
STATIC ANALYSES FOR JAVA IN THE PRESENCE OF

DISTRIBUTED COMPONENTS AND LARGE LIBRARIES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Mariana L. Sharp, B.S., M.S.

* * * * *

The Ohio State University

2007

Dissertation Committee:

Atanas Rountev, Adviser

Neelam Soundarajan

Paul A. G. Sivilotti

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

ABSTRACT

Modern Java applications present significant challenges for existing algorithms for

static compile-time analysis. Two such challenges are large code size, and applications

that are distributed across multiple machines. Existing analysis algorithms are not

suitable to deal with these challenges. One reason is that analyses are typically

designed to operate on whole homogeneous programs. For applications built with

libraries, the library code is analyzed together with the application code. This leads

to scalability problems when the analysis algorithms are used on large-scale Java

software built with reusable library components. Moreover, Java applications using

component models such as RMI (Remote Method Invocation) have complex semantics

which are not modeled by existing analyses.

In this work we propose several analysis techniques for modern Java software.

First, we define a theoretical model for points-to analysis of distributed RMI-based

Java applications. We propose an algorithm for computing points-to information

for such applications. This algorithm is implemented and evaluated experimentally

on a set of distributed Java programs. Second, we define an incremental approach

for type analysis and dependence analysis of large-scale Java software built with

reusable library components. Our approach employs precomputed library summary

information. The library code is analyzed independently of any client code, using

a summary-generation analysis. The resulting summary is reusable for subsequent

ii

analysis of any client component. The solution for the client code, computed using

the summary, is the same as the solution what would have been computed by a whole-

program analysis. Our experimental studies indicate that the cost of whole-program

type analysis and dependence analysis can be reduced dramatically by the proposed

approach.

This work presents novel advances towards solving two important analysis prob-

lems for Java software: analysis in the presence of large libraries and analysis in the

presence of RMI calls. We also provide theoretical foundations and experimental in-

sights for future work on static analyses for Java software built with large reusable

components and with RMI-based middleware platforms such as Enterprise JavaBeans.

As a result, our work brings static analysis techniques a step closer to practical use

in real-world software tools for industrial Java applications.

iii

To my little girl, and to my Rich

iv

ACKNOWLEDGMENTS

I would like to thank my adviser Prof. Nasko Rountev for providing support and

guidance. Without his help and constant feedback I would have never known where

to go or what to look for. Under his patient guidance I learned many things that

helped my professional and personal growth.

I am grateful to Prof. Paul Sivilotti for teaching distributed computing in such

great and entertaining lectures. I would also like to thank Prof. Neelam Soundarajan,

for providing valuable feedback on my writing in his seminar. They have taught me

that theory is not as hard as it seems. I would like to thank Prof. Thomas Marlowe

from Seton Hall University for providing comments on earlier versions of this thesis.

Thanks to Jason Sawin for sharing interesting ideas and making the work on the

TACLE project entertaining. To Laura Stoia, my friend and fellow graduate student,

thanks for being by my side during all the years of graduate school.

I am grateful to my parents for supporting me in my plans, even when they did

not like me leaving the country. Finally I would like to thank my husband Rich for

the enormous efforts he made to help raise our baby. His support and humor got me

through a lot during the years of graduate school. I look forward to our future life

together, wherever it may be.

v

VITA

August 2006 .M.S. Computer Science & Engineering,
The Ohio State University

June 1999 . B.S. Computer Science,
University of Bucharest

September 2002 – presentGraduate Research/Teaching Asso-
ciate, The Ohio State University

March 2000 – August 2002 Software Developer,
Cornersoft Tech, Bucharest

December 1999 – March 2000 Software Developer,
Ifsoft, Bucharest

February 2, 1977 . Born – Constanta, Romania

PUBLICATIONS

Research Publications

J. Sawin, M. Sharp and A. Rountev Generating Run-Time Progress Reports for a
Points-to Analysis in Eclipse In Eclipse Technology Exchange Workshop at OOPSLA
(ETX’06), Oct 2006.

M. Sharp and A. Rountev Static Analysis of Object References in RMI-based Java
Software In IEEE Transactions on Software Engineering (TSE), pages 664–681, Sep
2006.

M. Sharp, J. Sawin and A. Rountev Building a Whole-Program Type Analysis in
Eclipse In Eclipse Technology Exchange Workshop at OOPSLA (ETX’05), Oct 2005.

M. Sharp and A. Rountev Static Analysis of Object References in RMI-based Java
Software In IEEE International Conference on Software Maintenance (ICSM’05),
pages 101–110, Sep 2005.

vi

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Software Engineering Prof. Atanas Rountev
Prof. Neelam Soundarajan
Prof. Paul A. G. Sivilotti

vii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Figures . xi

List of Tables . xiv

Chapters:

1. Introduction . 1

1.1 Static Analyses Considered in Our Work 1
1.2 Two Challenges for Analysis of Modern Java Software 5
1.3 Contributions . 7

2. Static Analysis of Object References in RMI-based Java Software 9

2.1 Introduction . 9
2.2 Overview of Java RMI . 12

2.2.1 Remote Objects, References, and Calls 14
2.2.2 Call-by-Copy through Serialization 16

2.3 Points-to Analysis . 17
2.3.1 Variables, Objects, and Points-to Graphs 17
2.3.2 Effects of Program Statements 20
2.3.3 Modeling of Non-Remote Parameters 23

2.4 Analysis Algorithm . 25

viii

2.4.1 Pointer Assignment Graph 25
2.4.2 Points-to Sets . 28
2.4.3 Processing of Calls . 29
2.4.4 Worklist Algorithm . 31

2.5 Handling of the Standard Java Libraries 32
2.6 Analyses for Program Understanding 35

2.6.1 Call Graph . 35
2.6.2 Data Dependencies . 35
2.6.3 Customized Serialization . 37
2.6.4 Other Potential Uses . 38

2.7 Experimental Study . 38

3. Type Analysis in the Presence of Large Libraries 48

3.1 Introduction . 48
3.2 IDE Dataflow Problems . 51

3.2.1 Interprocedural Control-Flow Graph 51
3.2.2 Environments and Transformers 52
3.2.3 MVP Solution for an IDE Problem 54

3.3 Whole-Program Type Analysis . 54
3.3.1 Variables, Object Types, and Graphs 54
3.3.2 Input Language . 55
3.3.3 Dataflow Effects of Statements 59
3.3.4 Type Analysis as an IDE Problem 63
3.3.5 Graph Representations of Environment Transformers . . . 65
3.3.6 Transformer Meet and Composition 66
3.3.7 Graph-Based Algorithm . 69

3.4 Summary Generation Analysis . 71
3.4.1 Summary Representation 71
3.4.2 Summary Generation . 73

3.5 Experimental Study . 81
3.5.1 Generating the summary 82
3.5.2 Summary-based analysis . 84

4. Dependence Analysis in the Presence of Large Libraries 89

4.1 Introduction . 89
4.2 Whole-Program Dependence Analysis 91

4.2.1 Phase 1: Intraprocedural Def-Use Analysis 91
4.2.2 Phase 2: Intraprocedural Dependence Analysis 92
4.2.3 Phase 3: Interprocedural Dependence Analysis 98
4.2.4 Dependence Analysis Algorithm 100

ix

4.3 Summary Generation Analysis . 104
4.3.1 Summary Information . 104
4.3.2 Summary Generation . 105
4.3.3 Inlining Information about Fixed Methods 107

4.4 Experimental Study . 116
4.4.1 Generating the summary 116
4.4.2 Summary-based analysis . 119

5. Related Work . 123

5.1 Points-to Analysis for RMI Java Software 123
5.2 Static Analysis in the Presence of Large Libraries 125

6. Conclusions and Future Work . 131

6.1 Static Analysis for RMI Java Software 131
6.2 Summary-Based Static Analyses for Large Java Software 132

Appendices:

A. Worklist Algorithm for Points-to Analysis 134

Bibliography . 143

x

LIST OF FIGURES

Figure Page

2.1 Running example, part 1 . 12

2.2 Running example, part 2 . 13

2.3 Partial points-to graph for the running example 18

2.4 Creation of PAG edges . 26

2.5 Propagation of points-to information 27

2.6 Processing of calls . 30

2.7 Sample PAG nodes, edges, and points-to sets. 32

3.1 Sample method replaceName . 59

3.2 Environment transformers and graph representations for the running
example (part 1) . 66

3.3 Environment transformers and graph representations for the running
example (part 2) . 67

3.4 Representation of the union of the transformers for statements 2 and 5 68

3.5 Representation of the composition of the transformers for statements
2 and 5 . 69

3.6 Graph representation of the MVP solution for the running example . 70

3.7 Sample method replaceName . 73

xi

3.8 Summary information for method replaceName 74

3.9 Var-to-var edge created for the return statement 75

3.10 Var-to-var edges added for identity statements 76

3.11 Var-to-var edges added for assignment statements 77

3.12 Type-to-var edge added for object creation 78

3.13 Var-to-var edges added to the closure 79

3.14 Type-to-var edge added to the closure 80

3.15 Dataflow graph of the running example before minimization 81

4.1 Reduced CFG for the running example 94

4.2 Reduced CFG for the running example, annotated with environment
transformers for graph edges . 100

4.3 Code fragment from method selfRecursive 102

4.4 New edges in the reduced CFG for method selfRecursive 103

4.5 Transitive intraprocedural dependencies for method replaceName . 106

4.6 Transitive intraprocedural dependencies for method replaceName
that are relevant for the summary . 107

A.1 Top level of the analysis algorithm 135

A.2 Processing the body of a newly discovered reachable method 136

A.3 Creating a new call graph edge and the corresponding PAG edges . . 137

A.4 Propagation of objects to points-to sets 139

A.5 On-the-fly call graph construction 140

xii

A.6 Propagation along non-remote PAG edges 141

A.7 Propagation along remote PAG edges 142

xiii

LIST OF TABLES

Table Page

2.1 Subject programs, reachable methods, and running times 40

2.2 Time and memory measurements for other configurations 43

2.3 Analysis precision, part 1 . 44

2.4 Analysis precision, part 2 . 45

3.1 Subject programs, and number of reachable methods 84

3.2 Comparison of the whole-program analysis and the summary-based
analysis running times and memory usage 86

3.3 Comparison of the whole-program analysis and the summary-based
analysis running times and memory usage. The analyses use pre-
jimplification . 87

4.1 Comparison of the whole-program analysis, the summary-based analy-
sis, and a baseline implementation in terms of running times (in seconds)119

4.2 Comparison of the regular analysis, the summary-based analysis, and
a baseline implementation in terms of memory usage (in MB) 120

xiv

CHAPTER 1

INTRODUCTION

Static program analysis is a widely used approach for inferring properties of pro-

gram behavior based on the structure and semantics of program source code. Static

analysis techniques play an important role in tools for performance optimization,

program understanding and maintenance, software testing, and verification of pro-

gram properties. Our work considers a number of interprocedural static analyses

which model the interactions among multiple procedures or methods due to calls

and shared memory locations. In particular, we focus on four interprocedural anal-

yses that play a foundational role in various software tools: points-to analysis, type

analysis, side-effect analysis, and dependence analysis (outlined in Section 1.1). Our

work addresses several challenges for adapting existing algorithms for these analyses

to handle features of modern Java software, such as the existence of large library

components, and distribution across multiple Java virtual machines (Section 1.2).

1.1 Static Analyses Considered in Our Work

Points-to analysis

The analysis of points-to relationships is a research problem that has received a

lot of attention in the last fifteen years, due to the important role it plays as an

1

enabling technology for a variety of other static analyses. As such analysis is in

general undecidable [32], a number of approximation algorithms have been proposed,

with different trade-offs between analysis cost and the precision of the results.

There are several algorithmic dimensions that affect the cost/precision trade-offs

of points-to analyses. The most important dimensions are the following:

• Flow sensitivity. Flow-insensitive analyses do not take into account the flow of

control within a procedure (or a method), and compute a single set of points-

to relationships for the entire procedure. In contrast, flow-sensitive analyses

compute a separate solution at each program point inside a procedure. Theo-

retically, flow-sensitive analyses are more expensive and more precise than their

flow-insensitive counterparts.

• Context sensitivity. Context-insensitive analyses do not attempt to distinguish

among the different invocation contexts of a procedure. Context-sensitive anal-

yses employ some abstraction of the calling context; as a result, such analyses

are potentially more precise and more expensive than context-insensitive ones.

In parameter-based context-sensitive analyses, calling context is modeled by us-

ing some abstraction of the values of the actual parameters at a call site, while

call-chain-based context-sensitive analyses represent the context with a vector

of call sites for the procedures that are currently active on the run-time call

stack.

• Representation for dynamically-allocated objects. There are various possible

representations for entities that are allocated dynamically, for example, due

to malloc calls in C or new expressions in C++ and Java. For analysis of

2

C, typically a separate abstract object (i.e., an analysis abstraction of a set

of run-time objects) is used for each malloc call site. For analysis of object-

oriented programs, the two most popular schemes are to use (1) one abstract

object per class, or (2) one abstract object per new expression. More precise

versions of these schemes have also been proposed: for example, by introducing

context-sensitive versions of abstract objects.

• Field sensitivity. A field-sensitive analysis computes a separate points-to solu-

tion for each field (e.g., object field in C++/Java or structure field in C/C++) of

each abstract object. A field-insensitive analysis computes a points-to solution

for the entire abstract object, without distinguishing the values of individual

fields. Some points-to analyses for object-oriented languages are field-based,

meaning that a separate solution is computed for each declared field without

distinguishing the incarnations of this field across different abstract objects.

• Directionality. This dimension typically applies to flow-insensitive analyses. An

equality-based analysis treats an assignment p = q as representing bi-directional

flow of values from p to q and from q to p, that is, the points-to solutions for

p and q are considered to be the same. A subset-based analysis treats such an

assignment as unidirectional flow of values from q to p; as a result, the points-to

solution for q is a subset of the points-to solution for p.

• Call graph construction. The calling structure of the program could depend on

points-to relationships, for example, due to function pointer calls in C and poly-

morphic calls in C++ and Java. Some analyses use a precomputed conservative

3

call graph, while others compute the call graph on the fly during the analysis,

as points-to relationships are discovered.

In Chapter 2, we describe a specific subset-based, context-insensitive, flow-insensitive,

field-sensitive points-to analysis with on-the-fly call graph construction in the context

of RMI applications.

Type analysis

Type analysis computes a static approximation of the set of types for the run-time

values of program variables and expressions. In the context of Java software, type

analysis can be thought of a form of points-to analysis in which dynamically allocated

objects are represented with one abstract object per class. Chapter 3 presents a

specific flow-insensitive, context-insensitive, subset-based, field-based type analysis

with on-the-fly call graph construction, and considers the problem of reducing the

cost of such analysis for Java applications built with large library components.

Side-effect analysis

Points-to analysis is a prerequisite for a variety of other analyses, for example

side-effect analysis. Side-effect analysis (or MOD analysis) determines the memory

locations that may be modified by the execution of a program statement. The infor-

mation computed by this analysis has a wide variety of uses in compilers, such as code

motion and partial redundancy elimination, and in software tools. Because the output

of a points-to analysis is required as an input for side-effect analysis, the precision of

this output affects the MOD solution. Thus the dimensions presented above for the

points-to analysis space directly affect the outcome of the side-effect analysis in terms

4

of cost and precision. In Chapter 2 we present a side-effect analysis for RMI applica-

tions based on a flow- and context-insensitive, field-sensitive, subset-based points-to

analysis.

Dependence analysis

In dependence analysis, points-to information is used typically to create the call

graph and to resolve memory reads and memory writes through pointers. If de-

pendence analysis is field-based, there is no need to distinguish accesses through

pointers, and only call graph information is needed. Thus, a type analysis solution

is sufficient input to the dependence analysis, in order to create the program call

graph in the presence of polymorphism. Chapter 4 presents a field-based flow- and

context-sensitive dependence analysis (based on an earlier field-based subset-based

type analysis) and addresses the problem of reducing analysis cost for applications

built with large libraries.

1.2 Two Challenges for Analysis of Modern Java Software

This section outlines two features of modern Java applications what present serious

challenges for existing approaches for static analysis.

Distributed Java applications. Since its introduction in 1995, Java has been recog-

nized as an excellent platform for creating enterprise solutions. Of particular interest

to our work is the use of Java for developing distributed server-side applications.

The Java distributed object protocol is built on the same basic architecture as gen-

eral remote objects protocols, which are designed to make an object on one computer

appear as if it is residing on a different computer. The distributed object architecture

is based on a network communication layer that is quite simple. Essentially there are

5

three parts to this architecture: the business object, the skeleton and the stub. The

stub and skeleton are responsible for making the object located on the server machine

appear as if it is running locally on the client machine. This is accomplished through

some kind of remote method invocation (RMI) protocol. The RMI protocol is used

to call methods over the network. CORBA, Java RMI, and Microsoft .NET all use

their own RMI protocols. Java RMI is the Java language version of an RMI protocol

and it is used as the underlying communication mechanism for other more complex

architectures, such as Enterprise Java Beans (EJB).

Large-scale applications. Java code characteristically consists of a large number

of classes and methods, the majority of them being grouped in JAR archives and

representing libraries (either the standard library produced by Sun or third party

libraries that provide specific functionality). Even applications that seem simple can

trigger the use of hundreds of classes because they call methods that are defined in

these external archives.

The majority of library classes are designed with reusability in mind. This is

clearly the case for Java standard library classes that are involved in any Java appli-

cation. This is usually also true about other library classes, including classes provided

by third-party vendors. The result is an architecture that can be viewed as layered,

because of the way classes are grouped into packages that do not necessarily have

knowledge of each other. Such features present significant challenges to existing al-

gorithms for static compile-time analysis.

Two such challenges that result directly from the features presented above are:

1. Traditional algorithms are designed for non-distributed software and cannot be

used for applications that run on multiple machines. For example, distributed

6

Java applications using RMI have complex semantics which existing static anal-

ysis are not capable of modeling.

2. Existing analysis algorithms are typically designed to operate on whole homo-

geneous programs, starting from scratch at each analysis execution. For Java

applications built with large libraries, the library code is analyzed together with

the application code as part of the whole program. This creates potential scal-

ability problems with respect to analysis time and memory usage, which could

limit the practical use of these analyses for real-world Java applications.

1.3 Contributions

We consider the important categories of static analyses outlined in Section 1.1,

and show how points-to analysis and side-effect analysis can be successfully general-

ized to handle RMI Java applications, with practical analysis cost (Chapter 2) and

how analysis cost can be reduced for applications built with large libraries, both for

type analysis (Chapter 3) and for dependence analysis (Chapter 4). The specific

contributions of this work are as follows:

• We define a theoretical model for the analysis of distributed Java applications.

We present an extension of points-to analysis for RMI-based applications, and

define the RMI-specific generalization of side-effect analysis. We also evaluate

experimentally these techniques on a collection of RMI programs.

• We define an incremental approach for analyzing Java applications built with

reusable components. We use precomputed summaries of these components

as input to the analysis of the client code. Summary generation algorithms

7

for type analysis and dependence analysis are defined, based on the general

theoretical framework of IDE dataflow analysis [68]. An experimental evaluation

of the running time and memory usage of the analyses on a collection of Java

programs indicates that significant cost reductions can be achieved with no loss

of precision.

8

CHAPTER 2

STATIC ANALYSIS OF OBJECT REFERENCES IN

RMI-BASED JAVA SOFTWARE

2.1 Introduction

Java Remote Method Invocation (RMI) is an object model for developing dis-

tributed applications in Java [44]. Using RMI, objects in one Java virtual machine

(JVM) can invoke methods on objects in other JVMs. RMI provides powerful fea-

tures such as object references that cross JVM boundaries, remote invocations that

can use entire object graphs as parameters, and distributed garbage collection. RMI

can either be used as a stand-alone middleware platform, or as the foundation for

more advanced architectures. For example, both Enterprise JavaBeans and Jini are

based on RMI and also provide additional middleware services.

Distributed applications play an important role in various commercial, scientific,

and engineering domains. The development of such applications poses numerous

problems related to software correctness, performance, and maintainability. For RMI

applications in particular, some approaches have been investigated for program under-

standing, performance optimizations, and software testing (e.g., [20,29,42,48–50,82]).

However, at present there is no work on establishing systematic foundations for static

9

analysis of RMI applications. The goal of our work is to take a significant step to-

wards defining such foundations; an earlier description of this investigation appeared

in [70,71].

The target of the work presented in this chapter is points-to analysis. Such anal-

ysis determines the objects to which locals, formals, and fields may point. This

information has a wide range of uses in other static analyses; in turn, the results of

these analyses are used in a variety of program understanding applications, testing

approaches, software verification techniques, and performance optimizations. There

has been a large body of work on points-to analysis; most of this work is summarized

in [32, 67]. A brief overview of existing results on points-to analysis is presented in

Chapter 5. However, these existing analyses cannot be applied directly to RMI-based

distributed Java applications. Thus, the builders of such applications cannot take

advantage of a large number of well-known static analyses (points-to analyses as well

as other popular analyses that require points-to information).

Theoretical Model. The first goal in this work is to establish the foundations

for points-to analysis of RMI-based Java applications. We define formally a particular

style of points-to analysis: flow- and context-insensitive subset-based analysis (i.e.,

Andersen-style analysis [2]). Our approach could easily be extended to flow- and

context-sensitive points-to analyses, and to analyses that are not subset-based. Such

extensions are well understood for non-distributed Java programs (e.g., [23, 47]) and

there are no conceptual difficulties in defining such extensions for our analysis.

The importance of these foundations is twofold. First, they provide a basis for

defining a wide range of points-to analyses for RMI applications, based on the large

number of such analyses for non-distributed programs. Second, they enable work

10

on RMI-based extensions of other popular static analyses (e.g., dependence analyses,

side-effect analyses, program slicing, change impact analyses, etc.).

Analysis Algorithm. The second goal is to define an algorithm for implement-

ing the points-to analysis. The algorithm is a generalization of an approach by Lhoták

and Hendren [37] for non-distributed Java programs. We introduce new techniques

that allow the analysis to represent the flow of remote object references, the effects of

remote invocations, and the remote propagation of object graphs through serializa-

tion. Furthermore, we present an approach for efficient modeling of the code in the

standard Java libraries; our experiments indicate that this approach is essential for

reducing the running time of the analysis.

Static Analyses for Program Understanding. The third goal of this work

is to describe three uses of points-to analysis for the purpose of understanding RMI

applications. First we discuss the use of the resulted call graph to answer questions

related to the inter-method and inter-component flow of control. Second, we outline

the use of points-to information to identify write-read dependencies due to remote

calls. In particular, we consider inter-component dependencies, in which components

running in two different JVMs potentially access the same memory location. Third,

we discuss the use of the points-to analysis to identify opportunities for improving

the analyzed program by reducing the cost of serialization at remote calls [82].

Analysis Implementation. The fourth goal of this work is to implement and

evaluate the points-to analysis. We present a preliminary experimental study on a

set of 12 RMI applications. Our initial results suggest that the analysis could be a

good candidate for a general-purpose points-to analysis of RMI-based programs.

11

—– Event —–

class Event implements Serializable {
public Date date() { return on; }
public String description() { return DPs; }
public Event(String a) { des = a; on = new Date(); }
private Date on; private String des; }

—– Event Listener —–

interface Listener extends Remote {
public void occurred(Event b); }

—– Event Channel —–

interface Channel extends Remote {
public void add(Listener c);
public void announce(Event d); }

Figure 2.1: Running example, part 1

2.2 Overview of Java RMI

The input to the points-to analysis contains the code for several components

C1, C2, . . . , Ck. The set of components will be denoted by C. For each component

Ci ∈ C, the analysis takes as input a set cls(Ci) = {X1, . . . , Xni
} of Java classes.

(“Classes” will refer to both Java classes and Java interfaces.) Each component is

executed in a separate JVM, typically on a different physical machine. Set cls(Ci)

is the complete set of classes that may be loaded at run time in the JVM that

executes component Ci. Note that an implementation of the RMI mechanism requires

additional helper classes that are generated automatically from classes in cls(Ci). For

example, in the default implementation of RMI by Sun, the rmic compiler produces a

variety of stub classes that implement the details of remote invocations. Such classes

are not part of the analysis input.

For any two components Ci and Cj, sets cls(Ci) and cls(Cj) are not necessarily

disjoint: it is possible for the same class to be loaded in the two virtual machines that

12

—– Event Channel Implementation: Component C1 —–

class MyChannel implements Channel extends UnicastRemoteObject {
private Listener[] all; private int num;
public MyChannel() {
Listener[] arr = new Listener[10]; all = arr; num = 0; }
public void add(Listener c) { all[num++] = c; }
public void announce(Event d) {
for(int i=0; i<num; i++) all[i].occurred(d); }
public static void main(String[] args) {
String channel id = args[0]; Channel e = new MyChannel();
Naming.bind(channel id,e); } }

—– Event Listener Implementation: Component C2 —–

class MyListener implements Listener extends UnicastRemoteObject {
public void occurred(Event b) {...}
public static void main(String[] args) {
String channel id = args[0];
Channel f = (Channel) Naming.lookup(channel id);
Listener g = new MyListener(); f.add(g);
g = new MyListener(); f.add(g); } }

—– Event Source Implementation: Component C3 —–

class EventSource {
public static void main(String[] args) {
String channel id = args[0];
Channel h = (Channel) Naming.lookup(channel id);
Event k = new Event("abc"); h.announce(k); } }

Figure 2.2: Running example, part 2

execute Ci and Cj. One example are the classes from the standard Java libraries. We

assume that the same version of the libraries is loaded in each JVM; thus, all library

classes are included implicitly in cls(Ci) for all Ci ∈ C.

Figures 2.1 and 2.2 show the example used in the rest of the chapter; this example

is based on a similar example from [22]. For simplicity, we exclude error-handling code

(e.g., code related to exceptions thrown by remote invocations). The example contains

events, listeners for these events, channels along which events are announced to the

listeners, and event sources that create the events and send them to the channels. We

consider the following configuration of components:

13

cls(C1) = {Event, Listener, Channel, MyChannel}
cls(C2) = {Event, Listener, Channel, MyListener}
cls(C3) = {Event, Listener, Channel, EventSource}

In C1, MyChannel.main creates an instance of remote class MyChannel and reg-

isters it with a naming service. (The naming service will be discussed shortly.) In

C2, MyListener.main uses the naming service to obtain a reference to the re-

mote channel object, and then registers with the channel two remote listener objects.

Similarly, in C3, EventSource.main obtains a reference to the remote channel ob-

ject and then announces an event on the channel. In MyChannel.announce, the

channel object dispatches the event to the registered remote listeners.

2.2.1 Remote Objects, References, and Calls

A remote class implements the interface java.rmi.Remote. This is a marker

interface that does not contain any methods or fields. A remote object is any in-

stance of a remote class. Class java.rmi.server.UnicastRemoteObject,

which implements Remote, provides default support for point-to-point object ref-

erences using TCP. The simplest mechanism for creating remote classes is to subclass

UnicastRemoteObject. Other mechanisms are also possible [44], but they are

conceptually similar and are beyond the scope of our work.

A remote reference represents a connection between two different JVMs. Similarly

to an ordinary (non-remote) object reference, a remote reference is a pointer to an

object. The notion of a remote reference is an abstraction: in reality, a component

has a reference to a stub object in its own JVM. Typically the existence of these stub

objects is ignored, and instead RMI programming uses the abstraction of a reference

14

pointing directly to the remote object. An invocation through a remote reference is

a remote invocation.

Remote references can be created in several ways. For example, a remote invo-

cation can take as an actual parameter an ordinary reference to a locally-created

remote object o. As a result of the call, the remotely-invoked method takes as for-

mal parameter a remote reference to o. Another mechanism for obtaining remote

references is the use of some naming service. The calls to java.rmi.Naming in

the running example illustrate such use. A naming service is a separate component

whose purpose is to allow registration and lookup of remote objects. Sun’s RMI im-

plementation provides a default naming service referred to as the RMI registry. A

call Naming.bind(name,x) inserts in the registry a reference to the remote object

o referred to by x, under the given string name. In the running example, the two

invocations Naming.lookup(channel id) are used to initialize local variables f

and h with remote references to the remote object of class MyChannel.

While the RMI registry provides a simple naming service, in general there could be

other mechanisms for establishing initial “bootstrapping” remote references between

two components [44]. Here by “bootstrapping” we mean references that are created

with the help of some external mechanism (e.g., a naming service) in order to establish

initial connections between components. To model such initial references, we assume

that the analysis input contains information about the variables through which such

references are created. For each pair of components (Ci, Cj) ∈ C×C, the analysis input

contains a set Ii→j of pairs of local variables. Each pair (v1, v2) represents a use of the

external mechanism which results in creating remote references from v2 in Cj to all

remote objects pointed-to by v1 in Ci. For our example, I1→2 = {(e, f)} and I1→3 =

15

{(e, h)}. Sets Ii→j depend on the specific mechanism used by the application. It may

be possible to construct these sets automatically in some simpler cases (e.g., when

using the default RMI registry). However, since in general the external mechanism

for creating initial remote references could be application-specific, programmer input

may be required to obtain the information in Ii→j.

2.2.2 Call-by-Copy through Serialization

When actual parameters of a remote call are references to non-remote objects

oi, the parameter passing mechanism used is call-by-deep-copy. Objects oi together

with all other objects reachable from them are subject to serialization. This pro-

cess encodes the object graph starting from oi and recreates it in the target JVM.

For example, consider the call to announce in EventSource.main. In this call

the actual parameter is a (non-remote) reference to an instance o of class Event.

The class is serializable because it implements interface java.io.Serializable.

Fields on and des of o refer to serializable objects. Information about o and the two

associated instances of Date and String is sent across the network. The “mirror

image” of this object graph is created in C1, and formal d in MyChannel.announce

points to the copy of o. This process does not invoke the constructor of Event in C1

on the copy of o. The two calls to occurred trigger this process again, and in the

JVM for C2 the object graph is recreated twice. Our analysis assumes that objects

are serialized using the default serialization mechanism [45], and the application does

not use custom serialization methods (e.g., methods such as writeObject); this

assumption is checked by our implementation.

16

2.3 Points-to Analysis

This section defines the theoretical foundations for points-to analysis of RMI-

based Java applications. The proposed analysis is subset-based, flow- and context-

insensitive, but it should be straightforward to introduce flow sensitivity and various

forms of context sensitivity.

2.3.1 Variables, Objects, and Points-to Graphs

The analysis can be defined in terms of several sets. Let Cls be the union of all

sets of classes cls(Ci) for all components Ci. We will denote by L the set of all local

variables, formal parameters, and implicit parameters this in Cls . Similarly, let F

and SF be the sets of all instance fields and static fields in Cls , respectively. Finally,

let S be the set of all allocation expressions of the form new X(..) in Cls .

The analysis is defined in terms of a set V of variable names for reference variables,

and a set O of object names for run-time objects. Figure 2.3 shows some of these

names for the running example. The set V of variable names is a subset of (L∪SF)×C.

A pair (v, Ci) ∈ V represents a local variable, a formal parameter, or a static field v

in some class from cls(Ci) such that v exists in the JVM executing Ci. The variable

names will be denoted by vi, where the superscript corresponds to the component.

For the same v ∈ L ∪ SF there may be multiple vi ∈ V , each one corresponding to a

different Ci.

There are two categories of object names o ∈ O. First, o = (s, Ci) ∈ S × C

corresponds to run-time objects that are created by object allocation site s when this

site is executed in the JVM for component Ci. Each such object is in the address

space of that same JVM. Typically we will use si to denote such an object name; as

17

Figure 2.3: Partial points-to graph for the running example

with variable names, the superscript indicates the corresponding component. Each

si is labeled as remote or non-remote, depending on whether it is an instance of a

remote class.

Remote calls can create copies of serializable objects. We use object names o =

(s, Ci, Cj) ∈ S ×C ×C to represent such “copy objects”. The names will typically be

denoted by si,j. Such a name corresponds to a run-time object which exists in the

JVM for component Cj and was created as a (transitive) copy of a “normal” object

which was created in the JVM for Ci by allocation site s. For example, let sDate be the

allocation site new Date() in the constructor of Event in the running example.

Name s3
Date denotes the instance of Date which is created in C3. Due to the remote

call to announce from C3 to C1, a copy of that Date object is created in C1; the

name representing this copy object will be s
3,1
Date . The remote calls to occurred

from C1 to C2 create in C2 two run-time copies of the copy object from C1. Both

objects are transitive copies of the original object from C3, and are represented by

18

object name s
3,2
Date . Due to the properties of RMI, names si,j can correspond only to

non-remote objects.

The analysis builds a points-to graph in which the edges represent points-to re-

lationships. An edge (vi, o) ∈ V × O shows that a variable represented by vi may

point to an object represented by o. An edge (o1, f, o2) ∈ O×F ×O shows that some

object represented by o1 may store in its f field a reference to an object represented

by o2. An edge (vi, o) could be either a remote edge, denoted by (vi, o)R, or a local

edge, denoted by (vi, o)L. The same subscripts will also be applied to edges (o1, f, o2).

For (vi, o)L both the variable and the target object must belong to the same JVM.

Thus, such edges are either of the form (vi, si)L or (vi, sk,i)L. Note that si could be

a remote object (i.e., an instance of a class which implements Remote), but the

reference to it is still an ordinary local reference. Edge (vi, sj)R represents a points-to

relationship through a remote reference, and sj is always a remote object.1 Since copy

objects created due to serialization cannot be remote, it is not possible to have an

edge (vi, sk,j)R. For (o1, f, o2)L the two objects belong to the same JVM; either one

(or both) could be a copy object sk,i instead of an ordinary object si. For (o1, f, o2)R

object o2 is always a remote object. Figure 2.3 shows several of the points-to edges

for the running example. Edges labeled with [] represent points-to relationships for

array elements.

1It is possible to have i = j and the reference to be remote at the same time. For example, if Ci

creates a remote object, registers it with a naming service, and then immediately looks it up, the
component will obtain a remote reference to the object. Calls through this reference will be remote
calls that are handled by the RMI infrastructure.

19

2.3.2 Effects of Program Statements

For brevity, we discuss only the following statements (our implementation handles

all other kinds of statements):

• Direct assignment: v1 = v2

• Instance field write: v1.f = v2

• Instance field read: v1 = v2.f

• Static field write: X.f = v

• Static field read: v = X.f

• Object creation: v = new X

• Static invocation: w = X.m(v1,. . .,vk)

• Instance invocation: w = v0.m(v1,. . .,vk)

In the above statements, vi ∈ L denotes a local variable or a formal parameter

(including this).

The analysis constructs a points-to graph G for the entire application, as well as

component-specific sets of reachable methods Reach i for all Ci ∈ C. In the beginning,

G is empty and each Reach i contains the main method of the corresponding Ci.
2 For

each statement that appears in some method from Reach i for some i, the analysis

adds to G nodes and edges that represent the effects of the statement, and updates

all affected sets Reachj.

2Actually, the initialization of Reach i should also include all library methods that are executed
at JVM startup. Furthermore, during the analysis Reach i should be updated with static initializers,
finalizers, and run methods of threads. Our implementation handles these issues.

20

The rules for handling different statements are represented as function definitions

of the form f(G) = G′, where G and G′ are points-to graphs. The first rule R1

considers the references that are created with the help of an external mechanism such

as a naming service:

R1 for each (vi, wj) ∈ Ii→j such that vi is a local in some
m′ ∈ Reach i and wj is a local in some m′′ ∈ Reachj :
f(G) = G ∪ { (wj, o)R | (vi, o)x ∈ G ∧ o is remote }

Points-to edge (vi, o)x could be either local or remote: the object exported by com-

ponent Ci is either created locally, in which case the edge is (vi, o)L, or is obtained

from some other component, in which case the edge is (vi, o)R.

Suppose the statement under consideration occurs in some method from Reach i

in component Ci. For an assignment v1 = v2, we use the following rule R2:

R2 for v1 = v2 : f(G) = G ∪ { (vi
1, o)x | (v

i
2, o)x ∈ G }

The kind x of the new edge is the same as the kind of the old one (x ∈ {L,R}). The

sources of the point-to edges are the component-specific copies vi
1 and vi

2 of v1 and v2.

In the following rules, fld represents an instance field for an object.

R3 for v1 = v2.fld : f(G) = G ∪ { (vi
1, o2)x | (v

i
2, o1)L ∈ G ∧ (o1,fld , o2)x ∈ G }

R4 for v1.fld = v2 : f(G) = G ∪ { (o1,fld , o2)x | (v
i
1, o1)L ∈ G ∧ (vi

2, o2)x ∈ G }

In reading and writing of object fields, only local points-to edges are considered

because fields of remote objects are not accessible through remote references.

In the following rules, fld represents a static field of class X.

R5 for v = X.fld : f(G) = G ∪ { (vi, o)x | (X.fld i, o)x ∈ G }
R6 for X.fld = v : f(G) = G ∪ { (X.fld i, o)x | (v

i, o)x ∈ G }

Static fields are treated similarly to local variables. Hence, these rules are essentially

the same as the rules for v1 = v2, and they use the component-specific copy X.fld i of

21

static field X.fld .

R7 for v = new X : f(G) = G ∪ { (vi, si)L }

Here s ∈ S is the allocation site corresponding to the new expression. Even if the

newly created object is remote (i.e., an instance of a class that implements Remote),

the reference to it is an ordinary local reference.

R8 for w = X.m(v1, . . . , vk) : f(G) = G ∪
{ (pi

t, o)x | (v
i
t, o)x ∈ G ∧ 1 ≤ t ≤ k } ∪ { (wi, o)x | (ret

i, o)x ∈ G }

In this rule pt are the corresponding formals of the called static method X.m. We

use ret to denote a special artificial local in X.m which is assigned all and only

return values of the method; static analyses often introduce such helper variables for

convenience. The effects of parameter passing and return values are essentially the

same as in rule R2.

R9 for w = v0.m(v1, . . . , vk) : f(G) = G ∪
{ResolveLocal(G,m, o, vi

1, . . . , v
i
k, w

i) | (vi
0, o)L ∈ G }∪

{ResolveRemote(G,m, sj, vi
1, . . . , v

i
k, w

i) | (vi
0, s

j)R ∈ G }

For calls made through local references we have

ResolveLocal(G,m, o, vi
1, . . . , v

i
k, w

i)
let m′(p0, p1, . . . , pk, ret) be the result of dispatch(o,m)
add m′ to Reach i

return { (pi
0, o)L }∪

{ (pi
t, o

′)x | (v
i
t, o

′)x ∈ G ∧ 1 ≤ t ≤ k }∪
{ (wi, o′)x | (ret

i, o′)x ∈ G }

The run-time target method m′ is determined based on the type of o and on the

compile-time target m, using helper function dispatch which encodes the rules for

run-time virtual dispatch. The implicit formal this in m′ is represented by p0, and

the explicit formals are p1, . . . , pk.

22

For remote invocations from component Ci to a remote object sj in component

Cj, we have

ResolveRemote(G,m, sj, vi
1, . . . , v

i
k, w

i)
let m′(p0, p1, . . . , pk, ret) be the result of dispatch(sj,m)
add m′ to Reachj

return { (pj
0, s

j)L }∪
{ (pj

t , o
′)R | (vi

t, o
′)x∈G ∧ 1 ≤ t ≤ k ∧ o′ is remote}∪

{ (wi, o′)R | (ret j, o′)x ∈ G ∧ o′ is remote }∪
ResolveSerialization(G, vi

1, . . . , v
i
k, p

j
1, . . . , p

j
k)∪

ResolveSerialization(G, ret j, wi)

The invoked remote method m′ in component Cj is determined based on the same

rules for virtual dispatch that are used for ordinary non-remote calls [44]. The in-

vocation creates a local points-to edge from this in m′ to the remote object sj.

For actual parameters vi
t that point to remote objects o′, remote references to o′ are

created for the corresponding formals p
j
t of m′. Note that edge (vi

t, o
′) could be either

local or remote. If the return value of m′ is a (local or remote) reference to a remote

object o′, the left-hand-side variable wi at the call site starts pointing remotely to o′.

Functions ResolveLocal and ResolveRemote can be easily augmented to construct

the call (multi)graph of the application. The nodes in the call graph are pairs (m, i),

where method m belongs to Reach i. The edges correspond to call statements: if

statement st in method m in component Ci invokes method n in component Cj

(i = j or i 6= j), the call graph contains an edge from (m, i) to (n, j), labeled with st .

Our implementation builds the call graph on the fly, during the analysis.

2.3.3 Modeling of Non-Remote Parameters

Function ResolveSerialization models parameter passing for non-remote actual

parameters. Recall that for each object name si which represents non-remote seri-

alizable run-time objects created by allocation site s in component Ci, the analysis

23

defines a set of object names si,j for copy objects, one for each component Cj. For

convenience, for each component Cj we define the following map µj:

• µj(s
i) = si,j when si is a non-remote serializable object created in some Ci

• µj(s
k,i) = sk,j when sk,i is an object created in some Ci as a deserialized copy

of ordinary object sk

• µj(s
i) = si, when si is a remote object in some Ci

Given an object name o which represents run-time objects in some component Ci,

object name µj(o) represents the corresponding run-time objects in Cj.

The effects of a remote call v0.m(v1, . . . , vk) on non-remote parameters are as

follows. The object graph reachable from v1, . . . , vk is traversed according to the

rules described below. All traversed non-remote serializable objects are serialized

and recreated in the target component. This process can be described by defining a

subgraph Copied :

• If (vi
t, o)L ∈ G and o is a non-remote serializable object, then (vi

t, o)L ∈ Copied

• If o ∈ Copied ∧ (o,fld , o′)L ∈ G, where fld is a non-transient field and o and o′

are non-remote serializable objects, then (o,fld , o′)L ∈ Copied

• If o ∈ Copied ∧ (o,fld , o′)x ∈ G, where fld is a non-transient field, o is a non-

remote serializable object, and o′ is a remote object, then (o,fld , o′)x ∈ Copied

• Copied is the smallest set with these properties

If a field is declared as transient, its value is not subjected to further serialization. If a

non-transient field points to a remote object (either locally or remotely; x ∈ {L,R}),

24

the traversal stops and the remote object is not serialized. However, if the field

points to a non-remote object, serialization is attempted; if the pointed-to object is

not serializable, an exception is thrown. The definition of Copied leads to

ResolveSerialization(G, vi
1, . . . , v

i
k, p

j
1, . . . , p

j
k) =

{ (pj
t , µj(o))L | (vi

t, o)L ∈ Copied ∧ o is n.r.s. } ∪
{ (µj(o),fld , µj(o

′))L | (o,fld , o′)L ∈ Copied ∧ o, o′ are n.r.s. } ∪
{ (µj(o),fld , µj(o

′))R | (o,fld , o′)x ∈ Copied ∧ o is n.r.s. ∧ o′ is remote }

Here “n.r.s.” stands for “non-remote but serializable”. The serialization mechanism

initializes a copy object (i.e., a deserialized object) not by invoking a constructor of

its class, but rather by invoking the no-arguments constructor of the “lowest” non-

serializable superclass. It is easy to add this invocation to the rules, and for simplicity

we omit this detail from the presentation.

2.4 Analysis Algorithm

This section describes an algorithm for implementing the points-to analysis. Our

approach is based on techniques proposed by Lhoták and Hendren [37] for analysis of

non-distributed Java applications. We define several extensions and generalizations

of their approach, in order to enable analysis of distributed programs.

2.4.1 Pointer Assignment Graph

The analysis uses a data structure referred to as a pointer assignment graph

(PAG). Nodes in this graph represent memory locations or expressions that refer

to such locations. For a name vi ∈ V , there is a PAG node node(vi) corresponding to

this name. There are also PAG nodes of the form node(vi.fld) for each instance field

fld accessed through vi. Similarly, for each object name o ∈ O, there are PAG nodes

node(o) and node(o.fld).

25

v = new X v1 = v2

node(si) −→ node(vi) node(vi
2) −→ node(vi

1)

v1 = v2.fld v1.fld = v2

node(vi
2.fld) −→ node(vi

1) node(vi
2) −→ node(vi

1.fld)

v = X.fld X.fld = v

node(X.fld i) −→ node(vi) node(vi) −→ node(X.fld i)

Figure 2.4: Creation of PAG edges

The edges of the graph represent the flow of information between the nodes. For

example, if a statement v1 = v2 belongs to some method from Reach i, the PAG

contains an edge node(vi
2) −→ node(vi

1). Some of the rules for creating PAG edges

are shown in Figure 2.4. Each rule x
y

should be read as “if statement x belongs to

some method from Reach i, then edge y is in the PAG”. Whenever the analysis adds

a method to Reach i (as described later), the statements in the body of that method

are processed and the corresponding PAG edges are created.

A remote edge node(vi)
remote
−→ node(wj) shows that there is a flow of values from

a variable v in component Ci to a variable w in component Cj. The following rule

for adding remote edges considers variables that are used to create remote references

through an external mechanism such as a naming service:

(vi, wj) ∈ Ii→j

node(vi)
remote
−→ node(wj)

Whenever the methods that contain locals v and w become reachable (in Ci and Cj,

respectively) the new edge is added to the PAG. Two examples of such edges are

given in the partial PAG shown in Figure 2.7. Edge node(e1)
remote
−→ node(f 2) shows

26

node(vi) −→ node(wi)
node(si) −→ node(vi) o ∈ Ptx(v

i)

si ∈ PtL(vi) o ∈ Ptx(wi)

node(vi) −→ node(wi.fld) node(vi.fld) −→ node(wi)
o ∈ Ptx(v

i) o ∈ PtL(vi)
o′ ∈ PtL(wi) o′ ∈ Ptx(o.fld)

o ∈ Ptx(o′.fld) o′ ∈ Ptx(wi)

node(vi) −→ node(X.fld i) node(X.fld i) −→ node(vi)
o ∈ Ptx(v

i) o ∈ Ptx(X.fld i)

o ∈ Ptx(X.fld i) o ∈ Ptx(vi)

node(vi)
remote
−→ node(wj) node(o.fld)

remote
−→ node(µj(o).fld)

o ∈ Ptx(v
i) o′ ∈ Ptx(o.fld)

o is remote o′ is remote

o ∈ PtR(wj) o′ ∈ PtR(µj(o).fld)

Figure 2.5: Propagation of points-to information

that f in MyListener.main in component C2 may be assigned remote references

to the remote objects pointed-to by e in MyChannel.main in C1. Similarly, edge

node(e1)
remote
−→ node(h3) is created for h in EventSource.main in C3.

Values can also flow between components through remote calls. Remote edges are

used to represent the flow of values from actual to formal parameters at such calls.

For example, the remote calls to add in MyListener.main use g as an actual pa-

rameter. In Figure 2.7, there is a remote edge from g2 to the corresponding formal pa-

rameter c1 in add. Similarly, the remote call to announce in EventSource.main

uses k as an actual parameter, and there is an edge from k3 to formal d1. The rules

for creating and using such PAG edges will be described shortly.

27

2.4.2 Points-to Sets

PAG edges are used to propagate information about points-to relationships in-

volving the nodes. For each PAG node node(vi) we define two points-to sets PtL(vi)

and PtR(vi) representing the local and remote points-to relationships for vi. The

notation Ptx is used to represent either one of these sets. If Ptx occurs in both parts

of a rule, x refers to the same element of {L,R} in both parts.

The first six rules in Figure 2.5 correspond to R2 through R7 from Section 2.3.

For example, in Figure 2.1, consider the creation of a new instance of MyChannel in

MyChannel.main in C1. The analysis uses object name s1
MyChannel to represent this

allocation site. The rules in Figure 2.4 and Figure 2.5 result in adding this object

name to PtL(e1). In Figure 2.7, this points-to set is shown under the PAG node

representing e1. As a result of the invocation of the constructor of MyChannel,

PtL for this inside the constructor also contains this name. The array creation

expression inside the constructor is represented by object name s1
ListenerArray , and this

name is added to PtL(arr 1). Because of the assignment this.all = arr and the

corresponding edge node(arr 1) −→ node(this1.all), the third rule from Figure 2.5 is

applied. As a result, a PAG node s1
MyChannel .all is created and s1

ListenerArray is added

to its local points-to set, as shown in Figure 2.7.

The last two rules in Figure 2.5 consider PAG edges that are labeled as “remote”,

and therefore represent the creation of remote references in the target component

Cj. For a remote edge node(vi)
remote
−→ node(wj), the algorithm considers all objects

o ∈ PtL(vi) ∪ PtR(vi). If o is a remote object, it is added to PtR(wj). Remote

propagation of values can also occur due to non-remote serializable objects. An edge

node(o.fld)
remote
−→ node(µj(o).fld) represents the flow of values from an object o in

28

component Ci to its corresponding copy object µj(o) in Cj; the definition of map µj

was given in Section 2.3.3. As described below, such edges are created for non-remote

serializable objects o and their non-transient fields fld to represent remote calls in

which actual parameters are references to non-remote objects.

2.4.3 Processing of Calls

For a static call w = X.m(v1, . . . , vk), let m(p1, . . . , pk, ret) be the invoked static

method. If the call occurs in some method in Reach i, the analysis adds m to the set

of reachable methods and creates the corresponding PAG edges, as described by the

following rule:

m ∈ Reach i

node(vi
t) −→ node(pi

t)
node(ret i) −→ node(wi)

The new PAG edges are ordinary non-remote edges because static calls take place in

the same component.

The first two rules in Figure 2.6 describe the processing of instance calls. These

rules are applied for a call statement w = v0.m(v1, . . . , vk) whose enclosing method

belongs to Reach i. As a result of processing the statement, new edges are added to

the PAG and the called method is added to the set of reachable methods for the

appropriate component. Subsequent additions to the points-to sets of vi
0 also trigger

applications of the rules. In the case of a remote call, PAG edges labeled as “re-

mote” are created from actual to formal parameters; the fifth rule in Figure 2.5 is

subsequently used to propagate information along such edges. A similar PAG edge

is created to represent the effects of return values from remote calls. For example,

consider the calls f.add(g) in MyListener.main. Since the remote points-to set

of f 2 contains s1
MyChannel , a remote PAG edge is added from actual parameter g2 to

29

o ∈ PtL(vi
0) sj ∈ PtR(vi

0)
dispatch(o,m) produces dispatch(s j ,m) produces
m′(p0, p1, . . . , pk, ret) m′(p0, p1, . . . , pk, ret)

m′ ∈ Reach i m′ ∈ Reachj

o ∈ PtL(pi
0) sj ∈ PtL(pj

0)

node(vi
t) −→ node(pi

t) node(vi
t)

remote
−→ node(pj

t)

node(ret i) −→ node(wi) node(ret j)
remote
−→ node(wi)

node(vi)
remote
−→ node(wj) node(o.fld)

remote
−→ node(µj(o).fld)

o ∈ PtL(vi) o′ ∈ PtL(o.fld)
o is non-remote serializable o′ is non-remote serializable

fld is not transient fld2 is not transient

µj(o) ∈ PtL(wj) µj(o′) ∈ PtL(µj(o).fld)

node(o.fld)
remote
−→ node(µj(o).fld) node(o′.fld2)

remote
−→ node(µj(o

′).fld2)

Figure 2.6: Processing of calls

formal c1. The propagation of the points-to set of the actual parameter along this

edge (using the fifth rule in Figure 2.5) adds object names s2
MyListener1 and s2

MyListener2

to PtR(c1), indicating that c in component C1 may contain remote references to

the two remote instances of MyListener created by C2. The subsequent process-

ing of the body of add propagates these two names to the remote points-to set of

s1
ListenerArray .element . This node represents the elements of the array; essentially, we

treat the array as an instance of an artificial class which has a single field element

pointing to all elements of the array.

The remote PAG edges created at remote calls also model the effects of object

serialization for non-remote actual parameters. To illustrate this process, consider

the call to announce in EventSource.main. The remote PAG edge from actual

30

parameter h3 to formal d1 is used to propagate the non-remote serializable s3
Event to C1.

As a result, a copy object s
3,1
Event is created in C1 based on the third rule in Figure 2.6.

This copy object is added to the local points-to set of d1. The original object s3
Event

has fields on and des that point to two serializable objects: s3
Date and s3

”abc”. The

analysis creates remote PAG edges from s3
Event .des to s

3,1
Event .des and from s3

Event .on

to s
3,1
Event .on. The last rule in Figure 2.6 is applied to these two edges, and as a result

copy objects s
3,1
Date and s

3,1
”abc”

are created and added to the appropriate points-to sets

in C1. The subsequent call to occurred from C1 to C2 creates additional remote

PAG edges, and new copy objects s
3,2
Event , s

3,2
Date , and s

3,2
”abc”

are created and propagated

to points-to sets in C2. In the general case, this iterative process is equivalent to

function ResolveSerialization from Section 2.3.2.

2.4.4 Worklist Algorithm

The analysis can be implemented using a worklist algorithm which is a general-

ization of an algorithm for the non-distributed case [36, 37]. Several new techniques

need to be introduced to this existing algorithm in order to handle remote references,

remote calls, serialization, and on-the-fly call graph construction. The elements of

the worklist are PAG nodes whose local or remote points-to sets have changed. When

a worklist element is processed, new elements are added to the points-to sets of other

PAG nodes, as defined by the rules presented above. The propagation can also result

in (1) finding new reachable methods, (2) creating new PAG edges for actual-formal

parameter pairs and for method return values, and (3) creating new remote PAG

edges to represent the effects of serialization. New reachable methods and new PAG

31

Figure 2.7: Sample PAG nodes, edges, and points-to sets.

edges trigger additional propagation. The process continues until no additional in-

formation could be inferred using the rules defined above. Additional details about

the analysis algorithm are provided in the appendix at the end of the thesis.

2.5 Handling of the Standard Java Libraries

The standard Java libraries are implicitly added to the set of classes cls(Ci) for

each component. Based on the analysis definition presented earlier, library variables

and objects will have multiple copies. For example, if a library method m has a local

variable v, the points-to analysis will use multiple copies of v—that is, a separate name

vi for each component Ci. Object names are treated similarly. Our experiments with

this approach showed that the majority of analysis time is spent on processing the

32

relevant code from the libraries. Even when the size of the non-library code is small,

the necessary conservative treatment of various features from the libraries (e.g., JVM

startup, initialization of static fields, dynamic class loading and reflection, finalizers,

etc.) requires the analysis to consider a large number of library methods as reachable.

The replication of library variables and objects results in significant running time for

the analysis.

To reduce running time, we designed and implemented an alternative technique

for handling the standard libraries. The basic idea is to create only one replica of a

library entity. For a variable v, we use a single name v lib instead of multiple names

vi. For an object allocation site s, there is a single object name slib . The analysis

also maintains a set of reachable methods Reach lib , and library methods are added to

this set rather than to the component sets Reach i.

The rules for PAG construction can be modified in a corresponding manner. For

example, if an assignment v1 = v2 is in the body of a reachable library method

m ∈ Reach lib , the analysis creates PAG edge node(vlib
2) −→ node(vlib

1). As another ex-

ample, consider an assignment v = X.fld from a static field to a local variable v. If the

assignment appears in a reachable library method, edge node(X.fld lib) −→ node(vlib)

should be created. On the other hand, if the assignment is discovered in some reach-

able non-library method mi ∈ Reach i, one of the following edges should be created:

node(X.fld lib) −→ node(vi) if X is a library class, or node(X.fld i) −→ node(vi) oth-

erwise. As another example, whenever a non-library method calls a library method,

the actual-to-formal PAG edges are of the form node(vi) −→ node(plib). Likewise,

edges node(ret lib) −→ node(wi) are created to represent the flow of return values.

33

Similar treatment is necessary for a callback from a library method to a non-library

one.

The propagation of points-to sets along PAG edges follows the rules from Sec-

tion 2.4. However, it is possible to filter out some of the objects that are being

propagated, in cases when the component labels do not match. For example, con-

sider some o ∈ PtL(vlib) and an edge node(vlib) −→ node(wi). If o is a non-library

object sj, it is propagated to the points-to set of wi only if i = j. More generally,

filtering can be used to ensure that the local points-to set of any vi or si.fld does

not contain any non-library objects s
j
2 for which i 6= j. Note that this filtering can-

not be applied to remote points-to sets, because the elements of these sets could be

non-library objects created in arbitrary components.

After the completion of the analysis, the local points-to sets for non-library vari-

ables and objects are processed to replace names slib . For example, if PtL(vi) contains

slib , this object name can stand only for objects created in component Ci; thus, slib can

be replaced by si. Note that such a replacement cannot be performed for PtR(vi),

because in this case slib represents objects in any component, and not necessarily

objects in Ci.

The full-replication approach from Section 2.3 and the zero-replication approach

from above are the two endpoints of the design spectrum for handling of the standard

libraries. Since the degree of replication has a direct effect on both analysis cost and

analysis precision, future investigations should be performed in order to understand

thoroughly this entire spectrum of cost-precision trade-offs.

34

2.6 Analyses for Program Understanding

Points-to information is a frequently required “enabler” for a wide range of other

techniques. This section discusses briefly three specific uses of the points-to analysis

for the purposes of program understanding of RMI-based applications. Of course,

many other uses are possible (e.g., for program slicing, change impact analysis, etc.).

2.6.1 Call Graph

As discussed Section 2.3.2, the analysis performs on-the-fly call graph construc-

tion. The resulting graph can serve as the starting point for many other static anal-

yses. The call graph can also be used to answer questions such as “Given a call

statement st in component Ci, which methods in other components may be invoked

by st , directly or transitively?”. This and similar questions can enhance the under-

standing of the inter-method and inter-component flow of control, especially when

combined with GUI-based browsing tools that display graphically the relevant parts

of the call graph.

2.6.2 Data Dependencies

Consider a component Ci and some object si created in this component. A state-

ment st i
1 in Ci could potentially read or write some field of si (either directly or

transitively through its callees). Now consider a call site st j
2 in some other compo-

nent Cj, and suppose st j
2 invokes some remote method from Ci. Due to the remote

call, the execution of st j
2 could (transitively) read or write some field of object si.

Thus, it is possible to have a read-write or write-read dependence between st i
1 and

35

st j
2. The pair (st i

1, st
j
2) represents a potential inter-component data dependence be-

tween Ci and the caller component Cj. Furthermore, consider another call site st k
3 in

a third component Ck, and suppose stk
3 invokes some remote method from Ci. It is

possible to have a dependence between st j
2 and stk

3 due to some field of si. In this case

the inter-component dependence is between Cj and Ck, but the memory responsible

for the dependence is in the JVM for Ci.

We have defined and implemented an algorithm which, for a given component

Ci, computes all pairs (st i
1, st

j
2) and (st j

2, st
k
3) that correspond to potential data de-

pendencies, as defined above. To illustrate the algorithm, consider component C1

from Figure 2.1. The call h.announce(k) in main in C3 creates a copy object

s
3,1
Event in C1 (based on s3

Event in C3) and initializes its fields on and des with copy

objects s
3,1
Date and s

3,1
”abc”

. Consider now all[i].occurred(d) in announce in C1.

Since the local points-to set of actual parameter d1 contains s
3,1
Event , we can determine

that due to the serialization, the values of fields s
3,1
Event .on and s

3,1
Event .des are read.

Thus, there is a write-read dependence between the call to announce in C3 and

the call to occurred in C1, due to memory locations s
3,1
Event .on and s

3,1
Event .des . As

another example, consider f.add(g) in main in C2 and h.announce(k) in main

in C3. The calls to add results in a modification of s1
MyChannel .num, due to num++.

Since announce reads the value of s1
MyChannel .num, there is a dependence between

f.add(g) in C2 and h.announce(k) in C3.

The computation of such dependencies starts by examining the local points-to set

at reads and writes of expressions v.fld . For each statement st i ∈ Reach i of the form

v1.fld = v2, the analysis defines a set Mod(st i) = {o.fld | o ∈ PtL(vi
1)}. Similarly, for

v1 = v2.fld we have Use(st i) = {o.fld | o ∈ PtL(vi
2)}. The reads and writes of static

36

fields are processed in a similar fashion. The analysis also needs to take into account

the reads and writes performed during object serialization and deserialization. For

an instance call w = v0.m(v1, . . . , vk) where PtR(vi
0) 6= ∅, set Use(st i) should include

{o.fld | (o,fld , o′)x ∈ Copied ∧ x ∈ {L,R}}, where Copied is defined in Section 2.3.3.

In other words, any object field that is examined during the serialization process

should be part of the Use set of the corresponding call. Note that we include both

o.fld that point to non-remote objects and o.fld that point to remote objects. For the

latter, even though serialization is not applied (the remote object in not serialized),

the object field is still examined by the serialization mechanism. In addition, the

remote call initializes the deserialized objects in the callee component Cj; therefore,

Mod(st i) should include {µj(o).fld | o.fld ∈ Use(st i)}.

After the initial Mod and Use sets are computed as described above, the analy-

sis performs iterative backward propagation of this information along the call graph

edges, from callees to callers. This propagation computes the transitive read/write re-

lationships due to method calls. Given the final solution, the intersections of sets Mod

and Use for pairs of statements can be used to identify potential data dependencies.

2.6.3 Customized Serialization

One of the performance bottlenecks for RMI is the serialization and deserialization

of non-remote actual parameters [42,49]. Several optimizations can be used to reduce

this cost. For example, if the types of the serialized objects are unique and known

in advance, specialized serialization code can be created rather than using the more

expensive default serialization mechanism. As another example, if the object graph

37

that will be serialized is always acyclic, a cheaper version of the serialization algo-

rithm can be used, as opposed to the general version which must detect cycles. Such

techniques have been shown to be quite effective in reducing the cost of serialization

in RMI applications [82]. By analyzing the structure of the points-to graph produced

by our analysis, it is straightforward to expose these optimization opportunities to

a programmer. This information enables the introduction of customized serializa-

tion, either manually (through methods writeObject and readObject [45]), or

automatically with the help of an optimization tool.

2.6.4 Other Potential Uses

Testing of distributed Java applications can be based on adequacy criteria that

consider the coverage of start-to-end scenarios [5]; the corresponding execution paths

can be automatically constructed (and monitored at run time) based on the call

graph. As another example, the call graph and the data dependencies may be useful

for static analyses that attempt to identify potential deadlocks and race conditions

in RMI-based Java software.

2.7 Experimental Study

We implemented the points-to analysis algorithm using the Soot framework [81],

version 2.1, and the Spark component of Soot which implements the points-to anal-

ysis techniques from [37] for non-distributed Java programs. The analysis in Spark

uses state-of-the-art analysis techniques and provides the basis for our own imple-

mentation, including the handling of issues such as JVM startup, native methods,

reflection, etc. The analysis was executed on a 2.8GHz Pentium4 PC with 3GB of

38

memory,3 using Sun’s HotSpot Client JVM 1.4.2 for Windows, with maximum JVM

heap size 1.5GB (option Xmx). The experiments were performed on the set of RMI-

based Java applications listed in Table 2.1. The applications were obtained from

publicly available projects and books, and represent a variety of domains.4 For ex-

ample, auction implements an auctioning system: clients connect to a server and

place bids for items. As another example, jodl uses a JOb Dispatching Library

to dispatch and execute tasks on different network nodes. For the applications that

were GUI-based, we created and used equivalent non-GUI versions; this was done to

avoid polluting the measurements of analysis running time with the time necessary

to analyze the Java GUI libraries. As discussed below, the time for library analysis is

the dominant factor in the points-to analysis running time; however, the library func-

tionality is typically irrelevant to the distributed behavior of the application, which

is implemented by the non-library user-level code.

We ran two different versions of the points-to analysis. The original version uses

the algorithm from Section 2.4 and creates replicated versions of library variables

and objects. The approximate version creates non-replicated versions for library

entities (using the approximation techniques from Section 2.5) in order to reduce

analysis running time, possibly at the expense of some loss of precision. Both versions

employed an optimization technique for the propagation of exception objects. Since

the points-to analysis is flow- and context-insensitive, it does not track precisely the

flow of exception objects, and directly propagates each such object to the points-to

sets of all appropriate type-compatible variables and object fields. (This conservative

3For other configurations, see Table 2.2

4We want to thank Prof. Lionel Briand from Carleton University for providing the source code
for library.

39

(1) (2) (3) Classes (4) Orig (5) Appr (6) Time (sec)
Application #C Usr Orig Appr Usr All Usr All Orig Appr NoDst
filesrv 2 7 2513 1258 14 14397 14 7209 1126.3 339.0 310.3
stocks 2 8 2515 1263 20 14443 21 7291 1127.7 340.2 312.3
rmttask 2 9 2514 1261 12 14390 12 7204 1140.3 335.9 319.9
channel 3 11 3767 1261 18 21587 18 7210 2368.6 336.1 308.2
bank 2 14 2518 1265 21 14402 21 7216 1135.0 341.5 323.7
auction 2 17 2524 1262 62 14475 62 7321 1164.3 343.5 309.3
jodl 2 29 2551 1289 125 14630 125 7387 1190.6 358.1 330.9
jenut 2 33 2546 1292 68 14533 68 7341 1177.6 353.9 318.7
translator 2 38 2526 1275 85 14454 85 7299 1206.7 368.7 329.9
database 2 67 2583 1304 62 14629 62 7400 1237.3 382.2 325.0
ssl 2 67 2587 1306 62 14642 62 7405 1227.4 381.7 377.5
library 3 69 3823 1317 414 22011 414 7637 2549.1 404.6 371.8

Table 2.1: Subject programs, reachable methods, and running times

treatment of exceptions is standard for subset-based points-to analysis for Java.) To

reduce the cost of exception-related propagation, both versions of the analysis did

not replicate exception objects on per-component basis, but rather used a single

component-insensitive object name per exception object, in a manner similar to the

approach from Section 2.5. It is easy to show that this optimization technique does

not affect the precision of the analysis solution.

Column (2) in Table 2.1 shows the number of components Ci in each application.

Column (3) contains three measurements related to the number of classes involved

in the analysis. Column “Usr” represents the sum of the sizes of cls(Ci), excluding

library classes. Subcolumns “Orig” and “Appr” show the total numbers of classes that

contain at least one reachable method in the original and the approximate version

of the algorithm. The total numbers of classes for the two versions are displayed

in order to give an idea on the amount of work done by these algorithms. Note

that the application classes represent only a small percentage of the classes being

40

analyzed. Column (4) describes the number of reachable methods processed by the

original versions of the analysis. Column “Usr” shows the number of call graph

nodes for non-library methods. Column “All” also includes number of call graph

nodes for library methods, using the standard Java libraries from Sun’s J2SDK 1.4.2

distribution for Windows. Similarly, column (5) and its two subcolumns describe

the number of reachable methods for the approximate version. Not surprisingly, the

size of the call graph is significantly larger for the original version because multiple

component-specific call graph nodes mi may correspond to the same library method

m. On the other hand, the approximate version has a single call graph node mlib for

a reachable library method m.

Column (6) in Table 2.1 shows the running time of the two versions of the analy-

sis5 and the running time for the original Soot implementation of points-to analysis

applied for “artificial” versions of the programs, where the RMI calls were manually

replaced by ordinary calls. The times for the approximate version of our algorithm

do not differ much from the running times obtained with the original Soot imple-

mentation, which shows that the extra processing overhead required for analyzing

distributed RMI applications is not significant. The number of methods in columns

“All”, as well as the number of classes displayed in column (3), are indications of the

amount of work that the analysis needs to perform, since the body of each reachable

method must be processed in order to create PAG edges and to populate points-to

sets. Clearly, the majority of analysis time is spent on processing the relevant code

from the standard libraries. The special handling of library variables and objects in

the approximate version reduces significantly the cost of the analysis. As a rough

5These measurements differ from the ones in [70] due to some modifications and enhancements
of our implementation.

41

estimate of running time, the cost of the analysis is around 0.05 seconds per analyzed

method.

The overall analysis time can be reduced further if the libraries are analyzed once

and the computed information is reused every time an application is analyzed. Similar

approaches have already been developed for points-to analysis for C (e.g., [63]), but

it remains to be seen whether they can be successfully adapted to Java. This issue

is not specific to analysis of RMI applications: in the static analysis community, it

is well known that the cost of points-to analysis for non-distributed Java programs

is dominated by the cost of processing and analyzing the relevant code from the

standard Java libraries.

We gathered measurements of running time and heap size of the approximate

version of our algorithm run on two different system configurations, in order to show

that various system constraints do not affect the cost of the analysis. The results are

presented in the Table 2.2. Both configurations are the 2.8GHz Pentium 4 presented

in the beginning of this section. The first configuration has 3GB of memory and runs

the JVM with the heap size of 800MB. The second has 1GB of memory and runs the

JVM with 300MB heap size. The two configurations yield almost identical results in

memory usage and very similar time measurements.

To gain more insight into the points-to analysis solution, we gathered a variety of

measurements, as summarized in Tables 2.3 and 2.4. First, for each local variable v

in a reachable non-library method mi, we considered the sizes of PtL(vi) and PtR(vi).

The average sizes of the local points-to sets are shown in sub-columns PtL in columns

(2) and (3). Similarly, sub-columns PtR show the average sizes of the non-empty

remote points-to sets. All of these averages exclude variables of exception types—as

42

(1) (2) Xmx800m, 3GB (3) Xmx300m, 1GB
Application Time(sec) Heap(MB) Time(sec) Heap(MB)
filesrv 337.6 160.6 347.5 160.6
stocks 328.8 163.0 364.1 163.0
rmttask 336.5 160.4 347.0 160.3
channel 331.0 161.7 344.5 161.7
bank 341.5 161.0 351.2 160.9
auction 338.1 162.0 361.4 162.0
jodl 360.9 167.3 375.4 167.3
jenut 365.8 166.0 413.4 166.0
translator 364.9 160.7 380.6 160.9
database 380.9 166.2 396.4 166.3
ssl 382.0 166.8 401.0 166.8
library 391.0 170.7 406.8 170.7

Table 2.2: Time and memory measurements for other configurations

described above, the analysis propagates exception objects very conservatively, and

the average points-to set sizes become artificially large if exception-typed variables

are included in the metric. The results in columns (2) and (3) indicate that the

approximate handling of the standard libraries has some impact on the precision of

the analysis solution, but this impact does not appear to be particularly significant.

The rest of Table 2.3 and Table 2.4 contain additional measurements based on the

points-to solution. Each of these measurements was obtained first with the original

version of the analysis, and then again with the approximate version. However, in

all cases the results were the same; thus, columns (4)–(10) apply to both versions.

Consider an expression v.m(. . .) in some non-library method m′ ∈ Reach i. Column

(4) shows the total number of such call sites for all components; if a call site occurs in

multiple components, it is counted multiple times. Column (5) contains the number

of remote call sites—that is, sites for which PtR(vi) was not empty. Most programs

43

(1) (2) Original (3) Approx (4) (5) (6)
Application PtL PtR PtL PtR Calls Emit RmtTgt
filesrv 7.3 1.0 7.5 1.0 8 5 1.0
stocks 87.8 1.0 88.0 1.0 12 2 1.0
rmttask 7.1 1.0 7.2 1.0 9 2 1.0
channel 5.2 1.3 5.4 1.3 11 4 1.0
bank 21.2 1.25 21.4 1.25 15 9 1.0
auction 43.4 1.0 44.3 1.0 75 5 1.0
jodl 121.2 1.0 121.9 1.0 158 13 1.0
jenut 77.3 1.23 78.3 1.72 99 36 1.0
translator 75.1 2.0 75.7 2.0 69 1 2.0
database 31.9 1.0 35.4 1.0 33 8 1.0
ssl 31.0 1.0 34.4 1.0 33 8 1.0
library 66.6 1.67 73.0 2.46 900 26 1.0

Table 2.3: Analysis precision, part 1

have multiple remote call sites, which indicates that there may be several different

kinds of remote interactions between application components.

For each site from (5), we computed the number of distinct remote methods that

were potentially invoked by the site. More precisely, consider v.m(. . .) in some method

m′ ∈ Reach i. For each sj ∈ PtR(vi), let m′′ be the target method for receiver sj. For

each remote call site we computed the number of distinct targets m′′ based on PtR(vi).

Column (6) shows the average number of remote target methods over the call sites

from (5). For all applications except one, the analysis resolved each remote call site

to a unique target method. Since 1.0 is a lower bound for this metric, these results

show that the call graphs contain precise information about the targets of remote

calls.

For each remote call site, we also examined the points-to solution and determined

whether there is any flow of remote references due to parameter passing. Such flow

may occur when there exists an actual parameter v for which PtL(vi) or PtR(vi)

44

(1) (7) RmtRef (8) (9) (10)
Application Parm Ret Serial OpType OpCycle
filesrv 0 0 0 0 0
stocks 1 0 2 2 2
rmttask 0 0 1 1 1
channel 2 0 4 4 4
bank 0 1 2 2 2
auction 2 0 4 4 4
jodl 0 0 2 2 2
jenut 11 9 20 20 20
translator 0 0 1 1 1
database 0 4 2 2 2
ssl 0 4 2 2 2
library 0 0 26 26 26

Table 2.4: Analysis precision, part 2

contains a remote object. Column (7), subcolumn “Param” shows the number of

remote call sites at which remote references may be created in the callee due to

actual parameters in the caller. Remote references also may flow as return values

in the case when PtL(ret j) or PtR(ret j) contains a remote object; here ret j denotes

the artificial variable that contains the return values of the called remote method.

Column (7), subcolumn “Ret” contains the number of remote call sites at which

remote references may be created in the caller due to the return value from the callee.

The measurements indicate that it is not unusual for RMI applications to create

additional remote references at remote calls, either in the callee (through parameter

passing) or in the caller (through return values). Thus, any points-to analysis needs

to include techniques for handling such flow of remote references. Any subsequent

analysis (e.g., change impact analysis) must also take into account this flow, based

on the output of the points-to analysis.

45

We also considered PtL(vi) for an actual parameter v at a remote call site to

determine whether serialization for non-remote parameters may occur at the site.

Column (8) shows the number of sites from (5) for which serialization may occur

due to actual parameters that point to non-remote serializable objects. These results

indicate that RMI applications often take advantage of the ability to use serializable

objects (and more generally, serializable object graphs) as parameters of remote calls.

A points-to analysis cannot expect that the non-remote actual parameters at remote

call sites are always of primitive types, and therefore the analysis must model in a

general manner the possible effects of serialization. Our analysis handles this issue

by introducing special PAG edges connecting the original object with its deserialized

copy (Section 2.4).

The last two columns consider the remote call sites at which serialization may

occur (i.e., the sites from column 8). As described in Section 2.6, points-to information

can be used to provide a programmer with information about call sites at which the

types of the serialized objects are unique and known in advance, or the object graph

that will be serialized is always acyclic. Customized serialization at such call sites can

improve the performance of the application. For each site from (8) we determined

whether the type-based optimization was possible; the number of optimizable sites is

shown in column (9). Similarly, for each site from (8) we determined the shape of the

serialized object graph; column (10) shows the number of sites with acyclic graphs.

For our subject applications, both optimizations were possible at all remote calls at

which serialization is performed.

46

Conclusions. (1) The analysis appears to achieve high precision when modeling

the semantics of remote calls. (2) The analysis suffers from the same problem exhib-

ited by subset-based points-to analysis for non-distributed Java programs: most of

the running time is spent in the standard libraries. (3) The approximate handling

of the libraries can be used to reduce the running time significantly, without major

reduction in analysis precision. We believe that in the current state of the art, the

approximate version of the analysis is a viable choice for a relatively precise and

practical points-to analysis of RMI-based Java applications.

47

CHAPTER 3

TYPE ANALYSIS IN THE PRESENCE OF LARGE

LIBRARIES

3.1 Introduction

Interprocedural dataflow analysis is a widely-used form of static program analysis,

which takes as input a program and produces information about the behavior of that

program. Dataflow analysis techniques play an important role in tools for perfor-

mance optimization, program understanding and maintenance, software testing, and

verification of program properties.

Whole-program dataflow analysis takes as input the source code of an entire pro-

gram and analyzes it as a single unit. Using whole-program analysis for modern soft-

ware that is built on large libraries presents serious challenges, because traditional

analysis techniques do not scale well to the size of such applications.

In applications built with library modules, the libraries typically represent a large

part of the code. For example, for the whole-program type analysis described in

this chapter, and the dependence analysis described in Chapter 4, roughly 93% of

the methods in our benchmark programs are in the standard Java libraries. An

48

application built with libraries can be viewed as a user component built on top of a

much larger library component.

We consider a summary-based analysis [56,58] as a solution for analyzing programs

built with large libraries. The code of the input program is split into a user component

and a library component. The summary-based analysis processes the source code of

the user component, given a precomputed summary of the library component. The

technique has two steps: the first step is computing the information about the library,

and the second is running the analysis that uses this information. The first step

creates a summary and writes it to a file on disk. The summary contains information

about the library that is relevant from the point of view of the specific analysis and

is reusable for any future user code. In the second step the summary information is

read from disk and used in the actual analysis of the user code. The summary-based

analysis comes with no loss of precision compared to the whole-program analysis.

This is because the summary contains all the information that would be obtained by

analyzing the library in the whole-program version.

The method of using precomputed summaries in the analysis presents serious

challenges. One challenge is the presence of information that is local to each method

in the library. Although this information is necessary when the summary of the

library is built, it is not needed in the analysis of a user component and should not be

included in the summary. Another challenge in building the summary is the presence

of polymorphic calls in the library methods. Their behavior depends on the way the

client component uses the library component. For example, these calls can produce

callbacks to the user code, which is not available at the time when the summary is

created.

49

The main goal of this chapter and the next one is to define a summary-based anal-

ysis that deals with these challenges. In this chapter we consider type analysis, and

in Chapter 4 we study dependence analysis. These two important kinds of analysis

are examples of dataflow problems. The following items detail the content of this

chapter.

• We describe whole-program type analysis, one of the two analyses we use as the

basis for our summary-based approach. We formulate it as an interprocedural

distributive environment (IDE) problem [68]. The IDE framework describes

a large class of dataflow problems, in which dataflow functions have compact

representation with efficient operations of functional meet and functional com-

position. Based on this formulation, we restate the analysis in terms of graph

representations and operations.

• We define the summary generation analysis, and describe how we deal with

the challenges posed by creating a summary that can be used effectively by a

summary-based type analysis. One challenge is to represent in the summary all

the information necessary for the analysis of a user component. For example,

for type analysis, the summary of the library should contain enough information

such that a complete call graph of the application is built, starting from the entry

methods in the user code and including the library methods. In order to do this,

the calls in the library methods are not abstracted away but left “untouched” in

the summary. Another challenge is to have a compact summary. We represent

in the summary only the information about the library that is relevant to a user

component. In order to do this we eliminate information that is local to the

library methods and not necessary for analyzing the user code.

50

• We evaluate the summary-based type analysis by implementing an algorithm

for summary generation, and using the resulting summary in the analysis of 20

real-world Java programs. The results are compared with the results of running

whole-program type analysis on the same benchmarks. Our experiments show

that the summary-based approach provides a significant reduction in time and

memory usage without affecting the analysis precision.

3.2 IDE Dataflow Problems

In interprocedural distributive environment (IDE) dataflow problems [68], the

dataflow facts are maps (“environments”) from some finite set of symbols D to lat-

tice elements from a finite-height meet semi-lattice L. Semantic effects are repre-

sented by distributive environment transformers. The IDE class is a general cat-

egory of dataflow problems, examples of which are copy-constant propagation and

linear-constant propagation [68], object naming analysis [57], 0-CFA type analysis

for Java [23, 30, 78], and all IFDS (interprocedural, finite, distributive, subset) prob-

lems [52] such as reaching definitions, available expressions, live variables, truly-live

variables, possibly-uninitialized variables, flow-sensitive side-effects [7], some forms of

may-alias and must-alias analysis [53], and interprocedural slicing [33].

3.2.1 Interprocedural Control-Flow Graph

As usual in interprocedural dataflow analysis [69], a program is represented by

an interprocedural control-flow graph (ICFG) G = (N,E). Graph G contains the

control-flow graphs (CFGs) for the individual procedures.6 Nodes n ∈ N correspond

to statements, and intraprocedural edges e ∈ E represent flow of control within the

6We will use “procedure” to refer to procedures and methods.

51

same procedure. The CFG for a procedure p has an artificial start node start p and an

artificial exit node exitp. The start node startmain of the main procedure is the entry

point of the program. Each call is represented by two nodes: a call-site node and a

return-site node. There is an interprocedural edge e ∈ E from a call-site node to the

start node of the invoked procedure p; there is also a corresponding edge e ∈ E from

exitp to the return-site node. Dataflow functions are associated with these edges to

represent the effects of parameter passing and return values.

A path in G is a sequence of edges q = [e1, . . . , ek] such that the target of ei is the

same as the source of ei+1. The dataflow function associated with q is the composition

of the edge functions: fq = fek
◦ . . . ◦ fe1

. Not all ICFG paths represent possible

executions. A valid path has interprocedural edges that are properly matched: each

(exit,return-site) edge is matched correctly with the last unmatched (call-site,start)

edge on the path [52,68,69].

3.2.2 Environments and Transformers

The definition of an IDE problem is based on the notions of environments and

environment transformers. An environment is a map D → L where D is a finite set

of symbols and L is a finite-height meet semi-lattice with a top element > and a meet

operator ∧. Let Env(D,L) be the set of all environments for a given pair (D,L). The

following operations are defined on Env(D,L):

• The meet operator ∧ extended to environments is defined as env 1 ∧ env 2 =

λd.(env 1(d) ∧ env 2(d))

• The top element in Env(D,L), denoted by Ω, is λd.>

52

• For an environment env ∈ Env(D,L), d ∈ D and l ∈ L, env [d 7→ l] denotes an

environment in which each symbol d′ is mapped to the value env(d′), except for

d which is mapped to l.

Functions of the form

t : Env(D,L) → Env(D,L)

are environment transformers (i.e., t maps an environment to another environment).

Note that environment transformers can be generalized to allow the set of symbols to

change in predictable ways (particularly at calls, returns, and exceptions, to account

for scope changes). To simplify the discussion, we consider only environments on a

fixed set of symbols; in this approach, unused symbols can be thought of as being

mapped to >. An environment transformer t is distributive, denoted by

t : Env(D,L)
d
→ Env(D,L)

if for every env 1, env 2, . . . , envn ∈ Env(D,L) and every d ∈ D, we have

(t(
∧

i

env i))(d) =
∧

i

(t(env i))(d)

An instance of an IDE problem is defined as a tuple (G,D,L,M) where G is the

program’s ICFG, D and L are sets as defined above, and

M : E → (Env(D,L)
d
→ Env(D,L))

is a mapping that associates distributive environment transformers with the edges of

G.

53

3.2.3 MVP Solution for an IDE Problem

For an IDE problem instance we can define the meet-over-all-valid-paths solution

for a given node n ∈ N as follows:

MVPn =
∧

q

M(q)(Ω)

where q is a valid path from startmain to n. In this definition, M is extended to paths

by composition:

M([e1, e2, . . . , ej]) = M(ej) ◦ . . . ◦ M(e2) ◦ M(e1)

3.3 Whole-Program Type Analysis

This section describes the whole-program type analysis used as the basis of our

approach for summary-based type analysis. The analysis is subset-based, flow- and

context-insensitive, with on-the-fly call graph construction. The proposed theoretical

approach is also applicable to a range of other similar analyses (e.g., field-based

points-to analysis [37]).

We first define the analysis in terms of dataflow lattices and functions. Next, we

show that the analysis problem is an IDE problem. Based on this formulation, we

restate the analysis in terms of graph representations and operations.

3.3.1 Variables, Object Types, and Graphs

The analysis is defined in terms of several sets that characterize the input program.

Let Cls be the set of all classes and interfaces in the program. We will denote by

LP the set of all local variables and formal parameters, including the implicit formal

parameters this. Similarly, let IF and SF be the sets of all instance fields and

54

static fields in Cls , respectively. Since the analysis is field-based (i.e., it treats an

expression x.f as simply f), the treatment of arrays is also field-based: the elements

of all arrays are represented by a single analysis element, denoted by arr elem. We

consider arr elem to be an element of set IF , since an array element access expression

x[] is conceptually similar to an instance field access expression x.f, where [] can

be thought of as an artificial field of an artificial class Array.

The solution of the analysis is defined in terms of a set V of variable names for

reference variables, and a set T of type names for the types of run-time objects. Set

V is a subset of LP ∪ IF ∪ SF . A special element excp ∈ V is a placeholder name for

all variables of type java.lang.Throwable that appear in the program. Set T

represents the types of all allocation expressions of the form new X(..) and new

X[..]. The analysis builds a graph in which the edges represent type relationships.

An edge (v, t) ∈ V ×T shows that a variable represented by v may point to an object

of type t.

3.3.2 Input Language

Consider the following grammar with starting non-terminal 〈AssignStmt〉. This

grammar defines a Java-like language, similar to a subset of the Jimple intermediate

representation provided by the Soot bytecode analysis framework [81]. This grammar

captures the subset of Jimple that is relevant for type analysis. Note that irrelevant

features such as numeric constants, arithmetic expressions, etc. are not represented.

Thus, all program variables and expressions are of reference types (i.e., class, interface,

and array types in Java). We also assume that any program in this language is well-

typed according to the compile-time typing rules of Java.

55

;; — Constants

〈StringConstant〉 ::= "abc" ;; string literal

;; — Variables

〈Local〉 ::= id

〈IdentityRef 〉 ::= 〈ThisRef 〉 | 〈ParameterRef 〉 | 〈CaughtExceptionRef 〉

〈ThisRef 〉 ::= this ;; for instance methods

〈ParameterRef 〉 ::= parameteri ;; i-th formal parameter with i ≥ 1

〈CaughtExceptionRef 〉 ::= caughtexception ;; artificial var for a catch clause

;; — Expressions

〈Expr〉 ::= 〈AnyNewExpr〉 ;; creation of an object

| 〈InvokeExpr〉 ;; method call

| 〈FieldRef 〉 ;; field access

| 〈ArrayRef 〉 ;; array element access

| 〈CastExpr〉 ;; casting

;; — Object Creation Expressions

〈AnyNewExpr〉 ::= 〈NewExpr〉 | 〈NewArrayExpr〉

〈NewExpr〉 ::= new 〈Type〉 ;; create instance of the corresponding class

〈NewArrayExpr〉 ::= newarray 〈Type〉 ;; create array of specified type

;; — Method Call Expressions

〈InvokeExpr〉 ::= 〈StaticInvokeExpr〉 ;; call to a static method

| 〈InstanceInvokeExpr〉 ;; call to an instance method

〈StaticInvokeExpr〉 ::= 〈Method〉 (〈Parameter〉1, . . .) ;; call to a static method

〈Parameter〉 ::= 〈Local〉 | 〈StringConstant〉

〈InstanceInvokeExpr〉 ::= 〈SpecialInvokeExpr〉 ;; call without dynamic dispatch

56

| 〈VirtualInvokeExpr〉 ;; call with dynamic dispatch

〈SpecialInvokeExpr〉 ::= 〈Local〉 . 〈Method〉 (〈Parameter〉1, . . .)

〈VirtualInvokeExpr〉 ::= 〈Local〉 . 〈Method〉 (〈Parameter〉1, . . .)

;; the method is a compile-time target

;; — Other Expressions

〈FieldRef 〉 ::= 〈StaticFieldRef 〉 | 〈InstanceFieldRef 〉

〈StaticFieldRef 〉 ::= id

〈InstanceFieldRef 〉 ::= 〈Local〉 . id

〈ArrayRef 〉 ::= 〈Local〉[x] ;; x is an integer index into the array

〈CastExpr〉 ::= cast 〈Local〉 to 〈Type〉 | cast 〈StringConstant〉 to 〈Type〉

;; — Statements

〈Stmt〉 ::= 〈ReturnStmt〉 | 〈ThrowStmt〉 | 〈InvokeStmt〉 | 〈DefinitionStmt〉

〈ReturnStmt〉 ::= return 〈Local〉 | return 〈StringConstant〉 ;; return a value

〈ThrowStmt〉 ::= throw 〈Local〉 ;; throw exception object referenced by local

〈InvokeStmt〉 ::= 〈InvokeExpr〉 ;; call without return value

;; — Assignment Statements

〈DefinitionStmt〉 ::= 〈IdentityStmt〉 | 〈AssignStmt〉

〈IdentityStmt〉 ::= 〈Local〉 := 〈IdentityRef 〉

〈AssignStmt〉 ::= 〈Local〉 := 〈SimpleRhs〉

| 〈Local〉 := 〈Expr〉

| 〈ArrayRef 〉 := 〈SimpleRhs〉

| 〈FieldRef 〉 := 〈SimpleRhs〉

〈SimpleRhs〉 ::= 〈Local〉 | 〈StringConstant〉

57

The statement types of the language are:

1. l = r

2. l = "abc"

3. l = new X

4. l = newarray X

5. l = X.fld

6. l = r.fld

7. l = r[i]

8. l[i] = r

9. l[i] = "abc"

10. X.fld = r

11. X.fld = "abc"

12. l.fld = r

13. l.fld = "abc"

14. l = staticinvoke method(r1, r2, ...)

15. l = specialinvoke r0.method(r1, r2, ...)

16. l = virtualinvoke r0.method(r1, r2, ...)

17. l = cast r to X

18. l = cast "abc" to X

19. l = caughtexception

20. return l

21. return "abc"

22. throw l

23. staticinvoke method(l1, l2, ...)

24. specialinvoke l0.method(l1, l2, ...)

25. virtualinvoke l0.method(l1, l2, ...)

58

public class MyClass {

private java.lang.String[] names;

java.lang.String replaceName(java.lang.String) {
MyClass r0;
java.lang.String r1, r3;
java.lang.String[] r2;

r0 := this;
r1 := param0;
r2 := r0.names;
r2[0] := r1;
r3 := r1;
return r3;

}
}

Figure 3.1: Sample method replaceName

Figure 3.1 shows a sample method whose statements are based on the language

described earlier. This method will be used as a running example in the rest of this

section.

3.3.3 Dataflow Effects of Statements

The type analysis can be formulated as a dataflow problem with a lattice 2V ×T ,

partial order ⊇, meet ∪, top element ∅, and bottom element V × T . Thus, a lattice

element is a graph G ⊆ V ×T . The semantics of an elementary statement can be rep-

resented as a dataflow function f : 2V ×T → 2V ×T . Since we consider a flow-insensitive

analysis, the dataflow functions do not perform “kills” — that is, f(G) ⊇ G for any

graph G. The functions for the statement types that have only an intraprocedural

effect are as follows:

59

• l = r: f(G) = G ∪ { (l, t) | (r, t) ∈ G }

• l = "abc": f(G) = G ∪ { (l, java.lang .String) }

• l = new X: f(G) = G∪{ (l, t) }, where t ∈ T is the type for the new expression

• l = newarray X: f(G) = G ∪ { (l, t) }, where t ∈ T is the type for the

newarray expression

• l = X.fld: f(G) = G ∪ { (l, t) | (fld , t) ∈ G }

Static fields are treated similarly to local variables and this rule is essentially

the same as the rule for l = r.

• l = r.fld: f(G) = G ∪ { (l, t) | (fld , t) ∈ G }

Since the analysis is field-based [37], it treats r.fld as fld.

• l = r[i]: f(G) = G ∪ { (l, t) | (arr elem, t) ∈ G }

• l[i] = r: f(G) = G ∪ { (arr elem, t) | (r, t) ∈ G }

• l[i] = "abc": f(G) = G ∪ { (arr elem, java.lang .String) }

• X.fld = r: f(G) = G ∪ { (fld , t) | (r, t) ∈ G }

• X.fld = "abc": f(G) = G ∪ { (fld , java.lang .String) }

• l.fld = r: f(G) = G ∪ { (fld , t) | (r, t) ∈ G }

• l.fld = "abc": f(G) = G ∪ { (fld , java.lang .String) }

• throw l: f(G) = G ∪ { (excp, t) | (l, t) ∈ G }

• l = caughtexception: f(G) = G ∪ { (l, t) |(excp, t) ∈ G }

60

• l = cast r to X: f(G) = G ∪ { (l, t) | (r, t) ∈ G }

For simplicity, we ignore casting effects. A more precise definition of the

dataflow function would be f(G) = G ∪ { (l, t) | (r, t) ∈ G ∧ t subtypeof X }

• l = cast "abc" to X: f(G) = G ∪ { (l, java.lang .String) }

All statements presented above can be grouped in two categories:

• Assignments l = type of(alloc), in which the right-hand side of the as-

signment is an allocation site or a string literal. The dataflow function has the

form f(G) = G ∪ {(l, t)} where l ∈ V and t ∈ T

• Assignments l = r, with dataflow functions f(G) = G ∪ {(l, t)|(r, t) ∈ G}

where l, r ∈ V and t ∈ T

The functions for statement types that contain calls are described similarly with

assignments. In the following formulations, parm i
method represents the ith formal pa-

rameter of the method method . For a non-static method, thismethod is the implicit

formal this. For a method that has non-void return type, we use retmethod to denote

a special artificial variable which is assigned all return values of the method.

• l = staticinvoke method(r1, r2, ...):

f(G) = G ∪
⋃

i=1,2,...

{ (parm i
method , t) | (ri, t) ∈ G } ∪ { (l, t) | (retmethod , t) ∈ G }

• l = specialinvoke r0.method(r1, r2, ...)

f(G) = G ∪ { (thismethod , t) | (r0, t) ∈ G }

∪
⋃

i=1,2,...

{ (parm i
method , t) | (ri, t) ∈ G }

∪ { (l, t) | (retmethod , t) ∈ G }

61

• l = virtualinvoke r0.method(r1, r2, ...)

f(G) = G ∪ { (this rmethod , t) | (r0, t) ∈ G }

∪
⋃

i=1,2,...

{ (parm i
rmethod , t) | (ri, t) ∈ G }

∪ { (l, t) | (ret rmethod , t) ∈ G }

for each run-time target method rmethod .

• staticinvoke method(l1, l2, ...)

f(G) = G ∪
⋃

i=1,2,...

{ (parm i
method , t) | (li, t) ∈ G }

• specialinvoke l0.method(l1, l2, ...)

f(G) = G ∪ { (thismethod , t) | (l0, t) ∈ G }

∪
⋃

i=1,2,...

{ (parm i
method , t) | (li, t) ∈ G }

• virtualinvoke l0.method(l1, l2, ...)

f(G) = G ∪ { (this rmethod , t) | (l0, t) ∈ G }

∪
⋃

i=1,2,...

{ (parm i
rmethod , t) | (li, t) ∈ G }

for each run-time target method rmethod .

The solution computed by the type analysis is a graph (i.e., a lattice element) Gsol

such that

• f(Gsol) = Gsol for each dataflow function f corresponding to some program

statement

• For any G with this fixed-point property, Gsol ⊆ G

62

Gsol is computed using the call information provided by the call graph of the

input program. In our implementation, the call graph is built on the fly while the

analysis runs. The details of the on-the-fly call graph construction are discussed later

in Section 3.3.7.

3.3.4 Type Analysis as an IDE Problem

For the type analysis described above, an environment is a map D → L, where:

• D is the set of local variables and fields that appear in the program — that is,

D = V = LP ∪ IF ∪ SF ∪ {excp}.

• L is the power set of the set of object types: L = 2T . L is a lattice with partial

order ⊇, meet ∪, top element ∅, and bottom element T .7

An environment V → L associates a set of object types (i.e., a type set) with a local

variable, a formal parameter, or a field. The top element Ω in Env(V, L) assigns an

empty type set to each variable name v ∈ V : Ω = λv.∅.

To complete the definition of an IDE dataflow problem, we need to define the

mapping

M : E → (Env(V, L)
d
→ Env(V, L))

that assigns an environment transformer to each edge in the ICFG. At this point

we consider only the intraprocedural case, and we can assume that the program

contains only one procedure (i.e., main) and the ICFG is the CFG of that procedure.

Furthermore, since the analysis is flow-insensitive, we can treat the CFG as having

7Note that this lattice is different from the lattice 2V ×T used earlier to define the type
analysis.

63

a switch-in-loop structure, as defined in [59]. The only edges that have non-identity

transformers are edges coming out of assignment statements.

• l = alloc: The environment transformer is M(e) = λenv .env [l 7→ env(l) ∪

{t}], where t ∈ T is the type of the allocated object

• l = r: The environment transformer in this case is M(e) = λenv .env [l 7→

env(l) ∪ env(r)]

Let F be the set of transformers of these two types. Let F ′ be the closure of F

under composition and meet. We define a point-wise representation for the elements

in F ′, that can be written in a unique canonical form.

The canonical form of a general transformer in F ′ is given by:

f = λenv.env

[

li 7→ env(li) ∪ Ti ∪
⋃

1≤j≤ki

env(rij)

]

, i = 1 . . . |V |

where the elements li ∈ V are distinct. Ti ⊆ T is a set of types that are added to

the type set for li. Variables ri,j ∈ V for 1 ≤ j ≤ ki are sources of additional flow of

types to li (e.g., through assignments and parameter passing). For a specific li, set

Ti could be empty, or ki could be 0, or both. It can proved by induction that any

transformer in F ′ can be written in the canonical form.

We have proved that these environment transformers are distributive over ∪.

Therefore, this is an IDE dataflow problem. We have also proved that the meet-

over-all-valid paths solution for the IDE formulation is exactly the same as the type

analysis solution Gsol defined earlier. More precisely, for any CFG node n, the solution

MVPn (which is an environment) is the same as Gsol .

64

3.3.5 Graph Representations of Environment Transformers

In [68], Sagiv et al. define the notion of point-wise representation for environment

transformers. In the case of the transformers for type analysis, the unique point-wise

representation for a transformer is a labeled directed graph with 2(|V | + 1) nodes.

The graph is bipartite: the vertices are decomposed into two disjoint partitions, each

of size |V | + 1, such that vertices within the same partition are not connected by

edges. In each partition, |V | nodes are labeled with variable names from V (one node

per variable name), and one node is labeled with a special symbol Λ.

The edges in the graph are labeled with functions L → L. For the specific type

analysis described above, there are only three kinds of edge labels: (1) the identity

function id = λx.x, (2) the constant function λx.Ti for some set of object types

Ti ⊆ T , and (3) the function λx.∅. For a general transformer in the canonical form

shown in the previous section, the set of edges can be defined as follows:

• type 1 : Λ → li, labeled with λx.Ti

• type 2 : ri,j → li, labeled with id , for j = 1, . . . , ki

• type 3 : l → l for all l ∈ V , and Λ → Λ, labeled with id

• type 4 : all other edges r → l labeled with λx.∅.

Intuitively, edges of type 1 show that regardless of the current type sets, the type

set of li should be updated with the object types in Ti. Edges of type 2 indicate

that the current type set of ri,j should be added to the type set of li. Edges l → l

show that the type sets never shrink. Edge Λ → Λ is needed for technical reasons.

65

1. r0 := this; M(e) = λenv .env [r0 7→ env(r0) ∪ env(this)]
r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

2. r1 := param0; M(e) = λenv .env [r1 7→ env(r1) ∪ env(param0)]
r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

3. r2 := r0.names; M(e) = λenv .env [r2 7→ env(r2) ∪ env(namesfld)]
r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

Figure 3.2: Environment transformers and graph representations for the running example
(part 1)

Finally, edges labeled with λx.∅ show that l does not depend on r. These edges can

be omitted from the graph.

Figures 3.2 and 3.3 show the environment transformers and their graph represen-

tations of our running example. The thick lines in the figures highlight the effect of

the statements on the variables. The labels for the edges in all the graphs are id .

3.3.6 Transformer Meet and Composition

Consider two transformers f1, f2 ∈ F
′

where, as described in Section 3.3.4, F
′

is

the closure of the set of transformers that correspond to assignments. Let f3 = f1∪f2

and f4 = f2 ◦ f1.

66

4. r2[0] := r1; M(e) = λenv .env [arr elem 7→ env(arr elem) ∪ env(r1)]
r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

5. r3 := r1; M(e) = λenv .env [r3 7→ env(r3) ∪ env(r1)]
r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

Figure 3.3: Environment transformers and graph representations for the running example
(part 2)

The edges in the graph representation of f3 are as follows:

• type 1 : Λ → li, labeled with λx.O3
i , where f1 and/or f2 have an edge Λ → li. If

only one of them has such an edge, the label on f3’s edge is the same. If both

have such edges, with labels λx.O1
i and λx.O2

i , then O3
i = O1

i ∪ O2
i .

• type 2 : for any lm → li, labeled with id , occurring in f1 or f2 (or both), the

edge is also in f3.

• type 3 : l → l and Λ → Λ, labeled with id

The edges in the graph representation of f4 are as follows:

• type 1 : Λ → li, labeled with λx.O4
i . This label satisfies the following properties:

1. if f1 has Λ → li with λx.O1
i , then O1

i ⊆ O4
i

2. if f2 has Λ → li with λx.O2
i , then O2

i ⊆ O4
i

67

r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

Figure 3.4: Representation of the union of the transformers for statements 2 and 5

3. if f1 has Λ → lm with λx.O1
m, and f2 has lm → li with id , then O1

m ⊆ O4
i

4. O4
i is the smallest set with these properties

If a type is added to the type set of li by either transformer, this type should

also be added to this set in f4. In addition, if the first transformer adds a type

to the type set of lm, and the second transformer copies this type set to the

type set of li, the composed transformer f4 should directly add the type to the

type set of li.

• type 2 : ri,j → li, labeled with id :

1. if f1 or f2 has lm → li with id , then f4 also has this edge

2. if f1 has lp → lm and f2 has lm → li, both with id , then f4 has lp → li

with id

• type 3 : l → l and Λ → Λ, labeled with id

Figure 3.4 shows the graph representation of the union of transformers correspond-

ing statements 2 and 5 from the running example. The union of the two transformers

is given by:

f∪ = λenv .(env [r3 7→ env(r3) ∪ env(r1)])[r1 7→ env(r1) ∪ env(param0)]

68

r0 r1 r2 r3

r0 r1 r2 r3

this parameter0 namesfld arr_elem

this parameter0 namesfld arr_elem

Figure 3.5: Representation of the composition of the transformers for statements 2 and 5

The composition of transformers corresponding statements 5 and 2 from the run-

ning example ((f5 ◦ f2)(x) = f5(f2(x)) for any x) is given by the following equation:

f◦ = λenv .(env [r3 7→ env(r3)∪env(r1)∪env(param0)])[r1 7→ env(r1)∪env(param0)]

Figure 3.5 shows its graph representation. The thicker edge represents a transitive

relation obtained by composition. Intuitively, it finds a path through which the

objects pointed to by param0 flow to r3.

3.3.7 Graph-Based Algorithm

Our goal is to compute Gsol . To achieve this, we compute the meet-over-all-valid-

paths solution for the IDE formulation, using the graph-based algorithm from [68].

The key idea of this algorithm is to represent environment transformers as graphs,

and to use composition and meet of transformers as graph operations, as described

in the previous section.

At method level, the graph-based algorithm uses a worklist to propagate object

types to the variables and fields present in the body of that method. The iterations

on the worklist stop once all the object types have been propagated. Figure 3.6 shows

the meet-over-all-valid-paths solution for the method of our running example. The

thick lines show edges added to the graph by composition. They represent the flow

69

r0 r1 r2 r3 this parameter0 namesfld arr_elem

r0 r1 r2 r3 this parameter0 namesfld arr_elem

Figure 3.6: Graph representation of the MVP solution for the running example

of data through a transitive path from a variable to another (not through just one

statement).

In the methods that contain calls, the algorithm propagates object types to the

call targets indicated by a call graph. In our implementation, the call graph of the

analyzed program is built on the fly while the analysis runs. The run-time target

methods for a call site are found using virtual dispatch, based on the types of the

objects to which the receiver points to. Once these run-time targets are determined,

the new call graph edges are created, and the object types propagate to the target

method according to the dataflow function that describes the effect of the call. If

the method has formals, the types of the corresponding actuals flow to them. If the

call is not static, the object types flow from the receiver in the source method to

this of the target method. Also, if the method has non-void return type, types are

propagated from the return of the target method to the local that receives the result

of the call in the source method.

The algorithm is based on a worklist for the whole program. The worklist contains

the variables and fields for which the type sets have object types that need to be

propagated. The iterations stop when the worklist is empty, which means that all the

70

object types have been propagated and a fixed point has been reached for the whole

program.

3.4 Summary Generation Analysis

The summary generation analysis takes as input the code of the library classes

and produces a complete and compact representation that is similar to the graph

representation of dataflow functions described in the previous section. The summary

is complete in the sense that it contains all the information needed to build the call

graph and perform type analysis on any user component that uses this library. The

summary is also compact, because it stores only the information about the library

that is relevant to a type analysis.

3.4.1 Summary Representation

The flow of data and the type relationships inside a method are represented in

the summary as a dataflow graph. The nodes of the graph represent object types

or variables, and they will be referred to as object type nodes and variable nodes,

respectively.

In general, object type nodes store the types of objects created with new expres-

sions, or the type java.lang.String for string constants. A special kind of object

type nodes are the ones that represent types of arrays and multi-dimensional arrays.

These nodes will be referred to as array type nodes and correspond to new expressions

that involve array types.

Variable nodes also are of different kinds. Variables declared in a method are

represented by local nodes. Formal parameters of methods are represented as formal

nodes. For non-static methods, this is treated as an artificial formal parameter and

71

also represented by a formal node. The methods whose return type is not void have

an additional return node that represents the return value of the method.

Other types of variable are the exception node, the array element node, and the

field nodes. They are generally called global nodes, in order to distinguish them

from the other type of variable nodes that represent entities local to a method. The

exception node is unique for the program and represents the destination of all throw

statements and the source of all catch statements in the program. The field nodes

are variable nodes that represent fields. There is one field node for each static or

instance field declared in a class. There is also a unique array element node for the

program and it represents all array elements of reference type.

The edges of the graph are of two kinds: var-to-var edges that connect two variable

nodes and type-to-var edges that connect object type nodes to variable nodes. A

type-to-var edge represents a type relationship between the object type node and the

variable node it connects. For example, if an object type node t is connected to a

variable node v, then the type set of the variable represented by v contains the object

type represented by t. A var-to-var edge between two variable nodes shows there

is a flow of object types from the source node to the destination. This translates

into an inclusion relation between the type set at the source and the type set at

the destination. For example, if variable node v1 is connected to variable node v2,

then the type sets of variables represented by v2 include the type sets of variables

represented by v1.

We extended the method in our running example to contain call statements and

the creation of an object (a string constant), in order to illustrate the technique for

building the summary. Figure 3.7 shows the body of method replaceName, and

72

java.lang.String replaceName(java.lang.String) {
r0 := this;
r1 := param0;
r2 := r0.names;
r2[0] := r1;
r3 := r1;
r4 := new java.lang.String;
specialinvoke r4.<java.lang.String:

void <init>(java.lang.String)>("New name:");
r5 := r4;
r6 := virtualinvoke r5.<java.lang.String:

java.lang.String concat(java.lang.String)>(r3);
return r6;

}

Figure 3.7: Sample method replaceName

Figure 3.8 shows the summary information that is computed for this method. The

summary consists of (1) the dataflow graph of the method, and (2) the information

about the call sites occurring in the method, stored in “Pending calls”.

In the rest of this section the running example will be used to show step by step

how the summary is built.

3.4.2 Summary Generation

Generating the summary is done in three phases:

• In the first phase dataflow functions are computed for all methods in the library.

These functions represent only intraprocedural type relationships.

• The second phase computes the closure of each dataflow function under func-

tional composition and functional meet. The resulted representation shows type

relationships that exist due to transitivity.

73

array_elem

r3

parameter_0

r6 return

r4 r5

java.lang.String

Pending calls:
specialinvoke r4.<java.lang.String:

void <init>(java.lang.String)>("New name:");

r6 := virtualinvoke r5.<java.lang.String:
java.lang.String concat(java.lang.String)>(r3);

Figure 3.8: Summary information for method replaceName

• In the third phase the dataflow functions are minimized. Edges of the dataflow

graph are eliminated if they are not needed in the summary.

Computing initial dataflow functions

The dataflow graph of a method is built by traversing the statements in the body

and adding graph edges based on the dataflow function of each statement. The graph

describes only intraprocedural type relationships, therefore only the statements that

do not contain calls are considered. All call statements are left in a “pending” state in

which they are left unresolved until the future summary-based analysis in the presence

of a specific client component. This is done because, in general, it is impossible to

determine precisely which methods are the potential targets of call sites without

having any information about the client component. For brevity, we will refer to call

statements as pending calls.

74

r6 return

Figure 3.9: Var-to-var edge created for the return statement

Since the dataflow graph describes type relationships, the statements that do

not affect any type sets can be omitted from our discussion. These statements are

the returns for methods that return void or primitive types, goto statements, if and

switch statements and statements related to synchronization. The remaining kinds

of statements that are interesting from the point of view of the type analysis are

return statements (for methods whose return type is not void), throw statements and

definition statements.

For methods that return reference or array types, the return statement corresponds

to a var-to-var edge in the graph. This edge connects the node representing the local

being returned to the return node of the method. An exception from this rule is when

the method returns a string constant instead of a local. In this case a type-to-var

edge is created instead of a var-to-var edge, and it connects a string type node to the

return node of the method. Figure 3.9 shows the var-to-var edge that represents the

return statement of the running example.

A throw statement triggers the creation of a var-to-var edge from the local node

representing the exception that is being thrown to the exception node. Var-to-var

edges further connect this unique exception node to local nodes that represent desti-

nations of catch clauses.

Recall from Section 3.3.2 that a definition statement can be either an identity

statement or an assignment statement. In the case of an identity statement, which

75

this r0

r6 return

r1parameter_0

Figure 3.10: Var-to-var edges added for identity statements

reads the value of this or of a formal parameter of reference type, a var-to-var edge

connects the corresponding formal node to the variable node that represents the local

which is assigned to. Figure 3.10 shows the dataflow graph of the running example

updated with the var-to-var edges created for identity statements (in thick lines).

Var-to-var edges are also created for most of the cases of assignment statements,

namely the statements that assign a local variable to another local variable, to a field

or to an array element, and the statements that assign a field or an array element to

a local variable. The kinds of nodes created for these edges depend on the variables

involved in the assignment. As described in the beginning of the section, the local

variables are represented by local nodes, the field accesses are represented by field

nodes and the array element accesses are represented by the unique array element

node. In our example, assignment statements trigger the creation of four more edges

added to the dataflow graph. They are marked with thick line in figure 3.11.

Type-to-var edges are created for the assignments that have an object creation

in the right hand side. The expression that creates the object can be any new

expression, including the creation of an array or a multi-dimensional array, or just a

string constant. If it is a new expression with a reference type or a string constant,

it is represented in the dataflow graph by a object type node. If it is the creation

of an array, it is represented by an array node. In our example an object type node

76

this r0 names_fld r2

r1

array_elem

r3

parameter_0

r6 return

r4 r5

Figure 3.11: Var-to-var edges added for assignment statements

java.lang.String is created to represent the string constant in the assignment

statement r4 := new java.lang.String;. The new node is connected with a

type-to-var edge to the variable node r4. Figure 3.12 shows the result of representing

the assignment to r4.

Recall from Section 3.3.5 that the dataflow functions can be represented as graphs,

and their meet and composition can be expressed as graph operations. The initial

dataflow function is the meet of all dataflow functions for the individual statements.

Strictly speaking, the graph representation from Section 3.3.5 uses edges Λ → li,

where the edge labels are of the form λx.Ti. In the graph representation described

here, such edges are “separated” into individual edges tj → li for each type tj ∈ Ti.

It is clear that this representation is equivalent to the one from Section 3.3.5, and

the graph union operation described here is equivalent to the graph operation for

functional meet described in Section 3.3.6.

Computing the transitive closure of the dataflow graph

The graph representation built in the first step captures a few but not all of

the type relationships within the body of the method. Some type relationships are

77

this r0 names_fld r2

r1

array_elem

r3

parameter_0

r6 return

r4 r5

java.lang.String

Figure 3.12: Type-to-var edge added for object creation

transitively created by multiple edges in the graph. For example, there is a type-

to-var edge between the object type node java.lang.String and the variable

node r4, and a var-to-var edge between r4 and the variable node r5. By considering

these two edges we can determine that java.lang.String should be included

in the type set of the variable r5, but there is no type-to-var edge in the graph

to express this relationship directly. The complete set of type relationships can be

obtained by computing the transitive closure of the dataflow graph. Recall from

Section 3.3.6 that the composition of dataflow functions can be represented as a

graph operation. It is easy to see that this graph operation is equivalent to adding

“one-hop” transitive edges to the graph described here. A complete transitive closure

of this graph is equivalent to computing the closure, under functional composition, of

the initial dataflow function (which, as discussed above, is the meet of the functions

for individual statements).

The algorithm for computing the closure of the dataflow graph has two stages.

In the first stage, the closure is computed only for the var-to-var edges. In a first

78

this r0 names_fld r2

r1

array_elem

r3

parameter_0

r6 return

r4 r5

java.lang.String

Figure 3.13: Var-to-var edges added to the closure

iteration, all the var-to-var edges from the dataflow graph of the method are consid-

ered. For each such edge, new var-to-var edges are created between the source node

and the successors of the destination node, such that the successors of the destination

node become direct successors of the source node. The procedure is reiterated for

the source nodes whose successor sets have changed during the last iteration. The

iterations stop once a fixed point is reached (no new edges are created).

The second stage of the algorithm completes the closure over type-to-var edges.

For each such edge, new type-to-var edges are created to connect the object node that

represents the source to the successors of the destination. In our example, an edge is

added between the object type node java.lang.String and the successor of r4,

which is the variable node r5. Figure 3.14 shows this new edge.

Minimizing the dataflow functions

The final step of the summary generation analysis is making the summary as

compact as possible. This is done by eliminating unnecessary edges from the dataflow

graphs. Only the edges that are relevant to the type analysis of any user component

79

this r0 names_fld r2

r1

array_elem

r3

parameter_0

r6 return

r4 r5

java.lang.String

Figure 3.14: Type-to-var edge added to the closure

are kept. During a type analysis, such edges may be involved in interprocedural

propagation of types. Var-to-var edges with this property have the source in a node

which is a data entry point of the current method, and the destination in a node

which is a data exit point of the same method. Type-to-var edges that propagate

object types outside a method have the destination in a node that represents a data

exit point of the current method.

A node represents a data entry point in the method if it is one of the following:

(1) a formal parameter node of the method, (2) a global node, or (3) a local node that

is assigned the return value of a call occurring in the method. A node that is a data

exit point of a method is one of the following: (1) the return node of the method, (2)

a global node, or (3) a local that represents an actual parameter or the receiver of a

call occurring in the method.

The minimization algorithm iterates through all the edges of a dataflow graph of a

method and checks if they are relevant and need to be kept in the summary. Checking

if a var-to-var edge is relevant means checking if its source is an entry point, and if its

80

this r0 names_fld r2

r1

array_elem

r3

parameter_0

r6 return

r4 r5

java.lang.String

Figure 3.15: Dataflow graph of the running example before minimization

destination is an exit point. Checking if a type-to-var edge is relevant means checking

if its destination is an exit point. The edges that are found redundant are deleted.

Figure 3.15 shows the dataflow graph of the running example with the redundant

edges marked by dotted lines. The final version of the summary information for the

running example is shown in Figure 3.8.

3.5 Experimental Study

The goal of this experimental study is to investigate the following questions: (1)

what is the cost of creating the summary, (2) what are the effects of the closure

and minimization operations on the summary, (3) what is the size of the summary,

and (4) how does a summary-based type analysis compare with its whole-program

counterpart.

All experiments were performed on a Dell PowerEdge 1950 server with four Intel

Xeon 2.8GHz CPUs (but our implementation is single-threaded) and 8GB of memory,

running Red Hat Enterprise Linux AS release 4 (Nahant Update 4). The Java virtual

81

machine used in the experiments was version 1.5.0 08-b03, deployed with command

line flags -Xmx1536m. The -Xmx option sets the maximum heap size for the Java

virtual machine to 1.5 GB.

All time measurements were obtained using System.currentTimeMillis().

Memory usage was obtained by taking the difference of the return values of:

• Runtime.getRuntime().totalMemory(), which reports the total amount

of memory currently available in the JVM for current and future objects, and

• Runtime.getRuntime().freeMemory(), which reports an approximation

to the total amount of memory currently available for future allocated objects

in the JVM.

The time and memory measurements shown later are the average values out of five

runs.

3.5.1 Generating the summary

We implemented the algorithm for summary generation using the Soot framework

[81]. The summary information generated with our algorithm contains the following

data structures: dataflow functions that encode intraprocedural type relationships,

and pending calls that store information about calls.

In our experiment, the input of the summary generation were the classes from Java

standard libraries from J2SE 1.4.2, which contain all classes in packages java., javax,

com., COM., org., and sun. They contain a total of 10238 classes, 77190 methods and

1496003 statements. The output of the summary generation was a file that stores the

summary representation of these classes, methods, and the corresponding dataflow

functions.

82

Building the initial dataflow functions (without applying closure or minimization)

for all the library methods resulted in graphs with a total of 498740 edges, which

represents 33.34% of the number of original statements in the code. Computing the

closure of the initial dataflow functions increased the number of edges to 698924,

which represents 140.14% of the number before closure. The new dataflow functions

were further minimized, which reduced the total number of edges to 313596, or 62.87%

of the number of edges before closure.

Running the summary generation was completed in 16 minutes and 47 seconds,

with a memory usage of 430.2MB. The final dataflow functions and the pending calls

were stored on disk. The size of the resulting file was small, 12.2 MB, out of which

the dataflow functions (including the pending calls) took 90.5% of the space. The rest

of the space was used for storing meta information about classes (2.4%) and methods

(7.1%). Out of the dataflow function space, the representation of pending calls took

51%, and the representation of dataflow edges took 12%, the rest being used for

storing the representation of the dataflow nodes. Information on how the disk space

is distributed may be useful for future work on creating a compact summary file.

The resulting summary file was used to evaluate experimentally the summary-

based technique for type analysis.

Conclusions. (1) Summary generation for the standard Java libraries has practi-

cal cost with regard to time and memory. (2) The minimization technique significantly

decreases the number of edges in the dataflow functions. (3) The size on disk is quite

reasonable, even with our rather simplistic and non-compressed representation.

83

(1) Application (2) User methods (3) All methods (4) Library methods (%)
RabbIT2 176 4978 96.46
compress 69 3855 98.21
db 66 3857 98.28
fractal 187 6037 96.90
jack 318 4114 92.27
javac 1155 5046 77.11
javacup-0.10j 317 4139 92.34
jb-6.1 140 3960 96.46
jess 465 4280 89.13
jflex-1.4.1 499 6416 92.22
jlex-1.2.6 131 3953 96.68
jtar-1.21 219 6341 96.54
mindterm-1.1.5 571 6730 91.51
mpegaudio 259 4050 93.60
muffin-0.9.3a 667 7806 91.45
raytrace 190 3988 95.23
sablecc-2.18.2 1525 5389 71.70
socksecho 168 6301 97.33
socksproxy 99 4142 97.60
violet 209 9067 97.69

Table 3.1: Subject programs, and number of reachable methods

3.5.2 Summary-based analysis

This section describes the experiments we ran in order to evaluate the performance

of the summary-based technique. We implemented the summary-based type analysis

with the Soot 2.2.2 framework, using the type analysis provided by the Spark module.

We modified Spark such that it read information about a library class from the

summary file instead of processing the corresponding class file. In the whole-program

analysis (the original version), each class file is read and a Jimple representation is

created for the class. In the summary-based version, this approach is still in place for

the classes that belong to the user component of the analyzed program. For the rest

of the classes, a representation is obtained form the summary.

84

We ran our implementation on a collection of 20 Java programs. Our benchmarks

are presented in Table 3.1, together with some measurements reported by the type

analysis indicating their size. Column ”User methods” shows the number of user

methods that are reachable from the main method of each program. Column ”All

methods” shows the total number of reachable methods, including the ones in the

library classes. Column ”Library methods” displays the percentage of reachable li-

brary methods out of all reachable methods for each program. The numbers show

that library methods are the majority of the code being analyzed, and indicate that a

large part of the processing time will be spent analyzing library code. This provides

a strong motivation to use a summary-based method to optimize the running time of

the type analysis.

For each benchmark, we ran the whole-program type analysis and the summary-

based type analysis, and we compared the running time and memory usage for the two

analyses. Table 3.2 shows the measurements for each program. Column ”Time” shows

the running times in seconds for the whole-program analysis and the summary-based

analysis, and displays the reduction of running time in the summary-based version.

Column ”Memory” shows the memory usage for the two analyses, and displays the

reduction of memory usage of the summary-based version. Clearly, using library

information from a precomputed summary results in significant savings compared to

the whole-program analysis.

We further investigated the benefits of the summary-based technique by running

the analysis with the -prejimplify option turned on. Pre-jimplification for the

whole-program analysis means that the Jimple representation for the user classes

library classes is already created and available in memory when the type analysis

85

(1) (2) Time (sec) (3) Memory (MB)
Application Regular Summary Reduced(%) Regular Summary Reduced(%)

Rabbit2 49.21 13.23 73.12 76.74 36.73 52.14
compress 41.87 12.04 71.23 61.89 29.12 52.95
db 40.59 12.47 69.28 62.12 29.20 53.00
fractal 55.78 15.14 72.87 91.71 43.34 52.74
jack 49.66 21.42 56.86 68.52 35.78 47.79
javac 52.52 23.59 55.08 84.49 51.23 39.36
javacup-0.10j 46.09 17.63 61.75 67.41 35.77 46.93
jb-6.1 39.60 11.61 70.69 63.32 29.98 52.66
jess 45.11 16.60 63.21 68.38 36.06 47.26
jflex-1.4.1 66.29 24.65 62.81 101.00 52.80 47.73
jlex-1.2.6 42.21 15.01 64.44 65.15 32.22 50.55
jtar-1.21 59.92 16.94 71.73 97.36 47.23 51.48
mindterm-1.1.5 68.94 26.81 61.11 106.10 55.80 47.41
mpegaudio 50.57 22.69 55.14 68.70 36.35 47.09
muffin-0.9.3a 72.41 24.83 65.71 119.11 61.62 48.26
raytrace 43.47 15.13 65.19 64.23 31.40 51.12
sablecc-2.18.2 52.25 22.11 57.68 83.89 51.58 38.51
socksecho 60.26 15.95 73.54 94.79 45.05 52.47
socksproxy 42.99 11.59 73.04 65.31 31.02 52.50
violet 81.28 20.56 74.71 135.04 64.88 51.96

Table 3.2: Comparison of the whole-program analysis and the summary-based analysis
running times and memory usage

starts. In the summary-based analysis, before the type analysis algorithm is executed,

pre-jimplification is applied to the user code, and the information about the library

classes is read from the summary file. The results of this experiments are shown in

Table 3.3. In this table, column ”Time” shows the running times in seconds for the

whole-program analysis and the summary-based analysis. Column ”Memory” shows

the memory usage for the two analyses.

When the Jimple representation already exists for library classes, the summary-

based approach achieves saving in running time ranging from 0.9% to 13.06% and

savings in memory usage ranging from 9.13% to 14.98%. These reductions are rela-

tively small, and they indicate that the main reason for the overall reductions shown

86

(1) (2) Time (sec) (3) Memory (MB)
Application Regular Summary Reduced(%) Regular Summary Reduced(%)

Rabbit2 7.89 7.53 4.52 56.52 49.86 11.79
compress 6.69 6.56 1.85 48.94 42.88 12.39
db 6.77 6.27 7.31 49.07 43.06 12.25
fractal 9.31 8.53 8.35 63.70 55.54 12.81
jack 7.11 6.74 5.31 51.73 45.65 11.76
javac 8.76 8.68 0.90 61.40 55.79 9.13
javacup-0.10j 7.31 6.96 4.80 52.33 47.16 9.89
jb-6.1 6.86 6.27 8.62 50.01 43.85 12.30
jess 7.71 7.40 4.06 53.01 46.95 11.42
jflex-1.4.1 9.95 9.60 3.52 68.97 60.36 12.48
jlex-1.2.6 6.96 6.64 4.64 50.30 44.49 11.56
jtar-1.21 9.51 8.94 6.00 66.64 58.29 12.52
mindterm-1.1.5 9.86 9.22 6.50 69.73 61.15 12.31
mpegaudio 7.22 6.56 9.17 50.83 44.99 11.49
muffin-0.9.3a 11.87 11.06 6.77 79.53 68.54 13.82
raytrace 7.02 6.75 3.76 50.12 44.00 12.21
sablecc-2.18.2 9.64 8.78 8.85 63.00 57.36 12.84
socksecho 9.52 8.77 7.78 65.46 57.05 12.84
socksproxy 6.91 6.70 3.03 50.80 44.78 11.84
violet 14.10 13.06 13.06 88.50 75.24 14.98

Table 3.3: Comparison of the whole-program analysis and the summary-based analysis
running times and memory usage. The analyses use pre-jimplification

in Table 3.2 (randing from 55.08% to 74.71% for time and 39.36% to 53.00% for

memory) are due primarily to the savings from avoiding the cost of building the

intermediate representation for the library code. One potential direction for future

work is to consider more aggressive summary generation in which some interprocedu-

ral propagation is performed (recalls that the current summary generation approach

is purely intraprocedural).

Conclusions. (1) Summary-based type analysis can achieve significant savings

of running time and memory usage, compared to its whole-program counterpart; for

example, for all experimental subjects, the running time reduction was at least 55%,

with average running time reduction of 70%. (2) Most savings come from avoiding

87

the cost of reading the library code and building its intermediate representation. (3)

Interprocedural techniques for summary generation should be investigated in future

work, in order to eliminate some pending calls and to achieve some degree of type

propagation across method boundaries.

88

CHAPTER 4

DEPENDENCE ANALYSIS IN THE PRESENCE OF

LARGE LIBRARIES

4.1 Introduction

Analysis of dependencies between source code entities plays a fundamental role

in various tools for software understanding, transformation, optimization, and verifi-

cation. Program representations such as the program dependence graph (PDG) [16]

explicitly show dependencies due to the flow of control and data in the analyzed pro-

gram. Typically, control dependencies capture the relationship between conditional

expressions and the statements guarded by them, while data dependencies represent

the flow of values from one statement to another due to writes and reads of shared

memory locations.

This chapter considers a particular form of whole-program interprocedural analysis

of data dependencies. This analysis is based on the work by Horwitz et al. [33] on

interprocedural slicing algorithms using a program representation referred to as the

system dependence graph (SDG), which generalized the PDG by representing multiple

procedures and their interactions. A key component in the construction of the SDG

is the interprocedural analysis of transitive dependencies due to procedure calls; such

89

dependencies are represented as “summary edges” in the SDG. The flow- and context-

sensitive analysis of transitive dependencies can be formulated in the IDE dataflow

analysis framework [53, 68]. The specific version of this analysis considered in our

work is based on the following three restrictions: (1) control dependencies are not

considered, (2) dependencies due to static or instance fields are not considered, and

(3) exceptional flow of control is not considered. Generalizing our approach to remove

the first two restrictions is conceptually simple, and does not introduce any significant

new issues. The handling of exceptions could be done, for example, using the approach

from [72].

In the whole-program dependence analysis considered in this chapter, the solution

for each method m is a set of formal parameters of m on which the return value of m

may have (transitive) data dependencies. The dependence information is computed

in three phases:

• In the first phase, an intraprocedural def-use analysis is used, based on the

classical reaching definitions analysis.

• In the second phase, intraprocedural dependence information is computed, based

on the dependencies from the first phase and their transitive closure.

• In the third phase, interprocedural dependencies are determined based on the

solution from the second phase.

We first present the whole-program version of the analysis, and then describe a sum-

mary generation approach and a subsequent summary-based analysis. The input

language is the same as in Section 3.3.2, and we reuse the notation from Section 3.3.1

in the analysis description.

90

4.2 Whole-Program Dependence Analysis

The whole-program analysis described in this section is the starting point for our

summary-based dependence analysis.

4.2.1 Phase 1: Intraprocedural Def-Use Analysis

Intraprocedural reaching definitions analysis [1] is the first step in calculating

dependence information. This analysis computes a set of reaching definitions for each

statement inside a method body. Let the set of all definition statements in a method

be denoted by Defs . These statements correspond to non-terminal 〈DefinitionStmt〉

from the grammar in Section 3.3.2, in cases where the left-hand side of the definition

statement is a local variable. Since we do not consider dependencies due to fields,

definitions with left-hand side expression 〈FieldRef 〉 (or the related 〈ArrayRef 〉) are

ignored. We also assume that each non-void method has exactly one return statement.

If a method has more than one return statement, we consider the equivalent version in

which each return statement is replaced by an assignment to a unique artificial return

variable of the method, and then the flow of control is directed to the statement

that returns this variable. The newly created assignments are treated like regular

definitions. The CFGs used in our implementation are built in this manner.

For a local variable l, Defs l represents the set of all definitions of l. The lattice L

for the problem is the power set of Defs , with partial order ⊇, meet operation ∪, top

element > = ∅, and bottom element ⊥ = Defs . Let l be a local variable and d ∈ Defs l

be a definition that assigns a value to l. The dataflow function for any CFG edge (d, s)

is fd(X) = (X−Defs l)∪{d}, where X ⊆ Defs . Function fd shows that all definitions

of l are killed and replaced with d in the set of reaching definitions for s. For all CFG

91

edges starting in statements that are not definitions of local variables, the dataflow

function is id . A standard fixed-point algorithm can be used to compute the set of

all definitions reaching a CFG node n. It is straightforward to state the reaching

definitions problem as an IDE problem [68]; for brevity, we omit this formulation.

The intraprocedural def-use analysis calculates direct dependencies between the

statements of a method without considering the effects of calls. Consider a statement

s1 which is a definition of a local variable l, and a statement s2 at which the value of

l is read. If s1 belongs to the set of reaching definitions for s2, the def-use analysis

solution will contain the triple (s1, s2, l). A use of l is one of the following statements:

• 〈ReturnStmt〉 when the argument is l.

• 〈InvokeStmt〉, when any actual argument of the call is l. If the call is an

〈InstanceInvokeExpr〉 and l is a reference to the receiver object, this is also a

use of l.

• 〈AssignStmt〉, when l appears on the right-hand side of the assignment.

4.2.2 Phase 2: Intraprocedural Dependence Analysis

Recall that dependence analysis solution for each method m is a set of formal pa-

rameters of m on which the return value of m may have transitive data dependencies.

In phase 2 of the analysis, such relationships are computed purely intraprocedurally,

without taking into account the effects of procedure calls. Interprocedural propaga-

tion is performed during phase 3.

92

Intraprocedural Dependence Analysis as an IDE problem: Simplified Case

To make the description of phase 2 easier to read, we will separate the explanation

into two parts. In the first part, we consider a simplified case in which the method

under analysis does not contain calls. In the second part, we discuss the more general

case in which calls are present in the analyzed method.

In the absence of calls, the analysis solution for each CFG node n is a set of pairs

(l, s) where l is a local variable and s is an 〈IdentityStmt〉 representing an assignment

from a formal parameter to some local variable. These identity statements are the

only statements at which formal parameters occur (Section 3.3.2). A pair (l, s) at n

shows that the value of l used inside n is directly or transitively dependent on the

formal parameter appearing on the right-hand side of s. The only variables l for

which pairs (l, s) exist in n’s solution are variables used inside n — this constraint is

enforced by the dataflow functions described below. Given an analysis solution, the

final dependence information can be obtained by considering all pairs (l, s) computed

for the return statement of the CFG.

Instead of performing the analysis on the method’s CFG, it can be performed on

a “reduced” CFG in which edges correspond to the output of the def-use analysis.

Recall that this output contains a set of triples (s1, s2, l). Each such triple corresponds

to one edge in the reduced CFG. Figure 4.1 shows the reduced CFG of the sample

method replaceName from in Figure 3.7. The dataflow function associated with

an edge (s1, s2) can be defined based on the structure of statement s1. Each such

function takes as input a set of variable-statement pairs and produces a new set of

variable-statement pairs. The cases to be considered for s1 are as follows:

• l = formal: f(X) = { (l, s1) } if statement s1 is an identity statement

93

r3 := r1 r2[0] := r1r5 := r4 specialinvoke r4....

r5 r3

r6 := virtualinvoke r5.<java.lang.String: java.lang.String concat(java.lang.String)>(r3)

return r6

r6

r4 := new java.lang.String r1 := parameter0

r4 r4 r1 r1

r0 := this r2 := r0.names

r0

Figure 4.1: Reduced CFG for the running example

• l = r: f(X) = { (l, s) | (r, s) ∈ X } if s1 is not an identity statement.

• l = "abc": f(X) = ∅

• l = new X: f(X) = ∅

• l = newarray X: f(X) = ∅

• l = X.fld: f(X) = ∅

• l = r.fld: f(X) = { (l, s) | (r, s) ∈ X }

• l = r[i]: f(X) = { (l, s) | (r, s) ∈ X ∨ (i, s) ∈ X }

• l[i] = r: f(X) = ∅

• l[i] = "abc": f(X) = ∅

• X.fld = r: f(X) = ∅

94

• X.fld = "abc": f(X) = ∅

• l.fld = r: f(X) = ∅

• l.fld = "abc": f(X) = ∅

• throw l: f(X) = ∅

• l = caughtexception: f(X) = ∅

• l = cast r to X: f(X) = { (l, s) | (r, s) ∈ X }

• l = cast "abc" to X: f(X) = ∅

The dataflow functions can be written in one of the following general forms:

• Identity statement l = formal: f(X) = { (l,l = formal) }

• Other relevant assignments l = no call expr(r1,r2,...):

f(X) = { (l, s) | ∃i s.t. (ri, s) ∈ X }

• All other statements: f(X) = ∅

In the equations shown above, no call expr(r1,r2,...) represents a generic

expression that does not contain method calls, and uses several variables.

To state this analysis in the IDE framework, we define an environment as a map

V → 2I , where V is the set of all local variables in the method, and I ⊆ Defs is the

set of all identity statements. An environment associates a variable with the identity

statements that read the formal parameters on which the variable is transitively

95

dependent. The top element Ω in Env(V, 2I) assigns an empty set to each variable.

We also define the mapping

M : E → (Env(V, 2I)
d
→ Env(V, 2I))

that assigns an environment transformer to each edge in the reduced CFG. Below are

the environment transformers for all CFG edges:

• For an edge e that comes out of an identity statement s of the form l =

formal:

M(e) = λenv .Ω[l 7→ {s}]

• For an edge e that comes out of an assignment l = no call expr(r1,r2,...):

M(e) = λenv .Ω[l 7→ env(r1) ∪ env(r2) ∪ . . .]

• For all other edges e: M(e) = λenv .Ω

These environment transformers are distributive, and therefore this formulation of

dependence analysis is an IDE problem. The solution computed for a CFG node n can

be obtained as the meet-over-all-paths (MOP) solution, constructed through trans-

former composition and meet. For the single statement return l in the method,

the MOP solution is of the form λenv .Ω[l 7→ {s1, s2, . . .}] where si are identity state-

ments. This solution defines all transitive data dependencies between the return value

of the procedure and its formal parameters.

Intraprocedural Dependence Analysis as an IDE problem: General Case

Consider the more general case in which calls are present in the analyzed method.

In a purely intraprocedural analysis, such calls are left in “pending state” and their

effects are not modeled by the analysis. In this case, in addition to dependencies on

96

the formals used at identity statements, dependencies also exist on the return values

of such pending calls. Thus, the analysis solution for each CFG node n is a set of

pairs (l, s) where l is a local variable and s is either an identity statement or a pending

call. A pair (l, s) at n, where s is an identity statement, still shows that the value of l

used inside n is directly or transitively dependent on the formal parameter appearing

on the right-hand side of s. A pair (l, s) at n, where s a pending call, shows that the

value of l used inside n is directly or transitively dependent on the return value of s.

As before, the only variables l for which pairs (l, s) exist in n’s solution are variables

used inside n.

For each edge e = (s1, s2) in the reduced CFG, the set of cases to be considered

for s1 also includes the following:

• l = staticinvoke method(r1,r2,...): M(e) = λenv .Ω[l 7→ {s1}]

• l = specialinvoke/virtualinvoke r0.method(r1,r2,...):

M(e) = λenv .Ω[l 7→ {s1}]

Note that in both cases the dependencies of l due to ri are “lost”, and interproce-

dural analysis is needed to fully track all such dependencies. With this generalization,

a MOP solution can still be computed for each CFG node. For any statement return

l, the MOP solution is λenv .Ω[l 7→ {s1, s2, . . .}] where si are identity statements or

pending calls. For any pending call l = staticinvoke method(r1,r2,...),

the MOP solution is λenv .Ω[r1 7→ {s1
1, s

1
2, . . .}][r2 7→ {s2

1, s
2
2, . . .}] . . . where s

j
i are

identity statements or pending calls. The MOP solution for an instance call has

a similar form. The set of MOP transformers for the return statement and for all

pending calls is the final output of the intraprocedural dependence analysis.

97

4.2.3 Phase 3: Interprocedural Dependence Analysis

Once phase 2 has performed complete intraprocedural propagation of informa-

tion, phase 3 considers interprocedural dependencies. The dependence information of

a method that contains calls is computed using the dataflow functions of its call state-

ments. The dataflow function of a call is obtained using the dependence information

of all the methods that are potential run-time targets of the call. Therefore, in order

to define the dataflow function for a call, we need to have the dependence information

of all call targets, i.e. we need to know which parameters affect the return value for

each target.

The dependence information of all methods in the program, including those that

contain calls, is obtained by iterating over all methods in the call graph, starting

with the ones that do not contain any calls. The dependencies for methods with

no calls are computed using the technique outlined in the previous section. These

dependencies are then used to compute the dependencies of the methods’ callers,

and so on, until the dependence information for all methods has been computed.

The algorithm is presented in detail in Section 4.2.4. The output of this algorithm is

the meet-over-all-valid-paths solution (for interprocedurally valid paths with properly

matched calls and returns) for each return statement in the program. Thus, for any

statement return l, the solution is of the form λenv .Ω[l 7→ {s1, s2, . . .}] where

si are identity statements in the same method. These solutions define all transitive

data dependencies between the return value of the method and its formal parameters,

including dependencies due to calls.

The dataflow functions for call statements are shown below; these functions are

associated with the CFG edges coming out of such statements.

98

• l = staticinvoke method(r1,r2,...):

f(X) =
⋃

i=1,2,...

{ (l, s) | (ri, s) ∈ X ∧ (formal imethod , retmethod) ∈ Smethod}

• l = specialinvoke r0.method(r1,r2,...)

f(X) =
⋃

i=0,1,...

{ (l, s) | (ri, s) ∈ X ∧ (formal imethod , retmethod) ∈ Smethod}

• l = virtualinvoke r0.method(r1,r2,...)

f(X) =
⋃

i=0,1,... { (l, s) | (ri, s) ∈ X

∧∃rmethod s.t. (formal i
rmethod , ret rmethod) ∈ Srmethod}

where rmethod is a run-time target method of the call.

Here (formal imethod , retmethod) ∈ Smethod shows that the return value of the method

may depend transitively on its i-th formal parameter — in other words, for the

solution Smethod for the target method, and for the return statement ret of the form

return l in that method, the environment transformer Sret for ret has Sret(l) which

contains the identity statements that reads the value of formal i
method .

Figure 4.2 shows the reduced CFG for the sample method. Edges are labeled with

environment transformers. For the virtual call whose return value is assigned to r6, in

this example we have assumed that there are target methods for which the return value

depends both on the formal parameter r3 and on the receiver object pointed-to by r5.

Thus, the transformer corresponding to outgoing edge represents the dependence of

r6 on r3 and r5. In the final solution computed by the interprocedural analysis, the

return value of the method depends on the value of formal parameter parameter0,

but not on the value of this.

99

r6 := virtualinvoke r5.<java.lang.String: java.lang.String concat(java.lang.String)>(r3)

r0 := this

return r6

r2 := r0.names

r1 := parameter0
r4 := new java.lang.String

r3 := r1 r2[0] := r1r5 := r4 specialinvoke r4....

Figure 4.2: Reduced CFG for the running example, annotated with environment trans-
formers for graph edges

4.2.4 Dependence Analysis Algorithm

The algorithm for computing dependencies has three steps, which follow closely

the phases described earlier. In the first phase, the reduced CFG for each method is

built using the result of a reaching definitions analysis. An empty dependence set is

created for each local variable.

In the second phase, we compute the intraprocedural dependencies for each method

of the program. The effects of calls are not considered. Using a worklist, identity

statements and pending calls are propagated to dependence sets along CFG paths

that do not contain calls. At the end of this phase, if a method has a return value,

the dependence set of the return variable may contain some of the identity statements

that affect this value. For methods that do not contain assignments with calls, this

set is complete by the end of the phase. If there are assignments with calls, these

100

assignments are added to the dependence sets of affected local variables; such locals

are either the return variable, or some actual parameter of a pending call.

The third phase computes the dependencies that are due to calls. We perform

bottom-up traversal of the call graph, and for each call site we inline the callee’s

dependence information into the caller’s dependence information. This is done in two

steps:

1. The strongly connected components (SCCs) are computed for the call graph.

2. The SCCs are visited in reverse-topological sort order of the SCC-DAG. During

this traversal, after a method is processed, we have computed for it the complete

set of formal parameters that affect the return value. This set could be empty.

The dependence set of a callee is used later to compute the dependence set of

a caller.

When processing an SCC, there are three possible cases:

1. The SCC contains a single method M , and this method is not self-recursive

(it is not a target for any of its own calls). In this case, we compute the set

of dependencies for M using the already-computed sets of all of M ’s callee

methods. For a call that appears in an assignment in M , the set of target

methods is iterated. For each target t, there is a set of parameters It that

affect the return value of t. For each parameter in It, the dependence set of its

corresponding actual in M is propagated forward from the call. New dependence

information may be added due to calls, and therefore the dependence sets in

M need to be propagated intraprocedurally again. This gives us the set IM for

101

java.lang.Object selfRecursive() {
r0 := this;
...
r8 := r7;
r9 := virtualinvoke r8.<MyClass:

java.lang.Object selfRecursive()>;
r10 := r9;
...
return r30;

}

Figure 4.3: Code fragment from method selfRecursive

M . Essentially, we use the It sets for M ’s callees to jump over calls, and to

introduce the transitive dependence effects of these calls.

2. The SCC contains a single method M , and this method is self-recursive. The

treatment of calls is similar to the previous case when the targets are different

from the current method. However, there are new kinds of dependencies due

to recursion. When the target of a call is the same method as the caller, the

dependence information of the callee is not complete. We solve this issue by

creating new edges in the reduced CFG. For each edge (d, c) labeled with l, that

starts in a definition d and ends in a call c, there will be a new edge between

d and the identity statement for the formal corresponding to the actual l in c.

The new edge is labeled with l. For each edge (c, s) labeled with l, that starts

in a call c and ends in a statement s, there will be a new edge from the return

statement of the method to s. The new edge is labeled with the return variable

of the method. An example of a self-recursive method is shown in Figure 4.3

and its reduced CFG is shown in Figure 4.4. The thick lines represent new

102

r8 := r7

r8

r8

r9

r0

r0 := this

r9 := virtualinvoke r8.<MyClass: java.lang.Object selfRecursive()>

r10 := r9

r30

r10

return r30

Figure 4.4: New edges in the reduced CFG for method selfRecursive

edges added due to recursion. The dependence information flows along these

new edges similarly to the processing of regular edges in the reduced CFG.

3. The SCC contains multiple methods, and some of them may be self-recursive.

Processing the dependence information is done similarly to the previous cases,

except in multiple iterations. After one iteration the dependence sets of the

callees may not be complete, so a fixed-point computation is necessary. The

dependence information is computed repeatedly for each method in the SCC

until there is no change in the dependence information of any method.

At the very end of the SCC-DAG traversal, we have a complete set IM for each

method M , encoding the transitive dependencies from the formal parameters of M

to the return value of M .

103

Our implementation of this whole-program analysis is based on the Soot analysis

framework [81]. We use the call graph computed with 0-CFA by the spark module

in Soot. Our implementation considers only call sites representing explicit calls, and

ignores implicit calls to finalize and clinit methods in the call graph.8 We also

ignore all calls to native methods, as well as all calls through reflection — that is,

any calls to methods with the following Soot signatures:

• <java.lang.Class: java.lang.Object newInstance()>

• <java.lang.reflect.Constructor: java.lang.Object
newInstance(java.lang.Object[])>

• <java.lang.reflect.Method: java.lang.Object
invoke(java.lang.Object,java.lang.Object[])>

• <java.lang.reflect.Proxy: java.lang.Object
newProxyInstance(java.lang.ClassLoader,
java.lang.Class[],java.lang.reflect.InvocationHandler)>

4.3 Summary Generation Analysis

The summary-generation analysis takes as input the set of library classes and

produces a partial representation of their dependence information. The summary

information is saved on disk, and is used in the subsequent summary-based interpro-

cedural dependence analysis.

4.3.1 Summary Information

The summary information for a method is similar in structure to the output of

phase 2 from the whole-program analysis (Section 4.2.2). Since this information is

relevant only from the point of view of future callers of the method, only dependencies

that may ultimately affect the return value of the method are considered. These are

8The analysis considers only call graph edges for which method isExplicit from class
soot.jimple.toolkits.callgraph.Edge returns true.

104

the dependencies related to the return statement of the method and the pending

call sites. Recall that for a statement return l, the MOP solution computed in

phase 2 is λenv .Ω[l 7→ {s1, s2, . . .}] where si are identity statements or pending calls.

Similarly, for any pending call with actual parameters r1, r2, . . . , the MOP solution

is λenv .Ω[r1 7→ {s1
1, s

1
2, . . .}][r2 7→ {s2

1, s
2
2, . . .}] . . . where s

j
i are identity statements or

pending calls.

As described below, in addition to the purely intraprocedural propagation which

produces these MOP solutions, we also perform a restricted form of interprocedural

propagation which “resolves” some of the pending calls. Still, in the general case,

not all pending calls can be resolved, and they exists in the summary as sources

and targets of dependencies. Conceptually, in a method’s summary information,

dependence information associated with a statement s (return statement or pending

call) is represented as a set of pairs (t, s), where t is an identity statement or a

pending call site from which dependencies flow directly or transitively to s. In cases

when s is a pending call, the pair is annotated with the actual parameter of s which

depends on t. The representation of call sites depends on the way the summary I/O is

implemented (it can be as simple as an integer id), but it must be enough to uniquely

identify the call site in the method body, and to query the call graph for targets in a

summary-based dependence analysis of the user code.

4.3.2 Summary Generation

The algorithm for summary generation computes the intraprocedural dependen-

cies, performs a limited form of interprocedural dependence propagation, and stores

105

r6 := virtualinvoke r5.<java.lang.String: java.lang.String concat(java.lang.String)>(r3)

r0 := this

return r6

r2 := r0.names

r1 := parameter0
r4 := new java.lang.String

r3 := r1 r2[0] := r1r5 := r4 specialinvoke r4....

Figure 4.5: Transitive intraprocedural dependencies for method replaceName

the result in a summary file. The algorithm has three phases that are similar to the

phases of the whole-program dependence analysis.

In the first phase, the summary generation algorithm computes the set of reaching

definitions for the statements of a method, and the resulting reduced CFG. In the

second phase, the transitive closure of intraprocedural dependencies is computed for

each node of the reduced CFG, exactly as done in phase 2 of the whole-program

analysis (Section 4.2.2). The restrictions described in Section 4.2.4 (e.g., ignoring

reflective calls and calls to native methods) are also used in the summary generation

analysis. Figure 4.5 shows the transitive intraprocedural dependencies computed by

phase 2 for the sample method replaceName presented in Figure 3.7. The thick

edges highlight the dependencies related to the return statement of the method and

the pending call sites. They are saved in the summary because they are relevant from

the point of view of callers of the method. Figure 4.6 shows these dependencies and

how the statements are affected. Note that the call to the constructor of the string

106

r1 := parameter0

Value returned by call r6 := virtualinvoke r5. ...

return r6

Actual parameter 1 of call r6 := virtualinvoke r5. ...

Figure 4.6: Transitive intraprocedural dependencies for method replaceName that are
relevant for the summary

does not introduce any dependency, while the call to method concat may introduce

interprocedural dependencies, although information about them is not available at

this stage.

Complete interprocedural propagation is impossible because determining the run-

time targets of library calls usually depends on information that is not available

when the summary is built. Furthermore, some targets may be callback methods

that are defined in future client code. However, there are calls for which the summary

generation analysis can determine precisely the run-time target methods, and in some

cases we can “inline” the dependence information of the callee into the summary of

the caller, as described below.

4.3.3 Inlining Information about Fixed Methods

In order to describe the technique for inlining dependence information, we need to

define the notion of a fixed method. Informally, for a fixed method we can determine

107

exactly which methods it calls, directly or transitively, independently of any client

code. The dependence information for the fixed methods can be computed completely

and precisely at the moment the summary is built, and can be inlined into callers’

dependence information.

Exit Calls

A call site is an exit call if it can invoke some method that “exits” the scope of

the analysis and therefore the effects of the call cannot be modeled. An exit call is

a virtual call x.m() for which all of the following hold: (1) the declared type of x

has possible unknown subtypes, (2) the type which declares the compile-time target

method of the call has possible unknown subtypes, and (3) the compile-time target

method of the call can be overridden by unknown methods. Reflective calls (see end of

Section 4.2.4) and calls for which the compile-time target method is a native method

also exit the scope of the analysis, but we ignore them in our discussion.

The definition of exit call considers the possibility of callbacks to user methods.

A library type T (class or interface type) is considered to have potential unknown

subtypes in client code when T or some known subtype of T is public and not final.

Note that this definition assumes that library packages are sealed — that is, client

code cannot add new classes to existing library packages (and therefore non-public

types cannot be accessed directly by client code). The compile-time target method

m of the call site can have unknown overriding methods if (1) m is not private and

is not final, and (2) at least one of m’s known overriding methods (or m itself) is

non-final and is also visible to the client code (i.e., it is public or protected).

108

Fixed Calls

A fixed call is a call for which there is exactly one possible target, no matter

what the client code may be. The target is a library method and can be determined

at compile time. Since it cannot invoke a method in the user code, a fixed call is

obviously not an exit call.

A call that is not an exit call is fixed if it meets any of the following conditions:

• The call is a static invocation or special invocation. In this case the run-time

target of the call is the same with the static target.

• The call is a virtual invocation with the compile-time type of the receiver being

an array type. Array types are final, and there is no possibility for the static

target method to be overridden.

• The call is a virtual invocation, the compile-time type of the receiver is a

class/interface type, and at run time the receiver can point to objects of ex-

actly one type.

We consider receivers for which the set of possible types contains only one type.

Such variables can be identified by looking at the types of objects that flow

into them. The type set is determined using intraprocedural type analysis, as

described in the previous chapter. We also make sure that nothing else affects

the type of the receiver, that is, the receiver is not a variable that is assigned

the value of another local variable, or the return of a call. If this is the case,

the type set computed by intraprocedural type analysis contains all the possible

types of the receiver. If the type set of the receiver contains exactly one type,

the unique target method of the call can be determined based on this type.

109

• The call is a virtual invocation, the compile-time type of the receiver is a

class/interface type, and it has exactly one possible run-time target in the li-

brary, as determined by the type hierarchy for the entire library.

For the sample method replaceName presented in Figure 3.7, both calls that

appear in its body are fixed calls. The first call is a static invocation, and the second

call is a virtual invocation for which the type of the receiver java.lang.String

is final.

Fixed Methods

A fixed method is recursively defined as a method that either does not make any

calls, or it has only fixed calls to fixed methods, possibly to itself. We present a

fixed-point algorithm that marks the methods in the library as fixed or not fixed.

1. The library methods are iterated. A method is marked non-fixed if it contains

a call site that is not fixed (not in the cases presented above), otherwise it is

marked fixed.

2. The second step is a fixed-point iteration over all the methods that have been

marked fixed. If such a method contains a call to a non-fixed method, it is

marked as non-fixed. The corresponding call site is a fixed call site; otherwise

the caller would have been marked as non-fixed in Step 1. The target of the

call is determined using the cases presented above. This step is repeated until

no new methods are marked as non-fixed.

110

Interprocedural Propagation

Dependency information related to fixed methods can be completely determined

at summary generation time, independently of any client code. Therefore it can be

inlined into the callers of fixed methods, in order to reduce the cost of subsequent

summary-based analysis.

In the case of fixed methods that have calls, the dependency information depends

on the targets of those calls. The information of a method cannot be inlined into its

own fixed callers, unless the dependencies of all its callees have been already inlined

into its own information, making it complete. Thus, the dependency information for

fixed methods is propagated in a bottom-up traversal of the call graph, in a manner

similar to the one described in Section 4.2.4. The call graph used by the propagation

algorithm is a fixed call graph. The nodes are fixed methods, and the edges represent

the effects of fixed calls. For each call site inside a fixed method, there is exactly

one edge in the fixed call graph that connects it to the fixed method representing the

target.

Similarly to the whole-program dependency analysis Section 4.2.4, the inlining

algorithm traverses the fixed call graph in the reverse topological order of its SCCs.

Each SCC is one of the following cases:

1. SCC contains only one method M , and M is not self-recursive. The called

methods, if any, are all fixed methods, because M is itself fixed, and their

dependence information is complete because it has been computed previously

for their respective SCCs. This means that for each target t, the set It of

parameters that affect the return value is known. The dependence information

111

is inlined in a very similar manner to Case 1 of the third phase of the whole-

program dependence analysis algorithm presented in Section 4.2.4: the It set

is used to jump over the call to t, and to introduce the transitive dependence

effect of the call.

Adding the callees’ information makes the dependency information of M com-

plete. At this point the transitive dependencies due to the calls are computed.

Since we are interested only in the (possibly transitive) dependencies that may

affect a caller of M , the intraprocedural dependencies in M ’s information are

redundant and can be removed. The set IM of parameters that affect the return

value is the relevant dependency information that is saved in the summary.

2. The SCC is made of one method M and M is self-recursive. The treatment

of calls is similar to the previous case when the targets are different from the

current method. When the target of the call is the same as the calling method,

the dependence information is updated similarly as in Case 2 of the third phase

of the whole-program dependence analysis algorithm from Section 4.2.4. New

edges are added to the reduced CFG of the method to represent the dependen-

cies introduced by recursive calls. Transitive dependencies are computed, and

redundant intraprocedural dependencies are removed, similarly to Case 1.

3. The SCC is made of multiple methods, some of which are self-recursive. Simi-

larly to Case 3 of the whole-program dependence analysis algorithm from Sec-

tion 4.2.4, processing the dependence information is done in multiple iterations.

A fixed-point computation is used, to determine the dependencies of the meth-

ods. A fixed point is reached when no more dependencies are added.

112

At the end of the SCC-DAG traversal, we have a complete set IM for each fixed

method M , encoding the transitive dependencies from the formal parameters of M

to the return value of M .

The following example illustrates the technique of inlining dependencies. We

assume that the sample method replaceName presented in Figure 3.7 has only

fixed methods as targets of its fixed calls, thus itself is also a fixed method. We also

assume that replaceName is the only method in its SCC. The algorithm outlined

at Case 1 applies. The sets of parameters that affect the return value for the targets

of the calls are known, because have been computed for a previous SCC. The set

for the constructor of the string object Iconstructor = ∅, because constructors do not

have a return statement. We assume that the set for the concat method Iconcat =

{this , param0}. Computing the transitive dependencies yields a transitive dependence

between the identity statement r1 := parameter0 and the return statement of

the method. The set of formals affecting the return value for method replaceName

is IreplaceName = {param0}.

As a further improvement of the summary, the dependence information of fixed

methods can be inlined into the dependence information of their non-fixed callers at

fixed call sites. This procedure is similar to Case 1 of the algorithm, except that when

removing redundant intraprocedural dependencies from the caller’s information, the

(non-fixed) call sites that were not inlined must be preserved.

Entry Methods

The summary can be further improved if we consider the methods for which the

callers are in the library, and are fully known regardless of any future user code. For

example, consider a method for which we know all the callers (which are all in the

113

library), and each call site invoking the method is a fixed call. After inlining the

dependency information of the method into its callers, we can remove it from the

summary altogether, since it will never be used by other callers.

In order to find the methods with known callers, we need to define the notion of an

entry method. Informally, an entry method can be directly called from outside of the

analyzed library code. For an entry method the set of callers can not be completely

determined at the time the summary is built.

A method is an entry method if it is any of the following:

• A method called at the startup of the Java virtual machine. There is a set of

methods that are called directly by the virtual machine independently from the

user code. This can affect their dependency information in ways that cannot

be determined by a static analysis, therefore we ignore them in our discussion.

• A static initializer or a finalizer

• A method that overrides one of the following methods:

– void run() in java.lang.Runnable

– java.lang.Object invoke
(java.lang.Object, java.lang.reflect.Method,
java.lang.Object[]) in
java.lang.reflect.InvocationHandler

– void writeObject(java.io.ObjectOutputStream) or
void readObject(java.io.ObjectInputStream) or
java.lang.Object readResolve() or
java.lang.Object writeReplace(), and implements
interface java.io.Serializable

– void writeExternal(java.io.ObjectOutput) or
void readExternal(java.io.ObjectInput), and implements
interface java.io.Externalizable

114

These methods are involved in Java’s own special mechanisms for running

threads, using reflection and defining serialization, and may be called directly

by the virtual machine.

• A method that is public or protected, and its declaring class is public.

• A method that is declared in a non-public class, and this class has a public

supertype that declares a public method with the same signature.

Methods with imprecise caller information are the methods that can have un-

known callers outside the library, or for which the known callers have more than one

target. Entry methods, as described above, have imprecise caller information. In this

category are also the targets of virtual calls that are either exit calls, or that can have

more than one possible target (are not fixed calls). As described in Section 4.3.3, the

possible targets of a call can be determined by looking at the types of objects that flow

into the receiver, when the value of the receiver is not affected by another variable or

the return of a call. Otherwise analysis of the type hierarchy for the compile-type of

the receiver can be used to determine the possible targets conservatively.

The library methods that do not fall in any of the cases presented above have

precise caller information. This means that all the callers of such a method can be

determined when the summary is built, and that the method is the only possible

target for the respective call sites. For a method with precise caller information,

we can inline the dependence information into the information of its callers. Once

inlined, the information about the method becomes redundant and can be removed

from the summary, thus reducing it size.

115

Inlining the information of a method that contains calls adds complications to

the summary, because it introduces into the dependence information of the caller

information about calls that are not part of the caller’s body. Therefore, in our

implementation we inline only the information corresponding to methods with precise

caller information that are also fixed methods. The dependencies related to calls are

resolved for fixed methods, so no calls are added into the caller’s information when

inlining such a method.

4.4 Experimental Study

The goal of the experimental study is to asses the effectiveness of using a summary-

based analysis versus a whole-program analysis. We consider the following issues: (1)

the size of the summary on disk, (2) what is the cost of creating the summary, (3)

what are the effects of inlining fixed methods, and (4) the improvement in terms

of running time and memory usage of the summary-based version compared to the

whole-program version, and to a baseline implementation.

We implemented the algorithms presented in this chapter using the Soot frame-

work [81]. The experiments were performed using a configuration identical to the

one used in the experimental study for summary-based type analysis. The details are

presented in Section 3.5.

4.4.1 Generating the summary

The summary information related to dependence analysis contains a data structure

that represents pairs of statements that belong to the same method and between which

there is a dependency. In a pair (s1, s2), s1 can be an identity statement or a call, and

s2 can be the return statement of the method, or a call, in which case the position

116

of the actual parameter affected by the dependency is also saved. If multiple actuals

are affected, then multiple dependence pairs are saved in the summary for the same

pair of statements.

The input of the summary generation were the classes from Java standard libraries

from J2SE 1.4.2, which contain all classes in packages java., javax, com., COM., org.,

and sun. The output of the summary generation was a file that stores the dependence

information for this methods methods, along with the summary information related

to type analysis, presented in Section 3.5. Generating the summary took almost

40 minutes, and resulted in a file of size of 14.4 MB. In this file, the dependence

information takes only 2.2 MB. The rest of 12.2 MB are taken by the summary for

type analysis (see Section 3.5).

The library classes that served as input to the summary generation contain a total

of 10238 classes, 77190 methods and 1496003 statements. Out of these statements,

307763 (20.6%) are calls. Out of all library methods, roughly one third, or 25490, are

fixed. However only 11517 calls, which represents 3.7% of all calls, are in these fixed

methods, which shows that the fixed methods have generally simple bodies with few

or no calls. The intraprocedural dependence analysis computes 24470 dependence

pairs in the fixed methods, which represents 6.1% of the total number of pairs for all

methods (401070). The percentages of calls and dependence pairs in fixed methods

are relatively small, and therefore limited savings will come out from interprocedural

analysis of these methods.

Although it does not have a big impact on the summary, optimizing the represen-

tation of fixed methods through call inlining is straightforward. The callees of fixed

methods are inlined using the technique presented in Section 4.3.3. Fixed methods

117

are inlined into their callers at fixed calls. Out of all library methods, 19880 have

precise caller information, which represents 25.75% of all the methods, and among

these 7195 are also fixed. Due to inlining, the dependence information of the 7195

methods that are both fixed and have known callers does not need to be saved in the

summary.

To summarize, there are two optimizations applied to the summary: (1) inlining

all fixed methods (into callers that can be both fixed and non-fixed), and subsequently

(2) completely removing from the summary all fixed methods that have known callers.

After the first optimization is applied to the summary information, the number of

calls decreases to 197267 (all of them left in non-fixed methods), which represents a

reduction of 36.9% in the number of calls in the library. The number of dependence

pairs left after inlining is 336249, which represents a reduction of 16.2% in the number

of pairs resulted from the intraprocedural propagation. After the second optimization

is applied, the number of dependence pairs further decreases to 333912 (a reduction

of 16.8% in the number of pairs). These pairs are saved in the final summary. The

second optimization does not affect the number of calls, since there are no calls in

fixed methods.

In the final summary, there are only 5518 dependence pairs for fixed methods (1.7%

of the total number of pairs in the summary), which shows that dependencies of non-

fixed methods take up most of the summary. This suggests that improvements in the

representation of non-fixed methods are of importance for future work in creating a

compact summary.

118

Application Regular Summary Reduced(%) Baseline Reduced(%)
Rabbit2 17.03 4.24 75.13 2.47 85.53
compress 15.41 3.30 78.56 2.12 86.25
db 15.66 2.97 81.03 2.22 85.84
fractal 20.05 4.43 77.91 3.21 83.98
jack 19.86 6.43 67.60 5.64 71.58
javac 19.34 6.11 68.41 5.47 71.74
javacup-0.10j 19.01 6.32 66.74 4.79 74.79
jb-6.1 16.34 3.42 79.05 3.03 81.42
jess 19.20 6.52 66.06 5.79 69.87
jflex-1.4.1 43.80 17.26 60.59 16.02 63.43
jlex-1.2.6 20.53 8.96 56.37 7.64 62.79
jtar-1.21 21.96 3.99 81.84 3.87 82.36
mindterm-1.1.5 42.74 28.62 33.04 26.54 37.91
mpegaudio 53.56 50.70 5.34 46.16 13.82
muffin-0.9.3a 27.56 10.73 61.06 9.93 63.97
raytrace 17.84 4.23 76.27 2.86 83.99
sablecc-2.18.2 25.96 11.24 56.71 9.05 65.13
socksecho 22.21 4.79 78.43 3.61 83.76
socksproxy 15.59 4.08 73.80 2.81 81.98
violet 31.05 6.28 79.78 4.28 86.22

Table 4.1: Comparison of the whole-program analysis, the summary-based analysis, and
a baseline implementation in terms of running times (in seconds)

4.4.2 Summary-based analysis

This section describes the experiments we performed in order to evaluate the

performance of the summary-based technique. We implemented dependence analysis

(both whole-program and summary-based) as a separate module within the Soot 2.2.2

framework. The analysis uses as input the call graph resulted from the corresponding

type analysis (whole-program or summary-based) described in the previous chapter.

Similarly to the case of type analysis, whole-program dependence analysis uses the

Jimple representation for all classes, while summary-based dependence analysis uses

Jimple only for user classes. For library classes, the latter retrieves the already-

computed representation of dependencies from the summary.

119

Application Regular Summary Reduced(%) Baseline Reduced(%)
Rabbit2 34.05 1.38 95.94 1.24 96.35
compress 27.06 1.71 93.69 1.24 95.41
db 27.01 1.94 92.81 1.14 95.79
fractal 39.48 1.48 96.25 1.30 96.70
jack 30.18 1.74 94.23 1.41 95.34
javac 36.11 2.05 94.33 1.73 95.22
javacup-0.10j 29.72 1.53 94.86 1.34 95.48
jb-6.1 27.30 1.57 94.23 0.77 97.18
jess 30.02 1.83 93.91 1.36 95.48
jflex-1.4.1 43.78 1.61 96.31 1.21 97.24
jlex-1.2.6 28.98 1.81 93.77 1.74 93.98
jtar-1.21 42.15 1.79 95.76 0.99 97.65
mindterm-1.1.5 46.55 1.61 96.54 1.19 97.44
mpegaudio 30.51 1.43 95.30 1.19 96.11
muffin-0.9.3a 51.30 2.26 95.60 1.75 96.59
raytrace 28.03 1.56 94.43 1.28 95.42
sablecc-2.18.2 35.25 1.75 95.05 1.64 95.34
socksecho 41.05 1.63 96.02 0.97 97.65
socksproxy 28.38 1.54 94.59 1.24 95.65
violet 57.32 1.76 96.93 1.19 97.92

Table 4.2: Comparison of the regular analysis, the summary-based analysis, and a baseline
implementation in terms of memory usage (in MB)

We ran our experiments on a collection of 20 Java programs, the same benchmarks

that we used for the experiments on type analysis. The programs are presented in

Table 3.1 and described in detail in Section 3.5.2.

For each benchmark, we ran the whole-program dependence analysis and the

summary-based dependence analysis, and we compared the running time and memory

usage for the two analyses. To asses the improvement brought by the summary-based

analysis, we created a artificial summary that records empty dependence information

for each library method. The analysis based on the artificial summary computes the

dependencies for the user methods similarly to the whole-program analysis, while

skipping any computation for the library methods, except for the disk access to the

120

summary file. Although the solution computed this way is irrelevant, this version

of the summary represents a baseline optimization: the time and memory measure-

ments reported by the analysis with artificial summary represent a limit of how far a

summary-based analysis can be improved.

Table 4.1 shows time measurements in seconds, and Table 4.2 shows memory us-

age in MB for each benchmark. In Table 4.1, Column ”Regular” shows the running

times for the whole-program dependence analysis, and Column “Summary” displays

the times for the summary-based analysis. Column “Reduced%” displays the reduc-

tion of running time in the summary-based analysis compared to the whole-program

analysis. The times obtained with the baseline version are displayed in Column “Base-

line”, and the last column “Reduced%” shows the reduction obtained by the baseline

implementation compared to the whole program analysis. Table 4.2 displays similar

measurements and comparisons for memory usage. The average reduction in time is

79.78% in the summary-based version, while the memory usage is reduced on average

by 96.93%. The results show that the summary-based technique brings a significant

improvement over the whole-program analysis. Comparison with the measurements

for the baseline analysis indicate that the resource usage is reduced close to the limit

of what can be achieved.

The results show clearly that using pre-computed dependence information for

library methods takes much less in terms of time and space than creating it on the

spot using the Jimple representation. The improvement is more dramatic compared

to summary-based type analysis, due to the fact that dependence analysis is flow-

and context-sensitive, and thus the propagation work it involves is more computation

intensive than for type analysis. In the case of dependence analysis, the experimental

121

study shows that our summary-based technique effectively addresses the problem of

reducing analysis cost for applications built with large libraries.

Conclusions. (1) Summary-based dependence analysis can achieve significant

savings of running time and memory usage, compared to its whole-program coun-

terpart; for example, for all experimental subjects, the average running time reduc-

tion was roughly 80%. (2) Most savings come from avoiding the cost of analyzing

the library code. (3) Interprocedural techniques for summary generation should be

investigated in future work, in order to improve the representation of dependence

information for non-fixed methods in the summary.

122

CHAPTER 5

RELATED WORK

5.1 Points-to Analysis for RMI Java Software

Points-to analysis for Java. Points-to analysis has been an active research

field in the last fifteen years. Section 1.1 presents the dimensions that affect the

cost/precision trade-offs of points-to analyses. Several groups have adapted points-to

analyses defined for C to be used for analysis of Java (e.g., [3,9,37,39,51,60,76]). They

have studied how analysis cost and precision are affected by the various dimensions

of the algorithm design space. The effect of considering context sensitivity on the

precision of the analysis in Java has been investigated by several researchers (e.g.,

[40,46,47]). A specific version of a subset-based analysis [4] suitable for implementing

with binary decision diagrams (BDD) has been shown to exhibit good space and time

behavior when used to analyze a range of Java programs. In [74] Sridharan et al.

developed an efficient demand-driven points-to analysis algorithm for clients that

only require points-to information for a subset of program variables. Other examples

of points-to and similar analyses for Java include, among others, [23, 24,65,84].

One issue in analyzing Java programs is handling of dynamic class loading and

reflection, which is either treated very conservatively (as in our work) or completely

123

ignored. Livshits et al. [41] propose a static analysis algorithm that uses points-

to information to approximate the targets of reflective calls as part of call graph

construction.

Lhoták and Hendren [37] present the SPARK framework, which allows experimen-

tation with many variations of points-to analyses for Java. The points-to analysis

proposed in [37] is the closest related work to ours, and serves as the starting point

for the PAG-based algorithm in our approach. We introduce various modifications of

the techniques from [37]. For example, new kinds of PAG edges and propagation rules

associated with them are required for analysis of RMI-based programs. The handling

of calls is generalized to simulate the semantics of remote invocations, including the

effects of serialization of object graphs. We also introduce a technique for efficient

handling of the standard Java libraries across multiple distributed components.

Analysis of distributed applications. There has been very little work on

generalizing points-to analyses to RMI-based Java software. The closest related work

is [82], where a compile-time points-to analysis is used to optimize the serialization

at remote calls in several ways, including the two optimization techniques described

earlier. The analysis is described with very little detail, but it appears to be a

flow-sensitive and context-insensitive variation of subset-based analysis. There is no

theoretical definition of the analysis semantics, and no details are given about the

algorithms and data structures used to implement this semantics. For example, it is

unclear whether the approach uses two different points-to sets (remote and local) per

variable, whether component-specific copies vi of a variable v are used, whether the set

of reachable methods is constructed during the analysis or is assumed to be part of the

analysis input, and whether the underlying standard libraries are being analyzed. Our

124

work provides a precise theoretical definition as well as specific algorithms and data

structures. The experimental results in [82] focus on the effects of the optimizations

on performance, while we are primarily interested in uses of the points-to information

in tools for software understanding, testing, and verification.

5.2 Static Analysis in the Presence of Large Libraries

Various techniques have been used to achieve a certain degree of modularity in

dataflow analysis. Below we describe some of the most relevant approaches. A more

complete discussion is available in a summary paper by Cousot and Cousot [13],

presented from an abstract-interpretation point of view.

The construction of summary dataflow functions for use in interprocedural analysis

dates back to the “functional approach” to whole-program analysis defined by Sharir

and Pnueli in [69]. Sagiv et al. propose efficient function representations with the

formulation of IFDS problems [52] and the more general IDE problems [68]. Our

work is most closely related to their formulation, since we define type analysis and

dependence analysis as IDE problems. In [69], an analysis algorithm computes a

dataflow function for a procedure, which is then used by the callers of that procedure.

However, this work (as well as [52,68]) assumes a procedural language with no virtual

calls; furthermore, there is no separation between client code and library code.

The summary-based analyses proposed in our work can be viewed as practical

techniques based on the general theoretical framework for dataflow analysis for pro-

grams built with large extensible library components, a framework presented in [58].

125

The framework considers the model of interprocedural component-level dataflow anal-

ysis, defined in [56], in which the source code a program component is analyzed given

some information on the environment of this component.

Summary information dependent on the rest of the program. The ma-

jority of dataflow analyses that use summaries perform bottom-up traversal of the call

graph, and compute summary functions for procedures using the functions computed

for the already visited callees. In [9], Chatterjee et al. present a bottom-up technique

for a whole-program flow- and context-sensitive points-to analysis. The technique,

called Relevant Context Inference (RCI), can be used to analyzed both whole pro-

grams and incomplete programs, such as libraries, and applies to points-to analysis

of a C++ subset. RCI uses summaries to optimize the analysis of large programs by

using partial information about procedures when performing whole-program analy-

sis, such that the entire program is not needed in memory. However, the summaries

are not saved on disk to be used for subsequent analyses. Furthermore, even when

libraries are preanalyzed as in [8], the computation of summary functions cannot be

performed in the presence of callbacks from the library to the client code. A points-to

analysis for C programs that uses summaries in a similar manner is presented in [10].

Although their approach uses bottom-up traversal of the call graph, the propagation

of summary transfer functions sometimes alternates with top-down propagation along

the partially resolved call graph, in order to handle function pointers.

Various other summary-based analyses the bottom-up traversal of the call graph.

Choi et al. [11] study the use of summaries for an efficient escape analysis. Their

proposed data structure, the connection graph, establishes reachability relations be-

tween objects and objects references. Ruf [65] also presents an escape analysis in

126

which method summaries are used to encode the alias and synchronization effects of

methods and their transitive callees. Whaley et al. [85] present a summary-based

combined pointer and escape analysis for Java programs. Their analysis produces a

single parameterized result for each method, that can be specialized for use at all of

the call sites that may invoke the method. It is a partial program analysis (it analyzes

each method in isolation, and the result becomes more precise as callees are analyzed).

The analysis results for the library are used as summaries, and once computed, can

be reloaded in the analysis of subsequent programs. Similarly, the analysis in [18]

computes a function dependence graph that encodes the dataflow within a program.

The graph contains the summary functions for all procedures. The functions for a

callee must be created before the function for the caller. Other analyses of a similar

nature include [6, 38,80].

Another approach is to traverse the call graph in a top-down manner, and to

compute the summary function for a procedure by taking using the already computed

functions of the callers. In [28] may alias information is computed for a module

(which is defined as a method or a group of methods that has one entry point) by

introducing all possible contexts at the entry of the module. The traversal goes in

top-down manner, and the information about a module is later reused as a summary.

Summary information independent of the rest of the program. Some

techniques compute summary information for a software component independently

of the callers and callees of that component. One particular technique is a modular

approach which computes partial analysis results for each component, combines the

results for all components in the program, and then performs the rest of the anal-

ysis. Such an approach is used in Flanagan and Felleisen’s componential analysis

127

for set-based analysis [17], where they adapt set-based analysis to large programs.

The work in [12] presents a compositional analysis in which a program is seen as a

collection of modules. Similarly to our summary-based approach, their technique im-

proves analysis efficiency by using partial information about modules of the program

under the analysis. The work in [14] presents a points-to analysis in C that improves

Steensgaard’s algorithm [75], while being more scalable than Andersen’s [2]. In their

analysis, each individual source file is first parsed, and the assignment statements

therein are used to construct a flow graph, which is “serialized” and written to disk.

In a subsequent phase, the summary files are read from disk, and the propagation

step is reapplied to obtain global points-to information. Heintze [31] creates summary

information that encodes the structure of the source code of the component, without

performing any analysis work in advance. Rountev and Ryder [54, 63] define an ap-

proach for creating summary information for C libraries based on a similar idea: the

summaries represent the structure of the source code of the library, and can be used

to perform a variety of points-to and side-effect analyses of library clients. Summary

optimizations are used to filter out parts of the summary that are irrelevant for the

clients of the library.

User-defined summary information. There have been proposals for employ-

ing summary information provided by the analysis user (e.g., programmer, tester,

etc.). Guyer [25, 26] proposes annotations for describing libraries in the domain of

high-performance computing. The annotations encode high-level semantic informa-

tion (e.g., points-to and side-effect properties) and are produced by a library expert.

Rugina and Rinard [66] propose the use of design information in the context of op-

timizing compilers. They present summary information that describes how a called

128

procedure affects points-to relationships and how it accesses regions of arrays; this in-

formation is used to perform automatic program parallelization. Dwyer [15] presents

a modular dataflow analysis for verifying correctness properties of concurrent pro-

grams. Information about the surrounding environment of a module is represented

using an environment automaton. This automaton describes the possible interactions

between the module and the environment, and is provided by the user.

Using conservative assumptions about external code. Certain approaches

analyze a software component when there is no available information about the sur-

rounding environment, using conservative assumptions about the possible effects of

unknown external code. Harrold and Rothermel [28] describe an approach for apply-

ing Landi-Ryder’s whole-program pointer analysis for C [34] to a software module.

All possible contexts are introduced at the entry of the module, and then information

is propagated in top-down manner inside the module. Rountev et al. [64] define a

theoretical approach for creating conservative assumptions, and apply the approach

to flow- and context-sensitive pointer analysis of C components. The analysis by

Chatterjee et al. [9] has been modified to perform analysis of library modules [8].

The library analysis processes the library and all of its callees in bottom-up manner,

and then performs a top-down traversal that propagates conservative assumptions

about the clients of the library. Sreedhar et al. [73] define extant analysis that deter-

mines whether a reference variables may point to instances of unknown classes. Tip

et al. [77,79] describe analyses and optimizations for the removal of unused function-

ality in Java modules, and use conservative assumptions to approximate the effects

of code located outside of the optimized modules. Ghemawat et al. [19] present

several analyses of the properties of fields in Java modules. Whole-program escape

129

analyses [6, 11, 85] can be modified to analyze a component without having any in-

formation about the callers or callees of the component. For example, Vivien and

Rinard [83] present an incrementalized escape analysis that is based on the whole-

program analysis from [85]. The analysis dynamically grows the analyzed program

region, and makes conservative assumptions about the rest of the program. Harrold

and Rothermel [27] present a technique for class-level def-use analysis for the purposes

of dataflow-based unit testing. The technique constructs a placeholder driver that

represents all possible sequences of method invocations initiated by client code; the

driver does not take into account the effects of aliasing, polymorphism, and dynamic

binding. Work by Rountev et al. [54,61,62] on points-to analysis shows how to solve

this problem in a general manner by creating a placeholder driver that simulates the

possible flow of reference values due to unknown callers; this approach has also been

generalized to side-effect analysis [55].

Incremental and parallel dataflow analysis. Finally, there is related work

on incremental and parallel dataflow analysis, in which intensive analysis is performed

first locally, and then followed by a quick traversal to recover the actual solutions.

Reference [35] presents a technique of parallelizing dataflow algorithms, where the

analysis is done on procedures in a data parallel way. Marlowe and Ryder [43] pro-

pose a hybrid incremental method that combines iterative and elimination methods.

Their method decomposes the program into regions in which several local problems

are solved, and representative (placeholder) values are used for actual data-flow in-

formation that is external to the region.

130

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The traditional model of whole-program data-flow analysis has several limitations

that make it unsuitable for many real-world software systems. Whole-program anal-

ysis cannot be applied to distributed software, and to very large programs. The

impact of data-flow analysis research can be broadened significantly if the limitations

of whole-program analysis are addressed and resolved. As a step towards achiev-

ing this goal, in this thesis we proposed a theoretical model for points-to analysis of

distributed Java applications, and an analysis approach which employs precomputed

library summary information.

6.1 Static Analysis for RMI Java Software

The work presented in Chapter 2 is a work that generalizes the existing formalisms

for points-to analysis to handle RMI features (Section 2.3) such as remote references,

remote calls, and parameter passing through serialization. The key to this gener-

alization is maintaining two separate points-to sets per variable: one for ordinary

references and one for remote references. Second, the PAG-based propagation al-

gorithm from [37] is generalized with the help of remote PAG edges (Section 2.3).

The specialized propagation rules for such edges allow the algorithm to model 1)

131

the propagation of remote references, which is relatively straightforward, and 2) the

propagation of references to deserialized copy objects, which requires several exten-

sions of the algorithm. A similar approach can potentially be useful for other existing

points-to analysis algorithms for non-RMI Java programs.

Our work on points-to analysis for RMI applications is a first step in establishing a

body of research on static analysis for distributed Java applications. Obvious targets

for future work are various flow- or context-sensitive points-to analyses. Such analyses

can be defined as extensions of the approach from Chapter 2, and their scalability

would have to be investigated carefully. Furthermore, the theoretical complexity of

the proposed analysis should be considered: does the subset-based flow- and context-

insensitive points-to analysis of RMI applications still have the cubic complexity of the

corresponding analysis for non-distributed applications? Another interesting problem

would be to define the RMI-specific generalizations of other categories of analyses

such as side-effect analysis, def-use analysis, and escape analysis. These analyses

could be evaluated experimentally in the context of program understanding tools

(e.g., for change impact analysis) and test coverage tools (e.g., for round-trip-scenario

coverage [5]). Finally, these static analyses could be generalized and evaluated for

more powerful RMI-based middleware platforms such as Enterprise JavaBeans.

6.2 Summary-Based Static Analyses for Large Java Software

The use of library summaries is essential for interprocedural dataflow analysis of

modern systems that are built with large library components. We investigated the

impact of summary usage on two important dataflow analyses, type analysis and

dependence analysis. Our approach uses precomputed summary information that is

132

created with a summary-generation analysis independent of any client code. The

summary is loaded from disk and used in the analysis of software built with reusable

library components. Our experimental studies indicate that the cost of whole-program

type analysis and dependence analysis can be reduced dramatically by this approach.

Future work should apply the summary-based approach to other dataflow analy-

ses, implement the summary-based algorithms, and evaluate their performance. This

will lead to deeper understanding of the benefits of abstracting library information

and reusing it for subsequent analyses. Such work should consider not only Java,

but also programming languages with more challenging features (e.g., the more com-

plex aliasing relationships in C programs). Future investigations also need to focus

on systems built with multiple library components, with various inter-component de-

pendencies, and need to evaluate the analysis algorithms on large-scale programs that

are built with multiple libraries.

133

APPENDIX A

WORKLIST ALGORITHM FOR POINTS-TO ANALYSIS

This appendix contains a more detailed description of the worklist algorithm out-

lined in Section 2.4.4. Given the source code for all classes in sets cls(Ci) for all

program components Ci ∈ C, the algorithm produces:

• A pointer assignment graph (PAG)

• Local points-to set PtL and remote points-to set PtR for PAG nodes node(vi)

and node(o.fld)

• A set of reachable methods Reach =
⋃

i Reach i, where mi ∈ Reach i represents

the copy of method m in component Ci

• A call graph with nodes mi ∈ Reach and edges e ∈ Reach×Reach×CallSites×

{L,R}. A remote call graph edge (mi, nj, c)R indicates that method m in com-

ponent Ci contains a call site c at which one possible remote run-time target

method is n in component Cj. A local call graph edge (mi, ni, c)L shows that

method m in Ci contains a call site c at which one possible non-remote run-time

target method is n in the same component.

134

input program code

output PAG = (N,E) with N ⊆ V ∪ O ∪ (V × F) ∪ (O × F) and E ⊆ N × N ;

initialized to (∅, ∅)

PtL : (V ∪ (O × F)) → 2O and PtR : (V ∪ (O × F)) → 2O;

for all x, PtL/R(x) are initialized to ∅

Reach : set of reachable methods; initialized to ∅

CallGraph : call graph; the set of nodes is Reach; initialized to (∅, ∅)

declare NodeWorklist : set of PAG nodes; initialized to ∅

MethodWorklist : set of methods; initialized to ∅

[1] Reach :=
⋃

i{MainMethod i} ∪ {StaticInitializerOfStartClass i} ∪ {JVMStartupMethods i}

[2] foreach mi ∈ Reach do ProcessBody(mi)

[3] PropagatePointsToSets

Figure A.1: Top level of the analysis algorithm

Top Level. The top-level functionality of the algorithm is shown in Figure A.1.

Line 1 initializes Reach with (1) the main method of each component Ci, (2) the static

initializer (if any) of the class containing that main method, and (3) the set of library

methods that are executed in Ci at JVM startup, before the main method is invoked.

We assume that all initialization code for static fields inside a class (i.e., initialization

expressions in field declarations [21, Section 8.3.2.1] and static initialization blocks [21,

Section 8.7]) is combined in an artificial static method StaticInitializer for that class.

Since the class containing the main method for a component Ci could be initialized

as a result of the invocation of that main method, the code in StaticInitializer should

be considered executable and this artificial method should be added to Reach.

ProcessBody. For each method mi in this initial set Reach, the analysis processes

the method body using procedure ProcessBody . Later, during the rest of the analysis,

this procedure is also executed (exactly once) on each newly discovered reachable

135

procedure ProcessBody(mi)

[4] foreach statement st in mi do

[5] if st is v = new X then ProcessAllocation(node(si),node(vi))

[6] if st is v1 = v2 then add edge node(vi
2
) −→ node(vi

1
) to PAG

[7] if st is v1 = v2.fld then add edge node(vi
2
.fld) −→ node(vi

1
) to PAG

[8] if st is v1.fld = v2 then add edge node(vi
2
) −→ node(vi

1
.fld) to PAG

[9] if st is v = X.fld then add edge node(X.fld i) −→ node(vi) to PAG

[10] if st is X.fld = v then add edge node(vi) −→ node(X.fld i) to PAG

[11] foreach method nj ∈ Reach for which ProcessBody has already been executed do

[12] foreach initial remote references (vi, wj) ∈ Ii→j where vi ∈ Locals(mi)

and wj ∈ Locals(nj) do

[13] add edge node(vi)
remote
−→ node(wj) to PAG

[14] add node(vi) to NodeWorklist

[15] foreach initial remote references (wj , vi) ∈ Ij→i where vi ∈ Locals(mi)

and wj ∈ Locals(nj) do

[16] add edge node(wj)
remote
−→ node(vi) to PAG

[17] add node(wj) to NodeWorklist

[18] foreach monomorphic call site c in mi, where the invoked method is ni do

[19] AddCallGraphEdge(mi, ni, c, L)

Figure A.2: Processing the body of a newly discovered reachable method

method. Given a method body, PAG edges are created to represent the value-flow

semantics of the statements inside that body (lines 4–10 in Figure A.2), excluding the

effects of method calls. For an assignment v = new X, procedure ProcessAllocation

(see Figure A.6) adds si to PtL(vi) and puts node(vi) on a worklist NodeWorklist of

PAG nodes. Throughout the algorithm, the elements of this worklist are PAG nodes

node(vi) whose points-to sets may need to be propagated to other PAG nodes—for

example, to node(wi) due to a PAG edge node(vi) −→ node(wi).

Next, ProcessBody considers all pairs of local variables that could be used to

“bootstrap” initial remote references between mi and reachable methods nj (lines 11–

17). The source nodes of the new PAG edges are added to NodeWorklist , because the

points-to sets of these source nodes may have to be propagated to the corresponding

136

procedure AddCallGraphEdge(mi, nj , c, x)

[20] if (mi, nj , c)x ∈ CallGraph then return

[21] add (mi, nj , c)x to CallGraph

[22] if nj /∈ Reach then add nj to Reach and to MethodWorklist

[23] foreach actual vi
t of c with corresponding formal pj

t of nj do

[24] add edge node(vi
t)

x
−→ node(pj

t) to PAG

[25] add node(vi
t) to NodeWorklist

[26] add edge node(ret j)
x

−→ node(wi) to PAG , where the return value at c is assigned to w

[27] add node(ret j) to NodeWorklist

Figure A.3: Creating a new call graph edge and the corresponding PAG edges

target nodes. Finally, at lines 18–19, for all compile-time monomorphic call sites in mi,

the corresponding call graph edges are created using procedure AddCallGraphEdge

(this procedure is discussed below). This is done for each call site c that represents a

static call, a constructor call, or a non-polymorphic instance call (e.g., call to a final

method). Note that remote calls are never processed in this step, because such calls

are always performed through remote interfaces. Polymorphic calls (including remote

calls) are processed later, when the points-to sets of PAG nodes can be used to infer

that certain receiver objects are possible at these call sites.

AddCallGraphEdge. Procedure AddCallGraphEdge, shown in Figure A.3, is

invoked when a potential target method is detected at a call site. The procedure

updates the call graph, the set of reachable methods, and the PAG. The actual

parameters are the calling method m i , the target method n j , the call site c, and

a value x ∈ {L,R} signifying a local or a remote call. If edge (mi, nj, c)x is new,

it is added to the call graph. If the target method nj is discovered for the first

time, it is added to the set of reachable methods. The new method is also added

to a worklist MethodWorklist of newly discovered reachable methods; as discussed

137

later, each method on this worklist is eventually processed using ProcessBody . Each

reachable method (except for the initial methods from line 1 in Figure A.1) is added

to MethodWorklist exactly once.

Lines 23–27 in Figure A.3 create new PAG edges representing the flow of values

due to actual-formal parameter bindings and due to return values. The newly created

PAG edges are remote if the call graph edge is remote, and local otherwise. The source

nodes of the new edges are added to NodeWorklist , because their points-to sets may

contain objects that need to be propagated to the PAG nodes for p
j
t and wi.

PropagatePointsToSets. Procedure PropagatePointsToSets in Figure A.4 con-

tains the main loop of the algorithm. This loop propagates objects to points-to sets

and performs on-the-fly call graph construction. The procedure completes when there

are no more objects to be propagated to points-to sets. The completion is signaled

by two conditions (line 43):

1. Worklist NodeWorklist is empty, meaning that there are no more variables with

points-to sets that need to be propagated.

2. Boolean variable SerializableToPropagate is false, meaning that there are no

more object fields o.fld whose points-to sets need to be propagated. As described

below, a value true for this flag indicates that points-to sets may have changed

for object fields that are subject to serialization at remote calls, and therefore

further propagation may be necessary.

Each iteration of the inner loop processes a PAG node node(vi). This node

was earlier put on NodeWorklist because the (local or remote) points-to set of vi

changed, and this change required further propagation. First, the analysis considers

138

procedure PropagatePointsToSets

declare RemoteFieldEdges : set of PAG edges

SerializableToPropagate : boolean

[28] repeat

[29] repeat

[30] remove node(vi) from NodeWorklist

[31] BuildCallGraphOnTheFly(vi)

[32] foreach node(vi) −→ node(wi) in PAG do

processSimpleEdge(node(vi),node(wi))

[33] foreach node(vi) −→ node(wi.fld) in PAG do

processStoreEdge(node(vi),node(wi.fld))

[34] foreach node(wi) −→ node(vi.fld) in PAG do

processStoreEdge(node(wi),node(vi.fld))

[35] foreach node(vi.fld) −→ node(wi) in PAG do

processLoadEdge(node(vi.fld),node(wi))

[36] foreach node(vi)
remote

−→ node(wj) in PAG do

processRemoteEdge(node(vi),node(wj))

[37] until NodeWorklist = ∅

[38] foreach node(vi) −→ node(wi.fld) in PAG do

processStoreEdge(node(vi),node(wi.fld))

[39] foreach node(vi.fld) −→ node(wi) in PAG do

processLoadEdge(node(vi.fld),node(wi))

[40] RemoteFieldEdges := { e ∈ PAG | e is an edge node(o1.fld)
remote

−→ node(o2.fld) }

[41] SerializableToPropagate := false

[42] foreach e ∈ RemoteFieldEdges do ProcessRemoteFieldEdge(source(e), target(e))

[43] until NodeWorklist = ∅ and SerializableToPropagate = false

Figure A.4: Propagation of objects to points-to sets

the current values of PtL/R(vi) and attempts to grow the call graph using function

BuildCallGraphOnTheFly (line 31). Inside this function, all call graph edges related

to vi are created (if necessary) and the the points-to sets of the corresponding formals

this are updated. Furthermore, if there are reachable methods whose bodies have not

been processed yet (e.g., because they were just discovered by the call at line 47),

they are removed from MethodWorklist and their bodies are examined. Note that the

139

procedure BuildCallGraphOnTheFly(vi)

[44] foreach polymorphic call site c of the form v.m(. . .) in method mi do

[45] foreach object oj ∈ Ptx(vi) do

[46] nj := target method for receiver oj at call site c

[47] AddCallGraphEdge(mi, nj , c, x)

[48] PtL(thisnj) := PtL(thisnj) ∪ {oj}

[49] if PtL(thisnj) changed then add node(thisnj) to NodeWorklist

[50] while MethodWorklist 6= ∅ do

[51] remove mi from MethodWorklist

[52] ProcessBody(mi)

Figure A.5: On-the-fly call graph construction

call to ProcessBody at line 52 could add methods to MethodWorklist because of the

call at line 19.

After all necessary changes to the call graph, the PAG edges related to vi are

examined and the corresponding points-to sets are updated (lines 32–36). The pro-

cessing of these edges is based on the points-to analysis algorithm from [36, 37] with

the appropriate addition (at line 36) to handle PAG edges labeled as remote. The

outer loop considers all load and store edges in the PAG (lines 38–39), not just the

ones that are related to vi. This is necessary to propagate points-to relationships that

may be missed by the inner loop due to aliasing [36].

Lines 40–42 are needed to propagate the points-to sets of fields o.fld along remote

edges corresponding to serialization at parameter passing for remote calls. Each such

edge is of the form node(o.fld)
remote
−→ node(µj(o).fld) and represents the flow of values

from field o.fld to the deserialized copy of that field in component Cj. Using the

points-to sets of o.fld , the analysis updates the points-to sets of µj(o).fld (lines 73–76

in Figure A.7). This process may also add new remote edges between object fields

(lines 77–78). If the points-to sets of µj(o).fld change, flag SerializableToPropagate

140

procedure ProcessAllocation(node(si),node(vi))

[53] add edge node(si) −→ node(vi) to PAG

[54] PtL(vi) := PtL(vi) ∪ {si}

[55] add node(vi) to NodeWorklist

procedure ProcessSimpleEdge(node(vi),node(wi))

[56] PtL(wi) := PtL(wi) ∪ PtL(vi)

[57] PtR(wi) := PtR(wi) ∪ PtR(vi)

[58] if PtL(wi) changed or PtR(wi) changed then add node(wi) to NodeWorklist

procedure ProcessStoreEdge(node(vi),node(wi.fld))

[59] foreach o ∈ PtL(wi) do

[60] PtL(o.fld) := PtL(o.fld) ∪ PtL(vi)

[61] PtR(o.fld) := PtR(o.fld) ∪ PtR(vi)

procedure ProcessLoadEdge(node(vi.fld),node(wi))

[62] foreach o ∈ PtL(vi) do

[63] PtL(wi) := PtL(wi) ∪ PtL(o.fld)

[64] PtR(wi) := PtR(wi) ∪ PtR(o.fld)

[65] if PtL(wi) changed or PtR(wi) changed then add node(wi) to NodeWorklist

Figure A.6: Propagation along non-remote PAG edges

is raised to ensure that at least one more iteration of the outer loop at lines 28–43

is executed, in order to propagate these changed sets. It is easy to show that when

new remote PAG edges are created at line 78, line 79 is guaranteed to raise the flag,

thus forcing future propagation along those new edges. When the flag remains false

after line 42, neither the PAG nor the points-to sets have changed due to the effects

of object serialization. Together with NodeWorklist 6= ∅, this guarantees that further

propagation is not necessary.

141

procedure ProcessRemoteEdge(node(vi),node(wj))

[66] PtR(wj) := PtR(wj) ∪ { o | o ∈ PtL(vi) ∧ o is remote }

[67] PtR(wj) := PtR(wj) ∪ PtR(vi)

[68] foreach non-remote serializable o ∈ PtL(vi) do

[69] PtL(wj) := PtL(wj) ∪ { µj(o) }

[70] foreach non-transient field fld of o do

[71] add edge node(o.fld)
remote

−→ node(µj(o).fld) to PAG ,

if the edge does not exist already

[72] if PtL(wj) changed or PtR(wj) changed then add node(wj) to NodeWorklist

procedure ProcessRemoteFieldEdge(node(o.fld),node(µj(o).fld))

[73] PtR(µj(o).fld) := PtR(µj(o).fld) ∪ { o′ | o′ ∈ PtL(o.fld) ∧ o′ is remote }

[74] PtR(µj(o).fld) := PtR(µj(o).fld) ∪ PtR(o.fld)

[75] foreach non-remote serializable o′ ∈ PtL(o.fld) do

[76] PtL(µj(o).fld) := PtL(µj(o).fld) ∪ { µj(o
′) }

[77] foreach non-transient field fld2 of o′ do

[78] add edge node(o′.fld2)
remote

−→ node(µj(o
′).fld2) to PAG ,

if the edge does not exist already

[79] if PtL(µj(o).fld) changed or PtR(µj(o).fld) changed then

SerializableToPropagate := true

Figure A.7: Propagation along remote PAG edges

142

BIBLIOGRAPHY

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[3] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDD’s. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 103–114, 2003.

[4] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 103–114, 2003.

[5] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, 1999.

[6] B. Blanchet. Escape analysis for object-oriented languages. Applications to Java.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 20–34, 1999.

[7] D. Callahan. The program summary graph and flow-sensitive interprocedural
data flow analysis. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 47–56, 1988.

[8] R. Chatterjee and B. G. Ryder. Data-flow-based testing of object-oriented li-
braries. Technical Report DCS-TR-433, Rutgers University, 2001.

[9] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
133–146, 1999.

[10] B. Cheng and W. Hwu. Modular interprocedural pointer analysis using access
paths. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 57–69, 2000.

143

[11] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for
Java. In ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 1–19, 1999.

[12] M. Codish, S. Debray, and R. Giacobazzi. Compositional analysis of modu-
lar logic programs. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 451–464, 1993.

[13] P. Cousot and R. Cousot. Modular static program analysis. In International
Conference on Compiler Construction, LNCS 2304, pages 159–178, 2002.

[14] M. Das. Unification-based pointer analysis with directional assignments. In ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 35–46, 2000.

[15] M. Dwyer. Modular flow analysis of concurrent software. In International Con-
ference on Automated Software Engineering, pages 264–273, 1997.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, July 1987.

[17] C. Flanagan and M. Felleisen. Componential set-based analysis. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages
235–248, 1997.

[18] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In Static Analysis Symposium, LNCS 1824,
pages 175–198, 2000.

[19] S. Ghemawat, K. Randall, and D. Scales. Field analysis: Getting useful and
low-cost interprocedural information. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 334–344, 2000.

[20] S. Ghosh, N. Bawa, S. Goel, and Y. R. Reddy. Validating run-time interactions in
distributed Java applications. In IEEE International Conference on Engineering
of Complex Computer Systems, pages 7–16, 2002.

[21] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, 3 edition, 2005.

[22] W. Grosso. Java RMI. O’Reilly, 2002.

[23] D. Grove and C. Chambers. A framework for call graph construction algo-
rithms. ACM Transactions on Programming Languages and Systems, 23(6):685–
746, Nov. 2001.

144

[24] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction in
object-oriented languages. In ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 108–124, 1997.

[25] S. Guyer. Incorporating Domain-Specific Information into the Compilation Pro-
cess. PhD thesis, University of Texas, Austin, 2003.

[26] S. Guyer and C. Lin. Optimizing the use of high performance software libraries.
In International Workshop on Languages and Compilers for Parallel Computing,
LNCS 2017, pages 227–243, 2000.

[27] M. J. Harrold and G. Rothermel. Performing data flow testing on classes. In
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
154–163, 1994.

[28] M. J. Harrold and G. Rothermel. Separate computation of alias information for
reuse. IEEE Transactions on Software Engineering, 22(7):442–460, July 1996.

[29] B. Haumacher and M. Philippsen. Exploiting object locality in JavaParty, a
distributed computing environment for workstation clusters. In Workshop on
Compilers for Parallel Computers, pages 83–94, June 2001.

[30] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

[31] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA. In ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 254–263, 2001.

[32] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, pages 54–61, 2001.

[33] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–
60, Jan. 1990.

[34] W. Landi and B. G. Ryder. A safe approximation algorithm for interprocedu-
ral pointer aliasing. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 235–248, 1992.

[35] Y.-F. Lee and B. G. Ryder. A comprehensive approach to parallel data flow
analysis. In ACM International Conference on Supercomputing, pages 236–247,
1992.

145

[36] O. Lhoták. Spark: A scalable points-to analysis framework for Java. Master’s
thesis, McGill University, Dec. 2002.

[37] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In
International Conference on Compiler Construction, LNCS 2622, pages 153–169,
2003.

[38] D. Liang and M. J. Harrold. Efficient computation of parameterized pointer
information for interprocedural analyses. In Static Analysis Symposium, LNCS
2126, pages 279–298, 2001.

[39] D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-
insensitive and context-insensitive points-to analyses for Java. In Workshop on
Program Analysis for Software Tools and Engineering, pages 73–79, June 2001.

[40] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the impact of context-
sensitivity on Andersen’s algorithm for Java programs. In ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
2005.

[41] B. Livshits, J. Whaley, and M. Lam. Reflection analysis for Java. In Asian
Symposium on Programming Languages and Systems, LNCS 3780, pages 139–
160, 2005.

[42] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs,
and R. Hofman. Efficient Java RMI for parallel programming. ACM Transactions
on Programming Languages and Systems, 23(6):747–775, Nov. 2001.

[43] T. Marlowe and B. G. Ryder. An efficient hybrid algorithm for incremental
data flow analysis. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 184–196, 1990.

[44] Sun Microsystems. RMI Specification. Sun Microsystems, 2002.

[45] Sun Microsystems. Serialization Specification. Sun Microsystems, 2003.

[46] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 1–11, 2002.

[47] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology, 14(1):1–41, Jan. 2005.

146

[48] M. Philippsen and B. Haumacher. Locality optimization in JavaParty by means
of static type analysis. Concurrency: Practice and Experience, 12(8):613–628,
July 2000.

[49] M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization and
RMI for Java. Concurrency: Practice and Experience, 12(7):495–518, May 2000.

[50] B. Quig, J. Rosenberg, and M. Kölling. Supporting interactive invocation of
remote services. In International Conference on Principles and Practice of Pro-
gramming in Java, pages 195–200, 2003.

[51] C. Razafimahefa. A study of side-effect analyses for Java. Master’s thesis, McGill
University, Dec. 1999.

[52] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 49–61, 1995.

[53] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph
reachability. Technical Report DIKU-TR94-14, University of Copenhagen, Apr.
1994.

[54] A. Rountev. Dataflow Analysis of Software Fragments. PhD thesis, Rutgers
University, Aug. 2002. Available as Techical Report DCS-TR-501.

[55] A. Rountev. Precise identification of side-effect-free methods in Java. In IEEE
International Conference on Software Maintenance, pages 82–91, 2004.

[56] A. Rountev. Component-level dataflow analysis. In International SIGSOFT
Symposium on Component-Based Software Engineering, LNCS 3489, pages 82–
89, 2005.

[57] A. Rountev and B. H. Connell. Object naming analysis for reverse-engineered
sequence diagrams. In International Conference on Software Engineering, pages
254–263, 2005.

[58] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis in the
presence of large libraries. In International Conference on Compiler Construc-
tion, LNCS 3923, pages 2–16, 2006.

[59] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis in
the presence of large libraries. Technical Report OSU-CISRC-1/06-TR01, Ohio
State University, Jan. 2006.

147

[60] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java based
on annotated constraints. In ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 43–55, Oct. 2001.

[61] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing
of polymorphism in Java software. In International Conference on Software
Engineering, pages 210–220, 2003.

[62] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing
of polymorphism in Java software. IEEE Transactions on Software Engineering,
30(6):372–387, June 2004.

[63] A. Rountev and B. G. Ryder. Points-to and side-effect analyses for programs
built with precompiled libraries. In International Conference on Compiler Con-
struction, LNCS 2027, pages 20–36, 2001.

[64] A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis of program frag-
ments. In ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, LNCS 1687, pages 235–252, 1999.

[65] E. Ruf. Effective synchronization removal for Java. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 208–218,
2000.

[66] R. Rugina and M. Rinard. Design-driven compilation. In International Confer-
ence on Compiler Construction, LNCS 2027, pages 150–164, 2001.

[67] B. G. Ryder. Dimensions of precision in reference analysis of object-oriented
programming languages. In International Conference on Compiler Construction,
LNCS 2622, pages 126–137, 2003.

[68] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science, 167:131–
170, 1996.

[69] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analy-
sis. In S. Muchnick and N. Jones, editors, Program Flow Analysis: Theory and
Applications, pages 189–234. Prentice Hall, 1981.

[70] M. Sharp and A. Rountev. Static analysis of object references in RMI-based Java
software. In IEEE International Conference on Software Maintenance, pages
101–110, 2005.

[71] M. Sharp and A. Rountev. Static analysis of object references in RMI-based
Java software. IEEE Transactions on Software Engineering, 32(9):664–681, Sept.
2006.

148

[72] S. Sinha and M. J. Harrold. Analysis and testing of programs with exception
handling constructs. IEEE Transactions on Software Engineering, 26(9):849–
871, Sept. 2000.

[73] V. Sreedhar, M. Burke, and J. Choi. A framework for interprocedural optimiza-
tion in the presence of dynamic class loading. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 196–207, 2000.

[74] M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-to anal-
ysis for Java. In ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 59–76, 2005.

[75] B. Steensgaard. Points-to analysis in almost linear time. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 32–41,
1996.

[76] M. Streckenbach and G. Snelting. Points-to for Java: A general framework and
an empirical comparison. Technical report, U. Passau, Sept. 2000.

[77] P. Sweeney and F. Tip. Extracting library-based object-oriented applications. In
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
98–107, 2000.

[78] F. Tip and J. Palsberg. Scalable propagation-based call graph construction al-
gorithms. In ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 281–293, 2000.

[79] F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter. Practical extraction
techniques for Java. ACM Transactions on Programming Languages and Systems,
24(6):625–666, 2002.

[80] S. Triantafyllis, M. Bridges, E. Raman, G. Ottoni, and D. August. A framework
for unrestricted whole-program optimization. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 61–71, 2006.

[81] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Optimizing Java bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction, LNCS 1781, pages 18–34,
2000.

[82] R. Veldema and M. Philippsen. Compiler optimized remote method invocation.
In IEEE International Conference on Cluster Computing, pages 127–137, 2003.

[83] F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 35–46, 2001.

149

[84] J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for
strictly-typed languages. In Static Analysis Symposium, pages 180–195, 2002.

[85] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 187–206, 1999.

150

