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ABSTRACT

In Item Response Theory (IRT), normal ogive functions or logistic functions are

typically used to model the Item Characteristic Curve (ICC). Although the one pa-

rameter (1PL), two parameter (2PL) or three parameter (3PL) logistic models have

been shown to be useful in a variety of situations, there are cases where these mod-

els do not produce a good fit to the data. The Logistic function of a Monotonic

Polynomial (L-MP) is a model proposed in this dissertation aiming to improve the

model-data fit.

The L-MP model replaces the linear exponent of the 1PL or 2PL model with a

monotonic polynomial. It is a general model which includes the 1PL or 2PL model as

a special case. A surrogate-based two-stage approach is used to obtain the estimates

from the L-MP model.

The L-MP model is illustrated using both simulation studies and two real world

examples. Performance of the L-MP model in the simulation studies is evaluated by

examining the Root Integrated Mean Square Error (RIMSE) for the item curves and

the ability estimates, and also the rank correlations between the estimated and true

abilities. The L-MP model is compared with the 2PL model with Marginal Maximum

Likelihood (MML) estimates and Joint Maximum Likelihood (JML) estimates. It is

also compared with two nonparametric approaches, namely TESTGRAF which uses

a kernel smoothing method, and the Nonparametric Bayesian model. Results show

that: (1) The L-MP estimation method is able to recover the true values of person
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and of item parameters reasonably well. (2) If a standard logistic model holds, the L-

MP method can provide very close estimated ICCs to those of the MML method and

much better estimated ICCs than those of the JML method. For ability parameters,

θ, the L-MP method can provide slightly better estimates than MML and much

better estimates than JML in terms of the RIMSEθ. (3) When the true models are

not standard logistic functions, the L-MP model with a higher order polynomial is

preferable to the 2PL model. A comparison between TESTGRAF and L-MP shows

that generally L-MP and TESTGRAF produce very similar estimated ICCs for most

items. TESTGRAF has a slightly smaller RIMSE (in third decimal place) for the

estimated item curves, but L-MP model produces better estimates of abilities in

terms of RIMSEθ and rank correlations. The comparison between L-MP and the

Nonparametric Bayesian model shows that these two methods produce very similar

results. The Nonparametric Bayesian model may yield better estimated ICCs than

the L-MP model, but differences are too small to interpret with any certainty. The

computational time for the Nonparametric Bayesian program is much longer than

for the L-MP program. In summary, our experiments indicate that results from the

L-MP model are comparable to the best of those from other approaches considered.

This demonstrates that the surrogate ability approach, adapted from TESTGRAF

and used in L-MP, yields results that are completely suitable for practical use.
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CHAPTER 1

INTRODUCTION

A half century after its creation, Item Response Theory (IRT) has been widely

applied to many areas in educational testing and psychological measurement, such

as computer adaptive testing, item banking and test equating, etc. The first model

in IRT (the normal ogive model) and associated parameter estimation methods were

developed by Lord (1952, 1953a, 1953b). Birnbaum (1957, 1958a, 1958b) made an-

other important development by replacing the normal ogive functions with logistic

functions which are more mathematically tractable and easier to deal with. The Item

Characteristic Curve (ICC) is a key term in IRT and it appears to be first used by

psychometrician Tucker (1946). However, IRT was not widely applied in practice

until Lord suggested a parameter estimation method and made a computer program

LOGIST available. Development of IRT models was restricted because of the heavy

computational load in estimating the parameters, but this difficulty has now been

solved with the development of modern computer technologies.

The original work on IRT began with tests of dichotomous items which had only

two choices or multiple choice items that were scored as right/wrong. The model was

built on the assumption of unidimensionality. Later, models for other types of data

were developed. For example, the Nominal Response Model by Bock (1972) and the

Multiple Choice Model by Thissen and Steinberg (1984) were intended to be applied
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to categorical data without order information such as multiple choice items. There

were also many other models developed for polytomous response data such as ordered

ratings for essays or responses from Likert-type scales in psychological measurements.

Samejima (1969), for example, introduced an important Graded Response Model

to analyze polytomous items. The Partial Credit Model from Masters (1982) and

the Generalized Partial Credit Model from Muraki (1992) are some variations from

this graded response model. Extended from unidimensional IRT and based on the

concepts on factor analysis, multidimensional IRT has also been an area that attracts

many IRT researchers. This dissertation will be started from the simplest scenario and

will propose a new IRT model under the unidimensional assumption for dichotomous

response items only. Future work might extend this to polytomous response data or

to incorporate multiple dimensions.

In classical test theory, the proportion of correct responses for an item is used as

the item difficulty parameter and the biserial correlation between the item score and

the total test score is used as the item discrimination parameter. However in IRT,

the item difficulty and discrimination parameters and a latent variable at the subject

level, usually named “ability”, are incorporated into the model and are estimated

from data. An ICC is used to plot the probability of a correct response as a function

of the unobserved latent trait, subject ability. Goodness of fit of the model to the

data is usually assessed afterwards. Graphical procedures and statistical tests are

the two common ways to assess the model-data fit. In the graphical procedure, the

model-data fit is assessed only by comparing an estimated ICC with a so-called “em-

pirical” ICC. No statistical tests are conducted. This method is straightforward and

obvious. Moving from this visual technique for exploring item-fit, some researchers

also developed some statistical tests for misfit. For example, Bock (1972) presented

a chi-square index that compares the observed and the expected frequencies for each
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ability interval. However, this chi-square test, like any other statistical test, is sub-

jected to the criticism that it will reject the model whenever the sample size is large

enough. Clearly the statistical results cannot be used solely to determine the ade-

quacy of model-data fit. This dissertation will focus more on the graphical outputs

and provide only some descriptive statistics as indices of model-data fit.

After assessing model-data fit, it is very natural to ask what to do about those

items that do not fit the data well. One way is to keep the items with the poor fit.

But this is obviously not a good choice, since all the inferences and interpretations

should be made with much caution. Another way is to discard such items which, of

course, is not satisfactory either, since item construction is very expensive. A better

solution to these poorly fitted items is to obtain an ICC which has greater flexibility

and is not constrained to the currently used family of parametric functions so that it

can fit the data better. This is the ultimate goal of this dissertation.

The method proposed in this dissertation can be considered a semi-parametric ap-

proach since we still apply a certain functional form to the probability function. In this

new method, the original linear exponent in the two parameter logistic (2PL) function

is replaced with a monotonic polynomial of an uncertain degree. Thus the functional

form for the items is undetermined. In this sense, we call it a semi-parametric ap-

proach. Also, the item parameters are the coefficients of the monotonic polynomial.

They are used only to define the Item Response Function (IRF) and are not intended

to be interpreted in any way. The parameter estimation method for this L-MP model

is a surrogate-based two-stage approach. This method is very similar to Ramsay

(1991)’s procedure in TESTGRAF except that to avoid tied ranks we use the nor-

malized principal component scores instead of test scores as surrogate ability scores.

Newton-Raphson method is then applied to obtain the maximum likelihood estimates

of the item parameters. Based on the estimated ICCs, the Bayes expected a posteriori
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(EAP) estimates of the latent trait abilities are computed. This model can be con-

sidered an extension of the 1PL or 2PL models. Performance of the new model will

be evaluated by comparing with the estimates from other parametric techniques (like

Joint Maximum Likelihood (JML) estimates from SYSTAT and Marginal Maximum

Likelihood (MML) estimates from MULTILOG) and also by comparing with other

nonparametric techniques, for example, TESTGRAF from Ramsay (1991) and the

Nonparametric Bayesian method from Qin (1998).

Chapter 2 will give a review of IRT including the parametric and nonparametric

approaches, the commonly used parameter estimation methods which include JML,

MML and the Bayesian method. The filtered polynomial density estimation method

will be introduced in Chapter 3. In Chapter 4, I will discuss how the monotonic

polynomial described in Chapter 3 is applied to IRT. The computational details of the

parameter estimation for the proposed Logistic function of a Monotonic Polynomial

(L-MP) model are also given in this Chapter. Performance of the new model is

evaluated via simulation studies. Results are presented in Chapter 5. Two real data

sets will be tested using the new model and will be presented in Chapter 6. Discussion

and concluding remarks will be given in Chapter 7.
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CHAPTER 2

REVIEW OF THE ITEM RESPONSE THEORY

The IRT model presented in this dissertation assumes unidimensionality and is

appropriate for dichotomous responses. In this chapter, both parametric and nonpara-

metric approaches for estimating the ICCs are reviewed. In the parametric procedure,

each item response function is assumed to have an explicit form or a family of math-

ematical functions. The uncertainty lies in the estimation of the specific parameters

in the functional form. For the nonparametric procedure, however, no definite math-

ematical forms are imposed for the items. In this chapter, I will start by reviewing

the two most commonly used mathematical models in the parametric procedures, the

normal ogive model and the logistic model. The associated estimation methods for the

item parameters and the examinees’ abilities in the logistic model are reviewed next.

Then we will move to the nonparametric procedures, including a frequentist method

from Ramsay (1991) and a Bayesian method from Qin (1998). A brief summary of

some other semi-parametric and nonparametric procedures will also be presented.
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2.1 The parametric procedures

2.1.1 Mathematical models for ICCs

IRT is a psychometric theory with the basic concepts built on items. For each

item in a test, a smooth function is fitted to the data to model the relationship be-

tween the observed proportions of the correct responses and the examinees’ abilities.

Among many other possible functions, the cumulative normal ogive and the cumula-

tive logistic distribution functions are the two most widely used mathematical models

in IRT.

2.1.1.1 The normal ogive model

Baker (1992) gave a summary of the justification for using the normal ogive model

for the ICC pragmatically and theoretically. From Baker’s summary, Richardson

(1936), Ferguson (1942) and Finney (1944) justified the use of the normal ogive

model on pragmatic grounds. And then Lord & Novick (1968, Chapter 16) provided

a theoretical justification.

The normal ogive model has the form of a cumulative normal distribution function.

For a two parameter normal ogive model, the IRF for item i is defined as

Pi(θ) =

∫ ai(θ−bi)

−∞

1√
2π

e−z2/2 dz, (2.1.1)

where θ is the unobserved latent trait ability, Pi(θ) is the probability that an examinee

with ability θ answers item i correctly. ai and bi are parameters characterizing item i.

Parameter bi is usually called the item difficulty parameter and represents the point

on the ability scale where an examinee has a 50 percent of chance of answering item

i correctly. This parameter is the location parameter in the normal ogive function.
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Parameter ai is usually called the item discrimination parameter and is the scaling

parameter of the normal ogive function. The larger the item discrimination, the

steeper the ICC.

2.1.1.2 The logistic model

Birnbaum (1957, 1958a, 1958b, 1968) proposed a 2PL function for the ICCs

Pi(θ) =
1

1 + e−Dai(θ−bi)
, (2.1.2)

where Pi(θ), bi and ai have the same meanings as in the normal ogive model in

Equation (2.1.1). The constant D is a scaling factor. It has been shown that when

D = 1.7, the absolute values of Pi(θ) from the normal ogive model and the logistic

model differ by less than .01 for all values of θ (Haley, 1952). For simplicity purpose,

when referring to the logistic model in the later section of this dissertation, the scaling

parameter D will be omitted.

Since these two models produce very similar result but the logistic function does

not involve integration as in the normal ogive function, it is computationally simpler.

The logistic model is also more mathematically tractable and thus it has been applied

in practice more often than the normal ogive model.

Contrasting with the 2PL model described in Equation (2.1.2), there are also the

very commonly used one parameter model (1PL) and the three parameter model

(3PL). When the item discrimination parameter ai remains constant over all items,

the model in Equation (2.1.2) becomes a 1PL model. When a so-called guessing

parameter is introduced to the model where a lower asymptote is added to the ICC,

the model becomes a 3PL model. The 1PL model is the same as the model given in

Equation (2.1.2) except that the discrimination parameter does not have a subscript.
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The 3PL model is written as

Pi(θ) = ci + (1− ci)
1

1 + e−ai(θ−bi)
. (2.1.3)

2.1.2 Estimation methods

Item parameters (ai, bi and ci) and the ability θs are the two sets of parameters in

the IRT model that need to be estimated. Depending on the purpose of the test, there

are different ways to handle the parameter estimation. Some test issuers only try to

get information about the item parameters to define the ICCs and don’t care about

the performance of the individual test taker. In this case the estimation of θs seems to

be unimportant. However, in some tests especially in psychological areas, researchers

also want to obtain the information about the specific examinee. The estimates

of θ become important in this case. We will briefly review three commonly used

methods in estimating parameters of an IRT model in this section: Joint Maximum

Likelihood Method (JML) (Birnbaum, 1968), Marginal Maximum Likelihood Method

(MML) (Bock & Lieberman, 1970; Bock & Aitkin, 1981) and the Bayesian Method

(Swaminathan & Gifford, 1982, 1985, 1986; Patz & Junker, 1999). Other estimation

methods like Conditional Maximum Likelihood (CML) will be omitted here because

it requires a sufficient statistic which is not available in the 2PL and the 3PL models.

2.1.2.1 Joint Maximum Likelihood estimation(JML)

Birnbaum (1968) proposed a method to estimate the ability parameters and the

item parameters jointly for the IRT model. The resulting parameters are called the

JML estimates. The log likelihood function used is

log L =
N∑

s=1

n∑
i=1

[
Usi log Psi + (1− Usi) log (1− Psi)

]
, (2.1.4)
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where Psi is the probability for examinee s (s = 1, 2, . . . , N) of getting item i

(i = 1, 2, . . . , n) correct and can be computed as in Equation (2.1.2) or Equation

(2.1.3). Usi is the response of examinee s on item i which takes only 0 for a failure

and 1 for a pass for dichotomous items.

The 1PL, 2PL and 3PL models are unidentified since the scale and the location

of θ are not defined. For example, for a 2PL model defined in Equation (2.1.2), if we

transform θ∗ = cθ + d, a corresponding transformation of a∗ = a
c

and b∗ = cb + d will

result in a∗(θ∗ − b∗) = a(θ − b). If this indeterminacy is not solved, the procedure

might not converge (Baker, 1992). In practice, the problem is usually solved by setting

the location and the scale for θ by constraining the mean to be zero and standard

deviation to be one. This is accomplished via the standardization, e.g.

θ∗ =
θ − θ̂

Sθ̂

. (2.1.5)

An iterative two-stage method is applied to obtain the estimates. At stage one,

starting with some initial values of θ, the item parameters are estimated by maximiz-

ing the conditional log likelihood function. At stage two, the item parameters from

stage one are treated as known, the maximum likelihood estimates of the abilities

are computed. The θs are standardized using Equation (2.1.5) and this ends a cycle.

The cycle is repeated until the difference of the likelihood function values between

two consecutive cycles is smaller than a predefined precision. Once the procedure

converges, the item parameters will be rescaled accordingly. A numerical method

such as the Newton-Raphson procedure is usually applied within each cycle to obtain

the estimates of item parameters. When the number of items and the number of

examinees are large, it could be difficult to handle all items or all ability parameters

simultaneously since the dimension of the Hessian matrix will be large. However, due
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to the local independence assumption, this procedure can be greatly simplified by

estimating item by item and person by person.

This two-stage method to compute the JML estimates is very straightforward.

The computational load is also much smaller comparing to the other methods dis-

cussed later. This JML procedure, however, is subjected to some criticism due to

the following possible problems. First of all, the procedure can not handle examinees

with perfect scores or zero scores since under such circumstances, the estimates of

ability parameters will tend to be infinity or negative infinity. A more serious concern

is the issue of consistency. Neyman & Scott (1948) showed that in the presence of

incidental parameters (in an IRT model, this would be the ability parameters), the

maximum likelihood estimates of the structural parameters (in an IRT models, this

would be the item parameters) need not be consistent. A more obvious explanation

to this problem is that in most situations, when the number of parameter remains

constant, the larger the sample size, the more information. However, in IRT, when

sample size increases, the number of parameters to estimate also increases. This leads

to possible inconsistency of the estimated parameters. In practice, many users have

moved away from JML to MML, although JML was the dominant estimation method

when IRT was first proposed.

In this dissertation, we will propose a general IRT model which includes the 1PL

and 2PL models as special cases. We will apply a similar method in estimating the

item parameters and the ability parameters from the model jointly. But we will

drop the iteration between the cycles and apply a surrogate-based procedure which is

similar to the estimation scheme used in TESTGRAF (Ramsay, 1991; Ramsay, 2000).

Normalized principal component scores will be used as surrogates for the examinee

ability parameters when estimating item parameters. More details of this procedure

will be provided in Chapter 4.
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2.1.2.2 Marginal Maximum Likelihood estimation(MML)

Bock & Lieberman (1970) provided MML estimators of item parameters for the

normal ogive IRF. Bock & Aitkin (1981) improved the procedure by implementing an

EM algorithm. The MML method treats ability parameters as nuisance parameters

and removes them by integrating over the ability distribution. The resulting likelihood

function is thus called a “marginal” likelihood function. A normal distribution for

ability is assumed. The likelihood function to be maximized in Bock & Aitkin (1981)

procedure is

log L = C +
m∑

l=1

rl log Pl, (2.1.6)

where C is a constant and l refers to a response pattern with xl = [xl1 xl2 · · · xln], m

is the total number of response patterns, and the unconditional probability of getting

a response pattern xl is defined as

Pl = P (x = xl) =

∫ ∞

−∞
P (x = xl|θ)g(θ) dθ. (2.1.7)

The integration in the above equation is approximated by Gauss-Hermite quadra-

ture, i.e.

P (x = xl) =

q∑
k

P (x = xl|Xk)A(Xk), (2.1.8)

where Xk is a tabled quadrature point and A(Xk) is the associated weight.

For the EM algorithm, each cycle includes an E step and an M step. In the

E step, the primary goal is to compute the “expected frequency”, rjk, of correct

responses to item j at each quadrature point k and the “expected sample size”, Nk,

at each quadrature point k. For a binary response item, Nk is the expected number
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of examinees with ability level k and rjk is the number of people expected to respond

with a “1” at this ability level. In the E step, the item parameters are treated as

known. The M step is to obtain the improved item parameters by maximizing the

marginal likelihood function using the rjk and Nk from the E step. The EM cycles

are continued until the estimates become stable.

The expected a posteriori (EAP) estimates of abilities can be computed after

the MML estimates of item parameters are obtained. From Bayes’ theorem, the

conditional distribution of θ given x = xi is

g(θ|xi) =
P (x = xi|θ)g(θ)

P (x = xi)
. (2.1.9)

So the conditional expectation of θ given x = xi is

E(θ|xi) =

∫ ∞
−∞ θg(θ)P (x = xi|θ) dθ∫ ∞
−∞ g(θ)P (x = xi|θ) dθ

. (2.1.10)

One advantage MML has over JML is that it can obtain estimates of the item

parameters without estimating the ability parameters and it is theoretically expected

to yield more accurate estimates (Lord, 1986). Another advantage is that this pro-

cedure has no problems with perfect scores or zero scores. The disadvantage of the

method is that the computational load could be heavy. For example, Bock & Lieber-

man (1970)’s procedure could only handle a test with no more than 12 items. With

the improvement of using the EM algorithm (Bock & Aitkin, 1981), however, this

is not a problem anymore. Even with hundreds of items and thousands of subjects,

MML/EM still converges in relatively little time (less than 1 minute).
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2.1.2.3 Bayesian estimation

Both JML and MML are in the frequentist framework. They provide point esti-

mates for the parameters in the model. Standard errors can be obtained based on

asymptotic distributions. Therefore the number of items and the number of exami-

nees need to be large. Bayesian estimation in IRT has been an active research area

recently. In the frequentist framework, the parameters in the model are considered

fixed. However, in the Bayesian framework, the parameters in the model are con-

sidered as random variables with their own distributions. There are basically two

major methods of estimating parameters in the Bayesian framework. One is focus-

ing on obtaining direct estimations at the mode of the joint posterior distribution

(Bayesian Modal Estimation, Swaminathan & Gifford, 1982, 1985, 1986) while the

second method is focused on obtaining the whole posterior distributions of the pa-

rameters using Markov Chain Monte Carlo (MCMC) (Patz & Junker, 1999). Both

methods require the specification of prior distributions for the model parameters.

Bayesian practitioners argue that the specification of a prior is not a problem but

an advantage in IRT since IRT models has been applied in testing area for a long

time and the information of the item parameters and the ability parameters are well

collected.

Despite all the seemingly attractive advantages of the Bayesian method over the

frequentist method, the Bayesian method usually comes with a heavier computational

load and is more time consuming. It is also not easily understood by most test

practitioners. Since it is not easy to produce a ready-to-use program for people

with limited knowledge in Bayesian analysis, the Bayesian estimates are not used

very often in practice. The new model we propose in this dissertation is in the

frequentist framework so that more details on the Bayesian estimation methods will

not be provided here.

13



2.2 The nonparametric procedures

The methods discussed in the previous section are all parametric approaches.

Functional forms like logistic functions are usually assumed for the ICCs. The goal

for the parametric procedure is to estimate the parameters in a functional form. Any

parametric approach, however, has the risks of not accounting for features such as

nonmonotonicity of the ICCs or other systematic departures of shape from what can

be accommodated in existing models (Ramsay, 1991). An additional problem with

parametric approaches involving more than one parameter is that the current for-

mulations and estimation procedures might produce parameter estimates with very

large sampling covariation (Lord, 1980; Thissen & Wainer, 1982). If an item clearly

violates the parametric family, when using any parametric method to fit the item,

we will observe a poor fit. When that occurs, we can either retain the items with

poor fit or discard them. Neither approach is ideal. Developing some nonparametric

models that have greater flexibility on fitting the ICCs would provide an attractive

alternative. In this section, I will give a review of the kernel smoothing nonpara-

metric approach from Ramsay (1991) and a nonparametric Bayesian approach from

Qin (1998) and we will also mention some other semi-parametric or nonparametric

approaches as summarized in Ramsay (1991) and Ramsay & Winsberg (1991).

2.2.1 Kernel Smoothing approach

Ramsay (1991) aimed at providing a “simple to understand, easy to program,

non-iterative, very fast and remarkably efficient” technique for IRT. He used a kernel

smoothing approach to provide a tool that is useful for modest-sized samples such as

college classes.
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The goal of the procedure is to estimate the probability of correctly choosing

option m for item i (Option Characteristic Curve), which is defined as Pim(θ) =

P [Yim = 1|θ], where Yim has a value of 1 when option m is chosen and a value of 0

when option m is not chosen.

The procedure involves four steps:

1. Rank. Estimate the rank (rs) for examinee s (s = 1, 2, . . . , N) by some statistic

Ts. Ts is usually chosen to be the total test score. For a binary response test, this

is the total number of items that are correctly chosen. Ties are broken by randomly

reordering within ties.

2. Enumerate. The ranks (rs) are then replaced by the quantiles (qs) of a standard

normal distribution. These quantiles will be employed as surrogate ability scores in

step 4.

3. Sort. The examinees’ response patterns are then sorted by their estimated ability

rankings.

4. Smooth. The smoothed estimate of Pim(θ) is

P̂im(θ) =

∑N
s=1 K

[
qs−θ

h

]
Y

(s)
im∑N

s=1 K
[

qs−θ
h

] , (2.2.1)

where K(u) is a Kernel function with the property of K(u) ≥ 0, and K(u) takes its

maximum at u = 0 and goes to zero as u moves away from 0. The commonly used

kernel functions are:

Uniform: K(u) = 0.5, |u| ≤ 1, and 0 otherwise;

Epanechnikov or Quadratic: K(u) = 0.75(1− u2), |u| ≤ 1, and 0 otherwise;

Gaussian: exp(−u2/2).

To ensure the differentiability of P̂ , the quadratic or Gaussian kernel is preferred.
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This kernel smoothing method can be thought of as a weighted average with

weight
K[ qs−θ

h ]∑N
s=1 K[ qs−θ

h ]
. Thus only the points that are close to the evaluation points are

effectively weighted. h in Equation (2.2.1) is called the smoothing parameter. It is

used to control the trade-off between bias and sampling variance. When h is small,

the bias will be small since only a few observations very close to θ are effectively

weighted. But the sampling variance will be correspondingly large. When h is large,

the bias will be large since more observations are effectively weighted but the sampling

error will be small. It was suggested that h = N−1/5 be used for a Gaussian kernel,

where N is the total number of examinees.

Once the estimates of the ICCs or the OCCs are obtained, one can proceed to

compute the maximum likelihood estimates of the examinees’ proficiency. The esti-

mates of the examinees’ proficiency can then be fed back into the process as the basis

for ranking and to start the iterative procedure.

One weakness of this procedure is that it uses the test scores to rank the exami-

nees. Test scores can be biased and insufficient for estimating examinees’ proficiency,

especially when the test is short. Ramsay (2000) pointed out that since the goal of

the program is not to estimate the proficiency but merely the proficiency rank order,

this limitation doesn’t affect the estimate of the ICCs seriously (provided that the

test has at least 15 items).

This procedure allows nonmonotonicity of the curve. To comply with the as-

sumption that students with higher ability have higher probability of answering one

question correctly, in the semi-parametric approach that we are proposing in this

dissertation, we will put a constraint on the estimated ICC to make it monotonic

increasing. As to estimation, we will apply a similar procedure to that in Ramsay

(1991) but use the normalized first principal component scores instead of test scores

as starting points to estimate the ICCs. The advantage of use of principal component
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scores over test scores is that fewer ties occur in the ranking procedure. Once the

ICCs are obtained, we will return to obtain the ability estimates.

2.2.2 Nonparametric Bayesian procedure

In the Bayesian framework, the unknown parameters are not considered fixed

but random variables with their own distributions. Typically, these parameters are

considered as coming from a parametric family of distributions. In the nonparametric

Bayesian method, this constraint is released. The nonparametric Bayesian method

thus actually provides greater support of the prior distributions for the parameters.

Qin (1998) applied a Dirichlet process in the middle stage of the hierarchical

model. The Dirichlet process is a means to release the constraint on the prior dis-

tributions of the parameters to be from any specific parametric family. If P has a

Dirichlet process, then it can be denoted as P ∼ Dirichlet(MP0) where M is a real

positive constant and P0 is the best guess of the probability P . The positive constant

can be interpreted as our confidence in the prior P0. In IRT, this P0, for example,

can be specified as a 2PL function with the form as in Equation (2.1.2). A large

value of M implies a strong belief in this prior. With M → ∞, the nonparametric

model tends to be the basic parametric model. A small value of M implies no prior

information about P .
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The general model in Qin (1998), with Dirichlet process prior for the ICCs in the

middle stage of the hierarchical model, is given as

θs|µθ, σ
2
θ

iid∼ N(µθ, σ
2
θ)

Pi|ai, bi, Mi
iid∼ Dir(MiP0i)

zsi|Pi ∼ Pi

Ysi|θs, zsi =

 1 if zsi ≤ θs

0 if zsi > θs

P0i =
1

1 + exp (−ai(θ − bi))

bi|µb, σ
2
b

iid∼ N(µb, σ
2
b )

ai|v, w
iid∼ Hv,w(v, w),

where Hv,w is a distribution specified as a chi or log normal with parameters v and

w.

The Gibbs sampler was used to obtain the posterior distributions of the unknown

parameters. Bush and MacEachern (1996)’s algorithm was used to split the sampling

of the latent variable into two groups which helped to speed up the mixing over the

posterior distribution.

The performance of this nonparametric Bayesian model was compared with a

fully Bayesian parametric method via a simulation study. Each model performed

best when the data were generated from that model. When the true model was a

third model, the nonparametric model outperformed the parametric model in terms

of the mean squared error of the ability estimates and the difference between the

estimated predictive distribution and the true distribution.
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2.2.3 Other quasiparametric or nonparametric procedures

Ramsay (1991), Ramsay & Winsberg (1991) gave a summary of some quasipara-

metric and nonparametric approaches in estimating the IRFs.

These quasiparametric approaches are similar in that the probability functions are

represented as a linear combination of some basis functions φ1(θ), φ2(θ), . . ., φq(θ),

Pi(θ) =

Q∑
q=0

aqiφq(θ). (2.2.2)

Levine (1984, 1985) and Drasgow, Levine, Williams, McLaughlin, and Candell

(1989) developed basis functions by computing the Q orthonormal principal func-

tions. Ramsay & Winsberg (1991) used monotone spline basis functions for their

quasiparametric approach and calculated Maximum Marginal Likelihood estimates

for the item parameters.

Ramsay (1991) and Ramsay & Winsberg (1991) also summarized the work by

Samejima (1977, 1979, 1984) in a series of unpublished reports where she developed

a nonparametric approach to estimate the ICCs. To use that technique, examinees’

responses to an independent test with known ICCs must be available.
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CHAPTER 3

FILTERED POLYNOMIAL DENSITY ESTIMATION

Elphinstone (1985) proposed a unidimensional nonparametric approach to esti-

mate an unknown distribution function F (x) on the basis of a sample data from

the distribution. This method was later called a filtered polynomial density estima-

tion method by Sinnott (1997) when she extended this work to multivariate settings.

Heinzmann (2005) has reviewed and evaluated the work of Elphinstone and Sinnott

and provided a computer program. Since the filtered polynomial method is the foun-

dation of the model that we are proposing, I will give a review of this approach in

this chapter. Section 3.1 is a general introduction to the method, Section 3.2 will give

a review on how to construct a positive polynomial which is essential in this filtered

polynomial density estimation method, Section 3.3 will present a recurrence relation

for evaluating the positive polynomial and Section 3.4 will describe the discrepancy

function used to estimate the parameters and the model selection criteria.

3.1 Introduction

Let F be an unknown, continuous, one-dimensional distribution function, with

derivative f . The goal is to estimate the density function, f , of the unknown distri-

bution based on a given sample data X from this distribution. Elphinstone (1985)

20



used a known target distribution, H, and a monotonic polynomial1, m, to approxi-

mate F . The cumulative distribution function (CDF) is estimated as

F̂ = H(m(x)), (3.1.1)

and the density function is estimated as

f = F̂ ′ = [H(m(x))]′ = h(m(x)) ·m′(x). (3.1.2)

Here H is referred to as a filter, or a target distribution. It could be any known

distribution, but usually is chosen to be a normal, exponential, Gamma or Beta dis-

tribution. Since any monotonic transformation may be approximated to an arbitrary

degree by a monotonic polynomial of sufficiently high order, many continuous non-

defective distributions may be approximated to arbitrary closeness by this method

(Elphinstone, 1985).

Since the target distribution H could be chosen as any known distribution, no

fixed functional form was specified for the unknown distribution F . However, this

technique is not a pure nonparametric technique. The pure nonparametric approach

usually makes no assumptions on the structure of the unknown distribution. But this

filtered polynomial density approximation method does need an assumption of differ-

entiability although it is a very weak assumption. Thus this method was considered

semi-parametric by Elphinstone.

There are usually two classes of nonparametric density estimation techniques. One

focuses on local construction. The estimate of f̂ is based on the pieces of information

provided by observations in a small neighborhood. The Kernel smoothing estimation

method is one that falls into this category. Filtered polynomial density approximation

1In this dissertation, a monotonic polynomial refers to a monotonic increasing polynomial.
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is a method in the other class which focuses on all information simultaneously and

searches for a smooth function that maximizes the likelihood of the observed data.

Elphinstone (1985), Sinnott (1997) and Heinzmann (2005) all provided mathematical

justifications of using this filtered polynomial method in estimating density functions.

3.2 Construction of a positive polynomial

In Equation (3.1.1), m(x) is a monotonic polynomial of the observed data. A

necessary and sufficient condition for a continuous and differentiable polynomial to

be monotonic increasing is that its derivative m′(x), be positive.

Let the monotonic polynomial m(x) be defined as

m2k+1(x) =
2k+1∑
i=0

bix
i, (3.2.1)

and its derivative m′(x) be defined as

m′
k(x) =

2k∑
i=0

aix
i, (3.2.2)

where ai’s and bi’s are all real numbers but must satisfy certain conditions (discussed

below) to ensure that m(x) is a monotonic increasing polynomial and m′(x) is a

positive polynomial.

Elphinstone (1985) showed that the conditions for a polynomial to be positive are

that it must be of even order, its roots are complex and the coefficient multiplying the

highest-order term is positive. These conditions lead to the following representation

m′
k(x|γ, γ11, γ12, . . . , γk1, γk2) =

 γ
∏k

j=1[x− (γj1 + iγj2)][x− (γj1 − iγj2)] k > 0

γ k = 0
,
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(3.2.3)

where γ is a real positive number, γj1 and γj2 are real numbers. γj1 ± iγj2 (j =

1, 2, . . . , k) are the complex roots of the polynomial. The roots will be real when γj2

is zero.

Equation (3.2.3) can also be written as

m′
k(x|γ, γ11, γ12, . . . , γk1, γk2) =

 γ
∏k

j=1(x
2 − 2γj1x + γ2

j1 + γ2
j2) k > 0

γ k = 0
. (3.2.4)

In computation, we will start from k = 0 and search through all k levels to de-

cide what value of k is sufficient to yield acceptable fit. At step j, it is convenient

to start with the values of γ1 and γ2 from step j − 1 (i.e. γj−1,1 and γj−1,2) and

set γj1 = γj2 = 0. This requires that the functional form can be written in a re-

current form such that when γk1 = γk2 = 0, m′
k−1(x|γ, γ11, γ12, . . . , γk−1,1, γk−1,2) =

m′
k(x|γ, γ11, γ12, . . . , γk,1, γk,2).

Equation (3.2.4) doesn’t have this property. Elphinstone (1985) provided a reparametriza-

tion that can be written in a recurrent form.

Let zj = γj1 + iγj2 and zj = γj1 − iγj2. When k > 0, a little algebra applied to

Equation (3.2.3) gives,

m′
k(x|γ, γ11, γ12, . . . , γk,1, γk,2) = γ

∏k
j=1(x− zj)(x− zj)

= γ
∏k

j=1

[
zjzj(

x
zj
− 1)( x

zj
− 1)

]
= γ

∏k
j=1 [zjzj]

∏k
j=1

[
( x

zj
− 1)( x

zj
− 1)

]
= λ

∏k
j=1 [(wjx− 1)(wjx− 1)] ,

where
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λ = γ
∏k

j=1 [zjzj] > 0 (Since γ > 0 and zjzj = γ2
j1 + γ2

j2 > 0),

wj = 1
zj

= αj + iβj and wj = 1
zj

= αj − iβj, with

αj =
γj1

γ2
j1+γ2

j2
and βj =

γj2

γ2
j1+γ2

j2
.

Further expansion shows that a positive polynomial can be written as

m′
k(x|λ, α1, β1, . . . , αk, βk) =

 λ
∏k

j=1(1− 2αjx + (α2
j + βj)x

2) k > 0

λ k = 0
, (3.2.5)

where λ > 0 and βj > 0, j = 1, 2, . . . , k.

Note that with this representation, when αk and βk are zero, m′
k will be a positive

polynomial with degree of 2k − 2 and we have a nested structure.

It is not difficult to obtain the relationship between the coefficients of a posi-

tive polynomial with those of the corresponding monotonic polynomial. A positive

polynomial with order 2k is specified as

m′
k(x|λ, α, β) = ak,0 + ak,1x + ak,2x

2 + . . . + ak,2kx
2k, (3.2.6)

and the corresponding monotonic polynomial is given by

m2k+1(x|ξ, λ,α, β) = ξ +
∫ x

0
m′

k(t|λ, α, β)dt

= ξ + ak,0x +
ak,1

2
x2 +

ak,2

3
x3 + · · ·+ ak,2k

2k+1
x2k+1

= bk,0 + bk,1x + bk,2x
2 + bk,3x

3 + · · ·+ bk,2k+1x
2k+1, (3.2.7)

where α2 = [α1, α2, . . . , αk] and β = [β1, β2, . . . , βk].

Clearly, we have bk,0 = ξ, bk,j =
ak,j−1

j
, j = 1, 2, . . . , 2k + 1.

2In this dissertation, bold Greek letter represents a vector and bold capital letter represents a
matrix
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3.3 Recurrence of the nonnegative polynomial

It could be shown from Equation (3.2.5) that the positive polynomial has a nested

structure and can be represented in a recurrent form. This recurrent functional

relationship can be represented in a matrix form (Browne, 1997).

Let fk(x) = 1− 2αkx + φkx
2, where φk = α2

k + βk, we then have

m′
k(x) = fk(x)×m′

k−1(x).

For example,

m′
0(x) = λ,

m′
1(x) = f1(x)×m′

0(x) = f1(x)× λ,

m′
2(x) = f2(x)×m′

1(x) = f2(x)× f1(x)× λ,

...

m′
k(x) = fk(x)×m′

k−1(x) = fk(x)× · · · × f2(x)× f1(x)× λ.

In the step from k = 0 to k = 1,

m′
1(x) = λf1(x) = λ(1− 2α1x + φ1x

2) = a10 + a11x + a12x
2,

the coefficients are

a10 = λ

a11 = −2α1λ

a12 = φ1λ.

In matrix form, this can be written as
a10

a11

a12

 =


1

−2α1

φ1

λ.

In the step from k = 1 to k = 2,
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m′
2(x) = f2(x)×m′

1(x)

= (1− 2α2x + φ2x
2)(a10 + a11x + a12x

2)

= a20 + a21x + a22x
2 + a23x

3 + a24x
4,

where

a20 = a10

a21 = (−2α2)a10 + a11

a22 = φ2a10 + (−2α2)a11 + a12

a23 = φ2a11 + (−2α2)a12

a24 = φ2a12 .

In matrix form, this can be written as

a20

a21

a22

a23

a24


=



1 0 0

−2α2 1 0

φ2 −2α2 1

0 φ2 −2α2

0 0 φ2




a10

a11

a12

.

In the step from k = 2 to k = 3,

m′
3(x) = f3(x)×m′

2(x)

= (1− 2α3x + φ3x
2)(a20 + a21x + a22x

2 + a23x
3 + a24x

4)

= a30 + a31x + a32x
2 + a33x

3 + a34x
4 + a35x

5 + a36x
6,

where
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a30 = a20

a31 = (−2α3)a20 + a21

a32 = φ3a20 + (−2α3)a21 + a22

a33 = φ3a21 + (−2α3)a22 + a23

a34 = φ3a22 + (−2α3)a23 + a24

a35 = φ3a23 + (−2α3)a24

a36 = φ3a24 .

In matrix form, this can be written as

a30

a31

a32

a33

a34

a35

a36



=



1 0 0 0 0

−2α3 1 0 0 0

φ3 −2α3 1 0 0

0 φ3 −2α3 1 0

0 0 φ3 −2α3 1

0 0 0 φ3 −2α3

0 0 0 0 φ3





a20

a21

a22

a23

a24


,

...

...

In summary, let vector ak represent the coefficients of the positive polynomial

with length of 2k + 1,

ak =



ak0

ak1

...

ak,2k


,

and T k represent a (2k + 1)× (2k − 1) matrix with the typical form as
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T k =



1 0 0 · · · 0 0 0

−2αk 1 0 · · · 0 0 0

φk −2αk 1 · · · 0 0 0

0 φk −2αk · · · 0 0 0

0 0 φk · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · φk −2αk 1

0 0 0 · · · 0 φk −2αk

0 0 0 · · · 0 0 φk



,

when k = 0, we have m′
0(x|λ, α, β) = a00 = λ, and we can easily show that

a0 = [a00] = λ,

a1 = T 1a0 = T 1λ,

a2 = T 2a1 = T 2T 1λ,

a3 = T 3a2 = T 3T 2T 1λ,

...

ak = T kak−1 = T kT k−1 · · ·T 2T 1λ.

This greatly simplifies the computational load since when calculating the derivatives,

only the corresponding T matrix will be involved, for example,

da3

dλ
= T 3T 2T 1,

da4

dα2
= T 4T 3

dT 2

dα2
T 1λ,

and d2a4

dβ2dβ3
= T 4

dT 3

dβ3

T 2

dβ2
T 1λ.

Computing time can be saved by performing the multiplication backwards, i.e.

T 4 {T 3 [T 2 (T 1λ)]}.
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3.4 Density estimation and model selection

It has been shown by Elphinstone (1985) that for any given ε > 0 and any

continuous distribution F , one can find a monotonic polynomial m(x) such that

|F −H(m(x))| < ε. Two ways could be used to search for the monotonic polynomial

m(x). One relies on minimizing the distance between F and H(m(x)). Since F is un-

known, a natural candidate would be the empirical distribution function Fn(x). The

other way works on the density function itself and aims at maximizing the likelihood

of the observed data.

In the distance-minimizing class, there are three commonly used measures of the

distance, the Kolmogorov-Smirnov distance, the Cramer-von Mises distance and the

Anderson-Darling distance. If we use F̂k(x) to represent the estimate of H(m(x)),

the Kolmogorov-Smirnov distance between Fn(x) and F̂k(x) is given by

Kkn = sup
−∞<x<∞

∣∣∣Fn(x)− F̂k(x)
∣∣∣ . (3.4.1)

The class of weighted Cramer-von Mises distances is defined as

Ckn = n

∫ [
Fn(x)− F̂k(x)

]2

w(x) dF̂k(x), (3.4.2)

where w(x) is weight. If w(x) = 1, this distance is called the Cramer-von Mises Dis-

tance. If w(x) = 1

F̂k(x)(1−F̂k(x))
, the distance is called the Anderson-Darling distance.

We shall be primarily concerned with obtaining the maximum likelihood estimates

by minimizing the negative log likelihood function. Let f̂k(x) be the density function

derived from F̂k(x), i.e.

f̂k(x) = h(m2k+1(x))m′
k(x).
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The maximum likelihood estimates will be obtained by minimizing the negative log

likelihood function

F = − log
n∏

j=1

f̂k(xj) = −
n∑

j=1

log f̂k(xj). (3.4.3)

When the values of the observed data x are too large, an overflow problem might

arise during the computation especially when we are working with high degree polyno-

mials. To avoid this problem, Elphinstone (1985) suggested applying a linear transfor-

mation to the observed data, for example, using the standardized data in the analysis.

After the estimates of parameters are obtained, they can be transformed back to the

original scale.

The optimal estimates for the monotonic polynomial will be searched for at each

stage of k. Usually we start from k = 0 where the positive polynomial is a real

positive constant (m′
0(x) = λ) and the corresponding monotonic polynomial is a

linear function. Then the search goes to k = 1 and so on. One can find a monotonic

polynomial, m(x), such that H(m(x)) approximates the unknown distribution F to an

arbitrary degree of accuracy. However, a model might have excellent fit because there

are too many unnecessary parameters in the model that are absorbing some random

errors. A model like this would have low generalizability to other datasets. A trade-

off between the goodness of fit and the model complexity should be considered. Some

criterion should be used to stop the fitting at a certain k value to prevent over-fitting.

Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion

(BIC) are two criteria that can be used in this filtered polynomial density estimation

to decide on the k value for the monotonic polynomial.
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The AIC is a very commonly used criterion in model selection developed by Akaike

(1973). It is obtained by minimizing the Kullback-Leibler distance and is defined as

AIC = −2 log MLk + 2pk, (3.4.4)

where log MLk is the log likelihood function evaluated at the maximum likelihood

estimates for the fitted model at stage k and pk is the number of parameters in the

model. This criterion includes two terms. The first term is twice the negative value

of the maximized log likelihood and can be considered as a measure of lack of fit. It is

directly related to the maximum likelihood estimates. The AIC attempts to maximize

the expected maximum likelihood for the whole data space. Its second term is twice

the number of parameters and can be considered as a measure of model complexity.

Thus models with more parameters will be penalized by the second term. This would

help avoid choosing some overly parameterized model. The model with the minimum

AIC value is chosen as the best model.

Schwarz (1978) suggested a criterion which tends to the logarithm of the Bayes

factor when sample size increases to infinity. Minus twice the Schwarz criterion is

often called the Bayesian Information Criterion (BIC). Thus BIC can be viewed as a

large sample approximation to the logarithm of the Bayes factor but it doesn’t require

the prior density as in calculating the Bayes factor. BIC is defined as

BIC = −2 log MLk + pk log N , (3.4.5)

where N is the number of observations. This criterion also includes two terms. The

first term is also twice the negative value of the natural logarithm of the maximized

likelihood function for model k. This term can be viewed as a measure of the badness

of fit. The second term is a measure of model complexity using the number of free
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parameters in the model and the number of independent observations. A model with

a minimum BIC among a set of competing models should be selected.

Note that the first term of BIC is the same as the first term of AIC but the

second term of BIC depends on the sample size as well as the number of parameters.

As sample size increases, AIC would favor complex model since the second term is

a constant and it will be dominated by the first term where complex model will

have smaller values. BIC has some control over the sample size by having the log N

in second term. Compared with AIC, BIC favors a less complex model with fewer

parameters when the sample size is large.
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CHAPTER 4

LOGISTIC FUNCTION OF A MONOTONIC

POLYNOMIAL (L-MP)

The idea of applying a monotonic polynomial to the IRF comes from the similarity

between an ICC and a cumulative distribution. Although strictly speaking ICCs are

not cumulative distributions, they do have the mathematical properties of cumulative

distributions. The ICCs are all non-decreasing and the dependent variable in the ICC

is a probability ranging from 0 to 1. These similarities initiate the idea of applying

Elphinstone (1985)’s procedure to the IRF and using a monotonic polynomial trans-

formation on the abilities to estimate the IRF. This procedure has the possibility of

increasing the model-data fit, especially when the true ICC doesn’t follow a logistic

curve. Only the binary response data under the unidimensional assumption are con-

sidered in this dissertation. This work could, however, be extended to non-binary

response data or to the three parameter logistic model.

An introduction to the proposed L-MP model will be provided in Section 4.1.

Details of the parameter estimation procedure will be given in Section 4.2. Model

selection criteria will be discussed in Section 4.3.
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4.1 Model specification

Let us revisit the 1PL and 2PL functions,

Pi(θ) = 1
1+e−a(θ−bi)

Pi(θ) = 1
1+e−ai(θ−bi)

.

The exponents are both linear for the above equations. In the L-MP model, this linear

exponent will be replaced by a monotonic polynomial mi(θ), and the new equation

will be

Pi(θ) =
1

1 + e−mi(θ)
, (4.1.1)

where mi(θ) is the monotonic polynomial represented as

mi(θ) = ξi + b1iθ + b2iθ
2 + · · ·+ b2k+1,iθ

2k+1, (4.1.2)

and its corresponding positive polynomial is

m′(θ) = b1i + 2b2iθ + · · ·+ (2k + 1)b2k+1,iθ
2k

= a0i + a1iθ + · · ·+ a2k,iθ
2k. (4.1.3)

The relationship between the coefficients of the monotonic polynomial and the corre-

sponding positive polynomial is

bj,i =
aj−1,i

j
, j = 1, 2, . . . , 2k + 1. (4.1.4)

Clearly, the 1PL and 2PL models are special cases of this more general model.

When k = 0, mi(θ) = ξi + b1iθ will be equivalent to the exponent in the 2PL model.

A further constraint of b1i = 1 results in a 1PL model.
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The construction of the positive polynomial has already been discussed in Section

3.2. After some reparametrization, the positive polynomial is defined as

m′
k(θ|λ, α1, β1, . . . , αk, βk) =

 λ
∏k

j=1

[
1− 2αjθ + (α2

j + βj)θ
2
]

k > 0

λ k = 0
(4.1.5)

with λ > 0. The above equation can be represented using matrix notation (Browne,

1997) as

m′
k(θ|λ, α, β) =

 (T kT k−1 · · ·T 2T 1λ)′θ k > 0

λ k = 0
, (4.1.6)

where θ = [1 θ θ2 · · · θ2k]′ and T k is a (2k + 1) × (2k − 1) matrix with parameters

(αk, βk). For example, T 3 is a 7× 5 matrix with parameters (α3, β3), i.e.

T 3 =



1 0 0 0 0

−2α3 1 0 0 0

φ3 −2α3 1 0 0

0 φ3 −2α3 1 0

0 0 φ3 −2α3 1

0 0 0 φ3 −2α3

0 0 0 0 φ3



,

where φ3 = α2
3 + β3 (β3 > 0).

There are two sets of parameters to be estimated in this model, item parameters

and examinees’ abilities. For each item i, there are (2ki+2) elements in the coefficient

vector b. These coefficients are functions of [ξ, λ,α, β]. Thus for each item i, there

are (2ki +2) real parameters to be estimated, i.e. [ξi, λi, α1i, . . . , αki, β1i, . . . , βki] with

constraints λi > 0 and βji > 0, j = 1, 2, . . . , k. For a test with N examinees, there

will be N ability parameters to estimate, i.e. [θ1, θ2, . . . , θN ]. For a test of n items
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applied on N examinees there will be a total of
∑n

i=1(2ki + 2) + N parameters to be

estimated.

In IRT models, both examinees’ abilities and item parameters are to be estimated.

This leads to an identification problem. For example, in the 2PL model,

P = 1
1+exp−a(θ−b)

,

suppose that a linear transformation is imposed on the ability

θ∗ = cθ + d,

and a corresponding transformation is imposed on item parameters

a∗ = a
c

and b∗ = cb + d,

we will have P ∗(θ) = P (θ) and the ICCs will be the same for two sets of parameters.

In general, if any monotonic transformation is applied on θ,

τ = g(θ),

then a curve p∗(τ) where p∗ = p ◦ g−1 will generate the same curve on the original

metric since p∗(τ) = p[g−1(τ)] = p[g−1(g(θ))] = p(θ).

In the JML estimation method, this problem is usually addressed by fixing the

location and scale of θ by standardizing it to a standard normal distribution after each

estimation cycle. In the MML estimation method, a prior density function of ability

can be thought of as solving this lack of identifiability problem to some extent. In the

L-MP model, we will solve this problem by imposing a standard normal distribution

on the surrogate abilities and using a surrogate-based two-stage estimation procedure

to estimate the ICCs and abilities.

4.2 Parameter estimation

There are two sets of parameters in the model. If we use γ to denote the whole

parameter vector, γ1 to represent the item parameters and γ2 to be the abilities, we
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have

γ =

 γ1

γ2

,

where γ1 = [ξi, λi, α1i, β1i, . . . , αki, βki]
′, i = 1, 2, . . . , n, and γ2 = [θ1, θ2, . . . , θN ]′.

Let Ui = 1 represents a correct response for item i and Ui = 0 for an incorrect

response. The probability of a response, Ui, can be expressed as

Pi(Ui|θ) = Pi(Ui = 1|θ)Pi(Ui = 0|θ)

= PUi
i Q1−Ui

i ,

where Qi = 1− Pi.

Let us = [us1, us2, . . . , usn], s = 1, 2, . . . , N , be the response vector of the examinee

s on n items, and [θ1, θ2, . . . , θN ] be the vector of abilities for the N examinees. The

likelihood function for the N examinees on n items is

L(u1, u2, . . . ,uN |γ1, γ2) =
N∏

s=1

n∏
i=1

PUsi
si Q1−Usi

si , (4.2.1)

where Psi = Pi(θs) is the probability of getting the ith item correct by examinee

s. The estimates of the item parameters and the latent abilities are obtained by

minimizing the negative logarithm likelihood function,

F = −
N∑

s=1

n∑
i=1

[Usi log Psi + (1− Usi) log (1− Psi)] . (4.2.2)

The user will need to specify the value of k which determines the degree of the

monotonic polynomial. The procedure will start from k = 0, and then k = 1, . . .,

until the k value specified by the user. To avoid the lack of identification problem, a

surrogate-based two-stage estimation method similar to Ramsay (1991)’s procedure

will be applied to estimate the item parameters and the abilities. In Ramsay’s pro-

cedure, test scores are used as the ranking basis to obtain the quantiles of a standard
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normal distribution. The most obvious problem with test scores is that ties occur

very frequently especially for a short test with many examinees. In TESTGRAF,

ranks are randomly assigned to the tied test scores. To avoid this problem, the first

principal component scores will be used as the ranking basis. The first principal com-

ponent scores retain the information of rankings in examinees’ abilities yet reduce the

chances of tied ranks. The ranks are then transformed to the quantiles of a standard

normal distribution qi. By fixing the distribution of the surrogate abilities as a stan-

dard normal distribution, the identification problem is avoided. This step also helps

to avoid the possibility of the overflow problem with high degree polynomials. The

parameters in the IRF are then obtained by minimizing the negative log likelihood

function as defined in Equation (4.2.2).

A Newton-Raphson algorithm will be applied at stage one to obtain the estimates

of item parameters. Details of the first and second derivatives of the negative log

likelihood function with respect to each item parameter are given in the next section.

Once the estimates of the item parameters have been obtained, we will move on to

stage two to estimate the abilities.

4.2.1 Estimation of item parameters

A Newton-Raphson method is applied at stage one to obtain the item parameters.

The estimates of γ1 at the (j + 1)th iteration is obtained by

γ̂1
(j+1) = γ̂1

(j) − αHj
−1gj , (4.2.3)

where gj is the gradient of the negative log likelihood function in Equation (4.2.2)

with respect to γ1 evaluated at the jth iteration, e.g. dF
dγ1

, and it will be a [
∑n

i=1(2ki+

2)]× 1 vector. Hj is the Hessian matrix, i.e. d2F
dγ1dγ′1

, and will be a [
∑n

i=1(2ki + 2)]×
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[
∑n

i=1(2ki + 2)] matrix. The details of elements in the Hessian matrix will be given

below. α is the step size and it is usually set to be between 0 and 1. This helps to

adjust the change of the parameters by stepping back when the increment is too large

to ensure that the function value is less than that from the previous step. We will

start from α = 1 and will reduce the α by half until we reach F (γ̂j+1) < F (γ̂j).

The first derivative of the negative log likelihood function with respect to any

parameter π is

dF
dπ

= d
dπ

(− log L) = d
dπ

(
−

∑N
s=1

∑n
i=1 [Usi log Psi + (1− Usi) log (1− Psi)]

)
= −

∑
s

∑
i

(
Usi−Psi

Psi(1−Psi)
dPsi

dπ

)
,

and we have

dPsi

dπ
= d

dπ
( 1

1+e−mi(θs) ) = Psi(1− Psi)
dmi(θs)

dπ
.

Thus we have a general formula

dF

dπ
= −

∑
s

∑
i

(Usi − Psi)
dmi(θs)

dπ
, (4.2.4)

where mi(θs) represents the monotonic polynomial.

Note the summation can be dropped depending on what parameter we are taking

derivative with respect to. If the parameter π is related to a specific item, then
∑

i

can be dropped because all other terms will be zero.

With the local independence assumption, the Hessian matrix of the item param-

eters will be a block diagonal matrix. Thus we can work item by item to avoid a

huge dimensional Hessian matrix. In the following derivation, the derivatives are cal-

culated for a specific item. For simplicity purpose, the subscript for the item will be

dropped.
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The gradient in Equation (4.2.3) for a specific item is

g =



dF
dξ

dF
dλ

dF
dα1

...

dF
dαk

dF
dβ1

...

dF
dβk



.

Suppose a typical element in γ1 is ηl, from the result in Equation (4.2.4), the typical

element in g will be

dF

dηl

= −
∑

s

(Us − Ps)
dm

dηl

, (4.2.5)

where m is a monotonic polynomial function with coefficients (b1, . . . , b2k+1), bj is a

function of aj−1 and thus is also a function of the item parameters [ξ, λ,α, β].

The chain rule is used to obtain dm
dηl

in general:

dm
dηl

=
∑2k

j=0
dm
daj

daj

dηl
.

Applying the chain rule again,

dm
dai

=
∑2k+1

j=1
dm
dbj

dbj

dai

= dm
db1

db1
dai

+ dm
db2

db2
dai

+ · · ·+ dm
db2k+1

db2k+1

dai

= dm
dbi+1

dbi+1

dai

= 1
i+1

θi+1, i = 0, 1, 2, . . . , 2k.

We know that a0, a1, . . ., a2k are all functions of (λ, α, β) and
daj

dηl
, j = 0, 1, 2, . . . , 2k,

are the elements of dak

dηl
, where ak can be computed as
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ak =



a0

a1

a2

...

a2k−1

a2k


= T kT k−1 · · ·T 2T 1λ.

So we have

dm
dηl

=
[

dm
da0

dm
da1

dm
da2

· · · dm
da2k

]


da0

dηl

da1

dηl

da2

dηl

...

da2k

dηl


=

[
θ 1

2
θ2 1

3
θ3 · · · 1

2k+1
θ2k+1

]
dak

dηl
,

and

dak

dλ
= d(T kT k−1···T 2T 1λ)

dλ
= T kT k−1 · · ·T 2T 1.

For dak

dαj
and dak

dβj
, j = 1, 2, . . . , k,

dak

dαj
= d(T kT k−1···T 2T 1λ)

dαj
= T kT k−1 · · · dT j

dαj
· · ·T 2T 1λ,

dak

dβj
= d(T kT k−1···T 2T 1λ)

dβj
= T kT k−1 · · · dT j

dβj
· · ·T 2T 1λ.

So it is easy to obtain

dm

dξ
= 1, (4.2.6)

dm

dλ
=

[
θ

1

2
θ2 1

3
θ3 · · · 1

2k + 1
θ2k+1

]
(T kT k−1 · · ·T 2T 1), (4.2.7)

dm

dαj

=

[
θ

1

2
θ2 1

3
θ3 · · · 1

2k + 1
θ2k+1

]
(T kT k−1 · · ·

dT j

dαj

· · ·T 2T 1λ), (4.2.8)

dm

dβj

=

[
θ

1

2
θ2 1

3
θ3 · · · 1

2k + 1
θ2k+1

]
(T kT k−1 · · ·

dT j

dβj

· · ·T 2T 1λ), (4.2.9)
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for j = 1, 2, . . . , k.

Now the elements in the gradient can be obtained by substituting Equations

(4.2.6), (4.2.7), (4.2.8) and (4.2.9) into Equation (4.2.5).

The Hessian matrix in Equation (4.2.3) for a specific item is

H =



d2F
dξdξ

d2F
dξdλ

d2F
dξdα1

· · · d2F
dξdαk

d2F
dξdβ1

· · · d2F
dξdβk

d2F
dλdξ

d2F
dλdλ

d2F
dλdα1

· · · d2F
dλdαk

d2F
dλdβ1

· · · d2F
dλdβk

d2F
dα1dξ

d2F
dα1dλ

d2F
dα1dα1

· · · d2F
dα1dαk

d2F
dα1dβ1

· · · d2F
dα1dβk

...
...

...
...

...
...

...
...

d2F
dαkdξ

d2F
dαkdλ

d2F
dαkdα1

· · · d2F
dαkdαk

d2F
dαkdβ1

· · · d2F
dαkdβk

d2F
dβ1dξ

d2F
dβ1dλ

d2F
dβ1dα1

· · · d2F
dβ1dαk

d2F
dβ1dβ1

· · · d2F
dβ1dβk

...
...

...
...

...
...

...
...

d2F
dβkdξ

d2F
dβkdλ

d2F
dβkdα1

· · · d2F
dβkdαk

d2F
dβkdβ1

· · · d2F
dβkdβk



.

Let ηi and ηj be two typical elements in the item parameter vector γ1. The

monotonic polynomial m will be a function of ηi and ηj. The typical element in

the Hessian matrix will be d2F
dηidηj

. Using the results in Equation (4.2.4), it could be

computed as

d2F

dηidηj

=
∑

s

[
PQ

dm

dηi

dm

dηj

− (us − Ps)
d2m

dηidηj

]
, (4.2.10)

where dm
dηi

(ηi = ξ, λ, α1, . . . , αk, β1, . . . , βk) can be obtained through Equations

(4.2.6), (4.2.7), (4.2.8) and (4.2.9) and d2m
dηidηj

can be computed as

d2m

dηidηj

=
d

dηi

(
dm

dak

′dak

dηl

) =
dm

da′
k

d2ak

dηidηj

, (4.2.11)
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since the item parameters and the abilities are assumed to be uncorrelated. Note that

there are some special elements in this expression, i.e. d2m
dξdηl

= 0.

The term d2ak

dηidηj
is the second derivatives of ak with respect to the parameters ηi

and ηj. For example, if ηi = α2, ηj = β2,

d2ak

dηidηj
= d

dα2
(dak

dβ2
) = T kT k−1 · · · d2T 2

dα2dβ2
T 1λ,

or if ηi = α3, ηj = β2,

d2ak

dηidηj
= d

dα3
(dak

dβ2
) = T kT k−1 · · · dT 3

dα3

dT 2

dβ2
T 1λ.

Thus the values of the second derivatives of the monotonic polynomial with respect

to the item parameters as in Equation (4.2.11) can be substituted into Equation

(4.2.10) to obtain the elements in the Hessian matrix.

The Hessian matrix will be replaced by the negative information matrix if the

Hessian matrix is not positive definite. The information matrix is the negative of the

expectation of the Hessian matrix. Since the response U is a Bernoulli distribution

with expectation P , the second term in Equation (4.2.10) can be dropped when

computing the information matrix.

The first and second derivatives have been checked by comparing with the nu-

merical derivatives f ′ = f(x+ε)−f(x−ε)
2ε

. When ε = 1.0 × 10−4, it was found that the

difference between the numerical derivative and the analytical derivative was always

less than 10e-3.

A modification of the Newton-Raphson method (Jennrich & Sampson, 1968),

based on stepwise linear regression techniques, will be used to handle the constrained

boundaries of parameters λ and β (λ > 0 and β > 0).

The convergence criterion for the Newton-Raphson procedure in Equation (4.2.3)

in this stage is set to be that the maximum element of the gradient be less than 10e-4.
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4.2.2 Estimation of the abilities

The estimates of item parameters from stage one will be treated as known at

stage two to estimate the abilities. To help prevent obtaining unreasonable ability

estimates, a standard normal prior distribution will be used. If the prior contains

useful information and if the estimates are substantially different from the mean of the

prior distribution, shrinkage will occur and will restrain estimates from unreasonable

values.

Bayes expected a posteriori (EAP) estimates as discussed in Bock & Aitkin (1981)

will be used to estimate abilities. From Bayes theorem, the distribution of θ given

the response patterns and the item parameters is

g(θ|U s, γ1) =
P (U = U s|θ,γ1)g(θ)

P (U = U s)
, (4.2.12)

where

P (U = U s) =
∫ ∞
−∞ P (U = U s|θ)g(θ) dθ.

So the conditional expectation of θ given U s and γ1 is

E(θ|U s, γ1) =

∫ ∞
−∞ θg(θ)P (U = U s|θ, γ1) dθ∫ ∞

−∞ g(θ)P (U = U s|θ) dθ
. (4.2.13)

Since the above equation involves integrals, we use Gauss-Hermite numerical approx-

imations:

E(θ|U s, γ1) =

∑q
k XkL(Xk)A(Xk)∑q

k L(Xk)A(Xk)
, (4.2.14)

where Xk is the evaluation point, A(Xk) is the probability density from a standard

normal distribution at Xk and L(Xk) is the likelihood function value evaluated at Xk.
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When the true ability parameters are from a standard normal distribution, it

was found from the simulation studies that adding a prior to estimate the abilities

gives substantially better estimates than the pure maximum likelihood estimates.

The reason is that the assumption of a normal prior for the abilities involved in the

EAP estimates retains the normalization imposed on the surrogate abilities and thus

prevents unreasonable ability estimates. Another advantage is that since the pure

ML estimates can’t handle zero or perfect scores, a proportion of examinees will need

to be deleted from the analysis. These cases with zero or perfect scores carry useful

information, however, in estimating the item curves. With the EAP estimates, zero

or perfect scores are not a problem and all cases can be included in the analysis.

4.3 Model Selection Criteria

Three types of model selection criteria will be used for this L-MP model. Two

of them are the AIC and BIC as described in Section 3.4. Since the model with

k = j is nested within the model with k = j + 1, a likelihood ratio test can be used

to test if the additional parameters in the general model significantly improve the

goodness of fit. If Mj is used to represent the L-MP model with k = j and Mj+1

is used to represent the model with k = j + 1, when the model goes from k = j

to k = j + 1, two additional parameters are introduced to the model. The statistic

−2(log Mj − log Mj+1) will be a χ2 distribution with 2 degrees of freedom, i.e.

−2(log Mj − log Mj+1) ∼ χ2
2. (4.3.1)

This could be used to test the null hypothesis: H0: αj+1 = 0, βj+1 = 0. A significant

result implies that additional parameters in model Mj+1 help to improve the model-

data fit significantly.
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Because H0 implies that βj+1 is on the boundary of zero, standard regularity

conditions for the derivation of asymptotic results are violated. This implies that the

χ2 test statistic might not have an asymptotic chi-square distribution. It may still

be used, however, to give an indication of equivalent goodness-of-fit for k = j and

k = j + 1. The effectiveness of these three criteria will be evaluated through the

simulation studies in Chapter 5.
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CHAPTER 5

SIMULATIONS: PERFORMANCE OF THE L-MP MODEL

The L-MP model proposed in this dissertation is a general model which includes

the 1PL and 2PL as special cases. The 1PL and 2PL models will capture most of

the data features if the true model is a logistic function. However, if the data are

not from such a logistic function, these methods will not be sufficient in modeling

the data. The L-MP item response function is more flexible because of the extra

parameters in the exponent. Correspondingly it should be able to capture the data

characteristics better. The simulations run in this chapter aim at illustrating that

this general model can produce similar results to other currently used programs like

MULTILOG (MML/EM) (Thissen, Chen & Bock, 2003) and SYSTAT TESTATLOG

(version 10.2) (JML) for the 2PL model, and can produce a better fit to the data when

the true model is not a logistic function. We will also make comparisons of the L-MP

model with the other nonparametric programs, such as TESTGRAF (Ramsay, 1991)

and the irtNP package in R (Duncan & MacEachern, in press) for the Nonparametric

Bayesian model.
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5.1 Simulation design

Several factors could affect the estimates including: the number of items, the num-

ber of examinees, the degree of the polynomial and the dispersion of item difficulty.

These factors will be considered jointly or partially in different simulation studies.

Four models were considered. Three of them differed in the degree, 2k + 1, of the

polynomials as described in Equation (4.1.1) and (4.1.2)

Pi(θ) = 1
1+e−mi(θ) ,

where mi(θ) is the monotonic polynomial represented as

mi(θ) = ξi + b1iθ + b2iθ
2 + · · ·+ b2k+1,iθ

2k+1.

Specifically, the models corresponding to different k values (k = 0, k = 1, k = 2)

are

Pi(θ) = 1
1+e−(ξi+b1iθ) for k = 0,

Pi(θ) = 1

1+e−(ξi+b1iθ+b2iθ2+b3iθ3)
for k = 1,

and Pi(θ) = 1

1+e−(ξi+b1iθ+b2iθ2+b3iθ3+b4iθ4+b5iθ5)
for k = 2.

When k = 0, the L-MP model is equivalent to the 2PL model. The data were

generated using the 2PL function with difficulty and discrimination parameters. To

avoid the situation where a test is composed of items with similar difficulty levels,

for example, a too easy test or a too hard test, such that examinees’ abilities outside

this range are hard to estimate, two ways were used to draw the difficulty parameter.

One way was to fix the difficulty parameters, b, for a set of items as equally spaced

on the range of −2.5 to 2.5. The other way was to make random draws from a trun-

cated normal distribution from −2.5 to 2.5. To generate data sets that are practically

meaningful, items with discrimination parameters that were too small or too large

were avoided. In the current simulation study, the discrimination parameters, a, were
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randomly drawn from a uniform distribution within the range of [1.1, 1.8]. This model

was used to illustrate that the L-MP model with its associated estimation method

could adequately recover parameters from the simpler parametric models. In sum-

mary, when k = 0, the parameters were drawn from

a ∼ unif[1.1, 1.8],

b ∼ equally spaced on [−2.5, 2.5] or from N(0, 1) truncated at ± 2.5.

For the models corresponding to k = 1 or k = 2, it is more difficult to interpret the

coefficients of the monotonic polynomial. After some initial experiments to determine

values for the item parameters that would generate commonly seen IRFs, the item

parameters were chosen to be randomly drawn from uniform distributions within

certain ranges. Specifically, ξ ∼unif[−1, 1], λ ∼unif[0.3, 2.5], α ∼unif[−1, 1] and

β ∼unif[0, 1]. These two models were used to investigate to what extent the true

parameter values could be recovered for this L-MP model. The effectiveness of using

AIC, BIC or LRT as model selection criterion was also investigated.

A fourth model was used to evaluate how the L-MP model performed compared

to other nonparametric procedures. This model should not have a simple logistic

functional form and should be different from the L-MP model with higher order

polynomials. It is created as the CDF of a mixture of two normal distributions

defined as p1N1(m1, s1) + p2N2(m2, s2), where p1 ∼unif[0.3, 0.7], p2 = 1 − p1, m1 ∼

N(−1.5, 0.1), s1 ∼ N(1, 0.1), m2 ∼ N(1.0, 0.1) and s2 ∼ N(0.4, 0.1).

The examinees’ abilities for all four models were generated from a truncated stan-

dard normal distribution, specifically, θ ∼ N(0, 1) truncated at ±3.

To investigate how the model performs with different number of examinees, two

levels of sample size (300 or 2000) were used. Test length is another factor to be

considered. We tend to believe that short tests cannot provide enough information

for the estimation of abilities. The estimation of item curves is based on the estimated
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abilities. When the test is too short, the estimates of abilities will be biased and the

estimated ICCs will also be in doubt. We do not expect this procedure to provide

reliable estimates for the ICCs and the abilities for a very short test.

To illustrate this point of view and to see how the estimation procedure performs

under different test length, a simple illustrative example with a combination of test

length (10 items, 20 items or 100 items) and the number of examinees (300 or 2000)

was conducted with only one dataset in each condition. The precision of the estimated

ICCs and the estimated abilities will be investigated.

To generate the 0/1 response for each examinee on each item, a probability was

computed by the four models considered, using the generated item parameters and

abilities. The probability was then compared with a random number from a uniform

distribution of [0, 1]. If the probability was greater than the random number, a 1 was

assigned and 0 otherwise. The functions that were used to generate data were all

written in R language (version 2.4.1).

Evaluation of the performance of the models is from two perspectives: the close-

ness of the estimated ICC to the true ICC and the precision of the estimated abilities.

The Root Integrated Mean Square Error (RIMSE) (Ramsay & Winsberg, 1991; Ram-

say, 1991) will be used as the measure of the closeness of two ICCs. The RIMSE is

defined as

RIMSE =

[∑q
k=1(P̂ (θk)− P (θk))

2φ(θk)∑q
k=1 φ(θk)

] 1
2

, (5.1.1)

where θk’s (k = 1, 2, . . . , q) are the evaluation points and are equally spaced on the

range of abilities. In this simulation study, 801 evaluation points ranging from −4

to 4 were usually used. But to accommodate the default settings in TESTGRAF, 51

points on [−2.5, 2.5] were used for small samples (N = 300) and 51 points on [−3, 3]
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were used for large samples (N = 2000) when comparing the performance of L-MP

with TESTGRAF. In Equation (5.1.1), φ(θ) is a weight which allows the measure

to be most sensitive to departures for values of θ that are most commonly observed.

This weight φ(θ) is chosen to be the density of a standard normal distribution.

The idea of the RIMSE for the estimated ICCs can also be applied to the estimated

abilities. The θs in the middle of the standard normal distribution received larger

weights since they are more frequently observed. The closeness of the estimated and

the true values is measured by RIMSEθ defined as

RIMSEθ =

[∑N
i=1(θ̂i − θi)

2φ(θi)∑N
i=1 φ(θi)

] 1
2

, (5.1.2)

where N is the number of examinees.

Ramsay (1991, p614) concluded that due to the lack of identifiability, in the con-

text of item analysis, a test cannot yield anything more than rank order information

about examinees. From this point of view, the rank correlations between the ability

estimates θ̂ and θ are also informative. Spearman rank correlations were computed

and were used as alternative indices of how closely the estimated θs were to the true

values.

5.2 Results

This section presents results regarding the performance of the L-MP model. I

have chosen three primary indicators of performance: (1) Is the estimation method

able to recover the true parameters for models with different k values? (2) Are

the L-MP estimates comparable to the estimates from other currently used programs

like MULTILOG (version 7.0.2327.3) yielding MML/EM estimates and TESTATLOG

procedure in SYSTAT (version 11.00.01) yielding JML estimates when the true model
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is a 2PL model? (3) Are the L-MP estimates comparable to the other nonparametric

procedures like TESTGRAF and the Nonparametric Bayesian method when the true

model is a different model? The simulation studies in this chapter are aimed at

answering these questions. Before addressing these central questions, preliminary

experiments were conducted to explore how the test length affects the performance

of the L-MP model and to decide what number of items would be used for the main

simulations.

5.2.1 Effect of test length

The data for this preliminary study were generated from the L-MP model,

Pi(θ) = 1
1+e−mi(θ) ,

where mi(θ) is the monotonic polynomial represented as

mi(θ) = ξi + b1iθ + b2iθ
2 + · · ·+ b2k+1,iθ

2k+1

with three different levels as k = 0, k = 1 and k = 2. We investigated a short test

of 10 items, a modest-sized test with 20 items and a long test with 100 items. The

number of examinees was 300 or 2000. This led to a 3 × 3 × 2 design. Since this

was only a preliminary study to help decide the number of items to use in the main

simulation studies, only one dataset was generated for each condition. The data were

then fitted to the L-MP model with true k level.

The RIMSEs for the item curves are reported in Table 5.1. The first observation

from Table 5.1 is that estimates are more accurate with a larger sample size. The

general trend is that a longer test has smaller RIMSE than a shorter test and a more

complex model has larger RIMSE than a simpler model, e.g. the RIMSE tends to

be larger for k = 2 than for k = 1 etc. There are a few exceptions for the smaller
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n = 10 n = 20 n = 100
k = 0 0.0452 0.0307 0.0352

N = 300 k = 1 0.0722 0.0600 0.0506
k = 2 0.0766 0.0571 0.0538
k = 0 0.0428 0.0257 0.0121

N = 2000 k = 1 0.0480 0.0305 0.0165
k = 2 0.0654 0.0356 0.0214

Table 5.1: Effect of test length: RIMSE for estimated ICCs.
N is the number of examinees, n is the number of items, and k defines the highest
degree of the monotonic polynomial (which is 2k + 1). For example, k = 2 represents
a monotonic polynomial of fifth order. Each cell is based on one dataset.

n = 10 n = 20 n = 100
k = 0 0.4723 0.3438 0.1839

N = 300 k = 1 0.4032 0.2886 0.1608
k = 2 0.3487 0.2977 0.1461
k = 0 0.4385 0.3469 0.1690

N = 2000 k = 1 0.3781 0.2713 0.1340
k = 2 0.3685 0.2568 0.1199

Table 5.2: Effect of test length: RIMSEθ for estimated abilities.
N is the number of examinees, n is the number of items, and k defines the highest
degree of the monotonic polynomial (which is 2k + 1). For example, k = 2 represents
a monotonic polynomial of fifth order. Each cell is based on one dataset.

sample size. For example, when the true model is a 2PL model (k = 0), the test

with 100 items has slightly larger RIMSE than the test with 20 items. But with only

one sample in each condition, the small differences (in third decimal place) should be

disregarded.

The RIMSEθs are reported in Table 5.2 and the rank correlations between the true

abilities and the estimated abilities are reported in Table 5.3. The precision of the

ability estimate θ̂ is consistently improved when the test gets longer. The RIMSEθ
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n = 10 n = 20 n = 100
k = 0 0.8408 0.9268 0.9819

N = 300 k = 1 0.9018 0.9548 0.9887
k = 2 0.9243 0.9467 0.9898
k = 0 0.8722 0.9285 0.9844

N = 2000 k = 1 0.9156 0.9601 0.9905
k = 2 0.9243 0.9633 0.9921

Table 5.3: Effect of test length: rank correlations for abilities ρ(θ̂, θ).
N is the number of examinees, n is the number of items, and k defines the highest
degree of the monotonic polynomial (which is 2k + 1). For example, k = 2 represents
a monotonic polynomial of fifth order. Each cell is based on one dataset.

is much less for a test with 100 items than for a test with smaller number of items.

Similar conclusions are found for rank correlations between the estimated and the

true abilities. The rank correlations are almost perfect for a test with 100 items.

Based on these preliminary results, the test length does play a role in the estima-

tions, particularly when estimating the abilities. We would expect some estimation

problems for a very short test, especially when we try to fit the data to a model

with high degree of monotonic polynomial. Although the model is able to provide

estimates for a test with 10 items, the estimates might not be very stable. The RIM-

SEs for both item curves and abilities are also large in this case. That being said,

a test of 20 items is considered not too long and not too short and thus seems to

be good for our simulation study. If the L-MP model works well for a test with 20

items, it generally can produce better estimates for a test with more items. This does

not imply one could not use the L-MP model with fewer than 20 items. However,

more research needs to be done to evaluate the performance of the model under that

situation.
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5.2.2 Simulation 1

The purpose of this simulation is to examine to what extent the L-MP model and

its associated estimation method can recover the true parameters. The models that

were used to generate the data are

Pi(θ) = 1
1+e−mi(θ) ,

where mi(θ) is the monotonic polynomial represented as

mi(θ) = ξi + b1iθ + b2iθ
2 + · · ·+ b2k+1,iθ

2k+1.

Three different k values (k = 0, k = 1, and k = 2) were used. Theoretically, k

could be set to any value, but in practice, a high value of k leads to a model with

too many parameters in the IRF and limits the generalizability of the estimated ICC.

The upper limit employed, k = 2, represents a monotonic polynomial of fifth order

which should be sufficient for most circumstances. Two sample sizes (N = 300 and

N = 2000) were investigated. This led to a 3 × 2 design. Each cell contained 100

datasets.

When the monotonic polynomial is linear (k = 0), the data will be generated

from the 2PL model. The difficulty parameter was randomly drawn from a standard

normal distribution truncated at ±2.5. The data were fitted using k = 0 and k = 1.

Figure 5.1 shows the ICCs for the first four items in a sample of 300 examinees when

the true model is the 2PL model. Figure 5.3 shows the ICCs for the same four items

in a larger sample of 2000 examinees. The k values selected by AIC, BIC or LRT are

shown in the upper left corner of the figure for each item. Figure 5.2 and Figure 5.4

provide a different way of presenting the estimated ICCs from Figure 5.1 and Figure

5.3. In Figures 5.2 and 5.4, deviations from the true probabilities are plotted against

the abilities. Observing these figures we find that the estimated ICCs with k = 0
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are very close to the true ICCs for the majority of the four items. There are some

departures for item 4 for examinees with low abilities. The estimates are improved

a little with a larger sample (Figure 5.3 and Figure 5.4). Fitting curves using an

unnecessary higher degree polynomial results in worse estimated curves especially

when the sample size is small. Generally speaking, the precision of the estimated

ICCs improves when sample size increases (from 300 to 2000).

Figure 5.1: Estimated ICCs for some selected items in a typical data set
(k = 0, N = 300). The upper left corner shows the k values selected by AIC,
BIC and LRT.
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Figure 5.2: Deviations of the estimated probabilities from the true probabil-
ities for some selected items in a typical dataset (k = 0, N = 300).

Figure 5.5 and Figure 5.7 are the ICCs for some selected items in a typical data

set with 300 examinees or 2000 examinees when the true monotonic polynomial is

cubic (with k = 1). Figure 5.6 and Figure 5.8 are the corresponding plots for the

probability difference. The data were fitted using k = 0, k = 1 and k = 2. The

estimated curves with linear monotonic polynomials seem to be inadequate for the

majority of the four items. The estimates under k = 1 and k = 2 are much closer to

each other and to the true curve. The estimated ICCs are also improved with larger
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Figure 5.3: Estimated ICCs for some selected items in a typical data set
(k = 0, N = 2000). The upper left corner shows the k values selected by AIC,
BIC and LRT.

sample size. For example, the estimated ICC for item 11 gets much closer to the true

curve for the sample of size 2000 especially for examinees with medium ability level.

However, not all three criteria choose the correct model. For the plotted items, AIC

and LRT are relatively consistent and prefer same models while BIC favors simpler

models especially when the sample size is small.

Figure 5.9 and Figure 5.11 are the ICCs for some selected items in typical datasets,

one with 300 examinees and another with 2000 examinees when the true monotonic
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Figure 5.4: Deviations of the estimated probabilities from the true probabil-
ities for some selected items in a typical dataset (k = 0, N = 2000).

polynomial is of fifth order (k = 2). Figure 5.10 and Figure 5.12 are the corresponding

plots for the probability difference. The data were fitted using k = 0, k = 1, k = 2

and k = 3. It can be observed that for most items the IRF with linear polynomial

are not close to the true ICCs. The estimated ICCs with k = 1, k = 2 and k = 3 are

relatively close to each other and to the true curves. The improvement from k = 1 to

k = 2 or higher k values is not big enough to justify the additional parameters added

to the model. AIC, BIC and LRT favor different models. Again, AIC and LRT are
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Figure 5.5: Estimated ICCs for some selected items in a typical dataset
(k = 1, N = 300). The upper left corner shows the k values selected by AIC,
BIC and LRT.

relatively consistent and BIC favors simpler models in general. Not all indices choose

the true models for all items again. It appears that neither AIC, BIC nor LRT are

good model selection criteria for this L-MP model since they are not able to choose

the correct models. However, based on the observation of the discrepancies of the

estimated ICCs to the true ICCs, the models selected by these indices are adequate

enough for approximating the true curves.
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Figure 5.6: Deviations of the estimated probabilities from the true probabil-
ities for some selected items in a typical dataset (k = 1, N = 300).

Table 5.4 to Table 5.9 give summaries of the frequencies of indices AIC, BIC and

LRT choosing the true model under different sample sizes. When the true model is a

2PL model (k = 0), the percentages of AIC, BIC and LRT choosing the true model

are high for the smaller sample. For the larger sample, although all three criteria tend

to choose the true model, BIC has larger odds of choosing the true model. When the

true model is a nonstandard logistic function and the sample size is small, all model

selection indices favor the simpler model, especially BIC. The most extreme case is
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Figure 5.7: Estimated ICCs for some selected items in a typical dataset
(k = 1, N = 2000). The upper left corner shows the k values selected by AIC,
BIC and LRT.

in Table 5.5, when the true k is 2, BIC never chooses true model! When sample size

increases, the percentages of choosing the true models increase under same conditions

for all model selection criteria. But still, the results are not very positive in terms of

the percentages of true models being selected.

It is very natural to question the usefulness of these model selection criteria. We

perceive this from a different perspective. We have already observed from Figure 5.5

to Figure 5.12 that the difference of the estimated curves between k = 0 and k = 1
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true k values
k = 0 k = 1 k = 2

k = 0 80.95 34.65 22.10
selected k k = 1 19.05 52.85 62.50

k = 2 12.50 13.75
k = 3 1.65

Table 5.4: Frequency table for AIC selected items with N = 300.
Each row represents the k values selected by AIC. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.

true k values
k = 0 k = 1 k = 2

k = 0 99.35 83.90 72.05
selected k k = 1 0.65 16.10 27.95

k = 2 0.00 0.00
k = 3 0.00

Table 5.5: Frequency table for BIC selected items with N = 300.
Each row represents the k values selected by BIC. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.

true k values
k = 0 k = 1 k = 2

k = 0 91.75 50.55 36.35
selected k k = 1 8.25 43.95 56.75

k = 2 5.50 5.50
k = 3 1.40

Table 5.6: Frequency table for LRT selected items with N = 300.
Each row represents the k values selected by LRT. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.
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true k values
k = 0 k = 1 k = 2

k = 0 56.85 2.35 0.35
selected k k = 1 43.15 62.10 51.45

k = 2 35.55 20.70
k = 3 27.50

Table 5.7: Frequency table for AIC selected items with N = 2000.
Each row represents the k values selected by AIC. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.

true k values
k = 0 k = 1 k = 2

k = 0 98.50 22.40 10.60
selected k k = 1 1.50 75.75 85.90

k = 2 1.85 3.25
k = 3 0.25

Table 5.8: Frequency table for BIC selected items with N = 2000.
Each row represents the k values selected by BIC. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.

true k values
k = 0 k = 1 k = 2

k = 0 74.70 4.20 0.85
selected k k = 1 25.30 74.50 60.45

k = 2 21.30 16.75
k = 3 21.95

Table 5.9: Frequency table for LRT selected items with N = 2000.
Each row represents the k values selected by LRT. Each column represents the true
k values. 100 datasets are used for each true k value. The number in each cell is a
percentage. Each column should sum to 100.
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Figure 5.8: Deviations of the estimated probabilities from the true probabil-
ities for some selected items in a typical dataset (k = 1, N = 2000).

or above is obvious, however, the difference of the estimated curves between k = 1

and k = 2 or higher is only small. Meanwhile, when k goes one point higher, two

additional parameters are introduced to the model for each item. With smaller sample

size, it is not worthwhile to achieve the little improvement at the cost of unnecessary

parameters in the model. In such case, it is better to use an “incorrect” model with

few parameters than a “correct” model with many parameters. The AIC is also not

intended to select the “correct” model. Thus we argue that we are not concerned
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Figure 5.9: Estimated ICCs for some selected items in a typical dataset
(k = 2, N = 300). The upper left corner shows the k values selected by AIC,
BIC and LRT.

about the percentages of the true model being chosen, but the models selected by

these criteria actually having better estimates in terms of RIMSE for both the ICCs

and the abilities, or having higher rank correlations between the estimated and the

true ability parameters. In this sense, AIC, BIC and LRT might still be useful criteria

for this L-MP model.

Table 5.10 and Table 5.11 present the RIMSE for the estimated ICCs. It is natural

to think that the estimated curves fitted to the true k values will have the smallest
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Figure 5.10: Deviations of the estimated probabilities from the true proba-
bilities for some selected items in a typical dataset (k = 2, N = 300).

RIMSE. However, this conjecture does not always hold for all samples and models

with different k values. For example, for both sample sizes, when the true model is

k = 2, the model with k = 1 actually produces the smallest RIMSE for estimated

ICCs. This supports our argument of not investigating the percentage of true models

being selected but the better RIMSE for selected models. As can be expected, the

RIMSE increases as the model becomes more complicated (k value gets larger). And

also, not surprisingly, larger sample size helps to improve the estimates. In practice,
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Figure 5.11: Estimated ICCs for some selected items in a typical dataset
(k = 2, N = 2000). The upper left corner shows the k values selected by AIC,
BIC and LRT.

no true value of k is known, AIC, BIC and LRT are the criteria that are used to

help us select the models. Based on this simulation result, the overall trend is that

models selected by BIC produce the smallest RIMSE when the true model is the

2PL model (k = 0) and the AIC selected models have smallest RIMSE when the true

models are not the standard logistic curves. This is because BIC favors simpler model

when sample size is large (even the smaller sample size 300 in this simulation can be

considered as “large” when using BIC). Thus when the true model is a simpler model,
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Figure 5.12: Deviations of the estimated probabilities from the true proba-
bilities for some selected items in a typical dataset (k = 2, N = 2000).

AIC has bigger chance of choosing a more complex model which apparently just adds

some error to the model. But when the true model is actually a more complex model,

BIC will still select the simpler model which is not sufficient in approximating the

true curve. Overall speaking, although differences exist, they are too small to have

any practical significance.

Table 5.12 to Table 5.15 give information on the precision of the estimates of

abilities in terms of RIMSEθ and rank correlations. Again, the smallest RIMSEθ
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true model
k = 0 k = 1 k = 2

AIC 0.0431 (0.0057) 0.0575 (0.0062) 0.0598 (0.0068)
BIC 0.0391 (0.0058) 0.0622 (0.0067) 0.0674 (0.0063)
LRT 0.0412 (0.0058) 0.0589 (0.0062) 0.0612 (0.0067)
k = 0 0.0388 (0.0058) 0.0646 (0.0062) 0.0754 (0.0060)
k = 1 0.0476 (0.0055) 0.0533 (0.0062) 0.0557 (0.0067)
k = 2 0.0591 (0.0056) 0.0610 (0.0064)
k = 3 0.0641 (0.0061)

Table 5.10: RIMSE for estimated ICCs for various true k values (N = 300).
Each cell is based on 100 datasets. A mean RIMSE is calculated across items for
each dataset. The number presented in the table is the average of the mean RIMSE
across 100 datasets. The number in parentheses is the standard deviation of the 100
averaged RIMSEs. The rows represent the different criteria used to select the model.
For example, k = 0 means that the items in a test are all chosen to have linear
polynomial.

true model
k = 0 k = 1 k = 2

AIC 0.0257 (0.0025) 0.0324 (0.0032) 0.0358 (0.0035)
BIC 0.0240 (0.0027) 0.0333 (0.0034) 0.0349 (0.0038)
LRT 0.0252 (0.0027) 0.0322 (0.0033) 0.0357 (0.0036)
k = 0 0.0238 (0.0027) 0.0541 (0.0048) 0.0660 (0.0048)
k = 1 0.0262 (0.0024) 0.0309 (0.0033) 0.0334 (0.0037)
k = 2 0.0326 (0.0032) 0.0347 (0.0036)
k = 3 0.0368 (0.0034)

Table 5.11: RIMSE for estimated ICCs for various true k values (N = 2000).
Each cell is based on 100 datasets. A mean RIMSE is calculated across items for
each dataset. The number presented in the table is the average of the mean RIMSE
across 100 datasets. The number in parentheses is the standard deviation of the 100
averaged RIMSEs. The rows represent the different criteria used to select the model.
For example, k = 0 means that the items in a test are all chosen to have linear
polynomial.
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true model
k = 0 k = 1 k = 2

AIC 0.3570 (0.0168) 0.3075 (0.0227) 0.2817 (0.0202)
BIC 0.3531 (0.0165) 0.3110 (0.0227) 0.2889 (0.0204)
LRT 0.3553 (0.0166) 0.3089 (0.0228) 0.2834 (0.0204)
k = 0 0.3528 (0.0164) 0.3120 (0.0220) 0.2944 (0.0206)
k = 1 0.3600 (0.0174) 0.3036 (0.0227) 0.2779 (0.0196)
k = 2 0.3068 (0.0226) 0.2813 (0.0202)
k = 3 0.2815 (0.0199)

Table 5.12: RIMSEθ for various true k values (N = 300).
The rows represent the different criteria used to select the model. For example, k = 0
means that the items in a test are all chosen to have linear polynomial. Each cell is
based on 100 datasets. The number in parentheses is the standard deviation of the
100 replications.

does not always occur when fitting to true k values. When the true model is k = 2,

the models fitted to k = 1 actually have the smallest RIMSEθ and the highest rank

correlations. When comparing the different model selection criteria in terms of the

ability estimates, these two tables show the same trend as in Table 5.10 and Table

5.11. When the sample size is small and the true model is k = 0, BIC selected models

have smallest RIMSEθ and highest rank correlations for estimated abilities. When

the true models are not standard logistic functions, AIC selected models have best

ability estimates. But again, these differences are too small to be interpreted with

any practical meanings.

The sample size has a larger effect on estimating the ICCs than estimating the

abilities. The estimates of abilities do improve in terms of both RIMSEθ and rank

correlations with a larger sample size, but this improvement is not large. An easy

explanation on this is that large number of examinees provides more information that

could be used to estimate the ICCs and thus results better estimated curves. The
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true model
k = 0 k = 1 k = 2

AIC 0.3468 (0.0109) 0.2920 (0.0158) 0.2682 (0.0139)
BIC 0.3457 (0.0109) 0.2931 (0.0162) 0.2680 (0.0142)
LRT 0.3467 (0.0109) 0.2919 (0.0158) 0.2680 (0.0140)
k = 0 0.3455 (0.0108) 0.3064 (0.0166) 0.2890 (0.0157)
k = 1 0.3466 (0.0110) 0.2908 (0.0160) 0.2666 (0.0142)
k = 2 0.2921 (0.0158) 0.2677 (0.0141)
k = 3 0.2687 (0.0140)

Table 5.13: RIMSEθ for various true k values (N = 2000).
The rows represent the different criteria used to select the model. For example, k = 0
means that the items in a test are all chosen to have linear polynomial. Each cell is
based on 100 datasets. The number in parentheses is the standard deviation of the
100 replications.

true model
k = 0 k = 1 k = 2

AIC 0.9229 (0.0101) 0.9473 (0.0096) 0.9566 (0.0081)
BIC 0.9241 (0.0100) 0.9458 (0.0099) 0.9544 (0.0086)
LRT 0.9234 (0.0100) 0.9470 (0.0097) 0.9561 (0.0082)
k = 0 0.9242 (0.0100) 0.9450 (0.0097) 0.9522 (0.0090)
k = 1 0.9217 (0.0103) 0.9485 (0.0096) 0.9576 (0.0079)
k = 2 0.9475 (0.0096) 0.9566 (0.0081)
k = 3 0.9564 (0.0080)

Table 5.14: Rank correlations for abilities for various true k values (N = 300).
The rows represent the different criteria used to select the model. For example, k = 0
means that the items in a test are all chosen to have linear polynomial. Each cell is
based on 100 datasets. The number in parentheses is the standard deviation of the
100 replications.
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true model
k = 0 k = 1 k = 2

AIC 0.9271 (0.0109) 0.9517 (0.0067) 0.9595 (0.0070)
BIC 0.9275 (0.0109) 0.9513 (0.0068) 0.9595 (0.0059)
LRT 0.9272 (0.0109) 0.9517 (0.0067) 0.9595 (0.0059)
k = 0 0.9276 (0.0108) 0.9465 (0.0073) 0.9528 (0.0059)
k = 1 0.9271 (0.0110) 0.9519 (0.0067) 0.9598 (0.0059)
k = 2 0.9517 (0.0067) 0.9596 (0.0059)
k = 3 0.9594 (0.0059)

Table 5.15: Rank correlations for abilities for various true k values (N = 2000).
The rows represent the different criteria used to select the model. For example, k = 0
means that the items in a test are all chosen to have linear polynomial. Each cell is
based on 100 datasets. The number in parentheses is the standard deviation of the
100 replications.

estimates of abilities are obtained based on the estimated curves. Thus increased

sample size has an indirect effect on estimating abilities.

In practice, there is no way to know what the true model is, and there is no

definite conclusion of what selection criterion works consistently better than the other.

Observations on Table 5.10 to Table 5.15 find that the differences of the RIMSE and

the rank correlations for the models selected via AIC, BIC and LRT are not very

large. The choice of the criterion in practice is not very critical in this sense.

5.2.3 Simulation 2

As we have mentioned before, the proposed L-MP model is a general model which

includes 2PL as a special case. We are also interested in comparing the surrogate

based estimates from the L-MP model with those from the currently used methods,

particularly the MML estimates and the JML estimates. The data were generated

using the standard 2PL model. As described in Section 5.1, two ways were used

to generate the difficulty parameters. One way was to let the difficulty parameter
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equally spaced on the range of [−2.5, 2.5], the other way was to randomly draw from

a standard normal distribution truncated at ±2.5. Two sample sizes (300 and 2000)

were considered. Although investigators seldom use JML estimates, the estimation

method used for this L-MP model can be viewed as a version of the JML truncated

after one iteration. We are interested to see how the estimates perform compared to

the JML estimates and if consistency is still an issue. Thus the results will be com-

pared with other software programs with different estimation methods: MULTILOG

which produces MML/EM estimates and SYSTAT TESTATLOG which produces

JML estimates.

Figure 5.13 and Figure 5.15 show plots for the first four items with estimates from

L-MP, MML and JML in a typical dataset when the difficulty parameter is equally

spaced, under two different sample sizes 300 and 2000. Figure 5.14 and Figure 5.16

are the corresponding plots for the probability differences. In general, the estimated

item curves for the L-MP model and MML estimates for the 2PL model are much

better than the JML estimates for the 2PL model. Sample size has a larger effect

on the estimates from the L-MP model and the MML estimates. For example, the

estimated ICCs for item 2 and item 3 are almost identical to the true curves when

the number of examinees increase from 300 to 2000 (with equally spaced difficulty

parameters). However, increasing sample size has no obvious effect in improving the

estimated ICCs using JML. This suggests that the estimates of JML might not be

consistent. Although JML uses a standardization on the abilities after each cycle

of the iteration between the item parameters and abilities to solve the identification

problem, it doesn’t seem like it eliminates the possibility of inconsistency.

Figure 5.17 and Figure 5.19 produce plots for 300 examinees but with difficulty

parameters randomly drawn from a standard normal distribution truncated at ±2.5.

Figure 5.18 and Figure 5.20 are the corresponding plots for the deviations of each
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Figure 5.13: Comparisons of estimated ICCs among L-MP, MML and JML
(N = 300, and equally spaced difficulty parameters).

estimated curve to the true curves. These two graphs show very similar results as

Figure 5.13 and Figure 5.15. The estimates from L-MP and MML are very close to

each other and to the true curve, while the estimates of JML are further away from

the true values. The increasing of sample size helps to improve the estimates from

L-MP and MML but does not help to improve the estimates from JML.

To check the performance of the estimates of abilities, Figure 5.21 to Figure 5.24

provide comparisons of L-MP with MML and JML in terms of RIMSEθ and the rank
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Figure 5.14: Comparisons of estimated ICCs among L-MP, MML and JML
in probability difference (N = 300, and equally spaced difficulty parameters).

correlations. In each figure, the top two plots are for the comparisons of the L-MP

with MML. The bottom two plots are for the comparisons of L-MP with JML. The

RIMSEθ and the rank correlations from L-MP are plotted against those from MML,

and also those from JML. Each point in a plot represents the RIMSEθ or the rank

correlation for the estimated abilities in one dataset. There are 100 datasets under

each condition and thus 100 points in each plot. If the two procedures being compared

perform equally well, the RIMSEθ or the rank correlations should be scattered around
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Figure 5.15: Comparisons of estimated ICCs among L-MP, MML and JML
(N = 2000, and equally spaced difficulty parameters).

the y = x line. If all points are sitting above or below the y = x line, then one method

outperforms the other. For example, when comparing L-MP with MML under the

condition of 300 examinees and equally spaced difficulty parameters, the upper left

plot in Figure 5.21 compares the RIMSEθ for ability estimates and the upper right plot

compares the rank correlations. Clearly, the L-MP estimates are slightly better than

the MML estimates in terms of the RIMSEθ since most points are sitting above the

y = x line. However, when it comes to the rank correlations, all the points are very
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Figure 5.16: Comparisons of estimated ICCs among L-MP, MML and JML
in probability difference (N = 2000, and equally spaced difficulty parameters).

close to the y = x line which means these two methods produce similar estimates

of the rankings to the abilities. Similar trends are found for samples with 2000

examinees or with normally distributed difficulty parameters. When comparing the

L-MP estimates with the JML estimates, the L-MP estimates produce much smaller

RIMSEθ for abilities than the JML estimates for both sample sizes and different

difficulty parameter distributions. When it comes to the rank correlations, the L-

MP estimates and JML estimates are very close with the equally spaced difficulty
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Figure 5.17: Comparisons of estimated ICCs among L-MP, MML and JML
(N = 300, and normally distributed difficulty parameters).

parameter for both sample sizes. But the L-MP estimates are consistently better

than the JML estimates when the difficulty parameter is from a truncated normal

distribution.

The above observations are summarized in Table 5.16 to Table 5.18. Table 5.16

shows the RIMSE for the estimated item curves with L-MP, MML and JML under

different conditions based on 100 datasets in each condition. The results show that

the estimates of L-MP and MML are very close to each other with MML having
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Figure 5.18: Comparisons of estimated ICCs among L-MP, MML and JML
in probability difference (N = 300, and normally distributed difficulty param-
eters).

slightly smaller RIMSE for the estimated curves but the difference is very small (in the

third decimal place) and can be ignored. The estimates from both L-MP and MML

are consistently better than JML. An increase in sample size noticeably improves

the estimates from L-MP and MML but makes no notable difference for the JML

estimates. As to the distribution of the difficulty parameter, MML and JML work

better with equally spaced difficulty parameters while L-MP works slightly better

under normally distributed difficulty parameters.
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Figure 5.19: Comparisons of estimated ICCs among L-MP, MML and JML
(N = 2000, and normally distributed difficulty parameters).

Table 5.17 and Table 5.18 provide the comparisons of L-MP, MML and JML on

the estimates of abilities. The increase in sample size has no significant effect on the

estimates of abilities. The RIMSEθ and the rank correlations both get better for all

three estimation methods when the difficulty parameters are randomly drawn from a

truncated normal distribution than when they are equally spaced. When comparing

the performance of these three methods on the estimates of abilities, L-MP gives
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Figure 5.20: Comparisons of estimated ICCs among L-MP, MML and JML
in probability difference (N = 2000, and normally distributed difficulty param-
eters).

smallest RIMSEθ among all three methods. However, when it comes to the rank

correlations, the results are very close for all three methods.

5.2.4 Simulation 3

It has been illustrated that when the model does not follow a standard logistic

function, fitting the data to a 2PL model is not sufficient for most items. In this

simulation, we are interested in comparing the performance of the L-MP model with
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L-MP MML JML
N = 300 ES 0.0392 (0.0011) 0.0326 (0.0009) 0.0752 (0.0009)

ND 0.0388 (0.0012) 0.0332 (0.0011) 0.0781 (0.0011)
N = 2000 ES 0.0246 (0.0004) 0.0125 (0.0003) 0.0730 (0.0003)

ND 0.0238 (0.0005) 0.0135 (0.0005) 0.0761 (0.0006)

Table 5.16: Comparisons of RIMSE for estimated ICCs among L-MP, MML and JML.
ES (Equally Spaced) and ND (Normally Distributed) are two ways to generate the
difficulty parameter. Each cell is based on 100 datasets. A mean RIMSE is calculated
across items for each dataset. The number presented in the table is the average of
the mean RIMSE across 100 datasets. The number in parentheses is the standard
deviation of the 100 averaged RIMSEs.

L-MP MML JML
N = 300 ES 0.3867 (0.0162) 0.3957 (0.0172) 0.4244 (0.0214)

ND 0.3528 (0.0164) 0.3582 (0.0178) 0.3961 (0.0205)
N = 2000 ES 0.3819 (0.0091) 0.3887 (0.0094) 0.4140 (0.0109)

ND 0.3455 (0.0108) 0.3501 (0.0114) 0.3865 (0.0120)

Table 5.17: Comparisons of RIMSEθ among L-MP, MML and JML. ES (Equally
Spaced) and ND (Normally Distributed) are two ways to generate the difficulty pa-
rameter. Each cell is based on 100 datasets. The number in parentheses is the
standard deviation of the 100 replications.

L-MP MML JML
N = 300 ES 0.9022 (0.0119) 0.9028 (0.0119) 0.9014 (0.0124)

ND 0.9042 (0.0100) 0.9042 (0.0100) 0.9041 (0.0101)
N = 2000 ES 0.9057 (0.0059) 0.9065 (0.0058) 0.9057 (0.0059)

ND 0.9276 (0.0060) 0.9278 (0.0059) 0.9242 (0.0058)

Table 5.18: Comparisons of rank correlations ρ(θ, θ̂) among L-MP, MML and JML.
ES (Equally Spaced) and ND (Normally Distributed) are two ways to generate the
difficulty parameter. Each cell is based on 100 datasets. The number in parentheses
is the standard deviation of the 100 replications.
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Figure 5.21: Comparisons of θ̂s among L-MP, MML and JML (N = 300, and
equally spaced difficulty parameters).

two other nonparametric techniques. The model used to generate the data is a mixed

normal distribution with parameters described as in Section 5.1. Two sample sizes

were considered (N = 300, N = 2000) and 100 datasets were generated for each

sample size. The results were compared to TESTGRAF and the Nonparametric

Bayesian method separately.
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Figure 5.22: Comparisons of θ̂s among L-MP, MML and JML (N = 2000,
and equally spaced difficulty parameters).

5.2.4.1 L-MP and TESTGRAF

The data were analyzed using TESTGRAF with default parameters. For datasets

with 300 examinees, the default smoothing parameter is 0.35, and the default evalu-

ating points are 51 points between −2.5 to 2.5. For datasets with 2000 examinees, the

default smoothing parameter is 0.24 and the default evaluating points are 51 points

between −3.0 and 3.0. However, for most datasets, the program broke down by issu-

ing a warning message indicating that the default smoothing parameter needed to be
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Figure 5.23: Comparisons of θ̂s among L-MP, MML and JML (N = 300, and
normally distributed difficulty parameters).

increased. The smoothing parameter used for samples with size 2000 was increased

to 0.40.

The data were fitted up to k = 4 (ninth order polynomial) using the L-MP pro-

gram. Figure 5.25 and Figure 5.27 plot the ICCs for some selected items in a typical

dataset estimated by L-MP and TESTFRAF with 300 examinees or 2000 exami-

nees. Figure 5.26 and Figure 5.28 are the corresponding plots for the deviations of

probabilities.
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Figure 5.24: Comparisons of θ̂s among L-MP, MML and JML (N = 2000,
and normally distributed difficulty parameters).

Overall, the estimated ICCs from TESTGRAF and L-MP with k ≥ 1 are similar.

For the displayed four items in Figure 5.25, the L-MP with k ≥ 1 estimates seem to

be slightly closer to the true curve. There are some deviations for the estimated ICCs

from TESTGRAF, especially for examinees with low abilities or high abilities. When

sample size increases to 2000, the estimates from TESTGRAF improved greatly and

the estimated ICCs get much closer to the true curves. One important feature of

TESTGRAF is that it doesn’t put a constraint of monotonicity on the estimated

ICCs which means that the estimated ICCs could decrease as ability increased. The
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Figure 5.25: Comparisons of the estimated ICCs between L-MP and TEST-
GRAF (N = 300).

nonmonotonicity in the ICCs could be an arguable feature. For any well functioned

item, it is reasonable to assume that examinees with higher abilities will have higher

probability of endorsing the item and thus the ICC should be nondecreasing. How-

ever, the feature of allowing the ICC to be nonmonotonic can sometimes work as

a diagnostic tool in deciding if something unexpected happens for a particular item.

From this typical dataset, it seems that TESTGRAF can easily pick up any nonmono-

tonicity in the responses even when the models are truly nondecreasing. This can be

seen from item 14, item 15 and item 16 in Figure 5.25. These estimated ICCs from
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Figure 5.26: Comparisons of the estimated ICCs between L-MP and TEST-
GRAF in probability difference (N = 300).

TESTGRAF are actually giving some false information on the monotonicity for these

items. While on the other hand, if the items truly have some problems, TESTGRAF

will be able to capture them by having nonmonotonicity in the estimated ICCs where

the L-MP model will only produce a monotone function but probably with poor fit.

The nonmonotonicity could go away in TESTGRAF if the smoothing parameter is

increased.
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Figure 5.27: Comparisons of the estimated ICCs between L-MP and TEST-
GRAF (N = 2000).

Table 5.19 - Table 5.21 present the summaries for this simulation based on 100

datasets for each sample size. Table 5.19 shows the RIMSE for the estimated ICCs

for TESTGRAF and the L-MP model with different selection criteria. With both

sample sizes, TESTGRAF has a smaller RIMSE for the estimated ICCs than the

L-MP model. But the difference is very small especially with sample size 2000. From

Table 5.20 and Table 5.21 where estimates of abilities are evaluated, L-MP model

has a smaller RIMSEθ and higher rank correlations for estimated abilities no matter

what model selection criterion was used.
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TESTGRAF L-MP(AIC) L-MP(BIC) L-MP(LRT)
N = 300 0.0565 (0.0048) 0.0657 (0.0065) 0.0754 (0.0067) 0.0678 (0.0066)
N = 2000 0.0405 (0.0033) 0.0417 (0.0030) 0.0423 (0.0035) 0.0417 (0.0032)

Table 5.19: Comparisons of RIMSE for estimated ICCs between TESTGRAF and L-
MP. The last three columns represent the L-MP models using three different criteria.
Each cell is based on 100 datasets. A mean RIMSE is calculated across items for
each dataset. The number presented in the table is the average of the mean RIMSE
across 100 datasets. The number in parentheses is the standard deviation of the 100
averaged RIMSEs.

TESTGRAF L-MP(AIC) L-MP(BIC) L-MP(LRT)
N = 300 0.6257 (0.0353) 0.4735 (0.0223) 0.4727 (0.0215) 0.4733 (0.0224)
N = 2000 0.6264 (0.0186) 0.4624 (0.0115) 0.4611 (0.0113) 0.4622 (0.0115)

Table 5.20: Comparisons of RIMSEθ between TESTGRAF and L-MP. The last three
columns represent the L-MP models using three different criteria. Each cell is based
on 100 datasets. The number in parentheses is the standard deviation of the 100
replications.

TESTGRAF L-MP(AIC) L-MP(BIC) L-MP(LRT)
N = 300 0.7626 (0.0500) 0.8280 (0.0274) 0.8291 (0.0266) 0.8284 (0.0274)
N = 2000 0.7686 (0.0366) 0.8342 (0.0122) 0.8348 (0.0123) 0.8341 (0.0122)

Table 5.21: Comparisons of rank correlations for abilities ρ(θ, θ̂) between TESTGRAF
and L-MP. The last three columns represent the L-MP models using three different
criteria. Each cell is based on 100 datasets. The number in parentheses is the standard
deviation of the 100 replications.
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Figure 5.28: Comparisons of the estimated ICCs between L-MP and TEST-
GRAF in probability difference (N = 2000).

This information is also shown in Figure 5.29 and Figure 5.30. When looking at

RIMSEθ, almost all points lie above the y = x line. And for rank correlations, most

of the points lie below y = x line. This means that the L-MP has smaller RIMSEθ

and higher rank correlations than TESTGRAF program in this simulation.

However, for simplicity purpose, the above comparisons were only made when

TESTGRAF used same smoothing parameters for all datasets. Ramsay (1991) sug-

gested that a smoothing parameter of h = N− 1
5 will produce good results. According

to TESTGRAF manual, the default parameter in TESTGRAF is set to be 1.1N− 1
5 .
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Figure 5.29: Comparisons of θ̂s between TESTGRAF and L-MP (N = 300).

A small experiment was run to see how the comparisons between TESTGRAF and

L-MP change with various smoothing parameters. The different levels of smoothing

parameter were chosen to be around the values actually used. For simplicity purpose,

this little experiment was only run with two datasets, one for each sample size. The

results are shown in Table 5.22 and Table 5.23.

It can be seen in Table 5.22 and Table 5.23, for this particular dataset, the small-

est RIMSE value for the estimated ICCs occurs at the default h value for N = 300.

This is also true when the estimates of abilities are considered. When sample size
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Figure 5.30: Comparisons of estimated θ̂s between TESTGRAF and L-MP
(N = 2000).

increases to 2000, the smallest RIMSE for the estimated ICCs from TESTGRAF

occurs at h = 0.36 which is less than the value we used in our simulations. How-

ever, TESTGRAF will break down using h = 0.36 for many datasets. Changing the

smoothing parameters in TESTGRAF might be able to improve the RIMSE for esti-

mated ICCs slightly, but it does not appear to affect the comparisons we have made

between TESTGRAF and the L-MP model.

TESTGRAF has a strong influence on the L-MP model, from the idea of producing

a more flexible ICC than the 1PL or 2PL model to the estimation method. There are
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L-MP TESTGRAF
AIC BIC LRT h = .30 h = .35∗ h = .40

RIMSE(ICC) 0.0628 0.0760 0.0667 0.0580 0.0567 0.0570
RIMSE(θ) 0.4780 0.4739 0.4801 0.6160 0.6160 0.6580
rank corr 0.8367 0.8419 0.8347 0.8300 0.8300 0.8359

Table 5.22: Comparisons between L-MP and TESTGRAF with various smoothing
parameters (N = 300). The h value with * is the default smoothing parameter
TESTGRAF used.

L-MP TESTGRAF
AIC BIC LRT h = .36 h = .40∗ h = .44

RIMSE(ICC) 0.0357 0.0378 0.0351 0.0338 0.0363 0.0394
RIMSE(θ) 0.4509 0.4491 0.4502 0.5864 0.6026 0.6195
rank corr 0.8330 0.8351 0.8334 0.8334 0.8340 0.8338

Table 5.23: Comparisons between L-MP and TESTGRAF with various smoothing
parameters (N = 2000). The h value with * is the actual smoothing parameter used
in the simulations.

some major differences, however, between these two methods. These differences are

listed in Table 5.24.

5.2.4.2 L-MP and Nonparametric Bayesian

As described in Section 2.2.2, Qin (1998) handled the item response data in a non-

parametric, fully Bayesian manner. The approach uses a Dirichlet process to release

the constraint of the prior distribution and is preferred when the true ICC deviates

from the parametric family. It will be interesting to also compare the performance of

the L-MP model with this nonparametric Bayesian procedure.
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TESTGRAF L-MP
surrogate ability normalized test score normalized 1st principal

component scores
item curves Option Characteristic Curve Item Characteristic Curve
estimation of curves kernel smoothing ML estimates
estimation of abilities ML estimates EAP estimates

Table 5.24: Major differences between L-MP and TESTGRAF

The program for the nonparametric Bayesian model is a R package irtNP (Duncan

& MacEachern, in press). Due to the long executing time of the R package, only one

sample with N = 300 was used for comparison purpose.

The plots of the last four items in a simulated dataset with N = 300 are shown

in Figure 5.31. The result from the nonparametric Bayesian model is based on 2500

updates with the first 1000 iterations as the burn-in period. The thinning interval

was chosen to be 10.

When the true curve is the CDF for a mixture of two normal distributions, the

nonparametric Bayesian model is also able to pick up some nonstandard logistic

characteristics in the curve. Generally speaking, the nonparametric Bayesian and the

AIC selected L-MP model produce curves with similar shape. Differences usually

occur at both tails. Considering ability scale in the plot is from −4 to 4, the number

of examinees in the tails are really small and thus the differences between two curves

on the tails are not considered as a problem. Although not strictly following the true

curve, the estimates from the nonparametric Bayes are reasonably close to the true

curve especially for medium abilities. With larger number of examinees and larger

number of items, the estimates might be improved.

The RIMSE for the estimated ICCs, the RIMSEθ and the rank correlation for

the abilities for this particular dataset are shown in Table 5.25. The comparison
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Figure 5.31: Comparisons of estimated ICCs between L-MP and Non-
parametric Bayesian Models (N = 300). “NB” refers to the Nonparametric
Bayesian Model.

shows that for this particular dataset, the Nonparametric Bayesian model has smaller

RIMSE than the L-MP model. But in terms of the estimated abilities, these two

models produce very similar results.

It would be good if the comparisons were based on more datasets or datasets

with larger sample size. However, the irtNP package for the nonparametric Bayesian

model is very time consuming and it is unrealistic to run too many datasets especially

with large sample size. For example, for the current dataset with 300 examinees and
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AIC BIC LRT NB
RIMSE(ICC) 0.0610 0.0689 0.0627 0.0587
RIMSE(θ) 0.4743 0.4801 0.4728 0.4747
rank corr 0.7833 0.7832 0.7854 0.7881

Table 5.25: Comparisons between the L-MP and the Nonparametric Bayesian models
(N = 300). “NB” refers to the Nonparametric Bayesian model. The comparison is
based on one dataset.

20 items to have 2500 updates and 1000 burn-in points, it took 1.78 days to run on

a computer with P4 2.66GHz CPU and 512M RAM, but it only took 31.50 seconds

for the L-MP program fitted to k = 4 (ninth order polynomial). The fact that irtNP

program is written in R, which is known to be much slower than FORTRAN, and

that it uses MCMC are the reasons for the slow speed.

5.3 Discussion

Some questions were raised from the results of the simulation study. From the

comparisons between L-MP and TESTGRAF in Section 5.2.4, we have seen that for

some items, TESTGRAF produced some estimated ICCs with nonmonotonicity. It

will be interesting to see what would happen if we release the monotonic constraint

on the ICCs. One other question is related to the statement made in Section 3.1 for

the filtered polynomial density estimation which claims that with increased degree of

monotonic polynomial, many continuous non-defective distributions may be approxi-

mated to arbitrary closeness. One difference between the L-MP model and the filtered

polynomial density estimation method is that in the L-MP model, the independent

variable, θ, is an unobserved latent trait and needs to be estimated from the model. It

will be interesting to investigate if this statement for the filtered polynomial density

estimation is still true for the L-MP model with this difference.
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5.3.1 Logistic function with unconstrained polynomial

To model the data using a logistic function with an unconstrained polynomial,

we used the estimates from the L-MP at each k stage as starting points, fit the data

to an IRF with same degree of ordinary polynomial. For example, when k = 2, the

fitted model is

Pi(θ) = 1
1+e−mi(θ) ,

where mi(θ) is an ordinary polynomial defined as

mi(θ) = bi0 + bi1θ + bi2θ
2 + · · ·+ bi,5θ

5.

The same data as in Figure 5.25 was reanalyzed using an IRF with an uncon-

strained polynomial. To avoid too many curves on the same plot and make the

comparisons easier, we only plot the ICCs from the L-MP model with unconstrained

polynomial and monotonic polynomial at k = 1 and the ICC from TESTGRAF. The

same four items are plotted as an illustration in Figure 5.32.

Based on the observation of all items in the dataset, the estimated ICCs with

monotonic polynomial and with unconstrained polynomial are very close for most

items, for example, item 13, item 14 and item 16. The estimated ICCs with monotonic

polynomial or with ordinary polynomial for item 15 are very close for most ability

levels. The small differences occur for examinees with extreme abilities. For items

that are non-monotonic by TESTGRAF, for example, item 15 in Figure 5.32, the ICC

with unconstrained polynomial is very close to that from TESTGRAF. Releasing the

monotonic constraint is provided as an additional facility in the L-MP program. A

warning message will be generated if the item has a negative principal component

loading. Releasing the constraint in such cases would be a good way to check if

there is any problem with the item. It is always worthy to investigate why that
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Figure 5.32: Comparisons of estimated ICCs among TESTGRAF, L-MP
(k = 1) and IRFs with unconstrained polynomial (N = 300).

non-monotonicity occurs. However, we should be cautious when interpreting such

non-monotonic IRFs. As was mentioned in Section 5.2.4, non-monotonicity could

occur because the estimation process is too sensitive to random departures from

monotonicity. The problem would be more severe if the non-monotonicity occurs in

the middle instead of the tails. If the probabilities of endorsing an item consistently

decrease as the abilities increase, we can make the conclusion that something has

gone wrong with the item with much more confidence.
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5.3.2 The estimation errors

By checking Figure 5.25 and Figure 5.27, although the curves are significantly dif-

ferent from the standard logistic function, it can be seen that the differences between

the estimated ICCs with higher k values are very small. It looks as if increasing the

order of the monotonic polynomial has no effect in moving the estimated curves to

the true curve. The estimated ICCs are closer to the true curve for the data with

2000 examinees than the data with only 300 examinees. These reflect the two causes

for the deviations of the estimated ICCs from the true curves. One of them is the

abilities. In the filtered polynomial density estimation procedure, the method is ap-

plied to a sample of observed data. In IRT, however, the abilities are unobserved

and we used surrogate abilities to estimate the item curves. The surrogate abilities

and the true abilities are not equal. A second cause is the sampling errors. If using

the true simulated abilities to estimate the ICCs and if we have large enough sample,

these two sources of error are supposed to be eliminated. This is illustrated in Figure

5.33.

The best k value for the estimated ICCs to be close to the true curve varies from

item to item. For example, in Figure 5.33, when k = 1, the estimated ICC for item

4 is almost identical to the true curve. For item 17 and item 20, when k gets to 2,

the estimated ICCs are almost identical to the true curves. Increasing the k values

for these items actually introduce some deviations for the lower tail. The estimated

ICC for item 8 requires k = 5 to follow along the true curve almost exactly. These

plots illustrate that when the two sources of error are eliminated by using the true

simulated abilities instead of the surrogates and the large enough sample (N = 10000),

increasing the k value will result in an estimated ICC close enough to the true curve.

However, the ideal scenario described above of using the true abilities and the

large enough sample size are not practical in real life. But if the surrogates are good
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Figure 5.33: Estimated ICCs using simulated abilities for N = 10000 and
n = 20. N is the number of examinees and n is the number of items.

estimates of the abilities, this type of error could be minimized. The better surrogates

could be obtained by having a longer test which usually provides more information

about the examinee’s proficiency. An illustrative example of a simulated test of 100

items on 5000 examinees is shown in Figure 5.34.

No true abilities were used to obtain the estimated ICCs for this dataset. Instead,

the normalized principal component scores were used as the surrogates of abilities.

For most items, the plots reveal that although not exactly, the estimated ICCs are

fairly close to the true curves. This demonstrates that using a longer test, n = 100
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Figure 5.34: Estimated ICCs using surrogate abilities for N = 5000 and
n = 100. N is the number of examinees and n is the number of items.

in this example, will help to improve the goodness of fit of the estimated ICCs.

In summary, the advantage of using the L-MP model is clear. If the true mod-

els are the standard logistic functions, the L-MP estimates can provide very close

estimated ICCs to those from MML and much better estimated ICCs than those

from JML. In terms of the abilities, L-MP model produce slightly better estimates

than MML and much better estimates than JML. This suggests that the iteration

procedure used in JML procedure actually produce worse estimates. When the true
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models are not standard logistic functions, the ordinary 1PL or 2PL models are not

able to pick up the additional features. But the L-MP model is capable of doing this.

The comparison between TESTGRAF and L-MP shows that generally L-MP and

TESTGRAF produce very similar estimated ICCs for most items. TESTGRAF has

slightly better RIMSEs for the estimated item curves, but L-MP model produces bet-

ter estimates of abilities in terms of RIMSEθ and rank correlations. The comparison

between L-MP and the Nonparametric Bayesian model shows that these two methods

produce very similar results. The Nonparametric Bayesian model may yield better

estimated ICCs than the L-MP model, but differences are too small to interpret with

any certainty. The computational time for the Nonparametric Bayesian program is

much longer than for the L-MP program. In summary, Our experiments indicate

that results from the L-MP model are comparable to the best of those from other ap-

proaches considered. This demonstrates that the surrogate ability approach, adapted

from TESTGRAF and used in L-MP, yields results that are completely suitable for

practical use.
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CHAPTER 6

APPLICATIONS

The L-MP model has been shown to be a useful model through simulation studies

in Chapter 5. In this chapter, we will apply this model to two real world examples.

One is the data example that comes with the TESTGRAF program (Ramsay, 1991).

It consists of students’ responses on a general psy101 class. The other example is

the sample data used in the irtNP package (Duncan & MacEachern, in press) for the

nonparametric Bayesian model. It consists of students’ responses on an elementary

statistics class exam. The two datasets were analyzed using the L-MP program and

were compared with TESTGRAF and the Nonparametric Bayesian model separately.

6.1 Psychology 101 data example

This illustration used a dataset from an examination given to 379 students in an

introductory course in psychology in the Christmas period of 1989 at University of

McGill (TESTGRAF manual, 2000). The examination included 100 multiple choice

questions, each had four options with one correct. The data are used as an example

in the TESTGRAF program package and can be downloaded from Ramsay’s website:

http://www.psych.mcgill.ca/faculty/ramsay/TestGraf.html.

Since L-MP only deals with binary response data, the data in the original file were

recoded. A “1” was assigned to an item if a correct response was made otherwise a

“0” was assigned. Missing responses were treated as wrong response in this analysis.
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TESTGRAF provides Option Characteristic Curves (OCCs) instead of ICCs. To

make the results more comparable, we used the recoded data for both programs. No

student got zero score or perfect score in this test. The lowest score among these

379 students was 24 and the highest was 91. The data were analyzed with both

TESTGRAF and L-MP. The smoothing parameter in the TESTGRAF was chosen

to be the default value of 0.33. The number of evaluation points was set to be 51

points between −3 to 3. When fitting with the L-MP model, the data were fitted up

to k = 5 (11th order polynomial).

Since no true values of the parameters are known, we investigated the goodness

of fit using some empirical points. In order to construct the empirical points, the

abilities were divided into 14 intervals. The left most interval was θ ≤ −3, and the

right most interval was θ > 3. The other 12 intervals were between −3 to 3, with 0.5

apart from each other. The percentage of individuals getting the item correct in the

interval was used as the empirical probability for that interval. The plots for some

selected items in the test are shown in Figure 6.1. We did not plot the items if the

model selection criterion chose the standard logistic function. What was plot is part

of the items that the standard logistic functions were not able to fit the data and

TESTGRAF or L-MP model with higher degree polynomial were preferable. For all

the plotted items, it is obvious that the standard normal logistic function (LMP-k0)

are not following the empirical points. But the TESTGRAF or the AIC selected L-

MP curves are showing the trend more clearly. For most of these items, the estimates

from TESTGRAF and L-MP model are very close except that for some items where

TESTGRAF produces curves with nonmonotonicity, for example, item 13 and item

22. If we release the monotonic constraint, the L-MP program tends to produce

similar results as TESTGRAF. Since usually we assume abilities follow a standard

normal distribution, more examinees fall in the middle of the ability intervals. Thus
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any nonmonotonicity in the middle of the curve shows a more severe problem. The

nonmonotonicity in the ICC tails could be due to random errors. In that sense,

item 96 should definitely call the attention of the test developer since students with

higher abilities actually have lower probability to answer the question right. It could

either be the item is mis-typed or the item is ambiguous. The feature of allowing

nonmonotonicity in this case provides very clear diagnostic information. If releasing

the monotonic constraint, the L-MP model also produces an item curve that shows a

decreasing trend. With the monotonic constraint, the fitted line by the L-MP model

is basically a straight line which should catch the attention of the test developer too.

Figure 6.2 plots the estimates of abilities from the L-MP model with different

selection criteria against the estimates from TESTGRAF. If two approaches give

consistent solution, the points will scatter around the y = x line. From the three

graphs in Figure 6.2, regardless of what model selection criterion was used, the esti-

mates from two methods are generally consistent for the majority of examinees from

−1.8 to 1.8. Outside that range, it seems that L-MP model tends to give lower esti-

mates than TESTGRAF for examinees with high ability levels and higher estimates

than TESTGRAF for examinees with low ability levels.

6.2 An elementary statistics test example

The dataset used in this section comes from students’ responses on a test for

an elementary statistics class at The Ohio State University. The test has 32 items

with 28 of them are multiple choice questions. The test was administered to 258

undergraduate students. Since the current L-MP model only works with binary data,

we discarded the 4 constructed response items and retained the 28 multiple choice

items. The data is also used as the sample data for the irtNP package.
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The data was analyzed using the L-MP model fitted to as high as 11th order of the

monotonic polynomial (k = 5). The estimated curve heights from the Nonparametric

Bayesian model with 2PL function as the prior were provided by the author of the

irtNP package. The estimates are based on 20,000 updates with a burn-in period of

5000 points and a thinning interval of 10. There are 801 evaluating points equally

spaced between −4 to 4. The plots for some selected items are shown in Figure 6.3.

The comparison between the L-MP model and the Nonparametric Bayesian model

finds that the estimates from these two models agree well for most of the items,

especially when the data can be approximated using the standard logistic function.

For example, for item 4 and item 5 in Figure 6.3, the estimated curves from these two

methods are almost identical. There are some items for which the standard logistic

functions are not sufficient, for example, item 2, item 11, item 12, item 14, item 18,

item 23 and item 24 in the figure. Among these items, the main trend of the estimated

ICCs from these two models agrees reasonably well with slight deviations in the tails.

For example, the AIC selects the k = 2 model for item 18. The estimated ICC from

the L-MP model differs from the one from Nonparametric Bayesian in both tails. For

this particular item, the one from the L-MP model seems agreeing with the empirical

points on the tails better.

Figure 6.4 plots the estimates of abilities from the L-MP model with different

selection criteria against the estimates from the Nonparametric Bayesian model. If

two approaches give consistent solution, the points will scatter around the y = x line.

From the three graphs in Figure 6.4, regardless of what model selection criterion was

used, the estimates from these two methods agree very well.

Overall speaking, the L-MP model and the Nonparametric Bayesian model agree

with each other for most of the items. For the items that are truly following a stan-

dard logistic curve, both models are able to produce estimates close to the standard
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2PL function. When the data are not following the standard logistic functions, the

2PL model will fit the data poorly, while the L-MP model and the Nonparametric

Bayesian model are usually able to produce estimated curves that capture the data

characteristic better.
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Figure 6.1: Estimated ICCs for some selected items from TESTGRAF and L-MP (psy-
chology 101 data). “TG” represents TESTGRAF; the red curve LMP-k0 is the L-MP model
with standard logistic curve; the green curve is the L-MP model selected by AIC criterion;
LUP represents the logistic function with unconstrained polynomial.

110



Figure 6.2: Comparisons of θ̂s from TESTGRAF and L-MP (psychology 101 data).
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Figure 6.3: Estimated ICCs for some selected items from Nonparametric Bayes and L-MP
(elementary statistics exam data).“NB” represents Nonparametric Bayesian model; the red
curve LMP-k0 is the L-MP model with standard logistic curve; the green curve is the L-MP
model selected by AIC criterion; LUP represents the logistic function with unconstrained
polynomial.
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Figure 6.4: Comparisons of θ̂s from Nonparametric Bayesian model and L-MP model
(elementary statistics exam data).
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CHAPTER 7

DISCUSSION AND FUTURE DIRECTIONS

The 1PL, 2PL and 3PL models have been the dominant IRFs for binary response

data since IRT was developed. Although they have been shown to be useful models,

they can not handle all data. The L-MP model is a more general model which includes

the 1PL or 2PL as special cases. The idea of having a more flexible model with a

higher degree polynomial helps to improve the model-data fit when the ordinary 1PL

or 2PL model is not adequate.

A surrogate-based two-stage procedure is used to estimate the parameters in the

L-MP model. At stage one, it starts with normalized first principal component scores

as ability surrogates and then estimates the item curves by minimizing the negative

log likelihood function. At stage two, the EAP estimates of abilities are obtained.

This procedure can also be viewed as a modified version of the JML estimation

method truncated after the first iteration. The estimation procedure is simple and

straightforward. The estimates for the L-MP using this estimation technique have

been shown to be of reasonably accuracy. When the true model is a 2PL model, the

estimates from L-MP are very close to MML, and much better than JML. When the

true model is not the standard logistic function, the 2PL model is not adequate for

many items. The L-MP function works better to capture those characteristics. The

comparisons between L-MP and the other nonparametric procedures like TESTGRAF

(Ramsay, 1991) and the irtNP (Duncan & MacEachern, in press) when the true model
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is a mixed normal distribution also show that it can provide similar estimates to those

nonparametric procedures in terms of the RIMSE for item curves, RIMSEθ and the

rank correlations for abilities.

This surrogate-based two-stage estimation method for the L-MP model tries to

estimate the item parameters and the ability parameters jointly, but no iterations

between item parameters and abilities are made. The use of the first principal com-

ponent scores instead of test scores as ranking basis as in TESTGRAF greatly re-

duces the chance of tied ranks. Although the estimates of item parameters might

not converge to exactly the true values since surrogates are only approximations to

the person parameters, simulation results show that this procedure yields very good

approximations when the sample size increases.

Using the normalized principal component scores as surrogates of the abilities

at stage one of the estimation procedure makes it greatly dependent on normally

distributed abilities. For the simulation studies in Chapter 5, abilities are all drawn

from standard normal distributions truncated at ±3. Although this is an assumption

that is used very frequently in educational testing, it could happen that for some

tests, another distribution for the latent trait is preferable. Woods (2005) proposed

a spline-based method to estimate the ability distributions.

Only binary response data have been considered here. However, this method

can be extended to other settings, for example, for the 3PL model or for ordered

response data. For multiple choice items, future work can consider providing option

characteristic curve for each incorrect option.
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