ck(tkj))
2

)−1

. (5.9e)

Given the posterior particles for all the individual-specific and population parameters

after the (k − 1)th subject’s measurements have been processed, all the available

measurements on the current individual k as well as the individual-specific parameters

for the subject k, along with the updated weights, the full conditional distributions

for each of the population parameters are given by:

[µ|y1:k, θ1:k, Ω, τ ] ∼N (ηk, V
−1
k ) (5.10a)

[Ω|y1:k, θ1:k, τ, µ] ∼Wishart(Uk, k + ρ) (5.10b)

[τ |y1:k, θ1:k, µ, Ω] ∼Gamma (ak, bk) (5.10c)

Note that since the population PK model is three stage hierarchical model, given θk,

y1, y2, . . . , ynk
and µ, Ω are conditionally independent. Therefore, the full conditional

of µ, Ω doesn’t involve the measurements on the kth subject. Furthermore, it is also

worth noting that, given the particles after the resampling in the (k− 1)th updating,

the kth updating cycle was initiated by sampling θ
(`)
k from the full conditional of θk

given all others variables, at stage (k − 1). Thus the population parameters particle

moving via the one step of the Gibbs sampler completes the full cycles of sampling
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Sample τ (`), ` = 1, . . . , N using (5.4c).
Sample Ω(`), ` = 1, . . . , N using (5.4e).
Sample µ(`), ` = 1, . . . , N using (5.4d).

Set all weights w
(`)
0 = 1/N .

FOR times k = 1, . . . , n

— Sample θ
(`)
k using (5.4b) for each {µ(`), τ (`), Ω(`)}; ` = 1, . . . , N

— Calculate weight w
(`)
k for each ` in (5.8)

— Resample with replacement such that

Prob{particle ` is selected}= w
(`)
k , ` = 1, . . . , N.

— For each ` = 1, . . . , N
— Draw µ conditional on {y1:k, θ

(`), Ω(`), τ (`)} using Equation (5.10a)
— Replace µ(`) = µ, the new sample
— Draw Ω conditional on {y1:k, θ

(`), µ(`), τ (`)} using Equation (5.10b)
— Replace Ω(`) = Ω, the new sample
— Draw τ conditional on {y1:k, θ

(`), Ω(`), µ(`)} using Equation (5.10c)
— Replace τ (`) = τ , the new sample

— END FOR
END FOR

Table 5.2: An operational SMC algorithm with Gibbs sampling for population PK
model.

from the full conditionals. In other words, for each subject k, individual-specific pa-

rameters are drawn/predicted from the SMC based posterior after the measurements

from subject (k − 1)have been processed. Then the augmented particles, which con-

tain the population parameters, are resampled by their weights. After resampling,

an iteration of Gibbs-sampling is done to draw new µ, Ω, τ for each particle based on

the above full conditionals. Finally the old values of µ, Ω, τ are replaced by the newly

generated ones. This completes the Gibbs sampler iteration for the subject k. The

new algorithm is listed in Table 5.2.
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5.4 Prior Specifications and Simulation

Prior settings for SMC are important. Bayesian PK modeling usually specifies

non-informative prior, for example, small precision V in (5.4d). A non-informative

prior tends to have a minimal effect on the posterior distribution. But SMC simulation

often begins with sampling from the prior, and small precision or large variance

tends to draw extreme values of random variables, which are either unrealistic in

the sense that its weights tend to be very small, or impose difficulties in numerical

computations, especially for the log-normal distribution. At the resampling step,

extreme particles are very likely to be replaced by other particles, because they have

small weight. Thus, computing resources are not well utilized. As a result, the prior

should not be as “flat” as what MCMC recommends.

MCMC simulation uses a long chain with a burn-in period and thinning-out. The

value of the burn-in period depends on how fast the chain’s realizations mix. Thus

its choice is on a case-by-case basis. After the burn-in period, one of every m random

variables are selected from the remaining chain to provide less correlated samples. In

the following case study, we chose to run 6000 iterations of Gibbs sampler in MCMC

simulation, ignore the first 1000 samples as burn-in period and select 1 out of every 5

samples in the remaining ones to represent the posterior distribution. The SMC also

used 1000 particles.

5.5 Cadralazine PK Model Study

Cadralazine data is analyzed in many papers (Racine et al., 1986, Wakefield et al.,

1994). There are 10 cardiac failure subjects in this study. 6 − 8 blood samples were

taken for each subject following a single 30mg intravenous bolus dose of cadralazine
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Figure 5.1: Plasma concentrations for 10 subjects in the cadralazine study. Each line
represents a series of data measured at different time for the same subject.

(Lunn et al., 1999). The actual data, available in Wakefield et al. (1994), is shown in

Figure 5.1, where each solid line represents a subject.

5.5.1 Modeling of Cadralazine Data

The cadralazine data is modeled as a one-compartment model with first-order

elimination process. Since it is intravenous bolus administered, the full dose of the

drug reaches systemic circulation instantly. The drug concentration is described by

(5.1) and is assumed to follow a normal distribution as specified in (5.2).

5.5.2 SMC Estimation of Cadralazine Data

In this study, set a = 0.01, b = 100 for the gamma prior distribution of τ , we

set η = [1.065 2.708]′ (Lunn et al., 1999), V = 0.1I2, U = 0.5I2, ρ = 2. SMC

simulation is done with 1000 particles and MCMC has an iteration of 6000 times
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(Lunn et al., 1999) with a burn-in period of 1000. After thinning out of MCMC

chain, both methods have the same number of samples.

Figure 5.2 shows the posterior distribution of µ given by SMC (top) and MCMC

(bottom) for a typical run of the MCMC and SMC based posterior distributions.

Both methods provide similar results based on 100 runs of Monte Carlo simulations

for this data. Figure 5.3 shows box plot of the simulated posterior means of α (left)

and β (right) obtained in each of 100 runs of SMC and MCMC. It can be seen that the

SMC and MCMC estimates are close to each other, however, MCMC estimates have

smaller Monte Carlo variance. Figure 5.4 shows the standard deviation of posterior

α (left) and β (right) for all runs of SMC and MCMC. We see again that MCMC

has smaller standard deviation than SMC in general. Figure 5.5 shows the CPU time

needed by SMC and MCMC respectively. On the average, SMC uses 13.8s while

MCMC uses 35.7s per run. Thus SMC and MCMC provide similar estimates, but

MCMC takes on the average 2.5 times the computational resources than SMC.

5.6 Conclusion

In this chapter we successfully applied sequential Monte Carlo to the population

PK models for Bayesian inference. It is much faster than the the popular Bayesian

simulation method, MCMC. The example used is a simple one-compartment model.

However, the application of SMC to two-, or three-compartment models is an anal-

ogous extension in a straightforward manner. Further complexity to PK models can

be added by drug administration method or dosing frequency. These complexities

do not put any additional difficulties for SMC sampling, they simply tend to make
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Figure 5.2: Posterior distribution of α and β of drug cadralazine given by SMC (top)
and by MCMC (bottom).
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and MCMC.
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Figure 5.5: Box plot of CPU times for 100 runs of SMC (left) and MCMC (right).
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likelihood calculation more complex. Future research would involve pharmacokinetic

and pharmacodynamic (PK-PD) modeling.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Theoretical study and practical improvements on sequential Monte Carlo are pre-

sented in this dissertation. By using expectation-normalized importance weights,

asymptotic properties of effective sample size are investigated under different resam-

pling control schemes, as the number of particles goes to infinity. In addition, optimal

importance function is proved to be superior to the prior importance function in terms

of larger effective sample size.

The enhancements on SMC performance make it robust under possibly incom-

patible prior and applicable to constrained estimation. As a simulation method,

SMC is adversely affected by an incompatible prior that conflicts with the observed

data. Predictive density value is recommended to detect an incompatible prior and

furthermore, to find an appropriate smoothing length using a numerical optimiza-

tion approach, moving horizon estimation, to find a smoothed compatible prior. For

the constrained estimation problem, we introduce an extra acceptance/rejection step

to reinforce the generated samples to represent the desired distribution under con-

straints. Several case studies are reported in the dissertation. The SMC sampling is

shown to be easily applied to nonlinear non-Gaussian dynamic models with accurate

estimation performance and fast enough computing speed.
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A novel application of SMC is also presented for the population pharmacokinetic

model estimation, which is essentially a static model. One case study involving one

compartment population PK model demonstrates that SMC can provide posterior

marginal distributions similar to those from the popular Bayesian simulation method

based on Markov Chain Monte Carlo Gibbs Samplers, with a comparatively much

smaller execution/running time. Thus SMC can be considered to be a better alter-

native for Bayesian estimation for population PK modeling problems.

Future work on improving performance of sequential Monte Carlo involves com-

plex dynamic models with non-Gaussian noise and larger dimension of state space

than that of observations. As demonstrated in Chapter 3, a seemingly compati-

ble prior could actually be an opposite one because the proposed predictive density

value fails to detect that. Another challenging direction, which is not addressed in

the dissertation, is the application or theoretical study of SMC on the models with

closed-loop feed back control. Extensive research has been done on estimation in this

case, however, control with SMC is an area that needs attention. How to apply this

powerful simulation tool in the control area is necessarily an interdisciplinary joint

effort.
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APPENDIX A

KALMAN FILTER AND RTS SMOOTHER

A.1 Kalman Filter

For linear Gaussian model with a Gaussian prior, the optimal estimates are given

by Kalman Filter, which is listed below:

µk|k−1 = Fµk−1|k−1,

Pk|k−1 = FPk−1|k−1F
T + Q,

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1,

µk|k = µk|k−1 + Kk(yk −Hµk|k−1),

Pk|k = Pk|k−1 −KkHPk|k−1.

(A.1)

Parameters in the above equations are defined in 1.2.

A.2 Extended Kalman Filter

Extended Kalman Filter (EKF) is obtained when the first-order Taylor series

expansion is used to approximate both equations in (1.1) and thus to F and H for

the above Kalman Filter.
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A.3 RTS Smoother

Rauch et al. (1965) presented the well known smoother, which gives an analytic

solution to the smoothed estimate of system ststes for linear Gaussian models. Similar

as the EKF, it can be also applied to nonlinear Gaussian models with Taylor series

expansion to both equations. The optimal smoothing results are recursively given

below as j = k, k − 1, . . .:

µj−1|k = µj−1|j−1 + Cj−1(µj|k − µj|j−1),

Pj−1|k = Pj−1|j−1 + Cj(Pj|k − P−1
j|j−1)C

T
j ,

(A.2)

where

Cj = Σj|jF
T P−1

j+1|j. (A.3)

Basically, the above RTS smoother makes forward KF/EKF estimation as time

evolves, saves intermittent data and then performs smoothing with j beginning from

k and changing backward to a time point `. If one is interest only in the smoothed

state at a particular time, a one-pass recursive updating is preferred as seen in Rauch

(1963).

µ`|k = µ`|k−1 +

(
k−1∏

i=`

Ci

)
Kk(yk −Hµk|k−1),

P`|k = P`|k−1 −
(

k−1∏

i=`

Ci

)
KkHPk|k−1

(
k−1∏

i=`

Ci

)′

,

(A.4)

where Ci is defined in Equation (A.3).
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APPENDIX B

PREDICTIVE DENSITY AFTER SMOOTHING

Linear Gaussian model is assumed. RTS smoother, or equivalently, MHE smoother,

finds the smoothed initial state estimate µ1|k, k = 1, . . . ,, which is then used to replace

the prior mean µ1. Let γ`|k denote the new predictive density value at time point `

when µ1|k is used as the new prior mean. Intuitively, it is expected that γ1|k > γ1.

In this section, it will be proved that γ1|1 > γ1 and on average log γ1|k is larger than

log γ1. Denote Ψ`|k−1 = Var{y`|y1:k−1}, and let Ψ`|0 = Ψ`.

Lemma B.0.1. γ1|1 ≥ γ1 for any y1 and µ1 with equality holding if and only if

y1 = Hµ1.

Before proving the above lemma, two other supporting lemmas are given below.

Denote A > 0 if A is positive definite (matrix); Further denote A > B if A−B is

positive definite. Note A > B > 0 is equivalent to all the three conditions are met:

A > 0, B > 0, and A > B. Only real symmetric matrices are considered.

Lemma B.0.2. If A > B > 0, then B−1 > A−1 > 0.

Proof. The proof can be done either through a direct application of formula (1.18),

or through a very interesting statistical computation (Rao, 2006).
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Lemma B.0.3. If A,B > 0, then

(A + B)−1B(A + B)−1B(A + B)−1 < (A + B)−1.

Proof.

(A + B)−1B(A + B)−1B(A + B)−1

=
(
I − A(A + B)−1

)T
(A + B)−1

(
I − A(A + B)−1

)

=(A + B)−1 − 2(A + B)−1A(A + B)−1 + (A + B)−1A(A + B)−1A(A + B)−1

=(A + B)−1 − (A + B)−1A(A + B)−1 − (A + B)−1A
[
A−1 − (A + B)−1

]
A(A + B)−1

<(A + B)−1,

Since (A + B)−1A(A + B)−1 > 0, [A−1 − (A + B)−1] > 0 (by lemma B.0.2, and then

(A + B)−1A [A−1 − (A + B)−1] A(A + B)−1 > 0.

Proof. Lemma B.0.1 is proved below.

We first derive the expression of γ1|1, the new predictive density value when only

y1 is used for smoothing to obtain µ1|1.

y1 −Hµ1|1 = y1 −H
[
µ1|0 + K1

(
y1 −Hµ1|0

)]

= (I −HK1)(y1 −Hµ1)

=
[
I −HP1H

T (HP1H
T + R)−1

]
(y1 −Hµ1)

= R(HP1H
T + R)−1(y1 −Hµ1)

(B.1)

Then,

(y1 −Hµ1|1)
T Ψ−1

1|0(y1 −Hµ1|1)

=(y1 −Hµ1)
T (HP1H

T + R)−1R(HP1H
T + R)−1R(HP1H

T + R)−1(y1 −Hµ1)

By lemma B.0.3,

≤(y1 −Hµ1)
T (HP1H

T + R)−1(y1 −Hµ1)

=(y1 −Hµ1)
T Ψ−1

1|0(y1 −Hµ1).

(B.2)

93



Now compare the new predictive density value to the original one.

2
(
log(γ1|1)− log(γ1)

)

=(y1 −Hµ1)
T Ψ−1

1|0(y1 −Hµ1)− (y1 −Hµ1|1)
T Ψ−1

1|0(y1 −Hµ1|1)

≥0.

(B.3)

Therefore, γ1|1 ≥ γ1 for any y1 and µ1 with equality holding if and only if y1 =

Hµ1.

94



APPENDIX C

EXPECTATION-NORMALIZED EFFECTIVE SAMPLE
SIZE IN LINEAR GAUSSIAN MODELS

In this appendix, observation yk is assumed to be a random variable before it is

available at time k. Then N̄k, as defined a function of yk in Equation 2.2, is also a

random variable, and its distribution is investigated for the linear Gaussian model.

The definition of N̄k in 2.2 is repeated below:

N̄k =
p2(yk|y1:k−1)

Exk|y1:k−1 {p2(yk|xk)} .

We start by simplifying the denominator Exk|y1:k−1 {p2(yk|xk)}.

p2(yk|xk) =
1

(2π)dy |R| exp
{−(yk − xk)

′R−1(yk − xk)
}

,

∝ 1

(2π)dy/2|R/2|1/2
exp

{
−1

2
(yk − xk)

′(R/2)−1(yk − xk)

}
,

= φ(yk; xk,
R

2
),

(C.1)

where φ(x; µ, σ2) denotes the Gaussian density function of x with mean µ and variance

σ2. Therefore, p2(yk|xk) can be regarded as a Gaussian density function p∗(yk|xk) =

φ(yk; xk,
R
2
) up to some known constant, which does not depend on yk. Compared to

p(yk|xk), the new function p∗(yk|xk) has the same Gaussian mean but one half of the

old covariance. Equivalently we can think that the covariance matrix of measurement
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noise is reduced by half at time k. In addition, it is known that

Exk|y1:k−1 {p(yk|xk)} = p(yk|y1:k−1),

= φ(yk; Hµk|k−1, HPk|k−1H
′ + R).

Then Exk|y1:k−1 {p∗(yk|xk)} has the same form as p(yk|y1:k−1) except that R needs to

be replaced by its half to get the correct result

Exk|y1:k−1 {p∗(yk|xk)} = φ(yk; Hµk|k−1, HPk|k−1H
′ + R/2). (C.2)

Then it is obtained immediately that

N̄k =
p2(yk|y1:k−1)

Exk|y1:k−1 {p2(yk|xk)} ,

∝ φ(yk; Hµk|k−1, HPk|k−1H
′/2 + R/2)

φ(yk; Hµk|k−1, HPk|k−1H ′ + R/2)
,

∝ φ(yk; Hµk|k−1, ∆k|k−1),

(C.3)

where

∆k|k−1 =

[(
1

2
HPk|k−1H

′ +
1

2
R

)−1

−
(

HPk|k−1H
′ +

1

2
R

)−1
]−1

,

=
[
HPk|k−1H

′ + R
] [

1 +
1

2

(
HPk|k−1H

)−1
R

]
.

(C.4)

Note that the proportional constant is time dependent.
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