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ABSTRACT

Because of the contradiction of the vast data size of raw digital images and videos

and the limited transmission bandwidth and storage space, it is essential to develop

compression methodologies with high compression ratio and good reconstructed qual-

ity. It is also important to develop quality metrics which are consistent with human

vision and easy to calculate. The spatial-frequency localization and multi-resolution

capabilities of the wavelet transform make it a natural means of signal representation.

This work investigates the advantages of the wavelet transform and focuses on the

following research topics:

1. An image quality metric that assesses the quality of an image in the wavelet

domain.

2. A quality constrained compression algorithm that compresses an image to a

desired visual quality.

3. An innovative DWT-based temporal filtering scheme that achieves high com-

pression ratio and reduces the ghost effect without motion estimation.

4. A virtual sub-object video coding scheme that is suitable for applications with

static background.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Humans are highly visual creatures. We are well adapted to the visual world

around us and rely heavily on visual information for our daily activities. As our

world is becoming more digitalized every day, it is not surprising that digitalized

images and videos are becoming more and more common and wide-spread. In light

of this, optimizing the performance of digital systems that capture, display, store or

transmit images or videos becomes one of the most important challenges.

With the vast amount of digital images and videos, which is still increasing rapidly,

the transmission bandwidth and storage spaces become the bottleneck. Compression

is the natural solution for this problem. To achieve a satisfactory compression ratio,

the lossy compression tools have to be used, which will cause degradation of visual

quality of the compressed images or videos. So there is contradiction between com-

pression efficiency and visual quality. People working on image and video compression

are always looking for solutions that can achieve relatively higher compression ratio

than existing methods while maintaining a comparable visual quality. Since humans

are the end users of these visual data, the visual quality should be judged from the
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human point of view. A reliable quality metric that is consistent with human vision

will not only have its own applications, but also help the development of compression

technologies.

1.1.1 Image Quality Metric

Quality assessment metrics should evaluate the visual quality of images and videos

with subject to the subjective ranking (human vision). There is no way to evaluate

the performance of a compression tool without reliable quality measurement. Having

the images or videos viewed by human observers is one way to obtain reliable rat-

ings of the quality of them. While these experiments are the closest we can reach to

the truth about perceived quality, they are too complex, time-consuming and conse-

quently expensive. Hence, they are often only used as bench marks for research and

development purpose.

While looking for faster alternatives, the researchers in the field of image quality

assessment have turned to simple pixel error measures such as mean squared error

(MSE) or peak signal-to-noise ratio (PSNR). However, these simple measures operate

solely on a pixel-by-pixel basis in the spatial domain and neglect the functioning

mechanism of HVS. Therefore, their predictions of the image quality often do not

agree well with the perceived quality by humans.

These problems stimulated the study of human vision and visual quality metrics

in recent years. The human vision system (HVS) is a very complex system that is

still not quite understood by researchers. But some low level characteristics of it have

been studied for a long time and proven to be reliable in directing the development

of visual technologies. A great deal of effort has been made to develop image quality
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metrics that are based on the human visual system. While some metrics yield decent

results, most of them are not always consistent with human perceived quality and are

sometimes limited to very specific applications. Furthermore, these metrics tend to

be very complicated for implementation. Besides, they are all measured in the spatial

domain while the compression is performed in the frequency domain, which makes it

very difficult to adjust the quality during the procedure of compressing.

With this in mind, we thought it was necessary to develop an image quality

metric based on the concepts of the human visual system in the wavelet domain,

which is easy to implement, consistent with HVS ranking, and able to measure the

post-compression quality without reconstructing the compressed image.

1.1.2 Compression

Effective image and video compression techniques have been two very active re-

search areas in the past two decades. It is essential to develop compression methodolo-

gies which can both produce high compression ratios and preserve good reconstructed

quality.

Although Discrete Cosine Transform (DCT) based compression techniques are

suitable for moderate data compression of image and video signals, the quality of

reconstructed signals becomes poor when compression ratios are high. The multi-

resolution capabilities of the Discrete Wavelet Transform (DWT) in both the spatial

and frequency domains make it a more natural means of signal representation. The

DWT based compression techniques have shown to outperform DCT-based solutions,

especially at high compression ratios. JPEG released the JPEG2000 standard, which

is a wavelet-based image compression technology that is slowly but sturdily replacing
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the original DCT-based JPEG standard. Also, as extensions of the wavelet based

image compression techniques, 3-D wavelet compression techniques have shown great

potential in the video compression field in the recent years.

In light of this, we chose DWT based image and video compression as one of our

research areas. We noticed that image compression is usually treated as a bit-rate

constrained problem, i.e., compression ratio is on the top of consideration while qual-

ity is secondary. Since the features of images may vary significantly, image qualities

can be very different for the same bit-rate. There are applications that want the vi-

sual qualities of the compressed images be constrained in an acceptable range, where

bit-rate constant compression is not desired. So we decided to develop a compres-

sion method which prioritizes the quality (quality constrained compression), which

compresses images to a desired visual quality.

In the field of video compression, the motion estimation/compensation scheme

has been playing a key role for a long time. The block-based motion estimation is the

dominant approach, but the object-based approach is gaining its share due to the need

of object-based/content-based video applications. We noticed that the motion vectors

and shape maps undermine the compression efficiency. So we conducted researches on

video compression in two new directions to overcome this problem: one is a temporal

filtering algorithm that does not use motion vectors and the other is an object-based

coding method that does not need to code shape information.
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1.2 Approaches

This work covers a few areas in image and video technology using the wavelet

transform, including image quality assessment, quality constrained image compression

and 3-D wavelet video compression.

The most important tool this work based on is the DWT. This work searches

for a better way to represent the visual signals and describe the HVS concepts in

the domain of wavelet transform. This is because not only that the spatial-temporal

multi-resolution property of wavelet is perfect to describe the visual signals, but also

that DWT has achieved great success in image and video technology in the recent

years. This dissertation further investigated of the application of DWT in image and

video technology and took the following research approaches.

1. HVS based image quality metrics tend to be complex and hard to implement,

this work studied the concepts of HVS and intended to find an accurate and

simple HVS based solution. This solution should be able to cover the most

important features of HVS and wavelet friendly, i.e., suitable to be implemented

in the wavelet domain.

2. One important feature of quality constrained compression is real-time ready,

i.e., the quality of the compressed image should be able to be controlled or

adjusted during the compression without reconstructing the image. With the

help of the wavelet domain image quality metric, this becomes possible since

the lossy coding that determines the image quality is in the wavelet domain.

3. Video compression is more complex than image compression because it has to

deal with the temporal redundancy in addition. How to remove the temporal
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redundancy is the most important issue in video compression. This work was

trying to explore this problem in new directions. The first one is the sub-

grouping transform algorithm that breaks down the uniform transformation of

video frames and provides the flexible pixel-based temporal transform. The

second one is a hybrid of block-based and object-based motion estimation, and

combines shape adaptive and regular transforms. Both of them avoided the

computation intensive motion estimation and compensation approach. But they

are able to be used with an additional sophisticated motion estimation and

compensation algorithm.

1.3 Contributions

The major contributions of this dissertation can be summarized as follows:

1. A new quality metric in the wavelet domain called WNMSE is proposed. WN-

MSE is consistent with the human judgment of visual quality, simple to imple-

ment, and able to estimate the quality of an image during the compression.

2. A real-time quality constrained compression algorithm called QCSQ is proposed.

QCSQ is based on the relationship among the statistic features, quantization

step-sizes, and WNMSE value of a compressed image. It can determine the

quantization step-sizes for all the wavelet subbands of a DWT decomposed

image and compress this image to a desired visual quality accurately.

3. An innovative temporal wavelet filtering scheme that is not dependent on motion-

estimation and motion vectors is proposed. Compared with other video coding

6



algorithms with motion-compensation, the so-called Sub-Grouping Transforma-

tion (SGT) algorithm has nearly no overhead bits.

4. A 3-D virtual object coding scheme that exploits the strengths of both block-

based and object-based motion estimation, and combines the regular and shape

adaptive transforms. By defining the base frame, spatially resizing VOPs, and

dividing VOPs into sub-objects, this method can achieve both motion estima-

tion accuracy and compression efficiency with only one motion trajectory for

the video object without the shape coding overhead.

1.4 Outline

This dissertation is organized as follows: the human vision system, as the main

foundation of the next chapter, is introduced in Chapter 2. The proposed image

quality metric and the quality constrained compressed based on it are in Chapter

3. Chapter 4 presents the pixel-based sub-grouping transform algorithm for video

coding. The virtual sub-object based video coding is in Chapter 5. Finally, Chapter

6 concludes the dissertation. The detailed algorithms of QCSQ are listed in the

Appendices.
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CHAPTER 2

HUMAN VISION SYSTEM

2.1 Introduction

Vision is the most essential one of our senses. As a matter of fact, 80-90 percent of

all neurons in the human brain are estimated to be devoted to vision signal processing

[1]. This indicates the extreme complexity of the human visual system, which can be

divided into two major components: the eyes that capture light and convert it into

signals that can be understood by the nervous system, and the nervous pathways in

the brain, along which these signals are transmitted and processed.

For people who are working on image and video technologies, it is very important

to study the characteristics of the human visual system and apply it into research.

Although the current knowledge about the human visual system is still limited, there

are aspects of the human visual system that are relevant to image and video processing

and can be very helpful to research on image and video techniques.

This chapter will discuss the structure and functions of the human visual system

as well as a number of properties of it that are of particular interest of our research.
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2.1.1 Optics: Orientation and Color Dependent

From an optical point of view, the eye is the equivalent of a camera, which com-

prises a system of lenses and a variable aperture to focus images on the light-sensitive

retina. The optical system of the human eye is composed of the cornea, the aqueous

humor, the lens, and the vitreous humor. Because the cornea is not perfectly sym-

metric, the optical properties of the eye are orientation dependent. Therefore it is

impossible to perfectly focus stimuli of all orientations simultaneously.

The properties of the eye’s optics, most importantly the refractive indexes of the

optical elements, vary with wavelength. This means that it is impossible to focus

all wavelengths simultaneously. It is evident that the retinal image contains only

poor spatial details for wavelengths far from away the center wavelength (or color).

This tendency towards monochromacy (total color blindness) becomes even more

pronounced with increasing luminance.

2.1.2 Spatial Resolution: Limited and Luminance Depen-
dent

The optics of the eye project images of the outside world on the retina, the neural

tissue at the back of the eye, where the layer of light sensitive photoreceptors is lo-

cated. The photoreceptors are specialized neurons that convert the light energy into

signals that can be interpreted by the brain. The size and spacing of the photorecep-

tors determine the maximum spatial resolution of the human visual system. There

are two different types of photoreceptors called rods and cones. Rods are responsible

for low light level vision, while cones for high light level vision.
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Rods are very sensitive light detectors with poor visual resolution. This is due to

the fact that signals from many rods converge onto a single neuron, which improves

sensitivity but reduces resolution. The opposite is true for the cones that several

neurons encode the signal from each cone.

2.1.3 Sensitivity: Selective to Frequency, Color, Velocity,
Orientation, and Phase

The visual cortex is responsible for all higher-level aspects of vision. There is an

enormous variety of cells in the visual cortex. A particular cell may respond strongly

to patterns of a certain orientation or to motion in a certain direction. Similarly,

there are cells tuned to particular frequencies, colors, velocities, etc. This neuronal

selectivity is thought to be at the heart of the multi-channel organization of human

vision.

2.2 Contrast Sensitivity

The human visual system is capable of adapting to an enormous range of light

intensities. The response of the human visual system depends much less on the

absolute luminance than on the relation of its local variations to the surrounding

luminance. This property is known as Weber-Fechner law. Contrast is a measure of

this relative variation of luminance. Mathematically, Weber contrast can be expressed

as

CW =
L− Lb

Lb

, (2.1)

where L is the luminance of the pixel of interest and Lb is the background luminance.

The threshold contrast, i.e. the minimum contrast necessary for an observer to detect

a change in intensity, is a function of background luminance. It remains nearly
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constant from faint lighting to daylight, which is indeed the luminance range typically

encountered in most image processing applications. Evidently, the Weber-Fechner law

is only an approximation of the actual contrast.

The threshold contrast depends to a great extent on the stimulus characteristics,

most importantly its color as well as its spatial and temporal frequency. Contrast

sensitivity is defined as the inverse of the contrast threshold. Contrast sensitivity

functions (CSF) are generally used to quantify these dependencies. In these CSF

measurements, the contrast of periodic stimuli with varying frequencies is defined as

the Michelson contrast [2]:

CM =
Lmax − Lmin

Lmax + Lmin

, (2.2)

where Lmin and Lmax are the luminance extremes of the pattern.

While the above two definitions are good predictors of perceived contrast for simple

stimuli, they fail when stimuli become more complex and cover a wider frequency

range. It is also evident that none of these simple global definitions is appropriate

for measuring contrast in natural images. This is because a few very bright or very

dark points would determine the contrast of the whole image, whereas actual human

contrast perception varies with the local average luminance. In order to address these

issues, Peli proposed a local band-limited contrast in [3]:

CP
j(x, y) =

ψj ∗ L(x, y)

φj ∗ L(x, y)
, (2.3)

where ψj is a band-pass filter at level j of a filter bank, φj is the corresponding

low-pass filter, and L(x, y) is the luminance at (x, y).
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In [4], Lubin modified Peli’s contrast definition in an image quality metric based

on a multi-channel model of the human visual system:

CL
j(x, y) =

(φj − φj+1) ∗ L(x, y)

φj+2 ∗ L(x, y)
. (2.4)

The differences between CP and CL are most pronounced for higher-frequency bands.

The lower the frequency, the more spatially uniform the low-pass band in the denom-

inator will become in both, finally approaching the overall luminance mean of the

image.

Local contrast as defined above measures contrast only with respect to the local

background. This is analogous to the symmetric (in-phase) responses of vision mecha-

nisms. However, a complete description of contrast for complex stimuli has to include

the anti-symmetric (quadrature) responses as well [5, 6]. Analytic filters represent an

elegant way to achieve this: The magnitude of the analytic filter response, which is

the sum of the energy responses of in-phase and quadrature components, exhibits the

desired behavior in that it gives a constant response to sinusoidal gratings.

Oriented measures of contrast can still be computed, because the Hilbert transform

is well-defined for filters whose angular support is smaller than π. Such contrast

measures are useful for many image processing tasks. They can implement a multi-

channel representation of low-level vision in accordance with the orientation selectivity

of the human visual system and facilitate modeling aspects such as contrast sensitivity

and pattern masking. Contrast pyramids have also been found to reduce the dynamic

range in the transform domain, which may find interesting applications in image

compression [7].

For example, in [4], Lubin applies oriented filtering to CL
j and sums the squares of

the in-phase and quadrature responses for each channel to obtain a phase-independent
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oriented measure of contrast energy. Using analytic orientation-selective filters ηk(x, y),

this oriented contrast can be expressed as

CL
jk(x, y) = |ηk ∗ CL

jk(x, y)|. (2.5)

Alternatively, an oriented pyramid decomposition can be computed first, and contrast

can be defined by normalizing the oriented subbands with a low-pass band:

CO
jk(x, y) =

ψj ∗ ηk ∗ L(x, y)

φj+2 ∗ L(x, y)
. (2.6)

Both of these approaches yield similar results in the decomposition of natural images.

Achromatic contrast sensitivity is generally higher than that of chromatic, espe-

cially for high spatial-temporal frequencies. The chromatic CSFs for red-green and

blue-yellow stimuli are very similar and the blue-yellow sensitivity is lower. Hence,

the full range of colors can only be perceived at low frequencies. As spatial-temporal

frequencies increase, blue-yellow sensitivity declines first. At even higher frequencies,

red-green sensitivity diminishes as well, and perception becomes achromatic. On

the other hand, achromatic sensitivity decreases at low spatial-temporal frequencies,

whereas chromatic sensitivity does not.

2.3 Color Perception

In the most general form, light can be described by its spectral power distribution.

The human visual system, however, does not process all of the information available

in the spectral distribution. The visual system represents colors as a function of the

spectral properties of light. There exist lights with different spectral power distribu-

tions that cannot be distinguished by a human observer. Thus physically different

lights can produce identical color appearance.

13



Masking and adaptation are two important behaviors in human vision system as

they describe interactions between stimuli. Results from masking and adaptation

experiments were also the major motivation for developing a multi-channel theory of

vision. Masking happens when a stimulus that is visible by itself can not be detected

due to the existence of another. Masking is strongest when the interference stimuli

have similar characteristics, such as spatial frequencies, orientations, colors, etc. For

example, a compressed image looks no difference as the original one because the

distortion is masked by the original image that acts as background.

2.4 Multi-Channel Organization

Neurons are tuned to certain types of visual information such as color, frequency

and orientation. Data from experiments yielded evidence that these stimulus charac-

teristics are processed in different channels in the human visual system. This empirical

evidence motivated the multi-channel theory of human vision [8].

A large number of neurons in the primary visual cortex have receptive fields that

resemble Gabor patterns [9]. Hence they can be characterized by a particular combi-

nation of spatial frequency, orientation and phase. Serving as an oriented band-pass

filter, one such cell thus responds to a certain range of spatial frequencies and orien-

tations. With a sufficient number of appropriately tuned cells, all orientations and

frequencies in the sensitivity range of the visual system can be covered. Some cells

respond only to oriented stimuli of a certain size. They are sensitive to corners,

curvature or sudden breaks in lines.

Temporal mechanisms have been studied as well, but there is less agreement about

their characteristics than that of spatial mechanisms. It is now believed that there
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is just one low-pass and one band-pass mechanism [10]-[12], which are referred to

as the sustained and transient channel, respectively. A small percentage of these

cells respond well only when a stimulus moves across their receptive field in a certain

direction. These direction-selective cells probably play an important role in motion

perception.

2.5 Conclusions

A number of important concepts of human vision system have been introduced in

this chapter. The major points can be summarized as follows:

1. While the human visual system is highly adaptive, it is not equally sensitive

to all stimuli. There are a number of inherent limitations, such as spatial and

temporal frequencies, resolution, contrast, and color.

2. The response of the human visual system depends much more on the local rel-

ative contrast than on the absolute luminance, while the local relative contrast

is a function of frequency, luminance, color, orientation, etc.

3. Visual information is processed in different channels in the human visual system

depending on its characteristics such as color, spatial and temporal frequencies,

orientation, phase, direction of motion, etc. These channels are not totally

isolated and their interactions with each other play an important role.

These basic concepts will be used to direct our research in this work, in particular

in developing the image quality metric in the next chapter, which implicitly used a

simplified model based on the most important properties of the human visual system:

local relative contrast, resolution limitation, multi-channel.
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CHAPTER 3

IMAGE QUALITY ASSESSMENT IN THE WAVELET
DOMAIN

3.1 Introduction

To compare the performances of any two image compression methods, both the

compression ratios and the qualities of the compressed images have to be considered.

An ideal compression system should represent the original image with as small amount

of bits as possible while maintaining a good visual quality. In reality, it is always

objective in measuring the compression ratio, but highly subjective to judge the

quality. Since humans are the end user of images, the natural way to compare the

quality of two images is to have them evaluated by human observers. Typically, a

group of observers examine a set of images under a controlled environment and assign

a numerical score to each of them. Each image’s scores are recorded and averaged

later as its Mean Opinion Score (MOS) [13] that is by far the most accurate and

reliable objective Image Quality Metric (IQM). Unfortunately, MOS is inconvenient

and expensive to use.

In [14], ten quality metrics were evaluated against subjective human evaluation.

The evaluation was conducted on five different distortion types with variant degrees
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of impairments. It is claimed that there still exists difference between machine and

human evaluations of image quality, and it is difficult to invent a quality assessment

algorithm that is superior in every distortion type. This work is motivated by the need

for simple IQMs that are consistent with MOS and suitable for computer implemen-

tation. By ”consistent”, we mean that a metric should perform the same regardless

of the distortion types or patterns of the images and be linearly correlated to MOS.

That is, it is accurate (giving the same IQM score to images that have the same MOS

scores), and increases or decreases monotonically with MOS.

According to its dependence on the original image, an IQM can be classified into

three categories:

1. Full-Reference (FR). A Full-Reference metric requires that the original image is

available and therefore be used to evaluate the quality of the distorted image.

This is the most common category.

2. Reduced-Reference (RR). A Reduced-Reference metric evaluates the quality of

the distorted image with only partial knowledge of the original one.

3. No-Reference (NR). A No-Reference metric evaluates the quality of a distorted

image without the knowledge of the original one.

This work will focus on Full-Reference IQMs. The most common IQMs are the

Mean Squared Error (MSE) family, including MSE, root MSE (RMSE), and Peak

Signal to Noise Ratio (PSNR), which are simple pixel error based and their perfor-

mances are far from satisfactory [15]. Some more sophisticated pixel error based

IQMs are also available, such as the method of Damera-Venkata et al. in [16], whose

performance, however, is not substantially better than the others [17]. The limitation
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of simple pixel error based metrics is also experienced in applications of medical im-

ages such as in [18], where the compressed diagnostic breast images with lower PSNR

values are preferred by doctors over those with higher PSNR values. That is, the

images favored by PSNR do not agree with the judgment of human eyes.

Wang and Bovik proposed a Structural SIMilarity index (SSIM) that models the

total distortion of an image block as the combination of three factors: loss of cor-

relation, luminance distortion, and contrast distortion [19]. SSIMs are measured for

blocks of an image using a sliding window, and the mean value of the SSIMs (MSSIM)

of all the blocks is taken as the overall quality metric of the image. In [20], Shnay-

derman et al. explored the feasibility of Singular Value Decomposition (SVD) in

developing a new IQM that can express the quality of distorted images. An image

is first divided into small blocks. The distance between the singular values of the

original image block and the singular values of the distorted image block is used to

indicate its quality. The overall quality of the distorted image is measured by the

absolute value average of differences between these singular value distances and their

median. The author claimed that better performance was achieved with smaller block

size, which suggested that single pixel based measurement will have the best result.

This, in fact, undermined the foundation of their work since singular value decompo-

sition makes no sense for single pixel based measurement. In spite of the differences,

these metrics have the same drawback in which they are determined in the spatial

domain while compression is performed in the frequency domain, which makes it very

difficult to control the visual quality during the compression.
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A great deal of effort has been made to develop IQMs that fit the Human Visual

System (HVS). While some metrics yield decent results, most are not always consis-

tent with HVS and are sometimes limited to very specific applications. Furthermore,

these metrics tend to be complex for implementation. Watson et al. developed a

Discrete Cosine Transform (DCT) based video quality metric that incorporates quite

a few aspects of human visual sensitivity in [21], and a simple IQM was proposed by

Sendashonga and Labeau for both DCT and Discrete Wavelet Transform (DWT) in

[22].

In general, compression technologies can be classified into two categories: lossless

and lossy. Lossy compression technologies usually first transform the image into the

frequency domain, and then quantize/truncate its coefficients. Two most common

options of transformation are DCT and DWT, respectively. Compared with DCT,

coefficients of DWT are localized in both spatial and frequency domains. That is

desirable because HVS functions as a bandpass filter with the localization property

[23]. After lossy compression, an image can not be perfectly reconstructed from the

quantized coefficients because some data have been truncated or thrown away, which

reduces the data size and also generates distortions in the compressed image as a

side effect. Distortions can also be introduced by the transformation because of the

limited precision of digital computers or the rounding of integer operations, which,

however, can be ignored comparing to that caused by quantization. Quantization is a

process that has coefficients divided by a numeric value called the quantization step

and rounds them to integers to reduce their magnitudes. The original coefficients can

not be perfectly recovered from the quantized coefficients because of the rounding er-

ror. Quantization, including Scalar Quantization (SQ) and Vector Quantization (VQ)
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[24]-[30], plays a very important role in lossy image compression. It is the primary

contributor to high compression ratio, and likewise the major source of distortion. In

[31], Watson et al. analyzed the DWT quantization errors and developed a quanti-

zation algorithm that is aimed to achieve visually lossless compression, but does not

have the flexibility to achieve arbitrary visual quality. In [32], Liu et al. developed a

quality constrained compression method for JPEG2000 that is optimized for the local

profile of so called just-noticeable distortion (JND), which is similar to the distortion

model in [31]. In [33], Nadenau et al. came up with a wavelet based color image com-

pression that improved the precision of the contrast sensitive function (CSF), which

is complicated and not able to adjust the visual quality.

In this work, we propose a new quality metric called Weighted Normalized Mean

Square Error of wavelet subbands (WNMSE), which is defined in terms of the wavelet

coefficients and uses the sum of the weighted normalized mean square error of the

coefficients in each wavelet subband to assess the quality of a compressed image. This

metric is consistent with HVS as well as measures the post-compression quality of an

image in real-time because of the simplicity of WNMSE. Taking advantage of WN-

MSE, we have developed a novel compression algorithm called Quality Constrained

Scalar Quantization (QCSQ) that is based on the relationship among the statistic

features, quantization steps, and WNMSE value of the image. QCSQ can find the

quantization steps for all the subbands efficiently for compressing the image to a

desired visual quality measured by WNMSE.

The work is organized as follows. In Section 3.2, we briefly describe the DWT and

define the notations that are used in the work. In Section 3.3, our new quality metric
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WNMSE is presented, and in Section 3.4, the innovative quality constrained quantiza-

tion algorithm QCSQ is introduced. Experimental results are given in Section 3.5 to

demonstrate the advantages of the new metric and compression methods. The work

is concluded by Section 3.6. The detailed algorithm of QCSQ is given in Appendix A.

3.2 2-D Wavelet Transform

The history of wavelet can be traced back to Haar’s work in 1909. Starting

from the 1980s, contributions to wavelet theory began to boom, such as Goupil-

laud, Grossmann and Morlet’s formulation of what is now known as the Continuous

Wavelet Transform (CWT), Strömberg’s early work on discrete wavelets, Daubechies’

orthogonal wavelets with compact support, Mallat’s multiresolution framework, Del-

prat’s time-frequency interpretation of the CWT, and Newland’s Harmonic wavelet

transform plus many others.

Subband coding, which includes wavelet coding, was first introduced by Croisier

et al. for speech coding in 1976 [34]. Ten years later, 2-D subband decomposition

was applied to image coding by Woods and O’Neal [35]. With the advent of the

wavelet theory, wavelet coding became the dominant subband coding. Figure 3.1 is

the diagram of a single-level 2-D wavelet decomposition system, in which four wavelet

subbands are generated from the input image and labeled as LL, LH, HL and HH,

respectively, where L means low pass filtering and H means high pass. From Figure

3.1, one can see that subband LL is the result of two low pass filtering operations

in both the horizontal and vertical directions, while subband LH is the result of a
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Figure 3.1: The structure of a single-level 2-D subband decomposition system, where
HL represents a low pass filter and HH represents a high pass filter.

low pass filtering operation in the horizontal direction and a high pass filtering oper-

ation in the vertical, respectively; so forth and so on. A balanced multilevel subband

decomposition system can be constructed by applying single-level decomposition sys-

tems to all the subbands of the previous level. The wavelet transform is the extreme

form of an unbalanced subband decomposition because only the subband LL of the

previous level is further decomposed.

For convenience, we label subband LL as subband a (average), HL as h (horizon-

tally high pass and vertically low pass), LH as v (vertically high pass and horizontally

low pass) and HH as d (both horizontally and vertically high pass). Figure 3.2 is a

decomposed image after three levels of 2-D Haar wavelet transform. There are totally

ten subbands which can be put into 3 groups according to the levels of transforma-

tion: level-1, level-2, and level-3, respectively. After the first transformation, we get

four subbands of level-1: a1, h1, v1 and d1; after applying the second wavelet trans-

formation to a1, we get four subbands of level-2: a2, h2, v2 and d2; finally, we get four
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Figure 3.2: The decomposed image of Lenna after three 2-D Haar wavelet transfor-
mations

subbands of level-3: a3, h3, v3 and d3 by applying the last wavelet transformation

to a2. The same operation can continue by applying the 2-D wavelet transform to

an, n = 1, 2, 3, ..., until an becomes a single coefficient. However, too many levels of

transformation will not contribute to the efficiency of image compression, but only

increase the cost of computation.

Besides its level of transformation l, another property of subband bl is its frequency

index fbl
, where b is one of {a, h, v, d}. A wavelet subband is formed by letting the

coefficients passing through a series of filters which includes high pass HH and low

pass HL, each selectively picking appropriate frequency components. If we let the

number of high pass filters that subband bl passed through be NHbl
and low pass

filters NLbl
, we define its frequency index as fbl

= NLbl
−NHbl

. In the case above with
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n = 3, the frequency indexes of the ten subbands {d1, v1, h1, d2, v2, h2, d3, v3, h3, a3}

are {−2, 0, 0, 0, 2, 2, 2, 4, 4, 6}.

The main advantages of using DWT for image coding are:

1. Compared with DCT, the coefficients of DWT are well localized in not only

the frequency, but also the spatial domains. This frequency-spatial localization

property is highly desired for image compression.

2. DWT decomposes an image into spatially correlated subbands that hold dif-

ferent frequency components of the image. Each subband can be thought as

a subset of the image with a different spatial resolution such that the visual

quality and the compression ratio of the compressed image can be controlled by

adjusting the distortions of different subbands.

3. Images coded by DWT do not have the problem of block artifacts which the

DCT approach may suffer [36].

4. Compared with DCT, DWT has lower computation complexity, O(N) instead

of O(NlogN) [37].

Xiong et al. claimed that, for still image compression, wavelet transform based coding

systems outperform DCT by an order of 1 dB in PSNR [38]. One example of DWT’s

success is JPEG2000 where 2-D DWT is used instead of DCT.

3.3 The New Quality Assessment Method

Human visual system takes in both frequency and spatial information following

a filtering process, and different frequency portions of an image have different con-

tributions to the visual quality. Distortions at different frequencies, even with the

24



same magnitude, do not have the same impacts to the quality of the compressed

image. We define the distortion in the spatial domain as the distance between the

pixels of the original image and those of the distorted image, and the distortion in the

frequency domain as the distance between the coefficients of the original image after

transformation and those of the distorted image after transformation. For distortions

in the spatial domain with the same magnitude, their corresponding distortions in the

frequency domain are combinations of distortions of all the subbands. Although the

distortion in the frequency domain is related to that in the spatial domain, given the

spatial distortion, it is impossible to differentiate the contribution of each subband.

An identical distortion index in the spatial domain may attribute to two compressed

images which have radically different qualities. Figure 3.3 shows two reconstructed

images with the same PSNR, among which the distortion of 3.3(a) is only from the a1

subband while that of 3.3(b) is from the h1, v1 and d1 subbands. We can see that, the

quality of 3.3(a) is worse than that of 3.3(b) even though they have the same amount

of distortion in the spatial domain. Since the spatial distortion is not a good indicator

of the true quality for human eyes, an image quality metric which is consistent has

to be developed in the frequency domain.

The 2-D wavelet transform decomposes an image into subbands that represent

different frequency components of the image. Let xbl,i,j denote a wavelet coefficient

before compression and ybl,i,j the coefficient after compression at position (i, j) in

subband bl. The distortion on this coefficient is D = |xbl,i,j − ybl,i,j|. In the remaining

part of this section, we will analyze how the distortions from different subbands affect

the quality of the reconstructed image. For convenience, our analysis is based on the

example using Haar wavelet, but the conclusion is applicable to all types of wavelets.
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(a) With distortion in only a1

subband
(b) With distortion in h1, v1 and
d1 subbands

Figure 3.3: Two reconstructed images with the same amount of spatial distortions: (a)
only has distortion in a1 subband while (b) has distortions in h1, v1 and d1 subbands.
The visual quality of (a) is much worse.

Before we introduce the new quality metric, the following observations are in

order.

1. The subbands with higher transformation levels hold more structural or global

information, such as shape and luminance, than those with lower transforma-

tion levels. So the distortions from the subbands of higher transformation levels

degrade the quality of an image more significantly. For example, each coeffi-

cient in a level-1 subband comes from four image pixels. If one coefficient has

a distortion, it is very likely that those four pixels will all have distortion after

reconstructing. Similarly, each coefficient in a level-2 subband comes from six-

teen pixels and its distortion will affect those sixteen pixels in the reconstructed

image. In a word, any distortion on a coefficient in a level-l subband will gen-

erate distortion on each of the 4l pixels in the reconstructed image, and smaller
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distortions in a higher level subband may have more negative impact on the

quality of an image than the larger ones in a lower level subband.

2. The subbands of lower frequency (larger frequency indexes) hold more structural

or global information than those of higher frequency (smaller frequency index).

Since the structural information plays a more important role in maintaining

the fidelity of an image, a subband with larger frequency index has more visual

impact than that with smaller frequency index. Figure 3.4 shows that the same

amount (NMSE = 10%) of distortion produced by subbands with nonidentical

frequency indexes has different impact on image quality. Figure 3.4(a) only

has distortion in subband a3 (fa3 = 6) while 3.4(b), 3.4(c) and 3.4(d) in h3

(fh3 = 4), v3 (fv3 = 4) and d3 (fd3 = 2), respectively. The quality of 3.4(a) is

the worst, 3.4(b) and 3.4(c) next, and 3.4(d) the best.

In light of the above discussion, we believe that a good IQM should be defined in

the frequency domain in order to utilize this subband dependent feature. Our new

quality metric chooses to use the weighted sum of normalized mean square errors of

the coefficients in all the wavelet subbands as the quality metric of an image, which is

called the Weighted Normalized Mean Square Error of wavelet subbands (WNMSE):

WNMSE1 =
√

4(L−1) × 2faL
/2 ×NMSEaL

+
∑

b∈{h,v,d}

L∑

l=1

√
4l−1 × 2fbl

/2 ×NMSEbl

(3.1)

where
√

4l−1 × 2fbl
/2 is the weight factor for subband bl whose transformation level

is l and frequency index fbl
, L is the highest transformation level, NMSEbl

is the

Normalized Mean Square Error (NMSE) of subband bl, and
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NMSEbl
=

∑n
i=1

∑m
j=1(xbl,i,j − ybl,i,j)

2

∑n
i=1

∑m
j=1(xbl,i,j)

2
(3.2)

where m is the number of pixels in the horizontal direction and n vertical. In the

case that
∑n

i=1

∑m
j=1(xbl,i,j)

2 = 0, let NMSEbl
= 0 if

∑n
i=1

∑m
j=1(xbl,i,j − ybl,i,j)

2 = 0,

and NMSEbl
= 1 otherwise. For convenience, we define WNMSE as:

WNMSE = 20× log 10
100

WNMSE1

. (3.3)

In this way, a better quality image will have a higher value of WNMSE which is

similar to PSNR and MSSIM.

In this equation, each NMSEbl
is calculated and weighted individually and sepa-

rately, which reflects the contribution of each subband to the total distortion. NMSE,

instead of MSE, is used because the absolute amount of the distortion is not a good

indicator of the contribution of a subband towards the overall quality loss. As dis-

cussed above, with the transformation level going up, the number of supporting pixels

of a coefficient and its impact to the global structure both increase. By putting 4l−1

in the weight factor for subband bl, its weight goes along with its level. Similarly, by

putting 2fbl
/2 in the weight factor, the impact of frequency is considered accordingly.

A subband with higher transformation level and lower frequency will have larger

weight. These weights loyally represent the contribution of each wavelet subband to

the overall visual quality.

Unlike the conventional quality metrics, WNMSE evaluates the quality of an image

in the wavelet domain, which possesses the following two advantages:

1. WNMSE is HVS optimized. Using the weighted contributions of different sub-

bands in the wavelet domain, WNMSE does not simply evaluate the quality of
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an image by its total distortion, but treats subbands discriminatingly because

different subbands have non-uniform impacts to visual quality. By using differ-

ent weights, the contribution of each wavelet subband to the overall quality is

considered accordingly. In this way, the impacts of distortions to both global

structure and local details are more likely to be balanced, which leads to a more

objective quality assessment.

2. WNMSE is real-time suitable. By defining WNMSE in the wavelet domain,

the quality can be easily assessed during the process of compression. In con-

trast to those quality metrics in the spatial domain, WNMSE can measure the

quality of an image right after quantization without a new computation in the

spatial domain. Computation is thus more efficient, especially when iteration

is necessary to adjust the quality of the image.

Our research shows that WNMSE is much more consistent with the results of

MOS, compared with PSNR and MSSIM. WNMSE is thus a better quality indicator

of an image by HVS. In addition, it enables us to link the two operations, quality

assessment and quantization during compression, because both of them operate in the

frequency domain. With the linkage established, accurate quality constrained com-

pression becomes possible. The experimental results which compare the performance

of WNMSE with that of PSNR and MSSIM are provided in Section 3.5.1.

3.4 Quality Constrained Compression

Image compression is usually treated as a bit-rate constrained problem, i.e., com-

pression ratio is on the top of consideration while quality is secondary. Since the
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features of images may vary significantly, image qualities can be different for the

same bit-rate. Consequently, bit-rate constant compression is not always desired.

We call a compression method which prioritizes the quality quality constrained

compression. Unfortunately, quality constrained compression has been difficult be-

cause of the following two reasons:

1. Quality assessment, such as PSNR and MSSIM, and image compression, such

as DCT or DWT based, are pursued in the spatial and frequency domains,

respectively, and there is no direct and simple link between them.

2. The reliability of current IQMs still have to be improved to satisfy the need of

the quality assessment.

These two problems can be solved by using the new index WNMSE. From Equa-

tion (3.1), the WNMSE of a compressed image can be controlled if the distortion of

each wavelet subband can be manipulated. This could be done through a brutal-

force searching method, but an applicable solution has to be more efficient. Ideally,

we want to be able to predict the distortion caused by a given quantization step.

This appears to be a challenging task because it requires a highly accurate statistical

description of the subband. Many efforts have been made to develop statistic models

of wavelet coefficients and employ them in image compression. Unfortunately, they

are often inaccurate in the modeling, and not easy to use [39]-[42]. From the discus-

sion of the previous section, one can see that choosing of the step for a particular

subband must be related to its contribution to the quality of the image. Large con-

tributors should have less distortions, i.e., smaller steps. The question is who are the

large contributors? We propose to predict the contribution of a subband by a set of
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features, and use these features to select the initial step and subsequently tune it to

reach the desired quality. These features are transformation level, frequency index,

energy level, standard deviation, and complexity, respectively. While the definitions

of the transformation level and frequency characteristic have been described earlier

and that of the standard deviation is trivial, the other two features are defined below.

1. Since the energy of a subband is calculated as the sum of the squares of each

coefficient, it depends only on the absolute magnitude of each coefficient. So

we use the absolute mean value mbl
to represent the energy level of subband bl.

mbl
=

∑n
i=1

∑m
j=1 |xbl,i,j|

n×m
(3.4)

where xbl,i,j is a coefficient of subband bl at position (i, j), and m and n is the

dimensions of subband bl.

2. At the first glance, the standard deviation σbl
of the wavelet coefficients in

subband bl is the only parameter needed to represent the complexity of the

subband.

σbl
=

√∑n
i=1

∑m
j=1(xbl,i,j − xbl

)2

n×m− 1
(3.5)

where

xbl
=

∑n
i=1

∑m
j=1 xbl,i,j

n×m
. (3.6)

It is not enough because the energy levels of subbands could be different. For

example, two subbands with identical standard deviations of 10, may have ab-

solute means of 50 and 5, respectively. In this situation, the two subbands do

not have the same complexity level. So we use the ”relative” standard deviation

vmbl
= σbl

/mbl
(std/mean) to represent the complexity of subband bl.
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It is well known that the subbands of the wavelet transformation are projections of

the original image to various resolutions, and their energy levels and complexities are

related to each other. We can simply use the energy level and complexity of subband

a1, i.e., ma1 and vma1 , to uniformly represent those of all the subbands.

The impact to the image quality by a particular step is affected by the five fea-

tures just mentioned. It is not possible to deduct a quantitative relationship between

the step and the features for a desired image quality, but it is not difficult to under-

stand the qualitative relationship between the two. Based on these observations, we

introduce the following equation for defining the quantization step of subband bl:

sbl
= Cl · Vbl

(3.7)

where Cl is a variable that is only dependent on the transformation level l, and Vbl

is a variable whose value is derived from a function of σbl
while the function itself

is determined by the other four features of subband bl. Accordingly, to get a high

compression ratio while satisfying a quality constrain, Cl and Vbl
can be determined

using the following rules:

1. Vbl
should increase as ma1 increases.

2. Vbl
should increase as vma1 increases.

3. Vbl
should decrease as fbl

increases.

4. Cl should decrease as the transformation level increases.

5. Vbl
should be proportional to σbl

.

6. The quality and compression ratio of a compressed image can be
tuned by adjusting its quantization steps to achieve an optimal result.

Using the rules just defined, a process has been found to search for quantization

steps for compressing an image. This process is called Quality Constrained Scalar

Quantization (QCSQ) which takes two steps: first, find the initial set of steps which is
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nearly optimal in the compression ratio with a uniform quality metric WNMSE ≈ 28,

where 28 is chosen as the lower bound of an acceptable visual quality. Secondly, tune

the initial steps to increase the quality of an image to a desired value.

3.4.1 Find the Initial Set of steps

When calculating the WNMSE indexes, we multiply the NMSE of a subband

bl by
√

4l−1 × 2fbl
/2, where 4l−1 is dependent on its transformation level and 2fbl

/2

is dependent on its frequency. Here the dependence of step on the transformation

level is reflected by defining the variable Cl = 4(L−l). The impact of the frequency

index is reflected by multiplying a factor 2−fbl
/2 when calculating Vbl

. The detailed

implementation of this algorithm is in Appendix A.1.

3.4.2 Tune the Initial Set of steps

An image quantized by its initial set of steps only achieves the lower bound of

visual quality. By further tuning its steps, one can improve the quality of the image to

a desired level. Figure 3.5 shows how the variations of the steps of different subbands

alternate the quality of images. We use two empirical parameters to evaluate the

efficiency of the step tuning of a subband: quality gain and optimality. The quality

gain of subband bl is reduced from the quality improvements of images with different

features by reducing the step of subband bl by half. By optimality, we mean the ratio

between the quality increment (∆Q) and the compression ratio decrement (∆R):

(∆Q) / (∆R). Since we want to maintain as high a compression ratio as possible

when increasing the quality, ∆R should be as small as possible; therefore, the higher

the ratio (∆Q) / (∆R) is, the higher the optimality level is.
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Tuning Order 1 2 3 4 5 6 7 8
Subband h1 d3 v1 d2 h3 v3 v2 h2

Quality Gain (Haar) 0.58 0.47 0.58 0.50 0.14 0.13 0.18 0.18
Quality Gain (5/3) 0.57 0.49 0.58 0.52 0.13 0.13 0.18 0.18
Quality Gain (9/7) 0.57 0.49 0.56 0.53 0.13 0.13 0.18 0.18
Quality Gain (DB4) 0.51 0.49 0.54 0.55 0.13 0.13 0.17 0.18
Quality Gain (4/4) 0.50 0.49 0.53 0.54 0.13 0.13 0.19 0.18
Quality Gain (6/2) 0.58 0.47 0.59 0.50 0.13 0.13 0.18 0.19

Table 3.1: Order of the subbands for fine-tuning and the predicted quality gains by
reducing their steps by half.

Figure 3.5(a) shows the normalized optimality of each subband, which is sorted

in the ascending order, and Figure 3.5(b) shows the magnitude and variance of the

quality gain of each subband. To achieve accuracy, efficiency, and high compression

ratio, only those subbands that have low quality gain variances, high quality gains,

and high optimality values are used for quality tuning. Since the initial steps give the

lower bound of the visual quality of an image, only the tuning for quality increase is

considered. Combining the results of Figure 3.5(a) and Figure 3.5(b), the following

rules of fine-tuning are obtained:

1. If there is more than one choice satisfying the quality requirement, choose the

one which has the maximum compression ratio.

2. Tune the steps of the subbands with higher optimality first.

3. Tune only subbands whose quality gains are more than 0.1.

4. Tune only subbands whose variance of quality gains is less than 0.66.
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5. Reduce the step by half when tuning it (because of the binary property of digital

data).

The resulting order of tuning and the expected quality gain for each fine-tuning are

listed in Table 3.1, where the values shown are the average of 31 different images. We

can see that the tuning orders are identical for all the wavelets and the quality gains

show little difference. For a specific image, the quality gain may be slightly different,

but the order of tuning is universally true.

Since WNMSE is defined in the wavelet domain, we can easily measure it after

quantizing an image with the initial steps. Let the initial WNMSE be Q0 and the

objective WNMSE be Q, the difference is ∆Q = Q - Q0. To increase the quality

metric by ∆Q, we should tune the steps following the rules above. The detailed

implementation of this algorithm is in Appendix A.2.

3.5 Experimental Results

In this section, we first compare the quality assessment performance of WNMSE

with that of PSNR and MSSIM, and then use an example to show how to achieve

quality constrained compression with QCSQ. The Haar, DB4, 5/3 and 9/7 wavelets

are used in our experiments to show the generalization of the algorithm.

3.5.1 Compare the Performance of WNMSE with PSNR and
MSSIM

The performance of WNMSE is compared with that of PSNR and MSSIM by

applying them to two sets of images, which includes twenty four and twenty five de-

graded images, respectively. The impairments of the degraded images are either from
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Score Description
5.0 Perfect. The distortion is imperceptible
4.0 Good. The distortion is perceptible, but not annoying
3.0 Fair. The distortion is slightly annoying
2.0 Bad. The distortion is annoying
1.0 Very bad. The distortion is very annoying
0.0 Unidentifiable. The image is totally ruined

Table 3.2: The reference table of ranking scores.

compression with JPEG or JPEG 2000, or various amounts of additive noise, includ-

ing Gaussian, Speckle and Salt-pepper. These images are independently evaluated by

12 persons who come from different backgrounds. Three of them are considered as

experts since they work in the image processing field, and the others are non-experts.

To evaluate the qualities of these images, a person gave each degraded image a score

using Table 3.2 as a reference. Each score is from 0.0 to 5.0 including a decimal

fraction of one digit. The average score of an image is taken as the Mean Opinion

Score (MOS) of it. By comparing the MOS indexes given by WNMSE, PSNR, and

MSSIM, the accuracy of WNMSE is higher than both PSNR and MSSIM. Among

the images we used, Lenna and Peppers are the mostly used ones. Without loss of

generality, they are chosen as two visual examples to prove that the performance of

WNMSE is better.

We also used four popular criteria to evaluate the accuracy of the quality metrics.

Among them, the first three are the standard criteria used by the Video Quality

Expert Group (VQEG) [43], and the fourth is straight ”Sum of Squared Errors”. In

the following definitions, ”X” can be ”PSNR”, ”MSSIM” or ”WNMSE”, Xi is the
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normalized ”X” and MOSi the normalized MOS of the ith image, and n is the number

of images.

1. Pearson Linear Correlation Coefficient (PLCC) is used to evaluate the accuracy

of an IQM. The PLCC of ”X” with regard to MOS is

PLCCX =

∑n
i=1(Xi −X)(MOSi −MOS)√∑n

i=1(Xi −X)2
√∑n

i=1(MOSi −MOS)2
. (3.8)

The larger the PLCCX is, the more accurate X will be with regard to MOS.

2. Spearman Rank Order Correlation Coefficient (SROCC) is used to evaluate

the monotonicity of an IQM. The SROCC of ”X” with regard to MOS is

SROCCX = 1− 6
∑n

i=1(di)
2

n3 − n
(3.9)

where di is the difference between each rank of corresponding values of X and

MOS. The larger the SROCCX is, the better monotonicity X will have with

regard to MOS.

3. Outlier Ratio (OR) is used to evaluate the consistence of an IQM. The OR of

”X” ORX with regard to MOS is defined as the number of outliers divided by n,

where twice of the standard error of MOS was used as the threshold for defining

outliers. From the definition we can see that the smaller the ORX is, the more

consistent X will be with regard to MOS.

4. Sum of Squared Errors (SSE). We also use SSE of an index with regard to

MOS to measure the overall performance of it. The values of every index are

normalized so that they all have the same range between [0, 1].

SSEX =
n∑

i=1

(Xi −MOSi)
2. (3.10)
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Evaluation WNMSE WNMSE WNMSE WNMSE PSNR MSSIM
Metrics (Haar) (DB4) (5/3) (9/7)

Image SSE 0.606 0.750 0.873 0.791 1.347 1.453
series PLCC 0.7211 0.7138 0.6580 0.6922 0.5306 0.4877

A SROCC 0.7457 0.7439 0.6896 0.7300 0.5809 0.5326
n=24 OR 0.0420 0.1250 0.1250 0.1250 0.1250 0.1250
Image SSE 0.549 0.589 0.693 0.615 0.842 1.089
series PLCC 0.7814 0.7679 0.7304 0.7612 0.6558 0.5651

B SROCC 0.8485 0.8354 0.7632 0.8285 0.7573 0.6562
n = 25 OR 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800

Table 3.3: Overall performances of WNMSE, PSNR and MSSIM measured by their
Sum of Squared Errors (SSE) with regard to MOS.

The smaller the SSEX is, the better X will perform with regard to MOS.

The evaluation results of the quality metrics are listed in Table 3.3. WNMSE imple-

mented with four DWTs are compared with PSNR and MSSIM. Looking at the table,

we can see that all the WNMSEs outperform PSNR and MSSIM in every aspect while

the Haar WNMSE is the best.

Figures 3.6 and 3.7 show how WNMSE outperforms both PSNR and MSSIM.

Image (a) is the original image and the other three are degraded by Gaussian noise,

Salt-Pepper noise, and JPEG 2000 compression, respectively, which are listed in the

descending order of their MOS values. The measured quality metrics are listed in

Table 3.4 and Table 3.5. From the measured quality metrics, we can see that the

WNMSE indexes are in the same order as those of MOS, while PSNR and MSSIM

give the reverse results. This proves that WNMSE functions more like human eyes.
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Image WNMSE WNMSE WNMSE WNMSE PSNR MSSIM MOS
Haar DB4 5/3 9/7

b) 19.16 16.99 14.48 15.87 23.06 0.496 3.26
c) 17.28 15.07 12.54 13.93 23.10 0.498 3.07
d) 13.08 10.80 10.03 10.34 24.37 0.605 0.85

Table 3.4: Quality indexes of the image group of Lenna

Image WNMSE WNMSE WNMSE WNMSE PSNR MSSIM MOS
Haar DB4 5/3 9/7

b) 18.90 16.45 13.76 15.24 23.04 0.542 3.25
c) 18.60 16.18 13.16 14.80 24.01 0.601 3.24
d) 17.64 15.16 12.60 14.20 24.35 0.691 1.02

Table 3.5: Quality indexes of the image group of Peppers

3.5.2 QCSQ Examples

In this example, we use 9/7 wavelet which has been used in the JPEG 2000 stan-

dard for lossy compression. We first apply three levels of 2-D 9/7 wavelet transform to

an image, and then use QCSQ to determine the quantization steps for all its wavelet

subbands. After quantization, we use Zig-zag sorting followed by Stack-run [44] to

code the compressed image. Entropy coding, such as Huffman coding or Arithmetic

coding, has no impact on the quality of images, and was thus not applied in our

experiments.

Six images are used in the experiment, where the desired quality index is Q = 30

in WNMSE with an acceptable error of 0.3. So the final quality metrics of the six

images should be between 29.7 and 30.3 in WNMSE.
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1. Find the initial steps and compute the initial quality metrics. According to our

algorithm, an image quantized by its initial steps should have an initial quality

index Q0 = 28 measured in WNMSE. The results are listed in Table 3.6, from

which we can see that the initial quality indexes of all the other five images are

distributed closely around 28.0 except Mige171 which has a WNMSE value of

28.31.

2. Tune the steps. We know that ∆Q = Q − Q0 ≈ 30 − 28 = 2 for the other

five images and the sum of the quality gains of the first four most optimal

subbands: h1, d3, v1 and d2 (Table 3.1), are 0.57 + 0.49 + 0.56 + 0.53 =

2.15. So we first reduce the steps of these four subbands by half for the five

images. As for Mige171 whose ∆Q = 1.69, we only need to reduce the steps

of the first three subbands: h1, d3 and v1 which will give a quality gain of

1.62. The resulting quality metrics and compression ratio are listed in Table

3.7. We can see that the WNMSEs of the five images (Lenna, Lethal, Tree,

Mige171 and Building) already fall into the desired range. For the Peppers

image, the WNMSE is a little too high, which will cause unnecessary loss in

compression ratio. If we recover the steps of subband d2 to the initial setting,

its predicted quality metric is 30.70− 0.53 = 30.17 that is in the desired range.

The measured quality metric after tuning is 30.14 that is only slightly different

from the predicted value. Table 3.8 lists the final results, and Figure 3.8 shows

the compressed images.

The experimental results have shown that the desired quality metric is achieved

with no or only one iteration, and the resulting compression ratios are near optimal.
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Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE Comp. Ratio
Lenna 42 8 15 16 13 22 22 80 128 128 28.05 32.09
Lethal 45 16 20 21 24 32 30 176 144 128 27.97 34.07

Peppers 46 16 21 21 27 31 30 176 192 224 28.03 26.81
Tree 48 13 10 14 22 18 28 160 112 128 28.08 32.08

Mige171 63 24 18 19 35 30 32 192 176 128 28.31 38.64
Building 46 22 14 17 39 29 32 256 192 160 27.86 29.22

Table 3.6: Initial results before fine-tuning

Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE Comp. Ratio
Lenna 42 8 15 8 13 22 11 40 64 128 29.97 27.02
Lethal 45 16 20 11 24 32 15 88 72 128 30.17 29.19

Peppers 46 16 21 11 27 31 15 88 96 224 30.70 22.26
Tree 48 13 10 7 22 18 14 80 56 128 30.21 27.33

Mige171 63 24 18 10 35 30 32 96 88 128 30.24 34.52
Building 46 22 14 9 39 29 16 128 96 160 29.83 25.11

Table 3.7: Intermediate results of fine-tuning

Image sa3 sh3 sv3 sd3 sh2 sv2 sd2 sh1 sv1 sd1 WNMSE Comp. Ratio
Lenna 42 8 15 8 13 22 11 40 64 128 29.97 27.02
Lethal 45 16 20 11 24 32 15 88 72 128 30.17 29.19

Peppers 46 16 21 11 27 31 30 88 96 224 30.14 23.70
Tree 48 13 10 7 22 18 14 80 56 128 30.21 27.33

Mige171 63 24 18 10 35 30 32 96 88 128 30.24 34.52
Building 46 22 14 9 39 29 16 128 96 160 29.83 25.11

Table 3.8: Final results of fine-tuning
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3.6 Conclusions

In this work, we have proposed a new quality metric WNMSE and an innovative

quantization algorithm QCSQ. WNMSE uses the weighted sum of the normalized

mean square errors of wavelet coefficients to assess the quality of an image. According

to the concepts of HVS, the weight for each subband is chosen to reflect its perceptual

impact on the image, which measures the distortions in the global structure and local

details of an image in a more balanced way automatically. Because WNMSE is

defined in the wavelet domain, it can be calculated in the middle of compression

without reconstructing the image. Furthermore, it facilitates the link between the

quantization steps and the quality metric. Our experiments show that WNMSE has

better performance than both the legacy PSNR and the well referenced new IQM

SSIM.

The features of a subband can be represented by its transformation level, fre-

quency, energy, standard deviation, and complexity, which alternate the effect of the

quantization step to the WNMSE of a compressed image. Based on the analysis of

the relationship among the subband features, steps, and WNMSE values, we have

invented a quality constrained compression algorithm QCSQ which can identify the

quantization step for every subband of an image. With these steps, the image can be

compressed to a desired visual quality measured by WNMSE.

This work shows that, by developing the quality metric and the quantization

algorithm in the same wavelet domain, we have made the quality constrained image

compression possible, while pushing the compression ratio as high as possible.
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(a) distortion in a3 subband, fa3 = 6 (b) distortion in h3 subband, fh3 = 4

(c) distortion in v3 subband, fv3 = 4 (d) distortion in d3 subband, fd3 = 2

Figure 3.4: Four reconstructed images with the same amount (NMSE = 10%) of
frequency distortions: (a) only has distortion in subband a3 while (b), (c) and (d) in
h3, v3 and d3 respectively. The quality of (a) is the worst, (b) and (c) next, and (d)
the best.
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(a) The optimality level of different subbands
when reducing their steps by half to improve the
quality of the image. Sorted as the ascending
order of their optimality levels.
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(b) The quality gains of different subbands
when reducing their steps by half to improve the
quality of the image. Sorted as the ascending
order of their normalized standard deviations.

Figure 3.5: When reducing the step, each subband has different quality gains and
different optimality levels. Some of them have higher optimality levels and lower
invariance of quality gains, which can be used to adjust the quality of the compressed
image.
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(a) Original (b) Gaussian noise

(c) Salt-Pepper noise (d) JPEG 2000 compression

Figure 3.6: WNMSE outperforms both PSNR and MSSIM for Lenna images: WN-
MSE and MOS indexes are in the same order as (b) to (d) in the quality measure,
but PSNR and MSSIM give the reverse order as (d) to (b).
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(a) Original (b) Gaussian

(c) Salt-Pepper noise (d) JPEG 2000 compression

Figure 3.7: WNMSE outperforms both PSNR and MSSIM for Peppers images: WN-
MSE and MOS indexes are in the same order as (b) to (d) in the quality measure,
but PSNR and MSSIM give the reverse order as (d) to (b).
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(a) lenna: WNMSE = 29.97. (b) Tree: WNMSE = 30.17.

(c) Mige171: WNMSE =
30.14.

(d) Building: WNMSE = 30.21.

(e) peppers: WNMSE = 30.24. (f) lethalweapon: WNMSE = 29.83.

Figure 3.8: Compressed images that are fine-tuned to WNMSE = 30.00.
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CHAPTER 4

SUB-GROUPING TRANSFORMATION

4.1 Introduction

Video is basically a three-dimension (3-D) matrix of color pixels. Two dimensions

serve as spatial (horizontal and vertical) directions of the moving pictures, and one

dimension represents the time domain. A frame is a set of all spatial pixels that

correspond to a single point in time, i.e., it is the same as a still picture. Video

data contains spatial and temporal redundancy, i.e., the similarities within a frame

(spatial redundancy) and between frames (temporal redundancy). To reduce the

spatial redundancy, the spatial encoding or intra-frame compression is performed on

the current frame to take advantage of the intra-frame correlation, and the limita-

tions of human eyes, such as color, resolution, luminance and contrast. Intra-frame

compression is effectively image compression. To reduce temporal redundancy, the

temporal coding or inter-frame compression is applied by exploiting the inter-frame

correlation. Inter-frame compression uses earlier or later frames (reference frames) in

a video sequence to compress the current frame.

Inter-frame compression is a powerful technique for compressing video. The

most commonly used method is the block-based Motion-Estimation/Compensation
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(ME/C) that works by estimating a frame in a video sequence from its reference

frame/frames. If the current frame contains a block that is ”similar” enough to a

block in the reference frame, the system simply calculates a motion vector that links

the block in the current frame to the one in the reference frame so that the decoder

can construct that block from the reference one and create the predicted frame. Only

the difference between the predicted frame and the current frame needs to be coded

by intra-frame compression.

With the release of the JPEG2000, the Discrete Wavelet Transform (DWT) has

become the dominant transform in the field of image compression. Discrete Cosine

Transform (DCT), still widely used in the older standards, is fading away from the

research on image compression. As for video compression, the dominant standards

in the market are still DCT-based. Today, nearly all video compression methods in

common use (e.g., those in standards approved by the ITU-T or ISO) apply a DCT

for spatial redundancy reduction. DWT is typically not used in practical products

(except for the use of wavelet coding as still-image coders without motion compen-

sation), but has been the hot subject of research. The video compression algorithms

using DWT can be classified into three categories:

1. 2-D wavelet decomposition plus motion-estimation/compensation (ME/C). Cod-

ing systems in this category, such as those in [45], [46], [47] and [48], have the

similar structure as that of the DCT-based video compression. Block-based

ME/C is used to reduce the temporal redundancy.

2. 3-D extensions of 2-D wavelet based image compression algorithms. Coding

systems in this category, such as those in [49], [50] and [51], extend the successful
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wavelet-based image coding algorithms to the field of video coding. Motion-

compensation can also be integrated with algorithms in this category, where

the temporal direction wavelet transform is applied along the motion vectors or

trajectories.

3. Motion-compensated 3-D wavelet decomposition. This is typically done by ap-

plying the temporal wavelet decomposition on the motion-compensated frames

instead of the original frames [52], [53], [54].

The DWT decomposes a whole frame into subbands that each contains a lower

resolution projection of this frame at different frequency. Thus the encoder knows

not only the frequency of a coefficient but also where it is located in the frame. For

image compression, this is an advantage over the block-based DCT since it allows

the encoder to assign bits to each frequency component of the frame. It is efficient

in reducing the spatial redundancy and can better identify which data is more rele-

vant to human perception. Things are more complicated for video compression where

temporal (inter-frame) encoding plays an essential role, especially when the compres-

sion ratio is very high. The reason is that the spatial decomposition interferes the

inter-frame correlation between frames, thus limiting the efficiency and accuracy of

motion-compensation which is critical for successful reducing of temporal redundancy.

For video compression, the most important concern may be how to reduce the

temporal redundancy without introducing too much temporal distortion. Currently,

using motion vectors is the most common choice to address this issue in both DCT

and DWT-based video compression systems. In these DCT or 2-D DWT-based video

compression systems, motion vectors are used to predict blocks in the current frame

from blocks in the reference frames and construct a predicted frame. The difference
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between the original and predicted frames is called error frame or residual. In 3-

D DWT-based systems, there is no error frame. Instead, video frames are put into

groups of frames and the temporal wavelet filtering is applied along the motion vectors

or trajectories of each group of frames to compact the energy into the temporal

low frequency subbands. In both of the above approaches, motion vectors must be

encoded with lossless methods. For applications requiring very low bit rates, the

overhead of coding motion vectors is not desired.

One problem for very low bit rate compression is the ghost effect, that is, objects

only existing in certain frames appear in other frames in the reconstructed video. This

is because of the over-reduction of high frequency temporal information. While the

loss of high frequency spatial information blurs the frames, the loss of high frequency

temporal information results in the averaging of frames along temporal direction,

which causes the energy leakage among frames and is the direct reason of ghost ef-

fect. If small quantization steps are used to avoid the over-reduction, not only the

compression ratio is limited, but also the background noise will survive the quantiza-

tion and leads to the fluctuating background in the reconstructed video.

To solve the contravention, we propose an innovative inter-frame compression

scheme: Sub-Grouping Transformation (SGT), which can achieve high compression

ratio and reduce the ghost effect at the same time. The chapter is organized as follows:

Section 4.2 gives an overview of the motion-estimation/compensation technology;

Section 4.3 describes the proposed sub-grouping transform algorithm; Section 4.4

compares the proposed algorithms with others using experimental results; Section 4.5

will summarize this chapter.
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4.2 Motion-Estimation/Compensation (ME/C)

A video sequence consists of a number of pictures - usually called frames. Subse-

quent frames are very similar, thus containing a lot of temporal redundancy. Remov-

ing this redundancy helps achieve the goal of better compression ratios.

A first approach would be to simply subtract a reference frame from a given

frame. The difference is then called residual and usually contains less energy (or

information) than the original frame. The residual can be encoded with less bits

for the same quality. The decoder can reconstruct the original frame by adding the

reference frame to the residual again.

Motion-Estimation/Compensation (ME/C) is a more sophisticated approach, which

constructs a predicted frame with blocks in the reference frame. The locations of a

block in the reference frame and the predicted frame are usually different. The dis-

placement or motion is described by some parameters called motion vectors. Motion

vectors have to be losslessly encoded in the bit-stream. The predicted frame will

then be subtracted from the original frame to get the residual frame. This generates

residual frames with much less energy than those by the previous simple approach.

However, the bits consumed by coding the motion vectors become overhead.

ME/C requires videos to be processed in groups of frames (GOF). The first frame

that is encoded without motion compensation (just like a still image) is called I-

frame. The frames that are predicted from the I-frame or P-frame before it are called

P-frames. Frames can also be predicted from future frames. The future frames thus

need to be encoded before the predicted frames and the encoding order does not

necessarily match the real frame order. Such a predicted frame is usually predicted
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Figure 4.1: Inter-Frame coding

from two directions, i.e. from the I- or P-frame that precedes or follows it. These bi-

directionally predicted frames are called B-frames. For example, a coding scheme of

a group of frames could be IBBPBBP and the encoding order is {1,4,2,3,7,5,6}

(Figure 4.1). Frame 1 is the I-frame that is first encoded independently by intra-frame

compression. Frame 4 is a P-frame that uses frame 1 as the reference frame, so it is

encoded secondly. Frame 2 and 3 are B-frames that are dependent on both frame 1

and 4, so they are encoded after frame 1 and 4. Frame 7 is another P-frame that only

depends on frame 1, so it is encoded next. Frame 5 and 6 are B-frames that depend

on both frame 1 and 7, so they are encoded last.
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4.2.1 Motion Compensation

Motion compensation includes the global motion compensation and local block-

based motion compensation.

Global motion compensation

In global motion compensation, the motion model basically reflects camera mo-

tions. It works best for still scenes without moving objects. There are several advan-

tages of global motion compensation:

• It models precisely the major part of motion usually found in video sequences

with just a few parameters.

• It does not partition the frames. This avoids artifacts at partition borders.

• A straight line in the temporal direction of pixels with the same spatial position

in the frame corresponds to a continuously point in the real scene. Other motion

compensation schemes introduce discontinuities in the temporal direction.

However, moving objects are not sufficiently represented by global motion compen-

sation. Thus, other local methods are preferable.

Block-based motion compensation

In block-based motion compensation, the frames are partitioned in blocks of pixels

(e.g. macro-blocks of 16×16 pixels in MPEG-2). Each block is predicted from a block

of equal size in the reference frame. The blocks are not transformed in any way apart

from being shifted to the position of the predicted block. This shift is represented by

a motion vector.
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The motion vectors are the parameters of this motion model and have to be

encoded into the bit-stream. As the motion vectors are not always independent,

for example, two neighboring blocks belong to the same moving object, they are

usually encoded differentially to save bit-rate. This means that the difference of

the motion vector and the neighboring motion vector(s) should be encoded before

it is encoded. The result of this process is mathematically equivalent to a global

motion compensation capable of panning. An entropy codec can exploit the resulting

statistical distribution of the motion vectors. It is possible to shift blocks by non-

integer vectors, which is called sub-pixel precision motion compensation. This is done

by interpolating the pixel’s values. The computational expense of sub-pixel precision

is much higher due to the interpolation required.

Block-based motion compensation divides the current frame into non-overlapping

blocks, and the motion compensation vector tells where those blocks come from.

A common misconception is that the previous frame is divided into non-overlapping

blocks, and the motion compensation vectors tell where those blocks move to. In fact,

the source blocks typically overlap in the reference frames. Some video compression

algorithms assemble the current frame out of blocks of several previously-transmitted

frames.

The main disadvantage of block-based motion compensation is that it introduces

discontinuities at the edges of blocks, so called blocking artifacts. These artifacts

appear in the form of sharp horizontal and vertical edges which are easily spotted by

the human eye.
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Variable block-based motion compensation

Variable block-based motion compensation is the use of block-based motion com-

pensation with the ability for the encoder to dynamically select the size of the blocks.

When coding video, the use of larger blocks can reduce the number of bits needed

to represent the motion vectors, while the use of smaller blocks can result in less

amount of prediction residual information to encode. Older designs such as H.261

and MPEG-1 video typically use a fixed block size, while newer ones such as H.263,

MPEG-4 Part 2, H.264/MPEG-4 AVC, and VC-1 give the encoder the ability to dy-

namically choose what block size will be used to perform the motion estimation and

compensation.

Overlapped block-based motion compensation

Overlapped block-based motion compensation is a good solution to improve the

compression quality because it not only increases prediction accuracy but also avoids

blocking artifacts. When using the overlapped block-based motion compensation,

blocks are typically twice as big in each dimension and overlap quadrant-wise with

all 8 neighboring blocks. Thus, each pixel belongs to 4 blocks. In such a scheme,

there are four predictions for each pixel which are summed up to a weighted mean.

For this purpose, blocks are associated with a window function that has the property

that the sum of four overlapped windows coefficients is equal to 1 everywhere.

4.2.2 Motion-Estimation

Motion-estimation is the process of finding optimal or near-optimal motion vec-

tors. The amount of prediction error for a block is often measured using the mean
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squared error or sum-of-absolute-differences between the predicted and actual pixel

values over all pixels of the motion-compensated region.

There are two mainstream techniques of motion-estimation: pixel-recursive algo-

rithm [56] and block-matching algorithm. The pixel-recursive algorithms are iterative

refining of motion-estimation for individual pixels by gradient methods. The block-

matching algorithms assume that all the pixels within a block has the same motion

activity. The block-matching algorithms estimate motion on the basis of rectangular

blocks and produce one motion vector for each block. In a typical block-matching

algorithm, each frame is divided into blocks, each of which consists of luminance and

chrominance blocks. Usually, for coding efficiency, motion-estimation is performed

only on the luminance block. Each luminance block in the present frame is matched

against candidate blocks in a search area on the reference frame. The best (lowest

distortion) candidate block is found and its displacement (motion vector) is recorded.

In a typical inter-frame coder, the input frame is subtracted from its predicted version

from the reference frame. Consequently the motion vector and the resulting residual

can be transmitted instead of the original block. Thus inter-frame temporal redun-

dancy is removed and data compression is achieved. At the receiver end, the decoder

builds the residual frame from the received data and adds it to the reconstructed

predicted frame. The better the prediction is, the less energy the residual frame has

and hence lower the transmission bit rate.

To find optimal motion vectors, one basically has to calculate the block predic-

tion error for each motion vector within a certain search range and pick the one

that has the best compromise between the amount of error and the number of bits

needed for motion vector data. The motion-estimation technique that exhaustively
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tests all possible motion representations is called a full-search motion-estimation. A

faster method, which is sub-optimal with respect to rate-distortion, is to use a coarse

search grid for a first approximation and to refine the grid in the surroundings of this

approximation in further steps.

For the overlapped block-based motion-estimation, the pixel-wise prediction errors

of a block and its overlapping neighboring blocks have to be weighted and summed

according to the window function. In the process of successively finding/refining

motion vectors, since some neighboring motion vectors may not be known yet, the

corresponding prediction errors can be ignored. The major disadvantages of the

overlapped block-based motion-estimation are increased computational complexity,

and the fact that prediction errors and also the optimal motion vectors depend on

neighboring blocks/motion vectors.

4.3 SGT: the Sub-Grouping Transformation Algorithm

The ME/C described in the previous section have two things in common: applying

transform only on 2-D blocks in original or residual frames, and assuming uniform

motion within a block or frame. The novelty of the proposed SGT approach is to

reduce temporal redundancy through transform in temporal direction, and analyze

motion at the pixel level instead of the frame/block level.

Figure 4.2 shows the structure of the proposed 3-D video compression system.

The input video frames are first grouped into groups of frames so that the difference

between each frame in a group of frames is below the pre-determined threshold TG.

After applying the spatial wavelet transformation on all frames in the group of frames,

each frame is divided into spatial frequency sub-bands. The group of frames becomes
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Figure 4.2: The structure of the proposed 3-D wavelet video compression system.

a 3-D matrix of spatial coefficients that are divided into different subbands in the

spatial (x-y) domain (Figure 4.3). By far, it is the same as the conventional DWT-

based video compression [58]. But, in the conventional 3-D DWT-based compression,

the next step is to uniformly apply the temporal direction DWT on each 1-D array

of coefficients along the temporal direction, while the proposed SGT algorithm treats

each 1-D array differently. It evaluates these 1-D arrays of coefficients individually

and divides each of them into smaller arrays (sub-groups) of variable sizes if necessary.

This approach is further illustrated in Figure 4.4. Picking an array at spatial

location (x1, y1), the wavelet coefficients in this array could be very different in mag-

nitude. If we draw this array in a plot, the plot may present a rapid fluctuated pattern

globally, but have portions that are locally flat or linear increasing/decreasing. If we

ignore the different local patterns of these arrays and indiscriminately apply the tem-

poral DWT on all of them just like the conventional DWT-based compression, the

resulting coefficients will include more and larger high frequency coefficients. These
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Figure 4.3: The 3-D matrix of spatial coefficients of a group of frames after spatial
DWT.
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large high frequency coefficients will still remain non-zero values if small quantization

step/threshold is used, which will decrease the compression ratio; or become zeros if

large quantization step/threshold is used, which will degrade the compression qual-

ity. To solve this problem, SGT algorithm divides an array at the borders of these

local regular portions to get smaller arrays called sub-groups. The coefficients in each

sub-group will then have a pattern that is thus flatter (less difference in magnitude)

or more linear comparing with that of the entire original array. Instead of on the

entire coefficient array, the 1-D temporal wavelet transform is applied within each

sub-group. Because the change of the wavelet coefficients are relatively smoother

within each sub-group, the temporal high frequency coefficients will have small mag-

nitudes. Thus, they are more likely to be quantized to zeros with small quantization

steps/threshold. Compared with applying temporal DWT on the entire original ar-

ray, the SGT algorithm will have less non-zero coefficients after quantization with less

quantization distortion. This means that it can achieve a higher compression ratio

with the same quality, which is the goal that all motion-compensation algorithms are

pursuing.

The two key steps of the SGT algorithm are: 1) finding the boundaries between

sub-groups at the encoder and 2) recognizing the boundaries at the decoder. The

algorithm should be accurate, efficient and robust. To be ”accurate”, the SGT algo-

rithm must define the boundaries at the optimal locations at the encoder side and

perfectly recognize them at the decoder; to be ”efficient”, SGT should not require

too much computation and use less bits; to be ”robust”, SGT must not be interfered

by lossy encoding operations, such as quantization.
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Figure 4.4: Wavelet coefficients are regrouped within a group of video frames, such
as the coefficient arrays (x1, y1), (x2, y2), and (x3, y3) shown here. The coefficient
array (x1, y1) is regrouped into three sub-groups, while (x2, y2) is divided into two
and (x3, y3) remains in one.

4.3.1 Detect Boundaries

This step defines the boundaries at the optimal locations at the encoder side.

The ”optimal” here means that these boundaries should break the array into sub-

groups that will generate the least non-zero coefficients after quantization, which is

the requirement of high compression ratio. The search of the boundaries is based on

singularity detection. Here we define ”singularity” as the second-order Haar wavelet

coefficients whose absolute values are beyond a threshold TS. Undecimated Haar

wavelet transform is applied twice on a 1-D array to get the second-order Haar wavelet

coefficients. The positions where singularities happen are the potential boundaries

for sub-groups. The reason to use second-order transform is to treat linear portions

of the array as smooth.
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Sub-grouping is not necessary for every coefficient array. For an array with little

motion, keeping it as a single group is more efficient. For one with extreme motion, it

is also better to leave it as a single group since dividing it will not generate low motion

sub-groups. Also, to ensure the efficiency of wavelet transformation, a sub-group

should not be too small. With the above considerations, sub-grouping is regulated

by following rules.

A position p is defined as a sub-group boundary if and only if it satisfy these two

criteria:

1. |cp| > TS, where |cp| is the absolute value of the second order Haar wavelet

coefficient at position p, and TS is the minimum threshold for being considered

as a singularity [55]. The positions where singularities happens are chosen as

candidates of the boundaries.

2. Lp > TL, where Lp is the length of the sub-group to be created if p is a boundary

and TL is the minimum length of a sub-group.

The choice of TS and TL will affect the performance of the algorithm. While TS might

be dependent on the current coefficient array, TL could be an independent parameter.

Currently, we set TS equal to the standard deviation of the original coefficient array

and TL equal to 8. Further investigation is going on to find better parameters.

4.3.2 Recognize Boundaries

To be efficient, the SGT should not store the locations of the sub-group boundaries

in the output data stream as overhead. The decoder must automatically detect

the boundary of each sub-group. This is successfully achieved by manipulating the

coefficients following certain rules at the encoder side. The manipulation can only
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be applied after the coefficients have been quantized. The reason for that is to avoid

the interference of quantization/dequantization which may change the value of a

manipulated coefficient.

At the encoder side, let B be a boundary coefficient, c a non-boundary coefficient,

and s the standard deviation of the non-boundary coefficients. Because s is no more

than 5 in most cases, we use 5 to replace s in computation. This not only makes it

simple, but also make the results robust. The manipulating algorithm is illustrated

by the pseudocode below.

1. Regulate non-boundary coefficients at the encoder side:

If |c|<= 2s

c = c;

Else

If c is even

c = c;

Else

|c| = |c| - 1;

End

End

All non-boundary coefficients are forced to be even if it is bigger then 2s. This

will introduce a little bit of distortion on these large non-boundary coefficients.

But the non-boundary coefficients belong to high frequency subbands, and their

distribution density function, compared with Gaussian, has much higher peak

at the mean value point which is around zero. So it is very safe to say that
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the percentage of the non-boundary coefficients larger than 2s is less than 4%.

Among them, only the odd ones need to be manipulated, which is 2%. The

maximum possible distortion caused by this regulation on each odd large coef-

ficient is less than 10%. Assuming that the odd large coefficients take 10% of

the total absolute value sum, the maximum total distortion will be less then

10% ∗ 10% = 1%. In fact, the above is based on very loose assumption, the

total distortion is even smaller.

2. Regulate the boundary coefficients at the encoder side:

(a) Small |B|

If |B| <= s

|B| = 29;

Else if |B| <= 2s

|B| = 19;

End

(b) Large |B|

If |B| > 2s

If B is even

|B| = |B| - 1;

Else

B = B;

End

If |B| = 19, |B| = 17;

//19 is reserved
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If |B| = 29, |B| = 27;

//29 is reserved

End

All boundary coefficients are forced to be odd. Because the boundary coeffi-

cients belong to low frequency subbands, they are typically much larger than 2s.

So the possibility that a) is triggered is so small that the distortion introduced

by the regulation of it can be ignored. As for b), the distortion here is no more

than 5% on each even B, total is no more than 2.5% for all boundary coeffi-

cients. Since boundary coefficients are holding the energy information, such a

small distortion on them has little impact on the quality of the reconstructed

video.

3. Recognize boundaries at the decoder side (c is an arbitrary coefficient):

If c is odd,

If |c| = 29

|c| = (s+1)/2 = 3;

else if |c| = 19

|c| = (2s+6)/2 = 8;

End

c is a boundary coefficient;

End
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Manipulating coefficients introduces a little bit of distortion, but the quality of the

reconstructed video is not really affected. Compared with the conventional motion-

compensation methods which have to spend a lot of bits to record the motion trajec-

tories, the proposed new method is more efficient and suitable for the very low bit

rate video compression.

4.4 Sub-Grouping Transform with Intelligent Clustering

The border recognition method above is simple but has two problems:

• The manipulating of boundary coefficients will cause some distortion.

• The non-zero low frequency coefficients of sub-groups will be located across the

array, which may prevent the forming of long streams of zeros. This will reduce

the efficiency of entropy coding.

4.4.1 Intelligent Clustering

In this subsection, we propose another method that does not have these disadvan-

tages. This proposed method is named Intelligent Clustering. The intelligent cluster-

ing algorithm is applied together with temporal transform after the sub-groups have

been defined. After each transformation, the intelligent clustering algorithm moves

the newly generated lower frequency subbands of all of the sub-groups together and

put them in front of the newly generated higher frequency subbands. The benefit of

this method is that lower frequency coefficients are clustered in the beginning of the

coefficient array, which will increase the chance of creating long zero streams, thus to

improve the efficiency of entropy coding.
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Figure 4.5 gives an example of how the intelligent clustering algorithm works to-

gether with sub-grouping transform. In each figure, the upper plot is the coefficients

after one level of sub-grouping transform and the lower plot is the result after in-

telligent clustering. The example array is divided into three sub-groups. In Figure

4.5(a), the input is the coefficients after the first level of sub-grouping transform.

We can see that the lower frequency subbands and higher frequency subbands are

located within their own sub-group. The intelligent clustering algorithm moves the

lower frequency subbands to the left of the array and shifts the higher frequency sub-

bands to the right. Using the term frequency index defined in the previous chapter,

the array now has two parts. The left part includes subbands of frequency index 1

and the right part includes subbands of frequency index −1. Those subbands of the

same frequency index still maintain their orders, i.e., the subband of sub-group i is

in front of the subband of sub-group i + 1. In Figure 4.5(b), the input is the coeffi-

cients after the second level of sub-grouping transform. This transform only affects

the subbands of frequency index 1. So we keep the portion of frequency index −1

unchanged and apply the intelligent clustering only on the other part. This process

continues until all of the lowest frequency subbands only have one coefficient each.

Figure 4.5(d) gives the final results. All of the subbands are sorted from left to right

by their frequency indexes first, then by their origins in sub-groups. This method

keeps the advantage of sub-group transform (less large high frequency coefficients),

while avoiding its disadvantage (discontinuous zeros).

In Figure 4.6(a), from top to bottom, the first plot is the original array of coef-

ficients, the second is the array of coefficients after temporal transform in the entire

array, the third is the array of coefficients after sub-grouping transform, and the last
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(a) One level of sub-grouping transform with or
without intelligent clustering.

(b) Two levels of sub-grouping transform with or
without intelligent clustering.

(c) Three levels of sub-grouping transform with or
without intelligent clustering.

(d) Four levels of sub-grouping transform with or
without intelligent clustering.

Figure 4.5: Sub-grouping transform with or without intelligent clustering.

69



is the array of coefficients after sub-grouping transform with intelligent clustering.

Each plot in Figure 4.6(b) corresponds to a plot in Figure 4.6(a), and the differ-

ence is that their coefficients are quantized. From the second plot, we can see that

applying transform on the entire array of coefficients generated sixteen non-zero co-

efficients that are not continuous. To code these coefficients, we need twenty one

run-length symbols. The third and the last plots both used sub-grouping transform

and generated twelve non-zero coefficients. Without intelligent clustering, the non-

zero coefficients are located at the left ends of each sub-group and all the zeros are

pact in three groups. Thus, we need seventeen run-length symbols to represent them.

With intelligent clustering, all the non-zero coefficients are located at the left side of

the array and those zero coefficients have better continuousness. Thus we need only

fifteen run-length symbols to represent them. In summary, sub-grouping transform

has better entropy coding efficiency, and intelligent clustering can further improve it.

4.4.2 Recording the boundaries

To decode the data after applying the intelligent clustering algorithm, the bound-

aries of sub-groups have to be known by the decoder. The manipulation method

methods previously is not suitable since the intelligent clustering method has changed

the positions of the boundary coefficients. We designed a new method that is able

to recover the sub-group information by recording the lengths of sub-groups of each

array. This information is stored as overhead in the header of the compressed group

of frames. The intelligent clustering algorithm improves the efficiency and quality of

compression, so a little bit of overhead is affordable.
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(a) Before quantization.
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(b) After quantization.

Figure 4.6: Compare the different temporal transform methods. SGT with intelligent
clustering has the best energy compact effect.
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Assuming that the length of the group of frames is N , and the length of the ith

sub-group is Li where i is the index of the sub-group. Since the minimum length of

a sub-group is TL, we record the length of a sub-group as li = Li − TL, from which

Li can be easily recovered. Also because of the constrain of TL, the maximum length

of a sub-group is Li = N − TL, so the maximum of li is N − 2 ∗ TL. All numbers

are converted to binary format before writing them as bits in the bit stream. So the

length of the first sub-group can be recorded by at most Nb1 = log2 (N − 2TL) + 1

bits. After the length of the first sub-group is known, the length of the second sub-

group can be recorded by at most Nb2 = log2 (N − 2TL − L1) + 1 bits. The rest can

be determined by the same method.

The details of recording the sub-grouping information is described below:

If L1 = N % This array is not divided into sub-groups
Write ’0’ into the bit stream.
Go to the next array.

Else
While (TRUE)

If i == 1
Write ’1’ into the bit stream. % Start an array with

sub-groups
End
n = Nbi − log2 li + 1.
If n > 0

Write n ’0’s in the bit stream.
End
Write bits for li into the bit stream.
If Sub-group i+2 is the last sub-group

n = Nbi+2 − (log2 li+2 + 1).
If n > 0

Write n ’0’s in the bit stream.
End
Write bits for li+2 into the bit stream.
Go to the next array.

Else If Sub-group i+1 is the last sub-group
Write n ’0’s into the bit stream.
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Go to the next array.
End

End
End

4.5 Experimental Results

To compare the performance of our proposed algorithms with those of others, we

compressed the sample video clip with four algorithms: 3-D zerotree compression

[57], the basic 3-D wavelet compression, sub-grouping transform, and sub-grouping

transform with intelligent clustering. Arithmetic coding was used as entropy coding

for the one using the zerotree algorithm, while Stack-run [44] and Arithmetic coding

were used for the other three. The sub-grouping transform and intelligent clustering

algorithms are only applied on the lower spatial frequency quarter of the group of

frames since the rest higher spatial frequency portion does not have a lot of non-zero

coefficients and applying sub-grouping transform on them will not have any benefit.

We compared the performances of the four video compression methods by their

visual qualities at the same compression ratios. The one with the highest visual

quality will certainly have the best performance. Because not all of them can pre-

cisely control the output bit rates, we make the compression ratios of our proposed

algorithms higher than those of the opponents. It will be more convincing that the

performances of the proposed algorithms are better if they have both better quality

and higher compression ratios.

Since reducing ghost effect is an important goal of the proposed algorithm, the

ghost effects of the compressed videos were evaluated separately. There is no objective

method to measure the ghost effect, so we used subjective scores (human judgement)
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Algorithm Ghost Effect Comp. Ratio PSNR WNMSE
3-D wavelet visible 218 30.45 29.33

zerotree visible 220 30.63 29.46
SGT invisible 222 31.20 30.24

SGT+IC invisible 220 31.24 30.50

Table 4.1: Compression results of the 10TV video clip.

given by human observers to indicate it. Two objective quality indexes, the Peak

Signal-to-Noise Ratio (PSNR) and the Weighted sum of Normalized Mean Squared

Errors (WNMSE) were used side by side to measure the overall visual quality of the

reconstructed videos, where WNMSE can better match the visual quality evaluation

of human visions.

Figure 4.7 uses an example frame to compare the performance of the SGT, SGT

with IC (intelligent clustering), and zerotree algorithms. The ghost effects of the

frame compressed by the SGT and SGT with IC are almost invisible, while that

compressed by the 3-D zerotree compression has obvious ghost effect. Table 4.1 lists

the complete experimental results. From this table, we can have a better view of the

overall performance of the propose algorithms. With even higher compression ratios,

the proposed algorithms has better visual quality and less ghost effect than the basic

3-D wavelet compression and the 3-D zerotree compression. The SGT with IC has

slightly less compression ratio and better quality than SGT. It overall performance

outperforms SGT mainly because it reorganizes the coefficients and thus improves the

efficiency of stack-run coding, which compensates the overhead caused by storing the

sub-group information. Also, using the intelligent clustering instead of manipulating

the boundary coefficients avoids extra distortion.
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(a) The original sample frame. (b) The reconstructed sample frame com-
pressed by the proposed SGT algorithm,
compression ratio = 222.

(c) The reconstructed sample frame com-
pressed by the proposed SGT algorithm
with IC (intelligent clustering), compres-
sion ratio = 220.

(d) The reconstructed sample frame com-
pressed by the 3-D zerotree algorithm,
compression ratio = 220.

Figure 4.7: We can see that (b) and (c) has both higher compression ratios and obvi-
ously better visual quality than (d), while (c) has better quality than (b). Especially,
the ghost effects of (b) and (c) are almost invisible, but (d) have obvious ghost effects
at the top right side of the head.
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4.6 Conclusions

This work exploits a new direction in reducing the temporal redundancy in 3-D

DWT-based video coding. The results are encouraging. Without motion-estimation

and motion vectors, the SGT algorithm achieves the goal of motion compensation

by dividing wavelet coefficients in the temporal domain into smaller sub-groups and

applies wavelet transform within each sub-group. Compared with other video coding

algorithms with motion-compensation, SGT has better visual quality with the same

bit-rate, especially for applications requiring very low bit rates.

Two methods are tried to recover the sub-grouping data. One recognizes boundary

coefficients by manipulating their values, which is simple and does not use overhead

bits, but it introduces extra distortion and can not be used with the intelligent clus-

tering algorithm. The second method is more complex and codes the sub-grouping

information as overhead in the header of a group of frames, but it makes stack-run

coding more efficiency and does not cause extra distortion.
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CHAPTER 5

3-D VIRTUAL SUB-OBJECT CODING

5.1 Introduction

Video coding algorithms can be divided into two categories: the block-based and

object-based. The basic coding unit of block-based video coding systems is “block”

that is not a natural representation of visual objects and causes the block artifacts

for low bit-rate coding. The conventional video coding standards, such as H.261,

H.263, MPEG-1 [59], MPEG-2 [60, 61], are all block-based. The MPEG-4 standard

[62] represents the new object-based framework for efficient multimedia representa-

tion and enables content-based functionality by introducing the object-based coding.

The object-based video coding codes semantic objects directly instead of rectangular

blocks in video sequences. The main reason for switching to object-based coding is

that images are naturally composed of visual objects. The conventional pixel-level

description of images is only due to the lack of suitable tools to efficiently describe

visual objects. Once objects have been identified and described, they can be treated

individually for variant needs. In many applications, the object-based coding is ob-

viously the most reasonable choice.
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Many object-based coding techniques have been proposed in the literature. These

techniques first segment video frames into a set of arbitrarily shaped moving objects

and the background, and then code their shapes, motions, and textures. Some of the

major advantages of the object-based coding include:

1. More accurate motion estimation of the moving objects.

2. Better utilizing the available bit-rate by only focusing on the moving objects.

3. Supporting content-based functionality such as video retrieval.

4. Encoding/Decoding selectively at different quality and resolution for each ob-

ject.

5. More tolerable quality degradation with respect to human perception than the

block-based approaches.

In terms of coding efficiency, the object-based coding presents some costs that

do not appear in conventional block-based coding systems. First of all, since objects

are separate entities, their shapes and locations must be described and sent to the

decoder in advance as side information. Second, most coding techniques become less

efficient when dealing with regions of arbitrary shapes, such as the reduced energy

compaction of transformations. Finally, each object may need its own set of coding

parameters, which adds on the cost of side information. On the positive side, an

accurate segmentation actually carries with it the information on the graphical part

of the image, i.e., the edges, and hence contributes to the quality of the reconstructed

image. But an accurate segmentation is very expensive.
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To deal with the temporal redundancy, object-based video coding can mimic the

motion estimation/compensation mechanism of the conventional block-based video

coding by replacing the reference blocks with the reference objects. The encoder

extracts the reference objects, finds the motion vectors through motion estimation

for the objects in the following frames, and reconstructs the coded frames to get the

residual frames. Finally, it encodes the reference objects, their shapes and locations,

motion vectors, and residual frames. Another approach of object-based video coding

is based on 3-D wavelet coding while the group of frames being replaced by the group

of video object planes (VOP), a 3-D object. A VOP is defined for object based

coding to represent either a rectangular-plane frame or arbitrary-shaped object in

a frame. The encoder extracts the VOPs, calculates the motion vectors by motion

estimation, constructs the 3-D objects using the motion vectors, and finally codes the

3-D objects and their shapes, motion vectors, and background frames into bits. In

this work, we will take the second approach and the focus is on the mechanisms that

efficiently construct the 3-D objects. The proposed 3-D virtual sub-object coding is

best suitable for videos with fixed background. This algorithm has a global motion

trajectory for the virtual 3-D object. By dividing the virtual object into nine sub-

objects, it in fact applies locally refined motion estimations. So its motion estimation

takes into account of both the global and local optimization to improve the coding

efficiency.

The chapter is organized as follows: Section 5.2 gives an overview of the object-

based video coding technology; Section 5.3 will describe the proposed virtual sub-

objects coding algorithm; Section 5.4 will compare the proposed algorithms with

others using experimental results; Section 5.5 will summarize this chapter.
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5.2 Overview of Object-based Video Coding

Object-based video coding includes video segmentation, motion estimation, and

3-D object coding, which are introduced below.

5.2.1 Video Segmentation

Video Segmentation can be defined as a process which typically partitions the

video images into meaningful objects. Background can also be viewed as a special

object. Approaches for segmenting video sequences into moving 3-D objects can be

classified into four categories: spatial-temporal, motion, morphological, and model-

matching techniques.

1. Spatial-temporal segmentation techniques attempt to identify the objects in a

scene based on spatial and temporal information without explicitly computing

the motion parameters [63] - [72]. The spatial information can be derived by

measuring intensity or texture changes, while the temporal information can be

generated by a change detection technique over multiple frames.

Spatial segmentation is basically image segmentation, which partitions the frame

into homogeneous regions with respect to their colors or intensities. This

method can be typically divided into region-based and boundary-based. Region-

based methods [73] rely on the spatial similarity in color, texture, and other pixel

statistics to identify the “homogeneity” of these localized features. Boundary-

based approaches use primarily a differentiation filter to detect the image gra-

dient information and extract the edges. The discontinuous edges are then

grouped to form the object contour. The main drawback of boundary-based
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approaches is their lack of robustness during the contour closure extraction be-

cause of the difficulty in computing the region’s closed boundaries. The spatial-

based segmentation approach can provide more accurate object boundary than

temporal-based method because of the high spatial correlation between the adja-

cent pixels within the object region. However, its relatively high computational

complexity limits its application.

On the other hand, temporal segmentation, which is based on change detection

followed by motion analysis, utilizes intensity changes produced by the motion

of moving object to locate the position and boundary of objects in time and

space. The most common motion information is the absolute difference between

two consecutive frames. Unlike the spatial segmentation approaches, higher

efficiency can be achieved because of the small number of operations for the

segmented moving region instead of the whole image for every frame. However,

lighting variation and noise might be incorrectly assigned to moving objects.

It is usually very difficult to distinguish between changes due to true object

motion and changes due to noise, shadow effects, and so on.

2. Motion segmentation techniques rely on motion parameters, explicitly computed

from the spatial color and luminance information. Based on the motion param-

eters, each frame is segmented into a number of regions with coherent motion

characteristics using various techniques such as the modified Hough transform

[74], merging [75], Bayesian framework [69], [76], [77], and K-means [78]. Motion

segmentation techniques, being tightly coupled with motion estimation, suffer

from the two fundamental problems of occlusion and aperture, which affect the

accuracy of the boundaries of segmented objects. Consequently, to overcome
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these problems, several approaches were proposed to treat motion estimation

and segmentation jointly, utilizing the Bayesian framework [79] - [81] or color,

motion, and intensity change information [82], [83].

3. Morphological techniques [84] - [92], which involve morphological filters or wa-

tershed segmentation techniques, are computationally efficient. Morphological

techniques typically start by a simplification step of the video frames using

morphological filters. Then, a marker extraction step involves detecting the

presence of homogeneous areas. Then, the undecided pixels are assigned a label

in a decision step.

4. Model-matching segmentation techniques aim to locate the object in the video

scene based on the best match between a model of the object and the frames.

In general, a robust model-matching approach should address the issues of ob-

ject occlusion, object deformation, and multiple moving objects in the presence

of noise [93] - [97]. In [97], a partition of the feature space is first created.

The training and learning phases are then used for the classifier. This method

enables a combination of cues, such as texture, color, and depth. In order

to achieve high classification accuracy, nonlinear decision functions are usually

required when the sequences contain complicated content. The weakness of

model-matching segmentation is that it need a training stage that is not auto-

matical.

5.2.2 Motion Estimation

A 3-D object is the combination of a group of spatial objects called video object

planes (VOP). Each of these VOP may cover different portion of the real moving
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object, have different distances from the camera (different scales) and present dif-

ferent angles of the actual object. The efficiency of the 3-D object coding is largely

dependent on how good the 3-D object can be constructed from its VOPs. This is in

fact a motion estimation problem. The motions of arbitrarily shaped regions can be

described by the parameters of an affine motion model. A well defined motion tra-

jectory will organize the VOPs in a way that temporal redundancy can be efficiently

exploited and thus the introduced distortion by compression is reduced.

Many object-based coding techniques for very low bit-rate video compression had

been proposed in the literature. In [98], hierarchical block matching is used, which

estimates displacements by different measurement window sizes, signal bandwidths,

and maximum update displacements on several hierarchy levels. In [99], contrary to

many object-based motion estimation algorithms, the proposed algorithm first esti-

mates a dense motion field from the two successive original frames and then segments

this motion field into homogeneous regions (objects) based on a two-dimensional affine

motion model. In [100], the authors used a block-based motion estimation technique.

For each 16×16 block inside a moving object, the algorithm searches a corresponding

location in the previous frame to minimize the sum of absolute differences between

the current and previous blocks. In [101], an object-oriented coding method using

block-based motion vectors was proposed for detecting motion parameters that are

robust to additive noise and abrupt motions. A model failure object compensation

by fractal mapping of the residual image was also brought up. In [102], the 3-D

object structure and the motion parameters are estimated simultaneously, where the

motion is formulated as a nonlinear dynamic system whose state is represented by

the motion parameters and the scaled depths of the object feature points. In [103],
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the motion detection based on the frame difference is first applied to identify moving

objects. Only for moving objects, motion vectors of the blocks inside the objects are

estimated by a fast visual-pattern block-matching method.

The accurate motion representation is the key to the success of good motion

compensation for coding purposes. However, traditionally, most of the object-based

coding techniques suffer from the following problem: the segmentation and motion

estimation techniques can prove to be computationally very expensive. Furthermore,

the accurate representation of the shape of moving objects is the necessary condition

to achieve the goal of good compression result. In contrast to the problems of object-

based coders, the block-based low bit-rate video compression schemes do not suffer

from the same drawbacks as the object-based coders. However, block-based video

compression schemes also suffer from the problems of blocking artifacts, unnatural

object motion at very low bit rates.

5.2.3 3-D Objects Coding

The difficulty of 3-D object coding is the irregularity of the shapes of 3-D objects.

Because transformation is the key step of coding schemes, the difficulty of irregularity

is in fact a problem of how to transform signals with arbitrary region of support

(AROS). Many approaches have been proposed to address this problem. Just like the

video processing technologies, the earliest work in this field was on images (2-D), and

later some of the successful approaches were extended to videos (3-D).

In [105], the first method of transform with AROS was proposed to transform

signal to Discrete Cosine Transform (DCT) domain. The attention on wavelet-based
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coding is justified by the enormous success of this approach in image coding, lead-

ing to the new wavelet based standard JPEG-2000, and more recently video coding

[106]. Many approaches have been proposed. Among them, the extension-over-the-

boundaries method is the most popular one. Some of the extension methods are

relatively simpler, such as filling up blocks not fully covered by the AROS [107] to a

rectangular shape, or padding one-pixel at the end of the signal when the length of it

is odd in the wavelet transform [108]. Although these methods are simple, they often

result in overcomplete representation in the transform domain and reduce the coding

efficiency. Critically sampled algorithms were thus preferred. Shape-adaptive DCT

(SA-DCT) algorithms that involve pixel alignments before row and column transforms

are proposed in [109], [110]. Similar algorithms for DWT using boundary extensions

are studied in [111] - [113]. The Shape-Adaptive DWT (SA-DWT) proposed by S. Li

and W. Li in [112] was the most recognized, laid the foundation for later researches,

and was adapted as part of MPEG-4 standard.

The main coding tools of this work are the SA-DWT in [112], and a shape-adaptive

version of 3-D Set Partitioning In Hierarchical Tree (SPIHT) [114, 49] proposed in

[115]. We chose the method in [115] as our coding tools because SA-DWT is by

now a de facto standard, and SPIHT guarantees a very good performance, and is

widespread and well known in the compression community. Other coding algorithms

based on shape adaptive wavelet have been proposed in recent years, such as the

binary splitting with K-d trees (BISK) [116] algorithm that uses a simpler and more

f1exible binary decomposition with K-d trees instead of the quad-tree structure used

by most other algorithms.
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Figure 5.1: The encoding and decoding system diagrams of Virtual Sub-Object Cod-
ing.

5.3 3-D Virtual Sub-Object Coding (ViSC)

In this work, a new object-based video coding system is proposed, called 3-D

virtual sub-object coding (ViSC). The purpose of ViSC is to find a fast and efficient

compression approach for videos with fixed background. This system should have

a motion estimation scheme that is optimized both globally and locally, generate as

little side information as possible, and support the basic functionalities of object-based

coding. The system diagram is displayed in Figure 5.1.

The incoming video frames are buffered before processing and the maximum buffer

size is set to be maxBuff. The buffered video frames are processed as groups of frames
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and the maximum group size is set to be maxGroup. In fact, maxBuff and maxGroup

can be delay dependent, such as maxBuff = 0.5 × maxDelay × frameRate and

maxGroup = 0.5 × maxDelay × frameRate, respectively, where maxDelay is the

upper limit of the playback delay and frameRate is the frame rate of the input video.

Initially, the size of the first group is set to be maxGroup. Its background is first

extracted from the frames. With this background, virtual VOPs are identified. Then

the virtual-object based resizing and motion estimation are applied on these virtual

VOPs to form a new group of frames with size groupSize. If groupSize < maxGroup,

those maxGroup − groupSize frames will be kept in the buffer to be used by next

group. Virtual sub-objects will then be defined in this group and coded.

5.3.1 Background Extraction

Static background is the region that does not change between frames unless it is

blocked by foreground objects. A spatial-temporal segmentation approach is used to

extract the static background from the video sequence. Looking along the temporal

direction, one pixel could belong to moving objects at some moments and background

at the others. Because of the existence of noise, the same background pixel may have

values with small variance on different frames. A temporal threshold TemporalNoise

is defined to filter out the temporal noise interference and SpatialNoise to filter out

the spatial noise interference.

First, we need to find the regions that are pure background. A pixel at position

(x, y) belongs to the pure background only if it itself and all (if at the corner) or

at least three of its four neighbors, (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1), have

variances smaller than TemporalNoise in the whole group of frames. It is possible
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that a pixel is covered by moving objects all the time and satisfies this condition.

Although this pixel is in fact a foreground pixel, there is no way to tell. So it is also

classified as a pure background pixel, and this will not affect the algorithm. Having

found the pure background regions, we evaluate the other locations, where one pixel

is a background pixel only if

1. when compared with its nearest background neighbors, the difference is less

than SpatialNoise;

2. when compared along the temporal direction with other pixels satisfying the

first condition, the difference is less than TemporalNoise.

Finally, the ”holes” left will be filled by repeating the surrounding background pixels

into it (fake background area) to form the background frame. The entire background

will be coded as a still image and sent out to the decoder for the first group. After

that, only residue with respect to the previous background frame will be coded and

sent out.

It is possible for the background to be improved gradually by new discovered

pure background pixels until the whole true background is fully identified. A simple

method is using a counter for each pixel. If a pixel stays with the same value (its

changes are less than max(TemporalNoise, SpatialNoise)) and is identified as a

background pixel continuously for more than CountBG times, this pixel will be set

to its mean value and classified as a true background pixel, where CountBG is a

predefined threshold value. A true background pixel will be stored and not be updated

in the future unless a newer true value is available. The whole true background frame

will be stored at both the encoder and decoder, so only the update data needs to be
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sent to the decoder. But this requires additional memory and computation on the

encoder side.

5.3.2 Virtual Sub-Object Construction

VOP Extraction

After the background is available, the boundaries of VOPs can be easily identi-

fied by subtracting the background from each frame followed by a change detection

method that uses an inner-bound search with a change sensitive threshold to detect

the boundaries. Each enclosed region with a size larger than minVOPSize represents

a VOP on this frame. In the case that there are multiple 3-D objects, it is neces-

sary to track their VOPs across frames, which is another topic that has been widely

addressed. This work will only deal with the single 3-D object situation. VOPs are

extracted frame by frame as long as the moving object does not leave the scene and

the maximum buffer size is not reached. A rectangular virtual VOP that is just big

enough to cover it is created for each VOP. Within this virtual VOP, pixels out of the

VOP boundary are filled with zeros. These virtual VOPs along with their location

information are stored in order to be used at the next step, motion estimation. Figure

5.2 gives an example of VOP extraction. The original frames are listed at the left

side and the extracted VOPs are displayed at the right side.

Find the Base Virtual VOP

The distance and direction, with respect to the camera, of the moving object may

be different for every video frame when they are captured by the camera. As a result,

virtual VOPs represent the moving object with different scales and angles, and some

of them may only cover one portion of the object. The virtual VOP that covers the
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(a) Original Frame085 (b) Extracted VOP from Frame085

(c) Original Frame090 (d) Extracted VOP from Frame090

(e) Original Frame095 (f) Extracted VOP from Frame095

Figure 5.2: The original frames are listed at the left side and the extracted moving
objects are shown at the right side.
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smallest portion is called the base virtual VOP. The other virtual VOPs may not be

at the same scale as the base virtual VOP because they may be at different distances

from the camera. They may also cover larger portions of the moving object. The

base virtual VOP is a subset of any other virtual VOP if they are at the same scale.

Normally, the closer the object moves to the camera, the larger its image will be

in the video and the smaller the covered portion of the object if the object is not

completely in the scene. If the object is in the scene, both its height and width will

increase when it moves closer to the camera. Considering that the object may change

its direction of motion, it is possible that it becomes ”thinner” and higher. So the

height is a better indicator of distance if the object is completely in the scene. The

one with the maximum height is used as the base virtual VOP. If the heights are the

same for more than one virtual VOPs then the narrower one will be used as the base

virtual VOP. We will see later that all of the virtual VOPs in the same group will

be resized to the same resolution as the base virtual VOP. If a resized virtual VOP

is smaller than the base virtual VOP, it will become the new base virtual VOP to

secure that the base virtual VOP is always a subset of all of the other virtual VOPs.

In the situation where only a portion of the object is in the scene, the closer image

may be shorter or higher, but wider for sure. Thus we use the widest virtual VOP as

the base virtual VOP. If two virtual VOPs are the same in width, the shorter one will

be chosen as the base virtual VOP. If one VOP has crossed the horizontal boundary

of the scene at both sides, it will be considered ”wider” than any other virtual VOP

that is still within the horizontal boundary. There are exceptions that need to be

taken care of:
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1. Objects crossing the scene boundary. The VOPs that are moving in or out

across the scene boundary will be treated separately since their dimensional

changes do not obey the rules above. But this is not a big deal since it is easy

to tell whether an object is moving in or out.

2. Objects changing their shapes. It is possible for an object to change its shape

within the scene, such as a person who is waving his arms. This could be dealt

by reordering the frames when it is “periodical” or beginning a new group if

the change is dramatic. Otherwise, a singularity test will detect such changes

and treats them as singular VOP. A virtual VOP with singular VOP can not

be used as the base virtual VOP.

3. Objects changing their angles. There will be angle changes between virtual

VOPs. The change of angle is usually in a smooth pace and does not affect

much. Sudden change of angle will force the encoder to start a new group if

it causes a big enough difference between the current and the previous virtual

VOPs.

Globally and Locally Optimized Motion Estimation

With the base virtual VOP in hand, the next and the most important step is

to find the optimal motion trajectory to link the VOPs together. The idea here is

basically the same as the block-based motion estimation, i.e., utilizing the temporal

redundance as much as possible so that the highest coding efficiency could be achieved.

The main difference is that the motion estimation here is object-based (virtual VOP

based to be precise) instead of block-based. It includes three steps:
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(a) The virtual VOP of Frame085. (b) The resized virtual VOP of Frame085.

(c) The virtual VOP of Frame090. (d) The resized virtual VOP of Frame090.

(e) The virtual VOP of Frame095, the base vir-
tual VOP.

(f) The virtual VOP of Frame095, the base vir-
tual VOP.

Figure 5.3: Resize the virtual VOPs to match the resolution of the base virtual VOP,
Figure 5.3(e). The original virtual VOPs with different resolutions are at the left side
and the resized at the right side. Another copy of the base virtual VOP is list as
Figure 5.3(f) for the purpose of easy comparison.
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Figure 5.4: Resize and align the virtual VOPs.

1. Spatial resizing. This step enlarges the ith virtual VOP by a scale factor SFi

so that it has the same spatial resolution as the base virtual VOP. If a resized

virtual VOP is smaller than the base virtual VOP, it will become the new base

virtual VOP to secure that the base virtual VOP is always a subset of all the

other virtual VOPs. The moving object may move towards or away from the

camera even within a group of frames, which cause the fluctuation of the scale

factors of virtual VOPs.

2. Motion estimation. This step matches the base virtual VOP with the other

virtual VOPs to find the global motion trajectory. According to the definition

of the base virtual VOP, the VOP of the base virtual VOP is a subset of those

of all the other virtual VOPs. After the ith virtual VOP has been resized by
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SFi, a slide window of the same size of the base virtual VOP is applied on it

from the top to bottom and left to right to cut a smaller virtual VOP V OPXi,Yi

from it, where (Xi, Yi) is the coordinate of the top-left pixel of V OPXi,Yi
in the

resized ith virtual VOP. Each V OPXi,Yi
will be compared with the base virtual

VOP and find the one with the smallest mean squared error with respect to the

base virtual VOP. The position (Xi, Yi) of the best matched V OPXi,Yi
is then

saved in the motion trajectory. Figure 5.4 shows a simple example of how the

virtual VOPs are scaled and aligned. The resulting motion trajectory is a list

of structure that records the following information of the virtual VOP in frame

i, its position (xi, yi), its width and height wi and hi, its scale factor SFi, and

the match point (Xi, Yi) of the base virtual VOP in this resized virtual VOP.

The shape information is not necessary since we use virtual VOPs that are all

rectangular.

3. Sub-Object generation. This step divides every virtual VOP into up to 9 virtual

sub-VOPs. All of these sub-VOPs in the GOF are grouped into 9 virtual 3-D

sub-objects. Each virtual VOP covers larger area than the base virtual VOP.

Some may only extend to one side in the scene, and the other may extend

to more than one directions. Since they are all aligned by the global motion

trajectory with the base virtual VOP, we divide each virtual VOP into one

to nine virtual sub-VOPs, depending on how they are different from the base

virtual VOP. Each virtual sub-VOP is labeled according to its relative location

to the base virtual VOP (Figure 5.5). The virtual sub-VOPs with the same

label are grouped together, aligned to their “inner” borders or corners with

respect to the base virtual VOP, and sorted by their sizes and overlap ratios
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Figure 5.5: Virtual Sub-VOPs.

from largest to the smallest to form the virtual 3-D sub-objects. The sizes

and orders of virtual sub-VOPs need not to be sent to the decoder because the

decoder can figure out these parameters from the motion trajectory. Except

for the one containing the base virtual VOP, the other virtual sub-objects may

very likely contain less number of virtual VOPs than the number of the frames

in the group, since not every virtual VOP extends to all the directions from

the base virtual VOP. Compared with the virtual object method in [117], this

method has better motion estimation and encodes less regions. So it is more

efficient.
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5.3.3 Virtual Sub-Object Coding

Strict 3-D SA-DWT based coding only transforms and codes the 3-D object (a

group of VOPs). But the irregular shape of the VOPs reduces the coding efficiency

and the shape information of VOPs adds additional side information to be coded. So

the shape-adaptive approach is not always a good choice. The another option is to

treat the group of virtual VOPs as a 3-D object and code this virtual object instead.

In this work, we apply the second idea to the nine virtual sub-objects we have

generated, individually. Their shape information can actually be calculated from

the parameter set (xi, yi, wi, hi, SFi, Xi, Yi) that is recorded in the motion trajectory.

This method will encode some unwanted areas, but it only has to code rectangular

virtual VOPs so that the shape coding is avoided. The virtual sub-object 0 is in

fact a well matched video sequence with very high temporal redundancy. So shape

adaptive coding has little benefit on it. Instead, we used the conventional 3-D SPIHT

algorithm on it since 3-D SPIHT fits well on its pattern. The other eight virtual

sub-objects likely have frames with different sizes, but their spatial and temporal

dimensions are known to both the encoder and decoder (derived from the motion

trajectory). Among them, the virtual VOPs in sub-objects 2, 4, 5, 7 have either

the uniform width or height, while those in the sub-objects 1, 3, 6, 8 have arbitrary

width and height. The shape adaptive 3-D SPIHT coding is applied to these eight

sub-objects but their rectangular shapes will not damage the efficiency of transform

and there is no need for coding the shape information.
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Video sequence Bit rate (kbps) Y/C VOW MPEG-4 ViSC
Akiyo 98 Y 33.59 33.71 33.42

C 39.49 41.13 40.36
News 120 Y 32.50 32.95 31.37

C 40.04 42.06 38.89
Coast 98 Y 28.98 28.74 28.04

C 40.71 44.54 40.30
Cont 120 Y 29.42 29.26 28.58

C 35.41 37.40 35.23

Table 5.1: Comparison of Virtual Sub-Object coding with VOW, MPEG-4 in PSNR
with the same bit rates.

5.4 Experimental Results

Experiments were carried out to compare the performance of the proposed virtual

sub-object coding (ViSC) algorithm with the shape-adaptive video object wavelet

(VOW) coder [118] and MPEG-4. To be able to compare with VOW, we used the

same video sequences the authors used in [118], where the objects are the woman in

Akiyo (Akiyo), boat in Coastguard (Coast), anchor persons in News (News), and ship

in Container (Cont). These sequences are in CIF resolution (352 × 288) and at 10

frames per second. The data of VOW and MPEG-4 were cited directly from Table II

in [118].

Table 5.1 lists the results of comparison, where ’Y’ and ’C’ represent Luminance

and Chrominance, respectively. The quality indexes, such as 33.59, are measured in

PSNR (Peak Signal to Noise Ratio). The ViSC only has comparable performance

with the other two coding algorithms for the Akiyo sequence. This is because the

ViSC is designed to work with fixed background and currently only support single
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moving object. Among the four sequences, only Akiyo fits the criteria. Note that,

ViSC does not apply pre- or post-processing, while MPEG-4 must have applied, not

sure about VOW though. Also, the lengths of the test sequences are not long enough

for ViSC which is more suitable to long sequences than the other two.

5.5 Conclusions

In this work, we proposed an object-based 3-D wavelet coding algorithm called

3-D virtual sub-object coding that is suitable for videos with fixed background. In

stead of allowing the arbitrary shaped objects, this algorithm uses a virtual object

concept that constrains the shapes of objects to rectangular. This algorithm only

uses one globally optimized motion trajectory for a virtual object. By dividing the

virtual object into as many as nine sub-objects, it equivalently applies locally refined

motion estimation that provides local optimization. Without using a complicated

motion estimation and arbitrary shape adaptive transform, this algorithm achieved

comparable performance compared with the state of the art 3-D wavelet based video

compression algorithm VOW, and the leading standard MPEG-4.

The shapes of the virtual objects in this work are simple rectangular. This is the

extreme option when considering the trade-off between the shape coding overhead and

object coding bits. It is reasonable to assume that a simple and efficient description

of the shape information will improve the performance. Also, a more sophisticated

motion estimation that can track and describe the rotation of the object will also

help.
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CHAPTER 6

CONCLUSIONS

This dissertation covers the research topics in image quality assessment, image

compression and video compression.

The concepts of human vision system (HVS) plays a very important role in the

image and video technologies. A review of HVS is given right after the introduction.

Since the HVS is so complex and much of it is still unknown to us, this review only

covered those concepts that are relevant to our research or this dissertation in some

way. The characteristics, especially the limitations, of HVS directed the research in

lossy compression and quality assessment. This review mainly focused on them.

The wavelet transform is chosen as the tool through this research. This is because

its spatial-temporal multi-resolution property is by far a good match for the main

HVS characteristics. It can decompose images into compact frequency subbands with

spatial correlation. This makes it a perfect tool for resolution and bit-rate scalable

compression. Since wavelet has been widely studied and well known, this dissertation

did not devote a chapter to it.

A image quality metric WNMSE was proposed which is based on the concepts of

HVS and utilizes the properties of the wavelet transform. WNMSE uses the weighted

sum of the normalized mean square errors of wavelet coefficients to assess the quality
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of an image. According to the concepts of HVS, the weight for each subband is chosen

to reflect its perceptual impact on the image, which measures the distortions in the

global structure and local details of an image in a more balanced way automatically.

Because WNMSE is defined in the wavelet domain, it can be calculated in the middle

of compression without reconstructing the image. Furthermore, it facilitates the link

between the quantization steps and the quality metric.

A quality constrained compression algorithm QCSQ was proposed. Based on

the analysis of the relationship among the subband features, steps, and WNMSE

values, we also invented a quality constrained compression algorithm QCSQ which

can identify the quantization step step-size for every subband of an image. With

these steps, the image can be compressed to a desired visual quality measured by

WNMSE.

A new temporal filter scheme SGT was developed. Without motion-estimation

and motion vectors, the SGT algorithm achieves the goal of motion compensation by

diving wavelet coefficients in the temporal domain into smaller sub-groups and applies

wavelet transform within each sub-group. Two methods are tried to recover the sub-

grouping data. One recognizes boundary coefficients by manipulating their values,

which is simple and does not use overhead bits, but it introduces extra distortion

and can not be used with the intelligent clustering algorithm. The second method is

more complex and codes the sub-grouping information as overhead in the header of

a group of frames, but it makes stack-run coding more efficiency and does not cause

extra distortion.

At the last, we proposed an object-based 3-D wavelet coding algorithm called 3-D

virtual sub-object coding that is suitable for videos with fixed background. In stead
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of allowing the arbitrary shaped objects, this algorithm uses a virtual object concept

that constrains shapes of the objects to rectangular. This algorithm only uses one

globally optimized motion trajectory for a virtual object. By dividing the virtual

object into nine sub-objects, it, in fact, applies locally refined motion estimations

that provides local optimization. Without using a complicated motion estimation and

arbitrary shape adaptive transform, this algorithm achieves comparable performance

compared with the state of the art 3-D wavelet based video compression algorithm

VOW, and the leading standard MPEG-4.
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APPENDIX A

QCSQ ALGORITHM IMPLEMENTATION DETAILS

A.1 Find the Initial Set of Quantization Steps

sbl
= Cl · Vbl

1. Find the initial set of quantization steps for subband bl in the level-l, x ∈

{h, v, d} and l ∈ {1, 2, ..., L}.

Cl = 4(L−l);
if vma1 > (0.7 + 0.1× l)

Vbl
= ceil(σbl

) × 2−fbl
/2;

else if vma1 < 0.2
Vbl

= floor(σbl
) × 2−fbl

/2;
else if vma1 > 0.6

if (ma1 > 96)
Vbl

= ceil(σbl
) × 2−fbl

/2;
else

Vbl
= round(σbl

) × 2−fbl
/2;

end
else if (ma1 > 96)

Vbl
= round(σbl

) × 2−fbl
/2;

else
Vbl

= floor(σbl
) × 2−fbl

/2;
end.
sbl

= Cl × Vbl
;

if sbl
< 1
sbl

= 1;
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else if sbl
> 256

sbl
= 256;

end.

2. Find the initial set of quantization steps for subband aL.

CL = 4(L−L) = 1;
if ma1 < (160− 32× L)

VaL
= floor(σaL

) × 2(NHaL
−NLaL

)/2;
else if vma1 > (0.7 + 0.1× l)

VaL
= ceil(σaL

) × 2(NHaL
−NLaL

)/2;
else if vma1 < 0.2

VaL
= floor(σaL

) × 2(NHaL
−NLaL

)/2;
else if vma1 > 0.6

if (ma1 > 96)
VaL

= ceil(σaL
) × 2(NHaL

−NLaL
)/2;

else
VaL

= round(σaL
) × 2(NHaL

−NLaL
)/2;

end
else if (ma1 > 96)

VaL
= round(σaL

) × 2(NHaL
−NLaL

)/2;
else

VaL
= floor(σaL

) × 2(NHaL
−NLaL

)/2;
end.
saL

= CL × VaL
;

if saL
< 1

saL
= 1;

else if saL
> 256

saL
= 256;

end.

The specific values used in this algorithm are first chosen according to the rules

described above, and finally determined after adjustments using experiments. Our

experimental results show that these values are independent of wavelets used and

suitable for all kinds of natural images.
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A.2 Tune the Initial Quantization Steps

The initial set of quantization steps has quantized the image to a W-NMSE equal

to Q0, and the objective W-NMSE is Q. The difference is ∆Q = Q - Q0. Assuming

that subband α has the highest optimality optα and subband β has the second highest

optimality optβ, and their quantization steps, the averages of the quality gains, and

the standard deviations of the quality gains are (sα, mα, stdα) and (sβ, mβ, stdβ),

respectively. The error threshold is δ, that is, we call it a successful tuning if the

difference between the achieved and the target quality indexes is less then δ.

The process includes three iterative steps:

1. Adjust quantization steps to improve image quality.

if ∆Q > mα

reduce sα by half;
∆Q = ∆Q - mα;

else if mβ / optβ > mα / optα
reduce sα by half;
∆Q = ∆Q - mα;

else
reduce sβ by half;
∆Q = ∆Q - mβ;

end.

2. Check whether the target quality is achieved. If not, go back to step 1); if yes,

go to step 3).

if ∆Q < 0
done;

else
α ← the subband (α or β) whose quantization step was not

modified;
β ← the subband whose optimality level is next to β;
repeat 1;

end.
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3. Calculate the current predicted quality metric Q′. If it is too big compared with

Q, tune it down; if it is too small, go back to step 1).

while Q′ −Q > δ

recover the quantization step of the subband x that was the last
being modified;
Q′ = Q′ −mx, where mx is the average quality gain of the

subband x;
end.
if Q−Q′ < δ

α ← the most optimal subband among those whose
quantization step was never modified;
β ← the second most optimal subband among those whose

quantization step was never modified;
repeat 1;

end.
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