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ABSTRACT

The use of data mining techniques for the classification of shape and structure

can provide critical results when applied biomedical data. On a molecular level, an

object’s structure influences its function, so classification based on structure can lead

to a notion of functional similarity. On a more macro scale, anatomical features can

define the pathology of a disease, while changes in those features can illustrate its

progression. Thus, structural analysis can play a vital role in clinical diagnosis. When

examining the problem of structural or shape classification, one would like to develop

a solution that satisfies a specific task, yet is general enough that it can be applied

elsewhere.

Before any analysis process can begin, however, the data must be transformed into

an appropriate input. There are a wide variety of modeling methods to chose from, but

ideally, one would like the transformation process to satisfy the following criteria: 1)

capture the clinically- or biologically-relevant features, 2) be computationally feasible,

3) reduce the dimensionality of the data and 4) provide easily interpretable results.

It is usually impossible to completely satisfy all four criteria with a single modeling

method, so sacrifices must be made. In many fields, there are certain domain-specific

methods that are commonly used to model data. While they might provide acceptable

performance for the application in question, they may also be specific to a single

researcher, making the comparison of results impossible.
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In this work, we propose a workflow that can be used to model and analyze

biomedical data, both static and time-varying. This workflow consists of four general

stages: 1) Modeling, 2) Biomedical Knowledge Discovery, 3) Incorporation of Domain

Knowledge and 4) Visual Interpretation and Query-based Retrieval. For each stage

we propose either new algorithms or suggest ways to apply existing techniques in a

previously-unused manner. Where appropriate, we compare against traditional or

accepted standards. Not every technique will be appropriate or effective on all types

of data, but we hope that researchers can use our work as a guide in order to determine

the most appropriate modeling and analysis path for their particular application.

We present our work as a series of case studies that implement various stages of the

above workflow. Through these case studies, we also propose and address a number of

specific research questions. We show that generalized modeling methods can be used

to effectively represent data from several biomedical domains. We detail a multi-stage

classification technique that seeks to improve performance by first partitioning data

based on global, high-level details, then classifying each partition using local, fine-

grained features. We create an ensemble-learning strategy that boosts performance

by aggregating the results of classifiers built from models of varying spatial resolu-

tions. This allows a user to benefit from models that provide a global, coarse-grained

representation of the object as well as those that contain more fine-grained details,

without suffering from the loss of information or noise effects that might arise from

using only a single selection. Finally, we propose a method to model and characterize

the defects and deterioration of function that can be indicative of certain diseases.
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CHAPTER 1

INTRODUCTION

The falling cost and increasing power of modern computing technology has rev-

olutionized the fields of medicine and biology. Doctors and scientists are able to

collect and store data as never before. Gene chips, for instance, allow clinicians to

simultaneously measure the presence of dozens, or even hundreds, of blood analytes

and proteins. Wireless technology gives pacemaker recipients the ability to upload

heartrate information directly to their physician, increasing the level of care without

requiring the patient to leave the house. Imaging technologies such as ultrasound

and fMRI can provide a non-invasive, real-time glimpse into the inner workings of

the body. Unfortunately, while both the number of sources and amount of data gen-

erated from them has increased by leaps and bounds, the ability of a single person

to comprehend this data has not. To that end, the field of data mining has arisen to

help researchers discover interesting patterns in large datasets.

One particular application of data mining has been its use in the analysis of struc-

ture or shape-based biomedical data. There are a number of reasons for examining

structure-based data. On a molecular level, an object’s structure influences its func-

tion, so determining the structural similarity between two objects can lead to a notion

of functional similarity. On a more macro scale, anatomical features can define the
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pathology of a disease, changes in those features can illustrate its progression. Thus,

one would like to determine and characterize any interesting relationships that exist

between the structure of an entity and its function. Most biomedical datasets are so

large and complex, however, that it is impossible to find anything but the most trivial

of relationships without the aid of advanced computational techniques. By utilizing

such procedures, one can implement the semi-supervised or automated discovery of

interesting relationships, which greatly speeds up the discovery process and in most

cases, improves the quality of results as well.

At the most basic level, the output of a traditional data mining algorithm is a set

of features deemed to be “interesting.” If the data consists of medical examinations,

then these features could differentiate individuals belonging to patient classes such as

healthy and diseased. In the protein domain, they might distinguish between different

functional groups. While one might be interested in these features in their own right,

typically their discovery is just a step in the overall analysis process. Once a set of

distinguishing attributes has been obtained, the next stage often involves setting up a

system to indicate their presence or absence in an object. This is the principle behind

computer-aided diagnosis.

In some applications, the criteria for a diagnosis may be as basic as the detection

of a particular antibody in the blood. When this is the case, it is sufficient for a

system to provide a simple yes or no decision. In diseases that are manifested by

the existence or absence of certain physical characteristics, however, the decision

might not be so cut and dry. A patient could present some of the distinguishing

features, but not others, or could present all the features, but to a lesser degree than

expected. In these borderline cases, the reasoning behind a decision becomes just as
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important as the decision itself. Therefore, having a way to interpret the criteria used

in classification can provide a great benefit to researchers and clinicians, providing a

safety check that could limit some of the liability that might arise from relying purely

on a single answer from a computer.

1.1 Challenges in Biomedical Data Analysis

Systems designed to analyze biomedical data can yield enormous benefits, but

there are a number of pitfalls that must be addressed if they are to be successfully

deployed. The greatest challenges in structure-based biomedical data analysis are

usually caused by the data itself.

One of the biggest problems with structure-based biomedical data is noise. Non-

invasive imaging techniques like MRI, NMR and ultrasound are inherently noisy.

Trying to make a decision based on an image of the inside of the body taken from

the outside implies the acquisition of a clean signal is both extremely crucial and

incredibly difficult. Even the most advanced instruments and techniques must allow

for some degree of uncertainty, so one cannot assume that the data obtained from

them will be free of noise.

Another challenge that must be faced is the fact that many datasets contain some

missing values. With cross-sectional datasets where one might be comparing isolated

examinations, this might not be a serious issue. When one is comparing between

individual examinations, this just reduces the size of the dataset. In longitudinal

datasets consisting of examinations taken over several years, however, missing values

can be much more problematic, as patients miss appointments or drop out of studies.
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When this occurs, decisions must be made whether to include these patients in the

analysis and if so, how to handle the missing information.

In many structure-based datasets, a single object can be represented by thousands

of points. Trying to use traditional analysis techniques on such an object is difficult

at best. In general, the raw instrument data is too unwieldy to work with directly,

so before any analysis can occur, one must transform it. A researcher can select from

one of any number of of modeling methods, but ideally, one would like the trans-

formation process to: 1) capture the clinically- or biologically-relevant features, 2)

be computationally feasible 3) reduce the dimensionality of the data and 4) provide

easily interpretable results. It is usually impossible to completely fulfill all four re-

quirements with a single modeling method, so sacrifices must be made. However, it

should be noted that if the chosen transformation does not highlight those attributes

that distinguish between the features of interest, then a different method must be

selected, no matter how well it satisfies the other criteria.

Ideally, one would like to use modeling techniques that are as general and as

applicable to as many domains as possible. A wide variety of biomedical instruments

exist to measure shape and structure and they use a number of different techniques

to do so. This means that a single entity can be represented by several different

modalities. Having generalized modeling techniques that can be applied to these

different modalities would keep researchers from constantly having to reinvent the

wheel. Unfortunately, many transformations are chosen specifically for their ability

to accentuate certain aspects of the data. Adding to the challenge, even if one allows

for different data types, what is considered to be interesting in one domain is often
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not in another. The adage “one man’s trash is another man’s treasure,” or the more

scientific “one man’s signal is another man’s noise1” perfectly capture this dilemma.

Along these same lines, there is a growing problem within the scientific commu-

nity involving the inability or failure of individuals to communicate across disparate

domains. While a researcher in vision science and a scientist in protein structural

informatics may both be interested in biomedical data modeling and classification,

they may not believe that a modeling technique that can be used to classify the shape

of the cornea may also be effective in capturing the structure of a protein molecule.

Often, if a relationship between the data is not immediately apparent, there is a re-

luctance to expend any effort to test whether such a “foreign” technique would be

applicable. This reluctance causes researchers to focus only on those techniques that

have shown to be successful in the past. While a technique may provide an adequate

solution to a problem, it might not be the best solution, leading, in essence, to a

local optima. It is believed that these challenges, while formidable, can be overcome,

which leads to the premise of this document.

Thesis Statement: The thesis of this work is that it is possible to discover

meaningful information in structure-based biomedical data using generalized modeling

methods and analysis techniques2. Furthermore, we believe that this information can

discovered on data obtained from a number of different source domains. Finally, we

believe that the results from any analysis can be presented to the user in a visual and

easily-interpretable manner.

1Here the traditional term man is used, but it actually refers to the gender-neutral person or
human. Its use is simply a matter of preference and no disrespect is intended.

2Throughout this document, we is used to refer to the author instead of I. It is simply a manner
of style reflecting the writing preference of the engineering and computer science community. Unless
specifically noted, when using we, the author is referring to his own work or work done jointly with
his advisor.
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1.2 A Workflow for the Analysis of Structure-Based

Biomedical Data

In this dissertation, we propose a workflow that can be used to model and analyze

biomedical data, both static and time-varying. This workflow, shown in Figure 1.1

consists of three main stages and one optional stage. We list each stage along with a

short description in the text below.

1. Data Modeling: The first stage of the workflow involves modeling the raw source

data. The number of ways to represent an object is almost limitless, but since a

large amount of structure-based biomedical data is represented as an image or in

an image-like form, we evaluate those techniques that have been used previously

for image analysis. This is simply an attempt to keep the problem tractable

and in some sense, domain-independent. The methods we investigate include

polynomial families such as Zernike, pseudo-Zernike and Legendre as well as

discrete transformation algorithms such as wavelets [2–5]. Before proceeding,

we should note that while we may focus on image analysis techniques to model

our data, the original input is usually not an image. It can be viewed as

an image, but the data was derived by some other means. For example, one

can create a topographical picture of Earth using satellite photos or through

ground-based elevation readings. While our techniques will work on the former,

our data typically takes the form of the latter.

Within the image analysis community, a transformation is typically judged on

its ability to reconstruct an image, often in the presence of additive noise [5–7].

Our standards are slightly different, however. Given two models, if one has a

lower fidelity than the other but results in a a cleaner separation among objects
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of different categories, we are more likely to choose that model as it will likely

to lead to higher performance in the analysis stage.

The input to the modeling stage will be a set of data that has been collected

and cleaned (i.e. formatting removed, no missing values, etc.). This input can

consist of any combination of spatial and temporal information. Therefore, we

divide the overall Modeling stage into two sub-stages: spatial and temporal

modeling. It is possible to use the same techniques to model both types of

data, so this division is more of a semantic distinction. The desired modeling

method(s) will be selected and the data will be subsequently transformed into

a corresponding spatial-temporal feature vector.

2. Biomedical Knowledge Discovery: The purpose of this stage is to discover inter-

esting patterns among the previously-generated spatial-temporal features vec-

tors. It can include cross-sectional data analysis if the input consists only of

spatial information, but will employ longitudinal data analysis if there is a tem-

poral component. It will include many of the standard data mining and ma-

chine learning techniques such as classification and clustering. Many of these

techniques are similar, but there are differences among them. For instance,

classification is the process of predicting or assigning a label to an object based

on its similarity to a group of previously-labeled objects. Clustering, on the

other hand, tries to group objects so that similar objects are close together

and dissimilar objects are far apart. A label is then assigned to each group.

The difference between the two methods is that clustering can handle unlabeled

data, which is useful when working with new information that has yet to be

categorized.
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There are also ensemble-learning techniques that can be used to improve the

quality of results. These techniques rely on the principle that one can create

several different individual learning models (e.g. classifiers) and aggregate their

output to produce a more accurate final decision. We provide a brief overview of

the more commonly used classification, clustering and ensemble-learning tech-

niques in Section 2.2.

Throughout this chapter, we have made mention of the fact that we will work

to discover interesting patterns among the data. This leads to the question of

“what is an interesting pattern and what makes a pattern interesting?” In the

broadest sense, an interesting pattern consists of the features or attributes of

a model or representation that distinguish between the different categories in

the data. These categories, such as patient class or functional group, will often

be domain-specific. When possible, we explain how the features of our model

relate to specific structure-based properties of the data.

In summary, using the spatial-temporal feature vector from the previous stage,

we apply techniques to discover interesting patterns among the data. Depend-

ing on the data and the problem in question, they can include classification,

clustering, or various ensemble-learning strategies.

3. Incorporation of Domain Knowledge: In many cases, it is possible to improve

the quality of the mining results by including domain-specific information. This

can be accomplished by using the additional data as a filter, or even by incorpo-

rating this information directly into the pattern discovery process. We also view

this stage as the location where we would attempt to establish an anatomical
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correspondence between the features of our model and the physical attributes of

the source data. Depending on the modeling method and application domain,

it may not be possible to make such a link, so this stage is considered to be

optional.

4. Visual Interpretation and Query-based Retrieval: Once a set of interesting pat-

terns have been obtained, they need to be presented so the user can get a sense

of the results. This presentation can be provided in numerical form, using tra-

ditional approaches from mathematics or statistics, or it can be in a more visual

form, using heat maps or decision surfaces to illustrate areas of interest. Fur-

thermore, we intend for this stage to contain additional, higher-level discovery

methods such as database queries.

As indicated in the diagram it is possible to return to a previously-visited stage

in order to change the modeling or discovery techniques in an attempt to improve

the results. The final output of this workflow would be information that can be used

to assist in a decision about the data, such as a disease diagnosis or a functional

classification. It is not intended to serve as the sole justification for a decision, merely

to support it.

For each stage we propose new algorithms or suggest ways to apply existing tech-

niques in a previously-unused manner. Where appropriate, we compare against tra-

ditional or accepted standards. While not every technique will be appropriate or

effective on all types of data, we hope to provide researchers with results so they can

make an informed decision about the modeling and analysis path that may work best

for them. Additionally, by creating a workflow that allows for multiple data types and

modeling methods, we hope to allow researchers to quickly test whether a previously
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Figure 1.1: Diagram of proposed workflow.

unconsidered approach can yield important insights into their respective problems.

It is our hope that this flexibility will foster further collaboration or the exchange of

ideas and research methods across domains.

Rather than rely on a single dataset, we choose to evaluate our methods on several

different data sources. It is extremely difficult to obtain a dataset that is challenging

enough to require both complex spatial modeling and robust longitudinal data anal-

ysis. Most existing real-world datasets tend to lean one way or the other. Therefore,

it is unlikely that a single dataset will require the use of every method discussed

here. That is why we propose a generalized workflow and not a specific end-to-end

application.

We validate our approach through several case studies and subsequent extensions

that illustrate how a researcher would proceed through the workflow. These case stud-

ies rely on datasets that were taken from two different biological domains. The first is
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the protein domain. We study several datasets that were constructed from publicly-

available information, primarily in the form of three-dimensional structural coordi-

nates and attributes related to the primary structure or amino acid sequence of each

protein. These datasets are derived from from online databases such as the Protein

Data Bank (PDB) and Structural Classification of Proteins database (SCOP) [8, 9].

The second domain used in our validation is that of vision science. From this domain

we obtain two datasets relating to the human eye. The first consists of information

relating to the topography of the corneal surface, with each object labeled as normal,

post-operative, or having keratoconus (diseased). The second contains visual field

assessments that represent the results of an early-stage glaucoma study. Unlike our

other datasets, which are purely spatial in nature, the visual field dataset includes

patient examinations taken over a number of years, providing the opportunity to per-

form longitudinal data analysis. The dataset is known to include patients who are

normal (healthy), those who are suffering from glaucoma and individuals who are

believed to be in the early stages of the disease.

1.3 Contributions

While we present our work as a series of case studies and extensions, we also

address a number of specific research questions. We categorize these contributions

by workflow stage. In instances where the research spans several stages, we list them

based on the stage where they show the greatest novelty. They are as follows:

1. Modeling:

• We provide a method to generate a compact representation of 3D protein

structure. We transform the 3D structural coordinates into a 2D distance
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matrix and apply a 2D wavelet decomposition, treating the resulting co-

efficients as a feature vector. Our model yields improved performance

over existing representations in terms of both classification and database

retrieval accuracy.

• We detail an approach that can be used to create a stand-alone model

of protein sequence by applying a wavelet decomposition to the normal-

ized results of the PSI-BLAST alignment algorithm. This model pro-

vides comparable classification accuracy to existing solutions that rely on

computationally-expensive kernel methods, while also providing a repre-

sentation that can be used in query-based applications such as database

retrieval.

• Previous experiments have shown the effectiveness of using Zernike poly-

nomials to model the surface of the cornea [10–12]. We also examine the

use of wavelets, pseudo-Zernike and Legendre polynomials, though they

fail to provide improvement in classification accuracy over Zernike-based

models.

2. Knowledge Discovery:

• We show that one can use spatial modeling methods and decision tree

classifiers to adequately distinguish between the corneas of three patient

classes.

• We create an ensemble-learning strategy that improves classification per-

formance by aggregating the results of individual classifiers built from mod-

els of varying spatial resolution or polynomial complexity. This approach
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allows a user to benefit from models that provide a global, coarse-grained

representation of the object as well as those that contain more fine-grained

details, without suffering from the loss of information or noise effects that

might arise from using only a single selection.

• We detail a multi-stage classification technique that seeks to improve per-

formance first by partitioning data based on global, high-level details, then

classifying each partition using local, fine-grained features. We show the

utility of this approach by applying it to a well-studied protein dataset

that contains a large number of classes, many of which contain only a few

members.

• We propose a tunable method of modeling the visual field that can be used

to highlight and detect defects and abnormalities. This model can also be

used to characterize the change in a given field over time. Our techniques

can be used in applications like classification or the detection of outliers

and anomalies.

3. Incorporation of Domain Knowledge:

• We show that given a structure-based representation of a protein molecule,

one can include physio-chemical properties to improve the accuracy of

decision tree classifiers.

• Using a set of defintions that describe a number of common visual field

defects [13], we create a series of templates that allow us to characterize

how well the visual field of a patient matches a particular category of

abnormality.
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4. Visual Interpretation and Query-based Retrieval:

• Given a spatial model of the surface of the cornea, we provide a method to

visualize the results of a decision tree classifier, highlighting the anatomical

features of the surface that are important for classification.

• We show that our wavelet representations of a protein molecule can be

used to allow for fast and efficient structural queries, on both a global

and sub-structural level. They can also be used to retrieve objects using

sequence-based information. We also show that, compared with existing

approaches, this representation results in superior performance in terms of

retrieval accuracy, memory usage and query execution time.

• We detail techniques to visualize abnormalities that are present in a pa-

tient’s visual field examination.

We also make a number of contributions that are specific to each of the application

domains in our study. We feel these efforts will help to spur advances in each field.

• In the protein domain, we show that it is possible to use wavelets to derive a

model of the protein based on sequence or structure. We also propose an ad-

ditional technique that can be used to retrieve proteins based on shared local

substructures. These representations result in compact, independent feature

vectors that could be leveraged to mine the results of large-scale folding simu-

lations [14].

• In representing corneal topography, we validate previous work that shows one

can use Zernike polynomials to effectively model the surface of the cornea, and
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that those models can be used to differentiate normal patients from diseased [15].

We develop techniques to highlight the surface features deemed important in

this differentiation and we provide a technique that uses classifiers built from

multiple surface models to boost classification accuracy above 90%. This is often

cited as the minimum level of accuracy at which clinicians are comfortable with

working with an automated decision support system.

• Finally, in our work with the visual field, we develop a method that allows

for the automatic, yet user-tunable, categorization of the visual field examina-

tion history of a patient. Our system can assign a label to a patient based on

the overall abnormality of their visual field, the progression or change between

individual exams, or using both criteria. In addition, our algorithm has the

added capability of determining whether an entire examination history is ab-

normal or anomalous. Through our experimental evaluation, we find that our

approach yields excellent results in terms of accuracy, reporting greater than

90% agreement with a domain expert’s classification.

1.4 Organization

In the next chapter we provide a brief overview for each of the knowledge discovery

algorithms used in the creation of our techniques. We then present several case

studies that highlight the methods we developed for the various stages of our proposed

workflow. The first covers our experiments on the modeling and classification of

corneal shape and an approach to visualizing those classification decisions. Chapter 4

contains our work in protein classification and our initial efforts in the wavelet-based

modeling of protein structure. We also detail a technique that uses a multi-stage,
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hierarchical approach to improve classification performance. Our final case study

involves our attempts to model visual field abnormalities and characterize the change

in a visual field over time. In Chapter 6, we discuss extensions of our wavelet-based

methods of modeling both protein sequence and structure and illustrate how those

models can be used for effective query-based protein retrieval. We follow with an

ensemble-learning technique that can improve classification accuracy by aggregating

the results of classification models built from multiple spatial resolutions of the source

data. We conclude with a discussion of our results and detail our plans for future

work in Chapter 8.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter contains information on the mathematical methods used to model

our biomedical datasets as well as details on the classification algorithms used in this

work. Unless otherwise noted, all mathematical formulae are given using the original

notation from the source material.

2.1 Modeling Methods

In this section we cover the basic mathematical properties of the Zernike, pseudo-

Zernike and Legendre polynomials as well as the discrete wavelet transform.

2.1.1 Zernike Polynomials

Zernike polynomials are an infinite series of circular polynomial functions that are

orthogonal over a normalized unit circle and consist of three elements [16]. They have

been applied to numerous problems including biometric security, rainforest manage-

ment, and automated character recognition [17–19]. The first element is a normaliza-

tion coefficient. The second element is a radial polynomial component and the third,

a sinusoidal angular component. The general form for Zernike polynomials is given

17



by:

Zm
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(2.1)

where n is the radial polynomial order and m represents azimuthal frequency. The

normalization coefficient is given by the square root term preceding the radial and

azimuthal components. The radial component of the Zernike polynomial (R), the

second portion of the general formula, is defined as:

Rm
n (ρ) =

(n−|m|)/2
∑

s=0

(−1)s(n − s)!

s!(n+|m|
2

− s)!(n−|m|
2

− s)!
ρn−2s (2.2)

Note that the value of n is a positive integer or zero. For a given n, m can only take

the values −n, −n + 2, −n + 4, . . . , n. In other words, m− |n| = even and |n| ≤ m.

Thus, only certain combinations of n and m will yield valid Zernike polynomials. Any

combination that is not valid simply results in a radial polynomial component of zero.

The radial component also satisfies the orthogonality relation:

∫ 1

0
Rm

n (ρ)Rm
n′(ρ)ρdρ =

1

2(n + 1)
δnn′ (2.3)

where δnn′ is the Kronecker delta.

Rather than refer to each term with the two indexing scheme using n and m, each

term is labeled with a number j that is consistent with the single indexing scheme

created by the Optical Society of America [16]. The relation between j, n and m is

as follows:
j = 1

2
(n(n + 2) + m)

n = ⌈1
2
(−3 +

√
9 + 8j)⌉

m = 2j − n(n + 2)
(2.4)

where ⌈·⌉ is the ceiling operator.
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Polynomial Azimuthal Frequency (m)
Order (n) -4 -3 -2 -1 0 1 2 3 4

0 0
1 1 2
2 3 4 5
3 6 7 8 9
4 10 11 12 13 14

Table 2.1: Combinations of radial polynomial order (n) and azimuthal frequency (m)
that yield the 15 terms comprising a 4th order Zernike polynomial.

Figure 2.1: Graphical representation of the modes that constitute a 4th order Zernike
polynomial. Each mode is labeled using the single indexing convention.
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Polynomials that result from fitting our raw data with these functions are a col-

lection of orthogonal circular geometric modes. Examples of the first 15 modes (rep-

resenting a 4th order Zernike polynomial) can be seen in Figure 2.1. The label un-

derneath each mode corresponds to the jth term listed in Table 2.1. The coefficients

of each mode are proportional to its contribution to the overall topography of the

original image data. As a result, we can effectively reduce the dimensionality of the

data to a subset of polynomial coefficients that represent spatial features from the

original data as the magnitude of discrete orthogonal geometric modes.

2.1.2 Pseudo-Zernike Polynomials

Pseudo-Zernike polynomials are another family of orthogonal polynomial functions

[5]. Like Zernike polynomials, these functions are an infinite series of circular modes

orthogonal a normalized unit circle. The general form for pseudo-Zernike polynomials

is given by:

Pm
n (ρ, θ) =



















√

2(n + 1)Sm
n (ρ) cos(mθ) for even n,m 6= 0

√

2(n + 1)Sm
n (ρ) sin(mθ) for odd n,m 6= 0

√

(n + 1)Sm
n (ρ) for m = 0

(2.5)

Similarly, the radial portion of the pseudo-Zernike polynomial (S) is defined as:

Sm
n (ρ) =

n−|m|
∑

s=0

(−1)s(2n + 1 − s)!

s!(n − m − s)!(n + m + 1 − s)!
ρn−s (2.6)

and is related to the radial component of the Zernike series in the following manner:

ρSm
n (ρ2) = R2m+1

2n+1 (ρ) (2.7)

One difference between pseudo-Zernike and Zernike polynomials is that with

pseudo-Zernike polynomials, the only constraint on m is that |m| ≤ n. This re-

sults in the generation of (n+1)2 linearly independent polynomials for a given degree
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Transform 4 5 6 7 8 9 10
Zernike 15 21 28 36 45 55 66

Pseudo-Zernike 25 36 49 64 81 100 121

Table 2.2: Total number of moments for each transformation as a function of the
polynomial order.

n, as opposed to the 1
2
(n + 1)(n + 2) polynomials that are generated for a Zernike

polynomial of the same degree. It has been shown that for the same polynomial order,

pseudo-Zernike polynomials are more robust with noisy data than Zernike polynomi-

als [20]. One disadvantage of using pseudo-Zernike polynomials, however, is their

greater computational cost. This drawback is partially offset by the fact that the

pseudo-Zernike transformation algorithm can be parallelized.

When discussing the above data transformations, we often refer to polynomials of

a certain order (n). Each order is comprised of a varying number of moments. We

provide the number of moments for each order and transformation that we tested in

Table 2.2. Since the number of moments for a given order is not the same for all of

the transformations, that is an issue that must be considered when evaluating the

utility of these methods for analysis purposes.

2.1.3 Legendre Polynomials

Like the Zernike and pseudo-Zernike transformations, the moments produced by

the Legendre transformation are orthogonal. Derived from the Legendre polynomials,

and defined using Cartesian coordinates, the Legendre moment of order m + n of a
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two-dimensional function f(x, y) can be written as:

λmn =
(2m + 1)(2n + 1)

4

∫ 1

−1

∫ 1

−1
Lm(x)Ln(y)f(x, y)dxdy (2.8)

where Lm(x) represents the Legendre polynomial of degree m. This polynomial is

given by the formula:

Lm =
1

2nn!

dn

dxn
(x2 − 1)n (2.9)

The Legendre polynomials form an orthogonal basis set over the interval [-1,1]:

∫ 1

−1
Lm(x)Ln(x) =

2δmn

2(m + 1)
(2.10)

where δmn is the Kronecker delta [5]. Over a square of size N , the discrete approxi-

mation of the Legendre moment can be written as [7]:

λmn =
(2m + 1)(2n + 1)

N2

N−1
∑

i=0

N−1
∑

j=0

Lm(xi)Ln(yj)f(i, j) (2.11)

with the coordinate transformation computed by the following:

xi =
2i − N + 1

N − 1
; yi =

2j − N + 1

N − 1
(2.12)

2.1.4 Wavelets

Wavelets are mathematical functions that, like a Fourier transformation, can be

used to approximate a signal based on a superposition of functions. As with Fourier

transformations, wavelets approximate the data using functions at varying frequen-

cies. Unlike Fourier transformations, however, the frequency components are exam-

ined at different resolutions. This allows for the detection of both low-level, global

trends, and high-level, local features [21]. Another difference between wavelets and

Fourier transforms is in the underlying functions. A wavelet function is a waveform
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of limited duration, with an average value of zero (often called the mother wavelet).

Fourier transforms, on the other hand, use sine or cosine waves, which also have an

average value of zero, but have an unlimited duration.

There are two types of wavelet transformations: continuous and discrete. For our

experiments, we focus on the discrete wavelet transform and thus do not discuss the

continuous version.

Given a decomposition level L and a one-dimensional signal of length N , where

N is divisible by 2L, the discrete wavelet transform consists of L stages. At each

stage in the decomposition, two sets of coefficients are produced, the approximation

and the detail. The approximation coefficients are generated by convolving the input

signal with a low-pass filter and down-sampling the results by a factor of two. The

detail coefficients are generated in a similar manner by convolving the input with a

high-pass filter and down-sampling by a factor of two. If the final stage has not been

reached, the approximation coefficients are treated as the new input signal and the

process is repeated. This process is illustrated in Figure 2.2 (a). In many cases, once

the wavelet transformation is complete, the original signal will be represented using

combinations of approximation and detail coefficients.

To operate on a two-dimensional signal (of size N x N), the decomposition pro-

ceeds as follows: First, the rows are convolved with a low-pass filter and downsampled

by a factor of two, resulting in matrix L (N/2 x N). The process is repeated on the

original signal using a high-pass filter, which leads to matrix H (N/2 x N). The

columns of L are convolved two separate times, once with a low-pass filter and again

with a high-pass filter. After passing through the filters, the signals are downsampled

by a factor of two. This results in a matrix of approximation (LL) and horizontal
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(a)

(b)

Figure 2.2: Illustration of wavelet decompositions. Top (a): 1D decomposition. Bot-
tom (b): 2D decomposition. LP and HP refer to the low-pass and high-pass filters,
respectively. The large black arrows denote the downsampling process.

detail coefficients (LH), respectively (both of size N/2 x N/2). These steps are ex-

ecuted once more, this time on the columns of H, resulting in a matrix of diagonal

(HH) and vertical (HL) detail coefficients (again of size N/2 x N/2). The whole pro-

cedure can then be repeated on the approximation coefficients contained in matrix

LL. Figure 2.2 (b) provides an overview of this process.

Wavelets have been used in a number of applications, ranging from signal process-

ing, to image compression, to numerical analysis [21]. They play a large role in the

processing of biomedical instrument data obtained through techniques such as ultra-

sound, magnetic resonance imaging (MRI) and digital mammography [22]. Wavelets

have also been used within the protein domain for various applications, though the

reported results have been less than impressive [23].
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2.2 Knowledge Discovery - Classification

In the text below we provide a very brief overview of some of the more popular

classification techniques used within the data mining community. Rather than go into

specific details about each algorithm, we simply cover some of their basic, high-level

principles. For a more in-depth discussion, we refer the reader to one of the several

books on data mining [24,25].

Classification is the process of predicting or assigning a label to an object based

on that object’s similarity to a group of previously labeled objects. An object is

assigned the label of the group or class to which it is most similar. The general

process involves taking a set of training data and constructing a classification model

that can discern between objects of different classes based on certain criteria. Then,

given a new object or set of objects (often referred to as target or testing data), using

the previously constructed classification model, the classifier assigns a label.

2.2.1 Bayesian Classifiers

Bayesian classifiers are based on Bayes’ theorem, which can be formally stated as:

P (h|xi) =
P (xi|h)P (h)

P (xi)
(2.13)

where P (h|xi) represents the posterior probability, P (h) the prior probability associ-

ated with hypothesis h and P (xi) is the probability of occurrence for data value xi.

Finally, P (xi|h) is the conditional probability that given a hypothesis h, xi satisfies

it.

The simplest Bayesian classification method is the Näıve Bayes classifier [26]. A

Näıve Bayes classifier reaches a decision for an object by calculating the probability
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of that object belonging to each of the possible classes and choosing the label with

the highest probability. This is done by calculating the contribution of each feature

(or attribute) to a class as a conditional probability. These values are combined to

arrive at a prediction. Mathematically, this is written as:

P (xi)|Cj) =
n
∏

k=1

P (fik|Cj) (2.14)

where xi is a tuple in the dataset, Cj is a class, and fik represents the value of xi for

attribute fk.

While a Näı’ve Bayes classifier is simple and easy to construct, it is based on

the inherent assumption that the features are conditionally independent, hence the

“näıve” label. This assumption is not always valid, however. Even so, they have

a long history in classification problems and have been shown to provide very good

results even when the features are not independent [27]. In addition, the classification

model is highly interpretable, in that a user can manually exam the probability values

assigned to each attribute.

2.2.2 Decision Trees

Decision tree classifiers include some of the most popular classifiers in use today.

The principle behind a decision tree is to select an attribute at each node and divide

the feature space into increasingly fine-grained regions. The class label of an object is

based on the final region in which it lies. One benefit of decision trees is that they are

transparent, meaning the user can inspect the actual tree produced by the classifier

to examine the features used in classification. This greatly increases the utility of the

classifier and is helpful when used as a basis for patient diagnosis.
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While there are many different decision tree algorithms, here we focus on the ID3

family of decision trees. ID3-based decision trees [28] rely on the principle of entropy

to partition the search space. Entropy (H) represents the amount of disorder in a

system. It is formally defined as follows:

H(p1, ..., pn) =
n
∑

i=1

(pi log(1/pi)) (2.15)

In the case of classification, entropy is used to represent the ratio of disagreement

between the class labels of the objects in a given partition. If all of the objects in a

partition have the same label, the entropy is zero. Thus, at each node in the decision

tree, an ID3-based algorithm selects the feature that best minimizes the entropy of the

partition. The original ID3 algorithms based their splits on the following equation:

Gain(D,S) = H(D) −
s
∑

i=1

P (Di)H(Di) (2.16)

where D represents the current state and Di represents the state after choosing one of

s possible splits. A drawback to using the above equation as a splitting criteria is that

Gain would be maximized simply by putting each object into their own partition.

This lead to the development of GainRatio, which takes into account the size or

cardinality of each partition. The GainRatio formula is defined as:

GainRatio(D,S) =
Gain(D,S)

H
(

|Di|
|D|

, ..., |Ds|
|D|

) (2.17)

When testing ID3-based decision trees, we use the C4.5 algorithm [24, 28, 29],

which uses GainRatio. This algorithm is freely available to the public and available

as part of several open-source data mining packages.
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2.2.3 Neural Networks

The neural network is another method of classification that has seen wide use in

patient diagnosis. They are modeled on the way the brain processes information, using

several interconnected processing nodes working in parallel to make a decision [30].

Each network consists of a specified number of input nodes that are connected to

one of possibly several hidden layers consisting of a varying number of processing

nodes. In most of the works that we will examine, the number of hidden layers is

typically set to one. The hidden layer is connected to a set of output nodes, one

per class label. Given a set of training data, the neural network will then attempt

to learn a function that minimizes the predictive error. Neural networks provide a

number of benefits: they are highly tunable for a specific application, have been shown

to be more robust to noise than decision trees, and when properly configured, can

provide very good results. However, they also have several drawbacks, including time

and complexity of construction, a lack of overall interpretability, and the potential

for overfitting [31]. Despite these drawbacks, their use remains popular within the

biomedical community [32,33].

2.2.4 Support Vector Machines

Support Vector Machines comprise another popular class of statistical learning

algorithms. Given a set of binary-labeled examples, the support vector machine

attempts to construct a maximum-margin hyperplane between the classes. The re-

sulting hyperplane then functions as a linear classifier. The original support vector

machine algorithms were extended to allow for non-linear classification by allowing

an n-dimensional feature vector to be mapped to a higher-dimension feature space
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using a kernel function. Within this feature space, a linear classifier is constructed,

even though it may be non-linear in the original input space [34].

2.2.5 Other Methods

There are a number of classification methods that do not fall into any of the

above categories. These include many statistical and distance-based methods. One

such method is the K-Nearest Neighbor classifier [35]. A nearest-neighbor classifier

uses the pairwise distance (or similarity) between objects to assign a classification

label. Given a piece of target data, the similarity between each object is computed.

Then, the classifier looks at the labels of the K nearest neighbors and assigns to the

target the majority label.

Still yet another alternative is a classifier called Voting Feature Intervals [36]. The

Voting Feature Intervals algorithm is similar in spirit to the Näıve Bayes classifier in

that each feature is considered independently, but rather than calculate a conditional

probability for each attribute, the dimensional space of each feature is divided into a

series of intervals with a number of votes being assigned to each. Each feature votes

for a particular class, and the class with the largest number of votes becomes the

predicted class for the object.

2.2.6 Ensemble-learning Techniques

Several techniques have been applied to existing classification methods in an at-

tempt to improve accuracy. These techniques are often called or ensemble− learning

techniques because they combine the output of several other methods to achieve their

results. The principle behind ensemble-learning is that one can combine a number of

classifiers with a larger error to create an overall classifier with a smaller error. The
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intuition is that a group of experts usually provide more accurate decisions than any

single expert.

As an example, suppose we have a ensemble-classifier that takes the decisions of

n individual classifiers and makes a final decision based on the label chosen by a

majority of those n classifiers. If each individual classifier has an error rate of ǫ, the

overall error of the ensemble-classifier can be expressed using the following equation:

n
∑

i= n

2
+1

(

n

i

)

ǫi(1 − ǫ)n−i (2.18)

As long as the errors committed by the individual classifiers are uncorrelated and

as long as the error rate of the base classifier is less than the probability of a correct

random guess (in a binary decision problem, the probability of a correct random guess

is 1/2, while in a three-class problem, that probability is 1/3), ensemble-classification

will provide an increase in classification accuracy. Ensemble-learning strategies have

been shown to yield the greatest benefit when coupled with weak classifiers, i.e.

classification strategies with error rates only slightly less than the probability of a

correct random guess. The weaker the base classifier, the greater the benefit.

Two ensemble-learning techniques that we employ are boosting [37] and bag-

ging [38]. As is the case with many ensemble-learning strategies, boosting and bagging

reach a decision through the aggregation of multiple hypotheses. Both methods take

a user-specified classification algorithm and construct several different classification

models (that number is also user-specified). The results of these models are com-

bined to reach a final decision. When constructing the classifiers, a different sample

of the data is selected (with replacement) at each iteration. The difference between

the two is that bagging draws an independent sample from the data at every itera-

tion, whereas boosting draws a weighted sample, with misclassified objects carrying
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a higher weight during the training process. Since a misclassification represents an

object that was not properly captured by the underlying model, we want to put more

emphasis on those objects that are “problematic.” In addition to drawing a sam-

ple that is biased toward misclassified objects, when the final classifier combines the

results of the underlying classifiers, boosting will put more weight on the classifiers

built from the samples containing the misclassified objects, as they are believed to be

more accurate. Bagging, on the other hand, weighs the contribution of all underlying

classifiers equally. Since both techniques draw random samples from the data at each

iteration, they are most effective when paired with “unstable” classifiers, or classifiers

that are sensitive to minor perturbations in the training data. While boosting and

bagging have been shown to significantly improve the results of weak classifiers, this

improvement comes with the price of reduced interpretability and an increase in time

needed to construct the classification model.

Another ensemble-learning strategy that we examine is Random Forests [39]. Un-

like boosting and bagging, which can be combined with any weak classification strat-

egy, the Random Forests algorithm relies solely on decision trees. The Random Forests

algorithm works by constructing a large number of trees, each of which votes on a

class label for an object. A majority vote is then taken to reach an overall decision.

Each tree is built from a random sample of the data, much like what occurs when one

creates a bagged decision tree. Unlike a bagged decision tree, however, with Random

Forests, the splitting attribute for each node is selected from a small random sample

of the feature space.

Finally, we consider the RuleFit algorithm [40], which can be viewed as a slightly

less-structured approach to ensemble-learning. Rather than base a decision on the
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votes of several classifiers, the RuleFit algorithm employs a scoring function derived

from an ensemble of rules. Using a decision trees as an example, a rule is equivalent to

the path taken from the root node to any other node (leaf or internal). Traditionally,

to create a rule ensemble, one generates a number of decision trees and converts them

into rule form. Once this ensemble has been created, the RuleFit algorithm uses a

regularized minimization procedure to create a linear weighting. Given this weighting,

one can create a scoring function based on the linear combination of the rules, which

serves as a classifier.

In many clinical applications, the ability to examine the criteria behind a classifi-

cation decision can be as important as the decision itself. In such cases, the increased

performance gained through ensemble-learning techniques may not be worth the cor-

responding loss of interpretability. In addition, if a clinician needs to repeatedly

construct a classifier, or if they are dealing with a large or growing dataset, then the

somewhat poor scalability of many ensemble-learning methods may also be a cause

for concern. If the improvement in classification accuracy is not sufficiently large,

then the use of ensemble-learning methods may not justify the extra time needed to

construct the additional classifiers.

32



CHAPTER 3

CASE STUDY I: MODELING AND CLASSIFICATION OF

CORNEAL SHAPE

This chapter details our attempts to objectively quantify topographical features

obtained from biomedical instrument data to support diagnostic classification and

clinical decision support for eye disease. Specifically, given a three-class dataset where

each record represents the surface features of the cornea, we examine whether it is

possible to reconstruct the surface, capturing the relevant anatomical features needed

for successful classification, while at the same time reducing the dimensionality of the

data.

Our first set of experiments examine the performance of models generated from

two different orthogonal polynomial families, the Zernike and pseudo-Zernike polyno-

mials. We compare these models in terms of fidelity to the original source data and

evaluate their performance under several different classification and meta-learning

strategies [41]. We then present a method that leverages the features of the Zernike-

based models to highlight the anatomical features that play a role in classifying and

partitioning the different patient groups [42]. Finally, we examine the feasibility of

using alternative modeling methods such as wavelets and Legendre polynomials to

create surface representations and their subsequent performance in the classification
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process. We begin by providing some biological background and a discussion of related

work.

3.1 Biological Background

Image formation in the human eye begins when entering light is focused by the

cornea, passes through the pupil, and is further focused by the lens, forming an

image on the retina at the back of the eye. Since light must pass through the cornea,

clear vision depends very much on the optical quality of the corneal surface, which

is responsible for nearly 75% of the total optical power of the eye [43]. The normal

cornea has an aspheric profile that is more steeply curved in the center relative to the

periphery. Subtle distortions in the shape of the cornea can have a dramatic effect on

vision. For this reason, the shape of the corneal surface is measured clinically for the

treatment and diagnosis of eye disease. The process of mapping the surface features

on the cornea is known as corneal topography [44].

3.1.1 Clinical Use of Corneal Topography

The use of corneal topography has rapidly increased in recent years because of

the popularity of refractive surgery and the decreased cost of powerful personal com-

puters. Refractive surgery is an elective surgical treatment intended to reduce one’s

dependence on glasses or contact lenses. The most common surgical treatment per-

formed for this purpose is laser assisted in-situ keratomileusis (LASIK). Corneal to-

pography is used to screen patients for corneal disease prior to this surgery and to

monitor the effects of treatment after surgery.

Another clinical application of corneal topography is the diagnosis and manage-

ment of keratoconus. Keratoconus, a progressive, non-inflammatory corneal disease,
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distorts corneal shape and results in poor vision that cannot be corrected with ordi-

nary glasses or contact lenses. Patients with keratoconus frequently seek refractive

surgery due to their poor vision. However, such treatment exacerbates corneal dis-

tortion and frequently leads to corneal transplant. Thus, corneal topography is a

valuable tool for diagnosis and management of keratoconus as well as for the preven-

tion of inappropriate refractive surgery in this patient group.

3.1.2 Determination of Corneal Shape

The most common method of determining corneal shape is to record an image of a

series of concentric rings reflected from the corneal surface. Any distortion in corneal

shape will cause a distortion of the concentric rings. By comparing the size and shape

of the imaged rings with their known dimensions, it is possible to mathematically

derive the topography of the corneal surface.

Figure 3.1 shows an example of the output produced by a corneal topographer for

a member of each patient class. These represent illustrative examples of each class,

i.e. they are designed to be easily distinguishable by simple visual inspection. The

top portion of the figure shows the imaged concentric rings. The bottom portion of

the image shows a false color map representing the surface curvature of the cornea.

This color map is intended to aid clinicians and is largely instrument-dependent.

Many methods of interpretation exist and in clinical practice, domain expertise

is the usual basis for interpretation. There is a lack of broadly accepted standards

among domain experts and instrument manufacturers about the best way to interpret

the data, which usually results in a qualitative task of pattern recognition from the

false color maps.
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Figure 3.1: Characteristic corneal shapes for each of the three patient groups (easily-
distinguishable examples for illustrative purposes). The top image shows a picture
of the cornea and reflected concentric rings. The bottom image shows the false color
topographical map representing corneal curvature, with an increased curvature given
a color in the red spectrum, decreased curvature in blue. From left to right: Kerato-
conus, indicated by the central steepening of the cornea; Normal; and post-LASIK,
with the typical central flattening of the cornea.

3.2 Related Work

Schwiegerling et al. were among the first to model the shape of the cornea with

radial polynomials [45]. For a fixed polynomial complexity and using a set of videok-

eratoscopic height data representing the corneal surface, they computed the Zernike

representation at each point on the surface, followed by a least-squares fit of the

model to the original data. In a more comprehensive study, Iskander et al. examined

the performance of both Zernike and pseudo-Zernike polynomials, with the goal of

determining which transformation would provide the most accurate reconstruction

of the corneal surface [10]. As one might expect, they found that for a given order,

the pseudo-Zernike polynomials yielded a more faithful representation. However, in a
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follow-up publication, the same group concluded that a 4th order Zernike polynomial

was adequate in modeling the majority of corneal surfaces [11]. Smolek and Klyce

report that Zernike polynomials may fail to model all the information that influences

visual acuity and for this reason, should not be used in clinical diagnosis [46]. While

they raise a valid concern, it is unlikely that any domain-independent transforma-

tion will be able to adequately capture every possible feature while still reducing the

overall dimensionality of the data.

A number of studies that seek to classify corneal shape rely on statistical sum-

maries to represent the data [47–50]. These studies used multi-layer perceptrons

or linear discriminant functions in classification. Smolek and Klyce have published a

number of studies on modeling and classifying corneal topography [33,51]. They have

examined the problem of distinguishing between normal and post-operative corneas

through the use of one-dimensional wavelets and neural networks. They report im-

pressive results, but use a very small dataset in their experiments. Carvalho recently

published a study where he modeled the shape of the cornea using a 4th order Zernike

polynomial and used each of the 15 resulting moments as an input to a neural net-

work with five possible outputs. While his accuracy results are not as high as those

reported by Smolek and Klyce, he does achieve an accuracy of close to 80% [32]. Twa

et at. were the first to examine whether Zernike polynomials could be used with

decision trees for corneal classification [12]. They report 85% accuracy with a single

C4.5 decision tree [29], and values above 90% when they combine a decision tree with

ensemble learning techniques such as boosting or bagging. In a later study, they mod-

eled a dataset using a 7th order Zernike polynomial and compared the performance
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of a C4.5 decision tree against several proprietary and domain-specific classification

strategies, finding it to be equal to or better than competing approaches [52].

3.3 Dataset

The dataset for our experiments in the classification of corneal shape, which we

refer to as the Topography dataset, consists of examination data of 254 eyes obtained

from a clinical corneal topography system, the Optikon Keratron. The data was

examined by an expert and divided into three groups based on the clinical diagnosis.

The divisions are given below, with the number of patients in each group listed in

parentheses:

1. Normal (n = 119)

2. Post-operative myopic LASIK (n = 36)

3. Keratoconus (n = 99)

The difference in corneal shape between the patient groups is as follows: compared

with normal corneas, post-operative myopic LASIK corneas are distorted, but gen-

erally have a flatter than normal center curvature with an annulus of greater than

normal curvature in the periphery. Corneas that are diagnosed as having keratoconus

are also more distorted than normal corneas. Unlike the LASIK corneas, they gen-

erally have localized regions of steeper than normal curvature at the site of tissue

degeneration, but often have normal or flatter than normal curvature elsewhere.

The data files from the corneal topographer consist of a 3D point cloud of approx-

imately 7000 spatial coordinates arrayed in a polar grid. The height of each point

z is specified by the relation z = f(ρ, θ), where the height relative to the corneal
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apex is a function of radial distance from the origin (ρ) and the counter-clockwise

angular deviation from the horizontal meridian (θ). The inner and outer borders of

each concentric ring consist of a discrete set of 256 data points taken at a known

angle θ, but a variable distance ρ, from the origin.

The number of data points is a function of the topographer’s sampling resolution

and should be high enough to capture any surface irregularities that might be present.

It is not feasible, however, to use this raw data as a feature vector for classification.

There is almost no way to guarantee that point X of one record refers to the same

surface location as point X of another. Therefore, in order to make a valid comparison,

we must first transform the data.

3.4 Modeling Topography Using Zernike Polynomials

Our polynomial modeling technique is based on methods described in detail by

Schwiegerling et al. and Iskander et al. [10, 45]. In summary, the data is modeled

using either polynomial transformation method over a user-selected circular region of

variable-diameter centered on the axis of measurement. The generation of the Zernike

and pseudo-Zernike model surface proceeds in an iterative fashion, computing a point-

by-point representation of the original data at each radial and angular location up

to the user-specified limit of polynomial complexity. The polynomial coefficients of

the surface that will later be used to represent the proportional magnitude of specific

geometric features are computed by performing a least-squares fit of the model to the

original data, using standard matrix inversion methods [45].

The polynomials produced in this manner are orthogonal or approximately or-

thogonal. However, it may not necessarily be the case that polynomials fit to discrete
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data using the least-squares process are orthogonal. This is especially true when using

radial sampling and a small number of data points. However, for a large number of

data points, as is the case here, they will be approximately orthogonal [53]. Given a

small number of points, however, a Gram-Schmidt orthogonalization procedure can

be used to ensure orthogonality [54].

Once we have computed the polynomial coefficient vector, we compute the resid-

ual, or root-mean-square (RMS) error between our model and the actual surface data

by the following relationship:

RMS =
1√
D
‖CO − Ĉz,pz‖ (3.1)

with Ĉz,pz representing the surface created using the coefficients computed through

least-squares estimation, CO the original surface elevations (both surfaces stored in

vector form), D the number of data points and ‖·‖ the Euclidean norm. We calculate

the RMS to determine whether using a more faithful representation of the corneal

surface translates into higher classification accuracy. RMS error is just one of many

methods used to evaluate the goodness-of-fit of a model. Alternate measures can be

employed if desired.

3.5 Determining Model Fidelity

Here we cover our experiments in modeling the Topography dataset with Zernike

and pseudo-Zernike polynomials. Unfortunately, there is no consensus within the

vision community as to what parameters one should use when computing a Zernike

or pseudo-Zernike polynomial transformation on corneal topography data. Therefore,

we elect to test and compare a number of different parameter values.
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3.5.1 Experiments

When modeling the surface of the cornea, it is possible to vary both the order of

polynomial complexity and the maximum radius, i.e. the size of the region of interest.

Both values have an effect the computational cost of transforming the data. Changing

the former changes the number of moments or coefficients final feature vector. Varying

the latter changes the number of datapoints used in the transformation. Care must

be taken when selecting this value. If the radius is too small, the relevant surface

features may not be captured. If it is too large, there is a chance that the outer

rings will not contain a “complete” set of data points. This often occurs due to the

presence of a nose or eyelid shadow in the image. Having an incomplete ring will

cause errors in the transformation process, producing a number of unwanted edge

effects. We elected to test four different radii values that we felt were appropriate for

our application: 2.0, 2.5, 3.0 and 3.5 mm.

While we are primarily interested in using these transformations as input for

classification, we would like to know the fidelity of our model to the original surface.

We computed fourth through tenth order Zernike and pseudo-Zernike transformations

on the four radii values mentioned above, yielding a total of 56 transformations for

each record (7 orders * 4 radii * 2 series). To test the effectiveness of the polynomials

as a modeling method, we compute the residual modeling error as a function of the

polynomial order for each radius. The modeling error was calculated by determining

the RMS error between the transformation and the original data record.
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(a) (b)

Figure 3.2: (a) RMS error (µm) for a 4th order polynomial fit as a function of
transformation radius (mm) for each patient class (Kera - Keratoconus, LASIK, Norm
- Normal) and transformation (PZ - pseudo-Zernike, Z - Zernike). (b) RMS error
(µm) as a function of polynomial order. The fit radius is fixed at 3.5 mm. The error
is shown for each patient class (Kera - Keratoconus, LASIK, Norm - Normal) and
transformation (PZ - pseudo-Zernike, Z - Zernike). For clarity, error bars are not
shown, but the magnitude of the standard deviation is typically 40 to 50% of the
mean for the normal and LASIK values and similar in magnitude to the mean for the
keratoconus values.

3.5.2 Empirical Evaluation

We now compare the results of the different spatial transformations on the To-

pography dataset. We use the residual modeling error as our method of comparison.

While it is possible to compute the residual error in modeling left and right eyes,

we only compute the error for right eyes. In our dataset, the post-operative LASIK

class contains patient records representing only right eyes, so to remain consistent,

we just use the right eye transformations when computing error. Please note that

is not uncommon for studies of this nature to focus on only right or left eyes for

analysis [32].

In Figures 3.2 (a) and (b), we present the average model error as a function of

transformation radius (Fig. 3.2 (a)) and polynomial order (Fig. 3.2 (b)). We find
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that residual error for the pseudo-Zernike transformations is about half that of a

Zernike polynomial for the same order. A more sizable difference is found between

the different patient groups. Keratoconus corneas are associated with residual errors

greater than normal eyes and LASIK eyes have approximately the same or slightly

greater residual error than normal. These results have anatomical validity, as a patient

suffering from keratoconus is likely to have much greater distortion of corneal shape

than either normal or LASIK eyes and these distortions will be more difficult to model

accurately.

In addition, residual error increases along with the radius of transformation. As

the radius increases, the number of data points that must be considered increases as

well. This results in a larger surface that must be modeled and since the complexity

of the transformation remains the same, we are left with a larger error. We also find

that in most cases, as the radius of the transformation increases, the residual error

of the pseudo-Zernike transformation grows at a slower rate than the residual error

of a corresponding Zernike transformation. This effect is more pronounced at lower

polynomial orders and agrees with previous studies [20].

Also of note is the fact that residual error appears to be related to the number

of coefficients used in the transformation. For instance, a 7th order pseudo-Zernike

transformation results in a polynomial with 66 coefficients. A 10th order Zernike

transformation will yield a polynomial with 64 terms. Comparing the average residual

errors for these two transformations, we find that they are very similar. Comparable

trends are seen when examining the other transformations with similar numbers of

coefficients (6th PZ and 8th Z, 5th PZ and 7th Z, 4th PZ and 6th Z).
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3.6 Classification Using Zernike Polynomials

This section details our tests to determine whether one can use a corneal surface

model derived from Zernike polynomials to effectively classify the topography dataset.

These experiments involve an extensive comparison of several popular classification

methods to determine which performed best with respect to classification accuracy,

where accuracy is defined as the number of correct classifications divided by the total

number of classifications (expressed as a percentage). The classification methods

that we test include an ID3-based decision tree (C4.5 ) [28], Voting Feature Intervals

(VFI ) [36], Näıve Bayes (NB) [26], Random Forests (RF ) [39] and a neural network

(NN ) [30]. We run each classifier with boosting (Bst) [55] and bagging (Bag) [38],

except for the neural network and random forests, which we do not boost or bag.

We conduct all of our classification experiments using the Weka Data Mining Toolkit

v3.43 on a 2.4GHz Pentium 4 workstation with 512 MB of RAM running Windows XP

and Sun Java2 v1.4.2. All experiments were run using ten-fold cross-validation [56].

For the ID3-based decision tree, we choose C4.5. The Weka version of C4.5 im-

plements Revision 8, the last public release of C4.5 [24, 28,29]. We use the following

parameters in our experiments: binary splitting on attributes, confidence of 0.25, and

a minimum number of 2 instances per node. With the VFI experiments, we set the

bias parameter to 0.6. We keep Weka’s default settings when classifying with Ran-

dom Forests (10 iterations). For the neural network, we use a multi-layer perceptron

trained using back propagation [30]. We evaluate a number of different parameter

settings, but achieved the highest accuracy when the perceptron is set to autobuild

and run for 500 iterations, with a learning rate of 0.3, a momentum of 0.2, and a

3http://www.cs.waikato.ac.nz/∼ml/weka/
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single hidden layer containing as many nodes as there are attributes in the feature

vector.

For the bagging experiments, we set the bag size parameter to 100% and the

number of iterations to 10. The boosting experiments use the AdaBoost.M1 [55]

method with a weight threshold of 100, again with 10 iterations. The base classifiers

that are boosted and bagged use the same parameters as the non-boosted and non-

bagged versions.

3.6.1 Dataset Partitioning

While we are primarily interested in the performance of our models on the en-

tire topography dataset, we are also interested in whether using a simpler, two-class

dataset has any effect on accuracy over the more challenging three-class problem.

Thus, we repeat all of our classification experiments using different subgroups of the

original dataset. The different subgroups, or partitions, are listed in Table 3.1. The

all partition reflects the original dataset, the others the two-class subgroups. One

note on the NL-K partition: The NL-K group combines the normal and LASIK

corneas into one class and places those labeled as having keratoconus into the other.

The intent of this test is to see how well we could distinguish normal eyes (both with

and without surgical treatment) from diseased.

3.6.2 Empirical Evaluation

We now discuss the results of our experiments. In all of the results tables, “Order”

refers to the polynomial order of the transformation (varies from 4 to 10), “Radius”

the maximum radius examined in the data file (2.0, 2.5, 3.0 or 3.5 mm), “PZ” corre-

sponds to a pseudo-Zernike transformation, and “Z” a Zernike transformation. The
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Name Description
all Classify between all patient groups

(Normal, Keratoconus and LASIK)
K-L Classify between Keratoconus and LASIK
K-N Classify between Keratoconus and Normal
L-N Classify between LASIK and Normal
NL-K Combine Normal and LASIK into one group

and classify against Keratoconus.

Table 3.1: Partitions of the dataset used in the various classification experiments.

values listed under the “Dataset” column are the dataset partitions listed in Table 3.1.

For the classifier labels, we generally refer to the full name of the classifier, though we

do abbreviate on occasion. In those instances, C4.5 refers to the C4.5 decision tree;

VFI to Voting Feature Intervals; NB to the simple Näıve Bayes classifier; RF to Ran-

dom Forests; and NN to classification by multi-layer perceptron. Unless otherwise

noted, all classification results are listed as the percentage of correct classification for

the dataset. In each table, we also list, for each polynomial order and transforma-

tion, whether the other classifiers are statistically better or worse than a single C4.5

decision tree. Statistical significance is determined using a paired t-test at the 5%

significance level. Those classifiers that are better than C4.5 are denoted with a ‘v’.

Those that are worse are are marked with a ‘*’.

While we originally conducted our experiments using boosting and bagging with

the C4.5, Näıve Bayes and VFI classifiers, we found they only had a positive effect

on the decision trees. Thus, we have decided only to present the ensemble-learning

results with C4.5. In addition, we focus primarily on the complete (all) dataset.
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Figure 3.3: Classification accuracy as a function of the transformation radius (in mm)
for the standard classifiers tested: C4.5, Voting Feature Intervals (VFI), Näıve Bayes
(NB) and a neural network (NN). The graph depicts results for a 4th order Zernike
transformation on the all dataset partition.

Trying to distinguish between the three patient classes presents the greatest classifi-

cation challenge. We mention results obtained from the other dataset partitions when

germane.

Accuracy versus Radius

When examining the classification results using the standard classifiers, we find

that in most cases, as the radius increases, the classification accuracy increases as

well. We present these results graphically in Figure 3.3. To improve readability, we

limit the graph to just the 4th order Zernike results on the all partition. The 4th

order Zernike results were chosen because they are illustrative of the trends seen with

the other transformations. The numbers for each order over the different partitions

tend to vary slightly, but the overall trends remain the same. The direct relationship
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between accuracy and radius is apparent for every classifier except the neural network

with the higher order pseudo-Zernike transformations (7th and above). In these cases,

accuracy tends to drop as the radius is increased. However, for the Zernike and low-

order pseudo-Zernike transformations, the direct relationship holds. This relationship

is likely due to the fact that when we increase our surface model, we are better able

to capture the surface irregularities that distinguish between the different classes. For

example, with a small radius, a cornea suffering from keratoconus might present as

normal if the corneal bulge is not central. Using a larger radius value decreases the

chance of such a misclassification.

Order versus Accuracy

When discussing the rest of our classification results, we will focus on those

achieved with a transformation radius of 3.5 mm. Using this radius ensures that

we capture most, if not all, of the irregularities that may be present over the mea-

sured diameter of the corneal surface. It also tended to produce the highest accuracy

values. Table 3.2 shows the accuracy results of the classifiers tested on that radius

for each dataset partition. While increasing the radius generally has a positive effect

on classification accuracy, no such trend emerges when the polynomial order of the

transformation is increased.

For the C4.5 classifier, we found that classification accuracy stayed fairly constant

(within one or two percentage points) as the polynomial order of the transformation

was increased from 4 to 10. In addition, there was not a great deal of difference

in classification accuracy between the two transformations. The C4.5 decision trees

consistently provided classification results above 85%, and for some dataset partitions
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(K-L and L-N ), had accuracy results above 90%. The Random Forest classifier re-

mains stable as well, with accuracy ranging between 87% and 90%, which is roughly

the same as for C4.5 with boosting or bagging.

The VFI classifier provided comparable results to the C4.5 classifier. The only

difference is that with the K-L partition, the results became much worse as the poly-

nomial order was increased. This result was especially true for the pseudo-Zernike

transformation. In addition, while the C4.5 readings stayed fairly constant as the

polynomial order was increased, the VFI results tended to follow a bell-shaped pat-

tern, improving until a 6th or 7th order transformation, then decreasing.

The Näıve Bayes classifier provided acceptable results (above 80%) for lower order

transformations, but as the polynomial order was increased, the classification accuracy

dropped rather quickly. The only real exception to this result was when classifying

the L-N partition. For that dataset, classification accuracy remained above 90%,

because the patients within that partition were easily separated by a couple of at-

tributes. Adding the keratoconus patients blurred this separation. As with the VFI

classifier, the drop in the accuracy of the Näıve Bayes classifier is likely due to the

noise that is included in the more complex polynomial models. For these Bayesian-

based strategies, the additional, and largely unnecessary, attributes have an adverse

effect on performance. The neural network also suffers a similar fate, though the effect

is more pronounced on the pseudo-Zernike datasets. Classifiers like decision trees, on

the other hand, essentially ignore the values, which accounts for their stability.

Number of Coefficients versus Accuracy

We next compare the accuracy of Zernike and pseudo-Zernike transformations

with a similar number of coefficients. Previous studies that focused on the fidelity
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Bagged Boosted Näıve Random Neural
Data- C4.5 C4.5 C4.5 VFI Bayes Forests Network

Order Set (PZ) (Z) (PZ) (Z) (PZ) (Z) (PZ) (Z) (PZ) (Z) (PZ) (Z) (PZ) (Z)
4 all 86 87 89 89 90 89 89 84 86 87 90 89 86 85
5 all 86 88 88 90 90v 89 89 88 81 85 90 89 87 85
6 all 87 87 88 90 88 89 88 89 76* 83 88 90 82* 86
7 all 88 85 90 88 90 88 88 88 71* 78* 89 88 78* 86
8 all 86 86 89 89 89 89 85 88 71* 75* 87 89 76* 84
9 all 84 87 89v 89 88 89 84 86 71* 74* 87 88 70* 87
10 all 88 86 90 88 89 89 81* 86 68* 73* 87 87 50* 81*

4 K-L 92 92 95 92 95 95 95 88 81* 82* 96 94 85 85
5 K-L 90 93 93 93 96v 95 93 92 68* 77* 96v 95 85 85
6 K-L 91 94 93 94 94 97 91 93 60* 72* 95 97 83 85
7 K-L 92 94 93 94 96v 96 90 92 54* 66* 95 96 81* 84
8 K-L 92 92 94 93 95 96 82* 89 52* 60* 93 95 81* 85
9 K-L 92 92 95 93 96v 96 76* 88 49* 59* 93 95 76* 86
10 K-L 93 92 93 93 96 96 69* 84 53* 56* 92 94 58* 85

4 K-N 88 89 90 91 91 91 90 91 91 91 90 90 84 86
5 K-N 89 88 91 90 90 90 90 92 87 90 90 91 85 85
6 K-N 90 87 89 89 89 90 90 92 84 89 90 90 83* 85
7 K-N 88 85 90 89 89 88 90 91v 81* 87 90 90 80* 84
8 K-N 87 86 89 89 88 89 90 90 77* 84 90 89 80* 84
9 K-N 85 85 90v 90v 88 89v 89 90v 75* 83 89 90v 77* 86
10 K-N 88 87 91 89 90 90 89 90 73* 80* 89 90 74* 85

4 L-N 95 93 97 95 96 96 94 91 96 96 98 96 98 95
5 L-N 95 94 97 95 96 96 94 91 95 95 98 96 97 97
6 L-N 96 95 97 96 96 96 94 95 95 96 98 98 96 97
7 L-N 97 95 98 96 97 96 92 95 94 94 97 98 97 97
8 L-N 96 95 97 96 96 96 92 94 94 93 97 97 96 98
9 L-N 97 95 97 96 97 95 91 94 93 93 96 96 96 96
10 L-N 96 95 97 96 96 95 91 92 91 94 96 96 95 95

4 NL-K 89 90 91 91 91 91 89 90 87 88 90 91 88 88
5 NL-K 89 90 91 92 91 92 90 90 83* 88 90 91 87 88
6 NL-K 87 89 90 91 91 91 89 90 79* 85 89 91 86 88
7 NL-K 89 89 90 90 91 90 89 91 77* 83* 89 89 85 87
8 NL-K 87 89 90 91 90 91 87 90 77* 80* 88 90 85 87
9 NL-K 87 87 89 90 88 90 86 88 75* 78* 88 89 80* 88
10 NL-K 87 88 90 90 90 89 84 89 76* 79* 88 89 64* 87

Table 3.2: Classification accuracy for Zernike and pseudo-Zernike transformations at
each polynomial order with a radius of 3.5 mm. For a given order and transforma-
tion, those classifiers that are statistically better than a single C4.5 decision tree are
denoted with a ‘v’, while those that are worse are marked with a ‘*’. Significance is
determined using a paired t-test at 5% significance.
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Figure 3.4: Accuracy as a function of polynomial order for the classifiers tested:
C4.5, C4.5 with bagging (C4.5 - Bag), C4.5 with boosting (C4.5 - Bst), Voting Feature
Intervals (VFI), Näıve Bayes (NB), a neural network (NN) and Random Forests (RF).
Graph depicts results for an increasing polynomial order on a 3.5 mm radius Zernike
transformation on the all dataset partition.

of the two transformations largely compared representations of the same polynomial

order [10]. Unlike those studies, we attempt to make an “apples to apples” comparison

by examining representations with a similar number of coefficients. In Table 3.3,

present the results of this study. The numbers in the table reflect those obtained

with a transformation radius of 3.5 mm. When examining the values of C4.5, C4.5

with boosting or bagging, VFI or Random Forests, one can see that there is no real

difference between the accuracy of Zernike or pseudo-Zernike polynomials.

All of the trends discussed above are illustrated using the results of a 4th order

Zernike transformation in Figure 3.4. While the accuracy values in the figure represent

3.5 mm transformation radius on the all dataset partition, the relationships were

similar across the tested conditions (i.e. transformation, polynomial order, radius of

transformation, and classification method).
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C4.5 Näıve Random Neural
Order Transform W/O Bag Boost VFI Bayes Forests Network

4 PZ 86 89 90 89 86 90 86
6 Z 87 90 89 89 83 90 86
5 PZ 86 88 90v 89 81 90 87
7 Z 85 88 88 88 78* 88 86
6 PZ 87 88 88 88 76* 88 82
8 Z 86 89 89 88 75* 89 84
7 PZ 88 90 90 88 71* 89 78
10 Z 86 88 89 86 73* 87 81

Table 3.3: Classification accuracy for Zernike and pseudo-Zernike transformations
with a similar number of coefficients at each polynomial order with a radius of 3.5
mm on the all dataset. For a given order and transformation, those classifiers that
are statistically better than a single C4.5 decision tree are denoted with a ‘v’, while
those that are worse are marked with a ‘*’. Significance is determined using a paired
t-test at 5% significance.

3.6.3 Discussion

While accuracy is the most important factor in choosing a classification strategy,

another attribute that should not be ignored is the overall interpretability of the final

results. Decision trees have often been favored over (possibly) more accurate “black-

box” classifiers such as neural networks because they provide more understandable

results. In medical image interpretation, decision support for a domain expert is

often preferred to an automated classification made by an expert system. While it is

important for a system to provide a decision, it is often equally important for clinicians

to know the basis for an assignment. Decision trees provide a more transparent view

of how these classifications are derived as well as the features involved.

In Table 3.4 we summarize the comparisons of this study. We list each classifier

that we tested as well as how it fares in the following categories: accuracy; speed, or
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the time needed to create the model; scalability, or whether increasing the size of the

dataset affects the time needed to create a model; interpretability, if the criteria used

for classification can be gleaned from the classification model; and stability, how the

accuracy varies as the representation changes. Overall, we found the speed, accuracy,

stability and interpretability of decision trees preferable to other methods for this

dataset. The accuracy of C4.5 was among the highest of the standard classification

methods, but it can be further improved through meta-learning techniques such as

boosting or bagging. We observed that when the adaBoost algorithm was combined

with C4.5, our best classification results were achieved with a fourth order polyno-

mial model. With bagging, the best results were achieved with a fifth order model.

This improvement comes at a loss of speed and interpretability, however. Random

Forests tended to perform as well as C4.5 with boosting or bagging. The Random

Forests algorithm creates multiple decision trees during each classification run, which

essentially incorporates a form of bagging into its normal operation, so such results

are not surprising. Voting Feature Intervals provides reasonably high accuracy, but

the classification model is not as stable as that of a decision tree, with accuracy de-

creasing as the polynomial order increases. The same was true for the Näıve Bayes

classifier. A likely explanation for this result is that higher order polynomial models

tend to fit both features and noise, which could reduce accuracy. This could be a big

disadvantage in cases where higher order polynomials are needed to faithfully capture

features in other applications not considered here.

We found that the neural network was also much less stable than the decision

tree algorithms, suffering from a similar drop in accuracy at higher orders as seen

with VFI and Näıve Bayes. In addition to the lack of stability, the time needed to
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construct and test the neural network was much greater than all of the other methods

tested. While we could examine an entire dataset (both transformations, all 7 orders

and all four radii) in just minutes with C4.5, VFI or Näıve Bayes, or a few hours with

the ensemble-learning algorithms, it took days to complete a single neural network

test.

The argument could be made that a different set of neural network parameters

might yield faster, superior results, especially on the higher order data. Such a claim

may be true, but the same argument could be made for every other classifier (except

the parameter-free Näıve Bayes). Furthermore, we tested a large number of different

network parameter values, varying the number of training iterations and hidden layers,

whether the learning rate was set to decay, or a if validation set was used. Those

results were much lower than the results reported here – often by 20-25%. While it

can be argued that our chosen network structure may been inadequate, there is no

systematic method for determining a better one.

We were able to achieve a classification accuracy of 90% using bagged or boosted

decision trees, which are constructed in an unsupervised manner. In an application

such as patient diagnosis, where there is a possibility of incorporating additional

data (as the number of patient screenings increases), an unsupervised classification

algorithm would be far more beneficial that one that must be tuned by an expert

every time the underlying data changes. For these reasons, we cannot recommend

neural networks as a classification method for this task.

In light of our findings, there does not appear to be any benefit to using pseudo-

Zernike polynomials as a transformation method. Previous studies stated that the

lower RMS error of pseudo-Zernike polynomials implied that they were more robust to

54



Criteria C4.5 NN VFI NB META
Accuracy + ± + ± ++

Speed + – – + + –
Scalability + – – + + ±

Interpretability ++ – – – – –
Stability ++ – – – ++

Table 3.4: Comparison of classification methods. C4.5 refers to the decision tree
classifier, NN to the neural network, VFI to Voting Feature Intervals and NB to
Näıve Bayes. META refers to C4.5 with boosting (or bagging) and Random Forests.

noise and therefore would provide a more faithful surface model [20]. Those compar-

isons were only made over equivalent polynomial orders, however. While our studies

do support that conclusion, when we compare representations with a similar number

of coefficients, we find that a Zernike transformation yields an equal or higher-fidelity

model than the corresponding pseudo-Zernike polynomial. In any event, the addi-

tional model fidelity does not translate into increased classification performance. If

the additional coefficients gained from the pseudo-Zernike transformation were indeed

useful in distinguishing between the patient classes, classification accuracy would in-

crease along with the polynomial order of the transformation, but it does not. One

can make a similar argument against using the higher-order Zernike polynomials as

well. The highest accuracy generally occurs when classifying with a 4th, 5th or 6th

order Zernike model, regardless of patient category. These results suggest that over-

all, a fourth order polynomial has both sufficient complexity and the fidelity needed

to correctly distinguish the clinical conditions studied here.
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3.7 Visualization of Classification Decisions

When discussing experiments relating to the Biomedical Knowledge Discovery

stage of our workflow, accuracy is the primary metric used for evaluation. While ac-

curacy is an important factor in choosing a classification strategy, another attribute

that should not be ignored is the interpretability of the final results. We have spoken

about the transparency of decision trees and why they may be favored over (possi-

bly) more accurate “black-box” classifiers because they provide more understandable

results. In medical image interpretation, decision support for a domain expert is

preferable to an automated classification made by an expert system. While it is im-

portant for a system to provide a decision, it is often equally important for clinicians

to know the basis for an assignment. It is in that spirit that we extend our work

on the classification of corneal shape to include a method for the visualization of

classification criteria to aid in clinical decision support.

Taking the Topography dataset, we model the corneal surface using Zernike poly-

nomials. We then use the polynomial coefficients for each geometric mode as an

input feature for a decision tree. Since the polynomial coefficients used as splitting

attributes represent the proportional contributions of specific geometric modes, we

are able to create a surface representation that reflects the spatial features deemed

“important” in classification. These features discriminate among the patient classes

and give an indication as to the specific reasons for a decision.

We have designed and developed a method of visualizing our decision tree results.

We partition our dataset based on the path taken through the decision tree and create

a surface from the mean values of the polynomial coefficients of all the patients falling

into that partition. For each patient, we create an individual polynomial surface
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Polynomial Azimuthal Frequency (m)
Order (n) -4 -3 -2 -1 0 1 2 3 4

0 0
1 1 2
2 3 4 5
3 6 7 8 9
4 10 11 12 13 14

Table 3.5: Combinations of radial polynomial order (n) and azimuthal frequency (m)
that yield the 15 terms comprising a 4th order Zernike polynomial.

from the patient’s coefficient values that correspond to the splitting attributes of the

decision tree. We contrast this surface against a similar surface containing the mean

partition values for the same splitting coefficients and provide a measure to quantify

how “close” a patient lies to the mean.

3.7.1 Algorithm

Figure 3.6 shows an example decision tree. In this case, the Z value in each node

(diamond) refers to the jth term of a Zernike polynomial. For clarity, we repeat

the table and figure from Chapter 2 that illustrate the terms in a 4th order Zernike

polynomial as well as the relation between the two Zernike indexing schemes.

Classification occurs by comparing a patient’s Zernike coefficient values against

those in the tree. For instance, the value of Z7 for a patient is compared against

the value listed in the top node. If the patient’s value is less than or equal to 2.88,

we traverse the right branch. If not, we take the left (in all cases, we take the right

branch with a yes decision and the left with a no). With this example, a no decision

would lead to a classification of K, or Keratoconus. If the value of Z7 was less than

or equal to 2.88, we would proceed to the next node and continue the process until
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Figure 3.5: Graphical representation of the modes that constitute a 4th order Zernike
polynomial. Each mode is labeled using the single indexing convention.

we reached a leaf and the corresponding classification label (K = Keratoconus, N =

Normal, L = LASIK).

We can treat each possible path through a decision tree as a rule for classifying

an object. Using the tree in Fig. 3.6, we construct rules for the first four leaves, with

the leaf number (arbitrarily assigned) listed below the class label:

1. Z7 > 2.88 → Keratoconus

2. Z7 ≤ 2.88 ∧ Z12 > −4.04 ∧ Z5 > 9.34 → Keratoconus

3. Z7 ≤ 2.88 ∧ Z12 ≤ −4.04 ∧ Z0 ≤ −401.83 → Keratoconus

4. Z7 ≤ 2.88 ∧ Z12 ≤ −4.04 ∧ Z0 > −401.83 → LASIK

In each rule, the “∧” symbol is the standard AND operator and the “→” sign is

an implication stating that if the values of the coefficients for a patient satisfy the

expression on the left, the patient will be assigned the label on the right. For a given

dataset, a certain number of patients will be classified by each rule. These patients
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Figure 3.6: Decision tree for a 4th order Zernike polynomial.

will share similar surface features. As a result, one can compare a patient against

the mean attribute values of all the other patients who were classified using the same

rule. This comparison will give clinicians some indication of how “close” a patient

is to the rule average. To compute these “rule mean” coefficients, denoted rule, we

partition the training data and take the average of each coefficient over all the records

in that particular partition.

For a new patient, we compute the Zernike transformation and classify the record

using the decision tree to determine the rule for that patient. Once this step has

been completed, we apply our visualization algorithm,to produce five separate images

(illustrated in Fig. 3.7). The first panel is a topographical surface representing the

Zernike model for the patient. It is constructed by plotting the 3-D transformation

surface as a 2-D topographical map, with elevation denoted by color. The second

section contains a topographical surface created in a similar manner by using the
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rule coefficients. These surfaces are intended to give an overall picture of how the

patient’s cornea compares to the average cornea of all similarly-classified patients.

The next two panels in Fig. 3.7 (rows 3 and 4) are intended to highlight the

features used in classification, i.e. the distinguishing surface details. We call these

surfaces the rule surfaces. They are constructed from the value of the coefficients that

were part of the classification rule (the rest are zero). For instance, if a patient were

classified using the second rule in the list above, we would keep the values of Z7, Z12

and Z5. The first rule surface (third panel of Fig. 3.7) is created by using the relevant

coefficients, but instead of using the patient-specific values, we use the values of the

rule coefficients. This surface will represent the mean values of the distinguishing

features for that rule. The second rule surface (row 4, Fig. 3.7) is created in the

same fashion, but with the coefficient values from the patient transformation, not the

average values.

The actual construction of the surfaces is achieved by running our transformation

algorithm in reverse, updating the values in the coefficient matrix depending on the

surface being generated. Once the values have been computed, we are left with several

3-D polar surfaces. In the surfaces, the base elevation is green. Increasing elevation

is represented by red-shifted colors; decreased elevation is represented by blue-shifted

colors.

Finally, we provide a measure to show how close the patient lies to those falling

in the same rule partition. For each of the distinguishing coefficients, we compute a

relative error between the patient and the rule. We take the absolute value of the

difference between the coefficient value of the patient and the value of the rule and

divide the result by the rule value. We provide a bar chart of these errors for each
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Class Expression Support
Rule Label Support Percentage

1 K Z7 > 2.88 47 66.2%
8 N Z7 ≤ 2.88 ∧ Z12 > −4.04 ∧ Z5 ≤ 9.34 ∧ 74 89.2%

Z9 ≤ 1.42 ∧ −0.07 > Z8 ≤ 1.00 ∧ Z13 > −0.31
4 L Z7 ≤ 2.88 ∧ Z12 ≤ −4.04 ∧ Z0 > −401.83 19 79.2%

Table 3.6: Strongest Decision Tree Rules and Support

coefficient (the error values of the the coefficients not used in classification are set to

zero). This plot is intended to provide a clinician with an idea of the influence of

the specific geometric modes in classification and the degree that the patient deviates

from the mean. To provide further detail, if the patient’s coefficient value is less than

the rule coefficient, we color the bar blue. If it is greater, we color it red.

3.7.2 Results

Using a C4.5 decision tree generated from the classification of the dataset on a 4th

order Zernike transformation (Fig. 3.6), we provide an example of our visualization

technique on a record from each patient class.

As stated previously, we must reclassify our training data after generating the

decision tree in order to partition the data by rule. We expect that certain rules will

be stronger than others, i.e. a larger portion of the class will fall into those rule’s

partition. Table 3.6 provides a list of the strongest rule for each class. We provide

the rule number, its class label and its support, or the number of patients that were

classified using that rule. We also provide the support percentage of the rule, which is

equal to support divided by the total number of patients in that class. These numbers

reflect the classification of the training data only, not the entire dataset (the data was
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(a) (b) (c)

Figure 3.7: Example surfaces for the strongest rule in each patient class. Figure
(a) represents a Keratoconic eye (Rule 1), (b) a Normal cornea (8), and (c) a post-
operative LASIK eye (4). The top panel contains the Zernike representation of the
patient. The next panel illustrates the Zernike representation using the rule values.
The third and fourth panels show the rule surfaces, using the patient and rule coeffi-
cients, respectively. The bottom panel consists of a bar chart showing the deviation
between the patient’s rule surface coefficients and the rule values.

divided into a 70%/30% training/testing split). Table 3.6 also provides the expression

for each rule.

Using a patient that was classified by each strong rule, we execute our visualiza-

tion algorithm and create a set of surfaces. These surfaces are shown in Fig. 3.7.

Figure 3.7 (a) shows a Keratoconic patient classified by Rule 1. Figure 3.7 (b) gives

an example of a Normal cornea classified under Rule 8. Finally, Fig. 3.7 (c) illustrates

a LASIK eye falling under Rule 4.
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Since these are the strongest, or most discriminating rules for each class, we would

expect that the rule surfaces would exhibit surface features commonly associated

with corneas of that type. Our results are in agreement with expectations of domain

experts. For instance, corneas that are diagnosed as keratoconic often have a cone

shape protruding from the surface. This aberration, referred to as “coma” is modeled

by terms Z7 and Z8 (vertical and horizontal coma, respectively). As a result, we

would expect one of these terms to play some role in any keratoconus diagnosis. Rule

1, the strongest keratoconus rule, is characterized by the presence of a large Z7 value.

The rule surfaces (rows 3 and 4) of Fig. 3.7 (a) clearly show such a feature. Corneas

that have undergone LASIK surgery are characterized by a generally flat, plateau-like

center. They often have a very negative spherical aberration mode (Z12). A negative

Z12 value is part of Rule 4, the strongest LASIK rule. The elevated ring structure

shown in the rule surfaces (rows 3 and 4) of Fig. 3.7 (c), is an example of that mode.

These rule surfaces look very similar to the false color maps of the patients show in

Figure 3.1.

3.7.3 Discussion

In order to address malpractice concerns and be trusted by clinicians, a classi-

fication system should consistently provide high accuracy (at least 90%, preferably

higher). When coupled with meta-learning techniques, decision trees can provide such

accuracy. The motivation behind the application presented here was to provide an

additional tool that can be used by clinicians to aid in patient diagnosis and decision

support. By taking advantage of the unique properties of Zernike polynomials, we

are able to create several decision surfaces which reflect the geometric features that
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discriminate between normal, keratoconic and post-LASIK corneas. We have shown

our results to several practicing clinicians who indicated that the important corneal

features found in patients with keratoconus were indeed being used in classification

and can be seen in the decision surfaces. This creates a degree of trust between

the clinician and the system. In addition, the clinicians stated a preference for this

technique over several start-of-the-art systems available to them. Most current classi-

fication systems diagnosis a patient as either having keratoconus or not. An off-center

post-LASIK cornea can present itself as one that has keratoconus and vice versa. Mis-

classifying the post-LASIK cornea is bad, but misclassifying a keratoconic cornea as

normal (in a binary classifier) can be catastrophic. Performing LASIK surgery on a

cornea suffering from keratoconus can lead to corneal transplant. Our method can

be leveraged by clinicians to serve as a safety check, limiting the liability that results

from relying on an automated decision from an expert system.

3.8 Alternate Representations of Corneal Topography

Here we describe several methods of representing the Topography dataset using

wavelets and Legendre polynomials. Our intent is to use these models as feature

vectors for classification. As a result, our concern about the faithfulness of the model

to the original data is less than it was with the Zernike-based methods. Due to

certain intrinsic properties of the Zernike transformation, it can be used to visualize

and highlight certain anatomical properties of the data. The wavelet transformation

is domain-independent and we do not plan to use the resulting models for any kind of

anatomical analysis. Therefore, here we are only concerned with the how the models

perform during the knowledge discovery process.
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3.8.1 Modeling Methods

The wavelet decomposition allows us to treat the input as either a 1D or 2D signal.

We begin our discussion by focusing on variations that transform the data into a a

1D signal and follow with those that rely on a 2D input.

1D Wavelets

In the topography dataset, every object is represented as a series of concentric

rings, where each ring consists of 256 points, and each point on the ring has an

associated angle, radius and elevation. The simplest way to convert this polar-based

data into a 1D signal is to “unwrap” the each ring, starting with the inner-most ring

and moving outward to the next largest. When a ring is unwrapped, one moves in

a given direction (for instance, clockwise) and traces along, concatenating each point

to the end of the signal. With this approach, only the elevation values are used.

Information about the angle and radius is ignored. The 1D wavelet decomposition is

then applied to this signal, using the final level of approximation coefficients as the

data model.

One drawback to the above approach is that the smaller rings tend to be more

heavily sampled. Since each ring is composed of 256 points regardless of the radius,

the larger rings will be more sparse. In an attempt to counter this issue, Smolek and

Kylce developed a method that involves sampling each ring at equal angles [33]. They

took the first 25 rings and sampled at equi-angle positions along each one until they

had sampled a total of 1024 points. They used least-squares interpolation between

adjacent points to generate the elevation values. This signal was decomposed using

the s8 Symmlet filter (we typically use the Haar). After decomposing the signal,
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they took the 6th level approximation coefficients (16 total), the 4th, 5th and 6th

level detail coefficients (64, 32, and 16, respectively) and used these 128 coefficients

as a feature vector. The stated reason for using these values was that the authors

wanted to focus on the large-scale coefficients to eliminate the potential for a ring-shift

sampling artifact and to avoid long classifier training times. They divided the dataset

into 50% training and 50% testing and used these vectors to train a neural network.

They report accuracy, specificity and sensitivity values of greater than 99%, with only

1 misclassification. We test their algorithm in the next chapter to see whether we

achieve the same classification performance on our own data.

One problem with both of the methods described above is that any spatial locality

that exists between the rings tends to get lost in the concatenation process. Adjacent

points within a ring remain together, but neighboring points between rings are widely

separated. In order to retain some of this spatial locality, space-filling curves can be

used to sample the data [57]. There are a number of different space-filling curves,

but we focus on the the Hilbert curve. Hilbert curves can be used to generate a 1D

signal that visits every point in a 2D space. Figure 3.8 shows the Hilbert curves of

first, second and third order. These curves can be used to sample a matrix of size

4, 16, and 81, respectively. Higher-order curves can be used to sample larger input

matrices, or the input data can be scaled to fit accordingly.

We utilize the Hilbert curve by converting the original polar data into Cartesian

coordinates and interpolating those values into a 2D matrix. We create a Hilbert

curve to fit this matrix and trace along the curve to generate our 1D signal. As with

the ring-based method, we apply a 1D wavelet decomposition and use the final level

approximation coefficients as our data model.
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Figure 3.8: Graphical representation of First (a), Second (b), and Third-Order Hilbert
Curves (c). Curves used to sample matrices of size 4, 16, and 81, respectively.

2D Wavelets

We also look to create a wavelet-based data model using a 2D input signal. As

we did when generating the Hilbert curve, we convert the polar data to Cartesian

coordinates and interpolate those values into a 2D matrix. We apply a 2D wavelet

decomposition to these matrices and use the final level of approximation coefficients

as our model.

Legendre Polynomials

As one final way to represent the topography data, we examine the use of Legendre

polynomials as a modeling method. To create this model, we convert each object into

a 1D signal by using the ring-based unwrapping technique described in the previous

section. For a given order, we then calculate the Legendre polynomial for each point.

We compute the least-squares fit between the polynomial and the original data and

use the resulting coefficients as a feature vector.
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3.8.2 Classification Performance

Using the above methods, we generate a number of different variations and test

their performance with a Boosted C4.5 decision tree trained using 10-fold cross-

validation. In the following list, we describe each of the representations tested and

the modeling method used to create them:

1. Legendre: We generate representations that range in polynomial order from 5

to 10.

2. 2D Wavelets: We convert the polar topography data to Cartesian coordinates

and interpolate the converted data into a 2D matrix. We generate matrices of

size 64x64 and 128x128. We apply a 2D wavelet decomposition to these matrices

and create feature vectors that contain the 3rd, 4th or 5th order approximation

coefficients.

3. 1D Wavelets: We create a number of different representations using the 1D

wavelet decomposition. Each representation requires that we generate a differ-

ent 1D signal before applying the actual decomposition.

In the simplest approach, we start with the smallest inner ring and “unwrap’ the

signal, moving outward to each consecutive ring. Given this ring-based signal,

we apply the 1D decomposition and generate feature vectors that contain the

5th, 6th, 7th, or 8th order approximation coefficients.

We also test whether a Hilbert-based sampling method will affect the overall

results. To generate such a signal, we convert the data into a 2D matrix as

described above. We create a Hilbert curve to fit this matrix and trace along

the curve to generate our 1D signal. We generate Hilbert curves for both the
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64x64 and 128x128 matrices and create feature vectors containing 5th, 6th, 7th

or 8th order approximation coefficients.

Finally, we create 1D representation based on the methods described by Smolek

and Klyce in their topography work [33].

Results

After running our classification experiments, we found that, despite the number

of representations tested, none of them were able to outperform the Zernike-based

models. Classification accuracy using those representations was in the high-80% to

low 90% range. The values with the alternative models were much lower. Therefore,

rather than report each individual result, we just focus on the general trends.

The models based on the Legendre polynomials fared the worst in our tests, yield-

ing accuracies in the mid to high-60% range. For the 2D wavelet representations, the

3rd order transformation performed the best, roughly around 80%. This was true for

both matrices. For the 1D wavelet models, there was little difference between the

ring and Hilbert-based models. The accuracy for each method was almost identical,

around 85%. The representation created using the method of Smolek and Klyce per-

formed slightly worse, around 83%. Thus, as we see from these results, of the methods

tested, a Zernike-based approach appears to be the most effective way to represent

the data, at least for the task of classification.

3.9 Conclusions

In Figure 3.9, we illustrate how various aspects of this case study implement the

stages of our proposed workflow. We attempt to model the topography data using

Zernike, pseudo-Zernike and Legendre polynomials, as well as 1D and 2D wavelets.
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Figure 3.9: Workflow as implemented in first case study.

We test the effectiveness of these representations and also evaluate the performance

of a number of classification strategies. Finally, we create a method to highlight and

visualize those features that are important for distinguishing between the various

patient groups. Since several of the lower-order Zernike terms directly correspond

to anatomical surface features of the cornea, this technique indirectly incorporates

domain knowledge into the visualization process. In addition, many of the methods

developed in this chapter serve as the foundation of our Spatial Averaging algorithm,

which we cover in Chapter 7.
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CHAPTER 4

CASE STUDY II: CLASSIFICATION OF PROTEINS

We now introduce some of our early work in the protein domain, which focuses

mainly on the classification of protein structure. The structural classification of pro-

tein molecules is an underlying component of many applications in computational

biology, including drug discovery and function prediction. The structure of a pro-

tein molecule is known to influence its function, so if one can determine that protein

belongs to a particular structural class, it might be possible to gain insight into its bi-

ological role. Our efforts in structural classification are divided into two major areas.

The first involves a multi-stage classification strategy that leverages the hierarchical

nature of protein structure taxonomies to improve accuracy [58]. We demonstrate the

effectiveness of this approach using a dataset and representation that are well-known

in the literature. We then describe two methods of modeling protein structure and

illustrate their effectiveness using our multi-stage classification strategy [59]. These

representations are incorporated into our later work in the protein retrieval, which is

described in the following chapter.
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4.1 Biological Background

Proteins are comprised of a varying sequence of 20 different amino acids. Indi-

vidual amino acids are referred to as residues. Each type of amino acid is composed

of a number of different atoms, but every single one contains a central Carbon atom

that is called the Cα atom. The position of this atom is often used as an abstraction

for the position of the entire residue. The sequential connection of the Cα atoms is

called the protein backbone. Amino acids combine to form interacting subunits called

secondary structures. These secondary structures interact to form the global, tertiary

structure of the protein. Two of the most common secondary structures are α-helices

and β-sheets. Residues that belong to these secondary structures are said to have

a secondary structure assignment. There are a number of different labeling systems

used to assign residues, but in this work, we use the simplest system: a residue can

either be part of an α-helix, a member of a β-sheet, or have no assignment. All of the

3D information and secondary structure assignments for a protein can be obtained

from the PDB.

There are several public databases that provide information on protein struc-

ture. Two of the most popular are the Protein Structure Classification database

(CATH) [60] and the Structure Classification of Proteins database (SCOP) [9]. In

our experiments, we use the classifications from SCOP database as our ground truth.

The SCOP database arranges proteins into several hierarchical levels. The first four

are Class, Fold, SuperFamily and Family. Proteins in the same Class share similar

secondary structure information, while proteins within the same Fold have similar

secondary structures that are arranged in the same topological configuration. Pro-

teins in the same SuperFamily show clear structural homology and proteins belonging
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to the same Family exhibit a great deal of sequence similarity and are thought to be

evolutionarily related.

4.2 Dataset

The dataset used in our sequence-based experiments is based on the dataset ini-

tially described in the work by Ding and Dubchak [1]. There, a training set was

taken from the 27 most populated SCOP folds of the PDB Select set, in which no

two proteins share more than 35% sequence identity for aligned subsequences longer

than 80 residues. This training set contained 311 proteins. Ding and Dubchak used

an independent test set derived from the PDB 40D set, which consists of all SCOP

sequences having less than 40% sequence identity with each other. Using the same

27 SCOP folds, 385 proteins were selected, and any PDB 40D protein having more

than 35% sequence identity with the proteins in the training set was excluded. When

combined together, the training and test sets yield a total of 696 proteins.

Since the publication of the work by Ding and Dubchak [1], the protein identifiers

used in the SCOP database have changed. We were looking to use this dataset for

a different set of experiments and needed to match the original identifiers to those

currently used by SCOP. Using the latest labels from SCOP (version 1.67), a Perl

script was written to automate the matching process, but we were unable to find a

match for every protein. Rather than attempt to manually match the proteins that

remained, we simply removed them from consideration, leaving a total of 653 proteins.

We call this set the Ding dataset.

We represent each protein in our dataset using the same sequence properties as

those listed in previous experiments [1, 61–63]. The feature vectors characterize the
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Symbol Property Dim.
c Amino Acid Composition 20
h Hydrophobicity 21
p Polarity 21
s Predicted Secondary Structure 21
v van der Waals Volume 21
z Polarizability 21

Table 4.1: Sequence-based Properties used as feature vectors for classification.

following properties for each protein (the symbol for each descriptor given in paren-

theses): amino acid composition (c), hydrophobicity (h), polarity (p), predicted sec-

ondary structure (s), van der Waals volume (v), and polarizability (z). For a more

detailed discussion on the derivation of these properties, the reader is referred to the

work by Dubchak et al. [64] or Ding and Dubchak [1]. The feature vector for the

amino acid composition consists of 20 dimensions. All of the rest have 21. These

properties are presented in Table 4.1.

We test each descriptor individually and also combine them to create longer feature

vectors, concatenating the feature vector of one descriptor onto the end of another.

The combined datasets are referenced by their combined symbols (cs, csh, etc.). These

combined vectors ranged in size from 41 dimensions (cs) to 125 (cshpvz).

4.3 A Multi-Stage Approach to SCOP Fold Recognition

Proteins are an important functional unit in countless cellular and biological pro-

cesses. Rather than play a singular role, many proteins participate as a member of

a group, or complex. High-yield genomic and proteomic experiments have led to the

identification of large numbers of protein complexes. While the role of an individual
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protein within a given complex has been determined for a few molecules, for the vast

majority, that role remains a mystery. It is believed, however, that a protein’s func-

tion is strongly influenced by its structure. Therefore, it is reasonable to believe that

proteins with a similar structure might have a similar function. As such, grouping

molecules based on their structure will likely help predict a protein’s function.

One way of determining similarity is through alignment. A number of differ-

ent alignment methods exist, but they generally fall into two different categories:

sequence-based or structure-based. While each are effective in certain cases, there

are drawbacks to both approaches. Sequence-based alignment will fail when two pro-

teins are structurally-similar but share little in the way of sequence homology. On

the other hand, structure-based methods rely on data derived from a solved struc-

ture. Unfortunately, the number of proteins whose structure has been solved is much

smaller than the number of proteins that have been sequenced. As of April 2005,

the number of solved proteins in the PDB stands at just over 30,000, while there are

more than 2.1 million sequenced proteins in the PIR-NREF database.

Thus, to be truly effective, any method of comparing proteins should not be

limited only to molecules with a solved structure. The exact nature of the relationship

between a protein’s sequence and its structure remains one of the open challenges in

computational biology.

While we are primarily concerned with the modeling and analysis of structure-

based data in this work, we have proposed certain pattern discovery techniques that

were validated on sequence-based protein data. Therefore, we detail some of the

related work in sequence-based protein classification so we can later draw comparisons

between our method and existing techniques.
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One approach to the classification of protein structure is to examine the sequence-

based properties of proteins whose structure is known. Using these proteins to con-

struct and validate a classifier, one can use the resulting model on unclassified proteins

to assign a structure-based label. Such a strategy has been employed by a number

of researchers [1,61–63]. Given a set of proteins from the Structural Classification of

Proteins (SCOP) database, each classifier attempts to correctly predict a protein’s

fold.

Most of the recent work on this problem uses machine-learning techniques such

as Support Vector Machines (SVMs) or Neural Networks (NNs). These methods

are highly-tunable and have been shown to provide excellent performance in certain

applications. A drawback to both of these techniques is that they are most effective

when dealing with a binary, or two-class decision problem. In order to handle a

multi-class (or in this case, multi-fold) dataset, a variation of one-vs-others (OvO) or

all-vs-all (AvA) classification is often chosen.

With an one-vs-others approach, a classifier is constructed to decide between two

classes: the class in question (the “true” class) and the rest (the “others”). Given

k classes, k different classifiers are constructed and an input protein is assigned the

label of whatever classifier returns a yes vote. In the case of a multiple yes votes,

a number of different tie-breaking solutions have been proposed. For example, Ding

and Dubchak describe a “unique” one-vs-others (uOvO) strategy that uses a series

of 2-way classifiers to decide amongst those classes with a yes vote [1]. With OvO

classification, the number of objects in the true class is often very small compared to

the number of others. In a dataset with k different classes and an equal number of

objects per class, this results in a classifier that tries to distinguish just 1/k of the
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objects from the rest. Given an unequal number of objects per class, this number can

be even lower. As a result, an individual classifier can have high accuracy even if it

misclassifies everything in the true class.

Using an all-vs-all strategy and a dataset with k classes, a classifier is constructed

for every possible pair of classes, resulting in k(k − 1)/2 different classifiers. Given

an input object, it is tested with every classifier, and the class returning the largest

number of “yes” classifications is assigned to the object. The drawback here is that

AvA requires the construction of a large number of classifiers, while at the same time

using a smaller number of datapoints in the construction of those classifiers, which

can lead to over-fitting. As a result, care must be taken in order for either of these

approaches to be effective.

Ding and Dubchak were one of the earliest groups to report on the problem of fold

recognition, comparing the classification accuracy of a neural network and a support

vector machine (testing the effectiveness of both OvO and AvA classification) on a

set of proteins taken from the 27 most-populated SCOP folds, with less than 25%

sequence identity between every protein in the set [1]. They were able to recognize

the correct fold with an accuracy of approximately 56% using a number of sequence-

based properties as feature vectors for their classifier. Using a slightly smaller dataset

and many of the same input features, Tan et al. developed a rule-based classifier that

combines the best classifiers from the OvO and AvA methods to generate a single

classifier for each of the possible folds. Their best results improve fold recognition to

roughly 60% [61].

Classifying the same dataset and input features, but this time employing a Bayesian

Network-based approach, Chinnasamy et al. improve on the average fold recognition
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results reported by Ding and Dubchak, but fail to increase accuracy above 60% [62].

Finally, again starting with the same dataset and input features, Shi et al. employ an

evolutionary algorithm to select the most relevant features and classify using a SVM,

but their average accuracy remains around 56% for the 27-fold problem [63].

As an alternative to the above techniques, we propose a tiered, or multi-stage,

approach to classification. Just as proteins in the SCOP database are grouped in a

hierarchical fashion, it is possible to first partition a dataset based on certain high-

level similarities. For each partition, one can then create a more specific, fine-grained

classifier. To our knowledge, it is the first time such a technique has been applied

to this particular problem. Here we report our method and results using a two-level

classification strategy.

In the first stage, we classify proteins based on their SCOP class. For each class

of proteins, we then classify by fold. Our approach is flexible, allowing for any clas-

sification strategy to be used at any stage. We test our method with a Näıve Bayes

classifier and several decision tree-based meta-learning strategies. Using the Ding

dataset, we achieve an improvement in accuracy of 15-20% compared with previously

published results, predicting the correct fold with an accuracy up to 74%. We only

need to create a single classifier for the Class level and then one for each Fold, for a

total of five classifiers. As opposed to previous methods, our model is fast, scalable,

and can easily be recreated if there is a large change in the dataset or input features.

4.3.1 Multi-Level Classification

Databases like SCOP group proteins in a hierarchical, tree-like fashion based on

shared structural characteristics. The top of the hierarchy is referred to as the Class
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level. The classes are divided into Folds, which are further divided into SuperFamilies.

Each SuperFamily is itself composed of several individual Families. Since proteins at

each level are grouped based on shared characteristics, we would expect a protein to

have a higher structural similarity to those proteins that are within the same class

(intra-class) than those that are without (inter-class). The same would hold true

at the fold level and on down through the hierarchy. For this reason, we believe a

classification scheme should take advantage of such a natural hierarchy. Most of the

existing work on this problem have taken a “flat” view toward classification, focusing

only on the fold level, totally ignoring any class-level information.

The only reason it is currently possible to classify proteins at the fold level with

a binary classifier is that there are few folds with the requisite number of members

needed to effectively train a classifier. The current version of the SCOP database (May

2005) lists 887 possible folds. As the number of solved protein structures increases,

so will the number of folds that can be classified. When this occurs, the use of binary

classification strategies will become less and less practical. When presented with 887

potential folds, an OvO strategy will require the training of 887 2-way classifiers. An

AvA method, on the other hand, will require the construction of a total of 392,941

different classifiers. The use of cross-validation will increase that number even more.

With n-fold cross validation, 1/n of the dataset is set aside as a testing set (a fold)

and a classifier is trained on the remaining members. This process is repeated n times

with a different 1/n of the dataset set aside in each iteration (an object can only be

a member of one testing fold). Therefore, when using n-fold cross-validation and an

OvO classification strategy on k possible classes, a total of kn classifiers must be

trained, while AvA increases that number to nk(k − 1)/2. Finally, if one wishes to
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classify proteins further down the hierarchy, where the number of potential choices is

even larger, the problem quickly becomes intractable.

As stated previously, classification techniques that can effectively handle multi-

class data, such as Bayesian or decision tree-based methods, have a difficult time

distinguishing between a large number of possible classes. One way to try and reduce

the potential confusion is to pre-process or pre-partition the data before classification

occurs. By using a multi-tiered or multi-level classification strategy, one can cut down

on the number of potential outcomes, which is useful when faced with noisy, real-world

data that is not clearly separable. The multi-tier strategy we present here is meant

to be general. It can be applied to any domain where the data falls into a natural

hierarchy (or one where such a hierarchy can be readily deduced). In addition, any

classification strategy can be used at the different levels of the hierarchy. If a certain

method is found to be more effective at one stage, it can be used there and replaced

with something else at the others.

Algorithm

We provide the implementation details of our multi-level strategy in Section 4.3.2.

The general idea, however, is to first classify proteins at the class level, grouping

them based on global, high-level features. We refer to this stage as Classification by

SCOP Class. Once this partitioning is complete, we subdivide further, classifying

each protein by fold (denoted Class-specific Fold Classification). The intent of this

step is to improve accuracy by using a increasingly fine-grained classification model,

separating the data based on more local, fold-specific attributes than a typical decision

tree that is forced to distinguish between all possible classes (which we call All-Folds

Classification). With this approach, the classifier tends to employ two different sets
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of features in classification. As we show below, at the Class level, the focus is on

those elements that can partition the dataset on global, high-level features. At the

Fold level, more emphasis is placed on the features that allow a distinction based on

more local, specific attributes.

Validation

The intuition behind our classification strategy is based on several well-known and

empirically-validated assumptions [65,66], which are listed below:

• Multi-stage classifiers may be more accurate than single-stage classifiers.

• Smaller decision trees have higher accuracy than larger trees.

• Locally optimizing information tends to produce small, shallow, accurate trees.

Of particular importance are the last two assumptions. By dividing the overall task

of global fold recognition into the smaller sub-tasks of recognizing class and class-

specific folds, we hope to produce smaller, more accurate decision trees that avoid

the problem of getting stuck in a local minima. Large decision trees often suffer

from noise, fragmentation and subtree replication [66, 67]. Noise can cause irrelevant

features to be used as selection criteria, which in turn can lead to overfitting. A

similar effect can arise due to tree fragmentation, where there are a large number of

leaf nodes that only represent a few objects. Finally, a large decision tree can suffer

from subtree replication, where a certain piece of the tree is repeated throughout

the overall structure, which can also cause fragmentation. We now provide results

that motivate the development of our multi-tier strategy and empirically validate our

approach.
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Figure 4.1: Average decision tree size and average number of leaves for each of the
classification variations tested (Class, All-Folds, Class-specific Folds). Results reflect
a boosted C4.5 decision tree.

In Figure 4.1 we provide the average decision tree size and average number of leaf

nodes for the different single-stage classification strategies mentioned above: Class,

Class-specific Fold and All-Folds. These values were obtained when running the

boosted C4.5 experiments discussed in Section 4.3.2 on one of the single property

datasets. While the actual numbers may differ depending on the property chosen,

the overall trends and differences between classification strategies remain.

Figure 4.1 clearly shows the drawback to using a single-stage classifier on a large

multi-class decision problem. The size of the average tree for All-Folds classification

is greater than 250 nodes, and it contains over 125 leaves. With a dataset of approx-

imately 650 proteins (the size of our set), fragmentation becomes a real concern. In

contrast, in Figure 4.1 one can see that using Class or Class-specific Fold classifica-

tion results in a significantly smaller decision tree and far fewer leaf nodes. The Class
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Figure 4.2: Average number of appearances per tree for each of the top five splitting
criteria in the All-Folds method.

tree is less than half the size of the All-Folds tree, and the Class-specific Fold tree is

roughly an eighth the size of the original.

The problem of subtree replication is illustrated in Figure 4.2. Using one of the

single-property datasets as an example, we list the top five decision tree attributes in

terms of average number of occurrences per tree (results again from the boosted C4.5

experiments). Shown are the top five attributes for the All-Folds method and the

corresponding counts of those attributes using the other methods. The top attribute

appears an average of 17 times in each tree when classifying using All-Folds. That

same attribute occurs less than six times when classifying by SCOP Class and fewer

than three times in a Class-specific-Fold tree. In general, the All-Folds attributes

appear 2-3 times more often than in the Class trees and 4-6 times more often than

the Class-specific Fold trees. It should be noted that the top attributes in the All-

Folds trees are not necessarily the top attributes in the trees of the other methods

(and vice versa).
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Class-Specific
Class Fold All-Folds

1 1 1
2 – 2
3 – 4
4 – 5
5 – –

Table 4.2: Rank of the top 5 attributes of a Class decision tree in the Class-specific
Fold and All-Folds methods. A “–” indicates a rank below 5.

In Table 4.2, using the same single-property dataset as in Figure 4.2, we list the

top 5 attributes (in terms of average number of occurrences per tree) in the Class

method. We also list the corresponding rank of those attributes in the Class-specific-

Fold and All-Folds methods. A “–” indicates that the attribute is not among the

top 5 attributes. As one can see in Table 4.2, there is a high degree of overlap

between the Class and All-Folds methods and almost no overlap between the Class

and Class-specific Fold trees. Similar results are seen with the other datasets. This

gives credence to our belief that using a multi-level classification strategy allows a

classifier to focus on different features at different levels: global features at the top

level, local features at the lower level.

In light of these results, we feel that a multi-stage strategy like the one proposed

here will eliminate many of the issues that arise from a large multi-class decision

problem. Furthermore, by breaking the task of classification into a number of stages,

we can more finely-tune our overall classifier, taking advantage of specific strengths

that an individual classifier may have at a particular level, using a different method

for each one.
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4.3.2 Experiments

In order to show the effectiveness of our classification strategy, we need to run a

number of different tests in order to establish a series of baseline results. As such, we

conduct the following classification experiments using the Ding dataset:

1. Classification by SCOP class. In this test, each SCOP fold is replaced by

its corresponding SCOP class label (α, β, α + β, α/β). Table 4.3 lists the

identification number of the SCOP folds contained in our dataset and their

corresponding class. The purpose of this test is to establish that it is possible

to improve accuracy by classifying proteins at an “upper,” or more global level.

This mode of classification is analogous to the “Class” method of the previous

section.

2. Classification by SCOP fold after partitioning by class. We repeat the

previous experiment, but rather than classify the entire dataset at once, we

manually partition by class and then distinguish between folds. We hope that

classification accuracy will improve after removing those proteins that fall into

different areas of the structural hierarchy. This experiment is equivalent to

Class-specific Fold classification.

3. Classification by SCOP fold. This experiment is an attempt to replicate the

work reported elsewhere in the literature [1,61–63]. Here, we create a classifier

to distinguish among the 27 different folds in our dataset. Rather than employ a

multi-classifier variation of OvO or AvA, we use a single classifier for this task,

deciding between all possible classes at once. The results from this experiment

are the same as the All-Folds results discussed in the previous section.
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4. Multi-Level Classification. The final experiment is a test of our multi-tiered

classification strategy. First, we classify each protein based on its SCOP class,

using 10-fold cross-validation. Then, for each SCOP class, we take all of the pro-

teins that were correctly classified and construct a classifier that distinguishes

between the folds present in that class (see Table 4.3 for the relationship between

class and fold).

For each SCOP class, we take a number of random samples (twenty in our

tests) of the data, dividing it into 70%/30% training/testing splits. While a

protein can appear in more than one sample, we do not allow them to appear

more than once within a given sample (i.e. they are randomly selected without

replacement). Finally, in an attempt to ensure that every protein is adequately

represented, we limit the number of samples in which a protein can be present

to half the total number of samples.

To compute the accuracy of our multi-stage method, we take the number of

proteins that were misclassified at the SCOP class level and add to that the

average number of misclassifications at the fold level. To compute the average,

we sum the number of misclassifications for each random sample and divide by

the total number of samples. By using the ideas behind Experiments 1 and 3,

we hope to show a substantial improvement in classification accuracy over the

results of Experiment 2.

All of our experiments were conducted on a PC with a 2.8 GHz Pentium 4 CPU

and 1.5 GB RAM, running Debian Linux with a custom 2.6.9 kernel. The classification

process was done using the WEKA data mining toolkit, version 3.44 and Sun Java

4http://www.cs.waikato.ac.nz/∼ml/weka/
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Class Folds Total
α 1, 2, 4, 7, 9, 11 6
β 20, 23, 26, 30, 31, 32, 33, 35, 39 9
α/β 46, 47, 48, 51, 54, 57, 59, 62, 69 9
α + β 72, 87, 110 3

Table 4.3: SCOP Classes and their corresponding Folds

1.4.2. Classification accuracy is given as the True Positive Rate (TPR), or the number

of correct classifications divided by the total. We test each experiment using a number

of different classifiers, including Näıve Bayes, Random Forests, C4.5 with Bootstrap

Aggregation (bagging) and C4.5 with Adaptive Boosting (boosting) [26,29,38,39,55].

We left all of the classifiers on their default setting, except for the C4.5 algorithm,

which we changed to use binary splits. All of the proteins were combined into one

large dataset and classified using 10-fold cross-validation.

4.3.3 Results

We now present the results of our classification experiments. We found that the

classification accuracy of Random Forests and Bagged C4.5 were very close to that of

Boosted C4.5, though when there was a difference, Boosted C4.5 tended to provide

the highest accuracy. Thus, in order to improve clarity, we omit the results from

Random Forests and Bagged C4.5.

Classification by SCOP class

In Figure 4.3, we provide the results of our experiments in trying to recognize the

correct SCOP class. As we show next, the accuracy when classifying by SCOP class

is higher than the accuracy when classifying by fold. This is due to the fact that we
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Figure 4.3: Accuracy when classifying by SCOP class.

are dealing with 4 classes, as opposed to 27 folds. For most of the single parameter

datasets, the accuracy hovers around 55% when using the Näıve Bayes classifier and

approximately 60% when using a Boosted C4.5 decision tree. The c and s datasets

perform much better than the others, with accuracy above 70% for both classifiers.

Performance can be improved further by combining the datasets into larger feature

vectors. Figure 4.3, shows that combining the feature vectors increases accuracy to

80% with the Näıve Bayes classifier and to 84% with Boosted C4.5. This is 3 to 5%

better than the best single parameter dataset for the Boosted and Bayes classifiers,

respectively.
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Classification by SCOP fold after partitioning by class

We provide the accuracy of trying to recognize the correct SCOP fold when the

dataset has already been partitioned by class. In theory, this should be an easier

problem, as there are fewer folds to choose from and the dataset for each class is

smaller than the original. As one can see in Figure 4.4, the accuracy for most of

the class-specific datasets is higher than that of the multi-class (listed under the All

Classes column). There are a few instances where this does not hold, most notably

for the Näıve Bayes classifier and the β class. Overall, however, classification accuracy

is substantially improved. Since it is unlikely that the user would ever be presented

with a dataset that is already partially classified, these results may not seem to be

very useful. However, they are presented here to give some intuition as to why a

multi-level classification strategy might be more effective than a single-stage strategy

when dealing with a large number of possible folds.

Classification by SCOP fold

In Ding and Dubchak [1], the highest accuracy for the 27-fold problem is obtained

using an all-vs-all support vector machine. This requires the construction of 351

different classifiers. The best classification accuracy with the AvA SVM was around

56% using the csh and cshp datasets. The results in Figure 4.5 show that we are able

to achieve the same classification accuracy with a single classifier.

Our accuracy on the single parameter datasets are much higher than the results of

Ding and Dubchak [1]. There is only one case where the Näıve Bayes classifier does

not outperform the SVM and the Boosted C4.5 classifier always outperforms the SVM

by at least 10%. These results are also higher than those reported elsewhere [63].
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Figure 4.4: Accuracy for SCOP Fold recognition by Class. Top figure represents
Näıve Bayes results, the bottom, Boosted C4.5. The left graphs contain the single
parameter datasets and the combined datasets are on the right.
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Figure 4.5: Accuracy for SCOP Fold recognition when using a Single-Stage Näıve
Bayes or Boosted C4.5 classifier compared to previously-published SVM values [1].
The left graphs show the results using the single parameter datasets, while the com-
bined datasets are shown on the right.

Multi-Level Classification

We present the results of our multi-level classification strategy in Figure 4.6. As

one can see, these results are much higher than those of the single-stage solution (given

in Figure 4.5). For the combined datasets, the multi-stage results are a full 12%-18%

higher than the corresponding single-stage value. In addition, our best Multi-Stage

results are around 14% higher than any result we have seen in the literature on this

problem.

4.3.4 Discussion

Trying to predict the fold of a protein is extremely challenging. There are a

large number of possible folds, and many folds contain a small number of members.
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Figure 4.6: Accuracy for SCOP Fold recognition when using Näıve Bayes or Boosted
C4.5 classifier with the Multi-Level classification strategy (compared to a single-stage
SVM [1]). The left graphs show the results of the single parameter datasets while the
combined values are on the right.

Most existing solutions to this problem rely on some type of all-vs-all or one-vs-

others classification strategy. As stated previously, both of these strategies have their

drawbacks. Our proposed method leverages the fact that folds that fall within the

same SCOP class share similar structural properties. Therefore, we can use high-

level, global similarities to partition the data at the class level. This partitioning

simplifies the classification problem, both in the number of proteins that must be

classified and in the number of potential folds. It is true that the proteins within

each partition will be more structurally similar, which would seem to present a more

difficult classification challenge. However, in a given partition, we can use local, more

discriminating features to distinguish between proteins and assign the correct fold. As

additional protein structures are crystallized and labeled, this strategy can also be

used to help classify unknown proteins at the SuperFamily or Family level.
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Our strategy can be used with any type of classifier, it need not be Näıve Bayes

or Boosted C4.5. It is also possible to use different classifiers for each tier. If new

data is acquired, it is relatively simple to regenerate the classification model. One

can also use this strategy in a semi-supervised environment, using unlabeled data to

either tune the classifier or to make predictions about the possible fold/function of

an unknown protein. Also, if desired, one can create a classifier that is biased toward

a particular class or fold. In this manner, one can more reliably identify proteins of

that fold, with a possible detriment to the identification accuracy of the other folds.

4.4 Zernike and 1D Wavelet-Based Representations of

Protein Structure

In this section, we present our first attempts at modeling the structure of proteins.

We propose two dimensionality-reducing methods of decomposition that allow us to

group proteins sharing certain common structural elements while at the same time

distinguishing between those that are structurally dissimilar. Both methods use the

distances between the Cα atoms of a protein as their basis. The first method maps

the Cα distances to a two-dimensional matrix and creates a representational model of

that matrix with Zernike polynomials. The second starts by treating the protein as a

one-dimensional signal, using the distances between Cα atoms as the amplitude. We

apply a wavelet transformation to the signal and use the corresponding coefficients

as our representation.
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Figure 4.7: Left: Example distance matrix for protein pdb1CCR (a). Elevation values
have been normalized between 0 and 1, with lower values representing closer proximity
between residues. Right: 10th order Zernike representation (b).

4.4.1 Algorithms

Here we detail the algorithms used to create our structural representations. We

first describe our method of modeling a protein with Zernike polynomials. We follow

with the wavelet-based approach.

Zernike-Based Approach

In addition to using the Zernike polynomials to model the surface of the cornea,

we have also looked at using it to model the structure of a protein. Rather that model

the structure directly, however, we convert the structure into a distance matrix and

then apply the transformation. That conversion process is as follows: First, we use

the 3D coordinates of the protein (obtained from the PDB) to calculate the distance

between the Cα atom of each residue. These values are placed into an n x n matrix

D, where n represents the number of residues in the protein and D(i,j) represents
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the distance between the Cα atoms of residues i and j. Once we have populated the

matrix, we divide by the maximum distance to normalize the values between 0 and

1. Figure 4.7 (a) provides a graphical depiction of this matrix, with higher elevations

(greater distance) having a lighter color. An illustration of a 10th order representation

of the matrix shown on the left. As one can see, the Zernike representation adequately

captures the global shape of the matrix, but does not do as well in representing local

features. This realization led us to develop our wavelet-based method, described

below.

1D Wavelet-Based Model

The use of wavelets is natural in applications that require a high-degree of com-

pression without a corresponding loss of detail, or where the detection of subtle dis-

tortions and discontinuities is crucial. Their use in knowledge discovery applications

is less cut and dry, however. Wavelets can be applied to signals of any length, and

as such, will produce a varying number of coefficients. Deciding which coefficients to

use in a feature vector becomes difficult. Does one keep the top k coefficients? How

does one identify a “top” coefficient? What if a wavelet transformation yields less

than k coefficients? Are we limited by the size of the smallest signal in the dataset?

Does one consider the coefficients from every level, or just the last one? Should one

ignore the detail coefficients and just consider the approximation coefficients, or vice

versa? In order to make a true “apples-to-apples” comparison, feature i of object

x should correspond to the same property in object y. Simply selecting the top k

wavelet coefficients does not provide such a guarantee.

In the end, we elect to use the approximation coefficients of the last level of the

wavelet decomposition as our feature vector. In order to guarantee that we are left
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with an equal number of coefficients per object, each input signal must be normalized

to have the same length. With datasets such as our topography dataset, this process

is relatively easy, since every object consists of approximately the same number of

data points. Proteins, on the other hand, can be of vastly different lengths. However,

since proteins belonging to the same SCOP fold have the same SSEs in the same

topological order, intuitively this normalization makes sense. Before describing our

method of converting a proteins into a signal, it should be noted that to normalize

the lengths, we will have to downsample, discarding some information. In rare cases

when given an extremely short protein, we may have to upsample in order to obtain

an adequate number of datapoints.

The first step in the creation of our 1D wavelet-based feature vectors involves

converting the protein structure into a distance matrix using the technique described

in the previous section. Figure 4.8 (a) provides a graphical depiction of another

matrix (for protein pdb153L), with higher elevations, or larger distances, having a

lighter color.

In addition to representing a protein as a distance matrix, it is also possible to

represent a structure as a “contact map,” which is simply a binary distance matrix,

where a value D(i,j) is set to 1 if the distance between residues i and j is less than

a certain threshold and 0 otherwise (7Å is a commonly used threshold value). In

a contact map, secondary structures such as α-helices and parallel β-sheets emerge

as thick bands along (or parallel to) the main diagonal, while anti-parallel β-sheets

appear perpendicular to it. Figure 4.8 (b) provides the contact map version of the dis-

tance matrix shown in Figure 4.8 (a). Examples of the different secondary structures

are evident in this figure.
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Figure 4.8: Left: Distance matrix for protein pdb153L. Larger distances a denoted
with a lighter color. Right: Example contact map for protein pdb153L. Marked
positions denote inter-residue distance of less than 7Å.

The interactions between secondary structures influence the global structure of

the protein. Thus, we want our conversion process to capture as many of these

interactions as possible. To that end, we implement two conversion techniques. The

first is designed to capture the interactions and secondary structures that are parallel

to the main diagonal, while the second focuses on the anti-parallel. To convert the

matrix to a parallel signal, we start with position D(0,1) of the matrix and place it

at position 0 of the signal. We then place D(1,2) at position 1 and proceed down

the diagonal. D(0,2) will be mapped to position n, D(1,3) to n+1, and so on, until

the matrix has been converted. In this manner, we first add the values closest to

the diagonal and gradually move toward the corner. This process is illustrated in the

upper right triangle of Figure 4.9.
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The anti-parallel conversion process is shown in the lower left triangle of the matrix

in Figure 4.9. We normally perform this operation on the upper triangle (as with the

parallel process), but in order to match the figure, we use the lower triangle in our

description. We start with position D(1,0) and place it at position 0 of the signal.

We then place D(2,0) at position 1. We move right to D(2,1), place it at position 3

and travel away from the diagonal, placing D(3,0) at position 4. We continue this

stair-step approach, moving our starting point down the diagonal and adding points

in a perpendicular fashion until we reach the edge of the matrix (the movement of

the starting point is illustrated by the double arrow in Figure 4.9). Since there are

n-1 points that are a distance 1 from the diagonal, and n-2 points that are distance

2, we must take a total of 2n − 3 “steps” before reaching the bottom of the matrix.

In both conversions, if a residue is not part of a secondary structure, we simply

skip over that position. The global structure of the protein is determined based on

interactions between secondary structure elements. Therefore, we hypothesize that

we will get better results by only looking at the residues involved in those structures,

a belief that has been validated through empirical testing.

Implementation

All of the wavelet transformations were calculated using functions from the Matlab

Wavelet Toolbox (Toolbox Version 3.0.1). We tested a number of different wavelet

families, but finally settled on using a Haar wavelet, since it the simplest and easiest

to compute, but still maintains the useful property of being an orthonormal basis

function.
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Figure 4.9: Two methods for converting a distance matrix to a one-dimensional signal.
The parallel conversion process is shown in the upper triangle, the anti-parallel version
in the bottom.
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Figure 4.10: Parallel and Anti-Parallel windows (top and bottom, respectively). The
figures on the left represent a 5th level Haar decomposition. The final reduced signals
are shown on the right.
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Both the 1D wavelet and Zernike transformations will result in a multi-resolution

representation of the input data. The difference is that a Zernike polynomial pro-

vides a wavefront-based approach applied to the entire distance matrix, whereas the

wavelet decomposition results in a high-level description created from localized sum-

maries created after converting the 2D matrix to a 1D signal. The idea is that the

wavefront-based approach may be able to capture more high-level trends correspond-

ing to long-distance, tertiary relationships among structure elements, while wavelets

may be more effective at characterizing fine-grained details that are lost in a global

model. Further improvement may be achieved by using both representations in clas-

sification, therefore capturing both global and local trends. We explore this issue in

our experiments.

4.4.2 Validation

In the text below, we show the effectiveness of our 1D wavelet and Zernike-based

models of protein structure. In addition, we test our Multi-Stage classification strat-

egy using a structure-based features. Before proceeding, however, we cover some

related work in structure-based protein classification.

Most of the structure-based methods of protein analysis are concerned with the

problem of pair-wise or multi-way alignment. These methods, such as DALI [68] and

CE [69] (to name just two) can be considered as a type of classification, but they

are primarily focused on providing a measure of similarity between small groups of

proteins (usually pair-wise at first, then extended to multi-way).

A number of recent publications have attempted to create a true structure-based

classifier. Some, such as SGM [70], use a nearest-neighbor classification strategy,
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where a protein is assigned the label of the cluster to whose mean representative

it is most similar. Others use a more traditional classification strategy, creating a

structure-based “fingerprint,” that can be used as a feature vector in classification [71,

72]. Aung and Tan validate their technique on a dataset that is very similar, though

less-challenging (fewer total folds), than the one used by Ding and Dubchak [1].

However, they identify the correct fold only 45% of the time [72].

4.4.3 Experiments

The following experiments were conducted using the Ding Dataset:

1. Single Stage Classification. This experiment is an attempt to replicate

the earlier work on sequence-based classification [1, 61, 62]. Here, we create

a classifier to distinguish among the 27 different folds in our dataset. Unlike

previous studies, which typically employ an OvO or AvA strategy, we use a

single classifier and attempt to distinguish between all classes at once.

2. Multi-Stage Classification. We test our representations using our recently

proposed multi-stage classification strategy [58]. For clarity, the implementation

details of that method are repeated here. First, we classify each protein based

on its SCOP class, using 10-fold cross-validation. Then, for each SCOP class,

we take all of the proteins that were correctly classified and construct a classifier

that distinguishes between the folds present within that class.

For each SCOP class, we take twenty random samples of the data, dividing it

into 70%/30% training/testing splits. While a protein can appear in more than

one sample, we do not allow them to appear more than once within a given

sample (i.e. they are randomly selected without replacement). Finally, in an
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attempt to ensure that every protein is adequately represented, we limit the

number of samples in which a protein can be present to half the total number

of samples.

To compute the accuracy of our multi-stage method, we take the number of

proteins that were misclassified at the SCOP class level and add to that the

average number of misclassifications at the fold level. To compute the average,

we sum the number of misclassifications for each random sample and divide by

the total number of samples.

3. Classification with Sequence-based Properties. A number of previous

studies have attempted to classify proteins using a series of sequence-based

physio-chemical properties [1,58,61,62]. They looked at classification accuracy

using each individual property as a separate feature vector and also at combin-

ing them together to improve results. These studies found that using several

properties at once does in fact improve classification accuracy. To build on those

results, we test whether we can improve classification accuracy by extending our

feature vectors with a dataset of these combined properties.

The physio-chemical descriptors characterize the following properties (symbol

and number of dimensions given in parentheses): amino acid composition (c,

20), predicted secondary structure (s, 21), and hydrophobicity (h, 21). For

a more detailed discussion on the derivation of these properties, the reader is

referred to the work by Ding and Dubchak. [1]. To create this combined dataset,

we concatenate the attributes of one descriptor onto the end of another. We

refer to this dataset by the symbols of the combined properties: csh.
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Experimental Setup

All of our classification experiments were conducted on a PC with a 2.8 GHz

Pentium 4 CPU and 1.5 GB RAM, running Debian Linux with a custom 2.6.9 kernel.

The classification was done using the WEKA data mining toolkit, version 3.4 and

Sun Java 1.4.2. Classification accuracy is given as the True Positive Rate (TPR),

or the number of correct classifications divided by the total. We conduct our single-

stage classification experiments using Näıve Bayes and C4.5 with Adaptive Boosting

(boosting) [29,55]. We also use Boosted C4.5 as the base for our Multi-Stage classifier.

For the single-stage tests, all of the proteins were combined into one large dataset

and classified using 10-fold cross-validation.

4.4.4 Results

We now discuss the results of our classification experiments. We examined both

the original wavelet coefficients and the denoised values, but found the denoised

wavelet coefficients performed better than the original wavelets. As a result, we

only present the results of that dataset, which we denote wd. In addition, while we

tested the accuracy of a 4th through 10th order Zernike transformation, we found

that the 5th order polynomial provided much better results than the others, so to

improve the clarity, we only show those values (we refer to this dataset as 5z). We

also combined the wavelet and Zernike coefficients into a single dataset, which we

label wz. Finally, we found that a Boosted C4.5 decision tree greatly outperformed

the Näıve Bayes classifier, so we focus solely on that classifier.
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Single-Stage Classification

The results of our single-stage classification experiments are presented in Fig-

ure 4.11. The values of the structure-based representations are given in the Structure

columns while the results of the structure representation combined with the physio-

chemical properties are given in the Structure + csh columns. As we can see when

examining the pure structure results, the denoised wavelet dataset (wd) clearly out-

performs the Zernike coefficients (5z), 57% to 45%. The Zernike coefficients provide

roughly the same accuracy as the method proposed by Aung and Tan [72] and the

denoised wavelet coefficients provide a slightly higher accuracy than the combined

physio-chemical property dataset used by Ding and Dubchak [1]. We did not see any

increase in accuracy from the combined wavelet-Zernike dataset. When we combine

the structural datasets with the physio-chemical values, we can increase the accuracy

of all datasets. We improve accuracy to 62% for the Zernike coefficients, 63% for

the wavelet coefficients, and unlike the pure structure case, we can improve accuracy

to 65% for the wavelet-Zernike dataset. All of these values are higher than any re-

sult previously seen on this dataset with purely structural or physio-chemical-based

features.

Multi-Stage Classification

Figure 4.12 illustrates the benefits of a multi-stage classification strategy. With

the multi-stage classifier, we are able to improve the classification accuracy of the

structure-based datasets. The denoised wavelet coefficients again outperform the

Zernike values, 70% to 54%, but there still is an improvement in accuracy in both

datasets, 10% and 9%, respectively. The accuracy of the wavelet-Zernike dataset is

104



Figure 4.11: Accuracy of the single-stage Boosted C4.5 classifier on the denoised (wd),
Zernike (5z) and wavelet-Zernike (wz) datasets (Structure columns). Also shown are
the results of those datasets combined with the physio-chemical properties (Structure
+ csh columns).

actually worse than the pure-wavelet dataset, but only by 1%, which is not statistically

significant. These results give credence to our belief that a multi-level approach to

classification can be very beneficial in areas where the data falls within a natural

hierarchy.

Even more impressive results are seen when we combine the structural datasets

with the physio-chemical values. When combined, we can improve the accuracy of

the denoised wavelet and Zernike datasets to 77% and 76%, respectively, and we can

improve the wavelet-Zernike accuracy to 78%. These values represent an improvement

of 8% over the best structure-based multi-stage value, 15% larger than any single-stage

classification result, and a full 34% larger than previously reported structure-based

classification results [72].

105



Figure 4.12: Accuracy of the multi-stage Boosted C4.5 classifier on the denoised (wd),
Zernike (5z) and wavelet-Zernike (wz) datasets (Structure columns). Also shown are
the results of those datasets combined with the physio-chemical properties (Structure
+ csh columns).

4.4.5 Discussion

In the above experiments, we evaluate two strategies to represent protein struc-

ture, one using Zernike polynomials, the other based on wavelet decompositions. We

demonstrate the effectiveness of our approach by using our models as input features

for the classification of a well-known protein dataset. In addition, when combining our

methods with additional physio-chemical descriptors and using a multi-stage classifi-

cation strategy, we can improve accuracy by almost 20% over existing sequence-based

techniques and 34% over published structure-based results.

Most structure-based methods of protein analysis involve some sort of alignment

process. Very few strategies exist that allow for the direct comparison of large num-

bers of protein structures. Our proposed representation yields a compact, effective

description that can be used as part of any classification strategy. In addition, the

coefficients can be combined with other datasets or descriptors to further increase
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Figure 4.13: Diagram of workflow as implemented in second case study.

performance. The representations described here can be computed quickly and effi-

ciently, and can be tuned to the specific needs of any application. While the Zernike

polynomials do not provide as high a classification accuracy as the wavelet method,

there may be some cases where such a representation would still be useful.

4.5 Conclusions

As with our first case study, in Figure 4.13, we highlight the stages of our proposed

workflow that were implemented in our experiments in protein structure classification.

In this work, we incorporate domain knowledge into the modeling process, converting

the raw structural information into a distance matrix before we model the object with

wavelets or Zernike polynomials. Our work in Biomedical Knowledge Discovery tests

several traditional classifiers, as well as a multi-stage classification strategy that lever-

ages the hierarchical nature of protein structure databases to improve performance.
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CHAPTER 5

CASE STUDY III: THE MODELING AND

CLASSIFICATION OF

VISUAL FIELD EXAMINATIONS

In this chapter, we present methods for the modeling and analysis of visual field

examinations. These examinations are typically used in determining whether an

individual suffers from a disease such as glaucoma. Often a diagnosis or course of

treatment is based upon two criteria derived from these exams. The first is whether

a patient’s visual field contains an abnormality or defect. The second is whether that

field is deteriorating, or the defect worsening, over time. Both factors can be related,

but they can also be treated independently to a large degree. Thus, our efforts in

this area begin with an algorithm to determine whether a patient’s visual field is

abnormal. We incorporate features of this algorithm into a second technique that

characterizes the changes in that patient’s visual field over time.

Our work with the visual field represents a slight departure from our earlier efforts

in the modeling and analysis of proteins and corneal topography in that the visual

field does not correspond to a physical structure. Each object in the topography

dataset represents the surface of a patient’s cornea and every protein is described

by a set of 3D coordinates. Even our sequence-based protein transformation, which
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models the protein’s amino acid sequence, can be viewed as structure-based, as the

sequence has a direct influence on the final structure. Our work with the visual field

can be viewed through the same lens, though the connection is less direct. Visual

field loss can be caused by defects in the underlying structure of the eye, so we are

still dealing with the relationship between structure and function as we did before.

The difference is that here we are modeling the function in an attempt to determine

whether there is a problem with the underlying structure.

Throughout this chapter, one of the issues that we hope to make clear is the

difficulty in defining and detecting abnormalities in a visual field. One might assume

that it is fairly simple to determine whether an abnormality exists in a visual field.

Unfortunately, a visual field can be highly variable from one examination to the next.

Thus, before declaring that a portion of a field contains an abnormality, one must

be sure that the defect is substantial and more importantly, not transient. In other

words, it should appear in successive exams and in roughly the same place. Many

clinical systems that are used to diagnose abnormality are cross-sectional, but they

still assume that any defect that is present remains in the same location and will

get progressively worse over time. However, this not always the case. Indeed, to

rule out so-called false positives, many clinical studies require that a patient have a

defect in the same location over the course of 3 exams before their field is labeled as

abnormal [13].

Our work is based on a manual classification system that was developed by Keltner

et al. to categorize the characteristic abnormalities or defects seen in the visual fields

of patients with glaucoma [13]. Examining a large dataset of patients, they derived a

total of 17 different categories of abnormality, with some being more prevalent than
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others. For each category, they established a rule, often based on location or severity,

to determine whether a potential defect would qualify or not. Each category was in-

tended to be mutually exclusive, meaning that a defect would receive only one label,

but it is possible for a defect to qualify for multiple categories. In such cases, a do-

main expert can usually determine which category is the most appropriate. However,

even among experts, there is occasionally disagreement in their initial classifications,

especially when the defects fall on the border between categories [13]. Despite these

limitations, we feel that this classification system provides the best starting point for

any type of automated system. Before presenting the rest of our solution, however,

we cover additional information on the biological background of this problem as well

as some of the existing work in the domain.

5.1 Biological Background

Glaucoma is a disease that affects the optic nerve and is one of the leading causes

of blindness in the U.S. The exact causes of glaucoma are unknown, but treatment

options exist if diagnosed early. If left untreated or undiagnosed, a loss of visual

function will occur as the disease progresses. Unfortunately, no single standard or

universal definition exists to determine if an individual is diseased or if a diseased

patient is progressing. Despite the lack of a single standard, a number of alternatives

do exist and many of them rely on the automated perimetry test, commonly called

the visual field examination.

For patients being treated for, or suspected to have, glaucoma, visual field mea-

surements are usually taken at yearly or half-yearly intervals. These assessments are
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examined by a clinician, who determines whether progression is occurring. To sup-

port their decision, a clinician can rely on any number of methods, including, but not

limited to, summary statistics, point-wise regression, and regression techniques that

rely on spatially-based clusters [73–75].

Despite this potential support, clinicians working in this area face a number of

challenges. One major, and largely unavoidable challenge, is that a patient’s visual

field is highly (and naturally) variable. Therefore, a patient may seem to be progress-

ing in one exam, but appear normal in the next. In addition, the sheer number of

available support systems gives rise to a second challenge: when provided the same

set of patient data, they may not yield the same overall assessment. Thus, the final

decision of a clinician can be influenced by the method of assistance. In this work, we

hope to develop a system that is robust enough to handle any natural field variability,

yet performs with accuracy comparable to a domain expert.

5.1.1 Capturing the Visual Field

The visual field test is used to measure the sensitivity of the retina to light. A

patient sits facing a spherical bowl that encompasses their field of vision and a light

is flashed at various locations in a regular grid pattern (∼50-60 points). Retinal sen-

sitivity at each location is a function of the brightness as reported by the patient [76].

This value is scored on a decibel scale and can range from 0 dB (blindness) to 35 dB

(superior).

5.1.2 Clinical Display

The results of a visual field exam are typically displayed as either a gray-scale map

of sensitivities or the raw sensitivity values themselves. This display often includes
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a secondary map that provides the probability of an abnormality occurring at each

location in the patient’s field based on their sensitivity values.

We now cover the steps taken to create these maps using a procedure described in

Johnson et al. [77]. In that work, a best-fit least-squares linear function was created

that mapped sensitivity as a function of age at each location in the field. The slope

of this linear age vs. sensitivity function was then used to adjust the values of each

patient to those of an average 45-year-old. By taking the difference between these

age-adjusted values and those of an average 45-year-old, one is left with a set of

values denoted as the patient’s Total Deviation (TD). If one takes the 85th percentile

sensitivity value (the 7th highest) and adjusts the Total Deviation numbers by the

difference between the patient’s 85th percentile and the average 85th percentile, one

is left with a related measure known as Pattern Deviation (PD), which adjusts for

the mean threshold surface of the entire field. With pattern deviation, any overall

depression of visual threshold caused by age or cataract would not obscure any mean-

adjusted pattern of field loss.

Given the deviation values, one can then determine whether a patient’s sensitivity

values fall below normal levels at any of the locations in the field. If it does, the

location is marked on the probability map. Typically, a location must fall below

normal at the 5% probability level to be marked (these probabilities are derived from

normal control groups, not abnormal patient groups). Once a location meets this

threshold, further abnormality is denoted by color, with different values used for the

5, 2, 1 and 0.5% probability levels.

Figure 5.1 provides an example of the results of a visual field examination that

might be presented to a clinician. This exam corresponds to a right eye. The figure
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in the top left contains the raw sensitivity values for each test location in the visual

field. The values in the top right have been adjusted for age. The middle left and

middle right plots contain the Total and Pattern Deviation values, respectively. The

bottom plots correspond to the Total and Pattern Deviation-based probability maps.

In each figure, the ‘<’ symbol denotes the location of the blind spot. Figure 5.1

also contains additional measures, such as Mean Deviation (MD), Pattern Standard

Deviation (PSD) and the Glaucoma Hemifield Test (GHT), that can be used to assist

a clinician when diagnosing a patient.

5.2 Related Work

In this section we cover work related to characterizing the change in a patient’s

visual field over time as well as work that attempts to model and detect change in

anatomical shapes. We include such work here because a visual field can be viewed

as a surface by treating the sensitivity thresholds as elevation values.

5.2.1 Visual Field Progression

A number of different researchers have looked into predicting visual field progres-

sion in glaucoma patients using the standard statistical techniques of longitudinal

data analysis. Some methods excel at monitoring field summary measures, others

at characterizing the rate of loss in sensitivity [73]. However, since there is no one

analysis technique that stands out above the rest, a number of groups have attempted

to create alternative methods of analysis. Gardiner and Crabb developed a method

of point-wise linear regression (PLR) that provides better performance than standard

PLR in applications where a high degree of specificity is required [73]. Nouri-Mahdavi

et al. tried to predict progression in visual field test data by using the PLR method
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Figure 5.1: Results of a visual field examination (right eye). The figure in the top left
provides the raw sensitivity value at each location. The plot on the top right shows
the age-adjusted values. The values in the middle plots contain the Total and Pattern
Deviation values (TD and PD, respectively). The bottom figures show the probability
maps derived from the deviation values contained in the middle plots. The locations
that are marked fall below normal at the the 5, 2, 1 and 0.5% probability thresholds.
In each figure, the ‘<’ symbol signifies the location of the blind spot. The measures
listed on the right edge of the figure can also be used to assist a clinician in their
diagnosis.
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proposed by Gardiner and Crabb along with several other clinical and perimetric mea-

sures [74]. Goldbaum et al. used features derived from the raw visual field sensitivity

values as input to several machine learning classifiers to see how they compared with

the current analysis standards [78]. They tested support vector machines, mixture

of Gaussian and generalized Gaussian classifiers. They used as input both the entire

visual field as well as a summary that was created by reducing the original field with

PCA, but they found that there was no statistically-significant difference between the

variations. Other groups have reported similar findings [79]. Finally, Tucker et al.

attempted to learn a Bayesian Network for classification and prediction, again using

the raw visual field sensitivity values as input [75,76].

5.2.2 Modeling and Detecting Change in Anatomical Shapes

Given image-based biomedical data, a number of researchers have implemented

methods that look to model the overall shape of an object and then determine how

much that object differs from a given population. If an object has been modeled

over time, those measurements can also be used to quantify the degree of shape

change. Such techniques would be useful in our analysis and characterization of the

longitudinal changes seen in a visual field.

One method for detecting abnormalities or outliers in a dataset involves convert-

ing the boundary of an object into a time series and applying subsequence clustering

techniques to the results [80, 81]. One can then calculate the amount of discord be-

tween objects or use dimensionality-reduction techniques to find outliers or abnormal

shapes. These techniques generally require that each object be represented by many
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points, fall into relatively distinct clusters and be largely free of noise. Unfortunately,

the visual field dataset does not meet any of these criteria.

Other techniques look to compute a medial representation [82], or capture varia-

tion from a mean using shape-based representations derived using spherical harmonics

or spherical wavelets [83, 84]. After creating the shape descriptor, characterizing the

differences between groups becomes a simple machine learning problem [85]. Unfor-

tunately, these techniques require that each object be represented by a large number

of points to generate an appropriate model. We are limited by the relatively small

number of points that comprise each visual field. Also, the visual field exams are

highly variable, meaning a deformation seen in one exam can become a protrusion

in the next. Most of the above techniques are not intended for structures with such

high variability.

While the above techniques may not be directly applicable to the visual field

dataset, we can still use many of the underlying principles to guide our analysis. For

instance, the idea of a medial representation is are already present in the visual field.

The age-adjustment that is used to calculate the total deviation values implies that

a median already exists. In fact, groups have attempted to use the raw age-adjusted

values as input to several SVM variants [79], though the improvement over current

methods was not statistically significant. This means that some degree of modeling

will be necessary to improve performance over existing techniques.

5.3 Representing Visual Field Abnormalities

A number of different groups have looked to characterize and classify either single

visual field exams or an overall examination history based on some form of the raw
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sensitivity values [74–76, 78, 79]. Despite these efforts, no one methods stands out

above the rest. Part of the reason for this is that visual field exams are highly

variable and patient can appear to be progressing in one exam and improving the

next. Another problem is that there is no true consensus on what constitutes a

normal or abnormal exam. Such a designation is often left to the judgement of the

clinician.

To try and address this problem, Keltner et al. developed a manual classification

system that attempts to describe and characterize the common defects and abnormal-

ities appear in the visual fields of glaucoma patients [13]. Using a set of visual field

examinations, they defined criteria for primary and secondary levels of abnormality.

If a visual field met both criteria, it was then classified into one of 17 categories based

on a set of rules that were devised by the study participants. As part of our analysis,

one of our goals is to create a system that can automatically label a field as normal

or abnormal. Our efforts at solving this problem begin with an attempt to codify the

rules developed by Keltner et al.

At this point, we are interested only in determining abnormality. We are not trying

to assign each field to a specific category, though we do plan on such an extension

in the future. Part of the reason why we avoid making a specific assignment is that

while each of the 17 categories are intended to be mutually exclusive (i.e. a defect

would only receive one label), as currently defined, it is possible for an abnormality

to satisfy the qualifying criteria for more than one rule.

Faced with a choice between a subset of categories, it is fairly easy for domain

experts to determine the choice that best fits a given field. However, even with a set of

well-defined rules, borderline or marginal cases are a source of disagreement between
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domain experts. In addition, over time, some defects actually progress and become a

different type of defect. All of these challenges complicate the decision process of an

automated system. Therefore, until there is more consensus within the vision science

community as to the relationship and borders between the different defects, we will

refrain from making specific category assignments for each field.

5.3.1 Defining Categories of Abnormality

The original work by Keltner et al. defined a total of 17 categories of abnormality.

After consulting with domain experts, we decided that given our dataset, which is

skewed toward patients who are normal or suspected to be in the early stages of

glaucoma, we were unlikely to see patients from every single category. As a result,

we focus on a smaller subset of 7 abnormalities that were deemed the most likely to

be present in our data.

Before listing these abnormalities and their qualifying rules, however, we detail

some of the location-based terminology used in their definitions. Figure 5.2 provides

an example visual field, along with a numbered location of each position (locations 18

and 31 refer to the blind spot). Also provided is a label for each quadrant. The upper

half of the field is denoted as the superior hemifield, while the lower half is referred to

as the inferior hemifield. The temporal region of the visual field corresponds to the

edge closest to the blind spot, while the other side, closest to the nose, is called the

nasal region. And while it is not labeled on this particular figure, the area between

the temporal and nasal regions contains the optic nerve and we refer to it as the nerve

fiber bundle region.
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Figure 5.2: Visual field test locations. Positions 18 and 31 denote the blind spot.

Some of the abnormalities are contained within a single hemifield and can thus

be defined as a superior or inferior defect. For such abnormalities, we only provide

rules that correspond to the superior hemifield. To derive the rules for the inferior

hemifield, the locations are simply reflected across the horizontal midline. Finally,

when a point or location is defined as abnormal, that means that it has a Total or

Pattern Deviation probability level 5% or less. We provide the qualifying rules for

each defect in Figure 5.3

In Figure 5.4, we provide examples of the four most prevalent defect types in our

dataset. They are, in no particular order, the Nasal Step, Paracentral, Partial Arcuate

and Arcuate defects (a through d, respectively). We present each example in the form

of a Total Deviation probability map, where each abnormal point is represented by
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Superior Nasal Step:

1. At least one point in the range [4-6] must be abnormal.
2. Less than two points in the group [15,17,20,21,23,24] are abnormal.
Superior Partial Arcuate:

1. At least one abnormal point in the range [4-6] or [15,21].
2. At least one abnormal point in the temporal visual field ([15-27]).
Superior Arcuate:

1. At least one abnormal point in the range [4-6] and [15,21].
2. A contiguous line of abnormal points between [4-6] and [15,21].

The contiguous points must include [20,23,24,7,10,11,1,8]
(but not necessarily all points).

Superior Paracentral:

1. No abnormal points in [4-6].
2. At least one abnormal point in [7,10,11,15,17,20,23,24].
Partial Peripheral Rim:

1. 3 or more, but 15 or fewer contiguous abnormal points
in [6,9,12,14,13,26,27,25,22,19,32,35,38,40,39,53,54,52,49,46].

Peripheral Rim:

1. More than 15 contiguous abnormal points
in [6,9,12,14,13,26,27,25,22,19,32,35,38,40,39,53,54,52,49,46].

Widespread:

1. A glaucoma hemifield test classification of
“General Reduction in Sensitivity.”

OR
1. A mean deviation probability of less than 5%.
2. A pattern standard deviation probability greater than or equal to 5%.
3. More than one abnormal point in each quadrant:

Quadrant 1: [1:14]
Quadrant 2: [15:27] (excluding 18 - Blind Spot)
Quadrant 3: [28:40] (excluding 31 - Blind Spot)
Quadrant 4: [41:54]

Figure 5.3: Qualifying rules for each defect category.
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a grayscale square, with the color corresponding to the probability of abnormality.

Normal points are represented by a dot and the blind spot is denoted with a ‘>’

symbol.

After our initial experiments, we also added one additional category that was

designed to capture the overall loss or reduction in visual field sensitivity. We call

this the General Reduction abnormality. We calculate a score for this category for

every field, i.e. it does not have any qualifying criteria. In our current evaluation,

however, we ignore the General Reduction category as it does not capture any physical

defect. It is intended for use in the future analysis of this dataset.

As stated above, given a field, we want to determine whether it has a defect that

matches the qualifying criteria of any of the abnormality categories, and if so, we

wish to assign a score that characterizes how well the defect matches the definition.

The paper by Keltner et al. contains enough information to determine whether a

defect satisfies the qualifying rule for a given category. It does not, however, provide

information on how to determine how well an abnormality matches that definition.

Since a defect may satisfy multiple rules, one would prefer a system where the category

that best matches the defect would receive the highest score.

Therefore, we decided to create a template for each category that would assign a

probability score to each location in the visual field. The locations that were highly

likely to appear in a particular defect or abnormality would receive a high score,

while those locations that were slightly less likely would receive a lower score. Those

locations that were unlikely or very unlikely to appear would receive no score or a

negative value. The idea behind the negative values is to penalize and lower the

overall score, making the field appear like less of a match.
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Figure 5.4: Total Deviation probability plots of the four most common defect cate-
gories in the visual field dataset. The defects are as follows: (a) Superior and Inferior
Nasal Step, (b) Inferior Paracentral, (c) Superior Partial Arcuate, and (d) Superior
Arcuate. abnormality categories. Abnormal points are represented by a square, with
the probability level denoted by color. Each dot corresponds to a normal location
and the ‘>’ character denotes the blind spot.
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The probability maps for each category, whose values were assigned by a domain

expert, are provided in Figure 5.5. Each color-coded location in the map can have a

positive score ranging from 1-4, a neutral score (0), or a negative score of -1 or -2. For

locations with a positive score, a value of 1 indicates a position where a given defect

is likeliest to appear abnormal. As the value increases, the likelihood of abnormality

decreases. For locations with a negative score, the opposite is true. Locations with a

score of -2 are penalized more than locations with a -1. Neutral locations are ignored

when assigning a score. Please note that the Arcuate and Partial Arcuate defects

share a probability map. The same is true for Peripheral Rim and Partial Peripheral

Rim. Finally, the Widespread and General Reduction categories use a map where

every location is assigned an equal probability level.

5.3.2 Calculating Individual Category Scores

Given a visual field, we calculate a score for each abnormality category using the

procedure described below. We first take the raw threshold values and apply an age-

adjustment to normalize them to those of a 45 year-old. Using the adjusted sensitivity

scores, we calculate the Total Deviation values and probabilities for each location in

the field. We also calculate the other domain-specific information that is required

to determine whether a field satisfies the criteria for certain categories (particularly

Widespread). This information includes the Mean Deviation (value and probability),

Pattern Standard Deviation (value and probability) and Glaucoma Hemifield Test

classification5.

5The code to calculate these measures is proprietary and was provided by Michael Twa and Chris
Johnson. The routines used by this software are detailed in Johnson et al. [77]
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Figure 5.5: Probability map templates for the various abnormality categories. The
map for Nasal Step is given in the top left, Paracentral in the top right, Partial
Arcuate in the bottom left and Partial Peripheral Rim in the bottom right. Each
location is assigned a positive, neutral, or negative score based on the likelihood of
abnormality for that category (the ‘>’ character denotes the blind spot).
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Once we have completed these calculations, we determine whether a field matches

the criteria for any of the defect categories. If it does, we take the Total Deviation

sensitivity values, and for each location, we multiply the sensitivity value by a scaling

factor that is based on the value in the probability map. These scaling factors,

determined empirically, are provided in Table 5.1. We take a sum over each field and

use this value as our overall abnormality score (the Total Deviation sensitivity values

are positive if a patient has better than average sensitivity at a particular location. We

only consider those locations where a patient has less than average sensitivity. These

values are negative, so we use their absolute value when calculating each abnormality

score).

As opposed to the original work by Keltner et al., where a field would be classified

only if it satisfied two initial tests for abnormality, we pass every field through our

scoring procedure. A normal field would not satisfy any of the qualifying criteria and

would thus receive an abnormality score of zero. Checking every field removes the

need to implement additional checks for abnormality.

In our initial tests, we would only allow a point to contribute to the overall score

if it was abnormal at the 5% probability level (or less) on the Total Deviation plot.

If it was, we would assign a score based on the probability level itself (5, 2, 1, or

0.5%), not the underlying sensitivity value. During consultations with others in the

vision science community, concern was raised that we could miss potentially useful

information from locations that were not quite abnormal - those that were below

normal at a probability level of 6%, for instance. In addition, it was felt that using

the Total Deviation sensitivity values, and not the probability level, would provide a

more continuous score that could better capture the varying degrees of abnormality.
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Probability Value -2 -1 0 4 3 2 1
Scaling Factor -0.25 -0.1 0 0.1 0.15 0.25 0.5

Table 5.1: Probability map values and associated scaling factors.

As a result, we elected to include all locations in our calculations and use the actual

sensitivity values instead of the probability levels.

5.3.3 Calculating Total Field Scores

Once we have calculated a score for each qualifying category, we can begin to

determine whether the overall field is abnormal. In this work, our goal is not a cross-

sectional analysis where we associate each field with a specific defect. We are more

interested in assigning a label based on a longitudinal analysis of a patient’s exami-

nation history. It is possible that a defect can change from one type of abnormality

to another as the disease progresses. For instance, an abnormality that begins as a

Partial Arcuate can progress into an Arcuate defect. This is the type of change we

hope to capture through our analysis. To facilitate this effort, we group the defects

based on their location in the visual field.

To create these groupings, we divide the visual field vertically into three different

regions: nasal, temporal, and nerve fiber bundle. We next divide the field horizontally

into inferior and superior hemifields. We then create groupings based on the defects

that generally occur in each location. We also create a separate group for the defects

that affect the entire visual field. These groupings, and the defect categories that

comprise them, are listed in Table 5.2. Combining the abnormalities in this way

allows us to characterize a patient as having a defect in a particular location without
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Group Composite Abnormality Categories
Superior Nasal Superior Nasal Step
Superior Nerve Fiber Bundle Region Partial Arcuate, Arcuate, Paracentral (all Superior)
Inferior Nasal Inferior Nasal Step
Inferior Nerve Fiber Bundle Region Partial Arcuate, Arcuate, Paracentral (all Inferior)
Whole Field Widespread, Peripheral Rim, Partial Peripheral Rim
General Reduction General Reduction

Table 5.2: Location-based defect groups and their corresponding abnormality cate-
gories.

1. Age-adjust sensitivity values.
2. Compute domain-specific measures, including:

Total Deviation, Pattern Deviation, Mean Deviation,
Pattern Standard Deviation, as well as a classification
by the Glaucoma Hemifield Test.

3. Check whether the field satisfies any of defect criteria.
4. Compute an abnormality score for each the qualifying categories.
5. Calculate the location-based group summary scores.

Figure 5.6: Algorithm to model visual field defects.

having to determine whether the defect switches from category X to category Y

between exams. Currently, we do not list either of the Temporal groups. This is

because the primary defect located in the Temporal region, the Temporal Wedge,

was not one of the defects likely to be present in our dataset. When we begin to

test for this defect, we will add the requisite groups. We calculate a score for each

group by taking the sum of the abnormality scores of the underlying categories. Our

approach to modeling a visual field based on its underlying defects is summarized in

the pseudo-code provided in Figure 5.6.
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5.4 Characterization and Classification of

Visual Field Examinations

In the previous section, we describe a technique to characterize the abnormalities

that may be present in a visual field. We define several categories of abnormality

and for each one we create a template that contains the probability of abnormality

at each location in the visual field. Given a field, we compare it to each template and

assign a score based on how well it matches. Those efforts were limited to a single

visual field. Here we present an approach to characterize a patient’s entire visual field

examination history. This longitudinal analysis characterizes both the degree of field

abnormality as well as the rate of change in the field between exams. This system

is automatic, yet tunable, allowing clinicians to have control over the sensitivity of

the results. We begin with our approach to determining field abnormality and follow

with a description of how we characterize the rate of change.

5.4.1 Determining Field Abnormality

Executing the scoring procedure described in the previous section will result in a

set of five location-based group summary scores. These values summarize the scores

of the individual abnormality categories and are intended to characterize the amount

of abnormality in the Nasal and Nerve Fiber Bundle regions (Inferior and Superior),

as well as any Whole Field defects that may be present.

Before determining whether a particular field is normal or abnormal, we generate

a series of summary statistics to determine what constitutes normality. To do this,

we execute our scoring procedure to compute location-based group scores for every
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field in our dataset. We then calculate the median and standard deviation of each

group.

To determine whether a patient’s visual field is abnormal, we examine the score for

each location-based group. If the score for that group is greater than X ∗σ, where X

is a user-defined threshold and σ the standard deviation, we say that an abnormality

exists in that group (or location). Inherent in this calculation is the assumption that

normal fields have summary scores of zero.

This process is repeated for every one of a patient’s exams. If a patient has a

single abnormality in any group, we declare that patient’s field to be abnormal. One

can relax the abnormality criteria by requiring that a patient have several abnormal

exams in a particular group as opposed to just one. However, our dataset was labeled

so that a patient’s field was declared abnormal if a single defect was present and we

elect to use the same standard. We should note that it is certainly possible for a

patient to be declared abnormal in multiple categories. This simply implies that any

defects that are present are likely to be widespread and span multiple locations within

the field.

5.4.2 Characterizing Rate of Change

To determine the rate of change in a patient’s visual field, we take the group

scores for each field and compute the difference between consecutive exams, as well

as between the first and last. We then use these differences to calculate the percentage

change for each group. For instances where the summary score changes from some

value to zero, or from zero to some value (resulting in a percentage change of -100 or

infinity, respectively), we use the median value of the group instead of zero.
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Type of Change Criteria

Progression C ≥ X%.
Probable Progression Y % < C < X%.
Relative Stability −Y % ≥ C ≤ Y %.
Probable Improvement −X% < C < −Y %.
Improvement C ≤ −X%.

Table 5.3: Categories of inter-exam field change.

Figure 5.7: Line diagram of inter-exam categories of change.

Using these percentages, we compute a tally for the patient based on the mag-

nitude and direction of the change. We have specified five different types of change

that can occur. We list these changes and the criteria for each in Table 5.3 (assume

C represents the inter-exam percentage change). A graphical view of these categories

is presented in Figure 5.7.

The inter-exam change for each summary group will fall into one of the categories

listed in Table 5.3. While these categories are similar to the labels used to charac-

terize the change in our dataset, we cannot simply take a majority vote and assign

that category to the patient. If an individual has a field defect that is present and

progressing in only one group (i.e. the other two group scores are zero), a majority

of votes for that patient would fall into the Relatively Stable category, when that
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individual should probably be classified as Progressing. On the other hand, if a pa-

tient had a defect that fell into the Probably Progressing category, but for only a few

exams, then one might want to actually classify that patient as Relatively Stable. As

one can see, assigning a category to characterize the change in visual fields is not a

straightforward process.

To address this problem, we propose the following: First, we compute a tally for

the inter-exam change of each summary group. Then, we calculate a score S using

the equation given below:

S = −Z ∗ P + (−1/Z) ∗ PP + (1/Z) ∗ PI + Z ∗ I (5.1)

where P, PP, PI, and I represent the number of votes in the Progressing, Probably

Progressing, Probably Improving and Improving categories, respectively. Z represents

a user-defined weight value (set to 2 in our experiments). The votes for Progress-

ing and Improving receive a larger weight because they represent a more significant

change.

The value for S will be either positive (implying field improvement), negative (de-

fect progression), or zero. A zero value will occur when there is either no abnormality

present, or the number of votes on the progression side of the equation cancel out

those on the improvement side. Once we compute S, we use that value as well as

the number of Relatively Stable (RS) votes to assign a label for each patient. The

pseudo-code for assigning a label is provided in Figure 5.8. In this algorithm, the

sign of S is only used to denote whether a patient is leaning toward progression or

improvement. When assigning a label, we treat S as a negative value with respect to

RS. Thus, for the rest of the discussion, assume that in all calculations, the value
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of S is negative. We refer to the original sign of S only to determine whether a pa-

tient is progressing or improving. A graphical, flowchart version of the pseudo-code

is presented in Figure 5.9.

To summarize our approach, if the value of S + RS < 0, then that patient is

said to be Progressing or Improving, depending on the original sign of S. If (S +

RS)/(Number of Exams) ≤ (NG − 1), where (NG − 1) is equal to the number of

location-based groups minus 1 (4 in our case), then a patient is said to be Probably

Stable (Progressing or Improving), depending on the original sign of S. Otherwise,

we label a patient as Stable. It might seem like the value of (NG − 1) is a rather

arbitrary selection, but there is some logic behind the choice. First of all, (S +

RS)/(Number of Exams) will always be less than NG, since we are only considering

the 5 location-based summary groups. If (S + RS)/(Number of Exams) > (NG− 1),

that implies that at least four of the groups are Relatively Stable (RS) and the fifth

is not “unstable” enough to be definitely progressing or improving (there could be

some instability in all 5 groups, but overall it would appear to be relatively minor).

We want to designate such patients as Stable.

5.4.3 Additional Applications

Though we present our approach in a classification context, we are not limited

solely to this task. Our methods can also be employed in other applications, such as

detecting outliers or discovering anomalous fields and patient histories in unlabeled

data. The declaration of a visual field as normal or abnormal does not rely on any

previous labeling of the dataset. The same applies to the labels quantifying the degree
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If S < 0
If S + RS < 0

Progressing
Elseif (S + RS)/(Number of Exams) > (NG − 1)

Stable
Else

Probably Stable (Progressing)
End

Elseif S > 0
If −S + RS < 0

Improving
Elseif (−S + RS)/(Number of Exams) > (NG − 1)

Stable
Else

Probably Stable (Improving)
End

Elseif S == 0 && RS > 0
Stable

Else
Probably Stable

End

Figure 5.8: Algorithm for assigning change-based labels.

Figure 5.9: Flowchart for assigning change-based labels.
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of inter-exam change. This means that our technique could be used to flag anomalous

cases such as:

• Patients whose visual field is marked as abnormal in every location-based group.

• A patient with a normal visual field that is declared to be Progressing.

• Similarly, a patient with an abnormal but Improving field.

One could also retrieve the top-k abnormal visual fields, based on the total or per-

group abnormality scores. Finally, one might also be interested in finding those

patients whose visual fields are abnormal in more than X% of their exams or whose

exams alternate between Progressing and Improving. Any patient with one of the

above history types might warrant additional scrutiny by a clinician.

5.5 Dataset

The dataset in our visual field experiments is composed of a group of normal

patients as well as individuals who have been diagnosed with glaucoma, with most

people having between 1 and 3 years of follow-up exams. The complete dataset

contains 192 individuals and a total of 1166 exams, with the number of exams roughly

divided equally between right and left eyes. Using this dataset, we wish to perform two

types of analysis. The first is more cross-sectional in nature and involves determining

whether a patient’s visual field can be considered normal or abnormal. The second

analysis is a longitudinal study that involves characterizing the change in a patient’s

visual field over time. We felt it would not be possible to adequately categorize the

change in patient’s field using just two exams, so we focus only on those individuals

that have participated in at least three examinations.
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This dataset was originally provided without labels, so in order to do any type

of validation, it needed to be analyzed by a domain expert. To ease the burden

imposed by this process, we limit ourselves to working with a single eye for each

individual. Instead of simply choosing just right or left eyes, however, we select the

“worst” eye, which is defined to be the one with the lowest baseline Mean Deviation

value. If that eye is associated with less than 3 exams, however, we use the other.

In the rare instance where the deviation value is the same for both eyes, we simply

select one at random. After removing those patients with less than 3 exams and

pruning the dataset of the “good” eyes, we are left with a total of 135 patients and

501 examinations.

We asked a domain expert to assign two different labels to each patient, one based

on the defects present in the visual field, the other on the changes in that field over

time. The labels and assignment criteria are listed below. We also provide the number

of patients assigned to each category in parentheses.

• Abnormality: If any of a patient’s visual field exams contain one of the defects

listed in Keltner et al. [13], that patient was labeled as Abnormal (68). If all of

their exams were defect-free, they were considered to be Normal (67).

• Change: Each patient was also labeled based on the changes in their visual

field sensitivity over time. This was done by analyzing their examination history

and assessing the relative stability of the field. A patient was placed into one

of the following categories:

1. Stable (60)

2. Probably Stable (56)
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3. Probably Progressing (7)

4. Progressing (2)

5. Probably Improving (8)

6. Improving (2)

An assignment of Stable or Probably Stable implies that there is little change

in a patient’s visual field over time. A patient that is said to be Progressing

or Probably Progressing would show some degree of deterioration in their visual

field or have a worsening defect, while an individual who is labeled as Improving

or Probably Improving would appear to get “better” over time. This could mean

that a defect that was present during a baseline exam was no longer evident in

subsequent exams, or that a serious defect became less severe in later tests.

5.6 Validation

To validate our approach, we perform two sets of experiments. In the first set,

we focus on determining whether the visual field of a patient is normal or abnormal.

In second, we switch our attention to characterizing the rate of change in a patient’s

field.

5.6.1 Experiments

In our first experiments, we execute our abnormality scoring procedure and assign

a label of normal or abnormal to each patient. We then compare our classification

with the assignment provided by our domain expert. Again, we note that in these

experiments, we ignore the General Reduction group as it does not correspond to any
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physical defect. Therefore, a field can only be declared abnormal based on defects in

the Whole Field, Nasal or Nerve Fiber Bundle groups (Superior and Inferior).

In our experiments, we use a value of 0.6 for the X parameter of the Whole Field

and two Nerve Fiber Bundle groups. A value of 2.1 was chosen for the two Nasal

groups. We tried a number of different values and these selections provided the best

tradeoff between the number of false positives and false negatives. If one wished to

weight the algorithm so that it minimized false positives at the expense false negatives

(or vice versa), alternate values of X could be employed.

In our second set of experiments we characterize the rate of inter-exam change in

a visual field (or lack thereof) by assigning a progression-based label to each patient

in our dataset. As stated previously, our approach is tunable, allowing the user to set

several parameters to control the quality of results. In assigning a change-based label,

we allow the user to specify the cutoff threshold between the categories of Progression

and Probably Progressing and between Probably Progressing and Relatively Stable (X

and Y , respectively). In these experiments, we used a value of 60% for X and 20% for

Y . The parameters for both sets of experiments were chosen empirically, but we plan

a more robust evaluation in the future to try and determine the optimal values. We

will likely use a genetic, gradient descent or simulated annealing-based algorithm for

this task [86,87]. With such an approach, the input is the set of m parameter values

and the output is the degree or percentage agreement with the expert classification.

This presents an (m + 1)-dimensional response surface where one searches over the

m input dimensions to determine the optimal output value. This procedure has been

used to determine the optimal configuration in a number of applications, ranging from

vehicle design to network traffic and the distribution of electricity [88,89].
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Like our first set of experiments, after choosing a label for each patient, we compare

our selection to that of the domain expert. As originally labeled, a patient could be

assigned to one of six different categories. In our algorithm, however, we limit an

individual to one of five possibilities. This is largely a result of the relatively small

number of patients who are labeled as Progressing or Improving.

Thus, when determining whether our assignment is in agreement, we allow for

some fuzziness and overlap. For instance, a label of Stable in one system and Prob-

ably Stable in another is considered to be a match. In addition, a label of Probably

Progressing or Progressing by our expert could be matched by a label of either Prob-

ably Stable (Progressing) or Progressing by our approach (similarly for Improving).

5.6.2 Results

Overall, we found that our algorithm performed very well in detecting field ab-

normalities. Of the 135 patients in the dataset, we only disagreed with the expert

classification in 14 cases. These misclassifications were almost evenly split between

false positives and false negatives (8 and 6, respectively), and the defects that we

missed tended to match the overall distribution of defects in our dataset (i.e. we did

not consistently miss one defect over the others). This translates into a roughly 90%

agreement between our system and the domain expert. We examined the patients

where the classifications disagreed, and we found that with 3 of the false negatives,

the defects labeled by the clinician did not technically satisfy the qualifying rules

for that particular defect category. Such a “defect” would never be detected by an

automatic system such as ours without changing or relaxing the qualifying criteria.

These cases illustrate some of the danger that is inherent with any approach that
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relies on strict classification rules. Even so, our results are very promising, as studies

in the literature report that even among multiple domain experts, agreement tends

to hover around 87-88% [13].

In our second set of experiments to characterize inter-exam change, we also report

very promising results. Using the somewhat fuzzy matching defined above, we found

that we were in agreement with the expert classification roughly 91% of the time,

misclassifying 12 patients in total. In all cases but one, when there was disagreement

between the two system, the expert classification was Probably Stable compared to an

assignment of Progressing or Improving by our algorithm. In no cases did we classify

a Stable patient as Progressing or Improving. In fact, in several of the instances

where there was disagreement, one could make an argument that the patient’s field

does indeed appear to be progressing or improving. In a traditional setting, these

disagreements would likely be re-examined by the rating experts and adjudicated until

a consensus was reached. It also serves to highlight the imprecise nature of assigning

progression-based labels to patients. However, despite the misclassifications, we are

very encouraged the performance of our algorithm.

In Figure 5.10, we present examples where our abnormality or progression assign-

ments differed from those of the domain expert. Each history is represented as a series

of Total Deviation probability plots, with the abnormal points again represented by

grayscale squares. As before, the probability of abnormality is denoted by color. In

the top history (a), we show a patient that was classified as having a Superior Para-

central defect by the expert, but normal in our system. We draw particular attention

to this case because it represents one of the instances where the defect specified by the

expert technically fails to meet the qualifying criteria for that category. In the first,
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Figure 5.10: Example examination histories for the patients where our abnormality or
progression assignments disagreed with the expert. The top history (a) represents a
patient classified as abnormal by the domain expert but normal by our system and (b)
corresponds to the opposite case. We considered the patient in (c) to be Improving
and (d) as Progressing. Both were labeled as Probably Stable by the domain expert.
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or left-most exam, which is the one said to contain the defect, the abnormal point

in location 6 (the left-most abnormal point above the horizontal midline) should dis-

qualify this defect from consideration in the paracentral category. We present this

example to show the difficulty presented by abnormalities that straddle the border

between categories.

The history in in Figure 5.10 (b) corresponds to a patient that was classified as

abnormal by our system and normal by the domain expert. While the patient’s fields

contain a number of abnormal points that would seem to indicate a defect, none of

the points are consistently abnormal. As a result, one cannot definitively say that a

specific defect exists. This shows that while one can consider each patient’s visual

field in isolation to detect defects, there may be instances where several fields must

be considered in total to determine whether a defect really exists or if the supposed

abnormality simply represents natural variability.

The last two examples (Figure 5.10 (c) and (d)) are patients where our progression-

based assignment disagreed with the expert. Both of these patients were classified as

Probably Stable by the expert, but Improving and Progressing by our system. While

there does seem to be improvement or progression in each field, it is difficult to say

whether the defect is truly diminishing or worsening. Thus, one could make the

argument that the defects are probably stable. We show these examples to illustrate

the challenges in making progression-based assignments.

5.7 Conclusions

In this section, we present our approach to model the defects that may be present

in a patient’s visual field. This model can be used to classify a patient’s entire field as

141



normal or abnormal and by looking at the inter-exam changes in this model, one can

also assign a label that characterizes the direction and degree of change. We find that

the labels assigned by our approach largely agree with those assigned by a domain

expert. We are in agreement with the expert classification 90% of the time in terms

of labeling a field as normal or abnormal and 91% of the time in characterizing inter-

exam change. These values compare favorably with those reported between domain

experts, and outperform many of the automated systems in use today.

In addition, our approach contains a number of user-tunable parameters, which

can be changed to minimize false positives and false negatives, depending on the

task at hand. This is critical, as our evaluations are somewhat preliminary, being

limited to a single dataset. Datasets that contain a different ratio of diseased patients

versus normal individuals, or datasets that contain a greater number of patients with

additional or more severe defects are likely to require a different set of parameters in

order to achieve the most effective performance. Thus, it is likely that our parameter

selections do not represent the globally-optimal solution. We did check a range of

values during our tests, however, and believe that we have found at least a locally-

optimal solution. While this might imply that we have overfit our algorithm to the

data, until we can evaluate our technique on multiple datasets, we are left with our

current selections. Once we have the opportunity to expand our efforts, we plan to

use a genetic, gradient descent, or simulated annealing-based algorithm to ensure that

the optimal input parameters have been chosen [86,87]. By treating the user-tunable

parameters as a set of inputs and the percent agreement with the expert labels as

an output, one can check a range of values to determine those that yield an optimal

output. We feel that such an effort is outside the focus of this study, however.
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Despite the promising results seen in our evaluation, our approach does contain

several limitations that we intend to address in the near future. The most pressing

need is to expand the capabilities of our scoring procedure in declaring fields as normal

or abnormal. Currently, we assign a label to a field based on the sum total of all the

defects that might be present in a particular region or hemifield. Realistically, only

one defect will be present in a given location. Thus, we must create a method to

normalize the abnormality scores of each category so that the category matching the

defect returns the highest score. This will require additional work with clinicians

to clearly define the borders between the different defects as well as how to handle

patients whose defects evolve from one type to another.

Part of problem with creating a method to normalize the abnormality scores is that

in using the Total Deviation sensitivity values, there is no maximally-abnormal score

for each location (other than 0 dB, or blindness). When we computed the score based

on the probability of abnormality, we could say that a location that was abnormal at

the 0.05% probability level exhibited the maximum abnormality possible. With the

“continuous” sensitivity values, it is much more difficult to make such a declaration.

Despite this limitation, we feel that using the actual sensitivity values provide the

user with a much better idea as to the true nature of an abnormality. Such a view

could be masked by relying on the discrete and relatively sparse probability levels.

While we limit our evaluations to comparing performance against a labeled dataset,

our approach can also be applied to unlabeled data. Though further research is needed

before this system is capable of labeling an abnormal field with a single, specific defect

category, it can be used to retrieve examinations that appear to be outliers or anoma-

lous in comparison to the rest of the dataset. Using the abnormality scores assigned
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by our algorithm, one could retrieve the most abnormal individual examinations, or if

a patient has a certain percentage of abnormal fields, an entire examination history.

One could either specify a level at which an abnormal exam is declared to be an

outlier, or, based on the scores of all the exams in the dataset, simply retrieve the k-

most abnormal fields or examination histories. Such a feature would allow researchers

or clinicians to quickly flag patients on whom they might wish to focus additional

treatment or attention.

As a further extension, we can also use our technique as a method of flagging early

disease cases by removing or relaxing the qualifying rules for each defect category.

As we saw in our experimental evaluation, there were several instances where an

individual was labeled as abnormal by the domain expert because of the presence of

a certain defect, but our approach failed to reach the same conclusion because the

defect in question did not technically satisfy the qualifying criteria for that category.

While a clinician can use their judgement to handle such borderline cases, it illustrates

the challenge they present for any automated system. By relaxing or removing the

rules for each defect category, these so-called boundary defects will no longer pose a

problem, and we may even be able to detect preliminary or early-stage defects that

would normally be overlooked. In such a system, every patient would receive a score

for every category, so relaxing the qualifying criteria would likely require a change to

our probability templates to ensure that we still correctly identify any defects that are

actually present and while minimizing the number of potential false positives. Since

many clinicians are not used to looking for such early stage defects, this extension

would also require additional collaboration with the vision science community to
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Figure 5.11: Diagram of workflow as implemented in the final case study.

address any questions or concerns. Even so, it remains a promising avenue of future

work.

As with our other case studies, we provide a graphical summary of our workflow

and highlight the implemented stages in Figure 5.11. Unlike the previous studies,

however, the methods used in the Data Modeling stage are not true modeling tech-

niques like Zernike polynomials or wavelets. In this case study, we are dealing with

functional information, in the form of sensitivity values, as opposed to the structural

information used in our previous efforts. As a result, many of the traditional modeling

methods do not apply. We rely on simpler techniques such as computing summary

scores or calculating percentage change, as these measures provide an adequate char-

acterization of both patient function and functional change. Since the purpose of this

case study is to characterize and detect visual field abnormalities, it is heavily depen-

dent on the source domain and the Incorporation of Domain Knowledge. This occurs

in creating and coding the rules for each defect category as well as the corresponding
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defect templates. In addition, the source domain also influences the voting strategy

used to characterize the inter-exam change of a patient’s field. In terms of Biomed-

ical Knowledge Discovery, this case study contains both a spatial and a longitudinal

aspect. The spatial component arises in the determination of individual field defects

while the longitudinal element is found in the characterization of inter-exam change.

Also, while we use probability maps to visualize a patient’s field and any defects that

may be present, these maps are fairly standard within the domain of vision science.

Thus, this case study does not include an implementation of the Visual Interpretation

and Query-based Retrieval stage.
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CHAPTER 6

EXTENSION I: QUERY-BASED RETRIEVAL OF

PROTEIN SEQUENCE AND STRUCTURE

In recent years, bioinformatics, or the use of methods from information technology

on large-scale biological datasets, has become a major showcase for the real-world ap-

plication of many ideas from computer science. Two areas of research within the field

of bioinformatics involve genomic, or gene-based and proteomic, or protein-derived,

data. Genes, which encode an individual’s DNA, are comprised of nucleic acids, while

proteins, which play a crucial functional role in countless cellular processes, are com-

posed of amino acids. Since certain patterns in DNA can be an indicator of disease,

much of focus on genes has been on their sequence. Due to their functional signif-

icance, there is interest in both the structure and sequence of proteins. The amino

acid sequence of a protein is referred to as its primary structure. Sequential acids fold

into small sub-domains, which are called secondary structure elements (SSEs). These

secondary structures interact to form the global, tertiary structure of the protein.

The past decade has seen an explosion in the amount of publicly-available genomic

and proteomic information. Low-cost shotgun sequencing has led to the determination

of entire genomes, including cat, dog and human. The completion of these projects

has generated vast repositories of sequence information. Scientists believe that these
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sequences hold the key to determining the cause and treatment of many diseases. The

subsequent desire to mine this information has led to the development of query and

search tools like BLAST and its variants [90,91].

The protein domain has seen a similar, though smaller, increase in information.

For the past decade, the UniProt6 database, a repository of non-redundant protein

sequences, has doubled in size every two years, to a current total of 2.8 million entries.

Due to their functional significance, as well as the belief that there is a link between

structure and function, there is also considerable interest in the structure of proteins.

Solving the structure of a protein molecule, typically through techniques such as X-

ray crystallography or Nuclear Magnetic Resonance (NMR), is much more difficult

than determining its sequence. Consequently, the number of solved protein structures

trails that of determined sequences.

In most cases, once a protein structure has been solved, it is deposited into the

Protein Data Bank (PDB)7. As of May 2006, the PDB contained over 36,000 struc-

tures. While this number is far lower than the number of known sequences, in the past

ten years, the size of the PDB has increased seven-fold. The expected development

of high-throughput crystallization techniques means that the number of solved struc-

tures should increase dramatically. In addition, projects such as Folding@Home8 are

looking to simulate the folding of a protein as it progresses from an unfolded amino

acid sequence to its final structure [14]. These simulations are expected to generate a

tremendous amount of data and a corresponding increase in intermediate structures

that will need to be examined.

6http://pir.uniprot.org

7http://www.rcsb.org

8http://folding.stanford.edu
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6.1 Related Work

Our second protein-related case study involves research efforts that focus on the

protein retrieval and the querying of protein datasets [92, 93]. In the past, there has

been a large effort in the database community to develop tools to search for similarity

in protein databases. One of the first works proposed an algebra to handle queries to

determine similarity among protein sequences [94,95]. While useful on sequences, it is

not immediately apparent how to extend such an algebra to structure-based datasets.

For instance, sequence queries allow for partial matches that include gaps. There is a

clear notion on the meaning of a gap in terms of sequence, but not when applied to a

3D structure. Çamoğlu, Kahveci and Singh proposed a method of finding similarity

that created feature vectors based on triplets derived from SSEs [96]. These vectors

were placed into an R∗-tree, which was used to retrieve similar proteins as a pruning

step for the VAST alignment algorithm [97], greatly reducing the time needed to

conduct a pair-wise alignment of small datasets. However, pair-wise alignment is not

feasible on large databases. Finally, Tan and Tung proposed a method to convert

a protein into a series of 3D substructures. These substructures were clustered and

sequential substructures were merged [98]. However, this method again relies on

pair-wise alignment and does not scale well to large datasets.

There have been a number of recent publications that have looked at index-

ing proteins for large-scale structure retrieval [99–104]. Three of the most recent

are PSIST [102], ProGreSS [103] and Protdex2 [104]. In PSIST, a feature vector

is generated for each protein based on the distances and angles between residues.

These vectors are placed into a suffix-tree, which is used as the indexing structure.

With ProGreSS, a sliding window is placed on the backbone and several structure
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and sequenced-based features are extracted. Retrieval is handled using a maximum

bounding rectangle (MBR)-based index structure. Protdex2, on the other hand, con-

verts the distances between residues into a matrix and uses SSE-based sub-matrices

to derive a feature vector, including information such as angle, area and amino acid

type. Queries are then executed on an inverted file index. Despite these efforts,

however, no one indexing method stands out among the rest.

6.2 Modeling Protein Structure

In the following section, we present several methods that can be used to represent

protein structure using wavelets. We begin with a transformation to generate a

global description of protein structure using a 2D decomposition. We follow with

a technique to represent local substructures using the 1D models described in the

previous chapter.

6.2.1 2D Global Descriptor

In this section, we describe a method to create a global representation of protein

structure using a 2D wavelet decomposition. Unlike the 1D transformation described

above, this method is intended to provide a more high-level structural description.

The first step in generating this representation involves converting the protein struc-

ture into a distance matrix. Figure 6.1(a) provides a graphical depiction of this matrix

(for protein 1HLB), with higher elevations, or larger distances, having a lighter color.

The image in Figure 6.1(a) represents a pixelated version of the distance matrix. In

contrast to this discretized approach, or the related binary ‘contact map’ representa-

tion, where distances below a certain threshold are set to 1 (0 otherwise), we operate

on the actual distance values.
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Figure 6.1: Left (a): Raw distance matrix for protein 1HLB. Larger distances a
denoted with a lighter color. Middle (b), Right (c): Example 2D decompositions for
protein 1HLB. The figure on the left (b) represents a 2nd level Haar decomposition.
The image on the right (c) corresponds to a Haar decomposition of level 4. The
distance matrix on the left is of size 158x158. The figure in the middle contains 1024
coefficients (32x32), while the one on the right is composed of just 64 (8x8).

To create our global structure representation, we apply a 2D decomposition to

the distance matrix. In order to use the results of this transformation as a feature

vector, the final number of coefficients must be the same for every protein. This

can be achieved either by normalizing the size of the input (the distance matrix),

or the output (the approximation coefficients). It is not immediately clear how to

normalize a variable-size coefficient matrix while still preserving the necessary spatial

correlations. Thus, we elect to normalize the input signal, fixing the size of the

distance matrix at 128x128. This normalization occurs either through interpolation

or extrapolation, depending on whether the input protein is shorter or longer than

128 residues, respectively. We choose a value of 128 for our signal length because

the wavelet decomposition requires that the total length be divisible by 2L. Since
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the optimal value for L is unknown, using a length that is a power of 2 gives us the

greatest flexibility in choosing an appropriate decomposition level. Using the next

higher power of 2, 256, is also an option, but most of the proteins in our datasets

are shorter than 256 residues. We prefer to interpolate and smooth or average the

excess points, over extrapolation, where we would be forced to generate additional

data. Thus our choice of 128 for our normalized signal length.

We perform a multi-level 2D decomposition on this normalized matrix and use the

final level of approximation coefficients as our feature vector. There are a fairly large

number of wavelet families that can serve as filters. We tested several, but found

that the simplest, the Haar, worked well for our purposes. Examples of the wavelet

decomposition for protein 1HLB can be seen in Figure 6.1. The figure on the left

illustrates the original distance matrix, while the figures in the middle and on the

right correspond to the approximation coefficients produced from a 2nd and 4th level

decomposition, respectively. We only focus on the approximation values produced by

the final level of the wavelet decomposition, so as the decomposition level increases,

the number of coefficients decreases by a factor of 4. Despite this large reduction in

data, important features such as secondary structures are still present in the figures.

Since the matrix is symmetric across the diagonal, we only need to keep the coefficients

in the upper (or lower) triangle, plus those that fall on the diagonal itself.

To summarize, the steps taken to create our global representation are as follows:

1. Compute distance matrix using pair-wise distance between Cα atoms.

2. Normalize matrix to size 128 x 128.

3. Apply 2D wavelet decomposition.
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4. Extract final level approximation coefficients from the upper half of the matrix

plus those that fall on the diagonal.

We calculate the approximation coefficients for several different levels, from 2-8,

to see how performance, in terms of accuracy, varies as the dimensionality of the data

is reduced. Again, for a given 2D signal, as the level of the wavelet decomposition

is increased, the final number of approximation coefficients is reduced by a factor

of 4. If this level is set too low, the decomposition will result in a large feature

vector, making tasks such as classification difficult. Setting it too high will leave too

few attributes, leading to a large amount of information loss and the discarding of

potentially-distinguishing information. Both are situations we wish to avoid. Of all

the decomposition levels that we tested, we found that the 4th level provided the best

performance. Thus, to construct our global descriptor, we take those coefficients in

the upper triangle of the matrix plus those that fall on the diagonal, which, given a

4th level decomposition, leaves us with a total of 36 coefficients per structure.

6.2.2 Local Substructure Descriptor

Typical protein retrieval methods base similarity on overall structure. Indeed,

the techniques presented thus far are designed for that very purpose. However, there

may be cases where a researcher is more interested in similarity based on small pieces

of a protein - a particular subsequence, for instance. To that effect, we propose an

alternate approach that uses a windowing strategy and two 1D wavelet decompositions

to generate substructure-based feature vectors.

Figure 6.2 shows a distance matrix for a hypothetical protein sequence. The

letters correspond to the secondary structure assignment of each residue (H - helix,
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B - sheet, − - no assignment). If we were interested in a seven residue sequence

with SSE values of “BBBHHHH,” we would only be concerned with the distances

contained between the thick black lines. Everything in gray can be ignored. In this

manner, every subsequence corresponds to a windowed distance matrix.

While one can manually select a particular query subsequence, to construct sub-

sequences on a target dataset, we need to employ a sliding window strategy. Given a

subsequence of length n, for each protein, we start at the first residue, and if the first

n residues have the same SSE values as the query, we create a windowed distance

matrix for those residues. If not, we move to the next residue of the sequence and re-

peat the process. We only generate distance matrices for the matching subsequences

in order to limit the number of target features that must be generated for each query.

This pruning strategy can be disabled to allow for approximate subsequence matches,

however.

There is no straightforward way to apply a 2D transformation to a windowed,

non-square distance matrix like the one in Figure 6.2. Thus, we elect to use our two

1D wavelet representations, which were designed to capture the interactions between

secondary structures.

When we apply these transformations to each windowed distance matrix, we sim-

ply ignore the values that fall outside the window. Since the signals generated by

this process will be of varying length, we use symmetric extension to ensure that

they are divisible by 32. From there, we apply a 5th-level 1D Haar decomposition

to each signal and reduce the final level of approximation coefficients to 10 values

using interpolation. We concatenate the parallel and anti-parallel signals and treat

the resulting 20 attributes as our local descriptor.
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Figure 6.2: Illustration of distance values selected using windowing strategy. Hatched
matrix values are ignored.
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Figure 6.3: Left (a): Original distance matrix. Right (b): Windowed distance matrix.
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To summarize the local transformation process:

1. Select query sequence.

2. Generate windowed distance matrices.

3. Convert each 2D windowed matrix to 1D parallel and anti-parallel signals.

4. Apply a 1D wavelet decomposition to each signal, extending them if they are

not divisible by 32.

5. Interpolate last level of approximation coefficients to 10 values.

6. Concatenate parallel and anti-parallel coefficients to create local substructure

representation.

We provide a graphical representation of the transformation process used to create

the local descriptors in Figures 6.3 and 4.10. Figure 6.3(a) represents the original

distance matrix for protein 1HLB while Figure 6.3(b) shows the same matrix after it

has been “windowed.” This window represents a sequence of 36 residues selected from

the middle of the protein for illustrative purposes. The results of our parallel and

anti-parallel conversions can be seen in Figure 4.10 (top and bottom, respectively).

The left images contain the results of the 5th level Haar decomposition, while the

rightmost images depict the final, reduced descriptors.

6.3 Modeling Protein Sequence

Here we provide an overview of the method used to create our wavelet-based

sequence representation. Since it is based on the results of the PSI-BLAST align-

ment algorithm, we begin with a brief discussion of PSI-BLAST and follow with the
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steps used to normalize the results. We conclude with specific details of the wavelet

transformation.

Generation of PSI-BLAST Profiles: PSI-BLAST is one of the more popular

methods used to determine the similarity of a protein to a database of sequences.

This similarity is returned in the form of a profile, or scoring matrix. In PSI-BLAST,

a sequence is tested against a database to identify conserved patterns, or motifs. For

each position in each of these conserved regions, the algorithm computes a score for

each amino acid type. In highly conserved regions, those amino acids that are highly

conserved receive a high positive score, while the others receive high negatives. In

weakly conserved regions, residues receive scores near zero. These scores are cal-

culated based on amino acid frequency information. Evolution-based substitution

matrices such as BLOSUM [105] can also be used when calculating the scores. This

process can be iterative, running a profile against the database to refine the results.

The final output of the algorithm is a profile that includes a position-specific scoring

matrix (PSSM) and a position-specific amino acid frequency matrix (PSFM), as well

as a sequence of Z-scores or E-values that denote the statistical significance of the

alignment. When discussing both the PSFM and PSSM matrices, we will refer to

them as the PSI-BLAST profile matrices (PBPM).

The first step in creating our sequence-based representation involves generating

a PSI-BLAST profile for each protein. Using version 2.2.13 of the algorithm, we

compute a multi-way alignment against the non-redundant (nr) protein database.

Downloaded in March 2006, this database contains almost 3.5 million sequences. We

run PSI-BLAST for five iterations with the ǫ parameter set to 0.001. Since our

representation is derived partly from the position-specific frequency matrix (PSFM),
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Figure 6.4: Graphical illustration of the PSI-BLAST profile and corresponding
wavelet-based summaries for protein 1CCR. The images on the top correspond to
the PSSM matrix, while those on the bottom reflect the PSFM values. The matrices
on the left show the original profiles while the ones in the middle correspond to the
wavelet representations. The graphs on the right show the matrix values in histogram
form. The values are divided into bins, the midpoints of which are listed on the x-axis.
The frequency count of each bin is provided on the y-axis.
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we set the program to output both that and the position-specific scoring matrix

(PSSM), in addition to the standard alignment information. We provide a graphical

illustration of the matrices for protein 1CCR in the left-most plots of Figure 6.4.

Each row corresponds to an amino acid, while each column represents a position in

the query sequence. The PSSM representation is given on the top, while the PSFM

version lies on the bottom. These images are false color representations, so lower

values have darker colors, while higher values appear lighter. Once the profile has

been generated, we create a summary of the frequency information by applying a 1D

wavelet decomposition to the PSFM matrix. We create a similar summary of the

profile scores from the PSSM matrix.

Profile Normalization: Before we can apply the wavelet decomposition, however,

we must normalize the size of the matrix to ensure that we are left with the same

number of coefficients for each protein. This will allow us freely compare between

the resulting feature vectors. The PSFM and PSSM matrices are of size nx20, where

n refers to the number of amino acids in the protein sequence and 20 corresponds

to one of the different amino acid types. We fix n to be 128 and normalize each

PBPM matrix to 128x20. The normalization occurs either through interpolation or

extrapolation, depending on whether the input protein is shorter or longer than 128

residues, respectively. We choose a value of 128 for our signal length because the

wavelet decomposition requires that the total length be divisible by 2L. Since the

optimal value for L is unknown, using a length that is a power of 2 gives us the

greatest flexibility in choosing an appropriate decomposition level. Using the next

higher power of 2, 256, is also an option, but most of the proteins in our dataset

are shorter than 256 residues. We prefer to interpolate and smooth or average the
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excess points, over extrapolation, where we would be forced to generate additional

data. Thus our choice of 128 for our normalized signal length. We provide a more

thorough examination of signal length and decomposition level in Section 6.7.3.

Once the matrix has been normalized we transpose it (20 rows x 128 columns) and

apply a 4th level Haar 1D decomposition to each row. We only use the final level of

approximation coefficients, so each decomposition will produce 1 coefficient for every

16 input values (24), or 8 coefficients per row/amino acid. This results in feature

vectors of size 160. These representations can also be combined together into a single

profile summary of 320 attributes. An example of the wavelet-based representations

can be seen in the middle of Figure 6.4.

Transformation Details: The wavelet decomposition creates a frequency signature

for each amino acid. Using a 4th level Haar decomposition results in 8 coefficients.

The Haar wavelet filter is an averaging filter, so each of these coefficients will rep-

resent the average frequency value for 12.5% of the sequence. One could vary the

decomposition or the normalization factor to change the number of coefficients per

amino acid, which would change the representation percentage, but a tradeoff must

be made between the total number of coefficients and the overall accuracy of the

representation. As shown in Figure 6.5, we varied the decomposition level from 2-7

and found that a 4th level decomposition gave us the best overall results.

Since the Haar wavelet filter is orthonormal, each coefficient represents a non-

overlapping segment of the protein sequence. If one wanted to create a representation

that includes such an overlap, this could be done by manually calculating the average

using a sliding window, or through other techniques such as n-grams. If n were set

to 16, one would start at position one, and then compute an n-gram for the first 16
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Figure 6.5: Classification accuracy by decomposition level for the different wavelet
summaries (2D corresponds to the structure-based summary). Values reported rep-
resent the accuracy of a SVM trained using 10-fold CV on the 63 Fold dataset (see
Section 6.5).

points, slide to the right one position and compute a second n-gram. This process

would repeat down the profile. Such an approach would increase the total number of

coefficients, however. We use wavelets instead of manually computing the summary

because of their speed and relative ease of implementation.

Many SVM kernels that are based on the results of a PSI-BLAST alignment

focus solely on values derived from the PSSM matrix [106, 107], though there are

approaches that incorporate both matrices [108]. Our own testing on the matter

has been inconclusive. As we show in Section 6.7, it is not entirely clear whether

either representation is preferable over the other, though in most cases, they can be

combined together for superior performance.

We surmise that the PSFM summary outperforms the PSSM-based measure in

certain cases because the entries in the scoring matrix represent log-odd ratios, which

scales the data and removes some of the variance that may help distinguish between
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the different groups. As an example, for one of our datasets, all of the PSSM values fall

between -7 and 13. The PSFM matrices, on the other hand, contain values between

0 and 100. This information is provided in the histograms on the left of Figure 6.4.

The wider variance of the PSFM matrix is at times preferable to the tighter range

of the PSSM values. This is analogous to often preferring the covariance matrix over

correlation for EM-based missing value analysis [109].

A summary workflow for our global wavelet-based transformations is presented

in Figure 6.6. To create a global structural descriptor for a protein, we transform

the 3D coordinates into a 2D distance matrix that is then normalized. After nor-

malization, we decompose the matrix using a 2D wavelet decomposition. We extract

the final level of approximation coefficients, which serve as our feature vector. To

create the sequence-based representations for a given protein, we begin by generating

a PSI-BLAST alignment profile. We extract the frequency and scoring matrices and

normalize them. A 1D wavelet decomposition is applied to each matrix and we again

extract the final level of approximation coefficients. As with the structural descriptor,

these coefficients serve as our sequence-based feature vectors.

6.4 Global Hybrid Representation

To create the hybrid variant of our global representations, we simply concatenate

the PBPM-summaries to the end of the structural descriptors. This results in an

overall feature vector with 456 attributes that characterizes both the sequence and

structure of a protein in a concise, normalized manner. One can also create a hybrid

version of the individual sequence summaries. In these cases, we concatenate the
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Figure 6.6: Workflow for the structural and sequence-based transformations.

structure descriptors to the end of the PSSM and PSFM-based representations. Each

of these feature vectors contains a total of 296 attributes.

6.5 Datasets

In this section we review the different protein datasets used in our experiments.

There is some overlap between the different proteins in the datasets. The feature vec-

tors are constructed using different properties, however. The sequence-based dataset

only contains information that can be derived directly from the amino acid sequence.

The structure-based dataset, on the other hand, used 3D information based on the

solved structure of the protein.

6.5.1 Sequence-Based

The dataset used in these sequence-based experiments is a subset of the ASTRAL

database [110]. ASTRAL is a repository derived from SCOP that filters proteins

based on their shared sequence similarity. One version of the ASTRAL database

consists of proteins with less than 40% sequence identity, the other with those that

share less than 95%. Both versions have been examined in previous classification
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experiments [106, 107, 111], but we choose the version containing proteins with less

than 40% sequence identity, as we feel that poses a greater classification challenge.

Using version 1.65 of the ASTRAL database, we take all the proteins that share less

than 40% sequence identity, which results in a set of approximately 5600 proteins.

From there, we select all the proteins that belong to Folds with at least 20 members,

removing the rest. After this pruning step, we are left with a total of 2915 proteins

that belong to 63 different Folds. This dataset, which we call the 63 Fold dataset, is

essentially the same as the one used in the SVM experiments of Han et al. [111].

6.5.2 Structure-Based

To evaluate our wavelet-based structural representations, we conduct experiments

on three different datasets, comparing our results with two of the more recently-

published techniques [102, 104]. In order to make a valid comparison, we try to use

the exact datasets tested in those works. Due to discrepancies or errors in the original

data files, there are some differences, which we note below.

The first two datasets were used by Aung and Tan in their Protdex2 experi-

ments [104]. The first of these datasets contains 200 proteins taken from version 1.59

of the SCOP database that have less than 40% sequence homology (similarity) to

each other. We prefer to test proteins with a low sequence similarity because pro-

teins with a high sequence similarity are likely to be almost identical structurally

and would thus be a poor choice for retrieval experiments. 10 proteins belonging to

the Globins family and 10 to the Serine/Threonin Kinases were selected. These 20

proteins comprise a set of queries to be tested against 180 proteins randomly selected

from the other families within SCOP. In trying to establish a link between the dataset
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Dataset Class Fold SuperFamily Family

2K 4 133 181 281
33K 7 623 960 1632

Table 6.1: Number of unique groups for the 2K and 33K datasets at different levels
of the SCOP hierarchy.

ID and the SCOP ID, we were unable to match the names of 11 of these proteins,

so our variant, which we refer to as the Small set, contains 189 members. We use

this dataset for our substructure matching experiments. The second dataset, which

we call the 33K set, originally contained 34,055 members. 108 proteins belonging to

108 medium-sized families (having ≥ 40 members and ≤ 180 members) were chosen

as representative queries. Our version of this dataset contained 33,010 proteins and

107 queries.

The final dataset has been examined in a number of publications [96, 103], most

recently by Gao and Zaki [102]. Again taken from the SCOP database (though a

different version than the one used in constructing the Small and 33K sets), this

set contains a total of 1810 proteins, with 10 proteins selected from 181 different

SuperFamilies. When running queries on this set, 1 protein was randomly selected

from each SuperFamily. As before, when trying to establish a link between the dataset

ID and the SCOP ID, we could not match 22 proteins, which leaves us with a total

of 1798. Approximately 1600 proteins from this dataset, which we call the 2K set,

are present in the 33K set. Table 6.1 provides the number of unique groups for the

2K and 33K datasets over the different levels of the SCOP hierarchy.
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6.6 Structure-Based Querying of Proteins Using Wavelets

As we mentioned previously, tools such as BLAST are used to determine similarity

between DNA sequences. While genomic tools such as BLAST have been adapted to

work with protein amino acid sequences, proteome researchers are also interested in

determining the structural similarity between proteins. Here we present two methods

of protein representation that allow for the fast, efficient retrieval of similar struc-

tures, based on either global or local features. We begin by computing the pair-wise

distance between residues to transform each 3D structure into a 2D distance ma-

trix. To create our global representation, we apply a 2D wavelet decomposition on

this matrix to generate a set of approximation coefficients, which serve as our fea-

ture vector. Our local representation, which allows us to effectively match proteins

based purely on shared substructures, is computed using two separate 1D decompo-

sitions. This provides additional functionality that is not available through existing

retrieval methods. We evaluate our technique by running classification experiments

and nearest-neighbor queries on three previously-examined protein datasets, using la-

bels from the Structural Classification of Proteins database (SCOP) [9], as our basis

for comparison. We find that our global method significantly outperforms the retrieval

performance of existing approaches [102,104], in terms of retrieval accuracy, memory

usage and execution time. Using a k-d tree and running a 10-nearest-neighbor search

on a dataset of 33,000 proteins against itself, we see an average accuracy of 89% at

the SuperFamily level and an individual query time that is up to 350 times faster

than previously published results. We find our retrievals based on local substructure

to be highly accurate as well. Finally, while we limit this work to protein data, our

techniques can be applied to any structural dataset.
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6.6.1 Benefits & Use Cases

Wavelets are used frequently within the vision and image processing community

for clustering and retrieval. In many cases, images are retrieved based on a subset

of the most dominant coefficients corresponding to some underlying property of the

image. While effective in some applications, we cannot rely on such a subset. It

is true that part of our rationale for using wavelets is that the secondary structure

information will be contained in the dominant coefficients. However, databases like

SCOP classify proteins based on the topological arrangement of secondary structures.

Many proteins share the same types of secondary structures, and therefore, will have

dominant coefficients that are almost identical. Thus, we must also take into account

the relative position and location of the secondary structures. Our transformation

was designed to capture and retain this topological information. It also has the added

benefit of being robust in the presence of noise. If the noise is uniformly distributed,

it will be spread throughout the transformation and will not affect the relative values

of the results.

Another benefit to using wavelets is that the transformation algorithm is largely

parameter-free. Aside from choosing the filter type and initial matrix size, little else

is required from the end user. It is true that they must choose which coefficients to

use as a feature vector, but it is possible to compute everything at once and make

a decision at a later date. Switching from a feature vector composed of 4th level

approximation coefficients to one of 5th level values does not affect the overall trans-

formation, only the experimental validation. We feel this is a tremendous advantage

over other representations that contain a large number of tunable parameters, all of

which affect the computation time and final quality of the overall transformation.
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Figure 6.7: Proposed Query Workflow.

Given a database of protein structures, there are several tests that can be used

to evaluate the effectiveness of any representation. We evaluate our approach using

k-nearest-neighbor (KNN) and range-based query retrievals [35]. Applied to a target

database, a KNN search looks to find the k “nearest” neighbors to a given query. A

range query is similar to KNN retrieval, except that instead of providing a value for k,

the user specifies a range r and the search returns all the objects less than a distance

r from the query. In our evaluation, distance refers to the Euclidean distance between

attributes. Allowing the user to specify the range means they have more fine-tuned

control over the quality of the results, which can be more effective when the number of

potential matches is either quite low or very high. The drawback is that the number

of matches is now dependent on the distance between the objects, making the range

parameter a function of the dataset and the representation. This dependency occurs

regardless of the transformation or model that is chosen.
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We envision our transformation techniques being used in a database context, al-

lowing users to submit queries in order to retrieve proteins based on structural simi-

larity. Figure 6.7 provides an illustration of how this system would be implemented.

Given a new protein structure, the global descriptors would be generated using a 2D

wavelet decomposition. This can be done offline. The local substructure descriptors,

generated using the windowed, 1D conversion, can also be generated offline, though it

would be impractical to generate local descriptors for every possible subsequence. A

more intelligent solution would be to create and store the local descriptors of the more

popular subsequences offline and then wait to generate the descriptors of any other

subsequence until after a user has submitted a specific substructure query. To avoid

the need for continuous regeneration, the descriptors of the more frequent queries

can be cached, similar to the strategy employed by BLAST. In either case, once the

descriptors have been generated, all of the user interaction would be on the reduced

feature vector space, not the original structure data.

6.6.2 Experiments & Results

To evaluate our representations, we conduct experiments on three different datasets,

the 2K, 33K and Small dataset, comparing our results with two of the more recently-

published techniques [102, 104]. We validate our approach with four different sets of

experiments. The first is designed to showcase the predictive ability of our technique

by using it to classify selected query proteins according to their SCOP labels. The

next two illustrate the robustness of our feature vector by using it, given a query

protein, to retrieve a large number of structurally-similar proteins (as defined by

SCOP). Our final experiments show how our window-based representation can be
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used to search for specific substructure sequences. We conclude with a performance

analysis in terms of query execution time and overall memory usage.

All experiments were conducted on a 2.4 GHz Pentium 4 PC with 1.5 GB RAM

running Debian Linux on a 2.6.9 kernel. We use a k-d tree as our target data struc-

ture [112]. The k-d tree is a generalization of the binary search tree. Both start

with a root node and place the data into left and right subtrees based on the value

of a particular attribute, or key. This process is repeated recursively until the data

is divided into mutually exclusive subsets. While a binary search tree uses the same

key on all nodes of all subtrees, a k-d tree will use a different key at each level. This

leads to a data structure that effectively partitions the data but still allows the user

to search for best matches without having to make a large number of comparisons.

Rather than re-implement this data structure ourselves, we use k-d tree code obtained

from the Auton Lab9.

We also wish to compare our technique with PSIST and Protdex2. We were able

to obtain the source code for PSIST10, but were unable to do so for Protdex2. We

were, however, able to download an evaluation version of Protdex2, though it provides

limited functionality. As a result, we only use it to generate timing results, which we

discuss at the end of this section.

To evaluate PSIST, we generate the input features required by the program and

test our datasets. Unfortunately, while we were able to obtain results with the 2K

dataset, to process the 33K dataset, the suffix tree generated by PSIST required more

memory than was available on our machine (1.5 GB), and we were forced to abort

9http://www.autonlab.org

10Our thanks to F. Gao and M. Zaki for their assistance.
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the tests. It may be possible for PSIST to run on a machine with more memory, but

both Protdex2 and our own solution require less than 100 MB of memory to process

the same dataset.

The PSIST algorithm allows the user to tune a number of parameters, all of which

have effects on both the accuracy and computation time. Using the parameter values

reported in the original work [102], we evaluated the performance of the algorithm on

the 2K dataset. We found that the default settings yielded an accuracy equivalent to

those listed previously as the “best,” along with a drastic reduction in running time.

While another set of parameter values might provide better performance, we have no

intuition to guide their selection. Thus, we report results obtained with the program

defaults.

Classification

We examine the predictive accuracy our technique by using the k-d tree as a

nearest-neighbor classifier. Given a protein, we retrieve from the target database

the three nearest neighbors to the query. We then compare the SCOP labels of

the query and the retrieved proteins. If the labels of at least two of the neighbors

match, we say that the query has been classified correctly (the query proteins are

not included in the target database). Similar classification experiments are detailed

in the paper on PSIST [102]. In that work, proteins were only compared at the

Class and SuperFamily level. We also examine the accuracy of our method at the

Fold and Family levels. As one progresses down the SCOP hierarchy, the protein

structures become increasingly similar and the distinctions between them more fine-

grained. A truly useful representation should not lose accuracy during this descent,

even though the classification problem itself becomes more difficult. We examine the
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Dataset Class Fold SuperFamily Family

2K - 2D 98.3 96.6 96.6 95.5
2K - PSIST 98.3 −− 93.9 −−
33K - 2D 100 92.5 91.5 89

Table 6.2: Classification accuracy for PSIST and the 2D representation on the 2K
dataset at different levels of the SCOP hierarchy. Results are provided for the 2D
representation on the 33K dataset as well. Accuracy is shown as a percentage of
correct classification (total correct out of 181 for the 2K dataset, 107 for the 33K).

effect of our approach on both the 33K and 2K datasets and compare against the

results returned by PSIST on the 2K dataset. Unfortunately, as the PSIST code only

provides accuracy values for Class and SuperFamily, we do not have results for Fold

or Family.

Table 6.2 shows the classification accuracy for our representation on the 2K and

33K datasets at different levels of the SCOP hierarchy. Our technique strategy pro-

vides exceptional performance at the Class level, and highly accurate results as one

progresses down the hierarchy. Our results on the 2K dataset are equal to those of

PSIST at the Class level and almost 3% higher at the SuperFamily level. These ac-

curacies are essentially equivalent, but we do see a greater difference in performance

in the nearest-neighbor experiments, which we discuss in the section below.

For the Fold, SuperFamily and Family levels, our performance on the 33K dataset

is about 5% lower than the values reported on the 2K data. This is to be somewhat

expected, though, as the 33K dataset presents a much tougher classification challenge

than the 2K data. At the Class level, we do see a higher accuracy on the 33K dataset

than the 2K dataset. This fact is not as odd as it may appear, as the 2K dataset is
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Dataset Queries k = 4 k = 10 k = 50 k = 100

2K - PSIST 181 3.75 7.04 7.50 7.74
2K - 2D 181 3.85 7.74 8.17 8.45
33K - 2D 107 3.75 8.59 29.4 42.5
33K - 2D 33K 3.86 8.93 32.7 51.5

Table 6.3: Average number of proteins in matching SuperFamily for varying values
of k as returned by a nearest-neighbor query.

not a complete subset of the 33K dataset and they are evaluated with different sets

of query proteins.

There are a number of reasons why we typically expect to see lower classification

performance on the 33K data, especially at the lower levels of the SCOP hierarchy.

First, the dataset is roughly 18 times larger than the 2K set. Second, there are many

more potential categories in the 33K dataset. As illustrated in Table 6.1, at the

SuperFamily level, the 2K dataset contains 181 unique groups, one per query. The

33K dataset, on the other hand, contains 960 unique SuperFamilies. The 108 query

SuperFamilies represent just 11% of the total. At the Family level, that percentage

drops to less than 7.

Nearest-Neighbor Retrieval

For our nearest-neighbor retrieval tests, we again use SCOP labels to determine

whether a neighbor is correct. We examine the number of correct matches for k equal

to 4, 10, 50 and 100. As before, these values have been used in previous retrieval

experiments [102]. We evaluate the 2K and 33K datasets in our tests and compare

against the 2K values returned by PSIST.
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Dataset r = 25 r = 50 r = 125

2K Match 2.87 3.79 5.43
(181 Queries) Total 2.87 3.79 5.43

33K Match 5.46 7.8 17.4
(107 Queries) Total 5.46 7.8 17.4

33K Match 16.6 28.0 56.2
(33K Queries) Total 16.6 28.0 56.2

Table 6.4: Average number of objects returned by a range query for different range
values (r).

The results of our retrieval tests are presented in Table 6.3. Shown in the table are

the average number of nearest-neighbors that belong to the same SuperFamily as the

query protein for different values of k. On the 2K dataset, we return a larger number

of correct neighbors as PSIST for all the tested values of k. For k = 10 and larger,

we retrieve an additional 0.7 correct neighbors. There is little performance gain for

values of k larger than 10, but that is because the target database only contains 10

members for each SuperFamily.

We also report good performance on the 33K dataset. When k = 10, the number

of correct neighbors is between 8.5 and 9, depending on the query load. As k increases,

we continue to return a larger number of nearest neighbors, increasing from around 9

when k = 10, to approximately 30 and 40-50 when k = 50 and k = 100, respectively.

Performance tapers off to some degree for large k, partly because many SuperFamilies

contain less than 50 members.
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Range Queries

We test our approach with a range query for three different range values: 25, 50

and 125. The range is largely dependent on the representation. If set too low, very

few objects will be returned. If the chosen value is too high, it is possible to return

the entire dataset as a match for each query. These values, determined empirically,

were selected because the number of objects returned covers between 25-50% of the

possible total. We report the average number of objects retrieved (total number of

objects retrieved divided by the total number of queries) as well as the average number

of matches among those objects. A match occurs when the object and query belong

to the same SuperFamily. The results of this experiment are provided in Table 6.4.

As we can see, range queries are highly accurate, but the number of retrievals

is also highly variable. For instance, when the range value is set to 25, we retrieve

an average of 2.87 objects on the 2K dataset, but 5.46 or 16.6 on the 33K dataset,

depending on the number of queries. However, even as the range value is increased

to 125, our accuracy still remains at 100% (average number of matches / average

number of retrievals). Considering that the 2K dataset only contains 10 members per

SuperFamily, and the 33K dataset contains between 40 and 108, we are retrieving

half of the possible total with no error.

Substructure Matching

The results presented above illustrate the effectiveness of our technique at match-

ing protein structures based on global similarity. Here we highlight the ability of

our approach to retrieve structures based on local similarity. To test our proposed

technique, we take the Small dataset and generate windowed distance matrices for
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Window SCOP Number of Number in Query
Type Family ID Queries Database Accuracy

HHHHHHHHHH 56113 21 231 100
(F = 112, n = 4832) 46463 46 372 100

BBBBBBBBBB 51534 4 3 75
(F = 45, n = 333) 53851 4 17 100

−−BBBBBB−− 56113 2 6 100
(F = 76, n = 160) 51751 1 9 100

Table 6.5: Membership information for the substructure window datasets. For each
window type, the number of different families (F ) and size of the target database (n)
are given. Each window type has an associated query family, provided for which are
the SCOP ID and number of query and database members. The last column lists the
query accuracy for the three different substructure windows at the Family level. The
values represent percentage of correct classification on a 3-NN classifier.

all subsequences of size 10. For each matrix, we create a local descriptor using the

process described in Section 6.2.2.

The Small dataset contains 189 proteins, but there are over 44,000 windows of

size 10. We select three different subsequences, HHHHHHHHHH, BBBBBBBBBB

and −−BBBBBB−− as our queries. These subsequences were chosen because they

provide test sets large enough to validate our approach. There are 4899 HHHHHHH-

HHH windows, 341 BBBBBBBBBB and 163 −−BBBBBB−−. We select 67 of the

HHHHHHHHHH windows, 8 of the BBBBBBBBBB, and 3 from the −−BBBBBB−−

group to act as queries. The remaining windows serve as a target database. In this

manner, a separate database is created for each window type.

Having removed the query windows from the database, we repeat our classification

experiments, retrieving 3 nearest neighbors and comparing SCOP labels to determine
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accuracy. We provide information on the number of members in each Family in the

query and target databases in Table 6.5. While we test this method on the entire

Small dataset, we envision it being used as a refinement to the results of a nearest-

neighbor retrieval. Generating window-based feature vectors on only a subset of the

entire dataset would drastically reduce the number of overall features produced.

The results of our substructure classification experiments are presented in right

column of Table 6.5. Our local representation performs very well, misclassifying only

one query out of 78. Despite the fact that the datasets contained a relatively large

number of families, we were able to choose the correct one in almost every case. When

generating datasets for a given substructure window, there may not be many objects

in the database that belong to the same Family as the query. In these cases, a range

query may be more appropriate than a strict nearest-neighbor query.

Performance

In this section we provide an analysis of query execution time and memory usage of

the tested methods. As stated previously, we were only able to obtain an evaluation

version of the Protdex2 code. Therefore, we simply use the software to generate

timing results. In addition, while all techniques were evaluated on the same machine,

we had to execute the Protdex2 software using Windows. The other two methods

were tested under Linux.

Query Execution Time

Here we discuss the running time for our KNN experiments where k equals 100,

the longest of all our retrieval tests. We list these values in Table 6.6. The numbers

in the Total Time column include the time necessary to read both datasets (target

and query) into memory, build the k-d tree, execute the queries, and write the results
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Database Number of Total Query Time
Size Queries Time Time per Query

33K - 2D 33,010 160 135 0.004
33K - 2D 107 8 3 0.028
33K - Protdex2 107 150 – 1.4
1798 - 2D 181 2 < 1 < 0.006
1798 - PSIST 181 107 92 0.51

Table 6.6: Execution time (in seconds) for various database and KNN query workloads
(k = 100)

to disk. The column labeled Query Time shows only the time spent conducting the

queries.

To process 181 queries on the 2K dataset, the total query time required by PSIST

is 92 seconds, or roughly 0.51 seconds per query. Our wavelet-based approach, in

conjunction with a k-d tree, however, requires less than 1 second to process the same

queries. This yields an average query time of less than 0.006 seconds, an improvement

of more than 80-fold. To execute 107 queries on the 33K dataset, Protdex2 takes a

total of 150 seconds, or an average of 1.4 seconds per query (the program does not

provide a breakdown of the time spent in the query phase). On the same machine, our

method requires only 3 seconds to execute these queries, a 50-fold decrease in running

time. In addition, we see that increasing the number of queries actually reduces the

average time spent on an individual query. Querying the entire 33K dataset against

itself increases the total number of queries by a factor of 308. The total query time,

however, only increases by a factor of 45. Thus, we see a reduction in the average time

per query, from 0.03 seconds to just 0.004. This represents a 350-fold improvement

over the average time per query reported by Protdex2.
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Memory Usage

Our representation is much less memory-intensive than PSIST and comparable to

Protdex2. On the 2K dataset, PSIST requires roughly 80MB of memory, compared

with around 12 MB for our technique. With 33,000 proteins, PSIST requests 1.6 GB

of memory, maxing out our test machine and forcing us to abort the experiments.

Protdex2 requires around 20MB of memory to execute a single query. Our wavelet

representation, coupled with the k-d tree, requires just 80 MB to load the dataset

and process 33K queries. The 33K dataset is roughly 18 times larger than the 2K set.

PSIST requests 20 times the memory, which would imply a linear relationship between

the size of the dataset and the memory required to process it. Our approach on the

other hand, shows sublinear growth. An 18-fold increase in the size of the dataset

leads to just a 7-fold increase in memory usage. Figure 6.8 provides a graphical

representation of these relationships. This indicates that our representation is very

scalable, and can easily be deployed as a simple, but accurate, system for determining

structure similarity.

Another factor to consider is the amount of disk space needed to store the query

representations as well as the results. Protdex2 requires that each query be repre-

sented using a PDB-style coordinate file (PSIST requires a somewhat similar, though

more compact, format). For the 107 query proteins tested, these files requires around

19MB of storage space. To evaluate 33K queries with Protdex2, one would need

roughly 6GB to hold all the query information. This is in contrast to our wavelet-

based approach, which can represent the entire 33K dataset in just a few MB. In

addition, Protdex2 generates a score for the similarity of each query to every object

in the database. On the 33K dataset, this yields a 2MB scoring summary for each
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Figure 6.8: Memory usage (in MB) of the 2D wavelet approach versus PSIST on the
2K and 33K datasets.

query. For 107 queries, these summaries require a few hundred MB of storage space.

To process 33K queries, on the other hand, one would need 65GB just to store the re-

sults. While it is true that storage is relatively inexpensive, managing and processing

that much information is not a trivial task. With our approach, we only provide the

number of nearest-neighbors requested by the user, drastically reducing the amount

of data generated.

6.6.3 Discussion

We present two methods of protein representation that allow for quick and efficient

structure queries. We provide implementations for retrieving proteins based on the

similarity of either their global shape or smaller substructures, an option that is not

provided in any of the leading strategies. When viewed against current techniques,

our method is superior in accuracy and more importantly, can answer user queries in a

fraction of the time. We have tested our approach by running a number of queries on

several different datasets of protein structures. We have validated our results against

the labels and categorizations of a leading structural database. We find that even as
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we progress down the hierarchy of the database, there is not a significant decrease in

the accuracy of our method, indicating that the proteins we retrieve are truly correct.

In the future, we plan to test and refine our substructure matching technique.

While not immediately obvious, we would like to determine whether one can obtain

meaningful results if we allow substructure matching with gaps in the query sequence.

In addition, we plan to evaluate the use of space-filling curves [57] as a sampling

method to see how they perform compared to our combined parallel/anti-parallel

approach.

Thus far, we have focused only on finding similarity among solved protein struc-

tures. We do not feel that our technique is limited solely to this task, however. We

believe that the methods presented here can be used on a number of different applica-

tions, particularly simulations that operate on structure-based data. Two examples

include defect tracking in molecular dynamics (MD) simulations and the modeling of

protein folding pathways [14, 113]. MD simulations are used to model the behavior

of spurious atoms as they move through a lattice of a base material, often silicon.

Given a set of simulation frames, we could apply our algorithm to create a sequence

describing that set, which could then be compared against other sets. Being able to

characterize the behavior of these defects would be a boon to those who work in the

manufacture of semiconductors.

It is well-established that the amino acid sequence of a protein determines its final

structure. What is unknown, however, is the true nature of the role that the primary

structure plays in the folding process. In addition, the intermediate steps that a

protein undergoes as it transitions from an unfolded chain to its final formed structure

remain a mystery. On occasion, a protein will “misfold,” resulting in an abnormal
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shape. These abnormalities can lead to diseases such as Alzheimer’s, Cystic Fibrosis,

and Creutzfeldt-Jakob’s (the human equivalent of Bovine Spongiform Encephalopathy

or Mad Cow). As a result, there has been tremendous effort to understand the protein

folding process through computer simulations like Folding@Home. As these programs

grow in popularity, they will generate an enormous amount of simulation data. Fast

and efficient characterization techniques such as the one proposed here will be crucial

if there is to be any hope at processing the results of these simulations in a timely

fashion.

Given a set of simulation frames, we can apply our technique on the results from

different proteins and cluster them based on similarity. Large clusters may be in-

dicative of certain key points along the folding pathway. Clusters of consistently

abnormal structures may give researchers a clue as to how and why proteins misfold.

In addition, there may be instances where two groups of proteins share a portion of

the pathway and then split before folding into their final shape. Such a characteriza-

tion could provide insight into the evolution of protein structures and remains a rich

direction of future study.

6.7 Classification of Proteins using Sequence and

Structure-Based Features

When applying knowledge discovery techniques to the protein domain, one chooses

a representation based on the particular task at hand. As we have discussed previ-

ously, those representations can be derived from properties based either on sequence

or on structure. With structure-based models, one typically focuses tasks such as

database retrieval, as we do in the following chapter. With representations derived
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from sequence-based information, much of the work has involved predicting the fi-

nal structure of an input sequence. Some of the more popular methods include

Hidden Markov Models (HMMs) [114], profile-based alignment algorithms such as

PSI-BLAST [91] support vector machine (SVM) classification [106–108, 111]. In the

following experiments, we use SVM classification to evaluate the performance of our

sequence-based, and to a lesser extent, our structure-based protein representations.

Structure prediction using support vector machines generally falls into two cate-

gories. The first consists of those methods that take a protein and compute a repre-

sentation encompassing a large number of sequence-based properties [111]. Once the

properties have been determined, a feature vector is created by calculating the pair-

wise similarity between them. The feature vectors are then used to train the SVM.

The second form of SVM structure prediction involves the use of specialized kernel

functions [106–108]. Kernel functions are designed to compute a high-dimensional

similarity between objects in the dataset. A hyperplane can be constructed in this

high-dimensional feature space, partitioning the object space. While kernel functions

can be used on pair-wise feature vectors generated from several different properties

(as in the former), they generally rely on just one. These functions have been shown

to be quite effective, but they can be computationally expensive. While some users

might be willing to trade speed for accuracy, there is another drawback to these

kernels in that they are essentially a “black-box” solution, leading to a loss in the

interpretability of both the results and the decision-making process. Moreover, there

is no intermediate representation that one can leverage for other purposes such as

retrieval. The closest thing to an independent feature vector is a pair-wise matrix

that illustrates the relationship between every object in the dataset. As the size of
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the dataset increases, any attempts at manipulating this matrix quickly becomes in-

feasible. In addition, any updates to the source dataset requires the recomputation

of this matrix.

Even alignment algorithms such as PSI-BLAST cannot be used to directly com-

pare between a large number of proteins. PSI-BLAST alignments are based on the

overall length of the protein, which make the widespread comparison of results im-

possible. Thus, it is imperative to have a normalized, stand-alone sequence-based

representation. Such feature vectors could be used by alternative classification algo-

rithms or in applications such as nearest-neighbor or range-based similarity search.

Of course, it would also be desirable if this representation could be used for tasks

such as SVM-based classification while still providing results that are comparable to

the state-of-the-art.

Our sequence-based protein representation was designed to address the challenges

listed above. It results in a compact, stand-alone feature vector that can be used in

multiple applications. In the following chapter, we evaluate their effectiveness in tasks

such as database retrieval. In this section, however, we focus on their performance in

SVM-based classification and prediction. We also examine the use of our structure-

based model, as well as the hybrid variant that combines the two for instances where

both sequence and structure-based information is available.

6.7.1 Datasets

To evaluate the classification performance of our representations, we rely on the

63 Fold dataset. Taking the 63 Fold dataset, we classify proteins using their SCOP

labels as our gold standard. We initially focus on the Fold level, but we are also
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interested in determining the performance of our representations at the other levels

of the SCOP hierarchy. If a representation is truly effective, there should be little

change in the overall performance as one progresses down the hierarchy. This is

despite the fact that the classification challenge itself is increased, with the lower

levels containing a larger number of potential classes with fewer members per class.

As it is originally constructed, the 63 Fold dataset is not suited for classification

at the lower levels of the SCOP hierarchy. While each Fold was chosen because

it contains at least 20 members, there is no such requirement on the underlying

Families and SuperFamilies. Some Families, for instance, contain a single member,

which makes classification at this level impossible.

Therefore, we construct two additional subsets of our 63 Fold dataset to classify

at the SuperFamily and Family levels. For the first subset, we select the proteins

belonging to those SuperFamilies that contain more than 10 members. We classify

this subset, denoted SF>10, at the SuperFamily level. The second subset contains

all the proteins that belong to Families with more than 10 members. This subset

is classified at the Family level and denoted Fam>10. We provide the membership

information for these datasets (as well as the original 63 Fold dataset) in Table 6.7.

We could classify the SuperFamily subset at the Fold level and the Family subset at

the SuperFamily and Fold levels but do not. Classifying the smaller Family subset

at the Fold level, for instance, will simply result in improved performance over the

more general 63 Fold dataset. The original 63 Fold dataset presents the greatest

classification challenge at the Fold level, and the SuperFamily and Family subsets

pose the greatest challenges at their respective levels.
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Dataset Proteins Folds SFs Families

63 Fold 2951 63 390 996
SF>10 2116 54 70 538
Fam>10 1014 31 37 55

Table 6.7: Membership information for the 63 Fold dataset as well as the SuperFamily
and Family subsets (SF>10 and Fam>10, respectively) at different levels of the SCOP
hierarchy (SF = SuperFamily).

6.7.2 Experiments

All of our experiments were conducted on a 2.4 GHz Pentium 4 PC with 1.5

GB RAM running Ubuntu Linux on a 2.6.12 kernel. When referring to our different

representations, we use PSFM and PSSM to denote the PSFM and PSSM sequence

summaries, respectively, and 2D to refer to our 2D structural decomposition. We

also combine the structural descriptor with the individual sequence summaries (2D

& PSFM, 2D & PSSM ). We denote the combined PSSM and PSFM descriptors as

PBPM and finally, the sequence-structure hybrid as 2D & PBPM.

For our experiments, we use the SVM provided by WEKA, version 3.4 [115].

WEKA uses Platt’s sequential minimal optimization (SMO) algorithm for SVM train-

ing [116]. We use a linear kernel with the default complexity parameter (1.0) and

train each classifier in a one-vs-rest fashion. As with our database experiments, we

test each representation separately, as well as combined into a single feature vector.

We report classification performance in terms of the average accuracy, with accuracy

values reported as the number of true positives divided by the number of true positives

plus the number of true negatives (TP/(TP+TN)), returned as a percentage.
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We perform two different classification tests. For the first set of tests, we train

an SVM using 10-fold cross-validation and report the average classification accuracy.

In these experiments, there is at least one member from every class included in the

training data. We view such tests as recognition experiments. This is in contrast to

our second set of tests, which we refer to as homology detection.

In these experiments, we take the SF>10 and Fam>10 datasets and set aside 9

SuperFamilies and 8 Families, respectively. The proteins in these groups are com-

pletely untouched during the training phase. We take the remaining members of each

dataset and train a classifier one level “up” the hierarchy. In other words, we train

an SVM on the SF>10 dataset using Fold labels and the Fam>10 dataset using Su-

perFamily labels. After the classifier is trained (using 10-fold cross-validation), we

test the independent validation sets and if the classifier can identify the correct Fold

of the held-out SuperFamilies and the correct SuperFamily for the held-out Families,

we state that the classification has been successful. Similar homology tests have been

reported elsewhere [106,108] and are considered to be a more challenging exercise in

structure prediction.

The SuperFamilies that were set aside were selected because they belong to Folds

with more than one SuperFamily, giving us an opportunity to train a classifier to

recognize that Fold. The same process was used for selecting the Families, except

that they were required to belong to a SuperFamily with more than one Family.

After dividing the SF>10 and Fam>10 datasets using the above criteria, we are left

with training sets of 1911 and 877 proteins and testing sets of 203 and 137 proteins,

respectively.
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Features 63 Fold SF>10 Fam>10

2D 65.5 67.9 80.9
PSFM 61.6 70.8 84.6
PSSM 64.9 72.4 83.3

2D & PSFM 78.5 81.5 89.3
2D & PSSM 77.4 81.8 89.2
PBPM 68.7 76.4 86.6

2D & PBPM 78.8 82.9 90.4

Table 6.8: Accuracy of recognition experiments at the Fold, SuperFamily and Family
levels (63 Fold, SF>10, Fam>10, respectively) for 2D, PSFM, PSSM and combined
representations.

Recognition: We present the results of our recognition experiments in Table 6.8.

As one can see, Fold-level classification presents the greatest challenge, where we

report accuracy values of around 66%, 62% and 65% for the 2D, PSFM and PSSM

representations, respectively. At the SuperFamily level, the accuracy for the PSSM

and PSFM representations improves to roughly 72%, while the performance of our

structure-based representation is essentially constant. We see additional improvement

progressing down to the Family level, with the accuracy of the 2D representation

increasing to 81% and the PSSM and PSFM summaries to almost 85%. While the

PSSM summary outperforms the PSFM representation at the Fold level, that edge

is erased at the other levels of the hierarchy. Combining the PSSM and PSFM

representations together results in an improvement of approximately 3%.

Table 6.8 also shows the accuracy of our hybrid sequence-structure representation.

It is quite surprising how much one can improve the overall performance by combin-

ing sequence with structure. At the Family level, the stand-alone PSFM and PSSM
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summaries yields an accuracy of around 84%. Combined with the structural features,

that value increases to 89%, an improvement of almost 6%. Even though the PBPM

representation has an accuracy of 87% at the Family level, that value can be increased

to more than 90% by adding structure. One can see even greater increases at the

SuperFamily and Fold levels; 10 and 14%, respectively. While structural information

would not be available to a researcher trying to predict the global fold of a protein,

our results do indicate that the information contained in our 2D representation could

be used in a semi-supervised manner to refine the sequence-based classification re-

sults, potentially improving the prediction process [117]. In addition, there may be

instances where a researcher has access to information on both the sequence and the

structure of a protein. In such cases, our methods can be combined to improve the

results over any individual representation.

Homology Detection: The results of our homology detection experiments are pro-

vided in Table 6.9. While it is unlikely that a researcher would use structural in-

formation to detect homologs, we include the values for the sake of completeness,

but do not discuss them further. As we see from the results, homology detection

is a harder classification challenge, with accuracy values 10-20% lower than those of

the recognition experiments. There is little difference between the PSSM and PSFM

representations, however. With the combined PBPM representation, we see an in-

crease in Fold-level accuracy, but that gain is erased at the SuperFamily level. Our

results are comparable to homology results reported elsewhere on similar, though

not identical, datasets [108]. We see these results without having to resort to a task-

specific kernel function or representation, which highlights the general applicability of

our approach.
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Features Fold Detection SF Detection

2D 55.2 35.7
PSFM 41.8 54.7
PSSM 40.9 54.0

2D & PSFM 59.6 48.1
2D & PSSM 58.1 58.4
PBPM 46.7 53.2

2D & PBPM 59.1 59.1

Table 6.9: Accuracy for homology detection experiments. Values represent accuracy
of trained SVM on an untouched test set. Results provided for detection of Fold and
SuperFamily (SF)-level homologs.

6.7.3 Transformation Parameters

In our original experiments, we elected to normalize the length of each protein to

128 and use a 4th and 3rd level wavelet decomposition for the sequence and structure-

based representations, respectively (see Section 4.4.1). As a follow up to that work,

we conducted a more robust set of experiments where we evaluate the performance

of several different protein lengths (128, 160, 192, 224, 256) over a range of decom-

position levels (2-7). However, we do not repeat all of our experiments for every

possible combination of length and decomposition level. We only repeat the full set

of classification experiments on those combinations that appear most promising. To

determine those combinations, we repeat the process detailed in the Transformation

Details subsections of Section 4.4.1.

First, for each normalized protein length, we generate feature vectors for the

sequence and structure-based representations for every wavelet decomposition level
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between 2 and 7 (inclusive). This leaves us with a total of 15 feature vectors for each

candidate length (3 representations times 5 decomposition levels). We take these

feature vectors and use them to train an SVM to classify the 63 Fold dataset with

10-fold cross-validation.

We use the accuracy values from the classification experiments to determine the

suitability of each combination of level and length. For the two combinations that

we deem the most promising, we generate the additional hybrid representations and

repeat our full set of classification experiments to determine how these alternatives

compare against our original results. While accuracy is the primary criteria used

to just the suitability of of each combination, we also feel it is necessary to take

other details, such as the overall number of attributes, into account. The size of each

feature vector will affect the classification training time and the amount of storage

and memory needed to process our database queries.

In Figure 6.9, we present the SVM classification accuracies on the 63 Fold dataset

for each combination of level and length. The PSFM, PSSM and structural values are

presented in Figures 6.9 (a), (b) and (c), respectively. The accuracy values are listed

on the y-axis and the decomposition levels on the x-axis. Each line in the figures

corresponds to a different length. As one can see, the trends are very similar to those

presented in Figure 6.5. The highest values for the sequence-based representations are

seen at levels 4 or 5, while the best performance for the structural descriptors occurs

at levels 2 or 3. For each representation, the difference in accuracy between the two

levels is typically marginal, so when selecting a value for the final decomposition level,

we choose the one that will result in a smaller number of total attributes: level 4 for
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(a)

(b)

(c)

Figure 6.9: Top (a): SVM classification accuracy of the PSFM transformation for
various wavelet decomposition levels and normalized signal lengths on the 63 Fold
dataset using 10-fold cross-validation. Each line in the graph represents a different
signal length. The accuracy values are provided on the y-axis, the decomposition
levels on the x-axis. Middle (b): SVM accuracy values for the PSSM transformation.
Bottom (c): SVM accuracy for the structure-based representation.
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Figure 6.10: SVM classification accuracy using 10-fold cross-validation on the 63
Fold dataset for various signal lengths for each of the different transformations. The
lengths are listed on the x-axis, accuracy on the y-axis. For the PSSM and PSFM
representations, the decomposition level was set to four. To generate the structure-
based features, it was set to three.

the sequence-based representations and 3 for the structure-based descriptor. These

were also the decomposition values used in our original experiments.

After determining the decomposition level for each transformation, it becomes

necessary to select a normalized length for the representations. While we could use a

different length for each individual representation, we feel that in order to make a valid

comparison, the same value should be used for all the transformations. Figure 6.10

provides a closer view of the classification accuracy for each length and representation

at a single decomposition level (4 for sequence, 3 for structure). Unlike Figure 6.9,

here each line in the plot corresponds to a representation while the lengths are listed

on the x-axis. The y-axis again provides the accuracy values, though at a different

scale than in Figure 6.9. As one can see from the figure, using a longer length generally
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Features N = 128 N = 160 N = 224

2D 136 210 406
PSFM 160 200 280
PSSM 160 200 280

2D & PSFM 296 410 686
2D & PSSM 296 410 686
PBPM 320 400 560

2D & PBPM 456 610 966

Table 6.10: Number of attributes for each representation for the different signal
lengths tested (N=128,160,224 ).

results in a higher accuracy, though the difference may be small. Based on the graphs,

we elect to repeat our experiments using length values of 160 and 224. We choose

160 as that seems to be the optimal value for the structural descriptor, in terms of

accuracy and the overall number of attributes. Our selection of 224 was motivated

by the performance of the sequence-based representations at that value. The number

of attributes in each representation are listed in Table 6.10. We now repeat our

original tests using these new lengths to see how they compare to the representations

generated using a length of 128. We begin with a re-evaluation of our recognition and

remote homology detection classification experiments.

Classification: Figure 6.11 contains the results of our recognition experiments, with

the Fold, SuperFamily and Family-level results given in Figures 6.11 (a), (b) and (c),

respectively. As one can see, with the sequence, structure and combined sequence rep-

resentations (PSFM, PSSM, 2D, PBPM), a longer length generally results in a higher
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accuracy. When combining sequence with structure (2D & PSSM/PSSM/PBPM),

the reverse trend appears to hold.

While these trends tend to hold across the Fold, SuperFamily and Family levels,

we should note that at the Family level, there is little difference in accuracy for the

different lengths with the PSSM and PSFM representations. In addition, the PBPM

representation present behavior opposite that seen at the Fold and SuperFamily level.

The smaller-length representations yield a higher accuracy than those based on the

larger values.

Unfortunately, the experiments in homology detection do not produce trends that

are as clear-cut as those seen in our recognition tests. Figure 6.12 provides the accu-

racy results for our attempts at homology detection. In general, with Fold Detection

(Figure 6.12 (a)), a shorter length yields a higher accuracy. The same holds true at

the SuperFamily level (Figure 6.12 (b)) for the 2D and sequence-structure hybrids,

but not for the purely sequence-based representations. For those descriptors, a longer

length is more effective.

Information Loss: One may have concerns with the amount of information loss

that occurs with our transformations. There are two primary areas that contribute

to this loss: when normalizing the protein lengths and when applying the wavelet

decomposition. Here we attempt to allay some of those concerns by first addressing

the latter and then focusing on the former.

For the sequence-based representations, after normalizing the length of the protein,

applying a 4th level wavelet decomposition reduces the total number of attributes or

amount of information by a factor of 16 (24). With the structural descriptors, the
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(a)

(b)

(c)

Figure 6.11: Results of the recognition experiments. Left (a): Classification accuracy
for the different representations on the 63 Fold dataset (Fold level). Middle (b):
Classification accuracy on the SF > 10 dataset (SuperFamily level). Right (c):
Accuracy for the different representations on the Fam > 10 dataset (Family level).
All accuracy values were obtained from an SVM trained using 10-fold cross-validation.
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(a) (b)

Figure 6.12: Results for the experiments in homology detection. Left (a): Accuracy
of the different representations at the Fold level. Right (b): Accuracy of the different
representations for at the SuperFamily level.

total amount of information is approximately reduced by a factor of 60. For example,

given a normalized matrix of size 128x128, we can immediately remove half the points

since it is symmetric across the diagonal. In this case, we would be left with a total of

8192 points. A 3rd level 2D wavelet decomposition yields 136 coefficients, a reduction

of approximately 60-fold. This is about 4 times greater than the reduction seen with

the sequence-based representations. Since each level of the 2D wavelet decomposition

reduces the total number of points by a factor of 4, one could make the information

loss between the different methods equal by either reducing the final level of the

structural descriptor from 3 to 2, or by increasing the final level for the sequence-

based representations from 4 to 6. However, since there is little difference in accuracy

between levels 2 and 3 for the structural descriptors (see Figure 6.9 (c)), we do not

feel that such a change is necessary.

When normalizing the length of the protein, it would appear that the amount of

information loss is much greater for the structural descriptors, since we are reducing
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an NxN distance matrix to size LxL (where L is the normalization length) compared

with the sequence-based profile matrix that is being reduced from Nx20 to Lx20.

However, since the distance matrix is computed from the 3D coordinates of the amino

acids, we really are reducing the total amount of information from Nx3 (the xyz

coordinates of each amino acid) to Lx3. This is similar to the amount of information

loss in our sequence-based representation, but we are currently looking at several

information-theoretic measures to better characterize these values.

6.8 On the Use of Structure and Sequence-Based Features

for Protein Retrieval

Given a protein, the ability to effectively retrieve similar molecules, or to identify

the functional group to which it belongs, is needed in many biomedical applications.

A key requirement in this process is defining a suitable metric of similarity. Protein

molecules are highly complex and a number of different measures can be used to de-

fine similarity. One could calculate the geometric similarity between the structure of

proteins, for instance, or use a measure based on certain sequence-related properties.

In many cases, the application or the available data will dictate the type of similar-

ity required. For instance, if a protein is found to prevent a disease based on a key

chemical property, researchers may look for proteins that have a similar sequence in

the hope that they can also be used for prevention. On the other hand, if a protein

is designed to be part of a drug delivery system, it might also be possible to use pro-

teins with similar structural features to effectively deliver medicinal payloads to sites

within the body. In folding simulations, similar structures between proteins could
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be indicative of a common folding pathway. Structural representations are particu-

larly critical for processing the results of folding simulations, where the sequence of

a protein is essentially unchanged.

Previously, we presented a representation that could be used to retrieve proteins

using either global or local substructure-based similarity. In an expansion to that

work, we present an additional representation that can be used to retrieve proteins

using sequence-based similarity. Here we demonstrate how each representation can

be employed to quickly and efficiently retrieve molecules using similarity based on

sequence, structure or both.

6.8.1 Datasets

As in our previous indexing experiments, to evaluate database performance, we

focus on the 2K dataset. In this set, a total of 181 SuperFamilies were selected from

SCOP, with each SuperFamily having at least ten members. Ten proteins were se-

lected from each SuperFamily, resulting in a total dataset size of 1810 proteins. To

construct a query set, one protein was selected at random from each of the Super-

Families, yielding a query subset of 181 proteins.

6.8.2 Experiments

All of our experiments were conducted on a 2.4 GHz Pentium 4 PC with 1.5

GB RAM running Ubuntu Linux on a 2.6.12 kernel. When referring to our different

representations, we use PSFM and PSSM to denote the PSFM and PSSM sequence

summaries, respectively, and 2D to refer to our 2D structural decomposition. We

also combine the structural descriptor with the individual sequence summaries (2D
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& PSFM, 2D & PSSM ). We denote the combined PSSM and PSFM descriptors as

PBPM and finally, the sequence-structure hybrid as 2D & PBPM.

To illustrate the effectiveness of our representations as an indexing method, we

validate our approach using two different query retrieval tests, nearest-neighbor and

range. For the nearest-neighbor tests, given a query, we retrieve the k nearest-

neighbors from the target database and report the number of correct matches. For

the range queries, we specify a range value r and retrieve from the target database

those objects that lie within a distance r to the query. In both tests, distance refers

to the standard Euclidean distance.

We use a k-d tree as our target data structure [112]. The k-d tree is a generalization

of the binary search tree. Both start with a root node and place the data into left

and right subtrees based on the value of a particular attribute, or key. This process is

recursively repeated until the data is divided into mutually exclusive subsets. While

a binary search tree uses the same key on all nodes of all subtrees, a k-d tree will use

a different key at each level. This leads to a data structure that effectively partitions

the data but still allows the user to search for best matches without having to make

a large number of comparisons. For our tests, we use k-d tree code obtained from the

Auton Lab.

As in our structure-based query experiments, we also compare our techniques with

PSIST. As before, we generate a feature vector for each protein using the default pa-

rameter values.

Nearest-Neighbor Retrieval: For our nearest-neighbor retrieval tests, we use the

SCOP labels at the SuperFamily level to determine whether a neighbor is correct. We
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Features k = 4 k = 10 k = 50 k = 100

PSIST 3.75 7.04 7.50 7.74
2D 3.86 7.71 8.17 8.41
PSFM 3.88 8.07 8.33 8.44
PSSM 3.90 8.14 8.51 8.71
PBPM 3.88 8.12 8.35 8.44
2D & PSFM 3.87 7.85 8.28 8.46
2D & PSSM 3.86 7.72 8.19 8.40
2D & PBPM 3.86 7.85 8.29 8.48

Table 6.11: Average number of proteins in matching SFs for varying k as returned
by a NN query on the 2K dataset.

examine the number of correct matches for k equal to 4, 10, 50 and 100. Similar values

have been used in previous retrieval experiments [102]. We evaluate our structure and

sequence-based representations on the 2K dataset and compare against the values

returned by PSIST.

The results of our retrieval tests are presented in Table 6.11. Shown in the table

are the average number of nearest-neighbors that belong to the same SuperFamily as

the query protein for different values of k. On the 2K dataset, we see that both our

representations return a larger number of correct neighbors than PSIST for all the

tested values of k and that the sequence-based summaries outperform those derived

from structure. There is little performance gain for values of k larger than 10, but

that is because the target database only contains 10 members for each SuperFamily.

We find that PSSM provides the best overall performance, though PSFM is compa-

rable. The structure-based values are slightly worse, and we see no improvement in

combining sequence with structure.
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Range Queries: We also test our representations with short, medium and long range

queries using the 2K dataset. We empirically define a query as short, medium or long

based on the number of objects returned. If the range value is too small, very few

objects will be returned. Too large, and the query will return the entire database.

Since the choice of the actual range value is dependent on the representation, we

cannot use the same value of r for every test. Therefore, we list the range values

used for each representation along with our results. We report the average number

of objects retrieved (total number of objects retrieved divided by the total number

of queries) as well as the average number of matches among those objects. A match

occurs when the object and query belong to the same SuperFamily. The results of

this experiment are provided in Table 6.12.

As we can see, range queries are highly accurate, but the number of retrievals

is variable. For instance, for the short range values, we retrieve 3-5 objects with

100% accuracy. Even at the long range values, our accuracy remains very high.

We see an accuracy of almost 100% with the the 2D features, and 84-98% with the

sequence-based representations. Each SuperFamily in the 2K dataset contains only

10 members. As we from the table, we can retrieve half of the possible total with no

error.

Finally, while we do not report the values here, we find that our indexing approach

is far superior than PSIST in terms of both query execution time and memory usage.

6.8.3 Discussion

In this paper, we present two methods of protein representation, one based on

sequence information, the other derived from the solved structure. We find that
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Features short med. long

2D Match 3.71 4.54 5.90
r = (75, 125, 250) Total 3.71 4.54 5.93

PSFM Match 3.73 5.58 6.96
r = (25, 75, 110) Total 3.73 5.58 8.27

PSSM Match 3.78 5.33 7.33
r = (10, 20, 35) Total 3.78 5.33 7.88

PBPM Match 3.69 5.35 6.76
r = (25, 75, 110) Total 3.69 5.35 6.88

2D & PSFM Match 4.60 5.62 7.20
r = (150, 250, 450) Total 4.60 5.62 7.47

2D & PSSM Match 3.61 4.52 5.89
r = (75, 125, 250) Total 3.61 4.52 5.92

2D & PBPM Match 4.56 5.61 7.20
r = (150, 250, 450) Total 4.56 5.61 7.46

Table 6.12: Average number of objects returned by a range query for short, medium
and long ranges (short, med., long, respectively). Total lists the average number of
objects returned and Match the average that are correct. The range values for each
query are listed in parentheses.
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the PSSM and PSFM representations provide roughly the same overall performance,

though there are instances where the PSSM summary yields a higher accuracy. We

also find that even though the PSSM scores are derived from the PSFM values,

combining the summaries can result in a fairly dramatic increase in accuracy. We

believe this is because the combined PBPM representation merges information about

the overall amino acid frequency counts contained in the PSFM summary as well as

the PSSM scoring information pertaining to the overall conserved-ness of each region.

The PBPM summaries are comparable to our 2D structural descriptor. It is also

possible, as evident in our classification experiments, to combine information on both

sequence and structure into a hybrid representation that can provide an improvement

over any individual variant. Such a technique can be useful in applications where the

researcher is not limited to sequence or structure and further emphasizes the general

applicability of our approach.
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CHAPTER 7

EXTENSION II: MODEL-BASED SPATIAL AVERAGING

In this section we present an algorithm that is designed to increase classification

accuracy by taking advantage of the spatial properties inherent to many of the mod-

eling methods explored in this work. It entails an ensemble-learning technique that

improves classification performance by aggregating the decisions of multiple classifiers

built from surface models of varying spatial resolution. We validate this algorithm by

applying it to two of our case study domains, protein structure and corneal topogra-

phy.

One of the benefits of modeling image-based or image-like biomedical data is

that it can be modeled using spatial transformations at several possible resolutions.

Spatial transformations allow the user to create a model of the original data, capturing

the correlations and features that are important in distinguishing between groups of

interest. At the same time, they can reduce the overall dimensionality of the data

and provide a representation that can serve an a feature vector for tasks such as

classification. There are a large number of possible transformations, and choosing

which one to use when modeling a dataset is not a trivial task. One can make the

process easier by relying on a specific group of transformations and choosing the one

that can best represent the underlying properties of the dataset. The challenges do
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not end with the selection of the transformation, however. One must still decide at

what resolution the data should be modeled.

A model of high resolution will result in a more faithful representation of the

original data with much finer detail, but will yield a larger number of coefficients and

could include a large degree of noise. An increase in the number of coefficients or

the amount of noise can lead to a degradation in classification performance. A lower-

resolution model, on the other hand, will be much less specific, putting more emphasis

on global features and trends. These representations are typically less affected by

noise, but can miss out on some of the features and trends that can distinguish

between certain problem cases or classes, such as diseased vs. non-diseased.

With classification, users have typically been forced to choose a single resolution

or a single model before proceeding. In this work, we present an technique that re-

moves that requirement. This method, which we term spatial averaging is designed to

aggregate the decisions of classifiers constructed from multiple spatial representations

or resolutions of the same data11.

The Spatial Averaging algorithm can be leveraged with any classification strategy

that can take advantage of ensemble-learning methods, though here we focus on

decision trees. Spatial averaging can also be used in place of, or even in conjunction

with, traditional ensemble-learning approaches. We envision this strategy as a way

to improve classification performance without completely sacrificing the underlying

interpretability of algorithms such as Näıve Bayes or decision trees. Spatial averaging

requires the construction of multiple classifiers, but examining multiple decision trees

11The algorithms and results detailed in this section are an expanded version of work presented
at the 2005 IEEE Symposium on BioInformatics and BioEngineering (BIBE) [118]
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can still be more intuitive than attempting to understand and interpret a “black-box”

system such as a neural network or a support vector machine.

We show the utility of our approach by applying it to datasets taken from two dif-

ferent biomedical domains. The first contains data relating to the corneal topography

of three different patient groups. This topography is modeled using two polynomial

transformations at several different orders (see Chapter 3 for further detail). The

second dataset that we examine is a set of several thousand proteins divided into

roughly 60 different groups based on their 3D structure. These proteins are repre-

sented by two different sets of features, one sequence-based, the other derived from

their structure. These features are generated by applying a wavelet decomposition

to the original data and treating the final level of approximation coefficients as the

representative model (see Chapter 6 for more information).

With this technique, we are not interested in the performance of the original

transformations per se. We have applied these transformations to these datasets in

the past [41, 93, 118]. Our intent is to show that it is possible to improve classi-

fication performance given a set of existing representations. Such an approach can

remove some of the uncertainty that results when faced with having to choose a single

representation from one of many seemingly-similar options.

7.1 Approach

Our ensemble-learning strategy is based on the idea of averaging the results from

classifiers built on multiple resolutions of a single spatial transformation to reach

a decision. We refer to this approach as Spatial Averaging. Unlike boosting and

bagging, which seek to improve classification accuracy by aggregating the results
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of classifiers constructed from multiple random sub-samples of the dataset after it

has been modeled at a single spatial resolution, we aggregate the results of classifiers

constructed from multiple spatial resolutions of different transformations derived from

a single sample of the dataset. This strategy was designed to smooth out perturbations

due to noise effects.

Intuitively, for a given transformation, the lower order resolutions result in a model

that is less detailed than those generated from the higher orders. The higher order

resolutions, however, contain noise that is not present in the models derived from

the transformations of lower order. Thus, assuming that the classification errors are

uncorrelated, our belief is that including the additional features will help minimize

the misclassifications that result from certain problem cases. We now proceed to list

the steps of the Spatial Averaging algorithm.

Generation of Model Representations: First, a model of each individual record in the

dataset is created for each transformation at every resolution that is to be included

in the Spatial Averaging classifier. Thus, if we wish to create a Spatial Averaging

classifier that aggregates the predictions of classifiers constructed using models of

4th-10th order Zernike and pseudo-Zernike polynomials, we would create a total of

14 representations for each member of the dataset (7 Zernike and 7 pseudo-Zernike).

This is a pre-processing step that only needs to be completed once, as the models

themselves will not change. Once the representations have been generated, the actual

classification process can begin.

Dataset Partitioning: The first step is to divide the dataset into N folds, or splits,

of approximately equal size, with each dataset member present in one, and only one

fold. As stated above, we generate a number of model representations of the original
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1. Partition the original dataset into N splits.
Repeat the same partitioning on each of the r
representations that are to be included in the
Spatial Averaging classifier.

2. For each of the r representations,
obtain a test prediction for each object.
(For each r, create N classifiers using one
of the N splits as a held-out test set and
training the classifier on the remaining splits.)

3. If using Top K or weighted voting,
compute the average training accuracy for
each representation by also obtaining a
prediction for each object in the training set.

end for

4. Compile the test predictions of all the
representations, yielding r predictions
for each object.

5. Take the modal label of the r predictions
to determine the final label of each object.

Figure 7.1: Algorithm for base version of Spatial Averaging technique.

dataset. In order to create a valid Spatial Averaging classifier, we require that each of

the representations be partitioned in the same manner. Thus, given a certain ordering

of the dataset, if object X lies in Split 1 of one representation, it will be placed in Split

1 of all the remaining representations. As we will explain later, we also implement

versions of our Spatial Averaging algorithm based on bagged classifiers. This requires

that that the algorithm be executed a number of times. To ensure that we generate

unique splits for each bagging iteration, we randomize the dataset before partitioning.

Classifier Construction: After we have divided the dataset, we construct a set of

initial classifiers. In the experiments described here, we use decision trees, but any
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classification strategy can be employed. For each representation, we train a total of N

classifiers, treating each of the N folds as a held-out test set and using the remaining

(N − 1) folds for training. After training the classifier, we retrieve a prediction for

each object in the training set and a separate set of predictions for each object in the

test set. Since each object in the dataset belongs to one, and only one fold, these N

classifiers yield one test prediction for each object and (N − 1) training predictions.

This step is repeated for each representation.

Computation of Training Accuracy: We compile all of the training predictions and

use them to compute the average training accuracy for each representation. This step

is only needed when prioritizing or ranking the different representations. It is used

with the weighted and Top-K voting schemes, which are described below.

Compilation of Test Predictions: The next step in the Spatial Averaging algorithm

is to tally all of the predictions in the test sets. For every object in the dataset, we

compile the predictions from every representation that is part of the overall Spatial

Averaging classifier. Thus, if we are testing 14 representations, we will have a total

of 14 predictions for each object. We have also implemented a version of the Spatial

Averaging algorithm that relies on the predictions of a bagged classifier. Therefore,

we generate a number of predictions for each representation. In these instances, we

will end up with a total of r ∗m predictions for each object, where r is the number of

representations and m refers to the number of iterations used to create the underlying

bagged classifier.

Voting: Once we have tallied the predictions for each object in the dataset, we count

the votes of the test predictions. We have implemented three different versions of

the Spatial Averaging classifier. The first is a simple base strategy. This version of

210



the Spatial Averaging classifier tallies a single vote for each representation and the

label with the most votes is selected as the overall prediction for that object. If we

have representations that belong to more than one transformation (i.e. Zernike and

pseudo-Zernike), we aggregate the results of each transformation separately, and also

compute a combined classifier that aggregates the decisions of all the representations.

Thus, if a dataset is represented by multiple transformations, for instance, both

Zernike and pseudo-Zernike models, we compute a separate prediction for both the

Zernike and pseudo-Zernike representations, as well as a single prediction for the

combined representation. The idea behind the combined classifier is to minimize the

overall effects of noise on a dataset by including transformations that are richer and

more-detailed, but are more likely to be affected by noise with those that offer a

less-detailed model, but are more robust and noise-tolerant. In addition, we give user

the ability to average the results of the top K classifiers. If this option is selected, we

simply average the predictions of the K classifiers with the highest training accuracy.

Other Variants: The second version of the Spatial Averaging classifier relies upon the

predictions of bagged classifiers to reach a final decision. We refer to this version as

Spatial Averaging + Bagging. Assume that we run the Spatial Averaging algorithm

with r representations for a total of m iterations. Thus, for each representation ri,

we are left with a total of m predictions for each object. We take the modal label

of those m predictions and use that value as the single prediction for representation

ri. We then tally the prediction of each of the r representations and take the modal

label to be the overall prediction for that object.

The final variation creates a number of base Spatial Averaging classifiers and uses

the predictions from those classifiers to determine an overall prediction for each object.
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We denote this variant as Bagged Spatial Averaging. The Bagged Spatial Averaging

algorithm can be viewed as follows: assume, as with the Spatial Averaging + Bagging

variant, that we execute m iterations of the base Spatial Averaging algorithm (with r

representations). Thus, for each iteration mi, we are left with a total of r predictions

for each object. We compute a prediction for each iteration as with the base Spatial

Averaging method. We tally the prediction for each of the m iterations and take the

modal label to be the overall prediction for that object.

Weighted Voting: The default voting scheme for each Spatial Averaging classifier is

that each of the underlying representations receives an equal vote. This method works

well when the representations are approximately equal in terms of classification accu-

racy. There may be cases, however, where certain classifiers significantly outperform

the others. When this occurs, we want to weigh the vote of these classifiers much

more than the rest. In addition, when there are classifiers that are significantly worse

than the average, we would like to give them less emphasis. We do not want to totally

ignore their predictions, since they may add potentially useful information, but we

want to avoid dragging down the overall results by heavily relying on them.

As a result, we have implemented a heuristic function that assigns a weight to the

vote of classifier based on its performance above or below the average accuracy of the

other classifiers. The training accuracy of each representation is used to compute the

average accuracy. Our heuristic is intended to mimic a geometric function, in that

the weight assigned will rapidly decrease as the accuracy of the underlying classifier

approaches the average. In this manner, we assign weights much greater than 1

to representations that have classifiers with higher-than-average accuracy. Those

representations with an accuracy close to or less than the average will receive a weight

212



between 0 and 1. To compute the weight of a given classifier, we use the following

function:

1

[1 − (acci − accavg)]
1

(1−acci)

(7.1)

where acci is the training accuracy of a given representation and accavg is the average

training accuracy of all the representations. The training accuracy of each represen-

tation, defined as (1 - probability of error for the classifier of that representation), is

used to compute this average. We tested a number of different weighting strategies,

but found that the above function provided the best overall results.

When the training accuracy of a representation is significantly higher than the

average, this function will give the vote of that representation a much greater weight

than one that is close to the average. We do not view this as a drawback, however,

as it rewards those classifiers with excellent performance. In addition, if a classifier is

significantly lower than the average, the weight of its vote will be very small. If the

accuracy of each classifier is roughly the same, however, the weight of their votes will

be approximately equal. To illustrate the effects of this weight function, consider a

Spatial Averaging classifier that is constructed from 5 underlying classifiers with the

following training accuracies: 25, 25, 50, 75 and 90%. The average training accuracy

for these classifiers is 53%. Our weight function would assign the following values to

the votes of these classifiers: 0.72, 0.72, 0.94, 2.7 and 101.5, respectively.

Key Intuition: The rationale behind Spatial Averaging is similar to that of bagging.

Breiman notes that bagging works by creating an aggregate predictor based on a

sequence of underlying predictors formed from several replicates of the training data,

or in cases where that those replicates do not exist, by taking a series of random

samples from the original training set [38]. By coupling the different samples with an
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unstable classifier, the goal is to cause perturbations in the predictor that will lead

to improvements in the overall classification accuracy. The same principle applies

to Spatial Averaging. By using an increasingly detailed data transformation over

the same sample, we add additional features to our classification input that will

(potentially) help distinguish problem cases. To use Breiman’s terminology, we can

consider each representation as a replicate of the original training data. Therefore,

instead of having to take random samples to obtain our replicate training data, we

can simply apply different transformations to the same sample.

In his review on bagging and its ability to increase classification accuracy, Domin-

gos argues that the improvement is due to a shift in complexity from an overly simplis-

tic decision tree model to one that is more complex [119]; in effect, the supposedly ben-

eficial simplicity bias that is a function of many decision tree algorithms can actually

degrade classification performance. A simple decision tree may be more interpretable,

but limiting or favoring a small number of leaves can cause a “smoothing over” of the

learner’s model. A tree with a large number of leaves might be able to more accu-

rately partition this space, but a more simplistic and therefore coarser-grained model

is preferred. While bagging achieves this increase in complexity through resampling,

we achieve a similar increase by modeling the data at varying resolutions.

7.2 Experiments and Results

We now illustrate the effectiveness of our Spatial Averaging algorithm by testing

it on the Topography and 63 Fold datasets. Unless otherwise noted, all results are

listed as the percentage of correct classification of the testing data.
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Like many ensemble-learning algorithms, our Spatial Averaging technique can be

applied to a number of underlying classification strategies. In these experiments, we

elected to use C4.5 decision trees [29]. This choice was made for several reasons.

Decision trees are fast, easy to construct, and highly interpretable, which is a plus

when trying to explain the criteria for a classification decision.

When dividing our datasets, we set the number of folds to 10, and when creating

our Spatial Averaging + Bagging and Bagged Spatial Averaging classifiers, the num-

ber of iterations is also set to 10. We compare our Spatial Averaging classification

strategy against the performance of a single decision tree as well as a bagged deci-

sion tree. We examine whether the Spatial Averaging + Bagging and Bagged Spatial

Averaging variants provide any improvement over a base Spatial Averaging classifier.

We explore the effects on accuracy when using just a subset of the representations

(i.e. the Top-K) and determine the utility of our weighted voting scheme.

7.2.1 Spatial Averaging vs. C4.5

The first set of experiments involve testing the performance of our Spatial Averag-

ing technique against a standard decision tree-based classifier. The standard decision

tree is intended to serve as a baseline. We want to examine how well our Spatial

Averaging strategy performs as an ensemble-learning technique.

The results of our baseline comparisons are provided in Figure 7.2. The values in

the top figure correspond to the corneal topography dataset and the remaining figures

to the protein dataset. The results of the sequence-based representations are given in

Figure 7.2 (b) and the numbers for the structure-based transformation are shown in

Figure 7.2 (c). As shown in Figure 7.2, the Spatial Averaging technique provides much
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(a)

(b)

(c)

Figure 7.2: Accuracy for Spatial Averaging (SA) classifier compared with a C4.5
decision tree. Figure (a) corresponds to the corneal topography dataset, (b) to the
sequence-based protein representations and (c) to the structure-based wavelet trans-
formation. Accuracy values are given for each order and transformation. Also shown
are the results for the combined Spatial Averaging classifier. The y-axis scales have
been set to highlight the differences in accuracy.
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higher accuracy than standard C4.5 for all the datasets that we examined. On the

corneal topography dataset, a single decision tree yields and accuracy of around 86%.

For the Spatial Averaging trees, we see an accuracy of 89-90%. Using a paired t-test

at 5% significance, we find that the Spatial Averaging classifiers are more accurate,

in a statistically-significant manner, than the underlying Zernike and pseudo-Zernike

representations.

With the topography dataset, we see that the accuracy for the different decision

trees is fairly constant, falling in the mid-80% range. With the protein dataset,

on the other hand, we see a large difference in accuracy. Using the sequence-based

representations (Figure 7.2 (b)), we see individual decision tree accuracies between

22-40% and 13-38% for the structure-based transformations (Figure 7.2 (c)). Despite

this wide range of values, we still see an improvement with our Spatial Averaging

technique. There is a 4% improvement with the structure-based transformation, and

similar increases on the sequence-based representations with the Spatial Averaging

classifiers derived from a single transformation. Again using a paired t-test at 5%

significance, we find that the accuracy of our Spatial Averaging classifiers is always

significantly higher than the stand-alone representations. With the Spatial Averaging

classifier that combines the two sequence representations, we see an accuracy of 53%,

a full 13% improvement over any individual decision tree.

7.2.2 Spatial Averaging and Ensemble-Learning

While we would expect our Spatial Averaging algorithm to perform well com-

pared to traditional C4.5, we would also like to determine how it compares to other
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ensemble-learning techniques. First, we want to directly compare how Spatial Av-

eraging fares against traditional ensemble-learning strategies such as bagging. The

data is not shown, but we find that with the protein datasets, bagging has almost no

effect on classification accuracy. On the topography dataset, bagging increases clas-

sification accuracy to roughly 90%, which is comparable to the results returned by

our Spatial Averaging classifiers.

We would also like to determine whether it is possible to use existing ensemble-

learning techniques in conjunction with Spatial Averaging in order to improve clas-

sification accuracy over a traditional Spatial Averaging-classifier or a standard C4.5-

based ensemble-learner. This was the motivation behind the Spatial Averaging +

Bagging and Bagged Spatial Averaging variants of our algorithm.

The results of these experiments are shown in Figure 7.3 for the corneal topog-

raphy dataset and sequence-based protein representation and Figure 7.2 (c) for the

structure-based protein transformation. On the corneal topography dataset, we see

that the accuracy of Spatial Averaging + Bagging is roughly the same as that of a

single Spatial Averaging classifier. Bagged Spatial Averaging, on the other hand, pro-

vides a improvement in accuracy of up to 2%, though it is not statistically significant.

With the protein dataset, the situation is reversed. The accuracy of a Bagged Spatial

Averaging classifier is almost identical to that of standard Spatial Averaging. With

Spatial Averaging + Bagging, however, we see a dramatic 10% improvement over a

single Spatial Averaging classifier, to almost 54% on the structure-based transforma-

tion and 63% for the representations based on sequence. This represents a statistically

significant increase in accuracy.
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(a)

(b)

Figure 7.3: Accuracy for Spatial Averaging combined with ensemble-learning tech-
niques. SA corresponds to Spatial Averaging, SA + B to Spatial Averaging + Bag-
ging and BSA refers to Bagged Spatial Averaging. Figure (a) represents the corneal
topography dataset while (b) corresponds to the sequence-based protein representa-
tions. The structure-based protein values can be found in Figure 7.2 (c). The y-axis
scales have been set to highlight the differences in accuracy.
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Traditional ensemble-learning techniques try to increase accuracy by repeatedly

resampling the training data. By drawing enough samples, the intent is to increase

the predictive or descriptive ability of the overall classification model. If one viewed

each object as a row in a matrix and each attribute in that object’s feature vector

as a column, techniques such as boosting and bagging are designed to sample from

the row space. Spatial Averaging on the other hand, can be viewed as drawing

samples from the column space, where each sample corresponds to the features of

a particular representation. Therefore, it can be coupled with techniques such as

bagging, providing a greater benefit and a larger increase in predictive ability than

any single ensemble-learner.

7.2.3 Top-K and Weighted Voting

Our final set of experiments are designed to determine the effect of using the

predictions of the top-K representations to reach a final prediction and whether a

weighted voting scheme has any effect on classification accuracy. To simplify the

discussion, we focus solely on the structure-based protein representations. As shown

in Figure 7.4 (a), we do see an improvement with the top-K strategy. We find that

on this dataset, using the top 3 representations, (the wavelet decompositions of level

3, 4 and 5, respectively), to reach a decision provides roughly the same accuracy as

using all 5 and that the highest accuracy occurs when using just 4 (levels 3, 4, 5

and 6). This result implies that in instances where one or two classifiers perform

significantly worse than the others, it may be beneficial to exclude them from the

Spatial Averaging voting process.
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(a)

(b)

Figure 7.4: (a) Accuracy for Top-K Spatial Averaging-classification combined with
ensemble-learning techniques on the structure-based protein dataset. The values on
the x-axis (K) list the number of underlying representations included in the overall
Spatial Averaging classifier. SA corresponds to Spatial Averaging, SA + B to Spatial
Averaging + Bagging and BSA refers to Bagged Spatial Averaging. (b) Top-K
Spatial Averaging + Bagging accuracy on the structure-based protein dataset with
and without the weighted voting function. The y-axis values have been selected to
highlight the difference in accuracy.
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Figure 7.4 (b) shows the effect of weighted voting on the top-K Spatial Averaging

+ Bagging classification results. We find that weighted voting can improve classifi-

cation accuracy 1-4% over the default scheme. In addition, the decline that occurs

between the top-4 and top-5 classifiers is less than 0.5% compared to a greater than

2% decline in the standard scheme. This means that weighted voting can be used to

offset any decline that might occur by including all the representations in the spatial

averaging algorithm. As an alternative to simply choosing the top-K representations,

we also plan to evaluate the RuleFit algorithm, which provides a structured approach

to evaluating the effectiveness of the different representations.

7.3 Conclusions

In this section, we present our algorithm for ensemble-learning classification through

model-based spatial averaging. Unlike traditional ensemble-learning techniques, which

work to increase accuracy by continually sampling the training data, our method looks

to achieve the same result by modeling the data at varying resolutions. As a result

of this difference, our technique can be coupled with traditional ensemble-learning

methods in order to further improve performance. Empirical results have shown that

our standard algorithm can increase accuracy more than 10% over a single decision

tree, and when coupled with other ensemble-learners, can provide an additional in-

crease of up to 10%. It is unclear, however, whether the Spatial Averaging + Bagging

variant is superior to Bagged Spatial Averaging or vice versa. We also find that in

situations where a user has a number of unbalanced classifiers, one can employ our

weighting scheme to ensure that the poor classifiers do not skew the results.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

The application of data mining techniques on structure-based biomedical datasets

has the potential to unlock a vast array of hidden and potentially useful information.

Working with structure-based data presents a host of challenges, however. Many

biomedical datasets are extremely large and complex, or are composed of complex

objects that are represented in a high or multi-dimensional format. In addition,

structure-based data that has been obtained experimentally will contain some degree

of noise and uncertainty and many objects or datasets may have missing or partial

values. Structure-based data can also be highly variable, failing to conform to ex-

pectations on how it should behave over time. Also, while many biomedical datasets

are themselves composed of many members, they can often be divided into a large

number of different groups or classes. This can cause problems when trying to de-

velop methods of identifying whether a certain object belongs to a particular group.

It becomes especially challenging when a dataset is dominated by a few groups with

large memberships, particularly when a researcher is more interested in those that

are smaller and more sparsely-populated.

As stated in our thesis statement, we believe that despite these challenges, it is

possible to discover useful information in structure-based biomedical data and that
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furthermore, one can use generalized techniques that are applicable to multiple do-

mains. To illustrate this we propose a generalized workflow for the modeling and anal-

ysis of biomedical data. This workflow consists of three main stages: 1) Modeling,

2) Biomedical Knowledge Discovery and 3) Visual Interpretation and Query-based

Retrieval, as well as one optional stage: Incorporation of Domain Knowledge.

As validation, we present our work as a series of case studies and extensions span-

ning a number of domains. These include the modeling and classification of corneal

shape (Chapter 3), the classification and retrieval of protein molecules (Chapters 4

and 6, respectively) and the modeling and longitudinal analysis of visual fields (Chap-

ter 5). While we try to make our methods as general and as widely-applicable as pos-

sible, every research project will have its own set of goals, datasets and domains and

thus require slightly different techniques in order to achieve maximum performance.

Our intent in this work is to provide a blueprint for researchers and illustrate how

many techniques can be applied to a number of different areas. We show that many

of these works share common themes and elements and that not every analysis will

require a completely new domain-specific solution.

Even so, certain transformations and modeling methods may be more appropriate

for some data types than others. For instance, we modeled our protein and corneal

topography datasets using both wavelets and Zernike polynomials. We found that for

the topography data, Zernike polynomials provided the most effective representation.

With the protein-based data, the opposite was the case. We surmise that wavelets are

a better choice for modeling proteins because their 3D structures can be somewhat

irregular and span a large range of potential shapes. The wavelet transformation is

largely data-dependent and thus may be more capable of handling the wide variety of

224



shapes than a Zernike polynomial, which models objects with a series of fixed modes.

The topography dataset contains objects that are much more regular with respect

to one another, so one can use differences in a fixed-mode Zernike-based model to

differentiate between the different patient classes. So while generalized techniques

can be used on multiple data types, some of these techniques may have underlying

properties that make them more effective in certain cases.

8.1 Contributions

In our case studies and extensions, we show how generalized modeling techniques

can be applied to structure-based data from a number of domains and how those

models can be used in conjunction with knowledge discovery algorithms to discover

interesting and useful information. We also show how our techniques can be used

on objects such as the visual field or protein sequence. While these objects are not

specifically derived from structure, they play a key role in the relationship between

structure and function. Gaining an understanding of this relationship is an underlying

goal to many biomedical knowledge discovery applications. Through our efforts, we

make a number of contributions to the specific application domains, as well as the

overall scientific community. We list these contributions below.

• In the protein domain, we show that generalized modeling methods such as

wavelets can be used to efficiently represent sequence and structure. We develop

a model that allows for protein retrieval based on local substructures. We also

present representations that allow for fast, efficient protein retrieval based on

either sequence or structure (or both). The structure-based techniques will be

especially helpful in processing and mining the results of large-scale molecular
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simulation experiments, including those that deal with non-proteins. We also

detail a multi-stage classification technique that seeks to improve performance

by first partitioning data based on global, high-level details, then classifying

each partition using local, fine-grained features. We show the utility of this

approach by applying it to a sequence-based protein dataset that contains a

large number of classes, many of which contain only a few members.

• To represent corneal topography we create and classify models using Zernike

polynomials, validating previous work [15]. We develop new techniques that

show it is possible to visualize classification decisions or class-differentiating

surface features by creating surface models built from the splitting criteria of

decision trees.

• We propose a method to model the visual field that can be used to highlight and

detect defects and abnormalities. This model can also be used to characterize

the change in a given field over time. Both of these techniques can be used

for classification, but also for detecting outliers and anomalies. Our method is

automatic and tunable, allowing clinicians to control the overall sensitivity of

the results.

• Finally, we create a general ensemble-learning strategy that improves perfor-

mance by aggregating the results of classifiers built from models of varying

spatial resolutions. This allows a user to benefit from models that provide a

global, coarse-grained representation of the object as well as those that contain

more fine-grained details, without suffering from the loss of information or noise

effects that might arise from relying on a single resolution.

226



8.2 Future Work

In the future, we plan to expand our efforts and address some of the limitations of

our current work. At a minimum, we hope to conduct a further analysis of the visual

field dataset as it represents our most recent efforts. At a minimum, we plan a robust,

machine learning-based evaluation to determine how we should set the user-defined

input parameters to yield the optimal or most accurate output or classification. If

possible, we would like to obtain additional datasets that contain a broader mix of

abnormal patients. The abnormal patients in our current dataset are limited to a

few defect categories. In order to fully validate our technique, we need to test our

approach on visual fields that span all possible categories.

In addition, instead of simply stating that a patient has an abnormality in a

certain location, we want to provide the user with a set of probabilities indicating

the likelihood for each of the defect categories associated with that location. While it

may be relatively easy for a clinician to decide among a subset of categories in many

instances, giving a set of probabilities along with that subset could help confirm or

dissuade their decision for borderline cases. As an extension, we would also like to

work on characterizing the relationship among the different defect categories. For

example, we want to expand our classification system to allow patients to evolve from

one defect category to another over time. Along those same lines, we also plan to give

the user the option of relaxing the qualifying criteria for each category, allowing for

the possible detection of early disease cases. Finally, since it is usually easier to obtain

unlabeled or partially-labeled datasets, we plan to further evaluate our technique in a

semi-supervised manner, using it on unlabeled data to detect abnormal or anomalous

patient histories. This would permit us, for example, to flag histories that include
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patients with a visual field that is marked as normal but progressing or abnormal but

improving. These patients could then be targeted for special attention by the clinician.

If the dataset is unlabeled, having not yet been evaluated by a domain expert, this

could allow for a more rapid treatment or intervention than might normally occur.

We would like to continue to refine and evaluate our Spatial Averaging technique

with additional datasets and representations. As part of this evaluation, we would

also like to develop the statistical and theoretical justification needed to show why this

particular technique appears to be so effective as well as any limitations that might

prevent its use. Recent efforts have provided such a foundation for ensemble-learning

strategies such as boosting [120] and we hope to establish similar underpinnings for

Spatial Averaging. In addition, we also intend to use techniques such as RuleFit [40]

to determine which of the individual classifiers are the most important to the overall

Spatial Averaging classifier. By focusing on a smaller subset of classifiers, we can

reduce the number of models that a user needs to examine to determine the rationale

behind a classification decision, improving the overall interpretability of the Spatial

Averaging algorithm.

We also plan to apply our structure-based protein representations to molecular

folding simulation data. By grouping different representations, one can determine

whether molecules have similar folding pathways or share certain intermediate struc-

tures. Also, given a set of structures, outliers could signify abnormal structures, which

might be indicative of structure that is lethal or detrimental to the organism. Work

by others in this area is ongoing [14,121], but it still remains a rich direction for future

study.
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