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Abstract

The traditional theoretical concept in game theory, Nash equilibrium, makes strong

assumptions about people’s rationality and the accuracy of their expectations about

others’ behavior. As a result, it often provides a poor description of actual behav-

ior. Behavioral Economics seeks to improve the descriptive power of Economics by

identifying and studying, often through experiments, actual patterns of behavior and

reasoning.

In the first chapter of my dissertation, I study experimentally behavior in one-

shot normal-form games. These games allow us to minimize learning and cultural

context and to study behavior based mostly on reasoning. In this way, they could

provide useful insights into real-life interactions in which people engage without

prior experience or clear cultural norms, such as the first spectrum rights auctions

or school-matching schemes.

I use a new approach to investigating behavior in one-shot normal-form games.

Using subjects’ play as well as their stated beliefs about their opponent’s play, I study

two fundamental dimensions of behavior. The first dimension is whether subjects

are naive (do not consider what their opponent might do) or strategic (consider what

their opponent might do). The second dimension is whether subjects’ behavior is

better captured by risk neutrality or by risk aversion.

In treatment A, subjects (graduate students at OSU) play the games without in-

terference from belief elicitation (beliefs are elicited after all games have been played).
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I find that (i) only a small minority of subjects is naive, and (ii) the majority of sub-

jects is risk averse. However, these results are not robust to changing the games or

the subject population (from graduate to undergraduate students).

Some interesting comparative statics emerge by manipulating treatment A (keep-

ing the games and the subject population fixed). Most notably, when subjects are

explicitly prompted to form (and state) beliefs while playing the games (treatment

B), then (iii) naive subjects all but disappear, and (iv) the proportion of risk averse

subjects decreases dramatically relative to treatment A. A possible explanation for

the latter is that seemingly risk averse behavior is actually driven by ambiguity aver-

sion (i.e. by a lack of confidence in one’s beliefs rather than by curvature in the utility

function). In this case, giving subjects a structured way to think about the games in

treatment B may be reducing ambiguity, thus increasing subjects’ willingness to take

risks. If simply having a structured way to think about a decision situation reduces

ambiguity, this has far-reaching implications for behavior under uncertainty.

The second chapter of my dissertation, which is based on joint work with Dan

Levin and James Peck, investigates experimentally behavior in a dynamic invest-

ment game in which players receive two-dimensional signals (a common-value signal

about the market return and a private cost of investing) and timing of investment is

endogenous. This game involves two key forces: on the one hand, there is an oppor-

tunity to wait and observe investment activity by others; on the other hand, there

is a cost to waiting. How these forces play out may have implications for important

real world situations. For example, at the end of a recession firms may invest straight

away, thus putting an abrupt end to the recession; alternatively, they may wait to

observe investment by other firms, thus prolonging the recession.

In an experiment with small (two-player) markets, investment is higher and prof-

its are lower than in Nash equilibrium. The study separately considers whether
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a subject draws inferences from the other subject’s investment, in hindsight, and

whether a subject has the foresight to delay profitable investment and learn from

market activity. In contrast to Nash equilibrium, cursed equilibrium, and level-k

model predictions, behavior remains the same across the experimental treatments.

Maximum likelihood estimates are inconsistent with belief-based theories, but are

consistent with the notion that subjects use simple rules of thumb, based on insights

about the game.
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Chapter 1

Strategic Play and Risk Aversion in

One-Shot Normal-Form Games: An

Experimental Study

1.1 Introduction

Behavior in a game depends on a combination of reasoning, learning and cultural

context. One-shot normal-form games allow us to minimize the effects of learning and

cultural context and to study behavior based mostly on reasoning. This approach of

isolating reasoning could offer general insights into decision-making in games. On a

more practical level, it could provide a useful benchmark for real-life interactions in

which individuals engage without prior experience or clear cultural norms, such as

the first spectrum rights auctions or school-matching schemes.

Experimental investigation of behavior in one-shot normal-form games is neces-

sary since the theoretical concept, Nash equilibrium, often provides a poor description

of behavior in the absence of learning and cultural context.

In the current paper, we focus on two general dimensions of behavior in one-

shot normal-form games. The first dimension is whether a player ignores what the

opponent might do (i.e. behaves naively) or whether she considers what the opponent

1



might do (i.e. behaves strategically). The second dimension is whether a player’s

behavior is better captured by risk neutrality or by risk aversion. Before we outline

our approach in more detail, let us briefly review the literature.

1.1.1 Literature

The existing literature has taken two approaches to experimental investigation of

behavior in one-shot normal-form games.

The first approach is to specify types of players and to estimate which types

describe subjects’ behavior best. Each type is characterized by a fixed rule which

she uses for making a decision. The most prominent types include L0 who plays

randomly; L1 who best-responds to L0 ; L2 who best-responds to L1 ; Nash who

plays the Nash equilibrium; and Worldly who best-responds to a mixture of L1 and

Nash players.

Unfortunately, this approach has so far not lead to a clear picture regarding

which types are most common in the population. Stahl and Wilson (1995) (SW

hereafter) estimate that the most common type is Worldly whereas L1, L2 and

Nash are relatively rarer.1 On the other hand, in a comprehensive study which uses

both players’ decisions as well as their patterns of looking up payoffs, Costa-Gomes,

Crawford and Broseta (2001) (CGCB hereafter) estimate that 45% of the population

are L1 and 44% are L2. The strong presence of L1 seems to be confirmed by Costa-

Gomes and Weizsäcker (2005) (CGW hereafter) who find that subjects choose L1 ’s

preferred action most frequently (60% of the time). However, in another twist, Rey

Biel (2005) finds that subjects play the Nash equilibrium most frequently (80% of

the time), whereas they choose L1 ’s preferred action much less frequently (50% of

the time).

1SW estimate that Worldly, L1, L2 and Nash comprise 43%, 21%, 2% and 17% of the population,
respectively. The remaining 17% are estimated to be L0.
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Risk Neutral Risk Averse
Naive NRN NRA
Strategic SRN SRA

Table 1.1: Types

The second approach in the literature is to elicit players’ beliefs regarding the op-

ponent’s play and to investigate average best-response rates (assuming risk-neutrality)

to (stated) beliefs. CGW find a best-response rate of only 54% in 3×3 games, while

Rey Biel (2005) finds a much higher best-response rate of 73% (again in 3×3 games).

1.1.2 Outline of Approach in Current Study

Given the importance of one-shot normal-form games and given that no clear picture

of behavior in these games has emerged so far, we take a different approach to

studying behavior in these games.

In our experiment (similar to what has already been done in the literature) we

let subjects play ten 3 × 3 one-shot normal-form games and we also elicit beliefs

regarding the opponent’s play.

Our approach differs from the existing literature in how we specify types of play-

ers. In particular, we specify four types, each of which is characterized by where she

falls along the two general dimensions “naive vs. strategic” and “risk neutral vs. risk

averse”. Thus, we have a naive risk neutral type (NRN ), a strategic risk neutral

type (SRN ), a naive risk averse type (NRA) and a strategic risk averse type (SRA)

(see table 1.1). The two risk neutral (risk averse) types are assumed to have linear

(logarithmic) utility. The two naive types are modeled as preferring the action which

gives them the highest average utility. The two strategic types are modeled as form-

ing a belief over the opponent’s actions and preferring the action which maximizes

expected utility given that belief.
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A player of type t ∈ T = {NRN, SRN,NRA, SRA} is modeled as choosing t’s

preferred action with a probability which depends on an individual-specific precision

parameter λ. We treat λ as a random effect which is generated from a distribution

with mean µ and standard deviation σ.

This setup allows us to write down the probability of players’ chosen actions,

conditional on their beliefs, as a function of the proportion of each type in the

population ({pt}t∈T ) and (µ, σ). Using subjects’ stated beliefs as a proxy for their

true beliefs enables us to estimate {pt}t∈T and (µ, σ) in each treatment via maximum

likelihood. We also compute Bayesian posteriors over the parameters (starting from

a uniform prior).

Our approach has several advantages. First, it focuses on two very general di-

mensions of behavior while imposing as little additional structure as possible. This

is in contrast to the existing literature, in which types act according to narrowly

fixed rules. In fact, almost all types in this literature either coincide with or are a

special case of one of our types. For example, L1 coincides with NRN and the above

mentioned L2, Nash and Worldly are special cases of SRN. If people do not behave

according to narrowly fixed rules which can readily be included in the specification,

then more general types are desirable as they reduce the danger of misspecification.

Second, in contrast to previous studies, we allow for risk aversion.2 Despite

the fact that payoffs are relatively small, it is quite plausible that many subjects’

behavior is better captured by risk aversion than by risk neutrality.3 In fact, risk

aversion could explain why L1 does well in predicting behavior in some studies

(CGCB and CGW) and not so well in other studies (SW and Rey Biel (2005)). In

2SW use Roth and Malouf’s (1979) binary lottery procedure in which a subject’s payoff de-
termines the probability of winning a given monetary prize. Although this procedure should,
theoretically, eliminate any effects of risk aversion, there is evidence that it often does not work
well in practice. See Camerer (2003), p.41 for a brief discussion as well as for further references.

3For example, modeling subjects as having CRRA utility, Holt and Laury (2002) find that 66%
of subjects exhibit risk aversion even when payoffs are between $0.1 and $3.85.
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CGCB and CGW, L1 happens to choose the maximin action4 in 15 out of 18 and in

12 out of 14 games, respectively; on the other hand, in SW and Rey Biel (2005) this

occurs in only 3 out of 12 and in 4.55 out of 10 games, respectively. Given that risk

averse subjects have a tendency to guarantee a certain level of payoff and hence may

often choose the maximin action, it could be that in studies in which the maximin

action and the L1 action often coincide, L1 is simply masking the presence of risk

averse subjects. Actually, risk aversion could also explain why subjects are playing

the Nash equilibrium so frequently in Rey Biel (2005): the games in this study are

constant-sum so that the Nash action always coincides with the maximin action.

Third, we avoid a possible bias in favor of L1 which exists in previous studies.

In particular, let S be the simplex which represents all possible beliefs over the

opponent’s actions in a game and let SL1 ∈ S represent the beliefs for which the

L1 action is a best response. Then the ratio Area of SL1

Area of S
has a tendency to be rather

large: it is approx. 0.66, 0.75, 0.63 and 0.71 (averaged over games) in SW, CGCB,

CGW and Rey Biel (2005), respectively.6 This means that in previous studies L1

may be masking the presence of subjects who are best-responding to beliefs which

are not consistent with any of the specified types. Our approach avoids this bias

by explicitly allowing for types which best-respond to their beliefs (whatever these

beliefs may be).

Fourth, although CGW and Rey Biel (2005) investigate average best-response

rates to (stated) beliefs (assuming risk-neutrality), their approach has two limita-

tions. First, it does not tell us whether non-best-response decisions are simply due

to errors or whether they are due to behavior which deviates in a systematic way

4The action that guarantees the highest payoff regardless of what one’s opponent does.
5Averaged over row players and column players.
6These ratios are very high given that each game in SW, CGW and Rey Biel (2005) involves a

choice between 3 actions and each game in CGCB involves a choice between 2-4 actions.
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from expected payoff maximization. Second, because of the focus on average best-

response rates, it does not address subject heterogeneity. We address both of these

issues.

Finally, our approach is very parsimonious and we need to estimate only five

parameters: three parameters for the proportions of the four types in the population

as well as (µ, σ).7

However, our approach also relies on two main assumptions. The first assumption

is that types are correctly specified. Given the generality of our types this assumption

is weaker than in previous studies. However, it is still nontrivial. We discuss this

assumption further in section 1.5.

The second assumption is specific to our approach. In particular, even if types are

correctly specified, the likelihood function depends on subjects’ true beliefs whereas

we use stated beliefs in the estimation. This means that the estimation implicitly

relies on stated beliefs being a good proxy for true beliefs. It is this assumption which

makes the generality and parsimony of our approach possible. As discussed in section

1.5, we believe that it is a reasonable assumption. However, it too is nontrivial.

In addition, although the generality of our types is an advantage, it is also a

limitation in that it does not allow us to address more concrete questions about be-

havior. For example, even though we can estimate the proportion of strategic types,

we cannot say much about the kinds of strategic reasoning they employ. Because

of this limitation, as well as because of the second assumption above, we view our

approach as complimentary to rather than as a substitute for the approaches taken

in the literature.

7SW estimate 13 independent parameters (11 when they omit one of their types). CGCB
estimate 15 independent parameters in the model which looks only at decisions and 67 independent
parameters in the model which also incorporates search patterns.
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Before proceeding, let us briefly sketch the design of the experiment as well as

the main findings. The main part of the experiment consists of three treatments (A,

B & C) in which we use graduate students as subjects.

In treatment A, subjects first play all games and only after that beliefs are elicited.

This treatment allows us to estimate what proportion of players are each type when

the games are played in a natural way without interference from belief elicitation.

Treatments B and C allow us to investigate how behavior along the “naive vs.

strategic” and the “risk neutral vs. risk averse” dimension is affected by two manip-

ulations of treatment A.8 In treatment B, beliefs are elicited at the same time that

each game is played, i.e. players are exogenously prompted to form beliefs while

playing the games. In treatment C, we eliminate the belief formation process alto-

gether by having subjects choose between lottery tickets instead of between actions

in a game.

If our estimates of naive behavior diminish in B and C relative to A, this would

suggest that these estimates are indeed driven by a failure of some subjects to take

into account what their opponent might do.

What might be more puzzling is why we should be interested in how behavior

along the “risk neutral vs. risk averse” dimension varies across treatments. After all,

there is no reason for subjects’ utility function for money to change its shape across

treatments. However, we do not take risk aversion too literally. We merely view it as

a formal way to capture cautious behavior. Such cautious behavior may actually be

driven by something different from curvature in the utility function. For example, if

seemingly risk averse behavior is in fact driven by ambiguity aversion,9 we can very

well expect variation in the estimated proportions of risk neutral subjects given that

the ambiguity of decision tasks may differ across treatments.

8Keeping the games and the subject population (graduate students) fixed.
9A situation is ambiguous if the decision maker is not confident in her belief. As explained in

section 1.5, ambiguity aversion and risk aversion have similar implications for behavior.
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Regarding our findings in A, we estimate that only a small minority of subjects

(12%) is naive and only a minority (39%) is risk neutral. However, these estimates

do not seem robust across games with similar formal structure or across subject pop-

ulations. In particular, in a pilot session using CGW’s games10 and in a follow-up

session with our games, but with undergraduate subjects, we obtain quite different

estimates. In a sense, this is a negative result because it suggests that it may be

difficult to draw general conclusions about behavior in one-shot normal-form games.

Perhaps this is the reason why no clear picture has emerged from the existing lit-

erature. On a more positive note, variations in behavior across games and subject

populations present us with the new challenge of explaining these variations.

Perhaps the more generalizable conclusions come from looking at changes in our

estimates across treatments A, B and C. In this regard we find that, as expected, the

estimate of the proportion of naive types falls from 12% to 4% and then to 3% in A,

B and C, respectively. The estimate of the proportion of risk neutral types increases

from A to B almost twofold (from 39% to 74%) and then decreases again in C (to

42%). The increase from A to B is consistent with ambiguity aversion - it is plausible

that the decision tasks are perceived as less ambiguous in B than in A because in

B subjects are provided with a way to think about the games. The decrease from

B to C is consistent with ambiguity aversion only if lottery tickets are perceived as

ambiguous. We discuss this pattern at length in section 1.5. At any rate, ambiguity

aversion or no ambiguity aversion, the variation in the estimated proportions of risk

neutral subjects across treatments suggests that there is something more going on

than mere curvature in the utility function.

We proceed as follows: section 1.2 explains the experimental design; section 1.3

presents the formal model; section 1.4 presents the results; section 1.5 discusses some

relevant issues and concludes.

10I thank Costa-Gomes and Weizsäcker for letting me use their games.
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1.2 Experimental Design

The main part of the experiment consists of three treatments - A, B and C.11 We

conducted 2 sessions of A (24 and 29 participants, respectively), two sessions of B (19

and 24 participants, respectively) and three sessions of C (13, 12 and 13 participants,

respectively). Subjects in C were participants from A and B, who accepted the

invitation to attend one more session. Subjects were Ohio State University PhD

students from a wide range of programs who had never taken Economics courses.

All subjects were paid a $5 show-up fee in A and B and $7 in C. In addition,

subjects could earn Experimental Currency Units (ECU) which were converted into

dollars at the rate 0.1$ per ECU. Average earnings (including the show-up fee) were

$20.68, $20.83 and $11.85 in A, B and C, respectively.

We also conducted 1 pilot session for A (28 participants) and 1 pilot session

for B (26 participants). Both pilots were different from the main sessions in that

we used CGW’s games and there were also slight differences in the design and the

instructions.12

In addition, we conducted one follow-up session for A (25 participants) in which

we used undergraduate students in order to check if the results from A are robust to

the subject population.

The experiment was programmed and conducted with the software z-Tree (Fis-

chbacher (1999)). The sessions were held in the Experimental Economics Lab at The

Ohio State University.

11The instructions for treatments A and C can be found in the appendix. The instructions for
treatment B are similar to those for treatment A.

12In the pilot for B, we also used undergraduate students instead of PhD students.
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1.2.1 Treatment A

Treatment A consists of three parts. The instructions for each part were handed out

and read out immediately before that part. There was no feedback whatsoever until

the end of the experiment. Subjects were divided into two groups - row players and

column players.

In part I, subjects simply played ten 3 × 3 one-shot normal-form games. Each

subject i’s earnings were determined according to her action and the action of a

random player −i from the other group in one randomly determined game.

In part II, each subject i was asked (for each game) to state what, in her opinion,

was the probability that −i chose each action in part I. For part II, each subject was

paid a lump sum of $6. We discuss this payment scheme in section 1.5.

Part III was included since (as mentioned in the introduction) we suspect that

ambiguity aversion, rather than risk aversion, may be at work. Given that our

formal framework does not incorporate ambiguity aversion (our types are within the

expected utility framework), we will not include the results from part III in the main

analysis. However, we will discuss them in section 1.5 when we consider ambiguity

aversion as a possible driving force behind seemingly risk averse behavior.

Before we describe part III, let us explain what we mean by a lottery ticket which,

for subject i, corresponds to an action in one of the games.13 Such a lottery ticket

has the same possible payoffs as the action and the probabilities of the payoffs are

matched to the belief i stated over −i’s play. For example, let us say that the action

pays 30, 40 or 50 ECU if −i chooses action 1, 2 or 3, respectively and that i’s stated

belief places probabilities of 0.4, 0.5 and 0.1 on −i choosing 1, 2 and 3, respectively.

13This kind of lottery ticket will also play a part in treatment C.
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Then the lottery ticket pays 30, 40 and 50 ECU with probabilities 0.4, 0.5 and

0.1, respectively. The lottery ticket’s final payoff is determined by the computer

whichrandomizes using the respective probabilities.

In part III, we let each subject i choose, for each game, between being paid

according to (i) the combination of one of her actions (which is exogenously fixed)

and the action −i chose in part I (so that i’s fixed action represents a bet on −i’s

decision) or (ii) a lottery ticket corresponding to i’s fixed action. Note that an

ambiguity averse subject would prefer (i) if she perceives the lottery tickets as more

ambiguous than the games and would prefer (ii) if she perceives the games as more

ambiguous than the lottery tickets.

In order to determine earnings for part III, one of the ten decisions in that part

was taken at random and each subject was paid according to (i) or (ii), depending

on which one she chose.

1.2.2 Treatment B

Treatment B was analogous to treatment A with the only difference that subjects

stated beliefs and chose actions at the same time so that parts I and II from A were

collapsed into one part.14

1.2.3 Treatment C

In treatment C, each subject i chose not between actions in a game but between

lottery tickets. In particular, i chose one lottery ticket from each of 10 triplets of

lottery tickets. Each lottery ticket in a triplet corresponded to an action in one of

the games which i played in A or B, i.e. the lottery ticket had the same payoffs as

the action and the probabilities of the payoffs were matched to i′s stated belief. The

14Subjects also received a lump sum payment of $4 rather than $6 for stating their beliefs since
stating beliefs while playing each game is supposedly less additional effort than stating beliefs after
all games have been played.
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three lottery tickets in a triplet corresponded to different actions in the same game.

In this way the decision situations in C were formally identical (within the expected

utility framework) to the games played in A and B.

In order to determine earnings in C, one of the ten triplets was taken at random

and each subject was paid according to the lottery ticket which she chose from that

triplet.

1.2.4 Games

We designed the ten games with the aim of distinguishing between our four types as

much as possible.15 This task was complicated by the fact that the preferred actions

of the two strategic types depend on their beliefs. Therefore, we tried to control for

the beliefs subjects were likely to form. In order to do this, we exploited a finding from

CGW about subjects’ stated beliefs: subjects in that study placed, on average, the

largest probability on their opponent choosing L1 ’s (or in our terminology NRN ’s)

preferred action. Therefore, our games are designed to give the best identification of

types if (i) subjects place a large probability on actions of the opponent which give

a high average payoff and (ii) subjects place roughly equal probabilities on actions

of the opponent which give roughly equal average payoffs.

Since it is difficult to ensure optimal identification of types for both row and

column players and at the same time control for row and column players’ beliefs,

we designed our games so that row players’ actions separate between types while

column players’ actions are used solely to control for row players’ beliefs. Since

column players’ actions are not designed to separate between types we let a small

minority of subjects (2 subjects per session) be column players and we disregard

their behavior in the analysis.16

15CGW’s games, which we used in the pilots, were not designed to separate between our types
and did not do so well (especially along the “risk neutral vs. risk averse” dimension).

16The fact that there were different numbers of row and column players means that subjects were
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The ten games are presented in figure A.1. The fourth column to the right of

each game indicates the preferred action of each type (for strategic types this is only

tentative since it is assuming subjects form beliefs satisfying (i) and (ii) above). As

can be seen from the figure, each type’s preferred action will, ideally, differ from that

of each other type in at least five games.

For comparability with the literature, all games have a unique pure Nash equi-

librium and three of them (1, 2 and 10) are dominance-solvable.

1.3 Types and Formal Statistical Model

In this section, we formally specify the four types of players as well as the statistical

framework within which we will estimate the proportion of each type in the popula-

tion.17 The four types are: a naive risk neutral type (NRN ), a strategic risk neutral

type (SRN ), a naive risk averse type (NRA) and a strategic risk averse type (SRA).

Formally, each type is characterized by the way she evaluates each action in a

game.18 Let a = (a(1), a(2), a(3)) be an action which pays a(1), a(2) or a(3) if

one’s opponent chooses action 1, 2 or 3, respectively. Let b̄ = (b̄(1), b̄(2), b̄(3)) be a

subject’s belief over her opponent’s actions.19 Let the respective utility functions for

the risk neutral and risk averse types be uRN(x) = x and uRA(x) = 89
ln(9.9)

ln(x) +

10 − 89
ln(9.9)

ln(10).20

not paired, i.e. the fact that −i’s action was used to determine i’s payoff does not imply that i’s
action was used to determine −i’s payoff. This is irrelevant from the point of view of each subject’s
own payoff which is determined (just like when subjects are paired) according to the combination
of that subject’s action and the action of some other random subject.

17This statistical framework is similar to that in many experimental papers, including Camerer
and Harless (1994), SW, CGCB, CGW. The main difference in our paper is that we will have
individual-specific precision parameters which are treated as random effects.

18Of course, in C subjects are evaluating not actions in a game (which pay differently depending
on what the opponent does) but lottery tickets (which pay differently depending on the computer’s
randomization). We will generically talk about actions in a game with the implicit understanding
that in the case of C we actually mean lottery tickets.

19In the case of C, b̄ represents the exogenously given probabilities with which the computer
randomizes.

20The constants in uRA(·) ensure that risk averse and risk neutral types’ utility functions are
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Finally let T = {NRN, SRN,NRA, SRA} be the set of types and Vt(a; b̄) be the

value that type t ∈ T with belief b̄ attaches to a. Then Vt(a; b̄) for each type is

specified as follows:

VNRN (a; b̄) =
1

3
uRN(a(1)) +

1

3
uRN (a(2)) +

1

3
uRN (a(3))

VSRN (a; b̄) = b̄(1)uRN(a(1)) + b̄(2)uRN(a(2)) + b̄(3)uRN(a(3))

VNRA(a; b̄) =
1

3
uRA(a(1)) +

1

3
uRA(a(2)) +

1

3
uRA(a(3))

VSRA(a; b̄) = b̄(1)uRA(a(1)) + b̄(2)uRA(a(2)) + b̄(3)uRA(a(3))

Thus, the two naive types evaluate each action according to the average utility

of its payoffs. The two strategic types form a belief over the opponent’s actions and

evaluate each of their own actions according to its expected utility given that belief.

We interpret the naive types as focusing on their own payoffs and ignoring what

the opponent might do. Of course, one could alternatively interpret them as thinking

about what the opponent might do and always coming up with a uniform belief,

but this hardly seems plausible. Moreover, such an interpretation is at odds with

subjects’ stated beliefs which are rarely uniform. Note that with our interpretation

there is nothing to stop naive types from forming and stating non-uniform beliefs

when they are explicitly asked to state beliefs. In fact, if naive types always stated

uniform beliefs they would be indistinguishable from strategic types. The whole idea

on a similar absolute scale (uRN (10) = uRA(10) and uRN (99) = uRA(99) where 10 and 99 are the
minimum and maximum possible ECU earnings in a game). This is in anticipation of the fact that,
within the multinomial logit model which we will introduce shortly, a player’s precision parameter
is related to the scale of her utility function. Ensuring that all types have utility functions on a
similar scale will allow us to reject the hypothesis that precision parameters are generated from
distributions with type-specific means and standard deviations and hence will allow us to reduce
the number of parameters.
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behind our ability to distinguish between naive and strategic types relies precisely

on all types’ ability to form and state non-uniform beliefs when beliefs are explicitly

elicited. Then subjects who are picking actions with high average utility rather than

best-responding to stated beliefs will be evidence in favor of naive types. Analogously,

subjects who are best-responding to stated beliefs rather than picking actions with

high average utility will be evidence in favor of strategic types.

The two risk averse types are modeled as having logarithmic utility. Logarithmic

utility leads to behavior which is both sufficiently different from risk neutrality so as

to allow us to distinguish between risk neutral and risk averse types and at the same

time is not so extreme as to seem implausible.

Now that we have specified our types, we need to specify how they make choices.

If we simply say that each t ∈ T chooses the action with highest Vt(a; b̄), many

subjects’ behavior will not fit any type. Therefore, we model subjects’ choices within

the logit multinomial model, i.e. the probability that a type t player with belief b̄

chooses action a is21:

Pr(a|t, b̄;λ) =
eλVt(a;b̄)

∑

a′ eλVt(a′;b̄)

where the summation in the denominator is over all actions a′ in the game.

Pr(a|t, b̄;λ) depends on λ which plays the role of a precision parameter. If λ = 0,

then for any action a, Pr(a|t, b̄;λ) = 1
3
. As λ → ∞, the probability of the action a

with highest Vt(a; b̄) being chosen goes to 1.

We assume that for a subject of type t, λ is an individual-specific random ef-

fect which is generated (independently across subjects) from a gamma distribution

with type-specific mean µt > 0, standard deviation σt ≥ 0, and cumulative den-

21We will generically denote by Pr(·|·; ·) the probability of the first term conditional on the second
term given the parameter(s) after the semi-colon.
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sity (reparameterized in terms of its mean and standard deviation) G(λ;µt, σt). We

chose the gamma distribution because it has non-negative support, because it can

be characterized in terms of its mean and standard deviation, and because it has a

thin (exponentially decreasing) tail. The latter property is desirable since it prevents

implausibly high values of λ from driving up the mean.

Let us introduce some additional notation which we will need to write down

the likelihood function. Let ag
j = (ag

j (1), ag
j (2), ag

j(3)) be action j in game g. Let

xg
i ∈ {ag

1, a
g
2, a

g
3} be subject i’s chosen action in game g; let xi = (x1

i , . . . , x
10
i ) be i’s

choices in all games; let x = (x1, . . . , xN) be all N subjects’ choices. Analogously,

let bgi = (bgi (1), bgi (2), bgi (3)) be subject i’s belief for game g; let bi = (b1i , . . . , b
10
i )

be i’s beliefs in all games; let b = (b1, . . . , bN) be all N subjects’ beliefs. Let pt

be the proportion of type t in the population and θ be the vector of parameters

{pt, µt, σt}t∈T . We will also denote by G(λ|bi;µt, σt) the cumulative density of λ

conditional on bi given µt and σt.
22 Given all this we can write the probability of i′s

choices, conditional on i’s beliefs, by summing (integrating) over t and λ:

Pr(xi|bi; θ) =
∑

t∈T

Pr(t|bi; θ)
∫ ∞

0
Pr(xi|t, bi, λ)dG(λ|bi;µt, σt) (1.1)

In order to obtain an explicit form for Pr(t|bi; θ) and G(λ|bi;µt, σt), we assume

that t and λ are jointly independent of bi.
23 In order to check if this is a realistic

assumption, we perform the following test of independence. First, we categorize each

subject according to the type whose preferred action she chose most often24 and

according to whether she chose this type’s preferred action in at least eight games

(high precision) or in strictly less than eight games (low precision). Thus, each

22Note that G(λ|bi; µt, σt) is not necessarily a gamma cumulative density.
23For now it would have been enough to make the weaker assumption that t is independent of

bi and that λ is independent of bi. However, we assume joint independence as this will play a role
when we write down the Bayesian posterior over θ.

24In case a subject chose the preferred action of more than one type the same number of times,
she is randomly assigned to one of these types.
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subject is assigned to one of eight categories, each category being a combination of

a type and a precision. Next, we assign each subject’s belief in each game to one of

four categories as follows: a belief falls in category j = {1, 2, 3} if it assigns strictly

more than 0.5 weight to action j of the opponent; otherwise it falls in category 4.25

Given this, we can test for each game the hypothesis that a subject’s type-precision

category is independent of the category her belief falls into. Performing 30 Fisher’s

exact tests (10 tests each for A, B and C), we can reject the null hypothesis of

independence at the 5% level in 3 cases (game 6 in A, game 2 in B and the lottery

ticket triplet corresponding to game 10 in C). For 30 comparisons this seems well

within the limits of chance.26

Although this test of independence is admittedly crude, it does make it unlikely

that bi provides much information about t and λ. Thus, replacing Pr(t|bi; θ) by

Pr(t|θ) = pt andG(λ|bi;µt, σt) by G(λ;µt, σt) seems reasonable. Using this to rewrite

(1.1) and taking the product over subjects, we obtain the probability of all subjects’

choices conditional on their beliefs:

Pr(x|b; θ) =
N
∏

i=1

Pr(xi|bi; θ) =
N
∏

i=1

∑

t∈T

pt

∫ ∞

0
Pr(xi|t, bi, λ)dG(λ;µt, σt) (1.2)

Plugging in subjects’ stated beliefs for b will allow us to estimate θ by maximizing

the above conditional (on b) maximum likelihood function.27 Given that for A, B

25This way of discretizing beliefs in order to test hypotheses is used in CGW and Rey-Biel (2005).
26Of course, only the distribution of the test statistic for each separate comparison is known,

but not the joint distribution of the test statistic in all 30 comparisons. Therefore the probability
of getting three or more rejections at the 5% significance level is unknown. If the test statistic is
independent across the 30 comparisons, then this probability is 0.188.

27This function is continuous in θ for every x and b. If beliefs are not always uniform, it has a
strict maximum at the true θ. Assuming that ∀ t, ǫ ≤ µt ≤ µ and σt ≤ σ (where ǫ is some small
number and µ and σ are some large numbers), the parameter space is compact. All other technical
requirements (as given in theorems 13.1 and theorem 13.2 in Wooldridge (2001)) hold so that the
ML estimator is consistent and asymptotically normal (for asymptotic normality the true θ also
needs to be interior).
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and C we cannot reject the hypothesis that (µt, σt) are the same for all types28, we

assume that (µt, σt) = (µ, σ) for all t, so that the parameter vector to be estimated

is θ = (pNRN , pSRN , pNRA, pSRA, µ, σ) which has five independent parameters (since

∑

t∈T pt = 1).

Based on (1.2) we can also compute, starting from a uniform prior f(·)29, the

Bayesian posterior over the parameters:

f(θ|x, b) =
Pr(x|b; θ)f(θ)

∫

Pr(x|b;ψ)f(ψ)dψ
=

Pr(x|b; θ)
∫

Pr(x|b;ψ)dψ
(1.3)

The second equality follows since f(·) is uniform.30

1.4 Results

1.4.1 Aggregate-Level Analysis

Figure A.1 shows31, for each game, row subjects’ mean beliefs in A and B as well as

aggregate actions in all three treatments. Mean beliefs are very similar between A and

B. Aggregate actions are however quite different between A (C) and B. Comparison

of aggregate actions between A and B for each game via Fisher’s exact tests leads

to significant differences (at the 5% level) in three of the ten games (games 5, 7 and

8). Aggregate actions in B and C are significantly different in two games (games 5

and 7). Aggregate actions in A and C are not significantly different in any game.

28The likelihood-ratio test yields p-values of 0.64, 0.95 and 0.18 for A, B and C.
29We set ǫ = 0.01, µ = σ = 0.6 (see footnote 27) in defining the support of f(·).
30Technically, in order to write f(·) in (1.3) without conditioning on b, we need to assume that b

and θ are independent. This is hardly a strong assumption given that ∀i, bi and θ are independent.
The latter holds since θ is merely used to generate the individual types and precisions which, by
assumption, are independent of individuals’ beliefs.

31Apart from excluding column players (as explained earlier), in all of the subsequent analysis
we also exclude one subject from A (who said after the experiment that she was familiar with
game theory), one subject from B (who said that she had mistaken column players’ payoffs for row
players’ payoffs and vice versa) and one subject from C (who said that he thought that “the lottery
ticket pays” meant that he had to pay so that he chose tickets with low payoffs). Excluding these
subjects has a negligible effect on the analysis.
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It is worth noting that the games in which behavior is significantly different

between A (C) and B are all meant to distinguish between risk neutral and risk

averse types. In particular, subjects in A (C) are choosing more the actions which

we (tentatively) expect to be the preferred actions of the risk averse types, whereas

subjects in B are doing the opposite.32

Table 1.2 shows how many percent of subjects’ actions in each treatment coincide

with the preferred actions of each type. In A and C, SRA predicts the largest

percentage of actions, followed by SRN. In B, SRN predicts the largest percentage

of actions, followed by SRA.

Type Treatment A Treatment B Treatment C
NRN 33% 42% 33%
SRN 55% 72% 68%
NRA 34% 21% 27%
SRA 59% 60% 70%

Table 1.2: Percent of Actions Consistent with each Type.

Type Treat. A Treat. B Treat. C
Naive but not Strategic 17% 9% 8%
Strategic but not naive 34% 37% 43%

Table 1.3: Percent of Actions Consistent with Naive Types, but not with Strategic
Types and vice versa.

Type Treat. A Treat. B Treat. C
Risk neutral but not risk averse 15% 25% 15%
Risk averse but not risk neutral 26% 16% 24%

Table 1.4: Percent of Actions Consistent with Risk Neutral Types, but not with Risk
Averse Types and vice versa.

32CGW and Rey Biel (2005) do not find significant differences between aggregate actions in
treatments in which beliefs are elicited before the games and treatments in which beliefs are elicited
after all games have been played. Perhaps this is the case because their games are not designed to
distinguish between risk neutral and risk averse behavior.
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Table 1.2 has the drawback that actions which are consistent with a particular

type may simply have been chosen because they are also consistent with other types.

By concentrating on “naive vs. strategic” and “risk neutral vs. risk averse” behavior

at a time we can easily eliminate such overlap.

Table 1.3 shows the percentage of actions which are consistent with naive, but

not with strategic types and vice versa. The table shows that:

Result 1.4.1.1 Subjects in all three treatments chose considerably more actions

which are unequivocally strategic rather than unequivocally naive. The difference

is larger in B than in A and is largest in C.

Table 1.4 shows the percentage of actions which are consistent with risk neutral,

but not with risk averse types and vice versa. The table shows that:

Result 1.4.1.2 Subjects in A and C chose more actions which are unequivocally

risk averse than unequivocally risk neutral (the difference is slightly larger in A).

The opposite is true for subjects in B.

Of course, the above analysis is not particularly illuminating regarding subject

heterogeneity. It also does not take into account whether actions which are not

consistent with a given type are costly mistakes for that type.

1.4.2 Estimation of Formal Statistical Model

In this section, we present the results based on the framework from section 1.3. We

perform the analysis separately for A, B and C, pooling the data from the sessions

within a treatment.33

Table 1.5 presents the main results. The first column corresponding to each

treatment shows the ML estimates of θ, the log-likelihood as well as the estimate of

33A likelihood ratio test of the hypothesis that the true θ is the same in all sessions within a
treatment yields p-values of 0.101, 0.767 and 0.413 for A, B and C, respectively.
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Treatment A Treatment B Treatment C
MLE Posterior MLE Posterior MLE Posterior

pNRN 0.009 0.043 0.039 0.068 0 0.023
(0.031) [0.01,0.11] (0.038) [0.01,0.15] N/A [0.01,0.07]

pSRN 0.383 0.368 0.703 0.648 0.416 0.403
(0.094) [0.23,0.51] (0.10) [0.49,0.79] (0.101) [0.25,0.55]

pNRA 0.109 0.114 0 0.03 0.026 0.052
(0.061) [0.03,0.21] N/A [0.01,0.09] (0.029) [0.01,0.13]

pSRA 0.50 0.485 0.259 0.254 0.558 0.528
(0.099) [0.33,0.63] (0.095) [0.11,0.41] (0.102) [0.37,0.67]

µ 0.108 0.115 0.148 0.158 0.251 0.298
(0.014) [0.085,0.145] (0.022) [0.125,0.205] (0.054) [0.195,0.445]

σ 0.05 0.057 0.073 0.089 0.143 0.213
(0.02) [0.025,0.105] (0.026) [0.045,0.145] (0.066) [0.075,0.415]

log-lik. -383.6033 N/A -251.6819 N/A -201.5477 N/A
pNRN 0.118 0.153 0.039 0.097 0.026 0.069
+pNRA (0.055) [0.07,0.25] (0.038) [0.03,0.19] (0.029) [0.01,0.15]

pNRN 0.391 0.401 0.742 0.711 0.416 0.428
+pSRN (0.096) [0.25,0.55] (0.095) [0.55,0.85] (0.101) [0.29,0.59]

Table 1.5: Formal Model Estimation.

the proportion of naive types (simply the sum of the relevant previous lines) and the

estimate of the proportion of risk neutral types (again, simply the sum of the relevant

previous lines). Below each ML estimate we show the estimated standard error.34

The second column corresponding to each treatment shows summary information

(means and 90% confidence intervals) about marginal posteriors over elements (or

combinations of elements) of θ.

34In B (C) the estimate of pNRA (pNRN ) is on the boundary of the parameter space. We do
not compute the standard error for this estimate since the standard error does not have the usual
interpretation in terms of confidence intervals. The standard errors for the elements of θ which are
not on the boundary are computed by estimating a restricted model in which pNRA (pNRN ) is set
equal to 0. Note that in all treatments estimated standard errors should be treated with caution
given that at least one element of θ is less than 1.96 estimated standard errors from the boundary
of the parameter space.
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ML Estimates

First, let us discuss the ML estimates given in table 1.5. The first thing to notice

is that the estimate of the proportion of naive types in A is rather small (0.118).

This is lower than the estimate in SW (0.21) and is much lower than the estimate

in CGCB (0.45). The other noticeable fact is that only a minority of the population

in A is estimated to be risk neutral (0.391). This estimate increases almost twofold

in B (to 0.742) and then in C, drops almost all the way back down to the level in A

(to 0.416).

Several features of the estimates in table 1.5 make good sense and are encouraging

news about the appropriateness of our specification.

The estimate of the proportion of naive types drops from 0.118 in A to 0.039 in

B and then to 0.026 in C. This is precisely as expected. Explicitly telling subjects

to think about what their opponent will do is likely to reduce naive behavior in B

relative to A and giving subjects clear probabilities in C is likely to reduce naive

behavior even further.

The estimate of µ increases from A to B. This is to be expected as subjects

whose attention is focused on forming beliefs are likely to best-respond with less

noise. The estimate of µ increases even further in C. This is again as expected given

that choosing between lottery tickets is clearly simpler than choosing between actions

in a game.

The absolute values of the estimates of µ are important. If subjects’ mean pre-

cision is low, then types’ behavior is erratic and this undermines the whole idea of

types who behave in a systematic way. If µ is reasonably high this is encouraging

news for the adequacy of our specification of types.

In order to interpret the absolute values of the estimates of µ in each treatment,

we consider an example of how a risk neutral type with precision parameter equal to
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the estimate of µ would make choices in each treatment. In particular, let’s say that

she has to choose between three actions, each of which has a certainty equivalent

of $y, $(y + 1) and $(y + 2), respectively.35 Table 1.6 shows the probability with

which each action will be chosen. As can be seen, the probabilities in the table are

reasonably high (certainly much better than random play).36

Certainty Treatment A Treatment B Treatment C
Equivalent:
$y 0.08 0.04 0.01
$(y + 1) 0.23 0.18 0.07
$(y + 2) 0.69 0.78 0.92

Table 1.6: Example: Precision.

The ML estimates of σ seem to suggest that there is non-negligible heterogeneity

in subjects’ individual precision parameters.37

Based on the above let us summarize:

Result 1.4.2.0.1 Only a small proportion of the population in A is estimated to be

naive. This estimate drops further in B and C.

Result 1.4.2.0.2 Only a minority of the population in A and C is estimated to be

risk neutral. The estimate in B is much higher.

Result 1.4.2.0.3 The estimates of µ in each treatment are reasonably high, suggest-

ing that subjects’ behavior has a strong systematic component which is captured by

our types.

35i.e. each of the three actions is valued by the decision-maker as if it paid the constant amount
$y, $(y + 1) or $(y + 2), respectively.

36The corresponding table for a risk averse type will be different (since uRN (·) and uRA(·) do not
coincide between 10 and 99 ECU so that the same value of the precision parameter has different
implications for choices; see footnote 20) and will also depend on the value of y. For example if y
equals $2, $3, $4, or $5, then a risk averse type with precision parameter equal to the estimate in
A will choose the $(y + 2) action with probability 0.74, 0.66, 0.61, or 0.57, respectively.

37Heterogeneity in individual λ’s may in part be driven by the fact that uRN (·) and uRA(·) do
not coincide between 10 and 99 ECU. See footnotes 20 and 36.
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Results 1.4.2.0.1 and 1.4.2.0.2 (which are based on our formal statistical frame-

work) are in accord with results 1.4.1.1 and 1.4.1.2 (which were based on crude

aggregate-level data).

Posteriors and Hypothesis Tests

In this section, we would first like to draw conclusions (beyond point estimates)

about the true θ in each treatment. Second, we would like to check if the differences

across treatments suggested by the ML estimates are significant.

Regarding the first issue, the first thing that comes to mind is to test hypotheses

about whether the proportions of different types, µ or σ are statistically different

from zero.38 Unfortunately, it is difficult to test hypotheses on the boundary of

the parameter space. Instead, we look at the marginal posteriors over elements (or

combinations of elements) of θ.

The marginal posteriors over pNRN + pNRA (the proportion of naive types) and

pNRN + pSRN (the proportion of risk neutral types) in each treatment are depicted

in figure A.2. These posteriors are relatively tight (especially relative to the uniform

prior we start with) which suggests that the design has accomplished reasonable

identification of types.

In A, the marginal posterior over pNRN + pNRA places most of the weight well

away from zero so that naive types probably do exist. This effect is less pronounced

in B and C.

The marginal posteriors over pNRN + pSRN in all treatments suggest that it is

very likely that both risk neutral and risk averse types are present. There is also a

pronounced shift to the right in the marginal posterior in B which is in accord with

the higher ML estimate of pNRN + pSRN in B.

38To be precise, ǫ, rather than 0, in the case of µ. See footnote 27.
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The marginal posteriors over µ and σ in each treatment are depicted in figure

A.3. As can be seen they are quite tight (except in C) and place most of the weight

well away from zero. This suggests that it is both very likely that players exhibit

systematic behavior which is captured by our types (µ >> 0) and that there is

heterogeneity in terms of individual λ’s (σ >> 0).39

Now we turn to the issue of whether behavior across treatments is statistically

different. In particular, using a likelihood-ratio test, we test the hypothesis whether

the proportion of naive types is the same in different pairs of treatments as well as

the hypothesis whether the proportion of risk neutral types is the same in different

pairs of treatments. Table 2.11 shows the p-values for each hypothesis test for each

pair of treatments.40

A and B A and C B and C
H0: pNRN + pNRA is same 0.072 0.139 0.791
H0: pNRN + pSRN is same 0.013 0.86 0.024

Table 1.7: Hypotheses Tests between Treatments.

The p-values for the comparison of pNRN + pNRA between A and B as well as

between A and C are rather low, but not significant at the 5% level. This is probably

the case since naive types are already rare in A so that any reductions in B and C

fail to be significant. Perhaps more importantly we can state:

Result 1.4.2.0.4 The proportions of risk neutral types are significantly different

between A and B as well as between B and C.

39Although, see footnote 36.
40These p-values are computed assuming that subjects in each treatment are drawn randomly

from the population: the computations ignore the fact that each subject in C also participated in
A or B. Given that a subject who is naive/risk neutral in A or B is more likely to be naive/risk
neutral in C, the p-values in the last two columns are probably larger than the true p-values.
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1.5 Discussion and Concluding Remarks

1.5.1 Type specification

As noted in the introduction, one of the main assumptions in our approach is that

types are correctly specified, i.e. that each subject acts according to one of our types.

Although our types are quite general, there are behaviors which do not fit into any

of them.

An obvious behavior not captured by our types is risk loving behavior. This

is not a serious omission in our experiment. If some subjects are risk loving, they

would tend to choose the action with the highest possible payoff which in all games

coincides with NRN’s preferred action and we may therefore mistakenly interpret

them as being naive. However, this cannot be occurring too much given that the

estimates of naive types are very low anyway. Moreover, if these estimates were driven

by risk loving behavior there would be no reason to see them drop in treatments B

and C.

Another issue is that specifying naive behavior as picking the action with the

highest average utility may seem ad hoc. If a player is self-interested and satisfies

the minimum requirement on rationality that she evaluates each action based on

its possible consequences and then makes her choice based on this evaluation, we

can think of only two other plausible kinds of naive play. The first kind is that a

naive player may simply pick the action with the highest possible payoff.41 However,

in all our games, this action happens to coincide with NRN’s preferred action so

that a player who picks the action with the highest possible payoff will correctly be

interpreted as naive.

41CGCB call such a player optimistic.
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The second kind is that a naive player may simply pick the maximin action.42

However, in all our games, the maximin action happens to coincide with NRA’s

preferred action so that a player who picks the maximin action will correctly be

interpreted as naive.

However, the assumption that players are self-interested and that they satisfy

the mentioned minimum requirement on rationality is not trivial. In fact in an

informal questionnaire conducted at the end of the sessions, we find that a large

proportion of subjects express considerations which seem to violate this assumption.

These subjects seem either to be altruistic or to be trying to “choose” a box in the

payoff table which looks good for both players, perhaps guided by a home-grown

rule of thumb that one should compromise with others in order to be well-off oneself.

Trying to “choose” a box is clearly irrational since (regardless of whether one is

self-interested or not) one should evaluate and compare actions and not boxes.43

Fortunately, excluding the subjects for which we have a strong suspicion based on

the questionnaire that they were either being altruistic or that they were irrationally

trying to “choose” a box in the payoff table (instead of an action), does not change

any of our main results.44

1.5.2 Stated Beliefs vs. True Beliefs

As mentioned in the introduction, the validity of our estimation relies on stated

beliefs being a good proxy for true beliefs.45 There are three key issues here.

The first is whether subjects are aware of their true beliefs. In the context of

tasks with which people have a lot of experience, it is quite plausible that they

42CGCB call such a player pessimistic.
43Subjects’ responses to the main question in the questionnaire can be found in the appendix in

tables A.13 and A.14.
44The excluded subjects were approximately one-third of all subjects. Their ID’s are placed in

brackets in tables A.13 and A.14.
45Here, we are maintaining the assumption that subjects have “true” beliefs, i.e. beliefs according

to which they act.

27



are not aware of their true beliefs since decision processes are to a large degree

automated. However, in our context subjects are confronted with a new unfamiliar

task. When they are asked to state their beliefs they have to deliberately think about

their opponent’s play. In this context, it is more difficult to imagine that subjects

have beliefs which are in any sense more true than the beliefs they are deliberately

forming.

The second issue is whether subjects are not deliberately misrepresenting beliefs.

There are several studies which suggest that subjects state beliefs truthfully under a

variety of payment schemes (including a lump sum payment). In particular, Friedman

and Massaro (1998) find no significant differences in performance between subjects

paid according to the quadratic scoring rule46 and unpaid subjects. In a study

by Sonnemans and Offerman (2001), there are no significant differences either in

performance or in exerted effort for subjects paid according to the quadratic scoring

rule and subjects who are paid a lump sum. Nelson and Bessler (1989) find that, even

with feedback, stated beliefs in the first five periods are indistinguishable between

a group rewarded according to the quadratic scoring rule and a group rewarded

according to the blatantly non-incentive-compatible linear scoring rule.47 Given the

very different incentive structure of a linear scoring rule, a quadratic scoring rule and

schemes which give no performance-based monetary reward (no payment and lump

sum payment), it is difficult to imagine that subjects are deliberately misrepresenting

their beliefs in the same way under all these schemes.48 In addition, CGW and Rey-

Biel (2005) find that subjects’ stated beliefs predict actual frequencies rather well.

46This scoring rule is incentive compatible for risk neutral expected utility maximizers.
47The linear scoring rule pays proportionately to the probability placed on the actual outcome.

A risk neutral expected utility maximizer should state a degenerate belief with weight 1 on the
mode of her true belief.

48Some early psychological studies (Beach and Philips (1967) and Jensen and Peterson (1973))
also suggest that there is no difference between paying subjects according to a scoring rule and not
paying them based on performance.
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All this evidence is reassuring that deliberate belief misrepresentation is not a serious

practical problem in the laboratory. We opt for a lump sum payment since it is easy

to explain to subjects and since with a lump sum payment subjects do not even have a

theoretical incentive to misrepresent beliefs regardless of risk preferences. The latter

is not true for scoring rules since they are incentive compatible only for particular

risk preferences (usually risk neutrality).

The third issue, which pertains to A, is a more serious concern. In particular,

it is possible that beliefs shift between the time strategic subjects choose actions

(part I) and the time they state beliefs (part II).49 There are a few points which are

reassuring in this respect.

First, if beliefs shifted frequently in A, then one would expect the difference

between subjects’ estimated mean precision in A and B (in which beliefs and actions

are entered simultaneously) to be larger than what it is (see table 1.6).

Second, even if beliefs shift, this is unlikely to invalidate the conclusion about the

low proportion of naive types in A - if anything shifting beliefs are likely to favor

naive types. The reason for this is that in our games (similar to the games in other

studies as explained in the introduction) naive types pick actions which maximize

expected utility given any belief in a disproportionately large area of the simplex.50

So if a subject best responds to a certain belief and then states a completely different

belief, chances are that her behavior would look more like being naive than like being

a best response to the stated belief.

Third, the conclusion that more subjects behave in a risk neutral way in B than

in C is unaffected by any possibility of shifting beliefs in A.

49In the case of naive types, shifting beliefs is not a concern since they, by definition, do not form
beliefs in part I.

50In our games NRN (SRN ) picks an action which maximizes expected utility given any belief
in 61% (46%) of the simplex (averaged over games).
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1.5.3 Robustness Across Games and Subject Population

As mentioned in the introduction, behavior in A does not seem to be robust across

games with similar formal structure or across subject populations.

In particular, in the pilot for A we used CGW’s games. These games are similar

in formal structure to our games: they are 3 × 3, each one has a unique pure Nash

equilibrium and 10 of the 14 games are dominance solvable. However, the ML es-

timate for the proportion of naive players in the pilot is 45% which is significantly

different from the estimate in A (p = 0.008).

One plausible explanation of this difference is that the extent of naive play may

depend on the cost of being naive (in the sense of the opportunity cost of not being

strategic). In particular, in 9 out of the 14 games in CGW, the L1 action guarantees

a payoff of at least 45 ECU out of a maximum of 99 ECU and can potentially earn

much more. In 12 out of the 14 games, the L1 action coincides with the maximin

action. Given this, it seems there is little incentive for subjects to engage in much

strategic thinking so they simply go with the L1 action.

Another, related conjecture is that the extent of naive play depends on how costly

it is to engage in strategic thinking. For example, players may be briefly scanning

the opponent’s actions to see if some of these actions can be ruled out based on

their low average payoffs. If this cheap decision-making procedure yields no insights

subjects simply play naively. This may result in more naive play in CGW’s games

since in these games the average payoffs of the opponent’s actions are closer than in

our games.51 In other words, in CGW’s games it may be more costly to rule out one

(or more) of the opponents’ actions - hence, there is more naive play.

51In particular, in our games the ratio of the average payoffs of the opponent’s action with the
lowest average payoff and the opponent’s action with the highest average payoff is 0.61 (averaged
over games). The corresponding ratio in CGW’s games is 0.72.
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The issue of how naive play depends on the cost of being naive and on the

costliness of strategic thinking seems like a promising topic for further research.

We also ran a follow-up session for A using undergraduate subjects in order to

check the robustness of our results across subject populations. The ML estimate for

the proportion of naive players in the follow-up session is 47% which is significantly

different from the estimate in A (p = 0.01). The direction of the difference (even if

not necessarily its size) is not particularly surprising. In addition, the estimate for

the proportion of risk neutral players in the follow-up session is 81% which is also

significantly different from the estimate in A (p = 0.007). A tentative conjecture for

the difference is simply that graduate students are more risk averse.

Overall, the pilot and the follow-up session for A seem to suggest that it is difficult

to draw general conclusions about behavior in one-shot normal-form games as it may

vary across games (even if they have a similar formal structure) and across subject

populations. The question remains open whether the variations can be explained

convincingly in a parsimonious and intuitive way.

1.5.4 Ambiguity Aversion rather than Risk Aversion?

Risk aversion, taken literally, cannot explain the variation across treatments in our

estimates of the proportion of risk neutral types because there is no reason for sub-

jects’ utility function to change its curvature across treatments. This suggests that

there is something more at work than mere curvature of the utility function.

An obvious candidate explanation is ambiguity aversion. Risk aversion and am-

biguity aversion have similar implications for behavior - intuitively, both lead to cau-

tious behavior.52 Therefore, what we are estimating as risk averse behavior within

52More formally, risk aversion diminishes the importance of high payoffs through the concavity
of the utility function; ambiguity aversion has the same effect through pessimistic priors (within
the Gilboa and Schmeidler (1989) multiple prior framework) or through subadditive beliefs (within
the Schmeidler (1989) framework of nonadditive beliefs).
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each treatment may actually be driven by ambiguity aversion. In addition, unlike

risk aversion, ambiguity aversion could potentially provide an explanation for any

variation across treatments in the estimated proportions of risk neutral subjects given

that the ambiguity of decision tasks may differ across treatments.

In particular, ambiguity aversion is a plausible explanation for the increase in the

estimated proportion of risk neutral subjects from A to B: by prompting subjects in

B to form beliefs about what the opponent might do, we are giving them a way to

think about the games and this may reduce ambiguity.53

The finding that the estimated proportion of risk neutral subjects in C is much

lower than in B and is only slightly higher than in A is quite surprising. It can be

explained with ambiguity aversion only if the lottery tickets in C are perceived by

subjects as ambiguous. The latter is possible if, for example, subjects are not very

comfortable with lottery tickets because of their abstract nature or even if subjects

simply have doubts about whether the computer (as programmed by the experi-

menter) randomizes with the given probabilities. Although not implausible, this

explanation is, at this point, merely a speculation. It is also likely that something

different from both risk aversion and ambiguity aversion is behind the smaller esti-

mates of the proportion of risk neutral subjects in C compared to B. At this point,

we do not have a clear explanation.

Note, however, that our finding that the estimated proportion of risk neutral

subjects is higher in B than in C and is (slightly) higher in C than in A is consistent

with what has previously been found in the literature. In particular, Heath and

Tversky (1991) find that (i) subjects prefer to bet on ambiguous gambles in areas

in which they are competent than to bet on lottery tickets and (ii) prefer to bet

on lottery tickets than to bet on ambiguous gambles in areas in which they are not

53An alternative interpretation is that (i) subjects perceive the decision situations as less am-
biguous in A than in B and (ii) they are ambiguity loving. This interpretation seems implausible
since the games could hardly be perceived as less ambiguous in A than in B.
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competent.54 55 If one draws an analogy between gambles in areas of competence and

our treatment B (subjects are given a way to think about the games) and between

gambles in areas of no competence and our treatment A (subjects are not given a way

to think about the games), then there is an obvious similarity between our finding

and that of Heath and Tversky: our (Heath and Tversky’s) finding suggests that

subjects are more willing to take risks in B (with gambles in areas of competence)

than in C (with lottery tickets) and are more willing to take risks in C (with lottery

tickets) than in A (with gambles in areas of no competence).56

If the interpretation is correct that the differences in the estimates of the propor-

tion of risk neutral types between A and B are driven by ambiguity aversion, this

suggests the following hypothesis: When people have a clear, structured way to think

about a decision situation, this reduces ambiguity and hence ambiguity averse be-

havior. If correct, this hypothesis has far-reaching implications. First, it sheds light

on ambiguity aversion as being, to a large extent, the result of people’s inability to

think clearly about a decision situation. In this way, it could explain, for example,

findings in the literature that people are more willing to take risks in areas of compe-

tence (Heath and Tversky (1991)) and that people with higher cognitive abilities are

more willing to take risks (Benjamin and Shapiro (2006)). Second, this hypothesis

implies that there may be strong framing effects, depending on whether a problem is

formulated in a way which suggests a clear way to think about it. Third, if one is of

the opinion that ambiguity aversion is normatively incorrect (e.g. because it violates

54See especially their Experiment 4.
55The probabilities of the different outcomes of the lottery ticket are matched to the subject’s

belief over the outcomes of the ambiguous gamble.
56Note that Heath and Tversky’s finding cannot be explained with any attitude to ambiguity if

lottery tickets are unambiguous. If a lottery ticket is unambiguous an ambiguity averse subject
would prefer it to any ambiguous gamble (regardless of the subject’s competence in the area of
the ambiguous gamble); an ambiguity loving subject would prefer any ambiguous gamble to the
lottery ticket; and an ambiguity neutral subject would be indifferent. Therefore, if a lottery ticket
is perceived as unambiguous, no attitude to ambiguity could explain the lottery ticket being ranked
strictly between two ambiguous gambles.
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the independence axiom), then this hypothesis has normative implications: if one

wishes to reduce ambiguity averse behavior, one needs to induce decision-makers to

think about the situation at hand in a clear, structured way. Given the significance

of this hypothesis, its validity needs to be checked in further studies.57

Note that when subjects choose between being paid according to a bet on the

opponent’s action in a game or according to a corresponding lottery ticket (part III

in A and part II in B), there is little evidence for ambiguity aversion. In particular,

subjects chose the bet on the opponent’s action over the lottery ticket 54% of the

time in A and 51% in B.58 Two offsetting effects could be responsible for these

numbers. On the one hand, subjects have already stated beliefs in both A and B

by the time they have to choose between betting on the opponent’s action or on a

lottery ticket: this may reduce the ambiguity of the bet on the opponent’s action

and may make subjects more inclined to choose it. On the other hand, the direct

comparison between the bet on the opponent’s action and a lottery ticket may make

it salient that the probabilities are given for the lottery tickets but not for the games

and this may bias subjects towards the lottery tickets.59 60

1.5.5 Concluding Remarks

In this study, we introduce a new approach to specifying types of players in one-shot

normal-form games. The reasonableness of estimated parameters (e.g. precision pa-

rameters) and the plausible ways in which parameters vary across treatments (espe-

cially the estimated proportion of naive subjects from A to B to C and the estimated

proportion of risk neutral subjects from A to B) are reassuring regarding the appro-

57I am currently devising an individual-choice experiment to test this hypothesis.
58These numbers are not statistically different from 50% (p=0.112 and p=0.616, respectively).
59See Fox and Tversky (1995).
60In the pilots rather than have subjects choose between betting on the opponent’s action in a

game and betting on a lottery ticket, we had subjects price these two options (using the Becker,
DeGroot, Marschak (1964) procedure). Stated prices were not significantly different.
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priateness of our specification. The width of Bayesian 90% confidence intervals and

our ability to reject interesting hypotheses are reassuring regarding the usefulness of

our approach.

The main findings of the paper are twofold. First, we estimate that in A only

a small minority of subjects is naive and only a minority is risk neutral. However,

these results may not be robust to the games used or to the subject population. The

next challenge is to explain the variation.

Second, we find that behavior is much closer to risk neutrality when subjects are

prompted to state beliefs over the opponent’s actions (treatment B) compared to

when subjects simply play the games (treatment A). This result may be driven by

ambiguity aversion. The hypothesis that simply giving subjects a clear way to think

about a decision situation may reduce ambiguity has far-reaching implications and

needs to be studied further.

It is not clear why behavior is much closer to risk neutrality when subjects are

prompted to state beliefs over the opponent’s actions (treatment B) compared to

when subjects choose between lottery tickets (treatment C).
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Chapter 2

Hindsight, Foresight, and Insight: An

Experimental Study of a Small-Market

Investment Game with Common and

Private Values

2.1 Introduction

The theoretical literature on herding with endogenous timing, pioneered by Chamley

and Gale (1994), explores the important issue of how market activity aggregates

and transmits private information. Will firms with favorable information about the

investment climate act on that information, thereby providing benefits to others,

or will they postpone investment, to acquire information by observing other firms’

investment activity? In Chamley and Gale (1994), firms receive a signal correlated

with the unobserved investment return, which is common to all firms, and then face

a sequence of decisions about whether or not to invest.1 They find that the incentive

1The previous generation of herding models assumes that agents have one opportunity to invest,
and must decide in an exogenously specified sequence. See Banerjee (1992) or Bikhchandani,
Hirshleifer, and Welch (1992). Also, Anderson and Holt (1997) provided the first experimental
tests of herding models with exogenous timing. For a nice overview of the theoretical literature on
herding, see Chamley (2003).

36



to delay leads to inefficiency and the possibility of investment collapse. Indeed, firms

are no better off than in a static game, in which firms must invest without learning

anything about other firms’ information. Levin and Peck (2006) introduce a second

signal, about the cost of undertaking the investment, which is firm specific and

independent of the costs faced by other firms. Observing the investment decisions of

other firms could be used to improve inference about the aggregate state, but firms

must disentangle whether another firm invests because it receives a favorable signal

about investment returns or simply has a low cost.

Experimentally testing the theoretical implications of the endogenous timing

herding literature is important for several reasons. First, we can compare the theo-

retical implications for aggregate investment activity on markets with what actually

occurs in the lab. One intriguing possibility is that subjects with favorable infor-

mation underestimate the option value of waiting and become more likely to invest

immediately, thereby providing more information to the market and a more efficient

outcome than the theoretical analysis would predict.2 3 Second, interactions are

purely informational in our investment market, so decision making is not compli-

cated by payoff externalities, as opposed to an auction environment where subjects

must decide how much to bid, how others will respond, and so on. We can test

separately (i) whether a subject understands the expected profits of investing, (ii)

whether a subject draws inferences from the other’s behavior (hindsight), and (iii)

whether a subject looks ahead by considering the option value of delaying investment

(foresight). On this score, we add to the work of Sgroi (2003) and Ziegelmeyer et

al (2006).4 Third, because interactions are purely informational, the setting offers a

2The other experimental work on endogenous timing herding models, by Sgroi (2003) and
Ziegelmeyer et al (2005), are not well suited to address issues of aggregate investment, because
in those games it is always optimal to ”invest” eventually.

3There are examples in the experimental literature on exogenous timing herding in which depar-
tures from the theoretical predictions lead to increased social learning. See Kübler and Weizsäcker
(2004) and Goeree et al. (2006)

4Sgroi (2003) uses an ”urn” setting, in which signals either strongly point to the (mostly) red
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sharp test of various recently advanced behavioral theories, such as level-k beliefs (see

Crawford and Iriberri (2005)) and cursed equilibrium (see Eyster and Rabin (2005)).

Let us sketch our experimental treatments. Subjects are matched in two-player

trials, and each subject observes her cost of investment and another signal that

is correlated with the common investment return. Ranging from least favorable

to most favorable, possible types are (0, H), (0, L), (1, H), and (1, L), where the

first component is the common-value signal (0 is low and 1 is high) and the second

component is the investment cost (L is low and H is high). At the beginning of each

trial, the subjects observe their signals and simultaneously decide whether to invest

in round 1. Then, subjects that do not invest in round 1 observe whether the other

subject invested in round 1, and decide whether to invest in round 2, and so on.

Investment is irreversible, and can be done at most once per trial per subject. In our

Two-Cost Treatment, each subject’s investment cost is high or low with probability

one half, independent of the other subject’s cost and the investment return. In

our Alternating One-Cost Treatment, trials alternate between common knowledge of

high cost and common knowledge of low cost.

We find that the typical subject is quite good at determining whether investment

is profitable, based on her type. In particular, a type (0, L) subject is far less likely to

invest in round 1 than a type (1, H) subject, even though it may not be obvious that

a bad signal and low cost is slightly unprofitable and a good signal and high cost is

slightly profitable. Thus, this basic aspect of rationality is satisfied. Subjects usually

treat investment by the other subject in the trial as good news about the investment

return; they are more likely to invest in round 2 following investment in round 1

urn, strongly point to the (mostly) white urn, or are completely neutral. The most profitable
urn to pick and the proper inference from the other subjects’ behavior are somewhat obvious. In
Ziegelmeyer et al (2006), the most profitable investment choice is obvious for the first mover, and
the only inference required is an understanding that the first mover has a stronger signal than
someone who waits. Both papers exhibit an interesting tradeoff between the cost of delay and the
information gained.
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than following no investment in round 1. Thus, subjects show that they can draw

inferences from the other subject’s behavior, in hindsight. The evidence regarding

foresight is nuanced. On the one hand, a significant fraction of type (1, H) subjects,

who would receive positive expected profits by investing in round 1, prefer costly

waiting and invest in round 2 if and only if the other subject invested in round 1. It

seems that these subjects have the foresight to understand that waiting will provide

useful information. On the other hand, we argue below that it is unlikely that these

subjects are computing the option value of waiting, which is then compared to the

profits of investing immediately.

Here are our main results about aggregate investment and information flows. We

find that the frequency of investment is higher and overall profits are lower than

those predicted by the Nash equilibrium. Investment by the other subject gener-

ates an informational externality, which could be either positive or negative. There

is a positive informational externality due to investment by subjects with a high

common-value signal, and a negative informational externality due to investment by

subjects with a low common-value signal. Not surprisingly, we find that the over-

all externality is positive in all our treatments. The more interesting comparison is

to the Nash prediction. In our Two-Cost Treatment, the incremental positive in-

formational externality (over Nash), due to overinvestment by subjects with a high

common-value signal, is balanced by the negative externality created by unprofitable

investment by subjects with a low common-value signal. The overall externality is as

large as in the Nash equilibrium, in the sense that a subject best responding to the

empirical distribution of strategies receives as high a profit as she would receive if

everyone were playing Nash. In our Alternating One-Cost Treatment, the incremen-

tal positive externality due to overinvestment disappears, but it is the theoretical

yardstick and not investment behavior that is different.
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For our two main treatments, there are essentially only three strategies that

are consistent with Nash, level-k beliefs, or cursed equilibrium. The self-contained

strategy, S, responds optimally to one’s own information, but ignores the behavior

of the other subject. The myopic strategy, M , is to invest in round 1 whenever

investment is profitable (even if waiting is more profitable), but to properly infer

(in hindsight) that investment by the other subject in round 1 is good news, and

act accordingly. The foresight strategy, F , is to delay investment whenever valuable

information can be revealed, but otherwise to invest when profitable. We perform

maximum likelihood estimation on the proportion of S subjects, M subjects, and

F subjects, allowing for errors. Even though the theory differs across our two main

treatments, our maximum likelihood estimates are nearly identical. The proportion

of F subjects is greater than one half, and the proportion of S subjects is greater than

one third. These findings are inconsistent with any symmetric cursed equilibrium

(see Eyster and Rabin (2005)), which allows for either F or S, depending on the

level of cursedness, but not the coexistence of F and S. As far as level-k beliefs

are concerned,5 a level-1 subject plays S, and a level-2 subject plays F , so behavior

across our two main treatments is broadly consistent with level-k beliefs.

Cursed equilibrium and level-k beliefs are belief-based theories, in which players

form beliefs as specified in the theory and choose best responses accordingly. Our al-

ternative interpretation of behavior is that subjects choose particular rules of thumb,

based on various sorts of insights that subjects may experience. First, there is the

insight that investment in round 1 is profitable for types (1, H) and (1, L), and not

for the other types. Second, there is the insight that investment by the other subject

signals the high common-value signal, calling for an updating of beliefs. Third, there

is the insight that delaying investment may provide useful information. Thus, S, M ,

and F are interpreted as rules of thumb, reflecting the degree of insight acquired. To

5See Stahl and Wilson (1995), Nagel (1995), or Crawford and Iriberri (2005).

40



better separate our insight story from the belief-based explanations, we introduce a

new treatment. In Treatment 3, a type (1, H) subject receives higher expected prof-

its by investing in round 1 than waiting, even if waiting revealed the other subject’s

type with probability one. Playing F is strictly dominated, so it is inconsistent with

any theory of behavior involving a best response to beliefs about the other subject’s

strategy. On the other hand, it is plausible that our subject has the insight that

waiting will yield useful information, but does not perform a calculation to see that

F is dominated. Maximum likelihood estimates for Treatment 3 indicate that the

proportion of F subjects remains above one half, providing support for the insight

story and evidence against the belief-based theories.

2.2 Theoretical Framework

Our theoretical framework is based on the general model studied in Levin and Peck

(2006). There are n ≥ 2 risk-neutral players or potential investors. Let Z ∈ {0, 10}

denote the true investment return, common to all investors, with pr(Z = 0) = pr(Z =

10) = 1
2
. Each player i = 1, ..., n observes a signal correlated with the investment

return, Xi ∈ {0, 1}, which we call the “common-value” signal of player i. We assume

that signals are independent, conditional on Z. The accuracy of the signal is given

by the parameter, α ∈ [1
2
, 1]:

pr(Z = 0 | Xi = 0) = pr(Z = 10 | Xi = 1) = α.

When we have α = 1
2
, common-value signals have no information content at all, and

when we have α = 1, a common-value signal fully reveals the aggregate state. Thus,

α effectively captures the informativeness of the common-value signal, Xi.
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Each player i also privately observes a second signal, representing the idiosyn-

cratic cost of undertaking the investment, ci. We assume that ci is independent of

all other variables, and distributed according to a distribution function defined over

the support, [c, c]. The structure of signals is common knowledge.

Impatience is measured by the discount factor, δ < 1. If player i has cost ci

and the state is Z, her profits are zero if she does not invest, and δt−1(Z − ci) if

she invests in round t. We now describe the game. First, each player observes her

signals, (Xi, ci). For t = 1, 2, ..., each player observes the history of play through

round t− 1, and players not yet invested simultaneously decide whether to invest in

round t. A strategy for player i is a mapping from signal realizations and histories

(including the null history) into a decision of whether to invest following that history.

We require that a player can invest at most once.

Although Levin and Peck (2006) consider continuous cost distributions, our ex-

perimental design considers a discrete distribution containing either one or two

points. This simplifies the decision making required of subjects and simplifies the

data analysis. At the same time, it maintains the essential tradeoff between the

incentive to delay and gain information by observing investment activity, versus the

associated shrinkage of the (expected) pie due to discounting. We now define the

three games relevant to our experiment, and solve for the Bayesian Nash equilib-

ria. For the remainder of this section, we restrict attention to the parameter values,

n = 2, δ = 0.9, and α = 0.7.

Game 1 (two costs):

There are two equally likely cost realizations, L = 3.5 andH = 6.5. Thus, we have

four possible types of players, based on the common-value signal and the cost: (0, H),

(0, L), (1, H), and (1, L). Equilibrium path play is uniquely determined, and involves

pure strategies. A type (0, H) player will never invest under any circumstances,
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Equilibrium Strategy Expected Profits for each type
type (0, H) N 0
type (0, L) W 0.2835
type (1, H) W 0.5085
type (1, L) 1 3.5

Table 2.1: Equilibrium Characterization for the Two-Cost Game

because her expected profits from investing are negative even if she knows that the

other player has the high common-value signal.6 Similarly, a type (1, L) player finds

it profitable to invest even if she knows that the other player has the low common-

value signal, and therefore invests in round 1. A type (0, L) player will not invest in

round 1, because the expected return is 3, while her cost is 3.5. However, since we

have established that investment in round 1 must come from a player with the high

common-value signal, a type (0, L) player will invest in round 2 if the other player

invests in round 1, because her conditional expected return becomes 5.

The remaining type, (1, H), is the most interesting. Investment in round 1 yields

positive expected profits of 0.5, but profits are slightly higher by taking advantage

of the option value of waiting, investing in round 2 if and only if the other player

invests in round 1. If all other type (1, H) players wait, profits from waiting are

0.5085. If some other type (1, H) players would invest in round 1, the advantage of

waiting is even greater. Thus, we have characterized the equilibrium path, which is

given in Table 1.7 To simplify the discussion, denote the choice to invest in round 1

as “1”, denote the choice never to invest as “N”, and denote the choice to wait and

invest immediately following investment by the other player as “W”.

6In such a case, her conditional expected return would be 5, but her cost is 6.5.
7Several specifications of behavior and beliefs off the equilibrium path are consistent with se-

quential equilibrium, all yielding the same equilibrium path. After no one invests in round 1 and
one player invests in round 2, beliefs about the investor’s common-value signal can affect the the
remaining player’s decision. However, the beliefs and subsequent decision do not affect the original
investor’s profit, so the equilibrium path is unaffected.
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Game 2 (low cost):

There is only one possible cost realization, 3.5. Thus, we have two possible types

of players, (0, L) and (1, L). It is easy to see that a type (1, L) player would want

to invest, no matter what it believes about the other player’s type, so she invests

in round 1. A type (0, L) player finds it unprofitable to invest in round 1, but will

invest in round 2 if the other player invests in round 1 (implying a high common-value

signal).

Game 3 (high cost):

There is only one possible cost realization, 6.5. Thus, we have two possible types

of players, (0, H) and (1, H). It is easy to see that a type (0, H) player would not

want to invest, no matter what it believes about the other player’s type, so she never

invests. A type (1, H) player compares the profits of choices “1” and “W”. If all

other type (1, H) players choose “1”, then she can act with full information in round

2, and “W” is a best response. If all other type (1, H) players choose “W”, then

nothing is learned from waiting, and “1” is a best response. Therefore, type (1, H)

players mix, choosing “1” with probability 0.4916 and choosing “W” with probability

0.5084.

In our Alternating One-Cost Treatment, the subjects alternate between Game 2

and Game 3. Because matching is random and anonymous, folk theorem issues do

not arise, so the equilibrium characterization combines the equilibria of Game 2 and

Game 3, as given in Table 2.

The Bayesian Nash equilibria characterized in Table 1 and Table 2 allow for

inefficient delay. A type (1, H) player does not take into account the positive infor-

mational externality that investing in round 1 provides to the other player. Thus,
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Equilibrium Strategy Expected Profits for each type
type (0, H) N 0
type (0, L) W 0.567
type (1, H) 1 with probability 0.4916 0.5

W with probability 0.5084
type (1, L) 1 3.5

Table 2.2: Equilibrium Characterization for the Alternating One-Cost Treatment

if our experimental subjects are more likely to invest than the theory predicts when

they are type (1, H), it is possible that profits are higher than the theory predicts. Of

course, it is also possible that subjects invest in round 1 with the low common-value

signal, leading to a negative informational externality and lower profits.

2.3 Behavioral Considerations

In the investment games we study here, interactions between players are purely

informational, with no direct payoff consequences. This simple structure allows us

to test separately whether subjects invest when investment is unprofitable; whether

subjects draw inferences, from round 1 investment by the other subject (hindsight);

and whether they delay profitable investment in order to observe the other subject’s

decision (foresight). These different aspects of rationality would be more difficult to

disentangle in auctions or other games with payoff externalities.8 In particular, we

focus on three strategies, which will be relevant for the three behavioral theories we

consider. A subject who disregards the behavior of the other subject will invest if and

only if investment is profitable based upon her own signals. Such a subject chooses

the type-dependent strategy S ≡ (N,N, 1, 1), where S stands for self-contained.9

8For example, Garratt and Keister (2006) experimentally test a model of bank runs, where a
player’s decision to withdraw deposits simultaneously involves Bayesian updating, considering the
option of withdrawing in the future, and anticipating the strategies of the other players.

9The type-dependent strategy, (A, B, C, D), means that type (0, H) players choose A, type (0, L)
players choose B, type (1, H) players choose C, and type (1, L) players choose D.
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A subject who invests whenever investment is profitable, incorporating informa-

tion from the history of play, chooses the type-dependent strategy M ≡ (N,W, 1, 1),

where M stands for myopic. Thus, an M subject is able to draw inferences from

market activity, in hindsight, but does not look with foresight to the informational

benefits of waiting. Note that it is possible that an M subject of type (1, H) might

understand that there is a benefit to waiting, but feel that investment in round 1 is

the better choice.10

Consider a subject who updates beliefs, in hindsight, and looks with foresight

to the useful information that can be gained by waiting when her type is (0, L) or

(1, H).11 Such a subject chooses the type-dependent strategy F ≡ (N,W,W, 1).

Note that this foresight does not necessarily mean that she actually calculates the

value of waiting, or even that such a calculation would justify waiting.

The strategies, S, M , and F , have interpretations that depend on the theory used

to justify behavior. We focus on two belief-based theories, cursed equilibrium and

level-k beliefs, and a theory of boundedly rational rules of thumb, based on insights

a subject might acquire about understanding the game. As it turns out, we can

characterize the Nash equilibrium, level-k behavior, and the cursed equilibrium, all

in terms of these three strategies, so it is natural to focus on them.12

There is considerable evidence that experimental subjects fail to pick actions in

accordance with the relevant Nash equilibrium. Such discrepancies are particularly

acute in tasks that require players to make inferences and update their priors based

10Another interpretation is that the subject is somehow more impatient than that implied by the
discount factor, 0.9.

11A type (0, H) subject does not receive useful information by waiting, because the expected
profits from investment are always negative. A type (1, L) subject also does not receive useful
information by waiting, because the expected profits from investment are always positive.

12There is one other strategy in which a subject never makes an unprofitable investment, and
invests immediately when nothing can be learned to make investment unprofitable. This strategy
is (N, N, W, 1). Maximum likelihood estimation, allowing for all four strategies, does not change
our conclusions. Indeed, allowing this strategy would stack the deck against cursed equilibrium and
level-k beliefs, in favor of our explanation of insight-based rules of thumb.
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on other players’ actions in games with incomplete information.13 There are also sev-

eral studies claiming such failure in real markets.14 Faced with such overwhelming

evidence, it is not surprisng that there were several attempts to explain these dis-

crepancies. Stahl and Wilson (1995) and Nagel (1995) use a non-equilibrium model

of “level-k” beliefs, where L0 players behave in some pre-determined way (usually

randomly), and for k = 1, 2, ..., the Lk players choose a best response to the strategy

chosen by the Lk−1 players. See Crawford and Iriberri (2005) for a survey and an

explanation for the winner’s curse in auctions, based on level-k beliefs. Eyster and

Rabin (2005) propose an alternative theory, which they call “cursed equilibrium.”

Players are assumed to best respond to the other players’ strategies in a certain sense.

In a χ−cursed equilibrium, players believe that with probability χ, each other player

j chooses an action that is type-independent, and whose distribution is given by the

ex ante distribution of player j’s actions. Also, players believe that with probability

1 − χ, each other player j chooses an action according to player j’s type-dependent

strategy. Thus, if χ = 0, we have a standard Bayesian Nash equilibrium, and if

χ = 1, players draw no inferences about other players’ types. Both level-k beliefs

and cursed equilibrium weaken the “usual” requirements of correct beliefs regarding

other players’ strategies, while insisting on players rationally choosing best responses

to the more flexible belief structures that are allowed.

For our Two-Cost Treatment (Game 1) and our Alternating One-Cost Treatment

(Games 2 and 3), the Nash equilibrium, level-k behavior, and the cursed equilibrium

13Leading examples from laboratory studies include failures in the takeover game (see Ball and
Bazerman (1991) and Charness and Levin (2005)), and systematic overbidding and the winner’s
curse in common-value auctions (see Bazerman and Samuelson (1983), Kagel and Levin (1986),
Levin, Kagel, and Richard (1996), Holt and Sherman (1994), and Kagel and Levin (2002)).

14Leading examples include oil and gas lease auctions (see Capen, Clapp, and Campbell (1971),
Mead, Moseidjord, and Sorensen (1983) and (1984), and the opposite conclusions reached in Hen-
dricks, Porter, and Boudreau (1987)), baseball’s free agent market (see Cassing and Douglas (1980)
and Blecherman and Camerer (1998)), book publishing (see Dessauer (1981)), initial public offerings
(see Levis (1990) and Rock (1986)), and corporate takeovers (see Roll (1986)).
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Two-Cost Game Alternating One-Cost Game
Nash Equilibrium F M with probability 0.4916

F with probability 0.5084

Level-k
L1 S S
L2 F F
L3 F M
L4 F F

Cursed Equilibrium
0 < χ < 17

756
F M with probability qalt

F with probability 1 − qalt

17
756

< χ < 517
756

M with probability q2cost M with probability qalt

F with probability 1 − q2cost F with probability 1 − qalt

517
756

< χ < 3
4

M M
3
4
< χ < 1 S S

Table 2.3: Nash, Level-k, and Cursed Equilibrium

are characterized in Table 3, all in terms of the three strategies, S, M , and F .15

The probabilities given in Table 3, q2cost and qalt, are the following.

q2cost =
756χ− 17

9(113 − 84χ)
and qalt =

500

9(113 − 84χ)
.

For our Two-Cost Treatment (Game 1), the Nash equilibrium strategy is F ,16

and for our Alternating One-Cost Treatment (Games 2 and 3), the symmetric Nash

equilibrium involves mixing over M and F according to the probabilities given. Now

15We are being a little loose when we refer to F , M , and S as strategies, because behavior is not
specified after unexpected contingencies that do not affect play in the NE, the cursed equilibrium,
or under level-k beliefs. In our maximum likelihood estimation (Section 5), we are careful to specify
the decisions following investment by the other subject in round 2 (after not investing in round 1),
and following a tremble that is inconsistent with the strategy itself.

16In fact, for the Two-Cost Treatment, suppose a player knows that everyone is playing one of
the strategies, S, M , or F . Then the best response is F , no matter how many of the other players
are choosing each of the three strategies.
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let us consider level-k beliefs, starting with the Two-Cost Treatment. A player

choosing a best response to an L0 player who plays randomly can learn nothing from

the other player’s behavior, so an L1 player chooses the strategy S. An L2 player

chooses the best response to S, which is F . For k = 3, 4, ..., an Lk player chooses

the best response to F , which is F . For the Alternating One-Cost Treatment, an

L1 player chooses the strategy S, and an L2 player chooses the best response to S,

which is F . However, the situation is different from the Two-Cost Treatment, where

a type (1, H) is better off waiting if others are playing F , based on the hope that the

other player is type (1, L). In the Alternating One-Cost Treatment, a type (1, H) is

playing the high-cost game (Game 3), and knows that the other player also has high

cost. Therefore, if the other player chooses F , this implies that the other player never

invests in round 1, in which case the best response is to invest. It follows that the

best response to F is M . On the other hand, the best response to M is F , because

if the other player invests in round 1 when type (1, H), a type (1, H) is better off

waiting.

Computing the symmetric cursed equilibria for our games is a bit more involved,

and details are given in the Appendix. In the Two-Cost Treatment, when the cursed-

ness parameter, χ, is small, the Nash equilibrium strategy, F , continues to be played.

For 17
756

< χ < 517
756

, if type (1, H) players wait, the informativeness of round 1 in-

vestment is sufficiently weakened that it does not pay them to wait. However, if all

type (1, H) players invest in round 1, now it pays to wait. Therefore, the cursed

equilibrium involves mixing by type (1, H) players, but a type (0, L) player will still

want to invest if she sees the other player invest. Thus, players mix between M and

F , with the probabililty of choosing the myopic strategy, q2cost, increasing in χ. For

517
756

< χ < 3
4
, the level of cursedness is high enough so that a type (1, H) player is

better off investing in round 1 than waiting, even if all other (1, H) players are also
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investing in round 1. A type (0, L) player will still want to invest if she sees the other

player invest, so in the χ−cursed equilibrium the players choose the pure strategy,

M . Finally, for χ > 3
4
, the level of cursedness is so high that no useful inferences can

be made, and the equilibrium strategy is S.

For the Alternating One-Cost Treatment, when χ < 517
756

, players mix between M

and F in the cursed equilibrium, with the probabililty, qalt, of choosing the myopic

strategy M increasing in χ. The probability of choosing M ranges from the Nash

equilibrium value, qalt = 0.4916 for χ = 0, to unity, qalt = 1 for χ = 517
756

. For

517
756

< χ < 3
4
, the informativeness of round 1 investment is too low to justify waiting

for a type (1, H), but it is high enough for a type (0, L) to be willing to invest after

she sees the other player invest. Thus, the cursed equilibrium strategy is M . For

χ > 3
4
, even a type (0, L) is unwilling to invest after she sees the other player invest,

and the cursed equilibrium strategy is S.

Of course, there are many possibilities for bounded rationality that go beyond

misspecification of beliefs.17 For our investment games, a small but nonzero pro-

portion of type (0, H) subjects invests in round 1, which is a mistake indicating a

lack of understanding of the game. If mistakes like this occur, perhaps less extreme

departures from Nash behavior reflect a lack of insight about some of the fine points

of the game.

Let us elaborate on the insights we have in mind. Investment in round 1 is

profitable for types (1, H) and (1, L), and not for the other types. We start with

the notion that subjects have the basic insight that the expected revenue is 7 when

receiving the high common-value signal and 3 when receiving the low common value

signal. The second level of sophistication occurs when a subject, upon seeing the

other subject invest, revises upwards the expected investment return, because she

realizes that the other subject is very likely to have the high common-value signal.

17See, for example, Simon (1972) and Rubinstein (1998), including references therein.
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Based on our parameters, any upward revision should be enough to induce a type

(0, L) subject to invest in round 2 after the other subject invests in round 1 (a

numerical computation is not required). The third level of sophistication occurs

when a subject has the insight that there is a tradeoff, between potentially higher

profits of investing early versus the information gained by waiting. Since a type

(1, H) subject with this third level of sophistication does not compute the expected

profits from waiting, she might invest in round 1 or wait, depending on how she

evaluates this tradeoff.

We call these strategies rules of thumb because they are not based on computation

of expected profits, by applying the discount factor and using Bayes’ rule explicitly.

Not only would such a computation be time consuming, but it would require deeper

insights about the game that few subjects are capable of acquiring during the ses-

sion.18 Think of the subjects, either as the instructions are read or early in the

session, as having a “Eureka moment” giving them a partial understanding of the

game. Under this view, it is reasonable to suppose that the exact parameter values,

or the difference between the Two-Cost Treatment and the Alternating One-Cost

Treatment in how costs are determined, should not affect the generation of these

insights. Fewer than 10% of our subjects make choices that are inconsistent with F ,

M , or S in more than half of their trials.19

2.4 Experimental Design

The experiment consisted of the Two-Cost Treatment, the Alternating One-Cost

Treatment, and Treatment 3, which was adopted to clarify some of the behavioral is-

18A subject with total command of the game would need to think about the other subject’s
type-contingent probability of investing in round 1, in order to compute the probability that the
other subject has the high common-value signal, conditional on behavior and one’s own type.

19Excluding these subjects from the sample has almost no effect on our estimates for the propor-
tion of F , M , and S subjects, although the error term is reduced.
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sues. We conducted two sessions of the Two-Cost Treatment (18 participants in each

session), two sessions of the Alternating One-Cost Treatment (26 and 20 participants,

respectively), and one session of Treatment 3 (28 participants).20

In the Two-Cost Treatment, subjects played Game 1 (see Section 2) in each trial,

so that each subject’s private cost of investment was randomly selected to be either

3.5 or 6.5. In the Alternating One-Cost Treatment, subjects played Game 2 in odd

numbered trials and Game 3 in even numbered trials, so that each subject’s cost

alternated between 3.5 and 6.5 from trial to trial (but was the same for all subjects

within a trial). Treatment 3 was the same as our Alternating One-Cost Treatment,

except that the discount factor was given by δ = 0.8 and the costs alternated between

3.5 and 5.7. To guarantee that the trials ended, without changing the equilibria,

subjects were told that the trial ended after either both subjects had invested or

there were two consecutive rounds with no investment.

Each session in all treatments consisted of two practice trials and 24 trials in

which subjects played for real money. At the start of each trial, subjects were

randomly and anonymously matched in pairs to form separate two-player markets

which bore no relation to each other. There was a new random matching from trial

to trial. Subjects were given an initial cash balance of 20 experimental currency units

(ECU). In addition, they could gain (lose) ECU in each trial, which were added to

(subtracted from) their cash balances. At the end of the session, ECU were converted

into dollars at a rate of 0.6 $/ECU in our two main treatments, and 0.5 $/ECU in

Treatment 3. Subjects were paid the resulting dollar amount or $5, whichever was

greater. If a subject’s cash balances fell below 0 at any point during the session,

that subject was paid $5 and was asked to leave.21 Average earnings for the Two-

20We also conducted a pilot session for the Two-Cost Treatment (14 participants).
21This occurred for two subjects in the Two-Cost Treatment, for one subject in the Alternating

One-Cost Treatment, and for one subject in Treatment 3. After a subject goes bankrupt, if the
number of subjects in a session is no longer even, one subject was randomly selected to sit out
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Cost Treatment, the Alternating One-Cost Treatment, and Treatment 3 were $22.82,

$23.53, and $20.27 respectively. Including the reading of instructions, sessions lasted

between 1 hour 45 minutes and 2 hours.

Subjects in the experiment were students at The Ohio State University who

were enrolled in undergraduate classes in Economics. The sessions were held at the

Experimental Economics Lab at OSU. Before starting the trials, the experimenter

read the instructions aloud as subjects read along, seated at their computer terminals.

Subjects were invited to ask questions, including after the practice trials. Once

the real trials began, no more questions were allowed. See the Appendix for our

Instructions and a printout of the screen seen by a player with cost ci = 6.5 and

signal Xi = 1, who is deciding whether to invest in round 2 after the other player

has invested in round 1.

The experiment was programmed and conducted with the software z-Tree (Fis-

chbacher (1999)).

2.5 Results

2.5.1 Aggregate-Level Analysis

Table 2.4 presents aggregate-level decisions in the Two-Cost and the Alternating

One-Cost Treatments. There are only six possible histories after which a subject

can invest: the null history, {}; the history following no investment in round 1, {0};

the history following one subject investing in round 1, {1}; the history following

no investment in round 1 and one subject investing in round 2, {0, 1}; and so on.

The first six rows of the table show, for each treatment, type, and history, how

many times a subject facing a decision in that situation invested. There are only

three possible histories after which no investment would end the game: {0}, (1, 0},

during each trial.
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History Two-Cost Alternating One-Cost
(0,H) (0,L) (1,H) (1,L) (0,H) (0,L) (1,H) (1,L)

{} 20 27 67 148 16 35 109 206
(9%) (14%) (35%) (78%) (6%) (13%) (42%) (74%)

{0} 12 12 22 11 19 14 30 13
(9%) (11%) (27%) (46%) (9%) (10%) (27%) (46%)

{1} 9 22 26 18 9 54 24 34
(15%) (37%) (59%) (100%) (15%) (53%) (62%) (79%)

{0,1} 2 5 7 4 5 5 7 1
(9%) (45%) (58%) (100%) (14%) (28%) (88%) (100%)

{1,0} 6 17 6 0 8 16 9 4
(12%) (46%) (33%) N/A (16%) (33%) (60%) (44%)

{0,1,0} 0 1 0 0 3 4 1 0
(0%) (17%) (0%) N/A (10%) (31%) (100%) N/A

no {0} 101 83 49 9 160 106 74 14

no {1,0} 44 20 12 0 43 32 6 5

no {0,1,0} 20 5 5 0 27 9 0 0

Total 214 192 194 190 290 275 260 277

Table 2.4: Aggregate Actions and Frequency of Investment at each History

and {0, 1, 0}. Rows 7-9 show, for each treatment, type, and history for which no

investment would end the game, how many times a subject in that situation made

the final decision not to invest. The numbers in parenthesis show what percentage

of decisions made at a particular history were decisions to invest. For example, in

the Two-Cost Treatment, the 22 times a type (0, L) subject invested after history

{1} represent 37% of all decisions taken at that history.22 The last line of the table

shows the total number of realizations of each type. Note that a subject’s play in a

given trial is counted in one, and only one, cell of the table. Hence the last line is

simply the sum of all previous lines.

22To see how the 37% figure is computed, note that the number of times a type (0, L) subject
passed through history {1} is the sum of the 22 times a type (0, L) subject invested after {1}, plus
the 17 times a type (0, L) subject invested after {1, 0}, plus the 20 times a type (0, L) subject who
experienced history {1, 0} ended up not investing. Thus, 22

(22+17+20) = 0.37.
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We are interested in performing statistical tests, based on investment decisions

and realized profits in our experiment. However, given that there is dependence

between the investment decisions and profits of the two subjects in any trial, we

will arbitrarily call one subject in each market an A subject (the one with the lower

subject ID) and the other subject a B subject. Then we will perform the relevant

test separately for A subjects and B subjects. Note that now each test will be based

on observations, no two of which were from the same market trial.23

Let us start by checking if subjects’ aggregate behavior satisfies some basic re-

quirements on rationality. First note that, in the aggregate, subjects in both the

Two-Cost and Alternating One-Cost Treatments respond to their own information

(common value signal and investment cost). This can be seen when we consider

investment in round 1, and when we consider investment in any round.

The higher the expected profit from investment, given a subject’s type, the more

likely she is to invest in round 1. In particular, the frequencies with which subjects of

type (0, H)/(0, L)/(1, H)/(1, L) invest in round 1 are 9%/14%/35%/78% in the Two-

Cost and 6%/13%/42%/74% in the Alternating One-Cost Treatment. The increase

in the probability of investing in round 1, per ECU increase in the expected profit of

investing in round 1, is 0.134 (se = 0.017; p < 0.001) in the Two-Cost Treatment and

0.125 (se = 0.01; p < 0.001) in the Alternating One-Cost Treatment. The estimating

procedure used was a random effects probit.

The higher the expected payoff from investment, given a subject’s type, the more

likely she is to invest during some round. In particular, the frequencies with which

subjects of type (0, H)/(0, L)/(1, H)/(1, L) invest are 23%/44%/66%/95% in the

Two-Cost and 21%/47%/69%/93% in the Alternating One-Cost Treatment.24 The

23There is no dependence between both subjects’ decisions to invest conditional on any particular
history, so we do not have to split the sample when we test behavior after any particular history.

24These numbers are obtained from Table 2.4 by dividing the sum of the first six numbers in
a column (the number of times that type invested) by the last number in the column (the total
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increase in the probability of investing in some round, per ECU increase in the

expected profit of investing in round 1, is 0.158 (se = 0.016; p < 0.001) for A subjects

and 0.132 (se = 0.014; p < 0.001) for B subjects in the Two-Cost Treatment. The

corresponding effect is 0.131 (se = 0.011; p < 0.001) for A subjects and 0.133 (se =

0.011; p < 0.001) for B subjects in the Alternating One-Cost Treatment (estimated

via random effects probit).

The data suggest that subjects understand when investment is profitable and

when it is not profitable, based on their signals. The fact that slightly over one in

five type (0, H) subjects eventually invests is somewhat high, because one should

realize that even when the other subject has the high signal, the two signals would

cancel and expected revenue is 5. However, nearly four in five type (0, H) subjects

get it right and never invest. It is quite impressive that less than 15% of type (0, L)

subjects invest in round 1, even though expected profits are only slightly negative.25

Also impressive is that a type (1, H) subject is far more likely to invest than a type

(0, L), even though the expected profits are only slightly positive.26

We now move on to the question of whether subjects respond to the behavior of

the other subject in their trial. We are interested in determining whether subjects

were more likely to invest after seeing the other subject invest in round 1, as compared

to seeing the other subject not invest in round 1. In the Two-Cost Treatment, the

frequency with which subjects invest immediately after the history {1} is 42%, and

the frequency with which subjects invest immediately after the history {0} is 16%.

In the Alternating One-Cost Treatment, the corresponding frequencies are 50% and

number of times that type occurred).
25Of course, the percentage of type (0, L) subjects who eventually invest is higher, but much of

that investment is following an investment by the other subject in the trial, which is consistent with
equilibrium.

26It is not a problem that the percentages of type (1, H) subjects who invest in round 1 are
only 35% in the Two-Cost Treatment and 42% in the Alternating One-Cost Treatment. Many
subjects who do not invest understand that investment is profitable, but are waiting to obtain more
information.
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15%. Using a random effects probit, the marginal effect of the other subject investing

in round 1, on the probability that a subject invests in round 2 (controlling for

subjects’ types) is 0.292 (se = 0.051; p < 0.001) in the Two-Cost Treatment and

0.306 (se = 0.039; p < 0.001) in the Alternating One-Cost Treatment.

Let us summarize our results about the ability of subjects to invest only when

profitable and to draw inferences from the investment of the other subject.

Result 1 In the aggregate, for both treatments, (i) types with higher expected profits

are more likely to invest in round 1 and are more likely to invest eventually, and (ii)

subjects are more likely to invest in round 2 after the other subject invests in round 1

than after the other subject does not invest in round 1. Both results are statistically

significant.

Now that we have established that behavior satisfies some basic requirements on

rationality, let us turn to the question of how well it complies with Nash equilibrium

(NE). Table 2.5 shows the percentage of decisions in each treatment which comply

with NE, broken down by type and overall.27

(0,H) (0,L) (1,H) (1,L) Overall
Two-Cost 77% 60% 45% 78% 65%
Alternating One-Cost 79% 63% 82% 74% 75%

Table 2.5: Compliance with Nash Equilibrium

Compliance with NE for (0, H) and (1, L) types is high in both treatments. Note

that these are the types for which there is no need for strategic interaction with

the other subject. A type (0, H) subject should not invest, even if she knew that

the other subject’s common-value signal were 1, and a type (1, L) subject should

invest, even if she knew that the other subject’s common-value signal were 0. The

27In computing these numbers, we treat any decisions as consistent with NE, following a history
of no investment in round 1 and the other subject investing in round 2. See footnote 7.
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rate of compliance with NE for (0, L) and (1, H) types is more interesting, since

decisions are less clear cut, and these types must draw inferences from the other

subject’s behavior in the NE. The table shows that for type (0, L) subjects in both

treatments, and for type (1, H) subjects in the Two-Cost Treatment, a substantial

percentage of decisions deviates from the NE. Compliance with NE for type (1, H)

subjects in the Alternating One-Cost Treatment is high, but this is due to the fact

that the NE involves mixing, so it is consistent with NE to invest in round 1, and

also to wait and invest in round 2 if the other subject invests in round 1.

One might conjecture that behavior moves closer to NE in later trials. In the

Two-Cost Treatment, this is indeed the case. Using random effects probit estimation,

the marginal effect of the trial number on the probability that a decision is consistent

with NE (controlling for subjects’ types) is 0.0057 (se = 0.0026; p = 0.03). Thus, the

probability of a subject playing her NE strategy increases by 24 × 0.0057 = 0.137

over the 24 trials, which is not a small effect. However, the same marginal effect

in the Alternating One-Cost Treatment is actually negative (although insignificantly

so), suggesting that there is no movement towards NE in that treatment.

Result 2 When only one strategy is consistent with NE and the choice is not clear

cut (i.e., types (0,L) and (1,H) in the Two-Cost Treatment and type (0,L) in the

Alternating One-Cost Treatment), then a substantial percentage of decisions (37%-

55%) deviates from the NE. The probability that a decision is consistent with NE

increases with time in the Two-Cost Treatment, but not in the Alternating One-Cost

Treatment.

Let us now turn to the question of how actual investment and profit outcomes

compare with those in the NE.

Table 2.6 shows, for the Two-Cost and Alternating One-Cost Treatments, the ac-

tual frequency of investment as well as the ex ante expected frequency of investment
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Two-Cost Alternating One-Cost

(0,H) (0,L) (1,H) (1,L) Overall (0,H) (0,L) (1,H) (1,L) Overall

Actual 23% 44% 66% 95% 56% 21% 47% 69% 93% 57%

NE 0% 21% 29% 100% 38% 0% 42% 64% 100% 51%

Table 2.6: Investment

in the NE (broken down by type as well as overall). In both treatments, the actual

frequency of investment exceeds the NE frequency for all types, except type (1, L),

where the actual frequency comes close to the NE frequency of 100%. In both treat-

ments, the actual overall frequency of investment is higher than the NE frequency.

This overinvestment is both economically (especially in the Two-Cost Treatment)

and statistically significant (p < 0.001 for both A and B subjects in the Two-Cost

Treatment and p = 0.011/p = 0.003 for A/B subjects in the Alternating One-Cost

Treatment28).

Result 3 In both treatments, the actual overall frequency of investment is signif-

icantly higher than the NE frequency of investment. In the Two-Cost Treatment,

overinvestment is especially pronounced (actual frequency of investment is 56% vs.

38% in the NE).

Two-Cost Alternating One-Cost

(0,H) (0,L) (1,H) (1,L) Overall (0,H) (0,L) (1,H) (1,L) Overall

Actual -0.56 0.07 0.21 3.61 0.79 -0.34 0.03 0.44 3.05 0.79
NE 0 0.28 0.51 3.50 1.07 0 0.57 0.50 3.50 1.14

Table 2.7: Average Profits per Period (in ECU)

Table 2.7 shows, for the Two-Cost and Alternating One-Cost Treatments, the

average actual profits per period as well as the NE expected profits per period (broken

28These p-values are obtained in the following way. In order to account for possible dependence
between investment decisions made by the same player, we perform a random effects probit esti-
mation with only a constant as a right-hand-side variable. Then we test the hypothesis that the
estimated constant is the same as the constant which leads to a predicted probability of investment
equal to the NE ex ante probability of investment.
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down by type as well as overall). In both treatments, actual average profits are lower

than the NE expected profits. Due to the high variance of realized profits, this

difference is not statistically significant at the 5% level (p = 0.215/p = 0.092 for

A/B subjects in the Two-Cost Treatment and p = 0.078/p = 0.064 for A/B subjects

in the Alternating One-Cost Treatment).29 The reason that profits are lower than the

NE prediction is primarily due to unprofitable investment by subjects with the low

common-value signal, and the ensuing unprofitable investment by subjects drawing

the wrong inference. Result 4 summarizes our findings about aggregate profits.

Determinants of profits at the individual level will be considered later.

Result 4 Actual average profits per trial are 73% of expected NE profits in the Two-

Cost Treatment, and 69% of expected NE profits in the Alternating One-Cost Treat-

ment.

Central to our study is the informational interaction between subjects. A positive

informational externality exists when subjects are likely to invest in round 1 with

type (1, H) or (1, L), but unlikely to invest in round 1 with type (0, H) or (0, L).30

Not surprisingly, this is indeed the case: in the Two-Cost Treatment, subjects with

common-value signal 1 invest in round 1 55% of the time, and subjects with common-

value signal 0 invest in round 1 only 12% of the time. In the Alternating Two-

Cost Treatment, the corresponding percentages are 59% and 9%. In the NE, these

percentages would be 50% and 0% in the Two-Cost Treatment, and 75% and 0% in

the Alternating Two-Cost Treatment.31

29These p-values are obtained in the following way. In order to account for possible dependence
between profits earned by the same player in different periods, we perform a random effects re-
gression with only a constant as a right-hand-side variable. Then we test the hypothesis that the
estimated constant is the same as NE ex ante profits.

30The informational externality created by investment after the history {0} is more tricky, because
this behavior is off the equilibrium path, and it is unclear that one should infer that the investor
has the high common-value signal. This behavior is relatively rare in our experiment, and we ignore
it in our analysis of the informational externality.

31Even in the NE, the informational externality is inefficiently low, because a type (1, H) player
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The difference between the actual informational externality and the NE prediction

involves three effects. First, the difference is increased if type (1, H) subjects invest

in round 1 more often than in the NE. Second, the difference is decreased if type

(1, L) subjects fail to invest in round 1. Third, the difference is decreased if subjects

with common-value signal 0 invest in round 1. The first effect is present in the Two-

Cost Treatment, but not in the Alternating One-Cost Treatment. The second and

third effects are present in both treatments (see tables 2.1, 2.2 and 2.4).

How do we combine these three effects to compare the actual informational ex-

ternality with the NE prediction? To answer this question we compare the ex ante

profits that a subject would receive, in the NE, with the ex ante profits that a sub-

ject would receive, based on best responding to the empirical frequencies of strategies

chosen in each treatment. We will refer to this hypothetical best responder as a BR

subject.32 Thus, we compare the long run profits earned by choosing the optimal

strategy in a market where others play the NE strategy, and the long run profits

earned by choosing the optimal strategy in a market where others play according to

the empirical distribution of strategies chosen in our experiment. The ex ante profits

in the NE and for a BR subject are 1.07 ECU in the Two-Cost Treatment. In the Al-

ternating One-Cost Treatment, the ex ante profits in the NE are 1.14 ECU, and the

profits for a BR subject are 1.08 ECU. The difference in profits for the Alternating

One-Cost Treatment is not negligible, given that a subject who decides whether to

invest based solely on her own information (and ignores any information provided by

the other subject) earns expected profits of 1 ECU. Our findings about information

flows are summarized in Result 5.

ignores the benefit that investing provides to the other player. Thus, it is possible that the actual
play could be more informationally efficient than the NE play. We are currently running large
market experiments (n = 10) to explore this possibility.

32A BR player plays F (and invests after {0, 1} when she is type (1, H)) in the Two-Cost Treat-
ment and plays M (and invests after {0, 1} when she is type (0, L) or (1, H)) in the Alternating
One-Cost Treatment.
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Result 5 Behavior in both the Two-Cost and Alternating One-Cost Treatments cre-

ates (in the aggregate) a positive informational externality. This externality is as

large as the NE externality in the Two-Cost Treatment, and is smaller than the NE

externality in the Alternating One-Cost Treatment (by 5%).

Inspection of Tables 2.4, 2.6 and 2.7 indicates that behavior and outcomes in

the Two-Cost and Alternating One-Cost Treatments are remarkably similar.33 To

quantify this similarity, we employ random effects probit estimation with treatment

dummies as right hand side variables, to test the hypothesis that there is no treat-

ment effect on (i) key history and type-contingent investment choices, (ii) aggregate

investment, and (iii) aggregate profits. First, let us compare behavior across treat-

ments for some key types, after the history, {}, and after the history, {1}. In the

Two-Cost/Alternating One-Cost Treatment, type (1, L) subjects invest in round 1

78%/74% of the time (p = 0.373). In the Two-Cost/Alternating One-Cost Treat-

ment, type (1, H) subjects invest in round 1 35%/42% of the time (p = 0.397). In

the Two-Cost/Alternating One-Cost Treatment, type (1, H) subjects invest after the

history, {1}, 59%/62% of the time (p = 1). In the Two-Cost/Alternating One-Cost

Treatment, type (0, L) subjects invest after the history, {1}, 37%/53% of the time

(p = 0.305).

As can be seen from table 2.6, frequency of investment is very similar between

treatments: 56% vs. 57%. Testing the hypothesis that there is no treatment effect

on the probability of investing (controlling for subjects’ types) yields a p-value of

0.885/0.554 for A/B subjects (within a random effects probit model). From table

2.7, average profits per period are very similar between treatments: 0.79 ECU in both

treatments. Testing the hypothesis that there is no treatment effect on profits (by

regressing profits on a treatment dummy within a random effects model, controlling

33Table 5 shows the compliance with NE, and differs across the two treatments. This is because
the NE themselves differ across the treatments, not the actual behavior.
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for subjects’ types) yields a p-value of 0.813/0.982 for A/B subjects. Summarizing

these comparisons across the two treatments, we can state the following result:

Result 6 We cannot reject the hypothesis that there is no treatment effect on (i) key

history and type-contingent investment choices, (ii) aggregate investment, and (iii)

profits.

2.5.2 What is Driving Behavior?

Given the substantial departure from NE behavior and the finding that there is no

clear tendency towards NE behavior as the trials progress (Result 2), it remains to

study what drives the actual behavior. Our task is simplified by the fact that there

are essentially only three strategies that are consistent with level-k beliefs or cursed

equilibrium: F , M and S. We say “essentially” because there are variations on

these strategies, based on how decisions are made following a mistake, or when the

other subject invests in round 2 after no one invests in round 1. Furthermore, these

same three strategies can also be interpreted as rules of thumb, based on insights a

subject might have about the value of observing the other subject’s behavior. We

will proceed as follows. First, we consider a model for each treatment, in which

subjects are drawn from a population of subjects who play one of the strategies F ,

M or S, fully specified off the equilibrium path. For j ∈ {F,M, S}, the probability

of a subject being drawn from class j is denoted by pj. At each decision node a

subject faces, we assume that the subject chooses as dictated by her strategy class

with probability (1 − ε), and makes the other decision with probability ε. We then

estimate, via maximum likelihood, the parameters (pF , pM , pS, ε).
34 Next, armed

with our estimates of the proportions of the population in each strategy class for

34This statistical framework is similar to that in many experimental papers, especially Camerer
and Harless (1994) and Costa-Gomes, Crawford and Broseta (2001). The main difference is that,
in our context, subjects are making a sequence of decisions in each game.
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the Two-Cost Treatment, the Alternating One-Cost Treatment, and Treatment 3

(described below), we evaluate three behavioral theories: cursed equilibrium, level-k

beliefs, and the insight-based rules of thumb described above.

Before proceeding to the maximum likelihood estimation, we must fully specify

the strategies, F , M and S. For now, we specify the behavior of a subject playing

according to her strategy class, and we will introduce errors later. The basic principle

we use is that a subject corrects her own departures, and chooses each action with

probability 1
2

following an unexpected choice by the other subject (i.e. following

histories {0, 1} and {0, 1, 0}).35 Consider first a subject of class F . When type (1, L),

she invests with probability 1 following all histories. When type (1, H), she invests

with probability 1 following the histories {1} and {1, 0}, invests with probability 1
2

following the histories {0, 1} and {0, 1, 0}, and does not invest following the histories

{} and {0}. When type (0, L), she invests with probability 1 following the histories

{1} and {1, 0}, invests with probability 1
2

following the histories {0, 1} and {0, 1, 0},

and does not invest following the histories {} and {0}. When type (0, H) she does

not invest following all histories.

Consider next a subject of class M . When type (1, L), she invests with probability

1 following all histories. When type (1, H), she invests with probability 1 following

the histories {}, {1}, and {1, 0}, invests with probability 1
2

following the histories

{0, 1} and {0, 1, 0}, and does not invest following the history {0}. When type (0, L),

she invests with probability 1 following the histories {1} and {1, 0}, invests with

probability 1
2

following the histories {0, 1} and {0, 1, 0}, and does not invest following

the histories {} and {0}. When type (0, H) she does not invest following all histories.

Finally, consider a subject of class S. When type (1, L) or type (1, H), she invests

with probability 1 following all histories. When type (0, L) or type (0, H), she does

not invest following all histories.

35Other specifications yield similar results, because these departures are relatively rare.
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Our model of behavior is that, each time a subject of class j ∈ {F,M, S} has to

make a decision to invest or not invest, given her type and the observed history of

the other subject’s behavior, she makes the decision prescribed by strategy j with

probability 1 − ε and makes an “error” with probability ε ∈ [0, 0.5]. Errors are

assumed to be i.i.d. across types and histories, trials, and subjects. Table 2.8 shows

the probability that a class F subject invests, or makes a final decision never to

invest, conditional on her type, conditional on the history, and conditional on the

fact that the other subject’s behavior allows the history to occur. To understand how

the table is constructed, consider the following examples. The probability that an F

subject of type (0, L) invests after the history {1} is (1−ε)2, since she acted according

to her strategy class twice: by not investing in round 1 and then by investing after

the other subject invests in round 1. The probability that an F subject of type

(0, L) invests after the history {1, 0} is ε(1 − ε)2, since she acted according to her

class by not investing in round 1, then she made an “error” by not investing after

{1}, and finally she acted according to her class by recovering from her error and

investing after {1, 0}. The probability that an F subject of type (0, L) ends up not

investing after experiencing history {0} is (1−ε)2, since she made two type-consistent

decisions: she did not invest either after {} or after {0}.

For M subjects and S subjects, we can construct tables analogous to Table 2.8.

An M subject behaves in the same way as an F subject, except when her type is

(1, H). Thus, columns 1, 2, and 4 are as in Table 2.8, but the entries in column 3

should be: (1−ε), ε2, ε(1−ε), 1
2
ε(1−ε), ε2(1−ε), 1

4
ε(1−ε), ε(1−ε), ε3, and 1

4
ε(1−ε).

An S subject behaves in the same way as an F subject when her type is (0, H) or

(1, L). Furthermore, her behavior when her type is (0, L)/(1, H) is identical to her

behavior when her type is (0, H)/(1, L). Therefore, columns 1 and 2 are identical to

column 1 in Table 2.8, and columns 3 and 4 are identical to column 4 in Table 2.8.

65



History (0,H) (0,L) (1,H) (1,L)
{} ε ε ε (1 − ε)
{0} ε(1 − ε) ε(1 − ε) ε(1 − ε) ε(1 − ε)
{1} ε(1 − ε) (1 − ε)2 (1 − ε)2 ε(1 − ε)
{0,1} ε(1 − ε)2 1

2
(1 − ε)2 1

2
(1 − ε)2 ε2(1 − ε)

{1,0} ε(1 − ε)2 ε(1 − ε)2 ε(1 − ε)2 ε2(1 − ε)
{0,1,0} ε(1 − ε)3 1

4
(1 − ε)2 1

4
(1 − ε)2 ε3(1 − ε)

no {0} (1 − ε)2 (1 − ε)2 (1 − ε)2 ε2

no {1,0} (1 − ε)3 ε2(1 − ε) ε2(1 − ε) ε3

no {0,1,0} (1 − ε)4 1
4
(1 − ε)2 1

4
(1 − ε)2 ε4

Table 2.8: Probability of an F Subject’s Behavior

Before constructing the likelihood function, we need some more notation. We

number all of a subject’s trials by t = 1, 2, ..., 24. Let Bt
i denote the full behavior

of subject i during (i’s) trial t. By full behavior, we mean the round in which

she invests, if at all. We formalize Bt
i as a four dimensional vector of zeros and

ones. Bt
i = (0, 0, 0, 0) signifies that the subject did not invest, the vector Bt

i =

(0, 0, 1, 0) signifies that she invested in round 3, and so on. Let −it denote the

subject matched with subject i during trial t, and let Bt
−i denote the full behavior

of subject −it during trial t.36 Denote the behavior of subject i over all trials as Bi,

where we have Bi = (B1
i , ..., B

t
i , ..., B

24
i ), and denote the behavior of all the subjects

matched with subject i (during the trials they are matched with i) as B−i, where we

have B−i = (B1
−i, ..., B

t
−i, ..., B

24
−i). Finally, let T t

i ∈ {(0, H), (0, L), (1, H), (1, L),−1}

denote subject i’s type during trial t, where type −1 means that subject i was sitting

out or bankrupt, let Ti = (T 1
i , ..., T

t
i , ..., T

24
i ), and let T = (T1, ..., Ti, ...Tn).

36Define Bt
i

= Bt
−i

= (−1,−1,−1,−1) if i did not participate in trial t (either because she sat
out or because she went bankrupt).
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From Table 2.8, or the analogous tables corresponding to M subjects and S

subjects, the probability of Bt
i is determined, given that the subject is of strategy

class j, type T t
i , and given that the other subject’s behavior is Bt

−i.
37 We denote this

probability, which also depends on the parameter ε, as

Pr(Bt
i |j, T

t
i , B

t
−i; ε).

For example, suppose that in trial t, subject i is type (1, H) and the other subject

invests in round 1, T t
i = (1, H) and Bt

−i = (1, 0, 0, 0). If subject i is an F subject, then

the probability of Bt
i = (1, 0, 0, 0) is ε (row 1, column 3 of Table 2.8), the probability

of Bt
i = (0, 1, 0, 0) is (1 − ε)2 (row 3, column 3 of Table 2.8), the probability of

Bt
i = (0, 0, 1, 0) is ε(1 − ε)2 (row 5, column 3 of Table 2.8), and the probability of

Bt
i = (0, 0, 0, 0) is (1 − ε)ε2 (row 8, column 3 of Table 2.8). Given that the other

subject invests in round 1, investing in round 4 is impossible, so the probability of

Bt
i = (0, 0, 0, 1) is zero.

The probability that subject i chooses behavior Bi, given that her strategy class

is j, given her type realizations Ti, and given the behavior of the other subjects she

faces is B−i, is given by

Pr(Bi|j, Ti, B−i; ε) =
24
∏

t=1

Pr(Bt
i |j, T

t
i , B

t
−i; ε).

37If a subject is sitting out trial t or has gone bankrupt, then Bt
i

= Bt
−i

= (−1,−1,−1,−1) with
probability one.
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Thus, we can compute the probability that subject i chooses behavior Bi, given

her type realizations Ti, and given that the behavior of the other subjects she faces

is B−i,
38

Pr(Bi|Ti, B−i; pF , pM , pS, ε) =
∑

j∈{F,M,S}

pj Pr(Bi|j, Ti, B−i; ε).

In the Appendix, we show that the likelihood function is given by39

Pr(B|T ; pF , pM , pS, ε) =
n

∏

i=1

Pr(Bi|Ti, B−i; pF , pM , pS, ε). (2.1)

For each treatment, we estimate the vector of parameters θ = (pF , pM , pS, ε),

by maximizing the likelihood function (2.1).40 Table 2.9 shows our estimates, along

with estimated standard errors, for the Two-Cost and the Alternating One-Cost

Treatments.41

As can be seen from Table 2.9, in both of our main treatments, the population

frequency of class F is estimated to be more than one half; the population frequency

of class S is estimated to be more than one third; and the population frequency of

38Ti and B
−i do not affect the probability of subject i being in class F , M , or S, except,

conceivably, when T t
i

= −1 and Bt
−i

= (−1,−1,−1,−1) because a subject has gone bankrupt. The
latter is not a concern in practice because bankruptcies were exceedingly rare, and because the
probabilities of each strategy class (conditional on bankruptcy) would not change very much. The
stronger inference is that the subject made many “errors.” We ignore this complication.

39The likelihood function is also implicitly conditional on the realized matching of subjects.
40This function is continuous and differentiable in θ for every B and T and has a strict maximum

at the true θ. The parameter space is obviously compact. All other technical requirements (as
given in theorems 13.1 and theorem 13.2 in Wooldridge (2001)) hold so that the ML estimator is
consistent and asymptotically normal (for asymptotic normality the true θ also needs to be interior).

41In the Two-Cost Treatment, the estimate of pM is on the boundary of the parameter space. We
do not compute the standard error for this estimate since the standard error does not have the usual
interpretation in terms of confidence intervals. The standard errors for the elements of θ which are
not on the boundary are approximate, since they are computed by estimating a restricted model
in which pM is set equal to 0. Estimated standard errors in the Alternating One-Cost Treatment
should be treated with caution, since the estimate of pM is only 1.58 (rather than at least 1.96)
estimated standard errors from the boundary of the parameter space.
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Two-Cost Alternating One-Cost
pF 0.607 0.567

(0.102) (0.083)

pM 0 0.092
N/A (0.058)

pS 0.393 0.341
(0.102) (0.078)

ε 0.192 0.176
(0.011) (0.01)

log-likelihood -757.5402 -1002.5052

Table 2.9: Maximum Likelihood Estimates

class M is estimated to be very small (0% in the Two-Cost Treatment).42 Error rates

are not very high, and parameters are nearly the same across the two treatments.

We wish to demonstrate that the population contains both class F and class S

subjects, but formal testing is complicated by boundary issues and the possibility

that test statistics are not asymptotically normal. However, we are able to test, using

a likelihood-ratio test, the hypotheses that (i) pF = 0.25 in the Two-Cost Treatment,

(ii) pS = 0.2 in the Two-Cost Treatment, (iii) pF = 0.25 in the Alternating One-

Cost Treatment, and (iv) pS = 0.16 in the Alternating One-Cost Treatment.43 The

corresponding p-values are 0.001 or less for (i), (iii) and (iv); the p-value for (ii) is

0.071. Note that the p-value for (ii) would be lower if we could test the hypothesis

that pS = 0 in the Two-Cost Treatment. The estimates of the parameter vector

θ are very similar in both treatments. We cannot reject (using a likelihood-ratio

test) any of the hypotheses that pF /pM/pS/ε/pF &pM&pS/pF&pM&pS&ε are equal

in both treatments (p=0.754/0.341/0.675/0.235/0.635/0.532). Let us summarize:

42Our estimates are robust to the specification of errors following an error. We estimated a model
in which, after a subject makes a mistake, she chooses to invest or not invest in each subsequent
round with probability one half. The estimate of θ in the Alternating One-Cost Treatment changed
only negligibly. In the Two-Cost Treatment, the estimate of pF decreased by 0.085, and the estimate
of pM increased by 0.073.

43These values are chosen so that they are at least 1.96 (estimated) standard errors from the
boundary of the parameter space.
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Result 7 (i) More than half the population in each treatment is estimated to be

F ; slightly more than one third is estimated to be S; and only a small minority is

estimated to be M . The estimates of pF and pS are statistically different from 0.44

(ii) The estimates of θ are very similar across treatments. Any differences are

statistically insignificant.

How well do the various behavioral theories explain our estimation results? First

consider the cursed equilibrium framework. There are several reasons why symmet-

ric cursed equilibrium (or NE, which is a special case) is probably not driving our

maximum likelihood estimates.45 Referring back to Table 2.3, we see that no level

of the cursedness parameter, χ, can explain the simultaneous presence of F and S

subjects. Thus, symmetric cursed equilibrium is inconsistent with result 7. Also,

in the Alternating One-Cost Treatment, the strategy, M , is played with probability

at least 0.4916, for any level of the cursedness parameter in which F is also played.

This restriction is inconsistent with our estimate of pM , which is significantly differ-

ent from 0.496 (p < .01). Furthermore, the low level of χ required to explain the

high frequency of F requires different behavior across treatments. In particular, for

fixed small χ we would expect a higher fraction of M subjects in the Alternating

One-Cost Treatment.46

Next, consider the level-k framework. Recall that, in both treatments, L1 plays S

and L2 plays F . According to our estimates, the majority of the population is indeed

F or S. The estimates of pF and pS are nearly the same across treatments, which is

44At the 10% level in the case of the estimate of pS in the Two-Cost Treatment.
45We consider here a common cursedness parameter for all subjects. When we introduce our

estimates for Treatment 3, we will discuss the possibility of heterogeneity.
46We performed separate maximum likelihood estimations of χ, for a model in which subjects

play a symmetric cursed equilibrium with errors. In particular, each time a subject has to make a
decision, she chooses the strategy prescribed by the cursed equilibrium with probability 1 − ε and
makes an error with probability ε ∈ [0, 0.5]. The estimate of χ is 0 in the Alternating One-Cost
Treatment, and 0.282 in the Two-Cost Treatment. The difference across treatments is troubling,
and the low levels suggests that cursed equilibrium adds little explanatory power over NE.
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what one would expect if the proportions of L1 and L2 players in the population are

stable across the treatments. Therefore, our estimates based on the Two-Cost and

Alternating One-Cost Treatments are consistent with the level-k framework.

Finally, consider the framework in which each subject uses a rule of thumb pre-

scribing either F , M or S. Because the Two-Cost and Alternating One-Cost Treat-

ments are essentially the same, in terms of the nature and difficulty of the insights

discussed above, one would expect to see nearly identical behavior across the two

treatments. This is indeed the case. Therefore, our estimates based on the Two-Cost

and Alternating One-Cost Treatments are consistent with the framework in which

subjects use a rule of thumb, based on the various insights discussed above.

2.5.3 Treatment 3

To distinguish better between the possible explanations of behavior, and especially

between the belief-based theories and insight-based rules of thumb, we conducted an

additional treatment (one session, 28 participants). This treatment, which we call

Treatment 3, is almost the same as the Alternating One-Cost Treatment, with the

sole differences being that the high investment cost is 5.7, rather than 6.5, and the

discount factor is 0.8, rather than 0.9.47 With the new parameters, a type (1, H)

subject has a dominant strategy to invest in round 1. The expected profits from

investing in round 1 are greater than the expected profits of waiting, even if waiting

would reveal the other subject’s type. Therefore, the strategy F is never the optimal

strategy for a risk-neutral subject within the expected utility framework, regardless

of her beliefs. If behavior in our Two-Cost and Alternating One-Cost Treatments is

driven by cursed equilibrium (even allowing each subject to have her own separate

χ), level-k beliefs, or some other belief-based behavioral theory such as Quantal

47To maintain roughly the same expected earnings as before, the exchange rate was changed to
$0.50/ECU.
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Two-Cost Alternating One-Cost Treatment 3
pF 0.607 0.567 0.574

(0.102) (0.083) (0.115)

pM 0 0.092 0.287
N/A (0.058) (0.118)

pS 0.393 0.341 0.139
(0.102) (0.078) (0.093)

ε 0.192 0.176 0.198
(0.011) (0.01) (0.013)

log-likelihood -757.5402 -1002.5052 -600.378

Table 2.10: Maximum Likelihood Estimates - All Treatments

Response Equilibrium (see McKelvey and Palfrey (1995) and (1998)), the resulting

maximum likelihood estimation for Treatment 3 should show a collapse of pF .48

Suppose behavior is driven by rules of thumb. Some subjects play S because they

do not acquire the insight that investment by the other subject is good news for them.

Some subjects play M because either (i) they acquire the insight that investment by

the other subject is good news, but not the insight that there is a tradeoff between

the cost of waiting and the information gained by waiting, or (ii) they acquire both

of the above insights, but simply resolve the tradeoff in favor of investing in round 1.

Some subjects play F , because they acquire both of the above insights, but resolve

the tradeoff in favor of gathering information by waiting. The new parameters in

Treatment 3 should not affect the difficulty of acquiring these insights. Therefore,

one would expect to see a significant proportion of subjects who continue to play

F , because they do not explicitly perform the computation to determine that F is

dominated.

Table 2.10 shows the estimates of θ for all three treatments along with estimated

standard errors.49 Amazingly, the estimate of pF in Treatment 3 is very similar to

48The symmetric cursed equilibrium is to play M for χ < 0.75, and S for χ > 0.75. In any cursed
equilibrium, symmetric or not, F is never played. For all k > 0, a subject with level-k beliefs plays
M .

49Estimated standard errors in Treatment 3 should be treated with caution, since the estimate of
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Two-Cost & Two-Cost & Alternating One-Cost & All three

Alternating One-Cost Treatment 3 Treatment 3 treatments

pF 0.754 0.824 0.959 0.95
pM 0.341 0.04 0.098 0.086
pS 0.675 0.074 0.089 0.143
ε 0.235 0.714 0.139 0.268
pF , pM , pS 0.635 0.082 0.124 0.173
pF , pM , pS, ε 0.532 0.159 0.091 0.17

Table 2.11: Hypotheses Tests - p-values.

that in the initial two treatments. The point estimate is actually slightly higher

than in the Alternating One-Cost Treatment. The estimate of pM is higher than in

the initial two treatments and the estimate of pS is correspondingly lower.50 Using

likelihood-ratio tests, we can test hypotheses about whether certain elements of θ

are the same in different pairs of treatments, as well as across all three treatments.

Entry (i, j) in Table 2.11 shows the resulting p-value, under the null hypothesis that

the parameters in row i are restricted to be the same across all treatments in column

j.

Any belief-based theory would imply large differences across treatments, and

in particular, no F subjects in Treatment 3. Table 2.10 shows that the estimates

of pF are virtually indistinguishable across treatments (high p-values), and we can

reject the hypothesis that pF = 0.25. This supports the view that behavior in our

experiment is, to a large extent, driven by boundedly rational rules of thumb, rather

than explicit belief formation about the behavior of the other subject. Moreover,

among type (1, H) subjects who perceive a tradeoff between the costs and benefits

of waiting, the proportion deciding to wait does not change as we vary the high-cost

parameter.

pM is 1.49 (rather than at least 1.96) estimated standard errors from the boundary of the parameter
space. See footnote 41.

50We performed the same robustness check that we did for the initial two treatments (see footnote
42), where we assume that after a subject makes a mistake, she chooses to invest or not invest in
each subsequent round with probability one half. The estimate of θ changed only negligibly.
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Result 8 Any differences in the estimates of pF in all three treatments are both eco-

nomically and statistically insignificant. In Treatment 3, we can reject the hypothesis

that pF is as low as 0.25.

Overall, there is no strong evidence of statistically significant differences in be-

havior across treatments. The p-values below 0.10 are due to higher estimates of

pM and lower estimates of pS in Treatment 3. These higher estimates for pM and

lower estimates for pS are primarily driven by the fact that type (0, L) subjects in

Treatment 3 invested 70% of the time after history {1}, versus 37% in the Two-Cost

Treatment and 53% in the Alternating One-Cost Treatment. These differences seem

anomolous to us. It is particularly hard to see why changing the high investment

cost would affect behavior when the investment cost is low (Alternating One-Cost

Treatment vs. Treatment 3), so we do not attach much significance to the different

estimates of pM and pS.

Our maximum likelihood estimation assumes that the strategy classes F , M , and

S are drawn from the population at the beginning of the experiment, and do not

evolve as the trials progress. This specification was made for simplicity, and because

learning issues are not our main focus. However, there seems to be some learning

going on, which sheds light on our interpretation of behavior as rules of thumb.

Random effects probit estimation is used to study the effect of the trial number

on the probability that a type (1, H) subject invests in round 1. In the Two-Cost

Treatment, the marginal effect is −0.018 (standard error = 0.006, p = 0.002). In

the Alternating One-Cost Treatment, the marginal effect is −0.018 (standard error

= 0.005, p = 0.001). In Treatment 3, the marginal effect is 0.001 (standard error

= 0.007, p = 0.89). The negative marginal effect in the Two-Cost and Alternating

One-Cost Treatments indicates that subjects are “learning” to wait and observe the
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behavior of the other subject.51 This learning moves behavior towards the NE in

the Two-Cost Treatment, but moves behavior beyond and away from NE in the

Alternating One-Cost Treatment. This learning could be due to a “Eureka” effect,

where some subjects suddenly acquire the insight that waiting gives them useful

information about the other subject. Why is learning absent in Treatment 3 (the

estimated marginal effect is insignificant and of the wrong sign)? Perhaps while some

subjects acquire the insight that waiting gives them useful information, other subjects

acquire the additional insight that the benefits are not adequate to compensate for

the discounting.52 These two opposing effects may offset each other.

Treatment 3 addresses the potential criticism that the incentives of a type (1, H)

subject are weak, so that drawing conclusions about behavior is problematic. In

the Two-Cost and Alternating One-Cost Treatments, the differences in the ex ante

expected payoff of playing F , M , and S are quite small (both in the NE and given

the empirical frequencies of play).53 In Treatment 3, the expected payoff of playing

F/M/S, given NE beliefs, is 1.32/1.326/1 ECU. However, the expected payoff of

playing F/M/S, given the empirical frequencies is 1.141/1.29/1 ECU. Therefore,

the advantage of M over F in Treatment 3 is quite substantial. Over 24 trials, the

expected profit gain of playing M rather than F is 3.576 ECU or $1.79.

51This effect is large in the Two-Cost and Alternating One-Cost Treatments. The predicted
probability of investment in round 1 by a type (1, H) player is higher in trial 1 than trial 24, by
about 0.43.

52After all, even if the other subject is revealed to have the low common-value signal, expected
losses are only 0.7 ECU in Treatment 3, while it is 1.5 ECU in the other treatments. Also the other
subject may choose to wait with the high common-value signal, thereby weakening the inference.

53The expected payoff of playing F/M/S, given the empirical frequencies of play, is 1.071/1.05/1
ECU in the Two-Cost Treatment and 1.084/1.085/1 ECU in the Alternating One-Cost Treatment.
The expected payoff of playing F/M/S, given NE beliefs, is 1.073/1.071/1 ECU in the Two-Cost
Treatment and 1.142/1.142/1 ECU in the Alternating One-Cost Treatment.
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GPA SAT πBR DTwo−Cost DAlt DTreatment 3

0.1032** - 0.8337*** -0.4011*** -0.3336** -0.4176***
(0.0438) - (0.0113) (0.1408) (0.141) (0.1452)

-0.03 0.0008139*** 0.8402*** -0.9679*** -0.8884*** -0.9311***
(0.072) (0.0002856) (0.0148) (0.2888) (0.2969) (0.3003)

Table 2.12: Regression Results for Earnings (*/**/*** indicates significance at the
10%/5%/1% level.)

2.5.4 Personal Characteristics as Determinants of Behavior

In this section we investigate whether subject’s personal characteristics (GPA and

SATs in particular), affect their earnings in the experiment.

Table 2.12 shows the results of two random effects regressions. The first one

regresses earnings in each period on a subject’s GPA, the earnings a subject would

have made had she played the best response to the empirical frequencies (πBR), and

treatment dummies. The second regression is the same as the first with the sole

difference that it also includes subjects’ SAT scores as an explanatory variable. The

earnings a subject would have made had she played the best response to the empirical

frequencies are included in order to eliminate any noise in earnings due to a favorable

combination of a subject’s cost signal and behavior of the other subject.54

The first regression suggests that a subject’s GPA is positively correlated with

her earnings. However, this effect is wiped out when one includes SATs in the

regression. The effect of a higher SATs score on a subject’s earnings comes out

strongly significant. This effect is also economically significant: it implies a difference

in earnings per period of $0.244 between a subject who is one standard deviation

above the mean SAT score and a subject who is one standard deviation below it.

This translates into $5.849 over 24 periods.

54We also used another, more direct, method to control for these factors. In particular, we
included a dummy variable for each possible combination of a player’s cost, signal, whether the
other person invested in round 1 or not and the treatment she is in (48 dummies in total). This
yields very similar results regarding the effect of GPA and SATs.
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2.6 Concluding Remarks

To summarize our main results, we find that subjects are more likely to invest as

their signals become more favorable, even for the subtle comparison between type

(0, L) and type (1, H). Subjects overinvest relative to the Nash benchmark. To

the extent that subjects with the low common-value signal invest in round 1, a

negative informational externality is created, and to the extent that subjects with

the high common-value signal invest in round 1, a positive informational externality

is created. When we compare behavior with the theoretical predictions in the Two-

Cost Treatment, the negative externality is balanced by a “theoretically excessive”

positive externality, so a subject best responding to actual play receives the same

profit that would be received if everyone were playing Nash. In the Alternating One-

Cost Treatment, the positive externality is no longer excessive, so best responding to

actual play yields lower profits than what would be received if everyone were playing

Nash. This difference across treatments is due entirely to difference in the theoretical

predictions, because we cannot reject the hypothesis that there is no treatment effect

on behavior or profits.

Maximum likelihood estimates for our two main treatments indicate strong evi-

dence of both S and F subjects in the population, which is inconsistent with sym-

metric cursed equilibrium. Level-k beliefs can account for these estimates, due to the

flexibility to allow for subject heterogeneity.55 We can also account for these esti-

mates if subjects choose rules of thumb, based on insights about how to understand

the game (hindsight and foresight).

55We feel that a better comparison would be to some notion of asymmetric cursed equilibrium
that allows for heterogeneous subjects. We did not go to the considerable trouble of considering
such a concept, because Treatment 3 would rule it out in any case.
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To separate these explanations, we introduce Treatment 3, in which F is strictly

dominated and is inconsistent with any theory of best responding to beliefs. We find

that the proportion of F subjects does not decline significantly, and remains above

50%.

In conclusion, we do not want to discredit the belief-based theories. Cursed equi-

librium formalizes the notion that subjects do not fully draw inferences about others’

types from their behavior. Level-k beliefs allow for heterogeneous beliefs about how

sophisticated the other players are, but requires best responding to those beliefs.

These theories provide important generalizations to Bayesian Nash equilibrium, and

can account for many behavioral anomalies. In our context, other forms of bounded

rationality seem to do a better job of explaining the data.

78



Bibliography

[1] Anderson, L. R. and C. A. Holt (1997), “Information Cascades in the Labora-
tory,” American Economic Review, 87, 847-862.

[2] Ball, S. B., M.H. Bazerman, and J.S. Carroll (1991), “An Evaluation of Learning
in the Bilateral Winner’s Curse,” Organizational Behavior and Human Decision
Processes, 48, 1-22

[3] Banerjee, A. V., “A Simple Model of Herd Behavior,” Quarterly Journal of Eco-
nomics 107 (3), August 1992, 797-817.

[4] Bazerman, M.H. and W.F. Samuelson (1983), “I Won the Auction But Don’t
Want the Prize,” Journal of Conflict Resolution, 27, 618-634.

[5] Beach, L.R. and Philips, L.D. (1967). “Subjective Probabilities Inferred from
Estimates and Bets,” Journal of Experimental Psychology 75, 354-359

[6] Becker, G.M.; DeGroot, M.H.; Marschak, J. (1964). “Measuring Utility by a
Single-Response Sequential Method,” Behav. Sci. 9, 226-32

[7] Benjamin, Daniel J. and Shapiro, Jesse M. (2006) “Who is “Behavioral”?
Cognitive Ability and Anomalous Preferences,” working paper, available at
http://home.uchicago.edu/ jmshapir/

[8] Bikhchandani, S., D. Hirshleifer, and I. Welch, “A Theory of Fads, Fashion,
Custom, and Cultural Change as Informational Cascades,” Journal of Political
Economy, Vol. 100 (1992), pp. 992-1026.

[9] Blecherman, B. and C.F. Camerer (1998), “Is There a Winner’s Curse in the Mar-
ket for Baseball Players?” mimeograph, Brooklyn Polytechnic University, Brook-
lyn, NY.

[10] Camerer, Colin F. (2003). “Behavioral Game Theory: Experiments in Strategic
Interaction,” Princeton University Press

[11] Camerer, C. F. and D. W. Harless (1994), “The Predictive Utility of Generalized
Expected Utility Theories,” Econometrica, Vol. 62, 1251-1289.

79



[12] Capen, E.C., R.V. Clapp, and W.M. Campbell (1971), “Competitive Bidding
in High-Risk Situations,” Journal of Petroleum Technology, 23, 641-653.

[13] Cassing, James and Richard W. Douglas (1980), “Implications of the Auction
Mechanism in Baseball’s Free agent Draft,” Southern Economic Review, 47, 110-
121.

[14] Chamley, C. (2003), “Rational Herds: Economic Models of Social Learn-
ing,”Cambridge University Press

[15] Chamley, C. and D. Gale (1994), “Information Revelation and Strategic Delay
in a Model of Investment,” Econometrica, Volume 62, Issue 5, 1065-1085.

[16] Charness, Gary and dan Levin, 2005, “When Optimal Choices Feel Wrong: A
Laboratory Study of Bayesian Updating, Complexity, and Psychological Affect”,
American Economic Review, Vol. 95, No. 4 (September 2005), 1300-1309.

[17] Costa-Gomes, M., V. Crawford, and B. Brosetta (2001), “Cognition and Be-
havior in Normal-Form Games: An Experimental Study,” Econometrica, Vol. 69,
1193-1235.

[18] Costa-Gomes, Miguel and Weizsäcker, Georg (2005). “Stated Be-
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Appendix A: Figures and Tables from

Ch. 1
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Game 1 Game 2
0.13 0.45 0.41 0.40 0.51 0.09

0.19 0.43 0.38 0.43 0.44 0.13

94;29 34;28 25;69 16 12 13 NRN,NRA 32;72 30;60 94;12 10 5 5 NRN,NRA

89;35 22;99 36;62 5 4 3 61;59 59;69 11;14 35 33 32 SRN,SRA

13;39 67;50 50;43 27 22 21 SRN,SRA 40;52 36;55 10;74 3 0 0

-
Game 3 Game 4

0.08 0.36 0.55 0.18 0.42 0.41

0.11 0.32 0.56 0.16 0.42 0.43

50;11 12;95 21;95 0 0 0 89;56 31;48 25;47 18 9 6 NRN,NRA

96;10 10;61 89;72 23 25 20 NRN,SRN 14;17 58;75 50;96 26 27 26 SRN,SRA

51;68 48;57 50;48 25 13 17 NRA,SRA 16;12 44;57 56;35 4 2 5

-
Game 5 Game 6

0.38 0.33 0.29 0.35 0.58 0.07

0.49 0.26 0.25 0.34 0.58 0.08

47;25 52;56 46;74 13 7 7 NRA,SRA 12;66 99;60 12;15 23 21 16 SRN

62;76 96;26 12;50 23 29 20 NRN,SRN 48;72 50;78 15;17 21 15 20 SRA

50;54 46;72 47;29 12 2 10 26;37 30;37 89;45 4 2 1 NRN,NRA

-
Game 7 Game 8

0.46 0.28 0.26 0.31 0.55 0.15

0.47 0.28 0.26 0.32 0.45 0.23

17;51 10;51 21;50 0 0 0 10;99 14;99 12;10 0 2 0

49;51 48;51 50;51 26 10 21 NRA,SRA 11;60 99;55 99;67 22 26 24 NRN,SRN

99;50 57;50 10;51 22 28 16 NRN,SRN 49;55 55;60 51;10 26 10 13 NRA,SRA

-
Game 9 Game 10

0.35 0.31 0.33 0.06 0.22 0.71

0.40 0.31 0.30 0.06 0.18 0.76

62;85 96;35 10;59 19 19 17 NRN,SRN 12;14 40;45 78;75 45 31 33 SRN,SRA

52;34 48;65 50;83 21 11 13 NRA,SRA 98;27 62;28 10;65 1 5 1 NRN

10;63 64;81 91;38 8 8 7 47;19 46;59 44;71 2 2 3 NRA

Figure A.1: Row players’ mean beliefs (first (treatment A) and second (treatment B) row above
each game) and aggregate choices (first (treatment A), second (treatment B) and third (treatment
C) column to the right of each game) along with each type’s (tentative) preferred choice.

85



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Figure A.2: Marginal posteriors of pNRN + pNRA (solid line) and pNRN + pSRN (dashed line) in
treatments A (top), B (middle) and C (bottom).
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Figure A.3: Marginal posteriors of µ (solid line) and σ (dashed line) in treatments A (top), B
(middle) and C (bottom).
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Table A.13: Responses of Subjects in Treatment A

to Questionnaire Question: “What were your key

considerations when making decisions in part I?”
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Subject Response

(1) I alternated between a maximin strategy and a strategy of pre-

dicting my opponent’s choice and using that to my advantage.

When I felt that my opponent had a fairly clear choice, and

the risks for me were not too large, I deviated from a maximin

strategy. Otherwise I used that strategy.

2 I first consider how my partner would choose, then I choose the

answer that would most likely to give me more ECU.

3 the possible ECP and what the other participant will choose

4 i was trying to figure out what option my partner will choose.

based on this judgment i choose my own option that will yield

the most amount of points.

5 I attempted to determine what column the other person would

select prior to making my selection. This also made section II

a lot easier to calculate.

6 How much money I could make; blocking other party from mak-

ing more, when my options were poor

7 The ECU I could get and the decision my partener probably

made.

8 HOW THE OTHER PART WILL CHOOSE, AND THEN

MAKE MY DECISION TO MAXIMIZE MY PROFIT

(9) Which combinations of numbers have the highest sum and

would be most likely to be selected by the other person.

10 Delete the one that he/she would not choose and select one of

two rows I like.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

11 compare my decisions with the other person

12 I chose among two different algorithms. In the first one, I con-

sidered the minimax of the table, the option that maximizes his

gain given a particular choice. If there was a significant gain by

choosing this algorithm, I proceeded with the best gain, which

gave me his best gain. If it was not satisfactory, I considered

the option which is good for both of us (and not best for each

probably).

(13) i tried to look for the tickets that would pay off the most for

both of us. this usually narrowed down the ticket choices to 2

or 3 tickets. then i decided my partner would probably choose

the ticket of those three that benefits them the most. at first i

chose this ticket if it would also benefit me. then towards the

end of the experiment i began choosing the highest total for me

that would occur in that row.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

(14) Trying to be as cooperative as possible with my co-participant.

If we could find a win-win situation where the discrepancy be-

tween what I would make and s/he would make was small, I

would generally choose that option. If the discrepancy between

what I could make and what s/he would make was large, I

would be somewhat riskier with my decision-making if I was

fairly confident that I would make about 40ECU (or close to

that figure). Before looking at my own data (I was a row par-

ticipant), I would always look at the values for the column

participant and pinpoint the highest value. If my value was

40 or higher, I would consider it as an option. If not, I would

automatically discard it.

15 First, look at the opponent’s options and determine if there

might be a clear favorable or unfavorable choice. This usually

narrowed my probable options. Then I tended to take the less

risky of my remaining options. I didn’t go for the big prize if

there was a chance of a very small one. If all options for the

opponent were about equal, I assumed s/he was bright enough

to assume I’d go for the biggest payoff possible.

16 the possibility of my parter’s selection and also how much I can

earn.

17 my partner’s choice

18 worst possible outcome, expected actions of s/he, risk.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

(19) stand on the feet of the other part. Make some compromise.

Make a balaqnce between tmy benefits and thsoe ot the other

part.

20 I chose to make the safest move financially, rather than going

for the highest payout based on my speculation that my partner

might be a bigger risk taker.

21 the possibility for me to get the most ECU

22 I consider first about what he/she might choose, standing on is

pint of view (highest possible ECU for him/her). Then I will

pick my choise based on his/her choise I assumed.In the case

of similar probabliliyt for her, I will assume he/she will also

consider about me (stand on my view)

23 Making money.Specifically, making choices that would insulate

myself from choices made by s/he. That is, playing conserva-

tively.

24 trying to figure out the liklihood of what he she would choose

and then choosing mine to maximize my income.

(25) how to maximize profit for both me and the other participant

(26) I was trying to be nice to s/he. picked what seemed to be most

benificial for both of us.

27 I was trying to play the odds. I tried to make a decision based

on me makign on average the most $ while trying to guess which

decision was good for the s/he as well.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

28 the row with the least amount of small numbers

29 I assumed my partner would be greedy first, benevolent second,

and that my partner would assume I was greedy. Therefore, I

chose the option best for me based on first my partner being

greedy, but second, recognizing that my partner would expect

me to greedy. I chose at first the options that ensured that I

didn’t get a very low payout, then later in the session, I chose

the highest average payout. Over time, this is best, but in a

one-shot scenario, I could lose significantly.

(30) I tried to choose boxes that would be mutually beneficial to both

myself and s(he). Though I initially began by choosing based

on the thinking that s(he would go for the highest numbers, I

then decided that s(he was probably doing the same thing that

I was doing.

31 I tried to make the most money I could , but I also tried to

make decisions knowing that the other person would be trying

to make decisions that were attempting to maximize profit. I

tried to find options that gave me the best chance of making a

fair amount of money, I uusually did not try to make the larger

sums, because I knew others would not try it that way.

32 My partners’s possible decision is the key factor for my own

decision.

33 maximize the money earned

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

(34) maximize the gains for both I and my partner

(35) i mostly chose the one with low risk for both me and my un-

known partner

36 I was trying to make money for myself. I attempted to consider

which decison had the highest probability of making the most

money on average. This involved looking at what the total

sum of all the profits in each row were and also what the other

person was thinking.

(37) which choice s/he was most likely to choose and then i chose

one based on that, and which would jointly benefit us both.

(38) I focused mainly on what I thought the other person would

choose to make his/her best profit and tried to compromise,

basing my decisions off what would be best for both of us. On

one question, the numbers for s/he were all 50/51, so for that

question I made the decision that would give me the most profit

because for s/he it was a difference of only $.1 ECU.

39 maximize my profit. base on what it’s the most likely would be

chosen by another paricipates

(40) i was trying to make sure both of us would make some kind

of money choosing particular column or a row, so i would not

choose a row that woul d not make money for the he/she

41 I tried to avoid my lowest income, when my highest value is not

gauaranteed.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

42 Most of the time, I was trying to figure out which row had the

highest total point value, to hedge his/her choices. Sometimes,

though, I looked to see if any of the columns (his/hers) were

so low for him/her that s/he could not possibly choose it, and

then made my decision based on the two remaining columns’

values in my rows.

43 playing safe so that i would be able get a decent ECU regardless

of whatever the other person chooses.

(44) TRYING TO FIND OUT THE BEST WAY TP BENEFIT ME

AND MY PARTNER

45 I just tried analytical rather than considering my earnings,

which means I tried to predict other people choices as well.

(46) I am considering both myself and he/she. 1. to make our

earnings differ not much. 2. also considering the my risk and

his/her risk of getting pretty low earning.

47 I mainly considered how I could make the money. I took some

risks, when I thought the benefits were high enough, but mostly

just tried to make sure that I earn a decent amount. I only tried

to be nice to s/he when it made little difference to my earnings

to do so.

48 I considered how he/she would react based on his/her options

and I tried to maximize my earnings based on my guesses.

(Continued on next page)
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Table A.13 – continued from previous page

Subject Response

(49) I first think about what I will get most, then I check what my

partner will get if I choose this option. Generally I try to make

both of us happy.

Table A.13:

96



Table A.14: Responses of Subjects in Treatment B

to Questionnaire Question: “What were your key

considerations when choosing one of your three op-

tions in part I?”
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Subject Response

(1) how much money i would make; but i realized after i did part 1

that i was looking at the wrong numbers for me (i looked at the

numbers in the top right of the boxes, instead of the numbers

in the bottom left of the boxes

2 I pick the options based on the option i thought was best for

my partner, i.e. chose according to what I thought they would

pick.

3 what my partner will think, what’s the best situation for my

partner. and based on that, what will be most beneficial for

me.

4 The size of the payoffs in my rows. I also tried to put myself

in the position of my partner participant to guess which option

they might choose. Where two choices on their part would lead

to generally equivalent payoffs for them, I assumed that they

might choose the option that would benefit me (as they would

anticipate that would be the option I chose).

5 at first, what would be best for me and then what would be

best for the other person.

6 seeing the values and then computing the probabilities of its

occurance

7 THE MAXIMUM OF THE SUM OF ROWS AND COLUMNS

8 I looked at the options that my he/she was facing, and if

they were higher in one column/row, then I would choose my

row/column accordingly.

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

9 I tried to figure out what he/she ould choose and based on that

tried to figure out which would be the highest number for me

(though I wasn’t sure of the arithmetic)...

10 Minimum ECU I can get .

11 BASED ON THE PROBABILITY OF HOW THE OTHER

PARTICIPANT WILL CHOOSE HIS/HER OPTION, I WILL

CHOOOSE MY OWN TO MAXIMIZE MY EARNINGS

(12) How the other part will make decision, and how both of us will

win the maximam conbination.

(13) I tried to choose a row that would give equal advantage to both

parties, i.e. where if the column chooser had used same criteria

as I did, we’d both profit most from each table.

14 I thought about what the other he/she might be thinking in

making a decision. I saw what rows led to my best options and

checked if the corresponding columns were also good for the

other guy.

(15) to earn the most while at the same time allow my partner earn

the most too. found a slot where both of us could earn general

appropriate, but with my earnings being priority.

16 My benifit and other’s benifit

(17) SOMETHING THAT WOULD ENSURE MAXIMUM ECU

FOR ME AND MY S/HE

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

(18) While I tried to pick the option that would give me the most

money, I also took into consideration what the other person

might choose. For instance, if there was one square that gave

me the highest amount of money but gave the other person

the lowest, I would instead choose the square that gave me less

but gave the other person more. I thought that the odds of

the other person choosing a square that gave them more money

were greater than them choosing the square that would give me

the most money.

(19) I was not concerned with myself over my partner. I felt the

to increase my odds of being rewarded more $ I had to also

be cognizant of the amount of $ that my partner would be

most interested in receiving. I chose the options that, if chosen

would reward us both a reasonable amount of $ when compared

to other options.

(20) Firstly identifying the rows that would be beneficial to me in

order of priority. Then determining which columns would ben-

efit s/he and finding a likely pairing that would be mutually

beneficial.

21 I first guess the response from s/he, then bet my dicision for

favorable outcome.

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

22 My main concern was making the most money for myself pos-

sible. When making this choice I assumed that he/she was also

trying to maximize thier own money and sometimes adjusted

my decision accordingly.

23 Based on the partner’s choice with extimated probabilitty, make

the best of my money

(24) Having a higher number for both of usSometimes, a balanced

approach so that each one of us benefits.

25 first, consider what a smart guy in another group would

choose.second, consider what a normal (neither stupid nor

smart) guy in another guy would choose.combine the above

two and make my decision

(26) Initially I wasn’t sure how to approach the decison making, but

when I realized how my decision may also affect he/she, I began

to think clearly prior to choosing the option.

(27) I choose after considering two options: what would my counter

part do to max his/her income and if what he/she do if she/he

wanted to max. both our incomes. I choose each one with the

one i thought had the highest probability of happening.

28 the possibility to get money as much as possible. I should also

consider my partner’s chioce.

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

(29) The option I and s/he can get the optimal amount of ECU

is my key considerations. In fact, sometimes I think it didn’t

work, but it’ll work if I and s/he consider all of these tasks as

a continuous communicating process.

(30) Firstly, I was concerned with what I thought the other person

might like to choose, i.e. what was the best payoff for the both

of us. I assumed the other person might do the same as well.

For a few of the items I changed this strategy and looked for

the places where if they would the choose there squares based

on this strategy I could make the most money–second guessing.

31 The ECU that I could earn and my partener could earn.

32 The average number is large in that row. And the options for

the other person are not bad. Or firstly consider the average

number for the other person is large, choose the most probable

column he/she may choose, then find out my best option from

the rows corresponding to the column.

33 more attention was paid on her/his options that s/he will be

able to choose.

(34) If my paired partner would consider the best choice for both

of us. I assumed she or he does. Therefore, I also considered

what choices will be better for her, not just looking for the best

choice for me.

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

35 I was thinking only about how to make the most money pos-

sible. I used the probabilities to determine the average pay

earned based on the other player’s decision.

(36) Maximize both parties earning where possible. Otherwise try

to get something on average for both parties

37 Considering both s/he and I at he same time.

38 1. Trying to figure out first what s/he would choose. I assumed

they would want to minimize risk by choosing the column with

a high average.2. I also assumed that they would look at my

options (rows) and assume that I too would want to minimize

risk.3. When s/he could see that I would clearly not choose one

of my rows (eg all values were very low), I would narrow my

considerations accrodingly4. I assumed they would maximize

their own profit based on what I choose.5. I did not try to

assure a decent profit to them, and I did not assume that they

would do so either6. Since only 1 of 10 would pay out, i took

more risks than if every one payed out

(Continued on next page)
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Table A.14 – continued from previous page

Subject Response

39 First, I think about the probabilities for my parteners to select

each options. Then, Consider, what’s my best and worst situa-

tion. Normally, I don’t select for the options that can lead me

to my worst situations. So, basically, I can exclude one option.

Then, look into my best income, to choose the final answer. I

also consider, what are the answers that can bring maximum

benefit to my parteners.

Table A.14:
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Appendix B: Instructions for

Treatment A from Ch. 1
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INSTRUCTIONS

Welcome!

This experiment consists of three parts followed by a brief questionnaire and is

expected to last 2 hours.

All participants will receive a $5 show-up fee. In addition you will have the

opportunity to earn Experimental Currency Units (ECU) in each of the three parts

of the experiment. ECU will be converted into dollars at a rate of $0.1 per ECU (i.e.

100 ECU are worth $10). This means that your total dollar earnings will equal:

$5show-up fee +0.1 ∗ (ECU earned in part I + ECU earned in part II + ECU earned in part III)

Note that your decisions are likely to considerably affect your earnings. You will

be paid in cash immediately after the experiment. Please feel free to earn as much

money for yourself as you possibly can.

Note that all of you have been recruited using the same procedure and that the

same participation requirements apply to all of you. In particular, you are eligible

if:

- you are at least 18 years old

- you are an OSU student currently enrolled in an Econ 200 level class

- you have never taken any college-level Econ courses prior to the current quarter.

Caution: This is a serious experiment and talking, looking at others’ screens or

exclaiming aloud are not allowed. Should you have any questions please raise your

hand and an experimenter will come to you.
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PART I

The participants in this experiment are randomly divided into two groups - Row

participants and Column participants. Each of you is randomly assigned a partici-

pant from the other group whom we refer to as s/he. This assignment is anonymous,

i.e. no one will find out who s/he was for them.

Each of you will be presented with 10 decision situations. Your earnings in a

decision situation will depend not only on your decision but also on the decision s/he

made. Each participant will make their decision without being told what decision

s/he made.

Each decision situation will be presented in the form of a table like the following

one (only the numbers will differ from one decision situation to the next):

LEFT CENTER RIGHT
UP 71 35 55

32 93 65
MIDDLE 21 63 47

69 12 35
DOWN 69 75 58

49 88 14

First we explain the above table from the point of view of a Row participant. If

you are a Row participant you will have to choose a row: UP, MIDDLE or DOWN.

S/he (who will be a Column participant) will be choosing a column: LEFT, CENTER

or RIGHT. The combination of your decision and his/her decision will determine a

cell in the table. Your earnings will equal the number in the lower left corner of that

cell. E.g.:

- If you choose UP and s/he chooses LEFT you will earn 32 ECU;

- If you choose MIDDLE and s/he chooses RIGHT you will earn 35 ECU;

107



- If you choose DOWN and s/he chooses CENTER you will earn 88 ECU.

Now we explain the above table from the point of view of a Column participant. If

you are a Column participant you will have to choose a column: LEFT, CENTER or

RIGHT. S/he (who will be a Row participant) will be choosing a row: UP, MIDDLE

or DOWN. The combination of your decision and his/her decision will determine a

cell in the table. Your earnings will equal the number in the upper right corner of

that cell. E.g.:

- If you choose LEFT and s/he chooses UP you will earn 71 ECU;

- If you choose RIGHT and s/he chooses MIDDLE you will earn 47 ECU;

- If you choose CENTER and s/he chooses DOWN you will earn 75 ECU.

For the purpose of determining your earnings for part I, one randomly selected

decision situation from the 10 decision situations will be used. Your earnings will be

based on the combination of the decision you made and the decision s/he made in

that decision situation.

Please make sure you understand all of the above. If you have any questions

please raise your hand. Otherwise proceed to the following quiz which will give you

some practice in reading a table like the one above.

108



PRACTICE QUIZ

Consider the following table:

LEFT CENTER RIGHT
UP 62 46 86

78 48 15
MIDDLE 28 64 66

37 42 69
DOWN 43 68 31

25 54 94

If you are a Row participant, how many ECU will you earn if:

- you choose MIDDLE and s/he chooses CENTER

- you choose UP and s/he chooses RIGHT

- you choose DOWN and s/he chooses LEFT

If you are a Column participant, how many ECU will you earn if:

- you choose CENTER and s/he chooses MIDDLE

- you choose RIGHT and s/he chooses UP

- you choose LEFT and s/he chooses DOWN

Once you are finished please wait for an experimenter to come and check your

answers.

Once we start part I of the experiment you will have 21
2

min for each decision

situation. Please do not take longer than that. Once you have confirmed your choice

in a decision situation you cannot go back to change it.

Finally, write down the ID number which you will see on the top of your screen.

You will need this number to be paid!
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PART II

In part II we will once again present you with the 10 decision situations from

part I.

Now, for each decision situation, we are interested in your best estimate of the

probability (in percent) that s/he chose each of his/her three options in part I? That

is, if you are a Row participant we would like to know: In your opinion, what is the

probability that s/he chose LEFT, what is the probability that s/he chose CENTER

and what is the probability that s/he chose RIGHT? Similarly, if you are a Column

participant we would like to know: In your opinion, what is the probability that

s/he chose UP, what is the probability that s/he chose MIDDLE and what is the

probability that s/he chose DOWN?

To come up with your three probabilities for a given decision situation you can

ask yourself the following question: If 100 different people were put in the same

situation as s/he, how many would choose each of his/her three options?

Note that the three probabilities you give for each decision situation need to sum

to 100%.

For your efforts in this part of the experiment we will pay each of you 60 ECU.

For each decision situation you will have 11
2

min to make your entry. Please do

not take longer than that. Once you have confirmed an entry you cannot go back to

change it.
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PART III

This part of the experiment will involve two types of tickets, type P and type

Q (we picked the names arbitrarily). A ticket of type P and a ticket of type Q pay

ECU in a different way (as explained below). We will present you with 10 pairs of

tickets. Each pair will consist of one ticket of type P and one ticket of type Q. Your

task will be, for each pair, to choose the ticket according to which you would prefer

to be paid.

How a Ticket of type P pays

A ticket of type P will involve a decision situation from part I. One of your options

in that decision situation will be marked with a check on your screen. The ticket

pays ECU according to the combination of your checked option and the option s/he

chose in part I of the experiment. E.g. say the ticket involves a decision situation

like the one below:

LEFT CENTER RIGHT
UP 71 35 55

32 93 65
MIDDLE 21 63 47

69 12 35
DOWN 69 75 58

49 88 14

If you are a Row participant and your checked option is, say, MIDDLE, then the

ticket pays as follows:

- 69 ECU if s/he chose LEFT in part I;

- 12 ECU if s/he chose CENTER in part I;

- 35 ECU if s/he chose RIGHT in part I.
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If you are a Column participant and your checked option is, say, RIGHT, then

the ticket pays as follows:

- 55 ECU if s/he chose UP in part I;

- 47 ECU if s/he chose MIDDLE in part I;

- 58 ECU if s/he chose DOWN in part I.

For your information your screen will also show your estimate (the one you gave

in part II) of the probability that s/he chose each of his/her options.

How a Ticket of type Q pays

A ticket of type Q will pay one of three possible amounts of ECU. Which of

the three amounts it will pay, will be determined randomly by the computer. The

computer will select each of the three amounts with a certain probability.

A ticket of type Q will be presented in the following form (only the numbers will

differ):

35% 15% 50%
53 22 91

This is to be understood as follows. The computer selects 53 ECU with proba-

bility 35%, 22 ECU with probability 15% and 91 ECU with probability 50%. The

ticket pays the amount of ECU that the computer selected.

For the purpose of determining your earnings for part III, one randomly selected

pair from the 10 pairs of tickets will be used. Your earnings will be calculated

according to the ticket that you chose from that pair.

For each pair of tickets you will have 1 min to choose one of the tickets. Please

do not take longer than that. Once you have confirmed an entry you cannot go back

to change it.
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Appendix C: Instructions for

Treatment C from Ch. 1
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INSTRUCTIONS

Today’s session consists of one single part and is expected to last less than 1 hour.

All participants will receive a $7 show-up fee. In addition to that you will have

the opportunity to earn Experimental Currency Units (ECU). ECU will be converted

into dollars at a rate of $0.1 per ECU (i.e. 100 ECU are worth $10).

Note that your decisions are likely to considerably affect your earnings. You will

be paid in cash immediately after the experiment. Please feel free to earn as much

money for yourself as you possibly can.

Caution: This is a serious experiment and talking, looking at others’ screens or

exclaiming aloud are not allowed. Should you have any questions please raise your

hand and an experimenter will come to you.
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In today’s session you will have to choose between tickets. Each ticket will pay

one of three possible amounts of ECU. Which of the three amounts it will pay, will

be determined randomly by the computer. The computer will select each of the three

amounts with a certain probability.

You will be presented with 10 sets of tickets. Each set will consist of three tickets

and will be presented in the following form (only the numbers will differ):

35% 45% 20%
Ticket # 32 93 65
Ticket ∗ 69 12 50
Ticket ˆ 48 88 14

This is to be understood as follows: The numbers in the rows corresponding to

each ticket refer to the possible amounts of ECU each ticket can pay. The percentages

on top of the columns refer to the probabilities with which each ticket pays one of

the three possible amounts. So in the example above:

- Ticket # pays 32 ECU with 35% probability, 93 ECU with 45% probability

and 65 ECU with 20% probability

- Ticket ∗ pays 69 ECU with 35% probability, 12 ECU with 45% probability and

50 ECU with 20% probability

- Ticket ˆ pays 48 ECU with 35% probability, 88 ECU with 45% probability

and 14 ECU with 20% probability

Your task will be, from each set of tickets, to choose the ticket that you prefer.

For payment purposes one randomly selected set from the 10 sets of tickets will be

used. Your earnings will be calculated according to the ticket that you chose from

that set.
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For each set of tickets you will have 90 sec to choose one of the tickets. Please do

not take longer than that. Once you have confirmed an entry you cannot go back to

change it.
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Appendix D: Derivation of Symmetric

Cursed Equilibrium from Ch. 2

In any cursed equilibrium, no matter what a player believes about the strategies

being played by others, a type (0, H) never invests, and a type (1, L) invests in

round 1. It is easy to see that the only viable possibilities for a type (0, L) are N

and W , and that the only viable possibilities for a type (1, H) are W and 1. Denote

the probability that a type (0, L) chooses N as r, and denote the probability that a

type (1, H) chooses 1 as q.

Two-Cost Game: Given the above probabilities, one can compute the probability

that the other player chooses 1, conditional conditional on having the high common-

value signal, as follows

pr(1|Xi = 1) =
.72 + .32

2
(1 + q) = .29(1 + q).

Similarly, we have

pr(W |Xi = 1) = .5 − .29q − .21r,

pr(N |Xi = 1) = .21(1 + r),

pr(1|Xi = 0) = .21(1 + q),

pr(W |Xi = 0) = .5 − .21q − .29r,
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pr(N |Xi = 0) = .29(1 + r).

With a cursedness parameter χ, the objective of a type (1, H) is 0.5 if she invests

in round 1, and is

.9χ[.29(1 + q)(.5)] + .9(1 − χ)[(.7)(.7)
1 + q

2
(3.5) + (.3)(.3)

1 + q

2
(−6.5)] (A.2)

if she chooses W . Expression (A.2) is strictly increasing in q and decreasing in χ. For

χ < 17
756

, expression (A.2) is greater than 0.5 for all q, so we are at a corner solution

with q = 0. For 517
756

< χ, expression (A.2) is less than 0.5 for all q, so we are at a

corner solution with q = 1. For 17
756

< χ < 517
756

, we solve for q by setting expression

(A.2) equal to 0.5, yielding q2cost.

The objective of a type (0, L) is 0 if she chooses N , and is

.9χ[.21(1 + q)(−.5)] + .9(1 − χ)[(.3)(.7)
1 + q

2
(6.5) + (.7)(.3)

1 + q

2
(−3.5)] (A.3)

if she chooses W . For all q and r, expression (A.3) is positive for χ < 3
4
, and negative

for χ > 3
4
. Therefore, except for the knife-edge case, χ = 3

4
, we are always at a corner

solution. A type (0, L) must choose W for χ < 3
4
, and N for χ > 3

4
. Combining these

choices for each type yields the type-dependent strategies for the Two-Cost Game

given in Table 3.

Alternating One-Cost Game: Consider first the low-cost game, Game 2. We

know that a type (1, L) invests in round 1. For a type (0, L), the probabilities that

the other player chooses 1, W , and N are

pr(1|Xi = 0) = .42,

pr(W |Xi = 0) = .58(1 − r),
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pr(N |Xi = 0) = .58r.

The objective of a type (0, L) is 0 if she chooses N , and is

.9χ[.42(−.5)] + .9(1 − χ)[(.3)(.7)(6.5) + (.7)(.3)(−3.5)] (A.4)

if she chooses W . Therefore, except for the knife-edge case, χ = 3
4
, the cursed

equilibrium of Game 2 is in pure strategies. A type (0, L) must choose W for χ < 3
4
,

and N for χ > 3
4
.

Now consider the high-cost game, Game 3. We know that a type (0, H) chooses

N . For a type (1, H), the probabilities that the other player chooses 1, W , and N

are

pr(1|Xi = 1) = .58q,

pr(W |Xi = 1) = .58(1 − q),

pr(N |Xi = 1) = .42.

The objective of a type (1, H) is 0.5 if she invests in round 1, and is

.9χ[.58q(.5)] + .9(1 − χ)[(.7)(.7)q(3.5) + (.3)(.3)q(−6.5)] (A.5)

if she chooses W . Expression (A.5) is strictly increasing in q and decreasing in χ. For

517
756

< χ, expression (A.5) is less than 0.5 for all q, so we are at a corner solution with

q = 1. For χ < 517
756

, we solve for q by setting expression (A.5) equal to 0.5, yielding

qalt. Combining these choices for each type across Game 2 and Game 3 yields the

type-dependent strategies for the Alternating One-Cost Game given in Table 3.
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Appendix E: Derivation of the

Likelihood Function from Ch. 2

Let ji ∈ {F,M, S} denote subject i’s strategy class. Label all trials, m = 1, ...,M ,

and let m(1) and m(2) be the two subjects in trial m, where m(1) is the subject with

the lower identification number. The likelihood function (suppressing the dependence

on the realized types, realized matchings, and θ) is given by

Pr(B) =
∑

j1,...,jn

pj1 · · · pjn
Pr(B|j1, ..., jn). (A.6)

Errors are independent, so behavior in one trial, conditional on the strategy classes

of the subjects in that trial, is independent of behavior in any other trial. Therefore:

Pr(B|j1, ..., jn) =
M
∏

m=1

Pr(Bm(1), Bm(2)|jm(1), jm(2)). (A.7)

Now, we claim that, for subjects 1 and 2 in a particular trial, we can write

Pr(B1, B2|j1, j2) = Pr(B1|j1, B2) Pr(B2|j2, B1). (A.8)

To verify this, let Br
i be the behavior of i in round r (1 if i invests during that round,

0 otherwise). Then we have (sometimes suppressing the dependence on j1 and j2)
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Pr(B1, B2|j1, j2) = Pr(B1
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= Pr(B1|j1, j2, B2) Pr(B2|j1, j2, B1).

The behavior of one subject in a trial depends on the other subject’s behavior but

not on the other subject’s strategy class (given the other’s behavior), so the claim

follows.

From (A.7) and (A.8), we have

Pr(B|j1, ..., jn) =
M
∏

m=1

Pr(Bm(1)|jm(1), Bm(2)) Pr(Bm(2)|jm(2), Bm(1))

=
n

∏

i=1

Pr(Bi|ji, B−i). (A.9)

Substituting (A.9) into (A.6), we have

Pr(B) =
∑

j1,...,jn

[

pj1 · · · pjn

n
∏

i=1

Pr(Bi|ji, B−i)

]

=
∑

j1,...,jn

[

n
∏

i=1

pji
Pr(Bi|ji, B−i)

]

=
n

∏

i=1





∑

j∈F,M,S

pj Pr(Bi|j, B−i)





=
n

∏

i=1

Pr(Bi|B−i),

which is what we wanted to show.
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Appendix F: Instructions for the

Two-Cost Treatment from Ch. 2

INSTRUCTIONS – Two Player Trials

This is an experiment on decision-making in investment markets. The National

Science Foundation has provided funds for conducting this research. The instructions

are simple, and if you follow them carefully and make good decisions, you may earn a

CONSIDERABLE AMOUNT OF MONEY, which will be PAID TO YOU IN CASH

at the end of the experiment.

Every participant in the experiment is guaranteed a payment of at least $5,

independent of their performance in the experiment. All monetary values in the

experiment, such as investment costs, investment returns, and account balances, are

written in experimental currency units (EC). Your balance of ECs at the end of the

experiment will be converted to US dollars at the exchange rate of $0.60 for each

EC. Because your decisions may involve losses, we will endow you with a starting

cash balance of 20 ECs. Your gains (losses) during the experiment will be added to

(subtracted from) your cash balance. However, if your cash balance falls below zero,

you will no longer be allowed to continue. At the end of the experiment you will

receive in cash your end of experiment balance of ECs converted to US dollars, or

$5, whichever is greater.
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1. In this experiment we will create a sequence of market trials. In each

given market trial, the participants will act as potential investors. Each potential

investor will have to decide whether, and when, s/he wishes to invest, based on the

information s/he is provided (and which we will explain later).

2. In the experimental session today we will have between 20-25 market trials.

Each market trial has several rounds. The initial round is round 1, the next is round

2, and so on. In each round you and the other potential investor in your market trial

will have to decide (simultaneously) whether to invest in that round or not. The

decision to invest is irreversible. Any potential investor who has not yet invested will

be told whether the other potential investor has invested, and if so, during which

round of that trial.

3. In each trial, the market in which you are a potential investor has just one

more potential investor besides yourself. In a typical session we will recruit (about)

20 students. The computer will randomly match 10 pairs out of the 20 students. Each

such matched pair, including the one that you are in, constitutes a separate market

trial that has no relation to the other nine markets. A given market trial keeps the

same matched students over the several rounds of that market trial. However, after

the market trial is over, the computer randomly rematches students to form a new

set of market trials. This matching procedure makes it very unlikely that you will

be matched with the same student from one trial to the next.
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4. The structure of information.

Information about investment cost: Each potential investor will know, be-

fore each market trial starts, his/her investment cost for that trial. There are two

possible levels of investment cost: low cost, CL=3.5 and high cost, CH =6.5. Each

potential investor will be assigned one of the two cost levels with equal probability

(1/2). In other words, in your market trial, you will know your investment cost, and

that the investment cost of the other potential investor is equally likely to be either

3.5 or 6.5.

Information about investment gross returns: The computer assigns a gross

return to every market trial. The gross return remains the same for all rounds of

the same market trial, and is completely uncorrelated with your investment cost.

The computer randomly picks the gross return to be either 10 or 0, with equal

probabilities. Once the gross return is picked, high or low, it is the same for both

potential investors, and it remains the same for all rounds of the same trial. You will

NOT observe whether the gross return for that trial is high or low. Instead, each

potential investor will be given his/her own signal, which takes the value of either 0

or 1. Signals are 70% accurate, in the following sense:

If the gross return is 10, you have a 70% chance of observing signal 1 and a 30%

chance of observing signal 0. If the gross return is 0, you have a 70% chance of

observing signal 0 and a 30% chance of observing signal 1.

Each potential investor’s signal is related to the gross return, but the computer

randomizes separately for each potential investor, so the two signals can be different.

For example, if the gross return is 10, there is a 49% chance that both signals are 1,

there is a 42% chance that one signal is 1 and the other signal is 0, and there is a

9% chance that both signals are 0.
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The signal for each potential investor is chosen at the beginning of the trial and

remains the same for all rounds of that trial. Each potential investor observes his/her

own signal, but not the signal of the other potential investor in that trial. Observing

your signal may help you better predict the likelihood that the gross return in your

market trial is high or low.

Information about other investors in your market: You will NOT be told

the signal of the other potential investor in your market trial. However, you will be

informed about whether the other potential investor has invested, and if so, during

which round. If this information reveals something about his/her signal, it could

improve your decision about if and when to invest.

You are not allowed to reveal or discuss your information with other students or

look at another student’s screen (this will be strictly monitored and violators will be

removed from the experiment).

5. The structure of the game.

The computer randomly matches you with another potential investor to form a

market trial. Once you are assigned to a market trial, you privately observe your cost

and your signal, which remain constant for that market trial. The other potential

investor observes his/her cost and signal. In round 1, you are asked to decide if you

wish to invest. If you do not invest in round 1, you are informed about whether the

other potential investor invested in round 1, and you are asked if you wish to invest

in round 2. If you have not invested by round 2, we move to round 3, and so on.

Once you have decided to invest, there are no more decisions to make in that market

trial. That is, an investment decision in a given trial is irreversible. You cannot

disinvest or invest a second time. After two consecutive rounds in which no one in

your trial invests, that trial is over.
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In order to make good decisions, you must understand how your gains and losses

are determined. This will be carefully explained below.

Once a market trial is over, the whole process starts again. The computer matches

you to another potential investor to form a new market trial, you will be assigned

an investment cost and a signal, etc.

Your screen will inform you of the trial number, and the round number within

the trial.

How your gains (discounted net returns) or losses are determined.

If you invest, your gains from that trial are the discounted difference between the

gross return and your investment cost. Let us illustrate what this means by using

a simple example. Suppose that in the current market trial your investment cost is

3.5. If you decide to invest in round 1, then your gains are: 6.5 if the gross return

is 10 (10 – 3.5 = 6.5) or – 3.5, a loss of 3.5, if gross return is 0 (0 – 3.5 = -3.5).

Note that gains or losses in round 1 are not discounted; they are just the difference

between the market gross return and your investment cost. For each round that you

wait, your gains or losses are discounted by a factor of 0.9, as shown in the following

table.

Discounted Net Returns when Cost is 3.5

Round that you Invest If return is 10 (high) If return is 0 (low)

1 6.5 −3.5

2 5.85 −3.15

3 5.26 −2.84

There are several important things to note here:

(i) If for whatever reason you have decided not to invest at all in a particular

market trial, you will earn zero for that market trial.
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(ii) You will not be told the actual gross return during a market trial. After each

trial is over, the gross return is revealed and you will learn your discounted net gains

or losses, which will be added to, or subtracted from, your cash balances.

(iii) It is up to you to decide if and when to invest. Clearly, your investment

cost and your signal can affect your decision. Observing the activity of the other

potential investor in your trial might indirectly yield useful information about your

gross return, because his/her behavior might tell you something about his/her signal.

6. Information on the computer screen. Throughout the experimental

session, the computer screen will show your ID number and current cash balances,

in the upper left corner. The upper left corner of the screen will also remind you of

the number of potential investors in each trial (2), the discount factor (0.9), and the

“accuracy parameter” of your signal (70%).

At the beginning of each round of each market trial, you will see the number of

the market trial, your cost of investment (either 3.5 or 6.5), and your signal (0 or

1). This information stays the same during the trial. In the middle of the screen,

you will see the current round number. At the bottom of the screen, you will see a

“history” of investment in previous rounds of that trial. (If it shows all zeros, no one

has invested; if it shows a 1 under some round, the other potential investor invested

during that round.)

You will have 25 seconds to think about whether to invest in that round. At

that time, boxes marked “YES” and “NO” will appear, and you should mark a box

to indicate whether you want to invest or not. Please make your choice within 5

seconds.

At the end of the market trial, you will see a screen that tells you the market

trial number, your investment cost, your signal, the actual gross return, and your

net discounted gains or losses from that trial. You will also see your current cash
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balance and your personal statistics from your previous trials. (If you are listed as

investing in round -1, this means that you never invested during that trial.)

7. We will start the session with two practice “dry runs” that do not count

towards your earnings, at which point we will stop and answer additional questions.

At the end of the experiment, while we are calculating your earnings, we ask that

you answer the short questionnaire on your computer.

8. Are there any questions?
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Appendix G: Screen Printout from

Alternating One-Cost Treatment from

Ch. 2
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