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ABSTRACT

Distributed sensor networks are growing in popularity for a large number of sensing

applications ranging from environmental monitoring to military target classification

and tracking. However, knowledge of the individual sensor positions is a prerequisite

to obtaining meaningful information from measurements made by the sensors. With

the scale of sensor networks rapidly increasing due to advances in communications

and MEMS technology, an automatic localization service based on inter-sensor mea-

surements is becoming an essential element in modern networks. This dissertation

studies fundamental aspects of localization performance while deriving general results

for singular estimation problems.

Because inter-sensor measurements, such as distances or angles-of-arrival (AOA),

are invariant to absolute positioning of the sensor scene, localizing sensors with an

absolute reference, e.g., latitude and longitude, is inherently a singular estimation

problem suffering from non-identifiability of the absolute location parameters. This

results in a corresponding singular Fisher information matrix.

We consider performance characterizations of self-localization algorithms and show

that the location parameters have a natural decomposition into relative configuration

components along with centroid transformation components that give rise to the sin-

gularity of the estimation problem. A linear representation of the non-identifiable

transformation manifold, which includes representations for rotation, translation,
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and scaling, is used for decomposition of general localization error covariance ma-

trices. The unified statistical framework presented—which naturally generalizes to

non-localization problems—allows us to quantify and bound performance in the rel-

ative and transformation domains. The decomposition may be applied to a large

class of localization algorithms and measurement types, to the posterior Cramér-Rao

bound (CRB) in a Bayesian setting, or to a traditional CRB. Along with the CRB

itself, this decomposition provides both geometric insight and a quantitative analysis

tool for understanding how external inputs affect absolute localization performance.

The relative-transformation error decomposition also allows us to compute CRBs

for relative localization algorithms which would otherwise not exist due to singular

Fisher information matrices. We apply this analysis to a novel, AOA-based, relative

localization algorithm that is presented in the dissertation. In this context, we show

that localization may be interpreted as a subspace identification problem which is

solved, in closed-form, by singular value decomposition (SVD).

Finally, we consider anchor nodes as a means to regularize the absolute localization

problem and address optimal anchor selection and placement strategies for minimum

mean-square localization error. We present a novel sensor placement heuristic based

on minimizing principal angles between the anchor-induced constraint subspace and

the non-identifiable transformation subspace. This work provides analytical justifica-

tion for the frequent, but empirical, observation that perimeter-placement of anchors

is desirable.
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CHAPTER 1

INTRODUCTION

1.1 Sensor Networks

1.1.1 Sensor Network Applications

Sensor networks have proven useful in a number of distributed monitoring and

control applications. Examples from precision agriculture include sensors that mon-

itor temperature, relative humidity, and air quality within the crop canopy as well

as soil properties and crop conditions at the ground level. These microclimate sens-

ings may drive optimal crop irrigation, fertilization, and disease control measures,

thereby reducing environmental impacts and improving crop yield [1, 2]. Other envi-

ronmental applications monitor air and water pollution for urban planning and assist

enforcement of environmental regulations [3]. Sensor networks also enable habitat

monitoring at scales and resolutions not possible via traditional methods. In these

applications, where a human observer would impact natural animal behavior, wireless

sensors are ideally suited to provide non-intrusive observation [4, 5, 6].

Sensor networks, which may have rapid and ad-hoc deployment, have also found

significant utility in military applications where unmanned sensors can reduce a sol-

dier’s exposure to hostile environments and provide improved surveillance of a target
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area. In this setting, some functions of sensor networks include intrusion detection

in cleared areas, classification of enemy targets, tracking of enemy forces, battlefield

surveillance to monitor strike effectiveness, and monitoring supply and ammunition

levels among friendly forces [7, 8, 9]. Many other military and commercial applica-

tions, such as forest fire monitoring, inventory control, and structural monitoring are

given in the survey papers [9, 10].

1.1.2 The Self-localization Problem

In most sensor network applications, including those previously mentioned, knowl-

edge of the individual sensor locations is necessary in order to meaningfully interpret

data obtained by the sensors. With advances in micro-electro-mechanical systems

(MEMS) and wireless communications, the size of sensor networks—as measured

by both the number of nodes and size of deployment area—is rapidly increasing,

with some current networks exceeding 1000 nodes [11]. Due to the large scale of

such networks and ad-hoc deployment methodologies, an automated self-localization

mechanism is a key enabling technology for modern sensor networks. This disserta-

tion will study the underpinnings and fundamental performance limits of such sensor

localization technologies and will develop novel algorithms to perform localization.

Sensor network self-localization (also called self-calibration and sensor localiza-

tion) typically utilizes a set of inter-node measurements based on distance, time-of-

arrival (TOA), time-difference-of-arrival (TDOA), received signal strength (RSS), or

angle-of-arrival (AOA) observations of transmitted calibration signals. As illustrated

in Figure 1.1, cooperative localization systems combine inter-node measurements, col-

lected in a measurement vector z, with any available prior information in order to
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Figure 1.1: Example of a network to be localized. Edges between sensor nodes indicate
availability of an inter-node measurements, such as distances or angles-of-arrival. The
measurement set, which need not contain all possible pairs, is combined with prior
information in order to obtain coordinate estimates (x̂i, ŷi) of each node i ∈ {1, . . . , N}
in the network.
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obtain coordinate estimates {(x̂i, ŷi) : i ∈ (1, . . . , N)} of the N constituent nodes of

the network. We refer to this problem as absolute localization, because the absolute

locations of the nodes are sought. The prior information may be a priori knowledge

of the locations of a subset of the sensors in the network, or it could be a more

general constraint on the sensor positions, such as knowledge of the scene centroid.

Probabilistic priors on node locations are also possible.

One common application of sensor networks is source localization (also called

target localization), where the position of a foreign target is to be estimated. By

considering the target as an additional unknown-location sensor and treating the

positions of sensors making measurements of the target as known priors, we see that

source localization is a specific instance of the more general self-localization problem.

As such, the theoretical results obtained for self-localization apply equally to source

localization.

1.1.3 Algorithms and Measurement Types

Sensor network localization algorithms may be classified in a number of ways,

including:

• Centralized vs. distributed. In centralized processing, all of the data are trans-

mitted to a single node, called the fusion center, which computes the sensor

locations for the entire network. While this simplifies processing, it introduces

a single point of failure in the system and does not scale well with network size.

In distributed algorithms, the estimation task is distributed over the network.

• Relative vs. absolute. Relative localization algorithms only provide an estimate

of a sensor network’s shape; that is, the (x, y) locations of the sensor nodes
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relative to one another but not anchored in an absolute reference frame. Abso-

lute localization algorithms provide sensor position estimates with an absolute

reference, latitude and longitude for example.

• Statistical basis. Many localization algorithms have no statistical basis but

produce correct estimates in the noiseless case. Statistically based algorithms

consider the type of measurement noise and provide a tailored estimate. Clas-

sic techniques such as maximum likelihood (ML) estimation and maximum a

posteriori (MAP) estimation fall into this category.

• Iterative vs. closed-form. Computational complexity plays an important part

in localization algorithms because the number of sensors may be very large

and the algorithms may be implemented on resource-constrained sensors. Iter-

ative techniques are typically employed in algorithms requiring optimization of

a complex non-linear cost function. However, the high dimensionality of sen-

sor localization can make these algorithms difficult to initialize and prone to

local convergence problems. Closed-form algorithms do not suffer from these

problems but rarely match the performance of iterative routines.

• Measurement type. Finally, most localization algorithms are specific to a par-

ticular type of measurements, such as inter-sensor distances or angles, and may

be classified on that basis as well.

All localization algorithms work by converting a set of position-dependent mea-

surements z into position estimates θ̂. Time-of-arrival (TOA) is one type of measure-

ment commonly considered in localization literature and corresponds to the emission

time of a signal (RF, acoustic, seismic, etc.) plus a propagation-induced time delay.
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When the emission times and propagation velocity are known, TOA measurements

are effectively the same as a distance measurements. When the emission times are un-

known, the measurement model is dubbed time-difference-of-arrival (TDOA) because

it is the differences in arrival times which bear position information.

When a complete set of inter-node distance or TOA measurements are available,

classical multidimensional scaling (MDS) provides a robust subspace-based location

estimate [12]. The Isomap algorithm [13] generalizes MDS to incomplete measure-

ment sets by replacing missing measurements with shortest-path distances, while [14]

considers alternative distance matrix completions. MDS and ISOMAP are general

tools for describing dissimilarity measures and were first applied to sensor localization

in [15, 16]. Other closed form solutions for localization using range differences and

time differences are presented in [17]. Iterative methods based on maximum likelihood

estimates were derived in [18, 19], while other time- and distance-based localization

algorithms are considered in [20, 21, 22].

Received signal strength (RSS) is an alternative measurement type that is attrac-

tive for inexpensive sensors because it does not require time synchronization between

sensors. When the modality is RF, measurements can be made in the course of

normal communication activities, which decreases the energy requirements of local-

ization. ML estimation of sensor positions from RSS was considered in [19, 23] and

the effect of random unknown transmit power in [24]. Estimation by spherical in-

tersection, based on energy ratios, was considered in [25]. Additional RSS-based

methods are described in [26, 27]. Because RSS measurements are prone to large

noise, some researchers have considered localization based on communication con-

nectivity [28, 29]—essentially exploiting the idea that sensors within communication
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range must be in the same geographic proximity. Connectivity is effectively a one-bit

quantization of RSS; this idea has been generalized to n-bit quantization in [27].

Angle-of-arrival (AOA) measurements may also be used for self-localization in a

process that is a slight generalization of triangulation. When the orientations of the

sensors making AOA measurements are unknown, the measurement type is known

as angle-difference-of-arrival (ADOA) because—analogously to TDOA—the location-

bearing information is in the difference of arrival angles. A distributed AOA-based

localization algorithm is presented in [30] where sensors first estimate their bearing

to known-location beacons and then triangulate themselves. A centralized approach

was taken in [28] utilizing semidefinite programming to estimate sensor locations from

the intersection of AOA-derived constraint sets. Simultaneous maximum-likelihood

estimation of all sensor positions from AOA measurements was considered in [31].

A summary of popular measurement models is given in Table 1.1, and additional

localization algorithms may be found in the survey papers [32, 33].

Measurement type Observation model Typical mea-
surement units

Unknown
parameters

distance zt,r = ||pt − pr||2 + nt,r meters {pt}
TOA zt,r = τt + ||pt − pr||2/c+ nt,r milliseconds {pt}

TDOA zt,r = τt + ||pt − pr||2/c+ nt,r milliseconds {pt}, {τt}
AOA zt,r = ∠(pt, pr) − γr + nt,r degrees {pt}

ADOA zt,r = ∠(pt, pr) − γr + nt,r degrees {pt}, {γr}
RSS zt,r = Pt − 10α log10

||pt−pr||2
d0

+ nt,r dBm {pt}

Table 1.1: Common measurement models used in localization. Notation: pi = (xi, yi)
denotes the position of sensor i, τt is the emission time of a calibration signal emanat-
ing from sensor t, γr is the orientation of sensor r, c is signal propagation velocity, Pt is
signal transmit power, α is a propagation pathloss exponent, and nt,r is measurement
noise.
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1.1.4 Cramér-Rao Bounds in Localization

The quality of a self-localization solution depends on a number of elements, in-

cluding the type of measurements used (AOA, TDOA, etc.), the measurement noise

distribution, the geometry of the true sensor positions, the connectivity of the mea-

surement graph, prior information on sensor locations, and the location-estimation

algorithm itself. By interpreting sensor localization as a parameter estimation prob-

lem, we may use Cramér-Rao bounds (CRBs) to evaluate localization performance

bounds in an estimator-independent way. This provides a benchmark for localization

algorithms and allows us to explore the sensitivity of localization solutions to various

network characteristics, such as the noise level and measurement connectivity.

The CRB formalism also allows us to evaluate the utility of the measurement

types themselves with respect to one another. Clearly, for a given measurement type,

lower noise results in improved location estimates. However, the comparison is less

straightforward across measurement types. For example, given the alternatives of

an acoustic TOA system that can measure arrival times with a standard deviation

σt = 1 ms, or a radio-frequency based AOA system with angular measurement errors

of σθ = 3◦, it is not obvious which system provides better measurements for self-

localization.

Under the assumption of Gaussian noise, we have derived Fisher’s information and

the corresponding CRB for all of the measurement models given in Table 1.1. An

example application is illustrated in Figure 1.2 where we examine the performance

of TDOA versus TOA. The only difference between these two measurement types is

whether the estimator has knowledge (TOA) of the emission times {τt} or does not

(TDOA). In practice, it can be difficult for a node to precisely estimate the time of its
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Figure 1.2: Cramér-Rao bound analysis illustrating average localization improvement
of TOA over TDOA versus the number of deployed sensors.

own emission due to various random delays through command and communication

queues. TOA also requires the communication overhead of transmitting the emission

times from each source to the estimation center. As such, it is useful to understand

whether the effort involved in obtaining emission times is worthwhile with respect to

localization performance. In the example in Figure 1.2, which considers uniformly de-

ployed sensors in a 100 m×100 m area with acoustic signaling and zero-mean Gaussian

error with standard deviation σt = 10 ms, the average root-mean-square positioning

error of TDOA is about 12% greater than TOA.

Cramér-Rao bound analysis also allows us to answer questions regarding the util-

ity of simultaneously using multiple types of measurements. Clearly the information

9



present in two types of measurements is at least as high as that of one, and estimation

performance must be improved; however, it is not clear that the performance improve-

ment justifies the additional hardware necessary for an additional measurement type

and the necessarily greater communication and estimation complexity. By consid-

ering the Fisher information present in the joint statistics of multiple measurement

types, we are able to assess the utility of combining different forms of measurements.

This is a way to evaluate the optimal fusion performance of such disparate forms of

information.

An example is provided in Figure 1.3 where we consider the fusion of distance and

angle measurements for localization. For 16 nodes randomly deployed in a 100 m ×

100 m area, equal-error contours are plotted as a function of the independent variables

of the figure: the standard deviation of angle measurements σθ, and the standard

deviation of available distance measurements σd. By considering large errors in one

type of measurement, the performance of the other measurement modality alone can

be inferred from the asymptotic nature of the contours. For example, without angle

measurements distance measurements with σd = 2 m result in RMS localization error

of approximately 0.8 m. Following this contour into the region of large distance errors

and low angular errors, we see that AOA measurements with σθ ≈ 2.8◦ are required

to achieve an equivalent level of localization performance.

The type of CRB analysis leading to Figure 1.3 is also useful in evaluating the

utility of one type of measurement in the presence of another. For example, consider

two vertical cuts in Figure 1.3 at σθ = 2◦ and σθ = 15◦. When σθ = 15◦, any reduction

in σd improves the localization estimates substantially. However, when σθ = 2◦, the

quality angle measurements dominate, and improved distance measurements have

10
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little improvement on overall scene estimation error—until σd is approximately less

than 2 m.

1.2 Singular Estimation Problems

Singular estimation problems are those where the parameter vector θ cannot be

uniquely identified from the data. In order of increasing generality, it may be that

(1) certain elements of the parameter vector θ cannot be estimated from the data,

(2) certain linear combinations of parameters cannot be estimated, or (3) the post-

measurement parameter estimate can only be confined to a nonlinear manifold in the

complete parameter space. These problems are all characterized by having singular

Fisher information matrices (FIMs) which preclude the existence of any unbiased

estimator with finite error variance [34]. Singular estimation problems are found in

many applications areas. Examples include digital communications, where blind sym-

bol and channel identification are inherently singular [35, 36]; in overparameterized

signal models [37, 38]; and in many learning problems with hidden variables [39]. In

general, when measurements are invariant to smooth changes of the parameter vector,

as in underdetermined linear systems for example, local identifiability problems arise

and the estimation problem becomes singular.

Singular problems may be regularized by supplying additional information. For

example, deterministic constraints may be imposed on the parameter vector θ such

that the effective dimension of the problem is reduced and the resulting FIM becomes

non-singular. By reinterpreting the problem in a Bayesian setting, a prior distribution

on θ may be used for regularization. In this setting, the prior can be used to supply

information about the components of θ not informed upon by the data. The total
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Fisher information in this case [40, p. 84] is JT = JD + JP , where JD represents

the information from the data and is equal to the non-random FIM averaged over

the prior, and JP represents a priori information derived solely from the prior. For

suitable priors, the addition of JP will eliminate the singularity of the total FIM.

Absolute localization of sensors based only on internode measurements, such as

TDOA or AOA, is inherently a singular problem [18, 41, 42]. This is because internode

measurements only depend on the relative configuration of sensors, not their absolute

positions. For example, the structural variability in TDOA measurements depends

only on the distances between sensors (see Table 1.1), therefore, any rigid translations

and rotations of the sensor scene will produce data with identical statistics—making it

impossible to infer the true translation and rotation in any absolute frame of reference.

The singularity of absolute localization will play a major theme throughout this

dissertation.

1.3 Summary of Chapters and Contributions

In the second chapter we present a novel closed-form algorithm to self-localize

and orient sensors from AOA and ADOA measurements. We demonstrate that the

AOA localization problem has the interpretation of a subspace identification prob-

lem that can be solved with singular value decomposition (SVD). The algorithm is

similar to classical multidimensional scaling (MDS) [12] and Isomap [13] in that it

finds generative point configurations from partial measurement sets, except that the

measurements are now angles instead of distances or general measures of dissimilar-

ity. As singularity problems arrise in absolute positioning, we demonstrate how the
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relative estimator proceeds by making arbitrary choices about the non-identifiable

parameters.

We show that the computational complexity of the algorithm is O(mn2), where

m is the number of measurements and n is the total number of sensors. Simula-

tion results demonstrate that the error of the proposed subspace algorithm is only

marginally greater than an iterative maximum-likelihood estimator (MLE), while the

computational complexity is two orders of magnitude less. Additionally, the iterative

MLE is prone to converge to local maxima in the likelihood function without accu-

rate initialization. We illustrate that the proposed subspace method can be used to

initialize the MLE and obtain near–Cramér-Rao performance for sensor localization.

Finally, the scalability of the subspace algorithm is illustrated by demonstrating how

clusters within a large network may be individually localized and then merged.

In the third chapter, we consider the accuracy of sensor node location estimates

from self-calibration in sensor networks. The total parameter space is shown to have

a natural decomposition into relative and centroid transformation components. The

singular nature of absolute localization results in a singular Fisher information matrix

(FIM). We show that a linear representation of the transformation parameter space

coincides with the nullspace of the FIM. The centroid transformation subspace—

which includes representations of rotation, translation, and scaling—is characterized

for a number of measurement models including distances, TOA, TDOA, AOA, and

ADOA measurements. Along with the CRB itself, the relative-transformation decom-

position provides insight into how external inputs effect absolute localization perfor-

mance. The error decomposition may be applied to any localization algorithm in

order to better understand its performance characteristics in these domains, or it
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may be applied to a traditional CRB or posterior CRB in a Bayesian setting. Sensor

localization bounds are also considered for arbitrary functional constraints (f(θ) = 0)

on the location parameters θ using a constrained CRB [43]. Geometric interpreta-

tions of the constrained CRB are provided based on the principal angles between the

measurement subspace and the constraint subspace.

One benefit of this analysis is that it provides a direct bound on the performance

of relative localization algorithms. Previously, arbitrary constraints were imposed to

regularize the relative estimator and produce a non-singular Fisher information ma-

trix. The drawback of this latter approach is that the error bound depends on the

particular constraint employed and does not directly measure relative performance.

The relative–transformation error partitioning is also useful to higher level applica-

tions in a sensor network that utilize results of the localization service and must

account for its uncertainty. Examples are presented and an application demonstrates

the utility of relative error decomposition to the problem of angle-of-arrival estimation

with sensor location uncertainty.

In the fourth chapter, we consider using a select number of sensors with known

locations, called anchor nodes, as a means of removing the singularity of absolute

localization. We show that absolute localization performance depends on the loca-

tions of the anchor nodes relative to the remaining unknown-location nodes, and we

consider means of optimally selecting and placing anchor nodes in order to mini-

mize mean-square localization error. A heuristic approach is taken to minimize total

estimation error by forcing constraints to be maximally informative in the singular

domain of the problem. In this case, the singular domain corresponds to the space of
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unknown rigid transformations and scalings of the sensors. By minimizing the prin-

cipal angles between the anchor-induced constraint subspace and the non-identifiable

subspace, we are able to develop anchor placement heuristics that do not depend on

knowledge of the true sensor locations.

We demonstrate empirically that the subspace alignment heuristic is a strong

indicator of mean-square estimation performance and that anchors placed in this

way yield total localization error similar to that of oracle-placement, where perfect

knowledge of the unknow-location sensors is assumed. The analysis of this chapter

also provides analytical justification for the frequent empirical observation [44, 45, 46]

that anchor nodes should be positioned around the perimeter of a sensor network.

The appendix contains a derivation of Fisher’s information for problems with

missing data. The cases where the probability of a missing measurement depends,

and does not depend, on the parameter vector are considered separately. In the

second case, we find an explicit expression for the amount of information in a missing

measurement.

16



CHAPTER 2

CLOSED-FORM SYSTEM MULTIANGULATION

2.1 Introduction

Multiangulation (or simply angulation) represents a generalization of the familiar

concept of triangulation and denotes the task of localizing a source point from a

set of known locations and the angles from those locations to the source. In the

noiseless case, two known-location points are sufficient to localize a third point—

hence the prevalence of triangulation—however, larger numbers of known-location

points are beneficial when the angles contain noise. In this chapter, we consider

a novel technique for the simultaneous relative localization of all nodes in a sensor

network from a set of angle-of-arrival (AOA) measurements. For this reason, we

refer to the method as “system” multiangulation. No known-location points (called

anchors) are required, however, if present, they may be used to subsequently provide

the relative scene estimate an absolute frame of reference.

Many sensors support AOA measurements as part of their sensing or communica-

tion subsystems. For example, sensors tracking people, wildlife, and vehicles are often

equipped with phased microphone arrays which allow enhanced observations in the di-

rection of the target of interest through beamforming [47, 6]. These arrays can also be
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used for AOA estimation via algorithms like MUSIC and ESPRIT [48]. Sensors may

also be equipped with arrays of directional antennas in order to focus communication

transmissions toward the intended destination and limit interference to neighboring

sensors. With knowledge of the antenna beam patterns, a multi-antenna system with

a single radio receiver may also be used for accurate AOA estimation of any in-band

RF source [49]. RF phased arrays, as used in current multiple-input multiple-output

(MIMO) communication systems, will likely make their way into sensor networks and

could also be used for AOA estimation, albeit with increased circuit complexity.

The aim of this chapter is to develop a robust and low-complexity algorithm for

network localization from AOA measurements. We illustrate that the system multi-

angulation problem may be interpreted as a subspace identification problem. When a

complete set of inter-node distance measurements are available, classical multidimen-

sional scaling (MDS) provides a robust subspace-based location estimate [12]. The

Isomap algorithm generalizes MDS to incomplete measurement sets by replacing miss-

ing measurements with shortest-path distances [13]. Because time-of-arrival (TOA)

and received-signal-strength (RSS) measurements may be converted to distance esti-

mates, MDS and Isomap apply to these measurement modalities as well. Subspace

methods were used in [17] for closed-form source localization using range differences

and time differences. To the best of our knowledge, subspace-based methods have not

been previously applied to AOA. As such, this chapter fills a gap in existing litera-

ture by providing subspace-based localization from AOA or angle-difference-of-arrival

(ADOA) measurements. The algorithm is non-iterative and provides a good trade-off

between complexity and performance.
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Previous work on AOA-based localization considered a distributed approach where

bearing-to-anchor information is propagated throughout the network allowing nodes

to triangulate themselves when they obtain enough anchor bearings [30]. The strength

of this approach is that it is distributed; the weakness is that bearing error accumu-

lates as the estimates are propagated through the network. In [28], a centralized ap-

proach was taken where semidefinite programming was employed to estimate sensor

locations from the intersection of AOA-derived constraint sets. Maximum-likelihood

estimates of sensor positions from AOA measurements were considered in [31].

Notation: Throughout this chapter capital letters represent matrices and bold

lowercase letters denote column vectors. (·)T and (·)∗ represent matrix transpose and

conjugate-transpose respectively, while R(A) and N (A) represent the range space

and null space of matrix A, respectively.

2.2 System Multiangulation

The localization problem is to estimate sensor node positions pi = [xi yi]
T , i ∈

{1, ..., n} from a partial set of angle-of-arrival measurements {φij}. In order to ob-

tain absolute position estimates, a small subset K ⊆ {1, ..., n} of the nodes, called

anchors, are assumed to have known positions and are used to resolve ambiguities

in translation, rotation, and scale of a relative solution. As illustrated in Figure 2.1,

each node r makes AOA measurements in a local coordinate system which is offset

by an angle αr from a global reference. In the global coordinate system, the AOA at

receiving node r, of a transmission from node t is

θrt = φrt + αr, (2.1)
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Figure 2.1: Illustration of global and local coordinate systems for AOA measurements.
Each node r makes measurements in a local coordinate system which is offset by an
amount αr from the global coordinate system.
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where φrt is the measurement in r’s local system. We first consider localization when

the orientation angles {αr} are known (as provided by a digital compass on each

sensor, for example) and then address the more difficult unknown orientation case.

2.2.1 Known Orientations

When the sensor orientations {αr} are known, we can immediately map local

measurements {φrt} into their global frame counterparts {θrt} via (2.1). For each

angle θrt, we form a unit vector

urt =

[
sin θrt

− cos θrt

]
(2.2)

which, as illustrated in Figure 2.1, is orthogonal to the difference of the position

vectors

uT
rt(pt − pr) = 0. (2.3)

This construction allows us to determine a system of equations which can be solved

for the node positions.

Let M denote the set of ordered measurement pairs; that is, (r, t) ∈ M if node

r makes an AOA measurement of a transmission from node t, and let Mr(i) and

Mt(i) denote the receiver and transmitter of the ith element of M, respectively. Let

U = {Uij} be an |M| × |M| block diagonal matrix, where each block is an element

of R
2×1 and |M| is the total number of measurements. We populate the diagonal

(block) entries of U with the previously defined unit vectors as Uii = ur′t′ , where

r′ = Mr(i), t
′ = Mt(i). Let K = {Kij} be an |M| × n block matrix with common

block size 2×2. The non-zero elements of the ith row of K are populated as Kit′ = I2

andKir′ = −I2, where I2 is the 2×2 identity matrix and again r′ = Mr(i), t
′ = Mt(i).
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If we let p = [pT
1 pT

2 . . . pT
n ]T be the stacking of the n position vectors, then from (2.3)

we can form the homogeneous linear system

UTKp = 0. (2.4)

The function of the matrix K is to form the necessary position vector differences

corresponding to each AOA measurement. An example of a three-node system (n = 3)

with four measurements (|M| = 4) may look like




u21 0 0 0
0 u31 0 0
0 0 u32 0
0 0 0 u13




︸ ︷︷ ︸
UT , |M|×2|M|

T 


I2 −I2 02

I2 02 −I2
02 I2 −I2
−I2 02 I2




︸ ︷︷ ︸
K, 2|M|×2n




p1

p2

p3




︸ ︷︷ ︸
p, 2n×1

=




0
0
0
0




︸︷︷︸
|M|×1

.

(2.5)

The relative localization solution sought is a particular solution to the linear ho-

mogeneous system (2.4) above. In general, the dimension of the nullspace of UTK is

three. One dimension corresponds to scalings of the point configuration p, another

corresponds to translations in the x-direction, and the third corresponds to transla-

tions along the y-direction; that is N (UTK) = R([p vx vy]), where vx = [1 0 1 0 . . . ]T

and vy = [0 1 0 1 . . . ]T . The vectors vx and vy come directly from the matrix K,

(Kvx = Kvy = 0) and reflect the fact that AOA measurements only depend on the

relative point configuration and are invariant to scene translations. The third basis

vector is, by construction, the desired point configuration p up to scale and transla-

tion. If there are an insufficient number of measurements, the dimension of N (UTK)

will be greater than three.

Because the translation vectors vx and vy do not depend on the coordinates being

estimated, we can reduce the dimension of the null space by augmenting the rows of
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UTK with vT
x and vT

y . Let

A =



UTK
vT

x

vT
y


 ∈ R

(|M|+2)×(2n). (2.6)

Then, N (A) = span(p), and we can solve

Ap = 0 (2.7)

using the singular value decomposition A = UAΣAV
T
A . The (unit-norm) minimizing

solution p of ‖Ap‖ is

p̂ = V
(2n)
A , (2.8)

where V
(2n)
A is the right singular vector corresponding to the minimum singular value

of A.

The point configuration so obtained will be centered at the origin and, in the

noiseless case, will be a equal to the generating configuration up to translation and

scale. The final estimate of p is obtained by scaling and translating p̂ for maximal

agreement with prior information. We use the Procrustes algorithm for this purpose

as described in the next subsection.

Transforming from Relative to Absolute Point Configurations

In order to transform our relative solution obtained above into an absolute solu-

tion, we we find a suitable transformation mapping the estimated values of the anchor

nodes K to their a priori known positions.

Let the |K| × 2 matrix P = [pK(1),pK(2), . . . ]
T denote the matrix of a priori

known positions, and similarly let P̂ = [p̂K(1), p̂K(2), . . . ]
T form the previously obtained

estimates of this subset of nodes. We use the Procrustes algorithm to find the squared-

error minimizing translation, rotation, and scale of the points P̂ into P . That is,
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we seek a scale factor s, an orthogonal rotation matrix R, and a translation vector

t = [tx ty]
T that minimizes

∥∥∥P − (sP̂R + 1tT )
∥∥∥

F
, (2.9)

where the norm is in the Frobenius sense and 1 is a vector of all ones. We then apply

these transformations to all of the estimated points in order to obtain the complete

scene estimate.

The solution to this problem is a slight generalization of the orthogonal Pro-

crustes problem and is given in [50]. Let J = (I − |K|−111T ), and compute the SVD

UpΣpV
T
p = P TJP̂ . The desired transformation parameters are

R = VpU
T
p (2.10)

s = (tr P TJP̂R)/(tr P̂ TJP̂ ) (2.11)

t = |K|−1(P − sP̂R)T1. (2.12)

For the known orientation case, the scene rotation is not ambiguous. That is, the

rotation R above will always be identity (or a reflection matrix), however, rotation

will be needed below for the case of unknown orientations, so we include it in (2.10)–

(2.12).

The complexity of determining rotation, translation, and scale using the Pro-

crustes method is very low because the SVD only involves a 2 × 2 matrix, for any

number of anchors and total sensors. The complexity of obtaining the relative esti-

mate p̂ is addressed in Section 2.4 after considering the unknown orientation case.
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2.2.2 Unknown Orientations

Unknown orientations {αr} are nuisance parameters in the localization problem,

however their estimates are useful quantities in many sensor applications. In our

approach, we first estimate the orientations up to a common offset and then apply the

point estimation procedure above for known orientations. We begin by describing the

procedure for the case of complete measurements where all pairs of sensors make AOA

measurements in both directions. This is then extended to the partial measurement

case.

Complete Measurements

Using the fact that θrt = θtr + π we have

αr − αt = φtr − φrt + π for all r 6= t. (2.13)

In order to simplify the modulo 2π arithmetic involved in angular calculations, we

represent the sensor orientation angles as the phase of points in the complex plane,

a(α) = [eiα1 , ..., eiαn ]T , where α = [α1, ..., αn]T is the vector of unknown orien-

tations. Let Φ = {φrt} denote the matrix of AOA measurements, from which we

form

Ψ = ΦT − Φ + π1n1
T
n , and (2.14)

B = eiΨ + 2I, (2.15)

where eiΨ denotes elementwise exponentiation of Ψ, not the conventional matrix ex-

ponential.

We now have the fundamental relation

a(α) a(α)∗ = B (2.16)
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which holds in the noiseless case. Let VBΛBV
∗
B denote the eigen-decomposition of B.

The closest rank-one approximation (in the Frobenius norm sense) to B is λnvnv
∗
n,

where λn is the largest eigenvalue of B and vn is the associated eigenvector. We may

then estimate a(α) as

â = vn (2.17)

and compute the orientation estimates as the phase of each complex element of â

α̂i = ∠âi. (2.18)

In the noiseless case, the orientation angles so obtained will equal the true angles up

to a constant, that is α = α̂ + α01. The ambiguity of α0 is due to the fact that the

elements of B only depend on the differences between elements of α as seen in (2.13)

and (2.15). The scalar α0 represents a common orientation offset which results in

an overall unknown rotation of the relative scene estimate. This last fact is seen by

noting that if pr and pt satisfy (2.3), then p̃r = Rα0 pr and p̃t = Rα0 pt satisfy

[
sin(θrt + α0)

− cos(θrt + α0)

]T

(p̃r − p̃t) = 0, (2.19)

where

Rα0 =

[
cosα0 − sinα0

sinα0 cosα0

]
(2.20)

is a counterclockwise rotation matrix by α0.

Thus, the unknown α0 corresponds to an overall unknown scene rotation which can

be disambiguated with prior knowledge – along with scale and translation. Therefore,

we can use the α̂ estimates (2.18) to determine the unit vectors {urt} and proceed

with localization as described earlier for the known-orientation case.

26



Partial Measurements

The problem is complicated slightly in practice where finite communication ranges

makes it unrealistic to assume that each node obtains AOA measurements from all

other nodes—that is, some elements of Φ, and consequently B, may be unknown.

An unknown element Brt = ei(αr−αt) may be derived from any known path from

r to t. Consider a path

P = {(r, n1), (n1, n2), ...(nk, t)} (2.21)

with k intermediate nodes. We then have that

Brt = ei(αr−αt)

= ei(αr−αn1 ) · ei(αn1−αn2 ) · . . . · ei(αnk
−αt)

=
∏

(m,n)∈P

Bmn (2.22)

and see that Brt may be estimated as the product of entries along any path from

r to t for which measurements are known. In the case of noisy measurements a

minimum-length path should be used in order to decrease the variance of the re-

sulting estimate. Conventional shortest-path algorithms, such as Floyd-Warshall and

Dijkstra, are useful here [51]. As an extension to this technique, it may be desirable

to perform a weighted rank-one approximation of B which minimizes the weighted

Frobenius norm

J(a) =
∑

(r,t)

Wrt((aa
∗)rt −Brt)

2, (2.23)

where the weights Wrt = 1/hrt and hrt is equal to the number of hops used in

establishing entry Brt. Unfortunately, the known methods for computing weighted
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low-rank approximations are all iterative [52], unlike the unweighted case which is

determined via a single eigen-decomposition. Although not considered here, missing

entries in B could also be constructed from a weighted average among multiple paths.

Our implementation is based on the shortest path using Dijkstra’s algorithm and the

(unweighted) eigen-approximation (2.17).

The entire algorithm, termed Robust Angulation using Subspace Techniques (RAST),

is summarized in Table 2.1. In the noiseless case, RAST yields the exact solution.

Performance in noise is considered in the next section.

• If sensor orientations α are unknown

– Calculate B using (2.15)

– If B has missing entries from incomplete measurements

∗ Use shortest path construction (2.22) to complete entries

– Compute eigen-decomposition B = VBΛBV
∗
B

– Estimate orientations as the phase of the elements of the eigenvector
corresponding to the largest eigenvalue.

• Calculate global-frame arrival angles {θrt} from (2.1) and compute unit
vectors as in (2.2)

• Form matrix A as in (2.6) and compute its SVD A = UAΣAV
T
A

• Estimate the relative point configuration from the rightmost singular vector
of A, p̂ = V

(2n)
A

• If absolute positioning (scale, translation, rotation) are required, use Pro-
crustes equations (2.10), (2.11), (2.12) to estimate these parameters from
p̂ and anchor points

Table 2.1: Robust Angulation using Subspace Techniques (RAST), algorithm sum-
mary.
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Figure 2.2: Sample sparse network to be localized with anchor nodes on the four
corners.

2.3 Performance in Noise and the CRB

Through simulation, we evaluate the performance of our algorithm on the sparse

network depicted in Figure 2.2 and compare the localization performance to the

Cramér-Rao bound (CRB) and the maximum-likelihood estimator (MLE). In the

figure, the measurement radius has been limited to 20 m making the network rela-

tively sparse. The measurements {φ̃rt} are Gaussian perturbations of the true values:

φ̃rt = φrt + nrt, nrt ∼ N(0, σ2
φ), where σ2

φ is the common observation noise variance.

The four corner nodes of the network serve as anchors.
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Let Θ = {xi yi αi}i=1:n denote the parameter vector to be estimated, and let φ(Θ)

be the resulting AOA measurements that would result from a proposed value of Θ.

The MLE for this problem is equal to the (non-linear) least squares estimate [31]

Θ̂mle = arg min
Θ

J(Θ), (2.24)

where J(Θ) is the cost function

J(Θ) =
∑

(r,t)∈M

(
φ̃rt − φ(Θ)rt

)2

. (2.25)

As a performance metric we consider the scene RMS error defined as

Erms =

(
1

n− |K|
∑

i/∈K

E[d̂2
i ]

) 1
2

, (2.26)

where E[d̂2
i ] is the expected value of the squared distance between an estimate and the

true position of node i. For the MLE and RAST estimators, this expected quantity is

derived from a large number of simulations. A lower bound on the minimum possible

error achievable by any unbiased estimator is given by the Cramér-Rao bound (CRB)

which is derived from the inverse of the Fisher information matrix (FIM) [53]. The

FIM for this problem is derived in [49, 32].

2.3.1 Simulations

In Figure 2.3 we plot the localization performance of the RAST algorithm as a

function of the AOA measurement error σφ for the network in Figure 2.2—based on

1000 Monte Carlo measurement realizations. We consider a wide range in the quality

of AOA estimates available; with errors ranging from good (σφ = 2.5◦) to very poor

(σφ = 20◦). As a point of reference, AOA errors of approximately 3◦ − 5◦ were

experimentally observed for an RF-based system in [49] and for an ultrasound-based
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system in [54]. From Figure 2.3, we see that the estimation error is approximately

60% greater than the minimum possible CRB-predicted error when σφ = 20◦ and

sensor orientations are known. When the measurement noise decreases to σφ = 2.5◦,

the estimation error exceedes the CRB by only 21%. Similarly, for the unknown-

orientation case, the estimation error ranges from 29% to 55% above the CRB as σφ

varies from 2.5◦ to 20◦.

Figures 2.4 and 2.5 present simulation results comparing RAST performance with

maximum-likelihood performance in localizing the sample network of Figure 2.2. The

MLE was obtained as an iterative solution to the nonlinear least-squares problem

(2.24) using Matlab’s implementation of the interior-reflective Newton method [55].

In the unknown orientation case, MLE convergence is very sensitive to the initial

value given to the algorithm and is prone to converge to local maxima. These figures

consider three different initialization mechanisms for the MLE: (i) the true point

positions (used as a benchmark), (ii) random initial points drawn uniformly from the

40m × 40m scene, and (iii) the output from our subspace estimator.

When the sensor orientations are known, we see from Figure 2.4 that all of the

ML estimates have nearly identical error and that they outperform RAST errorwise.

However, as illustrated in Table 2.2, the closed-form nature of RAST results in a

runtime that is nearly two orders of magnitude less than the iterative MLE. Algorithm

runtimes were measured with Matlab’s cputime function.

When orientations are unknown, the cost function (2.25) becomes plagued with

local maxima and the MLE optimization has a very difficult time converging to the

global maximum. In the case of random initialization the MLE always converged

to distant local maxima resulting in errors significantly outside the plot region of
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Figure 2.3: Performance of the RAST localization method for known and unknown
sensor orientations compared to the Cramér-Rao lower bound

Figure 2.5. However, the RAST algorithm provided estimates sufficiently close to the

attraction region of the optimal solution that MLE initialized from RAST was nearly

equivalent to initialization with true values. As such, RAST-initialized maximum-

likelihood estimates nearly achieve CRB performance. For 2.5◦ ≤ σφ ≤ 12◦, the

amount that these estimates exceed the CRB by ranges from only 1% to 4%, for both

known and unknown orientations. Runtimes for the unknown orientation case are

given in Table 2.3.
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Figure 2.4: Orientations known – Comparison of the RAST estimator to the iterative
maximum-likelihood estimator initialized in different ways. All maximum-likelihood
estimates are nearly identical for this case.

2.4 Complexity

The dimensions of the matrix A in (2.6) are (|M|+2)×2n, and for practical cases

the total number of measurements |M| > 2n, making the complexity of evaluating the

SVD O ((|M| + 2)(2n)2). For unknown orientations, the matrix B in (2.15) is n× n

and its eigen-decomposition O(n3). Using the Dijkstra or Floyd-Warshall algorithms

for shortest path construction to fill in missing entries in the matrix B has worst-

case complexity O(n3) [51, Ch. 5]. Thus, the overall complexity of the algorithm is

O(|M|n2) for both known and unknown orientation angles.
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Estimator RMS Error (m) CPU time per estimate (ms)

RAST 1.23 9
ML(true) 1.04 384
ML(rast) 1.04 377
ML(rand) 1.04 823
CRB 1.01 n.a.

Table 2.2: Orientations known – Performance and CPU time characteristics of each
estimator, σφ = 5◦.

Estimator RMS Error (m) CPU time per estimate (ms)

RAST 1.60 48
ML(true) 1.30 670
ML(rast) 1.30 662
ML(rand) 3418 19258
CRB 1.29 n.a.

Table 2.3: Orientations unknown – Performance and CPU time characteristics of each
estimator, σφ = 5◦.

There are a number of numerical linear algebra techniques that can reduce this

complexity. The matrix A is sparse and we need only the least dominant right singular

vector, not the entire SVD; thus using Lanczos method reduces the storage and

compute time required [56, Ch. 9]. Using Lanczos method and the RAST algorithm,

we observe that a 2 GHz desktop can simultaneously localize a 2000 node network in

approximately 15 sec when each node makes 10 AOA measurements to its neighbors.

If new AOA measurements are subsequently made after an initial localization

solution obtained, the matrix A can be augmented with new rows and the original

nullspace basis p can be updated in O(n2) operations without having to compute the

SVD of the augmented matrix from scratch [56, §12.5.5], [57]. The situation of a new
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Figure 2.5: Orientations unknown – For this case, random initialize of the MLE
failed to achieve the global maximum and errors are significantly outside of the plot
region. MLE initialization from RAST produces results nearly as good as true-value
initialization (used as a benchmark).

sensor node joining a previously calibrated network is more complicated as both new

rows and columns must be appended to A. In this case, a previously computed SVD

of A can be updated in two steps as row augmentations to A and AT as described in

[58]. This update can be performed in O ((|M| + n)n) operations.

2.5 Merging Subgraphs

The subspace-based algorithm presented in this chapter is centralized, however, it

naturally accommodates the merging of localization solutions from multiple subgraphs

into one complete solution. This fits the popular hierarchical model for large sensor
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networks where the entire network is divided into clusters, and each cluster is managed

by a cluster-head. Using the methods described in this section, each cluster may

perform localization of its constituent nodes using the previously described algorithm.

All of the clusters may then be “stitched” together into a complete network. For

clarity of presentation, we describe the procedure for a 2-cluster system, as illustrated

in Figure 2.6.

2.5.1 Known Orientations

Let p(1) denote a relative localization solution for Cluster 1. That is, U1K1p
(1) = 0,

where U1 is derived solely from measurements between nodes in Cluster 1, and K1

forms the necessary differences between positions of nodes in Cluster 1. Similarly,

let the solution for the second cluster be U2K2p
(2) = 0. Without loss of generality,

we will assume the position of p(1) to be fixed and determine the transformation of

p(2) necessary to merge the two solutions in a manner that is consistent with the

measurements made between the two clusters. When sensor orientations are known,

this amounts to determining a suitable translation and scaling of p(2). In particular,

we seek

p̃(2) = sp(2) + xvx + y vy = Q δ, (2.27)

where Q = [p(2) vx vy], and the elements of δ = [s x y]T represent scale, x-translation,

and y-translation, respectively.

The linear system (2.4) for the entire network may be written



UT

1 0 0
0 UT

x 0
0 0 UT

2





K1 0

K
(1)
x K

(2)
x

0 K2



[
p(1)

p(2)

]
= 0, (2.28)
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where Ux is formed from cross-cluster measurements (transmitter in one cluster, re-

ceiver in another) and [K
(1)
x K

(2)
x ] forms the necessary vector differences between cross-

cluster pairs. Rewriting (2.28) as



UT

1 K1 0

UT
x K

(1)
x UT

x K
(2)
x

0 UT
2 K2



[
p(1)

p(2)

]
= 0, (2.29)

we see that the total network gives three systems of equations (i) UT
1 K1p

(1) = 0, (ii)

UT
x K

(1)
x p(1) + UT

x K
(2)
x p(2) = 0, and (iii) UT

2 K2p
(2) = 0. Equations (i) and (iii) are

solved by performing relative localization within each cluster (as already assumed),

and equation (ii) provides the constraints necessary to determine how the clusters

themselves are positioned relative to one another. Combining (ii) and (2.27) we can

estimate the translation and scale parameters as

δ̂ = −(UT
x K

(2)
x Q)†UT

x K
(1)
x p(1), (2.30)

where (·)† denotes pseudo-inverse.

2.5.2 Unknown Orientations

When the orientations of the sensors {αi} are unknown, the relative cluster esti-

mates p(1) and p(2) have arbitrary orientations. Thus, in addition to translation and

scale, we also seek a rotation angle ∆ of p(2).

Let â(i) denote the complex orientation estimates from the relative localization of

Cluster i (see (2.17)), and let ã(i) ∈ C
n(i)

denote the subset of â(i) corresponding to

the n(i) sensors of Cluster i involved in cross-cluster measurements. For the example

in Figure 2.6, n(1) = 2 and ã(1) = [eiα3 eiα4 ]T . Form the (n(1) + n(2)) × (n(1) + n(2))

matrix Bx as in (2.15) using the cross-cluster measurements and compute its rank-1
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merged together using cross-cluster measurements.
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approximation using eigen-decomposition as in (2.17)

âx â∗
x ≈ Bx. (2.31)

As before, the elements of âx are partitioned as â
(1)
x and â

(2)
x , representing the ele-

ments from Cluster 1 and Cluster 2, respectively. Finally, rotational offsets ∆(i) need

to be estimated for each cluster in order for the previous orientation estimates to

coincide with those of the cross-cluster measurements. Specifically, we solve for real

scalars ∆(1) and ∆(2) such that

∥∥∥∥∥

[
ei∆(1)

ã(1)

ei∆(2)
ã(2)

]
−
[
â

(1)
x

â
(2)
x

]∥∥∥∥∥

2

2

(2.32)

is minimized:

∆(i) = ∠
(
(ã(i)∗â(i)

x )/(ã(i)∗ã(i))
)
, i = 1, 2. (2.33)

Since, as shown in Section 2.2.2, uniformly adjusting the orientation angles by ∆

corresponds to a rotation of estimates by ∆, we can apply a rotation of ∆ = ∆(2)−∆(1)

to the relative cluster estimate p(2). Translation and scale may then be determined

as in Section 2.5.1.

Finally, we note that the process of aligning two clusters only utilizes cross-cluster

measurements and relative cluster-position estimates for sensors involved in these

measurements1. Therefore, the transmission and computation requirements for merg-

ing are proportional to the number of cross-cluster measurements—which is expected

to be much smaller than the number of intra-cluster measurements. Networks of

more than two clusters may be localized by merging one cluster at a time with a

1From (2.30), δ̂ appears to depend on p(1) and p(2), however K
(i)
x only has non-zero columns

corresponding to sensors involved in cross-cluster measurements.
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growing “base-cluster.” However, in the presence of noise, this solution will depend

on the order in which the clusters are added. Future work will consider methods to

simultaneously merge multiple clusters.

2.6 Conclusions

In this chapter we presented a new localization algorithm that provides both sen-

sor position and orientation estimates from angle-of-arrival measurements. The algo-

rithm is subspace based in that it relies on singular-value and eigen-decompositions

to identify subspaces associated with position and orientation vectors. The algorithm

compared favorably to the Cramér-Rao bound on estimation error variance and was

shown to have complexity O(|M|n2), where |M| is the number of measurements

and n is the total number of sensors. In Monte Carlo simulations, the closed-form

nature of the algorithm resulted in a runtime nearly two orders of magnitude less

than an iterative maximum-likelihood estimator. The fast and robust nature of the

algorithm makes it well-suited to initialize high fidelity routines, such as the MLE.

Finally, while the algorithm is centralized, it was demonstrated how disjoint sub-

network clusters could be localized independently and subsequently merged together

with minimal overhead.
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CHAPTER 3

RELATIVE AND ABSOLUTE POSITIONING ERRORS IN
SELF-LOCALIZATION SYSTEMS

3.1 Introduction

In order to better understand how noise, deployment geometry, and measurement

type effect fundamental location estimation performance, a number of authors have

considered the Cramér-Rao bound (CRB) for these scenarios. The CRB has been

derived for distance (range) measurements in [59, 60], for TOA measurements in

[32, 19, 59, 31], for TDOA measurements in [61], for RSS measurements in [32, 19, 61],

and for AOA measurements in [49, 32, 31, 60].

As illustrated in Figure 1.1, the absolute self-localization problem combines inter-

node measurements collected in a measurement vector z with prior information in

order to obtain coordinate estimates {(x̂i, ŷi) : i ∈ (1, . . . , N)} of the N constituent

nodes of the network. In this chapter we establish a general partitioning of localization

error that may be applied to all of the previously mentioned measurement types and

their associated CRBs. In particular, we decompose the total localization error into

a relative portion representing error in the estimated node locations relative to one

another (network “shape”) and a transformation component representing error in the
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absolute position of the relative scene. This decomposition is motivated by the fact

that relative information is derived from both measurements and prior information,

while transformation information comes solely from prior information. In this chapter

we also relate, for a number of different measurement types, the nullspace of the

Fisher information matrix (FIM) to transformation parameters not informed upon

by measurements.

Because inter-node calibration measurements provide no information about the lo-

cation and orientation of the entire network, estimation of the absolute node locations

from inter-node measurements alone is an ill-conditioned problem. However, inter-

node measurements provide significant information on the node locations relative to

one another. In order to regularize the absolute localization problem, generic con-

straints on the parameter set are considered. These constraints represent a generaliza-

tion of the use of anchor (also called beacon) nodes typically used in self-localization.

One of the main contributions of this work is an analysis illustrating how the con-

straint subspace interacts with the measurement subspace to effect total localization

performance. Along with the CRB itself, the relative–transformation decomposition

presented here gives insight into how external inputs effect absolute localization. This

partitioning of error is also useful to higher level applications in a sensor network that

utilize output and uncertainty of the localization service.

This chapter is organized as follows. Definitions of relative and transformation

error in a deterministic setting are given in Section 3.2. Randomness is introduced

in Section 3.3 where these concepts are extended to expected error and related to

the FIM. A general measurement model, along with several specific measurement

types, is also given in this section. In Section 3.4 we introduce constrained estimation
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and prove generic results illustrating how the interaction between the constrained

and measurement subspaces effects total estimation performance. Some examples

utilizing the relative–transformation error decomposition are given in Section 3.5,

and conclusions are given in Section 3.6.

Notation: Throughout this chapter capital letters represent matrices and bold

lowercase letters denote column vectors. (·)T and tr(·) represent matrix transpose

and trace respectively. || · || denotes the vector 2-norm (Euclidean norm), R(A) rep-

resents the column-span of matrix A, R(A)⊥ represents the orthogonal complement

of R(A), and A ≥ B implies that (A− B) is positive semidefinite. The construction

diag([A1 . . . An]) represents a block diagonal matrix with matrices {Ai} on the main

diagonal, and A† denotes the Moore-Penrose pseudo-inverse of matrix A.

3.2 Relative and Transformation Error

3.2.1 Definitions

Absolute location estimates are derived from two sources of information: (1) some

form of inter-node measurements (such as distances or time-difference-of-arrival) and

(2) prior information in the form of constraints on the parameters. Probabilistic priors

may also be considered, and can also be decomposed into relative and transformation

components as considered below. The relative configuration of the sensors represents

the “shape” of the network without regard to absolute location, orientation, and in

some cases scale. The measurements only depend on (and thus only inform upon)

the relative configuration of the nodes, whereas the prior information may inform

upon both relative configuration and global transformation information. Thus, it is

natural to partition the absolute coordinate estimation error into relative localization
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error and transformation estimation error. Let θ = [x1 y1 . . . xN yN ]T be the

absolute location parameter vector of an N -node system with parameter estimate

θ̂ = [x̂1 ŷ1 . . . x̂N ŷN ]T given by some estimator. As a performance metric for

this estimator we consider the sum of the squared distances between the true node

locations and their estimates

ǫ =
N∑

i=1

d2
i

= ||θ − θ̂||2, (3.1)

where d2
i = (xi − x̂i)

2 + (yi − ŷi)
2. If the estimator did not yield the optimal trans-

formation parameters (translation, rotation, and potentially scale), the error in (3.1)

can be further reduced by applying a planar transformation to the previous estimates.

Consider translation of the N node locations in θ̂ along the x- and y-axis by x and

y respectively, rotation counter clockwise by an angle φ, and scaling by a factor s—

both about the point pc = [xc yc]
T . Letting α = {s, φ, x, y}, we write this combined

transformation of a location estimate vector θ̂ as

Tα(θ̂) = sRφ(θ̂ − θ̄) + θ̄ + xvx + yvy, (3.2)

where vx = [1 0 1 0 . . . ]T ∈ R
2N×1, vy = [0 1 0 1 . . . ]T ∈ R

2N×1, θ̄ = [xc yc xc yc . . .]
T ∈

R
2N×1, and the total rotation matrix Rφ is composed of N 2 × 2 equivalent rotation

matrices, Rφ = diag([Γφ Γφ . . . Γφ]) ∈ R
2N×2N , where

Γφ =

[
cosφ − sinφ
sinφ cosφ

]
. (3.3)

In practice, measurements provide information about a strict subset of α, which

may be the empty subset; we denote this subset as αm ⊂ α. The remaining trans-

formation parameters αm = α \ αm are completely non-estimable from the mea-

surements. With this partitioning, we write α = {αm, αm}. For example, when
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the measurements are inter-node distances, αm = {s} and αm = {φ, x, y}. Other

measurement types are explored in detail in Section 3.3.2.

We denote by αm0 the optimal transformation parameters over αm for a particular

estimate θ̂

αm0 = arg min
αm

||θ − Tα0(θ̂)||2. (3.4)

In (3.4), α0 = {s0, φ0, x0, y0} = {αm0 , αm0} and αm0 ⊂ ᾱ = {s̄, φ̄, x̄, ȳ} =

{1, 0, 0, 0}, with the appropriate elements chosen as necessary. Thus, a transformation

based on α0 optimally corrects components not informed upon by the measurements,

but does not alter the other components. In the distance measurement example,

αm0 = {s̄} = {1} and the optimization (3.4) does not include scale.

We denote the optimally transformed estimate by

θ̂r = Tα0(θ̂) (3.5)

and define the relative localization error to be

ǫr = ||θ − θ̂r||2. (3.6)

The transformation error is the portion of the total error due to the estimator not

correctly estimating the transformation parameters and is given by

ǫt = ǫ− ǫr

= ||θ − θ̂||2 − ||θ − θ̂r||2. (3.7)

The optimal transformation parameters are determined by singular-value decom-

position (SVD) and given as the solution to the extended orthogonal Procrustes prob-

lem, first solved by Schönemann and Carroll [50], and repeated here for completeness.
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Let A = [x1 y1;x2 y2; ...] ∈ R
N×2 represent a rearrangement of the coordinates of

θ, and let B represent a similar rearrangement of θ̂. Let C = (I −N−11N11
N), where

1N is a column vector of N ones, and compute the SVD UpΛpV
T
p = ATCB. The

optimal transformation parameters are

Γφ0 = UpV
T
p (3.8)

s0 = (tr ATCBΓT
φ0

)/(tr BTCB) (3.9)

[x0 y0]
T = N−1(A− s0BΓT

φ0
)T1N . (3.10)

If modifications to scale are not required, (3.9) may be ignored and s0 = 1 substi-

tuted into (3.10) for optimal translation under this condition. Because the Procrustes

method determines θ̂r,
√
ǫr is sometimes referred to as the Procrustes distance.

3.2.2 Linear Subspace Approximation

For any scene estimate θ̂, we can define an equivalence class S(θ̂) which represents

all scalings and rigid transformations of θ̂ such that the Procrustes distance between

any two elements of S(θ̂) is zero. The equivalence class S(θ̂) is a four-dimensional

non-linear manifold in R
2N parameterized by s, φ, x, and y. The remainder of this

section is devoted to developing a linear approximation of the transformation operator

which will give us a linear subspace representation of S(θ̂) and allow us to simplify

the expressions for ǫr and ǫt.

We linearize the transformation operator by considering a first order Taylor ap-

proximation of Tα about ᾱ

Tα(θ) ≈ Tᾱ(θ) +
∂ Tα(θ)

∂ αT

∣∣∣∣
α=ᾱ

(α− ᾱ), (3.11)
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where

∂ Tα(θ)

∂ αT

∣∣∣∣
α=ᾱ

=

[
Rφ(θ − θ̄), s

dRφ

d φ
(θ − θ̄),vx,vy

]∣∣∣∣
α=ᾱ

=
[
(θ − θ̄),M0(θ − θ̄),vx,vy

]
, (3.12)

and where M0 =
d Rφ

d φ

∣∣∣
φ=0

= diag([Φ0 Φ0 . . .Φ0]) ∈ R
2N×2N , and

Φ0 =

[
0 −1
1 0

]
. (3.13)

In R
2 we wish to consider scaling and rotation of each point (xi, yi) about the true

centroid (x̄, ȳ), where x̄ = N−1
∑

i xi and ȳ = N−1
∑

i yi. In R
2N this corresponds to

a single operation on θ about θ̄ = x̄vx + ȳvy. Substituting this value for θ̄ in (3.12)

and using (3.11) we obtain

Tα(θ) ≈ θ + (s− 1)vs + φvφ + xvx + yvy, (3.14)

where

vs =




(x1 − x̄)
(y1 − ȳ)
(x2 − x̄)
(y2 − ȳ)

...




and vφ =




−(y1 − ȳ)
(x1 − x̄)
−(y2 − ȳ)
(x2 − x̄)

...



. (3.15)

Note that vs and vφ depend on θ, the point being transformed. However, the approx-

imation (3.14) remains valid for transforming any other point θ̂ ≈ θ when α ≈ ᾱ.

We use this fact in subsequent error analysis to construct the scaling vector vs and

rotation vector vφ from the true parameter vector θ. These may then be applied, as

in (3.14), to perform transformations on estimates θ̂ which are close to θ.

When αm = {}, we can approximate ǫr as

ǫr ≈ ||θ̂ + (s0 − 1)vs + φ0vφ + x0vx + y0vy − θ||2, (3.16)
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and we define the approximation to the relative error as

ǫ̃r = min
β

||θ̂ + βsṽs + βφṽφ + βxṽx + βyṽy − θ||2, (3.17)

where β = [βs βφ βx βy]
T and, for convenience, we used normalized versions of the

already orthogonal transformation vectors

ṽx = vx/||vx||, ṽy = vy/||vy||, ṽφ = vφ/||vφ||, ṽs = vs/||vs|| (3.18)

with ||vx||2 = ||vy||2 = N and ||vs||2 = ||vφ||2 =
∑
d̃2

i , where d̃i is the distance of

node i to the scene center (x̄, ȳ). Let W = [ṽs ṽφ ṽx ṽy] and denote by

β̂ , W T (θ − θ̂)

= [β̂s β̂φ β̂x β̂y]
T (3.19)

the minimizing value of (3.17). Then we may define the transformation correction to

θ̂ as w̃t = W β̂ and can represent the linear approximation to θ̂r as θ̃r = θ̂ + w̃t. See

Figure 3.1 for graphical definitions of these and other vectors of interest.

Thus, the linear approximation ǫ̃r of the relative error ǫr is given by

ǫ̃r = ||θ − θ̃r||2

= ||w̃r||2 (3.20)

and the corresponding linear approximation ǫ̃t of the transformation error is approx-

imated as

ǫ̃t = ǫ− ǫ̃r

= ||ξ||2 − ||w̃r||2

= ||w̃t||2. (3.21)
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The vectors w̃t and w̃r are easily expressed as projections of the error vector

ξ = (θ − θ̂) onto the subspaces R(W ) and R(W )⊥

w̃t = PW ξ = WW T ξ (3.22)

w̃r = P⊥
W ξ = (I −WW T ) ξ. (3.23)

When αm 6= {}, a similar derivation to (3.16)–(3.23) holds, where now we simply

limit the columns of W to those corresponding to elements of αm and adjust the size

of β accordingly.

The transformation vectors (ṽs, ṽφ, ṽx, ṽy) can also be interpreted as a meaningful

orthonormal basis for the tangent plane of the manifold S(θ) at the point θ. As

such, we are approximating general movements on the manifold by movements on

this tangent plane.

3.3 Relation to the FIM

In the previous section we saw that rigid transformations and scaling of θ can

be approximated by θ + Wβ. Because inter-node measurements do not generally

inform about these bulk properties, we are typically only able to estimate θ up to

its equivalence class S(θ) using inter-node measurements. In terms of the linear

approximation, we cannot estimate the components of θ in the subspace spanned

by vs,vφ,vx, and vy. As the measurements provide no information about θ in this

subspace, the resulting Fisher information matrix will be singular. In this section we

consider a number of different measurement models and illustrate the relationship

between the FIM’s nullspace and non-estimable transformation parameters.
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θ̂r
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ξ
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Figure 3.1: Geometric illustration of relative and transformation errors in the location
parameter vector θ. The manifold S(θ̂) represents rigid transformations and scalings
of the coordinate estimates θ̂, and the point on S(θ̂) closest to θ represents the
optimally transformed estimate, θ̂r. The error vector ξ = θ − θ̂ may be decomposed
into ξ = wr +wt, where wr = θ− θ̂r is the relative error vector and wt = θ̂r − θ̂. wt

and wr may be approximated, respectively, by w̃t and w̃r, the projections of the error
vector ξ onto the transformation subspace R(W ) and the relative subspace R(W )⊥.

50



3.3.1 Measurement Model and Fisher Information

We consider a measurement model of the general form

z = µ(θ) + η ∈ R
M , (3.24)

where z is a vector of M measurements, µ is the mean of the observation which is

structured by the true coordinate parameters θ, and η is zero-mean noise with density

fη(η). While the Fisher information matrix, J , for estimating θ from z depends on

the distribution of η, its nullspace does not.

The Fisher information matrix is

J = E

[
∂

∂θ
ln fZ(z; θ)

] [
∂

∂θ
ln fZ(z; θ)

]T

. (3.25)

and

[
∂

∂θ
ln fZ(z; θ)

]T

=
−1

fη(η)

∂fη(η)

∂ηT

∂µ(θ)

∂θT
, (3.26)

yielding

J =

∫
fZ(z; θ)

1

f 2
η (η)

∂µT (θ)

∂θ

∂fη(η)

∂η

∂fη(η)

∂ηT

∂µ(θ)

∂θT
dz. (3.27)

Letting G = ∂µ(θ)
∂θT , and noting that dz = dη we have

J = GT

∫
1

fη(η)

[
∂fη(η)

∂η

] [
∂fη(η)

∂η

]T

dη G (3.28)

= GTRG, (3.29)

where

R =

∫
1

fη(η)

[
∂fη(η)

∂η

] [
∂fη(η)

∂η

]T

dη. (3.30)

Thus, null(G) ⊆ null(J). Under the mild assumption that R is non-singular,

the nullspace of J is fully determined by G, null(J) = null(G). We further assume
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that a sufficient number of measurements have been made to uniquely determine the

network’s shape. We note that for Gaussian noise, η ∼ N (0,Ση), we have R = Σ−1
η

in (3.29).

In the following subsection we consider a number of different types of inter-node

measurements and illustrate that, in each case, null(J) is spanned by a subset of the

transformation vectors {vs,vφ,vx,vy}. This provides a physically-based meaningful

basis for null(J) = R(W ) and allows us construct the matrix W needed in order to

calculate relative and absolute errors for each measurement type.

3.3.2 Measurement Types

Let M denote the set of M ordered measurement pairs; that is (r, t) ∈ M if

node r makes a measurement from a transmission originating at node t, and let

M(k) = (r, t)k denote the kth such pair. Denote by pi = [xi yi]
T the coordinates of

the ith sensor.

Distance Measurements

Let µ(θ)k denote the kth element of µ(θ), then for distance measurements

µ(θ)k = ||pr − pt||, (3.31)

for (r, t) = M(k). In this case µ(θ) is unchanged by translations and rotations

to θ and we find that null(J) = null(∂µ(θ)
∂θT ) = span(vx,vy,vφ), as expected. Thus,

W = [ṽx ṽy ṽφ].

Time-of-arrival (TOA)

This case is essentially the same as distance measurements. The arrival time of a

signal at sensor node r from a transmission by node t is equal to the distance between
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them divided by the propagation velocity, c, plus the time of emission at node t, τt

µ(θ)k = ||pr − pt||/c+ τt. (3.32)

Here c and τt are known, and again null(J) = span(vx,vy,vφ).

Angle-of-arrival (AOA)

As described in Chapter 2, each sensor node r makes angle measurements in a

local coordinate system which is offset by an angle γr from a global reference. In the

global coordinate system, the AOA at receiving node r, of a transmission from sensor

node t is ωrt = ψrt + γr, where ψrt is the measurement in node r’s local system

µ(θ)k = ψrt = ωrt − γr. (3.33)

In the AOA measurement model, the orientation angles {γr : r ∈ (1, . . . , N)} are

assumed to be known and we effectively measure arrival angles with an absolute

reference. AOA measurements are invariant to translation and scaling of θ, and we

find null(J) = span(vx,vy,vs). Orientation is informed upon by the measurements

(αm = {φ}).

Time-difference-of-arrival (TDOA)

In this model, the receivers measure signal arrival times as in TOA,

µ(θ)k = ||pr − pt||/c+ τt, (3.34)

except that the emission times {τj : j ∈ (1, . . . , N)} are unknown and must be

inserted into the parameter vector to be estimated, so θ = [x1 y1 τ1 x2 y2 τ2 . . . ]T ∈

R
3N . In this model, a single arrival-time measurement is not informative without

knowing the emission time, and the useful quantity is the difference between the
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arrival times at two distinct receiving sensors corresponding to the same source signal.

For this measurement model µ(θ) remains invariant to translations and rotations of

the sensors. However, the corresponding transformation vectors spanning null(J)

must account for the addition of the emission times in θ. Thus, the basis becomes

vx =




1
0
0
1
0
0
...




,vy =




0
1
0
0
1
0
...




,vφ =




−(y1 − ȳ)
(x1 − x̄)

0
−(y2 − ȳ)
(x2 − x̄)

0
...




. (3.35)

Angle-difference-of-arrival (ADOA)

The measurements for ADOA are the same as AOA,

µ(θ)k = ψrt = ∠(pr,pt) − γr, (3.36)

except that the orientations of the individual sensors {γj : j ∈ (1, . . . , N)} are

unknown and must be inserted into the parameter vector for estimation, so θ =

[x1 y1 γ1 x2 y2 γ2 . . . ]T ∈ R
3N . The measurements in the ADOA model are insensi-

tive to translations, rotations, and scaling of the sensor coordinates. Accounting for

the augmented parameter vector, the corresponding basis of null(J) is

vx =




1
0
0
1
0
0
...




,vy =




0
1
0
0
1
0
...




,vφ =




−(y1 − ȳ)
x1 − x̄

1
−(y2 − ȳ)
x2 − x̄

1
...




,vs =




x1 − x̄
y1 − ȳ

0
x2 − x̄
y2 − ȳ

0
...




(3.37)
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3.3.3 Expected Error

For an unbiased estimator θ̂, we may express the expected values of the three

estimation errors ǫ, ǫ̃r and ǫ̃t in terms of the estimator covariance matrix Σθ̂ = E[ξξT ].

Let

Σt = E[β̂β̂T ] = W T Σθ̂W (3.38)

denote the covariance matrix of the transformation coefficients, and let

Σr = E[w̃rw̃
T
r ] = (W̃W̃ T )Σθ̂(W̃W̃ T ) (3.39)

denote the covariance matrix of the error in the relative subspace R(W )⊥, where the

columns of W̃ form an orthonormal basis for R(W )⊥. The expected errors are

e , E[ǫ] = E[ξT ξ] = tr Σθ̂ (3.40)

er , E[ǫ̃r] = E[w̃T
r w̃r] = tr Σr (3.41)

et , E[ǫ̃t] = E[w̃T
t w̃t] = tr Σt, (3.42)

and, as desired, the sum of the mean component errors equals the total: e =

tr[W̃W ]T Σθ̂ [W̃W ] = er + et. Lower bounds on the expected errors e, er, and

et maybe be obtained from the constrained CRB as described in the next section.

3.4 Constrained Estimation

3.4.1 Constrained CRB

Because the FIM J in (3.25) is singular, the Cramér-Rao bound based on mea-

surements alone does not exist and additional information must be supplied in order

to regularize the self-localization problem. This information may be in the form of
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a prior distribution on the parameters p(θ), or, as we consider, a set of parametric

constraints

f(θ) = 0. (3.43)

In general, f(θ) is a k-vector representing a system of k constraints. For example, to

constrain the centroid (k = 2) to the origin (0, 0), we have

f(θ) =
1

N
[vx vy]

T θ. (3.44)

The constrained CRB Σc bounds the covariance matrix of an unbiased estimator

θ̂ satisfying a constraint f(θ̂) = 0,

Σθ̂ = E[(θ − θ̂)(θ − θ̂)T ] ≥ Σc, (3.45)

and is given in [43] as

Σc = Uc(U
T
c JUc)

−1UT
c , (3.46)

where Uc is a semiunitary matrix whose columns form an orthonormal basis for the

nullspace of the Jacobian matrix F = ∂f(θ)
∂θT , FUc = 0. We assume that the constraints

f(θ) are non-degenerate such that the inverse in (3.46) exists. For a given constraint

function f(θ) and noise distribution pη(η), lower bounds on the expected errors e, er

and et may be obtained by substituting the constrained CRB Σc in (3.46) for Σθ̂ in

(3.40), (3.41), and (3.42), respectively.

Next, we derive upper and lower bounds on the minimum total error, e = tr Σc, for

general estimation of an n-vector under parametric constraints (3.43) and degenerate

measurements. In the localization context n = 2N for TOA, AOA, and distance

measurements; and n = 3N for TDOA and ADOA. As the measurements are assumed
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degenerate, r = rank(J) < n, and the FIM may be written

J = [UJ ŨJ ]

[
ΛJ 0
0 0

]
[UJ ŨJ ]T (3.47)

= UJΛJU
T
J . (3.48)

Let d = n − r denote the rank deficiency of J . For localization, we have already

defined a meaningful basis of R(ŨJ) given by the d columns of W .

3.4.2 Error Bounds for a k-constrained System, k ≥ d

In this section we bound the minimum of the total error e in the constrained

estimation problem using information from the unconstrained FIM, J , and properties

relating the two subspaces R(UJ) and R(Uc). To do so, we first present two properties

concerning the singular values of the product of two matricies which will be used later.

Let A,B ∈ R
n×n be positive semidefinite Hermitian matrices with ordered singular

values σ1(A) ≥ · · · ≥ σn(A), σ1(B) ≥ · · · ≥ σn(B). The following are true:

Property 1 ([62, Th. 3.3.14]).

j∑

i=1

σi(AB) ≤
j∑

i=1

σi(A)σi(B), 1 ≤ j ≤ n (3.49)

Property 2 ([63]).

j∑

i=1

σi(AB) ≥
j∑

i=1

σi(A)σn−i+1(B), 1 ≤ j ≤ n (3.50)

Letting j = n in the above properties, we obtain the following upper and lower

bounds on the trace of AB

n∑

i=1

σi(A)σn−i+1(B) ≤ trAB ≤
n∑

i=1

σi(A)σi(B). (3.51)
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Now we write Σc as

Σc = Uc(A
T ΛJA)−1UT

c , (3.52)

where

A = UT
J Uc, (3.53)

and consider its SVD

A = [Y1Y2]

[
ΛA

0

]
ZT , (3.54)

where Y1 ∈ R
(n−d)×(n−k), Y2 ∈ R

(n−d)×(k−d), and ΛA = diag([σ1(A), . . . , σn−k(A)]) .

The singular values, σ1(A) ≥ · · · ≥ σn−k(A), correspond to the cosines of the principal

angles, 0 ≤ φ1 ≤ · · · ≤ φn−k ≤ π/2, between the two subspaces R(Uc) and R(UJ),

[56, Ch. 12]

cosφi = σi(A). (3.55)

See also Section 4.2.1 of Chapter 4 for more information about principal angles.

It follows that the minimum total localization error is given by:

tr Σc = tr(AT ΛJA)−1

= tr(ZΛAY
T
1 ΛJY1ΛAZ

T )−1

= trZ−1Z(ΛAY
T
1 ΛJY1ΛA)−1 (Z is unitary)

= tr(ΛAY
T
1 ΛJY1ΛA)−1

= tr Λ−2
A (Y T

1 ΛJY1)
−1. (3.56)

Let X = (Y T
1 ΛJY1) and assume the singular values are ordered σ1(X) ≥ · · · ≥

σn−k(X). Because Y1 is semiunitary, the singular values of X are bounded according
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to the Poincaré separation theorem [64, Corollary 4.3.16]:

σi(ΛJ) = σi(J) ≤ σi(X) ≤ σi+k−d(J), i = 1, . . . , (n− k). (3.57)

Combining (3.51), (3.55), (3.56), and (3.57) we have the following bound on total

error.

Theorem 1 (Bounds on minimum total error).

n−k∑

i=1

1

cos2 φi

1

σn−k+1−i(J)
≤ tr Σc ≤

n−k∑

i=1

1

cos2 φi

1

σk−d+i(J)
. (3.58)

The lower bound consists of a weighted sum of the reciprocals of the largest

(n− k) singular values of J , and the upper bound uses the reciprocals of the (n− k)

smallest nonzero singular values of J . The weightings are based on the principal

angles between R(Uc) and R(UJ). A geometric interpretation of (3.58) is provided in

Section 3.4.3 below. Note that (3.58) suggests infinite estimation error when any of

the principal angles are 90◦, although, in practice sensor locations may be known to

lie in a bounded region. This discrepancy is present in all CRB analyses and arises

because the CRB is inherently a local bound—ignoring global structure information

that may be available. Local and global bounds are further considered in Section 3.4.5.

Owing to the minimum and maximum principal angles, (3.58) may be simplified

as the following weaker bounds

1

cos2 φ1

n−k∑

i=1

1

σn−k+1−i(J)
≤ tr Σc ≤

1

cos2 φn−k

n−k∑

i=1

1

σk−d+i(J)
. (3.59)

A simple corollary of Theorem 1 follows for a minimally constrained (k = d)

system.
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Corollary 1 (Minimally constrained system, total error).

1

cos2 φ1

tr J† ≤ tr Σc ≤
1

cos2 φn−d

tr J†. (3.60)

Proof. The proof follows immediately from (3.59) after noting that
∑n−d

i=1 1/σi(J) =

tr J†.

Further, when k = d and the subspaces R(Uc) and R(UJ) are identical, then

φi = 0,∀ i ∈ {1, . . . , n− d}, and the upper and lower bounds converge yielding

tr Σc = tr J†. (3.61)

Theorem 2 (Bound on relative error). For any system of constraints, we have the

following bound for the covariance matrix of the relative error

Σr ≤ J†. (3.62)

Proof. To show (3.62), we must show

UJU
T
J Uc(U

T
c JUc)

−1UT
c UJU

T
J ≤ UJΛ−1

J UT
J . (3.63)

After substituting J = UJΛJU
T
J , UT

J Uc = Y1ΛAZ
T and canceling appropriate factors,

the claim (3.62) is equivalently reduced to

UJY1(Y
T
1 ΛJY1)

−1Y T
1 U

T
J ≤ UJΛ−1

J UT
J . (3.64)

Let Q = [Y1Y2]
T ΛJ [Y1Y2], which has Q11 = Y T

1 ΛJY1 as a principal submatrix. Using

the fact [64, Th. 7.7.8] thatQ−1
11 ≤ (Q−1)11, where the right-hand side is the equivalent

principal submatrix of Q−1, we have

(Y T
1 ΛJY1)

−1 ≤ Y T
1 Λ−1

J Y1 (3.65)
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and therefore

Y1(Y1ΛJY
T
1 )−1Y T

1 ≤ Y1Y
T
1 Λ−1

J Y1Y
T
1 (3.66)

≤ Λ−1
J , (3.67)

where (3.67) follows because Y1Y
T
1 is a projection matrix. Multiplying (3.67) on the

left by UJ and on the right by UT
J yields (3.64) and completes the proof of (3.62).

Finally, we observe in the following corollary to Theorem 2 that the upper bound

J† on relative error is achieved for any minimally constrained system.

Corollary 2 (Minimally constrained system, relative error). For a minimally con-

strained (k = d) system, we have for the relative error

Σr = J†, (3.68)

and therefore er = tr J†.

Proof. We write Σr = UJA(AT ΛJA)−1ATUT
J , with A as in (3.53). When k = d, A is

square and invertible yielding

Σr = UJ(AA−1)Λ−1
J (AT−1

AT )UT
J (3.69)

= UJΛ−1
J UT

J = J† (3.70)

for any system of k = d non-degenerate constraints.

The interpretation of Theorem 2 is that measurements alone provide a certain

amount of information about the relative scene configuration. This establishes the

upper bound J† on the covariance matrix of the relative error. Any additional in-

formation, in the form of parametric constraints, can only reduce the relative error
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below J†. Corollary 2 says that when we have the minimum number of constraints,

equal to the rank deficiency d of J , then the relative error is still equal to J†. In effect,

a minimally constrained system only serves to provide information about unknown

transformation components which are not informed upon by measurements; relative

error is not decreased. We use this fact in Section 3.5.1 in order to construct a relative

estimation algorithm.

3.4.3 Geometric Interpretations

Examining (3.58) we can see how the interplay between the two information

sources – constraints and measurements – influences the total estimation error. Con-

sidering a linearization of the constraint f(θ̂) about θ,

f(θ̂) ≈ f(θ) + F (θ̂ − θ) = 0 (3.71)

=⇒ F θ̂ ≈ Fθ − f(θ), (3.72)

we see that, for θ̂ ≈ θ, the constraint function precisely determines θ̂ in the k-

dimensional subspace R(F T ) but says nothing about the components of θ̂ in R(F T )⊥ =

null(F ) , R(Uc). We call R(F T ) and R(Uc) the constrained and unconstrained sub-

spaces under constraint f , respectively.

The parameter space R
n may also be partitioned from the measurements into

R(UJ) and R(ŨJ), where R(UJ) represents the subspace informed upon by mea-

surements, and R(ŨJ) = R(W ) represents the transformation subspace which is not

estimable from measurements.

When the unconstrained subspace R(Uc) is closely aligned with the measurement

subspace R(UJ), all of the principal angles (3.55) are small (i.e., cosφi ≈ 1) and the

localization estimation performance, from (3.58), is good.
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3.4.4 The Pseudoinverse Bound, J †

If, for a minimally constrained system, the k = d constraints precisely determine

the components of θ̂ in the transformation subspace R(ŨJ), then R(Uc) = R(UJ)

and we may write Uc = UJB, for some non-singular matrix B. As R(ŨJ) = R(W ),

this corresponds to a constraint that fully specifies the unknown transformation pa-

rameters. (For example, with distance measurements, the constraint would uniquely

specify the scene centroid and rotation.) In this case, the total error CRB from (3.46)

may be rewritten using the pseudo-inverse

Σc = Uc(B
T ΛJB)−1UT

c

= UJΛ−1
J UT

J = J†. (3.73)

Because we have assumed precise specification of the transformation parameters, the

transformation portion of the total error is zero, meaning that all of Ec = J† comes

from relative error. This is consistent with Corollary 2.

In the localization context, the pseudo-inverse J† was considered in [65] and re-

ferred to as the relative CRB, and later in [41] being called the anchor-free CRB. The

interpretation of J† is that it bounds localization error in the relative domain due

to measurements alone; absolute positioning error in the transformation subspace is

ignored. This chapter generalizes the relative CRB concept to the case of general

constraints, and provides a geometric understanding of the subspaces involved.

In Section 3.5 we demonstrate the use of the relative CRB in evaluating relative

estimators and apply the decomposition ideas to absolute localization algorithms.
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3.4.5 Local and Global Error Bounds

Bounds on parameter estimation error may be classified as either local or global.

Local bounds only capture small deviations about the true parameter value θ. The

CRB is a local bound as it is based solely on the local structure of the likelihood

function. Global bounds, which consider estimation performance over the entire pa-

rameter range, may be larger or smaller than a local bound. For example, multi-modal

likelihood functions—such as those encountered in time-delay-estimation [66, 67]—

frequently yield global uncertainty much greater than local uncertainty, especially

at low SNRs; while problems with bounded parameter ranges may have less global

(total) uncertainty than that predicted by a local bound, which ignores the finite pa-

rameter range. Although sometimes difficult to evaluate, global bounds, such as the

Weiss-Weinstein bound [68], the Ziv-Zakai bound [69] or the Bayesian Cramér-Rao

bound [40, p. 84] [70], may be computed for localization problems and would rep-

resent a generalization of the deterministic Cramér-Rao analyses considered in this

dissertation.

However, our primary interest lies in the decomposition of parameter estimation

error into the transformation (singular) and relative (non-singular) domains, and this

decomposition—which relies on the tangent plane approximation of the transforma-

tion manifold (Section 3.2.2)—applies generally, to both local and global bounds.
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3.5 Examples

3.5.1 Relative Estimators

Relative-only localization algorithms only estimate the relative configuration of

the sensors from inter-node measurements; absolute position information is not esti-

mated, but rather assigned arbitrarily. Examples include classical multidimensional

scaling (MDS) [12, Ch. 12] and Isomap [13] which place the centroid of relative scene

estimates at the origin. As previously noted, the FIM based on measurements alone is

singular and cannot directly be used to bound location estimation performance. How-

ever, relative localization algorithms may be compared to the relative CRB based on

the pseudo-inverse of J (3.73). This bound ignores absolute positioning information

which is arbitrarily specified by the relative localization algorithm. An alternative

to using the relative CRB is to choose a subset of anchor nodes in the network, and

then to translate, rotate, and scale the relative solution for maximal agreement with

the anchor subset. These resulting estimates may then be compared to a constrained

CRB on total estimation error. The drawback of this latter approach is that the total

error depends not only on the relative estimates, but also on the alignment process

and the particular anchors selected. Hence, the advantage of the relative CRB is

that we may directly evaluate the quality of relative estimates without resorting to

arbitrary anchor node selection. We illustrate the procedure for both distance and

angle measurements.

Distance Measurements

We consider localization of the network depicted in Figure 3.2 where we assume all

nodes make distance measurements to one another according to (3.24) and (3.31) with
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Figure 3.2: Sample network in a crude grid configuration used for localization exam-
ples.
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Gaussian measurement noise η ∼ N (0, σ2
dI). Let di,j denote the measured distance

between nodes i and j, and denote by d̂i,j(θ) the resulting inter-node distance for

potential parameter vector θ = [x1 y1 . . . xN yN ]T . We consider estimators of the

form

θ̂p = arg min
θ\C

∑

i6=j

[dp
i,j − d̂p

i,j(θ)]2, p = 1, 2. (3.74)

When p = 1, (3.74) is the maximum likelihood estimator, and we consider p = 2

because this cost function affords closed-form expressions for its gradient and Hessian,

thereby simplifying the optimization process [71, §8.5.3].

Without restriction, the optimization (3.74) will not converge and we must, there-

fore, “pin down” the relative scene. We arbitrarily assign x1 = y1 = x2 = 0; therefore,

C = {x1, y1, x2} and the optimization is over θ \ C. From Corollary 2, we know that

utilizing the minimum number of constraints (three in this case) does not introduce

any relative information into the problem. Therefore, while (3.74) could be used for

absolute localization, we may also use it to derive relative scene estimates. We also

consider relative estimates derived from MDS.

Figure 3.3 demonstrates the relative localization error of these three algorithms as

a function of σd and compares them to the relative CRB (3.73). The relative errors

for each estimator were calculated by averaging 200 simulation values of ǫr (3.6) and

the relative CRB error is the trace of J†. The performance of the relative MLE, θ̂1, is

well-described by the relative CRB for the noise range considered. The performance

of θ̂2 is also reasonably close the relative CRB, while MDS, which has much lower

computational complexity, has significantly larger error.
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Figure 3.3: Performance evaluation of distance-based relative localization algorithms
compared to the relative CRB. The relative MLE θ̂1 achieves the relative CRB for
the noise range considered.
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Angle Measurements

We again consider the localization of the network in Figure 3.2, although now

based on AOA measurements. We assume that all sensors make measurements to

one another and that the measurements are equal to true arrival angles corrupted

by Gaussian measurement noise N (0, σ2
aoa). Similar to the distance measurement

case, we consider a relative MLE, θ̂MLE, obtained from a minimal constraint x1 =

y1 = x2 = 0. We also consider a closed-form low-complexity relative algorithm called

RAST, θ̂RAST , [72]. The singular FIM J for angle measurements was computed (as

in [32]), and the relative CRB J† calculated. The performance of the two relative

estimators is compared to the relative error bound, trJ†, in Figure 3.4. The relative

MLE nearly achieves the relative CRB for the range of σaoa considered while the

localization error of the RAST algorithm is somewhat greater.

3.5.2 Decomposition of Absolute Estimators

In this subsection we consider absolute localization algorithms and the decompo-

sition of their performance in the relative and transformation domains. To achieve

absolute localization we utilize anchor nodes, which provide a particular, but conve-

nient, type of the more general constraint (3.43). We let A denote the set of anchor

nodes which have a priori known locations, and we let the vector θA denote the true

values of this subset of parameters. The anchor-based constraint function takes the

linear form

f(θ) = H θ − θA = 0, (3.75)

where the rows of H correspond to appropriate rows of the identity matrix in order

to extract known coordinates from θ.
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Figure 3.4: Performance evaluation of AOA-based relative localization algorithms
compared to the relative CRB. The relative MLE θ̂MLE nearly achieves the relative
CRB for the given noise range.
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For anchor set A = {9, 13, 14}, Figure 3.5 illustrates a scatter plot of 500 maxi-

mum likelihood estimates of absolute positions, where we have again assumed pairwise

distance measurements with Gaussian measurement noise (σd = 1 m). The elliptical

shape of the point clusters indicates obvious correlation between the x and y coordi-

nate estimates for a given node, however, there is also significant correlation across

nodes. To demonstrate this, each of the 500 16-node estimates is plotted with a dif-

ferent greyscale intensity. For a given scene estimate, the shading of all 16 nodes was

determined by the position of the estimate of node 3 (chosen arbitrarily) relative to

the principle axis of cluster 3. This results in the smooth shading seen for cluster 3 in

the figure. If the estimates of the other node locations were uncorrelated, their cluster

estimates would appear randomly colored. However, the general trend of the shading

is seen in the other clusters as well. This suggests that the variability in the shape of

the estimated scene is actually less than what is implied by the size of the absolute

scatter plots. We quantify this using the decomposition ideas of this chapter.

The average empirical total error ǫ (see (3.1)), calculated as the average of ǫ over

the 500 simulations, was equal to 5.54 m2. This equals the CRB-predicted bound

on total error given by the constrained CRB, tr Σc = 5.54 m2. The 3-σ uncertainty

ellipses from Σc are also plotted on Figure 3.5. While these ellipses are good predictors

of the total error distribution, they do not give a complete picture of estimation error.

In particular, they fail to capture the relative error and correlation structure observed

above.

For each scene estimate, we determine the optimally transformed relative estimate

θ̂r as in (3.5) and show the relative scatter plots of {θ̂r} in Figure 3.6. The average

empirical relative error ǫr (see (3.6)) was calculated to be 1.78 m2 which compares
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Figure 3.5: Total error: Scatter plots of ML estimates of absolute positions exhibit
large rotational uncertainty, as predicted by the 3-σ ellipses of the constrained CRB
(–). Color coding of estimates illustrates high correlation between sensors.

favorably to the relative portion of the constrained CRB, trP⊥
W ΣcP

⊥
W = 1.77 m2,

where the projection operator P⊥
W projects onto the relative subspace R(W )⊥. We

also see in Figure 3.6 that the shape of the relative estimates is well-described by the

relative portion of the constrained CRB, Σr = P⊥
W ΣcP

⊥
W , and that the relative error

is significantly less than the total error – as expected from the shading arguments

above. In addition, there is much less correlation of localization error across nodes,

as seen by the lack of shading structure in the relative estimates of Figure 3.6. Note

that Σr 6= J† in this case because the number of actual constraints (six) is greater

than the minimum number of three.
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Figure 3.6: Relative error: The large rotational uncertainty of Figure 3.5 is not seen
in the optimally transformed relative estimates, {θ̂r}. The 3-σ uncertainty ellipses
(–) of the relative bound Σr accurately describe the empirical relative error.
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3.5.3 Anchor Selection

The relatively poor total localization performance in the previous example is due

to poor selection of anchor nodes. In this subsection we consider how absolute and

relative localization error depend on anchor selection. We assume distance measure-

ments with Gaussian noise (σd = 2 m) and consider the selection of three anchor

nodes.

While the relative scene estimates in the previous example were good, the total

estimation error was poor because of a large rotational uncertainly in the transfor-

mation components. Qualitatively, we might expect that the more the anchor nodes

are “spread out”, the better. Two heuristic selection mechanisms, then, are to choose

anchors that 1) cover a maximal area, or 2) have a maximal perimeter. In Figure 3.7

we plot the transformation error et, and the relative error er, as a function of all pos-

sible
(
16
3

)
anchor sets – sorted by decreasing et. From the figure we see that different

anchor sets have little effect on the relative error but have a dramatic effect on the

transformation error. The total absolute localization error is the sum of the relative

and transformation components shown in the figure. The optimal anchor set, in the

sense of minimum total error, is A = {1, 4, 13} and is illustrated by the vertical bar

in Figure 3.7. For this case, the maximum perimeter heuristic yielded the optimal

anchor set, and the maximum area heuristic yielded A = {1, 8, 13} with an error only

0.5% greater than the optimal. In general, neither heuristic gives the lowest total

error, but both heuristcs result in localization estimates very close to optimal for a

large number of example networks that have been considered.
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3.5.4 Application: AOA Estimation with Sensor Uncertainty

In addition to providing insight for understand and improving localization al-

gorithms, relative-absolute error decomposition can also be useful to higher level

applications that make use of sensors with position uncertainty. In this example,

we demonstrate how transformation uncertainty may be easily incorporated into a

Bayesian framework for angle-of-arrival estimation. We assume that the sensor posi-

tions are described by the random vector X = [x1 y1 . . . xN yN ]T which, as a result

of sensor localization, is known to have distribution pX(x) with mean X0 and covari-

ance matrix ΣX . From this sensor array, the goal is to estimate the angle-of-arrival

(AOA) ω of a far-field source from a set of time-of-arrival measurements τ of a signal

emanating from that source and measured by the sensors in the network.

This problem is naturally posed in a Bayesian setting where, after the measure-

ment τ , we have the posterior distribution p(ω,X|τ ) from which we wish to obtain

the posterior marginal

p(ω|τ ) =

∫

R2N

p(ω|τ ,x)pX(x) dx (3.76)

as a complete representation of our post-measurement knowledge of the AOA ω. For

an N -sensor array, the integral in (3.76) is 2N -dimensional. Even if the localiza-

tion algorithm is nearly statistically efficient and the locations X are well-described

by the Gaussian N (X0,ΣX), the integral remains computationally complex and its

computation impractical for a resource constrained sensor network. However, in sit-

uations where the transformation uncertainty dominates the relative uncertainty, we

may approximate p(ω|τ ) by neglecting relative errors. Focusing on transformation
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error alone, we may also neglect unknown array translations as they do not affect

far-field AOA estimates.

What remains is the rotational uncertainty of the sensor array. As such, we may

approximate the array positions by their nominal value X0 along with a random

rotation φ. Further, rotating the entire array by an angle φ only shifts the posterior

distribution; that is, p(ω|τ , φ) = p(ω − φ|τ ,X = X0). Therefore, the marginal in

(3.76) may be approximated as

p(ω|τ ) ≈
∫

R

p(ω − φ|τ ,X = X0)p(φ) dφ. (3.77)

Comparing the approximation (3.77) to (3.76), we see that the 2N -dimensional inte-

gral has been reduced to a single scalar convolution.

When only X0 and ΣX are known, we can approximate p(φ) as a Normal distri-

bution φ ∼ N (0, σ2
φ), with variance σ2

φ easily calculated from the upper left element

of the covariance matrix Σt of the transformation parameters, (Σt)1,1 = E[β̂2
φ],

σ2
φ =

E[β̂2
φ]

||vφ||2
. (3.78)

We illustrate the technique using the sensor array of Figure 3.2 with ΣX given by

the CRB described in the previous section and illustrated graphically in Figure 3.5.

In this case, (3.78) yields σφ = 2.46◦. We demonstrate using a true source AOA

of 50◦ and assume that the six sensors each measure the arrival time of an acoustic

signal with independent Gaussian measurement errors N (0, σ2
t ). In Figure 3.8 we

plot the true marginal p(ω|τ ) from (3.76) and compare it to the convolution approx-

imation (3.77) resulting from only considering rotational uncertainty. Three different

measurement qualities are considered, σt ∈ {2 ms, 5 ms, 10 ms}. For the σt = 10 ms

case (and greater values of σt), the approximation is indistinguishable from the true
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Figure 3.8: Angle-of-arrival estimation with sensor uncertainty. The true post-
measurement distribution p(ω|τ ) of the AOA computed from the 2N -dimensional
integral (3.76) is plotted (—) and compared to the approximation (- -) obtained from
the 1-D convolution integral (3.77). Three different measurement qualities are con-
sidered; σt = 2 ms (a), σt = 5 ms (b), σt = 10 ms (c). The width of p(ω|τ ) increases
as the measurements grow worse, and, for the last case, the approximation is nearly
indistinguishable from the true distribution.
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marginal. As the measurements improve and σt decreases, the approximation be-

gins to break down because, relative to the measurements, sensor uncertainty plays

a larger role in the marginal, and the consequences of the approximation are more

evident.

3.6 Conclusions

This chapter presented a decomposition of localization error into relative and

transformation components. This natural partitioning arose by considering how dif-

ferent sources of information influenced different portions of an absolute localization

estimate. In particular, transformation information, which represents the translation,

rotation, and scaling in an absolute localization solution, is only informed upon by

prior information, such as constraints. Relative information, which represents the

“shape” or relative configuration of the sensors, is derived from both measurements

and prior information. By considering a linearization of the rigid transformation oper-

ator, we demonstrated how a localization error covariance matrix may be decomposed

into relative and transformation components. This decomposition may be applied to

the error covariance matrix of a particular localization algorithm, the posterior CRB

in a Bayesian setting, or a traditional CRB with constraints, as primarily considered

in this chapter.

The nullspace of a localization Fisher information matrix was shown to provide

a linear subspace approximation of the transformation manifold, where the localiza-

tion components are non-estimable from measurements alone. For use in the error

decomposition, we derived a meaningful basis of the FIM nullspace for a number of

measurement types including distance, TOA, AOA, TDOA, and ADOA.
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In order to obtain absolute localization estimates, parametric constraints of the

from f(θ) = 0 were considered, and in Section 3.4.2 we derived general results (not

specific to localization) relating total estimation error in a constrained system to

the unconstrained FIM and the principal angles between the measurement subspace

R(UJ) and the unconstrained subspace R(Uc). The use of generic constraints gen-

eralizes the typical use of anchor nodes localization problems. We also proved that

localization error in the relative domain is bounded above by the pseudoinverse of the

FIM.

The results of this chapter provide additional insight into how different infor-

mation sources impact different parts of the final localization estimate. There are

three general areas which can benefit from this work. The first area involves analytic

performance bounds for any relative-only estimators, such as Isomap and RAST, as

considered in Example 3.5.1. In this case, the relative CRB (3.73) is the appropriate

benchmark. The second area includes the development of new absolute localization

algorithms whose performance and design may be analyzed with respect to relative

and transformation components independently. In Example 3.5.3 we illustrated how

these components behaved very differently with respect to anchor selection. The final

area includes applications relying on localization results and their associated uncer-

tainty. Here it may be beneficial to dissect a localization error covariance matrix into

transformation error Σt (as in (3.38)), and relative error Σr (as in (3.39)). For exam-

ple, if transformation error dominates relative error, a source tracking algorithm may

wish to initially ignore sensor uncertainty in order to obtain an initial track relative to

the sensors at reduced complexity. Transformation uncertainty Σt could subsequently

be applied to prescribe translation and rotation variability to the estimated track.
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CHAPTER 4

REGULARIZATION OF ABSOLUTE LOCALIZATION
USING OPTIMIZATION OF SUBSPACE PRINCIPAL

ANGLES

4.1 Introduction

The determination of sensor positions with an absolute reference (e.g., latitude

and longitude) is an inherently ill-posed problem when based solely on inter-sensor

measurements, such as distances or angles-of-arrival. This is because inter-sensor

measurements only depend on the relative configuration of sensors and are invari-

ant to absolute positioning. This results in a singular estimation problem with an

accompanying singular Fisher information matrix (FIM) [18, 41, 42].

In order to regularize the absolute localization problem, additional information

or assumptions are needed about the network. We could, for example, specify the

location of the scene centroid and the angle from the centroid to one of the sensors.

In a Bayesian setting, prior distributions on a subset of sensor positions may be used

to regularize the problem [65]. As the variance of these priors goes to zero, this is

equivalent to precisely specifying the location of a subset of the sensors. Nodes with

a priori known locations are called anchor nodes (or beacon nodes), and they are

commonly used in localization because of their relative ease of implementation.
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Depending on how localization is performed, anchor nodes can serve different

purposes in the network. In the so-called one-hop localization algorithms [33, 73],

unknown-location sensors are in direct contact with anchors and compute their lo-

cations based on measurements to multiple anchor nodes. For this method to be effec-

tive, it requires a high density of anchor nodes or long-range measurement capabilities—

neither of which are common in typical sensor network deployments. In contrast,

cooperative networks [32] allow all sensors, non-anchors and anchors, to make mea-

surements to one another. Cooperative networks typically only have a few anchor

nodes whose purpose is to “anchor” relative position estimates to an absolute frame

of reference.

In this chapter, we consider the use of a small number of anchor nodes as a par-

ticular type of parametric constraint in order to regularize absolute localization prob-

lems. However, the performance of absolute localization is sensitive to the position

of the anchor nodes relative to the remainder of unknown-location nodes. Therefore,

we consider means of both selecting and placing anchor nodes in order to minimize

mean-square localization error. Conventional wisdom in the localization literature

is that anchor nodes should be uniformly spread around the perimeter of the sen-

sor network—observations made empirically by several researchers [44, 45, 46] for

multiple algorithms and measurement types. In this chapter we provide analytical

justification of this strategy and attempt to elucidate the mechanisms affecting total

localization performance under anchor-constraints.

The remainder of this chapter is organized as follows. Before addressing anchor-

based regularization, in Section 4.2 we consider optimal parameter selection strategies

for estimation problems whose non-identifiable parameters lie in a linear subspace.
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This is shown to have combinatoric complexity, and we present a reduced-complexity

algorithm for parameter selection called the greedy gap algorithm. In Section 4.3

we apply parameter selection constraints to absolute sensor localization which has

the interpretation of anchor node selection. In Section 4.4 we consider the situation

where we have control over the placement of anchor nodes and consider strategies for

optimal placement. Conclusions and future work are described in Section 4.5

4.2 Parameter Selection Constraints for Linear Non-identi-
fiable Subspaces

In this section we consider a general estimation problem with an n-dimensional

parameter vector θ ∈ R
n that has a linear non-identifiable subspace V ⊂ R

n; that

is, the parameter space R
n may be partitioned into orthogonal subspaces V⊥ and

V , where the components of θ in V⊥ are estimable from data, and those in V are

indeterminate. In problems where the non-identifiable manifold is non-linear, these

subspaces may be linear approximations of the manifold taken as tangent planes at

particular points of interest. We consider this in the localization context in Sections

4.3 and 4.4.

Because measurements are completely non-informative in the subspace V , it is

desirable to impose constraints which are maximally informative in this subspace.

Although arbitrary regularizing constraints of the form f(θ) = c, may be possible,

we are specifically interested in parameter selection constraints because of their simple

nature and applicability to large classes of problems. Parameter selection constraints

simply fix (constrain) a subset of the parameters; i.e., for a subset Ω ⊂ {1 . . . n}

constraints take the form θi = ci, i ∈ Ω, where {ci} are scalar constants. Letting

k = |Ω| denote the number of constraints, we may write the system of constraints in
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matrix-vector form

CT
Ωθ = cΩ, (4.1)

where CΩ ∈ {0, 1}n×k extracts the constrained parameters from θ, and cΩ contains

the constraint constants {ci}. The ith column of CΩ is equal to the Ωth
i column of the

n–dimensional identity matrix In. Because the components of θ in the k–dimensional

subspace R(CΩ) are fully determined by the constraints, we call CΩ = R(CΩ) the

constraint subspace.

In order to quantify the value of different constraints on estimation performance,

we consider the Cramér-Rao bound (CRB) for the remaining unconstrained parame-

ters. As noted in Section 3.4.5, the CRB is a local bound; however, our interest here

is in the case where there is no a priori global information. All regularization will be

supplied by the selection constraints, and we further assume that SNR is sufficiently

high for the CRB to be a good predictor of estimation performance.

Let Ω and Ω̄ denote the indicies of the constrained and unconstrained parameters,

respectively, and let θΩ denote the elements of the parameter vector corresponding

to index set Ω. The Fisher information matrix Jθ for the entire parameter vector

θ = [θΩ,θΩ̄] is, by assumption, singular. The Fisher information matrix JθΩ̄
for θΩ̄ is

obtained by eliminating the rows and columns of Jθ corresponding to the indicies Ω.

In a given problem, the FIM JθΩ̄
of the unconstrained parameters depends on the

model relating parameters to measurements, the values of all parameters [θΩ,θΩ̄],

and the distribution of measurement noise. If all of these quantities were known, we

could find the CRB-optimal parameter constraint set Ω∗ as

Ω∗ = arg min
Ω

tr J−1
θΩ̄

(θΩ,θΩ̄). (4.2)
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Obviously the dependence of Ω∗ on the true parameter values makes this approach

impractical because the solution to (4.2) requires knowledge of the parameters we

seek to estimate. In absence of the true parameter values, we utilize a heuristic

technique based on the idea that it is desirable for the constrains to provide as much

information as possible about the non-identifiable subspace. A 2D example is shown

in Figure 4.1 where measurements y = Aθ + e are taken from an underdetermined

system, and e is additive Gaussian noise. In Figure 4.1(a) we assume that the noise is

zero, in which case we cannot determine the component of θ in the nullspace N (A)—

illustrated by the diagonal line of Figure 4.1(a). If however, we specify (constrain)

θ1 = c1, we may precisely determine the value of θ2; the same holds for specifying

θ2 = c2 and determining θ1. When the noise has non-zero variance, however, it

is more advantageous to specify θ1 than θ2. In Figures 4.1(b) and 4.1(c) we plot

a 1σ uncertainty band about the position of the nullspace of A due to the noisy

measurement. Clearly, the uncertainty in θ1 after specifying θ2 = c2 (Figure 4.1(b))

is greater than the uncertainty of θ2 after specifying θ1 = c1 (Figure 4.1(c)). When the

angle φ between the constraint direction and N (A) is small, the resulting uncertainty

in θ is small. In the example, φ1 < φ2 and constraining θ1 results in lower final

uncertainty in θ.

In general, when the constraint subspace CΩ and non-identifiable subspace V have

larger dimensions, there will be many different angles between their members. If

any vector v ∈ V is orthogonal to all elements of CΩ, then the component of θ in

the direction v remains completely unconstrained and unspecified by measurements.

Choosing different parameter sets Ω allows us to control the constraint space CΩ. As a
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Figure 4.1: Constraint alignment example. (a) In the noiseless case, the underde-
termined system y = Aθ only determines θ to within the nullspace of A, although
specifying θ1 or θ2 precisely determines the other variable. (b) In the presence of
noise, specifying θ2 = c2 leaves large uncertainty about θ1. (c) Constraining θ1 = c1
results in lower uncertainty about θ2 because the constraint axis (θ1–axis) is more
closely aligned with the nullspace of A.

surrogate to the subset optimization problem in Eq. (4.2), we consider the parameter

subset which minimizes the maximum angle between CΩ and V .

4.2.1 Principal Angles Between Subspaces

In this subsection we summarize the definition, some properties, and uses of prin-

cipal angles between subspaces.

Let A and B be two subspaces of dimension da and db respectively, db ≥ da. The

principal angles φ1, . . . , φda
∈ [0, π/2] between A and B are defined recursively [56,
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Ch. 12] as

cosφi = max
a∈A
||a||=1

max
b∈B

||b||=1

aT b = aT
i bi (4.3)

subject to

aT bj = 0 j ∈ {1, . . . , i− 1} (4.4)

bT aj = 0 j ∈ {1, . . . , i− 1}, (4.5)

where {ai}, {bi} are known as the principal vectors of A,B. The principal angles

satisfy 0 ≤ φ1 ≤ · · · ≤ φda
≤ π/2. Let B̃ = span(b1 . . . bda

) denote the da-dimensional

subspace subspace of B closest to A, then φda
is the largest angle between any vector

in A and any vector in B̃. Further, sinφda
is known as the “gap” between A and B

and may alternatively be expressed as [74]

sinφda
= ||PA − PB̃||2, (4.6)

where PX denotes a projection operator onto subspace X .

The principal angles may be computed as

cosφi = σi i ∈ {1, . . . , da}, (4.7)

where σi is the ith largest singular value of ATB, with orthonormal matrices A and

B having column spans equal to A and B, respectively.

Principal angles and principal vectors have been previously used in statistics in

order to determine canonical correlations and canonical variables, respectively, in

canonical correlation analysis [75, 76]. Here, our interest is in using principal angles

as a measure of alignment between the constraint subspace and the non-identifiable
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subspace. Let φΩ denote the set of principal angles between CΩ and V , then as an

alternative to (4.2), we take the constrained parameter set to be

Ω̂ = arg min
Ω∈Π

max φΩ, (4.8)

where the minimization is over Π—the set of all possible
(

n
k

)
size-k subsets of {1, . . . , n}—

and the maximization is taken over the set of principal angles. Importantly, (4.8),

unlike (4.2), does not depend on the true parameter vectors, so it does not assume

a priori knowledge of the answer to the problem we wish to solve. Minimizing the

maximum principal angle finds the constraint space CΩ̂ most closely aligned with the

indeterminate subspace V . When the maximum angle is 0◦, V is completely con-

tained in the constraint space. When the maximum angle is 90◦, then at least one

component of θ is indeterminate and the problem remains singular.

Figure 4.2 illustrates the geometric interpretation of this problem: given a d–

dimensional subspace V of interest in R
n, we wish to find the closest k–dimensional

(k ≥ d) elementary subspace. We define an elementary subspace to be one spanned

by the canonical basis elements {ei}, where ei is the ith column of In. In the example

in Figure 4.2, we have n = 3, k = d = 2, and the candidate elementary subspaces

are the xy–plane, the xz–plane, and the yz–plane. The yz–plane has the minimum

maximum principal angle in the example.

The optimization (4.8) is an improvement over (4.2) in that it does not depend on

the true parameter values, however it remains a discrete optimization problem with

combinatoric complexity. In the next section we highlight some similarities of this

problem with the problem of sparse signal reconstruction, then in Section 4.2.3 we

present a greedy algorithm to find approximate solutions to (4.8) in linear time.
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(a) (b) (c)

Figure 4.2: Example of the elementary subspace selection problem in R
3, n = 3,

k = m = 2. Subspace of interest (blue) is compared with the xy–plane (a), yz–plane
(b), and xz–plane (c). The principle angles between the two 2D subspaces are given
in the plot titles. The closest subspace, with the minimum maximum principle angle,
is the yz–plane where φmax = φ2 = 45.0◦.

4.2.2 Connection to Compressive Sampling

In this section we highlight similarities and dissimilarities between the selection

problem (4.8) above and compressive sampling (CS); also known variously as com-

pressive sensing, compressed sensing, sparse reconstruction, and basis pursuit [77, 78].

CS attempts to find the input vector x of the noisy linear system y = Ax + e for

the case when the matrix A has more columns than rows. Ordinarily, this is an

ill-posed problem; when x is known to be sparse the problem becomes regularized

and a unique solution may exist. In the signal processing context, the columns of A

typically represent an overcomplete set of signal basis vectors, such as those produced

by sinusoids and wavelets. Because x is sparse, the measured signal y consists of a

superposition of only a few of these basis elements with additive noise. If x ∈ R
n is

k-sparse, the difficult part of reconstructing x from y is selecting which k out of n
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elements of x are non-zero. Substantial theory and algorithms have been developed

to address this problem, see, e.g. [78, 79, 80, 81], and references therein.

In CS, we select a few columns from A whose span is close to a single vector y.

In the parameter selection problem (4.8), we seek a small number of columns from A

whose span is close, in some sense, to the span of several vectors V = {v1, v2, . . . , vd}.

Therefore, the parameter selection problem may be interpreted as having multiple

right-hand sides: AX = V , where the matrix X has sparse columns. A solution X̂

minimizes a distance measure dist(AX, V ) between AX and V , under a given sparsity

constraint on X̂.

In an extension to CS, Tropp et al. consider simultaneous sparse approximations

for multiple right-hand sides using a greedy approach [82] and a convex relaxation

approach [83]. However, this work assumes that the right-hand side vectors (V )

all approximately span the same 1D space, which is not the case in the parameter

selection problem. Tropp also assumes a Frobenius distance dist(AX, V ) = ||AX −

V ||F , whereas (4.8) requires minimization of a spectral norm, as seen from (4.6)

maxφΩ = sin−1 ||PCΩ
− PV ||2 (4.9)

and noting that sin−1 does not alter the minimization in (4.8).

4.2.3 The Greedy Gap Algorithm

The minimax optimization (4.8) has combinatoric complexity because the opti-

mization is over a discrete set Π of size
(

n
k

)
. In this section we present a greedy

algorithm capable of identifying a near-optimal subspace in linear time. The sine of

the maximum principal angle between subspaces is sometimes referred to as the gap

metric [84], hence we call this algorithm the greedy gap algorithm because it greedily
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minimizes the gap between the space of interest and the constructed space. Details

of the algorithm follow.

Inputs:

• an n× d matrix V with columns spanning the subspace of interest

• an n× n matrix D with orthogonal columns spanning R
n

• a number k, k ≥ d, indicating the number of columns of D to select in approx-

imating R(V )

Output:

• a set Ωk, with k indicies corresponding to the columns of D

Procedure:

1. Initialize Ω0 = ∅ as the empty set, set the iteration counter i = 1, and let

N = {1, . . . , n}

2. Find an index ωi that solves the optimization problem

ωi = argω min
ω∈(N\Ωi−1)

φm

(
R(V ),R(DΩi−1∪ω)

)
, (4.10)

where m = min(d, i) is the index of the maximum principal angle between the

subspaces considered, and matrix Dβ represents the columns of D determined

by the set β. Note that (4.10) has low complexity, requiring approximately n

computations.

3. Let Ωi = Ωi−1 ∪ {ωi}

4. Increment i and repeat steps 2 and 3 until i = k.
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At each step of the algorithm, the method chooses to augment the approximation

space R(DΩi
) with one of the remaining basis vectors such that the resulting max-

imum principal angle is minimized. Note that when i < d the size of the set of

principal angles is growing with each iteration. This method does not guarantee that

the maximum principal angle of step i+1 will always be less than the maximum angle

of step i. However, a particular principal angle will never increase between steps for

which it exists.

In the parameter selection application we are interested in canonical subspaces,

i.e., D = In, the identity matrix; however, the greedy gap algorithm does not require

this and applies equally well for more complicated subspaces.

4.3 Anchor Node Selection for Absolute Localization

We now turn to regularization of absolute sensor locations as an application of

subset constraints as described above. The problem in anchor selection is to identify

which sensors should be anchor nodes in order to minimize the resultant mean-square

error in estimates of the position vector θ = [x1 y1 . . . xn yn], where n is the total

number of sensors, and (xi, yi) are the coordinates of the ith sensor. The scenario we

consider is that the sensors have been deployed, measurements between a subset of all

pairs of sensors have been taken, and a relative localization algorithm has determined

the relative shape θ̂r of the network. The relative shape estimate is an estimate of

the node locations relative to one another, but arbitrarily specifies information about

absolute network parameters, such as location, rotation, and scale of the entire sensor

scene. From θ̂r, we wish to select an optimal set of k anchor nodes in order to convert

the relative map into absolute positions with minimal error. The actual positions of
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the identified anchors are then measured in an absolute coordinate system (by a

person with a GPS receiver, for example) and then used in positioning the remaining

sensor nodes in an absolute frame of reference. The final absolute scene estimate may

use the anchors to prescribe necessary translation, rotation, and scaling to θ̂r, or it

may jointly consider the measurements and anchor information to derive a new final

estimate.

The anchor selection problem is more complicated than the problem in the previ-

ous section because the non-identifiable space is not linear. As described in Chapter 3,

internode measurements only determine sensor positions to within a non-linear mani-

fold representing all possible rotations, translations, and possibly scalings of a relative

sensor configuration. We may approximate the non-identifiable manifold at a point

by its tangent plane at that point and then apply the parameter selection results of

the previous section. However, this implies that the non-identifiable subspace V is

now a function of the manifold parameterization: translation, rotation, and scaling.

For clarity of explanation, we adopt distances as a concrete example for inter-node

measurements. At the end of the section we will show that the results hold for other

measurement types as well. Distance measurements are invariant to rigid translations

and rotations of the sensors, and in Chapter 3 we derived a linear approximation of

the space of all translations and rotations of θ as the span of the three 2n–vectors

vx =
1

c1




1
0
1
0
...



,vy =

1

c1




0
1
0
1
...



,vφ =

1

c2




−(y1 − ȳ)
(x1 − x̄)
−(y2 − ȳ)
(x2 − x̄)

...



, (4.11)
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where n is the number of sensors, vx and vy represent x– and y–translations, vφ

corresponds to rotation about the centroid (x̄, ȳ), and c1 = n
1
2 and c2 = (

∑n
i=1(xi −

x̄)2 + (yi − ȳ)2)
1
2 are normalization constants.

We assume that a relative localization algorithm has supplied us with a relative

estimate θ̂r of the sensor positions—with the transformation and rotation components

arbitrarily specified. Using elements of θ̂r and (4.11), we construct V = [vx vy vφ]

whose span V forms the non-identifiable subspace approximating the transformation

manifold. Note that V does not change with translations of θ̂r but does depend on

how the points in θ̂r are rotated. If we attempt to identify an optimal subset of

k parameters (not nodes) using (4.2) or (4.8), we find that the selected parameters

depend on the arbitrary rotation of θ̂r, meaning that the optimal parameter subset

depends on the scene’s true orientation, which is unknown.

However, if we perform optimal node selection, where parameters xi and yi must

be selected together as a pair, we find that the optimal set of k nodes is invariant

to rotations of θ̂r. This is not a restrictive condition as most means of measuring a

sensor’s absolute position give both x and y coordinates. To show this invariance, we

first explicitly derive the principal angles between the constraint space and the trans-

formation space and then show that the principal angles are invariant to arbitrary

rotations of θ̂r, for a given set of anchor nodes.

4.3.1 Derivation of Principal Angles Between Constraint Space
and Transformation Space

We assume, without loss of generality, that the centroid (x̄, ȳ) is at the origin

(0, 0), that the anchor nodes are identified by the index set A, and that the number

of anchors na = |A| ≥ 3, since this is sufficient to disambiguate translations, rotations,
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scalings, and mirror images. As such, the dimension k = 2na of the anchor-induced

constraint space CA is at least 6; the dimension of V is 3; and therefore, the number

of principal angles is 3. Let CA ∈ {0, 1}2n×2na denote the constraint matrix with

columns drawn from I2n corresponding to the x- and y-coordinates of the anchor set

A. The matrices V and CA have orthonormal columns spanning V and CA, and we

seek the singular values of the 3× 2na matrix Q = V TCA, or the eigenvalues of QQT .

The matrix Q is evaluated as

Q =




1
c1

0 1
c1

0 . . . 1
c1

0

0 1
c1

0 1
c1

. . . 0 1
c1

−yA1

c2

xA1

c2

−yA2

c2

xA2

c2
. . .

−yAna

c2

xAna

c2


 , (4.12)

and

QQT =



q 0 a
0 q b
a b c


 , (4.13)

where

q =
na

c21
, (4.14)

a =
−1

c1c2

na∑

i=1

yAi
, (4.15)

b =
1

c1c2

na∑

i=1

xAi
, (4.16)

c =
1

c22

na∑

i=1

(x2
Ai

+ y2
Ai

). (4.17)

The eigenvalues of QQT , in order from largest to smallest, are

λ1 =
1

2
(c+ q) +

1

2

√
(c− q)2 + 4(a2 + b2) (4.18)

λ2 = q (4.19)

λ3 =
1

2
(c+ q) − 1

2

√
(c− q)2 + 4(a2 + b2). (4.20)
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and the principal angles between V and CA are

φi = cos−1
√
λi i = 1, 2, 3. (4.21)

To show that optimal anchor node selection is rotationally invariant, we show that

the eigenvalues {λi}, and therefore the principal angles, are invariant to rigid scene

rotations. The quantities c, c1, c2, and q are clearly invariant to rigid rotations of

the points {xi, yi}. To show that all of the eigenvalues are rotationally invariant, it

remains to show that a2 + b2 does not depend on point rotations. Let

p =

[
a
b

]
(4.22)

=
1

c1c2
R

[
−yA1 . . . −yAna

xA1 . . . xAna

]
1na

, (4.23)

where R is a 2×2 rotation matrix and 1na
is an na-vector of ones. Rotations are norm-

preserving, hence a2+b2 = ||p||2 is constant for any rotation matrix R. Therefore, the

eigenvalues—and the principal angles between CA and V—do not depend on arbitrary

scene orientations.

4.3.2 Other Measurement Types

In Chapter 3 we showed that distances, time-of-arrival, and time-difference-of-

arrival measurements all had non-identifiable transformation spaces corresponding

to translations and rotations. The structural variations in received-signal-strength

measurements are governed by distances as well, so they too have translation and

rotation uncertainty. Hence, the results above are applicable to all four of these

measurement types.

Angle-of-arrival measurements have a non-identifiable space corresponding to trans-

lations and scalings, which from Chapter 3, has a linear approximation given by the
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range of V = [vx vy vs], where

vs =
1

c2




x1 − x̄
y1 − ȳ
x2 − x̄
y2 − ȳ

...




(4.24)

and the other quantities are as in (4.11). The eigenvalues for this case are the same

as in (4.18)–(4.20) for distance measurements, however now we must show that the

principal angles between CA and V do not depend on arbitrary scaling provided by a

relative AOA localization algorithm. We consider an arbitrary scaling s which maps

(xi, yi) → (sxi, syi), for all nodes i. It can be shown that all variables (a, b, c, q)

making up the eigenvalues are independent of the value s. Hence, node selection

based on minimizing principal angles is both translation and scale invariant.

Angle-difference-of-arrival measurements are unchanged with translations, rota-

tions, and scalings, giving us a transformation subspace spanned by V = [vx vy vφ vs].

In this case, the eigenvalues of QQT are

λ1, λ2 =
1

2
(c+ q) +

1

2

√
(c− q)2 + 4(a2 + b2) (double root) (4.25)

λ3, λ4 =
1

2
(c+ q) +

1

2

√
(c− q)2 + 4(a2 + b2) (double root), (4.26)

which, from arguments above, are invariant to arbitrary translation, rotations, and

scalings.

4.3.3 Anchor Selection Using the Greedy Gap Algorithm

Although the transformation subspace V depends on the true parameter vector,

we have demonstrated above that if we constrain by nodes—not merely parameters—

then a given constraint subspace is equi-distant (in the sense of principal angles)
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from all rigid and scaled transformations that can be generated from a given relative

configuration θ̂r. As such, we may use the output of a relative localization algorithm,

which prescribes arbitrary scale and absolute positioning, to form V and then seek

a set of anchor nodes A whose constraint subspace R(CA) is most closely aligned

with R(V ). The columns of V are a subset of {vx, vy, vφ, vs}, as appropriate for the

type of measurements. After forming V , the greedy gap algorithm may be employed

to identify a set of anchor nodes. The greedy gap algorithm for node selection is

essentially the same as in Section 4.2.3 for parameter selection. The only modification

needed is in Step 2, where, instead of considering the best single parameter to add,

we find the best node (with corresponding x and y parameters) to add.

Obtaining the CRB-optimal solution (4.2) or the gap-optimal solution (4.8) has

combinatoric computational complexity because the number of possible anchor sets

is
(

n
na

)
, whereas, the complexity of the greedy gap approach is only approximately

nna.

4.3.4 Examples

As a performance metric for different anchor sets A, we consider the root-mean-

square (RMS) localization error

( 1

|U |
∑

i∈U

E[d2
i ]
)1/2

, (4.27)

where E[d2
i ] is the expected squared distance of sensor i from its estimated position,

and U = {1 . . . n} \A is the set of unknown-location nodes. Rather than considering

the RMS error for a particular estimator, we utilize the lower bound provided by the

CRB and define that as the RMS localization error for a particular anchor set A

erms(θ, A) =
(

tr J−1
θU

(θA,θU)/(n− na)
)1/2

, (4.28)
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Figure 4.3: Sample 20 node sensor network used in anchor selection and anchor
placement examples.

where θA and θU represent the elements of the location parameter vector θ corre-

sponding to the anchor nodes and unknown-locations nodes, respectively. The RMS

error (4.28) is clearly minimized by the node version of (4.2)

A∗ = arg min
A

tr J−1
θU

(θA,θU). (4.29)

As an example, we consider the sensor network depicted in Figure 4.3 consisting of

20 sensors uniformly deployed in a circular region with 50 m radius. For this network,

we plot in Figure 4.4 the CRB RMS localization error corresponding to all possible

(
20
3

)
= 1140 sets of three anchors. The error is plotted versus the maximum principal

angle φ3 between the anchor-induced constraint space CA and the non-identifiable
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Figure 4.4: RMS localization error versus maximum principal angle φ3 for the network
in Figure 4.3 using all possible selections of 3 anchor nodes.
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transformation subspace V . In this example we assume that all sensors (unknown-

location nodes and anchors) make pairwise distance measurements to one another and

that the distance measurements are independently corrupted by zero-mean Gaussian

noise with standard deviation σ = 5 m.

As the maximum angle φ3 approaches 90◦ at least one dimension becomes un-

informed by either constraints or measurements, and the estimation error rapidly

increases. The general decreasing nature of localization error with maximum princi-

pal angle φ3 supports the assertion that aligning the constraint and transformation

subspaces provides a viable heuristic for anchor node placement. The error is not

monotonic with φ3 because this single measure does not capture all of the interac-

tions between the constraints and measurements, however minimizing the maximum

subspace angle is a good surrogate performance metric for minimizing RMS localiza-

tion error.

In Figure 4.5(a) we plot the average RMS localization error of different anchor

selection methods as a function of the number of sensors deployed. The average is

taken over 50 random network deployments. The deployment region, deployment

distribution, and measurements remain as before. Three anchor nodes were identified

using the CRB-optimal approach (4.29), the gap-optimal approach (4.8), and the

greedy gap algorithm. The methods have similar average RMS localization error,

however the computational complexities, as shown in Figure 4.5(b), vary drastically.

These timing results were obtained on a 2.4 GHz desktop PC. For the case of 50

deployed sensors, the CRB-optimal approach took an average of 33.3 s to identify

three anchors. The gap-optimal and greedy gap algorithms took 7.0 s and 0.05 s,

respectively. Random anchor selection is also a viable alternative which typically has
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good average performance, but risks obtaining large errors a small fraction of the

time—as seen by the right-hand side of Figure 4.4. The results in the next section

about anchor placement also provide good heuristics to drive sensor selection.

4.4 Anchor Node Placement for Absolute Localization

In the previous section we assumed that relative estimates of the network were

available in order to aid in the selection of a subset of sensors to become anchor nodes.

In this section we assume that we have control over the placement of a fixed number of

anchor nodes during sensor deployment, but we do not assume any specific knowledge

about the relative shape of the network. This problem differs from the anchor selection

problem because the non-identifiable transformation subspace V changes with the

anchor positions. In anchor selection, V remained fixed and we chose anchors A such

that the resultant constraint subspace CA was closely aligned with V . Our interest in

anchor placement continues to be the alignment of the subspaces, however now the

constraint space is fixed and we influence V by positioning the anchors.

When the anchors are free to be placed arbitrarily, an additional complicating

factor arises because some anchor locations significantly degrade the relative scene

estimates. Before addressing this, we first consider how anchors should be positioned

for maximal alignment of constraint and transformation subspaces.

4.4.1 Anchor Positioning for Subspace Alignment

Angular Positioning of Anchors

In Section 4.3.2 we showed for distances, RSS, TOA, TDOA, and AOA that the

principal angles between CA and V had corresponding eigenvalues described by λ1,

λ2, and λ3 in equations (4.18)–(4.20). The second eigenvalue λ2 = q = na/n is
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Figure 4.5: Average RMS localization error (a) of unknown-location sensors resulting
from different anchor selection methods and the average runtime (b) of each method.
Three anchor nodes where selected from the sensor population which was uniformly
deployed in a circular region with radius 50 m.
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constant with respect to the sensor positions. Therefore, in all of these measurement

models, we may minimize the angular differences between CA and V by maximizing

the eigenvalues λ1 and λ3. In anchor positioning, the set A of anchors is fixed and

the maximization is taken over the anchor positions θA; that is, we perform the

optimization by choosing 2na real-valued parameters, namely the (x, y) locations of

the na anchor nodes. We begin by maximizing the minimum eigenvalue, λ3.

Observe, from (4.15) and (4.16), that

a2 + b2 =
(x̄A)2 + (ȳA)2

(n/n2
a) ||θ||2

, (4.30)

where x̄A is the average x-coordinate of the anchor nodes and ȳA is the average y-

coordinate. With respect to a and b, λ3 is maximized when a2 + b2 = 0, which occurs

when the mean x and mean y coordinates of the anchors are zero. One configuration

that achieves this condition is when all anchors are uniformly distributed around a

circle of any radius.

With respect to c, we see from (4.20), that λ3 achieves its maximum value of q

whenever c ≥ q.

Radial Positioning of Anchors

The variable c, in (4.17), may be written

c =
||θA||2

||θA||2 + ||θU ||2
. (4.31)

Therefore, cmay be made arbitrarily large by placing the anchors progressively farther

from the scene center. When c ≥ q, we have λ2 = λ3 = na/n and λ1 = c. Hence,

having maximized the two smallest eigenvalues we could proceed to maximize λ1, the

largest eigenvalue. λ1 is maximized by maximizing ||θA||, which is achieved by pushing
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all of the anchor nodes as far out from the centroid as possible (given the physical

constraints of the deployment). However, because the smallest eigenvalue (largest

principal angle) dominates estimation performance, we expect negligible performance

improvement in extending λ1 significantly beyond the other two eigenvalues λ2 =

λ3 = na/n. Therefore, we attempt to equate all three eigenvalues.

Setting λ1 = c = na/n, we solve

||θA||2
||θA||2 + ||θU ||2

=
na

n
(4.32)

for ||θA||2 and obtain

||θA||2 =
na

n− na

||θU ||2. (4.33)

If we assume that all na anchors have a common radius r0, then ||θA||2 = nar
2
0.

Substituting this into (4.33) and solving for r0 we find

r0 =
||θU ||√
n− na

. (4.34)

The difference n − na is the number of unknown-location sensors, and therefore,

the quantity r0 may be interpreted as the root-mean-square (RMS) distance of the

unknown-location sensors from the scene centroid. When the anchors are all uniformly

spaced around a circle of radius r0, all three principal angles will be equal to

φ0 = cos−1(
√
na/n), (4.35)

and when the common anchor radius exceeds r0, only the smallest principal angle

continues to decrease beyond (4.35).

For the sample network in Figure 4.3, the RMS sensor radius r0 is illustrated by

the inner dotted circle.
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4.4.2 Total Error Considerations in Anchor Positioning

The previous subsection demonstrated that optimal subspace alignment is achieved

by circular placement of anchor nodes around the sensor centroid and by extending

them as far from the scene center as possible. However, extending the anchors too far

radially has a detrimental effect on the network’s ability to estimate the anchor loca-

tions relative to the unknown-location nodes. The subspace alignment criterion was

developed under the assumption that absolute error was dominated by error in the po-

sitioning of the relative shape, i.e., that the relative error was not the dominant factor.

When anchor locations are too far removed from the remaining nodes, though, the

relative error begins to dominate. It is the correspondence between estimated anchor

locations and the true anchor locations that determines the transformations needed

to convert a relative scene estimate into an absolute one. In terms of the subspaces, V

is the completely non-estimable transformation space that we have been focusing on.

The orthogonal complement V⊥ represents the relative shape, and it is this portion

that is degraded if the anchor nodes are poorly positioned relative to the rest of the

network. In general, anchors should be sufficiently close to other unknown-location

nodes such that several anchor-to-unknown measurements can be made in order to

provide a good estimate of each anchor’s relative position. Anchor-unknown measure-

ments can also improve the relative error in an unknown-location nodes, however, as

we assume these nodes are already well-connected this is a secondary effect.

To summarize, there are two competing effects related to anchor positioning which

govern total localization error:
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Figure 4.6: Limited measurement ranges are modeled using this soft disk model to
control the probability of a measurement as a function of sensor separation, r.

1. Anchor nodes should be positioned as far from the scene center as possible in

order to align the constraint and transformation subspaces, however positioning

beyond the RMS sensor radius r0 is expected to bring little improvement.

2. Anchor nodes should be positioned in the midst of unknown-location nodes in

order for their relative positions to be well-estimated. This means that they

should not be extended significantly beyond the network edge when measure-

ment range is limited.

We illustrate these points quantitatively in the example considered below.
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Limited-range Measurement Model

In order to realistically model finite measurement ranges, we consider a soft varia-

tion of classic hard detection boundaries. We model the probability pd(r) of obtaining

a measurement between two sensors as a function of the distance r between them

pd(r) =
1

2
− 1

π
tan−1

(
α(r − rd)

)
, (4.36)

where rd is the 50% detection range, α = −2
w

tan(−0.4π), and w is the 10%–90%

transition width as illustrated in Figure 4.6. We refer to (4.36) as the disk model.

As we show in Appendix A, Fisher’s information for a single measurement with

limited probability of detection is

J = pd(θ)Jθ +
1

pd(θ)
(
1 − pd(θ)

)
(∂pd(θ)

∂θ

)(∂pd(θ)

∂θ

)T

. (4.37)

where the first term is the information from the measurement itself, and the second

term is the information derived from the observability status and the known obser-

vation model pd(θ). For example, if two sensors do not make a measurement to one

another, they are most likely separated by a distance greater than rd. In this work, we

assume that estimators only utilize the available measurements and that they do not

try to derive information from the presence of missing data. Therefore, only the first

term of (4.37) is used in calculating the information matrix of a single measurement

mij between sensors i and j

Jij = pd(||pi − pj||) E
[(

∂ ln f(mij|θ)

∂θ

)(
∂ ln f(mij|θ)

∂θ

)T
]
, (4.38)

where pi = [xi yi] is the position vector of sensor i, and f(mij|θ) is the probability

density function of measurement mij. For independent measurements between the
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various sensor pairs, the Fisher information adds, giving

JT (θ) =
∑

i6=j

Jij (4.39)

as the total Fisher information matrix.

When the measurements mij have their mean µij(θ) structured by the parameter

vector θ and have i.i.d. zero-mean Gaussian measurement noise N(0, σ2), JT (θ) takes

the form

JT (θ) =
∑

i6=j

pd(||pi − pj||)
σ2

(
∂µij(θ)

∂θ

)(
∂µij(θ)

∂θ

)T

. (4.40)

Note that the presence of pd in (4.40) has the interpretation of increasing the ef-

fective noise variance with distance. In the examples that follow, we consider dis-

tance measurements with independent Gaussian noise. Hence, (4.40) applies with

µij = ||pi − pj||.

4.4.3 Results

Subspace Alignment Versus Relative Error

In Figure 4.7 we plot the RMS localization error (4.28) for the 20 unknown-location

sensors in Figure 4.3 corresponding to three additional anchor nodes which have been

added to the scene. The anchors are uniformly distributed around a circle (at 30◦,

150◦, and 270◦ counter-clockwise from the x–axis), and performance is plotted as

a function of the common anchor radius r. Distance measurements are used with

Gaussian measurement noise with σ = 5 m, and detection parameters are rd = 25 m,

w = 5 m.

On the left side of Figure 4.7 (0 < r < 30, approximately), we a observe a large

decrease in localization error as r increases due to improving subspace alignment
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Figure 4.7: RMS localization error of the sensors in Figure 4.3 versus the common
anchor radius of 3 additional anchor nodes with uniform circular deployment.
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(Item 1, Page 107). The minimum error occurs at r = 32.0 m which is only slightly

larger than the RMS sensor radius r0 = 30.4 m. As r continues to increase, the limited

detection range degrades the anchor estimates and total RMS localization increases;

this latter region quantitatively demonstrates the error increase that was qualitatively

discussed in Item 2, Page 107.

These concepts are further illustrated in Figure 4.8 where we explicitly consider

the effects at three radii r ∈ {12.0 m, 32.0 m, 70.0 m}, identified by the circles in

Figure 4.7. In the bottom row of figures, 4.8(d)–4.8(f), we plot the 20 unknown-

location sensors as well as the three anchor nodes for each of the three radii. Around

each of the anchor nodes we also plot the 3σ uncertainty ellipse derived from the

relative CRB J† (see Chapter 3, Section 3.4.4). In general, the anchor uncertainty is

growing with r. However, looking at Figure 4.8(f) we see that the anchor in the NW

quadrant has lower uncertainty than the other two anchors due to a closer proximity of

unknown-location nodes. The error plateau around r = 50 m seen in Figure 4.7 is due

to the improved relative localizability of this particular anchor as it passes between

sensors 1 and 5. The relative error ellipses of the 20 unknown-location sensors are

not shown in order to simplify the plots in Figure 4.8.

In the top row of figures, 4.8(a)–4.8(c), we give a 2D depiction of the subspaces

involved, their relative orientation, and the size of relative uncertainty. When the

anchor radius is small, as in Figure 4.8(a), the angle between the constraint space CA

and the non-identifiable transformation subspace V is large, 81◦ in this case. As r is

increased, this maximum angle decreases until r ≥ r0. Because the anchor radius in

Figures 4.8(b) and 4.8(c) is greater than r0, they both achieve the minimum maximum

subspace angle predicted by Eq. (4.35), φ0 = 69◦ (na = 3, n = 23).
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The relative uncertainty is described by the relative CRB J†, which we may inter-

pret as a hyperellipsoid in R
46 (there are 23 total nodes, with an x– and y–coordinate

for each). Three of the ellipsoid axes corresponding to V , will extend to infinity. The

other 46 − 3 axes correspond to the relative configuration V⊥ and have finite error

radii. To encode the total relative error into a single number er we report the RMS

error of J†, er = [tr J†/n]1/2. In Figures 4.8(a)–4.8(c), the relative error er is depicted

as the “thickness” of the relative subspace, and we see that, in concert with the an-

chor uncertainty ellipses in the bottom row of plots, the relative error er grows large

when r is large.

The total error is equal to the intersection of the constraint (which is perpendicular

to the constraint axis) with the uncertainty ellipsoid (thin strip in the 2D rendering).

When r is small the relative uncertainty band is thin, as in Figure 4.8(a), but the

the large angle results in a large intersection with high resultant error—illustrated

by the thick line intersecting the band in Figures 4.8(a)–4.8(c). When r is large,

as in Figure 4.8(c), the angle is smaller but the band becomes thick and the total

error remains large. An optimal comprimise between subspace angle and relative

uncertainty is achieved for some intermediate value of r, as illustrated in Figure 4.8(b).
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Figure 4.8: Example of the trade-off between subspace alignment and relative localizability. Top row: The subspace C
denotes the constraint space induced by the anchors. The non-identifiable transformation subspace is represented by the
infinitely long strip. The thickness of the strip encodes the relative localization error, er. Going from (a) to (b) to (c),
the anchor radius is increasing and the angle between C and V decreases, although the relative error generally increases.
The final total error is represented by the intersection of a constraint, which is perpendicular to the C–direction, with
the strip. The optimal radius (b) represents a compromise between minimizing subspace angle and minimizing relative
error. Bottom row: The sensor field with unknown-location sensors (◦) and three anchor nodes (N). Each sensor-anchor
configuration induces the subspace diagram above it. The relative uncertainty of the anchors nodes is shown by the 3σ
ellipses drawn around them. (a),(d): radius=12.0 m, (b),(e): radius=32.0 m, (c),(f): radius=70.0 m
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Comparison to Oracle-placement

In Figure 4.9 we consider CRB-optimal anchor locations, as given by an oracle with

perfect sensor location knowledge after solving Eq. 4.29. Figures 4.9(a)–4.9(c) present

histograms of the optimal anchor radii and angular separation between three oracle-

placed anchors in 1000 randomly generated network configurations. The random

networks consisted of 20 sensors uniformly deployed in a circular region with radius

50 m. We again use distance measurements and the disk model (rd = 25 m, w = 5 m).

The measurement noise was σ = 10 m, although this does not influence optimal

placement (see Eq. 4.40).

From Figure 4.9(a), the average anchor radius in optimal placement was 31.8 m.

If we calculate the expected value of the RMS sensor radius r0 for this deployment

scenario (not based on the realizations of the experiment), we obtain E[r0] = 35.3 m,

which is reasonably close to the empirical mean optimal. The average angular sepa-

ration between adjacent anchors was, from Figures 4.9(b) and 4.9(c), 116◦ and 113◦.

These values are close to 120◦ which would be obtained in uniform circular placement.

These empirical results and the theoretical results above suggest that, in absence

of any detailed information about the relative deployment of sensors, anchor nodes

should be uniformly distributed around a circle with radius approximately equal to

r0. In Figure 4.10 we compare the performance of circular–r0 placement with oracle

placement. Let θ∗
A denote the positions of the oracle-placed anchors, and let θc

A de-

note the positions in circular–r0 placement. Further, let e(θ∗
A) and e(θc

A) denote the

RMS localization errors for optimal and circular–r0 placement, respectively. Using

the previously described 1000 network realizations, we plot in Figure 4.10 a histogram
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of the ratio γ = e(θc
A)/e(θ∗

A). From the figure we see that the performance of op-

timal anchor placement, utilizing perfect knowledge of the sensor locations, exceeds

circular–r0 placement by only 23%, on average.

Effects of Measurement Range

Finally, we consider the effects of the detection range rd on average localization

performance. Let erms(θ
c
A(r),θU) denote the RMS localization error of circularly

placed anchors at radius r for sensors described by positions θU . We are interested in

the expected error E[erms(θ
c
A(r),θU)], where the expectation is taken over realizations

of θU . We evaluate the expected error for uniform deployment by taking an empirical

average over the 1000 random networks described in the previous subsection. In

Figure 4.11 we evaluate E[erms(θ
c
A(r),θU)] as a function of anchor radius r for three

anchor nodes and for three different detection ranges rd ∈ {25 m, 35 m, 45 m}; in all

cases, w in equation (4.36) is set to 5 m.

Figure 4.11 is similar to Figure 4.7 with smoother trends due to averaging. Clearly

increasing the measurement range improves localization performance as expected.

Also, a larger measurement range rd increases the width of the valley around the

optimal minimum-error anchor radius. This is because the larger measurement range

allows the system to obtain quality relative estimates of the anchor positions for a

larger range of anchor radii.

4.5 Conclusions

Performing absolute sensor localization from inter-sensor measurements is an in-

herently ill-posed problem because measurements are invariant to global transfor-

mations, such as translations and rotations, of the network. In this chapter we
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Figure 4.9: Statistics of CRB-optimal anchor positions utilizing perfect knowledge
of the unknown sensor locations. The results are for 3 anchors and 1000 uniform
deployments of 20 sensors in a circular region with 50 m radius. Detection model
parameters were rd = 25 m and w = 5 m.

116



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

50

100

150

γ

avg=1.23

Figure 4.10: Histogram of γ = e(θc
A)/e(θ∗

A) indicating that the localization error of
circular-r0 placement exceeds the oracle-placement bound by only 23%, on average.

addressed the use of anchor nodes to regularize the absolute localization problem

and considered how the anchor nodes should be positioned, relative to the remaining

unknown-location sensors, in order to maximize total localization performance.

The primary idea behind our approach was that the subspace CA of constrained

location parameters, induced by the anchor nodes, should be closely aligned with non-

identifiable subspace of rigid transformations V . In the anchor selection problem, V

is fixed and CA is discretely controlled by selecting different anchor sets. In anchor

placement, CA is fixed and V is smoothly controlled by moving the anchor nodes. In

both cases, selection and placement, we vary the control such that the constrained

subspace and non-identifiable subspace are brought into close alignment, as measured

by the principal angles between them.
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We demonstrated that subspace alignment is a strong indicator of localization per-

formance, and that, through uniform circular placement of anchor nodes, it can be

optimized without requiring specific details about the network’s configuration. This

strategy holds irregardless of measurement type (distances, RSS, TOA, TDOA, AOA,

or ADOA) and establishes a theoretical basis for the frequent, but empirical, obser-

vation that anchors should be placed on the network boundary. Although, we also

showed that boundary placement is sub-optimal in the presence of finite measurement

ranges.

Finally, we considered the scenario where only a few anchors were available and

focused on positioning them such that they were maximally informative in the non-

identifiable space of rigid transformations—which would otherwise have infinite esti-

mation error. However, when large numbers of anchors are available for deployment,

it may not be necessary to use all anchor nodes to resolve ambiguities in absolute

position, and a fraction could be placed with the aim of reducing relative error in the

network’s estimated shape. Identification and placement of anchors in this scenario

is a topic of future research.
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APPENDIX A

FISHER INFORMATION FOR MISSING-DATA
PROBLEMS

In this appendix we evaluate Fisher’s information matrix for cases of missing data.

We consider separately (i) the case where the mechanism controlling the missing data

is independent of the parameter vector θ, and (ii) the case where the missing data

mechanism depends on θ. In the language of missing data process classifications in

statistics, the first case corresponds to missing-completely-at-random (MCAR), and

the second case corresponds to missing-not-at-random (MNAR) or non-ignorable (NI)

[85, 86].

A.1 Parameter-independent Case, pd

Let Y ∼ f(y; θ) be a random variable—scalar or vector—that we observe with

probability pd (probability of detection) in a given experiment. Therefore, a realiza-

tion of the experiment results in a measurement that consists of the pair (Y, I), where

I is an indicator; I = 1 if Y is observed, I = 0 if Y is not observed. We use the

convention Y = y0 when Y is not observed. Hence, the two possible observation cases

120



are

(Y, I) = (y, 1) observation case (A.1)

(Y, I) = (y0, 0) missed observation case. (A.2)

The density function of (Y, I) is

p(y, i; θ) = pdf(y; θ)i+ (1 − pd)(1 − i)δy0(y), (A.3)

where δy0(y) is the Dirac delta function centered at y0. The (j, k) element of Fisher’s

information matrix is

J1(j, k) = Ey,i

[∂ ln p(y, i; θ)

∂θj

∂ ln p(y, i; θ)

∂θk

]
(A.4)

= Ey,i

[ 1

(p(y, i; θ))2

∂p(y, i; θ)

∂θj

∂p(y, i; θ)

∂θk

]
(A.5)

= Ey,i

[( pd i

pdf(y; θ)i+ (1 − pd)(1 − i)δy0(y)

)2∂f(y; θ)

∂θj

∂f(y; θ)

∂θk

]
.(A.6)

Performing the expectation over i and then y, we have

J1(j, k) = pdEy|i=1

[ 1

(f(y; θ))2

∂f(y; θ)

∂θj

∂f(y; θ)

∂θk

]
+ (1 − pd)0 (A.7)

= pdJθ(j, k), (A.8)

where Jθ(j, k) is the (j, k) element of the standard Fisher information matrix Jθ

given a single measurement. Hence, the total Fisher information matrix for a single

experiment with probability pd of missing a measurement is

J1 = pdJθ. (A.9)

If there are n independent measurements of (Y, I), then on average we have n pd

measurements of Y . So, we would expect the Fisher information to be (n pd)Jθ. This

is consistent with (A.9).

121



A.2 Parameter-dependent Case, pd(θ)

In the parameter-independent case, the probability of missing a measurement did

not depend on the parameter being estimated; hence, missed data were essentially

ignored and the resulting Fisher information depended only on the expected number

of actual observations of the data Y . However, when the probability of missing a

measurement depends on the parameter to be estimated, there is information about

θ in a missed measurement itself. This will increase the Fisher information above the

parameter-independent case.

We now write the probability of obtaining a measurement as a function of θ, pd(θ).

Recall that pd(θ) ∈ [0, 1] is not a prior or even a density on θ and need not integrate

to one. The distribution of (Y, I) is otherwise the same as (A.3), and, omitting the

arguments of p(y, i; θ), f(y; θ), and pd(θ) for notational simplicity, we evaluate the

(j, k) element of Fisher’s information matrix as

J2(j, k) = Ey,i

[
1

p2

(∂pdfi

∂θj

+
∂(1 − pd)(1 − i)δy0(y)

∂θj

)(∂pdfi

∂θk

+
∂(1 − pd)(1 − i)δy0(y)

∂θk

)]

= pdEy|i=1

[ 1

(pdf)2

∂pdf

∂θj

∂pdf

∂θk

]
+

(1 − pd)Ey|i=0

[ 1

((1 − pd)δy0(y))
2

∂(1 − pd)δy0(y)

∂θj

∂(1 − pd)δy0(y)

∂θk

]

= pdEy|i=1

[( 1

f

∂f

∂θj

+
1

pd

∂pd

∂θj

)( 1

f

∂f

∂θk

+
1

pd

∂pd

∂θk

)]
+

1

1 − pd

∂pd

∂θj

∂pd

∂θk

= pdEy|i=1

[ 1

f 2

∂f

∂θj

∂f

∂θk

]
+

1

pd(1 − pd)

∂pd

∂θj

∂pd

∂θk

+

∂pd

∂θj

Ey|i=1

[ 1

f

∂f

∂θk

]
+
∂pd

∂θk

Ey|i=1

[ 1

f

∂f

∂θj

]
(A.10)

The expectation in the first term of (A.10) is equal to the (j, k) element of Fisher’s

information matrix Jθ for a single observation of Y , and the expectations in the last
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two terms of (A.10) are of elements of the score vector of Y , which always has zero

expectation. Hence, Fisher’s information matrix for the parameter-dependent case is

J2 = pd(θ)Jθ +
1

pd(θ)
(
1 − pd(θ)

)
(∂pd(θ)

∂θ

)(∂pd(θ)

∂θ

)T

. (A.11)

When pd is independent of θ, (A.11) clearly reduces to (A.9). Note also that

the second term in (A.11) is always positive semi-definite, so, for equivalent values

of pd, Fisher’s information in the parameter-dependent case is never less than the

independent case

J2 ≥ J1. (A.12)

The second term of (A.11) quantifies the information present in a missed observation.
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