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ABSTRACT

This thesis is devoted to a study of the dynamics of two charge and three charge

systems in string theory. We analyze properties of two charge systems in various

duality frames and carry out perturbative addition of momentum to these systems.

This gives us a picture of microscopic origin of entropy of black holes, supporting

the Mathur conjecture. We extend the perturbative construction to provide a mi-

crostate for the two charge black ring by adding a small amount of momentum as the

third charge. We found it to be completely smooth and horizonless in accord with

the Mathur conjecture. We further study dynamics of supertubes in both the weak

coupling and the strong coupling regimes which suggests a way to distinguish bound

states from unbound states in string theory. We apply these results to supertubes

in KK monopole background. We construct metrics describing two charge solutions

in four dimensions by adding momentum to a system of N coincident KK mono-

pole solution. We find that adding momentum separates the monopoles and resolves

the associated ZN singularities. We also consider branes wrapping cycles in space-

times generated by two and three charge systems and analyze their supersymmetry

properties.
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CHAPTER 1

OVERVIEW

Our current knowledge of the basic structure of the physical universe is rooted

in the frameworks of quantum field theory and general relativity. Empirically, both

have been tremendously successful. The standard model of particle physics is an

SU(3)×SU(2)×U(1) gauge theory. It encapsulates our understanding of the strong

and electroweak forces and as of now is fully in accord with experiments. Gen-

eral relativity is a classical field theory for gravity which gives us our most com-

plete understanding of gravitational phenomena and cosmology. One of the deep-

est problems in theoretical physics is harmonizing general relativity with quantum

field theories, or in other words, finding a quantum theory of gravity. General rel-

ativity predicts its own destruction because in situations like black holes, smooth

initial data can evolve into singular field configurations. A theory of quantum grav-

ity is expected to solve such problems but a perturbative quantization of general

relativity yields a non-renormalizable theory. As an effective field theory it can

be useful in dealing with low energy phenomena but it fails to cope with strong

gravity phenomena like singularities of classical GR which were our main motiva-

tion for seeking a theory of quantum gravity. Something more drastic is needed.
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The assumption of replacing point particles with higher dimensional objects such

as strings or branes leads us to string theory which is currently the most successful

theory of quantum gravity. In this chapter, we give a non technical overview of

the issues and topics discussed in this thesis. In the next chapter we give a more

detailed presentation of some of the background material needed to understand the

later chapters.

1.1 Black Holes and String theory

Colloquially, black holes are objects with such a strong gravitational field that

even light cannot escape from them. In general relativistic parlance, black holes have

an ‘event horizon’ which is a boundary beyond which no information about the inside

region may reach. Black holes are usually formed due to the gravitational collapse of a

sufficiently massive star. Surprisingly, when a collapsing star settles into a stationary

black hole state, its metric is uniquely determined by a few asymptotic charges like

mass and angular momentum. Existence of black holes is quite problematic for the

second law of thermodynamics in the rest of the universe because one can decrease

the entropy of the outside region by dropping objects in the black hole. One can

argue that the entropy is not lost but just hidden inside the black hole. But from

the point of view of the rest of the universe, the second law becomes observationally

unverifiable since we have no way of knowing how much entropy the black hole has

due to matter falling into it.

Bekenstein [1] provided a solution to this dilemma by assigning an entropy to the

black hole itself. Based on several ‘gedanken’ experiments, he determined that the

black hole entropy must be proportional to the area of the event horizon. Hawking
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[2] fixed the constant of proportionality by considering quantum field theory in the

curved classical spacetime of a black hole. The work of Bekenstein and Hawking

saved the second law of thermodynamics but it raised profound questions about black

holes, thermodynamics and quantum field theory. Hawking discovered that not only

do black holes have entropy but they also have a temperature and radiate like any

black body at that temperature. Black hole radiation was found to be thermal and

it leads to a loss of the mass of the black hole. So unless some new principle arises,

black holes can completely evaporate and leave just thermal radiation behind. By

its nature, black body radiation does not carry any information (except temperature,

which depends only on the total mass) about what went into making the black hole.

This, in simplified terms, is known as the information loss problem.

A related problem is that unlike any other thermodynamic system we have no

microscopic understanding of the Bekenstein-Hawking entropy of a black hole. We

do not know how to explain the entropy of black holes as arising due to a coarse

graining over some set of microstates. String theoy being our most well developed

theory of quantum gravity should shed some light on this profound puzzle. String

theory is an interacting relativistic theory of extended objects like strings and solitonic

membranes of different dimensionalities. The strength of interaction between objects

is governed by a dimensionless coupling constant g. There are also duality symmetries

which can convert one set of objects to other or change from a weak coupling regime

to a strong coupling regime of the theory. A crucial ingredient of string theory is

supersymmetry. In any supersymmetric theory, the mass (M) and charge (Q) satisfy

an inequality of the form M ≥ cQ for some constant c. States that saturate this
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bound are called BPS states and have the special property that their mass does not

receive any quantum corrections.

In string theory, we try to make black holes from strings and different types of

higher dimensional membranes. Strominger and Vafa [3], in their pioneering work

made classical sized black holes using three charged objects D1-D5-P. D1 and D5

branes are solitonic objects of one and five dimensions respectively while P refers to

momentum carried along their common direction. One problem is that we understand

the quantum structure of these objects at weak coupling only while black holes are

a strong coupling phenomena. In this situation BPS states come handy. Using them

one can make special types of black holes (extremal black holes) and count all possible

configurations with given values of charges at weak coupling. Now imagine increasing

the coupling. This increases gravity [4] and causes these states to become black

holes. Using uniqueness of black holes, we can relate the weak coupling and strong

coupling regimes. Since BPS states are protected by supersymmetry, the counting

that we did for weak coupling remains valid and logarithm of that gives the entropy

even at strong coupling. In one of the famous triumphs of string theory, we get a

perfect match between microscopic and macroscopic entropies. Agreement persists if

we have near-extremal black holes which are not fully protected by supersymmetry.

Calculations have been done for 5 and 4 dimensional black holes including other

charges like angular momenta. Small deviations from fully thermal spectrum (grey

body factors) have also been shown to match.
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1.2 AdS/CFT and the Mathur Conjecture

As the work of Strominger and Vafa showed, string theory was on the right track

for a correct theory of quantum gravity. However it did not yield much information

about the microstates except their number. Motivated partially, by results on black

holes, Maldacena [5] conjectured a very profound duality between string theory on

product spaces AdSp×Sq×M and conformal field theories on the conformal boundary

of this spacetime. Here AdSp refers to p dimensional anti-desitter space and Sq

denotes q dimensional sphere. We will usually take M = T 4 i.e four-torus. For our

special case of black holes in 4 or 5 dimensions, we have a duality between AdS3 ×S3

and some conformal field theory. This AdS3×S3 spacetime occurs as the near horizon

limit of black holes and the CFT is the low energy limit of a gauge theory living on the

branes making the black hole. Since the CFT is a unitary field theory, there should

not be any information loss in black holes. In the CFT one can identify individual

states and their counting matches with the black hole entropy. But what if one insists

on using a gravitational description? How does one see states on the gravity side if

we only have one black hole metric? Based on an abstract argument one can already

see that the individual microstates must be horizonless. If microstates had a horizon

they will have entropy of their own. We want microstates to explain the entropy of

the black hole and not to have entropy of their own. If they do not have horizons

they must be non-singular if we do not want naked singularities.

For the two charge systems Mathur and Lunin [6] constructed a family of non-

singular horizonless metrics corresponding to states in the CFT which have same

asymptotic charges and look like naively constructed two charge metric for black holes

outside. But inside they all differ from each other and if we delineate a boundary after
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which the geometries start differing from each, we find that this boundary has [7],[8]

an area which gives the black hole entropy. So “coarse graining” over geometries leads

us to the entropy of the black hole. This is a very satisfying picture of the black hole

because entropy arises from coarse graining. It must be emphasised that the generic

states are expected to be quantum and probably no geometric description would be

possible. The idea is to associate a coherent state in the CFT with an asymptotically

flat geometry which is smooth and free of horizons, carries the same conserved charges

as the black hole and hence constitutes a microstate of the black hole. The two charge

system is basically a toy model since it does not have a classically finite horizon. The

work of Strominger and Vafa was for three charge systems. It is reasonable to expect

the basic picture of black holes to remain unchanged when we go from two to three

charges. In chapter 3, we take the first step towards this goal by adding the third

charge perturbatively. In that case, we found a smooth perturbation which confirms

that the picture holds at least for some special states. After this work was done, the

Mathur conjecture was further confirmed when a complete non-perturbative three

charge geoemtry was constructed by Giusto, Mathur and Saxena [9] and were found

to be smooth and horizonless. Again, the conjecture does not say that all three charge

states will have a classical supergravity description.

1.3 Properties of microstate geometries

Given the importance of these smooth geometries, it is worth exploring their

properties further. In chapter 5, we study branes wrapping various cycles in these

spacetimes and study their supersymmetry properties. In chapter 6, we study the

dynamics of supertubes [10],[11] which are basically dualized versions of two charge
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systems we have been talking about. At weak coupling, supertubes are described by

Dirac-Born-Infeld (DBI) action which is proportional to area of the brane. We study

fluctuations of these system both at weak coupling (where they are described by a

DBI action) and in the strong coupling supergravity limit. From this study we also

managed to obtain a conjecture to distinguish between bound states and unbound

states. In 5 and 6 dimensions, there has been a lot of recent progress recently and

there is now a general scheme [12] to write down solutions to minimal supergravity in

these dimensions. Most of these solutions do not correspond to bound states. Mathur

conjecture deals with bound states and hence it is of crucial importance to have a way

to distinguish between bound and unbound states, specially for three charge states.

1.4 Systems with KK monopole

Recently, there has been a lot of interest in systems containing the KK monopole.

It is a purely gravitational solution in string theory and one of its obvious attractions

is that it is a completely regular gravity solution. We will see in the next chapter

that the geometry of its non compact part is four dimensional. Hence it is used

as an ingredient in constructing black holes in four dimensions. In chapter 7, we

use it to construct [13] metrics for 2 charge system in four dimensions. Using a

solution generation technique, we add momentum to a system of N coincident KK

monopoles. Before adding momentum the system of N coincident KK monopoles has

ZN singularities. But the presence of momentum separates them and since each KK

monopole is smooth we get a smooth solution. We do get a singularity when we take

KK monopoles as continuously distributed. But this is due to the low number of

dimensions. We examine other properties of this system in chapter 7. In chapter 8,
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we study two charge supertubes moving in a KK monopole background and consider

their dynamics. We study this system in both weak coupling (DBI limit) and strong

coupling (supergravity) limit. We study the system in different duality frames and

with different vibration profiles.

1.5 Black Ring

For four dimensional black holes, classical general relativity is very restrictive and

under very general assumptions it is possible to prove certain uniqueness theorems.

These uniqueness theorems (see [14] for a review) severely restrict the possible types of

black holes, given a set of asymptotic charges and boundary conditions. For example,

for four dimensional Einstein-Maxwell theory, a stationary, asymptotically flat black

hole is specified by a limited number of parameters. Uniqueness theorems assert that

these parameters are precisely those that correspond to conserved charges namely,

the mass M and angular momentum J , and possibly the charges Q associated to

local gauge symmetries. Hence, the only black hole solution of the four-dimensional

Einstein-Maxwell theory is the Kerr-Newman black hole. This result precludes the

possibility that a black hole possesses higher multipole moments (for example, a

mass quadrupole or a charge dipole) that are not completely fixed by the values

of the conserved charges. Physically, during the collapse phase (not described by

a stationary metric), a self-gravitating object loses all ‘hair’ and settles down to

a stationary solution described by the Kerr-Newman solution. Anything that can

be radiated is radiated away during the collapse process. Deviations from Kerr-

Newman solution drive the emission of gravitational radiation. Backreaction from

that radiation removes the deviations (the “balding” process). These conclusions
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are based on perturbative analysis but are confirmed by numerical methods for large

deviations as well.

Although the higher dimensional version of the Schwarzschild solution was found

long ago [15], it was not until 1986 with the impetus provided by the development of

string theory, that the higher-dimensional version of the Kerr solution was constructed

by Myers and Perry (MP) [16]. Given that the Kerr black hole solution is unique in

four dimensions, it may have seemed natural to expect black hole uniqueness to hold

in higher dimensions as well.

Now we know that at least in five dimensions, and very likely in D ≥ 5 dimensions,

this is not the case. A heuristic argument that suggests the possibility of black holes of

non-spherical topology is the following. Take a neutral black string in five dimensions,

constructed as the direct product of the Schwarzschild solution and a line, so the

geometry of the horizon is R × S2. Imagine bending this string to form a circle,

so the topology is now S1 × S2. In principle this circular string tends to contract,

decreasing the radius of the S1, due to its tension and gravitational self-attraction.

However, we can make the string rotate along the S1 and balance these forces against

the centrifugal repulsion. Then we end up with a neutral rotating black ring: a black

hole with an event horizon of topology S1×S2. Ref. [17] obtained an explicit solution

of five-dimensional vacuum general relativity describing such an object. This was not

only an example of a non spherical horizon topology, but it also turned out to be a

counterexample to black hole uniqueness.

Our main interest here is in the supersymmetric black ring discivered in [175].

Since black rings also have an entropy, it is reasonable to ask if the Mathur conjecture

picture for black holes also extends to black rings. This would imply that one should
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be able to find microstates for black rings. For two charges and one dipole moment,

black hole and black rings are the same. So one can ask if one can perturbatively

add momentum to one of two charge states to get a microstate for a black ring, as

was done for black holes in chapter 3. This is what we do in chapter 4 and we do

find a smooth perturbations in the black ring regime. This is very encouraging and

hopefully more examples can be found soon. The base state around which we perturb

has a lot of angular momentum and so one can question its ‘genericity’ for the case

of black holes. But since black rings have angular momentum bounded below, a

perturbative state represents a generic situation more closely than in case of black

holes.
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some background information about issues relating to

black holes that we want to discuss in this thesis and how string theory gives us a

radically different picture of black holes.

2.1 Black Holes in classical and quantum gravity

In terms of Newtonian gravity, black holes are gravitationally collapsed objects

for which escape velocity from the surface becomes greater than the speed of light, so

that nothing can escape. In general relativity, the situation is more drastic. A black

hole is defined as a region of spacetime that can not communicate with the external

universe. The boundary of this region is called the event horizon. Under a fairly

reasonable set of assumptions like the validity of Einstein equations and the positiv-

ity of energy, it can be shown that a gravitational collapse will produce singularities.

Singularities ‘clothed’ by event horizon lead to black holes as opposed to ‘naked’ sin-

gularities. The conjecture that physically possible singularities in general relativity

are always hidden behind event horizon is called Cosmic censorship hypothesis. Even

though there is no general proof of it as of now, cosmic censorship is well supported

by calculations and numerical work. One might suppose that a realistic black hole

11



which forms due to collapse of all kinds of matter configurations, with arbitrary mul-

tipole distributions,magnetic fields etc would be horrendously complicated objected.

Surprisingly, during the collapse phase (not described by a stationary metric) , a self-

gravitating object looses all ‘hair’ and settles down to a stationary solution described

by a solution described by only three parameters : mass,charge and angular momen-

tum. This solution to vacuum Einstein equations, known as Kerr-Newman solution,

is stationary,axisymmetric,asymptotically flat and has a regular event horizon. Any-

thing that can be radiated is radiated away during collapse process. Deviations from

Kerr-Newman solution drive the emission of gravitational radiation. Backreaction

from that radiation removes the deviation (”balding” process). These conclusions

are based on perturbative analysis but are confirmed by numerical methods for large

deviations too.

If the black hole has no charge or angular momentum (known as Schwarzschild

black hole) then the metric is given by

ds2 = −(1 − rH
r

)dt2 + (1 − rH
r

)−1dr2 + r2dΩ2
2 (1.1)

Here rH = 2GM and we have set c = 1. There is a coordinate singularity at

the surface r = rH , called the event horizon, and it can be removed by using a

different set of coordinates. Curvature invariants like Ricci scalar are finite at the

horizon. Even though there is no real singularity there, the surface r = rH has

the special property of being a one way membrane. Things can go in but cannot

come out. One way to see this is that inside the horizon, the radial coordinate be-

comes time like (coefficient of dr2 becomes negative) and singularity at r = 0 is

in our ‘future’ and we can not avoid hitting it. So once the radius of a collapsing

star has dropped below rH , even light can not escape from its interior, hence the

12



name “black hole”. On the other hand, r = 0 is real singularity where curvature

invariants diverge. One point to keep in mind is that an object falling into a black

hole will not experience any particularly strong force as it crosses the horizon. At

the horizon radius r = rH , curvature scales as 1/M 2 and can be made arbitrarily

small by taking sufficiently large mass. However, one peculiarity of event horizon

is that for an asymptotic observer watching a falling object, it takes infinite time

to reach horizon due to infinite gravitational redshift between horizon and infinity.

In 1971, Hawking proved a theorem [46] which says that the area of a black hole

can never decrease with time. If two black holes merge then the area of the new

black hole is greater than the sum of the areas of the original black holes. The non-

decreasing property of area is reminiscent of entropy in thermodynamics. Another

thing to notice about the Schwarzschild metric is that parameter that appears in

the metric is total mass. In the general case of Kerr-Newman black hole the met-

ric contains three parameters; mass,charge and angular momentum. We know that

black holes are formed by gravitational collapse of some star which contained a huge

amount of matter and huge amount of information (like quantum numbers corre-

sponding to various particles, their motion etc). But the end result is an object

which only contains information about few parameters like mass,charge etc. So given

these parameters, black hole state is unique and hence entropy of a black hole is zero.

Black hole formation is a spontaneous process and hence from the outside observer’s

point of view, second law of thermodynamics is violated in such a collapse. Existence

of black holes conflicts with the second law of thermodynamics because one can de-

crease the entropy of outside universe by throwing things into black hole. One can
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try to salvage second law by including the entropy of infalling matter in the entropy

of outside universe even when it has crossed the horizon. But then the second law

becomes observationally unverifiable. One possible way out was suggested by Beken-

stein [47]who argued that if we assign an entropy to black hole which is proportional

to area then one can define a generalized second law which is valid in all situations.

Since area increases when anything falls in black hole, the net entropy of the universe

(Smatter + Sblackhole) increases. Using several thought experiments, Bekenstein pro-

posed that entropy of a black hole is proportional to area. Using semi-classical quan-

tum gravity, Hawking [2]fixed the constant of proportionality and we have SBH = A
4GN

.

Here A is the area of the horizon of black hole. For a black hole of mass equal of

mass of earth, this implies that SBH ∼ 1066 which is an extremely large entropy.

Hawking also found that black holes are not perfect sinks. They radiate like a

black body with temperature T = κ
2π

. Here κ is the surface gravity of black hole,

which for Schwarzschild black hole is (4MBH)−1. The emitted radiation, called Hawk-

ing radiation, is exactly thermal according to semi-classical calculations of Hawking.

So black holes emit radiation until they completely evaporate. This poses a problem

for quantum mechanical determinism because thermal radiation only carries infor-

mation about temperature and hence mass from above relation. All knowledge of

states which formed black hole is completely lost. So a black hole made from two

different sets of objects can evaporate to completely similar end product i. e hawk-

ing radiation which depends only on one parameter, namely mass of black hole (or

3 parameters in case of Kerr-Newman black hole). All thermodynamic systems in

physics have their entropies explainable in terms of coarse graining of microstates.
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If black holes behave similarly then we would expect N = eSBH microstates, accord-

ing to Boltzmann formula. But as we saw above, black hole uniquenss gives only

one state and hence zero entropy. How can one explain such a huge discrepancy?

Hawking’s semi-classical calculation is based on treating matter quantum me-

chanically while keeping gravitational field classical (quantum field theory in curved

spaces). Hawking radiation is produced from the quantum fluctuations of the mat-

ter vacuum, in the presence of gravitational field of black hole. Near the horizon

particle-antiparticle pairs are produced due to vacuum fluctuations. In a black hole

background, one member of this pair can fall into the black hole, where it has a net

negative energy, while the other member can escape to infinity as real positive energy

radiation with thermal spectrum. One might question making such a semi-classical

approximation and think that strong quantum gravity effects will invalidate this ap-

proximation. But as we say earlier, the gravitational field (curvature) near horizon,

where these particle pairs are produced, is not large and can be made arbitrarily small

by increasing the mass. So quantum gravity effects as normally understood, should

not affect the conclusions of Hawking.

One may suppose that all the information about the eSBH microstates resides in a

planck sized region near the singularity (where all infalling matter disppears) and thus

the information about states is not visible classically. Infact, this lack of information

transfer between this region near singularity and macroscopic horizon (where pair

production takes place) manifests itself in thermaliy of hawking radiation and thus

in information problem. Our naive intuition about quantum gravity effects being
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confined in a planck sized region and locality are at the root of this problem. Thus

any putative quantum gravity theory, when applied to black holes, should throw light

on following issues

(a) It should be possible to resolve singularity at the centre of black hole.

(b) It should be possible to transfer information from interior region of the black

hole to the horizon.

(c) It should be possible to construct microstates which give black hole entropy

on coarse graining and it should give us some picture of how information is preserved.

String theory is currently the only framework rich enough to let us analyze black

holes and information loss problem in any convincing way. So we turn to a description

of string theory in the next section.

2.2 String Theory

At a perturbative level(weak coupling) string theory is best thought of as a theory

of interacting relativistic strings. We will see later that string theory contains objects

of higher dimensionality like D-branes, KK monopoles etc. But rightnow we concen-

trate on perturbative string theory. In superstring theory, particles are described as

vibrational modes of strings. We can have open as well as closed string theories. The

energy per unit length of string, string tension, is parametrized as Ts = 1
2πα′ where

string length
√
α′ is usually set to be of order 10−33 cm. A moving string traces a

worldsheet in spacetime and string theory is descibed by a worldsheet action whose

bosonic part is proportional to the area of the worldsheet. This 1 + 1 dimensional

field theory has majorana fermions and worldsheet supersymmetry. Interaction be-

tween strings is controlled by a dimensionless coupling constant gs. Even in weak
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coupling perturbation theory (gs � 1), quantization requires that theory be con-

formally invariant,supersymmetric and the number of spacetime dimensions be 10.

Since the spatial direction of the worldsheet has finite extent, each worldsheet field

can be regarded as a collection of infinte number of harmonic osciallators labelled by

the quantized momentum along this spatial direction. Different states of the string

are obtained by acting on the fock vacuum by these oscillators. This gives an infinte

tower of states. For low energy considerations, we are usually only interested in mass-

less fields. Massless sector of open string theory contains gauge fields while massless

sector of closed string theories contains graviton Gµν, antisymmetric tensor Bµν and

scalar dilaton Φ in their spectra. Bosonic part of action in a general back ground is

given by

S =
1

4πα′

∫

d2σ
(

[
√
ggabGµν(X) + εabBµν ]∂aX

µ∂bX
ν + α′√gRΦ(X)

)

(2.2)

Here α′ = l2s ,with ls being string length. R is Ricci scalar for worldsheet. Gravi-

ton (Gµν), B-field(Bµν) and dilaton (Φ) also act as background fields. Roughly,closed

strings describe gravity while open strings describe gauge fields. Action written above

is conformally invariant and it turns out that conformal invariance is crucial for the

consistency of string theory. In the presence of arbitrary background fields, confor-

mal invariance is broken at quantum level and consistency requires that β function

describing this violation is zero. The requirement of vanishing β function gives a

set of spacetime equations (order by order in α′) which,at the lowest level, are just

supergravity equations of motion. Higher order terms provide string theoretic cor-

rections to low energy supergravity results. Depending on field content (bosonic and

fermionic) and boundary conditions for this 1+1 worldsheet theory, we can have five

consistent string theories in 10 dimensions. They are known as type IIA,type IIB,
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type I, E8×E8 heterotic and SO(32) heterotic. In this thesis, we will be interested in

type IIA and type IIB theories only. Low energy effective field theory limits of these

theories are known as type IIA and type IIB supergravities.

2.2.1 Spectrum and Solitons in type II theories

In type II theories, the worldsheet theory is a free field theory of closed strings

containing 8 scalar fields(representing 8 transverse coordinates of string) and 16

majorana-weyl fermions (8 with left handed chirality and 8 with right handed chiral-

ity). Scalars always have periodic boundary conditions but for fermions we have choice

between periodic (Ramond condition) and antiperiodic (Neveu-Schwarz condition).

Since we have two types of fermions (left handed and right handed) , there are four

possibilities : NS-NS (bosonic), RR(bosonic),NS-R(fermionic) and R-NS(fermionic).

Finally, consistency at 1-loop and desire to get rid of tachyon which occurs in the

spectrum, we impose GSO projection which keeps only states with even number of

left movers and even number of right movers. If the GSO projections on left and

right moving sectors are same then we get type IIB theory. Otherwise we get type

IIA theory. Since the two theories differ only in R sector, NS sector bosonic states are

same (Gµν, Bµν ,Φ) in both the theories. The RR sector massless states of type IIA

string theory consist of a vector and a rank three anti-symmetric tensor. Type IIB RR

massless sector consists of a scalar,a rank two antisymmetric tensor, and a rank four

antisymmetric tensor (with self dual field strength). Type IIA is non-chiral while type

IIB is chiral, both having N = 2 susy. Strings do not source these RR fields and from

perturbative string theory point of view, they appear a bit mysterious. But analysis

of low energy effective action for massless fieds gave us a window to non-perturbative
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aspects of string theory. Low energy equations for massless fields in these theories

are same as respective supergravity equations of motion. From these low energy

equations we see that in addition to strings, superstring theory also contains soliton

like objects of various internal dimensionalities called Dirichlet Branes (D-branes).

A Dirichlet p-brane(Dp-brane) is a p+1 dimensional hyperplane in 9+1 dimen-

sional space-time where open strings are allowed to end, even in theories where all

strings are closed in bulk spacetime[57]. D-brane is like a topological defect: when

a closed string touches it, it can open up and turn into open string whose ends are

free to move along the D-brane. Open string states with ends lying on D-branes

correspond to vibrational modes of D-branes. Excitations of open strings describe

gauge theories and hence D-branes naturally realize gauge theories on their world

volume. The massless spectrum of open strings living on a Dp-brane is that of a

maximally supersymmetric U(1) gauge theory in p+ 1 dimensions. The 9 − p mass-

less scalar fields present in this supermultiplet are the expected Goldstone modes

associated with the transverse oscillations of the Dp-brane, while the photons and

fermions may be thought of as providing unique supersymmetric completion. If we

consider N parallel D-branes, then there are N 2 different species of open strings be-

cause they can begin and end on any D-branes. Open strings with end points on same

brane can become massless while open strings stretched between different branes will

have masses determined by the separation between two branes. Thus we have U(1)N

gauge symmetry. In the limit of coincident branes, all strings can become massless

and U(1)N symmetry gets promoted to U(N). Separating the branes is then equiv-

alent to Higgsing the gauge theory and giving vacuum expectation values to scalar
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fields. The overall U(1) ∼ U(N)/SU(N) (upto some ZN identifications which are not

important here) corresponds to overall position of branes and may be ignored when

considering dynamics on branes. Thus we have SU(N) gauge symmetry. Open string

perturbation theory for N Dp-branes is governed by gsN and is valid if gsN < 1.

As we mentioned earlier, there is another description of D branes as solitons of low

energy string effective action[52]. For large N, the stack of D branes behaves like a

massive object which acts as a source for gravity. These brane solutions occur as

solutions to supergravity field equations (which as we mentioned earlier, occur as low

energy limit of string equations). These are solitonic, in the sense that their tensions

are inversely proportional to string coupling Tp ∼ 1

gsl
p+1
s

. D-p brane metric is [52]

ds2 = H−1/2(r)

(

−dt2 +

p
∑

i=1

(dxi)2

)

+H1/2(r)
(

dr2 + r2(dΩ8−p)
2
)

(2.3)

Dilaton is given by eΦ = H
3−p
4 . We have not shown RR fields which are not

important for arguments below. Here

H(r) = 1 +
L7−p

r7−p (2.4)

L is related to radius of curvature of the spacetime. The gravity description of

D branes is valid when gsN > 1. Thus we have a sort of complementarity between

gravity and gauge theory descriptions.

2.2.2 Finding supersymmetric solutions

D-branes and other solitonic objects are invariant under half of spacetime super-

symmetries. To see this, we briefly go over the concept of killing spinors. A Dirac

spinor in D dimensions has 2[D/2] complex components where [D/2] denotes the in-

tegral part of D/2. For on-shell degrees of freedom, the number is halved because

20



spinors satisfy Dirac equation. But spinors which occur in susy transformations and

hence in killing spinor equation are off-shell. In dimensions where Majorana con-

dition is possible , we can use this condition to take all components as real. This

reduces the real degrees of freedom by half. In ten dimensions, a Dirac spinor has

32 complex components. In type IIB theory, we have two such spinors since N = 2.

After Majorana condition, we have two spinors with 32 real components each. In

even dimensions, we can also have Weyl condition which allows us to consider spinors

with definite chirality and further cuts the degrees of freedom by half. If we choose

to have two spinors of opposite chirality then we get IIA theory. In type IIB theory,

we have spinors of same chirality. In general supergravity equations of motion are

pretty complicated second order equations. If we are interested in classical solutions

only then situation can be simplified as follows. Classical solutions have fermion fields

set to zero (fermions do not produce classical fields because of exclusion principle).

Classical solutions are also the solutions of purely bosonic action that one obtains by

setting all fermionic fields to zero. Supersymmetry transformations convert a boson

into fermion and vice-versa. Schematically, for a susy variation with parameter ε

δεB ∼ εF , δεF ∼ ∂ε +Bε (2.5)

Here B denotes bosons and F denotes fermions. Since fermions are already zero,

the variation of bosons is automatically zero. So we just need to make sure that

the variation of fermions is also zero since we do not want to generate fermionic

fields by susy transformations on purely bosonic fields. So we want δεF = 0. This

gives an equation which can be seen as equation for superisometry in superspace. In

analogy with GR, this is called Killing spinor equation. This gives a system of first

order equations. Usually this gives an ansatz(very constrained) which can be put in
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equations of motion to get the full solution. Killing spinor equation also gives us a

constraint on vacuum killing spinor and this constraint cuts the no. of components

by half.

2.2.3 Dualities

In the perturbative regime, there are 5 consistent string theories. But existence

of various dualities connects these theories and it was realized that all five string

theories in 10 dimensions are limits of a still imperfectly understood 11 dimesnional

theory,called M -theory. One thing that is known about M -theory is that its low

energy limit is 11-dimensional supergravity. We will be exclusively concerned with

type IIA and type IIB string theories in this report. Since string is an extended

object, it can do more things than point particles. If the background contains a

spatial circle S1 of radius R, then there can be momentum modes which have energy

proportional to 1/R as well as winding modes of strings with energy proportional to

R. T-duality is a symmetry which interchanges these two types of modes by taking

R → 1
2πRTs

where Ts is string tension and its a peculiar property of string theory that

the whole theory is invariant under this transformation. T-duality can also connect

a Dp brane to D(p− 1) and D(p+ 1) branes but it takes one from IIA theory to IIB

theory and vice-versa. Type IIB theory has another symmetry called S-duality under

which string coupling gs → 1
gs

. S-duality converts strong coupling regime to weak

coupling regime and vice-versa. Under S-duality, fundamental string NS1 goes to

solitonic D1 brane. These dualities can be used to transform systems in string theory

to equivalent duality related systems which may be more tractable in that regime.
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In two charge, which will be our main interest, this trick of transforming to duality

related systems has led to significant advances in our understanding.

2.3 Metrics corresponding to various branes

We will mostly interested in gravitational aspects of string theory. So construction

of metrics for various objects occuring in string theory is of paramount importance

to us. Since all one charge objects in string theory are connected by dualities, we

can start with any one of them and using dualities and dimensional reduction we can

write down metrics for others. We will be specially interested in KK monopole later

on, so we start with a brief description of it and then derive other objects from it via

dualities. Five dimensional metric for KK monopole at origin is

ds2 = −dt2 +H[ds+ χjdx
j]2 +H−1[dr2 + r2(dθ2 + sin2 θdφ2)] (3.6)

H−1 = 1 +
QK

r
, ~∇× ~χ = −~∇H−1 (3.7)

Here xj with j = 1, 2, 3 are transverse coordinates and there is a NUT singularity

at r = 0 unless QK = 1
2
NKRK where NK corresponds to number of KK monopoles.

Near r = 0, s circle shrinks to zero. For NK = 1, it does so smoothly while NK > 1,

there are ZNK
singularities. We consider NK = 1 case here.

Constant time slices of the above spacetime are Taub-Nut gravitational instanton.

Gauge field is clearly that of a monopole. Explicitly, in one chosen patch, it is given

by

Aφ = QK(1 − cos θ) , ~B =
QK~r

r3
(3.8)

and has a dirac string singularity unless period of s is equal to 2QK. The metric is

regular on the half axis θ = 0 but has a singularity at θ = π since the (1− cos θ) term
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in the metric means that a small loop about this axis does not shrink to zero length

at θ = π. By a change of coordinates s′ = s + 2QKφ the metric becomes regular at

θ = π but not a θ = 0. Thus one needs two sets of coordinates to cover the space.

Since KK monopoles are 1/2 BPS objects in string theory, they can be put in static

equilibrium with each other. So multimonopole metric is just given by same metric

as above except

H−1 = 1 +

N
∑

i=1

Q
(i)
K

|~x− ~xi|
(3.9)

If Qi
K = QK = 1

2
RK for all i then all the Dirac strings can be made simultaneously

unobservable and we have a regular solution with N monopoles sitting at rest at

~x = ~xi. It is a remarkable property of Kaluza-Klein monopoles that they do not

interact. From four dimensional point of view i. e in dimensionally reduced form, it

is because of exact cancellation between gravitational attraction and repulsion due to

scalar field. In four dimensional form, we have

ds2 = −
√

1 − QK

2r
dt2 +

dr2

√

1 − QK

2r

+

√

1 − QK

2r
r2dΩ2 (3.10)

ψ =
1

2
ln(1 − QK

2r
) ∞ ≥ r ≥ QK/2 (3.11)

If we consider a massive test particle and its interaction with KK monopole, we

see that it interacts both with gravitational field and scalar field. The test particle

can remain relatively at rest with respect to KK monopole since newtonian force is

exactly cancelled by interaction with scalar field.

In 11 dimensions, the metric for KK monopole is

ds2 = −dt2 + dy2 + dzidzi +H−1[ds+Aφdφ]2 +H[dr2 + r2(dθ2 + sin2 θdφ2)] (3.12)
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H = 1 +
Q

r
, Aφ = Q(1 − cos θ) (3.13)

Here i = 1, 2, ..5 and other fields are zero. From this 11 dimensional metric, we

can get two different objects in 10 dimensions. If we do not reduce along the compact

direction s then we get string theoretic KK monopole. For example, if we first make

the direction y compact and then reduce along it then we get the metric

ds2 = −dt2 + dzidzi +H[ds+ Aφdφ]2 +H−1[dr2 + r2(dθ2 + sin2 θdφ2)] (3.14)

with no dilaton or B-field. If instead we reduce along the compact direction s

which is non-trivially fibred with KK monopole then we get D6 brane. The metric is

ds2 = −dt2 + dw2 + dzidzi +H−1[dr2 + r2(dθ2 + sin2 θdφ2)] (3.15)

Aφ = Q(1 − cos θ) (3.16)

eC = H (3.17)

If we go to string frame then, with gsab = e
C
2 g10

ab we get

ds2 = H1/2
(

−dt2 + dw2 + dzidz
i
)

+H−1/2[dr2 + r2(dθ2 + sin2 θdφ2)] (3.18)

e2Φ = H3/2 (3.19)

We take KK monopole metric in 10 dimensions and then do a T-duality along

compact direction s. Since there is no dilaton in ten dimensional metric string and

Einstein frames are same. Reducing along s we get eC
′

= H. SInce intially the dilaton

was zero, new dilaton is Φ′ = −1
2
C ′. Using T-duality rules we get metric in string
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frame

ds2
s = −dt2 + dzidz

i +H−1[ds2 + dr2 + r2(dθ2 + sin2 θdφ2)] (3.20)

Bsµ = Aµ (3.21)

e−2Φ′

= H (3.22)

We recognize this as NS5 brane. To go to Einstein frame, we multiply by e−Φ′/2.

Metric for NS5 brane becomes

ds2
E = H1/4(−dt2 + dzidz

i) +H−3/4dxjdx
j (3.23)

Metric forD5 brane is same as above metric (in Einstein frame) with sign of dilaton

changed. Two metrics are related by S-duality which in Einstein frame corresponds to

changing the sign of dilaton. To write string frame metric for D5 brane we multiply

by eΦ
′/2. Notice the change in sign of dilaton. So we get

ds2 = H1/2(−dt2 + dz2
j ) +H−1/2dx2

i (3.24)

2.4 AdS/CFT correspondence

In previous section, we noticed that excitations of open strings describe gauge

theories and hence D-branes naturally realize gauge theories on their world volume.

The massless spectrum of open strings living on a Dp-brane is that of a maximally

supersymmetric U(1) gauge theory in p + 1 dimensions. The 9 − p massless scalar

fields present in this supermultiplet are the expected Goldstone modes associated

with the transverse oscillations of the Dp-brane, while the photons and fermions may

be thought of as providing unique supersymmetric completion. If we consider N par-

allel D-branes, then there are N 2 different species of open strings because they can
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begin and end on any D-branes. Open strings with end points on same brane can be-

come massless while open strings stretched between different branes will have masses

determined by the separation between two branes. Thus we have U(1)N gauge sym-

metry. In the limit of coincident branes, all strings can become massless and U(1)N

symmetry gets promoted to U(N). Separating the branes is then equivalent to Hig-

gsing the gauge theory and giving vacuum expectation values to scalar fields. The

overall U(1) ∼ U(N)/SU(N) (upto some ZN identifications which are not important

here) corresponds to overall position of branes and may be ignored when considering

dynamics on branes. Thus we have SU(N) gauge symmetry. Open string pertur-

bation theory for N Dp-branes is governed by gsN and is valid if gsN < 1. As we

mentioned earlier, there is another description of D branes as solitons of low energy

string effective action[52]. For large N, the stack of D branes behaves like a massive

object which acts as a source for gravity. These brane solutions occur as solutions to

supergravity field equations (which as we mentioned earlier, occur as low energy limit

of string equations). These are solitonic, in the sense that their tensions are inversely

proportional to string coupling Tp ∼ 1

gsl
p+1
s

.

D-p brane metric is [52]

ds2 = H−1/2(r)

(

−dt2 +

p
∑

i=1

(dxi)2

)

+H1/2(r)
(

dr2 + r2(dΩ8−p)
2
)

(4.25)

Dilaton is given by eΦ = H
3−p
4 . We have not shown RR fields which are not

important for arguments below. Here

H(r) = 1 +
L7−p

r7−p (4.26)

27



L is related to radius of curvature of the spacetime. The gravity description of

D branes is valid when gsN > 1. Thus we have a sort of complementarity between

gravity and gauge theory descriptions. In some particular spacetimes, it is possible

to completely decouple two descriptions and then we have complete duality between

gauge theory and gravity descriptions. This is the basis of AdS-CFT correspondence.

To get to such duality, consider N coincident D3 branes. Using the metric above

for p = 3, supergravity description is given by[53]

ds2 = (1 +
L4

r4
)−1/2(−dt2 +

p
∑

i=1

(dxi)2) + (1 +
L4

r4
)1/2

(

dr2 + r2dΩ2
5

)

(4.27)

Near horizon limit of this geometry is r → 0 which gives (putting z = L2

r2
)

ds̃2 =
L2

z2

(

−dt2 + dz2 +

p
∑

i=1

(dxi)2

)

+ L2dΩ2
5 (4.28)

This geometry is the poincare patch part of AdS5 × S5. After Euclidean con-

tinuation, we obtain the entire Euclidean AdS space. So roughly, the geometry can

be viewed as a semi-infinite throat of radius L which for r >> L opens up into flat

space. For gravity desciption to be valid, the curvature scale L >> ls where ls is

string length. To find a relationship between gravity side and gauge theory side para-

meters, we equate the AdM tension (mass per unit 3-volume)of the extremal classical

3 brane solution to N times the tension of a single D brane. This gives

L4 ∼ gsNα
′2 (4.29)

From this we can see that the range of validity for gravity description (L >> ls)

becomes gsN >> 1 as previously mentioned. From the low energy approximation of

open string theory on brane, we get g2
YM ∼ gs. Complete action for massless modes

for D3 branes is

S = Sbulk + Sint + Sbrane (4.30)
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Here Sbulk is ten dimensional supergravity lagrangian plus higher derivative stringy

corrections. Sbrane is N = 4 super Yang Mills plus higher derivative corrections

like (α′2Tr(F 4)). The last term Sint contains terms which come from interaction

between brane and bulk modes. For example, if in brane action we put background

metric then expanding around some fixed value (like flat space) we get interaction

terms. Maldacena[40] considered limit of α′ → 0 while keeping all the dimensionless

parameters like gs and N fixed. Gravitational constant κ ∼ gsα
′2 → 0. So Sint → 0.

Also all the higher derivative terms in brane action vanish, leaving N = 4 super Yang

Mills. Also supergravity in bulk becomes free. So in this limit we have free gravity

in bulk plus 4 dimensional gauge theory.

Now consider the complementary description of branes as solitons in supergravity.

Low energy limit α′ → 0 here corresponds to r → 0 as the ratio r
α′ is kept fixed[40].

The fact that r → 0 corresponds to low energy limit can also be seen from the metric

ds2 = (1 +
L4

r4
)−1/2(−dt2 +

p
∑

i=1

(dxi)2) + (1 +
L4

r4
)1/2

(

dr2 + r2dΩ2
5

)

(4.31)

Energy of an object at a position r, Er is related to energy relative to infinity by

the redshift factor as

E∞ = (1 +
L4

r4
)−1/4Er (4.32)

As r → 0, E → 0. As we saw earlier, geometry becomes AdS5×S5 while asymptot-

ically flat space decouples (free gravity there). Now taking both the complementary

descriptions and neglecting free supergravity from both sides, we have a duality be-

tween type IIB string theory on AdS5 ×S5 background and N = 4 super Yang Mills.

29



In the AdS5 × S5 background, worldsheet action becomes

SG =
L2

4πα′

∫

d2σ
(√

ggabGµν(X)∂aX
µ∂bX

ν + others
)

(4.33)

where Gµν is AdS5 × S5 metric with L2 set to 1. So the effective string coupling

is L2

4πα′ =
√

λ
4π

. Here λ = g2
YMN ∼ gsN . One can consider Maldacena conjecture

with varying degrees of confidence. The strong form of conjecture says that for all

values of gs ∼ g2
YM and N , full quantum type IIB string theory on AdS5 × S5 is fully

equivalent to N = 4 super Yang Mills theory. One can perform expansion in 1
N

on

SYM side and gs expansion on string theory side. In a weaker form of conjecture, one

considers ’t Hooft limit (fixed λ, N → ∞) on SYM side and takes the leading order

contribution which is equivalent to classical type IIB string theory on AdS5×S5. One

can also consider large λ limit also, in addition to N → ∞. In this limit, one gets

a still weaker form of conjecture. In this limit string theory reduces to classical type

IIB supergravity. Let us examine the validity of various approximations in detail. As

we saw above, the string expansion parameter(α′) becomes (∼ λ−1/2. We can choose

units (L = 1 in units of string length) so that α′ = (gsN)−1/2. Then gravitational

coupling
√
G10 ∼ gsα

′2 = 1
N

. Corrections due to massive string excitations, i. e α′

corrections will be of order O( 1√
gsN

. This is also seen from the fact that the masses

of the string states are Mstring ∼
√
gsN and go to infinity as ’t Hooft coupling goes

to infinity. The masses of Kaluza Klein states is of the order O( 1√
α′L

) ∼ 1. String

loop effects will be of order O(g2
s) ∼ 1

N2 for closed string theory.

2.4.1 The correspondence

The AdS/CFT correspondence states that there is an exact equivalence or duality

between between string theory on asymptotically AdS spacetimes (times a compact
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space) and a quantum field theory that ”resides” on the conformal boundary of AdS

space. As we saw earlier, Maldacena originally formulated this as duality between

type IIB string theory on AdS5 × S5 and N = 4 super-yang mills (SYM) in four

dimensions. On the string theory side,5 form flux through S5 is integer N and equal

radii L of AdS5 and S5 and given by L4 ∼ Ngsα
′2. On SYM side, we have gauge

coupling g2
YM ∼ gs and gauge group SU(N). This conjecture is remarkable because

its correspondence is between a 10 dimensional theory of gravity and a 4-dimensional

theory without gravity at all. The correspondence is called holographic because all

the 10 dimensional degrees of freedom can somehow be encoded in a four dimensional

theory living at boundary of AdS5. It is also a weak-strong duality because when

string theory is weakly coupled we have a strongly coupled gauge theory and vice-

versa.

First thing we need to check is that the global symmetries on both sides match. We

first compare bosonic symmetries. On string theory side, we have SO(2, 4) isometry

group of AdS5 and SO(6) isometry of S5. On SYM side we have SO(2, 4) conformal

symmetry and SO(6) R symmetry. On both sides we have 32 supersymmetries. On

SYM side, we have 32 supersymmetries of superconformal algebra while string theory

on maximally symmetric background AdS5 × S5 has 332 supersymmetries as in flat

space. Original D3 brane background had only 16 supersymmetries but decoupling

of flat space part leaves only near horizon limit of AdS5 × S5.
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The basic AdS/CFT dictionary is as follows [42] :

1. Gauge invariant operators of the boundary theory are in one-to-one correspon-

dence with bulk fields. For example, the bulk metric corresponds to the stress energy

tensor of the boundary theory.

2. The leading boundary behavior of the bulk field is identified with the source of the

dual operator.

3. The string partition function (a functional of fields parametrizing the boundary

behavior of the bulk fields) is identified with the generating functional of the CFT

correlation functions.

On the AdS side, we will decompose all ten dimensional fields onto Kaluza Klein

towers on S5, so effectively all fields are on AdS5, labelled by their dimension ∆.

Away from interaction region we assume that fields are free (except for gravitational

interaction). The free field (for simplicity, we consider scalar field)then satisfies

(� +m2
∆)φ∆ = 0 (4.34)

with m2
∆ = ∆(∆ − 4)(This equation will have two solutions ∆+ and ∆−. We will

need only ∆+). Here � is laplacian in AdS metric and we will work with poincare

patch metric. The two independent solutions have following asymptotic behavior as

x0 → 0 :

φ∆(x0, ~x) → x∆
0 A

∆(~x) + φ∆
0 (~x)x4−∆

0 (4.35)

The normalizable function A∆(~x)determines the vacuum expectation values of

operators of associated dimensions and quantum numbers. The non-normalizable

solution φ∆
0 (~x) represent the coupling of external sources to string theory and is called
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associated boundary field. In the example we are considering (compact manifold is

S5),only the bigger root ∆+ occurs. In some other cases, other root ∆− is also

important. The correspondence between correlators in SYM and dynamics in string

theory is given by

< exp

(∫

boundary

φ∆
0 O∆

)

>= Zstring(φ
∆
0 ) (4.36)

Here <> denotes correlation function. Zstring is the partition function for full

string theory which can be approximated by exp
(

−Is(φ∆
0 )
)

where Is is supergravity

action. Beyond supergravity, one would also need to include α′ corrections and loop

corrections. We do not know full spectrum of type IIB string theory on AdS5 × S5

except in supergravity limit. To find the spectrum of type IIB supergravity compact-

ified on AdS5 × S5[62], we expand fields in spherical harmonics on S5, plug them in

linearized supergravity equations of motion and then diagonalize them. These fields

have masses m2
kL

2 = k(k + 4). All these fields correspond to BPS operators on field

theory side (short representation of superconformal algebra). Thus these states have

their masses protected from quantum corrections. These Kaluza Klein modes have

masses of order one, as we mentioned previously. String theory also has additional

string states with masses of order 1
ls
. Such states correspond to operators in field

theory with dimensions ∆ ∼ (gsN)1/4 for large N.

2.4.2 AdS3 × S3 case

Uptill now, we have studied AdS/CFT correspondence for the case of duality

between string theory on AdS5 × S5 and N = 4 super yang-mills since it is easier

and better understood. But for black holes in 5 or 6 dimensions, we need to consider

string theory on AdS3 × S3 ×M4 where for us, M4 = T 4. To derive [83] this, we
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start with a set of N1 D1 branes along a non-compact direction, and N5 D5 branes

wrapping M4 and sharing the non-compact direction with the D1 branes. All the

branes are coincident in the transverse non-compact directions. The unbroken Lorentz

symmetry of this configuration is SO(1, 1) × SO(4) where SO(1, 1) corresponds to

boosts along the string and SO(4) is the group of rotations in the four noncompact

directions transverse to both the branes. This configuration also preserves N = (4, 4)

supersymmetries corresponding to left and right moving spinors. The corresponding

supergravity solution for this D1-D5 system is

ds2
naive =

1
√

(1 + Q1

r2
)(1 + Q5

r2
)
[−dt2+dy2]+

√

(1 +
Q1

r2
)(1 +

Q5

r2
)dxidxi+

√

1 + Q1

r2

1 + Q5

r2

dzadza

(4.37)

where the meaning of designation ‘naive’ would be clear in the next section. Here

Q1, Q5 are charges corresponding to N1, N5 numbers of D1,D5 branes respectively.

Index i is over noncompact coordinates while a = 6, 7, 8, 9 refers to torus coordiantes.

Taking the near horizon limit of this, we get

ds2 =
r2

Q1Q5

(−dt2 + dy2) +
√

Q1Q5
dr2

r2
+
√

Q1Q5dΩ
2
3 +

√

Q1

Q5

dzadza (4.38)

This is AdS3 × S3 × T 4 with radius

R2 = R2
ads = R2

S3 =
√

Q1Q5 (4.39)

and constant volume for T 4. The dual conformal field theory is the low energy

field theory living on the D1-D5 system which is some 1 +1 dimensional theroy with

N = (4, 4) supersymmetry. This CFT has a central charge

c =
3R

2G
(3)
N

(4.40)
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where G
(3)
N is three dimensional Newton’s constant. We view D1 branes as in-

stantons of the low energy SYM theory on D5 branes. These instantons live on T 4

and have SO(1, 1) isometry along t, y directions. This instanton configuration has

moduli (parameters specifying a continuous family of classical instanton configura-

tions, having same energy). Small fluctuations of this configuration are described by

fluctuations of instanton moduli. So the low energy dynamics is given by a 1 + 1

dimensional sigma model whose target space is the instanton moduli space. Instan-

tons are described in the UV SYM theory as SU(N5) gauge fields A6789(ξ
a, za) with

self-dual field strengths satisfying F = ∗4F . Here ∗4 is hodge star on T 4 and ξa are

moduli parametrizing the family of instantons. The dimension of moduli space for

N1 instantons in SU(N5) is 4N1N5.

2.5 Supertubes

Supertubes are 1/4 supersymmetric bound states with D0 and NS1 brane charges

as true charges, along with D2-brane as dipole charge. In flat space, Mateos and

Townsend [169] first constructed supertubes by using Dirac-Born-Infeld (DBI)1effective

action for D2 brane and turning on worldvolume electric and magnetic fields. Branes

corresponding to net charges, NS1 and D0, are represented as electric and magnetic

fluxes onD2 brane worldvolume or equivalently, these fields are due to ‘dissolved’ NS1

and D0 branes in D2 brane worldvolume. D2-brane itself carries no net charge but

only a dipole charge. Crossed electric and magnetic fields generate Poynting angular

momentum which prevents the D2 brane from collapsing due to its tension. Another

1We will refer various worldvolume actions as DBI even though for strings it would be Polyakov
or Nambu-Goto action.
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way to describe this is to say that NS1 and D0 branes expand to 1/4 supersymmetric

D2 branes by the addition of angular momentum.

D2 supertube has world-volume coordinates σ0, σ1, σ2. We choose gauge such that

σ0 = t , σ1 = y , Xµ = Xµ(σ2) (5.41)

Here Xµ are arbitrary functions of σ2. To stabilize the brane, we introduce gauge

field

F = Edσ0 ∧ dσ1 +Bdσ1 ∧ dσ2 (5.42)

Lagrangian is given by

L = −T2

√

−det[g + F ] = −T2

√

B2 +R2(1 − E2) (5.43)

Here g is induced metric and R2 = X ′µX ′
µ and prime denotes differentiation wrt

σ2. We define electric displacement

Π =
∂L
∂E

=
T2ER

2

√

B2 +R2(1 − E2)
(5.44)

In terms of this, we write hamiltonian density as

H = EΠ − L =
1

R

√

(R2 + Π2)(B2 +R2) (5.45)

It can be shown that minimum value for H is obtained if T2R
2 = ΠB or E2 = 1.

These conditions can also be established by supersymmetry analysis. There is no

condition on B. By the usual interpretation, fluxes above correspond to D2 brane

carrying both D0 and F1( along y direction) charges. We are assuming isometry

along y-direction. Charges are given by

Q0 =
T2

T0

∫

dσ1dσ2B(σ2) (5.46)

Q1 =
1

T1

∫

dσ2Π =
T2

T1

∫

dσ2 ER2

√

B2 +R2(1 − E2)
(5.47)
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By dualities2, this D0-NS1 system can be related to NS1-P system, which is

given by a NS1 string wrapped n1 times around a circle S1 and carrying np units

of momentum along S1 direction. Initial supertubes were constructed with circular

cross-section but it was soon realized [170, 171] that supertubes exist for any arbitrary

profile. This fact is a bit obscure in D0-NS1 language but in the NS1-P duality

frame, it is just a string carrying a right moving wave with an arbitrary profile.

Supertubes can be dualized to D1-D5 system which corresponds to two charge black

holes when corresponding supergravity solution is constructed.

2.5.1 Mathur conjecture

In the DBI description of supertubes, backreaction of branes on spacetime is ne-

glected. Supergravity solution for two-charge supertube was constructed in [185] and

in different duality frames in [186, 188, 189]. It turns out that these correspond to sim-

plest of microstate solutions for 2-charge systems in 5-dimensions and is completely

smooth and horizon-free in D1-D5 duality frame. Based on AdS/CFT correspon-

dence for D1-D5 system and several other evidences, Mathur conjecture [150] is a

proposal to associate bound states in CFT to smooth,horizon-free geometries (when-

ever supergravity description is possible). It must be emphasised that generic states

are expected to be quantum and probably no geometric description would be possi-

ble. The idea is to associate coherent state in the CFT with an asymptotically flat

geometry which is smooth, free of horizons, carries the same conserved charges as

the black hole, and hence constitutes a microstate of the black hole. For the case

of 2-charge systems, all bosonic solutions were constructed by Mathur and Lunin

[150, 178]. Geometries with both bosonic and fermionic condensates were considered

2We refer to various systems by their true charges without refering to dipole charges explicitly.
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in [180] and relationship between gravity and CFT sides has been further explored

in [181, 182] recently. Our understanding of the 3-charge systems is less complete

but a few examples are known [187, 176, 177, 190, 191]. In four dimensions, smooth

solutions for 3 and 4-charges have appeared in the literature [173, 195]. Mathur con-

jecture emphasizes that microstates of black holes (which are described by smooth,

horizon-free geometries when classical supergravity description is possible) correspond

to bound states only.

Mathur conjecture can be motivated from AdS/CFT considerations. According

to AdS/CFT dictionary, for every CFT state there is a corresponding state in string

theory which is asymptotically AdS and which encodes the vev of gauge invariant

operator in that state. Since pure states in CFT have no entropy, one does not expect

corresponding geometry to have horizon. But one should keep in mind the fact, that

CFT states are dual to states in full string theory and not in supergravity alone. Hence

not all CFT states may have supergravity (geometrical) interpretation. One can

distinguish between weak and strong forms of mathur conjecture. According to weak

form, black hole microstates are horizon-sized stringy configurations (corresponding

to states in CFT and hence with unitary scattering) but they can not be adequately

described by supergravity. A stronger version of the conjecture is that among the

typical microstates, we have some which are described by supergravity and these are

horizonless, smooth geometries. All these configurations (whether or not described by

supergravity) look like black holes (naive geometry) from far away and start to differ

from each other inside the would-be horizon. In the next section, we study Mathur

conjecture concretely for the case of two charge systems.
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2.5.2 Generating the ‘correct’ D1-D5 geometries

Consider IIB string theory compactified on T 4 × S1. The D1-D5 system can be

mapped by a set of S, T dualities to the FP system

n5 D5 branes along T 4 × S1 → n5 units of fundamental string winding along S1 (F )

n1 D1 branes along S1 → n1 units of momentum along S1 (P )

The naive metric of the FP bound state in string frame is

ds2 = −(1 +
Q

r2
)−1(dudv +

Q′

r2
dv2) + dxidxi + dzadza (5.48)

where xi, i = 1 . . . 4 are the noncompact directions, za, a = 1 . . . 4 are the T 4 coor-

dinates, and we have smeared all functions on T 4. We will also use the definitions

u = t + y, v = t− y (5.49)

But in fact the bound state of the F and P charges corresponds to a fundamental

string ‘multiwound’ n5 times around S1, with all the momentum P being carried

on this string as traveling waves. Since the F string has no longitudinal vibrations,

these waves necessarily cause the strands of the multiwound string to bend away and

separate from each other in the transverse directions. The possible configurations are

parametrized by the transverse displacement ~F (v); we let this vibration be only in

the noncompact directions x1, x2, x3, x4. The resulting solution can be constructed

using the techniques of [22, 23, 25], and we find for the metric in string frame [189]3

ds2 = H(−dudv +Kdv2 + 2Aidxidv) + dxidxi + dzadza

Bvu = −Gvu =
1

2
H, Bvi = −Gvi = −HAi, e−2Φ = H−1 (5.50)

3We can extend the construction to get additional states by letting the string vibrate along the
T 4 directions; these states were constructed in [86].

39



where

H−1 = 1 +
Q

L

∫ L

0

dv

|~x− ~F (v)|2
, K =

Q

L

∫ L

0

dv(Ḟ (v))2

|~x− ~F (v)|2
, Ai = −Q

L

∫ L

0

dvḞi(v)

|~x− ~F (v)|2
(5.51)

(L = 2πn1R, the total length of the F string. 4)

Undoing the S,T dualities we find the solutions describing the family of Ramond

ground states of the D1-D5 system [150]

ds2 =

√

H

1 +K
[−(dt−Aidx

i)2 +(dy+Bidx
i)2]+

√

1 +K

H
dxidxi+

√

H(1 +K)dzadza

(5.52)

e2Φ = H(1 +K), C
(2)
ti =

Bi

1 +K
, C

(2)
ty = − K

1 +K

C
(2)
iy = − Ai

1 +K
, C

(2)
ij = Cij +

AiBj − AjBi

1 +K
(5.53)

where Bi, Cij are given by

dB = − ∗4 dA, dC = − ∗4 dH
−1 (5.54)

and ∗4 is the duality operation in the 4-d transverse space x1 . . . x4 using the flat

metric dxidxi. The functions H−1, K,Ai are the same as the functions in (2.4)

It may appear the the solution (2.5) will be singular at the points ~x = ~F (v), but

it was found in [150] that this singularity reflects all incoming waves in a simple way.

The explanation for this fact was pointed out in a nice calculation in [86] where it

was shown that the singularity (for generic ~F (v)) is a coordinate singularity; it is the

4Parameters like Q,R are not the same for the FP and D1-D5 systems – they are related by
duality transforms. Here we have not used different symbols for the two systems to avoid cumbersome
notation and the context should clarify what the parameters mean. For full details on the relations
between parameters see [189, 150]).
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same coordinate singularity as the one encountered at the origin of a Kaluza-Klein

monopole [138].

The family of geometries (2.5) thus have the form pictured in Fig. 3.4. These

geometries are to be contrasted with the ‘naive’ geometry for the D1-D5 system

ds2
naive =

1
√

(1 + Q1

r2
)(1 + Q5

r2
)
[−dt2+dy2]+

√

(1 +
Q1

r2
)(1 +

Q5

r2
)dxidxi+

√

1 + Q1

r2

1 + Q5

r2

dzadza

(5.55)

The actual geometries (2.5) approximate this naive geometry everywhere except near

the ‘cap’.

It is important to note that we can perform dynamical experiments with these

different geometries that distinguish them from each other. In [150] the travel time

∆tsugra was computed for a waveform to travel down and back up the ‘throat’ for a 1-

parameter family of such geometries. Different geometries in the family had different

lengths for the ‘throat’ and thus different ∆tsugra. For each geometry we found

∆tsugra = ∆tCFT (5.56)

where ∆tCFT is the time taken for the corresponding excitation to travel once around

the ‘effective string’ in the CFT state dual to the given geometry. Furthermore, the

backreaction of the wave on the geometry was computed and shown to be small so

that the gravity computation made sense.

In [8] a ‘horizon’ surface was constructed to separate the region where the geome-

tries agreed with each other from the region where they differed, and it was observed

that the entropy of microstates agreed with the Bekenstein entropy that one would

41



associate to this surface5

Smicro ∼
A

4G
(5.57)

Such an agreement was also found for the 1-parameter family of ‘rotating D1-D5 sys-

tems’ where the states in the system were constrained to have an angular momentum

J . The horizon surfaces in these cases had the shape of a ‘doughnut’.

2.5.3 The geometry for |0〉R

The geometry dual to the R sector state |0〉R (which results from the spectral flow

of the NS vaccum |0〉NS) is found by starting with the FP profile

f1(v) = a cos(
v

n5R
), f2(v) = a sin(

v

n5R
), f3(v) = 0, f4(v) = 0 (5.58)

and constructing the corresponding D1-D5 solution. The geometry for this case had

arisen earlier in different studies in [19, 186, 188]. For simplicity we set

Q1 = Q5 ≡ Q (5.59)

which gives the D1-D5 solution

ds2 = −1

h
(dt2 − dy2) + hf(dθ2 +

dr2

r2 + a2
) − 2aQ

hf
(cos2 θdydψ + sin2 θdtdφ)

+ h[(r2 +
a2Q2 cos2 θ

h2f 2
) cos2 θdψ2 + (r2 + a2 − a2Q2 sin2 θ

h2f 2
) sin2 θdφ2] + dzadza

(5.60)

where

a =
Q

R
, f = r2 + a2 cos2 θ, h = 1 +

Q

f
(5.61)

5In [199] the naive geometry for FP was considered, and it was argued that since the curvature
became order string scale below some r = r0, a ‘stretched horizon’ should be placed at r0. The area
A of this stretched horizon also satisfied A

4G ∼ Smicro. It is unclear, however, how this criterion
for a ‘horizon’ can be used for the duality related D1-D5 system, where the geometry for small r is
locally AdS3 × S3 and the curvature is constant (and small). We, on the other hand have observed
that geometries for different microstates depart from each other for r ≤ r0 and placed the horizon
at this location; this gives the same horizon location for all systems related by duality.
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The dilaton and RR field are

e2Φ = 1, C
(2)
ty = − Q

Q + f
, C

(2)
tψ = −Qa cos2 θ

Q+ f

C
(2)
yφ = −Qa sin2 θ

Q+ f
, C

(2)
φψ = Q cos2 θ +

Qa2 sin2 θ cos2 θ

Q + f
(5.62)

2.6 Supersymmetric rings and Large radius limit

In this section, we analyze and study supersymmetric black rings. We derive

straight ring limit which will be useful in chapter 4. We also study some properties

like near horizon limit and relation to two charge Maldacena-Maoz geometry.

2.6.1 Supersymmetric Black ring metric

The five dimensional black ring metric, for 3 charges, Q1,Q2,Q3 and 3 dipole

charges, q1,q2,q3 is given by

ds2 = −f 2(dt+ ω)2 + f−1 R2

(x− y)2

[

dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dφ2

]

(6.63)

Here f−1 = (H1H2H3)
1/3 and ω = ωφdφ + ωψdψ. Functions Hi for i = 1, 2, 3 are

not harmonic and are given by

H1 = 1 +
Q1 − q2q3

2R2
(x− y) − q2q3

4R2
(x2 − y2) (6.64)

H2 = 1 +
Q2 − q3q1

2R2
(x− y) − q3q1

4R2
(x2 − y2) (6.65)

H3 = 1 +
Q3 − q1q2

2R2
(x− y) − q1q2

4R2
(x2 − y2) (6.66)

Angular momentum one form components are given by, with qiQi = q1Q1+q2Q2+

q3Q3 and q = q1q2q3,

ωφ = − 1

8R2
(1 − x2)[qiQi − q(3 + x+ y)] (6.67)

ωψ =
1

2
(q1 + q2 + q3)(1 + y) − 1

8R2
(y2 − 1)[qiQi − q(3 + x+ y)] (6.68)
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The coordinate x ranges in [−1, 1] while y has range [−∞,−1]. Angles φ, ψ have

usual range of [0, 2π]. Asymptotic infinity lies at x→ y → −1. The four dimensional

part of the metric, called base metric,

ds2
4 =

R2

(x− y)2

[

dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dφ2

]

(6.69)

is actually flat metric, written in unusual coordinates. We want to consider the

large radius limit but keeping the charge densities constant. So we define, charge

densities Qi = Qi

2R
and coordinates r = −R

y
, x = cos θ and η = Rψ. Now we take

R → ∞ limit. In these coordinates, the metric the flat part of the metric becomes

ds2
4 =

R2

(cos θ + R
r
)2

(

R2dr2

r2(R2 − r2)
+ (

R2

r2
− 1)

dη2

R2
+

sin2 θdθ2

sin2 θ
+ sin2 θdφ2

)

(6.70)

Taking the limit R→ ∞ we get

ds2
4 = dr2 + dη2 + r2(dθ2 + sin2 θdφ2) (6.71)

This is flat metric in cylindrical coordinates. Notice that η has range −∞,∞

while r ranges from 0 to ∞. In this limit, the functions Hi and ω become

H1 → (1 +
Q1

r
+
q2q3
4r2

) , ωφ → 0 (6.72)

ωψdψ → −
(

q1 + q2 + q3
2r

+
Qiqi
4r2

+
q

8r3

)

dη (6.73)

H2 and H3 are given by permutations of charges in H1. We see that this metric

has only one angular momentum as compared to full black string metric which has

two. Also, since only non-trivial dependence in metric is on r, we can have wave

equation factorising in this limit.

Now we have full five dimensional metric, with ωψ = ω as

ds2
5 = −f 2(r)(dt+ ωη(r)dη)

2 + f−1(r)
(

dr2 + dη2 + r2dθ2 + r2 sin2 θdφ2
)

(6.74)

44



2.6.2 Near Horizon Limit

In this section, we try to take the near horizon limit. In the limit of small r, we

keep only the leading terms in 1/r. In this limit, metric functions are

H1 → (1 +
q2q3
4r2

) (6.75)

ω → −
( q

8r3

)

(6.76)

In this limit, we have

f−1 = (H1H2H3)
1/3 =

(q1q2q3)
2/3

r2
=

p2

4r2
(6.77)

where p = (q1q2q3)
1/3. We can write the metric as

ds2 = f 2
[

(f−3 − ω2)dη2 − 2ωdtdη − dt2
]

+ f−1(dr2 + r2dΩ2
2) (6.78)

ds2
nearhorizon =

16r4

p4

[

(f−3 − ω2)dη2 + 2
p3

8r3
dtdη − dt2

]

+
p2

4r2
dr2 +

p2

4
dΩ2

2 (6.79)

We saw when writing down the radial equation that the function f−3 − ω2 is less

singular than what one would naively expect. With kη = L = 0, we can use the same

result to write

f−3 − ω2 =
1

E2

(

a0 +
a1

r
+
a2

r2
+
a3

r3
+
a4

r4

)

(6.80)

Since there is a prefactor of r4 in the near horizon limit, we see that only surviving

term is a4 when limit of r → 0 is taken. Let us denote the charge combination 16a4
E2

as m4 So we have

ds2
nearhorizon =

m4

p4
dη2 + 4

r

p
dtdη +

p2

4
dΩ2

2 +
p2

4r2
dr2 (6.81)
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This looks almost like AdS3 × S2. To show that this is so, we take the metric

ds2
nearhorizon =

m4

p4
dη2 + 4

r

p
dtdη +

p2

4r2
dr2 (6.82)

and make following coordinate transformations

r = ρ2 , η =
x+ y

2
√
p
, t =

x− y

2
√
p

(6.83)

From this we get

ds2
nearhorizon =

m4

4p5
(dx+ dy)2 +

ρ2

p2
(dx2 − dy2) +

p2

ρ2
dρ2 (6.84)

This is of the same form as extremal three charge metric. Let us define T+ =

m2

2πp3
√
p
. Then with the coordinate transformations

w+ =
1

2πT+
e2πT+(x+y) (6.85)

w− = (x− y) − p4πT+

ρ2
(6.86)

z =
p2

ρ
eπT+(x+y) (6.87)

From these we get

dw+ = (2πT+)w+(dx+ dy) =
ρ2z2

p4
(dx+ dy) (6.88)

dw− = (dx− dy) +
2p4πT+

ρ3
dρ (6.89)

dz = z

(

dw+

2w+

− dρ

ρ

)

(6.90)
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From the above, we get

dw+dw−
z2

=
ρ2(dx+ dy)

p4
(dx− dy) +

2πT+dρ

ρ
(dx+ dy) (6.91)

dz2

z2
=
dρ2

ρ2
+ π2T 2

+(dx+ dy)2 − dw+dρ

ρw+

(6.92)

Adding the above two, we see that ( noting that m4

p7
= 4π2T 2

+)

m4

4p5
(dx + dy)2 +

ρ2

p2
(dx2 − dy2) +

p2

ρ2
dρ2 =

p2

z2

(

dz2 + dw+dw−
)

(6.93)

2.6.3 Reduction to four dimensions

Since we have the starting five dimensional metric in Einstein frame, we use KK

reduction ansatz to get to Eisntein frame in four dimensions.

ds2
5 = e2αχds2

4 + e2βχ(dη + Aµdx
µ)2 (6.94)

Here β = (2 − d)α = (2 − 4)α. We are reducing from d + 1 to d dimensions.

The relation between α and β is obtained by requiring that we get Einstein frame

metric in d dimension. Absolute value of α can be fixed by requiring the canonical

normalization for scalars. Writing the five dimensional metric as

ds2 = f 2
[

(f−3 − ω2)dη2 − 2ωdtdη − dt2
]

+ f−1(dr2 + r2dΩ2
2)

= (f−1 − f 2ω2)

(

dη − f 2ωdt

f−1 − f 2ω2

)2

− f

f−1 − f 2ω2
dt2 + f−1(dr2 + r2dΩ2

2) (6.95)

Comparing with the reduction ansatz, we get

e2βχ = f−1 − f 2ω2 , ⇒ e2αχ = (f−1 − f 2ω2)−1/2 (6.96)
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This gives

ds2
4 = e2αχ

[

− f

f−1 − f 2ω2
dt2 + f−1(dr2 + r2dΩ2

2)

]

= −(f−3 − ω2)−1/2dt2 + (f−3 − ω2)1/2(dr2 + r2dΩ2
2) = −F− 1

2dt2 + F
1
2 (dr2 + r2dΩ2

2

(6.97)

Aµ = At = − f 2ω

f−1 − f 2ω2
= − ω

f−3 − ω2
= −ω

F
(6.98)

Here F = f−3 − ω2.

2.6.4 Two charge Maldacena-Maoz from Black ring

We earlier presented the black ring metric in x and y coordinates. We now consider

another coordinate system which would be more suitable study the limit to near

region. For this we have (x, y) → (r, θ) with

ρ2 =
R2(1 − x)

x− y
, cos2 θ =

1 + x

x− y
(6.99)

Now 0 ≤ ρ ≤ ∞ and 0 ≤ θ ≤ π
2
. In these coordinates, the base metric becomes

ds2
4 = Σ(

dρ2

ρ2 +R2
+ dθ2) + (ρ2 +R2) sin2 θdψ2 + ρ2 cos2 θdφ2 (6.100)

where Σ = ρ2 +R2 cos2 θ. Note that φ and ψ here are opposite to conventions in

previous papers. Other functions become

H1 = 1 +
Q1

Σ
− q2q3R

2 cos2 θ

Σ2
(6.101)

ωφ = −ρ
2 cos2 θ

2Σ2

[

qiQi − q

(

1 +
2R2 cos 2θ

Σ

)]

(6.102)
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ωψ = −(ρ2 +R2) sin2 θ

2Σ2

[

qiQi − q

(

1 +
2R2 cos 2θ

Σ

)]

−(q1+q2+q3)
R2 sin2 θ

Σ
(6.103)

Ai = H−1
i (dt+ ω) +

qiR
2

Σ
(sin2 θdψ − cos2 θdφ) (6.104)

Other functions H2 and H3 are given by obvious permutations of charges. In the

limit of two charges and one dipole moment only, say Q1,Q2 and q3 , one angular

momentum ωφ becomes zero while rest of the functions become

Hi = 1 +
Qi

Σ
, ωψ = −q3R

2 sin2 θ

Σ
(6.105)

A3 = H−1
3 (dt+ ω) +

q3R
2

Σ
(sin2 θdψ − cos2 θdφ) = −q3R

2

Σ
cos2 θdφ (6.106)

Here we have made a gauge transformation to get rid of a constant term in A3.

Lifting this to string frame metric in ten dimensions, we get

ds2 =
1√
H1H2

[

−(dt+ ω)2 + (dz + A3)2
]

+
√

H1H2dx
2
4 +

√

H2

H1
dz2

4 (6.107)

If we take maldacena-maoz in and reduce it along y direction, we get the same

metric as this after going to Einstein frame. To get the infinite ring metric for the

case of two charges and one dipole moment, we go back to the ring coordinates x and

y. For the case of two charges, we have following functions.

H1 = 1 +
Q1

2R2
(x− y) (6.108)

H2 = 1 +
Q2

2R2
(x− y) (6.109)

One form components (related to angular momentum) and gauge field are given

by

ωφ = 0 , ωψ =
1

2
q3(1 + y) , A3

φ = −q3
2

(1 + x) (6.110)
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To take the infinite ring limit, we again put y = −R
r

and x = cos θ. Again defining

the charge densities Qi

2R
= Qi, η = Rψ and taking the limit R → ∞. We get

Hi = 1 +
Qi

r
, ω = ωη = − q3

2r
(6.111)

So, in the infinte ring limit for two charge (and one dipole moment) ring, we get

the following five dimensional metric

ds2
5 = −(H1H2)

−2/3(dt− q3
r
dη)2 + (H1H2)

1/3(dr2 + dη2 + r2dΩ2) (6.112)

Four dimensional Einstein metric, after reduction is

ds2
4 = −F−1/2dt2 + F 1/2(dr2 + r2dΩ2

2) (6.113)

where F = 1 + Q1+Q2

r
. The corresponding ten dimensional metric is

ds2 =
1√
H1H2

[

−(dt− q3
2r
dη)2 + (dz − q3(1 + cos θ)dφ

2
)2

]

+
√

H1H2(dr
2 + dη2 + r2(dθ2 + sin2 θdφ2)) +

√

H2

H1
dz2

4 (6.114)

To get the condition for the absence of closed time like curves, we look at the coef-

ficient of dη2. Since this was originally a periodic coordinate, we want the coefficient

of this to be positive for all values of r. So we want

(

√

H1H2 −
1√
H1H2

q2
3

4r2

)

≥ 0 (6.115)

This gives q2
3 ≤ (4Q1Q2). For γ = 1 case in Maldacena-Maoz, we have equality

and q2
3 = 4Q1Q2. This case gives regular solution. We see that A3

φ is not regular at

θ = 0 because in a local frame

|A3| =
√

gφφAφAφ =
f(r)

sin θ
(1 + cos θ) (6.116)
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Here f(r) is some function of r. To cure this divergence, we make a gauge trans-

formation such that Aφ = q3(1−cos θ)
2

. This gives a coordiante transformation for y

such that z′ = z − q3φ. We see that gauge field becomes regular after this gauge

transformation. But since z is a compact circle, this implies that one φ circle move-

ment must equal some numebr of z circle movements. So 2πq3 = 2πnKKRz and hence

q3 = nKKRz. In our case γ = 1, we have nKK = 1. Then small Rz corresponds to

taking large R and that is what we have done.
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CHAPTER 3

CONSTRUCTING ’HAIR’ FOR BLACK HOLES

3.1 Introduction

The Bekenstein-Hawking(BH) entropy of a black hole is

S =
A

4G
(1.1)

where A is the area of the horizon. If we are to interpret Black holes as normal

thermodynamic systems then it must be possible to find a statistical mechanical in-

terpretation of BH entropy. Statistical mechanics then suggests that the hole should

have eS microstates and BH entropy arises due to coarse graining over these mi-

crostates. In their seminal work, Strominger and Vafa used string theory to match

the microscopic entropy of D1−D5−P system with macroscopic entropy calculated

in supergravity limit. But where are these states? In this chapter we suggest an

answer to this question, and support our conjecture by a calculation related to the

3-charge extremal hole.

3.1.1 Black hole ‘hair’

String theory computations with extremal and near extremal systems have shown

that D-brane states with the same charges and mass as the hole have precisely eS
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states [3, 174]. If we increase the coupling g these states should give black holes [4].

At least for extremal holes supersymmetry tells us that we cannot gain or lose any

states when we change g [198, 199]. We are thus forced to address the question: How

do the eS configurations differ from each other in the gravity description?

Early attempts to find ‘hair’ on black holes were based on looking for small per-

turbations in the metric and other fields while demanding smoothness at the horizon.

One found no such perturbations – the energy in a small deformation of the black

hole solution would flow off to infinity or fall into the singularity, and the hole would

settle down to its unique metric again. But if we had found such hair at the horizon

we would be faced with an even more curious difficulty. We would have a set of ‘mi-

crostates’ as pictured in Fig.1(b), each looking like a black hole but differing slightly

from other members of the ensemble.

+ . . .

Horizon
(a)

Singularity

(b)

Figure 3.1: (a) The usual picture of a black hole. (b) If the microstates represented small
deformations of (a) then each would itself have a horizon.

But if each microstate had a horizon as in the figure, then should’nt we assign an

entropy ≈ S to it? If we do, then we have eS configurations, with each configuration

having an entropy ≈ S. This makes no sense – we wanted the microstates to explain
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the entropy, not have further entropy themselves. This implies that if we do find the

microstates in the gravity description, then they should turn out to have no horizons

themselves.

We face exactly the same problem if we conjecture that the configurations all look

like Fig.1(a) but differ from each other near the singularity; each configuration would

again have a horizon, and thus an entropy eS of its own.

The idea of AdS/CFT duality [5] adds a further twist to the problem. If string

states at weak coupling become black holes at larger coupling, then one might think

that the strings/branes are somehow sitting at the center r = 0 of the black hole.

The low energy dynamics of the branes is a CFT. But the standard description of

AdS/CFT duality says that the CFT is represented by a geometry that is smooth at

r = 0 (Fig.3.2). In particular there are no sources or singularities near r = 0.

Dual CFT

(global AdS)
Smooth geometry

Figure 3.2: The D1-D5 CFT is represented by a smooth geometry in the dual representa-
tion.

Putting all this together suggests the following requirements for black hole ‘hair’:

(a) There must be eS states of the hole.

(b) These individual states should have no horizon and no singularity.
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(c) ‘Coarse-graining’ over these states should give the notion of ‘entropy’ for the

black hole.

This appears to be rather an extreme change in our picture of the black hole,

particularly since (b) requires that the geometry of individual states differ significantly

from the standard black hole metric everywhere in the interior of the hole, and not

just within planck distance of the singularity.

Remarkably though, just such a picture of individual states was found for the 2-

charge extremal D1-D5 system in [150][8]. We take n5 D5 branes wrapped on T 4×S1

bound to n1 D1 branes wrapped on the S1. CFT considerations tell us that the

entropy is Smicro = 2
√

2π
√
n1n5, so the extremal ground state is highly degenerate.

In the gravity description we should see the same number of configurations, except

that in a classical computation this degeneracy would show up as a continuous family

of geometries rather than discrete states. The naive metric that is usually written

down for the D1-D5 state is pictured in Fig.3.3 – it goes to flat space at infinity, and

heads to a singularity at r = 0. But a detailed analysis shows the following [150, 8]:

(a′) The actual classical geometry of the extremal D1-D5 system is found to be

given by a family of states parametrized by a vector function ~F (v); upon quantization

this family of geometries should yield the e2
√

2π
√
n1n5 states expected from the entropy.

(b′) Individual members of this family of states have no horizon and no singu-

larity – we picture this in Fig.3.4.

(c′) Suppose we define ‘coarse graining’ for a family of geometries in the following

way. We draw a surface to separate the region where the metrics are all essentially

similar from the region where they differ significantly from each other (indicated by
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the dashed line in Fig.3.5). The area A of this ‘horizon’ surface satisfies

S ≈ A

4G
(1.2)

Note that the properties a′,b′,c′ address directly the requirements a,b,c.

r=0
"Throat"

Flat Space

Figure 3.3: The naive geometry of the extremal D1-D5 system.

....

Figure 3.4: Actual geometries for different microstates of the extremal D1-D5 system.
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3.1.2 The three charge case

The 2-charge D1-D5 extremal system has a ‘horizon’ whose radius is small com-

pared to other length scales in the geometry, and the entropy of this system is de-

termined from the geometry only upto a factor of order unity (this is the reason for

the ≈ sign in (1.2)). The 3-charge system which has D1, D5 and P charges (P is

momentum along S1) has a horizon radius that is of the same order as other scales in

the geometry, and in the classical limit we get a Reissner-Nordstrom type black hole.

The D-brane state entropy Smicro exactly equals SBek [3]. We would therefore like to

find individual geometries that describe different states of the 3-charge hole. In line

with what was said above, we expect a situation similar to that in Figs.3.3,3.4 – the

naive D1-D5-P geometry has a horizon at r = 0, but actual geometries end smoothly

(without horizon or singularity) before reaching r = 0.

If this description of the 3-charge hole were true then it would imply a simple

consequence: There should be smooth perturbations of the 2-charge (D1-D5) system

which add a small amount of the third (momentum) charge. Thus we should find

small perturbations Ψ around the 2-charge geometries with the following properties

(i) The perturbation has momentum p along the S1, which implies

Ψ ∼ ei
p
R
y, p ∈ Z (1.3)

where y is the coordinate along S1 and R is the radius of this S1.

(ii) The perturbation takes the extremal 2-charge system to an extremal 3-charge

so the energy of the perturbation should equal the momentum charge of the pertur-

bation. This implies a t dependence

Ψ ∼ e−iωt, ω =
p

R
(1.4)
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Figure 3.5: Obtaining the ‘horizon’ by ‘coarse-graining’.

(iii) The perturbation must generate no singularity and no horizon, so it must

be regular everywhere, and vanishing at r → ∞ so as to be normalizable.

We start with a particular state of the 2-charge extremal system. We have a

bound state of D1 and D5 branes, wrapped on a T 4 with volume (2π)4V4 and an S1

of radius R, sitting in asymptotically flat 4 + 1 transverse spacetime. This system

is in the Ramond (R) sector, which has many ground states. We pick the particular

one (we call it |0〉R) which if spectral flowed to the NS sector yields the NS vacuum

|0〉NS. The geometry for this 2-charge state is pictured in Fig.3.6. The radius of the

S3 in the region III is (Q1Q5)
1
4 . The parameter

ε ≡ (Q1Q5)
1
4

R
(1.5)

characterizes, roughly speaking, the ratio diameter
length

for the ‘throat’ region III.

In the NS sector we can act with a chiral primary operator on |0〉NS. Let the

resulting state be called |ψ〉NS. The spectral flow of this state to the R sector gives

a state |ψ〉R; this will be an R ground state, and will have L0 = L̄0 = c
24

. We will
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construct the perturbation that will describe the CFT state

(J−
−1)|ψ〉R (1.6)

This state has momentum charge L0 − L̄0 = 1. We proceed in the following steps:

(A) The regions III and IV are actually a part of global AdS3 × S3 × T 4, and

a coordinate change brings the metric here to the standard form [186, 188]. The

wavefunction Ψinner for the state (1.6) in this region can be obtained by rotating a

chiral primary perturbation in global AdS3 × S3.

(B) We construct the appropriate wavefunction Ψouter in the regions I, II, III by

solving the supergravity equations in this part of the geometry. We choose a solution

that decays at infinity.

(C) We find that at leading order ε0 the solutions Ψinner, Ψouter agree in the

overlap region III.

(D) We extend the computation to order ε, ε2, ε3 and continue to find agreement

in the overlap region; this agreement appears to be highly nontrivial, and we take it

as evidence for the existence of the solution satisfying (i), (ii), (iii) above.

After this computation we conclude with some conjectures about the form of ‘hair’

for generic states of the 3-charge hole, and a discussion of the physics underlying the

new picture of the black hole interior that emerges from this structure of microstates.

3.2 The 2-charge system: review

In this section we review the results obtained earlier for the 2-charge D1-D5 system

and describe the particular D1-D5 background to which we will add the perturbation

carrying momentum charge P.
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y−circle

flat
space

‘‘neck" ‘‘throat" ‘‘cap"

I II III IV

Figure 3.6: Different regimes of the starting 2-charge D1-D5 geometry.

3.2.1 Generating the ‘correct’ D1-D5 geometries

Consider IIB string theory compactified on T 4 × S1. The D1-D5 system can be

mapped by a set of S, T dualities to the FP system

n5 D5 branes along T 4 × S1 → n5 units of fundamental string winding along S1 (F )

n1 D1 branes along S1 → n1 units of momentum along S1 (P )

The naive metric of the FP bound state in string frame is

ds2 = −(1 +
Q

r2
)−1(dudv +

Q′

r2
dv2) + dxidxi + dzadza (2.1)

where xi, i = 1 . . . 4 are the noncompact directions, za, a = 1 . . . 4 are the T 4 coor-

dinates, and we have smeared all functions on T 4. We will also use the definitions

u = t + y, v = t− y (2.2)

But in fact the bound state of the F and P charges corresponds to a fundamental

string ‘multiwound’ n5 times around S1, with all the momentum P being carried

on this string as traveling waves. Since the F string has no longitudinal vibrations,
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these waves necessarily cause the strands of the multiwound string to bend away and

separate from each other in the transverse directions. The possible configurations are

parametrized by the transverse displacement ~F (v); we let this vibration be only in

the noncompact directions x1, x2, x3, x4. The resulting solution can be constructed

using the techniques of [22, 23, 25], and we find for the metric in string frame [189]6,7

ds2 = H(−dudv +Kdv2 + 2Aidxidv) + dxidxi + dzadza

Bvu = −Gvu =
1

2
H, Bvi = −Gvi = −HAi, e−2Φ = H−1 (2.3)

where

H−1 = 1 +
Q

L

∫ L

0

dv

|~x− ~F (v)|2
, K =

Q

L

∫ L

0

dv(Ḟ (v))2

|~x− ~F (v)|2
, Ai = −Q

L

∫ L

0

dvḞi(v)

|~x− ~F (v)|2
(2.4)

(L = 2πn1R, the total length of the F string.8)

Undoing the S,T dualities we find the solutions describing the family of Ramond

ground states of the D1-D5 system [150]

ds2 =

√

H

1 +K
[−(dt−Aidx

i)2 +(dy+Bidx
i)2]+

√

1 +K

H
dxidxi+

√

H(1 +K)dzadza

(2.5)

e2Φ = H(1 +K), C
(2)
ti =

Bi

1 +K
, C

(2)
ty = − K

1 +K

C
(2)
iy = − Ai

1 +K
, C

(2)
ij = Cij +

AiBj − AjBi

1 +K
(2.6)

6We can extend the construction to get additional states by letting the string vibrate along the
T 4 directions; these states were constructed in [86].

7The angular momentum bounds of [189] and metrics found in [186, 188, 189] were reproduced in
the duality related F-D0 system through ‘supertubes’ [10]. While supertubes help us to understand
some features of the physics we still find that to construct metrics of general bound states of 2-
charges and to identify the metrics with their CFT dual states the best way is to start with the FP
system.

8Parameters like Q,R are not the same for the FP and D1-D5 systems – they are related by
duality transforms. Here we have not used different symbols for the two systems to avoid cumbersome
notation and the context should clarify what the parameters mean. For full details on the relations
between parameters see [189, 150]).
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where Bi, Cij are given by

dB = − ∗4 dA, dC = − ∗4 dH
−1 (2.7)

and ∗4 is the duality operation in the 4-d transverse space x1 . . . x4 using the flat

metric dxidxi. The functions H−1, K,Ai are the same as the functions in (2.4)

It may appear the the solution (2.5) will be singular at the points ~x = ~F (v), but

it was found in [150] that this singularity reflects all incoming waves in a simple way.

The explanation for this fact was pointed out in a nice calculation in [86] where it

was shown that the singularity (for generic ~F (v)) is a coordinate singularity; it is the

same coordinate singularity as the one encountered at the origin of a Kaluza-Klein

monopole [138].

The family of geometries (2.5) thus have the form pictured in Fig.3.4. These

geometries are to be contrasted with the ‘naive’ geometry for the D1-D5 system

ds2
naive =

1
√

(1 + Q1

r2
)(1 + Q5

r2
)
[−dt2+dy2]+

√

(1 +
Q1

r2
)(1 +

Q5

r2
)dxidxi+

√

1 + Q1

r2

1 + Q5

r2

dzadza

(2.8)

The actual geometries (2.5) approximate this naive geometry everywhere except near

the ‘cap’.

It is important to note that we can perform dynamical experiments with these

different geometries that distinguish them from each other. In [150] the travel time

∆tsugra was computed for a waveform to travel down and back up the ‘throat’ for a 1-

parameter family of such geometries. Different geometries in the family had different

lengths for the ‘throat’ and thus different ∆tsugra. For each geometry we found

∆tsugra = ∆tCFT (2.9)
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where ∆tCFT is the time taken for the corresponding excitation to travel once around

the ‘effective string’ in the CFT state dual to the given geometry. Furthermore, the

backreaction of the wave on the geometry was computed and shown to be small so

that the gravity computation made sense.

In [8] a ‘horizon’ surface was constructed to separate the region where the geome-

tries agreed with each other from the region where they differed, and it was observed

that the entropy of microstates agreed with the Bekenstein entropy that one would

associate to this surface9

Smicro ∼
A

4G
(2.10)

Such an agreement was also found for the 1-parameter family of ‘rotating D1-D5 sys-

tems’ where the states in the system were constrained to have an angular momentum

J . The horizon surfaces in these cases had the shape of a ‘doughnut’.

3.2.2 The geometry for |0〉R

The geometry dual to the R sector state |0〉R (which results from the spectral flow

of the NS vaccum |0〉NS) is found by starting with the FP profile

f1(v) = a cos(
v

n5R
), f2(v) = a sin(

v

n5R
), f3(v) = 0, f4(v) = 0 (2.11)

and constructing the corresponding D1-D5 solution. The geometry for this case had

arisen earlier in different studies in [19, 186, 188]. For simplicity we set

Q1 = Q5 ≡ Q (2.12)

9In [199] the naive geometry for FP was considered, and it was argued that since the curvature
became order string scale below some r = r0, a ‘stretched horizon’ should be placed at r0. The area
A of this stretched horizon also satisfied A

4G ∼ Smicro. It is unclear, however, how this criterion
for a ‘horizon’ can be used for the duality related D1-D5 system, where the geometry for small r is
locally AdS3 × S3 and the curvature is constant (and small). We, on the other hand have observed
that geometries for different microstates depart from each other for r ≤ r0 and placed the horizon
at this location; this gives the same horizon location for all systems related by duality.
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which gives the D1-D5 solution

ds2 = −1

h
(dt2 − dy2) + hf(dθ2 +

dr2

r2 + a2
) − 2aQ

hf
(cos2 θdydψ + sin2 θdtdφ)

+ h[(r2 +
a2Q2 cos2 θ

h2f 2
) cos2 θdψ2 + (r2 + a2 − a2Q2 sin2 θ

h2f 2
) sin2 θdφ2] + dzadza

(2.13)

where

a =
Q

R
, f = r2 + a2 cos2 θ, h = 1 +

Q

f
(2.14)

The dilaton and RR field are

e2Φ = 1, C
(2)
ty = − Q

Q + f
, C

(2)
tψ = −Qa cos2 θ

Q+ f

C
(2)
yφ = −Qa sin2 θ

Q+ f
, C

(2)
φψ = Q cos2 θ +

Qa2 sin2 θ cos2 θ

Q + f
(2.15)

To construct the 3-charge solution below we will assume that

ε ≡ a√
Q

=

√
Q

R
<< 1 (2.16)

which can be achieved by taking the compactification radius R to be large for fixed

values of α′, g, n1, n5, V4. In what follows we will ignore the T 4 and write 6-d metrics

only. Since the dilaton Φ and T 4 volume are constant in the above solution the 6-d

Einstein metric is the same as the 6-d string metric.

The ‘inner’ region

For

r <<
√

Q (2.17)

the geometry (2.13) becomes

ds2 = −(r2 + a2 cos2 θ)

Q
(dt2 − dy2) +Q(dθ2 +

dr2

r2 + a2
)

− 2a(cos2 θdydψ + sin2 θdtdφ) +Q(cos2 θdψ2 + sin2 θdφ2) (2.18)
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The change of coordinates

ψNS = ψ − a

Q
y, φNS = φ− a

Q
t (2.19)

brings (2.8) to the form AdS3 × S3

ds2 = −(r2 + a2)

Q
dt2 +

r2

Q
dy2 +Q

dr2

r2 + a2
+Q(dθ2 + cos2 θdψ2

NS + sin2 θdφ2
NS) (2.20)

We will call the region (2.7) the inner region of the complete geometry (2.13).

The ‘outer’ region

The region

a << r <∞ (2.21)

is flat space (r → ∞) going over to the ‘Poincare patch’ (with y → y + 2πR identifi-

cation)

ds2 = − r2

Q + r2
(dt2−dy2)+(Q+r2)

dr2

r2
+(Q+r2)[dθ2 +cos2 θdψ2 +sin2 θdφ2] (2.22)

We will call the region (2.21) the outer region of the geometry (2.13). The inner

and outer regions have a domain of overlap

a << r <<
√

Q (2.23)

The spectral flow map

The coordinate transformation (2.9) taking (2.8) to (2.10) gives spectral flow [186,

188]. The fermions of the supergravity theory are periodic around the S1 parametrized

by the coordinate y in (2.8), but the transformation (2.9) causes the S3 to rotate once

as we go around this S1, and the spin of the fermions under the rotation group of

this S3 makes them antiperiodic around y in the metric (2.10). Thus the metric (2.8)

gives the dual field theory in the R sector while the metric (2.10) describes the CFT

in the NS sector.
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3.3 The perturbation carrying momentum

3.3.1 The equations

The fields of IIB supergravity in 10-d give rise to a large number of fields after

reduction to 6-d. At the same time we get an enhancement of the symmetry group, as

various different fields combine into larger representations of the 6-d theory.10 In [29]

general 4b supergravities in 6-d were studied around AdS3 × S3; their perturbation

equations however apply to the more general background that we will use. These

supergravities have the graviton gMN , self-dual 2-form fields C i
MN , i = 1 . . . 5, anti-

self-dual 2-forms Br
MN , r = 1 . . . n and scalars φir.

Suppose we have a solution to the field equations with a nontrivial value for the

metric and one of the self-dual fields

gMN = ḡMN , C1
MN = C̄1

MN ≡ CMN (3.1)

The choice Q1 = Q5 = Q has made the field C(2) in (2.15) self-dual, and gives us

such a background. (This choice simplifies the computations, but we expect that the

perturbation we are constructing will exist for general Q1, Q5 as well.)

Linear perturbations around the background (3.1) separate into different sets. The

anti-self-dual field Br
MN mixes only with the scalar φ1r. We set r = 1 using the SO(n)

symmetry of the theory and write

B1
MN ≡ BMN , FMNP = ∂MBNP + ∂NBPM + ∂PBMN , φ11 ≡ w (3.2)

10In the actual reduction of IIB from 10-d to 6-d we also get additional fields like Aµ ≡ haµ, where
a = 1 . . . 4 is a T 4 direction. We do not study these additional fields here.
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The field equations are11 (we write H̄MNP = ∂M C̄NP + ∂N C̄PM + ∂P C̄MN)

FABC +
1

3!
εABCDEFF

DEF + wH̄ABC = 0 (3.3)

w;A
;A − 1

3
H̄ABCFABC = 0 (3.4)

3.3.2 The (B,w) perturbation at leading order (O(ε0))

In this subsection we construct the desired perturbation to leading order in the

inner and outer regions and observe their agreement at this order of approximation.

Inner region: The chiral primary |ψ〉NS

Consider the equations (3.3),(3.4) in the inner region. In the coordinates (2.10)

this region is seen to be just ‘global’ AdS3 × S3. We use a, b . . . to denote indices on

S3 and µ, ν . . . to denote indices on AdS3. We find the following solution for these

equations in global AdS3 × S3

w =
e−2i a

Q
lt

Q(r2 + a2)l
Ŷ

(l)
NS (3.5)

Bab = Bεabc∂
cŶ

(l)
NS, Bµν =

1√
Q
εµνλ∂

λB Ŷ
(l)
NS (3.6)

where

Ŷ
(l)
NS = (Y

(l,l)
(l,l) )NS =

√

2l + 1

2

e−2ilφNS

π
sin2l θ, B =

1

4l

e−2i a
Q
lt

(r2 + a2)l
(3.7)

In (2.14) the tensors εabc, g
ab etc are defined using the metric on an S3 with unit

radius. This choice simplifies the presentation of spherical harmonics but results in

11Our 2-form fields are twice the 2-form fields in [29]. Our normalizations agree with those
conventionally used for the 10-D supergravity fields where the action is − 1

12

∫

F 2.
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the factor (radius of S3)−1 = 1√
Q

in the definition of Bµν . The tensors εµνλ, g
µν etc.

are defined using the t, y, r part of the metric (2.10).12

This solution represents a chiral primary of the dual CFT [129]. To see this note

the AdS/CFT relations giving charges and dimensions of bulk excitations

JNSz =
i

2
[∂ψNS

+ ∂φNS
], J̄NSz =

i

2
[−∂ψNS

+ ∂φNS
] (3.8)

LNS0 = i
Q

a
∂u, L̄NS0 = i

Q

a
∂v (3.9)

The solution (2.13)-(2.15) thus has

jNS = l, hNS = l, j̄NS = l, h̄NS = l (3.10)

which are the conditions for a chiral primary.

The coordinate transformation (2.9) brings us to the R sector. The scalar in these

coordinates is

w =
1

Q(r2 + a2)l
Ŷ (l), Ŷ (l) =

√

2l + 1

2

e−2ilφ

π
sin2l θ (3.11)

so that it has no t or y dependence. The components of BAB similarly do not have

any t, y dependence.

The dimensions in the R sector are given by (the partial derivatives this time are

with respect to the R sector variables)

L0 = i
Q

a
∂u, L̄0 = i

Q

a
∂v (3.12)

12The spherical harmonics are representations of so(4) ≈ su(2) × su(2); the upper labels in Y
(l,l)
(l,l)

give the j values in each su(2), and the lower indices give the j3 values. Thus l = 0, 1
2 , 1, . . . .

The subscript NS on Y indicates that the arguments are the sphere coordinates in the NS sector,
(θ, ψNS , φNS). When we write no such subscript it is to be assumed that the arguments of the
spherical harmonic are the R sector coordinates (θ, ψ, φ). More details about spherical harmonics
are given in Appendix A.
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so that we get for our perturbation

h = h̄ = 0 (3.13)

which is expected, since a chiral primary of the NS sector maps under spectral flow

to a ground state of the R sector.13

Let the CFT state dual to the perturbation (2.13)-(2.15) be called |ψ〉NS, and let

|ψ〉R be its image under spectral flow to the Ramond sector.

Inner region: The state J−
0 |ψ〉NS ↔ J−

−1|ψ〉R

Consider again the inner region in the NS sector coordinates (2.10). We now wish

to make the perturbation dual to the NS sector state

J−
0 |ψ〉NS (3.14)

Since the operator J−
0 in the NS sector is represented by just a simple rotation of the

S3, we can immediately write down the bulk wavefunction dual to the above CFT

state

w =
e−2i a

Q
lt

Q(r2 + a2)l
Y

(l)
NS (3.15)

Bab = Bεabc∂
cY

(l)
NS, Bµν =

1√
Q
εµνλ∂

λB Y
(l)
NS (3.16)

Y
(l)
NS = (Y

(l,l)
(l−1,l))NS = −

√

l(2l + 1)

π
sin2l−1 θ cos θei(−2l+1)φNS+iψNS , B =

1

4l

e−2i a
Q
lt

(r2 + a2)l

(3.17)

13The full spectral flow relations are h = hNS − jNS + c
24 , j = jNS − c

12 . Spectral flow of the
background |0〉NS gives h0 = h0

NS − c
24 , j

0 = j0NS − c
12 , so for the perturbation the spectral flow

relations are just h = hNS − jNS , j = jNS .
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This perturbation has

jNS = l − 1, j̄NS = l, hNS = l, h̄NS = l (3.18)

The spectral flow to the R sector coordinates should give

h = hNS − jNS = 1, h̄ = h̄NS − j̄NS = 0 (3.19)

so that we have a state with nonzero L0 − L̄0, which means that it is a state with

momentum. This can be seen explicitly by writing the solution (2.19)-(2.21) in the

R sector coordinates. Writing

Y (l) = −
√

l(2l + 1)

π
ei(−2l+1)φ+iψ sin2l−1 θ cos θ, u = t+ y (3.20)

we get

w =
1

Q

e−i
a
Q
u

(r2 + a2)l
Y (l) (3.21)

Bθψ =
1

4l

e−i
a
Q
u

(r2 + a2)l
cot θ∂φY

(l) (3.22)

Bθφ = − 1

4l

e−i
a
Q
u

(r2 + a2)l
tan θ∂ψY

(l) (3.23)

Bψφ =
1

4l

e−i
a
Q
u

(r2 + a2)l
sin θ cos θ∂θY

(l) (3.24)

Btθ = − a

4l

e−i
a
Q
u

Q(r2 + a2)l
tan θ∂ψY

(l) (3.25)

Btψ =
a

4l

e−i
a
Q
u

Q(r2 + a2)l
sin θ cos θ∂θY

(l) (3.26)

Byθ =
a

4l

e−i
a
Q
u

Q(r2 + a2)l
cot θ∂φY

(l) (3.27)

Byφ = − a

4l

e−i
a
Q
u

Q(r2 + a2)l
sin θ cos θ∂θY

(l) (3.28)

Bty = − 1

2Q2

r2e−i
a
Q
u

(a2 + r2)l
Y (l) (3.29)

Byr =
i

2Q

re−i
a
Q
u

(r2 + a2)l+1
Y (l) (3.30)
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We see that all fields behave as ∼ e−iωt+iλy with ω = |λ|, so we have a BPS pertur-

bation adding a third charge (momentum P= −1) to the 2-charge D1-D5 background.

Outer region: Continuing the perturbation J−
−1|ψ〉R

We now wish to ask if this solution in the inner region continues out to asymptotic

infinity, falling off in a way that makes it a normalizable perturbation. To do this

we solve the perturbation equations (3.3),(3.4) in the outer region (2.22). Requiring

decay at infinity, we find the solution

w =
e−i

a
Q
u

(Q+ r2)r2l
Y (l) (3.31)

Bab = Bεabc∂
cY (l), Bµν =

1
√

Q+ r2
εµνλ∂

λB Y (l), B =
1

4l

e−i
a
Q
u

r2l
(3.32)

where we have chosen the same spherical harmonic Y (l) that appears in (3.20). Again

εabc, g
ab etc. refer to the metric of a unit S3 (this gives the factor (radius of S3)−1 =

1√
Q+r2

in Bµν), while εµνλ, g
µν etc. refer to the t, y, r part of the metric (2.22). Writing

explicit components, the above solution becomes

w =
e−i

a
Q
u

(Q + r2)r2l
Y (l) (3.33)

Bθψ =
1

4l

e−i
a
Q
u

r2l
cot θ∂φY

(l) (3.34)

Bθφ = − 1

4l

e−i
a
Q
u

r2l
tan θ∂ψY

(l) (3.35)

Bψφ =
1

4l

e−i
a
Q
u

r2l
sin θ cos θ∂θY

(l) (3.36)

Bty = − 1

2(Q + r2)2

e−i
a
Q
u

r2l−2
Y (l) (3.37)

Btr =
ia

r2l+1

1

4lQ
e−i

a
Q
uY (l) (3.38)

Byr =
ia

r2l+1

1

4lQ
e−i

a
Q
uY (l) (3.39)
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Matching at leading order

We wish to see if the solutions in the inner and outer regions agree in the domain

of overlap a << r << Q. In this region we have

a√
Q

<< {a
r
,
r√
Q
} << 1 (3.40)

We can match the solutions around any r in the range a << r << Q. To help us

organize our perturbation expansion we choose this matching region to be around the

geometric mean of a,Q, so that

a

r
∼ r√

Q
∼ ε

1
2 (3.41)

In this region the scalar w in the inner region (given by (3.21)) and in the outer

region (given by (3.33)) both reduce to the same function

w =
e−i

a
Q
u

Qr2l
Y (l) + . . . (3.42)

so that we get the desired agreement at leading order. We can similarly compare

BMN , but note that since BMN is a tensor the components of BMN depend on the

coordinate frame. To see the order of a given component BMN we should construct

the field strength F = dB from this component and then look at the values of F in

an orthonormal frame. For example

Bty → Ft̂ŷr̂ ≡ Ftyr(g
tt)

1
2 (gyy)

1
2 )(grr)

1
2 ∼ 1

Q
3
2 r2l

(3.43)

Note that H̄t̂ŷr̂ ∼ 1√
Q

, so that the Ft̂ŷr̂ in the above equation is of the same order as

wH̄t̂ŷr̂, and thus Bty is a term which we will match at leading order.
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We then find that the components surviving at leading order reduce to the fol-

lowing forms for both the inner and outer solutions

Bθψ =
1

4l

e−i
a
Q
u

r2l
cot θ∂φY

(l) (3.44)

Bθφ = − 1

4l

e−i
a
Q
u

r2l
tan θ∂ψY

(l) (3.45)

Bψφ =
1

4l

e−i
a
Q
u

r2l
sin θ cos θ∂θY

(l) (3.46)

Bty = − 1

2Q2

r2e−i
a
Q
u

r2l
Y (l) (3.47)

Other components like Byφ which do not agree are seen to be higher order terms. We

will find agreement for these after we correct the inner and outer region computations

by higher order terms.

3.3.3 Nontriviality of the matching

Before proceeding to study the solutions and matching at higher orders in ε, we

observe that the above match at leading order is itself nontrivial. The dimensional

reduction from 10-d to 6-d also gives some massless scalars in 6-d

�s = 0 (3.48)

We show that for such a scalar we cannot get any solution that is regular everywhere

and decaying at infinity. For the scalar s we can find in the inner region AdS3 × S3

a solution analogous to (2.19) [31]

s =
e−i(2l+2) a

Q
t

(r2 + a2)l+1
Y

(l)
NS (3.49)

where we have chosen the same spherical harmonic as in (2.19). Since the scalar

generates not a chiral primary but a supersymmetry descendent, we get instead of
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(2.22)

jNS = l − 1, j̄NS = l, hNS = l + 1, h̄NS = l + 1 (3.50)

The solution (3.49) falls off towards the boundary of AdS, but in the complete geom-

etry (2.13) it will not be normalizable at infinity. Using R sector coordinates (which

are natural at r → ∞) we find that the t, y dependence is e−iωt+iλy = e−i
a
Q

(3t+y). At

large r we then find from the wave equation (3.48) the behavior [32]

s ∼ 1

r
3
2

e−i
a
Q

(3t+y) cos[2
√

2
a

Q
r + const]Y (l) (3.51)

The reason for the slowness of the falloff at large r is the following. Since ω > |λ|, we

find that at large r not all the energy in the perturbation is tied to the S1 momentum,

and the residual energy goes to radial motion; this causes the perturbation to leak

away to asymptotic infinity at late times. Normalizability at infinity is thus seen to

require

ω = |λ| (3.52)

If we impose (3.52) on the solution for s, then we see that the solution regular at

r = 0 is

s ∼ (r2 + a2)lY (l) (3.53)

For the choice (3.52) there are two solutions in the outer region with radial depen-

dences

(i) s ∼ r−(2l+2), (ii) s ∼ r2l (3.54)

but the inner region solution matches onto the growing solution (ii) of the outer region,

and we again get no normalizable solution.14

14For ω = |λ| the scalar equation (3.48) can be exactly solved in terms of hypergeometric functions,
and the non-existence of a normalizable solution can be explicitly seen.
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Thus we see that it is quite nontrivial that for the (B,w) system of fields the

normalizable solutions of the inner and outer regions match up at leading order. We

will now proceed to check the matching to higher orders in ε.

3.4 Matching at the next order (O(ε))

We wish to develop a general perturbation scheme that will correct our solution to

higher orders in ε. It turns out that the inner region solution does not get corrected

in a nontrivial way at order ε. In this section we first explain the general scheme,

then apply it to the outer region to get the O(ε) corrections, and then explain how

to match these to the inner region solution so that the entire solution is established

to O(ε).

3.4.1 The perturbation scheme

The ‘outer region’ of our geometry r >> a is described to leading order by the

metric (2.22). We must now take into account the corrections that arise because the

exact geometry (2.13) departs from this leading order form. In particular we get small

‘off-diagonal’ components gµa in the metric and also small components like H̄µνa, H̄µab

of H̄ABC . We develop a systematic way to handle these corrections so that we will

get the full solution as a series in ε.
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We expand the background and perturbations as

gMN = g0
MN + g1

MN (4.1)

H = H0 +H1 (4.2)

F = F0 + F1 (4.3)

∗ = ∗0 + ∗1 (4.4)

w = w0 + w1 (4.5)

∇2 = ∇2
0 + ∇2

1 (4.6)

The metric g0
MN is the metric (2.22) we had written earlier for the outer region. To get

g1
MN we take the difference between the full metric (2.13) and the outer region metric

(2.22); since we are seeking only the order ε corrections at this stage we keep terms of

order a
r
, a√

Q
in g1 and discard higher order corrections. Similarly we obtain H̄1. The

operation ∗0 is defined using the metric g0, and ∗1 contains the corrections needed to

give the ∗ operation in the full metric (upto the desired order of approximation). ∇2
0

is the Laplacian on the metric g0 and ∇2
1 corrects this (to the desired accuracy) to

the Laplacian on the full metric.

To illustrate the general approximation scheme it is convenient to write the per-

turbation equation (3.3) in form language

F + ∗F + wH̄ = 0 (4.7)
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Inserting the expansions (4.1)-(4.6) in (4.7),(3.4) we get

F0 + ∗0F0 + w0H̄0 = 0

∇2
0w0 −

1

3
H̄MNP

0 F0MNP = 0 (4.8)

F1 + ∗0F1 + w1H̄0 = S

∇2
0w1 −

1

3
H̄MNP

0 F1MNP = Sw (4.9)

where Sw and S are defined by

S = −w0H̄1 − ∗1F0

Sw = −∇2
1w0 +

1

3
H̄MNP

1 F0MNP (4.10)

Eqs.(4.8) are just the leading order equations that give the leading order solution

found for the outer regions in the last section. Eqs.(4.9) give the first order correc-

tions. Note that the LHS of these equations have the same form as the leading order

equations, so we need to solve the same equations again but this time with source

terms S, Sw. These source terms can be explicitly calculated from the background

geometry and the leading order solution.

3.4.2 Expanding in spherical harmonics

Even though the problem does not have exact spherical symmetry, it is conve-

nient to decompose fields into spherical harmonics on S3. The breaking of spherical

symmetry is then manifested by the fact that higher order corrections to the leading

order solution contain spherical harmonics that differ from the harmonic chosen at

77



leading order. We write

w = e−i
a
Q
uw̃I1Y I1 (4.11)

Bµν = e−i
a
Q
ubI1µνY

I1 (4.12)

Bµa = e−i
a
Q
ubI3µ Y

I3
a (4.13)

Bab = e−i
a
Q
ubI1εabc∂

cY I1 (4.14)

The Y I1 are normalized scalar spherical harmonics on the unit 3-sphere. Their

orders can be described by writing the rotation group of S3 as so(4) = su(2) ×

su(2). The Y I1 are representations (l, l) of su(2) × su(2), with l = 0, 1
2
, 1, . . . . These

harmonics satisfy

∇2Y I1 = −C(I1)Y
I1, C(I1) = 4l(l + 1) (4.15)

∇[a∇b]Y
I1 = 0 (4.16)

The Y I3
a are normalized vector spherical harmonics. They fall into two classes,

one with su(2)× su(2) representations (l, l + 1) and the other with (l + 1, l). (Again

l = 0, 1
2
, 1, . . . .) We have

∇aY I3
a = 0 (4.17)

∇aY
I3
b −∇bY

I3
a = ζ(I3)εabcY

I3c (4.18)

where

ζ(I3) =

{

−2(l + 1), I3 = (l + 1, l)
2(l + 1), I3 = (l, l + 1)

(4.19)

More details on spherical harmonics are given in Appendix A.

78



3.4.3 Outer region: Solving for the first order corrections

Returning to the field equations (4.9), we compute the sources S, finding

Strθ =
Q

2(Q+ r2)2

1

r2l+1
∂ψY

I1 tan θe−i
a
Q
u

Strψ = − Q

(Q + r2)2

1

2r2l+1

[

sin θ cos θ∂θY
I1 + 2

(l + 3)r2 + (l + 1)Q

Q+ r2
Y I1 cos2 θ

]

e−i
a
Q
u

Syrθ = − Q

2(Q + r2)2

1

r2l+1
∂φY

I1 cot θe−i
a
Q
u

Syrφ =
Q

(Q+ r2)2

1

2r2l+1

[

sin θ cos θ∂θY
I1 − 2

(l + 3)r2 + (l + 1)Q

Q+ r2
Y I1 sin2 θ

]

e−i
a
Q
u

(4.20)

The source Sw is zero at this order.

We can decompose these sources into scalar and vector spherical harmonics

Sµνa = sI3µνY
I3
a + tI1µν∂aY

I1 (4.21)

Substituting this decomposition in (4.9) we get the equations

bI11µν −
r

Q + r2
ε̃µνλ∂

λbI11 = tI1µν (4.22)

∂tb
I3
1y − ∂yb

I3
1t + ζ(I3)

r3

(Q + r2)2
bI31r = 0 (4.23)

∂rb
I3
1t − ∂tb

I3
1r + ζ(I3)

bI31y
r

= sI3tr (4.24)

∂yb
I3
1r − ∂rb

I3
1y − ζ(I3)

bI31t
r

= sI3ry (4.25)

∂r

(

r3

(Q + r2)2
∂rb

I1
1

)

+
r

(Q+ r2)2

[

2Qw̃I1
1 − C(I1)b

I1
1

]

= 0 (4.26)

1

r(Q+ r2)
∂r
(

r3∂rw̃
I1
1

)

− C(I1)

(Q+ r2)
w̃I11 − 8Q

(Q+ r2)3

[

Qw̃I11 − C(I1)b
I1
1

]

= 0 (4.27)

Eq.(A.1) yields bI1µν once we know bI1 ; the source components tI1µν are listed in

Appendix B. Eqs.(A.4),(A.7) allow the trivial solution

b1 = w̃1 = 0 (4.28)
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which we adopt, since other solutions would just amount to shifting the leading order

solution taken for b, w. Eq.(A.5) yields br = 0. Eqns.(A.6), (4.25) are nontrivial and

yield the solution (u = t + y, v = t− y)

b1ua = bI31uY
I3
a =

ia

2

√

l

(2l + 1)(l + 1)

Q

r2l(Q+ r2)2
Y (l+1,l)
a + (4.29)

− ia

4r2l

(
√

2l − 1

l(2l + 1)

Q

(Q+ r2)2
− 1

Q

√

4l2 − 1

l3

)

Y (l−1,l)
a (4.30)

b1va =
ia

4

√

1

(l + 1)

Q

r2l(Q+ r2)2
Y (l,l+1)
a (4.31)

3.4.4 Matching at order ε

The inner region solution to order ε

Above we have applied the general scheme (4.9) to find the outer region solution

to order ε. In general we would have to apply a similar scheme to correct the inner

region solution as well. But it turns out that the expansion in the inner region goes

in powers of ε2. Since at this stage we are only matching terms of order ε0, ε1 we

do not need to perform any extra computation for the inner region, and the solution

(3.21)-(3.30) is already correct to the desired order. But to effect the comparison with

the outer region we perform two manipulations on the inner region solution. First we

express the set Bta = {Btθ, Btψ, Btφ} and the set Bya in terms of scalar and vector

harmonics

Bta =
iae−i

a
Q
u

2Q(r2 + a2)l

[ √
lY

(l+1,l)
a

√

(2l + 1)(l + 1)
+

Y
(l,l+1)
a

2
√
l + 1

+

l + 1

2l

√

2l − 1

l(2l + 1)
Y (l−1,l)
a +

∂aY
(l)

4l2(l + 1)

]

Bya =
iae−i

a
Q
u

2Q(r2 + a2)l

[ √
lY

(l+1,l)
a

√

(2l + 1)(l + 1)
− Y

(l,l+1)
a

2
√
l + 1

+
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l + 1

2l

√

2l − 1

l(2l + 1)
Y (l−1,l)
a − (2l − 1)∂aY

(l)

4l2(l + 1)

]

(4.32)

Next we perform a gauge transformation on BMN

BMN → BMN + ∇MΛN −∇NΛM (4.33)

Choosing

Λt =
i

8l2(l + 1)

a

Q(r2 + a2)l
Y (l)e−i

a
Q
u (4.34)

Λy = − i(2l − 1)

8l2(l + 1)

a

Q(r2 + a2)l
Y (l)e−i

a
Q
u (4.35)

we remove the components proportional to ∂aY
(l) in (4.32), while getting additional

terms in other components of B. In particular

Btr =
i

4l(l + 1)

ar

Q(r2 + a2)l+1
Y (l)e−i

a
Q
u ≈ i

4l(l + 1)

a

Qr2l+1
Y (l)e−i

a
Q
u (4.36)

Byr =
i(2l2 + 1)

4l(l + 1)

ar

Q(r2 + a2)l+1
Y (l)e−i

a
Q
u ≈ i(2l2 + 1)

4l(l + 1)

a

Qr2l+1
Y (l)e−i

a
Q
u (4.37)

We will see that with this gauge choice we will get a direct agreement of BMN between

the outer and inner regions.

The outer region solution to order ε

We had solved the field equations to first order in ε for the outer region in sub-

section (3.4.3) above. We list the complete solution thus obtained to order ε
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w =
e−i

a
Q
u

r2l(Q+ r2)
Y (l)

Bθψ =
1

4l

e−i
a
Q
u

r2l
cot θ∂φY

(l)

Bθφ = − 1

4l

e−i
a
Q
u

r2l
tan θ∂ψY

(l)

Bψφ =
1

4l

e−i
a
Q
u

r2l
sin θ cos θ∂θY

(l)

Bty = − 1

2(Q + r2)2

e−i
a
Q
u

r2l−2
Y (l)

Btr = − ia

r2l+1

(

Q

(Q + r2)3

[(l + 2)r2 + lQ]

4l(l + 1)
− 1

4lQ

)

Y (l)e−i
a
Q
u

Byr =
ia

r2l+1

(

(2l − 1)Q

(Q + r2)3

[(l + 2)r2 + lQ]

4l(l + 1)
+

1

4lQ

)

Y (l)e−i
a
Q
u

Bta =
iaQe−i

a
Q
u

2r2l(Q+ r2)2

[
√

l

(2l + 1)(l + 1)
Y (l+1,l)
a +

Y
(l,l+1)
a

2
√
l + 1

− 1

2

√

2l − 1

l(2l + 1)
Y (l−1,l)
a

]

+
ia

4Qr2l

√

4l2 − 1

l3
Y (l−1,l)
a

Bya =
iaQe−i

a
Q
u

2r2l(Q+ r2)2

[
√

l

(2l + 1)(l + 1)
Y (l+1,l)
a − Y

(l,l+1)
a

2
√
l + 1

− 1

2

√

2l − 1

l(2l + 1)
Y (l−1,l)
a

]

+
ia

4Qr2l

√

4l2 − 1

l3
Y (l−1,l)
a (4.38)

Comparing the inner and outer solutions at order ε

In the region where we match solutions we have to substitute at the present order

of approximation

1

(r2 + a2)l
≈ 1

r2l
,

1

(Q+ r2)
≈ 1

Q
(4.39)

We then find agreement between the inner region solution (in the gauge discussed

above) and outer region solution (4.38).
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3.5 Matching at higher orders

We follow the same scheme to extend the computation to higher orders in ε. At

each stage the sources S, Sw get contributions from all the terms found at preceeding

orders. The computations are straightforward though tedious, and most are done

using symbolic manipulation programs.

The solutions obtained for the inner region are listed in Appendix B. We have

given the solutions in the NS sector coordinates; they must be spectral flowed to the

R sector and gauge transformations performed to see directly the agreement with the

outer region solutions. As mentioned before the perturbation series in the NS sector

of the inner region proceeds in even powers of ε, and the odd powers in ε result from

the spectral flow (2.9).

The solutions obtained for the outer region are listed in Appendix C. These are

already in R sector coordinates. Note that at each order when we solve the equations

with sources we have to choose a homogeneous part to the solution as well, and these

parts have been chosen to give regularity everywhere as well as agreement between

the inner and outer regions.

We carry out the computation of the solution in each region to order O(ε3). We

find complete agreement between the inner and outer region solutions upto the order

investigated. At each stage of the computation there is the possibility of finding that

some field is growing at infinity, and it is very nontrivial that this does not happen

for any field at any of the orders studied. Thus we expect that the exact solution

does exist and is likely to be expressible in closed form.
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At all the orders that we have investigated the scalar w can be seen to arise from

expansion of the solution

w =
e−i

a
Q
uY (l)

(r2 + a2)l(Q+ f)
, f = r2 + a2 cos2 θ (5.1)

Note that this expression involves just the combinations (r2 + a2), f which appear in

the geometry (2.13). We do not have a similar compact expression for the B field; it is

plausible that the compact form would require us to express this 2-form field as part

2-form and part 6-form (the magnetic dual representation). We hope to investigate

this issue elsewhere.

3.6 Discussion

We have constructed regular, normalizable supergravity perturbations in the inner

and outer regions by a process of successive corrections, and observed that at each

order the solutions agree in the domain of overlap. This agreement is very nontrivial,

and we take this as evidence for the existence of an exact solution to the problem – i.e.

we expect that there exists a regular perturbation on the 2-charge D1-D5 geometry

(2.13) which carries one unit of momentum charge and adds one unit of energy (thus

yielding an extremal 3-charge solution). We now return to our initial discussion of

black hole interiors, and the significance of this solution in that context.

The usual picture of a black hole has a horizon, a singularity at the center, and

‘empty space’ in between. Abstract arguments given in the introduction suggested

a different picture where the interior was nontrivial and exhibited the degrees of

freedom contributing to the entropy. The 2-charge extremal system turned out to

look like this latter picture – its properties (a′)-(c′) listed in the introduction matched

the suggested properties (a)-(c). What about the 3-charge extremal hole? This latter
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r=0

(a) (b)

Figure 3.7: (a) Naive geometry for the 3-charge extremal system. (b) Expected structure
for the system.

hole has become a benchmark system for understanding black holes, and any lessons

deduced here likely extend to all holes in all dimensions.

The metric conventionally written for the D1-D5-P extremal system is

ds2 =
1

√

(1 + Q1

r2
)(1 + Q5

r2
)
[−dudv +

Qp

r2
dv2]

+

√

(1 +
Q1

r2
)(1 +

Q5

r2
)[dr2 + r2dΩ2

3] +

√

(1 + Q1

r2
)

(1 + Q5

r2
)
dzadza (6.1)

This is similar to the ‘naive’ metric (B.13) of the 2-charge D1-D5 extremal system,

except that the y circle stabilizes to a fixed radius as r → 0 instead of shrinking to

zero size (we picture the geometry (5.82) in Fig.3.7(a)). The geometry (5.82) has a

completion that it continues past the horizon at r = 0 to the ‘interior’ of the black

hole, where we have a timelike singularity – the metric is just a 4+1 analogue of the

extremal Reissner-Nordstrom black hole.

In a roughly similar manner one might have asked if the 2-charge metric continues

past the ‘horizon’ r = 0 to another region, but here we do know the answer – the naive

metric (B.13) is incorrect, and the actual geometries ‘cap off’ before reaching r = 0.

We are therefore led to ask if a similar situation holds for the 3-charge system, so that

the actual geometries ‘cap off’ before reaching r = 0 as in Fig.3.7(b). We would then

85



draw the ‘horizon’ as a surface which bounds the region where the geometries differ

from each other significantly; this surface is indicated by the dashed line in Fig.3.7(b).

Note that for the 3-charge system the area of this ‘horizon’ will give exactly

A

4G
= Smicro = 2π

√
n1n5np (6.2)

This is because in the naive metric (5.82) the cross sectional area of the throat sat-

urates to a constant A as r → 0, and it is this same value A that will be picked up

at the location of the dashed line in Fig.3.7(b). But from [3] we know that this area

A satisfies (6.2). (For the 2-charge case we could find A only upto a factor of order

unity, since the y circle of the cross section was shrinking with r, and the natural un-

certainty in the location of the ‘horizon surface’ leads to a corresponding uncertainty

in A.)

Thus for the 3-charge system the nontrivial issue is not horizon area (which we

see will work out anyway) but the nature of the geometry inside the horizon. The

computation of this paper has indicated that if we have one unit of P then at least

one extremal state

|Ψ〉 = J−
−1|0〉R (6.3)

of the 3-charge system is described by a geometry like Fig.3.7(b) and not by Fig.3.7(a).

It may be argued though that the 2-charge extremal states and the state (6.3) are

not sufficiently like generic black hole states to enable us to conclude that Fig.3.7(b)

is the generic geometry of the 3-charge system. Here we give several arguments that

counter this possibility:

(a) Is the 2-charge system like a black hole? It is sometimes argued that the

2-charge extremal system is not really a black hole since the horizon area vanishes
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classically. We argue against this view. The microscopic entropy of the 2-charge

extremal system (S=2
√

2π
√
n1n5) arises by partitions of N = n1n5 in a manner

similar to the entropy 2π
√
n1n5np of the 3-charge extremal system which arises from

partitions of N = n1n5np. The ‘horizon’ that we have constructed for the 2-charge

system satisfies S ≈ A/4G, so this ‘horizon’ area is ∼ √
n1n5 times (lp)

3, and is thus

not small at all in planck units.

Why then do we think of this horizon as small? The 2-charge metric has factors

like ∼ (1 + Q1

r2
), (1 + Q5

r2
). Assuming Q1 ∼ Q5 and n1 ∼ n5 ∼ n we find that the

geometry has a scale, the ‘charge radius’, which grows with n as r ∼ Q
1
2 ∼ n

1
2 . Since

the horizon is a 3-dimensional surface, and we have found Smicro ∼ n ∼ A
4G

, the

horizon radius is r ∼ n
1
3 . Suppose we take the classical limit n → ∞ and then scale

the metric so that the charge radius is order unity. In this limit the horizon radius

will vanish. For the 3-charge system, both the charge radius and the horizon radius

behave as r ∼ n
1
2 , so the horizon radius remains nonzero in the analogous classical

limit.

But this behavior of classical limits does not imply that the 2-charge system has

an ignorable horizon – the horizon does give the correct entropy, and the presence of

the other, larger, length scale appears irrelevant to the physics inside this horizon.

The region r ∼ Q
1
2 is far removed from the horizon region, and simply governs the

changeover from ‘throat geometry’ to ‘flat space’.

(b) Return time ∆tCFT : For the 2-charge system, the naive metric is (B.13). If we

throw a test particle down the throat of this naive metric, it does not return after any

finite time. In the dual CFT however an excitation absorbed by the ‘effective string’

can be re-emitted after a time ∆tCFT < ∞. How do we resolve this contradiction?
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One might think that nonperturbative effects cause the test particle to turn back

from some point in the throat of the naive geometry, but this cannot be the case

since the return time ∆tCFT is different for different states of the 2-charge system

(the length of the components of the effective string are different for different states).

The resolution of this puzzle was that the throats were capped; the cap was different

for different states [150], and we get (2.1).

The CFT for the 3-charge system is described by the same effective string; we just

have additional momentum excitations on the effective string. We would thus again

have some finite time ∆tCFT after which an excitation should be emitted back from

the system, and the requirement (2.1) then suggests that Fig.3.7(b) is the correct

picture for the general states of the 3-charge system, rather than Fig.3.7(a).

(c) Fractionation: We have argued that the interior of the horizon is not the

conventionally assumed ‘empty space with central singularity’. How can the classical

expectation be false over such large length scales? The key physical effect is ‘frac-

tionation’. If we excite a pair of left and right vibrations on a string of length L, the

minimum excitation threshold is ∆E = 2π
L

+ 2π
L

= 4π
L

. But if we have a bound state

of n strings, then we get one long string of length nL, and the threshold drops to 4π
nL

[33]. If we start with 2-charges, n1 D1 branes and n5 D5 branes, then the excitations

of the third charge, momentum, come in even smaller units, and ∆E = 4π
n1n5L

[34].

If we assume more generally that for the bound state of mutually supersymmetric

branes the excitations always fractionate in this way, then we find that the excita-

tions of the D1-D5-P hole are such that they extend to a radial distance that is just

the horizon scale [76]. For the 2-charge FP where we have explicitly constructed all

geometries this fractionation effect can be directly seen – because the momentum
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waves are fractionally moded on the multiply wound F string, the strands of the F

string separate and spread over a significant transverse area, which extends all the

way to the ‘horizon’.

(d) Other 3-charge states: The general perturbations around the 2-charge so-

lution that we have chosen decompose into two classes: The antisymmetric field +

scalar perturbations (which we have analyzed) and the metric + self-dual field per-

turbations. We have checked upto leading order (ε0) that the latter class gives a

regular solution as well. Further, the 2-charge solution that we started with may ap-

pear special (It has for instance angular momentum n1n5

2
in each su(2) factor, while

the generic 2-charge state has negligible net angular momentum) but we have also

checked that at leading order we get regular perturbations for all starting 2-charge

geometries. In principle all these computations could be carried out to higher orders

in ε, but the technical complexities would be greater due to less symmetry in the

starting configuration.

One might think that if we increase the the momentum p then we might get a

horizon. For p = 1 we have seen that the perturbation is smooth, so there is no hint

of an incipient horizon. Suppose for some p = p0 a horizon just about forms; this

horizon will be of radius zero at p = p0, and larger at larger p. But what will be the

location of the horizon at p = p0? There is no special point in the starting 2-charge

geometries; they are just smoothly capped throats. It thus appears more likely that

adding momentum will just give more and more complicated configurations, but with

no special point which could play the role of a singularity.

(e) Nonextremal holes: Having found the above structure for extremal systems,

we expect a similar structure for near extremal and also neutral holes, with the
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difference that the branes in the extremal systems are replaced by a collection of

branes and anti-branes. Indeed, for the non-extremal D1-D5-P system it is known

that the entropy of holes arbitrarily far from extremality can be reproduced exactly

if we assume that the energy is optimally partitioned between branes and anti-branes

while reproducing the overall charges and mass [36].

In an interesting recent paper [120] it was argued that the ‘black ring’ solutions

carrying D1-D5-P charges (plus nonextremality) had pathologies like closed timelike

curves and thus it was not possible to add momentum by boosting to general rotating

D1-D5 states. It was observed however that it might be possible to add momentum

in other ways to get a 3-charge state. Our construction does take a D1-D5 state with

some angular momentum, and adds one unit of momentum. But looking at the form

of the perturbation it can be seen that the momentum was not obtained by a boost.

More generally, generating metrics by boosting a ‘naive’ nonextremal geometry

will not give the correct states of the system. In such a construction we start with a

nonextremal black hole or black ring geometry, where the metric in the interior of the

horizon is just the classically expected one (similar in spirit to Fig.1(a) for a black

hole). But we have argued that such an interior metric is not a correct description

for the region inside the horizon; this region we believe is very nontrivial, with details

that necessarily depend on the particular state which the system takes (out of the eS

possible states).15 Instead one should start with one of the ‘correct’ states for system,

and then construct the possible deformations that add momentum.

15One should not use the ‘correspondence principle’ [38] to obtain a qualitative understanding of
what might happen inside horizons. It was shown in [76] that at coupling g < gc the energy added
to a string goes to exciting vibrations, while at g > gc the energy goes to creating brane-antibrane

pairs. (Here gc is the coupling at the ‘correspondence point’ where the string turns to a black hole.)
It is these brane-antibrane pairs that have the small energy gaps and large phase space to ‘fill up’
the interior of the horizon.
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We can emphasize this point in another way, using just the 2-charge system.

Suppose we start with the naive metric for the nonextremal F string. This metric

will have cylindrical symmetry around the axis of the F string. We can boost and

add momentum, still keeping the cylindrical symmetry and getting F and P charges.

We can then take the non-extremality to zero. This process will reproduce the naive

metric (2.1) of the extremal FP system. To get the correct metrics for extremal FP

starting from non-extremal FP we would have to start with one of the correct interior

states for the nonextremal FP system.

Clearly what we need next is a construction of the generic 3-charge configuration

(i.e. with the P charge not small). It is important that the solutions represent

true bound states rather than just multi-center brane solutions that are classically

supersymmetric. (Some families of metrics with 3 charges have been constructed

before (e.g. [160]) but we are not aware of any set that actually describes the bound

states that we wish to study.)16 It is possible that the generic state is not well

approximated by a classical configuration; what we do expect though on the basis of

all that was said above is that the region where the different states depart from each

other will be of the order the horizon size and not just a planck sized region near the

singularity.

16We thank D. Mateos and O. Lunin for discussions on this point.
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CHAPTER 4

CONSTRUCTING ’HAIR’ FOR BLACK RINGS

4.1 Introduction

In chapter 3, we perturbatively added one unit of moemntum to a particular

microstate of 2 charge black holes in 4 + 1 dimensions. This gave us a perturbative

three charge system which was smooth and horizon-free, in accordance with Mathur

conjecture for black hole microstates. In 4+1 dimensions we can have not only black

holes but also black rings [120]. We would therefore like to construct microstates for

the ring. The goal of this chapter is to construct a simple 3-charge extremal state

for the ring, where we start with a ring carrying two charges D1,D5 and add a wave

carrying one unit of momentum P, the third charge.

There has been a lot of recent progress on black rings. The entropy for the ring

can be obtained by computing it for a short straight segment of a ring and multiplying

by the total length of the ring [121]. A subset of 3-charge rings can be obtained as

supertubes made out of branes [122].

We are interested in the gravity description of microstates. In [123, 9] dual geome-

tries were found for a discrete subset of CFT states. But even though these states

have a large angular momentum, they do not look like ‘rings’, since we cannot find

a sphere S2 that will surround a ‘ring’ shaped interior. In [124, 125] a method was
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developed to find large families of 3-charge BPS states, in terms of the choice of loca-

tions of poles of certain harmonic functions appearing in the metric [126]. While the

CFT states for these geometries are not known, it was argued that these geometries

represented bound states because there is a nonzero flux on spheres S2 linking the

poles. Assuming that this argument is correct we can make geometries that are like

rings, and that have no horizon and no singularity.

In the present paper we would like to construct a gravity description of microstates

in a case where we also know the dual CFT state. Thus in gravity terms our con-

struction will be more modest than the ones obtainable from [124, 125]; the third

charge will be only a small perturbation on our 2-charge ring. On the other hand

since we will know the microscopic origin of the state, we are assured that we have a

bound state and we can also develop some intuition for how CFT operations act in

the gravity picture.

In spirit our computation is similar to the computation in [123], where one unit

of momentum was added to a D1-D5 extremal state. We will again take the same

D1-D5 state, and add a unit of momentum using the same fields, but will be working

in a very different limit from the one used in [123]. In [123] we had chosen our moduli

so that the D1-D5 geometry had a large AdS type region, which went over to flat

space at infinity. This geometry is depicted in Fig.1(a). The wavefunction of the

quantum carrying the momentum is peaked in the AdS region, falling off at infinity

in a normalizable way. By contrast in the present paper we will take a limit of the

moduli so that the D1-D5 state looks like a thin ring, depicted in Fig.1(b). Consider

a short segment of this ring, which looks like a straight tube (Fig.1(c)). The bound

state wavefunction must now appear as a wavefunction localized in the vicinity of

93



this tube, falling to zero away from this tube, and regular everywhere inside. We

find this wavefunction, thus obtaining a simple but explicit example of ‘hair’ for the

black ring. The fact that the wavefunction is regular everywhere suggests that no

horizon or singularity should form even for a non-infinitesimal deformation, so the

result supports a ‘fuzzball’ picture for the black ring.

����� ����� �����
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Figure 4.1: (a) The D1-D5 geometry for large values of Ry, the radius of S1; there is a

large AdS region (b) The geometry for small Ry; the metric is close to flat outside a thin

ring (c) In the near ring limit we approximate the segment of the ring by a straight line

along z.

4.2 The CFT state

It is important for us that the state we construct in the gravity description be

known to be a BPS state in the dual CFT. In this section we review the discussion

of [123] where this state was described.
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4.2.1 The 2-charge geometry

We start with the 2-charge D1-D5 system. We compactify IIB string theory as

M9,1 →M4,1 × T 4 × S1. We wrap n5 D5 branes on T 4 × S1, and n1 D1 branes on S1.

The system has a large class of BPS bound states, out of which we choose a simple

one that was first noted in [186, 188]. If we reduce the metric on T 4 we find that

the 6-d string metric is the same as the Einstein metric, so we will just call it the

‘metric’ below. The masses of the D1 and D5 branes are described by parameters

Q̄1, Q̄5 which we will set to be equal

Q̄1 = Q̄5 = Q̄ (2.1)

This will simplify our computations, but we expect that the state we construct will

exist for all Q̄1, Q̄5. With the choice (2.1) the dilaton is constant, and the volume of

the T 4 is also constant. The metric and gauge field for the solution are given by

ds2 = −H−1(dt2 − dy2) +Hf
( dr̄2

r̄2 + a2
+ dθ̄2

)

− 2
aQ̄

Hf
(cos2 θ̄dydψ̄ + sin2 θ̄dtdφ̄)

+H
(

r̄2 +
a2Q̄2 cos2 θ̄

H2f 2

)

cos2 θ̄dψ̄2 +H
(

r̄2 + a2 − a2Q̄2 sin2 θ̄

H2f 2

)

sin2 θ̄dφ̄2(2.2)

C(2) = − Q̄

Hf
dt ∧ dy − Q̄ cos2 θ̄

Hf
(r̄2 + a2 + Q̄)dψ̄ ∧ dφ̄

−Q̄a cos2 θ̄

Hf
dt ∧ dψ̄ − Q̄a sin2 θ̄

Hf
dy ∧ dφ̄ (2.3)

where

f = r̄2 + a2 cos2 θ̄ , H = 1 +
Q̄

f
(2.4)

Here

a =
Q̄

Ry
(2.5)

where Ry is the radius of the S1.
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4.2.2 The ‘inner’ region

Suppose we take

ε ≡ a

Q̄1/2
=
Q̄1/2

Ry
<< 1 (2.6)

(This can be achieved by taking Ry large holding all other moduli and the charges

fixed.) We can then look at the ‘inner region’ of this geometry

r̄ <<
√

Q̄ (2.7)

The metric here is

ds2 = −(r̄2 + a2 cos2 θ̄)

Q̄
(dt2 − dy2) + Q̄(dθ̄2 +

dr̄2

r̄2 + a2
)

− 2a(cos2 θ̄dydψ̄ + sin2 θ̄dtdφ̄) + Q̄(cos2 θ̄dψ̄2 + sin2 θ̄dφ̄2) (2.8)

The change of coordinates

ψNS = ψ̄ − a

Q̄
y, φNS = φ̄− a

Q̄
t (2.9)

brings (2.8) to the form AdS3 × S3

ds2 = −(r̄2 + a2)

Q̄
dt2 +

r̄2

Q̄
dy2 + Q̄

dr̄2

r̄2 + a2
+ Q̄(dθ̄2 + cos2 θ̄dψ2

NS + sin2 θ̄dφ2
NS) (2.10)

This AdS geometry is dual to a 1+1 dimensional CFT. For this CFT we can construct

chiral primaries, which are described in the gravity picture by certain BPS configura-

tions. The CFT dual to the geometry (2.10) is in the Neveu-Schwarz (NS) sector. In

the original form (2.8) the geometry described the CFT in the Ramond (R) sector,

and the coordinate change (2.9) gives the gravity description of the ‘spectral flow’

between the NS and R sectors [186, 188].

The simplest chiral primaries can be obtained by finding normalizable solutions

of the supergravity equations describing linear perturbations around AdS3 ×S3. The
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supergravity fields in the 6-d theory separate into different sets (with no coupling at

the linear level between sets). One set described an antisymmetric 2-form B
(2)
MN and

a scalar w. We write

H
(3)
MNP = ∂MC

(2)
NP +∂NC

(2)
PM +∂PC

(2)
MN , F

(3)
MNP = ∂MB

(2)
NP +∂NB

(2)
PM +∂PB

(2)
MN (2.11)

Then the field equations for the perturbation (B
(2)
MN , w) are

F (3) + ?6F
(3) + wH (3) = 0

∆6w − 1

3
H(3)MNPF

(3)
MNP = 0 (2.12)

Here the star operation ?6, the laplacian ∆6 and index contractions in (2.12) are

defined with respect to the metric (4.100).

4.2.3 Constructing the chiral primary

We can solve the equations (2.12) in the ‘inner region’ geometry (2.10) and ob-

tain normalizable solutions. The solution giving a chiral primary is [129, 123] (the

coordinates on S3 are a, b, . . . and on the AdS3 are µ, ν, . . . )

winner =
e
−2i

a

Q̄
lt

Q̄(r̄2 + a2)l
Ŷ

(l)
NS (2.13)

B
(2)
ab = Bεabc ∂

cŶ
(l)
NS, B(2)

µν = [
1
√

Q̄
εµνλ∂

λB] Ŷ
(l)
NS (2.14)

where

Ŷ
(l)
NS = (Y

(l,l)
(l,l) )NS =

√

2l + 1

2

e−2ilφNS

π
sin2l θ̄, B =

1

4l

e
−2i

a

Q̄
lt

(r̄2 + a2)l
(2.15)

In (2.14) the tensors εabc, g
ab etc are defined using the metric on an S3 with unit radius.

The spherical harmonics Y are representations of the rotation group SO(4) ≈ SU(2)×
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SU(2) of the sphere S3, and Y
(l,l′)
(m,m′) has quantum numbers (l, m) in the first SU(2) and

(l′, m′) in the second SU(2). These two SU(2) groups become the R symmetries of

the left and right movers respectively in the dual CFT. The perturbation (2.13-2.15)

gives a state in the CFT with R charges and dimensions given by

jNS = l, hNS = l, j̄NS = l, h̄NS = l (2.16)

(Unbarred and barred quantities denote left and right movers respectively.) The

quantities jNS, j̄NS are the values of the azimuthal quantum numbers in the two

SU(2) groups. The subscript NS denotes that we are in the Neveu-Schwarz sector

of the CFT. If we spectral flow this perturbation to the Ramond sector then we will

get a perturbation with

h = h̄ = 0 (2.17)

which is expected, since a chiral primary of the NS sector maps under spectral flow

to a ground state of the R sector.17

Let the CFT state dual to the perturbation (2.13)-(2.15) be called |ψ〉NS, and let

|ψ〉R be its image under spectral flow to the Ramond sector.

4.2.4 The state J−
0 |ψ〉NS ↔ J−

−1|ψ〉R

Consider again the inner region in the NS sector coordinates (2.10). We now wish

to make the perturbation dual to the NS sector state

J−
0 |ψ〉NS (2.18)

Since the operator J−
0 in the NS sector is represented by just a simple rotation of the

S3, we can immediately write down the bulk wavefunction dual to the above CFT

17The full spectral flow relations are h = hNS − jNS + c
24 , j = jNS − c

12 . Spectral flow of the
background |0〉NS gives h0 = h0

NS − c
24 , j

0 = j0NS − c
12 , so for the perturbation the spectral flow

relations are just h = hNS − jNS , j = jNS .
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state

winner =
e
−2i

a

Q̄
lt

Q̄(r̄2 + a2)l
Y

(l)
NS (2.19)

B
(2)
ab = Bεabc ∂

cY
(l)
NS, B(2)

µν = [
1
√

Q̄
εµνλ∂

λB] Y
(l)
NS (2.20)

Y
(l)
NS = (Y

(l,l)
(l−1,l))NS = −

√

l(2l + 1)

π
sin2l−1 θ̄ cos θ̄ei(−2l+1)φNS+iψNS , B =

1

4l

e
−2i

a

Q̄
lt

(r̄2 + a2)l

(2.21)

This perturbation has

jNS = l − 1, j̄NS = l, hNS = l, h̄NS = l (2.22)

The spectral flow to the R sector coordinates should give

h = hNS − jNS = 1, h̄ = h̄NS − j̄NS = 0 (2.23)

This spectral flowed state can be written as

|ψ〉 = J−
−1|ψ〉R (2.24)

This is a state with nonzero L0−L̄0, which means that it is a state carrying momentum

P along S1. It is a state in the R sector, which is the sector which we obtain for

the CFT if we wrap D1,D5 branes around the compact directions in our original

spacetime.

So far we have found the relevant fields only in the ‘inner’ region (2.8). But in

[123] the perturbation equations were also solved in the ‘outer’ region a � r < ∞

and it was shown that the inner and outer region solutions agreed with each other
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to several orders in the small parameter ε given in (2.6). This agreement was very

nontrivial, and indicated that there was an exact solution to the perturbation problem

that was smooth in the inner region and normalizable at spatial infinity. This exact

solution would be a state carrying three charges: D1, D5, and one unit of momentum

P. Since it is regular everywhere, we learn that it is possible for 3-charge microstate

to be nonsingular and horizon free, just like 2-charge microstates.

Even though the solution obtained in [123] was only found by matching inner and

outer region solutions to some order in ε, it was possible to guess, from the results, a

closed form for the scalar w which would conceivably hold for all orders in ε:

wfull = e
−i a
Q̄

(t+ y)
e−i(2l−1)φ̄ eiψ̄

sin2l−1 θ̄ cos θ̄

(r̄2 + a2)l (Q̄+ f)
(2.25)

We will see that this conjecture for w will help us in obtaining the perturbation

for the 3-charge ring.

4.3 The near ring limit

In the above section we took the limit (2.6) which sets Ry >>
√

Q̄; this gives

the geometry of Fig.1(a) which has a large AdS type region. Now we will take the

opposite limit

Ry �
√

Q̄ (3.26)

In this limit we get a geometry like that in Fig.1(b); we have flat space everywhere

except around a thin ‘ring’. This ring has radius a = Q̄/Ry. Note that we have a

large family of bound state D1-D5 geometries; these arise by duality from different

vibration profiles of the NS1-P system [8]. In the limit (3.26) all these become thin

tubes around the curves generated by the NS1-P profile. The near ring limit of any
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of these curves looks the same; thus for a local analysis of the perturbation equations

we may start with any ring, and we have chosen to start with the ‘round’ ring because

it is the simplest.

In the near ring limit the following coordinates are the natural ones: we take a

coordinate z to measure length along the ring, and we introduce spherical polar coor-

dinates r, θ, φ in the 3-dimensional space transverse to the ring. (We leave unchanged

the coordinate along the compact directions S1, T 4.) The coordinate change from

(r̄, θ̄, ψ̄, φ̄) to (r, θ, φ, z) is described in the Appendix. The result is

r̄2 =
a2r(1 − cos θ)

a + r cos θ
, sin2 θ̄ =

a− r

a+ r cos θ
, ψ̄ = φ , φ̄ =

z

a
(3.27)

The only length scale of the near ring geometry is the parameter characterizing the

charge density along the ring

Q =
Q̄

2a
(3.28)

The y radius is given in terms of Q by

Ry = 2Q (3.29)

The near ring region is described by

r � a (3.30)

From (3.27) one finds, in this limit

r̄2 ≈ ar(1 − cos θ) , sin2 θ̄ ≈ 1 − r

a
(1 + cos θ) , f ≈ 2ar

dr̄2

r̄2 + a2
+ dθ̄2 =

1

2r(a+ r cos θ)

[ a2

a2 − r2
dr2 + r2dθ2

]

≈ dr2 + r2dθ2

2ar
(3.31)
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In this limit the metric and RR field become

ds2 = −H−1
(

dt+
Q

r
dz
)2

+H dz2 + ds2
TN

ds2
TN = H−1 (dy −Q(1 + cos θ)dφ)2 +H (dr2 + r2dθ2 + r2 sin2 θdφ2)

C(2) = H−1Q

r
dy ∧ (dt− dz) +H−1Q(1 + cos θ) dφ ∧ (dt− dz) (3.32)

where

H = 1 +
Q

r
(3.33)

4.3.1 The Taub-NUT space

The part of the metric denoted as ds2
TN is Taub-NUT (TN) space: it is smooth

due to the relation (3.29). The TN gauge field

A = −Q(1 + cos θ)dφ (3.34)

satisfies

dA = Q sin θ dθ ∧ dφ , ?3dA = −dH (3.35)

where ?3 is the Hodge dual with respect to the flat R
3 spanned by r, θ, φ. A convenient

basis of 1-forms on TN is given by σ̂, dr, dθ, dφ, with

σ̂ = dŷ − 1 + cos θ

2
dφ , ŷ =

y

2Q
(3.36)

In terms of these forms the RR field strength can be written as

H(3) = Ω(2) ∧ (dt− dz) (3.37)

with

Ω(2) = − 2Q2

H2r2

[

dr ∧ σ̂ +
Hr2

Q
dσ̂
]

= −2Qd(H−1σ̂) (3.38)
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We choose the orientations of the 6D and TN spaces so that

εtyr̄θ̄ψ̄φ̄ = εtzyrθφ = 1 , εrθφy = 1 (3.39)

(and thus εtz = −1). Then H (3) is self-dual with respect to the 6-D metric

?6H
(3) = H(3) (3.40)

and Ω(2) is self-dual with respect to the 4-dimensional TN metric

?Ω(2) = Ω(2) (3.41)

Ω(2) is the unique closed and self-dual 2-form on TN.

4.3.2 The scalar w in the near-ring limit

We had noted in section (4.2.4) that the computations of [123] had suggested an

exact form for w, given in (2.25).

We would like to take the near ring limit of (2.25). Remember that in the geometry

(4.100) the ring is spanned by the coordinate φ̄ and its length is 2πa. From the φ̄

dependence in (2.25) we see that the the wavelength of the perturbation wfull in the

direction of the ring is

λ =
2πa

2l − 1
≡ 2π

k
(3.42)

We will be interested in the regime in which this wavelength is much shorter than the

ring:

λ� a (3.43)

This will enable us to take our limit in such a way that we see oscillations of the

wavefunction along the z direction even when we take a near-ring limit and see only
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a short segment of the ring. Eqs.(3.42) and (3.43) imply

l � 1 (3.44)

We can thus approximate 2l − 1 ≈ 2l in the following. By applying the change of

coordinates (3.27) and taking the limits (3.30) and (3.44), we find

cos θ̄ =

√

r(1 + cos θ)

a+ r cos θ
≈
√

2

a

√
r cos

θ

2
(3.45)

and

sin2l−1 θ̄

(r̄2 + a2)l
≈
( sin2 θ̄

r̄2 + a2

)l

= a−2l
(a− r

a+ r

)l

≈ a−2l
(

1 − 2
r

a

)l

≈ a−2l
(

1 − k r

l

)l

≈ a−2l e−kr (3.46)

where we have used (3.42) and the identity (1 + εα)1/ε ≈ eα. Up to an overall

normalization, the near ring limit of wfull is then

w = e−i(pt+kz) e−i(ŷ−φ) cos
θ

2
e−kr

√
r

Q+ r
(3.47)

where

p =
a

Q̄
=

1

2Q
(3.48)

4.4 The perturbation equations

The perturbation we seek carries one unit of momentum along y and is BPS: this

fixes the t and y dependence to be of the form e−ip(t+y). We also allow for a generic

wave number k along the ring direction z; sometimes we will find it convenient to

write this wave number as k = κ/(2Q). The perturbation fields then have the form

B
(2)
MN = e−ip(t+y)−ikz B̃

(2)
MN(r, θ, φ) , w = e−ip(t+y)−ikz w̃(r, θ, φ) (4.49)
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4.4.1 Reducing to equations on TN

In this subsection we reduce the equations (2.12) into a system of equations for a

set of p-forms on TN. Indices on TN are denoted by i, j, . . .. Here and in the following

d, ∆ and ? are the differential, scalar laplacian and Hodge dual on TN. The 2-form

B(2) reduces to a 2-form on TN denoted by B, two 1-forms a and b and a scalar Φ:

B
(2)
ij = Bij , B

(2)
it = ai , B

(2)
iz = bi , B

(2)
tz = Φ (4.50)

Let f (a) and f (b) be the field strengths of a and b:

f
(a)
ij = ∂iaj − ∂jai , f

(b)
ij = ∂ibj − ∂jbi (4.51)

One has the identities

F
(3)
ijt = f

(a)
ij − ipBij , F

(3)
ijz = f

(b)
ij − ikBij , F

(3)
itz = ∂iΦ − ikai + ipbi (4.52)

We will need the following relations

gtt = −H +
Q2

Hr2
, gtz = − Q

Hr
, gzz =

1

H

gzz − gtz = 1 , gtt − gtz = −1 (4.53)

By virtue of these relations we can rewrite the 6D laplacian, acting on w, as

∆6w = ∆w − (p2 gtt + k2 gzz + 2pk gtz)w = ∆w − (p+ k)(pgtt + kgzz)w (4.54)

We also find

H(3) ijt = H(3) ijz = −Ω(2) ij (4.55)
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Using (4.52), (4.54) and (4.55), it is easy to see that the equations (2.12) reduce

to the following system of equations:

∆w − (p+ k)(pgtt + kgzz)w + Ω(2) ij(f
(a)
ij + f

(b)
ij − i(p+ k)Bij) = 0 (4.56)

f (a) − ipB − gzz ? (f (b) − ikB) − gtz ? (f (a) − ipB) + wΩ(2) = 0 (4.57)

f (b) − ikB + gtt ? (f (a) − ipB) + gtz ? (f (b) − ikB) − wΩ(2) = 0 (4.58)

dΦ − ika + ipb− ?dB = 0 (4.59)

If we take the sum of eq. (4.57) and eq. (4.58), use (4.53), and define

K = f (a) + f (b) − i(p + k)B (4.60)

we find

K = ?K (4.61)

i.e. K is a self-dual 2-form on TN. Applying d to eq. (4.59) leads to

pf (b) − kf (a) = −id ? dB =
d ? dK

p+ k
(4.62)

Taking p times eq.(4.58) minus k times eq.(4.57), and using again (4.53), gives

pf (b) − kf (a) + ?(pf (b) − kf (a)) + (pgtt + kgzz)K − (p+ k)wΩ(2) = 0 (4.63)

and thus, by virtue of (4.62) and (4.61),

∆K + (p+ k)(pgtt + kgzz)K − (p+ k)2wΩ(2) = 0 (4.64)

where

∆K = d ? d ? K + ?d ? dK = d ? dK + ?d ? dK (4.65)

is the TN laplacian acting on the 2-form K. Eq.(4.56) can also be rewritten in form

language via the identity

Ω(2) ijKij = 2 ? (?Ω(2) ∧K) = 2 ? (Ω(2) ∧K) (4.66)
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4.4.2 The equations to be solved

With all this, we have reduced the system (4.56-4.59) to a coupled system of

equations for a self-dual 2-form K and scalar w:

∆w − (p+ k)(pgtt + kgzz)w + 2 ? (Ω(2) ∧K) = 0 (4.67)

∆K + (p+ k)(pgtt + kgzz)K − (p+ k)2wΩ(2) = 0 (4.68)

Moreover, the definition of K (4.60) and eq.(4.59) imply the relations

K = f (a) + f (b) − i(p+ k)B ,
i

(p+ k)
? dK = dΦ − ika + ipb (4.69)

If K is known, these relations determine B, a, b and Φ, up to gauge transformations.

4.5 Harmonics on Taub-NUT

We would like to solve the above equations by expanding functions on the Taub-

NUT space in harmonics on the (θ, φ, ŷ) space. At the core of the Taub-NUT (i.e. at

r ≈ 0) this angular space has the geometry of a ‘round’ S3, but for larger r we get

a ‘squashed sphere’. Forms on the squashed sphere can be expanded in ‘monopole

spherical harmonics’, which have been widely studied; see for example [130]. We will

however find it more convenient to develop this expansion in our own notation, in a

way that relates it closely to the expansion used for the round sphere in [123].

4.5.1 Symmetries of Taub-NUT

Let us start with the metric on the round sphere

ds2
S3 = dθ̃2 + cos2 θ̃dψ̃2 + sin2 θ̃dφ̃2 (5.70)

The symmetry group is SO(4) ≈ SU(2) × SU(2). We write the elements of SU(2)

as eαaJa, with the antihermitian generators Ja satisfying [Ja, Jb] = −εabcJc. Writing
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J± = J1 ± iJ2, we get [J3, J±] = ±iJ±, [J+, J−] = 2iJ3. For the first SU(2) the

generators are

J+ =
1

2
e−i(ψ̃+φ̃)[∂θ̃ − i cot θ̃∂φ̃ + i tan θ̃∂ψ̃]

J− =
1

2
ei(ψ̃+φ̃)[∂θ̃ + i cot θ̃∂φ̃ − i tan θ̃∂ψ̃]

J3 = −1

2
[∂ψ̃ + ∂φ̃] (5.71)

and for the second SU(2) they are

J̄+ =
1

2
ei(ψ̃−φ̃)[∂θ̃ − i cot θ̃∂φ̃ − i tan θ̃∂ψ̃]

J̄− =
1

2
e−i(ψ̃−φ̃)[∂θ̃ + i cot θ̃∂φ̃ + i tan θ̃∂ψ̃]

J̄3 =
1

2
[∂ψ̃ − ∂φ̃] (5.72)

To relate these generators to Taub-NUT we write the metric (5.70) for the round

S3 in different coordinates. Thus define

θ = 2θ̃, ŷ ≡ φ̃, φ = φ̃− ψ̃ (5.73)

This gives

ds2
S3 =

1

4
dθ2 +

1

4
sin2 θdφ2 +

[

dŷ − 1

2
(1 + cos θ)dφ

]2

(5.74)

The generators (2.27),(5.72) become

J+ =
1

2
e−i(2ŷ−φ)[2∂θ − i(cot

θ

2
+ tan

θ

2
)∂φ − i cot

θ

2
∂ŷ]

J− =
1

2
ei(2ŷ−φ)[2∂θ + i(cot

θ

2
+ tan

θ

2
)∂φ + i cot

θ

2
∂ŷ]

J3 = −1

2
∂ŷ (5.75)

J̄+ =
1

2
e−iφ[2∂θ − i(cot

θ

2
− tan

θ

2
)∂φ − i cot

θ

2
∂ŷ]

J̄− =
1

2
eiφ[2∂θ + i(cot

θ

2
− tan

θ

2
)∂φ + i cot

θ

2
∂ŷ]

J̄3 = −1

2
[∂ŷ + 2∂φ] (5.76)
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In the Taub-NUT metric if we fix r then we get a 3-dimensional surface with

metric of the form

ds2 = A(dθ2 + sin2 θdφ2) + 4B
[

dŷ − 1

2
(1 + cos θ)dφ

]2

(5.77)

At the center of Taub-NUT we get A = B, and the metric becomes that of a round

S3. For larger r we have A 6= B, and this gives the squashed sphere. We can now

check that the vector fields (5.76) are Killing vectors of (5.77), for all A,B. But out of

the vector fields (5.75) only J3 is a Killing vector if A 6= B. Thus the SU(2)× SU(2)

symmetry of the round sphere is broken to U(1) × SU(2).

4.5.2 Harmonics on the squashed sphere

On the round sphere we can expand any form in spherical harmonics, which are

characterized by quantum numbers (j,m), (j ′, m′) in the two SU(2) factors. On the

squashed sphere, we can use the same functions, in the following sense. We take the

map from the squashed S3 to the round S3 which sends each point (θ, φ, ŷ) on the

former to the point with the same coordinates on the latter. The harmonics on the

round S3 then give harmonics on the squashed S3 via the pullback under this map.

These pulled back harmonics can be used to expand any form on the squashed sphere,

though the harmonics are not orthogonal to each other as they were on the round

sphere.

The quantum numbers m and (j ′, m′) correspond to symmetries of the squashed

sphere, and so are ‘good’ quantum numbers in the sense that we can restrict all terms

in an equation to have the same values of these numbers. On the other hand a form of

order p on the round S3 was characterized by four quantum numbers, (j,m), (j ′, m′).

In the latter case the quantum numbers uniquely specify the form. A form on the
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squashed sphere will therefore be a sum

ω(m,j′,m′) =
∑

j

Cj ω(j,m),(j′,m′) (5.78)

It turns out however that if ω is a p-form then for its harmonics on the round sphere

we must have |j − j ′| ≤ p. This tells us that the sum in (5.78) will be a finite one,

and this makes the expansion in harmonics useful for the squashed sphere.

As an application of this approach consider the scalar w in (3.47): its angular

dependence is captured by the function

ω0 = e−i(ŷ−φ) cos
θ

2
= e−iψ̃ cos θ̃ (5.79)

All scalars on S3 have quantum numbers (j,m), (j,m′); i.e. j = j ′. From the ψ̃

dependence of (5.79) we find that m = 1
2
, m′ = −1

2
. The lowest j this can come

from is j = 1
2
, so we look at the scalar spherical harmonic on the round S3 given by

the quantum numbers ( 1
2
, 1

2
), (1

2
,−1

2
). Such harmonics were given explicitly in [123],

and we find that indeed the function (5.79) is proportional to the required scalar

harmonic.

Now consider 1-forms. On the round S3, there are two kinds of 1-forms. The first

kind are obtained by just applying d to the scalar harmonics, so these have quantum

numbers (j,m), (j,m′). The second kind have j − j ′ = ±1, so they come in two

varieties: with quantum numbers (j + 1, m), (j,m′), and (j,m), (j + 1, m′). Let us

examine these 1-forms for our problem.

Since m, j ′, m′ are good quantum numbers for the problem these must be the same

for the 1-forms as for the scalar w. Thus the first kind of 1-form must be

dω0 = −e−i(ŷ−φ)
[1

2
sin

θ

2
dθ + i cos

θ

2
(dŷ − dφ)

]

(5.80)
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For the second kind of 1-form we find only one set of quantum numbers that are con-

sistent with the given m, j ′, m′: the set (3
2
, 1

2
), (1

2
,−1

2
). The corresponding harmonic

was constructed in [123]

ω̃1 = e−iψ̃ [sin θ̃ dθ̃ − i cos θ̃(3 cos2 θ̃ − 1)dψ̃ − 3i cos θ̃ sin2 θ̃dφ̃] (5.81)

In the coordinates (θ, ŷ, φ) this is

ω̃1 = e−i(ŷ−φ)
[1

2
sin

θ

2
dθ + i cos

θ

2
(3 cos2 θ

2
− 1)dφ− 2i cos

θ

2
dŷ
]

(5.82)

4.5.3 Decomposing along base and fiber

At this stage we may think of expanding the angular components of our 1-forms

using (5.80) and (5.82), and the dr component using the scalar harmonic ω0. But

actually we can do better, by exploiting the spherical symmetry of the background in

the r, θ, φ space. The Taub-NUT has such a spherical symmetry, though any choice

of coordinates prevents this symmetry from being manifest.

Consider the squashed sphere at any r. This space can be regarded as a S1 fiber

(parameterized by ŷ) over a S2 base (parametrized by θ, φ). We can geometrically

identify the fiber direction over any point, and thus also the 2-plane orthogonal to

the fiber. We can thus decompose any 1-form into two parts: ω1 = α+β. The part α

will have no component along the base; thus 〈v, α〉 = 0 for all v perpendicular to ∂ŷ.

The part β will have no component along the fiber; thus 〈∂ŷ, β〉 = 0. We find that α

must be proportional to

σ̂ = dŷ − 1 + cos θ

2
dφ (5.83)

while β is just characterized by having no term proportional to dŷ.

Let us now apply this decomposition to our 1-form. The part α can be written

as α = fσ̂ where f is a function on the squashed sphere. This function must carry
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the quantum numbers (m′, j,m) = (1
2
, 1

2
,−1

2
). Since f is a scalar it must have j = j ′

and so it must actually be proportional to the scalar harmonic that is the pullback

of (1
2
, 1

2
), (1

2
,−1

2
), which is just ω0. So we find that α = f0(r)ω0σ̂. To find β we take

the linear combination of (5.80), (5.82) which has no component dŷ. A conveniently

normalized choice for this combination is

ω1 = −4

3

[

dω0 −
1

2
ω̃1

]

= e−i(ŷ−φ) sin
θ

2
[dθ − i sin θdφ] (5.84)

To summarize, our 1-form must have the form f0(r)ω0σ̂ + f1(r)ω1.

4.5.4 Some relations on forms

A decomposition of the type ω1 = α + β which we did for 1-forms can be done

for any p-form ω on the squashed 3-sphere. The ŷ dependence of our forms is e−iŷ.

Using this fact we find

dω = −iσ̂ ∧ ω +Dω (5.85)

where

Dω ≡ d2ω − i
1 + cos θ

2
dφ ∧ ω (5.86)

is the covariant derivative of ω and d2 denotes the differential with respect to θ, φ.

The square of D is proportional to the monopole field strength

D2ω =
(

i
sin θ

2
dθ ∧ dφ

)

∧ ω (5.87)
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If we denote by ?2 the Hodge dual with respect to the S2 metric,18 the monopole

harmonics ω0 and ω1 satisfy

?2ω1 = −iω1

Dω0 = −1

2
ω1

D2ω0 = i
sin θ

2
ω0 dθ ∧ dφ

Dω1 = −2D2ω0 = −i sin θ ω0 dθ ∧ dφ (5.88)

4.5.5 The 2-form K

We can use the structure above to write a general ansatz for the 2-form K. Any

self-dual 2-form on TN can be written as

dr ∧ ω̃ + ?(dr ∧ ω̃) (5.89)

where ω̃ is a 1-form on TN. The form dr has all angular quantum numbers zero, so

the quantum numbers of the perturbation must be carried by ω̃. But we have seen in

section (4.5.3) that any such 1-form, with quantum numbers (m′, j,m) = (1
2
, 1

2
,−1

2
),

is of the form

ω̃ = f0(r)ω0σ̂ + f1(r)ω1 (5.90)

The 2-form K is self-dual, as a form on TN, and depends on t and z as in (4.49): it

can thus be written as

K = e−i(t+κz)/(2Q) (K0 +K1) (5.91)

where the K0, K1 parts correspond to the first and second parts on the RHS of (5.90)

K0 = f0(r)ω0[dr ∧ σ̂ + ?(dr ∧ σ̂)] = f0(r)ω0

[

dr ∧ σ̂ +
Hr2

Q
dσ̂
]

K1 = f1(r) [dr ∧ ω1 + ?(dr ∧ ω1)] = f1(r)
[

dr ∧ ω1 − i
2Q

H
σ̂ ∧ ω1

]

(5.92)

18Note that (?2)
2 = −1 on 1-forms. We have εθφ = 1.
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Note that we have used only the scalar ω0 and the 1-form ω1 in our expansion,

and avoided a separate coefficient function for the 1-form dω0

4.6 The radial equations and their solution

The ansatz (6.136) reduces the unknowns to two functions of r: f0(r) and f1(r).

In this section we will derive the system of differential equations these functions have

to satisfy, and then see how they are solved.

4.6.1 Obtaining the radial equations

Let us start from eq. (4.67). We note that

Ω(2) ∧K1 = 0 (6.93)

and that, by comparing (6.136) with (3.38),

K0 = −f0 ω0
(rH)2

2Q2
Ω(2) (6.94)

Thus

?(Ω(2) ∧K) = −e−i(t+κz)/(2Q) f0 ω0
(rH)2

2Q2
? (Ω(2) ∧ Ω(2)) (6.95)

An easy computation gives

Ω(2) ∧ Ω(2) =
4Q3

H3r2
sin θ dr ∧ dθ ∧ dφ ∧ σ̂ (6.96)

and

?(Ω(2) ∧ Ω(2)) =
2Q2

(Hr)4
(6.97)

Using this in (6.95) we find

?(Ω(2) ∧K) = −e−i(t+κz)/(2Q) f0 ω0
1

(Hr)2
(6.98)
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Using the expression for w in (3.47), it is also straightforward to compute (for example

with the help of Mathematica)

∆w − (p+ k)(pgtt + kgzz)w = −e−i(t+κz)/(2Q) e−κr/(2Q)

√
r

(Hr)4
[(3 + κ)Q+ (1 + κ)r]ω0

(6.99)

Using (6.98) and (6.99), we see that equation (4.67) becomes

e−κr/(2Q)

√
r

(Hr)2
[(3 + κ)Q + (1 + κ)r] + 2f0 = 0 (6.100)

Let us now turn to eq. (4.68). We first need to compute

∆Ka = ?d ? dKa + d ? dKa

= −
(

∇k∇kKa ij + [∇k,∇i]Ka jk − [∇k,∇j]Ka ik

)

dxi ∧ dxj (6.101)

for a = 0, 1. The covariant derivatives and index contractions in the second line of

(6.101) are done with the TN metric. A lengthy but straightforward computation,

that makes use of identities (5.88), leads to

∆K0 = −ω0 [dr ∧ σ̂ + ?(dr ∧ σ̂)]
[f ′′

0

H
+ 2

f ′
0

Hr
− r4 + 4Qr3 + 16Q2r2 − 8Q3r + 3Q4

4Q2r(Q+ r)3
f0

]

− i

2Q
[dr ∧ ω1 + ?(dr ∧ ω1)]

f0

Hr

∆K1 = −[dr ∧ ω1 + ?(dr ∧ ω1)]
[f ′′

1

H
+ 2

f ′
1Q

(Hr)2
− r4 + 4Qr3 + 8Q2r2 + 16Q3r + 3Q4

4Q2r(Q+ r)3
f1

]

+i4Q [dr ∧ σ̂ + ?(dr ∧ σ̂)]
f1

(Hr)3
(6.102)

The full wave operator is

∆6Ka ≡ ∆Ka + (p+ k)(pgtt + kgzz)Ka , a = 0, 1 (6.103)
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and we find

∆6K0 = −ω0 [dr ∧ σ̂ + ?(dr ∧ σ̂)]
[f ′′

0

H
+ 2

f ′
0

Hr
−
(r4 + 4Qr3 + 16Q2r2 − 8Q3r + 3Q4

r(Hr)3

−(1 + κ)
2Q+ (1 − κ)r

Hr

) f0

(2Q)2

]

− i

2Q
[dr ∧ ω1 + ?(dr ∧ ω1)]

f0

Hr

∆6K1 = −[dr ∧ ω1 + ?(dr ∧ ω1)]
[f ′′

1

H
+ 2

f ′
1Q

(Hr)2
−
(r4 + 4Qr3 + 8Q2r2 + 16Q3r + 3Q4

r(Hr)3

−(1 + κ)
2Q+ (1 − κ)r

Hr

) f1

(2Q)2

]

+ i4Q [dr ∧ σ̂ + ?(dr ∧ σ̂)]
f1

(Hr)3
(6.104)

In (4.68) the first two terms constitute ∆6; thus the last term will act as a ‘source

term’ for this Laplacian. The source term is

−(p+k)2 wΩ(2) =
(1 + κ)2

2
e−i(t+κz)/(2Q) e−κr/(2Q)

√
r

(Hr)3
ω0 [dr∧σ̂+?(dr∧σ̂)] (6.105)

Collecting the terms proportional to ω0 [dr∧ σ̂+?(dr∧ σ̂)] and to [dr∧ω1 +?(dr∧ω1)]

in eq. (4.68), we find the following system of equations for f0 and f1:

f ′′
0

H
+ 2

f ′
0

Hr
−
(r4 + 4Qr3 + 16Q2r2 − 8Q3r + 3Q4

r(Hr)3
− (1 + κ)

2Q+ (1 − κ)r

Hr

) f0

(2Q)2

−i 4Q f1

(Hr)3
− (1 + κ)2

2
e−κr/(2Q)

√
r

(Hr)3
= 0 (6.106)

f ′′
1

H
+ 2

f ′
1Q

(Hr)2
−
(r4 + 4Qr3 + 8Q2r2 + 16Q3r + 3Q4

r(Hr)3
− (1 + κ)

2Q+ (1 − κ)r

Hr

) f1

(2Q)2

+
i

2Q

f0

(Hr)
= 0 (6.107)

4.6.2 Solving the radial equations

Eq. (6.100) can be readily solved for f0, giving:

f0 = −e−kr (3 + κ)Q + (1 + κ)r

2

√
r

(Hr)2
(6.108)
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By substituting f0 into (6.106) we can derive f1. With the help of Mathematica we

compute:

f ′′
0

H
+ 2

f ′
0

Hr
−
(r4 + 4Qr3 + 16Q2r2 − 8Q3r + 3Q4

r(Hr)3
− (1 + κ)

2Q+ (1 − κ)r

Hr

) f0

(2Q)2

= e−kr
2 + (1 + κ)2

2

√
r

(Hr)3
(6.109)

and thus, from (6.106), we obtain

f1 = − i

4Q
e−kr

√
r (6.110)

Eq. (6.107) is a consistency condition for our previously determined values of f0 and

f1. By Mathematica we compute

f ′′
1

H
+ 2

f ′
1Q

(Hr)2
−
(r4 + 4Qr3 + 8Q2r2 + 16Q3r + 3Q4

r(Hr)3
− (1 + κ)

2Q+ (1 − κ)r

Hr

) f1

(2Q)2

=
i

4Q
e−kr [(3 + κ)Q + (1 + κ)r]

√
r

(Hr)3
(6.111)

Substituting this in (6.107) and using (6.108), we see that (6.107) is satisfied.

To summarize, we have found the solution

w = e−i(pt+kz) e−kr
√
r

Q + r
ω0 (6.112)

K = e−i(pt+kz) (K0 +K1)

K0 = −e−kr
√
r

2(Q+ r)2
[(3Q+ r) + κ(Q + r)]ω0

[

dr ∧ σ̂ +
Hr2

2Q
sin θdθ ∧ dφ

]

K1 = −ie−kr
√
r

4Q

[

dr ∧ ω1 − i
2Q

H
σ̂ ∧ ω1

]

(6.113)

Knowing K we can derive the values of a, b, B and Φ. Before we do this we

discuss the gauge invariance of our problem.
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Gauge invariance

One can easily check, using the identities (4.52), that the following two gauge

transformations leave all the components of F (3) invariant:

B → B + dλ(1) , a→ a + ip λ(1) , b→ b + ik λ(1) (6.114)

Φ → Φ + λ(0) , a→ a+ dλ(0)
a , b→ b+ dλ

(0)
b with λ(0) − ik λ(0)

a + ip λ
(0)
b = 0(6.115)

Here λ(1) is a 1-form and λ(0), λ
(0)
a and λ

(0)
b are 0-forms on TN. The 2-form K is gauge

invariant.

Deriving the gauge fields

By making use of the transformation (6.115), we can set Φ = 0. Then the second

equation in (4.69) implies

b− κa = (2Q)2 ?dK

1 + κ
(6.116)

One can compute

?dK

1 + κ
= e−i(pt+kz) e−kr

√
r
[

−i 1

8Q2
ω1 + i

1

8Q2 r
ω0 dr +

1

4(Q + r)2

(

1 − κ
r

Q

)

ω0 σ̂
]

(6.117)

Then a solution of (6.116) for a and b is

a = e−i(pt+kz) e−kr
√
r

Qr

(Q+ r)2
ω0 σ̂

b = e−i(pt+kz) e−kr
√
r
[ i

2r
ω0 dr −

i

2
ω1 +

Q2

(Q+ r)2
ω0 σ̂

]

(6.118)

By picking this solution we have fixed the gauge freedom implied by the transforma-

tion (6.114).

Substituting these values of a and b into the first equation in (4.69) we derive B

B = e−i(pt+kz) e−kr
√
r
[1

2
dr ∧ ω1 −

ir

2
ω0 sin θdθ ∧ dφ

]

(6.119)
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4.7 Regularity of the solution

We show that the solution given in (6.112,4.27,6.119) is both regular and normal-

izable.

4.7.1 Normalizability

For k > 0 normalizability is guaranteed by the exponential fall off e−kr. Note

however that waves with k ≤ 0 give rise to non-normalizable perturbations. This is

obvious for k < 0. For k = 0 let us look, for example, at the scalar w: its large r

behavior is

w ≈ e−ipt
1√
r
ω0 (7.120)

and thus

|w|2 ∼ 1/r (7.121)

Since the volume element of the space transverse to the ring grows as ∼ r2dr for large

r, the norm of w is quadratically divergent at r → ∞. This shows that for k = 0 the

perturbation leaks out to the center of the ring (r ∼ a) and does not stay confined to

the vicinity of the tube.19 For k > 0 the wavefunction becomes confined closer to the

ring, and in the limit (3.30) we find a normalizable solution in the near ring limit.

The fact that positive and negative k behave differently is to be expected; the

2-charge background does not have the symmetry z ↔ −z. In the NS1-P picture the

geometry is created by a string carrying a wave, and the strands of the string carry

momentum along the ring, thus breaking the z ↔ −z symmetry. In [11] it was found

that there are ‘left-moving’ non-BPS perturbations that move in one direction along

19If we construct the exact wavefunction for the ring (instead of just constructing it for the near
ring limit) then we expect to have a solution normalizable at spatial infinity, since the state exists
in the dual CFT.
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the ring, while ‘right-moving’ perturbations create time independent distortions of

the 2-charge geometry. For our present problem note that in wfull (eq. (2.25)) we

have l ≥ 1
2
, so we must have k ≥ 0, and negative values of k do not appear.20 We

need to take large |k| to be able to use the ‘straight segment’ limit of the ring so the

case k = 0 is not relevant for our discussion, and we naturally find ourselves at large

positive k.

4.7.2 Regularity at θ = 0, π

Let us now consider the regularity of the solution. The fields w, a, b and B are

manifestly regular away from the points where our system of coordinates degenerates.

This degeneration happens at θ = 0 or π and at r = 0. Around θ = 0, π it is

convenient to change to S3 coordinates (5.73). From the expression of ω0 in (5.79) it is

apparent that ω0 is regular: indeed for θ̃ = π/2, where the ψ̃ coordinate degenerates,

the coefficient of e−iψ̃ vanishes. The second identity in (5.88) expresses ω1 as the

covariant derivative of ω0, and thus ω1 is regular too. The 1-form along the fiber σ̂

can be expressed in S3 coordinates as

σ̂ = sin2 θ̃ dφ̃+ cos2 θ̃ dψ̃ (7.122)

which is also regular. Since the angular dependence of w, a, b and B is entirely

expressed in terms of ω0, ω1 and σ̂, this proves that our solution is regular at θ = 0, π.

20Spherical harmonics for the scalar have l = 0, 1
2 , 1, . . . , but for l = 0 we get zero if we apply J−

0 ,
and so we cannot construct the required perturbation of section (4.2.4).
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4.7.3 Regularity at r = 0

At r → 0 the TN space becomes flat R
4: the change of coordinates that brings

the TN metric into explicitly flat form is (5.73) for the angular variables and

r =
ρ2

4Q
(7.123)

for the radial coordinate. In these coordinates the r → 0 limit of w is

w ∼ ρ e−iψ̃ cos θ̃ = x1 − ix2 (7.124)

where xi, with i = 1, . . . , 4 are Cartesian coordinates21 in R
4. This shows that w is

regular at r → 0. Similarly, the gauge fields a and B behave like

a ∼ ρ3 e−iψ̃ cos θ̃ (sin2 θ̃ dφ̃+ cos2 θ̃ dψ̃) = (x1 − ix2) [x1dx2 − x2dx1 + x3dx4 − x4dx3]

B ∼ −iρ2 e−iψ̃ sin θ̃ [idρ ∧ dθ̃ + cos θ̃(sin θ̃dρ+ ρ cos θ̃dθ̃) ∧ (dφ̃− dψ̃)]

= −i[(x1 − ix2)(dx1 ∧ dx2 + dx3 ∧ dx4) − i
∑

i

xidxi ∧ (dx1 − idx2)] (7.126)

and are hence regular. Regularity of b is not manifest in the form in which it appears

in (4.27). This form was derived after making the arbitrary gauge choice Φ = 0.

By using the transformation (6.115) we can change Φ and b and write them in an

explicitly smooth form; since a was already shown to be smooth, we can take λ
(0)
a = 0

in (6.115) and leave it unchanged. If we choose

λ(0) = −e−i(pt+kz) e−kr
√
r

2Q
ω0 , λ

(0)
b =

i

p
λ(0) (7.127)

21Explicitly,

x1 + ix2 = ρ eiψ̃ cos θ̃ , x3 + ix4 = ρ eiφ̃ sin θ̃ (7.125)
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in (6.115), then the fields Φ and b are changed into

Φ = −e−i(pt+kz) e−kr
√
r

2Q
ω0

b = e−i(pt+kz) e−kr
√
r
[

ik ω0 dr +
( Q2

(Q+ r)2
− 1
)

ω0 σ̂
]

(7.128)

At r → 0 both Φ and b are now explicitly regular:

Φ ∼ ρ e−iψ̃ cos θ̃ = x1 − ix2

b ∼ ρ e−iψ̃ cos θ̃
[ ik

2Q
ρdρ− ρ2

2Q2
(sin2 θ̃ dφ̃+ cos2 θ̃ dψ̃)

]

= (x1 − ix2)
[ ik

2Q

∑

i

xidxi −
x1dx2 − x2dx1 + x3dx4 − x4dx3

2Q2

]

(7.129)
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4.8 Summary of the solution

We summarize here the full solution for w and B
(2)
MN , in the gauge of section 4.7.3

where all fields are regular:

w = e−
1

2Q
(t+y) ei(φ−kz) cos

θ

2
e−kr

r1/2

Q+ r

B
(2)
tz = −e− 1

2Q
(t+y) ei(φ−kz) cos

θ

2
e−kr

r1/2

2Q

B
(2)
yt = e−

1
2Q

(t+y) ei(φ−kz) cos
θ

2
e−kr

r3/2

2(Q+ r)2

B
(2)
φt = −e− 1

2Q
(t+y) ei(φ−kz) cos3 θ

2
e−kr

Qr3/2

(Q+ r)2

B(2)
yz = e−

1
2Q

(t+y) ei(φ−kz) cos
θ

2
e−kr

r1/2

2Q

[ Q2

(Q+ r)2
− 1
]

B
(2)
φz = −e− 1

2Q
(t+y) ei(φ−kz) cos3 θ

2
e−kr r1/2

[ Q2

(Q+ r)2
− 1
]

B(2)
rz = ik e−

1
2Q

(t+y) ei(φ−kz) cos
θ

2
e−kr r1/2

B
(2)
rθ = e−

1
2Q

(t+y) ei(φ−kz) sin
θ

2
e−kr

r1/2

2

B
(2)
rφ = −i e− 1

2Q
(t+y) ei(φ−kz) sin

θ

2
sin θ e−kr

r1/2

2

B
(2)
θφ = −i e− 1

2Q
(t+y) ei(φ−kz) cos

θ

2
sin θ e−kr

r3/2

2
(8.130)

or in form language

B(2) = e−
1

2Q
(t+y) ei(φ−kz) e−kr r1/2

{

− 1

2Q
cos

θ

2
dt ∧ dz

+
r

2(Q+ r)2
cos

θ

2
[dy −Q(1 + cos θ)dφ] ∧

[

dt− 2Q+ r

Q
dz
]

+ik cos
θ

2
dr ∧ dz +

1

2
sin

θ

2
dr ∧ [dθ − i sin θdφ] − i

2
r cos

θ

2
sin θ dθ ∧ dφ

}
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4.9 Relation to D0-D6 bound states

We have added one unit of P to a D1-D5 bound state. For the moduli we have

used this is a ‘threshold bound’ state; i.e., the mass of the bound state is the mass of

the D1-D5 plus the mass of the P.

In [131] it was noted that a D0 brane is repelled by a D6 brane,22 but if a suitable

flux F was turned on in the D6 worldvolume then the D0 and D6 will form a bound

state. In this section we find a relation between our threshold bound state and the

condition in [131] which separates the domain of bound states from unbound states

in the D0-D6 system.

4.9.1 The near ring limit

Strictly speaking, we have a threshold bound state between the entire ring shaped

D1-D5 and the entire P wavefunction. The threshold nature of this state follows

from the general supersymmetry relation between D1,D5,P charges. But we have

seen that for large k the P wavefunction is confined to the vicinity of the ring, so

we expect to get threshold binding between a short straight segment of the ring (like

that in Fig.1(c)) and the wavefunction carrying P that we found in this short segment

approximation. We will take the further step of identifying the two ends of our ring

segment; this will enable us to perform a T-duality in the z direction.

Let us review the charges carried by this segment of the ring:

(a) We have the KK monopole charge that can be measured by a S2 surrounding

the tube; the nontrivially fibered circle of this KK is the y circle, and the directions

22A similar system was also studied in [132].
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T 4, z are ‘homogeneous directions’, so they behave like directions along the ‘KK-

brane’.

(b) We have the ‘true charge’ D5 along T 4 × S1.

(c) We have the ‘true charge’ D1 along the S1.

(d) We have ‘dipole momentum’ along the ring direction z; we call this Pz.

(e) The ‘test quantum’ that we seek to bind to this background is a unit of Py

(momentum along S1).

The dipole charges are created automatically by the binding of the true charges,

and so there are relations between the values of the true and dipole charges. To find

these relations it is convenient to dualize the D5-D1 charges to NS1-P. The near ring

limit of NS1-P was discussed in some detail in [11]; we reproduce some relevant details

here.

The NS1 string carries the momentum P through transverse oscillations, described

by a profile ~F (t − y). In Fig.2(a) we open up this multiwound NS1 to exhibit this

vibration profile. Since the NS1 is wrapped many times on the S1 we find that a short

segment of this oscillating string looks like Fig.2(b). We can see that the winding

along the direction y is due to the ‘winding charge’ of the NS1, while the slant along

the z direction is due to the ‘derivative of the transverse displacement’ d~F
dy

which we

take to point along the z direction.

For our present discussion we have compactified the z direction, so that we can

assign well defined ‘charges’ to all elements. We find the following charges in the

NS1-P frame:

(a) We have one unit of NS1z, winding charge of the NS1 in the z direction. This

is the dual of the KK dipole charge in the D1-D5 frame. Thus we write ndipole1 = 1.
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Figure 4.2: (a) The NS1 carrying a transverse oscillation profile in the covering space of

S1. (b) The strands of the NS1 as they appear in the actual space.

Figure 4.3: The winding and momentum charges of a segment of the NS1; we have used a

multiple cover of the S1 so that the NS1 looks like a diagonal line.
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(b) The ‘true’ D5 charge becomes winding along S1. We write this as ntrue1 units

of NS1y.

(c) The ‘true’ D1 charge becomes momentum along S1. We write this as ntruep

units of Py.

(d) We have momentum Pz along the dipole direction (this has been unchanged

in the duality from D1-D5). The number of units of this momentum we call ndipolep .

(e) The quantum that we wish to bind to the background changes from Py to an

NS5 along S1 × T 4.

Note that we must choose the compactification lengths of the y, z directions ju-

diciously so that we get integer values for all charges. This can be done by choosing

Lz, Ly so that ntrue1 , ntruep are integers. We will see below (eq. (9.133)) that this will

set ndipolep to be integral. Note that ndipole1 = 1 so it is already integral.

4.9.2 Relations between true and dipole charges

Note on notation: In this section we will encounter three different duality

related systems: D1-D5, NS1-P, and a system where these true charges become D4

branes. We will not need to compute in the D1-D5 frame. For the NS1-P frame we

use unprimed symbols for all quantities (for example lengths are Ly, Lz etc.). These

should not be confused with unprimed symbols used in earlier sections of this paper;

the computations here will not use results from those sections. For the frame using

D4 branes we use primes on all symbols (e.g. L′
y, L

′
z).

Let us ignore for now the charge (e) in the above list and look at the other

charges which together give the background geometry of the ring. These charges are

depicted in Fig.3. We have a NS1 moving in a direction perpendicular to itself with
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some velocity v⊥; this gives all the four charges (a)–(d) above. We have denoted the

lengths of the y, z directions by Ly, Lz.

We will now derive the relations between the true charges and the dipole charges.

The first relation comes from the fact that the momentum carried by the NS1 is in a

direction perpendicular to the NS1. Indeed if the momentum had a component along

along the NS1 then there would be oscillations along the NS1 and a corresponding

entropy. The entire NS1-P bound state does has an entropy, which is manifested in

different possible shapes for the entire ring. But we are now zooming in on a short

segment of the ring, and so by definition should have no entropy visible in oscillations

of this segment.

The NS1 winds in a direction given by the vector

~W = Lzn
dipole
1 ẑ + Lyn

true
1 ŷ = Lz ẑ + Lyn

true
1 ŷ (9.131)

The momentum vector is

~P =
2πndipolep

Lz
ẑ +

2πntruep

Ly
ŷ (9.132)

Requiring ~W · ~P = 0 gives

ndipole1 ndipolep + ntrue1 ntruep = 0, ⇒ ndipolep = −ntrue1 ntruep (9.133)

The second condition comes from the fact that the waveform ~F (t−y) moves along

the y direction at the speed of light v = 1. This implies that the velocity of the NS1

in the direction normal to itself is

v⊥ = cosα =
Lz

√

(Lz)2 + (ntrue1 Ly)2
(9.134)

The mass of the NS1 is

M = T
√

(Lz)2 + (ntrue1 Ly)2 (9.135)
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where T = 1/2πα′ is the tension of the NS1. The momentum of the NS1 is in the

direction normal to itself, and has magnitude

|~P | =

√

(2πndipolep

Lz

)2

+
(2πntruep

Ly

)2

(9.136)

Setting |~P | = Mv⊥√
1−v2

⊥

we get

√

(2πndipolep

Lz

)2

+
(2πntruep

Ly

)2

= T
√

(Lz)2 + (ntrue1 Ly)2
Lz

ntrue1 Ly
(9.137)

Using (9.133) gives
√

(2πndipolep

Lz

)2

+
(2πntruep

Ly

)2

=
(2π)ntruep

LyLz

√

(Lz)2 + (ntrue1 Ly)2 (9.138)

We thus find that that (9.137) is equivalent to

[Tntrue1 Ly]
[2πntruep

Ly

]

= [TLz]
2 (9.139)

which tells us that

[Mass of true NS1 charge]×[Mass of true P charge] = [Mass of NS1 dipole charge]2

(9.140)

In this form the condition is valid in all duality frames, with only the names of the

charges changing under the dualities.

To summarize we have two relations between the true and dipole charges. The

relation (9.133) comes from requiring that there be no entropy in the ring segment

after we have zoomed into a sufficiently small region of the ring. The other condition

(9.140) is related to the supersymmetry of the charges distributed along the ring. The

supersymmetry is assured by the fact that the entire waveform moves in one direction

with the speed of light. Different parts of the NS1 have different slopes and different

velocities v⊥, but for a profile of the form ~F (t− y) the slope and velocity are always

correlated in such a way that the different parts are mutually BPS.
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4.9.3 Dualizing to D6-D0

We now wish to perform dualities that will map the dipole charge of the ring (KK

in the case of D1-D5, NS1 in the case of NS1-P) to a D6 brane charge. The quantum

carrying one unit of Py will be converted to a D0. Since we have found the relations

between true and dipole charges in the NS1-P frame let us start with NS1-P and

perform the required dualities:












NS1z
NS1y
Py
Pz

NS5y1234













S−→













D1z
D1y
Py
Pz

D5y1234













Tyz12−→













D3y12
D3z12
NS1y
NS1z
D3z34













S−→













D3y12
D3z12
D1y
D1z
D3z34













Tz34−→













D6zy1234
D41234

D4yz34
D234

D0













(9.141)

The true charges ntrue1 , ntruep have become D4 branes which can be described by fluxes

in the D6:

ntrue1 = n
(1234)
4 =

1

2π

∫

zy

F =
L′
zL

′
y

2π
Fzy

ntruep = n
(yz34)
4 = − 1

2π

∫

12

F = −L
′
1L

′
2

2π
F12 (9.142)

where L′
i are the lengths of cycles after the dualities. The minus sign in the expression

for ntruep arises from the orientation of the D6: the positive orientation is (zy1234)

while the n4 is oriented as (yz34). The presence of the above components of F also

induces a D2 charge

n
(34)
2 =

1

2

1

(2π)2

∫

zy12

F ∧ F =
L′
zL

′
yL

′
1L

′
2

(2π)2
FzyF12 = −n(1234)

4 n
(zy34)
4 (9.143)

Since under the dualities ndipolep = n
(34)
2 , we observe that (4.104) is equivalent to

(9.133). In other words the relation (9.133) translates in the D6 duality frame to the

statement that the D2 charge comes entirely from the fluxes needed to induce the

required D4 charges; there is no ‘additional’ D2 charge.
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4.9.4 The condition of [131]

Consider a D6 brane along the directions (zy1234). Suppose that there is a back-

ground NS-NS 2-form turned on; by a suitable change of coordinates we can bring

this to a form where the nonzero components are b1 = Bzy, b2 = B12, b3 = B34. Write

e2πiva =
1 + iba
1 − iba

a = 1, 2, 3 (9.144)

The threshold value of B, beyond which a D0 will bind to the D6, is given by [131]

v1 + v2 + v3 =
1

2
(9.145)

In terms of the ba this condition becomes

b1b2 + b1b3 + b2b3 = 1 (9.146)

We can replace the B field with a field strength on the D6:

ba → 2πα′Fa (9.147)

We take α′ = 1 in the following. In our case we have b3 = 0 and b1 = 2π Fzy,

b2 = 2πF12. One has the freedom to change the orientation in each of the 2-planes

(z, y), (1, 2), (3, 4): this flips the sign of va and ba, and thus the sign of each of the

terms in (9.146) is actually arbitrary. Taking this into account the threshold condition

of [131] for our case is

(2π)2|FzyF12| = 1 (9.148)
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4.9.5 Checking the threshold condition

Let us now see if the condition (9.148) is satisfied by our ring segment. From

(9.142) we find that

(2π)2FzyF12 = − (2π)4

L′
zL

′
yL

′
1L

′
2

ntrue1 ntruep (9.149)

Under the dualities (9.141) the moduli change as follows (primed quantities refer to

D6 frame, unprimed to the NS1-P frame, and Li = 2πRi)

g′ = g

√

Rz

RyR1R2

1

R3R4
, R′

3 =
g

R4

√

RzRyR1R2

, R′
4 =

g

R3

√

RzRyR1R2

R′
y =

√

RzR1R2

Ry
, R′

z =

√

Rz

RyR1R2
, R′

1 =

√

RzRyR2

R1
, R′

2 =

√

RzRyR1

R2
(9.150)

Thus

(2π)2FzyF12 = −(2π)4ntrue1 ntruep

L′
zL

′
yL

′
1L

′
2

= −(2π)2ntrue1 ntruep

L2
z

(9.151)

If we now use the relation (9.139) we find

(2π)2FzyF12 = −1 (9.152)

We thus see that the charges carried by our ring satisfy the condition (9.148) noted

in [131].

4.9.6 Depth of the tachyon potential

Let us see what we have learned. The 2-charge system has true charges and dipole

charges, and these satisfy the relations (9.133),(9.140). The system can be mapped

to a D6 brane carrying fluxes, and the fluxes have a value which puts the system at

the boundary of the domain where a D0 brane will bind to the D6.

In the D1-D5 picture the analogue of the D0 is the P charge. In section (4.9.1) we

listed the charges carried by the 2-charge D1-D5 system and the charge P carried by
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the wavefunction we are trying to construct. But there is one more charge carried by

the wavefunction, which comes from the momentum of this wavefunction along the

z direction. In the wavefunction this momentum arises from the factor e−ikz. So we

would label this charge as an additional amount of Pz, carried by the quantum that

we are trying to bind to the 2-charge D1-D5 ring segment.

In the D6 duality frame this additional Pz becomes a D234. Thus the quantum

that we are trying to bind to the D6 is not just a D0, but a ‘D0 plus some D234’. We

now draw some conclusions about the D0-D6 bound state from our construction of

the wavefunction (8.130).

The case k = 0

Since k is a free parameter, we can try to set k = 0. This would correspond to

letting the test quantum be just the D0 (not bound to any D234), and asking if at the

threshold value of fluxes (9.148) we get a good bound state with the D6. But from

the discussion of section (4.7.1) we see that the wavefunction is not normalizable for

the case k = 0, so there is no bound state in this case. We therefore conclude that

for a D6 wrapped on a torus T 6 carrying fluxes at the threshold value (9.148) we

do not get a bound state with the D0. As argued in [131] we would of course get a

bound state for larger values of F and no bound state for smaller F , but our explicit

construction of the wavefunction (in the dual D1-D5 case) tells us the situation at

the threshold value of F .

The case k > 0

In this case the test quantum to be bound has some D234 branes along with the

D0. The mass of a ‘D0 plus some D234’ is obviously more than the mass of just the

133



D0. But after we bind the ‘D0 plus some D234’ to the D6 carrying fluxes, the final

mass of the bound state is independent of the mass of the D234 branes coming with

the D0, since in the D1-D5 frame the energy of the wavefunction is given by e−i
t

2Q

for all values of k.

This observation tells us the binding energy of the D234 branes in the situation

where we have a D6 carrying fluxes equal to their ‘threshold’ value (9.148). The

binding energy ∆E must be equal to the mass M2 of the D234 in order that these

branes do not show up in the final result for the mass of the composite:

∆E = M2 (9.153)

Note that the D0 is repelled by a D6, is neutral with respect to the D4’s in the D6,

and is attracted by the D2 charge in the D6. At the ‘threshold’ value of fluxes it

becomes neutral with respect to the ‘D6-D4-D4-D2’ bound state created by the D6

with fluxes. By contrast the D234 is neutral with respect to the D6, is attracted to

the D4’s in the D6, and is neutral with respect to the D2 in the D6. Thus we expect

a binding energy ∆E for the D234, and our construction of the wavefunction tells

us that this energy is (9.153). In CFT terms we get a tachyon in the open string

spectrum between the D234 and the D6 with fluxes. For the threshold value of these

fluxes the depth of the tachyon potential must equal the mass of the D234.

4.10 Discussion

We have constructed a simple case of ‘3-charge hair’ for the BPS black ring, by

starting with a D1-D5 ring and adding a perturbation carrying one unit of P. A

normalizable perturbation carrying this P was expected to exist because there was a

corresponding state in the dual CFT. After constructing the perturbation we observe
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that it is smooth everywhere, so the result supports a ‘fuzzball’ picture for black ring

microstates.

A similar perturbation was constructed (up to several orders in a small parameter)

for the 3-charge black hole in [123], and solutions dual to specific CFT states carrying

nonperturbative amounts of P were found in [9]. But these solutions carried a large

amount of angular momentum. Thus it may be said that they did not give generic

microstates for the 3-charge hole. By contrast, the black ring is supposed to carry

a sizable amount of angular momentum, which gives it the ‘ring shape’. Thus even

though we have only one unit of P in our present construction, the hair we have

constructed might be considered a good indicator of the nature of generic states of

the ring.

In [133] ‘ring-like’ 2-charge states were considered, and it was observed that the

area of a ‘horizon’ drawn around such states has an area satisfying a Bekenstein type

relation A/4G ∼ √
n1n5 − J ∼ S where S is the entropy of these states and J is the

angular momentum of the ring. (Such 2-charge systems have been further studied

recently [134, 135, 136, 137].) In the present chapter we have taken the simplest of the

2-charge ring states and added one unit of P. We have made the wavefunction only

in the near ring limit, where the segment of the ring looked like a straight line. But

we will get a similar near ring limit from any sufficiently smooth microstate out of

the collection used in [133], so our wavefunction adding P should describe the nature

of P excitations for any of these 2-charge microstates.

A large class of 3-charge BPS solutions for the black hole and black ring were found

in [124, 125]. While the explicit examples studied there had axial symmetry (and thus

a nontrivial amount of rotation) one may be able to construct nonrotating solutions by
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extending such techniques. Thus this approach may lead to generic nonperturbative

hair for the black hole as well as for the black ring. It would therefore be very

interesting to identify microstates in this approach. In the perturbative construction

of the present paper we have excited the NS-NS 2-form gauge field, which was not

excited in the solutions of [124, 125]. It would be interesting to find an extension of

the solutions of [124, 125] which give nonperturbative hair involving this gauge field.
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CHAPTER 5

BRANES WRAPPING BLACK HOLES

5.1 Introduction

In this chapter, we start exploring the microstate geometries by considering probe

branes in them. Only for certain situations will the brane be in a supersymmetric

configuration with the background. The dynamics of stable extended branes in back-

grounds containing fluxes have played an important role in exploring non-perturbative

aspects of string theory. A particularly important class of such objects are dielectric

branes which are extended objects formed by a collection of lower dimensional ex-

tended objects moving in a transverse dimension via Myers’ effect [102]. Dielectric

branes wrap contractible cycles in the space-time and therefore do not carry any net

charge appropriate to its dimensionality, but has nonvanishing higher multipole mo-

ments. In a class of backgrounds (e.g. AdS space-times or their plane wave limits and

certain D-brane backgrounds) the energy due to the tension of the dielectric brane

is completely cancelled by the effect of the background flux, so that its dispersion

relation is that of a massless particle, which is why they are called giant gravitons

[103]-[106] . The energetics of such branes are usually determined by a classical

analysis : however these branes are BPS states which renders the classical results

exact.
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Recently a different class of extended brane configurations have been found in

the near-horizon geometry of four dimensional extremal black holes [107]-[109] con-

structed e.g. from intersecting D4 branes and some additional D0 charge. The

near-horizon geometry is AdS2 × S2 ×K where K is a suitable six dimensional inter-

nal space (e.g. Calabi-Yau). These are branes of various dimensionalities wrapping

non-contractible cycles of the compact directions. The branes which are wrapped on

cycles in K have a net charge in the full geometry and are similar to giant gravitons

- the tension of the brane is cancelled and one is left with the dynamics of gravitons.

More interestingly, there are BPS D2 branes wrapped on the S2 with a worldvol-

ume flux providing a D0 brane charge, and posessing momentum along K. These

branes do not have net D2 charges in the full geometry - they only contribute a net

D0 charge. The ground state is static in global time, located at a radial coordinate

determined by the D0 charge. These configurations preserve half of the enhanced su-

persymmetries of the near-horizon geometry, but do not preserve any supersymmetry

of the full geometry.

In [109] it has been argued that such brane configurations provide a natural un-

derstanding of the entropy of the black hole background. The presence of a magnetic

type flux in the compact direction means that such a static brane carries a nonzero

momentum and is in fact in the lowest Landau level. This means that the ground

state is degenerate. It turns out that this degeneracy is independent of the D0 charge

q0 of the background. The idea then is to “construct” a black hole by starting from

the set of D4 branes and then add D0 charges. However the D0 charge appear as

these D2 branes which wrap the S2, and each such D2 has a ground state degeneracy.

The problem then reduces to a partitioning problem of distributing a given D0 charge
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N among D2 branes - the various possible ways of doing this give rise to the entropy

of the final black hole. This argument has been extended to “small” black holes in

[110].

In this chapter, we show that such brane configurations are quite generic not

only in near-horizon geometries of black holes, but in the full asymptotically flat

geometries of certain black hole microstates. While these are supersymmetric states

in near-horizon regions of black holes and near-cap regions of microstates, they break

all the supersymmetries of the asymptotically flat backgrounds. We find that in all

cases they have a universal dispersion relation characteristic of threshold bound states

: the total energy is just the sum of the energies due to various brane charges. In

near-horizon regions this simple dispersion relation follows from supersymmetry and

conformal algebras. However, we have not been able to find a good reason why the

same dispersion relation holds in the full microstate geometries.

One key feature of the examples which we provide is that the background does

not have to posess the same kind of charge as the brane itself. This feature could be

relevant for the proposal of [109], though we have reservations about this proposal as

it stands.

In section (5.2) we consider generic AdSm × Sn × M space-times with a brane

wrapped around Sn and moving along a AdS direction with momentum P and derive

the universal dispersion relation

E = P +Mn (1.1)

where Mn denotes the mass of the brane.

Specific examples of solutions of M theory and Type IIA string theory which lead

to AdSm × Sn × M spacetimes are described in section (5.3). Our main example
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involves five dimensional black strings in M theory compactified on T 6 (in section

(5.3.1)) and their dimensional reduction to four dimensional black holes in IIA theory

(in section (5.3.4)). In section (5.3.2) it is argued that the dispersion relation (1.1)

follows from the underlying conformal algebra. This is explicitly shown for AdS3,

but the considerations should generalize to other AdSm. These branes are static in

global time. In Poincare time, they correspond to branes coming out of the horizon

upto a maximum distance and eventually returning back to the horizon. However, we

find that for AdS3 (section (5.3.3)) and for AdS2 (section (5.3.4), the relation (1.1)

is valid both in global and Poincare coordinates. Furthermore in AdS3 the Poincare

momentum is equal to the global momentum P . We argue that the equality of global

and Poincare energies and momenta signifies that the brane is in a highest weight

state of the conformal algebra.

The second class of backgrounds where we find such brane configurations with

identical dispersion relations are geometries which represent microstate of 2-charge

and 3-charge systems. In the examples of section (5.3) the existence of these brane

configurations appears to be special to near-horizon limits. This is because they are

states of lowest value of the global AdS energy and not of the Poincare energy and

it is the latter which coincides with the energy defined in the full asymptotically

flat geometry. In contrast, the microstate geometries are asymptotically flat and go

over to a global patch of AdS in the interior. The time in the asymptotic region

continues to the global time of the interior AdS. Consequently, the notion of energy

is unambigious.

In sections (5.4) and (5.5) we find that the lowest energy states of such branes

are indeed static configurations with dispersion relations given by (1.1). Section (5.4)
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deals with a T-dualized version of the 2-charge microstate geometry with D3 branes

wrapping the S3. We show, in section (5.4.3) that the energy has an interesting

implication for the conformal field theory dual. In section (5.4.4) we determine the

spectrum of vibrations of the brane and find a remarkably simple equispaced ex-

citation spectrum with spacing determined only by the AdS scale - reminiscent of

the spectrum of giant gravitons found in [105]. Section (5.5) deals with analogous

treatments of a special 3-charge microstate geometry.

In section (5.6) we calculate the field produced by such a probe brane in the 2-

charge microstate geometry and show that this leads to a constant field strength in

the asymptotic region, pretty much like a domain wall.

In section (5.7) we examine the supersymmetry properties of these brane config-

urations. Section (5.7.1) deals with the case of D2 branes in the background of 4d

black holes, which is the background of section (5.3.4). We show that in the near

horizon limit this D2 brane preserves half of the supersymmetries. We calculate the

topological charge on the brane and show that the supersymmetry algebra leads to

our simple dispersion relation. It is then explicitly shown that the brane does not

preserve any supersymmetry of the full black hole geometry. In section (5.7.2) we

investigate the question in the 2 charge microstate geometry and show that while

the near-cap limit (which is again AdS3 × S3) the brane preserves supersymmetry, it

breaks all the supersymmetries of the full background.

In an appendix we examine the validity of the near-horizon approximation our

brane trajectories for the case of 4D black holes and show that the approximation is

indeed valid when the energy due to D0 charge of the D2 brane is smaller than the

D2 brane mass.
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5.2 Spherical branes AdS × S ×M space-times

The simplest space-times in which these brane configurations occur are of the form

AdSm × Sn ×M, where M is some internal manifold.

Let us first consider branes in M-theory backgrounds. The metric is given by

ds2 = R2[− cosh2 χ dτ 2 + dχ2 + sinh2 χ dΩ2
m−2] + R̃2dΩ2

n + gijdy
idyj (2.2)

where R, R̃ are length scales, gij is the metric on M and dΩ2
p denotes the line element

on a unit Sp. We will choose coordinates (θk, ϕ) on Sm−2 leading to a metric

dΩ2
m−2 = dθ2

1 + sin2 θ1 dθ
2
2 + sin2 θ2 sin2 θ1 dθ

2
3 + · · · + sin2 θm−3 · · · sin2 θ1 dϕ

2 (2.3)

The background could have m-form and n form gauge field stengths which will not

be relevant for our purposes.

In addition, the background contains (n + 1)-form gauge potentials (n = 2 or

n = 5) of the form

A(n+1) = Ai(y
i) dωn ∧ dyi (2.4)

where dωn denotes the volume form on the sphere. We will see explicit examples of

these geometries later.

Consider the motion of a n-brane which is wrapped on the Sn, rotating in the Sm−2

contained in the AdSm and in general moving along both χ and yi. The bosonic part

of the brane action is of the form

S = −µn
∫

dn+1ξ
√

det G+ µn

∫

P [A(n+1)] (2.5)

where G denotes the induced metric, the symbol P stands for pullback to the world-

volume and µn is the tension of the n-brane.
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Let us fix a static gauge where the worldvolume time is chosen to be the target

space time and the worldvolume angles are chosen to the angles on Sn. The remaining

worldvolume fields are χ, yi, θk, ϕ. When these fields are independent of the angles

on the worldvolume, the dynamics is that of a point particle. The Hamiltonian can

be easily seen to be

H = coshχ

√

M2
n +

P 2
χ

R2
+

Λ2

R2 sinh2 χ
+ gij(Pi −MnAi)(Pj −MnAj) (2.6)

where Mn is the mass of the brane

Mn = µnR̃
nΩn (2.7)

Ωn being the volume of unit Sn. Λ denotes the conserved angular momentum on

Sm−2

Λ2 = p2
θ1 +

p2
θ2

sin2 θ1
+

p2
θ3

sin2 θ1 sin2 θ2
+ · · · p2

ϕ

sin2 θ1 · · · sin2 θm−3

(2.8)

Consider the lowest energy state for some given |Λ|. In the internal space this means

that Pi = MnAi. (This can be considered to be the description of the lowest Landau

level in the classical limit). In AdS this has a fixed value of the global coordinate

χ = χ0 determined by minimizing the hamiltonian :

sinh2 χ0 =
|Λ|

R Mn
(2.9)

The motion on the Sm−1 contained in AdSm+1 is along an orbit with

pθk
= 0 θk =

π

2
k = 1 · · · (m− 3) (2.10)

The ground state energy is

Eglobal =
|Λ|
R

+Mn (2.11)
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Finally it is easy to check that in this state

ϕ̇ = 1 (2.12)

While the above formulae have been given for M-branes, they apply equally well for

D5 branes in AdS5×S5 backgrounds of Type IIB string theory. This in fact provides

the simplest example of such configurations. We will give a general explanation below

for the simple form (2.11) of the energy E.

5.3 Extremal Black Strings in M theory and Black Holes in
String Theory

In this section we will provide some concrete examples where branes in AdS×S×

M appear.

5.3.1 5D Black Strings and 4D Black Holes

A specific example of interest is the geometry of an extremal black string in

M-theory copmpactified on T 6 whose coordinates are denoted by y1 · · · y6. The back-

ground is produced by three sets of M5 branes which are wrapped on the directions

y y3 y4 y5 y6, y y1 y2 y5 y6 and y y1 y2 y3 y4 and carrying momentum q0 along y. The

numbers ni and charges pi of the M5 branes are related as

pi =
2π2 ni
M3

11 T
(i)
, i = 1, 2, 3 (3.13)

where T (1), T (2), T (3) are the volumes of the 2-tori (1, 2), (3, 4) and (5, 6).

The metric and gauge fields produced by this system of branes is

ds2 = h−1/3
[

−dt2 + dy2 +
q0
r

(dt− dy)2
]

+ h2/3 [dr2 + r2 (dθ2 + sin2 θ dφ2)]

+ h−1/3
∑

i=1,2,3

Hi ds
2
T (i) (3.14)
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A(3) = sin θ dθdφ [p3
y5dy6 − y6dy5

2
+ p2

y3dy4 − y4dy3

2
+ p1

y1dy2 − y2dy1

2
] (3.15)

where we have defined

h = H1H2H3 , Hi = 1 +
pi
r
, i = 1, 2, 3 , H0 = 1 +

q0
r

(3.16)

ds2
T (i) is the flat metric on the 2-torus of volume T (i).

Near-horizon limit with q0 = 0

When q0 = 0 the near-horizon limit is given by AdS3×S2 ×T 6. This may be seen

by re-defining coordinates

y = λx t = λT r = 4λ u2 (3.17)

where we have defined

λ ≡ (p1 p2 p3)
1/3 (3.18)

Then for r � pi and q0 = 0 the metric (3.14) becomes

ds2 = (2λ)2
[du2

u2
+ u2 (−dT 2 + dx2) +

1

4
(dθ2 + sin2 θ dφ2)

]

+
1

λ

∑

i=1,2,3

pi ds
2
T (i)(3.19)

which is AdS3 × S2 × T 6 in Poincare coordinates.

One can further continue the metric to global AdS3 using the transformations

T =
coshχ sin τ

coshχ cos τ − sinhχ sinϕ
, x =

sinhχ cosϕ

coshχ cos τ − sinhχ sinϕ

u = coshχ cos τ − sinhχ sinϕ (3.20)

The resulting metric is

ds2 = (2λ)2
[

dχ2 − sinh2 χ dτ 2 + coshχ2 dϕ2 +
1

4
(dθ2 + sin2 θ dφ2)

]

+
1

λ

∑

i=1,2,3

pi ds
2
T (i)(3.21)
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We can now consider a M2 brane wrapped around the S2 and apply the general

results in equations (2.5)-(2.11). For some given momentum Pϕ in the ϕ direction,

the lowest value of the global energy is given by

Egs = Pϕ + 8πµ2λ
3 (3.22)

which corresponds to a brane which is static in global time.

Near-horizon limit with q0 6= 0

The near-horizon geometry for q0 6= 0 is again AdS3 × S2 × T 6. For r � q0, pi we

have, from (3.14)

ds2 = λ2[ρ′(−dT ′2 + dx′2) + (dT ′ − dx′)2 +
du′2

u′2
]

(3.23)

+ λ2(dθ2 + sin2 θ dφ2) +
1

λ

∑

i=1,2,3

pi ds
2
T (i) (3.24)

where we have defined

y = (
λ3

q0
)1/2 x′ t = (

λ3

q0
)1/2 T ′ r = q0u

′ (3.25)

With a further change of coordinates ([111])

T̄ − x̄ = eT
′−x′ T̄ + x̄ = T ′ + x′ +

2

u′
ū =

√
u′

2
e−(T ′−x′)/2 (3.26)

the metric reduces to the standard form of the Poincare metric on AdS3 × S2 × T 6

ds2 = (2λ)2
[dū2

ū2
+ ū2 (−dT̄ 2 + dx̄2) +

1

4
(dθ2 + sin2 θ dφ2)

]

+
1

λ

∑

i=1,2,3

pi ds
2
T (i)(3.27)

which is identical to the metric (3.19). As before, one can pass to the global AdS3

using the formulae above.
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Thus we see that whether the background has momentum in the y direction or

not the near-horizon geometry has the local form AdS3 × S2 ×M, so the dynamics

of the M2 brane will be similar in the two cases.

5.3.2 An explanation of the dispersion relation

For branes moving in flat space, we expect that the total energy E arises from

the ‘rest energy’ M and the momentum P by a relation of the type E =
√
M2 + P 2.

But for the branes studied here we get a linear relation of the type E = P +M . The

momentum P causes a shift in radial position of the brane, where the redshift factor

is different, and in the end we end up with this simple energy law.

As we will see in a later section the brane configuration considered above is a BPS

state which preserves half of the supersymmetries of the background. The dispersion

relation then follows from the supersymmetry algebra.

It turns out that there is a simple derivation of this linear relation for branes in

AdS spacetime based on the bosonic part of the conformal algebra. We will present

this for the case of AdS3 ×Sn. We suspect that similar considerations would hold for

arbitrary AdSm.

A n-brane wrapped on Sn becomes a point massive particle in AdS3. Its lagrangian

L = −m[−∂X
µ

∂τ̃

∂Xµ

∂τ̃
]
1
2 (3.28)

where m is the mass of the brane and τ̃ denotes the worldline parameter. The

lagrangian is invariant under the SL(2, R) × SL(2, R) isometries of the background.

Denoting the global AdS3 coordinates by τ, χ, ϕ and defining z = τ + ϕ, z̄ = τ − ϕ
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the generators are

L0 = i ∂z

L−1 = i e−iz [
cosh 2χ

sinh 2χ
∂z −

1

sinh 2χ
∂z̄ +

i

2
∂χ]

L1 = i eiz [
cosh 2χ

sinh 2χ
∂z −

1

sinh 2χ
∂z̄ −

i

2
∂χ] (3.29)

and

L̄0 = i ∂z̄

L̄−1 = i e−iz̄ [
cosh 2χ

sinh 2χ
∂z̄ −

1

sinh 2χ
∂z +

i

2
∂χ]

L̄1 = i eiz̄ [
cosh 2χ

sinh 2χ
∂z̄ −

1

sinh 2χ
∂z −

i

2
∂χ] (3.30)

We have the algebra

[L0, L−1] = L−1, [L0, L1] = −L1, [L1, L−1] = 2L0 (3.31)

[L̄0, L̄−1] = L̄−1, [L̄0, L̄1] = −L̄1, [L̄1, L̄−1] = 2L̄0 (3.32)

The conserved quantities corresponding to these isometries are given by the replace-

ment

−i∂µ → Pµ (3.33)

in (3.29),(3.30). The global coordinate energy Eglobal and momentum Pϕ of the brane

are related to the conserved charges under translations of t, ϕ

Eglobal = −Pτ P = Pϕ (3.34)

Denote the parameter on the worldline of the particle by τ̃ . The kind of solution

we have been considering is of the form

χ = χ0, t = τ̃ , ϕ = τ̃ (3.35)
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This is a geodesic in AdS3. The isometries of AdS3 will move this to other geodesics.

The key property of our solution is that

z̄ = τ − ϕ = constant (3.36)

By a choice of the zero of τ we can choose this trajectory to be along z̄ = 0. On

this trajectory the isometry L̄1 − L̄−1 = −∂χ leads to a shift of the radial coordinate

χ. Therefore applying this isometry transformation we will get a new solution to the

equations of motion of the form

χ = χ0 + ε τ = τ̃ , ϕ = τ̃ (3.37)

the meomenta conjugate to z, z̄ are

Pz =
1

2
(Pτ + Pϕ) =

1

2
(P − Eglobal), Pz̄ =

1

2
(Pτ − Pϕ) = −1

2
(Eglobal + P ) (3.38)

while the isometry Q ≡ L̄1 − L̄−1 is given by

Q = −e−iz̄ [
cosh 2χ

sinh 2χ
Pz̄−

1

sinh 2χ
Pz+

i

2
Pχ]+ eiz̄ [

cosh 2χ

sinh 2χ
Pz̄−

1

sinh 2χ
Pz−

i

2
Pχ] (3.39)

where we have used (3.33).

We now observe that

{Pz, Q} = 0 (3.40)

so P − Eglobal does not change under the shift. We thus see that for our family of

solutions given by (3.37) we will have

Eglobal = P + constant (3.41)

To fix the constant we can go to the geodesic at χ = 0 which has P = 0. Then we

just get the energy of the brane wrapped on the Sn, sitting at the center of AdS3,

149



Calling this energy Mn, we get

Eglobal = P +Mn (3.42)

giving the simple additive relation between the mass and momentum contributions

to the energy.

5.3.3 Poincare coordinate energies and momenta

The brane discussed above is static in global coordinates and would therefore

correspond to a moving brane in Poincare time. In this subsection we discuss some

properties of dynamical quantities in Poincare coordinates for branes in AdS3 × Sn.

The coordinate transformations are given in equations (3.20).

A trajectory χ = χ0, ϕ = τ becomes the following trajectory in Poincare coordi-

nates

x = tanhχ0 (1 + T tanhχ0)

(3.43)

u =
coshχ0

√

T 2(1 + tanh2 χ0) + 2T tanhχ0 + 1
(3.44)

Thus the brane pops out of the horizon u = 0 at T = −∞, goes out to a maximum

distance umax and returns back to the horizon at T = −∞. At the same time the

coordinate x increases monotonically with T . The total elapsed proper time is finite.

The value of umax can be calculated from the above trajectory and one gets

umax =
√

cosh 2χ0 (3.45)

The Poincare energy is given by

EPoincare =
Mn|gTT |

√

|gTT | − gxxẋ2 − guuu̇2
=

Mnu
2

√

u2(1 − ẋ2) − 1
u2 u̇2

(3.46)
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Using the value of χ0 in (2.9) one finds that

EPoincare = Mn cosh2 χ0 =
|L|
R

+Mn = Eglobal (3.47)

In an analogous way one can verify that the momentum in global coordinates, Pϕ,

equals the momentum in Poincarè coordinates, Px:

Px = Mn
u2 ẋ

√

u2(1 − ẋ2) − 1
u2 u̇2

= Mn cosh2 χ0 tanh2 χ0 = Pϕ (3.48)

where we have used the fact that, for the above trajectory ẋ = tanh2 χ0.

The trajectory χ = χ0, ϕ = τ clearly does not have the smallest possible value of

EPoincare. The lowest value of EPoincare is in fact zero and corresponds to the brane

being pushed to the horizon u = 0.

The equality of global and Poincare energies can be understood from the symme-

tries of AdS. The generators of the SL(2, R)×SL(2, R) isometries of the background

have been given in global coordinates in equation (3.29) and (3.30). The generators

in Poincare coordinates are given in terms of w = T + x and w̄ = T − x by

H−1 = i ∂w

H0 = i
[

w ∂w − u

2
∂u

]

H1 = i
[

w2 ∂w − w u∂u −
1

u2
∂w̄

]

(3.49)

and analogous ones with Hi → H̄i and w → w̄.

The relation between the two sets of generators is

H0 =
L1 + L−1

2
, H±1 = L0 ∓ i

L1 − L−1

2
(3.50)

Since the global energy Eglobal and the global momentum Pϕ are equal to the Poincare

energy EPoincare and the Poincare momentum Px we must have

Eglobal = L0 + L̄0 = EPoincare = H−1 + H̄−1 , Pϕ = −L0 + L̄0 = Px = −H−1 + H̄−1(3.51)
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which implies

L1 − L−1 = L̄1 − L̄−1 = 0 (3.52)

The relations (3.52) may be readily verified for the trajectory under question by

calculating the corresponding Noether charges. Computation of these charges require

some care : since the transformations involve time, we cannot compute the charges

starting from the static gauge lagrangian. Rather we should compute this before we

choose the worldvolume time equal to the target space time. However we can choose

the worldvolume angles equal to the target space angles as before. This partially

gauge fixed lagrangian is given by

L = −Mn

2

√

ż2 + ˙̄z2 + 2 cosh 2χ ż ˙̄z − (2χ̇)2 (3.53)

where the dot denotes derivative with respect to the worldvolume time τ̃ . The Noether

charges corresponding to the SL(2, R) × SL(2, R) generators (3.29) and (3.30) are

obtained by the substitutions

− i∂z = Pz , −i∂z̄ = Pz̄ , −i∂χ = Pχ (3.54)

The momenta Pz, Pz̄ and Pχ for a given configuration are given by

Pz = −Mn

2

ż + cosh 2χ ˙̄z
√

ż2 + ˙̄z2 + 2 cosh 2χ ż ˙̄z − (2χ̇)2

Pz̄ = −Mn

2

˙̄z + cosh 2χ ż
√

ż2 + ˙̄z2 + 2 cosh 2χ ż ˙̄z − (2χ̇)2

Pχ = Mn
2 χ̇

√

ż2 + ˙̄z2 + 2 cosh 2χ ż ˙̄z − (2χ̇)2
(3.55)

For our configuration with χ = χ0, z = 2 τ̃ , z̄ = 0 we find

Pz = −Mn

2
Pz̄ = −Mn

2
cosh 2χ0 , Pχ = 0 (3.56)
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and thus the Noether charges evaluate to23

L0 = −Pz =
Mn

2

L−1 = −e−iz [
cosh 2χ

sinh 2χ
Pz −

1

sinh 2χ
Pz̄ +

i

2
Pχ] = 0

L1 = −eiz [
cosh 2χ

sinh 2χ
Pz −

1

sinh 2χ
Pz̄ −

i

2
Pχ] = 0

L̄0 = −Pz̄ =
Mn

2
cosh 2χ0

L̄−1 = −e−iz̄ [
cosh 2χ

sinh 2χ
Pz̄ −

1

sinh 2χ
Pz +

i

2
Pχ] =

Mn

2
sinh 2χ0

L̄1 = −eiz̄ [
cosh 2χ

sinh 2χ
Pz̄ −

1

sinh 2χ
Pz −

i

2
Pχ] =

Mn

2
sinh 2χ0 (3.57)

From the expressions above we verify that L1 − L−1 = 0 and L̄1 − L̄−1 = 0, which

explains the equality of E, P between the global and Poincare systems. We also note

that the charges satisfy the constraints

L2
0 − L1 L−1 = L̄2

0 − L̄1 L̄−1 =
M2

n

4
(3.58)

Further, note that L1 = L−1 = 0, so the configuration is a highest weight state of one

of the SL(2, R) aglebras. This gives L0 = Mn

2
, which yields E = P +Mn, the linear

relation observed for the energy of the brane.

5.3.4 Reduction to IIA Black Holes

The geometry (3.14)-(3.16) can be reduced to IIA theory by a Kaluza Klein re-

duction along the y direction. Using the standard relation

ds2
11 = e

−2Φ
3 ds2

10 + e
4Φ
3 [dy − Aµdx

µ]2 (3.59)

where ds2
10 is the string metric, Φ is the dilaton and Aµ is the RR 1-form gauge

field, it is straightforward to see that we get a 4-charge extremal black hole in four

23Note that, for χ0 6= 0, our configuartion is not symmetric under exchange of z and z̄: this is
obviously because we have chosen ϕ̇ = 1. Another solution can be obtained with the choice ϕ̇ = −1.
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dimensions

ds2 = −(H0h)
−1/2dt2 + (H0h)

1/2[dr2 + r2dΩ2
2] + (

H0

h
)1/2

∑

i

Hids
2
Ti

(3.60)

A(1) = (1 − 1

H0
) dt

(3.61)

A(3) = sin θ dθdφ [p3
y5dy6 − y6dy5

2
+ p2

y3dy4 − y4dy3

2
+ p1

y1dy2 − y2dy1

2
]

(3.62)

eΦ =
H3

0

h
(3.63)

The near-horizon limit of this IIA metric depends on whether or not q0 is non-

vanishing. For q0 = 0 this has a null singularity at r = 0. Note that this limiting

metric is not the dimensional reduction of the metric (3.19).

For q0 6= 0 the geometry is AdS2 × S2 × T 6. This may be seen by looking at the

above formulae for r � q0, pi. The resulting metric, 1-form potential and dilaton are
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given by

ds2 = − r2

R2
IIA

dt2 +
R2
IIA

r2
dr2 +R2

IIA(dθ2 + sin2 θdφ2)

(3.64)

+

√

q0p1

p2p3
((dy1)2 + (dy2)2) +

√

q0p2

p3p1
((dy3)2 + (dy4)2)

(3.65)

+

√

q0p3

p1p2

((dy5)2 + (dy6)2)

(3.66)

A(1) = [1 − r

q0
] dt

(3.67)

A(3) = sin θ dθdφ [p3
y5dy6 − y6dy5

2
+ p2

y3dy4 − y4dy3

2
+ p1

y1dy2 − y2dy1

2
]

(3.68)

eΦ =
q0
RIIA

(3.69)

where

RIIA = (q0p1p2p3p4)
1/4 (3.70)

If we replace the internal torus with a Calabi-Yau manifold, this is the background

which is used in [107]- [109].

Equation (3.69) is the metric in Poincare coordinates. The coordinate transfor-

mations

RIIA

r
=

1

coshχ cos τ + sinhχ

(3.71)

t =
RIIA coshχ sin τ

coshχ cos τ + sinhχ
(3.72)
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can be used to continue this metric to global coordinates

ds2 = R2
IIA(− cosh2 χ dτ 2 + dχ2) +R2

IIA(dθ2 + sin2 θdφ2)

(3.73)

+

√

q0p1

p2p3

((dy1)2 + (dy2)2) +

√

q0p2

p3p1

((dy3)2 + (dy4)2)

(3.74)

+

√

q0p3

p1p2
((dy5)2 + (dy6)2) (3.75)

and one can choose a gauge in which the 1-form potential becomes

A(1) = −RIIA

q0
[1 − sinhχ]dτ (3.76)

In the IIA language the M2 brane becomes a D2 brane and the momentum along

the y direction becomes a D0 charge because of the presence of a worldvolume gauge

field

F =
f

2πα′ sin θdθ ∧ dφ (3.77)

The contribution to the D0 brane charge to the mass of this brane in string metric is

M0 = 4πµ2f (3.78)

where µ2 is the D2 brane tension. The global hamiltonian may be written down using

standard methods

H = coshχ[(M2
2 +M0)

2 e−2Φ + P 2
χ +

(Pi − 4πµ2Ai)
2

gii
]
1
2 +M0 e

−Φ[1 − sinhχ] (3.79)

where in writing down the last term we have used the explicit form of the dilaton in

(3.69). (Here A(3) ≡ Ai cos θ dθdφdyi.) We have also denoted the mass of the D2

brane by M2

M2 = 4πR2
IIAµ2 (3.80)
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A static solution is obtained at a value of χ = χ0 given by

tanhχ0 =
M0

√

M2
2 +M2

0

(3.81)

and the value of the energy is

E = (M0 +M2)e
−Φ (3.82)

which is what we expect from the dimensional reduction of the M theory result.

Note that the magnitude of the energy depends on the gauge choice for A(1).

We have intentionally chosen a gauge which leads to an energy which is identical

to the M-theory result. A gauge transformation on A(1) translates to a coordinate

transformation in the M theory which redefines the coorinate y and therefore changes

the Killing vector along which dimensional reduction is performed to obtain the IIA

theory. For example instead of the choice in (3.69) we could have chosen

A(1)′ = − r

q0
dt (3.83)

which is related to the original potential by a gauge transformation. From (3.59) it

is easy to see that this corresponds to a coordinate transformation on y, y → y + t.

Thus this gauge potential would arise from a KK reduction of the 11 dimensional

metric along y + t rather than y. In this situation we do not of course expect the

energy as calculated in IIA to agree with the energy as calculated in M theory.

The expression for the hamiltonian, (3.79) is not a sum of positive terms and it is

not evident that the static solution has the lowest energy. However it is not hard to

see that this is indeed the ground state, using the trick of [106]. It is convenient to

use coordinates ρ = sinhχ so that the metric of the AdS part becomes

ds2 = −(1 + ρ2) dτ 2 +
dρ2

1 + ρ2
(3.84)
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The expression for the energy is

E =

√

M2
2 +M2

0 |gττ |e−Φ

√

|gττ | − gρρ(∂τρ)2
+M0e

−Φ(1 − ρ) (3.85)

This equation may be now re-written as

(∂τρ)
2 + 2U(ρ) = 0 (3.86)

where

2U(ρ) =
(M2

0 +M2
2 )(1 + ρ2)3

((EeΦ −M0) +M0ρ)2
− (1 + ρ2)2 (3.87)

The relativistic dynamics of the D2 brane is thus identical to the non-relativistic

dynamics of a particle of unit mass moving in a potential U(ρ). The energy of this

analog non-reltivistic problem is zero.

A solution to this non-relativistic problem will exist only if U(ρ) = 0 for some real

ρ. From (3.87) we see that this happens when

M2
2 ρ

2 − 2M0(Ee
Φ −M0) ρ− (EeΦ −M0)

2 + (M2
2 +M2

0 ) = 0 (3.88)

This has a real solution only if

E ≥ (M2 +M0)e
−Φ (3.89)

which establishes the lower bound on the energy. When the energy saturates this

bound the solution is static.

Poincare energies

The Poincare energies and momenta for this D2 brane are again equal to the global

energies and momenta. The transformations are given in (3.72). The trajectory is

then given by

sinhχ0 =
u

2RIIA

[1 − (
R2
IIA

u2
− t2

R2
IIA

)] (3.90)
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This is again a trajectory which comes out of the horizon and returns to it in finite

proper time. The maximum value of u now turns out to be

umax = RIIA e
χ0 (3.91)

The value of the Poincare energy for this trajectory is

EPoincare =
Mgtte

−Φ

√

gtt − grr(∂τr)2
+M0e

−Φ[1 − r

RIIA
] = (M0 +M2) e

−Φ (3.92)

which is again exactly equal to the global energy Eglobal.

Just as in the subsection (5.3.3), the equality of Poincare and global energies has

a group theoretic significance. In terms of light cone coordinates t± = t ± R2
IIA

r
the

generators of the SL(2, R) conformal isometries of AdS2 are

h = L−1 =
∂

∂t+
+

∂

∂t−
, d = L0 = t+

∂

∂t+
+t−

∂

∂t−
, k = L1 = t2+

∂

∂t+
+t2−

∂

∂t−
(3.93)

and the transformation to global coordinates is given by

t± = tan [
1

2
(τ ± 1

coshχ
)] (3.94)

The global hamiltonian H is then

Hglobal =
∂

∂τ
= h + k (3.95)

Since the configurations we discussed have Hglobal = h these must have k = 0. k is the

generator of conformal boosts and the standard SL(2, R) algebra obeyed by L±, L0

then implies that this state is a highest weight state.

The computations of these conserved charges follow the procedure of subsection

(5.3.3). The partially gauge fixed action (for lowest Landau level orbits on the T 6)

S = −4πµ2R
2
IIA

q0

∫

dτ

v(τ)
[
√

R4
IIA + f 2

√

(∂τ t)2 − (∂τv)2 − f(∂τ t)] (3.96)
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The conserved charges in the static gauge are 24.

h =
4πµ2R

2
IIA

q0v
[

A√
1 − v̇2

− f ]

(3.97)

d =
4πµ2R

2
IIA

q0v
[− At√

1 − v̇2
+

Avv̇√
1 − v̇2

+ ft]

(3.98)

k =
4πµ2R

2
IIA

q0v
[

A√
1 − v̇2

(tvv̇ − 1

2
(t2 + v2)) − f

2
(v2 − t2)] (3.99)

Substituting the trajectory (3.90) we find that k evaluates to zero.

Validity of the near-horizon approximation

The branes we discussed so far were shown to be stable and static in global time

in the near horizon geometry of the 4d extremal black hole. From the point of view of

black hole physics these would be of interest only if they exist in the full asymptotically

flat geometry. In the full geometry, the near-horizon region is a Poincare patch of AdS

and we have seen that in Poincare coordinates the brane comes out of the horizon and

goes back into it. This is what one would expect in the full geometry as well. However

we have to check whether the approximation of restriction to the near-horizon limit is

self-consistent. In the Appendix, this is done for four dimensional black hole geometry

of section (5.3.4). We find that the brane remains in the near-horizon region so long

as M0 �M2, but goes out of this region otherwise

5.3.5 Examples in Type IIB String Theory

Another example is provided by extremal black strings in Type IIB string theory

compactified on T 4 formed by two sets of D3 branes intersecting along a line together

24Note that the lagrangian is not invariant under special conformal transformations, though the
action is - this results in an additional contribution to the Noether charge
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with some momentum along the intersection, and its dimensional reduction to five

dimensional black holes. The physics is identical to black strings in M theory and

their reduction to four dimensional black holes considered above. The calculations

are identical and will not be repeated here.

5.4 D3 branes in 2-charge microstate geometries

We have examined branes in AdSm × Sn spaces, and computed their energy. But

we can make a symmetry transformation in the AdS, and change what we call E.

If on the other hand we had an asymptotically flat spacetime then we might get a

physically unique definition of energy. Note also that the goal of [109] was to study

black hole states. Black holes have asymptotically flat geometries, and we measure the

energy of different excitations using the time at infinity. So it would be helpful if we

could study branes in spacetimes which have the global AdSm× Sn structure in some

region (we will wrap the test branes on the Sn) but which go over to asymptotically

flat spacetime at large r.

Interestingly, such geometries are given by microstates of the 2-charge system.

In [186, 188] it was found that metrics carrying D1 and D5 charges and a certain

amount of rotation had the above mentioned property: they were asymptotically flat

at large r but were AdS3×S3×T 4 in the small r region. The point to note is that the

geometries were not just locally AdS3 × S3 in the small r region; rather the small r

region had the shape of a ‘cap’ which looked like the region r < r0 of global AdS3×S3.

In detail, we take type IIB string theory, compactified on T 4 × S1. We wrap D1

branes on the S1 and we wrap D5 branes on S1 × T 4. Let the S1 be parametrized

by y, with 0 < y < 2πR, and the T 4 be parametrized by coordinates y1, y2, y3, y4
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with a overall volume V . For our present purposes we will do two T-dualities, in the

directions y1, y2, so that the system is composed of two sets of D3 branes. These

branes extend along y1, y2, y and along y3, y4, y respectively. This does not change

the nature of the geometry that we have described above.

We can now consider a D3 brane wrapped over the S3, and let it move in the

direction y. This situation with the D3 brane is very similar to the case of the M2

brane that we had studied above, and we expect to get similar results on the energy

. But now we can extend our analysis to a spacetime which is asymptotically flat, so

we can identify the charges which correspond to the energy E (conjugate to time t at

infinity) and the momentum P (conjugate to the variable y).

We can extend the analysis to a class of geometries that carry three charges: the

two D3 brane charges as above as well as momentum P along S1. The geometries for

specific microstates of this system were constructed in [114], and these again have an

AdS type region at small r and go over to flat space at infinity.

In each of the above cases we find, somewhat surprisingly, that we again get a

relation of the form E = P + Constant. This might suggest that there is again an

underlying symmetry that rotates orbits of the wrapped brane, but we have not been

able to identify such a symmetry.
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5.4.1 The 2-charge microstate geometry

The string frame metric is given by

ds2 = −h−1 (dt2 − dy2) + hf
( dr2

r2 + a2 γ2
+ dθ2

)

+ h
(

r2 +
Q1Q2a

2 γ2 cos2 θ

h2f 2

)

cos2 θ dψ2 + h
(

r2 + a2 γ2 − Q1Q2a
2 γ2 sin2 θ

h2f 2

)

sin2 θ dφ2

− 2
a γ

√
Q1Q2

hf
cos2 θ dψ dy − 2

a γ
√
Q1Q2

hf
sin2 θ dφ dt

+

√

Q2

Q1
(dy2

1 + dy2
2) +

√

Q1

Q2
(dy2

3 + dy2
4)

h =

√

(

1 +
Q1

f

)(

1 +
Q2

f

)

, f = r2 + a2 γ2 cos2 θ (4.100)

while the dilaton field vanishes. There is a 4-form potential given by

A(4) =
[

− Q1

f +Q1
dt ∧ dy − Q2 (r2 + a2 γ2 +Q1)

f +Q1
cos2 θ dψ ∧ dφ

− a γ
√
Q1Q2

f +Q1
cos2 θ dt ∧ dψ − a γ

√
Q1Q2

f +Q1
sin2 θ dy ∧ dφ

]

∧ dy1 ∧ dy2(4.101)

However the experience of the previous sections show that the only role of this is to

put a probe D3 brane in a Lowest Landau level orbit on the T 4. We will therefore

ignore this in the following discussion.

This geomtery reduces to the asymptotically flat space-time M 1,5×T 4 in the large

r limit. In the limit r2, a2 � √
Q1Q2 the metric becomes

ds2 =
√

Q1Q2

( dr2

r2 + a2 γ2
+

r2

Q1Q2
dy2 − r2 + a2 γ2

Q1Q2
dt2
)

+
√

Q1Q2(dθ
2 + cos2 θ dψ′2 + sin2 θ dφ′2) +

√

Q2

Q1
(dy2

1 + dy2
2) +

√

Q1

Q2
(dy2

3 + dy2
4)(4.102)

where ψ′ and φ′ are “NS sector coordinates”

ψ′ = ψ − a γ√
Q1Q2

y , φ′ = φ− a γ√
Q1Q2

t (4.103)
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For γ = 1, this is precisely global Ad3 × S3 × T 4 as may be seen by making the

coordinate transformations to

τ =
aγt√
Q1Q2

ϕ =
a yγ√
Q1Q2

r = aγ sinhχ (4.104)

For γ = 1/k, with k integer greater than 1, the “near horizon” geometry is an orbifod

space of the type (Ad3 × S3)/Zk × T 4.

The geometry therefore smoothly interpolates between global AdS (or an orbifold

of it) and flat space. The key fact about this geometry is that in the small r region t is

the global time in AdS3, while in the large r region the same t is the usual Minkowski

time in the asymptoically flat space-time. This is in contrast to the geometry of three

charge black holes in five dimensions where the Minkowski time of the asymptotic re-

gion becomes the Poincare time of the near-horizon region. Therefore we can address

the question of wrapped D3 branes in the full geometry.

5.4.2 D3 branes in 2-charge microstate geometry

In the geometry described above, consider a D3 brane wrapping the angular S3

and carrying momentum P along the circle y. This brane couples to the background

F (5) flux, which extends in the S3 directions as well as two of the directions of T 4,

and hence behaves like a charged particle moving in a magnetic field on T 4. This

system represents thus a five dimensional analogue of the S2 wrapped D2 brane in a

4d black hole, studied in section 2.

Choosing t, θ, ψ and φ as worldvolume coordinates, the square root of the deter-

minant of the metric induced on the D3 brane can be written in the form

√

−detP (g) = sin θ cos θ
√

(r2 + a2 γ2)F1 − r2 F2 ẏ2 (4.105)
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where we have defined

F1 = r2 (f +Q1 +Q2) +Q1Q2 , F2 = (r2 + a2 γ2) (f +Q1 +Q2) +Q1Q2 (4.106)

It is then straightforward to compute the D3 brane Lagrangian

L = −µ3 (2π)2

∫

dθ sin θ cos θ
√

(r2 + a2 γ2)F1 − r2 F2 ẏ2 (4.107)

the momentum conjugate to y

P = µ3 (2π)2

∫

dθ sin θ cos θ
r2 F2 ẏ

√

(r2 + a2 γ2)F1 − r2 F2 ẏ2
(4.108)

and the energy of the D3 brane

E = µ3 (2π)2

∫

dθ sin θ cos θ
(r2 + a2 γ2)F1

√

(r2 + a2 γ2)F1 − r2 F2 ẏ2
(4.109)

Though the θ integrals could be explicitly computed, we find it more convenient

to perform integrations only after having minimized the energy.

The location at which the D3 brane stabilizes can be found by either minimizing

E with respect to r2 keeping P fixed or minimizing L with respect to r2 keeping ẏ

fixed. The second way is the most convenient and yelds the following, surprinsingly

simple, result:

∂L

∂r2
= 0 ⇒ ∂r2 [(r

2 + a2 γ2)F1] − ∂r2 [r
2F2] ẏ

2 = 0 (4.110)

⇒ ẏ2 =
r2(f +Q1 +Q2) +Q1Q2 + (r2 + a2 γ2)(f + r2 +Q1 +Q2)

(r2 + a2 γ2)(f +Q1 +Q2) +Q1Q2 + r2(f + r2 + a2 γ2 +Q1 +Q2)
= 1

The location at which the D3 brane sits is then found by putting ẏ = 1 in the

expression (4.108) for P and solving with respect to r. Note that for ẏ = 1 the square

root which appears in the expression for P and E simplifies

√

(r2 + a2 γ2)F1 − r2 F2 = a γ
√

Q1Q2 (4.111)
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The expressions for the momentum and energy of the D3 at its stable point are then

P =
µ3 (2π)2

a γ
√
Q1Q2

∫

dθ sin θ cos θ r2F2

=
µ3 (2π)2

2 a γ
√
Q1Q2

r2
[

Q1Q2 + (r2 + a2 γ2)
(

r2 +
a2 γ2

2
+Q1 +Q2

)]

E =
µ3 (2π)2

a γ
√
Q1Q2

∫

dθ sin θ cos θ (r2 + a2 γ2)F1

=
µ3 (2π)2

2 a γ
√
Q1Q2

(r2 + a2 γ2)
[

Q1Q2 + r2
(

r2 +
a2 γ2

2
+Q1 +Q2

)]

(4.112)

From the expressions above we see that the dispersion relation of the D3 brane is

E = P + 2π2 µ3

√

Q1Q2 a γ (4.113)

Remarkably, this is identical to the formula we would have obtained if we performed

the analysis in the AdS limit. This may be easily seen from the general formulae

of section (5.2) and noting that the standard AdS coordinates are related to the

coordinates r, t, y by the equations in (4.104) and that the AdS scale is given by

(Q1Q2)
1/4.

We would like to emphasize that the definition of energy is completely unam-

bigious in this geometry because of the presence of an asymptotically flat region.

Furthermore from general grounds we know that if we simply added pure momentum

to the 2-charge microstate geometry the additional ADM energy is simply equal to

the momentum. This is what happens if we take the formal limit µ3 = 0 in (4.113)

which shows we have taken the zero of the energy correctly.

Even though the dispersion relation is the same as in the AdS limit, the location of

the brane obtained by solving the first equation of (4.112) has a modified dependence

on the momentum P . We would like to determine the range of parameters for which

this location lies in the AdS region. We have not obtained the general solution of the
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Figure 5.1: The ratio A plotted as a function of y. The curves have b = 0.1, 0.15, 0.2
starting from top to bottom

equation. However to get an idea we examine the solution for Q1 = Q2 = λ2. The

quantity λ will become the scale of the AdS in the appropriate region. In this case it

is useful to express this equation in terms of the following quantities

A ≡ P

2π2aγλ2µ3

y ≡ r

λ
b =

aγ

λ
(4.114)

Note that A is the ratio of the contributions to the from the momentum and the D3

brane (as in (4.113). The AdS region of the solution corresponds to y, b� 1.

The first equation of (4.112) then becomes

A = (
y

b
)2 [1 + (y2 + b2)(y2 +

1

2
b2 + 2)] (4.115)

Figure (5.1) shows a plot of A versus y for various values of b. The brane location

moves further away from the center of AdS as we increase the ratio A, and for a given

value of A, the brane location r = r0 is larger for larger values of a. This shows that

for small values of b there is a large range of values of A for which the brane sits in

the AdS region of small y.
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5.4.3 CFT Duals

In order to gain some insight on the dual CFT significance of the D3 brane con-

figuarion discussed here, let us rewrite the expression above in terms of microscopic

quantities. If R is the radius of the y circle, V = L1 L2 L3 L4 is the volume of T 4, g

the string coupling and n1 and n2 are the numbers of D3 branes wrapped on y1, y2, y

and y3, y4, y, one has

a =

√
Q1Q2

R
, µ3 =

1

(2π)3 α′2 g
, Q1 =

(2π)2 g α′2

L3 L4
n1 , Q2 =

(2π)2 g α′2

L1 L2
n2

(4.116)

and thus

E = P + 2π2 µ3
Q1Q2

k R
= P +

4π3 α′3 g

V

1

R

n1 n2

k
(4.117)

While the significance of this result is not clear to us, it s interesting that the

powers of the charges are integral, so we get a quantity n1n2

k
that counts the number of

‘component strings’ in the CFT microstate (see [115] for a discussion of the microstate

in terms of component strings). Further the energy comes in units of 1
R

which is the

natural qantum of energy in the CFT which lives on a circle of radius R.

5.4.4 Vibration modes

Let us look at the D3 brane cosidered above, and restrict attention to the small r

region where the geometry is AdS3 × S3. We have found the energy E of the brane

in a specific configuration (which minimised E for a given P ), but we can now ask

for the properties of small vibratons of the brane around this configuration. We will

only consider oscillations in the AdS3 directions, so that, in a static gauge, we can

write

χ = χ0 + ε δχ(τ, θi) , y5 = ẏ τ + ε δy5(τ, θi) , yi = yi0 , i = 1 . . . , 4 (4.118)
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where we have denoted coordinates on S3 by θi, i = 1, . . . , 3 and the metric on a S3

of unit radius by g3 .

We will compute the action of the D3 brane up to quadratic order in ε. Having

suppressed oscillations in the T 4 directions, only the DBI term contributes. The term

of first order in ε is

S1 = ε µ3 λ
4

∫

dτ d3θi
√
g3

sinhχ0
√

cosh2 χ0 − ẏ2 sinh2 χ0

[(ẏ2 − 1) coshχ δχ+ ẏ sinhχ0 ∂τ δy
5](4.119)

The term proportional to δχ vanishes for ẏ2 = 1, while the coefficient of ∂τ δy
5 is

a constant and thus this term does not contribute to the equations of motion. Re-

stricting to ẏ2 = 1, and performing the change of coordinates ρ = sinhχ, the term of

second order in ε is

S2 = −ε2 µ3 λ
4

∫

dτ d3θi
√
g3

[gij3
2

∂iδρ ∂jδρ

ρ2
0 + 1

− 1

2

(∂tδρ)
2

ρ2
0 + 1

+
gij3
2
ρ2

0(ρ
2
0 + 1) ∂iδy

5 ∂jδy
5 − 1

2
ρ2

0(ρ
2
0 + 1) (∂tδy

5)2 − 2 ρ0 δρ ∂tδy
5
]

(4.120)

If one expands the perturbations δρ and δy5 as

δρ(τ, θi) = δρ̃ e−iωτ Yl(θi) , δy5(τ, θi) = δỹ5 e−iωτ Yl(θi) (4.121)

where Yl are spherical harmonics on S3

1√
g3

∂i (g
ij
3 ∂jYl(θi)) = −Ql Yl(θi) , Ql = l(l + 2) (4.122)

the equations of motion derived from the action (4.120) become

(

(ρ2
0 + 1)−1 (−Ql + ω2) −2 i ω ρ0

2 i ω ρ0 ρ2
0 (ρ2

0 + 1) (−Ql + ω2)

)

=

(

δρ̃
δỹ5

)

(4.123)

The vibration frequencies are then

ω2 = Ql + 2 ± 2
√

Ql + 1 = l(l + 2) + 2 ± 2(l + 1) (4.124)
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or equivalently

ω = l + 2 and ω = l (4.125)

Note that ω denotes the conjugate of the dimensionless coordinate τ . This is related

to the physical energies by a suitable factor of the AdS scale. We therefore see that

the frequencies are universal. They depend only on the AdS scale of the background

and not on the value of the momentum P of the brane. This is similar to what

happens for giant gravitons [105].

5.5 D3 branes in 3-charge microstates

By applying a spectral flow to the two charge microstate of the previous subsec-

tions one obtains a geometry dual to a three charge microstate. This is described, in

the string frame, by the following metric and dilaton [114]

ds2 = −1

h
(dt2 − dy2) +

Qp

hf
(dt− dy)2 + hf

(

dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

(5.126)

+ h
(

r2 + γ1 (γ1 + γ2) η −
Q1Q2 (γ2

1 − γ2
2) η cos2 θ

h2f 2

)

cos2 θdψ2

+ h
(

r2 + γ2 (γ1 + γ2) η +
Q1Q2 (γ2

1 − γ2
2) η sin2 θ

h2f 2

)

sin2 θdφ2

+
Qp (γ1 + γ2)

2 η2

hf

(

cos2 θdψ + sin2 θdφ
)2

− 2
√
Q1Q2

hf

(

γ1 cos2 θdψ + γ2 sin2 θdφ
)

(dt− dy)

− 2
√
Q1Q2 (γ1 + γ2) η

hf

(

cos2 θdψ + sin2 θdφ
)

dy +

√

H1

H2

(dy2
1 + dy2

2) +

√

H2

H1

(dy2
3 + dy2

4)

e2Φ =
H1

H2
(5.127)
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where

η =
Q1Q2

Q1Q2 +Q1Qp +Q2Qp

f = r2 + (γ1 + γ2) η
(

γ1 sin2 θ + γ2 cos2 θ
)

H1 = 1 +
Q1

f
, H2 = 1 +

Q2

f
, h =

√

H1H2 (5.128)

For the solution obtained by spectral flow from the 2-charge microstate geometry,

the parameters γ1 and γ2 take the values

γ1 = −a n , γ2 = a
(

n +
1

k

)

, a =

√
Q1Q2

R
(5.129)

where R is the y radius and n and k are integers. Geometries corresponding to other

values of γ1 and γ2 can be obtained by S and T dualities.

In this geometry, consider a D3 brane wrapping the angular S3 and rotating along

y. The determinant of the induced metric in static gauge can be cast the the form

√

−detP (g) = − sin θ cos θ
√

c0 + ẏ c1 + ẏ2 c2 (5.130)

where c0, c1 and c2 are functions of r and θ that can be computed using Mathematica.

As we did not manage to bring these functions to reasonably simple form, we do

not give their explicit expressions here. We can however proceed with the help of

Mathematica and verify that the r-derivative of the Lagrangian

L = −µ3 (2π)2

∫

dθ sin θ cos θ
√

c0 + ẏ c1 + ẏ2 c2 (5.131)

at fixed ẏ vanishes for ẏ = 1 (note that in this case the invariance under y → −y

is broken by the momentum carried by the background metric (5.126) and ẏ = −1

is not a local minimum). For this value of ẏ the determinant of the induced metric

simplifies to

√

−detP (g) = − sin θ cos θ (γ1 + γ2) η
√

Q1Q2 (5.132)
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Following the same steps as in the previous subsection, one can compute the

energy and momentum conjugate to y at the stable point ẏ = 1:

E =
µ3 (2π)2

(γ1 + γ2) η
√
Q1Q2

∫

dθ sin θ cos θ
2c0 + c1

2

P = − µ3 (2π)2

(γ1 + γ2) η
√
Q1Q2

∫

dθ sin θ cos θ
2c2 + c1

2
(5.133)

Neither E or P have particuarly good looking expressions, but their difference is

simply given by

E = P + 2π2 µ3

√

Q1Q2 (γ1 + γ2) η = P + 2π2 µ3

√
Q1Q2 a

k
η (5.134)

where in the last equality we have used the values (5.129) for γ1 and γ2.

We thus conclude that the dispersion relation of the D3 brane in the three charge

geometry differs from that in the two charge geometry only by a factor of η.

5.6 The field produced by the wrapped brane

In this section we look at the gauge field produced by the D3 brane that we wrap

on the S3, in the asymptotically flat 2-charge microstate geometry. If we think of the

brane as a small perturbation of strength ε on the background, then the field strength

produced by the brane is also of order ε, and the energy carried by this field is O(ε2).

But we find that the field strength goes to a constant at large r, so that its overall

energy would diverge. The brane wrapped on the S3 appears to behave like a domain

wall in the spacetime, making the field nonzero on the outside everywhere.

The action for the 4-form RR field A(4) sourced by the D3 brane is

S =
1

2

∫

F (5) ∧ ?F (5) + µ2

∫

dr dy dt dθ dφ dψ dV δ(r − r0) [A
(4)
tθφψ + A

(4)
yθφψ] (6.135)
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(dV = dy1 ∧ . . . ∧ dy4 is the volume form on T 4). We have assumed the brane to be

smeared along y and the torus directions yi and, in writing the source term, we have

taken into account that the brane moves with velocity ẏ = 1 along y.

We will make the following ansatz for A(4)

A(4) = A
(4)
tθφψ dt ∧ dθ ∧ dφ ∧ dψ + A

(4)
tθφy dt ∧ dθ ∧ dφ ∧ dy

+ A
(4)
yθφψ dy ∧ dθ ∧ dφ ∧ dψ + A

(4)
yθtψ dy ∧ dθ ∧ dt ∧ dψ (6.136)

(At the same order in µ2, the gauge field also has components A
(4)
µνy1y2 , where µ, ν =

t, y, ψ, φ and y1, y2 are directions in T 4: these components arise from the fact that

the background metric is perturbed by the D3 brane together with the fact that

the unperturbed background has non-zero values of A
(4)

µνy1y2 . Since the equations of

motion do not mix the components A
(4)

µνy1y2 with the ones contained in the ansatz

(6.136), we can consistently ignore these extra components in the following).

Ona has

F (5) = dr ∧ ∂rA(4) (6.137)

The star operation in a geometry with tφ and yψ mixings is given by25

? (dr ∧ dt ∧ dθ ∧ dφ ∧ dψ) =
√−g grr gθθ (gttgφφ − gtφgtφ) (gψψ dy − gψy dψ) ∧ dV

? (dr ∧ dt ∧ dθ ∧ dφ ∧ dy) =
√−g grr gθθ (gttgφφ − gtφgtφ) (gψy dy − gyy dψ) ∧ dV

? (dr ∧ dy ∧ dθ ∧ dφ ∧ dψ) = −√−g grr gθθ (gyygψψ − gyψgyψ) (gφφ dt− gφt dφ) ∧ dV

? (dr ∧ dy ∧ dθ ∧ dt ∧ dψ) = −√−g grr gθθ (gyygψψ − gyψgyψ) (gφt dt− gtt dφ) ∧ dV(6.138)

The equations of motion are

d ? F (5) + µ2 δ(r − r0) dr ∧ (dy − dt) ∧ dV = 0 (6.139)

25We are using the orientation εtyrθφψ = 1.
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which yeld

∂r[
√−g grr gθθ (gttgφφ − gtφgtφ) (gψψ∂rA

(4)
tθφψ + gψy∂rA

(4)
tθφy)] + µ2 δ(r − r0) = 0

∂r[
√−g grr gθθ (gttgφφ − gtφgtφ) (gyy∂rA

(4)
tθφy + gψy∂rA

(4)
tθφψ)] = 0

∂r[
√−g grr gθθ (gyygψψ − gyψgyψ) (gφφ∂rA

(4)
yθφψ + gφt∂rA

(4)
yθtψ)] + µ2 δ(r − r0) = 0

∂r[
√−g grr gθθ (gyygψψ − gyψgyψ) (gtt∂rA

(4)
yθtψ + gφt∂rA

(4)
yθφψ)] = 0 (6.140)

∂θ[
√−g grr gθθ (gttgφφ − gtφgtφ) (gψψ∂rA

(4)
tθφψ + gψy∂rA

(4)
tθφy)] = 0

∂θ[
√−g grr gθθ (gttgφφ − gtφgtφ) (gyy∂rA

(4)
tθφy + gψy∂rA

(4)
tθφψ)] = 0

∂θ[
√−g grr gθθ (gyygψψ − gyψgyψ) (gφφ∂rA

(4)
yθφψ + gφt∂rA

(4)
yθtψ)] = 0

∂θ[
√−g grr gθθ (gyygψψ − gyψgyψ) (gtt∂rA

(4)
yθtψ + gφt∂rA

(4)
yθφψ)] = 0 (6.141)

Their solution is

F
(5)
rtθφψ =

a± gψψ + b± gψy√−g grr gθθ (gttgφφ − gtφgtφ)

F
(5)
rtθφy =

a± gψy + b± gyy√−g grr gθθ (gttgφφ − gtφgtφ)

F
(5)
ryθφψ =

c± gφφ + d± gφt√−g grr gθθ (gyygψψ − gyψgyψ)

F
(5)
ryθtψ =

c± gφt + d± gtt√−g grr gθθ (gyygψψ − gyψgyψ)
(6.142)

where a±, b±, c± and d± are r and θ independent constants: the subscript + applies

to the region r > r0 while the subscript − applies to r < r0. Because of the delta

function source we have a+ − a− = −µ2, b+ − b− = 0, c+ − c− = −µ2, d+ − d− = 0.

In order to fix the values of these constants let us impose regularity of the field

strength. It will be convenient to work in “NS-sector coordinates”

φ′ = φ− a√
Q1Q2

t , ψ′ = ψ − a√
Q1Q2

y (6.143)
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Consider first regularity at θ = 0, π/2. One has

√−g grr gθθ (gttgφ
′φ′ − gtφ

′

gtφ
′

) = − r

hf

cos θ

sin θ

√−g grr gθθ (gyygψ
′ψ′ − gyψ

′

gyψ
′

) =
r2 + a2

r hf

sin θ

cos θ
(6.144)

Moreover gφ′φ′ ∼ sin2 θ, gtφ′ ∼ sin2 θ, gψ′ψ′ ∼ cos2 θ, gyψ′ ∼ cos2 θ while gtt and gyy go

to some finite non-zero values as θ → 0, π/2. We thus see that the term proportional

to b± in F
(5)
rtθφy is singular for θ = π/2 and the term proportional to d± in F

(5)
ryθtψ is

singular at θ = 0. Therefore we have to take b± = d± = 0.

Consider now the behaviour around f = 0 (i.e. r = 0 and θ = π/2), where the

metric goes to

ds2

√
Q1Q2

≈ dr2

r2 + a2
+

r2

Q1Q2
dy2 − r2 + a2

Q1Q2

(

1 − 2
a2

√
Q1Q2

) + dθ2 + cos2 θ dψ′2 (6.145)

+ sin2 θ dφ′2
(

1 + 2
a2

√
Q1Q2

)

+ 4
a r2

√
Q1Q2

cos2 θ dy dψ′ + 4
a (r2 + a2)√

Q1Q2

sin2 θ dt dφ′

Then we have

F
(5)
rtθφ′ψ′ ≈ −a−Q1Q2

sin θ cos θ

r

F
(5)
rtθφ′y ≈ −2a− a r sin θ cos θ

F
(5)
ryθφ′ψ′ ≈ c−Q1Q2

(

1 + 2
a2

√
Q1Q2

) sin θ cos θ r

r2 + a2

F
(5)
ryθtψ′ ≈ 2c− a r sin θ cos θ (6.146)

Regularity at f = 0 then requires a− = 0 (and thus c+ = −µ2), while c− is left

arbitrary.
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Let us now consider the behaviour of the field strength at asymptotic infinity:

F (5) = a+ dr ∧ dt ∧ dθ ∧ dφ′ ∧ gψ′ψ′ dψ′ + gψ′y dy√−g grr gθθ (gttgφφ − gtφgtφ)

+ c+ dr ∧ dy ∧ dθ ∧
gφ′φ′ dφ

′ + gφ′t dt√−g grr gθθ (gyygψψ − gyψgyψ)
∧ dψ′

≈ −a+ r
3 sin θ cos θ dr ∧ dt ∧ dθ ∧ dφ ∧ dψ

+ c+ r
3 sin θ cos θ dr ∧ dy ∧ dθ ∧ dφ ∧ dψ

(6.147)

The formula above shows that, asymptotically, the field strength is constant in local

orthonomal coordinates.

We have the freedom to choose the constant c− to have any value that we want; this

freedom corresponds to adding a smooth magnetic field everywhere to the background.

A simple choice of c− would be the one that makes c+ = 0, so that this magnetic field

vanishes at infinity. Then we get

F (5) = −µ2 dr ∧ dt ∧ dθ ∧ dφ′ ∧ gψ′ψ′ dψ′ + gψ′y dy√−g grr gθθ (gttgφ′φ′ − gtφ′gtφ′)

= µ2
sin θ cos θ

r
dr ∧ dt ∧ dθ ∧ dφ′ ∧

[

h2 f
(

r2 +
Q1Q2 a

2 cos2 θ

h2f 2

)

dψ′

+
a√
Q1Q2

r2 (f +Q1 +Q2) dy
]

, for r > r0

F (5) = −µ2 dr ∧ dy ∧ dθ ∧ dψ′ ∧ gφ′φ′ dφ
′ + gφ′t dt√−g grr gθθ (gttgψ′ψ′ − gyψ′gyψ′)

= −µ2
r sin θ cos θ

r2 + a2
dr ∧ dy ∧ dθ ∧ dψ′ ∧

[

h2 f
(

r2 + a2 − Q1Q2 a
2 sin2 θ

h2f 2

)

dφ′

+
a√
Q1Q2

(r2 + a2) (f +Q1 +Q2) dt
]

, for r < r0 (6.148)

For any choice of c− we find the the stress tensor of the field goes to a constant

rather than vanish at infinity. We can thus generate a uniform cosmological type

contribution in the spacetime dimensionally reduced on the y direction. The only
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way to cancel this contribution would be to have a D3 brane in the ‘throat’ of the

microstate geometry, or in the throat of a different microstate geometry located at

some other spacetime point. We have to be aware that the energy computed from

the DBI action in the above sections does not iclude this (possibly divergent) field

contribution.

5.7 Supersymmetry properties of the branes

The simple expressions for the energies as a sum of the contribution from indi-

vidual charges signifies a threshold bound state. As is usual in such situations, this

usually follows from supersymmetry and BPS bounds. In this section we will examine

the supersymmetry properties of these brane configurations.

5.7.1 Supersymmetry of the D2 brane

In this section we will examine the supersymmetry properties for the case of D2

branes in IIA theory. The considerations can be easily generalized to the M-branes.

Killing spinors of the near-horizon background

We work in global coordinates. The metric, dilaton, RR 1-form, and RR 3-forms

of the near-horizon background were given in (3.63). We use m,n... = τ, χ, θ, φ, 1, ..., 6

as the ten-dimensional curved space indices, a, b... = τ̂ , χ̂, θ̂, φ̂, 1̂, ..., 6̂ (or sometimes,

equivalently, a, b... = 0, ..., 9) as the tangent space indices. The Clifford algebra is

{

Γa,Γb
}

= 2ηab (7.149)

with ηab having signature (−,+, ...,+), and the gamma matrices Γa’s are 32 by 32

real matrices (Γτ̂ being antisymmetric, and Γχ̂, ...,Γ6̂ being symmetric). Γ10 ≡ Γ0...9

and (Γ10)
2

= 1. We use 32-component real spinors y, and define ȳ ≡ yTΓ0.
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The local supersymmetry variation of the dilatino, parameterized by a 32-component

real spinor ε, is

δλ =
1

8
eΦ
(

3

2!
F

(2)
ab ΓabΓϕ +

1

4!
F

(4)
abcdΓ

abcd

)

ε (7.150)

and the gravitino variation is

δψm =

[

∂m +
1

4
ωmabΓ

ab +
1

8
eΦ
(

1

2!
F

(2)
ab ΓabΓmΓϕ +

1

4!
F

(4)
abcdΓ

abcdΓm

)]

ε (7.151)

where Γϕ ≡ −Γ10 = −Γτ̂ χ̂θ̂φ̂1̂2̂3̂4̂5̂6̂. Plugging in the expressions of the RR field strength,

we get

δλ =
1

R
Nε, δψm =

[

∂m +
1

4
ωmabΓ

ab +
1

R
MΓm

]

ε (7.152)

where the matrices N and M are given by

N =
1

8

[

3Γθ̂φ̂1̂2̂3̂4̂5̂6̂ + Γθ̂φ̂
(

Γ1̂2̂ + Γ3̂4̂ + Γ5̂6̂
)]

M =
1

8

[

−Γθ̂φ̂1̂2̂3̂4̂5̂6̂ + Γθ̂φ̂
(

Γ1̂2̂ + Γ3̂4̂ + Γ5̂6̂
)]

(7.153)

(note the only nonvanishing 1
4
ωmabΓ

ab’s are 1
4
ωτabΓ

ab = − sinhχ
2

Γτ̂ χ̂ and 1
4
ωφabΓ

ab =

cos θ
2

Γφ̂θ̂; also note that Γθ̂φ̂1̂2̂3̂4̂5̂6̂ = −
(

Γθ̂φ̂1̂2̂
)(

Γθ̂φ̂3̂4̂
)(

Γθ̂φ̂5̂6̂
)

.) Next we solve δλ = 0

and δψm = 0 to find the Killing spinors.

Let’s divide the 32-dimensional vector space of ε into eight subspaces of simulta-

neous eigenvectors of Γθ̂φ̂1̂2̂, Γθ̂φ̂3̂4̂, and Γθ̂φ̂5̂6̂, labeled as (±±±) (with the ±’s denotes

the ±1 eigenvalues of these three matrices, respectively). Each of these subspaces is

four-dimensional by itself. It is easy to see that, δλ = 0 if and only if

ε = ε+ + ε− (7.154)

with ε+ ∈ (+ + +) and ε− ∈ (−−−).
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Plugging the above expression for ε into δψm and integrating, we then get the

explicit expression of the eight Killing spinors of AdS2 × S2 × T 6, four of them being

ε1 =

[

e−
1
2
χΓχ̂

e
1
2
τΓτ̂

sin
θ

2
e

1
2
φΓφ̂θ̂

+ e
1
2
χΓχ̂

e−
1
2
τΓτ̂

(

− cos
θ

2

)

Γθ̂e
1
2
φΓφ̂θ̂

]

Φ0 (7.155)

with Φ0 being an arbitrary constant 32-component real spinor in the four-dimensional

(+ + +) subspace, i.e. Γθ̂φ̂1̂2̂Φ0 = Φ0, Γθ̂φ̂3̂4̂Φ0 = Φ0, and Γθ̂φ̂5̂6̂Φ0 = Φ0; and the other

four being

ε2 =

[

e−
1
2
χΓχ̂

e
1
2
τΓτ̂

cos
θ

2
e−

1
2
φΓφ̂θ̂

+ e
1
2
χΓχ̂

e−
1
2
τΓτ̂

sin
θ

2
Γθ̂e−

1
2
φΓφ̂θ̂

]

Φ′
0 (7.156)

with Φ′
0 being another arbitrary constant 32-component real spinor in the four-

dimensional (+ + +) subspace. A general Killing spinor is given by ε = ε1 + ε2.

Supersymmetric D2 configuration

Next we show that the D2 trajectory considered in Subsection 5.3.4 preserves half

of the background supersymmetries. Recall that the trajectory is

τ = χ0, θ = χ1, φ = χ2, χ = χ0, y1 = 0, ..., y6 = 0 (7.157)

for which the κ projection matrix as given in [116] evaluates to

Γ =
−1

coshχ0

(

1 + sinhχ0Γ
θ̂φ̂Γ10

)

Γτ̂ θ̂φ̂ (7.158)

The supersymmetries preserved by the D2 brane are the Killing spinors ε that satisfy

(1 − Γ)ε = 0 (7.159)

After some manipulation, one finds that there are four supersymmetries preserved,

with two of the corresponding Killing spinors given by eqn. (7.155) constrained by

(1 + Γτ̂ θ̂φ̂)Φ0 = 0, and the other two given by eqn. (7.156) constrained by (1 +

Γτ̂ θ̂φ̂)Φ′
0 = 0. Note that these projection conditions turn out to be independent of the

D0 charge (i.e., independent of the value of χ0).
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Topological charge of the brane

In [117] p-forms constructed from background Killing spinors are integrated over

probe branes’ spatial worldvolumes to give topological charges in M-theory. [118]

generalize this to IIA theory, whose approach we shall now apply to the above D2

brane. We shall find a central charge CD2 = M2e
−Φ + M0e

−Φ in the superalgebra,

which equals the D2’s global energy and shows that the D2 indeed saturates a BPS

bound.

After being sandwiched between εT and ε (where ε is a Killing spinor, and is

treated as a commuting rather than anti-commuting variable), the superalgebra with

the probe brane can be written as

(Qε)2 =

∫

d2χKµp
µ ±

∫

ωD2 (7.160)

where the integrals are over the spatial worldvolume of the brane, K is a one-form

defined as a bilinear of ε

K = ε̄Γaε e
a (7.161)

(ea being the vielbein one-form) and ωD2 is a closed two-form also constructed from

bilinears of ε. The choice of ωD2 is background-specific26, and we shall take the one

used in [118] to consider supertubes

ωD2 = µ2

(

e−ΦΩ +K · A(3) + K̃ ∧ A(1) − 2πα′F
)

(7.162)

with the · denoting the inner product of q-forms with p-forms (p < q) (αp · βq)a1....aq−p
=

(1/p!)αb1...bpβb1...bpa1...aq−p
, and

Ω =
1

2
ε̄Γabε e

ab, K̃ = ε̄ΓaΓ
10ε ea (7.163)

26For a string probe, there is a general expression for the closed one-form ωstring , see [118] for
details.
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Note that our choice for the contribution of the worldvolume field strength to ωD2

differs from that of [118] by a minus sign. Due to ε’s being a Killing spinor, K turns

out to be a Killing vector, and K,Ω, K̃ satisfy the following differential relations

(which are obtained by plugging our background into equations (3.18) and (3.19) of

[118])

dK̃ = 0, d
(

e−ΦΩ
)

= K̃ ∧ F (2) +K · F (4) (7.164)

Using these relations one finds

dωD2 = K · F (4) + d
(

K · A(3)
)

= LKA(3) (7.165)

Hence ωD2 will be closed if A(3) is invariant under the Lie derivative LK, and now we

turn our attention to K.

One readily sees that K1̂ = 0, since ε only has components in (+++) and (−−−)

while Γτ 1̂ takes (+ + +) to (− + +) and (− − −) to (+ − −), and orthogonality of

the subspaces then gives εTΓτ̂ 1̂ε = 0. Similiarly, K2̂, ..., K6̂ all vanish.

After some algebra, one finds

Kχ̂ = εTΓτ̂ χ̂ε = cos τ
(

ΦT
0 Γτ̂ χ̂Φ0 + Φ′T

0 Γτ̂ χ̂Φ′
0

)

+ sin τ
(

ΦT
0 Γχ̂Φ0 + Φ′T

0 Γχ̂Φ′
0

)

(7.166)

Kθ̂ = εTΓτ̂ θ̂ε = 2ΦT
0 Γτ̂ exp

(

−φΓφ̂θ̂
)

Φ′
0 (7.167)

Kφ̂ = εTΓτ̂ φ̂ε = 2 cos θΦ′T
0 Γτ̂ θ̂φ̂ exp

(

φΓφ̂θ̂
)

Φ0 + sin θ
(

ΦT
0 Γτ̂ θ̂φ̂Φ0 − Φ′T

0 Γτ̂ θ̂φ̂Φ′
0

)

(7.168)

Now let’s pick out a unique Killing spinor by further imposing the projection and

normalization conditions

Γτ̂ θ̂φ̂Φ0 = −Φ0, Γτ̂ 1̂2̂3̂4̂5̂6̂Φ0 = Φ0

Γτ̂ θ̂φ̂Φ′
0 = −Φ′

0, Γτ̂ 1̂2̂3̂4̂5̂6̂Φ′
0 = −Φ′

0

ΦT
0 Φ0 =

∆

2
, Φ′T

0 Φ′
0 =

∆

2
(7.169)
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where ∆ is some positive normalization number whose value shall be determined soon.

Note that this Killing spinor is preserved by the D2 (see subsection 5.7.1). For this

Killing spinor, one immediately finds

Kχ̂ = 0, Kθ̂ = 0, Kφ̂ = 0, and, Kτ̂ = εT ε = ∆ coshχ (7.170)

i.e. K = −∆
R

∂
∂τ

, which is the Killing vector generating global time translation. For

this K LKA(3) vanishes, and we then find ωD2 is indeed closed. (Actually, the story

here is quite trivial: since A(3), F (4) don’t have any τ -component, K · A(3), K · F (4)

both vanish. )

Having established the closedness of ωD2, we now integrate it over the spatial

worldvolume of the D2. Since A(1) ∼ dτ and K · A(3) vanishes, only the e−ΦΩ term

and the worldvolume flux term contributes to the integral

∫

S2

ωD2 = µ2

∫

S2

R

q0

(

εTΓτ̂ θ̂φ̂ε
)

R2 sin θdθ ∧ dφ− µ22πα
′
∫

S2

F

= −4πµ2∆
R3

q0
−M0 = −∆M2e

−Φ −M0 (7.171)

where in the second line we’ve used the fact that εTΓτ̂ θ̂φ̂ε evaluates to −∆ for the

particular Killing spinor we’ve chosen. Since
∫

d2χKµp
µ = KτPτ = −∆

R
Pτ = −∆E

(recall that the physical energy is E = Pτ/R), and the particular ε is perserved by

the D2, the supersymmetry algegra (7.160) becomes

− ∆E = ∓
(

−∆M2e
−Φ −M0

)

(7.172)

which upon taking the lower sign on the r.h.s. gives

E = CD2 = M2e
−Φ +

M0

∆
(7.173)
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From this we see that we should take the normalization number ∆ to be eΦ = q0
R

,

which results in CD2 = M2e
−Φ + M0e

−Φ. This is the same as the global energy we

computed earlier for this D2 trajectory and shows this D2 saturates the BPS bound.

Supersymmetry of D2 in the full black hole geometry

In this subsection, we show that the D2 considered above does not preserve any

of the supersymmetries of the full black hole geometry (except in the χ0 → ∞ limit

where it is effectively a bunch of D0 branes), and is thus not really a stable con-

figuration in the full geometry. First let’s work out the Killing spinors of the full

geometry.

Recall that the metric of the full geometry is given by

ds2 =
−1√

H0H1H2H3

dt2 +
√

H0H1H2H3

(

dr2 + r2dΩ2
2

)

+

√

H0H1

H2H3

(

dy2
1 + dy2

2

)

+

√

H0H2

H1H3

(

dy2
3 + dy2

4

)

+

√

H0H3

H1H2

(

dy2
5 + dy2

6

)

(7.174)

where H0 = 1 + q0
r
, Hi = 1 + pi

r
, i = 1, 2, 3. The nonvanishing components of the RR

four-form and two-form field strengths are given by

F
(4)
θφ12 = −dH1

dr
r2 sin θ, F

(4)
θφ34 = −dH2

dr
r2 sin θ, F

(4)
θφ56 = −dH3

dr
r2 sin θ

F
(2)
rt = − 1

(H0)2

dH0

dr
(7.175)

And the dilaton is

eΦ =

(

H1H2H3

(H0)3

)−1/4

(7.176)

Note that the dilaton is no longer constant once we go beyond the near-horizon region.

Now the local supersymmetry variation of the dilatino is given by

δλ =

[

1

2
Γm∂mΦ +

1

8
eΦ
(

3

2!
F

(2)
ab ΓabΓϕ +

1

4!
F

(4)
abcdΓ

abcd

)]

ε (7.177)
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which after plugging in the expression of the RR fields becomes

δλ =
1

8
(H0H1H2H3)

−1/4

{

−
(

3
∑

i=1

1

Hi

dHi

dr
− 3

H0

dH0

dr

)

Γr̂ +

[

−3

H0

dH0

dr
Γθ̂φ̂1̂2̂3̂4̂5̂6̂

+

(

− 1

H1

dH1

dr
Γθ̂φ̂1̂2̂ − 1

H2

dH2

dr
Γθ̂φ̂3̂4̂ − 1

H3

dH3

dr
Γθ̂φ̂5̂6̂

)

]}

ε(7.178)

Now we divide the 32-component spinor ε into sixteen subspaces labeled by (s1s2s3w)

with s1, s2, s3 = ±1 being eigenvalues of Γθ̂φ̂1̂2̂, Γθ̂φ̂3̂4̂, Γθ̂φ̂5̂6̂, and w = ±1 being

eigenvalue of Γr̂. It is then easy to see that, δλ = 0 if and only if

ε = ε+++− + ε−−−+ (7.179)

where the subscripts denote the subspace the spinors belong to. This gives us the

four Killing spinors of the full black hole geometry, and we shall denote them as

εfull. The concrete coordinate-dependence of εfull can be worked out by requiring the

vanishing of the gravitino variation, however we don’t need this detailed knowledge

for the analysis below.

Now let’s look at the kappa-projection matrix Γ given in eqn. (7.158) in the

near-horizon region. Note that

Γθ̂φ̂Γ10Γτ̂ θ̂φ̂ = Γχ̂Γθ̂φ̂1̂2̂Γθ̂φ̂3̂4̂Γθ̂φ̂5̂6̂ (7.180)

and that Γχ̂ is the same as Γr̂ because both are tangent-indiced gamma matrices. We

see that Γ commutes with Γθ̂φ̂1̂2̂, Γθ̂φ̂3̂4̂, Γθ̂φ̂5̂6̂. Hence requiring the supersymmetry of

the full geometry to be preserved by D2, i.e.,

Γεfull = εfull (7.181)

is equivalent to requiring

Γε+++− = ε+++−, and Γε−−−+ = ε−−−+ (7.182)
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which is immediately seen to be impossible to satisfy for any finite value of χ0, because

Γε+++− =
−1

coshχ0

Γτ̂ θ̂φ̂ε+++− + tanhχ0 ε+++−

Γε−−−+ =
−1

coshχ0
Γτ̂ θ̂φ̂ε−−−+ + tanhχ0 ε−−−+ (7.183)

(where the identity (7.180) has been used) and we see that the first terms on the right

hand sides have the wrong eigenvalue under Γr̂ (because Γτ̂ θ̂φ̂ anticommutes with Γr̂).

This proves our claim that, for finite χ0 the D2 brane doesn’t preserve any of the four

usual supersymmetries of the full geometry (the four supersymmetries preserved by

the D2 as shown in subsection 5.7.1 have to be formed out of linear combinations of

the usual supersymmetries of the full geometry and the conformal supersymmetries

that are present only in the near-horizon region). What about the case χ0 → ∞?

In this case, the first terms on the right hand sides of eqn. (7.183) vanish, and the

second terms become ε+++− and ε−−−+ respectively, giving exactly what is needed

for Γεfull = εfull. This comes as no surprise since in the infinite χ0 limit the D2 has

an infinite D0 charge and is effectively just a bunch of D0 branes, which is known to

preserve all the four usual supersymmetries of the full black hole geometry.

5.7.2 Supersymmetry of D3 branes in Microstate geometry

In this subsection we examine supersymmetry properties of D3 brane in the 2

charge microstate geometry discussed in section (5.4). Analogously to the D2 case

considered above, we shall find that the D3 brane preserves half of the supersymme-

tries of the near-hoziron geometry, but doesn’t preserve any of the supersymmetries

of the full asymptotically flat geometry.

As in the above IIA case, we use m,n... = t, y, r, θ, φ, ψ, y1, y2, y3, y4 to denote

curved space indices, and a, b... = 0̂, 1̂, ..., 9̂ to denote tangent space indices. Γ̂a are
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ten dimensional Gamma matrices, which we will decompose into direct products of

6-d Gamma matrices denoted as Γ̃a and 4-d Gamma matrices denoted as Γa. The

analysis in the near-horizon region AdS3 × S3 × T 4 is similar to the D2 case, hence

instead of giving all the details here we will simply quote the near-horizon results

when needed without proof.

Let us consider the D3 brane at its stable point ẏ = −1. (In Section 5.4 the choice

of ẏ = +1 was made. This difference in choices does not affect the conclusion of the

analysis below, because they just correspond to conjugate Killing spinors preserved

by the D3 brane). As shown in Section 5.4, for ẏ = −1 the determinant of the

metric induced on the brane simplifies to
√−g = a

√
Q1Q2 sin θ cos θ. Then the

kappa symmetry condition (after getting rid of antisymmetrization and combinatorial

factors) becomes

γtγθγψγφξ = −ia
√

Q1Q2 sin θ cos θξ (7.184)

where γi are the pull backs on the brane worldvolume of the space time Gamma

matrices. Using the vielbeins for the six dimensional 2-charge microstate metric

e0̂ =
1√
h

(

dt+
a
√
Q1Q2

f
sin2 θdφ

)

, e1̂ =
1√
h

(

dy − a
√
Q1Q2

f
cos2 θdψ

)

(7.185)

e2̂ =

√

hf

r2 + a2
dr , e3̂ =

√

hfdθ , e4̂ =
√
hr cos θdψ , e5̂ =

√

h(r2 + a2) sin θdφ(7.186)

the induced gamma matices are found to be

γθ = e3̂θΓ̃3̂ , γφ = e5̂φΓ̃5̂ + e0̂φΓ̃0̂ , γt = e0̂t Γ̃0̂ + ẏe1̂
yΓ̃1̂ , γψ = e4̂ψΓ̃4̂ + e1̂ψΓ̃1̂ (7.187)

Setting ẏ = −1 in the expression for γt and using using e0̂
t = e1̂y we can then rewrite

the kappa symmetry matrix in terms of constant Gamma matrices and vielbeins as

γtθψφ ξ = e0̂
t e

3̂
θ

[

(e1̂ψe
5̂
φΓ̃3̂Γ̃5̂ − e4̂ψe

0̂
φΓ̃3̂Γ̃4̂)(1 − Γ̃0̂1̂) + (e4̂

ψe
5̂
φΓ̃0̂Γ̃3̂Γ̃4̂Γ̃5̂ − e1̂ψe

0̂
φΓ̃0̂Γ̃3̂)(1 + Γ̃0̂1̂)

]

ξ

(7.188)
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Now let’s look at a Killing spinor for the asymptotically flat metric generated by

the background D3 branes. We know that it will be of the form ξ = g(x)ξ0 (see, e.g.,

[119]). Here g(x) is some spacetime dependent part which will cancel from both sides

of kappa symmetry matrix as it doesn’t depend on gamma matrices (unlike the near

horizon case). The constant part ξ0 satisfies projection conditions corresponding to

two orthogonal sets of D3 branes. Our D3 branes are along directions y67 and y89,

hence

ξ0 + iΓ̂0̂1̂6̂7̂ξ0 = 0 , ξ0 + iΓ̂0̂1̂8̂9̂ξ0 = 0 (7.189)

We decompose the constant spinor ξ0 as ξ
(0)
M6 ⊗ ξ

(0)
T4 . This gives three constraints

ξ
(0)
M6 + Γ̃0̂1̂ξ

(0)
M6 = 0 , ξ

(0)
T4 + iΓ6̂7̂ξ

(0)
T4 = 0 , ξ

(0)
T4 + iΓ8̂9̂ξ

(0)
T4 = 0 (7.190)

The second and third constraints can be seen to be satisfied as in the near horizon

case by using an explicit representation of gamma matrices. For now we concentrate

on the M6 part. Using the first constraint in (7.190), we see that the term containg

(I+Γ̃0̂1̂)ξ in the kappa symmetry matrix gives zero. Plugging in the values of vielbeins,

we get, from the remaining term,

1√
f

(
√
r2 + a2 cos θΓ̃3̂5̂ + r sin θΓ̃3̂4̂)(1 − Γ̃0̂1̂)ξ

(0)
M6 = −ξ(0)

M6 (7.191)

It is apparent that the kappa symmetry condition cannot be satisfied for r 6= 0. For

r = 0 we get a projection condition on ξ
(0)
M6 that can be easily seen to be inconsistent

with the first of the constraints in (7.190). We conclude that the D3 brane is not

supersymmetric in the full asymptotically flat geometry for any value of r.

Let’s ask why the supersymmetry of the D3 brane is broken in full 2-charge

microstate geometry. We have seen that the Killing spinors of the full six dimen-

sional background geometry of D3 − D3 system satisfy the projection condition
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(I + Γ̃0̂1̂)ξ
(0)
M6 = 0. In the near horizon region, the geometry neatly separates into

AdS and sphere parts, hence we can write gamma matrices for AdS part and they

act on the AdS part of Killing spinor. So we have

Γ̃0̂1̂ξ
(0)
ads = −ξ(0)

ads (7.192)

In the near horizon region we have two types of supersymmetries. In addition to

ordinary supersymmetries, there are also the superconformal supersymmetries. Only

ordinary supersymmetries continue to the far, i.e., asymptotically flat region. Now we

want to see if the projection condition (7.192) is compatible with the kappa symmetry

condition for D3 brane wrapping the sphere in the near horizon region. The condition

one finds in the near-horizon region is, with ξ(0) = ε0,

Γ̃0̂ε0 = −ε0 (7.193)

The condition to be continuable to the far region is that it be in an eigenvector of

Γ̃0̂1̂ = Γ̃2̂ i.e

Γ̃2̂ε0 = −ε0 (7.194)

In three dimensions, Γ̃0̂,1̂,2̂ are just Pauli matrices which don’t commute. Hence

it is not possible for them to have simultaneous eigenvectors. As a result, the two

conditions (7.193) and (7.194) are not compatible and hence Killing spinors in the far

region that are preserved by this D3 brane do not exist.
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5.8 Discussion

In [109] the 4-charge black hole was considered. The charges were D4-D4-D4-D0.

It was argued that the D0 branes swell up into D2 branes which wrap the horizon,

and which occupies a Landau level on the torus. The different ways to partition the

D0 branes into such groups gave the entropy of the hole.

We must however ask if the energy of the D0 branes remains the same when we

try to make them form a D2 brane; since we are looking at the states of an extremal

hole we do not have any ‘extra’ energy to make the D2 brane. It is not clear to us

how this would work in general, since in the limit where we have a very small D0

charge the mass of the D2 brane would seem to be just the area of the horizon times

the tension, and this is much more than the mass of the D0 branes attached to it.

In fact in the work of [109] the global energy which follows from the supersymmetry

algebra turned out to be equal to the mass of the D2 brane with no contribution to

the D0 charge! This is what would follow in our treatment if we chose a gauge for the

1-form potential of the background to be A(1) = RIIA

q0
sinhχ dτ rather than (3.76).

As we have noted, there is always an ambiguity in calculating energies from brane

actions.

The situation would be clearer if we had an asymptotically flat space-time. With

this in mind we have looked at 2-charge microstates which have a similar structure to

the system of [109], but where the AdS space inside goes over to asymptotically flat

space at large r. We find that the mass of the D3+P system (which is analogous to

the D2+D0 system) is given by the sum of two contributions: the energy carried by

P and an energy coming from the tension of the D3. It is interesting that the energy

is given by such a simple relation, because this configuration is not supersymmetric
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in the full asymptotically flat geometry. This suggests that there is some hidden

symmetry in this 2-charge background, but we do not have any clear understanding

of this as yet. But this also raises a puzzle about the relation of this computation

with that of [109], since the mass of the D3+P system is more than the mass of the

P charge alone.

We also computed the gauge field produced by the D3 brane wrapped on the

S3 in the full asymptotically flat geometry, and found that the field strength went

to a nonzero constant at infinity. This suggests a divergent total energy for the

field produced by the brane, or alternatively, that the D3 branes and anti-branes

wrapped in this way are ‘confined’ and cannot be separated to large distances without

generating a uniform energy density in the intervening spacetime. Note that the

energy E = P + M computed using the DBI action ignores this field energy. The

field energy is quadratic in the test brane charge, and would be ignored in a linear

analysis if it were finite.
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CHAPTER 6

DYNAMICS OF SUPERTUBES

6.1 Introduction

In chapter 2, we saw that a supersymmetric brane in Type II string theory is a

1/2 BPS object. The bound state of N identical branes (wrapped on a torus) can be

mapped by duality to a massless quantum with momentum P = N/R on a circle of

radius R. Thus the bound state has degeneracy 256, regardless of N .

The situation is very different for 1/4 BPS states. Such states can be made in

many duality related ways: NS1-P, NS1-D0, D0-D4, D1-D5 etc. If the two charges

are n1, n2 then the degeneracy of the bound state is Exp[2π
√

2
√
n1n2] [198, 199]. In

the classical limit n1, n2 → ∞ this degeneracy manifests itself as a continuous family

of solutions. Examples are the 2-charge D1-D5 solutions found in [150] and the

supertubes constructed in [10, 67, 68]. These 2-charge states are important because

they give the simplest example of a black hole type entropy [199].

In this chapter we address the question: What is the low energy dynamics of

such 1/4 BPS states? We will perform some calculations to arrive at a conjecture

for the answer. The behavior of the system can depend on whether the coupling is

small or large, and whether we have bound states or unbound states. For this reason
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we first give an overview of possible dynamical behaviors, and then summarize our

computations and conclusions.

6.1.1 Possibilities for low energy dynamics

In the following it will be assumed that all compactifications are toroidal, and

all branes are wrapped on these compact directions in a way that preserves 1/4

supersymmetry.

(a) ‘Drift’ on moduli space: A D0 brane can be placed at rest near a D4 brane;

there is no force between the branes. Thus we have a moduli space of possibilities

for the relative separation. If we give the branes a small relative velocity v then we

get a ∼ v2 force, and the resulting motion can be described by ‘motion on moduli

space’ [69]. More generally, we can make 3-charge black holes that are 1/8 BPS and

their slow motion will be described by motion on a moduli space [70, 71]. For later

use we make the required limits explicit: The velocity v is O(ε), the time over which

we follow the motion is O(1/ε), and the distance in moduli space over which the

configuration ‘drifts’ is O(1)

v ∼ ε, ∆t ∼ 1

ε
, ∆x ∼ 1, (ε→ 0) (1.1)

Note that the different branes or black holes involved here are not bound to each

other.

(b) Oscillations: Consider branes carrying just one charge, and let these be NS1

for concreteness. Then the force between branes is ∼ v4. So for the relative motion

between such branes we again get ‘drift’ on moduli space except that the moduli

space is flat [72]. But we can also focus on just one brane and study its low energy

192



excitations. These will be vibration modes along the brane, with the amplitude for

each harmonic behaving like a harmonic oscillator. Calling the amplitude for a given

harmonic An ≡ x we note that x will have the time evolution x = x̄ cos(ωt + φ).

Setting x̄ = ε for a small deformation, the analogue of (1.1) is

v ∼ ε, ∆t ∼ 1, ∆x ∼ ε, (ε→ 0) (1.2)

where we have assumed that we are not looking at a zero mode ω = 0. For the zero

mode we will have the behavior

x = x0 + vt (1.3)

and we get ‘drift’ over configuration space with characteristics given by (1.1).

(c) ‘Quasi-oscillations’: Consider a charged particle free to move in the x − y

plane in a uniform magnetic field Fxy = B. The particle can be placed at rest at any

position on the plane, and it has the same energy at all these points. Thus far its

behavior looks like that of a system with a zero mode. But if we give the particle

a small velocity then it describes a small circle near its original position, instead of

‘drifting’ along the plane. The motion is described by

v ∼ ε, ∆t ∼ 1, ∆x ∼ ε (ε→ 0) (1.4)

Thus even though we may have a continuous family of energetically degenerate con-

figurations, this does not mean that the dynamics will be a ‘drift’ along this space.

(d) Gravitational radiation: We are going to give our system a small energy

above extremality. But the system is coupled to Type II supergravity, and there are

massless quanta in this theory. Thus any energy we place on our branes can leave
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the branes and become radiation flowing off to infinity. There will of course always

be some radiation from any motion in the system, but the relevant issue here is the

time scale over which energy is lost to radiation. If the time scale relevant to the

dynamics is ∆t then as ε → 0 we have to ask what fraction of the energy is lost to

radiation in time ∆t. If the fraction is O(1), then the system is strongly coupled to

the radiation field and cannot be studied by itself while ignoring the radiation. If on

the other hand the fraction of energy lost to radiation goes to zero as ε→ 0 then the

radiation field decouples and radiation can be ignored in the dynamics.

(e) Excitations trapped near the brane: In the D1-D5 system we can take a limit

of parameters such that the geometry has a deep ‘throat’ region. In [189, 150] it

was found that excitations of the supergravity field can be trapped for long times in

this throat; equivalently, we can make standing waves that leak energy only slowly

to the radiation modes outside the throat [133]. These are oscillation modes of the

supergravity fields and thus could have been listed under (b) above. We list them

separately to emphasize that the fields excited need not be the ones making the

original brane state; thus the excitation is not in general a collective mode of the

initial fields.

6.1.2 Results and conjectures

Consider first the D1-D5 bound state geometries found in [150]. These geometries

are flat space at infinity, they have a locally AdS3 × S3 × T 4 ‘throat’, and this throat

ends smoothly in a ‘cap’. The geometry of the cap changes from configuration to

configuration, and is parametrized by a function ~F (v). All the geometries have the
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same mass and charges, are 1/4 BPS, and yield (upon quantization) different bound

states of the D1-D5 system.

What happens if we take one of these geometries and add a small energy? The

bound state of D1-D5 branes has a nontrivial transverse size, so one may say that the

brane charges have separated away from each other in forming the bound state. If the

charges indeed behave like separate charges then we would expect ‘drift on moduli

space’ dynamics, (type (a) in our list). Or does the bound state fragment into a few

unbound states, which then drift away from each other? This is in principle possible,

since the D1-D5 system is threshold bound. Do we stay within the class of bound

geometries of [150] but have ‘drift on moduli space’ (1.1) between different bound

state configurations (i.e. drift on the space ~F (v))? Or do we have one of the other

possibilities (b)-(e)?

Now consider the opposite limit of coupling: Take a supertube in flat space. The

supertube carries NS1-D0 charges, and develops a D2 ‘dipole’ charge. This D2 brane

can take on a family of possible profiles in space, giving a continuous family of 1/4

BPS configurations. What happens if we take a supertube in any given configuration

and add a small amount of energy? Is there a ‘drift’ among the family of allowed

configurations, or some other kind of behavior?

In [75] the ‘round supertube’ was considered, and the low energy behavior yielded

excitations with time dependence ∼ e−iωt. Can we conclude that there is no ‘drift’

among supertube configurations? Any drift can occur only between states that have

the same values of conserved quantities. The round supertube has the maximal

possible angular momentum J for its charges, and is the only configuration with

this J . So ‘drifting’ is not an allowed behavior if we give a small excitation to this
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particular supertube, and we must look at the generic supertube to know if periodic

behavior is the norm.

We now list our computations and results:

(i) First we consider the 2-charge systems in flat space (i.e., we set g = 0). It

turns out that the simplest system to analyze is NS1-P, which is given by a NS1

string wrapped n1 times around a circle S1, carrying np units of momentum along the

S1. The added excitation creates further vibrations on the NS1. But this is just a

state of the free string, and can be exactly solved (the classical solution is all we need

for our purpose). Taking the limit n1, np → ∞ we extract the dynamical behavior

of the supertube formed by NS1-P charges. In this way we get not only the small

perturbations but arbitrary excitations of the supertube.

We then dualize from NS1-P to D0-NS1 which gives us the traditional supertube.

This supertube can be described by a DBI action of a D2 brane carrying fluxes.

We verify that the solution found through the NS1-P system solves the dynamical

equations for the D2, both at the linear perturbation level and at the nonlinear level.

Even before doing the calculation it is easy to see that there is no ‘drift’ over

configurations in the NS1-P dynamics. The BPS string carries a right moving wave,

and the excitation just adds a left moving perturbation. Since right and left movers

can be separated, the perturbation travels around the string and the string returns

to its initial configuration after a time ∆t ∼ 1. But this behavior of the ‘supertube’

is not an oscillation of type (b); rather it turns out to be a ‘quasi-oscillation’ of

type (c). This can be seen from the fact that even though we move the initial tube

configuration towards another configuration of the same energy, the resulting motion

is periodic rather than a ‘drift’ which would result from a zero mode (1.3).
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(ii) Our goal is to move towards larger values of the coupling g. At g = 0 the

gravitational effect of the supertube does not manifest itself at any distance from

the supertube. Now imagine increasing g, till the gravitational field is significant

over distances ∼ Q from the supertube. Let the radius of the curve describing the

supertube profile be ∼ a. We focus on the domain

Q� a (1.5)

Then we can look at a small segment of the supertube which looks like a straight line.

But this segment is described by a geometry, and we look for small perturbations of

the geometry. We solve the linearized supergravity equations around this ‘straight

line supertube’ and note that the resulting periods of the solutions agree with (i)

above.

We note however that far from the supertube the gravity solution will be a pertur-

bation on free space with some frequency satisfying ω2 > 0. The only such solutions

are traveling waves. For small Q/a we find that the amplitude of the solution when

it reaches the approximately flat part of spacetime is small. Thus we expect that the

radiation into modes of type (d) will be suppressed by a power of Q/a.

(iii) Now imagine increasing g to the point where

Q ∼ a (1.6)

In this situation we see no reason why the part of the wavefunction leaking into the

radiation zone should be suppressed. Thus we expect that the excitation will not

be confined to the vicinity of the branes, but will be a gravitational wave that will

flow off to infinity over a time of order the crossing time across the diameter of the

supertube.
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(iv) We increase the coupling further so that

Q� a (1.7)

Now the geometry has a deep ‘throat’ and as mentioned above we find excitations

which stay trapped in this throat for long times, with only a slow leakage to radiation

at infinity. What is the relation between these excitations and those found in (ii)? We

argue that these two kinds of excitations are different, and represent the excitations

in two different phases of the 2-charge system. These two phases were identified by

looking at microscopic degrees of freedom as a function of g in [76, 77], and what we

see here appears to be a gravity manifestation of the transition.

(v) All the above computations were for bound states of the 2-charge system. But

we have seen above that if have unbound states – two different 2-charge black holes

for example – then we get ‘drift’ modes of type (a). It looks reasonable to assume

that in any coupling domain if we have two or more different bound states then the

relative motion of these components will be a ‘drift’. For example at g = 0 we can

have two supertubes that will move at constant velocity past each other.

It is intriguing to conjecture that this represents a basic difference between bound

and unbound states: Bound states have no ‘drift’ modes and unbound states do have

one or more such modes. The importance of this conjecture is that 3-charge systems

are very similar to 2-charge ones, so we would extend the conjecture to the 3-charge

case as well. While all bound states can be explicitly constructed for the 2-charge

case, we only know a few 3-charge bound states [9]. There is a way to construct all

3-charge supersymmetric solutions [12] but the construction does not tell us which

of these solutions are bound states. Since these bound states are the microstates of
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the 3-charge extremal black hole, it is very important to be able to select the bound

states out of all the possible supersymmetric solutions. The above conjecture says

that those states are bound which do not have any ‘drift’ type modes of excitations,

and the others are unbound. If this conjecture is true, then we have in principle a

way to identify all 3-charge black hole states.

Note: We will use the term ‘supertube’ or just ‘tube’ for 2-charge bound states

in all duality frames, and at all values of the coupling. The supertube made from

D0,NS1 charges carries a D2 dipole charge, and we will call this the D0-NS1 supertube

or the D2 supertube. When we use charges NS1,P we will call the object the NS1-P

supertube.

6.2 The NS1-P bound state in flat space

We will find that the most useful representation of the 2-charge system will be

NS1-P. We compactify a circle S1 with radius Ry; let X1 ≡ y be the coordinate along

this S1. The elementary string (NS1) is wrapped on this S1 with winding number n1,

and np units of momentum run along the S1. We are interested in the bound state of

these charges. This corresponds to the NS1 being a single ‘multiwound’ string with

wrapping number n1, and the momentum is carried on this NS1 by its transverse

oscillations.27

Consider first the BPS states of this system. Then all the excitations carry mo-

mentum in one direction; we set this to be the positive y direction and call these

excitations ‘right moving’. In Fig.6.1(a) we open up the multiwound string to its

27The momentum can also be carried by the fermionic superpartners of these oscillation degrees
of freedom, but we will not focus on the fermions in what follows. For a discussion of fermion modes
in the 2-charge system see for example [78] .
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covering space where we can see the transverse oscillation profile. As explained in

[79] these oscillations cause the n1 strands to separate from each other and the bound

state acquires a transverse ‘size’. For the generic state of this 2-charge system the

radius of the state is ∼
√
α′ and the surface area of this region gives the entropy of

the state by a Bekenstein type relation [8]

A

4G
∼ Smicro = 2π

√
2
√
n1n5 (2.1)

To understand the generic state better it is useful to look at configurations that

have a much larger transverse size, and later take the limit where we approach the

generic state. The relevant limit is explained in [80]. In this limit the wavelength of

the vibration on the multiwound string is much larger than the radius of the S1, so

locally the strands of the NS1 look like Fig.6.1(b). In the classical limit n1np → ∞

these strands will form a continuous ‘strip’, which will be described by (i) the profile

of the strip in the space transverse to the S1 and (ii) the ‘slope’ of the strands at any

point along the profile.28

An S-duality gives NS1-P → D1-P, and a further T-duality along y gives D1-P →

D0-NS1. But note that locally the string is slanted, and the T-duality also generates

a local D2 charge. Thus we get a ‘supertube’29 where the D0-NS1 have formed a D2

[10]. There is of course no net D2 charge; rather the D2 is a ‘dipole’ charge. Note

also that the slope of the NS1 in the starting NS1-P configuration implies that the

momentum is partly along the direction of the ‘strip’. Since we do no dualities in the

strip direction we will end up with momentum being carried along the D2 supertube.

28Note that the separation between successive strands is determined by the slope, since the radius
of the S1 is fixed at Ry.

29In [81] the same dualities were performed in the reverse order.
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Figure 6.1: (a) The NS1 carrying a transverse oscillation profile in the covering space of

S1. (b) The strands of the NS1 as they appear in the actual space.

In this BPS configuration the D2 supertube is stationary. If we add some extra

energy to the tube (while keeping its true (i.e. non-dipole) charges fixed) then we

will get the dynamics of the supertube. But we can study the dynamics in the NS1-P

picture and dualize to the D2 supertube at the end if we wish. In the NS1-P picture

we just have to study a free, classical string. Here the left and right movers decouple

and the problem can be solved exactly. Let us review this solution and extract the

dynamics of the ‘supertube’ in the limit of large charges.

6.2.1 The classical string solution

The string dynamics in flat space is described by the Nambu-Goto action

SNG = −T
√

− det[
∂Xµ

∂χa
∂Xµ

∂χb
] (2.2)

where

T =
1

2πα′ (2.3)
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We can get an equivalent dynamics by introducing an auxiliary metric on the world

sheet (this gives the Polyakov action)

SP = −T
2

∫

d2χ
√−g∂X

µ

∂χa
∂Xµ

∂χb
gab (2.4)

The variation of gab gives

∂Xµ

∂χa
∂Xµ

∂χb
− 1

2
gab

∂Xµ

∂χc
∂Xµ

∂χd
gcd = 0 (2.5)

so gab must be proportional to the induced metric. Substituting this gab in (2.4) we

get back (2.2), thus showing that the two actions are classically equivalent.

The Xµ equations give

∂a[
√−g∂Xµ

∂χb
gab] = 0 (2.6)

Note that the solution for the Xµ does not depend on the conformal factor of gab.

We choose coordinates χ0 ≡ τ̂ , χ1 ≡ σ̂ on the world sheet so that gab = e2ρηab for

some ρ. Writing

χ+ = χ0 + χ1, χ− = χ0 − χ1 (2.7)

we have

g++ = 0, g−− = 0 (2.8)

Since the induced metric must be proportional to gab we get

∂Xµ

∂χ+

∂Xµ

∂χ+
= 0,

∂Xµ

∂χ−
∂Xµ

∂χ− = 0 (2.9)

Thus in these coordinates we get a solution if the Xµ are harmonic functions

X ,a
µ a = 0 (2.10)

and they satisfy (2.9). The equations (2.10) imply that the coordinates Xµ can be

expanded as

Xµ = Xµ
+(χ+) +Xµ

−(χ−) (2.11)
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We can use the residual diffeomorphism symmetry to set the harmonic function

X0 to30

X0 = â+ b̂τ̂ = â+ b̂
1

2
(χ+ + χ−) (2.12)

Let the coordinate along the S1 be called y. We can solve the constraints to express

the terms involving y in terms of the other variables. We find

∂+y+ = ±

√

b̂2

4
− ∂+X i

+∂+X i
+ , ∂−y− = ±

√

b̂2

4
− ∂−X i

−∂−X
i
− (2.13)

where X i, i = 1 . . . 8 are the spatial directions transverse to the S1. The parameter b̂

should be chosen in such a way that the coordinate y winds nw times around a circle

of length Ry when σ̂ → σ̂ + 2π. There is no winding around any other direction.

We also use a reference frame in which the string has no momentum in any direction

transverse to the S1. We let 0 ≤ σ̂ < 2π. Then the target space coordinates can be

expanded as

y =
α′np
Ry

τ̂ + nw Ry σ̂ +
∑

n6=0

(cn e
i n χ−

+ dne
i nχ+

)

X i =
∑

n6=0

(cin e
i n χ−

+ dine
i nχ+

) (2.14)

Define

S+ =

√

b̂2

4
− ∂+X i

+∂+X i
+ , S− =

√

b̂2

4
− ∂−X i

−∂−X
i
− (2.15)

From the energy and winding required of the configuration we find that the choice of

signs in (2.13) should be

∂+y+ = S+, ∂−y− = −S− (2.16)

30Note that it is more conventional to set a light cone coordinate X+ to be linear in τ̂ . Using a
light cone coordinate allows the constraints (2.9) to be solved without square roots, but for us this
is not important since we will not need to quantize the string.
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After an interval

∆τ̂ = π (2.17)

all the X i return to their original values. This can be seen by noting that σ̂ is only

a parameter that labels world sheet points, so the actual configuration of the system

does not depend on the origin we choose for σ̂. Thus consider the change

(τ̂ = τ̂1, σ̂) → (τ̂ = τ̂1 + π, σ̂ + π) (2.18)

From (2.14) we see that the X i are periodic with period τ̂ = π. The coordinate y

does not return to its original value, but in the classical limit that we have taken to

get the ‘supertube’ we have smeared over this direction and so the value of y is not

involved in describing the configuration of the supertube. But the slope of the NS1

at a point in the supertube is relevant, and is given by

s = |∂X
i

∂σ̂
|
/

(
∂y

∂σ̂
) (2.19)

But

∂y

∂σ̂
= nwRy +

∑

n6=0

[(−in)cne
in(τ̂−σ̂) + (in)dne

in(τ̂+σ̂)] (2.20)

We see that ∂y/∂σ̂ is periodic under (2.18) and thus so is (2.19).

From (2.12) we see that when τ̂ changes by the above period then

∆X0 = b̂∆τ̂ = b̂π (2.21)

and the supertube configuration returns to itself. But

b̂ = α′P 0 ≡ α′E (2.22)

where E is the energy of the configuration. We therefore find that the motion of the

supertube is periodic in the target space time coordinate with period

∆t = ∆X0 = α′πE (2.23)
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For the NS1-P system the dipole charge is NS1 – this arises from the fact that the NS1

slants as shown in Fig.6.1(b) and so there is a local NS1 charge along the direction

of the supertube. The tension of the NS1 is T = 1/(2πα′). This is thus the mass of

the dipole charge per unit length

md =
1

2πα′ (2.24)

We then see that (4.101) can be recast as

∆t =
1

2

E

md

(2.25)

This form for the period will be of use to us later, because we will find that it holds

in other duality frames as well.

6.2.2 The linearized perturbation

We can solve the NS1-P system exactly and we have thus obtained the exact

dynamics of the supertube in flat space. For some purposes it will be useful to look

at the small perturbations to the stationary tube configurations. We now study these

small perturbations, starting in a slightly different way from the above analysis.

Consider first the string in a BPS configuration: The wave on the string is purely

right moving. We know that in this case the waveform travels with the speed of light

in the positive y direction. Let us check that this is a solution of our string equations.

This time we know the solution in the static gauge on the worldsheet:

t = bτ̃ , y = bσ̃ (2.26)

Writing ξ± = τ̃ ± σ̃ and noting that a right moving wave is a function of ξ− we expect

the following to be a solution

t = b
ξ+ + ξ−

2
, y = b

ξ+ − ξ−

2
, X i = X i(ξ−) (2.27)
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In these worldsheet coordinates the induced metric is

ds2 = −b2 dξ+ dξ− + (X i′X i′) (dξ−)2 (2.28)

so it does not satisfy (2.8). (Here prime denotes differentiation with respect to ξ−).

However we can change to new coordinates on the worldsheet

(ξ̃+, ξ−) = (ξ+ − f(ξ−), ξ−) (2.29)

with

f ′(ξ−) =
(X i′X i′)(ξ−)

b2
(2.30)

This brings the metric to the conformally flat form

ds2 = −b2 dξ− dξ̃+ (2.31)

Moreover, rewriting (2.27) in terms of (ξ̃+, ξ−)

t = b
ξ̃+ + ξ− + f(ξ−)

2
, y = b

ξ̃+ − ξ− + f(ξ−)

2
, X i = X i(ξ−) (2.32)

one sees that the configuration is of the form

Xµ = xµ+(ξ̃+) + xµ−(ξ−) (2.33)

so that theXµ are harmonic in the coordinates (ξ̃+, ξ−). Thus the coordinates (ξ̃+, ξ−)

are conformal coordinates for the problem and we have verified that (2.27) is a solution

of the equations of motion.

We now proceed to adding a small right moving perturbation, which was our goal.

Consider the perturbed configuration

t = b τ̃ = b
ξ̃+ + ξ− + f(ξ−)

2
, y = b σ̃ = b

ξ̃+ − ξ− + f(ξ−)

2

X i = X i(ξ−) + xi(ξ̃+) (2.34)
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where xi is assumed small. Then the induced metric on the worldsheet is

ds2 = −(b2 − 2X i′xi
′
) dξ− dξ̃+ +O(x′)2 (dξ̃+)2 (2.35)

so that it is conformally flat to first order in the perturbation. The target space

coordinates Xµ in (2.34) are clearly of the form (2.33) so they are harmonic, and we

have found a solution of the string equations of motion.

6.2.3 Summary

We can get a general solution of the NS1-P system by taking arbitrary harmonic

functions X i in (2.14) and determining X0, y by (2.12), (2.13). Taking the classical

limit where the strands of the string forms a continuum gives the arbitrary motion of

the supertube, and the period of this motion is given by (2.25). The conformal gauge

coordinate σ̂ that is used on the string is not very intuitive, since it is determined by

the state of the string. We next looked at the linearized perturbation to a BPS state,

and this time we started with an intuitively simple coordinate on the string – the

static gauge coordinate σ̃ proportional to the spacetime coordinate y. We found the

explicit map (2.16) to the conformal gauge coordinates. The solution to the linearized

problem was then given by an arbitrary choice of the xi in (2.34).

We will now see that these solutions reproduce the behavior of the D2 brane

supertube at the exact and linearized levels respectively. The NS1-P system is the

easiest way to solve the problem, since it exhibits the separation of the dynamics into

a left and a right mover; this separation is not obvious in the other duality frames.
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6.3 Perturbations of the D0-NS1 supertube

In this section we will consider the more conventional definition of the supertube:

The true charges are D0-NS1 and the dipole charge is a D2. The dynamics is given by

the DBI action of the D2 with worldvolume fields corresponding to the true charges.

In [75] perturbations were considered around the ‘round supertube’ which has as its

profile a circle in the (X1, X2) plane. This supertube has the maximum possible

angular momentum J for its charges. So if we add a small perturbation to it we

know that we will not get a ‘drift’ through a set of supertube configurations – J is

conserved and there are no other configurations with this value of J . So even though

periodic excitations were found for this supertube we cannot conclude from this that

small perturbations to the generic supertube will also be periodic. Thus we wish to

extend the computation of [75] to the generic supertube. We will write the equations

of motion for the generic case, but instead of solving them directly we will note that

we have already solved the problem in NS1-P language and we will just dualize the

solution there and check that it solves the equations for the D0-NS1 supertube.31

We work in flat space with a compact S1 of length L̃y = 2πR̃y, parametrized by

the coordinate y. We have already obtained the general motion of the supertube in

the NS1-P description, and below will verify that this solves the general D2 supertube

equations as well. But first we check the behavior of small perturbations, and for this

purpose we model our presentation as close to that of [75] as possible. Thus we let

the supertube lie along a closed curve γ in the (X1, X2) plane, but γ need not be a

circle as in [75]. The worldvolume of the D2 will be γ × S1.

31The fact that for given charges there is a range of possible configurations around a generic
supertube was also noted in [82].
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Let R and σ be the radial and angular coordinates in the (X1, X2) plane. We

will denote by Za all the coordinates other than t, X1, X2, y. We will also sometimes

use the notation XI = {X1, X2, Za}. We fix a gauge in which the world volume

coordinates on the D2 brane are t, σ, y. Thus the angular coordinate in the supertube

plane serves as the parameter along the supertube curve γ. On the D2 world volume

we have a gauge field, for which we adopt the gauge

At = 0 (3.1)

Thus the gauge field has the form

A = Aσ dσ + Ay dy (3.2)

The D2-brane Lagrangian density is given by usual Born-Infeld term:

L = −T2

√

−det(g + F ) (3.3)

where T2 is the D2 brane tension, g is the metric induced on the D2 world volume

and F is the field strength of A. There are no background fields, so there is no

Chern-Simons term in the action.

We want to consider fluctuations around a static configuration described by the

curve

R = R̄(σ) , Za = 0 (3.4)

and field strength

F = Ē dt ∧ dy + B̄(σ) dy ∧ dσ (3.5)

It is known [10] that this configuration32 satisfies the equations of motion and is

supersymmetric for arbitrary R̄(σ), B̄(σ) if Ē2 = 1 and sign B̄(σ) = ±1. Without

32Since the configuration is independent of t, y, the Bianchi identity requires that Ē be a constant.
There is no restriction on B̄ and it is an arbitrary function of σ.
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any loss of generality, we will take Ē = 1 and sign B̄(σ) = 1 in what follows. The

electric field Ē induces a NS1 integer charge given by

n1 =
1

T

∫

dσΠy =
1

T

∫

dσ
∂L

∂(∂tAy)
(3.6)

where T is the NS1 tension. The magnetic field B̄ induces a D0 integer charge equal

to

n0 =
T2

T0

∫

dydσ B̄(σ) (3.7)

where T0 is the D0 brane mass.

We want to study fluctuations around the configuration described above. So we

expand the Lagrangian up to quadratic order. We will assume that the fluctuations

do not depend on y. We parametrize the D2-brane world volume as

R = R̄(σ) + r(σ, t) , Za = za(σ, t) (3.8)

and the field strength as

F = E dt ∧ dy +B dy ∧ dσ + ∂taσ dt ∧ dσ

= (Ē + ∂tay) dt ∧ dy + (B̄(σ) − ∂σay) dy ∧ dσ + ∂taσ dt ∧ dσ (3.9)

where lower case quantities denote the fluctuations. The metric induced on the D2

brane world volume is

ds2 = −dt2 +(∂σR̄ dσ+∂σr dσ+∂tr dt)
2 +(R̄(σ)+ r)2 dσ2 +dy2 +(∂σza dσ+∂tza dt)

2

(3.10)
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The Lagrangian density L for the system is given by

− L
T2

=
√

−det(g + F )

= {−|∂tX|2|∂σX|2 + (∂tX · ∂σX)2 + (1 − E2)|∂σX|2 +B2(1 − |∂tX|2)

−2EB(∂tX · ∂σX) − (∂taσ)
2 }1/2

= {−R2[(∂tR)2 + |∂tza|2] − (∂tR)2|∂σza|2 − (∂σR)2|∂tza|2 + 2∂tR∂σR∂tza∂σza

+(1 − E2)[R2 + (∂σR)2 + |∂σza|2] +B2[1 − (∂tR)2 − |∂tza|2]

−2EB[∂tR∂σR + ∂tza ∂σza] + (∂tza ∂σza)
2 − |∂σza|2|∂tza|2

−(∂taσ)
2}1/2 (3.11)

We wish to find the equations of motion up to linear order in the perturbation.

To do this we expand L up to second order in r, ay, aσ:

L
T2

= L(0) + L(1) + L(2) (3.12)

We find

L(0) = −B̄ (3.13)

L(1) =
[

∂σay +
R̄2 + (∂σR̄)2

B̄
∂tay + ∂σR̄ ∂tr

]

(3.14)

We see that at first order in the perturbation the Lagrangian reduces to a total

derivative in σ and t; this verifies the fact that our starting configuration satisfies the
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equations of motion. The term quadratic in the perturbation is

L(2) = −1

2

[

−R̄
2 + (∂σR̄)2 + B̄2

B̄
(∂tr)

2 − 2∂tr ∂σr

− 2
R̄2 + (∂σR̄)2 + B̄2

B̄2
∂σR̄ ∂tr ∂tay − 4

∂σR̄

B̄
∂σr ∂tay − 4

R̄

B̄
r ∂tay

− (R̄2 + (∂σR̄)2 + B̄2) (R̄2 + (∂σR̄)2)

B̄3
(∂tay)

2 − 2
R̄2 + (∂σR̄)2

B̄2
∂tay ∂σay

− R̄2 + (∂σR̄)2 + B̄2

B̄
(∂tza)

2 − 2∂tza ∂σza −
|∂taσ|2
B̄

]

(3.15)

From this Lagrangian we find the following equations of motion for the linearized

perturbation:

R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t r + 2∂t∂σr +

(R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t ay + 2∂t∂σay

) ∂σR̄

B̄

−2
R̄

B̄
∂tay + 2∂σ

(∂σR̄

B̄

)

∂tay = 0

(R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t ay + 2∂t∂σay

) R̄2 + (∂σR̄)2

B̄2

+
(R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t r + 2∂t∂σr

) ∂σR̄

B̄
+ 2

R̄

B̄
∂tr + ∂σ

(R̄2 + (∂σR̄)2

B̄2

)

∂tay = 0

R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t za + 2∂t∂σza = 0

∂2
t aσ = 0 (3.16)

We have an additional equation coming from the variation of At; this is the Gauss

law which says

∂σEσ ≡ ∂σ∂taσ = 0 (3.17)

The last equation in (2.9) and (3.17) together say that we can add an electric field

along the σ direction but this field will be constant in both σ and t. We will henceforth

set this additional E to zero, and thus aσ = 0 for the rest of the calculation.

Note that only time derivatives of fields occur in the equations; there are no terms

where the fields appear without such time derivatives. Thus any time independent
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perturbation is a solution to the equations. This tells us that we can make arbitrary

time independent deformations of the supertube, reproducing the known fact that

the supertube has a family of time independent solutions.

The D0 and NS1 integer charges of the perturbed configuration are

n0 =
T2

T0

∫

dydσ (B̄(σ) − ∂σay) =
T2

T0

∫

dydσ B̄(σ)

n1 =
T2

T

∫

dσ
[R̄2 + (∂σR̄)2

B̄
+ 2

R̄

B̄
r

+
(R̄2 + (∂σR̄)2)(R̄2 + (∂σR̄)2 + B̄2)

B̄3
∂tay +

R̄2 + (∂σR̄)2

B̄2
∂σay

+
R̄2 + (∂σR̄)2 + B̄2

B̄2
∂σR̄ ∂tr + 2

∂σR̄

B̄
∂σr
]

(3.18)

We see that the D0 charge is unchanged by the perturbation. This charge in fact

is a topological invariant of the gauge field configuration. For the NS1 charge we can

check conservation by explicitly computing the time derivative and verifying that it

vanishes.

The angular momentum in the (X1, X2) plane is

J =

∫

dσ dy (Π2X1 − Π1X2) (3.19)

where

Πi =
∂L

∂(∂tXi)
, i = 1, 2 (3.20)

From the Lagrangian (4.82) we find

Πi = −T 2
2

(

∂tXi [(∂σX)2 +B2] − ∂σXi [(∂tX∂σX) − EB]

L

)

(3.21)

Expanding J up to first order in the perturbation we get

J = T2 (2πR̃y)

∫

dσ
[

R̄2 + 2R̄ r +
R̄2 (R̄2 + (∂σR̄)2 + B̄2)

B̄2
∂tay

]

(3.22)
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6.3.1 Using the NS1-P solution: Linear perturbation

The equations (2.9) for the perturbations to the D2 brane look complicated, but

we will obtain the solution by dualizing the NS1-P solution found above. Recall

that we have split the spatial coordinates transverse to the S1 (i.e. the X) as X =

{X1, X2, Za}. To arrive at the D2 supertube in the (X1, X2) plane we assume that

the right moving wave on the NS1 has its transverse oscillations only in the (X1, X2)

plane. This solution is then perturbed by a small left-moving wave. Recall that we

had defined static gauge coordinates τ̃ , σ̃ (2.13) on the world sheet and then obtained

the conformal coordinates ξ̃+, ξ−. We will find it convenient to use as independent

variables τ̃ and ξ−. This is because from (2.13) we see that τ̃ directly gives the target

space time t, and ξ− is the variable in terms of which we have the basic right moving

wave X(ξ−) that gives the unperturbed solution. Thus we have

ξ̃+ = ξ+ − f(ξ−) = 2τ̃ − ξ− − f(ξ−) , f ′ =
(X ′

1)
2 + (X ′

2)
2

b2
(3.23)

For the NS1-P solution the target space coordinates are given by

t = b τ̃

y = b σ̃ = b (τ̃ − ξ−)

Xi(ξ
−, τ̃) = Xi(ξ

−) + xi(ξ̃
+) , i = 1, 2

Za(ξ
−, τ̃) = za(ξ̃

+) (3.24)

where xi, za are small perturbations.

We perform an S-duality to go from NS1-P to D1-P, and then a T-duality along

S1 to get the D0-NS1 supertube. The S1 coordinate y goes, under these changes, to

the component Ay of the gauge field on the D2. In the normalization of the gauge
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field A used in the action (3.3) we just get

y → Ay (3.25)

so from (3.24) we have

Ay = t− b ξ− (3.26)

In this solution derived by duality from NS1-P the natural coordinates on the D2

are (τ̃ , ξ−, y).33 But when we wrote the DBI action for the D2 the natural coordinates

were (t, σ, y), where σ was the angle in the (X1, X2) plane

tan σ =
X2(ξ

−, τ̃)

X1(ξ−, τ̃)
(3.27)

The coordinates t and τ̃ are related by a constant, so there is no difficulty in replacing

the t by τ̃ in converting the NS1-P solution to a D0-NS1 supertube solution. But

the change ξ− → σ is more complicated, and will necessitate the algebra steps below.

Inverting (3.27) gives

ξ− = ξ−(σ, τ̃) (3.28)

so we see that the change ξ− → σ depends on time as well, if the supertube is

oscillating. The variables describing the supertube configuration will be

R(σ, τ̃) =
√

X2
1 (ξ−(σ, τ̃), τ̃) +X2

2 (ξ−(σ, τ̃ ), τ̃)

Ay(σ, τ̃) = t− b ξ−(σ, τ̃ )

Za(σ, τ̃) = Za(ξ
−(σ, τ̃ ), τ̃) (3.29)

which should satisfy the equations for the D0-NS1 supertube.

33In these coordinates we can see that the electric field is E = ∂tAy = 1, as expected for the
stationary supertube configurations.
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First consider the unperturbed configuration. Here the transformation (3.28) does

not depend on τ̃ . For the variables of the unperturbed configuration we write

X̄i = Xi(ξ̄
−(σ)) , X̄ ′

i = X ′
i(ξ̄

−(σ)) , i = 1, 2 (3.30)

where the prime denotes a derivative with respect to the argument ξ̄−. The function

ξ̄−(σ) will be the solution of the equation

tanσ =
X̄2(ξ̄

−)

X̄1(ξ̄−)
(3.31)

and the stationary configuration will be given by

R̄(σ) =
√

X̄2
1 + X̄2

2

B̄(σ) = −∂σAy = b ∂σ ξ̄
−(σ) (3.32)

From the above definitions we can derive the identities

B̄

R̄2
=

b

X̄1X̄ ′
2 − X̄2X̄ ′

1

∂σR̄ =
B̄

b R̄
(X̄1X̄

′
1 + X̄2X̄

′
2) (3.33)

Using these identities one can prove a relation that will be important in the following

R̄2 + (∂σR̄)2 = B̄2 f̄ ′ (3.34)

where f̄ ′ = f ′(ξ̄−(σ)). Now consider the small perturbation on the supertube. We

will keep all quantities to linear order in the xi, za. Inverting the relation (3.27) gives

us

ξ− = ξ̄− + ξ̂− , ξ̂−(σ, τ̃ ) = − X̄1 x̃2 − X̄2 x̃1

X̄1X̄ ′
2 − X̄2X̄ ′

1

(3.35)

where

x̃i = xi(2τ̃ − ξ̄− − f(ξ̄−)) , i = 1, 2 (3.36)
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Using (3.35), the first identity in (3.33), and performing an expansion to first order

in xi, we find the perturbation around the static configuration

r(σ, τ̃) = R(σ, τ̃ ) − R̄(σ) =
B̄

b R̄
(x̃1X̄

′
2 − x̃2X̄

′
1)

= x̃1 cos σ + x̃2 sin σ +
∂σR̄

R̄
(x̃1 sin σ − x̃2 cos σ)

ay(σ, τ̃ ) = −b ξ̂− = − B̄

R̄2
(x̃1X̄2 − x̃2X̄1)

= −B̄
R̄

(x̃1 sin σ − x̃2 cos σ)

za(σ, τ̃ ) = za(2τ̃ − ξ̄− − f(ξ̄−)) ≡ z̃a (3.37)

We would like to check that the functions r, ay and za defined above satisfy the

equations of motion (2.9). For this purpose, some useful identities are

∂σx̃
′
i = −B̄

b
(1 + f̄ ′) x̃′′i , ∂σ z̃

′
a = −B̄

b
(1 + f̄ ′) z̃′′a (3.38)

We can simplify some expressions appearing in the equations of motion (2.9)

R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t r + 2∂t∂σr =

4

b

[

−x̃′1 sin σ + x̃′2 cos σ +
∂σR̄

R̄
(x̃′1 cos σ + x̃′2 sin σ)

]

+
4

b
∂σ

(∂σR̄

R̄

)

(x̃′1 sin σ − x̃′2 cos σ)

R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t ay + 2∂t∂σay = −4

B̄

b R̄
(x̃′1 cos σ + x̃′2 sin σ)

−4

b
∂σ

(B̄

R̄

)

(x̃′1 sin σ − x̃′2 cos σ)

R̄2 + (∂σR̄)2 + B̄2

B̄
∂2
t za + 2∂t∂σza = 0 (3.39)

The last identity proves that the equations for za are satisfied. For the equations

involving r and ay some more work is needed. The l.h.s. of the first equation in (2.9)
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is equal to

4

b
(x̃′1 sin σ − x̃′2 cos σ)

[

−1 + ∂σ

(∂σR̄

R̄

)

− ∂σ

(B̄

R̄

) ∂σR̄

B̄
+
B̄

R̄

( R̄

B̄
− ∂σ

(∂σR̄

B̄

))]

+
4

b
(x̃′1 cos σ + x̃′2 sin σ)

[∂σR̄

R̄
− B̄

R̄

∂σR̄

R̄

]

(3.40)

which, after some algebra, is seen to vanish. The l.h.s. of the second equation in (2.9)

is

4

b
(x̃′1 sin σ − x̃′2 cos σ)

[

−R̄
2 + (∂σR̄)2

B̄2
∂σ

(B̄

R̄

)

− ∂σR̄

B̄

(

1 − ∂σ

(∂σR̄

R̄

))

+
R̄

B̄

∂σR̄

R̄
− 1

2

B̄

R̄
∂σ

(R̄2 + (∂σR̄)2

B̄2

)]

+
4

b
(x̃′1 cos σ + x̃′2 sin σ)

[

−B̄
R̄

R̄2 + (∂σR̄)2

B̄2
+

(∂σR̄)2

B̄R̄
+
R̄

B̄

]

(3.41)

which also vanishes.

We thus find that the expressions (3.37), with xi, za arbitrary functions of their

arguments, satisfy the equations (2.9).

6.3.2 Period of oscillation

We would like to determine the period of the oscillations of the solution (3.37).

The world sheet coordinate σ̃ has a period 2π. The time dependence of the solution

(3.37) is contained in functions xi(2τ̃ − ξ̄− − f(ξ̄−)) and za(2τ̃ − ξ̄− − f(ξ̄−)). The

quantity (X′)2(ξ̄−) which appears in the definition of f(ξ̄−) will be the sum of a

constant term, R̃2, plus terms periodic in ξ̄−:

(X′)2(ξ̄−) = R̃2 +
∑

n6=0

(ane
in ξ̄− + c.c.) (3.42)

which implies that f has the form

f(ξ̄−) =
R̃2

b2
ξ̄− +

∑

n6=0

(bne
in ξ̄− + c.c.) (3.43)
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The functions xi, za are functions of the coordinate ξ̄− along the supertube. This

supertube is a closed loop, so all functions on it are periodic under the shift (τ̃ , ξ̄−) →

(τ̃ , ξ̄− + 2π). This implies

xi

(

2τ̃ − ξ̄− − f(ξ̄−)
)

= xi

(

2τ̃ − ξ̄− − f(ξ̄−) − 2π
(

1 +
R̃2

b2

))

(3.44)

where we have used (3.43) to get the change in f(ξ̄−).

We have a similar relation for za(2τ̃ − ξ̄− − f(ξ̄−)). Thus the period of the oscil-

lations is given by

∆t = b∆τ̃ = π
b2 + R̃2

b
(3.45)

This form of the period is similar to that found in [75]; it reduces to the period found

there when the radius R̄ is a constant.

To arrive at our more general form (2.25) we write

ξ̄− + f(ξ̄−) =

∫ ξ̄−

0

dχ(1 + f ′(χ)) (3.46)

So the change in ξ̄− + f(ξ̄−) when ξ̄− increases by 2π can be written as
∫ 2π

0
dχ(1 +

f ′(χ)). We then find that the argument of xi, za are unchanged when (τ̃ , ξ̄−) →

(τ̃ + ∆τ̃ , ξ̄− + 2π) with

2∆τ̃ −
∫ 2π

0

(

1 + f ′(ξ̄−)
)

dξ̄− = 0 (3.47)

Using the identity (3.34) we write the above as

∆τ̃ =
1

2

∫ 2π

0

(

1 +
R̄2 + (∂σR̄)2

B̄2

)

dξ̄− (3.48)

Now using the fact that B̄ = b ∂σ ξ̄
−, ∆t = b∆τ̃ and changing variables from ξ̄−

to σ we get

∆t =
1

2

∫

dσ

(

B̄ +
R̄2 + (∂σR̄)2

B̄

)

(3.49)
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Now we express (3.49) in terms of the NS1 and D0 charges (we can use the

unperturbed values of these quantities), using

n1 =
T2

T

∫

dσ
R̄2 + (∂σR̄)2

B̄
, n0 =

T2

T0

∫

dy dσ B̄ (3.50)

We get

∆t =
1

2

(

n0T0 + n1T L̃y

T2L̃y

)

(3.51)

where L̃y = 2πR̃y is the length of y circle in the D0-NS1 duality frame.

Note that n0T0+n1T L̃y is the mass of the BPS state and since we have added only

an infinitesimal perturbation it is to leading order the energy E of the configuration.

Further T2L̃y is the mass of the D2 dipole charge per unit length of the supertube

curve γ. Thus we see that the period again has the form (2.25)

∆t =
1

2

E

md

(3.52)

6.3.3 Using the NS1-P solution: Exact dynamics

Now consider the exact NS1-P solution (i.e. not perturbative around a BPS

configuration). We again perform the required dualities to transform this solution

into a solution of the D2 supertube. We will use as world-volume coordinates for the

D2 brane (τ̂ , σ̂, y). Then the D2 solution is given by

X i = X i
+(χ+) +X i

−(χ−) , Ay = y+(χ+) + y−(χ−)

E = ∂τ̂Ay = ∂+y+ + ∂−y− = S+ − S−

B = −∂σ̂Ay = −∂+y+ + ∂−y− = −(S+ + S−) (3.53)

In this subsection X i denotes all coordinates other than t and y. We wish to prove

that (3.53) satisfies the dynamical equations of the D2 brane. The DBI lagrangian
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density is given by

L
T2

= −
√

−det(g + F )

= −[−(∂τ̂X)2(∂σ̂X)2 + (∂τ̂X∂σ̂X)2 + (b2 − E2)(∂σ̂X)2 +B2(b2 − (∂τ̂X)2)

−2EB(∂τ̂X∂σ̂X)]1/2 (3.54)

The equations of motion are

∂τ̂

[∂τ̂X
i[(∂σ̂X)2 +B2] − ∂σ̂X

i[(∂τ̂X∂σ̂X) − EB]

L
]

+ ∂σ̂

[∂σ̂X
i[(∂τ̂X)2 + E2 − b2] − ∂τ̂X

i[(∂τ̂X∂σ̂X) − EB]

L
]

= 0(3.55)

∂τ̂

[E(∂σ̂X)2 +B(∂τ̂X∂σ̂X)

L
]

− ∂σ̂

[B[(∂τ̂X)2 − b2] + E(∂τ̂X∂σ̂X)

L
]

= 0

To verify that these equations are satisfied by the configuration (3.53) we need fol-

lowing identities:

− L
T2

=
[b4

2
+ 4(∂+X+)2(∂−X−)2 + 4(∂+X+∂−X−)2

+b2[2S+S− − 2(∂+X+∂−X−) − (∂+X+)2 − (∂−X−)2] − 8S+S−(∂+X+∂−X−)
]1/2

=
b2

2
+ 2S+S− − 2(∂+X+∂−X−) (3.56)
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(∂σ̂X)2 +B2 = −[(∂τ̂X)2 + E2 − b2] =
b2

2
+ 2S+S− − 2(∂+X+∂−X−)

(∂τ̂X∂σ̂X) − EB = 0

E(∂σ̂X)2 +B(∂τ̂X∂σ̂X) = 2S+[(∂−X−)2 − (∂+X+∂−X−)]

− 2S−[(∂+X+)2 − (∂+X+∂−X−)]

= (S+ − S−)
[b2

2
+ 2S+S− − 2(∂+X+∂−X−)

]

B[(∂τ̂X)2 − b2] + E(∂τ̂X∂σ̂X) = 2S+

[b2

2
− (∂−X−)2 − (∂+X+∂−X−)

]

− 2S−

[

−b
2

2
+ (∂+X+)2 + (∂+X+∂−X−)

]

= (S+ + S−)
[b2

2
+ 2S+S− − 2(∂+X+∂−X−)

]

(3.57)

Then the equations (3.55),(3.56) become

∂2
τ̂X

i − ∂2
σ̂X

i = 4∂+∂−X
i = 0

∂τ̂ (S+ − S−) − ∂σ̂(S+ + S−) = 2∂−S+ − 2∂+S− = 0 (3.58)

which are seen to be satisfied due the harmonic nature of the fields X i, y.

6.3.4 ‘Quasi-oscillations’

In the introduction we termed the periodic behavior of the supertube a ‘quasi-

oscillation’. In a regular ‘oscillation’ there is an equilibrium point; if we displace the

system from this point then there is a force tending to restore the system to the

equilibrium point. But in the supertube we can displace a stationary configuration to

a nearby stationary configuration, and the system does not try to return to the first

configuration. The only time we have such a behavior for a usual oscillatory system

is when we have a ‘zero mode’ (1.3). Such zero modes allow a ‘drift’ in which we give
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the system a small initial velocity and then we have an evolution like (1.1). But the

supertube does not have this behavior either; there is no ‘drift’.34

Now consider a different system, a particle with charge e and mass m placed in

a uniform magnetic field Fxy = B. With the gauge potential Ay = x we have the

lagrangian

L =
m

2
[(ẋ)2 + (ẏ)2] + e ~A · ~v =

m

2
[(ẋ)2 + (ẏ)2] + e xẏ (3.59)

The equations of motion are

ẍ =
e

m
ẏ, ÿ = − e

m
ẋ (3.60)

Since each term in the equation has at least one time derivative, any constant position

x = x0, y = y0 is a solution. But if we perturb the particle slightly then the particle

does not drift over this space of configurations in the manner (1.1); instead it describes

a circle with characteristics (1.4). So while this motion is periodic the physics is not

that of usual oscillations, and we call it a ‘quasi-oscillation’.

Now we wish to show that the motion of the supertube is also a ‘quasi-oscillation’.

We will take a simple configuration of the D2 brane to illustrate the point. Let the

D2 brane extend along the z − y plane and oscillate in one transverse direction x.

We will restrict to motions which are invariant in y and thus described by a field

x = x(t, z). We will also turn on a (y-independent) world volume gauge field, for

which we choose the At = 0 gauge:

A = Az(t, z) dz + Ay(t, z) dy (3.61)

F = Ȧz dt ∧ dz + Ȧy dt ∧ dy + A′
y dz ∧ dy ≡ Ȧz dt ∧ dz + E dt ∧ dy − B dz ∧ dy

34By contrast, ‘giant gravitons’ have usual vibration modes [84]. The giant graviton in AdS3 ×S3

has a zero mode corresponding to changing the radius of the giant graviton, and we find a ‘drift’
over the values of this radius. In [133] giant gravitons were studied for AdS3 and it was argued that
they give unbound states where one brane is separated from the rest [133, 85].
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Using t, z and y as world volume coordinates, the DBI lagrangian density is

L
T2

= −
√

−det(g + F ) = −[1 − ẋ2 + x′2 +B2(1 − ẋ2) − E2(1 + x′2) − 2EB ẋx′ − Ȧ2
z]

1/2

(3.62)

In order to have a qualitative understanding of the dynamics induced by this la-

grangian, let us expand it around a classical stationary solution with x = 0, Ē = 1,

B = B̄ and Az = 0. We denote by ay(t, z) the fluctuation of the gauge field Ay, so

that

E = 1 + ȧy , B = B̄ − a′y (3.63)

As the gauge field Az decouples from all other fields we will set it to zero. Keeping

terms up to second order in x and ay, we find the quadratic lagrangian density to be

L(2) = −B̄ +
ȧy
B̄

+ a′y +
1 + B̄2

2B̄
ẋ2 + ẋ x′ +

1

B̄2

(1 + B̄2

2B̄
ȧ2
y + ȧy a

′
y

)

(3.64)

The terms of first order in ay are total derivatives (with respect to t and z) and do

not contribute to the action. The fields x and ay are decoupled, at this order, and

both have a lagrangian of the form

L
(2)
φ =

1 + B̄2

2B̄
φ̇2 + φ̇ φ′ (3.65)

(with φ = x or ay). As we can see the lagrangian (3.65) has no potential terms

(terms independent of φ̇) and we find that any time independent configuration solves

the equations of motion. There is however a magnetic-type interaction (φ̇ φ′), which

is responsible for the fact that all time dependent solutions are oscillatory. Indeed,

the equations of motion for φ are

1 + B̄2

2B̄
φ̈+ φ̇′ = 0 (3.66)
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whose solution is

φ = eik z−iω t , ω = 2
B̄

1 + B̄2
k (3.67)

One can make the analogy between the interaction φ̇ φ′ and the toy problem of a

particle in a magnetic field more precise by discretizing the z direction on a lattice of

spacing a. Then we have

∫

dz L
(2)
φ ≈ a

∑

n

(m

2
φ̇2
n + φ̇n

φn+1 − φn
a

)

≈ a
∑

n

(m

2
φ̇2
n +

φ̇n φn+1

a

)

(3.68)

where in the second line we have discarded a total time-derivative andm = (1+B̄2)/B̄.

The term φ̇n φn+1 is just like the term xẏ in (3.59) induced by a constant magnetic

field where the variables φn, φn+1 play the role of x, y.

6.3.5 Summary

We have obtained the full dynamics of the D2 supertube, by mapping the problem

to a free string which can be exactly solved. In the D2 language it is not obvious

that the problem separates into a ‘right mover’ and a ‘left mover’, but (3.53) exhibits

such a break up. This breakup needs a world sheet coordinate σ̂ that is a conformal

coordinate on the string world sheet, and is thus not an obvious coordinate in the D2

language. The D2 has a natural parametrization in terms of the angular coordinate

on the spacetime plane (X1, X2), and the difficulties we encountered in mapping the

NS1-P solution to the D2 supertube all arose from the change of parametrization.

6.4 The thin tube limit of the gravity solution

So far we have ignored gravity in our discussion of the supertube, so we were at

vanishing coupling g = 0. If we slightly increase g then the gravitational field of
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Figure 6.2: (a) The supertube at g → 0, described by a worldsheet action. (b) The ‘thin

tube’ at weak coupling. (c) The ‘thick tube’ reached at larger coupling. (d) At still larger

coupling we get a ‘deep throat’ geometry; the strands of the NS1 generating the geometry

run along the dotted curve.

the supertube will extend to some distance off the tube, but for small enough g this

distance will be much less than the radius of the supertube. We will call this the

‘thin tube limit’, and we picture it in Fig.6.2(b).

We expect that in this thin tube the dynamics should not be too different from

that found at g → 0, and we will find that such is the case; we will find periodic

excitations with frequency agreeing with that found from the free string computation

and the D2 brane DBI action. But by doing the problem in a gravity description we

move from the worldsheet theory to a spacetime one, which will help us to understand

what happens when we increase the coupling still further.
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Let us recall the 2-charge BPS geometries made in the NS1-P duality frame [150].

Start with type IIB string theory and take the compactification M9,1 →M4,1×S1×T 4.

As before the coordinate along S1 is y and the coordinates za, a = 1 . . . 4 are the

coordinates on T 4. The S1 has length Ly = 2πRy and the T 4 has volume (2π)4 V .

The four noncompact spatial directions are called x̄i, i = 1 . . . 4. We also write u =

t+ y, v = t− y.

The NS1 is wrapped n1 times around the S1, and carries np units of momentum

along the S1. This momentum is carried by transverse traveling waves; we assume

that the polarization of the wave is in the four noncompact directions and is described

by a function ~F (v). Then the string frame metric, B-field and dilaton are

ds2
string = H−1[−dudv +K dv2 + 2Ai dv dx̄i] + dx̄idx̄i + dzadza

B =
H−1 − 1

2
du ∧ dv +H−1Ai dv ∧ dx̄i

e2Φ = H−1 (4.1)

with

H = 1 +
Q̄1

LT

∫ LT

0

dv
∑

i(x̄i − Fi(v))2

K =
Q̄1

LT

∫ LT

0

dv

∑

i(Ḟi(v))
2

∑

i(x̄i − Fi(v))2

Ai = − Q̄1

LT

∫ LT

0

dv
Ḟi(v)

∑

i(x̄i − Fi(v))2
(4.2)

Here LT = 2π n1Ry is the total length of the multiply wound string.

The points on the NS1 spread out over a region in the noncompact directions with

size of order ∼ |~F (v)|. On the other hand the gravitational field of the NS1-P system

is characterized by the length scales (Q̄1)
1/2, (Q̄p)

1/2 where

Q̄p =
Q̄1

LT

∫ LT

0

dv
∑

i

(Ḟi(v))
2 (4.3)
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In terms of microscopic quantities we have

Q̄1 =
g2α′3

V
n1 , Q̄p =

g2α′4

V R2
y

np (4.4)

Thus when we keep other parameters fixed and take g very small then the gravitational

field of the supertube gets confined to a small neighborhood of the supertube and we

get a ‘thin tube’ like that pictured in Fig.6.2(b). If we increase g large then we pass

to a ‘thick tube’ like Fig.6.2(c) and then to the ‘deep throat’ geometry of Fig.6.2(d).

We can thus say that Fig.6.2(a) is ‘weak coupling’ and Fig.6.2(d) is ‘strong coupling’

but note that for ‘strong coupling’ g itself does not need to be large since the charges

n1, np are large in (4.4). Thus to be more correct we should say that Fig.2(d) is

obtained for large ‘effective’ coupling.

In this section we will consider the ‘weak coupling’ case so that we have a ‘thin

tube’. Then to study the nontrivial part of the metric we have to go close to a point

on the tube, so the tube looks essentially like an infinite straight line. Let z be a

coordinate along this line (not to be confused with za, which are coordinates on T 4)

and r the radial coordinate for the three-space perpendicular to the ring. The NS1-P

profile was described by a function ~F (v); let v = v0 correspond to the point z = 0

along the ring and choose the orientation of the z line such that z increases when y

increases. Then we have

z ≈ −| ~̇F (v0)|(v − v0) ,
∑

i

(x̄i − Fi(v))
2 ≈ z2 + r2 (4.5)

Since we are looking at distances r from the ring which are much smaller than the

size of the ring we have

r � |~F (v0)| (4.6)
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We can thus make the following approximations

H ≈ 1 +
Q̄1

LT | ~̇F (v0)|

∫ ∞

−∞

dz

z2 + r2
= 1 +

Q̄1 π

LT | ~̇F (v0)|
1

r

K ≈ Q̄1 | ~̇F (v0)| π
LT

1

r
, Az ≈

Q̄1 π

LT

1

r
(4.7)

Define the charge densities

Q1 ≡
Q̄1 π

LT | ~̇F (v0)|
, Qp ≡

Q̄1 | ~̇F (v0)| π
LT

(4.8)

Then we get the geometry (in the string frame)

ds2
string = H−1 [−2dt dv + K̃ dv2 + 2Adv dz] + dz2 + dxidxi + dzadza

B = (H−1 − 1) dt ∧ dv +H−1Adv ∧ dz

e2Φ = H−1 (4.9)

H = 1 +
Q1

r
, K̃ = 1 +K = 1 +

Qp

r
, A =

√

Q1Qp

r
(4.10)

Here we use xi, i = 1, 2, 3, to denote the three spatial noncompact directions trans-

verse to the tube.

We are looking for a perturbation of (4.9) corresponding to a deformation of the

string profile. The profile could be deformed either in the non-compact xi directions

or in the T 4 directions. We consider deformations in one of the directions of the T 4;

this maintains symmetry around the tube in the noncompact directions and is thus

easier to work with. We thus consider deforming the string profile in one of the T 4

directions, denoted ā. We will also smear the perturbed metric on T 4, so that our

fields will be independent on za.
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The BPS geometry (4.9) carries a wave of a definite chirality: let us call it right

moving. If the deformation we add also corresponds to a right moving wave, the

resulting geometry can be generated by Garfinkle-Vachaspati transform [13, 86]. This

will alter the metric and B-field as follows:

ds2
string → ds2

string + 2A(1) dzā , B → B + A(2) ∧ dzā (4.11)

where

A(1) = A(2) = H−1 av dv (4.12)

and av is a harmonic function on R
3 ×S1

z , whose form will be given in section (6.4.2).

If we also add a left moving deformation, thus breaking the BPS nature of the system,

we do not have a way to generate the solution. Note, however, that the unperturbed

system has a symmetry under

zā → −zā (4.13)

and the perturbation will be odd under such transformation. We thus expect that

only the components of the metric and B-field which are odd under (4.13) will be

modified at first order in the perturbation. We can thus still write the perturbation

in the form (4.11), with A(1) and A(2) some gauge fields on R
(3,1) × S1

z × S1
y , not

necessarily given by (4.12).

To find the equations of motion for A(1) and A(2) we look at the theory dimen-

sionally reduced on T 4, using the results of [111]. At first order in the perturbation

the dimensionally reduced metric g6 is simply given by the six-dimensional part of

the unperturbed metric (4.9). The part of the action involving the gauge fields is

SA =

∫ √−g6 e
−2Φ

[

−1

4
(F (1))2 − 1

4
(F (2))2 − 1

12
H̃2
]

(4.14)
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where all the index contractions are done with g6. F
(1) and F (2) are the usual field

strengths of A(1) and A(2) while the field strength H̃ of the dimensionally reduced

B-field B̃ includes the following Chern-Simons couplings:

H̃µνλ = ∂µB̃νλ −
1

2
(A(1)

µ F
(2)
νλ + A(2)

µ F
(1)
νλ ) + cyc. perm.

B̃µν = Bµν +
1

2
(A(1)

µ A(2)
ν −A(2)

µ A(1)
ν ) (4.15)

Using B̃, A(1) and A(2) as independent fields, we find that the linearized equations of

motion for the gauge fields are

∇µ(e−2Φ F
(1)
µλ ) +

1

2
e−2ΦHµν

λ F
(2)
µν = 0 , ∇µ(e−2Φ F

(2)
µλ ) +

1

2
e−2ΦHµν

λ F
(1)
µν = 0(4.16)

These can be rewritten as decoupled equations as

A± = A(1) ±A(2) (4.17)

∇µ(e−2Φ F±
µλ) ±

1

2
e−2ΦHµν

λ F
±
µν = 0 (4.18)

Our task is to find the solutions of these equations representing non-BPS oscillations

of the two charge system (4.9).

6.4.1 Solution in the ‘infinite wavelength limit’

The geometry (4.1) has a singularity at the curve ~x = ~F (v), which is the location

of the strands of the oscillating NS1. Since we wish to add perturbations to this

geometry, we must understand what boundary conditions to impose at this curve.

The wavelength of the oscillations will be of order the length of the tube. Since the

tube is ‘thin’ and we look close to the tube, locally the tube will look like a straight

line even after the perturbing wave is added. The wave can ‘tilt’ the tube, and give
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it a velocity. So in this subsection we write the metric for a straight tube which has

been rotated and boosted by infinitesimal parameters α, β. In the next subsection

we will require that close to the axis of the tube (where the singularity lies) all fields

match onto such a rotated and boosted straight tube solution.

We will consider oscillations of the supertube in one of the T 4 directions. Since

we smear on the T 4 directions, the solution will remain independent of the torus

coordinates za but we will get components in the metric and B field which reflect

the ‘tilt’ of the supertube. We are using the NS1-P description. The unperturbed

configuration looks, locally, like a NS1 that is a slanted line in the y− z plane, where

z is the coordinate along the tube. The perturbation tilts the tube towards a T 4

direction zā. We will find it convenient to start with the NS1 along y, first add the

tilt and boost corresponding to the perturbation, and then add the non-infinitesimal

tilt in the y − z plane (and the corresponding boost).

We start from the one charge system

ds2
string = H−1 [−(dt̃′′)2 + (dỹ′′)2] + (dz̃′′)2 + dxidxi + dz̃′′ādz̃

′′
ā +

∑

a6=ā
dzadza

B = −(H−1 − 1) dt̃′′ ∧ dỹ′′

e2Φ = H−1 (4.19)

and perform the following operations: An infinitesimal boost in the direction z̃ ′′ā , with

parameter β

t̃′′ = t̃′ − z̃′ā β , z̃′′ā = z̃′ā − t̃′ β , ỹ′′ = ỹ′ , z̃′′ = z̃′ (4.20)

and an infinitesimal rotation in the (ỹ′, z̃′ā) plane, with parameter α:

ỹ′ = ỹ + z̃ā α , z̃′ā = z̃ā − ỹ α , t̃′ = t̃ , z̃′ = z̃ (4.21)
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These operations give

ds2
string = H−1

[

−dt̃2 + dỹ2 − 2α (H − 1) dỹ dz̃ā − 2β (H − 1) dt̃ dz̃ā

]

+ dz̃2 + dxidxi + dz̃ādz̃ā +
∑

a6=ā
dzadza

B = −(H−1 − 1) dt̃ ∧ dỹ + β H−1 (H − 1) dỹ ∧ dz̃ā + αH−1 (H − 1) dt̃ ∧ dz̃ā

e2Φ = H−1 (4.22)

We can read off from (4.22) the gauge fields A±:

A+ = (α− β)H−1 (H − 1) dṽ , A− = −(α + β)H−1 (H − 1) dũ (4.23)

(ũ = t̃ + ỹ and ṽ = t̃ − ỹ). The part of the perturbation proportional to α − β

represents a right moving wave, in which case only the A+ gauge field is excited. The

reverse happens for the left moving perturbation, proportional to α + β.

We would now like to add a finite amount of momentum Qp to the system (4.22).

This momentum is carried by a right moving wave moving with the speed of light

in the positive y direction, with polarization in the direction z. The result will give

us a geometry representing a small perturbation of the system (4.9). We can reach

the desired configuration from (4.22) by performing a boost in the direction z̃ with

parameter β̄

t̃ = t′ cosh β̄ − z′ sinh β̄ , z̃ = z′ cosh β̄ − t′ sinh β̄ , ỹ = y′ , z̃ā = z′ā (4.24)

followed by a rotation in the (y′, z′) plane, with parameter ᾱ:

y′ = y cos ᾱ + z sin ᾱ z′ = z cos ᾱ− y sin ᾱ , t′ = t , z′ā = zā (4.25)

The parameters ᾱ, β̄ are related. This is because the segment of string under

consideration is supposed to be a short piece of the string in a state like that in
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Figure 6.3: A short segment of the NS1 moving at the speed of light in the y direction.

This yields a velocity v for the segment in the direction perpendicular to itself.

Fig.6.1(a), where the traveling wave is moving in the positive y direction with the

speed of light. We depict this segment in Fig.6.3. We can ask how fast the string

segment must be moving in a direction perpendicular to itself to yield dy/dt = 1, and

we find

v⊥ ≡ − tanh β̄ = sin ᾱ (4.26)

This implies

sinh β̄ = − tan ᾱ , cosh β̄ =
1

cos ᾱ
(4.27)
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The final configuration is given by

ds2
string = H−1

[

−2dt dv + [1 + sinh2 β̄ (H − 1)] dv2 − 2 sinh β̄ (H − 1) dv dz

+ 2(H − 1)
(α cos2 ᾱ− β sin2 ᾱ

cos ᾱ
dv dzā − (α + β) cos ᾱ dt dzā

− (α + β) sin ᾱ dz dzā

)]

+ dz2 + dxidxi + dzādzā +
∑

a6=ā
dzadza

B = (H−1 − 1) dt dv −H−1 (H − 1) sinh β̄ dv ∧ dz

+ H−1 (H − 1)
(α sin2 ᾱ− β cos2 ᾱ

cos ᾱ
dv ∧ dzā + (α+ β) cos ᾱ dt ∧ dzā

+ (α + β) sin ᾱ dz ∧ dzā
)

e2Φ = H−1 (4.28)

We note that, for α = β = 0, we obtain the system (4.9) with35

Qp = Q1 sinh2 β̄ (4.29)

The perturbation is proportional to α and β and is encoded in the gauge fields

A+
v = (α̃− β̃)H−1 Q1

r
, A+

t = 0 , A+
z = 0

A−
v = (α̃+ β̃)H−1 Q1 −Qp

r
, A−

t = −2(α̃ + β̃)H−1 Q1

r

A−
z = −2(α̃ + β̃)H−1

√

Q1Qp

r
(4.30)

where we have redefined

α̃− β̃ =
α− β

cos ᾱ
, α̃ + β̃ = (α+ β) cos ᾱ (4.31)

and we have used (4.29) and (4.27). We see that, as before, A+ comes from right

moving perturbations, proportional to α̃− β̃, and A− comes from left moving pertur-

bations, proportional to α̃ + β̃.

35With our conventions ᾱ > 0 and β̄ < 0. Thus
√

Qp = −√
Q1 sinh β̄.
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6.4.2 Solution for A+

Let us look for a solution of (4.18), in the A+ sector, which matches the config-

uration (4.30) when k → 0. We learned from (4.30) that A+ receives contributions

only from the BPS (right moving) part of the wave and that, at least in the long

wavelength limit, only the component A+
v is non-vanishing. One can thus look for a

solution of the form

A+
v = H−1 a+

v , A+
t = 0 , A+

z = 0 , A+
i = 0 (4.32)

Equation (4.18) implies the following conditions for a+
v (here 4 = ∂i∂i is the ordinary

Laplacian in the 3-dimensional space of the xi)

λ = t : ∂2
t a

+
v = 0 (4.33)

λ = v : 4 a+
v + ∂2

za
+
v − 2A∂t∂za

+
v = 0 (4.34)

λ = z : ∂t∂za
+
v = 0 (4.35)

λ = i : ∂t∂ia
+
v = 0 (4.36)

It is thus clear that a t-independent a+
v satisfying

4 a+
v + ∂2

za
+
v = 0 (4.37)

solves the linearized equations of motion. The general solution of (4.37), with mo-

mentum

k =
n

Rz
(4.38)

along z, is

a+
v = eikz

c+ e
k r + c− e

−k r

r
+ c.c. (4.39)
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Without loss of generality let us set n to be positive. To have a converging field at

large r one should take c+ = 0. Matching with (4.30) fixes c−:

c− = (α̃− β̃)Q1 (4.40)

so that

A+
v = (α̃− β̃)H−1 Q1

r
eik z−k r + c.c. (4.41)

The above result is consistent with the form of A+ derived by Garfinkle-Vachaspati

transform: Consider a string carrying a right moving wave described by the profile

Fi(v) in the non-compact directions x̄i and fā(v) in the T 4 direction zā. After smearing

over za, Garfinkle-Vachaspati transform predicts a gauge field

A+
v = A(1)

v + A(2)
v

A(1)
v = A(2)

v = −H−1 Q̄1

LT

∫ LT

0

dv
ḟā(v)

∑

i(x̄i − Fi(v))2
(4.42)

Eq. (4.42) is analogous to the relation (4.2) for Ai, applied to the case in which the

profile extends in the T 4 directions. Let us take the near ring limit of (4.42) for a

profile fā of the form

fā(v) = ξā e
−ik̄ v + c.c. (4.43)

Around some point v0 on the ring we write

z = −| ~̇F (v0)| (v − v0) , z0 = −| ~̇F (v0)| v0 (4.44)

so that we can write

fā(v) = ξā e
ik̄ (z+z0)/| ~̇F (v0)| + c.c. ≡ ξā e

ik (z+z0) + c.c. (4.45)
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and

ḟā(v) = −iξā | ~̇F (v0)| k eik (z+z0) + c.c. (4.46)

In the near ring limit one can approximate

A+
v ≈ 2H−1 iQ̄1 ξā k

LT
eik z0

∫ +∞

−∞
dz

eik z

r2 + z2
+ c.c.

= 2H−1 iQ̄1 π ξā k

LT

eik z0−k r

r
+ c.c. (4.47)

Using (4.8) to relate Q̄1 and Q1 we see that (4.47) coincides with (4.41), with

(α̃− β̃) = 2i ξā | ~̇F (v0)| k (4.48)

The time-independent solution (4.41) represents the response of the system to a

BPS right moving wave. Since the A+ part of the gauge field should only be sensitive

to BPS deformations, we expect that equation (4.18) for A+ should not admit time-

dependent solutions consistent with the boundary condition (4.30). In an appendix

we prove this fact for the more general A+ ansatz.

6.4.3 Solution for A−

We now look at the A− sector, where we expect to find the time-dependent con-

figurations corresponding to left moving non-BPS perturbations.

Consider an ansatz of the form

A−
v = H−1 a−v , A−

t = H−1 a−t , A−
z = H−1 a−z , A−

i = 0 (4.49)

By spherical symmetry A−
i only has a radial component A−

r and we chose our gauge

to set A−
r = 0. (Such a gauge can have difficulties at r = 0 but we can consider it

as an ansatz and see later that we obtain a good solution.) The equations for a−v ,
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a−t and a−z , obtained by using the ansatz (4.49) in (4.18) and using the background

(4.9), are (we list the equations in the order λ = t, v, z, i)

4 a−t +H ∂2
t a

−
v + ∂z(∂za

−
t − ∂ta

−
z ) + A∂t(∂za

−
t − ∂ta

−
z ) = 0 (4.50)

4 a−v + ∂2
za

−
v − [(HK̃ − A2) ∂2

t a
−
v − 2A∂t∂za

−
v ]

+H−2 ∂iH∂iH (2a−v + K̃ a−t ) −H−1 ∂iH ∂i(2a
−
v + K̃ a−t ) + ∂ia

−
t ∂iK̃ = 0

(4.51)

4 a−z +H ∂t∂za
−
v + (HK̃ − A2) ∂t(∂za

−
t − ∂ta

−
z ) − A∂z(∂za

−
t − ∂ta

−
z )

+2H−2 ∂iH∂iH(a−z + Aa−t ) − 2H−1 ∂iH ∂i (a
−
z + Aa−t ) + 2∂ia

−
t ∂iA = 0

(4.52)

H ∂t∂ia
−
v − ∂z∂ia

−
z + [(HK̃ − A2) ∂t∂ia

−
t − A∂z∂ia

−
t − A∂t∂ia

−
z ]

+H−1 ∂iH [∂za
−
z + A (∂ta

−
z + ∂za

−
t ) − (HK̃ − A2) ∂ta

−
t ]

−∂iA (∂za
−
t − ∂ta

−
z ) − 2∂iH ∂ta

−
v = 0 (4.53)

Inspired by the limiting solution (4.30), we make the following ansatz for a−v , a−t and

a−z :

a−v = (Q1 −Qp) e
ik z−iω t f(r)

a−t = −2Q1 e
ik z−iω t f(r) , a−z = −2

√

Q1Qp e
ik z−iω t f(r) (4.54)

Substituting this ansatz in eq. (4.50) we find an equation for f(r):

−2Q1 4 f−ω2 (Q1−Qp) f+2k (kQ1+ω
√

Q1Qp) f−
ωQ1 f

r
[2
√

Q1Qp k+(Q1+Qp)ω] = 0

(4.55)
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This equation can be simplified by taking

f =
f̃

r
(4.56)

after which we get

−2Q1 f̃
′′−ω2 (Q1−Qp) f̃+2k (kQ1+ω

√

Q1Qp) f̃−
ω Q1 f̃

r
[2
√

Q1Qp k+(Q1+Qp)ω] = 0

(4.57)

According to the boundary condition (4.30), we want f̃ to go to a constant when

r → 0; this is only possible if the 1/r term in (4.57) vanishes and this determines the

frequency of oscillation to be

ω = −k 2
√

Q1Qp

Q1 +Qp

(4.58)

Using this value of ω back in (4.57) we find that f̃ satisfies

f̃ ′′ − k̃2f̃ = 0 (4.59)

with

k̃2 = k2 − ω2 = k2
(Q1 −Qp

Q1 +Qp

)2

(4.60)

and thus

f̃ = c+ e
+|k̃| r + c− e

−|k̃| r (4.61)

In order to have a converging solution for large r one needs c+ = 0 and to match with

(4.30) one needs c− = α̃ + β̃. To summarize we find

A−
v = (α̃ + β̃)H−1 (Q1 −Qp) e

ik z−iω t e
−|k̃| r

r
(4.62)

A−
t = −2(α̃ + β̃)H−1Q1 e

ik z−iω t e
−|k̃| r

r
, A−

z = −2(α̃ + β̃)H−1
√

Q1Qp e
ik z−iω t e

−|k̃| r

r

It is a lengthy but straightforward exercise to verify that (4.62) solves the remain-

ing equations (4.51-4.53).
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6.4.4 Period of the oscillations

The speed of the left-moving wave on the supertube is

v =
ω

|k| = 2

√

Q1Qp

Q1 +Qp

(4.63)

The direction z used above is the coordinate along the supertube. So even though

z looked like an infinite direction in the ‘near tube’ limit, this direction is actually

a closed curve with a length Lz. The time for the wave to travel around this closed

curve is

∆t =

∫ Lz

0

dz

v
=

∫ Lz

0

dz
Q1 +Qp

2
√

Q1Qp

=
1

2

∫ Lz

0

dz[

√

Q1

Qp
+

√

Qp

Q1
] (4.64)

We have

Q1 =
Q̄1 π

LT

1

η
, Qp =

Q̄1 π

LT
η (4.65)

with

η−1 =
1

| ~̇F |
=
dy

dz
(4.66)

This gives

∆t =
1

2

∫ Lz

0

dz(η−1 + η)

=
1

2

∫ Lz

0

dz[
dy

dz
+
dy

dz
(
dz

dy
)2]

=
1

2T
(Tn1Ly) +

1

2T
(T

∫

|Ḟ |2dy)

=
1

2T
(MNS1 +MP ) (4.67)

where MNS1 is the mass contributed by the NS1 charge and MP is the mass of the

momentum charge. We see that this period ∆t agrees with the period (2.25) found

from the NS1-P system at g = 0.
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We offer an intuitive explanation for the time period (2.25). We have

Q1

Qp
= η−2 = (

dy

dz
)2 (4.68)

Thus we can write (4.63) as

v = 2
dy
dz

1 + (dy
dz

)2
(4.69)

Consider a segment of the NS1 before the perturbation is added. In section (6.4.1)

we had seen, (with the help of Fig.6.3) that because this segment represents a wave

traveling in the y direction with dy/dt = 1, the velocity of this segment perpendicular

to itself was

v⊥ = sin ᾱ =
1

√

1 + (dy
dz

)2

(4.70)

So we have a segment of a NS1, moving at a certain velocity transverse to itself. Go

to the rest frame of this segment. Then any small perturbation on the segment will

move to the right or to the left with speed unity. Consider the perturbation going

left.

Now return to the original reference frame, and look at this perturbation on the

segment. The distances along the segment are not affected by the change of frame

(since the boost is perpendicular to the segment) but there is a time dilation by a

factor γ = 1/
√

1 − v2
⊥. This means that the perturbation will be seen to be moving

along the strand at a speed

vL = γ−1 =
dy
dz

√

1 + (dy
dz

)2

(4.71)

We are interested in the motion of the perturbation in the z direction, so we look at

the z component of this velocity

vL,z = vL sin ᾱ =
dy
dz

1 + (dy
dz

)2
(4.72)
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What we actually observe as the wave on the supertube is a deformation moving

along the tube, so we wish to measure the progress of the waveform as a function of

the coordinate z. A given point on our NS1 segment moves in the direction of the

velocity v, so it moves towards smaller z values at a speed

vz = v⊥ cos ᾱ =
dy
dz

1 + (dy
dz

)2
(4.73)

Thus if we measure the speed of the left moving perturbation with respect to a a

frame where z is fixed then we find the velocity

vpertL = vL,z + vz = 2
dy
dz

1 + (dy
dz

)2
(4.74)

which agrees with (4.69).

Similarly if we look at the right moving perturbation then we find

vpertR = −vL,z + vz = 0 (4.75)

This agrees with the fact that if we add a further right moving wave to the NS1

then we just get another BPS tube configuration, which is stationary and so does not

change with time.

6.5 Coupling to radiation modes

The perturbations of the ‘thin’ tube in the ‘infinite line limit’ is seen to fall off

exponentially with the distance from the tube axis. Note however that if we take the

longest wavelengths on the supertube, then the term e−|k̃|r is not really significant.

For such modes |k̃| ∼ 1/a where a is the radius of the tube. So e−|k̃|r ∼ 1 for r � a,

and for r & a we cannot use the infinite line limit of the thin tube anyway. If however

we look at higher wavenumbers on the tube then |k̃| ∼ n/a and then the factor e−|k̃|r
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is indeed significant in describing the fall off of the perturbation away from the tube

axis.

We now wish to look at the behavior of the perturbation far from the entire

supertube, i.e. for distances r̄ � a. Here we use the symbol r̄ for the radial coordinate

in the 4 dimensional noncompact space, to distinguish it from the radial distance r

from the tube axis that we used in the last section when looking at the ‘infinite line

limit’. For r̄ � a we get flat space. Suppose we were studying a scalar field �Ψ = 0

in the supertube geometry. We can write

Ψ = e−iω tR(r̄)Y (l)(θ, φ, ψ) (5.76)

If ω2 < 0 then we get solutions ∼ e±|ω|t; these are not allowed because they will not

conserve energy. For ω2 > 0, we get the behavior (see Appendix (F.1))

R =
r+ e

iω r̄ + r− e
−iω r̄

r̄3/2
(1 +O(r̄−1)) (5.77)

This solution describes traveling waves that carry flux to and from spatial infinity.

Thus if we start with an excitation localized near the supertube then the part of its

wavefunction that extends to large r̄ will lead to the energy of excitation flowing off

to infinity as radiation.

Let us see how significant this effect is for the ‘thin tube’. Let us set Q1, Qp to

be of the same order. From (4.62) we see that the magnitude of the perturbation

behaves as

A ∼ H−1Q1

r
∼ Q1

r +Q1
(5.78)

Thus if the perturbation is order unity at the ring axis then at distances r & a we

will have

A .
Q1

a
(5.79)
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But the thin tube limit is precisely the one where the ratio Q1/a is small, so the part

of the wavefunction reaching large r is small. Thus the rate of leakage of energy to

the radiation field is small, and the excitations on the ‘thin tube’ will be long lived.

This is of course consistent with the fact that in the limit g → 0 we can describe the

system by just the free string action or the D2 brane DBI action, and here there is

no leakage of energy off the supertube to infinity.

As we keep increasing g we go from the ‘thin’ tube of Fig.6.2(b) to the ‘thick

tube’ of Fig.6.2(c). Now Q1/a ∼ 1 and the strength of the perturbation reaching the

radiation zone is not small. We thus expect that the energy of excitation will flow

off to infinity in a time of order the oscillation time of the mode. Thus we expect

that the oscillations of the supertube become ‘broad resonances’ and cease to be well

defined oscillations as we go from Fig.6.2(a) to Fig.6.2(c).

In the above discussion we referred to the excitation as a scalar field, but this is

just a toy model; what we have is a 1-form field in 5+1 spacetime. In Appendix (F.1)

we solve the field equations for this 1-form field at infinity, and find again a fall off at

infinity that gives a non-zero flux of energy. We also find the next correction in 1/r̄,

and show how a series expansion in 1/r̄ may be obtained in general. These corrections

do not change the fact that the leading order term carries flux out to infinity. It is

important that the first correction to flat space is a potential ∼ 1/r̄2 and not ∼ 1/r̄;

this avoids the appearance of a logarithmic correction at infinity.

It is to be noted that such series solutions in 1/r̄ are asymptotic expansions rather

than series with a nonzero radius of convergence [88], so these arguments are not a

rigorous proof for the absence of infinitely long lived oscillations. The wave equations

for a given ω are similar in structure to the Schrodinger equation (in 4+1 dimensions)
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with a potential V falling to zero at infinity

−R′′ + V (r̄, ω)R = ω2R (5.80)

Note that because ω2 > 0 our wavefunction would be like a positive energy eigenstate

of the Schrodinger equation; i.e. we need an energy eigenvalue embedded in the

continuum spectrum. For the Schrodinger equation there are several results that

exclude such eigenvalues on general grounds [89]. The required results come from

two kinds of theorems. First we need to know that there is no ‘potential well with

infinitely high walls’ near the origin; if there was such a well then we can have a

positive energy eigenstate which has no ‘tail’ outside the well. Next, given that there

is a tail outside the well we need to know that the potential falls off to zero fast

enough and does not ‘oscillate’ too much; such oscillations of the potential can cause

the wavefunction to be back-scattered towards the origin repeatedly and die off too

fast to carry a nonzero flux at infinity. We cannot directly apply these results to

our problem because our equations are not exactly the Schrodinger equation, but the

potential like terms in our equations do not appear to be of the kind that will prevent

flux leakage to infinity.

To summarize, we conjecture that as we increase g to go from Fig.6.2 (a) to

Fig.6.2(c) the periodic oscillations present at g → 0 merge into the continuum spec-

trum of bulk supergravity. Thus for g > 0 the energy of excitation placed on the

supertube eventually leaks off to infinity, with the rate of leakage increasing as we go

from the ‘thin tube’ to the ‘thick tube’.
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6.6 Long lived excitations at large coupling

Let us increase the coupling still further. Then the supertube geometry becomes

like that pictured in Fig.6.2(d) [186, 188, 150]. The metric is flat space at infinity,

then we have a ‘neck’ region, this leads to a deep ‘throat’ which ends in a ‘cap’ near

r = 0. Supergravity quanta can be trapped in the ‘throat’ bouncing between the cap

and the neck for long times before escaping to infinity. We first consider the gravity

description, then a microscopic computation, and finally suggest a relation between

the two.

6.6.1 The geometry at large effective coupling

Consider an NS1 wrapped n1 times on the S1 with radius Ry, and give it the

transverse vibration profile

X1 = a cos
(t− y)

n1Ry
, X2 = a sin

(t− y)

n1Ry
(6.1)

Thus the string describes a ‘uniform helix with one turn’ in the covering space of the

S1. At weak coupling g → 0 we get a ring with radius a in flat space, while at strong

coupling we get a geometry like Fig.6.2(d) with the circle (4.77) sinking deep into the

throat (the dotted line in the figure).

In [150] the computations were done in the D1-D5 duality frame, so let us start

with that frame and dualize back to NS1-P later. We will denote quantities in the

D1-D5 frame by primes. The time for a supergravity quantum to make one trip down

the throat and back up is

∆tosc = πR′
y (6.2)
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where R′
y is the radius of S1 in the D1-D5 frame. When the quantum reaches the

neck there is a probability P that it would escape to infinity, and a probability 1−P

that it would reflect back down the throat for another cycle. For low energy quanta

in the l-th spherical harmonic this probability P is given by [92, 189]

Pl = 4π2(
Q̄′

1Q̄
′
5ω

′4

16
)l+1[

1

(l + 1)!l!
]2 (6.3)

where ω′ is the energy of the quantum. We see that the escape probability is highest

for the s-wave, so we set l = 0. Then the expected time after which the trapped

quantum will escape is

∆tescape = P−1
0 ∆tosc (6.4)

The low energy quanta in the throat have ω′ ∼ 2π/∆tosc [150, 133] so for our estimate

we set

ω′ =
2

R′
y

(6.5)

We then find

α ≡ ∆tescape
∆tosc

=
1

(2π)2

R′4
y

Q̄′
1Q̄

′
5

=
1

(2π)2
[
(Q̄′

1Q̄
′
5)

1
4

a′
]4 (6.6)

where a′ = (Q̄′
1Q̄

′
5)

1/2/R′
y is the radius obtained from a after the dualities to the

D1-D5 frame [150]. In this frame the cap+throat region has the geometry of global

AdS3 × S3 × T 4. The curvature radius of the AdS3 and S3 is (Q̄′
1Q̄

′
5)

1/4. The ratio

β ≡ (Q̄′
1Q̄

′
5)

1
4

a′
(6.7)

gives the number of AdS radii that we can go outwards from r = 0 before reaching

the ‘neck’ region.36 Thus β is a measure of the depth of the throat compared to its

diameter.

36This can be seen from the metric for the profile (4.77) [186, 188, 80].
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While all lengths in the noncompact directions are scaled under the dualities, the

ratio of such lengths is unchanged. Thus in the NS1-P duality frame

β =
(Q̄1Q̄p)

1
4

a
(6.8)

We note that

α ∼ β4 (6.9)

Thus when the throat becomes deep the quanta trapped in the throat become long

lived excitations of the system.

For completeness let us also start from the other limit, where the coupling is weak

and we have a thin long tube as in Fig.6.2(b). The radius of the ring described by

(4.77) is a. The gravitational effect of NS1,P charges extends to distances Q1, Qp

from the ring. In the definitions (4.8) we put in the profile (4.77), and find

Q1 =
Q̄1

2a
, Qp =

Q̄p

2a
(6.10)

If we take for the ‘thickness’ of the ring the length scale
√

Q1Qp then from (6.10) we

find

(Q1Qp)
1/2

a
=

(Q̄1Q̄p)
1/2

2a2
=
β2

2
(6.11)

so we see again that the ring ‘thickness’ becomes comparable to the ring radius when

β ∼ 1. For β � 1 we have a ‘thin ring’ and for β � 1 we have a ‘deep throat’.

Instead of using
√

Q1Qp as a measure of the ring thickness we can say that the

ring is thin when

a & Q1, a & Qp (6.12)

This can be encoded in the requirement

a &
Q1Qp

Q1 +Qp
(6.13)
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From the first equality in (4.64) we get an expression for ∆t, which we equate to the

expression found in (2.25), to get

1

2
Lz
Q1 +Qp
√

Q1Qp

= ∆t = πα′MT (6.14)

where Lz = 2πa is the length of the ring and MT is its total mass. Using this and

(6.10) we can rewrite (6.13) as

α′MT & (Q1Qp)
1/2 =

(Q̄1Q̄p)
1/2

2a
(6.15)

Expressing the macroscopic parameters in terms of the microscopic charges and mod-

uli37

Q̄1 =
g2α′3n1

V
, Q̄p =

g2α′4np
V R2

y

, a =
√

n1npα′ (6.16)

we find that the ring is ‘thin’ when

α′MT &
g2α′3

V Ry

(6.17)

This version of the criterion for ring thickness will be of use below.

6.6.2 The phase transition in the microscopic picture

We now turn to the microscopic description of the system. Consider first the BPS

bound state in the D1-D5 duality frame. Suppose we add a little bit of energy to

take the system slightly above extremality. From the work on near-extremal states

[174, 92, 150, 77] we know that the energy will go to exciting vibrations that run up

and down the components of the effective string

D1 −D5 + ∆E → D1 −D5 + P P̄ (6.18)

37The expression for a is obtained by using the profile (4.77) in (4.3) and use the expressions (4.4).
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where we call the excitations P P̄ since they carry momentum charge in the positive

and negative S1 directions. For the geometry made by starting with the NS1-P profile

(4.77) we have no ‘fractionation’; i.e. the effective string formed in the D1-D5 bound

state has n1n5 ‘singly wound’ circles [150]. Thus the minimum energy needed to

excite the system is the energy of one left and one right mover on the effective string

∆ED1D5
PP̄ =

1

R′
y

+
1

R′
y

=
2

R′
y

(6.19)

The charges D1-D5-P can be permuted into each other, so we can map D1-D5 to

P-D1, and then the dual of (6.18) is

P −D1 + ∆E → P −D1 + D5D5 (6.20)

A further S duality brings the system to the NS1-P system that we are studying, and

then we get

P −NS1 + ∆E → P −NS1 + NS5NS5 (6.21)

This may look strange, since it says that if we excite an oscillating string the energy

of excitations goes to creating pairs of NS5 branes; we are more used to the fact that

energy added to a string just creates more oscillations of the string. Dualizing (6.19)

gives for the excitation (6.21) the minimum energy threshold

∆ENS1P
NS5NS5

= 2mNS5 = 2
V Ry

g2α′3 (6.22)

Thus at small g these excitations are indeed heavy and should not occur. For com-

parison, we find the minimum energy required to excite oscillations on the NS1-P

system. For small g we use the spectrum of the free string which gives

M2 = (
Ryn1

α′ +
np
Ry

)2 +
4

α′NL = (
Ryn1

α′ − np
Ry

)2 +
4

α′NR (6.23)
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The lowest excitation is given by δNL = δNR = 1. This gives

∆ENS1P
oscillations = ∆M =

2

α′
1

MT

(6.24)

where MT is the total mass of the BPS NS1-P state.

We now observe that oscillations on the NS1-P system are lighter than NS5 exci-

tations only when

1

α′MT

.
V Ry

g2α′3 (6.25)

Thus for very small g the lightest excitation on the NS1-P system is an oscillation of

the string. But above a certain g the NS5NS5 pairs are lighter and so will be the

preferred excitation when we add energy to the system.

6.6.3 Comparing the gravity and microscopic pictures

We now observe that the conditions (6.17) and (6.25) are the same. Thus we see

that when the ring is thin then in the corresponding microscopic picture we have ‘2-

charge excitations’; i.e. the third charge NS5 is not excited and the string giving the

NS1-P state just gets additional excitations which may be interpreted as pairs of NS1

and P charges. But when we increase the coupling beyond the point where the ring

becomes ‘thick’ and the geometry is better described as a throat, then the dual CFT

has ‘3-charge excitations’ which are pairs of NS5 branes. When g is small and the

ring is thin then the oscillations of the supertube are long lived because they couple

only weakly to the radiation modes of the gravity field. When the tube becomes very

thick then the oscillation modes are again long lived – we get β � 1 and by (6.9) this

implies a very slow leakage of energy to infinity.

Thus we see that the modes at small and large coupling should not be seen as

the ‘same’ modes; rather the ‘2-charge modes’ at weak coupling disappear at larger
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g because of coupling to the radiation field, and at still larger g the ‘3-charge modes’

appear. For these latter modes one might say that the gravitational field of the system

has ‘trapped’ the excitations of the metric from the region r̄ . (Q̄1)
1/2, (Q̄p)

1/2, so

that these modes have in some sense been extracted from the radiation field.

6.7 A conjecture on identifying bound states for the 3-charge
extremal system

Consider a D0 brane placed near a D4 brane. The force between the branes

vanishes. But now give the D0 a small velocity in the space transverse to the D4.

The force between the branes goes as ∼ v2, and the motion of the D0 can be described

as a geodesic on the moduli space of its static configurations [69]. This moduli space

would be flat if we took a D0-D0 system (which is 1/2 BPS) but for the D0-D4 case

(which is 1/4 BPS) the metric is a nonflat hyperkahler metric.

We can look at more complicated systems, for example 3-charge black holes in

4+1 spacetime. Now the system is 1/8 BPS. The positions of the black holes give

coordinates on moduli space, and the metric on moduli space was computed in [70].

If we set to zero one of the three charges then we get a 1/4 BPS system.

It is easy to distinguish ‘motion on moduli space’ from the kinds of oscillatory

behavior that we have encountered in the dynamics of supertubes. As mentioned

in the introduction, when we have motion on moduli space we take the limit of the

velocity going to zero, and over a long time ∆t the system configuration changes by

order unity. Using ∆x as a general symbol for the change in the configuration38 we

38For example x could be the separation of two black hole centers.
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have for ‘drift on moduli space’

v ∼ ε, ∆t ∼ 1

ε
, ∆x ∼ 1, (ε→ 0) (7.1)

On the other hand for the periodic behavior that we have found for both the weak

coupling and strong coupling dynamics of bound states, we have

v ∼ ε, ∆t ∼ 1, ∆x ∼ ε (ε→ 0) (7.2)

Note that for the motion (1.1) the energy lost to radiation during the motion vanishes

as ε → 0, so the dynamics (1.1) is unlike any of the cases that we have discussed for

the bound state.

While the moduli space metric in [70] was found for spherically symmetric black

holes (‘naive geometries’ in the language of [150]) we expect that a similar ‘drifting’

motion would occur even if we took two ‘actual’ geometries of the 2-charge system and

gave them a small relative velocity with respect to each other.39 Thus such unbound

systems would have a dynamical mode not present for the bound states.

For the bound state 3-charge geometries that have been constructed [9] the struc-

ture is very similar to the structure of 2-charge geometries. It is therefore reasonable

to conjecture that 3-charge geometries will have a similar behavior: Unbound systems

will have ‘drift’ modes like (1.1) while bound systems will have no such modes. If

true, this conjecture could be very useful for the following reason. It is known how

to write down the class of all 3-charge supersymmetric geometries [12, 94, 95]. But

we do not know which of these are bound states. On the other hand the microstates

of the 3-charge black hole [96] are bound states of three charges. If we can select

39The motion of the centers of the two states could be accompanied by a slow change in the
internal configurations of the states.
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the bound state geometries from the unbound ones by some criterion then we would

have a path to understanding all the microstates of the 3-charge black hole. This is

important because the 3-charge hole has a classical horizon and our results on this

hole should extend to all holes.

To summarize, it seems a reasonable conjecture that out of the class of all super-

symmetric 3-charge geometries the bound states are those that have no ‘drift’ modes

(1.1). It would be interesting to look for ‘drift’ modes for the 3-charge geometries

constructed recently in [97, 124]; here the CFT dual is not known so we do not

know a priori if the configuration is a bound state. The same applies for geometries

made by adding KK-monopole charge to BPS systems carrying a smaller number of

charges [99]. It would also be useful to extend these considerations to the suggested

construction of 3-charge supertubes and their geometries [100, 101].

In the introduction we have also asked the question: Can the bound state break

up into two or more unbound states under a small perturbation? Since the bound

state is only threshold bound, such a breakup is allowed on energetic grounds. But

for the 2-charge system we see that bound states are not ‘close’ to unbound states.

The bound states are described by a simple closed curve traced out by the locations

~x = ~F (v) for 0 ≤ v < LT . A superposition of two such bound states has two such

simple closed curves. The curve can break up into two curves if it self-intersects,

but in a generic state the curve is not self-intersecting. If we add a little energy

to a 2-charge bound state then we have seen that the configuration does not ‘drift’

through the space of bound states, so the curve will not drift to a curve with a self-

intersection and then split. Thus we expect that generic bound states are stable to
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small perturbations; energy added to them causes small oscillations for a while and

the energy is eventually lost to infinity as radiation.

6.8 Discussion

Let us summarize our arguments and conjectures. If we have two BPS objects

with 1/4 susy then they feel no force at rest, but their low energy dynamics is a slow

relative motion described by geodesics on a moduli space. If we look at just one 1/4

BPS bound state then it has a large degeneracy, which in the classical limit manifests

itself as a continuous family of time-independent solutions. If we add a small energy

to the BPS bound state, then what is the evolution of the system?

Based on the behavior of unbound objects one might think that there will again

be a ‘drift’ over the family of configurations, described by some metric on the moduli

space of configurations. But we have argued that this is not what we should expect.

We first looked at the 1/4 BPS configurations at zero coupling, where we get ‘super-

tubes’ described by a DBI action. We saw that the best way to get the dynamics

of such 1/4 BPS objects is to use the NS1-P picture, which is a ‘multiwound string

carrying a traveling wave’. For this zero coupling limit we found that instead of a

‘drift’ over configurations’ we get oscillatory behavior. These oscillations are not de-

scribed by a collection of simple harmonic oscillators. Rather they are like the motion

of a charged particle in a magnetic field where each term in the equation of motion

has at least one time derivative, and there is a continuous family of equilibrium con-

figurations. We found a simple expression (2.25) for the period of oscillations with

arbitrary amplitude, which reduced to the period found in [75] for the case of small

oscillations of the round supertube.
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If we increase the coupling a little then we get a gravity description of the su-

pertube, but with gravitational field of the tube extending only to distances small

compared to the circumference of the tube. Thus we get a ‘thin’ long tube. Zooming

in to a point of the tube we see an essentially straight segment, and we studied the

perturbations to this geometry. We found excitations that agree in frequency with

those found from the zero coupling analysis.

We noted that the part of the excitation that leaks out to spatial infinity will have

the form of a traveling wave. As we increase the coupling the amplitude of the wave

reaching this region becomes larger. Thus there will be an energy flux leaking out

to infinity, and the excitation will not remain concentrated near the supertube. But

as we increase the coupling still further we find that the geometry develops a deep

‘throat’ and we get a new kind of long lived excitation: Supergravity modes can be

trapped in this throat for long times, only slowly leaking their energy to infinity.

We argued that the different kinds of excitations found at weak and strong cou-

pling reflect the phase transition that had been noted earlier from the study of black

holes [76, 77]. At weak coupling the excitations on such a system creates pairs of

the charges already present in the BPS state. But at larger coupling the excitation

energy goes to creating pairs of a third kind of charge. The value of g where this

transition occurs was found to have the same dependence on V,R, ni as the value of g

where the supertube stops being ‘thin’; i.e. where the gravitational effect of the tube

starts extending to distances comparable to the radius of the tube.

We have noted that bound states do not exhibit a ‘drift’ over a moduli space of

configurations, while unbound states do. If 3-charge systems behave qualitatively in

the same way as 2-charge ones then this fact can be used to distinguish bound states
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from unbound ones for the class of 1/8 BPS states; such bound states would give

microstates of the 3-charge extremal hole.

258



CHAPTER 7

BOUND STATES OF KK MONOPOLE AND
MOMENTUM

7.1 Introduction

In previous chapters, we have expressed two charge systems in several duality

frames like D1−D5 and NS1−P . In this chapter, we consider two charge system of

KK monopole carrying momentum wave. This would correspond to a simple system

of 2-charges in 4-dimensions and would be the first example of such a metric. As

discussed in the introduction, Kaluza-Klein(KK) monopole solution has attracted

considerable attention since it was first proposed by Gross and Perry in [138]. It is a

purely gravitational solution in string theory and one of its obvious attractions is that

it is a completely regular solution in string theory. Recently, there has been much

interest in studying solutions containing KK monopole [173, 195, 190]. Also, as recent

work shows, it can be used to connect black rings in five dimensions to black holes

in four dimensions [184, 175]. Studies of black rings in Taub-NUT space [173, 190]

led to supersymmetric solutions carrying angular momentum in four dimensional

asymptotically flat space [175]. KK monopoles also occur in 4-dimensional string

theoretic black holes.
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Note that our solution cannot be obtained by setting one of the charges in the

known three charge solultion to zero and U-dualizing. For example, setting D5 charge

to zero in D1-D5-KK solution of [190], we get D1-KK which can be U-dualized to KK-

P. When we try to put one charge to zero in the geometry of [190], one finds that it

reduces to the ‘naive’ 2-charge geometry and on dualization, it gives the naive KK-P

geometry. Here, by ‘naive’ we mean geometries obtained by applying the harmonic-

superposition rule. The black-ring structure of the geometry is destroyed when one

of the charges (other than the KK monopole) is set to zero. This raises the question

whether this geometry has all three charges bound and whether this 3-charge system

is ‘symmetric’ between the charges. One of the motivation for the present work is to

understand, in a simplified setting, if the solution constructed in [190] is a true bound

state or not. Our construction of KK-P is manifestly bound and if it can be related

by dualities to the solution of Bena and Kraus (with one charge set to zero) then, at

least in this simplified setting, we can be confident that this is a bound state.

Note that in this system we add momentum along one of the isometry directions,

different from KK monopole fibre direction. Hence this system is still supersymmetric

and is not dual to D0−D6 system as studied in [157] which was non-supersymmetric

and would correspond to momentum along fibre direction.

Since all two charge systems are related by string dualities, one may ask the reason

for constructing KK-P ab initio when it can obtained by dualities from F1-P. We will

also construct it by dualities from F1-P solution constructed in [150] in section 2. The

reason we also obtain it using Garfinkle-Vachaspati transformation is that it gives us

unsmeared solutions which carry t and y dependence, y being the direction of wave.

We show complete smoothness of this N -monopole solution carrying momentum.
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When we try to get a solution independent of t, y by smearing then we will see

that singularities develop which are similar to singularities in solution obtained via

dualities. Since number of KK monopoles is always discrete (even classically), we

know that singularities are an artifact of smearing and discrete solution is always

smooth (even classically). One particular feature of these solutions is that orbifold

singularities of multiple KK monopoles are also resolved and they are completely

smooth.

7.1.1 Outline of the chapter

The plan for present chapter is as follows.

• In Σ1, we add momentum to KK monopole by the method of Garfinkle-Vachaspati

(GV) transform.

• In Σ2, we concentrate on the smoothness of N monopoles solution. Specifically,

we consider the case of two monopole solution with momentum. We demon-

strate how KK monopoles get separated by the addition of momentum and

discuss the regularity of solution.

• In Σ3, we get the same solution as above by performing dualities on general

two charge solutions constructed in [150].

• In Σ4, we perform T-duality to convert this to KK-F1 solution.

• In Σ5, we consider the KK-D1-D5 metric obtained by Bena and Kraus in the

near-horizon limit and try to see if it is duality symmetric. It turns out that it

is not. This is not surprising as Buscher duality rules used are valid only at the
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supergravity level and as mentioned earlier and discussed in [190], more refined

duality rules will be required.

• We give our T-duality conventions and a discussion of Garfinkle-Vachaspati

(GV) transform in two appendices.

7.2 Adding momentum to KK monopoles by GV transfor-
mation

In this section, we take the metric of a single KK monopole and add momentum

to it along one of isometry directions (not the fibre direction) using the procedure of

Garfinkle and Vachaspati. Using the linearity of various harmonic functions appearing

in metric, we can superpose harmonic functions to get multi-monopole metric with

momentum.

7.2.1 KK monopole metric

Ten dimensional metric for KK monopole at origin is

ds2 = −dt2 +dy2 +

9
∑

i=6

dzidzi+H[ds+χjdx
j]2 +H−1[dr2 +r2(dθ2 +sin2 θdφ2)] (2.1)

H−1 = 1 +
QK

r
, ~∇× ~χ = −~∇H−1 (2.2)

Here y is compact with radius R5 while xj with j = 1, 2, 3 are transverse coordinates

while zi with i = 6, 7, 8, 9 are coordinates for torus T 4. Here QK = 1
2
NKRK where

NK corresponds to number of KK monopoles. Near r = 0, s circle shrinks to zero.

For NK = 1, it does so smoothly while NK > 1, there are ZNK
singularities. First we

consider just NK = 1 case. Introducing the null coordinates u = t+ y and v = t− y,
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above metric reads

ds2 = −dudv +
9
∑

i=6

dzidzi +H[ds+ χjdx
j]2 +H−1[dr2 + r2(dθ2 + sin2 θdφ2)] (2.3)

We want to add momentum to this using Garfinkle-Vachaspati (GV) transform method

[158, 159].

7.2.2 Applying the GV transform

Given a space-time with metric gµν satisfying the Einstein equations and a null,

killing and hypersurface orthogonal vector field kµ i.e. satisfying the following prop-

erties

kµkµ = 0, kµ;ν + kν;µ = 0, kµ;ν =
1

2
(kµA,ν − kνA,µ) (2.4)

for some scalar function A is some scalar function, one can construct a new exact

solution of the equations of motion by defining

g′µν = gµν + eAΦkµkν (2.5)

The new metric g′µν describes a gravitational wave on the background of the original

metric provided the matter fields if any. satisfy some conditions [160] and the function

Φ satisfies

∇2Φ = 0 , kµ∂µΦ = 0 (2.6)

Some more details about Garfinkle-Vachaspati transform are given in appendix. Note

that all this is in Einstein frame but it can be rephrased in string frame very easily.

In our case, there are no matter fields and the dilaton is zero so there is no difference

between the string and Einstein frames. We take ( ∂
∂u

)µ as our null, killing vector.

Since guu = 0, it is obviously null and since the metric coefficients do not depend on
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u, it is also killing. One can also check that this vector field is hypersurface orthogonal

for a constant A which may be absorbed in Φ. Applying the transform we get

ds2 = −(dudv + T (v, ~x)dv2) +

9
∑

i=6

dzidzi +H[ds+ χjdx
j]2 +H−1[

3
∑

j=1

dx2
j)] (2.7)

where T (v, ~x) satisfies the three dimensional Laplace equation. General solution for

T is

T (v, ~x) =
∑

l≥0

l
∑

m=−l
[al(v)r

l + bl(v)r
−l+1]Ylm (2.8)

Here Ylm are the usual spherical harmonics in three dimensions. Constant terms can

be removed by a change of coordinates. To see this, we consider T (v, ~x) = g(v)Y0m.

We can go to a new set of coordinates du′ = du − g(v)Y0mdv and other coordinates

remaining same. If we want 40 a regular (at origin) and asymptotically flat solution

(after dimensional reduction along the fibre) then the only surviving term is T (v, ~x) =

~f(v)·~x. This is apparently not asymptotically flat but can be made so by the following

coordinate transformations

v = v′ (2.9)

~x = ~x′ − ~F (2.10)

u = u′ − 2Ḟix
′
i + 2ḞiFi −

∫ v′

Ḟ 2(v)dv (2.11)

Here ~f(v) = −2 ~̈F and dot refers to derivative with respect to v. Making this

change of coordinates, the terms in metric change as follows

dudv = du′dv′ − 2Ḟidx
′
idv

′ + Ḟ 2(v′)dv′2 (2.12)

dxjdxj = dx′jdx
′
j + Ḟ 2(v′)dv′2 − 2Ḟidx

′
idv

′ (2.13)

40We are excluding vibrations along the fibre direction. One could include such excitations but
making the corresponding solution asymptotically flat turns out to be difficult. Perhaps a formalism
different than GV transform might be better suited for that purpose
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So the final metric is

ds2 = −du′dv′ + 2Ḟi(1 −H−1)dx′idv
′ − Ḟ 2(1 −H−1)dv′2 +

9
∑

i=6

dzidzi

+H[ds+ χ′
jdx

′
j − χ′

jḞjdv]
2 +H−1[

3
∑

j=1

dx
′2
j )] (2.14)

Removing the primes,we write the above metric in the form of chiral-null model as

ds2 = −dudv+ dzidzi +H−1dx2
j +H(ds+Vjdx

j +Bdv)2 + 2Ajdxjdv+Kdv2 (2.15)

Here we have introduced the notation

H−1 = 1 +
QK

|~x− ~F (v)|2
B = −~χ · ~F (v) (2.16)

K(x, v) =
QK| ˙~ (v)F |2
|~x− ~F (v)|2

, Ai = − QKḞi(v)

|~x− ~F (v)|2
(2.17)

χ1 = − QK(x2 − F2(v))

(x1 − F1(v))2 + (x2 − F2(v))2

(

(x3 − F3(v))

|~x− ~F (v)|

)

(2.18)

χ2 =
QK(x1 − F1(v))

(x1 − F1(v))2 + (x2 − F2(v))2

(

(x3 − F3(v))

|~x− ~F (v)|

)

(2.19)

We have written harmonic functions above for the case of single KK monopole.

But because of linearity, we can superpose the harmonic functions to get the metric

for the multi-monopole solution, with each monopole carrying it’s wave profile ~F (p)(v)

and having a charge Q(p) = QK

NK
. Functions appearing in the metric then become

H−1 = 1 +
∑

p

Q
(p)
K

|~x− ~F (p)|
(2.20)

K(x, v) =
∑

p

Q
(p)
K | ˙

~ (p)
F |2

|~x− ~F (p)|
, Ai = −

∑

p

Q
(p)
K Ḟ

(p)
i

|~x− ~F (p)|
(2.21)
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Besides the above functions, there are ~χ and χiḞi with

χ1 = −
∑

p

Q
(p)
K (x2 − F

(p)
2 )

(x1 − F
(p)
1 )2 + (x2 − F

(p)
2 )2

(

(x3 − F
(p)
3 )

|~x− ~F (p)|

)

(2.22)

χ2 =
∑

p

Q
(p)
K (x1 − F

(p)
1 )

(x1 − F
(p)
1 )2 + (x2 − F

(p)
2 )2

(

(x3 − F
(p)
3 )

|~x− ~F (p)|

)

(2.23)

7.3 Smoothness of solutions

To show smoothness, we concentrate on simple case of two monopoles. So in this

section, we consider the simple case of two monopoles carrying waves. Normally (i.e

without momentum), one would expect the system of two monopoles two have orbifold

type Z2 singularities. But since momentum is expected to separate the monopoles,

this solution would be smooth, without any singularities. As we saw earlier, the

metric for a single monopole carrying a wave is

ds2 = −dudv + 2Ḟi(1 −H−1)dxidv − Ḟ 2(1 −H−1)dv2 +
4
∑

i=1

dzidzi

+H[ds+ χjdxj − χjḞjdv]
2 +H−1[

3
∑

j=1

dx
′2
j )] (3.1)

After the change of coordinates, we have

H−1 = 1 +
QK

|~x− ~F (v)|
(3.2)

For a single monopole, QK = RK

2
. For two monopoles, we take profile function with

F (v) with range from 0 to 4πR5 where R5 is the radius of y circle. From 0 to 2πR5 it

gives profile function F1(v) for the first monopole while from 2πR5 to 4πR5 it gives

profile function F2(v) for second monopole. For two monopoles, harmonic functions

need to be superposed. So we have

H−1 = 1 +
QK

|~x− ~F (1)(v)|
+

QK

|~x− ~F (2)(v)|
(3.3)
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(a) (b)

Figure 7.1: Monopole-strings i.e KK monopoles reduced on T 4 (a) 2 coincident
monopole-strings(b) 2 single monopole-string separated in transverse directions.

Since ~∇× ~χ = −~∇H−1 is a linear equation, the function ~χ also gets superposed and

~χ = ~χ(1) + ~χ(2) (3.4)

Profile functions F1 and F2 are given in terms of a single profile function in the

covering space F (v) which goes from 0 to 4πR such that

F (1)(v) = F (v) for v = [0, 2πR] (3.5)

F (2)(v) = F (v − 2πR) for v = [2πR, 4πR] (3.6)

F (1)(v = 2πR) = F (2)(v = 0) (3.7)

Notice that since one monopole goes right after the other QK is same for both

parts of the harmonic function and equal to QK for single KK monopole. To check

the regularity of the two monopole solution, we make the following observations.

Apparent singularities are at the locations x = F (1)(v) and x = F (2)(v). We can go
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near any one of them and it is like a single KK monopole (containing terms which do

not contain dv or dv2) and hence smooth. Notice that it is important that poles are

not at the same location to avoid conical defects. Locally, we can make a coordinate

transformation

u′ = u+ f(xi, v) so that du′ = du+ ∂ifdx
i + ∂vfdv (3.8)

−dudv + 2Aidx
idv +Kdv2 = dv(−du+ 2Aidx

i +Kdv) = −du′dv (3.9)

by suitably choosing f(xi, v). Since such a coordinate transformation can always

by locally done, we will only see single KK monopole which is smooth. Basically,

momentum separates a monopole with N -unit of charge into N monopoles of unit

charge, each of which is smooth. If we go near any one, we see only that monopole.

For the same reason of monopole separation due to momentum, N -monopoles with

momentum are also smooth.

7.4 Continuous distribution of monopoles

In this section, we get t, y independent solution by smearing over v which corre-

sponds to metric for multiple KK monopoles distributed continuously. But since we

have a three dimensional base space, smearing over v gives elliptic function. To see

this we use three dimensional spherical polar coordinates

x1 = r̃ sin θ̃ cos φ , x2 = r̃ sin θ̃ sinφ , x3 = r̃ cos θ̃ (4.1)

and following profile function

F1 = F cos(ωv + α) , F2 = F sin(ωv + α) (4.2)

This is the profile function used for simplest metric for D1-D5 system. It is possible

that choosing different profile function may lead to regular behavior. But the point
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is that for D1-D5 system, all metrics (for generic profile functions) were regular while

that will not be the case here. The smeared harmonic function would be

H−1 = 1+
QK

2π

∫ 2π

0

dα

|~x− ~F |
= 1+

∫ 2π

0

dα
√

r̃2 + F 2 − 2F r̃ sin θ̃ cos(ωv + α− φ)
(4.3)

Using the periodicity of the integral, this reduces to

H−1 = 1 +
QK

2π

∫ 2π

0

dβ
√

r̃2 + F 2 − 2F r̃ sin θ̃ cos β
(4.4)

To do the integral, we switch from r̃, θ̃ to coordinates r, θ which are defined by

r̃2 = r2 + F 2 sin2 θ , r̃ cos θ̃ = r cos θ , r̃2 sin2 θ̃ = (r2 + F 2) sin2 θ (4.5)

Using these, we write

H−1 = 1 +
QK

2π

1√
r2 + F 2

∫ 2π

0

dβ
√

1 + F 2sin2θ
r2+F 2 − 2F sin θ cos β√

r2+F 2

(4.6)

Writing p = F sin θ√
r2+F 2 , we get

H−1 = 1 +
QK

π

K(p)√
r2 + F 2

(4.7)

where K(p) is elliptic integral of the first kind and

2K(p) =

∫ 2π

0

dβ
√

1 + p2 − 2p cos β
(4.8)

K(p) diverges when p = 1 i.e

r2 + F 2 = F 2 sin2 θ or r2 + F 2 cos2 θ = 0 (4.9)

which is the same place where there is an apparent singularity in the geometry of

[186, 188]. It is known that elliptic integral K(p) diverges logarithmically as p → 1.

One can, of course, add a suitable harmonic counterterm to cancel the singularity but
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then the solution will not be asymptotically flat. Integral for function K appearing

in the metric is very similar and it gives

K =
QKF

2ω2K(p)

π
√
r2 + F 2

(4.10)

Similarly, components of Ai are given by

Aφ =
2QK

π

√
r2 + F 2

(

K(p) − E(p)

F

)

(4.11)

with other components zero. This is in untilde coordinates. Expressions for functions

χ1, χ2 can be obtained by solving the equation ~∇ × ~χ = −~∇H−1. In the next

section, we would connect the above functions to functions obtained by dualizing

D1-D5 system.

7.4.1 Singularities

Due to the presence of elliptic functions and their attendant singularities the solu-

tion above, in the smeared case, is not smooth. In section 2, we saw that solution with

two KK-monopoles with momentum added is smooth. The calculation goes through

for N -monopole case. This is similar to case of fundamental string and momentum

system [150] where adding momentum leads to separation of previously coincident

strings. One can ask, what causes singularities to develop in the case when a con-

tinuum of KK monopoles carry momentum. The reason is that harmonic functions

like H−1 corresponding to three-dimensional transverse space go like 1/r and one

further integration (for smearing) effectively converts them into harmonic functions

in a two-dimensional transverse space 41 which are known to diverge logarithmically.

Elliptic integral K(p), for example, also diverges logarithmically as p goes to 1.

41One may guess that if we had allowed vibrations along fibre direction, harmonic functions would
be different and smoothness would be maintained even after smearing
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Physically also, we can see that smeared case which corresponds to a continuous

distribution of KK monopoles is expected to have troubles. Normally, we can consider

continuous distribution of sources like branes, fundamental string etc in constructing

metrics in supergravity approximation. Discreteness emerges when we use quanti-

zation conditions from our knowledge of string theory sources and BPS condition.

KK monopole solution is different because here discreteness is inbuilt as smoothness

of single KK monopole forces definite periodicity for compact direction and gives

QK = 1
2
NkRK . So considering a continuous distribution of KK monopoles can give

singularities even in cases where where situation is smooth for large but discrete dis-

tribution of KK monopoles. Even though continuous solution is not smooth, it is still

less singular than ‘naive’ KK-P solution. ‘Naive’ solution is

ds2 = −dt2 +dy2+
k

r
(dt+dy)2+dsT 4 +H[ds+χjdx

j]2 +H−1[dr2+r2(dθ2 +sin2 θdφ2)]

(4.12)

In smeared solution, we have logarithmic singularity due to elliptic integrals occurring

in solution. We note that those singularities are milder than what we get in ‘naive’

solution.

7.5 Connecting F-P to KK-P via dualities

In this section, we connect KK-P metric found above to 2-charge metrics con-

structed in [8] by doing various dualities. This will also help in interpreting various

quantities appearing in the metric. We start with F1-P metric, written in the form
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of chiral null model. Introducing the null coordinates u = t + y and v = t − y, the

metric reads

ds2 = H
(

−dudv +Kdv2 + 2Aidxidv
)

+ dxidxi + dzjdzj (5.1)

Buv = −(H − 1)

2
, Bvi = HAi, e

−2Φ = H−1 = 1 +
Q

|~x− ~F |2
(5.2)

K(x, v) =
Q| ~̇F |2

|~x− ~F |2
, Ai = − QḞi

|~x− ~F |2
(5.3)

Here y is compact with radius R5 while xi with j = 1, 2, 3, 4 are transverse coordinates

while zj with i = 6, 7, 8, 9 are coordinates for torus T 4. Summation over repeated

indices is implied. We have written harmonic functions above for the case of single

string. But because of the linearity of chiral null model, we can superpose the har-

monic functions to the metric for the multi-wound string, with each strand carrying

its wave profile. Functions appearing in the metric then become

H−1 = 1 +
∑

p

Q(p)

|~x− ~F (p)|2
(5.4)

K(x, v) =
∑

p

Q(p)| ˙
~ (p)
F |2

|~x− ~F (p)|2
, Ai = −

∑

p

Q(p)Ḟ
(p)
i

|~x− ~F (p)|2
(5.5)

Here we have smeared along torus directions so that nothing depends on these

coordinates and these are isometry directions along which T-duality can be performed.

To go from fundamental string carrying momentum (FP) system to KK-P system we

perform following chain of dualities

F (y)P (y)
S→ D1(y)P (y)

T6789→ D5(y6789)P (y)
S→ NS5(y6789)P (y)

T4→ KK(4y6789)P (y)

In the above we start with type IIB theory and metric above is in string frame.

In the final step we will need to smear along x4 direction so that harmonic functions
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becomes 3 dimensional harmonic functions for KK monopole. Direction x4 = s which

is now compact becomes non-trivially fibred with other non-compact directions to

give KK monopole metric. To perform S-duality we first need to go to Einstein frame

and there the effect of S-duality is to reverse the sign of dilaton and B-field going

to RR field. For NS fields the net effect in string frame is that dilaton changes sign

and metric gets multiplied by e−Φ = H−1/2. Also B-field becomes RR field. Now we

apply four T-dualities along zi directions for i = 6, 7, 8, 9. Since there is no B-field

here, only change is in the metric along torus directions. In the absence of B-field,

RR field only picks up extra indices. So we have following fields for D5-P system.

ds2 = H1/2
(

−dudv +Kdv2 + 2Aidxidv
)

+H−1/2dxidxi + dzjdzj (5.6)

e−2Φ = H−1 , Cuv6789 = −(H − 1)

2
, Cvi6789 = HAi (5.7)

We need to dualize this 6 form field to 2 form field using this metric. First we

write down field strengths corresponding to above RR fields.

Guv6789i = ∂uCv6789i + (−1)6∂vC6789iu + .... + (−1)6∂iCuv6789 = −1

2
∂iH (5.8)

Gvi6789j = ∂vCi6789j + (−1)6∂iC6789jv + ....+ (−1)6∂jCvi6789 = ∂j(HAi) − ∂i(HAj)

(5.9)

Here we have used the fact that direction u and torus directions are isometries.

To dualize this we use

Gµ1...µp+1 =
εµ1 ...µp+1ν1...ν9−p

(9 − p)!
√−g Gν1...ν9−p

(5.10)

and we normalize ε by εtyjkli6789 = 1. For our metric we have
√−g =

√
H. Also, in

terms of lightcone coordinates, our epsilon tensor is normalized as εuvjkli6789 = −2.

273



Using these, we get dual 3-form field strengths.

Gjkl =
εjkluv6789i

7!
√
H

Guv6789i =
εjkli∂iH√

H
(5.11)

Gukl =
εuklvi6789j

7!
√
H

Gvi6789j =
−2εklij[∂j(HAi) − ∂i(HAj)]√

H
(5.12)

we have also reduced ten dimensional epsilon symbol to epsilon tensor in four flat

Euclidean dimensions. Now we can use metric to lower the indices. We get

Gmnp = gmjgnkglpG
jkl =

εmnpi∂
iH

H2
= −εmnpi∂iH−1 (5.13)

Gvmn = guvgmkgnlG
ukl + gvjgmkgnlG

jkl = εmnij∂
iAj (5.14)

where we have flat Euclidean metric in four dimensional space. After this we

perform an S-duality to get to NS5-P system.

ds2 =
(

−dudv +Kdv2 + 2Aidxidv
)

+H−1dxidxi + dzjdzj (5.15)

e2Φ = H−1 (5.16)

Under S-duality, RR field go to NS-NS B-field. To go to KK monopole we apply

a T-duality along a direction perpendicular to NS5. Let us choose that to be x4 =

s. Rightnow, x4 is not an isometry direction since H, Ai and K depend on x4.

To remedy this we smear along x4 direction. Smearing converts four dimensional

harmonic functions into three dimensional harmonic functions. Now we do T-duality

using the Buscher T-duality rules given in the appendix. We can write the T-dual

metric in general as

ds2
T = ds′2 − GµsGνsdx

µdxν

Gss
+

(ds+Bµs)
2

Gss
(5.17)
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where ds′2 is the original metric minus the Gss part. Then metric in generic form for

KK − P (since we do not completely know the values of B-field yet) is

ds2 = −dudv+dzidzi+H−1dx2
i +H(ds+Bµsdx

µ)2+2Ajdxjdv+(K−HA2
s)dv

2 (5.18)

After duality we also have B ′
µs = HGµs. Since KK-P is a purely gravitational solution

we do not want any B-field. So we must dualize in a direction in which Ḟj is zero. So

Gµs = 0 and As = 0. Since we have smeared along x4 = s direction, any derivatives

along s give zero. For field strengths of NS5 − P , we had

Gijk = −εijkl∂lH−1 , Gvij = εijkl∂
kAl (5.19)

Consider l = s case first. Since we have smeared along s, we get Gijk = 0 and hence

B(2) = Bij becomes pure gauge after smearing and can be set to zero. So to have non-

zero field strength, we must have one s index. Suppose i = s. Then using isometry

along s, we have

Gsjk = ∂sBjk + ∂kBsj + ∂jBks = ∂kχj − ∂jχk (5.20)

where χj = Bsj is a three dimensional vector field. We see that

~∇× ~χ = −~∇H−1 (5.21)

where ~∇ is three-dimensional gradient. From other components of field strength, we

get

Gvij = ∂vBij + ∂jBvi + ∂iBjv = εijkl∂
kAl (5.22)

Since As = 0 and derivative with respect to s gives zero, we have, for 3-dimensional

indices i, j

Gvij = ∂vBij + ∂jBvi + ∂iBjv = (dC)ij = 0 (5.23)
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where first term is zero because as we saw earlier, Bij with both indices on 3-dim.

space are zero (upto gauge transformations). Here Biv = Ci is a three dimensional

vector field which is again gauge equivalent to zero as can be seen above. So one of

the indices i, j must be s to get no-zero right hand side. Then we get

Gvis = ∂vBis + ∂sBvi + ∂iBsv = ∂iB − ∂vχi = εiskl∂
kAl = −εikl∂kAl (5.24)

where Bsv = B is a three dimensional scalar which satisfies above equation. So KK-P

metric is

ds2 = −dudv+ dzidzi +H−1dx2
j +H(ds+χjdx

j +Bdv)2 + 2Ajdxjdv+Kdv2 (5.25)

Here i = 1, 2, 3 and all harmonic functions are in three dimensions. zi for i = 6, ..9

are torus coordinates. Using Garfinkle-Vachaspati transform, we got B = −~χ · ~̇F .

Let us check that it satisfies the equation for B written above. By using the rules of

three dimensional vector calculus we have

∇(~χ· ~̇F ) = ( ~̇F ·∇)~χ+(~χ·∇) ~̇F+ ~̇F×(∇×~χ)+~χ×(∇× ~̇F ) = ( ~̇F ·∇)~χ+ ~̇F×(∇×~χ) (5.26)

where we have used that ~F only depends on v. Comparing this with equation for B,

we see that it is same when we realize that

~∇× ~χ = −~∇H−1 , Aj = (1 −H−1)Ḟj

Only non-trivial step is to show that

( ~̇F · ∇)~χ = −∂v~χ

To see this we write

∂v = Ḟi∂Fi
= −Ḟi∇i
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where we have used the fact that derivatives with respect to observation point

xi and source Fi can be interchanged at the cost of a minus sign. One can reduce

the expression for B to a quadrature but it is not easy to carry out the integration

explicitly. For completeness, we give the formal expression below.

B =
QK

2
r cos θ

∫ 1

0

gdg

∫ 2π

0

dα
1

(r2 + F 2g2 − 2Fgr sin θ cosα)3/2
(5.27)

7.6 Properties of solution

In this section, we discuss some properties of the new solutions.

1. Smoothness: As we mentioned earlier, N-monopole solutions are smooth. Zn

singularities associated with coincident KK monopoles are lifted by adding mo-

mentum carrying gravitational wave. System behaves as NK single monopoles

and is smooth. But as we saw earlier, smeared solution has singularities. From

the analysis of two monopole case, the reason is apparent. When we consider

continuum of KK monopoles, any two monopoles come arbitrarily close to each

other and separation due to momentum is not enough to prevent singularities.

Even though logarithmic singularity encountered is quite mild, it is not remov-

able by coordinate identification, as was possible in single KK monopole case.

2. KK electric charge: In the metric

ds2 = −dudv+dzidzi+H−1dx2
j+H(ds+χjdx

j+Bdv)2+2Ajdxjdv+Kdv
2 (6.1)

we have term B which corresponds to momentum along fibre direction s even

though we started with no profile-function component along the fibre. On di-

mensional reduction, this gives a KK electric field, in addition, to magnetic field
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due to KK monopole. Adding momentum to KK monopoles has caused this

electric field. To see its origin from other duality related systems, note that

B = Bsv where Bsv is the component of B-field in the fibre direction. Physi-

cally, the angular momentum present in 5-dimensional metric (NS5-P) becomes

momentum along fibre direction and manifests itself as electric field in reduced

theory.

7.7 Comparison to recent works

7.7.1 Work of Bena-Kraus

Recently, Bena and Kraus [190] constructed a metric for D1-D5-KK system which,

according to them, corresponds to a microstate. These solutions are smooth and

are related to similar studies of black rings with Taub-NUT space as the base space

[190, 175]. In these metrics, KK monopole charge is separated from D1 and D5 charges

and is treated differently from the other two charges. In this section, we want to check

whether Bena-Kraus metric for D1-D5-KK is symmetric under permutation of charges

by duality. For simplicity, we consider near horizon limit of Bena-Kraus(BK) metric

and perform dualities to permute the charges. BK metric and gauge field (after

correcting the typos), in the near horizon limit, is

ds2 =
1√
Z1Z5

[

−(dt+ k)2 + (dy − k − s)2
]

+
√

Z1Z5ds
2
KK +

√

Z1

Z5
ds2

T 4 (7.1)

k =
l2

4Σ

Σ − r − R̃

QK

(

dψ − QK

RK
dφ

)

s = − l2

2ΣQK

(

(Σ − r)dψ +
QK

RK
R̃dφ

)

(7.2)

ds2
KK = ZK(dr2 + r2dθ2 + r2 sin2 θdφ2) +

1

ZK
(RKdψ +QK cos θdφ)2 (7.3)
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Here we have used the notation

Σ =
√

r2 + R̃2 + 2R̃r cos θ , R̃ =
R2
K

4QK
(7.4)

ZK =
QK

r
, Z1,5 =

Q1,5

Σ
, l2 = 4QK

√

Q1Q5 (7.5)

RR two form field is given by

C(2) =
1

Q1

(

(r − R̃)dt ∧ dy − l2

4
(R̃ + α)

[

dt ∧ (
dψ

QK

+
dφ

RK

) − dy ∧ (
dψ

QK

− dφ

RK

)

]

−(R̃ + α)l4

4QKRK
dψ ∧ dφ

)

(7.6)

Here we have used the notation α = Σ−r. Bena-Kraus notation ZK is our H−1. Their

RKψ is our s coordinate. Correspondingly, periodicity of ψ is 2π while period of s was

2πRK. Dilaton is given by e2Φ = Q1

Q5
. Fields given above are for D1yD5y6789KKψy6789

system.

7.7.2 Dualities

We can perform an S-duality to go to F1-NS5-KK system and then perform a

T-duality along the fibre direction ψ permute the charges of KK monopole and NS5

brane. Since dualities map near horizon region of one metric to near horizon region of

other metric, we expect an interchange of KK and 5-brane charges. After S-duality,

we get the following metric for F1-NS5-KK system.

ds2 =
1√
Z1Z5

[

−(dt+ k)2 + (dy − k − s)2
]

+
√

Z1Z5ds
2
KK +

√

Z1

Z5

ds2
T 4 (7.7)

NS-NS two form field is given by

B(2) =
1

Q1

(

(r − R̃)dt ∧ dy − l2

4
(R̃ + α)

[

dt ∧ (
dψ

QK
+
dφ

RK
) − dy ∧ (

dψ

QK
− dφ

RK
)

]
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−(R̃ + α)l4

4QKRK
dψ ∧ dφ

)

(7.8)

Dilaton is given by e2Φ = Q5

Q1
. Details of final T-duality are given in the appendix.

Metric, after T-duality, is given by

ds2 =
Q5QK

rΣ
(dr2+r2dθ2)+

1

4Q5R̃
dψ2+

2Q5QK

R̃
(α+R̃)dφ2+

2QK

R̃RK

(R̃+α)dφdψ− r

Q1
dt2+

Σ

Q1

− 1

Q1
(R̃ + α)dtdy +

4(R̃ + α)QK

RK

√

Q5

Q1
dφ(dy − dt) +

(R̃ + α)

2R̃
√
Q5Q1

dψ(dy − dt) (7.9)

Dilaton is given by e2Φ′

= 1
4Q1R̃

. Non-zero components of B-field are given by

B′
tψ =

R̃ − α

4R̃
√
Q1Q5

, B′
yψ =

R̃ + α

4R̃
√
Q1Q5

(7.10)

B′
φψ =

RKα

4R̃2
, B′

ty =
Σ + r − R̃

2Q1
(7.11)

Since metric after T-duality is not of same form, we see that this metric naively

does not look like a bound state. For a bound state, one would expect just a permu-

tation of charges under duality like done above. But since we performed a T-duality

along fibre direction to permute NS5 and KK6 using Buscher rules which as shown

in [163] are insufficient to give correct answer. So the situation remains open. The

question which we want to discuss is whether the solution constructed in [190] has

KK monopole bound to other two charges or it just acts as a background. Since KK

monopole is much heavier than other two components, D1 and D5 branes, it may

look as if acting as background for other two and difference might not be apparent

at supergravity level. But still one would think that in the S-dual system F1-NS5-

KK where at least NS5 and KK both have masses going like 1/g2 (actual masses
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will depend on compactification radii) , it should be possible to permute these two

charges. Analysis similar to [163] could be done for 3-charge system to completely fix

this issue. We intend to look further in this matter in a future publication.

7.8 T-duality to KK-F1

We now convert KK-P system to KK-F1 by T-dualizing along the w direction

where v = t−w and u = t+w. We are in IIA supergravity since we can connect this

to D1-D5 by S-duality followed by T-duality along a perpendicular direction. Writing

the metric as

ds2 = −(dt2−dw2)+2Cidxi(dt−dw)+K(dt−dw)2+H[ds+Ajdxj−AjḞjdt+AjḞjdw]2

+H−1dxjdxj + dzldzl (8.12)

where we have written Ci = (1 − H−1)Ḟi and K = −(1 − H−1)Ḟ 2. From now on

we will leave the trivial torus coordinates zl in what follows. It is easier to write the

T-dual metric using

ds2
T = ds′2 − GµwGνwdx

µdxν

Gww
+

(dw +Bµwdx
µ)2

Gww
(8.13)

Since there is no B-field in KK-P, we get

ds2 = −dt2 + 2Cidxidt +Kdt2 +H[ds+ Ajdxj − AjḞjdt]
2 +H−1dxjdxj + dzldzl

+
dw2 − [(K +H(AlḞl)

2)dt+H(AlḞl)ds]
2 − (HAiAlḞl − Ci)(HAjAlḞl − Cj)dx

idxj

[1 +K +H(AlḞl)2]

(8.14)
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7.9 Conclusion

We summarize our results and look at possible directions for future work.

7.9.1 Results

We have found gravity solutions describing multiple KK monopoles carrying mo-

mentum by applying the solution-generating transform of Garfinkle and Vachaspati

and also by using various string dualities on the known two charge solutions. The sec-

ond method only yields smeared solution which are logarithmically singular. One im-

portant feature of these solutions is that adding momentum to multiple KK monopoles

leads to the separation of previously coincident KK monopoles. Hence orbifold type

singularities of coincident KK monopoles are resolved and the solution is smooth.

One can also superpose a continuum of KK monopoles carrying momentum and re-

place the summation by an integral. Doing this, one gets stationary solutions (no t

dependence) with isometry along y(compact coordinate along which the wave is trav-

elling). The continuous case however, turns out to be singular. Singularity occurs at

the same location where it occurs in the solution obtained by applying dualities. In

the case with y-isometry, we also dualized it to a KK-F1 system.

Our reasons for studying these geometries were, in part, motivated by recent work

of Bena and Kraus [173, 190] in which they constructed a smooth solution carrying

D1, D5 and KK charges. This solution is supposed to represent one of the microstates

of this system. But in these solutions, KK monopole is separated from D1 and D5

branes and acts more like a background in which the D1-D5 bound states live. One

effect of this is that the system does not appear to be duality symmetric i.e one can not

permute the charges by performing various string dualities. We performed a specific
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duality sequence (in the near horizon limit, for simplicity) to permute the charges and

found that the solution is not symmetric. But since we used only Buscher T-duality

rules, our result does not conclusively show the unboundedness of the geometry and

it is possible that duality rules going beyond supergravity will restore the symmetry.

Our KK-F1 geometry is also different from the two charge geometries one would get

from Bena-Kraus geometries by setting one charge to zero.

Study of two charge systems with KK monopole is far from over. We have con-

structed time-dependent KK-P geometries which are perfectly smooth and it would

be interesting to study them further. On the microscopic side, one can perform DBI

analysis on KK-brane [164] . First thing that needs to be checked is that brane-side

gives same value for conserved quantities like angular momentum as the gravity side.

It is expected that on the microscopic side, system would be dual to usual supertubes.

One can also do perturbation analysis on brane-side and gravity side as done in [165].

Perturbation calculation for other two charge systems were also done in [172] and

yielded results in agreement with microscopic expectations. Microscopic side of KK-

branes is not very well understood, as far as we know. So calculations on gravity side

should give us information about microscopic side and vice-versa. We will carry out

some of these computations in the next chapter. It would also be interesting to ex-

plore further the connection between these solutions and black rings in KK monopole

backgrounds as found in [175] as that might suggest ways to add the third charge to

these two-charge systems.
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CHAPTER 8

PERTURBATIONS OF SUPERTUBES IN KK
MONOPOLE BACKGROUND

8.1 Introduction

In this chapter, we continue our study of systems with KK monopole. Our aim

is to further explore the question of boundedness of the metrics constructed by Bena

and Kraus. In Chapter 4, [172] we studied adding perturbations to BPS supertubes

(both in D0-NS1 and NS1-P duality frames) and found classical solutions at both

linear and non-linear levels (in the NS1-P language these are just vibrations of fun-

damental string and it’s trivial to write down the full solution). Based on several

evidences, we formulated a conjecture which allows us to distinguish bound states

from unbound states. The conjecture says that bound states are characterized by

the absence of ‘drift’ modes where by ‘drift’ modes, we mean slow motion on moduli

space of configurations. So when we have motion on moduli space we take the limit of

the velocity going to zero, and over a long time ∆t the system configuration changes

by order unity. Using ∆x as a general symbol for the change in the configuration we

have for ‘drift’ on moduli space’

v ∼ ε, ∆t ∼ 1

ε
, ∆x ∼ 1, (ε→ 0) (1.1)
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On the other hand for the periodic behavior of bound states, we have

v ∼ ε, ∆t ∼ 1, ∆x ∼ ε (ε→ 0) (1.2)

If the geometries of Bena and Kraus are really one of the microstates for 3 charge

black holes in four dimensions then they must be bound states of the corresponding

charges.Mathur conjecture emphasizes that microstates of black holes (which are de-

scribed by smooth, horizon-free geometries when classical supergravity description is

possible) correspond to bound states only.

Unlike the case of supertubes42where system was obviously bound, in the systems

with KK monopole it is not a priori obvious that we are considering bound states.

Since we have a conjectured test which can distinguish, at least in principle, bound

states from unbound ones, we would like to apply it to some of the systems with KK

monopole. This involves solving perturbation equations in KK monopole background.

Due to non-trivial background, non-linear perturbation equations, even at DBI level,

are quite difficult to solve and hence we would restrict ourselves to linearized per-

turbations. Thus our considerations are geared to analyze some of these systems,

especially one corresponding to geometry given in [173] and to study it’s bounded-

ness properties using conjecture of [172]. We found that there are no ‘drift’ modes

at the DBI level and system shows ‘quasi-oscillations’ as discussed in [172]. On the

gravity side, we construct near ring limit of the geometry and we were able to show

that near ring limit is identical to near ring limit of 2-charge systems considered [172]

except for the periodicity of the ring circle. Then we consider torus perturbations as

in [172] and find that results agree with DBI analysis.

42In D0-NS1 language, both charges were induced in a single higher brane D2 or in the NS1-P
language these are just vibrations of fundamental string.
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8.1.1 Outline of this chapter

Plan for the present chapter is as follows.

• In Σ2, we set up equations which describe motion of classical string in a general

curved background and then apply them for the KK monopole background. We

linearize about BPS solution of a fundamental string carrying a right moving

wave and write down perturbation equations.

• In Σ3, we write the string profile corresponding to metric of Bena and Kraus

(BK) [173]. In our system of 3-charges in four dimensions different geometries

correspond to different profile functions [197] of a one dimensional string, as

was also the case for 2-charge systems. Here we will work in NS1 − P duality

frame. Then we solve perturbation equations for this profile.

• In Σ4, we discuss the construction of D0-NS1 supertube in KK monopole back-

ground. Then we study perturbations to this.

• In Σ5, we study a profile different from BK profile in both NS1-P language

and D0-NS1 language.

• In Σ6, we study the supergravity side of the system. We take near ring limit

of BK geometry and show how the perturbation analysis can be reduced to one

done in a previous paper [172] and consequently time-period of torus vibrations

also matches with the one considered in [172].

• In Σ7, we conclude with a discussion of our results and directions for future

investigations.
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8.2 Oscillating string in KK monopole background

In this section, we consider Polyakov string in KK monopole background. We first

set up equations of motion and constraint equations in a general background. Our

action is

S = −T1

2

∫

dσdτ
√
ggαβ(σ, τ)GAB(X)∂αXA∂βXB (2.3)

Here σ, τ are worldsheet coordinates and α, β are worldsheet indices. Index A

for spacetime coordinates XA goes from 0, ..9. For worldsheet metric gαβ we have

g = −det(gαβ). Varying the action with respect to coordinates XA, we get

δS

δXA
= 0 = ∂α[

√
gGAB∂

αXB] − 1

2
(∂AGCD)∂αX

C∂αXD (2.4)

In the conformal gauge on worldsheet, we have gαβ = e2fηαβ. So we get

∂α[(∂
αXB)GAB] − 1

2
(∂AGCD)(∂αX

C∂αXD) = 0 (2.5)

Contracting with GAP , we get

∂α∂
αXP +GAP [(∂CGAB)∂αXC∂αX

B − 1

2
(∂AGCD∂

αXC∂αX
D] = 0 (2.6)

In [194] (see also the references given there), general string equations of motion

in curved background were given in a slightly different form. To match with those,

we write the combination of derivatives as christoffel symbols. Writing

(∂CGAB)∂αXC∂αX
B =

1

2
[∂CGAB + ∂BGAC ]∂αXC∂αX

B

and recognising the combination of derivatives as christoffel symbols, we get

∂α∂
αXP + ΓPCB∂

αXC∂αX
B = 0 (2.7)
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Constraint equations are given by

δS

δgαβ
= Tαβ = GAB[∂αX

A∂βX
B − 1

2
gαβ∂γX

A∂γXB] = 0 (2.8)

If we choose lightcone variables ξ± = τ̃ ± σ̃ then g++ = g−− = 0 and we get

∂+∂−X
A + ΓABC∂+X

B∂−X
C = 0 (2.9)

GAB∂±X
A∂±X

B = 0 (2.10)

∂± denotes derivative with respect to ξ± in previous equation.

Ten dimensional metric for KK monopole at origin is

ds2 = −dt2 +dy2+

9
∑

i=6

dzidzi+V [ds+χjdx
j]2 +V −1[dr2 +r2(dθ2 +sin2 θdφ2)] (2.11)

V −1 = 1 +
Q

r
, ~∇× ~χ = −~∇V −1 (2.12)

Here y is compact with radius R5 while xj with j = 1, 2, 3 are transverse coordinates

while zi with i = 6, 7, 8, 9 are coordinates for torus T 4. Here Q = 1
2
NKRK where

NK corresponds to number of KK monopoles. Near r = 0, s circle shrinks to zero.

For NK = 1, it does so smoothly while NK > 1, there are ZNK
singularities. Here

we just consider NK = 1 case. General problem of classical string propagation in

KK monopole background is quite difficult to solve and so we will restrict ourselves

to considering linearized perturbations about a given string configuration satisfying

equations of motion. Our base configuration (about which we want to perturb) is

fundamental string wrapped along y-circle and carrying a right moving wave or in

other words, supertube in NS1-P duality frame. We know that in this case the

waveform travels with the speed of light in the y direction. Let us check that this is
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a solution of our string equations. This time we know the solution in the static gauge

on the worldsheet:

t = bτ̃ , y = bσ̃ (2.13)

Writing ξ̃± = τ̃ ± σ̃ and noting that a right moving wave is a function of ξ̃− we expect

the following to be a solution

t = b
ξ̃+ + ξ̃−

2
, y = b

ξ̃+ − ξ̃−

2
, Xµ = xµ(ξ̃−) (2.14)

We see that this satisfies equation of motion. But it doesn’t satisfy constraint

equations i.e the induced metric on worldsheet is not conformal to flat metric.

ds2 = −b2dξ̃+dξ̃− +Gµν(x
′µx′ν)(dξ̃−)2 (2.15)

where primes denote differentiation wrt. ξ̃−. However, as done in [172], we change

coordinates to

(ξ+, ξ−) = (ξ̃+ − f(ξ̃−), ξ̃−) (2.16)

with

f ′(ξ−) =
Gµνx

′µx′ν

b2
(2.17)

Here prime now denotes derivative with respect to ξ− and index µ denotes direc-

tions along taub-nut part of KK monopole. In terms of these new coordinates, we

have a conformally flat metric on the worldsheet.

ds2 = −b2 dξ− dξ+ (2.18)

So configuration

t = b
ξ+ + ξ− + f(ξ−)

2
, y = b

ξ+ − ξ− + f(ξ−)

2
, xµ = xµ(ξ−) (2.19)
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satisfies the equations of motion. For t, y coordinates, there is separation between

left and right movers and hence equation of motion is trivially satisfied. We will

take vibrations along torus coordinates to be zero in the base configuration. For

coordinates along taub-nut, christoffel symbols are non-zero but since ∂+x
µ(ξ−) = 0,

equations of motion are satisfied. This is to be expected since KK monopole is an

exact background for string theory. Now we consider linearized perturbations about

this configuration

Xµ = xµ(ξ−) + εY µ(ξ+, ξ−) , zj = εZj(ξ
+, ξ−) (2.20)

where ε is a small parameter. We will neglect terms of higher order in ε in what

follows. In a curved spacetime, left and right movers are mixed and hence Y µ depends

on both ξ±. Expanding eqn. 2.9 to first order in ε perturbation equation will be

∂+∂−Y
µ + Γµνρ∂+Y

ν∂−x
ρ = 0 (2.21)

Here christoffel symbols are calculated using zeroth order background metric eval-

uated for the base configuration and hence it depends only on ξ−. Hence we have

following first order equation after first integration.

∂−Y
µ + ΓµνρY

ν∂−x
ρ = hµ(ξ−) (2.22)

For directions zj, christoffel symbols are zero and hence perturbations are of the

form

Zj = Z−(ξ−) + Z+(ξ+) (2.23)

Before trying to solve the equation 2.22 , let us try to see the form of constraint

equations 2.10 for these solutions. First Constraint equation becomes

0 = GAB∂+X
A∂+X

B = −b
2

4
+
b2

4
+ ε2Gµν∂+Y

µ∂+Y
ν + ε2Gji∂+Z

j∂+Z
i (2.24)

290



and second non-trivial one becomes

GAB∂−X
A∂−X

B = −b
2

4
(1 + f ′(ξ−))2 +

b2

4
(−1 + f ′(ξ−))2 + ε2Gji∂+Z

j∂+Z
i

+Gµν∂−X
µ∂−X

ν = 0 (2.25)

We see that upto first order in ε, first constraint is satisfied. Now we manipulate

order ε terms in second equation a bit to get the constraint on hµ implied by the second

equation. We first expand all the terms into base quantities and perturbations.

Gµν∂−X
µ∂−X

ν = (Gµν + εhµν)(x
′µ + εY ′µ)(x′ν + εY ′ν) (2.26)

Here Gµν is the four dimensional taub-nut part of base metric evaluated for base

configuration xµ and hµν is the linearized perturbation in metric. Prime denotes

derivative with respect to ξ−. Putting this in constraint equation and considering

terms upto order ε only, we get

−b2f ′(ξ−) +Gµνx
′µx′ν + ε[hµνx

′µx′ν + 2Gµνx
′µY ′ν] = 0 (2.27)

At zeroth order in ε, terms vanish by the definition of f(ξ−). To further massage

first order terms, we put Y ′µ from the equation of motion in the constraint equation.

[hµνx
′µx′ν + 2Gµνx

′µ(−ΓνρσY
ρx′σ + hν(ξ−)] = 0 (2.28)

Here we have set

−b2f ′(ξ−) +Gµνx
′µx′ν = 0 (2.29)

giving f ′(ξ−). Putting the definition of christoffel symbols , we get

2Gµνx
′µ(ΓνρσY

ρx′σ) = x′µx′σY ρGµνG
να

(∂ρGασ + ∂σGαρ − ∂αGρσ) = x′µx′σY ρ∂ρGµσ

(2.30)
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Putting this in eqn. 2.28 we get

x′µx′σ(hµσ − Y ρ∂ρGµσ) + 2Gµνh
νx′µ = 0 (2.31)

This gives constraint on hν as first term automatically vanishes. Thus

Gµνh
νx′µ = 0 (2.32)

is the final form of constraint equation which we will use later.

8.3 Perturbations for BK string profile

Now we have set up our equations of motion and constraint equations. So we

can use these to find linearized perturbations for given base configurations. Our

interest is in systems which correspond to supertubes in KK monopole background.

Geometries constructed in [173, 190, 175] correspond to such situations. In [197], it

is shown that geometry corresponding to Bena-Kraus (BK) metric is generated by

considering a particular string profile in KK monopole background and other string

profiles give different geometries, generalizing those of [150] ( where general geometries

correspond to string profile in four dimensional flat space) to the case of 3-charges

in four dimensions. Since we finally want to consider supergravity perturbations in

Bena-Kraus geometry, it would be necesary to consider same string profile (which

generates BK geometry in supergravity limit) as our base configuration about which

we add perturbations. So in this section, we determine the profile corresponding to

BK geometry in coordinates appropriate for KK monopole background. Since taub-

nut space becomes flat space for small distances, we can find the profile corresponding

to BK metric by considering the profile near the center of KK monopole. For this

we need conversion between flat space coordinates and taub-nut coordinates. Since
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we have cos θ as the gauge field for taub-nut instead of usual 1 − cos θ, we give the

calculation for our case. Taub-nut metric is

ds2 =
1

V
(dz + cos θdφ)2 + V (dr2 + r2dθ2 + r2 sin2 θdφ2) (3.33)

Here V = 1 + Q
r

and 0 ≤ θ ≤ π. The periodicities of angular coordinates are

δφ = 2π and δz = 2πRK where Q = 1
2
NKRK . Here RK is the asymptotic radius of

z-circle and NK is the number of monopoles. For r << Q, we have

ds2 ≈ Q(
dr2

r
+ rdθ2 + r sin2 θdφ2) +

r

Q
(dz + A cos θdφ)2 (3.34)

Now we make change of variables by defining

ρ = 2
√

Qr , θ̃ =
θ

2
(3.35)

Now metric becomes

ds2 = dρ2 + ρ2dθ̃2 +
ρ2

4
sin2 2θ̃dφ2 +

ρ2

4Q2
(dz +Q cos 2θ̃dφ)2 (3.36)

= dρ2 + ρ2dθ̃2 +
ρ2

4
dφ2 +

ρ2

4
dz2 +

ρ2

2Q
cos 2θ̃dφdz (3.37)

Inserting 1 = sin2θ̃ + cos2 θ̃, we get

ds2 = dρ2 + ρ2[dθ̃2 +
cos2 θ̃

4
(
1

Q
dz + φ)2 +

sin2 θ̃

4
(
1

Q
dz − φ)2] (3.38)

We define following combinations

2ψ̃ =
1

Q
dz + φ , 2φ̃ =

1

Q
dz − φ (3.39)

In terms of these quantities, we have flat metric

ds2 = dρ2 + ρ2[dθ̃2 + cos2 θ̃dψ̃2 + sin2 θ̃dφ̃2] (3.40)
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In this flat space metric, cartesian coordinates are defined by

x1 = ρ sin θ̃ cos φ̃, x2 = ρ sin θ̃ sin φ̃ , x3 = ρ cos θ̃ cos ψ̃ , x4 = ρ cos θ̃ sin ψ̃ (3.41)

BK metric for 3-charges in 4 dimensions is analogous to supertube metric [185,

192, 188, 189] for 2-charges in 5 dimensions. Near the centre of KK monopole, we

know that KK monopole metric reduces to flat space as we saw above. There string

profile of BK metric must be same as string profile of supertube metric. As show in

[189, 178], we have circular profile function

F1 = a cosωv , F2 = a sinωv (3.42)

for geometry corresponding to simplest supertube. Here v = t− y.We see that we

have following coordinates for profile function in polar coordinates

ρ = a , θ̃ =
π

2
, φ̃ = ωv (3.43)

The value of ψ̃ is indeterminate. To simplify things we take ψ̃ = ωv. In terms of

taub-nut coordinates these values translate to

r =
a2

4Q
, θ = π , φ = 0 , z = 2Qωv (3.44)

Here ω = 1
nRy

for the state we are considering, n being the number of times string

winds around y-circle of radius Ry.

8.3.1 Perturbations of BK profile

In section 2, we determined the equation of motion 2.22 and constraint equation

2.32 for a general base configuration given by profile xµ(ξ−) in taub-nut directions.

In this subsection, we apply these for the case of BK profile in NS1-P duality frame.
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From section 2, equation of motion for perturbations Y A are

∂−Y
A + Γ

A

BCY
B∂−x

C = hA(ξ−) (3.45)

In the flat directions zj, solution is like in flat space i.e

Zj = Z−(ξ−) + Z+(ξ+) (3.46)

t = b
ξ+ + ξ− + f(ξ−)

2
, y = b

ξ+ − ξ− + f(ξ−)

2
(3.47)

where

−b2f ′(ξ−) +Gµνx
′µx′ν = 0 (3.48)

gives f ′(ξ−). In the taub-nut directions, we will only consider perturbations along r

and z. Since there are coordinate singularities at θ = π, we can work at π − δ and

then take 43 limit δ → 0. In what follows, we will set z = RKψ to simplify some

calculations. We will need following components of connection in what follows

p = Γ
ψ

rψ =
Q

2r(Q+ r)
, −q = Γ

r

ψψ = − QrR2
K

2(Q+ r)3
(3.49)

We consider the case where base configuration has non-constant radius. We consider

taub-nut directions as perturbations in other directions ( whose connection compo-

nents vanish ) are same as above. Base configuration in this case is

r = R(ξ−) , θ = π , φ = 0 , ψ =
2ωQ

RK

ξ− = αξ− (3.50)

We consider perturbations only along r, ψ directions. Then

∂−X
ψ

= α , ∂−X
r

= R′ =
dR(ξ−)

dξ−
(3.51)

43Since these coordinates have singularities at θ = π, we should change to other coordinate patch
to cover the point θ = π (in that patch θ = 0 will have problem). In other coordinate system, similar
conclusions follow and hence we will not worry about these spurious singularities any further
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Putting these in

∂−Y
A + Γ

A

BCY
B∂−x

C = hA(ξ−) (3.52)

we get following two equations for the perturbations

∂−Y
r + Γ

r

rrY
rR′ + Γ

r

ψψαY
ψ = hr(ξ−) (3.53)

∂−Y
ψ + Γ

ψ

rψαY
r + Γ

r

ψrR
′Y ψ = hψ(ξ−) (3.54)

Apart from equation of motion, we also have constraint equation 2.32 which give

following relation between hr and hψ.

Grrh
rR′ +Gψψh

ψα = 0 (3.55)

Putting the values of appropriate connection components, we get

∂−Y
r − QR′

2R(Q+ r)
Y r − QRα

2(Q+R)3
Y ψ = hr(ξ−) (3.56)

∂−Y
ψ +

Q

2R(Q+R)
(αY r +R′Y ψ) = hψ(ξ−) (3.57)

Multiplying the first equation by
√
V , dividing the second by

√
V and using

expression 8.3 for V , we can write the two equations as

∂−(
√
V Y r) − Qα

2(Q+R)2

(

Y ψ

√
V

)

= (
√
V hr)(ξ−) (3.58)

∂−

(

Y ψ

√
V

)

+
Qα

2(Q +R)2
(
√
V Y r) =

(

hψ√
V

)

(ξ−) (3.59)

Defining new dependent and independent variables

Ỹ r =
√
V Y r , Ỹ ψ =

Y ψ

√
V

(3.60)

ξ̃ =
Qα

2

∫

dξ−

(Q+R(ξ−))2
(3.61)
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we get

∂̃−(Ỹ r) − Ỹ ψ = Gr(ξ̃) (3.62)

∂̃−(Ỹ ψ) + Ỹ r = Gψ(ξ̃) (3.63)

where ∂̃− denotes derivative with respect to ξ̃ and new arbitrary functions Gr, Gψ

are now expressed as functions of ξ̃. Since we will be needing it later also, let us solve

equations of motion in a general form. We can express the above coupled first order

inhomogeneous equations as matrix equation

∂̃ ~Y = A~Y + ~G (3.64)

where A is a 2 × 2 matrix

A =

(

0 1
−1 0

)

(3.65)

Solution to matrix equations like 3.64 is found by diagonalizing the matrix A. If

λj are eigenvalues and ~Sj are eigenvectors, with j = 1, 2 then solution is given by

~Y =
∑

j

cj ~Sje
λj ξ̃ +

∑

j

eλj ξ̃ ~Sj

∫

e−λj ξ̃G̃j(ξ̃)dξ̃ (3.66)

Here ~̃G = S−1 ~G and S = [S1 S2] is the matrix of eigenvectors as column vectors.

For our case, we get

(

Ỹ r

Ỹ ψ

)

= c1(ξ
+)

(

i
1

)

eiξ̃ + c2(ξ
+)

(

−i
1

)

e−iξ̃

+eiξ̃
(

i
1

)
∫

e−iξ̃G̃r(ξ̃)dξ̃ + e−iξ̃
(

−i
1

)
∫

eiξ̃G̃ψ(ξ̃)dξ̃ (3.67)

Solution can then be combined to schematically write down

Ỹ r + iỸ ψ = B(ξ+)e−iξ̃ +G1(ξ̃) (3.68)

Ỹ r − iỸ ψ = A(ξ+)eiξ̃ +G2(ξ̃) (3.69)
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8.4 D0-F1 supertube in KKM background

In previous section, we found perturbed solution corresponding to oscillating string

in KK monopole background. We know that this system is dual to usual D0 −NS1

supertube. In this section, we study supertube in D0−NS1 duality frame. Since we

are in a non-trivial background (KK monopole), it is not clear how to do dualities

required to go from NS1-P to D0-NS1 frame as done in [172]. So we perform

calculation of linearized perturbation separately in this duality frame. Static case of

D0-NS1 supertube was considered in [196]. Here we will review their construction

for the case of round supertube. In the next subsection we will add perturbations to

it.

D2 supertube has world-volume coordinates σ0, σ1, σ2 = σ. We embed supertube

in such a way that

σ0 = t , σ1 = y , Xµ = Xµ(σ2) (4.70)

Here Xµ are arbitrary functions of σ. To stabilize the brane against contraction

due to brane-tension, we introduce gauge field

F = Edσ0 ∧ dσ1 +B(σ2)dσ1 ∧ dσ2 = Edt ∧ dy +B(σ)dy ∧ dσ (4.71)

For D2-brane of tension T2, Lagrangian is given by

L = −T2

√

−det[g + F ] = −T2

√

B2 +R2(1 − E2) (4.72)

Here g is induced metric and R2 = GµνX
′µX ′ν and prime denotes differentiation

wrt σ. Background metric Gµν for KK monopole is given by 2.11. We define electric

displacement as

Π =
∂L
∂E

=
T2ER

2

√

B2 +R2(1 − E2)
(4.73)
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In terms of this, we write hamiltonian density as

H = EΠ − L =
1

R

√

(R2 + Π2)(B2 +R2) (4.74)

It is easy to see that minimum value for H is obtained if T2R
2 = ΠB or E2 = 1.

These conditions agree with what one gets from supersymmetry analysis. As in flat

space, B(σ) is an arbitrary function of σ. By the usual interpretation, fluxes above

correspond to D2 brane carrying both D0 and F1( along y direction) charges. We

are assuming isometry along y-direction. Charges are given by

Q0 =
T2

T0

∫

dydσB(σ) (4.75)

Q1 =
1

T1

∫

dσΠ(σ) =
T2

T1

∫

dσ
ER2

√

B2 +R2(1 − E2)
(4.76)

Round supertube in KK is given by

σ0 = t , σ1 = y , R0 =
a2

4Q
, θ = π , φ = 0 , z = 2Qωσ (4.77)

We have chosen parameters in such a way as to facilitate comparison with NS1-

P duality frame. In terms of flat space (or near the center of KK monopole), this

corresponds to a circular profile in say, (X1, X2) plane. We are not perturbing along

torus directions. For this configuration

R2 = X ′µX ′
µ = Gzz(2Qω)2 (4.78)

So the supersymmetry condition gives a relationship between all three charges and

the compactification radius. Now consider perturbation of this configuration.

8.4.1 Perturbations in D0-F1 picture

Let R and σ be the radial and angular coordinates in the (X1, X2) plane. We

choose the gauge At = 0 for the worldvolume gauge field. Thus the gauge field has
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the form

A = Aσdσ + Aydy (4.79)

F = Edt ∧ dy +Bdy ∧ dσ + ∂taσdt ∧ dσ (4.80)

We want to study fluctuations around the configuration given by 4.77,4.79 with E = 1

and b = B(σ). Lagrangian is given by

L = −T2

√

−det[g + F ] (4.81)

Putting values from 4.77,4.79, we get

L = −T2

√

(1 − E2)X ′2 − Ẋ2X ′2 + (Ẋ ·X ′)2 − ȧ2
σ +B2(1 − Ẋ2) − 2EBẊ ·X ′

(4.82)

We perturbed as

R = R0 + εr(σ, t) , E = 1 + εȧy , B = b− εa′y , Z = ασ + εz (4.83)

where lower case quantities denote fluctuations. Field strength becomes

F = (1 + εȧy)dt ∧ dy + (b− εa′y)dy ∧ dσ + ∂taσdt ∧ dσ (4.84)

We have put perturbations along θ, φ directions to be zero. Putting these in La-

grangian and expanding upto second order

L
T2

= L(0) + εL(1) + ε2L(2) (4.85)

we find

L(0) = −b (4.86)

L(1) =
1

b

(

α2ȧy
V0

+
αbż

V0

+ bȧy

)

(4.87)
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We see that first order perturbation is a total derivative. This follows from the

fact that our unperturbed configuration satisfies equations of motion. Term second

order in ε is given by

L(2) =
α2 + V0b

2

2b
ṙ2 +

α2(α2 + V0b
2)

2b3V 2
0

ȧ2
y +

(α2 + V0b
2)

2bV 2
0

ż2 + V0ṙr
′ +

1

V0
żz′ +

α2

b2V0
ȧya

′
y

+
Qα2

bV 2
0 R

2
rȧy +

α(α2 + V0b
2)

V 2
0 b

2
ȧy ż +

αQ

V 2
0 R

2
rż +

2α

bV0

ȧyz
′ (4.88)

From this , we get following equations of motion

(

α2 + V0b
2

b

)

r̈ + 2V0∂σ ṙ −
αQ

V 2
0 R

2
(ż +

α

b
ȧy) = 0 (4.89)

(

α(α2 + V0b
2)

V 2
0 b

2

)

[z̈ +
α

b
äy] +

2α

V0b
∂σ(ż +

α

b
ay) +

α2Q

bV 2
0 R

2
ṙ = 0 (4.90)

(

(α2 + V0b
2)

V 2
0 b

)

[z̈ +
α

b
äy] +

2

V0
∂σ(ż +

α

b
ay) +

αQ

V 2
0 R

2
ṙ = 0 (4.91)

We see that second and third equations are same. If we define x = z + α
b
ay then

we have following equations

(

α2 + V0b
2

b

)

r̈ + 2V0∂σ ṙ −
αQ

V 2
0 R

2
ẋ = 0 (4.92)

(

α2 + V0b
2

b

)

ẍ+ 2V0∂σẋ+
αQ

R2
ṙ = 0 (4.93)

We notice that as in the case of supertube in flat space, we only have time deriv-

atives of field in the equations of motion. Thus any time independent perturbation is

a solution, confirming that supertube in KK monopole background also has a family

of time independent solutions. Solution to above equations is given by

r = c1(ξ
+) cos aσ + c2(ξ

+) sin aσ (4.94)

x = k
[

c1(ξ
+) sin aσ − c2(ξ

+) cos aσ
]

(4.95)
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where

ξ+ =
2t

b
− σ − α2

V0b2
σ , k = −V0 , a =

αQ

V 2
0 R

2
(4.96)

We see that here perturbations along z direction add with the gauge field and

only a combination occurs in equations of motion. This occurs because as in NS1-P

duality frame, we have only two independent degrees of freedom. It’s important to

note that frequencies of oscillation agree in both the duality frames, as one expects.

Motion is periodic and as in flat space case, we did not find ‘drift’ modes. So according

to conjecture of [172], this would correspond to bound state

8.4.2 Period of oscillation

We had earlier defined static gauge coordinates τ̃ and σ̃ in equation 2.13 and then

obtained conformal coordinates ξ+, ξ− from them using equations 2.16,2.17 respec-

tively. For finding the period of oscillation, it would be convenient to take τ̃ and ξ−

as our basic variables. Relationship between target space time t and τ̃ is just by a

simple multiplicative factor b while ξ− gives the parametrization of unperturbed base

configuration. So in terms of these, we have

ξ+ = ξ̃+ − f(ξ−) = 2τ̃ − ξ− − f(ξ−) (4.97)

The time dependence of the solution (4.95) is contained in functions like A(2τ̃ −

ξ− − f(ξ−)) and similarly for torus directions Zj(2τ̃ − ξ− − f(ξ−)). We write

ξ− + f(ξ−) =

∫ ξ−

0

dχ(1 + f ′(χ)) (4.98)

So the change in ξ− + f(ξ−) when ξ− increases by 2π can be written as
∫ 2π

0
dχ(1 +

f ′(χ)). We then find that the argument of A,Zj are unchanged when (τ̃ , ξ−) →
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(τ̃ + ∆τ̃ , ξ− + 2π) with

2∆τ̃ −
∫ 2π

0

(

1 + f̄ ′(ξ̄−)
)

dξ̄− = 0 (4.99)

Using expression for f ′(ξ−) as given in 2.29, we get

∆τ̃ =
1

2

∫ 2π

0

(

1 +
Gµνx

′µx′ν

b̄2

)

dξ̄− (4.100)

For torus directions, situation is similar to flat space case. In case of only torus

vibrations, we get back flat space result

∆t =
1

2

(

MD0 +MNS1

MD2

)

(4.101)

8.5 Profile in 3-d part of KK

Uptill now, we have considered BK profile only. In this section, we consider a

different profile which seems natural for KK monopole background. We consider

unperturbed profile with z = X3 = 0 and perturbations only along X1, X2 directions

only, with X1, X2 being arbitrary functions. First consider the perturbations in NS1-

P language. Again we use equations of motion 2.22 and constraint equation 2.32 as

derived in section 2 previously44.

∂−Y
i + ΓijkY

ν∂−x
k = hi(ξ−) (5.102)

Relevant christoffel connections in this case are

Γijk =
1

2V

[

(∂jV )δik + (∂kV )δij − (∂lV )δilδjk
]

(5.103)

In other directions, christoffel symbols are zero and hence perturbation equations

are trivial as shown in section 2. Here we concentrate on fluctuations along three

44We will denote directions along three dimensional part of taub-nut (i.e excluding fibre direction)
by latin letters
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dimensional part of taub-nut which is conformal to flat space. We put relevant con-

nection coefficients in perturbation equation for taub-nut directions and get

∂−Y
i+

1

2V

[

(∂kV )∂−X
k
Y i + (∂jV )Y j∂−X

i − (∂lV )δilδjk∂−X
k
Y j
]

= hi(ξ−) (5.104)

Writing S = lnV and

wi = e
1
2 � (∂−S)dξ−Y i =

√
V Y i , ∂kV ∂−X

k
= ∂−V (5.105)

we get

∂−w
i +

1

2
[(∂jS)wj∂−X

i − ∂lSδ
ilδjk∂−X

k
wj] = H i(ξ−) (5.106)

Here H i =
√
V hi . In terms of vector notation, this can be written as

d~w

dξ−
+

1

2
~w × ~B = H i(ξ−) (5.107)

where ~B = ∂− ~X ×∇S. We first consider a circular profile

X1 = R cos ξ− , X2 = R sin ξ− (5.108)

Then we get following equations

dw(1)

dξ−
+

Q

2V R
w(2) = H1(ξ−) (5.109)

dw(2)

dξ−
− Q

2V R
w(1) = H1(ξ−) (5.110)

Solution to these equations is

w(1) + iw(2) = C1(ξ
+)e−iαξ

−

+G(1)(ξ−) (5.111)

w(1) − iw(2) = C2(ξ
+)eiαξ

−

+G(2)(ξ−) (5.112)

Here α = Q
2V R

and G1, G2 are arbitrary functions. Now we consider the case when

in base configuration has non-constant radius.

X1 = R(ξ−) cos ξ− , X2 = R(ξ−) sin ξ− (5.113)
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Now putting this in

∂−w
i +

1

2
[(∂jS)wj∂−X

i − ∂lS)δilδjk∂−X
k
wj] = H i(ξ−) (5.114)

we get same equations

dw(1)

dξ−
+

Q

2V R
w(2) = H1(ξ−) (5.115)

dw(2)

dξ−
− Q

2V R
w(1) = H1(ξ−) (5.116)

Only change is that R = R(ξ−). Terms containing derivatives of R cancel. We

can change the independent variable to ξ̃ = ξ̃(ξ−) such that

d

dξ−
=

dξ̃

dξ−
d

dξ̃
,

2V R

Q

dξ̃

dξ−
= 1 (5.117)

Then the equation becomes like constant coefficient case. New variable ξ̃ is given by

ξ̃ =
Q

2

∫

dξ−

Q+R(ξ−)
(5.118)

Solution is

w(1) + iw(2) = C1(ξ
+)e−iξ̃ +G(1)(ξ̃) (5.119)

w(1) − iw(2) = C2(ξ
+)eiξ̃ +G(2)(ξ̃) (5.120)

Again G1, G2 are arbitrary functions.

8.5.1 D0-F1-KK picture

Now we consider same profile in D0-NS1 duality frame. In polar coordinates, we

have

R = R + εr , E = 1 + εȧy , B = B − εa′y (5.121)
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We have put X3 = 0 or θ = π
2
. Putting these in Lagrangian 4.82 and as in previous

section, expanding upto second order in ε, we get

L(2) =
−T2

2B

(

ṙ2(V 2
0 R

2
+ V0B

2
) + ȧ2

y(V0R
2
+
V 2

0 R
4

B
2 )

+
2ȧya

′
yV0R

2

B
+ (4RrV0 + 2Qr)ȧy + 2BV0ṙr

′

)

(5.122)

From this we get following equations of motion

V 2
0 R

2
+ V0B

2

B
r̈ + 2V0∂t∂σ2r −

ȧy

B
(2V0R −Q) = 0 (5.123)

V 2
0 R

4
+ V0R

2
B

2

B
3 äy +

2V0R
2

B
2 ∂t∂σ2ay +

ṙ

B
(2V0R −Q) = 0 (5.124)

Simplifying, we get

V0R
2
+B

2

B
r̈ + 2∂t∂σ2r −

2Rȧy

B
(1 − Q

2V0R
) = 0 (5.125)

V0R
2
+B

2

B
äy + 2∂t∂σ2ay +

2Bṙ

R
(1 − Q

2V0R
) = 0 (5.126)

As in flat space case, we see that only time derivatives of the perturbations r and

ay occur. Hence any static deformation is a solution. Solution to above equations

can be written as

r = c1(ξ
+) cos(1 − α)σ + c2(ξ

+) sin(1 − α)σ (5.127)

ay = −B
R

(

c1(ξ
+) cos(1 − α)σ + c2(ξ

+) sin(1 − α)σ
)

(5.128)

Here α = Q

2V0R
.

8.6 Near ring limit of Bena-Kraus metric

Till now we have considered, DBI description of supertubes in KK monopole back-

ground. In this description, string coupling gs is zero and backreaction of supertube
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on geometry is not considered. Now we increase gs so that we have a gravitational

description (supergravity). A metric for 3-charge system D1-D5-KK was given by

Bena and Kraus in [173] and generalized to include more dipole charges in [190, 175].

Since this description, corresponds to supertube in KK monopole background, we

consider perturbations in this system. The type IIB string frame solution is [173]

ds2
10 =

1√
Z1Z5

[

−(dt+ k)2 + (dy − k − s)2
]

+
√

Z1Z5ds
2
K +

√

Z1

Z5
ds2

T 4 (6.129)

eΦ =

√

Z1

Z5

, F (3) = d[Z−1
1 (dt+ k) ∧ (dy − s− k)] − ∗4dZ5 (6.130)

where ∗4 is taken with respect to the metric ds2
K and

ds2
K = ZK(dr2 + r2dθ2 + r2 sin2 θdφ2) +

1

ZK
(RKdψ +Q cos θdφ)2 (6.131)

ZK = 1 +
Q

r
, Z1,5 = 1 +

Q1,5

Σ
, Σ =

√
r2 +R2 + 2Rr cos θ (6.132)

From singularity analysis, bena-kraus derived following periodicity condition also

y ∼= y + 2πRy , Ry =
2

√

Q1Q5Z̃K

n
, Z̃K = 1 +

Q

R
(6.133)

One forms s and k have following components

sψ = −

√

Q1Q5Z̃KRK

ZKrΣ

[

Σ − r +
rΣ

QZ̃K

]

(6.134)

sφ = −

√

Q1Q5Z̃K

Σ

[

R−
(Σ − Σ

ZK
− r)

ZK
cos θ

]

(6.135)

kψ =

√

Q1Q5Z̃KRKQ

2RZ̃KZKrΣ

[

Σ − r − R− 2rR

Q

]

(6.136)

kφ = −

√

Q1Q5Z̃KQ

2RZ̃KΣ

[

Σ − r − R +
Σ − r +R

Z̃K
cos θ

]

(6.137)

(6.138)
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Chrages are quantized according to

Q =
1

2
NKRK , Q1 =

(2π)4gα′3N1

2RKV4
, Q5 =

gα′N5

2RK
(6.139)

These coordinates are centred at KK monopole. It would be much more arduous

task to consider perturbations in full geometry above. So as in [172], we take near

ring or thin tube limit of the above geometry. To take the near ring limit, it’s better

to use coordinates centred on ring. We define new coordinates by

ρ = Σ , φ = φ , ψ = ψ , cos θ1 =
R + r cos θ

Σ
(6.140)

Another way to write is

ρ sin θ1 = r sin θ , r2 = ρ2 +R2 − 2Rρ cos θ1 (6.141)

It’s easy to see that for this change of coordinates

dr2 + r2dθ2 + r2 sin2 θ = dρ2 + ρ2dθ2
1 + ρ2 sin2 θ1dφ

2 (6.142)

We want to take the limit R→ ∞ keeping ρ, θ1 fixed. It’s easy to see that under

this limit

r ∼ R , cos θ → −1 , ZK → 1 , Z̃K → 1 (6.143)

Now Z1,5 = 1 +
Q1,5

ρ
and ds2

K becomes

(RKdψ −Qdφ)2 + dρ2 + ρ2dθ2
1 + ρ2 sin2 θ1dφ

2 (6.144)
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Defining z = RKψ − Qφ, we see that this is a metric for R3 × S1. One forms

becomes

kψ = −
√
Q1Q5RK

ρ
(6.145)

kφ =

√
Q1Q5Q

ρ
(6.146)

sψ =

√
Q1Q5RK

ρ
−

√
Q1Q5RK

Q
(6.147)

sφ = −
√
Q1Q5Q

ρ
−
√

Q1Q5 cos θ1 (6.148)

Now combining them, we get

k = kψdψ + kφdφ = −
√
Q1Q5

ρ
(RKdψ −Qdφ) (6.149)

k + s = (kψ + sψ)dψ + (kφ + sφ)dφ = −
√
Q1Q5RK

Q
dψ −

√

Q1Q5 cos θ1dφ (6.150)

Defining z = RKψ −Qφ, we have

k = −
√
Q1Q5

ρ
dz , −(k + s) =

√
Q1Q5

Q
dz +

√

Q1Q5(1 − cos θ)dφ (6.151)

In terms of these quantities, the metric becomes

ds2
10 =

1√
Z1Z5

[

−(dt−
√
Q1Q5

ρ
dz)2 + (dy +

√
Q1Q5

Q
dz +

√

Q1Q5(1 − cos θ1)dφ)2

]

+
√

Z1Z5ds
2
K +

√

Z1

Z5
ds2

T 4 (6.152)

Define ỹ = y +
√
Q1Q5

Q
z and then we see that it is same as near ring limit of

Maldacena-Maoz

ds2
10 =

1√
Z1Z5

[

−(dt−
√
Q1Q5

ρ
dz)2 + (dỹ +

√

Q1Q5(1 − cos θ1)dφ)2

]

+
√

Z1Z5ds
2
K +

√

Z1Z5ds
2
T 4 (6.153)
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KK monopole structure fixes periodicity of ỹ.

Ry =
2
√
Q1Q5

n
(6.154)

Now we write down the RR field. We have

F (3) = d[Z−1
1 (dt+ k) ∧ (dy − s− k)] − ∗4dZ5 (6.155)

Since

dZ5 = −Q5

ρ2
dρ (6.156)

we have

∗4dZ5 = −Q5

ρ2

√
g4g

ρρερθ1φzdθ1 ∧ dφ ∧ dz = −Q5 sin θ1dθ1 ∧ dφ ∧ dz (6.157)

where we have put ερθ1φz = 1 as in KK monopole space. Since four dimensional

base space is R3 × S1 we have used flat metric. Writing

σ = dy +
√

Q1Q5(1 − cos θ1) , dσ =
√

Q1Q5 sin θ1dθ1 ∧ dφ (6.158)

we can write

∗4dZ5 = −d(Q5σ ∧ dz) (6.159)

So F (3) = dC(2) where

C(2) =
1

Z1

[

(dt−
√
Q1Q5

ρ
) ∧ σ

]

+Q5σ ∧ dz (6.160)

We see that only effect of KK monopole on supertube geometry is that of com-

pactifying R4 to R3 × S1 with radius of S1 determined in terms of KK monopole

charges. One can easily dualize this to ’thin tube’ limit of NS1-P system. So the

results of [172] involving near ring limit can be taken over for this system. In [172],

we only considered fluctuations along torus directions when considering near ring or
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’thin tube’ limit of NS1-P geometry. In our case here, period of oscillation on gravity

side will be same as period calculated in [172]. In terms of masses, gravity calculation

gave

∆t =
1

2TNS1

(MNS1 +MP ) (6.161)

This is same as equation 4.101 from DBI analysis after one does the dualities. For

fluctuations in torus directions in DBI limit, there is no difference between flat back-

ground and KK monopole background except that R2
0 for supertube would be cal-

culated using KK monopole metric. So period of oscillations match. Fluctuations

along taub-nut directions are difficult to solve and we postpone that work to a future

publication.

8.7 Results and discussion

We studied supertubes in various profiles moving in a KK monopole background.

At the DBI level, profile which corresponds to Bena-Kraus metric in gravity limit was

analyzed in both NS1-P and D0-NS1 duality frames. We considered perturbations

of supertube with this profile and found that motion of supertube in KK monopole

background is not a drifting motion but more like quasi-oscillations as considered in

[172]. This can be taken as evidence for the bound state nature of system corre-

sponding to BK profile. But since conjecture of [172] was based on flat background

geometry (at DBI level), one should be cautious in considering this as definitive for

the bound state nature of the system.

Near ring or thin tube limit of D1-D5-KK turned out to be identical to near ring

limit of D1-D5 supertube alone, only change occuring in the periodicity of the ring

circle. In our present case of D1-D5-KK, the periodicity of the ring is determined

311



by the monopole charge while with just D1-D5, it could be arbitrary. Calculations of

period of oscillation at DBI level, for torus directions, match with the gravity analysis.

Both are very similar to D1-D5 supertube case dealt in [172]. Only difference comes

from the fact that in D1-D5-KK case, radius of supertube is calculated using KK

monopole metric rather than flat metric.

Substantial difference from flat space case occurs when one considers form of

fluctuation and not just the periodicity. In KK monopole background, even at linear

level, there is no separation of dependences on ξ+ and ξ− and thus left-movers and

right-movers are invariably mixed. This effect is due to curvature of background. We

also analyzed, at DBI level, perturbations which have profile functions different from

BK profile even though in these cases no gravity description is known and so can not

be compared with DBI analysis.

It would be interesting to analyze KK-P system constructed in [193] and discussed

in previous chapter using the linearized perturbation formalism as developed in the

present chapter. Since we know that KK-P is a bound state, it can give us insight

about how the conjecture of [172] works in presence of KK monopoles. One can

also work with other three charge systems which do not contain KK monopole like

D1-D5-P system constructed in [176, 177] and are known to be bound states.
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APPENDIX A

T-DUALITY FORMULAE

In this thesis, we perform T dualities following the notation of [168]. Let us

summarize the relevant formulae. We call the T-duality direction s. For NS–NS

fields, one has

G′
ss =

1

Gss
, e2Φ

′

=
e2Φ

Gss
, G′

µs =
Bµs

Gss
, B′

µs =
Gµs

Gss

G′
µν = Gµν −

GµsGνs −BµsBνs

Gss
, B′

µν = Bµν −
BµsGνs −GµsBνs

Gss
, (A.1)

while for the RR potentials we have:

C ′(n)
µ...ναs = C(n−1)

µ...να − (n− 1)
C

(n−1)
[µ...ν|sG|α]s

Gss
, (A.2)

C ′(n)
µ...ναβ = C

(n+1)
µ...ναβs + nC

(n−1)
[µ...ναGβ]s + n(n− 1)

C
(n−1)
[µ...ν|sB|α|sG|β]s

Gss
. (A.3)
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APPENDIX B

GARFINKLE-VACHASPATI TRANSFORM

Wave-generating transform found by Garfinkle and Vachaspati belongs to the

class of generalized Kerr-Schild transformations. If one has a vector field kµ which

has following properties

kµkµ = 0, kµ;ν + kν;µ = 0, kµ;ν =
1

2
(kµA,ν − kνA,µ) (B.1)

where A is some scalar function and covariant derivatives are with respect to some

base metric gµν. Then one has a new metric

g′µν = gµν + eAΦkµkν (B.2)

which describes a gravitational wave travelling on the original metric provided matter

fields satisfy some conditions and the function Φ satisfies

∇2Φ = 0 , kµ∂µΦ = 0 (B.3)

Nullity of the vector field allows us to ‘linearize’ the Einstein equations. By employing

additional conditions (killing, hypersurface-orthogonality) on the vector field, Garfin-

kle and Vachaspati found that Einstein equations reduce to simple harmonicity of a

scalar function and some conditions on the matter field. Authors of [160] discuss con-

ditions on matter fields in the context of low energy effective action in string theory.
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Consider the action

S =

∫

dDx
√−g

(

R− 1

2

∑

a

ha(φ)(∇φa)2 − 1

2

∑

p

fp(φ)F 2
(p+1)

)

(B.4)

Here we have included a set of scalar fields φa with arbitrary (non-derivative) couplings

ha(φ) and fp(φ). Degree of p-forms appearing depends on whether we are in type IIA

or type IIB theory. Since we want the vector field k to yield an invariance of the full

solution, we impose the following conditions on the matter fields

Lkφa = kµ∂µφa = 0 (B.5)

LkF(p+1) = (dik + ikd)F(p+1) = dikF(p+1) = 0 (B.6)

where Lk denotes Lie-derivative with respect to vector field k and ik denotes

interior product. In the second equation, we have used the identity Lk = dik + ikd

and also the Bianchi identity dFp+1) = 0 for forms. We also require a transversality

condition

ikF(p+1) = k ∧ θ(p−1) (B.7)

where p− 1 form θ(p−1) necessarily satisfies ikθ(p−1) since i2kF(p+1) = 0. This transver-

sality condition ensures that the operation of raising and lowering the indices does not

change the p+1 form field strength. With these conditions, the matter field equations

of motion remain unchanged. Hence if the set (g, φa, Ap) is a solution to supergravity

equations then so is (g′, φa, Ap). Note are that all this is in Einstein frame but it can

be rephrased in string frame very easily. Only change is that if Einstein and string

metrics are related by

gSab = eCgEab (B.8)

then Laplacian condition above becomes

∂µ(e
(2−D)C

2

√

gSgµνS ∂νΦ) = 0 (B.9)
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Our null, killing vector is ( ∂
∂u

)a. Since nothing depends on u, v and it is a light-like

direction, it is obvious that this is null and killing. Since there is no mixing between

u, v and other terms, this is also hypersurface orthogonal with eA = H−1. To see

this we explicitly check hypersurface-orthogonality condition. We have ku = 1 and

kv = guvk
u = guv as the only non-zero component. We use this in the hypersurface

orthogonality condition

∂νkµ − Γλνµkλ =
1

2
(kν∂µA− kµ∂νA) (B.10)

Now we consider various cases. We use the fact that nothing depends on u or v. We

have following connection components which we will need.

Γvuν = 0 , Γvvν =
1

2
∂ν ln guv , Γviv =

1

2
∂i ln guv (B.11)

For µ = u, we see that hypersurface orthogonality condition is trivially satisfied as

all the terms vanish on both sides. For µ = i, we only have non-zero terms for ν = v

and in that case

−1

2
∂i ln guvkv =

1

2
kv∂µA (B.12)

This gives eA = guv = (guv)
−1. From the other case µ = v, we get the same value for

A and hence equations are consistent. With this value, we get

eAkµkνdx
µdxν =

1

guv
guvdvguvdv = guvdv

2 (B.13)

So new metric is

ds2 = −(dudv + Tdv2) +H−1dxidxi +H(ds+ Vjdx
j)2 (B.14)

We need to solve Laplace equation in the Taub-NUT geometry. Since derivatives with

respect to u or v and along torus directions are zero, we have only Laplace equation

1√
gTN

∂i(
√
gTNg

ij∂jT ) = 0 (B.15)
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For Taub-NUT metric, we have

√
gTN = H−1r2 sin θ , grr = H , gθθ =

H

r2
, (B.16)

gφφ =
H

r2 sin2 θ
, gsφ = −HQK cos θ

r2 sin2 θ
= gφs , gss = H−1 +

HQ2
K cot2 θ

r2
(B.17)

Using these, we write down Laplace equation for T as

∂r(Hr
2 sin θ

1

H
∂rT ) + ∂θ(Hr

2 sin θ
1

Hr2
∂θT ) + ∂s(Hr

2 sin θ
(H−2r2 +Q2

K cot2 θ

Hr2
∂sT )

+ ∂2
φ(H

−1r2 sin θ
1

H−1r2 sin2 θ
T ) − 2∂φ∂s(H

−1r2 sin θ
HQK cos θ

r2 sin2 θ
T ) = 0 (B.18)

Dividing by
√
gTN , we get

1

r2
∂r(r

2∂rT ) +
1

r2

(

1

sin θ
∂θ(sin θ∂θT ) +

1

sin2 θ
(Q2

K∂
2
sT + ∂2

φT − 2QK cos θ∂φ∂sT )

)

+
1

r2
(H−2r2 −Q2

K)∂2
sT = 0 (B.19)

If we assume that ∂sT = 0 then we simply get three dimensional Laplace equation

whose solution is given in the main part of the paper.

We will also need a theorem proved in [160] which says that the scalar curva-

ture invariants of metrics gµν and g′µν in Garfinkle-Vachaspati transform are exactly

identical.
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APPENDIX C

SPHERICAL HARMONICS ON S3

In this Appendix we list the explicit forms of the various spherical harmonics

encountered in the solutions presented in chapter 3. The metric on the unit 3-sphere

is

ds2 = dθ2 + cos2 θdψ2 + sin2 θdφ2 (A.1)

The harmonics will be orthonormal

∫

dΩ (Y I1)∗Y I′1 = δI1,I
′

1

∫

dΩ (Y I3
a )∗Y I′3a = δI3,I

′

3 (A.2)

In order to simplify notation we have used the following abbreviations
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Ŷ (l) ≡ Y
(l,l)
(l,l) (A.3)

Y (l) ≡ Y
(l,l)
(l−1,l) (A.4)

Y (l+1) ≡ Y
(l+1,l+1)
(l−1,l) (A.5)

Y (l+1,l)
a ≡ Y

(l+1,l)
a(l−1,l) (A.6)

Y (l,l+1)
a ≡ Y

(l,l+1)
a(l−1,l) (A.7)

Y (l−1,l)
a ≡ Y

(l−1,l)
a(l−1,l) (A.8)

Y (l+2,l+1)
a ≡ Y

(l+2,l+1)
a(l−1,l) (A.9)

Y (l+1,l+2)
a ≡ Y

(l+1,l+2)
a(l−1,l) (A.10)

C.1 Scalar Harmonics

The scalar harmonics we use are (in explicit form)

Ŷ (l) =

√

2l + 1

2

e−2ilφ

π
sin2l θ (A.11)

Y (l) = −
√

l(2l + 1)

π
e−i(2l−1)φ+iψ sin2l−1 θ cos θ (A.12)

Y (l+1) =

√

(2l + 1)(2l + 3)

2π
e−i(2l−1)φ+iψ((l − 1) + (l + 1) cos 2θ) sin2l−1 θ cos θ

(A.13)

C.2 Vector Harmonics

The vector harmonics are given by
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Y
(l+1,l)
θ = −e

−i(2l−1)φ+iψ

4π

sin2l−2 θ√
l + 1

(

(2l2 − l + 1) + (l − 1)(2l + 1) cos 2θ
)

(A.14)

Y
(l+1,l)
ψ = i

e−i(2l−1)φ+iψ

4π

sin2l−1 θ cos θ√
l + 1

(

(2l2 + 3l − 1) + (l + 1)(2l + 1) cos 2θ
)

(A.15)

Y
(l+1,l)
φ = −ie

−i(2l−1)φ+iψ

4π

sin2l−1 θ cos θ√
l + 1

(

(2l2 − 5l − 1) + (2l2 + 3l + 1) cos 2θ
)

(A.16)

Y
(l,l+1)
θ = −e

−i(2l−1)φ+iψ

4π

√

4l(2l + 1)

l + 1
sin2l−2 θ ((l − 1) + l cos 2θ) (A.17)

Y
(l,l+1)
ψ = i

e−i(2l−1)φ+iψ

4π

√

4l(2l + 1)

l + 1
sin2l−1 θ cos θ (l + (l + 1) cos 2θ) (A.18)

Y
(l,l+1)
φ = i

e−i(2l−1)φ+iψ

4π

√

4l(2l + 1)

l + 1
sin2l−1 θ cos θ ((l + 2) + (l + 1) cos 2θ) (A.19)

Y
(l−1,l)
θ =

e−i(2l−1)φ+iψ

2π

√
2l − 1 sin2l−2 θ (A.20)

Y
(l−1,l)
ψ = −ie

−i(2l−1)φ+iψ

2π

√
2l − 1 sin2l−1 θ cos θ (A.21)

Y
(l−1,l)
φ = −ie

−i(2l−1)φ+iψ

2π

√
2l − 1 sin2l−1 θ cos θ (A.22)

Y
(l+2,l+1)
θ = −e

−i(2l−1)φ+iψ

8π

√

3

l + 2
sin2l−2 θ

[

(l − 1)(2l2 + l + 1)

+
2(4l3 − l + 3) cos 2θ

3
+

(l − 1)(l + 1)(2l + 3) cos 4θ

3

]

(A.23)

Y
(l+2,l+1)
ψ = −ie

−i(2l−1)φ+iψ

4π

√

3

l + 2
sin2l−1 θ cos θ

[

l(2l2 + 5l − 1)

2

+
1

3
(l + 1)(4l2 + 8l − 3) cos 2θ +

(l + 1)(l + 2)(2l + 3)

6
cos 4θ

]

(A.24)

Y
(l+2,l+1)
φ = i

e−i(2l−1)φ+iψ

4π

√

3

l + 2
sin2l−1 θ cos θ

[

(2l3 − 3l2 + 3l + 4)

2

+
1

3
(4l3 − 13l − 9) cos 2θ +

(l + 1)(l + 2)(2l + 3)

6
cos 4θ

]

(A.25)
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APPENDIX D

SOLUTION – INNER REGION

In this appendix, we give the solution for the inner region for calculations in

chapter 3.The supergravity equations are expressed in terms of the fields BMN and

w. It is convenient to divide the BMN into three classes – Bab, Bµa and Bµν where

Bab is an antisymmetric tensor on S3, Bµa is a vector on S3 and Bµν is a scalar on S3.

At a given order εn, the corrections to Bab and Bµν at that order can be expressed in

terms of a single scalar field b and the antisymmetric tensor tµν:

Bab = εabce
−2il a

Q
t∂cb (B.1)

Bµν =
r

Q
ε̃µνλ∂

λ
(

e−2il a
Q
tb
)

+ e−2il a
Q
ttµν (B.2)

Here εabc is the usual Levi-Civita tensor on the unit S3 (with εθψφ =
√
g), while ε̃µνλ

is the Levi-Civita tensor density on the t, y, r part of the metric (2.10); thus ε̃tyr = 1.

Below we will give the values of b and tµν at each order in the perturbation. The

1-forms Bta, Bya and Bra will be given explicitly. To avoid cumbersome notation we

do not put labels on the fields indicating the order of perturbation; rather we list the

order of all fields in the subsection heading.

In this Appendix the solutions are in the NS sector coordinates. In order to

compare with the outside we need to spectral flow these to the R sector using the
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coordinate transformation

ψNS = ψ − a

Q
y, φNS = φ− a

Q
t (B.3)

The perturbation expansion in the NS sector coordinates has only even powers of ε.

The spectral flow (B.3) to R sector coordinates generates odd powers in ε. Thus the

O(ε0) NS sector computation gives O(ε0), O(ε1) in the R coordinates.

The solution to a given order εn is given by the sum of the corrections at all orders

≤ n.

D.1 Leading Order (O(ε0) → O(ε0), O(ε1))

b =
1

4l

1

(r2 + a2)l
Y

(l)
NS (B.4)

w =
1

Q(r2 + a2)l
Y

(l)
NSe

−2il a
Q
t (B.5)

Bta = Bya = Bra = 0 (B.6)

tµν = 0 (B.7)
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D.2 Second Order (O(ε2) → O(ε2), O(ε3))

b =
a2

Q(r2 + a2)l

[

(3l − 1) − 2l(l + 1) cos2 θ

4l(l + 1)2

]

Y
(l)
NS (B.8)

w = − 1

Q(r2 + a2)l
r2 + a2 cos2 θ

Q
Y

(l)
NSe

−2il a
Q
t (B.9)

Bta = − ia

Q2(r2 + a2)l

[(
√

l

(l + 1)5(2l + 1)

)

[

(2l + 1)a2 + (l + 1)2r2
]

(Y (l+1,l)
a )NS

+

(

1

2(l + 1)2

√

1

(l + 1)

)

[

(3l + 1)a2 + (l + 1)2r2
]

(Y (l,l+1)
a )NS

−
(

1

4l

√

2l − 1

l(2l + 1)

)

[

a2 + 2lr2
]

(Y (l−1,l)
a )NS

]

e−2il a
Q
t (B.10)

Bya = − ia

Q2(r2 + a2)l

[(
√

l

(l + 1)(2l + 1)

)

r2(Y (l+1,l)
a )NS −

1

2
√
l + 1

r2(Y (l,l+1)
a )NS

−
(

1

4l

√

2l − 1

l(2l + 1)

)

[

a2 + 2lr2
]

(Y (l−1,l)
a )NS

]

e−2il a
Q
t (B.11)

Bra =
a2

Q(r2 + a2)l+1

[(
√

l5

(l + 1)5(2l + 1)

)

r(Y (l+1,l)
a )NS +

(

l(l − 1)

2(l + 1)
5
2

)

r(Y (l,l+1)
a )NS

−
(

1

4l

√

2l − 1

l(2l + 1)

)

1

r

[

a2 + 2lr2
]

(Y (l−1,l)
a )NS

]

e−2il a
Q
t (B.12)

tty =
r2

Q3(r2 + a2)l

[

(

(2l + 1)a2 + (l + 1)2r2

(l + 1)2

)

Y
(l)
NS + a2 l

(l + 1)2

√

l

(2l + 3)
Y

(l+1)
NS

]

(B.13)

tyr = i
ar

Q2(r2 + a2)l+1

(

(l2 + 2l − 1)a2 − (l2 − 1)(2l − 1)r2

2l(l + 1)2

)

Y
(l)
NS

−i a3r

Q2(r2 + a2)l+1

l

(l + 1)2

√

l

(2l + 3)
Y

(l+1)
NS (B.14)

ttr = i
ar

Q2(r2 + a2)l
l − 1

2l(l + 1)
Y

(l)
NS (B.15)
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APPENDIX E

SOLUTION – OUTER REGION

As was done for the inner region in previous appendix, we divide the field BMN

into three classes – Bab, Bµa and Bµν . At a given order εn, the corrections to Bab

and Bµν at that order can be expressed in terms of a single scalar field b and the

antisymmetric tensor tµν :

Bab = e−i
a
Q
uεabc∂

cb

Bµν =

(

r

Q+ r2
ε̃µνλ∂

λb+ tµν

)

e−i
a
Q
u (C.1)

Again εabc is the Levi-Civita tensor on the unit S3 while ε̃µνλ is the Levi-Civita tensor

density on the t, y, r part of the metric (2.22); thus ε̃tyr = 1. We give b, tµν at each

order. We also write

Bµa = e−i
a
Q
ubµa

w = e−i
a
Q
uw̃ (C.2)

We will give bµa, w̃ at each order.

The solution to a given order εn is given by the sum of the corrections at all orders

≤ n.
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E.1 Leading Order (O(ε0))

b =
1

4l

1

r2l
Y (l) (C.3)

w̃ =
1

r2l(Q+ r2)
Y (l) (C.4)

bta = bya = bra = 0 (C.5)

tµν = 0 (C.6)

E.2 First Order (O(ε1))

b = w̃ = 0 (C.7)

bua =
ia

2

√

l

(2l + 1)(l + 1)

Q

r2l(Q+ r2)2
Y (l+1,l)
a

− ia
4

1

r2l

√

2l − 1

l(2l + 1)

Q

(Q + r2)2
Y (l−1,l)
a +

ia

4Qr2l

√

4l2 − 1

l3
Y (l−1,l)
a (C.8)

bva = i
a

4

√

1

(l + 1)

Q

r2l(Q+ r2)2
Y (l,l+1)
a (C.9)

tty = 0 (C.10)

trt = ia

(

Q

r2l+1(Q + r2)3

[(l + 2)r2 + lQ]

4l(l + 1)
− 1

4lQr2l+1

)

Y (l) (C.11)

tyr = ia

(

(2l − 1)Q

r2l+1(Q + r2)3

[(l + 2)r2 + lQ]

4l(l + 1)
+

1

4lQr2l+1

)

Y (l) (C.12)

(C.13)
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E.3 Second Order (O(ε2))

b =
a2

r2l

(

− 1

4r2
+

2Q+ r2

(Q+ r2)2

(

(3l − 1) − 2l(l + 1) cos2 θ

8l(l + 1)2

))

Y (l) (C.14)

w̃ =
a2

r2l(Q+ r2)

(

− l

r2
− cos2 θ

(Q+ r2)

)

Y (l) (C.15)

bra ≡ bI3r Y
I3
a =

a2

2r2l+1(Q+ r2)3

(

2l2Q2 + 3l(l + 1)Qr2 + l(l + 1)r4
)

×
[ √

lY
(l+1,l)
a

√

(2l + 1)(l + 1)5
+

l − 1

2l(l + 1)
5
2

Y (l,l+1)
a − 1

2l2

√

2l − 1

l(2l + 1)
Y (l−1,l)
a

]

(C.16)

bua = bva = 0 (C.17)

tty = − a2

4l(l + 1)2r2l(Q + r2)5

[

l(l + 1)(2l + 3)Q3

+ l(6l2 + 9l + 7)Q2r2 + (6l3 + 4l2 + l + 3)Qr4 + (2l3 − l + 1)r6
]

Y (l)

+
a2Q

2r2l(l + 1)2(Q+ r2)5

√

l

2l + 3

[

(l + 1)Q2 + (3l + 1)Qr2 + 2(l + 1)r4
]

Y (l)

(C.18)

tyr = 0, trt = 0 (C.19)
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E.4 Third Order (O(ε3))

b = w̃ = bra = 0 (C.20)

bua =

(

ia3Q

2(Q+ r2)3r2l(l + 1)(2l + 3)

√

3l(2l + 1)

l + 2

)

Y (l+2,l+1)
a

+

(

ia3Q

2(Q+ r2)2r2l(l + 1)
3
2

[

(l − 1)(2Q+ r2)

4Q2(l + 1)
− 2l

(2l + 3)(Q+ r2)

]

)

Y (l,l+1)
a

− ia3

4Q(Q + r2)3r2l+2

√

l

(l + 1)5(2l + 1)

[

(4l2 + 2l + 4)Q2r2 + (6l2 − 3l)Qr4+

(2l2 − l)r6 + 2l(Q + r2)
(

(l + 1)2Q2 − 2lQr2 − lr4
)]

Y (l+1,l)
a

+
ia3

Qr2l+2

√

2l − 1

l(2l + 1)

(

− 1

4(Q + r2)2

(

(l + 1)(Q2 + 4Qr2 + 2r4)
)

+
r2

4lQ

+
r2

8l(l + 1)(Q+ r2)3

(

2(2l2 + 3l − 1)Q2 + (3Qr2 + r4)(2l2 + l − 1)
)

)

Y (l−1,l)
a

(C.21)

bva = −
(

iQa3

2(Q+ r2)3r2l

√

l(2l + 1)

l + 1)

1

(2l + 3)(l + 1)

)

Y (l+1,l)
a

−
(

iQa3

8
√

(l + 1)3(Q+ r2)3r2l+2

[

2l(l + 1)Q+
(

(l + 1) + (2l2 + l + 3)
)

r2
]

)

Y (l,l+1)
a

+

(

iQa3

2(Q+ r2)3r2l

1

(2l + 3)

√

4l

(l + 1)(l + 2)

)

Y (l+1,l+2)
a

(C.22)

tyr = −
(

ia3Q(2l − 1) (lQ+ (l + 3)r2)

r2l+1(Q + r2)4l(l + 1)2
+

ia3

4r2l+3Q(Q + r2)3l
×

[

(l + 1)(Q+ r2)3 + l(2l − 1)Q3 +
l(2l − 1)(l + 3)Q2r2

l + 1

])

Y (l)

+
ia3Q (lQ+ (l + 3)r2)

2r2l+1(Q + r2)4

(

(2l − 1)

(l + 1)2(l + 2)

√

l

(2l + 3)

)

Y (l+1) (C.23)
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trt =

(

− ia3Q (lQ + (l + 3)r2)

r2l+1(Q+ r2)4l(l + 1)2
+

ia3

4r2l+3Q(Q + r2)3
×

[

1 − ((l2 − 1)Q3 + (l2 − 3)Q2r2 − 3(l + 1)Qr4 − (l + 1)r6)

l(l + 1)(Q+ r2)3

])

Y (l)

+

(

ia3Q (lQ + (l + 3)r2)

2r2l+1(Q + r2)4

1

(l + 1)2(l + 2)

√

l

(2l + 3)

)

Y (l+1) (C.24)

tty = 0 (C.25)
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APPENDIX F

ANALYSIS OF THE A+ EQUATIONS

In this appendix we look at the field equations (4.18) for the field A+. We have

found the expected time-independent solutions in section (6.4.2). We will now con-

sider a general ansatz for the solution and argue that there are no time dependent

solutions for this field, if we demand consistency with the long wavelength limit (4.30).

Let us write

A+
v = H−1 a+

v , A+
t = a+

t , A+
z = a+

z , A+
i = a+

i (A.1)

Since we have spherical symmetry in the space spanned by the coordinates i all fields

will be functions only of the radial coordinate r in this space; further, the A+
i can

have only the component A+
r . Putting this ansatz into (4.18) we obtain the coupled

system of equations (we list the equations in the order λ = t, v, z, i)

4 a+
t + ∂2

t a
+
v − ∂t∂ia

+
i + ∂z(∂za

+
t − ∂ta

+
z ) + A∂t(∂za

+
t − ∂ta

+
z ) = 0 (A.2)

4 a+
v + ∂2

za
+
v − [(HK̃ − A2) ∂2

t a
+
v − 2A∂t∂za

+
v ]

+[∂i(HK̃ − A2)∂ia
+
t − 2∂iA∂ia

+
z ] − [∂i(HK̃ − A2)∂ta

+
i − 2∂iA∂za

+
i ] = 0

(A.3)
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4 a+
z + ∂t∂za

+
v − ∂z∂ia

+
i + (HK̃ − A2) ∂t(∂za

+
t − ∂ta

+
z )

−A∂z(∂za+
t − ∂ta

+
z ) = 0 (A.4)

∂t∂ia
+
v − ∂z∂ia

+
z + ∂2

za
+
i − ∂j(∂ia

+
j − ∂ja

+
i ) + ∂iA (∂za

+
t − ∂ta

+
z )

+[(HK̃ − A2) ∂t∂ia
+
t − A∂z∂ia

+
t − A∂t∂ia

+
z ]

−[(HK̃ − A2)∂2
t a

+
i − 2A∂t∂za

+
i ] = 0 (A.5)

We look for a gauge field A+ having the same z and t dependence as A−. We

write

a+
v = eik z−iω t fv(r) , a+

t = eik z−iω t ft(r)

a+
z = eik z−iω t fz(r) , a+

r = ieik z−iω t ∂rΛ (A.6)

where the notation we have used for a+
r will be helpful in what follows.

Consider first equations (A.2) and (A.4):

4 ft − ω2 fv − ω4Λ − (k ft + ω fz) (k − ωA) = 0

4 fz + ωk fv + k4Λ + (k ft + ω fz) [k A + ω (HK̃ − A2)] = 0 (A.7)

Taking k times the first equation plus ω times the second we get

4 (k ft + ω fz) − [k2 − 2ωkA− ω2(HK̃ − A2)] (k ft + ω fz) = 0 (A.8)

We note that the coefficient k2 − 2ωkA − ω2(HK̃ − A2) has the form c + d/r. If

d 6= 0 then by an argument similar to that leading to (4.58) we find that there is no
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solution with the required behavior at r = 0. Setting d = 0 tells us that we need to

have the same relation between ω and k that we have seen before (4.58)

ω = −k 2
√

Q1Qp

Q1 +Qp
(A.9)

Using (A.9) one finds

k2 − 2ωkA− ω2(HK̃ − A2) = k2
(Q1 −Qp

Q1 +Qp

)2

≡ k̃2 (A.10)

and thus

4 (k ft + ω fz) − k̃2 (k ft + ω fz) = 0 (A.11)

The solution of the above equation that converges at infinity is

k ft + ω fz = c̃
e−|k̃|r

r
(A.12)

Let us now look at equation (A.3). Using (A.9) and (A.12) we find

[(HK̃ − A2) ∂2
t a

+
v − 2A∂t∂za

+
v ] = −ω2 fv

[∂i(HK̃ − A2)∂ia
+
t − 2∂iA∂ia

+
z ] = −Q1 +Qp

r2

c̃

k
∂r

(e−|k̃|r

r

)

[∂i(HK̃ − A2)∂ta
+
i − 2∂iA∂za

+
i ] = 0 (A.13)

Then equation (A.3) becomes

4fv − k̃2 fv −
Q1 +Qp

r2

c̃

k
∂r

(e−|k̃|r

r

)

= 0 (A.14)

We find that unless

c̃ = 0 (A.15)

fv will be too singular to agree with (4.30) at small r. The vanishing of c̃ also makes

(A.12) agree with (4.30) at small r.
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From (A.14) and using the short distance limit implied by (4.30) we get

fv = (α̃− β̃)Q1
e−|k̃|r

r
(A.16)

Consider now the last equation (A.5) (for i = r, the only non-trivial component).

The fact that c̃ = 0 implies

∂za
+
t − ∂ta

+
z = 0 (A.17)

Moreover one has

[(HK̃ − A2) ∂t∂ra
+
t − A∂z∂ra

+
t − A∂t∂ra

+
z ] = −iω ∂rft

[(HK̃ − A2)∂2
t a

+
r − 2A∂t∂za

+
r ] = −iω2∂rΛ (A.18)

Equation (A.5) then gives

∂rfv +
(

1 − k2

ω2

)

∂r(ft − ωΛ) = 0 (A.19)

Equation (A.2) also simplifies to

4 (ft − ωΛ) − ω2 fv = 0 (A.20)

We see that (A.19) implies (A.20). But at this stage we would like to compare the

solution we have found with the limits required by (4.30). First consider the case

Q1 = Qp. Then ω = k and (A.19) is not compatible with (A.16). Now consider

Q1 6= Qp. Eq. (A.19) implies

ft − ωΛ =
ω2

k2 − ω2
fv + const. (A.21)

This is again incompatible with the limit (4.30), according to which ft − ωΛ should

vanish for small r. We conclude that there are no time-dependent solutions for A+

consistent with the limit (4.30).
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F.1 Asymptotic behavior of the perturbation

In this part we will study the behavior of perturbations on the 2-charge geometries

near spatial infinity. We wish to see how fields fall off with r̄, and in particular to

check that they carry energy flux off to infinity. We will first look at a scalar field to

get an idea of the behaviors involved, and then address the 1-form gauge field that is

actually excited in our problem.

Consider first the case in which the perturbation is represented by a minimally

coupled scalar Ψ. We take the metric (4.1) and look at its large r̄ limit. We denote by

r̄, θ, φ, ψ the spherical coordinates in the 4 noncompact dimensions x̄i (i = 1, . . . , 4).

The 5D Einstein metric is

ds2 = −h−4/3 dt2 + h2/3 (dr̄2 + r̄2 dθ2 + r̄2 sin2 θ dφ2 + r̄2 cos2 θ dψ2) (B.1)

with

h =

√

(

1 +
Q̄1

r̄2

)(

1 +
Q̄p

r̄2

)

(B.2)

We set momentum along the S1 to zero and expand in angular harmonics

Ψ = e−iω tR(r̄)Y (l)(θ, φ, ψ) (B.3)

where Y (l) the l-th scalar spherical harmonic. The wave equation for Ψ

�Ψ = 0 (B.4)

implies

1

r̄3
∂r̄(r̄

3∂r̄R) + ω2
(

1 +
Q̄1 + Q̄p

r̄2
+
Q̄1Q̄p

r̄4

)

R− l(l + 2)

r̄2
R = 0 (B.5)

We can understand the behavior of R at large r̄ as follows. If we define

R =
R̃
r̄3/2

(B.6)
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the equation for R̃ is

∂2
r̄ R̃ + ω2 R̃ +

(Q̄1 + Q̄p)ω
2 − l(l + 2) − 3/4

r̄2
R̃ +

Q̄1Q̄p

r̄4
ω2 R̃ = 0 (B.7)

At leading order in 1/r̄ the terms proportional to 1/r̄2 and 1/r̄4 can be neglected and

we have the solution

R̃ = r+ e
iω r̄ + r− e

−iω r̄ ⇒ R =
r+ e

iω r̄ + r− e
−iω r̄

r̄3/2
(B.8)

which corresponds to traveling waves carrying a nonzero flux. When the terms of

higher order in 1/r̄ are included, (B.7) can be recursively solved as a formal power

series in 1/r̄:

R ≈ r+
eiω r̄

r̄3/2

(

1 +

∞
∑

n=1

r
(n)
+

r̄n

)

+ r−
e−iω r̄

r̄3/2

(

1 +

∞
∑

n=1

r
(n)
−
r̄n

)

(B.9)

The coefficients r
(n)
± in this expansion are determined by the recursion relation

r
(n)
± = ∓ i

2ω

[

r
(n−1)
±

(

n−1+
(Q̄1 + Q̄p)ω

2 − l(l + 2) − 3/4

n

)

+r
(n−3)
±

Q̄1Q̄p ω
2

n

]

(B.10)

The r
(n)
± are finite for any value of ω and any n. However, since at large n one has

r
(n)
±

r
(n−1)
±

≈ ∓ i(n− 1)

2ω
(B.11)

the series (B.9) has zero radius of convergence. Equations like (B.5) lead instead

to asymptotic series in 1/r [88], and we expect that the above expansion is to be

interpreted as an asymptotic series, which accurately describes the behavior of R

at sufficiently large r̄. From (B.9) we can still conclude that the perturbation R

radiates a finite amount of flux at infinity. Note that, in order to avoid logarithms in

the expansion (B.9), it is crucial that the next to leading corrections to the equation

(B.7) are of order 1/r̄2.
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We find a similar situation for the case in which the perturbation is represented

by a vector on the six dimensional space R
(5,1) × S1. As we showed in section (6.4)

the perturbation on the 2-charge system is a vector field with wave equation

∇µ(e
−2Φ F±µλ) ± 1

2
e−2ΦHµνλ F±

µν = 0 (B.12)

The gauge fields A+
µ and A−

µ represent respectively BPS and non-BPS perturbations.

Since we are interested in time-dependent, non-BPS, perturbations, we will only look

at the equation for A−
µ in this section. For the metric, dilaton and B-field appearing

in (B.12) we will take the large r̄ limits

ds2 = H̄−1 [−dt2 + dy2 + K̄ (dt− dy)2] + dr̄2 + r̄2 dθ2 + r̄2 sin2 θ dφ2 + r̄2 cos2 θ dψ2

B = −(H̄−1 − 1) dt ∧ dy , e2Φ = H̄−1 (B.13)

with

H̄ = 1 +
Q̄1

r̄2
, K̄ =

Q̄p

r̄2
(B.14)

The spherical symmetry of the background (B.13) allows us to expand the vector

field components into spherical harmonics: Denoting by Y (l) and Y
(l)
α the scalar and

vector spherical harmonics on S3, we can write

A−
I = e−iω tRI(r̄)Y

(l)(θ, φ, ψ) , A−
α = e−iω t [Rs(r̄) ∂αY

(l)(θ, φ, ψ)+Rv(r̄)Y
(l)
α (θ, φ, ψ)]

(B.15)

with I = t, y, r̄ and α = θ, φ, ψ. We will need the following spherical harmonic

identities

�′Y (l) = −l(l + 2)Y (l) , �′Y (l)
α = (2 − (l + 1)2)Y (l)

α ≡ −c(l)Y (l)
α , ∇′αY (l)

α = 0(B.16)

where “primed” quantities refer to the metric on an S3 of unit radius. (We use a

notation in which l = 0, 1, . . . for the scalar harmonics and l = 1, 2, . . . for the vector

335



harmonics). The components with λ = α in (B.12) give

1

r̄
∂I

[

r̄ gIJ ∂J(e
−iω tRv)

]

− c(l) + 2

r̄2
e−iω tRv = 0

1

r̄
∂I

[

r̄ gIJ
(

e−iω tRJ − ∂J(e
−iω tRs)

)]

= 0 (B.17)

and the components with λ = I give

1

r̄3
∂K

[

r̄3 gKL gIJ
(

∂L(e
−iω tRJ) − ∂J(e

−iω tRL)
)]

(B.18)

−g
IJ l(l + 2)

r̄2

(

e−iω tRJ − ∂J(e
−iω tRs)

)

− εIJK
Q̄1

r̄3

(

∂J(e
−iω tRK) − ∂K(e−iω tRJ)

)

= 0

with εr̄ty = 1. As expected from group theory considerations, the component Rv

decouples from all others, while Rs and RI satisfy a coupled system of differential

equations. We want to show that, in spite of these mixings, Rv, Rs and RI admit an

1/r̄ expansion analogous to (B.9). Putting in the explicit value of gIJ in (B.17) and

(B.18) and using the gauge

A−
t = 0 (B.19)

we obtain the following system of equations

1

r̄
∂r̄(r̄∂r̄Rv) + ω2

(

1 +
Q̄1 + Q̄p

r̄2
+
Q̄1Q̄p

r̄4

)

Rv −
c(l) + 2

r̄2
Rv = 0 (B.20)

1

r̄
∂r̄(r̄∂r̄Rs) + ω2

(

1 +
Q̄1 + Q̄p

r̄2
+
Q̄1Q̄p

r̄4

)

Rs −
1

r̄
∂r̄(r̄Rr̄) − iω

Q̄p

r̄2

(

1 +
Q̄1

r̄2

)

Ry = 0

(B.21)

l(l + 2)

r̄2
(∂r̄Rs −Rr̄) + ω2

(

1 +
Q̄1 + Q̄p

r̄2
+
Q̄1Q̄p

r̄4

)

Rr̄

−iω Q̄p

r̄2

(

1 +
Q̄1

r̄2

)

∂r̄Ry + 2iω
Q̄1

r̄3
Ry = 0 (B.22)

1

r̄3
∂r̄(r̄

3Rr̄) −
l(l + 2)

r̄2
Rs + iω

Q̄p

r̄2

(

1 +
Q̄1

r̄2

)

Ry

− 2

r̄3

(

1 +
Q̄1

r̄2

)−1

(Q̄1 + Q̄p)
(

Rr̄ −
i

ω
∂r̄Ry

)

= 0 (B.23)
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1

r̄3
∂r̄(r̄

3∂r̄Ry) −
l(l + 2)

r̄2
Ry + ω2

(

1 +
Q̄1 + Q̄p

r̄2
+
Q̄1Q̄p

r̄4

)

Ry

− 2

r̄3

(

1 +
Q̄1

r̄2

)−1

(Q̄1 − Q̄p)
(

iωRr̄ + ∂r̄Ry

)

= 0 (B.24)

(Eq. (B.22) is the I = r̄ component of (B.18); eqs. (B.23) and (B.24) are linear

combinations of the I = t, y components of (B.18).)

Eq. (B.20) for Rv is analogous to eq. (B.7): it thus admits an analogous asymptotic

expansion, of the form

Rv ≈ rv,+
eiω r̄

r̄1/2

(

1 +

∞
∑

n=1

r
(n)
v,+

r̄n

)

+ rv,−
e−iω r̄

r̄1/2

(

1 +

∞
∑

n=1

r
(n)
v,−
r̄n

)

(B.25)

When expressed in local orthonormal coordinates, the contribution of Rv to A− is of

the type

A−
α̂ ∼ e±iω r̄

r̄3/2
(1 +O(r̄−1)) (B.26)

and thus it again gives rise to a wave carrying finite flux at infinity.

The remaining eqs. (B.21-B.24) are four relations for the three unknowns Rs, Rr̄

and Ry: this is so because we have used gauge invariance to eliminate one unknown,

Rt. It then must be that only three of the four eqs. (B.21-B.24) are linearly indepen-

dent, and indeed one can check that eq. (B.23), for example, follows from (B.21) and

(B.22). We are thus left to solve the coupled system of equations (B.21), (B.22) and

(B.24). We can do this by using the following strategy: solve eq. (B.22) for Rr̄ and

substitute into (B.21) and (B.24), which can then be solved for Rs and Ry, iteratively

in 1/r̄. To make the behavior at large r̄ more transparent we also write Rs and Ry

as

Rs =
R̃s

r̄1/2
, Ry =

R̃y

r̄3/2
(B.27)

We find

Rr̄ = − l(l + 2)

ω2

∂r̄R̃s

r̄5/2
+

1

r̄7/2

( l(l + 2)

2ω2
R̃s + i

Q̄p

ω
∂r̄R̃y

)

+O(r̄−9/2) (B.28)

337



and

∂2
r̄ R̃s + ω2 R̃s +

ω2(Q̄1 + Q̄p) + 1/4

r̄2
R̃s +

l(l + 2)

ω2 r̄2
∂2
r̄ R̃s +O(r̄−3) = 0

∂2
r̄ R̃y + ω2 R̃y +

ω2(Q̄1 + Q̄p) − l(l + 2) − 3/4

r̄2
R̃y +O(r̄−3) = 0 (B.29)

In (B.28) and (B.29) we have organized the powers of 1/r̄ by assuming that R̃s,

R̃y and their r̄-derivatives are of order r̄0: By looking at (B.29), we see that this

assumption is actually implied by the equations themselves. Note also that the next

to leading corrections in (B.29) are of oder 1/r̄2. We can thus conclude that Rs and

Ry have the form

Rs ≈ eiω r̄

r̄1/2

∞
∑

n=0

r
(n)
s,+

r̄n
+
e−iω r̄

r̄1/2

∞
∑

n=0

r
(n)
s,−
r̄n

Ry ≈ eiω r̄

r̄3/2

∞
∑

n=0

r
(n)
y,+

r̄n
+
e−iω r̄

r̄3/2

∞
∑

n=0

r
(n)
y,−
r̄n

(B.30)

Analogously to the case of the scalar perturbation, the coefficients r
(n)
s,± and r

(n)
y,± for

n > 1 are recursively determined from r
(0)
s,± and r

(0)
y,±, and are finite for any value of ω

and any finite n. Substituting in (B.28) we have the solution for Rr̄

Rr̄ ≈
eiω r̄

r̄5/2

∞
∑

n=0

r
(n)
r,+

r̄n
+
e−iω r̄

r̄5/2

∞
∑

n=0

r
(n)
r,−
r̄n

(B.31)

where r
(n)
r̄,± are determined in terms of r

(n)
s,± and r

(n)
y,± (the leading coefficients r

(0)
r̄,± vanish

for l = 0).

The components Rs and Ry give rise to nonvanishing energy flux at infinity while

Rr̄ does not contribute to the flux at leading order. Note that because Rr̄ is zero

if both Rs and Ry vanish, it is not possible to have a solution in which only Rr̄ is

excited, and thus all solutions carry some flux at infinity.
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APPENDIX G

COORDINATES FOR THE RING

In this appendix we explain the geometric meaning of the coordinates (3.27) useful

in describing the ring, and also obtain the near ring limit used in our analysis. The

coordinates we define are constructed on the lines of the coordinates used in [120],

and are related to them by a simple transformation.

The D1-D5 geometry (4.100) can be generated by starting with an NS1-P system

where the NS1 describes one turn of a uniform helix. Let this helix lie in the x1 −

x2 plane of the noncompact 4-dimensional space x1, x2, x3, x4. We introduce polar

coordinates in this space

x1 = r̃ sin θ̃ cos φ̃, x2 = r̃ sin θ̃ sin φ̃

x3 = r̃ cos θ̃ cos ψ̃, x4 = r̃ cos θ̃ sin ψ̃ (A.1)

Then the coordinates r̄, θ̄ appearing in (4.100) are related to r̃, θ̃ by [150]

r̃ =
√

r̄2 + a2 sin2 θ̄, cos θ̃ =
r̄ cos θ̄√

r̄2 + a2 sin2 θ̄
, φ̃ = φ̄, ψ̃ = ψ̄ (A.2)

In these coordinates the ring is easy to see; the center of the ‘tube’ runs along the

circle at r̃ = a, θ̃ = π/2. We will start by defining our ring coordinates with the help

of these variables, and later convert to the coordinates (r̄, θ̄, φ̄, ψ̄).

339



G.1 New Coordinates

In this section, we want to define coordinates near the ring such that the direction

along the ring becomes a linear coordinate

z = aφ̄ (A.3)

We now wish to choose coordinates in the 3-dimensional space perpendicular to the

ring. Choose a point P = (a cos φ̃, a sin φ̃, 0, 0) on the ring. Close to the ring we would

like these to be spherical polar coordinates r, θ, φ centered at P , with the direction

θ = 0 pointing towards the center of the ring. Close to the ring the coordinate r

should measure distance from the ring, but when r ∼ a we will see the diametrically

opposite point P ′ = (−a cos φ̃,−a sin φ̃, 0, 0) on the ring, and should use a radial

coordinate that vanishes at P ′. Consider all points that have azimuthal coordinate

φ̄ = φ̃ and for these points define

1

r
=

1

2a
(
rP
rP ′

+
rP ′

rP
) (A.4)

where rP , rP ′ measure distances from the points P , P ′ respectively

rP =
√

r̃2 + a2 − 2ar̃ sin θ̃, rP ′ =
√

r̃2 + a2 + 2ar̃ sin θ̃ (A.5)

If we approach the point P we have rP → 0, and

1

r
≈ 1

2a

rP ′

rP
≈ 1

rP
(A.6)

So we see that r ≈ rP near P , and similarly r ≈ rP ′ near P ′.

Note that

r2
P r

2
P ′ = (a2 + r̃2)2 − 4r̃2a2 sin2 θ̃ = (a2 − r̃2)2 + 4r̃2a2 cos2 θ̃ (A.7)
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Thus

|a2 − r̃2| ≤ rPrP ′ (A.8)

with equality only for points on the ring diameter passing through P , P ′. Thus we

can define

cos θ =
(a2 − r̃2)

rP rP ′

(A.9)

Near P we have

rP ≈ r, rP ′ ≈ 2a, a2 − r̃2 = (a+ r̃)(a− r̃) ≈ 2a(a− r̃) (A.10)

Close to P we have

r̃ =
√

(x2
1 + x2

2) + (x2
3 + x2

4) ≈
√

x2
1 + x2

2 (A.11)

where we have kept terms up to linear order in the displacement from P . Thus a− r̃

measures the distance d from the P along the diameter through P (with d positive

for points inside the ring). We then see that

cos θ ≈ (2a)d

(2a)r
=
d

r
(A.12)

and thus θ is the desired polar coordinate near P . Finally note that the x3−x4 plane

is perpendicular to the ring and also to the diameter through P , so we define the

azimuthal angle

φ = tan−1 x4

x3
= ψ̃ (A.13)

Using (A.1) we write the ring coordinates in terms of the coordinates (r̄, θ̄, φ̄, ψ̄)

r = a
( r̄2 + a2 cos2 θ̄

r̄2 + a2 + a2 sin2 θ̄

)

, cos θ =
a2 cos2 θ̄ − r̄2

a2 cos2 θ̄ + r̄2
, z = aφ̄, φ = ψ̄ (A.14)

The inverse of these relations gives (3.27)

r̄2 =
a2r(1 − cos θ)

a + r cos θ
, sin2 θ̄ =

a− r

a+ r cos θ
, ψ̄ = φ , φ̄ =

z

a
(A.15)

341



APPENDIX H

TRAJECTORIES IN FULL BLACK HOLE
BACKGROUND

Consider the motion of a brane in the full four dimensional black hole geometry

which has an energy (as measured in terms of the time in the asymptotically flat

region) which is given by E = (M2 + M0)
R
q0

, i.e. the same energy which we found

in the near-horizon approximation. We will verify that this brane comes out of the

horizon and goes back and examine the parameter space for which the brane remains

in the near-hroizon region. In this analysis we will set the motion along the T 6 to

zero from the beginning, so that we will deal with the four dimensional part of the

geometry.

The black hole solution is described in terms of harmonic functions

H0(r) = 1 +
q0
r

Hi(r) = 1 +
pi
r

(i = 1, · · ·3) (A.1)
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The (four dimensional part) string metric, dilaton and the 1-form RR fields are given

by

ds2 = − dt2

[H(r)]2
+ [H(r)]2 [dr2 + r2dΩ2

2]

(A.2)

At = 1 − 1

H0(r)

(A.3)

eΦ =
H0(r)

H(r)
(A.4)

where we have defined

H(r) = (H0H1H2H3)
1
4 (A.5)

The lagrangian for a D2 brane which is wrapped on the S2 at some value of r then

becomes

S = −µ(r)
√

[H(r)]−2 − [H(r)]2(ṙ)2 +
M0

H0(r)
(A.6)

where we have defined

µ(r) = 4πµ2
H(r)

H0(r)

√

(H(r))4r4 + f 2 (A.7)

and the other quantities have been defined above.

The expression for the energy is

E =
µ(r)[H(r)]−2

√

[H(r)]−2 − [H(r)]2(ṙ)2
− M0

H0(r)
(A.8)

H.1 Behavior of the Potential

Following the strategy of section (2.2) we will cast the problem as that of a non-

relativistic particle in some potential with the non-relativistic energy equal to zero.
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The equation of motion may be written using (A.8) as

1

2
(ṙ)2 +W (r) = 0 (A.9)

where

W (r) = − 1

2H2(r)
[

1

H2(r)
− µ2(r)

H4(r)(E + M0

H0(r)
)2

] (A.10)

The potential W (r) behaves as −r4 for small r and +r4 for large r and has a sin-

gle minimum. For any E the brane therefore starts from the horizon, goes upto

a maximum distance r = r0 given by the point W (r0) = 0 and turns back to the

horizon.

The near-horizon region has r � q0, pi and we want to examine whether r0 lies

in this region. The general problem is difficult to analyze. However we get some

indication by looking at the simpler case where

q0 = p1 = p2 = p3 ≡ q (A.11)

so that H0(r) = H1(r) = H2(r) = H3(r) = H(r). In this case

µ2(r) = M2
2 (1 +

r

q
)4 +M2

0 (A.12)

where M2 is the D2 mass of the previous subsections.

In terms of the dimensionless distance

y ≡ r

q
(A.13)

the potential W (r) becomes

W (y) =
y4

2(1 + y)3

y2(1 + y)3 − ε2(1 + y) − 2αεy

(ε(1 + y) + αy)2
(A.14)

where we have defined

ε ≡ E

M2
α =

M0

M2
(A.15)
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We want to examine only the special trajectory with E = M2. The function W (y)

for E = M2 is shown in Figure (H.1) for various values of the ratio α = M0/M2

0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0.001

0.002

0.003

Figure H.1: The potential W (y) as a function of y for E = M2. The curves have
M0

M2
= 0, 1, 6 starting from the top

The trajectory will proceed to the zero of W (y) at y = y0(α) 6= 0. The function

W (y) is plotted against y for various values of α in Figure (H.1). It is clear that the

value of y0 increases as α increases and becomes greater than unity for sufficiently

large α. Thus the D2 brane goes beyond the near-horizon region for large enough

α and strictly speaking the near-horizon approxiomation can be trusted only when

M0 �M2.
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