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ABSTRACT 

A human listener has the ability to follow a speaker’s voice while others are 

speaking simultaneously. In particular, the listener can organize the time-frequency (T-F) 

energy of the same speaker into a single stream. This aspect of auditory perception is 

termed auditory scene analysis (ASA). ASA comprises two organization processes: 

segmentation and grouping. Segmentation decomposes the auditory scene into T-F 

segments. Grouping combines the segments from the same source into a single perceptual 

stream. Within the grouping process, simultaneous organization integrates segments that 

overlap in time, and sequential organization groups segments across time.  

Inspired by ASA research, computational auditory scene analysis (CASA) aims to 

organize sound based on ASA principles. CASA systems seek to segregate target speech 

from a complex auditory scene. However, almost all the existing systems focus on 

simultaneous organization. This dissertation presents a systematic effort on sequential 

organization. The goal is to organize T-F segments from the same speaker that are 

separated in time into a single stream. This study proposes to employ speaker 

characteristics for sequential organization.  

This study first explores bottom-up methods for sequential grouping. Subsequently, a 

speaker-model-based sequential organization framework is proposed and shown to yield 
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better grouping performance than feature-based methods. Specifically, a computational 

objective is derived for sequential grouping in the context of cochannel speaker 

recognition. Cochannel speech occurs when two utterances are transmitted in a single 

communication channel. This formulation leads to a grouping system that searches for 

the optimal grouping of separated speech segments. To reduce search space and 

computation time, a hypothesis pruning method is then proposed and it achieves 

performance close to that of exhaustive search. Systematic evaluations show that the 

proposed system improves not only grouping performance but also speech recognition 

accuracy. 

The model-based grouping system is then extended to handle multi-talker as well as 

non-speech intrusions using generic models. This generalization is shown to function 

well regardless of interference types and the number of interfering sources. The grouping 

system is further extended to deal with noisy inputs from unknown speakers. Specifically, 

it employs a speaker quantization method that extracts representative speakers from a 

large speaker space and performs sequential grouping using obtained generic models. The 

resulting grouping performance is only moderately lower than that with known speaker 

models. 

In addition to sequential grouping, this dissertation presents a systematic effort in 

robust speaker recognition. A novel usable speech extraction method is proposed that 

significantly improves recognition performance. Then, missing-data recognition is 
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combined with the use of CASA as a front-end processor. Substantial performance 

improvements are achieved in speaker recognition evaluations under various noisy 

conditions. Finally, a general solution is proposed for robust speaker recognition in the 

presence of additive noise. Novel speaker features are derived from auditory filtering and 

cepstral analysis, and are used in conjunction with an uncertainty decoder that accounts 

for mismatch introduced in front-end processing. Systematic evaluations show that the 

proposed system achieves significant performance improvement over the use of typical 

speaker features and a state-of-the-art robust front-end processor for noisy speech. 
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CHAPTER 1                                                                            

INTRODUCTION

1.1  Motivation 

One thing I do on my drive to school is to turn on the radio and tune to ‘Morning 

Zoo at WNCI’ FM 97.9. This is almost a daily routine for me to laugh a bit and wake up 

by listening to this humorous program. Dave and Jimmy, the hosts, usually tease with 

each other while a third host Kelsey and sometimes other invited hosts jump in from time 

to time to engage in arguments about topics from Washington to Hollywood. I never gave 

it a second thought until one day it occurred to me that this listening environment was 

fairly complex with active talkers and other sounds from the background. I realized that I 

had somehow associated some images with the hosts in my head based on their distinct 

voices. It is not hard for me to choose to listen to one of them even when there are two or 

three voices talking at the same time. I had long taken this listening ability for granted. 

Like the above experience, a daily auditory scene typically comprises multiple 

sounds from different sources. Usually there is a target source that one is listening to, 
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such as a radio host, a piece of music being played etc. Meanwhile, there are acoustic 

events from other sound sources that are of little interest to the listener, such as an 

unscrupulous couple talking to each other, a ventilation fan in an office, a projector in a 

meeting room, or cars on the street etc. In cochannel speech, for example, a combination 

of utterances from two speakers is transmitted over a single communication channel. 

Unlike conversations, talkers from different channels are usually not aware of each other 

under cochannel conditions. In the radio example above, cochannel speech exists when 

two hosts purposefully talk over each other’s voice. Consequently, speech from both 

channels has large overlap, which presents a considerable challenge to applications such 

as automatic speaker and speech recognition.  

On the other hand, for a cochannel signal that has comparable energies from both 

talkers, human listeners can readily select and follow one speaker’s voice (Brungart, 

2001). Even in worse scenarios such as a cocktail party, listeners can select and follow 

the voice of a particular talker as long as the signal-to-noise ratio (SNR) is not 

exceedingly low (Helmholtz, 1863; Cherry, 1953; Bregman, 1990). This phenomenon is 

termed as the ‘cocktail party problem’ (Cherry, 1953). The human ability to function well 

in everyday, complex acoustic environments is due to a perceptual process termed 

auditory scene analysis (ASA), which produces a subjective representation of different 

sources in an acoustic mixture (Bregman, 1990). In other words, listeners organize the 

auditory scene into streams that correspond to different sound sources in the input.  

According to Bregman (1990), organization in ASA takes place in two main 

processes: segmentation and grouping (Wang and Brown, 2006). Segmentation 
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decomposes the auditory scene into groups of contiguous time-frequency (T-F) units or 

segments, each of which primarily originates from a single sound source. A T-F unit 

denotes the signal at a particular time and frequency. Grouping involves combining the 

segments that are likely to arise from the same source together into a single stream. Thus, 

each of the formed streams gives a perceptual representation of a sound source in the 

input mixture. Grouping itself is composed of simultaneous and sequential organization. 

Simultaneous organization involves integration of segments that overlap in time, and 

sequential organization refers to grouping across time.  

A computational auditory scene analysis (CASA) system that segregates target 

speech from a complex auditory scene is desirable for many applications. For example, 

CASA is used to separate voice mixture so that a speaker’s speech is automatically 

transcribed in the presence of another speaker (Cooke and Lee, 2006). However, almost 

all the existing CASA systems (Divenyi, 2005; Wang and Brown, 2006) address only 

segmentation and simultaneous organization. On the other hand, sequential organization 

is crucial for building a complete CASA system. This dissertation focuses on the 

sequential organization aspect of CASA. In other words, our goal is to link together the 

segments from the same speaker that are separated in time. 

CASA studies (Weintraub, 1985; Brown and Cooke, 1994a; Wang and Brown, 1999; 

Hu, 2006; Wang and Brown, 2006) employ periodicity and temporal continuity for 

speech segregation. Nevertheless, these systems deal with only voiced speech and they do 

not lend themselves easily to handling real-world speech inputs. Binaural cues such as 

interaural time difference and interaural intensity difference have been applied for sound 
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segregation and speaker tracking (e.g. Roman et al. 2003; Stern et al. 2006). 

Additionally, microphone arrays have utilized spatial separation of sources to track a 

speaker (Ward et al., 2003). Nonetheless, the human auditory system can select and 

follow a speaker’s voice when sound sources originate from the same direction (Brungart 

et al., 2006). Here, we focus our sequential grouping study on monaural or single-

microphone conditions. 

Previous model-based systems utilize models from automatic speech recognition for 

speech organization (Ellis, 1996; Barker et al., 2005; Ellis, 2006). However, by listening 

to a cochannel mixture, one can follow the voice of either speaker even when they are 

speaking in a language unknown to the listener (Wang, 2006). Apparently, the auditory 

system does not require language-specific knowledge for sequential organization; rather 

it appears to rely on speaker characteristics contained in the speech signal for the 

grouping purpose.  

It is well known that human listeners use speaker characteristics such as excitation 

and vocal tract information to recognize a speaker’s voice (Schmidt-Nielsen and Crystal, 

1998; Furui, 2001) and such characteristics have been incorporated in models of 

automatic speaker recognition (Atal, 1972; Matsui and Furui, 1990; Naik, 1990; Furui, 

1994; Reynolds, 1995; Campbell, 1997; Furui, 2001; Reynolds et al., 2003; Bimbot et al., 

2004). In this dissertation, we propose to utilize speaker characteristics for sequential 

organization.  
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1.2 Objectives and Research Issues 

The objective of this dissertation is to design effective algorithms for sequential 

organization in CASA research. We intend to employ speaker modeling and classification 

methods for this purpose. As a byproduct, we also intend to improve speaker recognition 

under noisy conditions. Specifically, this dissertation will address the following research 

issues. 

 

• The Goal of Sequential Organization. As described earlier, in the ASA account, the 

goal of sequential organization is to link speech from the same speaker that is 

separated in time and put it into a single auditory stream. In order to translate this 

goal into a computational objective, we have to first answer the following question: 

What is the separated speech? From the CASA perspective, the separated speech 

refers to disjoint homogeneous segments, each of which is composed of contiguous 

T-F units that primarily originate from a single source. These segments are extracted 

from a speech input by segmentation and simultaneous grouping. Hence, they are 

termed as simultaneous streams. The goal of sequential organization in the context of 

CASA is to organize these streams into their corresponding source streams in 

computer memory. In other words, it amounts to finding the best assignment of 

simultaneous streams to source (speaker) streams.  

• Robust features for speaker recognition and sequential grouping. As described 

earlier, existing CASA systems (Weintraub, 1985; Brown and Cooke, 1994a; Wang 

and Brown, 1999; Hu, 2006) utilize periodicity and temporal continuity cues for 
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sequential grouping. However, periodicity cues such as pitch have difficulty in real-

world segregation tasks because such cues have reduced discriminative power with a 

large number of speakers. In addition, the temporal continuity cue is not able to 

group speech segments that are separated by silence. Thus, this cue is not applicable 

as well. As we propose to exploit speaker characteristics for grouping, features from 

speaker recognition (Atal, 1972; Matsui and Furui, 1990; Naik, 1990; Furui, 1994; 

Campbell, 1997; Furui, 2001; Bimbot et al., 2004) may be good candidates for 

speech organization. However, such features, when used directly, do not perform 

well under noisy conditions (Barger and Sridharan, 1997; Ortega-Garcia and 

Gonzalez-Rodriguez, 1997; Drygajlo and El-Maliki, 1998; Schmidt-Nielsen and 

Crystal, 1998; Sivakumaran and Ariyaeeinia, 2000; Lovekin et al., 2001; Yoshida et 

al., 2001; Shao and Wang, 2003; Shao and Wang, 2006b). Thus, it remains a 

challenge to find robust features for speaker recognition and sequential grouping. 

• Speaker modeling and scoring methods. CASA systems usually segregate speech 

based on the time-frequency decomposition of an input (Wang and Brown, 2006). 

Speaker features in the T-F domain are typically vectors composed of individual 

frequency components. Under noisy conditions, some of these components are 

corrupted while others are relatively intact due to different degrees of spectral 

overlap between speech and noise. Conventional speaker modeling and scoring 

methods assume clean feature vectors (Matsui and Furui, 1990; Naik, 1990; Furui, 

1994; Campbell, 1997; Furui, 2001; Bimbot et al., 2004), and they are not applicable 

in the presence of noise. 



 7 

• Feature-based or model-based sequential organization. Bregman (1990) recognizes 

two kinds of grouping, namely primitive grouping and schema-based grouping. The 

former relies on innate sound attributes (features) and is thus regarded as a bottom-

up process. The latter utilizes acquired schemas (models) and is thus considered as a 

top-down process. A human listener is able to group speech in a foreign language 

(Wang and Brown, 2006) and follow a stranger’s voice at a party (Cherry, 1953). 

Apparently, under such conditions, humans rely on general speaker characteristics 

for speech organization. On the other hand, humans also seem to utilize prior 

knowledge of a speaker for grouping. For example, a familiar voice helps a listener 

to better follow that voice. Therefore, we need to address both primitive grouping 

and schema-based grouping. In the CASA account, we need to study grouping 

approaches based on innate features and those based on acquired models. 

• Known or unknown speakers. As implied in the aforementioned radio example, it 

seems that one’s familiarity with the talkers plays a role in the organization of 

different speakers. It is reasonable to assume, under some conditions, that the 

speakers in the auditory scene are known a priori. In other words, the models of all 

the speakers that can appear in an input are available in advance. On the other hand, 

the cocktail party problem shows one condition where one is familiar only with the 

voice that he or she is paying attention to. This presents an open-set condition where 

only the target speaker model is available. Furthermore, the listening experience of 

foreign language mixtures (Wang, 2006) indicates that sometimes one does not need 

any knowledge of the talkers at all. This is a completely open-set condition where 
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none of the speaker models in the input are available. From a security application 

point of view, these three conditions each have their own applicable domains while 

the last is clearly the hardest to tackle. 

 

As no previous study has used speaker characteristics for sequential organization, 

there are many questions to be answered as described above. Our general goal is to study 

sequential organization in the CASA context. Specifically, we seek to design grouping 

algorithms where inputs are simultaneous streams obtained by segmentation and 

simultaneous grouping. The system determines the best assignment of these streams to 

corresponding speakers using speaker characteristics. The system produces organized 

speaker streams as output. 

Specifically, we intend to explore bottom-up methods that directly employ speaker 

features for speech organization. On the other hand, we also aim to study how to apply 

acquired schemas in the form of statistical models from speaker recognition to sequential 

grouping. Sometimes, it is infeasible to assume prior models of the sources that may 

appear in an auditory scene. Under such conditions, we intend to explore alternative 

modeling methods to extract generic models that account for a group of sources. We then 

seek to study how to use the obtained models for sequential organization. In addition, we 

intend to improve robust speaker recognition by applying novel speaker features and 

incorporating CASA as a front-end processor.  
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1.3 Organization of Dissertation 

This dissertation presents a systematic effort in developing a sequential organization 

system. Our study aims to address the issues and trying to achieve the goals as described 

in Section 1.2. The remainder of the dissertation is organized as follows. 

In Chapter 2, we first survey perceptual studies on sequential organization, seeking 

to identify cues and methods that are applicable for our computational study. Then we 

describe previous CASA studies on sequential grouping. Finally, we present several 

previous CASA studies, including multipitch tracking, binary T-F masks and voiced 

speech segregation. Outputs of these studies lay foundations for our work on robust 

speaker recognition and sequential grouping. We will also describe binary T-F masks and 

ideal binary T-F mask as the goal of CASA. 

In Chapter 3, we first describe a statistical framework for speaker recognition, 

including decision rules for speaker identification and verification tasks. The robustness 

issues are discussed next. We then present a usable speech extraction method that 

captures minimally corrupted speech segments at the frame level in order to improve 

identification performance under cochannel conditions. We employ a voiced speech 

segregation system that produces binary T-F masks as output. The masks indicate reliable 

(clean) or unreliable (noisy) units on a T-F representation of an input. A missing-data 

recognition method is employed to utilize such masks. Substantial performance 

improvements are achieved in both identification and verification evaluations under 

various noisy conditions. Finally, we propose a general solution to robust speaker 

recognition in the presence of additive noise. Novel speaker features are derived from 
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auditory filtering and cepstral analysis. In addition to feature derivation, we apply, as a 

novel speaker scoring method, an uncertainty decoder that accounts for front-end 

processing errors in conjunction with estimated binary masks. Our evaluation shows that 

the proposed system achieves substantial performance improvement over not only typical 

speaker features but also a state-of-the-art robust front-end processor for noisy speech. 

In Chapter 4, we first explore several feature-based grouping methods using features 

such as pitch, spectrum and vocal tract length. Then we present a speaker-model-based 

sequential organization system in detail. Specifically, we derive a computational 

objective for joint speaker identification and sequential grouping under cochannel 

conditions. Our formulation leads to an exhaustive search that finds the optimal 

hypothesis in the joint speaker and grouping space. A hypothesis pruning method is 

introduced to reduce the search space and computation time while achieving a 

performance level close to that of exhaustive search. Lastly, we present the proposed 

system as part of a complete CASA system and systematically evaluate its performance 

on a speech separation and speech recognition task. This system achieves a significant 

improvement over the baseline speech recognition performance across all the SNR 

conditions.  

In Chapter 5, we extend the model-based sequential grouping system from cochannel 

speech to conditions where there are more than two talkers in the auditory scene. 

Subsequently, the system is generalized to deal with non-speech as well as speech 

interference. Both generalizations incorporate generic models that account for known or 

unknown interferences. We show that the system is able to function well when only 
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target speaker models are available, regardless of interference types and the number of 

interfering sources. Finally we present a system that does not require a priori knowledge 

of the speakers in the auditory scene. Specifically, a generic speaker modeling method is 

employed to quantize a large speaker space, and the obtained generic models are used for 

sequential organization of mixtures of unknown speakers. We show that the grouping 

performance is only moderately lower than that with known speaker models. 

Chapter 6 summarizes the contributions of the dissertation. It also discusses insights 

gained and future research directions. 
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CHAPTER 2                                                                            

BACKGROUND

This chapter first surveys perceptual studies that are related to sequential 

organization. We intend to utilize the cues and methods that are applicable to perceptual 

grouping for our computational study. Then we describe previous CASA studies that 

implicitly or explicitly address sequential grouping. Finally, we present three aspects of 

CASA: multipitch tracking, binary T-F masks and voiced speech segregation. These 

aspects lay foundations for our work on robust speaker recognition and sequential 

grouping. 

2.1 Perceptual Studies on Sequential Organization 

In this section, we first survey how the human auditory system uses various cues to 

organize speech in general. We then discuss speech organization studies that focus on 

multi-talker conditions where sequential organization is a crucial process. Since there are 

not many studies that directly evaluate human sequential organization, we survey such 

experiments in some detail. In addition, we describe several speech segregation studies 
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on subjects with hearing loss. Some of these studies employ sine-wave speech as input. 

Since Gestalt grouping principles play a universal role in perception, we touch upon the 

roles of such principles in sequential organization in the end.  

As described earlier, sequential organization of speech refers to the process that 

organizes the speech of a talker separated in time into a perceptual stream. This process 

operates on a longer time scale than simultaneous grouping. Speech signals are composed 

of different types of acoustic events and carry specific information from a talker to 

listeners, and it differs from other sounds such as tones. The questions then arise whether 

humans rely on this linguistic information and knowledge about speech for perceptual 

grouping. It is shown that a listener is generally better at organizing speech sounds than 

non-speech sounds, and one is better at connected speech of a natural order than that of a 

distorted one (Bregman, 1990; Warren et al., 1996). It is also shown that a speech-like 

signal is likely being perceived as speech (Rand, 1974; Liberman, 1982; Warren, et al., 

1990; Remez, et al., 1994; Warren, et al., 1996). These observations indicate that humans 

do, on the one hand, utilize the life-long acquired linguistic knowledge for organization.  

On the other hand, a listener performs grouping regardless whether the utterances are 

spoken in a native or foreign language (Wang, 2006). In this case, the auditory system 

has to rely on something other than specific linguistic information for sequential 

organization. It is suggested that a listener uses perceived pitch trajectories to organize 

speech when speech is separated by silence (Bregman, 1990). This indicates the use of 

one type of speaker characteristics for grouping.  
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Moore (2003) outlines a set of cues for perceptual grouping of sounds. The cues 

include fundamental frequency, onset disparities, contrasts with previous sounds, changes 

in frequency or intensity, and sound location. Furthermore, in natural acoustic 

environments, the auditory system is confronted with a mixture of sounds from multiple 

active sources. Humans can only organize a limited number of stimuli using a single 

feature such as pitch or fundamental frequency. Moore states that combining different 

physical cues provides a good base for parsing the acoustic input. 

 

Speech organization under multi-talker conditions 

Under multi-talker conditions, a mixture input is decomposed into small speech 

segments which are then simultaneously and sequentially grouped into auditory streams. 

Between the two streams, a listener usually pays attention to one of them, which is 

deemed as target. The other speaker in the pair is regarded as a masker. Here, we can 

infer the performance of sequential organization by evaluating how well the listener 

follows the target speech. This type of evaluation is typically quantified by a speech 

intelligibility test, which measures the speech reception threshold as the required SNR in 

decibels (dB) for a 50% intelligibility score. 

Darwin et al. (2003) report that the most powerful cues for monaural speech 

segregation relate to vocal variations of the underlying speakers in a two-talker mixture. 

The authors systematically examine the influence of features such as fundamental 

frequency (F0) and vocal-tract length (VTL) on segregation. In the experiments, an 

mixture input consists of two utterances that are produced by the same speaker and the 
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utterances are selected from the Coordinate Response Measure speech corpus (Bolia et 

al., 2000). A target utterance always contains an anchor word ‘Baron’ followed by a 

color and a number and a masker utterance is randomly selected from the corpus. The 

masker utterance has different contents than that of the target. These utterances are 

electronically modified by a pitch-synchronous overlap and add (PSOLA) algorithm 

according to controlled F0 contours. Spectral envelopes of the signal are scaled to reflect 

VTL changes. Note that the utterances are modified in such a way that they can be 

considered as from different speakers even though the original ones are produced by the 

same speaker. Subjects are asked to identify the color and number in the target utterance 

that contains the word ‘Baron’. One intelligibility experiment varies F0 contours and it 

shows systematic improvement when F0 values between the two utterances differ by 

greater than two semitones. In another experiment that evaluates VTL, systematic 

improvement is recorded if the ratio of target VTL and masker VTL is no less than 8%. 

The third experiment modifies both F0 and VTL of one of the utterances and this 

modification actually reflects a gender change. The resulting performance improvements 

are as great as those obtained by real recordings of different-gender speakers. 

Furthermore, the improvements are much greater than those by varying F0 or VTL alone. 

In addition, the authors also find that large intonation variations of a speaker lead to 

minimal performance improvement. 

Besides the performance difference caused by the gender change in the above study, 

Brungart (2001) finds that speech intelligibility is the worst when both target and 

interference utterances are produced by the same speaker. Subjects’ performance is better 
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when the utterances originate from different speakers and it is even better when the 

speakers are of different gender. This finding suggests that the cues that reflect gender 

contrasts in voices are useful for sequential grouping. Apparently, F0 and vocal-tract 

shape are two of such cues. 

Drullman and Bronkhorst (2004) also show the effectiveness of pitch differences in 

speech intelligibility tasks that use two-talker mixtures. Its experimental setup is similar 

to the one above. Specifically, interference speech is systematically modified to create 

pitch differences between interference and target by 2, 4, 8, and 12 semitones. The 

intelligibility results gradually improve with increasing difference. Meanwhile, it is also 

found that the higher the energy ratio of target to interference, the better the intelligibility 

performance. Similarly, earlier studies (Assmann and Summerfield, 1990; Assmann and 

Summerfield, 1994) demonstrate that increasing the pitch difference between a pair of 

vowels that are simultaneously presented to the subject improve vowel identification 

performance. 

Culling and Darwin (1993) suggest that when F0 contours of two speakers intersect 

and cross, human listeners rely on timbre continuity to determine whether the contours 

cross or not. Here, the stimuli are two simultaneous diphthong-like sounds that contain 

F0 contours either diverging or crossing at the intersection. The results show that the 

subjects are able to discriminate between a cross pattern and a divergence pattern with 

different timbres of the two sounds. However, the listeners are not able to tell the 

difference when the timbres are the same. In other words, the cues other than pitch are 

important for tracking a speaker. 
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Darwin and Hukin (2000) find that intonation and vocal-tract size cues override 

spatial cues in attending to a target utterance within a pair of speakers. In this study, 

listeners are asked to determine a word from a target utterance after hearing two 

simultaneous utterances. The experiment is configured in such a way as to evaluate 

intonation, vocal-tract size and spatial cues for tracking a particular speaker over time, 

instead of measuring how well listeners can recognize a word. A natural intonation that 

exhibits stress and varying F0 is found more effective than monotonous F0 contours. 

Authors also find that vocal-tract size is an effective cue for selective attention to one of 

the speakers. 

Listeners’ ability to follow a target in the presence of an interference talker can be 

attributed to a process termed glimpsing (Miller and Licklider, 1950; Assmann and 

Summerfield, 2004). The hypothesis is that listeners are able to exploit speech glimpses, 

defined as time-frequency regions where the target signal is much more energetic than 

the interference, for understanding speech in noise. Apparently, with an increasing 

number of interfering sources, there are fewer glimpses to be exploited. Speech 

intelligibility degrades sharply when the number of interference talkers increases from 

one to two, and the degradation slows when there are four or more maskers.  

In summary, F0 or its perceptual counterpart, pitch, is an effective cue for speech 

segregation under multi-talker conditions. However, the above studies also find that the 

pitch contours of two speakers require at least a two-semitone difference in order to have 

a meaningful performance improvement in intelligibility tests. An increase of two 

semitones corresponds to 16 Hz for a 130 Hz tone or 32 Hz for a 260 Hz tone. Thus, 
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using pitch for speech organization becomes insufficient in the case of same-gender 

mixtures. Vocal-tract size appears to be a good candidate for grouping according to the 

studies described earlier. However, since the values of vocal-tract size are confined 

within a small range, it may also become insufficient with a number of speakers.  

 

Grouping cues inferred from related studies 

Sequential stream segregation tasks require subjects to segregate sequential pure-

tone patterns. Grose and Hall (1996) suggest that listeners with cochlear hearing loss are 

able to perform perceptual organization of sequential stimuli but their performance is 

poorer than those with normal hearing. Specifically, listeners suffering from cochlear 

hearing loss require a greater frequency separation between presumed auditory streams 

than normal-hearing listeners do. In addition, Mackersie et al. (2001) and Mackersie 

(2003) suggest that speech segregation abilities under two-talker conditions are similar to 

those in sequential stream segregation. Hence, the cues that are deemed useful for 

sequential stream segregation likely also work for speech organization (Moore and 

Gockel, 2002). These cues include phase, temporal envelope, etc. 

Numerous studies (Bregman, 1990; Hartmann, 1996; Vliegen and Oxenham, 1998; 

Vliegen and Moore, 1999; Yabe et al., 1999; Moore and Gockel, 2002; Atienza et al., 

2003; Moore, 2003; Carlyon, 2004) on auditory scene analysis or auditory streaming 

employ non-speech inputs such as alternating low-high tones. These studies on tonal 

inputs find that frequency and time differences between tones are important cues for 

auditory streaming. However, such cues may not be directly applicable to speech 
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organization since speech signals are more complex than tonal signals, and conclusions 

made from tonal inputs do not lend themselves easily to speech inputs (Moore, 2003). 

Sign-wave speech (SWS) is typically synthesized by using three time-varying 

sinusoids which reproduce frequency and amplitude variations of the first three speech 

formants from natural speech (Remez et al., 1994). Listeners are able to transcribe the 

SWS to a certain extent even if they have not been exposed to such audio inputs before 

(Barker and Cooke, 1998). Under a condition where two SWS signals are combined, 

listeners can extract words from the mixture, but they are not able to group these words 

into two separate streams. This observation indicates that the acoustic features that are 

missing from SWS may be important for sequential grouping. Such features include F0, 

the complete spectral structure, and excitation characteristics. 

Telephone communication does not transmit signals under 300 Hz because low-

frequency sound components are typically deemed as redundant. Although the low-

frequency components are unintelligible when presented alone, they greatly improve 

speech recognition in noise for normal-hearing subjects when presented through a 

cochlear implant simulation (Chang et al., 2006). This low-frequency enhancement effect 

is not due to a linear addition of intelligibility between low- and high-frequency 

components or an increase in the physical SNR. It is suggested that an auditory-based 

process uses the pitch cues from low-frequency sounds to first segregate the target voice 

from the competing voices and then group appropriate temporal envelope cues in the 

target voice for robust speech recognition under realistic listening situations (Chang et al., 

2006). 
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Perceptual grouping principles 

Generally speaking, the principles of perceptual grouping described by Gestalt 

psychologists apply to the perceptual grouping of sounds (Bregman, 1990; Moore, 2003). 

Wang and Brown (2006) summarize applications of the principles in ASA (Bregman, 

1990) as: proximity in frequency and time, periodicity, continuous or smooth transition, 

onset and offset, amplitude and frequency modulation, rhythm and common spatial 

location. Some of them are applicable to sequential grouping, such as periodicity; some 

are applicable to simultaneous grouping only such as onset/offset. 

It is interesting to see how to apply these principles to our study of sequential 

organization. In a computational system, the similarity principle requires quantifying 

similarity measures. In our account, this principle leads to finding the underlying features 

that exhibit similarity regardless of what has been said and how it has been said as long 

as the speech to be organized is produced by a single speaker (source). A speaker has his 

or her own way of producing sounds because of individual vocal organs and acquired 

speaking styles. Hence, in our view, the similarity principle leads to identifying and 

exploiting the speaker characteristics from input signals.  

The principle of disjoint allocation suggests that a single component in a sound shall 

be regarded as originating from one source. This principle implies that sequential 

grouping decisions shall be exclusive in assigning segments into streams. The principle 

of good continuation suggests that sounds with continuous frequency trajectories shall be 

organized into the same stream. Since an auditory scene is typically composed of various 



 21 

acoustic events, application of the continuity principle may be constrained. On the other 

hand, the principle of closure in audition suggests that a sound shall be perceived as 

continuous though it is actually partially removed or masked by another sound (Bregman, 

1990). This illusion of continuity indicates that a discontinuous but smooth trajectory 

may be regarded as the continuation of an existing sound. The principle of common fate 

states that acoustic components changing in the same way at the same time belong 

together. This principle applies to simultaneous organization. For example, sound 

components with a common spacing in frequency that constitute harmonics of the same 

fundamental frequency are grouped together.   

2.2 Computational Studies on Sequential Organization 

As the first CASA model, the study by Weintraub (1985) seeks to segregate and 

reconstruct two simultaneous speakers. This model uses an autocorrelation function to 

capture periodicity as well as amplitude modulation. He then uses the coincidence 

function to track pitch contours of two simultaneous utterances. Sounds from different 

speakers are separated by using iterative spectral estimation according to pitch and 

temporal continuity. Weintraub’s model requires that two speakers in an input mixture 

belong to opposite genders and they have different pitch ranges. Sequential grouping is 

performed by grouping separated speeches into speaker streams according to their pitch 

estimates.  

Cooke (1993) proposes a CASA system based on a T-F representation called 

synchrony strands, which is obtained by evaluating local similarity and temporal 
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continuity of outputs from a cochlea model. In a sense, these strands are similar to our 

definition of T-F segments. Strands are merged into groups based on common 

harmonicity and common amplitude modulation. Pitch contours are then obtained for 

each group, and the groups with similar contours are organized into the same stream. 

However, this system requires input of continuously voiced speech and is not able to 

group speech that is separated in time.  

Brown and Cooke (1994a) propose to generate discrete T-F elements based on cross-

frequency correlation of filter responses and frequency transition across time. These 

elements are similar to Cooke’s synchrony strands and our definition of segments. 

Elements are grouped by common periodicity and common onset and offset. Specifically, 

the elements with similar F0 contours are grouped into the same stream. Similar to the 

study by Cooke (1993), this system also requires continuously voiced speech as input.  

Wang and Brown (1999) employ a two-layer oscillator network for speech 

segregation. In the first layer, segments are formed based on cross-channel correlation 

and temporal continuity. In the second layer, segments are grouped into two streams, one 

for the target and the other for its background according to a dominant pitch estimate in 

each time frame. Similar to the previous two studies, this system does not address 

sequential grouping of segments that are separated in time. 

The above systems are mainly bottom-up approaches, predominantly using 

periodicity cues. Ellis (1996) develops a prediction-driven system which produces 

predictions from a world model and compares the predictions against the input. The 

world model comprises three types of sound elements, noise cloud, transient click, and 
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harmonic sound. This system is essentially a top-down process. A recent speech decoding 

system by Barker et al. (2005) implicitly addresses sequential grouping and its 

formulation is derived from a statistical framework of automatic speech recognition. This 

decoder searches for the most likely word sequence and produces a group of signal 

fragments that are determined to be speech. The rest of the input signal is regarded as 

non-speech background.   

Timbre-based sequential grouping methods have been proposed for musical sound 

separation (Brown and Cooke, 1994b; Godsmark and Brown, 1999). The American 

Standards Association defines timbre as “... that attribute of sensation in terms of which a 

listener can judge that two sounds having the same loudness and pitch are dissimilar” 

(American Standards Association, 1960). This definition is hard to quantify. Timbre-

based methods extract features that relate to timbre such as brightness, onset asynchrony 

or dynamic changes of spectral shape from music. Such features represent some form of 

spectral energy distribution which has been widely used as cepstral features and dynamic 

features in speech processing (Huang et al., 2001).  

A recent blind source separation system (Bach and Jordan, 2004) segregates two 

simultaneous voices by spectral clustering of the spectrogram using auditory features 

such as pitch and timbre. To obtain parameters for the clustering algorithm, a training 

session is applied on artificial mixtures. This constrains itself to specific target-to-

interference ratio (TIR) conditions and does not generalize easily. In addition, given an 

arbitrarily long utterance, the clustering operation on the complete T-F decomposition of 

the input requires a large amount of computation. 
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Besides the above CASA studies, there are studies in speech processing that relate to 

sequential grouping. Research has been carried out for decades to extract one of the 

speakers from cochannel speech by either enhancing target speech or suppressing 

interfering speech (Quatieri and Danisewicz, 1990; Morgan et al., 1997). Zissman and 

Seward (1992) examine pitch continuity in cochannel speech and assign pitch contours to 

a corresponding talker by polynomial contour fitting when pitch contours from two 

speakers cross. Their results suggest that a method based purely on pitch information is 

not sufficient. Morgan et al. (1997) estimate the dominant pitch and then reconstruct the 

speech components of both stronger and weaker talker frame by frame using frequency-

domain filtering according to the estimated pitch; speech signals are further enhanced by 

the formants estimated for the stronger talker. Afterwards, a speaker assignment 

algorithm using a maximum likelihood criterion is applied to group recovered signals into 

two speaker streams, one for the target and the other for the interferer. The assignment 

algorithm groups the individual frames by examining the pitch and spectral continuity for 

consecutive voiced frames, and comparing the spectral similarity of the onset frame of a 

voiced segment with recently assigned frames using a divergence measure (Carlson and 

Clements, 1991), which is the symmetrized Kullback-Leibler divergence (Kullback, 

1968). Because of such short-time processing, the spectral comparison is biased towards 

the comparison of phonetic information contained in a frame instead of speaker 

characteristics, thus degrading the grouping performance. 

Studies have also been conducted on speaker detection and tracking tasks in multi-

speaker environments such as conversational speech or broadcast news (see e.g. Yu and 
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Gish, 1993; Dunn et al., 2000). Speakers under such conditions are usually aware of each 

other, resulting in long single-speaker segments. Various methods, supervised or 

unsupervised, have been explored for speaker detection and tracking tasks. A typical 

method (Dunn et al., 2000) exploits log-likelihood ratio scores, calculated from trained 

feature distribution for speakers and a universal background model, to partition a 

recording into homogeneous segments, which are subsequently clustered for tracking 

purposes. However, the segments that CASA deals with typically last 30 ms to 300 ms 

(Shao and Wang, 2006a), far shorter than the optimal segment length of around 2.5 sec 

and the typical minimum length of 1 sec for reliable speaker clustering (Dunn et al., 

2000). In addition, as pointed out by Lovekin et al. (2001), the discriminative ability to 

differentiate speakers is sharply reduced if a segment is shorter than 500 ms. Thus, even 

though tracking tasks are analogous to sequential grouping because they both answer the 

questions of who is talking and when, the former deal with long inputs with little speaker 

overlap while the latter faces the opposite. This distinction makes the use of the methods 

in speaker detection and tracking difficult to apply to sequential grouping. 

2.3 Aspects of Monaural Speech Segregation 

2.3.1 Multipitch tracking 

As discussed in the preceding sections, pitch is an important cue for auditory 

organization. However, when an auditory scene comprises multiple speakers, 

conventional pitch estimation algorithms are unable to track pitch contours for all the 
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speakers simultaneously. Here, we introduce a multipitch tracking system proposed by 

Wu et al. (2003) to deal with the multi-talker condition. This system outputs pitch 

contours for up to two speakers for an input utterance. We will exploit pitch outputs for 

our sequential grouping study. 

The multipitch tracking system first obtains a T-F decomposition of  an input signal 

by passing it through a bank of Gammatone filters (Wang and Brown, 2006). The system 

then calculates envelopes in high-frequency channels (center frequency greater than 800 

Hz) and also computes normalized correlograms (autocorrelations) for each frequency 

channel (Wang and Brown, 2006). Peaks of a correlogram indicate the periodicity of the 

signal in the corresponding frequency channel. Some peaks are inconsistent with the 

pitch because of pitch dynamics and the fact that harmonics are unresolved in high 

frequency channels. Additionally, in a noisy input the peaks do not always agree with the 

pitch. In order to minimize the effects introduced by these false peaks, channels deemed 

corrupted are removed and the peaks are further screened in the retained channels (Wu et 

al., 2003).  

The system uses a statistical method to capture the relationship between true pitch 

periods and the observed peaks. Specifically, a mixture of a Laplacian distribution and a 

uniform distribution is employed to model the distribution of time-lag differences 

between a true pitch period and the closest peak in a selected channel (Wu et al., 2003). 

The distribution parameters are trained from clean speech by a maximum likelihood 

estimator. Thus, the system formulates a way to calculate the probability of a frequency 

channel supporting a pitch hypothesis. An integration method is then used to produce the 
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conditional probability of observing the selected peaks in all selected channels in a time 

frame given a hypothesized pitch period. Finally, a continuous hidden Markov model 

(HMM) is used to model pitch dynamics. More specifically, the HMM states represent all 

the possible hypotheses in a time frame and the above mixture distribution is used as the 

state observation density. Transitions between the HMM states represent the probabilistic 

pitch dynamics, and not only model pitch changes across time but also the shifts between 

zero-pitch, single-pitch and two-pitch spaces. These spaces correspond to pitch periods of 

pauses, single speaker and two speakers respectively. 

Figure 2.1 shows an example of multipitch tracking results. The input is a two-talker 

mixture created from two female utterances. Prior pitch values are obtained from 

premixing utterances using the Snack toolkit (Sjolander and Beskow, 2000). It is an open 

source version of the popular ESPS/waves+ toolkit. Even though the two female speakers 

have the same pitch range, the multipitch tracking system is able to produce pitch 

contours that fit the true pitch values well. It is evident from the figure that in the 

mixture, there are portions that contain only one speaker’s voiced speech, and portions 

that contain both speakers’ voiced speech. There are also portions considered by the 

algorithm to contain one speaker’s voiced speech but they actually contain both speakers’ 

voiced speech. A typical reason for this mistake is that one speaker’s voiced energy is 

much lower than that of the other.   
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2.3.2 Binary time-frequency masks 

Two-dimensional time-frequency decompositions of signals are widely used in 

speech processing. The well-known spectrogram and cochleagram (Wang and Brown, 

2006) are good examples of such representations. Within this representation, a binary T-F 

mask furnishes the information about whether a T-F unit is reliable or not when the input 

signal is a combination of target and interference signals. The notion of an ideal binary T-
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Figure 2.1: Estimated pitch contours from multipitch tracking compared with 
single-speaker pitch points. The solid lines represent the pitch contours obtained 
from a two-talker mixture using the multipitch tracking algorithm. The triangles 
and circles represent the pitch values obtained from the premixing utterances. 
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F mask has been proposed as the computational goal of CASA (Wang, 2005). The ideal 

binary mask is a binary matrix, defined as follows:  

1,  ( , ) ( , )
( , ) .

0,

if S f t N f t
M f t

otherwise

>
= 


                                                               (2.1) 

M ( f , t )  is the T-F mask indexed by frequency f and time t. S ( f , t )  refers to energy from 

the target source in the frequency channel centered at f and in time frame t; N ( f , t )  is the 

corresponding energy from the interference source. If a T-F unit contains stronger energy 

from target than interference, the corresponding mask element is labeled 1; it is assigned 

0 otherwise. This implies a local SNR criterion of 0 dB. Given premixing target and 

interference signals, the ideal binary mask can be readily constructed. 

The ideal binary mask is motivated by the human auditory masking phenomenon 

(Moore, 2003), and it has many desirable properties. The ideal binary mask provides the 

maximum SNR gain of all the binary masks (Hu and Wang, 2004; Ellis, 2006). 

Furthermore, such masks have been applied to robust speech recognition and shown to be 

highly effective as front-ends (Cooke et al., 2001; Roman et al., 2003). Besides, 

depending on which one is the target among multiple sources, the ideal binary mask can 

be constructed accordingly. For example, the binary values of a T-F unit in the mask 

correspond to the two underlying speakers in a cochannel mixture. If one speaker is of 

interest to the user, it is designated as target, and the other speaker is regarded as 

interference. If both speakers are desired, after selecting one as the target, the other 

speaker corresponds to the complement mask. Under non-speech noisy conditions, the 

speech signal is regarded as target, and the ideal binary mask can be defined accordingly.  
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2.3.3 Voiced speech segregation 

Construction of the ideal binary mask requires premixing recordings of target and 

interference. To estimate the ideal mask from an input, we employ a pitch-based speech 

segregation system (Hu and Wang, 2004; Hu and Wang, 2006; Hu, 2006). This system 

makes minimal assumptions about the underlying noise sources and significantly 

improves the SNR of segregated speech under various noisy conditions. The system 

performs voiced segmentation and simultaneous grouping, and produces binary T-F 

masks of segregated simultaneous streams together with their pitch contours. A 

simultaneous stream refers to a group of segments that have been simultaneously 

organized. 

The periodic nature of voiced speech provides useful cues for segmentation. For 

example, a harmonic usually activates a number of adjacent auditory channels because 

the pass-bands of adjacent Gammatone filters have significant overlaps, resulting in high 

cross-channel correlation. In addition, the periodic signal usually lasts for some time, 

within which it has good temporal continuity. Thus, the speech segregation system 

performs segmentation of voiced speech by merging T-F units using cross-channel 

correlation and temporal continuity (Hu and Wang, 2004). Specifically, neighboring T-F 

units with sufficiently high cross-channel correlation in a correlogram response are 

merged to form segments in the low frequency range. A correlogram is a periodicity 

representation, consisting of autocorrelations of filter responses across all the filter 

channels (Wang and Brown, 2006). In the high frequency range, where a Gammatone 

filter responds to multiple harmonics, the system merges the T-F units on the basis of 
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cross-channel correlation of response envelopes. Along the time dimension, temporal 

continuity is employed to merge neighboring units if they show high cross-channel 

correlations (Hu and Wang, 2004). 

Since pitch is a useful cue for grouping (Bregman, 1990; Wang and Brown, 2006), 

the system estimates pitch contours for up to two sources for the entire utterance based on 

the aforementioned correlogram and use them for simultaneous grouping. T-F units are 

labeled according to their consistency of periodicity with the pitch estimates. 

Specifically, for low-frequency channels where harmonics are resolved, if a unit shows 

similar response at an estimated pitch period, the corresponding T-F unit is labeled 

consistent with the pitch estimate; it is labeled inconsistent otherwise. For high-frequency 

channels that respond to several harmonics, an amplitude modulation model is used to 

determine whether a unit response shows beating at the pitch period and thus pitch-

consistent (Hu and Wang, 2006). Subsequently, a voiced segment is grouped into a 

stream that corresponds to the pitch period if more than half of its units are labeled 

consistent with the pitch estimate. The stream is further expanded by absorbing 

neighboring units that have the same label. The two estimation processes for pitch and 

simultaneous streams are repeated to improve the estimates. This iterative algorithm does 

not terminate until both estimates converge (Hu, 2006). 

A simultaneous stream is represented by a binary mask with the T-F units labeled as 

foreground (target-dominant or 1) if they are consistent with the pitch estimate and others 

as background (interference-dominant or 0). Figure 2.2 (b) shows a collection of 

simultaneous streams obtained from the mixture in Figure 2.2 (a) by the Hu (2006) 
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Figure 2.2: Illustrations of noisy speech and estimated simultaneous streams. Plot (a) 
shows a cochleagram of a two-talker utterance mixed at 0 dB SNR. Darker color 
indicates stronger energy within the corresponding time-frequency unit. Plot (b) 
presents derived simultaneous streams from utterance in (a). White color shows the 
background. Different gray-colored regions indicate that the streams have been 
grouped across frequency but not across time. 
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system. The background is shown in white, and the different gray regions represent 

different simultaneous streams. These segregated streams have been grouped across 

frequency, but they are still separated in time. In our sequential grouping study, we will 

develop methods to organize these simultaneous streams into complete streams. 
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CHAPTER 3                                                                            

ROBUST SPEAKER RECOGNITION

Speaker recognition studies in recent years have achieved substantial improvement 

under clean conditions (Martin and Przybocki, 2001; Przybocki and Martin, 2004; 

Przybocki et al., 2006). However, robust speaker recognition under noisy conditions 

remains a challenging problem. A speaker recognition system is typically trained on 

clean speech from a group of registered speakers and faces the mismatch problem when 

tested in the presence of interference. In this chapter, we first describe how a speaker 

recognition system works and its robustness issues. Then, we present our system that 

recognizes a target speaker in the presence of another speaker. This system extracts 

minimally corrupted speech segments termed usable speech and significantly improves 

recognition performance. Unlike a T-F segment introduced in CASA, a usable speech 

segment is composed of contiguous time frames of speech that are deemed speaker 

homogeneous. The former is defined in terms of both time and frequency while the latter 

only in time. We further improve the recognition performance by employing binary T-F 

masks that are generated by voiced speech segregation. Specifically, a missing-data 
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method recognizes speakers based on information of reliable (clean) or unreliable (noisy) 

T-F units as indicated by the masks. In the last section, we propose a general solution for 

robust recognition under noisy conditions. This solution extracts novel speaker features 

through auditory filtering and cepstral analysis, and employs an uncertainty decoder to 

account for errors from front-end processing. This system substantially improves 

recognition performance compared to conventional speaker features as well as a state-of-

the-art robust feature.  

3.1 Speaker Recognition 

There are a large number of applications for speaker recognition in both military and 

civilian areas, such as security control, identity authentication, and forensic applications. 

Due to these applications, research on automatic speaker recognition has been conducted 

for more than four decades (Furui, 2005). Generally speaking, speaker recognition 

utilizes human voices for classification or verification of speaker identities. According to 

how a recognition decision is made, speaker recognition can be categorized into two tasks: 

speaker identification (SID) and speaker verification (SV). SID seeks to determine which 

speaker produces an input utterance among a group of registered speakers. Unlike SID, 

SV makes a binary decision that either accepts or rejects an identity claim of an input 

utterance. In other words, this task verifies whether a claimed speaker actually utters the 

input. SID is typically a closed-set task while SV deals with open-set conditions. 

Additionally, a speaker recognition system is regarded as text-dependent if it knows 

linguistic content prior to recognition, and it is considered text-independent if otherwise. 
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The latter is more challenging than the former (Furui, 2005) since the system not only has 

to differentiate speakers but also faces linguistic variations in speech. In this dissertation, 

we deal with text-independent conditions. 

A speaker recognition system typically comprises three processing stages (Naik, 

1990; Furui, 1994; Campbell, 1997; Furui, 2001; Bimbot et al., 2004). The first stage 

extracts features that characterize speakers from input signals. Then at the scoring stage, 

these features are compared with registered speaker templates or models to calculate a 

measure of similarity between the input and the model. Finally, the decision stage 

produces either a speaker identity or a binary output of acceptance/rejection based on the 

obtained similarity measures. 

Since the system relies on speaker characteristics for classification, the derived 

speaker features play an important role in the recognition process. Acoustic features such 

as pitch and various versions of cepstral coefficients have been explored (Atal, 1972; 

Furui, 1989; Naik, 1990; Furui, 1991; Campbell, 1997; Furui, 2001; Bimbot et al., 2004). 

Widely used features include Mel-frequency cepstral coefficients (MFCC), perceptual 

linear predictive (PLP) coefficients. Additionally, cepstral mean normalization (CMN) 

has been applied to enhance features by removing distortions from telephone 

transmission (Furui, 1981). Robust features such as RASTA (Hermansky and Morgan, 

1994) have also been investigated for speaker recognition (Reynolds, 1994). These 

features are designed to capture short-term low-level information about human excitation 

or vocal tract shape, and they are also widely used in automatic speech recognition 

(Huang et al., 2001). On the other hand, high-level features such as word idiolect, 
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prosody, etc., have recently been explored to complement conventional speaker features 

(Reynolds et al., 2003).  

There are many speaker modeling approaches (Furui, 2005). Among them, Gaussian 

mixture model (GMM) is predominantly employed to simulate the distribution of speaker 

features. Parameters of a GMM are usually trained using an EM algorithm (Reynolds, 

1995). As an alternative approach, models can be adapted from a speaker-independent 

background model using Bayesian adaptation (Reynolds, 1997). Modeling methods such 

as polynomial based classifiers (Campbell et al., 2002; Wan and Renals, 2002) and 

decision tree classifier (Foo and Lim, 2002), are found to yield comparable recognition 

performance as GMM. In text-dependent tasks, template matching (Furui, 1981) and 

hidden Markov model (HMM) have been applied to speaker recognition (Naik et al., 

1989; Rosenberg et al., 1990; Savic and Gupta, 1990; Furui, 2005). Artificial neural 

networks (ANN) have also been employed for speaker recognition (Yegnanarayana et al., 

2001; Baker and Sridharan, 2006). 

3.1.1 Decision framework 

In a statistical framework, a speaker identification task can be derived as maximum-

likelihood classification (Reynolds, 1995) using Bayesian analysis (Rice, 1995). 

Assuming that a set of speakers are registered as Λ = {λ1, λ2, … , λK} and that a sequence 

of M feature frames O = { X1, X2, … , XM} has been observed from an input utterance, the 

optimal goal of SID is to find a speaker λ̂  that maximizes the posterior probability of a 

model given the observations. Mathematically, the SID decision rule is 
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ˆ arg max ( | ).P O
λ

λ λ
∈Λ

=                                                                                                (3.1)  

Applying the Bayesian rule, we have 

( | ) ( )ˆ arg max .
( )

P O P

P Oλ

λ λ
λ

∈Λ

=                                                                                       (3.2) 

Without prior knowledge about test utterances, the prior probabilities of speakers are 

typically assumed to be uniformly distributed. In addition, the maximization over λ is not 

affected by P(O). Therefore, P(λ) and P(O) are dropped from the equation, resulting in a 

decision based on likelihood maximization. Assuming observation independence and 

taking a log transformation, (3.2) can be written as 

1

ˆ arg max ( | ) arg max log ( | )
M

m

m

P O p X
λ λ

λ λ λ
∈Λ ∈Λ =

= = ∑ .                                                  (3.3) 

Here m is a time frame index of the feature sequence. The right-hand-side (RHS) of this 

equation contains summation of log likelihood scores of a feature frame given a speaker 

model. This score represents a similarity measure between the input and the registered 

speakers. 

A speaker verification task determines whether the input O is produced by a claimed 

speaker λc. We can evaluate how similar the input is to the claimant using a log 

likelihood normalization as 

log ( ) log ( | ) log ( | )c cL O P O P Oλ λ λ= − ≠ .                                                            (3.4) 

Here, L(O) refers to a verification score and is calculated as the likelihood ratio of the 

conditional probability of the feature sequence given the claimant model to the 

conditional probability of the features given an imposter model. A positive value of (3.4) 
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indicates a valid claim, thus an output of acceptance, while a negative value indicates 

otherwise. This output entails two types of decision errors, a miss detection of a target 

speaker or a false alarm of an imposter. Instead of the fixed value of 0, a threshold can be 

applied on (3.4) and adjusted to artificially suppress one error type while increasing the 

other. Therefore, SV results are usually reported using receiver operating characteristic 

(ROC) curves (Przybocki et al., 2006). From a statistical analysis point of view, (3.4) is 

actually a form of the generalized hypothesis test (Rice, 1995). In other words, this 

equation performs a test to select either the hypothesis that the claimant utters the input 

utterance or the hypothesis that some other speaker does. 

However, (3.4) can not be literally implemented because it is impossible for a system 

to enumerate all the imposters in the world given a claimant. One approach to simulate 

the imposter model is to construct a cohort set that is composed of speakers that are 

acoustically close to the claimant (Furui, 2001). This is based on the assumption that the 

density of a specific observation for speakers other than the claimant is dominated by the 

density for the nearest speakers. The other approach constructs a universal background 

model (UBM) that incorporates all the speakers in the world (Reynolds, 1997),  

log ( ) log ( | ) log ( | )c UBML O P O P Oλ λ= − .                                                             (3.5) 

In a specific task, UBM is usually trained on the pooled training data that excludes the 

claimant or a set of potential claimants in the corpus.  

A set of normalization methods have recently been developed to reduce the 

distribution variances of claimant scores and imposter scores (Bimbot et al., 2004). 

Likelihood scores are normalized by subtracting their mean and then dividing their 
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standard deviation. Both quantities are estimated from pseudo-imposter distributions 

since it is much easier to obtain imposter scores than the claimant scores. Different 

normalization methods (Bimbot et al., 2004) have been proposed depending on how this 

imposter distribution is obtained.  

3.1.2 Robust speaker recognition 

The National Institute of Standards and Technology (NIST) has coordinated a series 

of annual speaker recognition evaluation since 1996 (Martin and Przybocki, 2001; 

Przybocki and Martin, 2004; Przybocki et al., 2006). This series mainly evaluate speaker 

verification systems. The major challenge in the evaluations is the convolutive distortions 

(Huang et al., 2001) introduced by different telephone handsets and transmission 

channels, ranging from landline to wireless.  The mismatch between training and testing 

conditions leads to performance degradation. Robust recognition methods such as 

cepstral mean normalization, feature variance normalization, feature warping, model 

adaptation, score normalizations, etc., have been proposed to account for the channel 

distortions and improve the recognition performance (Furui, 2005).  

Apart from channel distortions, speaker recognition also faces additive noise from 

channel or background. Modern telephones and microphones can reduce noise and thus 

improve SNR of the target signal. However, unlike a quiet office environment, an 

auditory scene typically comprises multiple sound sources in the background, such as car 

and human voice, especially during the use of mobile phones. A study has shown that 

speaker recognition performance degrades sharply with input SNR below 30 dB 
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(Yantorno, 1999). The degradation also occurs when noise source is a competing speaker 

(Lovekin et al., 2001; Shao and Wang, 2003). To tackle this robustness problem, speech 

enhancement methods that are widely used in speech recognition, such as spectral 

subtraction, subband modeling, have been explored for robust speaker recognition 

(Barger and Sridharan, 1997; Ortega-Garcia and Gonzalez-Rodriguez, 1997; Drygajlo 

and El-Maliki, 1998; Sivakumaran and Ariyaeeinia, 2000; Yoshida et al., 2001), but they 

are ineffective when noise is nonstationary (Shao and Wang, 2006b). RASTA filtering 

(Hermansky and Morgan, 1994) and CMN have also been widely used but they are 

mainly intended for convolutive noise. Nevertheless, recent studies of robust speech 

recognition on Aurora (Parihar and Picone, 2003) have yielded an advanced front-end 

feature extraction algorithm (AFE) (STQ-AURORA, 2005-11), standardized by the 

European Telecommunication Standards Institute (ETSI). ETSI AFE derives robust 

MFCC features using a set of state-of-the-art front-end processes, including Wiener 

filtering. 

An alternative approach to feature enhancement seeks to model the noise and 

combines it with the clean speaker models (Rose et al., 1994; Matsui and Furui, 1996; 

Wong and Russell, 2001; Gong, 2002; Yoma and Villar, 2002). However, such systems 

are limited when applied to novel interference types because they rely heavily on the use 

of a priori information of noise sources.  

On the other hand, similar to speech recognition, humans are found to perform better 

than machines in speaker recognition tasks (Schmidt-Nielsen and Crystal, 1998).  Human 

performance is comparable with that of the best computer system in the matched handset 
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condition. When different handsets are used, human performance degrades much less 

than computer performance. Additionally, humans are more robust when input signals are 

corrupted by noise in the background such as crosstalk and poor channel conditions. The 

superiority of the auditory system motivates us to explore computational auditory scene 

analysis for robust speaker recognition.  

3.2 Usable Speech for Cochannel Speaker Recognition 

3.2.1 Cochannel speaker identification 

One type of noisy condition is cochannel speech where an input signal is a 

combination of speech utterances from two talkers. This condition usually occurs when 

two speech signals are transmitted over a single communication channel, or when two 

speakers are talking at the same time and they are unaware of each other. Cochannel 

speech is more challenging than telephone speech such as that used in the NIST 

evaluations because the former has a much higher proportion of speech overlap while the 

latter is conversation speech with relatively little speech overlap.  

Research has been carried out for decades aiming to extract one of the speakers from 

cochannel speech by enhancing target speech or suppressing interfering speech. However, 

in automatic speaker recognition, as pointed out by Lovekin et al. (2001), the 

intelligibility and quality of extracted speech are not important. What the system needs 

are portions of the speech that contain speaker characteristics unique to an individual 

speaker, classifiable and long enough for the system to make identification or verification 
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decisions. These portions of speech, or segments, are defined as consecutive frames of 

speech that are minimally corrupted by interfering speech, and are thus called usable 

speech (Lovekin et al., 2001).  

Previous studies find that voiced segments contain most of the information for SID, 

and different criteria such as frame-level TIR or spectral autocorrelation ratio have been 

developed to extract usable speech in cochannel speech (Krishnamachari et al., 2000; 

Lovekin et al., 2001). According to these criteria, a significant amount of cochannel 

speech can be considered usable for SID. Frame TIRs are easily calculated with 

premixing speech utterances, and usable speech extracted based on a TIR threshold 

retains frames where target speaker is much stronger in terms of overall energy than the 

other. Spectral autocorrelation ratio estimates the ratio between dominant peak and valley 

in autocorrelation of a spectral frame. This ratio is used to determine whether a frame is 

usable, meaning the spectrum is well structured (single-speaker speech), or not. This 

approach is simple and effective and shows a substantial improvement in SID 

performance. However, the authors use a priori frame TIRs and they are hard to estimate 

from mixture directly. A further study explores a maximum likelihood decision in an 

attempt to determine the speakers that generate usable speech segments (Smolenski et al., 

2002). 
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We propose a novel method to extract usable speech for speaker identification. This 

approach is based on a robust multipitch tracking algorithm (Wu et al., 2003) that 

estimates pitch contours of up to two speakers (see Section 2.3.1). As shown in Figure 

3.1, the proposed method is composed of three stages. First, the multipitch tracking 

algorithm is employed to produce pitch contours from a cochannel input. Then, the 

usable speech extraction method removes the segments with concurrent pitch contours. 

Silence and unvoiced segments are removed as well. Thus, only the segments that have 

single pitch contours are retained. Subsequently, the usable segments are assigned to two 
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Figure 3.1: Diagram of usable speech extraction and speaker identification. First, 
pitch tracks are obtained using a multi-pitch tracking algorithm. Then usable 
speech segments are extracted and assigned accordingly. Finally, speaker identity is 
determined using a speaker identification method. 
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speaker groups, corresponding to the two speakers in the mixture. Finally, speakers are 

identified using the assigned segments based on Equation (3.3). 

3.2.2 Usable speech extraction and assignment 

The multipitch tracking system outputs multiple pitch tracks and Figure 2.1 presents 

an illustration of the outputs. It is evident from the figure that in a cochannel mixture, 

there are portions that contain only one speaker’s voiced speech, and portions that contain 

both speakers’ voiced speeches. There are also portions considered by the multipitch 

tracking algorithm to contain one speaker’s voiced speech but they actually contain both 

speakers’ voiced speeches. A typical reason for this mistake is that one speaker’s voiced 

energy is much lower than that of the other. This kind of mistake, however, is rather 

benign as far as usable speech extraction is concerned.  

Usable speech extraction seeks to determine segments or sequences of frames that 

comprise a single speaker’s voice, and are thus usable for SID. Segments with concurrent 

pitch contours are not usable for SID because both talkers have strong energy in the 

segments. This distorts the acoustic features used in SID. More specifically, the 

harmonics and formants from two talkers are added together in the power spectrum, 

which ruins the second frequency analysis for deriving cepstral features (Huang et al., 

2001). Speech enhancement methods such as spectral subtraction (Berouti et al., 1979) 

are not applicable here because the interfering speech is highly nonstationary. Therefore, 

we remove segments with concurrent pitch contours from cochannel speech. 
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For the segments with a single pitch track, the competing voice is either silent or 

others’ unvoiced speech. In the former case, the power spectrum is intact; in the latter 

case, the power spectrum is minimally contaminated because unvoiced speech is usually 

much weaker than voiced speech. Thus, we consider the segments with a single pitch 

track as usable speech. The remaining signals are considered unusable and removed. To 

ensure the homogeneity of a usable speech segment, if neighboring pitch values changes 

as much as 10 Hz, the segment is split into two shorter segments.  

In cochannel speech, either speaker can randomly appear as the stronger speaker or 

the weaker one at a time. Hence, the extracted segments are separated in time and need to 

be sequentially organized into speaker streams for SID. Here, we leave the discussion of 

sequential grouping to Chapter 4 and assume that segments are ideally grouped into 

streams based on a priori pitch information. A segment is grouped if the majority of its 

frames contain pitch estimates that are consistent with the a priori pitch values.  

3.2.3 Evaluations 

As in Lovekin et al. (2001), we employ the evaluation data from the TIMIT speech 

corpus. The speaker set is composed of 38 speakers from the “DR1” dialect region, 14 of 

which are female and the rest are male. Each speaker has 10 utterance files, ranging from 

about 1.5 sec to 6.2 sec in length. For each speaker, 5 out of 10 files are used for training 

and the remaining 5 files are used to create cochannel mixtures for testing. For each 

speaker deemed as the target speaker, 1 out of 5 test files is randomly selected and mixed 

with randomly selected files of every other speaker, which are regarded as interfering 
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utterances. For each pair the TIR is calculated as the energy ratio of the target speech 

over the interference speech,  

2 2
1010log ( ) ( ) ,T I

n n

TIR s n s n
 
 =
 
 
∑ ∑                                                                (3.6)     

in which sT and sI are the speech samples of target and interference speakers in the time 

domain. The interference utterance is either cropped or concatenated with itself to match 

the length of the target utterance. Speech signals are scaled to create the mixtures at 

different TIRs: -20 dB, -10 dB, -5 dB, 0 dB, 5 dB, 10 dB and 20 dB. For example, 0 dB 

TIR means that the overall energy of target is equal to that of interference. Thus, for each 

TIR, a total of 1406 cochannel mixture files are created for the testing purpose.  

SID is performed based on (3.3). We employ the widely used 12 MFCCs and their 

first-order dynamic coefficients as speaker features. The resulting feature vector contains 

24 coefficient components. Speakers are modeled using 16-mixture GMMs, which are 

trained using the EM algorithm (Reynolds, 1995) from the training samples.  

To demonstrate the usefulness of our extraction method, usable speech is recognized 

after the segments are ideally assigned into streams. If the target speaker is of interest, 

then the speech signal from the other speaker is considered noise. Here, we choose the 

target speaker SID as our evaluation criterion. Figure 3.2 gives the target speaker 

recognition accuracy. As a baseline, a conventional SID system is applied to the 

cochannel speech to recognize the target speaker. The baseline performance documents 

the top two identified speakers. The accuracy degrades sharply when TIR decreases 

because the target speech is increasingly corrupted. Comparable results are obtained by 
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Yantorno et al. (2001) that seeks to understand how cochannel speech impacts SID 

performance.  

The first observation from the figure is that, under cochannel situations, usable 

speech extraction significantly improves SID performances; the average improvement is 

about 12% absolute. Secondly, the improvements are consistent across all TIR levels. 

Performance improvement decreases at higher TIRs because target speaker dominates the 

mixture. However, target speaker is dominated by interference at lower TIRs, resulting in 

better performance after usable speech extraction.  
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Figure 3.2: Target SID accuracy before and after usable speech extraction. SID is 
considered correct when the target speaker is identified from cochannel speech. 
Sequential grouping is performed using prior pitch information. 
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When either of the speakers in a cochannel mixture is of interest, we choose a 

different performance criterion as shown in Figure 3.3. Here a test is regarded correct if 

the input is identified as either the target or the interferer in the mixture. From the figure, 

it can be observed that usable speech substantially improves the identification 

performance. At 0 dB TIR, the error rate is almost cut in half. In addition, performance 

improvements occur across all TIR mixture levels. One might expect the result curves to 

be symmetrical around 0 dB because of the evaluation criterion. The asymmetry is due to 

the fact that interference signals are scaled to create cochannel mixtures. 
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Figure 3.3: SID error rate before and after usable speech extraction. SID is regarded 
correct when cochannel speech is identified as either target or interfering speaker of 
a cochannel mixture. 
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3.3 Binary Time-Frequency Masks for Robust Speaker Recognition 

A usable speech segment comprises a sequence of frames which are deemed to be 

speaker homogeneous. However, these frames may contain some speech energy from the 

other speaker because of the strong overlap in the cochannel condition. Instead of 

extracting usable speech at the frame level, it is desirable to identify usable speech at the 

level of time-frequency (T-F) units so that recognition performance could be further 

improved. Here, we employ a binary T-F mask representation for such purposes.  This 

mask labels a T-F unit reliable when it contains more energy from target than interference, 

and labels unreliable if otherwise (see also Section 2.3.2). Since the ideal binary mask 

provides the maximum SNR gain of all the binary masks (Hu and Wang, 2004; Ellis, 

2006), we also evaluate the ideal binary mask for robust speaker recognition as a 

performance upper-bound.  

Spectral subtraction has been proposed for binary mask estimation (Drygajlo and El-

Maliki, 1998; Drygajlo and El-Maliki, 2001). This method works well when noise is 

stationary, but its performance degrades sharply under nonstationary noise conditions.  

We employ the monaural speech segregation system (Hu and Wang, 2004) as described 

in Section 2.3.3 to obtain the mask. This system produces an estimate of the ideal binary 

T-F mask without making assumptions of the underlying noise source. Our evaluations 

also compare with those using binary masks estimated by spectral subtraction. The 

evaluations are conducted when speech is corrupted by cocktail party noise or rock music.  
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3.3.1 Missing-data recognition 

To utilize the binary masks for robust speaker recognition, we employ a missing data 

method (Drygajlo and El-Maliki, 1998; Drygajlo and El-Maliki, 2001). The basic idea is 

to treat the noise-dominant (unreliable) T-F units as missing data during recognition. In a 

typical speaker recognition system, the probability distribution of an extracted feature 

vector X, produced by a speaker λ, is modeled as a GMM (Reynolds, 1995). GMM is a 

weighted linear combination of K unimodal multivariate Gaussian densities, usually 

parameterized with diagonal covariance matrices (Cooke et al., 2001). Given a binary 

mask showing whether a feature component is reliable or missing, the feature vector can 

be split into reliable components X
r

 or unreliable ones X
u

 and its probability 

distribution becomes, 

2 2
, , , ,

1

( | ) ( | , ) ( | , ).

i j

K

k i i k i k j j k j k

k X X X X

p X w p X p Xλ µ σ µ σ
= ∈ ∈

=∑ ∏ ∏
r u

                            (3.7) 

wk is the weight of the k th Gaussian mixture. Xi and Xj refer to a reliable and unreliable 

feature component in X respectively; µk and 2
kσ  are their corresponding means and 

variances in the k th Gaussian mixture.  

The first likelihood term on the right-hand-side of (3.7) can be easily obtained from 

training since the features are considered reliable (clean). However, the second likelihood 

term is hard to compute because the feature component is regarded as missing and its 

distribution is unknown. There are two methods to deal with this unknown distribution, 

marginalization and imputation (Cooke et al., 2001). The latter seeks to impute the 
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missing features and replace them with estimates. The former reduces the distribution by 

integrating over the missing components. Imputation increases computational complexity 

but does not necessarily produce better verification results (Drygajlo and El-Maliki, 

2001). Thus, we use marginalization and compute the overall likelihood as, 

2
, ,

1

( | ) ( | , ).

i

K

k i i k i k

k X X

p X w p Xλ µ σ
= ∈

=∑ ∏
r

                                                          (3.8) 

The likelihood of a noisy utterance given a specific speaker model is computed as 

the likelihood product of feature vectors of individual frames. For a SID task, the speaker 

model that gives the maximum likelihood value is selected as the identified speaker. For 

SV tasks, we use a universal background model (UBM) for score normalization. 

Specifically, corresponding dimensions of the UBM distribution are also marginalized to 

calculate the log likelihood ratio in (3.5). 

3.3.2 SID evaluation under cochannel conditions 

This experiment demonstrates the SID performance using the missing-data method 

and the binary masks when the noise source is a speaker. To have a consistent 

comparison with previous studies (Lovekin et al., 2001; Shao and Wang, 2003; Shao and 

Wang, 2006a), we use the same cochannel corpus as described in Section 3.2.3. The 

training data for a speaker has an average of 10 sec of clean speech, and 16-mixture 

GMMs are trained using the EM algorithm (Reynolds, 1995). 

Figure 3.4 presents the results of this experiment. As a baseline, we extract 12 

MFCCs and their first-order derivatives as the feature vector. To compare with usable 
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speech processing, we apply the usable speech extraction method and ideally assign the 

extracted segments into the target stream using a priori pitch information as described in 

the preceding section. The same type of MFCCs is derived and identification is 

performed on the target stream. To evaluate the binary masks, we implement the missing 

data recognizer with 255-coefficient DFT feature vectors. Specifically, vectors are 

extracted from the log-compressed power spectrum of 20 ms frames with 10 ms overlap. 

The frames are extracted by applying a running Hamming window.  

It can be observed from the figure that the ideal binary mask performs significantly 

better than the usable speech method, which in turn is much better than the baseline 
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Figure 3.4: Speaker identification performance under cochannel conditions. The 
square line shows the performance when MFCCs are used. The diamond line shows 
the results of extracted usable speech segments after they are a priori assigned. The 
circle line gives performance achieved by the ideal binary mask using the missing 
data method. 
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performance. This is to be expected since the ideal binary mask provides 

reliable/unreliable information at a finer level than usable speech, and the T-F 

redundancy facilitates identification when features are partially missing. Evaluation of 

the estimated binary mask is not performed in this task because it is hard to determine 

target pitch contours for the speech segregation system under cochannel conditions.  

3.3.3 SID evaluation under non-speech noisy conditions 

In this experiment, we demonstrate the effectiveness of binary masks in adverse 

environments when the intrusion source is not a speaker. Two types of noise are selected 

from a noise database collected by Cooke (1993): cocktail party noise and rock music. 

The spectrogram illustrations of these two types of noise are presented in Figure 3.5.  

Both are wide-band and non-stationary, containing significant energy below 2 kHz. It is 

also observed that both noise types have some harmonic structure because the cocktail 

party noise contains speech-like sounds and the rock music contains musical instruments. 

The noisy speech utterances are simulated by mixing all the test files with the selected 

noises at -5 dB, 0 dB, 5 dB, 10 dB and 20 dB SNRs. For each pair of SNR and noise, 190 

mixtures are created for testing.  

Figure 3.6 shows the SID results for both noise conditions at various SNRs. The 

baseline system uses MFCCs and their first-order derivatives. CMN is applied for 

robustness. We also employ spectral subtraction to estimate binary mask for the missing 

data recognizer as proposed by Drygajlo and El-Maliki (1998). Specifically, the average 
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noise spectrum is estimated from the initial 10 frames of the mixture, and subtracted from 

each subsequent mixture spectrum. If the resulting component is greater than the noise 

estimate in energy, the corresponding mask element is labeled 1 and 0 otherwise. The 

implied 0 dB SNR criterion is preferred over the negative energy criterion because it 

produces better results (Cooke et al., 2001). 

To estimate the ideal binary mask, target pitch contours are determined by applying 

the widely-used Praat toolkit (Boersma, 2001) on the noisy speech. Note that an 

estimated mask is obtained using the auditory filterbank that models human’s auditory 

response and it has large overlaps between neighboring filters. Directly using the 

filterbank energy gives SID accuracy of 94.2% on clean speech, which is significantly 
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Figure 3.5: Spectrograms of cocktail party noise and rock music, selected from the 
noise database collected by Cooke (1993).  
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Figure 3.6: Speaker identification performance under noisy conditions. The top plot 
shows the results for cocktail party noise, and the bottom one for rock music. The 
square line represents baseline results of the GMM recognizer using cepstral mean 
normalized (CMN) MFCCs. The diamond line shows the missing data recognition 
results using binary masks estimated by spectral subtraction (SS). The circle line 
gives performance achieved by the ideal binary mask. The star line shows the 
results of the estimated ideal binary mask. 
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lower than that using the DFT coefficients, 99.5%. Thus, we transform the estimated 

mask from Gammatone frequency bands into DFT domain by labeling the corresponding 

frequency bins. Subsequently, the same missing data recognizer is used as in the previous 

experiment.  

It can be observed from the figure that the estimated binary mask performs 

significantly better than the baseline system using MFCC-CMN. As both noises are non-

stationary, spectral subtraction is unable to provide a good mask estimate, and its 

performance degrades sharply with decreasing SNR. The ideal binary mask produces best 

performance. The performance gap between the ideal binary mask and estimated mask 

leaves much room for improvement by adopting more effective mask estimation 

approaches. 

3.3.4 Speaker verification evaluations 

In a similar configuration as the preceding experiment, we evaluate binary masks for 

speaker verification tasks. Here, only the mixtures with the cocktail-party noise are tested 

on the 38-speaker set. One mixture file contributes 1 true score for the target speaker and 

37 imposter scores for the other speakers in the set. For each SNR, there are 190 true 

scores and 7030 imposter scores. The scores are normalized using a UBM of 4096 

mixtures, which is trained from the entire TIMIT training set, excluding the above 38 

speakers. 

Evaluation results are reported in Figure 3.7 using the decision error tradeoff (DET) 

curves provided by NIST (Martin et al., 1997). DET curve is a variant of the widely used 
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Figure 3.7: Speaker verification performance under cocktail party noise. The top 
plot shows the results for the ideal binary mask, plotted in solid curves against 
MFCC baseline in dotted curves. The bottom one shows performance of the 
estimated binary mask in solid curves against the same baseline in dotted curves. 
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ROC curve. Unlike the latter, DET plots the two error rates on the x and y axes on a 

normal deviate scale. We adopt this metric because NIST provides a DET toolkit for the 

annual speaker recognition evaluations (Martin and Przybocki, 2001; Przybocki and 

Martin, 2004; Przybocki et al., 2006). This tool standardizes the performance evaluations 

by taking verification scores as input and producing DET plots as output. The ideal 

binary mask yields substantial performance gains over the baseline in the entire range of 

SNR levels. The estimated mask achieves significant improvement from 10 dB to -5 dB. 

It under performs only at the 20 dB condition, largely due to the segregation strategy that 

attempts to reconstruct the target signal by grouping harmonic components. Consequently, 

inharmonic target components are removed even when interference is very weak. 

3.4 A Complete CASA-based Speaker Recognition System 

In this section, we present a complete CASA-based robust speaker recognition 

system. We first propose two novel speaker features based on an auditory periphery 

model (Patterson et al., 1992). We find that these features achieve comparable SID 

performance to ETSI-AFE features under both clean and noisy conditions. To account for 

the deviations of noisy features from clean ones, we employ an uncertainty decoder 

(Srinivasan and Wang, 2007) that is based on binary T-F masks estimated by a speech 

segregation system (Hu, 2006), which has been briefly described in Section 2.3.3. Our 

system achieves substantial improvement over ETSI-AFE features in a wide range of 

SNR conditions. Conceptually, our system improves noise robustness in two stages of a 
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speaker identification system; novel robust auditory features in the feature extraction 

stage, and feature uncertainty estimation and decoding in the scoring stage. 

Figure 3.8 presents a diagram of the overall system. Input speech is decomposed 

using a Gammatone filterbank (Wang and Brown, 2006) to generate a time sequence of 

auditory features. In addition, we feed the input signal to the speech segregation system 

(Hu, 2006) that iteratively estimates the ideal binary mask and produces better estimates 

than earlier systems (Hu and Wang 2004, Hu and Wang 2006). A T-F unit of this mask 

indicates whether the corresponding Gammatone feature component is reliable or 

corrupted within a time frame. The corrupted components within a frame vector are then 

reconstructed using a speech prior (Raj et al., 2004) and the reconstruction uncertainties 

are also estimated. Subsequently, enhanced Gammatone features and their uncertainties 

are transformed into the cepstral domain by a discrete cosine transform (DCT) 

(Oppenheim et al., 1999). Finally, an uncertainty decoder (Deng et al., 2005) identifies 

speaker using the enhanced cepstral features and the transformed uncertainty estimates. 

Note that this system can be directly generalized to speaker verification tasks by 

calculating the UBM likelihood using uncertainty decoding and applying the verification 

decision rule of (3.5).  

3.4.1 Auditory feature extraction 

Our system first models auditory filtering by decomposing an input signal into the 

time-frequency domain using a bank of Gammatone filters (Wang and Brown, 2006). 

Gammatone filters are derived from psychophysical observations of the auditory 
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Figure 3.8: Schematic diagram of a complete CASA-based speaker identification system. Input speech is passed through a 
computational auditory scene analysis system to produce a binary time-frequency (T-F) mask. Then, extracted 

Gammatone features (GF) are used in conjunction with the binary mask to reconstruct missing T-F units from a speech 
prior. GF uncertainties are also estimated in the reconstruction process. GFs and their uncertainties are then transformed 
into “cepstrum” by the discrete cosine transform (DCT).  Finally, uncertainty decoding searches for the best-matched 
speaker model given the resulting Gammatone frequency cepstral coefficients (GFCC) and uncertainties. The dotted path 
denotes how GFCCs are extracted from clean speech for the purpose of speaker model training. 
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periphery and this filterbank is a standard model of cochlear filtering (Patterson et al., 

1992). The impulse response of a Gammatone filter centered at frequency f is: 

1 2 cos(2 ), 0
( , )

0,

a btt e ft t
g f t

else

π π− − ≥
= 


                                                                    (3.9) 

t refers to time; a=4 is the order of the filter; b is the rectangular bandwidth which 

increases with the center frequency f. We use a bank of 128 filters whose center 

frequency f ranges from 50 Hz to 8000 Hz. These center frequencies are equally 

distributed on the ERB scale (Moore, 2003) and the filters with higher center frequencies 

have wider frequency ranges. 

Since the filter output retains original sampling frequency, we down-sample the 128 

channel outputs to 100 Hz along the time dimension. This yields a corresponding frame 

rate of 10 ms, which is used in many short-time speech feature extraction algorithms 

(Huang et al., 2001). The magnitudes of the down-sampled outputs are then loudness-

compressed by a cubic root operation. The resulting responses form a matrix, 

representing a T-F decomposition of the input. This T-F representation is a variant of 

cochleagram (Wang and Brown, 2006), which is analogous to the widely used 

spectrogram. Note that unlike the linear frequency resolution of a spectrogram, a 

cochleagram provides a much higher frequency resolution at low frequencies than at high 

frequencies. Figure 3.9 shows a cochleagram and a spectrogram of an utterance. 

Cochleagram retains higher frequency resolution at low frequency range for the same 

number of frequency components. We base our subsequent processing on this T-F 

representation. 
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We call a time frame of the above cochleagram a Gammatone feature (GF). Hence, a 

GF vector comprises 128 frequency components. Note that the dimension of a GF vector 

is much larger than that of feature vectors used in a typical speaker recognition system. 

Additionally, because of overlap among neighboring filter channels, the Gammatone 

features are largely correlated with each other. Here, we apply a discrete cosine transform 

(Oppenheim et al., 1999) to a GF in order to reduce its dimensionality and de-correlate its 

components. We call the resulting coefficients Gammatone frequency cepstral 

coefficients (GFCC) (Shao et al., 2007).  
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Figure 3.9: Illustrations of a cochleagram (top) and a spectrogram (bottom) of a 
clean speech utterance. Note the asymmetric frequency resolution at low and high 
frequencies in the cochleagram. 

 
 
 
 



 64 

The components of a GF vector G are indexed by variable i that ranges from 1 to N. 

Here, N=128, referring to 128 Gammatone frequency channels. Cepstral coefficients, C[j] 

j=0…N-1, are obtained as follows, 

1

0

2
[ ] [ ]cos (2 1) ,

2

N

i

j
C j G i i

N N

π−

=

 
= + 

 
∑  j=0…N-1                                                  (3.10) 

Note that the 0th order coefficient is summed using all the GF components. Thus, it 

relates to the energy of a GF vector. In implementation, one can group the transform 

factors in (3.10) into a matrix, and multiply it with a GF matrix that is composed of a 

sequence of GF vectors to obtain GFCCs for an entire cochleagram. 

Rigorously speaking, the newly derived features are not cepstral coefficients because 

a cepstral analysis requires a log operation between the first and the second frequency 

analysis for the deconvolution purpose (Oppenheim et al., 1999). Here we regard these 

features as cepstral coefficients because of the functional similarities between the above 

transformation and that of a typical cepstral analysis.  

3.4.2 Feature reconstruction and uncertainty decoding 

As described before, the probability distribution of an extracted feature vector X, 

produced by a speaker λ, is modeled as a GMM, typically parameterized by diagonal 

covariance matrices (Reynolds, 1995). Under noisy conditions, the aforementioned 

monaural speech segregation system produces a binary T-F mask that indicates whether a 

GF feature component is reliable or corrupted (missing). Thus, the feature vector can be 

partitioned into reliable components X
r

, and unreliable ones X
u

, 
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We propose to use the auditory cepstral feature GFCC in conjunction with the binary 

mask. In order to apply the DCT transform to a corrupted GF X, we first reconstruct the 

missing GF components from a speech prior model, which is similar to the universal 

background model (UBM) in a typical speaker verification system. Specifically, the 

speech prior p (X ) is modeled as a GMM (Raj et al., 2004), and obtained from pooled 

training data: 

1

( ) ( ) ( | )
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p X p k p X k
=

=∑ ,                                                                                       (3.12) 

where K is the number of mixtures, k is the mixture index, and p(k) gives the prior of a 

mixture, or in other words the mixture weight. p (X |k ) is the kth Gaussian distribution 

with a mean vector µk and a diagonal covariance 2.kσ  Given a binary mask, the 

components of the mean and variances of each Gaussian can be split into reliable and 

unreliable ones. We then calculate the a posteriori probability of the kth mixture given 

reliable GF components as in 
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                                                                               (3.13)  

As shown in Cooke et al. (2001) and Srinivasan and Wang (2007), the unreliable 

components are estimated as the expected value or the mean conditioned on X
r

. 
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,
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, kµ
u  

 refers to the mean vector of the unreliable components of the kth mixture in the 

speech prior. The reliable components are retained in the reconstruction.  

Although (3.14) gives a good estimate of the unreliable GF components, errors in 

reconstruction will cause degradation of recognition performance. Estimates of the 

reconstruction uncertainties likely mitigate such degradations by accounting for the 

reconstruction errors in the speaker likelihood calculation. Specifically, the uncertainties 

are estimated as in Srinivasan and Wang (2007), 
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                                                       (3.15) 

2
,kσ

u
 is the variances of the unreliable components of the kth mixture in the prior model. 

Thus, we have obtained the reconstructed GF and its variances, which are then 

transformed into the cepstral domain through DCT.  

A registered speaker is modeled using a GMM. Therefore, 

2
, ,( | ) ( ; , )Z k Z kp Z k N Z µ σ=                                                                                     (3.16) 

calculates the likelihood of observing a GFCC frame, Z, given mixture component k; µZ,k 

and 2
,Z kσ are the mean and the variances of the kth Gaussian mixture components. If 

noisy speech is processed by an unbiased speech enhancement algorithm, it is shown by 

Deng et al. (2005) that the observation likelihood shall be computed as 
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Here, Ẑ is the enhanced GFCC and 2ˆZσ refers to the diagonal covariances of the cepstral 

transformed 2σ̂ in (3.15). The non-diagonal covariance coefficients are numerically small 

because of the de-correlation of DCT (Oppenheim et al., 1999) and dropped from 

computation. It can be seen that the uncertainty decoder increases the variances of 

individual Gaussian mixture components to account for the mask estimation errors (Deng 

et al., 2005; Srinivasan and Wang, 2007).  

3.4.3 Speaker identification evaluations 

We evaluate the noise robustness of our proposed auditory features and the 

uncertainty estimation method in a SID task. The standard MFCC features are used to 

obtain the baseline performance. We also compare the performance of our system with 

the state-of-the-art robust front-end ETSI-AFE (STQ-AURORA, 2005-11). 

We employ the speech materials from a recent speech separation challenge (SSC) 

(Cooke and Lee, 2006). The training data is drawn from a closed set of 34 talkers, 18 

males and 16 females, and consists of 17,000 utterances. We use the speech-shaped noise 

(SSN) portion of the test set for our SID evaluation. The SSN data was generated by 

mixing clean utterances with speech-shaped noise at 4 SNRs: −12, −6, 0 and 6 dB. The 

test set contains 600 utterances in each SNR condition. The speakers are modeled using 

64-mixture GMMs and trained on the training set of SSC directly. The speech prior 
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model comprises 2048 Gaussian mixtures, and is constructed from the pooled training 

utterances of all speakers. SID scores are only calculated on the voiced speech frames. 

Figure 3.10 presents the SID evaluation results. ‘MFCC_D_Z’ denotes the baseline 

SID performance obtained using 24 MFCC features including deltas and after cepstral 

mean normalization. They are extracted using the HTK toolkit (Young et al., 2000). 

‘ETSI-AFE’ represents the enhanced 24 MFCC features including deltas, derived from 

the ETSI-AFE front-end feature extraction algorithm. ‘ETSI-AFE_Z’ denotes the cepstral 

mean normalized ETSI-AFE feature.   

GF and ‘GFCC_C0’ are the auditory features described earlier with 128 and 23 

dimensions respectively. ‘GFCC’ is the GFCC feature but with the first cepstral 

coefficient C0 removed. ‘GF_MD’ stands for the missing data recognition method using 

the GF features and estimated binary T-F masks as described in Section 3.3.1.  

‘GFCC_C0_U’ denotes SID performance by the uncertainty decoder using GF 

reconstruction and estimated uncertainties in the GFCC feature. ‘GFCC_U’ shows the 

same feature configuration but without C0. ‘GF_U’ shows the SID performance when the 

uncertainty decoder is directly applied in the GF domain, before the DCT transform.  

It is observed from the figure that the proposed GF feature performs significantly 

better than the baseline MFCC feature at low SNR conditions. More importantly, the 

GFCC features, especially the GFCC without C0, not only achieve substantial 

improvement over the baseline feature, but also obtain comparable identification results 

with the robust features extracted by ETSI-AFE.  Since C0 relates to the overall energy of 

a feature frame, it is very susceptible to noise degradation. Thus, removing C0 is 
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Figure 3.10: Accuracies of speaker identification in the presence of speech-shaped 
noise. 
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_D delta feature 
_Z cepstral mean normalization 
_C0 the 0th order cepstral coefficient 
_MD missing data recognition 
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GFCC Gammatone frequency cepstral coefficients 

 
 
 
 



 70 

beneficial at low SNR conditions. Note that C0 has been removed from MFCC and ETSI-

AFE features. 

The missing data method using marginalization performs significantly better than 

ETSI-AFE. GF reconstruction and uncertainty decoding in the GF domain further 

improve SID accuracies. Substantial improvement over ETSI-AFE is obtained after the 

GF feature and the uncertainty are transformed into the GFCC domain. In summary, 

GFCC features provide a substantial contribution to the robustness of the system.  

3.4.5 Feature dimensions and dynamic features 

In the experiment above, the lower 23-order GFCC coefficients are used as speaker 

feature vectors. We chose 23 coefficients because they are observed to be compact and 

retain the majority information of a GF frame. In addition, this number relates to the 

number of typical Mel-frequency filters in MFCC feature extraction (Huang et al., 2001).  

After performing cepstral transformation of GFCC, we find that the lower 30-order 

coefficients capture most of the GF feature information while the coefficients above 30th 

are close to 0 numerically, which means that they provide minimal information. Figure 

3.11 illustrates a GFCC transformed GF and a cochleagram using 30 GFCCs. The top 

plot shows a cochleagram of an utterance. The middle plot shows a comparison of a GF 

frame at 1 sec of the top plot and the resynthesized GF from its 30 GFCCs. The bottom 

plot presents the resynthesized cochleagram from the top plot using 30 GFCCs. As can be 

seen from the figure, the lowest 30-order GFCCs retain the majority information in a 

128-dimensional GF. This is due to the “energy compaction” property of DCT 
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Figure 3.11: Illustrations of energy compaction by GFCCs. Plot (a) shows a 
cochleagram of an utterance. Darker color indicates stronger energy within the 
corresponding time-frequency unit. Plot (b) shows a GF frame at time 1 sec of (a). 
The original GF is plotted as the solid line and the resynthesized GF by 30 GFCCs 
is plotted as the dashed line. Plot (c) presents the resynthesized Cochleagram from 
(a) using 30 GFCCs. 
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(Oppenheim et al., 1999). Hence, we switch to using the 30-dimensional GFCCs as 

feature vectors from now on.  

Since a typical speaker recognition system uses MFCCs and their first-order (delta) 

dynamic coefficients. Thus, it is desirable to study how GFCC dynamic features fare for 

recognition. The delta feature ZD at time t is calculated from a set of neighboring GFCC 

vectors Z around time t. 
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( ) ( )

( )
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w
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Z t
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                                                                     (3.18) 

w is a neighboring window index; W refers to the half-window length and it is set to 2 

here. In other words, the delta-window is of length 5. Then, the obtained delta 

coefficients are appended to the 30-dimensional GFCCs, resulting in a 60-dimensional 

feature vector.   

According to the uncertainty decoder described earlier, the enhanced feature vector Z 

assumes a Gaussian distribution. Thus, given the linear Equation of (3.18), the delta 

feature uncertainties are derived from GFCC uncertainties 2ˆZσ  as  
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Second-order dynamic coefficients, known as the acceleration feature, can be calculated 

by replacing the GFCCs and their uncertainties (3.18-3.19) with the delta coefficients and 

their uncertainties. 

We evaluate the new set of GFCC features using the same recognition system and 

evaluation configurations as reported in the preceding section. The results are shown in 

Table 3.1 and the symbols used in the table are explained in Table 3.2. Note that the 

default experiment configuration includes missing-data reconstruction from binary T-F 

masks. Increasing the number of GFCCs from 23 to 30 improves identification 

performance under low SNR conditions. Similar improvements are also observed when 

C0 is removed. Therefore, we use as default 30-dimensional GFCC as feature vectors in 

the rest of this dissertation. Note that the first cepstral coefficient C0 relates to the overall 

energy of a feature frame, thus it is susceptible to noise degradation. Therefore, it is 

beneficial to keep it under high SNR conditions and remove it under low SNRs.   

It can be seen from the table that the delta-augmented GFCCs achieve significantly 

better performance than GFCC alone except under -12 dB condition, where the missing-

data reconstruction does not perform well with few reliable T-F units. Using the 

uncertainty decoder improves the identification accuracies under -6 dB and 0 dB where 

the performance has not saturated. Unlike other features in the table, ‘GFCC(30)_C0_D’ 

denotes that delta coefficients are appended but uncertainty decoding is not applied to the 

deltas. Controlled comparison of this feature set with others shows that delta feature 

alone improves identification accuracy and that applying uncertainty decoding further 

improves performance. However, we find that including the acceleration feature rather 
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hurts the system performance. This is because the acceleration window requires 9 frames 

while the binary masks with the speech-shaped-noise do not contain consecutively 

reconstructed frames that can provide reliable acceleration feature estimates. 

 
 
 

 

Feature  -12 dB -6 dB 0 dB 6 dB Clean 

GFCC(23)_C0_U 13.33 51.17 87 97.33 99.67 

GFCC(22)_U 13.67 56.5 86.83 96.83 99.67 

GFCC(30)_C0_U 14.83 54.67 89 97.67 99.67 

GFCC(29)_U 13.33 58.5 88.5 97.33 99.67 

GFCC(30)_C0_D 9.67 56.5 90.5 98.5 99.67 

GFCC(30)_C0_D_U 9.83 58.83 92.17 98.67 99.67 

GFCC(30)_C0_D_A_U 7.67 37.83 81 97.33 99.67 

 
 

Table 3.1: Accuracy (%) of robust speaker identification using GFCCs, dynamic 
features and uncertainty decoding. Symbols are explained in Table 3.2. 

 

Experiment Symbol Descriptions 

GFCC Gammatone frequency cepstral coefficients 

(23) (30) total number of GFCCs 

_C0 the 0th order cepstral coefficient 

_D first-order dynamic feature, delta feature 

_A second-order dynamic feature, acceleration feature 

_U uncertainty decoding 

_Z cepstral mean normalization 

ETSI-AFE robust features by ETSI-AFE 

 
 

Table 3.2: Symbol notations. 
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3.4.6 SID evaluations under other non-stationary noise conditions 

The experiments of the preceding sections are conducted under cochannel speech 

and speech-shaped-noise conditions. In this section, we evaluate our system under four 

other non-stationary noisy conditions. Specifically, the four noise types are selected from 

the Noisex 92 corpus (Varga and Steeneken, 1993) which is widely used for robust 

speech recognition studies: speech babble noise, destroyer (a navy ship) operation room 

noise, F-16 cockpit noise and factory noise. The first two types contain a noisy 

background with many people speaking at the same time. We will use the simplified 

notations of “Babble”, “Destroyer”, “F16” and “Factory” to refer to the four noise types 

respectively. 

Each noise type was stored as a single recording of approximately 320 sec. We 

create the noisy utterances for test purposes by mixing the clean utterances of the SSN 

task with the four noise types. The mixtures are created at -12 dB, -6 dB, 0 dB, 6 dB, 12 

dB and 18 dB SNRs. In order to incorporate all the noise statistics, we randomly select a 

portion of the noise recording that has the same duration as the clean utterance for each 

mixture pair. This guarantees that the noise signals are different for each utterance but 

they have the same type within each SNR condition. Thus, there are 34 speakers and 600 

test utterances for each of the 6 SNR conditions of the 4 noise types. 

This expanded test set is evaluated using GFCC, delta feature and uncertainty 

decoding, and their results are present in Table 3.3. Specifically, we use the 30-

dimensional GFCCs and their delta coefficients because they achieved the best overall 

performance in the preceding experiments. In addition, MFCC features extracted by 
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Babble -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB 

GFCC_C0_D 3.83 25 83.83 97.5 99.17 99.5 

GFCC_D 4.33 30.67 82.83 96.67 98.67 99.5 

GFCC_D_C0 3.83 28 83.17 97.33 99.17 99.5 

ETSI-AFE_D 3.17 19 69.83 96.5 99.67 99.83 

ETSI-AFE_D_Z 2.16 15 61.5 93.33 99.67 99.83 

       

Destroyer -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB 

GFCC_C0_D 4 16.5 76.83 97 98.67 99.17 

GFCC_D 3.67 14.67 76.83 94.33 98.5 99.17 

GFCC_D_C0 3.33 13.17 73.67 94.83 98.5 99.17 

ETSI-AFE_D 3.33 12.83 44.5 76.17 95 99.33 

ETSI-AFE_D_Z 3 11.67 48.67 88.33 98.17 99.5 

       

F16 -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB 

GFCC_C0_D 6.83 41.67 83.5 96.5 99.17 99.33 

GFCC_D 6.83 45.17 84.33 95.5 99.17 99.5 

GFCC_D_C0 6.17 42.17 84.5 95.67 99 99.5 

ETSI-AFE_D 3.33 3.83 37.83 77.5 96.5 99.67 

ETSI-AFE_D_Z 2.17 7.5 35.33 81.17 97 99.5 

       

Factory -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB 

GFCC_C0_D 8.17 46.17 87.83 97.83 99.33 99.33 

GFCC_D 8.67 46.17 87.67 97.17 99.33 99.5 

GFCC_D_C0 10 43.17 86.67 97.33 99 99.5 

ETSI-AFE_D 3.67 9.5 43.5 79.17 95.67 99.5 

ETSI-AFE_D_Z 3.33 9 38 82.17 96.17 99.33 

 
 
Table 3.3: Accuracy (%) of robust speaker identification using GFCCs, dynamic 
features and uncertainty decoding. Performance by using ETSI-AFE is presented for 
comparison. Notations are explained in Table 3.2. Note that symbol ‘_U’ is dropped 
because all the configurations with GFCCs employ the uncertainty decoder.  
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ETSI-AFE with their delta features and CMN are evaluated for comparison purposes 

since they provide the best SID performance without using GFCC features.  

The results in Table 3.3 corroborate the conclusions in the SSN experiments that 

GFCC features significantly outperform ETSI-AFE features except at SNRs of 12 dB and 

18 dB where identification performance saturates. Additionally, the first cepstral 

coefficient C0 is susceptible to noise degradation since it relates to the overall energy of a 

feature frame, and removing it improves performance under low SNR conditions.   

We have also evaluated the GFCCs with C0 removed from the static feature but with 

C0  added for the delta feature. This type of feature configuration has shown robustness in 

speech recognition studies since it is believed that delta C0 is robust against noise. 

However, according to the results in the Table, this feature combination does not 

consistently improve accuracies. This is mainly due to poor GFCC reconstruction from 

sparse binary T-F masks at low SNRs. 

3.4.7 Speaker verification evaluations 

All the preceding experiments are conducted on speaker identification tasks. Our 

system can be easily generalized to handle speaker verification tasks by adopting the 

decision rule in (3.5). Since the verification process requires a UBM for score 

normalization purpose, the UBM likelihood is calculated by the uncertainty decoder in 

the same way as the speaker likelihoods. We evaluate the verification system on the same 

test set used in the preceding section. Specifically, one noisy utterance contributes 1 true 

score for the corresponding target speaker and 33 imposter scores for the others in the 
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speaker set. Therefore, there are 600 true scores and 19800 imposter scores for every 

SNR condition. The UBM is a 2096-mixture GMM, obtained from the training data 

pooled from all the 34 speakers.   

The verification results are shown as DET curves (Martin et al., 1997) in Figures 

3.12-3.16 at the end of this section. Note that all the -12 dB conditions are not included 

because the recognition errors are too high for the DET toolkit to plot meaningful curves. 

From the figures, it can be observed that GFCC features significantly outperform ETSI-

AFE features under most of the conditions, except at 12 dB of Factory and F16 noise 

types, 6 dB of Babble and Destroyer noise, where results are comparable. However, 

GFCC underperforms ETSI at 18 dB of all the noise types. We suspect that there are two 

reasons. The first is that reconstruction is not as effective as at high SNR conditions as 

using ETSI features. In the speaker identification evaluations, identification accuracies 

are improved from above 90% at 6 dB to close to 100% at 12 dB and 18 dB. The second 

reason is that the estimated uncertainties flatten the Gaussian mixture distribution, 

leading to less discriminative scores. We conduct several control studies to understand 

why the GFCC performance lags behind at high SNRs. The results are also shown in 

Figure 3.12-3.16. First, the delta feature uncertainties are removed to see whether delta 

uncertainties distort the likelihood estimates. Then, we remove the uncertainty decoder 

and use the enhanced GFCC features directly for verification. From the 18 dB plots, it is 

evident that GFCC features, both baseline ones (extracted directly from noisy speech) 

and reconstructed ones, substantially outperform baseline MFCC features. Babble noise 

is an exception, which yields comparable speaker verification results at 18 dB. However, 
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since the improvement margin of speaker identification experiments is the smallest 

among all the four noise types, this exception is probably due to the noise itself. 

Invariably, the enhanced GFCC features, both with and without uncertainty decoding, 

perform significantly lower than GFCC baseline features. This finding supports our first 

hypothesis that feature reconstruction is not as effective in higher SNR conditions as in 

lower SNR conditions. For the enhanced GFCC features, removing uncertainties actually 

improves performance numerically even though the resulting differences may not be 

statistically significant. This supports our second hypothesis that uncertainties reduce the 

discriminative power of reconstructed features. 

ETSI-AFE features are derived using sophisticated noise reduction processing (STQ-

AURORA, 2005-11). It contains a two-stage Mel-warped Wiener filtering, voice activity 

detection for noise estimation, gain normalization and several other advanced front-end 

signal processing modules. On the one hand, it is not surprising for ETSI features to 

outperform GFCCs under mildly noisy conditions such as 18 dB since GFCC extraction 

does not undergo any signal-level noise reduction processing. On the other hand, the 

model-based GFCC reconstruction, which estimates global means for missing values 

given reliable T-F units, outperforms the ETSI-AFE under the remaining noisy conditions.  

In summary, considering the facts that baseline GFCCs achieve significantly better 

performance than MFCCs under high SNR conditions and that enhanced GFCCs with 

uncertainty decoding outperform ETSI-AFE features under most of the other SNR 

conditions, our GFCC extraction method provides a robust feature set for speech 

processing. 
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Figure 3.12: Speaker verification evaluation under -6 dB of Babble, Destroyer, F16 and 
Factory noise conditions. _D means delta feature, _U refers to uncertainty decoding, _Z 
means cepstral mean normalization. 
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Figure 3.13: Speaker verification evaluation under 0 dB of Babble, Destroyer, F16 and 
Factory noise conditions. _D means delta feature, _U refers to uncertainty decoding, _Z 
means cepstral mean normalization. 
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Figure 3.14: Speaker verification evaluation under 6 dB of Babble, Destroyer, F16 and 
Factory noise conditions. _D means delta feature, _U refers to uncertainty decoding, _Z 
means cepstral mean normalization. 
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Figure 3.15: Speaker verification evaluation under 12 dB of Babble, Destroyer, F16 and 
Factory noise conditions. _D means delta feature, _U refers to uncertainty decoding, _Z 
means cepstral mean normalization. 
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Figure 3.16: Speaker verification evaluation under 18 dB of Babble, Destroyer, F16 and 
Factory noise conditions. _D means delta feature, _U refers to uncertainty decoding, _Z 
means cepstral mean normalization. 
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CHAPTER 4                                                                            

FEATURE AND MODEL BASED SEQUENTIAL GROUPING

As described earlier, the segmentation stage of a CASA system decomposes an input 

signal into groups of contiguous time-frequency units or segments. Each of these 

segments originates from a single speaker. Subsequently, the simultaneous organization 

process groups these segments across frequency, resulting in simultaneous streams. The 

goal of sequential organization is to further group these streams, which are still unrelated 

in time, into speaker streams.  

In this chapter, we first explore feature-based grouping methods using features 

discussed in Chapter 2, including pitch, spectrum, timbre and vocal-tract length. Since the 

organizational goal entails classification and assignment of the segments according to 

their inherent speaker identities, we propose to base sequential grouping on the speaker 

feature and modeling methods described in Chapter 3. More specifically, we derive a 

computational objective for joint speaker recognition and sequential grouping based on 

speaker models. The derivation of the objective leads to an algorithm that searches for the 

optimal hypothesis in the joint speaker and grouping space. This model-based algorithm 
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groups the usable speech segments and its performance is then compared with the 

feature-based methods under cochannel conditions.  

Subsequently, we extend our grouping algorithm to incorporate a finer level 

representation of the segments using binary time-frequency masks and novel auditory 

features. To handle the missing T-F units denoted by the binary masks, this extension 

employs the reconstruction method and the uncertainty decoder from our robust speaker 

recognition study. The grouping algorithm is evaluated on a speech separation and 

recognition task. 

4.1 Feature-based Sequential Grouping 

4.1.1 Pitch-based sequential grouping 

Previous studies have demonstrated the importance of pitch information for speaker 

recognition; see e.g. Atal (1972). Perceptual studies have also shown the importance of 

pitch in speech grouping, e.g. Darwin et al. (2003). Pitch can help differentiate speakers 

and thus could be very useful for sequential grouping. However, pitch alone is inadequate 

for speech grouping because a speaker’s pitch may vary considerably and different 

speakers can have substantial pitch range overlap. On the hand, dynamic aspects of pitch 

is more discriminative (Atal, 1972). In this section, we propose a pitch dynamic feature 

for the sequential grouping purpose.  

The dynamic feature is extracted based on multipitch tracking (see Section 2.3.1) and 

usable speech segments (see Section 3.2.2). First, the time gap between two pitch 



 87 

segments and the difference between the ending pitch of the preceding segment and the 

beginning pitch of the following segment are collected. We then multiply the two 

obtained quantities together. The resulting product reflects a pitch change between two 

segments. Basically, the larger the product, the less likely these segments belong to the 

same speaker. Hence, it is considered as a pitch dynamic feature. Since a Gaussian-like 

peak is observed from the histogram of training samples, we employ a mixture of a 

Gaussian distribution and a uniform distribution to model the feature distribution. 

Maximum likelihood estimators of the distribution parameters are obtained from the 

training samples. For sequential grouping, a binary decision is made regarding whether to 

group the current segment with the preceding segment by thresholding the likelihood of 

the pitch dynamic feature given its distribution. This pitch-based grouping method is 

compared with other grouping methods in Section 4.2.3. 

4.1.2 Timbre features 

As described in Section 2.2, the definition of timbre is general and does not prescribe 

what are the attributes that constitute timbre. In order to employ timbre for sequential 

organization, as a first step, the timbre attributes need to be defined.  

Brown and Cooke (1994b) propose a timbre-based approach for music sound 

segregation. The authors suggest two features, brightness and onset asynchrony, obtained 

from two dimensions of a timbre space. This space is derived from studies on perceptual 

music grouping. One dimension of the space describes the distribution of spectral energy. 

Within this dimension, the brightness feature is defined as a spectral centroid. In exact 
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terms, it is the mean spectral amplitude weighted by frequency indices. The other 

dimension relates to harmonic synchronicity at the onset of a tone. The onset asynchrony 

feature quantifies the quality of this synchronicity by measuring the slope of onset times 

of all the spectral components. Since samples of music instruments exhibit well-separated 

clusters in the feature space, sequential grouping is easily done by comparing the timbre 

features. A subsequent study models dynamics of the timbre features by tracking the 

features across time (Godsmark and Brown, 1999). More specifically, the features are 

estimated from continuous time frames, and the estimates are further smoothed in time to 

form timbre tracks. Since a musical instrument has a unique track, sequential grouping is 

performed by inspecting whether an input follows the timbre track.  

The success of applying timbre in music grouping is mainly due to the fact that 

music instruments tend to have invariant timbre features. However, timbre features do not 

exhibit the same type of invariance for speech. For example, Figure 4.1 shows histograms 

of spectral centroid estimates for six speakers from the TIMIT corpus. We randomly 

select two utterances for each speaker and calculate spectral centroid within 20 ms time 

frames with 10 ms frame shift. Here, only voiced frames are shown in the figure. Similar 

to the study by Brown and Cooke (1994b), the spectral centroid is calculated by 

weighting GF components with their channel indices. It is evident from the figure that 

male speakers tend to have smaller spectral centroid than females, but there is no obvious 

pattern to distinguish different speakers. Therefore, we will not use the timbre features 

for speech grouping. On the other hand, acoustic features such as MFCC and GFCC have 

already incorporated the signal properties described by the timbre features and the timbre 
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Figure 4.1: Histograms of spectral centroid estimates for six speakers from the TIMIT 
corpus. The top three speakers are female and the bottom three are male. 
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track is a simplified variant of the dynamic features presented in speaker recognition 

studies. Hence, we will employ the MFCC, GFCC and dynamic features for sequential 

grouping. 

4.1.3 Vocal tract length 

Speech production is typically modeled as a source-filter process (Furui, 2001). The 

source in the model refers to a sequence of pulses that simulates the airflow passing 

through the glottis when voiced sound is produced; it is typically simulated as white noise 

when unvoiced sound is produced. Vocal tract is usually modeled as concatenated 

acoustic tubes, which filter the source signal into the sounds being produced. Given this 

model, the frequency responses of the vocal tract can be estimated from spectral envelope 

of the signal. In turn, the shape of the vocal tract can be estimated from acoustical 

analysis of voiced speech (Schroeder, 1966; Paige and Zue, 1969; Wakita, 1973; Wakita, 

1977; Ladefoged et al., 1978; Necioglu et al., 2000; Dang and Honda, 2002). Vocal tract 

length (VTL) is one prominent factor that defines this shape. Intuitively speaking, the 

longer the VTL, the lower the fundamental frequency and formant frequencies, and vice 

versa. In addition, VTL estimation and normalization have been employed to remove 

inter-speaker variability and yield performance gains for automatic speech recognition 

(Huang et al., 2001). For sequential organization, the key is to group separated 

simultaneous streams according to speaker identities. Since VTL measures an anatomical 

difference between speakers, we explore how to use VTL for speech grouping in this 

section.  
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Here, we employ the algorithm proposed by Wakita (1977) for VTL estimation. In 

this algorithm, vocal tract shape is modeled by an acoustic tube with concatenated 

cylindrical sections of equal length. By applying the linear prediction method in a frame 

of input signal, the area function of each section can be determined from the frequencies 

and bandwidths of the detected formants. Since there is an infinite number of VTLs for a 

given set of formants, the length that gives the most uniform shape of the tube is selected 

as the estimate from a VTL range.  

Figure 4.2 shows histograms of VTL estimates for six speakers from the TIMIT 

corpus. Two utterances are randomly selected for each speaker and VTL is estimated 

within 20 ms time frames with 10 ms frame shift. Estimates from voiced frames are 

shown in the figure as done in Figure 4.1. It is evident that all the speakers have large 

overlaps in the VTL range and that there is no distinction among different speakers. This 

is mainly due to the fact that formant frequencies and bandwidths relate to phonemes and 

that the same phoneme uttered by different speakers tends to exhibit close formants 

(Furui, 2001). Since VTL estimation depends on formants, variations of VTLs from the 

same speaker likely originate from different phonemes, which exhibit different formants. 

More importantly, under noisy conditions, robust formant estimation remains a challenge 

problem (Huang et al., 2001). Thus, we do not further explore VTL or related features for 

sequential grouping. 



 92 

0.1 0.12 0.14 0.16

Speaker 1

VTL (m)
0.1 0.15

Speaker 2

VTL (m)
0.1 0.12 0.14 0.16

Speaker 3

VTL (m)

0.1 0.12 0.14 0.16

Speaker 4

VTL (m)
0.1 0.15

Speaker 5

VTL (m)
0.1 0.12 0.14 0.16

Speaker 6

VTL (m)

 
 
Figure 4.2: Histograms of VTL estimates for six speakers from the TIMIT corpus. The 
top three speakers are female and the bottom three are male. 
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4.1.4 Spectrum-based sequential grouping 

Speech spectrum carries speaker characteristics (Furui, 2001). Assuming that 

spectral features of the same speaker are more similar than those of different speakers, 

spectral similarity can be used for sequential grouping. The symmetrized spectral 

divergence measure proposed by Carlson and Clement (1991) estimates such similarity 

using the linear predictive coding method. This measure is employed by Morgan et al. 

(1997) to assign separated and enhanced speech to two speaker streams in a cochannel 

mixture. Specifically, the assignment relies on frame-level spectral comparison of an 

unassigned frame with recently assigned frames using the divergence measure. 

Given the assignment of initial frames in a cochannel mixture, we calculate the 

minimum divergence measure between an unassigned frame and the assigned ones for 

either speaker. The frame is assigned to the speaker that yields the smaller divergence. 

This spectrum-based grouping method is compared with other grouping methods in 

Section 4.2.3. Since assignment of the initial frames greatly influences the following 

grouping decisions, we manually assign the initial fifty frames of either speaker streams. 

Hence, the reported results represent the best performance that the spectrum-based 

method can achieve. 

4.2 Model-based Sequential Organization 

Unlike the preceding section, we focus on using speaker models for sequential 

organization in this section. Specifically, we propose a model-based grouping system that 



 94 

organizes usable speech segments under cochannel conditions. In other words, we regard 

the usable segments as simultaneous streams. Figure 4.3 presents a diagram of the 

system. First, a multipitch tracking algorithm processes a cochannel input and produces 

pitch contours (Wu et al., 2003). Then usable speech segments are extracted from the 

input based on the pitch contours. Finally, the model-based sequential grouping algorithm 

organizes these usable speech segments into two speaker streams (refer to Section 2.3.1 
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Figure 4.3.  Schematic diagram of the proposed model-based sequential grouping 
system. First, cochannel speech is passed through a multipitch tracking algorithm 
and pitch contours are obtained. Then usable speech segments are extracted based 
on the pitch information. Finally, a model-based sequential grouping algorithm 
organizes segments into two streams and corresponding speaker identities are also 
produced. 
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for detailed description of multipitch tracking, and Section 3.2.2 for usable speech 

extraction.)  

4.2.1 Derivations 

Here, we seek to construct a model-based sequential organization framework. Since 

we propose using speaker characteristics for the grouping purpose, we derive our 

computational goal from the speaker recognition framework as described in Section 

3.1.1. Given a set of K registered speaker models Λ={λ1, λ2, … , λK}, a speaker 

identification system seeks to find the speaker model that maximizes the posterior 

probability for a feature sequence O = {X1, X2, … , XM} that has been extracted from an 

input speech utterance. By applying Bayesian analysis, the SID decision rule becomes 

Equation (3.3). For the sake of completeness, we include the same equation as follows, 

1

ˆ arg max ( | ) arg max log ( | )
M

m

m

P O p X
λ λ

λ λ λ
∈Λ ∈Λ =

= = ∑ .                                                 (4.1) 

m is the time frame index of the feature sequence. This maximum-likelihood 

classification has been well established (Reynolds, 1995). However, in order to organize 

speakers in cochannel speech, this probability framework for a single speaker needs to be 

extended to multiple speakers.  

Given a cochannel input, the usable speech extraction method extracts N speech 

segments, Y={S1, S2, … , Si, … , SN}, each of which is a usable speech segment that is 

composed of frames X; in other words, Si={X}. Given Y, (4.1) can be extended as follows 
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I II

I II I II
,

ˆ ˆ, arg max ( , | )P Y
λ λ

λ λ λ λ
∈Λ

= .                                                                           (4.2) 

This decision rule finds a pair of speaker models Iλ̂  and IIλ̂  from the speaker set Λ that 

maximize the posterior probability given usable speech segments. As mentioned earlier, 

the single-pitch segments must be organized into two speaker streams because in 

cochannel speech one speaker can dominate in some portions and be dominated in other 

portions. For example, a possible segment assignment (grouping) may look like  

0 1 1 0
1 2{ , ,..., ,..., }i NS S S S , where superscripts, 0 and 1, do not represent the speaker identities 

but only denote that the segments marked with the same label are from the same speaker. 

Therefore, the joint computational objective of sequential grouping and SID may be 

stated as finding a pair of speaker models Iλ̂  and IIλ̂  together with a segment assignment 

ĝ that jointly maximize the posterior probability:  

I II

I II I II
, ,

ˆ ˆˆ, , , argmax ( , , | ),
g G

g P g Y
λ λ

λ λ λ λ
∈Λ ∈

=                                                                    (4.3) 

where G is the assignment space, which includes all possible assignments (label 

sequences) of the segments. 

The posterior probability in (4.3) can be written as 

    
I II I II

I II I II I II
( , , , ) ( , )

( , , | ) ( | , , ) ( | , ) .
( ) ( )

P g Y P
P g Y P Y g P g

P Y P Y

λ λ λ λ
λ λ λ λ λ λ= =         (4.4) 

Since the assignment is independent of specific models, P ( g |λI, λII ) becomes P ( g )  

which, without prior knowledge on segment assignment, we assume to be uniformly 

distributed. Assuming the independence of speaker models and using the same 

assumption from traditional speaker identification that prior probabilities of speaker 



 97 

models are the same, we insert Equation (4.4) into (4.3) and remove the constant terms. 

The objective then becomes finding two speakers and an assignment that have the 

maximum probability of assigned usable speech segments given the corresponding 

speaker models as follows. 

I II

I II I II
, ,

ˆ ˆˆ, , arg max ( | , , ).
g G

g P Y g
λ λ

λ λ λ λ
∈Λ ∈

=                                                                    (4.5) 

Note, the conditional probability is essentially the joint SID score of assigned 

segments. Given an assignment g, we denote Y 0 as the subset of usable speech segments 

labeled 0, and Y 1 the subset labeled 1. Since Y 0 and Y 1 are complementary, the 

probability term in (4.5) can be written as follows, 

0 1
I II I II( | , , ) ( , | , ).P Y g P Y Yλ λ λ λ=                                                                       (4.6) 

The g term is dropped from the above equation because the two subsets already 

incorporate the labeling information. 

Assuming that any two segments, Si and Sj, are independent of each other given the 

speaker models and that segments with different labels are produced by different 

speakers, the conditional probability in (4.6) can be written as 

0 1

0 1 0 1
I II I II I II

I II

( , | , ) ( | , ) ( | , )

                            ( | ) ( | )

i j

i j

S Y S Y

P Y Y P Y P Y

P S P S

λ λ λ λ λ λ

λ λ
∈ ∈

=

= ∏ ∏
.                                           (4.7) 

The probability of having a segment S from a pre-trained speaker model λ is the product 

of likelihoods of that speaker model generating each individual observation frame X of 

the segment, assuming the observations are independent of each other. In other words,  
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    ( | ) ( | ).
X S

P S p Xλ λ
∈

= ∏                                                                                       (4.8)  

4.2.2 Computational methods 

The computational objective in (4.5) is to find the optimal hypothesis of two 

speakers and one assignment that yield the maximal probability using (4.6)-(4.8). Given 

the extracted usable speech segments and individual speaker models trained from clean 

speech, the likelihood maximization amounts to a search for the globally optimal 

hypothesis in the joint speaker and assignment space, Λ and G. 

A. Exhaustive search 

The brute-force way to find the maximum is exhaustive search. For a cochannel 

mixture file, this involves calculating the probability of the assigned segments given a 

pair of speaker models, P (Y | g ,λI, λII ), for every possible pair out of K speakers in Λ and 

every assignment in G. Let the calculation of P (Y | g ,λI, λII ) take a unit time, then total 

computation time is on the order of O ( K 2 [2 N ) . However, according to (4.6)-(4.7), once 

an assignment is given, the likelihood maximization is simply finding the best speaker for 

each segment subset, and corresponding likelihood values are then multiplied, resulting 

in a complexity of O ( K [2 N ) .   

Similarly, for a given pair of speakers, the likelihood maximization amounts to 

finding the best assignment for each segment, and the overall probability is the product of 

these segment likelihood values. The speaker pair with the highest probability gives the 
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search result together with its associated segment assignment. This way the search 

complexity is reduced to O ( K 2 [N ) .  In implementation, the real computation time can be 

further reduced by storing all the likelihood scores of a segment given a model in the 

memory as a table and looking up a score from the table when needed. This 

implementation avoids repetitive computations of the same score and swaps some 

memory space for computation time. 

B. Hypothesis pruning 

In the search space, some hypotheses have very low probabilities. Therefore, if these 

hypotheses could be identified and pruned from further consideration, the computation 

time could be greatly reduced. The results of exhaustive search indicate peaky 

distributions with each peak occupied by several assignment hypotheses in the search 

space. Thus, keeping a small number of hypotheses could be sufficient. If we associate 

two states with each segment, representing the hypotheses that the segment is labeled as 0 

or 1, a trellis is formed from the first segment to the last one, whose paths represent all 

the possible assignments of the segments. This way, the search amounts to finding the 

best path in the trellis, and the hypotheses with low probabilities can then be pruned. We 

propose an iterative hypothesis pruning algorithm to keep only the two best hypotheses in 

each iteration. More specifically, the first segment is arbitrarily labeled and starting from 

the second segment, only two hypothesis states are retained corresponding to the current 

segment being labeled as either 0 or 1. The better path (out of the two) leading to each 

state is selected, and path selection is based on SID scores given the partial assignment. 
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After the last segment is labeled, the best out of the two hypothesis states is then chosen; 

the best path from the first segment to the last is constructed from the chosen paths at all 

preceding iterations. This algorithm can be viewed as finding the best path via Viterbi 

decoding. The evaluation results in the next section show that the proposed algorithm 

achieves a level of performance close to that of exhaustive search. 

For each unlabeled segment, it retains two hypotheses, each of which calculates 

P (Y | g ,λI, λII ) twice in the worst case, resulting in the polynomial time complexity on 

the order of O ( K [N ) . The computation time could be further reduced by skipping the 

pairs of speakers whose partial scores are below a threshold or much lower than others. 

We give the detailed algorithm as follows. 
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Hypothesis pruning algorithm: 

 

Step 0. Order the segments in Y= {S1,S2,…,SN }  sequentially in time. 

Step 1. Label S1 in Y with 0 (assign it to Y0). This initial assignment is arbitrary. 

Step 2. For S2 in Y, form two hypotheses: H0, H1, and create a label path for each of 

them. H0 assumes that the current segment belongs to set Y 0, and H1 

assumes that the current segment belongs to Y 1. The label paths are 

0[2][ ] (0,0),Path H = 1[2][ ] (0,1).Path H =  

Path[n][.] records assignment labels for the past n-1 segments and the 

hypothesized assignment of the current segment. 

Step 3. For an unprocessed segment Sn, n>2, form H0 and H1. Then expand the 

label path for H0 and H1 as follows, 

( )
0 1

0
{ , }

[ ][ ] [ 1] arg max [ 1][ ],0 ,0
H H H

Path n H Path n L Path n H
∈

  
= − −   

  
 

( )
0 1

1
{ , }

[ ][ ] [ 1] arg max [ 1][ ],1 ,1
H H H

Path n H Path n L Path n H
∈

  
= − −   

  
 

where the L function, as defined below, estimates the joint SID score by 

considering the best partial segment assignment from 1 to n. 

( )
I II

I II
,

[ 1][ ], max ( | ( [ 1][ ], ), , ),L Path n H l P Y Path n H l
λ λ

λ λ
∈Λ

− = −                     (4.9) 

l = 0 or 1, refers to the hypothesized labeling for the current segment. 

Step 4. Repeat Step 3 until the last segment SN is processed. For SN, compare the 

likelihood values returned by L for H0 and H1. The final winning hypothesis is 

the one with the higher likelihood. Obtain the corresponding two speaker 

identities that maximize (4.9) and the segment assignment for this 

hypothesis. 

 

The L function in (4.9) is the same as (4.6) except that L only considers the partial 

segment assignment from S1 to Sn . Figure 4.4 gives an illustration of this iterative 

algorithm. Since every usable segment could be produced by either of two speakers in the 

mixture, it is hypothesized as either H0 or H1 and labeled with 0 or 1 respectively (S1 is 

initialized to hypothesis H0). The two hypothesis states bifurcate iteratively and our 
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pruning algorithm always retains the best path to a state and is recorded in Path. For each 

state, we compare the partial SID scores, considering the label paths recorded with the 

preceding hypothesis states. The SID score is defined by the L function in (4.9). The 

better path is then chosen. The algorithm repeats until the last segment is processed.  
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Figure 4.4: Illustration of the hypothesis pruning algorithm. The algorithm is 
executed segment by segment. Every segment is hypothesized to be either H0 or H1 

and labeled with 0 or 1 respectively, except that S1 is identified with hypothesis H0. 
Path records the best label path. For either hypothesis of the segment to be 
considered, the better label path from the preceding iteration is chosen by 

comparing L(.) defined in (4.9), and its label path is copied to the current path. The 
algorithm repeats until the last segment is processed. 
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The joint maximization for sequential grouping amounts to maximization over 

speaker pairs and maximization of segment assignments for a specific speaker pair. In 

(4.7), we assume segment independence given a speaker pair. With this assumption, 

making a local decision to assign a segment to either speaker in a pair guarantees 

optimality within a speaker pair. However, it does not guarantee global optimality among 

all the speaker pairs. Since the pruning algorithm prunes assignments of a subset of 

segments, the hypothesis pruning algorithm may not find the optimal hypothesis.  

Here an example is presented to illustrate the difference between the exhaustive 

search algorithm and the hypothesis pruning algorithm. Assume that there are 4 segments 

to be grouped {S1, S2, S3, S4} and 3 speakers {A, B, C}. The likelihoods of a segment 

produced by a speaker are calculated and stored in a table as follows. 

 A B C 

S1 0.7 0.6 0.65 

S2 0.5 0.8 0.5 

S3 0.1 0.4 0.5 

S4 0.8 0.5 0.6 

 

Using the exhaustive search algorithm, we first evaluate the best segment assignment for 

each pair of speakers. 
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Apparently, speaker pair A-B yields the highest overall likelihood and its segment 

grouping, (0 1 1 0), is selected as output. 

The hypothesis pruning algorithm initializes the first two segments as follows, 

 

Note that the first segment is labeled 0 and hypotheses, H0 and H1, are constructed for the 

second segment, meaning that this segment is labeled 0 and 1 respectively. For H0 and H1 

of the third segment, we evaluate their hypotheses using (4.9). 

 

For H0 of S3, we select the better assignment (0 1 0). For H1, (0 0 1) is the chosen one. 

Note that the assignment (0 1 1) has been pruned here. Thus, the best grouping (0 1 1 0) 

will not be produced by the hypothesis pruning algorithm in the end. For the fourth 

segment, it is straightforward to show,  
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We select (0 1 0 0) for H0 of S4 and (0 0 1 1) for H1. Finally, the algorithm outputs: 

speaker pair B-C and segment assignment (0 1 0 0). Its overall likelihood is 0.156, close 

to likelihood, 0.1792, of the optimal hypothesis by exhaustive search. Its segment 

assignment (0 1 0 0) differs from the optimal hypothesis (0 1 1 0) for the label of the third 

segment.   

C. Alternative methods 

We have also explored a number of variations of the hypothesis pruning algorithm. 

Because the algorithm prunes certain paths, it resembles beam search (Russell and 

Norvig, 2003). In the evaluation section, we also examine a beam search algorithm with 

width of 1 or 2 for performance comparison with preceding methods.  

If the main objective is cochannel speaker identification, rather than sequential 

organization, a comprehensive approach is to directly identify speaker pairs from a closed 

set. One way of formulating the problem is to omit the assignment variable from the 

computational goal and replace usable speech segments by mixture itself. This may be 

viewed as integrating over the speaker assignment variable, and hence can produce the 

maximum SID performance. To reduce the computational complexity associated with 
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training speaker-pair models, one approximation is to model a speaker-pair model by 

simply merging two corresponding single-speaker models: 

( )I II I II( | , ) 0.5 ( | ) ( | ) .p O p O p Oλ λ λ λ= +  In other words, the joint likelihood of a 

mixture utterance is taken to be the average of the likelihoods given by each constituent 

model. This method is denoted as combined GMM and we also evaluate its SID 

performance.  

4.2.3 Evaluations 

In this section, we present the evaluation results of the described sequential 

organization methods together with some alternative approaches by performing a SID 

task under cochannel conditions.  

We employ the same evaluation data as used in cochannel speaker recognition in 

Section 3.2. Specifically, the speaker set consists of 38 speakers from the “DR1” dialect 

region, 14 of which are females and others are males. Each speaker has 10 utterance files, 

ranging from about 1.5 sec to 6.2 sec in length. For each speaker, 5 out of 10 files are 

used for training and the remaining 5 files are used to create cochannel mixtures for 

testing. For each speaker deemed as the target speaker, 1 out of 5 test files is randomly 

selected and mixed with randomly selected files of every other speaker, which are 

regarded as interfering utterances. The interfering utterance is either cropped or 

concatenated with itself to match the length of the target utterance and it is scaled to 

create the mixtures at different TIRs. For example, 0 dB TIR means that the target speech 

overall energy is equal to that of the interfering speech. Thus, for each TIR, a total of 
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1406 cochannel mixture files are created for the testing purpose.  In the experiments, 

speakers are modeled as 16-mixture GMMs, which are tested to be sufficient for the data, 

and the observations or features used are MFCCs and their first-order dynamic 

coefficients (Young et al., 2000). Note that no background model is used. 

This experiment evaluates the performance of our model-based sequential 

organization approach. For this evaluation we only consider cochannel mixtures with 

overall TIR equal to 0 dB to simulate real cochannel situations. To facilitate a better 

understanding and comparison, we combine the evaluation results into a single table, 

Table 4.1, including the results from the alternative methods and the feature-based 

grouping methods.  

The 2nd column in Table 4.1 shows the correct rate of speaker assignment by 

counting correctly assigned frames. To calculate the ratio, the denominator is the total 

number of extracted usable speech frames. To find the numerator, the two sets of usable 

frames labeled by the system as 0 and 1 are compared with the two ideal sets labeled with 

single-speaker pitch points derived from premixing utterances. There are two possible 

correspondences between the two system-labeled sets and the two ideal sets, and for each 

correspondence the number of matching frames is recorded. The larger number out of the 

two correspondences is used as the numerator. Note that the SID performance does not 

impact the speaker assignment results.  

The 3rd and 4th column in the table present the SID performances with two different 

criteria. Like the evaluation in the preceding section, the speaker from a specified channel 

– target speaker – can be of interest. Thus, the first criterion measures target identification 
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Speaker Identification Accuracy (%) 
Method 

Frame 
Assignment 

Accuracy (%) Target  Target & Interferer  

Random Assignment 50.0 N/A* N/A 

Ideal Assignment by Prior 
Pitch 

94.1 72.0 43.3 

Exhaustive Search 77.4 70.4 40.2 

Hypothesis Pruning 76.2 68.8 37.5 

Conventional SID N/A 57.2 13.1 

Hypothesis Pruning (open set) 73.0 68.4 N/A 

Beam Search (beam = 1) 66.0 51.5 21.0 

Beam Search (beam = 2) 76.0 68.1 37.2 

Combined GMM 68.2 76.9 48.7 

Pitch Dynamics 68.2 52.5 22.3 

Spectral Divergence 66.2 N/A N/A 

*N/A: unavailable. 
 
 
Table 4.1: Grouping accuracy for sequential organization and cochannel speaker 
identification accuracy. 
 
 
 
 

correct rate. The second criterion records the percentage of mixtures where both speakers 

are correctly identified; this is the more stringent criterion. 

In the table, the baseline rate of correct grouping corresponding to random labeling 

of each usable frame is 50.0%. The 2nd row shows that ideal assignment by prior pitch 

achieves 94.1% correct rate. Note that ideal assignment is applied at the segment level: A 

segment takes the label of a majority of the frames in the segment, where each frame is 

labeled by comparing the detected pitch with the prior pitch before mixing. The less-than-
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perfect result reflects that a single-pitch segment does not always contain frames from the 

same speaker, which is expected considering the nature of cochannel speech.  

Exhaustive search achieves 77.4% correct assignment rate. It reflects the 

effectiveness of using speaker characteristics for sequential organization. From the 

derivation it is evident that exhaustive search places an upper limit on the performance of 

model-based sequential grouping. Our proposed hypothesis pruning method achieves 

76.2% correct rate, approaching the upper limit set by exhaustive search.  

Table 4.1 also gives the evaluation results for pitch-based and spectrum-based 

grouping as described earlier in the chapter. The method that uses pitch dynamics clearly 

performs worse than the pruning algorithm, but produces a significant improvement over 

the baseline case without usable speech processing. The grouping method based on 

spectral divergence yields 66.2% correct rate for grouping, comparable in performance to 

the pitch dynamics method, but it is less effective than our proposed method. As a result 

the SID results are not shown. 

When the beam search algorithm is applied with a beam width of 1, it yields 

assignment accuracy of 66.0%, which are significantly worse than the pruning algorithm. 

In the case where the beam width is 2, this method produces results close to those 

obtained by the hypothesis pruning algorithm.  

The combined GMM methods ignores sequential grouping and identifies underlying 

speaker by a combined speaker pair. Its SID performance is higher than the proposed 

method that considers speaker assignment. Part of the reason for the better performance is 

that usable, or single-pitch, frames may still contain energy from both speakers and 
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forcing a decision of one speaker may degrade identification performance. Of course, 

correct recognition of a speaker pair does not lend itself to sequential organization 

directly. However, with the recognized speaker pair, each usable speech frame can be 

classified into the two speaker sets by comparing its likelihood values given the speaker 

models. This way, the combined GMM method achieves 68.2% correct assignment rate, 

lower than that of the hypothesis pruning method.  

In terms of SID accuracy, the baseline performance is taken to be identification 

accuracy by recognizing individual speakers directly. In this case, the two SID criteria 

document the top two identified speakers. Ideal assignment produces much higher SID 

performance though it is not 100% correct because of imperfect assignment and limited 

segment lengths. For the model-based approach, exhaustive search approaches the ceiling 

SID performance with ideal assignment, and the hypothesis pruning method performs 

almost as well as exhaustive search, while cutting the overall computation time from an 

average of 0.491 seconds per file to 0.037 seconds on a Pentium III workstation (The 

computation time for the exponential version of exhaustive search is on average 7 

minutes per file.) Since the search is based on SID scores, the performance gap between 

the model-based method and ideal assignment is smaller than that of sequential grouping 

performance.  

In the formulation of sequential organization and SID, we assume both speaker 

models are available – a closed-set situation. To test how the algorithm functions in an 

open-set situation, we apply the hypothesis pruning algorithm on cochannel speech where 

one speaker is not registered. This is a task of identifying a familiar speaker in cochannel 
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mixtures where no model is available for the interfering speaker. For this experiment, the 

same mixture files are used as in previous evaluations. Specifically, for each test mixture, 

we remove the corresponding interferer model from the speaker set. In this case, only the 

SID criterion for target speaker is applicable. The corresponding results are 73.0% for 

correct assignment and 68.4% for target speaker identity (see also Table 4.1).  These 

results are not much worse than in the closed-set situation. We suspect that the coherence 

of speaker features in an utterance enables the selection of a speaker model from the 

registered speakers that is closest to the unregistered speaker. Of course, when none of 

the two speaker models are known, it would not make sense to use a model-based 

approach and other methods such as pitch-based organization introduced earlier should 

be explored instead. We will discuss organization under such conditions in the next 

chapter. 

While comparing average results of different methods, it is useful to note statistical 

significance. With 1406 test utterances a one-tailed test for the recognition accuracy at 

around, say, 68.8% requires about 2.9% difference for statistical significance at 5% level 

(Gillick and Cox, 1989). This suggests, for example, that the performance difference in 

target speaker recognition between the hypothesis pruning algorithm and exhaustive 

search is not statistically significant. For speaker assignment performance it is more 

difficult to construct a statistic for the hypothesis test because frame-level decisions are 

not independent within segments.  
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4.3 Incorporating Binary T-F Masks  

As described in Chapter 1, the main goal of this dissertation is develop algorithms 

for sequential grouping in the CASA framework. The outputs of sequential grouping are 

streams represented by binary time-frequency masks. The inputs are the simultaneous 

streams obtained by segmentation and simultaneous grouping. The usable speech 

segment used in the preceding sections comprises a sequence of frames which are 

deemed to be speaker homogeneous, which reflects one form of the simultaneous stream. 

In this chapter, we employ the monaural speech segregation system as described in 

Section 2.3.3 to generate simultaneous streams (Hu, 2006). This system estimates ideal 

binary T-F masks of the streams. We modify the model-based sequential grouping system 

to replace the usable segments with the binary T-F masks. In addition, besides voiced 

speech, unvoiced segments are also extracted based on an onset/offset segmentation 

method (Hu and Wang, 2007) for sequential grouping. We evaluate the system using a 

recent speech separation and recognition task (Cooke and Lee, 2006). The objective of 

this task is to segregate two-talker mixtures and recognize keywords in the separated 

target.  

4.3.1 Extended sequential grouping algorithm 

In sequential grouping of usable speech segments, the algorithm groups segments 

based on aggregated likelihood scores of a speech frame given a model as ( | )p X λ  in 

Equation (4.8). On the other hand, a binary T-F mask that represents a simultaneous 

stream indicates reliable and unreliable T-F units. To incorporate the binary masks for 
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sequential grouping, we employ the same feature reconstruction and uncertainty decoding 

method as described in Section 3.4.2. Specifically, we reconstruct a GF frame using 

(3.13) and (3.14), and estimate its uncertainties using (3.15). The enhanced GF and 

uncertainty estimates are transformed into the GFCC domain for the calculation of the 

likelihood of ( | )p X λ  using the uncertainty decoder in (3.17).   

Besides the above modifications, the exhaustive search algorithm described in 

Section 4.2.2 is employed to group the simultaneous streams. The organized streams are 

then combined to produce binary T-F masks that represent segregated speaker streams.  

4.3.2 Unvoiced segmentation and grouping 

The simultaneous streams correspond to voiced speech. In natural speech, unvoiced 

speech constitutes a smaller portion of an overall utterance than voiced speech but it 

contains important phonetic information (Wang and Hu, 2006). Therefore, if automatic 

speech recognition is the intended application, it is also important to segment and group 

unvoiced speech. 

Unvoiced speech lacks the harmonic structure, and as a result is more difficult to 

segment. Here we employ an onset/offset based segmentation system (Hu and Wang, 

2007). This system has three processing stages: Smoothing, onset/offset detection, and 

multiscale integration. In the first stage, the system smoothes the cochleagram of an input 

using a Gaussian smoothing process. In the second stage, the system detects onsets and 

offsets in each filter channel and then merges simultaneous onsets and offsets from 

adjacent channels into onset and offset fronts, which are defined as vertical contours 
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connecting onset and offset candidates across frequency. Segments are generated by 

matching individual onset and offset fronts. The smoothing operation may blur event 

onsets and offsets of small T-F regions at a coarse scale, resulting in the loss of some true 

onsets and offset. On the other hand, the detection process may be sensitive to 

insignificant intensity fluctuations within events at a fine scale. Thus, the cochleagram 

may be under-segmented or over-segmented because of detection errors. In order to 

produce satisfactory segmentation, segments are produced at four different scales and 

integrated subsequently (for further details see Hu and Wang, 2007). 

Since onsets and offsets correspond to sudden intensity increases and decreases 

which could be triggered by voiced speech or unvoiced speech, the obtained segments 

usually contain both speech types. Additionally, the mixing of sources leads to blurring 

and merging of onset/offset fronts. Thus, matching onset and offset fronts creates 

segments that may not be source homogeneous. Here, we extract the unvoiced segments 

from the onset/offset segments by removing those portions that overlap with the 

simultaneous streams. 

Voiced speech likely plays a dominant role in sequential grouping and speaker 

recognition (see e.g. Shao and Wang, 2006a). Therefore, for a cochannel mixture, we first 

apply the model-based sequential grouping algorithm to organize the simultaneous 

streams, producing two binary masks (streams) and corresponding speaker identities. 

Secondly, unvoiced segments are grouped with the two streams using the above 

sequential grouping algorithm except that the system uses the detected speaker pair 

associated with the masks.  
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We find that unvoiced segments are typically much smaller than simultaneous 

streams, thus resulting in poor likelihood estimation by GFCC reconstruction and 

uncertainty decoding. Therefore, likelihoods are calculated using the marginalization 

method which ignores the missing T-F units as specified in Equation (3.8). Figure 4.5 

presents the separated speaker streams after grouping simultaneous streams and unvoiced 

segments. The two speaker streams are shown in two different gray colors. 
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Figure 4.5: The estimated speaker streams after sequential grouping of 
simultaneous streams and unvoiced segments. White color shows the background. 
The two gray-colored regions represent two separated speaker streams. 
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We find that the onset/offset analysis does not capture all the speech segments. 

Therefore, to refine the binary masks, we apply a watershed algorithm (Vincent and 

Soille, 1991) to the cochleagram and extract fragments that comprise T-F units with 

similar energy values. A resulting segment is assigned to one of the aforementioned 

speaker streams if its mask largely (greater than two-thirds) overlaps with its binary 

mask. This step assumes that a small segment of connected T-F units with close energy 

values is produced by the same speaker. Subsequently, if a segment has not been merged, 

its overlapped portions with either of the two streams, if any, are removed from its mask. 

Finally, the remaining segments are grouped with the refined masks using the sequential 

grouping algorithm and the detected speaker pair. 

4.3.3 Speech separation and recognition evaluation 

We evaluate our system on the speech separation and recognition task (Cooke and 

Lee, 2006). One of the goals of this task is to recognize speech from a target talker in the 

presence of a competing speaker. This noisy condition is essentially cochannel speech. 

The signals are sampled at 25 kHz and every utterance follows a sentence grammar of 

$command $color $preposition $letter $number $adverb. 

There are 4 choices each for $command, $color, $preposition and $adverb, 25 

choices for $letter (A-Z except W), and 10 choices for $number (1-9 and zero). For 

example, a valid utterance could be “Place blue at F 2 now”. The possible choices in each 

position are roughly uniformly distributed in the corpus. The two-talker task is to identify 

the letter and the number spoken by the talker who said the keyword color, “white”. The 
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speech recognition task is to identify the color, the letter and the number. The training 

data is drawn from a closed set of 34 talkers and consists of 17,000 utterances in total. 

The two-talker test data contains pairs of sentences mixed at 6 different target-to-masker 

ratios (TMRs): -9, -6, -3, 0, 3 and 6 dB. Note that TMR is the same as TIR. One third of 

this data consists of same talker (ST) mixtures, another third comprises of mixtures of 

different talkers of the same gender (SG), and the remaining third consists of different 

gender (DG) mixtures.  

To build speaker models, we utilize the GFCC feature as described earlier. Each of 

the 34 speaker models comprises 64 mixtures of Gaussians. The speech prior model is 

trained on GF features and comprises 2048 Gaussian mixtures. This prior model and the 

binary masks are used in the cochleagram domain to reconstruct missing T-F units. The 

reconstructed GFs are then transformed into the GFCC domain using DCT. For 

recognition, we form the 60-dimensional feature vector of GFCC_D, including delta 

coefficients calculated using a sliding window of 5 frames. GF uncertainties are also 

transformed into the cepstral domain since DCT is a linear transformation. Whole-word 

HMM-based speaker-independent ASR models are then trained on clean speech; each 

word model comprises 8 states and 32 Gaussian mixtures with diagonal covariance in 

each state. The uncertainty decoder also uses diagonal covariance for uncertainties. 

During the recognition process, given the estimated uncertainties and the clean ASR, the 

uncertainty decoder calculates the likelihood of the reconstructed GFCC_D features and 

transcribes the speech. 
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Since the overall segregation system does not rely on the content information in an 

utterance, the system does not know which separated stream contains “white” in the two-

talker task. In order to select the target, we employ a normalized scoring method. We let 

our uncertainty decoder recognize both segregated streams using two different grammars 

W and NW: 

W: $command white $preposition $letter $number $adverb. 

NW:  $command $non-white $preposition $letter $number $adverb. 

$non-white has 3 choices of colors except white. A normalized score is calculated for 

each stream by subtracting the recognition likelihood score of NW from the one using 

grammar W. The stream with a larger score is chosen as the target, i.e., stream 1 (s1) is 

chosen as the target when 

1 1 2 2( ) ( ) ( ) ( )W NW W NWP s P s P s P s− > − ,                                                                (4.10)                          

or stream 2 (s2) if otherwise. This selection metric is actually the same as evaluating the 

joint likelihood score of one stream containing the keyword ``white'' while the other 

containing $non-white. (4.10) is the same as, 

1 2 1 2( ) ( ) ( ) ( )W NW NW WP s P s P s P s+ > + .                                                                (4.11)  

The evaluation results of our proposed speech segregation system on the two-talker 

task are summarized in Table 4.2. The performance is measured in terms of recognition 

accuracy of the relevant keywords at each TMR conditions. We report the results for the 

different gender (DG), the same gender (SG) and the same talker (ST) subcategories as 

well as the overall mean score (Avg.). For comparison, we also show the performance of 

a baseline system without segregation. The proposed system improves significantly over 
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the baseline system in terms of average accuracy across all TMR conditions. Larger 

improvements are observed in the DG and the SG conditions. However, the system does 

not perform nearly as well in the ST condition, which is not a realistic condition. This is 

primarily due to our use of speaker characteristics for sequential grouping. Note that for 

the ST condition, speaker characteristics are not distinctive for segregation. Figure 4.6 

compares the system performance with (w/) and without (w/o) the ST condition. Note 

that baseline performance is nearly the same with ST and without ST. Our system 

achieves further absolute improvement of over 11% on average in the without-ST 

condition over the with-ST condition. 

 

TMR(dB)/Systems DG SG ST Avg. 

Baseline 66.00 65.92 66.52 66.17 
6 

Proposed 80.75 76.81 54.98 70.08 

Baseline 51.25 49.44 51.58 50.83 
3 

Proposed 78.50 72.63 39.14 62.25 

Baseline 36.00 34.64 32.58 34.33 
0 

Proposed 74.50 67.31 25.34 54.25 

Baseline 19.25 22.07 18.55 19.83 
-3 

Proposed 63.50 53.07 20.59 44.58 

Baseline 9.50 10.34 9.50 9.75 
-6 

Proposed 48.00 36.31 17.19 33.17 

Baseline 3.25 4.75 3.62 3.83 
-9 

Proposed 32.00 22.34 11.99 21.75 

 
 
Table 4.2: Recognition accuracy (in %) of the baseline system and the proposed 
system on the two-talker task. DG, SG and ST refer to sub-conditions of “different 
gender”, “same gender” and “same talker” respectively. Avg. is the mean accuracy. 
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Since our sequential grouping algorithm also identifies the underlying speakers, we 

present the evaluation results of SID performance in Table 4.3. Note that for most of the 

TIR conditions, we achieve an accuracy of over 90% in recognizing the target speaker. 

 

TMR(dB) -9 -6 -3 0 3 6 

Both SID 12.83 33.50 57.50 65.33 63.17 46.17 

Target SID 57.17 89.50 98.17 99.50 99.83 99.33 

 
 
Table 4.3: Speaker identification (SID) accuracies in the two-talker task. “Both SID” shows the 
accuracies when both speakers in a mixture are identified correctly. “Target SID” presents the 
accuracies when the target speaker is identified as either of the SID outputs. 
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Figure 4.6: Recognition accuracy on the two-talker task. The solid star line 
represents our baseline recognition results. The dashed plus line shows the baseline 
performance without the same talker (ST) data. The results of the proposed system 
are given as the solid circle line. Its accuracy without the ST condition is presented 
as the dashed square line. 
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CHAPTER 5                                                                            

SEQUENTIAL GROUPING USING GENERIC MODELS

In the preceding chapter, we have shown model-based sequential grouping methods 

under cochannel speech conditions. In this chapter, we extend the sequential grouping 

system to acoustic conditions that include unknown interference sources. First, we 

generalize the grouping algorithm to deal with multi-talker scenes that are composed of 

more than two talkers. The algorithm is then extended to handle non-speech intrusion 

sources. We also show that the generalized system is able to function without interference 

models. Furthermore, good performance is achieved regardless of interference types and 

numbers. Finally we apply a speaker quantization method to a large speaker space, and 

use the obtained generic models for sequential organization of speech mixtures of 

unknown speakers. In other words, the system does not rely on any a priori knowledge of 

sources in an auditory scene. Our systematic evaluations show that the resulting 

performance is only moderately lower than the performance achieved with known 

speaker models. 
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Depending on task specifications, we have evaluated the sequential grouping 

methods using several performance metrics. For example, we have used the word 

accuracy of automatic speech recognition in a speech separation and recognition task. In 

this chapter, as an alternative, we evaluate grouping performance by comparing estimated 

binary masks to the ideal binary masks. Specifically, we adopt the SNR metric that 

compares the target signal s(n) resynthesized from the ideal binary mask and the 

organized target signal ŝ(n) resynthesized from an estimated binary mask in decibels (Hu 

and Wang, 2006). This measure directly compares signals in the time domain as 

 

2

10 2

( )

10log
ˆ[ ( ) ( )]

n

n

s n

SNR
s n s n

=
−

∑

∑
,                                                        (5.1) 

where n indexes time.  

5.1 General Modeling of Interferences 

By definition, a cochannel mixture is composed of voices from two talkers. The 

voice of interest is designated as target and the other as interference. Under certain 

circumstances such as a meeting, there may be more than one interference speaker. To 

tackle such conditions, we extend the model-based sequential grouping method by 

replacing the speaker pair with a speaker triplet or a speaker quadruplet in Equation (4.3). 

We shall end up with a computational objective similar to (4.5) by applying the same 

derivation in (4.4). Specifically, given a set of K registered speaker models Λ= {λ1, λ2,…, 
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λK} and a set of simultaneous streams Y, an optimal segment assignment g to M speakers 

can be found as,  

I II

I II I II
, ,... ,

ˆ ˆ ˆˆ, , ,... arg max ( | , , ,... )
M

M M
g G

g P Y g
λ λ λ

λ λ λ λ λ λ
∈Λ ∈

= ,                                         (5.2)         

where 0 M K≤ ≤ . Naturally, the components of g take values from 1 to M. This objective 

leads to the same hypothesis search in Section 4.2.2 except that the speaker pair is 

replaced by M speakers.  

The above extension makes an explicit assumption of speaker number in a mixture. 

However, this assumption may not always be satisfied, leading to open-set auditory 

scenes. To handle such conditions, we may further extend the formulation in (5.2) and 

include another search that evaluates different speaker numbers. In other words, the 

grouping algorithm evaluates the best hypotheses for one, two, three, … , and a 

sufficiently large number of speakers. The speaker number that yields the highest 

likelihood is chosen as the estimate. The grouping hypothesis associated with the speaker 

number estimate provides the optimal segment assignment. 

 Nevertheless, this extension is not scalable. For example, in the case of a cocktail 

party, there may be a large number of speakers in the background. Indeed, there are so 

many voices in the background that a listener perceives something more like babble 

noise. Hence, according to the complexity analysis in Section 4.2.2, searching through all 

the combinations of up to M speakers results in the complexity of O (2M). Furthermore, 

given a large M, it is unreasonable to assume knowing all the speakers a priori in a task. 

Therefore, this extension is not only unscalable from the algorithmic point of view but 

also unattainable from the practical point of view.  
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To deal with multi-talker conditions, we may gain some inspirations by studying 

how existing CASA systems treat interferences (Wang and Brown, 2006). Typically, 

target signal is segregated into a foreground (target) stream while the remaining of the 

input signal is organized into the background (interference) stream. This process holds 

regardless of actual interference source types or numbers. Hence, instead of modeling 

individual speakers, we propose to build a generic model that accounts for all interference 

sources. This generic model is constructed by training on a large sample pool of speakers. 

Conceptually, it is analogous to the universal background model (UBM) in Section 3.1.1. 

Thus, in the sequential grouping algorithm that searches speaker pairs, we replace one of 

them with the generic model and perform the search over the other speaker as follows. 

G
,

ˆˆ, arg max ( | , , )
g G

g P Y g
λ

λ λ λ
∈Λ ∈

=                                                                                  (5.3) 

5.1.1 Multi-talker intrusions 

To simulate the multi-talker conditions, we create the test utterances based on the 

SSC corpus (Cooke and Lee, 2006). The SSC corpus provides 600 clean utterances in the 

test set. We use these utterances to generate mixtures of a target speaker and multiple 

interference speakers. The two-talker mixtures in the SSC corpus are not used here 

because SSC does not provide functions to create mixtures and our own method may 

differ in implementation details. For our tests, we construct two-talker, three-talker and 

four-talker mixture conditions. Specifically, for each utterance deemed as target, one, two 

or three utterances are randomly selected from other speakers in the clean set and mixed 

with the target. An interference utterance is either curtailed or appended with itself to 
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match the length of a target utterance. The multi-talker corpus comprises a wide range of 

TIRs, including -6 dB, 0 dB, 6 dB, 12 dB and 18 dB. Similar to Equation (3.6), TIR is 

calculated as follows, 

2

2
,

1

10log ( ) ( )
C

T I c

n n c

TIR s n s n
=

  
 =      
∑ ∑ ∑ ,                                                          (5.4) 

where n indexes time. C is the number of interference talkers and c is its index. sT refers 

to target signal and sI,c refers to signal of the cth interference talker. This formula 

calculates the energy ratio of the target utterance and all the interferences combined. Note 

that the interference utterances have been scaled to have equally strong energy. 

As in the study for the SSC task, we employ the voiced speech segregation system 

(Hu, 2006) for segmentation and simultaneous grouping (see Section 2.3.3 for details). 

This system estimates ideal binary T-F masks for the simultaneous streams and also 

produces corresponding pitch contours. In the sequential grouping algorithm, we employ 

the same GFCC reconstruction and uncertainty decoding method to calculate the 

likelihood score of a simultaneous stream given a model as described in Sections 3.4 and 

4.3.  

For performance evaluation, we construct the ideal binary masks based on Equation 

(2.1) and the mixture creation process as described at the beginning of this section. Based 

on the ideal mask, we generate an ideal sequential grouping (ISG) mask for each mixture 

by grouping simultaneous streams into the target stream according to its ideal binary 

mask. Specifically, a simultaneous stream is grouped as target if more than half of its 
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energy is retained by the ideal mask. This ISG mask presents the best mask that a 

sequential grouping algorithm can produce, thus reflecting an upper-bound performance. 

We evaluate the effectiveness of our grouping algorithm using the SNR metric in 

Equation (5.1). The experimental results on the multi-talker corpus are presented in 

Tables 5.1 and 5.2. The first rows of the tables show the SNR results obtained by ideal 

sequential grouping. The second rows present baseline performance by randomly 

assigning a stream to either the target or the interference stream. An ISG mask ideally 

groups simultaneous streams, which are extracted from voiced regions of an input 

utterance (Hu, 2006). Hence, errors in simultaneous grouping, including the removal of 

unvoiced speech, are inherited in an ISG mask. Because of this, output SNRs of ISG 

masks are less than input SNRs under 12 dB and 18 dB conditions.   

As feature-based methods, we perform sequential grouping using pitch information. 

We first evaluate their performance based on prior pitch information. Specifically, prior 

pitch contours are extracted from clean target utterances. A simultaneous stream is 

assigned to the target stream if the average difference of its pitch contour and a prior 

contour is within 5% range of the latter. The resulting performance is reported in the row 

denoted as ‘Grouping Using Ideal Pitch’. This performance places an upper-bound for all 

the methods that utilize pitch. Since the pitch-based grouping algorithm in Section 4.1.1 

cannot be directly applied under the multi-talker conditions, we employ a clustering 

method that is based on the mean pitch values of the segments. In addition, the number of 

clusters is set to the speaker number in a test mixture. SNR results are shown in the 

‘Pitch-based Grouping’ row. The results are worse than the performance upper-bound 
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                              Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.006 5.793 8.968 10.937 11.801 

Random Grouping -3.648 0.873 2.566 3.334 3.514 

Grouping Using Ideal Pitch 2.298 3.931 5.552 6.860 8.039 

Pitch-based Grouping -0.622 3.121 5.233 6.158 6.443 

Known Speaker No. w/ Aggregated Prior 2.112 5.157 7.792 9.510 10.122 

Known Speaker No. w/ Individual Prior 2.021 5.005 7.797 9.802 10.562 

Grouping Using Generic Model 1.686 4.533 7.396 9.639 10.577 

Grouping Using Combined Generic Model 1.323 3.825 7.012 9.117 10.047 

Generic Model w/o Interference Speakers 1.448 4.129 6.989 9.248 10.262 

Open-set Generic Model 1.296 4.483 7.278 9.287 10.261 

 

Table 5.1: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances are mixtures of three 
talkers. In other words, there are one target and two interference speakers in a mixture. 
 
 

                             Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.529 5.492 8.965 11.004 11.835 

Random Grouping -3.648 0.873 2.566 3.334 3.514 

Grouping Using Ideal Pitch 1.827 3.722 5.236 6.804 7.731 

Pitch-based Grouping -0.373 2.777 4.264 4.786 4.974 

Known Speaker No. w/ Aggregated Prior 1.581 4.543 7.418 9.040 9.567 

Known Speaker No. w/ Individual Prior 1.559 4.468 7.358 9.346 10.010 

Grouping Using Generic Model 1.292 4.207 7.461 9.756 10.539 

Grouping Using Combined Generic Model 1.718 4.145 6.895 9.120 10.181 

Generic Model w/o Interference Speakers 1.448 4.129 6.989 9.248 10.262 

Open-set Generic Model 0.636 4.169 7.355 9.314 10.148 

 

Table 5.2: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances are mixtures of four 
talkers. In other words, there are one target and three interference speakers in a 
mixture. 
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using ideal pitch because the clustering method is not able to differentiate speakers when 

their pitch contours are close to each other. 

The following two rows in Table 5.1 and 5.2 present grouping performance based on 

speaker models. Here, the number of speakers in a mixture is assumed to be known. 

‘Aggregated Prior’ refers to a speech prior that is estimated from the training data pooled 

from all the speakers, while ‘Individual Prior’ refers to a group of prior models that are 

estimated from individual speakers. The former approach requires less computation than 

the latter approach because the latter reconstructs missing T-F units using each of the 34 

models instead of 1 for the former. For example, on a Dell PowerEdge 1850 server with 2 

Xeon 3.4 GHz processors and 4 GB memory, the former method takes approximately 72 

hours per TIR condition and the latter 4 hours. In terms of performance, both methods are 

comparable and the individual priors show some advantages over the aggregated prior at 

higher TIRs. This observation empirically suggests the use of an aggregated speech prior 

for GFCC reconstruction when computation time is an important factor for the task.  

As we have proposed earlier, a generic model that incorporates all the interference 

speakers can be used to replace all the triplets or the quadruplets of speakers for 

sequential grouping. The SNR results are given in the row of ‘Grouping Using Generic 

Model’. In our multi-talker corpus, a different generic model needs to be trained for a 

different target in a test mixture. It takes substantial time to construct all the possible 

generic models by training. For example, it takes one week on the aforementioned 

PowerEdge server to train such a single GMM prior with 2048 mixtures. After employing 

an iterative method that splits mixtures from 1 to 2048 in multiples of 2, it still takes 
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about 4 days per model. As an alternative, we construct a generic model by directly 

combining individual speaker models. Since a GMM is a summed group of Gaussian 

densities, we combine individual GMMs into the prior and reduce the Gaussian weights 

accordingly. Thus, for each test mixture, the algorithm can create a generic model that 

excludes the target in the runtime. With the same computing facilities, this method takes 

about 6 hours per TIR condition. The resulting performance is reported in the row of 

“Grouping Using Combined Generic Model’. Compared with the method that employs 

direct training, this approach achieves comparable performance at the high SNRs while 

performs moderately worse at low SNRs. This observation empirically justifies the use of 

the GMM-combination method for generic modeling. 

The above methods assume the knowledge of interference speakers in the generic 

models. As we described earlier, this assumption may not always be satisfied. Here, to 

simulate the test conditions where a listener does not know any speakers other than the 

target, we remove the knowledge of interference speakers from sequential grouping. 

Specifically, for a multi-talker mixture, the models of interference speakers are not 

combined with other speakers to construct the generic model. The SNR results are 

reported in the row of ‘Generic Model w/o Interference Speakers’. This method uses a 

single speech prior for GFCC reconstruction. Thus, the grouping algorithm still utilizes 

some knowledge of the interferences. To completely remove such knowledge, we employ 

the same GMM-combination method to construct priors, and remove the interference 

models. The SNR results are presented as ‘Open-set Generic Model’. This method 

achieves comparable performance as the method that uses a single prior.  It can be 
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observed from the tables that the model-based methods perform significantly better than 

the pitch-based methods under most of the TIR conditions. The only exception is -6 dB, 

where the T-F mask of a stream is too small for reliable GFCC reconstruction. 

We also conduct similar experiments on the two-talker conditions and their results 

are shown in Table 5.3. The same observations made in the three-talker and the four-

talker conditions hold in these two-talker conditions as well. 

 

                             Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.604 6.483 8.287 8.865 9.084 

Random Grouping -2.459 0.487 2.474 2.699 3.051 

Grouping Using Ideal Pitch 2.690 4.597 6.711 7.293 8.412 

Pitch-based Grouping 0.598 4.167 6.013 6.527 7.102 

Grouping Using Generic Model 2.475 5.097 6.923 7.929 8.271 

Generic Model w/o Interference Speakers 2.091 4.719 6.660 7.632 7.979 

Open-set Generic Model 2.545 5.065 6.708 7.623 8.004 

 

Table 5.3: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances are mixtures of two 
talkers. In other words, there are one target and one interference speaker in a mixture. 
 

 

 

5.1.2 Non-speech intrusions 

Unlike the preceding section, we deal with auditory scenes with non-speech 

intrusions in this section. We employ the noisy corpus that is derived from the SSC 

corpus and used for robust speaker recognition in Section 3.4. Specifically, the training 
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data is taken from SSC as given, and the test mixtures are generated by mixing clean 

utterances from SSC with four non-speech noise types: babble noise, destroyer (a navy 

ship) operation room noise, F-16 cockpit noise, and factory noise. The first two types 

contain a noisy background with many talkers speaking at the same time. They are 

classified as non-speech intrusions here because with so many voices together the signals 

do not exhibit clear speech patterns as our multi-talker mixtures do. 

As in preceding experiments, we employ the same voiced speech segregation system 

for segmentation and simultaneous grouping (see Section 2.3.3 for details). This system 

produces simultaneous streams represented by binary T-F masks. Our grouping algorithm 

searches for the best segment assignment according to Equation (5.3), where the generic 

model is trained from pooled noise samples. Specifically, the noise samples include not 

only the four noise types in the test set but also fifteen other noise types (Hu, 2006) as 

follows,  

- White noise 
- Rock Music 
- Siren 
- Telephone 
- Electric fan 
- Clock alarm 
- Traffic noise 
- Bird chirp with water flowing 
- Wind 
- Rain 
- Cocktail party noise 
- Crowd noise at a playground 
- Crowd noise with music 
- Crowd noise with clap 
- Babble noise (16 speakers). 

 
This seeks to simulate a test condition where an actual noise source in a mixture 

originates from a large number of noise types. Given an unassigned segment, likelihood 
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scores are calculated for each registered speaker model and the generic model. Then, a 

joint likelihood is obtained by assigning all the segments to either a speaker or the 

generic model. The speaker that produces the maximum joint likelihood is selected as the 

target and its corresponding assignment of segments is returned as the grouping result. 

Here, the likelihood scores are calculated using the same method that is based on GFCC 

reconstruction and uncertainty decoding as in the multi-talker intrusion conditions. 

We first evaluate contributions of GFCC reconstruction, uncertainty decoding and 

delta features to the overall grouping performance. Experimental results are shown in 

Table 5.4 for the babble, destroyer, F16 and factory noise types. The first row in the table 

presents SNR results obtained by ideal sequential grouping as defined in Section 5.1.1. 

‘Recon. only’ and ‘Recon. & UD’ both calculate the likelihood scores using 

reconstructed GFCC features. The latter also uses the uncertainty decoder while the 

former does not. The last row, ‘Recon., UD & Delta Feature’, employs the delta features 

from Section 3.4 in addition to static GFCC features. All three methods assume known 

target identities. In other words, the algorithm does not search for the target speaker.  

Compared with using enhanced GFCC alone, it is evident that UD improves SNR 

results. Delta features do not achieve performance improvement because one delta frame 

requires a neighboring window of five static frames as specified in Equation (3.19) and 

small segments lead to distorted delta features. Therefore, we will use UD for likelihood 

calculation in the following experiments and will not use delta features.  
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                     Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.190 5.763 9.074 11.054 11.860 

Recon. only 1.953 5.014 8.791 10.971 11.833 

Recon. & UD 2.002 5.328 8.809 10.983 11.835 

Recon., UD & Delta Feature 1.619 4.695 8.627 10.936 11.819 

(a) 

                      Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.670 6.486 9.693 11.262 11.883 

Recon. only 2.075 5.415 9.285 11.063 11.835 

Recon. & UD 2.209 5.599 9.298 11.070 11.830 

Recon., UD & Delta Feature 1.864 5.178 9.130 11.064 11.822 

(b) 

                      Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.586 7.587 10.197 11.477 11.994 

Recon. only 2.748 6.465 9.881 11.389 11.957 

Recon. & UD 3.045 7.109 9.814 11.314 11.955 

Recon., UD & Delta Feature 2.415 5.821 9.616 11.293 11.930 

(c) 

                     Input SNR (dB) 
    Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.958 7.063 9.855 11.420 11.866 

Recon. only 2.477 5.982 9.410 11.308 11.819 

Recon. & UD 2.693 6.712 9.441 11.296 11.825 

Recon., UD & Delta Feature 2.147 5.386 9.190 11.264 11.798 

(d) 

 
Table 5.4: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances contain babble noise 
in (a), destroyer noise in (b), F16 noise in (c) and factory noise in (d).  
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The above experiments evaluate different ways to calculate segment-level 

likelihoods. Here, we evaluate the grouping algorithm under conditions where target 

identities are unknown and under open conditions that exclude target models. The SNR 

results are given in Table 5.5. The first and third rows are taken from Table 5.4, showing 

results of ideal sequential grouping and grouping with known target identities. As before, 

the second row presents baseline performance by random assignment of segments. 

The fourth row, ‘Unknown Target’, presents the condition with unknown targets. 

The grouping algorithm searches for the target and the best segment assignment as 

described earlier. This method achieves performance close to ideal sequential grouping 

and achieves comparable performance as the algorithm with known targets. Note that this 

condition tends to give higher likelihoods because of the maximum search even though 

the selected target may not be the correct one. This bias is reflected in the observation 

that the grouping algorithm recovers the segments that are missed (wrongly classified as 

non-speech) in the known target condition. On the other hand, the false-alarm errors do 

not increase much because of the significant differences between speech and noise in this 

experiment.  

The last row in the table, ‘Unregistered Target’, shows the test configuration that 

removes target models from the registered speaker set, simulating a condition where a 

listener has not heard the voice of a target speaker before the test. In other words, the 

remaining speakers are regarded as generic models for the target speaker. Compared with 

the registered target condition as ‘Unknown Target’, the grouping performance here only 

degrades moderately. This observation implies that a set of 30~40 speakers likely 
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                      Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.190 5.763 9.074 11.054 11.860 

Random Grouping 0.349 2.159 2.752 3.212 3.566 
Known Target 2.002 5.328 8.809 10.983 11.835 
Unknown Target 1.065 5.302 8.849 11.002 11.831 
Unregistered Target 0.802 4.238 7.617 10.294 11.401 

(a) 
 

                      Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.670 6.486 9.693 11.262 11.883 

Random Grouping -0.822 2.082 3.129 3.286 3.397 
Known Target 2.209 5.599 9.298 11.070 11.830 
Unknown Target 1.342 4.075 9.062 11.052 11.818 
Unregistered Target 1.215 3.018 7.704 10.280 11.268 

(b) 
 

                      Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.586 7.587 10.197 11.477 11.994 

Random Grouping 1.257 2.665 3.079 3.287 3.522 
Known Target 3.045 7.109 9.814 11.314 11.955 
Unknown Target 3.213 6.767 9.833 11.333 11.947 
Unregistered Target 2.992 5.717 8.588 10.440 11.479 

(c) 
 

                     Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.958 7.063 9.855 11.420 11.866 

Random Grouping 1.225 2.505 3.067 3.382 3.496 
Known Target 2.693 6.712 9.441 11.296 11.825 
Unknown Target 2.778 6.576 9.500 11.305 11.806 
Unregistered Target 2.599 5.670 7.996 10.376 11.253 

(d) 
 
 
Table 5.5: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances contain babble noise 
in (a), destroyer noise in (b), F16 noise in (c) and factory noise in (d).  
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contains a speaker that is acoustically close to the target. Thus, a small set of generic 

speakers might be sufficient for sequential grouping under general conditions. 

Furthermore, this observation inspires us to design an algorithm that systematically 

creates a set of generic speakers in the following section. 

5.1.3 Unknown intrusion types 

In this section, we deal with the intrusions in the preceding two sections together. 

Our sequential grouping algorithm is further extended to the conditions where noise 

sources are either speech or non-speech. By a direct extension, we construct a generic 

model that accounts for both speech and non-speech intrusions. More specifically, we 

employ the aforementioned GMM-combination method to combine the speech generic 

model from the multi-talker study in Section 5.1.1 and the non-speech generic model 

from Section 5.1.2. This combination method has achieved comparable results with 

standard training methods while saving substantial experimental time in the preceding 

studies. Sequential grouping uses the resulting generic model in Equation (5.3) to search 

for the best assignment of simultaneous streams.  

The evaluation results are reported in Table 5.6 for the multi-talker conditions. Ideal 

sequential grouping results are given in the first row. The second row, ‘Speech Generic’, 

is directly taken from the last row in Table 5.1-5.3, which uses the multi-talker generic 

model. The last row presents the grouping performance by the combined generic model 

that includes non-speech noise types. It can be observed that the grouping performance is 
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                             Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.604 6.483 8.287 8.865 9.084 

Speech Generic 2.545 5.065 6.708 7.623 8.004 

Combined Generic Model 2.492 5.053 6.734 7.666 8.072 

(a) 

                            Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.006 5.793 8.968 10.937 11.801 

Speech Generic 1.296 4.483 7.278 9.287 10.261 

Combined Generic Model 0.994 4.495 7.372 9.342 10.309 

(b) 

                            Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.529 5.492 8.965 11.004 11.835 

Speech Generic 0.637 4.169 7.355 9.314 10.148 

Combined Generic Model 0.318 4.281 7.456 9.390 10.207 

(c) 

 
Table 5.6: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances are mixtures of two 
talkers in (a), three talkers in (b) and four talkers in (c).  
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comparable before and after the noise model is combined. Such performance is expected 

because non-speech noise types are intrinsically different from speech. 

In comparison, under the four non-speech noisy conditions as shown in Table 5.7, 

the resulting performance degrades moderately when the combined generic model is 

used. This is mainly because the speech generic model comprises features that are similar 

to the speaker models, and adding the speech generic model to the non-speech generic 

model leads to worse assignment of streams. For example, a target simultaneous stream 

that is correctly grouped to the target speaker stream under non-speech intrusion 

conditions may be wrongly assigned to the generic model stream because it is 

acoustically similar to one of the speakers in the generic model. 
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                   Input SNR (dB) 
  Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.190 5.763 9.074 11.054 11.860 

Non-speech Generic 1.065 5.302 8.849 11.002 11.831 

Combined Generic Model 1.733 4.987 7.817 9.591 10.241 

(a) 

                   Input SNR (dB) 
  Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.670 6.486 9.693 11.262 11.883 

Non-speech Generic 1.342 4.075 9.062 11.052 11.818 

Combined Generic Model 2.021 4.823 7.822 9.323 9.926 

(b) 

                   Input SNR (dB) 
  Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 3.586 7.587 10.197 11.477 11.994 

Non-speech Generic 3.213 6.767 9.833 11.333 11.947 

Combined Generic Model 2.993 6.046 8.232 9.358 9.957 

(c) 

                   Input SNR (dB) 
  Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 2.958 7.063 9.855 11.420 11.866 

Non-speech Generic 2.778 6.576 9.500 11.305 11.806 

Combined Generic Model 2.594 5.706 8.133 9.390 9.933 

(d) 
 
 
Table 5.7: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances contain babble noise 
in (a), destroyer noise in (b), F16 noise in (c) and factory noise in (d).  
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5.2 Generic Speaker Modeling for Sequential Grouping 

Simultaneous streams obtained by segmentation and simultaneous grouping typically 

last for less than half a second. This data paucity restrains the utility of low-level features, 

such as pitch and spectral divergence, for sequential grouping. On the other hand, when 

interference speakers are not registered, the model-based grouping method still achieves 

good performance by using generic models. Since the grouping algorithm is based on 

maximization of likelihoods of segments given models, it essentially selects models that 

are acoustically close to unregistered speakers in input signal. Hence, under the extreme 

condition where none of the speakers in an auditory scene are registered, we propose 

employing a set of generic models that represent all the speakers in a domain for the 

grouping purpose.  

Generic models have been proposed for unsupervised speaker indexing (Kwon and 

Narayanan, 2004; Kwon and Narayanan, 2005). Similar to the speaker detection and 

tracking studies described in Section 2.2, speaker indexing seeks to determine who is 

talking at a particular time in an audio stream. Such a task requires unsupervised methods 

when there is no prior information about the speakers in the input. Typical methods use 

generalized likelihood ratio test (Rice, 1995) to obtain speaker homogenous segments 

(Dunn et al., 2000; Kwon and Narayanan, 2005). These segments are further clustered to 

index underlying speakers in the audio stream and construct models on-line. The optimal 

segment length of 2.5 sec and the typical minimum length of 1 sec (Dunn et al., 2000) are 

found to be too short to obtain models that represent speakers well (Kwon and 

Narayanan, 2005), usually propagating clustering errors in the indexing process. A 
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number of methods have been proposed to create generic models from a large number of 

speakers and employ such models for unsupervised indexing (Kwon and Narayanan, 

2005). These generic models include universal background model (UBM) and universal 

gender model (UGM). Kwon and Narayanan (2005) propose a different method that 

obtains generic models by quantizing a large speaker group. Specifically, it clusters 

speaker models based on the symmetrized Kullback-Leibler (K-L) divergence (Kullback, 

1968). Each resulting cluster contributes a generic model that is randomly selected 

among the models in the cluster.  

5.2.1 Speaker quantization 

The basic idea of generic speaker modeling and speaker quantization is to identify 

and construct a small number of generic models that well represent a much larger speaker 

set. Generally speaking, quantization itself can be applied either in the feature space or in 

the model space. The former approach is popular for automatic speech recognition. 

However, without top-down constraints that model a speaker, a quantized model is more 

likely to reflect innate speech classes of the feature space instead of modeling speakers. 

Hence, we adopt the latter approach by performing quantization over speaker models. 

Specifically, we propose to use a speaker quantization method that is similar to the 

quantization method in speaker indexing (Kwon and Narayanan, 2005) to construct 

generic models for sequential grouping. 

We first construct a large set of speaker models Λ= {λ1, λ2,…, λK}. Pair-wise 

distances are obtained for each speaker pair in the set. Thus, the resulting distance matrix 
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describes a distribution of all the models in this speaker space. Then, we apply a K-means 

clustering method (Duda et al., 2001) to obtain a group of model clusters based on the 

distance matrix. Finally, within each cluster, the model that has the shortest average 

distance to the rest of the models in the cluster is selected as the generic model. Figure 

5.1 illustrates quantized generic speakers. 

 

 
 
 

Figure 5.1: Illustration of speaker quantization. The solid circles represent 
individual speaker models. The dotted circles present clusters obtained by the 
speaker quantization method. The dashed circles denote the selected generic 
models from each cluster. 

 
 
 
 



 143 

As a speaker is usually modeled by a statistical distribution of its features, we 

employ the symmetrized K-L divergence (KLD) (Kullback, 1968) as the distance 

measure between two speaker models.  

( )
( || ) ( ) log

( )

f x
KL f g f x dx

g x
= ∫                                                                               (5.5) 

defines the KLD, also known as the relative entropy, between two density functions, 

( )f x  and ( )g x . The symmetric distance measure is, 

( , ) ( || ) ( || )D f g KL f g KL g f= + .                                                                          (5.6) 

However, no closed-form solution exists for the KLD when ( )f x  and ( )g x  are GMMs 

(Li and King, 1999; Ben et al., 2002; Vasconcelos, 2004; Goldberger and Aronowitz, 

2005; Silva and Narayanan, 2006; Hershey and Olsen, 2007). Various methods have been 

proposed to approximate the KLD or estimate its upper-bound (Vasconcelos, 2004; Silva 

and Narayanan, 2006; Hershey and Olsen, 2007). The only method that asymptotically 

estimates the KLD is Monte Carlo simulation (Ben et al., 2002; Vasconcelos, 2004; 

Hershey and Olsen, 2007). Here, we apply the Monte Carlo method to calculate the KLD 

between two GMMs. Specifically, we first draw N samples { : 1... }ix i N=  from ( )f x . 

KLD is estimated as, 

1

1 ( )
( || ) log

( )

N
i

ii

f x
KL f g

N g x
=

≈ ∑ .                                                                                  (5.7) 

( || )KL g f  is estimated in the same way with a set of samples drawn from ( )g x . Thus, 

pair-wise symmetric K-L distances are calculated for all the speaker pairs and the 

resulting distance matrix defines the speaker space from which we perform quantization. 
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5.2.2 Evaluations 

Generic models obtained by the speaker quantization method represent a large 

speaker space. For a mixture input of unknown speakers, our sequential grouping 

algorithm uses the generic models to organize simultaneous streams. These segments are 

generated by the same voiced speech segregation system as in the preceding experiments 

of this chapter. Segment likelihoods are obtained from reconstructed GFCCs by the 

uncertainty decoder. This section evaluates grouping performance of the algorithm on a 

simulated mixture corpus. 

Our evaluation is based on the 2002 NIST Speaker Recognition Evaluation corpus 

(Przybocki and Martin, 2004). Unlike other experiments in the dissertation, this corpus is 

composed of telephone recordings. Specifically, we use the 1-speaker detection portion 

of the corpus. It contains 191 female and 139 male speakers, thus a total of 330 speakers. 

For each speaker, this corpus provides a 120 sec long recording of concatenated cell 

phone utterances. These utterances exhibit a slower speech rate than microphone 

recordings in TIMIT and SSC. To create noisy mixtures, the original recordings are 

sliced into short utterances of 4 sec each. Given the resulting 30 utterances for each 

speaker, four of them are randomly selected to simulate cochannel speech while the rest 

are retained for training. Cochannel mixtures are created at TIRs of -6 dB, 0 dB, 6 dB, 12 

dB and 18 dB by mixing the selected four utterances with one randomly chosen utterance 

from every other speaker. Therefore, each TIR consists of 1320 test utterances. 

The evaluation results are shown in Table 5.8. The first row presents SNR results by 

‘Ideal Sequential Grouping’ that assigns input segments according to the ideal binary 
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mask, giving an absolute upper-bound performance. ‘Known Speaker Identity’ denotes a 

condition where identities of speakers in a mixture are known a priori. In short, the 

algorithm degrades into a hypothesis test between the two speaker models. This actually 

places a performance upper-bound for all the model-based methods. Compared to ideal 

sequential grouping, grouping performance degrades faster with a decreasing TIR. This 

indicates that likelihood scores become less reliable when TIR decreases because there 

are more missing T-F units to be reconstructed from fewer reliable ones. The following 

 
 

                        Input SNR (dB) 
   Methods 

-6 0 6 12 18 

Ideal Sequential Grouping 5.718 7.494 9.704 11.445 12.550 

Known Speaker Identity 2.193 4.766 7.659 9.872 11.099 

Random Grouping -3.396 0.396 2.301 2.945 3.263 

Exhaustive Search 1.515 4.397 7.270 9.442 10.384 

Exhaustive Search (Subset 40) 1.808 4.637 7.443 9.590 10.488 

Speaker Quantization (20) -0.558 2.846 5.823 7.547 8.055 

Speaker Quantization (40) -0.314 2.931 5.868 7.618 8.261 

Speaker Quantization (60) -0.479 2.963 5.952 8.044 8.907 

Speaker Quantization (80) -0.493 2.948 5.996 8.058 8.972 

Speaker Quantization (90) -0.427 2.985 5.978 8.013 8.957 

Speaker Quantization (100) -0.534 2.941 6.035 8.139 9.124 

Speaker Quantization (120) -0.494 2.853 6.043 8.226 9.116 

Speaker Quantization (140) -0.319 3.093 6.117 8.215 8.934 

 
 
Table 5.8: Sequential grouping evaluation using the SNR metric. Numbers in the table 
show output SNR (dB) of segregated speech. The test utterances are two-talker 
mixtures.  
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row gives baseline performance by randomly assigning the segments, thus setting a 

performance lower-bound. 

Before evaluating quantized generic models, we also show how the grouping 

algorithm fares using the exhaustive search method as described in Section 4.2. Its SNR 

results are given in the ‘Exhaustive Search’ row. Basically, it sets M=2 and K=330 in 

(5.2), meaning that there are 2 streams to organize and 330 290 / 2 37785× =  speaker 

pairs to search. Apparently, this search requires substantial computation time. Hence, we 

also conduct an experiment that uses a reduced set of 40 speakers. Specifically, a reduced 

set is composed of the 2 underlying speakers in a mixture and 38 speakers that are 

randomly selected from the remaining 328 speakers. Its results are shown in ‘Exhaustive 

Search (Subset 40)’. The exhaustive search over the complete set produces results almost 

as good as those obtained with known speaker identities, and on average the degradation 

is 0.5 dB. This observation empirically suggests the optimality of our model-based 

grouping algorithm. When the speaker number is reduced from 330 to 40, the 

performance improves slightly. This is because with a smaller number of speakers, 

models are less crowded in the speaker space and it is easier for the grouping algorithm to 

discriminate them. 

The following rows in Table 5.8 present grouping results obtained by speaker 

quantization. For each cochannel input, we remove the two underlying speakers from the 

speaker set and perform speaker quantization on remaining 328 speakers. Thus, we create 

a different generic model set for each different speaker pair. This simulates the auditory 

scene where none of the speakers are registered. The number of generic models is a factor 
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that determines the trade-off between grouping performance and computation time. More 

generic models entail better matches between the models and unknown inputs while they 

require more computation time because of the increased search space. To observe how 

this factor affects grouping, we vary the number of quantized models in a range from 20 

to 140. In Table 5.8, the number after ‘Speaker Quantization’ denotes this number.  

SNR performance is significantly improved by increasing the number of generic 

models from 20 to 60. While it seems that the improvement stalls from 60 to 90, the 

performance is further improved above 90. On average, the performance with 140 generic 

models is about 1.9 dB worse than that of ‘Known Speaker Identity’, and about 1.4 dB 

worse than that of the exhaustive search within the complete speaker space. Since the 

core of the algorithm compares summarized likelihoods for every speaker pair with a 

complexity of O(M 2 ), the computation time increases roughly 50 times by increasing the 

generic models from 20 to 140.  

In our view, combining speaker quantization and generic modeling presents a 

promising approach for dealing with acoustic inputs of unknown speakers. 
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CHAPTER 6                                                                            

SUMMARY

6.1 Contributions 

CASA comprises simultaneous grouping and sequential grouping that together 

organize segments from different sources into corresponding streams. The former 

integrates concurrent segments and the latter integrates segments across time. This 

dissertation has presented a systematic study on sequential organization based on speaker 

characteristics. In addition, we have proposed CASA-based front-end processors for 

robust speaker recognition.  

In Chapter 3, we have presented an extensive effort on robust speaker recognition. A 

novel usable speech extraction method has been proposed and shown to significantly 

improve speaker recognition accuracy in cochannel speech. Then, by combining missing-

data recognition and the use of CASA-based segregation as a front-end processor, 

recognition performance is further improved under various noisy conditions. We have 

also proposed a general solution to robust speaker recognition in the presence of additive 
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noise. Novel speaker features are derived by auditory filtering and cepstral analysis. We 

employ an uncertainty decoder that accounts for front-end processing errors in 

conjunction with novel speaker features for robust speaker identification and verification. 

The proposed system has achieved substantial improvement over not only typical speaker 

features but also an advanced robust front-end processor for speech signals. 

In Chapter 4, we have explored bottom-up grouping methods that employ features 

such as pitch and spectrum for speech organization. We have also presented sequential 

organization methods based on speaker models. A novel aspect of our study is the 

derivation of the computational objective for joint speaker recognition and sequential 

grouping. This formulation leads to the exhaustive search algorithm that finds the optimal 

assignment of simultaneous streams given the speaker models. In addition, we have 

proposed a hypothesis pruning method that reduces the search space and computation 

time while achieving a performance level close to that of exhaustive search. In the 

evaluations, the model-based methods yield significantly better accuracy in terms of 

segment assignment than alternative approaches. Furthermore, the grouping system is 

integrated with other CASA processes in a complete speech separation and recognition 

system and its evaluations show a significant improvement over the baseline performance 

in speech recognition for many noisy conditions.  

In Chapter 5, we have incorporated the model-based sequential grouping algorithm 

with generic modeling methods to handle multiple interfering speakers and unknown 

noise types. By employing a generic model that takes different interference types into 

account, our methods achieve a level of performance close to that with registered 
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interference models although only the target speakers are registered. Subsequently, we 

have presented a speaker quantization method that constructs generic models by 

clustering a large set of speakers. These generic models are used for sequential grouping 

when none of the speakers in an auditory scene are registered. The systematic evaluations 

have shown that this approach gives only moderately worse performance than that 

obtained with registered speakers. 

6.2 Insights Gained 

During the course of this dissertation study, a number of insights have surfaced. A 

key insight is that speaker models encode potent information for sequential grouping. In 

Chapter 4, we have found that model-based methods perform significantly better than 

feature-based methods, which directly utilize features for speech organization. In other 

words, speaker characteristics are most effectively captured by statistical speaker models. 

In the CASA account, this means that schema-based grouping may play a more effective 

role than primitive grouping in sequential organization. This observation does not 

necessarily mean that CASA shall prefer the top-down process to bottom-up processes. 

Rather, given the feature distributions provided by models, it may be easier for a 

computational system to determine whether two separated segments of speech are 

sufficiently close in the space so that they should be grouped into the same stream.  

Speech signals include versatile information sources such as linguistic content and 

speaker characteristics. From an information processing perspective, such information is 

captured and represented as features in a high-dimensional space. Modeling is a 
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supervised learning process that constructs schemas according to different sources, 

whether they are language-specific or speaker-specific. Essentially, the resulting schemas 

provide ways to observe the same data through different perspectives. In other words, the 

schemas are utilized to transform the same data into their corresponding information 

sources. In our view, compared with primitive grouping methods, schema-based methods 

yield superior performance because of such transformations. 

When specific speaker schemas are not available, we have demonstrated how to 

perform sequential grouping using generic models in Chapter 5. A generic model is 

basically a broader and less specific schema or a class of schemas. The insight here is that 

replacing individual models with generic models incurs performance degradation because 

of loss of fine details but it still produces reasonable results. The model training process 

acquires consistency of schemas in the form of model structures and parameters, and such 

consistency facilitates approximations of individual models by generic ones. In the ASA 

account, our insight is that voices exhibit consistency and that a listener may have a way 

to grasp such consistency after years of exposure to daily auditory scenes. For example, 

spectral energy distributions relate to perceptual voice qualities and such distributions are 

determined by the vocal tract shape of a talker. Two speakers with similar shapes lead to 

similar voice qualities and we hypothesize that a listener employs such consistency for 

grouping either of the voices.  

A key insight in Chapter 3 is that robust speaker recognition does not require a 

complete speech signal. What a recognition system needs are portions of the input signal 

that contain speaker characteristics. In other words, certain portions carry discriminative 
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information and are thus adequate for speaker recognition. This insight has been obtained 

from the robust recognition experiments that evaluate usable speech segments and binary 

T-F masks.  

The usable speech for both speaker recognition and sequential grouping in Chapter 

3-5 entails the use of missing-data methods for proper likelihood scoring. These methods 

include conditional density marginalization and missing-data reconstruction. One insight 

from the study is that the latter approach performs better when SNR is between 6 dB and 

18 dB with non-speech intrusions. Under such conditions, there are usually more reliable 

components than unreliable ones within a time frame and unreliable components are 

reasonably estimated given the reliable ones. On the other hand, under low SNR 

conditions (-12 dB ~ 6 dB), the marginalization approach tends to yield superior 

performance. Because reconstruction imputes missing T-F units from reliable ones the 

paucity of reliable data under such low SNR conditions leads to unreliable likelihoods, 

hence inferior grouping performance. 

6.3 Future Work 

As described in Chapter 5, the speaker quantization approach selects the model that 

is closest to the remaining models in a cluster as the generic model. When the number of 

generic models is set small, the resulting models may be too sparse in the speaker space 

for reliable grouping. There are several problems in this situation. One is that sparse 

generic models do not represent the overall speaker space well. The other is that with few 
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generic models multiple distinct speakers in a mixture are more likely to be associated 

with a single cluster. In this case, our sequential grouping method will fail.  

The basic idea to tackle the first problem is to incorporate more information within a 

cluster. One approach is to retrain the generic model by pooling speech samples from all 

the speakers in a cluster. This approach may cost substantial computational resources. An 

efficient alternative is to adapt the selected model to the samples of other speakers. 

Speaker recognition studies have used maximum likelihood linear regression or 

maximum a posteriori adaptation methods in the case of insufficient training data 

(Reynolds, 2002; Furui, 2005). Another approach to deal with the first problem is to 

combine the speaker models within a cluster instead of modeling from samples. In the 

case of GMMs, the Gaussian mixtures from different speakers may be summed together 

and mixture weights may be discounted in a way that is proportional to the K-L distance 

of a speaker GMM from the cluster center.  

The second problem does not limit itself to generic modeling. In the SSC task, our 

grouping method is not able to handle same talker mixtures. This problem is intrinsic to 

model-based sequential grouping approach itself. Essentially, different speakers may 

produce very similar sounds and a speaker model may overlap with other models in the 

feature space. Given a short segment, its likelihood may indicate that it originates from 

one model while it truly belongs to another. Given the decision framework of sequential 

grouping in Chapter 4, a grouping algorithm is not able to make a correct decision 

without prior knowledge about the models or the dependence of the segment on other 

segments. Hence, one solution is to infer the prior probabilities of the models from the 
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mixture. The other solution is to model segment-level dependence. Such dependence may 

require linguistic information of the segments.  

In the derivation of computational goal for sequential organization in Section 4.2.1, 

we assume that segment assignments are uniformly distributed, meaning that we do not 

have prior knowledge about segment labels. However, this uniform assumption is not 

satisfied under either high or low TIR conditions, where one speaker in a cochannel 

mixture dominates the other. One solution here is to model the prior probability of 

segment assignments based on input TIR. This solution cannot be easily applied when 

input TIR is unknown. On the other hand, TIR can be estimated from segregated speaker 

streams at output (see Hu, 2006). Thus, a complete solution would combine the above 

two processes in an iterative manner. More specifically, given an input TIR estimate, we 

construct a probability distribution for segment assignments and conduct sequential 

grouping accordingly. Then, we re-estimate the input TIR using output streams and 

repeat the previous step. This process iterates itself until the TIR estimate converges. The 

initial TIR value can be set to 0 dB, corresponding to a uniform distribution of segment 

assignments. Hu (2006) describes such an iterative process for pitch tracking and voiced 

speech segregation. 

Throughout this dissertation, the adverse conditions mainly contain additive noise 

sources. Future work needs to address other distortions such as convolutive noise from 

telephone transmission and a combination of both noise types. One example is the 

distortion introduced by room reverberation. Here, what a system receives is an input 

signal comprises many delayed versions of the original clean signal that have been 
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bounced back. While it may seem straightforward to extend our model-based sequential 

grouping algorithms to reverberant conditions, there are several empirical questions that 

need to be addressed. The first question is what is target signal in a reverberant mixture? 

Is it clean target or reverberant target? Depending on the answer, speaker models in 

sequential grouping may need to be retrained. But it is not easy to conduct retraining 

since there are likely too many reverberant conditions to consider in the training phase. 

Another problem arises from the fact that simultaneous streams from different sources are 

more likely to overlap with each other under echoic conditions than anechoic conditions. 

Thus, in reverberant conditions, a simultaneous stream of target might contain strong 

energy from intrusions. One solution is to weight likelihoods from different T-F units 

according to a metric that measures how severe reverberation is. 
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