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ABSTRACT

In this dissertation, various known methods to decrease level of chattering caused by

unmodeled dynamics are reviewed. And an analysis to understand system behav-

ior in the presence of such unmodeled dynamics and to estimate the amplitude and

frequency of chattering using describing function is provided. It is shown that the

amplitude is proportional to relay gain of discontinuous control, and the frequency is

inversely proportional to the time constant of unmodeled dynamics. Two methods

are proposed to change switching magnitude of sliding mode control to reduce chat-

tering. Based on the original idea of Variable Structure System, first method is to use

adaptive relay gain which depends on system states. Second method varies switching

gain of sliding mode control along the equivalent control. System behaviors with

the two controller designs are analyzed, and it is demonstrated by simulations that

chattering can be significantly reduced. For systems controlled by on/off switches or

fixed switching gain only, chattering also appears if switching frequency is restricted

at a finite value. To suppress chattering in such case, a methodology based on the

harmonic cancellation is proposed. To fix switching frequency and to obtain de-

sired phase shift between any two consecutive phases, hysteresis loops with adaptive

width are implemented in switching elements. The design principle and procedure

of the methodology are suggested, and chattering reduction effect of the method is

demonstrated by various simulation results. It is also shown that the method using

multiple phases may decrease chattering caused by unmodeled dynamics as well with

the equivalent width of hysteresis which makes entire phases have the same frequency.
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CHAPTER 1

INTRODUCTION

Since the theory of Variable Structure Systems (VSS) had been orginated in the

former Soviet Union, the sliding mode control methodology has become the principal

operational mode for the control systems based on VSS [1]. Practically, all design

methods for VSS are based on deliberate introduction of sliding modes which have

played a remarkable role not only in theoretical developments but also in practical

applications [7][8].

The sliding mode control has long been known as a particularly suitable

method for handling nonlinear systems with uncertain dynamics and disturbances

due to its order reduction property and low sensitivity to disturbances and plant

parameter variations, which relaxes the burden of the necessity of exact modeling.

Moreover, the sliding mode control may reduce the complexity of feedback control

design through decoupling of system into independent subsystems of lower dimen-

sion. Because of these properties, diverse applications of the sliding mode control

methodology can be found in the areas of electric motors, manipulators, power sys-

tems, mobile robots, spacecraft, and automotive control [1]. The most prospective

implementation of the discontinuous control has been addressed in [9] by the use of

power electronic switching devices.
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The main idea of sliding mode control is to enforce the motion of the sliding

mode in predefined switching surfaces in the system state space using discontinuous

control. The discontinuity surfaces or the switching manifold should be selected such

that sliding motion would exhibit desired dynamics of motion in accordance with

certain performance criterion. The methods of the conventional control theory, such as

eigenvalue placement or Linear-quadratic regulator (LQR) for linear systems, can be

applicable to choose proper switching surfaces. Then, the discontinuous control needs

to be chosen such that any states outside of the discontinuity surface are enforced to

reach the surface in finite time. Accordingly, sliding mode occurs along the surface,

and the system follows the desired system dynamics.

Let us consider the following affine system

ẋ = f(x, t) + B(x, t)u (x, f ∈ �n, B ∈ �n×m, u ∈ �m). (1.1)

Then, the control u is selected as a discontinuous function vector of the state as

follows.

ui(x) =

⎧⎪⎨
⎪⎩

u+
i (x, t) if σi(x) > 0

u−
i (x, t) if σi(x) < 0

(1.2)

where i = 1, . . . , m, and u+
i (x, t), u−

i (x, t), and σi(x) are continuous state functions.

Under a certain condition, sliding mode may be enforced in the intersections of m

switching surfaces σ1(x), σ2(x), · · · , σm(x) = 0, and the condition is equivalent to the

stability condition of the motion in subspace S(x) = [σ1(x), σ2(x), . . . , σm(x)]T

Ṡ(x) = Gf(x) + GB(x)u (1.3)

where G = (∂σi/∂xj) (G ∈ �m×n). To consider the existence condition of sliding

2



mode, simply let GB = I where I is an n × n identity matrix. Then, for discontin-

uous control ui = −Msign(σi) with a positive constant M which exceeds the upper

estimates of elements in vector Gf , the values σi(x) and σ̇i have different signs so the

sliding mode occurs in each discontinuity surface.

Under assumption that the sliding mode exists at any point of the manifold

S(x) = 0, the control u may be replaced by ueq which is a solution to the equation

Ṡ(x) = 0. For the condition det(GB) �= 0, ueq can be written as

ueq = −(GB)−1Gf (1.4)

which is well-known as the equivalent control [7]. And the sliding mode equation in

the manifold S(x) = 0 becomes

ẋ = {I − B(GB)−1G}f (1.5)

where I is an identity matrix. After sliding mode occurs, motion equation is of reduced

order; the order of the motion equation is m less than the order of the original system.

Since S(x) = 0 in the sliding mode, m components of the state vector x may be found

as functions of the rest (n−m), which means the order of the system is reduced from

n to (n − m). Thus, enforcing sliding modes enables order reduction, and it leads to

decoupling and simplification of design procedure.

As mentioned earlier, the excellent robustness in the presence of parametric

uncertainty and disturbance is the most distinguishing feature of the sliding mode.

Adding a function h(x, t) to the system (1.1) gives

ẋ = f(x, t) + B(x, t)u + h(x, t) (h ∈ �n). (1.6)
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The vector h(x, t) represents all the factors whose influence on the control process

should be eliminated. If the matching condition [1]

h(x, t) = B(x, t)λ(x, t) (1.7)

is satisfied for some m-dimensional vector λ(x, t), i.e., the disturbances act in control

space, then there exists control uk such that Buk = −h and the system is invariant to

disturbance h. The physical meaning of (1.7) is that all parametric uncertainties and

disturbances should be contained in span{B(x, t)}, however the control uk is hard to

be implemented since the disturbances may be inaccessible for measurement. As the

sliding mode equation in any manifold does not depend on control, it can be shown

that the sliding mode does not depend on h(x, t) as well; therefore, the condition (1.7)

is the invariance condition for sliding mode control. And only the upper estimate of

h(x, t) is needed for designing a sliding mode controller.

In the implementation of sliding mode control theory in real systems, the

main obstacle is an undesirable phenomenon of oscillation with finite frequency and

amplitude, which is known as ‘chattering’. The chattering is harmful because it leads

to low control accuracy, high wear of moving mechanical parts, and high heat losses

in electrical power circuits. In case that there exist fast dynamics which are neglected

in the ideal model, the chattering may appear since an ideal sliding mode may not

occur. These ‘unmodeled’ dynamics are usually from servomechanisms, sensors and

data processors with small time constants. The analysis of chattering caused by

such unmodeled dynamics and solutions to avoid the chattering are discussed in

later chapters of this dissertation. In sliding mode, the control switches between

two different values, and the switching frequency should be considerably high enough

to make the sliding mode almost ideal. However, in some systems, it may not be
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possible due to certain limitations in switching device, which also results in chattering

like the one caused by unmodeled dynamics. For example, in sliding mode control of

power converter systems, a natural way to reduce chattering is increasing switching

frequency. However, it is not always possible due to the limitation of switching

frequency for losses in power converters. Actually this chattering problem cannot

blame sliding mode implementation since it is mainly caused by switching limitations.

The challenge in systems such as multi-phase converter lies in reducing chattering to

desired level under given switching frequency, and solutions to reduce chattering in

this case are also proposed in chapter 4. In digital control system, controllers having

finite sampling intervals are used, which causes so called ‘discretization chattering’.

For this class of systems, the concept ‘discrete-time sliding mode control’ has been

developed [5]. A well-known solution for this case is to use the equivalent control [1],

and the methodology is out of scope of this dissertation.

In the literature, various analysis of chattering in the presence of unmodeled

dynamics have been studied. The chattering in the sliding mode systems with the fast

actuator/sensor dynamics based on singularly perturbed approach has been analyzed

in [10]-[14]. In [10], [12], and [13], it is shown that the chattering exponentially

tends to zero if the relative degree of the system with actuators or sensors is two.

The chattering in the presence of fast actuator dynamics is analyzed via the Poincare

maps in [11], [14]. The author provides sufficient conditions for existence and stability

of periodic solutions and the correction terms for sliding mode equations. However,

the direct use of those maps is not always convenient because there are analytical

difficulties for higher order. Therefore, approximation methods are commonly used

for chattering analysis. The frequency-domain approach offers a number of advantages

compared to state-space methods since the chattering phenomenon having a periodic

motion may easily be handled by the frequency-domain methods. One of the first
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attempts to analyze the phenomenon of oscillation, which later received the name

chattering, was in [15]. The describing function method was applied to the analysis of

chattering in [16], [17]. Later there were a few attempts to overcome the approximate

nature of the describing function method. The Tsypkin’s method [18] provides the

required functionality and may be conveniently used for this purpose especially when

the nonlinearity is a relay. An example of application of this method to analyze the

chattering caused by the hysteresis of the relay can be found in [19]. An exact method

called the Locus of a Perturbed Relay System (LPRS), which can be used for complex

analysis comprising the chattering analysis and analysis of input-output properties of

sliding-mode control systems, was proposed in [20]. This method was also extended

to the case of non-relay sliding mode control algorithms (relays with state dependent

output amplitudes, linear state feedback control with switched gains, etc.) in [21].

This research proposal deals with describing function approach, originating in [15]

and applied to variable structure systems with sliding modes [16].

It is known that several solutions have been developed to avoid chattering.

One of the solutions is to use a saturation function for the sliding mode controller,

which is named ‘the boundary layer solution’ [22]-[25]. The saturation function ap-

proximates the sign function term in a boundary layer of the sliding surface. Since

the methodology had been proposed, modifications using various types of satura-

tion function have been suggested in the literature. For example, a state-dependent

boundary layer design is proposed in [26]. Many other papers which modify the sat-

uration function approximation using adaptiveness or even fuzzy logic [27][28] can be

found in the literature. Basically, the boundary layer approach is to avoid chattering

by replacing the discontinuous switching action with a continuous function depend-

ing on width of boundary layer. Of course, the width should not be too small so

unmodeled dynamics are not excited. From the replacement, the system trajectories

6



are confined to a small vicinity of the sliding surface, not exactly to s(t) = 0 as in

ideal sliding mode [1]. This is because real sliding mode does not occur when the

switching action is replaced by a continuous approximation. The major problem of

the approach is that the system behavior may not be determined within the small

vicinity of the boundary layer, and it is not guaranteed that the trajectories in the

vicinity converge to zero. Thus, it can be said that the accuracy and robustness of

the sliding mode are partially sacrificed by the method.

To suppress chattering preserving the control discontinuities, another solution

using asymptotic observers has been proposed, which is called ‘observer-based’ solu-

tion [29][30]. The main idea of using an asymptotic observer to prevent chattering

is to generate an ideal sliding mode in the auxiliary loop including the observer. In

the observer loop, the sliding mode is generated from the control software; therefore,

any unmodeled dynamics which cause chattering can be excluded. As can be seen in

Figure (1.1), the controller uses estimated states instead of measured states directly

from the plant so the observer is free from any unmodeled dynamics from actuators

or sensors and the system behaves as if an equivalent control was applied [6].

Let us consider the following nonlinear system as an example.

ẋ1 = x2

ẋ2 = ax1 + bx2 + c sin x1 + du
(1.8)

And let us assume that there exist certain unmodeled dynamics which cause chatter-

ing. For the above system, an asymptotic observer may be designed as follows when

only the state x1 is measurable.

˙̂x1 = x̂2 − L1(x1 − x̂1)

˙̂x2 = ax̂1 + bx̂2 + c sin x̂1 + du(t) − L2(x1 − x̂1)
(1.9)

7



Figure 1.1: Sliding mode control with auxiliary observer loop. The discontinuous

control input u(t) does not excite the actuator dynamics, thus, ideal sliding mode

occurs in the observer loop.
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where L1 and L2 are constant values determined such that the error e = x1−x̂1 reduces

to zero. As can be seen in Figure (1.2), the system is free from chattering by using an

observer in auxiliary control loop, as illustrated in Figure (1.1), although ẋ becomes

continuous, ˙̂x in the observer is a discontinuous time function; therefore, a sliding

mode may be enforced. The first plot in Figure (1.2) shows the comparison between

the system output with and without observer. As can be clearly seen in the second plot

which is zoomed in from the first, the system can avoid chattering when an observer

is included as if there are no unmodeled dynamics (μ = 0). The third plot is also

from the first, and it shows that the system with an observer gives no oscillation even

in transient period. However, the observer-based chattering suppression obviously

requires additional effort in control design. Moreover, the plant parameters must be

known to make a proper observer. But, including an observer in the control system

may bring extra benefits such as identification of uncertainties and disturbances, in

addition to its value in estimating unavailable states [1].

There are other solutions suggested in the literature. In case that the unmod-

eled dynamics are not completely unknown, i.e. some parts of information about the

dynamics are available, so-called ‘regular form solution’ may be applicable based on

the block control principle [31][32] and the integrator backstepping method [33]. An-

other method is to obtain an accurate disturbance estimate while avoiding chattering

in the main control loop, which can be regarded as a special case of integral sliding

mode [7][34]. The main idea is to design a sliding mode controller combining a contin-

uous part and a discontinuous part, and the idea has been employed in the literature

[35]. The method using so-called ‘higher-order sliding mode (HOSM)’ has been known

to suppress chattering as well. The methodology generalizes the basic idea of sliding

mode acting on the higher-order time derivatives of the system deviation from the

constraint (σ = σ̇ = σ̈ = . . . = σ(r−1) = 0 for so-called rth-order sliding mode [38][39]

9



Figure 1.2: With an observer, the system can avoid chattering despite unmodeled

dynamics.
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where σ = 0 is a sliding surface) instead of influencing the first deviation derivative

ṡ like in conventional sliding modes [36][37]. The simulation result provided in [38]

shows successful chattering suppression. However, the methodology requires more

complicated process to design controller and more computational efforts to calculate

control input to the plant than standard sliding mode control.

To modify the original sliding mode control to fit into specific purposes of

various systems, there also have been various attempts to combine adaptiveness or

other control methods with sliding mode control. To design a sliding mode controller,

the bounds of unknown parameter uncertainties and disturbances should be known

so that the sliding mode occurs. The adaptive control is introduced into sliding

mode control because sometimes such bounds may not be easily found prior to design

sliding mode control. Some papers proposed so-called ‘adaptive sliding mode control

(ASMC)’ to estimate the bounds of the uncertainties [40]-[44]. The adaptiveness

may possibly estimate the bounds of uncertainties, but is not helpful for chattering

reduction. By assuming that the structure of unmodeled dynamics are known, one can

possibly identify the parameters of the unmodeled dynamics by using adaptiveness,

but the controller may become too complicated.

Researchers also integrated sliding mode control and fuzzy logic control tech-

niques to develop the ‘fuzzy-sliding mode control (FSMC)’. Because the fuzzy logic

control (FLC) rules are experience oriented and suitable membership function should

be selected by the trial and error procedure, the work of the FLC design is time-

consuming and the response of the controlled system would be hardly evaluated

apriori. So, the main purpose to introduce the sliding mode control to FLC was

to overcome such problems, however, it is found that the FSMC can also decrease

the chattering due to switching gain change [45]. But the methodology is much com-

plicated than the design of conventional sliding mode controller. The ASMC and
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the FSMC (in addition, the adaptive fuzzy sliding mode cotrol [46]) are being imple-

mented for various applications in the literature. There also have been other various

attempts to reduce chattering. Some researchers propose various method to improve

the ‘boundary layer’ method, e.g. using time-varying boundary layer thickness [26].

The drawback of varying the boundary layer is that the boundary width becomes too

large in some cases [47]. Some papers suggests that the switching gain of sliding mode

is designed to be time-varying function [48][49], but not state-dependent as provided

in later chapter of this dissertation.

The sliding mode control has been implemented to various power electronic

devices, and power converter system is an example of such applications. Tradition-

ally, controls using Pulse Width Modulation(PWM) were common for controlling

buck/boost DC-DC converter systems [53], but sliding mode has come to attention

as suitable substitute over the PWM strategy because of the benefits in sliding mode

control, as mentioned earlier in this chapter, e.g. the ability to achieve desired system

responses regardless of a certain level of parameter changes in spite of the fact that

the equivalent control of sliding mode is similar to the one obtained from PWM block.

In the literature, many papers can be found for related researches [54]-[59]. However,

an obstruction of sliding mode implementation in power converters is the fact that the

sliding mode yields to variable switching frequencies, which is unacceptable in many

applications. The most promising solution to this problem is to adopt a hysteresis

loop in switch replacing the signum nonlinearity in standard sliding mode control

to fix or further to control switching frequency [60][61], which is mentioned in later

chapter.

For applications using on/off switches as only admissible control modes, like

general power systems, it is often required to restrict the frequency of switching

due to certain reasons such as power losses. Such limitation in switching frequency

12



leads inevitably to chattering phenomenon or “ripple” in the output. Of course,

like any other type of controllers, sliding mode implementation cannot be free from

the problem of oscillations which consequently happen in the system output due to

the switching restriction. Obviously, neither any well-known chattering suppression

methods including the observer based solution and the linear approximation method

nor those methodologies based on relay gain adaptation proposed in later chapter of

this dissertation are not very helpful to the case since the control input to the system

should be either zero or one and can not take any intermediate value.

The attempt to attenuate chattering in such systems may adopt methods

of output voltage or current ripple amplitude reduction in power systems that are

controlled by on/off switching. Let us consider a multiphase power converter system

for example. The system uses on/off switchings in each phase, and the switching

frequency is usually restricted at some hundred kHz. The output of the system is

generally the sum of currents of all phases or the voltage across the load capacitance

and resistance as shown in Figure (1.3). The governing equation for the system can

be written as

L
di1
dt

+ i1Ra = Vsu1 − VL

L
di2
dt

+ i2Ra = Vsu2 − VL (1.10)

C
dVL

dt
+

VL

RL

= i1 + i2

where u1 and u2 are switching commands for each phase that can be either zero or one

(on/off). With parameters L = 50nH , Ra = 0.3mΩ, V s = 12V , RL = 50mΩ, and

C = 600μF , simulation is performed for system (1.11) with PWM controllers with

switching frequency of 250kHz. It can be observed in Figure (1.4), the amplitude level

of output oscillation (i1 + i2) is high when two switching commands, u1 and u2 are
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Figure 1.3: A two-phase DC to DC converter.
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Figure 1.4: Simulated responses from the two-phase DC to DC converter depicted in

(1.3) when u1 = u2.
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equal. Then it is obvious that currents in two phases are equal as well (i1 = i2), and

the sum of them will simply be 2i1. However, if the second switching u2 is phase-sifted

by half of its period from the first switching u1, the current i2 will also be shifted from

i1, which may reduce current ripple in the output. As can be seen in Figure (1.5),

the output ripple is totally eliminated by the phase-shift for selected parameters.

This methodology to cancel out the ripple in the system output is known as “ripple

cancellation” or “harmonic cancellation” method [64]-[66]. For some systems such

as voltage regulator module (VRM) to supply power for microprocessors, it may

be extremely important to maintain the amplitude of output oscillation at a certain

requirement. Of course, the amplitude of the ripple can be reduce if larger inductance

L is used. However, using larger inductance may slow down the system response,

so it is desired to have small inductance if possible. Thus, the ripple cancellation

enables the use of small inductance while it suppresses oscillations in the output

current or voltage, which may bring wider range of voltage deviation during the load

is varying. One of the attempts to apply this idea have been made such that phases

are interconnected so phase shift between phases could be controlled correspondingly,

which generally is based on using transformer with primary and secondary coils in

different phases. It has used to be related to the converter using PWM control

schematic with fixed frequency [67]. The other conventional approaches to suppress

ripple in systems with PWM are also based on multiphase channels providing desired

phase shifts using delay, filters, set of triangular inputs with selected delays [63]-[65].

For sliding mode implementation, a new methodology to suppress output rip-

ple will be proposed in chapter 4 of this dissertation. The approach stems from the

nature of multidimensional sliding mode control with hysteresis loop in switching

elements, and it lets the designer have desired phase shift between phases for any

frequencies. The method does not need any additional dynamic components such as
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Figure 1.5: Simulated responses from the two-phase DC to DC converter depicted in

(1.3) when u2 is shifted from u1 by T/2.
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transformers, filters, or time delays. A similar research on sliding mode control with

ripple cancelation has been done [62]; however, the method in the paper is to use

specially designed sliding surfaces, which is different from the method proposed in

this dissertation based on adaptive width of hysteresis and multidimensional sliding

mode.

This dissertation provides:

- analysis of chattering phenomenon using describing function method to esti-

mate amplitude and frequency of the oscillation in the presence of unmodeled

dynamics

- development of a new chattering reduction methodology based on state-dependent

switching gain and equivalent-control-dependent gain

- chattering frequency control using hysteresis loop and chattering suppression

method using phase shift for sliding mode control in systems under switching

frequency limitation.
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CHAPTER 2

CHATTERING ANALYSIS

This chapter analyzes the chattering phenomenon analytically using the describing

function method. Before the analysis is performed, the system behavior with discon-

tinuous control in the presence of unmodeled dynamics is studied. As mentioned in

previous chapter, these unmodeled dynamics are from sensors and/or actuators which

have small time constants, and they are often omitted in the principal modeling pro-

cess since they are significantly faster than the plant dynamics.

2.1 The chattering in the presence of Unmodeled Dynamics

Let us consider the following second-order system as an example.

ẋ1 = x2

ẋ2 = ax1 + bx2 + c sin x1 + du
(2.1)

where a and b are negative constants while c and d have positive constant values.

The system is known to be unstable for c > |a|. It is assumed that there exist fast

dynamics for the actuator, which is stable. They are not taken into account in the
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ideal model and governed by the equations

w1 = w

ẇ1 = w2

ẇ2 = − 1
μ2 w1 − 2

μ
w2 + 1

μ2 u.

(2.2)

The constant μ is regarded as a sufficiently small, positive constant. In the presence

of actuator unmodeled dynamics, the actual input to the system is w(t), not u(t)

directly from sliding mode controller as can be seen in Figure (2.1). The control

input and the sliding surface are chosen as

u = −Msign(σ)

σ = λx1 + x2

(2.3)

where λ and M are positive constants, and M must be sufficiently large to enforce

sliding mode in the ideal model (σ̇σ < 0). In real system, the sliding mode cannot be

expected to occur since ẋ becomes a continuous time function, thus, chattering will

be caused. In accordance with the singular perturbation theory [50][51], in systems

with continuous control, a fast component of the motion decays rapidly while a slow

component depends continuously on the small time constants [52]. In discontinuous

control systems the solution depends on the small parameters continuously as well,

but, unlike continuous systems, the switching in control excites the unmodeled dy-

namics, which leads to oscillations in the state at high frequency. Figure (2.2) shows

the chattering of the system depicted in Figure (2.1) Because of the second-order ac-

tuator dynamics, the actual input w(t) is different from the intended input u(t), thus

the output x(t) oscillates with an amplitude of μ-order, and the oscillation occurs in

the vicinity of the switching surface. Actually, the system shown in Figure (2.1) is
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Figure 2.1: An example system: sliding mode control for for system (2.1). There are

actuator dynamics which were not included in the ideal system. The high frequency

switching action excites these unmodeled dynamics, which causes chattering.

close to a high-gain system with relative degree of 3 since it consists of second-order

plant and actuator. Thus, by assuming that c = 0 and d = 1 for simplification,

dynamics of the plant (2.1) and the actuator (2.2) can be combined together to be

written as

ẍ = bẋ + ax + w

ẅ = − 2
μ
ẇ − 1

μ2 w + 1
μ2 u

σ = λx + ẋ

u = −Msign(σ).

(2.4)

It follows from (2.4), the third time derivative of σ may be found in the form

σ1 = λx + ẋ

σ2 = σ̇1

σ3 = σ̇2

σ̇3 = F (x, ẋ, w, ẇ, μ, λ) + 1
μ2

u, F (0, 0, 0, 0, μ, λ) = 0

u = −Msign(σ1).

(2.5)
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Figure 2.2: Chattering in system (2.1) in the presence of second-order unmodeled

dynamics.
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Since the coordinate transformation from z = [x, ẋ, w, ẇ]T to z∗ = [x, σ1, σ2, σ3]
T is

non-singular, the function F (x, ẋ, w, ẇ, μ, λ) will be zero also when x = σ1 = σ2 =

σ3 = 0. From (2.4), the actuator dynamics can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 = w

μẇ1 = w2

μẇ2 = −w1 − 2μw2 + u.

(2.6)

By considering a Lyapunov function candidate V = 1
2
σ2 for the system (2.5), let us

examine convergence of the system trajectory outside a small vicinity ε of μ-order

around switching surface σ = 0 where ε(μ) defines the boundary of chattering. When

σ(t) is initially outside of ε, i.e., |σ(t0)| > ε, u is constant for a certain initial time

interval Δt = t1 − t0 where t1 is the time when the first switching happens. Then,

since the actuator dynamics are stable with a very small time constant, the output of

actuator w in (2.6) converges to its input u within Δt, which makes the time derivative

of the Lyapunov function V̇ = σ̇σ < 0. It means that the system trajectory converges

to ε-vicinity. Now, to find the system behavior inside ε, the following Lyapunov-like

function is selected.

V = σ1σ3 − 1

2
σ2

2 (2.7)

Note that the Lyapunov-like function candidate is sign-varying, and the time deriva-

tive of the function is

V̇ = σ1F (x, ẋ, w, ẇ, μ, λ) − 1

μ2
M |σ1|. (2.8)

The function V̇ is negative for the domain |F | < 1
μ2 M , which means that the behavior

of the system is unstable inside ε-vicinity around the sliding surface σ = 0.
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The analysis of system behavior is now extended to a general case. Let us

consider the following system as depicted in Figure (2.3) (a)

ẋ = Ax + Bw (x ∈ �n, w ∈ �m)

u = −Msign(σ), σ = Cx (C ∈ �m×n)
(2.9)

where w is the output from unmodeled dynamics of actuators as previously. Since

the given system is linear, it is possible to represent an equivalent system shown in

Figure (2.3) (b) as follows

ẋ = Ax + Bu (u ∈ �m)

u = −Msign(σ∗)
(2.10)

and σ = Cx is now the input to the unmodeled dynamics block while σ∗ is the output

from the block. If the gain M is selected properly, then sliding mode occurs in the

system without the unmodeled dynamics. Suppose that the unmodeled dynamics in

the system may be written as follows

μ2z̈ + μDż + z = Rσ (z ∈ �k, R ∈ �k×m D ∈ �k×k, k > m)

σ∗ = Qz, QR = I (Q ∈ �m×k)
(2.11)

with μ � 1. Then, (2.11) may be also represented in a state-space form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = z

μż1 = z2

μż2 = −μDz2 − z1 + Rσ.

(2.12)

Since σ is the output of plant dynamics with bounded input, its time derivative

dσ/dt = σ̇ is also bounded. Thus, the conventional singular perturbation theory is
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Figure 2.3: Block diagrams of systems with unmodeled dynamics. The two systems

(a) and (b) are equivalent when they are linear.
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again applicable to (2.12), which implies that after a finite time interval Δt (Δt → 0

with μ → 0), the variable z = z1 converges into a small vicinity of Rσ, i.e.

z1 = Rσ + ε1(μ, t) (2.13)

and

σ∗ = Qz1 = σ + ε2(μ, t) (2.14)

where ε1(μ, t) and ε2(μ, t) tend to zero as μ → 0. It implies that Msign(σ) =

Msign(σ∗) beyond the vicinity ε(μ) of σ = 0, and all the state trajectories are

converging into the vicinity.

Now, stability of the system inside the ε(μ)-vicinity is analyzed. Let us con-

sider the system (2.9) shown in Figure (2.3) (a). Similarly, as assumed in (2.11), the

unmodeled dynamics with μ � 1 become

μ2z̈ + μDż + z = Ru, w = Qz (u, w ∈ �m) (2.15)

where u is the input to the unmodeled dynamics, and w is the input to the plant. It

may be rewritten in a state-space form as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z1 = z

ż1 = z2

ż2 = − 1
μ2 z1 − 1

μ
Dz2 + 1

μ2 Ru.

(2.16)

The desired eigenvalues of ideal sliding mode can be placed, and CB = I [1]. Then,
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from (2.16), the third time derivative of σ1 = σ may be found as

σ̇1 = σ2 = CAx + w

σ̇2 = σ3 = CA2x + CABw + Qz2

σ̇3 = CA3x + CA2BQz1 + CABQz2 + Qż2

= H(x, z1, z2) + 1
μ2 {−Qz1 − μQDz2 − Msign(σ)} .

(2.17)

To show that the origin in the subspace (σT
1 , σT

2 , σT
3 ) is unstable, let us select a sign-

varying Lyapunov-like function as follows

V = σT
1 σ3 − 1

2
σT

2 σ2. (2.18)

The time derivative of (2.18) can be written as

V̇ = 1
μ2 σ

T
1 {μ2H(x, z1, z2) − Qz1 − μQDz2 − Msign(σ1)}

≤ 1
μ2 |σ1| {μ2|H(x, z1, z2)| + |Qz1| + μ|QDz2| − M} .

(2.19)

If it is assumed that sliding mode occurs on σ = 0, then the control u in (2.16) can be

substituted by ueq (solution to σ̇ = 0 with respect to u and |ueq| < M [1]). Therefore,

as follows from the singular perturbation theory again, z1 becomes

z1 = Rueq + ε3(μ, t) (2.20)

and

|Qz1| = |ueq + ε4(μ, t)| < M. (2.21)

From (2.19) and (2.21), V̇ < 0 for small μ while V is sign-varying, which means that

the point (σT
1 , σT

2 , σT
3 ) = 0 in 3m dimensional space is unstable. If, at initial time,
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V (0) is negative, then this trajectory leaves the small vicinity of μ-order around σ = 0

since V̇ < 0. It can be seen from (2.19) that V̇ = 0 when σ = 0, but those points are

isolated if (σT
1 , σT

2 , σT
3 ) �= 0. Thus, the assumption on existence of sliding mode is not

correct.

Considering the system behavior inside and outside the ε(μ)-vicinity, it is

concluded that all the state trajectories are converging into the vicinity of sliding

manifold σ(t) = 0, however, the origin of the subspace σ is unstable, and it confirms

that the chattering appears in the system with unmodeled dynamics. In the design

of the control, it is not possible to consider all the system dynamics including the

dynamics of sensors and actuators, i.e. the mathematical models may not perfectly

represent the real system usually. Therefore, there always exists the possibility for

control engineers to be irritated by the chattering when sliding mode controllers are

implemented.

2.2 Describing function method for chattering analysis

For analyzing the influence of mismatches in modeling resulting from neglecting the

small time constants of actuators and sensors, the describing function method can

be used to estimate the amplitude and frequency of the chattering. Intuitively, the

amplitude of the chattering can be related to the value of the constant M somehow

where the control input u is either u+ = M or u− = −M (M > 0) since larger control

action may cause bigger amplitude of chattering.
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Let us consider a system with a scalar control

ẋ = f(x) + lu, (x, l ∈ �n)

σ = σ(x)

u = −Msign(σ). (M > 0)

(2.22)

Then, the time derivative of σ can be written as

σ̇ = Gf + Glu, G =

{
∂σ

∂x

}T

. (2.23)

When chattering occurs at high frequency, the terms Gf and Gl in (2.23) may be

considered to be constant since the system states can be regarded as constant values

for a short time interval. Thus, the system in (2.22) becomes

ẋ = a + bu (x ∈ �n) (2.24)

where the vectors a and b are constant. The system (2.24) is now used to analyze

chattering qualitatively. For simplicity, the sliding surface is selected as a linear one

σ(x) = cx = 0 (2.25)

where c is a 1 × n row vector with constant elements. Then the control input u

becomes u = −Msign(cx).

Now, let us consider certain sensor dynamics disregarded in ideal model. These

unmodeled dynamics are assumed to be linear with small time constant μ, whose state

is characterized by an intermediate state vector z (z ∈ �m) and the state vector x is
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regarded as an input to the following subsystem

μż = Az + Bx. (2.26)

The time constant μ is a sufficiently small, positive value and A and B are m×m and

m × n matrices, respectively. The matrix A is assumed to be stable. Instead of the

system state vector x, sliding mode controller uses an alternative vector x∗ (x∗ ∈ �n)

which is a linear combination of the elements in the sensor state vector z as follows,

and the system configuration is illustrated in Figure (2.4).

x∗ = Hz (2.27)

where H is a constant n×m matrix which indicates measurement of the sensor. Since

the controller is using x∗, not the vector x directly from the plant, the sliding mode

surface (2.25) now becomes

σ∗ = cx∗ (2.28)

with a 1× n row vector c. With this alternative switching surface, the system (2.24)

changes to the following:

ẋ = a + bu∗, u∗ = −Msign(σ∗). (2.29)

The entire system including sensor dynamics is, again, depicted in Figure (2.4). In

static mode, when the left hand side of equation (2.26) is zero, i.e., ż = 0, the vector

x∗ should follow the state x without any distortion. Therefore, from (2.26) and (2.27),
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Figure 2.4: The system has fast dynamics (small value of μ) which are not included

in the ideal plant model.

relationship between x and x∗ becomes

x∗ = −HA−1Bx (2.30)

and the following equality can be found

−HA−1B = I. (2.31)

Note that A−1 exists since the unmodeled dynamics are assumed to be stable.

The describing function method is an approximation procedure for analyzing

oscillations in nonlinear systems, which may be useful to estimate the magnitude and

frequency of chattering. For applying the describing function method, the system

(2.26)-(2.29) should be represented in terms of transfer functions due to the nature

of the methodology

Σ∗(s) = cX∗(s) = cHZ(s)

= cH(μsI − A)−1

{
B

a

s2
+ B

b

s
U∗(s) + B

x(0)

s
+ μz(0)

}
(2.32)
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where Σ∗(s) = L {σ∗(t)} and U∗(s) = L {u∗(t)} while x(0) and z(0) are initial

conditions. In compliance with the describing function method, the inverse Laplace

transformation of (2.32) is assumed to be a harmonic function plus a constant as

illustrated in Figure (2.5)

σ∗ = α + β sin ωt (α < β) (2.33)

where α, β, and ω are constants. Then, the first two terms of the Fourier expansion

of the input function u∗ = −Msign(σ) can be found as follows

u∗ = u∗
0 + u∗

1 sin ωt

u∗
0 =

ω

2π

∫ 2π/ω

0

u∗(t)dt = −2

π
M sin−1 α

β

u∗
1 =

ω

π

∫ 2π/ω

0

u∗(t) sin ω tdt = −4M

π
cos(sin−1 α

β
)

= −4M

π

√
1 −

(
α

β

)2

. (2.34)

By substituting Σ∗(s) and U∗(s) under assumption of zero time constant μ for sim-

plicity, (2.32) becomes

Σ∗(s) =
α

s
+

βω

s2 + ω2
= −HA−1B

{
ca

s2
+

cb

s2
u∗

0 +
cb

s

(
ωu∗

1

s2 + ω2

)
+

x(0)

s

}
. (2.35)

Note that −HA−1B should be an identity matrix from (2.31). For equality, the term

1/s2 in the left hand side of the equation must be eliminated, thus the coefficient of

the term should be equal to zero. Therefore, the constant component of the function

u∗ is determined as

u∗
0 = −ca

cb
(2.36)
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Figure 2.5: The sliding surface σ∗ and corresponding control input u∗ when σ∗ is

assumed to be a sinusoidal function in compliance with the procedure of the describing

function method.

which is the well-known equivalent control [7] because it is nothing but the solution

to the following equation from (2.28) and (2.29) with respect to ueq when x = x∗

σ̇ = cẋ = ca + cbueq = 0. (2.37)

From (2.34) and (2.36), the coefficient for the first harmonic becomes

u∗
1 = −4M

π
cos
(ca

cb

π

2M

)
. (2.38)

From (2.36) and (2.38), the behavior of the system (2.29) can be written in the form

ẋ = a + bu∗ = a + b(u∗
0 + u∗

1 sin ωt) = a− b
ca

cb
− b

{
4M

π
cos
(ca

cb

π

2M

)}
sin ωt. (2.39)
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Therefore, it can be seen from the equation that the amplitude of chattering depends

on the value of M ; the larger M , the bigger the oscillation amplitude in the chattering,

and it confirms the simulation results in Figure (2.6). The methodology is to find the

effect of the switching gain M when μ is fixed, so it is assumed that μ is zero in the

middle of the process, thus, the result (2.39) does not depend on μ. However, the

amplitude must be related to the change of μ as well because it is intuitively expected

that larger time constant in unmodeled dynamics would lead to bigger amplitude of

oscillations with discontinuous control.

By neglecting 1/s2 term and initial conditions in (2.32), the phase of the first

harmonic in the input and the output can be found as follows

arg

{
cH(μjωI − A)−1B

b

s

}
= arg

{
Σ∗(jω)

U∗(jω)

}
= ±kπ (k = 1, 3, 5, . . .) (2.40)

since σ(t) and u(t) always have different signs. The equation (2.40) gives

−π

2
+ arg

{
cH(jω∗I − A)−1Bb

}
= ±kπ (k = 1, 3, 5, . . .) (2.41)

where ω∗ = μω. If it is assumed that the equation (2.41) always has a solution for

ω∗, the solution ω̃ can be written as

ω =
ω̃

μ
(2.42)

which makes (2.39)

ẋ = a − b
ca

cb
− b

{
4M

π
cos
(ca

cb

π

2M

)}
sin

ω̃

μ
t (2.43)

and it can be said that the frequency of chattering increases as the time constant
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μ decreases, and it has nothing to do with the switching gain M . It can be seen in

Figure (2.6), the frequency of chattering does not change as the gain M changes. And

the simulated result in Figure (2.7) verifies that the chattering frequency is inversely

proportional to μ as it shows that the frequency is doubled as μ is reduced to half.

In this chapter, using describing function method it is shown that the magni-

tude and the frequency of chattering depend on the switching gain of sliding mode

control and the time constant of unmodeled dynamics. Since higher amplitude of

the chattering is caused by larger magnitude of discontinuous control, a way of chat-

ter reduction is by reducing the magnitude but such that a sliding mode still exists.

Based on this idea, methodologies to reduce chattering using time-varying switching

gain are proposed in the following chapter.
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Figure 2.6: Simulation results for the system in Figure (2.4). The plots are the state

x1 versus time. With a fixed μ, it can be seen that the amplitude of chattering

depends on the value M (M1 < M2).
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Figure 2.7: Simulation results for the system in Figure (2.4). The switching gain M is

fixed and μ1 = μ2/2 The chattering in x1 with μ2 shows about twice higher frequency

than the one with μ1.
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CHAPTER 3

CHATTERING REDUCTION BASED ON

TIME-VARYING SWITCHING GAIN

3.1 State-dependent gain method

This chapter provides methodology to suppress chattering without designing an addi-

tional dynamic system such as asymptotic observers. In the previous chapter, it was

analytically studied that the magnitude of chattering is proportional to the switching

gain of sliding mode control. Thus the methodology for decreasing chattering issued

by unmodeled dynamics is to reduce the magnitude of the switching gain while the ex-

istence of sliding mode is preserved. The idea which uses time-varying switching gain

was actually originated from the principle design idea in variable structure systems

[7].

Let us consider stabilization for the following second-order system as an ex-

ample

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + u. (3.1)
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To stabilize the system a standard sliding mode controller may be designed as follows

σ = cx1 + x2

u1 = −M0sign(σ) (3.2)

where c is a positive constant. It is obvious that a constant gain M0 should be selected

such that sliding mode exists. The time derivative of the sliding variable σ is found

as

σ̇ = cẋ1 + ẋ2 = (a1 − ca2 − c2)x1 − M0sign(σ) (3.3)

with x2 = cx1 when σ = 0, and the domain of sliding becomes

|x1| <
M0

|a1 − ca2 − c2| . (3.4)

It can be seen that σ and dσ/dt have different signs for the domain (3.4).

In order to decrease chattering, the switching gain M0 is modified as follows.

For system stabilization, as the state x1 approaches to steady-state, the system does

not need much control action; therefore, the relay gain may be reduced as x1 tends

to zero, which can lead to lower level of chattering. A modified control is proposed

as

u2 = −M∗
0 (|x1| + δ)sign(σ). (3.5)

where c and M∗
0 are positive constant values and δ is a sufficiently small, positive

constant. Note that the gain M is not fixed value but proportional to the state x1.

Again, the constant gain M0 should be selected to enforce sliding mode to occur along
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the switching surface. It may be found analytically from (3.1) and (3.5) that

σ̇ = (a1 − a2c − c2)x1 − M0(|x1| + δ)sign(σ). (3.6)

Thus a sliding mode exists if the following condition holds

M0 ≥ |a1 − a2c − c2|. (3.7)

Now the following second-order actuator dynamics are introduced to the system (3.1)

w1 = w

ẇ1 = w2

ẇ2 = − 1

μ2
w1 − 2

μ
w2 +

1

μ2
u (3.8)

then, the control input u to the system (3.1) is substituted with w, the output from

the actuator. Now it can be said that the system schematic is not different from

the one depicted in Figure (2.3)(a). Both controls u1 and u2 may stabilize the given

system, but the difference is that u1 uses a fixed switching gain as a standard sliding

mode control while u2 has time-varying one. The term δ is a small constant added

to deal with disturbances and uncertainties; M0δ must be large enough to overcome

them. To handle disturbances, a modified method that eliminates the need of δ will be

discussed in later part of this section. Figure (3.1) provides simulation results of the

system (3.1) under unmodeled dynamics (3.8). It can be seen that the amplitude of

the discontinuous control input is significantly reduced by using the proposed control

u2 comparing to the conventional sliding mode control u1. It is obvious that the

switching gain decreases while x is decreasing, which leads to lower level of chattering.
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Figure 3.1: Chattering is reduced by using the control input u2(t) in (3.5).

Thus, in the presence of unmodeled dynamics, chattering arises, but the magnitude

of chattering is reduced by using the state-dependent gain M(x, t) as expected.

The proposed controller is tested for a time-varying system which is governed

by a nonlinear differential equation

ẍ − 10xẋ − 10x cosx = u. (3.9)

In this case, unmodeled dynamics are from sensors, not actuators like in the previous

example, and each of the two sensors to read x and ẋ have the same structures as

given in (3.8) with the time constant μ = 0.02. Two controllers are designed for

comparison, which are u1 = −5sign(σ) and u2 = −40|x|sign(σ) where σ = x + ẋ.

Simulation results from the system is shown in Figure (3.2). As can be seen, chattering

is nearly eliminated by using control u2. Next, the proposed controller is evaluated
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Figure 3.2: Chattering is reduced by the proposed control u2(t) for the system in the

presence of two unmodeled sensors.
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for a second-order system with two-dimensional vector control:

⎛
⎜⎝ ẋ1

ẋ2

⎞
⎟⎠ =

⎛
⎜⎝ −3 −1

−5 5

⎞
⎟⎠
⎛
⎜⎝ x1

x2

⎞
⎟⎠ +

⎛
⎜⎝ u1

u2

⎞
⎟⎠ (3.10)

and it is assumed that there exist unmodeled dynamics for two actuators associated

with control u = [u1 u2]
T having the same structure as given in (3.8) (μ = 0.03). Two

controllers are suggested to stabilize the system

σ = [σ1 σ2]
T = [x1 x2]

T

u1 = [u1
1 u1

2]
T

= [−M1sign(σ1) − M1sign(σ2)]
T

u2 = [u2
1 u2

2]
T

= [−M2|x1|sign(σ1) − M2|x2|sign(σ2)]
T

(3.11)

and it can be seen that u1 is designed as a standard sliding mode control whereas u2

adopts a state-dependent gain. It is obvious that σiσ̇i < 0 (i = 1, 2) for M1 ≥ sup{|−
3x1 − x2|, | − 5x1 + 5x2|} and M2 ≥ sup{|− 3x1 − x2|/|x1|, | − 5x1 + 5x2|/|x1|}, which

implies both x1 and x2 converges to zero in finite time interval if above inequalities

hold. Simulation result is depicted in Figure (3.3), and again, chattering is nearly

eliminated by the control u2. The proposed methodology is applicable to another

system written as

ẋ1 = x2

ẋ2 = sin(x1) + x2 + x3 + u1

ẋ3 = 2 sin(x2) + u2

(3.12)
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Figure 3.3: The amplitude of chattering is significantly decreased by the control

u2 = [−15|x1|sign(x1) − 15|x2|sign(x2)]
T compared with a standard sliding mode

control u1 = [−5sign(x1) − 5sign(x2)]
T .
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and the control u = [u1 u2]
T is chosen as follows

σ1 = x1 + x2

σ2 = x1 + x2 + x3

u1 = [u1
1 u1

2]
T = [−M11sign(σ1) − M12sign(σ2)]

T

u2 = [u2
1 u2

2]
T = [−M21|x1 + x2|sign(σ1) − M22|x3|sign(σ2)]

T

(3.13)

where Mij (i, j = 1, 2) are positive constant, and u1 is a standard sliding mode control

while u2 utilizes switching gain adaptation. For control u1, σ2 and σ̇2 have different

signs if M12 > |2x2+x3+sin(x1)+2 sin(x2)|+M11. Then the surface σ2 = 0 is reached

after a finite time interval which induces the state trajectories to follow the motion

x3 = −x1 − x2. Thus the second equation in (3.12) becomes ẋ2 = −x1 +sin(x1) + u1,

and σ1σ̇1 < 0 for M11 > | − x1 + sin(x1)|, which implies that the system trajectories

get to the intersection of two surfaces σ1 = 0 and σ2 = 0 after a finite time interval.

Finally, the system is stabilized since the first equation in (3.12) becomes ẋ1 = −x1.

It is obvious that the system behavior with control u2 may simply be analyzed in a

similar manner. Figure (3.4) provides simulation results for the system (3.12) with

the proposed controls, and it can be observed that chattering is considerably reduced

by using sliding mode control u2 with gain adaptation.

The chattering problem becomes more serious for the system under distur-

bances. Let us consider the following systems under a disturbance for an example

ẋ1 = x2

ẋ2 = f(x1, x2) + u(t) + h(t)
(3.14)

where the function h(t) represents a disturbance which is assumed to be bounded,
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Figure 3.4: The level of chattering is significantly decreased by the control u2 (M21 =

20, M22 = 30) compared with a standard sliding mode control u1 (M11 = 5, M12 =

10) in (3.13).
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and f(x1, x2) = 0 for x1 = x2 = 0. If there is no unmodeled dynamics, the control

u(t) = −Msign(σ)

σ = cx1 + x2 (c > 0)
(3.15)

stabilizes the system when the constant gain satisfies the condition M > | − c2x1 +

f(x1, x2) + h(t)| for an ideal sliding mode occurs, which make the state trajectory to

move along the surface ẋ1 = −cx1 in a finite time interval. It is noticed that the gain

M have larger value than the one under no disturbance since M must suppress the

additional term h(t) �= 0, and it apparently causes higher level of chattering in the

presence of unmodeled dynamics as analyzed in previous chapter. Moreover, if there

exists unmodeled dynamics of actuators, the switching gain should be selected even

larger because the actual magnitude of control input to the plant can be smaller than

originally designed value as can be seen in Figure (3.5), and it consequently leads to

even bigger amplitude of chattering. As proposed earlier in this section, control u(t)

may be modified using time-varying relay gain for chattering reduction:

u(t) = −M(|x1| + δ)sign(σ) (3.16)

where δ has a positive constant value. However, with the control (3.16), chattering

may not be diminished down to satisfactory level since the term Mδ always needs to

be larger than the upper bound of |h(t)|, and it still remains after x1 converges to

zero. From (3.15), the time derivative of σ becomes

σ̇ = −c2x1 + f(x1, x2) + h(t) + u(t). (3.17)

If δ = 0, it is found from (3.17) that σ and σ̇ have different signs if M > Mmin when
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Figure 3.5: The magnitude M∗ of the actual input w(t) to the plant is less than M

of control u(t) = −Msign(σ) because consecutive switching in the input to actuator

unmodeled dynamics may occur before the output of the actuator w(t) reaches steady-

state. See Figure (2.1) for the system block diagram.

Mmin = | − c2x1 + f + h|/|x1|. It means that Mmin → ∞ as |x1| → 0 for h �= 0; In

order to enforce sliding mode, M should be infinity, which may not be possible.

Therefore, it is suggested that the control (3.16) is remedied based on distur-

bance cancelation as follows

u(t) = −M |x1|sign(σ) − h̃(t) (3.18)

where h̃(t) is an estimation of the disturbance function h(t). By assuming that

h̃(t) ≈ h(t), σσ̇ < 0 for M > | − c2x1 + f |/|x1| from (3.17), and M is a finite value

(f → 0 as x1, x2 → 0). As a solution to the equation σ̇ = 0 the equivalent control of

u(t) is written as

ueq = c2x1 − f(x1, x2) − h(t) (3.19)
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Figure 3.6: The system block diagram with a modified version of state-dependent

gain method as suggested in (3.20).

and it can be seen that ueq → −h(t) as x1 converges to zero. So, the control u(t) in

(3.19) may become

u(t) = −M |x1|sign(σ) + ueq (3.20)

and ueq is the average value of discontinuous control u(t) that can be obtained by

using a first-order low-pass filter τ η̇ + η = u(t). The system schematic with control

(3.20) is illustrated in Figure (3.6). Figure (3.7) shows simulation results for the

following second-order nonlinear system under disturbance

ẍ + 20ẋ2 sin(2x) − 25ẋ sin(3x) = u + h (3.21)

with unmodeled actuator dynamics given in (3.8), and the control laws for the system

are

σ = cx + ẋ

u1 = −M1sign(σ)

u2 = −M2|x|sign(σ) + ueq.

(3.22)

The control u1 is a standard sliding mode control while u2 is designed by suggested

methodology of disturbance cancelation. For simulation, parameters are selected as
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Figure 3.7: Simulation results for the system (3.21) with control (3.22).

follows: M1 = 50, M2 = 50, μ = 0.03, c = 1, and h = 1. The equivalent control

ueq is acquired from a first-order low-pass filter having a time constant τ = 1.4. It

is observed that u2 based on disturbance cancelation enables nearly chattering-free

system.

The state-dependent gain method may be implemented for the other control

tasks. For tracking control of the system (3.1), the following controller may be offered

using the state-dependent gain method to substitute a conventional sliding mode
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controller

e = x1 − xd

σ = λe + ė, (λ > 0)

u = −{M0(|e| + δ) + |a1xd|} sign(σ) (3.23)

where the constant xd is the desired value of x, and δ is sufficiently small, positive

constant. M0 is a constant, which should be large enough to force a sliding mode

(M0 ≥ |a1 − a2λ − λ2|). In this case, the gain M depends on the error e. When the

control input is bounded as |u| ≤ umax, we may attach a limiter to modify the control

law as follows

u∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

umax if u ≥ umax

−{M0(|e| + δ) + |a1xd|} sign(σ) if − umax < u < umax

−umax if − u < −umax .

(3.24)

Figure (3.8) shows the system behavior using the control law (3.23)-(3.24) (u1 = u∗

and u2 = −umaxsign(σ) with the same sliding mode surface σ in (3.23)). Again, the

controller proposed in (3.23)-(3.24) engenders smaller magnitude of chattering than

standard sliding mode controllers. The methodology proposed in this section can

significantly reduce chattering with a simple modification to the conventional design

of sliding mode control.

Although the system was confined to examples of low orders, the analysis

and design methodology is applicable directly for arbitrary systems. The amplitude

and frequency of oscillations can be estimated by the describing function method in

chapter 2 which may be applied to a system of an arbitrary order.
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Figure 3.8: Control input u1(t) with variable gain generates less chattering compared

to u2(t) designed conventionally.
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3.2 Equivalent-control-dependent gain method

Actually, any method would be helpful for lessening of chattering if it can cut down

the switching gain M effectively. In the previous section, reducing the relay gain M

along the system states is suggested. In fact, the gain can be adjusted in other ways,

e.g., M may be a function of the equivalent control ueq. In other words, ueq which can

be found by using a low pass filter confines the magnitude of discontinuous control.

This methodology also looks promising since ueq decreases as sliding mode occurs

along the discontinuity surface σ = 0, in addition, ueq enables to evaluate and cancel

disturbances which may exist in the system.

For the simplest first order, arbitrary affine system with scalar control

ẋ = f(x, t) + bu (x, f, b ∈ �n) (3.25)

a control law is of form

σ = σ(x)

u = −(M0|η| + δ)sign(σ) (3.26)

where M0 and δ are positive constants, and η is the average value of sign(σ) (η =

{sign(σ)}eq). The system schematic with the proposed controller is illustrated in

Figure(3.9). By using a low-pass filter τ η̇ + η = sign(σ) (τ =const.), the average of

the discontinuous function sign(σ) can be found. Then the time derivative of σ yields

σ̇ = Gf + Gbu = 0. (3.27)

where G = [∂σ/∂x1 . . . ∂σ/∂xn], and it is assumed that Gb > 0.
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Figure 3.9: A Block diagram for the system with the equivalent-control-dependent

gain method.

Theorem. For the system ẋ = f(x) + bu where u = −(M0|η| + δ)sign(σ), sliding

mode exists for M0 ≥ |Gf(x)|/Gb.

Proof. From (3.27),

Gf

Gb(M0|η| + δ)
= {sign(σ)}eq = η (3.28)

or

M0|η|η + δη − g = 0 (g =
Gf

Gb
) (3.29)

where {sign(σ)}eq = ueq/(−M0|η| − δ), and ueq is a solution to σ̇ = 0. If |η| < 1,

sliding mode exists.

(i) If Gf > 0 (η > 0), then (3.29) becomes M0η
2 + δη − g = 0, and η =

−δ+
√

δ2+4M0g

2M0
.

Since M0 ≥ g, 0 < η < 1.

(ii) Similarly, if Gf < 0 (η < 0), then η =
δ−
√

δ2−4M0g

2M0
. Since M0 ≥ −g, −1 < η <

0.
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It means that |η| = |{sign(σ)}eq| < 1. Then, (3.27) can be written as

σ̇ = Gf − Gb(M0|η| + δ)sign(σ)

= Gb(M0|η| + δ)[{sign(σ)}eq − sign(σ)].
(3.30)

Since |{sign(σ)}eq| < |sign(σ)|, it is evident that the condition σ̇σ < 0 holds, and

sliding mode exists. As the average of sign(σ) decreases, the switching gain M(η) =

M0|η| + δ lowers.

The simulation results in Figure (3.10) show that the chattering may be suc-

cessfully decreased by using the suggested method of adjusting the gain M . The

simulation is performed for a system ẋ1 = x2, ẋ2 = 5x1 + 3x2 + u, and a switch-

ing variable is selected as σ = 3x1 + x2. Unmodeled dynamics having the structure

in (3.8) exist in the simulated system (μ = 0.003). The control u1 = −10sign(σ)

has a fixed switching gain, and u2 = −30|η|sign(σ) is as proposed in (3.26) where

η is obtained using a low-pass filter (τ = 1.2). The result with control u2 shows

almost zero chattering amplitude. Another set of simulation results to compare the

proposed controllers is shown in Figure (3.11). The plant dynamics are given as

ẍ + 20ẋ2 cos(2x) − 25ẋ sin(x) = u, and unmodeled actuator dynamics are the same

as (3.8) with μ = 0.01. The sliding variable is chosen as σ = ẋ + 2x. The first

and the second control are the same as u1 = u2 = −50sign(σ), but the second sys-

tem has an auxiliary observer loop while the first one does not. The third control is

u3 = −80|e|sign(σ) when the error e = x− xd when xd is desired output. The fourth

control is u4 = −300|η|sign(σ) , and η = {sign(σ)}eq is acquired by a first-order

filter. It can be observed in the simulation that the control u3 and u4 give similar

levels of lowered chattering as the one from the system with an asymptotic observer.
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Figure 3.10: Simulation results with the controller proposed in (3.26). The control

u1 is a standard sliding mode control (u1 = −10sign(σ)), and u2 is designed by

the proposed methodology using the equivalent control (u2 = −30|η|sign(σ)). The

chattering is significantly reduced with u2.
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Figure 3.11: Simulation results from four different sliding mode controllers. Three

types of controllers, u2, u3, and u4 show similar levels of chattering.
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The proposed controller is now applied to two-dimensional vector control case

as given in (3.12). The control u = [u1 u2]T is designed as follows

σ1 = x1 + x2

σ2 = x1 + x2 + x3

u1 = [u11 u12]
T = [−5sign(σ1) − 10sign(σ2)]

T

u2 = [u21 u22]
T = [−5|η1|sign(σ1) − 10|η2|sign(σ2)]

T

(3.31)

where η1 = {sign(σ1)}eq, and η2 = {sign(σ2)}eq. Again, there are two actuator

dynamics ignored in the system model, and each of them has the structure given in

(3.8) (μ = 0.04). The control u1 is a standard sliding mode control whereas u2 utilizes

equivalent-control-dependent gain. Simulation is performed for the system and the

results can be found in Figure (3.12). As can be noticed, nearly chattering-free system

is achieved by using u2.

Not like the state-dependent gain method in previous section, δ does not need

to deal with disturbances. Let us consider the following system

ẋ = f(x, t) + u(t) + h(t) (3.32)

where h(t) represents the disturbance. Then, with control (3.26) (σ = x), the time

derivative of sliding variable can be rewritten as

σ̇ = f(x, t) + h(t) − M0|η|sign(σ) = f ∗(x, t) − M0|η|sign(σ) (3.33)

with δ = 0, and f ∗ = f + h. Note that η is now η = {sign(σ)}eq = f ∗/(M0|η|) (f ∗ ≤
M0), and it can be found that η evaluates f ∗ which includes disturbance h. From

the same manner provided in the proof for the theorem above, |η| < 1 again, which
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Figure 3.12: Simulation results for vector valued control case with equivalent-control-

dependent gain method.
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implies that sliding mode still exists even if δ = 0 with any disturbances. However,

the problem here is that |η| may not be decreased desirably as system states are

stabilized since f ∗ does not converge to zero when h �= 0, and it may result in

a certain level of chattering. Therefore a similar modification as suggested in (3.22)

may be applied again. The sliding mode control for the system (3.32) with equivalent-

control-dependent gain in (3.26) is revised as

u(t) = −M0|η|sign(σ) + ueq (3.34)

where ueq is the average value of control input u(t) acquired by using a low-pass filter.

As discussed in previous section, ueq tends to −h(t) as x → 0; σ̇ in (3.33) becomes

σ̇ = f(x, t) + h(t) − M0|η|sign(σ) + ueq = f(x, t) − M0|η|sign(σ) (3.35)

and sliding mode is enforced along the switching surface σ = 0 for M0 > |f/η|. Then,

it is noted that the term η = {sign(σ)}eq does not evaluate the disturbance anymore.

It implies that |η| decreases as desired, thus the amplitude of discontinuous control

will be lessened accordingly, which leads to reduced chattering. A block diagram

of the system schematic for the equivalent-control-dependent switching gain with

disturbance cancelation is illustrated in Figure (3.13). Simulation is performed for

the system (3.21) with unmodeled actuator dynamics given in (3.8). The control laws

are constructed as

σ = cx + ẋ

u1 = −M1sign(σ)

u2 = −M2|η|sign(σ) + ueq

(3.36)

and u1 is a conventional sliding mode control while u2 is from the suggested method-
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Figure 3.13: The system block diagram with a modified version of equivalent-control-

dependent gain method as suggested in (3.34).

ology (M1 = 50, M2 = 30, μ = 0.03, c = 1, and h = 1). Again, ueq is obtained

by a first-order low=pass filter (τ = 1.4). It can be seen in Figure (3.14) that pro-

posed control u2 based on disturbance cancelation creates almost zero amplitude of

chattering for the system.

In this chapter, two sliding mode control strategies using state-dependent and

equivalent-control-dependent relay gains are provided. It is advantageous that those

two methods with switching gain adaptation result in significantly lowered chattering

while they require much less complicated design process than adding an observer

or other chattering suppression methods. However, it is not possible to apply the

methodology to systems which should be controlled by fixed switching gains or have

only “on/off” switching modes. For such systems, a chattering reduction method

based on phase shift will be discussed in later chapter of this dissertation.
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Figure 3.14: Simulation results for the system (3.21) with control (3.36).
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CHAPTER 4

MULTIPHASE SLIDING MODE CONTROL

FOR CHATTERING SUPPRESSION

As mentioned in the introduction chapter, chattering may appear in systems con-

trolled by on/off switching under a limitation of switching frequency, and power

converter is one of such systems. In order to achieve better accuracy, the switching

frequency needs to be increased; however, it may lead to higher power loss. Thus,

to restrict the frequency, hysteresis loop is introduced in switching element, which

causes chattering or ripple in current due to the lowered frequency. To minimize

such chattering, multiple number of phases have been commonly used with harmonic

cancellation methods.

In this chapter, analysis of the system with hysteresis in switching device is

performed. Then, chattering suppression method based on multidimensional sliding

mode with hysteresis loop will be considered.

4.1 Chattering frequency control using hysteresis loop

In systems controlled by on/off switchings, invariable switching frequency is often re-

quired. For sliding mode implementation, a hysteresis loop is introduced in switching

device to keep the frequency at a desired level.
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Let us consider the system

ẋ = f(x) + b(x)u (x ∈ �n) (4.1)

with a scalar control

u = −Msign(σ), σ = cx (4.2)

where M is positive constant and assumed to be large enough to enforce sliding mode

along the surface σ = 0. Then the time derivative of sliding variable σ gives

σ̇ = F (x) + d(x)u (4.3)

where

F (x) = {grad(σ)}Tf(x)

d(x) = {grad(σ)}Tb(x)
(4.4)

with grad(σ) = [∂σ/∂x1 . . . ∂σ/∂xn]T . It is found that σ and σ̇ have different signs if

d(x)M > |F (x)| (d(x) > 0). A hysteresis loop with a width of Δ in switching element

can be implemented as depicted in Figure (4.1) with hysteresis loop gain K = Δ/M .

The oscillation in the vicinity of sliding surface can be illustrated as in Figure (4.2). It

is assumed that Δ is small, and within two consecutive switchings x can be considered

as constant. For the segment of trajectory during the time period δt1, the slope of

the line is defined as dσ/dt = Δ/δt1; therefore, the period of oscillation is

T = δt1 + δt2 =
Δ

|σ̇+| +
Δ

|σ̇−| (4.5)
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Figure 4.1: Implementation of the switching element with hysteresis loop. The width

of hysteresis Δ = KM .

where σ̇+ is σ̇ when σ > 0, and σ̇− is otherwise. Then, from (4.3), it is found that

|σ̇+| = |F (x)−d(x)M | = d(x)M −F (x), and |σ̇−| = F (x)+d(x)M . Thus, the period

T can be rewritten as

T =
Δ

d(x)M − F (x)
+

Δ

d(x)M + F (x)
=

2d(x)MΔ

{d(x)M}2 − F (x)2
. (4.6)

For the desired value of frequency fdes = 1/Tdes where Tdes is desired period of

oscillation, the width of the hysteresis loop can be found as

Δ =
{d(x)M}2 − F (x)2

2d(x)M
Tdes = d(x)

M2 −
{

F (x)
d(x)

}2

2M

1

fdes

. (4.7)
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Figure 4.2: Oscillation in the vicinity of sliding surface.

Hence the gain K in the hysteresis loop shown in Figure (4.1) becomes

K =
Δ

M
=

{d(x)M}2 − F (x)2

2d(x)M2

1

fdes
= d(x)

M2 −
{

F (x)
d(x)

}2

2M2

1

fdes
(4.8)

and by using the adaptive gain K = K(x) switching frequency will be fixed at the

desired value. For hysteresis loop adaptation, the width of hysteresis Δ should be

calculated in order to maintain switching frequency at a desired level, which requires

the availability of the term F (x)
d(x)

. In case that the function b(x) is known, but f(x)

is unknown in the system equation (4.1), the term may be obtained by using a low-

pass filter because it is indeed equal to the equivalent control ueq. From (4.3), it is

seen that the solution to the equation σ̇ = 0 with respect to u is nothing but ueq =

F (x)/d(x), and it can be acquired by filtering out high frequency components from

a discontinuous control as mentioned in previous chapter [1]. Figure (4.3) illustrates

simulation results for a second-order system ẍ + ẋ + x = u (u = −Msign(ė + e), e =

x − xref , F (x) = −x and d(x) = 1) with a hysteresis loop. It can be seen that

an adaptive gain K(x) for the hysteresis loop as in (4.8) results in fixed switching

frequency at a desired level even when reference input changes.
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Figure 4.3: The switching gain M = 10 and the desired frequency fdes = 50Hz. (a)

The hysteresis loop has a fixed gain K (K = 0.0048). The switching frequency varies

as reference input changes. (b) The gain K depends on system states (K = K(x)) as

depicted in Figure (4.1). The switching frequency maintains at the desired level.
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4.2 Multidimensional sliding mode

Let us consider the following system that is similar to the one in the introduction

chapter.

ẋ = f(x, t) + B(x, t)u + h(x, t) (x, f, h ∈ �n, B ∈ �n×m, u ∈ �m) (4.9)

The control u is vector-valued, and the components of u undergo discontinuities

in m switching surfaces s1(x) = 0, s2(x) = 0, · · · , sm(x) = 0. The disturbance

function h(x, t) satisfies matching condition [1]: there exists a matrix Λ such that

h = BΛ. Under a certain condition, sliding mode may be enforced in manifold

s(x) = [s1(x) s2(x) · · · sm(x)]T = 0, and the condition is equivalent to the stability

condition of the motion in subspace s(x)

ṡ(x) = Gf(x) + GB(x)u (4.10)

where G = (∂si/∂xj) (G ∈ �m×n). After sliding mode occurs, motion equation is

of reduced order, and it does not depend on the disturbance vector h(x, t) which

satisfies the matching condition [1]. Due to these two properties: order reduction

and low sensitivity to variation of plant dynamics, sliding mode control is an efficient

tool to control high order, nonlinear dynamic plants operating under uncertainty

conditions.

As mentioned, to enforce sliding mode, stability in subspace s(x) should be

provided. The common approach to solve this problem implies proper selection of

the vector s(x) such that the matrix GB(x) in (4.10) is diagonal. Then, the problem

is reduced to the set of scalar ones: for each component of vector s(x), the condition

siṡi < 0 (i = 1, · · · , m) should hold [1]. If there exist unmodeled dynamics, chattering
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Figure 4.4: Sliding mode with two-dimensional control (initial conditions s1(0) =

1, s2(0) = 0).

may appear in each control channel, and oscillations of the chattering in each channel

are independent; however, if all of them are interconnected (the interconnection de-

pends on the matrix GB), the phases of oscillations are correlated as well. A simple

example for two-dimensional sliding surface is shown in (4.11) and Figure (4.4).

ṡ1 = −sign(s1) + 2sign(s2)

ṡ2 = −2sign(s1) − sign(s2)
(4.11)

As can be seen in Figure (4.4), switching in one control channel depends on the

previous switching instant of the other control channel. In the example, the trajectory

is converging to the origin s(x) = 0, which is the goal of control, while the switching

frequency increases. Note that sliding mode does not exist at each switching surface

taken separately. However, in real system, chattering may appear due to various

imperfections including unmodeled dynamics. The desire to have better accuracy of
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the system by increasing switching frequency leads to higher frequency of oscillation,

which can come into conflict with admissible level of losses in some systems such as

power converters.

In following sections, a design methodology to reduce chattering or ripple

in output of a system to the desired level under given switching frequency will be

developed. The method is based on the opportunity to control phase-shifts in different

control channels.

4.3 Design principle

In this section, a procedure for designing sliding mode controller to achieve desired

phase-shift between multiple phases of power converter system is discussed.

For system (4.9) with h(x) = 0, it is assumed that control should be designed

as a continuous function of state variables u0(x). This situation is common for so-

called “Cascade Control” used for electric motors with current as a control input.

To implement the desired control, power converter (PC) often utilizes PWM as a

principle operation mode. Sliding mode is one of the tools to implement this mode

as a substitute for PWM based on the feedback approach as shown in Figure (4.5),

which illustrates that the output u tracks the reference input u0(x) in sliding mode.

With a positive constant M , sliding mode variable s is written as

s = u0(x) − u, u̇ = v = Msign(s)

ṡ = g(x) − Msign(s), g(x) = [grad(u0)]
T (f + bu)

(4.12)

and it is evident that sliding mode with u ≡ u0(x) exists if M > |g(x)|. If the control

is implemented with a hysteresis loop, chattering with oscillation amplitude A = Δ
2

in sliding variable s is illustrated in Figure (4.6). Under the assumption that the
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Figure 4.5: Sliding mode control for a simple power converter model.

Figure 4.6: The oscillation in the vicinity of sliding surface.
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Figure 4.7: A k-phase converter with evenly distributed reference input.

switching frequency is high enough, the state x can be considered as constant within

the time interval [t0, t2] in macroscopic perspective, and the switching frequency is

found as f = 1
t1+t2

where t1 = Δ
M−g(x)

, t2 = Δ
M+g(x)

since slope of the trajectory line

is ds/dt = ṡ. So, Δ can be selected to maintain the switching frequency at desired

level; however, the magnitude of oscillation may be unacceptable.

Let us assume now that the desired control is implemented by k power con-

verters with si = u0

k
− ui, (i = 1, 2, · · ·k) and u0

k
as reference inputs as shown in

Figure (4.7). If each power converter operates properly, the output is equal to the

desired control u0(x). Amplitude and frequency in each converter can be found as

follows:

A =
Δ

2
, f =

M2 − { g(x)
k
}2

2MΔ
. (4.13)

The amplitude of chattering in u0 depends on the oscillation in each converter phase,

and in the worst case, it can be k times higher than that of each converter. For the

system in Figure (4.7), phases depend on initial conditions and cannot be controlled.

This manner of implementation will be further referred to multiphase power converter

or converter with k phases.
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Figure 4.8: A power converter model with two interconnected phases.

As demonstrated in the example of multidimensional sliding mode (4.11),

switching instants or phase shift between oscillations in different control channels

are not independent in case the channels are interconnected. Now it is shown that

the phase shift between oscillations in two different phases can be controlled by sliding

mode with hysteresis.

Let two power converters be implemented as shown in Figure (4.8), and the

switching function for the second converter is proposed as s∗2 = s2 − s1 where s1 =

u0/2 − u1, s2 = u0/2 − u2, v1 = Msign(s1), and v2 = Msign(s∗2). Then, time

derivatives of s1 and s∗2 become

ṡ1 = a − Msign(s1) (a = g(x)
k

)

ṡ∗2 = Msign(s1) − Msign(s∗2).
(4.14)

After sliding mode occurs along the manifold of two surfaces s1 = 0 and s∗2 = 0, each

of u1 and u2 equals to u0/2; therefore, the sum of u1 and u2, becomes u0, the desired

control. Now the system behavior on the plane s1 versus s∗2 is analyzed where widths

73



of hysteresis loops for the two sliding surfaces are Δ and αΔ respectively. First, the

case a = 0 and α = 1 is considered. As can be seen from Figure (4.9), phase shift

between v1 and v2 turns out to be equal to quarter of the period of oscillation T

because the time taken for the trajectory in Figure (4.9) (a) to travel between any

two consecutive points is T/4. From the fact that |ṡ1| = M for a = 0, the period is

found to be T = 2Δ
M

. It is evident that for any initial conditions different from point

0 (for instance 0’), the motion represented in Figure (4.9) will appear in time less

than T
2
. A similar analysis may be performed for the case a �= 0 (of course M > |a|)

and α �= 1. In Figure (4.10), s-plane is demonstrated for a > 0 and α > 1. Also, the

period of oscillations T can be easily found from the equation with respect to s1 as

follows:

T =
Δ

M − a
+

Δ

M + a
=

2MΔ

M2 − a2
. (4.15)

The time interval ta in Figure (4.10) (c) can be calculated from the slope of line

segment of s∗2 during that time. From equations (4.14), it can be written as

ds∗2
dt

= 2M =
αΔ

ta
. (4.16)

Therefore, the phase shift becomes

φ =
αΔ

2M
(4.17)

which is equal to the time interval ta for changing s∗2 from αΔ
2

to −αΔ
2

or vice versa.

From (4.15) and Figure (4.10), it can be seen that the period of oscillation in s∗2 is

equal to the period T in s1.
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Figure 4.9: (a) The system behavior in s-plane where α = 1. (b) The phase controls

v1 and v2. (c) s1 and s∗2 in time domain.
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Figure 4.10: (a) The system behavior in s-plane where α �= 1. (b) The phase controls

v1 and v2. (c) s1 and s∗2 in time domain.
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The switching illustrated in Figure (4.10) takes place if

αΔ

2M
<

Δ

M + |a| (4.18)

otherwise, for the trajectory starting from point 2 in Figure (4.10), v1 will switch

from M to −M before v2 switches from −M to M at point 3. Thus, to obtain desired

phase shift φ, the condition (4.18) should hold.

As follows from this example, a phase shift between oscillations of two phases

can be selected by proper choice of α for any switching frequency without using

dynamic elements, e.g., transformers and filters. The chattering exists in any phase

with the same frequency and amplitude. The oscillation amplitude in the output is

equal to the sum of outputs from individual phase channels and depends on the phase

shifts between phases. They can be controlled, and further the phases will be selected

such that the amplitude of chattering is minimized.

4.4 Selection of phase number

Suppose that a multiphase converter with m phases is to be designed such that the

period of chattering T is the same in each phase, and two subsequent phases have

phase shift T
m

. Since chattering is a periodic time function, it can be represented by

Fourier series with frequencies

ωk = ω · k, ω =
2π

T
(k = 1, 2, · · · ,∞). (4.19)

Since the phase difference between the first phase and i-th phase can be written as

φi = 2π
ωm

(i − 1), the effect of k-th harmonic in the output signal, which is sum of
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individual outputs from all of phases, can be calculated as follows

m−1∑
i=0

sin

[
ωk(t − 2π

ωm
i)

]
=

m−1∑
i=0

Im
[
ej(ωkt− 2πk

m
i)
]

= Im(ejωktZ), Z =
m−1∑
i=0

e−j 2πk
m

i.

(4.20)

To find Z, let us multiply it by e−j 2πk
m to have

Ze−j 2πk
m =

m−1∑
i=0

e−j 2πk
m

(i+1)

=
m∑

i′=1

e−j 2πk
m

i′ .

(4.21)

Thus, from (4.21), it can be written that

Ze−j 2πk
m = Z (4.22)

since the term for i′ = m is equal to that for i′ = 0. The function e−j 2πk
m is equal

to 1 only if k
m

is integer or k = m, 2m, · · · , which means that Z must be zero for

all other cases. This analysis shows that all harmonics except for lm (l = 1, 2, · · · )
are suppressed in the output signal. As a result, the amplitude of chattering can be

reduced to the desired level by increasing number of phases providing desired phase

shift between two subsequent phases from the methodology proposed in the previous

section.

Now it is shown that the selection of phase number depends on the range of

the function a. First, the value α, which is related to width of hysteresis, is calculated

to provide the desired phase shift. Since φm must be equal to period T , α can be
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found from (4.15) and (4.17) as

α =
4M2

m(M2 − a2)
(4.23)

where the function a is assumed to be bounded as |a| < amax < M . According to

(4.18) and (4.23) for a positive a, the following condition should hold to have proper

phase shifts.

4M2

m(M2 − a2)

Δ

2M
<

Δ

M + a

or

m >
2M

M − amax

. (4.24)

Similarly, it also can be shown that the same condition should hold for a negative a.

The above results may be summarized as the design procedure for the multi-

phase converter:

- Select the width of hysteresis loop as a state function such that the switching

frequency in the first phase is maintained at desired level.

- Determine number of phases for given range of function a(x) variation.

- Find the parameter α as a function of a(x) such that the phase shift between

two subsequent phases is equal to 1
m

of the oscillation period of the first phase.

Remark 1. As follows from (4.18) and (4.23), the condition for a should hold:

|a| < M

(
1 − 2

m

)
(m ≥ 2). (4.25)

If not, it can lead to the collapse of switching sequence, and also frequency of the

second phase may be changed. To preserve the switching sequence and frequency even
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in case |a| > amax (amax = M
(
1 − 2

m

)
), the condition (4.18) must be always fulfilled.

Therefore, the function α should be selected as in (4.23) for (4.25) and in compliance

with (4.18) otherwise, i.e.,

α =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4M2

m(M2 − a2)
if |a| < M

(
1 − 2

m

)

2M

M + |a| if amax < |a| < M.

(4.26)

4.5 Master-slave mode

In this section, another version of multiphase converter is proposed based on phase

shift control with sliding mode. As illustrated in Figure (4.11), the second phase

is under open-loop control which inherits switching command from the first phase

and provides necessary phase shift. The first phase (master) is connected to the

next phase (slave) through an additional first-order system as a shifter such that the

discontinuous input v2 to the slave has desired phase shift from v1 without changing

switching frequency.

To demonstrate the design idea, a two-phase converter system which is similar

to the one in previous section is considered. The equation of the first phase

ṡ1 = a − v1, v1 = Msign(s1) (4.27)

is complemented by the following equation of an additional first-order dynamic system

ṡ∗2 = K(v1 − v2), v2 = Msign(s∗2). (4.28)

The above equation is similar to (4.14), but s∗2 is acquired by integration of ṡ∗2 in this
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Figure 4.11: Two-phase power converter model in the master-slave mode with an

additional first-order system for s∗2.

case since sliding variable for the second phase s2 is undefined. The analysis of the

system behavior can be performed in the same manner as in previous sections. As

depicted in Figure (4.12), the two phases have the same width of hysteresis loop Δ.

Then, the slope of the line of s∗2 between switching instant 2 and 3 is found as

ṡ∗2 = 2KM =
Δ

ta
(4.29)

and the time interval ta is phase shift between v1 and v2, which can be written as

φ = ta =
Δ

2KM
(4.30)

while the phase shift from the earlier design principle can be found in (4.17). In

master-slave mode, a desired phase shift can be achieved by selecting proper value of

K. If the desired value of phase shift is T/m for m-phase converter where T is period
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Figure 4.12: The switching variables s1 and s∗2 in master-slave mode.
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of oscillation in each phase, from (4.15) and (4.30), the value of K becomes

K =
m(M2 − a2)

4M2
. (4.31)

Note that K = 1/α from (4.23).

For multiphase converter, the desired control of each phase can be obtained

similarly from the control of the previous phase; the input to k-th phase, vk, is a

phase-shifted signal from the input to the previous phase vk−1.

Remark 2. In the additional dynamic system (4.28), the width of hysteresis loop Δ̃

(Δ̃ = αΔ) and the amplitude of both discontinuous functions M̃ (M̃ = βM) may be

chosen arbitrarily (α, β = const.). Then, the phase shift becomes

φ̃ =
αΔ

2KβM
=

Δ

2K̃M
, (K̃ =

Kβ

α
) (4.32)

and K̃ should be selected properly from (4.31).

4.6 Simulation results for multiphase power converter model

The objective of simulation is to demonstrate to what extent chattering can be sup-

pressed in multiphase power converter with proposed phase shift control methodology

and to check the range of the function a for which the chattering suppression takes

place. In simulation, the “master-slave method” is accepted. The gain K is selected

as in (4.26) (K = 1/α) to maintain switching frequency at the desired level in all

phases even if a is beyond the admissible domain (4.25).

First, the basic simulation block Figure (4.13a) providing the desired phase

shift is demonstrated. As can be seen in Figure (4.13b), the phase shift is equal to

1/4 of the period.
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Figure 4.13: (a) Simulink block diagram for (4.14) with a = 0 (b) u2 is shifted from

u1 by T/4.
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For further simulation, the governing equations of multiphase power converter

are given as follows

İk =
1

L
(−IkRa + uk − VL) (k = 1, 2, · · · , m)

V̇L =
1

C

(
m∑

k=1

Ik − VL

RL

)
(4.33)

with m phases, and the system schematic is illustrated in Figure (1.3). The following

control law is used for a two-phase power converter (m = 2) represented in (4.33):

s1 = I1 − Iref

m
, Iref =

Vref

RL

u1 = Vs
1 − sign(s1)

2
, u2 = Vs

1 − sign(s∗2)
2

(4.34)

where Vref and Iref are reference voltage input and corresponding load current respec-

tively. The desired phase shift T/2 is obtained using two additional blocks providing

phase shift T/4 each of them.

ṡ1 =
1

L

[
−Ras1 − Vs

2
sign(s1) +

(
Vs

2
− IrefRa

m
− VL

)]

= −b1sign(s1) − b2s1 + a∗

ṡ∗2 = b1 [sign(s1) − sign(s∗2)]

ṡ∗3 = b1 [sign(s∗2) − sign(s∗3)]

(4.35)

where a∗ = Vs

2L
− IrefRa

mL
− VL

L
, b1 = Vs

2L
, b2 = Ra

L
, and a = a∗/b1. As it follows from

(4.25), the only admissible value of a is equal to zero for m = 2. As it is shown

in Figure (4.14), chattering is suppressed in the output current. Now, four-phase

converter (m = 4) is simulated with switching frequency control of the first phase

by appropriate choice of hysteresis width or hysteresis loop gain Kh as shown in

Figure (4.15). Simulation in Figure (4.16)-(4.18) is performed for several values of a
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Parameter Set I Set II
L (H) 1 5 × 10−8

C (F) 1 1 × 10−3

Ra (Ω) 1 3 × 10−4

RL (Ω) 1 1 × 10−2

Vs (V) 12 12

Table 4.1: Parameter values for simulation.
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Figure 4.14: Simulation result for two phases (4.33)-(4.35) (a = 0) with parameter

Set I in Table (4.1).
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Figure 4.15: Hysteresis loop gain Kh to maintain switching frequency at 50Hz

(Kh(Vref) = −0.0013V 2
ref + 0.0127Vref − 0.0007).

in admissible domain with the following control law:

u1 = Vs
1−sign(s1)

2
, uk = Vs

1−sign(s∗k)

2
, (k = 1, · · · , m)

ṡ1 = −b1sign(s1) − b2s1 + a∗

ṡ∗2 = Kb1[sign(s1) − sign(s∗2)]

ṡ∗k = Kb1[sign(s∗k−1) − sign(s∗k)]

(4.36)

and K is chosen from (4.31) with a = a∗/b1. Since a can be out of admissible range in

transient period, chattering appears at the beginning of the process. Note that in the

simulation, control (4.36) is used without the modified one (4.26). Again, chattering

suppression is observed, and the switching frequency is maintained at the same level.

Figure (4.19) shows simulation results from the control (4.36) with modification of

K. Since the system is in master-slave mode, K, instead of α, should be adjusted
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Figure 4.16: Simulation result for 4 phases with control (4.36) when Vref = 2.4V

(parameter Set I in Table (4.1), Kh = Kh(Vref), a = 0.5, and S i =

4∑
k=1

ik).

88



Figure 4.17: Simulation result for 4 phases with control (4.36) when Vref = 4.8V

(parameter Set I in Table (4.1), Kh = Kh(Vref), a = 0, and S i =

4∑
k=1

ik).
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Figure 4.18: Simulation result for 4 phases with control (4.36) when Vref = 7.2V

(parameter Set I in Table (4.1), Kh = Kh(Vref), a = −0.5, and S i =

4∑
k=1

ik).
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as proposed in (4.26); therefore, the value K in (4.36) may be selected as follows

(K = 1/α).

K =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m(M2 − a2)

4M2
if |a| < M

(
1 − 2

m

)

M + |a|
2M

if amax < |a| < M.

(4.37)

Comparing with the results in Figure (4.16), transient response is improved.

The design methodology is developed under the assumption that state vari-

ables are constant within one period of oscillation. Further simulation is performed

for time-varying reference input with control (4.26) and (4.36). Simulation result in

Figure (4.20) demonstrates that efficient chattering suppression for both transient

time interval and steady-state modes.

Next set of simulation result is related to 6-phase converter with control law

(4.36) (m = 6). In Figure (4.21)-(4.28), it can be seen that the admissible range

of reference input is wider for 6-phase converter comparing with that of 4-phase

(Vref,min is equal to 1.714V and 2.4V respectively). The chattering suppression effect

demonstrated for 4-phase converter with time-varying Vref can be observed for 6-

phase converter as well in Figure (4.24). For both cases, the modified control (4.26)

instead of (4.23) or (4.31) decreases chattering considerably in transient intervals.

For the real-life 4-phase DC to DC power converter with parameters from

Set II in Table, simulation is performed for different reference inputs. The power

converter is a voltage regulator for certain type of microprocessors, and it has very

small inductance value for rapid response, which makes the chattering issue more

significant. The effect of chattering suppression for reference inputs 3, 6, and 8V

is demonstrated in Figure (4.25)-(4.27), and it can be observed that the proposed

methodology successfully reduces output current ripple.
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Figure 4.19: Simulation result for 4 phases with control (4.36) with modification (4.37)

when Vref = 2.4V (parameter Set I in Table (4.1), Kh = Kh(Vref), and a = 0.5).
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Figure 4.20: Simulation result for 4 phases with time-varying Vref(t).
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Figure 4.21: Simulation result for 6 phases with control (4.36) when Vref = 1.714V

(parameter Set I in Table (4.1), a = 2/3, and S i =

6∑
k=1

ik). K is fixed as in (4.31).
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Figure 4.22: Simulation result for 6 phases with control (4.36) when Vref = 1.714V

(parameter Set I in Table (4.1), a = 2/3, and S i =
6∑

k=1

ik). Chattering level in

transient interval is reduced comparing with Fig. (4.21) since K is chosen from

(4.26).
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Figure 4.23: Simulation result for 6 phases with control (4.36) when Vref = 8.571V

(parameter Set I in Table (4.1), a = −2/3, and S i =

6∑
k=1

ik).
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Figure 4.24: Simulation result for 6 phases with time-varying Vref(t).
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Figure 4.25: Simulation result for 4 phases with control (4.36) when Vref = 3V

(parameter Set II in Table (4.1), S i =

4∑
k=1

ik).
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Figure 4.26: Simulation result for 4 phases with control (4.36) when Vref = 6V

(parameter Set II in Table (4.1), S i =

4∑
k=1

ik).
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Figure 4.27: Simulation result for 4 phases with control (4.36) when Vref = 8V

(parameter Set II in Table (4.1), S i =

4∑
k=1

ik).
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4.7 Chattering reduction under limitation of phase number

Let us assume that there are n phases available. As discussed in earlier section, it

is obvious that the effect of chattering suppression in multiphase power converter

system can be maximized if two conditions are satisfied:

- There are n phases having phase shift of T/n between two consecutive phases

so all the phases are evenly distributed through the period of oscillation.

- Each phase has equal duty cycle Dn = 1
n
× 100%, which implies that the sum

of duty cycles of individual channel is equal to 100%.

For system (4.33) with control (4.36) in master-slave mode, the conditions are fulfilled

simultaneously by using the methodology proposed in previous sections only if

|a| =

(
1 − 2

n

)
(n ≥ 2) (4.38)

where a = ( Vs

2L
− IrefRa

mL
− VL

L
)(2L

Vs
).

Let us consider the case that there are two phases in master-slave mode and

the duty cycle of each phase happens to be D = 0.33%. In order to maximize

chattering reduction, three phases are needed, but only two phases are available for

a certain limitation. As mentioned in previous section, a = 0 is only admissible value

for two phases to have the same period of oscillation. However, the system is out of

the admissible range from (4.25) for the duty cycle; therefore, the gain K in (4.36)

should be selected as

K =
1 + |a|

2
(4.39)

according to (4.37) (M = 1). Then, switching commands for the two phases occur

as can be seen in Figure (4.28). In this case, one can find that none of the two
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Figure 4.28: Switching commands v1 and v2 for two phases when duty cycle is 1/3

(K = 1+|a|
2

).
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conditions mentioned in the beginning of this section are satisfied; however, some

level of chattering reduction is still expected since at least amplitude of i1 + i2 will

not be greater than that of 2i1 or 2i2.

The magnitude of chattering is minimized by using 8-phase power converter

as depicted in Figure (4.29) since the two conditions are fulfilled. But, if only four

phases are available, level of ripple is comparably high even though the gain K is

selected as (4.39) as can be observed in (4.30).

To improve chattering suppression in case that there are not enough phases

available, the following method is proposed. Being different from (4.37) (M = 1), the

gain K for master-slave mode implementation is selected as

K =
n(1 − a2)

4
(4.40)

even if |a| > (1 − 2/n). Then the switching sequence shown in (4.10) is collapsed,

and the period of switching command is changed from the second switching as can be

seen in Figure (4.31). The main reason of this collapse is caused by the fact that the

second switching is delayed due to speed ds∗2/dt is not fast enough. This phenomenon

may be fixed by increasing the speed of s∗2 or decreasing the width of hysteresis for s∗2

such that switchings occur consequently as originally designed. In master-slave mode

for n number of phases, speed of slave channels can be adjusted as follows.

u1 = Vs
1−sign(s1)

2
, uk = Vs

1−sign(s∗k)

2
, (k = 1, · · · , n)

ṡ1 = −b1sign(s1) − b2s1 + a∗

ṡ∗2 = K∗b1[sign(s1) − sign(s∗2)]

ṡ∗k = K∗b1[sign(s∗k−1) − sign(s∗k)]

(4.41)
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Figure 4.29: Simulation results of 8-phase power converter. Vs = 12V, Vref =

1.5V , RL = 1mΩ, and other parameters are specified in Set II of Table (4.1).
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Figure 4.30: Simulation results of 4-phase power converter. Vs = 12V, Vref =

1.5V , RL = 1mΩ, and other parameters are specified in Set II of Table (4.1).
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Figure 4.31: Switching commands v1 and v2 for two phases when duty cycle is 1/3

(K = n(1−a2)
4

, n = 2).
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and K∗ = 3K. Then period of oscillations in s1 and s∗2 are the same as can be seen

in Figure (4.32), and the phase difference between corresponding switchings v1 and

v2,1 is found as

φ =
Δ

2K∗ =
Δ

6K
. (4.42)

From (4.40) and (4.15) for M = 1, the gain K becomes K = nΔ
2T

; therefore, (4.43)

can be rewritten as

φ =
T

3n
(4.43)

which means that it is possible to have phase shift of T/n if two more subsystems

are combined together as illustrated in Figure (4.32). As can be seen in Figure

(4.33), the phase shift between two channels becomes T/n with the help of additional

subsystems, and it is noted that the first condition mentioned in the beginning of

this section is satisfied. A simulation is performed for a 4-phase power converter with

the application of proposed methodology. Comparing to the results shown in Figure

(4.30), it is observed that the effect of chattering reduction is improved by suggested

method even though the ripple magnitude is higher than that of 8-phase converter

model in Figure (4.29).

4.8 Chattering reduction for systems with dynamic loads

In previous sections of this chapter, it is shown that the level of chattering can be

reduced by using multiple phases with phase shift method for power converter systems

with resistance as loads. In this section, chattering suppression in similar systems with

dynamic loads is discussed.

We may consider a DC motor operated by an external RLC circuit with on/off

switching as illustrated in Figure (4.35). One can easily find that the structure of
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Figure 4.32: A modified master-slave mode schematic with two more additional sys-

tems. v2,3 is switching command for the second channel.
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Figure 4.33: (a) Switching commands v1, v2,1, v2,2, and v2,3 for two phases when duty

cycle is 1/3 (K∗ = 3n(1−a2)
4

, n = 2). (b) With the help of two additional systems, v2,3

is phase-shifted from v1 by T/n.
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Figure 4.34: Simulation results of 4-phase power converter in modified structure as

shown in Figure (4.32). Vs = 12V, Vref = 1.5V , RL = 1mΩ, and other parameters

are specified in Set II of Table (4.1).
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Figure 4.35: A DC motor operated by an external circuit. (a) The external circuit

has single module. (b) The external circuit consists of m modules.
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external circuit is very similar to the one of DC-DC power converter depicted in

Figure (1.3), and the only difference is that the load resistance is now replaced by

DC motor system which is governed by following equations

La
di

dt
= −Rai − Keω

J
dω

dt
= Kti − Bω (4.44)

where

La = armature inductance

i = armature current

Ra = armature resistance

Ke = back EMF constant

J = total inertia

ω = shaft speed

Kt = torque constant

B = friction coefficient.

And the dynamics of external circuit module having m phases can be written as

L
diLj

dt
= −RiLj − Vc + Vsuj (j = 1, . . . , m)

C
dVc

dt
= iL − i (iL =

m∑
j=1

iLj) (4.45)

where

L = inductance in external circuit

R = resistance in external circuit

iLj = current through inductance in j-th phase

Vs = source voltage

112



uj = switching command for j-th phase

Vc = voltage across capacitance.

To control DC motor speed ω, so-called the cascade control principle is used. The

motor current is considered as and intermediate control and designed as a function

of motor speed mismatch. Then, control is designed to reduce the difference between

real and desired values of the current to zero in sliding mode. For the system of one

phase with PI controller, a control law may be designed as

e = ω∗ − ω

f(e) = c1e + c2

∫
edt

s = iL1 − f(e)
m

u1 = 1−sign(s)
2

(4.46)

where c1 and c2 are constant, and ω∗ is desired motor shaft speed. Note that iL = i

in steady state. The frequency of switching devices in the external circuit is limited,

which leads to chattering in DC motor current i and external circuit current iL. Other

modules in external operation circuit are connected to the first module in parallel as

shown in DC-DC power converter model provided earlier. Thus, assuming that all the

switching elements have hysteresis loops with the same width, the switching command

from u2 to um may be obtained from u1 in the manner of master-slave mode discussed

in previous sections in this chapter as follows

s1 = s

ṡk = K[sign(sk−1) − sign(sk)] (k = 2, . . . , m)

uk = 1−sign(sk)
2

(4.47)
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and a phase shift between two consecutive phases to bring the ripple cancellation is

achieved by finding proper value of K.

A simulation is performed to verify the design principle, and the parameters

used are La = 0.1 mH, Ra = 1.6 Ω, Ke = 0.0353 V·sec/rad, J = 0.0241 in·oz·sec2,

Kt = 5 in·oz/amp, B = 0.0134 in·oz·sec/rad, L = 0.1 μH, R = 0.01 Ω, and Vs = 20

V. As can be seen in Figure (4.36) (2 phases) and (4.37) (4 phases), amplitudes

of chattering in motor current and external circuit current are nearly eliminated by

applying proposed methodology with multiple phases.

The idea of chattering suppression for cascade control can be generalized easily

for the system in the regular form [1]:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2) + bu (x1 ∈ �n−1, x2, u ∈ �).
(4.48)

The fictitious control x2 = v(x1) is selected as a function of x1, and the real control

is designed to enforce sliding mode in the surface s = x2 − v(x1) = 0. Again, the

control u can be implemented using m phases similarly to what was designed for DC

motor.

4.9 The equivalent width of hysteresis method for systems

with unmodeled dynamics

Let us assume that there exist unmodeled dynamics in power converter system (4.33)

with control (4.36), and they are supposed to be dynamics of a sensor to measure cur-

rent in the first phase I1 disregarded in system model. Then, the switching command
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Figure 4.36: Simulation results for a DC motor operated by external modules (m = 2,

ω∗ = 240 rpm).
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Figure 4.37: Simulation results for a DC motor operated by external modules (m = 4,

ω∗ = 100 rpm).
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Figure 4.38: Chattering in load current due to unmodeled dynamics (single phase).

u1 in (4.34) becomes

s1 = Ĩ1 − Iref

m
, Iref =

Vref

RL

u1 = Vs
1 − sign(s1)

2

(4.49)

where Ĩ1 is a distorted measurement due to the unmodeled dynamics. The unmodeled

dynamics discussed in this section are supposed to have the structure provided in

(2.2). As analyzed in previous chapters, chattering occurs in load current as depicted

in Figure (4.38), and the switching frequency of u1 depends on the time constant

value of the unmodeled dynamics. Note that there is no frequency control using

hysteresis loop for the first phase. Assuming that the switching frequency can be
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measured experimentally or estimated as in [69] or found analytically as proposed in

chapter 2, a width of hysteresis in the second phase may be found such that the first

and the second phase have the same switching frequency, and let us call the width

of hysteresis in this case “the equivalent width of hysteresis”. If there are m phases

in the system, switching frequency of the first phase is determined by the parameter

of unmodeled dynamics, and switchings in all the other phases from the second to

the m-th will be in the same frequency if the equivalent width of hysteresis is applied

to switching elements for the phases. Then, the desired phase shift between two

consecutive phases is achieved by the methodology provided in the previous section.

Figure (4.39) illustrates simulation results of two-phase converter, and it is observed

that chattering in load current which is caused by unmodeled is nearly eliminated by

using multiple number of phases with the equivalent width of hysteresis. When the

duty cycle of switching command is different from 50%, number of phases needed to

suppress chattering may be found by the method suggested in the section for selection

of phase number.

Let us consider the DC motor system from the previous section. It is assumed

that there exist unmodeled sensor dynamics in reading external inductance current

as depicted in Figure (4.40) (c), then the sliding mode control in (4.46) becomes

s = ĩL1 − f(e)
m

u1 = Vssign(s)
(4.50)

where ĩL1 is a distorted measurement due to the unmodeled dynamics, and chattering

appears. Again, two phases are utilized to suppress chattering. The second phase has

the equivalent width of hysteresis, and phase shift is obtained by using master-slave

mode connection. As can be seen in Figure (4.41), chattering in motor shaft speed
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Figure 4.39: Chattering in load current due to unmodeled dynamics is suppressed by

using two phases.
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Figure 4.40: A DC motor operated by an external circuit. (a) The external circuit

has single module. (b) The external circuit consists of m modules (c) Unmodeled

dynamics in measurement of iL1.
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Figure 4.41: Simulation result of DC motor depicted in Figure (4.40).
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Figure 4.42: Simulation result shows ripple cancellation by 4 phases in DC motor

system.
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is nearly eliminated, and levels of current in motor and external circuit is greatly

reduced by using the proposed methodology. The ripple cancellation effect with 4

phases can be observed in Figure (4.42).

Finally, one more example of the systme unmodeled dynamics:

ẋ = a1x
2 sin x + a2y (Block 1)

ẏ = b1y + b2x + u (Block 2).
(4.51)

The system state y in the first equation can be regarded as a fictitious control to

obtain desired motion in x based on the cascade control principle. A sliding mode

control for the system is designed as follows.

s = y − y∗

u = −Msign(s)

y∗ = −a1

a2
x2 sin x − c

a2
x (a2 �= 0)

(4.52)

where M and c are positive constant. By selecting proper value of M , sliding mode

may be enforced to occur along the sliding surface s = 0, then y becomes y∗. Thus,

the motion of equation becomes ẋ = −cx, and x is stabilized. Now it is assumed

that there exist unmodeled sensor dynamics in measuring y, which implies that the

sliding surface changes to s = ỹ − y∗ = 0 where ỹ is the output from the unmodeled

dynamics as depicted in Figure (4.43) (a), and consequently chattering may appear in

the system state x as can be seen in Figure (4.44). Now, it is assumed that additional

subsystem modules may be attached to the original system to utilize multiple phases

as illustrated in Figure (4.43) (b). One can find that the structure is not different

from the master-slave mode connection in a power converter system. Then, with m
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Figure 4.43: (a) Block diagrams of system (4.51). (b) The system has additional

modules to suppress chattering. Note that the relay for u1 does not have hysteresis

while the others have hysteresis loops with the equivalent width.
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Figure 4.44: Simulation result of system (4.51) with control (4.52) in the presence of

unmodeled dynamics.
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modules for Block 2, the system equations (4.51) become

ẋ = a1x
2 sin x + a2

m∑
j=1

yj

ẏk = b1yk + b2x + uk (k = 1, . . . , m)

(4.53)

and controller is designed as

s1 = y − y∗
m

y∗ = −a1

a2
x2 sin x − c

a2
x (a2 �= 0)

ṡn = K{sign(sn−1) − sign(sn)} (n = 2, . . . , m)

un = −Msign(sn)

(4.54)

and the gain K can be found to have desired phases shift. Figure (4.45) shows that

chattering in system state x is almost eliminated by using 2 modules.

In this chapter, chattering reduction methods based on the idea of ripple can-

cellation is proposed, and simulation results for various systems confirm that the

level of chattering may be decreased by multiple phases having proper phase shift

with the help of adaptation in hysteresis loop. As it was discussed previously, the

design methodology can be used for the systems of an arbitrary order in the regular

form with scalar control. To apply the proposed methods to real systems, control can

be implemented in low-power parts using amplifiers.
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Figure 4.45: Simulation result of system (4.53) with control (4.54) in the presence of

unmodeled dynamics when there are two phases.
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CHAPTER 5

SUMMARY AND FUTURE WORK

The main obstacle in sliding mode implementation is chattering. One of the reasons

that cause the chattering is certain dynamics disregarded in ideal model which may

be excited by discontinuous control.

In this dissertation, the method based on the describing function approach

was developed for chattering analysis of the system in the presence of unmodeled

dynamics. Adopting the concept of the describing function method, it has been

shown that the amplitude of chattering is proportional to relay gain in sliding mode

control and also that the chattering frequency is inversely proportional to the time

constant of unmodeled dynamics.

From the fact that smaller relay gain leads to lower level of chattering, chat-

tering suppression methodology using adaptive relay gain was suggested. The idea

is motivated from the original concept of the Variable Structure System. For the

methodology, the switching gain of sliding mode control is designed such that it de-

pends on the system state or the equivalent control that can be obtained by using a

low-pass filter. The behavior of the system with the proposed controllers was ana-

lyzed, and simulation results were provided to show that chattering amplitudes were

considerably reduced. Unlike the other known solutions for chattering suppression

reviewed in the introduction of this dissertation, the method is strictly in the frame-
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work of the principle concept of sliding mode and does not invite any complexity in

controller design.

For systems controlled by on/off switching, chattering may exist if the switch-

ing frequency is restricted to be below a certain level. This situation is similar to

so-called ’discretization chattering’ problem that occurs due to finite sampling inter-

val; however, the known solution to the problem, the equivalent control, cannot be

applicable to the system with on/off switching. In power systems, which are gener-

ally operated by on/off switching, switching frequency is commonly limited to prevent

power losses, and chattering or ‘ripple’ appears especially in system current. Common

methods to decrease the ripple are based on ‘harmonic cancellation’ using multiple

numbers of phase channels having desired phase shift that brings cancellation in the

sum of outputs from individual channels. In this dissertation, a design principle of

sliding mode control for power converters and similar systems was proposed. The

methodology provided desired phase shifts between phases with the help of adaptive

width of hysteresis loop in switching elements. The method is originated from the

concept of multidimensional sliding mode and also based on the harmonic cancel-

lation, which is a contrast to conventional control strategy that requires additional

elements in the system to obtain phase shifts such as transformers or time delays.

The chattering suppression effect is demonstrated by simulation for systems in vari-

ous situations. For the system having unmodeled dynamics, it is also shown that the

chattering may be reduced applying the same methodology of multiphase with the

width of hysteresis that generates equivalent frequency of chattering in all phases.

In future work, a research is suggested to be performed to develop multidi-

mensional sliding mode for chattering suppression in the system having two or more

different types of unmodeled dynamics in control channels. For example, a system

with two dimensional vector control may have two different types of unmodeled ac-
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tuator dynamics. Then the chattering will be simultaneously affected by the two

different dynamics. This problem needs a special method because chattering con-

sists of periodic functions with different fundamental frequencies. The theory may be

developed to be applied for dynamic systems with vector control such as induction

motors, synchronous motors or generators.
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