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ABSTRACT

My dissertation studies statistical properties of the measure that Engel uses in his

1999 paper and presents new evidence in favor of the Balassa-Samuelson theory. The

Balassa-Samuelson theory implies that the importance of the traded goods component

in the real exchange rate movement decreases over time. Engel�s empirical results,

however, indicate that the importance is very high and even increasing for the long run

for some countries. The tests based on Engel�s measure show no statistical evidence

for the decrease in the importance of the traded goods.

My dissertation consists of three essays. The essay titled �Long-run Real Exchange

Rate Changes and the Properties of the Variance of k-di¤erences,� examines the

statistical properties of the measure Engel uses, the variance of k-di¤erences. I show

that the variance of k-di¤erences tends to return to the initial value as k approaches

the sample size whether the variable is stationary or unit root nonstationary. My

results imply that the increasing variances for k-values close to the sample size cannot

be interpreted as evidence of an increase in the importance.

In my second essay, �A Monte Carlo Investigation on the Estimator of Ratio of

Long Run Variances,�I investigate whether the high level of importance Engel �nds

should be attributed to the high persistence of the traded goods component by means

of a Monte Carlo simulation. My simulation results imply that the high ratio is more

likely to be attributable to the volatility of errors of the traded goods component, not
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to its persistence. I also �nd that the power of the test based on Engel�s measure is

very low for given parameter values.

In my third essay, "Higher Power Tests for the Failure of Long Run Purchasing

Power Parity," I apply a covariate augmented point optimal test to three di¤erent

real exchange rates, each of which is constructed with CPI, PPI, and Export/Import

price index, respectively. The covariate test for the real exchange rates based on

PPI and Export/Import price index gives approximately 50% rejection rate, which is

comparably high and higher than that for CPI, consistent with the Balassa-Samuelson

theory.
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CHAPTER 1

Introduction

My primary research topic is the empirical validity of the Balassa-Samuelson the-

ory in the long run. Since Balassa (1964) and Samuelson (1964), the disaggregation

of the economy into internationally traded and nontraded sectors has been one of the

main building blocks in many open economy models. In those two-good models, if

the law of one price holds in the prices of traded goods in the long run, then the

real exchange rate (RER) is determined by the movement of its nontraded goods

component which consists of the relative prices of nontraded goods in the long run.

Engel (1999) surprisingly �nds that data for U.S. RER does not support the

Balassa-Samuelson theory in the long run. In order to measure the importance of the

traded goods component in U.S. real exchange rate movements, Engel (1999) uses the

ratio of the variance of k-di¤erences for the traded goods component to that for the

real exchange rate at each time horizon, k. The importance of traded goods should

decrease as the horizon increases if the law of one price holds for traded goods in

the long run. Engel �nds that the importance of traded goods is over 90% in most

cases. The importance decreases only initially and then increases as the time horizon

approaches the sample size. He interprets the increasing variance at the longer time
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horizon as evidence of an increase in the importance of the traded goods component

in the long run. Engel also conducts a test based on the measure and does not �nd

any statistical evidence that the importance of the traded goods decreases over time.

His �ndings raise a serious doubt on the validity of the law of one price for traded

goods in the long run. My dissertation investigates the statistical properties of the

measure used in Engel (1999) and provides new empirical evidence about the law of

one price in the long run.

In Chapter 2, I demonstrate that the variance of k-di¤erences tends to return to

the initial value as k approaches the sample size whether the variable is stationary

or unit root nonstationary. My result implies that the increasing variances for k-

values close to the sample size cannot be interpreted as evidence of an increase in the

importance of the traded goods component in the long run. In addition, after the

modi�cation of the test used in Engel (1999) which I think is more appropriate in

the current context, the importance of the traded goods does fall in the long run for

some countries.

In Chapter 3, I decompose the determinants of the ratio of the variances into the

relative volatility of the traded goods component and its persistence. Engel (1999)

attributes the high importance of the traded goods component measured in the data

to its high persistence. By means of a Monte Carlo simulation, I �rst investigate how

the mean of the ratio is determined depending on the changes in the value of the

two determinants. Contrary to Engel�s inference, I show that the high importance

is mainly attributable to its relative volatility for given parameter values observed in

the data. It implies that a high ratio should not be necessarily considered as evidence

against the law of one prices in the long run. My simulation results also show that the
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power of the test based on Engel�s measure is very low for realistic parameterization.

Chapter 2 and 3 imply that the evidence presented in Engel (1999) against the law

of one price in the long run is very weak.

The low power in the tests observed in Chapter 3 has been a common problem in

the literature of unit root testing for the purchasing power parity (PPP). In Chapter

4, I adopt a state-of-the-art unit root testing method (a covariate augmented point

optimal test, CPT) which has a stronger power than a traditional unit root test like

augmented Dickey-Fuller (ADF) test. I consider twenty seven bilateral RERs with

the US dollar as a base currency. I consider the real exchange rate based on PPI

and Export/Import price indexes as well as CPI. Rejecting the null of a unit root in

the RER implies that the law of one price holds in the long run. If the law of one

price holds better for the traded good prices, the real exchange rate based on the

traded goods price index should be more likely to reject the unit root in the test than

that based on the general price index. While the standard ADF test does not reject

the null for any country or for any price indexes, the CPT test gives approximately

50% rejection rate for the real exchange rate based on production site prices like

PPI and Export/Import price indexes which are conceptually closer to traded goods

prices than CPI. In case of CPI, the CPT test is not applicable in many cases and

the rejection rate is about 30%, lower than the other two cases. Unlike the previous

covariate unit root tests which use large data set, I use the same data set used in

univariate unit root tests and succeed in getting much higher rejection rate in the

test especially for the production site prices.

Chapter 5 concludes.
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CHAPTER 2

LONG-RUN REAL EXCHANGE RATE CHANGES AND
THE PROPERTIES OF THE VARIANCE OF

K-DIFFERENCES

2.1 Introduction

Since Balassa (1964) and Samuelson (1964), the disaggregation of the economy into

internationally traded and nontraded sectors has been one of the main building blocks

in many open economy models. In those two-good models, if the law of one price holds

in the prices of traded goods, then the real exchange rate (RER) is determined by

the movement of its nontraded goods component which consists of the relative prices

of nontraded goods.

Since Isard (1977), however, empirical evidence has clearly shown that, in the

short run, the law of one price does not hold even for available measures of traded

goods. Thus, the Balassa-Samuelson view focusing on the role of nontraded goods

had been thought to better �t the long run.

Contrary to this traditional view, Engel (1999) presented empirical results which

can be interpreted to imply that almost all U.S. RER movements can be accounted

for by movements of the traded good component at all time horizons. Engel (1999)

himself refrains from reaching a decisive conclusion about the long-run time horizon
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and argues that his results are mainly about short and medium horizons because of

the small number of observations. Nevertheless, some authors have taken Engel�s

(1999) results as evidence against the relevance of the traditional dichotomy of goods

in modeling long run real exchange rate movements1. For example, Obstfeld (2001)

writes;

This is a striking contradiction of the Harrod-Balassa-Samuelson the-
ory. International divergences in the relative consumer price of "tradables"
are so huge that the theoretical distinction between supposedly arbitraged
tradables prices and completely sheltered nontradables prices o¤ers little
or no help in understanding U.S. real exchange rate movements, even at
long horizons.

In his paper, Engel measures the importance of the traded goods component in

accounting for U.S. real exchange rate movements by adopting the variance of k-

di¤erences used in Cochrane (1988). In this paper, we challenge this widely accepted

interpretation of Engel�s results about the long run movement of the RER by analyz-

ing properties of the limit distribution of the variance of k-di¤erences when k is close

to the sample size.

The variance of k-di¤erences of a time series zt is denoted as Vk(z) in this paper.

As in Cochrane (1988), Vk(z) is de�ned as follows:

Vk(z) �
T

(T � k)(T � k + 1)k

T�kX
t=0

[zt+k � zt � k�z]2; (2.1)

where �z =
1

T
(zT � z0):

According to the de�nition in Equation (2.1), the variance of k-di¤erences is a variance

of k-period di¤erences centered around the sample mean of the di¤erence.

1Those who discuss Engel�s (1999) empirical �ndings in the context of the long run movements
of the real exchange rate include Alexius and Nilsson (2000), Chinn (2006), Obstfeld (2001), Sarno
and Taylor (2002), Sarno and Valente (2006), Schnatz, Vijselaar, and Osbat (2004), and Taylor and
Taylor (2004).
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Cochrane (1988) shows that Vk(z) is asymptotically equivalent to the Bartlett

kernel estimator of the long run variance of�zt: If the law of one price holds for traded

goods in the long run, then the long run variance of the traded goods component of

the RER is zero since it is stationary. Thus, based on Cochrane (1988), Engel (1999)

expects that Vk(z) for the traded goods component will converge down to zero as k

increases if the traditional Balassa-Samuelson view is true for the long run2.

However, Engel�s empirical results show that Vk(z) for the traded goods component

decreases at �rst but increases towards the end of time horizons, most prominently in

the case of the US-Canada RER.3 Engel (1999, p.513) interprets the rise in the later

part of the graph as an increase in the importance of the traded goods component in

the long run movement of the RER4.

This paper shall show that Vk(z) for k �= T tends to go back to the initial value on

average as k gets closer to the sample size, whether the variable of interest is mean-

reverting or not. As such, Engel�s (1999) observation about the long run time horizons

may come simply from this statistical property of the variance of k-di¤erences and

have little to do with the long run properties of the real exchange rate.

Our �ndings in this paper imply that the variances of k-di¤erences in the middle

range of k0s are more relevant to the long run than those at k0s close to both ends

2In Engel (1999), the formula for Vk(z) is a little di¤erent from Cochrane�s (1988). Engel does
not divide it by k. Thus, Engel says, "One expects the variance of k-di¤erences of xt [the traded
goods component] to converge [to a �nite number] as k gets large."

3As we shall see in the next section, what Engel (1999) actually computes is the ratio of Vk of the
traded goods component to that of the real exchange rate. However, the shape of the graph is mainly
determined by the numerator. It is because Vk of the nontraded goods component is expected to
remain constant on average if it is random walk.

4Applying Engel�s approach to bilateral Asian-Paci�c real exchange rates, Parsley (2001, p.9)
also �nds the rise in the later part of the graph in the case of US-Hong Kong and interprets it as an
increase in the variability of the traded goods component in that time horizon.
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of the time span. Thus, the fall of the graph of the variance of k-di¤erences in the

middle range of Engel�s results favors the smaller importance of the traded goods

component in the longer run. However, Engel (1999) �nds that the fall is not sta-

tistically meaningful from his test based on the variance of k-di¤erences. After some

adjustments in Engel�s testing method, however, our results show that the fall of the

graph is statistically signi�cant for some countries, meaning that Engel�s test results

are not very robust. As such, arguing that the nontraded goods component plays the

same minimal role for the long run movement of the US real exchange rate based on

Engel�s empirical results is less convincing.

The evidence in this paper is consistent with recent works. Kakkar and Ogaki

(1999) run a cointegration regression of the real exchange rate on its nontraded goods

component and �nd that the nontraded goods component can explain long run real

exchange rate movements fairly well. Related evidence for the usefulness of the di-

chotomy of goods in understanding the real exchange movements is found in a line

of studies on the half-life5 of the real exchange rate. Crucini and Shintani (2002),

Kim (2005), and Kim and Ogaki (2004) �nd that half-lives of the RER based on

traded good prices are shorter than those of the RER based on nontraded good

prices. Crucini, Telmer, and Zachariades (2005) also �nd that the law of one price

holds better for traded goods than for nontraded goods in data for over 500 goods.

Taylor and Taylor (2004) state that the Harrod-Balassa-Samuelson model of equilib-

rium real exchange rates is attracting renewed interest as a desirable modi�cation [of

PPP theory] after languishing for some years in relative obscurity.

5Half life is the time it takes for half the e¤ects of a given shock to dissipate.
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The rest of the paper is organized as follows. Section 2 will review the existing

literature on the asymptotic distribution of Vk(z) and provide the main theoretical

result of this paper. Section 3 discusses the implication of this paper�s result for

Engel�s �ndings and presents our test results based on the variance of k-di¤erences.

Section 4 concludes.

2.2 The statistical properties of the variance of k-di¤erences

2.2.1 Existing theories on the statistical properties of Vk(z)

Throughout the paper, suppose that the following Assumption 1 holds for a ran-

dom variable, zt.

Assumption 2.1 For a random variable, zt; assume that �zt = d +  (L)"t =

d +
P1

j=0  j"t�j; where
P1

j=0 j �
�� j�� < 1 and f"tg is an i:i:d. sequence with mean

zero, variance �2, and �nite fourth moment6. De�ne


j � E [(�zt+j � d)(�zt � d)] = �2
1X
s=0

 s s+j for j = 0; 1; 2; � � �

� � �
1X
j=0

 j = � �  (1)


 �
1P

j=�1

j = �2:

The variance of k-di¤erences has been studied in the context of the variance ratio

test for the random walk hypothesis. Earlier works focused on the case when k is

much smaller than the sample size. As in Lo and MacKinlay(1999, p.54), the variance

of k-di¤erences can be expressed as a weighted average of sample autocovariances,

6We follow the assumption in Proposition 17.3 in Hamilton (1994) in order to apply the functional
central limit theorem to unit root nonstationary processes with serial correlation.
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only with a small di¤erence in order of op(T�1=2) :

Vk(z) =
k�1P

�=�k+1

k � j� j
k

b
� + op(T
�1=2); (2.2)

where b
� � 1

T

T�j� jX
t=1

(�zt ��z)(�zt+j� j ��z):

Hence, when k is relatively small and �xed, by the law of large numbers,

Vk(z)!
k�1P

�=�k+1

k � j� j
k


� as T !1: (2.3)

Especially when k = 1;

V1(z)! 
0 as T !1:

For the variance ratio test, in which the test statistic is de�ned as follows:

V Rk(z) � Vk(z)=V1(z); (2.4)

it is possible to show the following asymptotic distribution of V Rk(z) :

p
T (V Rk(z)� 1)

D! N(0; �2k); (2.5)

where �2k is a simple function of k
7.

The variance of k-di¤erences is asymptotically equivalent to the Bartlett kernel

estimator for the long-run variance of �zt; as pointed out in Cochrane (1988)8. Equa-

tion (2.2) illustrates the fact. The �rst term of the right hand side in equation (2.2)

is the de�nition of the Bartlett kernel estimator with the lag length of k: Newey and

7For instance, if  (L) = 1 and "t is an iid normal random variable with variance �2, then

�2k =
2(2k � 1)(k � 1)

3k
:

8Actually, what Cochrane (1988) shows is that the population variance of k-di¤erences is exactly
equal to the population counterpart of the Bartlett estimator of long run variance. After replacing
the two population concepts with the sample counterparts, the equality becomes an asymptotic
equivalence.
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West (1987) show that the Bartlett kernel estimator converges to the long-run vari-

ance of �zt as T !1 and k ! 1 at a much slower growth rate9, O(T 1=4): Thus,

under certain conditions,

Vk(z)! 
 when k=T ! 0 as T !1: (2.6)

However, it turns out that the variance ratios do not converge to a point, are

severely right skewed for relatively large k in a small sample, and are not asymp-

totically normally distributed as in equation (2.5). So it is not appropriate to apply

conventional asymptotics to this case. Richardson and Stock (1989) study the limit

distribution of Vk(z) when k=T ! b > 0 under the null of a random walk, and Deo

and Richardson (2003) extend Richardson and Stock�s (1989) result to the process

which contains both permanent and transitory components. They �nd that Vk(z)

does not converge to a limit but to a nondegenerate limiting distribution, which is a

functional of a Brownian motion as follows:

Vk(z) ) 


(1� b)2b

Z 1

b

[W (r)�W (r � b)� bW (1)]2 dr; (2.7)

as k=T ! b and T !1;

where W (r) is a standard Brownian motion.

Unlike the case when k=T ! 0; the limit distribution of Vk(z) in this case is

signi�cantly di¤erent from that of the Bartlett kernel estimator. To see the di¤erence,

9Later, Andrews (1991) shows that the Bartlett kernel estimator can attain consistency with the
bandwidth at growth rate o(T 1=2).
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we can rewrite the expression for Vk(z) in equation (2.1) as follows10.

Vk(z) =
T 2

(T � k)(T � k + 1)

 b
k � 1

Tk

k�1X
t=1

S2t �
1

Tk

T�1X
t=T�k+1

S2t

!
(2.8)

where b
k is the Bartlett kernel estimator with the bandwidth of k,
and St is the partial sum process,

tX
i=1

ui:

In equation (2.8), the main di¤erences between the Bartlett kernel estimator of the

long run variance and the variance of k-di¤erences are the two partial sum processes

in the parenthesis. This di¤erence indicates the fact that the variance of k-di¤erences

underweights observations around both endpoints as mentioned in Cochrane (1988).

To see the di¤erence between the variance of k-di¤erences and the Bartlett kernel

estimator for large k�s, we compute the mean of each term in equation (2.8). As in

equation (2.9), Kiefer and Vogelsang (2005) provide the analytical form of the limit

distribution of the Bartlett kernel estimator and its mean when k=T ! b > 0:11

b
k ) Q(b) � 2


b

�Z 1

0

fW (r)2dr � Z 1�b

0

fW (r + b)fW (r)dr� ; (2.9)

where fW (r) � W (r)� �W (1)

E (Q(b)) = 


�
1� b+

b2

3

�
: (2.10)

From the functional central limit theorem and the continuous mapping theorem,

1

Tk

k�1X
t=1

S2t ) 


b

Z b

0

fW (r)2dr; (2.11)

1

Tk

T�1X
t=T�k+1

S2t ) 


b

Z 1

1�b
fW (r)2dr; as k=T ! b and T !1: (2.12)

10This expression is inspired by Cai and Shintani (2006) and Kiefer and Vogelsang (2002a).

11fW (r) is called a Brownian bridge. Davidson (1994, p.445) explains this as a Brownian motion
tied down at both ends.
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The expectations of the limit distributions for the two partial sum processes are as

follows.

E

�



b

Z b

0

fW (r)2dr + 

b

Z 1

1�b
fW (r)2dr� = 
�b� 2

3
b2
�
12. (2.13)

Equation (2.10) shows that the mean of the Bartlett kernel estimator when b > 0 is

proportional to, but di¤erent from the long run variance, 
: Equation (2.13) shows

that the variance of k-di¤erences before the small sample correction may be even

further away from long run variance on average than the Bartlett kernel estimator.

The small correction term adjusts the mean of the variance of k-di¤erences to the

level of the long run variance13: That is,

T 2

(T � k)(T � k + 1)
! 1

(1� b)2
as k=T ! b and T !1:

Meanwhile,

E (Q(b))� E

�



b

Z b

0

fW (r)2dr + 

b

Z 1

1�b
fW (r)2dr� = 


�
1� b+

b2

3

�
� 


�
b� 2

3
b2
�

= 
(1� b)2:

To sum up, when k=T ! b > 0, the limit distribution of the variance of k-

di¤erences is signi�cantly di¤erent from that of the Bartlett kernel estimator. On

the other hand, both the Bartlett kernel estimator and the variance of k-di¤erences

converge to a limit distribution which is the multiple of the long run variance and a

nuisance-parameter-free distribution. The nuisance-parameter-free distributions de-

pend only on the value of b and are invariant to the distribution of each variable.14

12The following formula on p.445 in Davidson (1994) is used to compute the expectation:
E(fW (t)fW (s)) = min(t; s)� ts:
13It can be shown that the three limit distributions in equations (2.9), (2.11), and (2.12) are

consistent with Deo and Richardson�s (2003) limit distribution as in equation (2.7).

14Using this property, Kiefer and Vogelsang (2005) are able to construct a test with this inconsis-
tent Bartlett kernel estimator. They call their approach "�xed-b asymptotics" and the conventional
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Since the variance of k-di¤erences is proportional to the long run variance when

k=T ! b > 0, the ratio of the variance of k-di¤erences at large k�s may contain

some information about the ratio of long run variances even though the variance of

k-di¤erences is no longer consistent.

Engel�s (1999) inference about the relative importance of the traded goods com-

ponent in the RER movement relies on the statistical properties of the variance of

k-di¤erences at b = 0 even when k is relatively big. The fact that the variance of

k-di¤erences has di¤erent limit distributions depending on the value of b raises doubt

about Engel�s inference. However, there seems to be some hope for Engel�s argument

about large k0s because of the proportionality of the limit distribution of the variance

of k-di¤erences to the long run variance at b > 0. Even so, it should also be noted

that there exists a noticeable di¤erence between the limit distribution of the Bartlett

kernel estimator and that of the variance of k-di¤erences at b > 015:

2.2.2 Statistical properties of Vk(z) when k is close to the
sample size

The limit distribution of the Bartlett kernel estimator in Kiefer and Vogelsang

(2005) is applicable for k=T ! b in the interval of (0,1], including the case when b = 1.

On the other hand, the limit distribution of the variance of k-di¤erences in equation

(2.7) is applicable only for b in (0,1). In equation (2.7), the limit distribution is not

de�ned when b = 1 since both numerator and denominator in the limit distribution

approach "small-b asymptotics". Sun, Phillips, and Jin (2006) show another way to utilize "�xed-b
asymptotics".

15Later in this paper, we shall see how di¤erent the variance of k-di¤erences can be from the
Bartlett kernel estimator for a given b in Figure 2.
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become zero in this case16. So we cannot say that the variance of k-di¤erences is

proportional to the long run variance when b = 1. In other words, while there is

continuity in the limit distribution of the Bartlett kernel estimator at b = 1, such

continuity does not exist for the limit distribution of the variance of k-di¤erences.

Thus, at this point, the di¤erence between the Bartlett kernel estimator and the

variance of k-di¤erences is so huge that the two are not even close to each other.

Unlike the previous cases when b < 1, only a small of number of observations

are used to compute the variance of k-di¤erences at b = 1 regardless of the sample

size. For example, when k = T � 1; there are only two observations available for

any given sample size. As a result, conventional asymptotic theory is not applicable.

Due to this restriction, we characterize the statistical properties of the variance of k-

di¤erences with the mean of its limit distribution instead of the analytical expression

for the limit distribution itself.

The exact analytical solution for the mean of the limit distribution can be com-

puted for the case when k = T � 1; the largest possible value of k: It turns out that

there exists a symmetric relationship between the two extreme cases when k = 1 and

when k = T �1. For the case when k < T �1; the symmetry is not exact but approx-

imate. The following proposition establishes a statistical property of the variance of

k-di¤erences when k = T � 1, the largest possible k.

Proposition 2.1 Under Assumption 2.1, the limit of the mean of Vk(z) when k is

the largest possible, i.e. T � 1; is equal to the variance of the change, which is equal

16In particular, the fact that the whole term in the parenthesis in the equality (2.8) is zero when
k = T is consistent with Kiefer and Vogelsang�s (2002a) proof.
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to the limit of V1(z). That is,

lim
T!1

E(VT�1(z)) = 
0 = lim
T!1

V1(z): (2.14)

Proof of Proposition 2.1. First, without loss of generality, let�s assume that the

drift term, d; in Assumption 1 is zero17.

Next, let�s transform equation (2.1) into the following:

Vk(z) � T

(T � k)(T � k + 1)k

T�kX
t=0

[zt+k � zt � k�z]2

=
T

(T � k)(T � k + 1)k

T�kX
j=0

[
kP
t=1

�
�zt+j ��z

	
]2

=
T

(T � k)(T � k + 1)k

T�kX
j=0

[
kP
t=1

ut+j]
2; where ut � �zt ��z (2.15)

To deal more easily with the case when k is close to the sample size, let m � T � k:

Then

Vk(z) = VT�m(z)

=
T

m(m+ 1)(T �m)

mX
j=0

[
T�mP
t=1

ut+j]
2

=
T

m(m+ 1)(T �m)

mX
j=0

[
jP
i=1

ui +
TP

s=T�m+j+1
us]

2 (2.16)

The last equality holds because
TP
t=1

ut =
TP
t=1

�
�zt ��z

�
= 0 :

0 =
TP
t=1

ut =
jP
i=1

ui +
T�mP
t=1

ut+j +
TP

s=T�m+j+1
us (2.17)

) �
T�mP
t=1

ut+j =
jP
i=1

ui +
TP

s=T�m+j+1
us

) [
T�mP
t=1

ut+j]
2 = [

jP
i=1

ui +
TP

s=T�m+j+1
us]

2:

17When d 6= 0; all the following steps in the proof hold true for �ezt � �zt � d after �ezt replaces
�zt:
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Especially when m = 1 or k = T � 1, from equation (2.16),

VT�1(z) =
T

(1 + 1)(T � 1)

1X
j=0

[
jP
i=1

ui +
TP

s=T+j

us]
2 =

T

(T � 1)
1

2

�
u2T + u21

�
: (2.18)

The �rst term on the right hand side of equation (2.18) is

T

T � 1u
2
1 =

T

T � 1

 
�z1 �

1

T

TX
s=1

�zs

!2

=
T

T � 1

24(�z1)2 � 2

T

TX
s=1

�z1�zs +
1

T 2

 
TX
s=1

�zs

!235 : (2.19)

By taking the unconditional expectation of equation (2.19),

E

�
T

T � 1u
2
1

�
=

T

T � 1

 

0 �

2

T

T�1X
j=0


j +
1

T

T�1X
j=�T+1

T � j

T

j

!

=
T

T � 1

 
T � 1
T


0 �
1

T

T�1X
j=�T+1


j +
1

T

T�1X
j=�T+1

T � j

T

j

!

= 
0 �
1

T � 1

T�1X
j=�T+1


j +
1

T � 1

T�1X
j=�T+1

T � j

T

j

! 
0 �
1

T � 1
 +
1

T � 1


! 
0 as T !1: (2.20)

Finally, from equations (2.18) and (2.20),

E (VT�1(z)) =
1

2

�
E

�
T

T � 1u
2
T

�
+E

�
T

T � 1u
2
1

��
! 1

2
(
0 + 
0) = 
0 as T !1: (2.21)

In equation (2.18), VT�1(z) is a function of u2t but not a function of any ut+jut,

j 6= 0: V1(z) is also a function of u2t as follows:

V1(z) =
T

(T � 1)T

T�1X
j=0

[
1P
t=1

ut+j]
2 =

T

(T � 1)
1

T

TX
t=1

ut
2: (2.22)
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By the law of large numbers,

V1(z)! 
0 as T !1: � (2.23)

Proposition 2.1 shows that the �nal value of E (Vk(z)) goes back to its initial value

as k varies from 1 to T � 1. The proposition indicates that E (Vk(z)) for the largest

k has little to do with the long run movement of the variable since its limit is 
0;

which represents the shortest run movement of the variable. So, if we treat it as an

estimator of the long run variance, VT�1(z) has a severe bias.

Equation (2.18) shows that VT�1(z) can be expressed only by ut2. No higher order

sample autocovariance terms, utut+� (� 6= 0), appear in equation (2.18). It indicates

that E (VT�1(z)) is associated only with the shortest run movement of the variable.

In the proof of the proposition, equation (2.17) is the key to derive equation (2.18).

Equation (2.17) holds because the mean of the change is unknown and estimated by

�z. So estimated unknown drift is a source of bias. The Bartlett kernel estimator

also has such bias due to the estimated unknown drift term. Equation (2.10) shows

the bias from the long run variance18. The bias grows bigger as � increases. The

Bartlett kernel dampens the bias by assigning smaller weights to higher order sample

autocovariances, but the variance of k-di¤erences reverses the e¤ect by underweighting

observations near both endpoints.19

18The Bartlett kernel estimator is a weighted sum of c
� . The estimate of autocovariance, c
� ; is
biased when the mean is unknown. See Theorem 6.2.2 in Fuller (1996) and Percival (1993) for more
details.

19Campbell and Mankiw (1987) already warned that one must be careful not to misinterpret
the behavior of Vk(z) as k increases to the point where it approaches T when the sample mean is
used. However, their formula goes to zero instead of 
0 because it does not have the small sample
correction term in equation (2.1).
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The following linear algebraic interpretation of equation (2.1) provides another

explanation of why equation (2.18) holds. De�ne a (T � T ) matrix as follows20:

U �

26664
u1u1 u1u2 � � � u1uT
u2u1 u2u2 � � � u2uT
...

...
. . .

...
uTu1 uTu2 � � � uTuT

37775 :

Then,
T�kP
j=0

[
kP
t=1

ut+j]
2 in equation (2.1) is the sum of the elements of all (k�k) principal

minors of the matrix, U: For instance, when k = 1, a (1� 1) principal minor of U is a

diagonal element of the matrix. Hence,
T�1P
j=0

[
1P
t=1

ut+j]
2 =

TP
t=1

ut
2 is just the sum of all

diagonal elements of the matrix. On the other hand, if k = T � 1,
T�kP
j=0

[
kP
t=1

ut+j]
2 is

the sum of the following two (T � 1� T � 1) principal minors, UT�1;1 and UT�1;2 :

UT�1;1 �

26664
u1u1 u1u2 � � � u1uT�1
u2u1 u2u2 � � � u2uT�1
...

...
. . .

...
uT�1u1 uT�1u2 � � � uT�1uT�1

37775 ;

UT�1;2 �

26664
u2u2 u2u3 � � � u2uT
u3u2 u3u3 � � � u3uT
...

...
. . .

...
uTu2 uTu3 � � � uTuT

37775
We know that

U =

�
UT�1;1 A
B uTuT

�
;

where A �
�
u1uT u2uT � � � uT�1uT

�0
;

B �
�
uTu1 uTu2 � � � uTuT�1

�
:

Note that the mean of �zt is unknown so estimated with its sample mean. Thus,

every column sum and row sum of U is zero since
TP
t=1

ut = 0. Hence, the sum of all

20I thank Professor J. Huston McCulloch for giving an idea about the following explanation. The
explanation is based on Percival (1993).
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elements of UT�1;1 plus that of A is zero, and so is the sum of all elements of A and

uTuT : It means that the sum of all elements of UT�1;1 is equal to uTuT : And, with the

same reason, the sum of all elements of UT�1;2 is equal to u1u1: So when T � k = 1,

Vk(z) is associated with only zero order autocovariance term, u1u1 and uTuT ; not

with any higher order autocovariance terms.

Proposition 2.1 implies that, when k is close to the sample size, there is a central

tendency for Vk(z) to go back toward the initial value of Vk(z) no matter what DGP

zt follows. To get an idea about the quasi-symmetry of E (Vk(z)) near both ends

of the time horizon, let�s �nd a similar expression to equations (2.21) and (2.22) for

Vk(z) when k = 2 and T � 2. From equation (2.9), when k = 2;

V2(z) =
T

(T � 1)
1

(T � 1)

T�kX
j=0

[
kP
t=1

ut+j]
2

=
T

(T � 1)
1

(T � 1)

T�1X
j=1

[uj + uj+1]
2 (2.24)

while, by equation (2.16) when k = T � 2;

VT�2(z) =
T

(T � 1)
1

3

T�kX
j=0

[
kP
t=1

ut+j]
2

=
T

(T � 1)
1

3

�
[u1 + u2]

2 + [uT�1 + uT ]
2 + [u1 + uT ]

2
	
: (2.25)

Hence, V2(z) is associated with zero and the �rst order sample autocovariance term-

namely, u2t and utut+1. On the other hand, VT�2(z) is a¤ected by u
2
t ; utut+1 and

u1uT : Under the summability condition in Assumption 1,
P1

j=0 j �
�� j�� <1; the high

order autocovariance term, u1uT ; should be negligible on average. It hints that, for

�xed and small m, VT�m(z) is mainly associated with the (m � 1)th or lower order

autocovariance terms as is Vm(z).
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Engel (1999) infers the importance of the traded goods component in the long run

movement of the US RER based on the asymptotics in equation (2.6). According to

equation (2.6), for small and �xed k0s, the larger k is, the longer run movements of zt

Vk(z) represents. Contrary to what equation (2.6) indicates, however, when k is close

to the sample size, Vk(z) seems to get associated with lower order autocovariances as

k increases up to the sample size.

2.2.3 Simulation results for the distribution of Vk(z)

Table 2.1 recapitulates our discussion so far on the limit of Vk(z) or the limit of its

mean over various time horizons. Under Assumption 1, V1(z) converges to 
0: As k

increases, Vk(z) converges to the long run variance of �zt when k=T ! 0: However, if

k is big enough compared with the sample size resulting in k=T ! b > 0; then Vk(z)

converges to a limit distribution and not to a number. In this case, we can show

that, from equation (2.7), the mean of the limit distribution is the long run variance.

Finally, as k gets close to the sample size, the mean of the limit distribution of Vk(z)

goes back to its initial value, 
0.

If zt is a random walk, the limit of Vk(z) or the limit of its mean continues to be


0 irrespective of k: This follows from the fact that 
� = 0 for each � 6= 0, implying

that the long run variance of �zt is equal to the variance, 
0. If zt is stationary, on

the other hand, although the graph of the mean of Vk(z) starts from the same point

(V1(z)! 
0); it will go down toward zero as k grows. When the variable is stationary,

its long run variance of the �rst di¤erence is zero. Thus, the limit distribution in this

case degenerates to zero. Thus, even in case of k=T ! � > 0, Vk(z) converges to zero.
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Later, as k grows close to the sample size, the mean of Vk(z) goes back toward the

initial value, 
0.

By means of a Monte Carlo simulation, we get the mean and 90% con�dence

intervals of Vk for each k = 1; 2; � � � ; T �1 from 5,000 simulated series of pure random

walks and a stationary AR(1) as in Figure 2.1.21 In the graph, bold lines are the means

of Vk(z) in the simulation while normal lines represent 90% two-sided con�dence

intervals. The solid lines are for the stationary AR(1) process, and the dotted lines

are for the random walk process.

Figure 2.1 illustrates our �ndings in Proposition 2.1. The graph for the mean of

Vk(z) for each DGP starts at its variance of the change and ends at the same value.

Note especially that the mean of Vk(z) for random walk does not change much as

we see in Table 2.1. On the other hand, the mean of Vk(z) for the stationary AR(1)

shows as a U-shaped graph.

Then, next observation from Figure 2.1 is that the mean of Vk(z) for the stationary

AR(1) has the closest value to its long run variance, zero, in the middle range of time

horizons. The minimum of the mean of Vk(z) over di¤erent k0s is 0.2 at k = 179,

a little less than half of the sample size. Hence, Vk(z) in the middle range of time

horizons seems more relevant to the long run movement of the variable than that at

the time horizons close to the sample size

Another observation is that the mean of Vk(z) for the stationary AR(1) process

even in the middle range of time horizons is clearly above its long run variance, i.e.

zero. As an estimate of the long run variance, Vk(z) has a severe upward bias when

21In the simulation, the number of observation is 408 (t = 0; 1; 2; : : : ; 407) as in the �rst data set
in Engel (1999). The AR(1) coe¢ cient for the stationary process is set to be .94387 which implies
that the half life is one year in a monthly data. The variance of the di¤erence in each process is set
to be one. The error terms in each series are assumed to be normal.
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the variable is stationary AR(1) even at the most relevant time horizons. Since Vk(z)

in equation (2.1) is de�ned as a sum of squared terms, the value of Vk(z) in a �nite

sample should be always positive. Thus, the issue here is how close the value of

Vk(z) is to the true long run variance. The simulation result shows that the 34 year

time-span in Engel (1999) even with fairly short half life is not enough to get an

estimate close to the true long run variance. This matter will be considered in details

in Chapter 3.

In terms of the width of the con�dence intervals, the con�dence interval for the

stationary AR(1) process is much narrower than that for the random walk in the

middle range of time horizons. Intuitively, the narrower con�dence interval of the

stationary AR(1) may be related to the fact that the limit distribution of Vk(x)

does not converges to a nondegenerate distribution but goes to a number even when

k=T ! b � 0:

The next observation for the con�dence intervals is that the two distributions

become indiscernible as k gets close to the sample size. Hence, the test based on Vk(z)

for k close to the sample size will su¤er from very low power with the null hypothesis

of a random walk against the alternative hypothesis of a stationary AR(1).

We can compare this with simulation results for the Bartlett kernel estimator. As

is apparent in equation (2.10), the mean of the Bartlett kernel estimator is getting

smaller as b increases when the variable follows a random walk while the mean of

the variance of k-di¤erences remains constant because of the small sample correction

term. To compare the two statistics, we divide the Bartlett kernel estimator by the

terms in parentheses in equation (2.10). After the adjustment, we �nd no di¤erence
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between the mean of the Bartlett kernel estimator and that of the variance of k-

di¤erences when the variable follows a pure random walk. On the other hand, the

two are very di¤erent for large k0s in the case of a stationary AR(1).

Figure 2.2 shows the mean of the simulation results for both the Bartlett kernel

estimator after the adjustment and that for the variance of k-di¤erences in the case of

a stationary AR(1). In the �gure, the bold solid line is the mean of the Bartlett kernel

estimator, and the normal solid line is for the variance of k-di¤erences. The dotted line

is the mean of the population counterpart of the variance of k-di¤erences22. Both the

Bartlett kernel estimator and the variance of k-di¤erences are above the population

counterpart on average. There is not much di¤erence between the Bartlett kernel

estimator and the variance of k-di¤erences for the �rst half of the time horizons.

However, for the second half, the two statistics are very di¤erent. The Bartlett kernel

estimator does not change much in this region while the variance of k-di¤erences goes

back to the initial level.

Another model for our simulation is an integrated AR(1) which is considered as

a possible DGP of log stock price in Lo and MacKinlay (1988). An integrated AR(1)

process with a positive AR coe¢ cient is more persistent than a pure random walk.

The integrated AR(1) model in Lo and MacKinlay is

�zt = � ��zt�1 + �t; where � s i:i:d:N(0; �2�) and j�j < 1: (2.26)

In the simulation, � = :2, �2�z = 1; and the sample size is set to be 408 for comparison

with the previous simulation. Figure 2.3 represents the simulation result.

22If xt = �xt�1 + "t with 0 < � < 1; "t � iid(0; �2"); E(Vk(x)) =
2(1��k)
k(1��2)�

2
" =

(1��k)
k(1��)�

2
�x:
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Figure 2.3 also illustrates the result in Proposition 2.1. For k close to the sample

size, the mean goes back to the variance of the change as k increases23. Unlike in

our �rst simulation results, the mean of the variance of k-di¤erences soon reaches the

level of its long run variance and stays around this level throughout the middle time

horizons.

So far, the error terms in the DGP are assumed to be normally distributed. We

also performed the same simulation above assuming that the error terms follow t-

distribution with 3 degrees of freedom. In this case, the mean of the graph is the

same as in Figures 2.1 and 2.3. On the other hand, the con�dence intervals for

the short run time horizons are wider than those for the normal distribution case.

However, as k increases, the con�dence intervals converge to those in Figures 2.1 and

2.3.

In conclusion, �rst, our simulation results in Figures 2.1 and 2.3 show that the

mean of Vk(z) does go back to 
0 as Proposition 2.1 states, irrespective of the DGP

of zt under Assumption 2.1. Second, in terms of its mean; Vk(z) reaches the closest

point to the long run variance not in the end but in the middle of the time horizons.

Third, while the Bartlett kernel estimator and Vk(z) are very close to each other in

the �rst half of the time horizon, the two are quite di¤erent in the second half. Finally,

there are two di¤erences between the case of a stationary AR(1) and the case of an

integrated AR(1). First, when k is around the middle of the sample size, the mean

of Vk(z) for an integrated AR(1) is very close to the long run variance while that for

a stationary AR(1) has a severe upward bias. Second, the slope of the graph of the

23In this case, the long run variance of �zt, 
 is �2�=(1 � �)2; whereas 
0 = �2�=(1 � �2): Thus,

=
0 = 1:5: In this example, for comparison with Figure 2.1, 
0 is set to be one. Then 
 = 1:5:

24



mean of Vk(z) for a stationary AR(1) is much less steep at both ends of the graph

than that for an integrated AR(1).

2.3 Implication of Proposition 2.1 for Engel�s ratio of Vk(z)

2.3.1 Ratio of the variances of k-di¤erences in Engel (1999)

As in Engel (1999), we de�ne the real exchange rate, qt; as

qt � st + p�t � pt: (2.27)

where st is the logarithm of the nominal exchange rate, pt is the logarithm of the

general price index of the home country, and p�t is the logarithm of the general price

index of the foreign country.

Engel (1999) regards the logarithm of the general price index as a weighted average

of traded- and nontraded-goods prices:

pt = (1� �)pTt + �pNt ; (2.28)

p�t = (1� �)pT�t + �pN�t (2.29)

Superscripts T and N indicate traded and nontraded goods each. An asterisk repre-

sents the foreign country. � and � are the shares of nontraded goods in each country�s

price index.

The RER can be decomposed by

qt = xt + yt; (2.30)

where

xt � st + pT�t � pTt ; (2.31)

yt � �(pN�t � pT�t )� �(pNt � pTt ): (2.32)
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xt; the traded goods component, is the relative price of traded goods between the two

countries while yt; the nontraded goods component, is a weighted di¤erence of the

relative prices of nontraded goods in each country.

Engel (1999) measures the importance of the traded goods component in explain-

ing US RER movements with the ratio of the variance of k-di¤erences of xt over that

of qt, RVk : 24

RVk =
V ar(xt � xt�k)

V ar(qt � qt�k)
=

Vk(x)

Vk(x) + Vk(y)
(2.33)

assuming x and y are uncorrelated

2.3.2 An illustration with highly tradable goods

In order to illustrate the implication of Proposition 1 for Engel�s method, we �rst

apply his method to data involving highly tradable goods for which the law of one

price is likely to hold. Our purpose in this exercise is to show that the ratio of the

variances of k-di¤erences for stationary xt is likely to have a U-shaped graph.

Burstein, Neves and Rebelo (2003) point out that distribution costs are so large

for consumer goods that the law of one price may not hold at the retail price level.

For this reason, Burstein, Eichenbaum and Rebelo (2005 and 2006) use the prices of

pure-traded goods at the dock25. Following Burstein, Eichenbaum and Rebelo (2006),

we measure the prices of traded goods using a geometric average of import and export

prices and compute xt in equation (2.31) with those prices. Then we construct data

24Engel (1999) mainly uses the ratio of the mean-squared errors (MSE), the sum of the squared
drift and the variance of k-di¤erences, in order to measure the movement comprehensively. However,
he states that the results based on the variance of k-di¤erences are not very di¤erent from the results
based on MSE�s for US RER. His inference in the paper is based on the properties of the variance of
k-di¤erences. For simplicity we only consider the ratio of the variance of k-di¤erences in this paper.

25Betts and Kehoe (2006) also show that the choice of the price series signi�cantly a¤ects the
statistical measure of the relative importance of the traded goods component in the real exchange
rate movement.
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for yt as the di¤erence between the RER and xt.26 For the RER, the CPI general

indexes for both countries are used.

The data are collected from the IFS CD ROM. The sample period is 1973:01-

2002:12. Among the ten bilateral real exchange rates with the US in Burstein, Eichen-

baum and Rebelo (2006), graphs for the US-Italy RER are presented in Figure 2.4

since our unit root test and stationarity test results consistently indicate that its

traded goods component is likely to be stationary.

Figure 2.4 is a graph for Vk(x) of the US-Italy RER, and Figure 2.5 is for RVk.

As far as the long run movement of RER is concerned, Vk can be interpreted as

an estimator of the long-run variance following the asymptotics in equation (2.6).

According to the traditional Balassa-Samuelson theory, the numerator of RVk should

converge to zero since the long run variance of the traded good component, which is

stationary, is zero. On the other hand, the denominator of RVk is more likely to have

a positive value because the nontraded good component is more persistent and could

even be unit-root nonstationary. As a whole, therefore, RVk is likely to converge to

zero as k increases at an appropriate rate as the sample size increases. In other words,

the importance of the traded goods component should be small in the long run.

Given this result, it is tempting to interpret the rise of Vk and RVk for large k in

Figures 2.4 and 2.5 as evidence against the Balassa-Samuelson theory in the long-run.

However, Proposition 1 shows that, for large k, the asymptotics in equation (2.6) are

not applicable and that Vk has a tendency to go back to the initial level as k gets

closer to the sample size irrespective of whether the variable is stationary or di¤erence

stationary. Due to the statistical properties of its numerator and denominator, RVk

26So the decomposition of the RER is based on equation (3) in Engel (1999) rather than equation
(1) in Engel�s paper. In other words, yt = (p�t � pT�t )� (pt � pTt ):
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also has a tendency to go back to the neighborhood of the initial level. Therefore,

the rise of Vk and RVk for large k is more likely due to the property of Vk speci�ed in

Proposition 2.1 than to the properties of US RER long run movements.

If we focus on the fall of Vk and RVk for the �rst half of the graph in these �gures,

the importance of the traded goods component in explaining the movement of the real

exchange rate becomes smaller in the longer run. The graph in Figure 2.5 is clearly

in favor of stationarity of xt since the solid line, RVk; is, in the longer periods, under

the lower dotted line which is the critical value of the null that xt follows a random

walk27. Thus, it is important not to interpret the rise of the ratio in the second half

of Figure 2.5 as evidence against the Balassa-Samuelson theory in the long-run.

2.3.3 Reexamination of Engel�s Empirical Results

We now reexamine Engel�s results in light of our �ndings in this paper. Solid lines

in Figure 2.6 plot the graphs of RVk for the US RER computed from Engel�s (1999)

�rst data set in his paper28. For short time horizons, the ratios are all over 90%. For

the middle range of time horizons, the ratios go down except for the US-Italy RER,

although the magnitude of change varies from country to country. And �nally, for

long time horizons, the ratios move back to higher levels. The most prominent case

is for the US-Canada RER.

Although, Engel (1999) refrains from reaching a decisive conclusion because of

the small number of independent observations for large k0s, he interprets the rise

27How we construct the critical value will be explained in detail in the next subsection.

28The data are monthly from January 1962 to December 1995 for Canada, France, Germany, Italy,
Japan, and the United States. Thus it has 408 observations (so T = 407). CPI�s for goods are used
for traded goods prices, and CPI�s for services are used for nontraded goods prices. See Appendix
A of Engel (1999) for more details.
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of the graph for the US-Canada RER in longer time horizons as an increase in the

importance of the traded goods component (p.513), implying that the traditional

Balassa-Samuelson theory does not work even in the long run.

However, previous discussions in this paper show that V 0
ks for k

0s near the sample

size have little to do with the long run movement of the variables. Thus, the rise of

the graph for the US-Canada RV 0
ks at large k

0s may not be interpreted as an increase

in the importance of the traded goods component for long run time horizons.

Instead, our simulation results indicate that V 0
ks in the middle range of time

horizons are more relevant to the long run movement of the variable while V 0
ks at

both ends of the time horizon are associated with the short run movement. If xt

is AR(1) and yt is a random walk, the graph for RV 0
ks is likely to be U-shaped on

average while the graph should be close to a �at line if both xt and yt are random

walks. The graphs in Figure 2.6 show a U-shape except for US-Italy so that RV 0
ks in

the middle range have smaller value than those at both ends. It may imply that the

traded good component becomes less important in the longer run in accounting for

the movement of the US RER.

Although the graphs look U-shaped, RV 0
ks in the middle range may not be statis-

tically di¤erent from those at both ends. With RV 0
ks computed from the data, Engel

(1999) tries to test his null hypothesis that the law of one price for the traded goods

does not hold. Since there is no standardized asymptotic distribution of RVk; En-

gel uses a parametric bootstrap method to compute the con�dence intervals of RVk.

Under his null, he supposes that both xt and yt are random walks with drift. Engel,

then, shows that the RVk at every time horizon in the data is within the two-sided

95% con�dence interval of RVk. As such, Engel does not �nd any evidence for a less
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important role for the traded goods component in the longer run movement of RER.

Engel compares his results with Kakkar and Ogaki�s (1999) which are in favor of an

important role for the nontraded goods component in the long run. He attributes

the di¤erence to the low power of the tests to distinguish between unit roots and

stationarity in relatively short time spans.

We believe that Engel�s con�dence interval needs some adjustments. Those ad-

justments lead to a di¤erent conclusion from that in Engel (1999). We �nd that

Engel�s empirical results are not very robust. Our adjustments to Engel�s testing

method include the following.

First, we perform a one-sided test, as opposed to the two-sided test in Engel

(1999). Our main interest in this paper is the long run movement of the RER. In

the long run, Vk is the estimator of long run variance. If the law of one price for

traded goods does not hold in the long run, then xt is nonstationary and the long

run variance of �xt will have a positive value. On the other hand, if the law of one

price holds in the long run, then xt is stationary and the long run variance of �xt

is zero. Therefore, RVk under the null that both xt and yt are random walks should

be statistically larger than that under the alternative hypothesis. Thus, lower dotted

line in Figure 2.6 is the critical value under the null that both xt and yt are random

walk. That is, if RVk from the data is lower than the con�dence intervals, then the

test rejects the null.

Second, we report the con�dence interval only up to half of the sample size while

Engel (1999) reports up to the largest possible k. Since Cochrane (1988), it has been

known that the variance of k-di¤erences for large k is not reliable. Admitting the

inaccuracy of the statistics in his paper, Engel reports it for the entire time horizon
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probably because he believes that a small piece of information about the long run is

better than no information. However, since our �ndings indicate that RVk for large

k has little to do with the long run, there is not much gain from reporting inaccurate

test results for large k0s.

Third, we do not allow drift either in xt or in yt: While the literature on the

Balassa-Samuelson theory has given some models which allow drift in yt; it is di¢ cult

to �nd a model which explains why xt may have drift. Engel does not provide a

theoretical explanation for it either.

Fourth, with the same testing method, it is easy to �ip the null. We can compute

the con�dence interval under the null that xt is stationary and that yt is still a random

walk. When RVk from the data is above the con�dence interval, the test rejects the

null. An additional problem in this case is how to specify the data generating process

of xt: Apparently, there are many di¤erent kinds of stationary processes. We report

the simplest case in which xt is AR(1) in this paper.

The dotted lines in Figure 2.6 are critical values for one-sided tests with 5% size

after the changes we make. The lower dotted line is the critical value under the null

that xt is a random walk without drift while the upper dotted line is the critical

value under the null that xt is stationary AR(1): Overall, the graphs at many time

horizons are within the two dotted lines, indicating the low power problem pointed

out by Engel (1999). However, unlike the results in Engel (1999), RV 0
ks for long time

horizons are below the lower dotted line, rejecting the null that both xt and yt are

random walk for Canada, France, and Germany. In the case of Italy and Japan,

on the other hand, RV 0
ks for short time horizons are above the upper dotted line,

rejecting the null that xt is AR(1) and yt is a random walk.
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To sum up, the test based on RV 0
ks computed from the data and bootstrap critical

values does not necessarily support Engel�s null hypothesis but provides some evidence

for smaller importance of the traded goods component in accounting for longer run

RER movement.

2.4 Conclusion

According to the traditional Balassa-Samuelson view, the traded goods component

of the real exchange rate is stationary while the nontraded goods component is more

persistent and could even have a unit root. The long run variance of the traded goods

component is zero while the real exchange rate itself has a positive long run variance

if the nontraded goods component has an autoregressive unit root.

Cochrane (1988) shows that the variance of k-di¤erences (Vk) is asymptotically

equivalent to the Bartlett kernel estimator of long run variance. Engel (1999) com-

putes Vk for the real exchange rate and for its traded goods component. Based on

Cochrane (1988), Engel expected that the ratio of Vk of the traded goods component

to Vk of the real exchange rate would converge to zero as k increases if the traditional

theory were true.

In contrast to the traditional view, Engel �nds that the ratios decrease at �rst

but increase at the end of the time horizons, most prominently in case of the US-

Canada RER. Engel interprets this as an increase in the importance of the traded

goods component at longer run time horizons. Based on the empirical results, Engel

concludes that the behavior of the traded goods component is indistinguishable from

the behavior of a random walk.
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This paper, however, shows that the mean of the variance of k-di¤erences for

the largest k; VT�1, converges to the limit of the variance of the �rst di¤erence, V1:

Therefore, if Vk falls as k increases, Vk tends to rise as k approaches T�1 irrespective of

whether the variable of interest is stationary or unit root nonstationary. This means

that the rise of the graph at k close to the sample size in Engel (1999) cannot be

interpreted as evidence for unit root nonstationarity of the traded goods component

in the real exchange rate.

While Vk for k close to the sample size does not re�ect the long run properties of

the variable, the simulation results in the paper show that Vk will get closer to the

long run variance as k increases from one to time horizons in the middle range. The

ratio of Vk in Engel (1999) decreases in the �rst half of time horizons, which indicates

that the nontraded goods component plays a more important role in the longer run.

Engel (1999) show that the RV 0
ks from the data are all within the con�dence

intervals he constructs under the null that there is no change in the importance

of the nontraded goods component over di¤erent time horizons. On the contrary,

after some adjustments of the testing method, our test results provide some evidence

consistent with a more important role for the nontraded goods component at longer

time horizons for some countries.

Cochrane (1988) pointed out that the variance of k-di¤erences for large k is less

reliable. He explains that the degrees of freedom of Vk are roughly equal to the

number of nonoverlapping long runs, which is less than two when k is more than

half of the sample size. Considering the inaccuracy due to low degrees of freedom,

Cochrane (1988) reports his results at time horizons only up to one fourth of the

sample size. Lo and MacKinlay (1988) also report their simulation results at time

33



horizons up to half of the sample size. It is exceptional in the literature to report up

to the longest time horizon as in Engel (1999), and Engel admits that his longer run

horizon numbers are less reliable, probably based on Cochrane�s (1988) argument.

What is new in this paper, though, is that Vk for k close to the sample size not

only has a big variance due to its low degrees of freedom but also has little to do with

the long run movement of the variable.
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(a) A random walk without a drift
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Notes: i) A solid line is the mean of the Vk:
ii) Dotted lines are the 90% con�dence intervals of Vk.

Figure 2.1: The distribution of the variance of k-di¤erences
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Figure 2.2: Mean of Vk and mean of the Bartlett kernel estimator for
a stationary AR(1)
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Figure 2.3: The distribution of Vk (ARIMA(1,1,0) Model)
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Figure 2.4: Variances of k-di¤erences for xt of US-Italy pure traded goods
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Figure 2.5: Ratio of Vk for US-Italy pure traded goods
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(a) Canada (b) France
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Figure 2.6: Ratio of V 0
ks for the US RER(1962:01-1995:12)
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k = 1 k is small and �xed k=T ! 0 k=T ! b > 0 k = T � 1

general case 
0
k�1P

�=�k+1

k � j� j
k


� 
 
 
0

random walk 
0 
0 
0 
0 
0

stationary 
0
k�1P

�=�k+1

k � j� j
k


� 0 0 
0

Notes: i) 
� is the � -th order autocovariance of �zt:
ii) 
 is the long run variance of �zt:

Table 2.1: The limit of Vk(z) or the limit of the mean of its distribution
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CHAPTER 3

A MONTE CARLO INVESTIGATION ON THE
ESTIMATOR OF RATIO OF LONG RUN VARIANCES

3.1 Introduction

To measure the relative importance of traded goods component in accounting for

real exchange rate movement, Engel (1999) adopted the ratio of the variance of k-

di¤erences in his celebrated empirical work. Engel (1999) computes the ratio of the

variance of k-di¤erences of the traded goods component to that of the real exchange

rate. With few exceptions, he �nds is that the ratio is very close to one even in the

long time horizon. He takes the empirical �ndings as evidence against long run PPP.

The variance of k-di¤erences is, under certain conditions, asymptotically equiv-

alent to the Bartlett kernel estimator, one of heteroskedasticity and autocorrelation

consistent (HAC) estimators for the long run variance (LV). Engel�s (1999) inference

about the long run behavior of real exchange rates in his paper relies on the economet-

ric theories about the HAC estimators. The statistical properties of HAC estimators

for LV have been one of the central subjects in time series econometrics literature.

However, the statistical properties of the "ratio" of an estimator has not been studies

much29. The statistical properties of the ratio may not be fully explained by the

29One exception is Albuquerque (2005) who studies the properties of the long run correlation of
two variables.
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statistical properties of the estimator itself because of the nonlinearity between the

two.

In this paper, we investigate the statistical properties of the ratio of HAC estima-

tors using a Monte Carlo simulation in order to have a better understanding of the

implication of Engel�s (1999) empirical �ndings for long run behavior of real exchange

rates. We will consider not only the variance of k-di¤erences used in Engel (1999) but

also two other popular estimators; the Bartlett kernel estimator and the Quadratic

Spectral kernel estimator. We will focus on the mean of the ratio in the simulation

and the power of the tests in our simulation to investigate the accuracy of the ratio

as a point estimator and its usefulness in a hypothesis test.

The two main parameters which determine the results in our simulation are the

relative volatility and the degree of persistence of the traded goods component in the

real exchange rate. Engel�s interpretation of his empirical results for the long run

movement of real exchange rates focuses on the role of the persistence of the traded

goods component. Our simulation results will highlight that the relative volatility of

the traded goods is the major determinant of the value of our estimators even at the

time horizon as long as twenty or thirty years when the value of the relative volatility

is as high as observed in the data Engel (1999) uses. Our results imply that the high

level of the estimated ratio found in Engel (1999) is not necessarily a reliable piece

of evidence against long run PPP. Our approach is connected to Taylor (2002) who

decomposes the real exchange rates into the two factors and shows that the large

�uctuation of the real exchange rates in the free �oating regime can be attributed to

the volatility of the error, not to the persistence of the real exchange rate.
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Engel (1999) mainly uses the sum of the demeaned variances of k-di¤erences and

the squared drift to measure the movement of a variable instead of the variance of

k-di¤erences itself although his inference relies on the properties of the variances of k-

di¤erences. We study the sum of the variances of the variances of k-di¤erences and the

squared drift when there is no drift in the true data generating process. Interestingly,

the mean of the sum at the largest time horizon becomes twice bigger than the true

long run variances if the variable has no drift, leading to a huge bias in the estimation.

As shown in Chapter 2, demeaning is a source of bias of sample autocovariances. To

avoid the bias, we may simply use the uncentered moments to construct our estimators

instead of estimating the variances and the drift separately and add the two. That

strategy is adopted by Betts and Kehoe (2006). Our simulation results show that

the means of the ratio of uncentered moments for the variance of k-di¤erences or the

Bartlett kernel estimator are lower than the demeaned counterparts but still far away

from zero even the half life of the traded goods component is short. In case of the

QS kernel, the mean of the ratio at the long time horizon has signi�cantly lower than

the other two estimators, though it is still far away from zero.

One important measure of the usefulness of an estimator is the power of a test

based on the estimator. Engel (1999) construct a test using the ratio of the variance

of k-di¤erences. Under the null that both the traded goods component and the

nontraded component follow a random walk, he constructs con�dence intervals of the

variance of k-di¤erences by means of a parametric bootstrap method. He �nds that

there is no evidence against his null, implying that there is no mean reversion in the

traded goods component of the real exchange rate. We compute the power of the tests

based on the three kernel estimators for each relative volatility and each half life of
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the traded goods component. Unlike the case of the means of the simulation results,

the power of a test is almost invariant to the value of the relative volatility. The half

life determines the power of the test. When the half life is one year, the maximum

power of a test with centered moments ranges from 45% to 60% depending on the

choice of kernels. When the half life is four years, however, the maximum power of

a test is 10 to 20% depending on the choice of the kernels and the null of the test.

Thus, for given parameter values in the data, the test is not very powerful. Using

uncentered moments increases the maximum power of a test by 10 to 20 percentage

points.

While the power of the test based on the variance of k-di¤erences decreases quickly

after the time horizon with the maximum power, the ratio of uncentered moments of

the other two kernel estimators does not decline much. The time horizon at which

the test has the maximum power is unknown. Since we do not have a reliable rule to

choose the time horizon, an alternative way is to perform a test at the largest time

horizon. The ratio for the Bartlett and QS kernel estimators based on uncentered

moments gives much higher power than that for the variance of k-di¤erences at the

longest time horizon.

The rest of the paper is organized as follows. Section 2 will explain our Monte

Carlo simulation. Section 3 presents our simulation results and �ndings. Section 4

concludes.

3.2 Monte Carlo simulation

In this section, we will explain the Monte Carlo simulation method used in this

paper. We will discuss the models of the data generating processes (DGP), our choice
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of the values of the parameters in the models for the DGPs, and the estimators of

the ratio of the long run variances in our Monte Carlo simulation.

In Engel (1999), a real exchange rate consists of the traded goods component, xt,

and the nontraded goods component, yt. He computes the ratio of the variances of

k-di¤erences (Vk) of xt over the variance of k-di¤erences of the real exchange rate30.

In our Monte Carlo simulation, we �rst generate two thousand bootstrap sample of

xt and yt for given parameter values under the two di¤erent models of the DGP for

xt and yt: Second, we compute the estimator of the ratio of long run variances for

each bootstrap sample at each time horizon: Third, we investigate the properties of

each estimator by computing the mean and the power of certain tests based on the

ratio with the two thousand estimates from bootstrap samples.

3.2.1 Two models for the data generating processes

As for the two models of the DGPs for xt and yt; yt is assumed to be unit root

nonstationary in both models since it is a¤ected by preference and technology shocks

which we believe have an autoregressive unit root. On the other hand, xt will be

stationary if the law of one price for the traded goods hold in the long run as in

Model 2 while xt may not be stationary when the law of one prices does not hold

even in the long run as in Model 1. Thus, the two models are di¤erent from each

other due to the di¤erent assumption on the stationarity of xt.

For simplicity, we assume that a unit root nonstationary process follows a simple

random walk process and that a stationary process follows a AR(1) process. Then

Model 1 in the following is the data generating process (DGP) which we will consider

30In addition, Engel (1999) assumes that xt and yt are indepent. It implies that the variance of
k-di¤erences of the real exchang rate equals the sum of the variance of k-di¤erences of xt and that
of yt:
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for nonstationary xt cases while Model 2 is the DGP for stationary xt cases. In the

simulation, all error terms are assumed to be normally distributed.

Model 1 : xt and yt are random walks without drift.

xt = xt�1 + "t; "t s iidN(0; �")

yt = yt�1 + �t; �t s iidN(0; ��)

Model 2 : xt is AR(1) and yt is a random walk without drift.

xt = �xt�1 + "t; 0 < � < 1; "t s iidN(0; �")

yt = yt�1 + �t; �t s iidN(0; ��)

3.2.2 Two main parameters in the models

We have two parameters (�" and ��) in Model 1 and three parameters (�, �", and

��) in Model 2. Since we are interested not in the level of the long run variances

but its ratio, we will set the standard deviation of �yt; �� to one without loss of

generality in our simulation. Let�s denote the standard deviation of�xt as stdv(�xt):

In Model 1, stdv(�xt) is �" while it equals 2�"=(1� �) in Model 2. Our Monte Carlo

simulation results depend on the values of the relative size of standard deviation of

�xt, stdv(�xt) and AR(1) coe¢ cient, �. The larger � is, the more time it takes for

the e¤ect of a shock to traded goods component to dissipate. Half life is a term for

the time it takes for half the e¤ects of a given shock to dissipate. In Model 2, the

half life can be computed as � ln(2)= ln(�): In short, the relative size of standard

deviation of �xt and the half life for traded goods component are the two parameters

in the models of xt and yt which will determine our simulation results. We will denote

stdv(�xt)=stdv(�yt) as RS and half life as HL.
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Engel (1999) �nds that the ratio of the variances of k-di¤erences are almost always

above 90% at any time horizon. He attributes the very high ratio at the long time

horizon to the strong persistence of the traded goods component. Under certain

values of parameters, Engel�s inference may not be valid. We will see that the ratio

for a short half life of the traded goods component at fairly long time horizon can be

far away from zero if the relative volatility is as big as observed in Engel�s data set.

Our approach is comparable with Taylor (2002). He also decomposes the residual

variance of his estimated AR model for the real exchange rate into the two factors:

the half-life of disturbances and the variance of the (stochastic) error disturbance. He

�nds that the larger deviation from PPP in the �oating exchange rate regime than in

the Gold standard or Bretton Woods era is not attributable to signi�cantly greater

persistence (longer half-lives) of deviations, but is due to the larger shocks to the real

exchange rate process in the period.

3.2.3 Choice of values of parameters

To get a benchmark for parameter values which are relevant to the discussion in

this paper, we estimate Model 1 and Model 2 with the �rst data set in Engel (1999).

The data set spans from 1962:01 to 1995:12 for six countries including U.S. So it is

a monthly data with 408 observations. For the estimation of Model 2, we include an

intercept in the regression for xt since the price level itself is not available in the data

but only an index for price level is. Table 3.1 shows the estimated parameter value

for Model 2 from the data set we have.

Estimation results show that the traded good component for some countries in

1962:01-1995:12 data set has much longer half-life (4.1-25.1 years) than we normally
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expect in this line of literature. Rogo¤ (1996) mentions the �remarkable consensus�

of the half life of 3-5 years for the real exchange rate based on general price index of

CPI. According to the Balassa Samuelson theory, the real exchange rate based on the

traded goods prices like xt in Model 2 should have shorter half life than that for the

general price index.31

One reason for such high value may be due to misspeci�cation error caused by the

simplicity of our model. However, allowing longer time lag in our does not signi�cantly

reduce our estimated value of half life. Another explanation of failure to get a shorter

half life estimate is the existence of the nontradable distribution and retail service in

the CPI of tradable goods as emphasized by Burstein, Neves and Rebelo (2003) and

Burstein, Eichenbaum and Rebelo (2006).

Since accurate estimation of half life of the traded goods component is not the

main interest in this paper, we just set the value of half life of the traded goods

component to one, two, and four years (that is, HL 2 f1; 2; 4g) for the traded goods

component. We take Kim�s (2004) estimate for the half life of the traded goods

component as our low bound. We set four years as our upper bound since increasing

half life longer than four years does not change our simulation results much.

As for the relative size of the volatility of error, estimates from the data range

from 4 to 11. This results imply very high volatility of the traded goods component

relative to that of the nontraded goods component during the given sample period.

Burstein, Eichenbaum, and Rebelo (2006) shows that the relative size can be as low

as one if we use at-the-dock prices for traded goods prices. For this simulation, we

31Recent empirical results such as Crucini and Shintani (2002), Kim and Ogaki (2004), and Kim
(2005) support for shorter half of traded goods component than real exchange rate itself.
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set the estimates from data in Engel (1999) as our upper bound. We will consider

RS � stdv(�x)=stdv(�y) 2 f1; 2; 4; 8g:

3.2.4 Two more kernel estimators

For this paper, we will consider two more HAC estimators of the long run variances

other than the variance of k-di¤erences (Vk); the Bartlett kernel estimator (BTk) and

the Quadratic Spectral kernel estimator (QSk). The de�nitions for BTk and QSk, are

given in Andrews (1991). k is a bandwidth parameter for each kernel estimator. BTk

is considered because it is asymptotically equivalent to Vk under certain condition

and Engel relies on the asymptotic properties of the Bartlett kernel estimator in his

inference. QSk is considered here since Andrews (1991) shows that QSk has some

desirable properties compared with other kernel estimators.

One of our �ndings in Chapter 2 is that demeaning of �rst di¤erence is a source of

big gap between the true long run variance and the variance of k-di¤erences. Based

on the observation, we will also investigate the di¤erences between the method with

centered moments and that with uncentered moments in estimating the ratio of long

run variances.

3.2.5 Mean of the simulations and power of the tests

In order to check the usefulness of our estimators, we will compute the mean

of the ratio among the two thousand bootstrap samples at each time horizon. We

will also compute the size corrected power in the tests based on the estimator of

the ratio of long run variances. The mean of the ratio in the simulation shows how

accurate an estimator is compared with its true value. In some cases, tests based on

inconsistent estimator may show a good performance when it is used in a test. Engel
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(1999) constructs a test based on the variance of k-di¤erences. The power of the tests

computed from our bootstrap samples will provide information about how useful the

estimator of the ratio of long run variances is for testing a hypothesis.

3.3 Results of Monte Carlo simulation and implications

3.3.1 Mean of the ratio in the simulation

Mean of the ratio in Model 1

Chapter 2 shows that the mean of the variance of k-di¤erences equals the variance

of the error at any time horizon if the variable follows a random walk as in Model

1. Due to Jansen�s inequality, however, the mean of the ratio of long run variance

estimators may not equal the ratio of the two means. Figure 3.1 presents the mean

of the ratio of long run variance estimators in our simulation for each relative size of

the traded goods component error in Model 1. Panel (a), (b), and (c) present the

mean of the simulation for Vk; BTk, and QSk respectively. The four graphs in each

panel are for RS = 1; 2; 4; 8 from the bottom to the top.

As a benchmark, we de�ne the ratio of population variances of k-period di¤erences

as de�ned by RPVk:

RPVk �
V (xt+k � xt)=k

V (xt+k � xt)=k + V (yt+k � yt)=k
:

In Model 1, the ratio of population variances of k-period di¤erences equalsRS2=(RS2+

1) regardless of the time horizon since every shock is permanent and does not disap-

pear even in the long run.

Panel (a) in Figure 3.1 is the mean of the simulation for Vk. When the relative

size of the volatility, RS, is one, the graph is not di¤erent from the ratio of population

variances of k-period di¤erences so that it is a horizontal line. When RS is as big
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as 8, the graph is very close to a horizontal line. In that case, the gap between the

population counterpart and the mean of the ratio of V 0
ks over di¤erent time horizons

can not be bigger than three percentage point. However, for the middle range of RS,

the graph is decreasing. The gap between the graph and the theoretical value is as

big as 8 percentage point for RS = 2. The decrease in the mean of the ratio is also

observed in the simulation for BTk and QSk as in Panels (b) and (c) in Figure 3.1.

The graph for BTk is quite close to that for Vk while the graph for QSk shows bigger

di¤erence from the theoretical value.32

Mean of the ratio in Model 2

In Model 2, the long run variance of the traded goods component is zero since

the traded goods component is stationary. If an estimator of the long run variance

is consistent and the sample size is large enough, the estimator of the ratio of long

run variances should be close to zero. Engel �nds that the estimated ratios are above

90% at any time horizon from his 34 years monthly data. Engel (1999) takes this

empirical results as evidence against long run PPP. For his inference to be valid,

the time span of the data should be long enough to apply the asymptotics for given

values of parameters. To check whether the condition holds, �rst we will see what

value the ratio of population variances of k-period di¤erences would have for given

parameterization.

32We also computed the median of the ratio in our simulation under Model 1. In case of the
median, it was not di¤erent from the ratio of long run variances under our normality assumption
for the error terms.
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In Model 2,

V (xt+k � xt)=k =
2(1� �k)

1� �2
�2"

V (yt+k � yt)=k = �2�;

and the ratio of population variances of k-period di¤erence for givenRS2 = V (�xt)=V (�yt)

is

RPVk =
RS2(1� �k)

RS2(1� �k) + (1� �)k
:

RPVk is decreasing in RS and k while it is increasing in �.

Each panel in Figure 3.2 shows the four graphs of RPVk for given half life with 34

year data. Each line in a panel in Figure 3.2 is di¤erent from each other in terms of

the value of RS: Each line in a panel is for RS = 1; 2; 4; 8 respectively from the bottom

to the top. The top line in Panel (a) in Figure 3.2 is the graph for the ratio with

RS = 8 and one year of half life. In that case, even with the quick mean reversion

in the traded component, 90% of the real exchange rate movement in ten years and

about three fourths in 34 years are attributed to the movement of the traded goods

component. The ratio is far away from the true ratio of long run variances, that is

zero at any time horizon. Figure 3.2 shows that higher value of ratio of variances of

k-period di¤erences may not re�ect the failure of long run PPP since the ratio may be

huge even with quick mean reversion of the traded goods component if the volatility

of the traded goods component is as high as measure in Engel�s (1999) data. The

relative volatility of the traded goods component, RS, determines the location of the

graph of the mean. The half life of the traded goods component determines the slope

of the graph. For given sample size of 34 years, even a short half life can not make

the slope of the graph steep enough to push down the mean of our simulation results
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at the long time horizon to the level close to zero if RS is as big as observed in the

data.

Our observation here is comparable with Taylor�s (2002) �nding that larger de-

viations from PPP in the �oating exchange rate regime can be attributed to larger

shocks, not to longer half life. If, in fact, half life of the traded goods component is

as long as 4 years like one observed in Engel�s (1999) data set, then the graph never

goes below 90% even in 34 years as in the top line in Panel (c) in Figure 3.2. Thus,

the fact that the ratio is over 90% at all time horizon does not necessarily imply that

PPP fails to hold in the traded goods component.

Figure 3.3 shows that the estimator of the ratio with Vk gives even higher value

than the ratio of population variances of k-period di¤erences presented in Figure 3.2,

especially for longer time horizon. The graphs in Figures 3.2 and 3.3 are very close

when the time horizon is very short although the graph for Vk in Figure 3.3 is never

lower than the theoretical value in Figure 3.2 at each parameterization. As explained

in Chapter 2, the ratio of Vk for Model 2 does not decrease monotonically but shows

a U-shape graph. Thus, as the time horizon increases, the ratio of Vk becomes much

higher than the population counterpart in Figure 3.2.

The top line in Panel (a) in Figure 3.3 is the ratio of Vk with RS = 8 and one year

of half life. Under the volatility observed in the data, the ratio of Vk is greater than

90% at each time horizon even when the half life of the traded goods component is

as low as one year. For a longer half life as in Panel (c) in Figure 3.3, the graphs are

even �atter.

We can compare the mean of the ratio of Vk for Model 2 in Figure 3.3 with that

of BTk and QSk in Figures 3.4 and 3.5. Di¤erent from the U-shaped curves in Figure
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3.3, the means in Figures 3.4 and 3.5 settle down to a certain level. It is because the

Bartlett and QS kernel estimators are designed to give a smaller weight to a higher

order sample autocovariance. For the �rst half of the sample size, the graph for BTk

is very close to that for Vk while the graph for QSk is lower than those for Vk and

BTk: While the graph for Vk is always above that for the theoretical value in Figure

3.2, the graph for HQk is lower than that for the Figure 3.2 at certain short time

horizons when the half life is short and the relative size of volatility, RS, is high.

To sum, the mean of the ratio of variances in our simulation in Model 2 does

not decrease much when the relative size of the traded goods component is as high

as observed in Engel�s (1999) data. It is true even when the half life of the traded

goods component is relatively short. It is very di¤erent from what an asymptotic

theory suggests about the ratio of long run variances in Model 2. According to the

asymptotic theory, we may expect our estimators to become close to zero as the time

horizon increases especially when the mean reversion of the traded goods component

is quick. Under given relative size of volatility, the ratio of Vk; BTk; or QSk is a very

bad point estimator of long run variances. Considering that the true value of the

ratio of long run variances in Model 2 is zero, the ratio of QSk seems to serve better

as an estimator of the ratio of long run variances since the graph of its mean in the

simulation is closer to zero than the other two estimators. However, it may be partly

due to the downward bias which is also observed in Panel (c) in Figure 3.2. In terms

of the distance between the graph from Model 1 and that from Model 2, QSk may or

may not be as good an estimator of the ratio of long run variances. Our simulation

in later section on the power of a test based on the ratio of variances will address this

point.
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3.3.2 Centered and uncentered moments

The mean squared error (MSE)

In his paper, Engel (1999) de�nes the mean-squared error (MSE) as the sum of

the variance of k-di¤erences (Vk) and the squared drift (Mk) as in equation (3.1).

MSEk(z) � Vk(z) +Mk(z); (3.1)

Vk(z) � T

(T � k)(T � k + 1)k

T�kX
t=0

[zt+k � zt � k�z]2; (3.2)

Mk(z) � [k�z]2=k = k�z
2
; where �z =

1

T
(zT � z0): (3.3)

The drift is measured as a sample mean of the �rst di¤erence of the variance. Al-

though his inference is based on the asymptotic theory on the variance of k-di¤erences,

Engel uses the MSE to measure the movement of a variable instead of the variance

of k-di¤erences. He argues that the MSE measures the movement of a variable com-

prehensively.

The Balassa-Samuelson e¤ect normally implies the existence of a deterministic

trend in the nontraded good component. However, it is not clear why deviation

from the law of one price in traded good component contains a deterministic trend.

Moreover, the empirical evidence for the existence of deterministic trend even in the

nontraded good component of real exchange rate between the industrialized countries

is at most mixed. To check the relevance of including the drift terms, we test for the

null of zero drift by computing the t-value of the sample mean of the �rst di¤erence of

traded good component and that of nontraded good component with Engel�s (1999)

1962:01-1995:12 data set. The standard error for the sample mean is computed with

the QS kernel heteroskedastic autocorrelation consistent (HAC) estimator of long

run variance. For 1962:01-1995:12 data set, only nontraded good components for
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US-Canada RER and US-Italy RER reject the null of zero drift. No evidence against

the null of zero drift is found for traded goods component. Both economically and

empirically, there is not much support for the drift in the traded goods component

and even in case of the nontraded goods component, the empirical evidence is not

strong.

Nevertheless it seems innocuous to include the drift term. If the drift terms in

the two components in the real exchange rate are in fact negligible, we would expect

that the estimates of the drifts should be small, too. However, our following results

show that to include the drift term may distort our estimation when there is no drift

term in the true data generating processes.

Although �z is a consistent estimator of the drift of zt; the estimate of the drift

term may have a signi�cant value when the true drift is zero. To see this, �rst,

Mk(z) = k

�
1

T
(zT � z0)

�2
= k

 
1

T

TX
t=1

�zt

!2

=
k

T

 
1p
T

TX
t=1

�zt

!2
(3.4)

Equation(3.4) shows that the squared drift term, Mk(z); is a function of a partial

sum.

Under Assumption 2:1 in Chapter 2, when k=T ! b > 0,

lim
T!1

Mk(z) = lim
T!1

k

T
(� �W (1))2 = b
W (1)2 (3.5)

where W (�) is standard Brownian motion.

And, by taking expectation of Equation (3.5),

E
�
lim
T!1

Mk(z)
�
= lim

T!1
E (Mk(z)) = b
: (3.6)
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Equation (3.6) shows that the mean of the squared drift term is proportional to

the long run variance. If a variable is stationary, the drift term is still zero for large k

since the long run variance is zero. However, if a variable contains autoregressive unit

root, the mean of Mk(z) increases proportional to the increase in k even when there

is no drift in the variable. Figure 3.6 shows our simulation results for the MSEk: In

Panel (a) in Figure 3.6, the dotted line is the mean of the MSEk for a stationary

AR(1) with one year of half life and the solid line is for a random walk without a

drift. The graph for a stationary AR(1) shows almost the same U shape as that

for the variance of k-di¤erences. On the other hand, the graph for a random walk

without a drift monotonically increases unlike the horizontal graph for Vk. The value

for the mean of the MSEk becomes almost the double when k = T � 1.

Panel (b) in Figure 3.6 shows the mean of the ratio of theMSEk in the simulation.

The dotted line is for Model 1 where the two components in the real exchange follow a

random walk without a drift while the solid line is for Model 2 where the traded goods

component is a stationary AR(1) with one year of half life. The relative volatility of

the traded goods component, RS, is assumed to be one. The graph of the MSEk for

Model 2 does not go all the way back to the original level as the time horizon gets

close to the sample size unlike that of Vk while the graph of theMSEk for Model 1 is

similar to that of the Vk: As such, it is not clear which variable the MSEk is trying

to estimate when a variable contains a unit root but no drift. To sum, considering

the case of a unit root process with no drift, the MSEk suggested by Engel (1999) is

not a proper measure of the movement of a variable.
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The ratio of uncentered moments

Another way to take care of a possible drift in a variable is using uncentered

moments. This strategy is adopted in Betts and Kehoe (2006)33. We check whether

using uncentered moments produces di¤erent results. Figure 3.7 shows the mean of

the ratio of uncentered moments for each kernel estimator at each relative volatility

in Model 1. Like the graphs for centered moments in Figure 3.1, the means are

decreasing as the time horizon increases. In case of BTk and QSk, the graphs for

centered moments and those for uncentered moments are very close. On the other

hand, in case of Vk, the graphs for uncentered moments are signi�cantly smaller

than the population counterpart in Figure 3.2 at long time horizons for some relative

volatility levels.

Figure 3.8 presents the mean of the ratio of uncentered moments for Vk in Model

2. Unlike the case of centered moments in Figure 3.3, it does not show a U-shape but

decreases monotonically. While the graphs at short time horizon in Figure 3.8 are not

very di¤erent from those in Figure 3.3, the graphs in Figure 3.8 at medium to long

time horizons are signi�cantly lower than those in Figure 3.3. Those are even smaller

than the theoretical value of the ratio in Figure 3.2, especially for the cases of longer

half lives and higher relative volatility of the traded goods component. Figure 3.9

shows the graphs for BTk. Compared with the cases for centered moments in Figures

3.4, the ratios for uncentered moments have lower values for long time horizon by 5

to 15 percentage point. For the ratio for Vk and BTk, when RS is eight, the mean is

33Huizinga (1987) also uses uncentered moments to investigate the long-run behavior of real ex-
change rates. However, he rationalizes his approach by assuming no drift in the true process instead
of viewing it as a comprehensive measure of variances and drifts. He expalins that his approach has
the bene�t of eliminating a major source of small sample bias in the estimated autocorrelations due
to the removal of an unknown mean as in Fuller (1996).
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above 80% even at the time horizon of 30 years and with one year half life. Figure 3.10

presents the mean of the ratios in the simulation for QSk: At the wide range of time

horizon, the mean for QSk has the lowest value among the three kernel estimators

considered. Especially when the half life is as short as one year, the mean of the ratio

of uncentered moments for QSk is lower than that for centered moments in Figure

3.5 by 30 percentage points.

The ratio of long run variances is RS2=(RS2+1) in Model 1 while the true ratio is

zero in Model 2. The mean of the ratio in the simulation is closest to the ratio of long

run variances at the shortest time horizon in Model 1. The mean equals the population

ratio at k = 1 by construction of the simulation. On the other hand, the estimators

of the ratio of the long run variances in Model 2 mainly depend on the relative size of

the traded goods component. If RS is as large as eight, the mean in the simulation

does not get close to the true value of long run variances, that is zero, for given sample

size of 34 years even when the traded goods component has a short half life and the

time horizon is long. Thus, the estimators are very inaccurate as a point estimator

of the ratio of long run variances under Model 2. Using uncentered moments helps

estimators have lower value at long time horizon. However, the di¤erence between the

ratio with centered moments and that with uncentered moments is not so big as to

change our main conclusion in case of Vk and BTk: In case of the ratio of uncentered

moments for QSk; some signi�cant decrease in the mean of the simulation results is

observed when the traded goods component is as short as one year. The mean of the

ratio is about 60% for one year of half life and RS = 8, which is still not close to

zero but very di¤erent from 100%. However, we take this fact with caution because

the ratio for QSk in Model 1 also tends to become smaller than the true ratio of long
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run variances as the time horizon increases. In other words, the ratio of uncentered

moments for QSk has a bigger downward bias than the other two kernel estimators.

3.3.3 Power of tests based on the ratio of variances

Although the previous subsection shows that the ratios of kernel estimators con-

sidered in this paper are very poor point estimators of the ratio of long run variances,

they may be useful for a hypothesis testing. This subsection considers the possibility.

Engel (1999) introduces a test based on the variances of k-di¤erences. He shows that

the ratio of the variance of k-di¤erences computed from the data are within two-sided

con�dence intervals constructed by parametric bootstrapping under Model 1 at all

time horizons. He argues that his test result support the hypothesis that the traded

goods and the nontraded goods components are independent random walks. In this

subsection, we will investigate the power of the tests based on the ratio of variances.

The tests in this paper are based on the test performed in Engel (1999), but we make

some adjustments in the testing method. Details on the changes are explained in

Chapter 2.

We will consider the following two tests in this paper.

Test I H0: Model 1
H1: Model 2

Test II H0: Model 2
H1: Model 1

Engel (1999) performs Test I only. On the other hand, we �ip the null and think

about the power in the opposite case, too.

To compute the power of Test 1 at each time horizon, we pick, as the critical value

for 5% size test, the 100th smallest value among the two thousand ratios computed
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from the bootstrap samples under Model 1. We generate another two thousand

bootstrap samples under Model 2 and reject the test when the ratio is smaller than

the 95% critical value. The power of the test is the rejection rate in this exercise. One

limitation of this approach is that the test is performed at each given time horizon,

not over the entire time horizons.

Power of Test I

Our simulation results show that di¤erent from the mean of the ratio in the simu-

lation, the power of the test is almost invariant to the value of the relative volatility of

the traded goods component. Due to the invariance, we report the simulation results

for RS = 8 only. Figure 3.11 shows the power of Test I for each kernel estimator. The

solid line represents Vk, the normal dotted line is for BTk, the bold dotted line is for

QSk: In Test I, the null is that both xt and yt follow a random walk without a drift

while the alternative is that xt follows a stationary AR(1) and yt follows a random

walk without a drift. The half life of xt in the alternative is 1, 2, and 4 years from

the top panel to the bottom.

First of all, the power for each kernel estimator is very low when the half life of

xt in the alternative is 4 years as observed in Engel�s (1999) data set. Even at a time

horizon where the test gives its maximum power, the power is less than 15%. As the

half life decreases, the power of the test increases, especially in the middle range of

time horizon. Depending on the kernel, the test has a maximum power of 45 to 60%

at a certain time horizon.

In case of Vk; the power increases at the short and medium time horizon. However,

as k gets close to the sample size, the distribution under the null and the distribution

under the alternative become similar to each other as shown in Chapter 2. Thus,
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the test based on the ratio of Vk barely has any power at the time horizons near the

sample size. On the other hand, the power of the tests based on BTk or QSk reaches

higher maximum and does not decrease rapidly.

Figure 3.12 presents the power of Test I based on uncentered moments. The

maximum power of the test with Vk is 5 to 15% lower than tests with the other two

kernel estimators. Unlike the case of centered moments, the maximum power for Vk is

5 to 10 % lower than the other two even when the half life is 4 years. The decrease of

power in the test with Vk is much faster than the other two kernel estimator although

the power does not go all the way down to the size of the test.

To sum, in Test I, the power of the test for the half life of xt in the alternative

observed in Engel�s (1999) data set (4 years) is as low as 15% even at the time horizon

where the power reaches the maximum. Among the kernel estimators considered in

this paper, using the Bartlett kernel estimator (BTk)or the Quadratic Spectral kernel

estimator (QSk) gives higher maximum power of the test than the variance of k-

di¤erences (Vk).

Power of Test II

Figure 3.13 presents the power of Test II for each kernel estimator at each time

horizon. In Test II, the null is that xt follows a stationary AR(1) and yt follows a

random walk without a drift and the alternative is that both follow a random walk

without a drift. The power of Test II is 5 to 10% higher than Test I at the maximum.

However, the maximum power is still less than 20% when the half life of xt in the null

is 4 years as observed in Engel�s (1999) data set. The power of Test II with centered

BTk at the largest time horizon in Figure 3.13 is much greater than that with QSk

while the two does not show much di¤erence in Figure 3.11.
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As in Figure 3.14, Test II based on uncentered moments has 10 to 18% higher

maximum power than that for centered moments. As the time horizon approaches

the sample size, the power does not decrease much in case of BTk and QSk while the

power for Vk declines faster than the other two. The gap between the power at the

largest time horizon and the maximum power is within 5 percentage points in case of

BTk and QSk for a given half life.

In sum, unlike the mean of the ratio of variances considered in the previous section,

Test I and Test II considered in this paper are almost invariant to the relative volatility

of the traded goods component. The tests do not have a high power enough to give a

de�nite answer for given sample size and persistence of the traded goods component

observed in the data.

In practice, we do not know a priori the time horizon at which the test gives

the maximum power. Literature on the estimation of long run variances has studied

much about a sample-dependent bandwidth choice rule which gives the smallest mean

squared errors of the estimation in the large sample. However, the e¤orts do not

seem to be successful so far at the small sample available in a usual empirical study.

Moreover, the e¢ cient bandwidth for the estimation of long run variances is not

necessarily e¢ cient for the tests based on the ratio of long run variances. Kiefer

and Vogelsang (2002b) show that valid tests (asymptotically pivotal) for regression

parameters can be constructed with a kernel estimator whose truncation lag is equal

to sample size. Given the fact that we do not have a reliable rule to choose the time

horizon for the test, using the ratio of BTk or QSk at the longest time horizon can be

considered as an alternative method. To follow the approach, it would be desirable

if a test which has a �at power graph at longer time horizons after it reaches its
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maximum power. BTk and QSk are designed to give smaller weight to higher order

sample autocovariances which helps the test based on those kernels has such property.

3.4 Conclusion

Using a Monte Carlo simulation methods, we have investigated the properties of

the ratio of k-period variances as an estimator of the ratio of long run variances of

two variables. Engel (1999) measures the importance of the traded goods component

in the movement of the real exchange rate with the ratio. He �nds that the traded

goods component determines almost all the movement of the real exchange rate at

any time horizon and that there is no statical evidence that the importance of the

traded goods component decreases as the time horizon gets longer.

Our simulation results suggest that the ratio of the variance of k-di¤erences or

other HAC estimators do not provide a reasonable point estimate for the ratio of the

long run variances of the traded goods component and the real exchange rate. Under

realistic parameterization, the large value of the ratio should not be attributed to

high persistence of the traded goods component but to its great relative volatility.

The ratio can be used to construct a hypothesis test. Unlike the estimation prob-

lem, the power of the test does not depend on the relative volatility of the traded

goods component but on its persistence. Under four years of half life which is ob-

served in the data, the maximum power of the test is about 10 to 20%. Thus, the test

does not have a high power. Among the three estimators considered in this paper,

the power of the test based on the variance of k-di¤erences is the lowest.

Engel mainly uses the sum of the variance of k-di¤erences and the squared drift as

the measure of the movement. We show that the sum may have a serious bias when
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the true data generating process of the variable is a random walk without a drift.

Instead, we investigate the properties of the ratio based on uncentered moments which

is adopted in Betts and Kehoe (2006). The estimation is a little biased downward

but not very serious under the parameterization observed in the data. In general, the

mean of the ratio of uncentered moments in the simulation under Model 2 is lower

than that for centered moments. The test based on uncentered moments has 10 to

15 percentage points higher maximum power than its counterpart based on centered

moments.

In conclusion, our simulation results indicate that the ratio of variances considered

in this paper is a very poor point estimator of the ratio of long run variances and

the test based on the ratio has low power under the parameterization observed in the

data. Our �ndings raise a doubt about the conclusion in Engel (1999) based on the

ratio we have studies in this paper.
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(a) The variance of k-di¤erences
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(b) The Bartlett kernel estimators

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33

(c) The QS kernel estimators
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.
ii) The true value of the ratio of LV�s is RS2=(RS2+1) in Model 1.

Figure 3.1: The mean of the ratio of variances under Model 1
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(a) Half life = 1yr
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(b) Half life = 2 yrs
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Notes: i) The value is computed by RS2(1� �k)=[RS2(1� �k) + (1� �)k]:
ii) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.2: The theoretic ratio of k-period variances under Model 2
68



(a) Half life = 1yr
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(b) Half life = 2 yrs
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(c) Half life = 4 yrs
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.3: The ratio of Vk under Model 2
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(a) Half life = 1yr
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(b) Half life = 2 yrs
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.4: The ratio of BTk under Model 2
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(a) Half life = 1yr
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(b) Half life = 2 yrs
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(c) Half life = 4 yrs
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.5: The ratio of QSk under Model 2
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(a) The mean of the MSEk
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(b) The mean of the ratio of the MSEk
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Notes: i) The solid line is AR(1) and the dotted line is for random walk in (a):
ii) The solid line is for Model 2 and the dotted line is for Model 1 in (b).

Figure 3.6: Simulation results for the MSEk
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(a) The variance of k-di¤erences
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(b) The Bartlett kernel estimators
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(c) The QS kernel estimators
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.
ii) The true value of the ratio of LV�s is RS2=(RS2+1) in Model 1.

Figure 3.7: The mean of the ratio of uncentered moments under Model 1
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(a) Half life = 1yr
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.8: The ratio of uncentered moments for Vk under Model 2
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(a) Half life = 1yr
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.9: The ratio of uncentered moments for BTk under Model 2
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(a) Half life = 1yr
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Notes: i) Each line represents the case for RS = 1; 2; 4; 8 from bottom to top.

Figure 3.10: The ratio of uncentered moments for QSk under Model 2
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(a) The half life of xt in the alternative = 1 yr
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(b) The half life of xt in the alternative = 2 yrs
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(c) The half life of xt in the alternative = 4 yrs
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Notes: i) H0 : xt is random walk. ii) stdv(�x)=stdv(�y) = 8:
iii) Solid lines: Vk, Normal dotted lines: BTk; Bold dotted lines: QSk:

Figure 3.11: Power of Test I with the ratio of centered moments
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(a) The half life of xt in the alternative = 1 yr
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(b) The half life of xt in the alternative = 2 yrs
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(c) The half life of xt in the alternative = 4 yrs
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Notes: i) H0 : xt is random walk. ii) stdv(�x)=stdv(�y) = 8:
iii) Solid line: Vk, Normal dotted line: BTk; Bold dotted line: QSk:

Figure 3.12: Power of Test I with the ratio of uncentered moments
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(a) The half life of xt in the null = 1 yr
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(b) The half life of xt in the null = 2 yrs
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(c) The half life of xt in the null = 4 yrs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 3 6 9 12 15 18 21 24 27 30 33

Notes: i) H0 : xt is stationary AR(1). ii) stdv(�x)=stdv(�y) = 8:
iii) Solid lines: Vk, Normal dotted lines: BTk; Bold dotted lines: QSk:

Figure 3.13: Power of Test II with the ratio of centered moments
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(a) The half life of xt in the null = 1 yr
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(b) The half life of xt in the null = 2 yrs
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(c) The half life of xt in the null = 4 yrs
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Notes: i) H0 : xt is stationary AR(1). ii) stdv(�x)=stdv(�y) = 8:
iii) Solid lines: Vk, Normal dotted lines: BTk; Bold dotted lines: QSk:

Figure 3.14: Power of Test II with the ratio of uncentered moments
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Parameters Canada France Germany Italy Japanb�� .00259 .00258 .00215 .00251 .00360b�� .00382 .01443 .00259 .08745 .00904
(.00237) (.01360) (.00420) (.05243) (.01690)b�� .98611 .99185 .99408 .98803 .99771
(.00878) (.00712) (.00586) (.00710) (.00316)

half life (yrs) <4.13> <7.06> <9.73> <4.80> <25.19>b�" .01045 .02360 .02460 .02212 .02593
stdv(�x) .01049 .02365 .02464 .02219 .02594

stdv(�x)=stdv(�y) 4.05 9.17 11.46 8.84 7.21
Notes: i) Items with * have the standard error in the parenthesis below.

Table 3.1: Estimation of Model 2 from 1962:01-1995:12 data
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CHAPTER 4

HIGHER POWER TESTS FOR THE FAILURE OF LONG
RUN PURCHASING POWER PARITY

4.1 Introduction

The long run version of Purchasing Power Parity(PPP) can be tested in a unit

root test context. The standard augmented Dickey-Fuller (ADF) test, though, rarely

rejects the null of unit root for industrialized countries with the US dollar as the

numeraire currency, showing no evidence for the long run PPP. In a globalized world

like today, it is hard to imagine that a large price discrepancy for a tradable good

between two industrialized economies can last for a long time without arbitrage. Due

to the strong plausibility of the long run PPP, literature in this context has attributed

the failure of the rejection of the unit root test to the low power of the ADF test34.

Frankel (1986), Lothian and Taylor (1996) and others try to solve the low power

problem of the unit root test by using longer horizon data and succeed in �nding more

favorable results for the long run PPP. On the other hand, another way to increase

the power is to pool bilateral exchange rates across countries by applying panel unit

root tests. Abuaf and Jorion (1990), Higgins and Zakrajsek (1999) and others provide

34For instance, according to table II in Elliott, Rothenberg, Stock (1996), the asymptotic power
of a simple AR(1) DF test with 5% size is only 12% with 3.4 years of half life (AR(1) coe¢ cient is
.95) and 25 years of quarterly data.
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evidence for the long run PPP with a panel unit root test. However, century-long

data includes not only a �exible exchange rate period but also a �xed exchange rate

regime. A simple ADF test may be applicable to the long horizon data only under

the assumption that the behavior of real exchange movement in the two regimes are

similar. The assumption may not be true, as emphasized by Mussa (1986). In the

case of panel unit root tests, rejection of the unit root null does not necessarily imply

that all individual currencies satisfy long run PPP. It is possible that only part of

bilateral real exchange rates in the panel are stationary and reject the null.

Another way to improve the power of the unit root test is to apply a more powerful

univariate test than the standard ADF test. Cheung and Lai (2000) perform both the

ADF test and more powerful DF-GLS test of Elliott, Rothenberg, and Stock (1996)

with 1973.04-1994.12 monthly data for 94 currencies. In only 17 out of the 94 cases,

the ADF test can reject the null at the 10% size. Out of 77 countries left, the DF-GLS

gives additional 13 rejections. Their success is at its most modest since the majority

of currencies still fail to reject the unit root null. Other more powerful univariate

unit root tests include the feasible point optimal test (PT) of Elliott, Rothenberg,

and Stock (1996) and the modi�ed feasible point optimal test (MPT) by Ng and

Perron (2001).

More recently, Elliott and Pesavento (2006) and Amara and Papell (2006) si-

multaneously �nd much stronger evidence for long run PPP by applying a covariate

augmented feasible point optimal test (CPT) developed by Elliott and Jansson (2003).

Elliott and Pesavento (2006) can reject the null 14 out of 15 bilateral real exchange

rates (RERs) with 5% size and Amara and Papell (2006) can reject 12 out of 20 cases.
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In this paper, we look at two di¤erent aspects of the CPT test based on the two

previous empirical works. First, both of the papers use CPI general price indexes to

construct the real exchange rates. If the Balassa-Samuelson theory is important to

explain the long run movement of the real exchange rates, it is possible that long run

PPP holds for traded goods price RER but not for CPI based RER. We compare unit

root test results for CPI based RERs with those for traded goods price RERs. As a

proxy for traded goods prices, PPI and Export/Import prices will be used.

We are not the �rst who use tradable goods price for testing PPP. Using a long

run data set, Kim (1990) and Ito (1997) �nd that WPI/PPI based real exchange

rates are more likely to reject the unit root test than CPI based real exchange rates.

Coakley, Kellard, and Snaith (2005) �nd that panel unit root tests with a �oating

period data (1973-1998) are more likely to reject the null for PPI based RERs than

CPI based RERs. Our paper uses tradable goods prices for PPP test without relying

on long run data or a panel unit root test.

The second aspect is related to the choice of a covariate. The two previous papers

perform the CPT test using 6 or 7 di¤erent covariates. In fact, as explained in Elliott

and Pesavento (2006), the CPT test leaves us quite free in choosing the covariates to

use. The only two conditions for a variable to be a covariate are (i) economic relevance

and (ii) stationarity of covariates. One possible downside of the freedom of the choice

of covariates is that it is hard to compare one set of the CPT results with another since

each test may use di¤erent set of covariates. In some cases, availability of covariates

may di¤er from one country to another. There is also a risk of overrejection by adding

a large set of covariates.

84



Elliott, Jansson, and Pesavento (2005) show that the CPT test developed by

Elliott and Jansson (2003) can be directly applied to testing for nonstationarity of

potential cointegrating relationship with known parameters. Elliott, Jansson, and

Pesavento�s method (2005) e¢ ciently exploits the information which is already used to

construct the real exchange rates without adding an additional data set as covariates.

In this paper, we will see if adopting the CPT test itself with the same set of data can

give more rejections than performing univariate tests by following Elliott, Jansson,

and Pesavento (2005). We use, as a covariate, the in�ation di¤erence of the two

countries.

What we �nd in the paper is that adopting the CPT test produces a huge increase

in rejection rate of the test when we use PPI or Export/Import price indexes. The

CPT test gives approximately 50% rejection rate while that for any powerful univari-

ate test does not exceed 20%. On the other hand, with CPI data, the CPT test is

not applicable in many cases. It is because the covariate in our test does not satisfy

the assumption of the test, the stationarity of covariates. The rejection rate of the

CPT test with CPI data for available countries is about 30%.

The rest of the paper is organized as follows. Section 2 will review unit root tests

adopted in this paper. Section 3 presents empirical results. Section 4 concludes.

4.2 univariate and covariate unit root tests

4.2.1 univariate unit root tests

We perform the same four univariate tests used in Elliott and Pesavento (2006)

and compare with the result from a covariate test in this paper35. The �rst unit

35Haldrup and Jansson (2005) provide an excellent insight of the developement in unit root test
literature during the last decade. Amara and Papell (2006) and Elliott, Pesavento (2006) give a
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root test used in this paper is the augmented Dickey-Fuller (ADF) t-test36. The

test statistic, tb�; is the OLS t-value for the hypothesis that � = 1 in the following

regression

qt = �+ �qt�1 +
kP
j=1


j�qt�j + �t: (4.1)

qt is the logarithm of the real exchange rate. We reject the null if tb� is smaller than
the critical value, -2.89. The critical value comes from Case 2 with the sample size of

100 in Table B.6 of Hamilton (1994). The improper choice of k may result in a severe

size distortion of the test. Following the suggestion by Haldrup and Jansson (2005),

we use a modi�ed form of the Akaike Information Criterion (MAIC) developed by Ng

and Perron (2001) for all the univariate unit root tests in this paper. In MAIC, the

penalty function against increasing k is data dependent unlike other popular methods

such as AIC, Bayesian Information Criterion (BIC), or general-to speci�c rule in Hall

(1994) and Ng and Perron (1995).37

Equation (4.1) has a deterministic term, �. Elliott, Rothenberg, and Stock (1996)

show that the asymptotic power curve of the Dickey-Fuller t-test virtually equals the

bound when power is one-half and is never very far below in the case where there

is no deterministic component. However, in the case where a deterministic mean or

trend is present, power can be improved considerably over the standard Dickey-Fuller

test by modifying the method employed to estimate the parameters characterizing

brief summary of the CPT test we use. Parts of exposition on unit root tests in this section are
borrowed from those papers.

36Said and Dickey (1984) show conditions under which the ADF test has the same asymptotic
distribution as that of the original Dickey-Fuller (1979) unit root test even when k is unknown. Ac-
cording to the condition, k should be increased at a certain rate as the sample size increases, o(T 1=3).
Chang and Park (2002) generalize Said and Dickey�s (1984) condition. For more explanation, see
Haldrup and Jansson (2005).

37The maximum k is chosen by the following rule: kmax = int(12(T=100)1=4) as in Ng and Perron
(2001).
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the deterministic term. Elliott, Rothenberg, and Stock (1996) propose local-to-unity

GLS detrending of the data. GLS detrending is designed to make the test invariant

to unknown parameters in the deterministic term38. For any series fytgTt=1 ; of any

constant �, de�ne

y� = (y1; y2 � �y1; : : : ; yT � �yT�1)
0: (4.2)

The GLS detrended series
n
yGLS;�t

oT
t=1

is given by

yGLS;�t = yt � d0t�
GLS;�; (4.3)

�GLS;� = argminS(�; �)
�

;

S(�; �) � (y� � d�0�)0(y� � d�0�);

where dt = 1 for a deterministic mean and dt = (1; t) for a deterministic trend.

As pointed out in Haldrup and Jansson (2005), the unit root testing problem

does not admit a uniformly most powerful (UMP) test because the functional form

of the optimal test against any speci�c alternative � < 1 depends on �. Instead, a

local-to-unity approach constructs an e¢ cient test against a speci�c point alternative

with the hope that the test will have a good power against a wide range of possible

alternatives. The alternative, �; is a Pitman drift: � = 1+ c=T: Recommended value

for c is -7 for a deterministic mean and -13.5 for a deterministic trend39.

One way to apply local-to-unity GLS detrending approach is the modi�ed Dickey-

Fuller t-test (DF-GLS) proposed by Elliott, Rothenberg, and Stock (1996). It per-

forms a standard ADF test with the GLS detrended series with � = 1+c=T . The test

38Invariance under the GLS transformation may not be justi�ed when the initial observation is not
constant. In this case, there are unknown nuisance parameters in the deterministic term as explained
in p820 of Elliott, Rothenberg, and Stock (1996). For more discussion on the initial condition, see
Muller and Elliott (2003).

39The value for c is chosen to make the power of the test 50% when � = �:
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statistic is the OLS t-value for the hypothesis that � = 1 in the following regression

eqt = �eqt�1 + kP
j=1


j�eqt�j + �t, where eqt � qGLS;�t : (4.4)

Elliott, Rothenberg, and Stock (1996) also suggest a point optimal unit root test

(PT). The PT test is de�ned as

PT = [S(�)� �S(1)]=b!2; (4.5)

where S(�) � min
�
S(�; �) and the long run variance estimate of �t, b!2; is computed

by [b�vk=(1 � kP
i=1

b
i)2] where b�vk = T�1
TP

t=k+1

b�2tk with b
i and b�tk obtained from the

regression in equation (4.4). The PT test is a natural by-product of constructing the

asymptotic power envelope which gives an attainable upper bound on local asymptotic

power for a class of unit root tests. Local-to-unity approach constructs a test which

attains the power envelope at a speci�c point alternative. According to Neyman-

Pearson lemma, the power envelope is related to the likelihood ratio. However, when

the variance-covariance matrix of �t is not an identity matrix, a simple likelihood

ratio statistic like [S(�) � S(1)] does not produce a test of correct size. As Elliott,

Rothenberg, and Stock (1996) show, though, PT in equation (4.5) produces a valid

large-sample test. Of the two tests suggested in their paper, Elliott, Rothenberg, and

Stock (1996) conclude from their simulation results that the DF-GLS test shows a

better overall performance than the PT test.

Ng and Perron (2001) suggest a modi�ed version of the PT test (MPT). The MPT

test statistic is de�ned as

MPT = [c2T�2
TP

t=k+1

eq2t�1 � cT�1eq2T ]=b!2 for a deterministic mean; (4.6)

= [c2T�2
TP

t=k+1

eq2t�1 + (1� c)T�1eq2T ]=b!2 for a deterministic trend.
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Ng and Perron (2001) state that the motivation of designing this modi�ed test is to

provide functionals of sample moments that have the same asymptotic distributions as

well known unit root tests. In fact, the MPT test shares the same limiting distribution

with the PT test by Elliott, Rothenberg, and Stock (1996), but has better size and

power properties. To sum up, the DF-GLS and MPT tests seem to provide the best

overall size and power properties among existing univariate unit root tests.40

4.2.2 covariate unit root tests

To �x the idea about the CPT test used in this paper, let�s consider a system of

equations in the following. Long run PPP implies that the nominal exchange rate and

the price di¤erence between the home and foreign countries are cointegrated with the

coinegrating vector of (1,1). If we assume, additionally, that the price di¤erence is

I(1), the cointegration relation is a part of the following bivariate system with nominal

exchange rate (st) and the price di¤erence (xt � pdt � pft ) when 
 = 1:

st = �s + 
xt + us;t (4.7)

xt = �x + �xt+ ux;t (4.8)

and

A(L)

�
(1� �L)us;t
�ux;t

�
= "t; (4.9)

where A(L) is a �nite polynomial of order k in the lag operator L which introduces

stationary dynamics to the model. If there is no cointegration, then � = 1: If there is

a cointegration relationship, � < 1.

40For univariate tests in this paper, we use the GAUSS code used for Ng and Perron (2001). The
code is provided by Perron at http://people.bu.edu/perron/.
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Under the system of equations (4.7) to (4.9), any univariate test for a unit root in

qt = st � 
xt = st + pft � pdt amounts to examining (4.7) ignoring information in the

remaining equations in the model. The main idea of a covariate unit root test is that

we can improve our test results by exploiting correlations between the error terms in

such a multivariate system. Hansen (1995) �rst developed a covariate unit root test,

which uses the ADF test and adds covariates to the right hand sides of the regression

in order to increase power of the test. Although Hansen�s (1995) test delivers large

power gain, Elliott and Jansson (2003) point out that it does not make optimal use

of all available information in the system. The covariate point optimal test (CPT) is

developed by Elliott and Jansson (2003). The CPT builds on the point optimality

of the PT test and seeks for additional power gain by extending Hansen�s covariate

method. When there is no additional information we can exploit from covariates, the

univariate PT test and the CPT test become equivalent.

The choice of covariates included in the CPT test does not have much limitations.

Any variable which satis�es the two conditions can be a candidate for a covariate. The

two conditions are (i) stationarity of the covariate and (ii) economic relevance of the

variable. Previous empirical works like Elliott and Pesavento (2006) and Amara and

Papell (2006) include various covariates such as money di¤erentials, income di¤eren-

tials, current account de�cit, interest rates di¤erentials. A power gain of a covariate

test over a univariate test can be attributed either to a larger data set or to a more

e¢ cient use of the same data set. To pick up the power gain from the latter, we adopt

the test suggested by Elliott, Jansson, and Pesavento (2005), who show how to apply

Elliott and Pesavento (2003) to a no-cointegration test. They restrict covariates in
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the test to the �rst di¤erence of the right hand side variables in the cointegrating re-

gression.41 The covariate in their method amounts to the in�ation di¤erence between

foreign and home countries or �xt in our system of equation (4.7) to (4.9). With the

variable in the cointegrating regression as a covariate, we can use the same data set

as in the univariate tests in the paper. The downside of our approach is that we may

lose important information outside our bivariate system which can be included in the

CPT test. The rejection rates in their papers are higher than ours. However, their

method may have a risk of overrejection by adding irrelevant covariates.

The CPT test is de�ned as

CPT (1; �) = T (tr[e�(1)�1e�(�)]� (m+ �)); (4.10)

where m is the number of covariates used. The variance covariance matrices of the

residuals (e�(r) where r = 1; �) are constructed by GLS-detrending of the data under
the null and alternative. In the process of GLS-detrending, estimated R2 and long

run variance of the VAR system under the null are used to exploit the information

captured from covariates. In the VAR estimation, the lag length is determined by

BIC following Elliott and Jansson (2003). The R2 value represents the contribution of

the covariate in explaining the movement of the nominal exchange rate. Like the PT

test, the CPT test is a modi�ed version of a likelihood ratio test. The critical value of

the test depends on the model speci�cation about deterministics and the value of R2:

41The only practical di¤erence from the usual CPT test is that Elliott, Jansson, and Pesavento
(2005) drop the �rst observation in estimating R2 and long run variance matrix in Step (a) in p81 of
Elliott and Jansson (2003). For more discussion, see p38 of Elliott, Jansson, and Pesavento (2005).
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The test in this paper amounts to Case 3 in Table 1 of Elliott and Jansson (2003). If

the test statistic is smaller than the critical value, the test rejects the null.42

4.3 Empirical Results

4.3.1 Data

All data are collected from June 2006 International Financial Statistics CD-ROM

with a few exceptions. We use quarterly data. Our baseline tests cover 1973-1998 to

avoid the e¤ect of a possible structural break due to the end of the Bretton Woods

system and the introduction of the Euro. We will compare our baseline test results

with test results for longer period. The data used in this paper spans from 1957

to 2005. Twenty eight countries including US43 are chosen among high-income and

middle-income countries based on data availability. Our data set includes nominal

exchange rate against US dollar, CPI, PPI, Export/Import price index for each coun-

try. We take the logarithm of all data we collect. PPI and Export/Import data are

not available for all the 28 countries for the sample period.

For a nominal exchange rate, national currency per US$ period average (RF.ZF)

is used. For European countries which had adopted the Euro (Austria, Belgium, Fin-

land, France, Germany, Ireland, Italy, Netherlands, Portugal, and Spain from 1999Q1

42For detailed steps of the CPT test, see Elliott and Jansson (2003). Matlab code for the CPT
test is available at http://www.econ.berkeley.edu/~mjansson/. We use the program after converting
it into GAUSS code.
Following table is the critical value used in this paper. It is taken from Case 3 in table 1 of Elliott

and Jansson (2003). For values of R2 between the ones given in the table, interpolation is used as
recommented in Elliott and Jansson (2003).

R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Critical value 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99

43Those countries include Australia, Austria, Belgium, Canada, Chile, Denmark, Finland, Ger-
many, Greece, Ireland, Italy, Japan, Korea, Malaysia, mexico, Netherlands, New Zealand, Norway,
Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, Thailand, UK, and US.
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and Greece from 2001Q1), the series is connected by the Euro exchange rate with the

same code44. For consumer prices (64...ZF) and producer prices (63...ZF), data for

Germany up to 1991Q4 is for West Germany before the uni�cation. PPI/WPI for Ire-

land of year 2005 comes from the Datastream. For export/import prices, export price

index (76...ZF) and import price index (76.X.ZF) are used whenever available (Aus-

tralia, Finland, Germany, Greece, Japan, Korea, New Zealand, Portugal, Sweden,

UK, and US). When export/import price indexes are not available, export unit value

index (74...ZF) and import unit value index (75...ZF) are used (Canada, Denmark,

Ireland, Italy, Netherlands, Norway, South Africa, Spain, and Thailand).

4.3.2 Testing for a unit root on the CPI based real exchange
rates

Table 4.1 shows our test results for the �ve di¤erent unit root tests (ADF, DF-GLS,

PT, MPT, and CPT) on 1973-1998 quarterly data for 27 bilateral real exchange rates

when U.S. is treated as a base country. For all unit root test results in this paper, the

test is rejected if the test statistic is smaller than the critical value. The critical value

for a univariate unit root test is at the bottom of the table. As mentioned before,

the critical value of the CPT test depends on both the model speci�cation and the

R2 between the variable and the covariates. Like other previous empirical results, the

ADF test fails to reject the null for every bilateral real exchange rate. Even in case

of more powerful univariate tests, the results are, at most, modest. PT and MPT

reject the null for 4 bilateral RERs (France, Germany, Italy, and New Zealand) while

DF-GLS rejects one more bilateral RER (Mexico). It is consistent with Cheung and

44To connect the individual currency exchange rate data with the Euro exchange rate data, we need
the exchange rate of the Euro of 1998Q4. We use the average of daily rates of the ECU which can
be obtained from the following FRB website: http://www.federalreserve.gov/releases/H10/hist/.
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Lai (2000) who adopt DF-GLS test and succeed in getting more rejections but still

cannot get rejections for majority cases.

At �rst look, results of the CPT test in table 1 seems to have much more re-

jections than univariate test results. We have �ve more rejections (Greece, Ireland,

Portugal, South Africa, and Thailand) in addition to 5 rejections from univariate

tests. However, one big assumption in a covariate unit root test is that covariates

used in the test are stationary. Thus, we should not give much credit to the results

if there is evidence against the stationarity of covariates. The covariate we use in the

test is the di¤erence of in�ation rates of the two countries. To check the stationarity

of our covariate, we apply Park�s (1990) G(p; q) test which exploits the spurious re-

gression result that time polynomials tend to mimic a stochastic trend. The G(p; q)

test takes stationarity as the null hypothesis with the alternative hypothesis of unit

root nonstationarity. Its asymptotic distribution is chi-squared with q � p degrees of

freedom. p denotes the order of the time trend maintained under the null hypothesis,

whereas q denotes the number of super�uous time polynomial terms added. In our

test, p = 0; which indicates that the variable is stationary without any time trend

under the null hypothesis. We use q = 1: QS kernel is used in estimating the long-

run variance of the estimated residual in the regression. Following Kahn and Ogaki

(1992), no prewhitening method is applied. Automatic bandwidth is used but
p
T is

used as a bandwidth if the computed automatic bandwidth is greater than
p
T : The

last column in Table 4.2 provides the the G-test results. Since the G-test statistic

follows x2(1) under the null of the stationarity, we reject the null if the test statistic

is greater than the critical value, 3.84.
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It turns out that the in�ation di¤erences for 12 countries reject the null of sta-

tionarity. After eliminating those 12 countries, the covariate test now rejects the null

of unit root for only 5 countries (Greece, Mexico, New Zealand, South Africa, and

Thailand) out of 15 countries. The rejection rate is still "modest" in the sense that

the majority of the bilateral RERs considered fail to reject the null. None of the �ve

are the industrialized Western European countries which have been the main interest

of the PPP literature. In that sense, the covariate test suggested by Elliott, Jansson,

and Pesavento (2005) does not help solving the low power problem of a univariate

unit root test much when CPI general price index is used. It is because the CPI for

many countries seem to be more highly integrated than I(1). Thus in those cases, the

basic assumption of the covariate unit root test of Elliott, Jansson, and Pesavento

(2005) is not satis�ed.

This problem has been noticed in the previous works. Amara and Papell (2006)

have to use the growth rate of the in�ation rate instead of the in�ation rate itself

as a covariate to avoid the possibility of nonstationarity of the covariate they use.

In case of Elliott and Pesavento (2006), only US in�ation is used as a covariate.

They �nd some evidence in favor of stationarity of US in�ation rate for their sample

period. In that case, though, we lose the �avor of the covariate unit root test as a test

for nocointegration when the cointegrating vector is known as considered in Elliott,

Jansson, and Pesavento (2005). In this paper, we will check whether we can apply the

cointegration test idea in Elliott, Jansson, and Pesavento (2005) for di¤erent price

indexes.
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4.3.3 Testing for a unit root on the traded goods price based
real exchange rates

The Balassa-Samuelson theory implies that the real exchange rate based on general

price indexes may have a unit root even when the law of one price holds for the trade

goods because the nontraded goods component in the real exchange rate may contain

a unit root. Thus, according to the Balassa Samuelson theory, it is more desirable to

use the traded goods prices rather than the general price index of CPI in the test of

the law of one price.

In this subsection, we test for a unit root in the traded goods price based real

exchange rates and see if we can �nd stronger evidence for the law of one price. One

practically important issue to deal with the traded goods prices is which price series

we should use as the traded goods prices. Betts and Kehoe (2006) show that the

choice of price series used for traded goods price may change the empirical results

on the real exchange movements. In this paper, we will consider three di¤erent price

data as the traded goods prices. First data set in this paper is taken from Engel

(1999). Engel uses a weighted average of some subindexes of CPI as traded goods

price. Engel uses monthly OECD data from January 1962 to December 1995 for

Canada, France, Germany, Italy, Japan, and the United States.

CPI is a¤ected by the change in the cost of distribution and retail services which

are not tradable. Thus, it is possible that a good of our interest is a tradable but has

a di¤erent consumer price in each country. For this reason, prices measured at the

production site like PPI may be more proper to test for the law of one price since

those prices are not directly a¤ected by the distribution cost or retail services. Our

second data set in this subsection is PPI/WPI.
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On the other hand, Burstein, Eichenbaum, and Rebelo (2006) show that ex-

port/import prices measured at the dock can be a good candidate for the traded

goods prices in their empirical analysis for short and medium run movements of the

real exchange rates. Our third data set for the traded goods prices is export/import

prices. We use the geometric average of the export price and the import price as

the traded goods price following Burstein, Eichenbaum, and Rebelo (2006). For the

second and third data set, our data source is the same quarterly IFS CD-ROM data

that we use in the previous subsection. One big shortcoming of the departure from

using CPI general price indexes is limited data availability. While the CPI general

price indexes are readily accessible for most countries for reasonably long period,

the subindexes of CPI, PPI or Export/Import price indexes for many countries are

di¢ cult to collect or the time series available is too short for statistical analysis. Ac-

cordingly, comparing with the tests with CPI general price indexes, our data set is

small. In this paper, we do not try to �nd a new data source but use readily available

data set only.

Table 4.2 is our results from Engel�s CPI data set. For comparison, we �rst do

the unit root tests using the general price index of CPI as in part (a) of Table 4.2.

There is no rejection from any univariate test. The G-test rejects the stationarity of

the in�ation di¤erence for France and Japan. For the other three countries (Canada,

Germany, and Italy), the CPT test does not reject the null in the CPT test. With

the traded goods prices, more powerful univariate tests (DF-GLS, PT, and MPT)

reject the null for Canada but not for other countries. The CPT test is applicable for

4 countries except for Japan. The CPT test does not reject for any bilateral RER
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based on CPI traded goods prices. Over all, there is no convincing evidence for the

law of one price for any bilateral RER based on the CPI traded goods price.

Table 4.3 is our test results from our second data set for PPI/WPI. 18 PPI/WPI

series are available among 27 countries we consider in this paper. The ADF test

still does not reject the null in any cases. The PT and MPT tests reject the null

for Finland, South Africa, and Sweden. The DF-GLS test gives one more rejection

(Ireland) in addition to the three countries. It is comparable to the "modest" success

of Cheung and Lai (2000) when they apply the DF-GLS test to 90 bilateral RERs:

more rejections than the ADF test but not the majority. Since the G-test rejects the

stationarity null of the in�ation di¤erence for three countries (Finland, Germany, and

Switzerland), we consider 15 bilateral RERs for the CPT test45. In addition to the

rejections from the univariate tests, the CPT test rejects �ve more cases including

Denmark, Netherlands, New Zealand, Spain, and Thailand. As a result, the CPT

test rejects the null for 8 out of 15 countries. Compared with the result from the CPI

general price indexes in Table 4.1, the rejection rate from the PPI data is higher (a

little more than a half) and includes some developed Western European countries.46

Table 4.4 shows the test results from our third data set for Export/Import prices.

In this case, the ADF test rejects one case, New Zealand. However, the rejection

disappears as we apply more powerful tests to the country. The PT and MPT tests

reject the null for two countries (South Africa and Thailand) out of 18 countries. The

DF-GLS rejects two more countries (Germany and Netherlands) in addition to the

45We still report the CPT test results for the three countries (Finland, Germany, and Switzerland)
for completion, although our analysis of the results and our conclusion are not based on the results.

46The CPT test with the PPI data is applicable to Canada and Japan among the �ve countries
in our �rst data set from Engel (1999) using the CPI traded goods prices. None of the two reject
the null of the law of one price
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rejections in the PT and MPT test. In case of Export/Import prices, the G-test does

not reject the null of stationarity of in�ation di¤erence for any country considered

in this paper. In addition to the 4 rejections from the DF-GLS test, the CPT test

rejects the null for Denmark, Finland, Ireland, Italy, and Sweden. Thus, the CPT

test rejects the null for 9 out of 18 countries. Again, Compared with the result from

the CPI general price indexes in Table 4.1, the rejection rate from the PPI data is

higher.47 R2 for Export/Import price data is 24% on average. It is much higher than

that for CPI data (8%) or that for PPI data (7%).

To sum up, the CPT test using PPI or Export/Import data rejects the null for

about half of the bilateral RERs, which is much higher than the rejection rate of a

univariate test using CPI general price indexes. On the other hand, the CPT test with

CPI based traded goods prices does not give any rejection for the �ve industrialized

countries considered. Our test results are consistent with Betts and Kehoe (2006)

who �nd that choice of price index is important in accounting for the movement of

the RERs.

4.3.4 Testing for a unit root with longer time span data

In general, using a longer time span data is believed to give higher power to a

unit root test. We perform unit root tests for the period of 1973-2005 which includes

the introduction of the Euro. Tables 4.5-4.7 are our test results for CPI, PPI, and

Export/Import data, respectively. In terms of the rejection rate of the CPT test, it

does not make a signi�cant di¤erence to extend the sample period up to year 2005.

The CPT test rejects the null for 3 out of 11 available CPI bilateral RERs, 6 out of 11

47The CPT test with the Export/Import data is applicable to 4 countries among the �ve countries
in our �rst data set. In case of Germany and Italy, the CPT test can reject the null.
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available PPI bilateral RERs, and 8 out of 16 Export/Import prices bilateral RERs

respectively. The rejection rate for the period of 1973-1998 is also about one third, a

half, and a half for each price index.

On the other hand, the results from univariate tests are quite di¤erent. For this

longer period, the rejection rates of univariate tests for CPI and PPI bilateral RERs

are as high as that of the CPT test. The DF-GLS, PT, and MPT tests reject the null

for 9 to 11 out of 27 CPI bilateral RERs. Those tests reject the null for 7 to 10 out

of 18 PPI bilateral RERs.

Therefore, it helps increasing rejection rate of univariate tests for CPI or PPI

bilateral RERs to extend the sample period up to year 2005 while there is not much

di¤erence in the test results of the CPT test. Such increase in rejection rate for

univariate tests does not occur to the tests for Export/Import price bilateral RERs.

The test results are similar to those for our baseline period (1973-1998) whether the

test is a univariate or covariate test.

We also do the CPT test with a longer time span of 1957-1998 which includes the

�xed exchange rate period. Because of data availability, we only have smaller number

of bilateral RERs. Table 4.8 shows our results. Although we can construct 22 CPI

bilateral RERs for the period, the G-test rejects the stationarity of our covariate for 7

countries. Then, the CPI test reject the null only for New Zealand among 15 bilateral

RERs based on the CPI general price indexes. Meanwhile, the DF-GLS and PT test

reject the null for three more countries (Finland, France, and Greece)48 to which the

CPT test is not applicable because of the G-test results. The MPT test rejects for

Australia in addition to the rejections by the PT test. To sum up, it does not help

48The univariate test results for longer time period are not reported in this paer to save space.
The results are available upon request.
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increasing rejections to include �xed exchange rate data (1957-1972) into the sample.

The rejection rate from the CPT test using longer time span CPI data is lower than

that for the shorter period (1973-1998). It is also lower than the rejection rate from

univariate tests for the same period.

We also do the CPT test with PPI data of 1957-1998. As in the test with CPI

data, the CPT test rejects the null for only one country (Thailand) out of 11 countries

to which the CPT test is applicable. The DF-GLS, PT, and MPT tests reject the null

for two countries (Australia and Finland) out of 13 available countries. In case of Ex-

port/Import prices, the CPT test rejects 4 countries (Denmark, Greece, Netherlands,

and Sweden) out of 11 available countries, a little higher rejection rate than CPI or

PPI cases. The DF-GLS, PT, and MPT tests reject the null for 2, 3, and 3 countries

out of 11 countries. Over all, our data sets do not show any convincing evidence that

extending the sample period to earlier years would help increasing rejection rate of a

univariate test or a covariate test.

4.3.5 Testing for a unit root with a vector of covariates

Instead of taking the di¤erence between US in�ation and foreign in�ation in order

to get a covariate for the CPT test, it is possible to use a vector of (US in�ation,

foreign in�ation) as our covariate vector. This approach may allow our covariate

vector to explain better the short run movement of the RERs with a richer dynamics.

However, to perform the CPT test, we should �rst check whether in�ation series

is stationary. G-test using each of the three data sets we consider in the paper rejects

the null of stationarity of in�ation for most of the countries. Especially, the US

in�ation show no evidence of stationarity. Therefore, the CPT test using US in�ation

101



and foreign in�ation as a set of covariates is not applicable since the data does not

satisfy the assumption of the test. Just for the completion, we report the CPT test

results with a set of covariates in Table 4.9. We got more rejections than the test

with the di¤erence of in�ation rates as a covariate in general. However, it may re�ect

a spurious regression between the covariates and the RERs.

4.3.6 Testing for a unit root with Germany as the base coun-
try

We run the unit root tests with Germany as the base country. Papell and Theodor-

idis (2001) show that a unit root test with Germany as the base country gives more

rejections. Univariate tests with CPI data seem to be consistent with Papell and

Theodoridis (2001). Even the ADF test gives 2 rejections. The DF-GLS, PT, and

MPT tests reject the null for 6, 8, and 8 out of 27 countries respectively, which are

greater than the rejections from the tests with US as the base country.

On the other hand, the number of rejections from univariate tests with PPI or

Export/Import data is not very di¤erent whether the base country is US or Germany.

In case of the covariate test, the G-test rejects the stationarity of the covariate for

many countries. As a result, we can apply the CPT test to only small subset of

countries we consider. The CPT test rejects the null for 2 out of 6 countries with CPI

data, 6 out of 9 countries with PPI data, 5 out of 10 countries with Export/Import

data. One interesting fact for this data is that R2 with the covariate is higher than

the data with US as the base country. It is 31% for CPI data, 27% for PPI data, and

44% for Export/Import data.49

49The entire test results with Germany as the base country are not reported in this paper to save
space. Those are avialable upon request.
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4.4 Conclusion

Because of the strong plausibility of long run PPP, literature has been searching

for a more powerful testing method to correct the very low rejection rate of the

standard ADF test for a unit root in the real exchange rate. Using longer run data

or adopting panel method help increasing the power but both have a risk of violating

the assumption of the test. More powerful univariate tests like the DF-GLS test give

more rejections as in Cheung and Lai (2000) but their success was at most modest.

Compared with previous empirical results, the unit root test results presented by

Elliott and Pesavento (2006) and Amara and Papell (2006) are quite impressive. They

simultaneously apply the augmented feasible point optimal test (CPT) developed by

Elliott and Jansson (2003) to the CPI based real exchange rates of industrialized

countries during post Bretton Woods period. They succeed in rejecting the null for

the majority of the real exchange rates considered. The CPT test is known to be

more powerful than univariate tests when the quasi-di¤erence of the real exchange

rate has correlation with covariates.

Two aspects of their tests raise some doubt on their success. First, according

to the econometric theory, a covariate in the CPT test should be (i) stationary and

(ii) economically relevant. Basically any stationary variable can be freely used as a

covariate if an economic theory show the relevance between the covariate and exchange

rate movements. The two previous works pick 6 or 7 stationary covariates based on

various economic theories on the exchange rates. They try one of those covariates for

the CPT test one by one and they treat the test result as rejection if a test with one

of those covariates rejects the null. The test strategy has a risk of overrejection by
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including irrelevant covariates in the test if there does exist a unit root for some real

exchange rate.

Second, the two previous works use CPI general price indexes to construct real

exchange rates. According to the Balassa-Samuelson theory, the real exchange rate

based on CPI general price indexes may have a unit root because of nontradable goods.

Even the CPI subindexes of the tradable goods may include nontradable components

since the cost for distribution and retail services is a big part of the consumer prices.

The long run PPP can be interpreted as a cointegrating regression of a nominal

exchange rate on the di¤erence of domestic and foreign prices with known cointegrat-

ing vector. Elliott, Jansson, and Pesavento (2005) show that one can directly apply

the CPT test developed by Elliott and Jansson (2003) to testing for nonstationarity

of potential cointegrating relationship with known parameters. This test constructs

a covariate as the �rst di¤erence of the right hand side variable in the cointegrating

regression, which is the di¤erence of domestic and foreign in�ation in the context of

the long run PPP. We apply the CPT test suggested by Elliott, Jansson, and Pe-

savento (2005) in this paper. The cointegrating regression is not the only guide to

choose a covariate but it is an important one. By relying on this relationship, we

are free from the overrejection risk. In addition, this approach uses the same data

set that we use in univariate unit root tests while the two previous papers use bigger

data sets by including various covariates. Therefore, we can evaluate the e¤ect of

switching the testing method from univariate tests to covariate tests with the same

data set. We construct the real exchange rates using not only CPI but also PPI and

Export/Import price indexes and compare the test results.
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We consider 27 bilateral RERs with US as a base country for the post Bretton

Woods period of 1973-1998, although the numbers of real exchange rates for PPI

or Export/Import price indexes are smaller due to data availability. Our CPT test

results with PPI or Export/Import price indexes give approximately 50% rejection

rate, which is much higher than univariate tests performed in this paper. Thus, we can

�nd much stronger evidence in favor of the long run PPP than that in the literature,

although it is lower than that found by Elliott and Pesavento (2006) or Amara and

Papell (2006). We have only weaker evidence from the CPT test with CPI based

real exchange rates. In many cases, the CPT test is not applicable because the CPI

in�ation di¤erence between domestic and foreign countries seems to be too persistent

to be stationary. The rejection rate with CPI data for applicable cases is lower than

that with PPI or Export/Import price indexes.

To sum, we �nd stronger evidence in favor of long run PPP from the CPT test than

univariate tests re�ecting the e¢ ciency of the covariate test. The choice of price index

signi�cantly a¤ects our test results, which is consistent with the Balassa-Samuelson

theory.
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -1.05 -0.74 10.05 9.17 6.34 (0.00) <4.00*>
Austria -2.08 -1.40 6.80 5.51 5.28 (0.00) <2.77>
Belgium -1.95 -1.91 3.42 3.40 3.35 (0.01) <0.18>
Canada -0.84 0.09 12.01 10.04 18.37 (0.13) <2.72>
Chile -2.54 -0.16 70.51 47.63 46.37 (0.59) <5.82*>
Denmark -2.01 -1.65 4.92 4.30 10.54 (0.03) <8.89*>
Finland -2.34 -1.63 5.50 4.53 5.40 (0.00) <5.54*>
France -2.36 -2.33* 2.35* 2.34* -0.10* (0.25) <4.76*>
Germany -2.07 -2.03* 3.15* 3.10* 2.90* (0.04) <4.91*>
Greece -1.90 -1.75 4.14 3.77 0.58* (0.06) <1.05>
Ireland -2.19 -1.74 4.93 4.30 1.47* (0.04) <9.32*>
Italy -2.33 -2.33* 2.22* 2.26* 0.78* (0.03) <7.65*>
Japan -1.72 -0.74 14.68 11.27 11.37 (0.03) <2.49>
Korea -1.72 -1.55 4.65 4.50 3.72 (0.00) <4.56*>
Malaysia -1.15 -0.76 10.88 9.93 6.18 (0.02) <1.60>
Mexico -2.46 -2.01* 3.81 3.34 1.23* (0.02) <0.04>
Netherlands -2.17 -1.94 3.54 3.26 3.74 (0.00) <0.46>
New Zealand -2.33 -2.34* 2.31* 2.35* 3.08* (0.17) <3.40>
Norway -2.30 -1.92 3.91 3.44 4.39 (0.01) <0.43>
Portugal -1.73 -1.52 4.49 4.15 1.40* (0.22) <7.88*>
Singapore -1.65 -1.37 7.59 6.86 4.81 (0.50) <0.01>
South Africa -1.75 -1.21 7.38 6.58 2.82* (0.02) <2.50>
Spain -1.98 -1.38 7.09 5.84 6.63 (0.00) <7.71*>
Sweden -1.78 -1.68 4.37 4.26 3.57 (0.04) <1.46>
Switzerland -2.34 -1.22 8.68 6.57 8.58 (0.01) <3.00>
Thailand -1.13 -1.23 7.40 7.43 3.19* (0.00) <0.08>
UK -1.98 -1.47 6.32 5.43 7.65 (0.05) <8.31*>
5% critical value -2.89 -1.98 3.17 3.17 <3.84>
Notes: i) * denotes rejections at 5%.

Table 4.1: Unit root tests with 1973-1998 CPI based RER
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(a) Unit root tests with CPI general price based RER (1962-1995)
Country ADF DF-GLS PT MPT CPT (R2) <G-test>

Canada -1.72 -1.50 3.81 3.73 14.34 (0.17) <0.70>
France -2.24 -1.41 5.49 5.17 5.40 (0.01) <7.65*>
Germany -1.66 -0.55 13.60 12.61 12.66 (0.01) <0.51>
Italy -2.45 -1.32 6.67 6.16 5.90 (0.00) <0.04>
Japan -1.08 0.81 68.63 62.72 55.48 (0.05) <19.56*>

(b) Unit root tests with CPI Traded goods price based RER (1962-1995)
Country ADF DF-GLS PT MPT CPT (R2) <G-test>

Canada -2.34 -2.33* 1.73* 1.74* 5.93 (0.11) <0.02>
France -1.86 -0.97 7.96 7.47 7.35 (0.02) <1.13>
Germany -1.50 -0.34 16.55 15.33 14.70 (0.00) <0.18>
Italy -2.24 -0.91 10.37 9.53 9.22 (0.00) <0.08>
Japan -0.73 1.12 92.68 84.88 58.17 (0.07) <10.68*>
5% critical value -2.89 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.2: Unit root tests with 1973-1998 CPI based RER
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -1.95 -1.53 5.59 4.92 7.37 (0.02) <2.07>
Austria -2.20 -1.79 4.32 3.75 7.42 (0.01) <0.00>
Belgium
Canada -2.02 -1.29 5.18 4.45 4.53 (0.01) <0.00>
Chile
Denmark -1.83 -1.57 5.19 4.66 0.54* (0.40) <0.65>
Finland -2.52 -1.99* 3.57* 3.10* 3.15* (0.05) <5.36*>
France
Germany -1.94 -1.77 4.10 3.83 3.43 (0.05) <4.08*>
Greece
Ireland -1.99 -2.00* 3.27 3.33 0.98* (0.06) <3.06>
Italy
Japan -1.78 -1.36 6.27 5.46 7.16 (0.00) <0.00>
Korea -1.50 -1.22 7.14 6.60 5.09 (0.04) <3.11>
Malaysia
Mexico -1.62 -0.69 21.67 17.41 17.99 (0.04) <3.11>
Netherlands -1.86 -1.84 3.51 3.53 2.67* (0.05) <3.38>
New Zealand -1.81 -1.74 3.44 3.41 2.59* (0.02) <1.44>
Norway
Portugal
Singapore
South Africa -2.21 -2.23* 2.03* 2.06* 1.88* (0.03) <0.82>
Spain -1.98 -1.98 3.16 3.20 -2.77* (0.21) <3.19>
Sweden -2.12 -2.04* 3.02* 2.96* 0.00* 0.18 <0.31>
Switzerland -2.22 -1.70 4.71 3.99 4.71 (0.01) <6.56*>
Thailand -1.81 -1.87 4.38 4.44 2.21* (0.00) <0.90>
UK -1.36 -1.37 5.76 5.79 4.76 (0.00) <0.12>
5% critical value -2.89 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.3: Unit root tests with 1973-1998 PPI based RER
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -2.51 -0.07 37.51 26.54 20.38 (0.04) <0.06>
Austria
Belgium
Canada -2.29 -1.31 8.45 6.56 16.97 (0.58) <0.66>
Chile
Denmark -1.81 -1.55 5.86 5.38 -2.13* (0.32) <0.18>
Finland -1.93 -1.91 3.58 3.61 1.88* (0.32) <0.00>
France
Germany -2.17 -1.98* 3.45 3.33 1.09* (0.16) <3.72>
Greece -1.77 -1.49 6.46 5.85 3.96 (0.00) <0.05>
Ireland -2.55 -1.62 6.26 5.00 1.95* (0.19) <0.41>
Italy -2.00 -1.94 3.63 3.56 2.61* (0.33) <2.25>
Japan -2.53 -1.15 9.29 7.32 7.18 (0.15) <0.07>
Korea -2.68 -0.86 11.41 8.28 6.22 (0.02) <0.15>
Malaysia
Mexico
Netherlands -2.13 -2.05* 3.25 3.19 0.58* (0.38) <0.51>
New Zealand -3.15* -0.32 31.77 22.03 18.41 (0.03) <0.02>
Norway -1.02 -0.35 13.35 11.77 10.51 (0.06) <0.00>
Portugal
Singapore
South Africa -2.25 -2.25* 2.76* 2.80* 1.75* (0.03) <0.78>
Spain -1.95 -0.82 16.14 12.41 9.20 (0.22) <0.13>
Sweden -2.09 -1.83 4.08 3.82 -1.94* (0.34) <0.43>
Switzerland
Thailand -2.72 -2.39* 2.67* 2.44* 6.61* (0.80) <0.13>
UK -1.97 -1.48 6.16 5.32 5.00 (0.21) <2.10>
5% critical value -2.89 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.4: Unit root tests with 1973-1998 Export/Import price index based RER
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -1.89 -1.47 6.49 5.91 5.68 (0.01) <5.15*>
Austria -2.36 -1.65 5.28 4.43 3.54 (0.01) <3.08>
Belgium -2.11 -2.11* 2.79* 2.82* 2.43* (0.02) <0.11>
Canada -2.05 -1.35 7.48 6.31 11.97 (0.04) <3.21>
Chile -2.42 -0.14 76.85 55.39 49.38 (0.58) <6.52*>
Denmark -2.29 -1.93 3.78 3.39 8.28 (0.02) <11.65*>
Finland -2.07 -1.76 4.34 3.96 4.50 (0.00) <7.37*>
France -2.45 -2.45* 2.10* 2.13* 1.45* (0.09) <6.00*>
Germany -2.27 -2.27* 2.50* 2.52* 1.69* (0.07) <5.15*>
Greece -1.79 -2.47* 2.01* 1.84* 0.78* (0.07) <14.38*>
Ireland -2.17 -1.72 4.76 4.25 -0.34* (0.25) <8.57*>
Italy -2.50 -2.48* 1.98* 2.01* 1.71* (0.01) <9.21*>
Japan -2.10 -1.18 10.02 7.91 5.61 (0.01) <4.45*>
Korea -2.12 -1.97 3.18 3.10* 3.07* (0.01) <7.76*>
Malaysia -1.03 -0.28 29.74 18.39 11.02 (0.03) <1.04>
Mexico -2.49 -1.89 3.48 3.12* -0.48* (0.24) <1.16>
Netherlands -2.36 -2.19* 2.80* 2.66* 2.77* (0.00) <1.39>
New Zealand -2.31 -2.30* 2.40* 2.43* 2.33* (0.06) 5.12*>
Norway -2.42 -2.13* 3.12* 2.85* 3.75 (0.01) <1.98>
Portugal -2.24 -1.96 3.20 2.93* 1.81* (0.13) <11.00*>
Singapore -2.26 -2.58* 5.36 5.36 6.28 (0.49) <0.02>
South Africa -1.73 -1.08 8.36 7.40 5.55 (0.00) <0.19>
Spain -2.17 -1.49 6.10 5.14 3.83 (0.00) <10.96*>
Sweden -1.73 -1.43 5.70 5.31 5.14 (0.01) <5.56*>
Switzerland -2.67 -1.38 7.59 5.95 3.94 (0.07) <3.07>
Thailand -0.91 -0.57 16.20 15.45 7.55 (0.00) <0.36>
UK -2.14 -1.82 4.31 3.67 8.34 (0.05) <11.62*>
5% critical value -2.86 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.5: Unit root tests with 1973-2005 CPI RERs
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -2.08 -1.81 3.93 3.51 6.03 (0.01) <6.71*>
Austria -2.39 -2.12* 2.98* 2.77* 5.71 (0.01) <0.54>
Belgium
Canada -2.51 -1.67 4.78 4.15 3.94 (0.05) <4.70*>
Chile
Denmark -2.26 -2.02* 3.42 3.15* 0.43* (0.22) <2.80>
Finland -2.13 -2.01* 3.11* 3.03* 3.55 (0.02) <9.98*>
France
Germany -2.30 -2.17* 2.77* 2.67* 2.26* (0.01) <1.41>
Greece
Ireland -2.15 -2.13* 2.96* 2.96* 1.43* (0.03) <6.21*>
Italy
Japan -2.14 -1.82 3.68 3.33 5.31 (0.01) <1.05>
Korea -1.22 -1.32 6.87 6.81 6.16 (0.05) <7.73*>
Malaysia
Mexico -2.22 -0.94 14.62 11.82 17.80 (0.02) <0.59>
Netherlands -2.27 -2.26* 2.42* 2.44* 1.70* (0.01) <1.36>
New Zealand -1.81 -1.68 4.29 4.11 2.67* (0.04) <3.79>
Norway
Portugal
Singapore
South Africa -1.89 -1.78 3.19 3.14* 2.73* (0.05) <0.88>
Spain -2.16 -2.16* 2.66* 2.70* -0.05* (0.13) <7.25*>
Sweden -2.28 -2.28* 2.37* 2.40* 1.42* (0.12) <3.54>
Switzerland -2.51 -2.05* 3.29 2.95* 3.74 (0.00) <1.53>
Thailand -1.24 -0.99 8.99 8.66 4.59 (0.01) <0.01>
UK -1.98 -1.94 3.32 3.31 3.90 (0.01) <4.87*>
5% critical value -2.89 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.6: Unit root tests with 1973-2005 PPI RERs
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Country ADF DF-GLS PT MPT CPT (R2) <G-test>
Australia -2.26 -0.81 21.14 15.99 19.39 (0.12) <0.11>
Austria
Belgium
Canada -1.54 -1.33 6.59 6.11 7.76 (0.13) <0.27>
Chile
Denmark -2.02 -1.68 4.98 4.56 -2.94* (0.32) <0.08>
Finland -1.92 -2.28* 2.77* 2.69* 3.56* (0.32) <0.45>
France
Germany -2.49 -2.20* 2.80* 2.68* 0.09* (0.15) <3.50>
Greece -1.61 -1.48 5.81 5.56 2.73* (0.00) <1.88>
Ireland -2.94* -1.58 6.17 4.91 2.00* (0.17) <1.72>
Italy -1.07 -0.86 7.95 7.51 5.31 (0.35) <2.91>
Japan -2.33 -1.09 8.90 7.17 7.77 (0.17) <0.66>
Korea -2.49 -0.52 18.52 14.18 8.62 (0.03) <0.47>
Malaysia
Mexico
Netherlands -2.51 -2.33* 2.57* 2.47* -1.13* (0.32) <1.22>
New Zealand -3.42* -0.65 29.93 22.06 17.07 (0.08) <0.73>
Norway -1.98 -1.44 5.66 5.17 7.90 (0.06) <1.15>
Portugal
Singapore
South Africa
Spain -2.07 -0.84 16.84 13.36 10.78 (0.22) <0.63>
Sweden -2.40 -2.01* 3.38* 3.13* -2.40* (0.38) <0.01>
Switzerland
Thailand -2.78 -1.67 3.89 3.42 6.79* (0.78) <0.17>
UK -2.27 -1.61 5.53 4.75 3.48* (0.19) <4.23*>
5% critical value -2.89 -1.98 3.17 3.17
Notes: i) * denotes rejections at 5%.

Table 4.7: Unit root tests with 1973-2005 Export/Import prices RERs
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Country CPI <G-test> PPI <G-test> E/I Price indexes <G-test>
Australia 3.96 <0.03> 4.51 <1.16> 7.56 <1.39>
Austria 10.28 <2.60> 16.71 <0.89>
Belgium 9.09 <0.27>
Canada 20.95 <0.47> 9.61 <2.09> 17.83 <0.91>
Chile
Denmark 8.24 <0.12> -1.77* <0.12>
Finland 2.70* <3.90*> 1.08* <6.43*>
France 0.41* <7.26*>
Germany 8.87 <0.87> 7.16 <0.00>
Greece 2.52* <8.86*>
Ireland 6.73 <1.79> 5.29 <1.05> -0.22* <0.05>
Italy 4.40 <0.16> 5.94 <2.85>
Japan 31.92 <7.90*> 18.03 <0.12>
Korea 16.27 <3.10>
Malaysia 13.35 <2.46>
Mexico 0.08* <5.73*> 8.22 <4.84*>
Netherlands 17.97 <6.78*> 5.30 <0.00> 0.52* <0.03>
New Zealand 3.00* <0.01> 48.60 <2.24> 11.97 <0.13>
Norway 18.64 <1.00> 11.81 <0.22>
Portugal 11.42 <1.55>
Singapore
South Africa 1.83* <7.75*>
Spain 6.80 <2.01> 37.45 <0.59>
Sweden 6.80 <0.84> -0.87* <3.30>
Switzerland 18.79 <1.06>
Thailand 1.77* <0.91>
UK 5.27 <0.21> 8.13 <0.48>
Notes: i) * denotes rejections at 5%.

Table 4.8: CPT test with a time span including �xed exchange rate regime (1957-
1998)
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Country CPI (R2) PPI (R2) E/I Price indexes (R2)
Australia -0.48* (0.13) -0.46* (0.15) 8.55 (0.08)
Austria 5.17 (0.08) -1.24* (0.42)
Belgium 2.06* (0.00)
Canada 8.81 (0.21) 2.99* (0.03) 9.22 (0.36)
Chile 29.22 (0.68)
Denmark 5.34 (0.11) 1.69* (0.43) 0.81* (0.52)
Finland 5.14 (0.01) 2.14* (0.12) 1.10* (0.33)
France -0.69* (0.38)
Germany 5.24 (0.25) 2.94* (0.28) 4.42* (0.61)
Greece 2.34* (0.06) 2.59* (0.02)
Ireland 0.82* (0.05) 1.29* (0.14) 5.03 (0.39)
Italy 0.86* (0.05) 1.21* (0.39)
Japan 4.22 (0.28) 6.34 (0.08) 2.20* (0.21)
Korea 3.58 (0.06) 3.53* (0.27) 12.08 (0.12)
Malaysia -0.24* (0.10)
Mexico -1.11* (0.13) 14.18 (0.05)
Netherlands 4.09 (0.07) 2.81* (0.36) 0.07* (0.38)
New Zealand 2.39* (0.08) 3.20* (0.06) 19.79 (0.33)
Norway 4.74 (0.01) 2.54* (0.11)
Portugal 3.28* (0.04)
Singapore 3.65* (0.52)
South Africa 1.95* (0.41) 0.35* (0.14) 0.98* (0.17)
Spain 7.05 (0.00) -2.95* (0.25) 4.45 (0.22)
Sweden 2.32* (0.04) -0.19* (0.16) -0.71* (0.36)
Switzerland 8.59 (0.03) 2.96* (0.19)
Thailand 0.22* (0.09) -0.84* (0.07) 4.44* (0.67)
UK 3.35* (0.05) 4.11 (0.01) 4.47 (0.23)
Notes: i) * denotes rejections at 5%.

Table 4.9: Covariate unit root tests with a vector of in�ations as covariates (1973-
1998))
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CHAPTER 5

CONCLUDING REMARKS

The Balassa-Samuelson theory in the long run says that the deviation from the

law of one price of the traded goods prices is not a dominant factor which accounts

for the long run movement of real exchange rates. In statistical terms, the theory

implies that the traded goods component is stationary while the real exchange rate

itself may contain an autoregressive unit root if the nontraded goods component in

the real exchange rate is nonstationary. As such, the ratio of the long run variance for

the traded goods component in the real exchange rate to that for the real exchange

rate should be zero. Engel (1999) computes the ratio of the variances of k-di¤erences.

As far as the long run is concerned, his ratio amounts to an estimate of the ratio of

long run variances between the traded goods component and the real exchange rate.

He �nds that (i) his ratio, or the importance of the traded goods component in the

movement of the real exchange rate, is over 90% at every time horizon, (ii) the ratio

is even increasing at the time horizons near the sample size for some countries, (iii)

and no statistical evidence is found in favor of the decrease in the importance of the

traded goods component in the long run in the test based on his measure.

Chapter 2 is about the second and third parts of Engel�s �ndings. I �rst show

that the increase in the ratio at the time horizons near the sample size found in Engel
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(1999) is attributable to the statistical properties of the variance of k-di¤erences, not

to the increase in the importance. The variance of k-di¤erences tends to go back

to the initial value as the time horizon, k, approaches the sample size whether the

variable is stationary or unit root nonstationary on average. I also show that some

statistical evidence for the decrease in the importance of the traded goods component

in the long run can be found after some appropriate modi�cation of the test used in

Engel (1999).

In Chapter 3, by means of a Monte Carlo simulation, I investigate whether the

relative volatility of the traded goods component or its persistence is the dominant

factor that leads to Engel�s �rst and third �ndings. Contrary to Engel�s (1999)

inference, the mean of the ratio in my Monte Carlo simulation mainly depends on the

relative volatility of the traded goods component under the parameterization observed

in the data. It implies that the high ratio in the long time horizon does not necessarily

mean that the traded goods component is highly persistent. On the other hand, the

power of the test used in Engel (1999) is mainly determined by the persistence of the

traded goods component. For given parameter values, the power is less than 20%.

Using di¤erent kernel estimators or uncentered moments help increasing the power of

the test. However, the power is still very low.

In Chapter 4, I adopt a state-of-the-art covariate unit root test as in Elliott and

Jansson (2003) which has a better power than a univariate test. Unlike previous

papers which use several covariates, I use the inter-country di¤erence of in�ation as

the only covariate in order to see if using a more e¢ cient testing method with the same

data set can produce a di¤erent result. The Balassa-Samuelson theory in the long run

implies that the unit root test is more likely to reject the null for the real exchange
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rate based on production site prices like PPI than for that based on the general

price indexes since the production site price is closer to the traded goods price. The

rejection rate in the covariate test for the real exchange rate based on production site

prices is approximately 50%, which is higher than that from a univariate test result

as well as that from the covariate test for the real exchange rate based on CPI. This

new evidence is supportive of the Balassa-Samuelson in the long run.

My �ndings in this dissertation are consistent with the direction which this line

of literature is heading for. Taylor and Taylor (2004) state that the Harrod-Balassa-

Samuelson model of equilibrium real exchange rates is attracting renewed interest as

a desirable modi�cation [of PPP theory] after languishing for some years in relative

obscurity.
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