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ABSTRACT

My dissertation research emphasizes estimation methods in evaluating the extent of so-

cial, strategic and spatial interactions among economic agents. Topical applications include

measuring peer group effects in experimental signaling games, structural estimation of the

latent value distribution through bidder's strategic bidding behavior in empirical auctions,

and GMM estimation of spatial autoregressive models.

My �rst essay, based on my joint research with Lung-fei Lee and John Kagel, gener-

alizes Heckman's (1981) dynamic discrete-choice panel data models by introducing time-

lagged social interactions so that the models can accommodate relationships of decision

making across cross-sectional units. We derive the likelihood function for the generalized

model and propose simulation based methods to implement the maximum likelihood esti-

mation. Such dynamic social interaction models may have broad applicability, especially

in interpreting experimental economics data. In this essay, we use this model to investigate

learning from peers in experiments based on Milgrom and Roberts' (1982) entry limit pric-

ing game. We �nd that subjects' decisions are signi�cantly in�uenced by the past decisions

of their peers in the experiment. Our �ndings are consistent with the view that the imitation

of peers' strategies is an important component of one's learning how to play strategically.

Similar peer group effects are likely to be present in experimental designs where subjects

receive feedback on their peer's performance.
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My second essay explores the robustness of Guerre, Perrigne and Vuong's (2000) two-

step nonparametric estimation procedure in auctions with a large number of risk-averse

bidders. Guerre et al. show that the underlying distribution of bidders' values (or costs)

is nonparametrically identi�ed from the observation of submitted bids when the auction

among risk-neutral bidders is conducted as a �rst-price, sealed-bid auction under the inde-

pendent private value paradigm. They propose a two-step nonparametric estimation pro-

cedure for the latent value distribution based on the equilibrium bidding behavior of risk-

neutral bidders. Their estimator is optimal in terms of uniform convergence rate to the true

distribution. In this essay, with an asymptotic approximation of the intractable equilibrium

bidding function of risk-averse bidders, I demonstrate that Guerre et al.'s two-step nonpara-

metric estimator is still uniformly consistent even if bidders are risk-averse as long as the

number of players in an auction is suf�ciently large and derive the uniform convergence

rate of the estimator. Furthermore, I show in Monte Carlo experiments that the two-step

nonparametric estimator performs reasonably well with a moderate number of risk-averse

bidders like six.

In my third essay, which is based on my joint research with Lung-fei Lee and Christo-

pher Bollinger, we consider the GMM estimation of the regression model with spatial au-

toregressive disturbances and the mixed-regressive spatial autoregressive model. We derive

the best GMM estimator within the class of GMM estimators that are based on linear and

quadratic moment conditions. Our best GMM estimator has the merit of computational

simplicity and asymptotic ef�ciency. We show that it is asymptotically as ef�cient as the

conventional maximum likelihood estimator under normality and asymptotically more ef-

�cient than the quasi-maximum likelihood estimator when the normality assumption does

not hold. We show in Monte Carlo studies that, with moderate sample sizes, the proposed
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best GMM estimator has its biggest advantage when the disturbances are asymmetrically

distributed. In the event that the diagonal elements from the squared spatial weights matrix

have suf�cient variance, then incorporating the kurtosis of the disturbances in the moment

conditions of the GMM estimator will also be valuable.
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CHAPTER 1

DYNAMIC DISCRETE CHOICE MODELS WITH LAGGED
SOCIAL INTERACTIONS: WITH AN APPLICATION TO A

SIGNALING GAME EXPERIMENT

1.1 Introduction

In his seminal work, Heckman (1981) has introduced a rich group of discrete choice

stochastic processes that allow each cross-sectional unit's decisions to have complex dy-

namic economic interrelationships over time. In this chapter, we generalize the dynamic

discrete choice panel data models by introducing time-lagged social interactions, so that

the models can accommodate interrelationships of decisions, such as learning from peers,

across cross-sectional units. This enriches the class of dynamics in Heckman (1981). As

interactions across cross-sectional units carry out with a time lag, the models are well-

de�ned without running into identi�cation or multiple equilibria problems, which occur in

some social interaction models (Manski, 1993).

Likelihood functions of dynamic discrete choice models involve multiple integrals, if

explanatory variables include lagged latent dependent variables or disturbances allow for

serial correlation in addition to that captured by random components. For panel data mod-

els, the dimension of integration increases with the number of periods, which makes nu-

merical implementation impractical. To overcome the computational dif�culty, simulation

1



estimation methods have been developed. The simulator due to Geweke (1991), Borsch-

Supan and Hajivassiliou (1993) and Keane (1994) is known to be practical and accurate

to implement the method of simulated maximum likelihood (SML), when the time periods

are not too long.

In this chapter, we show that the implementation of the Geweke-Hajivassiliou-Keane

(GHK) simulator remains tractable for models with social interactions. We investigate the

�nite sample properties of simulated estimates for model parameters and the effects of

misspeci�cation of dynamic structures and disturbances on estimates in the Monte Carlo

experiments. As the likelihood function is nonlinear, the SML estimator (SMLE) might

have an asymptotic bias if the number of random draws to construct the likelihood simulator

does not increase fast enough relative to the sample size. Hence special attention will be

given to dominated �nite sample bias (relative to standard error) of coef�cient estimates

due to simulation. We report some Monte Carlo results of a bias-correction procedure

proposed by Lee (1995) for the estimation of dynamic models with lagged interactions.

These dynamic social interaction models may have broad applicability, in particular, for

experimental economics data. Numerous experiments have been conducted with a discrete

choice space, with observations obtained in consecutive rounds. One of the main concerns

in experimental games is the effect of a player's learning from other players. As such a

dynamic discrete choice model with lagged social interactions may �t well as a possible

econometric model for the analysis of experimental data. Speci�cally, in this chapter, we

apply our generalized dynamic models with social interactions to investigate the presence

and magnitude of peer group effects in experiments based on Milgrom and Roberts' (1982)

entry limit pricing game. Similar peer group effects are likely to be present in a variety of
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experimental designs where subjects receive feedback on their peer's performance. Empir-

ical �ndings reported here may have broader economic implications. From the statistical

inference point of view, the usual limited number of experimental subjects, rounds, and ses-

sions due to feasibility or expense concerns might prevent one from determining whether

peer group effects are indeed negligible or overwhelmed by estimation errors caused by

insuf�cient sample size. So our estimation and Monte Carlo experimental results may shed

some light on the sample size requirement and sample structures favorable to successfully

identifying potential peer group effects in discrete choice games.

The organization of this chapter is as follows. In Section 2, we introduce a general

dynamic discrete choice panel data model with lagged social interactions, derive the like-

lihood function and illustrate the formulation of simulators and simulated likelihood func-

tion for this model. We report Monte Carlo results for the SMLE of the Markov and Polya

models with lagged social interactions in Section 3. In Section 4, we formulate empirical

dynamic models to investigate the adjustment process of subjects' decisions in laboratory

experiments based on an entry limit pricing game. Section 5 brie�y concludes.

1.2 General Dynamic Discrete ChoiceModels with Social Interactions
and SML Estimation

Consider a general dynamic discrete choice panel data model with lagged social inter-

actions

y�i t D hi t.y
�
i;t�1; � � � ; y

�
i;�1; Yn;t�1; � � � ; Yn;�1; Xnt ; � � � ; Xn;�1; � i /C vi t ; (1.1)

for i D 1; � � � ; n, where Ynt is the n-dimensional vector of dichotomous indicators of the

latent variables y�1t ; � � � ; y
�
nt , Xnt is the n�k-dimensional matrix of strictly exogenous vari-

ables and � i is a random individual component. Suppose that the error components � i are

3



i.i.d. N .0; � 2/ for all i and the disturbances vi t are i.i.d. N .0; 1/ for all i and t . This process

is assumed to start at t D 1; and the initial conditions on y�i t , Ynt and Xnt for t � 0 are �xed

outside the model and are assumed to be zero. The original speci�cation of the dynamic

model in Heckman (1981) does not incorporate lagged social interactions in that yi;s�1 and

xis appear but not Yn;s�1 and Xns (s � t). Depending on the speci�cation of the func-

tion hi t .�/ in terms of lagged observed or latent dependent variables, the Heckman discrete

dynamic model is known to be suf�ciently �exible to accommodate a wide variety of dy-

namic structures such as Markov models, Polya models, renewal processes, latent Markov

models, with rich speci�cations on disturbances. It allows for unobserved heterogeneity

across the n cross-sectional units and serial correlation for the remaining disturbances. The

model with social interactions in .1:1/ is generalized to incorporate additional dynamic ef-

fects due to peers' in�uence. We derive the likelihood function for .1:1/ and construct the

unbiased GHK simulator to implement the SML estimation for the model.

In addition to Ynt , let Y �nt D .y�1t ; � � � ; y
�
nt/
0 be the n-dimensional vector of the la-

tent dependent variables for all the n cross-sectional units. Let X t denote the sequence

of Xnt ; Xn;t�1; � � � : Conditional on exogenous variables XT and � D .�1; � � � ; �n/
0, the

joint density function of .Y �nt ; Ynt/; t D 1; � � � ; T; is the product of conditional density of

.Y �ns; Yns/, s D 1; � � � ; T , over their past histories, i.e.,

f .Y �nT ; YnT ; � � � ; Y
�
n1; Yn1jXT ; �/

D

"
TY
tD2

f .Y �nt ; Ynt j.Y
�
ns; YnsI s D 1; � � � ; t � 1/; X t ; �/

#
f .Y �n1; Yn1jX1; �/:

4



Because vi t are mutually independent for i D 1; � � � ; n, each of the conditional densities

of .Y �nt ; Ynt/ can be further decomposed as

f .Y �nt ; Ynt j.Y
�
ns; YnsI s D 1; � � � ; t � 1/; X t ; �/

D
nY
iD1

f .y�i t ; yi t j.Y
�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i /

D
nY
iD1
Iyi t .y

�
i t/g.y

�
i t j.Y

�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i /

for t D 2; � � � T; and

f .Y �n1; Yn1jX1; �/ D
nY
iD1
Iyi1.y

�
i1/g.y

�
i1jX1; � i /;

where Iyi t .y�i t/ is the dichotomous indicator with Iyi t .y
�
i t/ D 1 if the value y

�
i t determines

the observed value yi t ; Iyi t .y�i t/ D 0, otherwise, and g is the conditional density of y�i t .

Therefore, the joint probability of YnT ; � � � ; Yn1 conditional on XT and � is

P.YnT ; � � � ; Yn1jXT ; �/

D

Z 1

�1
� � �

Z 1

�1
f .Y �nT ; YnT ; � � � ; Y

�
n1; Yn1jXT ; �/dvec

0.Y �nT / � � � dvec
0.Y �n1/

D

Z 1

�1
� � �

Z 1

�1

"
TY
tD2

nY
iD1
Iyi t .y

�
i t/g.y

�
i t j.Y

�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i /

#

�
nY
iD1
Iyi1.y

�
i1/g.y

�
i1jX1; � i /dvec

0.Y �nT / � � � dvec
0.Y �n1/: (1.2)

For .1:1/, g.y�i t j.Y
�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i / D g.y�i t j.y

�
is; YnsI s D 1; � � � ; t �

1/; X t ; � i / as interactions among different units are going through the observed Yns and

Xns but not Y �ns with s < t . Hence we have

P.YnT ; � � � ; Yn1jXT ; �/

D
nY
iD1

n Z 1

�1
� � �

Z 1

�1

"
TY
tD2
Iyi t .y

�
i t/g.y

�
i t j.y

�
is; YnsI s D 1; � � � ; t � 1/; X t ; � i /

#
�Iyi1.y

�
i1/g.y

�
i1jX1; � i /dy

�
iT � � � dy

�
i1

o
:
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Under the distributional assumption that vi t is N .0; 1/,

g.y�i t j.y
�
is; YnsI s D 1; � � � ; t � 1/; X t ; � i / D �.y

�
i t � hi t/;

where hi t D hi t.y�i;t�1; � � � ; y
�
i;�1; Yn;t�1; � � � ; Yn;�1; X t ; � i / for simplicity and � is the

standard normal density function. De�ne the integral limits L i t and Ui t :

L i t D
�
�hi t if yi t D 1;
�1 if yi t D 0;

and Ui t D
�
1 if yi t D 1;
�hi t if yi t D 0:

By transformations of variables, it follows that

P.YnT ; � � � ; Yn1jXT ; �/

D
nY
iD1

(Z Ui1

L i1
� � �

Z Ui;T�1

L i;T�1

�Z UiT

L iT
�.viT /dviT

�
�.vi;T�1/dvi;T�1 � � ��.vi1/dvi1

)

D
nY
iD1

n Z 1

�1
� � �

Z 1

�1
.8.UiT /�8.L iT //

�
T�1Y
sD1

�
8.Ui;T�s/�8.L i;T�s/

�
�[L i;T�s ; Ui;T�s ].vi;T�s/dvi;T�s

o
D

nY
iD1

n Z 1

�1
� � �

Z 1

�1
8..2yiT � 1/hiT /

�
T�1Y
sD1

8..2yi;T�s � 1/hi;T�s/�[L i;T�s ; Ui;T�s ].vi;T�s/dvi;T�s
o
;

where �[L t ;Ut ] is a truncated standard normal density function with support [L t ;Ut ]. The

probability YnT ; � � � ; Yn1 conditional on exogenous variables XT is

P.YnT ; � � � ; Yn1jXT /

D

Z 1

�1
� � �

Z 1

�1
P.YnT ; � � � ; Yn1jXT ; �1; � � � ; �n/�.�1/ � � ��.�n/d�1 � � � d�n

D
nY
iD1

n Z 1

�1
� � �

Z 1

�1
8..2yiT � 1/hiT /

�[
T�1Y
sD1

8..2yi;T�s � 1/hi;T�s/�[L i;T�s ; Ui;T�s ].vi;T�s/dvi;T�s]�.� i /d� i
o
:
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This likelihood suggests that the GHK simulator can be recursively applied to construct

a simulated likelihood. Generate ui t .i D 1; � � � ; nI t D 1; � � � ; T � 1/ independent

uniform [0; 1] random variables. Generate � i .i D 1; � � � ; n/ independent standard normal

variables. With initial conditions given, the random variables vi t .i D 1; � � � ; nI t D

1; � � � ; T � 1/ can be generated from the following steps. For each i , from t D 1 to T � 1:

(1) Compute

vi t D �.2yi t � 1/8�1
�
ui t8..2yi t � 1/hi t/

�
:

(2) Generate the latent dependent variable

y�i t D hi t C vi t :

With m independent simulation runs, the corresponding simulated log likelihood function

is

L D
nX
iD1
ln

(
1
m

mX
jD1

TY
tD1

8..2yi t � 1/h
. j/
i t /

)
; (1.3)

where h. j/i t D hi t.y
�. j/
i;t�1; � � � ; y

�. j/
i0 ; Yn;t�1; � � � ; Yn0; X t ; �

. j/
i /, and the superscript . j/ de-

notes an independent simulation run. Thus, the simulation of the likelihood for the model

in .1:1/, is similar to one of the conventional dynamic panel models in Lee (1997).

Asymptotic properties of the SMLE for cross-sectional or short time series panel data

have been studied in Hajivassiliou and McFadden (1990), Lee (1992; 1995) and Gourier-

oux and Monfort (1993), among others. The SMLE can be asymptotically ef�cient when

m increases at a rate faster than n1=2. However, when m increases at a rate of n1=2, as

shown in Lee (1995), an asymptotic bias exists in the limiting distribution. The asymptotic

bias will dominate the variance when m increases at a rate slower than n1=2: Lee (1995)

has suggested a simple bias-correction procedure to remove the leading bias term due to

7



simulation. The asymptotic ef�ciency of the bias-adjusted estimator requires only that m

goes to in�nity at a rate faster than n1=4:

For experimental economics, subjects are usually divided into several independent groups

(experimental sessions), and games are played in several rounds within each group. Sup-

pose that there are G groups. Within each group, there are n players and the number of

rounds is T . With data from such a design, the simulated likelihood function shall be

L D
GX
gD1

nX
iD1
ln

(
1
m

mX
jD1

TY
tD1

8..2yg;i t � 1/h
. j/
g;i t/

)
; (1.4)

where the subscript .g; i t/ indicates the observation is from individual i of group g at round

t .

The model in .1:1/ can be further generalized to allow social interactions in both ob-

served and latent lagged dependent variables,

y�i t D Nhi t.Y �n;t�1; � � � ; Y
�
n;�1; Yn;t�1; � � � ; Yn;�1; X t ; � i /C vi t ; (1.5)

where Y �nt is the n-dimensional vector of latent dependent variables and X t is the sequence

of strictly exogenous variables Xnt ; Xn;t�1; � � � . As in .1:1/, � i are i.i.d. N .0; � 2/ for all

i and vi t are i.i.d. N .0; 1/ for all i and t: The initial values for Y �nt , Ynt and X t for t � 0

are assumed to be zero. From .1:2/ ; the joint probability for YnT ; � � � ; Yn1 conditional on

exogenous variables XT and � is given by

P.YnT ; � � � ; Yn1jXT ; �/

D

Z 1

�1
� � �

Z 1

�1

"
TY
tD2

nY
iD1
Iyi t .y

�
i t/g.y

�
i t j.Y

�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i /

#

�
nY
iD1
Iyi1.y

�
i1/g.y

�
i1jX1; � i /dvec

0.Y �nT / � � � dvec
0.Y �n1/:

Under the distributional assumption of vi t ,

g.y�i t j.Y
�
ns; YnsI s D 1; � � � ; t � 1/; X t ; � i / D �.y

�
i t � Nhi t/;
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where Nhi t D Nhi t.Y �i;t�1; � � � ; Y
�
i;�1; Yn;t�1; � � � ; Yn;�1; X t ; � i / for simplicity and � is the

standard normal density function. De�ne the integral limits NL i t and NUi t :

NL i t D
�
�Nhi t if yi t D 1;
�1 if yi t D 0;

and NUi t D
�
1 if yi t D 1;
�Nhi t if yi t D 0:

By transformations of variables, it follows that

P.YnT ; � � � ; Yn1jXT ; �/

D

Z 1

�1
� � �

Z 1

�1

"
nY
iD1

8..2yiT � 1/ NhiT /

#

�
T�1Y
sD1

"
nY
iD1

8..2yi;T�s � 1/ Nhi;T�s/�[ NL i;T�s ; NUi;T�s ].vi;T�s/dvi;T�s

#
:

And the probability YnT ; � � � ; Yn1 conditional on exogenous variables XT is P.YnT ; � � � ; Yn1jXT / DR1
�1 � � �

R1
�1 P.YnT ; � � � ; Yn1jXT ; �/

�Qn
iD1 �.� i /d� i

�
.

In this case, with ui t and � i generated as before, the random variables vi t .i D 1; � � � ; nI

t D 1; � � � ; T � 1/ can be generated from the following steps, from t D 1 to T � 1:

(1) Compute for i D 1; � � � ; n

vi t D �.2yi t � 1/8�1
�
ui t8

�
.2yi t � 1/ Nhi t

��
:

(2) Generate the latent dependent variable

y�i t D Nhi t C vi t :

With m independent runs, the corresponding simulated log likelihood function shall be

L D ln
(
1
m

mX
jD1

TY
tD1

nY
iD1

8..2yi t � 1/ Nh
. j/
i t /

)
; (1.6)

where Nh. j/i t D Nhi t.Y
�. j/
n;t�1; � � � ; Y

�. j/
n0 ; Yn;t�1; � � � ; Yn0; X t ; �

. j/
i / for the j th simulation run.

There can be some numerical dif�culties in implementing the SML estimation proce-

dure if T and n are large, as the simulated log likelihood functions .1:3/ and .1:6/ involve
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the product consisting of many terms of small numbers that might be impossible to evaluate

with computers without under�ow errors. The problem is more severe in .1:6/, where the

simulated likelihood involves the product of cumulative probabilities of the entire history

for all members in a group. Lee (2000) has suggested an algorithm that can overcome

the numerical problem by interchanging the summation and product operators behind the

logarithmic transformation. Here we illustrate this algorithm for .1:6/. For simplicity, let

k D .t � 1/n C i , i D 1; � � � ; n for each t with t D 1; � � � ; T; and rewrite .1:6/ as

L D ln
(
1
m

mX
jD1

T�nY
kD1

8..2yk � 1/ Nh
. j/
k /

)
:

Let ak j D 8..2yk � 1/ Nh
. j/
k / and let !k j be weights for k � 1, which can be computed

recursively as

!k j D ak j!k�1; j=
mX
sD1
aks!k�1;s;

starting with !0 j D 1=m for j D 1; � � � ;m: Then following Lee (2000), .1:6/ can be

rewritten as

L D ln
(
T�nY
kD1

mX
jD1
ak j!k j

)
D
T�nX
kD1

ln

(
mX
jD1

8..2yk � 1/ Nh
. j/
k /!k j

)
; (1.7)

where the product of cumulative probabilities behind the logarithmic transformation is re-

placed by the weighted sum of cumulative probabilities.

Social interactions in latent lagged dependent variables are likely to appear if cross-

sectional units are allowed to discuss their past preferences and choices. As we plan to

apply the model to the estimation of data from lab experiments where, as is typically the

case, subjects make independent decisions without communication, we focus on models

that conform to .1:1/ in the rest of this chapter.
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1.3 Some Monte Carlo Results on SMLEs

1.3.1 A Markov Model with Lagged Social Interactions

Suppose we have observations of G independent groups, with n subjects in each group.

The Markov dynamic choice model for the Monte Carlo study in this section is

y�i t D �xi;t�1 C �1yi;t�1 C �2zi;t�1 C �� i C "i t ; (1.8)

where zi;t�1 D
Pn

jD1; j 6Di y j;t�1= .n � 1/, "i t D �"i;t�1 C vi t , and � i and vi t are i.i.d.

N .0; 1/. The group subscript g has been suppressed for simplicity. By replacing "i t with

�.y�i;t�1� .�xi;t�2C �1yi;t�2C �2zi;t�2C �� i //C vi t , i.e., by a quasi-difference transfor-

mation for .1:8/, it is easy to see that .1:8/ conforms to the general model .1:1/.

The xi t are generated as xi t D .1=
p
2/ri t C

p
6si where ri t are independent truncated

standard normal variables on [�2; 2] and si is a uniform variable on [�0:5; 0:5], so that

the variance of xi t is about 1 and its correlation coef�cient over time is about 0:5. This

process of generating exogenous variables is to allow the exogenous variables to correlate

over time. It is used for all the models in this chapter. The initial values of all variables

for t � 0 are given as 0. Sample data are generated with � D 1, �1 D 0:2, �2 D 0:4,

� 2 D 0:5, and � D 0:4. The serial correlation of the total disturbance �� i C �i t of two

adjacent periods has a correlation coef�cient about 0:6 and the fraction of variance due to

the individual effect is about 0:3. The sample size is 200, with G D 50 and n D 4. We have

experimented with small, moderate and large numbers of random draws, namely m D 15;

m D 50 and m D 100, for the construction of the GHK simulator. The number of periods

for the panel data varies from 8 to 30. For each case, the number of replications is 200.

For each replication, in addition to random disturbances in the model, the set of exogenous

variables is also redrawn. The maximization algorithm used is a conjugate gradient method.
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For all cases and replications reported here, the algorithm converges without running into

numerical problems. The initial estimate of � is set to 1, and the initial estimates of the

other parameters are set to 0. We have also tried some other starting values, with which the

algorithm converges to similar solutions.

Table 1.7 reports the empirical means (Means), standard deviations (SDs) and root

mean square errors (RMSEs) for both the bias unadjusted SMLE and the bias-adjusted

SMLE. For all panels with periods from 8 to 30, the bias unadjusted SMLEs of � are bi-

ased downward. There are upward biases in the SMLEs of �1 and downward biases in the

SMLEs of �2, � and �, so the dynamic effect can be over stated, but the lagged peer group

effect and the serial correlation of disturbances can be underestimated. The magnitude of

bias increases with panel length, as the dimension of integration and the total number of

choice alternatives are proportional to the number of periods. On the other hand, SDs of all

the SMLEs decrease as panels become longer, since longer panel data provide more sam-

ple information about the stochastic process. If periods are not too long, RMSEs decrease.

Biases of estimates are all substantially reduced when the number of simulated random

variables m increases from 15 to 50. By increasing m to 100, biases become rather small

and RMSEs can further be reduced, but the time cost is double. The issue of selecting m

in practice has been addressed by Lee (1997). For small m, bias correction is valuable.

Although SDs of bias-adjusted estimates are slightly larger, RMSEs of bias-adjusted es-

timates are smaller in general. The additional CPU cost for bias correction is negligible.

However, as biases of estimates, especially for longer panels, are relatively large to begin

with in this model, larger m is desirable for better improvement.1

1Results for the bias-adjusted estimates are omitted in subsequent tables to save space. The bias correction
procedure for all the models in this article reduces bias and RMSE. The improvement is comparable with the
gains from the bias correction procedure reported in Table 1.7.
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Table 1.8 reports Means, SDs and RMSEs for alternative group sizes. For a given

sample size G � n D 200, biases, SDs and RMSEs of all the SMLEs increase when the

group size n increases from 4 to 8 (by comparing results in Tables 1.7 and 1.8). As the

group size becomes even larger, biases, SDs and RMSEs of the SMLEs of �1, �2 and �

further increase, while the estimates of � and � are not much affected. As such, other

things equal, more sessions with fewer subjects are preferred to fewer sessions with more

subjects in each session.

To illustrate effects of ignoring potential lagged social interactions on SMLEs, we re-

port the restricted SMLEs under �2 D 0 in Table 1.9. When positive social interactions are

ignored, the SMLEs of �, � and � are biased downward, and the SMLEs of �1 are biased

upward. The estimated values of �1 are more than double in magnitude and the estimated

values of � are reduced almost by half, so true state dependence can be over stated but

spurious state dependence can be underestimated.

Misspeci�ed disturbances, in general, would cause parameter estimates to be incon-

sistent. We investigate effects of misspeci�cation in disturbances by the following Monte

Carlo experiments. First, we estimate the random component model with �� i C vi t , where

vi t are serially uncorrelated, with the data samples generated by the model speci�ed as in

.1:8/. For random component models, multivariate probability functions involve only sin-

gle integrals, which can be effectively implemented by the Gaussian Quadrature method as

suggested by Butler and Mof�tt (1982). However, for the sake of easy comparison, here we

report the SMLE of the random component model. The simulated log likelihood function

for the random component model is

G�nX
iD1

ln

(
1
m

mX
jD1

TY
tD1

8
h
.2yi t � 1/

�
�xi;t�1 C �1yi;t�1 C �2zi;t�1 C ��

. j/
i

�i)
:
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The SMLEs are reported in the upper block of Table 1.10. There are substantial downward

biases in the SMLEs of � and �2 and upward biases in the SMLEs of �1. Biases are more

severe for longer panels. Even with m D 100, the estimated values of �1 are three times

larger than the true value; and the estimated magnitudes of �2 are reduced by 2/3. Hence,

true state dependence tends to be overestimated and lagged social interactions tend to be

underestimated when serial correlation in �i t is ignored. Biases in the SMLEs of � are

not uniform. The lower block of Table 1.10 reports the restricted SMLEs under � D 0,

i.e., random component � were ignored. With this error speci�cation, serially correlated

disturbances "i t D �"i;t�1Cvi t capture all the spurious state dependence. Ignoring random

individual component biases the SMLEs of �, �1 downward and �2, � upward. Biases in

�1 and �2 are more severe for longer panels. The magnitudes of upward bias of �2 are not

really large. The biases of � are upward by 50%. But the biases of �1 towards zero are

relatively much more severe.

1.3.2 A Polya Model with Lagged Social Interactions

In the Polya model, the entire history of the dynamic process is relevant to current

decision making. The Polya model with a depreciation factor � is speci�ed as follows2:

y�i t D �xi;t�1 C �1
tX
sD1

�s�1yi;t�s C
�2Pt

sD1 �
s�1

tX
sD1

�s�1zi;t�s C �� i C "i t ; (1.9)

where zi;t�s D
Pn

jD1; j 6Di y j;t�s= .n � 1/ and "i t D �"i;t�1 C vi t with � i and vi t i.i.d.

N .0; 1/. The group subscript g has been suppressed for simplicity. The initial values

of all variables for t � 0 are given as 0. Substitution of "i t D �.y�i;t�1 � .�xi;t�2 C

�1
Pt�1
sD1 �

s�1yi;t�s�1C�2
Pt�1
sD1 �

s�1zi;t�s�1=
Pt�1
sD1 �

s�1C�� i //C vi t in .1:9/ conforms

2Here we specify the lagged social interactions term as the (weighted) average for observed laggd choices
of peers over the entire history, so that it is not affected by the number of total observations.
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it to the general model .1:1/ : For comparison purpose, the discount factor � is assumed to

be a known constant and is set at 0:7: Sample data are generated with � D 1, �1 D 0:2,

�2 D 0:4, � 2 D 0:5, and � D 0:4:

The SMLEs are reported in Table 1.11. There are some downward biases in the SMLEs

of �, �2, � and � and upward bias in �1. Compared to estimates of the Markov model

in Table 1.7, �1 and � in the Polya model can be estimated more accurately. They not

only have small biases but also have much smaller SDs, due to an apparently stronger state

dependence property of the Polya model. On the other hand, since we speci�ed lagged

social interactions as a weighted average of the past history instead of a weighted sum,

variation in this term is reduced. So with such speci�cation, �2 in the Polya model is much

more dif�cult to estimate than in the Markov model. For small m and long panels, biases

in the SMLEs of �2 is quite severe. By increasing m, biases in the estimates of �2 can be

substantially reduced. For T D 8 or 15, the biases are smaller with m D 50 or 100. By

comparison with the Markov model, SDs and RMSEs of the estimates of �2 here are two

times larger.

Monte Carlo experiments are also performed to investigate effects of misspeci�cation

in dynamic structures on SMLEs. Table 1.12 reports the SMLE of the Markov model

with lagged social interactions when data samples are generated by the Polya model .1:9/.

The SMLEs of �1 and � are biased upward. And the SMLEs of �2 and � are biased

downward. Hence, when the Polya dynamic structures are misspeci�ed to be Markov, the

true state dependence and the serial correlation due to unobserved heterogeneity tends to be

overestimated but the lagged social interactions and the serial correlation of the remaining

disturbance tend to be underestimated. The SMLEs of � are not affected very much by

dynamic misspeci�cation and their biases are not large.
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1.4 An Application: Estimating Peer Group Effects in Experiments
on Signaling Games

There is a large volume of literature on measuring peer group effects in �eld settings,

while little attention has been paid to evaluating the in�uence of peer group effects on sub-

jects' performance in experiments. Measuring the peer group in�uence in experiments is

important as it affects our understanding of the evolution of subjects' behavior over time.

Ignoring peer group effects potentially confounds any �sophisticated� learning process (e.g.

adaptive learning) where subjects update beliefs, with the less �sophisticated� social learn-

ing where subjects simply replicate the strategy generating a better outcome. Furthermore,

experimental results across diverse subject pools are much less likely to be consistent in the

presence of strong peer group effects, as subjects' performance depends on the overall per-

formance of the experimental session they were in. This section adopts dynamic discrete

choice models with lagged social interactions to investigate the presence and magnitude of

peer group effects in experiments on signaling games.

Following Manski (1993), similar behavior of individuals belonging to the same refer-

ence group may be due to endogenous effects, wherein �the propensity of an individual to

behave in some way varies with the behavior of the group�; exogenous effects, wherein �the

propensity of an individual to behave in some way varies with the exogenous characteris-

tics of the group�; and correlated effects, wherein �individuals in the same group tend to

behave similarly because they have similar individual characteristics or face similar insti-

tutional environments�. In experimental settings, exogenous effects and correlated effects

can be controlled through recruiting procedures and careful experimental designs, while

endogenous effects are relatively hard to control by experimenters. We focus on measuring

endogenous peer group effects in experiments in this section.
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The plan of this section is as follows. Subsection 1.4.1 presents the theoretical pre-

dictions of the model of entry limit pricing. Subsection 1.4.2 outlines the experimental

procedures and provides a general description of the data. Subsection 1.4.3 develops the

empirical econometric models and interprets the estimation results.

1.4.1 Theoretical Considerations

Milgrom and Roberts (1982) propose a model of entry limit pricing as follows. There

are two �rms, an established monopolist M and a potential entrant E , in a two-stage market

producing a homogeneous good. Nature decides M's cost of production along with the

distribution of these costs. M's cost is his/her private information throughout the game,

with the prior distribution of the cost being common knowledge. In the �rst stage, M

chooses an output (or price) level. In the second stage, E chooses to enter or stay out in

response to the observed output (or price) level. The predetermined opportunity cost to E

for entering the market is common knowledge. If entry occurs, Cournot duopoly pro�ts are

realized by both M and E . If there is no entry, M receives the single period monopoly pro�t.

Entry is pro�table against M with high cost but not against M with low cost. M may have

an incentive to limit pricing, which involves producing greater output (or charging lower

price) in the �rst stage than the single period pro�t maximizing level in order to make entry

appear unattractive.

In this game, the information sets are de�ned by the realized costs of M and E (cM

and cE ) and a choice of Q (quantity) by M . A (pure) strategy for M is a map s from

its possible cost levels into the possible choices of Q and a (pure) strategy for E is a

map t from R2 into f0; 1g giving its decision for each possible pair .cE ; Q/, where 1 is

interpreted as �enter� and 0 as �stay out�. An equilibrium consists of a pair of strategies
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.s�; t�/ and a pair of conjectures
�
Ns; Nt
�
such that (i) M's pricing policy s� is a best response

to its conjectures Nt about E's entry rule, (ii) the strategy t� is a best response for E to its

conjecture Ns, and (iii) the actual and conjectured strategies coincide. With two cost levels

(types) for M , namely, cM < cM , if s�.cM/ D s�.cM/, an equilibrium is called pooling;

and if s�.cM/ 6D s�.cM/ the equilibrium is separating. Partial pooling is a mixed-strategy

equilibrium that s�.cM/ D s�.cM/ with a certain probability. In a pooling equilibrium,

E can infer nothing from observing Q and so enters if the expected pro�t is positive. In

a pure-strategy separating equilibrium, the observation of Q allows the value of cM to be

inferred exactly. Depending on the cost structure, its distribution, and the market demand

function, pooling equilibria and/or separating equilibria can occur (Milgrom and Roberts,

1982, pp. 446-448).

Milgrom and Roberts' model of entry limit pricing is investigated experimentally by

Cooper, Garvin and Kagel (1997a; 1997b) and Cooper and Kagel (2003a; 2003b; 2004).

In the experiments, the game is further simpli�ed by adding the payoffs of the two stages

together and providing Ms with a single payoff table. Payoff tables 1.1-1.3 are provided

in the �quantity game� with M choosing over output levels (1-7) in payoff table 1.1, and

payoff tables 1.4 and 1.5 are provided in the �price game� with M choosing over price

levels in payoff table 1.4.

In the �quantity game�, M is either a high-cost type (MH ) or a low-cost type (ML ) with

equal probability. E's cost is common knowledge. In a given treatment of the experiment,

Es are either all high cost types (EH s; payoff table 1.2) or all low cost types (ELs; payoff

table 1.3). With EH s there exist pure-strategy pooling equilibria at output levels 1-5. There

also exist two pure-strategy separating equilibria, in which MH s always choose 2 and are

always entered on, MLs always choose 6 or 7 and are never entered on. Among them, only
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pooling at 4 or 5, and separating with MLs choosing 6 survive Cho-Kreps' (1987) intuitive

criteria for equilibrium re�nement. With ELs no pure-strategy pooling equilibrium exists,

while the two pure-strategy separating equilibria still exist. There also exist a number of

mixed-strategy equilibria. One that is of particular relevance is the partial pooling equilib-

rium in which MLs always select 5 while MH s mix between 2 (with probability 0.8) and 5

(with probability 0.2), and Es always enter on output levels other than 5, enter on 5 with

probability 0.11. In simulations using a stochastic �ctitious play learning model, this partial

pooling equilibrium emerges with high frequency in the presence of ELs (Cooper, Garvin

and Kagel, 1997b). Further, in practice MLs choose 5 with relatively high frequency as

a separating equilibrium emerges (especially early on) and there is very little entry in re-

sponse to it (Cooper, Garvin and Kagel, 1997b).

The payoffs in the �price game� are a linear transformation of payoff tables 1.1 and 1.3

in the �quantity game�, (with table presentation changed as well). Hence the price game is

theoretically identical to the quantity game with analogue equilibrium predictions.

1.4.2 Experimental Procedures and Data

Detailed description of the experimental procedures can be found in Cooper, Garvin

and Kagel (1997b). The following lists some elements that are especially noteworthy, as

they will be taken into account when empirically modeling the game.

1. Each experimental session employed between 12 and 16 subjects who were randomly

assigned to computer terminals. Sessions typically lasted 36 periods, with the num-

ber of periods announced in advance. Subjects switched roles after every six plays,

with Ms becoming Es and vice versa. Ms' types are generated each play randomly.
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2. Following each play of the game the outcomes from all pairings (Ms' choice, Es'

choice, and Ms' type) were revealed to all subjects. This made learning across indi-

viduals feasible, and provided the basis for potential peer group effects.

3. Subjects were randomly paired with each other for each play of the game, and subject

identi�cation numbers were suppressed when the game results were revealed. Hence

there was no opportunity for reputation effects to develop. Learning, to the extent that

it occurred, had to be based on own experience and observations of peer's choices

and outcomes.

Experimental treatments are summarized in Table 1.6. The �Experienced Subjects�

treatment recruited subjects who had participated in earlier experimental sessions with ex-

actly the same payoff tables. The treatment �Meaningful Context� uses natural language

for the instructions, and was introduced to explore the effects of context on subjects' rea-

soning process in signaling games (Cooper and Kagel, 2003a). The treatment �Crossovers

from the EH to EL game� employed subjects with experience in the quantity game with

payoff tables 1.1 and 1.2 to play the quantity game with payoff tables 1.1 and 1.3, and

was devoted to investigating subjects' ability to generalize learning in one game to related

games (Cooper and Kagel, 2003b; 2004).

1.4.3 Empirical Models and Estimation Results

According to payoff table 1.1, with full information, output levels 2 and 4 are opti-

mal for MH s and MLs respectively. Pooling equilibria at output levels 3-5 and (partial)

separating equilibria with MLs selecting output levels 5-7 involve strategic behavior - limit

pricing - as Ms produce above (or price below) full-information levels. A �gradual, history-

dependent adjustment process�, starting with Ms �at their myopia maxima, followed by an
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attempt to pool, and then (if no pooling equilibrium exists) separation�, has been observed

by Cooper, Garvin and Kagel (1997b). Here we adopt our dynamic discrete choice models

with lagged social interactions to characterize the evolution of subjects' behavior in the

experiment.

We consider the estimation with two different samples: One from the experimental ses-

sions with EH s (using payoff tables 1.1 and 1.2) and the other from the sessions with ELs

(using payoff tables 1.1 and 1.3). With EH s, play reliably converges to a pure strategy

pooling equilibrium in which MH s learn to imitate MLs. As such we model the learning

process of MH s in this situation, treating choices of output levels 3-5 by MH s as limit pric-

ing3. For games with ELs, pure-strategy pooling equilibria no longer exist, and we focus

on the strategic play by MLs, with output levels 5-7 by MLs considered as limit pricing4.

As the adjustment (learning) process for the two samples are modeled analogously, we only

detail the model speci�cations for the estimation of games with EH s.

A Markov Model with Lagged Social Interactions

In a generic experimental session with 2n EH s, MH s have incentives to limit price.

We assume that the unobservable incentives for MH s to limit price can be characterized

by the Markov dynamic discrete choice model with lagged social interactions. To justify

the Markov model as an approximation for the learning process, we assume that, besides

individual characteristics, a subject's current decision only depends on his/her last decision

and the feedback information from the previous round of the game. We will relax this

3Note that high-level outputs 6; 7 are strictly dominated by other outputs for MH s, according to payoff
table 1.1. Among the 4576 observations in the actual experimental sample with EH s, only 7 choices of output
6 or 7 made by MH s are observed.

4We have also tried to estimate with alternative criterion for limit pricing. For example, we treated output
levels 4; 5 by MH s in games with EH s, and output levels 6; 7 by MLs in games with ELs as limit pricing.
The estimation results are similar to those reported here.
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restrictive assumption and consider the estimation of a more general dynamic process in

the next subsection.

By experimental design, a subject is randomly assigned turns as MH in different plays

of the game within an experimental session. At the same time, a subject can observe peers'

output choices and entrants' responses from all previous rounds of the game. As such, we

distinguish between a decision period in which a subject plays as MH with the opportunity

to limit price and a (consecutive) calendar period. For a subject i , let Ti be the total number

of decision periods in which he/she has played as MH . Corresponding to each decision

period � (� D 1; � � � ; Ti ), there is a calender period. Let ti .� / be the calendar period when

the subject i plays as MH . The Markov dynamic discrete choice model with lagged social

interactions for the subject i can be speci�ed as

y�i ti .� / D � C xi;ti .� /�1� C �1yi;ti .��1/ C �2winYn;ti .� /�1 C 
 ln � C �� i C "i ti .� /; (1.10)

for � D 1; � � � ; Ti . We assume that "i ti .� / D �"i;ti .��1/ C vi ti .� /, and � i and vi ti .� / are

i.i.d.N .0; 1/. As the dynamic process starts at the �rst sampling period in the experiment,

the initial conditions on all variables for t � 0 are zero.

If the latent dependent variable y�i ti .� / > 0, the subject i limits price in his/her � th turn as

MH , and the corresponding observed dependent variable yi ti .� / is 1; yi ti .� / is 0 otherwise.

Explanatory variables are on the right hand side of (1.10). � is a constant. xi;ti .� /�1 is

the perceived entry rate differential between �myopia� output choices 1-2 and strategic

output choices 3-5.5 Speci�cally, let dLis .I N / (respectively, d
O
is .I N /) be a dummy variable

indicating that the subject i chooses output level 3, 4 or 5 (respectively, output level 1 or

2) and is entered on in calendar period s. Let dL�is .I N / (respectively, d
O
�is .I N /) be the

5The entry rates are calculated conditional on the output level selected, not on the type of M which selects
the output. As Es can not observe Ms' type when making decisions of entry, the entry rate speci�ed here can
be used to approximate M's beliefs on Es' responses.
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number of times in calendar period s that Ms other than i choose output level 3, 4 or

5 (respectively, output level 1 or 2) and observe the response I N . De�ne dLis .OUT /,

dOis .OUT /, d
L
�is .OUT /, and d

O
�is .OUT / in an analogous manner, where OUT involves

potential Es staying out. Denote the weight a player put on entries on other Ms' choices

relative to entries on his/her own in calculating entry rate differential by !. The perceived

entry rate differential is given by

xi;ti .� /�1 D
dOi;ti .� /�1 .I N /C !d

O
�i;ti .� /�1 .I N /

dOi;ti .� /�1 C !d
O
�i;ti .� /�1

�
dLi;ti .� /�1 .I N /C !d

L
�i;ti .� /�1 .I N /

dLi;ti .� /�1 C !d
L
�i;ti .� /�1

;

where d ji;ti .� /�1 D d ji;ti .� /�1 .I N / C d
j
i;ti .� /�1 .OUT / for j D L ; O .6 This term serves

as a proxy for the unobservable beliefs of Ms regarding potential entrants' responses to

different output choices. yi;ti .��1/, the time-lagged observed dependent variable, is intro-

duced to measure the true state dependence in the dynamic process. Yn;ti .� /�1 is an n-

dimensional column vector with the i th element being yi;ti .� /�1 (i D 1; � � � ; n) and win

is a 1 � n normalized weighting vector. The coef�cient on winYn;ti .� /�1 captures the

peer group effects in an experimental session, namely the in�uence of the other MH s'

strategic play of limit pricing in the preceding calender period on the subject i's cur-

rent choice. Given the anonymous nature of experimental design, we assume that the

weighting matrix Wn , where win is its i th row, is simply
��
1n � 10n � In

�
=.n � 1/

�
, so that

winYn;ti .� /�1 D
Pn

jD1; j 6Di y j;ti .� /�1= .n � 1/. The coef�cient on ln � , where � is the num-

ber of decision periods that the subject i has played as MH (the current decision period

included), collects all other experience effects within an experimental session that are not

captured by the other explanatory variables. An random individual component � i is in-

troduced to control unobserved heterogeneity across players. The remaining disturbances

6We assume that .d ji;ti .� /�1 .I N / C !d
j
�i;ti .� /�1 .I N //=.d

j
i;ti .� /�1 C !d

j
�i;ti .� /�1/ D 0:5, in the case that

d ji;ti .� /�1 C !d
j
�i;ti .� /�1 D 0 ( j D L ; O).

23



are assumed to follow an AR(1) process, as we �nd in the Monte Carlo experiments that

�exible error speci�cations are favorable to identify potential peer group effects.

We model the adjustment process of MLs' choices in experimental sessions with ELs

in an analogous manner, with xi;ti .� /�1 being the perceived entry rate differential between

output levels 1-4 and 5-7.

By a quasi-difference transformation, i.e. by substituting in (1.10)

"i ti .� / D �.y�i ti .��1/ � .� C xi;ti .��1/�1� C �1yi;ti .��2/ C �2winYn;ti .��1/�1

C
 ln.� � 1/C �� i //C vi ti .� /;

it is easy to see that the empirical Markov model conforms to the general dynamic model

(1.1). As we have shown, for the subject i , the likelihood function involves .Ti � 1/-

dimension integrals that are analytically intractable and numerically hard to evaluate. We

circumvent this computational dif�culty in implementing maximum likelihood estimation

by the simulation method based on the unbiased GHK simulator. Table 1.13 reports the

SMLEs for the Markov model based on a simulator generated from 100 random draws

using data from the experimental sessions with EH s and ELs respectively.7

The positive and statistically signi�cant SMLEs of �1 in all cases show that a subject's

current choice depends heavily on his/her choice in the previous decision period. That

is, one round of strategic play substantially increases the likelihood of strategic play in

the future decision periods. This indicates that subjects do not play strategically just by

chance. Rather, once they began to play strategically, they are very likely to continue to

do so. This is a clear evidence of learning. Interaction terms (with the dummy variable

N X representing sessions with inexperienced subjects) are introduced to account for the

7We have tried to add more interaction terms, or remove some regressors or interaction terms with in-
signi�cant coef�cients. The estimation results are trivially affected.
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differences between experienced and inexperienced subjects in learning.8 The negative and

signi�cant coef�cient estimate for the interaction term of lagged choice and N X in games

with ELs indicates that inexperienced subjects were much less con�dent of their choice of

strategic play than their experienced selves in this more challenging game.

Learning can come about in one of two ways: social learning in which case subjects

simply replicate the peers' strategies and/or (individual) adaptive learning in which case

subjects update beliefs according to the opponents' responses. Positive and signi�cant

estimate of peer group effects in the dynamic model is evidence in favor of social learning,

while positive and signi�cant coef�cient estimate for entry rate differential is considered as

evidence in favor of adaptive learning that is independent of peers' choices.

In games with ELs, the SMLEs of �2 are positive and statistically signi�cant in Table

1.13, indicating the existence of endogenous peer group effects in this case. For the spec-

i�cation without interaction terms, the average marginal impact of the peer group effect

on the probability of limit pricing given exogenous variables and lagged choices is 0:054.9

In contrast, peer group effects in games with EH s are not statistically signi�cant in the

Markov model.
8The minus two times log likelihood ratios for testing jointly the signi�cance of interactions terms in

the Markov model are, respectively, 6.56 for games with EH s, and 13.2 for games with ELs. The latter is
signi�cant at the 5 percent level with an asymptotic �2 .5/ distribution.

9For the general model .1:1/, E.yi t j.y�is; Yns; Xns; s D 1; � � � ; t � 1/; Xnt ; � i / D 8.hi t /. The aver-
age marginal effect over time and individual of, say Xnt (which is assumed continuous), on the transition
probability P.yi t D 1j.Yns; Xns; s D 1; � � � ; t � 1/; Xnt /, is given by

1
nT

Xn
iD1

XT
tD1

Z
� � �

Z
� .hi t / .@hi t=@Xnt /

� f
�
y�i1; � � � ; y

�
i;t�1; � i jYns; Xns; s D 1; � � � ; t � 1

�
dy�i1 � � � dy

�
i;t�1d� i

The multiple integrals here can be approximated by simulations. We simulate h. j/i t following the same proce-
dure as in .1:3/. Withm independent simulation runs, the corresponding (sample average) simulated marginal
effects is

Pm
jD1

Pn
iD1

PT
tD1 �.h

. j/
i t /.@hi t=@Xnt /=mnT . Results reported in this paper are based on a simula-

tor generated from 1000 random draws.
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In games with ELs, the coef�cient estimates for entry rate differential are positive, sta-

tistically signi�cant and robust to alternative speci�cations. For the speci�cation without

interaction terms, the average marginal effect of entry rate differential on the probability

of limit pricing is 0:032. According to the adaptive learning model, when subjects update

beliefs regarding entrants' responses, they should not distinguish between entries on them-

selves and entries on their peers given the anonymous nature of the experiment. However,

the estimated ! is signi�cantly less than 1, indicating ML places primary weight on entries

on himself/herself, with very limited weight placed on entries on other Ms. Given that �2

is positive and statistically signi�cant, we think that subjects only pay attention to peers'

past choices, but not the corresponding outcomes. As �2 captures social learning that repli-

cates peers' strategies, while ! captures adaptive learning that updates beliefs based on

peers' experience, this result is quite reasonable given the sophisticated nature of adaptive

learning compared to social learning.10 On the other hand, the coef�cient estimates for

entry rate differential are not statistically signi�cant in experiments with EH s. As will be

reported in the next subsection, in games with EH s, peer group effects are identi�able in

the Polya model (our preferred speci�cation), but the coef�cient on entry rate differential

continues to be statistically insigni�cant.

The proportion of MH s attempting to pool by choosing output levels 3 and 4 in the

previous round is introduced as an additional explanatory variable in games with ELs be-

cause an increase in this proportion makes separation at output levels 5-7 more attractive

for MLs. Although positive in sign, its coef�cient fails to achieve statistical signi�cance in

either Markov speci�cations.

10We also consider alternative speci�cations where own lagged choices and peers' lagged choices are
interacted with entrants' responses. This is discussed brie�y in the next section where we report on the polya
model speci�cation, our preferred speci�cation.
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The positive and signi�cant estimates of the coef�cient on ln � pick up other experience

effects that fail to be captured in theMarkov model. In experiments with EH s, the results on

its interaction effect with N X indicate that this positive impact is con�ned to experimental

sessions employing inexperienced subjects only. It motivates us to develop a more general

empirical model to characterize the remaining experience effect in the next subsection.

The dummies for experienced players are large, positive and statistically signi�cant

in games with ELs and EH s indicating that in both cases experienced subjects start out

with much higher levels of strategic play than inexperienced subjects. In games with ELs,

dummies for experiments with crossovers are positive and statistically signi�cant, which is

consistent with the �ndings in Cooper and Kagel (2004) that there exists positive transfer

of learning across related games. The negative and signi�cant estimates for the constants

(�) indicate the slow emergence of strategic play in all cases. The larger absolute value for

� in games with ELs suggests that strategic play is much slower to emerge in this case.

Though the overall correlation in the disturbances captured by �� i C "i ti .� / is posi-

tive, the negative sign of � suggests the presence of some �uctuations not captured by the

dynamic structure. Hence we generalize the Markov model to a more general dynamic

process in the next subsection.

A Polya Model with Lagged Social Interactions

As subjects have access to all previous outcomes in an experimental session, the entire

history of past plays should be relevant to the current decision making. In this subsec-

tion, we model the in�uence of all past plays on a subject's current decision by a Polya

process with lagged social interactions. Similarly to the Markov model, we assume that the
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unobservable incentives to limit price can be characterized by

y�i ti .� / D � C Nxi;ti .� /�1� C �1
�X
sD1

�s�11 yi;ti .��s/ C �2
ti .� /X
sD1

�s�12 winYn;ti .� /�sPti .� /
sD1 �

s�1
2

C
 ln � C �� i C "i ti .� /; (1.11)

and

"i ti .� / D �"i;ti .��1/ C vi ti .� /;

where � i ; vi ti .� / are i.i.d.N .0; 1/. The initial conditions on all variables for t � 0 are

set to be zero, as we observe the data generating process from the very beginning in the

experiment. Most variables in (1.11) are de�ned as in the Markov model (1.10), while

there are some changes in the speci�cation of the entry rate differential as follows. Let

c ji;ti .� /�1 .R/ D
Pti .� /�1
sD1 d jis .R/ and c

j
�i;ti .� /�1 .R/ D

Pti .� /�1
sD1 d j�is .R/ for j D L ; O and

R D I N ; OUT , with d jis .R/ given as before. Let the weight a player puts on the expe-

rience of other Ms relative to his/her own in calculating entry rate differential be !. The

perceived cumulative entry rate differential between �myopia� output choices and strategic

output choices is given by

Nxi;ti .� /�1 D
cOi;ti .� /�1 .I N /C !c

O
�i;ti .� /�1 .I N /

cOi;ti .� /�1 C !c
O
�i;ti .� /�1

�
cLi;ti .� /�1 .I N /C !c

L
�i;ti .� /�1 .I N /

cLi;ti .� /�1 C !c
L
�i;ti .� /�1

;

where c ji;ti .� /�1 D c
j
i;ti .� /�1 .I N /C c

j
i;ti .� /�1 .OUT / for j D L ; O . Analogous to xi;ti .� /�1

in the Markov model (1.10), Nxi;ti .� /�1 here represents the payoff incentive for M to limit

price. The depreciation factors �1 and �2 measure the in�uence of past plays on the current

choice. The coef�cient on the weighted average
Pti .� /
sD1 �

s�1
2 winYn;ti .� /�s=

Pti .� /
sD1 �

s�1
2 cap-

tures the cumulative peer group effects on the subject i's current decision. As in the Markov

model (1.10), we specify the row-normalized weighting matrix Wn , with its i th row being

win , as
��
1n � 10n � In

�
=.n � 1/

�
. Thus, in the Polya model, a subject's current decision is
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assumed to be in�uenced by the (weighted) average of the peers' observed choices over the

entire history. Based on the GHK simulator generated with 100 random draws, the SMLEs

of the Polya model using data from the experimental sessions with EH s and with ELs are

reported in Table 1.14 and Table 1.15 respectively.

In games with EH s and ELs, the positive and signi�cant estimates of �1 on own lagged

choices imply that previous strategic plays substantially increase the likelihood of current

strategic play for any given M .

The coef�cient on the interaction term between lagged choices and N X (dummy for

sessions with inexperience subjects) is not statistically signi�cant in games with EH s but is

negative and statistically signi�cant in games with ELs.11 This is similar to what we found

in the estimation of the Markov model. In games with ELs, inexperienced subjects are less

con�dent in their choices of strategic plays than their more experienced counterparts, hence

are more likely to revert back to non-strategic play.

In games with EH s, the cumulative peer group effects captured by the estimated �2 are

positive and statistically signi�cant for inexperienced subjects. In contrast, the coef�cient

estimate of the cumulative entry rate differential is not, and the statistical insigni�cance of

� makes the estimate of ! extremely imprecise.12

In games with ELs, cumulative peer group effects are positive and statistically signif-

icant overall, with even stronger peer group effects for inexperienced subjects (indicated

by the positive coef�cient estimate for the interaction term between peer group effects and

N X , with t-ratio 1.484). Thus, inexperienced subjects are in�uenced more by the peer

11The interaction terms in the Polya model are jointly signi�cant at the 5 percent level with the minus two
times log likelihood ratios being 11.76 for the games with EH s, and signi�cant at the 1 percent level with the
minus two times log likelihood ratios being 24.4 for games with ELs.
12Note that ! would not be identi�able if the coef�cient of xi t were zero. The value of this estimate may

re�ect the insigni�cance of the coef�cient estimate of xt�1 in this case.
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group than experienced subjects in games with ELs. But unlike games with EH s, experi-

enced subjects continue to be in�uenced by their peers, due to the fact that it takes longer

for a separating equilibrium to emerge than a pooling equilibrium in the experiment. The

coef�cient on cumulative entry rate differential is statistically signi�cant in games with

ELs, but less so for inexperienced than experienced subjects. And the marginal effect of

entry rate differential is smaller than that of peer group effects.13 Furthermore, similar

to what we found in the Markov model, subjects place much less weight on entries on

other Ms than entries on themselves in calculating entry rate differential as indicated by

the estimated !.

We believe that the learning results reported on above come about for three reasons:

(1) Adaptive learning is more demanding than social learning, as it requires that subjects

form expectations regarding opponents' responses based on past outcomes as compared to

social learning where subjects simply imitate peers' strategies. As such, social learning

is likely to be more prominent in the early stages of the learning process. (2) Because

Es' responses are less stable in inexperienced subject sessions (especially with respect to

output choice 5, 6 or 7 in games with ELs) than experienced subject sessions, the entry rate

differential serves as a poor proxy for M's beliefs in those sessions. Hence the coef�cient

estimate of entry rate differential is less signi�cant in sessions with inexperienced subjects.

(3) Strategic play of MLs in games with ELs requires innovation, whereas strategic play

by MH s in games with EH s simply requires imitating MLs choices. As such there must be

some element of adaptive learning in games with ELs, while this is likely to be superseded

13For the speci�cation without interaction terms, in games with EH s, the average marginal cumulative peer
group effect on the probability of limit pricing conditional on the exogenous variables and lagged choices is
0.058, and the average marginal effect of cumulative entry rate differential is 0.009. In games with ELs, the
average marginal cumulative peer group effect is 0.113, and the average marginal effect of the cumulative
entry rate differential is 0.085.
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by social learning from MLs' choices (and responses to same) in games with EH s where

such innovation is not required.

The SMLEs for both �1 and �2 are positive and statistically signi�cant in games with

EH s and ELs, indicating that a subject's current decision making is in�uenced by all past

plays of the game. Note, �1 and �2 are not directly comparable, as the depreciation factor �1

for own lagged choices is de�ned on the decision period whereas the depreciation factor �2

for peer group effects is de�ned on the (consecutive) calendar period. On average a subject

has one decision period (with a chance to limit price) every 4 calendar periods, because

a subject plays as M only half time, and the type of M is randomly decided with equal

probability. Take the games with ELs for instance, for the speci�cation with no interaction

terms, a generic ML discounts peers' lagged choices �1=�42 � 2 times as fast as own lagged

choices.

As in the Markov model, for games with ELs, we introduce the proportion of MH s

attempting to pool by choosing output levels 3 and 4 as an additional explanatory variable.

Different from the Markov model where this value is calculated based on MH s' choices

in the previous round only, we calculate its cumulative counterpart in the Polya model.

The positively signi�cant estimates of its coef�cient in experimental sessions with inex-

perienced subjects is consistent with the observation made by Cooper, Garvin and Kagel

(1997b) that the adjustment process is history-dependent. It is MH s' attempt to pool that

raises the entry rate on output level 4 and gives MH s incentive to separate. In both the

Markov and Polya models, other experience effects represented by ln � are not statistically

signi�cant at conventional levels. And analogous to what happens in theMonte Carlo study,

the weird negative sign of the SMLEs for � in the Markov model for games with EH s can

now be explained by model misspeci�cation.
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As the Polya model does not nest the Markov model because of our different speci�-

cations of entry rate differential and the proportion of MH s attempting to pool, we address

the issue of model selection by the well known Akaike information criterion (AIC) given

as

AIC D �
2
#obs

log L C
2#p
#obs

; (1.12)

where #obs is the sample size, #p is the number of parameters and log L is log likelihood

of a model. According to (1.12), the Polya model is a better model than the Markov model

as the former gives smaller value of AIC.14

One element that has been left out of the analysis reported on so far involves distin-

guishing between attempts at limit pricing and opposed to successful attempts at limit pric-

ing. We introduce two new variables into the regressions: Individual M's own success in

limit pricing and the percentage of successful limit pricing by peers. We view these new

regressors as, essentially, additional interaction terms, the results of which are reported in

Appendix 1.6.2. Introduction of these variables has essentially no effect on the log like-

lihood function for games with EH s so that the distinction has no impact on the results

reported in this case.15 In games with ELs own success at limit pricing plays a statistically

signi�cant role in promoting limit pricing (and diminishes the effect of cumulative entry

rate differential). The percentage of limit pricing by peers (as opposed to attempts at limit

pricing) plays no statistically signi�cant, independent role in promoting limit pricing in

games with ELs. This probably comes about because attempts at limit pricing were usually

14For the speci�cation without interaction terms, in games with EH s, the AIC of the Markov model is
0.4807 and the AIC of the Polya model is 0.4788; and in games with ELs, the AIC of the Markov model is
0.3673 and the AIC of the Polya model is 0.3610.
15The minus two times log likelihood ratios for testing jointly the signi�cance of new regressors in the

Polya model without interactions with N X are, respectively, 1.86 for games with EH s, and 41.14 for games
with ELs. The latter is signi�cant at the 1 percent level with an asymptotic �2 .2/ distribution.
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successful so that imitators only needed innovators actions to promote limit pricing in this

case.

Finally, the last column in Tables 1.14 and 1.15 look at the impact of neglecting the peer

group effects. The reference speci�cation against which to compare these estimates is the

�rst one reported in each case. For games with EH s there is little if any effect on any of the

coef�cient values estimated and only a small change in the log likelihood function. This is

not surprising as peer group effects are only signi�cant at the 10% level in this case. For

games with ELs, the SMLEs for the coef�cient (�) on the entry rate differential and for the

weight (!) on entries on the peers are most affected by dropping the peer group effects, with

both coef�cients biased upwards. This is not too surprising since it is the increased entry

differential in response to choices 5-7 versus other output levels (especially output levels 3

and 4) that drive MLs to limit price in the �rst place. In this context what the introduction of

peer group effects does is to clarify the behavioral mechanism under which these increased

entry rates operate. It is only partly related to what individual subjects have experienced

themselves. Rather, much of the impact is related to what others have experienced and

their responses to same. It is the latter that is largely missing by ignoring peer group or

session level effects in the data in this case.

1.5 Conclusions

This chapter has generalized Heckman's (1981) dynamic discrete choice panel data

models by introducing lagged social interactions. The likelihood function for a general

model has been derived and simulation method based on the unbiased GHK simulator has

been proposed to implement the SML estimation. Monte Carlo experiments have been

conducted to investigate the �nite sample performance of the SMLEs for the Markov and
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Polya model with lagged social interactions. Some clear patterns have emerged from the

Monte Carlo results.

� The true state dependence tends to be overestimated, and the lagged social interac-

tions tend to be underestimated in the Markov and Polya models when T is long. The

biases are small for T D 8 and 15, and m D 50 or 100. The lagged social interac-

tions are relatively more dif�cult to estimate precisely in the Polya model than in the

Markov model.

� Overall, the SMLEs of serial correlation in the disturbances have small downward

biases in the Markov and Polya model.

� Given a �xed sample size, biases and SDs of all the SMLEs increase with group size,

given the corresponding reduction in the number of groups. The estimates of state

dependence and lagged social interactions are more sensitive to group size than the

other estimates.

� The bias correction procedure reduces bias and RMSE, but the improvements are

generally small. For further improvement, a larger number of random draws are

desirable.

� In the Markov model, when positive lagged social interactions are ignored in the

estimated model, the estimate of true state dependence is upward biased and the

estimate of serial correlation in disturbances is downward biased. These biases can

be severe.

� In the Markov model, when the data generating process incorporates both the random

individual component and serial correlation but the estimated model only allows for

34



the random individual component, the estimate of state dependence is upward biased

and the estimate of lagged social interactions is downward biased. These biases can

be severe. On the other hand, when the estimated model only allows for AR(1)

serial correlation with the random individual component ignored, the estimate of

state dependence can be severely downward biased and the estimate of lagged social

interactions is moderately upward biased.

� When the data generating process is the Polya model but the estimated model is the

Markov model, the estimate of state dependence can be severely biased upward and

the estimate of lagged social interactions has some downward bias.

We have applied the model to investigate learning and peer group effects in laboratory

experiments based on Milgrom and Roberts' (1982) entry limit pricing game. We em-

ployed the Markov and Polya processes with lagged social interactions to characterize the

adjustment process of subjects' behavior over time. The Polya model is superior to the

Markov model as it has a more natural justi�cation and provides a better �t to the data. We

obtained a number of important insights on this adjustment process.

First, the dynamic panel data model allows us to study the adjustment process with

better detail. Past studies typically use the static panel data model with a time dummy to

investigate the evolution of subjects' behavior over time. This model allows us to determine

the correlation between aggregate frequency of strategic play and subjects' experience but

says nothing about an individual player's persistency in strategic play. On the other hand, a

positive statistically signi�cant estimate of the true state dependence in the dynamic model

can help to predict an individual's future strategic play conditional on his/her current and

previous decisions, hence is stronger evidence for existence of learning. Furthermore, by

introducing some interaction terms with the state dependence, we found that inexperienced
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subjects are less con�dent about what they learned than their experienced selves in more

challenging games (i.e. games with EH s).

To distinguish between two different sources of learning, we introduced peers' past

decisions and perceived entry rate differential into the dynamic model. We found that sub-

jects' decisions are in�uenced by the past decisions of their peers in the limit pricing game

experiment. These time-lagged peer group effects are more evident in the experiments em-

ploying subjects with no experience of the same or related games. These results suggest

that the imitation of peers' strategies plays an important role in learning to play strategi-

cally.

On the other hand, perceived entry rate differential between �myopia� output choices

and strategic output choices serves as a proxy for Ms' beliefs on Es' responses. Hence

a positive estimate of its coef�cient indicates existence of more intelligence-demanding

(individual) adaptive learning. After controlling social learning, only in more challenging

games with ELs, we found evidence that subjects' decision are affected by opponents' past

responses. And evidence is less substantial in experimental sessions with inexperienced

subjects, which, we believe, is partially due to the sophisticated nature of adaptive learning

and unstable responses of inexperienced ELs. Furthermore, we found that subjects tend

to overweigh entry on his/her own output choice relative to entries on other Ms' output

choices in calculation of the perceived entry rate differential. As subjects only pay attention

to peers' choices but largely ignore the outcomes of these choices, we should not be too

optimism about the individual-intelligence implications of adaptive learning.

Multiple equilibria of the entry limit pricing game allows us to design related games

with different equilibrium predictions and study learning processes converging to different
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types of equilibria. In games with EH s, where strategic behavior reliably converges to pure-

strategy pooling equilibria, evidence of social learning is dominant. In games with ELs,

where no pure-strategy pooling equilibria exist, evidence of social learning and (individual)

adaptive learning coexists. One plausible explanation for the �inconsistency� of adjustment

processes in related games is as follows. As the adjustment process in entry limit pricing

game experiment has the feature of history dependence (Cooper, Garvin and Kagel, 1997b),

the emergence of strategic play in games with ELs is much slower than in games with

EH s. Only a relatively small proportion of Ms learn to play strategically at the end of the

experiments with ELs. This slow process selects the more sophisticated subjects who are

updating their beliefs in accordance with the observed responses of the opponents. On the

other hand, in experiments where pure-strategy pooling equilibria exist and strategic play

prevails at the end, the imitation behavior of �followers� becomes overwhelming in the

population and makes other effects much harder to identify. An alternative explanation is

that the nature of strategic play when pure-strategy pooling equilibria exist is imitation, with

�sophisticated� MH s imitating the output choices of MLs, and the other MH s (�followers�)

imitating the choice of �sophisticated� MH s. When no pure-strategy pooling equilibria

exist, MLs have no one to imitate in the �rst place. Hence MLs' strategic play may have

some elements of more sophisticated learning.

Finally, we investigated the consequences of neglecting the positive signi�cant peer

group effects in estimating the Polya model. We found that in games with ELs, where

the time-lagged peer group effects are substantial, ignoring such effects in the estimation

causes the estimates of entry rate differential and weight a subject put on entries on others'

output choices upward biased. As such, an individual's intelligence tend to be overstated.
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1.6 Appendices

1.6.1 Payoff Schedules and Experimental Treatments

MH (High Cost M) ML (Low Cost M)
Your X Y X Y Your
Choice (In) (Out) (In) (Out) Choice
1 150 426 250 542 1
2 168 444 276 568 2
3 150 426 330 606 3
4 132 408 352 628 4
5 56 182 334 610 5
6 �188 �38 316 592 6
7 �292 �126 213 486 7

Source: Cooper, Garvin and Kagel (1997b).

Table 1.1: A Monopolist's Payoffs in the Quantity Game

M Player's Type
MH ML

Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff Expected Valuea
X (In) 300 74 187
Y (Out) 250 250 250

a Based on prior distribution (50% MH ; 50% ML ) of M types.
Source: Cooper, Garvin and Kagel (1997b).

Table 1.2: An Entrant's Payoffs in the Quantity Game
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M Player's Type
MH ML

Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff Expected Valuea
X (In) 500 200 350
Y (Out) 250 250 250

a Based on prior distribution (50% MH ; 50% ML ) of M types.
Source: Cooper, Garvin and Kagel (1997b).

Table 1.3: An Entrant's Payoffs in the Quantity Game

MH (High Cost M) ML (Low Cost M)
Your X Y X Y Your
Choice (In) (Out) (In) (Out) Choice
1 �428 �220 204 545 1
2 �298 �110 333 678 2
3 8 165 355 700 3
4 103 448 378 723 4
5 125 470 350 695 5
6 148 493 283 648 6
7 125 470 250 615 7

Source: Cooper and Kagel (2004).

Table 1.4: A Monopolist's Payoffs in the Price Game

M Player's Type
MH ML

Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff Expected Valuea
X (In) 219 594 406:5
Y (Out) 281 281 281

a Based on prior distribution (50% MH ; 50% ML ) of M types.
Source: Cooper and Kagel (2004).

Table 1.5: An Entrant's Payoffs in the Price Game
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1.6.2 Alternative Speci�cations for Empirical Models

In the main content of the application, we focus on disentangling the in�uence on in-

cumbents' current decisions from the entrants (captured by the entry rate differential) and

from the other incumbents of the same type (captured by the peer group effects). Here we

also consider some interactions between them in the Polya model. Let the dichotomous

indicator ois be 1 if incumbent i is not entered on in calendar period s, and 0 otherwise.

Let Y ns be an n-dimensional vector with the i th element being yis D yisois . We consider

an alternative speci�cation of the Polya model .1:11/ as follows

y�i ti .� / D � C x i;ti .� /�1� C
�X
sD1

�s�11
�
�1yi;ti .��s/ C �

0
1yi;ti .��s/

�
C
ti .� /X
sD1

�s�12 win
�
�2Yn;ti .� /�s C �02Y n;ti .� /�s

�Pti .� /
sD1 �

s�1
2

C 
 ln � C �� i C "i ti .� /;

and

"i ti .� / D �"i;ti .��1/ C vi ti .� /;

where � i ; vi ti .� / are i.i.d.N .0; 1/. The coef�cients �01 and �
0
2 capture the in�uence of own

successful limit pricing and peers' successful limit pricing on M's current choice respec-

tively.

Based on the GHK simulator generated with 100 random draws, the SMLEs of the

Polya model with samples from the experimental sessions with EH s and with ELs are

reported in Table 1.16 and Table 1.17 respectively. In those tables, we also include the

SMLEs of the original speci�cation from Table 1.14 and Table 1.15 for ease of comparison.

The SMLEs of �01 are positively signi�cant in games with EL , indicating that, in the

case where strategic play requires innovation, subjects are more con�dent in their decision

to play strategically when limit pricing generates higher payoffs in the previous rounds.
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However, the SMLEs of �01 are insigni�cant in games with EH , which is consistent with

the insigni�cant estimates of � in the original speci�cation. The SMLEs of �02 are insignif-

icant, which is consistent with the insigni�cant estimates of ! in the original speci�cation,

indicating subjects tend to ignore previous entries on their peers when making current de-

cisions.

1.6.3 Monte Carlo and Empirical Results
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Payoff Tables Prior Experience Number of Sessions
(Type of Entrants) GCa MC
1.1 & 1.2
(High cost type EH s)

None or same game 7 9 (2)b

1.1 & 1.3 or 1.4 & 1.5
(Low cost type ELs)

None or same game 15 (9) 12 (7)

Game with high cost Esc 5 7 (2)
aGC: generic context; MC: meaningful context
bnumber of inexperienced-subject sessions (number of experienced-subject sessions)
ccrossover after the 1st 12-period cycle

Table 1.6: Experimental Treatments
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CHAPTER 2

NONPARAMETRIC ESTIMATION OF LARGE AUCTIONS WITH
RISK AVERSE BIDDERS

2.1 Introduction

In this chapter, we explore the robustness of Guerre, Perrigne and Vuong's (2000) two-

step nonparametric estimation procedure in �rst-price, sealed-bid auctions with a large

number of risk averse bidders.

The seminal work by Guerre, Perrigne and Vuong (2000) has shown that the underly-

ing distribution of bidders' values is nonparametrically identi�ed from the observations of

submitted bids in �rst-price, independent private value (FP-IPV) auctions with risk neutral

bidders. Based on the equilibrium bidding behavior, they propose a two-step kernel-based

estimator for the latent density of bidders' private values wherein the unobserved private

values are estimated in the �rst step. The proposed two-step estimator is optimal in terms of

the uniform convergence rate. As the private values are estimated from submitted bids, the

best uniform convergence rate of this �indirect estimation� problem (Groeneboom, 1996) is

slower than the best uniform convergence rate given by Stone (1982) when the private val-

ues are observable. However, when bidders are potentially risk averse, Campo et al. (2006)

have shown that the distribution of bidders' private values and bidders' utility functions in

FP-IPV auctions cannot be nonparametrically identi�ed from observed bids. To estimate
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the latent density of bidders' private values, it is necessary to specify the utility function

parametrically. They propose a multi-step semiparametric estimation procedure wherein

the utility function is recovered parametrically in the initial steps. In deriving asymptotic

properties, both works assume that the number of bidders n in each auction is �xed and the

number of observed auctions L approaches in�nity.

On the other hand, as n goes to in�nity, it has been shown that the discrepancy between

risk averse bidding behavior and risk neutral bidding behavior is of order O.n�2/ (Fibich,

Gavious and Sela, 2004) and the discrepancy between strategic bidding behavior and per-

fectly competitive behavior, wherein bidders simply bid their value, is of order O.n�1/. In

other words, as the size of an auction increases, the effect of risk aversion diminishes much

faster than the rate at which the strategic bidding behavior degenerates to the price-taking

behavior in perfect competition. Hence when the size of auction is large, Guerre, Perrigne

and Vuong's (2000) two-step nonparametric estimator based on strategic bidding behav-

ior may possess some robust properties against potential risk aversion. In this chapter, we

study the asymptotic properties of Guerre, Perrigne and Vuong's (2000) two-step nonpara-

metric estimator allowing both the number of bidders n and the number of auctions L to

approach in�nity. We show that when n increases not too slowly relative to L , the two-

step nonparametric estimator of the latent density of private values is consistent and attains

the best uniform convergence rate given by Stone (1982) as if bidders' private values are

observable.

Allowing both n and L to diverge to in�nity introduces some extra complications in

the analysis. Since the unknown private values are recovered from the observations of

submitted bids and the estimated bid density, the smoothness of bid density and the uniform

convergence rate of its estimator are crucial in determining the convergence rate of Guerre,
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Perrigne and Vuong's (2000) two-step estimator. As the equilibrium bid density depends

on n, the derivatives of bid density that are bounded with �xed n could be unbounded

as n ! 1, and there is no standard result on the best uniform convergence rate for the

nonparametric estimation of a density that is shifting with sample size as the bid density

is here. Furthermore, when there exists observed heterogeneity across auctions, we need

to estimate the density of private values conditional on the ��xed effects� characterizing

heterogeneity across auctions. However, the best uniform convergence rate of the estimator

for a conditional (or joint) density with observations in such a panel structure, where private

values are of order O.nL/ and ��xed effects� variables are of order O.L/, has seldom been

addressed in the literature. We show that the kernel estimator for the conditional density

of private values given the ��xed effects� can attain the best uniform convergence rate at

which the marginal density of ��xed effects� can be estimated.16

We conduct aMonte Carlo experiment to study the �nite sample performance of Guerre,

Perrigne and Vuong's (2000) two-step nonparametric estimator and get some interesting re-

sults. The two-step nonparametric estimator performs reasonably well in the presence of

signi�cant risk aversion when the number of bidders is six. In other words, an auction with

six bidders can be considered as a large auction. In addition, the two-stage nonparamet-

ric estimation procedure sometimes outperforms the multi-step semiparametric estimation

procedure when the utility function is misspeci�ed.

This rest of the chapter is organized as follows. Section 2 presents the �rst-price, sealed-

bid auction model with risk averse bidders and derives the asymptotic approximation of

the equilibrium bidding function. Section 3 establishes the uniform consistency with the

convergence rate of Guerre, Perrigne and Vuong's (2000) two-step nonparametric estimator

16We assume that the marginal density of ��xed effects� is as smooth as the conditional density of the
private values.
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in large auctions with risk averse bidders. Section 4 speci�es Monte Carlo experiments and

reports the results. Section 5 brie�y concludes.

2.2 Large Auctions with Risk Averse Bidders

Suppose there are a large number of potential buyers competing for a single, indivis-

ible item. The number of potential buyers n (n � 1) is common knowledge17. In the

�rst-price, sealed-bid auction under the independent private value (IPV) paradigm, the buy-

ers simultaneously submit bids, and the highest bidder wins and pays his own bid to the

seller. Buyer p's value vp .p D 1; � � � ; n/ for the auctioned item is his private information,

while it is commonly known that the values are independently distributed on
�
v; Nv

�
� RC

according to a common distribution F .�/, which is absolutely continuous with density

f .�/ > 0. Each bidder is potentially risk averse with utility given by a common von

Neumann-Morgenstern utility function U .�/, which is twice continuously differentiable

with U 0 .�/ > 0 and U 00 .�/ � 0. The seller is assumed to be risk neutral. Moreover, we

assume each bidder's initial wealth w > 0 is the same and commonly known.

Suppose the equilibrium bid for the pth bidder with private value vp in an auction with

n bidders is bp D sn
�
vp
�
. FollowingMaskin and Riley (2000; 2003), and Athey (2001), the

unique symmetric Bayesian Nash equilibrium of the corresponding game is characterized

by the following differential equation in sn .�/

s0n
�
vp
�
D .n � 1/

f
�
vp
�

F
�
vp
�� �vp � sn �vp�� ; (2.1)

where � .�/ D .U .w C �/�U .w// =U 0 .w C �/. The boundary condition is given by

sn
�
v
�
D v.

17We assume in this paper that the reservation price is nonbinding, hence the number of potential bidders
is equal to the number of actual bidders.
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In general, the equilibrium strategy is intractable without speci�cation of a functional

form for U .�/. However, analytical approximations to the equilibrium strategy sn .�/ can

be derived. To proceed, we need some regularity assumptions on U .�/ and F .�/ following

Campo et al. (2006) as summarized in the following de�nitions. Throughout we denote the

support of � by S .�/, and the r th derivative of � by �.r/ .r � 0/ with �.0/ D �.

De�nition 1 For R � 1, let UR be the set of van Neumann-Morgenstern utility functions

U .�/ with initial wealth w > 0 such that:

(i) U : [0;1/! [0;1/;

(ii) U .�/ is continuous on S .U /, and admits up to RC2 continuous bounded derivatives

on .0;1/ with U 0 .�/ > 0 and U 00 .�/ � 0 on .0;1/.

De�nition 2 For R � 1, let FR be the set of distributions F .�/ such that:

(i) S .F/ D
�
v : v 2

�
v; Nv

�	
, with 0 � v < Nv <1;

(ii) f .v/ � c f > 0 for v 2 S .F/;

(iii) F.�/ admits up to R C 1 continuous bounded derivatives on S .F/.

Except for the additional assumption that w > 0, UR and FR are de�ned similar to

Campo et al. (2006) and thus have similar implications. De�nition 1 requires that � .x/

admits R C 1 continuous bounded derivatives on [0;1/, and De�nition 2 speci�es the

smoothness of F.�/ and requires the corresponding density f .v/ to be bounded away from

zero on S .F/. These regularity assumptions are quite weak. The additional assumption

on initial wealth is to guarantee proper behavior of the utility function at the initial wealth

level. To relax this assumption so that w � 0, De�nition 1(ii) needs to be replaced by the
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stronger assumption that �U .�/ is continuous and admits up to R C 2 continuous bounded

derivatives on S .U / with U 0 .�/ > 0 and U 00 .�/ � 0 on S .U /�. The assumption on initial

wealth is necessary for analytical approximation of the equilibrium bidding behavior in

large auctions. Furthermore, we assume that the private values and the number of bidders

are independent so that f .vjn/ D f .v/. As noted by Guerre, Perrigne and Vuong (2000),

this assumption is justi�ed by the economic model. Otherwise, endogenous entry to the

auction should be considered, which is outside the scope of this chapter.

It is well known that, as the number of bidders n approaches in�nity, the equilibrium

bid approaches the bidder's private value under quite general conditions. Applying repeated

integration by parts and the Laplace approximation (Copson, 1965) to the integral form of

the differential equation .2:1/,

�
�
vp � sn

�
vp
��
D

1
Fn�1

�
vp
� Z vp

v
Fn�1 .u/ d .sn .u/C � .u � sn .u/// ;

we can derive the leading order deviation of the equilibrium bid from the private value.

This is formally stated in the following proposition.18 Another contribution of Proposition

2.1 is to characterize the implied smoothness of the equilibrium bidding function as n !

1, which is used to derive the uniform convergence rate of the two-step nonparametric

estimator in the next section. Let &n.v/ D v � sn.v/ be the consumer surplus conditional

on winning.

Proposition 2.1 In a �rst-price IPV auction with n .n � 1/ bidders, if F .�/ 2 FR and

U .�/ 2 UR for R � 1, the equilibrium bid in the symmetric Bayesian Nash equilibrium is

18Fibich, Gavious and Sela (2004) have shown .2:2/ based on the unproved claim that s0n .v/ D 1 C
O
�
n�1

�
, which, in general, is not directly implied by the (uniform) convergence of sn .v/. Here we take a

different approach to derive the leading order deviation of sn .v/ from v. The approach presented here is more
rigorous as s0n .v/ D 1 C O

�
n�1

�
is proved instead of assumed and more general as it allows us to express

sn .v/ as its asymptotic expansion with precision of O
�
n�.RC1/

�
instead of just the leading order deviation.
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given by

sn .v/ D v �
1
n
F .v/
f .v/

C O.n�2/:19 (2.2)

Furthermore, we have & .r/n .v/ D O.n�1/ for 1 � r � R.

Let Gn .�/ denote the distribution of equilibrium bids. We have Gn .b/ D F .v/ with

support S.Gn/ D fb : b 2
�
v; sn . Nv/

�
g and density gn .b/ D f .v/=s0n.v/ D f .v/C O.n�1/

by Proposition 2.1, where v D s�1n .b/. It follows from .2:2/ that

v D s�1n .b/ D b C
1
n
Gn .b/
gn .b/

C O.n�2/; (2.3)

which represents the unobserved private value as a function of the observed bid with an

error of order O.n�2/. This allows us to employ Guerre, Perrigne and Vuong's (2000)

two-step nonparametric estimation procedure to recover the underlying distribution of risk

averse bidders' private values with satisfactory precision when n is large.

2.3 Nonparametric Estimation and Robustness

2.3.1 Estimation Procedure and Asymptotic Properties

To clarify conceptual issues, we �rst consider L homogeneous auctions with n bid-

ders in each auction. In order to implement Guerre, Perrigne and Vuong's (2000) two-step

nonparametric estimation procedure, we �rst need to estimate the distribution of equilib-

rium bids Gn .�/, which depends on the number of bidders. Hence it is important to study

the implied smoothness of Gn .�/ as n ! 1. The following proposition summarizes the

properties of Gn .�/ relevant to the asymptotic properties of the nonparametric estimator.

Proposition 2.2 If F .�/ 2 FR and U .�/ 2 UR for R � 1, the distribution Gn .�/ satis�es:

19Throughout fn .x/ D gn .x/CO .n p/ or fn .x/ D gn .x/Co .n p/means supx j fn .x/� gn .x/j D O .n p/
or supx j fn .x/� gn .x/j D o .n p/ respectively, for a pair of functions fn .�/ and gn .�/ and a constant p.
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(i) its support is S .Gn/ D
�
b : b 2

�
v; sn . Nv/

�	
, with infn2f2;3;��� g

�
sn . Nv/� v

�
> 0.

Moreover, S .Gn/ � S .GnC1/ for all n 2 f2; 3; � � � g, and limn!1 S .Gn/ D S .F/;

(ii) for b 2 S .Gn/, gn .b/ � cg > 0 as n!1;

(iii) if C is a closed subset of the interior of S .G1/, then gn .�/ is bounded and admits

up to R continuous bounded derivatives on C as n!1.

Contrary to its counterpart with �xed n derived in Campo et al. (2006) where gn .�/ is

smoother than f .�/ with R C 1 continuous bounded derivatives, Proposition 2.2(iii) shows

that as n ! 1, the uniform boundedness of the .R C 1/th derivative of gn .�/ cannot be

implied from the existing assumptions on the structure [U; F].

Following Guerre, Perrigne and Vuong (2000), with the observations fBplI p D 1; � � � ; n; l D

1; � � � ; Lg, the bid distribution Gn .�/ and density gn .�/ can be nonparametrically estimated

respectively by the empirical distribution and the kernel density estimator of the form

QGn .b/ D
1
nL

LX
lD1

nX
pD1
1
�
Bpl � b

�
; (2.4)

Qgn .b/ D
1

nLhR

LX
lD1

nX
pD1

KR
�
Bpl � b
hR

�
; (2.5)

where hR is a bandwidth such that hR D � .log .nL/ =nL/1=.2RC1/ with � being a strictly

positive constant, and KR .�/ is a symmetric kernel of order R with a compact support

and twice continuous bounded derivatives satisfying
R
KR .b/ db D 1 and

R
K 2R .b/ db <

1. Note that classical asymptotic results regarding the empirical distribution and kernel

estimator based on the i.i.d. assumption of observations do not apply to the current model

as n ! 1, because the equilibrium bid and hence its distribution depend on the number

of bidders n. The uniform consistency of QGn and Qgn with the convergence rate based on a
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triangular array of random variables that are independent but not identically distributed as

we have here is derived in the appendix.

Because the kernel estimator is asymptotically biased at the boundaries of the sup-

port, Guerre, Perrigne and Vuong (2000) suggest trimming the observations Bpl that are

too close to the boundaries of S.Gn/. However, in our case, as n increases, S .Gn/ is

expanding such that limn!1 S .Gn/ D S .F/. Hence the kernel estimator is asymptoti-

cally biased at the boundaries of the support of F .�/. Denote the length of the support of

KR .�/ by �. For b D Nv � ��hR=2 with � 2 [0; 1/, it follows that E[ Qgn. Nv � ��hR=2/] DR . Nbn�Nv/=hRC��=2
.bn�Nv/=hRC��=2

KR .u/ gn. Nv���hR=2ChRu/du ! gn. Nv���hR=2/
R ��=2
�1 KR .u/ du as

n and L approach in�nity. As
R ��=2
�1 KR .u/ du 6D 1, the density estimator is asymptotically

biased for b 2 . Nv� �hR=2; Nv] and similarly for b 2 [v; vC �hR=2/. Let Bmin and Bmax be

the minimum and maximum of the nL observed bids. The trimmed pseudo-private value is

de�ned as

OVpl D

8<: Bpl C QGn
�
Bpl
�
= .n � 1/ Qgn

�
Bpl
�
;

if Bpl 2
�
Bmin C �hR=2; Bmax � �hR=2

�
,

1 otherwise,
(2.6)

for p D 1; � � � ; n and l D 1; � � � ; L . The following proposition gives the rate at which

the trimmed pseudo-private value converges to the true value on a closed inner subset of

its support. The result will be used to derive the uniform convergence rate of the two-step

estimator. Let r D .nL= log .nL//R=.2RC1/.

Proposition 2.3 Suppose F .�/ 2 FR and U .�/ 2 UR for R � 1. Then, for any closed

inner subset C .V / of S .F/, we have almost surely

suppl 1C.V /.Vpl/
��� OVpl � Vpl��� D O �max.n=r; 1/n�2� :

Basically, the error of pseudo-private value OVpl comes from two sources: estimation

error from QGn .�/ = Qgn .�/ and approximation error from ignoring the utility structure. So the
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uniform convergence rate of the pseudo-private value is determined by the slower conver-

gence rate of these two types of errors. Suppose R D 1, then n=r � n2=L by ignoring the

relatively small log.nL/ term. So if n increases much slower than L such that n2=L ! 0,

then the approximation error dominates. The estimation error dominates otherwise.

With the trimmed pseudo-private values, the private value density f .�/ can be estimated

by the kernel density estimator

Of .v/ D
1

nLhR

LX
lD1

nX
pD1

KR

 
OVpl � v
hR

!
: (2.7)

The following result establishes the uniform consistency of Guerre, Perrigne and Vuong's

(2000) two-step estimator with its rate of convergence in homogenous auctions with risk

averse bidders.

Proposition 2.4 Suppose F .�/ 2 FR and U .�/ 2 UR for R � 1. Then, for any closed

inner subset C .V / of S .F/,

(i) if L !1 and .nhR/�1! 0, .r=n/.nhR/�1! 0 as n!1, we have almost surely

supv2C.V /
��� Of .v/� f .v/

��� D O.r�1/I
(ii) if L ! 1 and .nhR/�1 ! 0, .r=n/.nhR/�1 ! 1 as n ! 1, we have almost

surely

supv2C.V /
��� Of .v/� f .v/

��� D O.n2hR/�1I
(iii) if L !1 and .nhR/�1!1 as n!1, we have almost surely

supv2C.V /
��� Of .v/� f .v/

��� D O.n4h3R/�1:
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Proposition 2.4(iii) shows that, when n does not diverge fast enough relative to L ,

Guerre, Perrigne and Vuong's (2000) two-step estimator may not be consistent in the pres-

ence of risk aversion given our choice of KR.�/ and hR because of the overwhelming ap-

proximation error. A suf�cient condition for the two-step estimator to be consistent is that

.nhR/�1! 0, which imposes a lower bound of the divergence rate of n in terms of L . By

ignoring the relatively small log.nL/ term, we have .nhR/�1 � L=n2R . Hence the con-

straint on the divergence rate of n is quite weak, especially for a smooth private value den-

sity (with larger R). On the other hand, when n goes to in�nity fast enough relative to L , it

is possible for the two-step nonparametric estimator to attain the uniform convergence rate

r D .nL= log .nL//R=.2RC1/, which is the best uniform convergence rate when private val-

ues are observable. The intuition for the result is as follows. As f .v/ D gn .sn.v// s0n.v/,

to estimate the private value density, gn .�/ ; sn.�/ and s0n.�/ need to be estimated. When

n is �xed, s0n.�/ is the hardest to estimate as it requires estimating g0n .�/. In fact, the best

uniform convergence rate for estimating s0n.�/ determines the best rate for estimating f .�/.

However, when n!1, it follows from Proposition 2.1 that s0n.v/ D 1C O.n�1/. So if n

diverges fast enough, f .�/ can be estimated at the same best rate as gn .�/, which is r .

As in Guerre, Perrigne and Vuong (2000), asymptotic normality of the two-step esti-

mator is not derived. This is because the �rst and second order terms in the expansion of

Of .v/ � f .v/ may be close (see the proof of Proposition 2.4), so the classical asymptotic

normality result that relies only on the leading order term in the Taylor expansion may be

imprecise. Guerre, Perrigne and Vuong (2000) suggest circumventing this drawback by

establishing an exponential-type inequality, and that approach also applies to the current

model. Interested readers may refer to that paper for more details.
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2.3.2 Auctions with Heterogeneity

Nowwe can extend the above analysis to a more realistic model allowing heterogeneity.

Heterogeneity across auctions is characterized by a vector of observed variables Xl and the

number of bidders nIl (l D 1; � � � ; L), where the Il's are strictly positive constants.20

We assume n, but not Il , approaches in�nity for asymptotic properties. Let I be the set

of possible values for Il . Following Guerre, Perrigne and Vuong (2000), the latent joint

distribution of
�
Vpl; Xl; Il

�
for p D 1; � � � ; nIl and l D 1; � � � ; L satis�es the following

regularity assumptions:

Assumption A1

(i) The .dC 1/-dimensional vectors .Xl; Il/, l D 1; � � � ; L, are independently and iden-

tically distributed as Fm .�; �/ with density fm .�; �/.

(ii) For each l, the variables Vpl , p D 1; � � � ; nIl , are independently and identically

distributed conditionally upon Xl as F .�j�/ with density f .�j�/.

Assumption A2 For I a bounded countable subset of RC and R � 1,

(i) S.F/ D f.v; x/ : x 2
�
x; Nx

�
; v 2 [v.x/; Nv.x/]g, with x < Nx;

(ii) for .v; x/ 2 S.F/, f .vjx/ � c f > 0, and, for .x; i/ 2 S.Fm/, fm .x; i/ � c f > 0;

(iii) for each i 2 I, f .�j�/ and fm .�; i/ admit up to R continuous bounded partial deriv-

atives on S.F/ and S.Fm .�; i//.

20Empirically, we can decompose the number of bidders of the lth auction arbitrarily into n 2 f2; 3; � � � g
and Il 2 RC. Say, let n D minlfnIlg.
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As argued by Guerre, Perrigne and Vuong (2000), we can assume that x and Nx are

known as they can be readily estimated. X is assumed to be a vector of continuous vari-

ables.21 The economic model implies that the private values and the number of bidders are

independent conditional on X so that f .vjx; ni/ D f .vjx/. With the smoothness of F .�j�/

speci�ed in Assumption A2, the next proposition studies the implied smoothness of bid

density gn .�j�; �/.

Proposition 2.5 Suppose U .�/ 2 UR for R � 1. Given A1 and A2, the conditional distri-

bution Gn .�j�; �/ satis�es:

(i) its support S .Gn/ is such that S .Gn .�j�; i// D f.b; x/ : x 2
�
x; Nx

�
; b 2

�
bn .x; i/ ; Nbn .x; i/

�
g,

with inf. Nbn .x; i/ � bn .x; i// > 0. Moreover, Nbn .x; i/ � Nbm .x; i/ for n � m,

bn .�; i/ D v .�/, and limn!1 Nbn .�; i/ D Nv .�/;

(ii) for .b; x; i/ 2 S .Gn/, gn .bjx; i/ � cg > 0 as n!1;

(iii) if C is a closed subset of the interior of S .G1/, then, for each i 2 I, gn .�j�; i/ is

bounded and admits up to R continuous bounded derivatives on C as n!1.

Proposition 2.5 extends Proposition 2.2 by allowing possible heterogeneity across auc-

tions and has similar implications. Specially, item (iii) characterizes the uniform bounded-

ness of gn's derivatives as n ! 1, which is used to derive asymptotic properties of the

nonparametric estimator.

21If some X 's are discrete, the following results hold with d replaced by the number of continuous variables
in X .
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Following Guerre, Perrigne and Vuong (2000), using the observations f.Bpl; Xl; Il/I p D

1; � � � ; nIl; l D 1; � � � ; Lg, we can nonparametrically estimate Gn .�; �; �/ and gn .�; �; �/ re-

spectively by

QGn .b; x; i/ D
1

nLhdG

LX
lD1

1
Il

n IlX
pD1
1
�
Bpl � b

�
KG

�
Xl � x
hG

;
Il � i
hGI

�
; (2.8)

Qgn .b; x; i/ D
1

nLhdC1g

LX
lD1

1
Il

n IlX
pD1

Kg
�
Bpl � b
hg

;
Xl � x
hg

;
Il � i
hgI

�
; (2.9)

where hG , hGI , hg, and hgI are bandwidths and KG and Kg are kernels with a compact

support.

Similar to the case with homogeneous auctions, the asymptotic results of nonparametric

estimators based on i.i.d. assumptions do not apply to QGn and Qgn as n!1 due to the de-

pendence of the equilibrium bid distribution on n. We derive the uniform consistency with

the convergence rate of QGn and Qgn in the appendix. On the other hand, since the number

of Bpl is of order O.nL/ while the number of observed auctions and hence .Xl; Il/ (which

are analogous to �xed effects in a panel data model) are of order O.L/, the best uniform

convergence rate for the nonparametric estimation of the joint density of .Bpl; Xl; Il/ as

both n and L approach in�nity has seldom been addressed in the literature. The following

analysis sheds light on whether and to what extent n ! 1 speeds up the convergence of

the joint density estimator.

Since the kernel density estimator is biased at the boundaries of the support of S.F/

as we discussed in the case with homogenous auctions, we trim the observations that are

too close to the boundary of S.F/. To this end, we need to estimate the unknown S.F/ D

f.v; x/ : x 2
�
x; Nx

�
; v 2 [v.x/; Nv.x/]g. Since

�
x; Nx

�
is known, we only need to estimate

the support [v.x/; Nv.x/]. Let h@ > 0. Following Guerre, Perrigne and Vuong (2000), we
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consider the following partition of Rd with a generic hypercube of side h@ :

� k1;��� ;kd D [k1h@ ; .k1 C 1/ h@/� � � � � [kdh@ ; .kd C 1/ h@/;

where .k1; � � � ; kd/ runs over Zd . The support [v.x/; Nv.x/] can be estimated as

bNv.x/ D supfBpl; p D 1; � � � ; nIl; l D 1; � � � ; LI Xl 2 � k1;��� ;kd g; (2.10)

bv.x/ D inffBpl; p D 1; � � � ; nIl; l D 1; � � � ; LI Xl 2 � k1;��� ;kd g; (2.11)

where � k1;��� ;kd is the hypercube containing x . And the estimator for S .F/ is OS .F/ �

f.v; x/ : x 2 [x; Nx]; v 2 [bNv.x/;bv.x/]g.
Note that .2:3/ can be rewritten as

Vpl D Bpl C
1
nIl
Gn

�
Bpl; Xl; Il

�
gn
�
Bpl; Xl; Il

� C O.n�2/;
where Gn.b; x; i/ D Gn.bjx; i/ fm.x; i/. Guerre, Perrigne and Vuong's (2000) pseudo-

private value is estimated by

OVpl D Bpl C
1

nIl � 1
O 
�
Bpl; Xl; Il

�
;

where

O .b; x; i/ �

8>><>>:
QGn .b; x; i/ = .nIl � 1/ Qgn .b; x; i/ ;
if .b; x/C S .2hG/ � OS .F/ and
.b; x/C S

�
2hg

�
� OS .F/ ,

1 otherwise,

with S .hG/ and S
�
hg
�
being the supports of f0 � KG .�=hG; 0/g and Kg

�
�=hg; �=hg; 0

�
respectively.

In the second step of Guerre, Perrigne and Vuong's (2000) two-step estimation ap-

proach, the density f .vjx/ is estimated nonparametrically by Of .vjx/ D Of .v; x/ = Of .x/
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using the pseudo-sample f. OVpl; Xl/; p D 1; � � � ; nIl; l D 1; � � � ; Lg, where

Of .v; x/ D
1

nLhdC1f

LX
lD1

1
Il

n IlX
pD1

K f

 
OVpl � v
h f

;
Xl � x
h f

!
; (2.12)

Of .x/ D
1
LhdX

LX
lD1
KX

�
Xl � x
hX

�
; (2.13)

h f and hX are bandwidths, and K f and KX are kernels with compact supports. The choice

of kernels and bandwidths in the de�nition of the two-step nonparametric estimator are

summarized in the following two assumptions:

Assumption A3

(i) The kernels KG .�; �/, Kg .�; �; �/, K f .�; �/ and KX .�/ are symmetric with bounded

hypercube supports and twice continuous bounded (uniformly in I ) derivatives with

respect to their continuous arguments.

(ii)
R
KG .x; 0/ dx D 1,

R
Kg .b; x; 0/ dbdx D 1,

R
K f .v; x/ dvdx D 1, and

R
KX .x/ dx D

1.

(iii) KG .x; 0/ is of order R C 1, and Kg .b; x; 0/, K f .v; x/ and KX .x/ are of order R.

Assumption A4

(i) As L !1, the �discrete� bandwidths hGI and hgI vanish.

(ii) The �continuous� bandwidths hG , hg, h f , and hX are of the form:

hG D �G.log L=L/1=.2RCdC2/; hg D �g.log L=L/1=.2RCd/;

h f D � f .log L=L/1=.2RCd/; hX D �X .log L=L/1=.2RCd/;

where the �'s are strictly positive constants.
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(iii) The �boundary� bandwidth is of the form h@ D �@.log L=L/1=.dC1/ with �@ > 0, if

d > 0.

It follows from Hardle (1991) that hG and hX given in A4(ii) are optimal bandwidths

given Proposition 2.5 and A2(iii). Hence Gn .�; �; �/ and f .�/ are optimally estimated in

terms of the uniform convergence rate. If n were �xed and private values were observed,

the optimal bandwidth for estimating f .�; �/would be of order .log L=L/1=.2RCdC1/, which

is asymptotically larger than the rate for h f given in A4(ii). Similarly, the rate for hg given

in A4(ii) is asymptotically smaller than the optimal bandwidth with �xed n. However, our

choices of h f and hg are optimal when n approaches in�nity fast enough relative to L as

shown below.

The following results establish the uniform consistency of the nonparametric estimators

of S.F/ and f .vjx/ in large auctions with risk averse bidders.

Proposition 2.6 Let r@ D .L= log L/1=.dC1/. Given A1, A2 and A4(iii), we have almost

surely

supx2[x; Nx]
��bNv.x/� Nv.x/

�� D O.r�1@ /; and supx2[x; Nx]
��bv.x/� v.x/�� D O.r�1@ /:

We have shown in the case with homogeneous auctions that a suf�cient condition

for Guerre, Perrigne and Vuong's (2000) two-step estimator to be uniformly consistent

is that n goes to in�nity fast enough relative to L so that .nhR/�1 ! 0. So the next

result on the uniform convergence rate focuses on the case with .nh f /�1 ! 0. Let

r f D .L= log L/R=.2RCd/.

Proposition 2.7 Suppose U .�/ 2 UR for R � 1. Given A1-A4, for any closed inner subset

C .V / of S .F/,
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(i) if L ! 1 and .nh f /�1 ! 0, .r f =n/.nh f /�1 ! 0 as n ! 1, we have almost

surely

supv2C.V /
��� Of .vjx/� f .vjx/

��� D O.r�1f /I
(ii) if L ! 1 and .nh f /�1 ! 0, .r f =n/.nh f /�1 ! 1 as n ! 1, we have almost

surely

supv2C.V /
��� Of .vjx/� f .vjx/

��� D O.n2h f /�1:
So when n approaches in�nity fast enough relative to L , the two-step estimator of

f .vjx/ can attain the best rate at which f .x/ can be estimated. Even though f .vjx/

is as smooth as f .x/ given A2(iii), one would expect f .vjx/ to be estimated with a con-

vergence rate slower than f .x/ because private values are unobservable and the vector

.V; X/ has one more dimension than X . The counterintuitive result in Proposition 2.7 can

be understood as follows. First, since unknown private values can be approximated by

observed bids with precision of order O.n�1/ by Proposition 2.1, the approximation error

may be trivial compared to the estimation error of the kernel estimator when n goes to in-

�nity fast enough relative to L . Hence, the information loss from not observing V may be

negligible given the conditions in Proposition 2.7(i). Second, because there are .n � 1/L

more (pseudo) observations of V than X , the noise from estimating the extra dimension of

random variables in f .v; x/ and hence f .vjx/ reduces dramatically as n!1. We show

in the appendix that, when n diverges fast enough so that .nhg/�1! 0 and .nh f /�1! 0,

kernel estimators of gn.b; x; i/ and f .v; x/ can attain the best rate at which Of .x/ uni-

formly converges to f .x/.
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2.4 Monte Carlo Experiments

We conduct the Monte Carlo experiments with 1000 replications, each consisting of

three sets of observations. In set 1, we consider L D 300 auctions, each with n D 3 bidders.

In set 2, we consider L D 150 auctions, each with n D 6 bidders. In set 3, we consider

L D 75 auctions, each with n D 12 bidders. The total number of observations of submitted

bids is 900 for each set. Bidders' private values for each replication are generated from

the log-normal distribution F with parameters .0; 1/, truncated at 0:055 and 2:5. The true

utility takes the functional form U .x/ D 1� exp .��x/, where � D 0:8. The equilibrium

bids are computed numerically by

b D
1
�
log

R v exp .� t/ dF .t/n�1
F .v/n�1

: (2.14)

We consider four different estimation procedures for each replication. Method 1 serves

as the basis for comparison. We specify the functional form of utility as the true U .�/ and

adopt the semiparametric approach proposed by Campo et al. (2006). To estimate � , we

pool the observations from all 3 sets. Let Gn .b/ denote the distribution of bids in auctions

with n bidders, v� denote the �th percentile of F , and bn� denote the �th percentile of Gn .

For n 6D m, .2:1/ gives

v� � bn� D
1
�
log[

�

n � 1
Gn

�
bn�
�

gn
�
bn�
� C 1];

v� � bm� D
1
�
log[

�

m � 1
Gm

�
bm�
�

gm
�
bm�
� C 1]:

Taking difference gives

bm� � b
n
� D

1
�
log[

�

n � 1
Gn

�
bn�
�

gn
�
bn�
� C 1]� 1

�
log[

�

m � 1
Gm

�
bm�
�

gm
�
bm�
� C 1] (2.15)

With a large number of percentiles �, we can estimate � using the empirical analogue of

.2:15/ by nonlinear least squares. Given an estimate O� of � , we then estimate f using the
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two-step kernel-based estimation procedure described above for each set of observations

separately.

Method 2 investigates the consequences of model misspeci�cation by assuming the

utility is CRRAwithU .x/ D x1�� using the semiparametric approach proposed by Campo

et al. (2006). Analogous to Model 1, we identify � through the heterogeneity of the bid

distributions across auctions with different number of bidders. With CRRA utility, for

n 6D m, .2:1/ gives

v� � bn� D
1� �
n � 1

Gn
�
bn�
�

gn
�
bn�
� ;

v� � bm� D
1� �
m � 1

Gm
�
bm�
�

gm
�
bm�
� :

Taking the difference gives

bm� � b
n
� D .1� �/

 
1

n � 1
Gn

�
bn�
�

gn
�
bn�
� � 1

m � 1
Gm

�
bm�
�

gm
�
bm�
� ! : (2.16)

Evaluating the empirical analogue of .2:1/ at a �nite number of percentiles, we can recover

� using least squares. Then we estimate f nonparametrically for each set of observations

separately.

Method 3 recovers f using Guerre, Perrigne and Vuong's (2000) two-step nonparamet-

ric estimation procedure without imposing any restrictions on the functional form of U .�/.

Method 4 is a one-step nonparametric estimation method using the observed bids as the

pseudo-private values to estimate f directly, based on the fact that limn!1 sn .v/ D v.

Method 4 can only be justi�ed when the number of bidders in each auction is very large

and strategic bidding behavior is overwhelmed by the price-taking behavior in perfection

competition. We compare the estimates fromMethods 3 and 4 to understand the gains from

incorporating strategic bidding behavior in the structural estimation.
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Following Guerre, Perrigne and Vuong (2000), in nonparametric estimations we choose

the triweight kernel .35=32/
�
1� u2

�3 1 .juj � 1/ for Kg .�/ and K f .�/ so that �g D � f D
2. We also choose hg D 1:06 O� b .nL/�1=5 and h f D 1:06 O� v .nLT /�1=5, where O� b and

O� v are the standard deviations of the observed bids and the trimmed pseudo-private val-

ues, nLT are the number of observations left after trimming, and 1:06 follows the rule of

thumb.22

Figures 2.1-2.4 display the true density of the private values with solid line and the 5th,

50th and 95th percentiles of the 1000 estimates of Of .v/ with dash-dot lines evaluated at

500 equally spaced points on [0:055; 2:5]. When the utility functional form is correctly

speci�ed, the mean of the semiparametric estimates in Figure 1 perfectly matches the true

density on the 25-75th percentile of the distribution and the empirical pointwise 90% con-

�dence interval becomes narrower as n increases. In the case that the utility function is

misspeci�ed, the semiparametric estimates in Figure 2 are biased upwards for small private

values and biased downwards for large private values when n D 3. The bias reduces as n

increases. Guerre, Perrigne and Vuong's (2000) two-step nonparametric estimates in Fig-

ure 3 are slightly downward biased when n D 3. The bias reduces as n increases to 6. The

one-step nonparametric estimates in Figure 4 are very imprecise as a large part of the true

density lies outside the empirical 90% con�dence interval when n D 3. The performance

of the one-step nonparametric estimates improves when n D 12.

To compare Methods 1-3 with higher precision, we report the integrated absolute bias

evaluated respectively on the 5-95th percentile and the 25-75th percentile of the value dis-

tribution in Table 2.1. We use the integrated absolute bias instead of the integrated mean

squared error as a measure of discrepancy because the semiparametric estimates may have

22Our choices of kernel functions and bandwidths do not follow Assumptions A3 and A4 because the gains
of high order kernels in terms of a lower MISE are trivial with this sample size. (Fan and Marron, 1992)
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Figure 2.1: True and Estimated Densities of Private Values (Method 1)

larger standard error than the two-step nonparametric estimates as the former involves an

additional step to estimate unknown parameters in the utility function. The integrals are

evaluated by simulations. The two-step nonparametric estimates have smaller integrated

absolute bias relative to the semiparametric estimates with misspeci�ed utility function

when n D 6 and 12. The bias of the two-step nonparametric estimator reduces much

faster than the semiparametric estimates with misspeci�ed utility function on the 25-75th

percentile of the value distribution as n increases.

There are two important lessons to draw from the Monte Carlo experimental results.

First, Guerre, Perrigne and Vuong's (2000) two-step nonparametric estimation procedure

is quite robust with respect to risk aversion in auctions with a moderate number of bidders,
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Figure 2.2: True and Estimated Densities of Private Values (Method 2)
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Figure 2.3: True and Estimated Densities of Private Values (Method 3)
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Figure 2.4: True and Estimated Densities of Private Values (Method 4)

5-95th percentile 25-75th percentile
n D 3 n D 6 n D 12 n D 3 n D 6 n D 12

Method 1 0.0258 0.0279 0.0320 0.0023 0.0019 0.0017
Method 2 0.0757 0.0528 0.0427 0.0232 0.0163 0.0117
Method 3 0.0700 0.0442 0.0366 0.0242 0.0076 0.0022
Method 1: mean(� )=0.7682, std(� )=0.1934;
Method 2: mean(� )=0.3835, std(� )=0.0916.

Table 2.1: Intregrated Absolute Bias of Estimated Densities
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and inclusion of the term Gn .b/ = .n � 1/ gn .b/ in the approximated bidding function sub-

stantially improves the performance of the estimator, as illustrated by Figures 3 and 4.

Second, though the CRRA structure U .x/ D x1�� is popularly assumed in the literature

for many reasons, the semiparametric speci�cation does not necessarily help to improve

the �tting of Of . This can be understood as follows. As we discussed in Section 2, if w D 0,

De�nition 1(ii) needs to be replaced by the stronger assumption that �U .�/ is continuous

and admits up to R C 2 continuous bounded derivatives on S .U / with U 0 .�/ > 0 and

U 00 .�/ � 0 on S .U /�. However, U .x/ D x1�� =2 UR as w D 0 and U 0 .0/ is not bounded.

Hence the effects of model misspeci�cation on the equilibrium bids are O.n�1/ in this

case, which dominates the errors incurred by totally ignoring risk aversion.

2.5 Concluding Remarks

We study the robustness of Guerre, Perrigne and Vuong's (2000) two-step nonparamet-

ric estimation procedure in large auctions with risk averse bidders. With an asymptotic

approximation of the equilibrium bidding function, we show that when the number of bid-

ders in each auction diverges not too slowly relative to the number of observed auctions,

Guerre, Perrigne and Vuong's (2000) two-step kernel-based estimator is uniformly consis-

tent on an arbitrary closed inner subset of the support of the true density and attains the best

uniform convergence rate as if latent private values are observable. Monte Carlo experi-

ments show that the two-step estimator performs reasonably well with a moderate number

of bidders such as six.

One possible extension of the current work is to allow bidders to have different attitude

towards risk captured by heterogeneous utility functions and initial wealths. Campo (2004)

has shown that in such a model the utility functions and latent distribution of bidders'
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private values cannot be nonparametrically identi�ed jointly from observed bids, and, to

recover the private value distribution, it is necessary to specify the asymmetric utility struc-

ture parametrically. On the other hand, when the number of bidders is large, the effects of

asymmetric risk aversion on equilibrium bids diminish. Hence asymptotic approximation

of the equilibrium bidding function may provide a feasible way to implement nonparamet-

ric estimation methods in large auctions with asymmetric risk averse bidders as well, which

could be of interest for future research.

2.6 Appendices

2.6.1 Proofs of Mathematical Properties

Proof of Proposition 2.1. (i) Since the equilibrium solution is symmetric in nature,

we can drop the individual subscript in .2:1/. Let sRN .�/ be the solution of the following

�rst-order differential equation

s0RN ;n .v/ D .n � 1/
f .v/
F .v/

�
v � sRN ;n .v/

�
; (2.17)

with boundary condition sRN ;n
�
v
�
D v. Fibich, Gavious and Sela (2004) have shown that

sRN ;n .v/ D v C O.n�1/. As 0 � v � sn .v/ � v � sRN ;n .v/ for all v 2 S .F/ (Riley and

Samuelson, 1981), we can extend &n .v/ to the following form

&n .v/ D v � sn .v/ D
1

n � 1
&1n .v/C o.n�1/; (2.18)

where &1n .v/ D O .1/. As � .0/ D 0 and �0 .0/ D 1, a Taylor expansion of �
�
&n .v/

�
D

� .v � sn .v// around 0 gives

�
�
&n .v/

�
D � .0/C �0 .0/ &n .v/C

1
2
�00 . Qx/ &2n .v/ D &n .v/C

1
2
�00 . Qx/ &2n .v/ ; (2.19)
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for Qx 2
�
0; &n .v/

�
. Since �00 . Qx/ is bounded as n ! 1 by De�nition 1, substitution of

.2:18/ into .2:19/ gives

�
�
&n .v/

�
D

1
n � 1

�
&1n .v/C o .1/

�
; (2.20)

which implies s0n .v/ D O .1/ by .2:1/. Multiplying both sides of the differential equation

.2:1/ by Fn�1 .v/ and taking integrals gives

s0n .v/ F
n�1 .v/ D .n � 1/ f .v/ Fn�2 .v/ � .v � sn .v//Z v

v
Fn�1 .u/ dsn .u/ D

Z v

v
� .u � sn .u// dFn�1 .u/ : (2.21)

Applying integration by parts to the right hand side of .2:21/, and rearranging terms yields

the integral form of the �rst order condition

� .v � sn .v// D
1

Fn�1 .v/

Z v

v
Fn�1 .u/ d .sn .u/C � .u � sn .u/// : (2.22)

Let �n .v/ D sn .v/C � .v � sn .v//, we have

�0n .v/ D s0n .v/C �
0 .v � sn .v//

�
1� s0n .v/

�
D s0n .v/C

�
�0 .0/C O .v � sn .v//

� �
1� s0n .v/

�
D 1C &1n .v/ O.n�1/

�
1� s0n .v/

�
D 1C O.n�1/;

where the second equality holds by the mean value theorem and boundedness of �00 .�/, the

third equality holds because �0 .0/ D 1, and the last equality holds because &1n .v/ D O .1/

and s0n .v/ D O .1/. We rewrite .2:22/ in the format of Laplace integral and apply the
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Laplace approximation (Copson, 1965)

� .v � sn .v// D
1

Fn�1 .v/

Z v

v
Fn�1 .u/ �0n .u/ du D

1
Fn�1 .v/

Z v

v
e.n�1/ ln F.u/�0n .u/ du

D
�0n .v/

Fn�1 .v/
e.n�1/ ln F.v/

.n � 1/ d ln F .v/ =dv
C o.n�1/

D
1

n � 1
F .v/
f .v/

C o.n�1/; (2.23)

where the last equality holds because �0n .v/ D 1C O.n�1/. Matching leading order terms

in .2:20/ and .2:23/ gives &1n .v/ D F .v/ = f .v/, which, together with .2:20/ and .2:1/,

implies that s0n .v/ D 1C o .1/ and �0n .v/ D 1C o.n�1/. So we can further extend &n .v/

to the following form

&n .v/ D v � sn .v/ D
1
n
F .v/
f .v/

C
1
n2
&2n .v/C o.n�2/. (2.24)

Substitution of .2:24/ in .2:19/ gives

�
�
&n .v/

�
D
1
n
F .v/
f .v/

C
1
n2
&2n .v/C

1
2
�00 . Qx/

�
1
n
F .v/
f .v/

�2
C o.n�2/; (2.25)

Taking derivatives on both sides of .2:1/ gives

s00n .v/ D .n � 1/
�
d
dv

�
f .v/
F .v/

�
� .v � sn .v//C

f .v/
F .v/

�0 .v � sn .v//
�
1� s0n .v/

��
:

Taylor approximations of � .v � sn .v// and �0 .v � sn .v// around 0 yield s00n .v/ D o .n/,

which implies that

�00n .v/ D s00n .v/� �
0 .v � sn .v// s00n .v/C �

00 .v � sn .v//
�
1� s0n .v/

�2
D s00n .v/�

�
�0 .0/C O.n�1/

�
s00n .v/C �

00 .v � sn .v// o .1/ D o .1/ :
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It follows from applying integration by parts and the Laplace approximation to .2:22/ that

� .v � sn .v// D
1

Fn�1 .v/

Z v

v
Fn�1 .u/ �0n .u/ du D

1
nFn�1 .v/

Z v

v

�0n .u/
f .u/

dFn .u/

D
1
n
F .v/ �0n .v/
f .v/

�
1

nFn�1 .v/

Z v

v
Fn .u/ d

�0n .u/
f .u/

D
1
n
F .v/ �0n .v/
f .v/

�
1

nFn�1 .v/

Z v

v
en ln F.u/

�00n .u/ f .u/� �0n .u/ f 0 .u/
f 2 .u/

du

D
1
n
F .v/ �0n .v/
f .v/

�
F2 .v/
n2

�00n .v/ f .v/� �0n .v/ f 0 .v/
f 3 .v/

C o.n�2/

D
1
n
F .v/
f .v/

C
F2 .v/
n2

f 0 .v/
f 3 .v/

C o.n�2/; (2.26)

where the last equality holds because �0n .v/ D 1 C o.n�1/ and �00n .v/ D o .1/. Matching

leading terms of .2:25/ and .2:26/ yields that

&2n .v/ D

�
f 0 .v/
f .v/

�
1
2
�00 . Qx/

��
F .v/
f .v/

�2
D O .1/ ;

which implies .2:2/. Substitution of .2:26/ into .2:1/ gives & 0n .v/ D 1�s0n .v/ D
1
n
d
dv

�
F.v/
f .v/

�
C

o.n�1/.

(ii) First, we show by mathematical induction that

�
�
&n .v/

�
D � .v � sn .v// D

�1 .v/

n
C � � � C

�rC1 .v/

nrC1
C o

�
n�.rC1/

�
; (2.27)

&n .v/ D v � sn .v/ D
�1 .v/

n
C � � � C

�rC1 .v/

nrC1
C o

�
n�.rC1/

�
; (2.28)

where �1 .v/ ; � � � ; �rC1 .v/ and �1 .v/ ; � � � ; �rC1 .v/ are known functions invariant with

n, and

& .r/n .v/ D
1
n
dr

dvr

�
F .v/
f .v/

�
C o.n�1/; (2.29)

for 0 � r � R � 1. We have already shown in (i) that .2:27/-.2:29/ hold for r D 0, so we

only need to show that .2:27/-.2:29/ holding for 0 � r � k � 1 implies .2:27/-.2:29/ hold
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for r D k � R � 1. A Taylor expansion of �
�
&n .v/

�
with an integral remainder gives

�
�
&n .v/

�
D � .0/C�0 .0/ &n .v/C� � �C

1
R!
�.R/ .0/ & Rn .v/C

Z &n.v/

0
�.RC1/ .t/

�
&n .v/� t

�R
R!

dt:

(2.30)

Analogously, we have for 1 � r � R

�.r/
�
&n .v/

�
D �.r/ .0/C� � �C

1
.R � r/!

�.R/ .0/ & R�rn .v/C

Z &n.v/

0
�.RC1/ .t/

�
&n .v/� t

�R�r
.R � r/!

dt:

(2.31)

From .2:1/, we have

1� s0n .v/ D 1� .n � 1/
f .v/
F .v/

�
�
&n .v/

�
:

For r � 2, taking the .r � 1/th derivatives on both sides gives

& .r/n .v/ D � .n � 1/
dr�1

dvr�1

�
f .v/
F .v/

�
�
&n .v/

��
D � .n � 1/

n dr�1
dvr�1

�
f .v/
F .v/

�
�
�
&n .v/

�
C � � �

C

�
r � 1
l

�
dr�1�l

dvr�1�l

�
f .v/
F .v/

�
dl

dvl
�
�
&n .v/

�
C � � �

C
f .v/
F .v/

dr�1

dvr�1
�
�
&n .v/

� o
; (2.32)

where by Faà di Bruno's formula,

dl

dvl
�
�
&n .v/

�
D

Xn l!
m1!C m2!C � � � C ml!

�.m1Cm2C���Cml/
�
&n .v/

�
�
Y

j :m j 6D0

�
1
j!
& .l/n .v/

�m j o
; (2.33)

where the sum is over all l-tuples .m1; � � � ;ml/ satisfying the constraint 1m1C2m2C� � �C

lml D l. By plugging .2:30/ and .2:31/ into .2:32/ and substituting &n .v/ by .2:28/, i.e.,

&n .v/ D
�1 .v/

n
C
�2 .v/

n2
C � � � C

�k .v/

nk
C o

�
n�k

�
;
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where �1 .v/ ; � � � ; �k .v/ are known and invariant with n by induction assumptions, we

can derive from r D 1 to k � 1 that

& .r/n .v/ D

 r1 .v/

n
C � � � C


 r;k�r .v/

nk�r
C o

�
nr�k

�
; (2.34)

where 
 r1 .v/ ; � � � ; 
 r;k�r .v/ are known functions invariant with n and &
.r/
n .v/ is of order

O.n�1/ by the induction assumptions .2:29/. From .2:33/, it follows for l � k � 1

dl

dvl
�
�
&n .v/

�
D �0

�
&n .v/

�
& .l/n .v/C O.n

�2/

D
1
n
�0
�
&n .v/

� dl
dvl

�
F .v/
f .v/

�
C o.n�1/

D
1
n
dl

dvl

�
F .v/
f .v/

�
C o.n�1/;

where the second equality holds because of .2:29/, and the last equality follows from a

Taylor approximation of �0
�
&n .v/

�
. From .2:30/, we have �

�
&n .v/

�
D F .v/ = .n f .v//C

o.n�1/. Hence if k D 1

& .k/n .v/ D 1� .n � 1/
f .v/
F .v/

�
�
&n .v/

�
D o .1/ ;

and, if k � 2, substitution of �
�
&n .v/

�
and dl�

�
&n .v/

�
=dvl into .2:32/ gives

& .k/n .v/ D �
n � 1
n

n dk�1
dvk�1

�
f .v/
F .v/

�
F .v/
f .v/

C � � �

C

�
k � 1
l

�
dk�1�l

dvk�1�l

�
f .v/
F .v/

�
dl

dvl

�
F .v/
f .v/

�
C � � �

C
f .v/
F .v/

dk�1

dvk�1

�
F .v/
f .v/

�o
C o .1/

D �
n � 1
n

dk�1

dvk�1

�
f .v/
F .v/

F .v/
f .v/

�
C o .1/ D o .1/ ;

which implies that

dk

dvk
�
�
&n .v/

�
D �0

�
&n .v/

�
& .k/n .v/C O.n�2/ D o .1/ :
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It follows that

& .kC1/n .v/ D � .n � 1/
dk

dvk

�
f .v/
F .v/

�
�
&n .v/

��
D � .n � 1/

n dk
dvk

�
f .v/
F .v/

�
�
�
&n .v/

�
C � � �

C

�
k
l

�
dk�l

dvk�l

�
f .v/
F .v/

�
dl

dvl
�
�
&n .v/

�
C � � �

C
f .v/
F .v/

dk

dvk
�
�
&n .v/

� o
D o .n/ :

As

�n .v/ D sn .v/C �
�
&n .v/

�
D sn .v/C

1
n � 1

F .v/
f .v/

s.1/n .v/ ;

where the second equality follows from .2:1/, we have

�.r/n .v/ D s.r/n .v/C
1

n � 1

n dr
dvr

�
f .v/
F .v/

�
s.1/n .v/C � � �

C

�
r
l

�
dr�l

dvr�l

�
f .v/
F .v/

�
s.lC1/n .v/C � � � C

f .v/
F .v/

s.rC1/n .v/
o
:

By substituting .2:34/, it can be rewritten in the following form

�.r/n .v/ D
�r1 .v/

n
C � � � C

�r;k�r .v/

nk�r
C o

�
nr�k

�
; (2.35)

where �r1 .v/ ; � � � ; �r;k�r .v/ are known functions invariant with n for r � k � 1. Further-

more, we have

�.k/n .v/ D s.k/n .v/C
dk

dvk
�
�
&n .v/

�
D s.k/n .v/C �0

�
&n .v/

�
& .k/n .v/C O.n�2/

D 1 .k D 1/C o.n�1/;
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where 1 .k D 1/ is an indicator of k D 1, and

�.kC1/n .v/ D s.kC1/n .v/C
dkC1

dvkC1
�
�
&n .v/

�
D s.kC1/n .v/C �0

�
&n .v/

�
& .kC1/n .v/C o .1/ D o .1/ ;

since �0
�
&n .v/

�
D �0 .0/C O

�
&n .v/

�
D 1C O.n�1/, & .k/n .v/ D o .1/, and & .kC1/n .v/ D

o .n/. Repeated integration by parts of .2:22/ gives that

�
�
&n .v/

�
D

1
n
 1 .v/ F .v/C � � � C

.�1/k�1

n .n C 1/ � � � .n C k � 1/
 k .v/ Fk .v/

C
.�1/k

n .n C 1/ � � � .n C k � 1/ Fn�1 .v/

Z v

v
FnCk�1 .u/  kC1 .u/ f .u/ du;

where  1 .v/ D �0n .v/ = f .v/ ;  2 .v/ D  01 .v/ = f .v/ ; � � � ;  kC1 .v/ D  0k .v/ = f .v/.

As  l .v/ is a polynomial of �0n .v/ ; � � � ; �
.l/
n .v/, by substitution of .2:35/, we have for

l � k � 1

 l .v/ D � l0 .v/C
� l1 .v/

n
C � � � C

� l;k�l .v/

nk�l
C o

�
nl�k

�
; (2.36)

 k .v/ D � k0 .v/Co.n�1/, and kC1 .v/ D � kC1;0 .v/Co .1/, where � l0 .v/ ; � � � ; � l;k�l .v/

are known functions invariant with n. The Laplace approximation gives

�
�
&n .v/

�
D

1
n
 1 .v/ F .v/C � � � C

.�1/k�1

n .n C 1/ � � � .n C k � 1/
 k .v/ Fk .v/

C
.�1/k

n .n C 1/ � � � .n C k � 1/ Fn�1 .v/

Z v

v
e.nCk�1/ ln F.u/ kC1 .u/ f .u/ du

D
1
n
 1 .v/ F .v/C � � � C

.�1/k�1

n .n C 1/ � � � .n C k � 1/
 k .v/ Fk .v/

C
.�1/k

n .n C 1/ � � � .n C k � 1/2
 kC1 .v/ FkC1 .v/C o

�
n�.kC1/

�
:

By substitution of .2:36/, it can be rewritten in the form of .2:27/

�
�
&n .v/

�
D
�1 .v/

n
C
�2 .v/

n2
C � � � C

�kC1 .v/

nkC1
C o

�
n�.kC1/

�
; (2.37)
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with �1; � � � ; �k .v/ known by the induction assumptions and �kC1 .v/ explicitly derived.

Let

&n .v/ D
�1 .v/

n
C
�2 .v/

n2
C � � � C

�kC1 .v/

nkC1
C o

�
n�.kC1/

�
; (2.38)

where �1; � � � ; �k .v/ are known by the induction assumptions. By substituting .2:38/ into

.2:30/ and matching leading order terms with .2:37/, we can solve for �kC1 .v/. Substitute

.2:30/ and .2:31/ into .2:32/ and replace &n .v/ by .2:38/. Now we can derive from r D 1

to k that

& .r/n .v/ D

 r1 .v/

n
C � � � C


 r;kC1�r .v/

nkC1�r
C o

�
nr�k�1

�
;

where 
 r1 .v/ ; � � � ; 
 r;kC1�r .v/ are known functions invariant with n. Speci�cally, &
.k/
n .v/ D


 k1 .v/ =n C o.n�1/. This, together with the induction assumption .2:29/, implies that


 k1 .v/ D dk .F .v/ = f .v// =dvk .

Lastly, we can show with analogous arguments that .2:27/-.2:29/ holding for r � R�1

implies .2:29/ holds for r D R.

Corollary 2.1 In a �rst-price IPV auction with n .n � 1/ bidders, suppose U .�/ 2 UR for

R � 1. Given A1 and A2, the equilibrium bid in the symmetric Bayesian Nash equilibrium

is given by

sn .v; x/ D v �
1
n
F .vjx/
f .vjx/

C O.n�2/:

Furthermore, we have & .r/n .v; x/ D O.n�1/ for 1 � r � R.

Proof of Proposition 2.2. Let h.v/ D sn .v/ � sm .v/, with n > m � 2. h .v/ D 0

implies that

h0 .v/ D s0n .v/� s
0
m .v/

D .n � 1/
f .v/
F .v/

� .v � sn .v//� .m � 1/
f .v/
F .v/

� .v � sm .v//

D .n � m/
f .v/
F .v/

� .v � sn .v// > 0;
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where the inequality holds because n > m and U .�/ is monotonically increasing. Since

h .0/ D 0, by the single crossing lemma sn .v/ > sm .v/ for Nv � v > v. As limn!1 sn . Nv/ D

Nv by Proposition 2.1, (i) follows. Next, gn .b/ D f .v/ =s0n .v/ with b D sn .v/. Because

f .v/ is bounded away from zero by assumption and s0n .v/ is bounded with limn!1 s0n .v/ D

1 by Proposition 2.1, (ii) follows. To prove (iii), we note that substitution of gn .b/ D

f .v/ =s0n .v/ into .2:1/ gives

gn .b/ D
F .v/

.n � 1/ .v � sn .v//
; (2.39)

with b D sn .v/. Since .n � 1/ .v � sn .v// D F .v/ = f .v/ C O.n�1/, it follows from

Proposition 2.1 that supb2C jgn .b/j is bounded as n ! 1. Similarly, g.r/n .b/ .r D

1; � � � ; R/ can be derived by taking r th differentiation on both sides of .2:39/. Using

mathematical induction, the desired result follows from Proposition 2.1.

Proof of Proposition 2.5. Trivial extension of Proposition 2.2 based on Corollary 2.1.

2.6.2 Proofs of Statistical Properties

To prove Propositions 2.3 and 2.4 we need two auxiliary lemmas on the uniform con-

vergence of QGn .�/ and Qgn .�/ de�ned by .2:4/ and .2:5/. Throughout j�jr;� denotes the

sup-norm of the r th derivatives of � on the set �.

Lemma 2.1 Suppose for R � 1, F .�/ 2 FR , U .�/ 2 UR , and QGn .�/ is given by .2:4/, we

have almost surely ��� QGn .b/� Gn .b/���
0;C

D O
�
1=
p
nL
�
;

where C is an arbitrary closed inner subset of S .G1/.

88



Proof. It follows from Proposition 2.2 that

QGn .b/ D
1
nL

XL
lD1

Xn
pD1 1

�
Bpl � b

�
D

1
nL

XL
lD1

Xn
pD1 1

�
Gn

�
Bpl
�
� Gn .b/

�
D

1
nL

XL
lD1

Xn
pD1 1

�
u pl � Gn .b/

�
;

where u pl D Gn
�
Bpl
�
is uniformly distributed on [0; 1] since Bpl � Gn .�/. Let u D

Gn .b/ 2 [0; 1], and nC D min
�
n : C � Son

	
where Son is the interior of S .Gn/. nC exists

because of Proposition 2.2(i). Then for n > nC ,��� QGn .b/� Gn .b/���
0;C

D

���� 1nLXL
lD1

Xn
pD1 1

�
u pl � Gn .b/

�
� Gn .b/

����
0;C

D

���� 1nLXL
lD1

Xn
pD1 1

�
u pl � u

�
� u

����
0;C

D O.1=
p
nL/;

where the last step holds because the empirical distribution of uniform distribution (which

does not depend on n) converges uniformly to the true distribution at the rate of
p
nL .

Lemma 2.2 Suppose for R � 1, F .�/ 2 FR , U .�/ 2 UR , and Qgn .�/ as given by .2:5/, we

have almost surely

j Qgn .b/� gn .b/j0;C D O .1=r/ ;

where C is an arbitrary closed inner subset of S .G1/ and r D .nL= log .nL//R=.2RC1/ :

Proof. The proof relies on the argument of Guerre, Perrigne and Vuong's (2000) proof

for the case of �xed n. However, the problem is different because, as we allow both n and L

to approach in�nity, the observations are from a triangular array of random variables shift-

ing with sample size. Hence the standard consistency results based on the i.i.d. assumption

of observations do not apply directly. We divide the proof into three steps. The �rst step
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studies the uniform bias of Qgn .�/, the second step studies its uniform variance bound, and

the last step establishes the exponential-type inequality. We simplify notation by omitting

the subscript R in hR and KR in this proof. The sup-norm is taken over the whole support

of the function unless otherwise indicated.

Step 1: Uniform Bias

For any closed inner subset C of S .G1/, let nC D min
�
n : C � Son

	
where Son is the

interior of S .Gn/. nC exists because of Proposition 2.2(i). For n > nC ,

E Qgn .b/ D E
1
nLh

XL
lD1

Xn
pD1 K

�
Bpl � b
h

�
D

Z
K .u/ gn .b C hu/ du:

Without loss of generality, suppose u � 0. Then for b 2 C and L suf�ciently large,

Qb 2 [b; b C hu] � C 0, where C 0 is a closed inner subset of S .Gn/. Since gn .�/ admits

up to R continuous bounded derivatives on any closed inner subset of S .Gn/, a Taylor

expansion gives

gn .b C hu/� gn .b/ � hug.1/n .b/C � � � C
.hu/R�1

.R � 1/!
g.R�1/n .b/C

jhujR

R!
jgnjR;C 0 :

As K .�/ is of order R, moments of order strictly smaller than R vanish. So we have

jE Qgn .b/� gn .b/j0;C D supb2C

����Z K .u/ .gn .b C hu/� gn .b// du
����

� hR jgnjR;C 0
1
R!

�Z
jujR K .u/ du

�
D hR jgnjR;C 0 M R;

where M R D .1=R!/
R
jujR K .u/ du. It follows from the de�nition of r and h that

r jE Qgn .b/� gn .b/j0;C � �RM R jgnjR;C 0 : (2.40)

Step 2: Uniform Variance
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For b 2 C , we have

Var . Qgn .b// D Var
�
1
nLh

XL
lD1

Xn
pD1 K

�
Bpl � b
h

��
D

1
nLh2

Var
�
K
�
B � b
h

��
�

1
nLh2

E
�
K
�
B � b
h

��2
D

1
nLh

Z
K 2 .u/ gn .b C hu/ du:

Let Q D
R
K 2 .u/ du, it follows that

jVar . Qgn .b//j0;C �
Q jgnj0
nLh

D
Q jgnj0

�r2 log .nL/
: (2.41)

Step 3: Exponential-type Inequality

In this step, we establish the exponential-type inequality for the probability of deviation

of Qgn .b/� gn .b/ in sup-norm over C . Let C be covered by T inner intervals of the form

Bt � B .bt ;1/ D fb 2 S .G1/ : b 2 [bt �1; bt C1]g ;

where bt 2 C and 1 > 0. Moreover, we consider minimal coverings for C , i.e., coverings

for which T is the smallest number denoted by T .C;1/. Let

e .�; � / D �C 2� jK j1 C �RM R jgnjR;C 0 ;

P .�; � / D 2T
�
C; �h2=r

�
exp

�
�

��2 log .nL/
2Q jgnj0 C 4� jK j0 = .3r/

�
;

where �; � are strictly positive constants.

Step 3(a): From .2:40/ and the triangular inequality, we obtain

Pr
�
r j Qgn .b/� gn .b/j0;C > e .�; � /

�
� Pr

�
r j Qgn .b/� E Qgn .b/j0;C C r jE Qgn .b/� gn .b/j0;C > e .�; � /

�
� Pr

�
r j Qgn .b/� E Qgn .b/j0;C > e .�; � /� �RM R jgnjR;C 0

�
: (2.42)
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Let Qgn .b/� E Qgn .b/ D .1=nL/
PnL
iD1 � i;nL .b/, where

� i;nL .b/ D
1
h

�
K
�
Bi � b
h

�
� EK

�
B � b
h

��
:

As the � i;nL 's are independent zero-mean variables, it follows from .2:41/

Var
�
r� i;nL

�
D nLr2Var . Qgn/ �

nLQ jgnj0
� log .nL/

:

By the triangular inequality we have��r� i;nL �� � 2r jK j0h
D

2nL jK j0
�r log .nL/

:

Hence the Bernstein inequality gives

Pr .r j Qgn .b/� E Qgn .b/j > �/

D Pr
����XnL

iD1 r� i;nL .b/�
XnL

iD1 E
�
r� i;nL .b/

���� > nL��
� 2 exp

 
�

n2L2�2

2
PnL
iD1 Var

�
r� i;nL

�
C 4n2L2� jK j0 = .3�r log .nL//

!

� 2 exp
�
�

��2 log .nL/
2Q jgnj0 C 4� jK j0 = .3r/

�
D

P .�; � /
T
�
C; �h2=r

� ;
for any b 2 C , �, n, and L .

Step 3(b): Consider a minimal covering of C for some1 > 0. For any b 2 Bt , we have

by the triangular inequality

r j Qgn .b/� E Qgn .b/j � sup
1�t�T

��� rnLXnL
iD1 � i;nL .bt/

���C sup
1�t�T

sup
b2Bt

��� rnLXnL
iD1

�
� i;nL .bt/� � i;nL .b/

���� ;
which implies that

Pr
�
r sup
b2C

j Qgn .b/� E Qgn .b/j > e .�; � /� �RM R jgnjR;C 0
�

� Pr

 
sup
1�t�T

sup
b2Bt

��� rnLXnL
iD1

�
� i;nL .bt/� � i;nL .b/

���� > e .�; � /� �� �RM R jgnjR;C 0

!

CPr

 
r sup
1�t�T

j Qgn .bt/� E Qgn .bt/j > �

!
: (2.43)
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Since ����1h K
�
B � bt
h

�
�
1
h
K
�
B � b
h

����� � 1 jK j1
h2

;

by the mean value theorem, we have by the triangular inequality

��� i;nL .bt/� � i;nL .b/�� � 1 jK j1
h2

C E
1 jK j1
h2

D
21 jK j1
h2

:

Step 3(c): Let 1 D �h2=r , it follows

sup
1�t�T

sup
b2Bt

��� rnLXnL
iD1

�
� i;nL .bt/� � i;nL .b/

���� � 2r1 jK j1h2
D 2� jK j1 :

Hence

Pr

 
sup
1�t�T

sup
b2Bt

��� rnLXnL
iD1

�
� i;nL .bt/� � i;nL .b/

���� > e .�; � /� �� �RM R jgnjR;C 0

!

D Pr

 
sup
1�t�T

sup
b2Bt

��� rnLXnL
iD1

�
� i;nL .bt/� � i;nL .b/

���� > 2� jK j1
!
D 0: (2.44)

Then it follows from .2:42/, .2:43/, .2:44/, and the Bernstein inequality that

Pr
�
r j Qgn .b/� gn .b/j0;C > e .�; � /

�
� Pr

�
r j Qgn .b/� E Qgn .b/j0;C > e .�; � /� �RM R jgnjR;C 0

�
� Pr

�
r sup1�t�T j Qgn .bt/� E Qgn .bt/j > �

�
�

XT
tD1 Pr .r j Qgn .bt/� E Qgn .bt/j > �/

� P .�; � / :

The covering number T .C;1/ is of order 1�1, as the covered set C is an interval.

Hence T
�
C; �h2=r

�
D O..nL= log .nL//.RC2/=.2RC1//. By taking � suf�ciently large,

P .�; � / converges as nL !1. The desired result follows from the Borel-Cantelli lemma

and the fact that e .�; � / D O .1/.
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Proof of Proposition 2.3. The proof presented here follows Guerre, Perrigne and

Vuong's (2000) proof for the risk neutrality case. Let

NVpl D Bpl C
1

n � 1
 n

�
Bpl
�
;

with  n .�/ D Gn .�/ =gn .�/. Let Q n .�/ D QGn .�/ = Qgn .�/, with QGn .�/ and Qgn .�/ given by

.2:4/ and .2:5/ respectively. Since C .V / is a closed inner subset of S .F/ and sn .�/ is

a strictly increasing continuous function, C .B/ D C .sn .V // is a closed inner subset of

S .Gn/. From .2:3/, we have

1C.V /
�
Vpl
� ��� OVpl � Vpl���

� 1C.V /
�
Vpl
� ���� OVpl � NVpl

���C �� NVpl � Vpl���
D

1C.B/
�
Bpl
�

n � 1

��� Q n �Bpl��  n �Bpl����C O.n�2/
D

1C.B/
�
Bpl
�
1. OVpl 6D 1/

n � 1

��� Q n �Bpl��  n �Bpl����
C
1C.B/

�
Bpl
� �
1� 1. OVpl 6D 1/

�
n � 1

��� Q n �Bpl��  n �Bpl����C O.n�2/:
It is easy to see that 1C.B/

�
Bpl
�
.1 � 1. OVpl 6D 1// D 0 almost surely for any p and l

as n; L ! 1. Since Gn .�/ � 1 and gn .�/ has a positive lower bound cg by Proposition

2.2(ii), we have

1C.B/
�
Bpl
�
1. OVpl 6D 1/

��� Q n �Bpl��  n �Bpl����
D

1C.B/
�
Bpl
�
1. OVpl 6D 1/

gn j Qgnj

���. QGn � Gn/gn C .gn � Qgn/Gn
���

�
1C.B/

�
Bpl
�
1. OVpl 6D 1/

cg Ocg

���. QGn � Gn/ jgnj0 C .gn � Qgn/
��� :

where Ocg D min
��� Qgn �Bpl���	! cg > 0. It follows from Lemma 2.1 and 2.2 that

sup 1C.B/
�
Bpl
�
1. OVpl 6D 1/

��� Q �Bpl��  �Bpl���� D O .1=r/ :
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Thus if L ! 1 and r=n ! 0 as n ! 1, we have almost surely for any closed inner

subset C .V / of S .F/,

suppl 1C.V /.Vpl/
��� OVpl � Vpl��� D O .1=nr/ ; (2.45)

and, if L ! 1 and r=n ! 1 as n ! 1, we have almost surely for any closed inner

subset C .V / of S .F/,

suppl 1C.V /.Vpl/
��� OVpl � Vpl��� D O �1=n2� : (2.46)

Proof of Proposition 2.4. Following Guerre, Perrigne and Vuong (2000), let

Qf .v/ D
1
nL

LX
lD1

nX
pD1

KR
�
Vpl � v
hR

�
(2.47)

be the �infeasible� nonparametric estimator of f using the true private values Vpl . Let

C 0 .V / be an inner closed subset of S .F/ containing all hypercubes of size � (small enough)

centered at v in C .V /. De�ne C 00 .V / analogously with respect to C 0 .V /. Hence C .V / �

C 0 .V / � C 00 .V / � S .F/. For v 2 C .V / and n; L large enough, Of .v/ uses at most

observations OVpl in C 0 .V / and hence at most Vpl in C 00 .V / by the uniform convergence

of pseudo-private values OVpl to Vpl in Proposition 2.3. Similarly, Qf .v/ uses at most Vpl in
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C 00 .V / for any v in C .V /. Hence we have almost surely for n; L large enough,

��� Of .v/� Qf .v/
���

D

����� 1
nLhR

LX
lD1

nX
pD1
1C 00.V /.Vpl/

"
KR

 
v � OVpl
hR

!
� KR

�
v � Vpl
hR

�#�����
�

����� 1
nLhR

LX
lD1

nX
pD1
1C 00.V /.Vpl/

. OVpl � Vpl/
hR

@KR
@v

�
v � Vpl
hR

������
C

1
2nLhR

LX
lD1

nX
pD1
1C 00.V /.Vpl/

. OVpl � Vpl/2

h2R

����@2KR@v2
.v/

����
0

�
supp;l 1C 00.V /.Vpl/

��� OVpl � Vpl���
hR

1
nLhR

LX
lD1

nX
pD1

����@KR@v
�
v � Vpl
hR

�����
C
supp;l 1C 00.V /.Vpl/

��� OVpl � Vpl���2
2h3R

����@2KR@v2
.v/

����
0
:

Let

QK .x/ D
����@KR@v .x/

���� = Z ����@KR@v .u/
���� du:

Thus we have almost surely, as QK .x/ is a well de�ned kernel,����� 1
nLhR

LX
lD1

nX
pD1

QK
�
v � Vpl
hR

�
� f .v/

�����
0

! 0;

which implies 1
nLhR

PL
lD1

Pn
pD1

��@KR ��v � Vpl� =hR� =@v�� converges uniformly onC .V /
to

f .v/
Z ����@KR@v .u/

���� du:
Hence 1

nLhR
PL
lD1

Pn
pD1

��@KR ��v � Vpl� =hR� =@v�� is bounded almost surely. ��@2KR .v/ =@v2��0
is bounded by the de�nition of KR .�/. We consider the following two cases:

(i) L !1, and r=n! 0 as n!1
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From .2:45/, we have almost surely

��� Of .v/� Qf .v/
���
0;C.V /

D O

 
1
n

�
log nL
nL

�.R�1/=.2RC1/!
CO

 
1
n2

�
log nL
nL

�.2R�3/=.2RC1/!
:

If R D 1, then r=n! 0 implies that

��� Of .v/� Qf .v/
���
0;C.V /

D O

 
1
n

�
log nL
nL

�.R�1/=.2RC1/!
:

If R � 2, then .2R � 3/ = .2R C 1/ � .R � 1/ = .2R C 1/, which also implies that

��� Of .v/� Qf .v/
���
0;C.V /

D O

 
1
n

�
log nL
nL

�.R�1/=.2RC1/!
D O

�
1

nrhR

�
:

Since r=n! 0 implies 1= .nhR/! 0, we have almost surely

��� Of .v/� f .v/
���
0;C.V /

�

���� Of .v/� Qf .v/
���
0;C.V /

C
��� Qf .v/� f .v/

���
0;C.V /

�
D O

�
1

nrhR

�
C O

�
1
r

�
D O

�
r�1

�
;

where j Qf .v/ � f .v/ j0;C.V / D O
�
r�1

�
follows from analogous arguments used in the

proof for Lemma 2.2.

(ii) L !1, and r=n!1 as n!1

From .2:46/, we have almost surely

j Of .v/� Qf .v/ j0;C.V / D O
�
n2hR

��1
C O.n4h3R/

�1:

If .nhR/�1! 0, then j Of .v/� Qf .v/ j0;C.V / D O
�
n2hR

��1. Hence, if .r=n/ .nhR/�1! 0,

we have almost surely that j Of .v/� f .v/ j0;C.V / D O
�
n2hR

��1
CO

�
r�1

�
D O

�
r�1

�
; and

if .r=n/ .nhR/�1!1, we have almost surely that j Of .v/� f .v/ j0;C.V / D O
�
n2hR

��1
C

O
�
r�1

�
D O

�
n2hR

��1. On the other hand, if .nhR/�1!1, then j Of .v/� Qf .v/ j0;C.V / D
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O.n4h3R/
�1. We have almost surely that j Of .v/� f .v/ j0;C.V / D O.n4h3R/

�1CO
�
r�1

�
D

O.n4h3R/
�1.

Proof of Proposition 2.6. Trivial extension of Proposition 2 in Guerre, Perrigne and

Vuong (2000).

To prove Proposition 2.7 we need an auxiliary lemma on the uniform convergence of

QGn .b; x; i/ Qgn .b; x; i/ and Qf .v; x/ de�ned in .2:8/ .2:9/ and .2:55/.

Lemma 2.3 Suppose A1-A4 hold, and L !1, .nhg/�1! 0 as n!1. We have almost

surely

j QGn .b; x; i/� Gn .b; x; i/ j0;C D O .1=rG/ ;

j Qgn .b; x; i/� gn .b; x; i/ j0;C D O
�
1=rg

�
j Qf .v; x/� f .v; x/ j0;C D O

�
1=r f

�
;

where C is an arbitrary closed inner subset of S .G1/, rG D .L= log L/.RC1/=.2RCdC2/,

and rg D r f D .L= log L/R=.2RCd/.

Proof. The proof relies on the argument of Guerre, Perrigne and Vuong's (2000) proof

for the case of �xed n. However the problem is different as we are interested in the asymp-

totic properties of the estimators allowing both n and L to approach in�nity. The arguments

are more involved here, because Gn .�; �; �/ shifts with sample size, and .Bpl; Xl; Il/ and

.Vpl; Xl/ observed in the same auction are correlated. We divide the proof into three steps.

The �rst step studies the uniform bias, the second step studies the uniform variance bound,

and the last step establishes exponential-type inequality. As the proofs are similar, we only

detail the proof for Qgn .�; �; �/, as it is the most different from Guerre, Perrigne and Vuong's

(2000) proof. The sup-norm is taken over the whole support of the function unless other-

wise indicated.
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Step 1: Uniform Bias

For any closed inner subset C of S .G1/, let nC D min
�
n : C � Son

	
where Son is the

interior of S .Gn/. nC exists because of Proposition 2.5(i). For n > nC ,

E Qgn .b; x; i/ D E

"
1
hdC1g

Kg
�
Bp � b
hg

;
X � x
hg

; 0
�
1 .I D i/

#

D

Z Z
Kg .u; y; 0/ gn

�
b C hgu; x C hg y; i

�
dudy:

De�ne 
 .t/ D gn
�
b C thgu; x C thg y; i

�
� gn .b; x; i/ for t 2 [0; 1]. For L large enough,�

b C thgu; x C thg y
�
2 .b; x/C S

�
hg
�
� C 0i for .b; x; i/ 2 C and t 2 [0; 1], where C

0
i is

a closed inner subset of S .Gn .�; �; i//. Since gn .�; �; �/ admits up to R continuous bounded

derivatives with

j
 jR;[0;1] � hRg k.u; y/k
R jgnjR;C 0 :

Thus a Taylor expansion gives


 .1/� 
 .0/ � 
 .1/ .0/C � � � C
1

.R � 1/!

 .R/ .0/C

1
R!
j
 jR;[0;1] ;

where 
 .r/ .0/ is a polynomial of order r in .u; y/. As Kg .�; �/ is of order R, moments of

order strictly smaller than R vanish. It follows that

jE Qgn .b; x; i/� gn .b; x; i/j0;C

D

����Z Kg .u; y; 0/ .
 .1/� 
 .0// dudy
���� � hRg 1R! jgnjR;C 0

Z
k.u; y/kR

��Kg .u; y; 0/�� dudy
D hRg M

R
g jgnjR;C 0 D �

R
g M

R
g jgnjR;C 0 =rg; (2.48)

where M R
g D .1=R!/

R
k.u; y/kR

��Kg .u; y; 0/�� dudy.
Step 2: Uniform Variance
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For .b; x; i/ 2 C , we have

Var . Qgn .b; x; i//

D Var

 
1

LhdC1g

LX
lD1

1 .Il D i/
ni

niX
pD1

Kg
�
Bpl � b
hg

;
Xl � x
hg

; 0
�!

D
1

Lh2.dC1/g
Var

 
1 .I D i/
ni

niX
pD1

Kg
�
Bpl � b
hg

;
Xl � x
hg

; 0
�!

�
1

Lh2.dC1/g
E

 
1 .I D i/
ni

niX
pD1

Kg
�
Bpl � b
hg

;
Xl � x
hg

; 0
�!2

D
1

Lh2.dC1/g
E

 
1 .I D i/
.ni/2

niX
pD1

K 2g

�
Bpl � b
hg

;
Xl � x
hg

; 0
�!

C
1

Lh2.dC1/g
E

 
1 .I D i/
.ni/2

niX
pD1

niX
qD1;q 6Dp

Kg
�
Bpl � b
hg

;
Xl � x
hg

; 0
�
Kg
�
Bql � b
hg

;
Xl � x
hg

; 0
�!

D
1

.ni/LhdC1g

Z
K 2g .u; y; 0/ gn

�
b C hgu; x C hg y; i

�
dudy

C
ni � 1
.ni/Lhdg

Z
Kg .u1; y; 0/ Kg .u2; y; 0/ gn;Bj.X;I /

�
b C hgu1jx C hg y; i

�
�gn;Bj.X;I /

�
b C hgu2jx C hg y; i

�
gn;.X;I /

�
x C hg y; i

�
du1du2dy:

Let Qg1 D
R
K 2g .u; y; 0/ dudy and Qg2 D

R
Kg .u1; y; 0/ Kg .u2; y; 0/ du1du2dy.

jVar . Qgn .b; x; i//j0;C �
Qg1 jgnj0
.ni/LhdC1g

C
.ni � 1/Qg2

���g2n;Bj.X;I /gn;.X;I /���0
.ni/Lhdg

: (2.49)

Step 3: Exponential-type Inequality

In this step, we establish the exponential-type inequalities for the probabilities of devia-

tions of Qgn .b; x; i/� gn .b; x; i/ in sup-norm over Ci , where Ci D f.b; x/ : .b; x; i/ 2 Cg.

Let Ci be covered by T inner �balls� of the form

Bi t � Bi ..bt ; xt/ I1/ D f.b; x/ 2 S .G1/ : b 2 [bt �1; bt C1] ; x 2 [xt �1; xt C1]g ;

where .bt ; xt/ 2 Ci , and 1 > 0 for t D 1; � � � ; T . Moreover, we consider minimal

coverings for Ci , i.e., coverings for which T is the smallest number denoted by T .Ci ;1/.

100



Let

eg .�; � / D �C 2.d C 1/�
��Kg��1 C �Rg M R

g jgnjR;C 0 ;

Pg .�; � / D 2T
�
Ci ; �hdC2g =rg

�
� exp

0B@� �dg�
2 log L

2Qg1 jgnj0 =.nihg/C 2.1C 1=ni/Qg2
���g2n;Bj.X;I /gn;.X;I /���0 C 4� ��Kg��0 = �3rghg�

1CA ;
where � and � are strictly positive constants.

Step 3(a): From .2:48/ and the triangular inequality, we obtain

Pr
�
rg j Qgn � gnj0;C > eg .�; � /

�
� Pr

�
rg j Qgn � E Qgnj0;C C rg jE Qgn � gnj0;C > eg .�; � /

�
� Pr

�
rg j Qgn � E Qgnj0;C > eg .�; � /� �Rg M

R
g jgnjR;C 0

�
: (2.50)

Let Qgn .b; x; i/� E Qgn .b; x; i/ D .1=L/
PL
mD1 �mL .b; x; i/, where

�mL .b; x; i/ D
1

nihdC1g

niX
pD1

n
Kg
�
Bpm � b
hg

;
Xm � x
hg

; 0
�
1 .Im D i/

�E
�
Kg
�
Bp � b
hg

;
X � x
hg

; 0
�
1 .I D i/

�o
:

As the �mL 's are independent zero-mean variables for m D 1; � � � ; L , it follows from

.2:49/

Var
�
rg�mL .b; x; i/

�
D Lr2gVar . Qgn/ �

Lr2gQg1 jgnj0
.nihg/Lhdg

C
.ni � 1/Lr2gQg2

���g2n;Bj.X;I /gn;.X;I /���0
.ni/Lhdg

D
LQg1 jgnj0

.nihg/�dg log L
C
.ni � 1/LQg2

���g2n;Bj.X;I /gn;.X;I /���0
.ni/�dg log L

:

By the triangular inequality we have

��rg�mL .b; x; i/�� � 2rg
hdC1g

��Kg��0 D 2L
��Kg��0

�dgrghg log L
:
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Hence the Bernstein inequality gives

Pr
�
rg j Qgn .b; x; i/� E Qgn .b; x; i/j > �

�
D Pr

 ����� LXmD1 rg�mL .b; x; i/�
LX
mD1

E
�
rg�mL .b; x; i/

������ > L�
!

� 2 exp

0@� L2�2

2
PL
mD1 Var

�
rg�mL

�
C 4L2�

��Kg��0 = �3�dgrghg log L�
1A

� 2 exp

0B@� �dg�
2 log L

2Qg1 jgnj0 =.nihg/C 2.1C 1=ni/Qg2
���g2n;Bj.X;I /gn;.X;I /���0 C 4� ��Kg��0 = �3rghg�

1CA
D

Pg .�; � /

T
�
Ci ; �hdC2g =rg

� ;
for any .b; x; i/ 2 C , �, n, and L .

Step 3(b): Consider a minimal covering of C for some1 > 0. For any b 2 Bt , we have

rg j Qgn .b; x; i/� E Qgn .b; x; i/j0;Ci � sup
1�t�T

���rgL XL
mD1 �mL .bt ; xt ; i/

���
C sup
1�t�T

sup
.b;x/2Bi t

���rgL XL
mD1

�
�mL .bt ; xt ; i/� �mL .b; x; i/

���� :
This gives

Pr
�
rg j Qgn .b; x; i/� E Qgn .b; x; i/j0;Ci > e .�; � /� �

R
g M

R
g jgnjR;C 0

�
� Pr

 
sup
1�t�T

sup
.b;x/2Bi t

���rgL XL
mD1

�
�mL .bt ; xt ; i/� �mL .b; x; i/

���� > e .�; � /� �� �Rg M R
g jgnjR;C 0

!

CPr

 
rg sup
1�t�T

j Qgn .bt ; xt ; i/� E Qgn .bt ; xt ; i/j > �

!
: (2.51)

For any .b; x/ 2 Bi t , it follows from the mean value theorem����� 1
hdC1g

Kg
�
B � bt
hg

;
X � xt
hg

; 0
�
�

1
hdC1g

Kg
�
B � b
hg

;
X � x
hg

; 0
������ � .d C 1/1

hdC2g

��Kg��1 :
The triangular inequality gives

����mL .bt ; xt ; i/� �mL .b; x; i/��� � .d C 1/1
hdC2g

��Kg��1CE .d C 1/1hdC2g

��Kg��1 D 2.d C 1/1hdC2g

��Kg��1 :
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Step 3(c): Let 1 D �hdC2g =rg; it follows that

sup
1�t�T

sup
b2Bt

���rgL XL
mD1

�
�mL .bt ; xt ; i/� �mL .b; x; i/

���� � 2rg.d C 1/1
hdC2g

��Kg��1 D 2.dC1/� ��Kg��1 :
Hence

Pr

 
sup
1�t�T

sup
b2Bt

���rgL XL
mD1

�
�mL .bt ; xt ; i/� �mL .b; x; i/

���� > e .�; � /� �� �Rg M R
g jgnjR;C 0

!
D 0:

(2.52)

Then it follows from .2:50/, .2:51/, .2:52/, and the Bernstein inequality that

Pr
�
rg j Qgn � gnj0;C > eg .�; � /

�
� Pr

�
rg j Qgn .b; x; i/� E Qgn .b; x; i/j0;Ci > e .�; � /� �

R
g M

R
g jgnjR;C 0

�
� Pr

 
rg sup
1�t�T

j Qgn .bt ; xt ; i/� E Qgn .bt ; xt ; i/j > �

!
�

XT
tD1 Pr

�
rg j Qgn .bt ; xt ; i/� E Qgn .bt ; xt ; i/j > �

�
� P .�; � / :

As the dimension of the covered set C is d C 1, the covering number T .C;1/ is of

order 1�.dC1/. Hence T
�
C; �hdC2g =rg

�
D O.L= log L/.dC1/.RCdC2/=.2RCd/. By taking

� suf�ciently large, P .�; � / converges as L ! 1. The desired result follows from the

Borel-Cantelli lemma and the fact that e .�; � / D O .1/.

Proof of Proposition 2.7. First, the uniform consistency of pseudo-private values

follows from similar arguments as used in the proof of Proposition 2.3. If L !1, rg=n!

0 as n!1, we have almost surely for any closed inner subset C .V / of S .F/,

suppl 1C.V /.Vpl; Xl/
��� OVpl � Vpl��� D O �1=nrg� ; (2.53)

and, if L !1, rg=n!1 as n!1, we have almost surely for any closed inner subset

C .V / of S .F/,

suppl 1C.V /.Vpl; Xl/
��� OVpl � Vpl��� D O �1=n2� : (2.54)
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To establish the uniform consistency of the two-step estimator, let

Qf .v; x/ D
1

nLhdC1f

LX
lD1

1
Il

n IlX
pD1

K f
�
Vpl � v
h f

;
Xl � x
h f

�
(2.55)

be the �infeasible� nonparametric estimator of f using the true private values Vpl . Let

C 0 .V / be an inner closed subset of S .F/ containing all hypercubes of size � (small enough)

centered at .v; x/ in C .V /. De�ne C 00 .V / analogously with respect to C 0 .V /. Hence

C .V / � C 0 .V / � C 00 .V / � S .F/. For .v; x/ 2 C .V / and n; L large enough, Of .v; x/

uses at most observations . OVpl; Xl/ in C 0 .V / and hence at most .Vpl; Xl/ is in C 00 .V / by

the uniform convergence of pseudo-private values OVpl to Vpl . Similarly, Qf .v; x/ uses at

most .Vpl; Xl/ in C 00 .V / for any .v; x/ in C .V /. Hence we have almost surely for n; L

large enough,

��� Of .v; x/� Qf .v; x/
���

D

����� 1
nLhdC1f

LX
lD1

1
Il

n IlX
pD1
1C 00.V /.Vpl; Xl/

"
K f

 
OVpl � v
h f

;
Xl � x
h f

!
� K f

�
Vpl � v
h f

;
Xl � x
h f

�#�����
�

����� 1
nLhdC1f

LX
lD1

1
Il

n IlX
pD1
1C 00.V /.Vpl; Xl/

. OVpl � Vpl/
h f

@K f
@v

�
Vpl � v
h f

;
Xl � x
h f

������
C

1
2nLhdC1f

LX
lD1

1
Il

n IlX
pD1
1C 00.V /.Vpl; Xl/

. OVpl � Vpl/2

h2f

�����@2K f@v2

�
v;
Xl � x
h f

������
0

�
supp;l 1C 00.V /.Vpl; Xl/

��� OVpl � Vpl���
h f

1
nLhdC1f

LX
lD1

1
Il

n IlX
pD1

����@K f@v

�
Vpl � v
h f

;
Xl � x
h f

�����
C
supp;l 1C 00.V /.Vpl; Xl/

��� OVpl � Vpl���2
2h3f

1
Lhdf

LX
lD1

�����@2K f@v2

�
v;
Xl � x
h f

������
0

:

The two sums may be viewed as kernel estimators and hence uniformly bounded on C.V /.

We consider the following two cases:

(i) L !1, and r f =n! 0 as n!1
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From .2:53/, we have almost surely

��� Of .v; x/� Qf .v; x/
���
0;C.V /

D O

 
1
n

�
log L
L

�.R�1/=.2RCd/!
CO

 
1
n2

�
log L
L

�.2R�3/=.2RCd/!
:

If R D 1, then r f =n! 0 implies that

��� Of .v; x/� Qf .v; x/
���
0;C.V /

D O

 
1
n

�
log nL
nL

�.R�1/=.2RC1/!
:

If R � 2, then .2R � 3/ = .2R C d/ � .R � 1/ = .2R C d/, which also implies that

��� Of .v; x/� Qf .v; x/
���
0;C.V /

D O

 
1
n

�
log nL
nL

�.R�1/=.2RCd/!
D O

�
1

nr f h f

�
:

Since r f =n! 0 implies 1=
�
nh f

�
! 0, we have almost surely

��� Of .v; x/� f .v; x/
���
0;C.V /

�

���� Of .v; x/� Qf .v; x/
���
0;C.V /

C
��� Qf .v; x/� f .v; x/

���
0;C.V /

�
D O

�
1

nr f h f

�
C O

�
1
r f

�
D O.r�1f /;

where j Qf .v; x/� f .v; x/ j0;C.V / D O.r�1f / follows from Lemma 2.3.

(ii) L !1, and r f =n!1 as n!1

From .2:54/, we have almost surely

j Of .v; x/� Qf .v; x/ j0;C.V / D O
�
n2h f

��1
C O.n4h3f /

�1 D O
�
n2h f

��1
;

as
�
nh f

��1
! 0. Hence, if .r f =n/

�
nh f

��1
! 0, we have almost surely that j Of .v; x/ �

f .v; x/ j0;C.V / D O
�
n2h f

��1
C O.r�1f / D O.r�1f /; and if .r f =n/

�
nh f

��1
! 1, we

have almost surely that j Of .v; x/� f .v; x/ j0;C.V / D O
�
n2h f

��1
CO.r�1f / D O

�
n2h f

��1.
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CHAPTER 3

IMPROVED EFFICIENT QUASI MAXIMUM LIKELIHOOD
ESTIMATOR OF SPATIAL AUTOREGRESSIVE MODELS

3.1 Introduction

In this chapter, we derive the best generalized method of moments estimators (BG-

MME) for the regression model with spatial autoregressive (SAR) disturbances and the

mixed regressive spatial autoregressive (MRSAR) model, within the class of generalized

method of moments estimators (GMME) based on linear and quadratic moment conditions.

The BGMME proposed here has the merit of computational simplicity and asymptotic ef�-

ciency. It is asymptotically as ef�cient as the maximum likelihood estimator (MLE) when

the disturbances are normally distributed, and asymptotically more ef�cient than the quasi

maximum likelihood estimator (QMLE) otherwise.

The generalized method of moments (GMM) by Hansen (1982) has been noted for its

possible use for the estimation of spatial autoregressive (SAR) models in the presence of

exogenous regressors, e.g., Anselin (1988; 1990), Land and Deane (1992), Kelejian and

Robinson (1993), Kelejian and Prucha (1997; 1998), and Lee (2003), among others. Those

GMM methods are 2SLS methods as their moment conditions are based on exogenous re-

gressors (and spatial weights matrices) in the model and all the instrumental variables (IV)

used are generated from them. The 2SLS estimators have been shown to be consistent
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and asymptotically normally distributed (Kelejian and Prucha, 1998), but not ef�cient rel-

ative to MLE when errors are normally distributed. And the 2SLS methods would not be

consistent when all the exogenous regressors in the MRSAR model are really irrelevant.

Kelejian and Prucha (1999) propose a method of moments (MOM) for the regression

model with SAR disturbances. Their MOM estimator is consistent but inef�cient as com-

pared to the MLE. Lee (2001a) generalizes the MOM procedure for the estimation of the

regression model with SAR disturbances into a systematic GMM framework and shows the

existence of BGMME in the case of normally distributed disturbances. The GMM frame-

work is further extended for the estimation of the MRSAR model in Lee (2006), based on

a combination of the moments in the 2SLS framework with some modi�ed moment func-

tions originated from the estimation of the regression model with SAR disturbances. Lee

(2006) shows that the proposed GMME can be asymptotically more ef�cient than the 2SLS

estimators, and the BGMME exists in the case with normally distributed disturbances. As

Lee's (2006) BGMME has the same limiting distribution as the MLE under normality, it

is unlikely to be ef�cient when the disturbances are not normally distributed. Here, we

show the existence of distributionally free BGMME within the class of GMME based on

the linear and quadratic moments of the disturbances.23

This chapter is organized as follows. In Section 2, we consider the GMM estimation

of the regression model with SAR disturbances and the MRSAR model respectively. The

best selection of moment functions and optimal IVs will be discussed and the possible

ef�ciency property is derived. All the proofs of the results are collected in the appendices.

Section 3 provides some Monte Carlo results for the comparison of �nite sample properties

of estimators. Section 4 brie�y concludes.

23A preliminary investigation of possible BGMME which may improve upon the QMLE is in Bollinger
(2001).
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3.2 GMM Estimation and the BGMME

3.2.1 GMM Estimation of the Regression Model with SAR Distur-
bances

The regression model with SAR disturbances is speci�ed as

Yn D Xn� C un;

un D �Wnun C �n; (3.1)

where n is the total number of spatial units, Xn is an n � k dimensional matrix of nonsto-

chastic exogenous variables, Wn is an n � n dimensional spatial weights matrix of known

constants with a zero diagonal, and the disturbances �n1; � � � ; �nn of the n-dimensional

vector �n are i.i.d. .0; � 2/. The Wnun in .3:1/ is called a spatial lag and its coef�cient

is supposed to represent the spatial effect due to the in�uence of neighboring units on a

single spatial unit. In order to distinguish the true parameters from other possible values

in the parameter space, we denote �0, �0, and � 20 as the true parameters that generate the

observed sample. For any possible value �, denote Sn.�/ D In � �Wn . At �0, Sn D Sn.�0/

for simplicity. This model is supposed to be an equilibrium model.

Equation .3:1/ implies that

Yn D Xn�0 C S�1n �n: (3.2)

The regression model is a generalized linear model with variance � 20S
�1
n S0�1n for the dis-

turbance vector un . A possible estimator of �0 is the feasible generalized least squares

estimator (GLSE) O�FG D .X 0n OS0n OSnXn/�1X 0n OS0n OSnYn with a consistently estimated weight-

ing matrix. In order to estimate S0nSn , one needs to estimate the unknown parameter �0 in

the SAR disturbance process.
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Let O�L D
�
X 0nXn

��1 X 0nYn be the ordinary least square estimator (OLSE). The distur-
bance vector un can be estimated by the estimated residual Oun D Yn�Xn O�L . And following

Lee (2001a), �0 can then be estimated by the GMM:

min
�
g0n .�/ a

0
nangn .�/ ; (3.3)

based on the quadratic moment conditions of �n

gn .�/ D [P1nSn .�/ Oun; � � � ; PmnSn .�/ Oun]0Sn .�/ Oun; (3.4)

where Pjn's are n�n dimensional constant matrices such that tr
�
Pjn

�
D 0 . j D 1; � � � ;m/.24

For rigorous analysis, the following regularity assumptions for the GMM estimation are

speci�ed in Lee (2001a; 2006).

Assumption 1 The �ni 's are i.i.d. with zero mean, variance � 20 and that a moment of

order higher than the fourth exists.

Assumption 2 The elements of Xn are uniformly bounded constants, Xn has the full

rank k, and limn!1 1
n X

0
nXn exists and is nonsingular.

Assumption 3 The spatial weights matrices fWng and fS�1n g are uniformly bounded in

both row and column sums in absolute value.25

Assumption 4 The matrices Pn's with tr .Pn/ D 0 are uniformly bounded in both row

and column sums in absolute value.

The higher than the fourth moment condition in Assumption 1 is needed in order to

apply a central limit theorem due to Kelejian and Prucha (2001). In general, denote �3 and
24By selecting Pj such that tr

�
Pj
�
D 0, � 2 is concentrated out from the objective function .3:3/, so that

the dimension of the parameter space is reduced and the estimate of � 2 (in a subsequent step) is guaranteed
to be positive. Furthermore, by comparing the asymptotic covariance matrix with that from joint estimation
of � and � 2, no ef�ciency loss in the estimation of � is incurred by concentrating � 2 out. Detailed discussion
is given in Appendix 3.5.4.
25A sequence of square matrices fAng, where An D [an;i j ], is said to be uniformly bounded in row sums

(column sums) in absolute value if the sequence of row summatrix norm jjAnjj1 D maxiD1;��� ;n
Pn
jD1 jan;i j j

(column sum matrix norm jjAnjj1 D max jD1;��� ;n
Pn
iD1 jan;i j j) are bounded. (Horn and Johnson, 1985)
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�4 be respectively, the third and fourth moments of �ni 's. Assumption 3 limits the spatial

dependences among the units to a tractable degree and is originated by Kelejian and Prucha

(1999). It rules out the unit root case (in time series as a special case). Uniform bounded-

ness conditions for Xn and Pn's in Assumption 2 and 4 are for analytical tractability. Let

Gn D WnS�1n , and As D A C A0 for any square matrix A. (A list of special notations used

for this chapter has been collected in the Appendix for convenient reference.) Assumption

5 summarizes some suf�cient conditions for the identi�cation of �0.

Assumption 5 limn!1 1
n tr.PjnGn/ 6D 0 for some j D 1; � � � ;m, and

lim
n!1

1
n
.tr.Ps1nGn/; � � � ; tr.P

s
mnGn//

0

is linearly independent of limn!1 1
n .tr.G

0
nP1nGn/; � � � ; tr.G 0nPmnGn//0.

Let �n D var .gn .�0//. The variance matrix �n is assumed to satisfy some conven-

tional regularity conditions in Assumption 6. And the parameter space is assumed to be a

compact set as usual for nonlinear estimation.

Assumption 6 The limit of 1n�n exists and is a nonsingular matrix.

Assumption 7 The �0 is in the interior of the parameter space 3, which is a compact

subset of the real line.

Interested readers may refer to Lee (2001a; 2006) for detailed discussions on the reg-

ularity assumptions.26 Lee (2001a) shows the GMME O�P is
p
n-consistent and it has the

limiting distribution of the corresponding GMME of the SAR process for un as if un is

observable. Furthermore, with a consistent estimator of �0, the feasible GLSE O�FG D

.X 0n OS0n OSnXn/�1X 0n OS0n OSnYn is asymptotically equivalent to the exact GLSE

O�G D
�
X 0nS

0
nSnXn

��1 X 0nS0nSnYn:
26Assumptions 5 and 6 exclude the case of large (group) interactions in Lee (2004). These can simplify

the presentation of our results. The cases under our assumptions here are relevant to spatial scenario, where
interactions are usually among a few neighbors.
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First, we consider the case that un is observable, and we will discuss the feasibility is-

sue later. The optimal choice of the weighting matrix a0nan in .3:3/ is, as usual, the

inverse of a matrix proportional to the variance matrix of gn .�0/. Let Mn D fO�Og

be the class of optimal GMMEs derived from min�23 g0n .�/��1n gn .�/, where gn .�/ D

[P1nSn .�/ un; � � � ; PmnSn .�/ un]0Sn .�/ un is a vector of moment functions with Pn's sat-

isfying Assumption 4. We are interested in the BGMME within the class of optimal

GMMEsMn .

Following Lee (2001a), the limiting variance of the consistent GMME O�P based on the

quadratic moment �0nPn�n with tr.Pn/ D 0 is

6�1P D lim
n!1

�
.�4 � 3/

Pn
iD1 p2n;i i

1
n tr2.PsnGn/

C
tr.PnPsn /
1
n tr2.PsnGn/

�
;

with �4 D �4=�
4
0 being the kurtosis of the disturbance. The search of a best quadratic

moment is to �nd the Pn with tr.Pn/ D 0 which minimizes the variance6�1P . Equivalently,

one may maximize the corresponding precision measure, i.e., consider

max
Pn

1
n tr

2.PsnGn/
.�4 � 3/

Pn
iD1 p2n;i i C tr.PnPsn /

:

Let D.A/ be a diagonal matrix with diagonal elements being A if A is a vector, or diagonal

elements of A if A is a square matrix. Note that

tr.Psn Pn/� tr [.Pn � D.Pn//
sPn] D 2tr [D.Pn/ � Pn] D 2

nX
iD1

p2n;i i :

Hence,

.�4 � 3/
nX
iD1

p2n;i i C tr.P
s
n Pn/ D .�4 � 1/

nX
iD1

p2n;i i C tr [.Pn � D.Pn//
sPn]

D
1
2
f2.�4 � 1/

nX
iD1

p2n;i i C tr [.Pn � D.Pn//
s.Pn � D.Pn//s]g:
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By Jensen's inequality with concave function, it is known that �4 > 1. De�ne a modi�ed

matrix PCn D PnC.
q
�4�1
2 �1/D.Pn/. The PCn is constructed from Pn by the multiplication

of the diagonal of Pn by the factor
q
�4�1
2 . As tr.Pn/ D 0, tr.PCn / D 0. The square of the

Euclidean norm of .PCn /s is

tr [.PCn /
s.PCn /

s] D 2.�4 � 1/
nX
iD1

p2n;i i C tr.[.Pn � D.Pn//
s.Pn � D.Pn//s]/:

The Pn and its modi�ed matrix PCn have a one-to-one relation. Given PCn , Pn can be recov-

ered as Pn D PCn C .
q

2
�4�1

� 1/D.PCn /. Because tr.PsnGn/ D tr.Psn .Gn �
tr.Gn/
n In// D

1
2 tr.P

s
n .Gn �

tr.Gn/
n In/s/, the maximization search is thus equivalent to

max
PCn

1
n tr

2f[PCn C .
q

2
�4�1

� 1/D.PCn /]s.Gn �
tr.Gn/
n In/sg

tr [.PCn /s.PCn /s]
:

To make this optimization operationable, we shall look for the possible existence of a ma-

trix An such that

trf[PCn C.

s
2

�4 � 1
�1/D.PCn /]

s.Gn�
tr.Gn/
n

In/sg D trf.PCn /
s[.Gn�

tr.Gn/
n

In/CAn]sg:

This identity is equivalent to

.

s
2

�4 � 1
� 1/tr [D.PCsn /.D.Gn/�

tr.Gn/
n

In/s] D tr.PCsn Asn/:

If An is taken to be a diagonal matrix, then tr.PCsn An/ D tr.D.PCsn /Asn/. One sees that

the possible An is An D .
q

2
�4�1

� 1/.D.Gn/� tr.Gn/
n In/, which is a function determined

by Gn alone. Thus the optimization becomes

max
PCn

1
n tr

2[.PCn /s[.Gn �
tr.Gn/
n In/C An]s]

tr [.PCn /s.PCn /s]
:

For any square con�rmable matrices B and C , tr2.BC/ � tr.B2/tr.C2/ is a version of the

Cauchy inequality. Hence the optimum PCn is

PC�n D .Gn�
tr.Gn/
n

In/C An D .Gn�
tr.Gn/
n

In/C.

s
2

�4 � 1
�1/.D.Gn/�

tr.Gn/
n

In/:
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In terms of the original P�n , one has

P�n D P
C�
n C .

s
2

�4 � 1
� 1/D.PC�n / D .Gn �

tr.Gn/
n

In/�
�4 � 3
�4 � 1

.D.Gn/�
tr.Gn/
n

In/;

because D.PC�n / D
q

2
�4�1

.D.Gn/� tr.Gn/
n In/.

The above analysis motivates the existence of the BGMME and can be generalized to

derive analytically the best P�n . An alternative approach can be based on the characteri-

zation of best moments in terms of any additional moments being redundant in Breusch

et al. (1999). The following proposition summarizes the main results of the BGMME of �0

for the SAR disturbance process, which may not be normally distributed. We demonstrate

the validity of the best moments with both the optimization of variance approach and the

characterization of Breusch et al. (1999) in its proof.

Proposition 3.1 Under Assumptions 1-6, within the class of optimal GMMEs Mn , the

consistent root O�B derived from min�23
�
u0nS0n .�/ P�n Sn .�/ un

�2, where
P�n D .Gn �

tr.Gn/
n

In/�
�4 � 3
�4 � 1

.D.Gn/�
tr.Gn/
n

In/;

is the BGMME with the limiting distribution
p
n. O�B � �0/

D
! N

�
0; 6�1B

�
and 6B D

limn!1 1
n tr

�
P�sn Gn

�
.

LetP1n be the class of constant n�n matrices Pn's satisfying Assumption 4. A subclass

P2n of P1n consisting of Pn's with a zero diagonal is also interesting, as the corresponding

GMME is robust against unknown heteroskedasticity (Lin and Lee, 2006) and distributional

assumptions. Lee (2001a) has shown best selection of Pn from P2n is .Gn � D.Gn//, and

when �n is normally distributed, the best selection of Pn from P1n is .Gn� tr.Gn/
n In/, which

is a special case of P�n in Proposition 3.1 with �4 D 3.
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The asymptotic distribution of the GMME O�G1 based on the quadratic moment �0n.Gn�

tr.Gn/
n In/�n has been derived in Lee (2001a) with limiting variance being6�1G1 D

�
limn!1 1

n6G1;n
��1,

where

6G1;n D
tr2[.Gn � tr.Gn/

n In/sGn]
.�4 � 3/

Pn
iD1.Gn;i i �

tr.Gn/
n /2

C tr [.Gn �
tr.Gn/
n

In/sGn]:

One the other hand, the limiting variance of the BGMME O�B in Proposition 3.1 is .limn!1 1
n6B;n/

�1

where

6B;n D tr.P�sn Gn/ D tr [.Gn �
tr.Gn/
n

In/sGn]� 2.
�4 � 3
�4 � 1

/tr [.D.Gn/�
tr.Gn/
n

In/Gn]:

To simplify notations, denote

v2G D
1
n

nX
iD1
.Gn;i i �

tr.Gn/
n

/2 D
1
n

nX
iD1
.Gn;i i �

Pn
jD1 Gn; j j
n

/2 (3.5)

the empirical variance formed by the diagonal elements of Gn . Furthermore, denote

l2G;1 D
1
n
tr [.Gn �

tr.Gn/
n

In/sGn] D
1
2n
tr [.Gn �

tr.Gn/
n

In/s.Gn �
tr.Gn/
n

In/s]; (3.6)

and

l2G;2 D
1
n
tr [.Gn � D.Gn//sGn] D

1
2n
tr [.Gn � D.Gn//s.Gn � D.Gn//s]; (3.7)

which are, respectively, 12n of the square of the Euclidean norm of .Gn �
tr.Gn/
n In/s and

.Gn � D.Gn//s .

Instead of comparing the limiting variances of these two estimates, it is desirable to

compare the limiting precision measures 1n6G1;n and
1
n6B;n , which are the inverses of

variances. One has 1n6G1;n D l
4
G;1=[.�4 � 3/v

2
G C l

2
G;1] and

1
n6B;n D l

2
G;1 � 2.

�4�3
�4�1

/v2G . It

follows that

1
n
6B;n �

1
n
6G1;n D �2.

�4 � 3
�4 � 1

/v2G C
.�4 � 3/v2Gl

2
G;1

.�4 � 3/v2G C l
2
G;1

D
.�4 � 3/2v2G.l

2
G;1 � 2v

2
G/

.�4 � 1/[.�4 � 3/v2G C l
2
G;1]

D
.�4 � 3/2v2Gl

2
G;2

.�4 � 1/[.�4 � 1/v2G C l
2
G;2]

;
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because l2G;1�l
2
G;2 D 2v

2
G . Note that �4 > 1 by Jensen's inequality with concave functions,

and l2G;2 > 0, Hence,
1
n6B;n �

1
n6G1;n . This veri�es the ef�ciency of O�B relative to O�G1.

The percentage loss of asymptotic ef�ciency of O�G1 can be evaluated as

1�
6G1;n

6B;n
D

.�4 � 3/2v2Gl
2
G;2

[.�4 � 1/v2G C l
2
G;2] � [4v

2
G C .�4 � 1/l

2
G;2]

; (3.8)

when �4 6D 3. Note that the variance is the inverse of the precision measure. So, 1�
6G1;n
6B;n

D

1 � 6�1B;n
6�1G1;n

D
6�1G1;n�6

�1
B;n

6�1G1;n
is also the percentage of reduction in asymptotic variance of O�B

relative to O�G1.

Similarly, we can compare the ef�ciency gain of O�B relative to O�G2 derived from the

quadratic moment �0n.Gn � D.Gn//�n . Following Lee (2001a), with limiting variance of

O�G2 is 6�1G2 D
�
limn!1 1

n6G2;n
��1, where

1
n
6G2;n D

1
n
tr [.Gn � D.Gn//sGn] D l2G;2:

It follows that

1
n
6B;n �

1
n
6G2;n D l2G;1 � 2.

�4 � 3
�4 � 1

/v2G � l
2
G;2 D

4
�4 � 1

v2G;

because l2G;1 � l
2
G;2 D 2v2G . As �4 > 1 by Jensen's inequality with concave functions,

1
n6B;n �

1
n6G2;n . The percentage loss of asymptotic ef�ciency of O�G2 can be evaluated as

1�
6G2;n

6B;n
D

4v2G
4v2G C .�4 � 1/l

2
G;2
; (3.9)

which is also the percentage of reduction in asymptotic variance of O�B relative to O�G2.

From this, O�B is more precise as it takes into account the variance of the diagonal elements

of Gn .

The BGMME associated with P�n involves the unknown �0 and �4. In practice, the

unknown �0 can be estimated with some Pn's fromP1n orP2n within the GMM framework,
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and �4 can be replaced by the empirical moments of the estimated residuals. With initial

consistent estimates O�n and O�4, Gn can be estimated by OGn D Gn. O�n/ D WnS�1n . O�n/ and

P�n can be estimated by

OP�n D . OGn �
tr. OGn/
n

In/�
O�4 � 3
O�4 � 1

.D. OGn/�
tr. OGn/
n

In/: (3.10)

The following proposition shows that the feasible BGMME with P�n replaced by OP�n in

the moment functions has the same limiting distribution as the corresponding BGMME in

Proposition 3.1. Let Mn D Xn
�
X 0nXn

��1 X 0n .
Proposition 3.2 Under Assumptions 1-7, suppose O�n and O�4 are

p
n-consistent estimates

of �0 and �4, and OP�n is given by .3:10/. Then min�23
h
Ou0nS0n .�/ OP�n Sn .�/ Oun

i2
, with Oun D

.In � Mn/Yn , has a consistent root O�FB which has the same limiting distribution of O�B

derived from min�23
�
u0nS0n .�/ P�n Sn .�/ un

�2.
3.2.2 GMM Estimation of the MRSAR Model

The MRSAR model is speci�ed as

Yn D Xn� C �WnYn C �n: (3.11)

where �n is an n-dimensional vector of i.i.d. disturbances with zero mean and �nite vari-

ance � 2. Let �0 D .� 00; �0; �
2
0/
0 be the true parameter vector. The equilibrium vector Yn

is

Yn D S�1n
�
Xn�0 C �n

�
: (3.12)

It follows thatWnYn D GnXn�0CGn�n where Gn D WnS�1n , andWnYn is correlated with

�n because, in general, E..Gn�n/0�n/ D � 20tr.Gn/ 6D 0.

Let Qn be an n � k0 matrix of IVs constructed as functions of Xn and Wn in a 2SLS

approach. Denote �n.�/ D Sn.�/Yn � Xn�, where � D
�
� 0; �

�0. Thus, �n D �n .�0/. The
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moment functions correspond to the orthogonality conditions of Xn and �n are Q0n�n.�/.

Lee (2006) suggests the use of the moment functions �0n.�/Pn�n.�/ with Pn's satisfying

Assumption 4 in addition to Q0n�n.�/ for the estimation of .3:11/ in the GMM framework.

With the selected matrices Pjn's . j D 1; � � � ;m/ and IV matrix Qn , the set of moment

functions form a vector

gn.�/ D .Qn; P1n�n.�/; � � � ; Pmn�n.�//0�n.�/: (3.13)

At �0, gn.�0/ D .Qn; P1n�n; � � � ; Pmn�n/0�n , which has a zero mean because E.Q0n�n/ D

Q0nE.�n/ D 0 and E.�0nP 0jn�n/ D �
2
0tr.Pjn/ D 0 for j D 1; � � � ;m.

Regularity assumptions 1-7 speci�ed in the regression model with SAR disturbances

are adopted for the GMM estimation of the MRSAR model with proper modi�cations.

Assumption 5' summarizes some suf�cient identi�cation conditions of �0 from the moment

equations E .gn.�0// D 0. In the case that GnXn�0 and Xn are linearly dependent, which

includes the case that all exogenous variables Xn are irrelevant, Assumption 5' (ii) assures

the identi�cation of �0 from the quadratic moment functions �0n.�/Pn�n.�/. Assumption

7' extends the parameter space to a compact convex subset of RkC1.

Assumption 4' The matrices Pn's with tr .Pn/ D 0 are uniformly bounded in both row

and column sums in absolute value, and elements of Qn are uniformly bounded.

Assumption 5' Either (i) limn!1 1
nQ

0
n.GnXn�0; Xn/ has the full rank .k C 1/, or (ii)

limn!1 1
nQ

0
nXn has the full rank k, limn!1

1
n tr.PjnGn/ 6D 0 for some j , and

lim
n!1

1
n
.tr.Ps1nGn/; � � � ; tr.P

s
mnGn//

0

is linearly independent of limn!1 1
n .tr.G

0
nP1nGn/; � � � ; tr.G 0nPmnGn//0.

Assumption 7' The �0 is in the interior of the parameter space 2, which is a compact

convex subset of RkC1.
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Lee (2006) has shown the GMME O� P from min�22 g0n .�/ a0nangn .�/ is
p
n-consistent

and derived its limiting distribution. The optimal choice of the weighting matrix a0nan is� 1
n�n

��1, where �n D var .gn .�0//, by the generalized Schwartz inequality. LetMn D

fO�Og be the class of optimal GMMEs derived from min�22 g0n .�/��1n gn .�/, where gn .�/

is a vector of moment functions given by .3:13/. Within the class of optimal GMMEs

Mn , Lee (2006) has shown that the best selection of Qn shall be .Xn;GnXn�0/, the best

selection of Pn from the subclass P2n shall be .Gn � D.Gn//, and in the event that �n is

normally distributed, .Gn � tr.Gn/
n In/ shall be the best selection of Pn from the broader

class P1n .

In the following proposition, we show the existence of the BGMME within the class

Mn , when the disturbances are not normally distributed. To show this result, we adopt

Breusch et al. (1999) in demonstrating that additional moment conditions are redundant

to the best selection of moment conditions. If an intercept appears in Xn , we have Xn D�
X�n; ln

�
, where ln is an n-dimensional vector of ones. Otherwise X�n � Xn . Suppose there

are k� columns in X�n . Let Xnj be the j th column of Xn , and X�nj be the j th column of X
�
n .

Denote X�dnj D X
�
nj �

1
n lnl

0
nX�nj the deviation of observation X

�
nj from its sample mean. Let

G�n D Gn �
�
�4 � 3

�
� �23�

�4 � 1
�
� �23

D.Gn/�
�3

� 0[
�
�4 � 1

�
� �23]

D
�
GnXn�0

�
; (3.14)

with �3 D �3=� 30 being the skewness of the disturbance. Let vecD .A/ be a column vector

formed by the diagonal elements of a square matrix A.

Proposition 3.3 Suppose Assumptions 1-3, 4', 5', and 6 are satis�ed. Let P�1n D G�n �

1
n tr

�
G�n
�
In , and P�jC1;n D D.X

�d
nj / for j D 1; � � � ; k

�. Let Q�n D
�
Q�1n; Q

�
2n
�
with

Q�1n D Xn C
�23�

�4 � 1
�
� �23

�
Xn �

1
n
lnl 0nXn

�
; (3.15)
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and

Q�2n D GnXn�0 C
�23�

�4 � 1
�
� �23

�
GnXn�0 �

1
n
lnl 0nGnXn�0

�
�

2� 0�3�
�4 � 1

�
� �23

�
vecD .Gn/�

1
n
tr .Gn/ ln

�
: (3.16)

Within the class of optimal GMMEsMn , the consistent root O� B derived from

min
�22

g�0n .�/�
��1
n g�n .�/ ;

where ��n D var
�
g�n .�0/

�
and g�n.�/ D .Q�n; P�1n�n.�/; � � � ; P

�
k�C1;n�n.�//

0�n.�/, is the

BGMME with the limiting distribution
p
n. O� B � �0/

D
! N .0; 6�1B / and

6B D lim
n!1

1
n

�
��20 X

0
nQ�1n ��20 X

0
nQ�2n

��20 Q
�0
2nXn ��20

�
GnXn�0

�0 Q�2n C tr �P�s1nGn�
�
:

When �n is normally distributed, �3 D 0 and �4 D 3. Hence, the best selection of

Qn D .Xn;GnXn�0/ and Pn D .Gn � tr.Gn/
n In/ under normality are the degenerated

Q�n and P�1n in Proposition 3.3. Based on the characterization of best moments in Breusch

et al. (1999), it can be shown that moment functions �0n.�/P�jC1;n�n.�/ . j D 1; � � � ; k
�/ are

redundant given .Xn;GnXn�0; .Gn�
tr.Gn/
n In/0�n.�//0�n.�/ under normality, with similar

arguments used in the proof of Proposition 3.3. Furthermore, Lee (2006) has shown that

the BGMME derived from the set of moments .Xn;GnXn�0; .Gn�
tr.Gn/
n In/0�n.�//0�n.�/

has the same limiting distribution as MLE under normality.

In practice, with initial consistent estimates O�n; O�3 and O�4, P�1n and Q
�
n can be re-

placed by their empirical counterparts OP�1n D P�1n.O�
0
n; O�3; O�4/ and OQ�n D Q�n.O�

0
n; O�3; O�4/.

The corresponding variance matrix ��n of the best moment functions can be estimated as

O��n D ��n.O�
0
n; O�3; O�4/. The following proposition shows that the feasible BGMME with

the moment functions

Og�n.�/ D . OQ
�
n; OP

�
1n�n.�/; P

�
2n�n.�/; � � � ; P

�
k�C1;n�n.�//

0�n.�/ (3.17)
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has the same limiting distribution as the corresponding BGMME in Proposition 3.3.

Proposition 3.4 Under Assumptions 1-3, 4', 5', 6, and 7', suppose O�n , O�3 and O�4 are
p
n-

consistent estimates of �0, �3 and �4. Then min�22 Og�0n .�/ O���1n Og�n .�/, with Og�n.�/ given

by (3.17) and O��n D ��n.O�n; O�3; O�4/, has a consistent root O� FB which has the same limiting

distribution of O� B derived from min�22 g�0n .�/���1n g�n .�/.

3.3 Monte Carlo Study

In the Monte Carlo study, the regression model with SAR disturbances is speci�ed as

Yn D Xn1�1 C un;

un D �Wnun C �n;

and the MRSAR model is speci�ed as

Yn D Xn1�1 C Xn2�2 C Xn3�3 C �WnYn C �n;

where xi1, xi2 and xi3 are three independently generated standard normal variables and are

i.i.d. for all i , and �ni 's are independently generated from the following 5 distributions, all

of which are scaled to have mean 0 and variance 2:

(a) normal, �ni � N .0; 2/,

(b) student t, �ni D
p
6=5u where u � t .5/,

(c) symmetric bimodal mixture normal, �ni D u=
p
5 where u � :5N .�3; 1/C:5N .3; 1/,

(d) asymmetric bimodal mixture normal, �ni D u=2
p
2 where u � :5N .�3; 1/ C

:5N .3; 13/,

(e) gamma, �ni D u � 2 where u � gamma .2; 1/.

To facilitate comparison, skewness .�3/ and kurtosis .�4/ for these distributions are corre-

spondingly: (a) �3 D 0, �4 D 3; (b) �3 D 0, �4 D 9; (c) �3 D 0, �4 D 1:38; (d) �3 � 0:84,
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�4 � 2:79; and (e) �3 D
p
2, �4 D 6. Normal distribution is considered as the basis for

comparison. When the disturbances are normally distributed, both MLE and BGMME are

asymptotically ef�cient. However, the �nite sample performance of BGMME may not be

as good as MLE, because the moment functions involve some unknown parameters need to

be estimated in an initial step. Student t and symmetric bimodal mixture normal distribution

are introduced to explore the effects of, respectively, leptokurtic .�4 > 3/ and platykurtic

.�4 < 3/ disturbances on the small sample performance of various estimates. Asymmet-

ric bimodal mixture normal and gamma distributions are introduced to study the effects of

skewness. To be speci�c, asymmetric bimodal mixture normal speci�ed here corresponds

to the case where disturbances is slightly platykurtic and has a moderate skewness, and

gamma corresponds to the case where disturbances is leptokurtic and has a relatively large

skewness. Asymptotically, BGMME is more ef�cient than QMLE under the distributions

(b)-(e). For the regression model with SAR disturbances, the proposed BGMME improves

upon QMLE as the quadratic moment function incorporates kurtosis of the distribution. On

the other hand, similar to QMLE, the BGMME does not involve skewness in their formula-

tions and, hence, are robust against skewness. Therefore, in the Monte Carlo experiments

for the regression model with SAR disturbances, we focus only on distributions with (a)-

(c).

The estimators considered are (i) QMLE (ii) OGMME and (iii) BGMME. For the re-

gression model with SAR disturbances, OGMME refers to the feasible optimal GMME

using OGn� D. OGn/ for the quadratic moment, with the inverse of their (estimated) variance

matrix as the distance matrix, and BGMME refers to the feasible BGMME described in

Proposition 3.2. For the MRSAR model, OGMME refers to the feasible optimal GMME

using Xn and OGnXn O�n for the linear moments and OGn � D. OGn/ for the quadratic moment,
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with the inverse of their (estimated) variance matrix as the distance matrix, and BGMME

refers to the feasible BGMME described in Proposition 3.4. For the Monte Carlo results

reported here, we use QMLEs27 as the initial estimators to get feasible OGMMEs and

BGMMEs.28

The number of repetitions is 1; 000 for each case in the Monte Carlo experiment. The

regressors are randomly redrawn for each repetition. In each case, we report the mean

`Mean' and standard deviation `SD' of the empirical distributions of the estimates. To

facilitate the comparison of various estimators, their root mean square errors `RMSE' are

also reported. In all the cases of this study, the true �0 is set to 0:6, and �10 D 1:0; �20 D

0; �30 D �1:0. For the MRSARmodel, the variance ratio of x�0 with the sum of variances

of x�0 and � is 0:5. If one ignores the interaction term, this ratio would represent R2 D 0:5

in a regression equation. The smallest sample size is n D 49, and the moderate sample

sizes are 245 and 490.

When the sample size is n D 49, the spatial weights matrix Wn corresponds to the

weights matrix for the study of crimes across 49 districts in Columbus, Ohio in Anselin

(1988). For moderate sample sizes of n D 245 and 490, the corresponding spatial weights

matrices are block diagonal matrices with the preceding 49 � 49 matrix as their diagonal

blocks. These correspond to the pooling, respectively, of �ve and ten separate districts with

27The QMLEs are calculated using sar.m in Econometrics Toolbox (version 7) by James P. Lesage. Func-
tion option in f o:l f lag D 0 for full computation (instead of approximation), and other options are set to the
default values.
28Using QMLEs as initial estimates can be justi�ed as BGMMEs are adopted for the purpose of improving

QMLEs. We have also run the Monte Carlo of feasible OGMMEs and BGMMEs with initial estimates
derived from optimal GMM based on quadratic moments Wn and W 2

n � D.W 2
n / for the regression model

with SAR disturbances, and initial estimates from the 2SLS approach in (Kelejian and Prucha, 1998) for the
MRSAR model. For small sample size n D 49, the feasible OGMMEs and BGMMEs have large variances
than those reported here. For moderate sample size n D 490, the results are largely the same as those reported
here.
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similar neighboring structures in each district. We use this spatial weights matrix in the

Monte Carlo experiments for the MRSAR model.

For the regression model with SAR disturbances, with the Wn in Anselin (1988) and

distribution (c), the percentage of reduction in asymptotic variance of BGMME of �0 rel-

ative to QMLE is 2:59%, and relative to OGMME is 3:95%, following .3:8/ and .3:9/.

With distribution (b), the percentage of reduction in asymptotic variance is even smaller.

These are caused by the small empirical variance formed by the diagonal elements of

Gn . With the Wn in Anselin (1988), v2G D 0:005, by .3:5/. In order to have larger

v2G , we construct a weights matrix as follows. With �0 D 0:6, Gn can be expanded as

Gn D Wn.In � �0Wn/�1 D Wn C �0W 2
n C � � � . As D.Wn/ D 0, the empirical variance

of the diagonal elements of Gn is largely determined by that of W 2
n . When Wn is row-

normalized, diagonal elements of W 2
n are weighted average for each column of Wn . We

generate 7 � 7 upper triangular matrices An's, whose non-zero elements in each column

are either all .200Cu/'s or all u's .u � U [0; 1]/with equal probability. We calculate v2G for

the row-normalized Bn , with Bn D An C A0n as the weights matrix Wn in .3:5/.29 We gen-

erate 1000 such Bn's, and pick 7 of them with the largest v2G . In this way, we get a 49� 49

block diagonal matrix Wn with the 7 row-normalized Bn's being the diagonal blocks. This

Wn gives v2G D 0:134, when �0 D 0:6. And with distribution (c), the percentage of re-

duction in asymptotic variance of BGMME relative to QMLE is 23:17%, and relative to

OGMME is 36:03%, following .3:8/ and .3:9/. For large sample sizes of n D 245 and 490,

the corresponding spatial weights matrices are block diagonal matrices with the preceding

49 � 49 matrix as their diagonal blocks. We use the constructed spatial weights matrix in

the Monte Carlo experiments for the regression model with SAR disturbances.

29As Wn is symmetric before row normalization, we can apply the approach in Ord (1975) to implement
QML estimation.

123



For the regression model with SAR disturbances, QMLEs and various GMMEs of �0

are reported in Tables 3.1-3.3. For small sample size n D 49, the various estimates of �0 are

biased down. Among them, QMLE has the largest bias. The magnitude of the bias is about

5 � 6%. The bias reduces as sample size increases, and for sample size n D 490, various

estimates are essentially unbiased. When the disturbances are normally distributed, MLE

(QMLE) is ef�cient, and the �nite sample performance of BGMME is as good as MLE

(QMLE) in terms of SD and RMSE. SD and RMSE of OGMME is slightly larger when

the sample size is small. When the disturbances follow student t distribution, BGMME has

the smallest SD and RMSE for all sample size considered. For sample size n D 490, the

percentage reduction in RMSE of BGMME relative to QMLE is about 12:5%. This is also

the case when the disturbances follow bimodal mixture normal distribution. For sample

size n D 490, the percentage reduction in RMSE of BGMME relative to OGMME and

QMLE is about 13:8%.

Tables 3.4-3.8 report QMLEs and various GMMEs of �0 and �0 for the MRSARmodel.

For small sample size n D 49, QMLEs of �0 are biased downwards by 4 � 5% for all

speci�cations of disturbances. And OGMMEs of �0 are biased downwards by 2% when

the disturbances follow bimodal mixture normal distributions. The two GMMEs of �10

are biased downwards and �30 are biased upwards, with the largest bias being about 2%

for all disturbance speci�cations. The other estimates are essential unbiased. The bias

disappears as sample size increases to n D 249. When the disturbances are normally

distributed, MLEs (QMLEs) are ef�cient. For small sample size n D 49, the �nite sample

performance of MLEs (QMLEs) are better than the two GMMEs in terms of smaller SD and

RMSE. And BGMMEs have the largest SD and RMSE because the feasible best moment

functions involve initial estimation of several unknown parameters. For moderate sample
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size, the �nite sample performance of BGMME is as good as MLEs (QMLEs). When the

disturbances are not normally distributed, for the two disturbance speci�cations with �3 D

0, due to the small empirical variance in the diagonal elements of Gn , BGMMEs are not

better than QMLEs for moderate sample sizes, even though the latter is not asymptotically

ef�cient. When the disturbances follow the distributions with �3 6D 0, BGMMEs of �0

are better than OGMMEs and QMLEs for moderate sample sizes, and BGMMEs of �0

are better than OGMMEs and QMLEs for all sample sizes considered, in terms of SD and

RMSE. When the disturbances follow gamma distribution and n D 490, the percentage

reduction in SD of BGMMEs of �0, �10, �20, and �30 relative to QMLEs are, respectively,

11:8%, 23:1%, 21:9%, and 21:2%.

In summary, BGMME improves on QMLE as the former incorporates correlation be-

tween linear and quadratic moment conditions when the disturbances are skewed. Both the

BGMMEs of the spatial effect �0 and coef�cients of other explanatory variables �0 have

smaller SD and RMSE relative to QMLE and OGMME. On the other hand, for cases with

�3 D 0, gains of BGMME by including measure of kurtosis is relatively small, and can be

insigni�cant when the diagonal elements of Gn do not vary enough.

3.4 Conclusion

In this chapter, we consider the GMM estimation of the regression models with SAR

disturbances and MRSAR models. The MLE approach is ef�cient when the disturbances

is normally distributed, and Lee (2006) has shown the existence of GMME based on linear

and quadratic moment conditions that can attain the same limiting distribution of the MLE

under normal disturbances. This chapter improves upon the QMLE approach by incorpo-

rating potential skewness and kurtosis of the disturbances into the moment conditions used
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in the GMM framework. The proposed BGMME is asymptotically as ef�cient as MLE un-

der normality, and more ef�cient than the QMLE when the disturbances are not normally

distributed. Monte Carlo studies show that the potential inef�ciency of the QMLE in �nite

sample for the MRSAR model mainly comes from the possible correlation between linear

and quadratic moment conditions in the likelihood function. Hence, the proposed BGMME

has its biggest advantage when the skewness of the disturbances is nonzero. In the event

that the diagonal elements of Gn have good variance, then, taking into account kurtosis will

also be valuable.

3.5 Appendices

3.5.1 Summary of Notations

D.A/ D Diag .A/ is a diagonal matrix with diagonal elements being A if A is a vector,

or diagonal elements of A if A is a square matrix.

vecD .A/ is a column vector formed by the diagonal elements of a square matrix A.

As D A C A0 where A is a square matrix.

Ad D A � 1
n tr .A/ In where A is an n � n matrix.

AL is a linearly transformed square matrix of A which preserves the uniform boundedness

property.

Sn.�/ D In � �Wn; Sn D Sn.�0/.

Gn .�/ D WnS�1n .�/ D Wn .In � �Wn/�1; Gn D Gn .�0/.

� D .� 0; �; � 2/0; �0 D .� 00; �0; �
2
0/
0; � D

�
� 0; �

�0. �0 D �
� 00; �0

�0.
Mn D Xn

�
X 0nXn

��1 X 0n .
G�n D Gn �

.�4�3/��23

.�4�1/��23
D.Gn/� �3

� 0
�
.�4�1/��23

�D �GnXn�0�.
ln is an n � 1 vector of ones.
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ek j is the j th unit vector in Rk .

If an intercept appears in Xn , we have Xn D
�
X�n; ln

�
. Otherwise X�n � Xn .

X�dnj D X
�
nj �

1
n lnl

0
nX�nj is the deviation of observation X

�
nj from its sample mean.

3.5.2 Some Useful Lemmas

In this appendix, we list some lemmas which are useful for the proofs of the results in

the text.

Lemma 3.1 Suppose that the elements of the sequences of n-dimensional column vectors

fz1ng and fz2ng are uniformly bounded. If fAng are uniformly bounded in either row or

column sums in absolute value, then
��z01nAnz2n�� D O.n/.

Proof. Trivial.

Lemma 3.2 Suppose that �n1; � � � ; �nn are i.i.d. random variables with zero mean and

�nite variance � 2 and �nite fourth moment �4. Then, for any two n � n matrices An and

Bn ,

E
�
�0nAn�n � �

0
nBn�n

�
D
�
�4 � 3� 4

�
vecD .An/ vecD .Bn/C� 4

�
tr .An/ tr .Bn/C tr

�
AnBsn

��
;

where Bsn D Bn C B 0n .

Proof. See Lee (2001a).

Lemma 3.3 Suppose that fAng are uniformly bounded in both row and column sums in

absolute value. �n1; � � � ; �nn are i.i.d. with zero mean and �nite fourth moment. Then,

E.�0nAn�n/ D O.n/, var.�0nAn�n/ D O.n/, �0nAn�n D Op.n/, and
1
n �
0
nAn�n�

1
n E.�

0
nAn�n/ D

op.1/.
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Proof. See Lee (2001a).

Lemma 3.4 Suppose that An is an n � n matrix with its column sums being uniformly

bounded in absolute value, elements of the n � k matrix Cn are uniformly bounded, and

�n1; � � � ; �nn are i.i.d. with zero mean and �nite variance � 2. Then, 1p
nC

0
nAn�n D Op.1/

and 1
nC

0
nAn�n D op.1/. Furthermore, if the limit of 1nC

0
nAnA0nCn exists and is positive

de�nite, then 1p
nC

0
nAn�n

D
! N .0; � 2 limn!1 1

nC
0
nAnA0nCn/.

Proof. See Lee (2004).

Lemma 3.5 Suppose that fAng is a sequence of symmetric n � n matrices with row and

column sums uniformly bounded in absolute value and bn D .bn1; � � � ; bnn/0 is an n-

dimensional vector such that supn 1n
Pn
iD1 jbni j

2C�1 < 1 for some �1 > 0. �n1; � � � ; �nn

are i.i.d. random variables with zero mean and �nite variance � 2, and its moment E.j�j4C2�/

for some � > 0 exists. Let � 2Qn be the variance of Qn where Qn D �0nAn�n C b0n�n �

� 2tr.An/. Assume that the variance � 2Qn is bounded away from zero at the rate n. Then,

Qn
� Qn

D
! N .0; 1/.

Proof. See Kelejian and Prucha (2001).

Lemma 3.6 Suppose that 1n .gn.�/ � Ngn.�// converges in probability to zero uniformly in

� 2 3, which is a compact set, and limn!1 1
n Ngn.�/ D 0 has a unique root at �0 in 3. The

O�n and O�
�
n are, respectively, the roots of the moment equations gn.�/ D 0 and g�n.�/ D 0. If

1
n .g

�
n.�/�gn.�// D op.1/ uniformly in � 2 3, then both O�n and O�

�
n converge in probability

to �0.

In addition, suppose that 1n
@gn.�/
@� converges in probability to a well de�ned nonzero

limit function uniformly in � 2 3, and 1p
n gn.�0/ D Op.1/. If 1n .

@g�n .�/
@� � @gn.�/

@� / D op.1/
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uniformly in � 2 3, and 1p
n .g

�
n.�0/ � gn.�0// D op.1/, then both

p
n. O�n � �0/ and

p
n. O��n � �0/ have the same limiting distribution.

Proof. See Lee (2001a).

Lemma 3.7 Let O�n and O�
�
n be, respectively, the minimizers of zn.�/ and z�n.�/ in 2.

Suppose that 1n .zn.�/ � Nzn.�// converges in probability to zero uniformly in � 2 2,

which is a compact set, and
� 1
n Nzn.�/

	
satis�es the uniqueness identi�cation condition at

�0. If 1n .z
�
n.�/ � zn.�// D op.1/ uniformly in � 2 2, then both O�n and O�

�
n converge in

probability to �0.

In addition, suppose that 1n
@2zn.�/
@�@� 0

converges in probability to a well de�ned limiting

matrix, uniformly in � 2 2, which is nonsingular at �0, and 1p
n
@zn.�0/
@� D Op.1/. If

1
n .
@2z�n.�/
@�@� 0

� @2zn.�/
@�@� 0

/ D op.1/ uniformly in � 2 2 and 1p
n .
@z�n.�0/
@� � @zn.�0/

@� / D op.1/, then
p
n. O��n � �0/ and

p
n. O�n � �0/ have the same limiting distribution.

Proof. See Lee (2006).

Lemma 3.8 Under Assumption 2, the projectors Mn and In�Mn , where Mn D Xn.X 0nXn/�1X 0n ,

are uniformly bounded in both row and column sums in absolute value.

Proof. See Lee (2004).

Lemma 3.9 Suppose that fjjWnjjg and fjjS�1n jjg, where jj�jj is a matrix norm, are bounded.

Then fjjSn.�/�1jjg, where Sn.�/ D In��Wn , are uniformly bounded in a neighborhood of

�0.

Proof. See Lee (2004).
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Lemma 3.10 Suppose that z1n and z2n are n-dimensional column vectors of constants

which are uniformly bounded, the n�n constant matrix An is uniformly bounded in column

sums in absolute value, and B1n and B2n are uniformly bounded in both row and column

sums in absolute value, and �n1; � � � ; �nn are i.i.d. random variables with zero mean and

�nite second moment.
p
n. O�n � �0/ D Op.1/ where �0 is a p-dimensional vector in the

interior of its convex parameter space. The matrix Cn. O�n/ has the expansion that

Cn. O�n/� Cn.�0/ D
m�1X
iD1

pX
j1D1

� � �
pX
jiD1

. O�nj1 � � j10/ � � � . O�nji � � ji0/Kin .�0/

C
pX
j1D1

� � �
pX

jmD1
. O�nj1 � � j10/ � � � . O�njm � � jm0/Kmn. O�n/;(3.18)

for some m � 2, where Cn.�0/ and Kin .�0/ are uniformly bounded in both row and

column sums in absolute value for i D 1; � � � ;m � 1, and Kmn .�/ is uniformly bounded

in both row and column sums in absolute value, uniformly in a small neighborhood of �0.

Then,

(a) 1
n z
0
1n.Cn. O�n/� Cn.�0//z2n D op.1/;

(b) 1p
n z
0
1n.Cn. O�n/� Cn.�0//An�n D op.1/;

(c) 1
n �
0
nB 01n.Cn. O�n/� Cn.�0//B2n�n D op.1/, if .3:18/ holds for m > 2; and

(d) 1p
n �
0
n.Cn. O�n/�Cn.�0//�n D op.1/, if .3:18/ holds for m > 3 with tr.Kin .�0// D 0

for i D 1; � � � ;m � 1.

Proof. Let Tn D 1
n z
0
1n.Cn. O�n/� Cn.�0//z2n . With .3:18/, Tn D Tn1 C Tn2, where

Tn1 D
m�1X
iD1

pX
j1D1

� � �
pX
jiD1

. O�nj1 � � j10/ � � � . O�nji � � ji0/
1
n
z01nKin.�0/z2n;

130



and

Tn2 D
pX
j1D1

� � �
pX

jmD1
. O�nj1 � � j10/ � � � . O�njm � � jm0/

1
n
z01nKmn. O�n/z2n:

Tn1 D op.1/ because 1n z
0
1nKin .�0/ z2n D O.1/ by Lemma 3.1, and O�n � �0 D op.1/.

Similarly, as Kmn .�/ is uniformly bounded in both row and column sums in absolute value,

uniformly in a small neighborhood of �0, and O�n � �0 D op.1/, it follows that Kmn. O�n/

is uniformly bounded in both row and column sums in absolute value with probability one.

Hence 1n z
0
1nKmn

�
O�n
�
z2n D Op.1/ by Lemma 3.1, which implies Tn2 D op.1/ because

O�n � �0 D op.1/. This proves (a).

Similarly, letUn D 1p
n z
0
1n.Cn. O�n/�Cn.�0//An�n . Then, with .3:18/,Un D Un1CUn2

where

Un1 D
m�1X
iD1

pX
j1D1

� � �
pX
jiD1

. O�nj1 � � j10/ � � � . O�nji � � ji0/
1
p
n
z01nKin.�0/An�n D op.1/;

because 1p
n z
0
1nKin .�0/ An�n D Op.1/ by Lemma 3.4 and O�n � �0 D op.1/; and

Un2 D
pX
j1D1

� � �
pX

jmD1
. O�nj1 � � j10/ � � � . O�njm � � jm0/

1
p
n
z01nKmn. O�n/An�n:

Let k�k1 be the maximum column sum norm. Because the product of matrices uniformly

bounded in the maximum column sum norm is uniformly bounded in the maximum column

sum norm, jjKmn. O�n/Anjj1 � c1 for some constant c1 for all n. As elements of z1n are

uniformly bounded, there exists a constant c2 such that


z01n

1 � c2. It follows that

jjUn2jj1 � n.1�m/=2
pX
j1D1

� � �
pX

jmD1
j
p
n. O�nj1 � � j10/j � � � j

p
n. O�njm � � jm0/j

�jjz01njj1 � jjKmn. O�n/Anjj1 �
1
n
jj�njj1

� c1c2n.1�m/=2
pX
j1D1

� � �
pX

jmD1
j
p
n. O�nj1 � � j10/j � � � j

p
n. O�njm � � jm0/j � .

1
n

nX
iD1
j�ni j/:
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Hence Un2 D op.1/ for m � 2 because
p
n. O�n��0/ D Op.1/ and 1n

Pn
iD1 j�ni j D Op.1/

by the strong law of large numbers. These prove (b).

For (c), let Rn D 1
n �
0
nB 01n.Cn. O�n/ � Cn.�0//B2n�n . With .3:18/, Rn D Rn1 C Rn2,

where

Rn1 D
m�1X
iD1

pX
j1D1

� � �
pX
jiD1

. O�nj1 � � j10/ � � � . O�nji � � ji0/
1
n
�0nB

0
1nKin.�0/B2n�n;

and

Rn2 D
pX
j1D1

� � �
pX

jmD1
. O�nj1 � � j10/ � � � . O�njm � � jm0/

1
n
�0nB

0
1nKmn. O�n/B2n�n:

Rn1 D op.1/, because 1n �
0
nB 01nKin .�0/ B2n�n D Op.1/ by Lemma 3.3, and O�n � �0 D

op.1/. On the other hand,

jjRn2jj1 � n�m=2
pX
j1D1

� � �
pX

jmD1
j
p
n. O�nj1 � � j10/j � � � j

p
n. O�njm � � jm0/j

�
1
n
jj�njj1 � jj�njj1 � jjB 01nKmn. O�n/B2njj1

� cn1�m=2
pX
j1D1

� � �
pX

jmD1
j
p
n. O�nj1 � � j10/j � � � j

p
n. O�njm � � jm0/j � .

1
n

nX
iD1
j�ni j/

2;

for some constant c. Hence Rn2 D op.1/ for m > 2 because 1n
Pn
iD1 j�ni j converges in

probability to the absolute �rst moment of �ni and
p
n. O�n � �0/ D Op.1/. These prove

(c).

For (d), let Vn D 1p
n �
0
n.Cn. O�n/� Cn.�0//�n . Then, Vn D Vn1 C Vn2 where

Vn1 D
m�1X
iD1

pX
j1D1

� � �
pX
jiD1

. O�nj1 � � j10/ � � � . O�nji � � ji0/
1
p
n
�0nKin.�0/�n D op.1/;

because 1p
n �
0
nKin .�0/ �n D Op.1/ by Lemma 3.5; and

Vn2 D
1
p
n

pX
j1D1

� � �
pX

jmD1
. O�nj1 � � j10/ � � � . O�njm � � jm0/�

0
nKmn. O�n/�n:
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The term Vn2 D op.1/ for m > 3 because

jjVn2jj1 � cn.3�m/=2
pX
j1D1

� � �
pX

jmD1
j
p
n. O�nj1 � � j10/j � � � j

p
n. O�njm � � jm0/j�.

1
n

nX
iD1
j�ni j/

2:

The desired results follow.

Lemma 3.11 Suppose that z1n and z2n are n-dimensional column vectors of constants

which are uniformly bounded, the n�n constant matrix An is uniformly bounded in column

sums in absolute value, n � n matrices B1n and B2n are uniformly bounded in both row

and column sums in absolute value, and �n1; � � � ; �nn are i.i.d. with zero mean and �nite

fourth moment. Let O�n , O�3 and O�4 be
p
n-consistent estimates of �0, �3 and �4. Then,

under Assumption 3,

(a) 1
n z
0
1n.
OG 0n � G 0n/L z2n D op.1/,

1p
n z
0
1n.
OG 0n � G 0n/L An�n D op.1/,

1
n �
0
nB 01n. OGn � Gn/

LB2n�n D op.1/, 1p
n �
0
n. OGn � Gn/d�n D op.1/;

(b) 1
n z
0
1n.
OG�0n � G�0n /L z2n D op.1/,

1p
n z
0
1n.
OG�0n � G�0n /L An�n D op.1/,

1
n �
0
nB 01n. OG

�
n � G�n/LB2n�n D op.1/,

1p
n �
0
n. OG�n � G�n/d�n D op.1/;

(c) 1
nvec

0
D.
OG�n � G�n/L z2n D op.1/,

1
n tr [A

0
n. OG�n � G�n/L ] D op.1/; and

(d) 1
n �
0
nB 01n. OP

�
n � P�n /LB2n�n D op.1/,

1p
n �
0
n. OP�n � P�n /d�n D op.1/.

Proof. As Sn�Sn. O�n/ D . O�n��0/Wn , it follows that OGn�Gn D Wn[S�1n . O�n/�S�1n ] D

WnS�1n . O�n/[Sn � Sn. O�n/]S�1n D . O�n � �0/ OGnGn . By induction,

OGn � Gn D
m�1X
iD1
. O�n � �0/

iGiC1n C . O�n � �0/
m OGnGmn ;

which implies

. OGn � Gn/L D
m�1X
iD1
. O�n � �0/

i .GiC1n /L C . O�n � �0/
m. OGnGmn /

L ; (3.19)
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for any positive integer m � 2. .3:19/ conforms to the expansion .3:18/ with p D 1,

Kin .�0/ D .GiC1n /L , and Kmn. O�n/ D . OGnGmn /L . As GLn , .GiC1n /L , and . OGn.Gmn //L satisfy

assumptions in Lemma 3.10, and tr..GiC1n /d/ D 0, (a) follows from Lemma 3.10.

For (b), as

G�n D Gn �
�
�4 � 3

�
� �23�

�4 � 1
�
� �23

D.Gn/�
�3

� 0[
�
�4 � 1

�
� �23]

D
�
GnXn�0

�
D Gn �

� 20.�4 � 3�
4
0/� �

2
3

� 20.�4 � �
4
0/� �

2
3
D.Gn/�

� 20�3

� 20.�4 � �
4
0/� �

2
3
D
�
GnXn�0

�
;

it follows that

OG�n � G
�
n D . OGn � Gn/� .1�

2. O� 2n/3

O�
/D. OGn � Gn/� .

2� 60
�
�
2. O� 2n/3

O�
/D.Gn/

�
O� 2n O�3
O�
D. OGnXn O�n � GnXn�0/� .

O� 2n O�3
O�

�
� 20�3
�

/D.GnXn�0/:(3.20)

where � D � 20.�4 � � 40/ � �23, with O� being its empirical counterpart. As D.. OGn �

Gn/Xn�0/L D
Pm�1
iD1 . O�n � �0/

iD.GiC1n Xn�0/L C . O�n � �0/
mD. OGnGmn Xn�0/L con-

forms to the expansion .3:18/ with p D 1, Kin .�0/ D D.GiC1n Xn�0/L , and Kmn. O�n/ D

D. OGnGmn Xn�0/L . It is obvious that assumptions in Lemma 3.10 are satis�ed. Hence we

have 1n z
0
1nD

0.. OGn�Gn/Xn�0/L z2n D op.1/ by Lemma 3.10. On the other hand, let ek j be

the j th unit vector in Rk , then 1n z
0
1nD

0. OGnXn. O�n��0//L z2n D 1
n
Pn
iD1 z1n;i z2n;ie0ni OGnXn. O�n�

�0/ D op.1/ because 1n
Pn
iD1 z1n;i z2n;ie0ni OGnXn D Op .1/ as O�n is a consistent estimate,

and O�n � �0 D op.1/. Hence 1
n z
0
1nD

0. OGnXn O�n � GnXn�0/L z2n D 1
n z
0
1nD

0.. OGn �

Gn/Xn�0/L z2n C 1
n z
0
1nD

0. OGnXn. O�n � �0//
L z2n D op.1/. And the remaining terms in

1
n z
0
1n.
OG�0n �G�0n /L z2n are op.1/ by (a) and Lemma 3.1. Therefore,

1
n z
0
1n.
OG�0n �G�0n /L z2n D

op.1/. And with similar arguments, the other results in (b) follow.
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For (c), as vec0D. OG
�
n � G�n/L D l 0nD. OG�n � G�n/L , it follows from (b) that

1
nvec

0
D.
OG�n �

G�n/L z2n D op.1/. Since OGn � Gn D . O�n � �0/G2n C . O�n � �0/2 OGnG2n , it follows

1
n
tr [A0n. OGn � Gn/

L ] D . O�n � �0/
1
n
tr.A0nG

2L
n /C . O�n � �0/

2 1
n
tr [A0n. OGnG

2
n/
L ] D op.1/;

because 1n tr.A
0
nG2Ln / D O.1/,

1
n tr.A

0
n. OGnG2n/L/ D Op.1/ and . O�n � �0/ D op.1/. Simi-

larly,

1
n
tr [A0nD. OGnXn O�n � GnXn�0/]

D
1
n
tr [A0nD.. OGn � Gn/Xn�0 C OGnXn. O�n � �0//]

D . O�n � �0/
1
n
tr [A0nD.G

2
nXn�0/]C . O�n � �0/

2 1
n
tr [A0nD. OGnG

2
nXn�0/]

C
1
n
tr [A0nD. OGnXn. O�n � �0//]

D op.1/:

As tr [A0nD.Gn/] D O.1/, tr [A0nD.GnXn�0/] D O.1/, and O� 2n; O�3; O� are consistent esti-

mates, it follows that 1n tr [A
0
n. OG�n � G�n/L ] D op.1/.

For (d), explicitly,

OP�n � P
�
n D

�
OGn �

O�4 � 3
O�4 � 1

D. OGn/
�d
�

�
Gn �

�4 � 3
�4 � 1

D .Gn/
�d

D . OGn � Gn/d �
O�4 � 3
O�4 � 1

D. OGn � Gn/d � .
O�4 � 3
O�4 � 1

�
�4 � 3
�4 � 1

/D
�
Gdn
�
:

As �d and D .�/ are linear transformations that preserve the uniform boundedness property

of the original matrix, and . O�4�3/=. O�4�1/ is a consistent estimate of
�
�4 � 3

�
=
�
�4 � 1

�
,

the desired result follows from (a) and Lemmas 3.3 and 3.5.

Lemma 3.12 Suppose that zn is an n-dimensional column vector of constants which are

uniformly bounded, the n � n constant matrix An is uniformly bounded in column sums in

absolute value, and �n1; � � � ; �nn are i.i.d. with zero mean and �nite fourth moment. Let O�n ,
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O�3 and O�4 be
p
n-consistent estimates of �0, �3 and �4. Let Q�n D [Q�1n; Q

�
2n] be given by

.3:15/ and .3:16/, with OQ�n D [ OQ�1n; OQ
�
2n] being their empirical counterparts. Then, under

Assumption 3,

(a) 1
n .
OQ�n � Q�n/0zn D op.1/, and

(b) 1p
n .
OQ�n � Q�n/0An�n D op.1/.

Proof. Let � D � 20.�4 � �
4
0/ � �

2
3, with �3 D �3�

3
0, �4 D �4�

4
0, and O� being the

empirical counterpart.

OQ�1n � Q
�
1n D �.

O�23
O�
�
�23
�
/
1
n
lnl 0nXn; (3.21)

and

OQ�2n � Q
�
2n D . OGnXn O�n � GnXn�0/C .In �

1
n
lnl 0n/

 
O�23
O�
OGnXn O�n �

�23
�
GnXn�0

!

�

 
2. O� 2n/2 O�3

O�
vecD. OGdn/�

2� 40�3
�

vecD.Gdn/

!

D [In C
O�23
O�
.In �

1
n
lnl 0n/]. OGnXn O�n � GnXn�0/C Rn1

�
2. O� 2n/2 O�3

O�
vecD. OGn � Gn/d � Rn2; (3.22)

where Rn1 D .
O�23
O� �

�23
� /.In �

1
n lnl

0
n/GnXn�0 and Rn2 D .

2. O� 2n/2 O�3
O� �

2� 40�3
� /vecD.Gdn/.

As 1n lnl
0
n is uniformly bounded in both row and column sums in absolute value, Lemma

3.1 implies that 1n .
1
n lnl

0
nXn/0zn D O.1/. Hence,

1
n .
OQ�1n � Q

�
1n/

0zn D op.1/ as O�3 and O� are

consistent estimates.

1
n
. OQ�2n � Q

�
2n/

0zn D [In C
O�23
O�
.In �

1
n
lnl 0n/]

1
n
. OGnXn O�n � GnXn�0/0zn C

1
n
R0n1zn

�
2. O� 2n/2 O�3

O�

1
n
vec0D. OGn � Gn/

dzn �
1
n
R0n2zn:
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Since 1n [. OGn � Gn/Xn]
0zn D op.1/ by Lemma 3.11, and . O�n � �0/ 1n .GnXn/

0zn D op.1/

as O�n � �0 D op.1/, it follows that 1n . OGnXn O�n � GnXn�0/
0zn D 1

n [. OGn � Gn/Xn O�n C

GnXn. O�n��0/]0zn D op.1/. For the remaining terms, 1nvec
0
D.
OGn�Gn/dzn D 1

n l
0
nD. OGn�

Gn/dzn D op.1/ by Lemma 3.11, and 1n R
0
n1zn D op.1/,

1
n R

0
n2zn D op.1/ as O�n , O�3 and O�4

are consistent estimates. Hence 1n . OQ
�
2n � Q

�
2n/

0zn D op.1/. This proves (a).

Lemma 3.4 implies that 1n .
1
n lnl

0
nXn/0An�n D op.1/. Hence

1
p
n
. OQ�1n � Q

�
1n/

0An�n D �
p
n.
O�23
O�
�
�23
�
/
1
n
.
1
n
lnl 0nXn/

0An�n D op.1/;

as O�3 and O� are
p
n-consistent estimates. The �rst term in 1p

n .
OQ�2n � Q

�
2n/

0An�n is op.1/

because

1
p
n
. OGnXn O�n � GnXn�0/0An�n

D
1
p
n
O�
0
nX

0
n. OGn � Gn/

0An�n C
p
n. O�n � �0/0

1
n
X 0nG

0
nAn�n D op.1/;

where 1p
n
O�
0
nX 0n. OGn � Gn/0An�n D op.1/ by Lemma 3.11, 1n X

0
nG 0nAn�n D op.1/ by

Lemma 3.4, and
p
n. O�n � �0/ D Op.1/. Similarly, the remaining terms in 1p

n .
OQ�2n �

Q�2n/
0An�n are also op.1/. The desired results follow.

Lemma 3.13 Suppose that the elements of the n � k matrix Cn are uniformly bounded,

the n � n matrix An is uniformly bounded in column sums in absolute value, and O�n is

a
p
n-consistent estimator. Then, 1p

nC
0
n OGLn An�n D Op.1/, and 1p

nC
0
n OP�n An�n D Op.1/,

where OP�n D OGdn �
O�4�3
O�4�1

D. OGdn/.

Proof. 1p
nC

0
n OGLn An�n D Op.1/ is a case of Lee (2001a) Lemma A.11. As . O�4 �

3/=. O�4 � 1/ D Op.1/, it follows that

1
p
n
C 0n OP

�
n An�n D

1
p
n
C 0n OG

d
n An�n �

O�4 � 3
O�4 � 1

1
p
n
C 0nD. OG

d
n/An�n D Op.1/:
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Lemma 3.14 Suppose that An , Bn and Cn are matrices uniformly bounded in column sums

in absolute value, Xn satis�es Assumption 2, and b�n is a pn-consistent estimator of �0.
Then, �0nA0n OP�n B 0nMnCn�n D Op.1/, and �0nC 0nMnAn OP�n B 0nMnCn�n D Op.1/, where OP�n D

OGdn �
O�4�3
O�4�1

D. OGdn/ and Mn D Xn
�
X 0nXn

��1 X 0n .
Proof. As A0n and B 0n are uniformly bounded in row sums in absolute value and ele-

ments of Xn are uniformly bounded, elements of A0nXn and B 0nXn are uniformly bounded.

Hence, by Lemmas 3.4 and 3.13,

�0nA
0
n OP

�
n B

0
nMnCn�n D .

1
p
n
�0nA

0
n OP

�
n B

0
nXn/.

1
n
X 0nXn/

�1.
1
p
n
X 0nCn�n/ D Op.1/:

On the other hand,

�0nC
0
nMnAn OP

�
n B

0
nMnCn�n

D .
1
p
n
�0nC

0
nXn/.

1
n
X 0nXn/

�1.
1
n
X 0nAn OP

�
n B

0
nXn/.

1
n
X 0nXn/

�1.
1
p
n
X 0nCn�n/:

Under Assumption 3, because S�1n is uniformly bounded in both row and column sums

in absolute value, S�1n .�/ and, hence, Gn.�/ must be uniformly bounded in both row and

column sums in absolute value, uniformly in � in a small neighborhood of �0, by Lemma

3.9. As O�n and O�4 are consistent, it follow that OGn and, hence, OP�n are uniformly bounded

in both row and column sums in absolute value with probability one. Therefore, Lemma

3.1 implies that 1n X
0
nAn OP�n B 0nXn D Op.1/. The desired result follows from Lemma 3.4.

To show the proposed moment conditions are optimal, we show adding additional

moment conditions to the optimal moment conditions does not increase the asymptotic

ef�ciency of the GMME using the conditions for redundancy in Breusch et al. (1999).

The de�nition of redundancy is given as follows. �Let O� be the optimal GMME based
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on a set of (unconditional) moment conditions E
�
g1 .y; �/

�
D 0. Now add some ex-

tra moment conditions E
�
g2 .y; �/

�
D 0 and let Q� be the optimal GMME based on the

whole set of moment conditions E
�
g .y; �/

�
� E

�
g01 .y; �/ ; g

0
2 .y; �/

�0
D 0. We say

that the moment conditions E
�
g2 .y; �/

�
D 0 are redundant given the moment condi-

tions E
�
g1 .y; �/

�
D 0, or simply that g2 is redundant given g1, if the asymptotic vari-

ances of O� and Q� are the same� (Breusch et al., 1999, p. 90). For moment conditions

E
�
g .y; �/

�
� E

�
g01 .y; �/ ; g

0
2 .y; �/

�0
D 0, let

� � E
�
g .y; �/ g0 .y; �/

�
D

�
�11 �12
�21 �22

�
;

with � jl D E
�
g j .y; �/ g0l .y; �/

�
for j; l D 1; 2. And de�ne D j D E

�
@g j .y; �/ =@� 0

�
for

j D 1; 2. Let the dimensions of g1 .y; �/, g2 .y; �/ and � be k1, k2 and p.

Lemma 3.15 The following statements are equivalent.

(a) g2 is redundant given g1.

(b) D2 D �21��111 D1.

(c) There exists a k1 � p matrix A such that D1 D �11A and D2 D �21A.

Proof. Breusch et al. (1999) Theorem 1 (A), (C), and (D), respectively.

Lemma 3.16 Let the set of moment conditions to be considered be

E
�
g .�/

�
� E

�
g01 .�/ ; g

0
2 .�/ ; g

0
3 .�/

�0
D 0;

or simply g D
�
g01; g

0
2; g

0
3
�0. Then �g02; g03�0 is redundant given g1 if and only if g2 is

redundant given g1 and g3 is redundant given g1.

Proof. Breusch et al. (1999) Theorem 2.
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3.5.3 Proofs

Proof of Proposition 3.1. There are two possible approaches to establish the result.

The �rst approach extends the optimization of variances of the GMME. The second one is

a constructive argument based on Breusch et al. (1999). Here we present both approaches.

(1) The �rst approach derives the best moment function P�n analytically. With m

quadratic moments in gn.�/, var.gn.�0// D � 40�n , where

�n D .�4 � 3/!0m!m C Vn;

with !m D [vecD.P1n/; � � � ; vecD.Pmn/] and

Vn D
1
2
.vec.Ps1n/; � � � ; vec.P

s
mn//

0.vec.Ps1n/; � � � ; vec.P
s
mn//

D

0B@ tr.Ps1nP1n/ � � � tr.Ps1nPmn/
:::

: : :
:::

tr.PsmnP1n/ � � � tr.PsmnPmn/

1CA : (3.23)

The two terms in �n can be combined into a uni�ed one as follows. First, because

tr.PsjnPln/� vec.Pjn � D.Pjn//
svec.Pjn � D.Pjn//

D tr.PsjnPln/� tr [.Pjn � D.Pjn//
s.Pjn � D.Pjn//]

D tr.PsjnPln/� tr [.Pjn � D.Pjn//
sPln]

D 2tr [D.Pjn/Pln] D 2tr [D.Pjn/D.Pln/] D 2vec0D.Pjn/vecD.Pln/;

for any j and l, we have0B@ tr.Ps1nP1n/ � � � tr.Ps1nPmn/
:::

: : :
:::

tr.PsmnP1n/ � � � tr.PsmnPmn/

1CA� 2!0m!m D 12$ 0
m$m;

where$m D [vec.P1n � D.P1n//s; � � � ; vec.Pmn � D.Pmn//s]. Therefore,

�n D
1
2
�
2.�4 � 1/!0m!m C$

0
m$m

�
:
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De�ne the modi�ed matrices PCjn D Pjn � D.Pjn/C
q
�4�1
2 D.Pjn/ for j D 1; � � � ;m. As

vec0.PCsjn /vec.P
Cs
kn /

D tr.PCsjn P
Cs
kn /

D trf[Psjn � D.P
s
jn/][P

s
kn � D.P

s
kn/]g C 2.�4 � 1/tr [D.Pjn/D.Pkn/]

D vec0[.Pjn � D.Pjn//s]vec[.Pkn � D.Pkn//s]C 2.�4 � 1/vec0D.Pjn/vecD.Pkn/;

it follows that �n D 1
2.vec.P

Cs
1n /; � � � ; vec.P

Cs
kn //

0.vec.PCs1n /; � � � ; vec.P
Cs
mn //.

Consider now tr.PsjnGn/ D tr.Psjn.Gn �
tr.Gn/
n In//. We would like to �nd a matrix

An such that tr.Psjn.Gn �
tr.Gn/
n In// D tr.PCsjn .Gn �

tr.Gn/
n In C An// holds for all j . By

taking An to be a diagonal matrix, we see that the solution is

An D .

s
2

�4 � 1
� 1/.D.Gn/�

tr.Gn/
n

In/;

which is invariant with any Pnj . Denote

G�n D Gn �
tr.Gn/
n

In C An

D Gn �
tr.Gn/
n

In C .

s
2

�4 � 1
� 1/.D.Gn/�

tr.Gn/
n

In/;

which has zero trace. Therefore, tr.PsjnGn/ D tr.P
Cs
jn G

�
n /.

Following Lee (2001a), the limit variance of the GMME with Pjn , j D 1; � � � ;m, is

6�1P D .limn!1 1
n6P;n/

�1, where

6P;n D .tr.Ps1nGn/; � � � ; tr.P
s
mnGn//�

�1
n .tr.P

s
1nGn/; � � � ; tr.P

s
mnGn//

0:

With the above manipulation, 6P;n can be rewritten as

6P;n D 2vec0.G�n /.vec.P
Cs
1n /; � � � ; vec.P

Cs
mn //

�[.vec.PCs1n /; � � � ; vec.P
Cs
mn //

0.vec.PCs1n /; � � � ; vec.P
Cs
mn //]

�1

�.vec.PCs1n /; � � � ; vec.P
Cs
mn //

0vec.G�n /:

141



By the generalized Schwartz inequality, 6P;n � 2vec0.G�n /vec.G�n /, which provides a

bound for the precision matrix 6P;n for any GMME with a �nite number of quadratic

moments. This bound can be obtained with a corresponding optimum

PC�n D .Gn �
tr.Gn/
n

In/C .

s
2

�4 � 1
� 1/.D.Gn/�

tr.Gn/
n

In/:

With PCn transformed back to the Pn , the best P�n is

P�n D PC�n � D.PC�n /C

s
2

�4 � 1
D.PC�n /

D .Gn �
tr.Gn/
n

In/�
�4 � 3
�4 � 1

.D.Gn/�
tr.Gn/
n

In/:

(2) In the second approach, we show that g�n .�/ D u0nS0n .�/ P�n Sn .�/ un is the best

moment function in the sense that any other moment functions are redundant given g�n .�/.

Following Lemma 3.16, to show that any other �nite number of moment functions are

redundant given g�n .�/, it is equivalent to show that an arbitrary single moment function is

redundant given g�n .�/. Let Pn be an arbitrary n�n constant matrix satisfying Assumption

4, and gn .�/ D u0nS0n .�/ PnSn .�/ un . Consider the moment conditions

E.� n .�0// D E
�
g�n .�0/
gn .�0/

�
D 0:

Let

E
�
� n .�0/ �

0
n .�0/

�
D

�
�11 �12
�21 �22

�
;

E.
@� n .�0/

@�
/ D E

�
@g�n .�0/ =@�
@gn .�0/ =@�

�
D

�
D1
D2

�
:

According to Lemma 3.15 (b), to show that gn .�/ is redundant given g�n .�/ it's suf�cient

to show that D�12 �21 D D�11 �11. And because P�n is a special case of Pn , it's suf�cient to

show D�12 �21 is invariant with Pn . Following Lemma 3.2, we have

�21 D �
4
0[tr

�
Psn P

�
n
�
C
�
�4 � 3

�
vec0D .Pn/ vecD

�
P�n
�
];
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where

tr
�
Psn P

�
n
�
D tr

�
PsnGn

�
�
�4 � 3
�4 � 1

tr
�
Psn D.Gn/

�
�
1
n
.

2
�4 � 1

/tr .Gn/ tr
�
Psn
�

D tr
�
PsnGn

�
�
�4 � 3
�4 � 1

tr
�
Psn D.Gn/

�
;

and

vecD
�
P�n
�
D

2
�4 � 1

�
vecD .Gn/�

1
n
tr .Gn/ ln

�
:

As vec0D .A/ vecD .B/ D tr .A � D.B//, and vec
0
D .Pn/ ln D 0, it follows that

vec0D .Pn/ vecD
�
P�n
�
D

2
�4 � 1

�
vec0D .Pn/ vecD .Gn/�

1
n
tr .Gn/ vec0D .Pn/ ln

�
D

2
�4 � 1

tr .PnD.Gn// D
1

�4 � 1
tr
�
Psn D.Gn/

�
:

Hence,

�21 D � 40[tr
�
PsnGn

�
�
�4 � 3
�4 � 1

tr
�
Psn D.Gn/

�
C
�
�4 � 3

� 1
�4 � 1

tr
�
Psn D.Gn/

�
]

D � 40tr
�
PsnGn

�
:

And since D2 D �� 20tr
�
PsnGn

�
(Lee, 2001a), we have D�12 �21 D �� 20, which is invariant

with Pn .

Furthermore, let the asymptotic variance of the consistent root derived from min g�2n .�/

be 6�1B . As 6B D limn!1
1
nD

0
1�

�1
11 D1 (Lee, 2001a), where D1 D �� 20tr

�
P�sn Gn

�
and

��111 D1 D �
�1
21 D2 D ��

�2
0 , it follows that 6B D limn!1

1
n tr

�
P�sn Gn

�
.

Proof of Proposition 3.2. The proof is divided into two steps. In the �rst step, we show

that if un is observable, g�n .�/ D u0nS0n .�/ P�n Sn .�/ un and Qg�n .�/ D u0nS0n .�/ OP�n Sn .�/ un

are asymptotic equivalent in the sense that their consistent roots have the same limit-

ing distribution. In the second step, we show that Qg�n .�/ D u0nS0n .�/ OP�n Sn .�/ un and

Og�F;n .�/ D Ou0nS0n .�/ OP�n Sn .�/ Oun are asymptotic equivalent.
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(1) For consistency of the root of Qg�n .�/ D 0, it is suf�cient to show that 1n Qg
�
n .�/ �

1
n g
�
n .�/ D op.1/ uniformly in � 2 3. Explicitly, 1n . Qg

�
n .�/ � g�n .�// D Tn1 � �Tn2 C

�2Tn3 where Tn1 D 1
n �
0
nS

0�1
n . OP�n � P�n /S�1n �n , Tn2 D 1

n �
0
nG 0n. OP�n � P�n /S�1n �n , and Tn3 D

1
n �
0
nG 0n. OP�n � P�n /Gn�n . The terms Tnj , j D 1; 2; 3, are all of order op.1/ by Lemma 3.11.

Hence 1n Qg
�
n .�/ �

1
n g
�
n .�/ D op.1/ uniformly in � 2 3. The consistency of the root of

Qg�n .�/ D 0 follows from the �rst part of Lemma 3.6.

For the asymptotic distribution of the root of Qg�n .�/ D 0, consider 1n .
@ Qg�n .�/
@� � @g�n.�/

@� /

and 1p
n . Qg

�
n.�0/� g�n.�0//. As Sn.�/ D Sn � .�� �0/Wn ,

1
n
u0nS

0
n.�/ OP

�s
n Wnun D

1
n
�0n OP

�s
n Gn�n � .�� �0/

1
n
�0nG

0
n OP

�s
n Gn�n

D
1
n
�0nP

�s
n Gn�n � .�� �0/

1
n
�0nG

0
nP

�s
n Gn�n C Rn1 C Rn2

D
1
n
u0nS

0
n.�/P

�s
n Wnun C Rn1 C Rn2;

where Rn1 D 1
n �
0
n. OP�n � P�n /sGn�n and Rn2 D

1
n �
0
nG 0n. OP�n � P�n /sGn�n . It follows from

Lemma 3.11 that Rn1 D op.1/ and Rn2 D op.1/. Hence,

1
n
u0nS

0
n.�/ OP

�s
n Wnun D

1
n
u0nS

0
n.�/P

�s
n Wnun C op.1/;

uniformly in � 2 3, i.e., 1n .
@ Qg�n.�/
@� � @g�n.�/

@� / D op.1/ uniformly in � 2 3. For the other

term,

1
p
n
u0nS

0
n OP

�
n Snun D

1
p
n
�0nP

�
n �n C

1
p
n
�0n. OP

�
n � P

�
n /�n D

1
p
n
u0nS

0
nP

�
n Snun C op.1/;

by Lemma 3.11, i.e., 1p
n . Qg

�
n.�0/ � g�n.�0// D op.1/. Hence, by Lemma 3.6, the feasible

GMME derived from min�23[u0nS0n.�/ OP�n Sn.�/un]2 has the same limiting distribution as

that derived from min�23[u0nS0n.�/P�n Sn.�/un]2.

(2) It is suf�cient to show that the moment function Og�F;n .�/ and its derivative are close

enough to those of Qg�n .�/ so that Lemma 3.6 is applicable. Speci�cally, it shall be shown
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that Og�F;n .�/� Qg�n .�/ D Op.1/ and
@ Og�F;n.�/
@� � @ Qg�n.�/

@� D Op.1/ uniformly in � 2 3. These

properties are stronger than those suf�cient conditions in Lemma 3.6.

Because Oun D .In � Mn/un , Og�F;n.�/ D Qg�n.�/C En.�/ where

En.�/ D �u0nS
0
n.�/ OP

�s
n Sn.�/Mnun C u

0
nMnS

0
n.�/ OP

�
n Sn.�/Mnun:

Substitute un D S�1n �n in the terms of En.�/. Lemma 3.14 is applicable and all the terms

of En.�/ are of order Op.1/ uniformly in � 2 3. The uniform order holds because � is

linear in Sn.�/. Hence, Og�F;n .�/ D Qg�n .�/C Op.1/ uniformly in � 2 3. Consequently, one

has, in particular, that 1n Og
�
F;n.�/ D

1
n Qg
�
n.�/C op.1/ and

1p
n Og
�
F;n.�0/ D

1p
n Qg
�
n.�0/C op.1/.

The �rst order derivative of Og�F;n.�/ is

@ Og�F;n.�/
@�

D �Ou0nW
0
n OP

�s
n Sn.�/ Oun D �u

0
n.In � Mn/W

0
n OP

�s
n Sn.�/.In � Mn/un D

@ Qg�n.�/
@�

C Rn.�/;

where Rn.�/ D u0nMnW 0
n OP�sn Sn.�/un C u0nW 0

n OP�sn Sn.�/Mnun � u0nMnW 0
n OP�sn Sn.�/Mnun .

By a similar argument, Rn.�/ D Op.1/ uniformly in � 2 3 by Lemma 3.14. This implies,

in turn, that 1n
@ Og�F;n.�/
@� D 1

n
@ Qg�n.�/
@� C op.1/ uniformly in � 2 3. Hence, by Lemma 3.6,

the feasible BGMME derived from min�23[ Ou0nS0n.�/ OP�n Sn.�/ Oun]2 has the same limiting

distribution as that derived from min�23[u0nS0n.�/ OP�n Sn.�/un]2.

In summary, the above two steps show that the feasible BGMME derived from

min
�23
[ Ou0nS

0
n.�/ OP

�
n Sn.�/ Oun]

2

has the same limiting distribution as the BGMME derived frommin�23[u0nS0n.�/P�n Sn.�/un]2.

Proof of Proposition 3.3. Consider the moment conditions

E
�
g�n .�0/
gn .�0/

�
D 0;
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where gn .�/ is a vector of arbitrary moment functions taken the form of .3:13/. To show

the desired results, it is suf�cient to show that gn is redundant given g�n , or equivalently that

there exists an An invariant with Pjn . j D 1; � � � ;m/ and Qn st. D2 D �21An according

to Lemma 3.15 (c), where

D2 D E
�
@gn .�0/
@�

�
D �

0BBB@
Q0nXn Q0nGnXn�0
0 � 20tr.P

s
1nGn/

:::
:::

0 � 20tr.P
s
mnGn/

1CCCA ;
and

�21

D E
�
gn .�0/ g�0n .�0/

�
D

0BBB@
� 20Q

0
nQ�1n � 20Q

0
nQ�2n �3Q0nvecD.P�1n/ � � � �3Q0nvecD.P�k�C1;n/

�3vec0D.P1n/Q
�
1n �3vec0D.P1n/Q

�
2n � 40tr.P

s
1nP

�
1n/ � � � � 40tr.P

s
1nP

�
k�C1;n/

:::
:::

:::
: : :

:::

�3vec0D.Pmn/Q
�
1n �3vec0D.Pmn/Q

�
2n � 40tr.P

s
mnP�1n/ � � � � 40tr.P

s
mnP�k�C1;n/

1CCCA

C
�
�4 � 3� 40

�0BBB@
0 0 0 � � � 0
0 0 vec0D.P1n/vecD.P

�
1n/ � � � vec0D.P1n/vecD.P

�
k�C1;n/

:::
:::

:::
: : :

:::
0 0 vec0D.Pmn/vecD.P

�
1n/ � � � vec0D.Pmn/vecD.P

�
k�C1;n/

1CCCA :
To simplify notations, denote � D � 60

�
.�4 � 1/� �23

�
D � 20.�4 � �

4
0/� �

2
3. Let

An D �

0BBBBBBB@

��20 Ik 0k�1
01�k ��20
01�k ��20
b1 0
:::

:::
bk� 0

1CCCCCCCA
;

where b j D ��3
� e

0
k j for j D 1; � � � ; k

�. To check D2 D �21An , the following identities

are helpful:

(1) vecD.P�jC1;n/ D X
�
nj �

1
n lnl

0
nX�nj ; for j D 1; � � � ; k

�,

(2)
Pk�

jD1 vecD.P�jC1;n/e
0
k j D Xn �

1
n lnl

0
nXn ,
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(3) vecD.P�1n/ D
2� 60
� vecD.Gn �

tr.Gn/
n In/�

� 20�3
� .GnXn�0 � 1

n lnl
0
nGnXn�0/.

It follows from identity (2) that

(4) Q�1n �
�23
�

Pk�
jD1 vecD.P�jC1;n/e

0
k j D Xn ,

and it follows from identity (3) that

(5) � 20Q
�
2n C �3vecD.P

�
1n/ D �

2
0GnXn�0.

For an arbitrary n � n matrix Pn with tr .Pn/ D 0, we have:

(6) vec0D.Pn/Q
�
1n D .�

2
0.�4 � �

4
0/=�/vec

0
D.Pn/Xn ,

(7) � 40tr.P
s
n P�jC1;n/C.�4�3�

4
0/vec

0
D.Pn/vecD.P

�
jC1;n/ D .�4��

4
0/vec

0
D.Pn/vecD.P

�
jC1;n/,

for j D 1; � � � ; k�, and

(8) �3vec0D.Pn/Q
�
2nC�

4
0tr.P

s
n P�1n/C.�4�3�

4
0/vec

0
D.Pn/vecD.P

�
1n/ D �

4
0tr.P

s
nGn/.

It follows from identity (4) that the .1; 1/ block of �21An is �Q0nXn , and it follows from

identity (5) that the .1; 2/ block of�21An is�Q0nGnXn�0. Identities (2), (6) and (7) imply

that the . j C 1; 1/ blocks of �21An are zeros for j D 1; � � � ;m, and (8) implies that the

remaining . j C 1; 2/ blocks of �21An are �� 20tr.P
s
jnGn/ for j D 1; � � � ;m. Therefore,

�21An D D2.

Furthermore, as g�n .�/ is a special case of gn .�/, and An is invariant with Pn's and Qn ,

it follows that D1 D �11An , and hence ��111 D1 D An , where �11 D ��n D var
�
g�n .�0/

�
and

D1 D E
�
@g�n .�0/
@�

�
D �

0BBBBB@
Q�01nXn Q�01nGnXn�0
Q�02nXn Q�02nGnXn�0
0 � 20tr.P

�s
1nGn/

:::
:::

0 � 20tr.P
�s
k�C1;nGn/

1CCCCCA :
Following Lee (2006), 6B D limn!1 1

nD
0
1�

�1
11 D1 D limn!1

1
nD

0
1An , where

D01An D
�
��20 X

0
nQ�1n ��20 X

0
nQ�2n

��20 Q
�0
2nXn ��20 .GnXn�0/

0Q�2n C tr.P
�s
1nGn/

�
:

The desired result follows as � D � 20.�4 � �
4
0/� �

2
3, �3 D �3�

3
0, and �4 D �4�

4
0.
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Proof of Proposition 3.4. We shall show that the objective functions z�n.�/ D

Og�0n .�/ O���1n Og�n.�/ and zn.�/ D g�0n .�/���1n g�n.�/ will satisfy the conditions in Lemma

3.7. If so, the GMME from the minimization of z�n.�/ will have the same limiting distri-

bution as that of the minimization of zn.�/. The difference of z�n.�/ and zn.�/ and its

derivatives involve the difference of Og�n.�/ and g�n.�/ and their derivatives. Furthermore,

one has to consider the difference of O��n and ��n .

First, consider 1n . Og
�
n.�/� g�n.�//. Explicitly,

1
n
. Og�n.�/� g

�
n.�//

0

D [
1
n
. OQ�1n � Q

�
1n/

0�n.�/;
1
n
. OQ�2n � Q

�
2n/

0�n.�/;
1
n
�0n.�/. OG

�
n � G

�
n/
d�n.�/; 0k��1]:

The �n.�/ is related to �n as �n.�/ D �n C .�0 � �/Gn�n C dn.�/ where dn.�/ D .�0 �

�/GnXn�0 C Xn.�0 � �/. It follows that 1n . OQ
�
1n � Q

�
1n/

0�n.�/ D
1
n .
OQ�1n � Q

�
1n/

0�n C

.�0 � �/ 1n .
OQ�1n � Q

�
1n/

0Gn�n C 1
n .
OQ�1n � Q

�
1n/

0dn.�/ D op.1/ uniformly in � 2 2 by

Lemma 3.12. The uniformity follows because dn.�/ is linear in � and �. Similarly, it

follows that 1n . OQ
�
2n � Q�2n/

0�n.�/ D op.1/ uniformly in � 2 2 by Lemma 3.12, and

1
n �
0
n.�/. OG�n�G�n/d�n.�/ D op.1/ uniformly in � 2 2 by Lemma 3.11. Hence, we conclude

that 1n . Og
�
n.�/� g�n.�// D op.1/ uniformly in � 2 2.

Consider the derivatives of Og�n.�/ and g�n.�/. As the second derivatives of �n.�/ with

respect to � are zero because �n.�/ is linear in � , it follows that

@g�n.�/
@� 0

D

0BBB@
Q�0n

@�n.�/
@� 0

�0n.�/P�s1n
@�n.�/
@� 0

:::

�0n.�/P�sk�C1;n
@�n.�/
@� 0

1CCCA ; and @2g�n.�/@�@� 0
D

0BBBB@
0

@�0n.�/
@� P�s1n

@�n.�/
@� 0

:::
@�0n.�/
@� P�sk�C1;n

@�n.�/
@� 0

1CCCCA :
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The �rst order derivatives of �n.�/ is @�n.�/@� 0
D �.Xn;WnYn/. BecauseWnYn D GnXn�0C

Gn�n ,

1
n
.WnYn/0. OP�s1n � P

�s
1n /�n.�/

D
1
n
.GnXn�0/0. OG�n � G

�
n/
dsdn.�/C

1
n
.GnXn�0/0. OG�n � G

�
n/
ds.�n C .�0 � �/Gn�n/

C
1
n
�0nG

0
n. OG

�
n � G

�
n/
dsdn.�/C

1
n
�0nG

0
n. OG

�
n � G

�
n/
ds.�n C .�0 � �/Gn�n/

D op.1/;

uniformly in � 2 2, and

1
n
.WnYn/0. OP�s1n � P

�s
1n /WnYn

D
1
n
.Xn�0/0G 0n. OG

�
n � G

�
n/
dsGnXn�0 C

2
n
.Xn�0/0G 0n. OG

�
n � G

�
n/
dsGn�n

C
1
n
�0nG

0
n. OG

�
n � G

�
n/
dsGn�n

D op.1/;

by Lemma 3.11. Similarly, Lemma 3.11 implies that 1n X
0
n. OG�n � G�n/ds�n.�/ D op.1/ uni-

formly in � 2 2, and 1
n X

0
n. OG�n � G�n/dsWnYn D op.1/, 1n X

0
n. OG�n � G�n/dsXn D op.1/.

Therefore, 1n �
0
n.�/. OP�s1n � P

�s
1n /

@�n.�/
@� 0

D op.1/ and 1n
@�0n.�/
@� . OP�s1n � P

�s
1n /

@�n.�/
@� 0

D op.1/ uni-

formly in � 2 2. Similarly, it follows from Lemma 3.12 that 1n . OQ
�0
1n � Q�01n/

@�n.�/
@� 0

D

op.1/ and 1
n .
OQ�02n � Q

�0
2n/

@�n.�/
@� 0

D op.1/ uniformly in � 2 2. Hence, we conclude that

1
n .
@ Og�n.�/
@� � @g�n .�/

@� / D op.1/ and 1n .
@2 Og�n.�/
@�@� 0

� @2g�n .�/
@�@� 0

/ D op.1/ uniformly in � 2 2.

Consider 1n . O�
�
n ��

�
n/, where

��n D E
�
g�n .�0/ g

�0
n .�0/

�
D

�
� 20Q

�0
n Q�n �3Q�0n !�k�C1

�3!
�0
k�C1Q

�
n � 401

�
k�C1 C .�4 � 3�

4
0/!

�0
k�C1!

�
k�C1

�
;

149



with !�k�C1 D [vecD.P
�
1n/; � � � ; vecD.P

�
k�C1;n/] and

1�k�C1 D

0BBB@
tr
�
P�s1n P

�
1n
�

� � � tr
�
P�s1n P

�
k�C1;n

�
:::

: : :
:::

tr
�
P�sk�C1;nP

�
1n

�
� � � tr

�
P�sk�C1;nP

�
k�C1;n

�
1CCCA :

First, consider the block matrix � 401
�
k�C1 C .�4 � 3�

4
0/!

�0
k�C1!

�
k�C1. As OG

�
n is uniformly

bounded in column sums in absolute value with probability one, it follows from Lemma

3.11 that 1n tr. OP
�s
1n
OP�1n/ �

1
n tr.P

�s
1n P

�
1n/ D

1
n tr. OG

�ds
n OG�n/ �

1
n tr.G

�ds
n G�n/ D

1
n tr [. OG

�
n �

G�n/ds OG�n C G�dsn . OG�n � G�n/] D op.1/, and

1
n
vec0D. OP

�
1n/vecD. OP

�
1n/�

1
n
vec0D

�
P�1n
�
vecD

�
P�1n
�

D
1
n
vec0D. OG

�d
n /vecD. OG

�d
n � G�dn /C

1
n
vec0D. OG

�d
n � G�dn /vecD

�
G�dn

�
D op.1/:

Similarly, as P�jC1;n D D.X�dnj / for j D 1; � � � ; k
�, Lemma 3.11 implies that 1n tr [. OP

�s
1n �

P�s1n /D.X
�d
nj /] D

1
nvecD. OG

�
n�G�n/dsX�dnj D op.1/, and

1
nvec

0
D.
OP�1n�P

�
1n/X

�d
nj D

1
nvec

0
D.
OG�n�

G�n/dX�dnj D op.1/ for j D 1; � � � ; k
�. Hence, we conclude that

1
n
. O� 2n/

2tr. OP�sin OP
�
jn/�

1
n
� 40tr.P

�s
in P

�
jn/

D . O� 2n/
2 1
n
.tr. OP�sin OP

�
jn/� tr.P

�s
in P

�
jn//C .. O�

2
n/
2 � � 40/

1
n
tr.P�sin P

�
jn/ D op.1/;

and

1
n
. O�4 � 3. O�

2
n/
2/vec0D. OP

�
in/vecD. OP

�
jn/�

1
n
.�4 � 3� 40/vec

0
D.P

�
in/vecD.P

�
jn/

D . O�4 � 3. O�
2
n/
2/
1
n
[vec0D. OP

�
in/vecD. OP

�
jn/� vec

0
D.P

�
in/vecD.P

�
jn/]

C[. O�4 � 3. O�
2
n/
2/� .�4 � 3� 40/]

1
n
vec0D.P

�
in/vecD.P

�
jn/

D op.1/

for i; j D 1; � � � ; k� C 1.
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Next consider the block matrix �3Q�0n !�k�C1. As elements of OQ
�
1n and OQ�2n are uni-

formly bounded with probability one, it follows from Lemmas 3.11 and 3.12 that 1n OQ
�0
1nvecD. OP

�
1n/�

1
nQ

�0
1nvecD

�
P�1n
�
D 1

n
OQ�01nvecD. OG

�d
n � G�dn / C

1
n .
OQ�1n � Q

�
1n/

0vecD
�
G�dn

�
D op.1/ and

1
n
OQ�02nvecD. OP

�
1n/�

1
nQ

�0
2nvecD

�
P�1n
�
D 1
n
OQ�02nvecD. OG

�d
n �G�dn /C

1
n .
OQ�02n�Q

�0
2n/vecD

�
G�dn

�
D

op.1/. Similarly, 1n . OQ
�
n � Q�n/0X�dnj D op.1/ for j D 1; � � � ; k

� by Lemma 3.12. Hence,

we conclude that

1
n
. O�3 OQ�0n vecD. OP

�
jn/� �3Q

�0
n vecD.P

�
jn//

D O�3
1
n
. OQ�0n vecD. OP

�
jn/� Q

�0
n vecD.P

�
jn//C . O�3 � �3/

1
n
Q�0n vecD.P

�
jn/ D op.1/

for j D 1; � � � ; k� C 1.

Lastly, consider the remaining block matrix � 20Q
�0
n Q�n . As elements of OQ�1n and OQ

�
2n are

uniformly bounded with probability one, Lemma 3.12 implies that 1n . OQ
�0
1n
OQ�1n�Q

�0
1nQ

�
1n/ D

1
n [ OQ

�0
1n.

OQ�1n�Q
�
1n/C. OQ

�
1n�Q

�
1n/

0Q�1n] D op.1/. Similarly, by Lemma 3.12,
1
n .
OQ�02n OQ

�
2n�

Q�02nQ
�
2n/ D op.1/ and

1
n .
OQ�02n OQ

�
1n�Q

�0
2nQ

�
1n/ D op.1/. Therefore, it follows that

1
n . O�

2
n OQ�0n OQ�n�

� 20Q
�0
n Q�n/ D O� 2n

1
n .
OQ�0n OQ�n � Q�0n Q�n/ C . O� 2n � � 20/

1
nQ

�0
n Q�n D op.1/. In conclusion,

1
n
O��n�

1
n�

�
n D op.1/. As the limit of

1
n�

�
n exists and is a nonsingular matrix, it follows that

. 1n
O��n/

�1 � . 1n�
�
n/
�1 D op.1/ by the continuous mapping theorem.

Furthermore, because 1n . Og
�
n.�/ � g�n.�// D op.1/, and

1
n [g

�
n.�/ � E.g�n.�//] D op.1/

uniformly in � 2 2, and sup�22
1
n jE.g

�
n.�//j D O.1/ (Lee, 2006, p. 21), 1n g

�
n.�/ and

1
n Og
�
n.�/ are stochastically bounded, uniformly in � 2 2. Similarly, 1n

@g�n.�/
@� , 1n

@ Og�n.�/
@� ,

1
n
@2g�n.�/
@�@� and 1n

@2 Og�n .�/
@�@� are stochastically bounded, uniformly in � 2 2.
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With the uniform convergence in probability and uniformly stochastic boundedness

properties, the difference of z�n.�/ and zn.�/ can be investigated. By expansion,

1
n
.z�n.�/�zn.�//

D
1
n
Og�0n .�/ O�

��1
n . Og�n.�/� g

�
n.�//C

1
n
g�0n .�/. O�

��1
n ����1n / Og�n.�/C

1
n
g�0n .�/�

��1
n . Og�n.�/� g

�
n.�//

D op.1/;

uniformly in � 2 2. Similarly, for each component � l of � ,

1
n
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0 �
1
n
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0

D
2
n
[
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O���1n
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n
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���1n
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@� 0

C g�0n .�/�
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n
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0 /]
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Finally, because .@ Og
�0
n .�0/
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O���1n � @g�0n .�0/
@� ���1n / D op.1/ as above, and 1p

n g
�
n.�0/ D

Op.1/ by the central limit theorems in Lemmas 3.4 and 3.5,

1
p
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�
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1
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p
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1
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As 1p
n . Og

�
n.�0/ � g�n.�0// D op.1/ by Lemmas 3.11 and 3.12, 1p

n .
@z�n.�0/
@� � @zn.�0/

@� / D

op.1/. The desired result follows from Lemma 3.7.
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3.5.4 Joint GMM Estimation of the MRSAR Model

When the disturbances in the MRSAR model are normally distributed, the asymptotic

variance matrix of the MLE O�ML D . O�
0
ML ; O�ML ; O�

2
ML/

0 is

Avar
�
O�ML

�
D

0BB@
1
� 20
X 0nXn

1
� 20
X 0n
�
GnXn�0

�
0

1
� 20

�
GnXn�0

�0 Xn 1
� 20

�
GnXn�0

�0 �GnXn�0�C tr �GsnGn� 1
� 20
tr .Gn/

0 1
� 20
tr .Gn/ n

2� 40

1CCA
�1

:

As the asymptotic covariance between O�ML and O� 2ML are not zero in general, it is not

trivial to determine whether the ef�ciency property of O� P D . O�
0
P ; O�P/ will be affected by

concentrating � 2 out in the GMM estimation. And when the disturbances are not normally

distributed, the problem may be more complicated. Here we consider the joint estimation

of �0 D .� 00; �0; �
2
0/
0 in the GMM framework. By comparing the asymptotic variance

matrix of the BGMME derived from the joint GMM estimation approach with that of the

BGMME described in Proposition 3.3, we conclude that there is no ef�ciency loss in the

estimation of �0 D .� 00; �0/
0 by concentrating � 2 out.

For simplicity, we assume an intercept appears in Xn so that the last column of Xn is

ln . De�ne NP�1n D G
�
n , NP�jC1;n D D

�
Xnj

�
for j D 1; � � � ; k,30 and NQ�n D

�
NQ�1n; NQ

�
2n
�
with

NQ�1n D Xn and

NQ�2n D GnXn�0 C
�23�

�4 � 1
�
� �23

GnXn�0 �
2� 0�3�

�4 � 1
�
� �23

vecD .Gn/ :

Let Ng�n .�/ D
h
�0n .�/ NQ�n; �0n .�/ NP�jn�n .�/� �

2tr
�
NP�jn
�i0

. j D 1; � � � ; kC1/. The consis-

tent root O�BJ derived from min� Ng�0n .�/ N���1n Ng�n .�/ with N��n D var
�
Ng�n .�0/

�
is the BG-

MME within the class of optimal GMMEs derived from min� Ng0n .�/ N��1n Ngn .�/, where

30As we assume that Xnk D ln , NP�kC1;n D D .Xnk/ D In can be of use as the simple second moment for
the estimation of � 20. If there is no intercept in Xn , we need to add a moment associated with In to estimate
� 20.
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N�n D var . Ngn .�0// and

Ngn.�/ D .�0n.�/ NQn; �
0
n.�/ NP1n�n.�/� �

2tr
�
NP1n
�
; � � � ; �0n.�/ NPmn�n.�/� �

2tr
�
NPmn
�
/0;

with NQn being an arbitrary n � k0 matrix of IVs, and NPn's being arbitrary n � n matrices,

not necessarily with zero traces. At �0, Ngn.�0/ D [�0n NQn; �0n NPjn�n � � 20tr
�
NPjn
�
]0, which

has a zero mean because E. NQ0n�n/ D NQ0nE.�n/ D 0 and E.�0n NP 0jn�n/ D � 20tr. NPjn/ for

j D 1; � � � ;m.

Analogous to the proof of Proposition 3.3, the above statement is con�rmed by showing

that Ngn is redundant given Ng�n , or equivalently that there exists a matrix NAn invariant with

NPjn . j D 1; � � � ;m/ and NQn st. ND2 D N�21 NAn , according to Lemma 3.15 (c), where
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�
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To simplify notations, denote � D � 60[.�4 � 1/� �
2
3] D �

2
0.�4 � �

4
0/� �

2
3. Let

NAn D �

266666666664

�4��
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� Ik 0k�1 �

01�k ��20 0
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:::

:::
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bk 0 � 20=�

377777777775
;

where the k-dimensional vector �D [0; � � � ; 0;��3=�]0, and b j D �
�
�3=�

�
e0k j . With

identities analogous to those provided in the proof of Proposition 3.3, straightforward but

tedious algebra leads to ND2 D N�21 NAn .

Furthermore, as Ng�n .�/ is a special case of Ngn .�/, and NAn is invariant with NPn's and NQn ,

it follows N��111 ND1 D N��121 ND2 D NAn , where N�11 D var
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The asymptotic precision matrix of O�BJ is6BJ D limn!1 1
n
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From the inverse of a partitioned matrix, we have Avar
�
O� BJ

�
D 6�1BJ=n, where
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0
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��1 � � ��3=�� X 0nln
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��20 X
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��20 Q
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2nXn ��20
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GnXn�0

�0 Q�2n C tr �P�s1nGn�
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since � D � 20.�4 � �
4
0/� �

2
3, �3 D �3�

3
0, and �4 D �4�

4
0. Hence the ef�ciency property

of the BGMME of �0 is not affected by concentrating � 2 out in the GMM estimation.

3.5.5 Monte Carlo Results

True parameters: �0 D 0:6
n D 49 n D 245 n D 490

method Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE :562 .:094/ [:102] :590 .:040/ [:041] :593 .:028/ [:029]
OGMME :568 .:098/ [:103] :593 .:041/ [:041] :596 .:028/ [:029]
BGMME :563 .:095/ [:102] :592 .:039/ [:039] :596 .:027/ [:028]

Table 3.1: QMLE and GMME of the SAR disturbance process (normal)

True parameters: �0 D 0:6
n D 49 n D 245 n D 490

method Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE :559 .:098/ [:106] :589 .:044/ [:045] :592 .:031/ [:032]
OGMME :568 .:100/ [:105] :593 .:041/ [:042] :596 .:029/ [:029]
BGMME :563 .:097/ [:103] :592 .:040/ [:041] :595 .:028/ [:028]

Table 3.2: QMLE and GMME of the SAR disturbance process (student t)

156



True parameters: �0 D 0:6
n D 49 n D 245 n D 490

method Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE :567 .:098/ [:103] :592 .:041/ [:042] :595 .:028/ [:029]
OGMME :570 .:103/ [:107] :594 .:043/ [:044] :597 .:029/ [:029]
BGMME :569 .:099/ [:104] :594 .:036/ [:036] :597 .:025/ [:025]

Table 3.3: QMLE and GMME of the SAR disturbance process (symmetric mixture normal)
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