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ABSTRACT

My dissertation research emphasizes estimation methods in evaluating the extent of so-
cial, strategic and spatial interactions among economic agents. Topical applications include
measuring peer group effects in experimental signaling games, structural estimation of the
latent value distribution through bidder’s strategic bidding behavior in empirical auctions,
and GMM estimation of spatial autoregressive models.

My first essay, based on my joint research with Lung-fei Lee and John Kagel, gener-
alizes Heckman’s (1981) dynamic discrete-choice panel data models by introducing time-
lagged social interactions so that the models can accommodate relationships of decision
making across cross-sectional units. We derive the likelihood function for the generalized
model and propose simulation based methods to implement the maximum likelihood esti-
mation. Such dynamic social interaction models may have broad applicability, especially
in interpreting experimental economics data. In this essay, we use this model to investigate
learning from peers in experiments based on Milgrom and Roberts’ (1982) entry limit pric-
ing game. We find that subjects’ decisions are significantly influenced by the past decisions
of their peers in the experiment. Our findings are consistent with the view that the imitation
of peers’ strategies is an important component of one’s learning how to play strategically.
Similar peer group effects are likely to be present in experimental designs where subjects

receive feedback on their peer’s performance.
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My second essay explores the robustness of Guerre, Perrigne and Vuong’s (2000) two-
step nonparametric estimation procedure in auctions with a large number of risk-averse
bidders. Guerre et al. show that the underlying distribution of bidders’ values (or costs)
is nonparametrically identified from the observation of submitted bids when the auction
among risk-neutral bidders is conducted as a first-price, sealed-bid auction under the inde-
pendent private value paradigm. They propose a two-step nonparametric estimation pro-
cedure for the latent value distribution based on the equilibrium bidding behavior of risk-
neutral bidders. Their estimator is optimal in terms of uniform convergence rate to the true
distribution. In this essay, with an asymptotic approximation of the intractable equilibrium
bidding function of risk-averse bidders, I demonstrate that Guerre et al.’s two-step nonpara-
metric estimator is still uniformly consistent even if bidders are risk-averse as long as the
number of players in an auction is sufficiently large and derive the uniform convergence
rate of the estimator. Furthermore, I show in Monte Carlo experiments that the two-step
nonparametric estimator performs reasonably well with a moderate number of risk-averse
bidders like six.

In my third essay, which is based on my joint research with Lung-fei Lee and Christo-
pher Bollinger, we consider the GMM estimation of the regression model with spatial au-
toregressive disturbances and the mixed-regressive spatial autoregressive model. We derive
the best GMM estimator within the class of GMM estimators that are based on linear and
quadratic moment conditions. Our best GMM estimator has the merit of computational
simplicity and asymptotic efficiency. We show that it is asymptotically as efficient as the
conventional maximum likelihood estimator under normality and asymptotically more ef-
ficient than the quasi-maximum likelihood estimator when the normality assumption does

not hold. We show in Monte Carlo studies that, with moderate sample sizes, the proposed
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best GMM estimator has its biggest advantage when the disturbances are asymmetrically
distributed. In the event that the diagonal elements from the squared spatial weights matrix
have sufficient variance, then incorporating the kurtosis of the disturbances in the moment

conditions of the GMM estimator will also be valuable.
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CHAPTER 1

DYNAMIC DISCRETE CHOICE MODELS WITH LAGGED
SOCIAL INTERACTIONS: WITH AN APPLICATION TO A
SIGNALING GAME EXPERIMENT

1.1 Introduction

In his seminal work, Heckman (1981) has introduced a rich group of discrete choice
stochastic processes that allow each cross-sectional unit’s decisions to have complex dy-
namic economic interrelationships over time. In this chapter, we generalize the dynamic
discrete choice panel data models by introducing time-lagged social interactions, so that
the models can accommodate interrelationships of decisions, such as learning from peers,
across cross-sectional units. This enriches the class of dynamics in Heckman (1981). As
interactions across cross-sectional units carry out with a time lag, the models are well-
defined without running into identification or multiple equilibria problems, which occur in
some social interaction models (Manski, 1993).

Likelihood functions of dynamic discrete choice models involve multiple integrals, if
explanatory variables include lagged latent dependent variables or disturbances allow for
serial correlation in addition to that captured by random components. For panel data mod-
els, the dimension of integration increases with the number of periods, which makes nu-

merical implementation impractical. To overcome the computational difficulty, simulation



estimation methods have been developed. The simulator due to Geweke (1991), Borsch-
Supan and Hajivassiliou (1993) and Keane (1994) is known to be practical and accurate
to implement the method of simulated maximum likelihood (SML), when the time periods
are not too long.

In this chapter, we show that the implementation of the Geweke-Hajivassiliou-Keane
(GHK) simulator remains tractable for models with social interactions. We investigate the
finite sample properties of simulated estimates for model parameters and the effects of
misspecification of dynamic structures and disturbances on estimates in the Monte Carlo
experiments. As the likelihood function is nonlinear, the SML estimator (SMLE) might
have an asymptotic bias if the number of random draws to construct the likelihood simulator
does not increase fast enough relative to the sample size. Hence special attention will be
given to dominated finite sample bias (relative to standard error) of coefficient estimates
due to simulation. We report some Monte Carlo results of a bias-correction procedure
proposed by Lee (1995) for the estimation of dynamic models with lagged interactions.

These dynamic social interaction models may have broad applicability, in particular, for
experimental economics data. Numerous experiments have been conducted with a discrete
choice space, with observations obtained in consecutive rounds. One of the main concerns
in experimental games is the effect of a player’s learning from other players. As such a
dynamic discrete choice model with lagged social interactions may fit well as a possible
econometric model for the analysis of experimental data. Specifically, in this chapter, we
apply our generalized dynamic models with social interactions to investigate the presence
and magnitude of peer group effects in experiments based on Milgrom and Roberts’ (1982)

entry limit pricing game. Similar peer group effects are likely to be present in a variety of



experimental designs where subjects receive feedback on their peer’s performance. Empir-
ical findings reported here may have broader economic implications. From the statistical
inference point of view, the usual limited number of experimental subjects, rounds, and ses-
sions due to feasibility or expense concerns might prevent one from determining whether
peer group effects are indeed negligible or overwhelmed by estimation errors caused by
insufficient sample size. So our estimation and Monte Carlo experimental results may shed
some light on the sample size requirement and sample structures favorable to successfully
identifying potential peer group effects in discrete choice games.

The organization of this chapter is as follows. In Section 2, we introduce a general
dynamic discrete choice panel data model with lagged social interactions, derive the like-
lihood function and illustrate the formulation of simulators and simulated likelihood func-
tion for this model. We report Monte Carlo results for the SMLE of the Markov and Polya
models with lagged social interactions in Section 3. In Section 4, we formulate empirical
dynamic models to investigate the adjustment process of subjects’ decisions in laboratory

experiments based on an entry limit pricing game. Section 5 briefly concludes.

1.2 General Dynamic Discrete Choice Models with Social Interactions
and SML Estimation

Consider a general dynamic discrete choice panel data model with lagged social inter-

actions

y,*; = hl'l(y;tt_la Tt y;:_ooa Yn,l—]a I} Yn,—oo: Xl’l[a I} Xn,—OOa fz) + Vit, (11)
fori =1, ---,n, where Y,; is the n-dimensional vector of dichotomous indicators of the
latent variables yy,, - - - , y,;, Xn¢ 18 the n x k-dimensional matrix of strictly exogenous vari-

ables and ¢£; is a random individual component. Suppose that the error components £; are
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1.1.d. N(O, 02) for all 7 and the disturbances v;; are i.i.d. N (0, 1) for all i and ¢. This process
is assumed to start at # = 1, and the initial conditions on y/,, ¥,, and X, for ¢ < 0 are fixed
outside the model and are assumed to be zero. The original specification of the dynamic
model in Heckman (1981) does not incorporate lagged social interactions in that y; ;_; and
x;s appear but not ¥, _1 and X, (s < ). Depending on the specification of the func-
tion 4;; (+) in terms of lagged observed or latent dependent variables, the Heckman discrete
dynamic model is known to be sufficiently flexible to accommodate a wide variety of dy-
namic structures such as Markov models, Polya models, renewal processes, latent Markov
models, with rich specifications on disturbances. It allows for unobserved heterogeneity
across the n cross-sectional units and serial correlation for the remaining disturbances. The
model with social interactions in (1.1) is generalized to incorporate additional dynamic ef-
fects due to peers’ influence. We derive the likelihood function for (1.1) and construct the
unbiased GHK simulator to implement the SML estimation for the model.

In addition to Y, let Y, = (»f,, -+, ¥,,) be the n-dimensional vector of the la-
tent dependent variables for all the n cross-sectional units. Let X; denote the sequence
of Xy, Xnt—1, -+ . Conditional on exogenous variables X7 and & = (&, ---,¢,), the
joint density function of (¥}, Y,,;), t = 1,---, T, is the product of conditional density of

o

s Yns),s = 1,---, T, over their past histories, i.e.,

f( :Ta YnT;"' s :]aYnllXT’é)

T
= [Hf(y:[, Yi’llI(Y;s: Yi’lS;S == 15 :t_ 1)5Xlaf)} f(Y;;kl: Ynllea é:)
t=2



Because v;; are mutually independent for i = 1, - -- , n, each of the conditional densities

of (Y., Y,;) can be further decomposed as

nt>

f( nt» tl( ns n?as_l t—l),Xt,é:)
= Hf(yltayll‘l( ns° }’lS?S_l t_l)aXl‘afi)
= Hly”(y”)g(yltl( ns> nS’S - 1 , I — l)aXta 5;)

fort =2,---T, and

SO Yl X1, O = [ | L G0 1X0, €0),
i=1

where [, (y/,) is the dichotomous indicator with /,,,(y,) = 1 if the value y;, determines
the observed value y;;; 1y, (y/,) = 0, otherwise, and g is the conditional density of /..

Therefore, the joint probability of Y, 7, - - - , ¥,;1 conditional on X7 and ¢ is

P(YnTa ) YnllXT: é)

= / / S, Yar, -+, YL Yl X1, E)dved (Y,)7) - - - dved (Y))

= / / |:HHIyzt(ylt)g(yn|( ns? Yis; s =1, , L= 1),X;,fl-):|

t=21i
XHIyll(yll)g(ylﬂXl, Ddvec (Y)7) - - -dvec (YY), (1.2)
For (1 1) g(y |( ns> Yns; s =1, 1) Xl‘aé ) _g(y |(yzs’ nsy S =1, t —

1), X, &;) as interactions among different units are going through the observed Y, and

Xus butnot Y7 with s < ¢. Hence we have

P(Y}’lTo"'aynllXTaé)
n o0 o0 T
./ [nyi,@it)g@;l@;,nsss=1’"'”‘”’X”f")]
=1 —00 —0o0 t=2

x 1y, (viDgWi1 X1, EDdyiy - 'd)’i*l}-
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Under the distributional assumption that v, is N (0, 1),

Uil Wigs Yasss = 1+t = 1), Xi, &) = @iy — hio),

where h;; = hj(y , yz_oo, Yini—1,+» Yn —c0, X1, &;) for simplicity and ¢ is the

* « ..
ir—1°
standard normal density function. Define the integral limits L;; and Uj;:

o _hi[ ifJ’it - 17 L o0 ifJ/it - 13
Lie = [ —oo if yi; =0, and Uy = —hiy ify; =0,

By transformations of variables, it follows that

P(YnTa"' ’YnllXT’éE)

n Ui Ui,r—1 Uit
= H {/L .. /L ( ¢(1)iT)dl)iT) ¢(0i,T—l)d0i,T_1 .. '¢(0il)d0il}
i=1 il

i,T—1 Lir
li[{/_(: . /_Z (@Uir) — ©(Lir))

i=1

~
N

x| | (@Uir—s) = ©Lir—5)) e, ;. Ui’T_S](Ui,T—s)dvi,T—s}

s=1

= .” /_Z"'/_Zq)(@yﬁ—l)hﬂ)

=1
T-1

x| | (Qyi,r—s — Dhi,r—s)Pp1, ,_,, Ui,T_S](Ui,T—s)dUi,T—s},
1

rm——

~

N

where ¢, 1,1 1s a truncated standard normal density function with support [L,, U;]. The

probability Y, 7, - - - , ¥,1 conditional on exogenous variables X7 is

P(Y}’lTﬁ"' 9Yn1|XT)

= [ P TalXr g ERE)  HE N
= Q(2yir — Dhir)
[I{[ ) o= b
T—1
X[[T @(@yir—s = Dhir-Oi, .. 0 @sr-5)do 7 J$E)dE |
s=1

6



This likelihood suggests that the GHK simulator can be recursively applied to construct
a simulated likelihood. Generate u;; (i = 1,---,n; ¢t = 1,---,T — 1) independent
uniform [0, 1] random variables. Generate &; (i = 1, - - - , n) independent standard normal
variables. With initial conditions given, the random variables v;; (i = 1,--- ,n; t =
I,---, T —1) can be generated from the following steps. For each i, from¢ = 1to 7T — 1:
(1) Compute

vir = —(2yir — l)q)_l [”it‘b (2yir — l)hit)] .

(2) Generate the latent dependent variable
yl*t = h”‘ + vit.

With m independent simulation runs, the corresponding simulated log likelihood function
is

n 1 m T )
L= 1111[EZ]‘[c1>((2y,-z—1)h§{) ] (1.3)

i= j=11=1
where hg) = h,-t(y;:gj_)l, e ,y;OU), Yoiets > Ynos Xi, él.(j)), and the superscript (/) de-
notes an independent simulation run. Thus, the simulation of the likelihood for the model
in (1.1), is similar to one of the conventional dynamic panel models in Lee (1997).
Asymptotic properties of the SMLE for cross-sectional or short time series panel data
have been studied in Hajivassiliou and McFadden (1990), Lee (1992; 1995) and Gourier-
oux and Monfort (1993), among others. The SMLE can be asymptotically efficient when

172 However, when m increases at a rate of n!/2, as

m increases at a rate faster than n
shown in Lee (1995), an asymptotic bias exists in the limiting distribution. The asymptotic
bias will dominate the variance when m increases at a rate slower than n'/2. Lee (1995)

has suggested a simple bias-correction procedure to remove the leading bias term due to



simulation. The asymptotic efficiency of the bias-adjusted estimator requires only that m
goes to infinity at a rate faster than n'/4.

For experimental economics, subjects are usually divided into several independent groups
(experimental sessions), and games are played in several rounds within each group. Sup-
pose that there are G groups. Within each group, there are n players and the number of
rounds is 7. With data from such a design, the simulated likelihood function shall be

L= ZZln{ ZH@((zyg,t - 1)hgl?t)}, (1.4)

g=1li j=1t=

where the subscript (g, i¢) indicates the observation is from individual i of group g at round
t.
The model in (1.1) can be further generalized to allow social interactions in both ob-

served and latent lagged dependent variables,

1 _hll( nt—1>""" Y;—ooa Yn,t—l,"':Yn,—OOaXl:fi)‘i‘Uit: (15)

where Y, is the n-dimensional vector of latent dependent variables and X; is the sequence
of strictly exogenous variables X,;, X, ;—1,---. Asin (1.1), &; are i.i.d. N(O, 02) for all
i and v;; are i.i.d. N(0, 1) for all 7 and ¢. The initial values for Y, ¥,; and X; fort < 0

are assumed to be zero. From (1.2), the joint probability for Y, 7, --- , ¥, conditional on

exogenous variables X7 and ¢ is given by

PYur, -, YnilX71,$)

/ / |: H]yzt(yzt)g(yztl( ns> ”S’S - 1 t_ 1),XZ, 51):|

1=2i=

xnzy,l(yﬂ)g@,uxl,é)dvec( ) dvec (V7).

Under the distributional assumption of v,

gAY E, Yo s =1, -+t = 1), X1, &) = ¢(h — hiy),



where h;; = E,-t(Yl.* cee Y

=10 i,—00"

Yoi—1, -, Yn,—c0, Xi, &;) for simplicity and ¢ is the

standard normal density function. Define the integral limits Li; and Uy,

5o _}_Zil ifyit = 1, T o0 ifyil‘ = 1:
Lip= [ —o0 iy =0, and Uy = —hi, ify, = 0.

By transformations of variables, it follows that

P(YnT, Y YnllXT,é{)

o o n _
- [ ] [H O(2yir — 1)hir)}
—o0 00 | =1

T—-1] n _

< [1 []‘[ O((2yi, -5 = Dhir-9)iz, ;. (—,,.,T_X](u,-,T_s)dv,-,T_s} .
s=1 Li=1

And the probability Y, 7, - - - , Y,;1 conditional on exogenous variables X7 is P(Y,7, -+, Y11 X7) =
S S PGty - Yol X7, ) [TT72 #(E0)dE .

In this case, with u;; and &; generated as before, the random variablesv;; (i = 1, -+ - , n;
t=1,---,T — 1) can be generated from the following steps, from¢ = 1to 7' — 1:

(1) Compute fori =1,--- ,n
vir = =Q2yie = DO [ui @ (2yie = Dhae) ]
(2) Generate the latent dependent variable
Vi = hig + vis.
With m independent runs, the corresponding simulated log likelihood function shall be

s

j=lt=1li=

n

D ((2yi — 1)%{”)} : (1.6)
1

where ﬁg) = Ei,(Y:’SQl, cee, Y:éj), mi—1s " > Yo, Xi, fl.(j)) for the jth simulation run.
There can be some numerical difficulties in implementing the SML estimation proce-

dure if 7" and n are large, as the simulated log likelihood functions (1.3) and (1.6) involve

9



the product consisting of many terms of small numbers that might be impossible to evaluate
with computers without underflow errors. The problem is more severe in (1.6), where the
simulated likelihood involves the product of cumulative probabilities of the entire history
for all members in a group. Lee (2000) has suggested an algorithm that can overcome
the numerical problem by interchanging the summation and product operators behind the

logarithmic transformation. Here we illustrate this algorithm for (1.6). For simplicity, let

k=@—1)n+i,i=1,---,nforeacht witht =1,---, T, and rewrite (1.6) as
1 & Txn _ )
L=In{— O(Qyr — DA/t .
L2 k

Let a; = O(2yx — l)l_z,(cj )) and let wy; be weights for k& > 1, which can be computed
recursively as

m
Wkj = akjOk—1,j/ E AksOk—1,55
s=1

starting with wg; = 1/m for j = 1,---,m. Then following Lee (2000), (1.6) can be
rewritten as
Txn m Txn m
L=1In l H Zakja)kj} = Z ln[ O(2yr — l)ﬁ,({j))a)kj] , (1.7)
k=1 j=1 k=1 j=1
where the product of cumulative probabilities behind the logarithmic transformation is re-
placed by the weighted sum of cumulative probabilities.

Social interactions in latent lagged dependent variables are likely to appear if cross-
sectional units are allowed to discuss their past preferences and choices. As we plan to
apply the model to the estimation of data from lab experiments where, as is typically the
case, subjects make independent decisions without communication, we focus on models

that conform to (1.1) in the rest of this chapter.
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1.3 Some Monte Carlo Results on SMLESs

1.3.1 A Markov Model with Lagged Social Interactions

Suppose we have observations of G independent groups, with n subjects in each group.

The Markov dynamic choice model for the Monte Carlo study in this section is
Vi, =Pxii—1+ Myig—1 + ozig—1 + 0 & + €, (1.8)

where z; ;] = Z’}:]’j#i Vji—1/(n—=1), €i = pei—1 + vy, and &; and v;; are i.id.
N (0, 1). The group subscript g has been suppressed for simplicity. By replacing &;; with
p(y;:t_l — (Pxit—2+ MYig—2+ A2zi—2+0E;)) +vis, 1.6, by a quasi-difference transfor-
mation for (1.8), it is easy to see that (1.8) conforms to the general model (1.1).

The x;; are generated as x;; = (1/ «/E)rit + /6s; where r;; are independent truncated
standard normal variables on [—2, 2] and s; is a uniform variable on [—0.5, 0.5], so that
the variance of x;; is about 1 and its correlation coefficient over time is about 0.5. This
process of generating exogenous variables is to allow the exogenous variables to correlate
over time. It is used for all the models in this chapter. The initial values of all variables
for ¢+ < 0 are given as 0. Sample data are generated with f = 1, 41 = 0.2, 1, = 0.4,
o2 = 0.5, and p = 0.4. The serial correlation of the total disturbance ¢¢; + €;; of two
adjacent periods has a correlation coefficient about 0.6 and the fraction of variance due to
the individual effect is about 0.3. The sample size is 200, with G = 50 and n = 4. We have
experimented with small, moderate and large numbers of random draws, namely m = 15,
m = 50 and m = 100, for the construction of the GHK simulator. The number of periods
for the panel data varies from 8 to 30. For each case, the number of replications is 200.
For each replication, in addition to random disturbances in the model, the set of exogenous

variables is also redrawn. The maximization algorithm used is a conjugate gradient method.
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For all cases and replications reported here, the algorithm converges without running into
numerical problems. The initial estimate of ¢ is set to 1, and the initial estimates of the
other parameters are set to 0. We have also tried some other starting values, with which the
algorithm converges to similar solutions.

Table 1.7 reports the empirical means (Means), standard deviations (SDs) and root
mean square errors (RMSEs) for both the bias unadjusted SMLE and the bias-adjusted
SMLE. For all panels with periods from 8 to 30, the bias unadjusted SMLEs of f are bi-
ased downward. There are upward biases in the SMLEs of 4| and downward biases in the
SMLE:s of 45, ¢ and p, so the dynamic effect can be over stated, but the lagged peer group
effect and the serial correlation of disturbances can be underestimated. The magnitude of
bias increases with panel length, as the dimension of integration and the total number of
choice alternatives are proportional to the number of periods. On the other hand, SDs of all
the SMLEs decrease as panels become longer, since longer panel data provide more sam-
ple information about the stochastic process. If periods are not too long, RMSEs decrease.
Biases of estimates are all substantially reduced when the number of simulated random
variables m increases from 15 to 50. By increasing m to 100, biases become rather small
and RMSEs can further be reduced, but the time cost is double. The issue of selecting m
in practice has been addressed by Lee (1997). For small m, bias correction is valuable.
Although SDs of bias-adjusted estimates are slightly larger, RMSEs of bias-adjusted es-
timates are smaller in general. The additional CPU cost for bias correction is negligible.
However, as biases of estimates, especially for longer panels, are relatively large to begin
with in this model, larger m is desirable for better improvement. !

IResults for the bias-adjusted estimates are omitted in subsequent tables to save space. The bias correction
procedure for all the models in this article reduces bias and RMSE. The improvement is comparable with the
gains from the bias correction procedure reported in Table 1.7.
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Table 1.8 reports Means, SDs and RMSEs for alternative group sizes. For a given
sample size G x n = 200, biases, SDs and RMSEs of all the SMLEs increase when the
group size n increases from 4 to 8 (by comparing results in Tables 1.7 and 1.8). As the
group size becomes even larger, biases, SDs and RMSEs of the SMLEs of 11, 4, and p
further increase, while the estimates of f and ¢ are not much affected. As such, other
things equal, more sessions with fewer subjects are preferred to fewer sessions with more
subjects in each session.

To illustrate effects of ignoring potential lagged social interactions on SMLEs, we re-
port the restricted SMLEs under 4, = 0 in Table 1.9. When positive social interactions are
ignored, the SMLEs of f, o and p are biased downward, and the SMLEs of A4, are biased
upward. The estimated values of 1| are more than double in magnitude and the estimated
values of p are reduced almost by half, so true state dependence can be over stated but
spurious state dependence can be underestimated.

Misspecified disturbances, in general, would cause parameter estimates to be incon-
sistent. We investigate effects of misspecification in disturbances by the following Monte
Carlo experiments. First, we estimate the random component model with ¢¢; + v;;, where
v;; are serially uncorrelated, with the data samples generated by the model specified as in
(1.8). For random component models, multivariate probability functions involve only sin-
gle integrals, which can be effectively implemented by the Gaussian Quadrature method as
suggested by Butler and Moffitt (1982). However, for the sake of easy comparison, here we
report the SMLE of the random component model. The simulated log likelihood function

for the random component model is

Gxn T j
Zm[%zn@[@yn—n @fﬂ}

j=1t=1
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The SMLEs are reported in the upper block of Table 1.10. There are substantial downward
biases in the SMLEs of f and 4, and upward biases in the SMLEs of 1. Biases are more
severe for longer panels. Even with m = 100, the estimated values of 4; are three times
larger than the true value; and the estimated magnitudes of A, are reduced by 2/3. Hence,
true state dependence tends to be overestimated and lagged social interactions tend to be
underestimated when serial correlation in €;; is ignored. Biases in the SMLEs of ¢ are
not uniform. The lower block of Table 1.10 reports the restricted SMLEs under ¢ = 0,
1.e., random component ¢ were ignored. With this error specification, serially correlated
disturbances ¢;; = pe; —1+v;, capture all the spurious state dependence. Ignoring random
individual component biases the SMLEs of £, 1; downward and 4,, p upward. Biases in
A1 and 4, are more severe for longer panels. The magnitudes of upward bias of 1, are not
really large. The biases of p are upward by 50%. But the biases of 1| towards zero are

relatively much more severe.

1.3.2 A Polya Model with Lagged Social Interactions

In the Polya model, the entire history of the dynamic process is relevant to current

decision making. The Polya model with a depreciation factor ¢ is specified as follows?:

t t

* — j~2 _

Vi = Bxi—1+ 4 255 1yi,t—s + W 25‘9 1Zi,t—s + o+ ¢€irs (1.9)
s=1 s=1 s=1

where z; ;—y = Z?:L#i Vji—s/ (n—1) and &;; = pe;—1 + v;; with &; and v;; 1.1.d.
N (0,1). The group subscript g has been suppressed for simplicity. The initial values
of all variables for ¢+ < 0 are given as 0. Substitution of ¢;; = ,o(yl.*zt_1 — (Pxi— +

A1 Zé;ll & yiism1+ A2 Zé;ll Pz o1/ Zé;ll F 1 4+6¢;)) 4+ v, in (1.9) conforms

ZHere we specify the lagged social interactions term as the (weighted) average for observed laggd choices
of peers over the entire history, so that it is not affected by the number of total observations.
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it to the general model (1.1) . For comparison purpose, the discount factor ¢ is assumed to
be a known constant and is set at 0.7. Sample data are generated with f = 1, 11 = 0.2,
Jy=0.4,06%=05,and p = 0.4.

The SMLEs are reported in Table 1.11. There are some downward biases in the SMLEs
of S, A2, 0 and p and upward bias in 1;. Compared to estimates of the Markov model
in Table 1.7, A1 and p in the Polya model can be estimated more accurately. They not
only have small biases but also have much smaller SDs, due to an apparently stronger state
dependence property of the Polya model. On the other hand, since we specified lagged
social interactions as a weighted average of the past history instead of a weighted sum,
variation in this term is reduced. So with such specification, 4 in the Polya model is much
more difficult to estimate than in the Markov model. For small m and long panels, biases
in the SMLEs of 4, is quite severe. By increasing m, biases in the estimates of 4, can be
substantially reduced. For 77 = 8 or 15, the biases are smaller with m = 50 or 100. By
comparison with the Markov model, SDs and RMSEs of the estimates of 1, here are two
times larger.

Monte Carlo experiments are also performed to investigate effects of misspecification
in dynamic structures on SMLEs. Table 1.12 reports the SMLE of the Markov model
with lagged social interactions when data samples are generated by the Polya model (1.9).
The SMLEs of 1; and ¢ are biased upward. And the SMLEs of 4, and p are biased
downward. Hence, when the Polya dynamic structures are misspecified to be Markov, the
true state dependence and the serial correlation due to unobserved heterogeneity tends to be
overestimated but the lagged social interactions and the serial correlation of the remaining
disturbance tend to be underestimated. The SMLEs of S are not affected very much by

dynamic misspecification and their biases are not large.
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1.4 An Application: Estimating Peer Group Effects in Experiments
on Signaling Games

There is a large volume of literature on measuring peer group effects in field settings,
while little attention has been paid to evaluating the influence of peer group effects on sub-
jects’ performance in experiments. Measuring the peer group influence in experiments is
important as it affects our understanding of the evolution of subjects’ behavior over time.
Ignoring peer group effects potentially confounds any “sophisticated” learning process (e.g.
adaptive learning) where subjects update beliefs, with the less “sophisticated” social learn-
ing where subjects simply replicate the strategy generating a better outcome. Furthermore,
experimental results across diverse subject pools are much less likely to be consistent in the
presence of strong peer group effects, as subjects’ performance depends on the overall per-
formance of the experimental session they were in. This section adopts dynamic discrete
choice models with lagged social interactions to investigate the presence and magnitude of
peer group effects in experiments on signaling games.

Following Manski (1993), similar behavior of individuals belonging to the same refer-
ence group may be due to endogenous effects, wherein “the propensity of an individual to
behave in some way varies with the behavior of the group”’; exogenous effects, wherein “the
propensity of an individual to behave in some way varies with the exogenous characteris-
tics of the group”; and correlated effects, wherein “individuals in the same group tend to
behave similarly because they have similar individual characteristics or face similar insti-
tutional environments”. In experimental settings, exogenous effects and correlated effects
can be controlled through recruiting procedures and careful experimental designs, while
endogenous effects are relatively hard to control by experimenters. We focus on measuring

endogenous peer group effects in experiments in this section.
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The plan of this section is as follows. Subsection 1.4.1 presents the theoretical pre-
dictions of the model of entry limit pricing. Subsection 1.4.2 outlines the experimental
procedures and provides a general description of the data. Subsection 1.4.3 develops the

empirical econometric models and interprets the estimation results.
1.4.1 Theoretical Considerations

Milgrom and Roberts (1982) propose a model of entry limit pricing as follows. There
are two firms, an established monopolist M and a potential entrant £, in a two-stage market
producing a homogeneous good. Nature decides M’s cost of production along with the
distribution of these costs. M’s cost is his/her private information throughout the game,
with the prior distribution of the cost being common knowledge. In the first stage, M
chooses an output (or price) level. In the second stage, £ chooses to enter or stay out in
response to the observed output (or price) level. The predetermined opportunity cost to £
for entering the market is common knowledge. If entry occurs, Cournot duopoly profits are
realized by both M and E. If there is no entry, M receives the single period monopoly profit.
Entry is profitable against M with high cost but not against M with low cost. M may have
an incentive to limit pricing, which involves producing greater output (or charging lower
price) in the first stage than the single period profit maximizing level in order to make entry
appear unattractive.

In this game, the information sets are defined by the realized costs of M and E (cys
and cg) and a choice of Q (quantity) by M. A (pure) strategy for M is a map s from
its possible cost levels into the possible choices of O and a (pure) strategy for £ is a
map ¢ from R? into {0, 1} giving its decision for each possible pair (cx, Q), where 1 is

interpreted as “enter” and 0 as “stay out”. An equilibrium consists of a pair of strategies
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(s*, ¢*) and a pair of conjectures (E , t_) such that (i) M’s pricing policy s* is a best response
to its conjectures ¢z about E’s entry rule, (ii) the strategy ¢* is a best response for E to its
conjecture 5, and (iii) the actual and conjectured strategies coincide. With two cost levels
(types) for M, namely, ¢, < cu, if s*(c;,;) = s*(cum), an equilibrium is called pooling;
and if s*(c;,) # s*(cy) the equilibrium is separating. Partial pooling is a mixed-strategy
equilibrium that s*(c;,) = s*(cay) with a certain probability. In a pooling equilibrium,
E can infer nothing from observing Q and so enters if the expected profit is positive. In
a pure-strategy separating equilibrium, the observation of Q allows the value of ¢y, to be
inferred exactly. Depending on the cost structure, its distribution, and the market demand
function, pooling equilibria and/or separating equilibria can occur (Milgrom and Roberts,
1982, pp. 446-448).

Milgrom and Roberts’ model of entry limit pricing is investigated experimentally by
Cooper, Garvin and Kagel (1997a; 1997b) and Cooper and Kagel (2003a; 20035; 2004).
In the experiments, the game is further simplified by adding the payoffs of the two stages
together and providing M's with a single payoff table. Payoff tables 1.1-1.3 are provided
in the “quantity game” with M choosing over output levels (1-7) in payoff table 1.1, and
payoff tables 1.4 and 1.5 are provided in the “price game” with M choosing over price
levels in payoft table 1.4.

In the “quantity game”, M is either a high-cost type (M) or a low-cost type (M) with
equal probability. £’s cost is common knowledge. In a given treatment of the experiment,
E's are either all high cost types (Eys; payoff table 1.2) or all low cost types (Es; payoff
table 1.3). With E ys there exist pure-strategy pooling equilibria at output levels 1-5. There
also exist two pure-strategy separating equilibria, in which Mys always choose 2 and are

always entered on, M| s always choose 6 or 7 and are never entered on. Among them, only
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pooling at 4 or 5, and separating with M s choosing 6 survive Cho-Kreps’ (1987) intuitive
criteria for equilibrium refinement. With £ s no pure-strategy pooling equilibrium exists,
while the two pure-strategy separating equilibria still exist. There also exist a number of
mixed-strategy equilibria. One that is of particular relevance is the partial pooling equilib-
rium in which M7 s always select 5 while My s mix between 2 (with probability 0.8) and 5
(with probability 0.2), and E's always enter on output levels other than 5, enter on 5 with
probability 0.11. In simulations using a stochastic fictitious play learning model, this partial
pooling equilibrium emerges with high frequency in the presence of E£1s (Cooper, Garvin
and Kagel, 1997b). Further, in practice My s choose 5 with relatively high frequency as
a separating equilibrium emerges (especially early on) and there is very little entry in re-
sponse to it (Cooper, Garvin and Kagel, 19975).

The payoffs in the “price game” are a linear transformation of payoff tables 1.1 and 1.3
in the “quantity game”, (with table presentation changed as well). Hence the price game is

theoretically identical to the quantity game with analogue equilibrium predictions.
1.4.2 Experimental Procedures and Data

Detailed description of the experimental procedures can be found in Cooper, Garvin
and Kagel (1997b). The following lists some elements that are especially noteworthy, as

they will be taken into account when empirically modeling the game.

1. Each experimental session employed between 12 and 16 subjects who were randomly
assigned to computer terminals. Sessions typically lasted 36 periods, with the num-
ber of periods announced in advance. Subjects switched roles after every six plays,

with M's becoming E's and vice versa. Ms’ types are generated each play randomly.
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2. Following each play of the game the outcomes from all pairings (Ms’ choice, Es’
choice, and Ms’ type) were revealed to all subjects. This made learning across indi-

viduals feasible, and provided the basis for potential peer group effects.

3. Subjects were randomly paired with each other for each play of the game, and subject
identification numbers were suppressed when the game results were revealed. Hence
there was no opportunity for reputation effects to develop. Learning, to the extent that
it occurred, had to be based on own experience and observations of peer’s choices

and outcomes.

Experimental treatments are summarized in Table 1.6. The “Experienced Subjects”
treatment recruited subjects who had participated in earlier experimental sessions with ex-
actly the same payoft tables. The treatment “Meaningful Context” uses natural language
for the instructions, and was introduced to explore the effects of context on subjects’ rea-
soning process in signaling games (Cooper and Kagel, 2003a). The treatment “Crossovers
from the £y to £ game” employed subjects with experience in the quantity game with
payoff tables 1.1 and 1.2 to play the quantity game with payoft tables 1.1 and 1.3, and
was devoted to investigating subjects’ ability to generalize learning in one game to related

games (Cooper and Kagel, 20035; 2004).
1.4.3 Empirical Models and Estimation Results

According to payoff table 1.1, with full information, output levels 2 and 4 are opti-
mal for Mys and My s respectively. Pooling equilibria at output levels 3-5 and (partial)
separating equilibria with M s selecting output levels 5-7 involve strategic behavior - limit
pricing - as M's produce above (or price below) full-information levels. A “gradual, history-
dependent adjustment process”, starting with M's “at their myopia maxima, followed by an
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attempt to pool, and then (if no pooling equilibrium exists) separation”, has been observed
by Cooper, Garvin and Kagel (1997b). Here we adopt our dynamic discrete choice models
with lagged social interactions to characterize the evolution of subjects’ behavior in the
experiment.

We consider the estimation with two different samples: One from the experimental ses-
sions with £ ys (using payoff tables 1.1 and 1.2) and the other from the sessions with £ s
(using payoff tables 1.1 and 1.3). With Egs, play reliably converges to a pure strategy
pooling equilibrium in which Mys learn to imitate Mys. As such we model the learning
process of M s in this situation, treating choices of output levels 3-5 by M s as limit pric-
ing®. For games with Es, pure-strategy pooling equilibria no longer exist, and we focus
on the strategic play by M s, with output levels 5-7 by M s considered as limit pricing®.
As the adjustment (learning) process for the two samples are modeled analogously, we only

detail the model specifications for the estimation of games with £ ys.

A Markov Model with Lagged Social Interactions

In a generic experimental session with 2n Egs, Mys have incentives to limit price.
We assume that the unobservable incentives for Mys to limit price can be characterized
by the Markov dynamic discrete choice model with lagged social interactions. To justify
the Markov model as an approximation for the learning process, we assume that, besides
individual characteristics, a subject’s current decision only depends on his/her last decision
and the feedback information from the previous round of the game. We will relax this

3Note that high-level outputs 6, 7 are strictly dominated by other outputs for Mys, according to payoff
table 1.1. Among the 4576 observations in the actual experimental sample with E s, only 7 choices of output
6 or 7 made by Mys are observed.

4We have also tried to estimate with alternative criterion for limit pricing. For example, we treated output
levels 4, 5 by Mpys in games with Eys, and output levels 6, 7 by My s in games with £ s as limit pricing.
The estimation results are similar to those reported here.
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restrictive assumption and consider the estimation of a more general dynamic process in
the next subsection.

By experimental design, a subject is randomly assigned turns as My in different plays
of the game within an experimental session. At the same time, a subject can observe peers’
output choices and entrants’ responses from all previous rounds of the game. As such, we
distinguish between a decision period in which a subject plays as My with the opportunity
to limit price and a (consecutive) calendar period. For a subject i, let 7; be the total number
of decision periods in which he/she has played as Mp. Corresponding to each decision
period z (r =1, ---, T;), there is a calender period. Let #;(7) be the calendar period when
the subject i plays as My. The Markov dynamic discrete choice model with lagged social

interactions for the subject i can be specified as
Vin) = &+ Xin@—18 + MVige—1) + 2WinYnh@)-1 + 7 Int +0&; + eigy(r), (1.10)

fort = 1,---,T;. We assume that ¢;,(;) = p&is—1) + Viy(x), and &; and v, are
1.1.d.NV (0, 1). As the dynamic process starts at the first sampling period in the experiment,
the initial conditions on all variables for ¢ < 0 are zero.

If the latent dependent variable y l?"ti ) > 0, the subject i limits price in his/her zth turn as
My, and the corresponding observed dependent variable yis (z) 18 1; Yis;(r) 18 0 otherwise.
Explanatory variables are on the right hand side of (1.10). « is a constant. x;;;)—1 18
the perceived entry rate differential between “myopia” output choices 1-2 and strategic
output choices 3-5.° Specifically, let diﬁ (IN) (respectively, dl.? (IN)) be a dummy variable
indicating that the subject i chooses output level 3, 4 or 5 (respectively, output level 1 or
2) and is entered on in calendar period s. Let a’fl. ¢ (IN) (respectively, d_Ol. s (IN)) be the

SThe entry rates are calculated conditional on the output level selected, not on the type of M which selects
the output. As E's can not observe Ms’ type when making decisions of entry, the entry rate specified here can
be used to approximate M’s beliefs on E's’ responses.
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number of times in calendar period s that Ms other than i choose output level 3, 4 or
5 (respectively, output level 1 or 2) and observe the response / N. Define d{; (ourm),
dl.? (0ouT), dfl.s (OUT), and d_ol.s (OUT) in an analogous manner, where OU T involves
potential E's staying out. Denote the weight a player put on entries on other Ms’ choices
relative to entries on his/her own in calculating entry rate differential by w. The perceived
entry rate differential is given by

e, -1 UN) + wd?, , (=1 UN) df, oyo1 UN) +dt, o (IN)

1 1

0 0 L L
di,ti(r)—l + wd—i,ti(r)—l d, (-1 T wd—i,t,—(r)—l

Xiti(r)—1 =

2

where dz'{t,»(z)—l = dl.];ti(r)_l (IN) + di{ti(r)_l (OUT) for j = L, 0.5 This term serves
as a proxy for the unobservable beliefs of Ms regarding potential entrants’ responses to
different output choices. y; (:—1), the time-lagged observed dependent variable, is intro-
duced to measure the true state dependence in the dynamic process. Y, ()1 is an n-
dimensional column vector with the ith element being y; ;-1 (( = 1,---,n) and w;,
is a 1 x n normalized weighting vector. The coefficient on w;, Y, ;)—1 captures the
peer group effects in an experimental session, namely the influence of the other Mys’
strategic play of limit pricing in the preceding calender period on the subject i’s cur-
rent choice. Given the anonymous nature of experimental design, we assume that the
weighting matrix W,, where w;,, is its ith row, is simply [(1,, 1= I,,) /(n — 1)], so that
Win Y1 ()1 = Z?Zl,#i Vju()—1/ (n — 1). The coefficient on In 7, where 7 is the num-
ber of decision periods that the subject i has played as My (the current decision period
included), collects all other experience effects within an experimental session that are not
captured by the other explanatory variables. An random individual component ¢; is in-
troduced to control unobserved heterogeneity across players. The remaining disturbances

| oWe assumg that (a’i];tl_(r)_1 (IN) + a)dii,ti(r)_1 (IN))/(dl.];ti(r)_1 + wdiijn(r)_l) = 0.5, in the case that
J J —0(i —
di 1y TdZ; )2y =00 =L, 0).

1
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are assumed to follow an AR(1) process, as we find in the Monte Carlo experiments that
flexible error specifications are favorable to identify potential peer group effects.

We model the adjustment process of M s’ choices in experimental sessions with Es
in an analogous manner, with x; ;(;)—1 being the perceived entry rate differential between
output levels 1-4 and 5-7.

By a quasi-difference transformation, i.e. by substituting in (1.10)

€ity(r) = p(yl-*t,.(f_l) — (@ + X (c—1)=18 + 21Vi(c—2) + 22WinYn ;;:—1)—1

+y In(r = 1) +0<;)) + vine),

it is easy to see that the empirical Markov model conforms to the general dynamic model
(1.1). As we have shown, for the subject i, the likelihood function involves (7; — 1)-
dimension integrals that are analytically intractable and numerically hard to evaluate. We
circumvent this computational difficulty in implementing maximum likelihood estimation
by the simulation method based on the unbiased GHK simulator. Table 1.13 reports the
SMLEs for the Markov model based on a simulator generated from 100 random draws
using data from the experimental sessions with Eys and Ers respectively.7

The positive and statistically significant SMLEs of 1; in all cases show that a subject’s
current choice depends heavily on his/her choice in the previous decision period. That
is, one round of strategic play substantially increases the likelihood of strategic play in
the future decision periods. This indicates that subjects do not play strategically just by
chance. Rather, once they began to play strategically, they are very likely to continue to
do so. This is a clear evidence of learning. Interaction terms (with the dummy variable
N X representing sessions with inexperienced subjects) are introduced to account for the

"We have tried to add more interaction terms, or remove some regressors or interaction terms with in-
significant coefficients. The estimation results are trivially affected.
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differences between experienced and inexperienced subjects in learning.® The negative and
significant coefficient estimate for the interaction term of lagged choice and N X in games
with Es indicates that inexperienced subjects were much less confident of their choice of
strategic play than their experienced selves in this more challenging game.

Learning can come about in one of two ways: social learning in which case subjects
simply replicate the peers’ strategies and/or (individual) adaptive learning in which case
subjects update beliefs according to the opponents’ responses. Positive and significant
estimate of peer group effects in the dynamic model is evidence in favor of social learning,
while positive and significant coefficient estimate for entry rate differential is considered as
evidence in favor of adaptive learning that is independent of peers’ choices.

In games with Es, the SMLEs of 4, are positive and statistically significant in Table
1.13, indicating the existence of endogenous peer group effects in this case. For the spec-
ification without interaction terms, the average marginal impact of the peer group effect
on the probability of limit pricing given exogenous variables and lagged choices is 0.054.°
In contrast, peer group effects in games with Eys are not statistically significant in the

Markov model.

8The minus two times log likelihood ratios for testing jointly the significance of interactions terms in
the Markov model are, respectively, 6.56 for games with Egs, and 13.2 for games with Ezs. The latter is
significant at the 5 percent level with an asymptotic y? (5) distribution.

9For the general model (1.1), Ei/|(V},, Yas, Xus,s = 1, ,t — 1), Xy, &) = @ (k). The aver-
age marginal effect over time and individual of, say X}, (which is assumed continuous), on the transition

prObablhty P()’it = 1|(Y}’IS9X}’I57S = 13 ERRIY 1)9X}’lt)a is given by

1 n T
T D2 / e / & (hit) (Ohir/0X )
Xf (y;}: t :y;:t—ls filYns:» Xps,s =1, ,t — 1) dy,*1 e 'dy;:t_ldfi
The multiple integrals here can be approximated by simulations. We simulate / l(f ) following the same proce-
dure as in (1.3). With m independent simulation runs, the corresponding (sample average) simulated marginal
effects is 327 >3/ ST o (]))(Eﬂz,-,/aXm)/mn T. Results reported in this paper are based on a simula-

it
tor generated from 1000 random draws.
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In games with E s, the coefficient estimates for entry rate differential are positive, sta-
tistically significant and robust to alternative specifications. For the specification without
interaction terms, the average marginal effect of entry rate differential on the probability
of limit pricing is 0.032. According to the adaptive learning model, when subjects update
beliefs regarding entrants’ responses, they should not distinguish between entries on them-
selves and entries on their peers given the anonymous nature of the experiment. However,
the estimated w is significantly less than 1, indicating M places primary weight on entries
on himself/herself, with very limited weight placed on entries on other Ms. Given that 1,
is positive and statistically significant, we think that subjects only pay attention to peers’
past choices, but not the corresponding outcomes. As 1, captures social learning that repli-
cates peers’ strategies, while w captures adaptive learning that updates beliefs based on
peers’ experience, this result is quite reasonable given the sophisticated nature of adaptive
learning compared to social learning.!® On the other hand, the coefficient estimates for
entry rate differential are not statistically significant in experiments with Eys. As will be
reported in the next subsection, in games with E gs, peer group effects are identifiable in
the Polya model (our preferred specification), but the coefficient on entry rate differential
continues to be statistically insignificant.

The proportion of Mys attempting to pool by choosing output levels 3 and 4 in the
previous round is introduced as an additional explanatory variable in games with £ s be-
cause an increase in this proportion makes separation at output levels 5-7 more attractive
for Mys. Although positive in sign, its coefficient fails to achieve statistical significance in
either Markov specifications.

10We also consider alternative specifications where own lagged choices and peers’ lagged choices are
interacted with entrants’ responses. This is discussed briefly in the next section where we report on the polya
model specification, our preferred specification.
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The positive and significant estimates of the coefficient on In 7 pick up other experience
effects that fail to be captured in the Markov model. In experiments with E s, the results on
its interaction effect with NV X indicate that this positive impact is confined to experimental
sessions employing inexperienced subjects only. It motivates us to develop a more general
empirical model to characterize the remaining experience effect in the next subsection.

The dummies for experienced players are large, positive and statistically significant
in games with E7s and Eys indicating that in both cases experienced subjects start out
with much higher levels of strategic play than inexperienced subjects. In games with Es,
dummies for experiments with crossovers are positive and statistically significant, which is
consistent with the findings in Cooper and Kagel (2004) that there exists positive transfer
of learning across related games. The negative and significant estimates for the constants
(o) indicate the slow emergence of strategic play in all cases. The larger absolute value for
a in games with E s suggests that strategic play is much slower to emerge in this case.

Though the overall correlation in the disturbances captured by 6&; + &4 (r) 15 posi-
tive, the negative sign of p suggests the presence of some fluctuations not captured by the
dynamic structure. Hence we generalize the Markov model to a more general dynamic

process in the next subsection.

A Polya Model with Lagged Social Interactions

As subjects have access to all previous outcomes in an experimental session, the entire
history of past plays should be relevant to the current decision making. In this subsec-
tion, we model the influence of all past plays on a subject’s current decision by a Polya

process with lagged social interactions. Similarly to the Markov model, we assume that the

27



unobservable incentives to limit price can be characterized by

T ti(z) 5s—lw. Y, ()
% _ — infnt(t)—s
Vitry = &+ Xin@-18+4 Z5s1 it (c=s) + 22 Z : e
s=1 s=1 zs:l 52
+yInt +0&; + €if(0)s (1.11)

and
€it;(r) = PEiti(r—1) T Vit;(v)»

where &;, vj,(;) are 1.1.d.N(0, ). The initial conditions on all variables for ¢ < 0 are
set to be zero, as we observe the data generating process from the very beginning in the
experiment. Most variables in (1.11) are defined as in the Markov model (1.10), while
there are some changes in the specification of the entry rate differential as follows. Let
oy R =200 al (Ryand !, . (R) =309 a/, (R)for j = L, 0 and
R = IN,OUT, with dljs (R) given as before. Let the weight a player puts on the expe-
rience of other Ms relative to his/her own in calculating entry rate differential be w. The

perceived cumulative entry rate differential between “myopia” output choices and strategic

output choices is given by

) 0 L L
i ( ) | = Ci,ti(‘[)—l (]N) + a)c—i,ti(f)—l (IN) ci,li(‘[)—l ([N) + a)c—i,li(‘[)—l ([N)
iti(r)—1 — 0 %) - L L >
Ciltiry—1 T OC ()1 Cilti(r)—1 T OC 1 ()—1

where Czjti(z')—l = cljti(f)_l (IN)+ cljti(T)_l (OUT) for j = L, O. Analogous to x; s, (r)—1
in the Markov model (1.10), x; s, (;)—1 here represents the payoff incentive for M to limit
price. The depreciation factors J; and J, measure the influence of past plays on the current

choice. The coefficient on the weighted average Zi’fl) 5“;_1 Win Y t;(t)—s/ Z?Sl)

52_1 cap-
tures the cumulative peer group effects on the subject i ’s current decision. As in the Markov

model (1.10), we specify the row-normalized weighting matrix W,,, with its ith row being

Win, aS [(ln 1= 1,,) /(n — 1)]. Thus, in the Polya model, a subject’s current decision is
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assumed to be influenced by the (weighted) average of the peers’ observed choices over the
entire history. Based on the GHK simulator generated with 100 random draws, the SMLEs
of the Polya model using data from the experimental sessions with £ ys and with E s are
reported in Table 1.14 and Table 1.15 respectively.

In games with E s and Es, the positive and significant estimates of 1; on own lagged
choices imply that previous strategic plays substantially increase the likelihood of current
strategic play for any given M.

The coefficient on the interaction term between lagged choices and N.X (dummy for
sessions with inexperience subjects) is not statistically significant in games with E s but is
negative and statistically significant in games with £;s.!! This is similar to what we found
in the estimation of the Markov model. In games with £ s, inexperienced subjects are less
confident in their choices of strategic plays than their more experienced counterparts, hence
are more likely to revert back to non-strategic play.

In games with E gs, the cumulative peer group effects captured by the estimated 4, are
positive and statistically significant for inexperienced subjects. In contrast, the coefficient
estimate of the cumulative entry rate differential is not, and the statistical insignificance of
S makes the estimate of @ extremely imprecise.!?

In games with Es, cumulative peer group effects are positive and statistically signif-
icant overall, with even stronger peer group effects for inexperienced subjects (indicated
by the positive coefficient estimate for the interaction term between peer group effects and
N X, with ¢-ratio 1.484). Thus, inexperienced subjects are influenced more by the peer

" The interaction terms in the Polya model are jointly significant at the 5 percent level with the minus two
times log likelihood ratios being 11.76 for the games with E s, and significant at the 1 percent level with the
minus two times log likelihood ratios being 24.4 for games with Es.

1ZNote that @ would not be identifiable if the coefficient of x;; were zero. The value of this estimate may
reflect the insignificance of the coefficient estimate of x;_ in this case.
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group than experienced subjects in games with E7s. But unlike games with Eys, experi-
enced subjects continue to be influenced by their peers, due to the fact that it takes longer
for a separating equilibrium to emerge than a pooling equilibrium in the experiment. The
coefficient on cumulative entry rate differential is statistically significant in games with
E s, but less so for inexperienced than experienced subjects. And the marginal effect of
entry rate differential is smaller than that of peer group effects.!> Furthermore, similar
to what we found in the Markov model, subjects place much /less weight on entries on
other Ms than entries on themselves in calculating entry rate differential as indicated by
the estimated w.

We believe that the learning results reported on above come about for three reasons:
(1) Adaptive learning is more demanding than social learning, as it requires that subjects
form expectations regarding opponents’ responses based on past outcomes as compared to
social learning where subjects simply imitate peers’ strategies. As such, social learning
is likely to be more prominent in the early stages of the learning process. (2) Because
Es’ responses are less stable in inexperienced subject sessions (especially with respect to
output choice 5, 6 or 7 in games with £ s) than experienced subject sessions, the entry rate
differential serves as a poor proxy for M’s beliefs in those sessions. Hence the coefficient
estimate of entry rate differential is less significant in sessions with inexperienced subjects.
(3) Strategic play of My s in games with Es requires innovation, whereas strategic play
by Mys in games with E ys simply requires imitating M s choices. As such there must be
some element of adaptive learning in games with £ s, while this is likely to be superseded

I3For the specification without interaction terms, in games with £ s, the average marginal cumulative peer
group effect on the probability of limit pricing conditional on the exogenous variables and lagged choices is
0.058, and the average marginal effect of cumulative entry rate differential is 0.009. In games with Es, the
average marginal cumulative peer group effect is 0.113, and the average marginal effect of the cumulative
entry rate differential is 0.085.
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by social learning from My s’ choices (and responses to same) in games with £ ys where
such innovation is not required.

The SMLEs for both d and J, are positive and statistically significant in games with
E s and Es, indicating that a subject’s current decision making is influenced by all past
plays of the game. Note, J; and J, are not directly comparable, as the depreciation factor
for own lagged choices is defined on the decision period whereas the depreciation factor d,
for peer group effects is defined on the (consecutive) calendar period. On average a subject
has one decision period (with a chance to limit price) every 4 calendar periods, because
a subject plays as M only half time, and the type of M is randomly decided with equal
probability. Take the games with £ s for instance, for the specification with no interaction
terms, a generic M discounts peers’ lagged choices 01/ 53 ~ 2 times as fast as own lagged
choices.

As in the Markov model, for games with Es, we introduce the proportion of Mys
attempting to pool by choosing output levels 3 and 4 as an additional explanatory variable.
Different from the Markov model where this value is calculated based on Mys’ choices
in the previous round only, we calculate its cumulative counterpart in the Polya model.
The positively significant estimates of its coefficient in experimental sessions with inex-
perienced subjects is consistent with the observation made by Cooper, Garvin and Kagel
(1997b) that the adjustment process is history-dependent. It is Mys’ attempt to pool that
raises the entry rate on output level 4 and gives Mpys incentive to separate. In both the
Markov and Polya models, other experience effects represented by In 7 are not statistically
significant at conventional levels. And analogous to what happens in the Monte Carlo study,
the weird negative sign of the SMLEs for p in the Markov model for games with Eys can

now be explained by model misspecification.
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As the Polya model does not nest the Markov model because of our different specifi-
cations of entry rate differential and the proportion of My s attempting to pool, we address
the issue of model selection by the well known Akaike information criterion (AIC) given
as

2#p

AIC = ———log L + —=—, (1.12)
0DS

#obs

where #obs is the sample size, #p is the number of parameters and log L is log likelihood
of a model. According to (1.12), the Polya model is a better model than the Markov model
as the former gives smaller value of AIC.!#

One element that has been left out of the analysis reported on so far involves distin-
guishing between attempts at limit pricing and opposed to successful attempts at limit pric-
ing. We introduce two new variables into the regressions: Individual M’s own success in
limit pricing and the percentage of successful limit pricing by peers. We view these new
regressors as, essentially, additional interaction terms, the results of which are reported in
Appendix 1.6.2. Introduction of these variables has essentially no effect on the log like-
lihood function for games with Exs so that the distinction has no impact on the results
reported in this case.!> In games with E;s own success at limit pricing plays a statistically
significant role in promoting limit pricing (and diminishes the effect of cumulative entry
rate differential). The percentage of limit pricing by peers (as opposed to attempts at limit
pricing) plays no statistically significant, independent role in promoting limit pricing in
games with Es. This probably comes about because attempts at limit pricing were usually

14For the specification without interaction terms, in games with Egs, the AIC of the Markov model is
0.4807 and the AIC of the Polya model is 0.4788; and in games with E s, the AIC of the Markov model is
0.3673 and the AIC of the Polya model is 0.3610.

I3The minus two times log likelihood ratios for testing jointly the significance of new regressors in the
Polya model without interactions with N X are, respectively, 1.86 for games with £ s, and 41.14 for games
with Es. The latter is significant at the 1 percent level with an asymptotic y2 (2) distribution.

32



successful so that imitators only needed innovators actions to promote limit pricing in this
case.

Finally, the last column in Tables 1.14 and 1.15 look at the impact of neglecting the peer
group effects. The reference specification against which to compare these estimates is the
first one reported in each case. For games with E s there is little if any effect on any of the
coefficient values estimated and only a small change in the log likelihood function. This is
not surprising as peer group effects are only significant at the 10% level in this case. For
games with £ s, the SMLEs for the coefficient (f) on the entry rate differential and for the
weight (w) on entries on the peers are most affected by dropping the peer group effects, with
both coefficients biased upwards. This is not too surprising since it is the increased entry
differential in response to choices 5-7 versus other output levels (especially output levels 3
and 4) that drive M s to limit price in the first place. In this context what the introduction of
peer group effects does is to clarify the behavioral mechanism under which these increased
entry rates operate. It is only partly related to what individual subjects have experienced
themselves. Rather, much of the impact is related to what others have experienced and
their responses to same. It is the latter that is largely missing by ignoring peer group or

session level effects in the data in this case.

1.5 Conclusions

This chapter has generalized Heckman’s (1981) dynamic discrete choice panel data
models by introducing lagged social interactions. The likelihood function for a general
model has been derived and simulation method based on the unbiased GHK simulator has
been proposed to implement the SML estimation. Monte Carlo experiments have been

conducted to investigate the finite sample performance of the SMLEs for the Markov and
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Polya model with lagged social interactions. Some clear patterns have emerged from the

Monte Carlo results.

e The true state dependence tends to be overestimated, and the lagged social interac-
tions tend to be underestimated in the Markov and Polya models when 7 is long. The
biases are small for 7 = 8 and 15, and m = 50 or 100. The lagged social interac-
tions are relatively more difficult to estimate precisely in the Polya model than in the

Markov model.

e Overall, the SMLEs of serial correlation in the disturbances have small downward

biases in the Markov and Polya model.

e Given a fixed sample size, biases and SDs of all the SMLEs increase with group size,
given the corresponding reduction in the number of groups. The estimates of state
dependence and lagged social interactions are more sensitive to group size than the

other estimates.

e The bias correction procedure reduces bias and RMSE, but the improvements are
generally small. For further improvement, a larger number of random draws are

desirable.

e In the Markov model, when positive lagged social interactions are ignored in the
estimated model, the estimate of true state dependence is upward biased and the
estimate of serial correlation in disturbances is downward biased. These biases can

be severe.

e In the Markov model, when the data generating process incorporates both the random

individual component and serial correlation but the estimated model only allows for
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the random individual component, the estimate of state dependence is upward biased
and the estimate of lagged social interactions is downward biased. These biases can
be severe. On the other hand, when the estimated model only allows for AR(1)
serial correlation with the random individual component ignored, the estimate of
state dependence can be severely downward biased and the estimate of lagged social

interactions is moderately upward biased.

e When the data generating process is the Polya model but the estimated model is the
Markov model, the estimate of state dependence can be severely biased upward and

the estimate of lagged social interactions has some downward bias.

We have applied the model to investigate learning and peer group effects in laboratory
experiments based on Milgrom and Roberts’ (1982) entry limit pricing game. We em-
ployed the Markov and Polya processes with lagged social interactions to characterize the
adjustment process of subjects’ behavior over time. The Polya model is superior to the
Markov model as it has a more natural justification and provides a better fit to the data. We
obtained a number of important insights on this adjustment process.

First, the dynamic panel data model allows us to study the adjustment process with
better detail. Past studies typically use the static panel data model with a time dummy to
investigate the evolution of subjects’ behavior over time. This model allows us to determine
the correlation between aggregate frequency of strategic play and subjects’ experience but
says nothing about an individual player’s persistency in strategic play. On the other hand, a
positive statistically significant estimate of the true state dependence in the dynamic model
can help to predict an individual’s future strategic play conditional on his/her current and
previous decisions, hence is stronger evidence for existence of learning. Furthermore, by
introducing some interaction terms with the state dependence, we found that inexperienced
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subjects are less confident about what they learned than their experienced selves in more
challenging games (i.e. games with Eys).

To distinguish between two different sources of learning, we introduced peers’ past
decisions and perceived entry rate differential into the dynamic model. We found that sub-
jects’ decisions are influenced by the past decisions of their peers in the limit pricing game
experiment. These time-lagged peer group effects are more evident in the experiments em-
ploying subjects with no experience of the same or related games. These results suggest
that the imitation of peers’ strategies plays an important role in learning to play strategi-
cally.

On the other hand, perceived entry rate differential between “myopia” output choices
and strategic output choices serves as a proxy for Ms’ beliefs on Es’ responses. Hence
a positive estimate of its coefficient indicates existence of more intelligence-demanding
(individual) adaptive learning. After controlling social learning, only in more challenging
games with £ s, we found evidence that subjects’ decision are affected by opponents’ past
responses. And evidence is less substantial in experimental sessions with inexperienced
subjects, which, we believe, is partially due to the sophisticated nature of adaptive learning
and unstable responses of inexperienced E;s. Furthermore, we found that subjects tend
to overweigh entry on his/her own output choice relative to entries on other Ms’ output
choices in calculation of the perceived entry rate differential. As subjects only pay attention
to peers’ choices but largely ignore the outcomes of these choices, we should not be too
optimism about the individual-intelligence implications of adaptive learning.

Multiple equilibria of the entry limit pricing game allows us to design related games

with different equilibrium predictions and study learning processes converging to different
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types of equilibria. In games with E j7s, where strategic behavior reliably converges to pure-
strategy pooling equilibria, evidence of social learning is dominant. In games with Es,
where no pure-strategy pooling equilibria exist, evidence of social learning and (individual)
adaptive learning coexists. One plausible explanation for the “inconsistency” of adjustment
processes in related games is as follows. As the adjustment process in entry limit pricing
game experiment has the feature of history dependence (Cooper, Garvin and Kagel, 1997b),
the emergence of strategic play in games with E;s is much slower than in games with
E prs. Only a relatively small proportion of Ms learn to play strategically at the end of the
experiments with E7s. This slow process selects the more sophisticated subjects who are
updating their beliefs in accordance with the observed responses of the opponents. On the
other hand, in experiments where pure-strategy pooling equilibria exist and strategic play
prevails at the end, the imitation behavior of “followers” becomes overwhelming in the
population and makes other effects much harder to identify. An alternative explanation is
that the nature of strategic play when pure-strategy pooling equilibria exist is imitation, with
“sophisticated” M s imitating the output choices of My s, and the other Mys (“followers”)
imitating the choice of “sophisticated” Mys. When no pure-strategy pooling equilibria
exist, M s have no one to imitate in the first place. Hence M} s’ strategic play may have
some elements of more sophisticated learning.

Finally, we investigated the consequences of neglecting the positive significant peer
group effects in estimating the Polya model. We found that in games with Es, where
the time-lagged peer group effects are substantial, ignoring such effects in the estimation
causes the estimates of entry rate differential and weight a subject put on entries on others’

output choices upward biased. As such, an individual’s intelligence tend to be overstated.
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1.6 Appendices

1.6.1 Payoff Schedules and Experimental Treatments

My (High Cost M) M1 (Low Cost M)
Your X Y X Y Your
Choice (In) (Out) (In) (Out) Choice
1 150 426 250 542 1
2 168 444 276 568 2
3 150 426 330 606 3
4 132 408 352 628 4
5 56 182 334 610 5
6 —188 —38 316 592 6
7 —292 —126 213 486 7

Source: Cooper, Garvin and Kagel (19975).

Table 1.1: A Monopolist’s Payoffs in the Quantity Game

M Player’s Type
My My
Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff  Expected Value®
X (In) 300 74 187
Y (Out) 250 250 250

¢ Based on prior distribution (50% Mg, 50% M) of M types.
Source: Cooper, Garvin and Kagel (19975b).

Table 1.2: An Entrant’s Payoffs in the Quantity Game
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M Player’s Type

My My
Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff  Expected Value?
X (In) 500 200 350
Y (Out) 250 250 250

¢ Based on prior distribution (50% Mg, 50% M) of M types.
Source: Cooper, Garvin and Kagel (19975b).

Table 1.3: An Entrant’s Payoffs in the Quantity Game

My (High Cost M) My (Low Cost M)
Your X Y X Y Your
Choice (In) (Out) (In) (Out) Choice
1 —428 —220 204 545 1
2 —298 —110 333 678 2
3 8 165 355 700 3
4 103 448 378 723 4
5 125 470 350 695 5
6 148 493 283 648 6
7 125 470 250 615 7

Source: Cooper and Kagel (2004).

Table 1.4: A Monopolist’s Payoffs in the Price Game

M Player’s Type
My M
Your Action (High Cost M) (Low Cost M)
Choice Your Payoff Your Payoff  Expected Value®
X (In) 219 594 406.5
Y (Out) 281 281 281

¢ Based on prior distribution (50% Mz, 50% M) of M types.
Source: Cooper and Kagel (2004).

Table 1.5: An Entrant’s Payoftfs in the Price Game
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1.6.2 Alternative Specifications for Empirical Models

In the main content of the application, we focus on disentangling the influence on in-
cumbents’ current decisions from the entrants (captured by the entry rate differential) and
from the other incumbents of the same type (captured by the peer group effects). Here we
also consider some interactions between them in the Polya model. Let the dichotomous
indicator o;; be 1 if incumbent 7 is not entered on in calendar period s, and 0 otherwise.
Let Y, be an n-dimensional vector with the ith element being y;, = yis0is. We consider

an alternative specification of the Polya model (1.11) as follows

T
Viey = O +Xig@)-18+ ZfSSl_l (A1yiie—s) + 2\ Ti4—s))
s=1

4i(t) 55_1101-” (ﬂzYn,ti(r)—s + j-/2711,111'(1')_5)

+
i -1
= >80

+yInt +0S; + ci0),

and
giti(‘[) = pgi,t,»(r—l) + Diti(‘[)a

where &;, vj,(;) are 1.1.d.N (0, 1). The coefficients /1’1 and ),’2 capture the influence of own
successful limit pricing and peers’ successful limit pricing on M’s current choice respec-
tively.

Based on the GHK simulator generated with 100 random draws, the SMLEs of the
Polya model with samples from the experimental sessions with Eys and with E;s are
reported in Table 1.16 and Table 1.17 respectively. In those tables, we also include the
SMLE:s of the original specification from Table 1.14 and Table 1.15 for ease of comparison.

The SMLEs of A} are positively significant in games with £, indicating that, in the
case where strategic play requires innovation, subjects are more confident in their decision

to play strategically when limit pricing generates higher payoffs in the previous rounds.
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However, the SMLEs of /| are insignificant in games with £y, which is consistent with
the insignificant estimates of /8 in the original specification. The SMLEs of 1/ are insignif-
icant, which is consistent with the insignificant estimates of @ in the original specification,
indicating subjects tend to ignore previous entries on their peers when making current de-

cisions.

1.6.3 Monte Carlo and Empirical Results

41



Payoff Tables Prior Experience Number of Sessions

(Type of Entrants) Gc MC
1.1&1.2 b
(High cost type £5) None or same game 7 9(2)

1.1&130r14&1.5

(Low cost type E7s) None or same game 15 (9) 12 (7)

Game with high cost Es® 5 7(2)

4GC: generic context; MC: meaningful context

brumber of inexperienced-subject sessions (number of experienced-subject sessions)

“crossover after the 1st 12-period cycle

Table 1.6: Experimental Treatments
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CHAPTER 2

NONPARAMETRIC ESTIMATION OF LARGE AUCTIONS WITH
RISK AVERSE BIDDERS

2.1 Introduction

In this chapter, we explore the robustness of Guerre, Perrigne and Vuong’s (2000) two-
step nonparametric estimation procedure in first-price, sealed-bid auctions with a large
number of risk averse bidders.

The seminal work by Guerre, Perrigne and Vuong (2000) has shown that the underly-
ing distribution of bidders’ values is nonparametrically identified from the observations of
submitted bids in first-price, independent private value (FP-IPV) auctions with risk neutral
bidders. Based on the equilibrium bidding behavior, they propose a two-step kernel-based
estimator for the latent density of bidders’ private values wherein the unobserved private
values are estimated in the first step. The proposed two-step estimator is optimal in terms of
the uniform convergence rate. As the private values are estimated from submitted bids, the
best uniform convergence rate of this “indirect estimation” problem (Groeneboom, 1996) is
slower than the best uniform convergence rate given by Stone (1982) when the private val-
ues are observable. However, when bidders are potentially risk averse, Campo et al. (2006)
have shown that the distribution of bidders’ private values and bidders’ utility functions in
FP-IPV auctions cannot be nonparametrically identified from observed bids. To estimate

54



the latent density of bidders’ private values, it is necessary to specify the utility function
parametrically. They propose a multi-step semiparametric estimation procedure wherein
the utility function is recovered parametrically in the initial steps. In deriving asymptotic
properties, both works assume that the number of bidders 7 in each auction is fixed and the
number of observed auctions L approaches infinity.

On the other hand, as n goes to infinity, it has been shown that the discrepancy between
risk averse bidding behavior and risk neutral bidding behavior is of order O(n~?) (Fibich,
Gavious and Sela, 2004) and the discrepancy between strategic bidding behavior and per-
fectly competitive behavior, wherein bidders simply bid their value, is of order O(n™!). In
other words, as the size of an auction increases, the effect of risk aversion diminishes much
faster than the rate at which the strategic bidding behavior degenerates to the price-taking
behavior in perfect competition. Hence when the size of auction is large, Guerre, Perrigne
and Vuong’s (2000) two-step nonparametric estimator based on strategic bidding behav-
ior may possess some robust properties against potential risk aversion. In this chapter, we
study the asymptotic properties of Guerre, Perrigne and Vuong’s (2000) two-step nonpara-
metric estimator allowing both the number of bidders » and the number of auctions L to
approach infinity. We show that when #n increases not too slowly relative to L, the two-
step nonparametric estimator of the latent density of private values is consistent and attains
the best uniform convergence rate given by Stone (1982) as if bidders’ private values are
observable.

Allowing both n and L to diverge to infinity introduces some extra complications in
the analysis. Since the unknown private values are recovered from the observations of
submitted bids and the estimated bid density, the smoothness of bid density and the uniform

convergence rate of its estimator are crucial in determining the convergence rate of Guerre,
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Perrigne and Vuong’s (2000) two-step estimator. As the equilibrium bid density depends
on n, the derivatives of bid density that are bounded with fixed » could be unbounded
as n — 00, and there is no standard result on the best uniform convergence rate for the
nonparametric estimation of a density that is shifting with sample size as the bid density
is here. Furthermore, when there exists observed heterogeneity across auctions, we need
to estimate the density of private values conditional on the “fixed effects” characterizing
heterogeneity across auctions. However, the best uniform convergence rate of the estimator
for a conditional (or joint) density with observations in such a panel structure, where private
values are of order O (nL) and “fixed effects” variables are of order O (L), has seldom been
addressed in the literature. We show that the kernel estimator for the conditional density
of private values given the “fixed effects” can attain the best uniform convergence rate at
which the marginal density of “fixed effects” can be estimated.'®

We conduct a Monte Carlo experiment to study the finite sample performance of Guerre,
Perrigne and Vuong’s (2000) two-step nonparametric estimator and get some interesting re-
sults. The two-step nonparametric estimator performs reasonably well in the presence of
significant risk aversion when the number of bidders is six. In other words, an auction with
six bidders can be considered as a large auction. In addition, the two-stage nonparamet-
ric estimation procedure sometimes outperforms the multi-step semiparametric estimation
procedure when the utility function is misspecified.

This rest of the chapter is organized as follows. Section 2 presents the first-price, sealed-
bid auction model with risk averse bidders and derives the asymptotic approximation of
the equilibrium bidding function. Section 3 establishes the uniform consistency with the
convergence rate of Guerre, Perrigne and Vuong’s (2000) two-step nonparametric estimator

16We assume that the marginal density of “fixed effects” is as smooth as the conditional density of the
private values.
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in large auctions with risk averse bidders. Section 4 specifies Monte Carlo experiments and

reports the results. Section 5 briefly concludes.

2.2 Large Auctions with Risk Averse Bidders

Suppose there are a large number of potential buyers competing for a single, indivis-
ible item. The number of potential buyers n (n > 1) is common knowledge!”. In the
first-price, sealed-bid auction under the independent private value (IPV) paradigm, the buy-
ers simultaneously submit bids, and the highest bidder wins and pays his own bid to the
seller. Buyer p’s valuev, (p =1, - - - , n) for the auctioned item is his private information,
while it is commonly known that the values are independently distributed on [Q , D ] C Rt
according to a common distribution F (), which is absolutely continuous with density
f () > 0. Each bidder is potentially risk averse with utility given by a common von
Neumann-Morgenstern utility function U (-), which is twice continuously differentiable
with U’ (-) > 0 and U” () < 0. The seller is assumed to be risk neutral. Moreover, we
assume each bidder’s initial wealth w > 0 is the same and commonly known.

Suppose the equilibrium bid for the pth bidder with private value v, in an auction with
nbiddersis b, = s, (v p). Following Maskin and Riley (2000; 2003), and Athey (2001), the
unique symmetric Bayesian Nash equilibrium of the corresponding game is characterized

by the following differential equation in s, (-)

f(vp)
F (vp)

where 1 (1) = (U(w+-) — U (w)) /U’ (w+ ). The boundary condition is given by

sy (0p) = (= 1)

vy =5 (vp)), (2.1)

sn () = v.

17We assume in this paper that the reservation price is nonbinding, hence the number of potential bidders
is equal to the number of actual bidders.
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In general, the equilibrium strategy is intractable without specification of a functional
form for U (). However, analytical approximations to the equilibrium strategy s, (-) can
be derived. To proceed, we need some regularity assumptions on U (-) and F () following
Campo et al. (2006) as summarized in the following definitions. Throughout we denote the
support of % by S (x), and the rth derivative of * by *) (r > 0) with x(© = «.

Definition 1 For R > 1, let Ug be the set of van Neumann-Morgenstern utility functions

U (-) with initial wealth w > 0 such that:
(1) U :[0,00) = [0, 00),

(i1) U () is continuous on S (U), and admits up to R 42 continuous bounded derivatives

on (0, 00) with U’ () > 0 and U” (-) < 0 on (0, 00).
Definition 2 For R > 1, let Fg be the set of distributions F (-) such that:
i) S(FY={v:velv,0]} with0<v <d < o0,

(i) f(®) 2cy > 0forveS(F)

(iii) F(-) admits up to R + 1 continuous bounded derivatives on S (F).

Except for the additional assumption that w > 0, Up and Fp are defined similar to
Campo et al. (2006) and thus have similar implications. Definition 1 requires that 4 (x)
admits R + 1 continuous bounded derivatives on [0, c0), and Definition 2 specifies the
smoothness of F'(-) and requires the corresponding density f (v) to be bounded away from
zero on S (F). These regularity assumptions are quite weak. The additional assumption
on initial wealth is to guarantee proper behavior of the utility function at the initial wealth

level. To relax this assumption so that w > 0, Definition 1(ii) needs to be replaced by the

58



stronger assumption that “U (-) is continuous and admits up to R + 2 continuous bounded
derivatives on S (U) with U’ (-) > 0 and U” (-) < 0 on S (U)”. The assumption on initial
wealth is necessary for analytical approximation of the equilibrium bidding behavior in
large auctions. Furthermore, we assume that the private values and the number of bidders
are independent so that f (v|n) = f (v). As noted by Guerre, Perrigne and Vuong (2000),
this assumption is justified by the economic model. Otherwise, endogenous entry to the
auction should be considered, which is outside the scope of this chapter.

It is well known that, as the number of bidders n approaches infinity, the equilibrium
bid approaches the bidder’s private value under quite general conditions. Applying repeated
integration by parts and the Laplace approximation (Copson, 1965) to the integral form of

the differential equation (2.1),

1

Hor =0 (00) = 7y / " E () d (0 () + 2 (1 — 55 )))

- Fn—1

we can derive the leading order deviation of the equilibrium bid from the private value.
This is formally stated in the following proposition.'® Another contribution of Proposition
2.1 is to characterize the implied smoothness of the equilibrium bidding function as n —
0o, which is used to derive the uniform convergence rate of the two-step nonparametric
estimator in the next section. Let ¢,(v) = v — 5, (v) be the consumer surplus conditional

on winning.

Proposition 2.1 In a first-price IPV auction with n (n >> 1) bidders, if F (-) € Fr and
U (-) € Ug for R > 1, the equilibrium bid in the symmetric Bayesian Nash equilibrium is

I8Fibich, Gavious and Sela (2004) have shown (2.2) based on the unproved claim that s =1+
(0] (n_l), which, in general, is not directly implied by the (uniform) convergence of s, (v). Here we take a
different approach to derive the leading order deviation of s;, (v) from v. The approach presented here is more
rigorous as s, (v) = 1+ O (n_l) is proved instead of assumed and more general as it allows us to express
sp (v) as its asymptotic expansion with precision of O (n_(R“)) instead of just the leading order deviation.
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given by
1 F
sp(0) =0 — — ®)

n f ()

Furthermore, we have gg,r)(v) = O(n_l)for 1<r <R

+0n™3).1° (2.2)

Let G, (-) denote the distribution of equilibrium bids. We have G, (b) = F (v) with
support S(Gy) = (b : b € [v, 54 ()]} and density g, (b) = f(v)/s, () = f(v) + O(™")

by Proposition 2.1, where v = 5! (b). It follows from (2.2) that

1)=Sn_1(b)=b+lGn(b)

-2
oo o(n™?), (2.3)

which represents the unobserved private value as a function of the observed bid with an
error of order O(n~?). This allows us to employ Guerre, Perrigne and Vuong’s (2000)
two-step nonparametric estimation procedure to recover the underlying distribution of risk

averse bidders’ private values with satisfactory precision when # is large.

2.3 Nonparametric Estimation and Robustness

2.3.1 Estimation Procedure and Asymptotic Properties

To clarify conceptual issues, we first consider L homogeneous auctions with n bid-
ders in each auction. In order to implement Guerre, Perrigne and Vuong’s (2000) two-step
nonparametric estimation procedure, we first need to estimate the distribution of equilib-
rium bids G, (), which depends on the number of bidders. Hence it is important to study
the implied smoothness of G, (-) as n — oo. The following proposition summarizes the

properties of G, (-) relevant to the asymptotic properties of the nonparametric estimator.

Proposition 2.2 If F (-) € Fr and U (-) € Ug for R > 1, the distribution G, (-) satisfies:

Throughout f;, (x) = g, (x)+0 (mP)or f, (x) = g, (x)+0 (n”) means sup, | fn (x) — g (x)| = O (n?)
or sup, | fu (x) — gn (x)| = o (n?) respectively, for a pair of functions f, () and g, (-) and a constant p.
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(i) its support is S(G,) = {b :be [Q, Sy (5)]}, with inf,e3,...) (s,, (0) —Q) > 0.

Moreover, S (G,) C S(Gpy1) foralln € {2,3,---}, and lim,_, S (G,) = S (F),
(ii) for b € S(G,), g (b) > cg > 0asn — oo,

(iii) if C is a closed subset of the interior of S (Go), then gy, () is bounded and admits

up to R continuous bounded derivatives on C as n — o0.

Contrary to its counterpart with fixed »n derived in Campo et al. (2006) where g, (-) is
smoother than f () with R 4+ 1 continuous bounded derivatives, Proposition 2.2(iii) shows
that as n — 00, the uniform boundedness of the (R + 1)th derivative of g, (-) cannot be

implied from the existing assumptions on the structure [U, F'].

Following Guerre, Perrigne and Vuong (2000), with the observations {B,;; p = 1,--- ,n,!

1,---, L}, the bid distribution G, (-) and density g, () can be nonparametrically estimated

respectively by the empirical distribution and the kernel density estimator of the form

G, (b) = nLl;p:ll(Bp,gb), (2.4)
1 &L By —b
g (b) = nLhRZ KR( ”}’IR ) 2.5)

where A is a bandwidth such that 1z = 4 (log (nL) /nL)"@R+D with ) being a strictly
positive constant, and Kg (-) is a symmetric kernel of order R with a compact support
and twice continuous bounded derivatives satisfying [ Kz (b)db = 1 and [ K% (b)db <
0o. Note that classical asymptotic results regarding the empirical distribution and kernel
estimator based on the i.i.d. assumption of observations do not apply to the current model
as n — 00, because the equilibrium bid and hence its distribution depend on the number

of bidders n. The uniform consistency of G, and &, with the convergence rate based on a
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triangular array of random variables that are independent but not identically distributed as
we have here is derived in the appendix.

Because the kernel estimator is asymptotically biased at the boundaries of the sup-
port, Guerre, Perrigne and Vuong (2000) suggest trimming the observations B, that are
too close to the boundaries of S(G,). However, in our case, as n increases, S (G,) is
expanding such that lim,_,» S (G,) = S (F). Hence the kernel estimator is asymptoti-
cally biased at the boundaries of the support of F (-). Denote the length of the support of
Kr()by p. Forb =0 — Aphr/2 with 1 € [0, 1), it follows that E[g, (0 — Aphg/2)] =

G K R ) 0 (65— 2phR/2-+ hruddu — g5 = phr/2) [0 Kr () duas
n and L approach infinity. As ff’o’éz Kp (1) du # 1, the density estimator is asymptotically

biased for b € (v — phg/2, 0] and similarly for b € [v, v + phg/2). Let Bpnin, and Bpax be

the minimum and maximum of the n L observed bids. The trimmed pseudo-private value is

defined as _ }
R Bpl + G, (Bpl) / (l’l - l)gn (Bpl) 5
Vpr = iprl € [Bmin+th/2a Bmax _th/z]a (2.6)
oo otherwise,
forp=1,---,nand/ = 1,---, L. The following proposition gives the rate at which

the trimmed pseudo-private value converges to the true value on a closed inner subset of
its support. The result will be used to derive the uniform convergence rate of the two-step

estimator. Let » = (nL /log (nL))®/GR+D),

Proposition 2.3 Suppose F () € Fr and U () € U for R > 1. Then, for any closed

inner subset C (V') of S (F), we have almost surely
sup,y 1) (Von) | Pt = V| = 0 (max(a/r, 1yn2)

Basically, the error of pseudo-private value Vpl comes from two sources: estimation
error from G, (-) /&, (+) and approximation error from ignoring the utility structure. So the
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uniform convergence rate of the pseudo-private value is determined by the slower conver-
gence rate of these two types of errors. Suppose R = 1, then n/r &~ n*/L by ignoring the
relatively small log(nL) term. So if n increases much slower than L such that n?/L — 0,
then the approximation error dominates. The estimation error dominates otherwise.

With the trimmed pseudo-private values, the private value density f (-) can be estimated

). 2.7)

The following result establishes the uniform consistency of Guerre, Perrigne and Vuong’s

by the kernel density estimator

A 1 L V]—l)
= Kzl -2
f @) nLhR; R( "

1 p=1

(2000) two-step estimator with its rate of convergence in homogenous auctions with risk

averse bidders.

Proposition 2.4 Suppose F () € Fr and U () € U for R > 1. Then, for any closed

inner subset C (V') of S (F),
(i) if L = ooand (nhg)™' — 0, (r/n)(nhg)~" = 0asn — oo, we have almost surely

sup,ccon |f ©) = £ @) = 0G™h;

(ii) if L — oo and (nhg)™' — 0, (r/n)(nhg)™' — 0o asn — oo, we have almost

surely

sup,ecn |/ @) = £ @) = 067!

(iii) if L — oo and (nhg)™' — o0 as n — 0o, we have almost surely

sup,ccqr |/ ) = f @) = 06r*hp ™",
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Proposition 2.4(iii) shows that, when n does not diverge fast enough relative to L,
Guerre, Perrigne and Vuong’s (2000) two-step estimator may not be consistent in the pres-
ence of risk aversion given our choice of Kz(-) and 4z because of the overwhelming ap-
proximation error. A sufficient condition for the two-step estimator to be consistent is that
(nhg)~! — 0, which imposes a lower bound of the divergence rate of n in terms of L. By
ignoring the relatively small log(nL) term, we have (nhz)~' &~ L/n*R. Hence the con-
straint on the divergence rate of n is quite weak, especially for a smooth private value den-
sity (with larger R). On the other hand, when n goes to infinity fast enough relative to L, it
is possible for the two-step nonparametric estimator to attain the uniform convergence rate
r = (nL/log (nL))®/ @R+ which is the best uniform convergence rate when private val-
ues are observable. The intuition for the result is as follows. As f (v) = g, (s, (v)) 5,,(v),
to estimate the private value density, g, (-),s,(-) and s, (-) need to be estimated. When
n is fixed, s/ (-) is the hardest to estimate as it requires estimating g/, (-). In fact, the best
uniform convergence rate for estimating s, (-) determines the best rate for estimating f (-).
However, when n — o0, it follows from Proposition 2.1 that s, (v) = 1 + O(n~1). Soifn
diverges fast enough, f (-) can be estimated at the same best rate as g, (), which is r.

As in Guerre, Perrigne and Vuong (2000), asymptotic normality of the two-step esti-
mator is not derived. This is because the first and second order terms in the expansion of
f (v) — f (v) may be close (see the proof of Proposition 2.4), so the classical asymptotic
normality result that relies only on the leading order term in the Taylor expansion may be
imprecise. Guerre, Perrigne and Vuong (2000) suggest circumventing this drawback by
establishing an exponential-type inequality, and that approach also applies to the current

model. Interested readers may refer to that paper for more details.
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2.3.2 Auctions with Heterogeneity

Now we can extend the above analysis to a more realistic model allowing heterogeneity.
Heterogeneity across auctions is characterized by a vector of observed variables X; and the
number of bidders nl; (I = 1,---, L), where the [;’s are strictly positive constants.?’
We assume #n, but not /;, approaches infinity for asymptotic properties. Let Z be the set
of possible values for /;. Following Guerre, Perrigne and Vuong (2000), the latent joint

distribution of (Vpl, X, I;) forp=1,---,nfjand [ = 1,---, L satisfies the following
regularity assumptions:

Assumption Al

(1) The (d + 1)-dimensional vectors (X;, I}), [ = 1, --- , L, are independently and iden-

tically distributed as Fy, (-, -) with density f,, (-, -).

(i1) For each I, the variables V,, p = 1,---,nl), are independently and identically

distributed conditionally upon X; as F (-|-) with density [ (-|-).
Assumption A2 For T a bounded countable subset of RY and R > 1,
(i) S(F) ={(v,x):x € [x,x],v € [(x), 5(x)]}, withx < X;
(ii) for (v,x) € S(F), f(vlx) > cy > 0, and, for (x,i) € S(Fy), fm (x,i) > cy > 0;

(ii1) foreachi € Z, f (-|-) and f,, (-, i) admit up to R continuous bounded partial deriv-
atives on S(F) and S(Fy, (-, 1)).

20Empirically, we can decompose the number of bidders of the /th auction arbitrarily into n € {2, 3, -- -}
and I; € RT. Say, let n = min;{n1}}.
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As argued by Guerre, Perrigne and Vuong (2000), we can assume that x and x are
known as they can be readily estimated. X is assumed to be a vector of continuous vari-
ables.?! The economic model implies that the private values and the number of bidders are
independent conditional on X so that f'(v|x, ni) = f(v|x). With the smoothness of F (:|-)

specified in Assumption A2, the next proposition studies the implied smoothness of bid

density g, (|-, -).

Proposition 2.5 Suppose U (-) € Ug for R > 1. Given Al and A2, the conditional distri-

bution G, (+|-, -) satisfies:

(i) its support S (G,) is such that S (G, (-|-,i)) = {(b,x) : x € [)ﬁ,)f] ,be [Qn (x,i), b, (x, i)]},
with inf(b, (x,i) — b, (x,i)) > 0. Moreover, by, (x,i) > b (x,7) for n > m,

b, (i) =0 (), and limy 0 by (-, 1) = 0 (-);
(ii) for (b,x,i) € S(Gy), gn (blx,i) > cg > 0asn — oo;

(iii) if C is a closed subset of the interior of S (Go), then, for eachi € I, g, (+|-,1) is

bounded and admits up to R continuous bounded derivatives on C as n — oo.

Proposition 2.5 extends Proposition 2.2 by allowing possible heterogeneity across auc-
tions and has similar implications. Specially, item (iii) characterizes the uniform bounded-
ness of g,’s derivatives as n — 00, which is used to derive asymptotic properties of the
nonparametric estimator.

2l1fsome Xs are discrete, the following results hold with d replaced by the number of continuous variables
in X.
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Following Guerre, Perrigne and Vuong (2000), using the observations {(B;, X;, I}); p =

l,---,nl;,l =1,---, L}, we can nonparametrically estimate G, (-, -, -) and g, (-, -, -) re-
spectively by

- L X —x I —i

Gu (b, x,i) = nLhd le 21 By < b)KG( e ) (2.8)

nl .
- . b X — ]]—l)
(b, x,i) = , , 2.9
B = o>k (LA e

where hg, hgr, hg, and hg; are bandwidths and K¢ and K, are kernels with a compact
support.

Similar to the case with homogeneous auctions, the asymptotic results of nonparametric
estimators based on i.i.d. assumptions do not apply to G, and g, as n — oo due to the de-
pendence of the equilibrium bid distribution on n. We derive the uniform consistency with
the convergence rate of G, and g, in the appendix. On the other hand, since the number
of B, is of order O(nL) while the number of observed auctions and hence (X}, ;) (which
are analogous to fixed effects in a panel data model) are of order O (L), the best uniform
convergence rate for the nonparametric estimation of the joint density of (B,;, X;, I;) as
both n and L approach infinity has seldom been addressed in the literature. The following
analysis sheds light on whether and to what extent » — o0 speeds up the convergence of
the joint density estimator.

Since the kernel density estimator is biased at the boundaries of the support of S(F)
as we discussed in the case with homogenous auctions, we trim the observations that are
too close to the boundary of S(F). To this end, we need to estimate the unknown S(F) =
{(v,x) : x € [x,X],v € [v(x), 5(x)]}. Since [x, ] is known, we only need to estimate

the support [v(x), 0(x)]. Let h5 > 0. Following Guerre, Perrigne and Vuong (2000), we
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consider the following partition of R? with a generic hypercube of side 4:
Ty, kg = [k1ho, (ki + 1) ha) x - X [kaho, (ka + 1) ho),
where (k1, - - - , kg) runs over Z¢. The support [v(x), 5 (x)] can be estimated as

o(x) = sup(Bp,p=1,---,nl,l=1,--- ,L; X| € Ty iy} (2.10)

/Q\(x) = inf{Bp[,p = 1, ,}’l][,l = 1, ,L;Xl S n-kl,'“,kd}’ (2.11)

where 7y, ... x, is the hypercube containing x. And the estimator for S (F) is S(F) =

{(0, %) x € [x,%], 0 € [0(x), D]}

Note that (2.3) can be rewritten as

1 Gy (Bpi, X1, )

+0(n™),
nl; gu (Bpi, X1, I)

where G, (b, x,i) = G,(b|x,i) fiu(x,i). Guerre, Perrigne and Vuong’s (2000) pseudo-

private value is estimated by

X 1 .
Vy=By+———u (B, X1, 1)),
pl pl+n11_ll//( ols X1, 1p)

where .

Gn (baxa l)/(l’l]] - l)gn (baxa l) )
if (b,x) 4+ S (2hg) C S (F) and
(b, x) + S (2hg) C S(F),

oo otherwise,

with S (hg) and S (hg) being the supports of {0 x K¢ (-/hg,0)} and Kg (-/ hg, -/ hg, 0)

w (b, x,i) =

respectively.
In the second step of Guerre, Perrigne and Vuong’s (2000) two-step estimation ap-

proach, the density f (v]x) is estimated nonparametrically by f (vlx) = f (v,x)/ f (x)
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using the pseudo-sample {(Vpl,Xl),p =1,---,nl;,l =1,---, L}, where

A 1 Lo Vo —o X —x
,x) = ——> —> K2 , , 2.12
S0 nth,“;Isz:‘; ey -
A 1 & X —x
o = G2k (B, e.13)
=1

h r and h y are bandwidths, and K  and K x are kernels with compact supports. The choice
of kernels and bandwidths in the definition of the two-step nonparametric estimator are
summarized in the following two assumptions:

Assumption A3

(1) The kernels K¢ (-, -), K¢ (-,-,-), Ky (-,-) and Kx (-) are symmetric with bounded
hypercube supports and twice continuous bounded (uniformly in 1) derivatives with

respect to their continuous arguments.

(i) [Kg(x,0)dx =1, [Kg(b,x,0)dbdx =1, [ K7 (v,x)dvdx =1, and [ Kx (x)dx =

1.
(iii) K¢ (x,0)is of order R + 1, and K4 (b, x,0), K7 (v, x) and K x (x) are of order R.
Assumption A4
(i) As L — oo, the “discrete” bandwidths hG and hg vanish.
(i1) The “continuous” bandwidths hg, hg, h r, and hx are of the form:

hg = Ag(logL/L)/CRFD o = ) (log L/L)/ R+,

hy = Ar(log L/L)YCRFD) p = Jy(log L/L)/ @GR+,
where the A’s are strictly positive constants.
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(iii) The “boundary” bandwidth is of the form hy = As(log L/L)Y@*D with )5 > 0, if

d > 0.

It follows from Hardle (1991) that 4 and 4 x given in A4(ii) are optimal bandwidths
given Proposition 2.5 and A2(iii). Hence G, (-, -, -) and f (-) are optimally estimated in
terms of the uniform convergence rate. If n were fixed and private values were observed,
the optimal bandwidth for estimating f (-, -) would be of order (log L / L)/ @R+d+D which
is asymptotically larger than the rate for 4 s given in A4(ii). Similarly, the rate for /1, given
in A4(i1) 1s asymptotically smaller than the optimal bandwidth with fixed n. However, our
choices of 4 s and hg are optimal when n approaches infinity fast enough relative to L as
shown below.

The following results establish the uniform consistency of the nonparametric estimators

of S(F) and f (v|x) in large auctions with risk averse bidders.

Proposition 2.6 Let r; = (L/log L)/ @+D . Given Al, A2 and A4(iii), we have almost
P g

surely
Supxe[&,)f] ‘;)_\(X) - E(X)‘ = 0(’/,6—1)’ and Supxe[&i] |§(X) - Q(X)' = O(F(a_l)

We have shown in the case with homogeneous auctions that a sufficient condition
for Guerre, Perrigne and Vuong’s (2000) two-step estimator to be uniformly consistent
is that n goes to infinity fast enough relative to L so that (nhg)~! — 0. So the next
result on the uniform convergence rate focuses on the case with (nh f)_1 — 0. Let

ry=(L/log L)R/CR+d),

Proposition 2.7 Suppose U (-) € Ug for R > 1. Given AI-A4, for any closed inner subset
C(V)of S(F),
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(i) if L > oo and (nhf)_1 — 0, (rf/n)(nhf)_1 — 0asn — oo, we have almost

surely

sup,cc(r) |/ (01x) = f wlx)| = 0¢7;

(ii) if L —> oo and (nhf)_1 — 0, (rf/n)(nhf)_1 — o0 as n — 00, we have almost

surely

sup,cc(py £ Ix) = f @lx)| = Om*hy)~".

So when n approaches infinity fast enough relative to L, the two-step estimator of
f (v]x) can attain the best rate at which f (x) can be estimated. Even though f (v|x)
is as smooth as f (x) given A2(iii), one would expect f (v|x) to be estimated with a con-
vergence rate slower than f (x) because private values are unobservable and the vector
(V, X) has one more dimension than X. The counterintuitive result in Proposition 2.7 can
be understood as follows. First, since unknown private values can be approximated by
observed bids with precision of order O(n~") by Proposition 2.1, the approximation error
may be trivial compared to the estimation error of the kernel estimator when n goes to in-
finity fast enough relative to L. Hence, the information loss from not observing /' may be
negligible given the conditions in Proposition 2.7(i). Second, because there are (n — 1)L
more (pseudo) observations of V' than X, the noise from estimating the extra dimension of
random variables in f (v, x) and hence f (v|x) reduces dramatically as » — co. We show
in the appendix that, when n diverges fast enough so that (nk g)_1 — 0 and (nh f)_l - 0,
kernel estimators of g, (b, x,i) and f (v, x) can attain the best rate at which f (x) uni-

formly converges to f'(x).
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2.4 Monte Carlo Experiments

We conduct the Monte Carlo experiments with 1000 replications, each consisting of
three sets of observations. In set 1, we consider L = 300 auctions, each with » = 3 bidders.
In set 2, we consider L = 150 auctions, each with n = 6 bidders. In set 3, we consider
L = 75 auctions, each with n = 12 bidders. The total number of observations of submitted
bids is 900 for each set. Bidders’ private values for each replication are generated from
the log-normal distribution F with parameters (0, 1), truncated at 0.055 and 2.5. The true
utility takes the functional form U (x) = 1 — exp (—0x), where § = 0.8. The equilibrium

bids are computed numerically by

b=
0 F(U)n—l

v n—1
llogf exp (0t)dF (1) . 2.14)

We consider four different estimation procedures for each replication. Method 1 serves
as the basis for comparison. We specify the functional form of utility as the true U (-) and
adopt the semiparametric approach proposed by Campo et al. (2006). To estimate &, we
pool the observations from all 3 sets. Let G, (b) denote the distribution of bids in auctions
with n bidders, v, denote the ath percentile of /', and b}, denote the ath percentile of G,.

Forn # m, (2.1) gives

o Ly 0 Ga(B0)
Vg — b, = 7 log[n s (bg) 1],
_pm l 4 Gm (b(rln)
Vg — b, 7 log[m T, (bgg) + 1]
Taking difference gives
mo_n Ly 0 Galbg) 10 G (b))
by — b, = 7 log[n "1 e (1) + 1] 7 log[m 1 am (0 + 1] (2.15)

With a large number of percentiles o, we can estimate 6 using the empirical analogue of
(2.15) by nonlinear least squares. Given an estimate 0 of 6, we then estimate f using the
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two-step kernel-based estimation procedure described above for each set of observations
separately.

Method 2 investigates the consequences of model misspecification by assuming the
utility is CRRA with U (x) = x'~¢ using the semiparametric approach proposed by Campo
et al. (2006). Analogous to Model 1, we identify € through the heterogeneity of the bid
distributions across auctions with different number of bidders. With CRRA utility, for

n # m, (2.1) gives

o 1-6G,(b})
T T Wy T g, ()
o 1=0 G (b)
Tl T W T g ()

Taking the difference gives

m n o__ 1 G” (bg) 1 Gm (b(rg)
ba_ba_(l_e)(n—lg,,(bg) _m—lgm(bgg))' (2.16)

Evaluating the empirical analogue of (2.1) at a finite number of percentiles, we can recover

6 using least squares. Then we estimate f nonparametrically for each set of observations
separately.

Method 3 recovers f using Guerre, Perrigne and Vuong’s (2000) two-step nonparamet-
ric estimation procedure without imposing any restrictions on the functional form of U (-).
Method 4 is a one-step nonparametric estimation method using the observed bids as the
pseudo-private values to estimate f directly, based on the fact that lim, s, (v) = v.
Method 4 can only be justified when the number of bidders in each auction is very large
and strategic bidding behavior is overwhelmed by the price-taking behavior in perfection
competition. We compare the estimates from Methods 3 and 4 to understand the gains from

incorporating strategic bidding behavior in the structural estimation.
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Following Guerre, Perrigne and Vuong (2000), in nonparametric estimations we choose
the triweight kernel (35/32) (1 — u2)” 1 (Ju| < 1) for K (-) and K/ () so that p, = p ; =
2. We also choose h, = 1.066, (nL)~'> and hy = 1.060, (nL7)~'/, where 6, and
6, are the standard deviations of the observed bids and the trimmed pseudo-private val-
ues, nL 7 are the number of observations left after trimming, and 1.06 follows the rule of
thumb.??

Figures 2.1-2.4 display the true density of the private values with solid line and the 5th,
50th and 95th percentiles of the 1000 estimates of f (v) with dash-dot lines evaluated at
500 equally spaced points on [0.055,2.5]. When the utility functional form is correctly
specified, the mean of the semiparametric estimates in Figure 1 perfectly matches the true
density on the 25-75th percentile of the distribution and the empirical pointwise 90% con-
fidence interval becomes narrower as n increases. In the case that the utility function is
misspecified, the semiparametric estimates in Figure 2 are biased upwards for small private
values and biased downwards for large private values when n = 3. The bias reduces as n
increases. Guerre, Perrigne and Vuong’s (2000) two-step nonparametric estimates in Fig-
ure 3 are slightly downward biased when n = 3. The bias reduces as n increases to 6. The
one-step nonparametric estimates in Figure 4 are very imprecise as a large part of the true
density lies outside the empirical 90% confidence interval when n = 3. The performance
of the one-step nonparametric estimates improves when n = 12.

To compare Methods 1-3 with higher precision, we report the integrated absolute bias
evaluated respectively on the 5-95th percentile and the 25-75th percentile of the value dis-
tribution in Table 2.1. We use the integrated absolute bias instead of the integrated mean
squared error as a measure of discrepancy because the semiparametric estimates may have

220ur choices of kernel functions and bandwidths do not follow Assumptions A3 and A4 because the gains
of high order kernels in terms of a lower MISE are trivial with this sample size. (Fan and Marron, 1992)
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Figure 2.1: True and Estimated Densities of Private Values (Method 1)

larger standard error than the two-step nonparametric estimates as the former involves an
additional step to estimate unknown parameters in the utility function. The integrals are
evaluated by simulations. The two-step nonparametric estimates have smaller integrated
absolute bias relative to the semiparametric estimates with misspecified utility function
when n = 6 and 12. The bias of the two-step nonparametric estimator reduces much
faster than the semiparametric estimates with misspecified utility function on the 25-75th
percentile of the value distribution as » increases.

There are two important lessons to draw from the Monte Carlo experimental results.
First, Guerre, Perrigne and Vuong’s (2000) two-step nonparametric estimation procedure

is quite robust with respect to risk aversion in auctions with a moderate number of bidders,
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Figure 2.3: True and Estimated Densities of Private Values (Method 3)
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Figure 2.4: True and Estimated Densities of Private Values (Method 4)

5-95th percentile 25-75th percentile

n=3 n=6 n=12 n=3 n=6 n=12

Method 1 0.0258 0.0279 0.0320 0.0023 0.0019 0.0017
Method 2 0.0757 0.0528 0.0427 0.0232 0.0163 0.0117
Method 3 0.0700 0.0442 0.0366 0.0242 0.0076 0.0022

Method 1: mean(6)=0.7682, std(6)=0.1934;
Method 2: mean(#)=0.3835, std(8)=0.0916.

Table 2.1: Intregrated Absolute Bias of Estimated Densities
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and inclusion of the term G, (b) / (n — 1) g, (b) in the approximated bidding function sub-
stantially improves the performance of the estimator, as illustrated by Figures 3 and 4.
Second, though the CRRA structure U (x) = x'~ is popularly assumed in the literature
for many reasons, the semiparametric specification does not necessarily help to improve
the fitting of f . This can be understood as follows. As we discussed in Section 2, if w = 0,
Definition 1(ii) needs to be replaced by the stronger assumption that “U (-) is continuous
and admits up to R + 2 continuous bounded derivatives on S (U) with U’ (-) > 0 and
U”(-) <0on S (U)”. However, U (x) = x'7 ¢ Uy as w = 0 and U’ (0) is not bounded.
Hence the effects of model misspecification on the equilibrium bids are O(n™!) in this

case, which dominates the errors incurred by totally ignoring risk aversion.

2.5 Concluding Remarks

We study the robustness of Guerre, Perrigne and Vuong’s (2000) two-step nonparamet-
ric estimation procedure in large auctions with risk averse bidders. With an asymptotic
approximation of the equilibrium bidding function, we show that when the number of bid-
ders in each auction diverges not too slowly relative to the number of observed auctions,
Guerre, Perrigne and Vuong’s (2000) two-step kernel-based estimator is uniformly consis-
tent on an arbitrary closed inner subset of the support of the true density and attains the best
uniform convergence rate as if latent private values are observable. Monte Carlo experi-
ments show that the two-step estimator performs reasonably well with a moderate number
of bidders such as six.

One possible extension of the current work is to allow bidders to have different attitude
towards risk captured by heterogeneous utility functions and initial wealths. Campo (2004)

has shown that in such a model the utility functions and latent distribution of bidders’
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private values cannot be nonparametrically identified jointly from observed bids, and, to
recover the private value distribution, it is necessary to specify the asymmetric utility struc-
ture parametrically. On the other hand, when the number of bidders is large, the effects of
asymmetric risk aversion on equilibrium bids diminish. Hence asymptotic approximation
of the equilibrium bidding function may provide a feasible way to implement nonparamet-
ric estimation methods in large auctions with asymmetric risk averse bidders as well, which

could be of interest for future research.

2.6 Appendices

2.6.1 Proofs of Mathematical Properties

Proof of Proposition 2.1. (i) Since the equilibrium solution is symmetric in nature,
we can drop the individual subscript in (2.1). Let sgy (-) be the solution of the following

first-order differential equation

/(@)
F (v)

Sy (@) =(@m—1) (v —srn,n (V) (2.17)

with boundary condition sgy (Q) = v. Fibich, Gavious and Sela (2004) have shown that
seNa () =0+ 0m™1). As0 < v —5, (0) < v —sgn., () forall v € S(F) (Riley and

Samuelson, 1981), we can extend ¢, (v) to the following form

¢ @) +o(m™h), (2.18)

Cn () =0 =5, (0) = —

where ¢, (v) = O (1). As 4 (0) = 0 and 2’ (0) = 1, a Taylor expansion of 4 (¢, (v)) =

A (v — s, (v)) around 0 gives

1 1
2(sn @) =20 +2/0)5, ) + 54" ) 65 0) = ¢, @) + 52" D)7 (0), (2.19)
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for ¥ € [0,¢, (v)]. Since 2” (¥) is bounded as n — oo by Definition 1, substitution of

(2.18) into (2.19) gives

(¢ @) = ﬁ (c1n @) +0(), (2.20)

which implies s;, (v) = O (1) by (2.1). Multiplying both sides of the differential equation

(2.1) by F"~! (v) and taking integrals gives

s, ) F" L) =(m—1) f @) F"> () A (v — 5, (0))
/D F' Y w)ds, (u) = / Au— s, W) dF" " (u). (2.21)

1% 1%

Applying integration by parts to the right hand side of (2.21), and rearranging terms yields

the integral form of the first order condition
A0 —s, ) = F_;l(v) / F" V) d (s () + 4 (u — s, (1)) . (2.22)
Let ¢, (0) = s, () + 4 (0 — 5, (b)), we have
¢ (0) = 5,0)+ 2 0 =5, ©) (1 =5, )
= 5,0)+ (V' (0)+ O (v =5, v)) (1 — s}, (v))

= 1+¢1,® 0@ (1 -5, @)

= 1+ 0@,

where the second equality holds by the mean value theorem and boundedness of 1” (-), the
third equality holds because A’ (0) = 1, and the last equality holds because ¢ 1, (v) = O (1)

and s, (v) = O (1). We rewrite (2.22) in the format of Laplace integral and apply the
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Laplace approximation (Copson, 1965)

1 v 1 v
A0 —=sy () = F”_—l(v)/v F"=' () ¢, (u) du = F”_—l(v)/v eI g (u) du

¢;1 (0) e(n—l)lnF(v) i

Fi=1(0) (n = ) dIn F (o) Jdo 720" )
- L FO L 223
= n—lf(l))+0n ), (2.23)

where the last equality holds because ¢/, (v) = 1 + O(n~"). Matching leading order terms
in (2.20) and (2.23) gives ¢, (v) = F (v) /f (v), which, together with (2.20) and (2.1),
implies that s/, (v) = 1 + 0 (1) and ¢, (v) = 1+ o(n~"). So we can further extend ¢, (v)

to the following form

cr () =0 — 5, (0) = %;8 ¥ 362, ©) +on™), (2.24)

Substitution of (2.24) in (2.19) gives

_1F@) 1 1., . (1F@®)> _2
As, (D))_;m+n_2GZn (0)4‘5/l (x) (;f(v)) +o(n™7), (2.25)

Taking derivatives on both sides of (2.1) gives

d
570 == 1 (E2) 10 =50 @)+ 107 0 =5, @) (15, 0) |

Taylor approximations of A (v — s, (v)) and 2" (v — s, (v)) around 0 yield s, (v) = o (n),

which implies that

¢l ) = sy () =2 © =5, )ss )+ 2" (0 =5, ) (1 =5, )

= 510 = (# @+ 0™ 57 @)+ 2" © = s @) o (1) =o(1).
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It follows from applying integration by parts and the Laplace approximation to (2.22) that

A0 = s (0))

1 Y n—1 / _ 1 vqs;l (u) n

=y / P ¢ ) dn = s [ SRR
1F @), ©) L)
PRAOS! _nF"—l(v)/u P

lF(U)% () 1 /U e”lnF(”)QSZ (w) f () — ¢, (w) [’ (“)d
nF"=1() J,

n 7 (v) f2 (u) !
LFW#0) PO /0 =60 0) |

n n? /> @)

1F @) N F2 (@) () 4 o(~?) (2.26)

nf@  nr f3)

where the last equality holds because ¢/, (v) = 1 + o(n™") and ¢ (v) = o (1). Matching

leading terms of (2.25) and (2.26) yields that

which implies (2.2). Substitution of (2.26) into (2.1) gives ¢/, () = 1—s, (v) = 1 £ (F (v)

o(n™h).

/ 1 F @)\’
0 = (L2 - ®) () o,

S (@)

(i1) First, we show by mathematical induction that

a1 (v) or+1 (0) _
/I(gn (v)) = Al—s,0)) = " + -+ ,;+1 —|—0<n UH)), (2.27)
p1 () Bri1 (0) —(r
@) = v=s ) =L EEEE o (i) 228)
where a1 (v), -+, a,41 (v) and By (v),---, B,,1 (v) are known functions invariant with

n, and

") 1 d" (F(”)

() = — f(v)) +o(m™h), (2.29)

ndo”

for 0 < r < R — 1. We have already shown in (i) that (2.27)-(2.29) hold for » = 0, so we

only need to show that (2.27)-(2.29) holding for 0 < r < k — 1 implies (2.27)-(2.29) hold
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forr =k < R — 1. A Taylor expansion of A (g n (v)) with an integral remainder gives

2 ()
7 (60 ) = 4 (O)+4 (0) ¢ (0)+- - AD) (0) ¢ X (0)+ /g S ()
0

R! R!

(2.30)

Analogously, we have for 1 <r < R

R
(Cn (U)_t) dt.

1 _ n©) (gn( ) — )
) _ 1 (R) R—r (R+1)
A (gn(v))—/l 0)+ +(R—r)!/1 )¢, (0)+/ A () R=7)]
(2.31)
From (2.1), we have
l—s,()=1—(n —1)%1( . (0)).
For r > 2, taking the (» — 1)th derivatives on both sides gives
. dr—l (
) = =) (g(”; (gn(v)))
f @)
= —(l’l— ){d —1 (F( ))/1(@’”(0))4‘
r=1\d " () d
(7 i () on 0+
f () d!
+F(v) ah)’—ll1 (¢n @) }’ 232)

where by Faa di Bruno’s formula,

d' I
—A = E { ) mitmat-tmy)
dv! (60 @) mi! +myl + -+ my! (60 @)
(l)
(5 0)") e
where the sum is over all /-tuples (m1, - - - , m;) satisfying the constraint 1m| +2my+- - -+

Im; = [. By plugging (2.30) and (2.31) into (2.32) and substituting ¢, (v) by (2.28), i.e.,

Sy () =

51(0) ﬂzngl))_i_.___i_ﬁ/;iv)_'_o(n—k)’
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where £ (v),---, fi (v) are known and invariant with » by induction assumptions, we

can derive from» = 1 to £k — 1 that

_
(V)( )_ yrl( ) +yr,kkir( )+O(nr—k)’ (234)
n
where y ,.; (), -+, 7,4, (v) are known functions invariant with » and g,([) (v) is of order

O(n~") by the induction assumptions (2.29). From (2.33), it follows for / < k — 1

l

A (en @) = 2 (e, @) ¢ ) + 002

_ Ly d' (F@©)
= 6 ) g () +oo

_1d (F() .
= m(m)“(” )

where the second equality holds because of (2.29), and the last equality follows from a
Taylor approximation of ' (¢, (v)). From (2.30), we have 4 (¢, (v)) = F (v) / (nf (v))+

o(n™"). Hence if k = 1

B0 =1 =)L (6, ) =0 ),

and, if k > 2, substitution of 4 (¢, (v)) and d’4 (¢, (v)) /dv’ into (2.32) gives

Do) =

n—1¢d=" (f@©)\ F @)
e (F(v))f(v)+

k—1\ d*=1=0 ( F @)\ d' (F @©)
+( ! )dvk—l—f (F(v>) (f(v))+
£ ) d' (F @)
T o) doF (f(v)) from

_ n=1d"" (f(v) F ()
- n dok-1 (F(v)f(v)

)+o(1>=o(1>,

which implies that

k

T2 (6a @) =4 (¢, ) 6P @) + 0™ =0 ().
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1t follows that

) = —=D o ( A (sn 0
=—(n—) (E) ¢, () +
dkl d
()vu( ) d o) +
f () d*
+F()dk( )}

= o(n).

1 F() s ),

B ©0) =50 0) 42 (5, ) =50 ) = ]

where the second equality follows from (2.1), we have

Oy ) L f(”)) (1)

rNd = (f®) (+1) f() G+
()i (F) s o+ £ @

By substituting (2.34), it can be rewritten in the following form

r 5}’ -r -
¢(,,)( y = 210 1(0) 4+ ,kk () +o (I’lr k) , (2.35)
n —-r
where J,1 (v), - - , 0y k—r (v) are known functions invariant with n for » < k — 1. Further-
more, we have
k k d*
o) = 50+ A (s, 0)

= W@+M@A®¢W@+Mf%

= 1tk=1D+o0m™,
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where 1 (k = 1) is an indicator of £ = 1, and

k+1

d
p D ) = s¥FD (v)+dvk+l,1(gn(o))

= s @)+ 2 (¢, @) ¢ @) +0(1) =0 (1),

since 1’ (¢, 0)) = 2/ (0) + 0 (¢, () = 1+ 0™, ¢ () = 0 (1), and ¢\ (v) =

o (n). Repeated integration by parts of (2.22) gives that

(RO
nm+1)---(n+k—-1)

— D) FL () /D F'N ) gy ) f () du,

1
Hea@) =~y @ F @)+ + vi @) F* ()

(=D*
+n(n—|—1)---(n+k

where y; () = ¢, (©) /f V), w2 ) = Yy @) /f©), ¥ @) =y () /f ().
As y; (v) is a polynomial of ¢, (v),---, ,(11) (v), by substitution of (2.35), we have for

I <k-—1
W, (0) = o 0) + C“n(v) o+ Qz;—’_l(v) +o(n'h), (2.36)
wi (0) = Cro @) +o(n™h),and yy g (0) = Crp1.0 ()40 (1), where &g (0) -+, gy (V)

are known functions invariant with n. The Laplace approximation gives

(_ l)k_l

k
n(n+1)...(n+k_1)Wk(U)F ()

1
A, @) = ;V/I(U)F(U)'i‘""i‘

(=D
+n(n—|—1)~~(n—|—k—1)F”_1(v) 0
(—l)k_l
nn+1)---(n+k—1)

Wi ) FFYN ) + 0 (n_(kH)) :

)]

vy ) F* (0)

1
= ;l//l(v)F(U)-i-'“-i-

(=D
nm+1)---(n+k—-1)

By substitution of (2.36), it can be rewritten in the form of (2.27)

(2.37)

A, (@) = aln(v) + azngv) 4t “1;*]-(1(1”) +o (n—(k+1)) ’
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with a1, - - - , ax (v) known by the induction assumptions and a4 (v) explicitly derived.

Let
[ [ [
() = p1 (@) + ﬁzg ) T ﬁk4}-€1+g ) i (n—(k+1))’ (2.38)
n n n
where S, - - - , B (v) are known by the induction assumptions. By substituting (2.38) into

(2.30) and matching leading order terms with (2.37), we can solve for ;| (v). Substitute

(2.30) and (2.31) into (2.32) and replace ¢, (v) by (2.38). Now we can derive fromr = 1

to k that
Vrl (U) Y rk41— (0) —k—1
gﬁlr)(l)):rT-'_.._FrnkT:r_'_o(nr )’
wherey,.; (), -+, ¥, f+1-, (v) are known functions invariant with n. Specifically, c® () =

vy ) /n + o(n~1). This, together with the induction assumption (2.29), implies that
Y ) = d* (F (v) /f () /do*.
Lastly, we can show with analogous arguments that (2.27)-(2.29) holding forr < R—1

implies (2.29) holds forr = R. m

Corollary 2.1 In a first-price IPV auction with n (n > 1) bidders, suppose U (-) € Uy for
R > 1. Given Al and A2, the equilibrium bid in the symmetric Bayesian Nash equilibrium

is given by
1 F
sp(v,x)=0—— (l)

n f (vlx)

Furthermore, we have gf,r)(v, x) = O(n_l)for 1 <r <R

+ 0m™?).

Proof of Proposition 2.2. Let 2(v) = s, (v) — 5, (v), withn > m > 2. h(v) =0

implies that

W) = s, 0) =S, ©)

_ (n—1)%A(v—sn(v)>—(m—1)%i(v—sm(v)>
_ (n—m)%z(v—sn(o)bo,
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where the inequality holds because n > m and U(-) is monotonically increasing. Since

h (0) = 0, by the single crossing lemma s, (v) > s, (v) foro > v > v. Aslim, 55, (0) =
0 by Proposition 2.1, (i) follows. Next, g, (b) = f (v) /s, (v) with b = s, (v). Because

f (v) is bounded away from zero by assumption and s, (v) is bounded with lim,_, s 5, (0) =
1 by Proposition 2.1, (ii) follows. To prove (iii), we note that substitution of g, (b) =

f (v) /s), (v) into (2.1) gives

F (v)

nb: 5
&)= T o= o)

(2.39)

with b = s, (v). Since (n — 1) (v —s, (v)) = F@©) /f (v) + O(n~"), it follows from
Proposition 2.1 that sup, . |gs (b)| is bounded as n — oo. Similarly, g,S” b)) r =
1,---, R) can be derived by taking rth differentiation on both sides of (2.39). Using
mathematical induction, the desired result follows from Proposition 2.1. =

Proof of Proposition 2.5. Trivial extension of Proposition 2.2 based on Corollary 2.1.

2.6.2 Proofs of Statistical Properties

To prove Propositions 2.3 and 2.4 we need two auxiliary lemmas on the uniform con-
vergence of G, (-) and g, (-) defined by (2.4) and (2.5). Throughout |-, denotes the

sup-norm of the »th derivatives of - on the set .

Lemma 2.1 Suppose for R > 1, F (-) € Fg, U (-) € Ug, and G, () is given by (2.4), we
have almost surely

Gﬁm—GﬂmLC=0(u%Ey

where C is an arbitrary closed inner subset of S (G ).
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Proof. It follows from Proposition 2.2 that

Gy (b) = %Z; D 1 (B <b)
= > (G (By) < G ()
= Y = Ga ),
where u, = G, (By) is uniformly distributed on [0, 1] since By ~ G, (-). Letu =

G, (b) € [0, 1], and nc = min {n :C C SZ} where Sy is the interior of S (G,). nc exists

because of Proposition 2.2(i). Then for n > nc,

1 n
nL Zlel Zp=1 1(up < Gy (b)) — G, (b)

1 n
E ZILZI Zp:l 1 (upl < U) —u
= 0(1/vnL),

Gub) =G )| =

0,C

0,C

where the last step holds because the empirical distribution of uniform distribution (which

does not depend on n) converges uniformly to the true distribution at the rate of v/nL. m

Lemma 2.2 Suppose for R > 1, F (-) € Fg, U (:) € Ug, and g, () as given by (2.5), we

have almost surely
1gn (b) — gn (B)lg,c = O (1/r),

where C is an arbitrary closed inner subset of S (Goo) and r = (nL /log (nL))®/CR+D

Proof. The proof relies on the argument of Guerre, Perrigne and Vuong’s (2000) proof
for the case of fixed n. However, the problem is different because, as we allow both n and L
to approach infinity, the observations are from a triangular array of random variables shift-
ing with sample size. Hence the standard consistency results based on the i.i.d. assumption
of observations do not apply directly. We divide the proof into three steps. The first step

&9



studies the uniform bias of g, (-), the second step studies its uniform variance bound, and
the last step establishes the exponential-type inequality. We simplify notation by omitting
the subscript R in g and Ky in this proof. The sup-norm is taken over the whole support
of the function unless otherwise indicated.

Step 1: Uniform Bias

For any closed inner subset C of S (Goo), let ne = min{n : C C S} where S? is the
interior of S (G,). n¢ exists because of Proposition 2.2(i). Forn > nc¢,

By —b

~ 1 L "
Egy,(b) = Elezlzp=1K( h )

= /K (u) g, (b + hu) du.

Without loss of generality, suppose u > 0. Then for b € C and L sufficiently large,
b € [b,b+ hu] C C', where C’ is a closed inner subset of S (Gp). Since g, (-) admits
up to R continuous bounded derivatives on any closed inner subset of S (G,), a Taylor
expansion gives

( )R 1 (R 1) |R

gn (b+hu) = g, (b) < hugy? () + -+ p—el )+ "

|gn|R,C’-

As K (-) is of order R, moments of order strictly smaller than R vanish. So we have

|Egn (b) = gn (B)lo,c = SUppec /K(u)(gn (b + hu) — gy (b)) du

1
W gl o (/ I K () du)

= hfgulz. o ME,

AN

where MR = (1/R!) [ |u|® K (u) du. Tt follows from the definition of 7 and / that

r1Egn (b) — gn D)lo,c < AZM" |gulp.cr (2.40)

Step 2: Uniform Variance
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For b € C, we have
Var (g, (b)) = Var (m Zl:l szl K ( )

= s (2 (55) < et (< ()

1
= — [ K? . .
nLh/ (u) g, (b + hu)du

Let O = [ K? (u)du, it follows that

O lgnlo . O lgnlo
nLh — Jr?log(nL)’

|Var (g (b))lo,c < (2.41)

Step 3: Exponential-type Inequality
In this step, we establish the exponential-type inequality for the probability of deviation

of g, (b) — g, (b) in sup-norm over C. Let C be covered by T inner intervals of the form
By =B (b, A)={beS(Gx):be[b— A, b+ Al},

where b; € C and A > 0. Moreover, we consider minimal coverings for C, i.e., coverings

for which 7 is the smallest number denoted by 7" (C, A). Let

e, 1) = 14+2t|K|i +28M |galg o,

2% log (nL) )

. 2 —
P@,t) = 2T (c, th /r) exp( 20 |\gulo + 411Ky / (3r)

where 1, 7 are strictly positive constants.

Step 3(a): From (2.40) and the triangular inequality, we obtain

Pr (r 122 (b) = gu (B)lo.c > €, 7))

Pr (18 (0) = Egn (B)lo,c +7 1E&n (b) = gn (D)o,c > € (1, 7))

AN

IN

Pr(r |8y (b) — Egy (D)lo,c > e, 7) — A° MR |gylp.cr) - (2.42)
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Let g, (b) — Eg, (b) = (1/nL) Y1, ¢ (b), where

o LT (B=bY _ g (B
Ci,nL()—}_l[ ( p )— (T)]

As the ¢; 1 ’s are independent zero-mean variables, it follows from (2.41)

nLQ |gnlo
Alog(nl)’

Var (r(,-’nL) =nlriVar (gn) <

By the triangular inequality we have

2r|Klp  2nLIK|y
h Jrlog(nL)

rCine| <
Hence the Bernstein inequality gives
Pr(rgn (b) — Egn (b)| > 1)

— Pr (‘ZZI rinL (b) — Z:Zil E (I’Ci,nL (b))‘ > an)

n2L212
< 2exp| — T
23" Var (r(i’nL) +4n2L2%1|K |y / (34rlog (nL))

( 1% log (nL) )
2exp | —
20 Ignlo +411K1o / (Br)
P@,1)

T(C,th?/r)’

forany b € C,1,n,and L.
Step 3(b): Consider a minimal covering of C for some A > 0. For any b € B;, we have

by the triangular inequality

r nlL r nlL
5, (b) — Eg, (b)| < ‘—,~b‘ )—, () =i (B
r1gn (b) gn (b)] < IE?ET nL Zz:l Cz,nL( t) +121;1£Tbs;l£[ nL lel (C ,nL( t) Cl,nL( ))

5

which implies that

Pr (l’ Zup |0 (b) — Egn (b)] > e (1, 7) — AR M" |gn|R,C’)
eC

1<t<T beB, | NL “=i=

r L
< Pr( sup sup |— Zn . (Cinz b)) = Cin (b))‘ > e, 1) —1— ARMR |gn|R,C/)

+Pr(1’ sup |gn (br) = Egn (bo)] > l)- (2.43)

1<t<T
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Since

1 B — b, 1 B—b A K|y
—-K - —-K S )
h h h h h?

by the mean value theorem, we have by the triangular inequality

A K] EAIKI1_2A|KI1
h2 h2 p2

|Ci,nL (br) = CinL (b)| <

Step 3(c): Let A = th?/r, it follows

r nL 2rA |K|,
. . b)) — . b ‘ < — =2 .
lzg”sggt 1 E iy (G ) = Cir )| < 2 T K|y

Hence

r L
Pr( sup sup |— > """ (Cinz (b) = Cint (b))] > e(, 1) —1— A8 MF |gn|R,a)

1<t<T beB; nL

= Pr( sup_sup |- > (¢ (b0) = Cir B)] > 20 |1<|1)=0. (2.44)

1<t<T beB; nL

Then it follows from (2.42), (2.43), (2.44), and the Bernstein inequality that

Pr (r 122 (b) = gu (B)lo.c > €, 7))

IA

Pr(r |8y (b) — Egy (W)o,c > e, 7) — ARMR gyl cr)

IA

Pr (r supy <;<7 & (b) — Egn (b)| > 1)
T - ~
D P13 (b)) — Egy (b)] > 1)

PG, 7).

INA

IN

The covering number 7 (C, A) is of order A~!, as the covered set C is an interval.
Hence T (C,th%/r) = O((nL/log (nL))R+2/CR+Dy " By taking : sufficiently large,
P (1, 7) converges as nL. — o0o. The desired result follows from the Borel-Cantelli lemma

and the fact thate (1, 7) = O (1). m
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Proof of Proposition 2.3. The proof presented here follows Guerre, Perrigne and

Vuong’s (2000) proof for the risk neutrality case. Let

1
Vot = Bpi+ ——=u (Bpi)

with v, () = G () /ga () Let w, () = G () /& (), with G, () and g, (-) given by
(2.4) and (2.5) respectively. Since C (V) is a closed inner subset of S (F) and s, (-) is

a strictly increasing continuous function, C (B) = C (s, (V)) is a closed inner subset of

S (G,). From (2.3), we have

Lewy (Vor) [P = Vi

IA

Icw) (Vpl) (‘ﬁpl - Vpl‘ + Wpl - Vpl})

1 B ~

1) (Bp) 1(Vy # 00) | -
(B)( Pn)_lp ‘Wn(B

o) = v (Bu)|

Lew) (Byr) (1= 1071 # 00))
_|_

n—1

[0 (Bor) = v (Bp) | + 0672,

It is easy to see that 1¢(p) (Bpl) 1 - 1(17,71 # 00)) = 0 almost surely for any p and /

asn, L — oo. Since G, (-) < 1 and g, (-) has a positive lower bound ¢, by Proposition

2.2(i1), we have

Lc(s) (Bpl) I(I}pl # 00) ‘V~’n (Bpl) —Vn (Bpl)‘

1C(B) (Bpl) 1(I;vpl 75 OO) ‘(G

A "

Ices) (Bpl) l(f/p
Colyq

— Gu)gn + (gn — &n) Gu

721Gy~ G lenlo + (& — ).

where ¢; = min {|§,, (Bpl) !} — ¢g > 0. It follows from Lemma 2.1 and 2.2 that

sup Le(sy (Bpr) 1(Vp1 # 00) ‘%7/ (Bpi) — v (Bpl)‘ =0(/r).
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Thus if L — oo and r/n — 0 asn — oo, we have almost surely for any closed inner

subset C (V') of S (F),
sup, 1) (Vo) | Pt = V| = 0 (1fmr), (2.45)

and, if L - oo and r/n — oo as n — 00, we have almost surely for any closed inner

subset C (V) of S (F),

sup .y Leqry (V) ‘1?,7, - V,,,‘ -0 (1/n2) . (2.46)

Proof of Proposition 2.4. Following Guerre, Perrigne and Vuong (2000), let

. QR Vo =0
f(v):E;;KR( " ) (2.47)

be the “infeasible” nonparametric estimator of f using the true private values V. Let

C’ (V) be an inner closed subset of S (F) containing all hypercubes of size J (small enough)
centered at v in C (V). Define C” (V') analogously with respect to C’ (V). Hence C (V') C
C'(V) c C"(V) C S(F). Forv € C(V) and n, L large enough, f (v) uses at most
observations Vpl in C’ (V') and hence at most V,,; in C” (V') by the uniform convergence

of pseudo-private values I}pz to V' in Proposition 2.3. Similarly, 7 (v) uses at most Vpiin
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C” (V) for any v in C (V). Hence we have almost surely for n, L large enough,
y

f(v) - f(v)]
g o () )]
S ZPZIC”(V)(V;?Z)(VPI e aaliR (D ;RVPZ)
2nLh iilc”(V)(Vpl)(Vpl R pl) azKR (0)
B sup,, ; Lerry(Vpi) ‘I;pl - Vpl‘

>[5 ()

hR nLhR
sup, s 1y (Vi) ’Vpl - Vpl’ *Kr
+ 3 5 v)
2hR ov 0
Let

~ 0K p O0Kpr

Rw = ol |5 ] d
ov ov

Thus we have almost surely, as K (x) is a well defined kernel,

TSR () o

=1 p=

0

which implies ﬁ >k > =1 |0Kr ((0 = Vi) / hr) /00| converges uniformly on C (V)

f()/‘

Hence m SE > =1 |0KR ((0 = Vpi) /hr) /0] is bounded almost surely. |6°K g (v) /00|,

to

du.

(u)

is bounded by the definition of Kz (). We consider the following two cases:

(1) L > oo,andr/n — 0asn — o0
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From (2.45), we have almost surely

f() f( )‘ —0 1 (lognL (R=1)/2R+1) o 1 (lognL (2R-3)/(2R+1)
() 0,C(V) n nl 2 Y ‘

If R =1, thenr/n — 0 implies that

1 (lognL\®-D/CR+D
‘f(v) S ))OC(V) (;( nlL ) '

IfR >2,then 2R—-3)/(2R+1) > (R—1)/ (2R + 1), which also implies that

I (lognL\ R=D/@R+D - 1
‘f(v)_f( )‘OC(V) O(Z( nL ) _O(nth)'

Since r/n — 0 implies 1/ (nhg) — 0, we have almost surely

For-ro), ., < ([fo-70)

0,C(V)

I 7o) - f(v))O,C(V))

o) o) o)

where | £ (v) — f () lo,ccry = O (r~!) follows from analogous arguments used in the

proof for Lemma 2.2.
(i) L > oo,andr/n — coasn — o0
From (2.46), we have almost surely
7 7 2 - 473\-1
1/ @) = F @) locon =0 (whr)  + O hp)™".

If (nhg)~" = 0,then |/ (v) = f (0) lo.cory = O (nth)_l. Hence, if (#/n) (nhg)™' — 0,
we have almost surely that | f (0) — 1 (v) lo.c(r) = O (nth)_1+0 () =0(r");and
if (/n) (nhg) ™" = o0, we have almost surely that | f (v) — f () lo.c(r)y = O (nth)_1 +

or =0 (nth)_l. On the other hand, if (nhg) ™" — oo, then | f (v)—f (v) lo.con =
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O(n*h3)~!. We have almost surely that |7 (0)— f (v) lo,cry = 0m*h)~ 1+ 0 (r~1) =
O(m*h3)~!. m

Proof of Proposition 2.6. Trivial extension of Proposition 2 in Guerre, Perrigne and
Vuong (2000). =

To prove Proposition 2.7 we need an auxiliary lemma on the uniform convergence of

Gn(b,x,i) 8, (b,x,i)and f (v, x) defined in (2.8) (2.9) and (2.55).

Lemma 2.3 Suppose A1-A4 hold, and L — o0, (nhg)_1 — 0asn — oco. We have almost

surely

|Gy (b, x,i) — Gy (b, x,D) lo,c = O(1/rg),
|gl’l(baxai)_gn(b,x9i)|0,c == O(I/Vg)
1f(0.x) = f @, x)lo,c = O(1/ry),

where C is an arbitrary closed inner subset of S (Goo), r = (L/log L)B+D/CR+d+2)

andrg =rr=(L/ log L)R/CR+d)

Proof. The proof relies on the argument of Guerre, Perrigne and Vuong’s (2000) proof
for the case of fixed n. However the problem is different as we are interested in the asymp-
totic properties of the estimators allowing both » and L to approach infinity. The arguments
are more involved here, because G, (-, -, -) shifts with sample size, and (B, X;, I;) and
(Vp1, X)) observed in the same auction are correlated. We divide the proof into three steps.
The first step studies the uniform bias, the second step studies the uniform variance bound,
and the last step establishes exponential-type inequality. As the proofs are similar, we only
detail the proof for g, (-, -, -), as it is the most different from Guerre, Perrigne and Vuong’s
(2000) proof. The sup-norm is taken over the whole support of the function unless other-
wise indicated.
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Step 1: Uniform Bias
For any closed inner subset C of S (G), let nc = min {n :C C S,‘Z)} where Sy is the

interior of S (G,,). nc exists because of Proposition 2.5(i). Forn > nc,

i _ | B,—b X—x _
Egn (b5x9l) = E d+lKg( ph s h 90)1([ :l)
hy g g

= //Kg (u,y,0) g, (b + hgu,x + hgy, i) dudy.

Define y (t) = g, (b +theu,x +thgy, i) — g, (b,x,i) fort € [0, 1]. For L large enough,
(b + theu,x + thgy) e b, x)+S (hg) C C! for (b,x,i) € Candt € [0, 1], where C/ is
a closed inner subset of S (G, (-, -, 7)). Since g, (-, -, -) admits up to R continuous bounded

derivatives with
17 1r.f0.17 < g 1 IR Ignlr oo -

Thus a Taylor expansion gives

1 1
_ (1) TN 0.3 -
y (D) =y (0) <y (0)+ -+ R = m? 0) + R 171z 10,17

where y ¢ (0) is a polynomial of order » in (u, y). As K g (-, ) is of order R, moments of

order strictly smaller than R vanish. It follows that

|Egn (b:x’ l) — &n (baxa l)lO,C
1
= ‘ [ Ko 06 )=y @)dudy| < B g 1gnc [ 16K @y, 0)| dudy

= hEMJ\gnlg o = 25 ME 1galp o /7gs (2.48)

where ME = (1/RY) [ l1Ge, »)II¥ | K (u, v, 0)| dudy.

Step 2: Uniform Variance
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For (b, x,i) € C, we have

Var (g, (b, x,1))
(B S (5 )
- Lh21d+1) (I(I_Z)Z ( e th?x,o )
2
thjdﬂ) (l(l_l)zK ( b,th;x,o))
- thjdﬂ) (1((1:”;21)Z (

1 1(I=i) < ( By —b X;—x ) (Bql—b X;—x )
+ s 90 K 4 ’O
Lhz(d+1) ( (m)z Z Z hg hg g hg hg

p=lqg=1,q#p

AN

- - K2u ,0 b+ hou,x +hyy,i)dud
(nz)Lhd+1/ (w,y,0)gn (b+ hy gy, i) dudy

ni —1

—I—(m_)—Lhd/Kg (u1,y,0)Kg (u2,5,0) g, B1(x,1) (b + houi|x + hgy, i)

X g B|(x,1) (b + hgualx + hoy, i) gnx,1) (x + hgy, i) duidusdy.

Let Qg1 = [ K3 (u,y,0)dudy and Qg2 = [ K (u1,y,0) Kg (42, y, 0) durdurdy.

; 2
Ot lgaly . =1 0e2 |8y pix.n8n.x.n)|
(ni)Lhg* (ni)Lhg

[Var (gn (b, x,i)o,c < (2.49)

Step 3: Exponential-type Inequality
In this step, we establish the exponential-type inequalities for the probabilities of devia-
tions of g, (b, x,1) — g, (b, x, i) in sup-norm over C;, where C; = {(b,x) : (b, x,i) € C}.

Let C; be covered by T inner “balls” of the form
Biy = Bi ((bt, x1) 3 A) ={(b,x) € S(Go) : b € [by — A, by + A],x € [xs — A, x; + A]},

where (b;,x;) € Ci, and A > 0 for¢t = 1,---,T. Moreover, we consider minimal
coverings for C;, i.e., coverings for which 7 is the smallest number denoted by 7 (C;, A).
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Let
eg(1,7) =1+2(d+ 1)1t ‘Kg}l + igMg lgnlr.cr
Py (1,1 = 2T (G, thi /1)

/127112 log L
xexp | —

b

2041 Igalo /(nihg) + 2(1 +1/mi) O @2 gy x| + 41 Ky / (Brehe)

where 1 and 7 are strictly positive constants.

Step 3(a): From (2.48) and the triangular inequality, we obtain

Pr (Vg |gn — gnlO,C > €g (1, T))
< Pr(rgl@n — Egnlo,c +7¢|1E&n — gnlo.c > g (1, 7))

< Pr(rgl@n — E@loc > eg (1) = 28MF g1l ) (2.50)

Let &, (b, x,i) — Eg, (b, x,i) = (1/L) X5 _, ¢p (b, x, i), where

—-b X,
CmL (b:xai) = hd+] Z{ ( . )l(lm :l)

hg

By—b X—x »
—E(Kg( A ,0)1(1_1))}.

As the ¢,,;’s are independent zero-mean variables for m = 1,---

(2.49)

, L, it follows from

. 2 2

Lr2Qgilguly (11 = DLrgQe2 |8, pyx,n&n.(x.1)

. 2 ~ g g nlQ s s 0
Var (l”ngL (b, x, l)) = Lrg Var (g,) < (nihg)Lhd (m')Lhd

Lle |gn|0 (ni — DL Qg2 &n B|(X I)gn X, 1)‘
("ihg)ig log L (nl)/ld log L

By the triangular inequality we have

2L |K
|rngL(bx l)‘ hd+1 g}o ‘ g|0

d Mrghglog L
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Hence the Bernstein inequality gives

Pr (rg |gl’l (baxa l) _Egn (b:x5i)| > l)

L L
= Pr(

ngCmL (baxai)_ E(rngL (b,x,i))
< 2exp|-—

> Lz)
L%?

23k Var (relus) +4L% | K|y / (324rghg log L)

d,2
ﬂgz log L

IA

2exp | —

2Q0¢1 |gnlo /(nihg) +2(1 + 1/ni) Qg2
Py (1, 7)
T (Crthg* frg)

for any (b, x,i) € C,1,n,and L.

gﬁ,m()(,l)gn,(XJ)‘o +41|Kg|, / (3rghy)

Step 3(b): Consider a minimal covering of C for some A > 0. For any b € B;, we have

~ . ~ . r L .
el (box ) = B (box. Do, = sup [0y (b))
1<t<T

L .
s sup [ EDT (o (B D) = Cur (bx 1))

1<t<T (b,x)eBjs

This gives

Pr (rg 12, (b, x,1) = By (b, x,Dlo.c, > € (1) = AEME gl )

r L . .
< Pr( sup sup ‘fg Zm:l (CmL (blaxta l) - CmL (ba X, l))‘ > e(la T) -1 /lgM; |gn|R,C’)

1<t<T (b,x)eB;;

1<t<T

+Pr(”g sup |gn (be, x5 0) — Egn (by, x4, 1)| > l)~

For any (b, x) € Bj,, it follows from the mean value theorem

1 B—b X—x; 1 B—-—b X—x d+ DA
— ,0) — —— ,0)| € ——— |Kg|, -
Rt g( hg ° hy ) I g( hg * hg )‘ hd+? IKel,
The triangular inequality gives
_ , d+1)A d+ 1A 2(d + 1A
|(Cmr (Bro Xty i) = Cpp (B, x,1))| < — 7 ‘Kg‘l"‘Ed—Jrz K, = — a2
hg hg hg
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Step 3(c): Let A = rhg“‘z /rg, it follows that

rg . . 2re(d+1)A B
liltlgTbsélgt f m=1 (CmL (bt,xta l) —CmL (b,x,l))‘ = T |Kg|1 - 2(d+1)T |Kg|1 .

L

Hence

r L . .
Pr( sup sup ‘fg Zm:l (Cmr By x2,0) = Couyp (b, x, z))‘ >e(,1)—1— /lgMg |g,,|R,C/) = 0.
1<t<T beB;
(2.52)

Then it follows from (2.50), (2.51), (2.52), and the Bernstein inequality that

Pr (rg lgn — gnlo.c > eg (1, T))

< Pr (rg 180 (b, %, 1) = EZy (b, x, Dlo.c, > €, 7) — A8 ME |gn|R,C/)
< Pf(”g sup g (be, x4, 8) — Egn (be, X1, 0)| > l)
1<t<T

T ~ . ~ .
thl Pr (rg |gn (by, x¢,0) — Egy (byy x4, 0)] > z) <P@,r).

As the dimension of the covered set C is d + 1, the covering number 7 (C, A) is of
order A=@+)_ Hence T (c, rhg+2/rg) — O(L/log L)@+ (R+d+2)/QR+d) By taking
1 sufficiently large, P (1, 7) converges as L — oo. The desired result follows from the
Borel-Cantelli lemma and the fact thate (i, 7) = O (1). m

Proof of Proposition 2.7. First, the uniform consistency of pseudo-private values
follows from similar arguments as used in the proof of Proposition 2.3. If L — oo, 7g/n —

0 as n — 0o, we have almost surely for any closed inner subset C (V') of S (F),
up,. 10 (Vi X0) | Pt = V| = O (1/nr5) (2.53)

and, if L — 00, rg/n — 00 as n — 00, we have almost surely for any closed inner subset
C(V)ofS(F),
sup,. 1) (Vs X0) | V1 = V| = 0 (1/n%) (2.54)
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To establish the uniform consistency of the two-step estimator, let

nl;
fo.x) = LhdHZ ZK (pl v Az ) (2.55)

hy

be the “infeasible” nonparametric estimator of f using the true private values V. Let
C’ (V) be an inner closed subset of S (F) containing all hypercubes of size J (small enough)
centered at (v, x) in C (V). Define C” (V) analogously with respect to C’ (V). Hence
cWVycc (yVycc”(V)yc S(F). For (v,x) € C (V) and n, L large enough, f(v,x)
uses at most observations (17],1, X;) in C’ (V') and hence at most (V;, X;) is in C” (V) by
the uniform convergence of pseudo-private values I7p1 to Vp;. Similarly, £ (v, x) uses at
most (¥, X;) in C” (V) for any (v, x) in C (V). Hence we have almost surely for n, L

large enough,

f(l),.X) —f(U,X)’

1 Lo I}I—l) X;—x Voi—v X;—x
= |— 2 — > ey (Vo Xp) | K| -2 — KL
nLhd+] Il C (V)( pl, l) { f( h// > f( hf 5 hf )

S, = p=1 hy
1 ok (V1 Vo) 0Ky (Vi —v Xj—x
< Leron (Vg X1) ool P P ’
< hz 3t ) P (P50 T
1 ok (V ] — 1)2 62Kf X —x
+— Z Z Lenany (Vpr, X)) ~—2—-- (v, )
d+1 p 2 2
2n th h% v hy 7\,
B Sup, s IC”(V)(VplaXl)‘Vpl_ Vpl‘ i ZI“ oK (V — X;—x)'
= hy nLhd+ — I hy hy
sup,, ; Loy (Vpr, X1) ‘I}pl - sz‘ 1 &e2ks f X —x
+ > 5 (v
2h3 Lhe o2 7 h
f fi=1 s 0

The two sums may be viewed as kernel estimators and hence uniformly bounded on C (V).

We consider the following two cases:

(1) L - oo,andrys/n— 0asn — oo
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From (2.53), we have almost surely

; ; 1 (log L\ &~ D/CGR+d) 1 (log L\ R-Y/@R+d)
— :O _ O L .
f 0= 7w, (n( L ) " nZ( L )

If R =1, thenr,/n — 0 implies that

\ ) | (lognL®=D/@R+D
‘f(v’x)_f(v’x)‘oca/):0(2( i ) .

IfR >2,then 2R —-3)/ (2R +d) > (R —1)/ (2R + d), which also implies that

) ) | log nl (R—=1)/(2R+4d) 1
_ =of- =0 '
}f(vﬂx) f(v’x)‘o,c(y) (n ( nlL ) (I’ll"/hf)

Since rr/n — 0 implies 1/ (nh ) — 0, we have almost surely

Fw0) = F @0+ |70 - f(”’x)‘o,cm)

1 o (L) _ oo
(n"fhf)+ (;)_ vy

where |f(v, x)— f(,x)lo,co) = 0(7”]71) follows from Lemma 2.3.

IN

Fon=rom) o=

|
S}

(i) L — oo,andrys/n — ocoasn — o0
From (2.54), we have almost surely
; 7 2, \7! 473\—1 2, \7!
£ 0. 0) = 0.5 ocoy = 0 (n*hy)  + 06~ = 0 (n*hys)

as (nhf)_1 — 0. Hence, if (r//n) (nhf)_1 — 0, we have almost surely that | f (v, x) —
-1 _ _ , _

S @, x)]o,cory = O (nzhf) + O(rfl) = O(rfl); and if (v y/n) (nhf) ! — 00, We

have almost surely that | / (v, x)—f (v, x) lo,c(r) = O (n2h~f-)_1—|—0(rj71) =0 (nzhf)_l,
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CHAPTER 3

IMPROVED EFFICIENT QUASI MAXIMUM LIKELIHOOD
ESTIMATOR OF SPATIAL AUTOREGRESSIVE MODELS

3.1 Introduction

In this chapter, we derive the best generalized method of moments estimators (BG-
MME) for the regression model with spatial autoregressive (SAR) disturbances and the
mixed regressive spatial autoregressive (MRSAR) model, within the class of generalized
method of moments estimators (GMME) based on linear and quadratic moment conditions.
The BGMME proposed here has the merit of computational simplicity and asymptotic effi-
ciency. It is asymptotically as efficient as the maximum likelihood estimator (MLE) when
the disturbances are normally distributed, and asymptotically more efficient than the quasi
maximum likelihood estimator (QMLE) otherwise.

The generalized method of moments (GMM) by Hansen (1982) has been noted for its
possible use for the estimation of spatial autoregressive (SAR) models in the presence of
exogenous regressors, e.g., Anselin (1988; 1990), Land and Deane (1992), Kelejian and
Robinson (1993), Kelejian and Prucha (1997; 1998), and Lee (2003), among others. Those
GMM methods are 2SLS methods as their moment conditions are based on exogenous re-
gressors (and spatial weights matrices) in the model and all the instrumental variables (IV)
used are generated from them. The 2SLS estimators have been shown to be consistent
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and asymptotically normally distributed (Kelejian and Prucha, 1998), but not efficient rel-
ative to MLE when errors are normally distributed. And the 2SLS methods would not be
consistent when all the exogenous regressors in the MRSAR model are really irrelevant.

Kelejian and Prucha (1999) propose a method of moments (MOM) for the regression
model with SAR disturbances. Their MOM estimator is consistent but inefficient as com-
pared to the MLE. Lee (2001a) generalizes the MOM procedure for the estimation of the
regression model with SAR disturbances into a systematic GMM framework and shows the
existence of BGMME in the case of normally distributed disturbances. The GMM frame-
work is further extended for the estimation of the MRSAR model in Lee (2006), based on
a combination of the moments in the 2SLS framework with some modified moment func-
tions originated from the estimation of the regression model with SAR disturbances. Lee
(2006) shows that the proposed GMME can be asymptotically more efficient than the 2SLS
estimators, and the BGMME exists in the case with normally distributed disturbances. As
Lee’s (2006) BGMME has the same limiting distribution as the MLE under normality, it
is unlikely to be efficient when the disturbances are not normally distributed. Here, we
show the existence of distributionally free BGMME within the class of GMME based on
the linear and quadratic moments of the disturbances.?

This chapter is organized as follows. In Section 2, we consider the GMM estimation
of the regression model with SAR disturbances and the MRSAR model respectively. The
best selection of moment functions and optimal IVs will be discussed and the possible
efficiency property is derived. All the proofs of the results are collected in the appendices.
Section 3 provides some Monte Carlo results for the comparison of finite sample properties
of estimators. Section 4 briefly concludes.

23 A preliminary investigation of possible BGMME which may improve upon the QMLE is in Bollinger
(2001).
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3.2 GMM Estimation and the BGMME

3.2.1 GMM Estimation of the Regression Model with SAR Distur-
bances

The regression model with SAR disturbances is specified as

Y, = Xnﬂ + uy,

U, = AWyu, +€,, 3.1

where 7 is the total number of spatial units, X}, is an n x k dimensional matrix of nonsto-
chastic exogenous variables, W, is an n x n dimensional spatial weights matrix of known
constants with a zero diagonal, and the disturbances €,, - - - , €,, of the n-dimensional
vector €, are i.i.d. (0,0?). The Wyu, in (3.1) is called a spatial lag and its coefficient
is supposed to represent the spatial effect due to the influence of neighboring units on a
single spatial unit. In order to distinguish the true parameters from other possible values
in the parameter space, we denote f, 49, and 0’% as the true parameters that generate the
observed sample. For any possible value 4, denote S, (1) = I, — AW,,. At Ao, S, = Su(Lo)
for simplicity. This model is supposed to be an equilibrium model.

Equation (3.1) implies that
Yo = XuBo+ S, e, (3.2)

The regression model is a generalized linear model with variance ¢3S, !S,~! for the dis-
turbance vector u,. A possible estimator of S is the feasible generalized least squares
estimator (GLSE) S ¢ = (X 4 3,’1 S X)X 4 S’; S, Y, with a consistently estimated weight-
ing matrix. In order to estimate S, S, one needs to estimate the unknown parameter 4 in

the SAR disturbance process.

108



Let 5, = (X)X, n)_1 XY, be the ordinary least square estimator (OLSE). The distur-
bance vector u, can be estimated by the estimated residual i, = Y, — X, /;’ .- And following

Lee (2001a), 4¢ can then be estimated by the GMM:
min g, () gy (4). (33)
based on the quadratic moment conditions of €,
gn (A) = [P1aSy (A)tin, - -+ 5 PunSu (A) 6n]' Su (A) din, (3.4)

where P;,,’s are n xn dimensional constant matrices such that ¢ (Pjn) =0 =1,---, m).24
For rigorous analysis, the following regularity assumptions for the GMM estimation are
specified in Lee (2001a; 2006).

Assumption 1 The €,; s are i.i.d. with zero mean, variance 0'(2) and that a moment of
order higher than the fourth exists.

Assumption 2 The elements of X, are uniformly bounded constants, X, has the full
rank k, and lim,,_, o %X ' X, exists and is nonsingular.

Assumption 3 The spatial weights matrices {W,} and {S, Y are uniformly bounded in
both row and column sums in absolute value.”

Assumption 4 The matrices P,’s with tr (P,) = 0 are uniformly bounded in both row
and column sums in absolute value.

The higher than the fourth moment condition in Assumption 1 is needed in order to

apply a central limit theorem due to Kelejian and Prucha (2001). In general, denote x5 and

24By selecting P; such that ¢ (P;) = 0, ¢ is concentrated out from the objective function (3.3), so that
the dimension of the parameter space is reduced and the estimate of o2 (in a subsequent step) is guaranteed
to be positive. Furthermore, by comparing the asymptotic covariance matrix with that from joint estimation
of 4 and 62, no efficiency loss in the estimation of / is incurred by concentrating ¢ 2 out. Detailed discussion
is given in Appendix 3.5.4.

LA sequence of square matrices {4, }, where 4, = [a,,;;], is said to be uniformly bounded in row sums
(column sums) in absolute value if the sequence of row sum matrix norm || 4,||cc = MaX;=1,... » Zj’:l |@n,ij]
(column sum matrix norm || 4, |1 = max;=1,... » Zle |@n,ij|) are bounded. (Horn and Johnson, 1985)
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14 be respectively, the third and fourth moments of €,;’s. Assumption 3 limits the spatial
dependences among the units to a tractable degree and is originated by Kelejian and Prucha
(1999). It rules out the unit root case (in time series as a special case). Uniform bounded-
ness conditions for X, and P,’s in Assumption 2 and 4 are for analytical tractability. Let
G, =W,S, I and 4% = 4 + A’ for any square matrix 4. (A list of special notations used
for this chapter has been collected in the Appendix for convenient reference.) Assumption
5 summarizes some sufficient conditions for the identification of Ag.

Assumption 5 lim,,_; o %tr(Pjn G,) # 0 for some j = 1,--- ,m, and

1
lim —@r(Py,Gn), -, tr(P,, G,))

n—oo p
is linearly independent of 1im,,_, %(tr(G; P1,Gy), -+, tr(G) PunGp))'.

Let Q, = var (g, (10)). The variance matrix €2, is assumed to satisfy some conven-
tional regularity conditions in Assumption 6. And the parameter space is assumed to be a
compact set as usual for nonlinear estimation.

Assumption 6 The limit of %Qn exists and is a nonsingular matrix.

Assumption 7 The Ag is in the interior of the parameter space A\, which is a compact
subset of the real line.

Interested readers may refer to Lee (2001a; 2006) for detailed discussions on the reg-
ularity assumptions.2® Lee (2001a) shows the GMME 1 p is \/n-consistent and it has the
limiting distribution of the corresponding GMME of the SAR process for u,, as if u, is
observable. Furthermore, with a consistent estimator of Ay, the feasible GLSE /§ FG =
(X' 8 8,X,)"' X" § 8,7, is asymptotically equivalent to the exact GLSE

Bo = (X,8.8,X,) " X,S.S,7,.

26 Assumptions 5 and 6 exclude the case of large (group) interactions in Lee (2004). These can simplify
the presentation of our results. The cases under our assumptions here are relevant to spatial scenario, where
interactions are usually among a few neighbors.
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First, we consider the case that u, is observable, and we will discuss the feasibility is-
sue later. The optimal choice of the weighting matrix a),a, in (3.3) is, as usual, the
inverse of a matrix proportional to the variance matrix of g, (1¢). Let M, = {20}
be the class of optimal GMMEs derived from minyea g, (1) Q;l gy (1), where g, (1) =
[PinSy WD uy, -y PunSy (W) u, 'Sy (4) uy, is a vector of moment functions with P,’s sat-
isfying Assumption 4. We are interested in the BGMME within the class of optimal
GMMEs M,,.

Following Lee (2001a), the limiting variance of the consistent GMME 1 p based on the

quadratic moment €/, P,€,, with tr(P,) = 0 is

n 2
L PEy ir(PP
=5l = lim [(74—3) 12,_119”,” 1 rPoFy)
n=00 02(P3G,)  Lr2(P3G,)

n

IE

with 4, = uy/ ag being the kurtosis of the disturbance. The search of a best quadratic
moment is to find the P, with ¢ (P,) = 0 which minimizes the variance Z;l. Equivalently,
one may maximize the corresponding precision measure, i.e., consider

Lir2(PSG)
max 7 5 o
Py (14 — 3) zizl Puii +tV(PnPn)

Let D(A) be a diagonal matrix with diagonal elements being A if A4 is a vector, or diagonal

elements of 4 if A is a square matrix. Note that
n
tr(Py Py) — tr[(Py = D(Py))* Py] = 2tr[D(Py) - P1 =2 py ;.
i=1
Hence,
n n
(14 =3) D Py +1r(PyP) = (ng—=1) D pn i+ tr[(Py — D(P))* Py
i=1 i=1
1 n
= 5020 =12 pii+1r[(Py = D(P)) (Py = D(P))' T}

i=1
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By Jensen’s inequality with concave function, it is known that 7, > 1. Define a modified
matrix P,F = P,+( '“T_l —1)D(P,). The P,f is constructed from P, by the multiplication

of the diagonal of P, by the factor ,/ '742_ L Astr (Py) =0, tr(P;F) = 0. The square of the

Euclidean norm of (P;")* is

(P (P = 2004 = 1) D p2 i + tr([(Py = D(PW))* (Py — D(P))*)).
i=1

The P, and its modified matrix P, have a one-to-one relation. Given P, P, can be recov-
ered as P, = B + (/757 — DD(P,)). Because 1r(PyG,) = tr(P3 (G — LACDY RS

%tr(P,f (G, — ”(%lln)s), the maximization search is thus equivalent to

LB + (f 55 — DD (G, — G2 1))
max .

Rt tr[(Pa)* (Pa' )]
To make this optimization operationable, we shall look for the possible existence of a ma-

trix A, such that

B4 = DDED G =T ) = (PG, = L)+ 4,0,

n
This identity is equivalent to

Gn) | 1 = (P 43).

2 Dtr[D(P)(D(G,) —
Ny — 1

If 4, is taken to be a diagonal matrix, then tr (P, 4,) = tr(D(P,*)A43). One sees that
the possible A, is 4, = ( /# - D(D(Gy) — "(nﬁln), which is a function determined
by G, alone. Thus the optimization becomes

w2 LY (G — ) + AnT']
max .
i (P ()]

For any square confirmable matrices B and C, t7>(BC) < tr(B?)tr(C?) is a version of the

Cauchy inequality. Hence the optimum P, is

tr(G,) tr(Gp)

In)+An - (Gn - tr(Gn)

Pn+* = (G, —

In)+(

—D(D(Gp) -

=1 1,).
4—
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In terms of the original P, one has

tr(Gp)

MO ) 173 Gy - 1O,

—~1)D(P}") = (G, — ) — 1

Pr=rr+
=R ng—1 n n

because D(P,™) = n42—1 (D(G,) — ”(nﬂln).

The above analysis motivates the existence of the BGMME and can be generalized to
derive analytically the best P;. An alternative approach can be based on the characteri-
zation of best moments in terms of any additional moments being redundant in Breusch
et al. (1999). The following proposition summarizes the main results of the BGMME of 1
for the SAR disturbance process, which may not be normally distributed. We demonstrate

the validity of the best moments with both the optimization of variance approach and the

characterization of Breusch et al. (1999) in its proof.

Proposition 3.1 Under Assumptions 1-6, within the class of optimal GMMEs M,, the

consistent root J.p derived from min;cp [u;S,; (L) PrSy (2) un]z, where

tr(Gy) N4

I,) — tr(Gy)

Py = (G - G -1,

Mg —
is the BGMME with the limiting distribution ﬁ(j.g — o) A N (0, 21;1) and Xp =

lim, 00 1tr (P G).

Let Py, be the class of constant n x n matrices P,’s satisfying Assumption 4. A subclass
Pan of Py, consisting of P,’s with a zero diagonal is also interesting, as the corresponding
GMME is robust against unknown heteroskedasticity (Lin and Lee, 2006) and distributional
assumptions. Lee (2001a) has shown best selection of P, from Py, is (G, — D(G})), and
when €, is normally distributed, the best selection of P, from Py, is (G, — tr(nﬂln), which

is a special case of P in Proposition 3.1 with 74 = 3.
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The asymptotic distribution of the GMME 1.1 based on the quadratic moment €, (G, —
"(G”) I,)€, has been derived in Lee (2001a) with limiting variance being X ~ G1 (llmn_>oo =361 ,Z) ! s

where

tr}[(G, — G 1y G, tr(G
nn . tr(Gu)\2 +tr[(Gy — n)[n)an]-
gy —3) 21 (Gnii — )

One the other hand, the limiting variance of the BGMME y) g in Proposition 3.1 is (lim,— o % g, ,,)_1

z:Gl,n =

where
Zp = (P Go) = Gy = T Gl =2 (DG = T )G
To simplify notations, denote

= %IZZI:(GW';’ - tr(G ) Z(Gn i — #)2 (3.5)

the empirical variance formed by the diagonal elements of G,,. Furthermore, denote

tr(Gn)In)SGn] _ Ll‘l’[(Gn . tr(Gn)In)S(Gn _ tr(Gp)
n 2n n n

By = —1r1(Gy — 1)l (3.6)

and
1
ZG 2 = _tr[(Gn - D(Gn))SGn] = Ztr[(Gn - D(Gn))s(Gn - D(Gn))s]a (3.7)
which are, respectively, ﬁ of the square of the Euclidean norm of (G, — tr(nﬁ[n)s and
(G, — D(Gy))°.
Instead of comparing the limiting variances of these two estimates, it is desirable to

compare the limiting precision measures %ZGL,, and %Z B.n» Which are the inverses of

variances. One has %EGM = Z4G,1/[(;74 — 3)1)2G + lé’l] and %23,,1 = lé 2(’74 1)z)G It

follows that

1 1 (14 — 30212
—ZBn— —XGln = o ) vG + o
n n ny — 1 (4_3)G+ZG,1
(4 — 3)206(%,1 — 203) _ (4 — 3)202G1é,2

(1a = DI(1s =305+ 2,1 (1 = DI(1g — D& + 12,1
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because lé 1 —lé , = 20%. Note that 7, > 1 by Jensen’s inequality with concave functions,
and lé , > 0, Hence, }ZZB,,Z > %ZGM. This verifies the efficiency of/AIB relative to /AIGL

The percentage loss of asymptotic efficiency of A1 can be evaluated as

| — LGl (114 — 3)2“2Glé,2 (3.8)
Soa (1 — Dod +13,]- [40F + (ns — DIZ 5T |
when 74 # 3. Note that the variance is the inverse of the precision measure. So, 1 — ZZGTfn” =

-1 -1 -1
1 _ z:1’3,n _ zGl,n_zli‘,n
—1 - —1
2:Gl,n Z:Gl,n

is also the percentage of reduction in asymptotic variance of 15

relative to ;1G1.
Similarly, we can compare the efficiency gain of 7 g relative to 1¢» derived from the

quadratic moment €,(G, — D(G,))€,. Following Lee (2001a), with limiting variance of

A . -1 . 1 -1
AG2 1S T = (hm,,_>oo ,‘,ZGZ,n) , where

1 1
~ZGan = tr[(Gy = D(Gn))' Gyl = 1G5

It follows that

-3 4
1)UZG —lé,z =

Na — Ny — 1

—23 __ZGZ =1 —2( l)2
n o1 n N G,1 G

because Zé | = lé ) = 2026. As 54 > 1 by Jensen’s inequality with concave functions,

%Z Bn > %ZGQ’ »- The percentage loss of asymptotic efficiency of 1> can be evaluated as

2
2G2.n _ dog

- ) 2
2B dog + (g — I)ZG’2

(3.9)

which is also the percentage of reduction in asymptotic variance of A5 relative to Ago.
From this, 4 is more precise as it takes into account the variance of the diagonal elements
of G,,.

The BGMME associated with P involves the unknown /¢ and #4. In practice, the
unknown A¢ can be estimated with some P,’s from Py, or P,, within the GMM framework,
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and 7, can be replaced by the empirical moments of the estimated residuals. With initial
consistent estimates ;ln and 774, G, can be estimated by Gn = G, (/Al,z) = W,S, l(;l,z) and
P can be estimated by

tr(G,) i tr(G,)

~ ~ -3 ~
Pn* :(Gn_ ]n)_4—_1(D(Gn)_

). (3.10)

A

4

The following proposition shows that the feasible BGMME with P replaced by ﬁ,j‘ in
the moment functions has the same limiting distribution as the corresponding BGMME in

Proposition 3.1. Let M,, = X,, (X;Xn)_1 X

Proposition 3.2 Under Assumptions -7, suppose An and 14 are \/n-consistent estimates
~ ~ 2

of Ao and ny4, and P} is given by (3.10). Then minjep [Q;ZS,; (L) PrSy (A) ﬁn} , With i, =

(I, — M,)Y,, has a consistent root /AIFB which has the same limiting distribution ofig

derived from min; e [1),S, (1) Py Sy (A) u,]’-
3.2.2 GMM Estimation of the MRSAR Model
The MRSAR model is specified as
Yo = XuB + AWnY, + €p. (3.11)

where ¢,, i1s an n-dimensional vector of i.i.d. disturbances with zero mean and finite vari-
ance o2. Let dg = (ﬂ(), A0, a%)’ be the true parameter vector. The equilibrium vector Y,
is
Yo =S, (XufBo + €n) - (3.12)
It follows that W, Y, = G, X, o+ Gn€, Where G, = WnSn_l, and W, Y, is correlated with
€, because, in general, E((G,¢€,)¢,) = U%tr(Gn) #0.
Let O, be an n x k' matrix of IVs constructed as functions of X, and W, in a 2SLS
approach. Denote €,(0) = S,(1)Y, — X, 5, where § = (ﬂ’, /1)’. Thus, €, = €, (0p). The
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moment functions correspond to the orthogonality conditions of X, and €, are O)€,(6).
Lee (2006) suggests the use of the moment functions €),(0) P,€,(f) with P,’s satistying
Assumption 4 in addition to Q/,€,(0) for the estimation of (3.11) in the GMM framework.
With the selected matrices Pj,’s (j = 1,---,m) and IV matrix Q,, the set of moment

functions form a vector

2n(0) = (On, P1n€n(0), -, Pun€n(0)) €,(0). (3.13)

At 6o, g1(60) = (On, Pin€n, -+, Pun€n) €y, which has a zero mean because E(Q)€,) =
0, E(e;,) =0and E(engfnen) = a(z)tr(Pjn) =0forj=1,---,m.

Regularity assumptions 1-7 specified in the regression model with SAR disturbances
are adopted for the GMM estimation of the MRSAR model with proper modifications.
Assumption 5’ summarizes some sufficient identification conditions of 6 from the moment
equations E (g,(0o)) = 0. In the case that G, X, and X, are linearly dependent, which
includes the case that all exogenous variables X, are irrelevant, Assumption 5’ (ii) assures
the identification of 1o from the quadratic moment functions €/,(6) P,€,(0). Assumption
7° extends the parameter space to a compact convex subset of RF*1.

Assumption 4’ The matrices P,’s with tr (P,) = 0 are uniformly bounded in both row
and column sums in absolute value, and elements of Q, are uniformly bounded.

Assumption 5’ Either (i) lim,_, o %Q; (GuXnPo> Xn) has the full rank (k + 1), or (ii)

limy, s o0 %Q;Xn has the full rank k, lim,,_; %tr (PinGy) # 0 for some j, and
. 1 S S /
ngr&;(tr(P]nGn)7"' 5tr(PmnGn))

is linearly independent of 1im,,_, %(tr(G;l Pi,Gy), -, tr(G) PunGp))'.
Assumption 7’ The 0 is in the interior of the parameter space ©, which is a compact
convex subset of R*T1.
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Lee (2006) has shown the GMME 6 p from mingce g, (0) a,ang, (0) is /n-consistent
and derived its limiting distribution. The optimal choice of the weighting matrix a,a, is
(%Qn)_l, where Q, = var (g, (09)), by the generalized Schwartz inequality. Let M, =
{6} be the class of optimal GMMEs derived from mingee g, (6) Q,, g, (), where g, ()
is a vector of moment functions given by (3.13). Within the class of optimal GMMEs
M., Lee (2006) has shown that the best selection of O, shall be (X,, G, X,f), the best
selection of P, from the subclass P,, shall be (G, — D(G})), and in the event that €, is
normally distributed, (G, — ”’(%lln) shall be the best selection of P, from the broader
class Py,,.

In the following proposition, we show the existence of the BGMME within the class
M,,, when the disturbances are not normally distributed. To show this result, we adopt
Breusch et al. (1999) in demonstrating that additional moment conditions are redundant
to the best selection of moment conditions. If an intercept appears in X,,, we have X,, =
[ X7, 1,], where I, is an n-dimensional vector of ones. Otherwise X} = X,,. Suppose there

are k* columns in X;. Let X,,; be the jth column of X,;, and X;‘j be the jth column of X.

Denote X Zfl =X ;— %ln X y the deviation of observation X y from its sample mean. Let

* (774 - 3) - ﬂ% "
G,=G,—  ——F—D(G,) — D (G, X, , 314
n (774 - 1) - 77% (Gn) 0_0[(7]4 _ 1) _ 7]%] ( ﬂO) ( )

with 3 = u3/ 0(3) being the skewness of the disturbance. Let vecp (4) be a column vector

formed by the diagonal elements of a square matrix A.

Proposition 3.3 Suppose Assumptions 1-3, 4°, 5, and 6 are satisfied. Let P}, = G; —

n

wtr (Gp) In, and Pr,\ = D(X}0) for j =1,--- ,k*. Let Oy = 03}, 03,] with

2

. U 1

0 =X, + o 13) " (X,, - Zlnl;Xn) : (3.15)
4= 1) 713
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and

2
. n 1
3
2 1
_ 20 (een (Gy) — ~tr (G 1y ) - (3.16)
(na—1) = n

Within the class of optimal GMMEs M, the consistent root 0 derived from

min g2’ (0) ™' g5 ),

where Q) = var (g,’j (00)) and g, (0) = (Oy, P}.€,0), -+, Pi., ,€1(0))€,(0), is the

+1,n
BGMME with the limiting distribution \/n(@ g — 0) A N(O, ZEI) and

1 (o?X,0°, 052X, 0%
ZBZ hm — i} *’X ) G X / % P*SG .
0o O Xn 04" (GaXup) O3, +tr (P Gr)

n—oon

When ¢, is normally distributed, 73 = 0 and n, = 3. Hence, the best selection of
0, = (Xu, G, X, pp) and P, = (G, — ”’(%lln) under normality are the degenerated
0;, and P} in Proposition 3.3. Based on the characterization of best moments in Breusch
et al. (1999), it can be shown that moment functions €/, (6’)P;‘+1,nen @Gyg=1,---,k*)are
redundant given (X, G, X, S, (G, — ”(nﬂln)’ €,(0)) €,(0) under normality, with similar
arguments used in the proof of Proposition 3.3. Furthermore, Lee (2006) has shown that
the BGMME derived from the set of moments (X, G, X, [, (G, — ”(nﬁln)’en @))€, (0)

has the same limiting distribution as MLE under normality.

In practice, with initial consistent estimates O, f3 and fi4, Py

*
[, and O, can be re-

placed by their empirical counterparts 131*” =P (3;, I3, [tg) and QZ = O (3:1, [z, [g).
The corresponding variance matrix Q) of the best moment functions can be estimated as
f):‘, = Q; (3:1, [z, [tg). The following proposition shows that the feasible BGMME with

the moment functions

8:0) = (05, Ppyen(0), P3,€n(0), -+, Py y€n(0)) €4(0) (3.17)

119



has the same limiting distribution as the corresponding BGMME in Proposition 3.3.

Proposition 3.4 Under Assumptions 1-3, 4, 5°, 6, and 7’, suppose 8y, [i3 and ji4 are /n-
consistent estimates of oo, 3 and p4. Then mingee g’ (0) fl;"l_l g (0), with g (0) given
by (3.17) and Q; =Qy (O, [3, [14), has a consistent root 0 -3 which has the same limiting

distribution of 0 derived fiom mingee g (0) Qg (0).

3.3 Monte Carlo Study

In the Monte Carlo study, the regression model with SAR disturbances is specified as

Y, = anﬂl + uy,

u, = AWyu, + €,,
and the MRSAR model is specified as
Yn = anﬂl +Xn2ﬁ2 + Xn3,83 + j~VV}1Y}1 + €5,

where x;1, x;2 and x;3 are three independently generated standard normal variables and are
i.1.d. for all 7, and €,,;’s are independently generated from the following 5 distributions, all
of which are scaled to have mean 0 and variance 2:

(a) normal, €,,; ~ N (0, 2),

(b) student t, €,; = +/6/5u where u ~ ¢ (5),

(c) symmetric bimodal mixture normal, €,,; = u/«/g whereu ~ SN (=3, 1)+.5N (3, 1),

(d) asymmetric bimodal mixture normal, €,; = u /2ﬁ where u ~ SN (-3,1) +
SN (3,13),

(e) gamma, €,; = u — 2 where u ~ gamma (2, 1).
To facilitate comparison, skewness (#3) and kurtosis (#,4) for these distributions are corre-
spondingly: (a) 73 = 0, 174 = 3;(b) 73 = 0, 174 = 9; (¢) 3 = 0, 4 = 1.38; (d) 173 ~ 0.84,
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ny ~ 2.79; and (¢) 73 = /2, 1, = 6. Normal distribution is considered as the basis for
comparison. When the disturbances are normally distributed, both MLE and BGMME are
asymptotically efficient. However, the finite sample performance of BGMME may not be
as good as MLE, because the moment functions involve some unknown parameters need to
be estimated in an initial step. Student t and symmetric bimodal mixture normal distribution
are introduced to explore the effects of, respectively, leptokurtic (7, > 3) and platykurtic
(n4 < 3) disturbances on the small sample performance of various estimates. Asymmet-
ric bimodal mixture normal and gamma distributions are introduced to study the effects of
skewness. To be specific, asymmetric bimodal mixture normal specified here corresponds
to the case where disturbances is slightly platykurtic and has a moderate skewness, and
gamma corresponds to the case where disturbances is leptokurtic and has a relatively large
skewness. Asymptotically, BGMME is more efficient than QMLE under the distributions
(b)-(e). For the regression model with SAR disturbances, the proposed BGMME improves
upon QMLE as the quadratic moment function incorporates kurtosis of the distribution. On
the other hand, similar to QMLE, the BGMME does not involve skewness in their formula-
tions and, hence, are robust against skewness. Therefore, in the Monte Carlo experiments
for the regression model with SAR disturbances, we focus only on distributions with (a)-
(c).

The estimators considered are (i) QMLE (ii)) OGMME and (iii) BGMME. For the re-
gression model with SAR disturbances, OGMME refers to the feasible optimal GMME
using Gy — D(Gn) for the quadratic moment, with the inverse of their (estimated) variance
matrix as the distance matrix, and BGMME refers to the feasible BGMME described in
Proposition 3.2. For the MRSAR model, OGMME refers to the feasible optimal GMME

using X, and énX n ,@ ,, for the linear moments and Gn — D(Gn) for the quadratic moment,
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with the inverse of their (estimated) variance matrix as the distance matrix, and BGMME
refers to the feasible BGMME described in Proposition 3.4. For the Monte Carlo results
reported here, we use QMLEs?’ as the initial estimators to get feasible OGMMEs and
BGMMEs.?

The number of repetitions is 1, 000 for each case in the Monte Carlo experiment. The
regressors are randomly redrawn for each repetition. In each case, we report the mean
‘Mean’ and standard deviation ‘SD’ of the empirical distributions of the estimates. To
facilitate the comparison of various estimators, their root mean square errors ‘RMSE’ are
also reported. In all the cases of this study, the true Ag is set to 0.6, and f,7 = 1.0, f,9 =
0, B39 = —1.0. For the MRSAR model, the variance ratio of x f, with the sum of variances
of x By and € is 0.5. If one ignores the interaction term, this ratio would represent R? = 0.5
in a regression equation. The smallest sample size is n = 49, and the moderate sample
sizes are 245 and 490.

When the sample size is n = 49, the spatial weights matrix W, corresponds to the
weights matrix for the study of crimes across 49 districts in Columbus, Ohio in Anselin
(1988). For moderate sample sizes of n = 245 and 490, the corresponding spatial weights
matrices are block diagonal matrices with the preceding 49 x 49 matrix as their diagonal
blocks. These correspond to the pooling, respectively, of five and ten separate districts with

2TThe QMLE:s are calculated using sar.m in Econometrics Toolbox (version 7) by James P. Lesage. Func-
tion option info./flag = 0 for full computation (instead of approximation), and other options are set to the
default values.

28Using QMLEs as initial estimates can be justified as BGMMEs are adopted for the purpose of improving
QMLEs. We have also run the Monte Carlo of feasible OGMMEs and BGMMEs with initial estimates
derived from optimal GMM based on quadratic moments W, and W2 — D(W?) for the regression model
with SAR disturbances, and initial estimates from the 2SLS approach in (Kelejian and Prucha, 1998) for the
MRSAR model. For small sample size n = 49, the feasible OGMMEs and BGMMEs have large variances
than those reported here. For moderate sample size n = 490, the results are largely the same as those reported
here.
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similar neighboring structures in each district. We use this spatial weights matrix in the
Monte Carlo experiments for the MRSAR model.

For the regression model with SAR disturbances, with the /¥, in Anselin (1988) and
distribution (c), the percentage of reduction in asymptotic variance of BGMME of 1 rel-
ative to QMLE is 2.59%, and relative to OGMME is 3.95%, following (3.8) and (3.9).
With distribution (b), the percentage of reduction in asymptotic variance is even smaller.
These are caused by the small empirical variance formed by the diagonal elements of
G,. With the W, in Anselin (1988), vé = 0.005, by (3.5). In order to have larger
z)é, we construct a weights matrix as follows. With 4o = 0.6, G, can be expanded as
G, = Wu(l, — 20W,)"' = W, + A Wf + ---. As D(W,) = 0, the empirical variance
of the diagonal elements of G, is largely determined by that of W2. When W, is row-
normalized, diagonal elements of W2 are weighted average for each column of ,. We
generate 7 x 7 upper triangular matrices 4,’s, whose non-zero elements in each column
are either all (200+u)’sorall u’s (u ~ U[0, 1]) with equal probability. We calculate vé for
the row-normalized B,, with B, = 4, + A/, as the weights matrix ¥, in (3.5).29 We gen-
erate 1000 such B,’s, and pick 7 of them with the largest vé. In this way, we get a 49 x 49
block diagonal matrix W, with the 7 row-normalized B,’s being the diagonal blocks. This
W, gives sz = 0.134, when A9 = 0.6. And with distribution (c), the percentage of re-
duction in asymptotic variance of BGMME relative to QMLE is 23.17%, and relative to
OGMME is 36.03%, following (3.8) and (3.9). For large sample sizes of n = 245 and 490,
the corresponding spatial weights matrices are block diagonal matrices with the preceding
49 x 49 matrix as their diagonal blocks. We use the constructed spatial weights matrix in
the Monte Carlo experiments for the regression model with SAR disturbances.

29As W, is symmetric before row normalization, we can apply the approach in Ord (1975) to implement
QML estimation.
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For the regression model with SAR disturbances, QMLEs and various GMME:s of 4
are reported in Tables 3.1-3.3. For small sample size n = 49, the various estimates of 1( are
biased down. Among them, QMLE has the largest bias. The magnitude of the bias is about
5 ~ 6%. The bias reduces as sample size increases, and for sample size n = 490, various
estimates are essentially unbiased. When the disturbances are normally distributed, MLE
(QMLE) is efficient, and the finite sample performance of BGMME is as good as MLE
(QMLE) in terms of SD and RMSE. SD and RMSE of OGMME is slightly larger when
the sample size is small. When the disturbances follow student t distribution, BGMME has
the smallest SD and RMSE for all sample size considered. For sample size n = 490, the
percentage reduction in RMSE of BGMME relative to QMLE is about 12.5%. This is also
the case when the disturbances follow bimodal mixture normal distribution. For sample
size n = 490, the percentage reduction in RMSE of BGMME relative to OGMME and
QMLE is about 13.8%.

Tables 3.4-3.8 report QMLESs and various GMME:s of 4 and S, for the MRSAR model.
For small sample size n = 49, QMLEs of ¢ are biased downwards by 4 ~ 5% for all
specifications of disturbances. And OGMMEs of 1 are biased downwards by 2% when
the disturbances follow bimodal mixture normal distributions. The two GMME:s of £,
are biased downwards and S5 are biased upwards, with the largest bias being about 2%
for all disturbance specifications. The other estimates are essential unbiased. The bias
disappears as sample size increases to n = 249. When the disturbances are normally
distributed, MLEs (QMLESs) are efficient. For small sample size n = 49, the finite sample
performance of MLEs (QMLESs) are better than the two GMMEs in terms of smaller SD and
RMSE. And BGMMEs have the largest SD and RMSE because the feasible best moment

functions involve initial estimation of several unknown parameters. For moderate sample
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size, the finite sample performance of BGMME is as good as MLEs (QMLEs). When the
disturbances are not normally distributed, for the two disturbance specifications with 73 =
0, due to the small empirical variance in the diagonal elements of G,, BGMMEs are not
better than QMLESs for moderate sample sizes, even though the latter is not asymptotically
efficient. When the disturbances follow the distributions with 73 # 0, BGMMEs of 4¢
are better than OGMMEs and QMLEs for moderate sample sizes, and BGMMEs of S,
are better than OGMMEs and QMLE:s for all sample sizes considered, in terms of SD and
RMSE. When the disturbances follow gamma distribution and n = 490, the percentage
reduction in SD of BGMMESs of 1o, £1¢, 29, and S5 relative to QMLESs are, respectively,
11.8%, 23.1%, 21.9%, and 21.2%.

In summary, BGMME improves on QMLE as the former incorporates correlation be-
tween linear and quadratic moment conditions when the disturbances are skewed. Both the
BGMMEs of the spatial effect 1o and coefficients of other explanatory variables S, have
smaller SD and RMSE relative to QMLE and OGMME. On the other hand, for cases with
13 = 0, gains of BGMME by including measure of kurtosis is relatively small, and can be

insignificant when the diagonal elements of G, do not vary enough.

3.4 Conclusion

In this chapter, we consider the GMM estimation of the regression models with SAR
disturbances and MRSAR models. The MLE approach is efficient when the disturbances
is normally distributed, and Lee (2006) has shown the existence of GMME based on linear
and quadratic moment conditions that can attain the same limiting distribution of the MLE
under normal disturbances. This chapter improves upon the QMLE approach by incorpo-

rating potential skewness and kurtosis of the disturbances into the moment conditions used
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in the GMM framework. The proposed BGMME is asymptotically as efficient as MLE un-
der normality, and more efficient than the QMLE when the disturbances are not normally
distributed. Monte Carlo studies show that the potential inefficiency of the QMLE in finite
sample for the MRSAR model mainly comes from the possible correlation between linear
and quadratic moment conditions in the likelihood function. Hence, the proposed BGMME
has its biggest advantage when the skewness of the disturbances is nonzero. In the event
that the diagonal elements of G,, have good variance, then, taking into account kurtosis will

also be valuable.

3.5 Appendices

3.5.1 Summary of Notations

D(A) = Diag (A) is a diagonal matrix with diagonal elements being A4 if 4 is a vector,
or diagonal elements of 4 if 4 is a square matrix.
vecp (A) is a column vector formed by the diagonal elements of a square matrix 4.
A* = A+ A’ where A is a square matrix.
A9 =4 — %tr (A4) I, where A4 is an n x n matrix.
A" is a linearly transformed square matrix of 4 which preserves the uniform boundedness
property.
Sn(A) = Iy — AW Sp = Sp(L0).
Gn (A) = WuS; (A) = Wy (I — AW,) ™ Gy = Gy (Z0).
5= (', 4,060 = (B, 40, 90): 0 = (B, 2)'. 60 = (Biy, 40)"
M, = X, (X, x,)"" x..
Gy = G = L0 D(Gy) = — D (G Xaf)

" (na=1)=1m3 (na=1)~13)

[, 1s an n x 1 vector of ones.
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ex; 1s the jth unit vector in RE.
If an intercept appears in X,,, we have X, = [X,’:, l,z]. Otherwise X, = X,,.

X ;‘Jd =X i~ %lnl;lX . Y is the deviation of observation X y from its sample mean.
3.5.2 Some Useful Lemmas

In this appendix, we list some lemmas which are useful for the proofs of the results in

the text.

Lemma 3.1 Suppose that the elements of the sequences of n-dimensional column vectors
{zin} and {z2,} are uniformly bounded. If {A,} are uniformly bounded in either row or

column sums in absolute value, then |Z’1nAn22n‘ = O(n).
Proof. Trivial. m

Lemma 3.2 Suppose that €1, --- , €y, are i.i.d. random variables with zero mean and
finite variance o* and finite fourth moment p4. Then, for any two n x n matrices A, and

B,
E (GZA,ZG,Z . e:anen) = (,u4 — 304) vecp (4,) vecp (B,,)—|—04 [tr (Ay)tr (By) + tr (A,,B,Sl)] ,
where BS = B, + B),.

Proof. See Lee (2001a). m

Lemma 3.3 Suppose that {A,} are uniformly bounded in both row and column sums in
absolute value. €,1,--- , €y, are i.i.d. with zero mean and finite fourth moment. Then,
E (€, An€n) = O(n), var (e, Aney) = O(n), €, Anen = Op(n), and L€, 4,6, —LE (€], Aye,) =

op(1).
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Proof. See Lee (2001a). m

Lemma 3.4 Suppose that A, is an n x n matrix with its column sums being uniformly
bounded in absolute value, elements of the n x k matrix C,, are uniformly bounded, and
€nls -+ > €py are i.i.d. with zero mean and finite variance o2. Then, \/L};C;ZAnGn = 0,(1)
and %C;Anen = 0,(1). Furthermore, if the limit of%C,;AnA;Cn exists and is positive

definite, then 1=C; Ayey = N(0, 02 lim, 00 1} 4, 4;,C,)
Proof. See Lee (2004). m

Lemma 3.5 Suppose that {A,} is a sequence of symmetric n X n matrices with row and
column sums uniformly bounded in absolute value and b, = (by1,--- ,byy) is an n-

dimensional vector such that sup,, %Z?:l by 2T < oo for some ny > 0. €,1, - , €np

are i.i.d. random variables with zero mean and finite variance o 2, and its moment E (|€|*+%9)

for some 6 > 0 exists. Let O'ZQn be the variance of Q, where Q, = €,A,€, + b€y —

o2tr(Ay). Assume that the variance JZQ” is bounded away from zero at the rate n. Then,

0, D
L5 NO, .

Proof. See Kelejian and Prucha (2001). m

Lemma 3.6 Suppose that %(gn (1) — g (1)) converges in probability to zero uniformly in
A € A, which is a compact set, and lim,,_, %gn (1) = 0 has a unique root at Ao in A. The
An and i; are, respectively, the roots of the moment equations g,(1) = 0 and g; (1) = 0. If
%(g:; (A) —gn(A)) = 0,(1) uniformly in 1 € A, then both An and iz converge in probability

to Ly.

1 9gx(4)

In addition, suppose that - =5

converges in probability to a well defined nonzero

limit function uniformly in 1 € A, and \/Lﬁgn(/lo) = 0,(1). If%(% — 6%’—5’1)) = 0,(1)
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uniformly in . € A, and \/L;l(g;(/lo) — gn(o)) = o0,(1), then both VG — Ao) and

\/ﬁ(i: — Xo) have the same limiting distribution.
Proof. See Lee (2001a). =

Lemma 3.7 Let 0, and 9; be, respectively, the minimizers of | ,(0) and F (0) in ©.
Suppose that }Z(F 2(0) — F ,(0)) converges in probability to zero uniformly in 0 € ©,
which is a compact set, and {%F n (0)} satisfies the uniqueness identification condition at

0. If%(F,’; @) — F »(0)) = 0,(1) uniformly in @ € O, then both 0, and 9: converge in

probability to 6.

In addition, suppose that %% converges in probability to a well defined limiting
matrix, uniformly in @ € @, which is nonsingular at 6y, and %ﬁarg—ggw = 0,(1). If
%(azgé’;g) - aza’ggg?)) = 0,(1) uniformly in 0 € © and %ﬁ(aFgéao) - aFgéQO)) = 0,(1), then

ﬁ(é: —09) and /n(0, — 60) have the same limiting distribution.
Proof. See Lee (2006). m

Lemma 3.8 Under Assumption 2, the projectors M, and I,,—M,,, where M,, = X,, (X;lX,,)_lX;l,

are uniformly bounded in both row and column sums in absolute value.
Proof. See Lee (2004). m

Lemma 3.9 Suppose that {||W,||} and {| |Sn_1 ||}, where ||-|| is a matrix norm, are bounded.
Then {||S,(A) 1|}, where S, (1) = I, — AW, are uniformly bounded in a neighborhood of

Ao

Proof. See Lee (2004). m
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Lemma 3.10 Suppose that zy, and z, are n-dimensional column vectors of constants
which are uniformly bounded, the n x n constant matrix A, is uniformly bounded in column
sums in absolute value, and By, and By, are uniformly bounded in both row and column
sums in absolute value, and €,1, -+ - , €4, are i.i.d. random variables with zero mean and
finite second moment. /n(a, — ag) = Op(1) where aq is a p-dimensional vector in the

interior of its convex parameter space. The matrix C,(0,) has the expansion that
p P
Cu(@n) — Culag) = Z Z(an,-l — a;,0) - (@nj, — 0,00 Kin (a00)

P p
+ Z o Z (@njy = 010) -+ - (njp, = 0,0 Kinn (@0)(3.18)

for some m > 2, where C,(00) and K;, (ag) are uniformly bounded in both row and
column sums in absolute value fori = 1,--- ,m — 1, and K,,,, (a) is uniformly bounded
in both row and column sums in absolute value, uniformly in a small neighborhood of o.9.

Then,

(@ 321,(Ca(@n) = Ca(@0))z20 = 0p(1);
() 21, (Calitn) = Co(@0)) Auen = 0,(1);
(c) %ngin(Cn(&n) — Cp(a0))Ban€n = 0p(1), if (3.18) holds for m > 2, and

(d) \/LEGQZ(Cn(&n)—Cn(OCO))En = 0,(1), if (3.18) holds for m > 3 with tr(K;, (ag)) =0

fori=1,---,m—1.

Proof. Let 7, = 1z}, (Cy(n) — Cn(00))z20. With (3.18), T, = Ty1 + T2, where
p )4

N 1
Ty = Z 2 2 iy = i)+ (g = 0i0) 2, Kin(@0)22n,

i= 1]1 1 ]1—1
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and

. 1 .
Ty = Z Z(anﬂ @10)+ @njy = 0y0) 21 Kinn (@n)220.

si=l jm=1
T,1 = op(1) because %z/anin (@0)z2, = O(1) by Lemma 3.1, and &, — ag = 0,(1).
Similarly, as K, () is uniformly bounded in both row and column sums in absolute value,
uniformly in a small neighborhood of ag, and @, — a9 = 0,(1), it follows that K,,,(a,)
is uniformly bounded in both row and column sums in absolute value with probability one.
Hence %z’anmn (&,1) 22, = Op(1) by Lemma 3.1, which implies 7,, = 0,(1) because
a, — ag = 0p(1). This proves (a).

Similarly, let U, = f 1n(C (0,)—Cy(ap))Ay€,. Then, with (3.18), U, = Uy 4+ Uy

where

P p 1
Un = Z Z anjl - ajlo) T (&nj, ale)ﬁ Kin(ag)Anen = Op(l)

because —= f 24, Kin (@0) Anen = Op(1) by Lemma 3.4 and &, — a9 = 0,(1); and

. 1 R
Up = z Z (anﬂ 05110) (anjm - aij)ﬁzlanmn(an)Anfn-

Jji1=1 Jm=1

Let ||-||; be the maximum column sum norm. Because the product of matrices uniformly
bounded in the maximum column sum norm is uniformly bounded in the maximum column
sum norm, ||K,,,(a,)Ax|l1 < ¢ for some constant ¢; for all n. As elements of zy, are

uniformly bounded, there exists a constant ¢, such that Hz’l " Hl < ¢y. It follows that

WUnlli < '~ '"WZ ZM(«xnﬂ a0l -+ V1 (@njy, = @,0)

, N 1
X (121,111 - W Kmn (@n) Anll - ;an”l
. ) p )4 1 n
< eI Gy, — a0l - VG, — a,0)] - (;Z |€nil).
j1=1 Jm=1 i=1
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Hence Uy, = 0,(1) for m > 2 because /n(a,—ao) = O,(1) and % > lenil = 0,(1)
by the strong law of large numbers. These prove (b).

For (c), let R, = i¢/ B} (Cp(an) — Cu(00))Bon€y. With (3.18), R, = Ry1 + Ry,
where

m—1 p p 1
njy = 0,0) *++ (Gnj; — 0j,0) =€, B}, Kin(a0) Banén,
(a ajo) - (a a )ne B}, Kin(00) Bane

i=1 ji=1 =1
and
N 1 N
Ry = Z Z (anjl aj[O) ce (anjm - aij)_figBinKmn(an)BZnEn-
]1 1 ]m—l n
Rn1 = 0,(1), because %e;lBinKm (o) Ban€n, = Op(1) by Lemma 3.3, and a, — ag =

0p(1). On the other hand,

[Ra2lli < -'"/22 Z IWn(Gnjy = o)l -+ W1 (@nj, = @),0)
1 / A
x_llen”l . ||€n||1 : ”Banmn(an)BZnHl
. 1
< en'” '"/22 Z Ay = o)l WA, = ojuo)l - (= > lenil)?,
i=l1

Jm=1
for some constant c. Hence R;,» = 0,(1) for m > 2 because %Zl’-’zl |€ni| converges in
probability to the absolute first moment of €,,; and /n(d, — ag) = O,(1). These prove
(©).

For (d), let V,, = \/L;,E;l (Cn(an) — Cy(ag))€y. Then, V, = V1 + V,» where

||
i Mf

P p
ZZ: ;(&nﬂ - ajlo) U (&’Ul a]lo)f n in(a())fn = Op(l)a

because \/Lﬁe Kin (20) €, = Op(1) by Lemma 3.5; and

/
n

1 )4 )4 R R “
ﬁz Z(anjl —ajlo)...(anjm —Oij())€:,len(an)€n.
j1=1 jm:]
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The term Vo = 0,(1) for m > 3 because

V4 P 1 n
il < en®2 % oo > 1w, = ano)l - 1N, = aj,0)l-C > lenil)
i=1

=l jm=l
The desired results follow. m
Lemma 3.11 Suppose that zy, and z», are n-dimensional column vectors of constants
which are uniformly bounded, the n x n constant matrix A, is uniformly bounded in column
sums in absolute value, n x n matrices By, and B, are uniformly bounded in both row
and column sums in absolute value, and €,1, - - - , €,, are i.i.d. with zero mean and finite
fourth moment. Let Sn, i3 and iy be \/n-consistent estimates of &, uy and uy. Then,

under Assumption 3,

(@ 32,(Gy = Gz = 0p(1), 5221, (Gl = GI)F Anen = 0p(1),
w€n B, (Gn = G Bawen = 0p(1), —2€,(Gy = Gu)en = 0,(1);

(0) 371,(Gy = Gz = 0p(1), =21,(GY = G E Anen = 0p(1),
w€n B, (G = G Buen = 0, (1), —72€,(G = Gr)en = 0,(1);

(©) Lvec) (Gi — Gi)rzay = 0,(1), 1tr[4,(G% — G)E1 = 0,(1); and

n
(d) %GZBin(ﬁn* - Pn*)LBZnGn = 0p(1), \/L;GZ(IS: - P,f)dGn = 0,(1).

Proof. As S, —S,(1,) = (An—A0) W, it follows that G, — G, = W,[S: ' (A,)—S; '] =

WS O[Sy — Sy (1S = (A — 20)G G, By induction,

m—1
én - Gn = Z(zn - j-O)iGil—H + (in - lO)m énGZa

i=1
which implies
A m_l A . . A A
(Gn = G)" =D (= 40)' (GTHE + (G = 20" (Ga G, (3.19)
i=1
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for any positive integer m > 2. (3.19) conforms to the expansion (3.18) with p = 1,
Kin (Z0) = (GO, and Kpn(2n) = (G, GM*. As GL, (GIFNHE, and (G, (GT))*F satisfy

assumptions in Lemma 3.10, and tr((Gﬁl‘H)d) = 0, (a) follows from Lemma 3.10.

For (b), as
. na—3)—n
G' = G,-— (4—)3D(G ) — 3 =D (G XuBo)
(ny—1) —n3 ool(ns — 1) — n3]
o5(us —303) — 13 ogu
= G, — Oo\Hg 0 3p D(Gy) — p oi QD(Ganﬂo)a
o(ﬂ4_0'o)_ﬂ3 0(#4_‘70) — U3
it follows that
re ; ( o)’ 20§ ( 2)°
G,—G, = (G, -Gy —(1- )D(G, —G)—(— )D(G)
AZ/% oﬂ3

D(GoXuB, — GuXufo) — (C253 "”3

——)D(Gn X, f)(3.20)

where k = a(z)(u4 — ag) — u%, with k£ being its empirical counterpart. As D((G, —
G Xufo)t = 375 G = 20 DG X, o)t + (G — 20)" D(G G2 X, Bo)* con-
forms to the expansion (3.18) with p = 1, Ki, (o) = D(G'H' X, B0)", and K, (A,) =
D(G, G™ X, Bo)t. 1t is obvious that assumptions in Lemma 3.10 are satisfied. Hence we
have %z’lnD’(((A?n —G)Xufo)zon = 0,(1) by Lemma 3.10. On the other hand, let e;; be
the jth unit vector in R¥, then %z’lnD’(G,,Xn(ﬁn—ﬂo))Lzzn = %Z?:l zln,izzn,ie;ién)(n(ﬁn—
Bo) = 0,(1) because %ZLI zl,,,izzn,ie;i@n)(n = 0,(1) as Jn is a consistent estimate,
and ﬁn — o = op(1). Hence zlnD (G, X,Bn G Xufo)rzon = zlnD (G, —
G Xufo)rzon + %z’lnD’((A;nX,,(ﬁn — Bo)Ezan = 0,(1). And the remaining terms in
% (G*’ G\ Lz,, are 0, (1) by (a) and Lemma 3.1. Therefore, zln (G*’ Gz =

0p(1). And with similar arguments, the other results in (b) follow.
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For (c), as vec), (G} — Gi)E = I D(G}; — GE)E, it follows from (b) that Lvec), (G; —

G5 zay = 0,(1). Since G, — Gy = (g — 20)G2 + (A — 20)>G, G2, it follows
1 ~ A 1 A 1 A
—tr[4,(Gn = G)' = Uy = 20)~1r (4, G35) + (o = do) 1[4, (GG )] = 0, (1),

because Ltr(4,G2) = O(1), Lir(4,(G,G2)F) = 0,(1) and (4, — 20) = 0p(1). Simi-
larly,
1 A N
;Z‘F[A;D(Ganﬂn — GuXuPo)]
1 A A .
= ;tr[A;,D((Gn - Gn)XnﬂO + Gan(,Bn - IBO))]
A 1 A 1 A
= U = 20)~tr[ 4, D(G X, )] + Cin = 20)* 174}, D(G G, X )]
1 A A
1[4, D(G X (B = Bo))]
= op(1).
As tr[A,D(G,)] = O(1), tr[A4,D(G, X, fo)] = O(1), and 6—%, [i3, Kk are consistent esti-

mates, it follows that %tr[A; (G; - GHl1= 0,(1).

For (d), explicitly,

, =3\ na—3 d
Pr—pr = (Gn—f‘ D(Gn)) —(Gn— 1 D(Gn))

ng—1 Ny —1
A na—3 A Ha—3 ny—3
= (Gy— Gy = F—D(G, - G — — - ——)D(GY).
Ny — 1 na—1  ny—1

As - and D (-) are linear transformations that preserve the uniform boundedness property
of the original matrix, and (7, — 3) /(74 — 1) is a consistent estimate of (;74 — 3) / (774 — 1),

the desired result follows from (a) and Lemmas 3.3 and 3.5. m

Lemma 3.12 Suppose that z, is an n-dimensional column vector of constants which are
uniformly bounded, the n x n constant matrix A, is uniformly bounded in column sums in
absolute value, and €1, - - - , €, are i.i.d. with zero mean and finite fourth moment. Let 3n
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i3 and iy be /n-consistent estimates of do, u3 and p4. Let Q) = [Q7,, O 1 be given by
(3.15) and (3.16), with Q:‘l = [QTn’ Q;n] being their empirical counterparts. Then, under

Assumption 3,

(@ (0} — 03)'zn = 0p(1), and
(0) (05— O3 Anen = 0p(1).

Proof. Letx = 0'6(/14 — ag) — ,u%, with u3 = ;7308, Uy = ;7403, and x being the

empirical counterpart.

ﬂ3

2
A |
o1, — 01, = 3);lnl,;Xn, (3.21)

and

A

A ~ ~ 1 ~ 2
05, — 05, = (G, Xup, — G XnPo) + (I, — ;l,,l;) (% X8, — 3 Ganﬁo)

24 4
(2( n)H vec (Gd) %vecD(GZ))

A2
1 ~ n
= [+ @(ln — —L)NGaXo By = GuXuBo) + Run

_2( )2
vecD(G —G) — Ry, (3.22)

where Ry = (% — "75)(1” — L1, 1) Gy X, By and Ry = (RG220, 00 (G,

As %ln I’ is uniformly bounded in both row and column sums in absolute value, Lemma
3.1 implies that %(%lnl;an)’zn = O(1). Hence, :—Z(Q’fn — 01,) 2y = 0,(1) as fi3 and K are
consistent estimates.

1 4 02 1 1
Los, - 03 = 1+ @(ln _ ;lnz;)] (GuXuB, — GuXnfo) zn + R,z

26 )2

1
d
nu ¢ (G = Gu)'zn = ~ Rz,
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Since 1[(G, — G,) X,z = 0,(1) by Lemma 3.11, and (B, — o)1 (G, X,) 2, = 0,(1)
as B, — Bo = 0,(1), it follows that (G, X, B, — GuXuBo)zn = L(Gy — G Xuf, +
G, X, (ﬁn —fo)]'zn = 0p,(1). For the remaining terms, rllvec’D((A}n —Gy)iz, = %I;ZD(C;’,Z —
Gy)?z, = 0,(1) by Lemma 3.11, and %R,’ﬂzn =0,(1), %R;zzn =0,(1) as On, f13 and fi4
are consistent estimates. Hence %(Q;n — 0%.) 2z, = 0,(1). This proves (a).
Lemma 3.4 implies that %(%lnl;an)/Anen = 0,(1). Hence
L
Jn

as i3 and k are /n-consistent estimates. The first term in \%(Q;n — 03.) A€y is 0p(1)

A2 2
(0, — OF,) Anen = —/n(22 — f);(;znzgxn)%nen =0,(1),

K

because

1 . n
ﬁ(Gan,Bn - GanIBO)/Anen
| ~ n 1
= —B,X,(Gy— Gp) Anen + (B, — Bo) =X, Gy Anen = 0,(1),
Jn n
where %ﬁﬁ;X;(Gn — G,)' Anen = 0p(1) by Lemma 3.11, %X;ZG;A,,G,, = o0,(1) by
Lemma 3.4, and ﬁ(ﬁn — Bo) = Op(1). Similarly, the remaining terms in \%(Q;n —

03,) An€, are also 0, (1). The desired results follow. m

Lemma 3.13 Suppose that the elements of the n x k matrix C, are uniformly bounded,
the n x n matrix A, is uniformly bounded in column sums in absolute value, and A is
a \/n-consistent estimator. Then, \%C,;G,%Anen = 0,(1), and \%C,gﬁ;Anen = 0,(1),
where P* = G4 — %D(Gg)

Proof. \/L%C,;G,LIA,,G,, = 0p(1) is a case of Lee (2001a) Lemma A.11. As (ij4 —
3)/(14 — 1) = O,(1), it follows that

1

Nz

N 1, . a3 1

C! D(GY) Ape, = 0,(1).
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Lemma 3.14 Suppose that A,, B, and C, are matrices uniformly bounded in column sums
in absolute value, X,, satisfies Assumption 2, and T is a J/n-consistent estimator of .
Then, €/, A, P¥ B, M,,Cpé, = O,(1), and €, C! My, A, P* Bl M,,Cpé,, = O,(1), where P} =

n-"n-n

Gl — L= p(GY) and M, = X, (X, X,)”' X,

n

Proof. As A/, and B, are uniformly bounded in row sums in absolute value and ele-
ments of X, are uniformly bounded, elements of 4/, X,, and B, X, are uniformly bounded.

Hence, by Lemmas 3.4 and 3.13,

. 1 . 1 1
€ A, P*B/ M,Cpe, = (—ne;A;Pn B,’,X,,)(;X;Xn) l(ﬁx;cnen) = 0,(1).

On the other hand,

€' C! My A, P B M,Che,

1 1 AL 1 1
= 7enc,;)(n)(;)(;,)(n) ‘(;X;A,,PHB,;XH)(;X;XH) 1(ﬁxj,c,,en).

Under Assumption 3, because S, ! is uniformly bounded in both row and column sums
in absolute value, S~ ! (1) and, hence, G, (1) must be uniformly bounded in both row and
column sums in absolute value, uniformly in 4 in a small neighborhood of 1y, by Lemma
39. As /Aln and 7, are consistent, it follow that Gn and, hence, ]3; are uniformly bounded
in both row and column sums in absolute value with probability one. Therefore, Lemma

3.1 implies that 1 X ! 4, P B! X, = 0,(1). The desired result follows from Lemma 3.4. m

To show the proposed moment conditions are optimal, we show adding additional
moment conditions to the optimal moment conditions does not increase the asymptotic
efficiency of the GMME using the conditions for redundancy in Breusch et al. (1999).

The definition of redundancy is given as follows. “Let 0 be the optimal GMME based
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on a set of (unconditional) moment conditions £ [g1 W, 0)] = 0. Now add some ex-
tra moment conditions £ [gz (v, 0)] = 0 and let & be the optimal GMME based on the
whole set of moment conditions E [g (v,0)] = E[g] (v.0). g, (v, 9)]/ = 0. We say
that the moment conditions £ [gg (v, 0)] = 0 are redundant given the moment condi-
tions E [g1 (v, 0)] = 0, or simply that g, is redundant given g, if the asymptotic vari-

ances of 6 and 6 are the same” (Breusch et al., 1999, p. 90). For moment conditions

Elg,0)]=E[g (,0),2(»,0)] =0,let
a=Efe0.0¢ 00] = o 82 |

with Qj; = E [g; (v,0) g (v,0)] for j,I = 1,2. And define D; = E [og; (v, 0) /06'] for

j =1, 2. Let the dimensions of g1 (v, 8), g2 (y, ) and 8 be k1, k> and p.
Lemma 3.15 The following statements are equivalent.
(a) g is redundant given g.
(b) Dy =QQ7]' D1
(c) There exists a ki x p matrix A such that Dy = Q1A and D, = Q)1 A.
Proof. Breusch et al. (1999) Theorem 1 (A), (C), and (D), respectively. m
Lemma 3.16 Let the set of moment conditions to be considered be
Elg®]=E[g0).80).80)] =0,

or simply g = (g’l,gé,gé)/. Then (gé,gg)/ is redundant given g\ if and only if g5 is

redundant given g1 and g3 is redundant given g.

Proof. Breusch et al. (1999) Theorem 2. m
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3.5.3 Proofs

Proof of Proposition 3.1. There are two possible approaches to establish the result.
The first approach extends the optimization of variances of the GMME. The second one is
a constructive argument based on Breusch et al. (1999). Here we present both approaches.

(1) The first approach derives the best moment function P} analytically. With m

n

quadratic moments in g, (1), var(g,(49)) = aan, where
with w,, = [vecp(P1y), -+ ,vecp(Pyy)] and

1
Va = Sec(P,), - vec(Py,)) wee(Py,), -+ vec(P,,,)

tr(P,P) o+ (P}, Pn)
— : : . (3.23)
tr(Py,Pin) - tr(Ps,Pun)

The two terms in Q,, can be combined into a unified one as follows. First, because
tl’(PjnP]n) - vec(Pj,, - D(Pj,,))svec(Pjn - D(Pjn))
= tV(P;nPln) - Z‘V[(Pjn - D(Pjn))s(Pjn - D(P]n))]
= Z""(P;nPln) - tr[(Pjn - D(Pjn))spln]
= 2tr[D(Pjn)Pln] = 2ZV[D(Pjn)D(Pln)] = ZUeC/D(Pjn)DeCD(PZn)a

for any j and /, we have

tr(P}, P1y) -+ tr(P} Pun) !
tr(Py,P1n) - tr(Py, Pun)

where w,, = [vec(P1, — D(P1,))*, -+ ,vec(Pyuy — D(Pyy,))°*]. Therefore,

1
Q=3 [2(n4 — Doy om + @]
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Define the modified matrices PJT; = Pj, — D(Pj,) + ’742_1 D(Pj,) forj=1,---,m. As
vec’(PjtlS)vec(P,:;S)
= (P PeY)
= 1r{[P}, = D(PIIPS, — D(PL) + 2014 — Dir[D(Pju) D(Pe)]
= 0ec'[(Pjn — D(Pjn)) Toec[(Pen — D(Pin))*] + 2(4 — vec (Pjn)vecp(Prn),
it follows that Q,, = %(vec(PlJ;S), oo vec(PE)) (ee(P), -+ vec(PlY)).
Consider now tr(P;n G,) = tr(P;n (G, — ”(nﬂl,,)). We would like to find a matrix

Ay such that tr (P35, (G, — 92 1)) = (P} (G — 922 ], + 4,)) holds for all j. By

taking A4, to be a diagonal matrix, we see that the solution is

tr(G
Ap = ( ~ (DG, - LG,
ng—1

which is invariant with any P,;. Denote

tr(G

G- = G, -Gy,
tr(G 2 tr(G
= G, = T ([ = D@ - ),
4 —

which has zero trace. Therefore, tr (Pjn G, =tr (PJT;S G,).
Following Lee (2001a), the limit variance of the GMME with P;,, j = 1,--- ,m, is

25! = (limy— 00 1% pn)7!, where
Ypu = (tr(P,Gn), -, tr(P, G ) (tr(PS,Gn), -+, tr(PS,Gy)).
With the above manipulation, X p , can be rewritten as
Xpa = 2vec’(G;)(vec(PlJ;s), o, vec(PY))
Lec(PH), -+ ,vec(P)) (vec(PH), - - -, vec(PS)N]!

(ec(PH), -+ ,vec(P}5)) vec(G)).
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By the generalized Schwartz inequality, Xp , < 2vec’(G, )vec(G, ), which provides a
bound for the precision matrix Xp , for any GMME with a finite number of quadratic

moments. This bound can be obtained with a corresponding optimum

MO 1) (|2~ (G, - O

Pn+*:(Gn_ ” 1
4=

L).

With P transformed back to the P,, the best P is

P} = P —D(P*)+ D(P,™)
Ny —1
tr(G -3 tr(G
= (G, - " ”)m—Z“ (DG~ T,
=

(2) In the second approach, we show that g* (1) = u/,S, (1) P;S, (1) u, is the best
moment function in the sense that any other moment functions are redundant given g (1).
Following Lemma 3.16, to show that any other finite number of moment functions are
redundant given g, (4), it is equivalent to show that an arbitrary single moment function is
redundant given g (4). Let P, be an arbitrary n x n constant matrix satisfying Assumption

4,and g, (1) = u),S), (1) P, S, (1) u,. Consider the moment conditions

E@, (o) = E ( & (40) )

&n (AO)

Let

E [Cn (4o) C:z (}“0)] = ( Qo1 Qpp

or, (o), . ( ogr (ko) /2 \ _ ( Di
E=4 )‘E(agn(zo)/ai)‘(z)z)'

According to Lemma 3.15 (b), to show that g, (1) is redundant given g, (4) it’s sufficient

Qi Q2 )

to show that D 1921 =D/ 1911. And because P, is a special case of Py, it’s sufficient to

show D, 1921 is invariant with P,. Following Lemma 3.2, we have

Q1 = a[tr (P PY) + (14 — 3) vec, (Py) vecp (P)],
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where

-3 1
tr (PSPY) = tr (PSG,) — Z;‘ i (BD(Gn) = S =i (G (B)
= 1 (P:G,) - BT i (P D(Gp)),
Ny — 1

and

2 1
vecp (Pn*) = p— (vecD (Gp) — ;tr (Gn)ln) )
4 —

As vec, (A)vecp (B) =tr (A - D(B)), and vec’, (P,) [, = 0, it follows that

2 1
vec’D (Py)vecp (Pn*) = 7 (vec’D (Py)vecp (Gp) — —tr (Gp) vec’D (Py) ln)
4 — n
2
= tr (P,D(G,)) = tr (PSD(G))).
774_1r(n(n)) ’74_1r(n(n))
Hence,
-3 1
Q= olltr (PSG,) — Z“ [ (PIDG) + (14 = 3) o (P DG))]
4~ 4~
= agtr (P;Gn) )
Andsince D, = —otr (PSG,) (Lee, 2001a), we have D2_1£221 = —o 2, which is invariant

with P,.
Furthermore, let the asymptotic variance of the consistent root derived from min g*? (1)
be Egl. As Xp = lim, 00 %D;Ql_llDl (Lee, 2001a), where D = —O'%l‘l" (Pn*s Gn) and

Qp'Dy = Q5 Dy = =0, it follows that L = lim,—,c0 117 (P°G,,). m

Proof of Proposition 3.2. The proof'is divided into two steps. In the first step, we show
that if u,, is observable, g (1) = u,S;, (1) P'S, () u, and g; (1) = u,, S, (1) 13”*S,, () uy,
are asymptotic equivalent in the sense that their consistent roots have the same limit-
ing distribution. In the second step, we show that g% (1) = u)S, (1) IS,TS,, (A) u, and
&y, (W) =u,S, (1) ﬁ; S, (1) u,, are asymptotic equivalent.
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(1) For consistency of the root of g, (1) = 0, it is sufficient to show that % g, (1) —
1e*(2) = 0,(1) uniformly in 2 € A. Explicitly, 1(g} (1) — g¢ (1)) = T — ATz +
22T, where T, = %e;lS;l_l(ﬁ: — P;)Sn_len, T = %E;G;(ﬁ: — P;)Sn_len, and 7,3 =
%G;G;(}Sn* — P¥)Gue,. The terms T, j = 1,2, 3, are all of order 0,,(1) by Lemma 3.11.
Hence %g;; 1) — %g,’; (A) = 0p(1) uniformly in 2 € A. The consistency of the root of
g, (4) = 0 follows from the first part of Lemma 3.6.

0g,(4) _ 6g2(i))

For the asymptotic distribution of the root of g (1) = 0, consider %( L -

and —-(&; (A0) = g5(0)). As 5,(2) = S, = (4 = Zo) W,
1 A I, 1 N
;u;S,;(/l)Pn*S Wau, = ;Ean*anen - (A= lo);e;G;PjSGnen
1 1
= ;E;P:SG,,Q, —(ﬂ—io);ééG;P;SGnén-l-Rnl + R»

1

n

where R,,; = %6;(13”* — PY)’Gpe, and R,p = %e;G’ (13,;“ — PY)*Gpe,. It follows from

Lemma 3.11 that R,1 = 0,(1) and R,» = 0,(1). Hence,

1 A 1
;u;S,’Z(/l)P;S Wouy, = ;u;S; (A) Py Wauy + 0,(1),

1,08,(4) _ 0g,(4)

uniformly in 1 € A, ie., - (=% L

) = 0p(1) uniformly in A € A. For the other
term,

1//A* _1/* /A**_l//*
—u, S P S,u, = —¢€, P ¢, €,(P;, — P)e, = —=u,S, P, Sqyuy +0p,(1),
n

S, P St = = P + = TSP
by Lemma 3.11, i.e., ﬁ(g;; (Lo) — g5 (40)) = 0,(1). Hence, by Lemma 3.6, the feasible
GMME derived from minjea[u), S, (i)]sn* S, (A)u,]* has the same limiting distribution as
that derived from minyca[u/,S! (1) P S, (X)u,]>.

(2) It is sufficient to show that the moment function Q*Fn (1) and its derivative are close
enough to those of g, (1) so that Lemma 3.6 is applicable. Specifically, it shall be shown
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that &5, (1) — & (1) = 0,(1) and 2222 _ 28D _ o (1) uniformly in 1 € A. These

properties are stronger than those sufficient conditions in Lemma 3.6.

Because ity = (I — Mp)un, & ,(A) = g, (1) + En(4) where
En(2) = —ul S/ (A) P S, (A) My, + 1, My, S, (2) P S, (2) My,

Substitute u, = S, le, in the terms of E,(1). Lemma 3.14 is applicable and all the terms
of E,(A) are of order O,(1) uniformly in A € A. The uniform order holds because 4 is
linear in S, (4). Hence, g;n (A) =g, (4) + Op(1) uniformly in 4 € A. Consequently, one
has, in particular, that 385 (1) = 3&x(1) + 0,(1) and ﬁg;n(zo) = ﬁg; (A0) + 0,(1).

The first order derivative of g, (4) is

68 ()
oA 3
A Tl TykS ~ / ) Dxs ﬁg;(/l)
= —u, WnPn Su(Dit, = _“n(ln - Mn)WnPn Sy (VDU — My)u, = PY) + R, (4),

where R, (1) = u),M, W,;IS,,*SS” Duy + u), W,;IS,,*SS” D Myu, — u, M, W,;IS,;"SSH (M) M,u,.

By a similar argument, R, (1) = O,(1) uniformly in 4 € A by Lemma 3.14. This implies,

08F ,(2) a8k (1)
By 07

in turn, that % % + 0,(1) uniformly in A € A. Hence, by Lemma 3.6,
the feasible BGMME derived from min,ex[u),S), (/1)16,;k S, (A)i1,]* has the same limiting
distribution as that derived from minyea [u),S), (/l)ﬁn* Sy (Dun]?.

In summary, the above two steps show that the feasible BGMME derived from
min(a, S, (2) £} S, (D))’

has the same limiting distribution as the BGMME derived from min;ea [u),S), (1) P Sy (4)u, 1%.

Proof of Proposition 3.3. Consider the moment conditions

20\
E(gn(eo> ) =0
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where g, (0) is a vector of arbitrary moment functions taken the form of (3.13). To show
the desired results, it is sufficient to show that g, is redundant given g, or equivalently that
there exists an 4, invariant with P;, (j = 1,--- ,m) and Q, st. D> = Q1 4, according

to Lemma 3.15 (c), where

O0nXn  0,GuXufo

by (22O __| O oGy
o0 : E ’
0 oitr(Ps,Gn)
and
Q)
= E|[g.(00) g (60)]
530,0}, 030,05, usQuecn(Pl) - wsOyvecn(Phy, )
_ | maveeh (P 0], pzvech (P 03, otr(P,Pr) - ogtr(P, Pl )
00 0 . 0
A 0 0 vech(Piy)vecp(Py;) --- vech(Pin)vecp(Pl )
0 0 vecp(Pun)vecp(P}) --- vec/D(Pmn)vecD(P**H’n)

To simplify notations, denote xk = 08 [(;14 -1) - ’1%] = 0(2)(;14 — ag) — ,u%. Let

/ Uazlk O x 1

-2
01xk 2N
-2
O1xr o
Ay = — * 0

by 0 ’

\b;* o)

where b; = —%e;{j forj =1,---,k*. To check Dy = Q1 4,, the following identities
are helpful:
(1) vecD(ij*+1,n) = X;:j — %lnl;X:;]., forj=1,---,k",

@ X, veen(Pryy e = Xn — wlal) X,
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3) veen(Ph) = Zvecp(G, — W€ )TV (G, X, B0 — L1,/ G, X,
D( 1,,) = = vecp(Gy 7 n) rc (GnXnPo nintyUn nBo)-
It follows from identity (2) that
* 13 k* *

(4) an - 73 ijl DeCD(Pj_H,n)e;(j = Xy,
and it follows from identity (3) that

(5) 0203, + usvecp(P},) = 02G Xy By
For an arbitrary n x n matrix P, with tr (P,) = 0, we have:

(6) vec (P) 01, = (05(pa — ) /K)vec)y (P) X,

(D oftr(Py Py ) +(ua=30 hvec, (Pvecp(Pr,, ) = (na—o dvec,(Phvecn(Pr, ),
forj=1,---,k% and

(8) p3vec (Py) 05, +ogtr (PSP} + (g — 3o vec (P vecp(Pr) = o gtr (PSGy).
It follows from identity (4) that the (1, 1) block of Qy1 4, is —Q), X, and it follows from
identity (5) that the (1, 2) block of Q31 4, is — 0, G, X, B Identities (2), (6) and (7) imply
that the (j 4+ 1, 1) blocks of Q31 4, are zeros for j = 1, ---,m, and (8) implies that the
remaining (j + 1, 2) blocks of Qj; 4, are —a%tr(P]‘?n G,) for j = 1,---, m. Therefore,
Q1 4, = Ds.

Furthermore, as g;; () is a special case of g, (€), and 4,, is invariant with P,’s and Q,,

it follows that D; = Q; 4,,, and hence Ql_llDl = A,, where Q| = Q) = var (g,’l‘ (90))

and ’ )
*/X */G X ﬂ
% on<in onInaAnf0
Dy =E 8gn—(¢90) - _ 0 a%tr(Pl*nSGn)
00 . .
0 ogr(PE, ,Gn)
Following Lee (2006), =5 = lim,— o + D] Q7' D1 = lim, o0 1 D} 4,,, where
D4, = ( oy X0, ey X0, ) |
05205 Xy 05%(GuXaBo) 03, + tr(PiEGy)

The desired result follows as k = 0(2)(/14 — ag) — ,u%, U3y = 7730(3), and puy = 71403. ]
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Proof of Proposition 3.4.  We shall show that the objective functions f ;(0) =
gy (G)f);_l £5(0) and F,(0) = g¥(©)Q: g (@) will satisfy the conditions in Lemma
3.7. If so, the GMME from the minimization of /(@) will have the same limiting distri-
bution as that of the minimization of f,(0). The difference of f }(6) and F ,(0) and its
derivatives involve the difference of g% (f) and g (f) and their derivatives. Furthermore,
one has to consider the difference of Q* and Q.

First, consider 1(g7(0) — g;:(9)). Explicitly,

1
~(2,0) — £,0)Y
1 A 1 A 1 A
= [;(QTn - QTn)/En(H)a ;(Q;n - Q;n)/fn(e)a ;E;,(H)(G; - G;)dfn(e), Ok*xl]-

The €,(0) is related to €, as €,(0) = €, + (Lo — )G €, + dy(0) where d,,(0) = (Ao —
DGuXufo + Xa(o = f). Tt follows that (03, — O7,)en(®) = (0}, — OF,)eun +
(o — DX(O1, — 01,) Guen + (01, — 01,)dn(0) = 0p(1) uniformly in 6 € © by
Lemma 3.12. The uniformity follows because d,(0) is linear in 4 and S. Similarly, it
follows that %(Q;n — 03,)€.(0) = 0,(1) uniformly in § € © by Lemma 3.12, and
%6;(0)(6?;‘; —GZ)den (0) = 0p(1) uniformly in @ € ® by Lemma 3.11. Hence, we conclude
that %(g;; (0) — g;(0)) = 0,(1) uniformly in 6 € O.

Consider the derivatives of g (@) and g (0). As the second derivatives of €, (f) with

respect to 6 are zero because €,(6) is linear in 6, it follows that

Q*/@En(e) 0
* / en *(206‘/6,,(6’) 7 66;,((9)P*366,,(92
0g, () _ €,(0) P} =2 d 0°g, (@) _ 20 L1n o0
06’ : ’ 0000’ :
* o€n(0) d€,(0) px o€, (0
OV PEL s Pesin Eaef)
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The first order derivatives of €,,(0) is 866”0(,6) = —(Xu, W,,Y,). Because W, Y, = G, X, o+

Gn€n3

T (B~ Pip)en 6)
= LGXB) G = G 0) + - (GuXa o) (G~ G e+ (o — DGer)
LGl = G d0) + €, G (G = G en + o = DGrer)
= o,(D),
uniformly in 8 € ®, and
1 !¢ D*S *S
;(WnYn) (Pyy, — Piy)WaYy
= B0 GGl = GG X+ - Kno) GG = G G
+%e;G;(G: — GG e,
= 0,(1),
by Lemma 3.11. Similarly, Lemma 3.11 implies that %X;l (G; - G;)dse,, (@) = o0p(1) uni-

formly in 0 € ©, and 1X/ (G — GH* W, Y, = 0,(1), 1X(G: — GHPX, = 0,(1).

Therefore, Le/ (0)(Prs — Prs)22® — o, (1) and 1290 (prs _ proy2@) — 4, (1) yni-

1n 00’ 1n 00’
: s : 1A= x/\ 0€, (0
formly in 6 € @. Similarly, it follows from Lemma 3.12 that (07, — O7/) Ea 0(,) =
0, (1) and l(Q*’ - ;;)666”9(/9) = 0,(1) uniformly in # € ©. Hence, we conclude that

o* ~2 %
(agn (‘9) Ogn(e)) — Op(l) and (6 gn (‘9) _ o gn (0)

Consider }I(QZ — Q7), where
Q, = E[g; ©00)g (00)]

( a0y O w30y o )

*/ * 4 A
#3031 O ToA% 4y F (g = 3000 W)
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with wp. | = [veep(Py,), -+, vecp(Pfiy, )] and

o (PPL) e i (PR

* —
Apeyy =

*S *S
i (B Pi) ot (BB )
First, consider the block matrix O'SAZ* bt ey — 303)&);‘;1 1 Ofeyq- AS GZ is uniformly
bounded in column sums in absolute value with probability one, it follows from Lemma

3.11 that 2er (PR PY ) — Ler(PESPE) = Lin (G2 GE) = Lir(Gi®Gr) = Lur((Gy -

1n ¥ 1n
GHBGE+ G (GE — GE)] = 0,(1), and
Lo, NS S ,
;vecD(Pln)vecD(Pln) — vecp (P},) vecp (Pr)
= %vec’l)(éfzd)vecl)(é;d -G+ %Dec’D(G:d — GiNvecp (G29) = 0,(1).

Similarly, as P;+1,n = D(XZJC.Z) for j = 1,---,k* Lemma 3.11 implies that %tr[(ﬁl*,f —

PEYD(Xh] = tveen(Gy—Gp)® X4 = 0,(1),and yoec), (P, —Pi,) X1¢ = tvec), (G-

n
G;)dX;]“.' =op(1) for j =1,---,k*. Hence, we conclude that
1 ~252 D*S D* 1 4 *5 p*

~ 1 D*S 1% * % A 1 # *
— ai)zg(tr(Pl-nSPj ) — tr(PISP3)) + (6 — ag);tr(g;pjn) =0,(1),

n

and

(s~ 363 wech (B oeen(Ph) — (i~ 3odoec (B yvecn(P,)
= (=362 ey (Pveen(Ply) — vech (B veen(Py)]

(s =362 = (s = 309 vec (P ween(P;,)
= o,(1)

fori,j=1,--- ,k*+ 1.
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Next consider the block matrix u30Q;'®p. . ;. As elements of Q’fn and Q;n are uni-
formly bounded with probability one, it follows from Lemmas 3.11 and 3.12 that %Q’f;lvec D (131*”)—
Lowveep (Pr) = 101 vecp(G3? — Gi4) + 101, — 01,)vecp (Gi4) = 0,(1) and
y 05 vecp(Pl) = O vecp (Pr,) = 03,0ecp (G =G +,(03,~ 05, )veep (G3) =
op(1). Similarly, %(Q,’; - 0) X*d =o0,(1) for j =1,---,k* by Lemma 3.12. Hence,

we conclude that

1 A Ak D * * *
;(:u?ﬁ Qn/DeCD(Pjn) — U3 Qn/DeCD(Pjn))

N 1 A sk D * * * A 1 * *
= i3, (03vecn(P},) = 0;/vecn(P],) + (s = ) 03 veen(P},) = 0,(1)

forj=1,---,k*+ 1.

Lastly, consider the remaining block matrix a% 0y 0. Aselements of Q’l“ , and Q; , are
uniformly bounded with probability one, Lemma 3.12 implies that 1 (0¥ 01 — 0% 0% ) =
L or (01, — 0t )+(0%, —0%,) 01,1 = 0,(1). Similarly, by Lemma 3.12, 1 (03 03 —
03 0%) = 0p(1)and 1(03 0%, — 03 0% ) = 0,(1). Therefore, it follows that 1 (52 0% 0% —
c20Y0%) = 621(0Y 05 — 00 + (62 — ad)10¥ 0% = 0,(1). In conclusion,
%fz;; - %QZ = 0,(1). As the limit of %QZ exists and is a nonsingular matrix, it follows that
(%Q;‘;)_l — (%QZ)_1 = 0,(1) by the continuous mapping theorem.

Furthermore, because 1(g%(0) — g/ (0)) = 0,(1), and 1[g/(0) — E(g}(0))] = 0,(1)

uniformly in 0 € ©, and supycq ~|E(g:(0))| = O(1) (Lee, 2006, p. 21), 1g*(0) and

1 agn @)

b

08,(9)

—gn »(0) are stochastically bounded, uniformly in 6 € ©. Similarly, T

1
n

%a 6%’55) nd ,]l g 6%’5%?) are stochastically bounded, uniformly in 8 € ©.
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With the uniform convergence in probability and uniformly stochastic boundedness

properties, the difference of F(0) and F ,(0) can be investigated. By expansion,
1
~(F30) = F2(0)
= GO0 GO - 0D+ g OG- QNGO + g 00 @0) - 50)
= o0p(1),
uniformly in & € ®. Similarly, for each component 6; of 4,

10°130)  18°F .(0)
n 00,060 n 00,00

2.08,/(0) 5.—108,0) . 10°83(0)  0gy(0) ._1025(0) _10%22(0)
— Q* }’l */ 0 Q* n * n */ 0 Q* n
o0, s Te O g s~ Tog, e & O 5 7))
= op(1).
Finally, because (“2%,> 08, (GO)Q* - 6g” (00) Q:~1) = 0,(1) as above, and Tg” *Oo) =
O, (1) by the central limit theorems in Lemmas 3.4 and 3.5,
(GF 2(00) @Fn(ﬁo))
ﬁ o0
*/ */ */
(90) . 8100 &1 _ 983 00) i1y 1
2 Q* — (% 0 — 2 Q) —g* (O
{ 80 f( £,(00) — g,( o))-l-( v, Q, PV R )ﬁg”( 0)}
*/
8y (00) Auy 1 .
= % %) Qr ' —=(85(60) — g5(00)) + 0p(1).

o0 Wb

s . 0
As J=(23(00) — £5(60)) = 0,(1) by Lemmas 3.11 and 3.12, [(af 200 _ o y(Go)y

0p(1). The desired result follows from Lemma 3.7. m
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3.5.4 Joint GMM Estimation of the MRSAR Model

When the disturbances in the MRSAR model are normally distributed, the asymptotic

. . A PR R .
variance matrix of the MLE 0y1 = (6,7, AmL, O'?V[L)/ is

UL%X,;XH UL%X,; (GuXnBo) 0

Avar (3ML) = O_L(z) (GanﬁO)/Xn % (Gan,BO)/ (Gan:BO) +ir (GZGV!) O_L(z)tr (Gn)
0 511 (Gn) =
%0 %0

As the asymptotic covariance between 1, and &?M ; are not zero in general, it is not
trivial to determine whether the efficiency property of Op = (/3’;, 7 p) will be affected by
concentrating o2 out in the GMM estimation. And when the disturbances are not normally
distributed, the problem may be more complicated. Here we consider the joint estimation
of oo = (B, o, 0%)’ in the GMM framework. By comparing the asymptotic variance
matrix of the BGMME derived from the joint GMM estimation approach with that of the
BGMME described in Proposition 3.3, we conclude that there is no efficiency loss in the
estimation of 69 = (B, Z9)’ by concentrating ¢ out.

For simplicity, we assume an intercept appears in X,, so that the last column of X, is

l,. Define P}, = G%, P?

i = D (Xyy) for j =1,--- .k and 0}, = [0}, 03,] with

Q’fn = X, and

2

n3 20013

B GuXufy— —20B ecp (Gy).
(=) —m " =)=y "

— - _ /
Let 3* () = [e; ©) 0. ¢, (0) Bl (0) — ot (P;n)] (j=1,---,k+1). The consis-

Q;n = GanﬂO +

tent root dz derived from ming g (0) Q;‘,_l 2 () with QF = var (g;; (50)) is the BG-
MME within the class of optimal GMMEs derived from mins g}, (0) Qn_ 13, (9), where

30As we assume that X,; = I, 13,;_1 » = D (Xux) = I, can be of use as the simple second moment for
the estimation of a%. If there is no intercept in X, we need to add a moment associated with 7, to estimate

2
00
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Q, = var (g, (o)) and
gn(é) = (E;(G)Qn, GZ(Q)PlnEn(G) - O'ztr (pln) sttt fé(e)pmnfn(e) - 0'2”" (pmn))/;

with O, being an arbitrary n x &’ matrix of IVs, and P,’s being arbitrary n x n matrices,
not necessarily with zero traces. At 8o, g,(60) = [€,On, €, Pjnen — aitr (Pj,)]’, which

has a zero mean because E(Q'€,) = 0, E(e,) = 0 and E(¢, P €,) = a%tr(ﬁjn) for

n* jn

j=1,---,m.
Analogous to the proof of Proposition 3.3, the above statement is confirmed by showing

that g, is redundant given g, or equivalently that there exists a matrix A, invariant with

Pi,(j=1,---,m)and Qn st. Dy = Q91 A4,, according to Lemma 3.15 (c), where

0,Xn  0,GaXufy 0
Dy=E (6‘?’(’3;50)) =— 0 7otr ({DfnG") tr (.Pln)

0 0'(2)1‘7’ (f_’,fmGn) tr (pmn)

and
Qo
= E|[gn(0) &) (60)]

030,03, 030,03,  wsOyvecp (Pf,) -+ w3Opveen (Pfy,)
,ll3l)€C’D (151”) QTn /13D€C/D (131”) Q;n Ugtr (PISnPI*n) T Ugtr (Isfnp;+l,n)

,U3UeC/D (pmn) QTn Iu31)€C/D (pm”) Q>2kn O'gtl" (p;:mpl*n) U O'gll" (Pfim]s/:—i-l,n)
[0 0 0 e 0 ]
00 vecly () veen (P) - vec (Pu) vecn (Py,)

+ (ﬂ4 - 303)

00 vech (Pun)vecn () -+ vecy (Pan) vecn (P,
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To simplify notations, denote x = 08[(774 —-1) - n%] = 0(2)(,u4 — 03) — ,u%. Let

Ogx1 €

01xx 0'(;2 0

i Oixk 05 0
0 5

where the k-dimensional vector = [0, ---,0, —u3/x], and b; = — (,u3/zc) e}cj. With
identities analogous to those provided in the proof of Proposition 3.3, straightforward but
tedious algebra leads to Dy = Qo1 Ay,

Furthermore, as g, (J) is a special case of g, (d), and Ay, is invariant with P,’s and O,,,

it follows Ql_lll_)l = flz_ll Dy = A, where Q1 = var (g;; (50)) and

[0 Xy  01GaXuBy 0 ]
o s 3 X 2;;1G,1Xnﬁ0 0
- *S *
D= E g 00 _ _ 0 ootr (PI5G,) tr (P})
00 : : :
0 O'%tl’ (Pk*j-l,n G”) r (13/;—1,?1)

The asymptotic precision matrix of dps1is Ty = limy—s oo %l_)’lfl_ll D = lim,_ o0 %D’I/In,

where

54,
(ﬂ4—023)_X2 n/% , UJ%){QQ& ) —(ﬂzs/’f) Xln
= 0y 05Xy 0q (GaXupo) O3, +1r (P1Gy)  og tr (G)
— (u3/x) 1, X, aaztr (G¥) nod/x
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From the inverse of a partitioned matrix, we have Avar (9 B J) = 2;} /n, where

_ | (e ) X an/" 7o % i ]
nXxpy = |: Q (G X,B()) an—l-ll” (pl*rfG")

- (”03/")_ [ _a(ggt/rk()én)ln ][ —(u3/k) X 03%tr (G}) ]

=2 vt =2y %
_ |:0-02XnQ1n oo X205,

05705 X, 057 (GaXuBo) O3, +tr (P{SG,) ]

= nXa,

3.5.5 Monte Carlo Results

True parameters: 1o = 0.6

since Kk = 06(u4 0) ,u3, 3= ;7300, and uy = 17400 Hence the efficiency property

of the BGMME of 6 is not affected by concentrating o2 out in the GMM estimation.

n =49 n =245 n =490
method Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE 562 (.094) [.102]  .590 (.040) [.041]  .593 (.028)[.029]
OGMME 568 (.098)[.103]  .593 (.041)[.041]  .596 (.028)[.029]
BGMME  .563 (.095)[.102]  .592(.039)[.039]  .596 (.027)[.028]

Table 3.1: QMLE and GMME of the SAR disturbance process (normal)

True parameters: 19 = 0.6

n =49 n =245 n = 490

method ~ Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE 559 (.098)[.106]  .589 (.044)[.045] .592 (.031)[.032]
OGMME  .568 (.100)[.105]  .593 (.041)[.042]  .596(.029)[.029]
BGMME  .563(.097)[.103]  .592 (.040)[.041]  .595 (.028)[.028]

Table 3.2: QMLE and GMME of the SAR disturbance process (student t)
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True parameters: 19 = 0.6

n =49 n =245 n =490
method Mean(SD)[RMSE] Mean(SD)[RMSE] Mean(SD)[RMSE]
QMLE 567 (.098) [.103]  .592(.041)[.042]  .595(.028)[.029]
OGMME 570 (.103)[.107]  .594(.043)[.044]  .597 (.029)[.029]
BGMME  .569(.099)[.104] .594(.036)[.036] .597 (.025)[.025]
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Table 3.3: QMLE and GMME of the SAR disturbance process (symmetric mixture normal)
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