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ABSTRACT 
 
 
Facility placement and associated service coverage are major concerns in urban and 

regional planning. A confounding issue in facility location models is how to represent 

geographic space. Often, space and associated demand for service has been conceived to 

be discrete points in these models. While point-based representations facilitate model 

construction, simplify data requirements and enable more efficient problem solutions, 

advances in GIScience and spatial data acquisition highlight deficiencies in using overly 

rudimentary feature depictions, like points, in certain modeling instances. The problem is 

further complicated when we aim to find optimal locations in the continuous space. In 

continuous siting, assuming that a facility to be located can be placed anywhere in the 

plane means that an infinite number of possible locations need to be considered. This 

research focuses on coverage optimization in the continuous plane where spatial demand 

is represented as objects, including points, lines or polygons.  An approach is detailed for 

the problem of covering spatial demand objects for service, where potential facilities can 

be anywhere in the continuous plane. It is shown that weighted demand, represented as 

points, lines or polygons, can be optimally served by a finite number of potential facility 

locations, called the polygon intersection point set (PIPS). The developed approach 

extends point-based abstraction of demand to a more general representation. Empirical 

analysis demonstrates the applicability of the approach. Due to the limitations of existing 

modeling approaches for examining the coverage of space, there exist discrepancies 
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between what is modeled and actual geographic coverage. In order to accurately reflect 

the mechanism of maximal coverage for spatial objects (points, lines or polygons), we 

introduce a new model explicitly accounting for joint service provided by multiple 

facilities. Application results demonstrate the reliability and efficiency that can be 

achieved by the proposed model. In order to solve large planning problems and generate 

diverse alternative solutions, a new genetic algorithm is proposed for the developed 

model. In particular, a new crossover operator is designed based on the characteristics of 

coverage problems. Application results show that the developed genetic algorithm is able 

to provide solutions of high-quality in a fast manner. This research proposes new 

modeling and spatial optimization techniques for coverage maximization and 

demonstrates that consideration of representational issues in the continuous plane is 

important in achieving efficiencies for urban and regional planning.
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Background 

 

“Location” is an important factor for people to conduct certain activities. Some places are 

more preferred than others in different situations. Finding those preferred places has 

increasingly become part of daily life (ReVelle et al. 1970). Many organizations, public 

or private, face such important locational decisions. In the private sector, locational 

choices affect the ability of a firm to make use of capital investments and compete in the 

market place, and in the public sector such decisions involve not only monetary costs but 

also social benefits (White 1979).  As a result, location analyses assisted by planning and 

design processes are important (Murray 2003). 

 

Early location analysis dates back to Alfred Weber (1909) for the problem of siting a 

single warehouse so as to minimize total transportation cost, known as the Weber 

problem. Location theory flourished and was applied to a range of substantive contexts 

after the 1960’s. A survey of many applications is provided by Eiselt (1992) and 

Brandeau and Chiu (1998), but see also ReVelle et al. (1970), Toregas and ReVelle 
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(1971), ReVelle (1989), D’Amico et al. (2002), Aikens (1985), Vector and Dincer 

(1995), and ReVelle et al. (2002).  

 

To find a solution to a locational decision problem, a model is often used (Birkin et al. 

1996). Facility location models can be classified according to their objectives, 

constraints, solution approaches and other attributes (see Hamacher and Nikel 1998; 

Klose and Drexl 2004). Daskin (1995) classified location models into three general 

categories based on objective functions: covering models, p-center models and p-median 

models. Covering models seek to minimize the number of facilities needed for full 

coverage of demand, also known as set covering models, or to maximize the coverage of 

demand with a limited number of facilities, called maximum covering models (Schilling 

et al. 1993). P-center models aim to minimize the maximum distance or travel time from 

demand to its closest facility (Handler 1990). P-median models attempt to minimize the 

overall distance or time (or average distance or average time) between demand and its 

nearest facility (Hakimi 1964; ReVelle and Swain 1970). 

 

Of interest in this research are covering location problems, which measure effectiveness 

through assessment of whether demand can receive service. The coverage standard, 

preset for either distance or time, is an important notion for covering problems, and 

demand is considered to be suitably served if it can be reached by a service facility within 

this standard. For example, fire department response time should be less than 6 minutes 

to an accident or structure fire after a call for service has been received (Murray and Tong 

2007).  So in this case, those places within a 6-minute travel time from a certain located 
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fire station are considered to be “covered”. Coverage problems have been used in fire 

station location (ReVelle 1989), bus stop design (Gleason 1975), warning siren siting 

(Current and O’Kelly 1992) and weather monitoring (Minciardi et al. 2003), to name a 

few.  

 

How to represent geographic space is a challenge for coverage-based modeling work. 

Geographical space can be represented in a variety of ways. Often, facilities and demand 

are represented as points (Miller 1996; Church 1999; Murray et al. 2006). A common 

formulation is: simultaneously locate a set number of point facilities to serve a set of 

weighted demand points. Hence, a demand point can be a sub-area of a region, such as a 

city or town, with associated aggregated information (Current and O’Kelly 1992). The 

primary reason of using the point representation instead of a geometrically complex 

shape (e.g., polyline, polygon, etc.) is that points can simplify data handling and solution 

approaches, and are easier for model construction. However, the fact is that neither 

demand nor facilities are necessarily points with no dimension, and the real world cannot 

be simplified to points of no dimension in many situations. For instance, demand, such as 

census tracts or planning districts, or facilities, like parks or retail outlets, are often an 

areal unit (Murray 2003).  

 

In fact, the issue of how to represent geographic space, regional demand in particular, in 

location modeling has received considerable attention in recent years (e.g., Miller 1996; 

Murray and O’Kelly 2002; Murray 2003, 2005). Most studies raise the question of 

whether or not points can effectively represent a demand region, such as neighborhoods, 
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towns or census boundaries. Miller (1996) suggested that other spatial representations of 

objects, such as lines and areas (or polygons) in geographic information systems (GIS), 

should be considered in locational modeling, and that there is a need for location 

modeling capable of dealing with more complex objects. Driven by this need, this 

research will investigate demand represented more generally as points, lines or polygons 

in a GIS environment in the context of coverage location modeling.  

 

Another important issue in coverage modeling is where potential facilities can be located. 

In this regard, location models can be categorized into two types: discrete or continuous 

problems. A continuous problem allows potential facility locations to be anywhere in the 

plane or a subset of the plane, whereas a discrete problem confines potential facilities to 

some finite set of sites specified in advance (Love et al. 1988). In some situations the two 

approaches are application oriented. For example, if there is only a finite number of 

feasible areas for locating service facilities due to costs, site availability or others reasons, 

then a discrete approach makes sense (Murray and O’Kelly 2002). However, if any place 

can be a potential facility site in the region, a continuous approach is more suitable, 

particularly with respect to optimality. In this research, a continuous approach will be 

studied. Thus, potential facility locations consist of all places in space and analysis needs 

to be carried out to find the best configuration of facilities. This necessarily means that 

one must consider an infinite number of possible locations at which to site. This search 

among an infinite number of sites is computationally challenging, and some cases require 

special techniques for problem solution.  
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1.2 Research objectives 

 

Given the concerns indicated above, this research will focus on the analysis of covering 

demand objects, where facilities are to be sited in the continuous plane. In particular, 

three objectives will be dealt with. The first objective is to identify an approach to deal 

more effectively with continuous space siting where demand is represented as spatial 

objects. More specifically, a special set of discrete points, known as the finite dominating 

set (FDS) consisting of at least one optimal solution to the problem, will be identified 

serving as potential facility sites. By narrowing the infinite search space to those in the 

FDS, computational effort will be dramatically reduced. The second objective is to 

develop a new model for maximal coverage of spatial demand objects. The model is 

expected to be free of the modifiable areal unit problem (MAUP) and accurately reflects 

the maximal coverage mechanism for objects. The third objective is to develop a new 

efficient heuristic for the proposed maximal coverage model. The heuristic should be able 

to generate solutions of high quality within reasonable computation time. 

 

1.3. Organization of the research  

 

This research is organized as follows. Chapter 2 focuses on the continuous space siting 

problem when demand is represented as general objects. First, existing approaches for 

dealing with continuous space location are reviewed. Next, a FDS is identified and 

proved to consist of at least one optimal solution for covering spatial objects. The FDS is 
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used in the context of warning siren evaluation in Dublin, Ohio. Results are presented and 

compared. 

 

Chapter 3 proposes a method for regional maximal coverage where joint coverage for a 

specific demand by multiple facilities is considered.  This chapter starts with a review of 

existing work on representation issues and modeling approaches for covering location 

problems. Then, a new general model is proposed when demand is represented as spatial 

objects. This is followed by an application of the developed model to warning siren siting 

in Dublin and Franklin County, Ohio.  Finally, results and representational errors are 

examined, along with comparison to existing approaches.  

 

Chapter 4 develops a new genetic algorithm for the model developed in Chapter 3. The 

chapter begins by reviewing existing heuristic techniques for maximal coverage 

problems. Then, existing genetic algorithms applied to similar problems are discussed. 

Next, a genetic algorithm with a new crossover operator structured for the characteristics 

of the maximal coverage problem is proposed.  Finally, comparative results are presented 

and discussed.  

 

The final chapter, Chapter 5, concludes the dissertation by summarizing research results 

and provides concluding comments. In addition, future research directions are discussed. 
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CHAPTER 2 
 
 

COVERAGE OPTIMIZATION IN CONTINUOUS SPACE∗ 
 
 

As noted in Chapter 1, the primary purpose of this dissertation is to investigate coverage 

optimization in continuous space, where demand is represented as general objects 

including points, lines and polygons. However, dealing with continuous space is a 

challenge in location problems. In this chapter, an approach is proposed for the problem 

of covering spatial demand for service, where potential facilities are located in the 

continuous plane. In particular, a special finite set is identified as potential sites for 

facility location. In doing so, the search space of a potential infinite number of sites is 

narrowed to a finite number, reducing problem complexity and computational effort 

dramatically.  

 

2.1 Introduction  
 
 
Facility location is a major concern in regional service analysis and planning. Of interest 

is making a choice about where to site a facility in order to best serve potential demand. 

Facility location problems arise in a variety of public and private sector contexts (Daskin 

1995). For example, local governments need to decide where to locate public libraries 

                                                 
∗ This chapter is a revised and extended version of papers published in International Journal of 
Geographical Information Science and the proceedings of the University Consortium for Geographic 
Information Science Summer Assembly, both co-authored with Dr. Alan T. Murray. 
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and schools to achieve maximum social benefits. In the private sector, retail outlets wish 

to capture market share and optimize revenue, while manufacturers are interested in 

reducing costs in acquiring raw materials.     

 

A host of spatial optimization models have been proposed to support facility site 

selection, and there have been various attempts to categorize the range of approaches that 

exist (see Mirchandani and Francis 1990; Daskin 1995; Drezner and Hamacher 2002, 

among others). A major distinction has been discrete versus continuous (or planar) siting 

methods. Whereas discrete approaches assume that the locations of potential facilities are 

known in advance, continuous approaches allow facilities to be located anywhere in 

space. Thus, continuous space methods can be thought of as supporting strategic decision 

making. In this research we are interested in maximizing demand covered by a specified 

number of facilities, allowing facilities to be located in continuous space, similar to the 

planar coverage problem detailed in Church (1984). The motivation here is emergency 

warning siren siting, where the facilities are the sirens and service coverage is based on 

sound transmission from the siren. Thus, given a fixed budget, the question is where to 

place sirens in order to provide the greatest coverage of a regional population. In contrast 

to the approach of Church (1984), we are interested in the coverage of more complex 

spatial objects/features, not just points. 

 

A confounding issue is representing geographic space in facility location models. 

Traditionally space and associated demand for service have been conceived to be discrete 

points (Bennett and Mirakhor 1973; Mirchandani and Francis 1990; ReVelle 1991; Miller 
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1996). In part this has been to keep representation simple, but also points serve as central 

locations for areas, or as towns or cities depending on the geographic scale of analysis. 

Miller (1996) has raised the issue, however, of whether facility location approaches 

relying on only point based representations of space are too simplistic given capabilities 

to represent more complex vector objects like lines and polygons in geographic 

information systems (GIS). In fact, Murray and O’Kelly (2002) highlight representation 

issues in coverage modeling, showing that reliance on a point based abstraction of a 

region could lead to an over-estimation of actual coverage provided to a region using a 

location model. Given this, there is a need for coverage modeling approaches capable of 

serving points, lines and polygons, as suggested by Miller (1996). 

 

This chapter aims to optimally cover point, line or polygon features representing demand 

for service in a region, allowing facilities to be located in continuous space. In particular 

we look to extend the coverage problem of Church (1984) to account for line or polygon 

features. In the next section, continuous space coverage of demand is reviewed. The 

planar maximal covering problem is then discussed. This is followed by the introduction 

of a method for identifying a finite set of potential facility locations containing an optimal 

solution to the continuous space problem. An application to warning siren coverage is 

then detailed. Finally, a discussion and conclusions are provided. 
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2.2. Background 

2.2.1 Continuous space location 

 

Location problems can be classified into two types, discrete and continuous problems, 

based on the set of potential facility locations (see Hamacher and Nickel 1998). In 

continuous space, one can locate a service facility anywhere in the plane or on the 

network. Alternatively, in discrete space facilities can be placed only at a limited number 

of eligible points. It is difficult to solve continuous facility location models because of the 

infinite possibilities for facility placement (Plastria 2002).  

 

Continuous space siting has been of longstanding interest. Weber (1909) was interested 

in finding the location in the plane for siting a single industry or firm to minimize 

transportation costs. A range of spatial optimization problems have followed, with a 

major feature being that facilities are to be located in continuous space in order to 

minimize or maximize objective criteria. Continuous space siting assumes that a facility 

to be located can be placed anywhere in the plane. This necessarily means that one must 

consider an infinite number of possible locations at which to site facilities. Often times 

this has been a foreboding challenge computationally, unless special approaches could be 

identified or developed.  

 

The earliest continuous location solution algorithm was offered by the mathematician 

Weiszfeld (1936) for a one facility minisum Weber problem. Other variants followed 

(Eyster et al. 1973; Drezner and Weslowsky 1980). Geometry exploitation is another 
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approach for solving continuous location problems. Elzinga and Hearn (1972) developed 

a method for a 1-center discrete demand problem by studying the geometry between 

point demands. Recently, a Voronoi diagram heuristic was used for solving the 

continuous space p-center problem (Suzuki and Okabe 1995; Okabe and Suzuki 1997). 

Medial axis was also used to delineate optimal siting locations for the single facility 

coverage of an area (Matisziw and Murray 2006). Other geometric solution approaches 

include those developed by Hershberger (1993), Hochbaum and Shmoys (1985), Khuller 

and Sussmann (2000), and Sharier and Welzl (1996). 

 

Recognizing that some places are better than others under certain conditions, another 

method for solving a continuous problem is to identify some or all of the good places as 

potential facility candidates. Therefore, instead of iteratively searching for good solutions 

in continuous location problems, as many algorithms or heuristics do, it makes sense to 

identify a finite set which consists of at least one optimal solution. This finite set is 

known as the finite dominating set (FDS). By examining the finite set, instead of the 

infinite space, search effort can be reduced dramatically. 

 

Hakimi (1964, 1965) was the first to investigate the FDS for a network location problem. 

He proved that nodes of the network comprise a FDS for the p-median problem. Inspired 

by this work, there have been considerable activitives in finding the FDS for different 

network problems. Hooker et al. (1991) surveyed the literature, unifying and generalizing 

FDS results for network location problems. There were also FDS endeavors for location 

problems in the plane. For example, Vergin and Rogers (1967) proved that the demand 
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points were a FDS for the single-facility location problem in the plane using the sum of 

rectilinear distance criteria. Also, Church (1984) developed an approach for identifying 

the FDS for covering problems involving point-based demand for both Euclidean 

distance and rectilinear distance. Under the Euclidean distance measure, the FDS is a set 

of intersection points of the circles with radius of the service standard S centered on the 

demand locations, known as the CIPS (circle intersection point set). While under the 

rectilinear distance measure, the FDS is a set of intersection points of the diamonds, also 

known as the DIPS (diamond intersection point set). Church (1984) proved these sets 

contained at least one optimal solution to their respective covering problems. For some 

problems, there is no such FDS or it is very difficult to find. Some research identifies 

“good” finite sets which can provide better solutions compared with other alternatives. 

For example, Kuby et al. (2005) provided such a set as the middle points on the arcs of 

networks for dispersion problems.  

 

Central to this chapter is the work on the planar maximal covering (PMC) location 

problem defined originally in Church (1984)1, but also detailed in Mehrez and Stulman 

(1982, 1984). The PMC is important because of the planning applications it can be used 

to address. As an example, Mehrez and Stulman (1984) noted that it can be used for 

siting fire and radar stations to maximally cover demand distributed across a service 

region. Along these lines, Murray et al. (2007) detailed the need for addressing 

emergency warning siren placement, where sirens are to be located in a region and 

                                                 
1 Richard Church originally presented this research at the ORSA/TIMS meeting in Philadelphia, PA, April 
1976 (“The planar maximal covering location problem”), with a manuscript produced as well. The paper 
was ultimately published with the same title – Church (1984). 
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residents are to be covered within the audible service range of a siren. With a FDS (e.g., 

CIPS, DIPS), one then can rely on the original discrete space maximal covering location 

problem (MCLP) proposed in Church and ReVelle (1974) to solve the continuous space 

generalization. Again, geometrical insights make it possible to address the complexities 

of siting in continuous space without altering the planning problem formulation. 

 

2.2.2 Demand representation 

 

There has long been interest in dealing with other demand objects, like areas, in location 

modeling (see Wesolowsky and Love 1971; Love 1972; Bennett and Mirakhor 1974; 

Drezner and Wesolowsky 1980; Marucheck and Aly 1981; Aly and Marucheck 1982). 

However, there have been computational difficulties in addressing area (or polygon) 

representations of demand, limiting practical capabilities beyond the above noted work. 

In the context of coverage optimization, Benveniste (1982) recognized the importance of 

being able to represent demand as polygons in a location model, but offered no approach 

for doing this. Miller (1996) highlighted that much location modeling research has only 

addressed point-based demand. However, demand can be conceived of as line- and area-

based as well. Line demand object applications include street or river segments, and 

polygon demand objects could be watersheds, census tracts or planning districts. A major 

challenge raised in Miller (1996) is to be able to address these more complex 

representations of space in location modeling. Driving this need is no doubt spatial 

information managed using GIS, where spatial features are represented as vector objects, 

like points, lines or polygons. Much spatial information exists to support location 
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decision making, so there is a need to account for how demand is represented, rather than 

assume it is only point based. 

 

The objective of this chapter is to extend the PMC to consider any vector-based demand 

objects, not just points. This begins to address the spirit of what Miller (1996) recognized 

as an important frontier in GIScience research, though for a particular class of spatial 

optimization problem. Beyond this, as will be detailed later in the chapter, the ability to 

address the problem of providing maximal service coverage to non-point based demand, 

like a polygon, is needed in its own right as it has practical use and application in urban 

and regional analysis (see Benveniste 1982; Li and Yeh 2005; Murray et al. 2007). 

 
2.3 Problem formulation 

 

Before proceeding, it is necessary to formally specify the planning problem of interest. 

As noted previously, the idea is to extend the PMC to account for other vector features, 

like lines and polygons. A useful beginning point is to first detail the MCLP of Church 

and ReVelle (1974), as the PMC naturally follows. Consider then the below notation: 

i = index of demand points  

j = index of potential facility locations 

iw = expected service required for demand i 

{ } set of potential facilities capable of covering/serving demand  iN i=  

p = number of facilities to site 
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1 if potential facility  located
0 otherwise j

j
x ⎧
= ⎨
⎩

 

1 if demand  suitably covered/served
0 otherwise i

i
y ⎧
= ⎨
⎩

 

 

It is worth mentioning that Church and ReVelle (1974) defined the cover set, iN , in 

terms of a distance standard S, where S represented the distance that could be traveled to 

suitably serve (or cover) demand. Denote ijd  as the distance from demand i to potential 

facility j. Thus, formally the cover set is: { }|i ijN j d S= ≤ . The model now follows. 

 

Maximal Covering Location Problem (MCLP) 

 

Maximize i i
i

w y∑  (2.1) 

Subject to 

 
i

j i
j N

x y i
∈

≥ ∀∑  (2.2) 

   j
j

x p=∑  (2.3) 

 { }0,1jx j= ∀  (2.4) 

 { }0,1iy i= ∀  

 

The MCLP requires discrete potential facility locations, j, to be specified in advance. The 

objective, (2.1), is to maximize the total demand provided suitable service, or coverage. 

Constraints (2.2) track whether demand is covered by sited facilities. Constraint (2.3) 

specifies the number of facilities to locate. Finally, integer requirements are imposed in 

Constraints (2.4). 
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What has effectively been defined above is the problem of covering as much total 

weighted demand as possible by positioning a given number of circles of radius S 

centered on a sub-set of potential locations j. The planar version of this problem relaxes 

the requirement that circles must be centered on the discrete, pre-specified potential 

facility locations, meaning that facilities can be located anywhere in the plane. 

 

Planar Maximal Covering Location Problem (PMC): Maximize point-based 

demand covered by a specified number of facilities located in continuous space. 

 

The implications of this relaxation in facility location placement are that greater 

efficiency in coverage is now possible, as siting locations are no longer restricted. That is, 

as much or more total coverage can be achieved for a given configuration of facilities 

using the PMC. From a planning and analysis perspective, such an insight is 

fundamentally important, as this establishes the greatest efficiency possible for a 

particular level of infrastructure investment. 

 

Church (1984) looked at two instances of the PMC, one the PMC with Euclidean travel 

distances (PMCE) and the other the PMC with rectilinear travel distances (PMCR). 

Mehrez and Stulman (1982, 1984) assumed Euclidean distance travel, so examined the 

PMCE. Given the application context, extending the more generic PMC is of interest in 

this chapter, and travel distances based on a general distance metric are assumed. 
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The PMC generalization can be more formally detailed. Define R as the entire region of 

analysis, in which facilities can be located anywhere. The location of an individual 

facility location j is defined as a coordinate pair, ( ),j jx y R∈ , and represents decision 

variables in the model. That is, the optimization model is to find the coordinates of where 

to site the p facilities in order to maximize total demand covered. Given this, it should be 

obvious that iN  cannot be defined a priori as the location of an individual facility can be 

anywhere in the region R, in contrast to the discrete approach of the MCLP. 

 

The model extension in this chapter is to consider demand i as points, lines or polygons, 

not just points as previously assumed. Thus, the problem of interest is: 

 

Extended Planar Maximal Covering Location Problem (EPMC): Maximize 

demand objects (points, lines and/or polygons) covered by a specified number of 

facilities located in continuous space, assuming a general p - distance metric. 

 

Given this new spatial optimization problem, the task is now finding methods for solving 

it. 

 

2.4 Coverage of spatial demand objects 

 

As suggested previously, demand can be abstracted spatially as points, lines or polygons 

using GIS. In this section we examine coverage provision to these variants of demand 

representation. Furthermore, in covering models, distance as a measure of relative spatial 
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relation of the facility to demand is often used to evaluate coverage effectiveness. In the 

following, coverage under several common distance measures is assessed. The coverage 

properties that follow provide the basis for solving the EPMC. 

 

2.4.1 Euclidean distance metric 

 

Euclidean (straight-line) distance is one typically used distance metric, which represents 

the shortest distance between two objects. Suppose we have a facility F located at (xF, yF) 

capable of providing service extending out to a distance standard S, assuming Euclidean 

distance travel, with demand represented by a point A located at (xA, yA), as shown in 

Figure 2.1. The circle represents the service area. Demand is covered when it is on or 

inside the circle. Thus, we can establish the following property. 

 

Point coverage property: Demand point A can be served by facility F if the 

distance between the two points is no greater than the service standard S. 
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Figure 2.1. Coverage of point A by facility F. 
 
 
 

This property can be stated mathematically when service is provided to point A: 

2 2( ) ( )AF A F A Fd x x y y S= − + − ≤  (2.5) 

As a function of a circle defining service coverage, this condition is as follows: 

 2 2 2 2( ) ( )
AF A F A Fd x x y y S= − + − ≤  (2.6) 

Thus, geometrically a circle with radius S centered on facility F is able to cover demand 

point A when it is on or within this circle.  

 

Consider now a line segment AB  representing linear demand. End points A and B of 

segment AB  are located at (xA, yA) and (xB, yB) respectively. Again, facility F is capable 

of service out to a distance S. Coverage of this line segment is illustrated in Figure 2.2, 

and the following property can be stated. 

S
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Line segment coverage property: If points A and B are both covered by facility F, 

any point C located at (xC, yC) on segment AB  is also covered by facility F. 

 

 

 

Figure 2.2. Coverage of line segment AB  by facility F. 
 
 
 

The line segment coverage property can be proven mathematically. Point C on line 

segment AB  can be represented in terms of A and B as follows: 

 

( ) BAC xxx λλ −+= 1  (2.7a) 

( ) BAC yyy λλ −+= 1  (2.7b) 

 

where 10 ≤≤ λ . The Euclidean distance between demand point C and facility F is 

therefore: 

 

S
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( ) ( )22
FCFCCF yyxxd −+−=  (2.8) 

 

If (2.7a) and (2.7b) are inserted in (2.8), the following results: 

 

( )( ) ( )( )22 11 FBAFBACF yyyxxxd −−++−−+= λλλλ  (2.9) 

 

Squaring both sides of (2.9) produces: 

 

( )( ) ( )( )222 11 FBAFBA yyyxxxd
CF

−−++−−+= λλλλ  (2.10a) 

 

Multiplication and re-arrangement of terms gives: 

 

222222

22222

)1(22)1()1(2

)1(22)1()1(2

FFBFABBAAF

FBFABBAACF

yyyyyyyyyx

xxxxxxxxd

+−−−−+−+++

−−−−+−+=

λλλλλλ

λλλλλλ
 (2.10b) 

 

Equation (2.10b) can be further re-arranged and partitioned as follows: 

 

[ ] [ ]
[ ]22

22222

)()()1(

)()()1()()(

BABA

FBFBFAFACF

yyxx

yyxxyyxxd

−+−−+

−+−−+−+−=

λλ

λλ
 (2.10c) 

 

Further simplification, as a function of distances between points, gives: 
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βα

λλλλ 2222 )1()1( ABBFAFCF dddd −+−+=  (2.10d) 

 

Given the assumed coverage of points A and B by facility F, the α component in (2.10d) 

relates to the service distance standard, or circle with radius S, as follows: 

 

( ) 22222 1)1( RRRdd BFAF =−+≤−+= λλλλα  (2.11) 

 

The β component of (2.10d) equates to: 

 

0)1( 2 ≤−= ABdλλβ  (2.12) 

 

The reason for this is due to the definition of λ, as ( )1−λλ  is at most zero. Thus, given 

(2.11) and (2.12), the squared distance from point C to facility F is bounded by: 

 

22 RdCF ≤  (2.13) 

 

If points A and B are covered by facility F, any point C on line segment AB is also 

covered. Therefore, coverage of a line segment by a circle is guaranteed when both end 

points are covered, and the line segment coverage property is proven. 

 

Line segment coverage can be extended for a polygon, or area object. Figure 2.3 shows 

polygon ABCD with area-based demand covered by facility F with service radius S, again 
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assuming Euclidean distance travel. ABCD consists of four line segments, and the 

following property can be observed: 

 

Polygon coverage property: If each line segment end point in ABCD is covered, 

then any point on the boundary or within the polygon is also covered by facility F. 

 

 
 
 

Figure 2.3. Coverage of polygon ABCD by facility F.  
 
 
 

The proof of the polygon coverage property follows. If all vertices of polygon ABCD are 

covered by facility F, then according to the line segment coverage property any line 

segment connecting two vertices is also covered by F. Thus, the boundary, comprised of 

series of line segments, is also covered by the circle centered at F with radius S. Consider 

any point M inside ABCD. If a line is drawn passing through M in any direction, this line 

will intersect two or more line segments defining the boundary, AB, BC, CD, or DA. 

Without loss of generality, suppose the intersection points are θ1 and θ2. Since these two 
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points are on the boundary of ABCD and the vertices (or line segment end points) are 

covered by facility F, point M on segment 21θθ  is also covered. Thus, the entire polygon, 

boundary and interior, is covered when boundary segment end points are covered, and 

our proof is complete. 

 

2.4.2 General distance metric 

 

A more general distance measure, p - distance, is commonly used for distance 

evaluation. p - distance in the plane is derived from the p - norm,  where g(x) = p (q, 

r) = | | | |p pp
q r q rx x y y− + −  for 1 p≤ ≤ ∞ . ( , )q qx y  and ( , )r rx y  are points in the plane. 

Note, when p = 2, this is the Euclidean distance measure. In addition, rectilinear distance 

is the special case of p - distances where p = 1, which is better for approximating travel 

along a city street grid or in a network of aisles in a factory or warehouse. 

 

If we let S = 1 and the origin (0, 0) is the point measured from, the coverage ball B is then 

a unit ball centered on the origin. For different p’s, it can take different shapes. For 

instance, if we let p = 1, the coverage ball B satisfies | | | | 1q qx y+ ≤  , which is a unit 

diamond as shown in Figure 2.4. If we set p = 2, the coverage ball satisfies 2 2 1
q q

x y+ ≤ , 

and we get a unit circle as shown in Figure 2.5. For other p’s we may get other different 

unit balls. Figure 2.6 shows some examples from Love et al. (1988).  
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Figure 2.4. Unit coverage ball under rectilinear distance measure. 

 
 
 
 

 
 

 

 

 

 

 

 

 

Figure 2.5. Unit coverage ball under Euclidean distance measure. 
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Figure 2.6. Some unit coverage balls for p’s other than 1 and 2. 
 
 
 

Again, suppose we have a facility F located at ( fx , fy ) which can provide service within 

a distance standard S, then any point demand ( dx , dy ) falling inside or on the boundary of 

the coverage ball B = { | ( , ) }pd d f S≤ can receive service from facility F. For Euclidean 

distance, the ball B is a circle centered on ( fx , fy ) with radius S, whereas for rectilinear 

distance the ball is a diamond shape, as illustrated by Church (1984). 

 

Consider a line segment AB  representing linear demand such as a street. If each point of 

A and B is within the coverage ball B, then any point on the line segment AB is also in the 

coverage ball B. That is, the ball B is a convex set, which has been proven based on the 

triangle inequality and homogeneity properties of norms (see Brimberg and Love 1995). 

This property indicates that if two end points of a line segment receive service from 

facility F, then the entire segment also receives service from F.  The Euclidean case 

shown above is a special case of this property. Based on this line segment coverage 
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property for p - distance, the polygon coverage property for Euclidean distance also 

holds for p - distance. The proof is derived similar to that shown above for the polygon 

coverage property under the Euclidean distance metric. 

 

2.5 Identifying a FDS 

 

As noted previously, facility location is permissible anywhere in continuous space, and 

the intent is to identify a configuration of facilities that provides maximal coverage of 

demand for service using the EPMC. This necessarily means that some locations will be 

better than others in terms of providing coverage. The previous section established 

conditions under which spatial features are covered, or served, when demand is 

represented as points, lines or polygons. Thus, in this section these properties will be used 

to derive a process for identifying sufficient potential facility locations. This is done by 

exploiting geometrical aspects of the EPMC. Further, it will be shown that an optimal 

solution to the EPMC is comprised of this set of discrete points. 

 

Before proceeding, it is worth reviewing the relationship between points, lines and 

polygons as GIS-based vector objects, a discussion of which can be found in Worboys 

and Duckham (2004) among others. A point is a coordinate pair. A line is comprised of a 

series of coordinate pairs, where it is typically assumed that a straight line connects 

consecutive coordinate pairs. Thus, a line is a series of line segments. Finally, a polygon 

is also a series of coordinate pairs, but the last coordinate pair corresponds to the first 
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coordinate pair thereby enclosing the polygon. Thus, a polygon is also a series of line 

segments. Mathematically these definitions are: 

 

Point:  ( )yx,  

Line:  ( ) ( ) ( ){ }nn yxyxyx ,,...,,,, 2211  

Polygon: ( ) ( ) ( ) ( ){ }112211 ,,,,...,,,, yxyxyxyx mm  

 

Thus, points and line segments are fundamental components of traditional vector objects. 

In terms of developing a solution approach for EPMC, one assumption is made regarding 

the relationship between the coverage distance standard S and object size. Here it is 

assumed that the object size is significantly smaller than S, or specifically S is greater 

than the maximum diameter of the smallest enclosing circle for any spatial demand 

object2. This assumption ensures that all objects can be suitably covered. If this is not the 

case, it is assumed that one can readily partition the object(s) into smaller objects as this 

is a standard feature of GIS. 

 

2.5.1 Critical locations for demand objects 

 

The previous section has detailed the conditions under which demand objects (points, 

lines or polygons) receive coverage. Expanding on this, it is possible to define the area 

for which placement of a facility would result in coverage of a given demand 
                                                 
2 Finding the smallest enclosing circle for an object, or set of points, is itself an optimization problem. It is 
also referred to as a minimum circle, minimum spanning circle, smallest enclosing circle, smallest 
enclosing disc or a minimal covering circle in the literature. A discussion and review of this problem is 
given in Wei et al. (2006). 
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object/feature. This is, of course, dependent upon the nature of service provision, which 

in this case extends out a distance S. Thus, for point-based demand, a coverage ball B = 

{ | ( , ) }pf d f S≤  centered on the demand point represents the area where locating a 

facility would ensure coverage of this associated demand. Figure 2.7a illustrates this area 

under the Euclidean distance metric, where three points are depicted, A, B and C, along 

with their corresponding covering boundaries, KA, KB and KC respectively. Therefore, 

siting a facility on or in KA would serve demand point A, siting a facility on or in KB 

would serve demand point B, and siting a facility on or in KC would serve demand point 

C. In the context of maximizing coverage, overlapping covering boundaries (e.g., KA ∩ 

KB and KB ∩ KC in Figure 2.7b) are important because they represent areas where 

efficiencies can be achieved. Specifically, if a facility is located in an overlapping area, 

multiple demand points can be covered. With this in mind, any point in an overlapping 

covering area is equally as good. Thus, we can focus on particular critical points 

associated with the overlapping covering boundary. These critical locations are shown in 

Figure 2.7b, and are referenced as 1γ , 2γ , 3γ  and 4γ . In this case we have four discrete 

locations where facility placement makes sense from the perspective of optimization 

efficiency. In fact, these critical locations are the circle intersection point set (CIPS) 

identified in Church (1984), and are proven to contain an optimal solution to the PMCE. 
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(a)  Coverage boundary. 
 
 
 

 
 

(b) Critical locations. 
 
 

Figure 2.7. Coverage properties for point-based demand under Euclidean distance. 
 
 
 

 



 31

For line-based demand, the covering region is more complex given the need to cover an 

entire segment, yet remains a function of the service distance standard S. Thus, the 

covering boundary is a spatial object, likely comprised of line segments, arcs and curves. 

An example for two line segments is shown in Figure 2.8a under Euclidean distance 

measure. Demand along line segment AB  can be suitably covered if a facility is located 

in or on KAB and demand along line segment CD  can be suitably covered if a facility is 

located in or on KCD. No point on AB is further than S from any point on KAB. The same is 

true for segment CD and KCD. As in the case of demand points, overlapping covering 

boundaries (e.g., KAB ∩ KCD in Figure 2.8b) represent potential optimization efficiencies. 

Not surprisingly, critical locations associated with intersecting covering boundaries also 

exist in this case, as shown in Figure 2.8b. These locations are referred to as 1γ ′  and 2γ ′ . 
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(a) Coverage boundary. 
  

 

 

(b) Critical locations. 
 
 

Figure 2.8. Coverage properties for segment-based demand under Euclidean distance. 
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Finally, for polygon-based demand, the covering boundary again is more complex than a 

circle given the need to cover the entire polygon, but remains a function of the service 

distance standard S. Thus, again the covering boundary is a spatial object, likely 

comprised of line segments, arcs and curves. An example for two polygons is shown in 

Figure 2.9a. Demand in polygon ABCD can be suitably covered if a facility is located in 

or on KABCD and demand in polygon EFGH can be suitably covered if a facility is located 

in or on KEFGH. As in the case of demand points and line segments, overlapping covering 

boundaries (e.g., KABCD ∩ KEFGH in Figure 9b) represent efficiencies for optimizing 

coverage. Not surprisingly, critical locations associated with intersecting covering 

boundaries exist here as well, as shown in Figure 2.9b. These locations are referred to as 

1γ ′′  and 2γ ′′ . 
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(a) Coverage boundary. 
 

 

 
 
 

(b) Critical locations. 
 
 
Figure 2.9. Coverage properties for polygon-based demand under Euclidean distance. 
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Coverage boundaries and corresponding critical locations under general p - distances 

can be defined similarly. For instance, Figures 2.10 and 2.11 show the coverage 

boundaries and the critical locations under the rectilinear distance, for line-based and 

polygon-based objects, respectively.  

 

 

 
Figure 2.10. Coverage boundary and critical locations for segment-based demand under 

the rectilinear metric. 
 

 

 
 
 

Figure 2.11. Coverage boundary and critical locations for polygon-based demand under 
the rectilinear metric. 
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2.5.2 Identification process 

 

Given these insights regarding covering boundaries, an approach can be structured to 

identify a discrete set of critical locations to consider as facility sites in solving the 

EPMC, thereby reducing an infinite number of potential facility locations to a finite and 

discrete set of locations. Of course, with such a discrete set of locations, one can then use 

the MCLP to solve the EPMC. Formally, the approach for identifying critical locations is 

as follows: 

 

Polygon Intersection Point Set (PIPS) Approach 

1. Identify spatial demand objects (points, lines and/or polygons) in need of 

coverage 

2. Extract object vertices as potential facility locations 

3. Derive covering boundaries (areas) for each demand object 

4. Identify the intersection points of covering boundaries as potential facility 

locations 

5. (Optional) Remove dominated critical locations 

 

The first step of PIPS is straightforward. Step 2, along with the assumption regarding 

object size relative to covering distance S, ensures that a feasible covering solution exists. 

Steps 3 and 4 are obviously central, but are readily supported by standard GIS 

functionality. The covering boundary in Step 3 is effectively structured using an overlay 

process, from which the associated spatial object can be extracted. Given the assumption 
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that S is greater than the maximum diameter of the smallest enclosing circle of any 

object, the covering boundary can be obtained by establishing a circle of radius S 

centered on each point, or vertex, of the object to be covered (e.g., 

( )( ) ( ) ( )mm yxyxyxyx ,,...,,,,., 332211 ) under Euclidean distance. The covering boundary 

results, as it is the area of overlap of all object edge circles. Figure 2.12 depicts this 

process for a polygon under Euclidean distance, where Figure 2.12a shows the object, 

Figure 2.12b illustrates the circles of radius S on each object defining vertex, and the 

overlapping area is highlighted in Figure 2.12c. This overlapping area is the covering 

boundary for this object. Given covering boundaries identified in Step 3, Step 4 involves 

finding the intersection points for boundary pairs, if they exist3. Extracting these locations 

is supported by standard commercial GIS functionality, but involves solving for 

intersecting points for spatial objects. Step 5 is optional, but recognizes two issues. First, 

the number of critical locations identified may be rather large. Second, some locations 

may in fact be better than others in the sense that one location can cover everything that 

another location can cover and more. As an example, if 1γ  covers all demand objects 

covered by 2γ  plus additional objects, 1γ  dominates 2γ  as it would always be better to 

utilize 1γ  over 2γ  given the coverage superiority. This domination principle has long 

been recognized in coverage modeling (see Toregas and ReVelle 1973), and was detailed 

in the context of CIPS as well by Church (1984). 

 

 

                                                 
3 If an intersection point does not exist for an object i, the object vertices (Step 2) are necessary critical 
points. 
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(a) Polygon object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Covering circles centered on object vertices. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) Covering boundary. 

Figure 2.12. Process of generating object covering boundary. 
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What remains is to prove that the PIPS contain an optimal solution to the EPMC. This 

proof is similar to that given in Church (1984) for the CIPS applied to the PMCE. 

Consider any solution to the EPMC and it can be shown there is another solution, at least 

as good, with all facility locations in the PIPS. If some facility location F of the solution 

lies outside boundary Ki, then F cannot cover object i. Replacing F by a critical point tγ  

on Ki, and in the PIPS, gives a solution at least as good. If some facility location F of the 

solution lies inside or on exactly one Ki, then it covers object i but no other object l. 

Replacing F by any critical point on Ki yields a solution equally as good. If some facility 

F of the solution lies inside two or more covering boundaries Ki, but not on any Ki, move 

it in any direction until it intersects a Ki containing its original position, e.g., iKF ⊂ . 

Replacing F by its new position, F ′ , yields a solution at least as good. Finally, if some 

facility location F of the solution lies exactly on Ki and inside one or more Kl, move it 

along the boundary of Ki until it intersects one of the Kl’s or until a complete rotation is 

made about Ki without encountering another boundary Kl. If a move along Ki meets a Kl, 

replacing F with this intersection point, γ, yields a solution at least as good. If a complete 

rotation about Ki is made without encountering another boundary Kl, then Ki is contained 

in Kl, and replacing F with a vertex γ of object i yields a solution at least as good. 

Assume that all such replacements have been made. Then, the current solution has all 

facility locations in the PIPS and the proof is complete.      
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2.6 Application and results              

 

The EPMC is applied to site emergency warning sirens in Dublin, Ohio (Figure 2.13). 

The city comprises parts of three counties, Franklin, Delaware and Union, with a total 

area of approximately 60 km2 (23 square miles) and approximately 29,000 residents 

(1998). Emergency warning sirens are used to alert the public of an impending danger, 

e.g., tornado, severe thunderstorm, hazardous material spill, a national threat, etc. To site 

warning sires, two factors are considered: one is that there is a nontrivial cost associated 

with purchasing and maintaining a warning siren as noted in Current and O’Kelly (1992) 

and Murray et al. (2007); another is that individuals who fail to hear a warning during an 

emergency period are in danger. The service coverage in this area is provided by omni-

directional sirens that have a maximum effective range of 976 meters. Rated performance 

standards indicate that a siren’s electromagnetic (acoustic) waves propagate in straight 

lines uniformly in all directions, so Euclidean distance travel is appropriate for 

representing service provision. Then our problem becomes EPMC under Euclidean as 

EPMCE. All areas of the Dublin region are viewed as being important to provide service 

to, if possible given budget limitations. Figure 2.14 depicts the region as a “regular” 

tessellation of 255 polygons, where mostly square polygons 500x500 m in size reflect 

potential demand for service. By delineating the city into 256 polygons most with 500m x 

500m, the problem becomes one to site sirens in continuous space to provide service to 

these polygons. Demand is assumed uniformly distributed to avoid altering the 

importance of covering any particular polygon. 
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The analysis is carried out on a Pentium Xeon 3.0 GHz personal computer with 2 GB 

RAM. ArcGIS was utilized for spatial data analysis, manipulation and processing. The 

PIPS approach was structured using ArcObjects, the Visual Basic interface for accessing 

ArcGIS functions, and the associated EPMCE problem was structured using PIPS and the 

MCLP and exported as a text file. This text file was imported into CPLEX 8.1 and 

solved, with solution results exported to ArcGIS for subsequent analysis and display. 

 

 

 

Figure 2.13. Study area of Dublin, Ohio. 

 



 42

 

Figure 2.14. A delineation for the region of interest. 
 
 
 
Application of the PIPS approach to identify sufficient potential facility locations for the 

EPMCE resulted in 944 sites with 622 valid sites inside the region in order to cover the 

associated 255 polygons. Required processing time was 187.95 seconds. If Step 5 of the 

PIPS is not included to reduce the number of identified potential facility locations, some 

6288 sites would be needed with 4,232 valid sites inside the region. Only 6.98 seconds 

would be necessary to identify the 6,288 sites, but there are almost seven times more sites 

that would need to be considered. As these additional sites are dominated, they need not 

be assessed, and if included would likely require significantly more computational effort 

in problem solution as we have encountered instances where 83 times more processing 

was needed. 
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The EPMCE is evaluated for a range of investment options in providing warning siren 

services, varying p from 1 to 30. Solution details and coverage provided for each level of 

investment are summarized in Table 2.1. Table 2.1 shows that siren coverage ranges from 

4.21% when p=1 (one siren sited) to 100% when p=30 (thirty sirens sited). Model 

solution time is minimal, requiring at most 118.44 seconds in the case of p=29. The 

coverage tradeoff is depicted in Figure 2.15, based upon coverage for value of p 

considered in Table 2.1. An interesting tradeoff solution is when only 20 sirens could be 

acquired (p=20), and is shown in Figure 2.16. The model finds that 78.45% of demand is 

suitably covered by this configuration of emergency warning sirens. 
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p Demand coverage (%) Branches Iterations Solution time*

1 4.21  0 393 0.16 
2 8.38  0 450 0.16 
3 12.46  0 486 0.16 
4 16.50  0 633 0.19 
5 20.52  0 603 0.17 
6 24.53  0 686 0.19 
7 28.52  0 685 0.20 
8 32.50  0 677 0.19 
9 36.47  0 817 0.24 
10 40.44  0 745 0.23 
11 44.34  0 852 0.24 
12 48.23  0 883 0.25 
13 52.09  0 791 0.23 
14 55.92  0 866 0.30 
15 59.73  0 887 0.30 
16 63.54  0 959 0.33 
17 67.36  0 975 0.34 
18 71.17  0 1021 0.39 
19 74.90  0 1060 0.39 
20 78.45  2 1279 1.20 
21 81.92  6 1287 2.86 
22 85.25  0 1359 0.81 
23 88.04  96 3549 9.63 
24 90.75  56 3555 10.20 
25 93.04  1505 53716 47.84 
26 95.28  590 27033 27.92 
27 96.92  1018 39457 41.16 
28 98.19  3573 127044 90.95 
29 99.21  4873 192618 118.44 
30 100.00  18 3160 6.99 

 

* Solution time in seconds on Pentium III dual processor 733MHz Windows NT server 
with 1 GB RAM. 

 

Table 2.1. EPMCE solution details. 
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Figure 2.15. Investment tradeoff curve. 

 

 
 
 

Figure 2.16. EPMCE solution (p=20).  
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2.7 Discussion and conclusions 

 

The application results demonstrate that it is possible to solve the EPMC using PIPS 

combined with the MCLP (maximal covering location problem). In particular, identifying 

the PIPS is computationally feasible and the associated MCLP instance is relatively easy 

to solve using commercial optimization software. 

 

The implications are that this continuous space problem, the EPMC, can take advantage 

of geometrical insights to derive a tractable solution approach. Thus, PIPS exploits the 

nature of service coverage to identify suitable potential facility locations.  

 

For the maximal coverage problem, one question then is whether another approach is 

possible. Certainly one can use the MCLP to cover spatial objects, as this is done here. 

However, a discrete set of potential facility sites is needed to apply the MCLP. One 

approach taken in the literature is to generate a uniform pattern of points to represent 

potential facility locations, as done in Current and O’Kelly (1992) for siting warning. 

Consider then allowing sirens to be placed at polygon vertices in Figure 2.14. There are 

186 such vertices in this case. If an associated MCLP is solved, allowing sirens to be 

placed at polygon vertices and coverage provided to polygons, one finds that the range of 

p values to consider actually goes from 1 to 51. Thus, it is not until 51 sirens that all 

demand areas finally are covered. This is an increase of 70% over what the EPMCE 

found to be necessary for complete coverage. It should be no surprise then that achieving 

78% coverage of total demand in this case would require 34 sirens. Not only is this more 
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than what the EPMCE found necessary for complete coverage, but it is 70% more sirens 

than the EPMCE identified to provide this level of service (i.e., p=20 shown in Figure 

2.16). Thus, one cannot expect to reasonably identify sufficient potential facility locations 

when facilities can be sited anywhere in continuous space.  

 

2.8 Summary 

 

The extended planar maximal covering location problem (EPMC) was applied to address 

planning situations where coverage maximization is desired assuming that demand is 

represented as a vector object (point, line or polygon). An approach was proposed to deal 

with continuous space siting, exploiting geometric insights and demand representation. 

The polygon intersection point set (PIPS) was proven to contain an optimal solution to 

the EPMC. Application results demonstrated the computational capabilities for 

addressing important planning problems. Approaching this complex spatial optimization 

problem from a GIScience perspective leads to a tractable solution, highlighting the 

importance of geographical insights. 
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CHAPTER 3 
 
 

MAXIMIZING COVERAGE OF SPATIAL DEMAND FOR 
SERVICE∗ 

 
 
Chapter 2 addressed the continuous coverage optimization problem by introducing a 

finite dominating set (FDS) serving as potential sites on which to locate. The FDS is then 

used in the maximal coverage location problem (MCLP) for facility selection. The MCLP 

was initially designed for covering demand represented as points with no dimension. 

However, when applying the MCLP to spatial objects, there exist significant 

discrepancies between what is modeled and actual geographic coverage. In order to 

accurately reflect the mechanism of maximal coverage for spatial objects (points, lines 

and polygons), in this chapter we propose new models to maximize coverage of spatial 

demand.  

 

3.1 Introduction 

 

Coverage location problems have attracted significant attention in recent years (Schilling 

et al. 1993; Murray et al. 2007). A primary focus has been the maximal coverage location 

problem (MCLP).  Due to limited resources, this problem seeks to locate a fixed number 

                                                 
∗ This chapter represented an expanded and revised version of a paper submitted to Papers in Regional 
Science, co-authored with Dr. Alan T. Murray. 
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of facilities so as to provide service to as much spatial demand as possible. The problem 

was first introduced by Church and ReVelle (1974). Subsequent work has applied (and/or 

extended) the MCLP to a variety of problems, including locating health centers (Bennett 

et al. 1982), emergency service planning (Current and O’Kelly 1992; Eaton et al. 1986), 

selection of mailing lists (Dwyer and Evans 1981), resource conservation (Church et al. 

1996), siting bank branches (Sweeney et al. 1979; Pastor 1994), data management 

(Chung 1986), and air pollution control (Hougland and Stephens 1976) to name a few.  

 

An important challenge in location coverage modeling is how to represent geographic 

space. Traditionally, due to limited geometric and spatial data handling capabilities, a 

demand region has been represented as a collection of points, such as centroids of census 

units (Miller 1996; Church 1999). A coverage goal is then to simultaneously locate 

facilities to serve a set of weighted demand points. This process involves simplifying and 

aggregating a continuous area, such as a city or a town, into discrete points. This 

simplification, and aggregation, could lead to potential measurement and coverage errors 

in location problems, however (Daskin et al. 1989; Current and Schilling 1990; Murray 

and O’Kelly 2002). Murray and O’Kelly (2002) highlighted that point representation of 

regional demand generally results in an over-estimation of the actual coverage provided 

by a configuration of service facilities. 

 

The assumption that space be represented as aggregated points is potentially very 

problematic, which is why research has broadened to include other spatial entities (e.g., 

points, lines and polygons). Consider that a region typically exists as an area with varying 
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geometric shape, instead of a collection of points with no dimension. Given this, areas 

have long been recognized as an important regional representation (see Wesolowsky and 

Love 1971; Drezner and Wesolowsky 1980; Benveniste 1982; Murray et al. 2007). 

Reinforcing this importance is the work of Miller (1996), highlighting the need for 

research into alternative representations of space in location modeling arising from the 

proliferation of geographic information systems (GIS) and associated digital spatial 

information. That is, GIS make spatial information in the form of points, lines, polygons 

and raster cells readily available, so analytical methods must be capable of appropriately 

dealing with alternative representations of space. To this end, more recent research has 

focused on complete coverage of a region, and explicit treatment of areal units in 

particular (e.g., Murray 2005; Murray et al. 2007). 

 

Given the realities of limited budgets in the provision of public or private services, this 

chapter examines maximal coverage of areal units of demand. The aim is to investigate 

approaches for maximal service coverage of a region when demand is represented as an 

areal unit (or polygon). In the next section, representation issues of regional demand are 

reviewed. This is followed by a discussion of existing models applicable for maximizing 

regional coverage. A new approach is then introduced, taking into account areal unit 

representation. Next, models are tested in the context of warning siren siting. Finally, a 

discussion and conclusions are provided.  
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3.2 Background 

 

In coverage modeling, continuously distributed demand in a region has historically been 

represented as a collection of points (Murray and O’Kelly 2002; Murray et al. 2007). 

These points can be centroids of areal units, such as districts, census units, sectors, etc., 

or towns or cities at a broader regional scale. They can also be points regularly spaced in 

a region (Current and Schilling 1990; Murray and O’Kelly 2002). Point representation 

has long been used due to the fact that simplification makes data handling and solution 

procedures tractable in many situations (Miller 1996; Church 2002).  

 

Point representation can lead to inaccuracies or errors, however. Using points to represent 

a region or sub-area can be viewed as an aggregation of an infinite number of locations 

into a finite number of demand points (Francis and Lowe 1992). Aggregation can 

introduce a number of potential errors, including inaccurate distance measurement and 

uncertainty in assessing coverage. As noted by Current and Schilling (1990), aggregation 

error in coverage models could be dramatic. An area partially covered by a facility can be 

misclassified as completely covered or not covered at all based on the distance calculated 

using aggregated locations. Daskin et al. (1989) examined aggregation effects 

specifically for maximum covering models and found that with an increase in aggregation 

level, optimality and location errors increase accordingly. Murray and O’Kelly (2002) 

summarized that these inaccuracies or errors are the result of representing geographic 

space inappropriately through aggregation, when such points are an approximation of 

continuously distributed demand. 



 52

 

The fact is that demand is not actually point based with no dimension. Rather, demand is 

often continuously distributed in the form of an areal unit with a specific geometric shape 

(Murray 2005). Recognizing this, some studies have focused on using areas for regional 

demand representation. Wesolowsky and Love (1971) explicitly incorporated rectangular 

areas as demands in a Weber location problem under a rectilinear distance measure. 

Other shapes and distance metrics were explored for variants of the Weber problem (see 

Love 1972; Aly and Marucheck 1982; Drezner and Weslowsky 1980; Carrizosa et al 

1998; Fekete et al. 2005, among others). For coverage problems, Benveniste (1982) 

discussed the evaluation of coverage for located facilities and suggested that analysis 

results would depend heavily on how a region is partitioned based on existing models. 

Current and Schilling (1990) and Daskin et al. (1989) discussed the issue of spatial 

representation in covering models. However, demand was evaluated based on aggregated 

points. Recently, Murray (2005) developed a new model specifically addressing set 

covering problems where demand is represented as spatial objects, including points, lines 

or areas.  

 

While issues of aggregation and scale for point representations have been examined in 

the context of maximal coverage, there has been no investigation of whether spatial 

objects present challenges to modeling efforts. To address this, we detail new approaches 

for maximal coverage modeling when demand is represented as spatial units with non-

zero dimension.   
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3.3 Model development 

 

As with any intended planning or analysis, there are often alternative ways to formalize 

the problem. A direct approach for modeling regional coverage maximization in the 

siting of service facilities is to use the MCLP (Church and ReVelle 1974) as discussed in 

Chapter 2. While points are generally relied upon in the application of the MCLP, GIS 

enables lines or polygons to be evaluated (see Murray 2005). Here we focus on the 

analysis of polygons (areal units), though more general application to spatial objects is 

discussed later in the chapter. 

 

We now detail the MCLP, but first consider the following notation: 

 

   i = index for demand objects (entire set denoted as I) 

   j = index for potential facility sites (entire set denoted as J) 

   S = maximum acceptable service distance (or time) 

  ijd = distance from demand i to candidate facility location j 

   Ni = { j | dij ≤ S}, i.e. set of facility sites capable of serving demand i 

   wi = service demand at i 

p = number of facilities to be located 

   
1     if site  is selected
0    otherwise              j

j
x

⎧
= ⎨
⎩

 

 

   
1    if demand  is covered (or served)
0    otherwise                     i

i
y

⎧
= ⎨
⎩
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The maximal covering location problem (MCLP) is formulated as follows: 
 
       i i

i I
Maximize w y

∈
∑  (3.1) 

:subject to  

      
i

j i
j N

x y i
∈

≥ ∀∑   (3.2) 

      j
j J

x p
∈

=∑   (3.3) 

      {0,1}jx j∈ ∀   (3.4) 

      {0,1}iy i∈ ∀   (3.5) 

 

The objective, (3.1), is to maximize the amount of weighted demand covered. Constraints 

(3.2) track whether demand i is covered by at least one facility located capable of 

providing service. Constraint (3.3) specifies the number of facilities to be located. 

Constraints (3.4) and (3.5) impose integrality conditions on decision variables.  

 

In the MCLP, demand i is either covered or not covered, as structured using yi. This is 

conceptually appropriate when demand is represented a point.1  However, in the case 

where demand is represented as an area (or polygon), if only part of an area is covered 

(within the service standard S of the closest facility) the area is not recognized as partially 

covered in the model. This becomes an important issue in two ways. First, service 

coverage is underestimated, as shown in Murray (2005) and Murray et al. (2007) for set 

covering. Second, complete coverage provided by multiple facilities cannot be accounted 

                                                 
1 Murray & O’Kelly (2002) show that coverage models (set covering) using point based abstractions of 
continuous demand generally are overly optimistic in service provided.  
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for, an issue highlighted by Murray (2005). Previous research, therefore, suggests that 

optimizing coverage using the MCLP will be challenging, as there are problems in 

accurately portraying demand for service due to spatial representation.  

 

The PMP aims to locate a certain number of facilities so that total demand-weighted 

travel distance from demand to the closest facility is minimized. The PMP was 

introduced by Hakimi (1964, 1965) and mathematically specified in ReVelle and Swain 

(1970). Consider the following additional notation:  

 

1 if demand  is assigned to facility located at point 
0 otherwise                                                              ij

i j
λ

⎧
= ⎨
⎩

 

 

The p-median problem (PMP) is formulated as: 

 
i ij ij

i I j J
Minimize w d λ

∈ ∈
∑∑  (3.6) 

 
:subject to  

 
            ,ij jx i jλ ≤ ∀  (3.7) 
 
           1ij

j J
iλ

∈

= ∀∑  (3.8)  

                     
           j

j J
x p

∈

=∑  (3.9) 

 
           {0,1}jx j∈ ∀  (3.10) 
 
           {0,1} ,ij i jλ ∈ ∀  (3.11)  
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Objective (3.6) aims to minimize total demand-weighted distance. Constraints (3.7) 

require that demand can only be assigned to a sited facility. Constraints (3.8) specify that 

such assignment for each demand is at most once. Constraint (3.9) dictates the number of 

facilities to be sited. Constraints (3.10) and (3.11) impose binary integrity on decision 

variables. 

 

The PMP establishes the assignment relationship of each demand to its corresponding 

closest facility. In fact, the MCLP and PMP are theoretically linked in that ijd in the PMP 

can be modified to reflect binary service coverage (see Church and Weaver 1986; 

ReVelle 1986; Berman and Krass 2002). Thus, one could use either the MCLP or the 

PMP to achieve coverage modeling goals. However, the PMP would still be sensitive to 

spatial representation in the same manner as MCLP as discussed above. Thus, neither the 

MCLP nor the PMP adequately model actual coverage of spatial objects. 

 

In the PMP, the binary variable ijλ  can be relaxed to incorporate fractional assignment. 

Then, a modified PMP adopting this relaxation, taking into account partial area coverage, 

is an alternative to alleviate representational issues arising from the use of the MCLP or 

PMP due to their “all” or “nothing” assessment. The underlying idea is to track and 

optimize the amount of coverage a demand object can receive from a potential facility. 

PMP variants have been widely applied. Most related to this chapter and the concept of 

partial coverage is the service quality decay approaches of Church and Roberts (1983), 

Farhan and Murray (2006) and Berman and Krass (2002). Consider the following 

additional notation: 
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ijc = fraction of coverage demand object i receives from facility j  

iΩ = { j | ijc > 0}, i.e. the set of facilities that can fully or partially cover demand object i  

1 if demand  is fully or partially served by a facility located at 
0 otherwise                                                                                ij

i j
y

⎧
= ⎨
⎩

 

 

With this notation, a straightforward modified version of the PMP can be introduced. 

This modification makes use of actual coverage provided by a facility, ijc . 

 

P-Median Problem – Single-facility Coverage (PMP-SC) 

 

i

i ij ij
i I j

Maximize w c y
∈ ∈Ω
∑∑  (3.12) 

:subject to  

            ,ij j iy x i j≤ ∀ ∈Ω  (3.13) 

           1
i

ij
j

y i
∈Ω

≤ ∀∑  (3.14)  

           j
j J

x p
∈

=∑  (3.15) 

           {0,1}jx j∈ ∀  (3.16)  

           {0,1} ,ij iy i j∈ ∀ ∈Ω  (3.17)  
 

The objective, (3.12), aims to maximize overall coverage. Demand area i cannot receive 

coverage from facility j unless facility j is selected in Constraints (3.13). Constraint (3.14) 
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specifies that at most one facility can be considered as providing coverage for each 

demand object. Accordingly, if there are multiple facilities within the service standard S 

from a demand, Constraints (3.14) along with the objective (3.12) dictate that only the 

greatest amount of coverage provided by one of the sites will be counted. Constraint 

(3.15) establishes that p facilities be sited. Constraints (3.16) and (3.17) are integrality 

conditions for decision variables.  

 

Compared to the MCLP, the PMP-SC improves coverage evaluation by introducing 

partial coverage. However, close inspection reveals that the PMP-SC under-estimates 

actual coverage in the case where an area is covered by two or more sited facilities. Such 

a situation is depicted in Figure 3.1, where there is one shown areal unit and two sited 

facilities. Here Facility 1 covers 66.2% of this areal unit and Facility 2 covers 39.1% of 

the areal unit. Jointly, some 94.4% of the areal unit is covered. Since neither of the two 

facilities provides complete coverage of the areal unit, the MCLP would not account for 

any coverage in the model solution because the unit is not completely covered and there 

is no mechanism to consider fractional coverage. As a result, coverage is always under-

estimated. The implications are that more facilities would likely be required to provide a 

desired level of coverage using the MCLP due to this under-estimation of coverage. 

Alternatively, if the PMP-SC is relied upon, only coverage provided by Facility 1 would 

be accounted for in the model as this is the greater percentage covered (as opposed to 

31.9% by Facility 2). As with the MCLP, the PMP-SC also suffers from actual coverage 

under-estimation when areal units are served by multiple facilities. While the PMP-SC is 

an improvement over the MCLP in this regard, a representational issue remains. Such a 
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representational issue underlies the modifiable areal unit problem (MAUP) concerns 

raised in Murray and O’Kelly (2002), Murray (2005) and Murray et al. (2007) for set 

coverage modeling. 

 

 

 
Figure 3.1 Coverage assessment. 

 
 

Driven by the need to account for the shortcomings of the MCLP and PMP-SC, a more 

general structure is proposed for the coverage of areal units (or spatial objects). The basic 

idea is that if multiple sited facilities can provide coverage to a specific demand area 

simultaneously, the overall joint coverage should be accounted for, if representational 

issues are to be addressed. We assume here that a maximum of k (k ≥ 1) facilities can 

simultaneously provide coverage to a demand area. The single coverage and joint 

coverage of two or more (up to k) facilities could then be enumerated a priori, provided 

that potential facility sites are known in advance. This information on joint coverage 

could then be incorporated in a model for coverage optimization. Consider the following 

additional notation: 
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{ }1, 2,...,l L k∈ = , index of the level of multi-facility coverage  

ilh : number of configurations where there are l facilities simultaneously providing joint 

coverage to demand i 

m { }1,2,...,il ilM h∈ = , index of configurations of l-facility coverage  

ilmΠ = set of facilities in the mth configuration of l-facility coverage  

îlmc = fraction of coverage provided to demand i by facility configuration m at level l 

1 if the demand  is either partially or fully covered by configuration  at level   
0 otherwise                                                                                             ilm

i m l
z

⎧
= ⎨
⎩

 

 

Here, l can equal one to k, and dictates the number of facilities jointly providing 

simultaneous coverage to a demand i. The potential combinations of such l facilities are 

enumerated in advance. There are ilh  such configurations for demand i. ilmΠ , then, is the 

set of facilities, l in total, jointly covering demand i. Incorporating such an extension into 

the PMP structure can be accomplished as follows. 

 

P-Median Problem – Multi-facility Coverage (PMP-MC)  

ˆ
il

i ilm ilm
i I l L m M

Maximize w c z
∈ ∈ ∈
∑∑ ∑  (3.18) 

subject to  
 
              , , ,ilm j il ilmz x i l m M j≤ ∀ ∀ ∀ ∈ ∀ ∈Π  (3.19) 

 
1

il

ilm
l L m M

z i
∈ ∈

≤ ∀∑ ∑  (3.20) 
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j
j J

x p
∈

=∑  (3.21) 

{0,1}jx j J= ∀ ∈  (3.22) 

{0,1} , ,ilm ilz i l m M= ∀ ∀ ∀ ∈  (3.23) 

    
The objective, (3.18), maximizes overall coverage. Constraints (3.19) prevent assignment 

(or coverage) of a demand area by a group of facilities unless the associated facilities are 

sited. Constraints (3.20) specify that a demand area is covered by at most one group of 

facilities among all the coverage configurations. Constraint (3.21) specifies the number of 

facilities to be sited. Constraints (3.22) and (3.23) impose integrality on decision 

variables.  

 

The PMP-MC is an extension of the PMP-SC (and the PMP) that explicitly tracks 

combinations of afforded coverage. By taking into account coverage provided by 

multiple facilities, the PMP-MC reflects the actual mechanism of coverage for areal units. 

For example, if k = 2 in the PMP-MC for the coverage shown in Figure 3.1, there exists 

at most two facilities that can provide coverage to the one demand area. In total, there are 

two possible configurations for single level coverage and one configuration for joint 

coverage by these two facilities. The following constraints would therefore be structured 

in the associated PMP-MC: 

 

111 1

112 2

z x
z x

≤ ⎫
⎬≤ ⎭

two single coverage 
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121 1

121 2

z x
z x

≤ ⎫
⎬≤ ⎭

 one joint coverage  

 
111 112 121 1z z z+ + ≤  

 

In the objective, there would be the individual coverage of 66.2% ( 111ĉ = 0.662) and 

39.1% ( 112ĉ = 0.391) of the demand unit by each individual facility, 1 and 2 respectively. 

For joint coverage of the demand unit, 94.4% is covered ( 121ĉ = 0.944). Thus the objective 

would be structured as (assuming 1w = 1): 

0.662 111z +0.391 112z +0.944 121z  

The objective includes the joint combination of coverage, something not accounted for in 

the PMP-SC. It should be noted that for k = 1, the PMP-MC is equivalent to the PMP-SC. 

This means that the PMP-SC is a special case of PMP-MC. As k increases, the number of 

combinations increases as do the corresponding decision variables. This would no doubt 

add to model complexity in data processing and problem solution. Suppose there are n 

demand objects and on average there are ml combinations for an l-level coverage. 

Obviously ml increases with l. The PMP-SC would have (m1 -1)n more decision variables 

and m1 n more constraints than the MCLP. The PMP-MC, for each additional 

combination level l, requires ml n more decision variables and ml n l constraints.  
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3.4 Application 

3.4.1 Siren coverage in Dublin, Ohio 

 

The comparative analysis for the reviewed maximal covering modeling approaches 

examines warning siren siting in Dublin, Ohio (Figure 2.12). Warning sirens are used to 

alert the public of an impending danger, such as a tornado, severe thunderstorm, 

hazardous material spill or a national threat. Given that a warning siren is a significant 

investment, models are essential for identifying optimal siren placement with respect to 

maximal coverage and efficiency. Consistent with previous research omnidirectional 

sirens (Whelen WPS-2750) with a maximum effective service range of 976m are 

considered. 

 

The demand region is partitioned into 256 polygons, most 500m x 500m in size as is 

done in Chapter 2. The problem is to provide coverage to as much demand as possible, 

given p sirens to be located. For strategic purposes, sirens may be located anywhere in 

the region. This infinite set of potential siren locations is then reduced using the polygon 

intersection point set (PIPS) derived in Chapter 2. It has been shown that PIPS provide at 

least one optimal solution if demand objects are to be completely covered. There are 622 

reduced valid PIPS locations, representing potential facility sites to be evaluated.  

 

The number of sirens, p, evaluated ranges from 1 to 25 (except for the MCLP, which 

goes up to 29). For the PMP-MC, it is assumed that k = 2. The VB ArcObjects interface 

in ArcGIS is used to structure each optimization model. The mixed-integer problems are 
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solved using a commercial optimization package, CPLEX employing a branch-and-bound 

technique. Results for the three models are shown in Tables 3.1-3.3. Optimal solutions 

have been reached except for PMP-MC when p = 22. “Model coverage” is the coverage 

percentage of the entire region derived from the model objective function.  “Actual 

coverage” is the coverage percentage achieved by evaluating the facility sites derived 

from the model solution in ArcGIS. “Error” is defined as “Actual coverage” less “Model 

coverage”, and quantifies the discrepancy between the model objective and the actual 

coverage obtained when evaluating the identified siren locations (model solution). This 

may be interpreted as an indicator of model correctness. A positive error indicates that 

the model solution provides more actual coverage, and a negative value would 

correspond to less coverage than modeled. 
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p 
Model coverage 

(%) 
Actual coverage 

(%) Error (%) 
Solution time 

(s) 
1 4.17 5.78 1.60 0.16 
2 8.32 12.19 3.87 0.30 
3 12.34 18.28 5.95 0.45 
4 16.35 23.68 7.33 0.59 
5 20.34 29.87 9.53 0.75 
6 24.34 35.00 10.66 0.91 
7 28.32 39.37 11.05 1.05 
8 32.29 45.21 12.92 1.19 
9 36.26 50.95 14.69 1.34 
10 40.15 55.46 15.31 1.48 
11 44.01 59.87 15.87 1.64 
12 47.84 63.23 15.40 1.78 
13 51.65 68.10 16.45 1.92 
14 55.47 72.28 16.82 2.06 
15 59.28 74.92 15.64 2.20 
16 63.10 76.91 13.82 2.36 
17 66.89 79.02 12.12 2.52 
18 70.69 84.26 13.58 2.67 
19 74.33 88.51 14.18 2.81 
20 77.66 88.90 11.24 2.97 
21 81.05 90.86 9.81 3.13 
22 83.84 91.38 7.54 3.27 
23 86.55 94.03 7.47 3.41 
24 88.91 95.12 6.21 3.56 
25 91.07 95.83 4.76 3.72 
26 92.98 96.81 3.83 4.53 
27 94.07 97.05 2.97 12.00 
28 94.94 97.40 2.46 34.95 
29 95.63 98.87 3.24 13.00 

 

Table 3.1. Warning siren evaluation using MCLP. 
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p 
Model coverage 

(%) 
Actual coverage 

(%) Error (%) 
Solution time (s)

1 6.52 6.52 0.00 9.34 
2 13.05 13.05 0.00 20.22 
3 19.57 19.57 0.00 33.38 
4 26.09 26.09 0.00 51.89 
5 32.61 32.61 0.00 69.56 
6 39.03 39.07 0.04 89.78 
7 45.38 45.42 0.04 110.45 
8 51.37 51.42 0.04 134.23 
9 56.89 57.34 0.45 165.55 
10 62.01 63.03 1.02 767.56 
11 66.98 68.15 1.17 1444.52 
12 71.85 73.20 1.35 1482.47 
13 76.25 77.77 1.53 1515.06 
14 80.16 82.02 1.86 1541.91 
15 83.13 85.39 2.26 1573.59 
16 85.83 88.61 2.78 1602.84 
17 88.33 91.32 2.99 55.72 
18 90.48 93.35 2.87 111.41 
19 92.43 94.93 2.49 139.42 
20 93.70 96.08 2.38 205.61 
21 94.96 97.24 2.27 692.98 
22 96.26 98.15 1.89 1196.17 
23 97.11 98.62 1.51 1410.25 
24 97.88 98.95 1.07 1730.30 
25 98.43 99.07 0.64 1861.66 

 

Table 3.2. Warning siren evaluation using PMP-SC. 
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p 
Model coverage 

(%) 
Actual coverage 

(%) Error (%) 
Solution time 

(s) 
1 6.52 6.52 0.00 35.45 
2 13.05 13.05 0.00 35.45 
3 19.57 19.57 0.00 52.13 
4 26.09 26.09 0.00 48.38 
5 32.62 32.62 0.00 54.56 
6 39.14 39.14 0.00 58.55 
7 45.55 45.55 0.00 75.81 
8 51.81 51.81 0.00 87.41 
9 57.84 57.86 0.01 119.78 
10 63.55 63.56 0.01 344.08 
11 68.91 68.95 0.04 852.39 
12 74.21 74.23 0.02 899.56 
13 79.21 79.28 0.06 390.73 
14 83.56 83.95 0.39 352.33 
15 86.59 86.63 0.04 9100.11 
16 89.51 89.66 0.15 4610.328 
17 92.43 92.69 0.27 5264.421 
18 94.33 94.68 0.35 8525.64 
19 95.79 95.98 0.19 28563.52 
20 97.04 97.25 0.21 38039.48 
21 98.10 98.41 0.31 43777.22 
22* 98.67 98.84 0.17 33159.38 
23 99.27 99.37 0.10 11429.38 
24 99.64 99.69 0.05 6492.69 
25 99.89 99.93 0.03 3006.69 

*“Out of memory” was encountered and a suboptimal solution was reported with maximum 
optimality gap of 0.22%. 

 

Table 3.3. Warning siren evaluation using PMP-MC. 
 
 
 

Coverage errors are also displayed in Figure 3.2. All errors are non-negative for the three 

models. This is due to the fact that the models never over-estimate coverage. The MCLP 

simply accounts for complete coverage provided by a facility, ignoring any partial 

coverage. The PMP-SC only accounts for the greatest coverage provided by a single sited 

facility. The PMP-MC accounts for coverage provided by up to k (2 in this case) selected 
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facilities, if joint coverage exists. In Figure 3.2, the MCLP has the largest errors and the 

PMP-MC has the smallest, as expected. For the MCLP, errors average 9.87% and the 

highest is 16.82% (p = 14), which implies that substantially more facilities (or 

investment) are required by the MCLP than actually needed for any specified level of 

coverage. For the PMP-SC, coverage errors average 1.23%, with the highest 2.99%. As 

expected, for small p, the selected siren configurations are spatially dispersed and no 

coverage errors exist. In this situation the coverage for each demand object is correctly 

accounted for in the objective function because each demand is only served by one sited 

warning siren. When the service areas of the selected facilities start to overlap, however, 

coverage provided by multiple facilities is under-counted in the PMP-SC. Thus, errors 

appear for the PMP-SC for p > 5. For the PMP-MC, coverage errors are reduced 

significantly to a maximum of 0.39% (p = 14). Comparatively, by introducing a higher 

level coverage, the errors in the PMP-SC are reduced from an average of 1.23% to 0.09% 

across the examined ranges.  
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Figure 3.2. Coverage errors for the three models. 
 
 
 

Comparing the coverage achieved by the three models, for a given p, the PMP-MC 

always identifies a configuration giving the greatest coverage and the MCLP the least. 

This means that obtaining a certain level of coverage requires the MCLP to need more 

sirens (or monetary investment), while the PMP-MC the least investment. For example, if 

95% coverage is necessary for the region, the MCLP finds that twenty nine sirens (p = 

29) are required, or twenty four (p = 24) if actual coverage is considered. The PMP-SC 

identifies twenty two sirens as necessary, or twenty considering actual coverage. On the 

other hand, only nineteen sirens (p = 19) would be needed to achieve the required level of 

coverage using the PMP-MC, irrespective of whether modeled or actual coverage is 

considered. The three configurations achieving 95% coverage (actual) are shown in 

Figure 3.3. The discrepancy between the number of sirens required by the three models to 
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achieve this service level illustrates the representation issues inherent to both MCLP and 

PMP-SC. Considering the non-trivial investment in facilities (sirens in this case), the 

budget implications are potentially significant (24 in the case of the MCLP, 20 in the case 

of the PMP-SC and 19 in the case of the PMP-MC).  
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(a)  
 

 
Figure 3.3. Siren configurations covering at least 95% of the region for: (a) MCLP (p=24, 

actual coverage), (b) PMP-SC (p = 20, actual coverage), and (c) PMP-MC (p = 19). 
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Figure 3.3 continued 

 

(b) 
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Figure 3.3 continued 

 

(c)  
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Computationally, the PMP-MC requires more effort, both in pre-processing of data and 

problem solution using CPLEX. The results reported here using CPLEX required an 

average of 3.88 seconds to solve the MCLP, about 12 minutes to solve the PMP-SC and 

2.17 hours to solve the PMP-MC (k=2). Of course these times do not include data pre-

processing. It is important to note that for the PMP-SC and the PMP-MC when p is large, 

substantive computational time has been invested. For instance when p=22, twenty 

minutes are required for the PMP-SC, and over nine hours are needed just to find an 

approximate solution for the PMP-MC (potentially suboptimal). 

 
 

3.4.2 Siren coverage in Franklin, Ohio 

 

The siren coverage analysis was also carried out for Franklin County, Ohio. Currently, 

there are 200 existing sirens covering 58.6% area of the region as shown in Figure 3.4. 

The objective is to evaluate coverage provided by additional sirens. The remaining 

uncovered area is derived using GIS and displayed in Figure 3.5.  

 

The uncovered area is delineated into 1506 polygons, most 800m x 800 m in size.  2156 

regularly distributed points are chosen as potential siren sites. The number of sirens to be 

sited ranges from 1 to 100. The three models (MCLP, PMP-SC, PMP-MC (k =2)) are 

applied to solve the coverage problems. Note that the sirens in Franklin County differ 

from those in Dublin, having a service standard of 1585 m.  
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Figure 3.6 provides the derived overall coverage with additional sirens located. By 

considering the partial coverage and joint coverage in the PMP-MC, more coverage can 

be achieved than if the MCLP or the PMP-SC are used. For instance, with an additional 

86 sirens, 77.33% or 92.59% of the region is covered for MCLP and PMP-SC, 

respectively. However, an overall coverage of 93.14% can be obtained if the PMP-MC (k 

= 2) is used. 

 

 

 

Figure 3.4. Existing warning siren coverage in Franklin Co., Ohio. 
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Figure 3.5. Uncovered area in Franklin Co. 
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Figure 3.6. Additional warning siren coverage. 
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Coverage errors are shown in Figure 3.7. Again, substantial errors (an average of 

71.05%) result when the MCLP is used due to its conservative modeling characteristic. In 

contrast, introducing partial coverage in the PMP-SC dramatically reduces errors, 

limiting them to under 2%.  For PMP-MC (k=2), the maximum error decreases to 0.03%. 

In particular, coverage errors for p=1 to 91 are 0 and very small for p > 92. This indicates 

that for the current delineation of the region and the potential sites to be located, k=2 is 

effective.  
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Figure 3.7. Coverage errors for the three models (Franklin Co.). 

 
 
 

Examining the differences between results in another way, achieving 95% coverage in 

the region would require 101 sirens using the PMP-SC but just 96 sirens using the PMP-
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MC (k=2). Using the MCLP finds that over 120 warning sirens are required, many more 

than necessary.  Again, for the MCLP and the PMP-SC, failing to accurately model the 

coverage between facilities and demand objects results in unnecessary investment. The 

optimal configuration of 96 sirens uing the PMP-MC (k=2) is shown in Figure 3.8.  

 

 

 
Figure 3.8. Siren configuration covering at least 95% of Franklin Co. 

 
 
 

Computationally, an average of 8 seconds was needed to solve the MCLP, 12 minutes to 

solve the PMP-SC, and 20 minutes to solve the PMP-MC (k=2). Although there are 1506 

demand objects and 2156 potential sites for Franklin County, as opposed to 250 demand 
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objects and 622 potential sites for Dublin, less computational effort was required. This is 

due to the fact that for Franklin County, the uncovered region is scattered, dividing the 

region into several disconnected smaller regions. This results in fewer joint coverage 

combinations for the PMP-MC. In fact, for the PMP-MC (k=2) there are 111,560 

constraints for Franklin County, but 258,714 constraints for Dublin, more than twice that 

of Franklin County. 

 

3.5 Discussion and conclusions 

 

The application results demonstrated that consideration of representation issues is 

important for achieving efficiencies in coverage maximization.  Introducing partial 

coverage at multiple levels for areal units in the PMP-MC enables one to better model the 

problem. Although demand focused on areas (or polygons), the PMP-MC can also be 

applied to any type of object, including points, lines, curves, etc. GIS enables such spatial 

objects to be considered and evaluated in the context of coverage. 

 

Theoretically, by incorporating sufficient potential multiple facilities to provide joint 

coverage, the PMP-MC is free of the modifiable areal unit problem (MAUP) and is, 

therefore, frame independent. For maximal coverage, it is desirable for facilities to be 

dispersed spatially as opposed to clustering together. Thus, it is less likely that a very 

high level of joint coverage is ever necessary. Empirically, the reported findings support 

this, as even using k = 2 resulted in very small coverage errors (at most 0.39% for the 
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Dublin application and 0.03% for the Franklin County application). Further, 

computational experience with alternative spatial representations supports this as well.  

 

3.6. Summary 

 

This chapter discussed the problem of maximizing coverage when regional demand is 

represented as areal objects. We introduced general model formulations to account for 

fractional coverage of objects. The application results demonstrated that incorporating 

coverage combinations effectively eliminates representation errors, making the modeling 

effort more reliable. Although regular circles were adopted for facility service due to the 

nature of siren performance and that most demand units are regular polygons, the PMP-

MC is not limited to regularly shaped objects. For any regular or irregular geometric 

shape corresponding to service coverage or demand, such spatial objects can readily be 

evaluated within GIS, enabling an associated PMP-MC to be structured for subsequent 

analysis. Whether excessively coarse demand units combined with limited coverage 

parameters are a problem remains an open question. Further, computational issues are 

clearly an avenue for further exploration. As shown for the applications, incorporating 

joint coverage in the PMP-MC required substantial additional computational effort to 

obtain optimal solutions for large p values. The next chapter will address this 

computational issue by developing a heuristic that identifies solutions of high quality in a 

reasonable time.   
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CHAPTER 4 
 
 

AN EFFICIENT GENETIC ALGORITHM TO MAXIMIZE 
REGIONAL SERVICE COVERAGE  

 
 

Chapter 3 introduced a new model that accurately reflects the mechanism of maximal 

coverage for spatial objects by overcoming the discrepancies between what is modeled 

and actual geographic coverage. The model was solved using commercial optimization 

software, CPLEX, incorporating a branch and bound technique. Given that the solution 

time required was considerable, especially for large p, and that CPLEX is expensive, an 

alternative optimization technique is appealing. In this chapter, we propose an efficient 

evolutionary algorithm to solve the new maximal coverage model, the p-median problem 

– multi-facility coverage (PMP-MC), facilitating the applicability of the model to assist 

planning and decision making processes.  

 

4.1 Introduction 

 

Coverage in location modeling refers to customers receiving suitable service from one or 

more facilities (Daskin 1995). Coverage related service planning has been of interest 

since the 1970’s and has been widely applied, including pizza delivery, bus stop design 

(Gleason 1975), emergency facility siting (Toregas and ReVelle 1972; Current and 

O’Kelly 1992), wireless communication planning (Murray and O’Kelly 2002; Murray et 
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al. 2007), and trim placement in the apparel industry (Grinde and Daniels 1999), among 

others. Often times one is faced with a situation where not enough resources are available 

to provide complete regional coverage. This gives rise to an important type of coverage 

problem known as maximal covering. This problem aims to find a solution for placement 

of a limited number of facilities that can serve the greatest demand possible.  

 

Church and ReVelle (1974) first formulated the maximal coverage location problem 

(MCLP). This model is a combinatorial optimization problem that is known to be is NP-

hard1 (Megiddo et al. 1983), meaning that it is computationally difficult to solve, 

particularly for large sized problems. As a result, heuristic procedures can be useful 

and/or essential. Although, heuristics do not guarantee a global optimum, if well 

structured, they are generally able to provide solutions of acceptable quality in a 

reasonable solution time.  

 

A literature survey indicates that a few studies have been focused on developing heuristic 

approaches for the MCLP. The earliest was greedy adding and greedy adding with 

substitution heuristic procedures introduced by Church and ReVelle (1974). In these 

methods facilities are iteratively added to a solution in a greedy manner. To improve the 

simple greedy selection, Resende (1998) used a greedy randomized adaptive search 

procedure (GRASP) where the greedy search includes a parameterized randomization 

process.  Adenso-Diaz and Fodriduez (1997) also applied a simplified tabu search for the 

MCLP. Lagrangean relaxation has also been used to solve the MCLP (see Weaver and 

Church 1984; Pirkul and Schilling 1989; Galvao and ReVelle 1996) and more recently, 
                                                 
1 An NP-hard problem is a problem that no algorithm has been discovered to solve in polynomial time. 
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Karasakal and Karasakal (2004) presented a Lagrangean relaxation approach for a 

maximal coverage problem where service quality decays with distance. Genetic 

algorithms have also attracted attentions in recent years for solving MCLP (see Jaramillo 

et al. 2002). Jia et al. (2007) detailed a genetic algorithm, a location-allocation heuristic 

and a Lagrangean relaxation as heuristic approaches to solve the MCLP.  

 

The heuristics mentioned above have been used to solve the MCLP, or a simple variant of 

it. However, for the PMP-MC introduced in Chapter 3, demand is represented as non-

point objects and partial and/or joint coverage is considered instead of the “all” or 

“nothing” criteria used in the MCLP. This makes the PMP-MC more difficult to solve 

than the MCLP as an optimization model, because the specific assignment of coverage 

must be tracked. This chapter focuses on developing a new efficient and effective genetic 

algorithm (GA) for the PMP-MC. In particular, a new crossover operator based on the 

characteristic of maximal covering is introduced. The new operator accelerates the 

convergence of the GA compared to traditional operators. This algorithm can also be 

tailored to other variants of the maximal coverage problem or the p-median problem. 

 

The chapter is organized as follows. First, the formal specification of the PMP-MC is 

presented. Then, related work on genetic algorithms is reviewed, followed by the 

proposed heuristic. Application results are then given. The chapter ends with discussion 

and summary comments. 
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4.2 Coverage model 

 

Introduced in Chapter 3 was the p-Median problem – multi-facility coverage (PMP-MC) 

to address coverage optimization modeling so as to reduce/eliminate modifiable areal unit 

problem (MAUP) issues. The PMP-MC is an extension of the p-median problem (PMP), 

and therefore related to the MCLP. In contrary to the “all” or “nothing” criterion 

structured using 0’s and 1’s in the MCLP, partial coverage and joint coverage provided 

by multiple facilities are taken into count in the PMP-MC.  As noted in Chapter 3, PMP-

MC is a general formulation, having as special cases the PMP, the MCLP and the PMP-

SC. Considering the following notation:  

 

i = index for demand objects (entire set denoted as I) 

j = index for potential facility sites (entire set denoted as J) 

S = maximum acceptable service distance (or time) 

wi = service demand at i 

p = number of facilities to be located   

{ }1, 2,...,l L k∈ = , index of the level of multi-facility coverage  

ilh : number of configurations where there are l facilities simultaneously providing joint 

coverage to demand i 

m { }1,2,...,il ilM h∈ = , index of configurations of l-facility coverage  

ilmΠ = set of facilities in the mth configuration of l-facility coverage  

îlmc = fraction of coverage provided to demand i by facility configuration m at level l  



 85

1     if site  is selected
0    otherwise              j

j
x

⎧
= ⎨
⎩

 

1 if the demand  is either partially or fully covered by configuration  at level   
0 otherwise                                                                                             ilm

i m l
z

⎧
= ⎨
⎩

 

 

As noted previously, l can equal one to k, and dictates the number of facilities jointly 

providing simultaneous coverage to a demand i. The potential combinations of such l 

facilities are enumerated in advance. There are ilh  such configurations for demand i. 

ilmΠ , then, is the set of facilities, l in total, jointly covering demand i. 

 

The PMP-MC is formulated as follows: 

 

ˆ
il

i ilm ilm
i I l L m M

Maximize w c z
∈ ∈ ∈
∑∑ ∑  (4.1) 

subject to  
 
              , , ,ilm j il ilmz x i l m M j≤ ∀ ∀ ∀ ∈ ∀ ∈Π  (4.2) 

 
1

il

ilm
l L m M

z i
∈ ∈

≤ ∀∑ ∑  (4.3) 

j
j J

x p
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{0,1}jx j J= ∀ ∈  (4.5) 

{0,1} , ,ilm ilz i l m M= ∀ ∀ ∀ ∈  (4.6) 
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The objective, (4.1), maximizes overall coverage. Constraints (4.2) prevent assignment 

(or coverage) of a demand object by a group of facilities unless the associated facilities 

are sited. Constraints (4.3) specify that a demand area is covered by at most one group of 

facilities among all the coverage configurations. Constraint (4.4) specifies the number of 

facilities to be sited. Constraints (4.5) and (4.6) impose integrality on decision variables.  

 

The PMP-MC can be constructed with the strict situation modeled in the MCLP, where 

coverage of a demand unit is either all or nothing by one or more facilities. The PMP-MC 

relaxes the interpretation of coverage to be partial or complete, as provided by one or 

multiple facilities. Explicitly tracked are all combinations of afforded coverage. In doing 

so, the PMP-MC reflects the actual mechanism of coverage for demand objects. 

Therefore, problematic geographic representation issues inherent in the MCLP are 

addressed, as discussed in Chapter 3.  

 

4.3 Solving the PMP-MC 

 

As a mixed integer linear problem, the PMP-MC can theoretically be solved using 

commercial optimization software. For example, in Chapter 3, the PMP-MC was solved 

using CPLEX, which employs linear programming combined branch and bound. 

However, as a more complicated version of the NP-hard problem than the MCLP, the 

PMP-MC will generally be more difficult to solve exactly, especially for large sized 

problems. Recall the modest sized applications examined in Chapter 3, where the PMP-

MC (k=2) for p = 23 required over 12 hours to identify an optimal solution. Such 
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computational time could prevent the PMP-MC from being used in practice, but also 

highlights inevitable limits for large scale real-time planning. On the other hand, consider 

that heuristics are able to provide a high-quality (optimal or near-optimal) solution 

quickly, although optimal solutions are not guaranteed. To facilitate the broad 

applicability of the PMP-MC, our research aims to develop an effective heuristic for 

solving the PMP-MC quickly and ensure high-quality results. 

 

4.4 Related genetic algorithms 

 

Considerable success in solving location models using heuristics has been achieved 

(Mladenovic et al. 2007). Among developed heuristics, genetic algorithms (GAs) have 

attracted much attention recently, as they are very promising for solving combinatorial 

optimization problems (Blum and Roli 2003). Genetic algorithms (GAs) were proposed 

in the 1970s by Holland (1975). GAs are recognized for their strategy of mimicking 

biological evolution of natural selection - survival of the fittest (Goldberg 1989). During 

the evolutionary search process, fitter individuals representing better solutions are 

selected for reproduction. The information associated with such solutions is, therefore, 

more likely to survive. A population evolves over generations with an attempt to find 

(possibly) good solutions.  

 

In a GA, each individual in the population is called a chromosome, representing a 

solution. Each element in a chromosome is called a gene. Traditionally, solutions are 

represented as a binary string of 0’s and 1’s, but other non-binary encodings, including 
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floating point representation, integer representation, etc., have also been designed and 

applied for specific problems (Davis 1991; Michalewicz 1992; Syswerda 1991). The 

quality measure of a solution is called its “fitness” and is evaluated using a devised 

fitness function. Generally, GAs consist of three primary operators (Mitchell 1996): 

selection, crossover and mutation. Selection is the process through which solutions are 

selected for creating offspring. Crossover is a strategy for producing new chromosomes 

or child solutions through a recombination of a pair of selected chromosomes or parent 

solutions. Mutation changes the genes randomly and is used to restore lost or unexplored 

genes into the population to prevent premature convergence. A general genetic algorithm 

is outlined in Figure 4.1.  

 

     Initialize population  
 

Repeat 
Select parents  
Perform crossover and mutation operations 
Generate next generation 
 

Until <terminating condition > 
 

Figure 4.1. Structure of a general GA. 

  

GAs have been extensively used for different optimization problems (Goldberg 1989; 

Davis 1991; Bäck 1993). In recent years, there has been increased interest in applying 

GAs to location optimization problems, including the location set covering problem 

(Beasly and Chu 1996; Lorena and deSouza-Lopez 1977; Aickelin 2002), the maximal 

coverage location problem (Jaramillo et al. 2002; Jia et al. 2007), and the p-median 
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problem (Hosage and Goodchild 1986; Alp et al. 2002; Correa et al. 2004; Fathali 2006), 

and site search problems (Xiao 2006), among others. Jaramillo et al. (2002) compared 

and summarized the performance of genetic algorithms for several location problems, 

including the p-median problem and the maximal covering problem.  

 

GAs applied to the location problems discussed above are mainly for the case where 

points are used to represent demand and only one facility is allowed to provide complete 

service. We aim here to develop an efficient GA for the PMP-MC, where multiple 

facilities are allowed to provide joint coverage to a demand object. Further, complex 

spatial geometry relationships between sited facilities and demand are allowed, in 

contrast to previous work. Therefore, a different fitness evaluation function based on 

spatial relationships other than the simple evaluation of coverage in the MCLP or the 

PMP needs to be designed. In addition, due to the complexity of the PMP-MC, a new 

crossover operator is also needed, as the commonly used crossover operators typically 

require a considerable computational time to converge.  

 

4.5 Proposed genetic algorithm for the PMP-MC  

4.5.1 Chromosome coding 

 

The chromosomes in a GA correspond to solutions in the associated optimization 

problem. The one-to-one relationship between a chromosome and the corresponding 

solution is specified in the encoding. Individual representation is important in GAs since 

a gene is directly manipulated (Koza 1992). Traditionally, solutions are represented as 
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binary strings in location problems, with all the potential facilities represented as 0s and 

1s (see Hosage and Goodchild 1986; Jaramillo et al. 2002). As noted by Dibble and 

Desham (1993), this encoding scheme does not guarantee a feasible child after crossover 

and the use of a penalty function is needed to address violated constraints, e.g., the 

number of required facilities. Unfortunately, this has led to poor GA performance, even 

for very small problems (Dibble and Desham 1993). Correa et al. (2004) also highlighted 

that using classic binary encoding wastes memory and processing time as well as 

evaluation time. To avoid invalid offspring, in this paper we use an integer vector 

encoding scheme, where the genes of facility indices, p in total, correspond to a potential 

solution. In doing this, Constraint (4.4) is automatically satisfied. This coding scheme has 

recently been used in GAs for p-median problems (e.g., Correa et al. 2004; Alp et al. 

2002; Jia et al. 2007).  

 

4.5.2 Fitness evaluation 

 

The fitness function in a GA is a measure of goodness of a solution. In our GA, according 

to objective (4.1), the fitness for each chromosome is the overall coverage provided by 

the selected facilities specified in the chromosome. Although the general concept is 

similar to that of GA’s used to solve the MCLP (see Jaramillo et al. 2002), the coverage 

evaluation for spatial demand objects is more complicated in this case. In the MCLP, the 

coverage evaluation for a demand unit by one sited facility is independent of other sited 

facilities due to the 0/1 coverage assessment. However, in the PMP-MC, both partial 

coverage by one facility and joint coverage involving multiple facilities are considered. 
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Combining Constraints (4.2) and (4.3), the coverage for each demand object is maximal 

among the coverage provided by all the facility configurations at all levels (l=1, 2,… k). 

This requires computational effort devoted to coverage evaluation for each demand 

object by all the potential configurations consisting of up to k facilities.  

 

In order to efficiently evaluate the coverage for a demand object, consider: 

(1) If any configuration can provide complete coverage, object i is considered 

covered and it is not necessary to evaluate any other configuration for this object. 

 (2) If a facility cannot provide any coverage for a demand object, a configuration 

consisting of that facility cannot achieve more coverage than that at a lower level 

of coverage without the facility. Therefore, there is no need to evaluate any 

configuration consisting of this facility for coverage of the demand object. The 

same applies to any combination of facilities. 

 

The second situation is illustrated in Figure 4.2, depicting three facilities and one demand 

object. Here, Facility 1 is not able to provide any coverage to the demand area since the 

demand is located beyond the effective range of the facility. Consider the coverage 

provided by the configuration of level l=3 consisting of all the three facilities. The overall 

coverage does not exceed the joint coverage provided the configuration of level l=2 

consisting of facilities 2 and 3. Hence, it is not necessary to evaluate the configuration of 

level l=3 in this case in coverage evaluation.   
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Figure 4.2. Coverage evaluation. 
 
 
 

After evaluating the configurations of all levels for a demand object, the maximal value is 

chosen as the coverage the demand object receives. The fitness for an individual is then 

the overall coverage for all demand objects. A pseudo-code detailing the fitness 

calculation for an individual is constructed as follows: 

Facility 1 

Facility 2 
Facility 3 

Effective range  

Demand 1 
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procedure fitness_calculation(individual) 

 1. ind_fitness ← 0;  

 2. for each demand object i 

 3.  best_fitness ← 0; 

 4.  for all configurations of each level l in 1: k 

 5.   cur_fitness ← 0; 

 6.  if every single facility can provide some coverage to object i 

 7.              cur_fitness ← coverage provided by a configuration of l 

facilities;  

8.      if cur_fitness > best_fitness, best_fitness ← cur_fitness; 

9.        if a complete coverage of object i is achieved, break the 

evaluation for demand object i;  

10.  ind_fitness ← ind_fitness + best_fitness; 

11. return (ind__fitness) 

 

4.5.3 A new crossover operator: nearby-swap  

 

The crossover operator, one of the GA’s defining characteristics, plays a vital role in a 

GA (Herrera et al. 1998). It is one of the components that is essential to improve GA 

performance (Liepins and Vose 1992). Many different forms of crossover operators exist. 

One-point (Holland 1975; Goldberg 1989), two-point (De Jong 1985), n-point crossover 

(Eshelman et al. 1989) and uniform crossover operators (Syswerda 1989) are commonly 
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used (De Jong 1985; Spears and De Jong 1991). For example, Correa et al. (2004) used 

the one-point crossover for the p-median problem, where the common genes in both 

parent chromosomes are kept and the rest of the genes subject to the one-point crossover. 

On one hand, the arrangement of the same set of facilities has no effect on individual 

fitness evaluation. However, when carrying out the crossover operator, the order of 

facility sites in an encoded chromosome plays a important role in determining which set 

of genes are to be exchanged to produce new individuals. Therefore, depending on the 

arrangement of the genes in the parents, a substantial number of possible exchanges exist 

using this type of crossover operator. Consider Figure 4.3 where two parents each with 5 

genes are to be recombined. Of 100 possible children through recombination, two of 

them are displayed here, for the case where a random number indicates the first two 

genes to be exchanged. With this blind combination, individuals of low-quality are very 

likely to be produced. This can slow down the GA’s convergence process, especially for 

large sized problems. To facilitate the convergence, Alp et al. (2002) used a greedy 

heuristic to generate a child with good quality by selecting p genes from the parent gene 

pool. The heuristic is implemented by deleting genes that contribute least to fitness 

evaluation one by one until p genes are left. Fathali (2006) (also see Jia et al. 2007) 

applied the same idea to the p-median problem with a greedy add procedure and reported 

that greedy add produced better solutions than the greedy drop employed in Alp et al. 

(2002). Consider that when p is large, this greedy heuristic operator will require intensive 

computation. This particularly complicates the fitness evaluation process in our problem 

where coverage provided by each additional facility involves the consideration of the 

joint coverage of demand objects with other facilities that are already included in the 
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chromosome. In addition, premature convergence can easily occur due to the inability of 

the greedy heuristic to identify the optimal solution. Further discussion will be given later 

in the chapter.  

 
 
 
 

 

 

 

 

 
 
 

Figure 4.3. Possible children produced by a one-point crossover on two parent 
chromosomes. 

 
 
 

Consider the characteristics of good solutions in coverage problems: facilities tend to 

disperse in space so as to cover more demand (see Murray 2005; Tong and Murray 2007). 

That is, the redundant coverage in the region is minimized. Correspondingly, in the GA 

operator, solutions that use unnecessarily redundant facilities to cover the same demand 

areas should be avoided. To partially incorporate this, we propose a new GA crossover 

operator: nearby-swap crossover. This crossover operates by pairing genes based on their 

spatial information. Genes representing facility sites that are closer together have a higher 

chance of being paired for exchange. In doing so, facilities that are close in space will 

have a smaller chance to co-exist in the same solution, avoiding excessive overlapping 

coverage. This reduces the chance of inferior children and, therefore, poor solution 
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production. A simple example is shown in Figure 4.4 where two facilities are to be 

selected out of four potential facilities. Each circle displays the facility’s effective 

coverage range. Initially as shown in Figure 4.4a, there are two parent solutions 

containing potential locations of A and B for one solution, ps1, and C and D for the other 

solution, ps2. For site A in ps1, site C is closer among the two potential sites in ps2. The 

same goes for B in ps1 and D in ps2.  According to the proposed algorithm, A and C, B 

and D can be swapped when conducting the crossover operator. As a result, either none 

of the parents change or two new solutions cs1 and cs2 are created, as is shown in Figure 

4.3b. In Figure 4.3b the optimal solution consisting of sites of B and C is identified. 

Using the random swap procedure, it is also very likely to create the solutions as shown 

in Figure 4.3c that are even worse than the parent solutions. Hence, using the new 

crossover operator, it is expected that quicker convergence to a high-quality solution can 

be achieved.  
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Figure 4.4 Crossover illustrations: (a) Parent solutions, (b) Child solutions with the 
nearby-swap crossover operator, and (c) Possible child solutions with a uniform 

crossover operator. 
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Figure 4.4 Continued  
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For the pairing process, first the common genes in both parents are automatically selected 

for pairing. For the rest of the genes, one gene (A) in one parent selects the one (B) in 

another parent that has the smallest distance between them among those that have not 

been paired. To promote diversity, a uniform crossover is carried out for the exchange of 

the paired genes. The pseudo-code is constructed as follows: 

procedure crossover (parent1, parent2) 

1. for each gene g in 1: p in parent1 

2.         shortest_dist ← a big number; 

3.         for each unpaired gene h in parent2  

4.                    if gene g and gene h are the same, h is labeled as paired, break the 

paring process for gene g and go to step 1; 

            elseif distance between g and h dist(g,h) < shortest_dist,  

shortest_dist ← dist(g,h) and shortest_gene ← h; 

5.         pair g with shortest_gene in parent2 and shortest_gene is labeled as 

 paired 

6.         f ← random(0,1); 

7.        if f > 0.5, swap g with shortest_gene; 

8.  return two recombined child individuals  

 

4.5.4 Other operations 

 

For the strategy of selecting parents for offspring production, Alp et al. (2003) and Jia et 

al. (2007) reported little difference among biased selection mechanisms. In this chapter, 
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we use the binary tournament selection method as it is easy to implement. For the 

offspring to be selected for the next generation, we use a steady-state update elitist 

strategy similar to the CHC selection strategy (Eshelman 1991). Among the 2N 

individuals with parents (N) and children (N), the best N distinct individuals are selected 

as the next generation and the rest discarded. After accepting the offspring generation, 

mutation is applied to the updated parent population. For the gene representing a facility 

selected for mutation, another facility site that is not included in the solution is randomly 

selected and substituted. To ensure elitism, the best solution is kept and not subjected to 

the mutation. Although we try to apply the mutation only to the offspring, as a 

conventional GA genetic operation does, there is little difference from no mutation, and 

has been discussed in Alp et al. (2002) for the p-median problem. Applying mutation to 

the updated population produces better solutions, generally, for our problems. The overall 

pseudo-code genetic algorithm is as follows: 

 

1. Initial population through randomization 

2. Repeat 

a. Use binary tournament selection to select parents  

b. Produce offspring through nearby-swap crossover 

c. Select best N distinctive individuals from parent and offspring 

population as a new population 

d. Apply mutation to the new population and create a new parent 

population for the next generation 

3. Until <terminating condition> 
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4.6 Computational results 

 

The new genetic algorithm is applied to solve the PMP-MC (k=2) for warning siren siting 

in Dublin, Ohio, as utilized in Chapter 3.  In Chapter 3, the commercial optimization 

software CPLEX is relied upon for solutions. Due to the complexity of the problem, a 

considerable amount of time is invested to obtain the optimal solution.  In addition, when 

p = 22, no optimal solution could be identified due to memory limits, and a maximum 

optimality gap of 0.22% is reported. In this chapter, the proposed genetic algorithm is 

used to solve the same set of problems. Results are compared with those obtained from 

CPLEX. In addition, other crossover operators, including one-point, two-point, uniform 

crossover and the greedy add heuristic crossover, are also tested and compared.  Given 

that for small p the problems are relatively trivial, problems only for p ≥ 8 are examined. 

For each p, ten runs are carried out for the GA, except for the GA with heuristic 

crossover where five runs are performed due to the considerable computational time 

involved. GAs are coded in C++ and run on a Pentium Xeon 3.0 GHz personal computer 

with 2 GB RAM. The program terminates if the best solution does not change after 400 

iterations or when 1,500 total iterations have been reached.    

 

Table 4.1 presents the computational results using the proposed GA. Here, the gap (%) 

was the relative quality of the solution obtained from the GA compared to that obtained 

from CPLEX as follows:  

gap = best coverage using CPLEX - best coverage using GA 100%
best coverage using CPLEX 

×   
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As indicated in the table, out of the ten runs, optimal solutions are reached when p ≤ 21 if 

the new GA is used. There was a negative gap for p =22, which indicates that a better 

solution was identified in about 3 minutes compared to the sub-optimal solution obtained 

from CPLEX in 9 hours using branch and bound. Even for p > 22, the gaps are relatively 

small. The average gap for all runs is 0.21%, indicating that even the non-optimal 

solutions obtained by the GA are very close to optimal solutions. In addition, 

computationally, an average of 2 minutes is needed for each problem using the proposed 

GA as opposed to an average of 3 hours if CPLEX is used.  

 

 GA with nearby-swap crossover CPLEX 

p 
Best gap 

(%) 
Worst gap 

(%) 
Average gap 

(%) 
Average solution 

time (s) 
solution 
time (s) 

8 0.00 0.23 0.13 39.87 87.41 
9 0.00 0.06 0.02 53.10 119.78 
10 0.00 0.29 0.09 76.42 344.08 
11 0.00 0.51 0.18 80.47 852.39 
12 0.00 0.50 0.16 85.99 899.56 
13 0.00 0.22 0.12 83.57 390.73 
14 0.00 0.53 0.12 85.99 352.33 
15 0.00 0.59 0.27 91.39 9100.11 
16 0.00 0.58 0.22 109.59 4610.33 
17 0.00 0.68 0.18 126.62 5264.42 
18 0.00 0.85 0.44 125.71 8525.64 
19 0.00 0.60 0.27 136.92 28563.52 
20 0.00 0.26 0.13 207.70 38039.48 
21 0.00 0.58 0.24 174.11 43777.22 
22* -0.01 0.40 0.27 168.94 33159.38 
23 0.25 0.60 0.42 177.17 11429.38 
24 0.12 0.43 0.31 238.59 6492.69 
25 0.11 0.56 0.30 216.94 3006.69 

*“Out of memory” was encountered and a suboptimal solution was reported with maximum 
optimality gap of 0.22%. 

 
 

Table 4.1. Computational results of the new GA compared to that from CPLEX. 
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Computational results for crossovers of one-point, two-point, uniform and greedy 

heuristic are shown in Tables 4.2-4.5. Generally speaking, it is relatively difficult for a 

crossover operator to identify the optimal solution compared with the proposed nearby-

swap crossover operator. For instance, out of ten runs, no optimal solution can be 

obtained when p > 14 for one-point crossover, p > 12 for two-point crossover and p > 10 

for uniform crossover. No optimal solution has been reached using the greedy heuristic 

crossover operator for our problem. The average gaps are 0.89% for the one-point 

crossover, 1.07% for the two-point crossover, 0.84% for the uniform crossover, 1.06% 

for the greedy heuristic and are all larger than the average gap of 0.21% for the nearby-

swap crossover.  Comparing the worst solutions for each GA, those obtained by the 

nearby-swap crossover operator are also relatively smaller than those using other 

crossover operators. Furthermore, the nearby-swap crossover also performed the best in 

regard to computing time, averaging 2 minutes. The greedy add heuristic is much more 

computationally intensive due to the complicated fitness function evaluation required, 

taking an average of over 40 minutes. Hence, the greedy heuristic crossover is not a good 

approach for the PMP-MC.  
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 GA with one-point crossover operator 

p 
Best gap 

(%) 
Worst gap 

(%) 
Average gap 

(%) 
Average solution 

time (s) 
8 0.00 0.53 0.19 62.43 
9 0.00 0.06 0.04 85.35 
10 0.09 1.01 0.30 83.11 
11 0.20 1.38 0.53 90.18 
12 0.00 1.13 0.44 104.96 
13 0.00 1.31 0.56 105.79 
14 0.00 1.96 0.65 136.05 
15 0.61 1.34 0.78 164.61 
16 0.44 2.73 1.06 172.14 
17 0.16 2.19 1.19 194.61 
18 0.49 2.27 1.36 235.51 
19 0.43 3.03 1.41 215.40 
20 0.63 2.21 1.36 247.73 
21 1.19 2.11 1.61 239.83 
22 0.63 1.64 1.04 315.62 
23 0.82 2.05 1.31 317.79 
24 0.76 2.19 1.32 344.62 
25 0.55 1.46 0.86 314.20 

 
 

Table 4.2. Computational results of the GA with a one-point crossover. 
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 GA with two-point crossover operator 

p 
Best gap 

(%) 
Worst gap 

(%) 
Average gap 

(%) 
Average solution 

time (s) 
8 0.00 0.23 0.07 77.93 
9 0.00 0.61 0.20 92.08 
10 0.16 0.63 0.35 92.90 
11 0.00 0.80 0.50 113.16 
12 0.00 1.35 0.68 121.45 
13 0.14 1.13 0.52 148.65 
14 0.11 1.80 0.87 160.36 
15 0.13 1.78 0.88 189.41 
16 0.18 1.71 1.03 184.66 
17 0.68 2.22 1.73 198.98 
18 0.80 2.79 1.83 217.96 
19 1.12 2.84 1.82 233.15 
20 0.74 2.63 1.75 248.42 
21 1.12 2.08 1.59 320.94 
22 0.88 2.66 1.55 335.61 
23 1.22 1.93 1.51 377.18 
24 0.91 2.09 1.40 357.20 
25 0.66 1.40 1.02 363.79 

 

Table 4.3. Computational results of the GA with a two-point crossover. 
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 GA with uniform crossover operator 

p 
Best gap 

(%) 
Worst gap 

(%) 
Average gap 

(%) 
Average solution 

time (s) 
8 0.00 0.23 0.10 57.06 
9 0.00 0.06 0.03 92.08 
10 0.08 0.94 0.32 87.93 
11 0.05 0.75 0.34 76.97 
12 0.02 1.50 0.49 93.02 
13 0.11 1.49 0.71 86.43 
14 0.00 2.60 0.54 169.21 
15 0.00 1.18 0.53 195.76 
16 0.12 2.63 0.91 196.11 
17 0.66 1.95 1.00 289.61 
18 0.88 2.84 1.59 301.24 
19 0.65 1.83 1.14 258.55 
20 0.59 1.92 1.02 234.11 
21 0.67 1.64 1.18 248.79 
22 0.81 1.63 1.16 283.17 
23 0.87 1.55 1.18 263.98 
24 0.58 1.36 1.03 285.36 
25 0.78 1.44 1.11 311.23 

 

Table 4.4. Computational results of the GA with a uniform crossover. 
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 GA with greedy heuristic crossover operator 

p 
Best gap 

(%) 
Worst gap 

(%) 
Average gap 

(%) 
Average solution time 

(s) 
8 0.23 0.34 0.28 422.91 
9 0.39 0.40 0.40 352.88 
10 0.50 0.58 0.54 465.78 
11 0.46 1.27 0.92 858.14 
12 0.72 1.27 1.01 1145.96 
13 0.84 1.03 0.92 1439.26 
14 0.89 1.20 1.06 1261.25 
15 1.12 1.29 1.18 1410.06 
16 0.61 0.93 0.82 2235.39 
17 0.96 1.75 1.22 2217.64 
18 0.94 1.87 1.42 2665.53 
19 1.37 1.90 1.50 3495.00 
20 1.40 1.85 1.67 2526.91 
21 1.47 2.06 1.74 4561.09 
22 0.98 1.63 1.25 4973.98 
23 0.87 1.62 1.21 4346.56 
24 0.66 1.33 1.07 5906.57 
25 0.38 1.09 0.72 5580.85 

 
 

Table 4.5. Computational results of the GA with the greedy add heuristic crossover. 
 
 
 

4.7 Discussion and conclusions 
 
 
Although the general principles of GAs are similar in most applications, there is no GA 

that works best in all cases. Users are required, and challenged, to customize for specific 

problems. In this chapter, we developed a new GA as a heuristic for solving the PMP-MC 

presented in Chapter 3. In particular, innovatively incorporate the characteristic of 

maximal coverage as a new crossover operator. We demonstrated the effectiveness and 

efficiencies of the new GA as high-quality solutions are found. In addition, test results 

show that the new GA using the nearby-swap crossover operator performs better than the 

commonly used crossover operators.  



 108

 

Although the new developed GA is oriented for the PMP-MC model, it could also be 

applied to the MCLP using a simplified fitness function evaluation. It is expected that the 

new GA would perform well too, considering that the PMP-MC is a generalization of the 

MCLP, the PMP-SC and the PMP for coverage optimization. In addition, the same idea 

can be applied to the p-median problem (PMP) given that minimal weighted travel 

distance is more likely as facilities disperse spatially.  However, whether the nearby-swap 

crossover operator itself, or a variant of it, would work best for the PMP remains a 

question for further exploration.  
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CHAPTER 5 
 
 

CONCLUSIONS 
 
 

5.1 Summary 

 

This research focused on coverage optimization for spatial demand objects in the plane. 

We tackled the continuous location problem by introducing a finite dominating set and 

proved that at least one optimal solution is contained in the set, assuming that complete 

coverage is provided to spatial demand objects. Further, a new maximal coverage model, 

the p-median problem – single-facility coverage (PMP-MC), was developed and oriented 

for the situation where demand is represented as general objects, including points, lines 

and polygons. In addition, in order to enhance the computational capabilities of the PMP-

MC, a new genetic algorithm (GA) was proposed, and test results demonstrated its 

effectiveness compared with commercial optimization software (CPLEX) and other GAs.  

 

The challenges that motivated this research are associated with representation issues of 

geographic space inherent to current location models, discrete and continuous. 

Traditionally, demand and/or the region of interest are often abstracted using points 

aggregated from other spatial entities.  However, substantial errors can be introduced, and 
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obtained solutions can be dependent on the degree of aggregation. This research extends 

demand representation beyond points only by incorporating spatial objects, including 

points, lines and polygons. To solve the continuous problem in the plane, instead of 

searching an infinite number of sites, we narrowed our search to a discrete point set, the 

polygon intersection point set (PIPS), as a finite dominating set. Theoretically we proved 

that the PIPS consist of at least one optimal solution for covering objects. Application 

results also demonstrated that PIPS are better than other possible approaches in terms of 

solution quality and efficiency in obtaining solutions.   

 

Due to the inability of the existing maximal coverage location problem (MCLP) handle 

spatial demand objects appropriately, there exist significant discrepancies between what 

is modeled and actual geographic coverage. In order to accurately reflect the mechanism 

of maximal coverage for spatial objects (points, lines or polygons), we introduced a new 

model called the PMP-MC (p-median problem – single-facility coverage) to explicitly 

account for joint service provided by multiple facilities. Theoretically, by incorporating 

sufficient potential multiple facilities to provide joint coverage, the PMP-MC is free of 

the modifiable areal unit problem (MAUP) and is, therefore, frame independent.  

 

As an NP-hard problem, the PMP-MC is difficult to solve, especially for large problems. 

In order to solve the PMP-MC efficiently and obtain diverse alternative solutions, a new 

genetic algorithm was proposed. In particular, built on the spatial characteristic of 

maximal coverage, a new crossover operator was introduced. Application results showed 
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that the developed genetic algorithm performed well in finding solutions of high-quality 

very quickly.  

 

5.2 Future work 

5.2.1 Continuous coverage  

 

In this research, PIPS are identified as a finite dominating set (FDS) assuming that the 

complete coverage of a spatial demand object is achieved by one facility. Although the 

application results found that when accounting for the joint coverage provided by 

multiple facilities PIPS are a good set serving as potential facilities sites, there is no 

theoretical evidence to show that PIPS are also a FDS for the PMP-MC. More work 

should be carried out to explore possibilities of such a FDS for the PMP-MC, and how to 

identify it, if there is one.  

 

5.2.2 Further investigation of the PMP-MC 

 

As indicated previously, theoretically, if incorporating sufficient multiple facilities to 

provide joint coverage, the PMP-MC will be free of the MAUP. However, in reality, with 

an increase of k in the model, the complexity of the problem will increase dramatically 

and this will add to computational burdens. Intuitively, using coarse demand units can 

reduce the number of variables in the model. However, this would require a higher k for 

achieving a high-quality solution. In addition, the joint coverage combination evaluation 

is also related to the coverage standard. Therefore, a further investigation of the balance 
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among the resolution of demand units, coverage standard and k will give more insights 

into the model and enhance its applicability.   

 

5.2.3 More realistic surface demand 

 

When we represent demand as spatial objects, we assume that the demand is uniformly 

distributed in each object. This might not be true. On the other hand, demand can be 

represented as a continuous surface. For example, Figure 5.1 presents a potential demand 

surface for the study area in Dublin, Ohio. The surface was interpolated based on the 

population density. To generate the surface, geostatistical techniques are used. However, 

how can a coverage optimization be approached? One possible approach is to discretize 

the generated surface and apply the PMP-MC. Another way is to use heuristic search 

strategies integrated with continuous demand representation. This may suggest a new 

kind of continuous space coverage optimization problem, where demand is 

geostatistically defined. 

 

All of these are left as potential areas of future research. 
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Figure 5.1 A potential demand surface for Dublin, Ohio. 
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