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ABSTRACT

Development of scalable application codes requires anrstadaling and exploitation
of the locality and parallelism in the computation. Thisyipitally achieved through op-
timizations by the programmer to match the application ati@ristics to the architectural
features exposed by the parallel programming model. Rax¢itl address space program-
ming models such as MPI foist a process-centric view of thaljeh system, increasing the
complexity of parallel programming. Typical global addyepace models provide a shared
memory view that greatly simplifies programming. But thelifred models abstract away
the locality information, precluding optimized implemations. In this work, we present
techniques to reorganize program execution to optimizalitycand parallelism, with little
effort from the programmer.

For regular loop-based programs operating on dense muaigkional arrays, we pro-
pose an automatic parallelization technique that attetopdetermine a parallel schedule
in which all processes can start execution in parallel. Whenconcurrent tiled iteration
space inhibits such execution, we present techniqueseaable it. This is an alternative
to incurring the pipelined startup overhead in schedulesigeged by prevalent approaches.

For less structured programs, we propose a programming Irttaateexposes multiple
levels abstraction to the programmer. These abstractimatse quick prototyping coupled

with incremental optimizations. The data abstraction tes a global view of distributed



data organized as blocks. A block is a subset of data stomatijcously in a single pro-
cess’ address space. The computation is specified as atmrlle€tasks operating on the
data blocks, with parallelism and dependence being spediséween them. When the
blocking of the data does not match the required accesgpaitthe computation, the data
needs to be reblocked to improve spatial locality. We develficient data layout trans-
formation mechanisms for blocked multi-dimensional astay/e also present mechanisms
for automatic management of load balance, disk I/0, and-priecess communication on

computations expressed as sets of independent tasks dedhldata stored on disk.
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CHAPTER 1

INTRODUCTION

There have been dramatic strides in hardware performanogdérn high-end sys-
tems. These improvements have been accompanied by a aordaésg increase in the
complexity of these systems. Modern parallel computerg liaereasingly large number
of processors, deeper memory hierarchies, and higher ggocelock speeds. This has
resulted in an increasingly important role of exploitatadrparallelism in the computation
to utilize the available processors, and data locality taimae the time spent in useful
computation by processors.

The dramatic strides in hardware performance of modern-aighsystems over the
past decades have not been matched by a corresponding enpeavin the ease of pro-
gramming them. The increasingly complex hardware and comication architectures,
while enabling high performance, have resulted in an irginggamount of detail being
handled by the programmer to achieve that performance.

From a programmer’s viewpoint, the complexity of the codgureed to implement a
given algorithm or simulation is a function of the level oftaiéthe programming model
exposes to the programmer, the number of decisions andeshticbe made, together
with the level of detail required to manage performancetesl aspects of the underlying

hardware.



Developing scalable application codes on such system#&esgan understanding and
exploitation of the parallelism and locality in the compida. The computation needs to be
parallelized such that good load balance is achieved. Ttghlition of the data amongst
the processors needs to take into account the cost of datamamt between the processors.
In addition, movement of data between the different leveth® memory hierarchy needs
to minimized to reduce the overall data movement cost. Bhisually achieved by distin-
guishing the different levels of the memory hierarchy tmatir different data movement
costs. The programmer optimizes the execution of an agjalicay matching the locality
and parallelism identified in the application to the arattiteal abstraction exposed by the
parallel programming model.

Parallel programming models provide a combination of dath@ntrol abstractions.
The data abstraction divides the addressable memory inyiters into units of locality.
All elements in the same unit of locality are assumed to itlceiisame data movement cost.
A simplified data abstraction that improves productivitgatly presents a uniform view of
the memory in the system. On the other hand, achieving goaldlsitity requires a data
abstraction that can be efficiently mapped to the non-umfdeep memory hierarchy in
modern parallel systems. This is typically achieved bytimgaone unit of locality for each
processor memory, and distinguishing between access tathen local memory and to
that in non-local memory.

The control abstraction provides mechanisms to identify express the parallelism
in the computation. It also optionally provides mechanisonsautomatic load balancing.
The abstraction is either computation-centric, with gdeliaim specified in terms of data or
functions used in the computation, or architecture-centn an architecture-centric control

abstraction a fixed number of control flow units are defingoichlly one per processor, and



these are allowed to execute in parallel with user managdiagynchronization between
them. While an architecture-centric control abstractiam loe easily mapped to the proces-
sors in a parallel system, computation-centric abstrastfacilitate ease of programming.
In addition, architecture-centric specification of patdim encourages the programmer
to partition the computation with implicit dependenceswen the tasks in a part. The
absence of this information to the runtime makes automatipart for load-balancing a
challenging task.

When an application’s data does not fit into the collectivegital memories of a par-
allel system, the data is stored on disk. Such data is reféorasout-of-coredata. Virtual
memory has been shown to inefficient in handling out-of-aaientific applications due to
a lack of insights into the data access characteristicsaragiplication. Explicit disk 1/0O
mechanisms are used to move the data between the secoratagesind main memory. In
programming out-of-core applications, a programmer hasidend with the orchestration
of the movement of data between disk and memory, ensuriightbanemory utilization
does not exceed the size of the available physical memadys@meduling the computation
to operate only on the data in the physical memory. In contjouts based on the tradi-
tional collective disk I/O model, all processes collectmeve the data between the disks
and the distributed memory, with each process subsequaartigrming communication to
move the data into the local memory for processing.

We attempt to improve the performance of an application Vuitited impact on pro-
ductivity. For regular loop-based programs operating amsdemulti-dimensional arrays,
we present an automatic parallelization technique thablesdahe concurrent start of exe-
cution by all processors. This avoids the pipelined stastegrhead incurred by schedules

generated by prevalent approaches. It also exposes thedfldetween communication



volume, the number of communication start-ups, or compartatost and the parallelism
in the application. Unlike existing loop transformatioariteworks, this approach enables
the user to choose between the various costs depending appieation and the bal-
ance of computation and communication costs in the targgéesy. Chapte? presents the
technique and evaluates the approach on stencil codes.

For less structured programs, we propose to reconcile #raisgly conflicting require-
ments of performance and productivity by presenting the wié& multiple interoperable
control and data abstractions, each at a different leveétaid This enables a programmer
to realize an implementation of an algorithm using a higlel@bstraction, and incremen-
tally optimize it improve its efficiency and scalability.

A key aspect of our approach to handle parallelism and da@itg, including out-
of-core data, is the organization of the data into blocks #na globally addressable. A
block is a subset of data that is stored in a single processmmory or disk. A block is
defined to be the basic unit of locality. The computation isn@el in terms of sets of tasks
operating on the blocks of data and dependences between them

When the layout of the blocks does not match the access ipatieéhe computation,
a performance penalty is incurred due to the lack of spatlity. This is particularly
severe in the context of out-of-core data. We present difidata layout transformation
algorithms to transform the blocking of multi-dimensiomatays, when the blocking re-
quired for different phases are very different. We first depen out-of-core matrix trans-
position algorithm that takes into account the I/O chamésties of the target system. We
then present a novel algorithm to solve the out-of-coreimegblocking problem for multi-

dimensional matrices of arbitrary sizes. This is topic ecdission in Chaptét.



The programmer specifies a task as a set of data blocks andteéofuthat contains an
efficient sequential implementation of an algorithm to gsxthose blocks. The blocking
of data ensures efficient data movement, while the tasksgeafficient sequential exe-
cutions to process interacting blocks. Blocking of datasteoables us to leverage existing
work on optimizing sequential computations.

This abstraction provides a computation-centric view ahdocality and parallelism,
thus presenting a simple abstraction to the user. On the btrel, the explicit specifi-
cation of the locality and parallelism enables runtime na@i$ms that map the data and
tasks to the processors in a parallelism to automaticallyaga locality, dependences, and
load balance in the execution of the program. We believeetfesgtures can enable the pre-
sentation of a high-level programming abstraction withoarnpromising scalability and
sequential efficiency.

We demonstrate the benefits of the approach in the conteasiebt contractions arising
from the quantum chemistry domain in ChapfeiVe present mechanisms for automatic
management of load balance, disk I/0O, and inter-processmortation on the quantum
chemistry computations expressed as sets of independdstaa blocked data stored on
disk. The objective is to minimize the volume of disk I/O whidalancing the computation

amongst the processors.



CHAPTER 2

EFFECTIVE AUTOMATIC PARALLELIZATION OF STENCIL
COMPUTATIONS

2.1 Introduction

Stencil computations represent a practically importaag<lof computations that arise
in many scientific/engineering codes. Computational domthiat involve stencils include
those that use explicit time-integration methods for nuca¢solution of partial differen-
tial equations (e.g., climate/weather/ocean modeling]] computational electromagnet-
ics codes using the Finite Difference Time Domain methait]), and multimedia/image-
processing applications that perform smoothing and otbayhior pixel based computa-
tions [45]. There has been some prior work from the computer scienoeramity that
has addressed performance optimization of stencil cortipata(e.g., 9, 54, 53, 39)).
Since stencil computations are characterized by a regatapatational structure, they are
amenable to automatic compile-time analysis and transtbom for exploitation of par-
allelism and data locality optimization. However, as elabed later through an example,
existing compiler frameworks have limitations in genergtefficient code optimized for

parallelism and data locality.



Loop tiling is the key transformation to enable paralldiiza and data-locality opti-
mization of stencil codes. Much research has been publishdiling of iteration spaces
[52, 119 118 106 29, 34, 92, 95, 49, 14, 50, 33, 51, 3]. With few exceptions (e.g.,
work of Griebl |42, 43]), research on performance optimization with tiling hasneye
ally focused on one or the other of the two complementarycspé€a) data locality op-
timization [4, 3, 118 106 29; or (b) tile size/shape optimization for parallel exeouti
[34, 92, 9,49, 14, 50, 33, 51]. Tiling for data locality optimization involves maximigan
of data reuse, i.e., tiling along directions of the data déeleace vectors. But such tiling
may result in inter-tile dependences that inhibit conaurexecution of tiles on different
processors. To the best of our knowledge, no prior work hasezded in an integrated
fashion, the issues of tiling for data locality optimizatiand load balancing for parallel
execution. We first use the simple example of a one-dimeakidscobi code to illus-
trate the problem and introduce two approaches we propoaeoid the problem: over-
lapped tiles and split tiles. As an example of a stencil coiapen, let us consider the
one-dimensional Jacobi code shown in Figare Optimizing this stencil computation for
reduction of cache misses requires loop fusion and tilinggrder to fuse the two inner
loops, loop skewing is needed. Frameworks have been piyiptoposed for data local-
ity optimization of imperfectly nested loops. Using an aggwh proposed by Ahmed et.
al. [3, 4] the loop nest can be transformed into the one shown in Fig@by first embed-
ding the iterations in the imperfectly-nested loops intceafgctly-nested iteration space.
Loop transformations and tiling can then be applied in t@sformed perfectly-nested
iteration space. The transformed iteration space can beegukntly translated into effi-

cient code by reducing/eliminating the control overhe&d.[In this chapter, we focus on



for t =0to T-1

for i =1to N1
Si: B[i] = (Ali-1]+Ali]+A[i+1])/3
for i =1to N1

2. Al = Bi]

Figure 2.1: Imperfectly-nested one-dimensional Jacobi

load-balanced parallel execution of tiled iteration sgabat have already been embedded
into a perfectly-nested iteration space using a technigak as that developed ir][

Figure2.3shows a single-statement form of the one-dimensional Jacole obtained
by adding an additional dimension to arrAy The flow dependences in this code are the
same as that of the previously shown version, but there aenti@ependences. Hence a
single statement is sufficient in the loop body instead ofcaisace of two statements, for
update and copy, respectively, as seen in Figdréand 2.2, Although such a memory-
inefficient code would not be used in practice, it is more em®@nt to use a single-
statement iteration space in explaining the main ideasisdhapter. However, the de-
veloped approach is not restricted to such single-stateloeps, but is applicable to gen-
eral multi-statement stencil codes such as the one in FigjareThe experimental results
presented later also use the memory-efficient multi-statewversions.

The perfect loop nest of Figu23has constant dependen¢és0), (1,1), and(1,—1).
Tiling for data reuse optimization (e.g. using the approa@sented ind]) results in tiles
of shape as shown in FiguBe4. The horizontal axis corresponds to the spatial dimension,
with time along the vertical dimension. Using a sufficieritlyge tile size along the time
dimension facilitates significant data reuse within caflegssters. However, there are

inter-tile dependences in the horizontal direction, iftinly concurrent execution of tiles



for t =0to T-1

for i =1to N
i f(i>=1 and i <=N-1)
Sl: Bli] = (Ali-1]+Ali]+Ali+1])/3
i f(i>=2 and i<=N)
S2: Ali-1] = B[i-1]

Figure 2.2: Fused one-dimensional Jacobi

by different processors. However, if the vertical tile siggeduced to one (i.e., tiling is
eliminated along the time dimension), all tiles along thatig dimension (adjoining the
X-axis) can be executed concurrently. Thus there is a tofideetween achieving good data
reuse and load balancing of parallel execution.

Instead of thestandardtiling described above, consider the tiling shown in Figaire
Starting with the tiles formed by the same hyperplanes, aitiadal triangular region is
added to the left of the tile, overlapping with the pointsted tight end of the neighboring
tile. With this tiling, the iteration points processed by tiles are no longer disjoint. Some
of the iterations are executed redundantly by two neigimgotiles. This results in an in-
crease in the computation cost. But doing so eliminatesépeindence between tiles along
the horizontal direction. All processors can start exexith parallel, eliminating the initial
processor idling that results with the pipelined paralieaution of tiles in Figure.4.

While standard tiling can enhance data locality in this egftoverlapped tiling can

both improve data locality and eliminate the overhead oélogd parallelism, at the cost



for t =0to T-1
for i =1to N1

Alt,i] = (Alt-1,i-1] + A[t-1,i] + Alt-1,i+1])/3

Figure 2.3: Single-statement form of one-dimensional Baco

of slightly increased computation time. However, the iased computational cost is in-
dependent of tile size. Therefore the fractional compaortativerhead is inversely propor-
tional to the tile size in the direction of overlapped tiljramd can be made insignificant if
a sufficiently large tile size is chosen along the time dinmns

An alternate approach, shown in Fig@, splits the interior of each tile into two sub-
tiles, where the points in only one of the two sub-tiles (f#thdire dependent on points in
the neighbor tile, while the points in the other sub-tilermoédependent on any neighboring
tile’s points, and therefore executable concurrently.hifiis approach, each standard tile
is split into two sub-tiles, and load-balanced concurreetation is possible as a sequence
of two steps: first all non-dependent sub-tiles are conatlgrexecuted and communicate
with the neighbor tiles, and then the dependent sub-tikesithiconcurrently executed.

The chapter is organized as follows. Section 2 defines thielgmoaddressed in this
chapter. In Section 3, we characterize the conditions uwtieh tiled iteration spaces can
benefit from overlapped/split tiling. In Section 4, we shoswhto transform a given tiled
iteration space in order for overlapped/splittiling to ippkcable. Section 5 discusses code
generation and Section 6 analyzes the cost benefits of ppediling. Section 7 provides
experimental results that demonstrate the benefits of weeld/split tiling. In Section 8,

we discuss related work and conclude in Section 9 with a suspnma
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Figure 2.4: Standard tiling for one-dimensional Jacobi.and s, denote the inter-tile
dependences.

Figure 2.5: Overlapped tiling for one-dimensional Jacobi

2.2 Background and Problem Statement

This section introduces some standard background on tlyearal model of com-
putation, and defines the problem addressed. Considerecpgrhested loop nest with
levels of nesting. Théeration space polyhedrodefines am-dimensional set of points,

characterized by a set of bounding hyperplanes and modsl& & b wherel is the

11



Figure 2.6: Spilit tiling for one-dimensional Jacobi

iteration vector. The row; of B define the normals to the corresponding bounding hyper-

planes. For example, the iteration space for the 1-D Jac@imple is

1 0 0
1 0| [t ~T+1
0 1 '(i)2 1
0 -1 ~N+1

The dependences in the computation can be represented hyia bhewvhere each column

defines a dependence vector. The dependences in the 1-D dzaoiple are

111
DZ(dl do d3):<_l 0 1)
Assume that we are given a settding hyperplaneghat tile the iteration space. These

hyperplanes are represented by a mattjxwhere each row represents the normal vector

of a tiling hyperplane. For example, the tiling hyperplanesesponding to Figurg.4are

=(n)=(12)

Atiling defined by a set of tiling hyperplaneslegalif each tile can be executed atomically

represented as

and there exists a valid total ordering of the tiles. Inuaily, a tiling is legal if no two tiles

mutually depend on each other. It can be showij {hat this validity condition is given by

H.D>0

12



A schedule has eoncurrent starproperty if all processors can start execution in parallel,
without any pipeline start-up delay. Such a schedule ismedleto as a concurrent-start
schedule.

Problem Statement.Consider a given (non-tiled) iteration space in which a corent-
start schedule is possible. However, for a given tiling @ #pace defined by a set of tiling
hyperplanes, it is possible that the tile dependencieseanctrresponding tiled iteration
space inhibit concurrent start. We consider the followingsiion: How can concurrent
start be achieved in the tiled iteration space? Our first o characterize analytically
the situations in which tiling inhibits concurrent startex, we develop two approaches,
overlappediling andsplit tiling, that enable concurrent start in the tiled space acdver

the load-balancing properties lost due to tiling.

2.3 Inhibition of Concurrent Start

If the original non-tiled iteration space does not have acoorent start schedule, tiling
cannot enable such a schedule. However, if concurrent ist@assible in the absence
of tiling, the introduction of tiling can potentially inhibthis concurrent start. This sec-
tion characterizes the conditions under which a non-tifgte supports a concurrent start
schedule, and then derives a concurrent start inhibitiowition for the tiled space. For
simplicity of presentation, the discussion assumes aatiter space with a single state-
ment, but we have defined a general version of the techniquadti-statement iteration

spaces.
2.3.1 Concurrent Start in the Non-Tiled Space

First, we describe the condition for the existence of corerrstart in the original non-
tiled iteration space. Consider, for example, dependeectors(1,0) and (0,1). Two

13



Figure 2.7: lllustration of concurrent-start. Iteratigmases with(1,0) and(0,1) depen-
dencies: (a) concurrent start is not possible (b) concustamt is possible from the gray
boundary.

iteration spaces with these dependences are shown in Eigardn Figure2.7(a), the
parallel computation has to begin from the origih0) and suffers from pipeline start-up
overhead. On the other hand, the iteration space in Figuie) can be traversed by all
processors in parallel starting from the boundary shownay.g

In general, the presence of concurrent start in an iterafiace depends on the bound-
aries that define the iteration space polyhedron. An it@maspace supports concurrent
start if there exists a bounding hyperplane that does ndagoa dependence, i.e. carries
all dependences. A hyperplane contains a dependence ith®tsource and destination
iteration points of the dependence are contained in therpigree. Since the rowls of B
define the normal vectors of the bounding hyperplanes, tioiggsty is represented by the
condition

dbjeB : VdjeD : b.dj >0

14



Note that this condition is independent of the tiling hypanes. We will refer to this
property as theoint-wise concurrent start conditioWWhen this condition does not hold,
no tiled iteration space can have concurrent start. Fordbe€acobi example, the condition
holds because the normal vectar= (1 0) for one of the bounding hyperplanes satisfies

b1.dj > O for all dependence vectods.
2.3.2 Inhibition of Concurrent Start in the Tiled Space

Next, we consider the condition for the inhibition of the carrent start condition in
the tiled iteration space. Given the tiling hyperplanes @ik normal vector$;, € H, we
define theshift vector sfor the hyperplane witlh; as normal to be a vector connecting two
instances of the same hyperplane, while traveling parallell other hyperplanes. Clearly,

the following holds for the se&$ of shift vectors:
VseS:Vj#i:h.s=0

For the 1-D Jacobi example, we will use shift vectors

S= (s sQ):<(1) _11>

as illustrated in Figur@.4.

The execution of two adjacent tiles should be ordered ifeheml dependence vector
dj such that for some iteration pointsandi, related byd;, pointiy is in one of the tiles
and pointis is in the other one. Note that this is possible only if thera dependence that
passes through the hyperplane that separates the two tilesther words, if the following
condition holds

ddk €D : h.dk #0

15



When this condition is satisfied for a given hyperplane viatke H, the shift directions
along that dimensionarries the inter-tile dependencé&or the 1-D Jacobi example, both
s1 ands, carry inter-tile dependencies (for examgige,d; > 0 andhy.d; > 0).

The inter-tile dependences can introduce dependencdidite¢hat do not exist in the
original iteration space. The concurrent start condit®mhibited in the tiled iteration
space if for some boundaryp;, the concurrent start condition is satisfied by the depen-
dences in the original iteration space, but not by the ititerdependences in the tiled

iteration space. A tiling inhibits concurrent start if
dbj € B,hjeH,d¢cD:b.D>0Abi.5j=0Ahj.d¢ #0

When the above condition is true, there exists an inteidegjgendence within a hyper-
plane parallel to the boundaty, precluding concurrent execution of all the tiles in the
boundary. Thus, concurrent start is inhibited even thohghoriginal iteration space sup-
ports it. This situation occurs for the 1-D Jacobi example thubounding plane normal

b; = (1 0), tiling hyperplane normai; = (1 0), and any dependencg fork=1...3.

2.4 Overlapped Tiling

The basic idea behind overlapped tiling is to eliminateaiarinter-tile dependencies
by “duplicating” points in the original iteration space. Asesult, the same iteration point
can be a member of two neighboring tiles (i.e., the tiles caerlap). This section outlines
a constructive procedure to determine overlapping tiles ¢liminate the inter-tile depen-
dences, which removes the inhibition on concurrent stdre Key step is the construction
of acompanion hyperplanthat eliminates the dependence along a desired directioa. T
new tile will not have any incoming dependence along thectima in which the depen-

dence was eliminated.
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In standard tiling, a hyperplane with a normal vedipdefines two faces of the tile.
We will denote these faces &agl) (the back face) ant(I + 1) (the front face). The front
face is shared with the subsequent tile along the shift timedefined by shift vectos.
The back facé(1) has no incoming dependencesiifd > 0. On the other hand, the front
faceh;j(l 4+ 1), by the tiling validity condition, does not have any incoidependences.
All dependences between the hyperplanes can be elimirfatee back face of the tile is

replaced by an overlapped hyperplane with a normal vétteuch that
vd; € D:hi.dj <0

Note that the hyperplanes span the iteration space and atorwe the iteration space;
hence, the companion hyperplane can be defined as a linediration of the existing
hyperplanes. Scaling a given hyperplane vetiaioes not eliminate any additional de-
pendences. In addition, we are interested in the comparyjparplane that forms the back
face of the tile. Thus, it is constructed by going “backwéaradls the other hyperplanes,

represented by a negative linear combination of the hypegd, and is given by:

h.D>0=h =h— zkj'hj Ah.D<0Akj >0
J#
Such a companion hyperplane eliminates dependences akinifj @ector. This proce-

dure is repeated for every hyperplane/shift vector thabitdiconcurrent start.
Considem-dimensional Jacobi iteration with ant+ 1 dimensional iteration space, and

ann dimensional data space, with a rangeNoélong each dimension. L&be the space

tile size along each of thespace dimensions. Letbe the number of processors organized

in an n-dimensional gridB = N//p. Lett be the time tile size.
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Figure 2.8: Overlapped tiling for two-dimensional Jacdbp view

The schedule for overlapped tiling requires the procestorycle to maintain load
balance. We illustrate the determination of communicafi@guency using a simpler
variation. Starting from orthogonal tiling, both planesidze swiveled partially to form
trapezoid-like tiles for 1-D Jacobi, and a square pyramidviem-dimensional Jacobi, top
view for which is shown in Figur@.8. This overlapped tiling scheme has the same com-
munication volume as the original one, but double the nurmbstartups. However, code
generation is simpler for this case due to the absence ofaéé to cycle. The number of
startup’s do not matter when the communication volume i&drigthis is particularly true
for higher dimensional Jacobi (greater than 1) for whichgpace tile size comes into the
volume.

Consider the overlapped tiling scheme that is obtained footnogonal tiling. The
point-wise difference between the coordinates of a givercgssor and any of its neigh-

bors in the processor space ismamector, and each of its components being 1, 0, or -1.

18



Discounting the all zeros case, we haVe-3L neighbors. Hence, the number of communi-

cation startups per tile (without forwarding) is given by:
5=3"-1 (2.1)

For example, for three-dimensional Jacobi, we have 8 cerd@redges, and 6 faces, i.e., a
total of 26 & 32-1) neighbors to send and receive data to/from to computevteapped
tile.

With communication forwarding, the number of communicastartups per tile can be

reduced to A (one for each of the faces).
S =2n (2.2)

Similarly the number of startups for the original schedul#haut and with forwarding
are:

S=2"-1 (2.3)
S,=n (2.4)

The exact communication volume assuming orthogonal tisrgjven by:

vV o= i;(ﬂii)ZiB(”‘i)f(i,t) (2.5)

~ 2ntB"1whent < B
where

t—1 i(n-1)
f(kt)= Z Z in (2.6)

in—k+1=1 in=1

The communication volume for the original schedule reduces

19



vy (nr_]i)B(”_i)f(i,Zt) 2.7)

~ 2ntB"1whent < B

The communication schedule and the data being communoeaio be quite complex
for higher dimensions. Adding a small number of points to ¢cbexmunication volume
greatly simplifies code generation. In Fig, the points in each of the four corners are
those that can be added. The total communication volumettbeomes:

V' = (B+2)"-B"
— "CiB"Y(2t) 4+ "CoB™ 2 (2t)?
+ (20" (2.8)

ontB lift < B

Q

= O(tB" (2.9)

Forn=2:

V' = 4tB + 4t2
2.5 Split Tiling

Overlapped tiling eliminates inter-tile dependences loyrelantly computing portions
of a tile. While eliminating dependences, this approacheases the overall amount of
computation. In this section we leverage the idea of depsre@hibition to develop an
alternative approach, referred tosdit tiling, in order to enable concurrent start without
the computation overhead. In split tiling, rather than rethntly computing a portion of
the predecessor tile along a dimension, the processor taxgdbe predecessor tile first
computes that portion and sends the results to its succatssay that dimension.
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We show that for stencil computations, a tile sub-region loandentified such that
this sub-region can be executed in parallel in all tiles.sTédnables concurrent start. We
outline an algorithm that divides a tile into sub-regionsl @thedules the computation
and communication to achieve concurrent start and loaaRicadd execution in which all
processors execute the same amount of work in all the stepe sthedule.

A tile in a stencil computation is bounded by the hyperplarstances:
VI,B.I > Db,hj € H:hj.l >loj,hj.I <hij

where two parallel instances of each hyperplane are deforebounding the tile below
along that dimension and another bounding the tile from abov

Along a dimensionj, dependence inhibition identifies a partner hyperplané shiat
the region enclosed by the partner hyperpleh‘]éai(l the positive directionk(’j.l > lof can
be computed independently of the rest of the tile. This regvas redundantly computed

in the overlapped tiling approach.

Definition 1. The independent region along a dimension j is denoteé pyThe rest of

the tile along that region will be denoted by j.

In the subsequent discussion, it should be clear from theegbwhetherj refers to the
dimension or to the complement of the independent regiomgatioat dimension.
The region—j is defined by making the partner hyperplane to be bounded fheow

along that dimension:
VI,B.I > b,hy e H k# j: he.l > log, hg.l < hig

VI,B.I > b:hj.l >loy,hj.I <hij

Note that the hyperplanes along all the other dimensionaireomchanged.
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A tile can be divided into these two regions along each of theedsions. The various
intersections of these regions divides the tile irtt¢il2 components fok such dimensions.
We only consider dimensions along which there is potentialdependence inhibition,
which would eliminate the time dimension. For example,aitilthe 2-D Jacobi code with
x andy as the dimensions can be divided into the componexrts—y, —xNy, XN -y, and
XNY.

From the definition of independent region, a tile componemt ... is not dependent
on its predecessor along dimensionThus, the tile component that is the intersection of
the independent tile region along all the processors carobguated in parallel, without
any communication — that is, all processors can start exegtitis in parallel, resulting
in concurrent start.

Consider the tile component ..., where all other tile regions are independent. This
tile component does not carry any dependence along any dioreother tham. The region
in the predecessor tile that it depends on is derived as l&vedmponent with the same
hyperplanes along all other dimensions as the tile componéthn the hyperplanes along
dimensioni replaced by the lower-bounding hyperplane for this tiledreing the upper-
bounding hyperplane, and the partner hyperplane for degperidhibition becoming the
lower-bounding hyperplane. This is the tile component.... Thus, the tile component
iN...can be computed once the boundary aloogmputed by-iN... in the predecessor
tile.

In general, for each dimensioalong which a tile component is dependent, the inter-tile
boundary is computed by the tile component in the predecésobtained by replacing

by —i For example, the tile componexihy in the 2-D Jacobi code can be computed after
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1: If (n==1), say a dimensior. Compute—x, send and receive the result along #dimension,
computex and return.

2: Execute algorithm for (n-1)-dimensional stencil compiotator all dimensions except one, say
z. Thus all values computed will be for those independenigidall tile sections havez
as the z dimension component).

3: Send all computed values along thdimension.

4: Execute algorithm for n-dimensional stencil computationdll dimensions except z. But this
time, all values computed will be dependent for dependagions alongz.

Algorithm 2.1: Computation/communication schedulingaaithm for split-tiling

the shared boundary withixNy is received from the predecessor alofngnd the one with
xN -y is received from the predecessor algng

Algorithm 2.1 presents a scheduling algorithm with-21 communication steps for an
n-dimensional stencil computation. In this recursive folation, the number of communi-
cation steps is given by :

L(n)=2xL(n—1)+1

with L(1)=1; that is,L(n) = 2" — 1. Note that this approach does not incur any addition
computation cost. In addition, only inter-tile boundaiireshe spatial dimensions are com-

municated, thus incurring the same communication volunsé @ standard tiling.

2.6 Code Generation

In this section, we discuss the generation of the code forténation space with the
overlapped and split tiles. We describe the derivation efdhrameters necessary to utilize
the code generation framework described by Ancourt anadihify].

Each tile in the tiled iteration space is identified by a titegm. The execution of the
tiled iteration space is defined as the traversal of theitilésrms of their origins, together

with the execution of the iterations mapped to each tile estraversed.
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The origin of the tiled iteration space defined to be the arigjithe original iteration
space. Given the origin, all the tile origins can be enuneeras linear combinations of the
shift vectors. The tile size is defined as the distances letilree tile origins along the shift
vector, and is embedded in the specification of the shiftoratgelf.

The matrix of shift vectors specifies the traversal orderhef tile origins. The shift
vectors are ordered to enable an outer loop along the dirdgtso that there is parallelism-
inner synchronization-outer.

Given the tile originxg, defined equivalently in terms of the shift vectors or asaiien
points in the original iteration space, each of the hypemdabounding the tiles can be
identified by a point in it. For hyperplanésalong which no overlap is identified as nec-
essary, the iteration poinisin the iteration space that form this tile satisfy the foliog/
conditions:

hi. x> hi.Xo Ahj.x < hi.(Xo+S)

Note thatxg is a vertex on all the non-overlapped hyperplanes that faeback face of the
tile. X0+ s is a point on the front face of the tile for all hyperplargsSince overlapping
does not change the front face, this is also true for hypegsi@hat utilize overlap.

When an overlapped hyperplane is identified along a dimansve replace the back
face of the original hyperplartg by an overlapped hyperplatge Sinceh! is constructed
from h; by only shifting it along the other hyperplanes, the pait >4 Si is a valid point
on it irrespective of the choice ¢f. Thus the boundary conditions for the tile for these

hyperplanes is given by:

hi. x> h;.(Xo+ ;Sj)Ahi.X< hi.(X0+S)
JZi
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Given the tile origins and their traversals, and the shapth@foverlapped tile, the
code generation procedure of Ancourt and Irigoihdan be used to generate code. The
generated code would haweouter tile space loops, each corresponding to a tiling hyper
plane, and inner loops enumerating all iterations belangina tile. Let us assume thiat
of then hyperplanes have been identified for overlapped tiling. r@pped tiling enables
concurrent start along a hyperplane by eliminating any-tike dependence along that hy-
perplane. Hence, the tile space loops corresponding toetin@iningn — k hyperplanes
carry all inter-tile dependences, and can be run sequinéigithe outer loops, and the
tile space loops corresponding to overlapped tiling hylaergs can all be run in parallel by
mapping to &-dimensional or lower dimensional processor space.

The traversal of tile origins for split tiling is the same st for standard tiling. The
intra-tile code is generated for the various tile compogdyt scanning the polytopes de-
rived by specifying the appropriate hyperplane instanieasliound the tile component, as
defined earlier. The appropriate hyperplane boundariesdeet sub-tiles define the data to

be communicated between processors for the communicdtiases, as discussed earlier.

2.7 Experimental Evaluation

Both the proposed tiling schemes—overlapped tiling and sphg—enable load-
balanced tiled execution of stencil codes that inhererdalysf/ the concurrent-start cri-
terion. The degree of exploited concurrency is the same both schemes; they differ
in the computation/communication overheads relativedodsrd tiling. With overlapped
tiling, there is a small amount of computational overhead @so a small increase in the

total communication volume. Split tiling requires no adzhtl redundant computations
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and requires exactly the same total communication volunstaamlard tiling, but requires
additional messages, i.e., incurs a higher messagestaoii overhead.

Below, we report experimental results comparing overldfgit tiling with standard
(pipelined) tiling for the one-dimensional Jacobi code.e Bxperiments were conducted
on a cluster consisting of 32 compute nodes each of which i8 &Rz dual-processor
Opteron 254 (single core) with 4GB of RAM and 1MB L2 cache,mmg Linux kernel
2.6.9. We used one processor per node in our experimentscoigewas compiled using
the Intel C Compiler with -O3 optimization flag.

The iteration space of one-dimensional Jacobi has a spamndion and a time dimen-
sion. Two versions of pipelined schedule were implemen(i¢dne in which the processor
space was mapped along the time dimension and time along#oe,sand (ii) the other
one in which the processors were distributed in a blockicyakhion to execute tiles along
time dimension.

First we conducted experiments to determine the optimag tite size and space tile
size for the two pipelined schedules. The experiments wamndwcted for 1000 time steps
on 32 processors for a total problem size of 64000 elemehtseXecution times are shown
in Figures2.9and2.10 The number of communication startups decreases with aedse
in the spatial tile size. This typically results in a decee@sthe execution time with an
increase in the space tile size. But for larger space tilessithe pipeline startup costs
increase thus dominating and increasing the execution tinmease in the time tile size
reduces the number of time tiles and hence the number of symiziations. But larger time
tile sizes as in the case of larger space tile sizes incréaggipeline startup costs. Hence
an increase in the time tile size decreases the executi@util the pipeline startup costs

begin to dominate. The execution times for both the pipdisehedules, as inferred from
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the experiments, are minimum for a time tile size of 16 anaspiée size of 1000. Hence
atime tile size of 16 and space tile size of 1000 were usedutosexjuent evaluation of the
schemes.

For overlapped and split tiling, the space tile size is fix@deN /nprog whereN is the
space dimension size amgrocis the number of processors used for parallel execution.
The time tile size is chosen to be 16 to match the choice fopighelined schedules.

Given these choices of space and time tile sizes, the peaforenof the four schemes
for various problem sizes is shown in Figird 1 The split and overlapped tiling schemes
result in a linear increase in execution time with problemesunlike the pipelined tiling
solutions. The improvement in execution time achieved dit spd overlapped tiling
schemes with increase in problem size is due to the bettdoieagn of data locality.

In addition, unlike the pipelined schedules, the commurocecost is independent of the
problem size.

The improved scalability of the overlapped and split tilsdhemes, due to an absence
of the pipeline startup cost, is shown in Fig@é2 The problem size was fixed at 20000
elements per processor. The number of processors was vamneeasure the weak scaling
capability of the various schemes. A straight line parati¢he x-axis corresponds to linear
scaling. The split tiling solution performs best, followley the overlapped tiling solution.
The pipelined schedules suffer from performance degraalatith increase in the number

of processors.
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Figure 2.9: Optimal space and time tile size for pipelindukesiule 1

2.8 Related Work

Several recent works have presented manual optimizatimhexgerimental studies on
stencil computationsof, 53, 39. Iteration space tiling42, 119 is a method of aggregat-
ing a number of loop iterations intdeswhere the tiles execute atomically; communication
(or synchronization) with other processors takes placerbedr after the tile but not during
the execution of the iterations of a tile. Several works hased tiling for exploiting data
locality [4, 3, 118 106, 29. Others have addressed the selection of tile shape andosize
minimize overall execution time3f, 92, 9, 95, 49, 14]. The size of tiles has an impact
on the amount of parallelism and communication: smallestihcrease parallelism by re-
ducing pipelined startup cost, while larger tiles reduegfrency of communication among

processors. This has been studied by a number of reseafgh@rs49, 50, 33, 51]. Griebl
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[42, 43] presents an integrated framework for optimizing datalipcand parallelism in
the use of tiling; however, pipelining issues are not coaigd.

Liand Song [ 7] present techniques to optimize stencil codes throughstemwing and
array padding. Strout [] present techniques for data andoatation reordering for sparse
matrix computations. The optimizations include time tjlifor relaxation codes, with tile
shapes similar to that derived by our overlapped tiling apph.

The Omega toolkit§9] provides support to compute the exact transitive depereten
of tuple relations when possible, if not resort to compuarigwer bound. Kelly et al.f1]
present an approach to compute transitive closure of paesired tuple relations and
present its applications, including the determinationrahsitive dependences. Pugh and
Wonnacott §1] present techniques to compute both upper and lower bounmarsitive

closures. These techniques can be employed to determintisitive dependences that
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we are interested in. Wonaccoit]1] discusses time skewing to optimize locality of stencil
computations. In the parallel context]], the work presents an approach similar to split
tiling discussed here. It does not consider overlappaatilor present a characterization
of when it is beneficial.

Sawdey and O’KeefedP] describe TOPAZ the tool that explores the replicated com-
putation of boundary values in the context of SPMD executibstencil codes, in which
the user marks regions of code to be replicated; the tool éimatyzes and generates the
correct code. This approach helps with reducing commuinicabsts and improving load
balance. Adve et all] describe computation partitioning strategies used irdthBF com-
piler that exploit replicated computation using th@CALI ZE directive that is available in
dHPF. Both these approaches rely on user-specificationptitated computation, unlike

our approach to automatic parallelization.
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2.9 Conclusions

Iteration space tiling has received considerable attentiotivated by optimizing for
data locality as well as by exploiting parallelism for neskeops. The choice of the shape
of iteration space tiles may result in inter-tile dependasritat inhibit concurrent execution
of tiles on different processors, leading to a pipelinedt steerhead. This chapter has ad-
dressed the issue of enhancing concurrency with tiled eixecof loop computations with
constant dependences. Two approaches, namaylapped tilingand split tiling were
presented, that enabled the removal of inter-tile depesetgrihereby enabling additional
concurrency. These techniques expose the trade-off betikeecommunication and com-
putation costs, and the parallelism in the program. Expemiad results demonstrated the

effectiveness of the proposed schemes on stencil codes.
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CHAPTER 3

DATA LAYOUT TRANSFORMATION FOR DISK RESIDENT
ARRAYS

3.1 Introduction

Many scientific and engineering applications need to operatdata sets that are too
large to fit in the physical memory of a machine. Such dataosestin disk and brought
into physical memory for processing as needed. The dat&isgaid to resideut-of-core
and the program is referred to as@ut-of-core program

The bandwidth available to access data in secondary staragech smaller than from
main memory, and this discrepancy is only exacerbated bsecutechnology trends .
This necessitates minimization of disk access while maziimgireuse of data already in
memory. In addition, the extremely large seek time relatvéhe per-word transfer time
for disk access dictates that I/O be done using contiguoniskblof disk resident data.
These concerns can require careful reexamination of areimany algorithm to tailor it to
the characteristics of secondary storage.

An approach to solving this problem exploits the operatiygtem’s virtual memory.

The user addresses data in an address space often largénehamysical memory of the

32



machine. The operating system implicitly moves the datafsecondary storage to phys-
ical memory when it is accessed by the user and replaces ottused data to free up
physical memory as needed. Any modified data is written baakigk before being re-
placed. Since the data movement is done in units of an opgragistem page, improved
disk I/0O bandwidth is achieved. While providing a simpletadstion, this approach suffers
from several drawbacks. First, the generic page replacepadicies in kernels do not ex-
ploit the specialized data access patterns exhibited lepnsfic applications]7]. Second,
the virtual memory supported by 32-bit operating systerssilisoo small compared to the
disk space available even in a single hard disk drive. THffiient extensions of virtual
memory for parallel systems are not available.

An alternative approach commonly employed acknowledgesratary storage as an-
other level of the addressable memory hierarchy and eXglitioves data between main
memory and secondary storage. Higher-level abstractiensravided to enable simplified
yet efficient data movement where possible.

We focus on disk I/O support to enable simplified yet efficiebstractions to access
multi-dimensional arrays stored on disk. 1/O librarieliRANDA [102, 109 and DRA
[38] use a blocked representation for the disk-based multidgiomal arrays to optimize
performance of collective I/0O operations between arragatied on disk and in the dis-
tributed main memory of parallel computefs].

Thus a disk-based multidimensional array is partitionéd amnumber of multidimen-
sional blocks or “bricks” and the elements within a brick mearized using some dimen-
sion order. Unlike the dimension-ordered representatgpically employed to represent
in-memory multidimensional arrays, the bricked represgon permits efficient contigu-

ous access as long as the accessed regions mostly contéindis.
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However, in some programs, the access patterns to soméassgd multidimensional
arrays in two successive phases (or the access patternpbithecer and the consumer) are
so different that no choice of brick shape will allow for eiiot access in both the phases.
An example is the out-of-core two-dimensional Fast FouFransform (FFT), where the
array is accessed by columns in one phase and by rows in tee @tie multi-dimensional
FFT [8, 10] can be implemented as a series of one-dimensional FFTsalomg each
dimension. As another example, consider image data in @meefour (including time)
dimensions. The production of data from scanning occurseaby plane. However, exam-
ination of the time evolution of a three-dimensional blo¢klata requires a very different
access pattern than that by which the data was generatesbsurface construction in three
and four dimensions, the data is typically produced in a noagjer format by scanning or
simulation. The amount of memory available determines theumt of data generated
between writes to disk, and hence limits the blocking pdedibc]. In such scenarios
the performance of computations operating on the storeal maght be greatly improved
by transforming the data into a different blocked form to chathe application’s access
pattern.

In this chapter, we present efficient data layout transfionalgorithms to transform
the blocking of multi-dimensional arrays. We first developoait-of-core matrix transposi-
tion algorithm that takes into account the I/O charactiessdf the target system. We then
present a novel algorithm to solve the out-of-core matridaeking problem for multi-

dimensional matrices of arbitrary sizes.
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System Configuration

Processor Memory (MB) Linux Compiler
ia64-osc Dual Itanium-2 (900 MHz) 4096 2.4.18 (gcc2.96
amd-osc Dual Athlon MP (1.533 GHz) 2048 2.4.20 pgcc 4.0-2

Table 3.1: Configuration of systems used for /O characé&on

3.2 Disk I/O Characterization

Out-of-core algorithms on multi-dimensional arrays, sastout-of-core matrix trans-

position, involve reading and writing blocks of data at elifint strides. To understand the

variation in performance of the algorithm with respect tesh parameters, we studied the

variation of read and write times with changes in size andestof I/O on two clusters at

the Ohio Supercomputer Center (OS@Y][ The configuration of each compute node in

these clusters is shown in Tal8el. Figure3.1and Figure3.2 show the strided read and

write times respectively on amd-osc. Fig@#& and Figure3.4 show the strided read and

write times respectively on ia64-osc.

On both systems we observe that beyond a particular bloektbz stride does not

affect the per-byte transfer cost and approximates to tseafcsequential 1/0. More im-

portantly, the incremental improvement obtained in thetif@e by increasing the block

size decreases and is very small beyond a particular blaek $Ve expect this observa-

tion to hold across a wide variety of systems. These bloassiabove which the per-byte

read and write times are not affected by the stride of aceedishenceforth be referred

to as theread andwrite thresholdsrespectively. These parameters vary depending on the

system under consideration and the per-byte read and vasts can saturate at different
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block sizes. The read and write thresholds on amd-osc are @uB1LMB, respectively.
On ia64-osc, they are both 1MB.

An out-of-core algorithm needs to perform I/O on sufficigridrge block sizes for
good performance. On the other hand, a smaller block siagdee greater flexibility in
accessing the data and can improve performance of the thigorAn out-of-core algorithm
may not be optimal if it chooses the largest possible I/0O bkize when I/0O on a much
smaller block can be performed efficiently. It is possibleda algorithm with more 1/0
operations to be faster than another algorithm with few@rdperations. In the case of
out-of-core matrix transposition, if the thresholds areben thanN, the size of the matrix,
fractions of a row can be read and written with little addiabpenalty, irrespective of the
stride of access. In the extreme case, if each element is &argugh to be read/written

individually, a simple single-pass element-wise trangmoswould be the most efficient.

3.3 Out-of-core Matrix Transposition

3.3.1 Problem Definition

Consider arN x N matrix that is stored in disk in row-major order. The systeas h
main memory, which can holt elements, wher < N2, M = O(N). Each element
of the matrix is too small to be read from and written to diskcefntly. The problem is
to transpose the matrix stored in disk, when only a portiothefmatrix can be brought
into memory at any time. Matrix transpose is a key operatiovarious scientific applica-
tions. For example, the two-dimensional Fourier transffim 0] can be implemented as a
one-dimensional Fourier transform along the rows, folldwg a one-dimensional Fourier

transform along the columns. For a matrix stored in disk iw-roajor order that is too
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large to fit in memory, the most effective mechanism is tosparse the matrix before the
second pass.

This problem has been widely studied in the literature. Agenin-place element-wise
approach to transpose the matrix is prohibitively expenas long as each element is not
large enough to be read (written) from (to) disk efficientljhe block transposition al-
gorithm transposes the array in a single pas®(N®?2) 1/O operations, where a pass is
defined as accessing each element from disk exactly oncen-place transposition algo-
rithm requiringO(NlogN) disk accesses was proposed by Eklun@H.[ This algorithm
requires at least two rows to fit in memory. Extensions to tigerghm for rectangular
matrices were later developed, 93, 113. Kaushik et al. §7] improved upon these al-
gorithms by reducing the number of read operations. Suh aasbRnal07] reduced the
in-memory in-place permutation time by using collect btgfanstead of in-memory per-
mutation, in addition to reducing the number of I/O openagioAll these studies use the
number of 1/0O operations as the primary optimization metric

Although the execution time of the solution provided hasrbieeproved by all these
efforts, the total execution time has not been used as theapyimetric for optimization.
A reduction in the number of I/O operations, in most cases)diates to larger sizes of
I/0O blocks. The importance given to reducing the number @fdperations is due to the
fact that the disk access time, comprising disk seek time [atency, is very large (on
the order of several milliseconds) compared to the per-trgtesfer time (on the order of
microseconds or less). If the I/O blocks read/written atatiresly small, the total number
of /0O operations is indeed a suitable optimization metHowever, when the 1/O blocks
get large, the data transfer time becomes significant and@amate the total access time.

In such a situation smaller block sizes can be read/writtémont any additional I/O cost.
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But this might reduce the number of passes involved, thusawmipg performance. Since
previously proposed algorithms for out-of-core transposihave focused on reducing the
number of I/O operations, they can become sub-optimal whegelblock transfers are
involved.

All the algorithms in the literature determine the fundataémnit of 1/0 based on
the size of the matrix, i.e., they are data-centric. Thedoasit of I/0O operation in these
algorithms is one row of the matrix or a multiple thereof. Yyl not adapt to the I/O
characteristics of the system. In contrast, the approaghosed here takes into account
the empirically determined 1/O characteristics of the diskl file system. The parameters
of the algorithm, including the basic unit of I/O and the extte of the execution time of

the algorithm, are determined based on the empirically oredd/O characteristics.

3.3.2 Matrix Transposition Algorithms

In this section, we discuss some of the out-of-core mataimgposition algorithms from
the literature. The pseudo-code for the algorithms is gwigin focus on the 1/0 operations
performed in each algorithm. These algorithms are forredlin the next section.

Consider a square matrix of dimensiin= 2". Let the number of elements that can be
brought into memory at any time &= 2™. The memory can holB = 2° rows, say, of the
input matrix, i.e.B= M/N. Each algorithm runs in a certain number of passes. Each pass
involves reading the entire array from disk and writing ickaln each pass, the algorithm
goes through a sequence of steps, each of which involves gir@ses—reading data into
memory, permuting the in-memory data and writing it backisi&dAll algorithms proceed
as a sequence of steps in each pass. A step is defined as thgaraperformed between

reading a portion of data into memory and writing it back tskdiincluding the read and
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1: fori=0to N/vM —1do

2 for j=0toN/v/M—1do

3 Readdata rangéi « vVM : (i + 1)+ vVM —1][j* VM : (j+1) x vVM — 1]
4: Transposein memory

5

Write data rangéj*+vM: (j+1)xvVM —1][ixvM: (i +1) VM —1]

Algorithm 3.1: Block transposition algorithm

write operations. All algorithms in the literature work oisjdint ranges of data in each
step. Note that the algorithms discussed can be employearstose matrices whose size
is not a power of 2. We capture the basic idea of each algosihdprovide a formulation
for the out-of-core matrix transposition problem. Thisnration is used to arrive at a
better algorithm.

The block-transposition algorithm is a single-pass atparifor matrix transposition.
The algorithm blocks the input matrix into smaller matrie@sl recursively transposes the
embedded matrices. Algorithénl presents the block-transposition algorithm. Each step of
the algorithm involves/M read and write operations, eachydi elements. The algorithm
reads and writes at different locations in the matrix in angy step, thus requiring the des-
tination array to be different from the source array, ilee, @lgorithm is out-of-place. Note
that the algorithm can be implemented as an in-place algorit the expense of increased
memory usage, similar to in-place in-memory matrix trarssjpan algorithms 9, 15, 20].

Eklundh’s algorithm $7] does the transposition in-placeririb passes. This algorithm,
shown as Algorithn8.2, requires thah modb = 0. Each step of the algorithm involves
M/N read and write operations, each involviNgelements.

Kaushik et al. 7], shown as Algorithn3.3, improve upon Eklundh’s algorithm by

combining the reads. It is an out-of-place algorithm. Inhestep of the algorithm, one
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: fori=0ton/b—1do

for j =0to N?/M —1do
Read (M/N) rows starting with(| (j /B') | * B+ 4 j%B')-th row at a stride oB' rows
Permute in memory
Write to the rows from which the data was read

aRrdR

Algorithm 3.2: Eklundh’s algorithm

1: fori=0tot—1do

2 for j=0to N°/M —1do

3 Read (M/N) contiguous rows starting &f « M/N)-th row

4: Permute in memory

5 fork=0toM/s—1do

6 Write s rows starting atk « 5)-th row in memory to the array in disk starting at
the (j« (M/N)/s +k)-th row at strideN /s rows

Algorithm 3.3: Kaushik et al.’s algorithm

read ofM elements andM /N writes, each oN elements, are performed. In the most
general casd\ is factorized intosy * ... * §_1 such that for any, s rows fit in memory.
The algorithm runs ith passes. Kaushik et al. provide a solution when only one revirfit
memory, which cannot be handled by Eklundh’s algorithm.yTdleo provide a mechanism
to use the maximum available memory.

Suh and Prasanna’s algorithm improves further upon Kaissalgorithm in two ways.
It reduces the in-memory permutation time by replacinglace permutation by a series of
collect operations, in which the data to be written is caédednto a buffer. The algorithm
also reduces the number of I/O operations by ‘chunking’ théewa. The writes that would
have been done at different offsets are done contiguoudtys ificreases the write size
and reduces the number of writes. Each write operation in-tthke pass writes; « N

elements instead dfl elements as written by Kaushik et al. In the subsequent plaess,
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1: fori=0tot—1do
2:  for j=0toN?/M—1do
3 Collect (M/N) rows that have been separatedzpy rows in the previous pass >
Might involve multiple reads
Permute in memory
5: Write the permuted data to disk withirows in each 1/O operation > Might involve
multiple writes

B

Algorithm 3.4: Suh and Prasanna’s algorithm

data that should have been written contiguously is ‘caflécby performing a sequence of
reads. Thus the number of reads is increased from one in Kaeshl. This mechanism
balances the number of reads and writes. The optimal valug feas determined to be
/S, at which point the number of writes equals the number ofseau the total number
of 1/0 operations is minimum. In the algorithms discussedaspeach element is read
into memory exactly once in each pass. On the other hand, g in this algorithm
performs redundant reads to first collect the rows, that haen separated k#y_1 rows
by the previous write, into memory and then performs the péation. This increases the
memory usage and potentially the total 1/0O cost if the menawgilable is not sufficient to

retain all the read data in memory before the permutatiorbegmerformed.
3.3.3 Formulation of Transposition Algorithms

In this section, the matrix transposition algorithms aramfolated using the matrix
vector product notation described by Edelman etZi]. [Transposition of a matrix can be
viewed as an interchange of the indices of the matrix. Thaparticular instance of the
more general class of index transformation algorithms.

Each element of the array has a linear address vector obdtayneoncatenating the

column index to the row index, both indices being represkagebit vectors. Transposition
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corresponds to a transformation of this linear addresoveatd can be represented by a
transformation matrix.
The identity of the transformation Is,. Matrix transposition is defined as the transfor-
mation of the address vector
i — Ti
where T is the transformation matri{ O ln ) :

lh O
We use the following notation in the discussion. Given twdrinasA andB

A O
A@B:(O B) (3.1)

L(AB) = ( e ) (3.2)

L(In, 1) is the desired transformation. Since the transformed dameffected effi-
ciently for out-of-core matrices except with very largensént sizesl (I, 1) is factorized
into a number of transformation matrices such that the foamsation effected by each of
the matrices can be done efficiently with the memory avaglabhe following discussion
provides the matrix vector formulation of various out-afre matrix transposition algo-
rithms discussed in the previous section.

Any out-of-core matrix transposition algorithm consistéloee phases-read, permute
and write. Each phase is modeled by a transformation maltiese phases are repeated
on disjoint sets of data in the different steps of each pasge algorithm might involve
many passes, each operating on the entire array. Thusf-cot@ matrix transformation

algorithms are of the form



whereW is the transformation matrix corresponding to wriRejs the transformation ma-
trix corresponding to read aril corresponds to in-memory permutation for ttrepasst
is the number of passes. The algorithms under this fornmagad some data, permute it
in memory, and write the data to disk before reading datai®next step in the same pass.
Each algorithm is defined by the parameteisf, P, andR,;.

Some restrictions apply to the possible value$\bfP, andR;. Each transformation
matrix must correspond to a transformation of the givenadttere matrix that can be
efficiently done with the memory available. Thus, each stigjh® algorithm can operate

on at mosM elements. In particulavM, P, andR, must be expressed as

R = Apnr®lr r<m
B = l2xa-m®Bm
W = Cunw®ly w<m

The restriction ofR; shows that the unit of read must be at leRét 2') elements.
The transformation in the read operation as modeled dgtermines the pattern of reads.
Similar restrictions apply for write operations. The reggion onP, shows that in-memory
permutation can transform only address elements correspgio the data elements in
memory. Given these parameters, an out-of-core trangpostgorithm can be imple-

mented as shown in Algorith®.5.
3.3.4 Performance Analysis

In this section, we analyze the performance of various @lgos based on their for-
mulation. The parameter, P, andW of each algorithm are determined and are used to

analyze the performance of the algorithm.
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1: fori=0tot—1do

2 for j=0to N°/M —1do

3: ReadM elements at addrefﬁg‘l(j) > Might involve multiple reads
4 Permute in memory according t&

5 Write M elements at addre¥¥(j) > Might involve multiple writes

Algorithm 3.5: Generic transposition algorithm

The running time of an algorithm depends on the read, writd,in-memory permu-
tation times. The I/O time depends on the size and stridefrl/andw determine the
read and write block size, respectively, and hence are irapbparameters. In addition,
the stride of access plays an important role, as demondtogitthe 1/0 characteristics. The
strides of reads and writes are determined byAtedC sub-matrices, respectively. For
some algorithms it might be possible to rewrt€C) asD & Iy , for some matribXD. In such

cases the read (write) sizes can be larger thé2\'pelements.

Block Transposition

The 2n bits are partitioned into four components

lon =IRHPIRLD IcH @ lcL

such thaRL+CL = m. The parameters are

t = 1
R = (IrRn®L(lry,lcH)®lcL)
P = (IRH+cH®L(IrLlcL))

W = (L(Irn,IcH®lcL) @ IRrL)
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ltis a single pass algorithm. The algorithm reafls @ements and writes? elements
in one I/O operation. Generally the components are chosgmtbatRL = CL producing
square blocks. The /O size is typicaly(v/M) elements. Even for large memory sizes,
this would fall short of reaching the threshold leading tghi/O cost, making this a very
inefficient algorithm. Note that this algorithm is not ineféint due to the large number
of 1/0 operations involved®(N®/2)), but because of the small I/O size. For systems with
memory large enough to mak¥ /M) larger than the threshold, this algorithm is optimal.

But a more effective way of choosirigL andCL would be to minimize the total I/O

cost. Thus the problem becomes

RL+CL = m

minimize : costread) + cost(write)

A cost model for read and write can be derived from the 1/O atimristics of the

system. These cost equations can be used to arrive at thegdvasteters for the algorithm.
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Eklundh’s Algorithm

Eklundh’s algorithm $7] has the following formulation:

b = m-n
lon = Inp@lp®ln
t = n/b

R = (I (410 ®L(b,lib) S1n)
P = (ln-b®L(b,L(In—(i+1)+b:1b)) © lisb)

W = (ln—(i+l)*b ® L(lis, lp) ®In)

Ri’1 (=RT asR is a permutation matrix) and are identical, indicating that the algo-
rithm can be executed in-place. Each phase (read, writepandute) of the algorithm
depends on the pass in which it occurs. The algorithm readisveitesN elements in each
I/O operation, independent of the I/O characteristic ofuhderlying system. Hence the
algorithm might perform well on some machines and poorly thrers. In addition, unless
the matrix size l§?) is of the order of terabyted is lower than the read threshold for the

systems analyzed in SectiGr.
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Kaushik’s Algorithm

Kaushik’s algorithm discussed in Secti®r8.2can be formulated in the following man-

ner, givens = b, 0<i < t.

b = m-—n
lon = Inp®lpDIn
t = n/b

R = (Izn)

PR = (ln-p®L(ln,lp))

W = (L(ln_p,lp) @ 1n)

This is an out-of-place algorithm involvingidentical passes. The algorithm redds
elements in one 1/O operation, thus comfortably achievivregread threshold. Each write
involvesN elements. This algorithm improves on Eklundh’s by redu¢hegread costs by
performing sequential reads of large size. This algoritloeschot take advantage of the 1/0
characteristics of the system, by writing smaller bloclesithan a row, if little additional
cost is incurred. The in-memory permutation phase in evass pnvolves element-wise
permutation, unlike Eklundh’s algorithm which moves largcks with each pass. This

could increase the in-memory permutation cost as compargd#ltindh’s algorithm.
Suh and Prasanna’s Algorithm

This algorithm does not fit into the formulation discussed asght involve redundant

reads. This algorithm improves upon Kaushik’s by reducimgriumber of I/O operations
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and increasing the I/O size of writes. Instead of writing oo at a time to enable con-
tiguous read in the next pass, the rows transformed by eaphasté chunked and written
back to disk. In the next pass, each read phase collectssetoobe transformed in the
current step from the chunks. Each row in a chunk is transédrim a different step in the

next pass. If a chunk brought into memory can be retained tinetisteps involving all its

rows can be processed, this algorithm improves upon Kaigsddgorithm by balancing the

number of read and write operations and sizes. Howevertemating to balance the num-
ber of read and write operations the memory available isal@rt into account. When the
chunks cannot be retained until they are fully processetijméant 1/O is incurred. Hence
the performance of the algorithm can vary dramatically delpgg on the parameters of the
problem. The algorithm usually benefits from an increase emory, since an increase in

memory reduces the redundant data movement incurred.
3.3.5 Sequential Out-of-Core Matrix Transposition

Our algorithm tries to minimize the 1/O time involved by clsing the parameters ap-
propriately. The observation that an increase in 1/O siambé the threshold does not
influence the performance of the algorithm is exploited. r€hs a trade-off between the
I/O size and the number of passes the algorithm requiressiiadler the I/O size, the more
the algorithm approaches the block-transposition allgoriand runs in a smaller number
of passes. However, reducing the 1/O size below the thrdshoteases the I/O time above
the minimum possible.

The formulations of all algorithms discussed so far reqtwe parameters fn andn
— to derive a concrete list of operations. Our algorithm nesputwo additional parameters;

namely, the read block size'|2and the write block size{9. These are chosen to be close
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to the threshold, with the exact value depending on the numiyeasses required for the
given block sizes. Smaller block sizes incur more /O timerbight potentially reduce the
number of passes, thus significantly reducing the total.tihme most common scenario in
which an I/O block size smaller than the threshold is chosevhien such a choice reduces
the number of passes and offsets the additional cost irgcdire to the smaller I/O size.

The number of rows to be transformed in each pass is detedn@igghe maximum
possible. The chunking factor, the factor which determihesextent of chunking similar
to that in Suh’s algorithm, is chosen so that no redundaiisrage incurred. This provides
the benefits of chunking, such as increasing the I/O sizéwowitincreasing the total I/O
time.

In other algorithms the basic unit of I/O is a row. The I/O stormation matrices are
of the formA® 1, , while the required transformatidn(l,, In) involves exchanging the
upper and lowen address elements in the address vector. The nature of theahS-
formation matrices prevents any effective transformafrom being done in the read and
write phases. The 1/O phases ‘gather’ data to be permutedsaatter’ the result of the
permutation. In our algorithm, the 1/O block size could beafier thanN, sayB = 2°, in
which case the exchangb...n—1) < (n+b...2xn— 1) can be done in the read and/or
write phases. This reduces the number of address vectoeetsrto be transformed in the
in-memory permutation phase and might result in a redudtidhe number of passes.

Our algorithm is formulated as shown below. The unit of eaadrand write is at least
2" and 2 elements respectively. Except in the first pass, the alyorieaddV elements
in each read operation. In the first pass, the read and wrasgshtransform the address
vector elementgw : n— 1) to their appropriate positions. The remaining addressovect

elements are transformed in the in-memory permutationgpbgall the passes and the 1/0
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phases of the remaining passes.

Pre-conditions:

Parameters:

B min(m—r,w) ifr<n
0 = min(m—n,w) ifr>n

r 1 if so=w
T 14+ [5R] otherwise
s = minm—ww-—s—(I—1)«(m-w))ifl <i<t

0 ifi=t—1
m— (w+sy1) otherwise
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First pasé = 0):

Case 1r > n):
Ro = I
Po = Ing®L(sInw®L(w g,ls))
Wo = L(ln-gIn-wisp—2) @ lwiz
Case 2r <n):
Ry = In_g®L(lg,lnr) @l
Po = lan (ris) @ Llls: lr-w® Llw-so: 1))
Wo = L(ln-sln-wisp—20) D lwiz

Remaining passes:
i—1

sp = ];Sj

R = lIon
R = lonwista o) ®Ls, 1z @L(lw-sp-s.1s)) Slsp
W = lhw® L(ls,lfzi,l@L<In7371737|2ifl)7|5*2i)EBIW+Zi

With increasing memory size, modifying the I/O parametevigles diminishing im-
provements, unless it results in a reduction in the numbpas$es. Greater improvements
can be obtained if the additional memory available is useidhfiwove permutation time.
Kaushik does an in-place in-memory transposition. Suh osksct buffers to collect data

to be written in each write operation. The locality of the mpatation operation can be
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Parametersn=r =w=t=2;m=3;s={1,1}; z= {0,0}

o 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
Pass 0 (Case 1) :

Ro=14 Po=1l1@L(I1,L(I1,11)) Wo=L(l1,11) @12
0 1 2 3 0O 4 2 6 0O 4 2 6
P Wo
2 4 5 6 72 1 5 3 7 2 812 10 14
8 9 10 11 8 12 10 14 1 5 3 7
12 13 14 15 9 13 11 15 9 13 11 15
Pass1¢p =1):
Ri=la Po=11®L(l1,lh) @l Wi =L(ly, 1)@l
~ 0 4 2 6 , 04 812 , 04 8 12
= 8 12 10 14 2 6 10 14 = 1 5 9 13
1 5 3 7 1 5 9 13 2 6 10 14
9 13 11 15 3 7 11 15 3 7 11 15

Table 3.2: lllustration of our matrix transposition algbm

improved by optimizations such a blocking. We use colle@rapons to perform the per-
mutation, as this was empirically found to take less timathaplace permutation. Unlike
Kaushik’s and Suh and Prasanna’s algorithms, the in-mepenmutation in our algorithm
moves larger blocks of data in each successive pass. Thiefureduces the in-memory
permutation cost.

The transposition of a 4 4 array by our algorithm is illustrated in Tabk2 The

parameters are on the left hand side. The actual data lajteateach transformation is

shown on the right hand side.
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3.3.6 Parallel Out-of-Core Matrix Transposition

In this section, the problem of transposing an out-of-corayadistributed among mul-
tiple processors is discussed. Each processor has a |ekahul the array is distributed
among the processors in a row-blocked fashion. The reqdistdbution of the transposed
array among the processors is specified.

In the following discussion, we first formulate the repraaéinon of an array distributed
among multiple processors. Then an algorithm is providedddistributing out-of-core
arrays in a parallel system. The array redistribution meigm and the sequential transpo-
sition algorithm are combined to develop an out-of-coragpesition algorithm for arrays

distributed among multiple processors.

Formulation for Arrays Distributed among Multiple Processors

The arrays are assumed to be distributed in a regular faslidhat some of the ele-
ments in the address vector represent the processor identifiis corresponds to a map-
ping of the elements of the array to a sequence of procesdamy-blocked distribution
is obtained when the most significant elements in the addextsr represent the proces-
sor identifier. A cyclic distribution is obtained when thas significant elements of the
address vector represent the processor identifier.

We define the linear address vector of an element in the aorbg the concatenation
of the local address vector of the element (in the local diskie processor identifier. This
view preserves the notion of contiguity of elements whicffediin the least significant
elements of the address vector, analogous to the sequiemtrallation. Hence the formu-
lation can represent read and write thresholds in the asléextor and access pattern that

can take advantage of prefetching as well.
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Given that the most significant elements in the linear addvestor correspond to the
processor identifier, the distribution of the array amondtiple processors corresponds to
choosing a set of elements in the address vector to becomrmedsiesignificant elements.
Hence array distribution among multiple processors candeged as a permutation of the
linear address space of the array. The identity for arralyiligion is I, which corre-
sponds to a row-blocked distribution. Any other distribatiof data among processors is
viewed as a permutation on the row-blocked distributiorr.eéxample, a cyclic distribution

of an array among two processors corresponds to the foltppénmutation:

(1ans o)
|2*n—1 0

Array Redistribution Problem

The array redistribution problem is stated as follows: Giga array distributed among
processors, represented by a permutation matrix, achierget distribution correspond-
ing to a new permutation.

The array redistribution problem brings with it anothertdastor in the form of com-
munication. Communication cost varies linearly and is ned@sTs+ | * T,, whereTs is
the startup cost,the message size afgthe per-byte transfer cost. Depending on the pa-
rameterds andTy, beyond a message sizehe transfer cost dominates the startup cost and
the average per-byte cost converges to a constant. The geesiga beyond which there
is little change in the communication cost is called the camivation threshold2 Note
that as in the case of the read and write thresholds, the gessze for a specific instance
of an algorithm may be chosen below the threshold, if it cafm@improved upon. The
communication characteristics of various systems have gely studied and we do not

discuss them here. For the following discussion, it is agzlithat there are®processors.
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The uppermosp rows of any permutation matrix correspond to the elemeitisabnstitute
the processor identifier. The least significarlements of the address vector correspond
to the communication threshold. The terms read, write, anthcunication thresholds will
be used interchangeably to refer to the size of I/Ornd,andc least significant elements
in the address vector, respectively. The reference willéardrom the context.

The formulation of the parallel redistribution problemathves four permutation matri-
ces — read, write, in-memory permutation, and communioatextending the template
for the formulation of read, write, and in-memory permudatdiscussed in Sectidh 3.3

to the parallel domain, we get

R = lp®Axnr—p®lr r<m
P = l2in-m®Bnm
W = h®Cunwpdlw w<m

which indicates thaR,, W, andP, cannot permute the elements corresponding to the pro-
cessor identifier. Only communication can permute the efésneorresponding to the pro-

cessor identifier. The permutation corresponding to comaation is of the form

C =Down-rc@lc

whereD describes the permutations done by communication.

Note that there are some restrictions@nsimilar to those orR;, W, andP, as dis-
cussed in Sectio8.3.3 C; cannot permute between address elements corresponding to
in-memory and out-of-memory data (the elements correspgrid the processor identi-

fier are special and will be discussed below). Any permutagixcept those involving the
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processor identifier can be performed ByandW. Therefore, we place additional re-
strictions onC;j, so that it can only involve permutations required to chathgeprocessor
identifier. In most practical systemsis smaller tham andw; and we assume the same.

Array redistribution may involve permutations of three dsn First, it may involve
the exchange of address vector elements that are part ofdeegsor identifier. This is
achieved by an exchange of data between processors. Alitasugquivalent effect could
be achieved by relabeling the processors, this cannotgignielp us avoid inter-processor
communication in practice, because multiple arrays arergdly present and the processor
relabeling will often force communication for other arrays

The second kind of exchange occurs when elements withinameruinication thresh-
old are to become part of the processor identifier. Any peatrart involving the elements
beyond the communication threshold is performed by anoadiit personalized collective
communication operation. If we have more thman c address elements within the commu-
nication threshold, that are to become elements correspgmal the processor identifier,
then a sequence of in-memory permutation and communicagierations are carried out.
Each in-memory permutation operation moves as many elenfremh within the commu-
nication threshold to be beyond the threshold as possildiesd elements are then made
part of the processor identifier by a scatter operation. ptosess is repeated until there
are no more elements in the least significaatddress elements that are to be part of the
processor identifier. Thus any element already part of thegssor identifier or within
the least significanin elements (memory size), that are to become part of the @oces
identifier, can be made part of the processor identifier imglsipass.

A more complicated operation is required when we need to perthe elements cor-

responding to the processor identifier with those beyonddast significantn elements.
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This involves a collect operation by each processor. THeréifice in handling this case
and the previous two cases is that in the previous two calsgakssors perform the same
operations throughout each pass. In this case, each pooasdiects all the data in mem-
ory from certain other processors in turn, in differentatesns of the loop. Since all the
collected data cannot be stored in memory, the data recéwedeach processor must be
written to disk. This interleaves communication and wripe@tions, breaking the clear
demarcation between the phases. Since this case esseinmtralves writing the data to
disk, it is handled after the other two cases.

The above approach may not be the most efficient way of peifigrthe array redistri-
bution. In handling the last case, each processor mighiveedata from a different set of
processors in different iterations. Each receive is sépdday a write to disk. Hence the
communication and write times cannot overlap, leading ty peor execution time espe-
cially when the number of processors is large. A more optimalementation would be
to schedule the communication among processors so thabteelap. A simple schedule
would be for each processor to operate on data that has tmb®sme processor and then
begin processing data to be sent to another processor. Eacbsgor would be sending
to and receiving data from a different processor, say in @ tapology, enabling overlap
of communication and writing of data to disk. But this woulddify the read and write
access patterns by reordering of the reads and writes. Tf@mp@nce is not significantly
impacted as the block size of I/O can been chosen to be lamegan

Hence all communication required to handle array redistigim can be done in a single
pass. The implementation of this phase might involve a sei&eommunications as just
described. Henceforth we shall refeiGoas the permutation effected on the linear address

by the communication step and not delve into the implememtaletails.
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Combining Array Redistribution and Sequential Matrix Tran sposition

In this section, we combine the mechanisms considered nmii| to derive an algo-
rithm for transposing out-of-core matrices which are disiied in a row-blocked fashion
among multiple processors. Row-blocked distribution dadavolves a permutation that
is similar to transposition. Other regular data distribos can be characterized using other
permutations. The approach presented applies to arbrguyar distributions, but we only
elaborate on the row-blocked case to illustrate the praeeitwolved.

The parallel version of the algorithm differs from the seufigd version only in the
first pass. Since array redistribution can be performed imglespass, it is performed in
combination with the first pass of the sequential algoritBubsequent passes are identical
to running the sequential algorithm on all the processotse flrst pass for the parallel

algorithm is as follows:

e Read as in sequential cas®)(

Perform in-memory permutation as in sequential dase

Perform array distribution, handling the different casissussed above

Perform any permutation need to regroup the data

Write data to disk

The subsequent passes are identical to those in the sejwemnsion. Thus the parallel
version does not lead to an increase in the number of pastesfiorm of additional reads

or writes. The formulation for the first pass is as shown below
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Pre-conditions:

Parameters

—
Il
T™Jo
=

PR ifi>1
P'HiPR otherwise
inm—r—21L,w) ifr<n
inm—n—21,w) ifr>n
—(h—w) if p>(n—-w)
otherwise

if sg+9 =w

[W;ffvf ] otherwise
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ifi=t—1landk>0
—w otherwise
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Case 1:

Case 2:

|2n
L(Ip, L(In_p, Ip)) @ |n—p
In-5 ® L5, In-w® Llw-sp: 15p))

lp® L(In—p-s5, LI ps In+s9—p-w)) ® lw

(r<nAp<(n—w))

s, @ L(Igy, In_r) & Iy

lon—(r4s0) © Lllso Ir-w @ L{lw—sp, 1))
L(1p,L(In-p-s,1p)) @ lIn+sp—p

| 2n

lp® L(In—p-so, LI p; Intsp—p-w)) & lw
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Parametersn=m=t=2;r=w=p=1;5={0,1};5 =0

O 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
Pass 0 (Case 2):

Ro=la Ho = L(I1,L(l1,11)) 0= la
Po=1l4 ®lq Wo=1l1@L(lg,l1) @1
R%EO 0 1 2 3 29 0 1 8 9 P(’)__V>Vo 0 1 4 5
4 5 6 7 4 5 12 13 8 9 12 13
8 9 10 11 2 3 10 11 2 3 6 7
12 13 14 15 6 7 14 15 10 11 14 15
Pass 1.
Ri=14 Pr=12®L(I1,11) Wi =11&L(I1,11) D
0O 1 4 5 0O 4 1 5 0 4 8 12
R g 912132 g 12 9 13% 15 9 13
2 3 6 7 2 6 3 7 2 6 10 14
10 11 14 15 10 14 11 15 3 7 11 15

Table 3.3: Illustration of our parallel matrix transpositialgorithm

Case 3: (r<nAp>(n—w))
Ry = ln-g®L(lg,In-r) @I
Po = lon (r1s) @ LUsps lrtp-n @ L(In-p-sp:lsp))
Ho = L(In—W&L(lp_(n-w)In-p-s),!p) B ln-p+s
P = lonw s ®L(p nowls) @l p

Wo = |p@ L('anpfwfso, |so> @ lw
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There are some noticeable differences in the first pass aparechto that in the se-
guential algorithmHg represents the array redistribution phase. The first passiste of
five phases. There are two in-memory permutation st@pandP), that prepare data for
communication and regroup the data before writing to didkis Tould involve a series of
interleaved permutation and communication steps, wheredimmunication steps satisfy
the communication threshold. Communication requiresdnsffo store the received data,
in addition to the data read from disk, which might be sentiatler processor in parallel.
Thus the amount of memory available should be at least twieedad block size chosen.
An increase in the number of processors implies an increeeitotal available memory.
If the number of processors is large enough, the communitgthase can contribute to
permuting the address elements within the write threshidhis factor is represented Isi
When the number of processors is large enough to contribytermutation of the linear
address, the communication and in-memory permutatiomdvad are different from when
it is not. The formulation handles all the different cases.

The transposition of a 4 4 array is illustrated in Tabl8.3. The array is distributed
in a row-blocked fashion among 2 processors. The transparsay is also required to be
in a row-blocked distribution. In terms of data, the top taflthe matrix is stored in the
first processor’s disk, the bottom half on second processlisk. The parameters of the
algorithm are shown on the left hand side of the table. Theahclata layout is shown on
the right hand side. The algorithm requires two passes tsp@se the array. In the first
pass, no elements within the write block size are permutddarnn-memory permutation
is done. In the illustration, these permutations are coetbinith other phases to simplify
the figures, as they are just identity transformations. Upampletion of the first pass,

the elements have been redistributed to the target prasesso the second pass, each
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processor permutes the array independently to arrive ataheposed form. Note that the
reads and writes conform to the read and write block sizes, éimsuring high bandwidth

for disk 1/0.
3.3.7 Experimental Evaluation

We now discuss experimental results obtained from evalgaltie parallel transposition
algorithm on the amd-osc and ia64-osc clusters. Both alusige the Myrinet13] inter-
connection network. The implementation was out-of-plaw @sed an auxiliary array.

The transposition times for different memory sizes and nemslof processors were
measured. Table3.4 and3.5 show the transposition times on ia64-osc for array sizes of
16GB (N=64K) and 64GB N=128K). Tables3.6 and3.7 show the transposition times on
amd-osc for the same array sizes.

In both systems the read threshold was much higherh&o the execution time was
determined primarily by the write threshold. Increasing themory available decreases
the number of I/O operations. If I/O operations were an ¢iffeaneasure of performance,
doubling the memory size should halve the execution timet tBe& execution time im-
proves little with increase in memory size, except when #éngdr memory size leads to a
reduction in the number of passes. Reduction in the numbpasdes is accompanied by
a significant reduction in the total execution time. This banseen, for example, in the
transition from 32MB to 64MB on one processor in TaBlé. The slight improvement
seen with the increase in memory size is due to a reductioharstride of writes. The
write block size is reduced to be below the write threshoitlcin reduce the number of
passes and hence the total execution time. This is the caéd¥¢B memory on the one

processor in Tabl&.6. In certain cases, the stride of write is so large as to wraprat
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#procs Memory size (MB)
16 32 64 128 256 512

1 3406 3322 2265 2230 2003 2079
2 1536 1127 962 949 984 1006
4 740 542 484 483 475 474

Table 3.4: Parallel matrix transposition time, in secomasia64-osc. Array size is 16GB
(N=64K)

and result in the writing of adjacent blocks before earlietten blocks have been flushed
to disk. This leads to larger write block sizes and hencetshtwtal execution time. This
trend can be especially seen in TaBléat the transition in the number of passes, when the
write block size is reduced to avoid an increase in the nurabpasses.

The parallel algorithm scales well with an increase in thenber of processors. A
slightly super-linear speedup can be seen in some casesisthie to improved locality in
I/0. Note that for an array size of 16GB and for four processtire portion of each array
in a processor is 4GB, equal to the memory size in the Itaniwtuger. But since there
are three arrays the arrays are not fully cached in memorkingahe results dependent
on the operating system caching mechanism. In some caseg;raase in the number of
processors reduces the number of passes, thus significadtiging the execution time.
This effect can be observed in Talde for a memory size of 32MB, when the number of

processors is increased from one to two.
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#procs Memory size (MB)
16 32 64 128 256 512

4 3448 3252 3213 2102 2907 2801
8 1470 1533 1469 921 985 1007

Table 3.5: Parallel matrix transposition time, in secomasia64-osc. Array size is 64GB
(N=128K)

#procs Memory size (MB)
16 32 64 128 256 512

7443 7386 3344 4254 4374 4223
3865 2098 2179 2253 2333 2207
1971 981 1142 1131 1165 1122

995 583 549 688 638 560

o A~ADNBRE

Table 3.6: Parallel matrix transposition time, in secomasamd-osc. Array size is 16GB
(N=64K)

#procs Memory size (MB)
16 32 64 128 256 512

4 8122 6365 4948 3959 3855 3923
8 3523 3469 2695 2167 2046 1855

Table 3.7: Parallel matrix transposition time, in secomasamd-osc. Array size is 64GB
(N=128K)
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3.4 Out-of-core Matrix Reblocking
3.4.1 Background

This work is done in the context of the Global Arrays programgrsuite. The Global
Arrays suite 5] provides a set of inter-operable programming models, eaehdifferent
level of abstraction. At the lowest level is MPI, a distriedtmemory programming model
with message passing for two-sided communication. Thougtisinot part of the suite,
it is fully inter-operable with the abstractions providedtihe suite, and is an integral part
of the hierarchy of abstractions presented to the user.

The Aggregate Remote Memory Copy Interface (ARMCI) librgry] provides a distributed-
memory view with one-sided access to remote data. It hashaset of primitives for
non-blocking operations, and contiguous and non-contiguwtata transfers optimized to
hide latency. ARMCI forms the underlying communicationdayor a number of com-
pile/runtime systems, including Co-Array Fortraivl], GPSHMEM [(], and Global Ar-
rays.

The next higher level is the Global Arrays (GA) librarg4] 86]. GA exposes a global
view of a dense multi-dimensional array distributed amotigslocal memories of proces-
sors. It provides a shared-memory programming model in hvtiata locality is explicitly
managed by the programmer. Explicit function calls are usettansfer data between
global address space and local storage. It is similar teiloised shared-memory mod-
els in providing an explicit acquire-release protocol, difters with respect to the level
of explicit control in moving blocks of data in multidimewsial arrays between remote
global storage and local storage. The functionality preditty GA has proved useful in

the development of large scale parallel quantum chemisiitgs such as NWChenil 7]
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(which contains over a million lines of code), adaptive mestinement codes such as
NWPhys/NWGrid (www.emsl.pnl.gov/nwphys) and applicagon other areas3f.

The Disk Resident Arrays (DRA) modet§] extends the GA programming model to
secondary storage. It provides a disk-based represemfatimulti-dimensional arrays and
operations to transfer blocks of data between global amagsdisk resident arrays.

Global Arrays allows the user to assume a shared-memorygroging model, while
simultaneously supporting mechanisms to query for and jpogetie local data. Thus it
also enables incremental optimizations. ARMCI, GA, and DprAvide a unified pro-
gramming model for handling different levels of the memoimgrarchy in which the user
controls the location of data in the memory hierarchy. Tlais been shown to achieve high

performance, while being a simpler programming model thassage passing.
3.4.2 Problem Definition

Internally, the data in a DRA is stored in a blocked fashiorhéiva DRA is created, a
typical request shape/size can be specified. This is useztéomline the shape of the basic
layout block or “brick”. The shape of the brick is chosen totohathe specified access
shape. The size of the brick is chosen as a compromise betweaompeting objectives:
1) optimize disk I/O bandwidth — this requires that the bsde be large enough to amor-
tize the disk seek time and 2) minimize wastage of disk 1/0Oneesil/O is done in units
of the basic block (brick), small bricks imply less wastagj¢h@ boundaries of the DRA
regions being read/written.

An application might have an access pattern that is vergidifft from the organization
of the DRA on disk. This can happen when an application usesthput of another

program, or because different phases of the same programiftesent access patterns.
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This can be handled by creating another copy of the disk easidrray to match the new
request size and transformed dimensions.

We have implemented the copy routine, referred ttNBRA Copy, together with di-
mension permutation. The routine takes as input the souttaaget DRA handles and the
dimension permutation to be performed. Henceforth, tha adathe DRA corresponding
to the dimensions of blocking in the source and target araagseferred to as the source
and target blocks, respectively.

The disk array layout transformation problem we consideg isea generalization of the
out-of-core matrix transposition problem. Most existinggions to the problem, including
our solution presented earlier, assume the array dimemsind the memory size to be
powers-of-2. This assumption, coupled with the fact thatrdquired transformation is a
transposition, allows different steps in the re-blockimggess to operate on disjoint sets of
data. In each step, the set of data read into memory form egradtnumber of write blocks,
which are written out. So no data is retained across stepsgitire transposition. When
arbitrary blocking, array dimensions and memory sizes atfgethandled, it may not be
possible to process and write out all the data read into mgma given step. Some data
either needs to be discarded and re-read, increasing theoB or needs to be retained,
increasing the memory requirement. The memory cost foimetthe data unused from a
step depends on the order of traversal of dimensions, argehgnot straight forward. The
out-of-core transposition algorithms involve 1/O of bleakf data at specific strides, which
is fixed for a pass. This regularity allows better predictidmhe 1/0 cost. The in-memory
permutation of data can be modeled as a bit-permutationelirtbar address space of the

data stored in disk. This provides a regular structure tarthreemory computation.
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3.4.3 Algorithm Design

The disk array layout transformation problem is modeledraB@ optimization prob-
lem. The total /O cost is to be minimized, subject to the amiaf physical memory
available. In the ensuing discussion, we shall consider-dimensional matrix of dimen-
sions(ds, ...,dn), with blocks of shapéss, . .., s,). The target matrix has the same ordering
of dimensions as the source but is blocked using blocks gfestia .. .,t,). The source
and target bricks are assumed to be of size that is large arfougfficient access from/to
disk. DRA typically uses a brick size of around 1 Mbyte. Refndm the source disk array
are assumed to be in units of the source brick, and writesettetiyet disk array are done

in units of the target brick.

Solution Approach

If feasible, a single-pass solution (in which each elemsnead and written exactly
once) would provide the minimum I/O cost. But the memory regqaent for a single-
pass solution might exceed the physical memory availabiethis case, we either need
to choose a multi-pass solution or perform redundant I/Oni@ pass. In this sub-section,
we present the intuition behind the design of our algorithte. begin with a basic single-
pass algorithm and determine its I/O and memory cost. Weittceamentally improve the
single-pass algorithm to lower the memory requirementarttié 1/0 cost. The multi-pass
solution is discussed in a subsequent sub-section.

Consider the regio0 — LCM(sy,t1),...,0— LCM(sy,ty)). This region contains an
integral number of source and target blocks along all theedsions. Thus the data in the
source matrix from this region maps onto complete blockbétarget matrix. This region

can be processed independent of other such regions, widingutedundant 1/0. We shall
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refer to such regions d<CM blocks If the amount of physical memory were large enough
to hold an LCM block, then a single-pass solution is cleadggible — read in source blocks
contained in an LCM block into memory, construct the tardetks corresponding to the
data in memory, and write them to the target array. The 1/Q 0defined as the I/O
required per element of the source array. This algorithnti@sninimum 1/O cost of one
read and one write per element of the source array. Assutnéigead and write operations
are equivalent the 1/O cost is two units per element.

The memory cost is the size of the LCM block. Since arbitrarplocking needs to be
supported, the source and target block sizes could haveaaghiimensions (provided their
total size corresponds to a reasonable block size for I/Ghendrget file system). Hence
the LCM block can be arbitrarily large and might not fit in plogd memory. We can
improve the single-pass algorithm to handle this scenattioont increasing the I/O cost.
Instead of reading entire LCM blocks into memory, the alipon reads in a set of blocks
of data from the source matrix and writes out those targetksidhat can be completely
constructed from the data available in memory. Any data imorg that cannot be used
to construct a complete target block is retained in memoryy gource block in an LCM
block contributes to target blocks within the same LCM bloelence no data needs to be
retained across LCM blocks. The algorithm processes atlateein one LCM block before
processing any other LCM block. The algorithm requires ginanemory to retain unused
data and read in additional data for processing. The additidata read into memory for
processing must be enough to write at least one target btodisk. This is referred to
as the Max block and corresponds(My, ..., M) whereMax = [max(s,tj)/s | *s. The
algorithm traverses each LCM block along each of the dinmgrssand processes data in

units of the Max block. The buffer to store the unused datarsitppned into one buffer
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per dimension. Unused data from a Max block along a dimensteds to be retained until
the adjacent Max block along that dimension is processedis Tie amount of unused
data to be retained depends on the order of traversal of dioren Along the dimension
traversed first, only data unused from the last processed Ntk needs to be stored.
Other dimensions require more data to be retained. A staimony cost model is used, in
which the sizes of buffers used to store data is determinidothe transformation begins.
The maximum memory required to perform the transformatahé sum of the size of the

Max block and the sizes of the buffers.
MemCost= !, bsize + [, Max

where bsizgrepresents the size of buffer to store unused data alongtthéimension.
Let(Ty,...,Tn) be the order of traversal of dimensions. The unused datg aldimen-
sion (sayT;) is ann-dimensional region. For a given dimensigrihe size of this region
along dimensionj can be as much as LCdr;,ty;) for j <, but is bounded above by
Maxr; for j > i. Hence, the size of the buffer to store the unused data aldirgensionT;

is bounded by

bsize; =15
LCM (STj,tTj) if j<i
S = U, if j=i
Maxr, if j>i

whereU; be the maximum unused data that needs to be stored alongsionén Since
U; must be smaller than bothandt;, and for everys elements along dimensiofrought

into memory, at least g¢d, t;) elements must be written out, we have

Ui = min(s,t) —gcds, t)
For a two-dimensional array, the memory cost due to the uhligters iU « Max, +
LCM(sy,t1) * Uz if dimension 1 is traversed first; otherwise, itls« Max; + LCM (s, t2) *
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1: function MEMCoST(st,temp)

2 Input: Source and target block sizes, and template size
3 Output: Total memory cost, dimension traversal order
4: for each dimensioni do

5: L =lem(s,t)

6: Ui = min(s,t) — gcd(s, t)

7 M; = [(max(s,ti)/s)] *s

8

Sort dimensions into array T such thati, j) i < j = (Ug, My, + Ly *Ug; < Uy« M7, +

LTj *UT,)

9: memCost=0
10: for each dimensioni do
11: pdt: UTi
12: for each j <ido
13: pdt = pdt xL,
14: for each j >ido
15: pdt = pdt «Mr,
16: memCost- = pdt
17: return (memcCosfT)

Algorithm 3.6: Algorithm to determine the memory cost foriaemn template size

U;z. In ann-dimensional array, the traversal order is determined lofyrgpthe dimensions
by comparing these expressions.

As can be seen from the above formulae, the sizes of the uhuskeds is proportional
to the LCM block dimensions. This could lead to situationsv/trich the memory require-
ment still exceeds the available memory. In this case, thexdéwo options to be consid-
ered. A multi-pass solution could be determined, which ssdssed later, or a single-pass
solution that performs redundant read of data can be dasigne

We propose a single-pass algorithm that differs from theudision above in one re-
spect. Instead of traversing an entire LCM block, a smadierglate is chosen. No unused
data is stored across templates. A template is an integrabacof write blocks along
all dimensions. There is no redundant read within a templBig& unlike LCM blocks,

templates might have source blocks on their boundariestratdle across two templates.
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This results in redundant reads across templates, inogetse I/O cost. The memory cost

is reduced and is given by:

MemCost= S , bsize + 1L, Max

bsizer = [1_1S;
templrj if j<i
S = Uy if j=i
Maxr, if j>i

where templrepresents the size of the template along ttiedimension.

The minimum template size corresponds to a target blockhigdase, the memory
requirement is reduced to a Max block. Thus the necessadjitcamfor the existence of a
single-pass solution is that the Max block fit in memory.

The 1/O cost is multiplicative along the dimensions. WitamLCM block, the number
of source blocks that need to be reread is the number of téasphainus one, which is

([LCM(s,ti)/temp|]| —1). Therefore, the 1/O cost of re-blocking is given by tepipl

|IOCost=[]i"_, IOCost

lcm; = LCM(s,tj)
lcm; ,
emp 1—1)+Icm.

|IOCost = S*Gt lcm,

In reality, the LCM along a dimension might be larger thanlémgth of the array along
the dimension, in which case we replace the LCM by the arrenedsion. Note that the
array dimensions are not considered while determikingHenceU; does not provide an
exact estimate, but only an upper bound on the memory regeime Even though this
approach might increase the 1/0O cost for a single pass, thklt® cost could be reduced

due to a reduction in the number of passes.
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1: function SINGLEPASSSOLUTION(S,t,MemoryLimit)

2 Input: Source and target block sizes, and memory Limit

3 Output: I/O cost, template size, and dimension traversal order
4; (Vi) templ| = lcm(s, ;)

5: (cost,T) = MemCost(s,t,templ)

6: while cost> MemoryLimit do

7 (Vi) temp| =temp| - 1

8 if (3i) temp| < Othen

9 return (co,templ T)

10: (cost,T) = MemCost(s,t,templ)
11: Adjust the template size so that increasing the templateading any dimension makes it
infeasible

12: while true do

13: Among adjacent template sizes choose the one that has thmomaxate of decrease
in /0 cost to increase in memory cost

14: Determine a feasible template, templ’ that leads to the ieasease in disk I/O cost
from the chosen template

15: if DiskCost(templ)< DiskCost(templ’)then

16: return (DiskCost(templ)templ T)

17: templ = templ’

18: (cost,T) = MemCost(s,t,templ)

Algorithm 3.7: Algorithm to determine template size for agie-pass solution.

Template Determination for Single-Pass Solution

Both the 1/0O cost and the memory cost are affected by the etaithe template. The
template is a set of write blocks along all the dimensiongaltt range in size from one
write block to an LCM block. For re-blocking amdimensional array, the template needs
to be determined from an-dimensional solution space. A template is a feasible swiut
if its processing does not require more memory than availabhe algorithm exploits the
characteristics of the solution space and the optimizdtioation.

Consider a templatd. An enclosing template is defined as a template that is at leas
as large as the given template in all the dimensions. B_Lbe an enclosing template of

A. From the memory cost equations, it can be seen that the nyenequired to process
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A cannot exceed that required to procBssConversely, processirtg requires at least as
much memory as processig This implies that once a template has been determined to
require more memory than available (an infeasible sol)itiom enclosing templates needs
to be considered. This relation separates the solutioresptxa feasible and an infeasible
solution space (where the surface of separation approasiata hyperbola whem= 2).

The 1/O cost has a similar characterization. The I/O cosa&gn shows that decreas-
ing the template size along any dimension increases thed&D cThus the 1/0O cost of
templateA is at least as much as that of templ&te This implies that when searching
through the solution space, no template that is enclosediégsible template needs to be
considered. Thus the optimal solution resides on the seidaparating the feasible and
infeasible solution spaces.

Our algorithm to determine the template for a single-pakgisn involves three phases.
The algorithm begins with the LCM block as the template arstistéor feasibility. If an
LCM block is the feasible solution, it is chosen as the tertgplaOtherwise, a solution
is chosen that is just feasible, i.e., increasing the tete@&e along any dimension vio-
lates the memory constraint. This is a solution on the bogynidetween the feasible and
infeasible solution spaces and hence is a candidate soluiimm this solution, we per-
form a steepest descent to arrive at a local minimum in thecBesppace. Note that other

optimization algorithms that can optimize on a surface aoded.

Multi-pass Solution Determination

When a single-pass solution does not exist or is too expenaivnulti-pass solution
is chosen by determining intermediate block sizes. An mégliate disk-based array is

used to store the intermediate results. Hence, additiosklsppace equal to the size of the
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1: function MULTIPASSSOLUTION(S, t, arraySize, MemoryLimit)

2 Input: Source and target block sizes, array size, memory limit

3 Output: Total I/O cost and passes

4; (sCost,sTemplate,sDimOrder singlePassSolutiogf, MemoryLimit)
5: if sCost= 2 * arraySizethen > Minimum 1/O Cost possible
6: return ( sCost,list(sTemplate,sDimOrdéy)

7 (Vi)Ci = L‘/S *tiJ

8 (Vi)cl =5"3xt3

9 (Vi) =s3xt¥?
10: (costla,passesila MultiPassSolutiorg, c,arraySize,MemoryLimit)
11: (costlb,passesib MultiPassSolutiort, t,arraySize,MemoryLimit)
12: (cost2a,passesRa MultiPassSolutiorg, c1,arraySize,MemoryLimit)

13: (cost2b,passesl MultiPassSolutiorgl, c2,arraySize,MemoryLimit)
14: (cost2c,passes@e MultiPassSolutiord?, t,arraySize,MemoryLimit)

15: cost = min (sCost,costla+costlb,cost2a+cost2b+cost2c)
16: if cost = sCosthen

17: passes = list6Template,sDimOrdegy

18: else ifcost = costla+costlimen

19: passes = concatLists(passesla,passeslb)

20: else ifcost = cost2a+cost2b+costf#ten

21: passes = concatlLists(passes2a,passes2h,passes2c)
22: return (cost,passes

Algorithm 3.8: Algorithm to determine a multi-pass solutio

arrays is required. The multi-pass solution proceeds asated execution of the single-
pass algorithm, for the source and target block sizes detethior that pass. The source
block size of the first pass is the block size of the sourceyarfhe target block size of
the last pass if the block size of the target array. The skewdsn the source and target
block sizes decreases as the multi-pass solution procemusoine pass to the next. The
intermediate block size are chosen to effect the maximuilmaeking possible with the

available memory.
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A simple heuristic is used to determine the intermediagedikes for the multi-pass
solution. Two candidate intermediate block sizes are camed. The first candidate inter-
mediate block size is the geometric mean of the source agdttalock sizes. This block
size is “equidistant” from the source and target block siZéss can be an effective inter-
mediate block size of for solutions with an even number ofpasThe second intermediate
block size is, in fact, a pair of block sizes. Lsgtandt; be the source and target block sizes

along dimensiom. The intermediate block sizes chosen 32/3 *til/?’ ands11/3

3 This
pair of intermediate block sizes can be effective for sohsiwith an odd number of passes.
These two options allow a more refined search for intermedikick sizes. Without the
second choice, any solution that requires an odd numberssigaeach transforming to an
intermediate block “equidistant” from the previous oneghtibe harder to achieve. Higher
order intermediates were not considered as solutions vidtgar number of passes seldom
occur in practice and can be handled by a combination of ttiesiees.

Once the intermediate block(s) are determined, the makssolution is determined
recursively for transforming from source to intermediated intermediate to target block
sizes. In the case of two intermediate blocks, the transition between the intermediate
blocks is determined as well. The algorithm for determiniihg multi-pass solution is
shown in Algorithm3.8,

Consider an instance of the matrix re-blocking problem incltthe source and tar-
get arrays are blocked &32,9) and (5,16), respectively. The array dimensions are much
larger than the blocking and hence are not considered. Thek is (32,16) and

the unused data along each dimension is bounded.8y. The solution to the re-blocking

problem depends on the memory available. An LCM block costaCM(sy,t1) « LCM(Sp,t2)
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1: Input: Source and target DRAS8] and [d]

2: Output: d; contains the data ids

3: Determine the multi-pass solution

4: Create a file as an intermediate. Use spaak as the other intermediate

5: for each passdo

6 Determine source and target files for this pass (so that thettan the last pass %)

7 Allocate memory for unused buffers along each dimensiomptiffer to contain the Max
block, and a write block

8: for eachtemplatet do
9: while Max blocks remain to be processed
10: Readthe next Max block into memory from the source
11: Construct complete write blocks from Max block and unuseftesi
12: Write the constructed complete write blocks to target
13: If Max block contains unused data corresponding to curemiplate, store it into

unused buffers
14: Delete the temporary file

Algorithm 3.9: Algorithm for sequential implementationlafout transformation

= 23040 elements. When enough memory is available to hold@v block, the re-
blocking can be performed by reading in an entire LCM bloc# amiting out the target
blocks. But if the memory can holdz « Max; + LCM (sp,t2) * Uy + Max; x Maxp=1344
elements, it is sufficient to hold all unused data when an LGdtkis processed. The
second dimension is traversed first in the re-blocking ptoce If the memory available
is lesser, say enough to hold just 900 elements, a singkegudigtion with a template size
of (120 6) elements is used for the re-blocking. When the memory sig80s a two-pass
solution with an intermediate tile size ¢f2,12) is determined. The template for the first

pass is(96,12), and that for the second pass &9, 48).
3.4.4 Implementation

A pseudo-code for the sequential implementation, usinglA®e is shown in Algo-

rithm 3.9. The number of passes and the intermediate block sizes ¢br gass are first
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determined using the multi-pass solution algorithm in Aitjon 3.8. The target DRA and
an additional temporary file are used to store the interntediata. The input file in the
first pass is the one corresponding to the source DRA. The sl output files for each
pass are chosen in such a way that the output file in the lasipts®e file corresponding to
the target DRA. The computation proceeds in a sequence sépaghe buffers to hold the
unused data and the Max block are initialized. In each passteimplates are processed
one after another. The data corresponding to each temglataviersed in units of Max
block, in the predetermined order. In each step, a Max bleckad into memory, complete
write blocks are constructed and written into the output flRReading a Max block from
disk involves a sequence of I/O operations one for each lomitthe Max block. If the Max
block contains any unused data corresponding to the cuteentlate, it is stored in the
unused buffers. If the Max block is only partially presenthia current template (i.e., some
of it corresponds to write blocks in another template), tagdot relevant to the current
template is discarded. Construction of the complete wieks involves determining the
regions of the read blocks to be combined, locating the regfimm the buffers, and patch-
ing the data onto a temporary buffer. The data in the tempdraifer is then written to

disk.

Implementation Choices

We needed a parallel implementation that can handle therdift forms of disk arrays,
in particular arrays on local disks and on a shared file systdarious alternatives in
obtaining a parallel implementation of the algorithm weomgidered. The alternatives

differed in the the level of abstraction utilized and thergrarity of parallelism exploited.
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At the coarsest level of parallelism, each template can begssed independently and
hence can be assigned to a different process. Each proceiisfithe next available tem-
plate, which is determined at runtime. This provides autraad-balancing. Since the
processes operate on disjoint sets of data, a low-levetaait®in is required. GA/DRA
requires a collective operation to perform 1/O on the diglagrwhich is not suitable for
template-level parallelism. The absence of one-sidedsadcethe data on the remote disk
necessitates co-ordination of the computation amongstlifferent processors. This re-
quires a load-balancing scheme different from the processtemplate scheme.

Another significant drawback of utilizing template-levarpllelism is that orchestra-
tion of the computation amongst all the processors carzatiie global memory for pro-
cessing. This can potentially reduce the number of pasgedldwing a greater component
of the transformation to be done in each pass. Thus, it isradgaous to have all the pro-
cesses co-operate in transforming each template. Paalléh the form of distributed
ownership of the bricks by the I/O processes, those thabpart/O, is exploited. We
redefine the Max block in each step to be such that enough ebenptite blocks can be
constructed to utilize all the available 1/0 processors.

The co-ordination amongst the processes can be achiewxed eging MPI and file 1/0
or using GA/DRA. Using MPI and file 1/0O provides greater flaktlp and predictability to
the computation. This could allow tuning the implementatio the specific environment.
Alternatively, GA/DRA abstracts away the complexity in tieg with file offsets, packing
and unpacking of data, and message passing. That GA allexssthof message passing,
in particular MPI method calls, on both GA and non-GA data iGA/DRA program
enables incremental tuning of the implementation. A GA/DR#plementation can be

further tuned using MPI and file 1/O if such tuning can imprgexformance. When the
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tuning does not improve performance, a more maintainalde oavailable. The lessons
learnt from the tuning process can help in making furtherrompments to the GA/DRA
model.

To illustrate the incremental tuning in the GA/DRA modet,us consider two possible
optimizations. The GA/DRA implementation reads data fromlisk array into a global
array in memory. The data is processed in the global arrayaitien back into the disk
array. The data could be read into local memory, copied igiolaal array, and then writen
from the global array to a disk array. This could reduce thmmaoinication overhead or
schedule communication in an intelligent manner. Alteuedy, data can be read from a
disk array into a global array, and each processor can capgldta onto its local memory
and write to the block it handles.

One attendant disadvantage of using GA/DRA for the oparatidhe increased disk
space requirement. At any point in the computation, spaceqgsired for the source and
target arrays of the current pass and the ultimate sourctagyet arrays of the transforma-
tion. The input array is assumed to be read-only. The outpayas unused until the last
pass, and can potentially be utilized. But accessing theespbocated to the target array
via the DRA induces a blocking that is usually incompatiblénthe blocking of the inter-
mediate data. Operating at the file I/O level, one can bypgesblbcked view and directly
access the space. A simple extension to the GA/DRA framewiorkhich multiple disk
arrays can use the same file (analogous to the union type ioulj be provided to allow
different blocking views to the same data space on disk.

Another optimization is possible when operating at the filzlevel. Instead of operat-
ing on the entire array on a pass before proceeding to thepasst each template can be

processed through all the passes and written into the firey} &efore processing the next
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U[1]

Max[1]

U] Max[2]
] Max block [ Complete write blocks

I Data patched from unused buffers

Figure 3.5: In-place construction of complete write blockghe parallel implementation.
The Max block, data from unused buffers, and the construatéte blocks are shown.
Note that the regions overlap.

template. Thus additional space for only two templatesgsired (the space on the output
array is not useful in this case as it is used during the toansdtion and might not have
enough contiguous free space to store the intermediatet).th® GA/DRA model, using

this optimization would involve creating and using DRAs #iiee of a template.

Parallel Implementation

The parallel implementation is similar to the sequentiglementation, whose pseudo-
code is shown in Figurg.9. The Max block and the unused buffers are global arrays. Each
Max block is read in directly using the DRA interface. As dtrated in Figures.5, the
global array corresponding to the Max block is allocateditamital space, i.e., dimension
i of the global array is of size (Max[i]+U[i]). The patching tie data from the unused

buffers is done in the additional space allocated in theyasteh that the complete write

84



blocks form an n-dimensional rectangular region. Thus thestruction of the complete
write blocks is done in-place, eliminating the movement émsthe data in the intersection
between the Max block and the complete write blocks, whicmaloneed to go through

the unused buffers. The complete write blocks are thenemrith disk.

Load Balancing

In the parallel implementation, more than one processapmrates in performing the
transformation. The basic unit of I/O, the Max block, is eased in size to allow all the
processors to actively participate in the transformatibmthe sequential algorithm, the
Max block is defined as the set of read blocks that guaranke¢sat least one complete
write block can be written out in each step. WRIWO processors, the Max block is defined
to be the set of read blocks that guarantee Ehabmplete write blocks can be written out
in each step.

This set of read blocks can be chosen in a number of ways. 8mbalthe load among
the I/O processors, tirewrite blocks written out in each step should each be handfead b
different I/O processor. This allows for a balanced disttidn of the 1/0O load, with all I/O
processors actively performing I/O in each step.

A Max block that results in a load-balanced schedule is detexd to be a multi-
dimensional rectangular regionBfwrite blocks, each handled by a different I/O processor.
The read blocks that cover this region form the Max block. AxNMdkock that cover® con-
secutive write blocks along the fastest varying dimensanmg a simple load balanced
schedule. However, such a scheme does not take advantage ftéxibility available in
choosing the Max block so as to contribute to a global optso&ition. For example, the
above scheme would not perform well if the target blockind adaery different orientation.

A simple heuristic would be to choose a Max block that aligith whe target block.
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In the algorithm design, the Max block was defined first, arleeoparameters such
as memory cost were defined in terms of the Max block. A chaicthe Max block
determination affects other costs and hence the optimatfisol

An algorithm to enumerate all possible load balanced Maxksas shown in Algo-
rithm 3.10 Currently, the implementation chooses any load balankedkbThe algorithm
is based on the observation that the round-robin distobutf the blocks of the disk array
enables partitioning of the entire array into load-balandex blocks of the same size and
shape. If a partition results in the Max block at the origirihaf array being load-balanced,
all the Max blocks in the partition are guaranteed to be lcadrixed.

The algorithm can be viewed as a factorizationPofo be assigned to different di-
mensions. The factor assigned to a dimension is the numberiwf blocks along that
dimension to be covered by the Max block. The algorithm regmés the array size in-
directly using an offset vector. An offset vector is mglimensional vector, in which the
i-th element represents the distance between two write blaldng that dimension in a
linearization of the array into write blocks. For exampla,d 10x 10 array, blocked using
3 x 3 tiles, the offset vector i€l,4). The offset is one along the fastest varying dimension.
Along the next dimension, it is the number of blocks in all ®wimensions, which is four
here. In the algorithm the offset is represented modulo timelzer of I/O processors. Thus,
with two I/O processors the offset vector in the above exang(1,0). In this form, the
offset vector also represents the I/O processors that dadnellblocks adjacent to the block
at origin, along each dimension.

The offset along a dimension can be used to determine the ewaildifferent 1/0
processors that handle blocks if one traverses the arrag af@t dimension. In the above

example, if the blocks are identified using a row-column,g@iblocks along the column
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cNO AR WONR

: function GENMAX BLocKS(blocking,array-dims,P)

Input: array dimensions and blocking, number of /O processors
Output: Enumeration of load-balanced parallel Max blocks
D=o

Compute offsets into “offset[]” array

for each dimensioni do

factofi] =1
if offsefi] > Othen
D=D+{i}

GenRecursively(P, factor[], offset[], D)

: function GENRECURSIVELY(P, factor[], offset[], D)

Input: #1/O procs, initialized factor & offset arrays, dimenssoof interest
Output: Enumeration of load-balanced parallel Max blocks
if P=1then
[**factor[] has a valid parallel Max block**/
Output factor[]
return
for each dimensioni € D do
if gcd(P, offsefi]) < P then
f = P/gcdP, offseti])
if ID|>1v f=Pthen

factofi] = f
GenRecursively(P/f, factor[], offset[p — {i})
factofi] =1

Algorithm 3.10: Pseudo-code to enumerate all load-balhpeeallel Max blocks

(0,%) are handled by I/O processor zero. In fact, an offset of zknogaa dimension offset

of zero along a dimension implies that all blocks along thateshsion are handled by the

same I/O processor.

A factor of more than one is assigned to a dimension only iftitreesponding blocks

chosen are handled by different 1/0O processors. All dinmrsivith non-zero offsets are

chosen as candidates and are added to thB.s@ten the routingsenRecursivelys in-

voked that recursively determines all load-balanced Maxhkd. The routine recursively

factorizesP and assigns factors to dimensions along the way.
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If P has been completely factorized and an invocation of tharre@enRecursively
finds P to be one, the factorization in facfpis a load balanced Max block. If not, the
routine expands the search along each dimension, by aitegrtptassign a factor to each
dimension and then backtracking to determine more possdblgions.

The possible assignment of a factor to a dimension is deteunbygcd(P, offsefi]).
The gcd determines the number of different I/O processasthndle blocks along that
dimension. If the gcd is 1, it means all the I/O processors blooks along that dimension.
For larger gcds the number of I/O processors is correspghdiower. The number of I/0
processors along a dimensids given byf = P/gcd(P, offsefi]). Also, along a dimension,
all I/0 processors own a block before any I/O processor ovgesand block. Hencé can

be assigned as a factor to that dimension.

3.4.5 Experimental Evaluation

In order to evaluate the effectiveness of the proposed apprave compared the time
for layout transformation using our implementation witle time for transformation using
currently available mechanisms. The present interfaceRé & through Global Arrays.
When a DRA is to be copied to another DRA with different blegki the source array
is read into a GA one section at a time, and written into theesaattion of the target
array. This is a single-pass solution. The basic unit of s&ciee., the shape and size of
the GA needs to be determined. The size is determined indepénf the blocking of the
source and target arrays to equal the amount of availablsigddynemory. We evaluated
three options for the shape of the GA used. One option waseadhgslargest square tile
that fits within the available memory. If the blocking of th&Bs is known, the GA can

be chosen to be a multiple of the source block size or thetthigek size. These three
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Figure 3.6: Execution time to transform set-of-rows blogkio set-of-columns blocking
using a DRA brick size of 1MB

options are labeled Basic(square), Source Directed argkiTBirected, respectively. The
implementation of the new approach is labeled NDR&py.

We evaluated the mechanisms on the OSCBW machine at the @peré@mputer
Center. Each node in the cluster has Dual AMD Athlon MP prsoes(1.533 GHz) and
2GB of memory. The PGI pgcc 4.0-2 compiler was used to geménatexecutables. Two
sets of experiments were conducted. In one, a set of rows fileenblocks in the source
array. The target array is blocked as a set of columns. Thegmonding results are shown
in Figure 3.6. The second experiment involved the reverse — transforrfiomg a set-
of-columns blocking into a set-of-rows blocking, and itsuks are shown in Figura.7.

The number of rows (or columns) in a block was chosen suchthigablock size was
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Figure 3.7: Execution time to transform set-of-columnscking to set-of-rows blocking
using a DRA brick size of 1MB

greater than 1MByte, the typical brick size chosen by DRAtis system. For example,
for a (40964096 array, where each element is of size four bytes, set-of-taasking
corresponds to a block size of 1 MB, with each brick holdin@4 4096 block of data;
and a set-of-columns layout corresponds to a 1 MB brick Ingldi (4096 64) block of
DRA data.

In both the experiments, the array size was increased frad@ 6 60000 in steps
of 2000 and all four mechanisms were evaluated. For our agprothe template size
is determined automatically using the algorithms desdriimeSection3.4.4 The x-axis

in the graphs shows the array dimension in number of eleméFte y-axis shows the
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transformation time in seconds. We were unable to run langeeriments due to the limited
amount of disk space available on the local disks (aroundB§0G

In transforming the set-of-rows bricks into a set-of-cohgricks, the target directed
method performs significantly worse than other approachiess. is because the data to be
read in to memory is not contiguous on disk. The DRA reads tireeblocks of data to
‘collect’ the data into the global array. This leads to siguaint increase in cost. Due to this
obvious trend, this approach was evaluated with only aegample array dimensions. The
source directed approach performs better, as DRA implemtientallows writes of partial
blocks, if it is contiguous on disk. Though the unit of wrigesmall, it still performs better
than the target directed approach. With larger array dimessboth the source directed
and basic (square) approach increase in cost.

Our implementation performs better than the alternativBlse relative performance
benefit of our new approach increases with the size of the.aftastarts with a single-
pass solution and then uses a two-pass solution for arraysdimnensions larger than
32000. But the execution time increases gradually and igiradtically affected by the
exact problem instance at hand. Unlike the other three agpes, our implementation
performs comparably for both the transformations evatliate

The parallel implementation was evaluated on an Itaniunu&tet at the Ohio Super-
computer Center (OSC)(ia64-osc) and the Mpp2 cluster aiiblecular Sciences Com-
puting Facility in the Pacific Northwest National Laboragt¢PNNL) (ia64-pnl). The con-
figuration of the systems is shown in Talde3. Initially the data is stored in row-major
order on disk. We varied the data access pattern and meatsuesdcosts. Thekewed
access coswas first measured for each access pattern. The skewed aost$s the cost

of accessing all the elements in the array using the speatiedss pattern, with the data
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ia64-osc ia64-pnl

Processor Dual Itanium 2 (900 MHz) Dual Itanium 2 (1.5 GHz)
Memory 4GB 8GB

Local disk 80GB 430 GB
Interconnect Myrinet 2000 Quadrics
Messaging Layer GM Elan-4

Table 3.8: Configuration of systems on which matrix reblagkivas evaluated

stored in row-major layout. The skew refers to thisalignmenbetween the access pattern
and the layout of data on disk.

We then measured the cost of transforming the data layouatomthe access pattern.
This is referred to as theonversion costFinally, the cost of accessing the elements in the
transformed array is measured. The access pattern is nigvefigihed with the data layout
and this cost if referred to as the thkgned access cost

Table 3.9 shows the costs for a 3276832768 array of doubles on ia64-osc. The
costs were measured on one and two nodes, where one proeessosed per node. The
costs for a 65536 65536 array on four nodes is shown in TaBl&Q The results for
1, 2 and 4 processors (one per node) on ia64-pnl for a 65%HH36 array is shown in
Tables3.11and3.12 Each row in these tables represents a different accesspaging
evaluated. The array is accessed in row-major order in whitsse size/shape is specified.
With P processors, each access corresponds to a rdaduath blocks. The size of a block
for all the access patterns was 1MB, the size internally ehdsy DRA for a brick.

It can be observed that when the access pattern is closghealiwith the data layout
on disk, the skewed access cost is higher than the alignedsicost, but not high enough

to warrant layout transformation. If the transformed amagds to be accessed multiple
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Access and transformation cost (seconds)

Access Pattern #procs =1 #procs = 2
Row Column Skewed Conv. Aligned Skewed Conv. Aligned
(#els) (#els) access cost access access cost access
4 32768 176 359 172 97 241 90
8 16384 179 343 178 88 191 88
16 8192 182 345 175 91 173 91
32 4096 196 357 180 105 188 92
64 2048 249 368 181 129 190 93
128 1024 340 372 179 172 202 94
256 512 517 371 183 266 173 93
512 256 861 372 181 434 165 92
1024 128 1580 377 183 749 163 94
2048 64 2994 384 184 1393 167 93
4096 32 5760 373 180 2697 170 95

Table 3.9: Access and transformation cost (in seconds) 3@7&8x 32768 array stored in
row-major order on ia64-0sc

Access Pattern

Access and transformation cost

(seconds) (#procs=4)

Row Column Skewed Conv. Aligned
(#els) (#els) access  cost access
8 16384 207 733 212
16 8192 238 644 229
32 4096 300 743 230
64 2048 419 723 230
128 1024 650 623 230
256 512 1110 538 230
512 256 2030 466 230

Table 3.10: Access and transformation cost (in seconds) 65536x 65536 array stored

in row-major order on ia64-osc
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Access Pattern

Access and transformation cost (seconds)

#procs =1

#procs = 2

Row Column

Skewed Conv. Aligned Skewed Conv. Aligned

(#els) (#els) access cost access access cost  access

8 16384 155 370 221 137 249 71

16 8192 209 420 229 177 224 72
32 4096 298 428 292 321 241 69
64 2048 436 423 298 521 265 71
128 1024 734 469 304 973 287 68
256 512 1315 453 307 1938 252 71
512 256 2473 446 316 3648 276 64

Table 3.11: Access and transformation cost (in seconds) 65536x 65536 array stored
in row-major order on ia64-pnl for #procs=1 and #procs=2

Access Pattern

Access and transformation cost
(seconds) #procs =4

Row Column Skewed Conversion Aligned
(#els) (#els)  access cost access
8 16384 54 186 49

16 8192 83 138 63
32 4096 95 133 54
64 2048 129 116 58
128 1024 194 128 62
256 512 322 144 54
512 256 579 149 56

Table 3.12: Access and transformation cost (in seconds) 65536x 65536 array stored
in row-major order on ia64-pnl for #procs=4
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times, then the layout transformation cost might be amextizy the lower aligned access
cost. As the skew increases, the skewed access cost getghsashio warrant a layout
transformation even if the array is to be accessed just ofteethe transformation. As
expected, the aligned access cost is similar for all bloz&ssi The layout transformation
cost does not vary significantly with the transformatiorf@ened. Since I/O is performed
in units of an efficient block size determined by DRA, the l/&@tdoes not vary between
transformations unless the number of passes varies. Wevelibat all the transformations

were performed in one pass.

3.5 Related Work

We have used disk 1/0 volume, coupled with appropriate diGkthresholds to opti-
mize out-of-core matrix transposition and reblocking. Tatber models for disk I/O have
been employed in optimizing out-of-core algorithms. Oftka startup time to satisfy is
disk I/O request is assumed to dominate the total disk I/@. dds cost of an out-of-core
algorithm is thus measured in terms of the number of I/O dpmra[37, 57]. In the parallel
disk model (PDM) [17], the data is assumed to be organized in terms of blocks. d$te ¢
of an out-of-core algorithm is measured in terms of the nurobblock moves. Several al-
gorithms for sorting and permutation have been proposegdbas this model, which have
been extended to provide bounds on the number of I/O opestar out-of-core matrix
transposition 117, 37]. This model is similar to our cost model, but we focus on tiekd
I/0 volume by allowing the violation of the threshold if itraeduce the number of passes.
Schlosser et al.l[01] make the interesting observation that multi-dimensiateh can be
efficiently stored and accessed in current hard disks duleetdrénds in storage technol-

ogy. They use this observation to derive a strategy to mag lolacks to the linear disk
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address103. This insight can be used to further optimize out-of-com@mx transposition
when the layout of the array on disk can be controlled by theiegtion. For more general
data layouts, such accurate modeling might not be possible.

We are not aware of any work that minimizes disk 1/0 volumesiblocking arbitrarily

blocked multi-dimensional matrices.

3.6 Conclusion

We addressed the efficient transposition of matrices theat@r large to fit in main
memory. We formulated the out-of-core matrix transpogifiooblem as an index permu-
tation on the addresses of matrix elements and inferredftbet ®f various components
of the formulation on the I/O time and in-memory permutatione. We discussed the
drawbacks of previously proposed algorithms and used érafiyr derived 1/O character-
istics of the system to guide the development of our algoritive devised an algorithm by
choosing the design parameters that minimize the timeweebin the 1/0 and in-memory
permutation phases of the algorithm. Thus we improved theabvtransposition time,
rather than reducing the number of I/O operations, as pusvadgorithms have done. We
subsequently proposed an approach to efficient transfaomat the blocked layout of
multidimensional disk-resident arrays. The number of @ass the layout transformation
is determined based on the specific transformation, suc¢hhbaoverall /O cost is mini-
mized. The proposed approach was implemented as a new domyiye within the DRA

I/O library.
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CHAPTER 4

COMPUTATION MAPPING AND SCHEDULING

4.1 Introduction

Optimizing parallel programs requires effective co-oedian of data movement be-
tween the different levels of the memory hierarchy. The cotaton is scheduled such
that the total data movement cost is minimized while maxingparallelism. In this chap-
ter, we present an approach to automatic management of aatment and scheduling
of computation for programs. The data is assumed to be lliséd in a global address
space in the physical memory or secondary storage asseidtethe processors. To im-
prove productivity, the framework presents the user wittomgutation abstraction that
allows the expression of locality and parallelism in the pomation, organized as a set of
independent tasks. This abstraction operates on spedifictitactures that present data of
sufficient granularity for efficient disk 1/0O and communiicet. Here, we demonstrate the
approach to automatic memory hierarchy management usiaff{sijparse arrays that arise
in quantum chemistry calculations such as Coupled Clusé¢hoads B1].

The computation is organized as a set of independent taskatopy on such glob-
ally addressable data. Given such a specification, we enplpgrgraph partitioning to

schedule the computation and the data movement. When thasddistributed amongst
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the physical memories of processors, we partition the caatioumn amongst the processors
while taking the data distribution into account. In the cateut-of-core data structures,
we employ hypergraph partitioning to schedule the comprtahto stages so that each
stage can be computed by reading/writing the relevant dewaents exactly once. A novel
partitioning scheme is proposed to reduce memory consomptithin a stage, thus in-
creasing the number of tasks that can be processed withage, giotentially reducing the

disk 1/0 cost incurred.

4.2 Tensor Contraction Engine

One of the primary motivations for the development of nevaddistractions different
has been the quantum chemistry models such as Coupled iOhusteods $1]. Tensor
Contraction Engine (TCE)I[L, 27] synthesis system is a domain-specific compiler for ex-
pressing ab initio quantum chemistry models. The TCE takdasput a high-level speci-
fication of a computation, expressed as a set of tensor @ianeexpressions, and trans-
forms it into efficient parallel code. Several compile-tim@gimizations are incorporated
into the TCE: algebraic transformations to minimize ogeratounts [ 3, 74], loop fusion
to reduce memory requirement&)] 72, 71], space-time trade-off optimizatio2 ], com-
munication minimization6], and data locality optimizatior?[/, 28] of memory-to-cache
traffic.

Each tensor contraction expression is comprised of a ¢mleof multi-dimensional
summations of products of several block-sparse input arr@gnsider the following tensor

contraction from the domain of quantum chemistry:

pl,p2,p3:0
h1,h2,h3:V
i0[pl, p2,h1,h2] += —t[pl, p3,h1,h3]*xi1[h3, p2,h2, p3]
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where indice$3 andh3 are contracted out. Heis the number of occupied orbitals, and
V is the number of virtual orbital€D andV are divided into segments. This segmenting of
the dimensions forms a cartesian grid that divides the rdirttiensional array into blocks.
An operation on the indices of the segments that form a blatkrdhines if that block

is non-zero. The sizes @ andV are such that the arrays are too large into fit into the
collective physical memory of a parallel system. The areagsusually stored on the local
disks attached to the compute nodes in a cluster, to achteNaide 1/0.

Despite being a variant of matrix-matrix multiplicatiofet block-sparsity in tensor
contractions leads to irregular data access patternsrhapaeasily tractable. In addition,
the difficulty in determining an accurate closed form sa@uatio the size of non-zero data
within a tile makes the use of standard out-of-core densexmatltiplication algorithms
a non-trivial task. The wide variation in the sizes of the1z@no blocks, together with the
accompanying variation in the data access pattern, makessie¢ tile-size selection that
minimizes the total disk 1/0O cost a challenging task.

Given such a computation consisting of a set of independskst with each data brick
potentially accessed by more than one task, our objectigedstermine a schedule for the
movement of data bricks between disk and memory, and theepsotg of the tasks, such

that the computation is load-balanced and the total dateement cost is minimized.

4.3 Abstraction for Block-Sparse Matrices

In this section we detail our data abstraction for blockrspanatrices. The abstraction
is shown in Algorithm4.1. For brevity, we use a pseudo-code notation; the actual API

is implemented in C/C++. The data abstraction providesectite functions for creating
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cNORONR

Types::
Bsalndex
BsaObject

Function Parameters::
BsaObiject obj
Bsalndex ind

int ndim

int nblocks[ndim]

: int blocks[ndim][nblocks]
- int brick[ndim]

: void *bmap

: Fn.tisNonZero

: int *brick

. int *brickindex[ndim]

: void *buf

:intdim

: Functions::
: Bsalndex bsaCreatelndex(ndim, nblocks, blocks, isNomAmick)
: Bsalndex bsaCreatelndex(ndim, nblocks, blocks, bmagk)ori

: BsaObject bsaCreateArray(ind)

: void bsaGetBrick(obj, brickindex, buf)

: void bsaPutBrick(obj, brickindex, buf)

: void bsaUpdateBrick(obj, brickindex, buf)
: bool bsalsBrickNonZero(obj, brickindex)
: int bsaGetNBricksAlongDim(obj, dim)

: void bsaDestroyArray(obj)

: void bsaDestroylndex(ind)

> Index to block-sparse array
> Block-sparse array object

> Handle to block-sparse array
> Handle to index to the array
> Number of dims of the array
> Num blocks along each dimension
> The size of each block segment
> Brick size along each dimension
> Bitmap specifying non-zero blocks

> Function. Inputs: block indices; Output: true if non-zetodk

> Size of brick along each dim
> Index of a brick
> Local buffer

> Dimension referenced

> Create index — collective
> Create block-sparse array — collective
> Retrieve a brick — one-sided

> Store a brick — one-sided

> Atomically update a brick — one-sided
> Is a brick is non-zero — one-sided

> Enquire #bricks along a dimenion

> Destroy block-sparse array

> Destroy index

Algorithm 4.1: Abstraction for multi-dimensional bloclkarse arrays

and destroying arrays and non-collective functions topgetdata from/to the distributed

block-sparse array.

A brick size is specified while creating a block-sparse arraiternatively, the user

can specify the typical access pattern, to provide hintdherchoice of appropriate brick

sizes. The non-zero blocks of the array are divided intokriaf this size, which are

then distributed amongst the processors in a round-roBimda. This ensures a uniform
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distribution of the data among all processors. A small bsicle allows for a more uniform
distribution of the data amongst the processors. On the btrel, a large brick size allows
for coarse-grained, and possibly more efficient, compartedind potential reduction in the
communication cost, due to amortization of the communiceitency.

The process of creating an array is divided into two stepse ifitlex is created first,
using functionbsaCr eat el ndex from Algorithm 4.1. This involves traversing the bricks
in the array, and determining the distribution of the norez®icks amongst the processes.
The array is then created through functizsaCr eat eAr r ay using this index. The decou-
pling of the creation of the index from the actual array doeasimplifies the construction
of multiple aligned arrays using the same index structunecomputations with dynamic
allocation and deallocation of memory, the index can be edegonce, while the actual
memory for the array is dynamically managed.

The arrays can be created by specifying the number of dimmessihe number of
blocks, and the actual block sizes. In addition, a bitmapbeaprovided to specify whether
ablockis zero. Alternatively, the programmer can provifigetion that takes as argument

the block indices and returns whether it is zero.

4.4 Computation Abstraction: Task Pool

The task-pool abstraction shown in Algorithfr2 enables the specification of a set of
independent tasks to be executed in parallel. For each schlsprocesses collectively
create alaskPool object using thd pCreat eTaskPool function. All tasks in the task
pool take the same number of locality elements as argumé&hesaccess modes for these

locality elements can be specified as argument when cretitentask pool as well. Three
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access modes are supported: read, write, and accumulatgsanodes allow for put, get,
and accumulate of global data, respectively.

Each task in the task pool is identified by the routine to belked to process that task
(accessed through a function handle) and the sébazlity elementst operates on. In
addition, any private data specific to that task can also beisgd. Each locality element
corresponds to a global data brick, identified by the thekbndex, associated with the
block-sparse array specified while creating the task pool.

The access mode determines the memory allocation and coirettion schemes. Each
locality element markedCCESS_READ is fetched into a local buffer before starting the
computation. It might also be cached for future referenéew. locality elements marked
ACCESS WRI TE or ACCESS_UPDATE involve communication after completion of the task.
The computation partitioning and the mapping strategyrdetee if these locality elements
can be cached. The routine specified by the user to procesaské¢akes as input local
buffers containing the relevant data. The framework isaasible for handling the data
movement and providing these buffers to the user’s routine.

Tasks are added to a task pool usingtthaddTask function. The creation and addition
of tasks to the task pool is done by all the processes, in &catptl fashion. Once all the
tasks have been added to the task piogbeal is used tasealthe work pool. This function
is invoked once for a task pool and is used to perform staré-thptimizations.

Subsequently, all the processes collectively invbpRr ocess to process the tasks in
the task pool. A task pool, once created, can be processdiplaudimes. The cost of
start-time optimizations, performed once, are thus armexti

The work-sharing construct is illustrated using an implatagon of block-sparse ma-

trix multiply, shown in Algorithm4.3. The multiplication is of the form
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1: Types::
2: TaskPool > Handle to task pool
3: Fnt > Function to process a task
4: Localitylnfo > Locality information
5: PrivateData > Local information for a task
6: AccessMode > Mode of access to arguments of each task
7: BsaObject > Block-sparse array object
8:
9: Function Parameters::

10: TaskPool tpHandle > Task pool

=
=

: Frit fn

> Processing function

12: Integer nLoclInfo > #locality elements
13: Localitylnfo *locs > Locality elements
14: PrivateData *pvt > Local data
15: AccessMode *modes > Access mode for each locality element
16: BsaObject *objs > Block-sparse arrays operated on
17:

18: Functions::

19: TaskPool tpCreateTaskPool(objs, modes) > Create task pool
20: void tpAddTask(tpHandle, fn, nLoclInfo, locs, pvt) > Add task
21: void tpSeal(tpHandle) > Seal task pool
22: void tpProcess(tpHandle) > Process task pool

Algorithm 4.2: Task pool abstraction

Cli, j]+ = Ali, k] * Bk, j]

The brick sizes along the different dimensions are assumdée tdefined elsewhere.
ParameterdsaA, bsaB, andbsaC correspond to block-sparse arraysB, andC, respec-
tively.

Algorithm 4.3shows routin@®r i ckMat mul used to process an individual task, a matrix-
matrix multiplication involving a brick from each of the agrs. Note that no explicit com-
munication is involved. The routine assumes that all iniadire read into local memory
and all output data are written/accumulated into global wmAlgorithm4.3also shows
the implementation of parallel matrix multiplication ugithis routine.
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4.5 Hypergraph Partitioning Problem

A hypergraph is a generalization of an undirected graph iickvan edge, referred
to as anet can connect more than two vertices. The hypergraph panitityy problem is
concerned with dividing a hypergraph into a sePadub-hypergraphs, for a givéh such
that the cost of interconnection between the parts is mzechi The cost is influenced by
the nets shared between more than one part, with a varietgwifan defined on them. The
principal idea behind the definition of the objective funatis to minimize the costincurred
by assigning related entities, represented by verticesexiad by a net, to distinct parts. In
the rest of the section, we shall present a formal descntidhe hypergraph partitioning
problem and define relevant cost metrics.

A hypergraptH = (V,N) is defined as a set of verticésand a set of nets (hyper-edges)
N among those vertices. Each mgtc N is a set of vertices frorv. Weights () and
costs €j) can be assigned to the vertices € V) and edgesn; € N) of the hypergraph,
respectively.lM = {V1,Va,...,Vp} is aP-way partition ofH if (1) each partV; is a non-
empty subset 0¥, (2) the parts are pairwise disjoint, and (3) union of Fhparts is equal

toV. A partition is said to beertex-weight-balanced
Wp <Wayg(l+e)forl<p<P

whereW, = 3 .oy, Wi is the sum of the vertex weights of paf§, Wavg = (Y yev Wi)/P is
the weight of each part under the perfect load balance dond#énde is a predetermined
maximum imbalance ratio allowed.

In a partitionl of H, a net that has at least one vertex in a part is said to conmaict t

part. TheconnectivityAj of a netn; denotes the number of parts connectechpyA net
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n; is said to be autif it connects more than one part (i.a,;, > 1). The cut nets are also
referred to as external nets, and their set is denotedt:by

A P-way partitionl of H can also be viewed as inducifg+ 1)-way net partitioning,
with P internal net sets and one external netigetthat is,l 1 = {N1,Np,...,Np,Ng}. Here
for all internal netsn; € Np, all the vertices of those nets belong to the same part, i.e.,
nj C Vp for 1 < p < P. Similarly to a vertex-weight-balance partition, a pastitis said to
be net-cost-balanced

Cp<Cayg(l+g)forl<p<P

whereCp = 3 1, e, Cj is the sum of the internal net costs of pprandCavg= (3 njen-—ne Cj) /P
denotes the average internal net cost under the perfecblladce condition.
There are various ways of defining the cut-siZél) of a partitionl [76]. The two

relevant ones for our context are cut-net and connectivityefined as follows:
x(M) = % Cj (4.1)
njeNg

x(M) = ZV cj(Aj—1) (4.2)
NjeNg

With the cut-net metric4.1), each cut neh; contributes its cost to the cut, whereas
with the connectivity-1 metric4.2), each cut neh; contributescj(Aj — 1) to the cut-size.
The hypergraph partitioning problem can be defined as thedfadividing a hypergraph
into two or more parts such that the cut-size is minimized|ewh given balance criterion
either among the part weights or net costs is maintainedorilgns based on the multi-
level paradigm, such as hMETISH] and PaToH {15, have been shown to compute good

partitions quickly for this NP-hard problem.
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4.6 Optimizing Computations on In-Memory Data

4.6.1 Problem Definition

A computation is to be performed on globally addressabla.d&te data is partitioned
into non-overlapping regions and is distributed acrossrtemories of the processors, such
that each region is assigned to one and only one processecorhputation is expressible
as a set of independent tasks. Each task takes as input a detaofegions and reads,
writes, and/or updates (accumulates) one or more datanggibhe computation cost of
each task is also provided.

Note that each task can be executed on any processor. Thalatauegions associated
with the task are brought into local memory and the task is@esl. The output data are
then written/accumulated into the global regions. If a taséxecuted on a processor that
contains the data regions required by it, no communicas@aquired. In addition, if a set
of tasks that require the same data regions are co-locateghincessor, communication
cost can be significantly reduced by reusing the read-orily @leross tasks.

We assume that we have enough memory to store all the datimagdpy all the tasks.
Thus, given a set of tasks assigned to a processor, the awfaxorthmunication performed
by that processor is equal to the total size of all the distiata regions accessed by the set
of tasks assigned to it.

The objective is to partition the set of tasks among the alel processors such that
the amount of communication required is minimized, whileintaning the balance of

computational load amongst the processors.
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4.6.2 Communication Minimization: Locality-Aware Load-balancing

We model the problem of locality-aware load-balancing ayergraph partitioning
problem. Each data region and task in the computation hasrespmnding vertex in the
hypergraph. A netis introduced in the hypergraph for evatg degion in the computation.
For each data region, the corresponding net connects thieegecorresponding to it and
the tasks that access it. The weight associated with eacis tle¢ communication cost
associated with the data region. We model it to be the sizbefiita region. The cost
of a vertex is zero if it corresponds to a data region, andastimber of operations to be
executed if it corresponds to a task.

We can evaluate the hypergraph thus constructed in two wagan be used to deter-
mine the assignment of both the tasks and data regions tegsors. If the data regions
are pre-distributed and cannot be remapped, the disibwii the data regions amongst
the processors can be pre-specified by constraining eaahrelgibpn to be on a specific
processor. The hypergraph is then partitioned to deterthmenapping of the tasks to the
processors. Given a partition, the cost incurred by a ndiassize of the corresponding
data region times the number of remote processors that le@redssigned at least one task
that accesses this region. The total cost of all the netsendiy the connectivity metric,

shown in equatiod.2.
4.6.3 Experimental Evaluation

We evaluated the primitives by comparing them with altewestchemes on the Colony2a
system in Pacific Northwest National Laboratory. Itis a ttyeiour node cluster with each
node being a dual 1GHz Itanium-2 with 6GB memory. We used ifiaiband network

available on the cluster for our experiments.

107



Three alternative load-balancing schemes were implerdeotecomparison. In the
first scheme, henceforth referred to as Rendomscheme, each processor traverses the
entire list of tasks in the same order. For each task in thettsal, each processor gener-
ates a pseudo-random number between ORwrd., whereP is the number of processors.

If the random number generated is the processor’s rank, rtieegsor executes that task.
Since all the processors start with the same random seedalhgenerate the same se-
guence of pseudo-random numbers. This ensures that eadh e&a®cuted by exactly one

process. The randomization results in a uniform distrdoutf the number and sizes tasks
to processors. Note that this scheme balances the numbesksf and not task execution
times. In addition, locality is not taken into account.

In the second scheme, one of the locality elements in eakhgasarked. Each task is
executed by the process that “owns” the marked locality efgnm that task. This scheme
is referred to as th®wnerscheme. This scheme ensures locality for the array used to de
termine the ownership. Though the round-robin distribugasures a reasonably balanced
distribution of the data and hence the ownership, compurtatiload is not guaranteed to
be balanced.

The third scheme is based on dynamic load balancing. In thisree, referred to as
NextTaskall the processes enumerates the tasks to be executedsantigeorder. A global
shared counter is used to determine the next task to be exeddach process, when idle,
performs an atomitetch-and-adaf the global shared counter. The value obtained by the
process specifies the next task to be executed by it. All geEsecontinue this procedure
until the counter exceeds the number of tasks to be procesbed strictly increasing

counter ensures that no task is executed more than oncesolkaéps all the processes
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busy, till there are no more tasks to be executed. This essome balancing. But locality
is not taken into account.

Note that this scheme is similar to self-scheduling in OpBri¥]. This is also the typ-
ical model of parallelization used in many applications)uiding some quantum chemistry
codes {9].

Execution times of the following tensor contraction expgres, typical of those en-

countered in quantum chemistry, were measured:
a,b,c.d:O
iV
Cla,b,c,d] = Ala,b,i] «B]i,c,d]

whereO andV correspond to the number of occupied and virtual orbitelspectively.
They are divided into a number of symmetry segments, in tivididg the matrix into a
set of blocks. For example, @ is divided into four symmetry segments, ar@ywould
consist of 64 blocks. A block of a matrix is non-zero if a fupatof its block segment
indices is equal to the symmetry value associated with theixndypically, the function
is an exclusive OR operator and the symmetry of a matrix is.Z€he tensor contraction
is, in effect, a block-sparse matrix multiply. The indicesresdivided into four symmetry
segments. Th@® index was set at 160 with four symmetry segments of lengt18020,
and 20, respectively. The valueVfwas varied to be a multipleof O, with k varying from
1 to 16. The number of processors was varied from 2 to 32.

The execution times are shown in Figutd. The three alternative schemes, labeled
Random Owner, andNextTask and our approach, labelgdur, are shown. For our ap-
proach the cost is shown including and excluding the ovetloéaypergraph partitioning.

For smaller numbers of processors, the communication cwkttee hypergraph par-

titioning overhead are not significant. Hence, the diffeeein the performance of the
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various schemes is minimal. Increase in the number of psocssncreases the communi-
cation cost. Our scheme, being locality-aware, perforrogeimsingly better than the other
schemes. The NextTask scheme, which completely ignorabtiggerforms progressively

worse. The Owner scheme ensures locality for at least oneedadirays, thus performing

better. The Random scheme, performs better than the NéxéifsOwner schemes, due
to the benefits of randomization.

The cost of hypergraph partitioning increases the cost ofl@ad-balancing mecha-
nism. Though the overhead increases with increase in thé&euofi processors, our mech-
anism still performs better, even when partitioning overhis taken into account. Note that
in typical applications, the partitioning overhead is atizedd over multiple processings of
the same task pool.

The speedups obtained by the different scheme ¥atue being 8 and 16, are shown
in Figure4.2. The sequential execution times were determined for thexd®em sizes, and
are shown in the figure. Our approach achieves a speed-uptof2(pon 32 processors,

excluding partitioning cost. Note that we employ blockimmgrenunication.

4.7 Optimizing Computations on out-of-core data

In this section, we present a novel application of hypergnagrtitioning to automat-
ically determine the computation and 1/0O schedule. We b&gth a definition of the
problem and a discussion on the limitations of a direct aailbn of the hypergraph par-
titioning model. We then present an alternative formulatioat better solves our problem

of interest.
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4.7.1 Problem Definition

We are given a computation consisting of a set of indepentdesks, with each task
accessing a set of data elements. The data elements ar@ntaeg storage and each data
element is potentially accessed by more than one task.

The objective is to determine a computation schedule, so asrtimize the total disk
I/O cost. The schedule for a computation consists of a segueanstructed from the

following five operations:

Read Read a brick into physical memory
Write Write a brick to disk

Allocate Allocate memory for a brick
Deallocate Free memory allocated to a brick

Compute Process a task
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Note that buffers for all bricks need to be allocated andltesated, whereas disk 1/0
schedule is to be determined only for the input and outpakbriThe schedule is required
to ensure that at any point in the processing of the taskdptabmemory allocated to the
data bricks is less than the memory available. In the casepafallel system, the global

memory available is the constraint imposed on the I/O sdeedu
4.7.2 Disk I/0O Minimization: One-Level Partitioning

In this section, we describe a direct application of hypeprpartitioning to the disk
I/O minimization problem. The construction of the hypemras described, followed by
the partitioning procedure to derive a valid computatiod H® schedule.

A task-brickhypergraph is constructed from the set of tasks and the sdtafbricks
accessed by them. For each task and data brick, a vertex aetis added to the hy-
pergraph, respectively. For each data brick, a net is aactsil that connects the vertices
corresponding to the tasks that access that brick. The ssstited with the net corre-
sponds to the data movement cost associated with the dasponding brick. We model
this cost to be the size of the brick. The weight associatéid @ach vertex is proportional
to the computation cost associated with the correspondisky tin the evaluation of our
scheme, this is specified to be number of operations involved

Common applications of hypergraph partitioning deal widligbielization, and hence
have a pre-specified number of parts into which the hypelgnaeds to be partitioned. We
are interested in partitioning the computation into stasyes$ that the memory requirement

at any point in the computation does not exceed the memoirlabiea
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We model this problem using hypergraph partitioning togetkith the memory usage
constraint. We recursively partition the given hypergragib two stages when the compu-
tation represented by it cannot be executed without viadgtine memory constraint. The
memory usage of a part is determined as the sum of weight$ métalincident or internal
to the corresponding sub-hypergraph. We shall refer to dh&tien thus obtained as the
one-level partition.

Figure4.3illustrates a one-level partition of a task-brick hypepiraThe computation
involves nine tasks and six data elements. The figure shasveatks as squares and the
data elements as nets (set of edges connected by circlégatAlelements are assumed to
be of the same size. Let the memory in the system be large artouwld three data ele-
ments. The patrtitioning of the hypergraph into three stagescated by the three enclosing
rectangles, is shown. Each partition requires three dataesits to complete processing.
Two of the nets, labeled; andn,, are cut-nets and are accessed in more than one stage.
For each cut-net, dummy vertices are introduced in eacltiparon which it is incident, to
represent its contribution to the memory cost of that partit The total I/O cost is 9 data
elements, the number of data elements within each part ipattéion.

Given such a partition, the computation schedule is showktgarithm 4.4. The sched-
ule corresponds to reading all input bricks relevant to & gamputing the relevant tasks
and writing out any output bricks back to disk. In a paraligtem the processing of tasks
is done using a simple load-balancing mechanism in which &#e process chooses the
next task to execute from an total order of all tasks to beweeldn the current stage. There
is no reuse of data across the different stages. Thus, atredue the number of stages
is generally beneficial. The algorithm also shows the sclesdor memory allocation and

deallocation.
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Figure 4.3: lllustration of one-level partitioning

4.7.3 Read-Once Partitioning

The above approach is simplistic in the measurement of tmeanecost for each stage.
It ignores the potential for reuse across the stages. Irtiaddthe reuse is determined to
be between all the tasks in a given stage. While hypergraghipaing improves the data
reuse within a stage, the available memory can be bettézadiby further investigating
the reuse relationships between the tasks in a stage. Thikslwaoable the scheduling of
computation and disk 1/0 so that only a subset of the dataesiésnn a given stage need to
be allocated memory at any moment. This improves the mentdization and potentially
reduces the disk I/O cost.

We present an alternative use of hypergraph partitioniag alchieves this. We shall

refer to such a partitioning asad-once partitioning
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A read-once patrtition is a partition of a task-brick hypemr such that the sum of
the sizes of the cut-nets, corresponding to data brickssaedein more than one part, and
the size of data uniquely accessed in any part does not exceedailable memory. This
partition induces a schedule in which the processing oftes@rganized into steps, one for
each part in the partition. The processing is preceded byngall data elements accessed
by more than one step, referred to as shared bricks, into myeBach step is processed by
first allocating memory for data elements local to that steg gerforming the necessary
disk I/0. The tasks in the current step are then processethanapdated bricks local to
this step are written back to disk. The memory allocated lierlocal bricks are finally
reclaimed. The procedure is then repeated for the next afiggr. processing all the steps,
any updated shared bricks are written to disk. The comuutatthedule for a read-once
partition is shown in Algorithna.5.

Thus a set of tasks, while requiring data elements thatbegeannot fit in the memory
available, can potentially be scheduled to be processe) tise available memory. By
keeping all cut-nets in memory throughout the computatiotne given set of tasks, this
approach also avoids redundant I/O for any accessed dataeie

The scheme uses a pessimistic upper-bound in its calculatitie memory cost due to
the allocation of all cut-nets at once, even though a cutmeght be used only much later.
Despite this apparent inaccuracy, this scheme significanfiroves memory utilization by
deallocating nets internal to a step once they are usedattoyging more related tasks to
be processed within a stage.

Note that the number of parts (steps) in a read-once parigimot significant, as in-
creasing the number of parts does not increase the disk 0 &ut choosing an arbi-

trarily large number of parts can distribute related tasksteasing the total size of the
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cut-nets, thus making a read-once partition infeasible. c@ose a simple scheme of a
linear search for the number of parts, starting from two. &ach choice of the number
of parts, a net-cost-balanced hypergraph partitioning waitt-net metric is computed, and
the result is checked to be a feasible read-once partitiendutsize+ C, < memorylimit
for 1 < p < P). Ifitis not, we continue the search for a read-once partitly increasing
the number of parts. In the current implementation, we litiné number of parts being

searched to be less than 128, which we found to be sufficieartig in practice.
4.7.4 Integrated Approach: Two-Level Partitioning

The integrated algorithmlwoLevel , is shown in Algorithm4.6. It returns a set of
ordered pairs, each pair specifying the set of tasks in tagesand the computation sched-
ule obtained using read-once partitioning. If a read-oranitpon exists that satisfies the
memory constraint, using the proced®esadOnce, the set of tasks together with the com-
putation schedule is returned. If not, the algorithm prdseeecursively by partitioning
the set of tasks to balance the net-weights, usingwh®&al ancePartiti on routine, and
solving the two parts independently and combining the tesul

The outer-level partitioning scheme is identical to thaadug one-level partitioning.
They differ primarily in mechanism used to decide whethea# (sub-hypergraph) needs
to be further partitioned.

Figure4.4shows a possible partitioning of the same computation agyur&4.3using
the two-level approach. The stages in the computationgspanding to the parts in the
outer-level partition are indicated by enclosing rectasglEnclosing circles are used to
show the parts in the read-once partitions within each staggtsn; andn, are the cut-

nets, similar to the partition determined in Figur&. Two of the stages produced by the

117



Figure 4.4: lllustration of two-level partitioning

one-level partitioning approach now form the two steps @adronce partition in a single
stage. Nen; is a cut-net for that read-once partition and is retained @mmory through
the processing of both the steps in the stage. This is iretiday the single representative
vertex forn; in that stage being shared by both the steps. The memoryraoriss still
satisfied as the memory usage does not exceed the size otiiteeelements at any point.
The total disk 1/0 cost for this partitioning is equal to theesof eight data elements, as
compared to nine for the partitioning in Figutes.

Note that the illustration shows only one possible partitig and there maybe many
equivalent partitions. Also, unlike in the illustratiomet partitions produced by the two-
level partitioning approach need not, in general, corredpo any one-level partitioning

that is the best possible for the given hypergraph.
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Definition 2. A valid part in a one-level partition is defined as a sub-hgpaph of the
task-brick hypergraph such that the sum of weights of itglemt and internal nets does

not exceed the memory available.

Lemma 1. A valid part p in a one-level partition corresponds to a telread-once parti-

tion.

Proof. Sincep is a valid part in a one-level partition, the sum of nets ased<dy the cor-
responding sub-hypergraph satisfies the memory constfaivin such a sub-hypergraph,
the read-once partitioning algorithm can construct adtivead-once partition with only
one part. All nets accessed in that partition are global ¢éorélad-once partition, with no

nets being local to the only part. O

Lemma 2. Barring the termination condition, both the algorithmsrothe same recursive

bisection trees.

Proof. Both use the same partitioning algorithm to divide a hypspbrinto two sub-
hypergraphs. Since both procedures recursively paritigimen hypergraph into two parts,
they form identical recursion trees in which each node epwads to a hypergraph that is

partitioned into its children. O

Lemma 3. The sub-hypergraphs encountered in the recursive proeeidurthe two-level
partition are a subset of the sub-hypergraphs encounterdtie recursive procedure for

the one-level patrtition.

Proof. From Lemma2, the recursion trees of both the algorithms are identicatjig the
termination condition. From LemmA when the one-level approach determines a valid

part and stops further partitioning, the two-level applodetermines a read-once partition

119



and stops as well. Note that the two-level partition mightedaine a sub-hypergraph
encountered in the recursion procedure to be a valid read-partition and stop further
refinement, while it might not be a valid part in a one-levattiian. This might lead to

further refinement being required in the one-level apprdhehn the two-level approach.

0

Theorem 1. The solution obtained by two-level partitioning is no wottsen that obtained

by one-level partitioning.

Proof. From Lemma3, only a subset of the recursion tree from the one-level apras
encountered in the two-level approach. Thus, there is noaratifferent partitioning in
the two-level scheme as compared to the one-level schenmee Snly partitioning can
increase the disk I/0O cost, the I/O cost for the two-levelrapph is no worse than that for

the one-level approach. O

4.7.5 Experimental Evaluation

In the experimental evaluation, we will focus on evaluating two-level partitioning
scheme. We evaluate our approach using the following Cduplaster Doubles (CCD)

[31] sub-calculation:

p3, p4, p5, p7 1V

h1,h2,h6,h8 : O

input-output arraysio,t,vl,v2

intermediate arraysil

i1[h6, p3,hl, p5]+= v1[h6, p3,hl, p5]

i1[h6, p3,hl, p5]+ = t[p3, p7,hl, h8] «v2[h6,h8, p5, p7]
i0[p3, p4,h1,h2] 4+ = t[p3, p5,h1, h6] «i1[h6, p4,h2, p5]

O is set to have four segments (40,40,20,20), ¥ni$ divided into the four segments
(100,100,60,60). The input/output arrays are assumed todated and passed as inputs

to the execution environment. The first operation inite¢izhe intermediate array. The
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subsequent arrays produce and consume the intermediageinitialization operation is
implemented in a data-parallel fashion with each procesaliaing the data bricks local
to it.

We evaluate our approach, henceforth also referred tdpgdraph by comparing it
with the approach taken in state-of-the-art quantum cheyprpackages such as NWChe#v].
In this scheme, the data elements, stored in a bricked famreplicated across the local
disks of the processors. A simple load-balancing schemsed to distribute the computa-
tion amongst the processors. Each process chooses thericiafithe output array to be
computed, in a linear ordering of the non-zero bricks, and@eds to process it by fetching
the required bricks from the input arrays and computing gl products. The compu-
tation is performed by transforming the data layouts to ensontiguity of the contracted
indices, following an invocation of DGEMM. The resultingtput brick is then written to
the replicated copy of the array on the local disk. Beforedigput array can be used as an
input in another tensor contraction, the local modificatitmthe replicated array need to be
reconciled This is essentially an accumulation operation in whiclpaltial contributions
to the individual bricks are added together in an operationia to MPI_AlIReduce. This
scheme was implemented using our data abstraction, withatdeiextensions to replicate
and reconciles disk arrays.

This alternative scheme is similar to tNextTaskscheme introduced in Secti@n6.3
and will be labeled as such. The inputs are assumed to beatgi while evaluated this
scheme. A reconcile operation is carried outibrbefore it is consumed to contribute to
i0. In addition, the output array) is reconciled at the end. All inputs are assumed to be
distributed while evaluating our scheme, and no cost isrieclin reconciling any of the

arrays.
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The memory limit for our scheme was set to 1 GB on each of theesys While
under-utilizing the memory increases the overall cost efdbmputation, the results show
efficient utilization of even a portion of the memory leadsignificant improvements. In
addition, the un-utilized memory can be used for optim@atisuch as a caching to further
reduce the communication cost. Note that utilizing theremtiemory for the computation
might degrade performance due to interference with theabioer of the operating system
and the disk buffer cache.

We evaluated the two schemes on the following three systems:

ia64-osc A cluster with dual Itanium-2 900MHz nodes, each with 4GB gibgl memory,
and 80GB local disk, and a Myrinet 2000 interface. GM is thdartying communi-

cation protocol.

ia64-pnl A cluster with dual 1GHz Itanium-2 nodes, each with 6GB pbgksimemory,

80GB hard drive and GM interconnection network.

p4-osc A cluster with each node containing two 2.4GHz Pentium 4 @ssors and 4GB

physical memory, 80GB local disk, and an Infiniband interemtion network.

The sub-calculation was evaluated on the three systemspygdhe number of nodes
between 1 and 8. Note that only one CPU in each node was dtilizall three clusters.

The average disk I/O costs per process for ia64-osc, iag4pd p4-osc are shown in
Figs.4.5 4.6, and 4.7, respectively. On ia64-osc and p4-osc, the effective atrhgon
of the data movement leads to a reduction in the disk I/O ogst & the sequential case.
The improvement over the alternative scheme increasesthétmumber of processors,
achieving a factor of 11 on p4-osc for 8 processors. We belies worsening disk 1/0 cost
for two processors for NextTask on ia64-osc is due to anecéffe task distribution that
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Figure 4.5: Average per-process I/O cost, in seconds, ghoa6

results in both processes accessing most of the data bvithie the data access pattern
increases the miss rate on the system buffer cache for disk I/

The sequential disk I/O cost of HpGraph is observed to be evtitan NextTask on
ia64-pnl. We believe this is due to the increased memoryteetesupports a larger system
buffer cache, resulting in an improved reuse for the altareapproach. But an increase in
the number of processors leads to performance trends simiflaose on the two systems.

The turnaround times are shown in Talld. In addition to improving the disk 1/0
cost, the turnaround times for HpGraph, including the costypergraph partitioning, are
consistently better than that for NextTask. On p4-osc fgheprocessors, HpGraph leads

to a 49% improvement over NextTask, with similar trends ol for other processes.
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Figure 4.8: Speed-ups for the out-of-core CCD sub-calmriat

Figure 4.8 shows the speed-ups, demonstrating the greater scajatiilidpGraph,
achieving close to linear speed-up. For HpGraph, while tBeclbost decreases with the
number of processors, the communication cost increasete tNat NextTask, which uses
replicated data, does not have any communication, excej¢ wdtonciling arrays. The
low communication times in p4-osc lead to the observed slipear speed-up. We intend
to investigate communication reduction mechanisms suavedap of computation and
communication to further improve the performance of HpGrap

The average percentage of total execution time spent peirigrDGEMM, the core
useful computation in the application, is shown in Figdre It shows the consistent high

efficiency achieved by HpGraph, despite the additional lveed of hypergraph partition-

ing.
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System  Scheme nprocs
1 2 4 8
ia64-osc NextTask 9710 5760 3403 2281
HpGraph 9244 5110 2408 1271
p4-osc NextTask 13717 7988 4562 2739
HpGraph 11700 5886 2899 1390
ia64-pnl NextTask 7928 4453 2731 1868
HpGraph 7564 4283 1968 1081

Table 4.1: Turnaround times, in seconds, for the CCD sutmiéation
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Figure 4.9: Percentage of total time spent in computatiortife out-of-core CCD sub-
calculation
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4.8 Related Work

There is an extensive body of research on compile-time opdition of in-memory
computations involving dense matrices, accessed by negudmory reference patterns, [
63, 78, 79). These approaches assume dimension-ordered data lajtbifbaus on loop
structure determination. There has also been extensigangson optimizing out-of-core
computations involving regular data structures such asalsmnlti-dimensional arrays. Kr-
ishnan et al. §5, 66] presented an approach to determining the position of memib-
cation and disk I/O in an imperfectly nested loop nest cgoasing to fused tensor con-
traction expressions. Sahoo et al6] extended the approach by describing a procedure
to efficiently enumerate the various fused loop structubdissuch approaches exploit the
regularity of the computation as exhibited by the loop stitesto optimize disk I/O cost.

Navarro et al. §7] present multi-level blocked algorithms for dense lindgeara com-
putations to minimize TLB misses and page faults incurrediibipyal memory. Toledo
and Gustavsonl[L(] describe a library that supports blocked data layoutgcéffe data
distribution, and different I1/0O schemes to implement Iinglgebra computations on them.
Gunter and Van de Geijrf] present a blocked algorithm for out-of-core QR factotizat
These approaches operate on blocked data and exploit tbialsgesd structure of such al-
gorithms. There have also been several out-of-core algostderived for other domains
[30, 5, 23, 1§].

Existing approaches do not readily extend to more genetal stauctures, such as
block-sparse arrays. We are not aware of any work that des@hbegrated compile/runtime
approaches for data locality optimization, computatidoatl balancing, and mininization

of disk 1/0 for computations accessing semi-structuredwarsdructured data.
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Brown [17, 81, 16] has proposed mechanisms for compiler-directed memoryagen
ment of out-of-core applications. Their work points our lingtations of virtual memory
and present techniques to automatically manage virtualonethrough compiler-directed
prefetching. The approach and evaluation is limited to eatjal programs. They point to
some limitations of using explicit I/0, including the addital burden on the programmer
and matching data management to the resources availatie tergjet machine. Our work
addresses both these issues by automatically managind/@isind taking into account
effective disk I/O characteristics and the memory avadatlruntime.

Abstractions for block-sparse matrices exist in the candédinear algebra and itera-
tive solvers B5, 19). They provide efficient mechanisms suited for specific catapons
on block-sparse matrices. We provide a generalized irtgerfar arbitrary computations
involving block-sparse matrices.

Our work is similar to Aztec 117, a parallel iterative solver package that provides
a global view of a distributed matrix. Advanced partitiopitechniques46] are used to
determine the computation distribution and mapping. Wevidea general-purpose ab-
straction for block-sparse matrices. The partitionindwefmatrices is performed to balance
computation load-balance and communication costs. Irtiaddthe mechanisms provided
for locality-aware load-balancing are not tightly coupleith block-sparse matrices, and
can be utilized in a wide range of contexts.

There has been extensive research on scheduling task graphgrocessors. One
of the earliest work on static scheduling of task graphs isShykar and Hennesy{].

They model the problem as a clustering problem and put fanthpile-time techniques to
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maximize multi-processor performance by exploiting datisim while minimizing com-
munication and synchronization overhead. Gerasoulis ¢i@lcategorized various clus-
tering algorithms and derived results on linear clustenimmpn which Gerasoulis and Yang
[41, 127] developed a linear clustering algorithm. McCreary et @lj evaluate different
clustering algorithms on directed task graphs of certapliegtions. A survey of static
scheduling algorithms was presented by Kwok and Ahna&il [

Catalyurek and Aykanatl[L5 114 used hypergraph-partitioning to parallelize sparse
matrix-vector multiplications. Chang et al1] performed parallel data aggregation based
on hypergraphs. Khanna et atZ] present a hypergraph-based approach to scheduling
tasks with batch shared I/O.

Parkway [L11] is a parallel hypergraph partitioner that interfaces VA#ToH [L 14 and
hMETIS [55, 56], which are sequential. To the best of our knowledge, it dossallow
a subset of the vertices of the hypergraph to be pre-assigneaine parts. Note that this
technique was used to model data distributed in the local onesiof processes. We are
exploring parallel hypergraph partitioners that suppoig variation.

Dynamic load-balancing based on work-stealing has beelestiparticularly for state-
space searchlD5 67, 89. Charm++ [/5] supports dynamic load-balancing by object
migration. Cilk [L2, 94] supports load-balancing of computations based on waélisty.
OpenMP Bg] exploits parallelism at the loop level by distributing féifent iterations to
different processors. Locality is not taken into consitlerain any of these schemes. The
self-scheduling strategy in OpenMP is similar to thextTaskscheme that was evaluated

earlier.
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Our start-time optimizations are similar, in spirit, to ihepector-executor model used
in the Chaos toolq7]. Radhakrishnan et al1D4] detailed a dynamic load balancing strat-
egy for applications with slow or abrupt change in their cammication and computation
patterns. The algorithm incrementally arrives at a bett@ppmng of tasks, allowing refine-

ment of the mapping for iterative computations.

4.9 Conclusion

We designed and implemented high-level abstractions foripodating block-sparse
matrices. Computation primitives to improve load balaggimy exploiting locality, were
presented. The programmer exposes the parallelism in thpwiation, and the system de-
termines the computation mapping. We presented an appliaaithypergraph partitioning
to determining the computation schedule to automaticadipage the memory hierarchy. A
novel formulation using hypergraph partitioning was présd. Our approach consistently
performs better than the alternative schemes considerdddd-balancing. Experimen-
tal evaluation using a sub-computation from quantum cheyndemonstrates significant

improvements in disk I/O cost, overall performance, andiedulity.
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1: int bi, bj, bk; > Brick sizes. Defined elsewhere
2: function MATMUL (bsaC, bsaA, bsaB)

3:

A A

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Input: Block-sparse arrays A, B, and C
TaskPool tpHandle
Localitylnfo locs|[3]
int nBricksl = bsaGetNBricksAlongDim(bsaC,0);
int BricksJ = bsaGetNBricksAlongDim(bsaC,1);
int nBricksK = bsaGetNBricksAlongDim(bsaA,1);
BsaObject objs[3]¥bsaA,bsaB,bsac
AccessMode modes[3[JACCESSREAD,ACCESSREAD,ACCESSUPDATE}
tpHandle = tpCreateTaskPool(objs,modes) > Create task pool
for i=0 to nBricksl - 1do
for j=0 to nBricksJ - 1do
int cbrick[2] = i,j
if bsalsBrickNonZero(bsaC, cbrick)en
for k=0 to nBricksK - 1do
int abrick[2] ={i,k}
int bbrick[2] = {k,j}
if bsalsBrickNonZero(bsaA, abrick) AND bsalsBrickNonZérsgB,
bbrick) then
int pvt[3]={bi,bj,bk} > Brick sizes
LocalityInfo locs[3] ={abrick, bbrick, cbrick
tpAddTask(tpHandle, BrickMatmul, 3, locs, pvt)

tpSeal(tpHandle) > Any start-time optimizations

for i = 0 to maxiterdo > Iterative computation
tpProcess(tpHandle) > Process all tasks, every iteration

tpDestroy(tpHandle) > Destroy task pool

: function BRICKMATMUL (int nLoclinfo, Localitylnfo *locs, void *buff], void *pvt)

Input: Information on bricks to be multiplied
int Ni, Nj, NK, i, j, k
> Actual communication is external to this function.
double *A = buf[0] > Fetch pointer to data/buffer
double *B = buf[1]
double *C = buf[2]
Ni=pvt[0]; Nj=pvt[1]; Nk=pvt[2]; > Brick sizes
for i=0to Ni-1do > Matrix multiplication for this task
for j=0to Nj-1do
for k=0 to Nk-1do
Cli,jl += Ali,K]*BJk,j]

Algorithm 4.3: Block-sparse matrix multiply. Each task pessed byri ckMat nul . Task
pool is processenxi t er times, but is created and sealed once
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1
2
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5
6
7
8

eoNORWONR

e e e
AONRO

cNOARONR

forall pe Pdo
forall be N;UN, do
Allocate b
if b € Ng then Readb
for all v eV, do Computev
forall be N;UN, do
if b € Ny then Write b
Deallocateb

Algorithm 4.4: Computation schedule for one-level pastiing

for all b € Ng do
Allocate b
if b € Ng then Readb
forall pe Pdo
forall b e Np do
Allocate b
if b € Ng then Readb
for all veV, do Computev
forall b e Np do
if b € Ny then Write b
Deallocateb

: forall be Ng do

if b € Ny then Write b
Deallocateb

Algorithm 4.5: Computation schedule for a read-once partit

N «— ReadOnce(V)
f «— true
forall pe P(M) do
£ £ A (Np(M) + Ne(M) < M)
if f=true then
Return <V, >
else
< V1,V > — NetBalancePartition (V)
TwolLevel (V1) U TwoLevel (V)

Algorithm 4.6: Two-Level partitioning algorithm: TwoLele
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Parallel programming is complicated by the numerous detailbe handled by the
programmer to optimize an application. The details to bellehdepend on the application
domain and the target system under consideration. In thik we have taken a two-
pronged approach to the addressing this problem.

For regular programs consisting of loop nests operating erse multi-dimensional
arrays with constant dependences between the statemenpsesented a novel automatic
parallelization techniques that require no input from teeruThe approach attempts to de-
termine a parallel schedule in which all processes canestadution in parallel, eliminating
any start-up overhead. When the concurrent tiled iterapate inhibits such execution we
presented techniques to re-enable it in the tiled iteragpace.

This approach provides a choice to the programmer in terntiseoparallel code gen-
erated, enabling optimized parallelization of certaingsamns that could not be done with
existing approaches. We evaluated our approach using steehirically determined
execution parameters for the pipelined schedules. Detémgthe best execution parame-
ters for overlapped and split tiling could potentially impe its performance further. Our
approach currently handles only programs with constan¢idggnces. Extensions to pro-
grams with affine dependences will enable handling of a tasigess of programs.

133



For more general computations we presented a programminiglnaath blocked ab-
stractions for data with computation represented as tgsisting on these blocks. When a
blocked multi-dimensional array needs to be accessed iffieaatit pattern than the block-
ing, reblocking it to match the access pattern might be beiaéf\We presented algorithms
for efficient out-of-core matrix transposition and outeafre matrix reblocking. The algo-
rithms presented based their I/O sizes on the charactsrgtmodern storage systems, and
minimized total disk 1/0 volume. A load-balanced schedudes\aerived for parallel matrix
reblocking given a round-robin distribution of data bloeksongst the processors, which is
employed by DRA. Extensions to the approach to handle éiffedata distributions, such
as one proposed by Toledo and Gustavdgdn] could further improve the applicability of
out-of-core computation to solve high-end computing peats.

For independent tasks operating on blocked data on diskyesepted abstractions to
automatically schedule the computation, communicatiod,disk 1/O so as to ensure load-
balanced execution while minimizing data movement ovethd@de schedules generated
resulted in almost 90% of the time spent in useful computatiather than data movement,
for sub-calculations from Coupled Cluster methods.

Several extensions are possible to the out-of-core altisingave have presented. Han-
dling tasks with dependences would extend the class ofagijans that can be handled
by the proposed framework. For arbitrary computations afey on blocked data, effec-
tive scheduling might not be feasible. We have investigatat collective parallel 1/0 on
blocked dataf4] as an alternative to collective 1/0O supported by paral@llibraries, and
achieved results better than replicated processing, elien assuming replication does not

incur any cost.
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One of the fundamental limitations of out-of-core prograimgrhas traditionally been
the significant degradation in the bandwidth available, wedoerformance achieved. For
example, Brown 7, 16] shows that the performance of an application degradesfisign
cantly once the data set just exceeds the available physieaiory size. Our proposed
approaches have focused on bridging this gap by ensurinightbaecondary storage is
effectively used to increase data set sizes supported witilering a graceful degrada-

tion in performance as the problem size transitions frormamory to out-of-core. This

is borne out by our sequential out-of-core matrix reblogkeperiments presented in Sec
tion 3.4.5and the out-of-core computation scheduling evaluationaatisn4.7.5 This

makes out-of-core programming an attractive alternativitesting in larger supercom-
puters for scientists primarily interested in very largelpem sizes rather than additional

processing capacity.
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