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ABSTRACT

The spatial/time spectrum of short sea waves and radar observed signals are lo-

cally modulated by the presence of longer waves or currents. There are two different

modulations: tilt modulation and hydrodynamic modulation. Variations in the short

sea waves spectrum are described by the “hydrodynamic modulation transfer func-

tion” (HMTF). The nonlinear interaction between short sea waves and longer waves

makes such modulation. Variations of radar signals are described by the “radar mod-

ulation transfer function” (RMTF). In this study, new numerical methods based on

numerical nonlinear hydrodynamics and computational electromagnetics are devel-

oped to examine modulation in sea surface scattering and to examine the accuracy

of existing analytical models.

Electromagnetic scattering from sea surface at low-grazing-angles (LGA) is studied

by comparing analytical scattering models. The two-scale model (TSM) is found to

yield the most reasonable performance among these models. Ocean surface profile

retrieval based on the TSM is also shown to have an acceptable accuracy.

Numerical methods are developed to calculate the HMTF, and RMTF by use of

the fast nonlinear hydrodynamics, and by use of the fast computational electromag-

netics techniques. These techniques allow us to study the scattering from a stochastic

“Pierson-Moskowitz” like surface with Monte-Carlo simulation.
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HMTF values obtained from the simulations are compared to those from a first

order wave action solution, and found to be in reasonable agreement, although differ-

ences on the order of 10% are observed. A numerical evaluation of long wave effects

on the short wave dispersion relation is also provided.

The numerical method provides a quantitative way to examine the “third- scale”

effect in the two-scale model. The results demonstrate that the intermediate waves

influence the RMTF and are modulated by longer waves. This effect explains the

RHMTF polarization dependence. Numerical results of the “third-scale” effect match

well with empirical and analytical results.

A new analytical Doppler formula is derived from the nonlinear hydrodynamics.

The solution is validated by numerical solutions and supported by radar Doppler

simulation. Ocean surface profile retrieval based on Doppler information is shown to

have a very good accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The ocean occupies over 70 percent of the total Earth surface, and it plays an im-

portant role in many areas. Remote sensing is an important technique to monitor the

ocean surface parameters. In particular, microwave remote sensing techniques play a

key function to detect ocean surface parameters, due to the “transparency” of clouds

to microwaves. Both active microwave remote sensing instruments (radar, scatterom-

eter, altimeter) and passive instruments (radiometer) have been widely utilized to

monitor the ocean surface.

To better understand and interpret observed signals, we need to develop elec-

tromagnetic (EM) models. The EM scattering from ocean surfaces involves both

electromagnetics and hydrodynamics. Some scattering phenomena are highly depen-

dent on the latter, for example, sea surface radar cross section (RCS) variations over

time/space, observed Doppler frequency properties, and polarization abnormalities

of RCS and Doppler, especially at low grazing angles (LGA) of observation. The

purpose of this thesis is to investigate scattering from ocean surfaces by combining

both hydrodynamics and electromagnetics.
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In the past two decades, electromagnetic scattering at LGA has been of interest in

the ocean remote sensing community. Numerous experiments have been conducted to

investigate how to quantitatively interpret scattering signals [1, 2, 3, 4, 5, 6, 7]. Several

phenomena that are difficult to explain by classical scattering models [8, 9] have

been encountered. The small slope approximation (SSA) is a promising scattering

method [10, 11] along with its extension, the nonlocal SSA (NLSSA) [12], which

attempts to include multiple scattering. Although the original SSA has limitations

in modeling LGA scattering [13], some studies have demonstrated that the SSA and

NLSSA have good accuracy compared with the exact integral equation solution [14].

In addition, Kim et al’s study [15] further supports that SSA and NLSSA capture

multiple scattering at LGA. Therefore, a further study of RCS by comparison among

those analytical scattering models is of interest in this thesis.

Predicting polarized RCS and Doppler frequency properties at LGA involve both

hydrodynamics and electromagnetics. The hydrodynamics relates to surface dynam-

ics, which produce scattering abnormalities [1, 5, 7, 16, 17, 18]. Furthermore, “bound

waves” may contribute to abnormal Doppler frequencies [19]. Non-Bragg scattering

mechanisms may also make appreciable contributions at LGA, for example, multiple

scattering [4, 17, 20], and shadowing [8, 21]. Abnormal Doppler behaviors have been

captured somewhat by Monte-Carlo simulations without considering wave breaking

[22, 23], although most studies demonstrate that wave breaking is a possible ma-

jor mechanism for the abnormality of polarization intensity ratio and polarization

Doppler frequency [1, 16, 5, 17, 18, 7]. Overall, these results indicate that hydro-

dynamics is very important in ocean scattering. For example, bounded waves are

related to wave dynamics, i.e., the nonlinear hydrodynamics. A key influence is that
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of “long” ocean waves on short Bragg waves, generally described by the hydrodynamic

modulation transfer function (HMTF).

Existing models for the HMTF are based on asymptotic approaches [24, 25, 26,

27, 28], whose accuracy had never been numerically evaluated. Efficient numerical

methods in hydrodynamics allow us to simulate nonlinear hydrodynamics [29, 30],

and have been used in radar remote sensing for prediction of Doppler frequency with

different incidence angles [31], even at LGA [22, 23, 32]. This progress enables us

to study the HMTF using numerical hydrodynamic codes, and further to study the

radar modulation transfer function (RMTF) with efficient electromagnetic codes as

well.

Numerous scatterometer/radar ocean experiments have indicated that the radar

cross section (RCS) of ocean surfaces is modulated by the presence of the underlying

long waves or currents [33, 34, 24, 35, 36, 37]. Such modulation is described by the

RMTF, including the radar HMTF (RHMTF) and tilt modulation transfer function

(TMTF) [38, 39, 24]. The latter is simply due to the local tilted geometry effect of the

illuminated facet, which changes the local incidence angle. The RHMTF is the radar

measurement of the HMTF. Although it is common to assume that the RHMTF and

HMTF are the same, the HMTF is in fact the modulation due to hydrodynamics, and

the RHMTF involves both hydrodynamics and electromagnetics. It was reported that

the RHMTF of HH polarization is greater than that of VV polarization [40, 24, 36].

These observations are contrary to those of [38], since the observed RHMTF depends

on polarization. Furthermore, it has been reported by simulations that the RHMTF

also depends on incidence angles and frequencies [41]. In particular, it was recognized

that the intermediate waves contribute to this dependency [42, 40, 19]. These observed
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discrepancies motivate us to quantitatively understand the RHMTF, its relationship

to the HMTF, and a “three-scale” (long waves, intermediate waves, and short Bragg

waves) influence on the RMTF.

Long-short sea wave interactions also influence the ocean Doppler spectrum. The

ocean Doppler bandwidth depends on such modulation, as determined by the long

wave slope [42]. This modulation is produced by nonlinear hydrodynamics, and in-

creases the Doppler bandwidth [31, 22]. Most existing Doppler studies are based

either on measurements or on numerical simulations [31, 22, 23, 43]. No analytical

studies based on the nonlinear hydrodynamics have been reported. This motivates

an analytically modulated Doppler analysis based on nonlinear hydrodynamics.

The ocean surface profile retrieval is one application example of these results.

Recently, researchers have achieved reasonable retrieval results from data acquired

from an X-band radar at LGA [44, 45]. The HMTF effect was neglected in these

retrieval processes. In these studies, it was assumed that the tilted Bragg scattering

mechanism (i.e. TMTF) dominates at LGA. In fact, electromagnetic scattering at

LGA is complicated by non-Bragg scattering (for example, multiple scattering, and

shadowing effects). A numerical method - the method of moments (MOM) [46, 47]

has been applied to predict scattering at LGA. It does not have an simple analytical

formula. Therefore, it is of interest to study an analytically simple physical scattering

model at LGA that is also analytically invertible.

1.2 Organization

The remainder of this dissertation is organized as follows.
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In Chapter 2, several analytical electromagnetic scattering models (SPM, KA,

SSA, NLSSA, TSM) are examined at LGA. We further explore the scattering mecha-

nisms based on different iterations from the integral equation solution, i.e., MOM. It

turns out that the two-scale model (TSM), while exhibiting apparently errors, is the

most reasonable approximate scattering model at LGA, and that at least one forward

iteration and one backward iteration are necessary for computing backscattering at

LGA.

Ocean surface profile retrievals from the LGA radar data using the physical scat-

tering model (TSM) is studied in Chapter 3. Due to its mathematical simplicity, only

the HH polarization data are used. The result indicates that the physical model-based

retrieval is acceptable at LGA. The influence to the retrieval accuracy of range reso-

lution, incidence angles, radar frequency, and ocean roughness are further discussed.

In Chapter 4, a method for providing direct insight into the hydrodynamic mod-

ulation of short sea waves by longer waves is described, through the use of numerical

non-linear hydrodynamic codes for sea surface evolution. The codes applied are re-

viewed, and a Monte Carlo simulation process based on a stochastic spectrum of short

waves propagating over a single deterministic long wave is described, including the

data analysis techniques developed to extract a numerical HMTF from the simulated

surfaces. HMTF values obtained from the simulations are compared to those from a

first order wave action solution and are found to be in reasonable agreement, although

differences on the order of 10% are observed. A numerical evaluation of long wave

effects on the short wave dispersion relation is also provided. In addition, a numerical

study of HMTF for currents is presented in Appendix A, and our numerical HMTF

results match very well with analytical predictions.
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A method to investigate radar modulation mechanisms is described in Chapter 5,

through use of numerical nonlinear hydrodynamic codes and the fast numerical elec-

tromagnetic integral equation method for a perfectly conducting time-evolving sea

surface. This surface is generated by a stochastic spectrum of short waves propagat-

ing over a single deterministic long wave. A narrow Gaussian-like tapered incident

wave is chosen to calculate the local scattering. Polarized RCS datasets from the

long and short waves surface and short waves only surface are used to numerically

extract the RMTF and RHMTF, respectively. The mean square slope of the inter-

mediate waves is also studied. Our numerical results demonstrate that the numerical

polarized RTMTFs match with those predicted by the TSM, and the slope of inter-

mediate waves performs a linear contribution to the MTF mechanism as that of the

long wave slope. The third-scale modulation is further investigated and validated

with a stochastic “two-scale” model.

An analytical formula for the modulation of short waves based on the “Watson-

West” (WW) equations [29] is derived in Chapter 6. Firstly, a simplified ordinary dif-

ferential equation system is obtained after some mathematical manipulations. Then,

the analytical solution to this system is presented, which gives the analytical form

of the complex amplitude of the modulated short waves. Further Doppler analysis

based on this analytical solution is discussed. Finally, some comparisons between

this simplified method and the original WW method are presented. In particular, the

radar Doppler from the simplified WW surfaces are shown. Our results demonstrate

that the simplified method works well under small long wave steepness.

Chapter 7 concludes this thesis with a discussion of major contributions and future

work.
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CHAPTER 2

STUDIES OF LOW GRAZING BACKSCATTERING
FROM OCEAN SURFACES

2.1 Introduction

Recently, the scattering at LGA has been of great interest to the ocean microwave

remote sensing community [1, 2, 3, 4, 5, 6, 7]. Several scattering phenomena that

are difficult to explain by classical scattering models [8, 9] have been encountered.

This motivates us to study some classical scattering models further to find what

causes the difficulty and what the main scattering mechanisms at LGA are. For

this reason, the study of the range-resolved RCS from ocean-like controlled rough

surfaces is conducted here. In order to further quantitatively understand the physical

mechanisms between the range-resolved RCS and the local slope, both physical and

numerical scattering models are also studied here.

The remainder of this chapter is organized as follows. Electromagnetic backscat-

tering from a given deterministic rough surface is modeled by both analytical and

numerical methods in Section 2.2. Several well-known analytical methods are in-

troduced in Section 2.2.1. The approximated numerical solutions are described in

Section 2.2.2, and the range-resolved RCS comparison among all selected models are
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discussed and analyzed in Section 2.3. Finally, a brief summary is given in Section

2.4.

2.2 Methodology

The study described in this chapter is based on one-dimensional (1-D) simulations

of radar backscattering from ocean-like surfaces [22, 23]. The surface profiles are

produced linearly and nonlinearly using a “Pierson-Moskowitz” (PM) spectrum.

Electromagnetic backscattering from a 1-D random, rough, perfectly electrically

conducting (PEC) surface f(x) is illustrated in Figure 2.1, where the incidence and

scattering wave directions are denoted by k̂i and k̂s, and associated angles are denoted

by θi and θs, respectively.

x̂
z = f(x)

k̂i

θi

θs = −θi

k̂s

ẑ

Figure 2.1: An illustration of scattering from a one-dimensional PEC random rough
surface

The backscattering field at a given frequency is an integration over the entire

illuminated surface. In order to resolve the local property of the entire surface, we

need to know the local scattering information. If the entire surface is discretized into

N elements, we need N distinct backscattering fields to resolve the information of
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those N elements. A step-frequency radar provides a practical way to recognize the

local surface characteristics [48]. In this study, the step-frequency radar technique

is applied to generate the local scattering fields, and used to determine the range-

resolved RCS.

The scattering from the rough surface f(x) can be solved either by analytical or

numerical methods. Several analytical approaches based on the Rayleigh hypothesis

will be presented and applied to analyze the range-resolved RCS. Several numerical

iteration techniques are also discussed based on the integral equation formulation of

electromagnetic backscattering.

2.2.1 Analytical scattering models

Based on the Rayleigh hypothesis [10], the scattering fields consist of the outgoing

propagation waves. Mathematically, the scattering field φs(k, r) at the far field r is

written by

φs(k, r) =

∫
dksxT (ksx, kix)e

iks·r, (2.1)

where kix = k sin(θi), ks = k sin(θs), and T is called the spectral scattering coefficient.

In the far field, equation (2.1) can be further approximated by a stationary phase

approach as

φs(k, r) =

√
2π

kr0
ei(κr0−π/4) 1

2π
k cos(θi)

∫
dxΦei2k(sin(θi)x−cos(θi)z), (2.2)

where Φ is the expansion coefficient. It can be expanded as [11]

Φ = Φ0 +

∫
dKeiKxΦ1(K)F (K) + ... (2.3)

where Φ0 and Φ1 denote the first order and the second order kernel, respectively,

and F (K) denotes the Fourier coefficient of the surface f(x). Table 2.1 shows the
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polarization Φ0 for three different analytical models, including the first order small

perturbation model (SPM-1 or SPM) [49], the first order Kirchhoff approach (KA-1

or KA) [49], and the first order small slope approach (SSA-1) [10, 11].

Models HH VV

SPM-1 2ik cos(θi)f(x) −2ik 1+sin2(θi)
cos(θi)

f(x)

KA-1 −i[1 + f ′(x) tan(θi)] −i[1 − f ′(x) tan(θi)]

SSA-1 −1 1+sin2(θi)
cos2(θi)

Table 2.1: Φ0 in three analytical models (SPM-1, KA-1, SSA-1)

In this work, scattering predictions of the SPM, KA, SSA, NLSSA, and TSM

are considered. The backscattering fields given by the SPM are different from those

represented by equation (2.1) for both polarizations. The difference is that there is no

z = f(x) component in the exponential part for the exact SPM. Due to kizf(x) << 1,

we add this exponential part eikizf(x) to the SPM for convenience of the comparison

between the SPM and the SSA. In reality, the ocean surface consists of multiple scales.

The SPM-1 can be applied only to very smooth (with respect to the electromagnetic

wavelength) surfaces. The well-known TSM [50, 51] has been successfully applied in

the ocean remote sensing community over several decades. The TSM is similar to a

local SPM in treating both incident and scattering angles with respect to local normal

directions. Following is the TSM treatment used in this study:
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• Suppose that the entire surface f(x) is discretized equally along the horizontal

direction x̂ with N elements, and it is divided into M sub-surfaces with the total

element number Nw.

• Each adjacent sub-surface has overlap elements Nw/4.

• The length of total Nw elements is chosen as about 8 electromagnetic wave-

lengths.

• The local slope of each sub-surface is averaged over all points (or elements) of

this sub-surface. Prior to averaging the local scopes of all points, a low-pass

filter is used to filter out those high oscillation frequency components. The

cutoff frequency is normally chosen between [k
3
, k

2
] [52]. It is set as k

3
in this

study.

• Once the local slope is obtained, the local incidence angle θil can be easily

determined.

• The local Bragg-Fourier spectral coefficient of the ith sub-surface, Fi(kB), is

obtained from the zero-padded windowed surface (with an element size N),

where kB = −2k sin(θil(i)) is the Bragg wavenumber of this sub-surface.

• The horizontal coordinate of each sub-surface center, xc, is chosen as its geo-

metrical center, and its vertical coordinate zc is chosen as its elevation average.

Finally, the polarized backscattering fields given by the TSM are written as

φs
p =

A

M

M∑

i=1

Cpp(i)Fi(kB)P (i)W (2.4)

where A = −4jπk1.5, P (i) = ei2k(sin(θi)xc(i)−cos(θi)zc(i)), Cpp is the polarization coefficient

with CHH = cos2(θil(i)) and CV V = 1 + sin2(θil(i)), and W is a Gaussian tapering

window function over the entire surface [53]. For each sub-surface, the values of W
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in equation (2.4) will be chosen as the only M local values corresponding to its local

M points.

The second order SSA (SSA-2) is given by [11, 54]

Φ
(1)
HH(K1) = −j

2
[
√
k2 − (kix +K1)2 +

√
k2 − (ksx −K1)2 + (kiz − ksz)], (2.5)

Φ
(1)
V V (K1) = −j

2
[B2(ksx −K1) +B2(kix +K1) + (kiz − ksz)Φ0], (2.6)

where B2(K1) = 1

kizksz

√
k2−K2

1

(k2 − kixK1)(k
2 − ksxK1).

The first order NLSSA is given in [12], and is close to a combination of SSA-1 and

SSA-2.

2.2.2 Numerical scattering models

The integral equation starts from the Huygens’ principle, and the total field φ(r′, t)

above the surface point r can be written as [49]

φ(r′) = φinc(r′) +

∫

Γ

ds[φ(r)n̂ · ∇g(r, r′) − g(r, r′)n̂ · ∇φ(r)], (2.7)

where φinc is the incident field, Γ denotes the illuminated rough surface, n̂ is the

surface normal vector toward ẑ, and g(r, r′) = i
4
H

(1)
0 (k|r− r′|) is the Green’s function

with time dependence e−jωt suppressed. H
(1)
0 is the zeroth order Hankel function of

the first kind. Equation (2.7) can be further simplified with the associated boundary

conditions and will be used to derive the scattering field under the Kirchhoff approach

(KA) in this chapter. Mathematically, the scattering field φs = φ− φinc.

The collocation method is a popular and effective numerical method to solve the

integral equation (2.7). In order to perform iterative solving methods, equation (2.7)

can be written with a generalized form as [46, 55]

J(x) = Ji(x) +

∫ x

−∞

dx′G(x′, x)J(x′) +

∫
∞

x

dx′G(x′, x)J(x′), (2.8)

12



where G(x′, x) is the generalized Green function which can be derived from equation

(2.7) given the boundary condition (BC), and J is the generalized surface-induced

current. The G(x′, x) is written by [56]

G(x′, x) =




− ik

4

H
(1)
1 (kd)

d

√
1+f ′(x′)2

1+f ′(x)2
[−f ′(x)(x− x′) + f(x) − f(x′)], for HH pol.

ik
4

H
(1)
1 (kd)

d
[−f ′(x′)(x′ − x) + f(x′) − f(x)], for VV pol.,

where d =
√

(x− x′)2 + (f(x) − f(x′))2 and H
(1)
1 is the first order Hankel function

of the first kind. In particular, the integral equation given by the original equation

(2.7) associated with the Dirichlet boundary condition (the HH polarization) is a

Fredholm integral equation of the first kind. It can be converted into a Fredholm

integral equation of the second kind after a transformation [56]. The purpose of

this transformation is to achieve a better matrix condition number to accelerate the

iterative convergence rate. Thus, equation (2.8) can be applied for both polarizations.

It can be further rewritten as an operator form

J = Ji + LJ + UJ, (2.9)

where L is a lower triangle matrix, and U is an upper triangle matrix. Equation (2.9)

can be solved by a method called “Forward-Backward” (FB) [55] or a method called

the method of multiple interaction (MOMI) [46]. Below are six steps to perform the

MOMI:

(1) J1 = (I − L)−1Ji;

(2) J2 = (I − U)−1J1 − J1;

(3) J3 = (I − L)−1J2 − J2;

(4) set J3 = J1;

(5) repeat (2)-(4) steps until desired accuracy;
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(6) J = (I − U)−1J1,

where I is the identity matrix. The operators L and U can be effectively implemented

by the spectral acceleration (SA) method [47, 57]. With this acceleration technique,

the integration limit is decomposed with two parts: the strong part and the weak

part, and the SA technique only applies to the weak part.

The whole six iteration steps above are denoted by MOM here. Several variations

based on the above iterations are listed as follows:

• if iteration involves only two steps: step (1) and (6), it is called Born iteration;

• if iteration involves only step (1), it is called Forward iteration;

• if iteration involves only step (1) and L = 0, it is called Diagonal iteration;

• if iteration involves whole six steps and zero weak-weak terms [47] of L and U,

it is called Strong iteration.

If equation (2.9) is rewritten as

J = (I − L − U)−1Ji ≈ (I + L + U)Ji. (2.10)

This iteration is called the modified second order Kirchhoff approach (EKA-2) [58].

2.2.3 Range-resolved RCS

A finite surface consists of N distinct adjacent scatterers. It is obvious that the

backscattering field with a specific frequency (or k) is an integration over the entire

illumination surface from either equation (2.1) or equation (2.7), i.e., it is an average

over each scatterer. Therefore, each individual scatterer can not be identified from a

single frequency scattering field. The sweep radar technique provides a practical way

to distinguish each scatterer property [48]. Assuming the central radar frequency f0

and a discrete equally increment frequency ∆f with a total bandwidth B (B=N∆f),
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we compute the backscattering field for both polarizations at each frequency. Then,

we have a dataset of backscattering fields varying over frequencies. Through a scat-

tering field transformation from the frequency domain to the spatial domain, the

range-resolved backscattering field for both polarizations (or its modulus square -

RCS) can be obtained. The down-range resolution ∆r satisfies

∆r =
c

2B
, (2.11)

where c is the speed of an electromagnetic wave in vacuum.

Most analytical scattering models predict accurate RCS for both polarizations at

near normal incidence angles to moderate incidence angles. Figure 2.2 shows RCS

predicted by SSA, EKA-2 and MOM. This figure shows good accuracies of these three

models at near normal incidence angles to moderate incidence angles. However, as

mentioned previously, the RCS presented in Figure 2.2 is an average over the entire

surface, which means that it cannot be used to identify details of the local surface.

Therefore, the range-resolved RCS is adapted to detect the local property. Since

the down-range resolution is related to the incidence angle, the small incidence angle

θi has large (or poor) horizontal range resolution ∆x (see Figure 2.3) . Therefore,

the polarized range-resolved RCS given by both analytical and numerical methods is

only investigated at two different incidence angles: a moderate angle (500) and a low

grazing angle (LGA) (800).

2.3 Results and discussions

Three deterministic (with one specific realization) linear “Pierson-Moskowitz”

ocean-like surfaces are studied. The smooth one has a band-limited wavenumber

[20, 200] rad/m, and two rough surfaces have a band-limited wavenumber [1, 300]
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Figure 2.3: The illustration between down range resolution ∆r and horizontal range
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rad/m with 19.5 m wind speed 6 m/s and 10 m/s, respectively. In addition, a non-

linear surface generated by [30] with 19.5 m wind speed 5 m/s is studied. All those

surfaces are shown in Figure 2.4, where the η denotes the surface height. From top

to bottom in Figure 2.4, the four surfaces are called smooth, PM-6, PM-10, and

Creamer, respectively, in this study.

The length of the Creamer surface is 122.88 m with a spatial discretization number

65536, and the others are 102.4 m with a spatial discretization number 16384. The

sweep radar central frequency at 10 GHz (X-band) with 256 frequency steps and

a bandwidth 312.5 MHz is applied to the Creamer surface. Another sweep radar

at the central frequency 3 GHz (S-band) with 256 (or 128 for a different iteration

comparison) frequency steps and a bandwidth 375 MHz is applied to the other three

surfaces. Such discretizations yield about 16 points per electromagnetic wavelength

both for the Creamer surface at X-band and for the others at S-band.
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In order to minimize the finite surface truncation effect, a tapered plane incidence

is used [53] in all analytical models, and a similar tapered wave [59] is used in all

numerical methods. The difference in the backscattering field due to these two ta-

pering functions is negligible. Therefore, there is no additional correction between

those analytical solutions and the MOM results. Due to the Gaussian tapering, only

the central region (half of the surface length) of the entire surface is shown in the

following comparison results in Section 2.3.1 and Section 2.3.2. The down (or slant)

range resolution ∆r is shown at the bottom of each figure.

For each specific surface, the polarized backscattering fields are computed at each

discretized sweep frequency by the MOM. Then, the Discrete Fourier transform (im-

plemented by FFT) is performed to compute the range-resolved RCS from those

backscattering field data in the frequency domain. Prior to the FFT computation,

a Gaussian windowed function is multiplied with the backscattering data in order to

suppress the range sidelobe effect.

2.3.1 Comparisons of analytical models

Smooth surface

The polarized range-resolved RCS of the smooth surface at θi = 500 by the three

analytical models are given in Figure 2.5. This figure shows that the HH and VV

range-resolved RCS given by those analytical models match perfectly with those given

by the MOM. The same agreement is shown in Figure 2.6 at θi = 800.

PM-6 surface

Figure 2.7 shows the polarization range-resolved RCS of the PM-6 surface at

θi = 500 predicted by these analytical models. SSA-1, SSA-1+2, and NLSSA predict
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Figure 2.5: Range-resolved RCS of the smooth surface by selected analytical models
(θi = 500 and ∆r = 0.4 m)
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Figure 2.6: Range-resolved RCS of the smooth surface by selected analytical models
(θi = 800 and ∆r = 0.4 m)
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accurate HH polarization range-resolved RCS, and their analytical predictions of VV

polarization have an acceptable accuracy. However, the range-resolved RCS predicted

by the TSM deviates slightly from the exact value. Figure 2.8 shows the prediction

results at θi = 800. Both polarized range-resolved RCS predicted by the analytical

models deviates from the exact values. However, their RCS envelopes are close to

those of the exact values. In particular, for HH polarization, the TSM has a better

accuracy than the other analytical models, and the VV range-resolved RCS given by

the SSA-1+2 deviates too much at two edge regions at θi = 800 due to the singularity

of its kernel.
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Figure 2.7: Range-resolved RCS of the PM-6 surface by selected analytical models
(θi = 500 and ∆r = 0.4 m)
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Figure 2.8: Range-resolved RCS of the PM-6 surface by selected analytical models
(θi = 800 and ∆r = 0.4 m)

PM-10 surface

For further analysis, a rougher surface, PM-10, than PM-6 is studied at the same

frequency. Figure 2.9 and 2.10 show the prediction results by these analytical models.

Due to the similarity of range-resolved RCS among SSA-1, SSA-1+2, and NLSSA,

only the results predicted by NLSSA are shown here. The results are similar to those

presented in the case for PM-6. Again, the range-resolved RCS of HH polarization

predicted by the TSM is the closest to that predicted by the MOM among results by

the analytical models employed, but has only limited angle at 800.
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Figure 2.9: Range-resolved RCS of the PM-10 surface by selected analytical models
(θi = 500 and ∆r = 0.4 m)
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Figure 2.10: Range-resolved RCS of the PM-10 surface by selected analytical models
(θi = 800 and ∆r = 0.4 m)
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Creamer surface

The Creamer surface shown in Figure 2.4 is nonlinear. In this section, we want to

study the nonlinearity effect on the range resolved RCS. Figure 2.11 shows the range-

resolved RCS of HH polarization at S-band predicted by selected analytical models.

The conclusion indicated by this figure is still similar to those presented for linear

surfaces. Figures 2.12 and 2.13 show the results from different models at θi = 500

and θi = 800, respectively. Again, we can draw a conclusion similar those given in

previous linear surfaces. In particular, we can see that the TSM has the best, but

limited, accuracy among these analytical models for HH polarization at θi = 800.
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Figure 2.11: Range-resolved RCS of the Creamer surface at S-band by selected ana-
lytical models (θi = 500 and ∆r = 0.48 m)
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Figure 2.12: Range-resolved RCS of the Creamer surface at X-band by selected ana-
lytical models (θi = 500 and ∆r = 0.48 m)
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Figure 2.13: Range-resolved RCS of the Creamer surface at X-band by selected ana-
lytical models (θi = 800 and ∆r = 0.48 m)
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2.3.2 Comparisons of numerical methods

To explore the physical scattering mechanisms at LGA, we study the range re-

solved RCS for both polarizations with the different numerical iteration procedures

in Section 2.2.2.

Figures 2.14 and 2.15 show the polarized range-resolved RCS computed by dif-

ferent numerical iteration methods for the smooth surface at θi = 500 and θi = 800,

respectively. The polarized range-resolved RCS given by all these different iteration

methods have similar envelopes. The range-resolved RCS differences of VV polariza-

tion among all methods are much less than those of HH polarization. The differences

indicate that the multiple scatterings make a larger contribution to the HH polariza-

tion than to the VV polarization. In particular, when θi = 800 tends to LGA, the

differences are larger than those at θi = 500. In addition, the range-resolved RCS

of both polarizations given by the MOM and the Born iteration in Figure 2.15 is

smaller than that predicted by the others. One possible interpretation is that the

multiple scattering might reduce some energy due to the interference between multi-

ple scatterings. We can also see that the Born iteration method predicts almost the

same result as that by the MOM, although the latter requires two or three additional

iteration steps. The additional iteration steps depend on the convergence criterion

which we initially set.

As the surface height increases, the result difference between the MOM and the

other iterations also increases. Figures 2.16 and 2.17 show such differences for the

PM-6 surface. This figure shows that the difference at θi = 500 is smaller than that

at θi = 800. In particular, the envelope of range-resolved RCS of HH polarization at

θi = 800 given by the MOM or Born iteration deviates far from that given by any
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of the others. Only the envelope given by the Forward iteration has a trend close

to that given by the MOM. As the surface height increases, the multiple scattering

effect also increases. In addition, the possible shadowing may have an effect on the

backscattering. Both multiple scattering and possible shadowing contribute to the

large deviations.
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Figure 2.14: Range-resolved RCS of the smooth surface computed by different nu-
merical iteration methods (θi = 500 and ∆r = 0.8 m)

27



−25 −20 −15 −10 −5 0 5 10 15 20
−60

−50

−40

−30

−20

−10

x (m)
H

H
−d

B

−25 −20 −15 −10 −5 0 5 10 15 20

−40

−30

−20

−10

x (m)

V
V

−d
B

MOM Diagonal Forward Born Strong EKA−2

Figure 2.15: Range-resolved RCS of the smooth surface computed by different nu-
merical iteration methods (θi = 800 and ∆r = 0.8 m)
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Figure 2.16: Range-resolved RCS of the PM-6 surface computed by different numer-
ical iteration methods (θi = 500 and ∆r = 0.8 m)
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Figure 2.17: Range-resolved RCS of the PM-6 surface computed by different numer-
ical iteration methods (θi = 800 and ∆r = 0.8 m)

2.4 Conclusion

The concluding remarks, which are based on the polarized range-resolved RCS

studies for four characteristic rough surfaces, are summarized as follows.

The analytical approaches (SPM-1, SSA, NLSSA) predict accurate polarized range-

resolved RCS for a smooth surface at moderate angles, even at LGA. As the surface

height increases, the range-resolved RCS given by SSA-1+2 and NLSSA match closely

to the RCS that given by the MOM only at moderate incidence angles. While in the

LGA case, only the TSM predicts a moderately accurate range-resolved RCS of HH

polarization compared with the RCS that predicted by NLSSA and SSA-1+2 for HH
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polarization. To obtain more accurate RCS, the development of analytical models

which can include multiple scattering and shadowing are necessary at LGA.

In order to further analyze the scattering mechanisms that make significant con-

tribution to range-resolved RCS, we perform detailed comparisons among different

numerical iteration procedures. The comparisons demonstrate that the Born itera-

tion achieves an enough accuracy with respect to the “exact” solution. The Forward

iteration predicts an envelope of the range-resolved RCS close to that given by the

“exact” solution. However, its prediction for HH polarization is lower than that by

the “exact” solution. This is due to the multiple scattering. Therefore, at least one

forward and one backward iteration is needed to obtain accurate backscattering field

at LGA. The results are used in next chapter.
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CHAPTER 3

PHYSICAL MODEL-BASED SURFACE RETRIEVAL
FROM LGA RADAR DATA

3.1 Introduction

The retrieval of ocean surface profile information is of interest in the remote sens-

ing community as well as in ship control and path planning applications. Recent

research has qualitatively demonstrated profile retrievals using range-resolved radar

cross section data from an oil-platform mounted X-band radar [44]. Profile retrievals

in that work were produced under the assumption that the RCS depends only on the

local surface slope. No “hydrodynamic modulation”, non-Bragg scattering, or shad-

owing effects were explicitly included. In addition, an empirical relationship between

the range-resolved RCS and the local slope is assumed in that study. While those

results are encouraging, the numerous assumptions required leave uncertainty as to

the accuracy of the retrievals obtained as well as to methods for improving those

retrievals. For this reason, controlled simulations of scattering from time evolving

surface profiles combined with assessments of profile retrievals are of interest.

The study described in this chapter, which has been reported in [60], is based on

one-dimensional simulations of radar backscattering from ocean-like surfaces [22, 23,
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61]. The surface profiles used are produced using a “Pierson-Moskowitz” spectrum,

and modified to include approximate nonlinear effects in some cases through use

of a weakly nonlinear approach [30]. Using ideas similar to those of Dankert and

Rosenthal [44], an initial physical retrieval method is considered based on a tilted

Bragg scattering model. Under this model, the range-resolved RCS can be written as

an explicit function of the local surface tilt angle and the local short wave spectrum

near the Bragg wavenumber. For simplicity, the short wave spectrum is assumed to be

uniform along the entire surface, i.e., hydrodynamic modulation effects are neglected.

In this case, the local incidence angle within a given radar range cell can be retrieved

from RCS information alone. This local incidence angle can then be converted into

the mean long-wave surface slope in the range bin, and ultimately integrated to obtain

surface profile information. While the results reported here consider retrievals only

for fixed surface profiles, the approach can be expanded to the time evolving case by

passing profiles retrieved at multiple time steps through a filter in space-time in an

attempt to ensure that surface features propagate in a manner similar to that expected

for long gravity waves. Overall issues in the retrieval process involve quantifying the

accuracy achieved, as well as the investigation of the influence of varying sensors (i.e.

incidence angle, polarization, center frequency, bandwidth, etc.) and surface (linear

or nonlinear, winds peed, etc.) parameters. Only initial results are reported here,

and only HH polarization results are utilized due to the larger impact of “tilting”

effects on HH cross sections as compared to those on VV cross sections .

The influence of incidence angles, varying range resolutions, and use of linear and

non-linear approachs for surface evolution on retrieval accuracy are described. In
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addition, descriptions of continued studies using an S-band center frequency as well

as other surface configurations are provided.

3.2 Methodology

3.2.1 Simulated ocean surface

Ocean surface profiles in the simulation are generated assuming a Gaussian ran-

dom process surface with a “Pierson-Moskowitz” power spectrum, as described in

[22, 23]. Non-linear effects are incorporated using Creamer et al’s improved linear

representation [30], which provides a transformation of the linear surface to capture

first-order non-linear gravity wave-wave interactions. Surface profile properties are

parametrized only by the ocean surface wind speed at 19.5 m. Results are shown

using values of 5, 6, and 10 m/sec. The profiles generated have a horizontal length

L = 122.88 m and L = 102.4 m (approximately 4096 electromagnetic wavelength at

10 GHz, and 1024 electromagnetic wavelength at 3 GHz), respectively for 10 GHz

and 3 GHz. Surfaces are assumed to be PEC again in this chapter.

3.2.2 Numerical electromagnetic scattering model

Backscattered fields computed at 600, 800, and 850 incidence angles are used in

this study, and those data at 800 are only used for retrieval. The “tapered-beam”

of [53] with taper parameter g = L/6 is utilized to reduce edge scattering effects.

This choice combined with the surface profile length used is sufficient to provide

reasonable computations at 80 degrees incidence. Note that the “tapered wave” il-

lumination utilized is not a complete model of a true ship-mounted radar, due to

the variation of incidence angle with range that occurs for a true radiating source.

More realistic source models will be considered in future work. The numerical model
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applied is based on the solution of the magnetic field integral equation (MFIE) for-

mulation [56]. Due to the large surface length at X-band (4096 wavelengths sampled

into 65536 unknowns), the iterative MOMI solution [46] combined with the novel

spectral acceleration technique [47, 57] is used to improve computational efficiency.

Frequency-swept data at X-band are computed using a center frequency of 10 GHz

and a bandwidth 1.25 GHz, sampled into 1024 frequency steps; these parameters

yield a maximum range resolution of around 0.12 m. Further detailed information

on the dataset and numerical simulations is given in [61]. Similar computations were

performed at S-band (center frequency 3.0 GHz, bandwidth 1.5 GHz) using identi-

cal surface profiles but sub-sampled to 16384 points only due to the reduced center

frequency.

Retrieval procedures

The plots of Figure 3.1 provide a basic illustration of typically observed relation-

ships between the surface profile (upper plot), the RCS versus range (middle plot),

and the surface slope. The slope plot shown was obtained by filtering out short waves

in the surface spectra above a threshold based on the electromagnetic wavelength.

This threshold was chosen in order to improve the match between variations of the

slope and the downrange RCS. There are three different down-range RCS curves in

the middle plot of Figure 3.1, and the range-resolved RCS at 600 does not show good

consistency with the surface profile. The other data, given incidence angles at 800 and

850, are very close to each other. However, the data at 800 are chosen in this study in

order to neglect the multiple scattering and possible shadowing effects compared to

the data at 850. In addition, the data at other time steps show phenomena similar to

those demonstrated in Figure 3.1. The results in Figure 3.1 show some correlation of

34



surface slope and X-band RCS, although the relationship is not always consistent. In

addition, the fairly low wind speed considered results in fairly small height surfaces

(as is apparent in the upper plot) so that tilting effects are smaller than they would

be at larger wind speeds.
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Figure 3.1: Comparison of surface profile, surface slope, and down-range RCS at
X-band for a sample surface

The first-order small perturbation model (SPM) states that the scattered field is a

function of the local incidence angle, radar frequency, and the Bragg spectrum of the

illuminated range cell. Although the Bragg spectrum for realistic sea surface is locally

affected by hydrodynamic modulation effects [25], we again follow the approach of

[44] and explore profile retrievals neglecting these effects. A simplified form of the
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SPM model for the range-resolved RCS is then

σHH ≈ C0 cos3(θil)W ≈ A cot3(θil), (3.1)

where W ≈ C1

sin3(θil)
is the sea surface spectrum evaluated at the Bragg wavenumber of

the given range cell under the assumption of a k−3 power-law spectrum, θil is the local

incidence angle in a given range cell, and C0 and C1 are constants. This equation

can be solved to determine a simple relationship between the RCS measured and the

local incidence angle:

θil = cot−1

[(σHH

A

)1/3

,

]
(3.2)

where σHH is the RCS of a given range cell, and A is estimated using equation (3.1)

with the RCS averaged over all range bins and assuming θil is the nominal incidence

angle.

Once the local incidence angle is known, the local slope is determined given the

deviation from the global incidence angle. If equation (3.2) is further linearized, and

expressed in terms of surface slope through a transformation of θil, it can be shown

that this approach predicts a surface slope that is proportional to the cube root of

the normalized RCS (i.e. σHH/A) value (see Figure 3.2). Finally, an integration of

the surface slope is evaluated to obtain the surface profile [44]. This integration is

implemented by an FFT, and a low-pass filter is applied so that the retrieved profile

contains only frequency components lower than a specified cutoff. This is reasonable

for ship control applications given the dominant influence of long gravity waves. Un-

like [44], retrievals in this chapter are performed at individual time steps, without

use of information at other time steps. Retrievals for time evolving surfaces will be
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explored in future work. Due to the tapered illumination, retrievals are performed

only for the central portion (length as 61.44 m) of the surface.
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Figure 3.2: Comparison of surface slope and cubic root of RCS at X-band for a sample
surface

3.3 Results and discussions

Figure 3.3 plots the surface profile retrieved from the X-band data of Figure 3.1

following the process described above. The results show that many surface features

are captured by the retrieval, but significant errors are also achieved. However a

strong correlation of the true and retrieved profiles overall is evident.
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Figure 3.3: Comparison of true and retrieved surface profile using X-band data

3.3.1 Sidelobe window effect

Figure 3.4 shows the retrieval results with two different Gaussian windows which

are added to suppress the sidelobe effect prior to the IFFT step, where dr denotes the

3 dB width of the window. It turns out that the window effect is small in generating

the range-solved RCS given the same scattering data (it is 1024 sweep frequencies data

in this simulation). All major slopes of the surface are recovered from the retrieval

result. However, there are some systematic deviations between the retrieval and the

original, which may be caused by the error in retrieval phase information due to the

actual multiple scattering. The hydrodynamic modulation effect may also contribute

to the retrieval discrepancy.

38



−30 −20 −10 0 10 20 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

η 
(m

)

actual

retrieval−dr=0.12m

retrieval−dr=0.24m

Figure 3.4: The surface retrieval from 800 scattering data at X-band

3.3.2 Surface roughness effect

One issue in the case considered above involves the low wind speed, which may

result in only moderate tilting effects and therefore reduce retrieval accuracy. A

further analysis was performed for linearly generated (i.e. neglecting the Creamer

transformation) surfaces at 19.5 m wind speed 6 m/s (Figure 3.5) and 10 m/s (Figure

3.6), using S-band data. Results show a dramatic improvement in this case, at least

for large scale surface features, due to the increased level of the tilting effects at higher

wind speeds.

In order to examine the surface roughness effect and minimize the hydrodynamic

modulation effect, a relatively “rough” surface whose length is 102.4 m with elec-

tromagnetic unknowns 16384 is retrieved at S-band (central frequency 3 GHz with
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bandwidth 1.5 GHz). The retrieval result is shown in Figure 3.5. Obviously, the re-

sult is close to the original surface at each major slope change, as well as the relative

height. However, we notice that the retrieval results have larger differences close to

surface edges, which may be addressed by the tapered illumination. These retrievals

from two different surfaces (linear and nonlinear) demonstrate that the Bragg scat-

tering model at HH polarization does have a reasonable accuracy for keeping the

phase variation. Actually, the first-order SPM inherently ignores multiple scattering.

In order to achieve a better retrieval result, we may need to improve the scattering

model, which should account for the hydrodynamic modulation, multiple scattering,

and possible shadowing effects.
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Figure 3.5: Comparison of true and retrieved surface profile using S-band data for
wind speed 6 m/sec
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Figure 3.6: Comparison of true and retrieved surface profile using S-band data for
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Nonlinear effect

In order to numerically evaluate the nonlinear effect on the scattering and its

retrieval at LGA, the Creamer’s surface and regular PM surface are studied. This

nonlinearity accounts for the hydrodynamic modulation. Figure 3.7 indicates that

the nonlinearity have a small effect on the retrieval in this case.

3.4 Conclusion

Results from this initial study show that sea surface profile retrievals using range-

resolved RCS measurements indeed appear to be feasible. The results shown demon-

strate the limitations of a simple “tilted Bragg” retrieval method at low wind speeds,

and typically show the S-band to provide improved performance over the X-band.
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Figure 3.7: The surface retrieval from 800 scattering data at S-band with/without
MTF

Further studies also consider retrievals that utilize multiple surface time steps, as

well as Doppler frequency information (see Chapter 6).

By use of the tilted small perturbation model as the inverse electromagnetic scat-

tering model, the local surface slope and surface profile can be retrieved reasonably

from the range-resolved RCS data. However, there are still some systematic discrep-

ancies between the retrieval and the original surfaces, which may be attributed to

the inaccuracy of the first SPM model. The hydrodynamic modulation effect on this

retrieval is also studied, and our preliminary result shows its effect is small; however,

this small difference may have two possibilities: a true small effect of HMTF, or a
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SPM model accuracy issue which does not include the HMTF. A more rigorous hy-

drodynamic model which inherently include the HMTF is needed for the analysis of

the HMTF influence on the model based retrieval.
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CHAPTER 4

A NUMERICAL STUDY OF THE MODULATION OF
SHORT SEA WAVES BY LONGER WAVES

4.1 Introduction

It is well known that the amplitudes and wavenumbers of short water waves are

modulated when propagating over an underlying long water wave or current [62,

63]. These modulations represent a non-linear hydrodynamic interaction between sea

waves; such interactions however are typically not resonant interactions, so that no

secular change of the short wave spectrum occurs with time. Thus these effects are

typically ignored in attempts to model and forecast the sea surface spectrum using

an energy balance approach.

Modulations of short waves by longer ocean waves do play an important role

however in radar imaging of the sea surface. In this case, the commonly applied

“two-scale” model of sea backscatter states that radar returns with a specific range

cell are produced by short waves (or Bragg waves) within the range cell, observed

at the local incidence angle of the range cell. When sea waves of wavelengths larger

than the radar range cell are present within a radar image, the resulting changes in

the local incidence angle (“tilt modulations”) across the larger sea waves produce
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variations in the measured radar cross section image, typically allowing the sea waves

to be observed. In addition to the tilt modulation effect, variation in the Bragg

wave amplitudes along the long waves through hydrodynamic modulations also pro-

duce variations in the radar cross section with range. It is generally assumed in sea

radar imaging that the tilt modulation effect is well understood, so that remaining

variations are produced by hydrodynamic effects. This process allows empirical stud-

ies of the “hydrodynamic modulation transfer function” (HMTF) (as in [24]) to be

performed through analysis of measured radar images. However the modulations ob-

tained are influenced by numerous geophysical factors at the time and location of the

measurements, so that validating any hydrodynamic theories of the HMTF can be

difficult.

Existing analytical theories of the HMTF are primarily based the concept of con-

servation of wave action [24, 25, 26, 27, 28]. In these theories, the basic equations

state that the wave action of the short waves is conserved except for the presence of

a set of source and dissipation terms. The former include effects such as short wave

generation by either wind forcing, non-linear interactions, or wave breaking, while the

latter includes viscous damping and other dissipative effects. Empirical models are

utilized to describe most of these contributions. Although it is possible to numeri-

cally solve the resulting wave action equations through the method of characteristics,

an approximation to first order is typically used in the remote sensing literature to

determine the HMTF. At this order, long wave effects appear near identical to those

from currents, with the current amplitude equal to the horizontal component of the

long wave orbital velocity.
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While this first order HMTF analysis has been applied in numerous remote sensing

studies, significant evidence exists in the literature that this model under-predicts the

actual modulations observed [24, 64]. While such under-prediction can be corrected

by modifying or adding new source and dissipation terms in the wave action equations,

it is difficult to separate the accuracy of the hydrodynamic model from accuracy in

description of source and dissipation terms.

To address this issue, a study of the HMTF is described in this paper based on

the use of numerical algorithms for sea surface hydrodynamics. The hydrodynamic

algorithm applied is based on the pseudo-spectral method [29], hereinafter denoted

as the “Watson-West” or WW approach. This algorithm has been applied previously

in studies of gravity wave evolution [29, 65, 66, 67] as well as radar scattering from

the sea surface [23, 32]. Although the pseudo-spectral method is not exact, it has

been shown in numerous studies [29, 65, 67] to provide high fidelity hydrodynamic

simulations so long as the order of the algorithm is sufficiently high and so long as

steep features are avoided in the surface evolution. The numerical approach involves

Monte Carlo simulation of the hydrodynamic evolution of a spectrum of short sea

waves in the presence of either one or two deterministic long waves. Because no

wind, wave breaking, or viscous dissipation effects are included in the simulation, the

results of this simulation allow assessment of the accuracy of the first order HMTF

often used in practice.

In Section 4.2, the WW algorithm is described, along with the simulation pro-

cedure utilized. A method for extracting a “numerical HMTF” from the simulated

data is presented in Section 4.3, and results obtained are presented in Section 4.4.

A numerical study of the short wave dispersion relation is described in Section 4.5.
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Section 4.6 provides a review of the analytical first order HMTF for comparison with

the numerical results. Tests show that the numerical HMTF values are in reason-

able agreement with those from the analytical theory, although small differences are

observed that indicate that improved formulations of the first order theory may be

desirable. Final remarks are provided in Section 4.7.

4.2 Numerical hydrodynamic simulations

4.2.1 Formulation

The studies of this paper utilize a one dimensional fluid surface of infinite depth,

and assume that the fluid is incompressible and inviscid; surface tension effects are

also neglected. The surface elevation is denoted as z = η(x, t) and the surface velocity

potential as φ(x, t), where (x, z) are the horizontal and vertical space coordinates, re-

spectively, and t represents time. The evolution of these two quantities is determined

by the following equations [29]

φt = −gη − 1

2
φ2

x +
1

2
φ2

z[1 + η2
x] (4.1)

ηt = −φxηx + φz[1 + η2
x], (4.2)

where the subscript denotes the associated derivative and g is the gravitational accel-

eration (9.8 m/s−2). We solve equations (4.1-4.2) using the pseudo-spectral method

of [29], and retain terms up to 4th order in the slope expansion.

4.2.2 Initial conditions

Initial conditions for the simulations include one or two deterministic “long”

wave(s) and a stochastic spectrum of “short waves”, in order to study modulation of
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the short wave spectrum. The specific initial condition with one long wave is

η(x, t = 0) = a1 sin(k1x) + ηs(x), (4.3)

φ(x, t = 0) = −a1

√
g/k1 cos(k1x) + φs(x) (4.4)

where the long wave has wavenumber k1 and amplitude a1. It is assumed that the

long wave lies in the gravity wave region, and the initial conditions are developed to

produce a long wave traveling in the x̂ direction in the linear hydrodynamic limit.

Previous work with such initial conditions [29, 67] shows the tendency of the long

wave to approach a Stokes’ wave form for moderate k1a1 values. The computational

domain is set to 2π meters, and the long wave wavenumber is set to k1 = 1 rad/m in

the majority of the results to be shown. Note that a scale transformation is possible

for surface composed only of gravity waves, so that these simulations also represent

hydrodynamic effects for gravity wave surfaces with the length and height dimensions

scaled by a constant.

The initial short wave surface ηs is a realization of a Gaussian random process

surface with a Pierson-Moskowitz spectrum [23]:

S(ks) =
0.0081

4
k−3

s exp(− 0.74g2

k2
sU

4
19.5

), (4.5)

where U19.5 denotes the surface wind speed at height 19.5 m. This spectrum essentially

is a k−3
s spectrum for one dimensional surfaces, with a low frequency roll-off controlled

by a windspeed parameter U19.5. The initial short wave spectrum is truncated to

exist between wavenumbers 30 rads/m and 170 rads/m only. The lower limit of 30

rads/m ensures that the short waves are indeed “short” compared to the long wave,

while the upper limit is chosen based on surface sampling requirements. Although

the parameter U19.5 was set to 3 m/s, the portion of the P-M spectrum influenced
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by U19.5 has wavenumbers much less than 30 rads/m, so that U19.5 has virtually no

effect. The short wave velocity potential φs(x) was generated again through a linear,

x̂, traveling assumption for each spectral component of ηs(x). The generated surface

was sampled into 1024 points, providing sufficient resolution to resolve the short wave

spectrum while retaining fourth order computations in the WW method.

Because the linear assumption of the initial conditions does not match the non-

linear nature of equations (4.1-4.2), we utilize a “ramp-up” procedure [29], [23] to

reduce any discontinuities that may be introduced. In this procedure, all non-linear

terms in the evolution equations (4.1-4.2) are multiplied by a ramp-up factor

WR(t) = e−( t−a
b

)2 (4.6)

for t < a, and by unity for t ≥ a. Note for t << a this term is zero, while it approaches

unity for t = a at a rate determined by b. We have tested several combinations of a and

b, and found a = 2 sec and b = 0.5 sec in equation (4.6) to yield reasonable predictions;

this approach is similar to that described in [68]. Here 2 sec is approximately one

period of the long wave.

As the surface evolves in time, short waves have only a minimal effect on the

evolution of the long wave, given their much smaller amplitude. The short wave

spectrum, however, broadens from the truncated spectrum provided initially and

exhibits some interactions among short waves. However the dominant effect to be

examined here is the variation in the local short wave spectrum with position on

the long wave. For this purpose, localized short wave spectra will be introduced in

Section 4.3 so that the variation of these localized spectra with position on the long

wave can be observed.
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4.2.3 Other information

The simulation was time stepped at ∆t = 0.001 sec for a duration of 5000 time

steps (5 sec) 1 following the ramp-up period. Surface profiles were recorded every 0.1

seconds, providing 50 profiles per realization. The simulation was repeated using 1200

distinct short wave surface realizations so that average spectra could be computed.

Tests with larger numbers of realizations showed this choice to provide reasonable

convergence for the results illustrated. Figure 4.1 compares the initial input spec-

trum and final ensemble averaged spectrum of short waves in the presence of a long

wave with k1a1 = 0.05. The result shows that the short wave spectrum remains rela-

tively constant during its evolution. The dataset produced by the simulation consists

of surface profile information η(xq, ti,Mj), where xq and ti refer to the discretized

horizontal and time coordinates, and Mj provides an index to the set of realizations

generated.

4.3 Determination of the numerical HMTF

The configuration of this simulation allows long-short wave hydrodynamic modu-

lations to be examined in detail. For this purpose, the computational domain in x is

divided into sub-regions, and local Fourier transforms (using a Fast Fourier Transform

(FFT) algorithm) are utilized to compute the spatially localized short-wave spectrum

for each region. The specific procedure is as follows:

1. Begin a loop over time ti;

2. Begin a loop over realizations Mj;

1The optimum time duration should be an integer of long wave period, i.e., 2n sec (n - an integer).
However, our simulations shows there is negligible effect on numerical MTF between 4 sec and 5 sec.
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Figure 4.1: Comparison of initial and final short wave spectra with k1a1 = 0.05

3. Filter out all long wave components by passing the η(xq, ti,Mj) surface

through a spatial rectangular high pass filter with cutoff ks = 30 rads/m: call

the resulting short wave surface ηs(xq, ti,Mj);

4. Divide the x range into 31 spatial sub-regions, each sub-region has a

half overlap to its preceding one; label these sub-regions by their central x-values

Xn;

5. Begin a loop over sub-regions Xn;

6. Multiply ηs(xq, ti,Mj) by a Gaussian window centered at Xn, and

perform an FFT zero padded to the length of the original profile on the result;

denote FFT output as ηsn(ks, Xn, ti,Mj)
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7. Take |ηsn(ks, Xn, ti,Mj)|2 to obtain the spectrum S(ks, Xn, ti,Mj);

8. End loop over sub-regions;

9. End loop over realizations;

10. End loop over time.

In the above, the Gaussian window length is chosen as 64 points (∼ 40 cm) with

overlap 32 points, which results in 31 spatial sub-regions; a plot of the first several

Gaussian windows is illustrated in Figure 4.2. Parameters of the Gaussian function

are chosen so that the Gaussian is at e−1 at 18.1 points from the center of the filter.

Tests varying these parameters within a reasonable range show only minor effects on

the obtained MTF values.

Figure 4.3 shows the localized S(ks, Xn, ti,Mj) variation both in time and spa-

tial sub-region. S(ks, Xn, ti,Mj) can then be averaged over realizations to obtain the

ensemble average localized spectrum Sa(ks, Xn, ti), which describes the average evo-

lution of the spectrum with time in a given sub-region. This can be correlated to the

approximate long wave phase versus time in that sub region:

Φl = k1Xn − ω1ti, (4.7)

where ω1 =
√
gk1; it is also possible to determine the long wave phase numerically if

desired. Because tests showed only minimal differences between these two methods,

the former approach is utilized in the results shown. Finally, an additional average

over time can be performed to obtain S̄(ks, Xn), the ensemble and time average

spectrum in a given sub-region.

Figure 4.4 illustrates the normalized quantity Sa(ks, Xn, ti)/S̄(ks, Xn) for sub-

regions 1, 5, 10, and 15 (relative initial long wave phases of π/16, 5π/16, 10π/16, and
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15π/16, radians, respectively) and for ks values ranging from 50 to 100 rads/m, with

k1a1 = 0.10. The influence of the long wave is clearly visible in these plots through

the periodic variation in the normalized-localized spectra obtained; the period of

the oscillation observed is consistent with that of the long wave. Although some

variations from simple oscillations are obtained, the basic spectrum modulations are

clearly correlated to the long wave phase in a given sub-region.

Given this behavior, we define the numerical modulation R(ks, Xn, ti) as follows:

R(ks, Xn, ti) =
Sa(ks, Xn, ti) − S̄(ks, Xn)

S̄(ks, Xn)
. (4.8)

Note the spectrum in the denominator could be further averaged over sub-regions,

but again this modification does not yield significant variations in the obtained MTF

values.

Figure 4.5 plots an example value of R versus time (ks = 70 rads/m in the 10th

sub-region). The oscillation of the spectrum is obvious, although an additional slow

amplitude decay in time is observed that is not directly related to the long wave

phase. We performed several tests of this slow decay, and found it to be a much

slower periodic function, evolving at a time rate involving the group velocity of the

short wave spectrum (see Figure 4.6). While such effects do play a role in the evolution

of the surface, and could likely be captured by a full simulation of the wave action

equations, they are not of interest in studying first-order MTF effects, and therefore

a procedure for removing these slow time variations in extracting a numerical MTF

value was developed.
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Specifically, the following functional form was used to describe the short wave

spectrum at a specified wave number and sub-region:

R(ks, Xn, ti) ≈ bc0(ks, Xn) + bc1(ks, Xn) sin(cg(ks)ti)

+ b1(ks, Xn) sin(k1Xn − ω1ti + Φ01(ks, Xn))

+ b2(ks, Xn) sin(2k1Xn − 2ω1ti + Φ02(ks, Xn)),

(4.9)

where cg denotes the group velocity of the short wave at wavenumber ks. In equation

(4.9), the real valued coefficients b1 and Φ01 describe the amplitude and phase of

a “first order” numerical MTF, while the coefficients b2 and Φ02 are included to

allow some description of “second order” effects. The coefficients bc0 and bc1 model

an additive correction to account for the slow time evolution described previously.

Other forms could be proposed as well, but the above definition appears to provide a

reasonable means for extracting the portion of the spectrum modulation due to the

long wave influence in the dataset utilized. Unknown coefficients were determined

using a least-squares fitting procedure to the R dataset; results were then averaged

over sub-regions to obtain a final numerical value of the MTF (i.e. b̄1(ks)). An

alternative procedure involving a simultaneous fit to the data in all subregions was also

considered; again the results were practically identical to those using the procedure

described and are therefore not discussed further.

4.4 Numerical HMTF results

4.4.1 One long wave

According to the wave action HMTF theory, the first order coefficient b̄1(ks) should

be directly proportional to k1a1, and reference [28] shows that the second order co-

efficients should be proportional to (k1a1)
2. Therefore the results illustrated will be

normalized by these quantities.
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Figure 4.7 plots normalized first and second order HMTF values ( b̄1(ks)
(k1a1)

and b̄2(ks)
(k1a1)2

)

obtained using k1a1 = 0.05 and k1a1 = 0.10. Results in the upper plot show the

numerical b̄1 values to be approximately 4 in both long wave cases, with a difference

from the value 4 on the order of 1% that depends weakly on ks. The second order

coefficient is in the range 7.-8.5, and shows a small decreasing trend as the long wave

amplitude is increased.
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Figure 4.7: Numerically obtained normalized HMTF amplitudes

HMTF phases averaged over sub-regions (Φ̄01 and Φ̄02) are plotted in Figure 4.8.

First order phase results in the upper plot show values near 0 degrees, with a very
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weak dependence on ks and a slight trend (to -2 degrees ) versus the long wave

amplitude. Second order phases are near −90 degrees, although the first order values

obtained are in the range −92 to −94 degrees for the smaller long wave case, and

near −98 degrees for the larger long wave case.
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Figure 4.8: Numerically obtained HMTF phase

Although several potential sources of small errors exist in the values obtained,

overall the numerical results indicate that the first order HMTF amplitude and phase

are reasonably approximated as 4(k1a1) and 0 degrees in the data obtained, while the

second order coefficient (b̄2) is reasonably (but less reasonably than the first order

coefficient) approximated as 7.5(k1a1)
2 with a phase of −90 degrees. While more

detailed analyses could be conducted to increase confidence in the prediction of any
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small deviations from these values, this basic information is sufficient for comparison

with the first order wave action theory, as will be performed in Section 4.6.

4.4.2 Two long waves

Additional numerical simulations were performed for initial conditions with two

deterministic long waves, using (k1, a1) = (1, 0.07) and (k2 = 5, a2 = 0.008). Fig-

ure 4.9 plots an example R, for ks = 60 rads/m and in sub-region 18, and shows that

more complicated trends versus time are observed due to the presence of multiple long

waves. The wave action theory at first order predicts that these trends should be due

to a simple summation of the first order effects from each long wave. Accordingly,

the fitting function (equation (4.9)) was modified to include separate first and second

order coefficients for the two long waves. Plots of the fit curves in Figure 4.9 show

that the fit accuracy is somewhat improved when second order terms are included.

The two obtained normalized first order MTF values averaged over spatial sub-regions

are plotted in Figure 4.10, and again are found to be near 4. However the observed

deviations from 4 are larger than those observed in the single long wave case, partic-

ularly for the k2 wave. Again detailed numerical studies could be conducted to assess

these small deviations, but the basic conclusion from this analysis is that the linear

summation of first order contributions from each long wave in computing combined

modulation effects appears reasonable.

4.5 A numerical study of the short wave dispersion relation

Modeling the effect of long waves on the dispersion relation of short waves is

implicit in any wave action theory analysis of the HMTF. When short waves propagate

over a slowly varying long wave or current, the short wave radian frequency ω is
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Figure 4.9: The fitting of HMTF versus ks with k1a1 = 0.07 and k2a2 = 0.04

expected to undergo a Doppler shift [69, 70]:

ω = ωs + ks · U, (4.10)

where ωs is the short wave frequency in the absence of Doppler shift effects and U is

the underlying medium horizontal velocity with respect to the observer. Here the dot

product describes the relationship between the direction of the orbital velocity and

the short wave propagation direction.

To study this Doppler shift, a new dataset η(xq, ti,Mj) was generated using k1 =

0.0625 rads/m (wavelength and computational domain size 32π m). The long wave

wavelength was extended in this case due to a desire to perform an additional temporal

Fourier analysis of the short wave spectrum within a given sub-region; use of longer

long-wave wavelengths results in an increased amount of time during which the long
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Figure 4.10: Numerically obtained normalized HMTF amplitudes with k1a1 = 0.07
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wave phase remains relatively constant in a given spatial sub-region, so that the

temporal Fourier analysis is more reasonable.

A time step of 0.002 sec was used in the hydrodynamic simulations, with a total

time duration of 20.48 sec. The surface profile was discretized into 4096 points, and

surface profile information was recorded every 0.04 sec so that 512 temporal samples

are available during the time evolution. This time resolution is sufficient to capture

the short wave temporal frequencies of interest. The short wave spectral range utilized

in the simulations was ks ∈ [5, 15] rads/m. Other simulation parameters are similar

to those described previously.

Analysis of the dataset is similar to that used previously, with the exception that

only 15 spatial sub-regions were used. In addition, the complete time history of

FFT outputs of the surface within each spatial sub-region were stored as the quantity

a(ks, Xn, ti,Mj); these are complex valued Fourier coefficients versus time in each sub-

region. The 512 point time history of these Fourier coefficients was then divided into

15 overlapping time intervals labeled Tm through the use of Gaussian windows in time.

An FFT of these localized time histories was then performed; the amplitude squared

of this FFT output is then denoted as Ω(ks, Xn, ωs, Tm,Mj), and includes the time

history (on a long time scale Tm) of the radian frequency (ωs) spectrum for the surface

spectrum at wavenumber ks in spatial subregion Xn. As in the previous analysis, this

function can be ensemble averaged to eliminate the Mj dependence. Figure 4.11

shows the spatial variation of ensembled Ω(ks, Xn, ωs, Tm) over realizations at given

time sub-region.

Figure 4.12 illustrates ensemble averaged ωs spectra versus time subregion Tm for

the case k1a1 = 0.02, ks = 10 rads/m, and in several spatial sub-regions. The results
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Figure 4.11: Variations of ensembled Ω(ks, Xn, ωs, Tm) with k1 = 1/16 and k1a1 = 0.02
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appear consistent with a modulation in the short wave dispersion relation due to

currents produced by the long wave orbital velocity. However the observed ωs spectra

have non-zero width in frequency and also show variations in amplitude that are more

complex than equation (4.10) alone.
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Figure 4.12: The trajectories of ωs with k1 = 1/16 and k1a1 = 0.02

Using the ensemble averaged dataset Ω̄(ks, Xn, ωs, Tm), we identify the value of ωs

that maximizes Ω̄(ks, Xn, ωs, Tm) for all other parameters fixed as P (ks, Xn, Tm). A

least squares fit to the obtained P (ks, Xn, Tm) values is then performed using

P (ks, Xn, Tm) = a0(ks, Xn) + c0(ks, Xn) sin(k1Xn − ω1Tm), (4.11)

66



where a0 should be approximately ωs from equation (4.10), and c0 represents the

amplitude of the modulation due to long waves. Results for the a0 and c0 coefficients

are then averaged over spatial sub-regions (Xn) to obtain ā0(ks) and c̄0(ks).

Assuming that the current in the dispersion relation can be represented by the

first-order horizontal component of the long wave orbital velocity, the predicted value

of ω can be written as

ω ≈ ωs + ksω1a1 sin(k1x− ω1t). (4.12)

with ωs =
√
gks. Figure 4.13 plots the obtained coefficients normalized by their

expected values (i.e. ā0(ks)/ωs and c̄0(ks)/(ksω1a1)); values near unity would indicate

that the approximation of equation (4.12) is accurate. Results show the ā0 term indeed

to be well predicted by the theory, although the numerical results are slightly larger

(by a factor less than 1%) than the prediction. The first order modulation however

is significantly less (around 0.88) than the predicted unity value, indicating that

equation (4.12) may neglect some important effects. Numerically obtained coefficients

show a slight increasing trend versus ks in both cases. Further dispersion studies were

performed in an attempt to determine the source of the reduced numerical modulation

compared to the first order theory. Results shows the offset between predictions to

be near independent of k1a1, so that the error is clearly at first order. To simplify

the problem, simulations were also performed using a deterministic single-frequency

short wave packet, localized spatially on the long wave in the initial conditions; results

again showed a similar offset in obtained frequency modulations. Consideration of the

analytical theory suggests that corrections to the ωs term may be relevant, involving

either modulations of the wavenumber or local acceleration effects [28] involved in

the definition of ωs. Further investigation of these differences will be performed in
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future studies. Overall the results show the standard first order prediction of the local

frequency to have reasonable, but not complete, accuracy.

4.6 Wave action theory

The theory of wave action was developed for analysis of the evolution of a weakly

nonlinear short wave “packet” as it propagates in an inhomogeneous background

medium. The short wave packet consists of a narrowband set of waves centered

around a carrier wavelength. In many water wave applications, the inhomogeneities

encountered are current fields that vary slowly in space and/or time compared to the

corresponding scales of the wave packet of interest. The concept of the conservation of

wave action is based fundamentally on a separation of scales in both space and time,

with packet properties described in terms of short scale wavenumber ks and angular

frequency ωs parameters, while the slower variations are described in terms of x and

t for space and time scales, respectively. The theory has been utilized to describe

many phenomena of oceanographic interest, including the modulation of short waves

by long waves relevant in this paper. Here we follow the first order solution of the

wave action equation [25, 26, 28] developed to capture long-short wave modulation

effects. While a numerical solution of the wave action equation (as in [71]) for the

configurations of this paper could be pursued, such numerical solutions are far less

frequently utilized in practice than the first order solution, and are therefore not

considered further.

We also note that small differences in the form of the first order HMTF are

observed in the literature, for example between [25] and [28]. These differences are

partially explained by the inclusion of “heaving” effects due to the vertical component
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of the long wave orbital velocity in [28], but also due to the neglect of a group velocity

term in the zeroth order Lagrangian in [28]. While other authors [25, 26] do not

include the former, these other authors are uniformly in agreement that the latter is

necessary. We choose to follow the formulation of [26] in what follows.

The wave action quantity N here is defined as [70]

N(ks, x, t) =
S(ks, x, t)

ωs

, (4.13)

where ks is the local short wave wavenumber, S(ks, x, t) is the local short wave spec-

trum, and ωs =
√
gks is the short wave radian frequency. For the purposes of this

analysis, the wave action is modeled only for the short wave portion of the spectrum,

and the dependencies on x and t result due to long wave effects that occur on the

larger spatial and time scales. The analysis assumes that k and x are independent

variables, although both depend on time.

Following [25, 26, 28, 70], an equation describing the conservation of wave action

can be written as

dN

dt
= Q, (4.14)

where the differential operator d is the material derivative and operates along the

characteristic or “ray” paths, while the term Q represents any sources or sinks of

wave action. These include potential wind forcing, viscous damping, resonant non-

linear wave-wave interactions, or wave breaking [28] effects. Again in practice these

terms are described primarily using empirical relations. The simulations performed

include none of these sources or sinks with the exception of wave-wave interactions.

However since no strong resonant interactions are expected in the simulations, the

term Q is set to zero in the remaining analyses.
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For long-short wave modulation studies, it is convenient to rewrite equation (4.14)

in phase space:

∂N

∂t
+ ẋ

∂N

∂x
+ k̇s

∂N

∂ks

= 0. (4.15)

where the dot denotes the derivative with respect to time. The “ray” equations that

describe the evolution of the canonical variables x and ks are:

ẋ =
∂ω

∂ks

= cg + U (4.16)

k̇s = −∂ω
∂x

= −ks
∂U

∂x
, (4.17)

where cg = 1
2

√
g
ks

is the short wave group velocity for the wavenumber considered,

and U is the horizontal component of the long wave orbital velocity.

4.6.1 Determination of HMTF

Following [25, 26], a perturbative solution to first order is sought. A description

of the long wave orbital velocity consistent with this goal is

U = ω1a1 sin(Φ) (4.18)

where Φ = k1x− ω1t denotes the long wave phase.

Because it is modulations of the spectrum, not of wave action, that are of interest

in the studies of this paper, the substitutions

∂N

∂t
=

1

ωs

∂S

∂t
(4.19)

∂N

∂x
=

1

ωs

∂S

∂x
(4.20)

∂N

∂ks

=
1

ωs

∂S

∂ks

− cg
ω2

s

S (4.21)

= − S

ωsks

[m+ γs] (4.22)
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are utilized to recast equation (4.15) in terms of the short wave spectrum alone;

equation (4.22) holds when it is assumed that the spectrum assumes the form S̄ ∝ k̄−m
s

as given in equation (4.5). The quantity γs(ks) is given by cg(ks)

cp(ks)
, where cg and cp are

the group and phase velocities of the short wave considered, respectively; for purely

gravity waves, γs = 0.5. Note it is assumed in equation (4.19) that the value of ωs

used in the denominator of the wave action definition is independent of time; this will

be considered further below.

Substituting the above equations into equation (4.15) and combining with equa-

tions (4.16)-(4.17) yields

∂S

∂t
+ cg

∂S

∂x
= −U ∂S

∂x
− [m+ γs]S

∂U

∂x
(4.23)

A perturbation solution is now performed, in which the orbital velocity U is as-

sumed to be the small parameter. Writing

S = S(0) + S(1) + · · · (4.24)

yields at zeroth order

∂S(0)

∂t
+ cg

∂S(0)

∂x
= 0 (4.25)

The above can be transformed into an ordinary differential equation by introducing

the variables

α = x− cgt (4.26)

β = x+ cgt (4.27)

to obtain

∂S(0)

∂β
= 0 (4.28)
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The solution to this equation is that S(0) is constant in β, while remaining arbitrary

in α. However if an initial condition of the zeroth order solution is chosen that is

independent of x at time zero (as is appropriate for the studies described here), the

result is that S(0) is independent of x and t.

Continuing to first order, the relevant equation is

∂S(1)

∂t
+ cg

∂S(1)

∂x
= − [m+ γs]S

(0)∂U

∂x
(4.29)

with the linear term in U vanishing due to the constant nature of S(0). Substitut-

ing the specified form for U , and again making use of the variable transformation

described previously allows this equation to be solved. The result is

S(1) = k1a1 sin(Φ)
[m+ γs]

1 − cg

c1

S(0) (4.30)

where c1 =
√

g
k1

is the long wave phase velocity.

Because S(1) above is directly proportional to sin Φ, the predicted HMTF can now

be determined in terms of

S(1)

S(0) sin(Φ)
(4.31)

with the magnitude and phase of this quantity defined as R1 and Φ1, respectively.

Substituting equation (4.30) in equation (4.31) and solving yields

R1 = (k1a1)
[m+ γs]

1 − cg

c1

(4.32)

Φ1 = 0 (4.33)

This HMTF prediction is identical to that in [26].

Although only a single long wave was considered in this derivation, the linear

nature of the first order solution ensures that the combined effect of two long waves

to first order is simply the sum of their individual contributions.
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4.6.2 Comparison with numerical simulations

For the numerical simulations performed, the spectrum utilized had a k−3
s depen-

dence, yielding m = 3 for use in equation (4.32). In addition, the value of γs is 0.5

for gravity waves, so that the predicted value of R1 can be simplified to

(k1a1)
3.5

1 − 1
2

√
k1

ks

(4.34)

Factoring out k1a1 as in Figure 4.7, the remaining coefficient ranges from a value of

3.766 at ks = 50 rads/m to 3.684 at ks = 100 rads/m with k1 = 1 rad/m, compared

to the observed values near 4 from the numerical simulations (Figures 4.7 and 4.10).

The predicted phase of zero degrees is well matched by the numerical simulations.

Although further studies of the differences between the numerical and analytical

models could be performed, overall the results indicate that the first order HMTF

derived from wave action theory yields reasonable (within 10%) predictions of short

wave modulations by longer sea waves. It is noted that this difference remains con-

sistent even as the long wave amplitude is decreased; this fact motivates continued

studies to improve upon the wave action theory formulation applied here.

One possible correction involves inclusion of time variations in ωs in computing

the time derivative of the wave action, so that

∂N

∂t
=

1

ωs

∂S

∂t
− cg
ω2

s

S
∂ks

∂t
(4.35)

as opposed to equation (4.19). The result of this modification is a change in the value

3.5 in equation (4.34) to 4; the final predicted HMTF values now exceed 4 by 5 to

8%, whereas the original values were less than 4 by similar percentages. Therefore no

clear improvement results from this change.
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A second possible correction involves the inclusion of local acceleration effects as

described in [28]. In this case, the gravitational acceleration is modified along the

long wave by the vertical long-wave acceleration; this change in the local gravitational

acceleration is modeled by introducing an additional −∂ω̃s

∂x
term on the right hand

side of equation (4.17). The local frequency is given by

ω̃s =
√
g̃ks (4.36)

within which only g̃ is considered a function of x. The method for determining the

local gravitational acceleration g̃ is described in [28]. Following this process results

in a change in equation (4.34) to

(k1a1)
3.5

(
1 + 1

2

√
k1

ks

)

1 − 1
2

√
k1

ks

(4.37)

which varies from 4.033 at ks = 50 rads/m to 3.87 at ks = 100 rads/m when normal-

ized. Although these values are closer to those obtained numerically, the inclusion of

local acceleration effects in fact increases the error in the short wave dispersion rela-

tion fits described in Section 4.5. For this reason, the modeling of local acceleration

effects used here cannot be considered completely validated.

While further extensions of the wave action theory to include other effects or sec-

ond order contributions for comparison with the second order numerically obtained

results are possible, the first order theory described here is most commonly used in

practice, and is the most relevant in applications. Further examinations of improve-

ments to the wave action theory are left for future work.
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4.7 Concluding remarks

A numerical study of the modulation of short sea waves by longer waves was per-

formed in order to provide an assessment of the first order “hydrodynamic modulation

transfer function” (HMTF) commonly used in remote sensing of the sea. The use of

numerical simulations allowed examination of the theory in a controlled environment,

without need for empirical models of effects such as wind forcing and wave breaking.

Results show the first order HMTF to provide a reasonable prediction of the short

wave modulations observed in the numerical simulations. Numerical results also show

the basic applicability of the standard Doppler shifted dispersion relation in the cases

considered. However in both of these areas, differences on the order of 10% from the

commonly used analytical theories were encountered, indicating that revisions to the

standard first order forms may be possible to yield improved predictions.

Future work will include further analysis of the basic wave action theory formu-

lation and its first and second order HMTF predictions, as well as more detailed

numerical simulations over a wider range of short and long wave environments. The

numerical procedures presented here should be applicable to such studies with only

minor modifications.
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CHAPTER 5

STUDIES OF OCEAN WAVE-RADAR MODULATION
MECHANISMS - INCLUSION OF THE THIRD-SCALE

EFFECT

5.1 Introduction

It is well-known that electromagnetic backscattering from the sea surface varies

spatially and temporally. For a stationary imaging radar or scatterometer, there are

two basic mechanisms for cross section variations that are usually considered: those

due to “tilt” effects and those due to hydrodynamic effects. Tilt effects are due to

local incidence angle changes caused when the short Bragg waves, which are important

for radar scattering, are observed along “tilted” portions of longer sea waves. Such

variations for radars whose range resolution is smaller than the scale of longer sea

waves are described through the use of a power modulation [72], including the tilt

modulation and the strain modulation (later called hydrodynamic modulation). The

power modulation is also described by a radar modulation transfer function (RMTF)

[25], which includes radar tilted MTF (RTMTF) due to the local incidence change

and radar HMTF (RHMTF) due to hydrodynamic modulation for short Bragg waves.

The definition of RMTF in [25] is slightly different from that given in [72]. A complete

theoretical description of RMTF is summarized in [39].
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Numerous ocean radar experiments have been conducted to investigate the ocean

wave-radar MTF at different radar frequencies and polarizations, for example, X-

band VV polarization [72, 73], X- and L-band [74, 38], Ka-band dual polarization

[75], X- and Ka-band dual polarization [33], L- and Ku-band [34], C-band [35, 76],

L-, C-, and X-band [36]. The results of those experiments show that the RHMTF

inferred from the experimental RMTF is larger than the pure HMTF predicted by

the wave action theory [27, 24, 40, 36, 76], and the inferred RHMTF is polarization

dependent [24, 40, 36]. Theoretically, the mapping from the pure HMTF to the elec-

tromagnetic RHMTF is linear. Therefore, the RHMTF is polarization independent

[38]. The third-scale (the intermediate scale) modulation is considered to explain

this discrepancy between the theoretically predicted RHMTF and the experimentally

derived RHMTF [27, 24, 40, 36]. Besides these experimental studies, an approximate

numerical electromagnetic integral equation method was used to study the RMTF

[41], where the RHMTF was approximately treated by the wave action theory [25].

Both experimental and numerical results demonstrated that the intermediate scale

waves have an effect on the RMTF, since the intermediate waves are hydrodynam-

ically modulated by the presence of long waves. Such modulation results in those

intermediate waves being distributed locally. Therefore, the intermediate waves in-

troduce the second “tilt” and “heave” effect on the Bragg waves.

The numerical study of HMTF based on the exact nonlinear hydrodynamic equa-

tion was reported in [77] (see Chapter 4). This progress enables us to apply com-

putational electromagnetics to the modulated ocean surfaces to study the RMTF,

because such a long and short wave surface inherently includes both the RTMTF and

the RHMTF. Then, we can study the RHMTF further only by filtering out long wave
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components from the long and short wave surface. Furthermore, the intermediate

waves influence on the RMTF was able to be studied through varying short wave

spectral contents. This idea is realized and implemented in this chapter.

The methodology of the numerical study of ocean wave radar modulation mecha-

nisms by inclusion of the third scale effect is described in Section 5.2. To explain and

compare our numerical results, we derive an analytical ocean wave-radar MTF based

on the two-scale electromagnetic model in Section 5.3. In order to further discuss the

intermediate waves’ ms slope influence on MTF, an empirical model based on RCS

expansion along the surface slope and the statistical two-scale model which depends

on the surface slope, are presented to analyze the intermediate waves’ effect on MTF.

Consequently, the RMTF results and discussions are shown in Section 5.4. Section

5.5 concludes this chapter.

5.2 Methodology

This section describes the procedure of the numerical study of the ocean-wave

RMTF from a sea surface. This procedure includes five steps. In the first two

steps, we need to generate time-varying modulated ocean surfaces and to compute

the backscattering fields by use of numerical scattering integral equation methods.

In the third step, the RCS dataset is obtained from the ensemble average of the

backscattering fields calculated in the second step. In the fourth step, by use of the

least square method, the RMTF and RHMTF are extracted from the RCS dataset.

The final step is to calculate the RTMTF from RMTF and RHMTF data.
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5.2.1 Nonlinear surfaces generation

The entire surface generated in this step, which is utilized to study the RMTF,

includes both long and short waves. Then, the long wave components can be filtered

out from this entire surface. Only the short wave surface is used to study the RHMTF.

The nonlinear ocean surfaces which are utilized in this numerical RMTF study

is assumed to be a one-dimensional fluid surface of infinite depth. We also assume

that the fluid is incompressible and inviscid; surface tension effects are also neglected.

The surface elevation is denoted as z = η(x, t) and the surface velocity potential as

φ(x, t), where x, z are the horizontal and vertical space coordinates, respectively, and

t represents time. The evolution of these two quantities is determined by the following

equations [29]

φt = −g0η −
1

2
φ2

x +
1

2
φ2

z[1 + η2
x], (5.1)

ηt = −φxηx + φz[1 + η2
x], (5.2)

where the subscript denotes the associated derivative and g0 is the gravitational ac-

celeration (9.8 m/s−2).

We solve equations (5.1-5.2) using the pseudo-spectral method of [29], and retain

terms up to the 2nd order (two nonlinear order) in the slope expansion. The ini-

tial condition for this numerical simulation consists of a deterministic long wave and

a band-limited stochastic “Pierson-Moskowitz” (PM) short waves. The short PM

wavenumber bandwidth is [31, 400] rad/m (due to the numerical stability issue, we

cannot run equations (5.1) and (5.2) with a very broad spectrum), and the steepness

of the long wave is 0.05 with a unit wavenumber. The ocean surface wind speed is

at 19.5 m is 3 m/s. The speed value does not have a direct effect on our numerical
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MTF study. The reason that we choose a low value is to have good numerical sta-

bility. The total recorded data duration is 4 s with a sampling time step 0.1 s. The

surface discretization number is 2048 with a length Ls = 2π m. The recorded data is

η(xi, tj, rm), where xi denotes the spatial coordinate, tj denotes the time coordinate,

and rm denotes the realization identification number.

5.2.2 Electromagnetic scattering models

Electromagnetic backscattering fields of both HH and VV polarizations are com-

puted from the electrical field integral equation (EFIE) and magnetic field integral

equation (MFIE), respectively, in this study. With a transformation, the EFIE can

be converted into a MFIE [56]. Therefore, both electric and magnetic field integral

equations can be written with a generalized magnetic field integral form as [46, 55, 56]

J(x, t, rm) = Jinc(x, t, rm) +

∫ x

−∞

dx′G(x′, x)J(x′, t, rm)

+

∫
∞

x

dx′G(x′, x)J(x′, t, rm),

(5.3)

where Jinc is the generalized incidence current, J is the unknown induced generalized

current, G(x′, x) is the generalized Green function, which is written with




− ik
4

H
(1)
1 (kd)

d

√
1+ηx(x′,t,rm)2

1+ηx(x,t,rm)2
[−ηx(x, t, rm)(x− x′) + η(x, t, rm) − η(x′, t, rm)]

for HH polarization

ik
4

H
(1)
1 (kd)

d
[−ηx(x

′, t, rm)(x′ − x) + η(x′, t, rm) − η(x, t, rm)]

for VV polarization,

where d =
√

(x− x′)2 + (η(x, t, rm) − η(x′, t, rm))2, x′ and x are the source point and

the field point, respectively, andH
(1)
1 is the first order Hankel function of the first kind.

With the generalization form (see equation (5.3)), the original first kind Fredholm

integral equation of the EFIE can be converted into the second kind Fredholm integral

equation. This conversion improves the iteration convergence rate. Equation (5.3)
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can be effectively solved with a method called “Forward-Backward” (FB) [55] or

a method called the method of ordered multiple interactions (MOMI) [46]. The

MOMI is used in this study to solve equation (5.3). In combination with the spectral

acceleration method [47, 57], the overall numerical operation is about O(N) for both

solving and saving count. The MOMI iteration convergence threshold is defined as

√
|Jl+1 − Jl|2/|Jl|2, where the subscript l denotes the iteration step, and the threshold

is 0.001 in this study. The total MOMI iteration requires only about two steps to

converge to this threshold for each backscattering computation. Once J is known,

the backscattering fields of both HH and VV polarization can be obtained with a

near-field integral [56].

5.2.3 RCS dataset calculation and tapering issues

In reality, we have difficulties running a surface with an infinite length. Alterna-

tively, a truncated surface with a finite length is applied in our numerical computation.

In order to minimize the truncated edge effects and to compute the localized scatter-

ing field, a tapered incident wave is chosen in this study [53]. Increasing the tapering

parameter g enables the radar to collect the backscattering mainly from a very narrow

local surface element. The remainder of this subsection describes details of tapering

issues.

Tapering configuration

The scattering fields for both polarizations are computed from each time step tj

and realization rm surface η(x, tj, rm). Figure 5.1 illustrates the far-field scattering

at one time step surface. Figure 5.1, (a) shows the tapered incidence waveform; (b)

shows the far-field scattering from the long and short wave surface and the computed
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RCS dataset is used to study RMTF; (c) shows the scattering from the short waves

(ks ∈ [40, 380] rad/m) only surface, and its RCS dataset is used to study the RHMTF,

which includes both short waves and intermediate waves; (d) shows the scattering

from the short waves (ks ∈ [kc, 380] rad/m) only surface, where kc is the cutoff

wavenumber close to the Bragg wavenumber and is given in Table 5.1, and its RCS

dataset is used to short waves only RHMTF. The reason for choosing a large kc is to

minimize the intermediate waves’ effect.

θi (degree) kB (rad/m) kc (rad/m)
20 87.5 70
25 108.2 80
30 128.0 110
35 146.8 120
40 164.6 140
45 181.0 150
50 196.1 170
55 209.7 180
60 221.7 195

Table 5.1: The low cutoff wavenumber in the HMTF computation

Simulation parameters

The electromagnetic incidence wave number ki is chosen as 128 rad/m. This

means that the total ocean surface length equals 128 electromagnetic wavelength λ.

The incidence angles vary from 200 to 600 with a stepsize 50. The valid truncated

ocean wave number is within [1, 9] rad/m for long waves and [40, 380] rad/m for short

waves. The gap between 9 rad/m and 40 rad/m is due to the initial truncation.
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Figure 5.1: Illustrations of electromagnetic scattering simulations in this study
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The single long wave will evolve into a Stokes wave using equations (5.1) and (5.2).

Thus, even with a single initial long wave, the surface includes many long waves after

time evolution. Among them, only the first- and second-order long wave modes are

important to the study of modulation, since the amplitude of the other modes are

much smaller than that of the first order and second order. Therefore, 9 rad/m is a

relatively large value. The difference of the RMTF obtained from the cutoff 3 rad/m

and the cutoff 9 rad/m should be negligible.

The high cutoff kc is about 3k0, which is close to the suggested values [78, 23].

Further investigation on high cutoff with [300, 350, 390] rad/m is studied. The

modulated RCS results given by the 300 rad/m are slightly different from those given

by the other two cutoffs. The difference between RCS given by cutoff 350 rad/m

and that given by 390 rad/m is negligible. Furthermore, the incidence angles that

we studied are far from the low-grazing. Therefore, the high cutoff 380 rad/m is a

reasonable value.

Tapering g determination

Theoretically, we expect that the simulated surface has a large length Ls, for exam-

ple, Ls > 1000λ, and that a beam incidence is very narrow, for instance, g/Ls << 1.

It is known that the surface length Ls with a hundred electromagnetic wavelengths

is enough for small to moderate incidence angles [79]. If the incidence angle tends to

LGA, the required surface length increases dramatically. Due to the hydrodynamic

code limitation, we choose Ls = 128λ. Then, the remaining question is how to deter-

mine a reasonable g. A smaller g can cause a larger numerical error [56], therefore,

three different g choices are used to find a reasonable value.
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A linear band-limited (k ∈ [ki/4, 4ki]) PM surface with U19.5 =3 m/s and Ls =

128λ is utilized to test the reasonable Ls and g. Figure 5.2 shows the ensemble aver-

aged RCS variations over incidence angles from 200 to 800 with g = Ls/6, Ls/12, Ls/24.

Since this simulated surface is very smooth with respect to λ, the SPM solutions are

also shown for comparison. Comparison results demonstrate that 128λ with a taper-

ing g = Ls/24 is a reasonable setting for incidence θi between 200 and 600. A further

validation from nonlinear surfaces backscattering at θi = 400 is shown in Figure 5.3.

Again, the result shown in this figure supports that Ls = 128λ and g = Ls/24 are

reasonable values.
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Figure 5.2: The RCS comparison of different tapering g for linear surfaces with Ls =
128λ
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Theoretical convergence with varying g

From Figure 5.3, we find that the RCS variation is larger with a narrower taper-

ing window, i.e., a smaller incidence spot size. Numerically, we have difficulties in

running a much smaller g. The question which arises is how a smaller g influences the

tapering convergence. In order to answer this question, we study an ideal case where

a sinusoidal time varying surface multiplies with a Gaussian tapering. The Gaussian

tapering is an approach to the Gaussian-like tapering used in this study. The ideal

convergence rate is plotted in Figure 5.4. In this figure, the tapered incident waves

vary with different g. The purpose of this multiplication is to obtain the numerical

surface slope. Results in Figure 5.4 demonstrate that the slope with the taper param-

eter g = Ls/24 is very close to its exact value, and the local tapering algorithm has
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an exponential convergence rate. In addition, the numerical MTF convergence rate

(exponential convergence), which is obtained from the nonlinear modulated surfaces,

is plotted in Figure 5.5. The result in this figure supports that a narrower tapering

has a larger MTF coefficient. However, within each illumination spot, there must be

enough Bragg waves, which enables us to obtain the correct RCS. Thus, g can not be

very small.
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Figure 5.4: Theoretical Gaussian tapering convergence illustration from a sinusodial
surface

Further validation for Ls and g from nonlinear surfaces

Upon g and Ls determined, we further examine how well these parameters perform

in the entire surface ensemble-averaged RCS compared to the analytical SPM solution.
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We utilized 1600 Monte-Carlo simulations. The average over time duration is 4

s (about 2 periods). The polarized ensemble-averaged RCS obtained from numeri-

cal simulations and from the small perturbation model (SPM) (equations (5.9) and

(5.10)) are shown in Figure 5.6. In this figure, the short wave only surface has a

low cutoff, given in Table 5.1, and the entire surface has a low cutoff 40 rad/m. The

numerical RCS of VV polarization matches very well with that predicted by the SPM

in the cases with/without long waves. In particular, this figure also shows that the

RCS of HH polarization from the entire surface is larger than that from the short

waves only surface because the intermediate waves between the 40 rad/m and the

cutoff value given in Table 5.1 make some contribution to short Bragg waves. Further

discussion is provided in Section 5.4.2.
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5.2.4 Numerical extraction of RMTF/RHMTF

At each time tj and realization rm, we compute the backscattering field for both

polarizations once using the tapered incident wave, and obtain a complex scattering

field fpp(tj, rm), where the subscript pp denotes polarization status. The RCS of each

polarization is computed from the scattering field data as

σpp(tj) = 〈|fpp(tj, rm) − 〈fpp(tj, rm)〉|2〉, (5.4)

where the ensemble average 〈〉 is over realizations. Then, we obtain the time varying

polarized RCS σpp(tj) (see Figure 5.3).

The MTF describes the variation of the RCS over time and/or space. Therefore,

the numerical MTF can be extracted from the RCS dataset. The least square fitting
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formula is utilized to extract the MTF [77]

σpp(ti)

σpp

= c0 + c11 sin(−cg(kB)t) + c12 cos(−cg(kB)t)

+ c21 sin(Φ(t)) + c22 cos(Φ(t))

+ c31 sin(2Φ(t)) + c32 cos(2Φ(t)),

(5.5)

where σpp denotes the average of σpp(ti) over time, Φ(t) = −√
g0t, and cg(kB) is the

group velocity of short Bragg wave with kB = 2ki sin(θi). Then, the amplitude and

phase of the first-order RMTF (or RHMTF) coefficient are given by

R1 =
√
c221 + c222, (5.6)

ψ1 = arctan(c22/c21). (5.7)

Although equation (5.5) includes the second-order effect, it is very small with respect

to the first order (see Figure 5.7). Therefore, we analyze only the first-order RMTF

and RHMTF.

The equation (5.5) is used to extract RMTF from the RCS dataset of the entire

surface. The amplitude RM
p and phase ΦM

p of RMTF are computed with use of

equation (5.6) and (5.7), respectively. The subscript p denotes polarization. The

RHMTF amplitude RH
p and phase ΦH

p are computed from the RCS dataset generated

from the short wave only surfaces.

5.2.5 Numerical calculation of RTMTF

Since the entire surface and the short wave only surface have the same short

wave components at each time and realization, we assume that the RHMTF from the

entire surface and the RHMTF from the short wave surface are equivalent to each

other. Therefore, based on the assumption that the total RMTF consists of RHMTF
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Figure 5.7: The first-order and up to second-order fitting at θi = 250 from the long
wave and short wave surfaces

and RTMTF [38] (or referring to equation (5.22) and (5.23)), the numerical RTMTF

amplitude RT
p and phase ΦT

p satisfy:

RM
p sin(Φ + ΦM

p ) = RH
p sin(Φ + ΦH

p ) +RT
p sin(Φ + ΦT

p ). (5.8)

From equation (5.8), it is easy to compute the amplitude RT
p and phase ΦT

p of the

TMTF. All amplitudes of RMTF, RTMTF, and RHMTF are normalized by the steep-

ness (0.05) of the underlying long wave.

5.3 Analytical MTF

In reality, the sea surface consists of many different water waves. Due to nonlin-

ear interactions between long waves and short waves, those short waves are locally

modulated by the presence of long waves both in amplitude and frequency. Those
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short waves are kinds of Bragg waves in radar remote sensing. Therefore, observed

radar signals also include some modulation, i.e., variation over space and time. Such

radar signal modulation has been reported in many references [72, 38, 33, 35, 36, 76].

To analytically interpret and evaluate our numerical results of MTF, we re-derive the

analytical MTF using the two-scale electromagnetic model [38, 24]. The mechanisms

of TMTF and HMTF are illustrated in Figure 5.8. The TMTF is due to the local

incidence angle change, i.e., θil = θi − θs. The HMTF is due to the local short wave

spectrum change. For example, the Bragg spectrum within subspace wi(x) is different

with that of wi+1(x).
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Figure 5.8: The TMTF and HMTF mechanism illustration
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5.3.1 Derivation of MTF - two-scale model (tilted SPM)

Based on the Bragg scattering mechanism, the polarized backscattering normal-

ized radar cross section (NRCS) of ocean-like surfaces (PEC) is given by [49]

σHH(θi) = 4k3
i cos3(θi)W (−2ki sin(θi)), (5.9)

σV V (θi) = 4k3
i

(1 + sin2(θi))
2

cos(θi)
W (−2ki sin(θi)), (5.10)

where W is the rough surface spectral density, and 2ki sin(θi) is the Bragg wavenum-

ber. Due to the presence of long waves or currents, the local incidence angle θil is

modified by the presence of local slope angle θs as

θil = θi − θs. (5.11)

Corresponding to this change, the local NRCS is given by

σHH(θil) = 4k3
i cos3(θil)W (−2ki sin(θil)), (5.12)

σV V (θil) = 4k3
i

(1 + sin2(θil))
2

cos(θil)
W (−2ki sin(θil)). (5.13)

Therefore, the induced NRCS variations due to the presence of long waves are

∆σHH(θi) = σHH(θil) − σHH(θi), (5.14)

∆σV V (θi) = σV V (θil) − σV V (θi). (5.15)

Due to θs << 1, the terms of equation (5.12) can be expanded up to O(θ2
s) as follows:

cos3(θi − θs) ≈ cos3(θi) + 3θs sin(θi) cos2(θi), (5.16)

W (−2ki sin(θi − θs)) ≈ W (−2ki sin(θi − θs))(1 +RHMTF )

≈ W (−2ki sin(θi))(1 + 3θs cot(θi))(1 +RHMTF ),
(5.17)
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where W denotes the unperturbed spectral density, the PM spectrum density W is

assumed, and RHMTF denotes the HMTF. Using θs = ηx(x, t), we get

∆σHH(θi)

σHH(θi)
≈ RHMTF + 3ηx(x, t)[tan(θi) + cot(θi)], (5.18)

where RHMTF is the same order of θs or ηx(x, t) [25, 77]. The first part of equation

(5.18) denotes the HMTF effect, and the second term denotes the TMTF effect. The

latter includes two parts, tan(θi) and cot(θi). tan(θi) is the direct tilt effect, and

cot(θi) accounts for the local Bragg wave number change induced by the tilt effect.

Similarly, we have the following approximations for VV polarization:

[1 + sin2(θi − θs)]
2 ≈ [1 + sin2(θi)]

2 − 4θs sin(θi) cos(θi)[1 + sin2(θi)], (5.19)

1

cos(θi − θs)
≈ 1

cos(θi)
(1 − θs tan(θi)). (5.20)

Combining equation (5.17), (5.19), and (5.20), we have

∆σV V (θi)

σV V (θi)
≈ RHMTF + ηx(x, t)

[
− tan(θi) + 3 cot(θi) −

2 sin(2θi)

1 + sin2(θi)

]
. (5.21)

If there is only one long wave η(x, t) = a sin(kx−
√
g0kt) presence, both equations

(5.18) and (5.21) can be simplified as

∆σHH(θi)

σHH(θi)
≈ RH sin(Φ) + 3ka cos(Φ)[tan(θi) + cot(θi)], (5.22)

∆σV V (θi)

σV V (θi)
≈ RH sin(Φ) + ka cos(Φ)

[
− tan(θi) + 3 cot(θi) −

2 sin(2θi)

1 + sin2(θi)

]
, (5.23)

where Φ = kx−
√
g0kt, and RH is the amplitude of the HMTF. The TMTF and the

HMTF in both equation (5.22) and (5.23) have a 900 phase shift, which is identical

to the result given in [38]. In addition, the results given by (5.18) and (5.21) are the

same as the results given by equation (12) presented in [24] except for the additional

beam limited function tan(θi).
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5.3.2 Analytical HMTF - wave action theory

The theory of wave action was developed for the analysis of the evolution of

a weakly nonlinear short wave “packet” as it propagates in an inhomogeneous back-

ground medium. The theory has been utilized to describe many phenomena of oceano-

graphic interest, including the modulation of short waves by long waves relevant in

this paper. Here, we write the first order HMTF amplitude solution RH (normalized

by the steepness of the long wave) of the wave action equation for an ocean with a

“PM” spectrum [26, 77] (or see equation (4.32))

RH =
3 + γs

1 − cg

c1

sin(Φ), (5.24)

where cg is the group velocity of the wave package with the center at the Bragg

wavenumber, c1 is the phase velocity of the long wave, and γs is the ratio between

the group velocity and the phase velocity of the Bragg wave. The value γs is about

0.5 for gravity waves.

5.4 Results and discussions

This section describes the numerical results of RMTF in Section 5.4.1 based on

the methodology described in Section 5.2. In this subsection, the numerical results

of RMTF are also compared with the analytical results of RMTF based on the two-

scale model described in Section 5.3. The numerical results of RMTF and RHMTF

demonstrate a positive contribution from the third scale, the intermediate waves. To

further investigate the third scale effect on RMTF, we compute thems of intermediate

waves from the simulated surface first. Then, to further interpret the numerical three-

scale effect, we develop an analytical solution to calculate the three-scale effect on
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RMTF based on the statistical two-scale model. Finally, results of the numerical third

scale effect and those of the analytical three-scale effect are compared and discussed.

The analysis of the three-scale effect on RMTF is presented in Section 5.4.2 in detail.

5.4.1 Numerical RMTF

Results of the numerical RMTF based on the methodology described in Section 5.2

and those of analytical MTF derived in Section 5.3.1 are demonstrated and compared

in this subsection. We compute the numerical RTMTF by use of equation (5.8) and

the analytical TMTF by using equation (5.22) and (5.23). The low cutoff kc is used

in the numerical RHMTF computation. Comparison results show that our numerical

RTMTF matches very well with the analytical TMTF both in amplitude and phase.

The amplitude computation results are shown in Figure 5.9. This figure shows that

both numerical RTMTF amplitude and analytical TMTF amplitude agree with each

other very well within the moderate incidence angles. In addition, we also examine

the RTMTF extracted from the RHMTF, which is obtained from the low cutoff

40 rad/m short waves only surface. Figure 5.10 shows that the RTMTF amplitude

difference between the two cutoffs, 40 rad/m and kc, is very small with respect to their

values. Therefore, either 40 rad/m or kc can be used as the low cutoff to calculate

the RTMTF.

We also examine the phase difference between numerical RTMTF and numerical

RHMTF. Theoretically, the phase difference between RTMTF and RHMTF is about

−900 from equation (5.22) and (5.23). Figure 5.11 shows the numerical phase dif-

ference for both polarizations. In particular, there is a phase sign change for VV

polarization around θi > 510 (see Figure 5.9). This change is numerically captured
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Figure 5.9: TMTF results from the numerical simulation and the analytical two scale
model
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in Figure 5.11. Our numerical phase difference results for θi > 510 are lower than the

theoretical value 900. We also notice that the phase difference at θi = 500 is much

lower than its theoretical prediction value of −900. This discrepancy may be caused

by a numerical error because the actual TMTF value around θi = 500 of VV polar-

ization is close to zero (see Figure 5.9). With a small amplitude, any small numerical

error in amplitude may cause a large numerical error in phase.
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Figure 5.11: The numerical phase difference between the RTMTF and RHMTF

5.4.2 Intermediate waves (third scale) effect on RMTF

This subsection describes the numerical and analytical results of the intermedi-

ate waves effect on RMTF. These results support that the intermediate waves have

positive contribution to RMTF.
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Those modulated intermediate waves have both “tilt” and “hydrodynamic” modu-

lation to Bragg waves. Hydrodynamic modulation of intermediate waves to a specific

Bragg wave is too complicated, and is not studied here. In this study, we assume

that the HMTF induced by the intermediate waves all are same, although the low

cutoff of the intermediate waves is changed. Therefore, only the tilt modulation of

intermediate waves is further studied.

With given θi = 500, the intermediate waves effect on RMTF is examined by

varying the intermediate wave contents by choosing different low cutoff kc. The com-

puted normalized RMTF and RHMTF of HH polarization are shown in Figure 5.12.

Results demonstrate that the intermediate waves make more positive contribution to

both RMTF and RHMTF with smaller kc. The numerical HMTF prediction given

by the numerical HMTF presented in Chapter 4 is also shown in Figure 5.12. Our

numerical results also show that the RHMTF depends on intermediate wave contents,

while the HMTF value is independent of the intermediate wave contents.

The intermediate waves effect on the RMTF was reported in [24, 40, 36, 41]. In

order to further quantitatively analyze this effect, a method based on the intermediate

waves’ mean-square (ms) slope is presented both numerically and analytically in the

following two subsections. Following these two subsections, the third-scale effect is

interpreted by an analytical two-scale model and an empirical formula. Finally, these

results are compared and discussed in the last subsection.

Numerical third-scale effect

The ms slope of the intermediate waves is computed from the simulated surface,

and its variation part is induced by the long wave modulation. The different low
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cutoffs of short waves have an appreciable effect on both RMTF and RHMTF (Fig-

ure 5.12). To further study the intermediate wave influence on the modulated radar

signals, we analyze the ms slope of the intermediate waves. The numerical ms slope

sms of the studied surfaces is computed by

sms = 〈s2(xi, tj)〉 =
1

Nr

Nr∑

rm=1

[s(xi, tj, rm) − 〈s(xi, tj, rm)〉]2, (5.25)

where the s(xi, tj, rm) is the slope at the spatial coordinate xi, and the 〈s(xi, tj, rm)〉

is the ensemble average over realizations rm. Then, the local ms slope is weighted by

the tapering incidence function g, and is further averaged over spatial xi to obtain

the local ms slope 〈s2(tj)〉. Essentially, the ms slope is the local illumination spot

slope.

Figure 5.13 shows three different ms slopes of short waves calculated by use of

equation (5.25). In this figure, kB = 210 rad/m at θi = 550. For example, 40 − kB
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represents the valid short waves in [40, 210] rad/m. The numerical fitting formulae for

the ms slope are listed in Figure 5.13. The constant term in those fitting formulae is

related to the average of the ms slope and reflects the total slope. The time varying

term (having Φ) corresponds to the long wave, and the ms slope has a 900 phase shift

with the underlying long wave slope (or in phase with long wave height) (Figure 5.13).

The variation amplitude of ms slope of intermediate waves depends on the contents

of short waves, and its variation period equals that of the long wave. It was reported

that the intermediate waves are hydrodynamically modulated by the presence of long

waves and those intermediate waves modulate short Bragg waves [41]. Figure 5.13

further supports this statement.

0 0.5 1 1.5 2 2.5 3 3.5 4
4

6

8

10
x 10

−3

time (s)

rm
s 

sl
op

e

40−k
B

64−k
B

100−k
B

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.05

0

0.05

time (s)

lo
ng

 w
av

e 
sl

op
e
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The constant in our ms slope expression depends on the wave contents. This value

can be analytically computed from
∫
kW (k)dk, where W (k) is the spectral density.

Given U19.5 = 3 m/s, the theoretical ms slope of wave contents in [40, 210] rad/m,

[64, 210] rad/m, and [100, 210] rad/m is 0.0067, 0.0048, and 0.0030, respectively. With

the modulation of underlying long waves, our numerical results from the aforemen-

tioned constant terms are slightly greater than those theoretical values. For example,

our numerical results from the ms slope of wave contents in [40, 210] rad/m, [64, 210]

rad/m, and [100, 210] rad/m are 0.0069, 0.0050, 0.0032, respectively. The reason that

the numerical results are greater than their theoretical predictions is that the input

energy of intermediate waves from long waves is greater than the output energy to

shorter waves with respect to the intermediate waves.

ms slope effect based on statistical two-scale model

For a given multiple-scale statistical rough surface, the backscattering RCS can

be expressed by a slope s integral as [80]

σpp(s, θi) =

∫ s+∆s

−s−∆s

ds′GSPM
pp (θi)H(s′), (5.26)

where GSPM
pp is the polarized SPM kernel as given in (5.9) and (5.10), ∆s is the

integration range (which is chosen as about 2s in this study), and H(s′) is a transfer

function including shadowing, projection and slope distribution effect.

Based on equation (5.26), we develop a method to study the ms effect on the

RMTF. We assume that the simulated surface consists of a deterministic long wave

and many stochastic PM short waves. The long wave is exactly the same as that given

in previous simulations. Then, the “two-scale” MTF is computed in the following

steps:
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1. calculate the local incidence angle θil based on the long wave tilt;

2. calculate the local slope as

s(kc) = s̄(kc) + c0(kc)hL, (5.27)

where s̄(kc) is given by
∫ kB

kc
kW (k)dk, c0(kc) denotes the amplitude of ms slope

of perturbed intermediate waves, and hL denotes the long wave height;

3. search the RCS values based on the (s(kc), θil) to obtain the local RCS as

σpp((s(kc), θil);

4. use the least-square method to extract the MTF from σpp((s(kc), θil) data.

The c0 presented in equation (5.27) describes the intermediate waves’ effect. As an

example, its value represents the coefficient of the sin(Φ) shown in the caption of

Figure 5.13. As mentioned earlier, the stochastic intermediate waves are hydrody-

namic modulated by the underlying long wave. Therefore, their ms slope is no longer

zero. Due to the capability of inclusion of intermediate waves ms slope, the stochastic

two-scale model is adapted to analyze the third- scale effect.

Third-scale effect by an empirical method

Alternatively, the ms slope effect can be approximated by an empirical formula

as given in [40]:

σpp(x, t; θ) ≈ σpp(x, t; θ)
[
1 + c1 < s > +c2 < s2 >

]
(5.28)

where the subscript pp denotes that the polarization, c1 and c2 are constants, and

<> denotes the ensemble average. c1 and c2 are dependent on the surface properties.

For example, if the surface is entirely stochastic, then c1 = 0. However, if the surface
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consists of a deterministic long wave and a band-limited stochastic short waves, c1

relates to the long wave slope. The ms slope term c2 denotes the intermediate waves’

contribution to MTF, i.e., the third scale contribution (see Figure 5.14).

Comparison of third-scale effect results

The results of intermediate waves effects on RMTF and RHMTF are compared

in detail in this section. Firstly, we show our numerical results and the results of the

slope expanded equation (5.28). Then, our numerical results and the results of the

stochastic two-scale model are compared and analyzed.

In order to use the empirical equation (5.28) to interpret our numerical results,

we obtain c1 and c2 from our numerical data with use of the least-square method.

Figure 5.14 shows our numerical RMTF and RHMTF results and corresponding em-

pirical results. For simplicity, a normalized fitting formula c1〈s〉[1 + c2/c1〈s2〉] is used

to examine the empirical equation (5.28) performance. Figure 5.14 shows the linear

contribution of the intermediate waves’ ms slope to RTMTF and RHMTF. The ratio

of c2/c1 of RTMTF and RHMTF in this figure is about 4 and 10, respectively. This

further proves the ms slope of intermediate waves contributes the same modulation

as that of the long wave slope does. However, their contribution is relatively smaller

than that of the long wave. This is because c2s
2 ≪ c1〈s〉. In this study, 〈s〉 = 0.05,

and 〈s2〉 varies depending on the wave contents. For example, 〈s2〉 is about 0.0013

for ks ∈ [40, 210] rad/m. The latter is about 2 percent of the long wave slope. This

means that the intermediate waves do have some contribution to the modulation.

However, their contribution is much smaller that that caused by the long wave.

Generally, the long wave profile contributes to the RHMTF, and its slope con-

tributes to the RTMTF. The ms slope of intermediate waves varies in the phase of
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Figure 5.14: Fitting results with linear ms slope correction to the RMTF [The nor-
malized correction formulae c1〈s〉[1+c2/c1〈s2〉]: 1+4.0〈s2〉 for RTMTF and 1+9.8〈s2〉
for RHMTF, and the notation f inside the bracket denotes the results obtained by
the fitting method.]
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the long wave profile (see Figure 5.13). This means that the ms slope may contribute

to RHMTF only. However, it also contributes to RTMTF (see Figure 5.14). There-

fore, the modulation contribution of those intermediate waves can account for not

only RHMTF, but also RTMTF.

In order to analytically study this third-scale effect further, the RTMTF results

predicted by the statistical two-scale model is used to validate our numerical RTMTF.

Figure 5.15 shows the normalized RTMTF results from different methods. In the

“numerical-linear” results, there is no ms slope contribution to the RTMTF. The

results and the ”2-scale” results increase as the cutoff increases (that is, the surface

consists of fewer short waves). The reason is that the RCS with fewer short waves is

smaller than that with more short waves (see Figure 5.16). Figure 5.16 shows the RCS

of HH polarization with different methods and different cutoffs. However, the RTMTF

given by the “numerical-linear” results and the “2-scale” results have different trends

from our numerical RTMTF (see Figure 5.15). The reason is that the third-scale effect

is not accounted for appropriately in the “2-scale” and is completely lacking in the

“numerical-linear”. In order to further explore the ms slope effect on the RTMTF, we

magnify c0 to be 4c0 and use it in the stochastic two-scale model. The results of the “2-

scale” with 4c0 show the same trend as our numerical RTMTF (see Figure 5.15). The

magnifying coefficient 4 numerically equals to the empirical coefficient 4.0 presented

in the RTMTF (see Figure 5.14). Therefore, both the empirical approach and the

analytical approach - the stochastic two-scale model interpret our numerical RMTF

data very well.

107



40 50 60 70 80 90 100
6

6.1

6.2

6.3

6.4

6.5

6.6

k
c
 (rad/m)

no
rm

al
iz

ed
 T

M
T

F
 a

m
pl

itu
de

2−scale

2−scale with magnifying constant

numerical−nonlinear

numerical−linear
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5.5 Concluding remarks

This chapter describes the numerical method that we developed to study the

radar-ocean wave MTF (both RHMTF and RTMTF) through use of nonlinear hydro-

dynamics and the fast electromagnetic integral method. A very narrow Gaussian-like

tapering incidence wave is capable of capturing the localized scattering field from a

large finite surface.

Our numerical RTMTF results match very well with those predicted by the elec-

tromagnetic two-scale model both in amplitude and phase. The numerical results

of RHMTF and RMTF indicate that the intermediate waves make an appreciable

contribution to the RMTF and RHMTF because the intermediate waves are also

hydrodynamically modulated by the presence of long waves. In order to interpret

our numerical third scale results, we develop an empirical RCS formula along the

surface slope expansion and a stochastic two-scale electromagnetic model. The third

scale effect is numerically studied further by varying the intermediate wave contents.

The third-scale effect on our numerical RTMTF can be explained well both with this

empirical formula and the stochastic two-scale model.

The third-scale effect on the RHMTF is not further explained in this study, and

it remains a challenging problem. A more powerful hydrodynamic code which can

handle more spectral contents might be helpful in studying the third-scale effect on

the RHMTF.

The modulation mechanisms are studied at moderate incidence angles only. A

large surface length with respect to the electromagnetic wavelength can be useful for

us to further study the modulation at LGA.
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CHAPTER 6

ANALYTICAL DOPPLER SPECTRUM DERIVATION
AND VALIDATION

6.1 Introduction

The ocean Doppler spectrum measured by a radar system is an important ob-

served parameter. Polarized ocean Doppler measurement has been studied since

several decades ago [81, 82]. It is well known that the Doppler shift is related to the

radar range cell mean horizontal velocity (or mean drift), and the Doppler spectrum

bandwidth is related to the horizontal velocity spread within the radar cell [82, 83].

Therefore, the Doppler information (shift and bandwidth) can provide the surface

long wave information.

Many Doppler measurements are conducted at LGA [81, 84, 85] where the hor-

izontal orbital velocity is greater with larger incidence angles. Numerical studies in

Doppler spectrum from theoretical electromagnetic scattering models have been per-

formed successfully, for example, based on the two-scale model [86], or based on exact

integral equation methods [31, 22, 23, 32]. The nonlinear hydrodynamic models are

applied in some studies [31, 22, 23, 32]. These studies show that the nonlinearity fur-

ther broadens the Doppler bandwidth. In addition, the modulation mechanism has
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been considered in the Doppler spectrum analysis, and the intermediate scale wave

influence on the Doppler spectrum has also been accounted for [42, 19]. Our previous

study (see Chapter 5) also demonstrated the intermediate wave impact on the short

Bragg waves. Although the intermediate waves perturb the Doppler spectrum, their

influence will not be analyzed here.

As mentioned earlier, such Doppler information is related to hydrodynamics. To

further explore the hydrodynamic influence on the ocean Doppler, we perform an

analytical Doppler derivation based on hydrodynamics. This analytical formulation

can help us to simplify the ocean Doppler analysis without further electromagnetic

simulations.

The purpose of this chapter is to derive an analytical formula of modulated short

waves. It is based on the “Watson-West” (WW) equations [29] (see (4.1) and (4.2)).

Firstly, a simplified ordinary differential equation system is obtained after some math-

ematical manipulations. Then, the analytical solution to this system is presented,

which gives the analytical form of the complex amplitude of the modulated short

waves. Further Doppler analysis based on this analytical solution are discussed.

Finally, some comparisons between this simplified method and the original “WW”

method are presented. In particular, the radar Doppler from the simplified WW

surfaces is shown. Results demonstrate that the simplified method works well under

small long wave steepness.

6.2 Derivation of simplified WW equations

Based on the assumption that the present long waves or currents are known and

linear, we decompose the total surface elevation η(x, t) = ηL(x, t) + ηS(x, t), as well
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as the surface velocity potential φ(x, t) = φL(x, t) + φS(x, t). Then, simplified short

wave evolution equations result from keeping only those terms related to short waves

as follows:

∂φS

∂t
≈ −gηS −∇φS∇φL +W0LW0S (6.1)

∂ηS

∂t
≈ −(∇ηL∇φS + ∇ηS∇φL) +W0S +W1S, (6.2)

where

W0L = κφL (6.3)

W0S = κφS (6.4)

W1S = −κ[ηSκφL + ηLκφS] + ηLκ
2φS + ηSκ

2φL (6.5)

g is the gravity acceleration. (6.6)

and the κ is an operator [29]. To simplify the derivation, the expansions are up to

only first order in equations (6.1) and (6.2).

In order to obtain an analytical form of ηS(x, t) or φS(x, t), we need to further sim-

plify equations (6.1) and (6.2). Assuming long waves propagating along x̂ direction,

we have

ηL(x, t) =
∞∑

m=−∞

am
L e

i(km
L x−ωm

L t+θm), (6.7)

φL(x, t) =
∞∑

m=−∞

bmL e
i(km

L x−ωm
L t+θm) (6.8)
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where

am
L = (a−m

L )∗ (6.9)

bmL = (b−m
L )∗ (∗ denotes complex conjugate) (6.10)

km
L = m

2π

Ls

(6.11)

θm = −θ−m (6.12)

ωm
L = sgn(km

L )
√
g|km

L | (sgn - sign function). (6.13)

Such notations ensure that ηL and φL are real. For short waves, we assume that

ηS(x, t) =
∞∑

n=−∞

an
S(t)eikn

Sx (6.14)

φS(x, t) =
∞∑

n=−∞

bnS(t)eikn
Sx, (6.15)

where an
S = (a−n

S )∗, bnS = (b−n
S )∗. After some manipulations (see Appendix B), the

original equations (6.1) and (6.2) can be rewritten as

∑

n

bnS(t)′eikn
Sx ≈ −g

∑

n

an
S(t)eikn

Sx +
∑

m,n

(|km
L k

n
S| + km

L k
n
S) bmL b

n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

(6.16)
∑

n

an
S(t)′eikn

Sx ≈
∑

n

|kn
S|bnS(t)eikn

Sx +
∑

m,n

(|km
L |(|km

L | − |kn
S + km

L |) + kn
Sk

m
L )

an
S(t)bmL e

i(kn
S+km

L )xe−iωm
L t+iθm

. (6.17)

From equations (6.16) and (6.17), an
S(t) and bnS(t) of each kn

S component satisfy:

bnS(t)′ = −gan
S(t) +

∑

sgn(n)m

2|km
L k

n−m
S |bmL e−iωm

L t+iθm

bn−m
S (t) (6.18)

an
S(t)′ = |kn

S|bnS(t) +
∑

−sgn(n)m

2|km
L |(|km

L | − |kn−m
S |)bmL e−iωm

L t+iθm

an−m
S (t), (6.19)

where |n| > |m|, sgn(n)m denotesm has the same sign as n. an
S(t) and bnS(t) have their

corresponding conjugate pairs a−n
S (t) and b−n

S (t). Therefore, we can only consider all
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positive n, and equations (6.18) and (6.19) are rewritten as

bnS(t)′ = −gan
S(t) +

m<n∑

m>0

km
L k

n−m
S bmL e

−iωm
L t+iθm

bn−m
S (t) (6.20)

an
S(t)′ = kn

Sb
n
S(t) +

m<n∑

m>0

km
L (km

L − kn+m
S )bmL e

iωm
L t−iθm

an+m
S (t). (6.21)

Note that all coefficients in equations (6.20) and (6.21) are slightly different from

their previous definitions. They are double their previous values.

6.3 Determination of modulated short wave amplitudes

To further simplify equations (6.20) and (6.21), we assume there are 2N + 1

(N < n) truncated short waves with the central mode kn
S and M (M ≥ 1) long

waves. Then, we rewrite equations (6.20) and (6.21) with a matrix form as following:



bn+N
S (t)′

an+N
S (t)′

...
bnS(t)′

an
S(t)′

...
bn−N
S (t)′

an−N
S (t)




= A(t)




bn+N
S (t)
an+N

S (t)
...
bnS(t)
an

S(t)
...

bn−N
S (t)
an−N

S (t)




, (6.22)

where A(t) is a diagonally banded block matrix, and each of its block element Apq (p

and q ∈ [1, 2N + 1]) consists of a 2x2 matrix. The diagonal block App is given by

[
0 −g

kn+N+1−p
S 0

]
.

The other non-zero blocks are Ap,p+m (m ∈ [1,M ]) and Ap,p−m (m ∈ [1,M ]), and

they are given as follows:

Ap,p+m =

[
−ωm

L a
m
L k

n+N+1−p−m
S e−iωm

L t+iθm

0
0 0

]
,

Ap,p−m =

[
0 0

0 −ωm
L a

m
L (km

L − kn+N+1−p+m
S )eiωm

L t−iθm

]
,

115



where we use the identity km
L b

m
L = −ωm

L a
m
L .

The above matrix equation (6.22) can be written as

dB

dt
= A(t)B. (6.23)

Since A(t) is varying over t, equation (6.23) is a variable coefficient first-order ordinary

differential system. Rewriting A(t) = A0 + A1(t), we have

dB(t)

dt
= [A0 + A1(t)]B(t), (6.24)

where

A0 =




A11 0 ... 0 0
0 A22 ... 0 0
... ... ... ... ...
0 0 ... A2N,2N 0
0 0 ... 0 A2N+1,2N+1



,

A1(t) =




0 A12 ... 0 0
A21 0 ... 0 0
... ... ... ... ...
0 0 ... 0 A2N,2N+1

0 0 ... A2N+1,2N 0



.

With this decomposition, we rewrite equation (6.24) as

dB(t)

dt
= A0B(t) + A1(t)B(t), (6.25)

Equation (6.25) consists of a constant coefficient homogeneous equation plus a “forc-

ing” term A1(t)B(t). The eigenvalues of matrix A0 consist of those eigenvalues of

each block matrix App, which are λp,± = ±
√

−gkn+N+1−p
S (p ∈ [1, 2N + 1], and

total 4N + 2 eigenvalues), and corresponding eigenvectors e only have non-zero

entries with ep,p = − g√
−gkn+N+1−p

S

, ep,p+1 = 1 for eigenvalue
√
−gkn+N+1−p

S , and

ep,p = g√
−gkn+N+1−p

S

, ep,p+1 = 1 for eigenvalue −
√
−gkn+N+1−p

S , respectively. Thus,

the general solution B0(t) of the homogeneous equation can be written with positive
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propagation short waves as

B0(t) =




an+N
S (t0)

g√
−gkn+N

S

e−
√

−gkn+N
S

t

an+N
S (t0)e

−

√
−gkn+N

S
t

...

an
S(t0)

g√
−gkn

S

e−
√

−gkn
S

t

an
S(t0)e

−

√
−gkn

S
t

...

an−N
S (t0)

g√
−gkn−N

S

e−
√

−gkn−N
S

t

an−N
S (t0)e

−

√
−gkn−N

S
t




,

where an+p
S (t0) is the short wave mode kn+p

S amplitude at initial time t0. Then,

with the “forcing” term in equation (6.25) approximated by A1(t)B0(t), we rewrite

equation (6.25) as

dB(t)

dt
≈ A0B(t) + A1(t)B0(t). (6.26)

The final solutions for bn+N+1−p(t) and an+N+1−p are given, respectively,

bn+N+1−p(t) =
1

2

M∑

m=1

(ωm
L a

m
L )IIIU

p (t) + an+N+1−p(t0)
g√

−gkn+N+1−p
S

e−i
√

gkn+N+1−p
S

t,

(6.27)

an+N+1−p(t) =
1

2

M∑

m=1

(ωm
L a

m
L )IIID

p (t) + an+N+1−p(t0)e
−i
√

gkn+N+1−p
S

t. (6.28)

In the above equations, we have already assumed CU and CD are zero (or CU and CD

are absorbed in the initial condition), and IIIU
p (t) and IIID

p (t) are given in Appendix

B. Furthermore, second-order approximations are also presented there.
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As an example, the modulated short wave amplitude of mode kn
S (p = N+1) with

only one long wave present (kL = 1, m = 1, and t0 = 0) is explicitly written as

an
S(t) = an

S(0)e−i
√

gkn
S

t −
iωLaLa

n−1
S (0)kn

S

√
gkn−1

S
(√

gkn−1
S + ωL

)2

− gkn
S

e−i(
√

gkn−1
S

+ωL)t+iθ

+

iωLaLa
n+1
S (0)kn

S

(√
gkn+1

S − ωL

)

(√
gkn+1

S − ωL

)2

− gkn
S

e−i(
√

gkn+1
S

−ωL)t−iθ,

(6.29)

where an
S(0) is the initial amplitude, and θ is the initial phase of the long wave. The

amplitude of the mode kn
S given by equation (6.29) shows that only the two adjacent

modes have a contribution to the central mode. If we further simplify (6.29) with the

assumption
√
gkn

S >> ωL, (6.29) can be written as

an
S(t) ≈ an

S(0)e−i
√

gkn
S

t − iaLa
n−1
S (0)kn

S

2
e−i(

√
gkn−1

S
+ωL)t+iθ

− iaLa
n+1
S (0)kn

S

2
e−i(

√
gkn+1

S
−ωL)t−iθ.

(6.30)

If we substitute the Fourier coefficient an
S(t) into (6.14), and set the initial time

t0 and t = t− t0, we get

ηS(x, t) ≈
∞∑

n=−∞

[
an

S(t0)e
i(kn

Sx−ωn
St) − i

2
kn

S

(
an−1

S (t0)e
i(kn−1

S
x−ωn−1

S
t)aLe

i(x−ωLt)

+ an+1
S (t0)e

i(kn+1
S

x−ωn+1
S

t)aLe
−i(x−ωLt)

)]
.

(6.31)

The difficulty is to determine the initial values of an−1
S (t0) and an+1

S (t0). We offer

an approach: assuming that there is only one long wave in the initial state, i.e.,

an
S(0) = 1, then we can approximate

an−1
S (0) ≈ an−1

S (∆t) =
iωLaLa

n
S(0)kn−1

S

(√
gkn

S − ωL

)
(√

gkn
S − ωL

)2 − gkn−1
S

e−i(
√

gkn
S
−ωL)∆t−iθ, (6.32)

an+1
S (0) ≈ an+1

S (∆t) = − iωLaLa
n
S(0)kn+1

S

√
gkn

S(√
gkn

S + ωL

)2 − gkn+1
S

e−i(
√

gkn
S
+ωL)∆t+iθ. (6.33)
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6.4 Analytical Doppler analysis

The well-known Doppler effect of short waves propagating over a long wave is

given by [69]

ω̃n
S = ωn

S + kn
SUL = ωn

S +
1

2
kn

SaLωL[eiωLt−iθ + e−iωLt+iθ], (6.34)

where ω̃n
S is the apparent (or perturbed) radian frequency of short wave with the

mode kn
S. To further analyze the Doppler shift from equation (6.30), we assume

√
gkn±1

S ≈
√
gkn

S = ωn
S in equation (6.30), and get

an
S(t) ≈ e−iωn

St

[
an

S(0) − an−1
S (0)

iaLk
n
S

2
e−iωLt+iθ − an+1

S (0)
iaLk

n
S

2
eiωLt−iθ

]
(6.35)

In the spectral domain, the short wave form is written as

ηS(x, t) =
N∑

n=1

cnSe
i(kn

Sx−eωn
St) (6.36)

Comparing equation (6.14) and equation (6.36), we expect

an
S(t) = cnSe

−ieωn
St, (6.37)

where cnS is the amplitude of wavemode kn
S. It implies that

cnSe
−

1
2
ikn

SaLωL[eiωLt−iθ+e−iωLt+iθ]t = an
S(0)− iaLa

n−1
S (0)kn

S

2
e−iωLt+iθ− iaLa

n+1
S (0)kn

S

2
eiωLt−iθ.

(6.38)

To further simplify this comparison, we assume the global time t as t = t0 + τ , where

τ is the small scale time and t0 is the large scale time. We also assume ωLτ << 1.
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Therefore, the left side of equation (6.38) can be written as

cnSe
−

1
2
ikn

SaLωL[eiωLt−iθ+e−iωLt+iθ]t = cnSe
−

1
2
ikn

SaLωL[eiωL(t0+τ)−iθ+e−iωL(t0+τ)+iθ]t0

e−
1
2
ikn

SaLωL[eiωL(t0+τ)−iθ+e−iωL(t0+τ)+iθ]τ

≈ cnSe
−

1
2
ikn

SaLωL[eiωLt0−iθ+e−iωLt0+iθ]t0e−
1
2
ikn

SaLωL[eiωL(t0+τ)−iθ+e−iωL(t0+τ)+iθ]τ

≈ c̃nS(t0)

[
1 − i

2
kn

SaLωLτ(e
iωLt0eiωLτ−iθ + e−iωLt0e−iωLτ+iθ)

]
,

(6.39)

where c̃nS(t0) = cnSe
−

1
2
ikn

SaLωL[eiωLt0−iθ+e−iωLt0+iθ]t0 . Substituting equation (6.39) in equa-

tion (6.38), we get

c̃nS(t0) = an
S(t0), (6.40)

ωLτ c̃
n
S(t0)e

−iωLt0 = an−1
S (t0), (6.41)

ωLτ c̃
n
S(t0)e

iωLt0 = an+1
S (t0). (6.42)

Equation (6.40)-(6.42) imply that

• the adjacent mode amplitudes with respect to the central mode are symmetric

at any given time t0. Figure 6.1 proves this symmetry from the results given by

our derived solution ((6.20) and (6.21)) and the exact original WW code, where

the initial condition is aL =, kL = 1 rad/m, aS =, and ks = 100 rad/m.

• there is a 900 phase shift with respect to that of the central mode. These two

adjacent mode amplitudes are conjugate to each other (Figure 6.2). The data

in Figure 6.2 are obtained from the exact WW code. In this Figure, the original

“WW” result is denoted by “WW”, and its nonlinear expansion is up to the

third order. The result obtained from the simplified equations (6.1) and (6.2) is

denoted by “WWS”. Then, the result obtained from truncated equations (6.20)

and (6.21) with use of MATLAB ODE solver “ode45” (a solver for initial value

problems for ODE) is denoted by “ODE”.
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modes
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modes

From Figure 6.1 and Figure 6.2, it is obvious that the Doppler effect is at least

implicitly included in the solution (6.30).

6.5 Simplified WW equations and analytical results valida-
tions

In the truncated case (“ODE”), if we do not have a priori about the initial condi-

tion, we need to run a matrix system at least 14X14 to obtain the reasonable an
S(t),

which means there are at least seven distinct adjacent short waves. However, if we

set the initial condition correctly, we only need three distinct adjacent short waves

using equation (6.29) to obtain the amplitude evolution, see Figure 6.3. In this figure,

the initial amplitudes are obtained from the “ODE” result. The analytical solution
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(denoted by “Ana”) is obtained from equation (6.30) with initialization (6.32) and

(6.33) (see Appendix B).
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Figure 6.3: The complex amplitude an
S(t) evolution with one long wave kL = 1 rad/m

and kLaL = 0.01

The difference between the “Ana” solution and others is that only three short wave

components are considered in this analytical solution. If more short wave components

are accounted for, the difference would be smaller. Alternatively, if the initial adjacent

wave amplitudes are obtained from other methods, and the central wave mode evo-

lution is still using equation (6.30), the amplitude evolution difference among those

methods is very small (see Figure 6.4).

In order to further validate our analytical derivation ((6.20) and (6.21)), the spec-

tral coefficient evolution and total surface height computed by ODE, WWS, and WW,

in four different cases, are further compared as follows.
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6.5.1 Case 1: one long wave + one short wave

In this part, two different long wave steepness (0.01 and 0.02, respectively) cases

are studied. Figure 6.5 shows the comparison among “WW”, “WWS”, and “ODE”.

The complex amplitude a100
S matches perfectly among those methods. However, if the

steepness increases, there is some discrepancy among those methods. In particular,

the discrepancy increases when the time increases, see Figure 6.6.
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Figure 6.5: The complex amplitude an
S(t) evolution with one long wave kL = 1 rad/m

and kLaL = 0.01

6.5.2 Case 2: one long wave + three short waves

Figure 6.7 shows the central short wave amplitude a100
S time evolution with initial

three short waves with wavenumber [99, 100, 101] rad/m. The simplified method

predicts rather accurate results with respect to those given by the “exact” WW.
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kLaL = 0.01 and three short waves

6.5.3 Case 3: two long waves + one short wave

Figure 6.8 shows the comparison with initially two long waves: k1
L = 1 rad/m and

k2
L = 2 rad/m. Again, the simplified WW method works well.

6.5.4 Case 4: one long wave + band-limited PM short waves

Figure 6.9 shows the surface profile and spectral coefficient comparison between

the WW and WWS with a band limited PM short wavenumber [30,60] rad/m. The

long wave steepness is again 0.01. It further proves that the WWS works accurately

for many random short waves.

127



0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Time (s)

V
al

ue
s

a
S
100(t) evolution with k

1
a

1
=0.005 and k

2
a

2
=0.004 (top: real, bottom: imag)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Time (s)

V
al

ue
s

ODE
WW
WWS

Figure 6.8: The complex amplitude an
S(t) evolution with two long wave k1

L = 1 rad/m
and k2

L = 2 rad/m

128



0 1 2 3 4 5 6
−5

0

5

x (m)

su
rf

ac
e 

he
ig

ht
 (

m
m

)

WW

WWS

30 35 40 45 50 55 60
−100

−90

−80

−70

−60

k
s
 (rad/m)

sp
ec

tr
um

 (
dB

)

WW

WWS

Figure 6.9: The band-limited PM short waves comparison with one long wave k1
L = 1

rad/m between WWS and WW

129



The advantage of using WWS and ODE is that we can solve the nonlinear equa-

tions without a need to perform intensive numerical computations for original WW

equations. In particular, the ODE solution is a dramatic computation saving method.

The results presented have demonstrated that both the simplified WW method

and the truncated numerical method work rather well given that the long wave steep-

ness is small, for example, 0.01.

6.6 Numerical Doppler spectrum from simulated radar data

The modulated short wave amplitudes predicted by simplified WW method are

very close to those from the original WW solution in the previous section. All those

comparisons are from a hydrodynamics point of view. In order to further investi-

gate how this simplified WW solution predicts Doppler spectrum, we conduct radar

Doppler analysis, which is a combination of hydrodynamics and electromagnetics.

Polarized Doppler spectra are computed for two slightly different surfaces. The

first surface includes only modulated short waves based on equations (6.1) and (6.2),

and its surface profile is shown in the lower plot in Figure 6.10. The other surface

contains the linear long wave (see the upper plot in Figure 6.10) in addition to modu-

lated short waves in the first surface. The total surface length is 201.06 (64π) m, the

band-limited PM short wave cutoffs are [40,240] rad/m, the long wave wavenumber

kL is 0.0625 rad/m, and its steepness is 0.01, and the wind speed at 19.5 m is 3 m/s.

The nonlinear surface evolves over time with a recorded time step as 0.02 s, and total

time duration is 1.28 s (with 64 time steps). The electromagnetic center frequency is

3.0 GHz, with 128 frequency sweep (sweep step: 0.7455 MHz). The radar incidence

angle is 800.
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In order to study the modulated Doppler spectrum, we apply the sweep radar

technique to calculate the range-resolved polarized Doppler spectra. Both HH and

VV polarized Doppler spectra are shown in Figure 6.11. Comparing Figure 6.11 and
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Figure 6.11: The polarized Doppler spectra without explicit long waves

the top plot in Figure 6.10, we find that the Doppler spectra vary with the same

period as that of the given long wave. The Doppler frequency reaches the maximum

value at the crest of the long wave, and the minimum at the trough of the long wave.

We also notice that there is very weak negative Doppler spectra existence. They

are more than 30 dB down to the positive Doppler intensity. We perform a Doppler

analysis based on the original WW equation. The results are shown in Figure 6.12,

and they can affirm that the negative Doppler results are artifacts.

132



x range (m)

fr
eq

ue
nc

y 
(H

z)

−50 −40 −30 −20 −10 0 10 20 30 40
−25

−20

−15

−10

−5

0

5

10

15

20

−110

−100

−90

−80

−70

−60

−50

−40

−30

Figure 6.12: The polarized Doppler spectrum at HH polarization using the original
WW equations

133



The Doppler spectrum width (Doppler bandwidth or Doppler shift) is also an im-

portant parameter in the Ocean Doppler analysis [87]. To further analyze the Doppler

spectra width, we compare the range average Doppler spectra. Figure 6.13 shows the
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Figure 6.13: The range averaged polarized Doppler spectra

polarized numerical Doppler, and ∆f denotes the Doppler width predicted by equa-

tion (6.34). It demonstrates that the numerical Doppler matches well with that from

the analytical prediction. We note that the maximum Doppler intensity shifts to the

edge rather than locating at the middle Bragg frequency point, a phenomenon for

which there are two possible reasons. The first one is that the edges correspond to

the long wave crest and trough regions, where the short Bragg waves have the highest

energy compared to the other regions (the Doppler spectrum intensity is proportional
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to the square of short wave amplitude). The second reason is that there is only

one maximum located at the crest/trough against two maxima for each period range

average.

From Figure 6.11, we can see that the range-resolved mean Doppler frequency

variation indicates the orbital velocity of resolved waves. Therefore, such information

can be used to retrieve the long waves. The orbital velocity U and the surface elevation

η satisfy [88]

U =

∫
ω(k)ηeikxdk. (6.43)

Therefore, the surface elevation η can be retrieved from U by Fast Fourier transform.

The orbital velocity can be computed from the Doppler information. The Doppler

centroid maps the evolution of the resolved waves [89], and it is calculated as

fDC =

∫
fS(f)df∫
S(f)df

, (6.44)

where S(f) denotes the Doppler spectrum at the frequency f . Figure 6.14 shows

the polarized Doppler centroids and the surface retrievals, and indicates that the

Doppler centroid is directly related to the long wave. Therefore, Doppler information

can be used to resolve/retrieve the long wave. The retrieval results from both polar-

ized Doppler centroids match very well with the original long wave profile, and their

retrieval results are found to have a better accuracy than the retrieval result obtain

from the two-scale model (see Figure 6.15). In order to study what effect the explicit

slope of long wave have on the radar Doppler spectrum, a linear long wave is added

in the modulated short wave surface. The numerical Doppler comparison between

with an explicit long wave and that without a long wave is shown in Figure 6.16 and
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Figure 6.17. The results show that the long wave slope does not have an apprecia-

ble effect on the Doppler spectrum in both polarizations from both range-averaged

Doppler and Doppler centroids comparisons as long as the long wave slope influence

has been accounted for by the hydrodynamic modulation.

6.7 Conclusion

The time varying spectral coefficient of short waves is perturbed by the presence

of long waves, which induce the perturbed Doppler shift. The coefficient is derived

in equation (6.30) based on simplified nonlinear WW equations. The analytical short

wave amplitude is derived explicitly. From this result, the theoretical Doppler fre-

quency can be derived under the multiple scale approach. The analytical result and
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the simplified WW prediction are validated in several different cases. Those results

demonstrate that the simplified WW equations can be applied to do Doppler analysis,

as well as the analytically derived Doppler.

In addition, the range-resolved radar Doppler from the simplified WW equations

was also analyzed. The numerical Doppler from these simplified WW equations is

almost the same as that calculated from the original WW equations. The range

average Doppler further validates the accuracy of the simplified WW equations. The

first moment of Doppler (or Doppler centroid) can be directly converted to the orbital

velocity of the presented long waves. This information is also a function of the long

wave profile. Therefore, the surface retrieval from the Doppler information can be

performed. This provides an alternative retrieval method to the scattering model

retrieval that we studied in Chapter 3.
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CHAPTER 7

CONCLUSIONS

This thesis has presented the ocean surface electromagnetic scattering study through

the combination of numerical nonlinear hydrodynamics and computational electro-

magnetics. The results have shown that the combination can improve our under-

standing of radar observations over ocean surfaces. With respect to the goal of ocean

surface electromagentic scattering study, this thesis has made the following major

contributions:

• A new numerical method is developed to study the HMTF. It allows us to

examine the theory in a controlled environment, without the need for empirical

models of effects such as wind forcing and wave breaking.

• A new numerical method is developed to study the RMTF. It enables us to

investigate the intermediate waves (the third scale) influence on RMTF.

• A novel analytical Doppler is derived based on hydrodynamics. It inherently

includes the hydrodynamic modulation effect.

• A new numerical method is developed to study the nonlinear dispersion relation

for modulated water waves
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• TSM is found to be applicable for the retrieval of ocean surface profile with

reasonable accuracy from LGA radar data, but Doppler retrievals are found to

provide higher accuracy.

Several widely used analytical scattering models (SPM, KA, SSA, and TSM) are

further investigated, and their prediction results of range-resolved RCS at the LGA

are compared with the exact solution from MOM in Chapter 2. The results show

that the difference between RCS at the LGA predicted by these analytical models

and that by MOM is appreciable, in particular, for VV polarization, although most

of these models predict accurate range-resolved RCS at small to moderate incidence

angles. The difference is mainly caused by possible shadowing and multiple scattering.

Although the second order SSA and NLSSA include some multiple scattering, TSM

predicts batter scattering at the LGA. Our results also suggest that one forward and

backward scattering iteration has to be performed to obtain accurate range resolved

RCS at LGA.

The ocean surface profile retrieval study is presented in Chapter 3. This study

uses the physical scattering model other than some commonly used empirical models.

The principle is to retrieve the ocean surface profile from the range-resolved RCS.

This is because the range-resolved RCS is a function of the local slope, which is

directly related to the surface profile. The TSM model is applied to retrieve the

ocean surface from HH polarization scattering field data. The results demonstrate

that the model-based retrieval algorithm is applicable. With use of our retrieval

algorithm, those parameters that influence the retrieval accuracy are further studied.

The results retrieved also indicate that using a relative higher ocean surface wind

speed can lead to better retrieval accuracies.
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A numerical method to study the hydrodynamic modulation transfer function

(HMTF) is described in Chapter 4. Using a numerical hydrodynamics code - called

the “Watson-West” (WW) method - the modulation of those stochastic short waves

by the presence of deterministic longer waves is numerically extracted by a “short-

time” Fourier transform method. The nonlinear interaction (modulation) between

the deterministic longer waves and those short waves is forced by the hydrodynamic

equations, and the nonlinear initial conditions are simulated by a time “ramp-up”

process. Our numerical HMTF results match well with those predicted by the ana-

lytical wave action theory. However, our numerical results are slightly higher than

those analytical predictions. To further explore what causes the discrepancy, we pro-

pose a numerical water wave dispersion relationship. Our results further suggest that

those classical approaches may ignore some higher order nonlinearity that may cause

the difference between our numerical results and those analytical predictions.

Our numerical HMTF method is further applied to study the electromagnetic

scattering from the nonlinear ocean surfaces in this study. The procedure to retrieve

MTF (RMTF) and HMTF (RHMTF) and our results are described in Chapter 5.

With use of this procedure, a narrow tapered incidence wave is chosen to obtain the

localized RCS at first. Then, the numerical MTF from the time varying RCS can

be extracted. Finally, the total numerical MTF (RMTF) and the numerical radar

HMTF (RHMTF) can be obtained from a surface consisting of the long wave and

short waves and a surface consisting of only modulated short waves, respectively. Our

numerical radar TMTF (RTMTF) matches very well with that predicted by the two-

scale model. We further studied the intermediate waves’ influence on the MTF (the

third scale effect) through varying of the band-limited short waves lower cutoff. Our
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numerical results further demonstrate that the third-scale effect is essentially caused

by the modulation of deterministic long waves to intermediate waves. The stochastic

two-scale model and the empirical method are also applied to analyze the third-scale

effect, and their results are compared with our numerical results. It turns out that

the trend in our numerical intermediate waves’ MTF and that their results are in

agreement.

An analytical solution to retrieve the modulated short wave spectral amplitude

is described in Chapter 6. It is based on the simplified “WW” equations. The non-

linearity is accounted for up to the first order in our analytical solution. Under

two-scale time analysis, the formulation is approximated as the classical modulated

dispersion formula. The formulation derived is validated by the comparison with

the original “WW” solutions. The radar Doppler is also computed with use of the

modulated and simplified “WW” solution. Through the frequency sweep technique,

the range-resolved Doppler spectrum is obtained for both HH and VV polarizations.

The results show that the simplified “WW” equations predict accurate Doppler spec-

tra. The surface profile retrieval from the Doppler centroid (or first moment of the

Doppler spectrum) is also investigated. The retrieval results demonstrate that the

range resolved Doppler centroids indicate the long wave orbital velocity, which can

be used to retrieve the surface profile accurately.

The nonlinearity of hydrodynamics plays an important role in understanding radar

scattering signals from ocean surfaces. It is also a challenging problem in ocean

microwave remote sensing. This thesis presents the application of the numerical

hydrodynamics and computational electromagnetics to the study of radar RCS and

the study of Doppler. There still remain some uncertainties, for example, the influence

144



of the intermediate waves’ HMTF on the short Bragg waves. We need to improve the

numerical hydrodynamics so that it can simulate wider “PM” short waves and a larger

long wave slope. With the combination of hydrodynamics and electromagnetics, a

deeper and better understanding of radar ocean signals can be achieved.
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APPENDIX A

STUDIES OF THE MODULATION OF SHORT SEA
WAVE BY SLOWLY VARYING CURRENTS

The interactions between short waves and slowly varying currents is of interest in

ocean remote sensing. Chapter 4 shows the HMTF study between longer waves and

short waves. Here, the HMTF between slowly varying currents and short waves are

numerically examined. The details are presented as follows.

A.1 Basic equations

With the presence of a slowly varying horizontal surface current u = ux̂, the

original WW equation [29] will be modified as [90]

∂η

∂t
= −(φs)xηx +W [1 + (ηx)

2] −∇x(uη) (A.1)

∂φs

∂t
= −gη − 1

2
((φs)x)

2 +
1

2
W 2[1 + (ηx)

2] − ux(φs)x (A.2)

The time-varying surfaces are generated from equations (A.1) and (A.2).

A.2 Simulation setup

The input current is given by

u(x) = ±u0 sin(x), (A.3)
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where the sign depends on the propagation direction with respect to short waves, and

u0 is the amplitude.

The space domain is [0, 2π) m, the space discretization N = 1024, the initial short

wave wavenumber is ks ∈ [30, 170] rad/m, and the time step ∆t=0.002 s with total

time 40 s. The ensemble average number is still 1200. In addition, the ramp-up

parameters are set for a=2 s and b=0.5 s.

A.3 Analytical approach to MTF with presence of currents

With the presence of a current U , the conservation form is given by [63]:

(U +
c

2
)cE = constant = (U0 +

c0
2

)c0E0, (A.4)

where c and c0 represent the phase velocity of the short waves at U and U0, respec-

tively, cg = c
2

for gravity waves, and subscript 0 denotes quantities within the frame

of motion with U0
2, in particular, U0 = 〈U〉, where the bracket denotes the average.

We assume that

• a short waves packet with the P-M frequency spectrum φ̄(ω̄s) = βg2

ω̄5
s

exp(− 0.74g2

k2U4
19.5

),

• unity of the exponential term since its variation is negligible with/without a

slowly varying current and the bar denotes the equilibrium state.

Based on these two assumptions and followed the derivation presented in [91], we

have

(U0 +
c0
2

)c0φ̄(ω)dω = (U +
c

2
)cφ(ω)dω, (A.5)

2The reference coordinate is moving with uniform velocity U0. If U0 is not zero, we need to
transform it to the static coordinate system. Actually, the change of physical quantities between a
static and uniform moving coordinate is negligible.
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where φ(ω) denotes the spectrum with presence of the current. From equation (A.5),

we obtain

φ(ω) =
( c0

2
+ U0)c0

( c
2

+ U)c
φ̄(ω). (A.6)

Now, we need to make the conversion from the frequency spectrum to the wavenumber

spectrum. For energy conservation, we have

φ(ω)dω = S(ks)dks, (A.7)

where S(ks) is the wavenumber spectrum with presence of the current, and

dω = (U +
c

2
)dks (A.8)

which is easy obtained from dispersion equation presented in previous chapter with

cg = c
2
. From equation (A.6) and (A.7), we get

S(ks) = (c0/2 + U0)
c0
c
φ̄(ω)

= (c0/2 + U0)
c0
c

βg2

ω5
exp(...) (Substitute P-M spectrum)

= (c0/2 + U0)
c0
c

βg2

k̄5
s(U + c)5

exp(...) (By ω = ωs + k̄sU)

=
(1 + 2U0/c0)

(1 + U/c)5

(c0
c

)2 β

2

1

k̄3
s

exp(...) (By g = k̄sc
2)

≈ (1 + 2γ)

(1 + U
c0

1
α
)5

1

α2
S̄(k̄s) (Define α =

c

c0
and γ =

U0

c0
), (A.9)

where α is given by [88]

α ≡ c

c0
=

1

2(1 + γ)


1 +

√
1 +

4(1 + γ)U

c0


 , (A.10)

where it requires 4(1 + γ)U/c0 > −1 and |γ| < 1. In addition, the exponential

term variations in the above derivation (equation (A.9)) are ignored. Finally, the
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wavenumber spectrum variation over space with presence of a current is given by

S

S̄
=

(1 + 2γ)

(1 + U
c0

1
α
)5

1

α2
. (A.11)

Special case: if U0 = 0, there is [91]

S

S̄
=

1

(1 + U/c)7

=
1

[1 + 2U/c0

1+
√

1+4U/c0
]7
. (A.12)

In equation (A.12), if we make the assumption that U/c0 ≪ 1, then we expand it as

S

S̄
= 1 − 7

U

c0
+O((

U

c0
)2). (A.13)

A.4 MTF extraction methods

We simulated several cases using equation (A.1) and (A.2), and obtained the

localized spectrum S(xi, ks, t), where xi is the local space index (the total sub-space

number is still 31), ks is the short wave wavenumber, and t is the observed time.

In real numerical simulations, the group velocity of short waves has an effect on

the spectrum variation. Thus, we need to remove the group velocity effect by using

the steady property. The procedures are listed as follows:

1. calculate the localized spectrum average over space and time, get the spectrum

S̄(ks) =<< S(xi, ks, t) >xi
>t, where the subscript xi and t denote the average

direction in x and t, respectively;

2. calculate the localized spectrum normalization Sn(xi, ks, t) = S(xi, ks, t)/S̄(ks);

3. average over time for normalized local spectrum to remove the group velocity

effect to get S/S̄ = Sn(xi, ks) =< Sn(xi, ks, t) >t.
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A.5 Results

Figure A.1 shows the localized spectrum, where the spectra are not calibrated

by the ensemble number and the coefficient of FFT. Figure A.2 and A.3 show the

spectrum variation and the comparison to the analytical approach, where the legend

N inside the bracket denotes the numerical, and legend T is the theoretical, i.e.,

equation (A.12).
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Figure A.1: Normalized short wave spectrum variation over space and time

A.6 Conclusion

Both numerical results and theoretical predictions of the spectrum variation of

short waves with the presence of a slowly varying current match very well.
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Figure A.2: Normalized spectrum variation over time at ks = 50 rad/m
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Figure A.3: Normalized spectrum variation over time at ks = 90 rad/m
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APPENDIX B

DERIVATION OF DETAILED DOPPLER ANALYSIS

B.1 Derivation of simplified short wave evolution

For short waves, we assume that

ηS(x, t) =
∞∑

n=−∞

an
S(t)eikn

Sx, (B.1)

φS(x, t) =
∞∑

n=−∞

bnS(t)eikn
Sx, (B.2)

where an
S = (a−n

S )∗, bnS = (b−n
S )∗.Then, we have

∇ηL =
∑

m

ikm
L a

m
L e

i(km
L x−ωm

L t+θm), (B.3)

∇φL =
∑

m

ikm
L b

m
L e

i(km
L x−ωm

L t+θm), (B.4)

W0L =
∑

m

|km
L |bmL ei(km

L x−ωm
L t+θm), (B.5)

∇ηS =
∑

n

ikn
Sa

n
S(t)eikn

Sx, (B.6)

∇φS =
∑

n

ikn
Sb

n
S(t)eikn

Sx, (B.7)

W0S =
∑

n

|kn
S|bnS(t)eikn

Sx, (B.8)
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and

∂φS

∂t
=

∑

n

bnS(t)′eikn
Sx, (B.9)

∂ηS

∂t
=

∑

n

an
S(t)′eikn

Sx, (B.10)

ηSκφL =
∑

m,n

|km
L |an

S(t)bmL e
i(kn

S+km
L )xe−iωm

L t+iθm

, (B.11)

ηLκφS =
∑

m,n

|kn
S|am

L b
n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

, (B.12)

κ(ηSκφL) =
∑

m,n

|km
L ||km

L + kn
S|an

S(t)bmL e
i(kn

S+km
L )xe−iωm

L t+iθm

, (B.13)

κ(ηLκφS) =
∑

m,n

|kn
S||km

L + kn
S|am

L b
n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

, (B.14)

ηLκ
2φS =

∑

m,n

(kn
S)2am

L b
n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

, (B.15)

ηSκ
2φL =

∑

m,n

(km
L )2an

S(t)bmL e
i(kn

S+km
L )xe−iωm

L t+iθm

. (B.16)

Using above derivations, we have following intermediate results

W1S =
∑

m,n

(am
L b

n
S(t)|kn

S| (|kn
S| − |kn

S + km
L |) + an

S(t)bmL |km
L | (|km

L | − |kn
S + km

L |))

ei(kn
S+km

L )xe−iωm
L t+iθm

,

(B.17)

∇ηL∇φS = −
∑

m,n

km
L k

n
Sa

m
L b

n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

, (B.18)

∇ηS∇φL = −
∑

m,n

km
L k

n
Sa

n
S(t)bmL e

i(kn
S+km

L )xe−iωm
L t+iθm

, (B.19)

∇φS∇φL = −
∑

m,n

km
L k

n
Sb

m
L b

n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

, (B.20)

W0LW0S =
∑

m,n

|km
L ||kn

S|bmL bnS(t)ei(kn
S+km

L )xe−iωm
L t+iθm

, (B.21)
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W1S − (∇ηL∇φS + ∇ηS∇φL) =
∑

m,n

(|km
L | (|km

L | − |kn
S + km

L |) + kn
Sk

m
L )

an
S(t)bmL e

i(kn
S+km

L )xe−iωm
L t+iθm

, (B.22)

W0LW0S −∇φS∇φL =
∑

m,n

(|km
L ||kn

S| + km
L k

n
S)

bmL b
n
S(t)ei(kn

S+km
L )xe−iωm

L t+iθm

. (B.23)

B.2 Solution of the ODE

dB(t)

dt
≈ A0B(t) + A1(t)B0(t) (B.24)

The particular solution B1 of equation (B.24) is written by [92]

B1 = X

∫ t

t0

dsX−1(s)[A1(s)B0(s)], (B.25)

where the matrix X is the fundamental matrix of the system equation (B.24). The pth

column of fundamental matrix X consists of eλptep. Eventually, the X is a diagonal

2x2 block matrix as following:

X =




X11 0 ... 0 0
0 X22 ... 0 0
... ... ... ... ...
0 0 ... X2N,2N 0
0 0 ... 0 X2N+1,2N+1



,

where

Xpp =


−

g√
−gkn+N+1−p

S

ei
√

gkn+N+1−p
S

t g√
−gkn+N+1−p

S

e−i
√

gkn+N+1−p
S

t

ei
√

gkn+N+1−p
S

t e−i
√

gkn+N+1−p
S

t


 .

.

Now, we calculate the particular solution step by step. A1(s)B0(s) is a column

matrix with 4N + 2 elements. It consists of 2N + 1 (2x1) column matrix Fp (p ∈
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[1, 2N + 1]) 3, where

Fp(t) =




∑M
m=1(−ωm

L a
m
L )kn+N−m+1−p

S an+N−m+1−p
S (t0)

g√
−gkn+N−m+1−p

S

e−i
√

gkn+N−m+1−p
S

te−iωm
L t+iθm

∑M
m=1(−ωm

L a
m
L )(km

L − kn+N+m+1−p
S )an+N+1−p+m

S (t0)e
−i
√

gkn+N+m+1−p
S

t

eiωm
L t−iθm



.

X−1 is a diagonal 2x2 matrix (4N + 2) as

X−1 =




Y11 0 ... 0 0
0 Y22 ... 0 0
... ... ... ... ...
0 0 ... Y2N,2N 0
0 0 ... 0 Y2N+1,2N+1



,

where

Ypp =
1

2




kn+N+1−p
S√

−gkn+N+1−p
S

e−i
√

gkn+N+1−p
S

t e−i
√

gkn+N+1−p
S

t

− kn+N+1−p
S√

−gkn+N+1−p
S

ei
√

gkn+N+1−p
S

t ei
√

gkn+N+1−p
S

t


 .

Then, we have

∫ t

t0

dsX−1A1(s)B0(s) =
1

2

M∑

m=1

(ωm
L a

m
L )

∫ t

t0

ds

[
IU(s)
ID(s)

]
, (B.26)

where the pth element of IU(s) and ID(s) are given, respectively,

IU
p (s) = − gkn+N+1−p

S kn+N+1−p−m
S eiθm

√
−gkn+N+1−p

S

√
−gkn+N+1−p−m

S

an+N+1−p−m
S (t0)

e−i(
√

gkn+N+1−p
S

+
√

gkn+N+1−p−m
S

+ωm
L )s

− (km
L − kn+N+1−p+m

S )an+N+1−p+m
S (t0)e

−iθm

e−i(
√

gkn+N+1−p
S

+
√

gkn+N+1−p+m
S

−ωm
L )s,

(B.27)

ID
p (s) =

gkn+N+1−p
S kn+N+1−p−m

S eiθm

√
−gkn+N+1−p

S

√
−gkn+N+1−p−m

S

an+N+1−p−m
S (t0)

e−i(−
√

gkn+N+1−p
S

+
√

gkn+N+1−p−m
S

+ωm
L )s

− (km
L − kn+N+1−p+m

S )an+N+1−p+m
S (t0)e

−iθm

e−i(−
√

gkn+N+1−p
S

+
√

gkn+N+1−p+m
S

−ωm
L )s.

(B.28)

3If any term including index n + N + 1 − p + m or n + N + 1 − p − m is out of bound n + N or
n − N , respectively, its coefficient is zero.
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Integrating them, we get

∫ t

t0

dsX−1A1(s)B0(s) =
1

2

M∑

m=1

(ωm
L a

m
L )

[
IIU(t)
IID(t)

]
, (B.29)

where the pth element of IIU(s) and IID(s) are given, respectively,

IIU
p (t) =

gkn+N+1−p
S kn+N+1−p−m

S eiθm

√
−gkn+N+1−p

S

√
−gkn+N+1−p−m

S

an+N+1−p−m
S (t0)

i(
√
gkn+N+1−p

S +
√
gkn+N+1−p−m

S + ωm
L )

[
e−i(

√
gkn+N+1−p

S
+
√

gkn+N+1−p−m
S

+ωm
L )t − e−i(

√
gkn+N+1−p

S
+
√

gkn+N+1−p−m
S

+ωm
L )t0

]

− e−iθm

(km
L − kn+N+1−p+m

S )

−i(
√
gkn+N+1−p

S +
√
gkn+N+1−p+m

S − ωm
L )
an+N+1−p+m

S (t0)

[
e−i(

√
gkn+N+1−p

S
+
√

gkn+N+1−p+m
S

−ωm
L )t − e−i(

√
gkn+N+1−p

S
+
√

gkn+N+1−p+m
S

−ωm
L )t0

]
,

(B.30)

IID
p (t) =

gkn+N+1−p
S kn+N+1−p−m

S eiθm

√
−gkn+N+1−p

S

√
−gkn+N+1−p−m

S

an+N+1−p−m
S (t0)

i(
√
gkn+N+1−p

S −
√
gkn+N+1−p−m

S − ωm
L )

[
e−i(−

√
gkn+N+1−p

S
+
√

gkn+N+1−p−m
S

+ωm
L )t − ei(

√
gkn+N+1−p

S
−

√
gkn+N+1−p−m

S
−ωm

L )t0
]

− e−iθm

(km
L − kn+N+1−p+m

S )

−i(−
√
gkn+N+1−p

S +
√
gkn+N+1−p+m

S − ωm
L )
an+N+1−p+m

S (t0)

[
e−i(−

√
gkn+N+1−p

S
+
√

gkn+N+1−p+m
S

−ωm
L )t − ei(

√
gkn+N+1−p

S
−

√
gkn+N+1−p+m

S
+ωm

L )t0
]
.

(B.31)

The particular solution is given by

X

∫ t

t0

dsX−1A1(s)B0(s) =
1

2

M∑

m=1

(ωm
L a

m
L )

[
IIIU(t)
IIID(t)

]
, (B.32)

where the pth element of IIIU(s) and IIID(s) are given, respectively,

IIIU
p (t) = − g√

−gkn+N+1−p
S

ei
√

gkn+N+1−p
S

tIIU
p (t)

+
g√

−gkn+N+1−p
S

e−i
√

gkn+N+1−p
S

tIID
p (t),

(B.33)

IIID
p (t) = ei

√
gkn+N+1−p

S
tIIU

p (t) + e−i
√

gkn+N+1−p
S

tIID
p (t). (B.34)

156



Further simplifying IIIU and IIID with only positive propagation waves, we obtain

IIIU
p (t) =

g√
−gkn+N+1−p

S
[
gkn+N+1−p

S kn+N+1−p−m
S eiθm

an+N+1−p−m
S (t0)√

−gkn+N+1−p
S

√
−gkn+N+1−p−m

S

i2(
√
gkn+N+1−p

S + ωm
L )e−i(

√
gkn+N+1−p−m

S
+ωm

L )t

(
√
gkn+N+1−p−m

S + ωm
L )2 − gkn+N+1−p

S

− (km
L − kn+N+1−p+m

S )an+N+1−p+m
S (t0)e

−iθm

i2
√
gkn+N+1−p

S e−i(
√

gkn+N+1−p+m
S

−ωm
L )t

(
√
−gkn+N+1−p+m

S − ωm
L )2 − gkn+N+1−p

S

]

+ CUe−i
√

gln+N+1−p
S

t,

(B.35)

IIID
p (t) =

gkn+N+1−p
S kn+N+1−p−m

S eiθm

an+N+1−p−m
S (t0)√

−gkn+N+1−p
S

√
−gkn+N+1−p−m

S

i2
√
gkn+N+1−p

S e−i(
√

gkn+N+1−p−m
S

+ωm
L )t

(
√
gkn+N+1−p−m

S + ωm
L )2 − gkn+N+1−p

S

− (km
L − kn+N+1−p+m

S )an+N+1−p+m
S (t0)e

−iθm

i2(
√
gkn+N+1−p+m

S − ωm
L )e−i

√
gkn+N+1−p+m

S
−ωm

L )t

(
√
−gkn+N+1−p+m

S − ωm
L )2 − gkn+N+1−p

S

+ CDe−i
√

gkn+N+1−p
S

t,

(B.36)

where CU and CD are constants related to the initial conditions.

B.3 Higher order approximation to analytical coefficients

Chapter 6 presents the first-order perturbed approach. To obtain higher accuracy,

we extend this perturbation up to second order. Rewrite equation (B.24) as

dB(t)

dt
≈ A0B(t) + A1(t) [B0(t) + B1(t)] , (B.37)
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where B1 is the perturbed solution. The pth element of B1 is written by

B1p =
1

2

M∑

m=1

ωm
L a

m
L




cUp,ma
n+N+1−p−m
S (t0)e

−i(
√

gkn+N+1−p−m
S

+ωm
L )

+dU
p,ma

n+N+1−p+m
S (t0)e

−i(
√

gkn+N+1−p+m
S

−ωm
L )

cDp,ma
n+N+1−p−m
S (t0)e

−i(
√

gkn+N+1−p−m
S

+ωm
L )

+dD
p,ma

n+N+1−p+m
S (t0)e

−i(
√

gkn+N+1−p+m
S

−ωm
L )



,

where cUp,m, dU
p,m, cDp,m, and dD

p,m are determined from equations (B.35) and (B.36).

Then, the additional forcing term is written by

ÃBp(t) =
M∑

m=1

(−ωm
L a

m
L )




kn+N−m+1−p
S [cUp,ma

n+N−m+1−p
S (t0)

e−i(
√

gkn+N+1−p−m
S

+ωm
L )t

+dU
p,ma

n+N+1−p+m
S (t0)

e−i(
√

gkn+N+1−p+m
S

−ωm
L )t]e−iωm

L t+iθm

(km
L − kn+N+m+1−p

S )[cDp,ma
n+N+1−p−m
S (t0)

e−i(
√

gkn+N+1−p−m
S

+ωm
L )t

+dD
p,ma

n+N+1−p+m
S (t0)e

−i(
√

gkn+N+1−p+m
S

−ωm
L )t]

eiωm
L t−iθm




.

After some manipulations, we obtain the second-order perturbed solution

b̃n+N+1−p(t) = cap,ma
n+N+1−p−m
S (t0)e

−i(
√

gkn+N+1−p−m
S

+2ωm
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S (t0)e

−i(
√
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S

−2ωm
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S (t0)e

−i
√

gkn+N+1−p+m
S

t

+ cdp,ma
n+N+1−p−m
S (t0)e

−i
√

gkn+N+1−p−m
S

t, (B.38)

ãn+N+1−p(t) = da
p,ma

n+N+1−p−m
S (t0)e

−i(
√

gkn+N+1−p−m
S

+2ωm
L )t

+ db
p,ma

n+N+1−p−m
S (t0)e

−i(
√

gkn+N+1−p+m
S

−2ωm
L )t

+ dc
p,ma

n+N+1−p+m
S (t0)e

−i
√
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S

t

+ dd
p,ma

n+N+1−p−m
S (t0)e

−i
√

gkn+N+1−p−m
S

t. (B.39)

where ca,b,c,d
p,m and da,b,c,d

p,m are constants. The second-order modifications (equations

(B.38) and (B.39)) are too complicated. The results are not presented in this study.
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