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ABSTRACT

We study the evolution of conditional dispersal using a Lotka-Volterra reaction-

diffusion-advection model for two competing species in a nonhomogeneous, tempo-

rally constant environment. We assume that the two species are identical except

for their dispersal strategies. Both species employ random diffusion combined with

advection upward along resource gradients. We use a perturbation argument to un-

derstand the evolution of these rates. When the advection rates are small relative to

the diffusion rates, we find that stronger advection is preferred. However, when the

advection rates are large relative to the diffusion rates, we find that weaker advection

is preferred. We also studied the case where the two species have differing strategies,

one with a very strong biased movement relative to diffusion, and the other with a

more balanced approach. If the advection rate of the latter is small, the two species

can coexist. But if its advection rate increases sufficiently, the second species drives

the first to extinction. So we see in these results a preference against overly strong

advection and in favor of a more balanced strategy, suggesting the existence of an

optimal intermediate rate.
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CHAPTER 1

INTRODUCTION

In this paper we study the evolution of dispersal strategies via reaction-advection-

diffusion models. Our goal is to better understand how dispersal strategies will affect

the survival and extinction of the species. We will focus on conditional dispersal

strategies, that is, dispersal strategies that are dependent on the spatial heterogeneity

of the habitat.

Our approach in studying the evolution of dispersal will be to analyze the competition

between two species in a closed environment. Throughout this paper we will assume

that the two species are identical in all ecological aspects except for their dispersal

strategies. In particular, they compete for the same resources and have the same

intrinsic growth rates. The main goal is to determine which dispersal strategies can

confer a competitive advantage and thus will evolve.

1.1 Background

The most basic dispersal strategy is simply dispersal by random diffusion. We let

u = u(x, t) and v = v(x, t) be the densities of the two species at location x and time

t, and µ, ν > 0 be the respective diffusion rates of the species. The spatially varying

but time constant function m(x) accounts for the intrinsic growth rate of the species
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at location x. Combining the diffusion with the classical Lotka-Volterra competition

kinetics, we get the following system.

ut = µ∆u+ u(m− u− v) in Ω× (0,∞),

vt = ν∆v + v(m− u− v) in Ω× (0,∞),

∂u/∂n = ∂v/∂n = 0 on ∂Ω× (0,∞),

(1.1)

where ∆ is the Laplace operator, Ω is a domain in RN with smooth boundary ∂Ω, n

is the outward unit normal vector on ∂Ω, and the boundary conditions mean that no

individuals cross the boundary.

Dockery et. al. [8] studied this system and showed that the slower diffuser is always

the winner. More precisely, let θ = θ(x;µ) be a positive steady-state of the single

species system

θt = µ∆θ + u(m− θ) in Ω× (0,∞),

∂θ/∂n = 0 on ∂Ω× (0,∞).
(1.2)

If µ < ν, then the semi-trivial steady state (θ(·;µ), 0) is globally asymptotically

stable among all non-negative, non-identically zero initial data. They also showed

that for more than 2 species with respective diffusion rates d1 < d2 < . . . < dn, the

semi-trivial steady state (θ(·; d1), 0, . . . , 0) is the only locally asymptotically stable

semi-trivial steady state. In fact, all the other semi-trivial steady states are unstable

and there are no other non-trivial non-negative steady states. However, they could

not prove (and it is still not proven), that (θ(·; d1), 0, . . . , 0) is globally asymptotically

stable. This difference is mainly due to the fact that competition models for two

species are monotone systems, while competition models for three or more species

are not monotone in general.
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Random diffusion alone does not usually explain well the movement of animals. Even

the most simple species may exhibit some cognition of the local environment in their

search for food, water, shelter, etc. Since resources are usually not distributed uni-

formly across the habitat, we expect to see some biased movement of animals in

searching for resources, e.g., they may be able to track the gradient of resources to

some extent. We identified m(x) above as the intrinsic growth rate of the species,

but we can also view m as the indicator of the quality of the habitat (the more suit-

able the habitat, the higher the growth rate). Hence as individuals set off in search of

more food and better habitat, we expect to see movement upwards along the gradient

of m. Of course, we still expect and even desire some random movement. Without

any random diffusion the species will simply congregate at a local maximum for m

(depending on their initial location). If the random movement is strong enough,

however, some individuals may move away from the locally most desirable habitat to

find another desirable area, thus likely increasing the overall population size and the

survivability of the species.

Next we modify the system by allowing one species to move upward along the resource

gradient in search of a better habitat while the other moves only by random diffusion.

We come up with the following system:

ut = ∇ · [µ∇u− αu∇m] + u(m− u− v) in Ω× (0,∞),

vt = ν∆v + v(m− u− v) in Ω× (0,∞),

[µ∇u− αu∇m] · n = ∇v · n = 0 on ∂Ω× (0,∞).

(1.3)

Here α ≥ 0 measures the tendency of the species to move upward along the resource

gradient.
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Cantrell et. al. [3] confirmed the results of Dockery et. al. [8] (with α = 0) that the

species with the slower diffusion rate has the advantage. They also showed that for

convex domains, if α is small (but not too small with respect to the difference of µ

and ν), the faster diffuser can be the winner.

If µ = ν and Ω is convex, Cantrell et. al. [4] further showed that species u is always

the winner, i.e., the dispersal strategy with a little biased movement will evolve. As

shown in Cantrell et. al. [4], the assumption on the convexity of Ω is necessary.

Hence, it is rather interesting to see that the geometry of the habitat can play an

important role in the evolution of dispersal strategies.

An important result in Cantrell et. al. [4] is that for large values of α, the system

may produce a stable positive steady state, i.e., the two species can coexist for large

α. Hence, biased movement of species can provide a new mechanism of coexistence

of competing species.

So while a little advection is advantageous, too much advection opens an opportunity

for the second species to coexist with the first. Chen and Lou [5] further improved

the results for the coexistence of the species for large α and also showed that if m has

a unique local maximum, the population of u concentrates around this maximum for

large values of α, a phenomenon which leaves other resources for species v to utilize.

1.2 The Mathematical Model

In this paper we want to look at the case where both species disperse both by random

diffusion and directed movement upward along the resource gradient. While the
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dispersal rates may vary, we assume the species are identical in every other way.

The respective diffusion rates for the species are given by µ, ν > 0, and the rates of

advection by α, β ≥ 0. We assume that the intrinsic growth rate m(x) varies in space

but is constant in time. Adding in no flux conditions on the boundary we obtain the

system

ut = ∇ · [µ∇u− αu∇m] + u(m− u− v) in Ω× (0,∞),

vt = ∇ · [ν∇v − βv∇m] + v(m− u− v) in Ω× (0,∞),

[µ∇u− αu∇m] · n = [ν∇v − βv∇m] · n = 0 on ∂Ω× (0,∞).

(1.4)

Throughout this paper we will always assume that m is twice continuously differ-

entiable, non-constant, and that
∫

Ω
m > 0. The first assumption is reasonable to

the biological context and needed for the approach used, the second simply says that

there really is spatial diversity, and the last as we will see is sufficient for the existence

of two semi-trivial equilibria of the system.

Our focus is on understanding the global dynamics of this system. As a major part of

this, we will study the existence and stability of non-negative and non-trivial steady

states of this model, that is, solutions (u, v) of

∇ · [µ∇u− αu∇m] + u(m− u− v) = 0 in Ω,

∇ · [ν∇v − βv∇m] + v(m− u− v) = 0 in Ω,

[µ∇u− αu∇m] · n = [ν∇v − βv∇m] · n = 0 on ∂Ω.

(1.5)

But to understand the two species system, we first need a little information about
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the single species system. For one species with advection and diffusion and with no

flux across the boundary, we have the equations

∇ · [µ∇θ − αθ∇m] + θ(m− θ) = 0 in Ω,

[µ∇θ − αθ∇m] · n = 0 on ∂Ω.
(1.6)

If the trivial solution θ ≡ 0 is unstable, then there is a unique positive solution

θ = θ(x;α, µ) of (1.6) which is globally attracting among all positive initial data [3].

Thus if θ ≡ 0 is unstable in the single species system (1.6), then the two species system

(1.5) has two semi-trivial equilibria, denoted by (θ(x;α, µ), 0) and (0, θ(x; β, ν)). We

will see that the stability of (θ(x;α, µ), 0) and (0, θ(x; β, ν)) play important roles in

the dynamics of the system (1.4).

1.3 Main Results

In this paper we will establish several main results. The first two theorems deal

with the case where the species are very similar and the dispersal strategies are not

that much different. Biologically, one can envision that a mutation occurs and the

question is whether the mutant species, which is not much different from the original

species, can successfully establish itself in the habitat or not. Moreover, if invasion

occurs, will it coexist with the resident species or will it drive the resident species to

extinction?
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Theorem 1.3.1. Suppose µ = ν, Ω = [0, 1], m is twice continuously differentiable

on [0, 1], mx > 0 on [0, 1].

(i) If 0 ≤ β < ν/maxΩm, then there exists δ1 > 0 such that for α ∈ (β, β +

δ1), (θ(x;α, µ), 0) is globally asymptotically stable.

(ii) If β > ν/minΩm and m > 0 on [0, 1], then there exists δ2 > 0 such that for

α ∈ (β, β + δ2), (0, θ(x; β, ν)) is globally asymptotically stable.

The first part of this theorem extends the results of Cantrell et. al. [3]. When

the advection rates are small, the species with the stronger advection rate has the

advantage. But the second part tells us that when the advection rates are large, the

species with the weaker advection has the advantage and can even drive the other to

extinction. Therefore, evolution is against both small and large advection rates, and

some intermediate advection rate may give the optimal strategy.

Theorem 1.3.2. Suppose α = β, Ω = [0, 1], m is twice continuously differentiable

on [0, 1], mx > 0 on [0, 1].

(i) If 0 ≤ α < µ/maxΩm, then there exists δ3 > 0 such that for ν ∈ (µ, µ +

δ3), (θ(x;α, µ), 0) is globally asymptotically stable.

(ii) If α > max(µ/minΩm,maxΩm/minΩmx) and m > 0 on [0, 1], then there exists

δ4 > 0 such that for ν ∈ (µ, µ+ δ4), (0, θ(x; β, ν)) is globally asymptotically stable.

In the first part of this theorem, we see that for small advection rates, the slower

diffuser still has the advantage, the same as in the diffusion only system. But we

again see a reversal for the large advection case, where the slower diffuser no longer

has the advantage and in fact is always the loser in the competition. Therefore, the
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direction of the evolution of diffusion rates depends crucially on the magnitude of the

advection rates.

The theorems above present some surprising results for two similar species with large

advection. The following theorems continue to explore the effects of large advection.

However, here we shall only assume that the first species has a large advection rate

relative to its rate of diffusion, we no longer assume that the second species has a

similar dispersal strategy.

Theorem 1.3.3. Suppose that
∫

Ω
m(x) > 0 and that the set of critical points of m

has Lebesgue measure zero. Then there exists a positive constant Λ1 = Λ1(µ, ν,m,Ω),

independent of β, such that if α ≥ Λ1 and β/ν ≤ 1/maxΩm, the following hold:

(i) Both semi-trivial states (θ(x;α, µ), 0) and (0, θ(x; β, ν)) are unstable.

(ii) The system (1.4) has at least one stable positive steady state.

(iii) For any positive steady state (U, V ) of (1.4), ‖U‖L2(Ω) → 0 as α → ∞. If we

further assume that the function m has at least one isolated global maximum, then

there exists some positive constant δ0 such that maxΩ U ≥ δ0 for all α ≥ Λ1.

This theorem for β/ν small extends the results of Cantrell et al [4] and Chen and

Lou [5] for the case β = 0. Next we turn to the case where β/ν is sufficiently larger.

But first we need an additional assumption on the function m.

(A1) The function m(x) satisfies ∂nm < 0 on ∂Ω, m has only one critical point in

Ω, denoted by x0, and x0 satisfies x0 ∈ Ω with D2m(x0) < 0.

D2m(x0) denotes the Hessian matrix of the function m(x) at the point x = x0, and
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D2m(x0) < 0 means that the matrix is negative definite. What this means in the

biological context is that there is a unique maximum for the habitability function

that is located inside the habitat.

Theorem 1.3.4. Suppose that m > 0 in Ω and assumption (A1) holds. There exists

an increasing function Λ2(·) defined on [ν/minΩm,∞) such that if α ≥ Λ2(β) and

β/ν ≥ 1/minΩm, then the steady state (0, θ(x; β, ν)) is globally asymptotically stable.

So we see that for small values of β, large advection gives room for the second species

to coexist with the first. But if β is large enough, the second species can even drive

the first species (which has a much larger advection rate) to extinction. So while

some advection is good, too much advection can be harmful. This again suggests

that there might be some intermediate advection rate that is most beneficial.

The rest of the paper is organized as follows. In Chapter 2 we will discuss some

background results: define a strongly monotone system, introduce the single species

equation and establish some estimates on the solution, and lastly establish an im-

portant result on a 1-dimensional domain. In Chapter 3 we will address the local

stability of the semi-trivial steady states. In Chapter 4 we will turn our attention

to the existence and non-existence of positive steady states. Chapter 5 will combine

the previous results and discuss the global dynamics of the system. In Chapter 6 we

conclude with a discussion of the results established and some open problems.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter we will cover some preliminary ideas and some technical results that

we will use later in establishing the main results of this thesis.

2.1 Monotone Dynamical Systems

First we want to show that (1.4) is a strongly monotone system and outline the results

that gives us.

Definition 2.1.1. We say that (1.4) is a strongly monotone system if

(1) u1(x, 0) ≥ u2(x, 0) and v1(x, 0) ≤ v2(x, 0) for all x ∈ Ω, and

(2) (u1(x, 0), v1(x, 0)) 6≡ (u2(x, 0), v2(x, 0)),

then u1(x, t) > u2(x, t) and v1(x, t) < v2(x, t) for all x ∈ Ω and for all t > 0.

Theorem 2.1.2. The system (1.4) is a strongly monotone system.
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Proof. We introduce the functions w := e−(α/µ)mu, and z := e−(β/ν)mv. Then (w, z)

satisfy

wt = µ∆w + α∇w∇m+ w(m− e(α/µ)mw − e(β/ν)mz) in Ω× (0,∞),

zt = ν∆z + β∇z∇m+ z(m− e(α/µ)mw − e(β/ν)mz) in Ω× (0,∞),

(2.1)

with classical Neumann boundary conditions

∂w

∂n
=
∂z

∂n
= 0 on ∂Ω× (0,∞). (2.2)

We will show that with the partial ordering

(w1, z1) ≥ (w2, z2) ⇔ w1 ≥ w2 and z1 ≤ z2, (2.3)

if (w1(x, 0), z1(x, 0)) ≥ (w2(x, 0), z2(x, 0)) then (w1(x, t), z1(x, t)) ≥ (w2(x, t), z2(x, t))

for all t > 0. Further, if we assume that (u1(x, 0), v1(x, 0)) 6≡ (u2(x, 0), v2(x, 0)),

which gives us that (w1(x, 0), z1(x, 0)) 6≡ (w2(x, 0), z2(x, 0)), the inequality is strict.

We introduce W := w2 − w1 and Z := z1 − z2, and define

f(x,w, z) = w(m− e(α/µ)mw − e(β/ν)mz),

g(x,w, z) = z(m− e(α/µ)mw − e(β/ν)mz).

(2.4)

Then (W,Z) satisfy

11



Wt = µ∆W + α∇W∇m+ f(x,w2, z2)− f(x,w1, z1) in Ω× (0,∞),

Zt = ν∆Z + β∇Z∇m+ g(x,w1, z1)− g(x,w2, z2) in Ω× (0,∞),

∂W/∂n = ∂Z/∂n = 0 on ∂Ω× (0,∞).

(2.5)

We rewrite

f(x,w2, z2)− f(x,w1, z1) = f(x,w2, z2)− f(x,w1, z2) + f(x,w1, z2)− f(x,w1, z1)

= fw(x,w∗, z2)W − fz(x,w1, z
∗)Z

g(x,w1, z1)− g(x,w2, z2) = g(x,w1, z1)− g(x,w1, z2) + g(x,w1, z2)− g(x,w2, z2)

= gz(x,w1, z
∗∗)Z − gw(x,w∗∗, z2)W

(2.6)

for some w∗, w∗∗ ∈ (w2, w1) and some z∗, z∗∗ ∈ (z1, z2).

This gives us a weakly coupled parabolic system (see Protter and Weinberger, Ch. 3

[16])

Wt = µ∆W + α∇W∇m+ fw(x,w∗, z2)W − fz(x,w1, z
∗)Z in Ω× (0,∞),

Zt = ν∆z + β∇z∇m+ gz(x,w1, z
∗∗)Z − gw(x,w∗∗, z2)W in Ω× (0,∞),

∂W/∂n = ∂Z/∂n = 0 on ∂Ω× (0,∞).

(2.7)
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We compute

fz(x,w1, z
∗) = −w1e

(β/ν)m < 0

gw(x,w∗∗, z2) = −z2e
(α/µ)m < 0,

(2.8)

so by Theorem 13 [16], both W and Z are negative in Ω × (0,∞) or identically 0

everywhere. Since we assumed (w1(x, 0), z1(x, 0)) 6≡ (w2(x, 0), z2(x, 0)), it must be

the former.

In addition, by Theorem 14 [16], if either W or Z are 0 on ∂Ω × (0,∞), then the

outward normal derivative must be positive at that point. But since we have Neumann

boundary conditions for both, this also cannot happen.

So we can conclude that (w1(x, t), z1(x, t)) > (w2(x, t), z2(x, t)) for all x ∈ Ω and

for all t > 0, that is, (2.1)-(2.2) is a strongly monotone system. Since the system

(2.1)-(2.2) is equivalent to (1.4), (1.4) is also a strongly monotone system. �

Since (1.4) is a strongly monotone system, we have the following results (see, e.g.,

[10]):

1. If both semi-trivial steady states are unstable, then there is at least one stable

positive steady state.

2. If the system has no positive equilibria, then one of the semi-trivial equilibria

is unstable and the other is a global attractor.
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2.2 Single-Species Equation

Next we look at the single-species equation

∇ · [µ∇θ − αθ∇m] + θ(m− θ) = 0 in Ω,

[µ∇θ − αθ∇m] · n = 0 on ∂Ω.

(2.9)

In this section we want to establish conditions for the existence of a unique positive

solution θ (= θ(x;α, µ)) to the single-species equation. We begin by introducing

w = e−(α/µ)mθ. Then w satisfies

µ∆w + α∇w∇m+ w[m− e(α/µ)mw] = 0 in Ω,

∂w/∂n = 0 on ∂Ω.

(2.10)

We consider the eigenvalue problem

µ∆ϕ+ α∇ϕ∇m+ ϕm = λϕ in Ω,

∂ϕ/∂n = 0 on ∂Ω.

(2.11)

Lemma 2.2.1. If
∫

Ω
m > 0, then the principal eigenvalue λ1 of (2.11) is negative for

any µ > 0, α ≥ 0.

Proof. We choose the principal eigenfunction ϕ > 0. We multiply (2.11) by e(α/µ)m,

divide by ϕ and integrate over Ω to obtain∫
Ω

µ∇ · [e(α/µ)m∇ϕ]

ϕ
+

∫
Ω

me(α/µ)m = −λ1

∫
Ω

e(α/µ)m. (2.12)
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We want to show that the LHS of (2.12) is positive. This will establish our result.

We first show that
∫

Ω
me(α/µ)m > 0. We define

f(α) =

∫
Ω

me(α/µ)m (2.13)

Then f(0) =
∫

Ω
m > 0 by our assumption. And we have

f ′(α) =
1

µ

∫
Ω

m2e(α/µ)m ≥ 0 (2.14)

Thus
∫

Ω
me(α/µ)m > 0 for all α ≥ 0.

Next we show that the first integral is nonnegative. Using the divergence theorem

and the boundary conditions on ϕ, we have∫
Ω

µ∇ · [e(α/µ)m∇ϕ]

ϕ
=

∫
Ω

µe(α/µ)m|∇ϕ|2

ϕ2
≥ 0 (2.15)

This establishes the lemma. �

Theorem 2.2.2. If
∫

Ω
m > 0, then for any µ > 0, α ≥ 0, (2.9) has a unique positive

solution θ = θ(x;α, µ).

Proof. First we establish the existence of a positive solution. As above we define

w = e−(α/µ)mθ. Then w satisfies

µ∆w + α∇w∇m+ w[m− e(α/µ)mw] = 0 in Ω,

∂w/∂n = 0 on ∂Ω.

(2.16)

Then w is a supersolution to (2.16) for any constant w ≥ maxΩ[me(−α/µ)m]. Next we

find a subsolution w = εϕ where ϕ is the principal eigenfunction of (2.11). We also

normalize ϕ so that ‖ϕ‖∞ = 1. To be a subsolution of (2.16), εϕ must satisfy

µ∆(εϕ) + α∇(εϕ)∇m+ εϕ[m− e(α/µ)mεϕ] ≥ 0 (2.17)
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Dividing the RHS of (2.17) by ε and using (2.11), we get

−λ1ϕ+ ϕ(−εϕe(α/µ)m) = ϕ(−λ1 − εϕe(α/µ)m)

≥ ϕ(−λ1 − εe(α/µ)m)

≥ ϕ(−λ1 − εmaxΩ e
(α/µ)m)

(2.18)

Thus if we choose 0 < ε ≤ −λ1/(maxΩe
(α/µ)m), then εϕ is a subsolution to (2.16). If

necessary, we can choose ε smaller or w larger to insure that w ≤ w. Thus there exists

a solution w to (2.16) with w ≤ w ≤ w, and thus a positive solution θ = we(α/µ)m to

(2.9).

Next we show that this solution is unique. Assume there are two solutions θ1, θ2 > 0

to (2.9) with θ1 6≡ θ2. Then there exist positive solutions w1 6≡ w2 to (2.16) given by

wi = e−(α/µ)mθi.

From above, we can choose ε � 1 and w � 1 so that we have a subsolution w

and supersolution w with εϕ = w ≤ w1, w2 ≤ w in Ω. Thus there exist solutions

w∗(x), w
∗(x) > 0 of (2.16) such that w ≤ w∗ ≤ w1, w2 ≤ w∗ ≤ w. That is, w∗ and w∗

are maximal and minimal solutions, respectively (see, e.g., [15]). So then

µ∇ · [e(α/µ)m∇w∗] + e(α/µ)mw∗(m− e(α/µ)mw∗) = 0 in Ω,

µ∇ · [e(α/µ)m∇w∗] + e(α/µ)mw∗(m− e(α/µ)mw∗) = 0 in Ω,

∂w∗/∂n = ∂w∗/∂n = 0 on ∂Ω.

(2.19)

Multiplying the first equation in (2.19) by w∗ and the second by w∗, then subtracting
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the first from the second and integrating over Ω, we get

µ

∫
Ω

(w∗∇· [e(α/µ)m∇w∗]−w∗∇· [e(α/µ)m∇w∗])+
∫

Ω

e2(α/µ)mw∗w
∗(w∗−w∗) = 0 (2.20)

Using the divergence theorem with the boundary conditions for w∗(x) and w∗(x) on

the first integral above, we see that∫
Ω

(w∗∇ · [e(α/µ)m∇w∗]− w∗∇ · [e(α/µ)m∇w∗])

=

∫
Ω

∇w∗ · [e(α/µ)m∇w∗]−
∫

Ω

∇w∗ · [e(α/µ)m∇w∗] = 0

(2.21)

Thus we have simply ∫
Ω

e2(α/µ)mw∗w
∗(w∗ − w∗) = 0 (2.22)

Since w∗ ≤ w∗, this implies that w∗ = w∗. But this contradicts w1 6≡ w2. This

establishes the uniqueness of the positive solution for (2.16), and thus for (2.9). �

2.3 Estimates on Single-Species Solution

We continue by establishing some bounds on the positive solution θ to (2.9).

Lemma 2.3.1. If m is a non-constant function, then

min
Ω

(
me−(α/µ)m

)
< e−(α/µ)m(x)θ(x) < max

Ω

(
me−(α/µ)m

)
(2.23)

for every x ∈ Ω.

Proof. Let w = e−(α/µ)mθ(x). We see that w satisfies

µ∇ · [e(α/µ)m∇w] + e(α/µ)mw
[
m− e(α/µ)mw

]
= 0 in Ω,

∂w/∂n = 0 on ∂Ω.

(2.24)
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Or, equivalently, multiplying the above by e−(α/µ)m,

µ∆w + α∇m · ∇w + w
[
m− e(α/µ)mw

]
= 0 in Ω,

∂w/∂n = 0 on ∂Ω.

(2.25)

Let x0 ∈ Ω be a point such that w(x0) = maxΩw. By the Hopf Boundary Lemma

[16], for both cases x0 ∈ Ω and x0 ∈ ∂Ω, we have ∇w(x0) = 0, and ∆w(x0) ≤ 0.

Hence, by (2.25) we get

max
Ω

w = w(x0) ≤ m(x0)e
−(α/µ)m(x0) ≤ max

Ω

(
me−(α/µ)m

)
. (2.26)

Next we show that the second inequality in (2.23) is strict. LetM1 = maxΩ

(
me−(α/µ)m

)
and set w1(x) = M1 − w(x). Then w1 satisfies

−µ∆w1−α∇w1 ·∇m+ e(α/µ)m(M1−w1)
[
me−(α/µ)m −M1 + w1

]
= 0 in Ω. (2.27)

Multiplying this out and using the definition of M1, we get

−µ∆w1 − α∇w1 · ∇m+ e(α/µ)mw1(2M1 −me−(α/µ)m − w1)

= e(α/µ)mM1

[
M1 −me−(α/µ)m

]
≥ 0,

(2.28)

where the last inequality is not identically zero since m is a non-constant function.

Recall that ∂w1/∂n = 0 on ∂Ω, and by (2.26), w1 ≥ 0 in Ω. By the Strong Maximum

Principle [16], we have w1 > 0 in Ω. This establishes the second inequality in (2.23).

For the first inequality, the proof is trivial if m is non-positive somewhere in Ω, hence

it suffices to consider the case when m > 0 in Ω. Since the proof is almost identical

to that of the second inequality, we omit it. �
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Next we define

m∗ = max
Ω

m.

Lemma 2.3.2. Suppose that m is a non-constant function.

(i) If α/µ ≤ 1/maxΩm, then

θ(x) < m∗e(α/µ)[m(x)−m∗] (2.29)

for every x ∈ Ω.

(ii) If m > 0 in Ω and α/µ ≥ 1/minΩm, then

θ(x) > m∗e(α/µ)[m(x)−m∗] (2.30)

for every x ∈ Ω.

Proof. By Lemma 2.3.1, we have

e−(α/µ)m(x)θ(x) < max
Ω

(
me−(α/µ)m

)
(2.31)

for every x ∈ Ω. Since

(
ye−(α/µ)y

)′
= e−(α/µ)y(1− (α/µ)y),

we see that ye−(α/µ)y is strictly increasing when y < µ/α. Hence, if α/µ < 1/m∗,

max
Ω

(
me−(α/µ)m

)
≤ m∗e−(α/µ)m∗ . (2.32)

Combining this with (2.31) and multiplying by e(α/µ)m, we get

θ(x) < m∗e(α/µ)[m(x)−m∗], (2.33)
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establishing part (i).

For the proof of part (ii), we note that
(
ye−(α/µ)y

)′
< 0 for y > µ/α. Thus if m > 0

in Ω and α/µ > 1/minΩm, then

m(x)e−(α/µ)m(x) ≥ m∗e−(α/µ)m∗ (2.34)

for every x ∈ Ω. So again using Lemma 2.3.1 and multiplying by e(α/µ)m, we get the

desired result. �

By assumption (A1), there exist positive constants κ0, κ1, and κ2 such that

|∇m(x)| ≥ κ0|x−x0|, κ2|x−x0|2 ≥ m∗−m(x) ≥ κ1|x−x0|2 ∀x ∈ Ω. (2.35)

These properties, together with ∂m < 0 on ∂Ω enables us to prove the following.

Lemma 2.3.3. Suppose that assumption (A1) holds. There exists a positive constant

K, independent of α, such that

θ(x;α, µ) ≤ Ke(α/µ)[m(x)−m∗] ∀x ∈ Ω. (2.36)

Proof. We define w = e−(α/µ−1)mθ. Then w satisfies

µ∆w + (α− 2µ)∇m · ∇w −
[
(α− µ)|∇m|2 + µ∆m+ θ −m

]
w = 0 in Ω,

[∇w − w∇m] · n = 0 on ∂Ω.

(2.37)

Let z∗ = z∗(α, µ) ∈ Ω be a point such that w(z∗) = maxΩw. Since ∂w/∂n =

w ∂m/∂n < 0 on ∂Ω, we see that z∗ ∈ Ω. Hence, ∇w(z∗) = 0 and ∆w(z∗) ≤ 0. It

then follows that

(α− µ)|∇m(z∗)|2 + µ∆m(z∗) + θ(z∗) ≤ m(z∗). (2.38)
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Hence,

(α− µ)|∇m(z∗)|2 ≤ m∗ − µ∆m(z∗) ≤ µ‖m‖C2(Ω) (2.39)

and

θ(z∗) ≤ m(z∗)− µ∆m(z∗) ≤ µ‖m‖C2(Ω). (2.40)

It follows from (2.35) and (2.38) that

(α− µ)[m∗ −m(z∗)] ≤ κ2(α− µ)

κ2
0

|∇m(z∗)|2 ≤
κ2µ‖m‖C2(Ω)

κ2
0

.

Since w(x) ≤ w(z∗), we have

e−α[m(x)−m∗]θ(x) ≤ e−α[m(x)−m∗]θ(z∗)e(α−µ)[m(x)−m(z∗)]

= θ(z∗)e[m
∗−m(x)]+(α−µ)[m∗−m(z∗)]

≤ ‖m‖C2(Ω)e
2‖m‖∞+(κ2µ/κ2

0)‖m‖C2(Ω) =: K ∀x ∈ Ω.

This implies (2.36). �

Next we consider the following eigenvalue problem:

−∆ϕ− α∇m · ∇ϕ+ c ϕ = λ(α)ϕ in Ω,

∂nϕ = 0 on ∂Ω, ϕ > 0 on Ω,

(2.41)

where m ∈ C2(Ω) and c ∈ C(Ω). The following result was established in Chen and

Lou [5]:

Theorem 2.3.4 ([5]). Assume that all critical points of m are non-degenerate. Let

M be the set of points of local maximum of m. Then

lim
α→∞

λ(α) = min
x∈M

c(x).
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2.4 One-Dimension Result

Finally in this chapter we show a result when Ω is a one-dimensional domain.

Let w ∈ C2([0, 1]) with w > 0 satisfy

µ(wxx + γmxwx) + (me−γm − w)weγm = 0 on (0, 1),

wx(0) = wx(1) = 0,

(2.42)

where γ and µ are positive constants.

Lemma 2.4.1. Suppose that m > 0 and mx > 0 in [0, 1], and γ > 1/minΩm. Then

w(0) < m(0)e−γm(0), w(1) > m(1)e−γm(1), and wx(x) < 0 for all x ∈ (0, 1).

Proof. We first show that w(0) < m(0)e−γm(0). We argue by contradiction: Suppose

w(0) ≥ m(0)e−γm(0).

We define h(x) = w(x) − m(x)e−γm(x). Thus h(0) ≥ 0. And we note that hx(0) =

wx(0)−mx(0)e−γm(0)(1− γm(0)) > 0, since mx > 0 on [0, 1] and m(0) > 1/γ.

Thus there exists δ > 0 such that h(x) > 0 for 0 < x < δ. Then by (2.42) we have

wxx + γmxwx > 0 on (0, δ). This tells us that (eγmwx)x = eγm(wxx + γmxwx) > 0 on

(0, δ). Thus eγm(x)wx(x) > eγm(0)wx(0) = 0 for all x ∈ (0, δ), so wx > 0 on (0, δ).

Since wx(1) = 0, let x∗ ∈ (0, 1] be the smallest number such that wx(x
∗) = 0. Then

wx > 0 on (0, x∗) and (me−γm)x < 0 on [0, 1], implying that hx > 0 on (0, x∗), so

h(x∗) > 0. But wx(x
∗) = 0, wxx(x

∗) ≤ 0, contradicting (2.42).

Next we want to show that w(1) > m(1)e−γm(1). Again we argue by contradiction

and assume that w(1) ≤ m(1)e−γm(1).
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We define h(x) = w(x) − m(x)e−γm(x). Then h(1) ≤ 0, and hx(1) = wx(1) −

mx(1)e−γm(1)(1− γm(1)) > 0, thus h(x) < 0 for 1− δ < x < 1 for some δ > 0.

By (2.42), wxx + γmxwx < 0 on (1 − δ, 1), so (eγmwx)x < 0 on (1 − δ, 1). Thus

eγm(x)wx(x) > eγm(1)wx(1) = 0 for all x ∈ (1− δ, 1), so wx > 0 on (1− δ, 1).

Since wx(0) = 0, let x̂ ∈ [0, 1) be the largest such that wx(x̂) = 0. Then wx > 0 on

(x̂, 1) and (me−γm)x < 0 on [0, 1], so hx > 0 on (x̂, 1) and h(x̂) < 0. But wxx(x̂) ≥ 0,

contradicting (2.42).

Finally, we show that wx(x) < 0 for all x ∈ (0, 1). Since w(0) < m(0)e−γm(0) and

wx(0) = 0, from (2.42) we get that wxx(0) < 0. Thus wx(x) < 0 for all x in some

interval (0, δ). Now suppose there exists x ∈ (0, 1) such that wx(x) = 0. Let x∗ be

the smallest such that wx(x
∗) = 0. We consider two different cases.

In case 1, we assume w(x∗) < m(x∗)e−γm(x∗). But this immediately contradicts (2.42)

since wxx(x
∗) ≥ 0.

For case 2, assume w(x∗) ≥ m(x∗)e−γm(x∗). Since wx(x
∗) = 0 and (me−γm)x |x=x∗< 0,

h(x) = w(x) −m(x)e−γm(x) > 0 for all x∗ < x < x∗ + δ. Again we have to consider

two cases: whether h(x) remains positive or is somewhere 0 on (x∗, 1).

So suppose h(x) > 0 for all x ∈ (x∗, 1). By (2.42), wxx + γmxwx > 0 on (x∗, 1), so

(eγmwx)x > 0 on [x∗, 1]. But wx(x
∗) = wx(1) = 0, giving us a contradiction.

Finally we assume h(x) = 0 for some x ∈ (x∗, 1). Let x̄ be the smallest of these.

Then h(x) > 0 on (x∗, x̄), so wxx + γmxwx > 0 on (x∗, x̄), and thus (eγmwx)x > 0 on

(x∗, x̄).

But hx(x̄) = wx(x̄) − mx(x̄)e
−γm(x̄)(1 − γm(x̄)) ≤ 0, giving us wx(x̄) < 0 since
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(me−γm)x is always negative. Thus we have 0 = wx(x
∗) < wx(x̄)) < 0, which is a

contradiction.

Thus it must be that wx(x) < 0 for all x ∈ (0, 1). �

Lemma 2.4.2. Suppose that mx > 0 in [0, 1] and γ < 1/maxΩm. Then w(0) >

m(0)e−γm(0), w(1) < m(1)e−γm(1), and wx(x) > 0 for all x ∈ (0, 1).

Proof. Since mx > 0 in [0, 1] and γ < 1/maxΩm, we have (me−γm)′ = e−γmm′(1 −

γm) > 0 in [0, 1]. The rest of the proof is almost identical to that of Lemma 2.4.1,

so we omit it. �
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CHAPTER 3

STABILITY OF SEMI-TRIVIAL STEADY STATES

From Theorem 2.2.2, if
∫

Ω
m > 0 (an assumption we will make throughout this paper),

then we see that the system (1.4) has two semi-trivial steady states, (θ(x;α, µ), 0)

and (0, θ(x; β, ν)) for every µ, ν > 0, α, β ≥ 0. For simplicity we will often use θ for

both θ(x;α, µ) and θ(x; β, ν). In all cases, the context should make it clear which

is intended. In this chapter we look at the linearized stability of both semi-trivial

steady states. In addition to being necessary for the proof of the main results in this

paper, the stability of semi-trivial steady states is also of interest as it is related to

the invasion of species when they are rare.

3.1 Eigenvalue Problem

The following fact will be used in the analysis of the stability or instability of the

semi-trivial steady states.
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Lemma 3.1.1. The steady state (θ(·;α, µ), 0) is stable/unstable if and only if the fol-

lowing eigenvalue problem, for (λ1, ψ) ∈ R×C2(Ω), has a positive/negative eigenvalue

λ1:

∇ · (ν∇ϕ− βϕ∇m) + [m− θ(·;α, µ)]ϕ = −λ1ϕ in Ω,

(ν∇ϕ− βϕ∇m) · n = 0 on ∂Ω, ϕ > 0 on Ω.

(3.1)

Proof. The full system for the eigenvalue problem is

L1ϕ := −∇ · (µ∇ϕ− αϕ∇m)− [m− θ(·;α, µ)]ϕ = λϕ in Ω,

L2ψ := −∇ · (ν∇ψ − βψ∇m)− [m− 2θ(·;α, µ)]ψ = λψ − θ(·;α, µ)ϕ in Ω

with no-flux boundary conditions.

Suppose the steady state (θ(·;α, µ), 0) is unstable. Then there is a non-trivial solution

(λ, ϕ, ψ) with Re(λ) < 0. Consider two cases: (i) ϕ 6≡ 0; (ii) ϕ ≡ 0.

In case (i), we conclude that L1 has an eigenvalue with negative real parts. Hence its

principal eigenvalue λ1 is negative and (3.1) admits a solution.

Case (ii) does not happen since the principle eigenvalue of L2 is positive. To see this,

let (λ, ψ) be an principal eigen pair of L2. So then ψ > 0. Multiplying the equation

of L2 by θe−αm/µ and using the equation satisfied by θ = θ(·;α, µ), we can derive

λ

∫
Ω

ψθe−αm/µ = −
∫

Ω

e−αm/µθ∇ · [eβm/ν∇(e−αm/µψ)] + (m− 2θ)θψe−αm/µ

= −
∫

Ω

e−αm/µψ∇ · [eαm/µ∇(e−αm/µθ)] + (m− 2θ)θψe−αm/µ

=

∫
Ω

θ2e−αm/µψ > 0.

Hence, the principal eigenvalue of L2 is positive.
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Next, suppose the steady state (θ(·;α, µ), 0) is stable. Then (3.1) cannot have a

solution with λ1 ≤ 0. Indeed, suppose it has a solution with λ1 ≤ 0. Then since the

principal eigenvalue of L2 is positive, there is a unique solution ψ of (L2−λ1)ψ = −θϕ.

This implies that the full linearized problem has a non-trivial solution (λ, ϕ, ψ) with

λ = λ1 ≤ 0. But this contradicts the assumption that the steady state (θ(·;α, µ), 0)

is (linearly) stable. �

Lemma 3.1.2. The steady state (0, θ(·; β, ν)) is stable/unstable if and only if the fol-

lowing eigenvalue problem, for (λ1, ψ) ∈ R×C2(Ω), has a positive/negative eigenvalue

λ1:

∇ · (µ∇ϕ− αϕ∇m) + [m− θ(·; β, ν)]ϕ = −λ1ϕ in Ω,

µ∇ϕ− αϕ∇m) · n = 0 on ∂Ω, ϕ > 0 on Ω.

(3.2)

Proof. The proof is identical to that of Lemma 3.1.1, and thus is omitted. �

3.2 Stability of (θ(x;α, µ), 0)

By Lemma 3.1.1 above, for the stability of the semi-trivial steady state (θ(x;α, µ), 0),

it suffices to consider the smallest eigenvalue, denoted as λ1, of the eigenvalue problem

∇ · [ν∇ψ − βψ∇m] + [m− θ(·;α, µ)]ψ = −λ1ψ in Ω,

(ν∇ψ − βψ∇m) · n = 0 on ∂Ω.

(3.3)
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3.2.1 Stability of (θ(x;α, µ), 0) for large α

In this section we will show that for α large enough, (θ(x;α, µ), 0) is always unstable.

Lemma 3.2.1. For any β ≥ 0,
∫

Ω
me(β/ν)m ≥

∫
Ω
m.

Proof. Define F (β) :=
∫

Ω
me(β/ν)m. Since

dF

dβ
=

1

ν

∫
Ω

m2e(β/ν)m > 0,

we see that F (β) ≥ F (0) =
∫

Ω
m for every β ≥ 0. �

The following result was established in [4]:

Lemma 3.2.2. Suppose that the set of critical points of m has measure zero. Then

lim
α→∞

∫
Ω

θ2(x;α, µ) dx = 0. (3.4)

We are now ready to show that for any fixed β, (θ, 0) is unstable for α large enough.

Theorem 3.2.1. Suppose that
∫

Ω
m > 0 and the set of critical points of m has

measure zero. For any η > 0, there exists a positive constant Λ3 = Λ3(η) such that

for every β ∈ [0, η] and α ≥ Λ3(η), (θ, 0) is unstable.

Proof. Let ψ > 0 denote the eigenfunction corresponding to λ1 uniquely determined

by maxΩ ψ = 1. We consider the following equivalent form of (3.3):

ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)] + (m− θ)ψ = −λ1ψ. (3.5)
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Dividing (3.5) by e−(β/ν)mψ and integrating over Ω, we have∫
Ω

ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)]

e−(β/ν)mψ
+

∫
Ω

(m− θ)e(β/ν)m = −λ1

∫
Ω

e(β/ν)m. (3.6)

Using the divergence theorem and the boundary condition for ψ, we obtain∫
Ω

ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)]

e−(β/ν)mψ
=

∫
Ω

νe(β/ν)m

(e−(β/ν)mψ)2
· |∇(e−(β/ν)mψ)|2 ≥ 0. (3.7)

Hence,

−λ1

∫
Ω

e(β/ν)m ≥
∫

Ω

(m− θ)e(β/ν)m =

∫
Ω

me(β/ν)m −
∫

Ω

θe(β/ν)m

≥
∫

Ω

me(β/ν)m − e(β/ν)m
∗
∫

Ω

θ

≥
∫

Ω

m− e(η/ν)m
∗
∫

Ω

θ

≥ 1

2

∫
Ω

m

(3.8)

provided that α ≥ Λ3 = Λ3(η), where the last inequality follows from the fact that

limα→∞
∫

Ω
θ = 0. Therefore, λ1 < 0 provided that α ≥ Λ3. �

3.2.2 Stability of (θ(x;α, µ), 0) for (α, µ) ≈ (β, ν)

Finally we consider the stability of (θ(x;α, µ), 0) for (α, µ) ≈ (β, ν), i.e., when the

two species are nearly identical in their dispersal strategies.

For any α0 > 0 and µ0 > 0, we define θ0 = θ(x;α0, µ0) > 0 as the unique positive

solution of

∇ · [µ0∇θ0 − α0θ0∇m] + (m− θ0)θ0 = 0,

[µ0∇θ0 − α0θ0∇m] · n = 0.

(3.9)
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If (ν, β) is very close to (µ0, α0) (i.e. (ν, β) = (α0 + εβ1 + O(ε2), µ0 + εν1 + O(ε2))),

then after suitable scaling, ψ = θ0 + εψ1 +O(ε2). By plugging into (3.3), we see that

ψ1 is determined by

∇ · [µ0∇ψ1 + ν1∇θ0 − α0ψ1∇m− β1θ0∇m] + (m− θ0)ψ1 − u1θ0 = −λ1θ0,

[µ0∇ψ1 + ν1∇θ0 − α0ψ1∇m− β1θ0∇m] · n = 0.

(3.10)

If (µ, α) is also very close to (µ0, α0) (i.e. (µ, α) = (α0+εα1+O(ε2), µ0+εµ1+O(ε2))),

then u = θ0 + εu1 +O(ε2), where u1 is determined by

∇ · [µ0∇u1 + µ1∇θ0 − α0u1∇m− α1θ0∇m] + (m− θ0)u1 − θ0u1 = 0,

[µ0∇u1 + µ1∇θ0 − α0u1∇m− α1θ0∇m] · n = 0.

(3.11)

Lemma 3.2.2.

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 =

∫
Ω

∇(e−(α0/µ0)mθ0) · [(µ1 − ν1)∇θ0 + (β1 − α1)θ0∇m]. (3.12)

Proof. We begin by multiplying (3.10) by e−(α0/µ0)mθ0 and integrating over Ω. Using

the divergence theorem and the boundary conditions on ψ1, we get

−
∫

Ω

∇(e−(α0/µ0)mθ0) · [µ0∇ψ1 + ν1∇θ0 − α0ψ1∇m− β1θ0∇m]

+

∫
Ω

e−(α0/µ0)mθ0[(m− θ0)ψ1 − u1θ0] = −λ1

∫
Ω

e−(α0/µ0)mθ2
0.

(3.13)
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Next we multiply (3.11) by e−(α0/µ0)mψ1 and integrate over Ω. Again using the diver-

gence theorem and the boundary conditions on θ0, we have

−
∫

Ω

∇(e−(α0/µ0)mψ1) · [µ0∇θ0 − α0θ0∇m] +

∫
Ω

e−(α0/µ0)mψ1(m− θ0)θ0 = 0. (3.14)

Evaluating ∇(e−(α0/µ0)mθ0), we see that

−
∫

Ω

∇(e−(α0/µ0)mθ0) · [µ0∇ψ1 − α0ψ1∇m]

= −
∫

Ω

e−(α0/µ0)m(µ0∇θ0 − α0θ0∇m)(∇ψ1 −
α0

µ0

ψ1∇m);

(3.15)

and similarly,

−
∫

Ω

∇(e−(α0/µ0)mψ1) · [µ0∇θ0 − α0θ0∇m]

= −
∫

Ω

e−(α0/µ0)m(∇ψ1 −
α0

µ0

ψ1∇m)(µ0∇θ0 − α0θ0∇m).

(3.16)

So subtracting (3.14) from (3.13), we are left with

− λ1

∫
Ω

e−(α0/µ0)mθ2
0 =

−
∫

Ω

∇(e−(α0/µ0)mθ0) · [ν1∇θ0 − β1θ0∇m] +

∫
Ω

e−(α0/µ0)mu1θ
2
0.

(3.17)

Multiplying (3.11) by e−(α0/µ0)mθ0 and integrating over Ω we get∫
Ω

e−(α0/µ0)mu1θ
2
0

= −
∫

Ω

∇(e−(α0/µ0)mθ0) · [µ0∇u1 − α0u1∇m+ µ1∇θ0 − α1θ0∇m]

+

∫
Ω

e−(α0/µ0)mθ0(m− θ0)u1.

(3.18)

Multiplying the first equation in (3.9) by e−(α0/µ0)mu1 and integrating over Ω we get

−
∫

Ω

∇(e−(α0/µ0)mu1) · [µ0∇θ0 − α0θ0∇m] +

∫
Ω

e−(α0/µ0)mu1(m− θ0)θ0 = 0. (3.19)
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Again we expand ∇(e−(α0/µ0)mθ0 to get

−
∫

Ω

∇(e−(α0/µ0)mθ0) · [µ0∇u1 − α0u1∇m]

= −
∫

Ω

e−(α0/µ0)m(∇θ0 −
α0

µ0

θ0∇m)(µ0∇u1 − α0u1∇m).

(3.20)

And similarly,

−
∫

Ω

∇(e−(α0/µ0)mu1) · [µ0∇θ0 − α0θ0∇m]

= −
∫

Ω

e−(α0/µ0)m(µ0∇u1 − α0u1∇m)(∇θ0 −
α0

µ0

θ0∇m).

(3.21)

Using these results and subtracting (3.19) from (3.18) we obtain∫
Ω

e−(α0/µ0)mu1θ
2
0 = −

∫
Ω

∇(e−(α0/µ0)mθ0) · [µ1∇θ0 − α1θ0∇m]. (3.22)

Substituting this result into (3.17) and combining terms, we obtain the desired result,

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 =

∫
Ω

∇(e−(α0/µ0)mθ0) · [(µ1 − ν1)∇θ0 + (β1 − α1)θ0∇m]. (3.23)

�

While we cannot make broad conclusions from this information, there is an identity

linking the two parts of the integral on the right. This does give us some insight into

the sign of this integral.

Identity 3.2.3.

∇(e−(α0/µ0)mθ0) · ∇θ0 − α0

µ0
(∇(e−(α0/µ0)mθ0) · ∇m)θ0

= e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2.
(3.24)
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It immediately follows from the above identity that∫
Ω

∇(e−(α0/µ0)mθ0) · ∇θ0 −
α0

µ0

∫
Ω

(∇(e−(α0/µ0)mθ0) · ∇m)θ0

=

∫
Ω

e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2 ≥ 0.

(3.25)

This tells us that whenever the second integral on the LHS is positive, the first must

be also. And if the first integral is negative, the second integral must also be negative.

3.3 Stability of (0, θ(x; β, ν))

In this section we consider the stability of (0, θ(x; β, ν)). We first establish the fol-

lowing preliminary result.

3.3.1 Stability of (0, θ(x; β, ν)) for large α

Lemma 3.3.1. Suppose that m is a non-constant function and
∫

Ω
m > 0. There

exists a positive constant Λ5 = Λ5(µ, ν,m,Ω) such that if 0 ≤ β ≤ ν/maxΩm and

α ≥ Λ5, we have ∫
Ω

e(α/µ)m(m− θ) > 0.

Proof. Define Ω+ = {x ∈ Ω : m(x) ≤ ‖θ‖∞} and Ω− = {x ∈ Ω : m(x) > ‖θ‖∞}.

Then∫
Ω

e(α/µ)(m−‖θ‖∞)(m− θ) =

∫
Ω+

e(α/µ)(m−‖θ‖∞)(m− θ) +

∫
Ω−

e(α/µ)(m−‖θ‖∞)(m− θ).

(3.26)
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By part (i) of Lemma 2.3.2, ‖θ‖∞ < ‖m‖∞ provided that β/ν ≤ 1/maxΩm. Hence,∣∣∣∣∫
Ω+

e(α/µ)(m−‖θ‖∞)(m− θ)

∣∣∣∣ ≤ ∫
Ω+

e(α/µ)(m−‖θ‖∞)|m− θ|

≤
∫

Ω+

|m− θ| ≤ 2‖m‖∞|Ω|.

(3.27)

Set

ε = 1
2

min
0≤β≤ν/maxΩm

(max
Ω

m− ‖θ‖∞).

By part (i) of Lemma 2.3.2 and the continuity of θ(x; β, ν) with respect to β, we have

ε > 0.

Let x0 be a point such that m(x0) = maxΩm. By part (i) of Lemma 2.3.2, x0 ∈

Ω−. Again by the continuity of θ(x; β, ν) with respect to β, we can choose δ > 0,

independent of β, such that for every β ∈ [0, ν/maxΩm],

m(x)− ‖θ‖∞ ≥ 1
2
(max

Ω
m− ‖θ‖∞) ≥ ε, if |x− x0| ≤ δ. (3.28)

Then ∫
Ω−

e(α/µ)(m−‖θ‖∞)(m− θ)

≥
∫
{x∈Ω:|x−x0|≤δ}

e(α/µ)(m−‖θ‖∞)(m− θ)

≥
∫
{x∈Ω:|x−x0|≤δ}

e(α/µ)ε · ε

= ε · e(α/µ)ε|{x ∈ Ω : |x− x0| ≤ δ}| → ∞

(3.29)

as α→∞. Therefore, ∫
Ω

e(α/µ)(m−‖θ‖∞)(m− θ) > 0 (3.30)
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provided that α ≥ Λ5, where Λ5 is some positive constant independent of α and β.

Hence, ∫
Ω

e(α/µ)m(m− θ) > 0 (3.31)

for α ≥ Λ5 and β/ν ≤ 1/maxΩm. �

The next two lemmas are the main results of this section.

Lemma 3.3.2. Suppose that m is a non-constant function and
∫

Ω
m > 0. If α ≥ Λ5

and 0 ≤ β ≤ ν/maxΩm, then (0, θ(x; β, ν)) is unstable.

Proof. We want to show that the principal eigenvalue, denoted by λ1, for the problem

∇ · [µ∇ϕ− αϕ∇m] + ϕ(m− θ) = −λϕ in Ω,

(µ∇ϕ− αϕ∇m) · n = 0 on ∂Ω

(3.32)

is negative. We choose the corresponding principal eigenfunction ϕ > 0 with maxΩ ϕ =

1 and set ψ = e−(α/µ)mϕ. Then ψ > 0 satisfies

µ∇ · [e(α/µ)m∇ψ] + e(α/µ)mψ(m− θ) = −λ1e
(α/µ)mψ in Ω,

∇ψ · n = 0 on ∂Ω.

(3.33)

We divide (3.33) by ψ and integrate over Ω to get

µ

∫
Ω

e(α/µ)m|∇ψ|2

ψ2
+

∫
Ω

e(α/µ)m(m− θ) = −λ1

∫
Ω

e(α/µ)m.

The first integral in the left hand side is clearly non-negative and the integral on the

right hand side is positive. By Lemma 3.3.1, the second integral in the left hand side

is positive for α ≥ Λ5 and 0 ≤ β/ν ≤ 1/maxΩm, thus we have λ1 < 0. �
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In strong contrast to Lemma 3.3.2 for the case when β/ν ≤ 1/maxΩm, we have the

following result.

Lemma 3.3.3. Suppose that (A1) holds. For any number η > 1/minΩm, there

exists some positive constant Λ6 = Λ6(µ, ν,m,Ω, η) such that for α ≥ Λ6 and β/ν ∈

[1/minΩm, η], (0, θ(x; β, ν)) is stable.

Proof. We argue by contradiction. If not, suppose that there exists some η >

1/minΩm, sequences {αi, βi}∞i=1 with αi → ∞ and βi/ν ∈ [1/minΩm, η] such that

the principal eigenvalue, denoted by λi, for

∇ · [µ∇ϕ− αiϕ∇m] + ϕ[m− θ(·; βi, ν)] = −λϕ in Ω,

(µ∇ϕ− αiϕ∇m) · n = 0 on ∂Ω

(3.34)

is non-positive for large i. We choose the corresponding principal eigenfunction ϕi > 0

and set ψi = e−(αi/µ)mϕi. Then ψi > 0 satisfies

µ∆ψi + αi∇ψi · ∇m+ ψi[m− θ(·; βi, ν)] = −λiψi in Ω,

∇ψi · n = 0 on ∂Ω.

(3.35)

Passing to a subsequence if necessary, we may assume that βi → β for some β/ν ≥

1/minΩm. By assumption (A1), M = {x0}. From part (ii) of Lemma 2.3.2 (with

α, µ being replaced by β, ν, respectively), we have −m(x0) + θ(x0; β, ν) > 0. Set

ε = 1
2
[−m(x0) + θ(x0; β, ν)] > 0.
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Let λi(ε) denote the principal eigenvalue of the eigenvalue problem

µ∆ψ + αi∇ψ · ∇m+ ψ[m− θ(·; β, ν) + ε] = −λψ in Ω,

∇ψ · n = 0 on ∂Ω.

(3.36)

Since θ(·; βi, ν) → θ(·; β, ν) in L∞, for sufficiently large i we have θ(·; βi, ν) ≥

θ(·; β, ν) − ε in Ω. By the comparison principle for principal eigenvalues we have

λi ≥ λi(ε) for large i. This together with assumption λi ≤ 0 imply that λi(ε) ≤ 0 for

large i. However, by Theorem 2.3.4 in Chapter 2 we have

lim
i→∞

λi(ε) = min
x∈M

[−m(x) + θ(x; β, ν)− ε] = −m(x0) + θ(x0; β, ν)− ε > 0,

where the last inequality follows from the definition of ε. This contradiction finishes

the proof. �

3.3.2 Stability of (0, θ(x; β, ν)) for (α, µ) ≈ (β, ν)

As with (θ(x;α, µ), 0) above, we consider the stability of (0, θ(x; β, ν)) for (α, µ) ≈

(β, ν).

Again if (µ, α) is very close to (µ0, α0), then ϕ = θ0 + εϕ1 + O(ε2). From (3.5), ϕ1

satisfies

∇ · [µ0∇ϕ1 + µ1∇θ0 − α0ϕ1∇m− α1θ0∇m] + (m− θ0)ϕ1 − v1θ0 = −λ1θ0,

[µ0∇ϕ1 + µ1∇θ0 − α0ϕ1∇m− α1θ0∇m] · n = 0.

(3.37)
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And if (ν, β) is also very close to (µ0, α0), then v = θ0 + εv1 + O(ε2), where v1 is

determined by

∇ · [µ0∇v1 + ν1∇θ0 − α0v1∇m− β1θ0∇m] + (m− θ0)v1 − θ0v1 = 0,

[µ0∇v1 + ν1∇θ0 − α0v1∇m− β1θ0∇m] · n = 0.

(3.38)

Lemma 3.3.1.

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 =

∫
Ω

∇(e−(α0/µ0)mθ0) · [(ν1 − µ1)∇θ0 + (α1 − β1)θ0∇m]. (3.39)

Proof. The proof is symmetrical to that of Lemma 3.2.2 above, and so is omitted.
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CHAPTER 4

POSITIVE STEADY STATES

After looking at the local stability of the semi-trivial steady states in the last chap-

ter, in this chapter we turn our attention to positive steady states, particularly the

existence or non-existence of positive steady states. This will help us in determining

whether we might have coexistence or competitive exclusion.

4.1 Coexistence and Concentration for Large α

Theorem 4.1.1. Suppose that
∫

Ω
m > 0 and the set of critical points of m has

measure zero. Then there exists a positive constant Λ7 = Λ7(µ, ν,m,Ω) such that if

α ≥ Λ7 and 0 ≤ β ≤ ν/maxΩm, then the system (1.4) has at least one stable positive

steady state.

Proof. From Lemmas 3.2.1 and 3.3.2, we have that the two semi-trivial equilibria are

unstable. This fact along with monotone system theory guarantees the existence of

at least one stable positive steady state [14, 11, 7]. �

Next we show that as α→∞, the population of u concentrates in isolated locations.

Let (U, V ) denote any positive steady state of (1.4). By the comparison principle, we
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have U(x) ≤ θ(x;α, µ). Hence it follows that ‖U‖L2(Ω) → 0 as α → ∞ by Lemma

3.2.2. But we will show that ‖U‖L∞(Ω) is uniformly bounded away from 0 for large α.

Lemma 4.1.1. Suppose
∫

Ω
m > 0 and m has an isolated global maximum. Then

there exists δ0 > 0 independent of α such that for sufficiently large α, λ1 ≤ −δ0.

Proof. By the variational characterization of principal eigenvalues,

λ1 = inf
ψ 6=0, ψ∈C1(Ω)

µ
∫

Ω
e(α/µ)m|∇ψ|2 −

∫
Ω
(m− θ)e(α/µ)mψ2∫

Ω
e(α/µ)mψ2

(4.1)

(Note: Here and in the remainder of this section, θ = θ(x; β, ν)).

Since m has an isolated global maximum at x0, by Lemma 2.3.2 we can choose R1 > 0

and δ > 0 such that m(x)− θ(x) ≥ δ for all x ∈ BR1(x0). Further we can choose R2

with R2 ≤ R1/2 such that

min
BR2

(x0)
m > max

BR1
(x0)\BR1/2(x0)

m. (4.2)

For simplicity, let M1 = maxBR1
(x0)\BR1/2(x0)m, M2 = minBR2

(x0)m, and BR(x0) = BR

for any R. Then we choose ψ ∈ C1(Ω) such that

ψ


= 1 in BR1/2 ∩ Ω,

∈ [0, 1] in (BR1\BR1/2) ∩ Ω,

= 0 otherwise.

(4.3)

with |∇ψ|L∞ ≤ C1. Then

µ

∫
Ω

e(α/µ)m|∇ψ|2 = µ

∫
(BR1

\BR1/2)∩Ω

e(α/µ)m|∇ψ|2

≤ C2

∫
(BR1

\BR1/2)∩Ω

e(α/µ)m

≤ C3e
(α/µ)M1 ,

(4.4)
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and ∫
Ω

e(α/µ)mψ2 ≥
∫
BR1/2∩Ω

e(α/µ)mψ2 ≥
∫
BR2

∩Ω

e(α/µ)mψ2 ≥ C5e
(α/µ)M2 . (4.5)

So

µ
∫

Ω
e(α/µ)m|∇ψ|2∫

Ω
e(α/µ)mψ2

≤ C3e
(α/µ)M1

C5e(α/µ)M2
=
C3

C5

e(α/µ)(M1−M2) → 0 (4.6)

as α→∞.

By our choice of R1,∫
Ω
(m− θ)e(α/µ)mψ2∫

Ω
e(α/µ)mψ2

=

∫
BR1

∩Ω
(m− θ)e(α/µ)mψ2∫

BR1
∩Ω
e(α/µ)mψ2

≥
δ
∫
BR1

∩Ω
e(α/µ)mψ2∫

BR1
∩Ω
e(α/µ)mψ2

= δ

(4.7)

Thus we have

λ1 ≤
C3

C5

e(α/µ)(M1−M2) − δ ≤ −δ
2

(4.8)

for sufficiently large α, which completes the proof. �

Lemma 4.1.2. Suppose that m has an isolated global maximum. For α � 1,

‖U‖L∞(Ω) ≥ δ0, where δ0 is given in Lemma 4.1.1.

Proof. By the comparison principle, for any positive steady state (U, V ) of (1.4), we

have V ≤ θ(x; β, ν) (= θ). Thus

∇ · [µ∇U − αU∇m] + U(m− θ − U) ≤ 0. (4.9)

Again by the comparison principle, U ≥ u∗ where u∗ satisfies

∇ · [µ∇u∗ − αu∗∇m] + u∗(m− θ − u∗) = 0 in Ω,

(µ∇u∗ − αu∗∇m) · n = 0 on ∂Ω.

(4.10)
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Next we show that ‖u∗‖L∞(Ω) ≥ δ0 > 0. Consider the principal eigenfunction ϕ > 0

with ‖ϕ‖L∞ = 1 of

∇ · [µ∇ϕ− αϕ∇m] + ϕ(m− θ) = −λϕ in Ω,

(µ∇ϕ− αϕ∇m) · n = 0 on ∂Ω.

(4.11)

By direct calculation, for any δ ∈ (0,−λ1],

∇ · [µ∇(δϕ)− α(δϕ)∇m] + (δϕ)(m− θ − δϕ)

= (δϕ)[−λ1 − δϕ] ≥ (δϕ)(−λ1 − δ) ≥ 0.

(4.12)

By the comparison principle, u∗ ≥ δϕ in Ω. Hence, choosing δ = −λ1, we have

U ≥ u∗ ≥ δϕ = −λ1ϕ, which implies that

max
Ω

U ≥ −λ1 max
Ω

ϕ = −λ1 ≥ δ0, (4.13)

where the last inequality follows from Lemma 4.1.1. This completes the proof. �

4.2 Non-existence of Positive Steady States for Large α

Next we look at some conditions under which we can state with certainty that no

positive steady states exist. For this section we will always assume that m > 0 in

Ω and that assumption (A1) holds. We will show that for β ≥ ν/minΩm and α

large enough, (1.4) has no positive steady states. We will argue by contradiction. Let

(Ui, Vi) denote any positive steady state of (1.4) for (α, β) = (αi, βi).
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Lemma 4.2.1. Suppose that αi →∞ and βi → β ∈ [0,∞). Then Vi → θ(x; β, ν) in

C1(Ω).

Proof. From Lemma 2.3.3, we see that for any p > 1, ‖Ui‖Lp → 0 as i → ∞. By

standard elliptic regularity [9], Vi → θ(x; β, ν) in W 2,p(Ω) weakly for any p > 1. By

the Sobolev embedding theorem [9], Vi → θ(x; β, ν) in C1. �

Lemma 4.2.2. Given any η > 1/minΩm, there exists a positive constant Λ8 =

Λ8(µ, ν,m,Ω, η) such that if α ≥ Λ8 and β/ν ∈ [1/minΩm, η], the system (1.4) has

no positive steady state.

Proof. We argue by contradiction. Suppose that there exist sequences {αi, βi}∞i=1

with αi →∞ and βi/ν ∈ [1/minΩm, η] such that system (1.4) with (α, β) = (αi, βi)

has a positive steady state, denoted as (Ui, Vi), for every i. Without loss of generality,

assume that µ = 1 and βi → β ∈ [ν/minΩm,∞). Set Wi = e−αimUi. Then Wi > 0

satisfies

∇ · [eαim∇Wi] + eαim(m− Ui − Vi)Wi = 0 in Ω,

∂nWi = 0 on ∂Ω.

(4.14)

Given any ε ∈ (0, 1), let λi(ε) be the principal eigenvalue of the eigenvalue problem

∇ · [eαim∇ϕ] + eαim[m− (1− ε)θ(x; β, ν)] = −λeαimϕ in Ω,

∂nϕ = 0 on ∂Ω.

(4.15)
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Denote the eigenfunction corresponding to λi(ε) by ϕi, which is uniquely determined

by ϕi > 0 in Ω and
∫

Ω
ϕ2
i dx = 1. Multiplying (4.14) by ϕi and (4.15) by Wi,

subtracting the first equation from the second, and integrating over Ω, we have∫
Ω

eαim[Ui + Vi − (1− ε)θ(x; β, ν)] dx = −λi(ε)
∫

Ω

eαimϕiWi. (4.16)

Now we fix ε ∈ (0, 1). Since Vi → θ(x; β, ν) uniformly in Ω (Lemma 4.2.1), there

exists i∗ such that for i ≥ i∗,

Vi − (1− ε)θ(x; β, ν) ≥ ε
2
θ(x; β, ν) > 0 in Ω.

Hence, for i ≥ i∗,

λi(ε) < 0. (4.17)

By assumption (A1), we see that M = {x0}. Hence, by Theorem 2.3.4 we have

lim
i→∞

λi(ε) = min
x∈M

[−m(x) + (1− ε)θ(x; β, ν)] = −m(x0) + (1− ε)θ(x0; β, ν).

This along with (4.17) implies that

m(x0) ≥ (1− ε)θ(x0; β, ν).

Letting ε→ 0+, we have

m(x0) ≥ θ(x0; β, ν).

However, this is a contradiction since by Lemma 2.3.2 we know that θ(x0; β, ν) >

m(x0) for β/ν ≥ 1/minΩm. �
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4.3 Non-existence of Positive Steady States for α ≈ β

Finally we show that under a certain condition, for α close to β, the system (1.4) has

no internal positive steady states. Thus if
∫

Ω
m > 0, the only equilibria are the two

semi-trivial steady states.

Theorem 4.3.1. The system (1.5) has no internal equilibria, provided that

(µ1 − ν1)

∫
Ω

∇(e−(α0/µ0)mθ) · ∇θ − (α1 − β1)

∫
Ω

θ∇(e−(α0/µ0)mθ) · ∇m 6= 0 (4.18)

Before proving the theorem, we want to establish a couple lemmas which we will use

in the proof.

Lemma 4.3.2. ∫
Ω

[µe(α/µ)m − νe(β/ν)m]∇(e−(α/µ)mu) · ∇(e−(β/ν)mv)

=

∫
Ω

[e−(β/ν)m − e−(α/µ)m]uv(m− u− v)

(4.19)

Proof. We rewrite the equations as

µ∇ · [e(α/µ)m∇(e−(α/µ)mu)] + u(m− u− v) = 0 in Ω,

ν∇ · [e(β/ν)m∇(e−(β/ν)mv)] + v(m− u− v) = 0 in Ω,

∇(e−(α/µ)mu) · n = ∇(e−(β/ν)mv) · n = 0 on ∂Ω.

(4.20)

We multiply the first equation in (4.20) by e−(β/ν)mv and integrate over Ω using the

divergence theorem and the boundary condition. From this we get
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µ

∫
Ω

e(α/µ)m∇(e−(α/µ)mu) · ∇(e−(β/ν)mv) =

∫
Ω

e−(β/ν)muv(m− u− v). (4.21)

Similarly, multiplying the second equation in (4.20) by e−(α/µ)mu and integrating over

Ω we have

ν

∫
Ω

e(β/ν)m∇(e−(α/µ)mu) · ∇(e−(β/ν)mv) =

∫
Ω

e−(α/µ)muv(m− u− v). (4.22)

Subtracting (4.22) from (4.21) gives us the desired result. �

Lemma 4.3.3. Using the parametrization

µ = µ0 + εµ1 +O(ε2),

ν = µ0 + εν1 +O(ε2),

α = α0 + εα1 +O(ε2),

β = α0 + εβ1 +O(ε2),

(4.23)

µe(α/µ)m − νe(β/ν)m = e(α0/µ0)mε(µ1 − ν1 +
α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

m) (4.24)

and

e−(β/ν)m − e−(α/µ)m = e(α0/µ0)m[ε(
α1µ0 − α0µ1

µ2
0

− β1µ0 − α0ν1

µ2
0

)m+O(ε2)] (4.25)
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Proof. We use the Taylor expansion around ε = 0, giving us

µe(α/µ)m = (µ0 + εµ1 +O(ε2)) exp[
α0 + εα1 +O(ε2)

µ0 + εµ1 +O(ε2)
m]

= (µ0 + εµ1 +O(ε2)) exp[(α0/µ0)m+ ε
α1µ0 − α0µ1

µ2
0

m+O(ε2)]

= e(α0/µ0)m(µ0 + εµ1 +O(ε2)) exp[ε
α1µ0 − α0µ1

µ2
0

m+O(ε2)]

= e(α0/µ0)m(µ0 + εµ1 +O(ε2))[1 + ε
α1µ0 − α0µ1

µ2
0

m+O(ε2)]

= e(α0/µ0)m[µ0 + εµ1 + ε
α1µ0 − α0µ1

µ0

m+O(ε2)]

(4.26)

Similarly,

νe(β/ν)m = e(α0/µ0)m[µ0 + εν1 + ε
β1µ0 − α0ν1

µ0

m+O(ε2)] (4.27)

Subtracting (4.27) from (4.26) gives us the first equation.

Again using the above parametrization and the Taylor expansion, we get

e−(α/µ)m = exp[−(α0/µ0)m− ε
α1µ0 − α0µ1

µ2
0

m+O(ε2)]

= e(α0/µ0)m(1− ε
α1µ0 − α0µ1

µ2
0

m+O(ε2))

(4.28)

and

e−(β/ν)m = e(α0/µ0)m(1− ε
β1µ0 − α0ν1

µ2
0

m+O(ε2)) (4.29)

Subtracting (4.28) from (4.29) gives us the second equation. �

Lemma 4.3.4. Let (U, V ) be any positive steady state of (1.5). Then for (α, β, µ, ν)

parameterized as above, (U, V ) → (sθ0, (1− s)θ0) as ε→ 0 for s ∈ [0, 1].
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Proof. Let (U, V ) be any positive equilibrium of (1.5). As ε → 0, then (U, V ) will

approach some limit (û, v̂), with û, v̂ ≥ 0, where (û, v̂) satisfy

∇ · [µ0∇û− α0û∇m] + û(m− û− v̂) = 0 in Ω,

∇ · [µ0∇v̂ − α0v̂∇m] + v̂(m− û− v̂) = 0 in Ω,

[µ0∇û− α0û∇m] · n = [µ0∇v̂ − α0v̂∇m] · n = 0 on ∂Ω.

(4.30)

Adding the equations we see that û+ v̂ satisfies

∇ · [µ0∇(û+ v̂)− α0(û+ v̂)∇m] + (û+ v̂)(m− (û+ v̂)) = 0 in Ω,

[µ0∇(û+ v̂)− α0(û+ v̂)∇m] · n = 0 on ∂Ω.

(4.31)

Thus either û + v̂ = θ0 or û + v̂ ≡ 0. We exclude the possibility û + v̂ ≡ 0. Set

w = e−(α/µ)mU . Then w satisfies

µ∇ · [e(α/µ)m∇w] + we(α/µ)m(m− U − V ) = 0

in Ω and ∂w/∂n = 0 on ∂Ω. Dividing the above equation by w and integrating in Ω,

similarly as before we find that∫
Ω

e(α/µ)m(m− U − V ) ≤ 0.

Since (U, V ) → (û, v̂) = (0, 0), passing to the limit in the above equation we have∫
Ω

e(α/µ)mm ≤ 0,

which is a contradiction.

Hence, û+ v̂ = θ0. Since both û, v̂ ≥ 0, this gives the desired result. �
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Lemma 4.3.5. If (U, V ) → (0, θ0) as ε→ 0, then U/‖U‖∞ → θ0/‖θ0‖∞.

Proof. We begin by dividing (1.5) by ‖U‖∞ to get

∇ · [µ∇ U

‖U‖∞
− α

U

‖U‖∞
∇m] +

U

‖U‖∞
(m− U − V ) = 0 in Ω,

[µ∇ U

‖U‖∞
− α

U

‖U‖∞
∇m] · n = 0 on ∂Ω.

(4.32)

As ε→ 0, then U/‖U‖∞ → z where z satisfies

∇ · [µ0∇z − α0z∇m] + z(m− θ0) = 0 in Ω,

[µ0∇z − α0z∇m] · n = 0 on ∂Ω.

(4.33)

So we get that z = kθ0 for some constant k > 0. Since ‖z‖∞ = 1, k = 1/‖θ0‖∞, i.e.

z = θ0/‖θ0‖∞. �

Lemma 4.3.6. If (U, V ) → (θ0, 0) as ε→ 0, then V/‖V ‖∞ → θ0/‖θ0‖∞.

Proof. The proof is similar to Lemma 4.3.5 above, and thus is omitted. �

We are now ready to prove the theorem.

Proof of Theorem 4.3.1. Assume there is an internal equilibrium (U, V ). As shown

in the preceding lemmas, there are three possibilities. As ε→ 0,

1. (U, V ) → (sθ0, (1− s)θ0) for s ∈ (0, 1),

2. (U, V ) → (0, θ0) and U/‖U‖∞ → θ0/‖θ0‖∞, or
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3. (U, V ) → (θ0, 0) and V/‖V ‖∞ → θ0/‖θ0‖∞.

We will address each of these three possibilities and see that they quickly merge.

First, suppose that (U, V ) → (sθ0, (1 − s)θ0) for s ∈ (0, 1) as ε → 0. Then we can

parameterize (U, V ) = (sθ0 +O(ε), (1− s)θ0 +O(ε)) where θ0 satisfies

µ0∇ · [e(α0/µ0)m∇(e−(α0/µ0)mθ0)] + θ0(m− θ0) = 0 in Ω,

∇(e−(α0/µ0)mθ0) · n = 0 on ∂Ω.

(4.34)

We use the results from Lemma 4.3.3 along with this parametrization and that of

(α, β, µ, ν) above, plug into (4.19), and combine the first-order terms in ε to get

∫
Ω

e(α0/µ0)m
[
µ1 − ν1 +

α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

m
]
|∇(e−(α0/µ0)mθ0)|2

=

∫
Ω

e−(α0/µ0)m
[α1µ0 − α0µ1

µ2
0

− β1µ0 − α0ν1

µ2
0

]
mθ2

0(m− θ0)

(4.35)

Now if (U, V ) → (0, θ0) as ε → 0, we parameterize (U/‖U‖∞, V ) = (θ0/‖θ0‖∞ +

O(ε), θ0 + O(ε)). Then we first divide (4.19) by ‖U‖∞ before using the results from

Lemma 4.3.3. Then plugging in this parametrization and that of (α, β, µ, ν) and

combining first-order terms in ε we get∫
Ω

e(α0/µ0)m
[
µ1 − ν1 +

α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

m
]
∇

(
e−(α0/µ0)m θ0

‖θ0‖∞

)
· ∇(e−(α0/µ0)mθ0)

=

∫
Ω

e−(α0/µ0)m
[α1µ0 − α0µ1

µ2
0

− β1µ0 − α0ν1

µ2
0

]
m

θ2
0

‖θ0‖∞
(m− θ0)

(4.36)

Multiplying by ‖θ0‖∞ gets us back to (4.35).
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Lastly, if (U, V ) → (θ0, 0) as ε → 0, then we parameterize (U, V/‖V ‖∞) = (θ0 +

O(ε), θ0/‖θ0‖∞ +O(ε)), divide (4.19) by ‖V ‖∞, and proceed as above.

Once we have (4.35), we multiply (4.34) by e−(α0/µ0)mθ0m, integrate over Ω, and use

the divergence theorem to get

∫
Ω

e−(α0/µ0)mθ2
0(m− θ0)m = −µ0

∫
Ω

e−(α0/µ0)mθ0m · ∇[e(α0/µ0)m∇(e−(α0/µ0)mθ0)]

= µ0

∫
Ω

e(α0/µ0)m∇(e−(α0/µ0)mθ0) · ∇(e−(α0/µ0)mθ0m)

= µ0

[ ∫
Ω

e(α0/µ0)mm|∇(e−(α0/µ0)mθ0)|2

+

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m
]

(4.37)

Using this result with (4.35), we now have

(µ1 − ν1)

∫
Ω

e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2

+
α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

∫
Ω

e(α0/µ0)mm|∇(e−(α0/µ0)mθ0)|2

=
α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

[ ∫
Ω

e(α0/µ0)mm|∇(e−(α0/µ0)mθ0)|2

+

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m
]

(4.38)

Thus

(µ1 − ν1)

∫
Ω

e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2

=
α1µ0 − α0µ1 − β1µ0 + α0ν1

µ0

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m

=
[
α1 − β1 +

α0(ν1 − µ1)

µ0

] ∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m

(4.39)
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Bringing the last integral over to the LHS we get

(µ1 − ν1)
[ ∫

Ω

e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2 +
α0

µ0

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m
]

= (α1 − β1)

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m
(4.40)

Finally, using the fact that

e(α0/µ0)m|∇(e−(α0/µ0)mθ0)|2 +
α0

µ0

θ0∇(e−(α0/µ0)mθ0) · ∇m

= ∇(e−(α0/µ0)mθ0) · [e(α0/µ0)m∇(e−(α0/µ0)mθ0) +
α0

µ0

θ0∇m]

= ∇(e−(α0/µ0)mθ0) · [e(α0/µ0)m(e−(α0/µ0)m∇θ0 + θ0e
−(α0/µ0)m

(
− α0

µ0

)
∇m)

+
α0

µ0

θ0∇m]

= ∇(e−(α0/µ0)mθ0) · ∇θ0,

(4.41)

we end up with

(µ1 − ν1)

∫
Ω

∇(e−(α0/µ0)mθ0) · ∇θ0 − (α1 − β1)

∫
Ω

θ0∇(e−(α0/µ0)mθ0) · ∇m = 0, (4.42)

a contradiction to the assumption (4.18). �
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CHAPTER 5

GLOBAL DYNAMICS

After considering the existence and local stability of positive equilibria, in this chapter

we turn our focus to the global dynamics of the system. Again we will look at two

different situations, when one species has a large advection rate and when the two

species have nearly identical dispersal strategies.

5.1 Global Dynamics for Large α

Theorem 5.1.1. Suppose that m > 0 in Ω and assumption (A1) holds. Given any

number η > 1/minΩm, there exists some positive constant Λ8 = Λ8(µ, ν,m,Ω, η)

such that if α ≥ Λ8 and β/ν ∈ [1/minΩm, η], (0, θ(x; β, ν)) is globally asymptotically

stable.

Proof. From Theorem 2.1.2, (1.4) is a strongly monotone system. From Lemma 3.2.1,

we know that (θ(x;α, µ), 0) is locally unstable and by Lemma 3.3.3, (0, θ(x; β, ν)) is

locally stable. Lemma 4.2.2 tells us that the system has no positive steady states.

Thus, by the monotone system theory [10, 12, 17], (0, θ(x; β, ν)) is globally asymp-

totically stable.

53



5.2 1-Dimensional Dynamics with (α, µ) ≈ (β, ν)

Here we consider the special case where the species have very similar dispersal strate-

gies ((α, µ) ≈ (β, ν)), the habitat is one-dimensional (Ω = [0, 1]), and the quality of

resources is strictly increasing along the habitat (i.e., mx > 0 on [0, 1]).

We first consider the case where µ = ν and α ≈ β. We perturb (α, β) slightly,

letting (α, β) = (α0 + εα1 +O(ε2), α0 + εβ1 +O(ε2)). So both species have the same

diffusion rate, both are a little smart, and species u is a little smarter than species

v (i.e., α1 > β1). We find different results when the advection is large and when the

advection is small.

Theorem 5.2.1. Suppose µ = ν and α1 > β1. Let Ω = [0, 1],m be twice continuously

differentiable on [0, 1], mx > 0 on [0, 1].

(i) If α0 < µ/maxΩm, then (θ(x;α, µ), 0) is globally asymptotically stable.

(ii) If m > 0 on [0, 1] and α0 > µ/minΩm, then (0, θ(x; β, ν)) is globally asymptoti-

cally stable.

Proof. (i) First we show that (θ(x;α, µ), 0) is locally stable. By Lemma 3.2.2, we

have that the principal eigenvalue λ1 of (3.1) is given by

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 = (β1 − α1)

∫
Ω

(e−(α0/µ0)mθ0)x · θ0mx (5.1)

From Lemma 2.4.2, with w = e−(α0/µ0)mθ0 and γ = α0/µ0, we see that (e−(α0/µ0)mθ0)x >

0. Since θ0 > 0 and mx > 0 by assumption, the principal eigenvalue λ1 of (3.1) is

positive. Thus by Lemma 3.1.1, (θ(x;α, µ), 0) is locally asymptotically stable.
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Similarly, from Lemmas 2.4.2 and 3.3.1, the principal eigenvalue of (3.2) is negative,

so (0, θ(x; β, ν)) is unstable.

Since there are no positive steady states by Theorem 4.3.1 (note that (4.18) is satis-

fied), from the monotone system theory we can conclude that (θ(x;α, µ), 0) is globally

asymptotically stable for all positive initial data.

(ii) With the same identifications as above, this time by Lemma 2.4.1 we have

(e−(α0/µ0)mθ0)x < 0. We still have θ0 > 0 and mx > 0, so the principal eigenvalue of

(3.1) is negative. Thus by Lemma 3.1.1, (θ(x;α, µ), 0) is unstable.

By Lemma 3.3.1, the principal eigenvalue of λ1 (3.2) is given by

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 = (α1 − β1)

∫
Ω

(e−(α0/µ0)mθ0)x · θ0mx (5.2)

So the principal eigenvalue of (3.2) is positive, thus by Lemma 3.1.2, (0, θ(x; β, ν)) is

locally asymptotically stable.

Again, Theorem 4.3.1 assures that we do not have any positive steady states, so by the

monotone system theory we can conclude that (0, θ(x; β, ν)) is globally asymptotically

stable. �

So for small advection rates relative to the rate of diffusion, we find that the smarter

species survives. But if the advection rate is too large, the smarter species loses.

Next we consider the case where α = β and µ ≈ ν. We parameterize (µ, ν) =

(µ0 + εµ1 +O(ε2), µ0 + εν1 +O(ε2)). Again we consider the two subcases with small

and large advection rates.

Theorem 5.2.2. Suppose α = β and µ1 < ν1. Let Ω = [0, 1], m be twice continu-

ously differentiable on [0, 1], mx > 0 on [0, 1].
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(i) If α < µ0/maxΩm, then (θ(x;α, µ), 0) is globally asymptotically stable.

(ii) If m > 0 on [0, 1] and α > max(µ0/minΩm,maxΩm/minΩmx), then (0, θ(x; β, ν))

is globally asymptotically stable.

Proof. (i) Since α1 = β1, from Lemma 3.2.2, we now have that the principal eigenvalue

λ1 of (3.1) is given by

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 = (µ1 − ν1)

∫
Ω

∇(e−(α0/µ0)mθ0) · ∇θ0 (5.3)

In Lemma 2.4.2, we again identify w = e−(α0/µ0)mθ0, so that θ0 = we(α0/µ0)m. So then

(θ0)x = e(α0/µ0)m(wx + (α0/µ0)mxw) > 0 since wx, w, and mx are all positive. Thus

λ1 > 0, so by Lemma 3.1.1 (θ(x;α, µ), 0) is locally asymptotically stable.

Likewise, from Lemma 3.3.1, the principal eigenvalue of (3.2) is negative, so (0, θ(x; β, ν))

is unstable.

And again by Theorem 4.3.1, since there are no positive steady states, monotone

system theory tells us that (θ(x;α, µ), 0) is globally asymptotically stable.

(ii) By Lemma 2.4.1 we have that (e−(α0/µ0)mθ0)x < 0. We want to show that (θ0)x >

0. We argue by contradiction. Let x∗ ∈ [0, 1] be the least such that (θ0)x(x
∗) ≤ 0.

Since (θ0)x(0) > 0 and (θ0)x(1) > 0, by the continuity of (θ0)x, x
∗ ∈ (0, 1) and

(θ0)x(x
∗) = 0. Integrating (3.9) over [0, x∗] we get

αθ0(x
∗)mx(x

∗) =

∫ x∗

0

θ0(m− θ0) ≤
∫ x∗

0

θ0m ≤ max
[0,1]

m ·
∫ x∗

0

θ0 (5.4)

Since θ0 is increasing on [0, x∗], we have

αθ0(x
∗) min

[0,1]
mx ≤ max

[0,1]
m · θ0(x

∗) (5.5)
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From this, since θ0(x
∗) > 0 and min[0,1]mx > 0, we get α ≤ max[0,1]m/min[0,1]mx,

contradicting our choice of α.

Thus (θ0)x > 0 on [0, 1], so the principle eigenvalue of (3.1) is negative, therefore

(θ(x;α, µ), 0) is unstable.

From Lemma 3.3.1, the principal eigenvalue λ1 of (3.2) is given by

−λ1

∫
Ω

e−(α0/µ0)mθ2
0 = (ν1 − µ1)

∫
Ω

∇(e−(α0/µ0)mθ0) · ∇θ0 (5.6)

So we see that the principal eigenvalue of (3.2) is positive, and thus by Lemma 3.1.2,

(0, θ(x; β, ν)) is locally asymptotically stable.

Theorem 4.3.1 shows that there are no positive steady states, so the monotone system

theory tells us that (θ(x;α, µ), 0) is globally asymptotically stable. �
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CHAPTER 6

DISCUSSIONS AND OPEN PROBLEMS

6.1 Discussion

In this paper we show some interesting results and insights into the best dispersal

strategy for a species. We see in the case where both species have similar dispersal

strategies, (α, µ) ≈ (β, ν), that the size of the advection rate relative to the diffusion

rate is important. When the rate of advection is small relative to the rate of diffusion

(α/µ < 1/maxΩm), we see that the results of Dockery et. al. [8] and Cantrell et. al.

[3] are extended. When advection rates are equal, evolution favors slower diffusion.

When diffusion rates are equal, evoultion favors stronger advection.

The situation is reversed however if the rate of advection is larger relative to the rate

of diffusion (α/µ > 1/minΩm > 0). Then faster diffusion is preferred when advection

rates are equal and weaker advection is preferred when diffusion rates are equal.

So we see that if α/µ is small enough, then an advantage is gained if advection

increases and diffusion decreases, that is if α/µ increases. While if α/µ is already large

enough, then the species fares better if advection decreases and diffusion increases,

that is if α/µ decreases.

The conclusion of Cantrell et. al. [3] that the faster diffuser can win if the advection
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rate is large enough (but not too large) can be strengthened. We have shown that

too large of an advection rate is a disadvantage to the species. So for small advection

rates, not only does an increase in advection allow for an increase in diffusion, but

if the advection rate increases enough, the diffusion rate must increase. If advection

becomes too strong relative to diffusion, then the species will be wiped out by its

competitor.

To put it in the biological context, searching for and following better environments

is a beneficial strategy for survival. But this must be balanced with an appropriate

amount of random movement to ensure that the species is exposed to new oppor-

tunities and does not become too focused on the immediate environment. While

individual members of a species may suffer by wandering into a less friendly environ-

ment, the gain and colonization of new habitat from such exploration is good for the

species as a whole.

Returning to the mathematics, we see that for β/ν < α/µ < 1/maxΩm, (θ(x;α, µ), 0)

is the global attractor. But for α/µ > β/ν > 1/minΩm > 0, (0, θ(x; β, ν)) is

the global attractor. So for 1/maxΩm < β/ν < α/µ < 1/minΩm, both semi-

trivial steady states must change stability at least once. This strongly suggests that

there is one strategy that is optimal, i.e. for fixed µ, there is an advection rate

α∗ ∈ [µ/maxΩm,µ/minΩm] such that for β/ν 6= α∗/µ, (θ(x;α∗, µ), 0) is globally

asymptotically stable. One thing that is uncertain is what if β/ν = α∗/µ but β 6= α∗?

Are all dispersal strategies with this ratio equal or is one better than the others?

This argument for an optimal rate is further strengthened by Identity 3.2.3 and

Lemma 3.2.2. For a given domain Ω and resource function m, if α and µ are such
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that stronger advection is preferred, then slower diffusion must also be preferred, i.e.

larger α/µ is favored. And if faster diffusion is preferred, weaker advection must also

be preferred, i.e. the preference is for smaller α/µ. However the converse is not true.

A large enough decrease in diffusion allows for weaker advection.

When the species have dissimilar dispersal strategies and α is large relative to µ, we

again see that advection must be balanced with diffusion. When one species reacts

strongly to the availability of resources and the quality of the environment with little

random movement, a less intelligent species that relies almost entirely on random

movement for dispersal can actually coexist. But as the second species gets smarter

(β increases), the second species can not only invade but even drive the first species

to extinction. But by the same token, if the second species gets too smart without

increasing diffusion, it will be driven to extinction. So a large increase in advection

must be accompanied by an increase in diffusion. As a species gets smarter, it must

increase its efforts to explore new areas to avoid becoming overconcentrated in a few

locations.

6.2 Open Problems

The results we obtained were for (α, µ) ≈ (β, ν) and for α large. Do the same results

hold if the diffusion or advection rates are not so close or not so far apart? Specifically

we ask the following questions:

1. If 0 ≤ β < α < µ/maxΩm, µ = ν, is (θ(·;α, µ), 0) globally asymptotically

stable?
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2. If α > β > µ/minΩm, µ = ν, andm > 0, is (0, θ(·; β, ν)) globally asymptotically

stable?

3. If 0 ≤ α/µ < 1/maxΩm, α = β, is (θ(·;α, µ), 0) globally asymptotically stable

for any ν > µ?

4. If α > max(µ/minΩm,maxΩm/minΩmx), α = β and ν > µ, is (0, θ(x; β, ν))

globally asymptotically stable?

5. Is there a unique r such that if α/µ = r and β/ν 6= r, then (θ(·;α, µ), 0) is

globally asymptotically stable?

In addition, we have the following conjectures which we proved for a one-

dimensional domain withmx > 0. Do these hold in general for higher-dimensional

domains and more general m?

6. Is
∫

Ω
∇(e−(α0/µ0)mθ0) · ∇θ0 < 0 for α� 1?

7. Is
∫

Ω
(∇(e−(α0/µ0)mθ0) · ∇m)θ0 < 0 for α� 1?
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