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ABSTRACT

Let (Xi, Yi), 1 ≤ i ≤ n, be a sample of size n from an absolutely continuous random

vector (X,Y ). Let Xi:n be the ith order statistic of the X-sample and Y[i:n] be its concomi-

tant. We study three problems related to the Y[i:n]’s in this dissertation. The first problem

is about the distribution of concomitants of order statistics (COS) in dependent samples.

We derive the finite-sample and asymptotic distribution of COS under a specific setting of

dependent samples where the X’s form an equally correlated multivariate normal sample.

This work extends the available results on the distribution theory of COS in the literature,

which usually assumes independent and identically distributed (i.i.d) or independent sam-

ples. The second problem we examine is about the distribution of order statistics of subsets

of concomitants from i.i.d samples. Specifically, we study the finite-sample and asymptotic

distributions of Vs:m and Wt:n−m, where Vs:m is the sth order statistic of the concomitants

subset {Y[i:n], i = n−m + 1, . . . , n}, and Wt:n−m is the tth order statistic of the concomi-

tants subset {Y[j:n], j = 1, . . . , n−m}. We show that with appropriate normalization, both

Vs:m and Wt:n−m converge in law to normal distributions with a rate of convergence of or-

der n−1/2. We propose a higher order expansion to the marginal distributions of these order

statistics that is substantially more accurate than the normal approximation even for mod-

erate sample sizes. Then we derive the finite-sample and asymptotic joint distribution of

(Vs:m,Wt:n−m). We apply these results and determine the probability of an event of interest

in commonly used selection procedures. We also apply the results to study the power of
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identifying the disease-susceptible gene in two-stage designs for gene-disease association

studies. The third problem we consider is about estimating the conditional mean of the

response variable (Y ) given that the explanatory variable (X) is at a specific quantile of its

distribution. We propose two estimators based on concomitants of order statistics. The first

one is a kernel smoothing estimator, and the second one can be thought of as a bootstrap

estimator. We study the asymptotic properties of these estimators and compare their finite

sample behavior using simulation.
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CHAPTER 1

OVERVIEW OF CONCOMITANTS OF ORDER STATISTICS

1.1 Introduction

Suppose (Xi, Yi), i = 1, . . . , n, is a random sample from a bivariate population (X, Y )

with cdf F (x, y). If we order the sample by the X-variate, and obtain the order statistics,

X1:n, . . . , Xn:n, for the X sample, then the Y -variate associated with the rth order statistic

Xr:n is called the concomitant of the rth order statistic, and is denoted by Y[r:n]. The term

concomitant of order statistics was first introduced by David (1973)1.

Some generalizations to the above definition of concomitants of order statistics have

been proposed. Barnett et al. (1976) considered a situation in which there are ` vari-

ates associated with each X . They proposed to order the ` + 1 variate measurements

(Xi, Y1i, . . . , Y`i) based on the X-values and associated with Xr:n will be the vector of

concomitants (Y1[r:n], . . . , Y`[r:n]).

To allow for the selection based on more than one characteristic, Egorov and Nevzorov

(1984), Reiss (1989), and Kaufmann and Reiss (1992) made a further generalization by

considering the ordering of more than a single X . These authors proposed to order vectors

1Independently, Bhattacharya (1974) use the term rth induced order statistic for what is defined here, but
the term concomitant of order statistic is more commonly used.

1



xi, i = 1, . . . , n, by the size of some real-valued function g(xi), resulting in the so-called

g-ordering:

xk ≤g xj if g(xi) ≤ g(xj).

In particular, if g(xi) = x1i, then the vectors are ordered by the first component x1i, and

the other components become the concomitants.

So far the random vectors are assumed to be independent and identically distributed.

Eryilmaz (2005) generalized this by considering the concomitants of order statistics when-

ever (X1, Y1), . . . , (Xn, Yn) are independent but otherwise arbitrarily distributed.

Concomitants of order statistics can arise in several applications. In selection pro-

cedures, items or subjects may be chosen on the basis of their X characteristic, and an

associated characteristic Y that is hard to measure or can be observed only later may be

of interest. For example, X may be the score of a candidate on a screening test, and Y

is the measure of the final performance of the candidate; or X could be the score based

on a particular search engine (like Google, Yahoo etc.), and Y is the score based on more

exhaustive search of the internet. After the selection based on X values, the resulting mea-

surements on the characteristic Y for the chosen subjects are actually the concomitants

associated with the top X order statistics. (Without loss of generality we assume large Y

values are desirable, and X and Y are positively correlated.) Under this setting, Yeo and

David (1984) considered the problem of choosing the best k objects out of n candidates

on the basis of auxiliary measurements X , while the measurements of primary interest Y

are not available. The authors are interested in the probability that the m subjects with the

largest X-values consists of the k objects with the largest Y -values.

Another application of concomitants of order statistics is in ranked-set sampling, first

introduced by McIntyre (1952). It is a sampling scheme for situations where measurement

2



of the variable of primary interest for sampled items is expensive or time-consuming while

ranking of a set of items related to the variable of interest can be easily done. It can be

shown that for such situations ranked-set sampling can achieve efficiency and reduce cost

when compared to the simple random sampling. The original ranked-set sampling works

as follows. A set of k items is drawn from the population, and we rank the items either by

judgment or by actual measurement of some auxiliary variable X which is easy to measure.

The item ranked the smallest is measured for the variable of our interest Y . Then another set

of k items is drawn and ranked, and only the item ranked the second smallest is quantified.

The procedure replicates until the item ranked the largest in the kth set is quantified. This

completes a cycle of the sampling. The cycle is then repeated m times. The ranking

involved in the above scheme can always be regarded as based on an auxiliary X-variate,

representing a hypothetical (in the case of judgement ranking) or actual measurement. So

the Y -value obtained in the ith set is actually the concomitant associated with ith X order

statistic (David and Levine, 1972; Stokes, 1977). A comprehensive review of ranked set

sampling can be found in Wolfe (2004), and in Chen et al. (2004).

Concomitants of order statistics have also been used in estimation and hypotheses test-

ing problems. Spruill and Gastwirth (1982) have used concomitants to estimate the corre-

lation coefficient between two sensitive variables, data on which are kept separately, and

merge of the data is not possible due to confidentiality considerations. Another natural

application of concomitants of order statistics is in dealing with the estimation of parame-

ters for multivariate data sets that are subject to some form of type II censoring; examples

include Harrell and Sen (1979), Gomes (1981, 1984), and Gill et al. (1990). For a recent

comprehensive review of these applications see David and Nagaraja (1998) and Sections

9.8 and 11.7 of David and Nagaraja (2003).
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For the remaining part of this chapter, we will review the basic finite-sample and asymp-

totic distribution theory of concomitants of order statistics and use bivariate normal distri-

bution to provide illustrative examples. Then the outline and organization of the dissertation

will be described.

1.2 Finite-Sample Distribution Theory

The finite-sample distribution theory for concomitants of order statistics has been in-

vestigated by several authors, for example by David (1973), David et al. (1977), Yang

(1977), Bhattacharya (1984), and recently by Balasubramanian and Beg (1998), Eryilmaz

(2005). Here we review some of the important results for the finite-sample distribution of

concomitants of order statistics.

1.2.1 Concomitants with Regression Models

If the population distribution, (X, Y ), is such that the following regression model for Y

and X holds

Yi = m(Xi) + εi, i = 1, . . . , n, (1.1)

where m(·) is the regression function, and εi is the error term which is assumed to be

independent of Xi, then we have

Y[r:n] = m(Xr:n) + ε[r]

where ε[r] is the εi associated with Xr:n, which can be shown to be independent of Xr:n and

have the same distribution as εi.

As discussed in David and Nagaraja (1998), one example of such a model is the linear

regression model. In that case Xi and Yi have means µX , µY , variances σ2
X , σ2

Y , and are
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linked by the linear relationship

Yi = µY + ρ
σY

σX

(Xi − µX) + εi, (1.2)

where ρ is the correlation between X and Y . A special case is where the distribution of

(X,Y ) is bivariate normal with mean (µX , µY )T, and variance-covariance matrix

(
σ2

X ρσXσY

ρσXσY σ2
Y

)
.

Then (1.2) will hold with εi being distributed as N(0, σ2
Y (1− ρ2)).

From (1.2) we have:

Y[i:n] = µY + ρ
σY

σX

(Xi:n − µX) + ε[i]. (1.3)

So it follows that for any r, s = 1, . . . , n,

E(Y[r:n]) = µY + ρσY αr:n,

Var(Y[r:n]) = σ2
Y (ρ2βrr:n + 1− ρ2),

Cov(Xr:n, Y[s:n]) = ρσXσY βrs:n,

Cov(Y[r:n], Y[s:n]) = ρ2σ2
Y βrs:n, r 6= s, (1.4)

where

αr:n = E

(
Xr:n − µX

σX

)
and βrs:n = Cov

(
Xr:n − µX

σX

,
Xs:n − µX

σX

)
. (1.5)

If we assume bivariate normality2 for (X,Y ), we will have the relations between the

moments of Y[r:n] and Yr:n (Sondhauss, 1994):

2More generally, we only need to assume that the marginal distributions for X and Y are identical.
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E(Y[r:n])− µY = ρ(E(Yr:n)− µY ),

Var(Y[r:n])− σ2
Y = ρ2(Var(Yr:n)− σ2

Y ),

Cov(Y[r:n], Y[s:n]) = ρ2Cov(Yr:n, Ys:n), r 6= s.

1.2.2 General Results

Without assuming the structural relation between X and Y as indicated by (1.1), Yang

(1977) studied the exact distribution of Y[r:n]. It was shown that if the (Xi, Yi)’s are assumed

to be i.i.d observations from some arbitrary absolutely continuous bivariate distribution

with cdf F (x, y), then for 1 ≤ r1 < . . . < rk ≤ n, the joint density for (Y[r1:n], . . . , Y[rk:n])

is given by

fY[r1:n],...,Y[rk:n]
(y1, . . . , yk)

=

∫ ∞

−∞

∫ xk

−∞
. . .

∫ x2

−∞

k∏

h=1

fY |X(yh|xh)fxr1:n,...,xrk:n(x1, . . . , xk)dx1 . . . dxk. (1.6)

This follows directly from an important result regarding the conditional independence

of (Y[1:n], . . . , Y[n:n]) given the values of (X1:n, . . . , Xn:n), which is due to Bhattacharya

(1974). The result is given by the following proposition:

Proposition 1.2.1. The concomitants of order statistics, (Y[1:n], . . . , Y[n:n]), are condition-

ally independent given X1 = x1, . . . , Xn = xn with conditional cdf’s FY |X(·|X = x1:n), . . .,

FY |X(·|X = xn:n), respectively, where the xi:n’s are ordered xi’s such that x1:n ≤ . . . ≤

xn:n.

It follows from Proposition 1.2.1 that for any k ≤ n with 1 ≤ r1 < . . . < rk ≤ n, the

Y[rh:n], h = 1, . . . , k, are conditionally independent given Xrh:n = xh, h = 1, . . . , k, with

6



joint conditional pdf

fY[r1:n],...,Y[rk:n]|Xr1:n=x1,...,Xrk:n=xk
(y1, . . . , yk) =

k∏

h=1

fY |X(yh|xh).

By Proposition 1.2.1, we can obtain the following results for the moments of concomi-

tants of order statistics

E(Y[r:n]) = E[m(Xr:n)],

Var(Y[r:n]) = Var[m(Xr:n)] + E[σ2(Xr:n)],

Cov(Xr:n, Y[s:n]) = Cov[Xr:n,m(Xs:n)],

Cov(Y[r:n], Y[s:n]) = Cov[m(Xr:n),m(Xs:n)], r 6= s (1.7)

where m(x) = E(Y |X = x) and σ2(x) = Var(Y |X = x).

Example 1.2.1. Suppose the distribution we are sampling from is bivariate normal given

by:

(X,Y )T ∼ N

((
µX

µY

)
,

(
σ2

X ρσXσY

ρσXσY σ2
Y

))
. (1.8)

By (1.6), the pdf of the concomitant of rth order statistic Y[r:n] is given by:

fY[r:n]
(y) =

∫ ∞

−∞
φ

[
(y − µY )/σY − ρ(x− µX)/σX√

1− ρ2

]
fXr:n(x)

σY

√
1− ρ2

dx

where

fXr:n(x) =
n!

(r − 1)!(n− r)!σX

Φ

(
x− µX

σX

)r−1 [
1− Φ

(
x− µX

σX

)]n−r

φ

(
x− µX

σX

)
,

and Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution, respectively.

Alternatively we can derive the same result as above for the pdf of Y[r:n] using (1.3) by

noticing that the distribution of (Y[r:n]− µY )/σY is a convolution of ρ(Xr:n− µX)/σX and

N(0, 1− ρ2).
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Using similar arguments as in Bhattacharya (1984), we can generalize Proposition 1.2.1

by considering the case in which the (Xi, Yi)’s are still independent but not necessarily

identically distributed, as stated in the Proposition below:

Proposition 1.2.2. Suppose the random vectors (Xi, Yi), i = 1, . . . , n, are independent,

and (Xi, Yi) has cdf F (i)(x, y). Then the concomitants of order statistics, (Y[1:n], . . . , Y[n:n]),

are conditionally independent given X1 = x1, . . . , Xn = xn with conditional cdf’s

F
(λ(i,x))
Y |X (·|xi:n), i = 1, . . . , n, respectively, where λ(i,x) is defined to be the index in

{1, . . . , n} such that for the given vector x = (x1, . . . , xn), the ith smallest value (xi:n)

is xλ(i,x), and F
(i)
Y |X(·|x) is the conditional cdf of Y given X = x corresponding to distri-

bution F (i)(x, y).

Proof. Let Xn = (X1, . . . , Xn). As discussed in Bhattacharya (1984), the random per-

mutation, (λ(1,Xn), . . . , λ(n, Xn)) of (1, . . . , n) will be determined only by Xn, and

we have Yλ(i,Xn) = Y[i:n]. By the independence of (Xi, Yi)’s, Yj will be independent of

{(Xi, Yi), i 6= j} for each j. So we have:

P(Y[j:n] ≤ yj, j = 1, . . . , n|Xi = xi, i = 1, . . . , n)

=P(Yλ(j,xn) ≤ yλ(j,xn), j = 1, . . . , n|Xλ(i,xn) = xλ(i,xn), i = 1, . . . , n)

=
n∏

i=1

P(Yλ(i,xn) ≤ yλ(i,xn)|Xλ(i,xn) = xλ(i,xn))

=
n∏

i=1

F λ(i,xn)(yλ(i,xn)|xi:n)

which establishes the desired result.

Remark 1.2.1. Notice that unlike Lemma 1.2.1, we cannot derive from Proposition 1.2.2

the result that for any k ≤ n with 1 ≤ r1 < . . . < rk ≤ n, the Y[rh:n]’s are conditionally

independent given Xrh:n = xh, h = 1, . . . , k. One exception is that if the distributions
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F (i)(x, y), i = 1, . . . , n are such that the conditional distributions F
(i)
Y |X(·|x) are all the

same, then the conditional independence of the Y -concomitants given the values of X

order statistics still holds, and the conditional distribution of (Y[r1:n], . . . , Y[rk:n]) given the

values of order statistics (Xr1:n, . . . , Xrk:n) is given by:

P(Y[rj :n] ≤ yj, j = 1, . . . , k|Xri:n = xi, i = 1, . . . , k) =
k∏

i=1

F (yi|xi), (1.9)

with F (y|x) being the common conditional cdf of Y given X . The expression on the right

hand side of (1.9) is exactly the same as it would be in the i.i.d case. One example for such

situation is as following. Suppose we have two applicant pools. Let Xi, i = 1, . . . , m, be

the scores of the screening test for the applicant pool 1, and Xi, i = m + 1, . . . , m + n,

be the scores for the applicant pool 2. We assume that Xi ∼ N(µ1, σ
2
1), i = 1, . . . , m,

and Xi ∼ N(µ2, σ
2
2), i = m + 1, . . . , m + n. Let Y be the final score for the measure of

the applicant’s performance, and we assume for both pool 1 and pool 2, Y depends on the

initial score X through the following simple linear regression

Yi = β0 + β1Xi + εi, i = 1, . . . , m + n, (1.10)

with ε ∼ N(0, σ2
e). Even though the (Xi, Yi)’s are not identically distributed, they share

the common conditional distribution of Y given the value of X , which is N(β0 + β1x, σ2
e).

As a result, the conditional distribution of the Y -concomitants given the values of X order

statistics is the same as in the i.i.d case.

1.2.3 Multivariate Generalization

Now consider the multivariate case in which there are ` variates associated with each

X , and we have n independent sets of variates (Xi, Y1i, . . . , Y`i). As in the bivariate case
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we order the sample based on X sample values, and associated with Xr:n is the vector

of concomitants (Y1[r:n], . . . , Y`[n:n]). This situation has applications in hydrology and has

been intensively studied by Song et al. (1992), Song and Deddens (1993), and Balakrishnan

(1993).

Let mj(xi) = E(Yji|Xi = xi) and σjk(xi) = Cov(Yji, Yki|Xi = xi), we have the

following results for the moments of concomitants similar to (1.7):

E(Yj[r:n]) = E[mj(Xr:n)],

Cov(Yj[r:n], Yj[s:n]) = Cov[mj(Xr:n),mj(Xs:n)] + E[σjk(Xr:n)] (1.11)

Suppose that (Xi, Y1i, . . . , Y`i), i = 1, . . . , n, is a random sample from a multivariate

normal distribution with mean vector

µ = (µX , µ1, . . . , µ`)
T

and variance-covariance matrix

Σ =

(
σ2

X ΣXY

ΣY X ΣY

)

where

µX = E(Xi) and µj = E(Yij), j = 1, . . . , `

ΣXY = ΣT
Y X = {Cov(Xi, Yij)}`

j=1 = (σxj)
`
j=1 ,

ΣY = {Cov(Yij, Yik)}`
j,k=1 = (σjk)

`
j,k=1 .

Notice that for i = 1, . . . , n

Yij = µj + ρjσjj
Xi − µX

σX

+ εij
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where ρj = Corr(Xi, Yij), εi = (εi1, . . . , εi`)
T are independent of Xi, i = 1, . . . , n, and are

i.i.d multivariate normal with mean vector 0 and variance-covariance matrix:

ΣY |X = ΣY − σ−2
X ΣY XΣXY .

So we have

Yj[r:n] = µj + ρjσjj
Xr:n − µX

σX

+ εj[n]

where ε[r] = (ε1[r], . . . , ε`[r])
T are independent of Xi:n, i = 1, . . . , n, and have the same

distribution as εi.

Thus it follows that

E(Yj[r:n]) = µj + ρjσjjαr:n,

Cov(Yj[r:n], Yk[r:n]) = ρjρkσjjσkkβrr:n + σjk(x) = σjk − ρjρkσjjσkk(1− βrr:n),

Cov(Yj[r:n], Yk[s:n]) = ρjρkσjjσkkβrs:n, r 6= s,

where σjk(x) = σjk − ρjρkσjjσkk is the jkth element of the variance-covariance matrix

ΣY |X , and αr:n and βrs:n are defined by (1.5).

1.2.4 Non-identical Distribution Case

Concomitants of order statistics for the situation in which the random vectors are in-

dependent but otherwise arbitrarily distributed are considered by Eryilmaz (2005). Let

(Xi, Yi), i = 1, . . . , n, be independent random vectors with cdf’s Fi(x, y), i = 1, . . . , n,

respectively, the distribution of concomitant Y[r:n] can be expressed in terms of permanents

as in the following result due to Eryilmaz (2005).

Theorem 1.2.1. Let (Xi, Yi), i = 1, . . . , n, be independent random vectors with cdf’s

Fi(x, y), i = 1, . . . , n, and marginals FXi
, FYi

respectively. Then the cdf of concomitant
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Y[r:n] is given by

P(Y[r:n] ≤ y) = 1
(r−1)!(n−r)!

∑n
i=1

∫
P(Yi ≤ y|Xi = x) per




FX1(x) 1− FX1(x)
...

...
FXi−1

(x) 1− FXi−1
(x)

FXi+1
(x) 1− FXi+1

(x)
...

...
FXn(x) 1− FXn(x)




r − 1 n− r

dFXi
(x)

(1.12)

where the permanent

per




FX1(x) 1− FX1(x)
...

...
FXi−1

(x) 1− FXi−1
(x)

FXi+1
(x) 1− FXi+1

(x)
...

...
FXn(x) 1− FXn(x)




r − 1 n− r

is defined as in Vaughan and Venables (1972), i.e., for a square matrix A = {aij}n
i,j=1, the

permanent is defined to be

per[A] =
∑

σ

n∏
i=1

aiσ(i) (1.13)

where σ = (σ(1), . . . , σ(n)) is a permutation of (1, . . . , n), and the summation in (1.13) is

over all possible permutations of (1, . . . , n).

Eryilmaz (2005) also derived the joint distribution of (Y[1:n], Y[n:n]) for the non-identical

case. He used FGM type bivariate distribution and the Marshall and Olkin’s bivariate ex-

ponential distribution as illustrations.

12



1.3 Asymptotic Distribution Theory

1.3.1 Marginal Distributions

We first consider the marginal limiting distribution for concomitant Y[r:n]. Intuitively

the asymptotic distribution of Y[r:n] depends on the growth pattern of r as n → ∞, and

more importantly by the dependence structure of the bivariate cdf F (x, y). Usually three

situations are considered for the growth pattern of r as n → ∞: (i) the quantile case in

which r = [np], with 0 < p < 1; (ii) the extremal case in which either r or n − r is fixed;

(iii) the intermediate case in which r →∞, n− r →∞ in such a way that r/n approaches

either 0 or 1.

A convenient way to model the dependence structure of (X, Y ) is to assume that the

simple linear regression model (1.2) holds for the random vector (X,Y ). In this case

analytical results regarding the asymptotic distribution of the concomitant of order statistic

Y[r:n] can be obtained as in David and Galambos (1974) and David (1994).

Recall that under the simple linear regression model (1.2), we can express Y[r:n] as:

Y[r:n] = µY + ρ
σY

σX

(Xr:n − µX) + ε[r]. (1.14)

Without loss of generality, we might assume that µX = µY = 0, and σX = σY = 1 in

(1.14).

From (1.14) and the fact that Xr:n is independent of ε[r], we see that the asymptotic

distribution of Y[r:n] depends on that of Xr:n, as well as the distribution of ε in a linear

fashion. It is useful to differentiate between the following two cases regarding the limiting

behavior of Xr:n:
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(i) Xr:n converges in probability, i.e., there exists a sequence {an} such that

Xr:n − an
P→ 0, as n →∞. (1.15)

In this case it follows directly from the Slutsky theorem that:

Y[r:n] − ρan
L→ ε, as n →∞. (1.16)

The condition (1.15) holds in the following cases:

(a) r = [np], 0 < p < 1, as n →∞. In this case we have Xr:n
P→ F−1

X (p) with the

assumption that the cdf FX(x) is absolutely continuous and has positive density

at F−1
X (p);

(b) r = n − k + 1 for some fixed k. In this case, a necessary and sufficient con-

dition for (1.15) to hold has been established by Hall (1979). In particular

if the marginal distribution of X is standard normal, then (1.15) holds with

an =
√

2 log n; see David (1994) for a detailed discussion.

(ii) If Xr:n fails to converge in probability, and instead there exist constants an and bn > 0

such that
Xr:n − an

bn

L→ W, as n →∞ (1.17)

for some nondegenerate random variable W . Here, if bn → b as n → ∞, then we

have
Y[r:n] − ρan

bn

L→ ρW +
ε

b
, as n →∞. (1.18)

So in this case with appropriate normalization, Y[r:n] converges in distribution to the

convolution of ρW and ε.
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In upper (lower) extreme case, i.e., r = n − k + 1 (r = k) for some fixed k, (1.17)

will hold with W being distributed as the kth lower (upper) record value from one of

the three extreme value distributions (Nagaraja and David, 1994). In the intermediate

case with r/n approaching 1 as n → ∞, if the distribution of X is bounded above,

(1.17) holds with W being normally distributed (Reiss, 1989, p109).

The limiting distribution of Y[r:n] will generally depend on the conditional distribution

of Y given X , and the marginal distribution of X , as suggested by the following theorem

for the extreme case (r = n − k + 1). The theorem is due to Galambos (1978), and is

extended in David (1994) and Sondhauss (1994).

Theorem 1.3.1. Let FX(x) satisfy one of the von Mises conditions 3 and assume that the

sequences of constants an, bn > 0, are such that as n →∞,

[FX(an + bnx)]n → G(x)

for all x. Further, suppose there exist constants An and Bn such that

FY |X(An + Bny|an + bnx) → H(y|x) (1.19)

uniformly for all x and y. Then

P(Y[n−k+1:n] ≤ An + Bny) →
∫ ∞

−∞
H(y|x)dG(k)(x)

where G(k) is the cdf of the kth lower record value from the extreme value cdf G.

Notice that if the joint distribution of (X,Y ) is such that as x → F−1
X (1), FY |X(y|x) →

H(y) for all y, then the condition (1.19) of Theorem 1.3.1 will hold with An = 0, Bn = 1,

and it follows that P(Y[n−k+1:n] ≤ y) → H(y). Arnold et al. (1992, p221) provided an

example of bivariate exponential distribution for such a situation.

3see Resnick (1987, p62-64) for details of these conditions.
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Example 1.3.1. For the bivariate normal population given by (1.8), without loss of gener-

ality, we assume µX = µY = 0, and σX = σY = 1. We want to derive the asymptotic

behavior of Y[r:n] for both the quantile and extremal cases.

For the quantile case, i.e., r = [np] for some 0 < p < 1, by the fact that

Xr:n
P→ Φ−1(p) as n →∞,

we have

Y[r:n]
L→ N(ρΦ−1(p), 1− ρ2)

as discussed above.

For the extremal case, i.e., r = n − k + 1 for some fixed integer k and n → ∞, as

discussed in David (1994) we have

Xr:n − an
P→ 0,

with an =
√

2 log n. So it follows that

Y[r:n] − ρ
√

2 log n
L→ N(0, 1− ρ2) as n →∞ (1.20)

We can also obtain (1.20) by using Theorem 1.3.1. First notice that the standard normal

cdf Φ ∈ D(Λ) and satisfies the associated von Mises condition (Resnick, 1987; David and

Nagaraja, 2003). The corresponding norming constants can be chosen as

an =
√

2 log n− 1

2

log(4π log n)√
2 log n

and bn =
1√

2 log n

where Λ is the Gumbel extreme value distribution. Let An = ρan and Bn =
√

1− ρ2.

Since the conditional distribution of Y given X = x is N(ρx, 1− ρ2), it follows that

FY |X(An + Bny|an + bnx) = Φ

(
y − ρ√

1− ρ2
bnx

)
→ Φ(y)
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uniformly for all x and y as n →∞. So we have

Y[r:n] − ρan√
1− ρ2

L→ N(0, 1), as n →∞

which is equivalent to (1.20).

1.3.2 Joint Distributions

The asymptotic distribution of a finite set of concomitants has also been studied by

several authors. Under the assumption that the random vector (X, Y ) is distributed such

that Y − E(Y |X) and X are independent (which is equivalent the assumption that the

general regression model given by (1.1) holds), David and Galambos (1974) showed that

for any fixed k and any choice 1 ≤ r1 < · · · < rk ≤ n, Y[r1:n], . . . , Y[rk:n] are asymptotically

independent provided that Var[E(Y[ri:n]|Xri:n)] approaches 0 as n →∞ for all i = 1, . . . , k.

In the quantile case where ri/n → pi, 0 < pi < 1, for i = 1, . . . , k, Yang (1977) proved

the following theorem.

Theorem 1.3.2. Let (Xi, Yi), i = 1, . . . , n, be n i.i.d observations from an absolutely

continuous distribution with cdf F (x, y) and pdf f(x, y). Let 1 ≤ r1 < · · · < rk ≤ n be

sequences of integers such that as n →∞, ri/n → pi, 0 < pi < 1, for i = 1, . . . , k. Then

we have

P(Y[r1:n] ≤ y1, . . . , Y[rk:n] ≤ yk) →
k∏

i=1

FY |X(yi|F−1
X (pi)). (1.21)
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In the extremal case, assuming that the conditions of Theorem 1.3.1 hold, it follows

from the conditional independence of concomitants and the Bounded Convergence Theo-

rem that:

P(Y[n:n] ≤ An + Bny1, . . . , Y[n−k+1:n] ≤ An + Bnyk)

→
∫

x1>···>xk

k∏
i=1

H(yi|xi)dGk(x1, . . . , xk)

where Gk is the joint cdf of the first k lower record values from the extreme value distribu-

tion G (Nagaraja, 1982; David, 1994).

1.4 Outline and Organization of the Dissertation

In Chapters 2 to 5 of this dissertation, we will study three separate topics related to the

concomitants of order statistics. Here we give a brief overview of these topics, and describe

the organization of the rest of the dissertation.

From the review of the distribution theory about concomitants of order statistics in this

chapter, we see that concomitants of order statistics were only studied under assumption of

i.i.d or independent samples in the literature. In Chapter 2, we derive the finite-sample and

asymptotic distribution of concomitants of order statistics for a special case of dependent

samples. The relevant results are illustrated with a simple example.

In Chapter 3 and 4, we study order statistics of concomitants of subsamples. Let Vs:m

be the sth order statistic of the concomitants subset {Y[i:n], i = n − m + 1, . . . , n}, and

Wt:n−m be the tth order statistic of the concomitants subset {Y[j:n], j = 1, . . . , n −m}. In

Chapter 3, we study the distributions of Vs:m and Wt:n−m separately. Both the finite-sample

and asymptotic distribution (in the quantile case) are derived for Vs:m and Wt:n−m. The

rates of convergence in these distributions are also studied, and we propose a higher order
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approximation to these distributions with better performance even for moderate sample

sizes.

The joint distribution of Vs:m and Wt:n−m is then studied in Chapter 4. We first derive

the finite-sample distribution of (Vs:m,Wt:n−m) using a conditioning argument. Then the

asymptotic distribution of (Vs:m,Wt:n−m) for both the quantile and extremal cases are ob-

tained. Finally the results are applied to study the probability of an event of interest in a

selection procedure. We also apply the results to study the power of identifying the disease-

susceptible gene in two-stage designs for gene-disease association studies as discussed in

Satagopan et al. (2002) and Satagopan et al. (2004).

In Chapter 5, we consider the problem of estimating the conditional mean of response

variable given that the explanatory variable is at specific quantiles of its distribution. This

is closely related to the usual bivariate regression problem, but differs from it in that the

evaluation point is itself an unknown parameter. We propose two estimators based on

concomitants of order statistics. The first class of estimators is a kernel smoothing estimator

generalized from Yang (1981), and the second estimator, motivated by Mausser (2001), can

be thought of as a “bootstrap” estimator. The asymptotic properties of these estimators are

studied, and we compare the finite sample behavior of these estimators based on Monte

Carlo studies.

In Chapter 6 we conclude with a summary of the results derived in previous chapters.

A general discussion on future work related to this dissertation is also provided.
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CHAPTER 2

CONCOMITANTS OF ORDER STATISTICS FOR DEPENDENT
SAMPLES

In this Chapter, we will study the concomitants of order statistics for dependent sam-

ples. In particular we consider the case in which the bivariate random vectors (Xi, Yi),

i = 1, . . . , n, are observations from some common distribution with cdf F (x, y), but no

longer mutually independent. Section 2.1 describes the basic settings under which the con-

comitants of order statistics are studied, and the finite-sample and asymptotic distributions

of concomitants are examined in Section 2.2 and 2.3.

2.1 Basic Setting

Suppose (Xi, Yi), i = 1, . . . , n, are a sequence of random vectors such that

Yi = m(Xi) + εi, i = 1, . . . , n (2.1)

where m is some smooth regression function; εi’s are i.i.d error terms with standard normal

distribution. Unlike the usual i.i.d assumption on the Xi’s, we assume that they come from

some common distribution with cdf FX(x), but have some form of dependence structure

among them. Specifically we assume that the Xi’s are multivariate normal with mean
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vector 0, and variance-covariance matrix Σ where

Σ =




1 ρ · · · ρ
ρ 1 · · · ρ
... . . . ...
ρ · · · ρ 1


 . (2.2)

The condition ρ > −1/(n − 1) is needed to ensure the positive definiteness of Σ,

but we will assume that ρ > 0 in our discussion. Notice that the Xi’s are identically

distributed as standard normal, and are equally correlated. As usual, we assume the error

terms εi’s are independent of the Xi’s. Under this setting, the random vectors are no longer

i.i.d, but they follow the common distribution F (x, y), and the random variates Yi’s are

conditionally independent given the values of Xi’s. Using similar arguments as in the proof

of Proposition 1.2.2 we can establish the conditional independence of the Y concomitants

given the values of Xi’s. The conditional independence of the Y concomitants given the

values of X order statistics will also hold since the (Xi, Yi)’s are identically distributed (see

Remark 1.2.1).

2.2 Finite-Sample Distribution of Y[r:n]

In this section we will derive the distribution of concomitants Y[i:n] under the conditions

specified in Section 2.1.

From (2.1), we have

Y[r:n] = m(Xr:n) + ε[r] (2.3)

where ε[r] is the error term associated with Xr:n. Since the εi’s are independent of the Xi’s,

ε[r] has the same distribution as εi’s, i.e., ε[r] ∼ N(0, 1). So we have

[Y[r:n]|Xr:n = x] ∼ N(m(x), 1). (2.4)
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The density for Y[r:n] can then be derived as

fY[r:n]
(y) =

∫
φ(y −m(x))fXr:n(x)dx, (2.5)

where fr:n(·) is the density for the rth order statistic of the X sample values.

For equally correlated multivariate normal variates, as demonstrated in David and Na-

garaja (2003, p100-101), the Xi’s can be represented as

Xi =
√

ρZ0 +
√

1− ρZi, for ρ > 0, (2.6)

where Zi, i = 0, . . . , n, are i.i.d standard normal variates. So the rth order statistic of X

sample can be expressed as

Xr:n =
√

ρZ0 +
√

1− ρZr:n, (2.7)

where Zr:n is the rth order statistic of (Z1, . . . , Zn). Then the cdf for Xr:n can be derived

as

FXr:n(x) = P(Xr:n ≤ x)

=

∫
P

(
Zr:n ≤

x−√ρz√
1− ρ

)
φ(z)dz

=
n∑

k=r

(
n

k

) ∫ [
Φ

(
x−√ρz√

1− ρ

)]k [
1− Φ

(
x−√ρz√

1− ρ

)]n−k

φ(z)dz, (2.8)

and the pdf for Xr:n is given by:

fXr:n(x) =
1√

1− ρ

∫
fZr:n

(
x−√ρz√

1− ρ

)
φ(z)dz, (2.9)

with

fZr:n

(
x−√ρz√

1− ρ

)

=
n!

(r − 1)!(n− r)!

[
Φ

(
x−√ρz√

1− ρ

)]r−1 [
1− Φ

(
x−√ρz√

1− ρ

)]n−r

φ

(
x−√ρz√

1− ρ

)
.

(2.10)
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Example 2.2.1. (Simple Linear Regression) Suppose the Xi and Yi, i = 1, . . . , n, are

linked through the following simple linear regression model:

Yi = βXi + εi. (2.11)

Then we have

[Y[r:n]|Xr:n = x] ∼ N(βx, 1), (2.12)

and the density for Y[r:n] is given by

fY[r:n]
(y) =

∫
φ(y − βx)fXr:n(x)dx (2.13)

with fXr:n(x) given by (2.9).

2.3 Asymptotic Distribution of Y[r:n]

From (2.3), we see that the asymptotic distribution of Y[r:n] will depend on the limiting

behavior of Xr:n as well as the regression function m. We consider two cases, namely the

quantile case and the extremal case, while deriving the asymptotic distribution of Y[r:n].

2.3.1 The Quantile Case

In this case r/n → p as n →∞. By (2.7), and the fact that

Zr:n
P→ Φ−1(p) (2.14)

we have

Xr:n
L→ N(

√
1− ρΦ−1(p), ρ). (2.15)

With the assumption of continuity on the mean regression function m, the limiting

distribution of Y[r:n] is just the convolution of m(X∗) and the standard normal distribution
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with X∗ ∼ N(
√

1− ρΦ−1(p), ρ), i.e.,

Y[r:n]
L→ m(X∗) + Z (2.16)

where

X∗ ∼ N(
√

1− ρΦ−1(p), ρ)

and

Z ∼ N(0, 1).

The result given by (2.16) can be readily extended to derive the asymptotic distribution

of (Y[r1:n], . . . , Y[rk:n]), where ri, i = 1, . . . , k, are constants such that as n →∞, ri/n → pi

with p1 < · · · < pk.

Theorem 2.3.1. Suppose (Xi, Yi), i = 1, . . . , n, are a sequence of random vectors such

that

Yi = m(Xi) + εi, i = 1, . . . , n, (2.17)

where m is some continuous regression function; εi’s are i.i.d error terms with standard

normal distribution, and are assumed to be independent of Xi’s. Assume that the Xi’s are

distributed as equally correlated multivariate normal with zero mean vector and correla-

tion ρ. Then for ri, i = 1, . . . , k, such that as n → ∞, ri/n → pi with 0 < p1 < · · · <

pk < 1, we have

(Y[r1:n], . . . , Y[rk:n])
T L→ (m(X∗

1 ) + Z1, . . . ,m(X∗
k) + Zk)

T (2.18)

where (X∗
1 , . . . , X

∗
k)T is a random vector defined to be:

(X∗
1 , . . . , X∗

k)T := (
√

1− ρΦ−1(p1) +
√

ρZ0, . . . ,
√

1− ρΦ−1(pk) +
√

ρZ0)
T

with Z0 being a standard normal variate; and Zi’s are i.i.d standard normal variates which

are assumed to be independent of the X∗
i ’s.
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Proof. Note that by (2.1) we have

(Y[r1:n], . . . , Y[rk:n])
T d

= (m(Xr1:n) + Z1, . . . , m(Xrk:n) + Zk)
T. (2.19)

While by (2.7), and the fact that

Zri:n
P→ Φ−1(pi), i = 1, . . . , k, (2.20)

we have

(Xr1:n, . . . , Xrk:n)
L→ (

√
1− ρΦ−1(p1) +

√
ρZ0, . . . ,

√
1− ρΦ−1(pk) +

√
ρZ0)

T.

Since m is assumed to be continuous, by Ferguson (1996, Theorem 6, p39), the desired

result follows readily.

Example 2.3.1. (Simple Linear Regression, continued) With the simple linear regression

model as given by (2.11), for any ri, i = 1, . . . , k, such that as n → ∞, ri/n → pi with

0 < p1 < · · · < pk < 1, by Theorem 2.3.1 the limiting distribution for (Y[r1:n], . . . , Y[rk:n])

can be obtained. It follows that

(Y[r1:n], . . . , Y[rk:n])
T L→ Nk(µ

∗,Σ∗), (2.21)

where

µ∗ =
(
β
√

1− ρΦ−1(p1), . . . , β
√

1− ρΦ−1(pk)
)T

and

Σ∗ = β2ρJk + Ik

with Jk being the k × k matrix of 1’s, and Ik being the k × k identity matrix. We see that

the limiting distribution of (Y[r1:n], . . . , Y[rk:n]) is also an equally correlated multivariate

normal with common correlation β2ρ/(1 + β2ρ). This dependence structure is the same as

in a random effects model.
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2.3.2 The Extremal Case

Suppose r = n− k + 1 for some fixed k as n →∞. By the well-known fact that

Zr:n −
√

2 log n
P→ 0

we have from (2.7) that

Xr:n − an
L→ N(0, ρ) (2.22)

with an =
√

2(1− ρ) log n.

To derive the asymptotic distribution of Y[r:n], we first need to examine the limiting

behavior of m(Xr:n), which in turn depends on the mean regression function m. But as

demonstrated by the following Lemma, under appropriate assumptions on m, m(Xr:n) is

asymptotically normal with appropriate normalization.

Lemma 2.3.1. Suppose Xr:n is the rth order statistic of a random vector, (X1, . . . , Xn),

from the equally correlated multivariate normal distribution as given by (2.2). Now assume

that the mean regression function in (2.1) is differentiable up to lth order for some fixed

l > 1, and m(l)(x) is continuous and bounded away from zero in the following sense

0 < lim inf
x→∞

m(l)(x) ≤ lim sup
x→∞

m(l)(x) < M

or

−M < lim inf
x→∞

m(l)(x) ≤ lim sup
x→∞

m(l)(x) < 0

for some M > 0. Then as n →∞,

m(Xr:n)−m(an)

m′(an)

L→ N(0, ρ) (2.23)

where r = n− k + 1 for some fixed k as n →∞, and an =
√

2(1− ρ) log n.
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Proof. Note by Taylor series expansion

m(Xr:n) = m(an) + m′(an)(Xr:n − an) + · · ·

+m(l−1)(an)
(Xr:n − an)l−1

(l − 1)!
+ m(l)(X∗)

(Xr:n − an)l

l!
,

where X∗ is somewhere between Xr:n and an, and hence is a random quantity depending

on Xr:n. It is obvious that X∗ tends to infinity as n →∞ in probability.

So assuming m′(an) 6= 0, we have

m(Xr:n)−m(an)

m′(an)
= (Xr:n − an) +

l−1∑
j=2

m(j)(an)

m′(an)

(Xr:n − an)j

j!
+

m(l)(X∗)
m′(an)

(Xr:n − an)l

l!
.

(2.24)

By the fact that m(l)(x) is continuous and bounded, we have m(l)(X∗) is bounded in

probability. Also from (2.22) we know that

Xr:n − an
L→ N(0, ρ).

So it suffices to show that

m(j)(x)

m′(x)
→ 0, as x →∞ (2.25)

for j = 2, . . . , l − 1, and

m′(x) →∞, as x →∞. (2.26)

If 0 < lim infx→∞ m(l)(x) ≤ lim supx→∞ m(l)(x) < M , then there exists some x0 such

that for any x > x0, we have

C1 < m(l)(x) < C2

where 0 < C1 < C2 are some constants. So we have, for all x > x0,

C1(x− x0) + m(l−1)(x0) < m(l−1)(x) < C2(x− x0) + m(l−1)(x0)
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which implies

m(l−1)(x) = O(x),

for x > x0. And for k = 2, . . . , l − 1, note that

m(l−k)(x) =
k−1∑
i=0

(x− x0)
i

i!
m(l−k+i)(x0) +

(x− x0)
k

k!
m(l)(x∗) (2.27)

with x∗ be some value between x and x0. Thus it follows that m(l−k)(x) = O(xk) for

x > x0, k = 2, . . . , l − 1. So (2.25) and (2.26) easily follow. Similar arguments can be

used for the case −M < lim infx→∞ m(l)(x) ≤ lim supx→∞ m(l)(x) < 0. So the Lemma

is proved.

Remark 2.3.1. The assumptions we made about the mean regression function m(·) will

hold for the polynomials. In particular, if m(·) is a polynomial of degree s, then the as-

sumptions will hold with l = s.

Then the limiting distribution of Y[r:n] for the extremal case can be derived as the fol-

lowing Theorem.

Theorem 2.3.2. With the assumptions on m(·) as specified in Lemma 2.3.1, we have

Y[r:n] −m(an)

m′(an)

L→ N(0, ρ) (2.28)

as n →∞ with r = n− k + 1 for some fixed k, and an =
√

2(1− ρ) log n.

Proof. By Lemma 2.3.1 we have

m(Xr:n)−m(an)

m′(an)

L→ N(0, ρ) (2.29)

and m′(x) →∞ as x →∞ under the assumptions on m(·). Then the desired results easily

follow from (2.3).
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Remark 2.3.2. Similar result will hold for the concomitant of upper intermediate order

statistic, i.e., Y[r:n], with r = n − k + 1, where k → ∞, and k/n → 0 as n → ∞. By

the following fact about upper intermediate order statistics (see, for example, David and

Nagaraja, 2003, p312)

Zn−k+1:n − Φ−1

(
n− k

n

)
P→ 0, (2.30)

we see that (2.28) holds with an = Φ−1
(

n−k
n

)
.

Example 2.3.2. (Simple Linear Regression, continued) With the simple linear regression

model as given by (2.11), the limiting distribution of Y[n−k+1:n], with k being some fixed

integer, is normal and

Y[r:n] − βan
L→ N(0, β2ρ) (2.31)

with an =
√

2(1− ρ) log n.
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CHAPTER 3

DISTRIBUTION OF A SINGLE ORDER STATISTIC OF SUBSETS
OF CONCOMITANTS OF ORDER STATISTICS

3.1 Introduction

In this chapter we will study the distributions of Vs:m and Wt:n−m respectively, where

Vs:m is the sth order statistic of the subset {Y[i:n], i = n−m+ 1, . . . , n}, and Wt:n−m is the

tth order statistic of the subset {Y[j:n], j = 1, . . . , n−m} of concomitants.

Nagaraja and David (1994) discussed the finite-sample and asymptotic distributions of

Vs:m with s = m, i.e., the maxima of the corresponding subset of concomitants. They

showed that the limiting distribution of Vm:m does not depend on the correlation between

X and Y . Here we obtain the corresponding results for general s and t.

Related to this work is the study by Chu et al. (1999), in which the authors investigated

the asymptotic distributions of Wrn,sn,n = min(Y[rn:n], Y[rn+1:n], . . . , Y[sn:n]), Vrn,sn,n =

max(Y[rn:n], . . . , Y[sn:n]), as well as some other functionals of Wrn,sn,n and Vrn,sn,n, where

{rn} and {sn} are two integer sequences such that 0 ≤ rn ≤ sn ≤ n, and rn/n → p

for 0 < p < 1 as n → ∞. The results were applied to study the problem of locating the

maximum of a nonparametric regression function as discussed in Chen et al. (1996).
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In Section 3.2, the finite sample distributions of Vs:m and Wt:n−m are derived using con-

ditioning argument. In Section 3.3 the asymptotic distribution of Vs:m for the quantile case,

i.e. the situation in which m = [np0], s = [mp1], for 0 < p < 1, and n → ∞, is obtained

under appropriate regularity conditions. We also establish the rate of convergence in the

distribution of Vs:m there, and propose a second order approximation to the distribution of

Vs:m. In Section 3.4 similar results for the asymptotic distribution of Wt:n−m are derived

for the quantile case. For the extremal case where s and t are kept fixed while n and m ap-

proach infinity, we defer the discussion until Chapter 4, and we will derive the asymptotic

joint distribution of (Vs:m,Wt:n−m) there.

3.2 Finite-Sample Distributions of Vs:m and Wt:n−m

To derive the finite-sample distributions of Vs:m and Wt:n−m we need the following

lemma:

Lemma 3.2.1. Given Xn−m:n = x, Vs:m behaves like the sth order statistic of a random

sample of size m from the cdf F1(·|x); given Xn−m+1:n = x; Wt:n−m behaves like the tth

order statistic of a random sample of size n−m from the cdf F2(·|x).

Lemma 3.2.1 can be proved using Theorem 2 in Kaufmann and Reiss (1992). Here we

give another proof using the Markovian property of order statistics.
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Proof. First notice that the conditional joint density for (Y[n−m+1:n], . . . , Y[n:n]) given Xn−m:n =

x is given by:

fY[n−m+1:n],...,Y[n:n]|Xn−m:n=x(y1, . . . , ym)

=

∫
. . .

∫
fY[n−m+1:n],...,Y[n:n]|Xn−m:n=x,Xn−m+1:n=v1,...,Xn:n=vm(y1, . . . , ym)

× fXn−m+1:n,...,Xn:n|Xn−m:n=x(v1, . . . , vm)dv1 . . . dvm

=

∫
. . .

∫ m∏
i=1

fY |X=vi
(yi)fXn−m+1:n,...,Xn:n|Xn−m:n=x(v1, . . . , vm)dv1 . . . dvm.

Next recall that given Xn−m:n = x, (Xn−m+1:n, . . . , Xn:n) behave like the order statis-

tics of a random sample of size m from the cdf

G(t) =
FX(t)− FX(x)

1− FX(x)
I{t>x}

(David and Nagaraja, 2003, p17). Hence given Xn−m:n = x, Y[n−m+i:n] (i = 1, . . . , m) has

the same distribution as the concomitant of ith order statistic of a random sample of size m

from the bivariate distribution (X∗, Y ∗) with joint cdf G(x, y), such that

GX∗(t) =
FX(t)− FX(x)

1− FX(x)
I{t>x}; GY ∗|X∗(y) = FY |X(y) (3.1)

Also notice that the mapping associated with taking order statistics is invariant to the

mapping associated with taking concomitants, i.e., if we define

φ((x1, y1), . . . , (xm, ym)) ≡ yi:m

and

ψ((x1, y1), . . . , (xm, ym)) ≡ ((x1:m, y[1:m]), . . . , (xm:m, y[m:m])),

then

φ ◦ ψ((x1, y1), . . . , (xm, ym)) = φ((x1, y1), . . . , (xm, ym)).
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So it follows that given Xn−m:n = x, Vs:m, which is the sth order statistic of (Y[n−m+1:n],

. . . , Y[n:n]), behaves like the sth order statistic of a random sample of size m from the

marginal distribution of Y ∗ derived from G(x, y) of (3.1), which is just F1(·|x). Similar

argument can be used to derive the result on Wt:n−m.

By Lemma 3.2.1, we can derive the cdf, FVs:m(v), of Vs:m as follows:

FVs:m(v) =

∫
P(Vs:m ≤ v|Xn−m:n = x)dFXn−m:n(x) (3.2)

where

P(Vs:m ≤ v|Xn−m:n = x) =
m∑

i=s

(
m

i

)
[F1(v|x)]i[1− F1(v|x)]m−i

and FXn−m:n(·) is the cdf of the order statistic Xn−m:n.

Similarly the cdf of Wt:n−m can be derived as:

FWt:n−m(w) =

∫
P(Wt:n−m ≤ w|Xn−m+1:n = x)dFXn−m+1:n(x) (3.3)

where

P(Wt:n−m ≤ w|Xn−m+1:n = x) =
n−m∑
i=t

(
n−m

i

)
[F2(w|x)]i[1− F2(w|x)]n−m−i

and FXn−m+1:n(·) is the cdf of the order statistic Xn−m+1:n.

3.3 Asymptotic Distribution of Vs:m in the Quantile Case

In this section we derive the asymptotic distribution of Vs:m for the quantile case in

which s = [mp1], m = [np0] for some p0 and p1 such that 0 < pi < 1, i = 0, 1, as n →∞.

The rate of convergence in the distribution of Vs:m is also established, and we propose an

improved approximation to the cdf of Vs:m that works well even for moderate sample sizes.
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3.3.1 The Main Result

The main result regarding the asymptotic distribution of Vs:m in the quantile case is

given by the following Theorem.

Theorem 3.3.1. Let (Xi, Yi), i = 1, 2, . . . , n, be a random sample from the absolutely

continuous bivariate distribution F (x, y), and we assume the joint density f(x, y) is con-

tinuous in both arguments. Suppose m = [np0] and s = [mp1], 0 < pi < 1, i = 0, 1, as

n →∞. Let

x0 = F−1
X (q0), (3.4)

with q0 = 1− p0, and

a = F−1
1 (p1|x0), (3.5)

and we assume that f(x0, a) > 0. Then we have

Vs:m − a

bn

L→ Z1 + g1(x0)Z2 (3.6)

where

bn =

[√
np0f1(a|x0)√

p1q1

]−1

, (3.7)

Z1 and Z2 are independent standard normal variables, and

g1(x0) =

√
p0q0

fX(x0)

[√
p0f1(a|x0)√

p1q1

]
∂F−1

1 (p1|x)

∂x
|x=x0 (3.8)

To prove Theorem 3.3.1 we need the following lemma.

Lemma 3.3.1. Let {Fn}∞n=1 be a family of continuous cdfs. For each n, let Xs:n be the sth

order statistic of a random sample of size n from the distribution Fn. Suppose s = [np0]
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and n → ∞, and fn(ξn(p0)) > 0 for each n, where ξn(p0) is the p0-th quantile of the

distribution Fn. Then we have

√
n(Xs:n − ξn(p0))fn(ξn(p0))√

p0q0

L→ N(0, 1).

Proof. By the representation of quantile as in Ghosh (1971, Theorem 1), we have:

Xs:n = ξn(p0)− F̂n(ξn(p0))− p0

fn(ξn(p0))
+ Rn

where F̂n(ξn(p0)) = 1
n

∑n
k=1 I{Xk≤ξn(p0)} is the empirical cdf associated with the ran-

dom sample of size n from the distribution Fn, and Rn is the remainder such that Rn =

op(1/
√

n).

So we have

√
n(Xs:n − ξn(p0))fn(ξn(p0)) = −√n(F̂n(ξn(p0))− p0) + op(1).

And by Lindeberg’s double array central limit theorem we have

√
n(F̂n(ξn(p0))− p0)

L→ N(0, p0q0).

Thus the desired result follows.

Proof of Theorem 3.3.1

. • By the continuity of f(x, y), it can be proved that F−1
1 (p1|x) is differentiable with

respect to x at x0 as follows:
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Let h(x) = F−1
1 (p1|x). This means

∫ h(x)

−∞
∫∞

x
f(u, v)dudv

1− FX(x)
= p1,

or ∫ h(x)

−∞

∫ ∞

x

f(u, v)dudv = p1(1− FX(x)).

So we have
d

dx

∫ h(x)

−∞

∫ ∞

x

f(u, v)dudv = −p1fX(x). (3.9)

Notice that

d

dx

∫ h(x)

−∞

∫ ∞

x

f(u, v)dudv

= lim
∆→0

∫ h(x+∆)

−∞
∫∞

x+∆
f(u, v)dudv − ∫ h(x)

−∞
∫∞

x
f(u, v)dudv

∆

= lim
∆→0

∫ h(x+∆)

h(x)

∫∞
x+∆

f(u, v)dudv − ∫ h(x)

−∞
∫ x+∆

x
f(u, v)dudv

∆

= lim
∆→0

∫ h(x+∆)

h(x)

∫∞
x

f(u, v)dudv − ∫ h(x+∆)

h(x)

∫ x+∆

x
f(u, v)dudv

∆

− lim
∆→0

∫ h(x)

−∞
f(u∗, v)dv, where u∗ ∈ (x, x + ∆)

=

∫ ∞

x

lim
∆→0

∫ h(x+∆)

h(x)
f(u, v)dv

∆
du−

∫ h(x)

−∞
f(x, v)dv

=

∫ ∞

x

lim
∆→0

f(u, v∗)× [h(x + ∆)− h(x)]

∆
du−

∫ h(x)

−∞
f(x, v)dv

where v∗ ∈ (h(x), h(x + ∆))

=

(
lim
∆→0

h(x + ∆)− h(x)

∆

)
×

∫ ∞

x

f(u, h(x))du−
∫ h(x)

−∞
f(x, v)dv.

So from (3.9)

h′(x) =

∫ h(x)

−∞ f(x, v)dv − p1fX(x)∫∞
x

f(u, h(x))du
. (3.10)
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• Let Vn = (Vs:m − a)/bn,

c0 =
√

p0q0/fX(x0); Zn =
√

nfX(x0)(Xn−m:n − x0)/
√

p0q0; (3.11)

and

an(z) = F−1
1 (p1|x0 + c0z/

√
n). (3.12)

Notice

P (Vn ≤ v)

=E [P (Vn ≤ v|Zn)]

=

∫
P (Vn ≤ v|Zn = z)dFZn(z)

=

∫
P (Vn ≤ v|Xn−m:n = x0 + c0z/

√
n)dFZn(z)

=

∫
P (

Vs:m − an(z)

bn

+
an(z)− a

bn

≤ v|Xn−m:n = x0 + c0z/
√

n)dFZn(z). (3.13)

• Note the following facts:

(i) Zn defined in (3.11) converges in distribution to N(0, 1). This follows from the

well-known fact about the limiting distribution of a central order statistic.

(ii) ∀ z ∈ R, given Xn−m:n = x0 + c0z/
√

n

Vs:m − an(z)

bn

L→ N(0, 1).

This follows from Lemma 1 and the fact that conditional on Xn−m:n = x0 +

c0z/
√

n, Vs:m behaves the same as the sth order statistic of the random sample

of size m from the distribution F1(·|x0 + c0z/
√

n).
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(iii)

an(z)− a

bn

=
F−1

1 (p1|x0 + c0z/
√

n)− F−1
1 (p1|x0)[√

np0f1(a|x0)√
p1q1

]−1

= h′(u∗)c0z/
√

n

[√
np0f1(a|x0)√

p1q1

]

→ g1(x0)z

as n → ∞, where h′ is the partial derivative of F−1
1 (p1|x) w.r.t. x, u∗ ∈

(x0, x0 + c0z/
√

n), and g1 is given by (3.8).

Upon applying the Bounded Convergence Theorem to the expression (3.13), we con-

clude that

P(Vn ≤ v) →
∫

Φ(v − g1(x0)z)dΦ(z), as n →∞.

So (3.6) easily follows from the convolution formula.

Remark 3.3.1. Notice that (3.6) is equivalent to

√
n(Vs:m − a)

L→ bZ1 + h1(x0)Z2 (3.14)

where

a = F−1
1 (p1|x0); b =

√
p1q1√

p0f1(a|x0)
, (3.15)

Z1 and Z2 are independent standard normal variables, and

h1(x0) =

√
p0q0

fX(x0)
· ∂F−1

1 (p1|x)

∂x
|x=x0 (3.16)

=

√
p0q0

fX(x0)
·
∫ a

−∞ f(x0, v)dv − p1fX(x0)∫∞
x0

f(u, a)du
(3.17)

=

√
q0(F3(a|x0)− F1(a|x0))√

p0f1(a|x0)
. (3.18)
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Example 3.3.1. Suppose we are sampling from a standard bivariate normal distribution

given by

(X,Y ) ∼ N

((
0

0

)
,

(
1 ρ
ρ 1

))
. (3.19)

Note that

f1(y|x0) =

[
1− Φ

(
x0 − ρy√

1− ρ2

)]
φ(y)/p0,

and a = F−1
1 (p1|x0) satisfies the following equation:

∫ a

−∞
f1(y|x0)dy − p1p0 = 0 (3.20)

or is the unique solution to

Φ(a)−
∫ a

−∞
Φ

(
x0 − ρy√

1− ρ2

)
φ(y)dy = p0p1

which can be solved numerically using Newton-Raphson method.

Further b in (3.15) is given by

b =

√
p1q1√

p0f1(a|x0)
=

√
p1q1p0[

1− Φ

(
x0−ρa√

1−ρ2

)]
φ(a)

. (3.21)

From (3.10) we know that:

∂F−1
1 (p1|x)

∂x
|x=x0 =

∫ a

−∞ f(x0, v)dv − p1fX(x0)∫∞
x0

f(u, a)du

=

Φ

(
a−ρx0√

1−ρ2

)
φ(x0)− p1φ(x0)

[
1− Φ

(
x0−ρa√

1−ρ2

)]
φ(a)

.
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So we have

h1(x0) =

√
p0q0

fX(x0)
· ∂F−1

1 (p1|x)

∂x
|x=x0 (3.22)

=

√
p0q0

φ(x0)
·
Φ

(
a−ρx0√

1−ρ2

)
φ(x0)− p1φ(x0)

[
1− Φ

(
x0−ρa√

1−ρ2

)]
φ(a)

(3.23)

=

√
p0q0

(
Φ

(
a−ρx0√

1−ρ2

)
− p1

)

[
1− Φ

(
x0−ρa√

1−ρ2

)]
φ(a)

. (3.24)

3.3.2 Rate of Convergence

We just showed that after appropriate normalization, Vs:m will converge in law to the

normal distribution for the quantile case. Next we will explore its rate of convergence.

First we observe the following Lemma regarding the rate of convergence in the expec-

tation of a bounded continuous function of an order statistic in the quantile case.

Lemma 3.3.2. Suppose Xr:n is the rth order statistic of a random sample of size n from a

distribution with cdf and pdf, F (x) and f(x) respectively, and assume r/n − p = O(n−1)

as n →∞. Let F have m + 1 bounded derivatives in a neighborhood of ξp = F−1(p) for

m > 1 and f(ξp) > 0. Define

Zn =

√
nf(ξp)

σp

(Xr:n − ξp) (3.25)

with σp =
√

p(1− p). Then for any bounded and continuous function H defined on the

real line, we have

E(H(Zn)) → E(H(Z)) (3.26)
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and

|E(H(Zn))− E(H(Z))| = O(n−1/2), (3.27)

where Z is a standard normal random variable.

Proof. The convergence of the expectation given by (3.26) will follow from the well-known

fact that Zn
L→ N(0, 1), and the assumption that H is a bounded and continuous function.

To prove (3.27), let fn be the pdf of Zn. With the assumption that F have m+1 bounded

derivatives in a neighborhood of ξp = F−1(p) for m > 1 and f(ξp) > 0, according to a

result in Reiss (1989, p147-148), we have

sup
B∈B

∣∣∣∣P(Zn ∈ B)−
∫

B

dGn(z)

∣∣∣∣ ≤ Cmn−m/2 (3.28)

for some constant Cm (not depending on n), where B is the Borel field on R, and

Gn(z) = Φ(z) + φ(z)
m−1∑
i=1

n−i/2Si,n(z) (3.29)

with Si,n(z) being a polynomial of degree less than or equal to 3i − 1, and having coeffi-

cients uniformly bounded over n. Moreover,

|fn(z)− gn(z)| ≤ Dmn−m/2φ(z)(1 + |z|3m) (3.30)

for all z ∈ [− log n, log n], where Dm is some constant not depending on n, and gn(z) =

G′
n(z).

Notice

E(H(Zn)) =

∫ log n

− log n

H(z)fn(z)dz + E(H(Zn)I(|Zn| > log n)), (3.31)

and by (3.30) we have

∫ log n

− log n

H(z)gn(z)dz−O(n−m/2) ≤
∫ log n

− log n

H(z)fn(z)dz ≤
∫ log n

− log n

H(z)gn(z)dz+O(n−m/2).

(3.32)
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It is easy to verify that

∫ log n

− log n

H(z)gn(z)dz =

∫ log n

− log n

H(z)φ(z)dz + O(n−1/2). (3.33)

Plugging (3.32) and (3.33) into (3.31) we have:

E(H(Z))− E(H(Z)I(|Z| > log n)) + E(H(Zn)I(|Zn| > log n)) + O(n−1/2)
≤ E(H(Zn))
≤ E(H(Z))− E(H(Z)I(|Z| > log n)) + E(H(Zn)I(|Zn| > log n)) + O(n−1/2).

(3.34)

And by (3.28) and the fact that H is bounded we have

E(H(Zn)I(|Zn| > log n))− E(H(Z)I(|Z| > log n)) = O(n−1/2) (3.35)

which finishes the proof.

Remark 3.3.2. The assumption that F have m + 1 bounded derivatives in a neighborhood

of ξp = F−1(p) for m > 1 is needed for establishing (3.28) and (3.30). For our purpose

this assumption only needs to hold for m = 2.

Now we have the following result regarding the rate of convergence for the asymptotic

distribution of Vs:m.

Theorem 3.3.2. Along with the assumptions of Theorem 3.3.1 and Lemma 3.3.2, we as-

sume that F−1
1 (p1|x), as a function of x, has second order derivative and the derivative is

bounded in a neighborhood of x0 = F−1
X (p0). Then we have

sup
v

∣∣∣∣∣P
(

Vs:m − a

bn

≤ v

)
− Φ

(
v√

1 + g2
1(x0)

)∣∣∣∣∣ ≤ O(n−1/2). (3.36)

Proof. As in the proof of Theorem 3.3.1, let Vn and Zn be the normalized Vs:m and Xn−m:n,

respectively; that is,

Vn =
Vs:m − a

bn

; and Zn =

√
nfX(x0)

σp0

(Xn−m:n − x0) (3.37)
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with x0 = F−1
X (1− p0) and σp0 =

√
p0(1− p0).

From the proof of Theorem 3.3.1, we know that

P(Vn ≤ v) = E

[
P

(
Vs:m − an(Zn)

bn
+ gn(Zn) ≤ v|Zn

)]
(3.38)

where an(z) is given in (3.12), and gn(z) = (an(z)−a)/bn approaches g1(x0)z as n →∞.

Also notice that

gn(z) =
F−1

1 (p1|x0 + c0z/
√

n)− F−1
1 (p1|x0)

bn

=

√
np0f1(a|x0)√

p1q1

[
c0z√

n

∂

∂x
F−1

1 (p1|x)|x=x0 +
1

2

(
c0z√

n

)2
∂2

∂x2
F−1

1 (p1|x)|x=u∗

]

= g1(x0)z +
z2

√
n

M(z), (3.39)

where u∗ is some value within (x0, x0 + c0z/
√

n), M(z) is some constant free of n. This is

because of the assumption that F−1
1 (p1|x), as a function of x, has second order derivative

and the derivative is bounded in a neighborhood of x0 = F−1
X (p0). So for any z ∈ R, gn(z)

converges to g1(x0)z at a rate of order n−1/2.

By (3.28) we have for any z ∈ R

sup
v

∣∣∣∣P
(

Vs:m − an(z)

bn
+ gn(z) ≤ v|Zn = z

)
− Φ(v − gn(z))

∣∣∣∣ ≤ O(n−1/2). (3.40)

So

sup
v
|P(Vn ≤ v)− E[Φ(v − gn(Zn))]| ≤ O(n−1/2). (3.41)

While

|E {Φ [v − gn(Zn)]} − E {Φ [v − g1(x0)Z]}|

≤ |E {Φ [v − gn(Zn)]} − E {Φ [v − g1(x0)Zn]}|

+ |E {Φ [v − g1(x0)Zn]} − E {Φ [v − g1(x0)Z]}| , (3.42)
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by (3.39) we have

|E[Φ(v − gn(Zn))]− E[Φ(v − g1(x0)Zn)]| ≤ O(n−1/2), (3.43)

and (3.27) of Lemma 3.3.2 implies that

|E[Φ(v − g1(x0)Zn)]− E[Φ(v − g1(x0)Z)]| ≤ O(n−1/2). (3.44)

So we have

|E[Φ(v − gn(Zn))]− E[Φ(v − g1(x0)Z)]| ≤ O(n−1/2) (3.45)

and the desired result follows.

Example 3.3.2. Suppose the population distribution is bivariate standard normal with cor-

relation ρ. From Theorem 3.3.1 we know that for sufficiently large n, Vs:m is approximately

N
(
a, (b2 + h2

1(x0))/n
)

with a, b and h1(x0) given by (3.20), (3.21) and (3.24), respectively.

Figure 3.1 shows the histograms for the 1000 simulated sample values of Vs:m and the

density curves of the corresponding normal distributions for different values of ρ, with

n = 400, p0 = 0.2, and p1 = 0.3, that is, m = 100, s = 30. From the plots we observe

that the histograms of Vs:m samples come very close to the corresponding normal density

curves.

Next we study numerically the accuracy of the normal approximation to the distribu-

tion of Vs:m. We first estimate the cdf of the normalized Vs:m, namely
√

n(Vs:m − a), by

Monte Carlo simulations with 160000 trials. Then we compute the difference between the

estimated cdf and the cdf provided by the normal approximation N (0, (b2 + h2
1(x0))/n)
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Figure 3.1: Histograms of Simulated Vs:m vs. the Corresponding Normal Density Curves
for ρ = 0.2, 0.4, 0.6, 0.8.

for range of values within three standard deviations around the mean. We carry out these

calculations for sample sizes n = 100, 400, 900, 1600, 2500 and 10000, and we set ρ = 0.4,

p0 = 0.5, and p1 = 0.3. Figure 3.2 gives the estimated true cdf for Vs:m along with the

cdf by normal approximation for different sample sizes. From Figure 3.2 we observe that

the normal approximation always underestimates the true cdf of Vs:m in our sample cases.

But this is not true in general. Limited simulation studies show that in some sample cases,

the normal approximation overestimate the true cdf of Vs:m. Figure 3.3 gives the plots of

the difference between the simulated cdf and the approximation provided by the associated

normal cdf vs. different values of Vs:m for different sample sizes. We observe that the

normal approximation achieves better performance at the two tails than in the center of the

distribution, and overall the approximation is fairly good for a sample of size 400.
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Figure 3.2: Estimated True cdf vs. the cdf by the Normal Approximation of Vs:m for the
Standard Bivariate Normal Population when ρ = 0.4, p0 = 0.5 and p1 = 0.3 (m = 0.5n,
s = 0.15n).
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Figure 3.3: Absolute Errors of the Normal Approximation to the Distribution of Vs:m for the
Standard Bivariate Normal Population when ρ = 0.4, p0 = 0.5 and p1 = 0.3 (m = 0.5n,
s = 0.15n).

To examine the rate of convergence for the distribution of Vs:m, we plot the negative

logarithm of the maximum absolute errors for the normal approximation over the range of

evaluated values vs. the logarithm of the corresponding sample sizes. Note that the slope

of the fitted regression line in this plot will give us an idea about the rate of convergence in

the distribution of Vs:m. Figure 3.4 gives the resulting plot based on the simulated data with

ρ = 0.4, p0 = 0.5, and p1 = 0.3. We observe that the points in the plot fall compactly along

a straight line with a slope of 1
2
, suggesting that the rate of convergence of the distribution

of Vs:m is n−1/2 which is consistent with the result of Theorem 3.3.2.

To explore the effects of parameters ρ, p0, and p1 on the accuracy of the normal ap-

proximation, we look at the maximum absolute differences between the estimated cdf of
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Figure 3.4: Maximum Absolute Errors of the Normal Approximation to the Distribution of
Vs:m vs. the Sample Sizes when ρ = 0.4, p0 = 0.5 and p1 = 0.3 (m = 0.5n, s = 0.15n).

normalized Vs:m and the value provided by the normal approximation for different parame-

ter values. Figure 3.5 gives the relevant graphs, where larger discrepancies are represented

by lighter shades. From Figure 3.5 we observe that the patterns of the level plots for differ-

ent values of ρ are roughly the same, indicating that the effect of correlation on the normal

approximation is minimal. We also see that the approximation is much improved for values

of p0 and p1 close to 0.5 when compared to those for extreme p0 and p1 values.

3.3.3 Improving the Normal Approximation

If we have additional information on the joint distribution F (x, y), we can improve

upon the normal approximation to the distribution of Vs:m given in Section 3.3.2. The idea
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Figure 3.5: Maximum Absolute Errors of the Normal Approximation for the cdf of Vs:m

for Different p0, p1, and ρ

is similar to the Edgeworth expansions for the asymptotic distribution of sample mean; see,

for example, Ferguson (1996, p31-32).

We will first give a motivational numerical example of a higher order expansion for the

cdf of a sample quantile. Then the specific expression for a higher order expansion to the

distribution of Vs:m will be derived.
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For the sample quantile, we have the following well-known property resulting in the

normal approximation to the distribution of sample quantile

Zn =

√
nfX(ξp)

σp

(X[np]:n − ξp)
L→ N(0, 1), (3.46)

where σp =
√

p(1− p), ξp = F−1
X (p), and [np] denotes the largest integer not exceeding

np. Here we assume the distribution of X is continuous, and the density fX is positive over

a neighborhood of ξp. Let Zn =
√

nfX(ξp)(X[np]:n − ξp)/σp. Then by (3.46), we have

P(Zn ≤ z) ≈ Φ(z), (3.47)

and the effect of the above approximation is governed by the rate of convergence in (3.46),

which is of order n−1/2. Using a result in Reiss (1989, p147-148), we can improve upon the

above normal approximation by adding an extra term to achieve higher order rate of conver-

gence. In particular with the assumption that the density fX has bounded third derivative

in a neighborhood of ξp, we have

sup
z

∣∣∣∣P(Zn ≤ z)− (Φ(z) +
φ(z)√

n
S1,n(z))

∣∣∣∣ = O(n−1) (3.48)

where

S1,n(z) =

(
2p− 1

3σp

+
σpf

′
X(ξp)

2fX(ξp)2

)
z2 +

np− [np]

σp

+
p + 1

3σp

. (3.49)

So one can consider a better approximation to the distribution given by:

P(Zn ≤ z) ≈ Φ(z) +
φ(z)√

n
S1,n(z) := Gn(z). (3.50)

Example 3.3.3. We will use a simple example to demonstrate the improvement in the ap-

proximation achieved by (3.50) over the normal approximation. Suppose X1, . . . , X10 are

i.i.d observations from the standard exponential distribution with density exp(−x), x ≥

0. We consider approximating the distribution of the 40% sample percentile, namely
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X4:10. Figure 3.6 gives the plot of the cdf for the normalized X4:10 given by (X4:10 −

0.3297)/0.2154, along with the normal approximation Φ(x), and the approximation Gn(x)

given by (3.50), and Figure 3.7 gives the scatter plot of the absolute errors of normal ap-

proximation and the approximation by (3.50). We observe that even for a small sample

size like 10, there is a significant improvement in the accuracy of the second order ap-

proximation given by (3.50) over the normal approximation in most cases, except for the

neighborhoods where the exact cdf intersects with the cdf given by the normal approxima-

tion.

Example 3.3.4. We repeat the above calculations for the standard normal population. Fig-

ure 3.8 and Figure 3.9 give the corresponding results. We observe that for the standard

normal population the higher order approximation Gn is much better than the normal ap-

proximation for almost all the regions except for the upper tail where both approximations

are very close to the true cdf. Further, the normal approximation appears to underestimate

the cdf of X4:10.

In both cases, we note that approximation provided by Gn is amazingly close to the

actual cdf in the center part of the distribution of Xr:n.

Note that the Gn approximation given by (3.50) is not necessarily a valid cdf as it can

be easily verified that the derivative of Gn is not necessarily non-negative over R. The

derivative of Gn can be expressed as:

G′
n(z) = φ(z)

(
1 +

1√
n

(−Az3 + (2A−B)z)

)
, (3.51)

where

A =
2p− 1

3σp

+
σpf

′
X(ξp)

2fX(ξp)2
,
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Figure 3.6: Normal Approximation and Gn Approximation to the cdf of Xr:n for the Stan-
dard Exponential Parent when n = 10 and r = 4.
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Figure 3.7: Absolute Errors of the Normal Approximation and Gn Approximation to the
cdf of Xr:n for the Standard Exponential Parent when n = 10 and r = 4.
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Figure 3.8: Normal Approximation and Gn Approximation to the cdf of Xr:n for the Stan-
dard Normal Parent when n = 10 and r = 4.
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Figure 3.9: Absolute Errors of the Normal Approximation and Gn Approximation to the
cdf of Xr:n for the Standard Normal Parent when n = 10 and r = 4.

53



and

B =
np− [np]

σp

+
p + 1

3σp

> 0.

So when A > 0, for example, when the population distribution is standard normal, and

p < 0.5, the derivative G′
n can be negative for large enough z. But for p not very close to 0,

with a moderate sample size n, the term 1/
√

n(−Az3 + (2A−B)z) will be dominated by

1 for z ∈ [−3, 3]. As a result, Gn will be monotonically increasing in the range of [−3, 3],

which covers the range of values we are usually interested in, as demonstrated by Figure

3.6 and Figure 3.8.

Next we will derive similar result for approximating the distribution of Vs:m. With a

minor adjustment of the arguments used in the proof of Lemma 3.3.2 we have the following

result for approximating the expectation of functions of sample quantiles:

Lemma 3.3.3. Suppose the assumptions in Lemma 3.3.2 hold. Let H be a bounded and

continuous function defined on R, and define Zn as

Zn =

√
nf(ξp)

σp

(Xr:n − ξp) (3.52)

with σp =
√

p(1− p). Then we have

∣∣∣∣E(H(Zn))−
∫

R
H(z)dGn(z)

∣∣∣∣ = O(n−1) (3.53)

where Gn is defined in (3.50).

Then using similar arguments as in the proof of Theorem 3.3.2, we can establish the

following result:

Theorem 3.3.3. With the assumptions of Theorem 3.3.1 and Lemma 3.3.3, and we assume

that F−1
1 (p1|x), as a function of x, has third order derivative and the derivative is bounded
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in a neighborhood of x0 = F−1
X (p0). Suppose m = [np0] and s = [mp1]. Then,

sup
v

∣∣∣∣P
(

Vs:m − a

bn

≤ v

)
−

∫

R
G1,n(v − g1(x0)z)dG0,n(z)

∣∣∣∣ ≤ O(n−1) (3.54)

where

G1,n(z) = Φ(z) +
φ(z)√

m

(
A1z

2 + B1

)
(3.55)

with

A1 =
2p1 − 1

3σp1

+
σp1f

′
1(a|x0)

2f1(a|x0)2
; B1 =

mp1 − [mp1]

σp1

+
p1 + 1

3σp1

(3.56)

and

G0,n(z) = Φ(z) +
φ(z)√

n

(
A0z

2 + B0

)
(3.57)

with

A0 =
2q0 − 1

3σq0

+
σq0f

′
X(x0)

2fX(x0)2
; B0 =

nq0 − [nq0]

σq0

+
q0 + 1

3σq0

. (3.58)

By Theorem 3.3.3 the second order approximation to the distribution of Vs:m is then

given by:

P

(
Vs:m − a

bn

≤ v

)

≈
∫

R
Φ(v − g1(x0)z)φ(z)dz +

∫

R

φ(v − g1(x0)z)√
m

(A1z
2 + B1)φ(z)dz

+

∫

R

Φ(v − g1(x0)z)√
n

[−A0z
3 + (2A0 −B0)z]φ(z)dz

=Φ

(
v√

1 + g2
1(x0)

)
+

∫

R

φ(v − g1(x0)z)√
[np0]

(A1z
2 + B1)φ(z)dz

+

∫

R

Φ(v − g1(x0)z)√
n

[−A0z
3 + (2A0 −B0)z]φ(z)dz

:=Hn(v). (3.59)

Similar to the Gn approximation given by (3.50) for the cdf of the sample quantile

Xr:n, the approximation Hn(v) in (3.59) is not necessarily a legitimate cdf. But based on

55



simulation studies on the bivariate normal distribution, we observe that the approximation

by (3.59) is monotonically increasing in v for values between -3 and 3 when p0 and p1

are not very close to 0. Since the last two terms there are of order o(n−1/2), Hn(v) will

eventually be a monotonically function for all v.

Example 3.3.5. We now illustrate the improvement in the accuracy achieved by the ap-

proximation given by (3.59) with the standard bivariate normal distribution with correlation

ρ = 0.5. Figure 3.10 gives the cdf of normalized Vs:m with n = 50,m = 20, s = 6, along

with cdfs by the normal approximation and the approximation by (3.59). Figure 3.11 gives

the plot of the absolute errors of normal approximation and the approximation by (3.59)

to the distribution of normalized Vs:m. Again we observe significant improvement in the

approximation achieved by (3.59), and the higher order approximation given by (3.59) is

uniformly better than the normal approximation.

3.4 Asymptotic Distribution of Wt:n−m in the Quantile Case

In this section we will derive the asymptotic distribution of Wt:n−m in the quantile case,

i.e., for the case where t = [(n−m)p2], m = [np0] for p0 and p2 such that 0 < pi < 1, i =

0, 2, and n →∞.

From Lemma 3.2.1 we know that given Xn−m+1:n = x, Wt:n−m behaves the same as the

tth order statistic of a random sample of size n−m from the distribution with cdf F2(·|x).

So the arguments used in Section 3.3 can be used to establish the limiting distribution of

Wt:n−m in the quantile case, as well as the rate of convergence to the resulting limiting

distribution.
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Figure 3.10: Normal Approximation and the Approximation given by (3.59) to the Distri-
bution of Normalized Vs:m for the Bivariate Normal Population when n = 50,m = 20, s =
6.
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Figure 3.11: Absolute Errors of the Normal Approximation and Approximation by (3.59)
to the Distribution of Normalized Vs:m with n = 50,m = 20, s = 6 for the Bivariate
Normal Population.
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First we have the following result regarding the asymptotic distribution of Wt:n−m in

the quantile case.

Theorem 3.4.1. Let (Xi, Yi), i = 1, 2, . . . , n, be a random sample from the absolutely

continuous bivariate distribution F (x, y), and we assume the joint density f(x, y) is con-

tinuous in both arguments. Suppose m = [np0] and t = [(n−m)p2], 0 < pi < 1, i = 0, 2,

and n →∞. Let

x0 = F−1
X (q0), (3.60)

with q0 = 1− p0, and

c = F−1
2 (p2|x0), (3.61)

and assume that f(x0, c) > 0. Then

Wt:n−m − c

dn

L→ Z1 + g2(x0)Z2 (3.62)

where

dn =

[√
nq0f2(c|x0)√

p2q2

]−1

, (3.63)

Z1 and Z2 are independent standard normal variables, and

g2(x0) =

√
p0q0

fX(x0)

[√
q0f2(c|x0)√

p2q2

]
∂F−1

2 (p2|x)

∂x
|x=x0 . (3.64)

Remark 3.4.1. (3.62) is equivalent to

√
n(Wt:n−m − c)

L→ dZ1 + h2(x0)Z2 (3.65)

with

d =

√
p2q2√

q0f2(c|x0)
(3.66)
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and

h2(x0) =

√
p0q0

fX(x0)
· ∂F−1

2 (p1|x)

∂x
|x=x0

=

√
p0q0

fX(x0)
· p2fX(x0)−

∫ c

−∞ f(x0, v)dv∫ x0

−∞ f(u, c)du

=

√
p0(F2(c|x0)− F3(c|x0))√

q0f2(c|x0)
. (3.67)

Example 3.4.1. With the bivariate normal population given by (3.19), the expressions for

c, d, and h2 are given below:

(i) c = F−1
2 (p2|x0) is the value satisfying the following equation:

∫ c

−∞

∫ ∞

x0

f(u, v)dudv − p1p0 = 0 (3.68)

with x0 = Φ−1(1 − p0). Equation (3.68) can be solved numerically using Newton-

Raphson method.

(ii)

d =

√
p2q2√

q0f2(c|x0)
=

√
p2q2q0

Φ

(
x0−ρc√

1−ρ2

)
φ(c)

. (3.69)

(iii)

h2(x0) =

√
p0q0

fX(x0)
· ∂F−1

2 (p2|x)

∂x
|x=x0 (3.70)

=

√
p0q0

φ(x0)
·
p2φ(x0)− Φ

(
c−ρx0√

1−ρ2

)
φ(x0)

Φ

(
x0−ρc√

1−ρ2

)
φ(c)

(3.71)

=

√
p0q0

(
p2 − Φ

(
c−ρx0√

1−ρ2

))

Φ

(
x0−ρc√

1−ρ2

)
φ(c)

. (3.72)
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For the rate of convergence of the distribution of Wt:n−m, we have the following result:

sup
w

∣∣∣∣∣P
(

Wt:n−m − c

dn

≤ w

)
− Φ

(
w√

1 + g2
2(x0)

)∣∣∣∣∣ ≤ O(n−1/2) (3.73)

or equivalently

sup
w

∣∣∣∣∣P
(√

n(Wt:n−m − c) ≤ w
)− Φ

(
w√

d2 + h2
2(x0)

)∣∣∣∣∣ ≤ O(n−1/2). (3.74)

And the second order approximation to the distribution of Wt:n−m is given by:

P

(
Wt:n−m − c

dn

≤ w

)

≈
∫

R
Φ(w − g2(x0)z)φ(z)dz +

∫

R

φ(w − g2(x0)z)√
n−m

(A2z
2 + B2)φ(z)dz

+

∫

R

Φ(w − g2(x0)z)√
n

[−A0z
3 + (2A0 −B0)z]φ(z)dz

=Φ

(
w√

1 + g2
2(x0)

)
+

∫

R

φ(w − g2(x0)z)√
n−m

(A2z
2 + B2)φ(z)dz

+

∫

R

Φ(w − g2(x0)z)√
n

[−A0z
3 + (2A0 −B0)z]φ(z)dz (3.75)

where

A2 =
2p2 − 1

3σp2

+
σp2f

′
2(c|x0)

2f2(c|x0)2
; B2 =

(n−m)p2 − [(n−m)p2]

σp2

+
p2 + 1

3σp2

(3.76)

and A0, B0 are given by (3.58).

Remark 3.4.2. A comparison of (3.59) and (3.75) reveals the common role played by the

features of fX at x0 through A0, B0, and the symmetric roles played by the conditional cdfs

F1 and F2 through g1, A1, B1, and g2, A2, B2, respectively.

60



CHAPTER 4

JOINT DISTRIBUTION OF ORDER STATISTICS OF SUBSETS OF
CONCOMITANTS OF ORDER STATISTICS

In Chapter 3, we studied the marginal distributions of Vs:m and Wt:n−m separately. Here

we will focus on the joint distribution of (Vs:m,Wt:n−m). Joshi and Nagaraja (1995) studied

the joint distribution of (Vs:m,Wt:n−m) for the special case of s = m and t = n −m. We

extend their results by considering general s and t. Some interesting applications are also

provided for our results.

In Section 4.1, we obtain the joint distribution of (Vs:m,Wt:n−m) for the finite sam-

ple case using a conditioning argument. In Section 4.2 the asymptotic distribution of

(Vs:m,Wt:n−m) is obtained for the quantile case under appropriate regularity conditions.

The asymptotic distribution of (Vs:m,Wt:n−m) in the extremal case is derived in Section

4.3. In Section 4.4 we apply the results to approximate the probability that at least t of

{Y[i:n] : n − m + 1 ≤ i ≤ n} are among the top k of all the Y sample values for the

bivariate normal population. The results are also used to study the power of identifying

the disease-susceptible gene in two-stage designs for gene-disease association studies as

discussed in Satagopan et al. (2002) and Satagopan et al. (2004).
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4.1 Finite-Sample Joint Distribution of Vs:m and Wt:n−m

The finite sample distribution of (Vs:m,Wt:n−m) can be derived using conditioning ar-

gument similar to that used in deriving the marginal distributions of Vs:m and Wt:n−m

in Section 3.2. We have the following lemma regarding the conditional distribution of

(Vs:m,Wt:n−m) given the value of Xn−m:n.

Lemma 4.1.1. Given Xn−m:n = x, Vs:m behaves like the sth order statistic of a random

sample of size m from the cdf F1(·|x); Wt:n−m behaves the same as the tth order statistic

of the sample consisting of n−m independent observations, of which n−m− 1 are from

the cdf F2(·|x) and the remaining one is from the cdf F3(·|x). Moreover, Vs:m and Wt:n−m

are conditionally independent given the value of Xn−m:n.

Remark 4.1.1.

• The results of Lemma 4.1.1 can be proved using exactly the same arguments as those

used in the proof of Lemma 3.2.1. So the proof will be omitted here.

• Lemma 3.2.1 deals with the conditional behavior of Vs:m and Wt:n−m separately for

different conditioning events (i.e., given the values of Xn−m:n and Xn−m+1:n, re-

spectively). In contrast, Lemma 4.1.1 considers the joint behavior of (Vs:m,Wt:n−m)

conditional on the value of Xn−m:n, which is very important in deriving the joint

distribution of (Vs:m,Wt:n−m).
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Using Lemma 4.1.1, the joint cdf of (Vs:m,Wt:n−m) can be derived as follows:

FVs:m,Wt:n−m(v, w)

=

∫
P(Vs:m ≤ v,Wt:n−m ≤ w|Xt:n−m = x)dFXn−m:n(x)

=

∫
P(Vs:m ≤ v|Xt:n−m = x)P(Wt:n−m ≤ w|Xt:n−m = x)dFXn−m:n(x)

with

P(Vs:m ≤ v|Xn−m:n = x) =
m∑

i=s

(
m

i

)
[F1(v|x)]i[1− F1(v|x)]m−i,

and

P(Wt:n−m ≤ w|Xn−m+1:n = x)

=
n−m−1∑

i=t

(
n−m− 1

i

)
[F2(w|x)]i[1− F2(w|x)]n−m−1−i

+

(
n−m− 1

t− 1

)
[F2(w|x)]t−1[1− F2(w|x)]n−m−tFY |X(w|x).

Note that the conditional distribution of Wt:n−m given Xn−m:n = x is that of an order

statistic when there is a single outlier (Arnold and Balakrishnan, 1989, p109).

4.2 Asymptotic Distribution of (Vs:m,Wt:n−m) in the Quantile Case

4.2.1 Main Results

To derive the asymptotic joint distribution of (Vs:m,Wt:n−m) for the quantile case, we

first need the following lemma about the limiting distribution of a central order statistic for

a random sample with a single outlier.

Lemma 4.2.1. Let X1, . . . , Xn−1 be a random sample from an absolutely continuous dis-

tribution with cdf FX(x), and Y be an independent random variable with cdf FY (y). Let
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Wm be the mth order statistic of (X1, . . . , Xn−1, Y ), 1 ≤ m ≤ n. If m = [np] as n →∞,

then we have
√

n(Wm − x0)
L→ N

(
0,

pq

[fX(x0)]2

)

where

q = 1− p; x0 = F−1
X (p).

Proof. Let Xm:n−1 be the mth order statistic of X sample values. Then we have:

√
n(Xm:n−1 − x0)

L→ N

(
0,

pq

[fX(x0)]2

)
.

If we can show that
√

n |Wm −Xm:n−1| P→ 0

then the desired result will follow from the Slutsky’s Theorem.

Notice

|Wm −Xm:n−1|

= |Xm−1:n−1 −Xm:n−1| I{Y≤Xm−1:n−1} + |Y −Xm:n−1| I{Xm−1:n−1≤Y <Xm:n−1}

≤ 2 |Xm−1:n−1 −Xm:n−1|

It suffices to show that

√
n(Xm:n−1 −Xm−1:n−1)

P→ 0

By Bloch and Gastwirth (1968) we have

(n− 1)fX(x0)(Xm:n−1 −Xm−1:n−1)
L→ N(1, 1)

so the desired result follows.
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Then the main results regarding the joint limiting distribution of (Vs:m,Wt:n−m) in the

quantile case can be summarized by the following theorem:

Theorem 4.2.1. Let (Vs:m,Wt:n−m) be defined as before. Suppose m = [np0], s = [mp1],

and t = [(n − m)p2], 0 < pi < 1, i = 0, 1, 2, as n → ∞. Assume that the joint density

f(x, y) is continuous in both arguments, and is positive over the entire support set. Then

FVs:m,Wt:n−m(a + bnv, c + dnw) →
∫

Φ(v − g1(x0)z) · Φ(w − g2(x0)z)dΦ(z)

= E{Φ(v − g1(x0)Z) · Φ(w − g2(x0)Z)}

where x0, a, bn, c, dn, g1, and g2 are defined as in (3.4), (3.5), (3.7), (3.61), (3.63), (3.8),

and (3.64), respectively, and Z is a standard normal random variable.

Proof. Notice

FVs:m,Wt:n−m(a + bnv, c + dnw)

= P(Vs:m ≤ a + bnv,Wt:n−m ≤ c + dnw)

=

∫
P(Vs:m ≤ a + bnv, Wt:n−m ≤ c + dnw|Zn = z)FZn(dz)

(where Zn is defined as in Theorem 3.3.1)

=

∫
P(Vs:m ≤ a + bnv|Zn = z)P(Wt:n−m ≤ c + dnw|Zn = z)FZn(dz)

(since Vs:m and Wt:n−m are conditionally independent).

From the proof of Theorem 3.3.1, we have for any z ∈ R,

P(Vs:m ≤ a + bnv|Zn = z) → Φ(v − g1(x0)z).

Using the same arguments as in the proof of Theorem 3.3.1, combined with the result

given by Lemma 4.2.1, we can easily establish that

P(Wt:n−m ≤ c + dnw|Zn = z) → Φ(w − g2(x0)z)
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as n →∞.

So the desired result easily follows from a convergence result in Royden (1968, Propo-

sition 18).

Remark 4.2.1. Notice the results of Theorem 4.2.1 can also be expressed as:

(
Vs:m − a

bn

,
Wt:n−m − c

dn

)
L→ (g1(x0)Z1 + Z2, g2(x0)Z1 + Z3)

or
√

n (Vs:m − a, Wt:n−m − c)
L→ (bZ2 + h1(x0)Z1, dZ3 + h2(x0)Z1) (4.1)

where Z1, Z2, and Z3 are i.i.d standard normal random variables, b, d, h1, and h2 are defined

as in (3.15), (3.66), (3.18) and (3.67) respectively. So we have

√
n (Vs:m − a,Wt:n−m − c)

L→ N2

((
0
0

)
,

[
h2

1(x0) + b2 h1(x0)h2(x0)
h1(x0)h2(x0) h2

2(x0) + d2

])
. (4.2)

4.2.2 Rate of Convergence

From the proof of Theorem 4.2.1 we know that

P(Vs:m ≤ a + bnv, Wt:n−m ≤ c + dnw)

=E (P(Vs:m ≤ a + bnv|Zn)P(Wt:n−m ≤ c + dnw|Zn)) . (4.3)

Similar arguments as in the proof of Theorem 3.3.2 can establish that for any z ∈ R:

|P(Vs:m ≤ a + bnv|Zn = z)− Φ(v − g1(x0)z)| ≤ O(n−1/2)

and

|P(Wt:n−m ≤ c + dnw|Zn = z)− Φ(w − g2(x0)z)| ≤ O(n−1/2)
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which in turn implies that

|E (P(Vs:m ≤ a + bnv|Zn)P(Wt:n−m ≤ c + dnw|Zn))

− E{Φ(v − g1(x0)Zn) · Φ(w − g2(x0)Zn)}| ≤ O(n−1/2). (4.4)

So it follows from Lemma 3.3.2 that:

|P(Vs:m ≤ a + bnv, Wt:n−m ≤ c + dnw)

− E{Φ(v − g1(x0)Z) · Φ(w − g2(x0)Z)}| ≤ O(n−1/2), (4.5)

or equivalently

∣∣P (√
n(Vs:m − a) ≤ v,

√
n(Wt:n−m − c) ≤ w

)− F (v, w)
∣∣ ≤ O(n−1/2) (4.6)

where F (x, y) is the cdf of a bivariate normal distribution given in (4.2). So similar to

those in the marginal distributions, the rate of convergence in the joint distribution of

(Vs:m,Wt:n−m) is also of order n−1/2.

Example 4.2.1 (Bivariate Normal Distribution). As done in Chapter 3, here we want to

examine the rate of convergence in the distribution of (Vs:m,Wt:n−m) numerically for the

standard bivariate normal distribution. Using Monte Carlo simulations we estimate the

cdf of the joint distribution of normalized (Vs:m,Wt:n−m) for a grid bounded by 2 standard

deviations around their means respectively. We also calculate the Normal approximation as

given by (4.2). Then we calculate the maximum absolute error of the normal approximation

over the entire grid. We carry out these calculations for n = 100, 400, 900, 1600, 2500 and

10000, and we set ρ = 0.4, p0 = 0.5, p1 = p2 = 0.3. Figure 4.1 gives the scatter plot

of the negative logarithm of the maximum absolute errors vs. the logarithm of sample

sizes. Very similar to the Figure 3.4, the points in the plot is very close to a straight line
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with slope approximately 0.5, suggesting that the rate of convergence in the distribution of

(Vs:m,Wt:n−m) is of order
√

n as implied by (4.6).
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Figure 4.1: Plot of the Logarithm of the Maximum Absolute Errors of the Normal Ap-
proximation to the Distribution of (Vs:m,Wt:n−m) vs. the Logarithm of Sample Sizes with
ρ = 0.4, p0 = 0.5, p1 = p2 = 0.3 (m = 0.5n, s = 0.15n and t = 0.15n).

4.3 Asymptotic Distribution of (Vs:m,Wt:n−m) in the Extremal Case

In this section we will study the asymptotic distribution of (Vm−s+1:m,Wn−m−t+1:n−m)

when s and t are fixed as n and m approach infinity. The development follows that of

Joshi and Nagaraja (1995). The main result regarding the joint limiting distribution of

(Vm−s+1:m,Wn−m−t+1:n−m) is given by the following theorem:

Theorem 4.3.1. Let m = [np0], as n →∞, with 0 < p0 < 1, while s and t are kept fixed.

Let Vm−s+1:m and Wn−m−t+1:n−m be defined as before. Assume:
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(i) The marginal density of X , fX , is continuous at x0 = F−1
X (q0), where q0 = 1 − p0,

and fX(x0) > 0;

(ii) the density of the conditional distribution of Y given X = x, f3(y|x), is continuous

at x0 for all real y;

(iii) there exist constants an, bn > 0, and cn, dn > 0, such that as n →∞

[F1(an + bny|x0)]
n → G1(y)

[F2(cn + dny|x0)]
n → G2(y)

for all real y, where G1 and G2 are some nondegenerate cdf’s;

(iv) for all real c and y we have:

P(x0 ≤ X ≤ x0 + c/
√

n, Y > an + bny) = o(1/n)

P(x0 ≤ X ≤ x0 + c/
√

n, Y > cn + dny) = o(1/n).

Then we have

FVm−s+1:m,Wn−m−t+1:n−m(an + bnv, cn + dnw) → G1,s(v)G2,t(w)

where

G1,s(v) = [G1(v)]p0

s−1∑
i=0

[−p0 log G1(v)]i

i!

G2,t(w) = [G2(w)]q0

t−1∑
j=0

[−q0 log G2(w)]j

j!

Proof. Notice

FVm−s+1:m,Wn−m−t+1:n−m(an + bnv, cn + dnw)

= E[h1(an + bnv, Xn−m:n)h2(cn + dnv, Xn−m:n)]

= E[h1(an + bnv, x0 + c0Zn/
√

n)h2(cn + dnv, x0 + c0Zn/
√

n)]
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where c0 and Zn are defined in (3.11) and

h1(v, x) = P(Vm−s+1:m ≤ v|Xn−m:n = x)

h2(w, x) = P(Wn−m−t+1:n−m ≤ w|Xn−m:n = x).

In view of the arguments presented in the proof of Result 2 in Nagaraja and David (1994),

it is enough to show for all real z:

h1(an + bnv, x0 + c0z/
√

n) → G1,s(v) (4.7)

h2(cn + dnw, x0 + c0z/
√

n) → G2,t(w) (4.8)

Note

h1(an + bnv, x0 + c0z/
√

n) (4.9)

= P(Vm−s+1:m ≤ an + bnv|Xn−m:n = x0 + c0z/
√

n) (4.10)

=
m∑

j=m−s+1

(
m

j

)
[F

(n)
1 (z)]j[1− F

(n)
1 (z)]m−j (4.11)

where F
(n)
1 (z) = F1(an + bnv|x0 + c0z/

√
n).

While by assumption (ii) and (iii), it can be shown that

m[1− F
(n)
1 (z)] ∼ p0n[1− F

(n)
1 (z)] → −p0 log G1(v) (4.12)

Applying Poisson approximation to Binomial probabilities, from (4.11) and (4.12), we ob-

tain (4.7).
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For (4.8), note

h2(cn + dnw, x0 + c0z/
√

n)

=P(Wn−m−t+1:n−m ≤ cn + dnw|Xn−m:n = x0 + c0z/
√

n)

=
n−m−1∑

j=n−m−t+1

(
n−m− 1

j

)
[F

(n)
2 (z)]j[1− F

(n)
2 (z)]n−m−1−j

+

(
n−m− 1

n−m− t

)
[F

(n)
2 (z)]n−m−t[1− F

(n)
2 (z)]t−1

F3(cn + dnw|x0 + c0z/
√

n) (4.13)

where F
(n)
2 (z) = F2(cn + dnw|x0 + c0z/

√
n).

From the proof of Theorem 1 in Joshi and Nagaraja (1995), we know that

F3(cn + dnw|x0 + c0z/
√

n) → 1, as n →∞

Similarly we can prove that

(n−m− 1)[1− F
(n)
2 (z)] → −q0 log G2(w)

and hence (4.8) follows from the application of the Poisson approximation to the Binomial

cdf in (4.13).

Remark 4.3.1.

• Assumption (ii) requires the continuity of the function f3(y|x) as a function of x at

the value x0 for all real y, which can be guaranteed by the continuity of the joint pdf

f(x, y) at x0; see Joshi and Nagaraja (1995);

• Assumption (iii) implies that the distributions F1 and F2 are in the domain of attrac-

tion of G1 and G2 respectively, i.e., F1 ∈ D(G1) and F2 ∈ D(G2). Notice that the
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tail behavior of F1 and F2 are much messier than that of FY . So it is usually hard

to verify this assumption. However if we can verify that FY ∈ D(G) as n → ∞

such that [FY (an + bny)]n → G(y) for some non-degenerate distribution G, and F1

is tail-equivalent to FY in the sense that there exists a finite positive β1, such that

lim
y→∞

1− FY (y)

1− F1(y|x0)
= β1

then by Resnick (1987), we have:

[F1(an + bny|x0)]
n → G1(y)

with G1(y) = G(a+ by), where a and b are some constants depending on G. Further

it can be shown that the tail-equivalence of F1 and FY combined with the assumption

that β1 > p0 implies the tail-equivalence of F2 and FY . So we have a similar result

for F2; see Joshi and Nagaraja (1995) for details.

• For assumption (iv) to hold, as discussed in Joshi and Nagaraja (1995), a sufficient

condition is that:

∆1F̄ (x, an + bny) = o(1/
√

n)

and

∆1F̄ (x, cn + dny) = o(1/
√

n)

hold uniformly in x in the neighborhood of x0, where ∆1F̄ (x, y) is the first partial

derivative of F (x, y) with respect to x.

Example 4.3.1 (Bivariate Normal Distribution). For the bivariate normal distribution given

by (3.19), it can be shown that (Nagaraja and David, 1994):

lim
y→∞

1− FY (y)

1− F1(y|x0)
= p0.
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So F1 and FY are tail-equivalent, and by the well-known fact that [FY (an + bny)]n → Λ(y)

as n →∞ with

an =
√

2 log n− 1

2

log(4π log n)√
2 log n

(4.14)

bn =
1√

2 log n
(4.15)

where Λ(y) = exp{−e−y} is the Gumbel extreme value cdf, we have

[F1(an + bny)]n → Λ(log p0 + y) = exp{−e−y/p0}

Notice β1 = p0, so F2 and FY are not tail-equivalent. But as in the proof of Theorem 3

of Joshi and Nagaraja (1995), we do have F2 ∈ D(Λ) with

cn = ρx0 + θ

[√
2 log n− log(4π log n)√

2 log n

]
− θ

(x2
0/2) + log(q0ρ/θ)√

2 log n
(4.16)

dn = θbn (4.17)

where θ =
√

1− ρ2.

As verified in Joshi and Nagaraja (1995), the assumption (iv) of Theorem 4.3.1 also

holds. So by Theorem 4.3.1, we have

FVm−s+1:m,Wn−m−t+1:n−m(an + bnv, cn + dnw)

→ exp{−[e−v + q0e
−w]}

s−1∑
i=0

e−iv

i!

t−1∑
j=0

qj
0e
−jw

j!

as n → ∞, where an, bn, cn and dn are given by (4.14), (4.15), (4.16), and (4.17), respec-

tively.

4.4 Applications

4.4.1 Selection Through an Associated Characteristic

In selection procedures, items or subjects may be chosen on the basis of their X char-

acteristic, and an associated characteristic Y that is hard to measure or that can be observed
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only later, may be of interest. For example, X may be the score of a candidate on a screen-

ing test, and Y is the measure of the final performance of the candidate; or X could be the

score assigned by a particular search engine (like Google, Yahoo etc.), and Y is the score

assigned by the user based on his needs.

Yeo and David (1984) considered the problem of choosing the best k objects out of a

group of n on the basis of auxiliary measurements Xi, while the measurements of primary

interest, Yi, are not available. They were interested in the probability that the k subjects

with the largest Y -values are among the m subjects with the largest X-values.

Here we consider a more general situation. Define the event of our interest, E, to be

“at least s of {Y[i:n] : n −m + 1 ≤ i ≤ n} are among {Yi:n, n − k + 1 ≤ i ≤ n}”, i.e.,

of the m objects with largest X-values, at least s are included in the set of k objects with

largest Y -values, where s ≤ k ≤ m. Notice with s = k, the problem reduces to that of

Yeo and David (1984). Next we will derive an expression for the probability of the event

E using the results in previous sections.

Expression for the Probability of the Event of Interest

Notice that the event E can be expressed in terms of the order statistics of subsets of

concomitants as

E = {Vm−s+1:m > Wn−m−k+s:n−m},

and so we have

P(E) = P(Vm−s+1:m > Wn−m−k+s:n−m)

=

∫

x

P(Vm−s+1:m > Wn−m−k+s:n−m|Xn−m:n = x)fn−m:n(x)dx

=

∫

x

[∫

v

P(Wn−m−k+s:n−m < v|Xn−m:n = x)fVm−s+1:m(v)dv

]
fn−m:n(x)dx,
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where

P(Wn−m−k+s:n−m < v|Xn−m:n = x)

=
n−m−1∑

i=n−m−k+s

(
n−m− 1

i

)
[F2(v|x)]m[1− F2(v|x)]n−m−1−i

+

(
n−m− 1

n−m− k + s− 1

)
[F2(v|x)]n−m−k+s−1[1− F2(v|x)]k−sF3(v|x),

fVm−s+1:m(v) =
m!

(m− s)!(s− 1)!
[F1(v|x)]m−s[1− F1(v|x)]s−1f1(v|x),

and

fn−m:n(x) =
n!

(n−m− 1)!m!
[FX(x)]n−m−1[1− FX(x)]mfX(x).

Let

θ1(x, v) = P(X ≤ x, Y ≤ v); θ2(x, v) = P(X ≤ x, Y > v);

θ3(x, v) = P(X > x, Y ≤ v); θ4(x, v) = P(X > x, Y > v);

and

g(x, v) =

∫ ∞

x

fX,Y (u, v)du = (1− FX(x))f1(v|x);

h(x, v) =

∫ v

−∞
fX,Y (x,w)dw = fX(x)F3(v|x).

Then P(E) can be expressed as

n−m−1∑

i=n−m−k+s

n!

i!(n−m− i− 1)!(m− s)!(s− 1)!
×

∫

x

∫

v

θi
1(x, v)θn−m−i−1

2 (x, v)θm−s
3 (x, v)θs−1

4 (x, v)g(x, v)fX(x)dvdx

+
n!

(k − s)!(n−m− k + s− 1)!(m− s)!(s− 1)!
×

∫

x

∫

v

θn−m−k+s−1
1 (x, v)θk−s

2 (x, v)θm−s
3 (x, v)θs−1

4 (x, v)g(x, v)h(x, v)dvdx. (4.18)
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Remark 4.4.1.

• If X and Y are independent, (Y[1:n], . . . , Y[n−m:n]) and (Y[n−m+1:n], . . . , Y[n:n]) be-

come two independent random samples from the distribution FY . So we have

P(E) = P(Um−s+1:m > U∗
n−m−k+s:n−m)

where Um−s+1:m is the (m−s+1)st order statistic of a random sample of size m from

the standard uniform distribution, and U∗
n−m−k+s:n−m is the (n−m− k + s)th order

statistic of a random sample of size n − m from the standard uniform distribution.

This probability can be readily computed as:

P(E) =P(Um−s+1:m > U∗
n−m−k+s:n−m)

=[

(
n

m

)
]−1

n−m∑

i=n−m−k+s

(
i + m− s + 1

i

)(
n− i−m + s− 1

s− 1

)

=[

(
n

k

)
]−1

m∑
i=s

(
n−m

k − i

)(
m

i

)
. (4.19)

Notice (4.19) is just a special case of the probability addressed by Olkin and Stephens

(1993) in which these authors studied the probability that exactly t of the selected

subsample of size s are in the top k of the entire list for independent but nonidenti-

cally distributed normal populations.

• Intuitively, the probability P(E) will only depend on the dependence structure be-

tween X and Y arising from the distribution F (x, y). Actually as shown in the

following theorem, the probability P(E) depends on the cdf F (x, y) only through

the associated copula function, which can be thought of as the intrinsic measure of

dependence between X and Y .

Theorem 4.4.1. Suppose (Xi, Yi), i = 1, . . . , n, is a random sample from the ab-

solutely continuous bivariate distribution F (x, y). The probability that at least s of
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{Y[i], n − m + 1 ≤ i ≤ n} are among {Y(i), n − k + 1 ≤ i ≤ n} depends on the

F (x, y) only through the copula function associated with F .

Proof. Let CF (x, y) be the copula function associated with F , i.e.,

F (x, y) = CF (FX(x), FY (y)) ∀x, y ∈ R

where FY and FY are the marginal distributions for X and Y , respectively.

Note
P(E) =P(at least s of {Y[i], n−m + 1 ≤ i ≤ n}

are among {Y(i), n− k + 1 ≤ i ≤ n})

=P(at least s of {FY (Y[i]), n−m + 1 ≤ i ≤ n}

are among {FY (Y(i)), n− k + 1 ≤ i ≤ n})
It can be easily shown that the joint cdf for (FX(X), FY (Y )) is just the copula func-

tion CF (x, y) associated with F . So we have:

((FX(X1), FY (Y1)), . . . , (FX(Xn), FY (Yn)))
d
= ((X∗

1 , Y
∗
1 ), . . . , (X∗

n, Y ∗
n ))

where (X∗
i , Y ∗

i ), i = 1, . . . , n is a random sample from the distribution with cdf CF

(the copula function associated with F ) and support [0, 1]× [0, 1].

Also notice that

((FX(X(1)), FY (Y[1])), . . . , (FX(X(n)), FY (Y[n])))
d
= ((X∗

(1), Y
∗
[1]), . . . , (X

∗
(n), Y

∗
[n])).

Thus P(E) can be expressed as

P(E) =P(at least s of {Y ∗
[i], n−m + 1 ≤ i ≤ n}

are among {Y ∗
(i), n− k + 1 ≤ i ≤ n}),

which depends only on CF . So the desired result follows.
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A Large Sample Approximation

We see that the formula (4.18) for the desired probability P(E) is quite complicated,

especially the double integrals involved. And it is not practical to apply the formula to

calculate P(E) for large values of n. But we can use the results of Theorem 4.2.1 to obtain

a large sample approximation to that probability. By Theorem 4.2.1, we have:

(
Vs:m − a

bn

,
Wt:n−m − c

dn

)
L→ (g1(x0)Z1 + Z2, g2(x0)Z1 + Z3)

where a, bn, c, dn, x0, g1 and g2 are defined the same as in Theorem 4.2.1; Z1, Z2 and Z3

are i.i.d standard normal variables.

So for sufficiently large n, we have:

(Vs:m,Wt:n−m)
approx∼ BV N

([
a
c

]
,

[
h2
1(x0)+b2

n
h1(x0)h2(x0)

n
h1(x0)h2(x0)

n

h2
2(x0)+d2

n

])

where h1(x0) =
√

nbng1(x0), b =
√

nbn, h2(x0) =
√

ndng2(x0), and d =
√

ndn. Thus it

follows that

P(Vs:m −Wt:n−m > 0) (4.20)

≈ 1− Φ

( √
n(c− a)√

h2
1(x0) + b2 + h2

2(x0) + d2 − 2h1(x0)h2(x0)

)
. (4.21)

By (4.21) a large sample approximation to the probability of our interest P(E) can be

readily written as:

P(E) = P(Vm−s+1:m > Wn−m−k+s:n−m)

≈ 1− Φ




√
n(c̃− ã)√

h2
1(x̃0) + b̃2 + h2

2(x̃0) + d̃2 − 2h1(x̃0)h2(x̃0)


 , (4.22)

where x̃0, ã, b̃, c̃ and d̃ are, respectively, the x0, a, b, c and d defined in Theorem 4.2.1,

obtained by setting p0 = [m/n], p1 = [(m−s+1)/m], and p2 = [(n−m−k+s)/(n−m)].
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ρ
Case 1 Case 2

(n = 800, m = 100,k = 30 and s = 20) (n = 500, m = 50, k = 20 and s = 10)
Simulation Approximation Simulation Approximation

0.4 0.001 0.001 0.068 0.083
0.6 0.187 0.190 0.592 0.629
0.8 0.985 0.983 0.996 0.996

Table 4.1: The Desired Probability P(E) for the Standard Bivariate Normal Distribution

Example 4.4.1 (Bivariate Normal Distribution). Suppose the distribution we are sampling

from is bivariate normal given by:

(X,Y ) ∼ N2

((
0

0

)
,

(
1 ρ
ρ 1

))
.

We will consider the following two cases: Case 1: n = 800, m = 100, k = 30

and s = 20; Case 2: n = 500, m = 50, k = 20 and s = 10. For each case, we

calculate the P(E) with ρ being 0.4, 0.6 and 0.8. We calculate the “Exact” values for

P(E) by crude Monte Carlo estimation, as well as the large sample approximation using

formula (4.22). The results are given in Table 4.1. We observe that the large sample

approximations for Case 1 work fairly well for different values of ρ; while in Case 2 we

do see significant discrepancies between the large sample approximations and exact values

for P(E), especially when the correlation between X and Y is small.

4.4.2 Power of Two-Stage Designs for Gene-Disease Association Stud-
ies

In gene-disease association studies with a large number of candidate markers, genotyp-

ing all the markers on all samples would be inefficient in resource utilization. Satagopan

et al. (2002) and Satagopan et al. (2004) proposed a two-stage design which is shown to be
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more cost effective, while providing power4 closer to that of one-stage designs. In their de-

sign all markers are evaluated on a fraction of available subjects at the first stage, and only

the most promising markers selected at stage one are evaluated on the remaining subjects.

Suppose there are m candidate markers, and n available subjects in the sample. The

two-stage design proposed by Satagopan et al. (2002) and Satagopan et al. (2004) works in

the following way. At stage one, all the m markers are evaluated using only n1 (n1 ≤ n)

subjects, and let Xi be the resulting test statistic (for example the chi-square test statistic

based on a 2 × 2 table) for marker i. We rank the m markers based on the test statistics

Xi, and select the top k markers to go on to the second stage. In stage two, we evalu-

ate the k markers using the remaining n2 (n1 + n2 = n) subjects, and construct the test

statistics Yi based on the outcomes of both stages. Notice that at stage two we only ob-

tain the test statistics for the markers with highest X values, which can be expressed as

(Y[m−k+1:m], . . . , Y[m:m]). The setting is similar to the usual selection problems, but one big

difference is that the random vectors (Xi, Yi) are from one of the two bivariate distributions:

one is corresponding to the disease-susceptibility markers, and the other corresponding to

the null markers.

In Satagopan et al. (2002) and Satagopan et al. (2004), the power function for the pro-

posed two-stage design is derived using a conditioning argument, and the authors are inter-

ested in the problem of how to optimally choose k and n1 such that the two-stage design

has a large gain in cost reduction while keeping the power close to that of the one-stage

design involving the same number of subjects. Here we will derive an expression for the

power of the two-stage design using concomitants of order statistics, as well as the results

we obtained in the previous section.

4Here we define the power to be the probability that the true gene is selected at the end of the study.
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As argued in Satagopan et al. (2002) and Satagopan et al. (2004), the test statistic for

association computed from n independent subjects has an asymptotic normal distribution,

N(nµ, nσ2), where µ and σ2 are asymptotic mean and variance respectively. The asymp-

totic mean µ will be zero if there is no association. Without loss of generality we can

assume that σ = 1 by appropriate scaling of the statistic.

Let X∗ be the test statistic from n1 subjects obtained in stage 1 and let Y ∗ be the

test statistic from the combined n(= n1 + n2) subjects from stages 1 and 2 for the true

gene. Similarly let Xi and Yi be the corresponding test statistics for null gene i, i =

1, . . . , m− 1. If we assume that the gene outcomes are independent within a subject, then

we have (X∗, Y ∗) and (Xi, Yi)’s are independently distributed as

(X∗, Y ∗)T ∼ N
(
(n1µ, nµ)T ,Σ

)

(Xi, Yi)
T ∼ N

(
(0, 0)T ,Σ

)

where

Σ =

(
n1 n1

n1 n

)

The event of our interest, E, is that the true gene is selected at the end of the study, and

can be expressed as:

E = {X∗ > Xm−k:m−1, Y
∗ > max(Y[i:m−1], i = m− k + 1, . . . , m− 1)}

where Xi:m−1 is the ith order statistic of Xi, i = 1, . . . , m− 1, and Y[i:m−1] is the concomi-

tant associated with Xi:m−1. So the power, P ∗, can be derived as following:

P ∗ = P{X∗ > Xm−k:m−1, Y
∗ > Vk−1:k−1} (4.23)

=

∫

x

∫

y

P(Xm−k:m−1 < x, Vk−1:k−1 < y)dF ∗(x, y) (4.24)
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where Vk−1:k−1 is the maximum of concomitants subset (Y[i:m−1], i = m−k+1, . . . , m−1),

and F ∗(x, y) is the cdf for bivariate normal (X∗, Y ∗).

Notice the integrand, P(Xm−k:m−1 < x, Vk−1:k−1 < y), in (4.24) can be expressed as

P(Xm−k:m−1 < x, Vk−1:k−1 < y) (4.25)

=

∫ x

−∞
P(Vk−1:k−1 < y|Xm−k:m−1 = u)fm−k:m−1(u)du (4.26)

=

∫ x

−∞
[F1(y|u)]k−1fm−k:m−1(u)du (4.27)

where fm−k:m−1(u) is the pdf of the order statistic Xm−k:m−1; F1(·|u) is the cdf of Y given

X > u. In deriving (4.27), we use the fact that given Xm−k:m−1 = u, Vk−1:k−1 behaves the

same as the maximum of a random sample of size k − 1 from the distribution F1(·|u) as

stated in Lemma 3.2.1.
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CHAPTER 5

ESTIMATION OF THE REGRESSION FUNCTION AT A
SELECTED QUANTILE OF THE EXPLANATORY VARIABLE

5.1 Introduction

Suppose (Xi, Yi), i = 1, . . . , n, are i.i.d observations from some bivariate cdf F (x, y).

We want to estimate E[Y |X = F−1
X (p)] for a given p, i.e., we want to estimate the condi-

tional expectation of Y given X is at its given population quantile. This can be classified as

a regression problem. But unlike the usual regression problem, the evaluation point F−1
X (p)

is itself an unknown parameter. Such kind of problem can arise from the sensitivity analy-

sis of Value-at-Risk (VaR), a popular risk measure based on the quantile of profit-and-loss

distribution (Gourieroux et al., 2000; Mausser, 2001).

VaR is a popular and synthetic measure of risk widely used by financial institutions.

It quantifies the risk of financial institutions’ portfolios using the lower quantile of the

distribution of the loss-and-profit of portfolios for a given time frame. For example, a 95%

1-week VaR of a given portfolio is just the 5% quantile of the loss-and-profit distribution

of the portfolio over one week, and can be interpreted as the level of 1-week losses for the

portfolio which will only be exceeded on average once every 20 weeks. The resulting VaR
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measure can be utilized by financial institutions to set up the capital reserve for losses of

portfolios. For more detailed introduction please refer to Jorion (1997).

Recently there has been growing interest in studying the sensitivity of VaR with respect

to a change of the portfolio positions, see for example, Gourieroux et al. (2000), Mausser

(2001), and references therein. Suppose a portfolio is made up of n financial assets whose

positions are given by ai, i = 1, . . . , n. Then the value of the portfolio at time t is given by

Vt(a) =
∑n

i=1 aipi,t with pi,t being the price of financial asset i at time t. Then the level α

VaR of the portfolio at time t is a constant, VaRt(a, α), that satisfies the condition

Pt(Vt+1(a)− Vt(a) + VaRt(a, α) < 0) = α, (5.1)

where Pt refers to the conditional distribution of future asset prices pi,t+1 given all the

information at time t. Notice by (5.1), −VaRt(a, α) is just the lower α quantile of the

distribution of the portfolio’s loss-and-profit (Vt+1(a) − Vt(a)). The sensitivity of VaR is

represented by the partial derivative of VaR with respect to portfolio allocations a, that is

∂VaRt(a, α)

∂a
. (5.2)

Gorieroux et al. (2000) showed that the partial derivative of (5.2) is given by:

∂VaRt(a, α)

∂a
= −E[yt+1|a′yt+1 = −VaRt(a, α)] (5.3)

where yt+1 = pt+1 − pt. Notice that the right-hand side of (5.3) is just the conditional

expectation of price change given that the portfolio is at loss of the level equal to VaR at

time t. Upon taking the loss-and-profit of the portfolio as the random variable X , and the

price change, yi,t+1, as the random variable Y , it follows that the sensitivity of level α VaR

with respect to the financial asset i is just E(Y |X = F−1
X (α)). So the problem of estimating

the sensitivity of VaR reduces to the problem of estimation of the regression function given

that the predictor is at a specified population quantile.
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Since the problem can be thought of as a regression problem, a natural way to proceed

is given by the following 2-step procedure:

Step 1: Obtain an estimator, ξ̂p, of the X population quantile ξp = F−1
X (p) based on the

X sample. This can be done by using the sample quantile, or other quantile estimators pro-

posed in the literature, for example, the Harrell-Davis estimator (Harrell and Davis, 1982),

the Kaigh-Lachenbruch estimator (Kaigh and Lachenbruch, 1982), and the kernel quantile

estimators (Yang, 1981; Sheather and Marron, 1990). Parrish (1990), and Dielman et al.

(1994) compared the performance of different versions of quantile estimators by simulation

studies.

Step 2: After we obtain the quantile estimator ξ̂p, we can plug it in to estimate the con-

ditional mean of Y given X is ξ̂p to yield the estimator, m̂(ξ̂p), for the quantity E[Y |X =

F−1
X (p)]. To estimate the conditional mean function m(·), we can use the nonparametric re-

gression methods suggested in the literature, for example, the kernel regression estimators

(Nadaraya, 1964; Watson, 1964; Priestley and Chao, 1972; Gasser and Müller, 1979), near-

est neighbor regression estimator (Benedetti, 1977; Stone, 1977), or the kernel-weighted

local regression estimator proposed more recently (Fan, 1992, 1993; Ruppert and Wand,

1994). See monographs Müller and Muller (1988), Härdle (1990), and Fan and Gijbels

(1996) for general introductions of these nonparametric regression methods.

The above 2-step procedure essentially combines the quantile estimation and the non-

parametric regression estimation to yield the estimator of E[Y |X = F−1
X (p)]. Instead of

using the above two-step procedure, we will consider two other types of estimators based

on the concomitants of order statistics. This is the main purpose of this Chapter.

The first class of estimators is a kernel-type estimator, firstly proposed and studied by

Yang (1981). Here we formalize the idea behind the estimator proposed by Yang (1981),
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and make extension to allow for other versions of kernel-type estimator based on concomi-

tants of order statistics.

The second estimator is based on Mausser (2001), who studied the sensitivity of VaR

for a portfolio with respect to its constituent positions. We generalize the estimator of the

marginal VaR to have it being an estimator of E[Y |X = F−1
X (p)], and we argue that the

resulting estimator is essentially a bootstrap estimator of E(m(Xk:n)) with k = [(n + 1)p],

and m(x) being the mean regression function E(Y |X = x), which in turn converges to

E[Y |X = F−1
X (p)] as n →∞.

In Section 5.2 and 5.3, the above two types of estimators are examined in detail, and

their asymptotic properties are also studied. In Section 5.4 finite sample properties of these

estimators are compared using Monte Carlo simulations.

5.2 Kernel-Type Estimators Based on Concomitants of Order Statis-
tics

5.2.1 Motivation

Yang (1981) proposed the following class of L-estimators based on concomitants of

order statistics for estimating E(Y |X = F−1
X (p)):

M̂Y = n−1

n∑
i=1

h−1
n K

(
i/n− p

hn

)
Y[i:n] (5.4)

where K is some kernel function. Yang studied the estimator (5.4) as a linear combina-

tion of concomitants of order statistics, rather than a kernel smoothing estimator. But as

we argue in the following, (5.4) can be thought of as a kernel smoothing estimator, where

smoothing takes place in the transformed space FX(X), rather than the original X space.

By doing this, other versions of kernel-type estimators can also be made available for esti-

mating E(Y |X = F−1
X (p)).
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To elaborate, we can think in the following way. Notice the quantity of our interest can

be expressed as:

E(Y |X = F−1
X (p)) = E(Y |FX(X) = p). (5.5)

With the assumption that X is continuous, FX(X) will be a uniform random variable

in (0, 1). So we can estimate the desired quantity using the transformed data (Ui, Yi),

with Ui = FX(Xi), i = 1, . . . , n. The problem with the above argument is that the cdf

FX(·) is unknown, but we can estimate it with the empirical cdf. So finally our problem

becomes estimating E(Y |FX(X) = p) using the “data” (U∗
i , Yi), with U∗

i = Fn(Xi),

i = 1, . . . , n. After ordering the variate U∗
i , our transformed data can also be expressed as

(i/n, Y[i:n]), i = 1, . . . , n, which corresponds to the so-called equally-spaced fixed design

(Chu and Marron, 1991).

It can be easily seen that the estimator given by (5.4) can be derived by applying the

Priestley-Chao kernel smoothing estimator (Priestley and Chao, 1972) to the transformed

data. We can also apply the Gasser-Müller (Gasser and Müller, 1979) estimator to the

transformed data to yield the following kernel-type estimator:

m̂GM =
n∑

i=1

[∫ i+1/2
n

i−1/2
n

h−1
n K

(
p− t

hn

)
dt

]
Y[i:n]. (5.6)

5.2.2 Asymptotic Properties of the Kernel-type Estimators

In this subsection we will study the asymptotic properties of the kernel-type estimators

based on concomitants of order statistics discussed above.

Treating the estimator M̂Y given by (5.4) as a linear combination of concomitants of

order statistics, Yang (1981) established several important results regarding the asymptotic
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properties of the estimator using Hájek’s projection lemma (Hájek, 1968). Here we list

these results without proofs.

Yang (1981) proved that under mild regularity assumptions the estimator M̂Y is mean

square consistent as given by the following proposition (Yang, 1981, Corollary 1):

Proposition 5.2.1. Suppose the following conditions are satisfied:

• E(Y 2) < ∞;

• the mean regression function m(x) is a right continuous function of bounded varia-

tion in any finite interval;

• the kernel function K satisfies a Lipschitz condition in the sense that there exists

a constant M such that |K(x1)−K(x2)| ≤ M |x1 − x2| for all x1 and x2; and

|tK(t)| → 0 as |t| → ∞;

• h(n) → 0, and n1/4h(n) →∞ as n →∞.

Then for any p0 at which m(ξp) = E(Y |X = F−1
X (p)) as a function of p is continuous,

lim
n→∞

E[M̂Y −m(ξp0)]
2 = 0. (5.7)

With additional assumptions, Yang (1981) proved that the following result (Corollary 2

of Yang, 1981)) regarding the convergence rate of the bias of M̂Y .

Proposition 5.2.2. Suppose the assumptions of Proposition 5.2.1 hold, and the following

assumptions are also satisfied:

• ∫∞
−∞ tK(t)dt = 0;

• ∫∞
−∞ t2 |K(t)| dt < ∞ and |t3K(t)| → 0 as |t| → ∞;
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• K ′′(z) exists, satisfies a Lipschitz condition, and
∫∞
−∞ |K ′′(t)| dt < ∞, tK ′′(t) → 0

as |t| → ∞;

• The second derivative of g(p) = m(F−1
X (p)) exists and is continuous at p0.

Then we have

lim
n→∞

[E(M̂Y )−m(ξp0)]/h(n)2 =
g′′(p0)

2

∫ ∞

−∞
t2K(t)dt. (5.8)

Next we will show that under mild assumptions M̂Y and M̂GM are asymptotically

equivalent. So the asymptotic properties of M̂Y will also hold for M̂GM .

Theorem 5.2.1. Suppose the following assumptions hold:

• E(Y 2) < ∞;

• m(x) is right continuous function of bounded variation in any finite interval;

• the support of the kernel function K is compact in the sense that K(x) = 0 for

|x| > a where a is some finite positive real number;

• K satisfies a Lipschitz condition, i.e., there exists some constants M > 0 such that

|K(x1)−K(x2)| ≤ M |x1 − x2| for all x1 and x2 in the support of K.

Then for sequence an such that an →∞ and an/(h(n)n) → 0 as n →∞, we have

E[M̂Y − M̂GM ]2 = o

(
1

nh(n)2a2
n

)
. (5.9)

Proof. Note that

M̂Y − M̂GM

=
∑n

i=1

[
(nh(n))−1K

(
i/n−p
h(n)

)
− h(n)−1

∫ i+1/2
n

i−1/2
n

K
(

t−p
h(n)

)
dt

]
Y[i:n]

= [anh(n)n]−1
∑n

i=1 Jn(i/n)Y[i:n],

(5.10)
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where

Jn(u) = an

[
K

(
u− p

h(n)

)
− n

∫ u+ 1
2n

u− 1
2n

K

(
t− p

h(n)

)
dt

]
. (5.11)

There exists an interior point un in (u + 1
2n

, u− 1
2n

) such that

n

∫ u+ 1
2n

u− 1
2n

K

(
t− p

h(n)

)
dt = K

(
un − p

h(n)

)
. (5.12)

So by the assumption on K we have

|Jn(u)| ≤ anM
|u− un|

h(n)
≤ anM

nh(n)
. (5.13)

Hence by the assumption on an, we have Jn(u) → 0 uniformly in n and p as n →∞.

Let Sn = n−1
∑n

i=1 Jn(i/n)Y[i:n]. Then from Theorem 1 of Yang (1981) and Remark 2

therein, we have

lim
n→∞

n1/2E(Sn) = 0, (5.14)

and

lim
n→∞

nVar(Sn) = 0. (5.15)

And notice

E[M̂Y − M̂GM ]2 = [anh(n)]−2
(
Var(Sn) + [E(Sn)]2

)
, (5.16)

so the desired result follows.

5.2.3 Adjustment for the Boundary Effect

Sometimes we are interested in the conditional mean of Y evaluated at the upper tail of

the X distribution, which means that the p in E(Y |X = F−1
X (p)) is very close to 0 or 1, say

0.05, as in the case of the estimation of Marginal VaR’s. Then the kernel-type estimators

given by (5.4) or (5.6) will be subject to larger bias due to the so-called boundary effect.
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See Gasser and Müller (1979) and Rice (1984b) for more detailed discussions of boundary

effects for the kernel smoothing method). Here we will use the method suggested by Rice

(1984b) to modify the kernel estimators to reduce their boundary biases.

Suppose p is within a bandwidth of the lower boundary 0, i.e. p = τh for some τ < 1

with h being the chosen bandwidth. According to Rice’s method (see also Section 4.4 of

Härdle, 1990), the following estimator based on linear combination of two kernel smooth-

ing estimators with different bandwidths can be used to reduce the boundary bias

m̃h(p) = (1−R)m̂h,τ (p) + Rm̂αh,τ (p) (5.17)

where

R =
ωK(1, τ)/ωK(0, τ)

αωK(1, τ/α)/ωK(0, τ/α)− ωK(1, τ)/ωK(0, τ)
(5.18)

with

ωK(k, τ) =

∫ τ

−1

ukK(u)du, k = 0, 1.

Here K is the symmetric kernel function with support on [−1, 1]; m̂h,τ (·) and m̂αh,τ (·) are

the kernel estimators using the kernel Kτ (·) = K(·)/ωK(0, τ) with bandwidth h and αh,

respectively. For the constant α, Rice recommends choosing α = 2− τ .

Remarks:

1. When τ ≥ 1, we have ωK(0, τ) = 1 and ωK(1, τ) = 0. Then R will be equal to 0,

and the estimator given by (5.17) will reduce to the estimator given by (5.4) or (5.6),

implying that no adjustment is needed for the interior point.

2. As pointed out by Härdle (1990), the modified kernel estimator can also be obtained

by using the so-called “boundary kernel” given by

K̃τ (u) = (1−R)K(u)− (R/α)K(u/α). (5.19)
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3. For p near the upper boundary 1, i.e., p = 1 − τh for some τ < 1, the modification

is totally analogous, and the resulting estimator will still be given by (5.17), but with

ωK(k, τ) =

∫ 1

−τ

ukK(u)du, k = 0, 1.

5.2.4 Choice of Kernel and Bandwidth

As in all kernel smoothing methods, the problem of choosing appropriate kernel func-

tion and bandwidth is to be addressed before applying the estimator given by (5.4) or (5.6).

Here we will discuss this issue very briefly without going further into the theoretical details.

In the next section, we will examine this issue empirically with simulation studies.

It has been established in both theoretical and empirical settings that the choice of ker-

nel functions in kernel smoothing methods is much less important than the choice of band-

width, since one can always make the difference between two kernel smoothing estimates

using two different kernels almost negligible by appropriately rescaling the bandwidths. A

detailed discussion of this fact is available in Marron and Nolan (1988). So more emphasis

has been placed on the issue of bandwidth selection in the kernel smoothing literature. In

our discussion we will also focus on the bandwidth selection only, and choose the com-

monly used Epanechnikov kernel given by

K(u) =
3

4
(1− u2)I(|u| ≤ 1) (5.20)

in the empirical studies in the next section.

As noted above, the choice of bandwidth is of great importance in the kernel smoothing

estimators M̂Y and M̂GM . Both the bias and the variance of these estimators will depend

on the bandwidth, which can be demonstrated as follows. From Proposition 5.2.2, we
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know that the asymptotic bias of the estimator M̂Y is O(h2
n), which implies that the smaller

the bandwidth hn, the smaller the bias of this estimator. As shown in Yang (1981), the

asymptotic variance of M̂Y is o(n−1h−2
n ). This implies that the smaller the bandwidth hn,

the larger the variance of the estimator M̂Y . So the choice of bandwidth turns out to be

a balance of the trade-off between the bias and variance, which is common to smoothing

parameter selection in all kernel smoothing methods.

As pointed out in Yang (1981), one possible approach to the problem is to choose the

bandwidth hn that minimizes the MSE, E(M̂Y − E(Y |X = F−1
X (p))2, of M̂Y . But that

will be a difficult task in practice even when the distribution of X is known (Yang, 1981).

Since the estimators M̂Y and M̂GM , as we argued in Subsection 5.2.1, are essentially ker-

nel smoothing regression estimators, we might borrow the existing methods of bandwidth

selection for the kernel smoothing regression in the literature.

Various methods for choosing the smoothing parameter hn in the setting of kernel

smoothing regression have been proposed in the literature. Among them are Rice (1984a),

Härdle et al. (1988), Vieu (1991), Brockmann et al. (1993), and Herrmann (1997). Her-

rmann (2000) gave an overview and a comparison of important and popular bandwidth

selection methods in the context of kernel regression.

Since our primary interest is to estimate the conditional expectation of Y evaluated

at a specified population quantile of X , rather than the whole regression function, more

appropriate is the local bandwidth selection method to our problem. Other justification for

using local bandwidth selection method are available in Vieu (1991) and Brockmann et

al. (1993). As a result, we suggest to use the local adaptive bandwidth selection method

proposed by Brockmann et al. (1993) for choosing hn in the estimators M̂Y and M̂GM .

The method is essentially a local modification of the global iterative plug-in bandwidth
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selection method proposed by Gasser et al. (1991). It consists of the following iterative

scheme (see Brockmann et al. (1993), for more details of this local bandwidth selection

method), where we take M =
∫

K2(t)dt, and µ2 =
∫

K(t)t2dt.

1. Let ĥ0 = n−1.

2. Iterate

ĥi =

(
σ̂2M

∫
v(t)dt

nµ2
2

∫
v(t)m̂′′(t; ĥi−1n1/10))2dt

)1/5

for i = 1, . . . , 8. (5.21)

where v is a weight function that is assumed to be twice continuously differentiable

in the support [δ, 1− δ] for some δ > 0; σ̂2 is the estimator of σ2 proposed by Gasser

et al. (1986), and m̂′′(·) is the estimator of the second derivative of the regression

function suggested by Gasser and Mueller (1984).

3. Iterate

ĥi(p) =


 σ̂2M

nµ2
2

ĥi−1(p)

∫
K

(
u− pĥi−1(p)

)
(m̂′′(u; ĥi−1(p)n1/10))2du




1/5

for i = 9, 10.

(5.22)

4. Let ĥ(p) = ĥ10(p) be the estimator for the optimal local bandwidth.

5.3 A Bootstrap Estimator Based on Concomitants of Order Statistics

5.3.1 Introduction to the Estimator

To estimate the marginal level p VaR of a position in a portfolio, which is defined to

be the partial derivative of level p VaR with respect to the given position, Mausser (2001)

proposed the following estimator:

M̂HD =
n∑

i=1

wiY[i:n], (5.23)
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where

wi =
1

β((n + 1)p, (n + 1)(1− p))

∫ i/n

(i−1)/n

y(n+1)p−1(1− y)(n+1)(1−p)−1dy

=Ii/n{(n + 1)p, (n + 1)(1− p)} − I(i−1)/n{(n + 1)p, (n + 1)(1− p)} (5.24)

with Ix(a, b) being the incomplete beta function.

Since the marginal VaR of a position is just the conditional expected loss of the position

given that the portfolio is at a loss of the VaR level as shown in Gorieroux et al. (2000),

we might think of (5.23) as an estimator of the conditional mean of the response variable

(which is the loss of the specific position here) evaluated at a given quantile of the predictor

variable (which is the loss-and-profit of the portfolio here).

The motivation for (5.23) to be an estimator of E(Y |X = F−1
X (p)) is rather vague. But

as argued below, we can think of the estimator given by (5.23) as a “Bootstrap” estimator

of E(Y[k:n]) = E(m(Xk:n)) with k = [(n + 1)p], and m(x) being the regression function

E(Y |X = x).

Notice

E(Y[k:n]) = E[E(Y[k:n]|Xk:n)]

=E(m(Xk:n))

=

∫
m(x)fr:n(x)dx

=

∫
m(x)

n!

(k − 1)!(n− k)!
[FX(x)]k−1[1− FX(x)]n−kdFX(x)

=
1

β(k, n− k + 1)

∫
m(F−1

X (u))uk−1(1− u)n−kdu. (5.25)

Now if we substitute F−1
X (·) by the sample quantile function, F̃−1

X (·), which is defined to

be

F̃−1
X (p) = inf{x|Fn(x) ≥ p} (5.26)
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with Fn(x) =
∑

I(Xi ≤ x)/n being the sample cdf, we get the following estimator of

E(Y[k:n]) for k = [(n + 1)p]:
n∑

i=1

wim(Xi:n) (5.27)

Finally if we approximate m(Xi:n) by Y[i:n], then the estimator given by (5.27) will

reduce to the proposed “bootstrap” estimator given by (5.23). As a result, the estimator

M̂HD given by (5.23) can be thought of as a bootstrap estimator of E(Y[k:n]) with k =

[(n + 1)p].

Notice Xk:n
P→ ξX(p) as n →∞ with k = [(n + 1)p]. So under appropriate conditions

on the regression function m, we will have E(Y[k:n]) → m(ξX(p)), for example m is a

bounded function which is continuous at ξX(p), or more generally m is continuous and

m(Xk:n) is uniformly integrable, see more detailed discussions in Vaart (1998, Section

2.5).

5.3.2 Asymptotic Equivalence of the Bootstrap Estimator and the Kernel-
type Estimators

In this subsection we will show that in large samples the estimator M̂HD is essentially

the same as the kernel-type estimator M̂GM for appropriate choice of kernel function K.

We need the following Lemma due to Sheather and Marron (1990).

Lemma 5.3.1. Let q = 1− p where 0 < p < 1, and m = n + O(1). Then as n →∞,

Γ(np + mq)

Γ(np)Γ(mq)
xnp−1(1− x)mq−1 ≈ [2πpq/n]−1/2 exp[−n(x− p)2

2pq
], (5.28)

in the sense that

Γ(np + mq)

Γ(np)Γ(mq)
[p + (pq/n)1/2y]np−1[q − (pq/n)1/2y]mq−1(pq/n)1/2 = φ(y) + O(n−1/2),

(5.29)
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where φ(·) is the pdf of the standard normal distribution.

Remark 5.3.1. Note that the result of Lemma 5.3.1 is directly related to the convergence of

the pdf of a central order statistic from the standard uniform distribution, see Reiss (1989,

Section 4.7) for more discussions about expansions of densities of central order statistics.

Then we have the following Theorem regarding the asymptotical equivalence of M̂HD

and M̂GM .

Theorem 5.3.1. The estimator M̂HD is asymptotically equivalent to the estimator M̂GM

with K being the standard normal density and h(n) = [pq/(n + 1)]1/2.

Proof. Let h(n) = [pq/(n + 1)]1/2. Notice by Lemma 5.3.1 we can express the weights wi

in the estimator M̂HD as:

wi =
1

β((n + 1)p, (n + 1)(1− p))

∫ i/n

(i−1)/n

u(n+1)p−1(1− u)(n+1)(1−p)−1du

=

∫ i/n

(i−1)/n

[
(2πh2

n)−1/2 exp

{
−(u− p)2

2h2
n

}
+ O(n−1/2)

]
du

=

∫ i/n

(i−1)/n

h−1
n φ

(
u− p

hn

)
du + O(n−3/2). (5.30)

So we have

M̂HD =
n∑

i=1

∫ i/n

(i−1)/n

h−1
n φ

(
u− p

hn

)
du + O(n−1/2)

=M̂GM + O(n−1/2) (5.31)

where M̂GM is the kernel estimator given by (5.6) using the gaussian kernel and bandwidth

hn = [pq/(n + 1)]1/2. This proves the theorem.
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5.4 Numerical Examples

In this section we will study the finite sample behavior of the estimators discussed in

Section 5.2 and 5.3 using simulations. The following three data generating processes are

used for the simulation studies, where ε and X are independent.

(i) A random sample of size n is simulated from the model

Y = X + X sin(πX) + ε (5.32)

with ε ∼ N(0, 0.25), X ∼ N(0, 1).

(ii) A random sample of size n is simulated from the model

Y = X + X sin(πX) + ε (5.33)

with ε ∼ N(0, 1), X ∼ N(0, 1).

(iii) A random sample of size n is simulated from the model

Y = X + X sin(πX) + ε (5.34)

with ε ∼ N(0, 0.25), X ∼ 0.25N(−1.5, 1.52) + 0.75N(0, 1).

All these three data generating processes share the same mean regression function, but

they differ from each other in terms of the magnitude of the noise inherent in the observed

data, and the distribution of the covariate X . In particular, the data generating process (ii)

has larger error term variance than processes (i) and (iii), implying greater noise in the

observed data for process (ii); the distribution of covariate X in process (iii) is a mixture of

N(−1.5, 1.52) and N(0, 1) which has heavier left tails than the standard normal in (i) and

(ii).
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5.4.1 Comparison of the Estimators by MSE

For each data generating process, we simulate random samples of size n = 100, 200, 400

and 900 respectively, and then calculate the estimators M̂Y , M̂GM , and M̂HD of E(Y |X =

ξX(p)) for p = 0.1, . . . , 0.9. For the kernel smoothing estimators M̂GM and M̂HD, we used

the R function “lokerns” to calculate the data adaptive bandwidth. The MSE’s of these

estimators for each data generating process are estimated based on 10,000 simulations.

Figure 5.1 gives the estimated MSE’s of the three estimators for the data generating

process (i). We observe that these three estimators perform essentially the same in terms

of the MSE, especially for the two kernel smoothing estimators of which we see very little

difference. But as the sample size increases, the kernel smoothing estimators perform a

little better than the bootstrap estimator M̂HD. Also in the plots, we see that all these

estimators have worse performance near the boundary region than in the interior region.

To examine the performance of these estimators more closely, we also compare the

biases and standard deviations of these estimators.5 Figure 5.2 and 5.3 give the biases and

standard deviations of the three estimators for data generating process (i), respectively, and

Figure 5.4 gives the plot of the ratio of the square of the bias to the MSE for these three

estimators. Very similar to the plots for the MSE, we observe no significant difference

between these three estimators in terms of the bias and standard deviation. Also for all

these three estimators, the bias is dominated by the variance in terms of the contribution

to the MSE, and the improvement in the bias is larger than that for the variance with the

increase of sample size.

5It is well-known that the MSE can be decomposed into the variance and the square of the bias. By
examining the bias and standard deviation we can know more about the contributions of these two parts to
the MSE.
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Figure 5.1: MSE of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(i): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.2: Bias of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(i): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.3: Standard Deviation of the Estimators of E(Y |X = ξX(p)) for the Data Gener-
ating Process (i): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.4: The Ratio of the Square of the Bias to the MSE for the Estimators of E(Y |X =
ξX(p)) for the Data Generating Process (i): (a) n = 100; (b) n = 200; (c) n = 400; (d)
n = 900
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The plots of MSE, bias, standard deviation and the ratio of the square of the bias to

the MSE of the three estimators for the data generating process (ii), which produces more

noisy data than the process (i), are given in Figure 5.5, 5.6, 5.7 and 5.8, respectively. From

the plots we see again that the two kernel smoothing estimators are almost the same in

the performance. For small sample size n = 100, the bootstrap estimator M̂HD performs

a little bit better than the two kernel smoothing estimators. But with the increase of the

sample size, the two kernel smoothing estimators outperform the bootstrap estimator, and

the discrepancy increases as the sample size increases. Similar to what we observe in data

generating process (i), the variance dominates the bias in terms of contribution to the MSE,

especially for the bootstrap estimator.
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Figure 5.5: MSE of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(ii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.6: Bias of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(ii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.7: Standard Deviation of the Estimators of E(Y |X = ξX(p)) for the Data Gener-
ating Process (ii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.8: The Ratio of the Square of the Bias to the MSE for the Estimators of E(Y |X =
ξX(p)) for the Data Generating Process (ii): (a) n = 100; (b) n = 200; (c) n = 400; (d)
n = 900

Figure 5.9, 5.10, 5.11 and 5.12 present the estimated MSE, bias, standard deviation

and the ratio of the square of the bias to the MSE of the three estimators for the data

generating process (iii), in which the distribution of the covariate X has heavier left tails.

We observe that the bootstrap estimator M̂HD performs a little better than the other two

kernel smoothing estimators for the sample size 100. But with the increase of sample size,

the difference between these estimators diminishes. Again we observe that for all the three

estimators the variance dominates the bias in its contribution to the MSE, and with the

increase of sample size, the bias decreases much faster than the standard deviation.
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Figure 5.9: MSE of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(iii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.10: Bias of the Estimators of E(Y |X = ξX(p)) for the Data Generating Process
(iii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.11: Standard Deviation of the Estimators of E(Y |X = ξX(p)) for the Data Gen-
erating Process (iii): (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900
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Figure 5.12: The Ratio of the Square of the Bias to the MSE for the Estimators of E(Y |X =
ξX(p)) for the Data Generating Process (iii): (a) n = 100; (b) n = 200; (c) n = 400; (d)
n = 900
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5.4.2 Bandwidth Selection

In Section 5.2.4, we suggested the use of the local adaptive bandwidth selection method

proposed by Brockmann et al. (1993) for the choice of bandwidth in the kernel smoothing

estimators M̂Y and M̂GM . Here we will study the performance of this data-driven iterative

bandwidth selection method numerically.
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Figure 5.13: MSE’s of the Estimator M̂GM of E(Y |X = ξX(p)) with p = 0.4 for different
bandwidth values: (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900. Solid (dashed)
vertical line locates the estimated (actual) optimal bandwidth.

Figure 5.13 gives the estimated MSE’s of the estimator M̂GM of the quantity E(Y |X =

ξX(p)) with p = 0.4 for different bandwidth values based on 1000 simulations. The data

are generated according to the process (i) given by (5.32), and we do these simulations for
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sample sizes n = 100, 200, 400 and 900. In these plots, the solid lines give the estimated

optimal bandwidth values by the local adaptive method, and the dashed lines give the ac-

tual optimal bandwidths based on our simulations. We observe that the estimated optimal

bandwidths by the local adaptive method are very close to the actual optimal bandwidths,

suggesting good performance of the local adaptive bandwidth selection method for the ker-

nel smoothing estimators M̂Y and M̂GM . We carry out these simulations for p = 0.8, which

is close to the upper boundary 1. Figure 5.14 gives the corresponding results. Again we

see that the estimated optimal bandwidths are close to the actual optimal bandwidths based

on simulations.
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Figure 5.14: MSE’s of the Estimator, M̂GM , of E(Y |X = ξX(p)) with p = 0.8 for different
bandwidth values: (a) n = 100; (b) n = 200; (c) n = 400; (d) n = 900. Solid (dashed)
vertical line locates the estimated (actual) optimal bandwidth.
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5.4.3 Boundary Adjustment

As pointed out in Subsection 5.2.3, the kernel smoothing estimators M̂Y and M̂GM are

subject to larger bias at the lower or upper boundaries, which can also be seen in Figure 5.1.

We suggested the use of the jackknife estimator proposed by Rice (1984b) to reduce the

boundary bias. In this subsection we will examine this boundary adjustment numerically.

We consider the lower boundary behavior of these estimators. In particular, we estimate

the MSE’s of the estimator M̂GM for E(Y |X = ξX(0.05)) with and without boundary ad-

justment given by (5.17). The simulated data is generated according to the data generating

process (i), and we choose the bandwidth to be 0.1 for the estimator M̂GM . The MSE’s are

estimated based on 1000 simulations. The MSE of the estimator M̂HD is also estimated.

Table 5.4.3 gives the results for different sample sizes.

M̂GM M̂GM

n without adjustment with adjustment M̂HD

100 1.592 1.557 0.551
200 1.441 1.416 0.205
400 1.394 1.373 0.069
900 1.332 1.311 0.022

Table 5.1: MSE’s of the Estimators for E(Y |X = ξX(p)) with p = 0.05

From Table 5.4.3 we observe that there is some improvement for the estimator M̂GM

with the boundary adjustment as given by (5.17). But the gain in the MSE is not very sig-

nificant. Also we notice that the bootstrap estimator M̂HD gives much better performance

than the kernel smoothing estimator even with the boundary adjustment.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In the previous chapters we have studied several topics related to concomitants of order

statistics. Here we summarize our findings, and discuss some future work related to these

studies.

In Chapter 2 we studied the finite sample and asymptotic distributions of concomitants

of order statistics for dependent samples. This extends the available results on the distri-

bution theory of concomitants of order statistics in the literature, which usually assumed

i.i.d or independent samples. In deriving these distributions, we model the dependence

structure in X sample values by an equally correlated multivariate normal model, and the

dependence of Y on X through the usual general regression model. A possible application

of these results is to quantify theoretically the inferential biases associated with induced

ordering in the F-tests of financial asset pricing models.6

In Chapters 3 and 4, we studied the distribution of order statistics of concomitants

subsets associated with higher and lower order statistics, namely Vs:m and Wt:n−m in our

notation. The motivation for studying these order statistics stems from an event of interest

in selection procedures.

6See Lo and Mckinlay (1990) for more details about the problem of data-snooping when the data used for
testing the financial asset pricing model is obtained with induced ordering.
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In Chapter 3, the marginal distribution of these order statistics are studied. Using condi-

tioning argument, we first derived the finite-sample distribution of Vs:m and Wt:n−m, which

turns out to be quite complicated for practical applications. Then a large sample approxi-

mation to these distribution is considered. Under appropriate assumptions, we established

that the limiting distributions for Vs:m and Wt:n−m are both normal in the quantile case. The

rates of convergence in these distributions are also derived, and are shown to be of order

n−1/2. Based on the results from Reiss (1989), we propose a higher order expansion to the

cdfs of these order statistics, which achieves much better performance than the normal ap-

proximation even for moderate sample size. The results are illustrated with some numerical

examples.

In Chapter 4 we extended the results in Chapter 3 by deriving the joint distribution of

(Vs:m,Wt:n−m). With some minor adjustment to the arguments used in Chapter 3, we first

derived the finite-sample joint distribution of (Vs:m,Wt:n−m); then we derived the asymp-

totic distribution of these order statistics in the quantile case, which turns out to be mul-

tivariate normal. Similar to the case of the marginal distribution, the rate of convergence

in the joint distribution is shown to be of order n−1/2. Using arguments similar to those in

Joshi and Nagaraja (1995), we derived the asymptotic joint distribution of (Vs:m,Wt:n−m)

in the extremal case under appropriate conditions. Unlike in the quantile case, Vs:m and

Wt:n−m are asymptotically independent. We illustrated these results with a bivariate nor-

mal example.

We then discussed two applications of the results about the joint distribution of (Vs:m,

Wt:n−m). The first application is about calculating the probability of an event of interest

in selection procedures, which is essentially a generalization of the problem discussed in

Yeo and David (1984). Although it is quite difficult to calculate the exact probability of the
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event of interest, we provide a simple formula for approximating the desired probability

based on the asymptotic joint distribution of (Vs:m, Wt:n−m). The approximation is studied

with some numerical examples. The other application is about calculating the power of a

two-stage design for gene-disease association studies proposed by Satagopan et al. (2002)

and Satagopan et al. (2004). We demonstrated that the desired (asymptotic) power function

can be compactly expressed using order statistics of concomitant-subsets.

Along this line of research on order statistics of concomitant-subsets, there are two pos-

sible areas of work to consider in the future. Although we derived a higher order approxi-

mation to the marginal distribution of Vs:m and Wt:n−m, the corresponding approximation

to the joint distribution has not been derived yet. While this would be very helpful to ap-

proximating probabilities involved in selection procedure problems as discussed in Section

4.4.1. We have seen from the numerical examples that the normal approximation to the

desired probability is not satisfactory even for sample size n = 500 in some cases.

Another challenging task is to derive the rate of convergence in the distribution of or-

der statistics of concomitant-subsets in the extremal case, which in turn determines how

useful the corresponding asymptotic distribution would be in applications. Deriving the

rate of convergence in the distribution of extremal order statistics is itself a very difficult

task, which is shown to depend on the second-order behavior of the population distribution

(Smith, 1982; Haan, 2006). Establishing the rate of convergence in the distribution of order

statistics of concomitant-subsets in the extremal case is much more complicated since we

need to deal with the much messier distributions F1(·|x0) and F2(·|x0).

Motivated by the problem of estimating the marginal VaR of a position in a portfolio

in financial risk management applications, we studied the problem of estimating the condi-

tional mean of Y variable given that the X variable is at specific quantiles of its distribution
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in Chapter 5. The problem is very similar to the usual bivariate regression except that the

evaluation point for the explanatory variable, its population quantile, is itself unknown. A

natural approach to the problem is to use a 2-step procedure: the population quantile of X

is first estimated; then the conditional mean of Y is estimated at the estimated X quantile.

But here we propose two estimators based on the concomitants of order statistics, which

circumvent the step for estimating the population quantile of X .

The first class of estimators, generalized from Yang (1981), can be thought of as a kernel

smoothing estimator applied to the transformed data. We studied the asymptotic properties

of these kernel smoothing estimators. It is shown that under mild conditions, these esti-

mators are mean square consistent. The issues of bandwidth selection and boundary effect

adjustment for these kernel smoothing estimators are also discussed. We recommended to

use the local adaptive bandwidth selection method proposed by Brockmann et al. (1993)

from the consideration that our primary interest is to estimate the conditional expectation of

Y evaluated at a specified population quantile of X rather than the whole regression func-

tion. Simulation studies showed that this data-driven adaptive bandwidth selection method

performs well for these kernel smoothing estimators in identifying the optimal bandwidth.

To alleviate the boundary effect for these kernel smoothing estimators, we suggest the use

of the method proposed by Rice (1984b). While simulation studies showed that the im-

provement in the MSE by adopting the given boundary adjustment is not very significant.

One possible reason is that by applying the empirical cdf on the X values, the resulting

transformed data are no longer independent. So the expansion of MSE in deriving the

adjustment by Rice (1984b) do not directly carry over to our case. More rigorous study

of how the MSE of our kernel smoothing estimator behaves in boundary regions is thus

needed for finding more appropriate boundary adjustment.
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The second estimator is motivated by Mausser (2001). We argued that the estimator can

be thought of as a bootstrap estimator of a quantity which in turn approaches the parameter

of our interest as the sample size goes to infinity. Under mild conditions we established

that the estimator is asymptotically equivalent to the kernel smoothing estimators discussed

above. So the nice asymptotic properties of the kernel smoothing estimators carry over to

the bootstrap estimator.

The finite-sample behavior of the above two estimators were studied by simulations.

We observed that although most of the time the performance of these estimators is very

close to each other, the kernel smoothing estimator performs a little better than the boot-

strap estimator for noisy data, while the bootstrap estimator performs better than the kernel

smoothing estimator when the distribution of X is heavy-tailed. We also noticed that with

the increase of sample size, the bias of these estimators diminishes much faster than the

variance. Simulation studies also showed that in the boundary region the bootstrap estima-

tor performs much better than the kernel smoothing estimators, even those with boundary

adjustment.
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Härdle, W., Hall, P., and Marron, J. S. (1988), “How Far Are Automatically Chosen Regres-
sion Smoothing Parameters from Their Optimum?” Journal of the American Statistical
Association, 83, 86–95.

117



Harrell, F. E. and Davis, C. E. (1982), “A New Distribution-free Quantile Estimator,”
Biometrika, 69, 635–640.

Harrell, F. E. and Sen, P. K. (1979), “Statistical Inference for Censored Bivariate Normal
Distributions Based on Induced Order Statistics,” Biometrika, 66, 293–298.

Herrmann, E. (1997), “Local Bandwidth Choice in Kernel Regression Estimation,” Journal
of Computational and Graphical Statistics, 6, 35–54.

— (2000), “Variance Estimation and Bandwidth Selection for Kernel Regression,” in
Smoothing and Regression: Approaches, Computation, and Application, ed. Schimek,
M. G., John Wiley & Sons, New York, pp. 71–107.

Jorion, P. (1997), Value at Risk: The New Benchmark for Controlling Market Risk, Irwin,
Chicago.

Joshi, S. N. and Nagaraja, H. N. (1995), “Joint Distribution of Maxima of Concomitants of
Subsets of Order Statistics,” Bernoulli, 1, 245–255.

Kaigh, W. D. and Lachenbruch, P. A. (1982), “A Generalized Quantile Estimator,” Com-
munications in Statistics: Theory and Methods, 11, 2217–2238.

Kaufmann, E. and Reiss, R.-D. (1992), “On Conditional Distributions of Nearest Neigh-
bors,” Journal of Multivariate Analysis, 42, 67–76.

Lo, A. and Mckinlay, A. (1990), “Data-Snooping Biases in Tests of Financial Asset Pricing
Models,” Review of Financial Studies, 3, 431–467.

Marron, J. S. and Nolan, D. (1988), “Canonical Kernels for Density Estimation,” Statistics
& Probability Letters, 7, 195–199.

Mausser, H. (2001), “Calculating Quantile-based Risk Analytics with L-estimators,” ALGO
Research Quarterly, 4, 33–47.

McIntyre, G. A. (1952), “A Method of Unbiased Selective Sampling Using Ranked Sets,”
Australian Journal of Agricultural Research, 3, 385–390.

Müller, H.-G. and Muller, H.-G. (1988), Nonparametric Regression Analysis of Longitudi-
nal Data, Springer-Verlag, Berlin.

Nadaraya, E. A. (1964), “On Estimating Regression,” Theory of Probability and Its Appli-
cations, 9, 141–142.

Nagaraja, H. N. (1982), “Some Nondegenerate Limit Laws for the Selection Differential,”
The Annals of Statistics, 10, 1306–1310.

Nagaraja, H. N. and David, H. A. (1994), “Distribution of the Maximum of Concomitants
of Selected Order Statistics,” The Annals of Statistics, 22, 478–494.

118



Olkin, I. and Stephens, M. A. (1993), “On Making the Shortlist for the Selection of Candi-
dates,” International Statistical Review, 61, 477–486.

Parrish, R. S. (1990), “Comparison of Quantile Estimators in Normal Sampling,” Biomet-
rics, 46, 247–257.

Priestley, M. B. and Chao, M. T. (1972), “Non-parametric Function Fitting,” Journal of the
Royal Statistical Society, Series B: Methodological, 34, 385–392.

Reiss, R.-D. (1989), Approximate Distributions of Order Statistics: with Applications to
Nonparametric Statistics, Springer-Verlag Inc.

Resnick, S. I. (1987), Extreme Values, Regular Variation, and Point Processes, Springer-
Verlag Inc.

Rice, J. (1984a), “Bandwidth Choice for Nonparametric Regression,” The Annals of Statis-
tics, 12, 1215–1230.

— (1984b), “Boundary Modification for Kernel Regression,” Communications in Statistics:
Theory and Methods, 13, 893–900.

Royden, H. (1968), Real Analysis, Second Edition, Macmillan, New York.

Ruppert, D. and Wand, M. P. (1994), “Multivariate Locally Weighted Least Squares Re-
gression,” The Annals of Statistics, 22, 1346–1370.

Satagopan, J. M., Venkatraman, E. S., and Begg, C. B. (2004), “Two-stage Designs for
Gene-Disease Association Studies with Sample Size Constraints,” Biometrics, 60, 589–
597.

Satagopan, J. M., Verbel, D. A., Venkatraman, E. S., Offit, K. E., and Begg, C. B. (2002),
“Two-stage Designs for Gene-disease Association Studies,” Biometrics, 58, 163–170.

Sheather, S. J. and Marron, J. S. (1990), “Kernel Quantile Estimators,” Journal of the
American Statistical Association, 85, 410–416.

Smith, R. L. (1982), “Uniform Rates of Convergence in Extreme-value Theory,” Advances
in Applied Probability, 14, 600–622.

Sondhauss, U. (1994), “Asymptotische Eigenschaften Intermediärer Ordnungsstatistiken
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