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ABSTRACT

The Small Perturbation Method (SPM) is a low frequency approximation to the

electromagnetic scattering from rough surfaces. The theory involves a small height

expansion in conjunction with a perturbation series expansion of the unknown scat-

tering coefficients. Recently, an arbitrary order, iterative solution procedure has been

derived for SPM: kernels at any order are expressed as a summation over lower order

kernels in an iterative fashion. Such a form is very useful, because it allows evalua-

tion of the field statistical moments in a direct manner, when considering stochastic

surfaces. In this dissertation, this procedure is extended to the two layer (two rough

surfaces on top of each other) problem and the complete solution is given.

Utilizing this formulation, the second and fourth order bi-static scattering coef-

ficients for two rough surfaces characterized by two uncorrelated Gaussian Random

Processes (GRP) are obtained. The effects of upper and lower roughnesses and the

interaction effect in the total fourth order cross section can be identified in the theory.

Studies on the ratio of the interaction effect to the total cross section are presented for

example cases, investigating the relative importance of interactions among surfaces.

Results show the interaction term contributes most to the cross-pol cross sections

when surfaces are close to each other at near grazing incidence.
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In addition, the previously developed arbitrary order SPM solution for the single

layer problem is utilized to derive the fourth order term in the small slope approxima-

tion (SSA) of thermal emission from the sea surface. It is shown that this term has

the form of a four-fold integration over a product of two sea spectra for a Gaussian

random process sea, thereby describing emission “interaction” effects among pairs

of sea waves. Interaction effects between “long” and “short” waves are considered,

both through numerical and approximate evaluations of the fourth order theory. The

approximation developed is a theoretical alternative to the “two-scale” model, and

enables comparisons of short wave “tilting” effects between the two models in terms

of spectrum independent “weighting” functions. The weighting functions obtained

are found to be similar, but not identical.
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CHAPTER 1

INTRODUCTION

This dissertation is about high order SPM solutions of electromagnetic scattering

from rough interfaces. Recently developed arbitrary order SPM solution procedure is

applied to layered roughness problem. The purpose of this chapter is to:

• Describe the motivation of the work and introduce the problems addressed in

this dissertation.

• Summarize the current state of scattering models for layered roughness and

emission based models.

• Provide a description of the approach taken in this study by pointing out the

main contributions and an outline of the dissertation.

1.1 The two-layer problem

Scattering of electromagnetic waves from rough layered media is of interest in

many areas of engineering such as remote sensing and optics[1]-[71]. In remote sensing,

many natural surface-subsurface structures such as soil and multi-year ice can easily

be modeled as rough layered surfaces; a reliable electromagnetic scattering model

can be useful in several practical applications such as soil moisture estimation[2],
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Figure 1.1: Two layer problem geometry

ice thickness calculations[4], subsurface sensing, Ground Penetrating Radar (GPR),

and so forth. The application areas can easily be extended into optics, such as

design of multi-layer coated optical components, thin films, and optical scattering

from nanoscale structures

In this study, scattering from 2-D, homogeneous, dielectric media with two rough

interfaces is considered. A descriptive sketch is given in Figure 1.1. For an incident

plane wave of either horizontal or vertical polarization, a complete perturbation based

solution, meaning , all the reflected, intermediate and transmitted fields at any order

in surface height, is sought. Both numerical and analytical solutions of the perturba-

tion series are investigated for either deterministic or random scenarios. The coherent

2



and incoherent scattered powers and corresponding radar cross sections(RCS) are cal-

culated. The effects of upper and lower roughness and the interactions of roughness

effects are identified. For the case when the upper and lower surfaces are uncorrelated

random processes, the importance of the interaction of roughness effects is examined.

1.2 Emission theory of a single layer

Emission from naturally occuring rough surfaces is one of the fundemental interests

in passive microwave remote sensing. Applications such as satellite based wind speed-

direction retrival over the ocean surface are of interest, and SPM theory is commonly

used in this field. Kirchhoff’s Law requires computation of the total surface reflectivity

in order to determine surface emissivity. The total surface reflectivity is determined

by integrating the total power scattered into the upper hemisphere under plane wave

illumination. The formulation of these models is based on SPM solution for scattering

from a single layer rough surface [22], which has been shown to yield a Small Slope

Approximation (SSA) theory when applied to the computation of surface emission

[73].

In this dissertaion, derivation of the fourth order SSA theory is considered, uti-

lizing the previously developed arbitrary order SPM solution for a single layer. This

term has the form of a four-fold integration over a product of two sea spectra for a

Gaussian random process sea, thereby describing emission interaction effects among

different scales of roughnesses. An approximation for “long - long” wave interactions

(i.e. the optical limit) is considered, in comparison the physical optics theory. Inter-

action effects between “long” and “short” waves are also considered, both through
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numerical and approximate evaluations of the fourth order theory. The approxima-

tion developed has a form similar to an expanded “two-scale” model, and enables

comparisons of short wave “tilting” effects between the two models in terms of spec-

trum independent “weighting” functions. In addition, azimuthal harmonics from the

fourth order SSA expansion of long-short wave interactions for a particular sea surface

model are compared against the full fourth order theory and the two-scale model.

1.3 Background

1.3.1 Rough surface scattering models for layered media

Rough surface scattering is a challenging branch of electromagnetics. A closed

form solution for this problem, even in the simplest, deterministic case is not avail-

able today[1]. Although recent advances in numerical solution techniques can be

applied[7],[11], they lack physical insight and usually are very expensive in terms of

computation. Due to this fact, researchers tend to choose approximation based ap-

proaches such as the Kirchhoff approximation or perturbation type theories for the

solution of rough surface scattering problems[10],[19],[21].

Originally derived by Rice [22] in the 1950’s, the small perturbation method(SPM)

is one of the most common techniques for rough surface scattering problems. It is

also known as the Fourier-Rayleigh approach [25]. As in any other perturbation based

model, the SPM is an approximate method that exploits the smallness of an inher-

ent parameter, which is the height variations of the surface in this case. The SPM

assumes the Rayleigh hypothesis, which basically states that the scattered (or trans-

mitted) field can be expressed as a sum of up (or down) going plane waves (Floquet

modes)([68],[69],[70]); the method has been proven to work for gentle roughness[26].
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The derivations of the theory involve a small height expansion in conjunction with

a perturbation series expansion of the unknown scattering coefficients. Terms of the

same order are collected together to solve the scattering coefficients as the elements

of the perturbation series [9],[12].

The main deficiency of the theory is that the solution for the scattering coefficients

becomes highly complicated as the order of the solution increases[69]. When a multi-

layer rough surface structure is considered, the complexity increases significantly with

increasing number of layers. Due to this fact, most of the previous analytical studies

of the multi-layer SPM method are usually limited to the two-layer, first order for-

mulation. Usually, for single rough interface problems higher order solutions are not

vital, except for some special applications [71]. But for structures involving two or

more rough interfaces, this is not the case. In order to investigate interaction effects

between the surfaces, the order of solution required increases with the number of

interfaces.

Recently, an arbitrary order recursive solution procedure has been developed for

the single interface SPM[69],[70]. The main idea of this procedure was to express the

N th order SPM weighting function in terms of lower order SPM weighting functions,

enabling a recursive formulation of the solution. Such an approach is advantageous in

terms of programming and compact formulation. An important portion of this study

is to extend similar ideas to the two layer and N-layer problem.

As mentioned before, the interaction between rough surfaces is also of interest

in this study. Previous analytical results, limited to the first order solution, can

only investigate the interaction between correlated rough surfaces, which provide a
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limited amount of information[2]. A higher order solution of the scattering coeffi-

cients is needed when interaction of uncorrelated surfaces is considered[6]. In fact,

in the minimum, a solution up to third order is necessary for the two layer prob-

lem. Interesting wave scattering phenomena such as back-scattering enhancement

of rough layers then can be analyzed for more realistic cases. Although such an in-

vestigation is already available using another perturbation type approach, called the

reduced Rayleigh integrals[5], this previous study is semi-numerical, since the field

expressions involve integrals which were handled numerically.

1.3.2 Emission Theory of Rough Surfaces

In recent years, models based on the small slope approximation (SSA) for emission

from a single layer rough surface have been applied to study sea surface brightness

temperatures [73]-[77]. The formulation of these models is based on a small pertur-

bation method (SPM) solution for scattering from a rough surface [22], which has

been shown to yield a small slope theory when applied to the computation of sur-

face emission [73]. One consequence of the small slope nature of the theory is the

fact that the SSA model produces agreement with a physical optics (PO) theory for

the contributions of large-scale waves when the PO theory is expanded in long-wave

slope [78], while retaining agreement with SPM emission predictions for small scale

surfaces.

The majority of previous studies have employed the second order SSA theory

[73]-[75], either alone or in combination with a full geometrical optics approach to

obtain a “two scale” model [79]-[80]. These second order SSA based theories predict

that the influence of surface roughness on brightness temperatures can be expressed
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as an integration over the surface directional spectrum multiplied with an emission

“weighting function” [75]. A third order SSA theory has also been derived recently

[76]-[77], and obtains a correction to the second order results in terms of a quadruple

integration over the surface bi-spectrum. Because the bi-spectrum vanishes identically

for a surface described as a Gaussian random process, third order SSA results provide

only limited information on the accuracy of second order predictions for a near-

Gaussian process sea.

Extension of the theory to fourth order requires knowledge of the SPM scattering

solution to fourth order. Explicit expressions up to second order in surface height

were provided in [22]; explicit expressions up to third order have also been presented

[68]. Reference [68] also presented a systematic procedure for determining fourth and

higher order solutions, but the simplified results of this procedure were not provided.

Recently, the systematic procedure described in [68] was applied to construct a recur-

sive and arbitrary order solution [69] for scattered fields in the SPM method. This

solution now enables formulation and evaluation of SSA emission contributions at

fourth order.

In the second order SSA theory, emission contributions from individual sea waves

are summed without regard to the presence of other waves. One advantage of a fourth

order model is its ability to capture emission “interactions” among multiple length

scale waves in the sea surface. An example of previous heuristic attempts to model

such interactions is found in the two-scale theory of sea surface emission. Under this

model, the sea surface spectrum is separated into “long” (i.e. sea wave wavelengths

much longer than the electromagnetic wavelength) and “short” (sea waves remaining

after long waves are removed) wave portions. Emission from the sea is then modeled
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as an average of short-wave surface emissions (each computed using the second order

SSA theory) with the short wave “facets” tilted by the slope distribution of the long-

wave portion of the sea surface. The tilting process results in a change in the local

observation angle of a given short wave facet, as well as a polarization transformation

from the short-wave local to the global observation coordinates. The tilting process of

the two-scale model represents an interaction between long and short wave portions

of the sea surface.

Because no such interactions are included in the SSA2 model, long wave tilting

of short waves is neglected in this theory. The fourth order SSA theory then should

produce the first SSA modeling of these effects for a near-Gaussian random process

sea, and thereby enable comparisons with and evaluations of tilting effects included in

the two-scale theory. The results to be presented here have been selected to provide

an initial examination of these effects.

1.4 Overview of the dissertation

In Chapter 2, detailed formulation of the perturbation solution for rough surface

scattering is provided, for one dimensional (1-D), Perfect Electric Conductor (PEC)

interfaces. Other approximate models are also considered, including the second order

small slope approximation (SSA2), the physical optics (PO), and the lowest order

modified non-local SSA (MNLSSA). As an exact numerical solution, the extended

boundary condition (EBC) method is presented. The 1-D Dirichlet treatment of the

SPM is highlighted in great detail for the deterministic case, since the rest of the

dissertation is about the advanced applications of SPM theory and many ideas intro-

duced here will directly apply to the following chapters. The rest of the chapter is
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mostly specialized for a deterministic problem: scattering from sinusoidal gratings,

since the sinusoidal scattering problem has a great theoretical importance and pro-

vides a lot of insight to the rough surface scattering theory. Formulations of each

model mentioned above are presented for the sinusoidal grating problem and one fi-

nal section is also included, comparing these models for several sinusoidal surfaces, in

order to give insight on the limitations of each model.

Then, in Chapter 3, the basic formulation for the two-layer problem is introduced.

First, the notational conventions for the rest of the dissertation are provided. Next,

the boundary conditions are studied in a similar fashion with the previous chapter.

Each boundary condition brings a so called forcing function, which can be utilized

to express the solution of the problem as a set of two linear system of equations, for

horizontal and vertical polarizations, respectively. The solution for these systems of

equations is provided analytically. Later, a Fast Fourier Transform(FFT) based nu-

merical solution is described, in the Fourier-Rayleigh sense. For validation purposes,

the numerical perturbation solution is compared against an existing two and a half

dimensional extended boundary condition(EBC) solution for two sine surfaces on top

of each other, in the propagating modes, for several example cases. Although only

the two-layer case is considered analytically in the following chapters, the arbitrary

number of layers case is also considered as a final section in this chapter in a numerical

sense. This section can also be considered as a generalization of the two-layer numer-

ical solution, which will be very useful in possible future work involving analytical

arbitrary layer SPM solutions.

In Chapter 4, an analytical solution procedure for the two-layer problem is pre-

sented. First, the zeroth order solution is provided, in terms of functions defined in
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Chapter 3. Zeroth and arbitrary order contributions to the general N th order solution

are then obtained from the forcing functions. The zeroth order contribution terms are

studied separately for horizontal and vertical incidence cases, while arbitrary order

contributions are identical for both incidence cases. Next, partial SPM solutions for

zeroth and lower order contribution terms are obtained. Later, these partial solutions

are utilized to obtain the complete first and second order solutions. Then, a general

form of higher order solutions is studied, and based on those generalizations, a new

tensor based notation is introduced. The tensor notation is applied to the partial

SPM solutions, and the arbitrary order SPM solution procedure is constructed with

them. Finally, a convergence analysis of SPM solutions is presented using the ratio

test of convergence.

In Chapter 5, an analysis of two-layer problem scattered powers is provided. Given

the field solution to the third order in surface height, reflected, intermediate and

transmitted powers can also be derived to third order. In this chapter, first, a general

discussion on the power calculations is provided. Assumptions on the statistical

surface properties are highlighted. Then, under the assumption of Gaussian Random

Process (GRP), the zeroth and the second order coherent reflectivity and the second

and the fourth order incoherent bi-static Radar Cross Sections (RCS) are derived.

For the case when the two random processes are uncorrelated, the bi-static RCS

term is studied thoroughly and the effects of upper and lower roughness and the

interaction of roughness effects are identified. A special term is defined as the ratio

of the interaction effect to the overall RCS, and it is studied for several problems of

practical interest.
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In Chapter 6, the arbitrary order SPM scattering solution for the one layer prob-

lem is applied in Kirchhoff’s Law of thermal emission to derive the fourth order

correction in the small slope emission theory. First, the SPM scattering solution is

reviewed and the notation to be utilized is introduced. These scattered field solutions

are then applied with Kirchhoff’s Law to derive the fourth order SSA emission term;

it is shown that this term has the form of an integration over a product of two spectra

for a Gaussian random process sea. Next, the long-long wave expansion analysis is ex-

tended to fourth order to demonstrate again that the SSA theory continues to match

a slope expanded PO theory for large-scale surface emission contributions. Numerical

evaluation of the four-fold SSA4 integral for computing “long-short” wave interactions

is discussed, and an approximation for computing such interactions is presented. The

form of the approximation obtained allows a sea spectrum independent comparison

with the two-scale theory of long-short wave tilting effects to be performed in terms of

a set of weighting functions; these functions are found to be similar but not identical

between the two theories. To provide more concrete illustrations, azimuthal harmonic

coefficients of emitted brightnesses obtained from a numerical four-fold SSA4 inte-

gration are presented, and results compared with predictions of the approximation as

well as the two-scale theory are compared.

Finally in Chapter 7, final discussions and conclusions are provided along with

main contributions of this dissertation.
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CHAPTER 2

ROUGH SURFACE SCATTERING FORMULATION FOR

SINUSOIDAL GRATINGS

2.1 Introduction

This chapter provides detailed formulations of fundamental rough surface scat-

tering models for one dimensional (1-D) rough Perfectly Electric Conductor (PEC)

interfaces. Both approximate and exact models are described. The approximate

models include the small perturbation method (SPM), the second order small slope

approximation (SSA2), physical optics (PO), and the lowest order modified non-local

SSA (MNLSSA). As an exact numerical solution, the extended boundary condition

(EBC) method is presented.

In the following sections, a 1-D Dirichlet treatment of the SPM is described in

detail for the deterministic case, since the rest of the dissertation is about the ad-

vanced applications of SPM theory and many ideas introduced here directly apply

to the following chapters. The rest of the chapter is specialized to a deterministic

problem: scattering from sinusoidal gratings, since the sinusoidal scattering problem

has theoretical importance and provides insight into rough surface scattering theory.

Formulations of each model mentioned above are presented for the sinusoidal grating
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problem, and a final section compares these models for several surfaces in order to

illustrate the limitations of each model.

2.2 SPM Formulation for Dirichlet Problem

Consider a deterministic periodic surface z = f(x) with period P as shown in

Figure 2.1. Also assume that the upper region (z > f(x)) is free space, while the

lower region (z < f(x)) is a perfectly conducting medium. Defining the Fourier

operator as F()n, the Fourier series expansion of the surface is given as follows:

f(x) =
+∞
∑

n=−∞

hne
j( 2πn

P )x

hn = F(f(x))n =
1

P

∫ P

0
dxe−j( 2πn

P )xf(x) (2.1)

Assume the following plane wave impinges on the surface:

~Ei = −ŷej~ki.~r, ~Hi =
1

ηo

(

k̂i × (−ŷ)
)

ej~ki.~r (2.2)

where ~ki = kxix̂− kziẑ and kxi = ko sin(θi), kzi = ko cos(θi). The free space wavenum-

ber is defined as ko = 2π
λ

. The incidence angle θi is defined as the angle between the

vector −~ki and ẑ.

Under the Rayleigh hypothesis, the scattered wave can be expressed as a sum over

up-going plane waves (Floquet modes), as:

~Es = −ŷ
+∞
∑

n=−∞

αnej~kn
s .~r, ~Hs =

1

ηo

+∞
∑

n=−∞

(

k̂n
s × (−ŷ)

)

αne
j~kn

s .~r (2.3)

Here, αn are the unknown amplitudes of the scattered Floquet modes. By the Floquet

theorem, the scattered wave propagation vectors are defined as ~kn
s = kxnx̂+kznẑ, with

components: kxn = kxi + 2πn
P

and kzn =
√

k2
o − k2

xn.
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1−D Scattering from Periodic PEC surface
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Figure 2.1: 1-D Dirichlet Problem Geometry

The Dirichlet boundary condition enforces that the tangential component of the

electric field vanishes on the PEC boundary, and can simply be stated as:

[

ẑ − x̂
∂f

∂x

]

×
[

~Ei + ~Es

]

∣

∣

∣

∣

∣

z=f(x)

= 0 (2.4)

Evaluating this boundary condition on the surface, only for the x̂ component, results

in the following expression:

+∞
∑

n=−∞

ej( 2πn
P )xαne

jkznz∗ = −e−jkziz
∗

, (2.5)

where z∗ = f(x). Certainly, if z∗ = f(x) is a simple function, eg. a sinusoid, then

by applying the operator F on both sides, this equation can be put in a matrix

form. Truncating the number of unknowns to some reasonable number, one can

obtain the exact solution by means of a standard matrix inversion procedure. But

for arbitrary surfaces, (or when we consider random processes) this approach will not
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be convenient. Instead, a perturbation theory can be utilized in which the following

series expansions are applied:

αn =
+∞
∑

m=0

α(m)
n

ejkz =
+∞
∑

q=0

(jkz)q

q!
(2.6)

The first equation represents the perturbation series expansion of the unknown, and

the second equation is simply the Taylor expansion for the exponential term. Using

these series expansions in equation 2.5, and considering only the terms of order M ,

one obtains:

+∞
∑

n=−∞

ej( 2πn
P )x

(

M
∑

m=0

α(m)
n

(jkznz
∗)(M−m)

(M − m)!

)

= −(−jkziz
∗)(M)

(M)!
(2.7)

Keeping only the M th order term of the unknown on the left, we obtain:

+∞
∑

n=−∞

ej( 2πn
P )xα(M)

n = −(−jkziz
∗)(M)

(M)!
−

+∞
∑

n=−∞

ej( 2πn
P )x

(

M−1
∑

m=0

α(m)
n

(jkznz∗)(M−m)

(M − m)!

)

= S(x) (2.8)

The right side of the equation is named S(x), the forcing function of the boundary.

Applying the Fourier operator on both sides, the M th order solution of the scattered

wave amplitude can be expressed as:

α
(M)
n′ = F(S(x))n′ (2.9)

It can be shown that zeroth order solution will be in the following form:

α
(0)
n′ = −δ(n′), (2.10)

which corresponds to flat surface reflection. The first order solution can be given as:

α
(1)
n′ = hn′(2jkzi), (2.11)

15



and the second order solution is:

α
(2)
n′ =

∑

n1

hn1hn′−n1(2kzikzn1). (2.12)

In general, the M th order correction has the form:

α
(M)
n′ =

∑

n1

.....
∑

nM−1

hn1 ...hnM−1
h

n′−
∑M−1

k=1
nk

gM
α (n′, n1, ...., nM−1) (2.13)

Here, functions gM
α () (also called SPM kernels) are defined for convenience, and de-

couple the surface properties(Fourier coefficients) from the scattering process. In the

random scattering point of view, such an expression of the scattered fields is very

convenient, since any statistical operator applied on the scattered fields will operate

only on the surface Fourier coefficients.

2.2.1 Arbitrary order solution procedure

The presentation of the SPM up-to this point is standard and well known. The

following derivations will highlight a new procedure for obtaining the arbitrary order

solutions(or gM
α () functions) in terms of the lower order solutions in a recursive fashion.

In order to do that, the forcing function(S(x)) defined in equation 2.8 has to be studied

more throughly. Define functions Sr(x) as:

S r(x) =















− (−jkziz
∗)M

M !
−∑+∞

n=−∞ ej( 2πn
P )xα(0)

n
(jkznz∗)M

M !
if r = 0

−∑+∞
n=−∞ ej( 2πn

P )xα(M−r)
n

(jkznz∗)r

r!
otherwise

(2.14)

so that, S(x) =
∑M−1

r=0 Sr(x). The corresponding unknown components can be defined

as α
(M,r)
n′ = F(Sr(x))n′ with α

(M)
n′ =

∑M−1
r=0 α

(M,r)
n′ . Each component of α

(M)
n′ should be

studied separately. First, consider S 0(x), which involves the zeroth order solution.

Plugging in α
(0)
n′ = −δ(n′), one obtains:

S 0(x) = −(−jkziz
∗)M

M !
+

(jkziz
∗)M

M !
(2.15)
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At this point, one can utilize the Fourier series representation formula for the pth

power of z∗ given below:

F((z∗)p) =
∑

n1

.....
∑

np−1

hn1 ...hnp−1hn′−
∑p−1

k=1
nk

(2.16)

so that α
(M,0)
n′ can be expressed as:

α
(M,0)
n′ =

(

(j)M − (−j)M

M !

)

kM
zi F((z∗)M)n′

=
∑

n1

.....
∑

nM−1

hn1 ...hnM−1
h

n′−
∑M−1

k=1
nk

(j)MkM
zi ε

M !
(2.17)

Here, ε equal to 2 if M is an odd integer and zero otherwise. Also, note that for

M = 1, S0(x) is the only component that contributes to the solution. Simply by

plugging in M = 1 to equation 2.17, one obtains:

α
(1)
n′ = hn′(2jkzi) (2.18)

so that the corresponding first order kernel can be given as:

g(1)
α (n′) = 2jkzi (2.19)

For a general r = 1, 2, ...,M − 1 case, α
(M,r)
n′ can be expressed in terms of Sr(x) as

follows:

α
(M,r)
n′ = F

(

−
+∞
∑

n=−∞

ej( 2πn
P )xα(M−r)

n

(jkznz
∗)r

r!

)

n′

=
−jr

r!
F
(

(z∗)r
+∞
∑

n=−∞

ej( 2πn
P )xα(M−r)

n kr
zn

)

n′

(2.20)

Utilizing the convolution theorem, one obtains:

α
(M,r)
n′ =

−jr

r!

∑

n

F((z∗)r)(n′−n)α
(M−r)
n kr

zn (2.21)
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Here, equations 2.13 and 2.16 can be utilized to express α
(M,r)
n′ in the following form:

α
(M,r)
n′ =

−jr

r!

∑

n





∑

n1

∑

n2

.....
∑

nr−1

hn1hn2 ....hnr−1hn′−n−
∑r−1

k=1
nk









∑

m1

∑

m2

.....
∑

mM−r−1

hm1hm2 ....hmM−r−1
h

n−
∑M−r−1

k=1
mk





kr
zng(M−r)

α (n,m1,m2, ...,mM−r−1) (2.22)

At this point, a new variable can be defined: mM−r = n −∑M−r−1
k=1 mk, resulting in

the following:

α
(M,r)
n′ =

−jr

r!

∑

mM−r





∑

n1

∑

n2

.....
∑

nr−1

hn1hn2 ....hnr−1hn′−
∑r−1

k=1
nk−

∑M−r

k=1
mk









∑

m1

∑

m2

.....
∑

mM−r−1

hm1hm2 ....hmM−r





kr
zng(M−r)

α (n,m1,m2, ...,mM−r−1) (2.23)

Finally with some index modifications (i.e. mi = nr−1+i, (i = 1, 2, ...,M − r)) we

obtain the following:

α
(M,r)
n′ =

−jr

r!

∑

n1

∑

n2

.....
∑

nM−1

hn1hn2 ....hnM−1
h

n′−
∑M−1

k=1
nk

kr
zn∗g(M−r)

α (n∗, nr, nr+1, ..., nM−2) (2.24)

The variable n∗ is defined as:

n∗ = n∗(r,M) =
M−1
∑

k=r

nk (2.25)

Combining equations 2.17 and 2.24, the M th order SPM kernel can be expressed as:

gM
α (n′, n1, ...., nM−1) =

(j)MkM
zi ε

M !
−

M−1
∑

r=1

(j)r

r!
kr

z(n∗)g
(M−r)
α (n∗, nr, nr+1, ...nM−2)

= g(M,0)
α +

M−1
∑

r=1

vr(n
∗)g(M−r)

α (n∗, nr, nr+1, ...nM−2) (2.26)
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Equation 2.26 completes the arbitrary order recursive solution of the 1-D scattering

from a PEC surface problem. The procedure described here will be applied to other

boundary conditions in Chapters 3 and 4.

In order to highlight the advantages of a solution in the form of 2.26, first con-

sider the M = 2 case. Zeroth order contribution drops since ε = 0 for even orders.

The summation also drops, only r = 1 contribution matters, so that we obtain the

following:

g(2)
α (n′, n1) = −jkz(n∗)g

(1)
α (n∗) (2.27)

Since, we already know the g(1)
α by equation 2.19 and n∗(1, 2) = n1, we obtain:

g(2)
α (n′, n1) = 2kzikzn1 (2.28)

Now consider the M = 3 case. For this case, equation 2.26 becomes:

g(3)
α (n′, n1, n2) =

−(j)2k3
zi

3!
−

2
∑

r=1

(j)r

r!
kr

z(n∗)g
(3−r)
α (n∗, nr, nr+1, ...n1) (2.29)

Utilizing equations 2.19 and 2.28, and also noting that n∗(1, 3) = n1 + n2 and

n∗(2, 3) = n2, equation 2.29 becomes:

g(3)
α (n′, n1, n2) =

−(j)2k3
zi

3!
−
[

jkz(n1+n2)g
(2)
α (n1 + n2, n1) −

1

2!
k2

zn2
g(1)

α (n2)
]

= (−2jkzi)

[

k2
zi

3!
+ kz(n1+n2)kz(n1) −

k2
z(n2)

2!

]

(2.30)

The ability to express the M th order SPM kernel in terms of lower order (orders

of r = 1, ..M − 1 and implicitly the zeroth order) SPM kernels allows the formulation

to be computed to arbitrary order using a simple recursive algorithm.

19



P 0   P

−A

A

3A

5A 
Problem Geometry

x

z

k
 i

θ
i

k 
s( 0 )k

 s(−1)

k
 s(+1)

k
 s(−2)

k
 s(+2)

PEC

(ε
0
 , µ

0
 )

(E
i
 , H

i
 )

(E
s
 , H

s
 )

Figure 2.2: Sinusoidal Grating Problem

2.3 Scattering from a sinusoidal surface

In this section, the 1-D Dirichlet problem for a sinusoidal surface is considered.

The problem geometry is sketched in Figure 2.2. Here, basic notational conventions

are presented and they apply to the following subsections.

The surface being considered here is:

z = f(x) = A sin(
2π

P
x), (2.31)

which is periodic with period P . (i.e. f(x) = f(x+P )) Defining the Fourier operator

as F()n, the Fourier series expansion of the surface is given as follows:

hn =
A

2j
(δ(n − 1) − δ(n + 1)) (2.32)
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Due to periodicity of the surface, the scattered field above the maximum of the surface

can be expressed as sum over Floquet modes as:

~Es(~r) = ŷ
+∞
∑

n=−∞

R(n)ei~kn
s .~r (2.33)

The R(n) is in general a complex coefficient, determining the amplitude and phase of

the scattered field in each direction. In the following subsections, these coefficients are

derived with SPM, EBC, PO, SSA2, and MNLSSA models, based on the underlying

approximation, each method suggests a different R(n).

2.3.1 SPM solution

As a reminder, for an arbitrary periodic surface, the following equations were

obtained. The scattered field was given by:

~Es = ŷ
+∞
∑

n=−∞

αne
j~kn

s .~r (2.34)

The αn was expanded into a perturbation series of type:

αn =
+∞
∑

m=0

α(m)
n (2.35)

Then the M th order term was expressed in terms of lower order contributions as:

α
(M)
n′ =

M−1
∑

r=0

α
(M,r)
n′ (2.36)

with

α
(M,0)
n′ =

(

(j)M − (−j)M

M !

)

kM
zi F((z∗)M)n′

α
(M,r)
n′ =

−jr

r!

∑

n

F((z∗)r)(n′−n)α
(M−r)
n kr

zn (2.37)

Also, the Fourier operator applied to the pth power of z∗ was given by:

F((z∗)p)n′ =
∑

n1

.....
∑

np−1

hn1 ...hnp−1hn′−
∑p−1

k=1
nk

(2.38)
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For z∗ = A sin(2π
P

x) we have:

hn =
A

2j
(δ(n − 1) − δ(n + 1)) (2.39)

Utilizing these Fourier coefficients, the formula 2.38 becomes:

F((A sin(
2π

P
x))p)n′ =

p
∑

k=0

δ(n′ − (p − 2k))

(

A

2j

)p (

p
k

)

(−1)k (2.40)

Thus, for α
(M,0)
n′ , we obtain:

α
(M,0)
n′ =

εjMkM
zi

M !

(

A

2j

)M M
∑

k=0

δ(n′ − (M − 2k))

(

M
k

)

(−1)k

= ε

(

Akzi

2

)M M
∑

k=0

δ(n′ − (M − 2k))
(−1)k

(M − k)!k!
(2.41)

where ε equal to 2 if M is an odd integer and zero otherwise. For α
(M,r)
n′ , we obtain:

α
(M,r)
n′ =

−jr

r!

∑

n

(

r
∑

l=0

δ(n′ − n − (r − 2l))

(

A

2j

)r (

r
l

)

(−1)l

)

α(M−r)
n kr

zn

= −
∑

n

r
∑

l=0

δ(n′ − n − (r − 2l))
(−1)l

(r − l)!l!

(

Akzn

2

)r

α(M−r)
n

= −
r
∑

l=0

(−1)l

(r − l)!l!

(

Akz(n′−(r−2l))

2

)r

α
(M−r)
(n′−(r−2l)) (2.42)

Combining these terms, we obtain the following iterative relation for αM
n :

α
(M)
n′ = ε

(

Akzi

2

)M M
∑

k=0

δ(n′ − (M − 2k))
(−1)k

(M − k)!k!

−
M−1
∑

r=1

r
∑

l=0

(−1)l

(r − l)!l!

(

Akz(n′−(r−2l))

2

)r

α
(M−r)
(n′−(r−2l)) (2.43)

Moreover, if we define a new representation for αM
n as:

α̃
(M)
(k) = α

(M)
(M−2k), k = 0, 1, ..,M (2.44)

then equation 2.43 can be transformed into the following form:

M
∑

r=0

r
∑

l=0

(−1)l

(r − l)!l!

(

Akz(M−r−2(k−l))

2

)r

α̃
(M−r)
(k−l) = −

(

−Akzi

2

)M
(−1)k

(M − k)!k!
(2.45)
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By it’s iterative nature, equation 2.45 is useful for generating the arbitrary order

solutions. Using symbolic math packages like Maple or Matlab, one can even get

their functional forms at any order. For the sake of simplicity, only solutions up to

4th order are presented here.

The zeroth order solution for α is independent of the surface and given by:

α
(0)
n′ = −δ(n′), (2.46)

The first order solution is given by:

α
(1)
−1 = −Akzi

α
(1)
+1 = Akzi (2.47)

The second order solution is given by:

α
(2)
−2 =

−1

2
A2kzikz(−1)

α
(2)
0 =

+1

2
A2kzi(kz(−1) + kz(−1))

α
(2)
+2 =

−1

2
A2kzikz(+1) (2.48)

The third order solution is given by:

α
(3)
−3 =

−1

24
A3k3

zi −
1

4
A3kzikz(−1)kz(−2) +

1

8
A3kzik

2
z(−1)

α
(3)
−1 =

1

8
A3k3

zi +
1

4
A3kzikz(−1)kz(−2) +

1

4
A3k2

zikz(−1)

+
1

4
A3k2

zikz(+1) −
1

4
A3kzik

2
z(−1) −

1

8
A3kzik

2
z(+1)

α
(3)
+1 =

−1

8
A3k3

zi −
1

4
A3k2

zikz(−1) −
1

4
A3k2

zikz(+1)

−1

4
A3kzikz(+1)kz(+2) +

1

8
A3kzik

2
z(−1) +

1

4
A3kzik

2
z(+1)

α
(3)
+3 =

1

24
A3k3

zi +
1

4
A3kzikz(+1)kz(+2) −

1

8
A3kzik

2
z(+1) (2.49)
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And finally the fourth order solution is given by:

α
(4)
−4 = −1

8
A4kzikz(−1)kz(−2)kz(−3) +

1

16
A4kzikz(−1)

(

kz(−1)kz(−3) + k2
z(−2)

)

− 1

48
A4kzi

(

k3
z(−1) + k2

zikz(−3)

)

(2.50)

α
(4)
−2 = +

1

48
A4kzi

(

k2
zikz(−3) + k3

z(+1)

)

+
1

8
A4kzikz(−1)

(

kz(−2)kz(−3) + kzi(kz(+1) + kz(−1)) + kz(−1)kz(−2) − k2
z(−2)

)

− 1

16
A4kzi

(

k2
z(−1)(kz(−1) + kz(−3)) + kz(+1)(k

2
zi + kz(+1)kz(−1))

)

(2.51)

α
(4)
0 = −1

8
A4k2

zi(kz(−1) + kz(+1))
2 +

1

16
A4k3

zi(kz(−1) + kz(+1))

+
1

16
A4kzi(k

3
z(−1) + k3

z(+1))

+
1

16
A4kzikz(+1)kz(−1)(kz(−1) + kz(+1))

+
1

16
A4kzikz(−1)kz(−2)(kz(−2) − 2kz(−1))

+
1

16
A4kzikz(+1)kz(+2)(kz(+2) − 2kz(+1)) (2.52)

α
(4)
2 = +

1

48
A4kzi

(

k3
z(−1) + k2

zikz(+3)

)

+
1

8
A4kzikz(+1)

(

kz(+3)kz(+2) + kzi(kz(+1) + kz(−1)) + kz(+1)kz(+2) − k2
z(+2)

)

− 1

16
A4kzi

(

k2
z(+1)(kz(+1) + kz(+3)) + kz(−1)(k

2
zi + kz(+1)kz(−1))

)

(2.53)

α
(4)
4 = −1

8
A4kzikz(+3)kz(+1)kz(+2) +

1

16
A4kzikz(+1)

(

kz(+3)kz(+1) + k2
z(+2)

)

− 1

48
A4kzi

(

k3
z(+1) + h4k2

zikz(+3)

)

(2.54)

In fact, there is another approach for calculating αn, without expanding it into

perturbation series. This method is being used in the literature and called “Fourier-

Rayleigh” approach.
+∞
∑

n=−∞

ej( 2πn
P )xαne

jkznz∗ = −e−jkziz
∗

, (2.55)
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obtained just after applying the boundary condition, can be utilized to calculate αn,

by applying the Fourier operator on both sides.

For z∗ = f(x) = A sin( 2πx
P

), the calculations follow as:

1

P

∫ P

0
dxe

−j

(

2πn′

P

)

x
(

+∞
∑

n=−∞

ej( 2πn
P )xαnejkznz∗

)

= − 1

P

∫ P

0
dxe

−j

(

2πn′

P

)

x (

e−jkziz
∗
)

+∞
∑

n=−∞

αn

1

P

∫ P

0
dxe

−j

(

2π(n′
−n)

P

)

x
ejAkzn sin( 2πx

P
) = − 1

P

∫ P

0
dxe

−j

(

2πn′

P

)

x
e−jAkzi sin( 2πx

P
)

+∞
∑

n=−∞

αn

1

2π

∫ 2π

0
dxe−j(n′−n)θejAkzn sin(θ) = − 1

2π

∫ 2π

0
dxe−jn′θe−jAkzi sin(θ)(2.56)

Finally, by utilizing Lommel’s formula 2.67, we obtain:

+∞
∑

n=−∞

αnJn′−n(Akzn) = −Jn′(−Akzi) (2.57)

Certainly, this equation can be truncated with a reasonable number of unknowns,

and then can be put in a matrix equation form. An analytical solution to this infinite

system of equations is unknown.

2.3.2 EBC Formulation

In this section, the Extended Boundary Condition method will be utilized for the

same problem. The EBC method or (T-Matrix method) is based on the extinction

theorem or the null field theorem. This theorem can be used as a boundary condition

to obtain an extended integral equation. Formulation of [9] will be followed in this

section.

For a periodic, one dimensional PEC surface, the EBC formulation reduces to:

Ei
y(~r) −

∫ P

0
dS ′gp(~r, ~r

′) (~n′.∇S′Ey(~r
′)) =

{

Ey(~r) z > f(x)
0 z < f(x)

(2.58)

Here, the periodic 2-D Green’s function is given as:

gp(~r, ~r
′) =

i

2P

+∞
∑

n=−∞

1

kzn

eikxn(x−x′)+ikzn|z−z′|, (2.59)
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with:

kxn = kxi +
2πn

P
, kzn =







√

k2
0 − k2

xn k0 > kxn

i
√

k2
xn − k2

0 k0 < kxn

(2.60)

Hence, for z > A we have:

Ey(~r) = Ei
y(~r) −

i

2P

+∞
∑

n=−∞

1

kzn

eikxnx+ikznz

[

∫ P

0
dS ′e−ikxnx′−ikznz′~n′.∇S′Ey(~r

′)

]

(2.61)

and for z < A:

0 = Ei
y(~r) −

i

2P

+∞
∑

n=−∞

1

kzn

eikxnx−ikznz

[

∫ P

0
dS ′e−ikxnx′+ikznz′~n′.∇S′Ey(~r

′)

]

(2.62)

Now, we need to define coefficients βm such that:

dS ′~n′.∇S′Ey(~r
′) = (−2i)dx′

+∞
∑

m=−∞

βmeikxmx′

(2.63)

Then we have:

− i

2P

∫ P

0
dS ′e−ikxnx′∓ikznz′~n′.∇S′Ey(~r

′) = −
+∞
∑

m=−∞

βmI∓(n,m), (2.64)

where

I∓(n,m) =
1

P

∫ P

0
dx′ei(kxm−kxn)x′∓ikznA sin( 2πx′

P
) (2.65)

Noting that (kxm−kxn) = 2π
P

(m−n), and utilizing the variable transformation θ = 2πx′

P

we obtain:

I∓(n,m) =
1

2π

∫ 2π

0
dθei(m−n)θ∓ikznA sin(θ) (2.66)

Utilizing the following identity (also known as Lommel’s formula, see Appendix D for

a proof) of Bessel function :

Jn(z) =
1

2π

∫ 2π

0
e−inθeiz sin(θ)dθ, (2.67)
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we obtain:

I−(n,m) = J(m−n)(Akzn)

I+(n,m) = J(n−m)(Akzn) (2.68)

With these results equations 2.61 and 2.62 reduces to: for z > A:

Ey(~r) = Ei
y(~r) −

+∞
∑

n=−∞

1

kzn

eikxnx+ikznz
+∞
∑

m=−∞

βmJ(m−n)(Akzn) (2.69)

and for z < A:

0 = Ei
y(~r) −

+∞
∑

n=−∞

1

kzn

eikxnx−ikznz
+∞
∑

m=−∞

βmJ(n−m)(Akzn) (2.70)

To be consistent with reference [9], we can define coefficients bn and an as:

Ey(~r) = Ei
y(~r) +

+∞
∑

n=−∞

eikxnx+ikznzbn z > A

0 = Ei
y(~r) +

+∞
∑

n=−∞

eikxnx−ikznzan z < A (2.71)

where:

bn =
−1

kzn

+∞
∑

m=−∞

βmJ(m−n)(Akzn)

an =
−1

kzn

+∞
∑

m=−∞

βmJ(n−m)(Akzn) (2.72)

Here, it is important to note that by the null field theorem we know that an = −δ(n).

The EBC solution of the problem reduces to two infinite matrix equations. Trun-

cating the number of unknowns by a reasonable number, one can obtain the βm’s by

inverting a matrix of the second expression, and then bn can be obtained from the

first expressions. It is also true that the EBC method should give the exact solution

of the problem since no approximation is involved. But it is also a known fact that

the matrices involved in this theory becomes ill conditioned as the height to length

ratio of the surface increases .
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2.3.3 PO Formulation

In this section the Physical Optics(PO) solution is presented for the 1-D sinu-

soidal surface. The PO method utilizes the Kirchhoff Approximation(KA), which

approximates the surface fields using the tangent plane approximation. For this ap-

proximation to be valid, the surface should have large radius of curvature. In general,

by Huygens principle, the scattered field in the upper region can be expressed as:

Es
y(~r) = Ey(~r) − Ei

y(~r) = −
∫

S′

dS ′g(~r, ~r ′) (n̂′ · ∇S′Ey(~r
′)) (2.73)

where the Green’s function and the surface normal defined as:

g(~r, ~r ′) =
i

4
H

(1)
0 (k|~r − ~r ′|), n̂′ =

~n

L
=

ẑ − df
dx

x̂
√

1 +
(

df
dx

)2
(2.74)

For a periodic surface, the scattered field should also be periodic. At this point,

we can take advantage of the periodic Green’s function [9]:

gp(~r, ~r
′) =

i

2P

+∞
∑

n=−∞

1

kzn

eikxn(x−x′)+ikzn|z−z′|, (2.75)

with kxn = kxi + 2πn
P

and kzn =
√

k2
0 − k2

xn, in order to express the infinite integral

involved in equation 2.73 as an infinite sum of finite integrals. With this modification

and using the fact that dS ′ = Ldx′, equation 2.73 becomes:

Es
y(~r) = −

∫ P

0
dx′gp(~r, ~r

′) (~n.∇S′Ey(~r
′)) (2.76)

Here we apply the tangent plane approximation: on the hypothetical tangential

plane, we have n̂×H = 2n̂×H i. For a 1-D surface, the tangential component of the

magnetic field (n̂×H) is proportional to ~n×∇×E = ~n×∇E × ŷ. Using BAC-CAB

rule and ~n.ŷ = 0, we observe that:

n̂ × H ∼ −ŷ(~n.∇E) (2.77)
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and hence

~n.∇E(~r ′) ' 2~n.∇Ei(~r ′) (2.78)

Plugging this approximation into equation 2.76, we obtain:

Es
y(~r) = −

∫ P

0
dx′

(

i

2P

+∞
∑

n=−∞

1

kzn

eikxn(x−x′)+ikzn|z−z′|

)

2~n.∇Ei(~r ′)

= − 1

P

+∞
∑

n=−∞

1

kzn

eikxnx+ikznz
∫ P

0
dx′e−ikxnx′−ikznz′(

df

dx
kxi + kzi)e

ikxix
′−ikziz

′

= − 1

P

+∞
∑

n=−∞

1

kzn

eikxnx+ikznzI(n) (2.79)

The inner integral can be rewritten with the exact surface expression as:

I(n) =
∫ P

0
dx′e−i 2πn

P
x′

e−i(kzi+kzn)A sin( 2πx′

P
)

[

2π

P
A cos(

2πx′

P
)kxi + kzi

]

(2.80)

Lets divide I(n) into two parts and study them separately:

I1(n) =
∫ P

0
dx′e−i 2πn

P
x′

e−i(kzi+kzn)A sin( 2πx′

P
)kzi

I2(n) =
∫ P

0
dx′e−i 2πn

P
x′

e−i(kzi+kzn)A sin( 2πx′

P
)

[

2π

P
A cos(

2πx′

P
)kxi

]

(2.81)

Defining the change of variable rule; θ = 2π
P

x, the first integral becomes:

I1(n) =
P

2π

∫ 2π

0
dθe−inθe−i(kzi+kzn)A sin(θ)kzi (2.82)

Utilizing the Bessel function identity given in 2.67, I1(n) can be evaluated as:

I1(n) = (P )kziJn(−A(kzi + kzn)) (2.83)

For the second integral, the identity given in equation 2.67 has to be manipulated

as follows: Applying the change of variable rule defined above backwards, we obtain:

Jn(z) =
1

P

∫ P

0
e−i 2πn

P
xeiz sin( 2πx

P
)dx, (2.84)
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which can be interpreted as the Fourier series representation of the function h(x) =

eiz sin( 2πx
P

).

From Fourier theory, we know that for a periodic arbitrary function h(x), we have

the following Fourier series representation:

αn =
1

P

∫ P

0
e−i 2πn

P
xh(x)dx

h(x) =
+∞
∑

n=−∞

αne+i 2πn
P

x (2.85)

If we differentiate h(x), we obtain:

h′(x) =
+∞
∑

n=−∞

αn

(

i
2πn

P

)

e+i 2πn
P

x (2.86)

so that the Fourier series representation of h′(x) will be:

βn =
1

P

∫ P

0
e−i 2πn

P
xh′(x)dx =

2πj

P
nαn (2.87)

Similarly, Fourier representation for the derivative of h(x) = eiz sin( 2πx
P

) will be in

the following form:

1

P

∫ P

0
e−i 2πn

P
xeiz sin( 2πx

P
)
(

iz
2π

P
cos(

2πx

P
)
)

dx =
2πi

P
nJn(z) (2.88)

The term 2πi
P

cancels from both sides and we are left with:

1

P

∫ P

0
e−i 2πn

P
xeiz sin( 2πx

P
) cos(

2πx

P
)dx = n

Jn(z)

z
(2.89)

Finally, to make it look nice, we can apply the same change of variable again: reaching

the following new identity.

1

2π

∫ 2π

0
e−inθeiz sin(θ) cos(θ)dθ =

nJn(z)

z
(2.90)
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Utilizing this new identity, the second integral can be evaluated as:

I2(n) = Akxi

∫ 2π

0
dθe−inθe−i(kzi+kzn)A sin(θ) cos(θ)

= −kxi(2πn)
Jn(−A(kzi + kzn))

(kzi + kzn)
(2.91)

Combining I1(n) and I2(n), and plugging in equation 2.79, we have:

Es
y(~r) = − 1

P

+∞
∑

n=−∞

1

kzn

eikxnx+ikznz

[

Pkzi −
kxi(2πn)

(kzi + kzn)

]

Jn(−A(kzi + kzn))

=
+∞
∑

n=−∞

eikxnx+ikznz

[

kxi

kzn

(kxn − kxi)

(kzi + kzn)
− kzi

kzn

]

Jn(−A(kzi + kzn)) (2.92)

2.3.4 SSA2 Formulation

In Small Slope Approximation (SSA) method, the scattered field is expressed as:

~Es(~r, kxi) =
∫

dkx

eikxx+ikzz

√
kz

S(kx, kxi) (2.93)

where kx and kxi are the x̂ components of the scattered field wave number. The

scattered field wave vector is defined as ~ks = kxx̂ + kz ẑ with

kz =







√

k2
0 − k2

x k0 > |kx|
i
√

k2
x − k2

0 k0 < |kx|
(2.94)

Here k0 = 2π
λ

, is electromagnetic wavenumber. The function (in general a matrix

function) S(kx, kxi) is called the scattering amplitude, which is given as:

S(kx, kxi) =

√
kzkzi

(kz + kzi)

∫ ∫ dxdξ

2π
e−i(kz+kzi)f(x)−i(kx−kxi).

.



2B(kx, kxi)δ(ξ) +
i

2

[

B2(kx, kxi; kx − ξ) + B2(kx, kxi; kxi + ξ)

+2(kz + kzi)B(kx, kxi)

]

F (ξ)



 (2.95)
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where

B(kx, kxi) = −1

B2(kx, kxi; k
′
x) = 2k′

z (2.96)

In the case of a periodic surface f(x) = f(x + P ), expressing the infinite integral

as an infinite sum of integrals on a single period, and utilizing the identity:

1

2π

+∞
∑

n=−∞

einx =
+∞
∑

n=−∞

δ(x − 2πn) (2.97)

we obtain the following periodic version of the scattering amplitude:

S(kx, kxi) =
+∞
∑

n=−∞

Snδ(kx − kxi −
2πn

P
)

Sn =

√
kznkzi

(kzn + kzi)

+∞
∑

m=−∞

Qn,m.

.



2B(kxn, kxi)δ(m) +
i

2

[

B2(kxn, kxi; kx(n−m)) + B2(kxn, kxi; kxm)

+2(kzn + kzi)B(kxn, kxi)

]

hm



 (2.98)

where

Qn,m =
1

P

∫ P

0
dxe−i(n−m) 2π

P
x−i(kzn+kzi)f(x) (2.99)

Plugging in functions B and B2, Sn simplifies to:

Sn =

√
kznkzi

(kzn + kzi)

+∞
∑

m=−∞

Qn,m



− 2δ(m) + i
[

kz(n−m) + kzm − kzn − kzi

]

hm



 (2.100)

Moreover, if we consider f(x) = A sin( 2π
P

x), then we have:

hn =
A

2j
(δ(n − 1) − δ(n + 1)) , (2.101)
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and

Qn,m =
1

P

∫ P

0
dxe−i(n−m) 2π

P
x−i(kzn+kzi)A sin( 2π

P
x)

=
1

2π

∫ 2π

0
dθe−i(n−m)θ−i(kzn+kzi)A sin(θ)

= Jn−m(−A(kzn + kzi)) (2.102)

These modifications simplify equation 2.100 to:

Sn =

√
kznkzi

(kzn + kzi)

+∞
∑

m=−∞

Jn−m(−A(kzn + kzi)) [δ(m − 1) − δ(m + 1)]

[

− 2δ(m) +
A

2

[

kz(n−m) + kzm − kzn − kzi

]

hm

]

=

√
kznkzi

(kzn + kzi)







A

2

[

kz(n−1) + kz(1) − kzn − kzi

]

Jn−1(−A(kzn + kzi))

−2 Jn(−A(kzn + kzi))

−A

2

[

kz(n+1) + kz(−1) − kzn − kzi

]

Jn+1(−A(kzn + kzi))







(2.103)

2.3.5 One term MNLSSA Formulation

The Nonlocal Small Slope Approximation (NLSSA) method assumes the following

form for the scattering amplitude:

S(kx, kxi) =
1

4π2

∫

Φ(kx, kxi; ξ)e
−i(kx−ξ)x1−ikzf(x1)ei(kxi−ξ)x2−ikzif(x2)dx1dx2dξ (2.104)

Originally proposed by Voronovich [15], this form of scattering amplitude has the

capability to include multiple (two point) scattering effects. The functional Φ is ex-

panded into a integral-power series and new coefficients are determined in comparison

with SPM (SPM-1 and SPM-2)kernels.

Recently, Elfouhaily et. al. [13] suggested a modification to this theory, which

they call modified NLSSA (MNLSSA), by enforcing extra conditions on NLSSA, and
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they were able to match with Kirchoff Approximation (GO1) solution in the high

frequency limit.

The MNLSSA kernel is given [13] by:

Φ(kx, kxi;ξ) =
kz + kzi

2kzkzi

[B2(kx, kxi; ξ) + B2(kx, kxi; kx + kxi − ξ) − B(kx, kxi)]

+
B(kx, kxi)

Qz

(2.105)

Here, for Dirichlet problem, B, Qz and B2 are defined as:

B(kx, kxi) = −2kzkzi

Qz = kz + kzi

B2(kx, kxi; ξ) =
−2kzkz(ξ)kzi

kz + kzi

(2.106)

Plugging in these functions, the kernel becomes:

Φ(kx, kxi; ξ) = − 2kzkzi

kz + kzi

− kz(ξ) − kz(kx+kxi−ξ) + kz + kzi (2.107)

Moreover, for a periodic surface (i.e. f(x) = f(x + P )) we can do the following

modifications: First, consider equation 2.104 in the following form:

S(kx, kxi) =
∫

Φ(kx, kxi; ξ)I1(kx, ξ)I2(kxi, ξ)dξ

I1(kx, ξ) =
1

2π

∫

e−i(kx−ξ)x1e−ikzf(x1)dx1

I2(kxi, ξ) =
1

2π

∫

ei(kxi−ξ)x2e−ikzif(x2)dx2 (2.108)

Now, we can study I1 and I2 separately as:

I1(kx, ξ) =
∑

n

δ(kx − ξ − 2πn

P
)
1

P

∫ P

0
e−i 2πn

P
x1e−ikzf(x1)dx1

=
∑

n

δ(kx − ξ − 2πn

P
)Jn(−Akz) (2.109)
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and

I2(kxi, ξ) =
∑

m

δ(ξ − kxi −
2πm

P
)
1

P

∫ P

0
e−i 2πm

P
x2e−ikzif(x2)dx2

=
∑

m

δ(ξ − kxi −
2πm

P
)Jm(−Akzi) (2.110)

Hence, we can express the scattering amplitude as:

S(kx, kxi) =
∑

n

∑

m

δ(kx − kxi −
2π(n + m)

P
)Sn,m

Sn,m =

[

− 2kz(n+m)kzi

kz(n+m) + kzi

− kzm − kzn + kz(n+m) + kzi

]

.

.Jn(−Akz(n+m))Jm(−Akzi) (2.111)

Noting that, one can modify this result as:

S(kx, kxi) =
∑

r

δ(kx − kxi −
2πr

P
)
∑

m

Sr−m,m, (2.112)

which is more convenient in comparing the method with others.

2.4 Comparison of the Methods

The scattered field amplitudes for all of these these models can be writen in the

following general form:

~Es(~r) = ŷ
+∞
∑

n=−∞

R(n)ei~kn
s .~r (2.113)

due to periodicity. In the previous subsections, it was shown that R(n) can be given

as: in SPM,

R(n) = αn (2.114)

in EBC,

R(n) = bn (2.115)
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in PO,

R(n) =

[

kxi

kzn

(kxn − kxi)

(kzi + kzn)
− kzi

kzn

]

Jn(−A(kzi + kzn)) (2.116)

in SSA2,

R(n) =
kzi

(kzn + kzi)







A

2

[

kz(n−1) + kz(1) − kzn − kzi

]

Jn−1(−A(kzn + kzi))

−2 Jn(−A(kzn + kzi))

−A

2

[

kz(n+1) + kz(−1) − kzn − kzi

]

Jn+1(−A(kzn + kzi))







(2.117)

and finally in MNLSSA,

R(n) =
1

kzn

∑

m

[

− 2kznkzi

kzn + kzi

− kzm − kz(n−m) + kzn + kzi

]

.

.J(n−m)(−Akzn)Jm(−Akzi) (2.118)

R(n) of each method is implemented and comparison is done for the following test

cases. Note that only the propagating modes are considered in all of these results.

The first test was about the convergence of the SPM solution. For an incidence

angle of θi = 45◦ and a surface height parameter A = 1λ , surface period is varied

for three different cases (i.e. P = 20λ, P = 10λ, P = 5λ). The fourth, the eighth

and the 32th order SPM solutions are tested against the 40 mode EBC solution. The

results are given in Figure 2.3. The height of the surface is set to a high value, to

decrease the convergence rate. But still for the P = 20λ case, which is inside the

region where the Rayleigh hypothesis is valid(A2π
P

< 0.448, due to Millar) , excellent

agreement with the EBC method is observed for the 32th order SPM solution. There

is no question about the validity of the EBC method for this case, since the matrices

involved in this theory are well conditioned. In part (b), results for the P = 10λ

case are plotted. The EBC matrices are well conditioned, so EBC can be assumed
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Figure 2.3: SPM convergence study: For incidence angle of θi = 45◦ and the surface
height parameter A = 1λ, surface period is varied as: (a)P = 20λ, (b)P = 10λ,
(c)P = 5λ
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as truth. Although this case is slightly out of the Rayleigh region, SPM convergence

to the EBC solution can clearly be observed. Also, for the modes far away from the

specular mode, excellent agreement with the EBC solution is observed. In Part (c),

results for the P = 5λ are presented. The EBC matrices are ill conditioned, so the

results are not dependable. The divergent nature of the SPM solution can also be

observed.

A second test was to compare all of the models in the small height limit. The

surface height is set to A = 0.5λ and the period is assumed to be P = 10λ. Then

results from each model are given for θi = 20◦, 45◦, 70◦ cases in Figures 2.4, 2.5 and 2.6

respectively. The EBC method solution is used for comparison for all other models.

The large radius of curvature condition is also satisfied, so the models are in great

agreement in all cases, except for the θi = 70◦ case PO result in the specular direction.

The SSA and MNLSSA models implicitly contains SPM information. So it is natural

to expect them to match with SPM in the small height limit.

The final test was for the large height limit, where a relatively higher height to

length ratio is considered. The height of the surface is set to A = 0.5λ and the period

of the surface is set to P = 5λ. Similar to the second test, θi = 20◦, 45◦, 70◦ cases

are shown in Figures 2.7, 2.8 and 2.9 respectively. Relative differences between the

methods can be observed. Again for the θi = 70◦ case, PO result in the specular

direction has a different behavior from the other results. Also, the MNLSSA results

are closer to PO results than the SSA, due to the modification of the non-local kernels

to match the PO, in the high frequency limit.
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Figure 2.4: Small height example: For θi = 20◦ incidence angle, the surface height is
set to A = 0.5λ and the period is assumed to be P = 10λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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Figure 2.5: Small height example: For θi = 45◦ incidence angle, the surface height is
set to A = 0.5λ and the period is assumed to be P = 10λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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Figure 2.6: Small height example: For θi = 70◦ incidence angle, the surface height is
set to A = 0.5λ and the period is assumed to be P = 10λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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Figure 2.7: Medium height example: For θi = 20◦ incidence angle, the surface height
is set to A = 0.5λ and the period is assumed to be P = 5λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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Figure 2.8: Medium height example: For θi = 45◦ incidence angle, the surface height
is set to A = 0.5λ and the period is assumed to be P = 5λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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Figure 2.9: Medium height example: For θi = 70◦ incidence angle, the surface height
is set to A = 0.5λ and the period is assumed to be P = 5λ.(a)EBC-SPM20, (b)EBC-
PO, (c)EBC-SSA2, (d)EBC-MNLSSA
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2.5 Conclusion

In this chapter, several rough surface scattering formulations for the 1-D sinusoidal

grating problem were presented. First, the arbitrary order SPM formulation was

considered in detail, since the same model is utilized extensively in the rest of the

chapter, for more complex cases. Then the SSA2 theory based on second order SPM

kernels were presented for the identical problem. As an exact solution, the T-matrix

method formulation was also included. The PO model solution was also included,

as high frequency approximation. Finally, the MNLSSA as a more recent model was

also introduced.

The final section of this chapter was devoted to the comparison of these models for

several sinusoidal surface examples. The effect of surface slopes to the convergence

of SPM series solution was highlighted. In addition, for several different incidence

angles, the small, moderate and large height cases were investigated, utilizing all of

these models, and in general, a good agreement between the models were observed.
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CHAPTER 3

PERTURBATION THEORY OF 2D ROUGH LAYERED

MEDIA: NUMERICAL SOLUTION

3.1 Introduction

In this chapter, the basic formulation for the two-layer problem is introduced.

The two-layer problem implicitly means the electromagnetic scattering problem from

an unbounded scatterer, consisting two 2D rough interfaces separated by a specified

distance. Utilizing a perturbational approach, a complete (both TE and TM cases)

solution is sought, under the assumption of the Rayleigh Hypothesis.

First the notational conventions for the rest of the dissertation are provided. Next,

the boundary conditions are studied in a fashion similar with the previous chapter.

Each boundary condition brings a so called forcing function, which can be utilized

to express the solution of the problem as a set of two linear system of equations,

for horizontal and vertical polarizations, respectively. The solution for these systems

of equations is provided analytically. Later, a Fast Fourier Transform(FFT) based

numerical solution is described. For validation purposes, the numerical perturba-

tion solution is compared against an existing two and a half dimensional extended
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Figure 3.1: Problem Geometry

boundary condition(EBC) solution for two sine surfaces on top of each other, in the

propagating modes, for several example cases.

Although only the two-layer case is considered analytically in subsequent chapters,

an arbitrary number of layers is also considered as a final section in this chapter.

This section can be considered as a generalization of the two-layer numerical SPM

solution, which will be very useful in future work involving analytical arbitrary layer

SPM solutions.

3.2 Basic Problem Setup

A two layer problem, as shown in Figure 3.1, has two rough interfaces z = f1(x, y)

and z = f2(x, y) = −d + f̄2(x, y), which are both periodic. It will be assumed that
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both functions have the same periods, Px in x̂ and Py in ŷ directions. We will also

assume that distance parameter d between the mean planes of the surfaces, is larger

then the sum of the maximum variations of each surface. The Fourier operator for

the two dimensional case is given by:

fi(x, y) =
+∞
∑

n=−∞

+∞
∑

m=−∞

h(i)
n,mej( 2πn

Px
)xe

j

(

2πm
Py

)

y

h(i)
n,m = F(fi(x, y))n,m

=
1

PxPy

∫ Px

0

∫ Py

0
dxdye−j( 2πn

Px
)xe

−j

(

2πm
Py

)

y
fi(x, y) (3.1)

for i = 1, 2. In the rest of the derivations, vector notations: n̄ = (n,m) and x̄ = (x, y)

will be used.

The regions are numbered (i.e. q = 0, 1, 2) and relevant parameters for each region

are labeled accordingly: dielectric permittivity of region 2 is ε2, wave impedance of

region 1 is η1, etc. Also a + or − sign is associated with each vector parameter,

representing a +ẑ or −ẑ propagation direction of the associated waves.

First, define the propagation directions in each layer, both for up and down going

waves:

~k0−
0̄ = kxix̂ + kyiŷ − k0̄

z0ẑ

~k0+
n̄ = kxnx̂ + kymŷ + kn̄

z0ẑ

~k1−
n̄ = kxnx̂ + kymŷ − kn̄

z1ẑ

~k1+
n̄ = kxnx̂ + kymŷ + kn̄

z1ẑ

~k2−
n̄ = kxnx̂ + kymŷ − kn̄

z2ẑ

(3.2)
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Here kxi = k0 sin(θi) cos(φi) and kyi = k0 sin(θi) sin(φi). θi and φi are the incidence

angles. Other parameters are defined as:

kxn = kx(n) = kxi +
2πn

Px

kym = ky(m) = kyi +
2πm

Py

kn̄
ρ =

√

k2
xn + k2

ym

kn̄
zq =

√

k2
q − (kn̄

ρ )2 (3.3)

Note that the first three parameters defined here are independent of the region,

whereas the last parameter is defined separately for each region q = 0, 1, 2. Also

for the n̄ = 0̄ case the following parameters are defined for convenience:

kρi =
√

k2
xi + k2

yi

kzi =
√

k2
0 − (kρi)2 (3.4)

Using an e−jωt time dependence, the fields in Region 0 can be expressed as:

~E−
0 = êie

j~k0−
0̄

.~r

~H−
0 =

k̂0−
0̄ × êi

η0

ej~k0−
0̄

.~r

~E+
0 =

∑

n̄

[

ĥn̄αn̄ + v̂n̄
0+βn̄

]

ej~k0+
n̄ .~r

~H+
0 =

1

η0

∑

n̄

[

−v̂n̄
0+αn̄ + ĥn̄βn̄

]

ej~k0+
n̄ .~r (3.5)

The incidence polarization vector êi is equal to ĥi or v̂i for horizontal and vertical

incidence respectively, which are given as follows:

ĥi =
kyi

k0̄
ρ

x̂ − kxi

k0̄
ρ

ŷ

v̂i =
kxikzi

k0k0̄
ρ

x̂ +
kyikzi

k0k0̄
ρ

ŷ +
k0̄

ρ

k0

ẑ (3.6)
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Figure 3.2: Two dimensional (y = 0) cross-section of the two-layer media. The
unknown field coefficients {α, β,A,B,C,D, γ, δ} are labeled in their domain of defi-
nition.

Note that, except the incident field, all field quantities have two unknown field am-

plitudes (i.e. αn̄ and βn̄ for the reflected field) to take into account the depolarization

effect of the rough surfaces. The unknown field amplitudes are defined in Figure 3.2

Fields in Regions 1 and 2 can also be expressed similarly as:

~E−
1 =

∑

n̄

[

ĥn̄An̄ + v̂n̄
1−Bn̄

]

ej~k1−
n̄ .~r

~H−
1 =

1

η1

∑

n̄

[

−v̂n̄
1−An̄ + ĥn̄Bn̄

]

ej~k1−
n̄ .~r

~E+
1 =

∑

n̄

[

ĥn̄Cn̄ + v̂n̄
1+Dn̄

]

ej~k1+
n̄ .~r

~H+
1 =

1

η1

∑

n̄

[

−v̂n̄
1+Cn̄ + ĥn̄Dn̄

]

ej~k1+
n̄ .~r

~E−
2 =

∑

n̄

[

ĥn̄γn̄ + v̂n̄
2−δn̄

]

ej~k2−
n̄ .~r

~H−
2 =

1

η2

∑

n̄

[

−v̂n̄
2−γn̄ + ĥn̄δn̄

]

ej~k2−
n̄ .~r (3.7)
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Polarization vectors for these fields are:

ĥn̄ =
1

kn̄
ρ

(kymx̂ − kxnŷ)

v̂n̄
0+ = − kn̄

z0

k0kn̄
ρ

(kxnx̂ + kymŷ) +
kn̄

ρ

k0

ẑ

v̂n̄
1− = +

kn̄
z1

k1kn̄
ρ

(kxnx̂ + kymŷ) +
kn̄

ρ

k1

ẑ

v̂n̄
1+ = − kn̄

z1

k1kn̄
ρ

(kxnx̂ + kymŷ) +
kn̄

ρ

k1

ẑ

v̂n̄
2− = +

kn̄
z2

k2kn̄
ρ

(kxnx̂ + kymŷ) +
kn̄

ρ

k2

ẑ (3.8)

Since the derivation involves several cross product terms, it will also be convenient

to work them out here. The products of ẑ can be given as:

ẑ × ĥi = ẑ × ĥ0̄ =
1

kρi

(kxix̂ + kyiŷ)

ẑ × v̂i = ẑ × v̂0̄
0− =

−kzi

k0

ĥi

ẑ × ĥn̄ =
1

kn̄
ρ

(kxnx̂ + kymŷ)

ẑ × v̂n̄
q∓ = ∓

(

kn̄
zq

kq

)

ĥn̄

ẑ × k̂i × ĥi =

(

k0̄
z0

k0

)

ĥi

ẑ × k̂i × v̂i = ẑ × ĥi (3.9)

Here, again q = 1, 2 represents the region number. Similarly, the products involving

the gradients of the surfaces can be given as:

∇tf(i)(x̄) × ĥi = (.....) ẑ

∇tf(i)(x̄) × v̂i =
kρi

k0

(

∇tf(i)(x̄) × ẑ
)

+ (.....) ẑ

∇tf(i)(x̄) × ĥn̄ = (.....) ẑ

∇tf(i)(x̄) × v̂n̄
q∓ =

kn̄
ρ

kq

(

∇tf(i)(x̄) × ẑ
)

+ (.....) ẑ
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∇tf(i)(x̄) × ẑ = x̂
∂f(i)

∂y
− ŷ

∂f(i)

∂x

∇tf(i)(x̄) × k̂i × ĥi = −kρi

k0

(

∇tf(i)(x̄) × ẑ
)

+ (.....) ẑ

∇tf(i)(x̄) × k̂i × v̂i = (.....) ẑ (3.10)

Here, the subscript (i) is utilized with surface function f , indicating the number of the

interface. Also the ẑ components are described with (....) since we are not interested

in them.

Expressions up-to this point conclude the basic notational conventions of the two

layer rough interface scattering problem. The rest of the formulation involves alge-

braic manipulations of the boundary conditions.

3.3 Boundary Conditions

The boundary conditions considered in this problem are:

~n1 ×
[

E−
0 + E+

0

]

= ~n1 ×
[

E−
1 + E+

1

]

|z=f1(x̄)

~n1 ×
[

H−
0 + H+

0

]

= ~n1 ×
[

H−
1 + H+

1

]

|z=f1(x̄)

~n2 ×
[

E−
1 + E+

1

]

= ~n2 ×
[

E−
2

]

|z=f2(x̄)

~n2 ×
[

H−
1 + H+

1

]

= ~n2 ×
[

H−
2

]

|z=f2(x̄) (3.11)

Here ~n1 and ~n2 are the normals of surfaces z = f1(x̄) and z = f2(x̄) respectively, as

follows:

~n1 = ẑ −∇tf1(x̄)

~n2 = ẑ −∇tf2(x̄) (3.12)

These boundary conditions will be applied for both x̂ and ŷ field components. Plug-

ging in the surface normals to the boundary conditions and after some rearranging,
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we obtain:

ẑ ×
[

E+
0 − E−

1 − E+
1

]

= −ẑ × E−
0 + ∇tf1(x̄) × E−

0

+∇tf1(x̄) ×
[

E+
0 − E−

1 − E+
1

]

|z=f1(x̄)

ẑ ×
[

H+
0 − H−

1 − H+
1

]

= −ẑ × H−
0 + ∇tf1(x̄) × H−

0

+∇tf1(x̄) ×
[

H+
0 − H−

1 − H+
1

]

|z=f1(x̄)

ẑ ×
[

E−
1 + E+

1 − E−
2

]

= +∇tf2(x̄) ×
[

[E−
1 + E+

1 − E−
2

]

|z=f2(x̄)

ẑ ×
[

H−
1 + H+

1 − H−
2

]

= +∇tf2(x̄) ×
[

[H−
1 + H+

1 − H−
2

]

|z=f2(x̄) (3.13)

Plugging in the field expressions and utilizing cross product relations provided

in the previous section, an algebraic equation can be obtained for each boundary

condition. These equations are:

First boundary condition:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

αn̄e+ikn̄
z0z − An̄e−ikn̄

z1z − Cn̄e+ikn̄
z1z
]

+
(

ĥn̄

)

[

kn̄
z0

k0

βn̄e+ikn̄
z0z +

kn̄
z1

k1

Bn̄e−ikn̄
z1z − kn̄

z1

k1

Dn̄e+ikn̄
z1z

]





= − (ẑ × êi) e−ikziz + (∇tf1(x̄) × êi) e−ikziz +
∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y
.

.



 (∇tf1(x̄) × ẑ) (kn̄
ρ )

[

βn̄

k0

e+ikn̄
z0z − Bn̄

k1

e−ikn̄
z1z − Dn̄

k1

e+ikn̄
z1z

]



 (3.14)

Second Boundary Condition:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

[

βn̄

η0

e+ikn̄
z0z − Bn̄

η1

e−ikn̄
z1z − Dn̄

η1

e+ikn̄
z1z

]

+
(

ĥn̄

)

[

− kn̄
z0

k0η0

αn̄e+ikn̄
z0z − kn̄

z1

k1η1

An̄e−ikn̄
z1z +

kn̄
z1

k1η1

Cn̄e+ikn̄
z1z

]





= − 1

η0

(

ẑ × k̂i × êi

)

e−ikziz +
1

η0

(

∇tf1(x̄) × k̂i × êi

)

e−ikziz +
∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y
.
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.



 (∇tf1(x̄) × ẑ) (kn̄
ρ )

[

− αn̄

k0η0

e+ikn̄
z0z +

An̄

k1η1

e−ikn̄
z1z +

Cn̄

k1η1

e+ikn̄
z1z

]



 (3.15)

Third Boundary Condition

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

An̄e−ikn̄
z1z + Cn̄e+ikn̄

z1z − γn̄e−ikn̄
z2z
]

+
(

ĥn̄

)

[

−kn̄
z1

k1

Bn̄e−ikn̄
z1z +

kn̄
z1

k1

Dn̄e+ikn̄
z1z +

kn̄
z2

k2

δn̄e−ikn̄
z2z

]





= +
∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf2(x̄) × ẑ) (kn̄
ρ ).

.

[

Bn̄

k1

e−ikn̄
z1z +

Dn̄

k1

e+ikn̄
z1z − δn̄

k2

e−ikn̄
z2z

]





(3.16)

Fourth Boundary Condition

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

[

Bn̄

η1

e−ikn̄
z1z +

Dn̄

η1

e+ikn̄
z1z − δn̄

η2

e−ikn̄
z2z

]

+
(

ĥn̄

)

[

kn̄
z1

k1η1

An̄e−ikn̄
z1z − kn̄

z1

k1η1

Cn̄e+ikn̄
z1z − kn̄

z2

k2η2

γn̄e
−ikn̄

z2z

]





=
∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ ).

.

[

− An̄

k1η1

e−ikn̄
z1z − Cn̄

k1η1

e+ikn̄
z1z +

γn̄

k2η2

e−ikn̄
z2z

]





(3.17)

3.4 Perturbative Development

As illustrated earlier in Chapter 1, the perturbative development involves an ex-

pansion of the unknown field amplitudes into perturbation series. The following series

expansion is considered for all of the scattering coefficients (τ = {α, β,A,B,C,D, γ, δ}).

τn̄ =
+∞
∑

m=0

τ
(m)
n̄ (3.18)
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The Taylor expansion of the upper surface at z = 0 is also necessary, which can

be formulated as follows:

ejkz =
+∞
∑

q=0

(jkz)q

q!
(3.19)

For the lower surface, a Taylor expansion of the surface at its mean plane has to

be considered. In this case, the Taylor expansion has to be expressed at z = −d,

which can be given as follows:

e∓jkz = e±jkd
+∞
∑

q=0

(∓jk(z + d))q

q!
(3.20)

Utilizing these series expansions, the forcing functions (i.e. S(x) of Chapter 2)

can be studied. In order to obtain the forcing functions, first step is to plug in the

series expansion given by equations 3.18, 3.19 and 3.20 into boundary conditions.

Then, the terms of the same order should be collected together. Considering only the

N th order terms and collecting the highest order unknowns on left side equation, the

following forcing functions can be obtained.

S
(N)
E1

(x̄) can be defined using the first boundary condition as:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

α
(N)
n̄ − A

(N)
n̄ − C

(N)
n̄

]

+
(

ĥn̄

)

[

kn̄
z0

k0

β
(N)
n̄ +

kn̄
z1

k1

B
(N)
n̄ − kn̄

z1

k1

D
(N)
n̄

]





= S
(N)
E1

(x̄)

= − (ẑ × êi)
(−ikziz)N

N !
+ (∇tf1(x̄) × êi)

(−ikziz)N−1

(N − 1)!

−
N−1
∑

l=0

(iz)N−l

(N − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

α
(l)
n̄ (kn̄

z0)
N−l − A

(l)
n̄ (−kn̄

z1)
N−l − C

(l)
n̄ (kn̄

z1)
N−l

]
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+
(

ĥn̄

)

[

kn̄
z0

k0

β
(l)
n̄ (kn̄

z0)
N−l +

kn̄
z1

k1

B
(l)
n̄ (−kn̄

z1)
N−l − kn̄

z1

k1

D
(l)
n̄ (kn̄

z1)
N−l

]













+
N−1
∑

l=0

(iz)N−l−1

(N − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ ).

.





β
(l)
n̄

k0

(kn̄
z0)

N−l−1 − B
(l)
n̄

k1

(−kn̄
z1)

N−l−1 − D
(l)
n̄

k1

(kn̄
z1)

N−l−1

















(3.21)

S
(N)
H1

(x̄) can be defined using the second boundary condition as:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





β
(N)
n̄

η0

− B
(N)
n̄

η1

− D
(N)
n̄

η1





+
(

ĥn̄

)

[

− kn̄
z0

k0η0

α
(N)
n̄ − kn̄

z1

k1η1

A
(N)
n̄ +

kn̄
z1

k1η1

C
(N)
n̄

]





= S
(N)
H1

(x̄)

= − 1

η0

(

ẑ × k̂i × êi

) (−ikziz)N

N !
+

1

η0

(

∇tf1(x̄) × k̂i × êi

) (−ikziz)N−1

(N − 1)!

−
N−1
∑

l=0

(iz)N−l

(N − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





β
(l)
n̄

η0

(kn̄
z0)

N−l − B
(l)
n̄

η1

(−kn̄
z1)

N−l − D
(l)
n̄

η1

(kn̄
z1)

N−l





+
(

ĥn̄

)

[

− kn̄
z0

k0η0

α
(l)
n̄ (kn̄

z0)
N−l − kn̄

z1

k1η1

A
(l)
n̄ (−kn̄

z1)
N−l +

kn̄
z1

k1η1

C
(l)
n̄ (kn̄

z1)
N−l

]













+
N−1
∑

l=0

(iz)N−l−1

(N − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ ).

.



− α
(l)
n̄

k0η0

(kn̄
z0)

N−l−1 +
A

(l)
n̄

k1η1

(−kn̄
z1)

N−l−1 +
C

(l)
n̄

k1η1

(kn̄
z1)

N−l−1

















(3.22)
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S
(N)
E2

(x̄) can be defined using the third boundary condition as:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

A
(N)
n̄ e+ikn̄

z1d + C
(N)
n̄ e−ikn̄

z1d − γ
(N)
n̄ e+ikn̄

z2d
]

+
(

ĥn̄

)

[

−kn̄
z1

k1

B
(N)
n̄ e+ikn̄

z1d +
kn̄

z1

k1

D
(N)
n̄ e−ikn̄

z1d +
kn̄

z2

k2

δ
(N)
n̄ e+ikn̄

z2d

]





= S
(N)
E2

(x̄)

= −
N−1
∑

l=0

(i(z + d))N−l

(N − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

A
(l)
n̄ (−kn̄

z1)
(N−l)e+ikn̄

z1d

+C
(l)
n̄ (+kn̄

z1)
(N−l)e−ikn̄

z1d − γ
(l)
n̄ (−kn̄

z2)
(N−l)e+ikn̄

z2d
]

+
(

ĥn̄

)

[

−kn̄
z1

k1

B
(l)
n̄ (−kn̄

z1)
(N−l)e+ikn̄

z1d +
kn̄

z1

k1

D
(l)
n̄ (+kn̄

z1)
(N−l)e−ikn̄

z1d

+
kn̄

z2

k2

δ
(l)
n̄ (−kn̄

z2)
(N−l)e+ikn̄

z2d

]













+
N−1
∑

l=0

(i(z + d))N−l−1

(N − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf2(x̄) × ẑ) (kn̄
ρ ).

.





B
(l)
n̄

k1

(−kn̄
z1)

N−l−1e+ikn̄
z1d +

D
(l)
n̄

k1

(+kn̄
z1)

N−l−1e−ikn̄
z1d

−δ
(l)
n̄

k2

(−kn̄
z2)

N−l−1e+ikn̄
z2d

















(3.23)

S
(N)
H2

(x̄) can be defined using the fourth boundary condition as:

∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





B
(N)
n̄

η1

e+ikn̄
z1d +

D
(N)
n̄

η1

e−ikn̄
z1d − δ

(N)
n̄

η2

e+ikn̄
z2d





+
(

ĥn̄

)

[

kn̄
z1

k1η1

A
(N)
n̄ e+ikn̄

z1d − kn̄
z1

k1η1

C
(N)
n̄ e−ikn̄

z1d − kn̄
z2

k2η2

γ
(N)
n̄ e+ikn̄

z2d

]





= S
(N)
H2

(x̄)

= −
N−1
∑

l=0

(i(z + d))N−l

(N − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





B
(l)
n̄

η1

(−kn̄
z1)

(N−l)e+ikn̄
z1d
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+
D

(l)
n̄

η1

(+kn̄
z1)

(N−l)e−ikn̄
z1d − δ

(l)
n̄

η2

(−kn̄
z2)

(N−l)e+ikn̄
z2d





+
(

ĥn̄

)

[

kn̄
z1

k1η1

A
(l)
n̄ (−kn̄

z1)
(N−l)e+ikn̄

z1d − kn̄
z1

k1η1

C
(l)
n̄ (+kn̄

z1)
(N−l)e−ikn̄

z1d

− kn̄
z2

k2η2

γ
(l)
n̄ (−kn̄

z2)
(N−l)e+ikn̄

z2d

]













+
N−1
∑

l=0

(i(z + d))N−l−1

(N − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf2(x̄) × ẑ) (kn̄
ρ ).

.



− A
(l)
n̄

k1η1

(−kn̄
z1)

N−l−1e+ikn̄
z1d − C

(l)
n̄

k1η1

(+kn̄
z1)

N−l−1e−ikn̄
z1d

+
γ

(l)
n̄

k2η2

(−kn̄
z2)

N−l−1e+ikn̄
z2d

















(3.24)

3.5 Solution of the Unknowns

Applying the 2-D Fourier operator to the N th order forcing functions, one obtains

the following eight equations, each of which involves only three of the N th order

unknowns. These equations can grouped into two sets of four equations, involving

horizontal and vertical polarized terms. For horizontal terms ξ = {α,A,C, γ}:

(

ẑ × ĥn̄′

)

· F
(

S
(N)
E1

(x̄)
)

n̄′

= α
(N)
n̄′ − A

(N)
n̄′ − C

(N)
n̄′

(

ĥn̄′

)

· F
(

S
(N)
H1

(x̄)
)

n̄′

= − kn̄′

z0

k0η0

α
(N)
n̄′ − kn̄′

z1

k1η1

A
(N)
n̄′ +

kn̄′

z1

k1η1

C
(N)
n̄′

(

ẑ × ĥn̄′

)

· F
(

S
(N)
E2

(x̄)
)

n̄′

= A
(N)
n̄′ e+ikn̄′

z1d + C
(N)
n̄′ e−ikn̄′

z1d − γ
(N)
n̄′ e+ikn̄′

z2d

(

ĥn̄′

)

· F
(

S
(N)
H2

(x̄)
)

n̄′

=
kn̄′

z1

k1η1

A
(N)
n̄′ e+ikn̄′

z1d − kn̄′

z1

k1η1

C
(N)
n̄′ e−ikn̄′

z1d

− kn̄′

z2

k2η2

γ
(N)
n̄′ e+ikn̄′

z2d (3.25)
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For vertical terms ζ = {β,B,D, δ}:
(

ĥn̄′

)

· F
(

S
(N)
E1

(x̄)
)

n̄′

=
kn̄′

z0

k0

β
(N)
n̄′ +

kn̄′

z1

k1

B
(N)
n̄′ − kn̄′

z1

k1

D
(N)
n̄′

(

ẑ × ĥn̄′

)

· F
(

S
(N)
H1

(x̄)
)

n̄′

=
β

(N)
n̄′

η0

− B
(N)
n̄′

η1

− D
(N)
n̄′

η1

(

ĥn̄′

)

· F
(

S
(N)
E2

(x̄)
)

n̄′

= −kn̄′

z1

k1

B
(N)
n̄′ e+ikn̄′

z1d +
kn̄′

z1

k1

D
(N)
n̄′ e−ikn̄′

z1d +
kn̄′

z2

k2

δ
(N)
n̄′ e+ikn̄′

z2d

(

ẑ × ĥn̄′

)

· F
(

S
(N)
H2

(x̄)
)

n̄′

=
B

(N)
n̄′

η1

e+ikn̄′

z1d +
D

(N)
n̄′

η1

e−ikn̄′

z1d − δ
(N)
n̄′

η2

e+ikn̄′

z2d (3.26)

At this point, putting these equations into two 4× 4 matrix form can be a logical

approach to solve them. Leaving the Fourier transforms of the forcing functions on

the right side, the following matrix representation can be considered.

Mξ(n̄
′) =

















1 −1 −1 0
−kn̄′

z0

k0η0

−kn̄′

z1

k1η1

kn̄′

z1

k1η1
0

0 e+ikn̄′

z1d e−ikn̄′

z1d −e+ikn̄′

z2d

0
kn̄′

z1e
+ikn̄′

z1d

k1η1

−kn̄′

z1e
−ikn̄′

z1d

k1η1

−kn̄′

z2e
+ikn̄′

z2d

k2η2

















(3.27)

Mζ(n̄
′) =



















kn̄′

z0

k0

kn̄′

z1

k1

−kn̄′

z1

k1
0

1
η0

−1
η1

−1
η1

0

0
−kn̄′

z1e
+ikn̄′

z1d

k1

kn̄′

z1e
−ikn̄′

z1d

k1

kn̄′

z2e
+ikn̄′

z2d

k2

0 e
+ikn̄′

z1d

η1

e
−ikn̄′

z1d

η1

−e
+ikn̄′

z2d

η2



















(3.28)

The unknowns, or the scattered field amplitudes can be put in the following array

form:

ξ̄(N)(n̄′) =















α
(N)
n̄′

A
(N)
n̄′

C
(N)
n̄′

γ
(N)
n̄′















, ζ̄(N)(n̄′) =















β
(N)
n̄′

B
(N)
n̄′

D
(N)
n̄′

δ
(N)
n̄′















(3.29)

Finally the right hand sides can also be put in the following array form:

b̄ξ(n̄
′) =

















(

ẑ × ĥn̄′

)

.F
(

S
(N)
E1

(x̄)
)

n̄′
(

ĥn̄′

)

.F
(

S
(N)
H1

(x̄)
)

n̄′
(

ẑ × ĥn̄′

)

.F
(

S
(N)
E2

(x̄)
)

n̄′
(

ĥn̄′

)

.F
(

S
(N)
H2

(x̄)
)

n̄′

















, b̄ζ(n̄
′) =

















(

ĥn̄′

)

.F
(

S
(N)
E1

(x̄)
)

n̄′
(

ẑ × ĥn̄′

)

.F
(

S
(N)
H1

(x̄)
)

n̄′
(

ĥn̄′

)

.F
(

S
(N)
E2

(x̄)
)

n̄′
(

ẑ × ĥn̄′

)

.F
(

S
(N)
H2

(x̄)
)

n̄′

















(3.30)
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With these definitions, the solution of the N th order unknowns reduces to the

following matrix inversion problem:

Mξ ξ̄ = b̄ξ

Mζ ζ̄ = b̄ζ

}

=⇒ ξ̄ = M−1
ξ b̄ξ

ζ̄ = M−1
ζ b̄ζ

(3.31)

The inverses of matrices M , can be given in the following convenient form:

M−1
ξ =











Kα
E1 Kα

H1 Kα
E2 Kα

H2

KA
E1 KA

H1 KA
E2 KA

H2

KC
E1 KC

H1 KC
E2 KC

H2

Kγ
E1 Kγ

H1 Kγ
E2 Kγ

H2











, M−1
ζ =













Kβ
E1 Kβ

H1 Kβ
E2 Kβ

H2

KB
E1 KB

H1 KB
E2 KB

H2

KD
E1 KD

H1 KD
E2 KD

H2

Kδ
E1 Kδ

H1 Kδ
E2 Kδ

H2













(3.32)

We are going the define each individual term KE,H separately, later in the section.

But for now, we can proceed to the solution in terms of these terms as follows: For

horizontal terms ξ = {α,A,C, γ} we have:

ξ
(N)
n̄′ =

(

ẑ × ĥn̄′

)

.
[

Kξ
E1(n̄

′)F
(

S
(N)
E1

(x̄)
)

n̄′

+ Kξ
E2(n̄

′)F
(

S
(N)
E2

(x̄)
)

n̄′

]

(

ĥn̄′

)

.
[

Kξ
H1(n̄

′)F
(

S
(N)
H1

(x̄)
)

n̄′

+ Kξ
H2(n̄

′)F
(

S
(N)
H2

(x̄)
)

n̄′

]

(3.33)

and for vertical terms ζ = {β,B,D, δ} we have:

ζ
(N)
n̄′ =

(

ĥn̄′

)

.
[

Kζ
E1(n̄

′)F
(

S
(N)
E1

(x̄)
)

n̄′

+ Kζ
E2(n̄

′)F
(

S
(N)
E2

(x̄)
)

n̄′

]

(

ẑ × ĥn̄′

)

.
[

Kζ
H1(n̄

′)F
(

S
(N)
H1

(x̄)
)

n̄′

+ Kζ
H2(n̄

′)F
(

S
(N)
H2

(x̄)
)

n̄′

]

(3.34)

Before defining functions of type KE,H , to reduce the complexity of the expres-

sions, it will be convenient to define the following variables:

P n̄′

q =
kn̄′

zq

kqηq

, Rn̄′

q = eikn̄′

zqd, Q∓
n̄′ = 1 ∓ ei2kn̄′

z1d

Dn̄′

H = P n̄′

1

(

P n̄′

0 + P n̄′

2

)

Q+
n̄′ +

(

(P n̄′

1 )2 + P n̄′

0 P n̄′

2

)

Q−
n̄′

Dn̄′

V = P n̄′

1

(

P n̄′

0 η0

η2

+
P n̄′

2 η2

η0

)

Q+
n̄′ +

(

(P n̄′

1 η1)
2

η0η2

+
P n̄′

0 P n̄′

2 η0η2

(η1)2

)

Q−
n̄′ (3.35)
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In terms of these variables, KE,H functions(arguments (n̄′) is dropped for conve-

nience) can be expresed as follows:

For α:

Kα
E1 =

(P n̄′

1 )2Q−
n̄′ + P n̄′

1 P n̄′

2 Q+
n̄′

Dn̄′

H

Kα
H1 =

−
(

P n̄′

1 Q+
n̄′ + P n̄′

2 Q−
n̄′

)

Dn̄′

H

Kα
E2 =

2P n̄′

1 P n̄′

2 Rn̄′

1

Dn̄′

H

Kα
H2 =

−2P n̄′

1 Rn̄′

1

Dn̄′

H

(3.36)

and for A:

KA
E1 =

−P n̄′

0

(

P n̄′

1 + P n̄′

2

)

Dn̄′

H

KA
H1 =

−
(

P n̄′

1 + P n̄′

2

)

Dn̄′

H

KA
E2 =

P n̄′

2

(

P n̄′

1 − P n̄′

0

)

Rn̄′

1

Dn̄′

H

KA
H2 =

−
(

P n̄′

1 − P n̄′

0

)

Rn̄′

1

Dn̄′

H

(3.37)

and for C:

KC
E1 =

(

P n̄′

2 − P n̄′

1

)

P n̄′

0 (Rn̄′

1 )2

Dn̄′

H

KC
H1 =

(

P n̄′

2 − P n̄′

1

)

(Rn̄′

1 )2

Dn̄′

H

KC
E2 =

(

P n̄′

1 + P n̄′

0

)

P n̄′

2 Rn̄′

1

Dn̄′

H

KC
H2 =

−
(

P n̄′

1 + P n̄′

0

)

Rn̄′

1

Dn̄′

H

(3.38)

and for γ:

Kγ
E1 =

−2P n̄′

0 P n̄′

1 Rn̄′

1

Dn̄′

H Rn̄′

2
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Kγ
H1 =

−2P n̄′

1 Rn̄′

1

Dn̄′

H Rn̄′

2

Kγ
E2 =

−(P n̄′

1 )2Q−
n̄′ + P n̄′

1 P n̄′

0 Q+
n̄′

Dn̄′

H Rn̄′

2

Kγ
H2 =

−
(

P n̄′

1 Q+
n̄′ + P n̄′

0 Q−
n̄′

)

Dn̄′

H Rn̄′

2

(3.39)

Similarly, for β we have:

Kβ
E1 =

η2

(

P n̄′

1 Q+
n̄′

η2
2

+
P n̄′

2 Q−

n̄′

η2
1

)

Dn̄′

V

Kβ
H1 =

P n̄′

1

(

P n̄′

1 Q−
n̄′η2

1 + P n̄′

2 Q+
n̄′η2

2

)

η2Dn̄′

V

Kβ
E2 =

2P n̄′

1 Rn̄′

1

η2Dn̄′

V

Kβ
H2 =

2P n̄′

1 P n̄′

2 Rn̄′

1 η2

Dn̄′

V

(3.40)

for B:

KB
E1 =

P n̄′

1
η1

η2
+ P n̄′

2
η2

η1

η0Dn̄′

V

KB
H1 =

−
(

P n̄′

0 P n̄′

1
η0η1

η2
+ P n̄′

0 P n̄′

2
η0η2

η1

)

Dn̄′

V

KB
E2 =

(

P n̄′

1
η1

η0
− P n̄′

0
η0

η1

)

Rn̄′

1

η2Dn̄′

V

KB
H2 =

(

P n̄′

2 P n̄′

1
η2η1

η0
− P n̄′

0 P n̄′

2
η0η2

η1

)

Rn̄′

1

Dn̄′

V

(3.41)

for D:

KD
E1 =

(

P n̄′

1
η1

η2
− P n̄′

2
η2

η1

)

(Rn̄′

1 )2

η0Dn̄′

V

KD
H1 =

(

P n̄′

0 P n̄′

2
η0η2

η1
− P n̄′

0 P n̄′

1
η0η1

η2

)

(Rn̄′

1 )2

Dn̄′

V

KD
E2 =

(

P n̄′

0
η0

η1
+ P n̄′

1
η1

η0

)

Rn̄′

1

η2Dn̄′

V

KD
H2 =

P n̄′

2 η2

(

P n̄′

0
η0

η1
+ P n̄′

1
η1

η0

)

Rn̄′

1

Dn̄′

V

(3.42)
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for δ:

Kδ
E1 =

2P n̄′

1 Rn̄′

1

η0Dn̄′

V Rn̄′

2

Kδ
H1 =

−2P n̄′

0 P n̄′

1 Rn̄′

1 η0

Dn̄′

V Rn̄′

2

Kδ
E2 =

P n̄′

0 Q−
n̄′

η0

η1
+ P n̄′

1 Q+
n̄′

η1

η0

η1Dn̄′

V Rn̄′

2

Kδ
H2 =

−P n̄′

1 η1

(

P n̄′

0 Q+
n̄′

η0

η1
+ P n̄′

1 Q−
n̄′

η1

η0

)

Dn̄′

V Rn̄′

2

(3.43)

The derivations up to this point include all of the necessary ingredients to obtain

a numerical solution for the two layer problem. Also known as a Fourier Rayleigh

approach, Equation 3.33 can be easily implemented with an FFT based algorithm,

which can solve the equations up to any order. Although we are mostly interested

in an analytical solution procedure of arbitrary order, having a numerical solution is

very helpful for verification purposes. In the next section, this numerical solution will

be tested against an existing two and a half dimensional EBC solution for two sine

surfaces on top of each other, for several example cases.

3.6 Verification

In order to verify the numerical SPM solution, described in the previous sections,

a test setup, consisting of two sine waves for the lower and upper interfaces had been

considered. The upper and lower interfaces are assumed to be in the following form:

f1(x̄) = A1 sin(
2π

Px

x)

f2(x̄) = −d + A2 sin(
2π

Px

x) (3.44)

so that the Fourier coefficients can be given as:

h
(1)
n̄ =

A1

2j
δmδn−1 −

A1

2j
δmδn+1
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Figure 3.3: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 20, φi = 45, ε1 = 9, ε2 = 4, d = 2λ,A1 =
A2 = 0.1λ, Px = 10λ

h
(2)
n̄ =

A2

2j
δmδn−1 −

A2

2j
δmδn+1 (3.45)

where δ is Kronecker’s’ delta function, which should not be confused with the scat-

tering coefficient δ.

For several experimental setups, numerical SPM solution at 8th order is compared

against an existing two and a half dimensional EBC code [74]. The comparison is

done in the propagating modes, in a similar fashion with the previous chapter. The

horizontal axis is reserved for the mode number, while the vertical axis presents the

amplitudes of the reflected field scattering coefficients in dB. Each figure has two sub-

figures, for horizontal and vertical incidence cases respectively. The electromagnetic

radiation wavelength is assumed to be 1m for all of the results.
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Figure 3.4: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 20, φi = 45, ε1 = 3+i25, ε2 = 32+i9, d =
2λ,A1 = A2 = 0.1λ, Px = 10λ

First result considered here, given in Figure 3.3, is a lossless media example, with

dielectric permittivities: ε0 = 1 for top region, ε1 = 9 for intermediate region and

ε2 = 4 for the bottom region. All the three regions are assumed to be non-magnetic.

The period of the sinusoidal surfaces is assumed to be Px = 10λ. The amplitudes of

both upper and lower interfaces is assumed to be A1 = A2 = 0.1λ and the separation

between the interfaces is set to d = 2λ. The incidence angles are assumed to be

θi = 20◦ and φi = 45◦. Especially for the lower order modes a perfect match is

observed between the methods. For the higher order modes, slight differences can be

observed, which is due to the number of contributions to the corresponding mode.

For the second result, given in Figure 3.4, parameters of the first result other than

the dielectric permittivities are kept unchanged. Instead, a lossy case is considered
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Figure 3.5: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 75, φi = 30, ε1 = 9, ε2 = 4, d = 2λ,A1 =
A2 = 0.1λ, Px = 10λ

with: ε1 = 3+ i25 for the intermediate region and ε2 = 32+ i9 for the bottom region.

And again, close to perfect agreement is observed as in the previous case.

Next in Figure 3.5, again using the same lossless parameters as in the first case:

ie. dielectric permittivities: ε0 = 1 for top region, ε1 = 9 for intermediate region

and ε2 = 4, the periods of the sinusoidal surfaces are assumed to be Px = 10λ, the

amplitudes of both upper and lower interfaces are assumed to be A1 = A2 = 0.1λ

and the separation between the interfaces is set to d = 2λ. The incidence angles are

assumed to be θi = 75◦ and φi = 30◦ here, which is smaller grazing angle value. As

observed in Figure 3.5, no positive mode is propagating, and the models are in almost

perfect agreement, especially in smaller modes.
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Figure 3.6: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 10, φi = 60, ε1 = 9, ε2 = 4, d = 2λ,A1 =
0.01λ,A2 = 0.0001λ, Px = 10λ

Next two results, given Figures 3.6 and 3.7, are an investigation of the upper

and lower surface amplitude effects. Again for the lossless media of the first result:

dielectric permittivities: ε0 = 1 for top region, ε1 = 9 for intermediate region and

ε2 = 4, periods of the sinusoidal surfaces are assumed to be Px = 10λ, and the

separation between the interfaces is set to d = 2λ. For incidence angles of θi = 10◦

and φi = 60◦, in Figure 3.6, the amplitude of the upper surface is set to A1 = 0.01λ,

while the amplitude of the lower surface is set to A2 = 0.0001λ. Conversely in Figure

3.7, the surface amplitude values are switched: A1 = 0.0001λ and A2 = 0.01λ. As

the plots indicate, both methods agree well, in each case. It is also true that, the

amplitudes are really small values here. An investigation of the convergence of the

SPM solution for the higher surface amplitudes will considered in the next chapter.
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Figure 3.7: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 10, φi = 60, ε1 = 9, ε2 = 4, d = 2λ,A1 =
0.0001λ,A2 = 0.01λ, Px = 10λ

Final two results, given in Figures 3.8 and 3.9, are a study of the effect of the

separation of the surfaces. Here, the media of the first result is assumed: dielectric

permittivities: ε0 = 1 for top region, ε1 = 9 for intermediate region and ε2 = 4,

periods of the sinusoidal surfaces are assumed to be Px = 10λ. The incidence angles

are assumed to be normal: θi = 0◦ and φi = 0◦. In Figure 3.8, the separation

parameter is assumed to be d = 5λ, and both methods are in good agreement, as in

Figure 3.3. But in Figure 3.9, the separation parameter is assumed to be d = 25λ, and

disagreement in higher mode numbers and in the cross pol. zeroth order modes can

clearly be observed. Clearly this is an indication of the importance of the separation

parameter d for the convergence of the overall SPM solutions.
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Figure 3.9: Comparison against EBC: Amplitude of the scattering coefficients α and
β (in dB) plotted versus mode number: θi = 0, φi = 0, ε1 = 9, ε2 = 4, d = 25λ,A1 =
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3.7 Extension to arbitrary number of layers

In this section, the procedure followed in the previous sections for the two layer

problem is generalized for the arbitrary number of layers case. First, the basic nota-

tional conventions are introduced. Later, without the derivation details, the forcing

functions for each layer: (the top layer, the repeating intermediate layers and finally

the bottom layer) are provided. Although, the arbitrary number of layers case is

not considered in the rest of the dissertation, Equations of the form (3.25-3.26) are

also included, which are sufficient for an arbitrary order, arbitrary layer, numerical

solution. Such a solution is very useful for further studies on the subject.

An N -layer problem has N rough interfaces z = −d(i)+f(i)(x, y), i = 1, 2, ...., N . It

will be assumed that all of the surface functions are periodic with the same periods,

Px in x̂ and Py in ŷ directions. We will also assume that the mean planes of the

surfaces are located at d(i), with d(1) = 0 and d(i) < d(i+1) for all i. Distances between

the mean planes of the surfaces are larger then the sum of maximum variations of

each surface. A descriptive sketch of the problem is provided in Figure 3.10. The

Fourier operator is defined as usual as given in Equation 3.1. Also the standard vector

notation is also assumed: i.e. n̄ = (n,m) and x̄ = (x, y).

The regions are numbered (i.e. q = 0, 1, 2, ..., N) and relevant parameters for

each region are labeled accordingly: dielectric permittivity of region 7 is ε7, wave

impedance of region 4 is η4, etc. Also a + or − sign is associated with each vector

parameter, representing a +ẑ or −ẑ propagation direction of the associated waves.

The propagation directions in each layer, both for up and down going waves are

defined as:

~kq±
n̄ = kxnx̂ + kymŷ ± kn̄

zqẑ (3.46)
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Figure 3.10: Problem Geometry of N-layer case
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Here, as for the two layer case: kxi = k0 sin(θi) cos(φi) and kyi = k0 sin(θi) sin(φi). θi

and φi are the incidence angles. Also, kxn = kx(n) = kxi+
2πn
Px

, kym = ky(m) = kyi+
2πm
Py

and kn̄
ρ =

√

k2
xn + k2

ym, and for each layer we have kn̄
zq =

√

k2
q − (kn̄

ρ )2.

Using the same time dependence (e−jωt), the incidence polarization vector êi and

the fields in Region 0 are identical to the expressions given in Equations 3.5 and

3.6: The fields in the intermediate regions can also be expressed: for Region q,

q = 1, 2, ..., N − 1:

~E−
q =

∑

n̄

[

ĥn̄Aq,n̄ + v̂n̄
q−Bq,n̄

]

ej~k
q−
n̄ .~r

~H−
q =

1

ηq

∑

n̄

[

−v̂n̄
q−Aq,n̄ + ĥn̄Bq,n̄

]

ej~k
q−
n̄ .~r

~E+
q =

∑

n̄

[

ĥn̄Cq,n̄ + v̂n̄
q+Dq,n̄

]

ej~k
q+
n̄ .~r

~H+
q =

1

ηq

∑

n̄

[

−v̂n̄
q+Cq,n̄ + ĥn̄Dq,n̄

]

ej~k
q+
n̄ .~r (3.47)

Fields of the lowest region are:

~E−
N =

∑

n̄

[

ĥn̄γn̄ + v̂n̄
N−δn̄

]

ej~kN−

n̄ .~r

~H−
N =

1

ηN

∑

n̄

[

−v̂n̄
N−γn̄ + ĥn̄δn̄

]

ej~kN−

n̄ .~r (3.48)

Note that the reflected and transmitted field unknown scattering coefficients are

named α, β, γ and δ as usual. The intermediate field coefficients of the two layer

problem A, B, C and D are also utilized here with region index q. These coefficients

are described in Figure 3.11. Polarization vectors for each region q are given by:

ĥn̄ =
1

kn̄
ρ

(kymx̂ − kxnŷ)

v̂n̄
q± = ∓ kn̄

zq

kqkn̄
ρ

(kxnx̂ + kymŷ) +
kn̄

ρ

kq

ẑ (3.49)

The boundary conditions considered for the top and intermediate interfaces are:

~n(i) ×
[

E−
(i−1) + E+

(i−1)

]

= ~n(i) ×
[

E−
(i) + E+

(i)

]

|z=f(i)(x̄)
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~n(i) ×
[

H−
(i−1) + H+

(i−1)

]

= ~n(i) ×
[

H−
(i) + H+

(i)

]

|z=f(i)(x̄) (3.50)

for i = 1, 2, ..., (N − 1), and for the last boundary we have:

~n(N) ×
[

E−
(N−1) + E+

(N−1)

]

= ~n(N) ×
[

E−
(N)

]

|z=f(N)(x̄)

~n(N) ×
[

H−
(N−1) + H+

(N−1)

]

= ~n(N) ×
[

H−
(N)

]

|z=f(N)(x̄) (3.51)

Here ~n(i) is the normal of the surface z = f(i)(x̄), which is defined as follows:

~n(i) = ẑ −∇tf(i)(x̄) (3.52)

Note that these boundary conditions are enforced for the x̂ and ŷ field components

only.

There are a total of 2N forcing functions for the N -layer problem. In the two

layer case, we have already studied 4 forcing functions, obtained from the top and

the bottom interfaces. Those forcing functions are directly modified for the N -layer

problem. In order to avoid confusion, the forcing functions are given for a solution of

order M . According to the new formulation, the first forcing function is transformed

into the following form:

S
(M)
E1

(x̄) = − (ẑ × êi)
(−ikziz)M

M !
+ (∇tf1(x̄) × êi)

(−ikziz)M−1

(M − 1)!

−
M−1
∑

l=0

(iz)M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

) [

α
(l)
n̄ (kn̄

z0)
M−l − A

(l)
1,n̄(−kn̄

z1)
M−l − C

(l)
1,n̄(kn̄

z1)
M−l

]

+
(

ĥn̄

)





β
(l)
n̄

k0

(kn̄
z0)

M−l+1 − B
(l)
1,n̄

k1

(−kn̄
z1)

M−l+1 − D
(l)
1,n̄

k1

(kn̄
z1)

M−l+1

















+
M−1
∑

l=0

(iz)M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ ).
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.





β
(l)
n̄

k0

(kn̄
z0)

M−l−1 − B
(l)
1,n̄

k1

(−kn̄
z1)

M−l−1 − D
(l)
1,n̄

k1

(kn̄
z1)

M−l−1

















(3.53)

Similarly, the second one has the following form:

S
(M)
H1

(x̄) = − 1

η0

(

ẑ × k̂i × êi

) (−ikziz)M

M !
+

1

η0

(

∇tf1(x̄) × k̂i × êi

) (−ikziz)M−1

(M − 1)!

−
M−1
∑

l=0

(iz)M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





β
(l)
n̄

η0

(kn̄
z0)

M−l − B
(l)
1,n̄

η1

(−kn̄
z1)

M−l − D
(l)
1,n̄

η1

(kn̄
z1)

M−l





+
(

ĥn̄

)



− α
(l)
n̄

k0η0

(kn̄
z0)

M−l+1 +
A

(l)
1,n̄

k1η1

(−kn̄
z1)

M−l+1 +
C

(l)
1,n̄

k1η1

(kn̄
z1)

M−l+1

















+
M−1
∑

l=0

(iz)M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ ).

.



− α
(l)
n̄

k0η0

(kn̄
z0)

M−l−1 +
A

(l)
1,n̄

k1η1

(−kn̄
z1)

M−l−1 +
C

(l)
1,n̄

k1η1

(kn̄
z1)

M−l−1

















(3.54)

The last two forcing functions are also modified: For the (2N − 1)th forcing func-

tion:

S
(M)
EN

(x̄) = −
M−1
∑

l=0

(i(z + dN))M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)



A
(l)
N−1,n̄(−kn̄

z(N−1))
(M−l)e

+ikn̄
z(N−1)

dN

+C
(l)
N−1,n̄(+kn̄

z(N−1))
(M−l)e

−ikn̄
z(N−1)

dN − γ
(l)
n̄ (−kn̄

zN)(M−l)e+ikn̄
zN

dN





+
(

ĥn̄

)





B
(l)
N−1,n̄

kN−1

(−kn̄
z(N−1))

(M−l+1)e
+ikn̄

z(N−1)
dN
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+
D

(l)
N−1,n̄

kN−1

(+kn̄
z(N−1))

(M−l+1)e
−ikn̄

z(N−1)
dN − δ

(l)
n̄

kN

(−kn̄
zN)(M−l+1)e+ikn̄

zN
dN

















+
M−1
∑

l=0

(i(z + dN))M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tfN(x̄) × ẑ) (kn̄
ρ ).

.





B
(l)
N−1,n̄

kN−1

(−kn̄
z(N−1))

M−l−1e
+ikn̄

z(N−1)
dN +

D
(l)
N−1,n̄

kN−1

(+kn̄
z(N−1))

M−l−1e
−ikn̄

z(N−1)
dN

−δ
(l)
n̄

kN

(−kn̄
zN)M−l−1e+ikn̄

zN
dN

















(3.55)

And for the (2N)th case:

S
(M)
HN

(x̄) = −
M−1
∑

l=0

(i(z + dN))M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





B
(l)
N−1,n̄

ηN−1

(−kn̄
z(N−1))

(M−l)e
+ikn̄

z(N−1)
dN

+
D

(l)
N−1,n̄

ηN−1

(+kn̄
z(N−1))

(M−l)e
−ikn̄

z(N−1)
dN − δ

(l)
n̄

ηN

(−kn̄
zN)(M−l)e+ikn̄

zN
dN





+
(

ĥn̄

)



− A
(l)
N−1,n̄

kN−1ηN−1

(−kn̄
z(N−1))

(M−l+1)e
+ikn̄

z(N−1)
dN

− C
(l)
N−1,n̄

kN−1ηN−1

(+kn̄
z(N−1))

(M−l+1)e
−ikn̄

z(N−1)
dN +

γ
(l)
n̄

kNηN

(−kn̄
zN)(M−l+1)e+ikn̄

zN
dN

















+
M−1
∑

l=0

(i(z + dN))M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tfN(x̄) × ẑ) (kn̄
ρ ).

.



− A
(l)
N−1,n̄

kN−1ηN−1

(−kn̄
z(N−1))

M−l−1e
+ikn̄

z(N−1)
dN

− C
(l)
N−1,n̄

kN−1ηN−1

(kn̄
z(N−1))

M−l−1e
−ikn̄

z(N−1)
dN +

γ
(l)
n̄

kNηN

(−kn̄
zN)M−l−1e+ikn̄

zN
dN

















(3.56)

73



For each intermediate interface, we have two forcing functions, with identical

forms. These forcing functions are:

S
(M)
Ei

(x̄) = −
M−1
∑

l=0

(i(z + di))
M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

[

A
(l)
(i−1),n̄(−kn̄

z(i−1))
(M−l)e

+ikn̄
z(i−1)

di + C
(l)
(i−1),n̄(+kn̄

z(i−1))
(M−l)e

−ikn̄
z(i−1)

di

−A
(l)
(i),n̄(−kn̄

z(i))
(M−l)e

+ikn̄
z(i)

di − C
(l)
(i),n̄(+kn̄

z(i))
(M−l)e

−ikn̄
z(i)

di
]

+
(

ĥn̄

)





B
(l)
(i−1),n̄

k(i−1)

(−kn̄
z(i−1))

(M−l+1)e
+ikn̄

z(i−1)
di +

D
(l)
(i−1),n̄

k(i−1)

(kn̄
z(i−1))

(M−l+1)e
−ikn̄

z(i−1)
di

−
B

(l)
(i),n̄

k(i)

(−kn̄
z(i))

(M−l+1)e
+ikn̄

z(i)
di −

D
(l)
(i),n̄

k(i)

(kn̄
z(i))

(M−l+1)e
−ikn̄

z(i)
di

















+
M−1
∑

l=0

(i(z + di))
M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

∇tf(i)(x̄) × ẑ
)

(kn̄
ρ ).

.





B
(l)
(i−1),n̄

k(i−1)

(−kn̄
z(i−1))

(M−l−1)e
+ikn̄

z(i−1)
di +

D
(l)
(i−1),n̄

k(i−1)

(kn̄
z(i−1))

(M−l−1)e
−ikn̄

z(i−1)
di

−
B

(l)
(i),n̄

k(i)

(−kn̄
z(i))

(M−l−1)e
+ikn̄

z(i)
di −

D
(l)
(i),n̄

k(i)

(kn̄
z(i))

(M−l−1)e
−ikn̄

z(i)
di

















(3.57)

and

S
(M)
Hi

(x̄) = −
M−1
∑

l=0

(i(z + di))
M−l

(M − l)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)





B
(l)
(i−1),n̄

η(i−1)

(−kn̄
z(i−1))

(M−l)e
+ikn̄

z(i−1)
di +

D
(l)
(i−1),n̄

η(1−1)

(kn̄
z(i−1))

(M−l)e
−ikn̄

z(i−1)
di

−
B

(l)
(i),n̄

η(i)

(−kn̄
z(i))

(M−l)e
+ikn̄

z(i)
di −

D
(l)
(i),n̄

η(i)

(kn̄
z(i))

(M−l)e
−ikn̄

z(i)
di





+
(

ĥn̄

)



−
A

(l)
(i−1),n̄

k(i−1)η(i−1)

(−kn̄
z(i−1))

(M−l+1)e
+ikn̄

z(i−1)
di

−
C

(l)
(i−1),n̄

k(i−1)η(i−1)

(kn̄
z(i−1))

(M−l+1)e
−ikn̄

z(i−1)
di
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+
A

(l)
(i),n̄

k(i)η(i)

(−kn̄
z(i))

(M−l−1)e
+ikn̄

z(i)
di +

C
(l)
(i),n̄

k(i)η(i)

(kn̄
z(i))

(M−l−1)e
−ikn̄

z(i)
di

















+
M−1
∑

l=0

(i(z + di))
M−l−1

(M − l − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

∇tf(i)(x̄) × ẑ
)

(kn̄
ρ ).

.



−
A

(l)
(i−1),n̄

k(i−1)η(i−1)

(−kn̄
z(i−1))

(M−l−1)e
+ikn̄

z(i−1)
di −

C
(l)
(i−1),n̄

k(i−1)η(i−1)

(kn̄
z(i−1))

(M−l−1)e
−ikn̄

z(i−1)
di

+
A

(l)
(i),n̄

k(i)η(i)

(−kn̄
z(i))

(M−l−1)e
+ikn̄

z(i)
di +

C
(l)
(i),n̄

k(i)η(i)

(kn̄
z(i))

(M−l−1)e
−ikn̄

z(i)
di

















(3.58)

Applying the 2-D Fourier operator to the N th order forcing functions, the following

(4N) equations are obtained. These equations are (for the top boundary):

(

ẑ × ĥn̄′

)

.F
(

S
(M)
E1

(x̄)
)

n̄′

= α
(M)
n̄′ − A

(M)
(1),n̄′ − C

(M)
(1),n̄′

(

ĥn̄′

)

.F
(

S
(M)
E1

(x̄)
)

n̄′

=
kn̄′

z0

k0

β
(M)
n̄′ +

kn̄′

z1

k1

B
(M)
(1),n̄′ −

kn̄′

z1

k1

D
(M)
(1),n̄′

(

ẑ × ĥn̄′

)

.F
(

S
(M)
H1

(x̄)
)

n̄′

=
β

(M)
n̄′

η0

−
B

(M)
(1),n̄′

η1

−
D

(M)
(1),n̄′

η1

(

ĥn̄′

)

.F
(

S
(M)
H1

(x̄)
)

n̄′

= − kn̄′

z0

k0η0

α
(M)
n̄′ − kn̄′

z1

k1η1

A
(M)
(1),n̄′ +

kn̄′

z1

k1η1

C
(M)
(1),n̄′ (3.59)

For i = 2, 3, ...., N − 1 we have:

(

ẑ × ĥn̄′

)

.F
(

S
(M)
E(i)

(x̄)
)

n̄′

= A
(M)
(i−1),n̄e

+ikn̄
z(i−1)

di + C
(M)
(i−1),n̄e

−ikn̄
z(i−1)

di

−A
(M)
(i),n̄e

+ikn̄
z(i)

di − C
(M)
(i),n̄e

−ikn̄
z(i)

di

(

ĥn̄′

)

.F
(

S
(M)
E(i)

(x̄)
)

n̄′

= −
kn̄

z(i−1)

ki−1

B
(M)
(i−1),n̄e

+ikn̄
z(i−1)

di +
kn̄

z(i−1)

ki−1

D
(M)
(i−1),n̄e

−ikn̄
z(i−1)

di

+
kn̄

z(i)

ki

B
(M)
(i),n̄e

+ikn̄
z(i)

di −
kn̄

z(i)

ki

D
(M)
(i),n̄e

−ikn̄
z(i)

di

(

ẑ × ĥn̄′

)

.F
(

S
(M)
H(i)

(x̄)
)

n̄′

=
B

(M)
(i−1),n̄

ηi−1

e
+ikn̄

z(i−1)
di +

D
(M)
(i−1),n̄

ηi−1

e
−ikn̄

z(i−1)
di

−
B

(M)
(i),n̄

ηi

e
+ikn̄

z(i)
di −

D
(M)
(i),n̄

ηi

e
−ikn̄

z(i)
di
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(

ĥn̄′

)

.F
(

S
(M)
H(i)

(x̄)
)

n̄′

= +
kn̄

z(i−1)

ki−1ηi−1

A
(M)
(i−1),n̄e

+ikn̄
z(i−1)

di

−
kn̄

z(i−1)

ki−1ηi−1

C
(M)
(i−1),n̄e

−ikn̄
z(i−1)

di −
kn̄

z(i)

kiηi

A
(M)
(i),n̄e

+ikn̄
z(i)

di +
kn̄

z(i)

kiηi

C
(M)
(i),n̄e

−ikn̄
z(i)

di (3.60)

And for the last boundary:

(

ẑ × ĥn̄′

)

.F
(

S
(M)
EN

(x̄)
)

n̄′

= A
(M)
(N−1),n̄′e

+ikn̄′

z(N−1)
dN + C

(M)
(N−1),n̄′e

−ikn̄′

z(N−1)
dN

−γ
(M)
n̄′ e+ikn̄′

zN
dN

(

ĥn̄′

)

.F
(

S
(M)
EN

(x̄)
)

n̄′

= −
kn̄′

z(N−1)

kN−1

B
(M)
(N−1),n̄′e

+ikn̄′

z(N−1)
dN

+
kn̄′

z(N−1)

kN−1

D
(M)
(N−1),n̄′e

−ikn̄′

z(N−1)
dN +

kn̄′

zN

kN

δ
(M)
n̄′ e+ikn̄′

zN
dN

(

ẑ × ĥn̄′

)

.F
(

S
(M)
HN

(x̄)
)

n̄′

=
B

(M)
(N−1),n̄′

ηN−1

e
+ikn̄′

z(N−1)
dN +

D
(M)
(N−1),n̄′

ηN−1

e
−ikn̄′

z(N−1)
dN

−δ
(M)
n̄′

ηN

e+ikn̄′

zN
dN

(

ĥn̄′

)

.F
(

S
(M)
HN

(x̄)
)

n̄′

=
kn̄′

z(N−1)

kN−1ηN−1

A
(M)
(N−1),n̄′e

+ikn̄′

z(N−1)
dN

−
kn̄′

z(N−1)

kN−1ηN−1

C
(M)
(N−1),n̄′e

−ikn̄′

z(N−1)
dN − kn̄′

z2

kNηN

γ
(M)
n̄′ e+ikn̄′

zN
dN (3.61)

Similar to the two layer case, these equations can be grouped into two sets of (2N)

equations, involving horizontal and vertical polarized terms. Putting these equations

into matrix form, matrices similar to Mξ(n̄
′) and Mζ(n̄

′) (both are of size (2N × 2N)

here) for the N -layer Problem can be easily obtained. Also, using a numerical FFT

based approach for the Fourier transform operators, an arbitrary order, arbitrary

number of layer solution can be obtained. As mentioned before, such a code will be

very useful, especially for verification purposes in an analytical study of the N -layer

problem, or for deterministic problems.
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3.8 Conclusion

In this chapter, first the notational conventions for the rest of the dissertation were

provided. Next, the boundary conditions were studied, each boundary condition

brought a so called forcing function. These functions were utilized to express the

solution of the problem as a set of two linear system of equations, for horizontal

and vertical polarizations, respectively. The solution for these systems of equations

was provided analytically. Later, a Fast Fourier Transform(FFT) based numerical

solution was described. The numerical perturbation solution was validated against

an existing two and a half dimensional extended boundary condition(EBC) solution

for two sine surfaces on top of each other, in the propagating modes.

Although only the two-layer case will be considered analytically in following chap-

ters, the arbitrary number of layers case was also considered only numerically, and

the numerical solution was provided in this chapter as a final section. This section

can be considered as a generalization of the two-layer numerical SPM solution, which

will be very useful in future work involving analytical arbitrary layer SPM solutions.
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CHAPTER 4

TWO LAYER SPM THEORY: ANALYTICAL SOLUTION

4.1 Introduction

In this chapter, an analytical solution procedure for the two-layer problem is

presented. The basic steps for obtaining the analytical SPM solution directly follow

from the second chapter, where the 1-D Dirichlet problem was considered. First, the

zeroth, first, and second order explicit solutions are considered. Later, a tensor based

iterative arbitrary order solution procedure is presented.

In the next sections, the zeroth order solution will first be provided in terms of the

KE,H functions, defined in Chapter 3. The zeroth and arbitrary order contributions

to the general N th order solution will be studied from the forcing functions provided

in Chapter 3. Zeroth order contribution terms are studied separately for horizontal

and vertical incidence cases, while the arbitrary order contributions are identical for

both incidence cases. Next, partial SPM solutions for the zeroth and lower order

contribution terms are obtained. Later, these partial solutions are utilized to obtain

the complete first and second order solutions. Then, general form of higher order

solutions is studied, and based on this generalization, a new tensor based notation
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is introduced. The tensor notation is applied to the partial SPM solutions, and the

arbitrary order SPM solution procedure is constructed with them.

4.2 Zeroth order solution

This section provides the zeroth order solution to the two layer problem. The

zeroth order (unperturbed) solution is equivalent to a flat interface solution, and can

be directly obtained from Equations 3.33 and 3.34 by plugging in the zeroth order

forcing functions to the right hand side array b of Equation 3.30.

The zeroth order forcing functions are very simple:

S
(N)
E1

(x̄) = −(ẑ × êi), S
(N)
H1

(x̄) = − 1

η0

(ẑ × k̂i × êi)

S
(N)
E2

(x̄) = 0, S
(N)
H2

(x̄) = 0 (4.1)

The Fourier transforms of these functions are utilized to obtain b in Equation 3.30

as:

b̄ξ(n̄
′) =













−(ẑ × ĥi).(ẑ × êi)

− 1
η0

(ĥi).(ẑ × k̂i × êi)

0
0













δn̄′ , b̄ζ(n̄
′) =













−(ĥi).(ẑ × êi)

− 1
η0

(ẑ × ĥi).(ẑ × k̂i × êi)

0
0













δn̄′

(4.2)

Here, ξ = {α,A,C, γ} and ζ = {β,B,D, δ} as usual.

Working out the cross products for each incidence polarization and multiplying

the resulting arrays with the inverses of the corresponding M matrices, the zeroth

solution is obtained. The resulting expressions are for the horizontal incidence case

(i.e. êi = ĥi):

ξ
(0)
n̄′ = Γξ = −

(

Kξ
E1(0̄) +

k0̄
z0

k0η0

Kξ
H1(0̄)

)

δ(n̄′)

ζ
(0)
n̄′ = 0 (4.3)
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and for the vertical incidence case (i.e. êi = v̂i):

ξ
(0)
n̄′ = 0

ζ
(0)
n̄′ = Γζ =

(

k0̄
z0

k0

Kζ
E1(0̄) −

1

η0

Kζ
H1(0̄)

)

δ(n̄′) (4.4)

Although the flat interface solution is well known, the Γξ and Γζ terms defined here

will be very useful simplifying the higher order solutions.

4.3 Study of the forcing functions

In this section, four forcing functions given in Equations 3.21 through 3.24 are

separated into zeroth and lower order contribution terms in a fashion similar to that

described in Section 2.2.1. In order to obtain a arbitrary order SPM solution, such a

treatment of the forcing functions is necessary.

Each forcing function at N th order(i.e. S(N)(x̄)) is written as a sum of zeroth and

lower order contribution terms as follows:

S(N)(x̄) = S(N,0)(x̄) +
N−1
∑

r=1

S(N,r)(x̄) (4.5)

such that S(N,r)(x̄) is part of the forcing function that contains only the terms involv-

ing the rth order scattering coefficients. The zeroth order contribution term S (N,0)(x̄)

has to be studied separately for each incidence polarization, but the term S (N,r)(x̄)

has a unique representation for both incidence polarizations.

In the following subsections, first, several intermediate functionals and operators

are defined to reduce the complexity of the expressions. Later, using these interme-

diate functionals and operators, the zeroth and lower order contribution terms of the

forcing functions are presented.
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4.3.1 Notational conventions

Due to the highly complex nature of the SPM expressions, several intermediate

functionals and operators must be defined. These intermediate expressions can be

grouped into two basic categories. In the first group, there a total of eight expressions

involving the zeroth order solution. They are given as follows:

R
(N)
E1,h = Γα(k0̄

z0)
N − ΓA(−k0̄

z1)
N − ΓC(k0̄

z1)
N (4.6)

R
(N)
H1,h = −Γα

(k0̄
z0)

N

k0η0

+ ΓA

(−k0̄
z1)

N

k1η1

+ ΓC

(k0̄
z1)

N

k1η1

(4.7)

R
(N)
E2,h = ΓA(−k0̄

z1)
Ne+ik0̄

z1d + ΓC(+k0̄
z1)

Ne−ik0̄
z1d − Γγ(−k0̄

z2)
Ne+ik0̄

z2d (4.8)

R
(N)
H2,h = −ΓA

(−k0̄
z1)

N

k1η1

e+ik0̄
z1d − ΓC

(+k0̄
z1)

N

k1η1

e−ik0̄
z1d + Γγ

(−k0̄
z2)

N

k2η2

e+ik0̄
z2d (4.9)

R
(N)
E1,v = Γβ

(k0̄
z0)

N

k0

− ΓB

(−k0̄
z1)

N

k1

− ΓD

(k0̄
z1)

N

k1

(4.10)

R
(N)
H1,v = Γβ

(k0̄
z0)

N

η0

− ΓB

(−k0̄
z1)

N

η1

− ΓD

(k0̄
z1)

N

η1

(4.11)

R
(N)
E2,v = ΓB

(−k0̄
z1)

N

k1

e+ik0̄
z1d + ΓD

(+k0̄
z1)

N

k1

e−ik0̄
z1d − Γδ

(−k0̄
z2)

N

k2

e+ik0̄
z2d (4.12)

R
(N)
H2,v = ΓB

(−k0̄
z1)

N

η1

e+ik0̄
z1d + ΓD

(+k0̄
z1)

N

η1

e−ik0̄
z1d − Γδ

(−k0̄
z2)

N

η2

e+ik0̄
z2d (4.13)

The next group also has eight expressions which involve the lower order (rth order)

SPM solutions. They are given as:

A(N,r)
E1 (n̄) =

[

α
(r)
n̄ (kn̄

z0)
N−r − A

(r)
n̄ (−kn̄

z1)
N−r − C

(r)
n̄ (kn̄

z1)
N−r

]

(4.14)

B(N,r)
E1 (n̄) =





β
(r)
n̄

k0

(kn̄
z0)

N−r − B
(r)
n̄

k1

(−kn̄
z1)

N−r − D
(r)
n̄

k1

(kn̄
z1)

N−r



 (4.15)

A(N,r)
H1 (n̄) =



− α
(r)
n̄

k0η0

(kn̄
z0)

N−r +
A

(r)
n̄

k1η1

(−kn̄
z1)

N−r +
C

(r)
n̄

k1η1

(kn̄
z1)

N−r



 (4.16)
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B(N,r)
H1 (n̄) =





β
(r)
n̄

η0

(kn̄
z0)

N−r − B
(r)
n̄

η1

(−kn̄
z1)

N−r − D
(r)
n̄

η1

(kn̄
z1)

N−r



 (4.17)

A(N,r)
E2 (n̄) =

[

A
(r)
n̄ (−kn̄

z1)
N−re+ikn̄

z1d + C
(r)
n̄ (+kn̄

z1)
N−re−ikn̄

z1d

−γ
(r)
n̄ (−kn̄

z2)
N−re+ikn̄

z2d

]

(4.18)

B(N,r)
E2 (n̄) =

[

(−kn̄
z1)

N−r

k1

e+ikn̄
z1dB

(r)
n̄ +

(+kn̄
z1)

N−r

k1

e−ikn̄
z1dD

(r)
n̄

−(−kn̄
z2)

N−r

k2

e+ikn̄
z2dδ

(r)
n̄

]

(4.19)

A(N,r)
H2 (n̄) =

[

− (−kn̄
z1)

N−r

k1η1

e+ikn̄
z1dA

(r)
n̄ − (+kn̄

z1)
N−r

k1η1

e−ikn̄
z1dC

(r)
n̄

+
(−kn̄

z2)
N−r

k2η2

e+ikn̄
z2dγ

(r)
n̄

]

(4.20)

B(N,r)
H2 (n̄) =

[

(−kn̄
z1)

N−r

η1

e+ikn̄
z1dB

(r)
n̄ +

(+kn̄
z1)

N−r

η1

e−ikn̄
z1dD

(r)
n̄

−(−kn̄
z2)

N−r

η2

e+ikn̄
z2dδ

(r)
n̄

]

(4.21)

With these definitions, we can proceed to the zeroth and lower order forcing function

components.

4.3.2 Components of the forcing functions

The zeroth order components of the forcing functions can be expressed in terms of

the intermediate functionals (R(N)) defined in the previous subsection in the following

simple form:

For horizontal incidence:

S
(N,0),h
E1

(x̄) = −
(

ẑ × ĥi

)

zN
1





(−i)N

N !
kN

zi +
(i)N

N !
R

(N),h
E1

(0̄)



 (4.22)
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S
(N,0),h
H1

(x̄) = −
(

ĥi

)

zN
1





k0̄
z0

k0η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N+1),h
H1

(0̄)





− (∇tf1(x̄) × ẑ) zN−1
1





kρi

k0η0

(−i)N−1

(N − 1)!
kN−1

zi − (i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H1

(0̄)



 (4.23)

S
(N,0),h
E2

= −
(

ẑ × ĥi

)

zN
2

(

(i)N

N !
R

(N),h
E2

(0̄)

)

(4.24)

S
(N,0),h
H2

(x̄) = −
(

ĥi

)

zN
2

(

(i)N

N !
R

(N+1),h
H2

(0̄)

)

+ (∇tf2(x̄) × ẑ) zN−1
2

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H2

(0̄)

)

(4.25)

For vertical incidence:

S
(N,0),v
E1

(x̄) =
(

ĥi

)

zN
1

(

kzi

k0

(−i)N

N !
kN

zi −
(i)N

N !
R

(N+1),v
E1

(0̄)

)

+ (∇tf1(x̄) × ẑ) zN−1
1

(

kρi

k0

(−i)N−1

(N − 1)!
kN−1

zi +
(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E1

(0̄)

)

(4.26)

S
(N,0),v
H1

(x̄) = −
(

ẑ × ĥi

)

zN
1

(

1

η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N),v
H1

(0̄)

)

(4.27)

S
(N,0),v
E2

= −
(

ĥi

)

zN
2

(

(i)N

(N)!
R

(N+1),v
E2

(0̄)

)

+ (∇tf2(x̄) × ẑ) zN−1
2

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E2

(0̄)

)

(4.28)

S
(N,0),v
H2

(x̄) = −
(

ẑ × ĥi

)

zN
2

(

(i)N

N !
R

(N),v
H2

(0̄)

)

(4.29)

Also note that a superscript: h or v is added to the forcing functions to indicate

the incidence polarization. In addition, two new variables z1 and z2 are defined in

the following way:

z1 = f1(x̄), z2 = f̄2(x̄) (4.30)

to identify the surface on which the forcing functions are defined.
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The lower order components of the forcing functions can be expressed in terms of

the operators A and B : The first forcing function becomes:

S
(N,r)
E1

(x̄) = − (iz1)
N−r

(N − r)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

A(N,r)
E1 (n̄) +

(

ĥn̄

)

B(N+1,r)
E1 (n̄)













+
(iz1)

N−r−1

(N − r − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ )B(N−1,r)

E1 (n̄)













(4.31)

The second forcing function becomes:

S
(N,r)
H1

(x̄) = − (iz1)
N−r

(N − r)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

B(N,r)
H1 (n̄) +

(

ĥn̄

)

A(N+1,r)
H1 (n̄)













+
(iz1)

N−r−1

(N − r − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf1(x̄) × ẑ) (kn̄
ρ )A(N−1,r)

H1 (n̄)













(4.32)

The third forcing function becomes:

S
(N,r)
E2

= − (iz2)
N−r

(N − r)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

A(N,r)
E2 (n̄) +

(

ĥn̄

)

B(N+1,r)
E2 (n̄)












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+
(iz2)

N−r−1

(N − r − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf2(x̄) × ẑ) (kn̄
ρ )B(N−1,r)

E2 (n̄)













(4.33)

Finally the fourth forcing function becomes:

S
(N,r)
H2

(x̄) = − (iz2)
N−r

(N − r)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y





(

ẑ × ĥn̄

)

B(N,r)
H2 (n̄) +

(

ĥn̄

)

A(N+1,r)
H2 (n̄)













+
(iz2)

N−r−1

(N − r − 1)!









∑

n̄

e
i( 2πn

Px
)x+i

(

2πm
Py

)

y



 (∇tf2(x̄) × ẑ) (kn̄
ρ )A(N−1,r)

H2 (n̄)













(4.34)

In the next section, the solution procedure of Section 3.5 is applied to the zeroth

and lower order components of the forcing functions.

4.4 General zeroth and lower order contributions to N th or-

der solution

In Section 3.5, a solution procedure for SPM scattering coefficients was described

in terms of (four) forcing functions through a matrix inversion process. Going through

those steps analytically for only the zeroth or the lower order contributions of the

forcing functions, the corresponding components of the scattering coefficients are ob-

tained. Mathematically speaking, let τ (N) = {ξ(N), ζ(N)} be any horizontal ξ(N) =

{α(N), A(N), C(N), γ(N)} or vertical ζ(N) = {β(N), B(N), D(N), δ(N)} scattering coeffi-

cient of order N . Then, the zeroth τ (N,0) and the lower order τ (N,r) components of
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the scattering coefficients can be defined such that:

S
(N,0)
E1

(x̄)

S
(N,0)
H1

(x̄)

S
(N,0)
E2

(x̄)

S
(N,0)
H2

(x̄)



























Eq.3.33, 3.34−→ τ (N,0)

S
(N,r)
E1

(x̄)

S
(N,r)
H1

(x̄)

S
(N,r)
E2

(x̄)

S
(N,r)
H2

(x̄)



























Eq.3.33, 3.34−→ τ (N,r) (4.35)

Later, we can construct the scattering coefficients, by simply adding them in the

following form:

τ (N) = τ (N,0) +
N−1
∑

r=1

τ (N,r) (4.36)

As an example, suppose we want to obtain the third order horizontally polarized

reflected field scattering coefficient α(3) in the case of vertically incident plane wave.

Then we need to study the zeroth, first and second order contributions of all four

forcing functions:

S
(3,0),v
E1

(x̄)

S
(3,0),v
H1

(x̄)

S
(3,0),v
E2

(x̄)

S
(3,0),v
H2

(x̄)



























→ α(3,0)

S
(3,1)
E1

(x̄)

S
(3,1)
H1

(x̄)

S
(3,1)
E2

(x̄)

S
(3,1)
H2

(x̄)



























→ α(3,1)

S
(3,2)
E1

(x̄)

S
(3,2)
H1

(x̄)

S
(3,2)
E2

(x̄)

S
(3,2)
H2

(x̄)



























→ α(3,2) (4.37)

noting that the superscript v is added to the zeroth order contribution term, indicating

incidence polarization. Then the total scattering coefficient can be expressed as:

α(3) = α(3,0) + α(3,1) + α(3,2) (4.38)

In this section, first, general expressions for the zeroth order contributions to

the scattering coefficients (τ (N,0)) are derived in terms of forcing function components

S(N,0)(x̄). Later, general expressions for the lower order contributions to the scattering

coefficients (τ (N,r)) are derived in terms of forcing function components S(N,r)(x̄).

First of all, the solution for the zeroth or lower order contributions is given by:

For ξ = {α,A,C, γ},

ξ
(N,s)
n̄′ =

(

ẑ × ĥn̄′

)

.Kξ
E1(n̄

′)F
(

S
(N,s)
E1

(x̄)
)

n̄′
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+
(

ẑ × ĥn̄′

)

.Kξ
E2(n̄

′)F
(

S
(N,s)
E2

(x̄)
)

n̄′

+
(

ĥn̄′

)

.Kξ
H1(n̄

′)F
(

S
(N,s)
H1

(x̄)
)

n̄′

+
(

ĥn̄′

)

.Kξ
H2(n̄

′)F
(

S
(N,s)
H2

(x̄)
)

n̄′

(4.39)

For ζ = {β,B,D, δ}.

ζ
(N,s)
n̄′ =

(

ĥn̄′

)

.Kζ
E1(n̄

′)F
(

S
(N,s)
E1

(x̄)
)

n̄′

+
(

ĥn̄′

)

.Kζ
E2(n̄

′)F
(

S
(N,s)
E2

(x̄)
)

n̄′

+
(

ẑ × ĥn̄′

)

.Kζ
H1(n̄

′)F
(

S
(N,s)
H1

(x̄)
)

n̄′

+
(

ẑ × ĥn̄′

)

.Kζ
H2(n̄

′)F
(

S
(N,s)
H2

(x̄)
)

n̄′

(4.40)

where s = 0, 1, ..., (N − 1).

These equations require several dot products of either ẑ × ĥn̄′ or ĥn̄′ with the

Fourier transforms of the forcing functions. In order to work out these products, the

following functions are defined for convenience( basically representing sine and cosine

functions.)

cn̄1,n̄2 =
kxn1kxn2 + kym1kym2

kn̄1
ρ kn̄2

ρ

(4.41)

sn̄1,n̄2 =
kxn1kym2 − kym1kxn2

kn̄1
ρ kn̄2

ρ

(4.42)

noting that cn̄1,n̄2 = cn̄2,n̄1 and sn̄1,n̄2 = −sn̄2,n̄1 . With these definitions, the following

dot products can be conveniently written as:

(

ẑ × ĥn̄′

)

.
(

ĥn̄

)

= sn̄′,n̄

(

ẑ × ĥn̄′

)

.
(

ẑ × ĥn̄

)

= cn̄′,n̄

(

ĥn̄′

)

.
(

ĥn̄

)

= cn̄′,n̄

(

ĥn̄′

)

.
(

ẑ × ĥn̄

)

= sn̄,n̄′ (4.43)
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In the case of the zeroth order contributions, the following dot products are most

useful:

(

ẑ × ĥn̄′

)

.
(

ĥi

)

= sn̄′,0̄ = sn̄′,i

(

ẑ × ĥn̄′

)

.
(

ẑ × ĥi

)

= cn̄′,0̄ = cn̄′,i

(

ĥn̄′

)

.
(

ĥi

)

= cn̄′,0̄ = cn̄′,i

(

ĥn̄′

)

.
(

ẑ × ĥi

)

= s0̄,n̄′ = si,n̄′ (4.44)

Similarly, for the dot the products involving the gradient of the interfaces; we have

the following:

(

ẑ × ĥn̄′

)

. (∇tfi(x̄) × ẑ) =
kxn′

kn̄′

ρ

∂yfi −
kym′

kn̄′

ρ

∂xfi

(

ĥn̄′

)

. (∇tfi(x̄) × ẑ) =
kxn′

kn̄′

ρ

∂xfi +
kym′

kn̄′

ρ

∂yfi (4.45)

where

(∇tfi(x̄)) = ∂xfix̂ + ∂yfiŷ (4.46)

Plugging in the components of the forcing functions into the solutions given in

Equations 4.39 and 4.40, contributions to the scattering coefficients at any order can

be easily obtained. For a more general (arbitrary order) formulation, the following

definitions are necessary. First, as a reminder, the Fourier transform of the pth power

of the surface profile is given as:

F {zp}n̄′ =
∑

n̄1

...
∑

n̄p−1

hn̄1 ....hn̄p−1 h
n̄′−
∑p−1

i=1
n̄i

(4.47)

In addition, for the case when the gradients of the surfaces are involved, terms with

the first partial derivative of the surface, multiplied with the (p − 1)th power of the

surface profile are obtained. These terms can be expressed as:

F
{

∂xf(i)z
p−1
(i)

}

n̄′

=
∑

n̄1

...
∑

n̄p−1

h
(i)
n̄1

....h
(i)
n̄p−1

h
(i)

n̄′−
∑p−1

i=1
n̄i





2πi

Px

(n′ −
p−1
∑

i=1

ni)



 (4.48)
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and

F
{

∂yf(i)z
p−1
(i)

}

n̄′

=
∑

n̄1

...
∑

n̄p−1

h
(i)
n̄1

....h
(i)
n̄p−1

h
(i)

n̄′−
∑p−1

i=1
n̄i





2πi

Py

(m′ −
p−1
∑

i=1

mi)



 (4.49)

where, (i) = 1 for the upper surface and (i) = 2 for the lower surface.

Similar to the Dirichlet treatment given in Chapter 2, the following index terms

are defined for convenience:

n̄∗ =
N−1
∑

i=1

n̄i, n̄r∗ = n̄ +
N−r−1
∑

i=1

n̄i (4.50)

Finally, it should be noted that expressions of the following form:

(

kxn′

kn̄′

ρ

F
{

∂xfi (zi)
N−1

}

n̄′

+
kym′

kn̄′

ρ

F
{

∂yfi (zi)
N−1

}

n̄′

)

(

kxn′

kn̄′

ρ

F
{

∂yfi (zi)
N−1

}

n̄′

− kym′

kn̄′

ρ

F
{

∂xfi (zi)
N−1

}

n̄′

)

(4.51)

are obtained in several steps of the derivations. Using the formulation defined above,

these expressions can be reduced to:

i
(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

F
{

(zi)
N
}

n̄′

i
(

kn̄∗

ρ sn̄∗,n̄′

)

F
{

(zi)
N
}

n̄′

(4.52)

respectively. After these clarifications, solutions are provided in the following subsec-

tions.

4.4.1 Zeroth order contribution to N th order solution: Hori-

zontal Incidence Case

In case of horizontal incidence, the zeroth order contribution to the general N th

order solution can be expressed for horizontally polarized scattering coefficients: ξ =
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{α,A,C, γ},

ξ
(N,0)
n̄′ = F

{

zN
1

}

n̄′



 − cn̄′,0̄K
ξ
E1(n̄

′)

(

(−i)N

N !
kN

zi +
(i)N

N !
R

(N),h
E1

(0̄)

)

−cn̄′,0̄ Kξ
H1(n̄

′)

(

k0̄
z0

k0η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N+1),h
H1

(0̄)

)

−i
(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

Kξ
H1(n̄

′)

(

kρi

k0η0

(−i)N−1

(N − 1)!
kN−1

zi − (i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H1

(0̄)

)





+F
{

zN
2

}

n̄′



 − cn̄′,0̄ Kξ
E2(n̄

′)

(

(i)N

N !
R

(N),h
E2

(0̄)

)

−cn̄′,0̄ Kξ
H2(n̄

′)

(

(i)N

N !
R

(N+1),h
H2

(0̄)

)

+i
(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

Kξ
H2(n̄

′)

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H2

(0̄)

)



 (4.53)

And for vertically polarized scattering coefficients:ζ = {β,B,D, δ}:

ζ
(N,0)
n̄′ = F

{

zN
1

}

n̄′



 − s0̄,n̄′Kζ
E1(n̄

′)

(

(−i)N

N !
kN

zi +
(i)N

N !
R

(N),h
E1

(0̄)

)

−sn̄′,0̄ Kζ
H1(n̄

′)

(

k0̄
z0

k0η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N+1),h
H1

(0̄)

)

−i
(

kn̄∗

ρ sn̄∗,n̄′

)

Kζ
H1(n̄

′)

(

kρi

k0η0

(−i)N−1

(N − 1)!
kN−1

zi − (i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H1

(0̄)

)





+F
{

zN
2

}

n̄′



 − s0̄,n̄′ Kζ
E2(n̄

′)

(

(i)N

N !
R

(N),h
E2

(0̄)

)

−sn̄′,0̄ Kζ
H2(n̄

′)

(

(i)N

N !
R

(N+1),h
H2

(0̄)

)

+i
(

kn̄∗

ρ sn̄∗,n̄′

)

Kζ
H2(n̄

′)

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),h
H2

(0̄)

)



 (4.54)

4.4.2 Zeroth order contribution to N th order solution: Ver-

tical Incidence Case

In case of vertical incidence, the zeroth order contribution to the general N th

order solution can be expressed for horizontally polarized scattering coefficients as :
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ξ = {α,A,C, γ},

ξ
(N,0)
n̄′ = F

{

zN
1

}

n̄′



 sn̄′,0̄ Kξ
E1(n̄

′)

(

kzi

k0

(−i)N

N !
kN

zi −
(i)N

N !
R

(N+1),v
E1

(0̄)

)

+i
(

kn̄∗

ρ sn̄∗,n̄′

)

Kξ
E1(n̄

′)

(

kρi

k0

(−i)N−1

(N − 1)!
kN−1

zi +
(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E1

(0̄)

)

−s0̄,n̄′Kξ
H1(n̄

′)

(

1

η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N),v
H1

(0̄)

)





+F
{

zN
2

}

n̄′



 − sn̄′,0̄ Kξ
E2(n̄

′)

(

(i)N

(N)!
R

(N+1),v
E2

(0̄)

)

+i
(

kn̄∗

ρ sn̄∗,n̄′

)

Kξ
E2(n̄

′)

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E2

(0̄)

)

−s0̄,n̄′ Kξ
H2(n̄

′)

(

(i)N

N !
R

(N),v
H2

(0̄)

)



 (4.55)

and for vertically polarized scattering coefficients: ζ = {β,B,D, δ}.

ζ
(N,0)
n̄′ = F

{

zN
1

}

n̄′



 cn̄′,0̄ Kζ
E1(n̄

′)

(

kzi

k0

(−i)N

N !
kN

zi −
(i)N

N !
R

(N+1),v
E1

(0̄)

)

+i
(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

Kζ
E1(n̄

′)

(

kρi

k0

(−i)N−1

(N − 1)!
kN−1

zi +
(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E1

(0̄)

)

−cn̄′,0̄K
ζ
H1(n̄

′)

(

1

η0

(−i)N

N !
kN

zi +
(i)N

N !
R

(N),v
H1

(0̄)

)





+F
{

zN
2

}

n̄′



 − cn̄′,0̄ Kζ
E2(n̄

′)

(

(i)N

(N)!
R

(N+1),v
E2

(0̄)

)

+i
(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

Kζ
E2(n̄

′)

(

(i)N−1

(N − 1)!
k0̄

ρR
(N−1),v
E2

(0̄)

)

−cn̄′,0̄ Kζ
H2(n̄

′)

(

(i)N

N !
R

(N),v
H2

(0̄)

)



 (4.56)

4.4.3 Lower order contributions to N th order solution:

The lower(rth) order contribution to the general N th order solution has the same

representation for both horizontal and vertical incidence cases. These solutions can
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be expressed in the following compact form: For horizontally polarized scattering

coefficients: ξ = {α,A,C, γ},

ξ
(N,r)
n̄′ = − (i)N−r

(N − r)!

∑

n̄

F
{

zN−r
1

}

n̄′−n̄



cn̄′,n̄

(

Kξ
E1(n̄

′)A(N,r)
E1 (n̄) + Kξ

H1(n̄
′)A(N+1,r)

H1 (n̄)

)

+sn̄′,n̄

(

Kξ
E1(n̄

′)B(N+1,r)
E1 (n̄) − Kξ

H1(n̄
′)B(N,r)

H1 (n̄)

)

−(N − r)(kn̄
ρ )

(

(

kn̄r∗

ρ sn̄r∗,n̄′

)

Kξ
E1(n̄

′)B(N−1,r)
E1 (n̄)

+
(

kn̄′

ρ − kn̄r∗

ρ cn̄r∗,n̄′

)

Kξ
H1(n̄

′)A(N−1,r)
H1 (n̄)

)





− (i)N−r

(N − r)!

∑

n̄

F
{

zN−r
2

}

n̄′−n̄



cn̄′,n̄

(

Kξ
E2(n̄

′)A(N,r)
E2 (n̄) + Kξ

H2(n̄
′)A(N+1,r)

H2 (n̄)

)

+sn̄′,n̄

(

Kξ
E2(n̄

′)B(N+1,r)
E2 (n̄) − Kξ

H2(n̄
′)B(N,r)

H2 (n̄)

)

−(N − r)(kn̄
ρ )

(

(

kn̄r∗

ρ sn̄r∗,n̄′

)

Kξ
E2(n̄

′)B(N−1,r)
E2 (n̄)

+
(

kn̄′

ρ − kn̄r∗

ρ cn̄r∗,n̄′

)

Kξ
H2(n̄

′)A(N−1,r)
H2 (n̄)

)



 (4.57)

and for vertically polarized scattering coefficients: ζ = {β,B,D, δ}:

ζ
(N,r)
n̄′ = − (i)N−r

(N − r)!

∑

n̄

F
{

zN−r
1

}

n̄′−n̄



sn̄′,n̄

(

Kζ
H1(n̄

′)A(N+1,r)
H1 (n̄) − Kζ

E1(n̄
′)A(N,r)

E1 (n̄)

)

+cn̄′,n̄

(

Kζ
E1(n̄

′)B(N+1,r)
E1 (n̄) + Kζ

H1(n̄
′)B(N,r)

H1 (n̄)

)

−(N − r)(kn̄
ρ )

(

(

kn̄r∗

ρ sn̄r∗,n̄′

)

Kζ
H1(n̄

′)A(N−1,r)
H1 (n̄)

+
(

kn̄′

ρ − kn̄r∗

ρ cn̄r∗,n̄′

)

Kζ
E1(n̄

′)B(N−1,r)
E1 (n̄)

)




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− (i)N−r

(N − r)!

∑

n̄

F
{

zN−r
2

}

n̄′−n̄



sn̄′,n̄

(

Kζ
H2(n̄

′)A(N+1,r)
H2 (n̄) − Kζ

E2(n̄
′)A(N,r)

E2 (n̄)

)

+cn̄′,n̄

(

Kζ
E2(n̄

′)B(N+1,r)
E2 (n̄) + Kζ

H2(n̄
′)B(N,r)

H2 (n̄)

)

−(N − r)(kn̄
ρ )

(

(

kn̄r∗

ρ sn̄r∗,n̄′

)

Kζ
H2(n̄

′)A(N−1,r)
H2 (n̄)

+
(

kn̄′

ρ − kn̄r∗

ρ cn̄r∗,n̄′

)

Kζ
E2(n̄

′)B(N−1,r)
E2 (n̄)

)



 (4.58)

With these general form of solutions, we can proceed to the first, second, and then

the arbitrary order solutions. In the next section, a complete first order solution will

be considered, where only the zeroth order contribution terms are relevant.

4.5 First Order Solution

In this section the first order complete solution is provided. The first order solution

requires the study of only the zeroth order components of the forcing functions. By

directly plugging in the value of N = 1 to the Equations 4.53 through 4.56, the

following general form is obtained.

τ
(1)
n̄′ = h

(1)
n̄′ g(1,0)

τ (n̄′) + h
(2)
n̄′ g(0,1)

τ (n̄′) (4.59)

Here, h
(1)
n̄′ and h

(2)
n̄′ are the Fourier coefficients of the upper and lower surfaces re-

spectively. The terms g(1,0)
τ (n̄′) and g(0,1)

τ (n̄′) are the so called “SPM kernels” at the

first order. General indexing of g(p,q)
τ is used for the SPM kernels of order (p + q)

throughout the rest of the dissertation, where p and q are integers, representing the

number of Fourier coefficients necessary to obtain the scattering coefficients of the

upper and lower surface respectively. As an example, when an SPM kernel, say g3,2
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is given, then a term that is of fifth order is understood, which requires three Fourier

coefficients from the upper surface and two Fourier coefficients from the lower surface.

This representation will be discuss in more detail in the following chapter. For now,

we will proceed to explicit expressions of the first order SPM kernels, starting with

horizontal incidence.

The first order SPM kernels for a horizontally polarized incident plane wave

can be expressed as follows: For horizontally polarized scattering coefficients: ξ =

{α,A,C, γ},

g
(1,0)
ξ (n̄′) =



 icn̄′,0̄K
ξ
E1(n̄

′)
(

kzi − R
(1),h
E1

(0̄)
)

+icn̄′,0̄ Kξ
H1(n̄

′)

(

k2
zi

k0η0

− R
(2),h
H1

(0̄)

)

−i
(

kn̄′

ρ − kρicn̄′,0̄

)

kρiK
ξ
H1(n̄

′)

(

1

k0η0

− R
(0),h
H1

(0̄)

)



 (4.60)

and

g
(0,1)
ξ (n̄′) =



 − icn̄′,0̄ Kξ
E2(n̄

′)
(

R
(1),h
E2

(0̄)
)

−icn̄′,0̄ Kξ
H2(n̄

′)
(

R
(2),h
H2

(0̄)
)

+i
(

kn̄′

ρ − kρicn̄′,0̄

)

kρiK
ξ
H2(n̄

′)
(

R
(0),h
H2

(0̄)
)



 (4.61)

and for vertically polarized scattering coefficients: ζ = {β,B,D, δ}:

g
(1,0)
ζ (n̄′) =



 + is0̄,n̄′Kζ
E1(n̄

′)
(

kzi − R
(1),h
E1

(0̄)
)

+isn̄′,0̄ Kζ
H1(n̄

′)

(

k2
zi

k0η0

− R
(2),h
H1

(0̄)

)

−i
(

k2
ρi s0̄,n̄′

)

Kζ
H1(n̄

′)

(

1

k0η0

− R
(0),h
H1

(0̄)

)



 (4.62)
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and

g
(0,1)
ζ (n̄′) =



 − is0̄,n̄′ Kζ
E2(n̄

′)
(

R
(1),h
E2

(0̄)
)

−isn̄′,0̄ Kζ
H2(n̄

′)
(

R
(2),h
H2

(0̄)
)

+i
(

k2
ρi s0̄,n̄′

)

Kζ
H2(n̄

′)
(

R
(0),h
H2

(0̄)
)



 (4.63)

The first order SPM kernels for a vertically polarized incident plane wave can be

expressed as follows: For horizontally polarized scattering coefficients: ξ = {α,A,C, γ},

g
(1,0)
ξ (n̄′) =



 − isn̄′,0̄ Kξ
E1(n̄

′)

(

k2
zi

k0

+ R
(2),v
E1

(0̄)

)

+i
(

k2
ρi s0̄,n̄′

)

Kξ
E1(n̄

′)
(

1

k0

+ R
(0),v
E1

(0̄)
)

+is0̄,n̄′Kξ
H1(n̄

′)

(

1

η0

kzi − R
(1),v
H1

(0̄)

)



 (4.64)

g
(0,1)
ξ (n̄′) =



 − isn̄′,0̄ Kξ
E2(n̄

′)
(

R
(2),v
E2

(0̄)
)

+i
(

k2
ρi s0̄,n̄′

)

Kξ
E2(n̄

′)
(

R
(0),v
E2

(0̄)
)

−is0̄,n̄′ Kξ
H2(n̄

′)
(

R
(1),v
H2

(0̄)
)



 (4.65)

and for vertically polarized scattering coefficients: ζ = {β,B,D, δ}:

g
(1,0)
ζ (n̄′) =



 − icn̄′,0̄ Kζ
E1(n̄

′)

(

k2
zi

k0

+ R
(2),v
E1

(0̄)

)

+i
(

kn̄′

ρ − kρic0̄,n̄′

)

kρiK
ζ
E1(n̄

′)
(

1

k0

+ R
(0),v
E1

(0̄)
)

+icn̄′,0̄K
ζ
H1(n̄

′)

(

1

η0

kzi − R
(1),v
H1

(0̄)

)



 (4.66)

g
(0,1)
ζ (n̄′) =



 − icn̄′,0̄ Kζ
E2(n̄

′)
(

R
(2),v
E2

(0̄)
)
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+i
(

kn̄′

ρ − kρic0̄,n̄′

)

kρiK
ζ
E2(n̄

′)
(

R
(0),v
E2

(0̄)
)

−icn̄′,0̄ Kζ
H2(n̄

′)
(

R
(1),v
H2

(0̄)
)



 (4.67)

The expressions up to this point complete the first order solution. Next, the

second order solution is considered.

4.6 Second Order Solution

The second order solution can be obtained by studying the zeroth order contribu-

tion expressions given by Equations 4.53 through 4.56 for N = 2, together with the

lower order contribution expressions given by Equations 4.57 and 4.58 for N = 2 and

r = 1. Following these steps, the following general form for the second order solution

is obtained:

τ
(2)
n̄′ =

∑

n̄1

(

h
(1)
n̄1

h
(1)
n̄′−n̄1

g(2,0)
τ (n̄′, n̄1)

+h
(2)
n̄1

h
(1)
n̄′−n̄1

g(1,1)
τ (n̄′, n̄1)

+h
(2)
n̄1

h
(2)
n̄′−n̄1

g(0,2)
τ (n̄′, n̄1)

)

(4.68)

It should be noted here that the zeroth order contribution terms contribute only to

the kernels g(2,0)
τ and g(0,2)

τ . However, the first order contribution formulation (r = 1)

contributes to all three kernels. In addition, for a compact notation, a new operator

({....}{p,q}) is defined for the lower order functionals A and B. A demonstration of

this operator is presented here for A(N,1)
E1 , and similar ideas directly follow to the other

functionals; First, recall that the A(N,r)
E1 functional was defined as:

A(N,r)
E1 (n̄) =

[

α
(r)
n̄ (kn̄

z0)
N−r − A

(r)
n̄ (−kn̄

z1)
N−r − C

(r)
n̄ (kn̄

z1)
N−r

]

(4.69)

Plugging in r = 1 gives:

A(N,1)
E1 (n̄) =

[

α
(1)
n̄ (kn̄

z0)
N−1 − A

(1)
n̄ (−kn̄

z1)
N−1 − C

(1)
n̄ (kn̄

z1)
N−1

]

(4.70)

96



It is also known that the first order solution has the following general form:

τ
(1)
n̄′ = h

(1)
n̄′ g(1,0)

τ (n̄′) + h
(2)
n̄′ g(0,1)

τ (n̄′) (4.71)

Here, we define the ({....}{p,q}) operator as follows:

{A(N,1)
E1 (n̄)}{1,0} =

[

g(1,0)
α (n)(kn̄

z0)
N−1 − g

(1,0)
A (n)(−kn̄

z1)
N−1 − g

(1,0)
C (n)(kn̄

z1)
N−1

]

{A(N,1)
E1 (n̄)}{0,1} =

[

g(0,1)
α (n)(kn̄

z0)
N−1 − g

(0,1)
A (n)(−kn̄

z1)
N−1 − g

(0,1)
C (n)(kn̄

z1)
N−1

]

(4.72)

so that the original functional A(N,1)
E1 (n̄) can be expressed as:

A(N,1)
E1 (n̄) = h

(1)
n̄ {A(N,1)

E1 (n̄)}{1,0} + h
(2)
n̄ {A(N,1)

E1 (n̄)}{0,1} (4.73)

Using the notation described above, the second order SPM kernels can be sim-

plified: First, the formulation for the horizontally polarized scattering coefficients is

considered: The g
(2,0)
ξ kernels for horizontal incidence can expressed as:

g
(2,0)
ξ (n̄′, n̄1) =









+
1

2
cn̄′,0̄K

ξ
E1(n̄

′)
(

k2
zi + R

(2),h
E1

(0̄)
)

+
1

2
cn̄′,0̄ Kξ

H1(n̄
′)

(

k3
zi

k0η0

+ R
(3),h
H1

(0̄)

)

−
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

kρiK
ξ
H1(n̄

′)

(

kzi

k0η0

+ R
(1),h
H1

(0̄)

)

−(i)







cn̄′,n̄1

(

Kξ
E1(n̄

′){A(2,1)
E1 (n̄1)}{1,0} + Kξ

H1(n̄
′){A(3,1)

H1 (n̄1)}{1,0}

)

+sn̄′,n̄1

(

Kξ
E1(n̄

′){B(3,1)
E1 (n̄1)}{1,0} − Kξ

H1(n̄
′){B(2,1)

H1 (n̄1)}{1,0}

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E1(n̄

′){B(1,1)
E1 (n̄1)}{1,0}

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H1(n̄

′){A(1,1)
H1 (n̄1)}{1,0}

)















(4.74)
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And for vertical incidence:

g
(2,0)
ξ (n̄′, n̄1) =









− 1

2
sn̄′,0̄ Kξ

E1(n̄
′)

(

k3
zi

k0

− R
(3),v
E1

(0̄)

)

+
(

kn̄1
ρ sn̄1,n̄′

)

kρiK
ξ
E1(n̄

′)

(

kzi

k0

− R
(1),v
E1

(0̄)

)

+
1

2
s0̄,n̄′Kξ

H1(n̄
′)

(

k2
zi

η0

+ R
(2),v
H1

(0̄)

)

−(i)







cn̄′,n̄1

(

Kξ
E1(n̄

′){A(2,1)
E1 (n̄1)}{1,0} + Kξ

H1(n̄
′){A(3,1)

H1 (n̄1)}{1,0}

)

+sn̄′,n̄1

(

Kξ
E1(n̄

′){B(3,1)
E1 (n̄1)}{1,0} − Kξ

H1(n̄
′){B(2,1)

H1 (n̄1)}{1,0}

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E1(n̄

′){B(1,1)
E1 (n̄1)}{1,0}

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H1(n̄

′){A(1,1)
H1 (n̄1)}{1,0}

)















(4.75)

For both horizontal and vertical polarizations, the g
(1,1)
ξ kernel has the following

unique representation:

g
(1,1)
ξ (n̄′, n̄1) = −(i)



cn̄′,n̄1

(

Kξ
E1(n̄

′){A(2,1)
E1 (n̄1)}{0,1} + Kξ

H1(n̄
′){A(3,1)

H1 (n̄1)}{0,1}

)

+sn̄′,n̄1

(

Kξ
E1(n̄

′){B(3,1)
E1 (n̄1)}{0,1} − Kξ

H1(n̄
′){B(2,1)

H1 (n̄1)}{0,1}

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E1(n̄

′){B(1,1)
E1 (n̄1)}{0,1}

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H1(n̄

′){A(1,1)
H1 (n̄1)}{0,1}

)

+cn̄′,n̄′−n̄1

(

Kξ
E2(n̄

′){A(2,1)
E2 (n̄′ − n̄1)}{1,0} + Kξ

H2(n̄
′){A(3,1)

H2 (n̄′ − n̄1)}{1,0}

)

+sn̄′,n̄′−n̄1

(

Kξ
E2(n̄

′){B(3,1)
E2 (n̄′ − n̄1)}{1,0} − Kξ

H2(n̄
′){B(2,1)

H2 (n̄′ − n̄1)}{1,0}

)

−(kn̄′−n̄1
ρ )

(

(

kn̄′−n̄1
ρ sn̄′−n̄1,n̄′

)

Kξ
E2(n̄

′){B(1,1)
E2 (n̄′ − n̄1)}{1,0}
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+
(

kn̄′

ρ − kn̄′−n̄1
ρ cn̄′−n̄1,n̄′

)

Kξ
H2(n̄

′){A(1,1)
H2 (n̄′ − n̄1)}{1,0}

)



 (4.76)

The g
(0,2)
ξ kernels for horizontal incidence can expressed as:

g
(0,2)
ξ (n̄′, n̄1) =









1

2
cn̄′,0̄ Kξ

E2(n̄
′)
(

R
(2),h
E2

(0̄)
)

+
1

2
cn̄′,0̄ Kξ

H2(n̄
′)
(

R
(3),h
H2

(0̄)
)

−
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H2(n̄

′)
(

kρiR
(1),h
H2

(0̄)
)

−(i)







cn̄′,n̄1

(

Kξ
E2(n̄

′){A(2,1)
E2 (n̄1)}{0,1} + Kξ

H2(n̄
′){A(3,1)

H2 (n̄1)}{0,1}

)

+sn̄′,n̄1

(

Kξ
E2(n̄

′){B(3,1)
E2 (n̄1)}{0,1} − Kξ

H2(n̄
′){B(2,1)

H2 (n̄1)}{0,1}

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E2(n̄

′){B(1,1)
E2 (n̄1)}{0,1}

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H2(n̄

′){A(1,1)
H2 (n̄1)}{0,1}

)















(4.77)

and for vertical incidence:

g
(0,2)
ξ (n̄′, n̄1) =









1

2
sn̄′,0̄ Kξ

E2(n̄
′)
(

R
(3),v
E2

(0̄)
)

−
(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E2(n̄

′)
(

kρiR
(1),v
E2

(0̄)
)

+
1

2
s0̄,n̄′ Kξ

H2(n̄
′)
(

R
(2),v
H2

(0̄)
)

−(i)







cn̄′,n̄1

(

Kξ
E2(n̄

′){A(2,1)
E2 (n̄1)}{0,1} + Kξ

H2(n̄
′){A(3,1)

H2 (n̄1)}{0,1}

)

+sn̄′,n̄1

(

Kξ
E2(n̄

′){B(3,1)
E2 (n̄1)}{0,1} − Kξ

H2(n̄
′){B(2,1)

H2 (n̄1)}{0,1}

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kξ
E2(n̄

′){B(1,1)
E2 (n̄1)}{0,1}

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kξ
H2(n̄

′){A(1,1)
H2 (n̄1)}{0,1}

)















(4.78)
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The formulation for the vertically polarized scattering coefficients: The g
(2,0)
ζ ker-

nels for horizontal incidence can expressed as:

g
(2,0)
ζ (n̄′, n̄1) =









1

2
s0̄,n̄′Kζ

E1(n̄
′)
(

k2
zi + R

(2),h
E1

(0̄)
)

+
1

2
sn̄′,0̄ Kζ

H1(n̄
′)

(

k3
zi

k0η0

+ R
(3),h
H1

(0̄)

)

−
(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H1(n̄

′)kρi

(

kzi

k0η0

+ R
(1),h
H1

(0̄)

)

−(i)



sn̄′,n̄1

(

Kζ
H1(n̄

′){A(3,1)
H1 (n̄1)}(1,0) − Kζ

E1(n̄
′){A(2,1)

E1 (n̄1)}(1,0)

)

+cn̄′,n̄1

(

Kζ
E1(n̄

′){B(3,1)
E1 (n̄1)}(1,0) + Kζ

H1(n̄
′){B(2,1)

H1 (n̄1)}(1,0)

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H1(n̄

′){A(1,1)
H1 (n̄1)}(1,0)

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kζ
E1(n̄

′){B(1,1)
E1 (n̄1)}(1,0)

)













(4.79)

And, for vertical incidence:

g
(2,0)
ζ (n̄′, n̄1) =









− 1

2
cn̄′,0̄ Kζ

E1(n̄
′)

(

k3
zi

k0

− R
(3),v
E1

(0̄)

)

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

kρiK
ζ
E1(n̄

′)

(

kzi

k0

− R
(1),v
E1

(0̄)

)

+
1

2
cn̄′,0̄K

ζ
H1(n̄

′)

(

1

η0

k2
zi + R

(2),v
H1

(0̄)

)

−(i)



sn̄′,n̄1

(

Kζ
H1(n̄

′){A(3,1)
H1 (n̄1)}(1,0) − Kζ

E1(n̄
′){A(2,1)

E1 (n̄1)}(1,0)

)

+cn̄′,n̄1

(

Kζ
E1(n̄

′){B(3,1)
E1 (n̄1)}(1,0) + Kζ

H1(n̄
′){B(2,1)

H1 (n̄1)}(1,0)

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H1(n̄

′){A(1,1)
H1 (n̄1)}(1,0)
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+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kζ
E1(n̄

′){B(1,1)
E1 (n̄1)}(1,0)

)













(4.80)

For both horizontal and vertical polarizations, the g
(1,1)
ζ kernels have the following

unique representation:

g
(1,1)
ζ (n̄′, n̄1) = −(i)



sn̄′,n̄1

(

Kζ
H1(n̄

′){A(3,1)
H1 (n̄1)}(0,1) − Kζ

E1(n̄
′){A(2,1)

E1 (n̄1)}(0,1)

)

+cn̄′,n̄

(

Kζ
E1(n̄

′){B(3,1)
E1 (n̄1)}(0,1) + Kζ

H1(n̄
′){B(2,1)

H1 (n̄1)}(0,1)

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H1(n̄

′){A(1,1)
H1 (n̄1)}(0,1)

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kζ
E1(n̄

′){B(1,1)
E1 (n̄1)}(0,1)

)

+sn̄′,n̄′−n̄1

(

Kζ
H2(n̄

′){A(3,1)
H2 (n̄′ − n̄1)}(1,0) − Kζ

E2(n̄
′){A(2,1)

E2 (n̄′ − n̄1)}(1,0)

)

+cn̄′,n̄′−n̄1

(

Kζ
E2(n̄

′){B(3,1)
E2 (n̄′ − n̄1)}(1,0) + Kζ

H2(n̄
′){B(2,1)

H2 (n̄′ − n̄1)}(1,0)

)

−(kn̄′−n̄1
ρ )

(

(

kn̄′−n̄1
ρ sn̄′−n̄1,n̄′

)

Kζ
H2(n̄

′){A(1,1)
H2 (n̄′ − n̄1)}(1,0)

+
(

kn̄′

ρ − kn̄′−n̄1
ρ cn̄′−n̄1,n̄′

)

Kζ
E2(n̄

′){B(1,1)
E2 (n̄′ − n̄1)}(1,0)

)



 (4.81)

Finally, the g
(0,2)
ζ kernels for horizontal incidence can expressed as:

g
(0,2)
ζ (n̄′, n̄1) =









1

2
s0̄,n̄′ Kζ

E2(n̄
′)
(

R
(2),h
E2

(0̄)
)

+
1

2
sn̄′,0̄ Kζ

H2(n̄
′)
(

R
(3),h
H2

(0̄)
)

−
(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H2(n̄

′)
(

kρiR
(1),h
H2

(0̄)
)

−(i)



sn̄′,n̄1

(

Kζ
H2(n̄

′){A(3,1)
H2 (n̄1)}(0,1) − Kζ

E2(n̄
′){A(2,1)

E2 (n̄1)}(0,1)

)

+cn̄′,n̄

(

Kζ
E2(n̄

′){B(3,1)
E2 (n̄1)}(0,1) + Kζ

H2(n̄
′){B(2,1)

H2 (n̄1)}(0,1)

)
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−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H2(n̄

′){A(1,1)
H2 (n̄1)}(0,1)

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kζ
E2(n̄

′){B(1,1)
E2 (n̄1)}(0,1)

)













(4.82)

for the vertical incidence case:

g
(0,2)
ζ (n̄′, n̄1) =









1

2
cn̄′,0̄ Kζ

E2(n̄
′)
(

R
(3),v
E2

(0̄)
)

−
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

kρiK
ζ
E2(n̄

′)
(

R
(1),v
E2

(0̄)
)

+
1

2
cn̄′,0̄ Kζ

H2(n̄
′)
(

R
(2),v
H2

(0̄)
)

−(i)



sn̄′,n̄1

(

Kζ
H2(n̄

′){A(3,1)
H2 (n̄1)}(0,1) − Kζ

E2(n̄
′){A(2,1)

E2 (n̄1)}(0,1)

)

+cn̄′,n̄

(

Kζ
E2(n̄

′){B(3,1)
E2 (n̄1)}(0,1) + Kζ

H2(n̄
′){B(2,1)

H2 (n̄1)}(0,1)

)

−(kn̄1
ρ )

(

(

kn̄1
ρ sn̄1,n̄′

)

Kζ
H2(n̄

′){A(1,1)
H2 (n̄1)}(0,1)

+
(

kn̄′

ρ − kn̄1
ρ cn̄1,n̄′

)

Kζ
E2(n̄

′){B(1,1)
E2 (n̄1)}(0,1)

)













(4.83)

The formulation presented up to this point concludes the complete second order

SPM solution. In the following sections, instead of studying the higher order kernels

one by one, a more general form of the solution is considered.

4.7 Higher order solutions

Previously, the SPM kernels up to second order were derived explicitly. The

general form of solution was given for “τ” denoting any of the scattering coefficients

{α,A,C, γ, β, B,D, δ}. The zeroth order solution was:

τ
(0)
n̄′ = Γτ δn̄′ (4.84)
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and the first order solution was:

τ
(1)
n̄′ = h

(1)
n̄′ g(1,0)

τ (n̄′) + h
(2)
n̄′ g(0,1)

τ (n̄′) (4.85)

while the second order solution was:

τ
(2)
n̄′ =

∑

n̄1

(

h
(1)
n̄1

h
(1)
n̄′−n̄1

g(2,0)
τ (n̄′, n̄1)

+h
(2)
n̄1

h
(1)
n̄′−n̄1

g(1,1)
τ (n̄′, n̄1)

+h
(2)
n̄1

h
(2)
n̄′−n̄1

g(0,2)
τ (n̄′, n̄1)

)

(4.86)

Simply by inspection, we can express the third order solution in the following form:

τ
(3)
n̄′ =

∑

n̄1

∑

n̄2

(

h
(1)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(3,0)
τ (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(2,1)
τ (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(2)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(1,2)
τ (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(2)
n̄2

h
(2)
n̄′−n̄1−n̄2

g(0,3)
τ (n̄′, n̄1, n̄2)

)

(4.87)

When higher order solutions are considered, the explicit kernel equations can be

quite cumbersome. In general, there are a total of (N + 1) SPM kernels that have

be considered in order to express the (N th) order SPM solution, a more general

and compact form of formulation can be obtained, if a notation based on tensors and

vectors, is assumed and the summation over the kernels is expressed as a dot product.

In this section, the basic notational conventions for such a compact formulation are

described.

First, all of the unknown N th order SPM scattering coefficients are put in a single

array of size (1 × 8) in the following form:

τ̄
(N)
n̄′ =

[

α
(N)
n̄′ , β

(N)
n̄′ , A

(N)
n̄′ , B

(N)
n̄′ , C

(N)
n̄′ , D

(N)
n̄′ , γ

(N)
n̄′ , δ

(N)
n̄′

]

(4.88)
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A similar treatment can be done for the Fourier coefficient combinations, that

multiply the SPM kernels. In this way, a general Fourier array can be defined as χ̄
(N)
n̄′

with size (1 × (N + 1)), where the ith element(i = 0, 1, ..., N) is given by:

χ
(N)
n̄′,i = h

(2)
n̄1

h
(2)
n̄2

...h
(2)
n̄i

h
(1)
n̄i+1

....h
(1)
n̄N−1

h
(1)

n̄′−
∑N−1

t=1
n̄t

(4.89)

so that χ̄
(N)
n̄′ can be expressed as:

χ̄
(N)
n̄′ (n̄1, ..., n̄N−1) =



































h
(1)
n̄1

h
(1)
n̄2

....h
(1)
n̄N−1

h
(1)

n̄′−
∑N−1

t=1
n̄t

h
(2)
n̄1

h
(1)
n̄2

....h
(1)
n̄N−1

h
(1)

n̄′−
∑N−1

t=1
n̄t

h
(2)
n̄1

h
(2)
n̄2

....h
(1)
n̄N−1

h
(1)

n̄′−
∑N−1

t=1
n̄t

...

h
(2)
n̄1

h
(2)
n̄2

....h
(2)
n̄N−1

h
(1)

n̄′−
∑N−1

t=1
n̄t

h
(2)
n̄1

h
(2)
n̄2

....h
(2)
n̄N−1

h
(2)

n̄′−
∑N−1

t=1
n̄t



































T

(4.90)

Finally by defining the following two dimensional ((N +1)× 8) tensor for the N th

order SPM kernel:

¯̄g(N)(n̄′, n̄1, .., n̄N−1) =















g(N,0)
α g

(N,0)
β · · · g

(N,0)
δ

g(N−1,1)
α g

(N−1,1)
β g

(N−1,1)
δ

...
. . .

...

g(0,N)
α g

(0,N)
β · · · g

(0,N)
δ















(4.91)

with arguments of the tensor elements dropped for convenience, the solution can be

given in following compact form:

τ̄
(N)
n̄′ =

∑

n̄1

∑

n̄2

...
∑

n̄N−1

χ̄
(N)
n̄′ .¯̄g(N)(n̄′, n̄1, .., n̄N−1) (4.92)

In the following section, based on the tensor notation of the scattering coefficients

and the corresponding kernels, an arbitrary order iterative solution procedure for

SPM kernels will be introduced. First, the arbitrary order solution procedure will be

described in an iterative fashion with several tensor definitions. Later, these tensors

will be derived separately by studying the zeroth and lower order partial solutions

given by Equations 4.53 through 4.58.
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4.8 Arbitrary order solution: Tensor Notation

In this section, similar to the arbitrary order iterative solution for the 1-D Dirichlet

problem presented in Chapter 2, the two layer SPM kernels are expressed as an

iterative sum: higher order solutions in terms of lower order ones. First, the the

complete solution is presented with several tensor definitions, derived from Equations

4.53 through 4.58. Then, each tensor will be provided explicitly.

The arbitrary order (N th order) SPM kernel for the two layer problem is given in

the following compact form:

¯̄g(N)(n̄′, n̄1, .., n̄N−1) = ¯̄u0.¯̄g
(N)
0 (n̄′, sN−1) +

2
∑

l=1

N−1
∑

r=1

¯̄u
(N,r)
l .¯̄g

(r)
l .¯̄v

(N,r)
l (4.93)

with

¯̄g
(r)
l =

{

¯̄g(r)(s̄r, n̄1, .., n̄r−1) l = 1
¯̄g(r)(n̄′ − s̄N−r, n̄N−r+1, .., n̄N−1) l = 2

(4.94)

and

¯̄v
(N,r)
l =

{

¯̄v
(N,r)
1 (n̄′, s̄r, s̄N−1) l = 1

¯̄v
(N,r)
2 (n̄′, n̄′ − s̄N−r, n̄

′ − n̄N−r) l = 2
(4.95)

Here, we have:

n̄r∗ = n̄ +
N−r−1
∑

i=1

n̄i, n̄∗ =
N−1
∑

i=1

n̄i (4.96)

as before and also we define a partial sum term:

s̄p =
p
∑

k=1

n̄k (4.97)

for convenience.The ¯̄u0 tensor is defined as:

¯̄u
(N)
0 =



















1 0
0 0
...

...
0 0
0 1



















(N+1)×2

(4.98)
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and the ¯̄u tensors of size ((N + 1) × (r + 1)) are defined as:

¯̄u
(N,r)
1 =







I(r+1)×(r+1)

......
0(N−r)×(r+1)





 , ¯̄u
(N,r)
2 =







0(N−r)×(r+1)

......
I(r+1)×(r+1)





 (4.99)

In the following subsections, first the zeroth order contribution tensor ¯̄g
(N)
0 will be

introduced. Next, the lower order contribution kernels ¯̄v
(N,r)
l , l = 1, 2 will be derived.

4.8.1 Zeroth order contribution tensor: ¯̄g
(N)
0

The zeroth order contribution tensor is directly obtained from Equations 4.53

through 4.56. Note that the surface profiles were defined as z1 = f1(x̄) and z2 = f̄2(x̄)

with their pth power Fourier coefficients given by:

F {zp}n̄′ =
∑

n̄1

...
∑

n̄p−1

hn̄1 ....hn̄p−1 h
n̄′−
∑p−1

i=1
n̄i

(4.100)

With the new tensor notation we will have:

F {zp
1}n̄′ =

∑

n̄1

...
∑

n̄p−1

χ
(p)
n̄′,0, F {zp

2}n̄′ =
∑

n̄1

...
∑

n̄p−1

χ
(p)
n̄′,p (4.101)

If these expressions plugged into Equations 4.53 through 4.56, these equations simplify

to the following form:

τ
(N,0)
n̄′ =

∑

n̄1

...
∑

n̄N−1

(

χ
(N)
n̄′,0 g

(N)
0τ1 (n̄′, n̄∗) + χ

(N)
n̄′,N g

(N)
0τ2 (n̄′, n̄∗)

)

(4.102)

Notice that the zeroth order contribution solution of the scattering coefficients only

contribute to the SPM kernels g(N,0) and g(0,N). So, with the help of the tensor u0,

these contributions can be mapped into the corresponding SPM kernels. The ¯̄g
(N)
0

tensor can be expressed in terms of these g
(N)
0τ1,2(n̄

′, n̄∗) functions as:

¯̄g
(N)
0 =





g
(N)
0α1 g

(N)
0β1 g

(N)
0A1 g

(N)
0B1 g

(N)
0C1 g

(N)
0D1 g

(N)
0γ1 g

(N)
0δ1

g
(N)
0α2 g

(N)
0β2 g

(N)
0A2 g

(N)
0B2 g

(N)
0C2 g

(N)
0D2 g

(N)
0γ2 g

(N)
0δ2



 (4.103)
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with the elements related to the upper surface given in the first row and the the

elements of the lower surface, in the second row.

With the following newly defined variables:

κc(n̄
′, n̄∗) =

(

kn̄′

ρ − kn̄∗

ρ cn̄∗,n̄′

)

, κs(n̄
′, n̄∗) =

(

kn̄∗

ρ sn̄∗,n̄′

)

(4.104)

and slightly modified versions of the R(N) functionals given in Section 4.3.1, Equations

4.6 through 4.13:

R(N)
E1,h = (−k0̄

z0)
N + Γα(k0̄

z0)
N − ΓA(−k0̄

z1)
N − ΓC(k0̄

z1)
N (4.105)

R(N)
H1,h = −(−k0̄

z0)
N

k0η0

− Γα

(k0̄
z0)

N

k0η0

+ ΓA

(−k0̄
z1)

N

k1η1

+ ΓC

(k0̄
z1)

N

k1η1

(4.106)

R(N)
E2,h = ΓA(−k0̄

z1)
Ne+ik0̄

z1d + ΓC(+k0̄
z1)

Ne−ik0̄
z1d − Γγ(−k0̄

z2)
Ne+ik0̄

z2d (4.107)

R(N)
H2,h = −ΓA

(−k0̄
z1)

N

k1η1

e+ik0̄
z1d − ΓC

(+k0̄
z1)

N

k1η1

e−ik0̄
z1d + Γγ

(−k0̄
z2)

N

k2η2

e+ik0̄
z2d (4.108)

R(N)
E1,v =

(−k0̄
z0)

N

k0

+ Γβ

(k0̄
z0)

N

k0

− ΓB

(−k0̄
z1)

N

k1

− ΓD

(k0̄
z1)

N

k1

(4.109)

R(N)
H1,v =

(−k0̄
z0)

N

η0

+ Γβ

(k0̄
z0)

N

η0

− ΓB

(−k0̄
z1)

N

η1

− ΓD

(k0̄
z1)

N

η1

(4.110)

R(N)
E2,v = ΓB

(−k0̄
z1)

N

k1

e+ik0̄
z1d + ΓD

(+k0̄
z1)

N

k1

e−ik0̄
z1d − Γδ

(−k0̄
z2)

N

k2

e+ik0̄
z2d (4.111)

R(N)
H2,v = ΓB

(−k0̄
z1)

N

η1

e+ik0̄
z1d + ΓD

(+k0̄
z1)

N

η1

e−ik0̄
z1d − Γδ

(−k0̄
z2)

N

η2

e+ik0̄
z2d (4.112)

the elements of the zeroth order contribution kernel ¯̄g
(N)
0 (n̄′, sN−1) can be given in a

compact form; For horizontal polarization we have:

g
(N),h
0{ξ,ζ}l(n̄

′, n̄∗) = −(i)N

N !



 K
{ξ,ζ}
El (n̄′){c, s}0̄,n̄′R(N)

El,h

+K
{ξ,ζ}
Hl (n̄′)

(

{c, s}n̄′,0̄ R(N+1)
Hl,h

− Nκ{c,s}(n̄
′, n̄∗)kρiR(N−1)

Hl,h

)



 (4.113)
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and for vertical polarization:

g
(N),v
0{ξ,ζ}l(n̄

′, n̄∗) = −(i)N

N !



 K
{ξ,ζ}
Hl (n̄′){s, c}0̄,n̄′R(N)

Hl,v

+K
{ξ,ζ}
El (n̄′)

(

{s, c}n̄′,0̄R(N+1)
El,v

− Nκ{s,c}(n̄
′, n̄∗)kρiR(N−1)

El,v

)



 (4.114)

Note that ξ denotes {α,A,C, γ} and ζ denotes {β,B,D, δ} here and l = 1, 2. Also, a

new notation of the form: {ξ, ζ} with either {c, s} or {s, c} is used in these equations,

simply indicating an index change. For example, in Equation 4.113, if a horizontal

scattering coefficient (and element of ξ) is intended, then c should be used either as

a subscript or as a function in the rest of the expression.

4.8.2 Lower order contribution tensors: ¯̄v
(N,r)
l

In this section , the procedure for obtaining the ¯̄v
(N,r)
l tensors is described. The

first step is to study the A and B operators defined in Section 4.3.1 in tensor notation.

Consider A(N,r)
E1 (n̄) for an example and the steps must be repeated for the others. In

tensor notation A(N,r)
E1 can be given as:

A(N,r)
E1 (n̄) =

∑

m̄1

∑

m̄2

...
∑

m̄r−1

χ̄
(r)
n̄ (m̄1, ..., m̄r−1).¯̄g

(r)(n̄, m̄1, .., m̄r−1).































(kn̄
z0)

N−r

0
−(−kn̄

z1)
N−r

0
−(kn̄

z1)
N−r

0
0
0































(4.115)

Notice that A(N,r)
E1 can be represented by a simple column vector.
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After studying all of the operators from A(N,r)
E1 to B(N,r)

H2 , the next step is to put

these column vectors into the lower order partial solution expressions given in Equa-

tions 4.57 and 4.58. In tensor notation, these equations can rewritten as:

τ̄
(N,r)
n̄′ =

∑

n̄





∑

n̄1

...
∑

n̄N−r−1









∑

m̄1

...
∑

m̄r−1





(

χ
(N−r)
n̄′−n̄,0(n̄1, ..., n̄N−r−1)χ̄

(r)
n̄ (m̄1, ..., m̄r−1).

.¯̄g(N)(n̄′, m̄1, .., m̄r−1)¯̄v
(N,r)
1 (n̄′, n̄, n̄1, ..., n̄N−r−1)

+χ
(N−r)
n̄′−n̄,N−r(n̄1, ..., n̄N−r−1)χ̄

(r)
n̄ (m̄1, ..., m̄r−1).

.¯̄g(N)(n̄′, m̄1, .., m̄r−1)¯̄v
(N,r)
2 (n̄′, n̄, n̄1, ..., n̄N−r−1)

)

(4.116)

Here, the ¯̄v
(N,r)
l tensors (l = 1, 2) are of size (8× 8), and in fact, they are functions of

only n̄′, n̄ and n̄r∗. Their general form can be given as:

¯̄v
(N,r)
l (n̄′, n̄, n̄r∗) =



















...
...

...
...

...
...

...
...

v̄αl v̄βl v̄Al v̄Bl v̄Cl v̄Dl v̄γl v̄δl

...
...

...
...

...
...

...
...



















(4.117)

Each column here corresponds to a single scattering coefficient and can be expressed

in terms of four special column vectors and their duals, in the following compact form:

v̄
(N,r)
ξl (n̄′, n̄, n̄r∗) = − (i)N−r

(N − r)!

(

Kξ
El(n̄

′)v̄El + Kξ
Hl(n̄

′)v̄
(d)
Hl

)

v̄
(N,r)
ζl (n̄′, n̄, n̄r∗) = − (i)N−r

(N − r)!

(

Kζ
El(n̄

′)v̄
(d)
El + Kζ

Hl(n̄
′)v̄Hl

)

(4.118)
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These four special column vectors (v̄E1, v̄H1, v̄E2 and v̄H2) are given as::

v̄E1(n̄
′, n̄, n̄r∗) =



































cn̄′,n̄(kn̄
z0)

N−r

sn̄′,n̄
(kn̄

z0)N−r+1

k0
− (N − r)kn̄

ρ κs(n̄
′, n̄r∗)

(kn̄
z0)N−r−1

k0

−cn̄′,n̄(−kn̄
z1)

N−r

−sn̄′,n̄
(−kn̄

z1)N−r+1

k1
+ (N − r)kn̄

ρ κs(n̄
′, n̄r∗)

(−kn̄
z1)

N−r−1

k1

−cn̄′,n̄(kn̄
z1)

N−r

−sn̄′,n̄
(kn̄

z1)N−r+1

k1
+ (N − r)kn̄

ρ κs(n̄
′, n̄r∗)

(kn̄
z1)N−r−1

k1

0
0



































(4.119)

v̄H1(n̄
′, n̄, n̄r∗) =







































−sn̄′,n̄
(kn̄

z0)N−r+1

k0η0
+ (N − r)(kn̄

ρ )κs(n̄
′, n̄r∗)

(kn̄
z0)

N−r−1

k0η0

cn̄′,n̄
(kn̄

z0)N−r

η0

sn̄′,n̄
(−kn̄

z1)N−r+1

k1η1
− (N − r)(kn̄

ρ )κs(n̄
′, n̄r∗)

(−kn̄
z1)

N−r−1

k1η1

−cn̄′,n̄
(−kn̄

z1)N−r

η1

sn̄′,n̄
(kn̄

z1)N−r+1

k1η1
− (N − r)(kn̄

ρ )κs(n̄
′, n̄r∗)

(kn̄
z1)N−r−1

k1η1

−cn̄′,n̄
(kn̄

z1)N−r

η1

0
0







































(4.120)

v̄E2(n̄
′, n̄, n̄r∗) =





































0
0

cn̄′,n̄(−kn̄
z1)

N−re+ikn̄
z1d

(

sn̄′,n̄(kn̄
z1)

2 − (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(−kn̄
z1)N−r−1

k1
e+ikn̄

z1d

cn̄′,n̄(+kn̄
z1)

N−re−ikn̄
z1d

(

sn̄′,n̄(kn̄
z1)

2 − (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(+kn̄
z1)N−r−1

k1
e−ikn̄

z1d

−cn̄′,n̄(−kn̄
z2)

N−re+ikn̄
z2d

(

−sn̄′,n̄(kn̄
z2)

2 + (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(−kn̄
z2)N−r−1

k2
e+ikn̄

z2d





































(4.121)

v̄H2(n̄
′, n̄, n̄r∗) =









































0
0

(

−sn̄′,n̄(kn̄
z1)

2 + (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(−kn̄
z1)N−r−1

k1η1
e+ikn̄

z1d

cn̄′,n̄
(−kn̄

z1)N−r

η1
e+ikn̄

z1d

(

−sn̄′,n̄(kn̄
z1)

2 + (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(+kn̄
z1)N−r−1

k1η1
e−ikn̄

z1d

cn̄′,n̄
(+kn̄

z1)N−r

η1
e−ikn̄

z1d

(

sn̄′,n̄(kn̄
z2)

2 − (N − r)(kn̄
ρ )κs(n̄

′, n̄r∗)
)

(−kn̄
z2)N−r−1

k2η2
e+ikn̄

z2d

−cn̄′,n̄
(−kn̄

z2)N−r

η2
e+ikn̄

z2d









































(4.122)
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The duals of these column vectors (i.e. v̄(d)) can be obtained by replacing the cn̄′,n̄ with

−sn̄′,n̄ and replacing sn̄′,n̄ with cn̄′,n̄ and finally replacing κs(n̄
′, n̄r∗) with κc(n̄

′, n̄r∗).

The rest of the derivation involves finding the correct indexes of the ¯̄v tensors,

which are already given in Equations 4.94 and 4.95 and the shifting tensors ¯̄u1 and ¯̄u2

given in Equation 4.99. These indexing are obtained by finding mappings that satisfy

the following transforms:

χ
(N−r)
n̄′−n̄,0(n̄1, ..., n̄N−r−1)χ̄

(r)
n̄ (m̄1, ..., m̄r−1) = χ̄

(N)
n̄ (n̄1, ..., n̄N−1).¯̄u1

χ
(N−r)
n̄′−n̄,N−r(n̄1, ..., n̄N−r−1)χ̄

(r)
n̄ (m̄1, ..., m̄r−1) = χ̄

(N)
n̄ (n̄1, ..., n̄N−1).¯̄u2 (4.123)

that come up in Equation 4.116.

This concludes the complete SPM solution for the two layer problem. The SPM

solution is obtained in a total of three different methods, the numerical solution

described in Chapter 3, the explicit analytical solution up to second order given in

Sections 4.5 and 4.6 and finally the arbitrary order tensor solution described in this

section. Each solution method has been implemented, and a perfect match has been

observed between them. Because the arbitrary order tensor solution is the most

efficient of all and has the flexibility to go up to any order, it will be assumed as the

primary SPM solution in the rest of the dissertation.

4.9 Conclusion

In this chapter, the analytical arbitrary order solution procedure, described in

Chapter 2 was applied to the two layer problem. The zeroth, first, and second order

explicit solutions were considered. Once the general form of solutions were deter-

mined, a tensor based formulation was introduced. Utilizing this new formulation,

the arbitrary order SPM solution for the two layer problem was obtained. Such a
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form is very useful, because it allows evaluation of the field statistical moments in a

direct manner, when considering stochastic surfaces.

Writing the arbitrary order solution in the iterative form has several advantages

such as modular programing and faster computations, as discussed in the second

chapter for the one dimensional Dirichlet formulation. In the two layer problem case,

considering the two dimensional nature of the solutions with two layers, the expres-

sions are far more complex and consequently, the advantages of iterative solution

become more appreciable. In fact, this solution will be utilized in the next chapter

to do an extensive power analysis of the two layer problem.
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CHAPTER 5

APPLICATIONS: CALCULATION OF POWER FOR

TWO-LAYER PROBLEM

5.1 Introduction

In this chapter, both coherent and incoherent power analysis of the two-layer

problem is provided for both periodic and non-periodic cases. The derivations are

valid for for any scattering coefficient, i.e. reflected, intermediate and transmitted

powers. In the following sections, first, a general discussion on the power calculations

is provided. Assumptions involving the statistical surface properties are highlighted.

Then, under the assumption of Gaussian Random Process (GRP), the zeroth and

the second order coherent reflectivity and the second and the fourth order incoherent

bi-static Radar Cross Sections (RCS) are derived. For the case when the two surfaces

are uncorrelated, the bi-static RCS term is studied throughly and the effects of upper

and lower roughness and the interaction of roughness effects are identified. A special

term is defined as the ratio of the interaction effect to the overall RCS, as a measure

of the importance of the interaction effects.

Later in the chapter, the derived power quantities are examined extensively for

uncorrelated GRPs. First the second order correction to the coherent reflectivity is
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studied. Next, the bi-static RCS is studied for lossless, air-ice-rock type interface for

all possible scattering angles. Then, RCS quantities are examined for backscatter-

ing for the effects of surface correlation lengths, thickness of the intermediate layer,

incidence angle and dielectric contrasts of the media.

As a reminder, “ς” denoting any of the scattering coefficients:

ς = {α,A,C, γ, β, B,D, δ}, (5.1)

then the zeroth order solution was given with:

ς
(0)
n̄′ = Γς δn̄′ (5.2)

and the first order solution:

ς
(1)
n̄′ = h

(1)
n̄′ g(1,0)

ς (n̄′) + h
(2)
n̄′ g(0,1)

ς (n̄′) (5.3)

and the second order solution was:

ς
(2)
n̄′ =

∑

n̄1

(

h
(1)
n̄1

h
(1)
n̄′−n̄1

g(2,0)
ς (n̄′, n̄1)

+h
(2)
n̄1

h
(1)
n̄′−n̄1

g(1,1)
ς (n̄′, n̄1)

+h
(2)
n̄1

h
(2)
n̄′−n̄1

g(0,2)
ς (n̄′, n̄1)

)

(5.4)

and finally the third order solution was:

ς
(3)
n̄′ =

∑

n̄1

∑

n̄2

(

h
(1)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(3,0)
ς (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(2,1)
ς (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(2)
n̄2

h
(1)
n̄′−n̄1−n̄2

g(1,2)
ς (n̄′, n̄1, n̄2)

+h
(2)
n̄1

h
(2)
n̄2

h
(2)
n̄′−n̄1−n̄2

g(0,3)
ς (n̄′, n̄1, n̄2)

)

(5.5)

Given the field solution to the third order in surface height, reflected and transmitted

powers can also be derived to third order. Next, power calculations will be discussed

for the periodic case.
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5.2 Calculation of the power terms for periodic surfaces

In this section, calculation of the coherent reflectivity and the incoherent power

are discussed under the periodicity assumption. Since the power in particular Flo-

quet mode is directly proportional to its amplitude squared, and since the distinct

polarizations are orthogonal, the relevant quantities to consider are:

|ςn̄′ |2 =
∣

∣

∣ς
(0)
n̄′ + ς

(1)
n̄′ + ς

(2)
n̄′ + ς

(3)
n̄′ + .......

∣

∣

∣

2
(5.6)

Collecting the terms of identical order yields:

|ςn̄′ |2 =
[

∣

∣

∣ ς
(0)
n̄′

∣

∣

∣

2
]

+
[

2Re
{

ς
(0)∗
n̄′ ς

(1)
n̄′

}]

+
[

∣

∣

∣ ς
(1)
n̄′

∣

∣

∣

2
+ 2Re

{

ς
(0)∗
n̄′ ς

(2)
n̄′

}

]

+
[

2Re
{

ς
(1)∗
n̄′ ς

(2)
n̄′

}

+ 2Re
{

ς
(0)∗
n̄′ ς

(3)
n̄′

}]

+
[

∣

∣

∣ ς
(2)
n̄′

∣

∣

∣

2
+ 2Re

{

ς
(1)∗
n̄′ ς

(3)
n̄′

}

+ 2Re
{

ς
(0)∗
n̄′ ς

(4)
n̄′

}

]

+ ... (5.7)

where individual orders are grouped inside parenthesis, and a fourth order term has

been included as well, even though the fourth order solution is not considered in this

chapter. Immediately it can be recognized that the zeroth order term represents the

reflectivity of a flat surface, and also that terms multiplying ς
(0)
n̄′ are evaluated only

with n̄′ = 0̄ since ς
(0)
n̄′ vanishes for all other indices; these terms represent corrections

to the flat surface reflectivity. If it is assumed that the surfaces have a zero spatial

average value (i.e. h
(1,2)
0̄ = 0̄) then the first order term vanishes since it is directly

proportional to h0̄. All other terms exist in the general case and contribute to reflected

and transmitted powers. Fractions of the incident power reflected into a specific

polarization of a Floquet mode (n̄′) can be shown to be

Re

{

kn̄′

z0

kzi

}

|ς|2 , (5.8)
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where ς = α or β, while the fraction of power transmitted into a specific polarization

of Floquet mode (n̄′) in a lossless medium can be shown to be

Re

{

kn̄′

z2

kzi

}

|ς|2 , (5.9)

where ς = γ or δ. And finally, the the fraction of intermediate power in a specific

polarization of Floquet mode (n̄′) in a lossless medium can be shown to be

Re

{

kn̄′

z1

kzi

}

|ς|2 , (5.10)

where ς = A, B, C or D.

5.2.1 Coherent Reflectivity

Since the small perturbation method is frequently applied in the analysis of

stochastic surfaces, it is also of interest to consider scattered and transmitted co-

herent and incoherent powers. In this case, the results are considerably simplified by

assuming that each point on the surface profiles z1(x, y) and z2(x, y) is a zero mean

random variable (i.e. < z1(x, y) >= 0 and < z2(x, y) >= 0) so that < h
(1,2)
0̄ >= 0̄.

In this case, the coherent reflectivity,

|< ς >|2 =
∣

∣

∣< Γeff
ς >

∣

∣

∣

2
(5.11)

with ς = α or β is found to exist only in the specular direction n̄′ = 0̄ up to third

order, and the effective reflection coefficient < Γeff
ς > is given by

< Γeff
ς > = Γς

+
∑

n̄1

<
∣

∣

∣h
(1)
n̄1

∣

∣

∣

2
> g(2,0)

ς (0̄, n̄1)

+
∑

n̄1

<
∣

∣

∣h
(2)
n̄1

h
(1)
n̄1

∣

∣

∣ > g(1,1)
ς (0̄, n̄1)
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+
∑

n̄1

<
∣

∣

∣h
(2)
n̄1

∣

∣

∣

2
> g(0,2)

ς (0̄, n̄1)

+
∑

n̄1

∑

n̄2

< h
(1)
n̄1

h
(1)
n̄2

h
(1)
−n̄1−n̄2

> g
(3,0)
ζ (0̄, n̄1, n̄2)

+
∑

n̄1

∑

n̄2

< h
(2)
n̄1

h
(1)
n̄2

h
(1)
−n̄1−n̄2

> g
(2,1)
ζ (0̄, n̄1, n̄2)

+
∑

n̄1

∑

n̄2

< h
(2)
n̄1

h
(2)
n̄2

h
(1)
−n̄1−n̄2

> g
(1,2)
ζ (0̄, n̄1, n̄2)

+
∑

n̄1

∑

n̄2

< h
(2)
n̄1

h
(2)
n̄2

h
(2)
−n̄1−n̄2

> g
(0,3)
ζ (0̄, n̄1, n̄2) (5.12)

to third order in surface height. A corresponding equation can be derived for the

effective transmission coefficient in a lossless medium. Note an expansion of the

coherent power
∣

∣

∣< Γeff
ς >

∣

∣

∣

2
similar to equation (5.7) is required to group coherent

power terms to third order consistently. If it is further assumed that the surfaces

are Gaussian random processes and there is no correlation between the surfaces (i.e.

<
∣

∣

∣h
(2)
n̄1

h
(1)
n̄1

∣

∣

∣ >= 0), the bi-spectrum like terms (i.e.< h
(1,2)
n̄ h

(1,2)
n̄1

h
(1,2)
−n̄−n̄1

> ) all vanish

and the following simpler form is obtained:

< Γeff
ς > = Γς +

∑

n̄1

<
∣

∣

∣h
(1)
n̄1

∣

∣

∣

2
> g(2,0)

ς (0̄, n̄1)

+
∑

n̄1

<
∣

∣

∣h
(2)
n̄1

∣

∣

∣

2
> g(0,2)

ς (0̄, n̄1) (5.13)

This expression is valid for the periodic case. The non-periodic, (continuous spec-

trum) case expressions are derived later in the chapter. Next, the incoherent power

terms will be considered again for the periodic case.

5.2.2 Incoherent Powers

The expansion for incoherent powers produces

< |ςn̄′− < ςn̄′ >|2 > = <
∣

∣

∣ς
(1)
n̄′

∣

∣

∣

2
> +2Re

{

< ς
(1)∗
n̄′ ς

(2)
n̄′ >

}

+

<
∣

∣

∣ς
(2)
n̄′ − < ς

(2)
n̄′ >

∣

∣

∣

2
> +2Re

{

< ς
(1)∗
n̄′ ς

(3)
n̄′ >

}

(5.14)
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to fourth order; note that the third order solution for fields is sufficient to determine

incoherent scattered and transmitted powers to fourth order. The above expression

under the uncorrelated surfaces assumption can be rewritten as:

< |ςn̄′− < ςn̄′ >|2 > = <
∣

∣

∣h
(1)
n̄′

∣

∣

∣

2
>
∣

∣

∣g(1,0)
ς (n̄′)

∣

∣

∣

2
+ <

∣

∣

∣h
(2)
n̄′

∣

∣

∣

2
>
∣

∣

∣g(0,1)
ς (n̄′)

∣

∣

∣

2

+2Re

{

∑

n̄1

(

< h
(1)∗
n̄′ h

(1)
n̄1

h
(1)
n̄′−n̄1

> g(1,0)∗
ς (n̄′)g(2,0)

ς (n̄′, n̄1)

+ < h
(1)∗
n̄′ h

(2)
n̄1

h
(1)
n̄′−n̄1

> g(1,0)∗
ς (n̄′)g(1,1)

ς (n̄′, n̄1)

+ < h
(1)∗
n̄′ h

(2)
n̄1

h
(2)
n̄′−n̄1

> g(1,0)∗
ς (n̄′)g(0,2)

ς (n̄′, n̄1)

+ < h
(2)∗
n̄′ h

(1)
n̄1

h
(1)
n̄′−n̄1

> g(0,1)∗
ς (n̄′)g(2,0)

ς (n̄′, n̄1)

+ < h
(2)∗
n̄′ h

(2)
n̄1

h
(1)
n̄′−n̄1

> g(0,1)∗
ς (n̄′)g(1,1)

ς (n̄′, n̄1)

+ < h
(2)∗
n̄′ h

(2)
n̄1

h
(2)
n̄′−n̄1

> g(0,1)∗
ς (n̄′)g(0,2)

ς (n̄′, n̄1)

)}

+
∑

n̄1

∑

n̄2

[

(

< h
(1)
n̄1

h
(1)
n̄′−n̄1

h
(1)∗
n̄2

h
(1)∗
n̄′−n̄2

>

− < h
(1)
n̄1

h
(1)
n̄′−n̄1

>< h
(1)∗
n̄2

h
(1)∗
n̄′−n̄2

>
)

g(2,0)
ς (n̄′, n̄1)g

(2,0)∗
ς (n̄′, n̄2)

+
(

< h
(2)
n̄1

h
(1)
n̄′−n̄1

h
(2)∗
n̄2

h
(1)∗
n̄′−n̄2

>
)

g(1,1)
ς (n̄′, n̄1)g

(1,1)∗
ς (n̄′, n̄2)

+
(

< h
(2)
n̄1

h
(2)
n̄′−n̄1

h
(2)∗
n̄2

h
(2)∗
n̄′−n̄2

>

− < h
(2)
n̄1

h
(2)
n̄′−n̄1

>< h
(2)∗
n̄2

h
(2)∗
n̄′−n̄2

>
)

g(0,2)
ς (n̄′, n̄1)g

(0,2)∗
ς (n̄′, n̄2)

]

+2Re

{

∑

n̄1

∑

n̄2

[

< h
(1)∗
n̄′ h

(1)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(3,0)

ς (n̄′, n̄1, n̄2)

< h
(1)∗
n̄′ h

(2)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(2,1)

ς (n̄′, n̄1, n̄2)

< h
(1)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(1,2)

ς (n̄′, n̄1, n̄2)

< h
(1)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(2)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(0,3)

ς (n̄′, n̄1, n̄2)

< h
(2)∗
n̄′ h

(1)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(3,0)

ς (n̄′, n̄1, n̄2)

< h
(2)∗
n̄′ h

(2)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(2,1)

ς (n̄′, n̄1, n̄2)
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< h
(2)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(1,2)

ς (n̄′, n̄1, n̄2)

< h
(2)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(2)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(0,3)

ς (n̄′, n̄1, n̄2)
]

}

(5.15)

showing the dependencies of incoherent power at second order on the surface spectra,

at third order on the surface bi-spectra, and at fourth order on quantities which can

be related to the surface tri-spectra, power spectra, and correlations between Fourier

coefficients. Again for a Gaussian random process the bi-spectra and third order

power terms vanish, while the fourth order power term can be expressed in terms of

the surface power spectra only [23].

Under the assumption of a GRP, Equation 5.15 becomes:

< |ςn̄′− < ςn̄′ >|2 > = <
∣

∣

∣h
(1)
n̄′

∣

∣

∣

2
>
∣

∣

∣g(1,0)
ς (n̄′)

∣

∣

∣

2
+ <

∣

∣

∣h
(2)
n̄′

∣

∣

∣

2
>
∣

∣

∣g(0,1)
ς (n̄′)

∣

∣

∣

2

+
∑

n̄1

∑

n̄2

[

(

< h
(1)
n̄1

h
(1)
n̄′−n̄1

h
(1)∗
n̄2

h
(1)∗
n̄′−n̄2

>

− < h
(1)
n̄1

h
(1)
n̄′−n̄1

>< h
(1)∗
n̄2

h
(1)∗
n̄′−n̄2

>
)

g(2,0)
ς (n̄′, n̄1)g

(2,0)∗
ς (n̄′, n̄2)

+
(

< h
(2)
n̄1

h
(1)
n̄′−n̄1

h
(2)∗
n̄2

h
(1)∗
n̄′−n̄2

>
)

g(1,1)
ς (n̄′, n̄1)g

(1,1)∗
ς (n̄′, n̄2)

+
(

< h
(2)
n̄1

h
(2)
n̄′−n̄1

h
(2)∗
n̄2

h
(2)∗
n̄′−n̄2

>

− < h
(2)
n̄1

h
(2)
n̄′−n̄1

>< h
(2)∗
n̄2

h
(2)∗
n̄′−n̄2

>
)

g(0,2)
ς (n̄′, n̄1)g

(0,2)∗
ς (n̄′, n̄2)

]

+2Re

{

∑

n̄1

∑

n̄2

[

< h
(1)∗
n̄′ h

(1)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(3,0)

ς (n̄′, n̄1, n̄2)

< h
(1)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(1,0)∗
ς (n̄′)g(1,2)

ς (n̄′, n̄1, n̄2)

< h
(2)∗
n̄′ h

(2)
n̄1

h
(1)
n̄2

h
(1)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(2,1)

ς (n̄′, n̄1, n̄2)

< h
(2)∗
n̄′ h

(2)
n̄1

h
(2)
n̄2

h
(2)
n̄′−n̄1−n̄2

> g(0,1)∗
ς (n̄′)g(0,3)

ς (n̄′, n̄1, n̄2)
]

}

(5.16)
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5.3 Derivations for non-periodic surfaces

Scattering cross sections per unit area for a non-periodic surface (whose dimen-

sions must be large compared to the electromagnetic wavelength and any surface

features, and neglecting edge scattering effects) can also be derived from these results

by considering the limit as the surface periods approach infinity following [23]. The

scattering cross section per unit area at a particular scattering angle (related to (n̄′)

) and in a particular polarization can be shown to be

σς = 4πk2
0

cos2 θs

cos θi

< |ς|2 >

δkxδky

(5.17)

where δkx = 2π
Px

and δky = 2π
Py

are differential quantities which cancel when hn̄′ terms

are related to their continuous counterparts.

The definitions

kn̄1 = (δkxn1, δkym1) (5.18)

< |hn̄′ |2 >

δkxδky

= W (kn̄′) (5.19)

< hn̄′hn̄1h−n̄′−n̄1 >

(δkx)
2 (δky)

2 = B(kn̄′ ,kn̄1) (5.20)

and

< hn̄′hn̄1hn̄2h−n̄′−n̄1−n̄2 >

(δkx)
3 (δky)

3 = T (kn̄′ ,kn̄1 ,kn̄2) (5.21)

where W , B, and T represent the continuous surface power spectrum, bi-spectrum,

and a quantity which can be related to the tri-spectrum, respectively, enable the sums

over n̄ variable in the coherent and incoherent power expressions to be converted into

integrals over the corresponding wavenumber.

First, consider the coherent reflectivity term, given in Equation 5.13, in the case of

continuous GRP surface. In that case, the expression can be rewritten as an integral
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in the following form:

< Γeff
ς >= Γ(0)

ς + Γ(2)
ς + ... (5.22)

where Γ(0) is the corresponding zeroth order solution and Γ(2) is given by:

Γ(2)
ς =

∫

dk′
[

W (1)(k′)g(2,0)
ς (0̄,k′) + W (2)(k′)g(0,2)

ς (0̄,k′)
]

(5.23)

where k′ is a dummy variable and the superscript ((1) or (2)) of the power spectrum

indicates the corresponding (upper or lower) surface.

Similarly, for a continuous GRP, the bi-static RCS σς up to fourth order per unit

area at a particular scattering wavenumber (related to (kn̄′) now) and in a particular

polarization can be expressed as sum of several terms that are given as integrals over

the corresponding wavenumber. Each term is labeled according to the SPM kernels

involved.

The terms due to <
∣

∣

∣ς
(1)
n̄′

∣

∣

∣

2
> in Equation 5.14 are given as:

σ10−10
ς = 4πk2

0 cos2 θsW
(1)(kn̄′)

∣

∣

∣g(1,0)
ς (kn̄′)

∣

∣

∣

2
(5.24)

σ01−01
ς = 4πk2

0 cos2 θsW
(2)(kn̄′)

∣

∣

∣g(0,1)
ς (kn̄′)

∣

∣

∣

2
(5.25)

and do not involve any integrations. The first order SPM kernels are absolute squared

and multiplied by the corresponding surface power spectra. The sum of these two

terms gives the total second order RCS, which is the first term in the expansion.

It very clear here that σ10−10
ς is associated with the upper surface roughness, while

σ01−01
ς is associated with the lower surface roughness. This identification is important,

since identifying the upper, lower and interaction of roughness effects is one of the

main purposes of this study.
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Similarly, three terms are obtained from <
∣

∣

∣ς
(2)
n̄′ − < ς

(2)
n̄′ >

∣

∣

∣

2
> in Equation 5.14,

given as:

σ20−20
ς = 4πk2

0 cos2 θs

∫ ∫

dkn̄1W
(1)(kn̄1)W

(1)(kn̄′−n̄1)
(

∣

∣

∣g(2,0)
ς (kn̄′ ,kn̄1)

∣

∣

∣

2
+ g(2,0)∗

ς (kn̄′ ,kn̄′−n̄1)g
(2,0)
ς (kn̄′ ,kn̄1)

)

(5.26)

σ11−11
ς = 4πk2

0 cos2 θs

∫ ∫

dkn̄1W
(2)(kn̄1)W

(1)(kn̄′−n̄1)
∣

∣

∣g(1,1)
ς (kn̄′ ,kn̄1)

∣

∣

∣

2
(5.27)

σ02−02
ς = 4πk2

0 cos2 θs

∫ ∫

dkn̄1W
(2)(kn̄1)W

(2)(kn̄′−n̄1)
(

∣

∣

∣g(0,2)
ς (kn̄′ ,kn̄1)

∣

∣

∣

2
+ g(0,2)∗

ς (kn̄′ ,kn̄′−n̄1)g
(0,2)
ς (kn̄′ ,kn̄1)

)

(5.28)

each involving double integrals over the dummy variable kn̄1 . Again, due to involv-

ing surface power spectra, the first term σ20−20
ς is related only to the upper surface

roughness and the last term σ02−02
ς is related only to the lower surface roughness. The

middle term σ11−11
ς involves both spectra, so is an interaction term.

Finally, four extra terms are obtained from the 2Re
{

< ς
(1)∗
n̄′ ς

(3)
n̄′ >

}

term in Equa-

tion 5.14, given as:

σ10−30
ς =

(

4πk2
0 cos2 θs

)

.2Re

{

W (1)(kn̄′)g(1,0)∗
ς (kn̄′)

∫ ∫

dkn̄1W
(1)(kn̄1).

.
(

g(3,0)
ς (kn̄′ ,kn̄′ ,kn̄1) + g(3,0)

ς (kn̄′ ,kn̄1 ,kn̄′) + g(3,0)
ς (kn̄′ ,kn̄1 ,−kn̄1)

)

}

(5.29)

σ10−12
ς =

(

4πk2
0 cos2 θs

)

.2Re

{

W (1)(kn̄′)g(1,0)∗
ς (kn̄′)

∫ ∫

dkn̄1W
(2)(kn̄1).

.g(1,2)
ς (kn̄′ ,kn̄1 ,kn̄′)

}

(5.30)

σ01−21
ς =

(

4πk2
0 cos2 θs

)

.2Re

{

W (2)(kn̄′)g(0,1)∗
ς (kn̄′)

∫ ∫

dkn̄1W
(1)(kn̄1).

.g(2,1)
ς (kn̄′ ,kn̄1 ,kn̄′)

}

(5.31)
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σ01−03
ς =

(

4πk2
0 cos2 θs

)

.2Re

{

W (2)(kn̄′)g(0,1)∗
ς (kn̄′)

∫ ∫

dkn̄1W
(2)(kn̄1).

.
(

g(0,3)
ς (kn̄′ ,kn̄′ ,kn̄1) + g(0,3)

ς (kn̄′ ,kn̄1 ,kn̄′) + g(0,3)
ς (kn̄′ ,kn̄1 ,−kn̄1)

)

}

(5.32)

and similarly, the first term σ10−30
ς and the last term σ01−03

ς are upper and lower

roughness only terms respectively. The two terms in the middle, σ10−12
ς and σ01−21

ς

are the other interaction terms.

Although, the integrals involved in Equations 5.26 through 5.32 are defined on

the whole 2-D space, the integration domain is truncated to the circle centered at the

origin, with radius 4k0, since kernels evaluated outside of this circle did not contribute

to the integrals. The integration is done numerically in cylindrical coordinates, first in

ρ rigorously, then in φ. The ρ integration is evaluated with adaptive integration algo-

rithm, enforcing several convergence criteria. Then the integration on φ is evaluated

by a simple Gaussian quadrature rule.

With the definitions above, the total fourth order bi-static cross section term is

obtained as a sum of three roughness effects, which can be given as:

σincoh
ς = σupper

ς + σlower
ς + σinter

ς (5.33)

where each roughness effect is given by:

σupper
ς = σ10−10

ς + σ20−20
ς + σ10−30

ς

σlower
ς = σ01−01

ς + σ02−02
ς + σ01−03

ς

σinter
ς = σ11−11

ς + σ10−12
ς + σ01−21

ς (5.34)

in terms of the individual expressions defined above.

A final quantity of interest is also defined:

rint =
σinter

ς

σincoh
ς

(5.35)
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and called “interaction ratio”, since it is the ratio of interaction effect to the total

cross section at the fourth order. Such a unitless quantity is very useful as a measure

of the importance of surface interactions.

In the next section, using an isotropic Gaussian spectrum for both surfaces, the

coherent reflectivity, bi-static RCS and the interaction ratio are investigated in detail

for several example cases.

5.4 Sample Results

In this section, example results from the power calculations of the non-periodic

surfaces are presented. In the following subsections, first the coherent reflection co-

efficient is studied at zeroth and second order for a few example cases. Then an

incoherent scattering analysis is provided. The bi-static RCS is studied as a function

of scattering angles for lossless and a lossy examples. In the rest of the study, the

backscattering RCS is considered. The effects of correlation lengths of the surfaces,

the separation distance, the scattering angle, and the dielectric contrast of the medium

on the backscattering RCS together with the interaction ratio are investigated.

A incident wave frequency of f = 300MHz is assumed so that the upper medium

wave number is λ0 = 1m. Both upper and lower surfaces are assumed to be GRP’s,

with an isotropic Gaussian power spectral density, which is given by:

W (i)(kρ) =
h2

(i)l
2
(i)

4π
exp

(

−
k2

ρl
2
(i)

4

)

, i = 1, 2 (5.36)

where h refers to surface rms height and l is the surface correlation length. Since the

rms height parameter factors out from the spectrum, its dependence is assumed to

be obvious. By defining the slope variables of the surfaces:

s(i) = h(i)/l(i), i = 1, 2 (5.37)
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and setting the surface slopes to a reasonable value of s(i) = 0.1, the surface rms

height dependence of the spectrum is suppressed in the rest of the chapter.

Air-ice-rock type interfaces are assumed in most of the following examples (i.e.

The media are assumed to be non-magnetic, with relative dielectric permitivities:

ε0 = 1, ε1 = 3 and ε2 = 9.) While, the imaginary components should also be

considered for a more realistic analysis, introducing loss to the media will clearly

result in attenuation of the fields, so that the lossless case is more interesting in terms

of highlighting interaction effects.

5.4.1 Coherent Reflectivity Study

The coherent reflectivity of two layer media is considered in this section. Coherent

reflection only occurs in the specular direction, and is calculated for both horizontal

incidence - horizontal scattering and vertical incidence - vertical scattering cases up to

second order. The general air-ice-rock interface is considered here, not only because it

is a realistic example but also, because the dielectric permitivities: ε0 = 1, ε1 = 3 and

ε2 = 9 satisfy: (ε1 =
√

ε0.ε2), so that the zeroth order reflection coefficient vanishes at

normal incidence, when the thickness of the intermediate medium is an odd multiple of

λ1

4
, where λ1 is the electromagnetic radiation wavelength in the intermediate medium.

Introducing roughness to the layers, the first correction to the unperturbed so-

lution comes at the second order. The second order correction term is investigated

for the following numerical example: For the air-ice-rock interface, both upper and

lower surfaces are assumed to have same slope values and same correlation lengths.

The results are given in Figures 5.1 and 5.2. In Figure 5.1, a small correlation length

(l1,2 = 0.1λ0) value, and in Figure 5.2, a larger correlation length value (l1,2 = 0.5λ0)
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Figure 5.1: Coherent Reflectivity Study: for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], φi = 0, slopes
of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation lengths are
fixed to l1,2 = 0.1λ0.
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Figure 5.2: Coherent Reflectivity Study: for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], φi = 0, slopes
of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation lengths are
fixed to l1,2 = 0.5λ0.
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is considered. The slopes are set to s1,2 = 0.1 and the azimuthal angle φ is set to 0 de-

grees in both figures. In these figures, the horizontal axis is reserved for the incidence

(also scattering) angle θ, and the vertical axis represents the thickness of the inter-

mediate medium, normalized by the corresponding wavelength. Each figure has three

rows, first one shows the unperturbed reflection coefficient, the second row presents

the the second order coefficient, and the last row presents the total coefficient. In

both figures, the zeroth order solutions are identical and the reflection coefficient at

normal incidence at d = λ1

4
and d = 3λ1

4
vanishes, as expected. Moreover, at lower

incidence angles, the reflection coefficient has minimum points for thickness values

close to normal incidence zeros. As the angle increases, the minima tend to curve

upwards, meaning that the minimum points occur periodically, at larger thickness

values.

When the second order corrections to the effective coherent reflection coefficient

are considered, in Figure 5.1, where a small correlation length (l1,2 = 0.1λ0) value

is considered, clearly very small corrections are observed, while in Figure 5.2, where

a larger correlation length value (l1,2 = 0.5λ0) is considered, the corrections become

appreciable. Notice that between the two cases, the surface heights increased by a

factor of five and the maximum value of the second order reflection coefficient in-

creased by a factor of 200. The total reflection coefficient subplots also highlight

these effects. These results clearly indicate that roughness might have important

effects on coherent scattering (i.e. for optical applications, such as thin film fabrica-

tion, a detailed coherent scattering analysis is important for determination of limits

of roughness that occur in the fabrication process). Next, the bi-static radar cross

section will be studied for the two layer problem.
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5.4.2 Bi-static RCS Study

In this section, the bi-static RCS derived in Section 5.3 is investigated for the

two layer problem. In this study, the scattering angle θs is varied from 0 to π, and

the azimuth angle φs is varied from 0 to 2π. For a fixed incidence angle θi = 20

and φi = 30. Again, the air-ice-rock type interface is assumed. (i.e. non-magnetic

medium, with relative dielectric permitivities: ε0 = 1, ε0 = 3 and ε2 = 9.) The slopes

of both upper and lower surfaces are fixed to s1,2 = 0.1 and the correlation lengths

are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0. Each

figure is divided into four subplots as a 2×2 array, where the first and the second row

represents the horizontally and vertically polarized scattering, respectively. Similarly,

the columns are reserved for the incidence polarization (i.e. first column is horizontal

incidence, while the second is vertical.)

First, in Figures 5.3 through 5.5, the upper, lower and interaction terms, defined

in Equation 5.34, are plotted respectively. As the results indicate for co-pol cross

sections, all of the surface components (upper, lower and interaction) of the total RCS

obtains their in the plane of incidence. On the other hand, the cross-pol components

maximize when the scattering angle is orthogonal to angle of incidence.

Then, in Figures 5.6 through 5.8, the total second order, the fourth order only and

the total fourth order RCS values are plotted, again for each possible polarization.

The co-pol and cross-pol distinction observed in the previous case is still valid here.

Moreover, it is also clear that, the second order results are the dominant ones here.

Next, in Figure 5.9, the interaction ratio term is plotted with the same configuration.

This plot indicates that the effects of interactions are more important for the cross-

pol terms then for the co-pol terms. Also, for co-pol scattering, maximum interaction
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Figure 5.3: Bi-static RCS Study: σupper for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi =
30, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation
lengths are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.4: Bi-static RCS Study: σlower for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi =
30, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation
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Figure 5.5: Bi-static RCS Study: σinter for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi = 30,
slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation lengths
are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.

ratio occurs at observation angles, orthogonal to the incidence angle and for cross-pol

scattering, the maximum of the intersection ratio occurs at either backscattering or

specular scattering angles.

In order to highlight the effect of loss to the cross sections, one final numerical

study is also included here, given in Figures 5.10 and 5.11, as analogs of Figures 5.8

and 5.9, respectively. The dielectric properties of the media is redefined with small

loss as: non-magnetic medium, with the dielectric permitivities: ε0 = 1, ε0 = 3 + i

and ε2 = 9 + 0.1i. The other parameters of the previous study is kept unchanged.

In Figure 5.10, the effect of loss of the media can be clearly identified as attenuation

of the fields and the cross sections. The maximum values of the cross sections are

decreased by approximately 14dB. In Figure 5.11, the interaction ratios are given,

131



θ
s

φ s

σ
hh
(2)

 

 

10 30 50 70 90
−180

−135

−90

−45

0

45

90

135

180

0

0.5

1

1.5

2

2.5
x 10

−3

θ
s

φ s

σ
vh
(2)

 

 

10 30 50 70 90
−180

−135

−90

−45

0

45

90

135

180

0

0.5

1

1.5

2

2.5
x 10

−3

θ
s

φ s

σ
hv
(2)

 

 

10 30 50 70 90
−180

−135

−90

−45

0

45

90

135

180

0

0.5

1

1.5

2

2.5
x 10

−3

θ
s

φ s

σ
vv
(2)

 

 

10 30 50 70 90
−180

−135

−90

−45

0

45

90

135

180

0

0.5

1

1.5

2

2.5
x 10

−3

Figure 5.6: Bi-static RCS Study: σ(2) for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi = 30,
slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation lengths
are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.7: Bi-static RCS Study: σ(4) for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi = 30,
slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation lengths
are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.8: Bi-static RCS Study: σincoh for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1], θi = 20, φi =
30, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The correlation
lengths are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.

which reduced significantly. Although, some of the characteristics, like the locations

of the maximums (in the absolute sense), have similarities, due to complete changes

in the kernels, specific differences can be observed especially for vertical scattering

cross sections.

5.4.3 Backscattering Study: Effects of correlation lengths

In this section, the bi-static RCS derived in Section 5.3 is investigated for backscat-

tering. Again a lossless, non-magnetic medium, described by the dielectric permitiv-

ities ε0 = 1, ε1 = 3 and ε2 = 9 is considered here. Two different incidence angles

are investigated in this section: (θi = 15 and φi = 0) as a low angle example, and

(θi = 75 and φi = 0) as a large angle example. The slopes of both upper and lower

surfaces are fixed to s1,2 = 0.1. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.9: Bi-static RCS Study: Interaction ratio for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1],
θi = 20, φi = 30, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The
correlation lengths are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to
be d = 1λ0.
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Figure 5.10: Bi-static RCS Study: σincoh for lossy case, ε̄r = [1, 3 + i, 9 + 0.1i],
µ̄r = [1, 1, 1], θi = 20, φi = 30, slopes of both upper and lower surfaces are fixed to
s1,2 = 0.1. The correlation lengths are fixed to l1,2 = 0.1λ0. The thickness parameter
is assumed to be d = 1λ0.
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Figure 5.11: Bi-static RCS Study: Interaction ratio for lossy case, ε̄r = [1, 3 + i, 9 +
0.1i], µ̄r = [1, 1, 1], θi = 20, φi = 30, slopes of both upper and lower surfaces are
fixed to s1,2 = 0.1. The correlation lengths are fixed to l1,2 = 0.1λ0. The thickness
parameter is assumed to be d = 1λ0.

The correlation lengths of both upper and lower surfaces are varied from 0.01λ0 to

1λ0. For each incidence angle case, two plots are given, first for the cross sections,

and second for the interaction ratio.

In Figures 5.12 and 5.13, results from the (θi = 15 and φi = 0) case are presented.

In Figure 5.12, the backscattering cross sections are provided: second order co-pol

terms, given in the first row and the fourth order terms for all polarizations, given in

the second and third rows, as labeled. It is a low incidence angle characteristic for

isotropic spectrum that the horizontal-horizontal and vertical-vertical results, and also

two cross-pol results are very close to each other. In the case of normal incidence, they

are identical. It should also be noted that these results are Gaussian spectrum specific.

The Gaussian spectrum highlights a specific part of the kernel, and these regions are
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clearly observed. Typically, increasing correlation length causes an increase of the

cross sections in the absolute sense. In Figure 5.13, the interaction ratio is investigated

in the total fourth order. The logarithm of the absolute interaction ratio is plotted

for convenience, for all four polarizations. These results indicate that the interaction

term is more important for the cross-pol rather than the co-pol cross sections for lower

correlation lengths. This ratio could be as much as ±0.1 for this example. For co-pol

results, the interpretation is slightly different. The co-pol fourth order kernels have

resonance (rapidly changing) behavior for some parts of the integration domain, and

when these regions are highlighted by the spectra, rapid changes in the cross sections

occur. For this example, these changes occur for the correlation length values of

l1,2 ≈ 1λ0. And for these special resonance regions, the interaction term becomes

very important, even having values as much as ±10.

In Figures 5.14 and 5.15, results from the (θi = 75 and φi = 0) case are presented as

a close to grazing incidence example. In Figure 5.14, similar to Figure 5.12, the second

and fourth order cross sections are provided. Typically, the co-pol cross sections

reduced significantly in amplitude. The cross-pol cross sections are still comparable

to previous case. Increasing cross sections with the increasing correlation length is still

true here at least up to the resonance region. Although the cross sections tend to drop

after the resonance region, they start to increase again, with increasing correlation

lengths. Also, the resonance effects occur in smaller correlation lengths here, which is

due to the incidence angle dependence of the cross section kernels. In Figure 5.15, the

interaction ratios, again in absolute logarithm are provided for each polarization. In

this case, the interaction of surfaces effect becomes extremely important for the cross
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Figure 5.12: Backscattering Study: Effects of correlation lengths for ε̄r = [1, 3, 9],
µ̄r = [1, 1, 1], θi = 15, φi = 0, slopes of both upper and lower surfaces are fixed to
s1,2 = 0.1. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.13: Backscattering Study: Effects of correlation lengths for ε̄r = [1, 3, 9],
µ̄r = [1, 1, 1], θi = 15, φi = 0, slopes of both upper and lower surfaces are fixed to
s1,2 = 0.1. The thickness parameter is assumed to be d = 1λ0.

polarized cross sections. Unlike the previous case, the co-pol ratios are significantly

reduced.

5.4.4 Backscattering Study: Effect of thickness

In this section, the bi-static RCS derived in Section 5.3 is investigated for backscat-

tering, for the effects of thicknesses and correlation lengths. Again a lossless, non-

magnetic medium, described by the dielectric permitivities: ε0 = 1, ε1 = 3 and ε2 = 9

is considered here. The correlation lengths of the upper and lower medium are as-

sumed to be equal and varied from from 0.01λ0 to 1λ0, on logarithmic scale. The

thickness of the intermediate media is varied from 0.1λ0 to 1λ0, on linear scale. The

incidence (and also the observation) angle is fixed to (θi = 45 and φi = 0) degrees.
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Figure 5.14: Backscattering Study: Effects of correlation lengths for ε̄r = [1, 3, 9],
µ̄r = [1, 1, 1], θi = 75, φi = 0, slopes of both upper and lower surfaces are fixed to
s1,2 = 0.1. The thickness parameter is assumed to be d = 1λ0.
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Figure 5.15: Backscattering Study: Effects of correlation lengths for ε̄r = [1, 3, 9],
µ̄r = [1, 1, 1], θi = 75, φi = 0, slopes of both upper and lower surfaces are fixed to
s1,2 = 0.1. The thickness parameter is assumed to be d = 1λ0.

The slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. The results

are presented in Figures 5.16 and 5.17 , for cross sections and interaction ratios,

respectively.

In Figure 5.16, the second and fourth order cross sections are provided. A res-

onance occurs around the correlation value of l1,2 ≈ 0.3λ0, for this incidence angle,

at the second order. The fourth order terms also have the resonance effects, but for

a slightly larger correlation length value. This is due to the fact that the two spec-

tra terms involved in fourth order expressions and the combination of two spectra

highlights a different region of the kernels. Also, in the co-pol results, the rapid sign

change in the cross section with the correlation parameter is observed as a typical

resonance effect. Clearly, the periodic nature of the cross sections are observed with

the separation d. In addition, the separation of the surfaces effects the cross-pol cross
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section kernels in a way that lower thickness values result in higher cross sections. In

Figure 5.17, interaction ratios are investigated, based on the cross sections provided in

Figure 5.16 for all polarizations. For cross-pol results, the interaction effect can reach

values up to 1, especially with increasing correlation length. Again the periodicity

with thickness can be observed, as expected. The co-pol ratios are smaller, taking

values up to 0.3 in the resonance regions. Generally speaking, outside the resonance

regions, the interaction effect is small for co-pol cross sections. Next, the effect of

incidence angle is investigated, with respect to varying thickness of the intermediate

medium.

5.4.5 Backscattering Study: Effect of incidence angle

In this section, the bi-static RCS derived in Section 5.3 is investigated for backscat-

tering for the effects of incidence (also observation) angle and thickness of the inter-

mediate medium. Again a lossless, non-magnetic medium, described by the dielectric

permitivities: ε0 = 1, ε1 = 3 and ε2 = 9 is considered here. The azimuthal incidence

angle is set to φi = 0, and the slopes of both upper and lower surfaces are fixed to

s1,2 = 0.1. The calculations are done for a fixed correlation length of l1,2 = 0.1λ0, for

both upper and lower surfaces so that no resonance effect can occur for any of these

incidence angles. The thickness parameter d is varied, again from 0.1λ0 to 1λ0, on

a linear scale , and the incidence angle is varied from 0 to 80 degrees, linearly. The

results are given in Figures 5.18 and 5.19, again for the cross sections and interaction

ratios, respectively.

In Figure 5.18, the second and fourth order cross sections are plotted in a similar

format with the previous cross section results. Typically, the cross sections are larger
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Figure 5.16: Backscattering Study: Effect of thickness: for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1],
θi = 45, φi = 0, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1.
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Figure 5.17: Backscattering Study: Effect of thickness: for ε̄r = [1, 3, 9], µ̄r = [1, 1, 1],
θi = 45, φi = 0, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1.

in the absolute sense for close to normal incidence angles. The fourth order co-pol

cross sections are negative, while all other cross sections are positive. The periodicity

in thickness parameter d is still observed here as in the coherent case.

In Figure 5.19, the interaction ratio is plotted for each polarization. Due to the

periodicity of the cross sections in the thickness parameter d, the interaction ratios

are also periodic. Since the resonance effects are not involved, the interaction ratio

is negligible for co-pol cross sections. But still, it is possible to conclude that for

horizontal-horizontal polarization, the interaction term is more important at larger

incidence angles, while for vertical-vertical polarization, the interaction ratio reaches

a minimum in between. This point for this example is around 60 degrees. This

point is directly related to the Brewster angle of the first interface, where almost zero

reflection occurs. For the cross-pol cross sections, interaction of roughness effects is

very important. The interaction ratio for this case typically increases as the incidence
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Figure 5.18: Backscattering Study: Effect of incidence angle: for ε̄r = [1, 3, 9], µ̄r =
[1, 1, 1], φi = 0, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1.
Correlation lengths are fixed to l1,2 = 0.1λ0.

angle increases, and as the thickness decreases. In other words, the interaction term

contributes most to the backscattering cross-pol cross sections when surfaces are close

to each other at near grazing incidence.
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Figure 5.19: Backscattering Study: Effect of incidence angle: for ε̄r = [1, 3, 9], µ̄r =
[1, 1, 1], φi = 0, slopes of both upper and lower surfaces are fixed to s1,2 = 0.1.
Correlation lengths are fixed to l1,2 = 0.1λ0.

5.4.6 Backscattering Study: Effect of dielectric contrasts

In this section, the backscattering RCS is investigated for the effects of upper

and lower surface dielectric contrasts. Again a lossless and non-magnetic medium is

considered. The azimuthal component of the incidence angle is set to φi = 0. The

slopes of both upper and lower surfaces are fixed to s1,2 = 0.1 and the correlation

lengths are fixed to l1,2 = 0.1λ0, to avoid any resonance effect. The thickness param-

eter is assumed to be d = 1λ0. The results are presented in Figures 5.20 and 5.21,

for incidence angles of θi = 0 and θi = 45 degrees, respectively. Only the interaction

ratios are provided. Figure 5.20 only has two sub-figures, one is for the co-pol and the

other is for the cross-pol ratios, since at normal incidence, there is no horizontal or
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vertical polarization distinction. But ,the θi = 45 degree result has the same standard

sub-figure format as the previous ratio results. On each sub-figure of these plots, the

horizontal axis represents the upper interface contrast, defined by ε1
ε0

, which is varied

from 1 to 10, and the vertical axis represents the lower surface dielectric contrast,

defined similarly as ε2
ε1

, varying from 0.1 to 10. Triangular regions at the lower left

corner of these sub-figures, defined by the points (1, 1), (1, 0.1) and (10, 0.1), are man-

ually set to zero, since any point in these regions would mean a dielectric permittivity

less than 1 for the lower region.

In Figure 5.20, interaction ratios for the θi = 0 degrees case are presented for co-

pol and cross-pol cross sections. The behavior of interaction ratio on two specific lines

are very important in this study. The first line is defined by its two end points: (1, 1)

and (10, 1), corresponds to the case when the lower region has the same dielectric

permittivity with the intermediate region. In other words, this line is the one layer

limit. On this line, the term σupper is the only term that contributes to total cross sec-

tion and the interaction ratio vanishes, as expected, for all polarizations. The second

important line is defined, again by its end points: (1, 1) and (10, 0.1), corresponding

to an air-substrate-air type of media. This is the case when the strongest interaction

effects are observed. This oscillation is in fact the exact same phenomena that we

observed in the previous section while we were varying the thickness parameter d.

As the dielectric permittivity of the intermediate medium changes, the thickness of

the substrate changes with respect to changing wavelength of the substrate. And as

we move vertically from any point on this line, the interaction ratio decreases, and

eventually vanishes as we pass through the first line. The points above the first line

correspond to media similar to the air-ice-rock interface, with increasing dielectric
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Figure 5.20: Backscattering Study: Effect of dielectric contrasts: for θi = 0, φi = 0,
slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. Correlation lengths
are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.

permittivity downwards. The cross-pol ratios are slightly higher, and since the cor-

relation lengths are chosen to avoid any resonance effect, co-pol ratios are almost

negligible. In fact, small periodicity with the upper interface contrast can be ob-

served, again can be explained with thickness changes relative to the intermediate

medium wavelength.

Finally, in figure 5.21, the θi = 45 degrees case is presented for all polarizations.

Most of the characteristics of this plot are similar to the previous result. The impor-

tant point here to note is the rapid increase of the interaction ratios for cross-pol cross

sections. As mentioned in the section about the effects of incidence angle to backscat-

tering RCS, increasing incidence angle should produce larger interaction ratios, which

can clearly be observed.
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Figure 5.21: Backscattering Study: Effect of dielectric contrasts: for θi = 45, φi = 0,
slopes of both upper and lower surfaces are fixed to s1,2 = 0.1. Correlation lengths
are fixed to l1,2 = 0.1λ0. The thickness parameter is assumed to be d = 1λ0.
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5.5 Conclusion

In this chapter, first, a general discussion on the power calculations was provided.

Assumptions on the statistical surface properties were highlighted. Then, under the

assumption of Gaussian Random Process (GRP), the zeroth and the second order

coherent reflectivity and the second and the fourth order incoherent bi-static Radar

Cross Sections (RCS) were derived. For the case, when the two surfaces are uncor-

related, the bi-static RCS term was studied thoroughly and the effects of upper and

lower roughness and the interaction of roughness effects were identified. A special

term was defined as the ratio of the interaction effect to the overall RCS.

Later, the derived power quantities were examined extensively for uncorrelated

GRPs. The results presented in this chapter provide the most extensive study of

the two layer SPM cross sections to date. First, the second order correction to the

coherent reflectivity was considered and an the effects of incidence angle and mid-

layer thickness were analyzed. Next, the bi-static RCS was studied for a lossless

air-ice-rock type interface for all possible scattering angles. In the rest of the study,

only backscattering cross sections were considered. The effects of surface correlation

lengths, thickness of the intermediate layer with respect to both the incidence angle

and the correlation lengths, and the dielectric contrasts of the media were presented.

The key deductions from these studies can be summarized as follows:

• The second order correction to the coherent reflectivity is very sensitive to the

surface correlation lengths: although small correlation lengths result in negligi-

ble contributions, even moderate values can cause appreciable corrections.
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• The bi-static RCS study revealed that the plane of incidence and the orthogonal

plane include the scattering angles where maximum interaction between the

surfaces occur, for co-pol and cross-pol, respectively.

• The dominant effect of introducing loss to the media is rapid attenuation of the

lower layer scattered fields and consequent drop in the lower layer cross sections.

• Increasing correlation length typically increases the interaction ratio at least for

the lower correlation lengths.

• Specific correlation lengths cause resonance like effects mostly in co-pol cross

sections: rapid changes in the cross sections result in large interaction ratios.

This effect is likely Gaussian spectrum specific.

• For correlation lengths that do not cause resonances, the interaction effects are

more dominant in cross-pol cross sections.

• Variation of the thickness parameter clearly causes periodic changes in both

cross sections and the interaction ratios. In addition, an attenuation of cross-

pol cross sections is observed with increasing thickness.

• Cross-pol interactions are weakly dependent on the thickness, while the co-pol

interactions have a strong periodic dependence.

• The interaction term contributes most to the backscattering cross-pol cross

sections when surfaces are close to each other at near grazing incidence.

• The interaction effects are more dominant for air-substrate-air type or thin layer

like media.
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Briefly, the results confirm that surface interactions are important for the two

layer problem, and consequently, higher order solutions are necessary for analyzing

layered roughness effects.
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CHAPTER 6

EMISSION THEORY OF ROUGH SURFACES BASED ON

SINGLE LAYER SPM

6.1 Introduction

In this chapter, the SPM scattering solution of [69] is applied in Kirchhoff’s Law of

thermal emission [10] to derive the fourth order correction in the small slope emission

theory. Section 6.2 briefly reviews the SPM scattering solution from [69] and intro-

duces the notation to be utilized. These scattered field solutions are then applied in

Section 6.3 with Kirchhoff’s Law to derive the fourth order SSA emission term; it is

shown that this term has the form of an integration over a product of two spectra

for a Gaussian random process sea. In Section 6.4, the analysis of [78] is extended to

fourth order to demonstrate again that the SSA theory continues to match a slope

expanded PO theory for large-scale surface emission contributions.

Numerical evaluation of the four-fold SSA4 integral for computing “long-short”

wave interactions is discussed in Section 6.5, and an approximation for computing

such interactions is presented in Section 6.6. The form of the approximation ob-

tained allows a sea spectrum independent comparison with the two-scale theory of

long-short wave tilting effects to be performed in terms of a set of weighting functions;
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these functions are found to be similar but not identical between the two theories.

To provide more concrete illustrations, Section 6.7 presents azimuthal harmonic coef-

ficients of emitted brightnesses obtained from a numerical four-fold SSA4 integration

and compares results with predictions of the approximation from Section 6.6 as well

as the two-scale theory. Results show the SSA4 expansion to perform well for com-

puting long-short wave interactions, and that SSA4 and two-scale model predictions

remain similar but not identical. Final discussions and conclusions are provided in

Chapter 7.

6.2 Review of single layer SPM scattered field solution

The basic notation introduced in [68]-[69] is used below unless otherwise notated.

Consider a periodic rough interface z = f(x, y) separating free space (z > f(x, y))

from a dielectric region with relative permittivity ε. A plane wave is incident from free

space upon this interface; the resulting scattered and transmitted fields can be com-

pletely described in terms of the polarization complex amplitudes of a set of Floquet

modes. Horizontally and vertically polarized scattered mode complex amplitudes are

denoted by αn′ and βn′ , respectively, while γn′ and δn′ refer to transmitted horizontally

and vertically polarized complex amplitudes, respectively. Here n′ = (n′,m′) provides

indexes to a particular Floquet mode, thus describing the direction of propagation of

the corresponding scattered or transmitted field. Note the requirement for a periodic

interface can be removed after the solution is completed by allowing the periods to

approach infinity, as in [22].

Following the process in [68] but shifting some of the indices appropriately allows

the multiple terms in [68] to be combined. Scattering and transmission coefficients,
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all united in a vector quantity, ζ̄ = [α, β, γ, δ]T at Nth order (N ≥ 2) can then be

expressed as [69]:

ζ̄
(N)
n′ =

∑

n1

∑

n2

· · ·
∑

nN−1

hn1hn2 . . . hnN−1
hn′−n1−···nN−1

· ḡ(N) (n′, n1, . . . , nN−1) (6.1)

where hn refers to the Fourier coefficients of the surface; note N of these are included

so that the overall term is Nth order in surface height. The Nth order SPM “kernel”

is expressed in terms of lower order kernels as follows [69]:

ḡ(N) (n′, n1, . . . , nN−1) = ḡ(N, 0) (n′, n1, . . . , nN−1)

+
N−1
∑

l=1

[

¯̄ν(N−l)
(

n′, n(l)
s , nl+1, . . . , nN−1

)

· ḡ(l)
(

n(l)
s , n2, . . . , nl

)

]

(6.2)

where n(l)
s is

n(l)
s =

l
∑

i=1

ni (6.3)

The ¯̄ν(N−l)(n′, n, n1, . . . , nN−l−1) quantity above is a four-by-four tensor with elements

νij at row i and column j, while the kernel function vector ḡ(l) for l = 1 to N is a

4 element column vector defined analogously to ζ̄. Elements of the ¯̄νN−l tensor, the

ḡ(N, 0) quantity, and other details are given in [69]. The above formulation provides

a recursive solution that is easily programmed for determining the SPM kernel at a

specific argument and at arbitrary order.

Note that ultimately the transmission coefficients (γ, δ) of ζ̄ are not needed when

computing thermal emission (the SSA theory is known to conserve power at a given

order), so only the scattering coefficients are of interest in what follows. We intro-

duce a revised notation to simplify consideration of polarimetric emission by defining
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f
(N)
qp,n′ as the complex amplitude of the Floquet mode indexed by n′ at Nth order in

scattered polarization q for incident polarization p, with p and q chosen from h or v

for horizontal and vertical, respectively. For example, f
(N)
hh,n′ would be defined as α

(N)
n′

for a horizontally polarized incident plane wave, with α
(N)
n′ representing the first row

of the ζ̄
(N)
n′ vector in Equation (6.1). Similarly we adopt the notation g

(N)
qp,n′ for the

Nth order SPM kernel function corresponding to f
(N)
hh,n′ . This notational modification

is necessary due to the fact that Equation (6.1) must be considered separately for

horizontal and vertical incident polarizations.

6.3 Fourth order emission theory

Kirchhoff’s Law requires computation of the total surface reflectivity in order to

determine surface emissivity. The total surface reflectivity is determined by integrat-

ing the total power scattered into the upper hemisphere under plane wave illumina-

tion. Furthermore, appropriate combinations of polarization coefficients [?] must be

considered in order to compute polarimetric brightnesses. For a periodic surface with

periods large compared to the electromagnetic wavelength, plane wave illumination

results in a large set of Floquet modes scattered bistatically above the surface. The

complex amplitude of each of these modes is expressed as a series up to fourth order

in the SPM solution. Computation of the power in a given mode then results in a

corresponding series for the scattered power in that mode. The fourth order contri-

bution to the total surface reflectivity is then determined by adding (or integrating in

the continuous surface limit) all fourth order power contributions from each scattered

mode.
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Following this process, the fourth order contribution of the Floquet mode indexed

by n′ to the total surface reflectivity in a given polarimetric quantity can be written

as

P
(4)
h,n′ = 2Re

{

f
(0)
hh f

(4)∗
hh + f

(0)
vh f

(4)∗
vh

+Re

{

kz,n′

kzi

}

(

f
(1)
hh f

(3)∗
hh + f

(1)
vh f

(3)∗
vh

)

}

+Re

{

kz,n′

kzi

}

(

|f (2)
hh |2 + |f (2)

vh |2
)

(6.4)

P
(4)
v,n′ = 2Re

{

f (0)
vv f (4)∗

vv + f
(0)
hv f

(4)∗
hv

+Re

{

kz,n′

kzi

}

(

f (1)
vv f (3)∗

vv + f
(1)
hv f

(3)∗
hv

)

}

+Re

{

kz,n′

kzi

}

(

|f (2)
vv |2 + |f (2)

hv |2
)

(6.5)

P
(4)
U,n′ = 2Re

{

f (0)
vv f

(4)∗
vh + f

(4)
hv f

(0)∗
hh

+Re

{

kz,n′

kzi

}

(

f (1)
vv f

(3)∗
vh + f (2)

vv f
(2)∗
vh + f (3)

vv f
(1)∗
vh

+ f
(1)
hv f

(3)∗
hh + f

(2)
hv f

(2)∗
hh + f

(3)
hv f

(1)∗
hh

)

}

(6.6)

P
(4)
V,n′ = 2Im

{

f (0)
vv f

(4)∗
vh + f

(4)
hv f

(0)∗
hh

+Re

{

kz,n′

kzi

}

(

f (1)
vv f

(3)∗
vh + f (2)

vv f
(2)∗
vh + f (3)

vv f
(1)∗
vh

+ f
(1)
hv f

(3)∗
hh + f

(2)
hv f

(2)∗
hh + f

(3)
hv f

(1)∗
hh

)

}

(6.7)

Here ∗, Re, and Im denote the complex conjugate, real, and imaginary part operators,

respectively. The subscript n′ is omitted above on the f quantities for simplicity, and

the quantity kzi = k0 cos θi is related to the radiometer polar observation angle θi, with

k0 the electromagnetic wavenumber. The quantity kz,n′ refers to the z component of

the vector wavenumber of the Floquet mode indexed by n′, as defined in [68]. Finally,
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the subscripts h, v, U , and V of the P quantities refer to the horizontal, vertical, U ,

and V polarimetric radiometer channels, respectively. The above expressions are to be

summed over all propagating modes (i.e. all values of n′ corresponding to propagating

Floquet modes.)

When the SPM solution for the f
(N)
qp,n′ complex amplitudes from Equation (6.1) is

substituted into the above and summed over n′, a combination of sums over surface

Fourier coefficients and SPM kernel functions results for determining R
(4)
ζ , the total

surface reflectivity. By shifting indices within these sums, it is possible to combine

the multiple terms in this combination into a single “emission kernel” multiplying a

single set of surface Fourier coefficients:

R
(4)
ζ =

∑

n1

∑

n2

∑

n3

hn1hn2hn3h−n1−n2−n3

· gT,(4)
ζ (n1, n2, n3) (6.8)

Here ζ refers to h, v, U , or V , while g
T,(4)
ζ is the new reflectivity kernel obtained in

this process. The resulting kernel for the horizontal reflectivity is

g
T,(4)
h = Re

{

kz(n1+n3)

kzi

}

·
(

g
(2)
hh (n1 + n3, n1) g

(2)∗
hh (n1 + n3,−n2)

+ g
(2)
vh (n1 + n3, n1) g

(2)∗
vh (n1 + n3,−n2)

)

+2Re







Γ∗
h g

(4)
hh (0, n1, n2, n3)

+ Re

{

kz(−n3)

kzi

}

·
(

g
(1)∗
hh (−n3) g

(3)
hh (−n3, n1, n2)

+ g
(1)∗
vh (−n3) g

(3)
vh (−n3, n1, n2)

)







(6.9)
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where Γh is used to notate the horizontally polarized Fresnel reflection coefficient (as

in [68]). The notation kz,n again is utilized to indicate the z component of the vector

wavenumber of the Floquet mode indexed by n. The vertical reflectivity kernel gT,(4)
v

can easily be obtained from the previous expression by interchanging the subscripts

h and v.

The third Stokes’ parameter reflectivity kernel is

g
T,(4)
U = 2Re











Γv g
(4)∗
vh (0,−n1,−n2,−n3)

+ Γ∗
h g

(4)
hv (0, n1, n2, n3)

+ Re

{

kz(n3)

kzi

}

·
(

g
(1)
hv (n3) g

(3)∗
hh (n3,−n1,−n2)

+ g(1)
vv (n3) g

(3)∗
vh (n3,−n1,−n2)

)

+ Re

{

kz(n1+n3)

kzi

}

·
(

g
(2)
hv (n1 + n3, n1) g

(2)∗
hh (n1 + n3,−n2)

+ g(2)
vv (n1 + n3, n1) g

(2)∗
vh (n1 + n3,−n2)

)

+ Re

{

kz(−n3)

kzi

}

·
(

g
(3)
hv (−n3, n1, n2) g

(1)∗
hh (−n3)

+ g(3)
vv (−n3, n1, n2) g

(1)∗
vh (−n3)

)











(6.10)

The fourth Stokes’ parameter brightness kernel g
T,(4)
V is obtained by replacing the Re

operator at the beginning of Equation (6.10) with the Im operator.
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If an ensemble average over a stochastic surface process is taken in Equation (6.8),

the surface statistic of interest is

< hn1hn2hn3h−n1−n2−n3 > (6.11)

where the < · > notation refers to an ensemble average. In the continuous surface

limit (i.e. as the surface periods approach infinity [22]), the fourth order reflectivity

correction has the form of a six-fold integration:

∫ ∫

dk1

∫ ∫

dk2

∫ ∫

dk3

T (k1,k2,k3)g
T,(4)
ζ (k1,k2,k3) (6.12)

Here k represents the (kx, ky) couple and the integration limits are infinite. The pre-

vious ensemble averaged quantity is now expressed as T , which is the fourth moment

of the random rough surface, given in terms of surface spectra W as follows:

T = W (k1)W (k2)δ(k3 + k2)

+W (k1)W (k2)δ(k3 + k1)

+W (k3)W (k22)δ(k1 + k2) + Ttri (6.13)

The quantity Ttri is the surface tri-spectrum, which describes non-Gaussian sea surface

properties at fourth order. However little empirical information is available on the sea

surface tri-spectrum, making its further consideration difficult at this point in time.

For a Gaussian random process (GRP), the tri-spectrum (Ttri) vanishes, and the

Dirac delta functions can be utilized in Equation (6.12) to obtain a four-fold integra-

tion for the fourth order brightness correction

∆T (4)
γ = −Ts

∫

dkx

∫

dky

∫

dk′
x

∫

dk′
yW (kx, ky)

W (k′
x, k

′
y)g

T,(4),shf
ζ (kx, ky, k

′
x, k

′
y) (6.14)
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where Ts is the surface physical temperature, and a modified kernel is used:

g
T,(4),shf
ζ (k1,k2) = g

T,(4)
ζ (k1,−k1,k2)+ g

T,(4)
ζ (k1,k2,−k1)+ g

T,(4)
ζ (k1,k2,−k2) (6.15)

The integration limits above are again infinite.

Equation (6.14) presents the final form of the fourth order brightness correction to

be utilized in the remainder of this paper. Note this form couples contributions from

sea waves at distinct sea wavenumbers (i.e. (kx, ky) and (k′
x, k

′
y)) so that emission

“interaction” effects among two sea waves are included. The superscript shf will

typically be omitted on the kernel functions in what follows for simplicity.

6.4 Reduction to the optical limit

The first examination of Equaton (6.14) to be performed involves its properties for

computing interactions among pairs of “long” waves. The SSA4 theory is expected

to reduce to a slope expansion of the physical optics theory in this limit, as has been

shown previously [78]. Here the analysis is continued to fourth order to provide a

complete verification, as well as a test of the SSA4 theory derivation.

6.4.1 “Long-long” wave expansion of SSA4 contributions

Coupling between pairs of “long” waves in Equation (6.14) implies that the region

of interest in the integration domain lies near the origin of the four dimensional

space. A Taylor expansion of the kernel functions about the origin to fourth order

produces seventy terms, most of which vanish or are canceled by other terms in the

Taylor expansion. The remaining non-zero fourth-order derivatives are multiplied

by polynomial functions in kx, ky, k
′
x, or k′

y, which allow the integrations over the

spectra to be performed and result in double combinations of second order surface
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slope moments. The final form for the obtained brightnesses is

∆T
(4)
ζ ≈ −Ts









1
4

(

g
T,(4)
ζ,(kx)2,(k′

x)2 < S2
x >2 +g

T,(4)
ζ,(ky)2,(k′

y)2 < S2
y >2

)

1
2

(

g
T,(4)
ζ,(kx)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

x)2

)

< S2
x >< SxSy >





+





1
4

(

g
T,(4)
ζ,(kx)2,(k′

y)2 + g
T,(4)
ζ,(ky)2,(k′

x)2

)

< S2
x >< S2

y >
1
2

(

g
T,(4)
ζ,(ky)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

y)2

)

< SxSy >< S2
y >





+

[

g
T,(4)
ζ,kx,ky ,k′

x,k′

y
< SxSy >2

0

])

(6.16)

In the vector notation here (identical to [78]), the first row represents the horizontal

and vertical polarizations, while the second row is for the third and fourth Stokes’

parameters. The additional subscripts on the g
T,(4)
ζ quantities refer to the particular

fourth order derivative in the Taylor series expansion of the original g
T,(4)
ζ function

about the origin. Following [78], < S2
x > and < S2

y > are the large-scale surface slope

variances along and perpendicular the radiometer look direction, respectively. This

choice implies that the brightness kernels are evaluated with the radiometer azimuthal

observation angle set to 0 degrees.

The slope moments in Equation (6.16) can be expressed in terms of up and cross

wind slope variances < S2
u > and < S2

c > as follows:

< S2
x >2 =

1

8

[

S4
1 + 4 S4

2 cos(2φw) + S4
3 cos(4φw)

]

< S2
y >2 =

1

8

[

S4
1 − 4 S4

2 cos(2φw) + S4
3 cos(4φw)

]

< SxSy >2 =
1

8

[

S4
3 − S4

3 cos(4φw)
]

< S2
x >< S2

y > =
1

8

[

S4
4 − S4

3 cos(4φw)
]

< S2
x >< SxSy > = −1

8

[

2 S4
2 sin(2φw) + S4

3 sin(4φw)
]

< SxSy >< S2
y > = −1

8

[

2 S4
2 sin(2φw) − S4

3 sin(4φw)
]

(6.17)
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where S4
1 , S4

2 , S4
3 , and S4

4 are defined as:

S4
1 = 3 < S2

u >2 +2 < S2
u >< S2

c > +3 < S2
c >2

S4
2 = < S2

u >2 − < S2
c >2

S4
3 = < S2

u >2 −2 < S2
u >< S2

c > + < S2
c >2

S4
4 = < S2

u >2 +6 < S2
u >< S2

c > + < S2
c >2 (6.18)

and it is assumed that the radiometer look direction (i.e. the x axis) makes an angle

φw with respect to the wind direction.

The azimuthal dependence of the fourth order long wave contributions in the

optical limit then can be written explicitly as:

∆T
(4)
ζ ≈ −Ts













1
32

S4
1

[

g
T,(4)
ζ,(kx)2,(k′

x)2 + g
(T,4)
ζ,(ky)2,(k′

y)2 + g
T,(4)
ζ,(kx)2,(k′

y)2 + g
T,(4)
ζ,(ky)2,(k′

x)2

]

0







+









1
8
S4

2

[

g
T,(4)
ζ,(kx)2,(k′

x)2 − g
T,(4)
ζ,(ky)2,(k′

y)2

]

cos(2φw)

− 1
8
S4

2

[(

g
T,(4)
ζ,(kx)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

x)2

)

+
(

g
T,(4)
ζ,(ky)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

y)2

)]

sin(2φw)









+









1
32

S4
3

[

g
T,(4)
ζ,(kx)2,(k′

x)2 + g
T,(4)
ζ,(ky)2,(k′

y)2 − 3
(

g
T,(4)
ζ,(kx)2,(k′

y)2 + g
T,(4)
ζ,(ky)2,(k′

x)2

)]

cos(4φw)

− 1
16

S4
3

[(

g
T,(4)
ζ,(kx)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

x)2

)

−
(

g
T,(4)
ζ,(ky)2,k′

x,k′

y
+ g

T,(4)
ζ,kx,ky ,(k′

y)2

)]

sin(4φw)

















≈ −Ts

(

S4
1 L4

ζ,0(θi, ε) + S4
2 L4

ζ,2(θi, ε)

[

cos(2φw)
sin(2φw)

]

+ S4
3 L4

ζ,4(θi, ε)

[

cos(4φw)
sin(4φw)

])

(6.19)

The fact that g
T,(4)
ζ,(kx)2,(k′

y)2 + g
T,(4)
ζ,(ky),(k′

x)2 = 2g
T,(4)
ζ,kx,ky ,k′

x,k′

y
is used in obtaining this expres-

sion.

The final form for long wave contributions at fourth order (Equation (6.19)) is

similar to the forms at second and third order [78], and shows the presence of zeroth,

second, and fourth azimuthal harmonics in the emission signatures for a Gaussian
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process sea. Surface effects are described only in terms of the long wave slope mo-

ments, as is typical in the optical limit, while emission effects are captured entirely

by a set of “long wave functions” L4
ζ,k. The latter depend only on the observation

angle and the surface permittivity.

Note that the slope factors that scale the long wave functions for distinct emission

azmiuthal variations (i.e. k = 0, 2, or 4) are likely to be significantly different for

the sea surface: the zeroth harmonic term S4
1 is a function only of the sum of the

along and cross-wind slope variances, while S4
2 which scales the second azimuthal

harmonic involves a product of the sum and difference of the along and cross wind

slope variances. The fourth harmonic slope factor S4
3 finally is the square of the

difference between the up and cross wind slope variances. Because differences between

the up and cross wind slope variances for the sea surface are typically small, these

facts indicate that fourth azimuthal harmonics should generally be much smaller than

the corresponding zeroth and second azimuthal harmonics.

6.4.2 Fourth order expansion of physical optics theory

In the physical optics theory, brightness temperatures can be written as a double

integration over the slope pdf [78]:

Tζ = Ts

∫ ∞

−∞
dα

∫ ∞

−∞
dβ gPO

ζ (α, β) f(α, β) (6.20)

where the PO kernel function gPO
ζ is described in [78]. Using a Taylor expansion of

the PO kernel gPO
ζ (α, β) about the origin and considering only the fourth order terms

produces:

∆T
PO,(4)
ζ ≈ −Ts





1
24

(

gPO
ζ,(α)4 < S4

x > +gPO
ζ,(β)4 < S4

y >
)

+ 1
4

(

gPO
ζ,(α)2,(β)2 < S2

x S2
y >

)

1
6

(

gPO
ζ,(α)3,β < S3

x Sy > +gPO
ζ,α,(β)3 < Sx S3

y >
)





(6.21)
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Sea surface fourth order slope moments can be expressed in terms of up and cross

wind moments < S4
u >, < S2

u S2
c > and < S4

c > as follows:

< S4
x > =

3

8

[

< S4
u > +2 < S2

u S2
c > + < S4

c >
]

+
1

2

[

< S4
u > − < S4

c >
]

cos 2φw

+
1

8

[

< S4
u > −6 < S2

u S2
c > + < S4

c >
]

cos 4φw (6.22)

< S3
x Sy > = −1

4

[

< S4
u > − < S4

c >
]

sin 2φw

−1

8

[

< S4
u > −6 < S2

uS
2
c > + < S4

c >
]

sin 4φw (6.23)

< S2
x S2

y > =
1

8

[

< S4
u > +2 < S2

u S2
c > + < S4

c >
]

−1

8

[

< S4
u > −6 < S2

u S2
c > + < S4

c >
]

cos 4φw (6.24)

< Sx S3
y > = −1

4

[

< S4
u > − < S4

c >
]

sin 2φw

+
1

8

[

< S4
u > −6 < S2

u S2
c > + < S4

c >
]

sin 4φw (6.25)

< S4
x > =

3

8

[

< S4
u > +2 < S2

u S2
c > + < S4

c >
]

−1

2

[

< S4
u > − < S4

c >
]

cos 2φw

+
1

8

[

< S4
u > −6 < S2

u S2
c > + < S4

c >
]

cos 4φw (6.26)

Noting that for a Gaussian process, < S4
u >= 3 < S2

u >, < S4
c >= 3 < S2

c > and

< S2
u S2

c >=< S2
u >< S2

c >, the following form for the PO theory is obtained:

∆T
PO,(4)
ζ ≈ −Ts













1
64

S4
1

[

gPO
ζ,(α)4 + gPO

ζ,(β)4 + 2 gPO
ζ,(α)2,(β)2

]

0







+







1
16

S4
2

[

gPO
ζ,(α)4 − gPO

ζ,(β)4

]

cos(2φw)

− 1
8
S4

2

[

gPO
ζ,(α)3,β + gPO

ζ,α,(β)3

]

sin(2φw)







+







1
64

S4
3

[

gPO
ζ,(α)4 + gPO

ζ,(β)4 − 6 gPO
ζ,(α)2,(β)2

]

cos(4φw)

− 1
16

S4
3

[

gPO
ζ,(α)3,β − gPO

ζ,α,(β)3

]

sin(4φw)












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≈ −Ts

(

S4
1 LPO,4

ζ,0 (θi, ε) + S4
2 LPO,4

ζ,2 (θi, ε)

[

cos(2φw)
sin(2φw)

]

+ S4
3 LPO,4

ζ,4 (θi, ε)

[

cos(4φw)
sin(4φw)

])

(6.27)

The final form obtained is identical to Equation (6.19), except for the use of LPO,4
ζ,k as

opposed to L4
ζ,k. Comparisons between the theories can therefore be performed solely

in terms of the long wave functions themselves.

6.4.3 Comparison of SSA4 and PO theories

A comparison of the long wave functions L4
ζ,k and LPO,4

ζ,k , {k = 0, 2, 4}, for sea water

permitivity (29.04 + i35.55) and in h, v, and U polarizations is provided in Figure

6.1. Both theories predict the long wave function for the fourth Stokes’ parameter to

vanish. Long wave functions from the two theories are in agreement, indicating that

the SSA model continues to match PO to fourth order.

The long wave functions illustrated show similar amplitudes across azimuthal

harmonics as well as polarizations, with all tending to show increasing amplitudes

as the polar observation angle is increased. Second azimuthal long wave functions

tend to have slightly larger amplitudes. Again these functions are scaled by the

appropriate slope moments when computing brightness contributions; as discussed

previously, the expected size of these slope moments results in small fourth azimuthal

harmonic contributions as compared to the zeroth and second azimuthal harmonics.

6.5 “Interaction” effects among long and short sea waves

While a direct numerical computation of the four-fold integration of Equation

(6.14) is possible, such computations yield little insight into the emission physics

captured by the SSA4 model. Because all limits on the integrations of Equation
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Figure 6.1: Comparison of the long wave functions L4
ζ,k and LPO,4

ζ,k , {k = 0, 2, 4}, for
sea water permitivity (29.04 + i35.55) in h, v and U polarizations
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(6.14) are infinite, such a computation includes interactions among all possible sea

waves, including “long-long” (PO limit), “long-short”, and “short-short”. However

the focus of the current paper is an examination of “long-short” interactions in order

to assess a description of these interactions as “tilt” effects (as in the two-scale theory.)

The process begins in Section 6.5.1 by identifying the portion of the integration region

relevant for this purpose, and “critical phenomenon” behaviors of the SSA4 kernels

are discussed in Section 6.5.2. A numerical integration scheme that is applicable to

computation of the four-fold integral in this portion of the integration domain in

then developed in Section 6.5.3. Description of an approximation to simplify the

computations then follows in Section 6.6, along with interpretation of the results of

this expansion.

6.5.1 Symmetrization of the SSA4 integration

To allow clear identification of “long-short” wave interactions in the four-dimensional

integration domain, symmetry properties of the integrands are first applied to reduce

this domain. Because the surface spectra involved in the integration by definition

must be symmetric under the negation of both arguments, and also due to the “in-

terchange” symmetric form (i.e. (kx, ky) ↔ (k′
x, k

′
y)) of the product of two spectra

involved, it is possible to consider 8 symmetric regions in the integrand of Equation

(6.14). Using a symmetrization process based on these properties, a symmetrized

kernel can be defined as

g
T,(4),sym
ζ (kx, ky, k

′
x, k

′
y) =

{

g
T,(4),shf
ζ (kx, ky, k

′
x, k

′
y)

+ g
T,(4),shf
ζ (−kx,−ky, k

′
x, k

′
y) + g

T,(4),shf
ζ (kx, ky,−k′

x,−k′
y)

+ g
T,(4),shf
ζ (−kx,−ky,−k′

x,−k′
y) + g

T,(4),shf
ζ (k′

x, k
′
y, kx, ky)
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+ g
T,(4),shf
ζ (−k′

x,−k′
y, kx, ky) + g

T,(4),shf
ζ (k′

x, k
′
y,−kx,−ky)

+g
T,(4),shf
ζ (−k′

x,−k′
y,−kx,−ky)

}

(6.28)

Under this symmetrization, the integration domain can be reduced to the region

k′
x > kx > 0 (6.29)

as illustrated in Figure 6.2(a) for kx = kc. If the coordinates (k′
x, k

′
y) are now chosen

to represent a “short wave” and (kx, ky) to represent a “long” wave, the portions of

the domain corresponding to long-short wave interactions are as illustrated in Figure

6.2(b), where kc refers to the maximum wavenumber of the long wave region. The

integration regions in the long and short wave planes are approximated as annular

regions in these two planes for convenience. The quantity kc is chosen to be much less

than the electromagnetic wavenumber to ensure only “long” waves are considered in

the (kx, ky) plane, while the inner radius of the annulus in the (k′
x, k

′
y) plane is chosen

to be >> kc to ensure that “short” waves are modeled here. For the purposes of

the expansion to be introduced later, “short” actually refers simply to short relative

to the shortest “long” sea wave, rather than short relative to the electromagnetic

wavelength.

In polar coordinates, Equation (6.14) can now be expressed on the defined inte-

gration domain as two coupled double integrals:

∆T
(4)
ζ = −Ts

∫

kρ dkρ

∫

dφ W (kρ, φ) ĝ(kρ, φ)

ĝ(kρ, φ) =
∫

kρ′ dkρ′

∫

dφ′ W (kρ′ , φ
′) g(kρ, φ, kρ′ , φ

′) (6.30)

where the superscripts on the symmetrized kernel function are dropped; this kernel

is to be used in all following discussions. The outer integration of Equation (6.30)

168



Figure 6.2: Integration regions (a) Following symmetrization of Equation (6.14) (b)
Reduced integration region for modeling “long-short” sea wave interactions
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is evaluated on the long wave plane, while the inner integration is evaluated on the

short wave plane.

6.5.2 Critical phenomena in SSA4 kernels

It is well known that both the second and third order SSA emission kernels ex-

hibit rapid variations (singular-like) behaviors on circular regions in their integration

domains. These behaviors are called “critical phenomena” in the literature, and their

presence requires numerical integrations involving the SSA kernels to be performed

carefully. Because such variations are also likely in the fourth order SSA kernel, a

study of the SSA4 kernel functions was performed to identify critical phenomenon

behaviors and their locations in the domain of interest. This analysis showed that for

a fixed point in the long wave plane, rapid variations in the kernels occurred in the

vicinity of six distinct circles in the short wave plane. Tests varying the long wave

point considered showed that these circles can be expressed in terms of (kx, ky) and

(k′
x, k

′
y) as:

(k′
x ± kxi)

2 + (k′
y)

2 = (ko)
2

(k′
x + kx ± kxi)

2 + (k′
y + ky)

2 = (ko)
2

(k′
x − kx ± kxi)

2 + (k′
y − ky)

2 = (ko)
2 (6.31)

Here ko is the electromagnetic wavenumber and kxi = ko sin(θi). The first pair of

circles do not depend on the long wave coordinates, and can be considered “fixed

singular circles” as the long wave coordinates are varied. These are the same singular

locations obtained in the second order SSA emission kernels. The other four circles

involve the long wave coordinates (i.e. they move inside the short wave plane as

the point in the long wave plane moves) and are called “moving singular circles”.
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Typically in the following presentations, the short wave plane will be discussed after

fixing a reference point in the long wave plane.

An illustration of typical critical phenomenon behaviors of the SSA4 kernel func-

tions is provided in Figures 6.3, 6.4, and 6.5, using a radiometer polar observation

angle of 55 degrees and a medium relative permittivity of ε = 29.04 + i35.55.

Plot (a) of Figure 6.3 illustrates a particular long wave point given as (kρ, φ) =

(ko

4
, π

6
), and includes an illustration of the typical integration region boundaries (dashed

lines) considered in long-short wave computations; the cutoff wavenumber (largest

value of the kρ) is specified as kc = ko

2
here. These wavenumber choices are larger

than would usually be used in order to emphasize distances between the multiple

circles in the short-wave plane.

Plot (b) of Figure 6.3 illustrates the short wave plane, again with typical bound-

aries of the integration region marked as dashed lines. Critical phenomenon circles

are also included in the plot. A line segment (thicker line) is also included in Figure

6.3; values of the kernel functions are examined along this line in Figures 6.4 and 6.5.

Intersections of the line considered with the critical phenomenon circles are numbered

from (1) to (3).

Figure 6.4 plots SSA4 kernel functions for all four polarimetric quantities (here V V

refers to the fourth Stokes’ parameter) on the line segment of Figure 6.3(b). Figure

6.5 zooms in on these functions near the intersection points, and normalizes the curves

to their maximum in Figure 6.4. The results show the rapid variations of the kernels

to be confined to small regions near the circular intersections; outside these regions

the SSA4 kernels are relatively smooth. Note unlike the second order SSA kernels,

the fourth order critical phenomenon behaviors typically show both large positive
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and negative values (as in the vertical polarization kernel near point (1) compared

to point (2) in Figure 6.5.) Therefore the critical phenomenon contributions tend

to cancel out when the integration over the line segment is performed. Notice also

that as the long-wave point considered is varied from the (kρ, φ) = (ko

4
, π

6
) value used

to Figures 6.3-6.5, the locations of the intersections (1) to (3) vary. In particular,

as the long wave is made longer (i.e. closer to the origin of the long wave plane),

the intersections (1) and (3) move closer to the point (2), resulting in large positive

and negative values of the kernel functions both being obtained near the point (2).

These rapid variations make numerical computation of long-short wave interactions

difficult. The next section presents a numerical integration method suited for these

computations.

6.5.3 Numerical integration of long-short wave interaction

contributions

Numerical integration of the SSA4 kernels can be simplified by dividing the full

domain integration into piece-wise integrations between intersections with the critical

phenomenon circles. For this purpose, a notation for the boundaries of these piece-

wise integrations in the kρ′ and φ′ variables of the short wave plane is introduced.

The set of kρ′ boundaries are defined as kρ,l with l = 0, 1, 2, · · · , lmax, with kρ,0

marking the lower boundary of the entire kρ′ integration and kρ,lmax
marking the

outer boundary. Similarly, for a given value of l, integration boundaries in the φ′

variable are written as the set φl,m for m = 0, 1, 2, · · · ,mmax(l). Here φl,0 and φl,mmax(l)

mark the lower and upper boundaries of the φ′ integration. Intermediate values

of φl,m mark intersections with the critical phenomenon circles, as well as “buffer”

points surrounding these intersections by a specified separation in φ′. Because the
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φ′ integration is performed first, intermediate values of kρ,l were chosen based on

intersections with the critical phenomenon circles for φ′ = 0, again with “buffer”

points surrounding these boundaries included in the set of points.

Using these definitions, the short wave integral of Equation (6.30) can be rewritten

as:

ĝ(kρ, φ) =
lmax
∑

l=1

∫ kρ,l

kρ,l−1

kρ′ dkρ′

mmax(l)
∑

m=1

∫ φm

φm−1

dφ′ W (kρ′ , φ
′) g(kρ, φ, kρ′ , φ

′) (6.32)

Note it is also possible to reverse the order of these integrations by redefining the piece-

wise limits first in terms of kρ′ then in terms of φ′; both approaches were evaluated

and found to perform similarly.

The piece-wise integrations of Equation (6.32) now involve relatively smooth func-

tions because the regions of rapid kernel variations are automatically resolved. Ac-

cordingly, a standard Gauss-Legendre quadrature is applied both in φ′ and in kρ′ for

computation of each of the piece-wise two-fold integrals.

Given this process for evaluating the short-wave plane integration, it remains to

evaluate the integration over the long-wave plane. This integration is less numer-

ically challenging because the short-wave integration smooths out kernel function

variations. Therefore a standard Gauss-Legendre quadrature is applied for the kρ

and φ integrations without further treatment.

Numerous tests of this approach were performed to ensure that a sufficient number

of quadrature points, etc. was utilized to obtain convergence of model predictions.

Results using the method described showed that convergence was obtained with use

of only a moderate number (order to 100) quadrature points within each piece-wise

integration. Because even a single evaluation of the symmetrized SSA4 kernel func-

tion is a relatively expensive operation, codes were developed to compute and output
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a table of these kernels over the integration domain. These tables then allow more

efficient computations of fourth order emission predictions as properties of the sea

spectrum (for example, wind speed) are varied. Results from the numerical integra-

tion of long-short wave contributions will be discussed in Section 6.7, and compared

with the approximation of long-short wave contributions defined in the next Section.

6.6 Approximations for long-short wave contributions

6.6.1 Long-wave expansion of SSA4 short-wave integrations

Due to the rapidly varying nature of the SSA4 kernel functions and the presence

of the “moving singular circles” in the short wave plane, extreme care must be ex-

ercised when attempting to expand the SSA4 kernel functions in terms of long wave

parameters. To address this issue, expansion of the result of the short wave integra-

tion is first considered before proceeding to expansion of the SSA4 kernel functions

themselves.

Based on the slope expansion implicit in the SSA4 theory, it is to be expected

that an expansion of the ĝ(kx, ky) quantity in terms of kx and ky should be applicable

near the origin (i.e. very long long waves); the return to rectangular wavenumber

coordinates is made for convenience in what follows. It is also to be expected that

the zeroth and first order terms in such an expansion will vanish, leaving

ĝ(kx, ky) ≈
k2

x

2
ĝk2

x
(0, 0) +

k2
y

2
ĝk2

y
(0, 0) (6.33)

The subscripts k2
x and k2

y again represent second partial derivatives with respect to

kx and ky, and the cross kxky term is found to vanish when it is assumed that the

radiometer observes along the x axis of the coordinate system. With this expansion,
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the fourth order brightness contribution reduces to

∆T (4) ≈ −Ts

2

[

< S2
x > ĝk2

x
(0, 0)+ < S2

y > ĝk2
y
(0, 0)

]

(6.34)

where < S2
x > and < S2

y > are the along- and cross-look slope variances of the long

waves considered. This form is attractive for evaluating long-short wave contributions

due to its efficiency when compared to the four-fold integration. Note this expansion is

performed following the integration over the short-wave plane, so that the derivatives

considered depend on the short wave spectrum.

Numerical tests using a centered difference algorithm for the Taylor expansion of

ĝ(kx, ky) near the origin confirmed that the zeroth and first order terms vanish. The

remaining second order derivatives were computed as

ĝk2
x
(0, 0) = lim

h→0

2 ĝ(h, 0)

h2
, ĝk2

y
(0, 0) = lim

h→0

2 ĝ(0, h)

h2
(6.35)

due to the symmetry properties of ĝ(kx, ky). The k2
x derivative can be more explicitly

written as

ĝk2
x
(0, 0) = lim

h→0

∫

kρ′ dkρ′

∫

dφ′ W (kρ′ , φ
′)

2 g(h, 0, kρ′ , φ
′)

h2
(6.36)

Expressions for k2
y derivative are almost identical, and therefore not discussed specif-

ically in what follows. Results from this approach will not be considered further, but

were used in verifying the accuracy of the expansion discussed in the next paragraph.

6.6.2 Long wave expansion of SSA4 kernel functions

A more useful and efficient form of the long-short wave expansion can be obtained

by moving the limit operator inside the integrals, so that derivatives of the SSA4

kernels, rather than the result of the short wave plane integration, are involved. The
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result of such an interchange for the k2
x term is

ĝk2
x
(0, 0) ≈

∫

kρ′ dkρ′

∫

dφ′ W (kρ′ , φ
′) gk2

x
(0, 0, kρ′ , φ

′) (6.37)

where gk2
x
(0, 0, kρ′ , φ

′) represents the SSA4 kernel derivative limh→0
2g(h,0,kρ′ ,φ

′)

h2 .

Equation (6.37) along with Equation (6.34) shows gk2
x
(0, 0, kρ′ , φ

′) (and a similar

gk2
y
(0, 0, kρ′ , φ

′) term) to be spectrum independent “weighting functions” that describe

contributions of a particular short wave (kρ′ , φ
′) to the total long-short wave brightness

when multiplied by the long wave slope variance. This form approximates the tilting

process, and is therefore relevant for use in comparisons with the two-scale theory.

In such a comparison, the original two-scale model equations can be expanded into

a similar series in long-wave slopes; results show the zeroth order term to be that

of a flat surface, the second order term to be identical to the second order small

slope theory, and the fourth order term to be identical to Equation (6.34) except that

two-scale model derivatives gtwo
k2

x
(0, 0, kρ′ , φ

′) are involved as opposed to those from

the SSA4. Therefore sea spectrum independent comparisons of the two theories and

their predictions of long-short wave tilt effects can be performed in terms of the kernel

function derivatives alone.

Because the SSA4 kernels are not truly singular, the required expansion of the

SSA4 kernels is possible, but remains numerically difficult due to critical phenomenon

effects. The h dependence of the kρ′ and φ′ grids in the short wave plane further

complicates this process. Although this dependence should vanish identically as h →

0, the effects of finite h values in finite precision computations remain observable

particularly near the critical phenomenon regions. For this reason, the weighting

functions to be illustrated should be considered only “semi-stable” representations,

with some degree of h dependence remaining. However it is again emphasized that the
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extreme SSA4 kernel function values obtained near the critical phenomenon regions

largely cancel out when integrated, so that the effect of this “semi-stable” nature is

not significant when computing final fourth order brightnesses. Evidence supporting

this statement will be provided in Section 6.7 through comparisons with numerically

integrated long-short wave contributions.

Further simplification of the final fourth order brightness in this approximation

can be obtained by substituting an assumed form for the sea spectrum:

W (kρ, φ) =
1

k4
ρ

[C0(kρ) + C2(kρ) cos (2 (φ − φw))] (6.38)

with φw representing the wind direction; it is assumed that the radiometer look direc-

tion is along x in what follows (i.e. the azimuthal angle of the radiometer observation

direction is zero). The fourth order brightness is then

∆T
(4)
ζ ≈ −Ts

2



< S2
x >

∫

dkρ′

[

C0(kρ′)
C2(kρ′)

]T
∫

dφ′

[

1
cos(2 (φ′ − φw))

]

gk2
x
(0, 0, kρ′ , φ

′)

k3
ρ′

+ < S2
y >

∫

dkρ′

[

C0(kρ′)
C2(kρ′)

]T
∫

dφ′

[

1
cos(2 (φ′ − φw))

]

gk2
y
(0, 0, kρ′ , φ

′)

k3
ρ′





(6.39)

This expression is valid in general, but, in order to extract the azimuthal harmonics

in wind direction, it is more convenient to expand the original multiplication of long

and short wave spectra into terms involving [1, cos(2φw), sin(2φw), cos(4φw), sin(4φw)]

as follows:

k4
ρk

4
ρ′W (kρ, φ)W (kρ′ , φ

′) =
[(

C0(kρ)C0(kρ′) +
1

2
C2(kρ)C2(kρ′) cos(2 (φ − φ′))

)

+
(

C0(kρ)C2(kρ′) cos(2φ′) + C2(kρ)C0(kρ′) cos(2φ)
)

cos(2φw)

+
(

C0(kρ)C2(kρ′) sin(2φ′) + C2(kρ)C0(kρ′) sin(2φ)
)

sin(2φw)
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+
(

1

2
C2(kρ)C2(kρ′) cos(2 (φ + φ′))

)

cos(4φw)

+
(

1

2
C2(kρ)C2(kρ′) sin(2 (φ + φ′))

)

sin(4φw)
]

(6.40)

Use of this representation along with expansion of the sinusoidal terms in φ + φ′ and

φ−φ′ allows a combination of terms to be defined for determining a specific azimuthal

harmonic of the observed brightnesses.

The result of the φ′ integration of individual terms in this combination is defined

through

w
(1,c,s)
ζ,(x,y)(kρ′) =

∫

dφ′







1
cos(2φ′)
sin(2φ′)







gζ,k2
(x,y)

(0, 0, kρ′ , φ
′)

k3
ρ′

(6.41)

and denoted as a “weighting function” in what follows. It is these weighting functions

that can be compared with similar weighting functions from the expanded two-scale

theory. Here the subscript ζ represents the polarization, the subscripts (x, y) represent

either the second order x or y derivative, and the superscripts (1, c, s) represent use

of either constant, cos(2φ′), or sin(2φ′) factors in the φ′ integration.

Finally, harmonics of the fourth order brightness contribution are written using

the weighting functions defined above as

H
(0)
ζ = −π

4
Ts

[

I0

∫

dkρ′C0(kρ′)
(

w
(1)
ζ,(x)(kρ′) + w

(1)
ζ,(y)(kρ′)

)

+
I2

4

∫

dkρ′C2(kρ′)
(

w
(c)
ζ,(x)(kρ′) − w

(c)
ζ,(y)(kρ′)

)

]

H
(2)
ζ = −π

4
Ts

[

I0

∫

dkρ′C2(kρ′)
(

w
(c)
ζ,(x)(kρ′) + w

(c)
ζ,(y)(kρ′)

)

+
I2

2

∫

dkρ′C0(kρ′)
(

w
(1)
ζ,(x)(kρ′) − w

(1)
ζ,(y)(kρ′)

)

]

(6.42)

which applies to the linearly polarized channels. Here H (0) represents the zeroth

harmonic, and H (2) represents the second azimuthal harmonic; fourth harmonics are
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small and not considered further in what follows. For the third and fourth Stokes’ pa-

rameters, the zeroth harmonic vanishes and the second harmonic is obtained through

H
(2)
ζ = −π

4
TsI0

∫

dkρ′C2(kρ′)
(

w
(s)
ζ,(x)(kρ′) + w

(s)
ζ,(y)(kρ′)

)

(6.43)

In the above equations, the terms I(0,2) are defined through

I(0,2) =
∫

dkρ

C(0,2)(kρ)

kρ

(6.44)

with the integration evaluated on long wave domain.

The preceeding equations show that the expanded SSA4 model expresses “long-

short” interaction effects in terms of an integration of a combination of the weighting

functions defined in equation (6.41) multiplied by the short wave curvature spectrum.

The result of this integration is multiplied by a function resembling the long wave

slope variance. Therefore the weighting functions provide sea-surface-independent

insight into the relative contributions of particular short scale sea waves to the total

observed “long-short” interaction brightnesses.

6.6.3 Comparison of SSA4 and Two-scale weighting func-

tions

Figures 6.6 and 6.7 present comparison of the SSA4 and two-scale “semi-stable”

weighting functions for radiometer polar observation angle 55 degrees and ε = 29.04+

i35.55. Plots of the zeroth azimuthal harmonic weighting function w
(1)
h,(x)(kρ′) (horizon-

tal polarization) in Figure 6.6 include additional plots that provide higher resolution

near the critical phenomenon regions marked as (1) through (3), while Figure 6.7

illustrates the zeroth azimuthal harmonic weighting function for vertical polarization

and the second azimuthal harmonic weighting functions for third and fourth Stokes’
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parameters without further detail. The figures illustrate weighting function magni-

tudes, and also include plots of the signs (shifted by 5 units for the multiple curves

for convenience).

The weighting functions in Figure 6.6 are very different near the critical phenom-

ena regions, with the SSA4 kernels showing much larger variations than two scale; note

the rapid nulling behavior observed in both SSA4 and two-scale weighting functions

results on sign changes of the weighting functions due to the use of a logarithmic

vertical axis. However such rapid variations are not expected to make significant

brightness contributions due to cancellation effects discussed previously.

Overall the comparison of the SSA4 and two-scale weighting functions shows the

two to have similar properties, both in magnitude and signs, particularly in regions far

from the critical phenomenon boundaries. However even in such regions, differences

between the two models are observed, so that a complete agreement between the

two theories is not achieved. Because development of a simple description of the

differences between the two weighting functions is not easily obtained, more concrete

examples of comparisons with two-scale theory predictions are provided in the next

Section.

6.7 Comparisons of numerically integrated, expanded, and

two-scale long-short wave brightness contributions

Numerically integrated (Section 6.5.3), expanded (Section 6.6.2), and two-scale

model predictions of the azimuthal harmonics of the fourth order long-short wave

brightness contributions are compared in this Section. The radiometer frequency is

assumed to be 19.35GHz (wavelength λo = 1.55cm, wavenumber ko = 405 rads/m)

and a surface relative permitivity ε = 29.04 + i35.55 is used. The sea spectrum
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is modeled using the modified “Durden-Vesecky” spectrum described in [79], and

the sea surface physical temperature is set to 283 K. While all theories predict the

possibility of zeroth, second, and fourth azimuthal harmonics in this process, fourth

azimuthal harmonics are found to be extremely small and therefore not described

further. Azimuthal harmonic brightnesses are plotted either with respect to wind

speed (from 0 to 20m/s) for a fixed radiometer observation angle θi = 55 degrees, or

with respect to observation angle ranging from 40o to 75o for a fixed wind speed of

10m/s. In all cases, the boundaries of the short-wave integration correspond to short

sea waves of wavelengths ranging from 0.5m down to 4mm.

Two distinct descriptions of the long-wave integration domain are utilized. In

the first case (labeled Case A), the long wave domain includes all long waves longer

than 62.5 m; the long wave spectrum considered of course varies as the wind speed

is varied. In this case, the long waves included are certainly much longer than the

short waves of interest, so that the SSA4 expansion should be more applicable. In

the second case (Case B), a shorter set of long waves ranging from 62.5 m maximum

wavelength down to 0.625 m is used to assess the applicability of the SSA4 expansion

as the separation between “long” and “short” waves is decreased.

Figures 6.8 (versus wind speed) and 6.9 (versus angle) plot the comparisons for

Case A. First note that the brightness harmonics obtained in Case A are all less

than 0.1 K, with the exception of the 0th harmonics at large wind speeds and/or

observation angles. This is due to the small rms slopes obtained when only extremely

long long waves are included. The wind speed dependence observed arises both from

increases in the long wave slope variance considered, but also from changes in the short

wave spectrum [79] with windspeed. The comparison among theories shows the SSA4
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expansion to be highly accurate in this case when compared to the numerical SSA4

integration, even given the difficulties in evaluation of the kernel function derivatives

required in the expansion. Two-scale predictions again are similar to the SSA4

results in terms of general trends and relative amplitudes, but do show observable

differences.

Results for Case B in Figures 6.10 and 6.11 show larger but still relatively small

fourth order effects with maximum amplitudes on the order of 1 K in the zeroth

harmonics while remaining less than 0.1 K in second azimuthal harmonics. The

expanded SSA4 theory is found to provide reduced accuracy compared to case A, but

to still achieve good agreement with the full SSA4 numerical integration. Differences

with the two-scale model are more significant, particularly for the zeroth azimuthal

harmonic of horizontal polarization, but overall the two-scale model shows similar

trends and amplitudes.

6.8 Conclusion

In this Chapter, expressions for the fourth-order SSA theory of emission from one

layer rough surfaces were derived and presented. For the case of a Gaussian random

process surface model, evaluation of the theory required computation of a four-fold

integration over a product of two surface spectra. This form was described as provid-

ing information on contributions from interactions of multiple sea waves in the surface

spectrum. Predictions of the model were evaluated in two situations: coupling be-

tween “long-long” waves and between “long-short” waves. The former contributions

were shown to remain consistent with the physical optics theory, as has been previ-

ously demonstrated for the second and third order SSA models. “Long-short” wave
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Figure 6.8: Case A, brightness tempreature azimuthal harmonics versus wind speed
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Figure 6.9: Case A, brightness temperature azimuthal harmonics versus θi
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Figure 6.10: Case B, brightness temperature azimuthal harmonics versus wind speed
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Figure 6.11: Case B, brightness temperature azimuthal harmonics versus θi
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interactions were studied through the use of a symmetrized kernel function, and by

consideration of critical phenomenon effects in the SSA4 kernel functions. A numeri-

cal integration procedure for evaluation of “long-short” wave effects was described, as

well as an expansion in long wave slopes that yielded a simplified approximation in

terms of spectrum independent “weighting functions.” A study of these interactions

was performed, and it was found that the expansion provided reasonable predictions,

even though finite computational precision limited the accuracy of the kernel func-

tion derivative evaluation in some cases. One of the primary goals of this part was

an assessment of the commonly applied “two-scale” theory through comparison with

the SSA4. This was performed by comparing the “weighting functions” of the SSA4

expansion with those obtained from a similar expansion of the two-scale theory, as

well as through direct comparison of fourth order brightnesses between the theories.

Results showed the two methods not to be identical, indicating that the SSA4 model

captures long-short wave interactions beyond the simple “tilting” process implicit in

the two-scale theory.
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CHAPTER 7

CONCLUSION

In this dissertation, complete SPM solution of the two layer problem has been

investigated, along with its applications and applications of previously developed one

layer complete SPM theory. The purpose of this study was to improve our under-

standing of given rough surface scattering problems by utilizing higher order SPM

solutions. SPM is one of the fundamental and most useful approaches in classical

rough surface scattering theory, mostly because of its ability to decouple the surface

and the scattering effects. The lower order SPM solutions are well studied in the

literature and provide sufficient insight to several rough surface scattering problems.

But, if problems such as multi layer roughness or multi scale roughnesses are con-

sidered, then higher order SPM solutions are necessary to provide more descriptive

information on scattering properties. This dissertation was focused on such applica-

tions. In the first part, where the two layer SPM solution was derived rigorously, the

interaction of rough surfaces was investigated, assuming the surfaces are uncorrelated

GRPs. Moreover, one final chapter was devoted to applications of one layer SPM

theory, where the fourth order emission theory of rough surface was considered. In

this part, the fourth order SPM theory was utilized, and an alternative to the so

called two-scale theory was derived.
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The main contributions of this dissertation can be summarized as follows:

• A numerical SPM solution procedure is described for the two layer problem at

arbitrary order, which is more suitable for deterministic problems.

• The numerical SPM solution for two layer problem was extended to an arbitrary

number of layers case.

• Explicit expressions for the SPM kernels were presented analytically up to the

second order.

• The complete SPM solution was provided as an arbitrary order analytical solu-

tion, the solution was expressed iteratively.

• A power analysis of the two layer problem was given at third order for both

coherent and incoherent fields, and the total scattering of the two layer problem

was decomposed into upper, lower and interaction effects and the importance

of interactions of rough surfaces are investigated.

• One layer arbitrary order solution is utilized to compute fourth order emission

theory of rough surfaces.

• In the case, when multi scale roughness description of the surface is relevant,

a theoretically sound alternative is developed to the commonly used heuristic

two-scale theory.

Specifically in Chapter 2, detailed formulations for fundamental rough surface

scattering models, 1-D, rough, PEC interfaces. Both approximate and exact mod-

els were described. The approximate models discussed include, small perturbation
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method (SPM), second order small slope approximation (SSA2), the physical optics

(PO), and the lowest order modified non-local SSA (MNLSSA). As an exact numer-

ical solution, the extended boundary condition (EBC) method was considered. The

1-D Dirichlet treatment of the SPM, was highlighted in great detail for the deter-

ministic case. And later, as a non-classical rough surface scattering model example,

the SSA2 model was described for the same problem, since the SSA2 model can be

considered as an advanced application of SPM model. The rest of the chapter, was

mostly specialized for a deterministic problem: scattering from sinusoidal gratings.

Formulations of each model mentioned above was presented and one final section

was also included, for comparison of these models, in order to give insight on the

limitations of each model.

Then, in Chapter 3, basic problem setup for the two-layer problem was intro-

duced. In this chapter, first, the notational conventions were provided. Next, the

boundary conditions were studied. Each boundary condition brought a so called

forcing function, which were utilized to express the solution of the problem as a set

of two linear system of equations, for horizontal and vertical polarizations, respec-

tively. The solution for these systems of equations was provided analytically. Later, a

Fast Fourier Transform(FFT) based numerical solution was described, in the Fourier-

Rayleigh sense. For validation purposes, the numerical perturbation solution was

compared against an existing two and a half dimensional extended boundary con-

dition(EBC) solution for two sine surfaces on top of each other, in the propagating

modes. Arbitrary number of layers case was also considered as a final section in this

chapter in a numerical sense. This section can also be considered as a generalization
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of the two-layer numerical solution, which might be very useful in a possible future

work involving analytical arbitrary layer SPM solutions.

Next, in Chapter 4, analytical solution procedure for the two-layer problem was

presented. In this chapter, first, the zeroth order solution was provided, in terms

of the KE,H terms, defined in Chapter 3. The zeroth and arbitrary order contri-

butions to the general N th order solution was studied from the forcing functions,

provided in Chapter 3. The zeroth order contribution terms were studied separately

for horizontal and vertical incidence cases, but the arbitrary order contributions were

identical for both incidence cases. Next, partial SPM solutions for zeroth and lower

order contribution terms were obtained. Later, these partial solutions were utilized

to obtain the complete first and second order solutions. Then, general form of higher

order solutions were studied, and based on those generalizations, a new tensor based

notation was introduced. The tensor notation was applied to the partial SPM solu-

tions, and the arbitrary order SPM solution procedure was constructed with them.

Finally, a convergence analysis of SPM solutions were presented using the ratio test

of convergence. The main conclusion, based on this study was the fact that The

two layer SPM theory have better predictions if the surfaces posses similar heights.

This is mostly due to numerical accuracy of the computations: the kernels produce

huge values especially at the higher orders, several addition operations occur above

machine limit.

Later, in Chapter 5, power analysis of the two-layer problem was provided. Given

the field solution to the third order in surface height, reflected, intermediate and

transmitted powers were derived to third order. In this chapter, first, a general

discussion on the power calculations was provided. Assumptions on the statistical
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surface properties were highlighted. Then, under the assumption of Gaussian Random

Process (GRP), the zeroth and the second order coherent reflectivity and the second

and the fourth order incoherent bi-static Radar Cross Sections (RCS) were derived.

For the case, when the two surfaces are uncorrelated, the bi-static RCS term was

studied thoroughly and the effects of upper and lower roughness and the interaction

of roughness effects were identified. A special term was defined as the ratio of the

interaction effect to the overall RCS, and it was studied for several setups. The results

had confirmed that the surface interactions are important for two layer problem, and

consequently, higher order solutions are necessary for analyzing layered roughness.

Last, in Chapter 6, expressions for the fourth-order SSA theory of emission from

one layer rough surfaces were derived and presented. For the case of a Gaussian

random process surface model, evaluation of the theory required computation of a

four-fold integration over a product of two surface spectra. This form was described

as providing information on contributions from interactions of multiple sea waves in

the surface spectrum. Predictions of the model were evaluated in two situations: cou-

pling between “long-long” waves and between “long-short” waves. The former contri-

butions were shown to remain consistent with the physical optics theory, as has been

previously demonstrated for the second and third order SSA models. “Long-short”

wave interactions were studied through the use of a symmetrized kernel function,

and by consideration of critical phenomenon effects in the SSA4 kernel functions.

A numerical integration procedure for evaluation of “long-short” wave effects was

described, as well as an expansion in long wave slopes that yielded a simplified ap-

proximation in terms of spectrum independent “weighting functions.” A study of
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these interactions was performed, and it was found that the expansion provided rea-

sonable predictions, even though finite computational precision limited the accuracy

of the kernel function derivative evaluation in some cases.

One of the primary goals of this part was an assessment of the commonly applied

“two-scale” theory through comparison with the SSA4. This was performed by com-

paring the “weighting functions” of the SSA4 expansion with those obtained from

a similar expansion of the two-scale theory, as well as through direct comparison of

fourth order brightnesses between the theories. Results showed the two methods not

to be identical, indicating that the SSA4 model captures long-short wave interactions

beyond the simple “tilting” process implicit in the two-scale theory. However studies

showed that brightness differences between the two theories were generally small, and

can be considered negligible for second azimuthal harmonic variations in particular.

Further studies using the SSA4 theory to compute “short-short” wave interaction

effects may also yield additional motivation for further application of the method.
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