
OPTIMIZING LOCALITY AND PARALLELISM
THROUGH PROGRAM REORGANIZATION

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Sriram Krishnamoorthy, B.E., M.S.

* * * * *

The Ohio State University

2008

Dissertation Committee:

P. Sadayappan, Adviser

Srinivasan Parthasarathy

Atanas Rountev

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

ABSTRACT

Development of scalable application codes requires an understanding and exploitation

of the locality and parallelism in the computation. This is typically achieved through op-

timizations by the programmer to match the application characteristics to the architectural

features exposed by the parallel programming model. Partitioned address space program-

ming models such as MPI foist a process-centric view of the parallel system, increasing the

complexity of parallel programming. Typical global address space models provide a shared

memory view that greatly simplifies programming. But the simplified models abstract away

the locality information, precluding optimized implementations. In this work, we present

techniques to reorganize program execution to optimize locality and parallelism, with little

effort from the programmer.

For regular loop-based programs operating on dense multi-dimensional arrays, we pro-

pose an automatic parallelization technique that attemptsto determine a parallel schedule

in which all processes can start execution in parallel. Whenthe concurrent tiled iteration

space inhibits such execution, we present techniques to re-enable it. This is an alternative

to incurring the pipelined startup overhead in schedules generated by prevalent approaches.

For less structured programs, we propose a programming model that exposes multiple

levels abstraction to the programmer. These abstractions enable quick prototyping coupled

with incremental optimizations. The data abstraction provides a global view of distributed

ii

data organized as blocks. A block is a subset of data stored contiguously in a single pro-

cess’ address space. The computation is specified as a collection of tasks operating on the

data blocks, with parallelism and dependence being specified between them. When the

blocking of the data does not match the required access pattern in the computation, the data

needs to be reblocked to improve spatial locality. We develop efficient data layout trans-

formation mechanisms for blocked multi-dimensional arrays. We also present mechanisms

for automatic management of load balance, disk I/O, and inter-process communication on

computations expressed as sets of independent tasks on blocked data stored on disk.

iii

To my parents, Sri. S. Krishnamoorthy and Smt. K. Seethalakshmi

iv

ACKNOWLEDGMENTS

This thesis would not have been possible without help from lots of friends and strangers.

In addition to being my graduate school stint, these were fiveyears of my life and I would

like to thank those that made it memorable. But the list is toolong and I will only mention

a few.

Sandhya Krishnan and Chi-Chung Lam showed me the methodicalapproach that moti-

vated me to do my PhD. Sandhya was among the first of a long line of hands that fed me in

graduate school. Arjav Chakravarti gave me company on numerous lunches, dinners, and

late-nighters. Gerald Sabin introduced me to Slashdot and PhD comics, which probably

added a few months to my graduate school. Qingda Lu and Amol Ghoting provided their

helpful insights on a lot of things.

There were those attempts at tennis and physical fitness thatwill keep Rajkiran Panu-

ganti, Muthu Baskaran, Shirish Tatikonda, Uday Bondhugula, and Gaurav Khanna in my

memories. Jim Dinan, Joshua Levine, and I made my first snow man. Together with Brian,

they have always kept things funny and lively in the lab. My first Thanksgiving experience

was with Beth Connell and her family.

My advisor Prof. P Sadayappan provided continuous support,motivation, and enthu-

siasm throughout my graduate studies. His never-say-die attitude to research has inspired

me many a time. I cannot count the number of times I have been told how fortunate I am

to have him as my advisor. Srini Parthasaraty and Atanas Rountev provided me timely and

v

useful guidance on research and the publication process. I had insightful discussions with

J Ramanujam on loop transformations.

My family made sure I survived through graduate school. I am fortunate to have them as

part of my life. My parents inculcated in me a balanced outlook that was extremely helpful

through these years. My father’s insistence on education and love for books rubbed off

on me. He motivated me to pursue graduate school rather than take up a job. My mother

constantly reminded me that I need to eat, and is largely the reason I am alive today. I

cannot recount all the instances in which my life was made easier by just following my

brother’s footsteps. He did all the hard work. My sister was the one that kept things light

through the years.

If my parents were instrumental in me starting graduate school, Chandrika provided me

strong enough encouragement to try to end it. I cannot thank her enough for packing my

bags on countless occasions. Despite having known me for thebetter part of my life, she

has agreed to hang around for some more time in the future.

vi

VITA

2002 . B.E. Computer Science & Engineering,
Anna University, Chennai, TN, India

2006 . M.S. Computer Science & Engineering,
Ohio State University, Columbus, OH

PUBLICATIONS

X. Gao, S. Krishnamoorthy, S. K. Sahoo, C. Lam, G. Baumgartner, J. Ramanujam, and
P. Sadayappan. “Efficient Search-Space Pruning for Integrated Fusion and Tiling Transfor-
mations”. Concurrency and Computation: Practice and Experience, 19(18):2425–2443,
December 2007.

S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Nieplocha, and P. Sadayappan. “Layout
Transformation Support for the Disk Resident Arrays Framework”. Journal of Supercom-
puting, 36(2):153–170, May 2006.

A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. Harrison, S. Krishnamoorthy, S. Krishnan, C. Lam, M. Nooijen, R. Pitzer, J. Ramanu-
jam, P. Sadayappan, and A. Sibiryakov. “Automatic Code Generation for Many-Body
Electronic Structure Methods: The Tensor Contraction Engine”. Molecular Physics,
104(2):211–228, January 2006.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Ramanujam, P. Sadayappan,
and V. Choppella. “Efficient Synthesis of Out-of-Core Algorithms Using a Nonlinear
Optimization Solver”. Journal of Parallel and Distributed Computing, 66(5):659–673,
May 2006.

G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R.J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen,

vii

R.M. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. ”Synthesis of High-
Performance Parallel Programs for a Class of Ab Initio Quantum Chemistry Models”.Pro-
ceedings of the IEEE, 93(2):276–292, February 2005.

S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, andP. Sadayappan. “Efficient
Parallel Out-of-core Matrix Transposition”.International Journal of High Performance
Computing and Networking, 2(2/3/4):110–119 2004.

M. Baskaran, Uday Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. “Automatic Data Movement and Computation Mapping for Multi-level Parallel
Architectures with Explicitly Managed Memories”. InProceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’08), February
2008.

S. Krishnamoorthy, J. P. Canovas, V. Tipparaju, J. Nieplocha, and P. Sadayappan. “Non-
Collective Parallel I/O for Global Address Space Programming Models”. InProceedings
of Cluster 2007, September 2007.

S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. “Effective Automatic Parallelization of Stencil Computations”. InProceedings
of ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’07), June 2007.

S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, and P. Sadayappan. “Hypergraph Parti-
tioning for Automatic Memory Hierarchy Management”. InProceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis.
November 2006 (SC 2006), November 2006.

M. Blocksome, C. Archer, T. Inglett, P. McCarthy, M. Mundy, J. Ratterman, A. Sidelnik, B.
Smith, G. Almasi, J. Castanos, D. Lieber, J. Moreira, S. Krishnamoorthy, and V. Tipparaju.
“Design and Implementation of a One-Sided Communication Interface for the IBM eServer
Blue Gene Supercomputer”. InProceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.November 2006 (SC 2006),
November 2006.

N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc, P. Sadayappan, and
J. Saltz. “Locality Conscious Processor Allocation and Scheduling for Mixed-Parallel Ap-
plications”. InProceedings of the IEEE International Conference on Cluster Computing,
September 2006.

viii

Q. Lu, S. Krishnamoorthy, and P. Sadayappan. “Combining Analytical and Empirical
Approaches in Tuning Matrix Transposition”. InProceedings of the 15th International
Conference on Parallel Architectures and Compiler Techniques. (PACT 2006), September
2006.

N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc, P. Sadayappan,
and J. Saltz. “An Integrated Approach for Processor Allocation and Scheduling of Mixed-
Parallel Applications”. InProceedings of the 35th International Conference on Parallel
Processing (ICPP 2006), August 2006.

A. Hartono, Q. Lu, X. Gao, S. Krishnamoorthy, M. Nooijen, G. Baumgartner, V. Choppella,
D. E. Bernholdt, R. M. Pitzer, J. Ramanujam, A. Rountev, and P. Sadayappan. “Identifying
Cost-Effective Common Subexpressions to Reduce OperationCount in Tensor Contrac-
tion Evaluations”. InProceedings of the 6th International Conference on Computational
Science (ICCS 2006), May 2006.

G. Khanna, N. Vydyanathan, U. Catalyurek, T. Kurc, S. Krishnamoorthy, P. Sadayappan,
and J. Saltz. “Task Scheduling and File Replication for Data-Intensive Jobs with Batch-
Shared I/O” InProceedings of the 15th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC 2006), June 2006.

S. Krishnamoorthy, J. Nieplocha, and P. Sadayappan. “Data and Computation Abstractions
for Dynamic and Irregular Computations”. InProceedings of the 12th Annual International
Conference on High Performance Computing (HiPC 2005), December 2005.

S. K. Sahoo, S. Krishnamoorthy, R. Panuganti, and P. Sadayappan. “Integrated Loop
Optimizations for Data Locality Enhancement of Tensor Contraction Expressions” InPro-
ceedings of Supercomputing (SC 2005), November 2005.

S. K. Sahoo, R. Panuganti, S. Krishnamoorthy, and P. Sadayappan. “Cache Miss Character-
ization and Data Locality Optimization for Imperfectly Nested Loops on Shared Memory
Multiprocessors”. InProceedings of the 19th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2005), April 2005.

S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Nieplocha, and P. Sadayappan. “Efficient
Layout Transformation Support for Disk-based Multidimensional Arrays”. In Proceed-
ings of the 11th Annual International Conference on High Performance Computing (HiPC
2004), December 2004.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Ramanujam, P. Sadayappan,
and V. Choppella. “Efficient Synthesis of Out-of-Core Algorithms Using a Nonlinear

ix

Optimization Solver”. InProceedings of the 18th International Parallel & Distributed
Processing Symposium (IPDPS 2004), April 2004.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, P. Sadayappan,
J. Ramanujam, David E. Bernholdt, and V. Choppella. “Data Locality Optimization for
Synthesis of Efficient Out-of-Core Algorithms”. InProceedings of the 10th Annual Inter-
national Conference on High Performance Computing (HiPC 2003), December 2003.

S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, andP. Sadayappan. “Effi-
cient Parallel Out-of-core Matrix Transposition”. InProceedings of IEEE International
Conference on Cluster Computing (CLUSTER 2003), December 2003.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

x

TABLE OF CONTENTS

Page

Abstract . ii

Dedication. iv

Acknowledgments. v

Vita . vii

List of Tables . xiv

List of Figures. xv

List of Algorithms. xvii

Chapters:

1. Introduction . 1

2. Effective Automatic Parallelization of Stencil Computations 6

2.1 Introduction. 6
2.2 Background and Problem Statement. 11
2.3 Inhibition of Concurrent Start. 13

2.3.1 Concurrent Start in the Non-Tiled Space. 13
2.3.2 Inhibition of Concurrent Start in the Tiled Space. 15

2.4 Overlapped Tiling . 16
2.5 Split Tiling . 20
2.6 Code Generation. 23
2.7 Experimental Evaluation. 25
2.8 Related Work. 28
2.9 Conclusions. 31

xi

3. Data Layout Transformation for Disk Resident Arrays. 32

3.1 Introduction. 32
3.2 Disk I/O Characterization. 35
3.3 Out-of-core Matrix Transposition. 38

3.3.1 Problem Definition. 38
3.3.2 Matrix Transposition Algorithms. 40
3.3.3 Formulation of Transposition Algorithms. 43
3.3.4 Performance Analysis. 45
3.3.5 Sequential Out-of-Core Matrix Transposition. 50
3.3.6 Parallel Out-of-Core Matrix Transposition. 55
3.3.7 Experimental Evaluation. 65

3.4 Out-of-core Matrix Reblocking. 68
3.4.1 Background . 68
3.4.2 Problem Definition. 69
3.4.3 Algorithm Design . 71
3.4.4 Implementation . 80
3.4.5 Experimental Evaluation. 88

3.5 Related Work. 95
3.6 Conclusion. 96

4. Computation Mapping and Scheduling. 97

4.1 Introduction. 97
4.2 Tensor Contraction Engine. 98
4.3 Abstraction for Block-Sparse Matrices. 99
4.4 Computation Abstraction: Task Pool. 101
4.5 Hypergraph Partitioning Problem. 104
4.6 Optimizing Computations on In-Memory Data. 106

4.6.1 Problem Definition. 106
4.6.2 Communication Minimization: Locality-Aware Load-balancing . 107
4.6.3 Experimental Evaluation. 107

4.7 Optimizing Computations on out-of-core data. 110
4.7.1 Problem Definition. 112
4.7.2 Disk I/O Minimization: One-Level Partitioning. 113
4.7.3 Read-Once Partitioning. 115
4.7.4 Integrated Approach: Two-Level Partitioning. 117
4.7.5 Experimental Evaluation. 120

4.8 Related Work. 127
4.9 Conclusion. 130

xii

5. Conclusions and Future Directions. 133

Bibliography . 136

xiii

LIST OF TABLES

Table Page

3.1 Configuration of systems used for I/O characterization. 35

3.2 Illustration of our matrix transposition algorithm. 54

3.3 Illustration of our parallel matrix transposition algorithm 63

3.4 Parallel matrix transposition time on ia64-osc – N=64K. 66

3.5 Parallel matrix transposition time on ia64-osc – N=128K. 67

3.6 Parallel matrix transposition time on amd-osc – N=64K. 67

3.7 Parallel matrix transposition time on amd-osc – N=128K. 67

3.8 Configuration of systems on which matrix reblocking was evaluated 92

3.9 Matrix reblocking evaluation on ia64-osc – N=32K. 93

3.10 Matrix reblocking evaluation on ia64-osc – N=64K. 93

3.11 Matrix reblocking evaluation on ia64-pnl – N=64K (#procs=1,2) 94

3.12 Matrix reblocking evaluation on ia64-pnl – N=64K (#procs=4) 94

4.1 Out-of-core CCD sub-calculation – turnaround time. 126

xiv

LIST OF FIGURES

Figure Page

2.1 Imperfectly-nested one-dimensional Jacobi. 8

2.2 Fused one-dimensional Jacobi. 9

2.3 Single-statement form of one-dimensional Jacobi. 10

2.4 Standard tiling for one-dimensional Jacobi. 11

2.5 Overlapped tiling for one-dimensional Jacobi. 11

2.6 Split tiling for one-dimensional Jacobi. 12

2.7 Illustration of concurrent-start. 14

2.8 Overlapped tiling for two-dimensional Jacobi: top view. 18

2.9 Optimal space and time tile size for pipelined schedule 1. 28

2.10 Optimal space and time tile size for pipelined schedule2 29

2.11 One-dimensional Jacobi execution time, varying problem size 30

2.12 One-dimensional Jacobi execution time, varying #procs 31

3.1 Strided read times on amd-osc. 36

3.2 Strided write times on amd-osc. 36

3.3 Strided read times on ia64-osc. 37

xv

3.4 Strided write times on ia64-osc. 37

3.5 Parallel matrix reblocking – in-place construction of complete write blocks 84

3.6 Matrix reblocking time (brick size=1MB) – set-of-rows to set-of-columns. 89

3.7 Matrix reblocking time (brick size=1MB) – set-of-columns to set-of-rows. 90

4.1 Parallel block-sparse matrix multiplication – execution times 111

4.2 Parallel block-sparse matrix multiplication – scalability 112

4.3 Illustration of one-level partitioning. 115

4.4 Illustration of two-level partitioning. 118

4.5 Out-of-core CCD sub-calculation on ia64-osc – average I/O cost 123

4.6 Out-of-core CCD sub-calculation on ia64-pnl – average I/O cost 124

4.7 Out-of-core CCD sub-calculation on p4-osc – average I/Ocost 124

4.8 Out-of-core CCD sub-calculation – speed-ups. 125

4.9 Out-of-core CCD sub-calculation – percentage computation time 126

xvi

LIST OF ALGORITHMS

Algorithm Page

2.1 Computation/communication scheduling algorithm for split-tiling 23

3.1 Block transposition algorithm. 41

3.2 Eklundh’s algorithm. 42

3.3 Kaushik et al.’s algorithm. 42

3.4 Suh and Prasanna’s algorithm. 43

3.5 Generic transposition algorithm. 46

3.6 Algorithm to determine the memory cost for a given template size 74

3.7 Algorithm to determine template size for a single-pass solution. 76

3.8 Algorithm to determine a multi-pass solution. 78

3.9 Algorithm for sequential implementation of layout transformation 80

3.10 Pseudo-code to enumerate all load-balanced parallel Max blocks 87

4.1 Abstraction for multi-dimensional block-sparse arrays 100

4.2 Task pool abstraction. 103

4.3 Task pool illustration – block-sparse matrix multiplication 131

4.4 Computation schedule for one-level partitioning. 132

xvii

4.5 Computation schedule for a read-once partition. 132

4.6 Two-Level partitioning algorithm: TwoLevel. 132

xviii

CHAPTER 1

INTRODUCTION

There have been dramatic strides in hardware performance ofmodern high-end sys-

tems. These improvements have been accompanied by a corresponding increase in the

complexity of these systems. Modern parallel computers have increasingly large number

of processors, deeper memory hierarchies, and higher processor clock speeds. This has

resulted in an increasingly important role of exploitationof parallelism in the computation

to utilize the available processors, and data locality to maximize the time spent in useful

computation by processors.

The dramatic strides in hardware performance of modern high-end systems over the

past decades have not been matched by a corresponding improvement in the ease of pro-

gramming them. The increasingly complex hardware and communication architectures,

while enabling high performance, have resulted in an increasing amount of detail being

handled by the programmer to achieve that performance.

From a programmer’s viewpoint, the complexity of the code required to implement a

given algorithm or simulation is a function of the level of detail the programming model

exposes to the programmer, the number of decisions and choices to be made, together

with the level of detail required to manage performance-related aspects of the underlying

hardware.

1

Developing scalable application codes on such systems requires an understanding and

exploitation of the parallelism and locality in the computation. The computation needs to be

parallelized such that good load balance is achieved. The distribution of the data amongst

the processors needs to take into account the cost of data movement between the processors.

In addition, movement of data between the different levels of the memory hierarchy needs

to minimized to reduce the overall data movement cost. This is usually achieved by distin-

guishing the different levels of the memory hierarchy that incur different data movement

costs. The programmer optimizes the execution of an application by matching the locality

and parallelism identified in the application to the architectural abstraction exposed by the

parallel programming model.

Parallel programming models provide a combination of data and control abstractions.

The data abstraction divides the addressable memory in the system into units of locality.

All elements in the same unit of locality are assumed to incurthe same data movement cost.

A simplified data abstraction that improves productivity ideally presents a uniform view of

the memory in the system. On the other hand, achieving good scalability requires a data

abstraction that can be efficiently mapped to the non-uniform deep memory hierarchy in

modern parallel systems. This is typically achieved by creating one unit of locality for each

processor memory, and distinguishing between access to thedata in local memory and to

that in non-local memory.

The control abstraction provides mechanisms to identify and express the parallelism

in the computation. It also optionally provides mechanismsfor automatic load balancing.

The abstraction is either computation-centric, with parallelism specified in terms of data or

functions used in the computation, or architecture-centric. In an architecture-centric control

abstraction a fixed number of control flow units are defined, typically one per processor, and

2

these are allowed to execute in parallel with user managing the synchronization between

them. While an architecture-centric control abstraction can be easily mapped to the proces-

sors in a parallel system, computation-centric abstractions facilitate ease of programming.

In addition, architecture-centric specification of parallelism encourages the programmer

to partition the computation with implicit dependences between the tasks in a part. The

absence of this information to the runtime makes automatic support for load-balancing a

challenging task.

When an application’s data does not fit into the collective physical memories of a par-

allel system, the data is stored on disk. Such data is referred to asout-of-coredata. Virtual

memory has been shown to inefficient in handling out-of-corescientific applications due to

a lack of insights into the data access characteristics in the application. Explicit disk I/O

mechanisms are used to move the data between the secondary storage and main memory. In

programming out-of-core applications, a programmer has tocontend with the orchestration

of the movement of data between disk and memory, ensuring that the memory utilization

does not exceed the size of the available physical memory, and scheduling the computation

to operate only on the data in the physical memory. In computations based on the tradi-

tional collective disk I/O model, all processes collectivemove the data between the disks

and the distributed memory, with each process subsequentlyperforming communication to

move the data into the local memory for processing.

We attempt to improve the performance of an application withlimited impact on pro-

ductivity. For regular loop-based programs operating on dense multi-dimensional arrays,

we present an automatic parallelization technique that enables the concurrent start of exe-

cution by all processors. This avoids the pipelined startupoverhead incurred by schedules

generated by prevalent approaches. It also exposes the trade-off between communication

3

volume, the number of communication start-ups, or computation cost and the parallelism

in the application. Unlike existing loop transformation frameworks, this approach enables

the user to choose between the various costs depending on theapplication and the bal-

ance of computation and communication costs in the target system. Chapter2 presents the

technique and evaluates the approach on stencil codes.

For less structured programs, we propose to reconcile the seemingly conflicting require-

ments of performance and productivity by presenting the user with multiple interoperable

control and data abstractions, each at a different level of detail. This enables a programmer

to realize an implementation of an algorithm using a high level abstraction, and incremen-

tally optimize it improve its efficiency and scalability.

A key aspect of our approach to handle parallelism and data locality, including out-

of-core data, is the organization of the data into blocks that are globally addressable. A

block is a subset of data that is stored in a single processor’s memory or disk. A block is

defined to be the basic unit of locality. The computation is defined in terms of sets of tasks

operating on the blocks of data and dependences between them.

When the layout of the blocks does not match the access pattern in the computation,

a performance penalty is incurred due to the lack of spatial locality. This is particularly

severe in the context of out-of-core data. We present efficient data layout transformation

algorithms to transform the blocking of multi-dimensionalarrays, when the blocking re-

quired for different phases are very different. We first develop an out-of-core matrix trans-

position algorithm that takes into account the I/O characteristics of the target system. We

then present a novel algorithm to solve the out-of-core matrix reblocking problem for multi-

dimensional matrices of arbitrary sizes. This is topic of discussion in Chapter3.

4

The programmer specifies a task as a set of data blocks and a function that contains an

efficient sequential implementation of an algorithm to process those blocks. The blocking

of data ensures efficient data movement, while the tasks provide efficient sequential exe-

cutions to process interacting blocks. Blocking of data thus enables us to leverage existing

work on optimizing sequential computations.

This abstraction provides a computation-centric view of both locality and parallelism,

thus presenting a simple abstraction to the user. On the other hand, the explicit specifi-

cation of the locality and parallelism enables runtime mechanisms that map the data and

tasks to the processors in a parallelism to automatically manage locality, dependences, and

load balance in the execution of the program. We believe these features can enable the pre-

sentation of a high-level programming abstraction withoutcompromising scalability and

sequential efficiency.

We demonstrate the benefits of the approach in the context of tensor contractions arising

from the quantum chemistry domain in Chapter4. We present mechanisms for automatic

management of load balance, disk I/O, and inter-process communication on the quantum

chemistry computations expressed as sets of independent tasks on blocked data stored on

disk. The objective is to minimize the volume of disk I/O while balancing the computation

amongst the processors.

5

CHAPTER 2

EFFECTIVE AUTOMATIC PARALLELIZATION OF STENCIL
COMPUTATIONS

2.1 Introduction

Stencil computations represent a practically important class of computations that arise

in many scientific/engineering codes. Computational domains that involve stencils include

those that use explicit time-integration methods for numerical solution of partial differen-

tial equations (e.g., climate/weather/ocean modeling [100], computational electromagnet-

ics codes using the Finite Difference Time Domain method [108]), and multimedia/image-

processing applications that perform smoothing and other neighbor pixel based computa-

tions [45]. There has been some prior work from the computer science community that

has addressed performance optimization of stencil computations (e.g., [99, 54, 53, 39]).

Since stencil computations are characterized by a regular computational structure, they are

amenable to automatic compile-time analysis and transformation for exploitation of par-

allelism and data locality optimization. However, as elaborated later through an example,

existing compiler frameworks have limitations in generating efficient code optimized for

parallelism and data locality.

6

Loop tiling is the key transformation to enable parallelization and data-locality opti-

mization of stencil codes. Much research has been publishedon tiling of iteration spaces

[52, 119, 118, 106, 29, 34, 92, 95, 49, 14, 50, 33, 51, 3]. With few exceptions (e.g.,

work of Griebl [42, 43]), research on performance optimization with tiling has gener-

ally focused on one or the other of the two complementary aspects: (a) data locality op-

timization [4, 3, 118, 106, 29]; or (b) tile size/shape optimization for parallel execution

[34, 92, 9, 49, 14, 50, 33, 51]. Tiling for data locality optimization involves maximization

of data reuse, i.e., tiling along directions of the data dependence vectors. But such tiling

may result in inter-tile dependences that inhibit concurrent execution of tiles on different

processors. To the best of our knowledge, no prior work has addressed in an integrated

fashion, the issues of tiling for data locality optimization and load balancing for parallel

execution. We first use the simple example of a one-dimensional Jacobi code to illus-

trate the problem and introduce two approaches we propose toavoid the problem: over-

lapped tiles and split tiles. As an example of a stencil computation, let us consider the

one-dimensional Jacobi code shown in Figure2.1. Optimizing this stencil computation for

reduction of cache misses requires loop fusion and tiling; in order to fuse the two inner

loops, loop skewing is needed. Frameworks have been previously proposed for data local-

ity optimization of imperfectly nested loops. Using an approach proposed by Ahmed et.

al. [3, 4] the loop nest can be transformed into the one shown in Figure2.2by first embed-

ding the iterations in the imperfectly-nested loops into a perfectly-nested iteration space.

Loop transformations and tiling can then be applied in the transformed perfectly-nested

iteration space. The transformed iteration space can be subsequently translated into effi-

cient code by reducing/eliminating the control overhead [60]. In this chapter, we focus on

7

for t = 0 to T-1
for i = 1 to N-1

S1: B[i] = (A[i-1]+A[i]+A[i+1])/3
for i = 1 to N-1

S2: A[i] = B[i]

Figure 2.1: Imperfectly-nested one-dimensional Jacobi

load-balanced parallel execution of tiled iteration spaces that have already been embedded

into a perfectly-nested iteration space using a technique such as that developed in [4].

Figure2.3shows a single-statement form of the one-dimensional Jacobi code obtained

by adding an additional dimension to arrayA. The flow dependences in this code are the

same as that of the previously shown version, but there are noanti-dependences. Hence a

single statement is sufficient in the loop body instead of a sequence of two statements, for

update and copy, respectively, as seen in Figures2.1 and 2.2. Although such a memory-

inefficient code would not be used in practice, it is more convenient to use a single-

statement iteration space in explaining the main ideas in this chapter. However, the de-

veloped approach is not restricted to such single-statement loops, but is applicable to gen-

eral multi-statement stencil codes such as the one in Figure2.1. The experimental results

presented later also use the memory-efficient multi-statement versions.

The perfect loop nest of Figure2.3has constant dependences(1,0), (1,1), and(1,−1).

Tiling for data reuse optimization (e.g. using the approachpresented in [2]) results in tiles

of shape as shown in Figure2.4. The horizontal axis corresponds to the spatial dimension,

with time along the vertical dimension. Using a sufficientlylarge tile size along the time

dimension facilitates significant data reuse within caches/registers. However, there are

inter-tile dependences in the horizontal direction, inhibiting concurrent execution of tiles

8

for t = 0 to T-1
for i = 1 to N

if(i>=1 and i<=N-1)
S1: B[i] = (A[i-1]+A[i]+A[i+1])/3

if(i>=2 and i<=N)
S2: A[i-1] = B[i-1]

Figure 2.2: Fused one-dimensional Jacobi

by different processors. However, if the vertical tile sizeis reduced to one (i.e., tiling is

eliminated along the time dimension), all tiles along the spatial dimension (adjoining the

x-axis) can be executed concurrently. Thus there is a trade-off between achieving good data

reuse and load balancing of parallel execution.

Instead of thestandardtiling described above, consider the tiling shown in Figure2.5.

Starting with the tiles formed by the same hyperplanes, an additional triangular region is

added to the left of the tile, overlapping with the points at the right end of the neighboring

tile. With this tiling, the iteration points processed by the tiles are no longer disjoint. Some

of the iterations are executed redundantly by two neighboring tiles. This results in an in-

crease in the computation cost. But doing so eliminates the dependence between tiles along

the horizontal direction. All processors can start executing in parallel, eliminating the initial

processor idling that results with the pipelined parallel execution of tiles in Figure2.4.

While standard tiling can enhance data locality in this context, overlapped tiling can

both improve data locality and eliminate the overhead of pipelined parallelism, at the cost

9

for t = 0 to T-1
for i = 1 to N-1

A[t,i] = (A[t-1,i-1] + A[t-1,i] + A[t-1,i+1])/3

Figure 2.3: Single-statement form of one-dimensional Jacobi

of slightly increased computation time. However, the increased computational cost is in-

dependent of tile size. Therefore the fractional computation overhead is inversely propor-

tional to the tile size in the direction of overlapped tiling, and can be made insignificant if

a sufficiently large tile size is chosen along the time dimension.

An alternate approach, shown in Figure2.6, splits the interior of each tile into two sub-

tiles, where the points in only one of the two sub-tiles (shaded) are dependent on points in

the neighbor tile, while the points in the other sub-tile arenot dependent on any neighboring

tile’s points, and therefore executable concurrently. With this approach, each standard tile

is split into two sub-tiles, and load-balanced concurrent execution is possible as a sequence

of two steps: first all non-dependent sub-tiles are concurrently executed and communicate

with the neighbor tiles, and then the dependent sub-tiles are all concurrently executed.

The chapter is organized as follows. Section 2 defines the problem addressed in this

chapter. In Section 3, we characterize the conditions underwhich tiled iteration spaces can

benefit from overlapped/split tiling. In Section 4, we show how to transform a given tiled

iteration space in order for overlapped/split tiling to be applicable. Section 5 discusses code

generation and Section 6 analyzes the cost benefits of overlapped tiling. Section 7 provides

experimental results that demonstrate the benefits of overlapped/split tiling. In Section 8,

we discuss related work and conclude in Section 9 with a summary.

10

Figure 2.4: Standard tiling for one-dimensional Jacobi.s1 and s2 denote the inter-tile
dependences.

Figure 2.5: Overlapped tiling for one-dimensional Jacobi

2.2 Background and Problem Statement

This section introduces some standard background on the polyhedral model of com-

putation, and defines the problem addressed. Consider a perfectly-nested loop nest withn

levels of nesting. Theiteration space polyhedrondefines ann-dimensional set of points,

characterized by a set of bounding hyperplanes and modeled as B.I ≥ b where I is the

11

Figure 2.6: Split tiling for one-dimensional Jacobi

iteration vector. The rowsbi of B define the normals to the corresponding bounding hyper-

planes. For example, the iteration space for the 1-D Jacobi example is

1 0
−1 0

0 1
0 −1

.

(

t
i

)

≥

0
−T +1

1
−N+1

The dependences in the computation can be represented by a matrix D where each column

defines a dependence vector. The dependences in the 1-D Jacobi example are

D =
(

d1 d2 d3
)

=

(

1 1 1
−1 0 1

)

Assume that we are given a set oftiling hyperplanesthat tile the iteration space. These

hyperplanes are represented by a matrixH, where each row represents the normal vector

of a tiling hyperplane. For example, the tiling hyperplanescorresponding to Figure2.4are

represented as

H =

(

h1

h2

)

=

(

1 0
1 1

)

A tiling defined by a set of tiling hyperplanes islegal if each tile can be executed atomically

and there exists a valid total ordering of the tiles. Intuitively, a tiling is legal if no two tiles

mutually depend on each other. It can be shown [52] that this validity condition is given by

H.D≥ 0

12

A schedule has aconcurrent startproperty if all processors can start execution in parallel,

without any pipeline start-up delay. Such a schedule is referred to as a concurrent-start

schedule.

Problem Statement.Consider a given (non-tiled) iteration space in which a concurrent-

start schedule is possible. However, for a given tiling of this space defined by a set of tiling

hyperplanes, it is possible that the tile dependencies in the corresponding tiled iteration

space inhibit concurrent start. We consider the following question: How can concurrent

start be achieved in the tiled iteration space? Our first goalis to characterize analytically

the situations in which tiling inhibits concurrent start. Next, we develop two approaches,

overlappedtiling andsplit tiling, that enable concurrent start in the tiled space and recover

the load-balancing properties lost due to tiling.

2.3 Inhibition of Concurrent Start

If the original non-tiled iteration space does not have a concurrent start schedule, tiling

cannot enable such a schedule. However, if concurrent startis possible in the absence

of tiling, the introduction of tiling can potentially inhibit this concurrent start. This sec-

tion characterizes the conditions under which a non-tiled space supports a concurrent start

schedule, and then derives a concurrent start inhibition condition for the tiled space. For

simplicity of presentation, the discussion assumes an iteration space with a single state-

ment, but we have defined a general version of the technique for multi-statement iteration

spaces.

2.3.1 Concurrent Start in the Non-Tiled Space

First, we describe the condition for the existence of concurrent start in the original non-

tiled iteration space. Consider, for example, dependence vectors(1,0) and (0,1). Two

13

Figure 2.7: Illustration of concurrent-start. Iteration spaces with(1,0) and(0,1) depen-
dencies: (a) concurrent start is not possible (b) concurrent start is possible from the gray
boundary.

iteration spaces with these dependences are shown in Figure2.7. In Figure2.7(a), the

parallel computation has to begin from the origin(0,0) and suffers from pipeline start-up

overhead. On the other hand, the iteration space in Figure2.7(b) can be traversed by all

processors in parallel starting from the boundary shown in gray.

In general, the presence of concurrent start in an iterationspace depends on the bound-

aries that define the iteration space polyhedron. An iteration space supports concurrent

start if there exists a bounding hyperplane that does not contain a dependence, i.e. carries

all dependences. A hyperplane contains a dependence if boththe source and destination

iteration points of the dependence are contained in the hyperplane. Since the rowsbi of B

define the normal vectors of the bounding hyperplanes, this property is represented by the

condition

∃bi ∈ B : ∀d j ∈D : bi .d j > 0

14

Note that this condition is independent of the tiling hyperplanes. We will refer to this

property as thepoint-wise concurrent start condition. When this condition does not hold,

no tiled iteration space can have concurrent start. For the 1-D Jacobi example, the condition

holds because the normal vectorb1 = (1 0) for one of the bounding hyperplanes satisfies

b1.d j > 0 for all dependence vectorsd j .

2.3.2 Inhibition of Concurrent Start in the Tiled Space

Next, we consider the condition for the inhibition of the concurrent start condition in

the tiled iteration space. Given the tiling hyperplanes andtheir normal vectorshi ∈ H, we

define theshift vector si for the hyperplane withhi as normal to be a vector connecting two

instances of the same hyperplane, while traveling parallelto all other hyperplanes. Clearly,

the following holds for the setSof shift vectors:

∀si ∈ S : ∀ j 6= i : h j .si = 0

For the 1-D Jacobi example, we will use shift vectors

S=
(

s1 s2
)

=

(

0 1
1 −1

)

as illustrated in Figure2.4.

The execution of two adjacent tiles should be ordered if there is a dependence vector

d j such that for some iteration pointsi1 andi2 related byd j , point i1 is in one of the tiles

and pointi2 is in the other one. Note that this is possible only if there isa dependence that

passes through the hyperplane that separates the two tiles —in other words, if the following

condition holds

∃dk ∈D : hi .dk 6= 0

15

When this condition is satisfied for a given hyperplane withhi ∈ H, the shift directionsi

along that dimensioncarries the inter-tile dependence. For the 1-D Jacobi example, both

s1 ands2 carry inter-tile dependencies (for example,h1.d1 > 0 andh2.d1 > 0).

The inter-tile dependences can introduce dependence directions that do not exist in the

original iteration space. The concurrent start condition is inhibited in the tiled iteration

space, if for some boundarybi , the concurrent start condition is satisfied by the depen-

dences in the original iteration space, but not by the inter-tile dependences in the tiled

iteration space. A tiling inhibits concurrent start if

∃bi ∈ B,h j ∈H,dk ∈ D : bi.D > 0∧ bi.sj = 0∧ h j .dk 6= 0

When the above condition is true, there exists an inter-tiledependence within a hyper-

plane parallel to the boundarybi , precluding concurrent execution of all the tiles in the

boundary. Thus, concurrent start is inhibited even though the original iteration space sup-

ports it. This situation occurs for the 1-D Jacobi example due to bounding plane normal

b1 = (1 0), tiling hyperplane normalh1 = (1 0), and any dependencedk for k = 1. . .3.

2.4 Overlapped Tiling

The basic idea behind overlapped tiling is to eliminate certain inter-tile dependencies

by “duplicating” points in the original iteration space. Asa result, the same iteration point

can be a member of two neighboring tiles (i.e., the tiles can overlap). This section outlines

a constructive procedure to determine overlapping tiles that eliminate the inter-tile depen-

dences, which removes the inhibition on concurrent start. The key step is the construction

of a companion hyperplanethat eliminates the dependence along a desired direction. The

new tile will not have any incoming dependence along the direction in which the depen-

dence was eliminated.

16

In standard tiling, a hyperplane with a normal vectorhi defines two faces of the tile.

We will denote these faces ashi(l) (the back face) andhi(l +1) (the front face). The front

face is shared with the subsequent tile along the shift direction defined by shift vectorsi .

The back facehi(l) has no incoming dependences ifhi .D≥ 0. On the other hand, the front

facehi(l + 1), by the tiling validity condition, does not have any incoming dependences.

All dependences between the hyperplanes can be eliminated if the back face of the tile is

replaced by an overlapped hyperplane with a normal vectorh′i such that

∀d j ∈D : h′i .d j ≤ 0

Note that the hyperplanes span the iteration space and any vector in the iteration space;

hence, the companion hyperplane can be defined as a linear combination of the existing

hyperplanes. Scaling a given hyperplane vectorhi does not eliminate any additional de-

pendences. In addition, we are interested in the companion hyperplane that forms the back

face of the tile. Thus, it is constructed by going “backwards” on the other hyperplanes,

represented by a negative linear combination of the hyperplanes, and is given by:

hi.D≥ 0⇒ h′i = hi−∑
j 6=i

k j .h j ∧h′i .D≤ 0∧k j > 0

Such a companion hyperplane eliminates dependences along ashift vector. This proce-

dure is repeated for every hyperplane/shift vector that inhibits concurrent start.

Considern-dimensional Jacobi iteration with ann+1 dimensional iteration space, and

ann dimensional data space, with a range ofN along each dimension. LetB be the space

tile size along each of then space dimensions. Letp be the number of processors organized

in an n-dimensional grid.B = N/ n
√

p. Let t be the time tile size.

17

P(i,j)

P(i,j+1)

P(i+1,j)P(i−1,j)

Exact comm

local

volume
B

+
2t

t

B

t

t

P(i,j−1)

Figure 2.8: Overlapped tiling for two-dimensional Jacobi:top view

The schedule for overlapped tiling requires the processorsto cycle to maintain load

balance. We illustrate the determination of communicationfrequency using a simpler

variation. Starting from orthogonal tiling, both planes can be swiveled partially to form

trapezoid-like tiles for 1-D Jacobi, and a square pyramid for two-dimensional Jacobi, top

view for which is shown in Figure2.8. This overlapped tiling scheme has the same com-

munication volume as the original one, but double the numberof startups. However, code

generation is simpler for this case due to the absence of the need to cycle. The number of

startup’s do not matter when the communication volume is higher; this is particularly true

for higher dimensional Jacobi (greater than 1) for which thespace tile size comes into the

volume.

Consider the overlapped tiling scheme that is obtained fromorthogonal tiling. The

point-wise difference between the coordinates of a given processor and any of its neigh-

bors in the processor space is ann-vector, and each of itsn components being 1, 0, or -1.

18

Discounting the all zeros case, we have 3n−1 neighbors. Hence, the number of communi-

cation startups per tile (without forwarding) is given by:

S1 = 3n−1 (2.1)

For example, for three-dimensional Jacobi, we have 8 corners, 12 edges, and 6 faces, i.e., a

total of 26 (= 33-1) neighbors to send and receive data to/from to compute theoverlapped

tile.

With communication forwarding, the number of communication startups per tile can be

reduced to 2n (one for each of the faces).

S′1 = 2n (2.2)

Similarly the number of startups for the original schedule without and with forwarding

are:

S2 = 2n−1 (2.3)

S′2 = n (2.4)

The exact communication volume assuming orthogonal tilingis given by:

V =
n

∑
i=1

(

n
n− i

)

2iB(n−i) f (i, t) (2.5)

≈ 2ntBn−1 whent≪ B

where

f (k, t) =
t−1

∑
in−k+1=1

. . .

i(n−1)

∑
in=1

in (2.6)

The communication volume for the original schedule reducesto:

19

V =
n

∑
i=1

(

n
n− i

)

B(n−i) f (i,2t) (2.7)

≈ 2ntBn−1 whent≪ B

The communication schedule and the data being communication can be quite complex

for higher dimensions. Adding a small number of points to thecommunication volume

greatly simplifies code generation. In Figure2.8, the points in each of the four corners are

those that can be added. The total communication volume thenbecomes:

V ′ = (B+2t)n−Bn

= nC1Bn−1(2t)+ nC2Bn−2(2t)2

+ · · ·+(2t)n (2.8)

≈ 2ntBn−1 if t≪ B

= Θ(tBn−1) (2.9)

Forn = 2:

V ′ = 4tB+4t2

2.5 Split Tiling

Overlapped tiling eliminates inter-tile dependences by redundantly computing portions

of a tile. While eliminating dependences, this approach increases the overall amount of

computation. In this section we leverage the idea of dependence inhibition to develop an

alternative approach, referred to assplit tiling, in order to enable concurrent start without

the computation overhead. In split tiling, rather than redundantly computing a portion of

the predecessor tile along a dimension, the processor executing the predecessor tile first

computes that portion and sends the results to its successoralong that dimension.

20

We show that for stencil computations, a tile sub-region canbe identified such that

this sub-region can be executed in parallel in all tiles. This enables concurrent start. We

outline an algorithm that divides a tile into sub-regions and schedules the computation

and communication to achieve concurrent start and load-balanced execution in which all

processors execute the same amount of work in all the steps inthe schedule.

A tile in a stencil computation is bounded by the hyperplane instances:

∀I ,B.I ≥ b,h j ∈ H : h j .I ≥ lo j ,h j .I ≤ hi j

where two parallel instances of each hyperplane are defined,one bounding the tile below

along that dimension and another bounding the tile from above.

Along a dimensionj, dependence inhibition identifies a partner hyperplane such that

the region enclosed by the partner hyperplane (h′j) in the positive direction (h′j .I ≥ lo′i can

be computed independently of the rest of the tile. This region was redundantly computed

in the overlapped tiling approach.

Definition 1. The independent region along a dimension j is denoted by¬ j. The rest of

the tile along that region will be denoted by j.

In the subsequent discussion, it should be clear from the context whetherj refers to the

dimension or to the complement of the independent region along that dimension.

The region¬ j is defined by making the partner hyperplane to be bounded frombelow

along that dimension:

∀I ,B.I ≥ b,hk ∈H,k 6= j : hk.I ≥ lok,hk.I ≤ hik

∀I ,B.I ≥ b : h′j .I ≥ lo′k,h j .I ≤ hi j

Note that the hyperplanes along all the other dimensions remain unchanged.

21

A tile can be divided into these two regions along each of the dimensions. The various

intersections of these regions divides the tile into 2k tile components fork such dimensions.

We only consider dimensions along which there is potential for dependence inhibition,

which would eliminate the time dimension. For example, a tile in the 2-D Jacobi code with

x andy as the dimensions can be divided into the components¬x∩¬y, ¬x∩y, x∩¬y, and

x∩y.

From the definition of independent region, a tile component¬i ∩ . . . is not dependent

on its predecessor along dimensioni. Thus, the tile component that is the intersection of

the independent tile region along all the processors can be computed in parallel, without

any communication — that is, all processors can start executing this in parallel, resulting

in concurrent start.

Consider the tile componenti ∩ . . ., where all other tile regions are independent. This

tile component does not carry any dependence along any dimension other thani. The region

in the predecessor tile that it depends on is derived as the tile-component with the same

hyperplanes along all other dimensions as the tile component, with the hyperplanes along

dimensioni replaced by the lower-bounding hyperplane for this tile becoming the upper-

bounding hyperplane, and the partner hyperplane for dependent inhibition becoming the

lower-bounding hyperplane. This is the tile component¬i ∩ Thus, the tile component

i∩ . . . can be computed once the boundary alongi computed by¬i∩ . . . in the predecessor

tile.

In general, for each dimensioni along which a tile component is dependent, the inter-tile

boundary is computed by the tile component in the predecessor tile obtained by replacingi

by ¬i For example, the tile componentx∩y in the 2-D Jacobi code can be computed after

22

1: If (n==1), say a dimensionx. Compute¬x, send and receive the result along thex dimension,
computex and return.

2: Execute algorithm for (n-1)-dimensional stencil computation for all dimensions except one, say
z. Thus all values computed will be for those independent along z (all tile sections have¬z
as the z dimension component).

3: Send all computed values along thezdimension.
4: Execute algorithm for n-dimensional stencil computation for all dimensions except z. But this

time, all values computed will be dependent for dependent regions alongz.

Algorithm 2.1: Computation/communication scheduling algorithm for split-tiling

the shared boundary with¬x∩y is received from the predecessor alongx, and the one with

x∩¬y is received from the predecessor alongy.

Algorithm 2.1presents a scheduling algorithm with 2n−1 communication steps for an

n-dimensional stencil computation. In this recursive formulation, the number of communi-

cation steps is given by :

L(n) = 2∗L(n−1)+1

with L(1)=1; that is,L(n) = 2n−1. Note that this approach does not incur any addition

computation cost. In addition, only inter-tile boundariesin the spatial dimensions are com-

municated, thus incurring the same communication volume cost as standard tiling.

2.6 Code Generation

In this section, we discuss the generation of the code for theiteration space with the

overlapped and split tiles. We describe the derivation of the parameters necessary to utilize

the code generation framework described by Ancourt and Irigoin [7].

Each tile in the tiled iteration space is identified by a tile origin. The execution of the

tiled iteration space is defined as the traversal of the tilesin terms of their origins, together

with the execution of the iterations mapped to each tile as itis traversed.

23

The origin of the tiled iteration space defined to be the origin of the original iteration

space. Given the origin, all the tile origins can be enumerated as linear combinations of the

shift vectors. The tile size is defined as the distances between the tile origins along the shift

vector, and is embedded in the specification of the shift vector itself.

The matrix of shift vectors specifies the traversal order of the tile origins. The shift

vectors are ordered to enable an outer loop along the directionbi so that there is parallelism-

inner synchronization-outer.

Given the tile originx0, defined equivalently in terms of the shift vectors or as iteration

points in the original iteration space, each of the hyperplanes bounding the tiles can be

identified by a point in it. For hyperplaneshi along which no overlap is identified as nec-

essary, the iteration pointsx in the iteration space that form this tile satisfy the following

conditions:

hi .x≥ hi .x0∧hi .x < hi.(x0+si)

Note thatx0 is a vertex on all the non-overlapped hyperplanes that form the back face of the

tile. x0 +si is a point on the front face of the tile for all hyperplaneshi . Since overlapping

does not change the front face, this is also true for hyperplanes that utilize overlap.

When an overlapped hyperplane is identified along a dimension, we replace the back

face of the original hyperplanehi by an overlapped hyperplaneh′i . Sinceh′i is constructed

from hi by only shifting it along the other hyperplanes, the pointx0+∑ j 6=i sj is a valid point

on it irrespective of the choice ofh′i . Thus the boundary conditions for the tile for these

hyperplanes is given by:

hi .x≥ hi .(x0+ ∑
j 6=i

sj)∧hi.x < hi .(x0+si)

24

Given the tile origins and their traversals, and the shape ofthe overlapped tile, the

code generation procedure of Ancourt and Irigoin [7] can be used to generate code. The

generated code would haven outer tile space loops, each corresponding to a tiling hyper-

plane, and inner loops enumerating all iterations belonging to a tile. Let us assume thatk

of then hyperplanes have been identified for overlapped tiling. Overlapped tiling enables

concurrent start along a hyperplane by eliminating any inter-tile dependence along that hy-

perplane. Hence, the tile space loops corresponding to the remainingn− k hyperplanes

carry all inter-tile dependences, and can be run sequentially as the outer loops, and thek

tile space loops corresponding to overlapped tiling hyperplanes can all be run in parallel by

mapping to ak-dimensional or lower dimensional processor space.

The traversal of tile origins for split tiling is the same as that for standard tiling. The

intra-tile code is generated for the various tile components by scanning the polytopes de-

rived by specifying the appropriate hyperplane instances that bound the tile component, as

defined earlier. The appropriate hyperplane boundaries between sub-tiles define the data to

be communicated between processors for the communication phases, as discussed earlier.

2.7 Experimental Evaluation

Both the proposed tiling schemes—overlapped tiling and split tiling—enable load-

balanced tiled execution of stencil codes that inherently satisfy the concurrent-start cri-

terion. The degree of exploited concurrency is the same withboth schemes; they differ

in the computation/communication overheads relative to standard tiling. With overlapped

tiling, there is a small amount of computational overhead and also a small increase in the

total communication volume. Split tiling requires no additional redundant computations

25

and requires exactly the same total communication volume asstandard tiling, but requires

additional messages, i.e., incurs a higher message-startup-cost overhead.

Below, we report experimental results comparing overlapped/split tiling with standard

(pipelined) tiling for the one-dimensional Jacobi code. The experiments were conducted

on a cluster consisting of 32 compute nodes each of which is a 2.8 GHz dual-processor

Opteron 254 (single core) with 4GB of RAM and 1MB L2 cache, running Linux kernel

2.6.9. We used one processor per node in our experiments. Thecode was compiled using

the Intel C Compiler with -O3 optimization flag.

The iteration space of one-dimensional Jacobi has a space dimension and a time dimen-

sion. Two versions of pipelined schedule were implemented:(i) one in which the processor

space was mapped along the time dimension and time along the space, and (ii) the other

one in which the processors were distributed in a block-cyclic fashion to execute tiles along

time dimension.

First we conducted experiments to determine the optimal time tile size and space tile

size for the two pipelined schedules. The experiments were conducted for 1000 time steps

on 32 processors for a total problem size of 64000 elements. The execution times are shown

in Figures2.9and2.10. The number of communication startups decreases with an increase

in the spatial tile size. This typically results in a decrease in the execution time with an

increase in the space tile size. But for larger space tile sizes, the pipeline startup costs

increase thus dominating and increasing the execution time. Increase in the time tile size

reduces the number of time tiles and hence the number of synchronizations. But larger time

tile sizes as in the case of larger space tile sizes increase the pipeline startup costs. Hence

an increase in the time tile size decreases the execution time until the pipeline startup costs

begin to dominate. The execution times for both the pipelined schedules, as inferred from

26

the experiments, are minimum for a time tile size of 16 and space tile size of 1000. Hence

a time tile size of 16 and space tile size of 1000 were used for subsequent evaluation of the

schemes.

For overlapped and split tiling, the space tile size is fixed to beN/nproc, whereN is the

space dimension size andnproc is the number of processors used for parallel execution.

The time tile size is chosen to be 16 to match the choice for thepipelined schedules.

Given these choices of space and time tile sizes, the performance of the four schemes

for various problem sizes is shown in Figure2.11. The split and overlapped tiling schemes

result in a linear increase in execution time with problem size, unlike the pipelined tiling

solutions. The improvement in execution time achieved by split and overlapped tiling

schemes with increase in problem size is due to the better exploitation of data locality.

In addition, unlike the pipelined schedules, the communication cost is independent of the

problem size.

The improved scalability of the overlapped and split tilingschemes, due to an absence

of the pipeline startup cost, is shown in Figure2.12. The problem size was fixed at 20000

elements per processor. The number of processors was variedto measure the weak scaling

capability of the various schemes. A straight line parallelto the x-axis corresponds to linear

scaling. The split tiling solution performs best, followedby the overlapped tiling solution.

The pipelined schedules suffer from performance degradation with increase in the number

of processors.

27

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Space tile size

Time Tile Size = 1
Time Tile Size = 2
Time Tile Size = 4

Time Tile Size = 16
Time Tile Size = 32

Figure 2.9: Optimal space and time tile size for pipelined schedule 1

2.8 Related Work

Several recent works have presented manual optimizations and experimental studies on

stencil computations [54, 53, 39]. Iteration space tiling [52, 119] is a method of aggregat-

ing a number of loop iterations intotileswhere the tiles execute atomically; communication

(or synchronization) with other processors takes place before or after the tile but not during

the execution of the iterations of a tile. Several works haveused tiling for exploiting data

locality [4, 3, 118, 106, 29]. Others have addressed the selection of tile shape and sizeto

minimize overall execution time [34, 92, 9, 95, 49, 14]. The size of tiles has an impact

on the amount of parallelism and communication: smaller tiles increase parallelism by re-

ducing pipelined startup cost, while larger tiles reduce frequency of communication among

processors. This has been studied by a number of researchers[9, 95, 49, 50, 33, 51]. Griebl

28

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Space tile size

Time Tile Size = 1
Time Tile Size = 2
Time Tile Size = 4

Time Tile Size = 16
Time Tile Size = 32

Figure 2.10: Optimal space and time tile size for pipelined schedule 2

[42, 43] presents an integrated framework for optimizing data locality and parallelism in

the use of tiling; however, pipelining issues are not considered.

Li and Song [77] present techniques to optimize stencil codes through loopskewing and

array padding. Strout [] present techniques for data and computation reordering for sparse

matrix computations. The optimizations include time tiling for relaxation codes, with tile

shapes similar to that derived by our overlapped tiling approach.

The Omega toolkit [59] provides support to compute the exact transitive dependences

of tuple relations when possible, if not resort to computinga lower bound. Kelly et al. [61]

present an approach to compute transitive closure of parameterized tuple relations and

present its applications, including the determination of transitive dependences. Pugh and

Wonnacott [91] present techniques to compute both upper and lower bounds of transitive

closures. These techniques can be employed to determine thetransitive dependences that

29

 25

 50

 75

 100

 125

 150

 175

 200

 225

 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(m

s)

Problem size (x 103)

Split tiling
Overlapped tiling

Pipelined tiling(schedule 1)
Pipelined tiling(schedule 2)

Figure 2.11: One-dimensional Jacobi execution time, varying problem size

we are interested in. Wonaccott [121] discusses time skewing to optimize locality of stencil

computations. In the parallel context [120], the work presents an approach similar to split

tiling discussed here. It does not consider overlapped tiling, or present a characterization

of when it is beneficial.

Sawdey and O’Keefe [99] describe TOPAZ the tool that explores the replicated com-

putation of boundary values in the context of SPMD executionof stencil codes, in which

the user marks regions of code to be replicated; the tool thenanalyzes and generates the

correct code. This approach helps with reducing communication costs and improving load

balance. Adve et al. [1] describe computation partitioning strategies used in thedHPF com-

piler that exploit replicated computation using theLOCALIZE directive that is available in

dHPF. Both these approaches rely on user-specification of replicated computation, unlike

our approach to automatic parallelization.

30

 0

 50

 100

 150

 200

 5 10 15 20 25 30

E
xe

cu
tio

n
tim

e
(m

s)

#procs

Pipelined tiling (schedule 1)
Pipelined tiling (schedule 2)

Overlapped tiling
Split tiling

Figure 2.12: One-dimensional Jacobi execution time, varying #procs

2.9 Conclusions

Iteration space tiling has received considerable attention motivated by optimizing for

data locality as well as by exploiting parallelism for nested loops. The choice of the shape

of iteration space tiles may result in inter-tile dependences that inhibit concurrent execution

of tiles on different processors, leading to a pipelined start overhead. This chapter has ad-

dressed the issue of enhancing concurrency with tiled execution of loop computations with

constant dependences. Two approaches, namelyoverlapped tilingand split tiling were

presented, that enabled the removal of inter-tile dependences, thereby enabling additional

concurrency. These techniques expose the trade-off between the communication and com-

putation costs, and the parallelism in the program. Experimental results demonstrated the

effectiveness of the proposed schemes on stencil codes.

31

CHAPTER 3

DATA LAYOUT TRANSFORMATION FOR DISK RESIDENT
ARRAYS

3.1 Introduction

Many scientific and engineering applications need to operate on data sets that are too

large to fit in the physical memory of a machine. Such data is stored in disk and brought

into physical memory for processing as needed. The data is then said to resideout-of-core

and the program is referred to as anout-of-core program.

The bandwidth available to access data in secondary storageis much smaller than from

main memory, and this discrepancy is only exacerbated by current technology trends .

This necessitates minimization of disk access while maximizing reuse of data already in

memory. In addition, the extremely large seek time relativeto the per-word transfer time

for disk access dictates that I/O be done using contiguous blocks of disk resident data.

These concerns can require careful reexamination of an in-memory algorithm to tailor it to

the characteristics of secondary storage.

An approach to solving this problem exploits the operating system’s virtual memory.

The user addresses data in an address space often larger thanthe physical memory of the

32

machine. The operating system implicitly moves the data from secondary storage to phys-

ical memory when it is accessed by the user and replaces otherunused data to free up

physical memory as needed. Any modified data is written back to disk before being re-

placed. Since the data movement is done in units of an operating system page, improved

disk I/O bandwidth is achieved. While providing a simple abstraction, this approach suffers

from several drawbacks. First, the generic page replacement policies in kernels do not ex-

ploit the specialized data access patterns exhibited by scientific applications [17]. Second,

the virtual memory supported by 32-bit operating systems isstill too small compared to the

disk space available even in a single hard disk drive. Third,efficient extensions of virtual

memory for parallel systems are not available.

An alternative approach commonly employed acknowledges secondary storage as an-

other level of the addressable memory hierarchy and explicitly moves data between main

memory and secondary storage. Higher-level abstractions are provided to enable simplified

yet efficient data movement where possible.

We focus on disk I/O support to enable simplified yet efficientabstractions to access

multi-dimensional arrays stored on disk. I/O libraries like PANDA [102, 109] and DRA

[38] use a blocked representation for the disk-based multidimensional arrays to optimize

performance of collective I/O operations between arrays located on disk and in the dis-

tributed main memory of parallel computers [22].

Thus a disk-based multidimensional array is partitioned into a number of multidimen-

sional blocks or “bricks” and the elements within a brick arelinearized using some dimen-

sion order. Unlike the dimension-ordered representation typically employed to represent

in-memory multidimensional arrays, the bricked representation permits efficient contigu-

ous access as long as the accessed regions mostly contain full bricks.

33

However, in some programs, the access patterns to some disk-based multidimensional

arrays in two successive phases (or the access pattern of theproducer and the consumer) are

so different that no choice of brick shape will allow for efficient access in both the phases.

An example is the out-of-core two-dimensional Fast FourierTransform (FFT), where the

array is accessed by columns in one phase and by rows in the other. The multi-dimensional

FFT [8, 10] can be implemented as a series of one-dimensional FFTs, onealong each

dimension. As another example, consider image data in threeand four (including time)

dimensions. The production of data from scanning occurs plane by plane. However, exam-

ination of the time evolution of a three-dimensional block of data requires a very different

access pattern than that by which the data was generated. In isosurface construction in three

and four dimensions, the data is typically produced in a row-major format by scanning or

simulation. The amount of memory available determines the amount of data generated

between writes to disk, and hence limits the blocking possible [58]. In such scenarios

the performance of computations operating on the stored data might be greatly improved

by transforming the data into a different blocked form to match the application’s access

pattern.

In this chapter, we present efficient data layout transformation algorithms to transform

the blocking of multi-dimensional arrays. We first develop an out-of-core matrix transposi-

tion algorithm that takes into account the I/O characteristics of the target system. We then

present a novel algorithm to solve the out-of-core matrix reblocking problem for multi-

dimensional matrices of arbitrary sizes.

34

System Configuration

Processor Memory (MB) Linux Compiler

ia64-osc Dual Itanium-2 (900 MHz) 4096 2.4.18 gcc 2.96
amd-osc Dual Athlon MP (1.533 GHz) 2048 2.4.20 pgcc 4.0-2

Table 3.1: Configuration of systems used for I/O characterization

3.2 Disk I/O Characterization

Out-of-core algorithms on multi-dimensional arrays, suchas out-of-core matrix trans-

position, involve reading and writing blocks of data at different strides. To understand the

variation in performance of the algorithm with respect to these parameters, we studied the

variation of read and write times with changes in size and stride of I/O on two clusters at

the Ohio Supercomputer Center (OSC) [87]. The configuration of each compute node in

these clusters is shown in Table3.1. Figure3.1 and Figure3.2 show the strided read and

write times respectively on amd-osc. Figure3.3 and Figure3.4 show the strided read and

write times respectively on ia64-osc.

On both systems we observe that beyond a particular block size the stride does not

affect the per-byte transfer cost and approximates to the cost of sequential I/O. More im-

portantly, the incremental improvement obtained in the I/Otime by increasing the block

size decreases and is very small beyond a particular block size. We expect this observa-

tion to hold across a wide variety of systems. These block sizes, above which the per-byte

read and write times are not affected by the stride of access,will henceforth be referred

to as thereadandwrite thresholds, respectively. These parameters vary depending on the

system under consideration and the per-byte read and write costs can saturate at different

35

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35

P
er

 b
yt

e
tim

e(
m

ic
ro

se
co

nd
s)

Stride (#blocks)

32KB
64KB

128KB
256KB

512KB
1MB

2MB
4MB

Figure 3.1: Strided read times on amd-osc

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35

P
er

 b
yt

e
tim

e(
m

ic
ro

se
co

nd
s)

Stride (#blocks)

16KB
32KB

64KB
128KB

256KB
512KB

1MB
2MB

4MB

Figure 3.2: Strided write times on amd-osc

36

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25 30 35

P
er

 b
yt

e
tim

e(
m

ic
ro

se
co

nd
s)

Stride (#blocks)

32KB
64KB

128KB
256KB

512KB
1MB

2MB
4MB

Figure 3.3: Strided read times on ia64-osc

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30 35

P
er

 b
yt

e
tim

e(
m

ic
ro

se
co

nd
s)

Stride (#blocks)

32KB
64KB

128KB
256KB

512KB
1MB

2MB
4MB

Figure 3.4: Strided write times on ia64-osc

37

block sizes. The read and write thresholds on amd-osc are 2MBand 1MB, respectively.

On ia64-osc, they are both 1MB.

An out-of-core algorithm needs to perform I/O on sufficiently large block sizes for

good performance. On the other hand, a smaller block size provides greater flexibility in

accessing the data and can improve performance of the algorithm. An out-of-core algorithm

may not be optimal if it chooses the largest possible I/O block size when I/O on a much

smaller block can be performed efficiently. It is possible for an algorithm with more I/O

operations to be faster than another algorithm with fewer I/O operations. In the case of

out-of-core matrix transposition, if the thresholds are smaller thanN, the size of the matrix,

fractions of a row can be read and written with little additional penalty, irrespective of the

stride of access. In the extreme case, if each element is large enough to be read/written

individually, a simple single-pass element-wise transposition would be the most efficient.

3.3 Out-of-core Matrix Transposition

3.3.1 Problem Definition

Consider anN×N matrix that is stored in disk in row-major order. The system has

main memory, which can holdM elements, whereM < N2, M = O(N). Each element

of the matrix is too small to be read from and written to disk efficiently. The problem is

to transpose the matrix stored in disk, when only a portion ofthe matrix can be brought

into memory at any time. Matrix transpose is a key operation in various scientific applica-

tions. For example, the two-dimensional Fourier transform[8, 10] can be implemented as a

one-dimensional Fourier transform along the rows, followed by a one-dimensional Fourier

transform along the columns. For a matrix stored in disk in row-major order that is too

38

large to fit in memory, the most effective mechanism is to transpose the matrix before the

second pass.

This problem has been widely studied in the literature. A simple in-place element-wise

approach to transpose the matrix is prohibitively expensive as long as each element is not

large enough to be read (written) from (to) disk efficiently.The block transposition al-

gorithm transposes the array in a single pass inO(N3/2) I/O operations, where a pass is

defined as accessing each element from disk exactly once. An in-place transposition algo-

rithm requiringO(N logN) disk accesses was proposed by Eklundh [37]. This algorithm

requires at least two rows to fit in memory. Extensions to the algorithm for rectangular

matrices were later developed [6, 93, 113]. Kaushik et al. [57] improved upon these al-

gorithms by reducing the number of read operations. Suh and Prasanna [107] reduced the

in-memory in-place permutation time by using collect buffers, instead of in-memory per-

mutation, in addition to reducing the number of I/O operations. All these studies use the

number of I/O operations as the primary optimization metric.

Although the execution time of the solution provided has been improved by all these

efforts, the total execution time has not been used as the primary metric for optimization.

A reduction in the number of I/O operations, in most cases, translates to larger sizes of

I/O blocks. The importance given to reducing the number of I/O operations is due to the

fact that the disk access time, comprising disk seek time plus latency, is very large (on

the order of several milliseconds) compared to the per-bytetransfer time (on the order of

microseconds or less). If the I/O blocks read/written are relatively small, the total number

of I/O operations is indeed a suitable optimization metric.However, when the I/O blocks

get large, the data transfer time becomes significant and candominate the total access time.

In such a situation smaller block sizes can be read/written without any additional I/O cost.

39

But this might reduce the number of passes involved, thus improving performance. Since

previously proposed algorithms for out-of-core transposition have focused on reducing the

number of I/O operations, they can become sub-optimal when large block transfers are

involved.

All the algorithms in the literature determine the fundamental unit of I/O based on

the size of the matrix, i.e., they are data-centric. The basic unit of I/O operation in these

algorithms is one row of the matrix or a multiple thereof. They do not adapt to the I/O

characteristics of the system. In contrast, the approach proposed here takes into account

the empirically determined I/O characteristics of the diskand file system. The parameters

of the algorithm, including the basic unit of I/O and the estimate of the execution time of

the algorithm, are determined based on the empirically measured I/O characteristics.

3.3.2 Matrix Transposition Algorithms

In this section, we discuss some of the out-of-core matrix transposition algorithms from

the literature. The pseudo-code for the algorithms is givenwith focus on the I/O operations

performed in each algorithm. These algorithms are formalized in the next section.

Consider a square matrix of dimensionN = 2n. Let the number of elements that can be

brought into memory at any time beM = 2m. The memory can holdB= 2b rows, say, of the

input matrix, i.e.,B = M/N. Each algorithm runs in a certain number of passes. Each pass

involves reading the entire array from disk and writing it back. In each pass, the algorithm

goes through a sequence of steps, each of which involves three phases–reading data into

memory, permuting the in-memory data and writing it back to disk. All algorithms proceed

as a sequence of steps in each pass. A step is defined as the operations performed between

reading a portion of data into memory and writing it back to disk, including the read and

40

1: for i = 0 to N/
√

M−1 do
2: for j = 0 to N/

√
M−1 do

3: Readdata range[i ∗
√

M : (i +1)∗
√

M−1][j ∗
√

M : (j +1)∗
√

M−1]
4: Transposein memory
5: Write data range[j ∗

√
M : (j +1)∗

√
M−1][i ∗

√
M : (i +1)∗

√
M−1]

Algorithm 3.1: Block transposition algorithm

write operations. All algorithms in the literature work on disjoint ranges of data in each

step. Note that the algorithms discussed can be employed to transpose matrices whose size

is not a power of 2. We capture the basic idea of each algorithmand provide a formulation

for the out-of-core matrix transposition problem. This formulation is used to arrive at a

better algorithm.

The block-transposition algorithm is a single-pass algorithm for matrix transposition.

The algorithm blocks the input matrix into smaller matricesand recursively transposes the

embedded matrices. Algorithm3.1presents the block-transposition algorithm. Each step of

the algorithm involves
√

M read and write operations, each of
√

M elements. The algorithm

reads and writes at different locations in the matrix in any given step, thus requiring the des-

tination array to be different from the source array, i.e., the algorithm is out-of-place. Note

that the algorithm can be implemented as an in-place algorithm at the expense of increased

memory usage, similar to in-place in-memory matrix transposition algorithms [69, 15, 20].

Eklundh’s algorithm [37] does the transposition in-place inn/b passes. This algorithm,

shown as Algorithm3.2, requires thatn modb = 0. Each step of the algorithm involves

M/N read and write operations, each involvingN elements.

Kaushik et al. [57], shown as Algorithm3.3, improve upon Eklundh’s algorithm by

combining the reads. It is an out-of-place algorithm. In each step of the algorithm, one

41

1: for i = 0 to n/b−1 do
2: for j = 0 to N2/M−1 do
3: Read(M/N) rows starting with(⌊(j/Bi)⌋∗Bi+1+ j%Bi)-th row at a stride ofBi rows
4: Permute in memory
5: Write to the rows from which the data was read

Algorithm 3.2: Eklundh’s algorithm

1: for i = 0 to t−1 do
2: for j = 0 to N2/M−1 do
3: Read(M/N) contiguous rows starting at(j ∗M/N)-th row
4: Permute in memory
5: for k = 0 to M/si −1 do
6: Write si rows starting at(k∗si)-th row in memory to the array in disk starting at

the(j ∗ (M/N)/si +k)-th row at strideN/si rows

Algorithm 3.3: Kaushik et al.’s algorithm

read ofM elements andM/N writes, each ofN elements, are performed. In the most

general case,N is factorized intos0∗ . . . ∗ st−1 such that for anysi, si rows fit in memory.

The algorithm runs int passes. Kaushik et al. provide a solution when only one row fits in

memory, which cannot be handled by Eklundh’s algorithm. They also provide a mechanism

to use the maximum available memory.

Suh and Prasanna’s algorithm improves further upon Kaushik’s algorithm in two ways.

It reduces the in-memory permutation time by replacing in-place permutation by a series of

collect operations, in which the data to be written is collected into a buffer. The algorithm

also reduces the number of I/O operations by ‘chunking’ the writes. The writes that would

have been done at different offsets are done contiguously. This increases the write size

and reduces the number of writes. Each write operation in thei−th pass writeszi ∗N

elements instead ofN elements as written by Kaushik et al. In the subsequent pass,the

42

1: for i = 0 to t−1 do
2: for j = 0 to N2/M−1 do
3: Collect (M/N) rows that have been separated byzi−1 rows in the previous pass ⊲

Might involve multiple reads
4: Permute in memory
5: Write the permuted data to disk withzi rows in each I/O operation ⊲ Might involve

multiple writes

Algorithm 3.4: Suh and Prasanna’s algorithm

data that should have been written contiguously is ‘collected’ by performing a sequence of

reads. Thus the number of reads is increased from one in Kaushik et al. This mechanism

balances the number of reads and writes. The optimal value for zi was determined to be

√
si , at which point the number of writes equals the number of reads and the total number

of I/O operations is minimum. In the algorithms discussed sofar, each element is read

into memory exactly once in each pass. On the other hand, eachpassi in this algorithm

performs redundant reads to first collect the rows, that havebeen separated byzi−1 rows

by the previous write, into memory and then performs the permutation. This increases the

memory usage and potentially the total I/O cost if the memoryavailable is not sufficient to

retain all the read data in memory before the permutation canbe performed.

3.3.3 Formulation of Transposition Algorithms

In this section, the matrix transposition algorithms are formulated using the matrix

vector product notation described by Edelman et al. [36]. Transposition of a matrix can be

viewed as an interchange of the indices of the matrix. This isa particular instance of the

more general class of index transformation algorithms.

Each element of the array has a linear address vector obtained by concatenating the

column index to the row index, both indices being represented as bit vectors. Transposition

43

corresponds to a transformation of this linear address vector and can be represented by a

transformation matrix.

The identity of the transformation isI2n. Matrix transposition is defined as the transfor-

mation of the address vectori

i→ Ti

where T is the transformation matrix

(

0 In
In 0

)

.

We use the following notation in the discussion. Given two matricesA andB

A⊕B =

(

A 0
0 B

)

(3.1)

L(A,B) =

(

0 B
A 0

)

(3.2)

L(In, In) is the desired transformation. Since the transformed cannot be effected effi-

ciently for out-of-core matrices except with very large element sizes,L(In, In) is factorized

into a number of transformation matrices such that the transformation effected by each of

the matrices can be done efficiently with the memory available. The following discussion

provides the matrix vector formulation of various out-of-core matrix transposition algo-

rithms discussed in the previous section.

Any out-of-core matrix transposition algorithm consists of three phases–read, permute

and write. Each phase is modeled by a transformation matrix.These phases are repeated

on disjoint sets of data in the different steps of each pass. The algorithm might involve

many passes, each operating on the entire array. Thus, out-of-core matrix transformation

algorithms are of the form

L(In, In) =
i=0

∏
i=t−1

WiPiRi

44

whereWi is the transformation matrix corresponding to write,Ri is the transformation ma-

trix corresponding to read andPi corresponds to in-memory permutation for theith pass.t

is the number of passes. The algorithms under this formulation read some data, permute it

in memory, and write the data to disk before reading data for the next step in the same pass.

Each algorithm is defined by the parameterst, Wi , Pi, andRi .

Some restrictions apply to the possible values ofWi , Pi andRi . Each transformation

matrix must correspond to a transformation of the given out-of-core matrix that can be

efficiently done with the memory available. Thus, each step of the algorithm can operate

on at mostM elements. In particular,Wi , Pi , andRi must be expressed as

Ri = A2∗n−r ⊕ Ir r ≤m

Pi = I2∗n−m⊕Bm

Wi = C2∗n−w⊕ Iw w≤m

The restriction ofRi shows that the unit of read must be at leastR(= 2r) elements.

The transformation in the read operation as modeled byA determines the pattern of reads.

Similar restrictions apply for write operations. The restriction onPi shows that in-memory

permutation can transform only address elements corresponding to the data elements in

memory. Given these parameters, an out-of-core transposition algorithm can be imple-

mented as shown in Algorithm3.5.

3.3.4 Performance Analysis

In this section, we analyze the performance of various algorithms based on their for-

mulation. The parametersRi , Pi , andWi of each algorithm are determined and are used to

analyze the performance of the algorithm.

45

1: for i = 0 to t−1 do
2: for j = 0 to N2/M−1 do
3: ReadM elements at addressR−1

i (j) ⊲ Might involve multiple reads
4: Permute in memory according toPi

5: Write M elements at addressWi(j) ⊲ Might involve multiple writes

Algorithm 3.5: Generic transposition algorithm

The running time of an algorithm depends on the read, write, and in-memory permu-

tation times. The I/O time depends on the size and stride of I/O. r andw determine the

read and write block size, respectively, and hence are important parameters. In addition,

the stride of access plays an important role, as demonstrated by the I/O characteristics. The

strides of reads and writes are determined by theA andC sub-matrices, respectively. For

some algorithms it might be possible to rewriteA (C) asD⊕ Ik , for some matrixD. In such

cases the read (write) sizes can be larger than 2r(2w) elements.

Block Transposition

The 2n bits are partitioned into four components

I2n = IRH⊕ IRL⊕ ICH⊕ ICL

such thatRL+CL = m. The parameters are

t = 1

Ri = (IRH⊕L(IRL, ICH)⊕ ICL)

Pi = (IRH+CH⊕L(IRL, ICL))

Wi = (L(IRH, ICH⊕ ICL)⊕ IRL)

46

It is a single pass algorithm. The algorithm reads 2RL elements and writes 2CL elements

in one I/O operation. Generally the components are chosen such thatRL= CL producing

square blocks. The I/O size is typicallyO(
√

M) elements. Even for large memory sizes,

this would fall short of reaching the threshold leading to high I/O cost, making this a very

inefficient algorithm. Note that this algorithm is not inefficient due to the large number

of I/O operations involved (O(N3/2)), but because of the small I/O size. For systems with

memory large enough to makeO(
√

M) larger than the threshold, this algorithm is optimal.

But a more effective way of choosingRL andCL would be to minimize the total I/O

cost. Thus the problem becomes

RL+CL = m

minimize : cost(read)+cost(write)

A cost model for read and write can be derived from the I/O characteristics of the

system. These cost equations can be used to arrive at the bestparameters for the algorithm.

47

Eklundh’s Algorithm

Eklundh’s algorithm [37] has the following formulation:

b = m−n

I2n = In−b⊕ Ib⊕ In

t = n/b

Ri = (In−(i+1)∗b⊕L(Ib, Ii∗b)⊕ In)

Pi = (In−b⊕L(Ib,L(In−(i+1)∗b, Ib))⊕ Ii∗b)

Wi = (In−(i+1)∗b⊕L(Ii∗b, Ib)⊕ In)

R−1
i (=RT

i asRi is a permutation matrix) andWi are identical, indicating that the algo-

rithm can be executed in-place. Each phase (read, write, andpermute) of the algorithm

depends on the pass in which it occurs. The algorithm reads and writesN elements in each

I/O operation, independent of the I/O characteristic of theunderlying system. Hence the

algorithm might perform well on some machines and poorly on others. In addition, unless

the matrix size (N2) is of the order of terabytes,N is lower than the read threshold for the

systems analyzed in Section3.2.

48

Kaushik’s Algorithm

Kaushik’s algorithm discussed in Section3.3.2can be formulated in the following man-

ner, givensi = b, 0≤ i < t.

b = m−n

I2n = In−b⊕ Ib⊕ In

t = n/b

Ri = (I2n)

Pi = (In−b⊕L(In, Ib))

Wi = (L(In−b, Ib)⊕ In)

This is an out-of-place algorithm involvingt identical passes. The algorithm readsM

elements in one I/O operation, thus comfortably achieving the read threshold. Each write

involvesN elements. This algorithm improves on Eklundh’s by reducingthe read costs by

performing sequential reads of large size. This algorithm does not take advantage of the I/O

characteristics of the system, by writing smaller block sizes than a row, if little additional

cost is incurred. The in-memory permutation phase in every pass involves element-wise

permutation, unlike Eklundh’s algorithm which moves larger blocks with each pass. This

could increase the in-memory permutation cost as compared to Eklundh’s algorithm.

Suh and Prasanna’s Algorithm

This algorithm does not fit into the formulation discussed asit might involve redundant

reads. This algorithm improves upon Kaushik’s by reducing the number of I/O operations

49

and increasing the I/O size of writes. Instead of writing onerow at a time to enable con-

tiguous read in the next pass, the rows transformed by each step are chunked and written

back to disk. In the next pass, each read phase collects the rows to be transformed in the

current step from the chunks. Each row in a chunk is transformed in a different step in the

next pass. If a chunk brought into memory can be retained until the steps involving all its

rows can be processed, this algorithm improves upon Kaushik’s algorithm by balancing the

number of read and write operations and sizes. However, in attempting to balance the num-

ber of read and write operations the memory available is not taken into account. When the

chunks cannot be retained until they are fully processed, redundant I/O is incurred. Hence

the performance of the algorithm can vary dramatically depending on the parameters of the

problem. The algorithm usually benefits from an increase in memory, since an increase in

memory reduces the redundant data movement incurred.

3.3.5 Sequential Out-of-Core Matrix Transposition

Our algorithm tries to minimize the I/O time involved by choosing the parameters ap-

propriately. The observation that an increase in I/O size beyond the threshold does not

influence the performance of the algorithm is exploited. There is a trade-off between the

I/O size and the number of passes the algorithm requires. Thesmaller the I/O size, the more

the algorithm approaches the block-transposition algorithm and runs in a smaller number

of passes. However, reducing the I/O size below the threshold increases the I/O time above

the minimum possible.

The formulations of all algorithms discussed so far requiretwo parameters –m andn

– to derive a concrete list of operations. Our algorithm requires two additional parameters;

namely, the read block size (2r) and the write block size(2w). These are chosen to be close

50

to the threshold, with the exact value depending on the number of passes required for the

given block sizes. Smaller block sizes incur more I/O time but might potentially reduce the

number of passes, thus significantly reducing the total time. The most common scenario in

which an I/O block size smaller than the threshold is chosen is when such a choice reduces

the number of passes and offsets the additional cost incurred due to the smaller I/O size.

The number of rows to be transformed in each pass is determined as the maximum

possible. The chunking factor, the factor which determinesthe extent of chunking similar

to that in Suh’s algorithm, is chosen so that no redundant reads are incurred. This provides

the benefits of chunking, such as increasing the I/O size, without increasing the total I/O

time.

In other algorithms the basic unit of I/O is a row. The I/O transformation matrices are

of the formA⊕ In , while the required transformationL(In, In) involves exchanging the

upper and lowern address elements in the address vector. The nature of the I/Otrans-

formation matrices prevents any effective transformationfrom being done in the read and

write phases. The I/O phases ‘gather’ data to be permuted and‘scatter’ the result of the

permutation. In our algorithm, the I/O block size could be smaller thanN, sayB = 2b, in

which case the exchange(b. . .n−1)↔ (n+b. . .2∗n−1) can be done in the read and/or

write phases. This reduces the number of address vector elements to be transformed in the

in-memory permutation phase and might result in a reductionin the number of passes.

Our algorithm is formulated as shown below. The unit of each read and write is at least

2r and 2w elements respectively. Except in the first pass, the algorithm readsM elements

in each read operation. In the first pass, the read and write phases transform the address

vector elements(w : n− 1) to their appropriate positions. The remaining address vector

elements are transformed in the in-memory permutation phase of all the passes and the I/O

51

phases of the remaining passes.

Pre-conditions:

n≥ w

m≥ r ≥ w

m> w

Parameters:

s0 =

{

min(m− r,w) if r < n
min(m−n,w) if r ≥ n

t =

{

1 if s0 = w
1+ ⌈w−s0

m−w⌉ otherwise

si = min(m−w,w−s0− (i−1)∗ (m−w)) if 1 ≤ i < t

zi =

{

0 if i = t−1
m− (w+si+1) otherwise

52

First pass(i = 0):

Case 1(r ≥ n):

R0 = I2n

P0 = In−s0⊕L(Is0, In−w⊕L(Iw−s0, Is0))

W0 = L(In−s0, In−w+s0−z0)⊕ Iw+z0

Case 2(r < n):

R0 = In−s0⊕L(Is0, In−r)⊕ Ir

P0 = I2n−(r+s0)⊕L(Is0, Ir−w⊕L(Iw−s0, Is0))

W0 = L(In−s0, In−w+s0−z0)⊕ Iw+z0

Remaining passes:

spi =
i−1

∑
j=0

sj

Ri = I2n

Pi = I2n−(w+si+zi−1)⊕L(Isi , Izi−1⊕L(Iw−spi−si , Isi))⊕ Ispi

Wi = In−w⊕L(Isi−1−zi−1⊕L(In−si−1−si , Izi−1), Isi−zi)⊕ Iw+zi

With increasing memory size, modifying the I/O parameters provides diminishing im-

provements, unless it results in a reduction in the number ofpasses. Greater improvements

can be obtained if the additional memory available is used toimprove permutation time.

Kaushik does an in-place in-memory transposition. Suh usescollect buffers to collect data

to be written in each write operation. The locality of the permutation operation can be

53

Parameters:n = r = w = t = 2; m= 3; s= {1,1}; z= {0,0}
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Pass 0 (Case 1) :

R0⇒

R0 = I4

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

P0⇒

P0 = I1⊕L(I1,L(I1, I1))

0 4 2 6
1 5 3 7
8 12 10 14
9 13 11 15

W0⇒

W0 = L(I1, I1)⊕ I2

0 4 2 6
8 12 10 14
1 5 3 7
9 13 11 15

Pass 1 (sp1 = 1) :

R1⇒

R1 = I4

0 4 2 6
8 12 10 14
1 5 3 7
9 13 11 15

P1⇒

P1 = I1⊕L(I1, I1)⊕ I1

0 4 8 12
2 6 10 14
1 5 9 13
3 7 11 15

W1⇒

W1 = L(I1, I1)⊕ I2

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Table 3.2: Illustration of our matrix transposition algorithm

improved by optimizations such a blocking. We use collect operations to perform the per-

mutation, as this was empirically found to take less time than in-place permutation. Unlike

Kaushik’s and Suh and Prasanna’s algorithms, the in-memorypermutation in our algorithm

moves larger blocks of data in each successive pass. This further reduces the in-memory

permutation cost.

The transposition of a 4× 4 array by our algorithm is illustrated in Table3.2. The

parameters are on the left hand side. The actual data layout after each transformation is

shown on the right hand side.

54

3.3.6 Parallel Out-of-Core Matrix Transposition

In this section, the problem of transposing an out-of-core array distributed among mul-

tiple processors is discussed. Each processor has a local disk and the array is distributed

among the processors in a row-blocked fashion. The requireddistribution of the transposed

array among the processors is specified.

In the following discussion, we first formulate the representation of an array distributed

among multiple processors. Then an algorithm is provided for redistributing out-of-core

arrays in a parallel system. The array redistribution mechanism and the sequential transpo-

sition algorithm are combined to develop an out-of-core transposition algorithm for arrays

distributed among multiple processors.

Formulation for Arrays Distributed among Multiple Processors

The arrays are assumed to be distributed in a regular fashionso that some of the ele-

ments in the address vector represent the processor identifier. This corresponds to a map-

ping of the elements of the array to a sequence of processors.A row-blocked distribution

is obtained when the most significant elements in the addressvector represent the proces-

sor identifier. A cyclic distribution is obtained when the least significant elements of the

address vector represent the processor identifier.

We define the linear address vector of an element in the array to be the concatenation

of the local address vector of the element (in the local disk)to the processor identifier. This

view preserves the notion of contiguity of elements which differ in the least significant

elements of the address vector, analogous to the sequentialformulation. Hence the formu-

lation can represent read and write thresholds in the address vector and access pattern that

can take advantage of prefetching as well.

55

Given that the most significant elements in the linear address vector correspond to the

processor identifier, the distribution of the array among multiple processors corresponds to

choosing a set of elements in the address vector to become themost significant elements.

Hence array distribution among multiple processors can be viewed as a permutation of the

linear address space of the array. The identity for array distribution is I2n, which corre-

sponds to a row-blocked distribution. Any other distribution of data among processors is

viewed as a permutation on the row-blocked distribution. For example, a cyclic distribution

of an array among two processors corresponds to the following permutation:

(

0 1
I2∗n−1 0

)

Array Redistribution Problem

The array redistribution problem is stated as follows: Given an array distributed among

processors, represented by a permutation matrix, achieve atarget distribution correspond-

ing to a new permutation.

The array redistribution problem brings with it another cost factor in the form of com-

munication. Communication cost varies linearly and is modeled asTs+ l ∗Tb, whereTs is

the startup cost,l the message size andTb the per-byte transfer cost. Depending on the pa-

rametersTs andTb, beyond a message sizel , the transfer cost dominates the startup cost and

the average per-byte cost converges to a constant. The message size beyond which there

is little change in the communication cost is called the communication threshold 2c. Note

that as in the case of the read and write thresholds, the message size for a specific instance

of an algorithm may be chosen below the threshold, if it cannot be improved upon. The

communication characteristics of various systems have been widely studied and we do not

discuss them here. For the following discussion, it is assumed that there are 2p processors.

56

The uppermostp rows of any permutation matrix correspond to the elements that constitute

the processor identifier. The least significantc elements of the address vector correspond

to the communication threshold. The terms read, write, and communication thresholds will

be used interchangeably to refer to the size of I/O andr, w ,andc least significant elements

in the address vector, respectively. The reference will be clear from the context.

The formulation of the parallel redistribution problem involves four permutation matri-

ces — read, write, in-memory permutation, and communication. Extending the template

for the formulation of read, write, and in-memory permutation discussed in Section3.3.3

to the parallel domain, we get

Ri = Ip⊕A2∗n−r−p⊕ Ir r ≤m

Pi = I2∗n−m⊕Bm

Wi = Ip⊕C2∗n−w−p⊕ Iw w≤m

which indicates thatRi , Wi andPi cannot permute the elements corresponding to the pro-

cessor identifier. Only communication can permute the elements corresponding to the pro-

cessor identifier. The permutation corresponding to communication is of the form

Ci = D2∗n−c⊕ Ic

whereD describes the permutations done by communication.

Note that there are some restrictions onCi , similar to those onRi , Wi , andPi , as dis-

cussed in Section3.3.3. Ci cannot permute between address elements corresponding to

in-memory and out-of-memory data (the elements corresponding to the processor identi-

fier are special and will be discussed below). Any permutation except those involving the

57

processor identifier can be performed byPi andWi . Therefore, we place additional re-

strictions onCi , so that it can only involve permutations required to changethe processor

identifier. In most practical systems,c is smaller thanr andw; and we assume the same.

Array redistribution may involve permutations of three kinds. First, it may involve

the exchange of address vector elements that are part of the processor identifier. This is

achieved by an exchange of data between processors. Although an equivalent effect could

be achieved by relabeling the processors, this cannot generally help us avoid inter-processor

communication in practice, because multiple arrays are generally present and the processor

relabeling will often force communication for other arrays.

The second kind of exchange occurs when elements within the communication thresh-

old are to become part of the processor identifier. Any permutation involving the elements

beyond the communication threshold is performed by an all-to-all personalized collective

communication operation. If we have more thanm−c address elements within the commu-

nication threshold, that are to become elements corresponding to the processor identifier,

then a sequence of in-memory permutation and communicationoperations are carried out.

Each in-memory permutation operation moves as many elements from within the commu-

nication threshold to be beyond the threshold as possible. These elements are then made

part of the processor identifier by a scatter operation. Thisprocess is repeated until there

are no more elements in the least significantc address elements that are to be part of the

processor identifier. Thus any element already part of the processor identifier or within

the least significantm elements (memory size), that are to become part of the processor

identifier, can be made part of the processor identifier in a single pass.

A more complicated operation is required when we need to permute the elements cor-

responding to the processor identifier with those beyond theleast significantm elements.

58

This involves a collect operation by each processor. The difference in handling this case

and the previous two cases is that in the previous two cases all processors perform the same

operations throughout each pass. In this case, each processor collects all the data in mem-

ory from certain other processors in turn, in different iterations of the loop. Since all the

collected data cannot be stored in memory, the data receivedfrom each processor must be

written to disk. This interleaves communication and write operations, breaking the clear

demarcation between the phases. Since this case essentially involves writing the data to

disk, it is handled after the other two cases.

The above approach may not be the most efficient way of performing the array redistri-

bution. In handling the last case, each processor might receive data from a different set of

processors in different iterations. Each receive is separated by a write to disk. Hence the

communication and write times cannot overlap, leading to very poor execution time espe-

cially when the number of processors is large. A more optimalimplementation would be

to schedule the communication among processors so that theyoverlap. A simple schedule

would be for each processor to operate on data that has to be sent to one processor and then

begin processing data to be sent to another processor. Each processor would be sending

to and receiving data from a different processor, say in a ring topology, enabling overlap

of communication and writing of data to disk. But this would modify the read and write

access patterns by reordering of the reads and writes. The performance is not significantly

impacted as the block size of I/O can been chosen to be large enough.

Hence all communication required to handle array redistribution can be done in a single

pass. The implementation of this phase might involve a series of communications as just

described. Henceforth we shall refer toCi as the permutation effected on the linear address

by the communication step and not delve into the implementation details.

59

Combining Array Redistribution and Sequential Matrix Tran sposition

In this section, we combine the mechanisms considered untilnow, to derive an algo-

rithm for transposing out-of-core matrices which are distributed in a row-blocked fashion

among multiple processors. Row-blocked distribution of data involves a permutation that

is similar to transposition. Other regular data distributions can be characterized using other

permutations. The approach presented applies to arbitraryregular distributions, but we only

elaborate on the row-blocked case to illustrate the procedure involved.

The parallel version of the algorithm differs from the sequential version only in the

first pass. Since array redistribution can be performed in a single pass, it is performed in

combination with the first pass of the sequential algorithm.Subsequent passes are identical

to running the sequential algorithm on all the processors. The first pass for the parallel

algorithm is as follows:

• Read as in sequential case (Ri)

• Perform in-memory permutation as in sequential casePi

• Perform array distribution, handling the different cases discussed above

• Perform any permutation need to regroup the data

• Write data to disk

The subsequent passes are identical to those in the sequential version. Thus the parallel

version does not lead to an increase in the number of passes inthe form of additional reads

or writes. The formulation for the first pass is as shown below:

60

Pre-conditions:

n ≥ w

m > r ≥ w

m > w

Parameters

T =
0

∏
t−1

Ti

Ti =

{

WiPiRi if i > 1
WiP′i HiPiRi otherwise

s0 =

{

min(m− r−1,w) if r < n
min(m−n−1,w) if r ≥ n

s′ =

{

p− (n−w) if p > (n−w)
0 otherwise

t =

{

1 if s0+s′ = w

1+ ⌈w−s0−s′
m−w ⌉ otherwise

k = (w−s0−s′) mod(m−w)

si =

{

k if i = t−1 andk > 0
m−w otherwise

61

Case 1: (r ≥ n)

R0 = I2n

P0 = I2n

H0 = L(Ip,L(In−p, Ip))⊕ In−p

P′0 = In−s0⊕L(Is0, In−w⊕L(Iw−s0, Is0))

W0 = Ip⊕L(In−p−s0,L(Ip, In+s0−p−w))⊕ Iw

Case 2: (r < n∧ p≤ (n−w))

R0 = In−s0⊕L(Is0, In−r)⊕ Ir

P0 = I2n−(r+s0)⊕L(Is0, Ir−w⊕L(Iw−s0, Is0))

H0 = L(Ip,L(In−p−s0, Ip))⊕ In+s0−p

P′0 = I2n

W0 = Ip⊕L(In−p−s0,L(Ip, In+s0−p−w))⊕ Iw

62

Parameters:n = m= t = 2;r = w = p = 1;s= {0,1};s′ = 0

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Pass 0 (Case 2):

R0P0⇒

R0 = I4
P0 = I4

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

H0⇒

H0 = L(I1,L(I1, I1))
⊕I1

0 1 8 9
4 5 12 13
2 3 10 11
6 7 14 15

P′0W0⇒

P′0 = I4
W0 = I1⊕L(I1, I1)⊕ I1

0 1 4 5
8 9 12 13
2 3 6 7

10 11 14 15

Pass 1:

R1⇒

R1 = I4
0 1 4 5
8 9 12 13
2 3 6 7

10 11 14 15

P1⇒

P1 = I2⊕L(I1, I1)
0 4 1 5
8 12 9 13
2 6 3 7

10 14 11 15

W1⇒

W1 = I1⊕L(I1, I1)⊕ I1
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Table 3.3: Illustration of our parallel matrix transposition algorithm

Case 3: (r < n∧ p > (n−w))

R0 = In−s0⊕L(Is0, In−r)⊕ Ir

P0 = I2n−(r+s0)⊕L(Is0, Ir+p−n⊕L(In−p−s0, Is0))

H0 = L(In−w⊕L(Ip−(n−w), In−p−s0), Ip)⊕ In−p+s0

P′0 = I2n−w−s0⊕L(Ip−(n−w), Is0)⊕ In−p

W0 = Ip⊕L(I2n−p−w−s0, Is0)⊕ Iw

63

There are some noticeable differences in the first pass as compared to that in the se-

quential algorithm.H0 represents the array redistribution phase. The first pass consists of

five phases. There are two in-memory permutation steps,P0 andP′0, that prepare data for

communication and regroup the data before writing to disk. This could involve a series of

interleaved permutation and communication steps, where the communication steps satisfy

the communication threshold. Communication requires buffers to store the received data,

in addition to the data read from disk, which might be sent to another processor in parallel.

Thus the amount of memory available should be at least twice the read block size chosen.

An increase in the number of processors implies an increase in the total available memory.

If the number of processors is large enough, the communication phase can contribute to

permuting the address elements within the write threshold.This factor is represented bys′.

When the number of processors is large enough to contribute to permutation of the linear

address, the communication and in-memory permutations involved are different from when

it is not. The formulation handles all the different cases.

The transposition of a 4×4 array is illustrated in Table3.3. The array is distributed

in a row-blocked fashion among 2 processors. The transposedarray is also required to be

in a row-blocked distribution. In terms of data, the top halfof the matrix is stored in the

first processor’s disk, the bottom half on second processor’s disk. The parameters of the

algorithm are shown on the left hand side of the table. The actual data layout is shown on

the right hand side. The algorithm requires two passes to transpose the array. In the first

pass, no elements within the write block size are permuted and no in-memory permutation

is done. In the illustration, these permutations are combined with other phases to simplify

the figures, as they are just identity transformations. Uponcompletion of the first pass,

the elements have been redistributed to the target processors. In the second pass, each

64

processor permutes the array independently to arrive at thetransposed form. Note that the

reads and writes conform to the read and write block sizes, thus ensuring high bandwidth

for disk I/O.

3.3.7 Experimental Evaluation

We now discuss experimental results obtained from evaluating the parallel transposition

algorithm on the amd-osc and ia64-osc clusters. Both clusters use the Myrinet [13] inter-

connection network. The implementation was out-of-place and used an auxiliary array.

The transposition times for different memory sizes and numbers of processors were

measured. Tables3.4 and3.5 show the transposition times on ia64-osc for array sizes of

16GB (N=64K) and 64GB (N=128K). Tables3.6 and3.7 show the transposition times on

amd-osc for the same array sizes.

In both systems the read threshold was much higher thanN. So the execution time was

determined primarily by the write threshold. Increasing the memory available decreases

the number of I/O operations. If I/O operations were an effective measure of performance,

doubling the memory size should halve the execution time. But the execution time im-

proves little with increase in memory size, except when the larger memory size leads to a

reduction in the number of passes. Reduction in the number ofpasses is accompanied by

a significant reduction in the total execution time. This canbe seen, for example, in the

transition from 32MB to 64MB on one processor in Table3.6. The slight improvement

seen with the increase in memory size is due to a reduction in the stride of writes. The

write block size is reduced to be below the write threshold ifit can reduce the number of

passes and hence the total execution time. This is the case for 64MB memory on the one

processor in Table3.6. In certain cases, the stride of write is so large as to wrap around

65

#procs Memory size (MB)

16 32 64 128 256 512

1 3406 3322 2265 2230 2003 2079
2 1536 1127 962 949 984 1006
4 740 542 484 483 475 474

Table 3.4: Parallel matrix transposition time, in seconds,on ia64-osc. Array size is 16GB
(N=64K)

and result in the writing of adjacent blocks before earlier written blocks have been flushed

to disk. This leads to larger write block sizes and hence shorter total execution time. This

trend can be especially seen in Table3.6at the transition in the number of passes, when the

write block size is reduced to avoid an increase in the numberof passes.

The parallel algorithm scales well with an increase in the number of processors. A

slightly super-linear speedup can be seen in some cases. This is due to improved locality in

I/O. Note that for an array size of 16GB and for four processors, the portion of each array

in a processor is 4GB, equal to the memory size in the Itanium 2cluster. But since there

are three arrays the arrays are not fully cached in memory, making the results dependent

on the operating system caching mechanism. In some cases, anincrease in the number of

processors reduces the number of passes, thus significantlyreducing the execution time.

This effect can be observed in Table3.6 for a memory size of 32MB, when the number of

processors is increased from one to two.

66

#procs Memory size (MB)

16 32 64 128 256 512

4 3448 3252 3213 2102 2907 2801
8 1470 1533 1469 921 985 1007

Table 3.5: Parallel matrix transposition time, in seconds,on ia64-osc. Array size is 64GB
(N=128K)

#procs Memory size (MB)

16 32 64 128 256 512

1 7443 7386 3344 4254 4374 4223
2 3865 2098 2179 2253 2333 2207
4 1971 981 1142 1131 1165 1122
8 995 583 549 688 638 560

Table 3.6: Parallel matrix transposition time, in seconds,on amd-osc. Array size is 16GB
(N=64K)

#procs Memory size (MB)

16 32 64 128 256 512

4 8122 6365 4948 3959 3855 3923
8 3523 3469 2695 2167 2046 1855

Table 3.7: Parallel matrix transposition time, in seconds,on amd-osc. Array size is 64GB
(N=128K)

67

3.4 Out-of-core Matrix Reblocking

3.4.1 Background

This work is done in the context of the Global Arrays programming suite. The Global

Arrays suite [85] provides a set of inter-operable programming models, eachat a different

level of abstraction. At the lowest level is MPI, a distributed-memory programming model

with message passing for two-sided communication. Though MPI is not part of the suite,

it is fully inter-operable with the abstractions provided in the suite, and is an integral part

of the hierarchy of abstractions presented to the user.

The Aggregate Remote Memory Copy Interface (ARMCI) library[83] provides a distributed-

memory view with one-sided access to remote data. It has a rich set of primitives for

non-blocking operations, and contiguous and non-contiguous data transfers optimized to

hide latency. ARMCI forms the underlying communication layer for a number of com-

pile/runtime systems, including Co-Array Fortran [24], GPSHMEM [90], and Global Ar-

rays.

The next higher level is the Global Arrays (GA) library. [84, 86]. GA exposes a global

view of a dense multi-dimensional array distributed amongst the local memories of proces-

sors. It provides a shared-memory programming model in which data locality is explicitly

managed by the programmer. Explicit function calls are usedto transfer data between

global address space and local storage. It is similar to distributed shared-memory mod-

els in providing an explicit acquire-release protocol, butdiffers with respect to the level

of explicit control in moving blocks of data in multidimensional arrays between remote

global storage and local storage. The functionality provided by GA has proved useful in

the development of large scale parallel quantum chemistry suites such as NWChem [47]

68

(which contains over a million lines of code), adaptive meshrefinement codes such as

NWPhys/NWGrid (www.emsl.pnl.gov/nwphys) and applications in other areas [85].

The Disk Resident Arrays (DRA) model [86] extends the GA programming model to

secondary storage. It provides a disk-based representation for multi-dimensional arrays and

operations to transfer blocks of data between global arraysand disk resident arrays.

Global Arrays allows the user to assume a shared-memory programming model, while

simultaneously supporting mechanisms to query for and manipulate local data. Thus it

also enables incremental optimizations. ARMCI, GA, and DRAprovide a unified pro-

gramming model for handling different levels of the memory hierarchy in which the user

controls the location of data in the memory hierarchy. This has been shown to achieve high

performance, while being a simpler programming model than message passing.

3.4.2 Problem Definition

Internally, the data in a DRA is stored in a blocked fashion. When a DRA is created, a

typical request shape/size can be specified. This is used to determine the shape of the basic

layout block or “brick”. The shape of the brick is chosen to match the specified access

shape. The size of the brick is chosen as a compromise betweentwo competing objectives:

1) optimize disk I/O bandwidth – this requires that the bricksize be large enough to amor-

tize the disk seek time and 2) minimize wastage of disk I/O – since I/O is done in units

of the basic block (brick), small bricks imply less wastage at the boundaries of the DRA

regions being read/written.

An application might have an access pattern that is very different from the organization

of the DRA on disk. This can happen when an application uses the output of another

program, or because different phases of the same program usedifferent access patterns.

69

This can be handled by creating another copy of the disk resident array to match the new

request size and transformed dimensions.

We have implemented the copy routine, referred to asNDRA Copy, together with di-

mension permutation. The routine takes as input the source and target DRA handles and the

dimension permutation to be performed. Henceforth, the data in the DRA corresponding

to the dimensions of blocking in the source and target arraysare referred to as the source

and target blocks, respectively.

The disk array layout transformation problem we consider here is a generalization of the

out-of-core matrix transposition problem. Most existing solutions to the problem, including

our solution presented earlier, assume the array dimensions and the memory size to be

powers-of-2. This assumption, coupled with the fact that the required transformation is a

transposition, allows different steps in the re-blocking process to operate on disjoint sets of

data. In each step, the set of data read into memory form an integral number of write blocks,

which are written out. So no data is retained across steps during the transposition. When

arbitrary blocking, array dimensions and memory sizes are to be handled, it may not be

possible to process and write out all the data read into memory in a given step. Some data

either needs to be discarded and re-read, increasing the I/Ocost, or needs to be retained,

increasing the memory requirement. The memory cost for retaining the data unused from a

step depends on the order of traversal of dimensions, and hence is not straight forward. The

out-of-core transposition algorithms involve I/O of blocks of data at specific strides, which

is fixed for a pass. This regularity allows better predictionof the I/O cost. The in-memory

permutation of data can be modeled as a bit-permutation on the linear address space of the

data stored in disk. This provides a regular structure to thein-memory computation.

70

3.4.3 Algorithm Design

The disk array layout transformation problem is modeled as an I/O optimization prob-

lem. The total I/O cost is to be minimized, subject to the amount of physical memory

available. In the ensuing discussion, we shall consider ann-dimensional matrix of dimen-

sions〈d1, . . . ,dn〉, with blocks of shape〈s1, . . . ,sn〉. The target matrix has the same ordering

of dimensions as the source but is blocked using blocks of shape 〈t1, . . . , tn〉. The source

and target bricks are assumed to be of size that is large enough for efficient access from/to

disk. DRA typically uses a brick size of around 1 Mbyte. Readsfrom the source disk array

are assumed to be in units of the source brick, and writes to the target disk array are done

in units of the target brick.

Solution Approach

If feasible, a single-pass solution (in which each element is read and written exactly

once) would provide the minimum I/O cost. But the memory requirement for a single-

pass solution might exceed the physical memory available. In this case, we either need

to choose a multi-pass solution or perform redundant I/O in one pass. In this sub-section,

we present the intuition behind the design of our algorithm.We begin with a basic single-

pass algorithm and determine its I/O and memory cost. We thenincrementally improve the

single-pass algorithm to lower the memory requirement and/or the I/O cost. The multi-pass

solution is discussed in a subsequent sub-section.

Consider the region〈0− LCM(s1, t1), . . . ,0− LCM(sn, tn)〉. This region contains an

integral number of source and target blocks along all the dimensions. Thus the data in the

source matrix from this region maps onto complete blocks in the target matrix. This region

can be processed independent of other such regions, withoutany redundant I/O. We shall

71

refer to such regions asLCM blocks. If the amount of physical memory were large enough

to hold an LCM block, then a single-pass solution is clearly possible – read in source blocks

contained in an LCM block into memory, construct the target blocks corresponding to the

data in memory, and write them to the target array. The I/O cost is defined as the I/O

required per element of the source array. This algorithm hasthe minimum I/O cost of one

read and one write per element of the source array. Assuming the read and write operations

are equivalent the I/O cost is two units per element.

The memory cost is the size of the LCM block. Since arbitrary re-blocking needs to be

supported, the source and target block sizes could have arbitrary dimensions (provided their

total size corresponds to a reasonable block size for I/O on the target file system). Hence

the LCM block can be arbitrarily large and might not fit in physical memory. We can

improve the single-pass algorithm to handle this scenario without increasing the I/O cost.

Instead of reading entire LCM blocks into memory, the algorithm reads in a set of blocks

of data from the source matrix and writes out those target blocks that can be completely

constructed from the data available in memory. Any data in memory that cannot be used

to construct a complete target block is retained in memory. Any source block in an LCM

block contributes to target blocks within the same LCM block. Hence no data needs to be

retained across LCM blocks. The algorithm processes all thedata in one LCM block before

processing any other LCM block. The algorithm requires enough memory to retain unused

data and read in additional data for processing. The additional data read into memory for

processing must be enough to write at least one target block to disk. This is referred to

as the Max block and corresponds to〈M1, . . . ,Mn〉 whereMaxi = ⌈max(si, ti)/si⌉∗si . The

algorithm traverses each LCM block along each of the dimensions and processes data in

units of the Max block. The buffer to store the unused data is partitioned into one buffer

72

per dimension. Unused data from a Max block along a dimensionneeds to be retained until

the adjacent Max block along that dimension is processed. Thus the amount of unused

data to be retained depends on the order of traversal of dimensions. Along the dimension

traversed first, only data unused from the last processed Maxblock needs to be stored.

Other dimensions require more data to be retained. A static memory cost model is used, in

which the sizes of buffers used to store data is determined before the transformation begins.

The maximum memory required to perform the transformation is the sum of the size of the

Max block and the sizes of the buffers.

MemCost= ∑n
i=1bsizei +∏n

i=1Maxi

where bsizei represents the size of buffer to store unused data along thei-th dimension.

Let 〈T1, . . . ,Tn〉 be the order of traversal of dimensions. The unused data along a dimen-

sion (sayTi) is ann-dimensional region. For a given dimensioni, the size of this region

along dimensionj can be as much as LCM(sTj , tTj) for j < i, but is bounded above by

MaxTj for j > i. Hence, the size of the buffer to store the unused data along adimensionTi

is bounded by

bsizeTi = ∏n
j=1Sj

Sj =

LCM(sTj , tTj) if j < i
UTj if j = i

MaxTj if j > i

whereUi be the maximum unused data that needs to be stored along dimension i. Since

Ui must be smaller than bothsi andti, and for everysi elements along dimensioni brought

into memory, at least gcd(si, ti) elements must be written out, we have

Ui = min(si, ti)−gcd(si, ti)

For a two-dimensional array, the memory cost due to the unused buffers isU1∗Max2+

LCM(s1, t1)∗U2 if dimension 1 is traversed first; otherwise, it isU2∗Max1+LCM(s2, t2)∗

73

1: function MEMCOST(s,t,templ)
2: Input : Source and target block sizes, and template size
3: Output : Total memory cost, dimension traversal order
4: for each dimensioni do
5: Li = lcm(si , ti)
6: Ui = min(si , ti)−gcd(si , ti)
7: Mi = ⌈(max(si , ti)/si)⌉∗si

8: Sort dimensions into array T such that(∀i, j) i < j ⇒ (UTi ∗MTj + LTi ∗UTj < UTj ∗MTi +
LTj ∗UTi)

9: memCost=0
10: for each dimensioni do
11: pdt= UTi

12: for each j < i do
13: pdt= pdt∗LTj

14: for each j > i do
15: pdt= pdt∗MTj

16: memCost+ = pdt
17: return 〈memCost,T〉

Algorithm 3.6: Algorithm to determine the memory cost for a given template size

U1. In ann-dimensional array, the traversal order is determined by sorting the dimensions

by comparing these expressions.

As can be seen from the above formulae, the sizes of the unusedbuffers is proportional

to the LCM block dimensions. This could lead to situations inwhich the memory require-

ment still exceeds the available memory. In this case, thereare two options to be consid-

ered. A multi-pass solution could be determined, which is discussed later, or a single-pass

solution that performs redundant read of data can be designed.

We propose a single-pass algorithm that differs from the discussion above in one re-

spect. Instead of traversing an entire LCM block, a smaller template is chosen. No unused

data is stored across templates. A template is an integral number of write blocks along

all dimensions. There is no redundant read within a template. But unlike LCM blocks,

templates might have source blocks on their boundaries thatstraddle across two templates.

74

This results in redundant reads across templates, increasing the I/O cost. The memory cost

is reduced and is given by:

MemCost= ∑n
i=1bsizei +∏n

i=1Maxi

bsizeTi = ∏n
j=1Sj

Sj =

templTj
if j < i

UTj if j = i
MaxTj if j > i

where templi represents the size of the template along thei-th dimension.

The minimum template size corresponds to a target block. In this case, the memory

requirement is reduced to a Max block. Thus the necessary condition for the existence of a

single-pass solution is that the Max block fit in memory.

The I/O cost is multiplicative along the dimensions. Withinan LCM block, the number

of source blocks that need to be reread is the number of templates minus one, which is

(⌈LCM(si, ti)/templi⌉−1). Therefore, the I/O cost of re-blocking is given by templi is

IOCost= ∏n
i=1 IOCosti

lcmi = LCM(si, ti)

IOCosti =
si∗

(⌈

lcmi
templi

⌉

−1

)

+lcmi

lcmi

In reality, the LCM along a dimension might be larger than thelength of the array along

the dimension, in which case we replace the LCM by the array dimension. Note that the

array dimensions are not considered while determiningUi. Hence,Ui does not provide an

exact estimate, but only an upper bound on the memory requirement. Even though this

approach might increase the I/O cost for a single pass, the total I/O cost could be reduced

due to a reduction in the number of passes.

75

1: function SINGLEPASSSOLUTION(s,t,MemoryLimit)
2: Input : Source and target block sizes, and memory Limit
3: Output : I/O cost, template size, and dimension traversal order
4: (∀i) templi = lcm(si , ti)
5: 〈cost,T〉 = MemCost(s,t,templ)
6: while cost> MemoryLimit do
7: (∀i) templi = templi - 1
8: if (∃i) templi ≤ 0 then
9: return 〈∞, templ,T〉

10: 〈cost,T〉 = MemCost(s,t,templ)
11: Adjust the template size so that increasing the template size along any dimension makes it

infeasible
12: while true do
13: Among adjacent template sizes choose the one that has the maximum rate of decrease

in I/O cost to increase in memory cost
14: Determine a feasible template, templ’ that leads to the least increase in disk I/O cost

from the chosen template
15: if DiskCost(templ)≤ DiskCost(templ’)then
16: return 〈DiskCost(templ), templ,T〉
17: templ = templ’
18: 〈cost,T〉 = MemCost(s,t,templ)

Algorithm 3.7: Algorithm to determine template size for a single-pass solution.

Template Determination for Single-Pass Solution

Both the I/O cost and the memory cost are affected by the choice of the template. The

template is a set of write blocks along all the dimensions. Itcan range in size from one

write block to an LCM block. For re-blocking ann-dimensional array, the template needs

to be determined from ann-dimensional solution space. A template is a feasible solution

if its processing does not require more memory than available. The algorithm exploits the

characteristics of the solution space and the optimizationfunction.

Consider a templateA. An enclosing template is defined as a template that is at least

as large as the given template in all the dimensions. LetB be an enclosing template of

A. From the memory cost equations, it can be seen that the memory required to process

76

A cannot exceed that required to processB. Conversely, processingB requires at least as

much memory as processingA. This implies that once a template has been determined to

require more memory than available (an infeasible solution), no enclosing templates needs

to be considered. This relation separates the solution space into a feasible and an infeasible

solution space (where the surface of separation approximates to a hyperbola whenn = 2).

The I/O cost has a similar characterization. The I/O cost equation shows that decreas-

ing the template size along any dimension increases the I/O cost. Thus the I/O cost of

templateA is at least as much as that of templateB. This implies that when searching

through the solution space, no template that is enclosed by afeasible template needs to be

considered. Thus the optimal solution resides on the surface separating the feasible and

infeasible solution spaces.

Our algorithm to determine the template for a single-pass solution involves three phases.

The algorithm begins with the LCM block as the template and tests for feasibility. If an

LCM block is the feasible solution, it is chosen as the template. Otherwise, a solution

is chosen that is just feasible, i.e., increasing the template size along any dimension vio-

lates the memory constraint. This is a solution on the boundary between the feasible and

infeasible solution spaces and hence is a candidate solution. From this solution, we per-

form a steepest descent to arrive at a local minimum in the search space. Note that other

optimization algorithms that can optimize on a surface can be used.

Multi-pass Solution Determination

When a single-pass solution does not exist or is too expensive, a multi-pass solution

is chosen by determining intermediate block sizes. An intermediate disk-based array is

used to store the intermediate results. Hence, additional disk space equal to the size of the

77

1: function MULTI PASSSOLUTION(s, t, arraySize, MemoryLimit)
2: Input : Source and target block sizes, array size, memory limit
3: Output : Total I/O cost and passes
4: 〈sCost,sTemplate,sDimOrder〉 = singlePassSolution(s,t, MemoryLimit)
5: if sCost= 2 * arraySizethen ⊲ Minimum I/O Cost possible
6: return 〈 sCost,list(〈sTemplate,sDimOrder〉)〉
7: (∀i)ci = ⌊√si ∗ ti⌋
8: (∀i)c1i = s2/3

i ∗ t1/3
i

9: (∀i)c2i = s1/3
i ∗ t2/3

i
10: 〈cost1a,passes1a〉 = MultiPassSolution(s, c,arraySize,MemoryLimit)
11: 〈cost1b,passes1b〉 = MultiPassSolution(c, t,arraySize,MemoryLimit)
12: 〈cost2a,passes2a〉 = MultiPassSolution(s, c1,arraySize,MemoryLimit)
13: 〈cost2b,passes2b〉 = MultiPassSolution(c1, c2,arraySize,MemoryLimit)
14: 〈cost2c,passes2c〉 = MultiPassSolution(c2, t,arraySize,MemoryLimit)
15: cost = min (sCost,cost1a+cost1b,cost2a+cost2b+cost2c)
16: if cost = sCostthen
17: passes = list(〈sTemplate,sDimOrder〉)
18: else ifcost = cost1a+cost1bthen
19: passes = concatLists(passes1a,passes1b)
20: else ifcost = cost2a+cost2b+cost2cthen
21: passes = concatLists(passes2a,passes2b,passes2c)
22: return 〈cost,passes〉

Algorithm 3.8: Algorithm to determine a multi-pass solution

arrays is required. The multi-pass solution proceeds as repeated execution of the single-

pass algorithm, for the source and target block sizes determined for that pass. The source

block size of the first pass is the block size of the source array. The target block size of

the last pass if the block size of the target array. The skew between the source and target

block sizes decreases as the multi-pass solution proceeds from one pass to the next. The

intermediate block size are chosen to effect the maximum re-blocking possible with the

available memory.

78

A simple heuristic is used to determine the intermediate tile sizes for the multi-pass

solution. Two candidate intermediate block sizes are considered. The first candidate inter-

mediate block size is the geometric mean of the source and target block sizes. This block

size is “equidistant” from the source and target block sizes. This can be an effective inter-

mediate block size of for solutions with an even number of passes. The second intermediate

block size is, in fact, a pair of block sizes. Letsi andti be the source and target block sizes

along dimensioni. The intermediate block sizes chosen ares2/3
i ∗ t1/3

i ands1/3
i ∗ t2/3

i . This

pair of intermediate block sizes can be effective for solutions with an odd number of passes.

These two options allow a more refined search for intermediate block sizes. Without the

second choice, any solution that requires an odd number of passes, each transforming to an

intermediate block “equidistant” from the previous one, might be harder to achieve. Higher

order intermediates were not considered as solutions with alarger number of passes seldom

occur in practice and can be handled by a combination of thesechoices.

Once the intermediate block(s) are determined, the multi-pass solution is determined

recursively for transforming from source to intermediate,and intermediate to target block

sizes. In the case of two intermediate blocks, the transformation between the intermediate

blocks is determined as well. The algorithm for determiningthe multi-pass solution is

shown in Algorithm3.8.

Consider an instance of the matrix re-blocking problem in which the source and tar-

get arrays are blocked as〈32,9〉 and〈5,16〉, respectively. The array dimensions are much

larger than the blocking and hence are not considered. The Max block is 〈32,16〉 and

the unused data along each dimension is bounded by〈4,8〉. The solution to the re-blocking

problem depends on the memory available. An LCM block containsLCM(s1, t1)∗LCM(s2, t2)

79

1: Input : Source and target DRAs [ds] and [dt]
2: Output : dt contains the data inds

3: Determine the multi-pass solution
4: Create a file as an intermediate. Use space indt as the other intermediate
5: for each passdo
6: Determine source and target files for this pass (so that the target in the last pass isdt)
7: Allocate memory for unused buffers along each dimension, the buffer to contain the Max

block, and a write block
8: for each templatet do
9: while Max blocks remain to be processeddo

10: Readthe next Max block into memory from the source
11: Construct complete write blocks from Max block and unused buffers
12: Write the constructed complete write blocks to target
13: If Max block contains unused data corresponding to current template, store it into

unused buffers
14: Delete the temporary file

Algorithm 3.9: Algorithm for sequential implementation oflayout transformation

= 23040 elements. When enough memory is available to hold an LCM block, the re-

blocking can be performed by reading in an entire LCM block and writing out the target

blocks. But if the memory can holdU2 ∗Max1 + LCM(s2, t2) ∗U1 + Max1 ∗Max2=1344

elements, it is sufficient to hold all unused data when an LCM block is processed. The

second dimension is traversed first in the re-blocking procedure. If the memory available

is lesser, say enough to hold just 900 elements, a single-pass solution with a template size

of 〈120,6〉 elements is used for the re-blocking. When the memory size is800, a two-pass

solution with an intermediate tile size of〈12,12〉 is determined. The template for the first

pass is〈96,12〉, and that for the second pass is〈60,48〉.

3.4.4 Implementation

A pseudo-code for the sequential implementation, using fileI/O, is shown in Algo-

rithm 3.9. The number of passes and the intermediate block sizes for each pass are first

80

determined using the multi-pass solution algorithm in Algorithm 3.8. The target DRA and

an additional temporary file are used to store the intermediate data. The input file in the

first pass is the one corresponding to the source DRA. The input and output files for each

pass are chosen in such a way that the output file in the last pass is the file corresponding to

the target DRA. The computation proceeds in a sequence of passes. The buffers to hold the

unused data and the Max block are initialized. In each pass, the templates are processed

one after another. The data corresponding to each template is traversed in units of Max

block, in the predetermined order. In each step, a Max block is read into memory, complete

write blocks are constructed and written into the output file. Reading a Max block from

disk involves a sequence of I/O operations one for each brickin the Max block. If the Max

block contains any unused data corresponding to the currenttemplate, it is stored in the

unused buffers. If the Max block is only partially present inthe current template (i.e., some

of it corresponds to write blocks in another template), the data not relevant to the current

template is discarded. Construction of the complete write blocks involves determining the

regions of the read blocks to be combined, locating the regions from the buffers, and patch-

ing the data onto a temporary buffer. The data in the temporary buffer is then written to

disk.

Implementation Choices

We needed a parallel implementation that can handle the different forms of disk arrays,

in particular arrays on local disks and on a shared file system. Various alternatives in

obtaining a parallel implementation of the algorithm were considered. The alternatives

differed in the the level of abstraction utilized and the granularity of parallelism exploited.

81

At the coarsest level of parallelism, each template can be processed independently and

hence can be assigned to a different process. Each process handles the next available tem-

plate, which is determined at runtime. This provides automatic load-balancing. Since the

processes operate on disjoint sets of data, a low-level abstraction is required. GA/DRA

requires a collective operation to perform I/O on the disk array, which is not suitable for

template-level parallelism. The absence of one-sided access to the data on the remote disk

necessitates co-ordination of the computation amongst thedifferent processors. This re-

quires a load-balancing scheme different from the process-next-template scheme.

Another significant drawback of utilizing template-level parallelism is that orchestra-

tion of the computation amongst all the processors can utilize the global memory for pro-

cessing. This can potentially reduce the number of passes, by allowing a greater component

of the transformation to be done in each pass. Thus, it is advantageous to have all the pro-

cesses co-operate in transforming each template. Parallelism in the form of distributed

ownership of the bricks by the I/O processes, those that perform I/O, is exploited. We

redefine the Max block in each step to be such that enough complete write blocks can be

constructed to utilize all the available I/O processors.

The co-ordination amongst the processes can be achieved either using MPI and file I/O

or using GA/DRA. Using MPI and file I/O provides greater flexibility and predictability to

the computation. This could allow tuning the implementation to the specific environment.

Alternatively, GA/DRA abstracts away the complexity in dealing with file offsets, packing

and unpacking of data, and message passing. That GA allows the use of message passing,

in particular MPI method calls, on both GA and non-GA data in aGA/DRA program

enables incremental tuning of the implementation. A GA/DRAimplementation can be

further tuned using MPI and file I/O if such tuning can improveperformance. When the

82

tuning does not improve performance, a more maintainable code is available. The lessons

learnt from the tuning process can help in making further improvements to the GA/DRA

model.

To illustrate the incremental tuning in the GA/DRA model, let us consider two possible

optimizations. The GA/DRA implementation reads data from adisk array into a global

array in memory. The data is processed in the global array andwritten back into the disk

array. The data could be read into local memory, copied into aglobal array, and then writen

from the global array to a disk array. This could reduce the communication overhead or

schedule communication in an intelligent manner. Alternatively, data can be read from a

disk array into a global array, and each processor can copy the data onto its local memory

and write to the block it handles.

One attendant disadvantage of using GA/DRA for the operation is the increased disk

space requirement. At any point in the computation, space isrequired for the source and

target arrays of the current pass and the ultimate source andtarget arrays of the transforma-

tion. The input array is assumed to be read-only. The output array is unused until the last

pass, and can potentially be utilized. But accessing the space allocated to the target array

via the DRA induces a blocking that is usually incompatible with the blocking of the inter-

mediate data. Operating at the file I/O level, one can bypass the blocked view and directly

access the space. A simple extension to the GA/DRA framework, in which multiple disk

arrays can use the same file (analogous to the union type in C) could be provided to allow

different blocking views to the same data space on disk.

Another optimization is possible when operating at the file I/O level. Instead of operat-

ing on the entire array on a pass before proceeding to the nextpass, each template can be

processed through all the passes and written into the final array before processing the next

83

Complete write blocksMax block

Max[2]U[2]

Max[1]

U[1]

Data patched from unused buffers

����
����
����
����

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

Figure 3.5: In-place construction of complete write blocksin the parallel implementation.
The Max block, data from unused buffers, and the constructedwrite blocks are shown.
Note that the regions overlap.

template. Thus additional space for only two templates is required (the space on the output

array is not useful in this case as it is used during the transformation and might not have

enough contiguous free space to store the intermediates). With the GA/DRA model, using

this optimization would involve creating and using DRAs thesize of a template.

Parallel Implementation

The parallel implementation is similar to the sequential implementation, whose pseudo-

code is shown in Figure3.9. The Max block and the unused buffers are global arrays. Each

Max block is read in directly using the DRA interface. As illustrated in Figure3.5, the

global array corresponding to the Max block is allocated additional space, i.e., dimension

i of the global array is of size (Max[i]+U[i]). The patching ofthe data from the unused

buffers is done in the additional space allocated in the array such that the complete write

84

blocks form an n-dimensional rectangular region. Thus the construction of the complete

write blocks is done in-place, eliminating the movement cost for the data in the intersection

between the Max block and the complete write blocks, which donot need to go through

the unused buffers. The complete write blocks are then written to disk.

Load Balancing

In the parallel implementation, more than one processor co-operates in performing the

transformation. The basic unit of I/O, the Max block, is increased in size to allow all the

processors to actively participate in the transformation.In the sequential algorithm, the

Max block is defined as the set of read blocks that guarantees that at least one complete

write block can be written out in each step. WithP I/O processors, the Max block is defined

to be the set of read blocks that guarantee thatP complete write blocks can be written out

in each step.

This set of read blocks can be chosen in a number of ways. To balance the load among

the I/O processors, theP write blocks written out in each step should each be handled by a

different I/O processor. This allows for a balanced distribution of the I/O load, with all I/O

processors actively performing I/O in each step.

A Max block that results in a load-balanced schedule is determined to be a multi-

dimensional rectangular region ofP write blocks, each handled by a different I/O processor.

The read blocks that cover this region form the Max block. A Max block that coversP con-

secutive write blocks along the fastest varying dimension forms a simple load balanced

schedule. However, such a scheme does not take advantage of the flexibility available in

choosing the Max block so as to contribute to a global optimalsolution. For example, the

above scheme would not perform well if the target blocking had a very different orientation.

A simple heuristic would be to choose a Max block that aligns with the target block.

85

In the algorithm design, the Max block was defined first, and other parameters such

as memory cost were defined in terms of the Max block. A choice in the Max block

determination affects other costs and hence the optimal solution.

An algorithm to enumerate all possible load balanced Max blocks is shown in Algo-

rithm 3.10. Currently, the implementation chooses any load balanced block. The algorithm

is based on the observation that the round-robin distribution of the blocks of the disk array

enables partitioning of the entire array into load-balanced Max blocks of the same size and

shape. If a partition results in the Max block at the origin ofthe array being load-balanced,

all the Max blocks in the partition are guaranteed to be load balanced.

The algorithm can be viewed as a factorization ofP to be assigned to different di-

mensions. The factor assigned to a dimension is the number ofwrite blocks along that

dimension to be covered by the Max block. The algorithm represents the array size in-

directly using an offset vector. An offset vector is ann-dimensional vector, in which the

i-th element represents the distance between two write blocks along that dimension in a

linearization of the array into write blocks. For example, for a 10×10 array, blocked using

3×3 tiles, the offset vector is(1,4). The offset is one along the fastest varying dimension.

Along the next dimension, it is the number of blocks in all lower dimensions, which is four

here. In the algorithm the offset is represented modulo the number of I/O processors. Thus,

with two I/O processors the offset vector in the above example is (1,0). In this form, the

offset vector also represents the I/O processors that handle the blocks adjacent to the block

at origin, along each dimension.

The offset along a dimension can be used to determine the number of different I/O

processors that handle blocks if one traverses the array along that dimension. In the above

example, if the blocks are identified using a row-column pair, all blocks along the column

86

1: function GENMAX BLOCKS(blocking,array-dims,P)
2: Input : array dimensions and blocking, number of I/O processors
3: Output : Enumeration of load-balanced parallel Max blocks
4: D = Φ
5: Compute offsets into “offset[]” array
6: for each dimensioni do
7: factor[i] = 1
8: if offset[i] > 0 then
9: D = D+{i}

10: GenRecursively(P, factor[], offset[], D)
1: function GENRECURSIVELY(P, factor[], offset[], D)
2: Input : #I/O procs, initialized factor & offset arrays, dimensions of interest
3: Output : Enumeration of load-balanced parallel Max blocks
4: if P=1then
5: /**factor[] has a valid parallel Max block**/
6: Output factor[]
7: return
8: for each dimensioni ∈ D do
9: if gcd(P,offset[i]) < P then

10: f = P/gcd(P,offset[i])
11: if |D|> 1∨ f = P then
12: factor[i] = f
13: GenRecursively(P/f, factor[], offset[],D−{i})
14: factor[i] = 1

Algorithm 3.10: Pseudo-code to enumerate all load-balanced parallel Max blocks

(0,∗) are handled by I/O processor zero. In fact, an offset of zero along a dimension offset

of zero along a dimension implies that all blocks along that dimension are handled by the

same I/O processor.

A factor of more than one is assigned to a dimension only if thecorresponding blocks

chosen are handled by different I/O processors. All dimensions with non-zero offsets are

chosen as candidates and are added to the setD. Then the routineGenRecursivelyis in-

voked that recursively determines all load-balanced Max blocks. The routine recursively

factorizesP and assigns factors to dimensions along the way.

87

If P has been completely factorized and an invocation of the routine GenRecursively

finds P to be one, the factorization in factor[] is a load balanced Max block. If not, the

routine expands the search along each dimension, by attempting to assign a factor to each

dimension and then backtracking to determine more possiblesolutions.

The possible assignment of a factor to a dimension is determined bygcd(P,offset[i]).

The gcd determines the number of different I/O processors that handle blocks along that

dimension. If the gcd is 1, it means all the I/O processors ownblocks along that dimension.

For larger gcds the number of I/O processors is correspondingly lower. The number of I/O

processors along a dimensioni is given byf = P/gcd(P,offset[i]). Also, along a dimension,

all I/O processors own a block before any I/O processor owns asecond block. Hencef can

be assigned as a factor to that dimension.

3.4.5 Experimental Evaluation

In order to evaluate the effectiveness of the proposed approach, we compared the time

for layout transformation using our implementation with the time for transformation using

currently available mechanisms. The present interface to DRA is through Global Arrays.

When a DRA is to be copied to another DRA with different blocking, the source array

is read into a GA one section at a time, and written into the same section of the target

array. This is a single-pass solution. The basic unit of access, i.e., the shape and size of

the GA needs to be determined. The size is determined independent of the blocking of the

source and target arrays to equal the amount of available physical memory. We evaluated

three options for the shape of the GA used. One option was to use the largest square tile

that fits within the available memory. If the blocking of the DRAs is known, the GA can

be chosen to be a multiple of the source block size or the target block size. These three

88

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Row size (*1000 els)

Source directed
Basic(Square)

Target directed
NDRA_Copy

Figure 3.6: Execution time to transform set-of-rows blocking to set-of-columns blocking
using a DRA brick size of 1MB

options are labeled Basic(square), Source Directed and Target Directed, respectively. The

implementation of the new approach is labeled NDRACopy.

We evaluated the mechanisms on the OSCBW machine at the Ohio Supercomputer

Center. Each node in the cluster has Dual AMD Athlon MP processors (1.533 GHz) and

2GB of memory. The PGI pgcc 4.0-2 compiler was used to generate the executables. Two

sets of experiments were conducted. In one, a set of rows formthe blocks in the source

array. The target array is blocked as a set of columns. The corresponding results are shown

in Figure 3.6. The second experiment involved the reverse – transformingfrom a set-

of-columns blocking into a set-of-rows blocking, and its results are shown in Figure3.7.

The number of rows (or columns) in a block was chosen such thatthe block size was

89

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

ec
s)

Row size (*1000 els)

Source directed
Basic(Square)

Target directed
NDRA_Copy

Figure 3.7: Execution time to transform set-of-columns blocking to set-of-rows blocking
using a DRA brick size of 1MB

greater than 1MByte, the typical brick size chosen by DRA forthis system. For example,

for a 〈4096,4096〉 array, where each element is of size four bytes, set-of-rowsblocking

corresponds to a block size of 1 MB, with each brick holding a〈64,4096〉 block of data;

and a set-of-columns layout corresponds to a 1 MB brick holding a 〈4096,64〉 block of

DRA data.

In both the experiments, the array size was increased from 16000 to 60000 in steps

of 2000 and all four mechanisms were evaluated. For our approach, the template size

is determined automatically using the algorithms described in Section3.4.4. The x-axis

in the graphs shows the array dimension in number of elements. The y-axis shows the

90

transformation time in seconds. We were unable to run largerexperiments due to the limited

amount of disk space available on the local disks (around 60GB).

In transforming the set-of-rows bricks into a set-of-columns bricks, the target directed

method performs significantly worse than other approaches.This is because the data to be

read in to memory is not contiguous on disk. The DRA reads in entire blocks of data to

‘collect’ the data into the global array. This leads to significant increase in cost. Due to this

obvious trend, this approach was evaluated with only certain sample array dimensions. The

source directed approach performs better, as DRA implementation allows writes of partial

blocks, if it is contiguous on disk. Though the unit of write is small, it still performs better

than the target directed approach. With larger array dimensions, both the source directed

and basic (square) approach increase in cost.

Our implementation performs better than the alternatives.The relative performance

benefit of our new approach increases with the size of the array. It starts with a single-

pass solution and then uses a two-pass solution for arrays with dimensions larger than

32000. But the execution time increases gradually and is notdrastically affected by the

exact problem instance at hand. Unlike the other three approaches, our implementation

performs comparably for both the transformations evaluated.

The parallel implementation was evaluated on an Itanium 2 cluster at the Ohio Super-

computer Center (OSC)(ia64-osc) and the Mpp2 cluster at theMolecular Sciences Com-

puting Facility in the Pacific Northwest National Laboratory (PNNL) (ia64-pnl). The con-

figuration of the systems is shown in Table3.8. Initially the data is stored in row-major

order on disk. We varied the data access pattern and measuredthree costs. Theskewed

access costwas first measured for each access pattern. The skewed accesscost is the cost

of accessing all the elements in the array using the specifiedaccess pattern, with the data

91

ia64-osc ia64-pnl

Processor Dual Itanium 2 (900 MHz) Dual Itanium 2 (1.5 GHz)
Memory 4GB 8GB
Local disk 80GB 430 GB
Interconnect Myrinet 2000 Quadrics
Messaging Layer GM Elan-4

Table 3.8: Configuration of systems on which matrix reblocking was evaluated

stored in row-major layout. The skew refers to themisalignmentbetween the access pattern

and the layout of data on disk.

We then measured the cost of transforming the data layout to match the access pattern.

This is referred to as theconversion cost. Finally, the cost of accessing the elements in the

transformed array is measured. The access pattern is now fully aligned with the data layout

and this cost if referred to as the thealigned access cost.

Table 3.9 shows the costs for a 32768× 32768 array of doubles on ia64-osc. The

costs were measured on one and two nodes, where one processorwas used per node. The

costs for a 65536× 65536 array on four nodes is shown in Table3.10. The results for

1, 2 and 4 processors (one per node) on ia64-pnl for a 65536×65536 array is shown in

Tables3.11and3.12. Each row in these tables represents a different access pattern being

evaluated. The array is accessed in row-major order in unitswhose size/shape is specified.

With P processors, each access corresponds to a read ofP such blocks. The size of a block

for all the access patterns was 1MB, the size internally chosen by DRA for a brick.

It can be observed that when the access pattern is closely aligned with the data layout

on disk, the skewed access cost is higher than the aligned access cost, but not high enough

to warrant layout transformation. If the transformed arrayneeds to be accessed multiple

92

Access and transformation cost (seconds)

Access Pattern #procs = 1 #procs = 2

Row Column Skewed Conv. Aligned Skewed Conv. Aligned
(#els) (#els) access cost access access cost access

4 32768 176 359 172 97 241 90
8 16384 179 343 178 88 191 88

16 8192 182 345 175 91 173 91
32 4096 196 357 180 105 188 92
64 2048 249 368 181 129 190 93

128 1024 340 372 179 172 202 94
256 512 517 371 183 266 173 93
512 256 861 372 181 434 165 92

1024 128 1580 377 183 749 163 94
2048 64 2994 384 184 1393 167 93
4096 32 5760 373 180 2697 170 95

Table 3.9: Access and transformation cost (in seconds) for a32768×32768 array stored in
row-major order on ia64-osc

Access Pattern Access and transformation cost
(seconds) (#procs=4)

Row Column Skewed Conv. Aligned
(#els) (#els) access cost access

8 16384 207 733 212
16 8192 238 644 229
32 4096 300 743 230
64 2048 419 723 230

128 1024 650 623 230
256 512 1110 538 230
512 256 2030 466 230

Table 3.10: Access and transformation cost (in seconds) fora 65536×65536 array stored
in row-major order on ia64-osc

93

Access and transformation cost (seconds)

Access Pattern #procs = 1 #procs = 2

Row Column Skewed Conv. Aligned Skewed Conv. Aligned
(#els) (#els) access cost access access cost access

8 16384 155 370 221 137 249 71
16 8192 209 420 229 177 224 72
32 4096 298 428 292 321 241 69
64 2048 436 423 298 521 265 71

128 1024 734 469 304 973 287 68
256 512 1315 453 307 1938 252 71
512 256 2473 446 316 3648 276 64

Table 3.11: Access and transformation cost (in seconds) fora 65536×65536 array stored
in row-major order on ia64-pnl for #procs=1 and #procs=2

Access and transformation cost
Access Pattern (seconds) #procs = 4

Row Column Skewed Conversion Aligned
(#els) (#els) access cost access

8 16384 54 186 49
16 8192 83 138 63
32 4096 95 133 54
64 2048 129 116 58

128 1024 194 128 62
256 512 322 144 54
512 256 579 149 56

Table 3.12: Access and transformation cost (in seconds) fora 65536×65536 array stored
in row-major order on ia64-pnl for #procs=4

94

times, then the layout transformation cost might be amortized by the lower aligned access

cost. As the skew increases, the skewed access cost gets so high as to warrant a layout

transformation even if the array is to be accessed just once after the transformation. As

expected, the aligned access cost is similar for all block sizes. The layout transformation

cost does not vary significantly with the transformation performed. Since I/O is performed

in units of an efficient block size determined by DRA, the I/O cost does not vary between

transformations unless the number of passes varies. We observe that all the transformations

were performed in one pass.

3.5 Related Work

We have used disk I/O volume, coupled with appropriate disk I/O thresholds to opti-

mize out-of-core matrix transposition and reblocking. Twoother models for disk I/O have

been employed in optimizing out-of-core algorithms. Oftenthe startup time to satisfy is

disk I/O request is assumed to dominate the total disk I/O cost. The cost of an out-of-core

algorithm is thus measured in terms of the number of I/O operations [37, 57]. In the parallel

disk model (PDM) [117], the data is assumed to be organized in terms of blocks. The cost

of an out-of-core algorithm is measured in terms of the number of block moves. Several al-

gorithms for sorting and permutation have been proposed based on this model, which have

been extended to provide bounds on the number of I/O operations for out-of-core matrix

transposition [117, 32]. This model is similar to our cost model, but we focus on the disk

I/O volume by allowing the violation of the threshold if it can reduce the number of passes.

Schlosser et al. [101] make the interesting observation that multi-dimensionaldata can be

efficiently stored and accessed in current hard disks due to the trends in storage technol-

ogy. They use this observation to derive a strategy to map data blocks to the linear disk

95

address [103]. This insight can be used to further optimize out-of-core matrix transposition

when the layout of the array on disk can be controlled by the application. For more general

data layouts, such accurate modeling might not be possible.

We are not aware of any work that minimizes disk I/O volume in reblocking arbitrarily

blocked multi-dimensional matrices.

3.6 Conclusion

We addressed the efficient transposition of matrices that are too large to fit in main

memory. We formulated the out-of-core matrix transposition problem as an index permu-

tation on the addresses of matrix elements and inferred the effect of various components

of the formulation on the I/O time and in-memory permutationtime. We discussed the

drawbacks of previously proposed algorithms and used empirically derived I/O character-

istics of the system to guide the development of our algorithm. We devised an algorithm by

choosing the design parameters that minimize the time involved in the I/O and in-memory

permutation phases of the algorithm. Thus we improved the overall transposition time,

rather than reducing the number of I/O operations, as previous algorithms have done. We

subsequently proposed an approach to efficient transformation of the blocked layout of

multidimensional disk-resident arrays. The number of passes in the layout transformation

is determined based on the specific transformation, such that the overall I/O cost is mini-

mized. The proposed approach was implemented as a new copy primitive within the DRA

I/O library.

96

CHAPTER 4

COMPUTATION MAPPING AND SCHEDULING

4.1 Introduction

Optimizing parallel programs requires effective co-ordination of data movement be-

tween the different levels of the memory hierarchy. The computation is scheduled such

that the total data movement cost is minimized while maximizing parallelism. In this chap-

ter, we present an approach to automatic management of data movement and scheduling

of computation for programs. The data is assumed to be distributed in a global address

space in the physical memory or secondary storage associated with the processors. To im-

prove productivity, the framework presents the user with a computation abstraction that

allows the expression of locality and parallelism in the computation, organized as a set of

independent tasks. This abstraction operates on specific data structures that present data of

sufficient granularity for efficient disk I/O and communication. Here, we demonstrate the

approach to automatic memory hierarchy management using block-sparse arrays that arise

in quantum chemistry calculations such as Coupled Cluster methods [31].

The computation is organized as a set of independent tasks operating on such glob-

ally addressable data. Given such a specification, we employhypergraph partitioning to

schedule the computation and the data movement. When the data is distributed amongst

97

the physical memories of processors, we partition the computation amongst the processors

while taking the data distribution into account. In the caseof out-of-core data structures,

we employ hypergraph partitioning to schedule the computation into stages so that each

stage can be computed by reading/writing the relevant data elements exactly once. A novel

partitioning scheme is proposed to reduce memory consumption within a stage, thus in-

creasing the number of tasks that can be processed within a stage, potentially reducing the

disk I/O cost incurred.

4.2 Tensor Contraction Engine

One of the primary motivations for the development of new data abstractions different

has been the quantum chemistry models such as Coupled Cluster methods [31]. Tensor

Contraction Engine (TCE) [11, 27] synthesis system is a domain-specific compiler for ex-

pressing ab initio quantum chemistry models. The TCE takes as input a high-level speci-

fication of a computation, expressed as a set of tensor contraction expressions, and trans-

forms it into efficient parallel code. Several compile-timeoptimizations are incorporated

into the TCE: algebraic transformations to minimize operation counts [73, 74], loop fusion

to reduce memory requirements [70, 72, 71], space-time trade-off optimization [25], com-

munication minimization [26], and data locality optimization [27, 28] of memory-to-cache

traffic.

Each tensor contraction expression is comprised of a collection of multi-dimensional

summations of products of several block-sparse input arrays. Consider the following tensor

contraction from the domain of quantum chemistry:

p1, p2, p3 : O
h1,h2,h3 :V
i0[p1, p2,h1,h2] += −t[p1, p3,h1,h3]∗ i1[h3, p2,h2, p3]

98

where indicesp3 andh3 are contracted out. HereO is the number of occupied orbitals, and

V is the number of virtual orbitals.O andV are divided into segments. This segmenting of

the dimensions forms a cartesian grid that divides the multi-dimensional array into blocks.

An operation on the indices of the segments that form a block determines if that block

is non-zero. The sizes ofO andV are such that the arrays are too large into fit into the

collective physical memory of a parallel system. The arraysare usually stored on the local

disks attached to the compute nodes in a cluster, to achieve scalable I/O.

Despite being a variant of matrix-matrix multiplication, the block-sparsity in tensor

contractions leads to irregular data access patterns that are not easily tractable. In addition,

the difficulty in determining an accurate closed form solution to the size of non-zero data

within a tile makes the use of standard out-of-core dense matrix multiplication algorithms

a non-trivial task. The wide variation in the sizes of the non-zero blocks, together with the

accompanying variation in the data access pattern, makes effective tile-size selection that

minimizes the total disk I/O cost a challenging task.

Given such a computation consisting of a set of independent tasks, with each data brick

potentially accessed by more than one task, our objective isto determine a schedule for the

movement of data bricks between disk and memory, and the processing of the tasks, such

that the computation is load-balanced and the total data movement cost is minimized.

4.3 Abstraction for Block-Sparse Matrices

In this section we detail our data abstraction for block-sparse matrices. The abstraction

is shown in Algorithm4.1. For brevity, we use a pseudo-code notation; the actual API

is implemented in C/C++. The data abstraction provides collective functions for creating

99

1: Types::
2: BsaIndex ⊲ Index to block-sparse array
3: BsaObject ⊲ Block-sparse array object
4:
5: Function Parameters::
6: BsaObject obj ⊲ Handle to block-sparse array
7: BsaIndex ind ⊲ Handle to index to the array
8: int ndim ⊲ Number of dims of the array
9: int nblocks[ndim] ⊲ Num blocks along each dimension

10: int blocks[ndim][nblocks] ⊲ The size of each block segment
11: int brick[ndim] ⊲ Brick size along each dimension
12: void *bmap ⊲ Bitmap specifying non-zero blocks
13: Fn t isNonZero ⊲ Function. Inputs: block indices; Output: true if non-zero block
14: int *brick ⊲ Size of brick along each dim
15: int *brickIndex[ndim] ⊲ Index of a brick
16: void *buf ⊲ Local buffer
17: int dim ⊲ Dimension referenced
18:
19: Functions::
20: BsaIndex bsaCreateIndex(ndim, nblocks, blocks, isNonZero, brick)
21: BsaIndex bsaCreateIndex(ndim, nblocks, blocks, bmap, brick) ⊲ Create index – collective
22: BsaObject bsaCreateArray(ind) ⊲ Create block-sparse array – collective
23: void bsaGetBrick(obj, brickIndex, buf) ⊲ Retrieve a brick – one-sided
24: void bsaPutBrick(obj, brickIndex, buf) ⊲ Store a brick – one-sided
25: void bsaUpdateBrick(obj, brickIndex, buf) ⊲ Atomically update a brick – one-sided
26: bool bsaIsBrickNonZero(obj, brickIndex) ⊲ Is a brick is non-zero – one-sided
27: int bsaGetNBricksAlongDim(obj, dim) ⊲ Enquire #bricks along a dimenion
28: void bsaDestroyArray(obj) ⊲ Destroy block-sparse array
29: void bsaDestroyIndex(ind) ⊲ Destroy index

Algorithm 4.1: Abstraction for multi-dimensional block-sparse arrays

and destroying arrays and non-collective functions to get/put data from/to the distributed

block-sparse array.

A brick size is specified while creating a block-sparse array. Alternatively, the user

can specify the typical access pattern, to provide hints on the choice of appropriate brick

sizes. The non-zero blocks of the array are divided into bricks of this size, which are

then distributed amongst the processors in a round-robin fashion. This ensures a uniform

100

distribution of the data among all processors. A small bricksize allows for a more uniform

distribution of the data amongst the processors. On the other hand, a large brick size allows

for coarse-grained, and possibly more efficient, computation and potential reduction in the

communication cost, due to amortization of the communication latency.

The process of creating an array is divided into two steps. The index is created first,

using functionbsaCreateIndex from Algorithm 4.1. This involves traversing the bricks

in the array, and determining the distribution of the non-zero bricks amongst the processes.

The array is then created through functionbsaCreateArray using this index. The decou-

pling of the creation of the index from the actual array creation simplifies the construction

of multiple aligned arrays using the same index structure. In computations with dynamic

allocation and deallocation of memory, the index can be computed once, while the actual

memory for the array is dynamically managed.

The arrays can be created by specifying the number of dimensions, the number of

blocks, and the actual block sizes. In addition, a bitmap canbe provided to specify whether

a block is zero. Alternatively, the programmer can provide afunction that takes as argument

the block indices and returns whether it is zero.

4.4 Computation Abstraction: Task Pool

The task-pool abstraction shown in Algorithm4.2 enables the specification of a set of

independent tasks to be executed in parallel. For each such set, all processes collectively

create aTaskPool object using thetpCreateTaskPool function. All tasks in the task

pool take the same number of locality elements as arguments.The access modes for these

locality elements can be specified as argument when creatingthe task pool as well. Three

101

access modes are supported: read, write, and accumulate access modes allow for put, get,

and accumulate of global data, respectively.

Each task in the task pool is identified by the routine to be invoked to process that task

(accessed through a function handle) and the set oflocality elementsit operates on. In

addition, any private data specific to that task can also be specified. Each locality element

corresponds to a global data brick, identified by the the brick index, associated with the

block-sparse array specified while creating the task pool.

The access mode determines the memory allocation and communication schemes. Each

locality element markedACCESS READ is fetched into a local buffer before starting the

computation. It might also be cached for future references.Any locality elements marked

ACCESS WRITE or ACCESS UPDATE involve communication after completion of the task.

The computation partitioning and the mapping strategy determine if these locality elements

can be cached. The routine specified by the user to process thetask takes as input local

buffers containing the relevant data. The framework is responsible for handling the data

movement and providing these buffers to the user’s routine.

Tasks are added to a task pool using thetpAddTask function. The creation and addition

of tasks to the task pool is done by all the processes, in a replicated fashion. Once all the

tasks have been added to the task pool,tpSeal is used tosealthe work pool. This function

is invoked once for a task pool and is used to perform start-time optimizations.

Subsequently, all the processes collectively invoketpProcess to process the tasks in

the task pool. A task pool, once created, can be processed multiple times. The cost of

start-time optimizations, performed once, are thus amortized.

The work-sharing construct is illustrated using an implementation of block-sparse ma-

trix multiply, shown in Algorithm4.3. The multiplication is of the form

102

1: Types::
2: TaskPool ⊲ Handle to task pool
3: Fn t ⊲ Function to process a task
4: LocalityInfo ⊲ Locality information
5: PrivateData ⊲ Local information for a task
6: AccessMode ⊲ Mode of access to arguments of each task
7: BsaObject ⊲ Block-sparse array object
8:
9: Function Parameters::

10: TaskPool tpHandle ⊲ Task pool
11: Fn t fn ⊲ Processing function
12: Integer nLocInfo ⊲ #locality elements
13: LocalityInfo *locs ⊲ Locality elements
14: PrivateData *pvt ⊲ Local data
15: AccessMode *modes ⊲ Access mode for each locality element
16: BsaObject *objs ⊲ Block-sparse arrays operated on
17:
18: Functions::
19: TaskPool tpCreateTaskPool(objs, modes) ⊲ Create task pool
20: void tpAddTask(tpHandle, fn, nLocInfo, locs, pvt) ⊲ Add task
21: void tpSeal(tpHandle) ⊲ Seal task pool
22: void tpProcess(tpHandle) ⊲ Process task pool

Algorithm 4.2: Task pool abstraction

C[i, j]+ = A[i,k]∗B[k, j]

The brick sizes along the different dimensions are assumed to be defined elsewhere.

ParametersbsaA, bsaB, andbsaC correspond to block-sparse arraysA, B, andC, respec-

tively.

Algorithm 4.3shows routineBrickMatmul used to process an individual task, a matrix-

matrix multiplication involving a brick from each of the arrays. Note that no explicit com-

munication is involved. The routine assumes that all input data are read into local memory

and all output data are written/accumulated into global memory. Algorithm4.3also shows

the implementation of parallel matrix multiplication using this routine.

103

4.5 Hypergraph Partitioning Problem

A hypergraph is a generalization of an undirected graph in which an edge, referred

to as anet, can connect more than two vertices. The hypergraph partitioning problem is

concerned with dividing a hypergraph into a set ofP sub-hypergraphs, for a givenP, such

that the cost of interconnection between the parts is minimized. The cost is influenced by

the nets shared between more than one part, with a variety of metrics defined on them. The

principal idea behind the definition of the objective function is to minimize the cost incurred

by assigning related entities, represented by vertices connected by a net, to distinct parts. In

the rest of the section, we shall present a formal description of the hypergraph partitioning

problem and define relevant cost metrics.

A hypergraphH = (V,N) is defined as a set of verticesV and a set of nets (hyper-edges)

N among those vertices. Each netn j ∈ N is a set of vertices fromV. Weights (wi) and

costs (c j) can be assigned to the vertices(vi ∈ V) and edges(n j ∈ N) of the hypergraph,

respectively.Π = {V1,V2, . . . ,VP} is a P-way partition ofH if (1) each partVi is a non-

empty subset ofV, (2) the parts are pairwise disjoint, and (3) union of theP parts is equal

toV. A partition is said to bevertex-weight-balancedif

Wp≤Wavg(1+ ε) for 1≤ p≤ P

whereWp = ∑vi∈Vp
wi is the sum of the vertex weights of partVp, Wavg = (∑vi∈V wi)/P is

the weight of each part under the perfect load balance condition, andε is a predetermined

maximum imbalance ratio allowed.

In a partitionΠ of H, a net that has at least one vertex in a part is said to connect that

part. Theconnectivityλ j of a netn j denotes the number of parts connected byn j . A net

104

n j is said to be acut if it connects more than one part (i.e.,λ j > 1). The cut nets are also

referred to as external nets, and their set is denoted byNE.

A P-way partitionΠ of H can also be viewed as inducing(P+1)-way net partitioning,

with P internal net sets and one external net setNE; that is,Π = {N1,N2, . . . ,NP,NE}. Here

for all internal netsn j ∈ Np, all the vertices of those nets belong to the same part, i.e.,

n j ⊆Vp for 1≤ p≤ P. Similarly to a vertex-weight-balance partition, a partition is said to

benet-cost-balancedif

Cp≤Cavg(1+ ε) for 1≤ p≤ P

whereCp = ∑n j∈Np
c j is the sum of the internal net costs of partp, andCavg=(∑n j∈N−NE

c j)/P

denotes the average internal net cost under the perfect loadbalance condition.

There are various ways of defining the cut-sizeχ(Π) of a partitionΠ [76]. The two

relevant ones for our context are cut-net and connectivity-1, defined as follows:

χ(Π) = ∑
n j∈NE

c j (4.1)

χ(Π) = ∑
n j∈NE

c j(λ j −1) (4.2)

With the cut-net metric (4.1), each cut netn j contributes its cost to the cut, whereas

with the connectivity-1 metric (4.2), each cut netn j contributesc j(λ j −1) to the cut-size.

The hypergraph partitioning problem can be defined as the task of dividing a hypergraph

into two or more parts such that the cut-size is minimized, while a given balance criterion

either among the part weights or net costs is maintained. Algorithms based on the multi-

level paradigm, such as hMETIS [55] and PaToH [115], have been shown to compute good

partitions quickly for this NP-hard problem.

105

4.6 Optimizing Computations on In-Memory Data

4.6.1 Problem Definition

A computation is to be performed on globally addressable data. The data is partitioned

into non-overlapping regions and is distributed across thememories of the processors, such

that each region is assigned to one and only one processor. The computation is expressible

as a set of independent tasks. Each task takes as input a set ofdata regions and reads,

writes, and/or updates (accumulates) one or more data regions. The computation cost of

each task is also provided.

Note that each task can be executed on any processor. The input data regions associated

with the task are brought into local memory and the task is executed. The output data are

then written/accumulated into the global regions. If a taskis executed on a processor that

contains the data regions required by it, no communication is required. In addition, if a set

of tasks that require the same data regions are co-located ina processor, communication

cost can be significantly reduced by reusing the read-only data across tasks.

We assume that we have enough memory to store all the data required by all the tasks.

Thus, given a set of tasks assigned to a processor, the amountof communication performed

by that processor is equal to the total size of all the distinct data regions accessed by the set

of tasks assigned to it.

The objective is to partition the set of tasks among the available processors such that

the amount of communication required is minimized, while maintaining the balance of

computational load amongst the processors.

106

4.6.2 Communication Minimization: Locality-Aware Load-balancing

We model the problem of locality-aware load-balancing as a hypergraph partitioning

problem. Each data region and task in the computation has a corresponding vertex in the

hypergraph. A net is introduced in the hypergraph for every data region in the computation.

For each data region, the corresponding net connects the vertices corresponding to it and

the tasks that access it. The weight associated with each netis the communication cost

associated with the data region. We model it to be the size of the data region. The cost

of a vertex is zero if it corresponds to a data region, and is the number of operations to be

executed if it corresponds to a task.

We can evaluate the hypergraph thus constructed in two ways.It can be used to deter-

mine the assignment of both the tasks and data regions to processors. If the data regions

are pre-distributed and cannot be remapped, the distribution of the data regions amongst

the processors can be pre-specified by constraining each data region to be on a specific

processor. The hypergraph is then partitioned to determinethe mapping of the tasks to the

processors. Given a partition, the cost incurred by a net is the size of the corresponding

data region times the number of remote processors that have been assigned at least one task

that accesses this region. The total cost of all the nets is given by the connectivity metric,

shown in equation4.2.

4.6.3 Experimental Evaluation

We evaluated the primitives by comparing them with alternative schemes on the Colony2a

system in Pacific Northwest National Laboratory. It is a twenty-four node cluster with each

node being a dual 1GHz Itanium-2 with 6GB memory. We used the Infiniband network

available on the cluster for our experiments.

107

Three alternative load-balancing schemes were implemented for comparison. In the

first scheme, henceforth referred to as theRandomscheme, each processor traverses the

entire list of tasks in the same order. For each task in the traversal, each processor gener-

ates a pseudo-random number between 0 andP−1, whereP is the number of processors.

If the random number generated is the processor’s rank, the processor executes that task.

Since all the processors start with the same random seed, they all generate the same se-

quence of pseudo-random numbers. This ensures that each task is executed by exactly one

process. The randomization results in a uniform distribution of the number and sizes tasks

to processors. Note that this scheme balances the number of tasks and not task execution

times. In addition, locality is not taken into account.

In the second scheme, one of the locality elements in each task is marked. Each task is

executed by the process that “owns” the marked locality element in that task. This scheme

is referred to as theOwnerscheme. This scheme ensures locality for the array used to de-

termine the ownership. Though the round-robin distribution ensures a reasonably balanced

distribution of the data and hence the ownership, computational load is not guaranteed to

be balanced.

The third scheme is based on dynamic load balancing. In this scheme, referred to as

NextTask, all the processes enumerates the tasks to be executed in thesame order. A global

shared counter is used to determine the next task to be executed. Each process, when idle,

performs an atomicfetch-and-addof the global shared counter. The value obtained by the

process specifies the next task to be executed by it. All processes continue this procedure

until the counter exceeds the number of tasks to be processed. The strictly increasing

counter ensures that no task is executed more than once. It also keeps all the processes

108

busy, till there are no more tasks to be executed. This ensures load balancing. But locality

is not taken into account.

Note that this scheme is similar to self-scheduling in OpenMP [88]. This is also the typ-

ical model of parallelization used in many applications, including some quantum chemistry

codes [48].

Execution times of the following tensor contraction expression, typical of those en-

countered in quantum chemistry, were measured:

a,b,c,d : O
i : V
C[a,b,c,d] = A[a,b, i]∗B[i,c,d]

whereO andV correspond to the number of occupied and virtual orbitals, respectively.

They are divided into a number of symmetry segments, in turn dividing the matrix into a

set of blocks. For example, ifO is divided into four symmetry segments, arrayC would

consist of 64 blocks. A block of a matrix is non-zero if a function of its block segment

indices is equal to the symmetry value associated with the matrix. Typically, the function

is an exclusive OR operator and the symmetry of a matrix is zero. The tensor contraction

is, in effect, a block-sparse matrix multiply. The indices were divided into four symmetry

segments. TheO index was set at 160 with four symmetry segments of length 80,40, 20,

and 20, respectively. The value ofV was varied to be a multiplek of O, with k varying from

1 to 16. The number of processors was varied from 2 to 32.

The execution times are shown in Figure4.1. The three alternative schemes, labeled

Random, Owner, andNextTask, and our approach, labeledOur, are shown. For our ap-

proach the cost is shown including and excluding the overhead of hypergraph partitioning.

For smaller numbers of processors, the communication cost and the hypergraph par-

titioning overhead are not significant. Hence, the difference in the performance of the

109

various schemes is minimal. Increase in the number of processors increases the communi-

cation cost. Our scheme, being locality-aware, performs increasingly better than the other

schemes. The NextTask scheme, which completely ignores locality, performs progressively

worse. The Owner scheme ensures locality for at least one of the arrays, thus performing

better. The Random scheme, performs better than the NextTask and Owner schemes, due

to the benefits of randomization.

The cost of hypergraph partitioning increases the cost of our load-balancing mecha-

nism. Though the overhead increases with increase in the number of processors, our mech-

anism still performs better, even when partitioning overhead is taken into account. Note that

in typical applications, the partitioning overhead is amortized over multiple processings of

the same task pool.

The speedups obtained by the different schemes, fork value being 8 and 16, are shown

in Figure4.2. The sequential execution times were determined for these problem sizes, and

are shown in the figure. Our approach achieves a speed-up of upto 20 on 32 processors,

excluding partitioning cost. Note that we employ blocking communication.

4.7 Optimizing Computations on out-of-core data

In this section, we present a novel application of hypergraph partitioning to automat-

ically determine the computation and I/O schedule. We beginwith a definition of the

problem and a discussion on the limitations of a direct application of the hypergraph par-

titioning model. We then present an alternative formulation that better solves our problem

of interest.

110

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(a) 2 processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(b) 4 processors

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(c) 8 processors

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(d) 16 processors

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e(

se
cs

)

k(=V/O)

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(e) 32 processors

Figure 4.1: Execution time, in seconds, of block-sparse matrix multiply for various
schemes. Time is shown in y-axis. k=(V/O) is shown along x-axis. Each graph corre-
sponds to a different number of processors.

111

 0

 4

 8

 12

 16

 20

 24

 0 4 8 12 16 20 24 28 32

S
pe

ed
up

#procs

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(a) k=8 (sequential time=111 secs)

 0

 4

 8

 12

 16

 20

 24

 0 4 8 12 16 20 24 28 32

S
pe

ed
up

#procs

Random
NextTask

Owner
Our(no partitioning cost)
Our(+ partitioning cost)

(b) k=16 (sequential time=219 secs)

Figure 4.2: Scalability of the schemes for block-sparse matrix multiply for (a) k=8 and (b)
k=16. The number of processors is shown in x-axis. Speedup isshown in y-axis. The
corresponding sequential execution times are also shown.

4.7.1 Problem Definition

We are given a computation consisting of a set of independenttasks, with each task

accessing a set of data elements. The data elements are in secondary storage and each data

element is potentially accessed by more than one task.

The objective is to determine a computation schedule, so as to minimize the total disk

I/O cost. The schedule for a computation consists of a sequence constructed from the

following five operations:

Read Read a brick into physical memory

Write Write a brick to disk

Allocate Allocate memory for a brick

Deallocate Free memory allocated to a brick

Compute Process a task

112

Note that buffers for all bricks need to be allocated and de-allocated, whereas disk I/O

schedule is to be determined only for the input and output bricks. The schedule is required

to ensure that at any point in the processing of the tasks, thetotal memory allocated to the

data bricks is less than the memory available. In the case of aparallel system, the global

memory available is the constraint imposed on the I/O schedule.

4.7.2 Disk I/O Minimization: One-Level Partitioning

In this section, we describe a direct application of hypergraph partitioning to the disk

I/O minimization problem. The construction of the hypergraph is described, followed by

the partitioning procedure to derive a valid computation and I/O schedule.

A task-brickhypergraph is constructed from the set of tasks and the set ofdata bricks

accessed by them. For each task and data brick, a vertex and a net is added to the hy-

pergraph, respectively. For each data brick, a net is constructed that connects the vertices

corresponding to the tasks that access that brick. The cost associated with the net corre-

sponds to the data movement cost associated with the data corresponding brick. We model

this cost to be the size of the brick. The weight associated with each vertex is proportional

to the computation cost associated with the corresponding task. In the evaluation of our

scheme, this is specified to be number of operations involved.

Common applications of hypergraph partitioning deal with parallelization, and hence

have a pre-specified number of parts into which the hypergraph needs to be partitioned. We

are interested in partitioning the computation into stagessuch that the memory requirement

at any point in the computation does not exceed the memory available.

113

We model this problem using hypergraph partitioning together with the memory usage

constraint. We recursively partition the given hypergraphinto two stages when the compu-

tation represented by it cannot be executed without violating the memory constraint. The

memory usage of a part is determined as the sum of weights of all nets incident or internal

to the corresponding sub-hypergraph. We shall refer to the solution thus obtained as the

one-level partition.

Figure4.3illustrates a one-level partition of a task-brick hypergraph. The computation

involves nine tasks and six data elements. The figure shows the tasks as squares and the

data elements as nets (set of edges connected by circles.) All data elements are assumed to

be of the same size. Let the memory in the system be large enough to hold three data ele-

ments. The partitioning of the hypergraph into three stages, indicated by the three enclosing

rectangles, is shown. Each partition requires three data elements to complete processing.

Two of the nets, labeledn1 andn2, are cut-nets and are accessed in more than one stage.

For each cut-net, dummy vertices are introduced in each partition on which it is incident, to

represent its contribution to the memory cost of that partition. The total I/O cost is 9 data

elements, the number of data elements within each part in thepartition.

Given such a partition, the computation schedule is shown inAlgorithm 4.4. The sched-

ule corresponds to reading all input bricks relevant to a part, computing the relevant tasks

and writing out any output bricks back to disk. In a parallel system the processing of tasks

is done using a simple load-balancing mechanism in which each idle process chooses the

next task to execute from an total order of all tasks to be executed in the current stage. There

is no reuse of data across the different stages. Thus, a reduction in the number of stages

is generally beneficial. The algorithm also shows the schedules for memory allocation and

deallocation.

114

n2

n1

n1

n1

n1

n2n2

Figure 4.3: Illustration of one-level partitioning

4.7.3 Read-Once Partitioning

The above approach is simplistic in the measurement of the memory cost for each stage.

It ignores the potential for reuse across the stages. In addition, the reuse is determined to

be between all the tasks in a given stage. While hypergraph partitioning improves the data

reuse within a stage, the available memory can be better utilized by further investigating

the reuse relationships between the tasks in a stage. This would enable the scheduling of

computation and disk I/O so that only a subset of the data elements in a given stage need to

be allocated memory at any moment. This improves the memory utilization and potentially

reduces the disk I/O cost.

We present an alternative use of hypergraph partitioning that achieves this. We shall

refer to such a partitioning asread-once partitioning.

115

A read-once partition is a partition of a task-brick hypergraph such that the sum of

the sizes of the cut-nets, corresponding to data bricks accessed in more than one part, and

the size of data uniquely accessed in any part does not exceedthe available memory. This

partition induces a schedule in which the processing of tasks is organized into steps, one for

each part in the partition. The processing is preceded by moving all data elements accessed

by more than one step, referred to as shared bricks, into memory. Each step is processed by

first allocating memory for data elements local to that step and performing the necessary

disk I/O. The tasks in the current step are then processed andthe updated bricks local to

this step are written back to disk. The memory allocated for the local bricks are finally

reclaimed. The procedure is then repeated for the next step.After processing all the steps,

any updated shared bricks are written to disk. The computation schedule for a read-once

partition is shown in Algorithm4.5.

Thus a set of tasks, while requiring data elements that together cannot fit in the memory

available, can potentially be scheduled to be processed using the available memory. By

keeping all cut-nets in memory throughout the computation of the given set of tasks, this

approach also avoids redundant I/O for any accessed data element.

The scheme uses a pessimistic upper-bound in its calculation of the memory cost due to

the allocation of all cut-nets at once, even though a cut-netmight be used only much later.

Despite this apparent inaccuracy, this scheme significantly improves memory utilization by

deallocating nets internal to a step once they are used, thusallowing more related tasks to

be processed within a stage.

Note that the number of parts (steps) in a read-once partition is not significant, as in-

creasing the number of parts does not increase the disk I/O cost. But choosing an arbi-

trarily large number of parts can distribute related tasks,increasing the total size of the

116

cut-nets, thus making a read-once partition infeasible. Wechoose a simple scheme of a

linear search for the number of parts, starting from two. Foreach choice of the number

of parts, a net-cost-balanced hypergraph partitioning with cut-net metric is computed, and

the result is checked to be a feasible read-once partition (i.e.,cutsize+Cp≤memorylimit

for 1≤ p≤ P). If it is not, we continue the search for a read-once partition by increasing

the number of parts. In the current implementation, we limitthe number of parts being

searched to be less than 128, which we found to be sufficientlylarge in practice.

4.7.4 Integrated Approach: Two-Level Partitioning

The integrated algorithm,TwoLevel, is shown in Algorithm4.6. It returns a set of

ordered pairs, each pair specifying the set of tasks in that stage and the computation sched-

ule obtained using read-once partitioning. If a read-once partition exists that satisfies the

memory constraint, using the procedureReadOnce, the set of tasks together with the com-

putation schedule is returned. If not, the algorithm proceeds recursively by partitioning

the set of tasks to balance the net-weights, using theNetBalancePartition routine, and

solving the two parts independently and combining the result.

The outer-level partitioning scheme is identical to that used in one-level partitioning.

They differ primarily in mechanism used to decide whether a part (sub-hypergraph) needs

to be further partitioned.

Figure4.4shows a possible partitioning of the same computation as in Figure4.3using

the two-level approach. The stages in the computation, corresponding to the parts in the

outer-level partition are indicated by enclosing rectangles. Enclosing circles are used to

show the parts in the read-once partitions within each stage. Netsn1 andn2 are the cut-

nets, similar to the partition determined in Figure4.3. Two of the stages produced by the

117

n2

n1

n1
n1

n2n2

Figure 4.4: Illustration of two-level partitioning

one-level partitioning approach now form the two steps of a read-once partition in a single

stage. Netn1 is a cut-net for that read-once partition and is retained in memory through

the processing of both the steps in the stage. This is indicated by the single representative

vertex forn1 in that stage being shared by both the steps. The memory constraint is still

satisfied as the memory usage does not exceed the size of threedata elements at any point.

The total disk I/O cost for this partitioning is equal to the size of eight data elements, as

compared to nine for the partitioning in Figure4.3.

Note that the illustration shows only one possible partitioning and there maybe many

equivalent partitions. Also, unlike in the illustration, the partitions produced by the two-

level partitioning approach need not, in general, correspond to any one-level partitioning

that is the best possible for the given hypergraph.

118

Definition 2. A valid part in a one-level partition is defined as a sub-hypergraph of the

task-brick hypergraph such that the sum of weights of its incident and internal nets does

not exceed the memory available.

Lemma 1. A valid part p in a one-level partition corresponds to a trivial read-once parti-

tion.

Proof. Sincep is a valid part in a one-level partition, the sum of nets accessed by the cor-

responding sub-hypergraph satisfies the memory constraint. Given such a sub-hypergraph,

the read-once partitioning algorithm can construct a trivial read-once partition with only

one part. All nets accessed in that partition are global to the read-once partition, with no

nets being local to the only part.

Lemma 2. Barring the termination condition, both the algorithms form the same recursive

bisection trees.

Proof. Both use the same partitioning algorithm to divide a hypergraph into two sub-

hypergraphs. Since both procedures recursively partitiona given hypergraph into two parts,

they form identical recursion trees in which each node corresponds to a hypergraph that is

partitioned into its children.

Lemma 3. The sub-hypergraphs encountered in the recursive procedure for the two-level

partition are a subset of the sub-hypergraphs encountered in the recursive procedure for

the one-level partition.

Proof. From Lemma2, the recursion trees of both the algorithms are identical, barring the

termination condition. From Lemma1, when the one-level approach determines a valid

part and stops further partitioning, the two-level approach determines a read-once partition

119

and stops as well. Note that the two-level partition might determine a sub-hypergraph

encountered in the recursion procedure to be a valid read-once partition and stop further

refinement, while it might not be a valid part in a one-level partition. This might lead to

further refinement being required in the one-level approachthan the two-level approach.

Theorem 1. The solution obtained by two-level partitioning is no worsethan that obtained

by one-level partitioning.

Proof. From Lemma3, only a subset of the recursion tree from the one-level approach is

encountered in the two-level approach. Thus, there is no newor different partitioning in

the two-level scheme as compared to the one-level scheme. Since only partitioning can

increase the disk I/O cost, the I/O cost for the two-level approach is no worse than that for

the one-level approach.

4.7.5 Experimental Evaluation

In the experimental evaluation, we will focus on evaluatingthe two-level partitioning

scheme. We evaluate our approach using the following Coupled Cluster Doubles (CCD)

[31] sub-calculation:

p3, p4, p5, p7 :V
h1,h2,h6,h8 : O
input-output arrays :i0, t,v1,v2
intermediate arrays :i1
i1[h6, p3,h1, p5]+= v1[h6, p3,h1, p5]
i1[h6, p3,h1, p5]+= t[p3, p7,h1,h8]∗v2[h6,h8, p5, p7]
i0[p3, p4,h1,h2]+= t[p3, p5,h1,h6]∗ i1[h6, p4,h2, p5]

O is set to have four segments (40,40,20,20), andV is divided into the four segments

(100,100,60,60). The input/output arrays are assumed to becreated and passed as inputs

to the execution environment. The first operation initializes the intermediate array. The

120

subsequent arrays produce and consume the intermediate. The initialization operation is

implemented in a data-parallel fashion with each process initializing the data bricks local

to it.

We evaluate our approach, henceforth also referred to asHpGraph, by comparing it

with the approach taken in state-of-the-art quantum chemistry packages such as NWChem [47].

In this scheme, the data elements, stored in a bricked form, are replicated across the local

disks of the processors. A simple load-balancing scheme is used to distribute the computa-

tion amongst the processors. Each process chooses the next brick of the output array to be

computed, in a linear ordering of the non-zero bricks, and proceeds to process it by fetching

the required bricks from the input arrays and computing the partial products. The compu-

tation is performed by transforming the data layouts to ensure contiguity of the contracted

indices, following an invocation of DGEMM. The resulting output brick is then written to

the replicated copy of the array on the local disk. Before theoutput array can be used as an

input in another tensor contraction, the local modifications to the replicated array need to be

reconciled. This is essentially an accumulation operation in which allpartial contributions

to the individual bricks are added together in an operation similar to MPI AllReduce. This

scheme was implemented using our data abstraction, with suitable extensions to replicate

and reconciles disk arrays.

This alternative scheme is similar to theNextTaskscheme introduced in Section4.6.3

and will be labeled as such. The inputs are assumed to be replicated while evaluated this

scheme. A reconcile operation is carried out oni1 before it is consumed to contribute to

i0. In addition, the output arrayi0 is reconciled at the end. All inputs are assumed to be

distributed while evaluating our scheme, and no cost is incurred in reconciling any of the

arrays.

121

The memory limit for our scheme was set to 1 GB on each of the systems. While

under-utilizing the memory increases the overall cost of the computation, the results show

efficient utilization of even a portion of the memory leads tosignificant improvements. In

addition, the un-utilized memory can be used for optimizations such as a caching to further

reduce the communication cost. Note that utilizing the entire memory for the computation

might degrade performance due to interference with the operation of the operating system

and the disk buffer cache.

We evaluated the two schemes on the following three systems:

ia64-osc A cluster with dual Itanium-2 900MHz nodes, each with 4GB physical memory,

and 80GB local disk, and a Myrinet 2000 interface. GM is the underlying communi-

cation protocol.

ia64-pnl A cluster with dual 1GHz Itanium-2 nodes, each with 6GB physical memory,

80GB hard drive and GM interconnection network.

p4-osc A cluster with each node containing two 2.4GHz Pentium 4 processors and 4GB

physical memory, 80GB local disk, and an Infiniband interconnection network.

The sub-calculation was evaluated on the three systems by varying the number of nodes

between 1 and 8. Note that only one CPU in each node was utilized in all three clusters.

The average disk I/O costs per process for ia64-osc, ia64-pnl, and p4-osc are shown in

Figs.4.5, 4.6, and 4.7, respectively. On ia64-osc and p4-osc, the effective orchestration

of the data movement leads to a reduction in the disk I/O cost even in the sequential case.

The improvement over the alternative scheme increases withthe number of processors,

achieving a factor of 11 on p4-osc for 8 processors. We believe the worsening disk I/O cost

for two processors for NextTask on ia64-osc is due to an ineffective task distribution that

122

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8

P
er

-p
ro

ce
ss

 I/
O

 c
os

t(
se

cs
)

#procs

NextTask-ia64-osc
HpGraph-ia64-osc

Figure 4.5: Average per-process I/O cost, in seconds, on ia64-osc

results in both processes accessing most of the data bricks,while the data access pattern

increases the miss rate on the system buffer cache for disk I/O.

The sequential disk I/O cost of HpGraph is observed to be worse than NextTask on

ia64-pnl. We believe this is due to the increased memory sizethat supports a larger system

buffer cache, resulting in an improved reuse for the alternative approach. But an increase in

the number of processors leads to performance trends similar to those on the two systems.

The turnaround times are shown in Table4.1. In addition to improving the disk I/O

cost, the turnaround times for HpGraph, including the cost of hypergraph partitioning, are

consistently better than that for NextTask. On p4-osc for eight processors, HpGraph leads

to a 49% improvement over NextTask, with similar trends observed for other processes.

123

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8

P
er

-p
ro

ce
ss

 I/
O

 c
os

t(
se

cs
)

#procs

NextTask-ia64-pnl
HpGraph-ia64-pnl

Figure 4.6: Average per-process I/O cost, in seconds, on ia64-pnl

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8

P
er

-p
ro

ce
ss

 I/
O

 c
os

t(
se

cs
)

#procs

NextTask-p4-osc
HpGraph-p4-osc

Figure 4.7: Average per-process I/O cost, in seconds, on p4-osc

124

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

S
pe

ed
up

#procs

NextTask-ia64-osc
HpGraph-ia64-osc

NextTask-p4-osc
HpGraph-p4-osc

NextTask-ia64-pnl
HpGraph-ia64-pnl

Figure 4.8: Speed-ups for the out-of-core CCD sub-calculation

Figure 4.8 shows the speed-ups, demonstrating the greater scalability of HpGraph,

achieving close to linear speed-up. For HpGraph, while the I/O cost decreases with the

number of processors, the communication cost increases. Note that NextTask, which uses

replicated data, does not have any communication, except while reconciling arrays. The

low communication times in p4-osc lead to the observed super-linear speed-up. We intend

to investigate communication reduction mechanisms such asoverlap of computation and

communication to further improve the performance of HpGraph.

The average percentage of total execution time spent performing DGEMM, the core

useful computation in the application, is shown in Figure4.9. It shows the consistent high

efficiency achieved by HpGraph, despite the additional overhead of hypergraph partition-

ing.

125

System Scheme nprocs
1 2 4 8

ia64-osc NextTask 9710 5760 3403 2281
HpGraph 9244 5110 2408 1271

p4-osc NextTask 13717 7988 4562 2739
HpGraph 11700 5886 2899 1390

ia64-pnl NextTask 7928 4453 2731 1868
HpGraph 7564 4283 1968 1081

Table 4.1: Turnaround times, in seconds, for the CCD sub-calculation

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 1 2 3 4 5 6 7 8

C
om

pu
ta

tio
n

(%
)

#procs

NextTask-ia64-osc
HpGraph-ia64-osc

NextTask-p4-osc
HpGraph-p4-osc

NextTask-ia64-pnl
HpGraph-ia64-pnl

Figure 4.9: Percentage of total time spent in computation for the out-of-core CCD sub-
calculation

126

4.8 Related Work

There is an extensive body of research on compile-time optimization of in-memory

computations involving dense matrices, accessed by regular memory reference patterns [4,

63, 78, 79]. These approaches assume dimension-ordered data layout with focus on loop

structure determination. There has also been extensive research on optimizing out-of-core

computations involving regular data structures such as dense multi-dimensional arrays. Kr-

ishnan et al. [65, 66] presented an approach to determining the position of memory allo-

cation and disk I/O in an imperfectly nested loop nest corresponding to fused tensor con-

traction expressions. Sahoo et al. [96] extended the approach by describing a procedure

to efficiently enumerate the various fused loop structures.All such approaches exploit the

regularity of the computation as exhibited by the loop structure to optimize disk I/O cost.

Navarro et al. [82] present multi-level blocked algorithms for dense linear algebra com-

putations to minimize TLB misses and page faults incurred byvirtual memory. Toledo

and Gustavson [110] describe a library that supports blocked data layouts, effective data

distribution, and different I/O schemes to implement linear algebra computations on them.

Gunter and Van de Geijn [44] present a blocked algorithm for out-of-core QR factorization.

These approaches operate on blocked data and exploit the specialized structure of such al-

gorithms. There have also been several out-of-core algorithms derived for other domains

[30, 5, 23, 18].

Existing approaches do not readily extend to more general data structures, such as

block-sparse arrays. We are not aware of any work that develops integrated compile/runtime

approaches for data locality optimization, computationalload balancing, and mininization

of disk I/O for computations accessing semi-structured andunstructured data.

127

Brown [17, 81, 16] has proposed mechanisms for compiler-directed memory manage-

ment of out-of-core applications. Their work points our thelimitations of virtual memory

and present techniques to automatically manage virtual memory through compiler-directed

prefetching. The approach and evaluation is limited to sequential programs. They point to

some limitations of using explicit I/O, including the additional burden on the programmer

and matching data management to the resources available on the target machine. Our work

addresses both these issues by automatically managing diskI/O and taking into account

effective disk I/O characteristics and the memory available at runtime.

Abstractions for block-sparse matrices exist in the context of linear algebra and itera-

tive solvers [35, 19]. They provide efficient mechanisms suited for specific computations

on block-sparse matrices. We provide a generalized interface for arbitrary computations

involving block-sparse matrices.

Our work is similar to Aztec [112], a parallel iterative solver package that provides

a global view of a distributed matrix. Advanced partitioning techniques [46] are used to

determine the computation distribution and mapping. We provide a general-purpose ab-

straction for block-sparse matrices. The partitioning of the matrices is performed to balance

computation load-balance and communication costs. In addition, the mechanisms provided

for locality-aware load-balancing are not tightly coupledwith block-sparse matrices, and

can be utilized in a wide range of contexts.

There has been extensive research on scheduling task graphsonto processors. One

of the earliest work on static scheduling of task graphs is bySarkar and Hennesy [98].

They model the problem as a clustering problem and put forth compile-time techniques to

128

maximize multi-processor performance by exploiting parallelism while minimizing com-

munication and synchronization overhead. Gerasoulis et al. [40] categorized various clus-

tering algorithms and derived results on linear clustering, upon which Gerasoulis and Yang

[41, 122] developed a linear clustering algorithm. McCreary et al. [80] evaluate different

clustering algorithms on directed task graphs of certain applications. A survey of static

scheduling algorithms was presented by Kwok and Ahmad [68].

Çatalyürek and Aykanat [115, 114] used hypergraph-partitioning to parallelize sparse

matrix-vector multiplications. Chang et al. [21] performed parallel data aggregation based

on hypergraphs. Khanna et al. [62] present a hypergraph-based approach to scheduling

tasks with batch shared I/O.

Parkway [111] is a parallel hypergraph partitioner that interfaces withPaToH [116] and

hMETIS [55, 56], which are sequential. To the best of our knowledge, it doesnot allow

a subset of the vertices of the hypergraph to be pre-assignedto some parts. Note that this

technique was used to model data distributed in the local memories of processes. We are

exploring parallel hypergraph partitioners that support this variation.

Dynamic load-balancing based on work-stealing has been studied, particularly for state-

space search [105, 67, 89]. Charm++ [75] supports dynamic load-balancing by object

migration. Cilk [12, 94] supports load-balancing of computations based on work-stealing.

OpenMP [88] exploits parallelism at the loop level by distributing different iterations to

different processors. Locality is not taken into consideration in any of these schemes. The

self-scheduling strategy in OpenMP is similar to theNextTaskscheme that was evaluated

earlier.

129

Our start-time optimizations are similar, in spirit, to theinspector-executor model used

in the Chaos tool [97]. Radhakrishnan et al. [104] detailed a dynamic load balancing strat-

egy for applications with slow or abrupt change in their communication and computation

patterns. The algorithm incrementally arrives at a better mapping of tasks, allowing refine-

ment of the mapping for iterative computations.

4.9 Conclusion

We designed and implemented high-level abstractions for manipulating block-sparse

matrices. Computation primitives to improve load balancing, by exploiting locality, were

presented. The programmer exposes the parallelism in the computation, and the system de-

termines the computation mapping. We presented an application of hypergraph partitioning

to determining the computation schedule to automatically manage the memory hierarchy. A

novel formulation using hypergraph partitioning was presented. Our approach consistently

performs better than the alternative schemes considered for load-balancing. Experimen-

tal evaluation using a sub-computation from quantum chemistry demonstrates significant

improvements in disk I/O cost, overall performance, and scalability.

130

1: int bi, bj, bk; ⊲ Brick sizes. Defined elsewhere
2: function MATMUL (bsaC, bsaA, bsaB)
3: Input : Block-sparse arrays A, B, and C
4: TaskPool tpHandle
5: LocalityInfo locs[3]
6: int nBricksI = bsaGetNBricksAlongDim(bsaC,0);
7: int BricksJ = bsaGetNBricksAlongDim(bsaC,1);
8: int nBricksK = bsaGetNBricksAlongDim(bsaA,1);
9: BsaObject objs[3]={bsaA,bsaB,bsaC}

10: AccessMode modes[3]={ACCESSREAD,ACCESSREAD,ACCESSUPDATE}
11: tpHandle = tpCreateTaskPool(objs,modes) ⊲ Create task pool
12: for i=0 to nBricksI - 1do
13: for j=0 to nBricksJ - 1do
14: int cbrick[2] = i,j
15: if bsaIsBrickNonZero(bsaC, cbrick)then
16: for k=0 to nBricksK - 1do
17: int abrick[2] ={i,k}
18: int bbrick[2] = {k,j}
19: if bsaIsBrickNonZero(bsaA, abrick) AND bsaIsBrickNonZero(bsaB,

bbrick) then
20: int pvt[3]={bi,bj,bk} ⊲ Brick sizes
21: LocalityInfo locs[3] ={abrick, bbrick, cbrick}
22: tpAddTask(tpHandle, BrickMatmul, 3, locs, pvt)
23: tpSeal(tpHandle) ⊲ Any start-time optimizations
24: for i = 0 to maxiterdo ⊲ Iterative computation
25: tpProcess(tpHandle) ⊲ Process all tasks, every iteration
26: tpDestroy(tpHandle) ⊲ Destroy task pool
1: function BRICKMATMUL (int nLocInfo, LocalityInfo *locs, void *buf[], void *pvt)
2: Input: Information on bricks to be multiplied
3: int Ni, Nj, Nk, i, j, k
4: ⊲ Actual communication is external to this function.
5: double *A = buf[0] ⊲ Fetch pointer to data/buffer
6: double *B = buf[1]
7: double *C = buf[2]
8: Ni=pvt[0]; Nj=pvt[1]; Nk=pvt[2]; ⊲ Brick sizes
9: for i = 0 to Ni-1 do ⊲ Matrix multiplication for this task

10: for j = 0 to Nj-1 do
11: for k = 0 to Nk-1do
12: C[i,j] += A[i,k]*B[k,j]

Algorithm 4.3: Block-sparse matrix multiply. Each task processed byBrickMatmul. Task
pool is processedmaxiter times, but is created and sealed once

131

1: for all p∈ P do
2: for all b∈Np∪NIp do
3: Allocate b
4: if b∈ NR then Readb
5: for all v∈Vp do Computev
6: for all b∈Np∪NIp do
7: if b∈ NW then Write b
8: Deallocateb

Algorithm 4.4: Computation schedule for one-level partitioning

1: for all b∈ NE do
2: Allocate b
3: if b∈NR then Readb
4: for all p∈ P do
5: for all b∈Np do
6: Allocate b
7: if b∈ NR then Readb
8: for all v∈Vp do Computev
9: for all b∈Np do

10: if b∈ NW then Write b
11: Deallocateb
12: for all b∈ NE do
13: if b∈NW then Write b
14: Deallocateb

Algorithm 4.5: Computation schedule for a read-once partition

1: Π← ReadOnce(V)
2: f ← true
3: for all p∈ P(Π) do
4: f ← f ∧ (Np(Π)+NE(Π)≤M)
5: if f = true then
6: Return < V,Π >
7: else
8: < V1,V2 >← NetBalancePartition (V)
9: TwoLevel (V1) ∪ TwoLevel (V2)

Algorithm 4.6: Two-Level partitioning algorithm: TwoLevel

132

CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Parallel programming is complicated by the numerous details to be handled by the

programmer to optimize an application. The details to be handled depend on the application

domain and the target system under consideration. In this work we have taken a two-

pronged approach to the addressing this problem.

For regular programs consisting of loop nests operating on dense multi-dimensional

arrays with constant dependences between the statements, we presented a novel automatic

parallelization techniques that require no input from the user. The approach attempts to de-

termine a parallel schedule in which all processes can startexecution in parallel, eliminating

any start-up overhead. When the concurrent tiled iterationspace inhibits such execution we

presented techniques to re-enable it in the tiled iterationspace.

This approach provides a choice to the programmer in terms ofthe parallel code gen-

erated, enabling optimized parallelization of certain programs that could not be done with

existing approaches. We evaluated our approach using the best empirically determined

execution parameters for the pipelined schedules. Determining the best execution parame-

ters for overlapped and split tiling could potentially improve its performance further. Our

approach currently handles only programs with constant dependences. Extensions to pro-

grams with affine dependences will enable handling of a larger class of programs.

133

For more general computations we presented a programming model with blocked ab-

stractions for data with computation represented as tasks operating on these blocks. When a

blocked multi-dimensional array needs to be accessed in a different pattern than the block-

ing, reblocking it to match the access pattern might be beneficial. We presented algorithms

for efficient out-of-core matrix transposition and out-of-core matrix reblocking. The algo-

rithms presented based their I/O sizes on the characteristics of modern storage systems, and

minimized total disk I/O volume. A load-balanced schedule was derived for parallel matrix

reblocking given a round-robin distribution of data blocksamongst the processors, which is

employed by DRA. Extensions to the approach to handle different data distributions, such

as one proposed by Toledo and Gustavson [110], could further improve the applicability of

out-of-core computation to solve high-end computing problems.

For independent tasks operating on blocked data on disk, we presented abstractions to

automatically schedule the computation, communication, and disk I/O so as to ensure load-

balanced execution while minimizing data movement overhead. The schedules generated

resulted in almost 90% of the time spent in useful computation, rather than data movement,

for sub-calculations from Coupled Cluster methods.

Several extensions are possible to the out-of-core abstractions we have presented. Han-

dling tasks with dependences would extend the class of applications that can be handled

by the proposed framework. For arbitrary computations operating on blocked data, effec-

tive scheduling might not be feasible. We have investigatednon-collective parallel I/O on

blocked data [64] as an alternative to collective I/O supported by parallel I/O libraries, and

achieved results better than replicated processing, even when assuming replication does not

incur any cost.

134

One of the fundamental limitations of out-of-core programming has traditionally been

the significant degradation in the bandwidth available, andthe performance achieved. For

example, Brown [17, 16] shows that the performance of an application degrades signifi-

cantly once the data set just exceeds the available physicalmemory size. Our proposed

approaches have focused on bridging this gap by ensuring that the secondary storage is

effectively used to increase data set sizes supported whileincurring a graceful degrada-

tion in performance as the problem size transitions from in-memory to out-of-core. This

is borne out by our sequential out-of-core matrix reblocking experiments presented in Sec-

tion 3.4.5and the out-of-core computation scheduling evaluation in Section4.7.5. This

makes out-of-core programming an attractive alternative to investing in larger supercom-

puters for scientists primarily interested in very large problem sizes rather than additional

processing capacity.

135

BIBLIOGRAPHY

[1] Vikram Adve, Guohua Jin, John Mellor-Crummey, and Qing Yi. High performance
fortran compilation techniques for parallelizing scientific codes. InSupercomputing
’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages 1–
23, Washington, DC, USA, 1998. IEEE Computer Society.2.8

[2] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transformations
for locality enhancement of imperfectly nested loops. InICS ’00: Proceedings of
the 14th international conference on Supercomputing, pages 141–152, 2000.2.1

[3] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested
loop nests. InSupercomputing ’00: Proceedings of the 2000 ACM/IEEE conference
on Supercomputing, page 31, 2000.2.1, 2.8

[4] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transformations
for locality enhancement of imperfectly-nested loop nests. International Journal of
Parallel Programming, 29(5):493–544, 2001.2.1, 2.8, 4.8

[5] Deepak Ajwani, Roman Dementiev, and Ulrich Meyer. A computational study of
external-memory bfs algorithms. InSODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 601–610, New York,
NY, USA, 2006. ACM.4.8

[6] W. O. Alltop. A computer algorithm for transposing nonsquare arrays.IEEE Trans-
actions on Computers, 24(10):1038–1040, 1975.3.3.1

[7] Corinne Ancourt and François Irigoin. Scanning polyhedra with do loops. InPPOPP
’91: Proceedings of the 3rd ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 39–50, New York, NY, USA, 1991. ACM.2.6

[8] G. L. Anderson. A stepwise approach to computing the multidimensional fast
Fourier transform of large arrays.IEEE Transactions on Acoustics and Speech Sig-
nal Processing, 28(3):280–284, 1980.3.1, 3.3.1

[9] Rumen Andonov, Stefan Balev, Sanjay Rajopadhye, and Nicola Yanev. Opti-
mal semi-oblique tiling. IEEE Transactions on Parallel and Distributed Systems,
14(9):944–960, 2003.2.1, 2.8

136

[10] David H. Bailey. FFTs in external or hierarchical memory. Journal of Supercomput-
ing, 4(1):23–35, 1990.3.1, 3.3.1

[11] Gerald Baumgartner, David E. Bernholdt, Daniel Cociorva, Robert J. Harrison,
So Hirata, Chi-Chung Lam, Marcel Nooijen, Russell Pitzer, J. Ramanujam, and
P. Sadayappan. A high-level approach to synthesis of high-performance codes for
quantum chemistry. InSupercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, 2002.4.2

[12] Michael A. Bender and Michael O. Rabin. Online scheduling of parallel programs
on heterogeneous systems with applications to Cilk.Theory of Computing Systems
Special Issue on SPAA ’00, 35:289–304, 2002.4.8

[13] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local
area network.IEEE Micro, 15(1):29–36, 1995.3.3.7

[14] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling?
Integration, the VLSI Journal, 17(1):33–51, 1994.2.1, 2.8

[15] Norman Brenner. Algorithm 467: matrix transposition in place.ACM Transactions
on Mathematical Software, 16(11):692–694, November 1973.3.3.2

[16] Angela Demke Brown.Explicit Compiler-based Memory Management for Out-of-
core Applications. PhD thesis, Carnegie Mellon University, May 2005.4.8, 5

[17] Angela Demke Brown, Todd C. Mowry, and Orran Krieger. Compiler-based i/o
prefetching for out-of-core applications.ACM Transactions on Computer Systems,
19(2):111–170, 2001.3.1, 4.8, 5

[18] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jef-
fery R. Westbrook. On external memory graph traversal. InSODA ’00: Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages 859–
860, Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics.
4.8

[19] Sandra Carney, Michael A. Heroux, Guangye Li, Roldan Pozo, Karin A.
Remington, and Kesheng Wu. A revised proposal for a sparse blas
toolkit. Technical Report 94-034, Army High Performance Comput-
ing Research Center, June 1994. Updated version at Web address
http://www.cray.com/products/applications/support/scal/spblastk.ps.4.8

[20] Esko G. Cate and David W. Twigg. Algorithm 513: Analysisof in-situ transposition.
ACM Transactions on Mathematical Software, 3(1):104–110, March 1977.3.3.2

137

[21] Chialin Chang, Tahsin Kurc, Alan Sussman,Ümit V. Çatalyürek, and Joel Saltz. A
hypergraph-based workload partitioning strategy for parallel data aggregation. In
PPSC ’01: Proceedings of the 10th SIAM Conference on Parallel Processing for
Scientific Computing. SIAM, March 2001.4.8

[22] Ying Chen, Ian T. Foster, Jarek Nieplocha, and MarianneWinslett. Optimizing
collective I/O performance on parallel computers: A multisystem study. InICS ’97:
Proceedings of the 11th International Conference on Supercomputing, 1997.3.1

[23] Rezaul Alam Chowdhury and Vijaya Ramachandran. External-memory exact and
approximate all-pairs shortest-paths in undirected graphs. In SODA ’05: Proceed-
ings of the sixteenth annual ACM-SIAM symposium on Discretealgorithms, pages
735–744, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathe-
matics.4.8

[24] Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. A Multi-Platform Co-
Array Fortran Compiler. InPACT ’04: Proceedings of the 13th International Con-
ference on Parallel Architecture and Compilation Techniques, 2004.3.4.1

[25] Daniel Cociorva, Gerald Baumgartner, Chi-Chung Lam, P. Sadayappan, J. Ramanu-
jam, Marcel Nooijen, David E. Bernholdt, , and Robert J. Harrison. Space-time
trade-off optimization for a class of electronic structurecalculations. InPLDI ’02:
Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2002.4.2

[26] Daniel Cociorva, Xiaoyang Gao, Sandhya Krishnan, Gerald Baumgartner, Chi-
Chung Lam, P. Sadayappan, and J. Ramanujam. Global communication optimization
for tensor contraction expressions under memory constraints. In IPDPS ’03: Pro-
ceedings of the 17th International Parallel & Distributed Processing Symposium,
2003.4.2

[27] Daniel Cociorva, John W. Wilkins, Gerald Baumgartner,P. Sadayappan, J. Ramanu-
jam, Marcel Nooijen, David E. Bernholdt, and Robert J. Harrison. Towards au-
tomatic synthesis of high-performance codes for electronic structure calculations:
Data locality optimization. InHiPC ’01: Proceedings of the 8th Annual Interna-
tional Conference on High Performance Computing, 2001.4.2

[28] Daniel Cociorva, John W. Wilkins, Chi-Chung Lam, Gerald Baumgartner, P. Sa-
dayappan, and J. Ramanujam. Loop optimization for a class ofmemory-constrained
computations. InICS ’01: Proceedings of the 15th international conference on Su-
percomputing, pages 500–509, 2001.4.2

138

[29] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organi-
zation and data layout. InPLDI ’95: Proceedings of the 1995 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 279–290,
1995.2.1, 2.8

[30] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized
external-memory algorithms for some geometric problems. In SCG ’98: Proceed-
ings of the fourteenth annual symposium on Computational geometry, pages 259–
268, New York, NY, USA, 1998. ACM.4.8

[31] T. Crawford and H. Schaefer III. An Introduction to Coupled Cluster Theory for
Computational Chemists. In K. Lipkowitz and D. Boyd, editor, Reviews in Compu-
tational Chemistry, volume 14, pages 33–136. John Wiley & Sons, Ltd., 2000.4.1,
4.2, 4.7.5

[32] Roman Dementiev and Peter Sanders. Asynchronous parallel disk sorting. InSPAA
’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms
and architectures, pages 138–148, New York, NY, USA, 2003. ACM.3.5

[33] Frederic Desprez, Jack Dongarra, Fabrice Rastello, and Yves Robert. Determining
the idle time of a tiling: new results.Journal of Information Science and Engineer-
ing, 14:167–190, 1998.2.1, 2.8

[34] Jack Dongarra and Robert Schreiber. Automatic blocking of nested loops. Technical
report, University of Tennessee, Knoxville, TN, August 1990. 2.1, 2.8

[35] Iain S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli. Level 3 basic
linear algebra subprograms for sparse matrices: a user-level interface.ACM Trans-
actions on Mathematical Software, 23(3):379–401, 1997.4.8

[36] Alan Edelman, Steve Heller, and S. Lennart Johnsson. Index transformation algo-
rithms in a linear algebra framework.IEEE Transactions on Parallel and Distributed
Systems, 5(12):1302–1309, 1994.3.3.3

[37] J. O. Eklundh. A fast computer method for matrix transposing. IEEE Transactions
on Computers, 20(7):801–803, 1972.3.3.1, 3.3.2, 3.3.4, 3.5

[38] Ian Foster and Jarek Nieplocha. Disk Resident Arrays: An array-oriented I/O library
for out-of-core computations. In Rajkumar Buyya, Hai Jin, and Toni Cortes, editors,
Disk Arrays and Parallel I/O: Theory and Practice. IEEE Computer Society Press,
2001.3.1

[39] Matteo Frigo and Volker Strumpen. The memory behavior of cache oblivious stencil
computations.Journal of Supercomputing, 39(2):93–112, 2007.2.1, 2.8

139

[40] Apostolos Gerasoulis, Sesh Venugopal, and Tao Yang. Clustering task graphs for
message passing architectures.SIGARCH Computer Architecture News, 18(3):447–
456, 1990.4.8

[41] Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of di-
rected acyclic task graphs.IEEE Transactions on Parallel and Distributed Systems,
4(6):686–701, 1993.4.8

[42] Martin Griebl. On tiling space-time mapped loop nests.In SPAA ’01: Proceedings
of the 13th annual ACM symposium on Parallel algorithms and architectures, pages
322–323, 2001.2.1, 2.8

[43] Martin Griebl.Automatic Parallelization of Loop Programs for Distributed Memory
Architectures. University of Passau, 2004. Habilitation Thesis.2.1, 2.8

[44] Brian C. Gunter and Robert A. Van De Geijn. Parallel out-of-core computation
and updating of the qr factorization.ACM Transactions on Mathematical Software,
31(1):60–78, 2005.4.8

[45] R.M. Haralick and L.G. Shapiro.Computer and Robot Vision. Addison Wesley,
1992.2.1

[46] Bruce Hendrickson and Robert Leland. The chaco user’s guide: Version 2.0. Tech-
nical Report SAND94–2692, Sandia National Laboratories, 1994. 4.8

[47] High Performance Computational Chemistry Group.”NWChem, A Computational
Chemistry Package for Parallel Computers, Version 4.6”. Pacific Northwest Na-
tional Laboratory, Richland, Washington 99352–0999, USA,2004.3.4.1, 4.7.5

[48] So Hitara. Tensor contraction engine: Abstraction andautomated parallel imple-
mentation of configuration-interaction, coupled-cluster, and many-body perturbation
theories.The Journal of Physical Chemistry, 107(46):9887–9897, 2003.4.6.3

[49] Edin Hodzic and Weijia Shang. On time optimal supernodeshape.IEEE Transac-
tions on Parallel and Distributed Systems, 13(12):1220–1233, 2002.2.1, 2.8

[50] Karin Högstedt, Larry Carter, and Jeanne Ferrante. Determining the idle time of a
tiling. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 160–173, 1997.2.1, 2.8

[51] Karin Högstedt, Larry Carter, and Jeanne Ferrante. Selecting tile shape for minimal
execution time. InSPAA ’99: Proceedings of the 11th annual ACM symposium on
Parallel algorithms and architectures, pages 201–211, New York, NY, USA, 1999.
ACM. 2.1, 2.8

140

[52] François Irigoin and Rémi Triolet. Supernode partitioning. InPOPL ’88: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principlesof programming
languages, pages 319–329, New York, NY, USA, 1988. ACM.2.1, 2.2, 2.8

[53] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and
Katherine Yelick. Implicit and explicit optimizations forstencil computations. In
MSPC ’06: Proceedings of the 2006 workshop on Memory system performance and
correctness, pages 51–60, New York, NY, USA, 2006. ACM.2.1, 2.8

[54] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick.
Impact of modern memory subsystems on cache optimizations for stencil computa-
tions. InMSP ’05: Proceedings of the 2005 workshop on Memory system perfor-
mance, pages 36–43, New York, NY, USA, 2005. ACM.2.1, 2.8

[55] George Karypis, Rajat Aggrawal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: Applications in VLSI domain. InDAC ’97: Proceedings
of 34th ACM/IEEE Design Automation Conference, 1997.4.5, 4.8

[56] George Karypis and Vipin Kumar. Multilevelk-way hypergraph partitioning. In
DAC ’99: Proceedings of the 36th ACM/IEEE conference on Design automation,
pages 343–348, New York, NY, USA, 1999. ACM.4.8

[57] S. D. Kaushik, Chua-Huang Huang, John R. Johnson, Rodney W. Johnson, and P. Sa-
dayappan. Efficient transposition algorithms for large matrices. InSupercomput-
ing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pages
656–665. ACM Press, 1993.3.3.1, 3.3.2, 3.5

[58] Ramakrishnan Kazhiyur-Mannar, Rephael Wenger, RogerCrawfis, and Tamal K.
Dey. Adaptive resolution isosurface construction in threeand four dimensions. Tech-
nical Report OSU-CISRC-7/03–TR38, Department of Computerand Information
Science, The Ohio State University, July 2003.3.1

[59] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott. The omega library interface guide. Technical report, Univ. of
Maryland Institute for Advanced Computer Studies Report No. UMIACS-TR-95-
41, College Park, MD, USA, 1995.2.8

[60] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple map-
pings. InFRONTIERS ’95: Proceedings of the 5th Symposium on the Frontiers
of Massively Parallel Computation, page 332, Washington, DC, USA, 1995. IEEE
Computer Society.2.1

[61] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. Transitive clo-
sure of infinite graphs and its applications.International Journal of Parallel Pro-
gramming, 24(6):579–598, 1996.2.8

141

[62] Gaurav Khanna, Nagavijayalakshmi Vydyanathan, Tahsin Kurc, Ümit
V. Çatalyürek, Pete Wyckoff, Joel Saltz, and P. Sadayappan. A Hypergraph
Partitioning Based Approach for Scheduling of Tasks with Batch-shared I/O. In
CCGrid ’05: Proceedings of the 5th IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 2005.4.8

[63] Indraprakas Kodukula, Nawaz Ahmed, and Keshav Pingali. Data-centric multi-level
blocking. In PLDI ’97: Proceedings of the 1992 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 346–357, 1997.4.8

[64] Sriram Krishnamoorthy, Juan Piernas Canovas, Vinod Tipparaju, Jarek Nieplocha,
and P. Sadayappan. Non-collective parallel i/o for global address space programming
models. InCLUSTER ’07: Proceedings of the International Conference on Cluster
Computing. IEEE Computer Society Press, December 2007.5

[65] Sandhya Krishnan, Sriram Krishnamoorthy, Gerald Baumgartner, Daniel Cociorva,
Chi-Chung Lam, P. Sadayappan, J. Ramanujam, David E. Bernholdt, and Venkatesh
Choppella. Data locality optimization for synthesis of efficient out-of-core algo-
rithms. InHiPC ’03: Proceedings of the 10th Annual International Conference on
High Performance Computing, pages 406–417. Spring Verlag, December 2003.4.8

[66] Sandhya Krishnan, Sriram Krishnamoorthy, Gerald Baumgartner, Chi-Chung Lam,
J. Ramanujam, P. Sadayappan, and Venkatesh Choppella. Efficient synthesis of out-
of-core algorithms using a nonlinear optimization solver.Journal on Parallel and
Distributed Computing, 66(5):659–673, 2006.4.8

[67] Vipin Kumar, K. Ramesh, and V. Nageshwara Rao. Parallelbest-first search of
state-space graphs: a summary of results. InNational Conference on Artificial In-
telligence, pages 122–127, 1988.4.8

[68] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors.ACM Computing Surveys, 31(4):406–471,
1999.4.8

[69] Susan Laflin and M. A. Brebner. Algorithm 380: in-situ transposition of a rectangu-
lar matrix. Communications of the ACM, 13(5):324–326, May 1970.3.3.2

[70] Chi-Chung Lam. Performance Optimization of a Class of Loops Implementing
Multi-Dimensional Integrals. PhD thesis, The Ohio State University, Columbus,
OH, August 1999.4.2

[71] Chi-Chung Lam, Daniel Cociorva, Gerald Baumgartner, and P. Sadayappan.
Memory-optimal evaluation of expression trees involving large objects. InHiPC
’99: Proceedings of the 6th International Conference on High Performance Com-
puting, pages 103–110, London, UK, 1999. Springer-Verlag.4.2

142

[72] Chi-Chung Lam, Daniel Cociorva, Gerald Baumgartner, and P. Sadayappan. Opti-
mization of Memory Usage and Communication Requirements for a Class of Loops
Implementing Multi-Dimensional Integrals. InLCPC ’99: Proceedings of the 12th
International Workshop on Languages and Compilers for Parallel Computing, pages
350–364. Springer Verlag, 1999.4.2

[73] Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. On Optimizing a Class of
Multi-Dimensional Loops with Reductions for Parallel Execution. Parallel Process-
ing Letters, 7(2):157–168, 1997.4.2

[74] Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. Optimization of a Class of
Multi-Dimensional Integrals on Parallel Machines. InPPSC ’97: Proceedings of the
8th SIAM Conference on Parallel Processing for Scientific Computing, 1997.4.2

[75] Laxmikant V. Kalé and Sanjeev Krishnan. CHARM++: A Portable Concurrent Ob-
ject Oriented System Based on C++. In A. Paepcke, editor,OPOSLA ’93: Proceed-
ings of the 8th annual ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 91–108. ACM Press, September 1993.
4.8

[76] Thomas Lengauer.Combinatorial algorithms for integrated circuit layout. John
Wiley & Sons, Inc., New York, NY, USA, 1990.4.5

[77] Zhiyuan Li and Yonghong Song. Automatic tiling of iterative stencil loops.ACM
Transactions on Programming Languages and Systems, 26(6):975–1028, 2004.2.8

[78] Amy W. Lim and Monica S. Lam. Maximizing parallelism andminimizing synchro-
nization with affine partitions.Parallel Computing, 24(3-4):445–475, 1998.4.8

[79] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and array contraction
across arbitrarily nested loops using affine partitioning.In PPoPP ’01: Proceed-
ings of the 8th ACM SIGPLAN symposium on Principles and practices of parallel
programming, pages 103–112, New York, NY, USA, 2001. ACM.4.8

[80] Carolyn McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle. A comparison
of heuristics for scheduling dags on multiprocessors. InIPPS ’94: Proceedings of
the 8th International Parallel Processing Symposium, pages 446–451, Washington,
DC, USA, 1994. IEEE Computer Society.4.8

[81] Todd C. Mowry, Angela K. Demke, and Orran Krieger. Automatic compiler-inserted
i/o prefetching for out-of-core applications. InOSDI ’96: Proceedings of the second
USENIX symposium on Operating systems design and implementation, pages 3–17,
New York, NY, USA, 1996. ACM.4.8

143

[82] Juan J. Navarro, Toni Juan, and Tomas Lang. MOB Forms: A Class of Multilevel
Block Algorithms for Dense Linear Algebra Operations. InICS ’94: Proceedings of
the 8th International Conference on Supercomputing, 1994.4.8

[83] Jarek Nieplocha and Bryan Carpenter. ARMCI: A PortableRemote Memory Copy
Library for Distributed Array Libraries and Compiler Run-time Systems. InRTSPP
’99: Proceedings of the 3rd Workshop on Runtime Systems for Parallel Program-
ming, 1999.3.4.1

[84] Jarek Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global arrays: a
portable programming model for distributed memory computers. In Supercomput-
ing ’94: Proceedings of the 1994 ACM/IEEE conference on Supercomputing, pages
340–349, 1994.3.4.1

[85] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold
Trease, and Edo Apra. Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit.International Journal High Perfor-
mance Computing and Applications, to appear, 2005.3.4.1

[86] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J.Littlefield. Global Arrays: A
nonuniform memory access programming model for high-performance computers.
Journal of Supercomputing, 10(2):169–189, 1996.3.4.1

[87] Ohio Supercomputing Center. http://www.osc.edu.3.2

[88] OpenMP Specification. http://www.openmp.org/specs.4.6.3, 4.8

[89] R. Panwar, W. Kim, and Gul Agha. Parallel implementations of irregular problems
using high-level actor language. InIPPS ’96: Proceedings of the 10th International
Parallel Processing Symposium, pages 857–862, Washington, DC, USA, 1996. IEEE
Computer Society.4.8

[90] K. Parzyszek, Jarek Nieplocha, and R. A. Kendall. A Generalized Portable SHMEM
Library for High Performance Computing. InProceedings of the IASTED Parallel
and Distributed Computing and Systems, pages 401–406, November 2000.3.4.1

[91] William Pugh and David Wonnacott. Static analysis of upper and lower bounds on
dependences and parallelism.ACM Transactions on Programming Languages and
Systems, 16(4):1248–1278, 1994.2.8

[92] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
nonshared memory machines. InSupercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 111–120, 1991.2.1, 2.8

[93] H. K. Ramapriyan. A generalization of Eklundh’s algorithm for transposing large
matrices.IEEE Transactions on Computers, 24(12):1221–1226, 1975.3.3.1

144

[94] Keith H. Randall.Cilk: Efficient Multithreaded Computing. PhD thesis, MIT De-
partment of Electrical Engineering and Computer Science, June 1998.4.8

[95] Lakshminarayanan Renganarayana and Sanjay Rajopadhye. A geometric program-
ming framework for optimal multi-level tiling. InSupercomputing ’04: Proceedings
of the 2004 ACM/IEEE conference on Supercomputing, page 18, Washington, DC,
USA, 2004. IEEE Computer Society.2.1, 2.8

[96] Swarup Kumar Sahoo, Sriram Krishnamoorthy, Rajkiran Panuganti, and P. Sadayap-
pan. Integrated loop optimizations for data locality enhancement of tensor contrac-
tion expressions. InSupercomputing ’05: Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing, 2005.4.8

[97] Joel Saltz, Ravi Ponnusamy, Shamik Sharma, Bongki Moon, and Raja Das. A man-
ual for the CHAOS runtime library. Technical Report CS-TR-3437 and UMIACS-
TR-95-34, University of Maryland, Department of Computer Science and UMIACS,
March 1995.4.8

[98] Vivek Sarkar and John Hennessy. Compile-time partitioning and scheduling of par-
allel programs. InSIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on
Compiler construction, pages 17–26, New York, NY, USA, 1986. ACM.4.8

[99] Aaron Sawdey and Matthew T. O’Keefe. Program analysis of overlap area usage in
self-similar parallel programs. InLCPC ’97: Proceedings of the 10th International
Workshop on Languages and Compilers for Parallel Computing, pages 79–93, 1998.
2.1, 2.8

[100] Aaron Sawdey, Matthew T. O’Keefe, and Rainer Bleck. The design, implementa-
tion, and performance of a parallel ocean circulation model. In Proceedings of 6th
ECMWF Workshop on the Use of Parallel Processors in Meteorology: Coming of
Age, pages 523–550, 1995.2.1

[101] Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis, Minglong Shao,
Anastassia Ailamaki, Christos Faloutsos, and Gregory R. Ganger. On multidimen-
sional data and modern disks. InFAST ’05: Proceedings of the 4th USENIX Confer-
ence on File and Storage Technology, 2005.3.5

[102] Kent E. Seamons and Marianne Winslett. Multidimensional array I/O in Panda 1.0.
Journal of Supercomputing, 10(2):191–211, 1996.3.1

[103] Minglong Shao, Steven W. Schlosser, Stratos Papadomanolakis, Jiri Schindler,
Anastassia Ailamaki, Christos Faloutsos, and Gregory R. Ganger. Multimap: Pre-
serving disk locality for multidimensional datasets. InICDE ’07: Proceedings of
the IEEE 23rd International Conference on Data Engineering, April 2007. 3.5

145

[104] Robert K. Brunner Shobana Radhakrishnan and Laxmikant V. Kalé. Branch and
bound based load balancing for parallel applications. Technical Report 99-06, Par-
allel Programming Laboratory, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, May 1999.4.8

[105] Amitabh B. Sinha and Laxmikant V. Kalé. A load balancing strategy for priori-
tized execution of tasks. InIPPS ’93: Proceedings of the 7th International Parallel
Processing Symposium, pages 230–237, Newport Beach, CA., April 1993.4.8

[106] Yonghong Song and Zhiyuan Li. New tiling techniques toimprove cache temporal
locality. In PLDI ’99: Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 215–228, 1999.2.1,
2.8

[107] Jinwoo Suh and Viktor K. Prasanna. An efficient algorithm for out-of-core matrix
transposition.IEEE Transactions on Computers, 51(4):420–438, April 2002.3.3.1

[108] Allen Taflove and Susan C. Hagness.Computational Electrodynamics: The Finite-
Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.
2.1

[109] The Panda Project – Data Management for High-Performance Scientific Computa-
tion. http://drl.cs.uiuc.edu/panda/.3.1

[110] Sivan Toledo and Fred G. Gustavson. The design and implementation of solar, a
portable library for scalable out-of-core linear algebra computations. InIOPADS
’96: Proceedings of the fourth workshop on I/O in parallel and distributed systems,
pages 28–40, New York, NY, USA, 1996. ACM.4.8, 5

[111] Aleksandar Trifunovic and William J. Knottenbelt. Parkway2.0: A parallel multi-
level hypergraph partitioning tool. InProceedings of the 19th International Sym-
posium on Computer and Information Sciences, volume 3280 ofLecture Notes in
Computer Science, pages 789–800. Spring Verlag, 2004.4.8

[112] Ray S. Tuminaro, Mike Heroux, Scott A. Hutchinson, andJohn N. Shadid. Official
aztec user’s guide: Version 2.1. Technical report, Sandia National Laboratories,
1999.4.8

[113] R. E. Twogood and M. P. Ekstrom. An extension of Eklundh’s matrix transposition
algorithm and its application to digital signal processing. IEEE Transactions on
Computers, 25(12):950–952, 1976.3.3.1

[114] Ümit V. Çatalyürek and Cevdat Aykanat. Decomposing irregularly sparse matrices
for parallel matrix-vector multiplications. InIrregular ’96: Proceedings of 3rd Inter-
national Symposium on Solving Irregularly Structured Problems in Parallel, volume
1117 ofLecture Notes in Computer Science, pages 75–86. Spring Verlag, 1996.4.8

146

[115] Ümit V. Çatalyürek and Cevdat Aykanat. Hypergraph-partitioning based decomposi-
tion for parallel spars e-matrix vector multiplication.IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.4.5, 4.8

[116] Ümit V. Çatalyürek and Cevdat Aykanat. PaToH: A Multilevel Hy-
pergraph Partitioning Tool, Version 3.0. Bilkent University, Department
of Computer Engineering, Ankara, 06533 Turkey. PaToH is available at
http://bmi.osu.edu/∼umit/software.htm, 1999.4.8

[117] Jeffrey Scott Vitter. External memory algorithms anddata structures: dealing with
massive data.ACM Computing Surveys, 33(2):209–271, 2001.3.5

[118] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
PLDI ’91: Proceedings of the 1991 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 30–44, 1991.2.1, 2.8

[119] Michael Wolfe. More iteration space tiling. InSupercomputing ’89: Proceedings
of the 1989 ACM/IEEE conference on Supercomputing, pages 655–664, New York,
NY, USA, 1989. ACM.2.1, 2.8

[120] David Wonnacott. Time skewing for parallel computers. In LCPC ’99: Proceed-
ings of the 12th International Workshop on Languages and Compilers for Parallel
Computing, pages 477–480, London, UK, 2000. Springer-Verlag.2.8

[121] David Wonnacott. Achieving scalable locality with time skewing. International
Journal of Parallel Programming, 30(3):181–221, 2002.2.8

[122] Tao Yang and Apostolos Gerasoulis. Pyrros: static task scheduling and code gen-
eration for message passing multiprocessors. InICS ’92: Proceedings of the 6th
International Conference on Supercomputing, pages 428–437, New York, NY, USA,
1992. ACM Press.4.8

147

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Effective Automatic Parallelization of Stencil Computations
	Introduction
	Background and Problem Statement
	Inhibition of Concurrent Start
	Concurrent Start in the Non-Tiled Space
	Inhibition of Concurrent Start in the Tiled Space

	Overlapped Tiling
	Split Tiling
	Code Generation
	Experimental Evaluation
	Related Work
	Conclusions

	Data Layout Transformation for Disk Resident Arrays
	Introduction
	Disk I/O Characterization
	Out-of-core Matrix Transposition
	Problem Definition
	Matrix Transposition Algorithms
	Formulation of Transposition Algorithms
	Performance Analysis
	Sequential Out-of-Core Matrix Transposition
	Parallel Out-of-Core Matrix Transposition
	Experimental Evaluation

	Out-of-core Matrix Reblocking
	Background
	Problem Definition
	Algorithm Design
	Implementation
	Experimental Evaluation

	Related Work
	Conclusion

	Computation Mapping and Scheduling
	Introduction
	Tensor Contraction Engine
	Abstraction for Block-Sparse Matrices
	Computation Abstraction: Task Pool
	Hypergraph Partitioning Problem
	Optimizing Computations on In-Memory Data
	Problem Definition
	Communication Minimization: Locality-Aware Load-balancing
	Experimental Evaluation

	Optimizing Computations on out-of-core data
	Problem Definition
	Disk I/O Minimization: One-Level Partitioning
	Read-Once Partitioning
	Integrated Approach: Two-Level Partitioning
	Experimental Evaluation

	Related Work
	Conclusion

	Conclusions and Future Directions
	Bibliography

