
INELIMINABLE IDEALIZATIONS, PHASE

TRANSITIONS, AND IRREVERSIBILITY

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Nicholaos John Jones, B. A., M. A.

* * * * *

The Ohio State University

2006

Dissertation Committee:

Professor Robert Batterman, Co-Adviser

Professor Neil Tennant, Co-Adviser

Professor Stewart Shapiro

Professor Robert Perry

Approved by

Co-Adviser

Co-Adviser

Graduate Program in
Philosophy



c© Copyright by

Nicholaos John Jones

2006



ABSTRACT

The dissertation examines two putative explanations from statistical mechanics

with the aim of understanding the nature and role of idealizations in those accounts,

namely, the Yang-Lee account of phase transitions and the Boltzmannian account

of irreversible behavior. Like most explanations in physics, these accounts involve

idealizations to some extent. Many idealized explanations hold out the hope that

the idealizations can be removed or eliminated with further work. However, the

idealizations that occur in the accounts of phase transitions and irreversibility are

ineliminable. The only way (in principle) to obtain a description – let alone an

explanation – of these phenomena is to invoke various idealizing assumptions.

Ineliminably idealized explanations are not well-understood from a philosophical

point of view. Indeed, most philosophers of science would probably hold that no

idealizations are ineliminable. The dissertation argues that this view is mistaken,

showing where and why extant accounts of idealization miss this fact by distinguish-

ing the widely-accepted understanding of idealizations as falsehoods from a novel

understanding of idealizations as abstractions. As abstractions, idealizations are de-

vices for ignoring certain details about the real world. The dissertation argues that

ineliminable idealizations cannot be falsehoods, and that they should be understood

as abstractions.
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The dissertation also examines the confirmation of idealized hypotheses and their

role as guides to what the world is like. At least some idealized hypotheses have some

degree of confirmation; and less idealized hypotheses tend to be better confirmed than

their more idealized counterparts. If idealizations are falsehoods, Bayesian confirma-

tion theory seems unable to obtain these results, because it lacks a way of defining the

prior probabilities of idealized hypotheses. If idealizations are abstractions, however,

idealized hypotheses about a system are incomplete claims that omit certain details

about the system. Since prior probabilities are assigned to such hypotheses in the

same way they are assigned to incomplete descriptions, understanding idealizations

as abstractions allows Bayesianism to secure the above-mentioned results. This un-

derstanding of idealizations also allows idealized hypotheses to be guides to what the

world is like, because the incompleteness of such hypotheses is compatible with the

cogency of inference to the best explanation.
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CHAPTER 1

INTRODUCTORY REMARKS ON EXPLANATION,
IDEALIZATION, AND INELIMINABILITY

For the most part, scientific explanations are answers to why-questions. A sci-

entific explanation of some phenomenon P answers the question ‘Why is it the case

that P obtains?’ One might ask why straight sticks appear to be bent when im-

mersed in water, why some metals become magnetic, why the moon eclipses the sun,

etc. Science aims to answers these questions. This explanatory task goes beyond the

descriptive task of science, because explanations do not merely describe what is the

case; they also show why it is the case.

A scientific explanation can be thought of as a set of sentences, one of which –

the explanandum – stands in a certain relation to the others – the explanans. The

explanandum is a sentence to the effect that the phenomenon to be explained obtains;

there is always a presupposition that the explanandum is true, because there is no

explanation of why a false sentence is true nor of why a phenomenon that does not

obtain obtains. The explanans is the set of sentences that purport to explain the ex-

planandum. Whether an explanans explains its explanandum depends upon whether
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there is an appropriate relationship between them; this relationship distinguishes ex-

planations from non-explanations, preventing all but a privileged few answers to a

why-question from being explanatory.

Thinking of scientific explanation in this way overlooks some issues about scien-

tific explanation that happen to be tangential to the focus of this dissertation. For

instance, there has been some debate about whether sentences, or only the facts that

sentences describe, do explanatory work. No substantial thesis in this dissertation

hinges upon which of these views is correct. For this reason, I take the liberty of

sometimes treating a member of the explanans as a fact rather than a sentence de-

scribing the fact. I also assume the irrelevance of any difference between explaining

why a sentence is true and why the phenomenon described by the sentence obtains.

Technical niceties aside, there are two putative scientific explanations on which

this dissertation focuses. The first is the statistical mechanical account of the occur-

rence of phase transitions. This account applies to phenomena such as the melting of

ice and the spontaneous magnetization of iron. The second putative explanation is

a statistical mechanical account of why non-equilibrium systems, when left to them-

selves, irreversibly approach a state of equilibrium in a finite amount of time. This

account applies to phenomena such as the spread of a puff of cigarette smoke through-

out a room. A presumption of this dissertation, defended in Chapter Five, is that

these accounts are genuinely explanatory.

Like many scientific explanations, the statistical mechanical accounts of phase

transitions and irreversibility are idealized. An idealized explanation is an explana-

tion in which at least one member of the explanans is an idealization. There are two
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characteristic functions of idealizations (see [49], pp. 177-178). First, every idealiza-

tion replaces a description of a system with a description of an idealized version of that

system. (The idealization itself is neither the replaced description nor the replacement

description.) Second, every idealization simplifies: the replacement description is, in

some sense, simpler than the original description.1 For example, working with the

replacement description might simplify the mathematical analysis of the system. The

simplification function distinguishes idealizations from other kinds of replacement,

such as the replacement of truth with fiction that occurs in some cases of deception.

Note that this characterization of idealizations appeals only to the operational role of

certain syntax; it appeals to neither the syntactic form of idealizations nor a semantic

interpretation of such syntax.

Of all the idealizations that occur in the explanans for the accounts of phase

transitions and irreversibility, an idealization common to both accounts – and the

idealization most salient to this dissertation – is the limit in which a system’s number

N of particles “tends to infinity”: N →∞. If idealizations are statements (declarative

sentences), this syntax should be interpreted as being the limit in which a system’s

number of particles becomes infinitely large, and the application of this limit to an

equation that describes a real system with only finitely many particles yields an

equation that describes a (non-real) system with infinitely many particles.

Although the accounts of phase transitions and irreversibility are similar to many

other scientific explanations in being idealized explanations, one thesis of this dis-

sertation is that the accounts are dissimilar to other such explanations in being in-

eliminably idealized. (An idealized explanation of some phenomenon is ineliminably

1The sense in which idealizations simplify is controversial. The discussion to follow relies upon
intuitions about when one description is simpler than another. For one suggested analysis, see [111].
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idealized if, in principle, the only way to explain the phenomenon is to appeal to an

idealization in the explanans.)

The statistical mechanical accounts of phase transitions and irreversible
behavior are ineliminably idealized.

Most idealized explanations are not ineliminably idealized: with most such expla-

nations, it is possible to alter an idealized explanans for some phenomenon into an

explanans that is less idealized, in such a way that the altered explanans also ex-

plains the original phenomenon. For instance, it is possible to explain why a certain

launched projectile follows a parabolic path under the idealization that the projectile

is a perfect sphere; and it is also possible to explain this fact without idealizing the

shape of the projectile (although the latter explanation is more complicated). The

interesting feature of the statistical mechanical accounts of phase transitions and ir-

reversible behavior is that the idealizing limit in which a system’s particle number

N →∞ is ineliminable to those accounts.

(The arguments in favor of the ineliminability of the N →∞ limit in the accounts

of phase transitions and irreversibility are based upon technical impossibility results

from the current state of science. I do not mean to claim that scientific advances will

never show the limit to be eliminable in accounting for these phenomena. Rather, I

aim to show that, so far as we know at present, the limit is ineliminable to the accounts

of phase transitions and irreversibility. Moreover, even if future progress provides

explanations of these phenomena that do not require an appeal to the N →∞ limit,

that progress would not undermine the thesis that the current accounts of phase

transitions and irreversibility do require an appeal to this limit.)

A second thesis of the dissertation is that many extant philosophical accounts of

scientific explanation fail to accommodate ineliminably idealized explanations.
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Many extant philosophical accounts of scientific explanation fail to accom-
modate ineliminably idealized explanations.

The overarching goal of this dissertation is to provide a philosophical account of how

these explanations can be explanatory despite being ineliminably idealized. But first,

it will be helpful to discern the conditions a philosophical account of explanation

must satisfy in order to accommodate idealized explanations in general. For if a

philosophical account of scientific explanation disallows the existence of idealized

explanations, it also disallows the existence of ineliminably idealized explanations.

1.1 Explanation and Distorting Idealizations

Philosophical accounts of scientific explanation attempt to provide conditions un-

der which an answer to a why-question is explanatory. That is, they attempt to

provide conditions that an explanans must satisfy if it is to explain some explanan-

dum. Historically, these accounts take one of three forms. Nomothetic accounts, best

represented by Carl Hempel’s deductive-nomological model, hold that to explain a

phenomenon is to subsume it under appropriate laws. Causal accounts, best repre-

sented by Wesley Salmon, hold that to explain a phenomenon is to show how the

causal-nomic structure of the world produces the phenomenon. Unification accounts,

best represented by Philip Kitcher, hold that to explain a phenomenon is to unify it

with other phenomena. The representative versions of each of these accounts, along

with a fairly prevalent semantic interpretation of idealizations, entail that there are

no idealized explanations.
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1.1.1 Representative Accounts of Explanation

Carl Hempel’s deductive-nomological (DN) model is a representative nomothetic

account of explanation. According to Hempel, “the principal requirement for scientific

explanation is . . . the inferential subsumption of the explanandum under comprehen-

sive general principles” ([43], p. 445). Hempel provides four adequacy conditions for

an explanation. First, the explanans must have empirical content; its elements must

be confirmable. Second, the explanans must deductively entail the explanandum.

Third, at least one member of the explanans must be a statement of a law of nature,

and this law-statement must be essential to the valid derivation of the explanandum.

(The difficulty of adequately characterizing the notion of a law of nature, as well as

the debate over whether there are such laws, are acknowledged but passed over as

irrelevant to the present discussion: see [95] and [122], respectively.) Finally, every

member of the explanans must be true.

Hempel takes this last condition, the factual correctness condition, to be “obvi-

ous” ([45], p. 322). He prefers an explanans that is true to an explanans that is highly

confirmed, in order to prevent the possibility of an argument that satisfies his first

three conditions being an explanation at some point in time but, given scientific ad-

vances that highly disconfirm some elements of the explanans, the same argument not

being an explanation at some later time. Presumably his conception of explanations

as sound arguments explains why he prefers true explanans to false ones.

Wesley Salmon offers a representative version of a causal account of explanation

that differs from Hempel’s DN model in not requiring explanations to be arguments.

According to Salmon, explanations are assemblages of facts that fit the phenomenon
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to be explained into its causal nexus – that is, etiological facts about the causal in-

teractions and processes that produce the phenomenon as well as constitutive facts

about the composition of the system in which the explanandum occurs. This assem-

blage might be an argument; and it might not be. There need not be any entailment

relation between the sentences that describe the way in which the explanandum is

embedded in its causal nexus and the explanandum itself; the only relations required

are causal relations between the facts described by the explanans and explanandum.

(The details of Salmon’s theory of causation are not important for the present dis-

cussion: see [103], pp. 253-257.)

Salmon’s account shares with Hempel’s model a requirement of factual correctness.

No causal process or causal interaction is part of a causal explanation of an event

unless it is part of the causal nexus for that event. Since non-existent causal processes

and non-obtaining causal interactions are not part of the causal nexus for any event

to be explained, they are not part of any causal explanation. David Lewis’s account

of causal explanation, the major competitor to Salmon’s, also contains something like

a requirement of factual correctness. Lewis is unwilling to decide whether accounts

that violate this requirement are non-explanatory or just bad explanations: “it is

unclear – and we needn’t make it clear – what to say about an unsatisfactory chunk

of explanatory information, say one that is incorrect or too small to suit us. We may

call it a bad explanation, or no explanation at all” ([70], p. 218).

Like Hempel’s and Salmon’s accounts, Kitcher’s account of explanation as unifi-

cation (see [56], [57]) denies that falsehoods are explanatory. According to Kitcher,

explanations are valid deductive arguments, and whether an argument is an explana-

tion depends upon whether it instantiates an explanatory argument pattern.
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The explanatory argument patterns are the ones that best unify the set of sen-

tences that belong to the belief corpus of scientific practice in the limit of its rational

development ([57], p. 498). Kitcher’s account for when an argument pattern best

unifies a belief corpus is complex. Although the details are interesting, the important

point for this discussion is that his account prohibits falsehoods from being explana-

tory. An argument is a candidate for being among the best unifiers of a belief corpus

only if all of its premises are members of that corpus ([57], p. 434). Since Kitcher

identifies truths as those sentences that belong to the belief corpus of science in the

limit of its rational development, no falsehood is a premise among the arguments that

best unify that belief corpus.

1.1.2 Idealizations as Distortions

These accounts of scientific explanation are incompatible with the existence of

idealized explanations, if the correct semantic interpretation of idealizations is that

they are distortions. A distortion attributes a feature to a system that the system

does not have. Many kinds of sentences, such as lies and ordinary mistakes, are

distortions. For example, if Jack tells Jill that he cannot visit her because he has

work to do over the weekend, but the reason he cannot visit her is that he has more

important plans, then Jack’s statement is a distortion, because it attributes to Jack

a reason that he does not have. Ordinary mistakes also qualify as distortions. For

instance, Newtonian mechanics allows information transfer to occur at speeds well

beyond the speed of light. This is a distortion with respect to how fast information

can be transferred, because relativity theory sets the speed of light as the upper

bound for such speeds. Again, early theories of combustion hypothesize that some
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substances contain phlogiston, but this is a distortion with respect to the composition

of such substances because there is no phlogiston.

Idealizations often are treated as distortions. Ronald Laymon writes, “The most

natural attitude to take towards idealizations . . . is to assume that their use introduces

distortion or bias into the . . . analysis” ([65], p. 354). According to Margaret Morrison,

an idealization is “a characterisation of a system or entity where its properties are

deliberately distorted in a way that makes them incapable of accurately describing the

physical world” ([85], p. 38 fn. 1). Likewise, Nancy Cartwright takes an idealization

to be a mental rearrangement or replacement of inconvenient features or specific

properties of a concrete object with factors “which are easier to think about, or with

which it is easier to calculate” ([17], p. 187).

If idealizations are distortions, then an idealization replaces one description of a

system with a simpler description that attributes to that system at least one feature

that the system does not have. The resultant description, a distorted description,

either attributes an incorrect magnitude to some property of the system of interest or

qualitatively distorts some property of that system. Hence, if idealizations are distor-

tions, an idealized description of a system is an incorrect description of that system.

Note that this interpretation of idealizations does not entail that every distortion is

an idealization; only those distortions that perform the appropriate functions qualify

as idealizations.

The interpretation of idealizations as distortions provides a semantic meaning to

mathematical syntax that satisfies the characteristic functions of idealizations. In

order to illustrate this interpretation of idealizations, consider two systems in which

idealizations are treated as distortions.
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As a distortion, the simple pendulum is a pendulum subject to no friction or

other non-gravitational forces; it has an extension of zero; its string is rigid and has

no mass; and so on. The simple pendulum lacks features that real pendula have, and

it has features that real pendula lack. For instance, real pendula are subject to a

non-zero amount of friction and have a finite, non-zero extension. (See Figure 1.1.)

Accordingly, a description of the simple pendulum is false of every real pendulum.

Nonetheless, treating real pendula as simple pendula allows complicated (hard-to-

solve) equations of motion for real pendula to be replaced with equations that are

simpler (easier to solve).

Figure 1.1: Real Pendulum vs. Simple Pendulum

Idealizations also are applied to gases. As a distortion, an ideal gas is a gas in

which collisions between particles are elastic, in which the forces between its particles

have no magnitude, etc. An ideal gas lacks features that real gases have, and it has

features that real gases lack. For instance, collisions between particles of real gases

are not elastic and intermolecular forces in real gases have finite, non-zero values.

Accordingly, a description of an ideal gas is false of every real gas. Nonetheless,

treating real gases as ideal gases allows complicated (hard-to-solve) equations of state

for real gases to be replaced with equations that are simpler (easier to solve).
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1.1.3 Accommodating Idealized Explanations

If idealizations are distortions then, according to the representative accounts of

scientific explanation, there are no idealized explanations. Consider, first, Hempel’s

DN model. Hempel requires that every member of a putative explanans be true in

order for it to be explanatory. If an explanation is idealized, then at least one member

of its explanans is an idealization. If idealizations are distortions, this member is false.

Hence, putative explanations that involve distorting idealizations are not explanatory

according to Hempel’s account.

Hempel attempts to avoid this conclusion by appealing to the notion of a proviso

(see [44]). A proviso is a statement that the conditions under which an idealized

law is true obtain. Hempel’s strategy with provisos is two-fold. First, for any law

that occurs as an element of a putative explanans, if the law is true only of idealized

versions of real systems, it is to be replaced by a slightly different law. The consequent

of this new law is to be the consequent of the original law. The antecedent is to

be the antecedent of the original law conjoined with a proviso, which expresses the

conditions under which the original law is true. Secondly, the putative explanans is to

be supplemented with this proviso. This strategy prevents idealized laws from being

false and allows one to infer that the idealized law is true when the conditions stated

in the proviso obtain. The strategy is supposed to avoid violations of the factual

correctness requirement.

Consider an example given by Hempel that illustrates the use of provisos. Suppose

that β is a metal bar to which iron filings are clinging, and the explanandum is that,

when β is broken into two shorter bars and the shorter bars are suspended close to

each other at some distance from the ground, the bars orient themselves so as to fall
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into a straight line. (See Figure 1.2.) From the theory of magnetism, it is possible

Figure 1.2: Orientation of Broken Magnet

to deduce the law that if a magnet is broken into two bars, then both resultant bars

are magnets whose poles attract or repel each other. This law can be used to deduce

the explanandum. Yet, as Hempel notes, the law about magnets is false: if the bar

β is broken at high temperatures, it becomes demagnetized. Hence, the explanation

requires a proviso to the effect that the bar is not broken at high temperatures. This

proviso is added to the explanans, and the law about magnets is replaced with a law

stating that if a magnet is broken into two bars but not broken at high temperatures,

then both resultant bars are magnets. Hempel takes this to allow for an explanation

of the explanandum, when in fact β is not broken at high temperatures.

Hempel’s appeal to provisos appears to allow idealized laws to be explanatory in

some cases, because sometimes real systems satisfy the conditions set forth in the

proviso. This appears to avoid the conclusion that putative explanations involving

idealizations are not explanatory if idealizations are distortions. But the appearance

is deceptive. When a real system satisfies the conditions set forth in the proviso,

the idealizations that characterize the idealized law governing the system are not
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distortions; instead, they are true of the system, and the law that governs the system

is not an idealized law. When a real system does not satisfy the conditions set forth in

the proviso, the proviso is false. When a putative explanans contains a false proviso,

it fails to be explanatory because the factual correctness requirement is violated.

Hence, the conclusion previously drawn remains valid: any explanans that contains

an idealization is not explanatory according to Hempel’s account, if idealizations are

distortions of real systems.

Like Hempel’s account, Salmon’s causal account does not permit idealized expla-

nations if idealizations are distortions. Any idealized (distorted) version of a real

system lacks some detail about the causal nexus of the real system and, moreover,

contains details that are false of the causal nexus for the real system. Hence, every

idealized version of a real system fails to exhibit the real system as it is embedded

in its causal nexus. Thus, according to Salmon’s account, idealized versions of real

systems are not causally explanatory of those systems.

In an attempt to avoid this result, one might weaken Salmon’s requirement on

causal explanations. Instead of requiring an explanation to exhibit a phenomenon

in its entire causal nexus, one might require only that an explanation exhibit a phe-

nomenon in some relevant portion of its causal nexus. Paul Humphreys suggests this

approach ([48], pp. 287-288). Humphreys distinguishes between complete and true

causal explanations. A complete causal explanation of an event cites all and only the

causes of the event; a true causal explanation cites causes that are causally relevant

to the event. (Humphreys defines a causal factor X as causally relevant to an event

e if a change in X invariably results in a change in e (p. 294).) While every complete

13



causal explanation is a true causal explanation, some true causal explanations are

partial rather than complete.

The distinction between complete and true explanations is designed to allow for

causal explanations that cite some, but not all, of the causes of an event. Yet the

distinction does not circumvent the conclusion that idealized versions of real systems

are not causally explanatory of those systems if idealizations are distortions. As

a distortion, an idealization of a causal interaction replaces the actual interaction

with either a non-actual interaction or no interaction at all. In either case, the

resultant idealized causal nexus is not a true-but-incomplete version of an actual

causal nexus. Rather, it is an incorrect version of the actual causal nexus, because

it is a distortion of that nexus. A similar point holds for idealized causal processes.

Given the requirement that every member of an explanans must be factually correct,

every idealized (distorted) version of an actual causal nexus is factually incorrect.

Accordingly, even if causal explanations can be partial, idealized (distorted) versions

of actual systems are not causally explanatory of those systems.

Finally, consider Kitcher’s account of explanation as unification. Suppose that

idealizations are distortions. Then there is an idealized explanation, according to

Kitcher’s account, just in case the belief corpus of science in the limit of its rational

development contains an argument that instantiates an explanatory argument pat-

tern and this argument contains, as one of its premises, an idealization. Since, by

hypothesis, idealizations are distortions, they are false. But an argument instantiates

an explanatory argument pattern only if all of its premises belong to the belief cor-

pus of scientific practice in the limit of its rational development. Since Kitcher takes
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the members of this corpus to be true, no idealization is a premise in any explana-

tory argument pattern. Hence, Kitcher’s account disallows idealized explanations if

idealizations are distortions.

One might attempt to avoid this conclusion by invoking Kitcher’s distinction be-

tween correct explanations and acceptable ones. Correct explanations are genuinely

explanatory while acceptable explanations are explanatory so far as the present scien-

tific community can tell. Even though Kitcher’s account disallows correct idealized ex-

planations, it seems to permit acceptable idealized explanations, because the premises

of an explanation that is acceptable relative to the present scientific community need

only be endorsed as true at present – and this is compatible with those premises not

being endorsed as true in the limit of the rational development of scientific practice.

Although the distinction between correct and acceptable explanations allows ide-

alized explanations in principle (albeit acceptable rather than correct ones), for the

most part it fails to allow them in practice. Any idealized explanation acceptable to

the present scientific community is an argument in its belief corpus instantiating an

acceptable explanatory argument pattern and containing an idealization as one of its

premises. Since most idealizations that appear in putative explanations are known

to be idealizations, most idealizations are not only false but also known to be false, if

idealizations are distortions. And since an argument is in the belief corpus of a sci-

entific community only if all of its premises are endorsed as true by that community,

most idealizations are not part of the belief corpus of the present scientific community.

Hence, for the most part, Kitcher’s account disallows acceptable idealized explana-

tions. (See Chapter Two for a modification of Kitcher’s account that accommodates

(correct) idealized explanations by allowing falsehoods to be explanatory.)
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The representative accounts of scientific explanation entail that no explanations

contain any distorting idealizations. This result does not depend upon the details

that differentiate these accounts from one another. Rather, the result follows because

the accounts accept an adequacy condition on explanation, according to which any

scientific account that involves appeal to a falsehood is not explanatory. An idealized

account is a putative explanation that involves appeal to at least one idealization. If

idealizations are distortions, such accounts involve appeal to at least one falsehood.

Hence, given this adequacy condition on explanation, no such account is explanatory.

Any account of explanation that treats idealizations as distortions and accepts

a factual correctness adequacy condition on explanation entails that there are no

idealized explanations. This result is worth emphasizing, in part because it seems

not to have been noticed. The result does not show, however, that there are no

idealized explanations. It merely provides a constraint for any philosophical account

of explanation that accommodates idealized explanation. Any philosophical account

of scientific explanation that accommodates idealized explanation must either aban-

don the interpretation of idealizations as distortions or allow some falsehoods to be

explanatory. This result provides a framework for discussing how the statistical me-

chanical accounts of phase transitions and irreversibility can be explanatory despite

being (ineliminably) idealized.

1.2 Clarifications

The preceding discussion might raise the following worries: (1) that the project

of this dissertation is hopeless because there are no idealized explanations; (2) that

idealizations should be characterized according to syntactic rather than operational
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criteria; (3) that it is not possible to interpret idealizations as anything other than

distortions. Before considering these objections, I shall enter one remark about the

kind of explanandum that is the concern of this dissertation.

There are two types of phenomenon that one might want to explain. (For a

similar distinction, see [4], [6].) A type-1 phenomenon is an individual event or class

of events. A type-2 phenomenon is a multiply realized pattern among some class of

events. Typical type-1 phenomena include the irreversible behavior of a particular

gas, or the decrease of a particular pendulum’s period upon a decrease in the distance

between its pivot and center of mass, or the buckling of a particular strut under a

sufficiently heavy load. Typical type-2 phenomena include the shared pattern of

spacing between rainbow fringes, or the general buckling of struts under sufficiently

heavy loads.

A statistical mechanical account of phase transitions is an account of why a phase

transition occurs in some particular system, rather than an account of why diverse

systems share certain commonalities when undergoing phase transitions. And a sta-

tistical mechanical account of irreversible behavior is an account of why a particular

system exhibits irreversible behavior, rather than an account of why diverse kinds of

systems share certain commonalities when behaving irreversibly. Since the accounts

of phase transitions and irreversibility concern type-1 phenomena, this dissertation

focuses exclusively on explanations of this type of phenomena.

1.2.1 The Possibility of Idealized Explanation

One might object to the project undertaken here on the grounds that no scientific

explanations are idealized. That is, one might be content to accept the conclusion
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that there are no idealized explanations, insisting that idealizations are distortions

and only truths can be explanatory. There are two reasons to resist this attitude.

First, if no explanations are idealized, then our best sciences provide very few ex-

planations. Most scientific accounts are idealized in some way or other. For instance,

many journal articles in physics undertake to advance our scientific knowledge of some

narrow domain of natural phenomena, in virtue of explaining those phenomena; and

the results in these articles nearly always appeal to idealizations. Any philosophical

account of scientific explanation that forbids idealized explanations thereby fails to

make sense of much of scientific practice. It is counter-intuitive to hold that our best

sciences furnish very few explanations. Nor is it satisfactory to treat these results as

mere stop-gaps on the way to results with explanatory power, for this fails to explain

why the results are taken to be a contribution to our shared scientific knowledge, and

thereby fails to explain why they are taken to have epistemic, rather than merely

heuristic, value. If science provides us with any explanations at all, there must be

something about idealized descriptions that has explanatory power for physical sys-

tems. The philosophical task is to understand how scientific explanations can be

explanatory despite being idealized, not to deny that explanations can be idealized.

Second, there are scientific accounts of phenomena that appear to be explanatory

despite being idealized. Consider the rough, qualitative proportionality between a

pendulum’s period and the distance from its pivot to center of mass. If this distance

were to increase, the period would increase; and if the distance were to decrease,

the period would decrease. (This proportionality holds for most typical pendula, but

there are exceptions.) Galileo took advantage of this proportionality in designing the
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pulsilogium, the first instrument to objectively measure pulse speed (see [77], pp. 88 -

90). The pulsilogium is a pendulum attached to a movable peg that runs the length

of a scaled board. The peg is connected to the string of the pendulum: moving

the peg alters the length of the pendulum. The pendulum hangs perpendicular to

the scale. (See Figure 1.3: the top picture shows the pulsilogium from above, with

the hole indicating where the pendulum hangs down through the board and the star

indicating the movable peg; the bottom picture shows the pulsilogium from the side.)

Figure 1.3: Pulsilogium

Given the rough proportionality between a pendulum’s period and the distance

between its pivot and center of mass, one can expect to alter the period of the pendu-

lum by sliding the peg across the scale, thereby altering the length of the pendulum

string. Different periods correspond to different string lengths, which correspond to

different markings on the scaled board. Thus, one can measure a patient’s pulse speed

by sliding the movable peg until the pendulum oscillates in rhythm with the patient’s

pulse. This is a remarkable phenomenon, and one might very well wonder why the
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period of a pendulum is roughly proportional (in a qualitative sense) to the distance

between its pivot and center of mass.

One account of this proportionality appeals to the simple pendulum. The simple

pendulum is an idealized version of a real pendulum. A real pendulum has several

characteristic properties. All of its components have a non-zero mass and extension,

and imperfect rigidity. There is a point at which the pendulum connects to some

support structure; this point is the pivot about which the pendulum oscillates; and

the support structure itself might oscillate. There might be friction at the pivot point,

which tends to impede the oscillations of the pendulum; there might be a mechanism

that drives the pendulum, tending to enhance its oscillations. The pendulum also

swings in some medium, such as air, oil, or water; this medium further impedes the

pendulum’s oscillations.

The simple pendulum is quite unlike any real pendulum. The simple pendulum

is an extensionless point at the end of a massless rigid string. The point contains

the pendulum’s entire mass. The point at which the simple pendulum connects to its

support structure is fixed, and there is no friction as the pendulum pivots about this

point. There is also no resistance from the surrounding medium; it is as if the simple

pendulum oscillates in a vacuum. Nor is there any mechanism that enhances the

simple pendulum’s oscillations; only gravity affects its motion. The simple pendulum

is an idealized version of real pendula, because it idealizes many properties of real

pendula. A more complete list of properties of real pendula that the simple pendulum

idealizes includes: the shape, rigidity, and mass distribution of real pendula, as well as

variations therein; non-gravitational forces such as air resistance and friction between

any parts of real pendulum systems; driving forces; variations in the temperature,
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mass or length of real pendula; variations in the magnitude of gravity with altitude

and variations in the direction of gravity with location on an irregularly shaped earth;

and movement of the support structure.

In virtue of these idealizations, the period of the simple pendulum is roughly

proportional to the length of its string. The simple pendulum can be used to predict

that if the distance between a pendulum’s pivot and center of mass were to increase

(decrease), then the period of the pendulum would increase (decrease). The simple

pendulum has all the properties that are relevant to this proportionality between

pendulum period and pendulum length. The equation that governs the motion of

the simple pendulum is also law-like, since it is derivable from basic principles of

Newtonian mechanics (along with appeal to several idealizations, of course); and the

argument pattern used to derive the equation for the period of the simple pendulum

is a common argument pattern within Newtonian mechanics, suggesting that the

pattern is, in some sense, a unifying pattern. Reasons like these support the claim that

the explanans that explains the rough, qualitative proportionality between a simple

pendulum’s period and the length of its string also explains this proportionality as it

exists in real pendula.

A second phenomenon amenable to idealized explanation is the familiar fact that

a faint fog forms around the opening of carbonated drinks when they are first opened.

This is most apparent in champagne, but it also appears in soda. (See Figure 1.4.)

This phenomenon can be explained, in part, by appealing to the ideal gas law. The

ideal gas law governs ideal gases, gases that are idealized versions of real gases. Un-

like real gases, an ideal gas is one in which every collision between its components

is perfectly elastic and in which there are no attractive forces between any of the
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Figure 1.4: “Soda Fog”

components. Using kinetic theory, it is possible to derive the well-known law that

governs ideal gases: pV = nRT , where p is the absolute pressure of the gas, V is its

volume, T is its absolute temperature, n is the number of moles of the gas, and R

is the universal gas constant. (One mole of gas contains 6.02 × 1023 particles of the

gas.)

The ideal gas law relates the pressure, volume, and temperature of a gas, and this

relation is a central component for an explanation of the phenomenon of “soda fog”.

An unopened container of carbonated beverage contains a carbonated fluid topped

by a gas of water vapor and carbon dioxide (or whatever gas is used for carbonation).

The pressure of this gas is greater than the atmospheric pressure, so that the pressure

of the gas decreases towards the atmospheric pressure when the container is opened.

Treating this gas as an ideal gas, the ideal gas law shows that, as the pressure of the

gas decreases, its volume increases; that is, when the container is opened, the gas

starts to expand beyond the opening of the container.

One consequence of the ideal gas law is that an ideal gas does positive work (in

the technical sense of ‘work’) as it expands. The only source of this energy is the

internal energy of the gas. Hence, according to the first law of thermodynamics, the
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internal energy of the gas must decrease as the gas expands. This change in internal

energy is proportional to a change in temperature, for ideal gases. Thus, as the gas

expands beyond the opening of the container, it undergoes a temperature decrease.

This temperature decrease results in condensation of some water vapor in the gas,

and this condensed vapor is the “soda fog”.

Despite the idealizations that characterize an ideal gas, the ideal gas law can be

used to predict that a faint fog forms around the opening of carbonated drinks when

they are first opened. An ideal gas has all the properties that are relevant to the

formation of this “soda fog”. The ideal gas law is law-like, since it is derivable from

basic principles of kinetic theory (by appeal to several idealizations). The argument

pattern used to derive the ideal gas law is a common argument pattern within kinetic

theory, suggesting that the pattern is, in some sense, a unifying pattern. Reasons like

these support the claim that the explanans for the explanation of the formation of

“soda fog” in ideal gases also explains the formation of “soda fog” in real gases.

1.2.2 Syntactic Characterizations of Idealizations

Regardless of whether there are idealized explanations, one might object that ide-

alizations have been improperly characterized. The characterization of idealizations

adopted in this chapter only appeals to the operational role of idealizations – they

replace one description of a system with a simpler description. There are other char-

acterizations of idealizations that appeal to strictly syntactic marks of idealizations

without referring to the operational role of that syntax. For instance, Leszek Nowak

takes the distinctive mark of idealizations to be their mathematical form, and he

takes this form to be one in which the magnitude of some property of a system is set
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equal to zero ([88]). So, according to Nowak, if x represents a property of a system,

such as its mass, radius, charge, etc., an idealization of x is a sentence to the effect

that x = 0. Karl Popper proffers a similar characterization, prompting him to call

idealization the “zero method” ([93], p. 141 fn. 2).

Nowak and Popper’s approach to characterizing idealizations has the drawback

that putative idealizations lacking the appropriate mathematical form are disqualified

from being idealizations, despite the fact that they are mathematically equivalent

to other syntax with the appropriate mathematical form. For example, a putative

idealization is g(h) = C, where g(h) represents gravity as a function of height above

the Earth’s surface and C is a non-zero constant (typically 9.81 m/s2). If idealizations

are distortions, this says that the force of gravity on an object is the same at all

heights. This is a putative idealization, because the gravitational force on an object

varies slightly as a function of the height of that object above the Earth’s surface.

Since this idealization does not have the form g(h) = 0, it does not qualify as an

idealization according to the Nowak-Popper criterion. However, the syntax g(h) = C

is mathematically equivalent to the syntax dg/dh = 0, where dg/dh represents the

rate of change of the gravitational force on an object with respect to its height above

the Earth; given the rules of the calculus, g(h) = C and dg/dh = 0 are derivable

from each other (differentiate the former with respect to h or integrate the latter

with respect to h). This latter equation qualifies as an idealization according to the

Nowak-Popper criterion, even though it is mathematically equivalent to the equation

g(h) = C, which does not qualify as an idealization according to the same criterion.

This oddity of the Nowak-Popper criterion can be avoided by using non-syntactic,

functional marks to characterize idealizations. The equations g(h) = C and dg/dh = 0
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perform the same operational role and thereby produce replacement descriptions that

are equally simple (in whatever sense of simplicity is appropriate). Hence, according

to the operational characterization of idealizations, g(h) = C is an idealization just

in case dg/dh = 0 is. Of course, this is not to say that the Nowak-Popper criterion

cannot be modified to yield the result that g(h) = C also counts as an idealization.

For instance, one might modify the criterion so that the distinctive mathematical

form of an idealization is x = C, where C is a constant that is sometimes zero.

It is likely that more extensive modifications than this will be required for an

adequate syntactic characterization. For instance, the criterion will need to accom-

modate cases in which the magnitude of some quantity is made to approach a value

of infinity. An example of this kind of case is the idealization according to which the

Earth’s radius R is made to be infinitely large. This can be construed as idealizing

the earth to be flat rather than curved, since in the limit R → ∞, the curvature of

the Earth vanishes.

Supposing that such a modified syntactic criterion is available, there remains the

task of distinguishing between syntax that meets the modified criterion and yields a

simpler description than the original description, from syntax that meets the modi-

fied criterion and does not yield a simpler description. For instance, the statement

that the charge on a neutron is zero satisfies Nowak’s criterion for being an ideal-

ization, but this statement is used to obtain a correct description of neutrons rather

than a simpler description. Prima facie, there is no way to mark such a distinction

by appeal to syntactic criteria alone. Moreover, many different kinds of syntax can

satisfy the same function, of replacing one description with a simpler description. So

rather than develop a syntactic characterization of idealizations only to append to it
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a non-syntactic criterion, it is more straightforward to neglect the syntactic marks

of idealizations altogether. For this reason, an operational, non-syntactic character-

ization is preferable to the Nowak-Popper characterization and is, accordingly, the

characterization of idealizations adopted for the dissertation.

1.2.3 Alternative Interpretations of Idealizations

Regardless of whether there are idealized explanations, and even if idealizations

should not be characterized with purely syntactic criteria, one might object that

idealizations are distortions by necessity. That is, one might insist that part of what

it is for something to be an idealization is for it to be a distortion (see [88], pp. 31ff;

[50], p. 175). This insistence is resisted for the following reason.

Many equations of mathematical physics appear to represent relations among

properties of unobservable entities. (My use of ‘represent’ and its cognates is intended

to be neutral regarding the success or correctness of the representation.) For instance,

Coulomb’s law appears to represent the force F between two charged particles as a

relation between the charges of each particle, q1 and q2, and the distance r between

the particles (k is a constant):

F = k
|q1||q2

r2
|

But force and charge and the particles themselves are, in some sense, unobservable.

Maxwell’s equations of electromagnetism appear to represent relations between elec-

tric and magnetic fields. These fields are also, in some sense, unobservable. Most

famously of all, Schrödinger’s equation in quantum mechanics – d2ψ/dx2 + k2ψ = 0

(for a particle moving in one dimension and subject to no force) – appears to represent
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the dynamical behavior of an unobservable wave function ψ. Within twentieth cen-

tury philosophy of science, there is a history of worrying about whether these pieces

of mathematical syntax in fact represent the way the world is. For instance, typical

instrumentalist interpretations of quantum mechanics treat Schrödinger’s equation as

a mere calculation device that does not represent any “wave function”. And more

global versions of instrumentalism treat all such equations – indeed, all claims about

unobservable entities – as mere “inference tickets” that permit inferences from old

observational claims to new observational predictions.

The philosophical community’s treatment of these worries about whether such

syntax makes representational claims as legitimate, and the status of instrumentalism

as a genuine rival to other interpretations of science, suggests the truth of the following

Instrumentalist Conditional :

It is possible that a piece of mathematical syntax does not represent the
way the world is if it is possible to interpret that syntax as not representing
the way the world is.

The Instrumentalist Conditional, supplemented with a story telling us how claims

about unobservable entities can be treated as “inference tickets”, entails the possibil-

ity that an instrumentalist interpretation of such claims is correct. There is no reason

to suppose that the Instrumentalist Conditional applies only to equations of mathe-

matical physics (or other claims) that appear to represent relations among properties

of unobservable entities. The Instrumentalist Conditional might also apply to syntax

that satisfies the functional criteria for being an idealization. If it does, and if it is

possible to interpret that syntax as not representing the way the world is, then it is

possible that such syntax does not represent the way the world is.
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Given the absence of reasons to the contrary, it is reasonable to suppose that the

Instrumentalist Conditional applies to syntax that satisfies the operational criteria

for being an idealization. Moreover, it is possible to interpret this syntax as not

representing the way the world is. For instance, it is possible to interpret this syntax

as syntax that allows us to ignore certain features of the world (in the pursuit of certain

descriptive, predictive, or explanatory aims, within certain margins of tolerable error),

rather than as syntax that is a misrepresentative statement about those features.

Chapter Four further elaborates and substantiates this claim. Hence, it is possible for

syntax to satisfy the functional criteria for being an idealization without representing

the way the world is. A fortiori, it is possible that such syntax does not incorrectly

represent the way the world is. Therefore, since it is possible for putative idealizations

(pieces of syntax) to satisfy the functional roles of idealizations and for none of these

putative idealizations to be distortions, it is not necessary that all (or even any)

idealizations are distortions. And if some putative idealizations satisfy the functional

criteria for being idealizations but happen not to be distortions, they should not be

interpreted as distortions even though they are idealizations.2

1.3 Chapter Synopses

Having introduced the project undertaken in this dissertation, I shall provide a

rough outline of the dissertation itself.

Chapter Two surveys philosophical accounts of idealized explanation that allow

falsehoods to be explanatory. In particular, the chapter considers the accounts given

2In giving this argument, I am not endorsing an instrumentalist account of laws. My goal is to
give an instrumentalist-like account of idealizations that is compatible with a non-instrumentalist
account of laws and other non-idealized elements that occur in various explanans – and to do this
without undermining the explanatory power of accounts that invoke idealizations.
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by Ronald Laymon, Alexander Rueger and David Sharp, Philip Kitcher, and R.I.G.

Hughes. The challenge for these accounts is to show how an explanans can be explana-

tory despite containing a falsehood, and thereby show how an idealized explanans can

be explanatory despite containing a falsehood. Chapter Two presents the main de-

tails of these accounts. The chapter is largely expository, serving as a prelude to

the critical discussion in the next chapter. (The chapter is also, to the best of my

knowledge, the first discussion to set these accounts side by side.)

Chapter Three confronts the accounts of idealized explanation from Chapter Two

with the statistical mechanical accounts of phase transitions and irreversibility. The

chapter provides relevant details of these scientific accounts, as well as arguments

that both accounts are ineliminably idealized – thereby substantiating one of the

main theses of this dissertation. The chapter also argues that the philosophical ac-

counts of idealized explanation surveyed in Chapter Two do not show how these

scientific accounts are explanatory. Given the presumption that the scientific ac-

counts are explanatory, it follows that the philosophical accounts from Chapter Two

are inadequate. (This presumption is defended in Chapter Five.)

There are two reasons that would explain the inadequacy of the philosophical

accounts from Chapter Two. Either those accounts do not correctly identify the

conditions under which falsehoods can be explanatory, or no philosophical account

that takes idealizations to be distortions can accommodate ineliminably idealized

explanations. Chapter Three presents a paradox of ineliminable idealization, which

shows that no philosophical account of idealized explanation that takes idealizations

to be falsehoods can show, even in principle, how ineliminably idealized explanations

are explanatory. That is, the paradox shows the existence of ineliminably idealized
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explanations to be incompatible with the treatment of idealizations as distortions.

Given the presumption that the ineliminably idealized accounts of phase transitions

and irreversible behavior are explanatory, the key conclusion of Chapter Three is that

the interpretation of certain idealizations as distortions is mistaken.

Conservatively speaking, the paradox of ineliminable idealization only shows that

some idealizations are not distortions, namely, the ineliminable ones that occur in

the explanations of phase transitions and irreversible behavior. In the absence of an

independent, principled reason to interpret some idealizations as distortions but not

others, it is ad hoc to limit the conclusion of the paradox to the claim that only

some idealizations are not distortions. A uniform interpretation of idealizations is

preferable to a disjoint interpretation, if a uniform interpretation is possible. The

aim of Chapter Four is to provide such an interpretation.

Rejecting the interpretation of idealizations as distortions, Chapter Four presents

a semantic interpretation of idealizations according to which idealizations are abstrac-

tions. According to this interpretation, idealizations are not statements (declarative

sentences) and, accordingly, do not incorrectly describe the way the world is; rather,

they are “inference tickets” that allow us to ignore certain features of the world

without thereby misrepresenting it. If idealizations are distortions, then an idealized

explanans contains at least one falsehood; whereas if idealizations are abstractions,

then an idealized explanans is incomplete (but does not necessarily contain a false-

hood).

Chapter Four also partially develops a philosophical account of idealized expla-

nation that is appropriate to an interpretation of idealizations as abstractions. The
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account respects the intuition that falsehoods are not explanatory by treating ideal-

ized explanation as a kind of incomplete explanation. (However, I do not argue that

falsehoods are not explanatory; I endorse that constraint for the sake of argument.)

After presenting a partial account of idealized explanation, the chapter proceeds to

show how, on the account proposed, the statistical mechanical accounts of phase

transitions and irreversible behavior are explanatory. The content of Chapter Four

satisfies the overarching goal of this dissertation.

Chapter Five defends the presumption that the statistical mechanical accounts of

phase transitions and irreversible behavior are explanatory. Given the philosophical

account of idealized explanation developed in Chapter Four, this presumption entails

the striking conclusion that sometimes the correct description of a system requires

the omission of details about the system. Chapter Five addresses two kinds of ar-

gument against the presumption that some explanations are ineliminably idealized.

In the course of defending the presumption, I also make a case for considering phase

transitions and irreversible behavior to be emergent properties of real systems.

Chapter Six provides an independent motivation for abandoning the interpreta-

tion of idealizations as distortions in favor of the interpretation of idealizations as

abstractions. The motivation comes from cases in which there are two idealized

hypotheses about a system, both of which are explanatory but cannot be accepted

simultaneously as characterizations of the system, owing to their incompatibility with

each other. Ordinarily inference to the best explanation provides a method for de-

ciding which of the hypotheses should be taken as characterizing the system, thereby

connecting explanation and ontology. Yet inference to the best explanation is not a
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cogent form of inference if idealizations are falsehoods. For, under such an interpre-

tation, idealized hypotheses are false, but the conclusion of an inference to the best

explanation is that the hypothesis with the most explanatory power is probably true.

Chapter Six critically discusses extant alternatives to inference to the best expla-

nation as a method of deciding which idealized hypothesis, from a set of competing

idealized hypotheses, should be taken to characterize the system of interest. There

are two such accounts, one given by Lawrence Sklar, the other by Paul Teller. The

chapter argues that neither of these accounts adequately characterizes the connection

between idealized explanation and ontology. The account further argues that in-

terpreting idealizations as abstractions provides an adequate characterization of this

connection, in accordance with the account of idealized explanation given in Chapter

Four.

Chapter Seven is the last substantive chapter of the dissertation. The chapter

provides a second independent motivation for abandoning the interpretation of ideal-

izations as distortions, based upon a problem due to Michael Shaffer, which challenges

Bayesian confirmation theorists to show how at least some idealized hypotheses have

at least some degree of confirmation. Shaffer argues that, in order to accomplish

this task, one must either abandon Bayesianism or develop a coherent proposal for

how to assign prior probabilities to counterfactual conditionals. This chapter devel-

ops a Bayesian reply to Shaffer’s challenge that avoids the issue of how to assign

prior probabilities to counterfactuals. The reply treats idealized hypotheses as ab-

stract descriptions and idealizations as abstractions. It allows Bayesians to assign

non-zero degrees of confirmation to idealized hypotheses and to capture the intuition
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that less idealized hypotheses tend to be better confirmed than their more idealized

counterparts.
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CHAPTER 2

EXPLANATORY FALSEHOODS

Any successful account of idealized explanation must either abandon the inter-

pretation of idealizations as distortions or allow some falsehoods to be explanatory.

Whereas the accounts of explanation surveyed in the previous chapter forbid idealized

explanations, most extant accounts designed to accommodate such explanations allow

some falsehoods to be explanatory, thereby allowing some distorted-because-idealized

descriptions to be explanatory. Such accounts also treat idealizations as distortions;

this is their motivation for providing conditions under which falsehoods can explain.

This chapter presents the extant philosophical accounts of how idealized descriptions

can be explanatory despite being false. (This is, to the best of my knowledge, the

first discussion to set all of these accounts side by side.) A subsequent chapter ar-

gues against these accounts, and argues against the interpretation of idealizations as

distortions.

There are four extant philosophical accounts of idealized explanation that, im-

plicitly or explicitly, treat idealizations as distortions. The accounts distinguish ex-

planatory falsehoods from non-explanatory ones on the basis of whether the idealized

explanans bears an appropriate relation to the explanandum. The accounts differ on

the conditions they impose upon this relation.
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1. Ronald Laymon allows idealized descriptions to be explanatory if they counter-

factually approximate correct descriptions.

2. Alexander Rueger and David Sharp allow idealized descriptions to be explana-

tory if they qualitatively approximate correct descriptions.

3. Philip Kitcher allows idealized descriptions to be explanatory if the error due to

the idealized description is either negligible or unlikely to make a non-negligible

difference.

4. Ronald Giere, R.I.G. Hughes, and Paul Teller allow idealized descriptions to be

explanatory if the systems they describe are sufficiently similar to real systems.

This chapter presents each of these accounts in turn. The chapter is largely exegetical;

criticism appears in the chapter to follow.

2.1 Counterfactual Approximation

According to Ronald Laymon, idealized descriptions are explanatory, despite their

falsehood, if they counterfactually approximate correct descriptions. Whether an ide-

alized description counterfactually approximates a correct description depends upon

whether there is a modal auxiliary for the idealized sketch produced by the ideal-

ized description. Laymon, accordingly, takes an idealized explanation to have two

components, an idealized sketch and a modal auxiliary.

2.1.1 Idealized Sketches and Modal Auxiliaries

The first component of an idealized explanation is an idealized sketch, which is

a sketch of a derivation of predictions about properties of an actual system from an
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idealized description of that system. This derivation is a sketch, because it need not

be valid. The derivation only needs to be sufficiently detailed, meaning that it only

needs to give the key elements of a valid derivation. Following Hempel, the derivation

only needs to give “the general outlines of what might well be developed, by gradual

elaboration and supplementation, into a more closely reasoned explanatory argument”

([43], p. 424).3 The requirement of sufficient, rather than complete, detail on the

derivation is for pragmatic reasons, since a completely detailed derivation might be

too lengthy or too complex for a person with limited biological and epistemic resources

to provide.

The second component of an idealized explanation is, on Laymon’s account, a

modal auxiliary. A modal auxiliary is an argument demonstrating that predictions

of the idealized sketch would improve in their accuracy if the idealized description

were made to be more realistic ([61], p. 338; [62], pp. 157-159; [64], pp. 359-360; [63],

p. 367). Laymon does not define the relation of being a more realistic description ([62],

p. 158). He also holds that the determination of whether one idealized description of

a system is more realistic than some other idealized description of the same system, is

to be made either by appeal to (implicit) background standards or via an experiment-

based bootstrapping methodology ([62], pp. 155-156; [64], p. 369).

Jeffrey Koperski notes two background standards ([59], pp. 630-631). First, one

idealized description is more realistic than another idealized description of the same

3Peter Railton’s notion of an idealized explanatory text provides an heuristic tool for thinking
about what it is for a derivation to be a sketch ([97], pp. 240-246). An ideal explanatory text is
a set of statements in a complete, valid derivation of an explanandum E. A statement S provides
explanatory information about E if knowledge of S allows us to reconstruct or understand some
portion of the ideal explanatory text for E. A sketch of the derivation given by an ideal explanatory
text for E is, accordingly, a set of statements that provide enough explanatory information about E
to allow the reconstruction of the entire ideal explanatory text for E.
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system if it involves more accurate initial conditions, more accurate values for (mea-

surable) independent variables. Second, one idealized description is more realistic

than another idealized description of the same system if it appeals to fewer idealizing

assumptions or less severe ones, where (implicit) background standards also determine

the severity of idealizations. If background standards fail to determine a ranking of

the relative realism of a set of idealized descriptions of the same actual system, then

such a determination requires an appeal to experiment. Finding the details about

how an appeal to experiment can determine the relative realism of a set of idealized

descriptions remains an open project.4

Given a ranking of the relative realism of a set of competing idealized descriptions,

a particular idealized description is made to be more realistic when it is replaced by

a description that is more realistic. This explains the meaning of the antecedent in

the counterfactual of a modal auxiliary. As for the meaning of the consequent of

that counterfactual, the predictions of an idealized sketch improve in their accuracy

if the extent to which those predictions disagree with experimental measurements or

observations decreases when the idealized description in the idealized sketch is made

4Laymon offers an account of how this happens. Consider a simple case in which there are only
two competing descriptions, I1 and I2. Suppose that P1 and P2 are the respective predictions of
these descriptions. If experimental measurements or observations reveal that P2 is more accurate
than P1 with respect to some property of the system under investigation, then the bootstrapping
methodology suggests that one consider I2 to be more realistic than I1, at least with respect to
that property. The warrant for the inference from the better predictive accuracy of I2 to the higher
(relative) realism of I2 is the assumption that there must be something about I2 that leads to better
predictions than I1. Laymon calls this something the higher (relative) realism of I2. Given that
I2 is more realistic than I1, there is an expectation (but not a guarantee) that the predictions of
I2 will be more accurate than the predictions of I1 in relevantly similar situations ([64], p. 369).
The experimental determination of the relative realism of more than two idealized descriptions of
the same system proceeds in a manner similar to the experimental determination of the relative
realism of only two descriptions. The basic idea is that the ranking of the relative realism of a set
of competing idealized descriptions corresponds to the ranking of the accuracy of the predictions of
those descriptions. (Of course, rankings of predictive accuracy are sometimes controversial; this is
an issue that a Laymon-inspired account must address.)
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to be more realistic ([62], p. 164). Moreover, there are several ways in which an

argument can demonstrate the improvability of the predictions of an idealized sketch

(see [61], pp. 342-345; [62], pp. 160-161). These ways correspond to various kinds of

modal auxiliaries. Without noting the details of these different ways, note that their

existence shows that a good argument for the improvability of an idealized sketch

does not require actually making its component idealized description more realistic

and deriving predictions therefrom. The improvability only needs to be shown to be

possible. Possibility can be shown, for example, by showing that the case at hand is

similar to past or paradigm cases of successful improvability ([61], p. 343 fn4).

2.1.2 Illustration

An application of Laymon’s account to a specific case illustrates its details. A

paradigm example of an idealized description that Laymon takes to be explanatory

is the description of a real pendulum as a simple pendulum. A simple pendulum is

subject to no friction or other non-gravitational forces; it has an extension of zero; its

string is rigid and has no mass; and so on. According to Laymon, explanations, of real

pendula, that involve the description of the simple pendulum have two components.

The first component is an idealized sketch. Consider, for example, an explanation

of why a particular real pendulum happens to be at a certain location after a certain

amount of time spent oscillating. The idealized sketch of this explanation includes the

description of the simple pendulum; a derivation, from this description and Newton’s

laws of motion, of the equation that describes the motion of the simple pendulum over

time; a solution of that equation in terms of pendulum position; and values for various

properties of the real pendulum, such as its mass and initial displacement angle. This
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sketch yields predictions about the location of the real pendulum at different times

of its motion, predictions that probably disagree with experimental measurements of

the pendulum’s location.

The second component of an explanation, of real pendula, that involves the de-

scription of the simple pendulum is a modal auxiliary. For the example from the

previous paragraph, the modal auxiliary would be an argument demonstrating that

a more realistic description of the real pendulum would improve on the accuracy of

predictions from the idealized sketch. For example, one could obtain more precise

values for the mass or initial displacement angle of the pendulum, or one could make

an argument that predictions would improve if one were to take into account effects

due to pivot friction or resistance of the medium in which the pendulum oscillates.5

These alterations would provide a more realistic description of the real pendulum than

does the original description of the simple pendulum, according to the background

standards for descriptive realism that Koperski suggests. If it is possible to make an

argument that satisfies the conditions for being a modal auxiliary, then the idealized

sketch and modal auxiliary explain why a particular real pendulum happens to be at

a certain location after a certain amount of time spent oscillating.

The simple pendulum illustrates the general features of Laymon’s account. If an

idealized sketch obtained from an idealized description has a modal auxiliary, Laymon

takes the idealized description to be getting something right; however, he does not

have an account of what this something is. Laymon’s account is, accordingly, rather

indefinite about what kind of information idealized explanations provide about the

world. His main ideas are that an idealized description must be on the right track if

5For an example of this latter sort, see [52].
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it figures in an idealized sketch that has a modal auxiliary, that a description could

not be on the right track if it were not tracking something about the world, and that

being on the right track despite being false distinguishes explanatory falsehoods from

non-explanatory ones.

2.2 Qualitative Approximation

Alexander Rueger and David Sharp (henceforth RS) offer an account of idealized

explanation that, like Laymon’s account, takes idealizations to be distortions. Their

account differs from Laymon’s, in that it is more specific about what kind of infor-

mation about the world idealized explanations provide. According to RS, idealized

explanations provide information about topological properties of the phase space por-

traits of real systems. A system can be in a number of different states. Each state

can be represented by a point in a phase space (so-called because it is a space that

represents the different phases, or states, of the system). As the system changes over

time, it comes to be in different states, represented by different points in this space.

These points trace a trajectory through this space. The phase space of a system plus

a set of the system’s trajectories is the phase space portrait of the system. The phase

space portrait of a system shows the system’s qualitative behaviors, such as its points

of equilibrium.

RS take an explanation that involves an idealized description of a real system

to be a description of certain topological properties of the idealized system, namely,

the location and nature of its points of equilibrium, maxima, minima, attractor and

repellor points, saddle points, and other critical points ([101], p. 208).6 Roughly,

6Strictly speaking, critical points are properties of functions that describe a system, not properties
of the system itself. I speak of critical points as properties of systems because it becomes cumbersome
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these features are the points at which the qualitative behavior of the idealized system

changes and the nature of the changes at those points. These topological properties

of the idealized system are explanatory of the real system provided it can be shown

that the real system also has such properties. RS offer two conditions which, when

satisfied, show the real system to have the same topological properties as its idealized

version.

2.2.1 Structural Stability

The first of RS’s conditions is that the law that holds of the idealized system be

structurally stable.

If the law that holds of an idealized system is structurally stable, then the
real system has the same topological properties as its idealized version.

A law is structurally stable if a perturbed version of the law is topologically equivalent

to the law. A perturbed version of a law is the law plus a perturbation of that

law. A perturbation of a law is a term εm(x), where the dimensionless quantity

ε is ‘small’ (i.e., much less than 1). A law f(x) = 0 and its perturbed version

f ∗(x) = f(x) + εm(x) are topologically equivalent if there is an homeomorphism,

or continuous “rubber sheet” deformation, that morphs the phase space portrait of

the system for which f(x) = 0 holds into the phase space portrait of the ‘perturbed’

system for which f ∗(x) = 0 holds.7

When a law that holds of an idealized version of a real system is structurally

stable, the phase space portrait of the idealized system has the same topological

to speak of them as properties of functions that describe systems. For a technical definition of a
critical point, consider the one given by Bradley and Sharp ([12], p. 219). Suppose a function f is
defined at a point c and either its derivative f ′(c) is undefined or f ′(c) = 0. Then c is a critical
number of f and the point P (c, f(c)) on the graph of f is a critical point.

7See [1], pp. 365-366 for more details on perturbations, topological equivalence, and structural
stability, including some very nice pictures.
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properties as the phase space portrait of the real system. This is because the real

system is taken to be some ‘perturbed’ version of its idealized version. Hence, the law

for the idealized system correctly describes the topological features of the real system;

in RS’s terminology, the law for the idealized system qualitatively approximates the

(unknown) law that holds of the real system ([101], p. 214). And the structurally

stable law for the idealized system explains the qualitative behavior of the real sys-

tem, because this behavior is the same in both the real and idealized systems. The

qualitative behavior is the same in both systems, because the structural stability of a

law for an idealized system guarantees that the topological properties of the idealized

system are not merely artifacts of the idealizations that go into the description of the

system, but rather properties of the real system that is idealized.

2.2.2 Illustration

Consider an example, again about the simple pendulum, to illustrate the notion

of structural stability. The law that describes the behavior of the simple pendulum

is

θ̈ = − g

L
sin θ,

where θ is the displacement angle of the pendulum, g is the force due to the grav-

itational field, and L is the distance between the pendulum’s pivot and its center

of mass.8 The phase space portrait for the simple pendulum is an ellipse, which is

a closed curve. (See Figure 2.2.) Now consider a perturbation of the law for the

simple pendulum, which results from adding a term to represent damping due to the

surrounding medium. The law that describes the behavior of the simple pendulum

8This law has the same form as the law for a simple harmonic oscillator, which RS discuss on
p. 209.
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with linear damping is:

θ̈ = − g

L
sin θ − bθ̇,

where b is a non-negative constant whose value depends on the properties of the

surrounding medium as well as the shape and dimensions of the pendulum and the

attachment of the rod to the pivot. The phase space portrait for this law is a spiral,

Figure 2.1: Motion of the Simple Pendulum

which is an open curve. (See Figure 2.3.) Hence, the qualitative behavior of the

idealized law for the simple pendulum (b = 0) differs from the qualitative behavior of

the law for the simple pendulum with linear damping (b > 0); the law for the simple

pendulum is structurally unstable. Notably, and by contrast, the law for the simple

pendulum with linear damping is structurally stable. This is because, according to

RS, “variations in the strength of the damping force [bθ̇] will not qualitatively alter

the dynamics” ([101], p. 209); in other words, systems subject to different amounts

of damping still have spiral phase space portraits.
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Figure 2.2: Phase Space Portrait for Undamped Simple Pendulum

Figure 2.3: Phase Space Portrait for Damped Simple Pendulum
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2.2.3 Structural Stability for Families

As the law that describes the behavior of the simple pendulum without damping

shows, not all laws are structurally stable. Hence, some idealized laws (the struc-

turally unstable ones) are not explanatory according to RS’s first criterion. Nonethe-

less, RS deny that the structural instability of an idealized law renders that law non-

explanatory of real systems. They provide a second condition which, when satisfied,

shows that a real system has the same topological properties as its idealized version.

This second condition is that the law family for the idealized law be structurally

stable as a family.

If the law family for the law that holds of an idealized system is struc-
turally stable as a family, then the real system has the same topological
properties as its idealized version.

Consider a law f(x) = 0 and parameters u1, . . . , un. When each parameter ui = 0,

f(x) = F (x, u1, . . . , un) = F (x, 0, . . . , 0). The law family for f(x) = 0 is the set of

laws generated by allowing the parameters u1, . . . , un to take on values that are small

perturbations from the value zero. And a family of laws for f(x) = 0 is structurally

stable as a family if each member of the family is topologically equivalent to the

unperturbed law f(x) = 0 (see [101], p. 212). (Generally, laws governing chaotic

systems are structurally unstable but structurally stable as families.)

For instance, the law of motion for a damped simple pendulum is a function of

θ, g, L, and b, where f(θ, g, L, b) = 0. Since the damped simple pendulum has a

point-mass bob, the function f(θ, g, L, b) can be rewritten in terms of a function

F (θ, g, L, b, r) that includes a term for the radius of the pendulum bob, viz., r. And

since r = 0 for the damped simple pendulum, f(θ, g, L, b) = F (θ, g, L, b, 0). Apart

from the law F (θ, g, L, b, 0) = 0, each member i of the law family for f(θ, g, L, b) = 0
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is an equation Fi(θ, g, L, b, ri) = 0 in which the parameter ri has a specific (and small)

non-zero value. This family of laws is structurally stable as a family, because each

member law describes a system with behavior that is qualitatively the same as the

behavior of the systems described by other family members (all such systems have a

spiral phase space portrait).

Generally, if the law family for a law f(x) = 0 is structurally stable as a family,

then either (a) every member of the family is structurally stable or (b) each member

of the family is structurally unstable in the same way. (Two laws are structurally un-

stable in the same way if every perturbation of one law produces the same qualitative

deformations of phase space portraits as the same perturbations of the other law.)

If each member of a law family is structurally stable, then the law for the idealized

version of the real system is structurally stable. This entails that the law is explana-

tory of the real system, via RS’s first condition. If every member of the family is

structurally unstable in the same way, then the idealized law is structurally unstable,

and RS’s first condition does not apply. Since, however, every other family member

of this law is structurally unstable in the same way, the structural instability of the

idealized law is not an artifact of the idealized description that leads to the law for

the idealized system. Rather, the structural stability of the family as a family reveals

that the real system itself is structurally unstable, since the (unknown) law for the

real system is one of the family members of the law for the idealized system. Hence,

the phase space portrait of the idealized system has the same topological properties

as the phase space portrait of the real system. Consequently, the idealized system

explains the qualitative behavior of the real system.
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2.3 Negligibility

Acknowledging that his original account of explanation rules out the possibility

of idealized explanation, Philip Kitcher offers an account of idealized explanation

that abandons the requirement that every premise of every explanatory argument

be a member of the belief corpus of scientific practice in the limit of its rational

development (He also abandons the requirement that every premise of every presently-

acceptable explanation be a member of the present belief corpus of the scientific

community.) Kitcher thereby rejects the assumption that falsehoods and non-facts

are not explanatory ([57], pp. 434, 452-454).

2.3.1 Prologues and Epilogues

Kitcher accommodates idealizations within his account of explanation as unifica-

tion by adding a prologue and an epilogue to such explanations. (This is my termi-

nology, not Kitcher’s.) The prologue replaces a description of the system of interest

that is accepted as correct with an idealized description of that system: “When we

explain the behavior of actual objects, the first step is always to achieve an idealized

description of those objects” ([57], p. 453). This replacement is justified by show-

ing that the idealized features either make negligible differences to the phenomenon

of interest or have a very low probability of making non-negligible differences. An

idealized version of the phenomenon of interest is then derived through an appeal to

explanatory argument patterns. The result of this derivation is an explanation of the

idealized version of the phenomenon of interest. The actual phenomenon of interest

is explained by an epilogue, which shows the ways in which the actual system differs
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from its idealized version and the extent to which these differences result in deviations

from the explanation of the idealized version of the phenomenon of interest.

2.3.2 Illustration

To illustrate Kitcher’s account, and to switch examples, consider a soldier who

is firing bullets from a musket towards a target 90 meters away. The soldier can

manipulate the distance the bullets travel by adjusting the inclination of the musket

barrel upon firing, or by modifying the initial velocity of the bullet by adjusting the

powder charge. Suppose the soldier becomes curious about why his bullets reliably

traverse the 90 meters to the target whenever he fires bullets with a launch angle of 60

degrees and an initial velocity of 44.7 meters per second. (The soldier is not asking

why the bullets hit the target; the question is why they travel at least 90 meters,

quite apart from where they end up upon completing their journey.)

One way to answer the soldier’s request for an explanation is to figure out some

sort of equation that describes the motion of projectiles. The world being a compli-

cated place, some idealization will go into obtaining an equation of motion for simple

projectiles. If one assumes that the only properties relevant to the distance R the

bullets travel (to a point as high as the end of the barrel) when fired from a musket

are the powder charge (or, equivalently, the initial velocity v0 of fired bullets), the

Figure 2.4: Path of a Projectile
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inclination θ0 of the barrel upon firing, and effects due to the gravitational pull of

the earth, one obtains an idealized equation that relates these conditions (the initial

conditions) to the distance R, namely,

R =
v2

0

g
sin 2θ0.

The derivation of this equation proceeds from premises that include the fundamental

equations of Newtonian mechanics (F = ma) as well as the assumption that the only

properties relevant to the total distance a bullet travels are its initial velocity, its

angle of inclination upon firing, and gravity. The equation is idealized, because its

derivation also includes appeal to several idealizations, such as the assumption that

the air through which bullets move has no effect upon their motion (despite moisture

or wind, say), and the assumption that irregularities on the surface of each bullet do

not affect their motion.

These idealizations of bullets and the environment in which they travel constitute,

on Kitcher’s account, what I have called the prologue of an idealized explanation.

They replace a correct description of bullets and their environment with an idealized

description. If the idealized properties can be shown to have a low probability of

making a non-negligible difference to the total distance traveled by bullets fired from

the soldier’s musket, then this replacement is justified. Suppose, for the sake of

illustration, that this has been shown. For instance, suppose that the soldier is

practicing in very thin air, high in the Rocky Mountains; that the bullets are precisely

engineered to be nearly spherical, and that other situations are arranged so as to make

errors due to other idealizations negligible.

Since these idealizations are justified, the equation for simple projectiles can figure

in an idealized explanation of why the soldier’s bullets reliably traverse the 90 meters
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to the target whenever they are fired (in the given environment) with a launch angle

of 60 degrees and an initial velocity of 44.7 meters per second. The equation is de-

rived in the way that many other equations are derived within Newtonian mechanics,

by appealing to the fundamental equations of motion and initial conditions. If we

suppose, for the sake of illustration, that Newton’s equations of motion are part of the

belief corpus of scientific practice in the limit of its rational development (at least for

medium-sized objects), and that the derivation instantiates an explanatory argument

pattern, the result is an explanation of the behavior of idealized projectiles.

The behavior of real projectiles is explained by appending an epilogue to the

explanation for idealized projectiles. The epilogue catalogues the way in which the

soldier’s real bullets differ from idealized projectiles, and the way in which these

deviations make the real bullets behave differently than their idealized counterparts.

For instance, the soldier’s bullets travel through a medium rather than a vacuum,

and this medium tends to impede their forward progress. The soldier’s bullets, unlike

idealized projectiles, have slight surface imperfections and are not perfectly spherical;

these geometric flaws tend to lessen the distance the bullets travel. If comments of

this kind are given for every idealization mentioned in the prologue, then, since the

idealized equation for projectiles predicts a total travel distance of 177 meters for a

bullet fired at an initial inclination of 60 degrees and initial velocity of 44.7 meters

per second, that equation explains why bullets reliably traverse at least 90 meters

whenever they are fired (in the given environment) with a launch angle of 60 degrees

and an initial velocity of 44.7 meters per second.
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2.4 Sufficient Similarity

All of the philosophical accounts of explanation discussed so far provide precise

conditions for counting something as an explanation. The general form of these

accounts is something like ‘If an account A of phenomenon P satisfies conditions

C1, . . . Cn, then A explains P.’ These philosophical accounts are precise, in the sense

that it is (in principle) possible to determine, for any given presentation of an account,

whether the account satisfies conditions C1, . . . Cn, without considering the various

contextual and pragmatic factors surrounding the presentation of the account. This

precision is absent in the philosophical account that takes scientific explanation to be

metaphoric redescription.

2.4.1 Metaphoric Models

R.I.G. Hughes is representative of those who take scientific explanations to be

metaphoric redescriptions. Ronald Giere and Paul Teller propose similar accounts,

but Hughes’s presentation is the most concise. According to Hughes,

We explain some feature X of the world by displaying a model M of part
of the world [or of the world as we describe it], and demonstrating [via
proof from the model’s theoretical definition] that there is a feature Y of
the model that corresponds to X, and is not explicit in the definition of
M ([47], p. 146).

The theoretical definition specifies a model or class of models. The subject of a model

is that part of the world to which the model or theory applies (p. 137). Many kinds

of models may be used in theoretical explanations; but all models should be thought

of as representations (pp. 146, 147). For a model to represent is for the model to be

able to “stand in” for its subject in analogous circumstances, in varying respects and

to varying degrees (p. 138).
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According to this kind of account, models are metaphors. A model is “a non-literal

description of a primary system [the subject of the model] in terms of a secondary

system” (p. 143). According to Hughes, the cognitive function of scientific models, and

of metaphors generally, is to provide greater awareness of the primary system by seeing

it in the terms, associations, and framework of the secondary system. Scientific models

provide this secondary system, and they provide understanding and explanation of

that subject through their redescription of the primary system or subject of the model

(pp. 143-144). Models offer representations of the world that are adequate in varying

respects and to varying degrees. We understand the world by representing it with

models supplied by our theories, we display this understanding by “the ease with

which we follow explanations presented in terms of the theory,” and we increase our

understanding of phenomena by becoming more aware of the resources of the models

we use to represent them (pp. 148, 149).

Although all explanations are, according to this kind of account, metaphoric mod-

els, not all metaphoric models are explanatory. Being able to redescribe a primary

system metaphorically in terms of some secondary system is necessary, but not suffi-

cient, for having an explanation of the primary system. To be sufficient, the secondary

system must be similar to the primary system in relevant respects, and the similarity

between each relevant respect must be of a certain degree. On the issue of which

respects and degrees are relevant in order for a metaphoric redescription to be an ex-

planation, Teller holds that “[n]o general account is needed precisely because it is the

specifics of any case at hand which provide the basis for saying what counts as relevant

similarity” ([116], p. 401). Moreover, “similarity involves both agreement and differ-

ence of properties, and only the needs of the case at hand will determine whether the
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agreement is sufficient and the differences tolerable in view of those needs” (p. 402).

Hughes and Giere share this view that various contextual and pragmatic factors sur-

rounding the presentation of a metaphoric redescription of a phenomenon determine

whether that redescription is explanatory.

The account of scientific explanation as metaphoric redescription readily provides

an account of idealized explanations.9 Idealized descriptions are explanatory just

in case the idealized models they describe are sufficiently similar to real systems.

Pragmatic and contextual factors determine whether an idealized model is sufficiently

similar to a real system. These factors vary on a case-by-case basis. This attitude

towards the conditions that suffice for an idealized model to be explanatory makes

the account of idealized explanation as metaphoric redescription a vague account.

Idealized descriptions, although metaphoric rather than literal descriptions of the

world, are correct descriptions of the world in certain context-relative respects and to

certain context-relative degrees; as such, they provide context-sensitive knowledge of

the structure of the world.

2.4.2 A Worry about Vagueness

The vagueness in the criteria for similarity has prompted Lawrence Sklar to ar-

gue that the account of explanation as metaphoric redescription is unsatisfactory

as an account of idealized explanation. For the account does not show how ideal-

ized descriptions, understood as metaphoric redescriptions of the real world, provide

knowledge of the world even though they are literally false. The most the account of

explanations as metaphors can say is that if an idealized model is sufficiently similar

9This is not to say that all of those who propose this kind of account of idealized explanation
treat idealizations as distortions; for instance, Giere holds that idealizations are abstractions (see
[38], p. 78).
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to the real world, then it explains the real world. The account leaves context to de-

termine whether any idealized model is sufficiently similar to the real world; nothing

more can be said apart from looking at the specific purpose and situation for which a

given model is used. Hence, as Sklar notes ([109], p. 42), the account of explanation

as metaphoric redescription embeds into the notion of similarity an answer to the

question of whether a particular idealized model is explanatory – or, in Hughes’s ter-

minology, embeds such an answer into the notion of “standing in.” Since this notion

is not well-understood, Sklar concludes that the account is unsatisfactory.10

In response to Sklar’s criticism, advocates of the account of explanation as metaphoric

redescription might offer a Lewisian rejoinder (see [71], pp. 91-95). They might claim

that the charge of not being well-understood is ambiguous; the charge could be that

similarity is ill-understood, or it could be that similarity is vague. Ill-understood

notions are, of course, to be eschewed, but similarity is not ill-understood. Rather,

similarity is vague. Since what counts as an explanation is also vague, varying as it

does with innumerable contextual and pragmatic factors, similarity is just the kind

of notion to use in an analysis of explanation. Hence, no matter how mysterious the

factors that determine relevant similarity might be, analyzing explanation in terms

of similarity reduces two mysteries to one; the limited vagueness of similarity nicely

accounts for the limited vagueness of explanation. (Moreover, since this is a Lewisian

defense, one might also point out the theoretical utility of the notion of similarity in

Lewis’s analysis of counterfactuals, thereby bolstering the number of mysteries that

can be eliminated by appealing to this notion.)

10In a different context, F.A. Muller makes a similar point about the appeal to context: “Uttering
‘Context! ’ seems a deus ex machina of the past fifty years of philosophy. Without further expli-
cation and clarification, such utterances are more like performing acts of philosophical magic than
propounding a philosophical argument. Philosophy is not sorcery.” (See [86], p. 69 fn. 12.)
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The Lewisian rejoinder might continue with a criticism of Sklar’s preference for a

precise account of explanation. Advocates of the account of explanation as metaphoric

redescription might argue that the quest for a more exact or precisified notion of sim-

ilarity is to be eschewed. Some important similarities involve “idiosyncratic, subtle,

Gestalt properties,” and it is impossible – in practice if not in principle – for an exact

notion of similarity (or any exact notion, for the matter) to track all of this quirkiness.

A more precise criterion might get extreme cases correct, but it would inevitably fail

when applied to ordinary cases. Hence, according to the rejoinder, the quest for a

precise analysis of an imprecise concept like explanation is misguided; the account of

explanation as metaphoric redescription might be vague, but this is a merit rather

than a shortcoming.

This Lewisian defense rests upon the assertion that the notion of similarity at

work in the analysis of explanation as metaphoric redescription is vague rather than

ill-understood. While the notion is vague, I am not convinced that it is not ill-

understood. Although the notion of similarity figures prominently in our everyday

lives, it does not follow that we understand what we are doing when we use that

notion; nor does it follow that we understand why scientists make the judgments of

similarity that they make; nor does it follow that there is nothing more informative

to be said about explanation, and nothing to be said that applies apart from details

of context. Of course, none of this amounts to a refutation of the Lewisian defense.

And although I don’t buy the adequacy of the defense, I am willing to grant, for the

sake of argument, that the account of explanation as metaphoric redescription shows

why some idealizations are explanatory.
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2.4.3 Illustration

Even granting this, it is difficult to assess the adequacy of this account for any

particular idealized explanation. Consider, once more, the idealized explanation of

the distance the soldier’s bullets tend to travel when fired with an initial velocity of

44.7 meters per second from a musket inclined to 60 degrees. Suppose the context is

one of curiosity: the soldier would just like to understand why the bullets travel as

far as they do. Perhaps, in this context, idealized projectiles are sufficiently similar

to the soldier’s actual bullets. If so, then the idealized equation for the distance

projectiles travel is explanatory in this context. Suppose, however, that the context

is one of wartime preparation, and the soldier needs to understand how far the bullets

travel in order to make a report to a committee charged with arming a military for its

invasion of an environment with very moist air and strong wind currents. Perhaps,

in this context, the idealized projectiles are not sufficiently similar to the soldier’s

actual bullets. For the way those real bullets are affected by the medium through

which they are intended to travel is dissimilar to the way in which idealized projectiles

travel through a vacuum. If this is right, then in this context the idealized equation

for the distance projectiles travel is not explanatory.

As this example illustrates, it is difficult to apply the account of idealized ex-

planation as metaphoric redescription to specific cases without an account of which

similarities are relevant (and of what the tolerable margins of error are for certain

predicted magnitudes). For this reason, this account’s treatment of specific instances

of putative explanations that appeal to idealizations will not be informative enough

to be interesting or satisfying. The most that can be said of any particular ideal-

ized account is that, if the dissimilarities of the idealized version of a system are not
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relevant to the system itself, and if the similarities are relevant, then the account is ex-

planatory despite being idealized. More cannot be said, because there are no criteria

with which to discuss whether the similarities and dissimilarities in particular cases

are relevant. Hence, although this account of idealized explanation as metaphoric

redescription is included in this chapter for the sake of thoroughness, it will not be

further discussed or applied to examples in the remainder of the dissertation.

2.5 Conclusion

Any successful account of idealized explanation must either abandon the interpre-

tation of idealizations as distortions or allow some falsehoods to be explanatory. Any

account of explanation that allows some falsehoods to be explanatory must provide

a criterion that distinguishes explanatory falsehoods from non-explanatory ones. In

its most general form, this criterion requires false descriptions to bear an appropri-

ate relation to their correct (non-idealized) counterparts in order to be explanatory.

Different philosophical accounts of idealized explanation differ on what they take

this appropriate relation to be. Candidate relations include counterfactual approxi-

mation, qualitative approximation, sufficient similarity, and negligible or improbable

distortion.

Here is a summation of these accounts, for ease of reference:

• Counterfactual Approximation: An idealized description is explanatory of phe-

nomenon P if (a) there is a sketch of the idealized description and (b) there

is a modal auxiliary for that description, showing that the predictions of the

idealized description as regards P would improve if the description were made

to be more realistic (less idealized).
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• Qualitative Approximation: An idealized description is explanatory of a topo-

logical property of a system if (a) the description is law-like and (b) either the

idealized law is structurally stable or the law family for the idealized law is

structurally stable as a family.

• Negligibility : An idealized description is explanatory of phenomenon P if (a)

the error due to the idealized description of P is either negligible or unlikely

to be non-negligible, (b) there is an account of the ways in which the idealized

description of P differs from a correct description of P, (c) there is an account

of the extent to which these differences result in corrections to the idealized

explanation of P, (d) the argument in which the idealized description occurs

instantiates an explanatory argument pattern.

• Sufficient Similarity : An idealized description is explanatory of phenomenon

P if and only if the idealized description describes a system that is sufficiently

similar (in context-relative respects, to context-relative degrees) to the system

in which P occurs.

These requirements are formulated as sufficient conditions only (except for the last

one); those who offer the accounts do not commit themselves to the necessity of their

proffered conditions. It would be reasonable to assume that the conditions are also

necessary; this would provide the most straightforward method of delineating ex-

planatory falsehoods from non-explanatory ones. But I do not make this assumption.

The next chapter provides an argument that these accounts are inadequate. The

first part of the argument shows that some idealized explanations are ineliminably

idealized, that there are some phenomena that require, in principle, an appeal to
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idealization in order to be explained. The second part shows that these ineliminably

idealized explanations do not satisfy any of the conditions set forth by the accounts

surveyed in this chapter. The chapter ends with an argument for the claim that no

account that interprets idealizations as distortions is compatible with the existence

of ineliminably idealized explanations.
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CHAPTER 3

AGAINST IDEALIZATIONS AS DISTORTIONS

Extant accounts of idealized explanation that allow falsehoods to be explanatory

accept, at least implicitly, an interpretation of idealizations as distortions. The dis-

tinguishing characteristics of idealizations are that they replace one description of a

system with a description that is, in some sense, simpler. It will be recalled from

Chapter One that a distortion is something that attributes a feature to a system that

the system does not have. There are many kinds of distortions, such as lying and

ordinary misdescriptions. If idealizations are distortions, then idealized descriptions

are incorrect descriptions. Specifically, if idealizations are distortions, then an ideal-

ization replaces one description of a system with a description that attributes to that

system at least one feature the system does not have. The resultant description, an

idealized description, is a false (distorted) description of the system.11

Philosophical accounts of idealized explanation that allow idealized descriptions

to be explanatory despite their falsity presuppose that idealized descriptions are false.

For if idealized descriptions are not false, then there is no need to show how they can

11Note that this description is not false solely in virtue of its being an idealized description,
because idealized descriptions are merely descriptions obtained via appeal to syntax that satisfies
certain criteria for being an idealization and these criteria do not specify the semantic role of such
syntax. Rather, it is false in virtue of the interpretation that takes idealizations to be a kind
of distortion and the fact that, necessarily, distorted descriptions are false. If idealizations were
interpreted in some other way, it might turn out that idealized descriptions need not be false.
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be explanatory despite being false. The interpretation of idealizations as distortions

is the only interpretation of idealizations according to which idealized descriptions

are false: if idealizations are not distortions, then there is no reason to suppose that

idealized descriptions are always false. Hence, insofar as philosophical accounts of

idealized explanation presuppose that idealized descriptions are false, they interpret

idealizations as distortions.

The accounts of idealized explanation surveyed in Chapter Two provide various

conditions which, when satisfied, show that idealized descriptions are explanatory de-

spite being false. This suggests that those accounts treat idealizations as distortions,

at least implicitly. The aim of this chapter is to show that the accounts surveyed in

Chapter Two are inadequate and that the interpretation of idealizations as distor-

tions is mistaken. Showing that it is a mistake to interpret idealizations as distortions

suggests that it is a mistake to treat all idealzations as false. This results removes the

necessity for accounts of idealized explanation that allow idealized descriptions to be

explanatory despite being false.12

There is an important class of idealized explanations that do not satisfy any of the

conditions set forth by the accounts surveyed in Chapter Two. These explanations are

ones that are ineliminably idealized. (An idealized explanation of some phenomenon

is ineliminably idealized if the only way to explain the phenomenon is to appeal to

an idealization; likewise for ineliminably idealized descriptions.) The accounts of ide-

alized explanation surveyed in Chapter Two do not show how ineliminably idealized

12As a matter of fact, the accounts surveyed in Chapter Two accept the interpretation of ideal-
ization as distortions; but this interpretation is not a mandatory component of the accounts. The
criticism of those accounts to be given in this chapter does not depend upon construing those accounts
as treating idealizations as distortions; those accounts would be inadequate even if idealizations were
to be interpreted as something other than distortions.

61



descriptions can be explanatory despite being false. Moreover, no account of ideal-

ized explanation that takes idealizations to be distortions can show, even in principle,

how ineliminably idealized descriptions are explanatory. This is due to what I call

the paradox of ineliminable idealization, which shows that the existence of inelim-

inably idealized explanations is inconsistent with an interpretation of idealizations as

distortions. (Details on this paradox are given in the final section of this chapter.)

This chapter contains the details of this argument against interpreting idealiza-

tions as distortions. The chapter presents, in reasonable detail, two cases of idealized

explanation. The first is the statistical mechanical account of the occurrence of phase

transitions. The second is a statistical mechanical account of the way in which non-

equilibrium systems, when left to themselves, irreversibly approach equilibrium in a

finite amount of time. Following each account, it is argued that the extant philosophi-

cal accounts of idealized explanation that allow some falsehoods to be explanatory do

not show how these scientific accounts are explanatory. The reason for this is that the

accounts from statistical mechanics are ineliminably idealized; each explanation re-

quires, in some sense, the appeal to an idealization. This requirement gives rise to the

paradox of ineliminable idealization, which shows, under very general assumptions,

that the ineliminable idealizations in each account are not distortions.

3.1 Phase Transitions and the Thermodynamic Limit

At a pressure of about 15 kilobars (e.g., about 50 kilometers below the earth’s

surface), graphite spontaneously converts into diamond. At temperatures below 77

Kelvin, nitrogen liquifies. At about 373 Kelvin and normal atmospheric pressure,

water boils. Iron and nickel become magnetized when in the presence of a magnet,
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and at ordinary temperatures stay magnetized when the magnet is removed (this is

called, somewhat misleadingly, spontaneous magnetization). The electrical resistivity

of pure mercury drops significantly at a temperature of about 4 Kelvin, and the

mercury becomes a superconductor.

These examples, and others like them, demonstrate the pervasiveness of phase

transitions in our experience of the world. A phase transition is said to occur when

(roughly) a change in value of some system parameter (temperature, pressure, etc)

results in a large change in the (qualitative) state of the system. For instance, raising

the temperature of water from 272 Kelvin to 303 Kelvin, at normal atmospheric

pressure, results in a phase transition: the ice melts into a liquid.

The different phases of a system exhibit qualitatively different large-scale behav-

iors. Liquid water, but not solid ice, takes the shape of its container; the solid phase

of water holds its shape, and also happens to occupy a different volume than that

same amount of water in the liquid phase. Solids, but not liquids, propagate trans-

verse waves; liquids only propagate longitudinal waves.13 Similarly, graphite, but not

diamond, can be used for writing; and diamond, but not graphite, is not only very

beautiful but also radiation-hard, which is why people are trying to use it to coat

components in high-energy, radiation-producing particle colliders. (Graphite and di-

amond are different solid phases of carbon.) Again, as everyone knows, magnetized

iron can hold pictures on metal refrigerator doors; unmagnetized iron cannot.

The changes in a parameter of a system need not be large in order for the system

to undergo a phase transition. This is best illustrated with a pressure-temperature

13A wave is transverse if the oscillating elements of the medium in which the wave propagates
are perpendicular to the direction in which the wave travels (like a wave sent along a taut rope).
A wave is longitudinal if the oscillating elements of the medium in which the wave propagates are
parallel to the direction in which the wave travels (like sound traveling through water).
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diagram for a generic pure fluid in equilibrium: see Figure 3.1. This sort of diagram

Figure 3.1: Pressure-Temperature Diagram for Pure Fluid

can be obtained through careful experimental measurements of the pressure and tem-

perature of real fluids such as water. The lines on the diagram delineate the three

phases of a fluid, when the fluids are in equilibrium states. The line between the solid

and liquid phase is known as the fusion curve. A system can exist in both phases

simultaneously when its temperature and pressure is at one of the points on the fusion

curve; but when the system falls on either side of this curve, the system is either a

liquid or else a solid. The line between the liquid and gas phases is known as the

vaporization curve, and the line between the solid and gas phases is known as the sub-

limation curve. The point at which the fusion, vaporization, and sublimation curves

intersect is known as a triple point; this is the point at which all three phases of the

system can exist together simultaneously. The point at which the vaporization curve

ends is known as a critical point; for temperatures greater than the temperature at

this point, it is possible to transform a fluid between its liquid and gas phases without
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crossing the vaporization curve. (This suggests that there is no qualitative difference

between the liquid and gas phases of a fluid, because it is possible to change a fluid

from one phase to the other in a continuous manner.) Since the interfaces between

the phases are very narrow (separated by lines), very small changes in the pressure or

temperature of a system can produce very drastic changes in the system’s large-scale

qualitative behaviors.

Statistical mechanics is able to show how macroscopic phenomena like phase tran-

sitions result from microscopic behaviors. From a microscopic point of view, the ex-

istence of phase transitions is surprising. According to Debashish Chowdhury and

Dietrich Stauffer, a

macroscopic system is capable of exhibiting phenomena which are, apriori,
not obviously expected from purely mechanical consideration of its con-
stituents; for example, why do the molecules of a fluid condense to form a
liquid at sufficiently low temperatures whereas the same molecules remain
in the gaseous phase at high temperatures although in both the situations
their equations of motion involve the same form of the inter-molecular
interactions? ([24], p. 101)

Its account of the occurrence of phase transitions is one of the great successes of

statistical mechanics.

The discussion of the statistical mechanical account of phase transitions proceeds

as follows. I begin with a brief discussion of phase transitions from a thermodynamic

point of view. This includes a rough discussion of the physical reasons for phase tran-

sitions, and a brief discussion of the rationale for the usual method of representing

the occurrence of a phase transition. Next, I discuss the key elements in any sta-

tistical mechanical account of phase transitions, including the notion of a partition

function and the ineliminability of the thermodynamic limit to any statistical me-

chanical description of phase transitions. Then, for purposes of illustration, I discuss

65



the 2-dimensional Ising model of phase transitions, an exactly solvable model that

predicts the occurrence of a ferromagnetic-paramagnetic phase transition in ferro-

magnets. This discussion of the Ising model further clarifies the ineliminability of the

thermodynamic limiting idealization. Following all of this, I show that the philosoph-

ical accounts of idealized explanation (from the previous chapter) do not show how

the statistical mechanical account of phase transitions is explanatory.

3.1.1 A Thermodynamic Point of View

Thermodynamics, the study of the macroscopic properties of matter, provides a

qualitative understanding of the physical reasons for phase transitions. Suppose that

a system is in equilibrium, with a fixed volume and number of particles and a constant

temperature T . Then it is a well-known result of thermodynamics that the Helmholtz

free energy of the system, F , is minimized. The Helmholtz free energy of a system

is something like the energy it would take to create the system out of nothing in an

environment of temperature T ; this is the energy of the system itself, less the energy

that can be contributed by the environment. Where E represents the internal energy

of the system and S represents the system’s entropy, F = E − TS. The energy E

is due, in part, to interactions among the system’s particles. These interactions tend

to make the system more ordered. The entropy S, in contrast, tends to make the

system less ordered. At high temperatures, F is best minimized by maximizing S,

so that the TS term dominates the E term and the system remains in a disordered

phase. At lower temperatures, however, ordering can occur, provided that the energy

contribution to F is stronger than the contribution due to entropy. Hence, at certain
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temperatures, there will be a phase transition between a more ordered phase and a

less ordered phase.

An example will help to illustrate this qualitative account. A metal, such as iron

or nickel, may be thought of as a collection of “spins”; the metal’s being magnetized

may be thought of as the phase of the metal in which most of its spins are aligned

in the same direction, and the metal’s not being magnetized may be thought of as

the phase in which the metal’s spins are randomly aligned. (More on this later, in

the discussion of the Ising model of ferromagnetism.) When the spins of the metal

are randomly aligned, the metal is in a very disordered state; as more and more of

the spins become aligned in the same direction, the metal becomes more and more

ordered.

When the metal is in equilibrium at a constant temperature, its Helmholtz free

energy is minimized. This minimization requires the “best” compromise between min-

imal energy, for which all of the spins are aligned, and maximal entropy, for which

the spins are randomly aligned. (Because, in a constant-temperature environment,

saying that F tends towards its minimum possible value is the same as saying that

E tends towards its minimum possible value while S tends towards its highest pos-

sible value.) At low temperatures, the best way for the metal to have a minimum

Helmholtz free energy is for the metal’s energy to be minimized. (Low temperature

diminishes the effect of the system having a high entropy. Minimizing entropy is

not sufficient, because low entropy with high energy could prevent minimization of

the Helmholtz free energy.) Hence, at low temperatures, the spins of the metal can

become ordered, giving rise to spontaneous magnetization. When the temperature of

the metal is higher, however, the best way for the metal to have a minimum Helmholtz
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free energy is for the metal’s entropy to be maximized (because the high temperature

enhances the effect a high entropy has upon lowering the system’s energy). Max-

imized entropy favors a random alignment of the spins and can result in a loss of

spontaneous magnetization. This is confirmed by experiment: if one heats an iron

magnet to a temperature of about 1043 Kelvin, it becomes demagnetized. Similar

reasoning applies to the difference between the solid and non-solid phases of a fluid,

where the solid phase corresponds to not much random motion of the particles and

hence more order in the fluid, and the non-solid phase corresponds to more random

motion of the particles and hence more disorder in the fluid.

In addition to this very general, very qualitative understanding of phase tran-

sitions, thermodynamics provides a way of representing the occurrence of a phase

transition. It is an experimental fact that, at a thermal phase transition – a phase

transition due to a change in a system’s temperature – it is possible to put heat into a

system without increasing its temperature. For instance, if an uncovered pot of water

at room temperature is placed on a gas stove, eventually the flame beneath the pot

will raise the temperature of the water to 373 Kelvin, and the water will boil; but if

the boiling water continues to be heated by the same flame, its temperature will not

increase. The amount of heat required to increase the temperature of a system by

1 Kelvin is known as the heat capacity of the system. So, since the temperature of

boiling water does not increase at all despite its continued heating, the heat capacity

of boiling water is infinite. This is also true for the heat capacity of melting ice. Gen-

erally, the heat capacity of a system that is undergoing a thermal phase transition is

infinite. (More carefully, the heat capacity of a system that is undergoing a thermal

phase transition is undefined.) The same kind of discontinuity in heat capacity occurs
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in metals when they become spontaneously magnetized, and in alloys such as brass

(an alloy of copper and zinc) for their order-disorder transition.

The Gibbs free energy of a system provides a second indicator for when a system

undergoes a phase transition. The Gibbs free energy of a system, G, is something like

the amount of energy required to make the system out of nothing, less the amount of

energy contributed by an environment at temperature T , plus the amount of energy

required to make room for the system of volume V in an environment at pressure P :

G = E − TS + PV

= F + PV.

Like the Helmholtz free energy, the Gibbs free energy is minimized for a system that

is in equilibrium at a fixed pressure. It can be experimentally determined that the

Gibbs free energies for different phases of a system can be considerably unequal. For

instance, at a pressure of 1 bar and a temperature of 298 Kelvin (room temperature),

the Gibbs free energy for a mole of diamond is greater than the Gibbs free energy for

a mole of graphite by about 2900 Joules. (See Figure 3.2.14) It can also be experi-

mentally determined that the minimum Gibbs free energy of a system is not always

the Gibbs free energy associated with one specific phase of the system. For instance,

at pressures lower than about 15 kilobars, the Gibbs free energy of graphite at room

temperature is lower than the Gibbs free energy for diamond at room temperature;

but at pressures greater than about 15 kilobars this is reversed, so that the Gibbs

free energy of diamond is lower than that of graphite. Hence, since the Gibbs free

energy of a collection of carbon is minimized, there is a sudden change in the Gibbs

free energy of carbon at pressures of about 15 kilobars at room temperature. That

14This figure is taken from [104], p. 170, Figure 5.15.

69



Figure 3.2: Gibbs Free Energy-Pressure Diagram for Diamond and Graphite, at Room
Temperature

is, room temperature carbon undergoes a phase transition at a pressure of about 15

kilobars.

This sudden change in the Gibbs free energy of carbon, when the system is un-

dergoing a transition between its diamond and graphite phases, is characteristic of

many systems in which phase transitions occur, including water and iron. Such a

sudden change in the Gibbs free energy of a system corresponds to a singularity in

the Gibbs free energy of the system. (A singularity is a point at which a function

is not defined, fails to be differentiable, or fails to yield a unique output for a given

set of parameter values.) At a phase transition the first derivative of the Gibbs free

energy with respect to the pressure of the system is not well-defined. For instance, the

volume of a mole of graphite is about 5.31× 10−6 cubic meters, whereas the volume

of a mole of diamond is about 3.42×10−6 cubic meters. Since the volume of a system

is the partial derivative of the Gibbs free energy of the system with respect to its
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pressure, the first derivative of the Gibbs free energy of carbon is not well-defined at

the graphite-diamond transition.

Thermodynamics not only provides a rough qualitative understanding of phase

transitions, but also shows that phase transitions occur in a system when a thermo-

dynamic property of the system becomes singular. For instance, the heat capacity of

water is not well-defined at the liquid-gas phase transition. Nor is the heat capacity of

a ferromagnet (such as iron) well-defined when the iron becomes spontaneously mag-

netized, as a later discussion of the Ising model will show. The Gibbs free energy of

carbon is discontinuous at the graphite-diamond phase transition. All of this suggests

that phase transitions should be represented as singularities in certain thermodynamic

properties. Moreover, this suggests that statistical mechanics should represent phase

transitions as singularities, so that the singularities in statistical mechanical functions

can correspond to singularities in thermodynamic properties.

3.1.2 Statistical Mechanical Point of View

Statistical mechanics aims to describe the properties and behaviors of very large

systems in terms of the microscopic states of these systems. Most, if not all, phase

transitions occur in very large systems. Accordingly, the study of phase transitions

falls within the purview of statistical mechanics.

Given the thermodynamic approach to phase transitions, it is natural for statistical

mechanics to want to identify phase transitions as singularities in a function known

as the partition function.15 The reason for this is that the natural logarithm of the

15This approach to the statistical mechanical analysis of phase transitions is known as the Lee-
Yang theory of phase transitions; for an overview of this theory, see [10]. For the theory as originally
given by Lee and Yang, see [124] and [68]. For an application of this theory to an account of phase
transitions in magnets, see [25] and Chapter 10 of [53].
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partition function of a system, Q, is proportional to the Helmholtz free energy of the

system multiplied by −β:

ln Q = −Fβ.

(β is the system’s inverse temperature, by definition equal to 1/kBT , where T is

the system’s temperature and kB is Boltzmann’s constant.) The connection between

the logarithm of the partition function and the Helmholtz free energy times −β is

justified by the fact that both quantities behave in the same way: both decrease

in the same way whenever the entropy of a system increases. It is a result from

thermodynamics that a system undergoes a phase transition just in case its Helmholtz

free energy contains a singularity. This result is connected to the singularities in the

heat capacity or Gibbs free energy of a system during a phase transition. It turns

out that identifying phase transitions in a system as singularities in the partition

function of the system will not work. Before elaborating on this claim, however, it

will be helpful to say a bit more about what the partition function is.

The partition function is a measure of the number of microstates accessible to a

system in thermal equilibrium at a specific temperature.16 For instance, the partition

function for an isolated system of non-interfering particles with energies E1 and E2,

respectively, is
∑

s

exp−β[E1(s)+E2(s)],

16The partition function is also a normalization “constant” for the Boltzmann probability distri-
bution, which is a distribution that gives the probability of finding a system at a specific temperature
in a specific microstate, given that the system is in thermal equilibrium. The partition function is
the denominator for this probability distribution. Statistical mechanics introduces probability dis-
tributions since the microscopic state of a system cannot be known with certainty. See [20], pp. 9-10
for a discussion of this.
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where the sum is over all possible states s for the composite system. If the particles

are distinguishable, if each can occupy exactly one of two total positions, and if the

particles have no other variable properties, then there are two possible states for the

composite system – viz., sa and sb – and the partition function for the system is equal

to

exp−β[E1(sa)+E2(sa)] + exp−β[E1(sb)+E2(sb)] .

Generally, the partition function for a system is obtained by multiplying the Hamilto-

nian (total energy) for the system by a factor of −β in order to cancel the dimensional

units of the Hamiltonian, exponentiating this product for the system, and then sum-

ming the resulting power over all the possible microscopic states of the system. (The

partition function contains an exponent, because it is a sum over all possible micro-

scopic states and that sum grows exponentially as the number of possible microscopic

states increases.)

For example, a “canonical” system is a system with a fixed temperature and a

fixed number of particles that exchanges only heat with its external environment.

The partition function Q(Λ, T ) for a canonical system Λ with temperature T is given

as

Q(Λ, T ) =
∑

i

exp (− Ei

kBT
),

where the sum is over each state i with energy Ei. Q is a measure of how many

different energy states are appreciably populated when a canonical system is in ther-

mal equilibrium at temperature T ; it is a measure of the number of states accessible

to a canonical system that is in thermal equilibrium at temperature T . There are,

of course, other partition functions for other kinds of systems. For example, there

are systems that exchange heat as well as particles with their external environment;
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these systems are known as “grand canonical” systems, and their partition function is

known as the grand canonical partition function. The partition function is significant,

because it can be used to calculate all the macroscopic properties of a system.17

As noted, it is natural for statistical mechanics to want to identify phase transi-

tions in a system as singularities in the system’s partition function.18 (The partition

function contains a singularity at a point if it cannot be expanded as a Taylor series

around that point.) The main reason for this is that the logarithm of the partition

function, ln Q, is equal to −F/kBT . Since kB is a (non-singular) constant and T is

fixed at a specific value in order for the partition function to be well-defined, the

partition function contains a singularity just in case the Helmholtz free energy F

contains a singularity.

The partition function of an N -particle system with N < ∞ is a finite sum of the

system’s energy configurations. Since each of these terms is analytic, the partition

function is analytic – and so it does not contain any singularity. Similarly, it is

a mathematical fact that the Helmholtz free energy of any N -particle system with

N < ∞ is analytic and hence does not contain any singularity.

In order to obtain a function related to the Helmholtz free energy and partition

function that contains a singularity, it is necessary to study the thermodynamic limit,

17If ai is the value of a macroscopic property A of a canonical system in the microscopic state i,
and if Ei is the energy of this state, then the average value 〈a〉, interpreted as the measurable value
of A when the system is in thermal equilibrium at temperature T , is 〈a〉 = 1

Q

∑
i ai exp (−Eiβ).

18The representation of a phase transition as a singularity is a useful way to identify the breaking of
symmetries, often connected to the occurrence of phase transitions. Axel Gelfert briefly discusses this
connection: “The occurrence of a phase transition is often linked to a failure of one of the phases to
exhibit a certain symmetry property of the underlying Hamiltonian. Crystals, for example, by their
very lattice structure, break the translational symmetry encountered in the continuum description
of fluids; ferromagnets, in addition to the spatial symmetry-breaking due to their crystal structure,
are not invariant under rotations in spin space, even though the underlying Hamiltonians describing
the system may well be” ([37], p. 4).
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in which the system’s particle number N → ∞, the system’s volume V → ∞, and

the density of the system retains its finite, actual value.19 (The thermodynamic limit

is usually interpreted as the limit in which the system’s volume and number of par-

ticles become infinite, or arbitrarily large. This is what, in the next section of the

chapter, I will call interpreting the thermodynamic limit as a distorting idealization.)

In the thermodynamic limit, the Helmholtz free energy per particle of a system con-

tains a singularity if the system undergoes a phase transition; this is connected to

singularities in the specific heat capacity (heat capacity per unit mass) or Gibbs free

energy per particle of the system. For an N -particle system, its Helmholtz free energy

per particle, f , is defined to be its Helmholtz free energy divided by its number of

particles: f ≡ F/N . Hence, rather than following thermodynamics in identifying

phase transitions as singularities in the Helmholtz free energy of a system, statistical

mechanics identifies phase transitions as singularities in a system’s Helmholtz free

energy per particle.

The reason why statistical mechanics identifies phase transitions as singularities

in the Helmholtz free energy per particle rather than the Helmholtz free energy itself

(as in thermodynamics) is that phase transitions only occur in the thermodynamic

limit, and it is a mathematical fact that in the thermodynamic limit the Helmholtz

free energy per particle is well-defined (if the limit exists) but the Helmholtz free

energy itself is not well-defined. This fact can be explained in the following manner.

An intensive property is a property that does not double when the size of a system

doubles. (For instance, temperature, pressure, and density are intensive properties. If

19The notation ‘N → ∞’ may be read as ‘N goes to infinity’ or ‘N approaches infinity’. The
thermodynamic limit also figures in other important results from statistical mechanics, such as the
proof of the equivalence of ensembles and the explanation of Bose condensation. See [114] for a
discussion of six results in statistical mechanics that involve an appeal to the thermodynamic limit.
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one gas at a certain pressure and temperature and with a certain density is added to

another gas with the same pressure, temperature, and density, the resultant gas has

the same pressure, temperature, and density.) Non-intensive, or extensive, properties

are those that do double when the size of a system doubles; these include mass,

volume, number of particles, energy, and entropy.

In the thermodynamic limit, a system’s particle number N → ∞. If this limit

is interpreted to be a distortion, the thermodynamic limit is the limit in which a

system’s number of particles becomes infinite (or arbitrarily large). Hence, in the

thermodynamic limit, the extensive properties of the system also become infinite (or

arbitrarily large), which is to say that they are no longer well-defined. For instance,

suppose a system is composed of N particles each of nonzero mass m, such that the

total mass of the system is the product of the number of particles in the system and

the representative mass of one such particle: M = Nm. Then in the thermodynamic

limit, the system’s total mass M → ∞, since N → ∞. However, since the mass

per particle is an intensive property of the system, it remains well-defined in the

thermodynamic limit (if the limit exists). Likewise, since the Helmholtz free energy

of a system is equal to the product of the Helmholtz free energy per particle and

the number of particles in the system, the Helmholtz free energy of a system is

not well-defined in the thermodynamic limit, even though the Helmholtz free energy

per particle is well-defined in this limit. Since phase transitions only occur in the

thermodynamic limit, if statistical mechanics is to indicate the occurrence of a phase

transition by a singularity in some well-defined function, then that function must be

a function of intensive properties only.
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A useful way to illustrate the way in which statistical mechanics indicates the

occurrence of phase transitions as singularities, to illustrate the fact that the thermo-

dynamic limit is necessary for such singularities, and to illustrate the fact that the

functions in which such singularities occur are functions of intensive properties only,

is to consider the Ising model.

3.1.3 The Ising Model

The Ising model captures the qualitative behaviors of ferromagnets, such as iron

and nickel (metals that can be magnetized). A distinctive property of ferromagnets

is that, below a temperature known as the Curie temperature (which is different for

different systems), they are in a ferromagnetic phase with a spontaneous magneti-

zation, and that above this temperature their spontaneous magnetization vanishes

and they are in a paramagnetic (non-magnetized) phase. Ferromagnets undergo a

ferromagnetic phase transition as their temperature approaches the Curie tempera-

ture. The Ising model, an idealized model of real ferromagnets, is able to predict and

explain this property of ferromagnets: as the temperature of a system described by

the Ising model approaches its Curie temperature, the heat capacity of the system

diverges logarithmically, indicating the occurrence of a phase transition. Unfortu-

nately, there is no known solution to equations that describe the 3-dimensional Ising

model. So, in the interests of exactitude, and despite the fact that most real systems

are 3-dimensional, it is best to focus on the Ising model for 2-dimensional systems,

since the relevant equations for this model have known exact solutions.

The 2-dimensional Ising model models a ferromagnet as a lattice consisting of

a fixed set of regularly-spaced sites. These sites are connected to each other by
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“bonds”, in such a way that each bond connects exactly two sites and every bond

is either parallel or orthogonal to every other bond. (See Figure 3.3.) Sites that are

Figure 3.3: 2-Dimensional 4 × 4 Lattice

connected by a single bond are called “nearest neighbor” sites. Each bond is of equal

length, so that every site has four nearest neighbors (except for sites at the boundary

of the lattice, which are ignored in the thermodynamic limit). Each site has either an

“up” spin of +1 or a “down” spin of -1.20 Only nearest neighbor sites interact in the

model. The interaction energy between two sites is either −J , if the sites have the

same spin, or +J , if the sites have different spins; J is a parameter for the strength

of the interaction that is positive for ferromagnets.

The 2-dimensional Ising model represents a magnetic material, if one adopts the

following correspondences. Each site corresponds to an atom of the material; the

spin at a site corresponds to the magnetic moment of each atom; and the restric-

tion to nearest neighbor interactions corresponds to the assumption that inter-atomic

interactions are short-range.

20If, instead, one supposes that each site is either vacant or occupied, one obtains a lattice gas
model, which can be used to model the solid-gas phase transition in fluids.

78



If the magnetic material is supposed to have M = N2 sites (or, equivalently, N2

magnetic moments), then the Ising model for the material is an N × N lattice.21

There are 2M ways to configure an N × N lattice so that each site σi is either spin

up (σi = +1) or spin down (σi = −1). The total interaction energy of each such

configuration is

−J
∑
<i,j>

σiσj,

where the sum is over nearest neighbor sites. If there is an external magnetic field of

strength B present, then the total energy due to the interaction of each site with this

field is

B
∑
<i>

σi,

where the sum is over all sites of the lattice; this field tends to align each spin in

a direction parallel to the field. Hence, the total energy E for each configuration

σ = (σ1, . . . , σN2) of the lattice is the total interaction energy of the configuration

less the total energy due to the interaction of each site in the configuration with the

external magnetic field:

Eσ = −J
∑
<i,j>

σiσj −B
∑
<i>

σi.

When the strength of the external magnetic field is non-zero (B 6= 0), the external

magnetic field induces magnetization in the material, by aligning most of the magnetic

moments parallel to the field and to each other. The strength of this magnetization

depends upon the strength of the external magnetic field and the type of material.

When the external magnetic field is removed, the material loses its magnetization

if its temperature is above the Curie temperature Tc for the material. If, however,

21This ‘M ’ should not be confused with the symbol for representing the total mass of a system.
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the temperature is below Tc, the material retains a residual magnetization; this is

spontaneous magnetization (‘spontaneous’, because it is present without external in-

fluence). When spontaneous magnetization occurs, the material is said to undergo a

ferromagnetic phase transition.

The Ising model predicts the existence of this Curie temperature. Each possible

configuration σ of an N×N lattice at a fixed temperature T is assigned a probability

P (σ), such that

P (σ) =
exp−βEσ

Q
,

where the inverse temperature β ≡ (kBT )−1 and Q is the canonical partition function

(‘canonical’, because the lattice size is fixed). Q is an exponentiation of the total

energy of the lattice, summed over the 2M possible configurations of the lattice:

Q =
∑

σ

exp−βEσ .

The partition function contains information about the global behavior of the lattice

and is, accordingly, the place to look for whether the lattice has a Curie temperature

at which the ferromagnetic phase transition occurs.

It is possible to show, for an N × N lattice with external magnetic field B = 0,

that22

ln Q

N2
= ln 2 + 2(1− 1

N
) ln cosh(Jβ)

+
1

8π2

∫ 2π

0

∫ 2π

0

dεdη ln[cosh−4 2Jβ([cosh 2Jβ]2 − [sinh 2Jβ]2[cosh η + cosh ε])],

where 0 ≤ ε ≤ 2π, 0 ≤ η ≤ 2π. Apart from a factor of −β, this is the Helmholtz free

energy per site (or per spin), f , for an N ×N lattice, defined by the bridge law

f = − 1

β

ln Q

N2
.

22This follows [26].
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There are no singularities in f for N < ∞: it is continuous over all temperatures (for

all values of β). However, in the thermodynamic limit N →∞, and only in this limit,

there is a singularity in f . This is why the thermodynamic limit is an ineliminable

idealization in the explanation of ferromagnetic phase transitions: only in this limit

does something that represents a phase transition occur (namely, a singularity in the

Helmholtz free energy per site).

Apart from a factor of −β, the Helmholtz free energy per site in the thermody-

namic limit is

lim
N→∞

ln Q

N2
= ln 2 +

1

2π

∫ π

0

∫ π

0

dεdη ln[(cosh 2Jβ)2 − (sinh 2Jβ[cosh η + cosh ε])].

Note that, in this limit, the free energy itself, F = fN2, is not well-defined; this is

to be expected, since the free energy F is an extensive property of the system. It is

notable that, since singularities occur in the free energy per site only in the thermody-

namic limit, and since the free energy itself is not well-defined in the thermodynamic

limit, the logarithm of the partition function is not well-defined in the thermodynamic

limit either, because the logarithm of the partition function is proportional to the free

energy divided by temperature.

Defining k ≡ (tanh 2Jβ)(2 cosh 2Jβ)−1, the free energy per site in the thermody-

namic limit may be rewritten as

lim
N→∞

ln Q

N2
= ln 2 + ln(cosh 2Jβ) +

1

2π

∫ π

0

∫ π

0

dεdη ln(1− 2k[cosh η + cosh ε]).

The logarithm of the third term on the right hand side of this equation may be

expanded in powers of k, to yield

−fβ = ln 2 + ln(cosh 2Jβ)−
∞∑

n=1

(
(2n)!

(n!)2
)2k2n.
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The first two terms on the right hand side of this expansion are analytic for all

temperatures. The series of the third term, however, diverges at k = 1/4 (for k > 0,

J > 0); this corresponds to a temperature

Tc =
2J

kB ln(
√

2 + 1)
.

This is the Curie temperature for an N × N Ising model. This corresponds to a

logarithmic divergence in the specific heat at the temperature Tc, which indicates the

occurrence of a phase transition at temperature T = Tc. (Specific heat is also an

intensive property, equal to the amount of heat required to raise the temperature of

the system, per Kelvin of temperature increase, per unit mass.)

3.2 Criticisms

The explanation that statistical mechanics gives of the occurrence of phase tran-

sitions is an idealized explanation. For statistical mechanics explains the occurrence

of phase transitions for systems that are in the thermodynamic limit. Hence, if the

thermodynamic limit is a distorting idealization, statistical mechanics treats real sys-

tems as if they have an infinite number of components.23 For example, any real glass

of pure ice contains only finitely many hydrogen and oxygen atoms; yet statistical

mechanics must treat the ice in that glass as if it contains infinitely many hydrogen

and oxygen atoms in order to explain the melting of the ice in the glass. If the ice in

the glass is taken to have only finitely many atoms, statistical mechanics is unable to

23Strictly speaking, this is not correct. For a system to be in the N →∞ limit is not for it to have
infinitely many particles, but for the number of particles to be arbitrarily large. (‘Arbitrarily large’ is
to be understood in terms of the definition of a limit.) The phrase ‘the number of particles is infinite’
should be understood as shorthand for the technically more correct phrase ‘the number of particles
is arbitrarily large’, the phrase ‘infinitely many particles’ should be understood as shorthand for
‘arbitrarily many particles’, etc. So, too, saying that real systems do not contain infinitely many
particles should be taken as a quick way of saying that real systems do not have arbitrarily large
numbers of particles.

82



describe the melting of the ice, since the free energy per particle for the system will

fail to develop singularities.24 Since real systems have only finitely many components,

statistical mechanics describes idealized versions of real systems when it explains the

occurrence of phase transitions in those real systems. Since the content of the sta-

tistical mechanical explanation of phase transitions involves an idealized description,

it is legitimate to ask how this explanation explains what happens in the real world.

No extant account of idealized explanation that takes idealizations to be distortions

has an answer to this question.

First, consider Laymon’s account. According to Laymon, an explanation that

involves an idealized description has two components, an idealized sketch and a modal

auxiliary. The statistical mechanical explanation provides an idealized sketch, to

the effect that phase transitions in a system occur when the Helmholtz free energy

per particle of the system develops a singularity. This sketch is idealized, because

it treats real systems as if they contain an infinite number of components. Any

improvement upon this idealized description that renders it more realistic would have

to consider a system that contains only a finite number of components.25 Hence,

the modal auxiliary for the statistical mechanical explanation must be an argument

to the effect that the Helmholtz free energy per particle for a system with finitely

many components can develop singularities. Yet treating systems as if they have

infinitely many components is necessary for the success of the statistical mechanical

24For a discussion of attempts to represent phase transitions as something other than singularities,
see Chapter Five.

25Any other improvement sidesteps the main issue. Laymon requires the series of improvements to
the idealized description to produce a monotonic convergence to a correct description; and a correct
description requires that the system of interest contain only finitely many particles, if the system is
a real system. If the idealized description contains an idealization that cannot be improved upon,
the monotonic convergence to a correct description can only be partial, never complete.
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explanation. Hence, there cannot be the requisite modal auxiliary for the idealized

statistical mechanical explanation; improving the system, so that it has finitely many

particles, entails the failure of this account of phase transitions. Thus, Laymon’s

exigent account of idealized explanation does not show how the statistical mechanical

account of phase transitions is explanatory.

Second, consider Rueger and Sharp’s account. According to Rueger and Sharp

(RS), an explanation that involves an idealized description shows that real systems

qualitatively approximate idealized versions of themselves. To show that a real system

qualitatively approximates an idealized version of itself is to show that either the law

that describes the idealized system is structurally stable, or the law family to which

that law belongs is structurally stable as a family. The applicability of RS’s account

requires the real system to be some perturbed version of the idealized system. If this

requirement is to be satisfied in the statistical mechanical case, the idealized system

must be perturbed with respect to the parameter that controls for the number of

particles in the system, N . Since only small perturbations are allowed, it seems that

no real system, with finitely many particles, is among the systems that are perturbed

versions of the idealized system. So RS’s analysis seems not to apply to the statistical

mechanical account of phase transitions.

Suppose, however, for the sake of argument, that a perturbation from an infinite

particle number to a finite particle number counts as a small perturbation. Then

RS’s account still does not apply. The idealized system that appears in the statistical

mechanical account of phase transitions is in the thermodynamic limit. Hence, every

perturbation of this system with respect to the number of particles yields a system
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with finitely many particles.26 Since singularities develop only in the thermodynamic

limit, when the number of particles is infinite, no Helmholtz free energy per particle

function for any appropriately perturbed version of the idealized system contains any

point of singularity, even though the Helmholtz free energy per particle function for

the idealized system contains points of singularity. (In this case, a perturbation of

the idealized system is appropriate if it is with respect to the number of particles of

the idealized system.) There is no homeomorphism that transforms the phase space

portrait for a Helmholtz free energy per particle function that contains a singularity

into one that does not. Hence, the Helmholtz free energy per particle function for the

idealized system is structurally unstable.

Furthermore, the law family for the Helmholtz free energy per particle function

of this idealized system is not structurally stable as a family. The Helmholtz free

energy per particle function for the idealized system is a function of N , V , and T .

The law family for this function is the set of functions generated by allowing N , V ,

and T to take on values that are small perturbations from the values they have in the

thermodynamic limit. Suppose, for the sake of argument, that one member of this

law family is the Helmholtz free energy per particle function for the real system, with

finite N and finite V . Then the Helmholtz free energy per particle function for this

real system is also structurally unstable, since the Helmholtz free energy per particle

function for the perturbation of the real system that takes N to infinity contains

26Perturbing the system so that it has uncountably many particles, rather than a countable
infinitude of particles, results in a system that is still idealized. No real system has uncountably
many particles. Such a perturbation cannot show that the real system has the same features as the
idealized system with (countably) infinitely many particles, since the real system will not be one of
the perturbed versions of the idealized system.
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points of singularity whereas the Helmholtz free energy per particle function for the

real system contains no such points.

Yet the Helmholtz free energy per particle function for the real system is not

structurally unstable in the same way that the partition function for the idealized

system is structurally unstable. The former is structurally unstable because a certain

perturbation with respect to N leads to a system with a Helmholtz free energy per

particle function that contains singularities not present in the Helmholtz free energy

per particle function for the unperturbed system. The latter is structurally unstable

for the opposite reason: there is a perturbation with respect to N that results in a

system with a Helmholtz free energy per particle function that lacks the singularities

present in the Helmholtz free energy per particle function for the unperturbed system.

(Indeed, every perturbation with respect to N towards a finite value of N gives this

result.) Hence, not every member of the law family for the Helmholtz free energy

per particle function of the idealized system is structurally unstable in the same

way. Since the Helmholtz free energy per particle function for the idealized system

is not structurally stable, not every member of the law family for this function is

structurally stable. Consequently, the law family for the Helmholtz free energy per

particle function of the idealized system that appears in the statistical mechanical

account of phase transitions is not structurally stable as a family.27

27Here there is an appearance of disagreement with Rueger’s analysis (see [99], pp. 484-485).
Rueger claims that, although the systems in which phase transitions occur are structurally unstable,
the family of such systems is structurally stable as a family. Rueger’s analysis of phase transitions is
a thermodynamical analysis (he calls it “phenomenological”), because he appeals to properties of the
van der Waals equation. I provide a different analysis – what might be called a statistical mechanical
analysis – insofar as I appeal to properties of the Helmholtz free energy per particle. I claim that this
function for a real system is not structurally unstable in the same way that the Helmholtz free energy
per particle function for the idealized system is structurally unstable. Given the focus of Rueger’s
analysis, he does not address the fact that phase transitions occur only for systems that exist in
the thermodynamic limit. Although I concede that systems that exist in the thermodynamic limit
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Since the Helmholtz free energy per particle function of this idealized system is

structurally unstable, and since the law family for this function is structurally unstable

as a family, the idealized system does not qualitatively approximate any real system

with finitely many particles. The statistical mechanical account of phase transitions

requires the appeal to idealized systems with infinitely many particles. Hence, since

such systems fail to qualitatively approximate real systems, RS’s account of idealized

explanation does not show how the statistical mechanical account of phase transitions

is explanatory.

Finally, consider Kitcher’s account. According to Kitcher, an explanation that

involves an idealized description has (as I put it earlier) a prologue and an epilogue.

The epilogue for the statistical mechanical explanation of phase transitions is sup-

posed to show the ways in which real systems differ from systems that have an infinite

number of particles. One of the ways these systems differ, according to statistical me-

chanics, is that real systems do not undergo phase transitions. Hence, the epilogue

for this explanation cannot show how phase transitions in real systems differ from

phase transitions in the idealized system, because according to statistical mechanics

there are no phase transitions in real systems. There are only phase transitions in

idealized systems that exist in the thermodynamic limit. This is not a surprising

result, considering that there is no justification, in the sense that Kitcher requires, for

the prologue of such an explanation. For the idealization of the number of particles in

a system has a high probability (actually, a probability of one) of making a significant

difference to the phenomenon of interest, the occurrence of phase transitions.

and exhibit phase transitions are structurally stable as families, I do not concede that the family
containing both these idealized systems and real systems is structurally stable as a family.
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This shortcoming of Kitcher’s account is not due to the particular conditions

he requires of the prologue and epilogue. If one were to adapt the innovations of

the other accounts of idealized explanation to Kitcher’s basic model, the resultant

account would still fail to apply. For example, following Laymon, one might eliminate

the epilogue and replace Kitcher’s justification of the prologue with one that shows

there is a modal auxiliary for the idealized description in the prologue; or, following

RS, one might replace this justification with one that shows the idealized description

qualitatively to approximate the correct description, and replace Kitcher’s epilogue

with one that identifies the topological properties shared by the real system and

its idealized version. These alterations to Kitcher’s account would not allow it to

accommodate the statistical mechanical account of phase transitions, for the reasons

given against the other accounts.

3.3 Irreversibility and the Boltzmann-Grad Limit

When a balloon full of helium pops in the corner of a room, the helium is initially

near the corner; over time, it spreads throughout the room. Although it is possible for

the helium to reunite in the corner of the room, we never observe this: the dissipation

of the helium is irreversible. Cigarette smoke spreading throughout a room is similarly

irreversible.

When an insoluble drop of black ink is stirred in a glass of water, the ink distributes

itself evenly throughout the water, turning it a uniform gray. Although it is possible

to stir the water in a way that results in a reformation of the original ink droplet, we

never observe this: the spread of the ink is irreversible. Sugar dissolving in water is

similarly irreversible.
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When a warm body comes into contact with a cold one (and is otherwise isolated

from the larger environment), heat flows from the warm body to the cold one, until

the two bodies reach the same uniform temperature. Although it is possible for heat

to spontaneously flow back to the originally warm body, we never observe this: the

heat flow is irreversible.

These examples, and others like them, demonstrate the pervasiveness of irre-

versible processes in our experience of the world. Closed (or isloated) systems tend

towards states of increasing entropy and, having reached an equilibrium state, stay

there, in the sense that a return to their original non-equilibrium state is so extremely

improbable as never to be observed by us. This generalization forms the content of

the second law of thermodynamics.

The second law provides a phenomenological explanation of why some processes

are irreversible – phenomenological, because the second law does not show how the

microscopic behavior of systems leads to irreversibility. The aim of statistical me-

chanics is to provide this further explanation. There are several competing accounts

for how this explanation goes (see [108], pp. 246-279). Omitting the details, interven-

tionist accounts find the origin of irreversibility in the interaction between a system

and its environment. Gibbsian accounts find the origin of irreversibility in the se-

quence of coarse-grained states of a system being overwhelmingly likely to approach

a coarse-grained equilibrium state. Boltzmannian accounts find the origin of irre-

versibility in the overwhelming likelihood of a system’s time evolution being covered

by some version of what is known as the Boltzmann equation.

There are other accounts besides these three, and unfortunately a discussion of

them all is beyond the bounds of this project. Here the focus is on Boltzmannian
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accounts, which seek an explanation of irreversibility in the Boltzmann equation. The

main reason for focusing on this approach is the high degree of mathematical rigor

with which its proponents have been able to develop the account. The reason for

neglecting the interventionist approach is that it would be nice to have an account

of irreversibility even for isolated systems. The reasons for neglecting the Gibbsian

approach are more complicated. Here is a sketch of one reason for doing so. The

Gibbsian and Boltzmannian approaches both account for irreversibility by showing

that the entropy of a non-equilibrium system is extremely unlikely to decrease over

time. The two approaches work with different notions of entropy, the Gibbs entropy

and the Boltzmann entropy, respectively. The Gibbs entropy is a property of a col-

lection of initially identical systems, whereas the Boltzmann entropy is a property of

individual systems. Since the explanandum for an account of irreversibility is why

the entropy of an individual system never decreases, the Gibbsian account appears

to focus on the wrong explanandum. Also, unlike the Boltzmann entropy, the Gibbs

entropy does not change over time, and so cannot properly characterize an approach

to equilibrium (see [67], p. S349; [92], pp. 126-130).28

The discussion of the Boltzmannian account of irreversibility proceeds as follows.

I introduce some technical background, including the notions of Γ-space and µ-space,

total and partial probability density functions, the Liouville equation and accompany-

ing theorem, and the BBGKY hierarchy. I discuss the Boltzmann equation, including

its derivation from the principles of classical mechanics and two further, fundamen-

tal assumptions, known as the assumption of molecular chaos and the idealization

28For further reasons in favor of the Boltzmannian approach over the Gibbsian approach, see [15].
I do not mean to claim that the Gibbsian approach lacks the resources to address these criticisms;
I only claim that the approach seems to succumb to such criticisms.
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of the Boltzmann-Grad limit. I show how these assumptions are required to avoid

two classical objections to the Boltzmannian approach, known as the reversibility

paradox and the recurrence paradox. This clarifies the ineliminability of these fur-

ther assumptions, and especially the ineliminability of the Boltzmann-Grad limiting

idealization. Following all of this, I show that the philosophical accounts of idealized

explanation (from the previous chapter) do not show how the Boltzmannian account

of irreversibility is explanatory.

3.3.1 Background

Classical statistical mechanics describes the state of a system of N (structureless)

particles in terms of 2N 3-dimensional vector functions. N generalized center-of-mass

coordinates q1, q2, . . . , qN ≡ q give the positions of each of the N particles; and N

conjugate momenta coordinates p1, p2, . . . , p3 ≡ p give the conjugate momenta of each

particle, (Each qi and pi is a 3-dimensional vector function).29 The Hamiltonian H of

the system, equal to the total kinetic and potential energy of the system, determines

the motion of these particles, according to the equations30

q̇i = ∂H/∂pi

ṗi = −∂H/∂qi



 i = 1, 2, . . . , N.

These 2N first-order differential equations are known as Hamilton’s equations of mo-

tion; they determine the temporal variations in the 2N functions pi(t) and qi(t).

The state of an N -particle system can be represented as a “phase point” in a 6N -

dimensional Γ-space with 6N mutually orthogonal axes qx1, qy1, qz1, . . . , qxN , qyN , qzN

29pi ≡ ∂L
∂q̇i

, where L is the Lagrangian of the system, i.e., the total kinetic energy of the system
minus its total potential energy.

30I assume here and throughout that H does not depend on any time derivatives of q or p, so that
these equations are time-reversal invariant.
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and px1, py1, pz1, . . . , pxN , pyN , pzN . (Γ-space is a kind of phase space.) As the system

changes over time, the phase points representing the state of the system trace out a

trajectory in this Γ-space. Hamilton’s equations of motion determine the shape of

this trajectory. (See Figure 3.4.31)

Figure 3.4: Relation between Position-Space and Gamma-Space

Different phase points represent the states of different systems (or different states

of the same system). These phase points do not interact with each other; each

represents the state of an individual (isolated) system, and the trajectory associated

with each phase point represents the time evolution of each system. Generally, the

same macroscopic state of a system is compatible with many different N -particle

microscopic states of the system, the phase points of which tend to be “near” each

31The Boltzmann equation operates in a 6-dimensional phase space known as “µ-space”. µ-
space has three position dimensions and three momentum dimensions; each particle of a system is
represented by a point in µ-space. I would have liked to include a diagram of µ-space, but I’m not
sure how to visually represent six dimensions.
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other in Γ-space. The collection of microscopic states that correspond to the same

macroscopic state is known as a Gibbs ensemble.32 (See Figure 3.5.)

Figure 3.5: Gibbs Ensemble of Phase Points in Gamma-Space

If the Gibbs ensemble is sufficiently large (typically, infinitely many members

is sufficiently large), it is possible to describe the distribution of the corresponding

phase points in Γ-space by a continuous function of q and p known as a (ensemble)

density function. This density function ρN = ρN(q, p, t)
∏N

i=1 dqidpi gives the number

of phase points in a Gibbs ensemble that, at a time t, occupy the volume between

(q, p) and (qi +
∏N

i=1 dqi, pi +
∏N

i=1 dpi) in the Γ-space. (The subscript ‘N ’ on ρN is

a reminder that each system in the Gibbs ensemble has N particles.) The density

function imposes a “coarse-graining” on the Γ-space, since it provides information

about volume elements of the Γ-space rather than phase points in the space.33 The

density function changes in time according to Hamilton’s equations of motion. It is

provable that the density of phase points for a given Gibbs ensemble remains constant

32The measure of a (Lebesgue measurable) set of phase points A in Γ-space is defined as µ(A) ≡∫
A

dq1, . . . , dqN , dp1, . . . , dpN .
33This is an ad hoc procedure from the point of view of classical mechanics; but there are good

quantum mechanical reasons for imposing this coarse-graining, since the exact positions and mo-
menta of every particle in an N -particle system are never simultaneously defined. The complications
that arise due to a quantum treatment of an N -particle system are interesting, but they are also
irrelevant to present concerns.
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over time:

∂ρN

∂t
= 0.

This is known as Liouville’s theorem, and will be important later.

A normalized density function fN = fN(q, p, t) can be obtained by dividing the

density function ρN by the number of members of the Gibbs ensemble. This normal-

ized function is known as the probability density function, since
∫ ∫

fN

∏N
i=1 dqidpi =

1. (Each integral
∫ ∏N

i=1 dxi denotes a 3N -dimensional integral over each xi, i =

1, 2, . . . , N .) The probability density function fN gives the probabilities of finding

each particle of an N -particle system within any given region of a 6-dimensional

position and momentum space (known as a µ-space), given the exact positions and

momenta of the other N − 1 particles in that space. The function fN can change in

time due to collisions between particles, or due to the motion of particles through

space. The equation that governs the time evolution of the probability density func-

tion is known as Liouville’s equation:

dfN

dt
= −

N∑
i=1

[
∂H

∂pi

∂fN

∂qi

− ∂H

∂qi

∂fN

∂pi

].

According to Liouville’s theorem, the probability density function is constant over

time: dfN/dt = 0. Note that Liouville’s equation is time-reversal invariant: if

fN(q(t), p(t), t) is a solution to Liouville’s equation, so is fN(q(−t),−p(−t),−t). This

is also important later.

Liouville’s equation entails a hierarchy of equations known as the BBGKY hierar-

chy (named after Bogoliubov, Born, Green, Kirkwood, and Yvon, who independently

derived it). Obtaining this hierarchy requires the introduction of partial probability

density functions. The function fN gives the probability of finding each individual

94



particle in some region of µ-space, given the positions and momenta of every other

particle in that space; this is the same as giving the probability of finding a system

with N particles in some region of Γ-space. A partial probability density function fs,

in contrast, gives the probability of finding s < N randomly chosen particles of an

N -particle system in the subregion
∏s

i=1 dqidpi of Γ-space. This partial function is

obtained by integrating over the region of Γ-space associated with the other N−s par-

ticles of an N -particle system. Accordingly, the partial probability density function

fs is defined as

fs(x1, x2, . . . , xs, t) ≡
∫

fN(x1, . . . , xs, . . . , xN , t)
N∏

i=s+1

dxi,

where xi specifies, in µ-space, the generalized coordinates and conjugate momentum

of one particle in an N -particle system. So, for example, f1(x1, t)dx1 gives the prob-

ability of finding one randomly chosen particle in the volume of µ-space between x1

and x1 + dx1 at time t. Note that fs for s = N just is the original, non-partial

probability density fN for an N -particle system.

For s < N , the partial probability density function fs gives less information

about an N -particle system than does fN . This can be seen with a toy example

due to Michael Peters ([92], pp. 60-61). Consider a sprocket that has some radius

r and mass m. (See Figure 3.6.) The phase space for this sprocket system has

two dimensions, one axis for the radius of a sprocket and an orthogonal axis for its

mass. The probability density for finding the sprocket with a radius between r and

r + dr, and a mass between m and m + dm, respectively, is P (r,m)drdm. A partial

probability distribution function for finding the sprocket only with a certain radius

is, accordingly, P (r) =
∫

P (r,m)dm, where the integral is over all of the m-space.

P (r) does not contain information about the mass of the sprocket. Whether P (r) is
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suitable for use in any given situation depends upon the relevance of the sprocket’s

mass in that situation, and this, in turn, depends upon the “physics” of the situation.

Figure 3.6: Phase Space for a Sprocket

Under certain assumptions (about interaction potentials, etc), the Liouville equa-

tion entails a set of N integro-differential equations. The first of these describes the

time evolution of the 1-particle partial probability density function; the second, the

time evolution of the 2-particle partial probability density function; and so on, up to

the N-particle probability density function, which happens to be the Liouville equa-

tion. This set of equations is known as the BBGKY hierarchy. Notably, the equations

in this set for s < N are not closed: the 1-particle partial probability density func-

tion depends upon the 2-particle partial probability density function, which in turn

depends upon the 3-particle partial probability density function, and so on. The 1-

particle partial probability density function of the BBGKY hierarchy depends upon

other partial probability distribution functions, because the probability of finding

one particle in some subregion of Γ-space is affected by the collisions of that parti-

cle with other particles; these collisions create correlations among the particles, and

these correlations affect the probability of finding the particle in various subregions

of Γ-space.
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Whereas the Liouville equation follows from the laws of classical mechanics, the

BBGKY hierarchy follows from those laws plus modeling assumptions about the

system. These assumptions might involve, for example, treating each particle as a

hard sphere that interacts with other particles via a singular pair potential. (Although

these modeling assumptions are idealizations, they are not important to the point I

want to make with this example. I introduce a more important idealization shortly.)

3.3.2 The Boltzmann Equation

The Boltzmann equation describes how the statistical distribution of particles in

a system changes over time. Specifically, the Boltzmann equation describes the time

evolution of a 1-particle partial probability density function – it describes the time

evolution for the probability of finding one randomly chosen particle of an N -particle

system in some subregion of Γ-space.34 Unlike the time evolution equation for the 1-

particle partial probability density function of the BBGKY hierarchy, the Boltzmann

equation is a closed equation: the 1-particle probability density function that appears

in the Boltzmann equation does not depend upon every other partial probability den-

sity function for 1 < s ≤ N . It is possible rigorously to derive the Boltzmann equation

34The Boltzmann equation that describes the time evolution of a 1-particle partial probability
density function is the ensemble version of Boltzmann’s original equation, which gave the distribution
function in µ-space for one particle in a gas. The Boltzmann equation has several applications, in
addition to providing an explanation of the irreversible approach to equilibrium. Chief among these
is its role in obtaining the Navier-Stokes equations of fluid dynamics (among the most important
non-linear differential equations in physics) from statistical mechanics, via a method known as the
Chapman-Enskog expansion. (For examples of this derivation, see [31], [75], [102].) Generally, the
importance of the Boltzmann equation is its capacity to explain the macroscopic behavior of gases
in terms of their microscopic components, thereby bridging “the gap between the atomic structure
of matter and its continuum-like behaviour at a macroscopic level” ([20], pp. 40-41). The reason
it is desirable to derive the Boltzmann equation, rather than take it as an explanatory starting
point, is that a derivation of the equation from the properties and behaviors of the microscopic
components of (ensembles of) gases provides an explanation of the behaviors of those gases in terms
of statistical mechanics. Simply put, the derivation makes explanations that appeal to the Boltzmann
equation “deeper” than they would be otherwise, because it grounds those explanations in statistical
mechanics, a more fundamental theory.
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from the BBGKY equation governing the 1-particle partial probability density func-

tion. The derivation proceeds in two main steps.35

The first step is to apply the Boltzmann-Grad limit to the equations of the

BBGKY hierarchy. (For details, see [21], pp. 164-167.) The Boltzmann-Grad limit

is the limit in which N → ∞ and each particle’s diameter σ → 0 in such a way

that Nσ2 remains finite and non-zero.36 Speaking of the Boltzmann-Grad limit as

a distorting idealization, Harold Grad notes that, in this limit, “the relative size of

molecule to scale of the system becomes vanishingly small” ([60], p. 126). That is,

the particles’ proper volume Nσ3 → 0; this means that the particles of a system in

this limit occupy a negligible portion of their container’s volume. (Samples of real

gases for which this is literally true probably exist only in extreme conditions, such as

high-altitude aircraft or high-vacuum environments.) In the Boltzmann-Grad limit, it

is provable that the set of phase points in Γ-space for which multiple collisions (triple

or higher order) occur has (Lebesgue) measure zero (see [21], pp. 14-16). This shows

that it is overwhelmingly likely that only binary collisions (between two particles)

occur for systems in the Boltzmann-Grad limit.

35For the details of this derivation, see [21], especially Chapter IV; the derivations are provided for
a system of N identical particles, each of unit mass, that move in a bounded domain of ν-dimensional
Euclidean space and interact via a singular pair potential as hard spheres; a more reader-friendly
version of this derivation may be found in [22]. For a closely related derivation, see [60] or [40].
Most of these derivations are valid only for short times (e.g., for one-fifth of the mean free time,
the average time between two subsequent collisions of a molecule). But there is a derivation that
is valid for all times, provided that the system is a gas expanding into a vacuum; see [22]. Finding
derivations that are valid for all times under other (more realistic) conditions is currently an open
research problem.

36Technically, the N → ∞ limit must be taken before, or faster than, the σ → 0 limit, since the
limits do not commute. If this order is not observed, Nσ2 goes to zero. It is important that Nσ2

remain finite and non-zero, because the mean free path is proportional to V/πNσ2, where V is the
volume of the system.
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The result of applying the Boltzmann-Grad limit to the equations of the BBGKY

hierarchy is a set of equations known as the Boltzmann hierarchy. Like the equations

of the BBGKY hierarchy, the equations of the Boltzmann hierarchy are not closed.

This is because, in the Boltzmann-Grad limit, the probability of finding a particle

in some subregion of Γ-space still depends upon binary collisions that the particle

undergoes. A closed equation can be obtained by invoking an assumption of initial

molecular chaos; this is the second main step in the derivation of the Boltzmann

equation. According to the assumption of initial molecular chaos, the motion of

every particle in the system at an initial time t = 0 is statistically independent of the

motion of every other particle in the system at that time:

fs(q1, p1, q2, p2, . . . , qs, ps, 0) =
s∏

i=1

f1(qi, pi, 0).37

The reason that the right-hand side of this equation is a product among only 1-

particle partial probability density functions is that, if the motions of the particles in

a system are statistically independent of each other, the location of one particle in the

system is uncorrelated with the location of the system’s other particles.38 When set

equal to zero, this 1-particle partial probability density function yields the Boltzmann

37Note that this assumption is weaker than the assumption originally made by Boltzmann, to the
effect that molecular chaos is true at all times. Cercignani, et. al. are able to derive Boltzmann’s
original assumption from the assumption of initial molecular chaos. This makes it clear that the
assumption is consistent with the dynamics of the system: the assumption is not about the way in
which the system behaves, but rather about the initial state of the system. Lawrence Sklar, in a
different context, concurs with this assessment ([108], p. 224).

38For instance, in a two-particle system, the molecular chaos assumption holds that the probability
density of finding one particle with a given position and momentum and the other particle with
another position and momentum is equal to the probability density of finding the first particle with
its position and momentum and the second particle with any position and momentum times the
probability density of finding the second particle with its position and momentum and the first
particle with any position and momentum. Simultaneously throwing a pair of dice is a common
example of a system in which something like the initial molecular chaos assumption holds (and
continues to hold so long as the dice do not bump into each other or indirectly affect each other
through their interactions with the table on which they are thrown).
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equation. Cercignani, et. al. provide two justifications for supposing the initial chaos

assumption to be true of a system. One is that, in preparing a state, it is practically

impossible for us to manipulate each particle of the system; we can only manipulate

the system as a whole. Another is that, if the initial state of a system is selected at

random, it is overwhelmingly likely (on mathematical grounds) that the initial chaos

assumption holds of the system. Cercignani’s justifications are epistemic, concerned

with the state of our knowledge about interparticle correlations in a system. It seems

to me, however, that if a justification is to be given, it needs to be in terms of

ontological considerations, about whether there are any interparticle correlations at

t = 0. (Others justify the assumption a posteriori, on the grounds that it leads to an

equation that “works”; still others treat it an an axiom, or as a candidate for a brute

fact.)

It is also provable that, in the Boltzmann-Grad limit (and under some further

assumptions about the existence and smoothness of the limit, and the existence and

uniqueness of solutions to the Boltzmann equation and the equations of the BBGKY

hierarchy), initial molecular chaos propagates: if the molecular chaos assumption is

true at an initial time t = 0, then it is true for all subsequent times t > 0. This

is because, for systems that exist in the Boltzmann-Grad limit, it is overwhelmingly

unlikely for any two particles to collide with each other more than once, or for any two

particles to collide with each other if they have previously collided with a common

particle. So, for example, given that initial molecular chaos propagates, then if a

particle A collides with another particle B, it is extremely unlikely for A to collide

with a different particle C, lest there be a statistical correlation between B and C,

two particles that have not yet collided.

100



Given the assurance that initial molecular chaos propagates in the Boltzmann-

Grad limit, it is possible to obtain the Boltzmann equation from the Boltzmann

hierarchy. This is accomplished by substituting f1(q1, p1)f1(q2, p2) for f2(q1, p1, q2, p2)

in the equation for the s = 1-particle partial probability density function in the Boltz-

mann hierarchy. The result is a 1-particle partial probability density function that is

closed, since it does not depend upon any other partial probability density function

for 1 < s ≤ N . Consequently, if the assumptions of initial molecular chaos and the

Boltzmann-Grad limit, along with other less fundamental assumptions (about inter-

particle potentials, particle shapes, etc) hold of a (macroscopically specified) system,

and if the basic equations of classical mechanics are correct,39 then the Boltzmann

equation characterizes the time evolution of “almost all” N -particle systems in an ini-

tial Gibbs ensemble for that system. (‘Almost all’ means ‘all but a set of (Lebesgue)

measure zero’. The systems not so characterized are those in which non-binary colli-

sions or multiple collisions by the same particle (or both) are important.)

3.3.3 The H-Theorem

Systems governed by the Boltzmann equation can be shown to exhibit irreversible

behavior. This is the famous result known as Boltzmann’s H-theorem.40 Converting

f1(q1, p1, t) to a function of generalized coordinates and velocities f1(q1, v1, t), define

a time-dependent function, to be called an H-function, as:

H(t) ≡
∫

f1(q1, v1, t) log f1(q1, v1, t)dv,

where the integral is over all velocities.

39Assuming they are, when quantum effects are negligible.
40The presentation of this theorem follows [20], pp. 137-142.

101



It is provable that if f1 is a solution to Boltzmann’s equation and no heat flows

into the walls of the system’s container due to particle collisions with the walls,

then dH/dt ≤ 0. That is, under the general conditions stated, the value of H(t)

never increases in time. (This is part of the H-theorem.) It is also provable that

H(t) decreases monotonically unless the system is in a state of equilibrium, in which

case the H-function is constant through time: dH/dt = 0. (This is the remaining

part of the H-theorem.) The non-increasing nature of the H-function shows that

the Boltzmann equation describes an irreversible time-evolution for some (isolated)

systems. Indeed, up to a factor of kB (Boltzmann’s constant), differences in the value

of H at different times are the same as differences in the thermodynamic entropy as

it appears in the second law of thermodynamics. For this reason, the thermodynamic

entropy is known as the Boltzmann entropy, and the H-theorem is considered to be

a microscopic version of the second law of thermodynamics.41

The rigorous derivation of the Boltzmann equation and the H-theorem provide a

foundational justification of the second law of thermodynamics.42 However, whereas

the second law of thermodynamics holds that the entropy of an isolated system never

decreases, its microscopic version for systems in the Boltzmann-Grad limit holds that

it is overwhelmingly likely – but not certain – that the entropy of an isolated system

never decreases. The qualification in the microscopic version of the second law is due

to the result (from the end of the section “The Boltzmann Equation”) that there

41I have a reservation about whether it is proper to say that the H-function corresponds to the
entropy. More likely, it corresponds to the entropy per particle. Entropy is an extensive property;
hence, when N → ∞ the entropy should be undefined. But since the entropy per particle is an
intensive property, it can remain well-defined in the N →∞ limit.

42The justification is foundational in the sense that it proceeds from the basic postulates of classical
mechanics (plus a statistical assumption of initial molecular chaos); the derivation is rigorous in the
sense that it is a mathematically valid derivation that does not rely upon qualitative reasoning.

102



is a “small” probability, of Lebesgue measure zero, that an isolated system in the

Boltzmann-Grad limit, which satisfies the assumption of initial molecular chaos (and

various other modeling assumptions), does not obey the Boltzmann equation and

thereby does not obey the H-theorem.

The rigorous derivation of the Boltzmann equation and the H-theorem not only

provides a foundational justification for the second law of thermodynamics, but also

explains why some systems irreversibly approach equilibrium. In agreement with

a nomothetic conception of explanation, the Boltzmann equation is law-like, since it

follows from the law-like equations of classical mechanics (when conjoined with appro-

priate additional assumptions). In agreement with a causal conception of explanation,

the Boltzmann equation describes the effects of collisions on the time-evolution of a

system; since momentum is conserved in these collisions, it is plausible to suppose that

the Boltzmann equation describes causal processes and causal interactions; if so, then

the H-theorem shows that these causal processes and interactions almost always pro-

duce irreversible behavior. In agreement with a unification conception of explanation,

the argument patterns used to derive the Boltzmann equation are plausibly taken to

be among those that best unify the belief corpus of science in the limit of its rational

development, especially given the connection between the Boltzmann equation and

fundamental hydrodynamical equations such as the Navier-Stokes equation.

3.3.4 Paradoxes and Ineliminability

The irreversibility latent in the Boltzmann equation has the ring of paradox to it.

Although the Boltzmann equation is obtained from Liouville’s equation – which (as

noted above) happens to be time-reversal invariant – the Boltzmann equation itself
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is not time-reversal invariant. This feature of the Boltzmann equation prompted two

classic objections, known as the reversibility paradox and the recurrence paradox.

The reversibility paradox, due to Loschmidt, is the simplest of the two para-

doxes. The Liouville equation, and all other equations of classical mechanics, are

time-reversal invariant. It is not possible to derive an equation that is not time-

reversal invariant from equations that are all time-reversal invariant. Hence, accord-

ing to this paradox, the Boltzmann equation is inconsistent with classical mechanics.

The straightforward response to this paradox is to note that it shows the ine-

liminability of a non-dynamical postulate, asymmetric under time reversal, from the

derivation of the Boltzmann equation, if the Boltzmann equation is to be consistent

with classical mechanics. Such a postulate appears in the rigorous derivation of the

Boltzmann equation: it is the assumption of initial molecular chaos. (The postulate

in non-dynamical, because it does not concern the way in which systems develop over

time.) The reversibility paradox shows that this assumption cannot be justified on

the basis of dynamical considerations alone. (The justification of the assumption of

initial molecular chaos is an open foundational problem, which I pass over.) Indeed,

the reversibility paradox shows that some sort of statistical assumption is required in

order to derive the Boltzmann equation; but it does not show that this assumption

is inconsistent with the underlying dynamics of systems governed by the Boltzmann

equation.43 (Incidentally, the reversibility paradox is one reason for being dissatisfied

with the Gibbsian account of irreversibility. As Krylov has shown, it is possible to

construct a version of this paradox that casts doubt on the tenability of the Gibbsian

43Cercignani, et. al. argue that the assumption is consistent with the underlying dynamics in the
Boltzmann-Grad limit; see [21], p. 157.
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approach; the paradox succeeds even granting the typical statistical assumptions in

the Gibbsian account.)

The recurrence paradox, due to Zermelo, is more complicated than the reversibility

paradox, because it involves what is known as Poincaré’s theorem.44 This theorem

states, roughly, that almost any (isolated) mechanical system with a given fixed and

finite energy and finite spatial extension will, after a finite time, return to a state

that is arbitrarily close to its initial state. More precisely: For any arbitrarily small

compact set A of (Lebesgue) measurable phase points in Γ-space, let B be the subset

of A consisting of those points on trajectories that never return to A having once left

A; let µ(B) be the (Lebesgue) measure of the set B. Then

Poincaré’s Theorem: µ(B) = 0.

That is, except for a set of phase points of measure zero, all phase points initially

in the region A are on trajectories that will return to A after a finite time.45 This

theorem is restricted to those systems with finite spatial extension and finite energy;

this ensures the finiteness of the measure of the energy surface for each system and

the compactness of the set A.46 The proof of Poincaré’s theorem involves an appeal

to Liouville’s theorem (noted above), and an appeal to the fact that trajectories of

44The discussion of Poincaré’s theorem follows [121], pp. 16-20.
45Very roughly, Poincaré’s theorem is similar to saying that it is nearly impossible to wind an

infinitely long string of spaghetti through a finite volume.
46A set is compact just in case it is both closed and bounded. Roughly, a set is closed if it is

possible for any point in its complement to be changed by a small amount in any direction yet
remain in the complement set. And a set is bounded if it has a finite size. An energy surface is
that surface in Γ-space to which the motion of a phase point for a system with energy E is confined.
This notion may be elaborated in the following way. Energy is a function of the 6N variables of the
Hamiltonian of an N -particle system. An energy surface is that surface, in an 6N + 1-dimensional
space spanned by E and these 6N variables of the Hamiltonian, that is described by E = H(q, p).
For example, the energy of a one particle system is a function of the 3 position coordinates and
three conjugate momentum coordinates of the particle: E = H(qx, qy, qz, px, py, pz). So the energy
surface for this one-particle system is a surface described by E in a 7-dimensional space spanned by
E, qz, qy, qz, px, py, pz.
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different systems in Γ-space cannot intersect each other.47 It is instructive to examine

a (rough) derivation of the proof, in order to understand why the Boltzmann equation

is immune to it.

Consider a system with a fixed and finite energy as well as a finite spatial extension

and particle number. There are only finitely many ways to arrange a finite number

of particles within a finite volume so that the energy of the system retains its given

finite value. And since the energy of the system is finite, there are only finitely

many different specifications of the momentum of each particle in the system. Since

each microscopic configuration of the system corresponds to a unique arrangement

of the system’s particles and a unique specification of each particle’s momentum, the

number of possible microscopic configurations of the system is finite. It follows that

the number of possible macroscopic states for the system is finite, since each such state

is realized by a subset of the possible microscopic system configurations. Moreover,

the system’s available volume in Γ-space – the volume it is possible for the system

to occupy, the system’s energy surface – is also finite: the points corresponding to

microscopic configurations that represent a given macroscopic state of the system

occupy only a finite volume of Γ-space, and the total available volume for the system

in Γ-space is the union of the volumes that correspond to each possible macroscopic

system state.

Having established the finiteness of the energy surface for a system with a fixed and

finite energy and finite spatial volume and particle number, consider a set A of phase

47Liouville’s theorem is a consequence of Hamilton’s equations of motions. Trajectories cannot
intersect each other in Γ-space because systems governed by Hamilton’s equations of motion are
deterministic. Determinism entails that the trajectory of each phase point through Γ-space is unique;
but if the trajectories of two phase points were to overlap, their trajectories would not be unique
owing to their being a “branching” of the trajectory of each particle at the point of intersection.
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points in some region of Γ-space, such that each point in A represents a specific (but

arbitrarily selected) possible macroscopic state of the system under consideration.

By definition, each point in A represents a system that has the same energy and

spatial extension as the other systems represented by points in A (energy and spatial

extension are macroscopic properties of the system), even though each such system

has a different microscopic configuration. Since each system represented by a point

in A has the same finite energy and volume, the set A is compact. In particular, the

set A occupies a (proper) subset of the system’s available volume in Γ-space (because

it represents only one of the possible macroscopic states of the system).

Let B0 be the non-empty subset of A consisting of all those phase points on

trajectories that never return to A having once left A. Assume, for reductio, that

the Lebesgue measure of B0, µ(B0), is both finite and non-zero. Let B1 be the set of

points in Γ-space on trajectories that evolve from the phase points in B0 after a time

t. (The definition of B0 entals that B0 and B1 do not overlap.) Let B2 be the set of

points in Γ-space on trajectories that evolve from the points in B0 after a time 2t; and

in general, let Bi be the set of points in Γ-space on trajectories that evolve from B0

after a time it. Then every region Bi is non-overlapping with every other region Bj,

including B0.
48 According to Liouville’s theorem, if X is a set of phase points in some

region of Γ-space at an initial time and Xt is a (different) set of phase points in Γ-space

obtained by evolving the points in X for a time t according to Hamilton’s equations of

48Here is a rough proof. Suppose, for reductio, that (for i, j > 1 and i < j) Bi and Bj overlap –
i.e., that Bi and Bj have at least one point in common. Let the shared point be x. Since i < j, and
since trajectories in Γ-space cannot overlap (owing to the determinism of Hamilton’s equations of
motion), all of the points in Bj at time jt are evolved from points that were in Bi at time it < jt.
Likewise, since i, j > 1, all of the points in Bj and Bi are evolved from points that were in B1 at
time t. In particular, x is on a trajectory that was in B1 at time t. But since it 6= jt and phase
space trajectories cannot intersect, x must also be on a trajectory that was in B at the initial time.
This contradicts the assumption that t is large enough that B0 and B1 do not overlap. QED.
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motion, then µ(X) = µ(Xt). Hence, µ(B0) = µ(B1) = µ(B2) = · · · . Therefore, since

µ(B0) is finite and non-zero (by assumption) and the sequence of regions B1, B2, . . .

do not overlap, the total measure of the union of these disjoint regions is infinite.

This entails that the whole energy surface for the system is unbounded – i.e., that

the system’s available volume in Γ-space is infinite. But this is impossible, because

the measure of A is finite and the system’s energy surface is only finite. Thus, µ(B)

must be zero. QED.49

The recurrence paradox builds upon Poincaré’s theorem. According to the Boltz-

mann equation, a system (of the appropriate sort) not in equilibrium that has an

initial H-function value Hi(0) is overwhelmingly likely to have an H-function value

Hf (t) < Hi(0), for every time t > 0 – in fact, Hf (t) should decrease monotonically in

time until the system reaches equilibrium. Yet, according to Poincaré’s theorem, it is

overwhelmingly likely that, at some future time tr (where t < tr < +∞), the system

has an H-function value Hr that exceeds a previous H-function value of the system.

Hence, Boltzmann’s equation is inconsistent with classical mechanics.

49Here is an alternative method of proof. Let A be an arbitrary volume element in Γ-space, with
volume V . After a time t, the points in this volume element evolve into another volume element At

of volume Vt, according to Hamilton’s equations of motion. Let Γ0 be the subspace that is the union
of every region At for times 0 ≤ t ≤ ∞, and let the volume of Γ0 be Ω0. Likewise, let Γt be the
subspace that is the union of every region At for times τ ≤ t ≤ ∞, and let the volume of Γt be Ωt;
the points in Γt are the points from Γ0 that have evolved for a time τ . The volumes Ω0 and Ωt are
finite, because the finite energy and spatial extension of the system confine a representative phase
point for the system to a finite region of Γ-space. All of this entails that the region Γ0 contains Γt.
After a time τ , Γ0 will become Γt. Hence, by Liouville’s theorem, Ω0 = Ωt. Since these volumes
are the same, Γ0 and Γt must contain the same set of points (except for a set of measure zero).
Specifically, Γt contains all of the points in the volume element A (except for a set of measure zero).
But since the points in Γt are, by definition, the future destinations of the points in A, all of the
points initially in A must return to A after a sufficiently long time (except for a measure zero set
of points). Since the volume element A can be made arbitrarily small, every point must return
arbitrarily close to its initial state after a sufficient amount of time (except for a measure zero set
of points).
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The rigorous derivation of the Boltzmann equation shows this inconsistency to be

merely apparent. In the Boltzmann-Grad limit, the set of points A is not compact.50

As N → ∞, a system’s energy E → ∞, because energy is an extensive quantity.

But a system’s average energy per particle, E/N , remains constant (dE/dN = 0) as

N → ∞; it is an intensive quantity. That E → ∞ and dE/dN = 0 in the N → ∞

limit is consistent with an arbitrary particle i in the system having its energy Ei →∞

as N → ∞. And if a particle’s energy Ei → ∞ as N → ∞, its momentum pi → ∞

as N → ∞, in which case at least one coordinate in Γ-space, in the set A, diverges

as N → ∞. This possibility entails that the set A is not compact in the N → ∞

limit.51 And the non-compactness of A allows the system’s energy surface to be

unbounded. Hence, Poincaré’s theorem does not hold in the Boltzmann-Grad limit;

the limit secures the consistency of the Boltzmann equation with classical mechanics,

at least so far as the recurrence paradox goes.

This is the reason why the Boltzmann-Grad limit is ineliminable to any rigorous

derivation of the Boltzmann equation. Appealing to the limit is the only way, con-

sistent with the Boltzmannian account of irreversibility, to exempt the Boltzmann

equation from the strictures of Poincaré’s theorem. Exemption cannot be claimed on

the grounds that non-equilibrium systems reach equilibrium after an infinite amount

of time, since the Boltzmann equation describes how non-equilibrium systems ap-

proach equilibrium in a finite amount of time. Nor can exemption be claimed on

the grounds that systems are never isolated, since the Boltzmann equation applies to

isolated systems. Nor can exemption be claimed on the grounds that the duration

50See [21], pp. 171-172; [22], p. 56: “the set [A] is no longer compact when N → ∞ and the
recurrence time is expected to go to infinity with N (at a much faster rate)”. Cercignani does not
say why this is true.

51I am grateful to Saul Cohen for assistance with this explanation.
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it would take a system to recur to a state similar to its initial state is unfathomably

lengthy (contra Boltzmann’s initial reaction to this paradox), since the Boltzmann

equation does not predict this recurrence.52

3.4 Criticisms

The Boltzmann-Grad limit is an ineliminable component in the Boltzmannian ex-

planation of irreversibility. For this reason, among others, the Boltzmannian account

is an idealized explanation. Interpreted as a distorting idealization, the Boltzmann-

Grad limit treats real gases as if they contain infinitely many particles. Appeal to

the limit replaces an equation governing the time evolution of a partial probability

density function that applies to real gases with an equation (the Boltzmann equa-

tion) that holds of idealized gases; and this latter equation holds only of idealized

gases, because the appeal to the Boltzmann-Grad limit is ineliminable. Since the

Boltzmannian account of irreversibility contains an idealized description (viz., the

Boltzmann equation), it is legitimate to ask how this account explains what happens

in the real world. No extant philosophical account of idealized explanation that takes

idealizations to be distortions has an answer to this question. (The criticisms to fol-

low closely resemble those given for the case of phase transitions. For this reason,

the following discussion is brisker, omitting tedious details that can be found in the

previous criticisms.)

52The Kac ring is an enlightening and surprisingly simple model of how time-reversal invariant
equations of motion can lead to irreversible behavior, when conjoined with a non-dynamical statis-
tical assumption and a limit similar to the N → ∞ limit. For discussions of the Kac model in the
context of the reversibility and recurrence paradoxes, see [121], pp. 23-27; [29], pp. 34-39. While
these discussions emphasize the ineliminability of a statistical assumption to the demonstration of
irreversible behavior in the Kac model, they do not emphasize the ineliminability of a limiting ideal-
ization similar to the N →∞ limit, even though the Kac model exhibits irreversible behavior only
in such a limit.
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First, consider Laymon’s account. According to Laymon, an explanation that in-

volves an idealized description must have two components, an idealized sketch and

a modal auxiliary. The rigorous derivation of the Boltzmann equation and the H-

theorem provide an idealized sketch, to the effect that some non-equilibrium systems

irreversibly approach equilibrium. The sketch is idealized, because it treats systems as

if they exist in the Boltzmann-Grad limit. Any improvement upon this idealized de-

scription that renders it more realistic would have to consider a system that contains

only a finite number of particles. (Any other improvements sidestep the main is-

sue.) Hence, the modal auxiliary for the Boltzmannian account of irreversibility must

be an argument to the effect that a system that does not exist in the Boltzmann-

Grad limit can exhibit irreversible behavior. Yet treating systems as if they exist in

the Boltzmann-Grad limit is necessary for the success of the Boltzmannian account.

Hence, there cannot be the requisite modal auxiliary for the idealized Boltzmannian

explanation of irreversibility; improving the system so that it has finitely many par-

ticles exposes the Boltzmannian account to the recurrence paradox. Thus, Laymon’s

exigent account of idealized explanation does not show how the Boltzmannian account

of irreversibility is explanatory despite being idealized.

Second, consider RS’s account. According to RS, an explanation that involves an

idealized description of a real system must show that the real system qualitatively

approximates the idealized version of itself. To show this is to show either that the law

describing the idealized system is structurally stable, or that the law family to which

that law belongs is structurally stable as a family. The applicability of RS’s account

requires the real system to be some perturbed version of the idealized system. If

this requirement is to be satisfied for the Boltzmannian account, the idealized system
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must be perturbed with respect to the parameter that controls the number of particles

in the system, N . Since only small perturbations are allowed, it seems that no real

system is among the systems that are perturbed versions of the idealized system. So

RS’s analysis seems not to apply to the Boltzmannian account of irreversibility.

Suppose, however, for the sake of argument, that a perturbation from an infinite

particle number to a finite particle number counts as a small perturbation. Then RS’s

account still does not apply. The idealized system that appears in the Boltzmannian

account of irreversibility exists in the Boltzmann-Grad limit. Hence, every perturba-

tion of this system with respect to N yields a system with finitely many particles,

a system that does not exist in the Boltzmann-Grad limit. Since the Boltzmannian

account avoids the recurrence paradox only by invoking the Boltzmann-Grad limit,

systems that do not exist in the Boltzmann-Grad limit do not exhibit irreversibil-

ity. There is no homeomorphism that transforms the phase space portrait for a

time-irreversible equation into a phase space portrait for a time-reversible equation.

Hence, the Boltzmann equation is structurally unstable. Moreover, the law family

for the Boltzmann equation is structurally unstable as a family, for reasons similar to

those given in the case about phase transitions. Hence, since systems that exist in the

Boltzmann-Grad limit do not qualitatively approximate systems that do not exist in

this limit, RS’s account of idealized explanation does not show how the Boltzmannian

account of irreversibility is explanatory despite being idealized.

Finally, consider Kitcher’s account. According to Kitcher, an explanation that

involves an idealized description must involve a prologue and an epilogue. The epi-

logue for the Boltzmannian account of irreversibility must show the ways in which

real systems differ from idealized systems that exist in the Boltzmann-Grad limit.
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One of the ways these systems differ, according to the Boltzmannian account and the

recurrence paradox, is that real systems do not exhibit irreversible behavior. Hence,

the epilogue for the Boltzmannian account cannot show how irreversibility in real

systems is different from irreversibility in the idealized system, because, according

to the Boltzmannian account, there is no irreversibility in real systems (that do not

exist in the Boltzmann-Grad limit). There is only irreversibility in systems that exist

in the Boltzmann-Grad limit. Hence, Kitcher’s account of idealized explanation does

not show how the Boltzmannian account of irreversibility is explanatory despite being

idealized.

This is not a surprising result, considering that there is no justification, in the

sense Kitcher requires, for the prologue of the Boltzmannian explanation. For the

idealization of the Boltzmann-Grad limit has a high probability of making a significant

difference to the phenomenon of interest, the irreversible approach of non-equilibrium

systems to states of equilibrium. (As before, this shortcoming of Kitcher’s account is

not due to the particular conditions he requires of the prologue and epilogue.)

3.5 The Paradox of Ineliminable Idealization

Any philosophical account of how idealized descriptions can be explanatory de-

spite being false must require idealized descriptions to bear an appropriate relation

to correct descriptions in order to be explanatory. The extant accounts of ideal-

ized explanation by Laymon, Rueger and Sharp, and Kitcher provide three different

conditions which, when satisfied by an idealized description, allow that description

to be explanatory. None of these conditions is satisfied by the statistical mechanical

explanation of phase transitions or by the Boltzmannian explanation of irreversibility.
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The common flaw with these accounts of idealized explanation is that they are

unable to accommodate explanations that require, in principle, an appeal to ide-

alization. There is no requisite modal auxiliary for an idealized description of the

explanandum phenomenon in such an explanation, because making the description

completely realistic (non-idealized) results in a failure to describe the phenomenon.

Nor is an idealized description of the explanandum phenomenon in such an explana-

tion structurally stable in any relevant sense, because the behaviors exhibited by the

non-idealized systems are qualitatively different from the behaviors exhibited by their

idealized versions. Likewise, there is no epilogue to show how the phenomenon in the

non-idealized system differs from the phenomenon as it occurs in an idealized version

of such a system, because the phenomenon does not obtain in the non-idealized sys-

tem. (Note that this common flaw is not due to treating idealizations as distortions.)

Any account that interprets idealizations as distortions – and thereby purports

to show how idealized descriptions can be explanatory despite being false – will be

unable to accommodate explanations of phenomena that can only be described by

appeal to idealization, owing to what I call the paradox of ineliminable idealization.

This paradox is a schema for generating inconsistencies. Before presenting the schema

in its generality, I present an instantiation, as it appears in the statistical mechanical

account of phase transitions.

1. Every real system has only finitely many particles.

2. Some real systems undergo phase transitions.

3. A system undergoes a phase transition only if the system is in the thermody-

namic limit.
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4. Any system in the thermodynamic limit is a system that has infinitely many

particles.

These claims are jointly inconsistent.

I call this the paradox of phase transitions, because it a set of very plausible

assumptions that cannot all be true. The first claim is ontological, agreed upon by

all parties. The second claim is the explanandum. The third claim is a mathematical

result from statistical mechanics, a property of the Helmholtz free energy per particle.

For, according to statistical mechanics, a system undergoes a phase transition only if

the Helmholtz free energy per particle for the system develops a singularity; and the

Helmholtz free energy per particle develops singularities only in the thermodynamic

limit. The fourth claim is justified by the interpretation of the thermodynamic limit

as a distorting idealization. The thermodynamic limit is an idealization, because

it replaces one description of a system with a description that is, in some sense,

simpler. And if this idealization is a distortion, then the syntax ‘lim N →∞’ of the

thermodynamic limit means ‘limit in which the system has infinitely many particles’

– i.e., if the limit is a distorting idealization, then systems in the limit have infinitely

many particles.

The paradox of phase transitions generalizes. Some form of this paradox is present

for any phenomenon that requires, for its explanation, appeal to an idealization. For

any such phenomenon, it is possible to construct an argument of the following form:

1. F is some property of every real system (or every real system of interest).

2. P is some phenomenon that occurs in some real systems.

3. P occurs only in systems in an idealizing limit I that idealizes F .
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4. Any system in I has a property that real systems lack (and does not have the

property F ).

These suppositions are jointly inconsistent. I call this the paradox of ineliminable

idealization.53

The Boltzmannian account of irreversibility fits this form. To see this, let F be

the property of having only a finite number of particles in the system. Let P be

an irreversible, finite-time, monotonic approach to equilibrium by a system initially

not in equilibrium; I call this ‘exhibiting irreversibility’. These qualifications on P

are intended to ensure that the Boltzmannian approach is the only (currently known)

approach that seeks to explain P . The idealizing limit I is the Boltzmann-Grad limit.

Then the following argument results:

1. Every real system has only finitely many particles.

2. Some real systems exhibit irreversibility.

3. A system exhibits irreversibility only if the system is in the Boltzmann-Grad

limit.

4. Any system in the Boltzmann-Grad limit is a system that has infinitely many

particles.

These claims are jointly inconsistent. The first claim is ontological, agreed upon by

all parties. The second claim is the explanandum. The third claim is a result of

accommodating the Boltzmann equation to the recurrence objection and Poincaré’s

53The paradox of phase transitions fits this form: let F be the property of having only a finite
number of particles in the system; let P be the occurrence of a phase transition; the idealizing limit
I is, of course, the thermodynamic limit.
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theorem. The fourth claim is justified by the interpretation of the Boltzmann-Grad

limit as a distorting idealization. The limit is an idealization, because it replaces one

description of a system with a description that is, in some sense, simpler. And if

this idealization is a distortion, then the syntax ‘lim N →∞’ of the Boltzmann-Grad

limit means ‘limit in which the system has infinitely many particles’ – i.e., if the limit

is a distorting idealization, then systems in the Boltzmann-Grad limit have infinitely

many particles.

The source of all these paradoxes is the interpretation of idealizations as distor-

tions. It is an empirical issue whether there are phase transitions or systems that

exhibit irreversibility; the existence of such phenomena should not be ruled out a

priori, nor even on the basis of an optional interpretation of idealizations (if there are

alternative interpretations, that is). In order to accommodate the existence of ine-

liminably idealized explanations and avoid the paradox of ineliminable idealization,

it must be possible for systems in the relevant idealizing limit to have the proper-

ties that are idealized by the limit; and this requires discarding the interpretation

of idealizations as distortions.54 Consequently, since some idealized explanations are

ineliminably idealized (explanations like the statistical mechanical account of phase

transitions and the Boltzmannian account of irreversibility) idealizations are not dis-

tortions – or, at least the thermodynamic limit and Boltzmann-Grad limit are not

distortions.

3.5.1 The Role of Interpretation

One might suppose that the interpretation of idealizations as distortions is not nec-

essary for motivating the paradox of irreversibility (or any other version of the paradox

54I presume that the first three premises of each paradox are true.
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of ineliminable idealization, for that matter), on the grounds that the premise justi-

fied by this interpretation is superfluous. According to this way of reasoning, the first

three premises of the paradox are already inconsistent: the first two entail that some

systems with finitely many particles exhibit irreversibility, while the third entails that

only systems with infinitely many particles exhibit irreversibility. Hence, the fourth

premise is unnecessary; it need not be justified by the interpretation of the Boltzmann-

Grad limit as a distortion. Therefore, according to this line of thought, interpreting

idealizations as something other than distortions does not avoid the paradox, because

the cogency of the paradox is independent of how idealizations are interpreted.

This way of reasoning assumes that the syntax ‘lim N →∞’ (part of the Boltzmann-

Grad limit) automatically means ‘limit in which the system has infinitely many par-

ticles’, because it assumes that systems in the Boltzmann-Grad limit have infinitely

many particles. This assumption tacitly requires that the Boltzmann-Grad limit be

interpreted as a distortion. If the Boltzmann-Grad limit attributes to a real system

a property that the real system does not have, then (by definition) the idealizing

limit is a distortion. If the syntax ‘lim N →∞’ automatically means ‘limit in which

the system has infinitely many particles’, then Boltzmann-Grad limit attributes the

property of having infinitely many particles to a real system – it attributes to a real

system a property that the real system does not have, because all real systems have

only finitely many particles. And this means that the limit is being interpreted as a

distortion.
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If the Boltzmann-Grad limit is not interpreted as a distortion, the syntax ‘lim N →

∞’ need not automatically mean ‘limit in which the system has infinitely many par-

ticles’, and systems in the Boltzmann-Grad limit need not have infinitely many parti-

cles. This allows for the possibility of interpreting the limit as something other than

a distortion, in such a way that the syntax ‘lim N →∞’ means something other than

‘limit in which the system has infinitely many particles’ and in such a way that, given

this alternative meaning assigned to the syntax, the Boltzmann-Grad limit does not

attribute to real systems a property that real systems do not have. (Providing the de-

tails for this possibility is the task of Chapter Four.) Since this sort of interpretation

is possible, it is not necessary for systems in the Boltzmann-Grad limit to be systems

that do not have only finitely many particles. That is, it is not necessary that systems

in the Boltzmann-Grad limit be non-real systems. Hence, the first three premises of

the paradox of irreversibility are not inconsistent without the fourth premise. The

claim that the syntax ‘lim N → ∞’ automatically means ‘limit in which the system

has infinitely many particles’ amounts to a tacit endorsement of the fourth premise

of the paradox.

3.5.2 A Physicist’s Rejoinder

Sometimes the claim is made that the appeal to the thermodynamic limit in the

statistical mechanical account of phase transitions is a negligible approximation. This

approach – what I’ll call the physicist’s approach, since it has been given to me by

several physicists – takes the thermodynamic limit to be a distortion. The approach

also holds that accounts involving distortions can be explanatory if the error due

to the distortions is negligible (supposing, for the sake of argument, that there is
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some non-arbitrary range for what counts as negligible). As regards the statistical

mechanical account of phase transitions, the error due to the thermodynamic limit is

taken to be unproblematic. Axel Gelfert expresses the general line of reasoning:

One might worry that the qualitative difference between a finite and an
infinite system could not be greater and, hence, that the thermodynamic
limit would necessarily be a wild extrapolation indeed, but given the num-
ber of particles in a macroscopic system, typically of the order N ∼ 1023,
and the statistical result that the (relative) error of a statistical average
behaves as ∼ 1/

√
N , the expected accuracy of the approximation can be

seen to be more than satisfactory for most experimental and theoretical
purposes ([37], p. 4).

As a distortion, the thermodynamic limit takes the number of particles in the system

to infinity. In reality the number of particles in the system is of order 1023; this is

very large but not infinite. The relative error of a statistical average is approximately

1/
√

N . The statistical mechanical account uses N → ∞ rather than N = 1023.

Hence, according to the physicist’s approach, the error of idealizing the system to

be infinite in size is negligible – on the order of 10−12 or 10−13. Even though the

account of phase transitions appeals to a falsehood, the error due to that falsehood

is negligible and, accordingly, does not prevent the account from being explanatory.

This strategy, whatever its merits in other cases, is unsuccessful in the case of

phase transitions. Phase transitions occur only in the thermodynamic limit. If that

limit is a distortion, then phase transitions occur only in systems that have infinitely

many particles; if the number of particles is “very large” but not arbitrarily large

(infinite), no phase transitions occur (according to statistical mechanics). So, even

if there is a statistical sense in which the error due to the thermodynamic limit is

negligible, there is a more fundamental sense in which the error due to the ther-

modynamic limit is not negligible, because the thermodynamic limit is ineliminable.
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Without the “error” introduced by an appeal to the thermodynamic limit, statistical

mechanics fails to describe the occurrence of phase transitions in real systems. Even

if measurements never notice the difference between a system with infinitely many

particles and a system with 1023 particles, there is a well-defined theoretical differ-

ence. The difference is that between a system that can undergo phase transitions

and one that cannot. It is this theoretical difference, emphasized by the paradox of

ineliminable idealization, that prevents statistical mechanics from explaining phase

transitions without appealing to the distortion of the thermodynamic limit.

Of course, one might respond to this kind of argument with the contention that

the statistical mechanical account is after the wrong explanandum. One might hold,

for example, that phase transitions should not be thought of as singularities, perhaps

on the grounds that “most physicists would not expect to be able to measure ‘singu-

larities’ in the first place, as these will always be smoothed out one way or another”

([37], p. 10). A discussion of this sort of position awaits a later chapter.

3.6 Conclusion

Conservatively speaking, the paradox of ineliminable idealization shows that some

idealizations are not distortions, namely, the ineliminable idealizations that occur in

ineliminably idealized explanations (for example, the thermodynamic limit and the

Boltzmann-Grad limit). In the absence of an independent, principled reason for

interpreting some idealizations as distortions but not others, it is ad hoc to limit the

conclusion of the paradox to the claim that only some idealizations are not distortions.

A uniform interpretation of idealizations is preferable to a non-uniform one, if a
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uniform interpretation is possible. (This argument is pursued further in the next

chapter.)

With a promissory note that such an interpretation is possible, the interpretation

of idealizations as distortions is rejected. This removes the necessity of adopting an

account of idealized explanation that allows idealized descriptions to be explanatory

despite being false, since idealized descriptions need not be false if idealizations are not

distortions. So: if idealizations are not distortions, what are they? An interpretation

which allows idealized descriptions to be true of real systems – and thereby avoids

the paradox of ineliminable idealization – is in order.

Although an alternative interpretation of idealization is necessary for an adequate

philosophical account of why the statistical mechanical account of phase transitions

and the Boltzmannian account of irreversibility are explanatory, it is not sufficient.

An adequate account must also accommodate explanations that can only be provided

by appeal to idealization. An adequate account must not only re-interpret idealiza-

tions, but also show how accounts that appeal to idealizations, so interpreted, can be

explanatory even when the appeal to idealizations is ineliminable. Another task of

the next chapter is to develop such an account.
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CHAPTER 4

IDEALIZATIONS AS ABSTRACTIONS

Some idealized explanations are ineliminably idealized – they require appeal to

an idealization. The statistical mechanical explanation of the occurrence of phase

transitions requires an appeal to the thermodynamic limit; and the Boltzmannian

explanation of irreversibility requires an appeal to the Boltzmann-Grad limit. These

accounts differ from paradigmatic cases of idealized explanation, because paradig-

matic cases are not ineliminably idealized. For instance, the simple pendulum pro-

vides an explanation of the rough proportionality between a pendulum’s period and

the distance between its pivot point and center of mass. The simple pendulum is

an idealized version of real pendula that, among other things, idealizes the medium

in which real pendula oscillate and the friction that real pendula have at their piv-

ots. The proportionality between a pendulum’s period and the distance between its

pivot point and center of mass can be explained without appealing to any of these

idealizations; the explanation of this proportionality is not ineliminably idealized.

The paradox of ineliminable idealization shows that the existence of ineliminably

idealized explanations is incompatible with the interpretation of idealizations as dis-

tortions (see Chapter Three). For instance, a key idealization that occurs in the

explanations of phase transitions and irreversibility is the limit in which a system’s
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particle number N →∞. This limiting idealization is ineliminable, in principle, from

these explanations: there can be no explanation of phase transitions or irreversibility

without appealing to the limit in which N →∞, because there can be no description

of phase transitions or irreversibility without appealing to this limit. If this limit

is a distortion, it is the limit in which the number of particles in a system becomes

infinite; and the systems in which phase transitions and irreversible behavior occur

are systems in which the number of particles is infinite. No real system has infinitely

many particles, however. Hence, if the N →∞ limit is a distortion, we cannot explain

(at least by these methods) the occurrence of phase transitions and irreversibility in

real systems.

The existence of ineliminably idealized explanations, such as the explanations of

phase transitions and irreversibility, cannot be accommodated merely by allowing

explanations in which the explanans is false. If idealizations are distortions, then

the paradox of ineliminable idealization shows that the explanandum for any ine-

liminably idealized account is false of real systems.55 For instance, if idealizations

are distortions, the paradox of irreversibility shows that real systems do not exhibit

irreversible behavior; and if real systems do not exhibit irreversible behavior, there

can be no explanation of why real systems exhibit irreversible behavior. Generally,

if an explanandum is false, there can be no explanation of why the phenomenon it

describes obtains. Hence, if idealizations are distortions, then for each ineliminably

idealized account that purports to be an explanation, there is a version of the para-

dox of ineliminable idealization showing that the account is not explanatory because

55Taking the paradox to entail this result presumes that every real system has only finitely many
particles and that the explanandum phenomenon occurs only in systems that are in a limit that ide-
alizes the particle number of a system. I adopt these presumptions henceforth; the first is obviously
correct, and Chapter Three contains arguments for the second.
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its explanandum is false. Merely allowing explanations in which the explanans can

be false does not accommodate the existence of ineliminably idealized explanations,

because if idealizations are distortions then the explanandum of an ineliminably ide-

alized account is false and an account with a false explanandum cannot explain why

that explanandum is true.

Prima facie, the accounts of phase transitions and irreversibility are explanatory.

For instance, the accounts are appropriately law-like and invoke well-established ar-

gument patterns (for details, see Chapter Three). So the existence of ineliminably

idealized explanations should not be denied merely on the basis of the paradox of

ineliminable idealization. And it need not be denied if it is possible to interpret ide-

alizations as something other than distortions. The aim of this chapter is to provide

an account of idealized explanation that involves an alternative interpretation of ide-

alizations. This account is intended not only to be compatible with the existence

of ineliminably idealized explanations, but also to show why the statistical mechan-

ical account of phase transitions and the Boltzmannian account of irreversibility are

explanatory despite being ineliminably idealized.

The chapter divides into three parts. The first part develops an interpretation

of idealizations as abstractions, distinguishing this interpretation from the one that

treats idealizations as distortions and showing that this alternative interpretation

does not interfere with the mathematical roles of idealizations. The second part of

the chapter develops an account of idealized explanation that treats idealizations

as abstractions; according to this account, idealized explanations turn out to be a

special kind of incomplete explanation. The third and final part of the chapter shows
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how this account of idealized explanation accommodates the ineliminably idealized

explanations of phase transitions and irreversibility.

4.1 An Alternative Interpretation

The aim of this section is to develop an interpretation of idealizations as ab-

stractions. The section distinguishes abstractions from distortions, and subsequently

provides an alternative to the interpretation of idealizations as distortions.

4.1.1 Distortions vs. Abstractions

There is a common distinction within the philosophical literature on idealization,

between distortions and what are called abstractions. May Brodbeck describes this

as “a difference between abstraction and falsification [i.e., distortion], between not

saying everything and saying what is not so” ([13], p. 460). Onora O’Neill concurs,

holding that “We abstract whenever we [do something] on a basis that brackets some

predicates, that is indifferent to their satisfaction or non-satisfaction,” while we dis-

tort whenever we deny those predicates and assert their absence, or else assert that

absent predicates obtain ([89], pp. 67-68). According to Ernan McMullin, idealization

“may involve a distortion of the original [system, description, etc] or it can simply

mean a leaving aside of some components in a complex in order to focus the better on

the remaining ones” ([79], p. 248). This distinction, between distortions and abstrac-

tions, is a distinction between falsehoods and omissions: distortions falsify, whereas

abstractions omit and need not falsify.

Consider a familiar idealized system, interpreting its characterizing idealizations

first as distortions and then as abstractions in order to illustrate the difference between

these interpretations. A damped simple pendulum is a pendulum that, among other
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things, is only subject to forces due to gravity and the damping of its surrounding

medium (e.g., air). The damping tends to make the pendulum stop its oscillations.

The behavior of a damped simple pendulum is correctly described by the following

equation:

θ̈ + bθ̇ +
g

L
sin θ = 0,

where θ is the angular displacement of the pendulum (this is a function of time), L

is the distance from the pivot of the pendulum to its bob, g is the strength of the

gravitational force, and b is the strength of damping.

In the idealized b → 0 limit, the equation for the damped simple pendulum reduces

to the equation for the simple pendulum, which is given as:

θ̈ +
g

L
sin θ = 0.

The mathematical role of the b → 0 idealization is to transform the equation for the

damped simple pendulum into the equation for the simple pendulum. This equation

is to be understood as characterizing a pendulum in the limit where the amount of

damping b → 0.56 There are (at least) two ways to interpret what the equation

for the simple pendulum characterizes, one for each way of interpreting the b → 0

idealization.

First, one might interpret the b → 0 limit as a distorting idealization. Under this

interpretation, the idealization says that the amount of damping on the pendulum is

arbitrarily close to zero. And the equation for the simple pendulum characterizes a

56The equation itself does not contain a term for damping; so this way of understanding the
equation cannot be “read off” the equation itself. Nonetheless, the equation is about something.
And what the equation is about, in part, is a pendulum for which the amount of damping b → 0.
The equation is also about a pendulum in which the friction at the pivot Ff → 0, among other
things. But I ignore these further complications, to keep the discussion simple and because they are
not salient to the purpose of the example.
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pendulum subject to a vanishingly small amount of damping. Even if the equation

for the damped simple pendulum is true of some real pendula, the idealized equation

for the simple pendulum, so interpreted, is false of all real pendula.

Second, one might interpret the b → 0 limit as an abstracting idealization. Under

this interpretation, the idealization says that the amount of damping on the pendulum

is to be ignored (rather than made to be arbitrarily small); and the equation for the

simple pendulum provides a partial characterization of the damped simple pendulum,

a characterization that ignores the amount of damping on the pendulum. Whereas

the distortion-interpretation of the b → 0 limit incorrectly represents the amount of

damping on the damped simple pendulum by (incorrectly) attributing a vanishingly

small amount of damping to the pendulum system, the abstraction-interpretation of

the same limit fails to represent the amount of damping on the pendulum by ignoring

this feature of pendulum systems. Under this interpretation, the idealization does

not attribute an incorrect amount of damping to the pendulum. Nor does it say that

there is a non-zero amount of damping on the pendulum, since ignoring the amount

of damping is consistent with the pendulum having a zero amount of damping (e.g.,

swinging in a vacuum). As an abstraction, the idealization of damping simply does

not specify the amount of damping on the pendulum; and in particular it does not

specify an incorrect amount of damping.

This example supports a more concise characterization of abstraction. According

to Anjan Chakravartty, abstraction is “a process whereby only some of the potentially

many relevant factors or parameters present in reality are built-in to a model con-

cerned with a particular class of phenomena” ([23], p. 327). According to Margaret

Morrison, an abstract description is one that “does not include all of the systems
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[sic] properties, leaving out features that the systems [sic] has in its concrete form”

([85], p. 38 fn. 1). If idealizations are abstractions, then an idealization replaces

one description of a system with a simpler description that fails to attribute to the

system at least one feature that the system has, without thereby attributing to the

system a feature it does not have. The resultant abstract description ignores some

feature of the system; and the idealizations used to obtain this description function

as “inference tickets” that transform one description into a less complete descrip-

tion. Hence, if idealizations are abstractions, an idealized description of a system is

a partial (incomplete) description of that system.

The term “feature” in this characterization of abstractions is intended to provide

a quick way of referring to the value or amount of some property. In many cases,

ignoring the amount of some property effectively amounts to ignoring the property

itself. For example, sometimes ignoring the amount of mass of a particle amounts to

ignoring that the particle has mass at all. So sometimes I will speak as if a feature

is a property of the system itself. This allows me to follow others in speaking of

abstractions as ignoring properties of systems rather than amounts of those properties;

but it also allows me to expand their notion of abstraction to cover cases in which

ignoring the amount of some property does not amount to ignoring the property itself.

For example, consider the idealizing limit in which the particle mass m → 0 for each

particle in a system and the system’s particle number N → ∞ while the system’s

total mass M = mN remains finite and non-zero. As an abstraction, this idealization

ignores the amount of mass for every particle in the system but does not ignore the

amount of mass of the system itself. And since the system having some mass entails
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that at least some of the system’s components have mass, this idealization does not

ignore the fact that at least some particles of the system have the property of mass.

The interpretation of idealizations as abstractions does not entail that every ab-

straction is an idealization. Some abstractions are not idealizations, because not all

abstractions replace one description of a system with a simpler description of the same

system. Anatomy and physiology textbooks routinely discuss the different systems

of the body in abstraction from other systems of the body. For instance, discussions

and illustrations of the skeletal system often ignore the cardiovascular and nervous

systems. Yet the descriptions of the skeletal system that ignore other bodily systems

are not simpler, in any computational sense, than a unified, complete description of

all of the body’s systems.

The interpretation of idealizations as abstractions rather than distortions does not

interfere with the mathematical role of idealizations. Consider again the example of

the damped simple pendulum. Under both interpretations, the simple pendulum has

the same phase space portrait. However, the interpretation of what the phase space

portrait represents depends upon the interpretation of the b → 0 limit. If the limit is

a distortion, the phase space portrait represents the trajectory of a simple pendulum

subject to a vanishingly small amount of damping. If the limit is an abstraction, the

same phase space portrait only partially represents the trajectory of a damped simple

pendulum, by ignoring the amount of damping on the pendulum. (This is similar to

the way a stick figure only partially describes a person’s appearance.) Hence, the

b → 0 limit can be interpreted in at least two ways, without interfering with the

mathematical role of the idealization. This result is expected to generalize to other

idealizations.
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Attention to a formal definition of limits further supports the mathematical legiti-

macy of treating limiting idealizations as abstractions. It is typical to define the limit

of a function at a point in the following manner: limx→c f(x) = L iff: (∀ε > 0)(∃δ > 0)

such that (∀x) if 0 < |x− c| < δ, then |f(x)−L| < ε. This does not define what it is

for one function to be a limit of some other function (because L is a point, not a func-

tion). But the complications involved in formulating such a definition (e.g., replacing

f(x) with a multivariable function f(x, y) and L with a function g(x), defining a

measure for the norm ‖f(x, y)− g(x)‖, and so on) are incidental to whether it makes

sense, from a mathematical perspective, to treat a limiting idealization of the form

“x → c” as an abstraction: if such an interpretation is legitimate when the limit of

a function is at a point, it should also be legitimate when the limit of a function is

another (simpler) function.

Suppose, then, that the limit x → c is a limiting idealization of some non-idealized

system S. Treated as a distortion, this limit says that there is a value for the property

of S represented by the physical magnitude x and that the value of x is arbitrarily

close to c;57 but this is false, because the actual value of x for any particular non-

idealized system S is not arbitrarily close to c. In contrast, as an abstraction the

limit says that there is some value for the property of S represented by x, and that’s

it; the idealization does not specify what that value is, nor does it say that the value

is non-zero or close to c. As an abstraction, the idealization is not false – provided,

of course, that there is some value for the property in S represented by x.

57More correctly, the limit says that the value of x is bounded around c and that this bound can
be made to be arbitrarily small. But saying that the value of x is arbitrarily close to c seems to be
a less cumbersome way of speaking.
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Moreover, the difference |x− c| that appears in the definition of the limit is well-

defined if the limit is treated as an abstraction. This is because that difference is

well-defined so long as c has the same dimensions as x, and this condition is satisfied

when the value – but not the presence – of x is ignored. (If the idealization x → c

were to ignore x itself rather than the amount of x, it is not clear that systems in

the limit x → c would have some property represented by a magnitude with the

same dimensions as x.) Since the only part of the definition of the limit in which the

parameters involved in the idealization occur is the expression “0 < |x− c| < δ”, and

since that expression is well-defined if the limit manages to ignore the value of x (but

not x itself), treating the limit x → c as an abstraction is mathematically legitimate.

4.1.2 Abstract Descriptions

If idealizations are abstractions, then a description of a system obtained by appeal

to idealizations is incomplete – it is a description that ignores certain features of the

system under consideration. Such descriptions are commonplace. If someone says that

the number of coins in his pocket is odd without saying anything else, his description

of his pocket’s contents is abstract in virtue of leaving aside details about how many

coins are in his pocket. And if someone says that the gas inside the tube is a noble

gas without saying anything else, her description of the tube’s contents is abstract in

virtue of leaving aside details about which noble gas is in the tube. None of these

abstract descriptions are false.

This way of thinking about ordinary abstract descriptions is applicable to idealized

descriptions. Let f(x,y) = 0 be an equation that is not idealized in any way and that

correctly characterizes a physical system S. Let g(x) = 0 be the equation obtained by
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taking the idealizing limit of f(x,y) in which y approaches zero:

lim
y→0

f(x, y) = g(x),

so that g(x) = 0 characterizes an idealized version of S. Then there are two salient

ways to understand the relation between the equation g(x) = 0 and the system S.

The equation g(x) = 0 can be understood as purporting to stand in a correspon-

dence relation to S (or whatever relation f(x,y) = 0 bears to S). Since the limit in

which y approaches zero is an idealizing limit, however, g(x) = 0 fails to stand in

such a relation: g(x) = 0 is false of S, because the idealization used to obtain g(x)

from f(x,y) is false of S. For instance, if f(x,y) = 0 is the equation of motion for a

damped simple pendulum, if g(x) = 0 is the equation of motion for an undamped

simple pendulum, and if the limit “y → 0” idealizes the damping on pendula, then

g(x) = 0 is false of damped simple pendula because such pendula are subject to more

than an arbitrarily small amount of damping. This way of understanding the relation

between an idealized description and the physical system it purports to characterize

results from treating idealizations as distortions.

It is not mandatory to understand the g(x) = 0 as purporting to bear a corre-

spondence relation to S but failing to do so. The same equation can be understood

as standing in a correspondence relation to an abstract version of S rather than to S

itself. Let SA be this abstract version of S, so that g(x) = 0 correctly characterizes

SA. Then the “y → 0” idealization functions to transform one description – viz.,

f(x,y) = 0 – into a (more) incomplete description – viz., g(x) = 0; and the “y → 0”

idealization determines which details g(x) = 0 ignores about S and the respects in

which SA is an abstract version of S. Provided that there is an appropriate relation

between SA and S itself, it is possible for g(x) = 0 to be true of S because, as an
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abstract description of S, g(x) = 0 need not be false of S. This point generalizes: an

idealized description need not be false if it is an abstract description, because it only

purports to characterize real systems indirectly, based upon whether the abstract

system it characterizes bears an appropriate relation to real systems.

4.1.3 Incompleteness and Truth

The interpretation of idealizations as abstractions rather than distortions, and the

understanding of idealized descriptions as abstract descriptions, have repercussions

for the correctness conditions of idealized descriptions. Consider, once more, the

equation for the simple pendulum, obtained through appeal to the b → 0 limiting

idealization:

θ̈ +
g

L
sin θ = 0.

If the b → 0 limit is a distortion, then this equation describes the behavior of a pen-

dulum subject to a vanishingly small amount of damping (among other idealizations).

And it is always false of real pendula.

However, if the b → 0 is an abstraction, the equation partially describes the

behavior of a pendulum that is subject to damping (among other things). There is a

sense in which partial descriptions can be “true” despite being partial; a reasonable

assumption is that whether a partial description is true of a system depends upon

whether what is ignored is “relevant” to the system.58 (The notion of “relevance” is

58There are alternative suggestions in the literature. For instance, Nancy Cartwright claims that
equations that ignore some details of real systems describe capacities of abstract systems, and that
when a real (concrete) system has the same capacities as an abstract system, the abstract equation
describing that abstract system is also true of the real system. (See [17]; [18].) The suggestion here
is more ontologically parsimonious than Cartwright’s, since it does not postulate the existence of
“capacities”. Also, Cartwright holds that a description that is abstract relative to a more concrete
set of descriptions never applies unless one of the more concrete descriptions applies ([19], p. 259).
The suggestion here, in contrast, allows a description that is abstract relative to a more concrete
description to be true of a system even if the more concrete description is not true of the system.
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discussed more extensively later in this chapter.) For instance, since the equation for

the simple pendulum ignores some features of a real pendulum and sometimes partial

descriptions can be “true”, a reasonable assumption is that whether the equation for

the simple pendulum is true depends upon whether the ignored features are “relevant”

to the real pendulum. Relevance is phenomenon-relative: a feature might be relevant

with respect to one phenomenon of a system but not with respect to some other

phenomenon of the same system, because not every phenomenon of a system always

depends upon every feature of the system.

Since the correctness of a partial description depends upon the relevance of what

is ignored, and since relevance is phenomenon-relative, it follows that an abstract

description is true of a system with respect to a given phenomenon of the system

just in case what is idealized is not relevant to that phenomenon in that system.

So, for instance, the equation for the simple pendulum is true of a real pendulum

with respect to the rough, qualitative proportionality between the pendulum’s period

and its length just in case what is ignored in idealizing the pendulum (such as the

amount of damping on it) is irrelevant to that proportionality. Hence, if idealizations

are abstractions rather than distortions, the equation for the simple pendulum can

be true of a real pendulum with respect to the rough proportionality between the

pendulum’s period and its length, even if there is not a vanishingly small amount of

damping on the pendulum. This possibility, of idealized equations being true of the

systems they characterize, is absent if idealizations are distortions.
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4.2 Incomplete Explanation

Having set forth an interpretation of idealizations as abstractions in the previous

section, this section provides an account of idealized explanation appropriate to such

an interpretation. Since this dissertation is not concerned with explanation itself, but

with explanation (whatever that turns out to be) that is idealized, the presentation

of this account takes for granted that there is some adequate account of non-idealized

explanation, and presents the modifications to be made to such an account so that

it accommodates idealized explanations as well. The idea is that there is a set of

conditions, Θ, given by some (unspecified) philosophical account of scientific expla-

nation, such that a non-idealized scientific account of a phenomenon is a scientific

explanation of that phenomenon if the scientific account satisfies Θ; and, furthermore,

that an idealized scientific account of a phenomenon is explanatory if it satisfies both

the conditions Θ and additional conditions that pertain specifically to idealized ex-

planations. The task in this section of the chapter is to provide these additional

conditions, the conditions that pertain specifically to explanations that are idealized.

These additional conditions will be compatible with a variety of specific proposals for

the content of Θ.59

59Alexander Bird argues that it is impossible to give a model template such that all and only
accounts that satisfy that template qualify as explanations ([9]). Even if Bird is correct, ideal-
ized accounts must satisfy more constraints than non-idealized accounts in order to be explanatory,
because the idealized accounts must satisfy all of the constraints that pertain to non-idealized ex-
planation plus the constraints the pertain specifically to idealized explanation. Hence, even if it is
not possible to provide a set of conditions for non-idealized explanation, it is possible to provide
the additional constraints that pertain to idealized explanations without providing an account of
non-idealized explanation.
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4.2.1 The Relevance Requirement

Any philosophical account of idealized explanation that treats idealizations as ab-

stractions must supplement the account of non-idealized explanation with a criterion

that distinguishes explanatory abstract descriptions from non-explanatory ones. In

its most general form, this criterion requires abstract descriptions to bear an appropri-

ate relation to the systems they incompletely characterize in order to be explanatory.

Cases of non-idealized explanations that involve abstract, and therefore incomplete,

descriptions are useful guides to what such a criterion should be. Consider, for in-

stance, the account of the precession of Mercury’s perihelion as given by the general

theory of relativity. Mercury’s orbit around the sun is elliptical, but the ellipse moves

with every orbit. More specifically, the point at which Mercury is closest to the sun

(the perihelion) rotates around the sun (precesses) at a rate of about 5600 seconds of

arc per century (1 second of arc = 1/3600 degrees), as measured from the Earth. This

is an interesting phenomenon, and one might very well ask why Mercury’s perihelion

precesses at about this rate.

Newtonian mechanics predicts that Mercury precesses at a rate of 5557 arcseconds

per century.60 The general theory of relativity predicts an additional 42.9195 seconds

of arc per century, which is close to the observed 43.105 seconds of additional arc

per century. The equations of general relativity are explanatory, on any reasonable

account of what would count as explanatory. Those equations, along with details

about some additional properties of the solar system, entail that Mercury’s perihelion

60This led the astronomer Le Verrier to postulate the existence of a planet, Vulcan, between
Mercury and the sun, having features that would account for the additional 43 seconds of arc per
century. This is similar to the postulation of the existence of Neptune to account for the orbit of
Uranus; the difference is that Vulcan does not exist.
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precesses at a rate of about 5600 seconds of arc per century. It is reasonable to

conclude that general relativity explains why Mercury’s perihelion precesses at a rate

of about 5600 arcseconds per century (i.e., at a rate of 5600 ± 1 arcseconds per

century).

Nonetheless, this explanation ignores some details of the solar system (the solar

system being the system in which the precession occurs). The description of the solar

system involved in this account of Mercury’s perihelion is, accordingly, an abstract

description. For instance, the description ignores the effects of comets on the pre-

cession of Mercury’s perihelion; it ignores the composition of Mercury or the sun or

the other planets in the solar system, and conditions on the surfaces of the planets.

And it need not attend to these additional details, because they are, in some sense,

irrelevant to the rate at which Mercury’s perihelion precesses.

For a second example of an explanation that involves an incomplete description,

consider the less astronomical, but no less fascinating, behavior of bubbles in Guinness

(a beer). When poured into a glass, some of the bubbles in Guinness appear to go

downwards rather than upwards. (This has been confirmed by high speed cameras.)

This is surprising, because the bubbles are lighter than the beer, so one would expect

them to rise rather than fall. One might very well ask why this phenomenon occurs.

What follows is an account given by Richard Zare and Andrew Alexander.

Consider the beer when it has just been poured into a glass and is starting to

settle. The bubbles touching the sides of the glass experience drag, which prevents

them from flowing upwards; but the bubbles away from the sides, and especially those

near the center, do not experience this drag. Unencumbered by drag, the bubbles

near the center of the glass go up, as gases in liquids tend to do. As these bubbles
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rise, they push and pull the surrounding liquid with them. When the bubbles and

liquid reach the surface of the beer, the bubbles escape and the liquid flows away from

the center, towards the sides of the glass, since it has nowhere else to go. The current

due to this flow gets directed downwards by the sides of the glass, again because there

is nowhere else for the liquid to go. The flow of liquid moves down the sides of the

glass in waves, taking some of the smaller bubbles (with less buoyancy) touching the

sides of the glass down with it.

The key components of this account are: that gases rise in liquids when unen-

cumbered; that bubbles of gas encumbered by drag can remain stationary in liquid;

that when a stream of liquid flows up within a container and reaches the surface, the

stream disperses away from the center; and that when such a flow reaches the sides of

the container, the sides direct the flow downwards. There seems to be an appropri-

ate relationship between these components and the explanandum; for instance, the

account cites appropriate causes and laws, and accounts with similar structures can

be given for other phenomena (how other liquids flow). It is reasonable to conclude

that this account explains the behavior of Guinness bubbles.

Nonetheless, this explanation ignores some details of the glass of Guinness. The

description of the glass of Guinness involved in this account of the flow of bubbles

in Guinness is, accordingly, an incomplete description. For instance, the description

ignores details about the drag on bubbles near the sides of the glass, the specific

buoyancies of any of the bubbles, and the rate at which the bubbles in the center

flow upwards; it also ignores the chemical composition of the glass, the temperature

of the beer and the glass; and the way in which the beer is poured. And it need not
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attend to these additional details; they might provide a fuller explanation, but they

are largely irrelevant to why Guinness exhibits this general sort of behavior.61

These cases, and others like them, suggest that an incomplete description of some

phenomenon that occurs in a system bears an appropriate explanatory relationship

to that system if the description ignores only those facts about the system that are, in

some sense, irrelevant to the occurrence of the phenomenon of interest.62 Although the

account of Mercury’s perihelion provided by general relativity involves an incomplete

description of the solar system, that description attends to all of the facts about the

solar system that are relevant to Mercury’s orbit. Likewise, although the account of

the flow of bubbles in Guinness involves an incomplete description of Guinness, that

description attends to all of the facts about Guinness that are relevant to its bubbly

behavior.

61Some details ignored by this account are relevant to the explanation of why the downward flow
of bubbles is easier to see in Guinness as opposed to other liquids. High-speed cameras show that
some bubbles near the side of glasses containing fluids as simple as water (or water mixed with some
sort of fizzing tablet) also flow downwards. This flow is easier to see in Guinness than in water
for three main reasons: there is a high contrast between dark Guinness and lighter, cream-colored
bubbles, which makes the bubbles more visible; the bubbles in Guinness are smaller, hence more
easily pushed around in the glass; the bubbles in Guinness contain nitrogen, which is less likely to
dissolve in liquid, hence less likely to enlarge, hence more likely to stay submerged in the liquid given
sufficient surface tension with the sides of the container. (In contrast, the bubbles in soda typically
contain carbon dioxide, which more readily dissolves in liquid than nitrogen.)

62This requirement of relevance is a similar to Hempel’s requirement of maximal specificity (see
[43], pp. 397-400). Hempel requires that, in constructing inductive-statistical explanations, one
include in the premises any knowledge that is both relevant to the explanandum and in-principle
available prior to the occurrence of the explanandum. The requirement here is that, in constructing
an idealized explanation, one include in the premises everything that is relevant to the explanandum.
Although all deductive-nomological explanations satisfy Hempel’s requirement, they need not all
satisfy the present requirement, since the explanans of an idealized deductive-nomological account
might contain an idealization of some feature that is relevant to the explanandum.
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4.2.2 Effective Field Theories

This constraint on when incomplete descriptions can be explanatory is conso-

nant with contemporary attitudes toward effective field theories. The notion of an

effective theory is an outgrowth of developments in high energy physics, the study

of the structure of the atom (nucleus plus surrounding electrons) and the structure

of the nucleus. Stephan Hartmann provides a succinct presentation of an effective

theory known as the Euler-Heisenberg theory (see [41], pp. 270-273). Here I quickly

summarize Hartmann’s discussion.

The Euler-Heisenberg theory provides an explanation of photon-photon scatter-

ing, which is a process in which two photons scatter and create an electron-positron

pair, which then decays into two photons. For high photon energies, photon-photon

scattering results in the creation of real electrons and positrons. The Euler-Heisenberg

theory, however, focuses on photon-photon interactions in which the photons have en-

ergies insufficient for the creation of electrons and positrons. This allows the theory

to ignore effects due to electrons and thereby yield an equation that is the basis for

many calculations.

The Euler-Heisenberg theory is an effective theory, because it only takes into

account the photon field, ignoring the electron field. Despite this omission, the theory

is valid at energy scales below the threshold for electron production. The reason the

theory is valid at a low enough energy scale is that the electron field is irrelevant

to photon interactions at that scale, and what is true of the abstract version of

the real atomic systems described by the Euler-Heisenberg theory is true of the real

systems themselves. At higher energies, however, the electron field becomes relevant

to photon-photon interactions, and the Euler-Heisenberg theory fails. This is because,

141



at higher energies, photon-photon scattering creates both positrons and electrons,

something not predicted by the Euler-Heisenberg theory.

4.2.3 An Account of Relevance

There is an intuitive sense in which some facts about a system are relevant to a

phenomenon that occurs in the system and other facts about the system are irrelevant

to that phenomenon. For instance, the shape of Mercury’s surface is irrelevant to

the fact that Mercury’s perihelion precesses at a rate of about 5600 arcseconds per

century. The composition of a glass of Guinness is irrelevant to the fact that some

bubbles in the beer near the side of the glass fall downwards. The electric field is

irrelevant to photon-photon interactions at low photon energies. In contrast, the

gravitational attraction between Mercury and other planets in the solar system is

relevant to Mercury’s orbit, and the drag on bubbles touching the sides of a glass of

Guinness is relevant to the direction in which those bubbles move.

There is an important difference between details that are ignored by the Euler-

Heisenberg theory in its explanation of photon-photon scattering and details that

are ignored by, say, General Relativity in its explanation of the precession of Mer-

cury’s perihelion. The Euler-Heisenberg theory ignores effects due to the electric field

on photon interactions; and the theory itself determines when the electric field is

irrelevant to photon interactions. The derivation of the Euler-Heisenberg theory pre-

supposes that the photon energy is small compared to the rest mass of electrons; and

various symmetry considerations and dimensional analyses show that when the pho-

ton energy is small compared to the rest mass of electrons, the effects of the electron
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field on photon-photon interactions are suppressed – the electric field is irrelevant to

the interactions (see [41], p. 274).

In contrast, General Relativity ignores various details of the solar system on the

orbit of Mercury; but the theory does not determine when these details are irrelevant

to the rate at which Mercury’s perihelion precesses. The aim of this subsection

is to provide a working account of how to tell whether something is relevant to a

phenomenon, when there is no guidance from the theory of that phenomenon.63 Of

course, figuring out whether the conditions provided by this account obtain takes

a lot of empirical footwork – that’s a job for the scientists. From a philosophical

perspective, the aim of giving an account of relevance is to elucidate what one would

need to show in order to establish the relevance of something to a given phenomenon.

(The reader is welcome to substitute a better account. The aim here is not to defend

the correctness of a particular account of relevance, but rather to suggest a plausible

account that at least shows the notion of ‘relevance’ to be non-vacuous.)

Let a nomic web for a phenomenon be the set of events, initial and boundary con-

ditions for the system in which the phenomenon occurs, as well as the laws governing

that system.64 Also, let a nomic web for a system in which some phenomenon occurs

be the nomic web for that phenomenon. The set of all events, initial and boundary

63The kind of relevance to be discussed here is not the same kind of relevance prominent in
discussions of asymptotic reasoning. Asymptotic analysis might show that something counted as
relevant by the account given below is not relevant in some other, stricter sense. For instance, the
only properties that are relevant – in an asymptotic sense of “relevant” – to the universality of
critical phenomena are the spatial dimension of a system, symmetry properties of its Hamiltonian,
and the fact that the forces between its components are short-range; the microstructural details of
the system are largely irrelevant (in the asymptotic sense): see [5], p. 24.

64Examples of events: the activation of a photocell by a pulse of light, a sneeze, a baseball colliding
with a window. Examples of initial and boundary conditions: a system being in a cylindrical
container or having a certain mass. Examples of laws: Newton’s law of gravitation, Maxwell’s laws
of electromagnetism.
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conditions, and laws is a nomic web for every phenomenon that occurs in the universe;

but most phenomena also have nomic webs that are smaller than the aforementioned

set.

Let a model of a nomic web – a nomic model, for short – be a linguistic represen-

tation of events, initial and boundary conditions, and laws.65 (If laws are statements,

then the linguistic representation of a law is the law itself.) A linguistic representa-

tion of a nomic web for a system in which a phenomenon occurs is a nomic model

for that phenomenon. But a nomic model for a phenomenon need not be a linguistic

representation of the nomic web for the phenomenon, because a nomic model for a

phenomenon might represent only a part of the nomic web for the phenomenon. A

nomic model will be said to be veridical for a system just in case the statements

in the nomic model are true of the system. When a nomic model is veridical for a

system, the model is a veridical nomic model for the system.

A set of events, initial and boundary conditions, and laws will be said to nomi-

cally produce a phenomenon just in case a correct linguistic representation of those

events, initial and boundary conditions, and laws (non-circularly) entails that the

phenomenon occurs.66 That is: a set of events, initial and boundary conditions, and

laws nomically produces a phenomenon just in case a veridical nomic model for those

events, initial and boundary conditions, and laws (non-circularly) entails that the

phenomenon occurs.

Let a nomic model be called deterministic for a phenomenon that occurs in a

system just in case the nomic model (non-circularly) entails that the phenomenon

65Not every true conditional belongs to a model of a nomic web; only the lawful conditionals
belong.

66Why non-circular entailment? To prevent the inclusion, in the nomic model for the phenomenon,
of a statement that the phenomenon occurs.
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occurs. When a nomic model is deterministic for a phenomenon that occurs in a

system, the model will be called a deterministic nomic model for the phenomenon in

that system. When the statements in such a model are true of the system, the model

will be said to be a veridical deterministic nomic model for the phenomenon in that

system.

Let a nomic model be called indeterministic for a phenomenon that occurs in a

system just in case the nomic model (non-circularly) entails that there is a non-zero

probability for the occurrence of the phenomenon and both (1) the nomic model is

consistent with the truth of the claim that the phenomenon itself occurs in the system

and (2) the nomic model is consistent with the truth of the claim that the phenomenon

itself does not occur in the system. When a nomic model is indeterministic for a

phenomenon that occurs in a system, the model will be said to be an indeterministic

nomic model for the phenomenon in that system. When the statements in such a

model are true of the system, the model will be said to be a veridical indeterministic

nomic model for the phenomenon in that system.

These notions are intended to contain no explicit reference to causal notions.

Whether there is an implicit reference to causal notions depends upon one’s account

of causation. For instance, according to the Hempelian account of causation, an event

e1 is the cause of a distinct event e2 if and only if the statement that e2 occurs is

deducible from the statement that e1 occurs, laws of nature, and statements that

describe appropriate initial and boundary conditions. According to this Hempelian

account, a nomic web for a phenomenon is also a causal web for that phenomenon,

because the nomic web contains the (putative) causes for the phenomenon.
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With these notions in place, it is possible to provide an account of how to tell

whether a property is relevant to a phenomenon. More precisely, it is possible to pro-

vide two such accounts – one for deterministic phenomena and one for indeterministic

phenomena. The account for deterministic phenomena is given first, followed by an

illustration of this account and a modification of the account into an account for

indeterministic phenomena.67 (Indeterministic phenomena are “chancy” phenomena,

like radioactive decay: think of quantum mechanics.)

According to the account of relevance for deterministic phenomena, the following

two-step procedure suffices to determine whether a property (event, initial or bound-

ary condition, law) of a system is relevant to a deterministic phenomenon that occurs

in the system.

1. Consider a nomic web for the system in which the deterministic phenomenon

of interest occurs. Find a part of this web that suffices to nomically produce

the phenomenon of interest. A correct linguistic representation of this part of

the nomic web is a veridical deterministic nomic model Θ for the phenomenon

of interest.

2. Find a subset ∆ of this veridical deterministic nomic model Θ for the phe-

nomenon of interest such that: ∆ suffices to nomically produce the phenomenon

of interest, and there is no proper subset of ∆ that suffices to nomically produce

the phenomenon of interest.68

67The account for deterministic phenomena is adapted from an account given by Michael Strevens
([113]). Strevens’s account uses causal notions; and he doesn’t bother to say what he means by the
causal notions he uses. Strevens’ account also does not apply to indeterministic phenomena.

68Representing the phenomenon of interest as ψ, the sequent ∆ : ψ should be perfectly valid in
Neil Tennant’s sense (see [118]).
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Call the subset ∆ of statements a model of a minimal kernel for the phenomenon

of interest. The events, initial and boundary conditions, and laws represented in a

model of a minimal kernel for a phenomenon are said to be a minimal kernel for

that phenomenon.69 And a property (event, initial or boundary condition, law) is

relevant to a deterministic phenomenon if and only if that property appears in at

least one minimal kernel for the phenomenon. (Of course, it takes extensive empirical

footwork to determine whether a property appears in at least one minimal kernel for

a phenomenon; this is not something to be settled from the armchair.)

Consider the example about the precession of Mercury’s perihelion, as a way to

illustrate this account of relevance. Let the phenomenon of interest be the precession

of Mercury’s perihelion at a rate of about 5600 seconds of arc per century. The

system in which this phenomenon occurs is the solar system. (It also occurs in larger

systems, such as the universe.) The nomic web for the solar system (and for the

phenomena that occur in the solar system) includes its size; the number of planets in

it; the masses, shapes, and various other properties of each of these planets and their

moons; the objects on these planets and moons and the properties of such terrestrial

objects; the various comets and asteroids that travel within the solar system and

their various properties; properties of the sun; laws about gravity and other forces

between the celestial objects; laws about forces between the terrestrial objects on

these celestial objects (such as magnetism and electricity); more specific laws about

the orbits of the planets; a law about the speed of light; laws from general relativity;

and so on.

69It is important to note that a minimal kernel (or model thereof) for a phenomenon is not
necessarily an explanans for that phenomenon.
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Part of this nomic web suffices to nomically produce the precession of Mercury’s

perihelion at a rate of about 5600 seconds of arc per century. For simplicity, take this

part to be the part of the nomic web for the solar system that is explicitly mentioned

in the preceding paragraph, with appropriate details filled in (such as the mass and

size of each planet, etc). For the sake of illustration, suppose that these statements

about the details of the solar system are true; and suppose that these statements

(collectively and non-circularly) entail that the perihelion of Mercury precesses at a

rate of about 5600 seconds of arc per century.70 This completes Step 1, yielding a

veridical deterministic nomic model for the approximate rate at which the perihelion

of Mercury precesses.

Many of the statements in this model are such that, were they to be eliminated

from the model, the resultant model would still entail that the perihelion of Mercury

precesses at a rate of about 5600 arcseconds per century. These statements include

statements about the height and weight of various celebrities, statements about the

color of each planet, statements about the precise mass and size of each asteroid in the

asteroid belt between Mars and Jupiter; statements about the chemical composition

of water; laws about strong and weak nuclear forces; more specific laws about the

behaviors of pendula in oil; statements about the composition of various celestial

objects; and so on.

Remove these statements, and other like them, from the model that resulted from

Step 1, in such a way that (1) the statements remaining in the resultant model

(non-circularly) entail that the perihelion of Mercury precesses at a rate of about

5600 arcseconds per century and (2) there is no proper subset of the statements in

70It follows that these statements do not include the statement about the precession of Mercury’s
perihelion.

148



the resultant model that also entail that the perihelion of Mercury precesses at a

rate of about 5600 arcseconds per century. This completes Step 2, yielding a model

of a minimal kernel for the approximate rate at which the perihelion of Mercury

precesses. The laws and conditions described by this model are a minimal kernel for

the approximate rate at which the perihelion of Mercury precesses; they are relevant

to the phenomenon of interest.

Of course, some properties that appear in the nomic web for the solar system do

not appear in any minimal kernel for the approximate rate at which the perihelion

of Mercury precesses. For instance, it is reasonable (for the sake of illustration) to

conjecture that the chemical compositions of Mercury and the sun and the other

planets in the solar system do not appear in any minimal kernel for the approximate

rate at which the perihelion of Mercury precesses. Likewise, it is reasonable to suppose

that biological properties of terrestrial species do not appear in any minimal kernel

for the approximate rate at which the perihelion of Mercury precesses. Properties

like these are irrelevant to the phenomenon of interest.

This account of relevance for deterministic phenomena does not apply to chance

phenomena. If the phenomenon of interest is indeterministic, no set of statements

about laws, initial and boundary conditions, and events (non-circularly) entails that

the phenomenon occurs. For instance, the decay of a particular piece of uranium lacks

a veridical deterministic nomic model, because although the occurrence of this decay

is consistent with the truths about the world, the non-occurrence of this decay is also

consistent with these truths (or so our best sciences say, on their most widely accepted

interpretations). Nonetheless, there can be veridical nomic models that entail that
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there is a chance for such a decay to occur; these are veridical indeterministic nomic

models for the phenomenon.

According to the account of relevance for indeterministic phenomena, the follow-

ing two-step procedure suffices to determine whether a property (event, initial or

boundary condition, law) of a system is relevant to an indeterministic phenomenon

that occurs in the system.71

1. Consider a nomic web for the system in which the indeterministic phenomenon

of interest occurs. Find a part of this web that is correctly linguistically repre-

sented by a veridical indeterministic model for the phenomenon of interest.

2. Find a subset ∆ of this veridical indeterministic nomic model for the phe-

nomenon of interest such that: ∆ entails that there is a non-zero probability

for the phenomenon of interest to occur, and there is no proper subset of ∆

that entails there being a non-zero probability for the phenomenon of interest

to occur.

As before, call the subset of statements ∆ a model of a minimal kernel for the phe-

nomenon of interest. The events, initial and boundary conditions, and laws repre-

sented in a model of a minimal kernel for a phenomenon are said to be a minimal

kernel for that phenomenon. And a property (event, initial or boundary condition,

law) is relevant to an indeterministic phenomenon if and only if that property appears

in at least one minimal kernel for the phenomenon.

71The strategy here is to imitate Peter Railton’s strategy in adapting Hempel’s DN model of
explanation to indeterministic phenomena (see [97]).

150



4.2.4 The Idealization Requirement

In addition to a relevance requirement on idealized explanations, there is an obvi-

ous requirement that the explanans of an idealized explanation be idealized in some

way: the set of idealizations that occur in the explanans should be non-empty. These

two constraints can be added to the (unspecified) conditions that a putative explanans

must satisfy in order to be explanatory, yielding a set of conditions that a putative

explanans must satisfy in order to be an idealized explanation. For instance, ac-

cording to Salmon, “an explanation of an event involves exhibiting that event as it is

embedded in its causal network and/or displaying its causal structure” ([103], p. 325).

It is straightforward to modify Salmon’s causal account of non-idealized explanation

into a causal account of idealized explanation. The modifications involve interpreting

idealizations as abstractions, requiring that the event to be explained be exhibited as

it occurs in the causal nexus of an idealized version of the system in which the event

actually occurs, and requiring that this idealized version of the real system omit only

properties that are irrelevant to the occurrence of the event.

Similarly, according to Hempel’s DN model of explanation, an explanation is a

sound derivation of an explanandum from a set of law-statements and other non-

nomological conditions, such that each premise in the derivation is both true and

confirmable (empirical) and the inference would be invalid if any law-statement were

omitted. Four supplements to the DN model transform it into a model of idealized

explanation. First, the model should allow idealizations to occur in the derivation

of the explanandum; these idealizations should be interpreted as abstractions, not as

distortions. Second, whereas the DN model imposes the condition that, in the absence

of appeal to any of laws, the non-nomological conditions by themselves must be
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insufficient to entail the explanandum, the revised model should impose the condition

that, in the absence of appeal to any of laws, the non-nomological conditions and the

idealizations used in the account must be insufficient to entail the explanandum.

Both conditions are ways of stating that the law-statements must be used in any

derivation of the explanandum. Third, the revised model should make the obvious

supplementation that the set of idealizations is not empty. For when this set is

empty, the explanation is not an idealized explanation. Finally, the revised model

should impose a requirement of relevance on any idealized descriptions that occur in

the explanans.

To illustrate the account of idealized explanation that results from these revisions

to Hempel’s DN model, consider again the explanation, provided by appeal to the

simple pendulum, of the qualitative proportionality between a pendulums’s period

and its length. The equation of motion for the simple pendulum can be derived

from various modeling assumptions about the simple pendulum and Newton’s laws of

motion. Newton’s laws of motion alone do not entail the equation of motion. Model-

ing assumptions are also required; and many of these assumptions are idealizations.

(The details omitted by such idealizations are assumed to be irrelevant to the phe-

nomenon of interest, for the sake of illustration.) From the equation of motion, it

is possible to derive an expression relating the period of the simple pendulum to its

length; this expression shows that the period is roughly proportional to the pendu-

lum’s length. Since the derivation of this result contains idealizations as premises,

since it is appropriately law-based (and otherwise satisfies Hempel’s requirements on

explanations), and since the idealized details are irrelevant, the derivation explains

the proportionality between a pendulum’s period and length .
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4.3 Ineliminable Idealizations Revisited

With an account in hand of what is special about idealized explanation, along with

a distinction between distorting and abstracting idealizations, it is possible to show

how the ineliminably idealized explanations from Chapter Three are explanatory.

This task divides into three components. The first task is to show that the inter-

pretation of the thermodynamic limit and Boltzmann-Grad limits as abstractions,

rather than as distortions, avoids the paradoxes of phase transitions and irreversibil-

ity, respectively. The second task is to show that, given this reinterpretation, the

mathematical elements in the accounts of phase transitions and irreversibility remain

well-defined. The third and final task is to show that, given the reinterpretation of

the idealizing limits, it is plausible to construe the accounts of phase transitions and

irreversibility as being explanatory despite being ineliminably idealized; this will be

accomplished by appealing to the provisional (and partial) account of idealized ex-

planation developed earlier in this chapter. These tasks are addressed first for the

statistical mechanical account of phase transitions, and then for the Boltzmannian

account of irreversibility.

4.3.1 Avoiding the Paradox of Phase Transitions

Recall the statistical mechanical explanation of the occurrence of phase transitions.

Statistical mechanics identifies phase transitions as singularities in the Helmholtz free

energy per particle of a system. It is a mathematical fact about the Helmholtz free

energy per particle that it develops singularities only in the thermodynamic limit,

which is the limit in which the system’s particle number N →∞, the system volume

V → ∞, and the system’s density N/V remains non-zero and finite. Any statistical
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mechanical account of why a system undergoes a phase transition must treat the

system as if it exists in the thermodynamic limit. The necessity of appealing to this

limit makes any statistical mechanical account of phase transitions an ineliminably

idealized explanation.

The ineliminability of the thermodynamic limit raises the paradox of phase tran-

sitions. Every real system has only finitely many particles; and some of these systems

undergo phase transitions. Yet, according to statistical mechanics, a system under-

goes a phase transition only if it is in the thermodynamic limit. If systems in the

thermodynamic limit are systems with infinitely many particles, then, no phase tran-

sitions occur in real systems.

It is possible to avoid the paradox of phase transitions by interpreting the ther-

modynamic limit as an abstraction rather than as a distortion, because such an in-

terpretation does not entail that systems in the thermodynamic limit have infinitely

many particles. Prior to interpreting this limit as an abstraction, it is important to

note that the limit is typically taken in the sense of van Hove. Consider a sequence

of bounded open regions within a region Λ in three-dimensional space. Let V (r) be

the volume of the set of points within a distance of r from the boundary of Λ, and let

V (Λ) be the volume of the region Λ. Then the limit N(Λ) →∞, V (Λ) →∞ is taken

in the sense of van Hove just if, for every distance r > 0, the ratio (V (r)/V (Λ)) → 0

as N → ∞, where N(Λ) is the number of particles in Λ. From now on, the thermo-

dynamic limit as it occurs in the account of phase transitions will be understood in

the sense of van Hove.

When the thermodynamic limit is treated as a distortion (and taken in the sense

of van Hove), it is the limit in which the surface and boundary effects for the system
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– the effects due to interactions that involve the walls or open surfaces of the system

– vanish. This is because these effects occur near the boundaries of the system, and

when the limits N(Λ) → ∞ and V (Λ) → ∞ are taken in the sense of van Hove and

treated as distortions, the surface and boundary areas of the system come to occupy

a vanishingly small proportion of the entire volume of the system. Since surface and

boundary effects are not vanishingly small in real systems, real systems do not exist

in the thermodynamic limit taken in the sense of van Hove.

When the thermodynamic limit is treated as an abstraction (and taken in the

sense of van Hove), it is the limit in which the surface and boundary effects for the

system are ignored or set aside; and a description of a system in this limit is a partial

description of the system that sets aside details about the amount of surface and

boundary effects in the system. But the limit does not ignore the finite and non-zero

density of the system, nor the non-zero number of particles in the system, since the

thermodynamic limit is neither a limit in which N/V → 0 nor a limit in which N → 0.

If the thermodynamic limit is an abstracting idealization, then real systems can

exist in the thermodynamic limit: if the limit is an abstraction, to say that a sys-

tem exists in the thermodynamic limit is to say that the system is described in a

way that ignores the surface and boundary effects in the system. Since real systems

can be described in this way, via partial descriptions, real systems can exist in the

thermodynamic limit if that limit is an abstracting idealization. This is the same

as saying that, as an abstracting idealization, the thermodynamic limit does not at-

tribute properties to real systems that they do not have. (For example, as a distortion

the thermodynamic limit attributes to systems the property of having a vanishingly

small amount of surface effects; but as an abstraction, the limit merely ignores these
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effects.) Hence, the paradox of phase transitions is blocked when the thermodynamic

limit is interpreted as an abstraction rather than as a distortion, because this inter-

pretation does not make it the case that systems in the thermodynamic limit cannot

be real systems – i.e., the interpretation falsifies the fourth premise in the paradox,

according to which systems in the thermodynamic limit have infinitely many particles.

This result may be illustrated through a consideration of the Gibbs free energy

per particle for systems in the thermodynamic limit. For a system of N particles, its

Gibbs free energy per particle is defined to be the Gibbs free energy of the system, G,

divided by the number of particles in the system. It is standard to represent the Gibbs

free energy per particle for a system in the thermodynamic limit as a function of the

pressure and temperature of the system: g = g(p, T ). The Gibbs free energy per

particle for a system not in the thermodynamic limit contains more terms. Terrell

Hill suggests that, for at least some systems not in the thermodynamic limit, the

Gibbs free energy per particle is something like

g∗ = g(p, T ) +
1

3
√

N
a(p, T ) +

ln N

N
b(T ) +

1

N
c(p, T ),

where the term a(p, T ) describes the surface free energy and the last two terms

describe effects due to rotational and translational motion. (These terms describe

surface and boundary effects.)72 There are no singularities in g∗. But in the thermo-

dynamic limit, g∗ reduces to g (all terms except the first vanish):

lim
N,V→∞, N

V
=const

g∗ = g = g(p, T ).

72Hill suggests this as the Gibbs free energy for a single colloidal particle; see [46], pp. 1, 41-44.
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The thermodynamic limit removes, from a full description of the Gibbs free energy

per particle of a system, the terms that represent surface effects and effects due to

rotational and translational motion.73

As an abstracting idealization, the thermodynamic limit transforms a full descrip-

tion of the Gibbs free energy per particle of a system into a description that ignores

boundary and finite-size effects. The resultant Gibbs free energy per particle can de-

velop singularities and thereby indicate the occurrence of phase transitions. But this

Gibbs free energy per particle describes real systems, not systems with infinitely many

particles; it is a description of real systems that is incomplete in virtue of ignoring

the surface and boundary effects of real systems.

4.3.2 Mathematics in the Account of Phase Transitions

Recall that statistical mechanics identifies phase transitions as singularities in the

Helmholtz free energy per particle. As the discussion of the Ising model in Chapter

Three demonstrates, this function is well-defined in the thermodynamic limit. This is

because the existence of the thermodynamic limit guarantees that the free energy per

particle, or the free energy per site (of a lattice), is well-defined in the thermodynamic

limit.

This is true even when the thermodynamic limit is interpreted as an abstraction.

As an abstraction, the limit ignores the surface and boundary effects in the system.

This is compatible with not ignoring the Helmholtz free energy per particle of the

system. As an abstraction, application of the thermodynamic limit to the Helmholtz

free energy per particle of a system yields a function for the Helmholtz free energy

73Joel Lebowitz makes a similar remark: “The advantage of this idealization [i.e., the thermody-
namic limit] is that boundary and finite-size effects present in real systems, which are frequently
irrelevant to the phenomena of interest, are eliminated in the thermodynamic limit” ([67], p. S351).
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per particle of the system that ignores the surface and boundary effects in the system:

the idealized function for the Helmholtz free energy per particle provides a partial de-

scription of the system. Importantly, this partial description is capable of containing

singularities. The discussion of the Ising model in the previous chapter substantiates

this claim: there are some temperatures at which there is a divergence of the free

energy per site of an Ising system in the thermodynamic limit.

4.3.3 The Account of Phase Transitions as Explanatory

Having shown that the thermodynamic limit (taken in the sense of van Hove) can

be interpreted as an abstracting idealization, that this interpretation avoids the para-

dox of phase transitions, and that various mathematical properties of the Helmholtz

free energy per particle remain well-defined under this interpretation, it remains to

show that it is plausible to construe the statistical mechanical account of phase tran-

sitions as being explanatory, despite that account’s being ineliminably idealized.

According to the discussion of the previous section, there is a relevance require-

ment on idealized explanations, to the effect that any properties of a system that are

idealized must be irrelevant to the phenomenon of interest if an idealized description

of that system is to be explanatory of the phenomenon of interest. With respect to the

statistical mechanical account of phase transitions, this requirement entails that the

size and volume of systems in which phase transitions occur (or, at least, the values

of these properties) must be irrelevant to the occurrence of those phase transitions.

Since idealizing the size and volume of a system is tantamount to idealizing away

surface effects on the system and effects due to translational and rotational motion

(see the previous discussion of the Gibbs free energy per particle for systems in the
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thermodynamic limit), the relevance requirement is the requirement that these effects

be irrelevant to the occurrence of phase transitions.

The relevance of these effects to the occurrence of phase transitions may be de-

termined by an appeal to the preceding account of relevance. Consider a system that

undergoes a phase transition. Step 1: Consider the nomic web in which this system

is embedded. A veridical nomic model for the phase transition in this system is a

representation of some portion of the nomic web in which the system is embedded

that suffices to nomically produce the phase transition; this representation is given

by the Helmholtz free energy per particle for the system (or, to say the same thing,

by the partition function per particle for the system). Step 2: Even when details

about the surface and boundary effects are removed from this model (e.g., by an

abstracting idealization such as the thermodynamic limit taken in the sense of van

Hove), the resultant residual model still manages to entail that the system undergoes

a phase transition under certain conditions. Hence, boundary and surface effects are

irrelevant to the occurrence of phase transitions, according to the preceding account

of relevance. Given the plausibility of that account of relevance, it seems to be per-

missible to conclude that, at least sometimes, those properties of real systems that

are idealized by the thermodynamic limit are irrelevant to the occurrence of phase

transitions.74

In addition to satisfying the relevance requirement, the statistical mechanical ac-

count otherwise seems to be explanatory. The explanandum of the account is that

74One corollary of this way of thinking is that the consequence relation used in the account of
relevance must be non-monotonic: if one adds premises about the details that are omitted by the
ineliminable thermodynamic limit to the nomic model for the system in question, one fails to obtain
the conclusion that the system undergoes a phase transition. The significance of this result remains
to be explored.
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a real system can undergo a phase transition. Generically, the statistical mechanical

explanation of this explanandum proceeds according to the following steps:

1. The real system is represented by a microscopic model. Part of this model is

an expression for the energy E of the system.

2. The partition function Q for the system is calculated, given a specification of

the energy E.

3. The bridge law ln Q = −F/kBT yields an expression for the Helmholtz free

energy F of the system.

4. Application of the thermodynamic limit to the Helmholtz free energy yields an

expression for the Helmholtz free energy per particle (or per site) of the system.

5. Expressions for various thermodynamic quantities, such as the specific heat of

the system, are obtained by taking derivatives of the Helmholtz free energy per

particle.

6. Mathematical analysis is used to show that there is a singularity in one of these

thermodynamic quantities. These singularities are taken to correspond to the

occurrence of a phase transition in the system.

This derivation appeals to the bridge law that relates the partition function of the sys-

tem to the system’s Helmholtz free energy, to the idealization of the thermodynamic

limit, and to non-nomological conditions that pertain to the microscopic constitution

of the system and the system’s energy. And the derivation instantiates a common ar-

gument pattern within statistical mechanics. Consequently, it is plausible to suppose
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that the statistical mechanical account of phase transitions is explanatory, despite its

being ineliminably idealized.

The explanation that the Ising model provides for the existence of ferromagnetic

phase transitions in ferromagnets illustrates this general pattern. (For specific details,

see Chapter Three.) The Ising model represents a ferromagnet as a lattice consisting

of a fixed set of regularly-spaced sites connected to each other by bonds. The Ising

model assumes an expression for the total energy of each configuration of this lattice,

and this expression specifies the canonical partition function for the lattice. The

partition function, along with a bridge law that relates the partition function per

site to the Helmholtz free energy per site, yields an expression for the Helmholtz free

energy per site of the lattice. In the thermodynamic limit, it can be shown that the

Helmholtz free energy per site is not represented by an analytic function, and this

non-analyticity corresponds to a logarithmic divergence in the specific heat of the

ferromagnet. This divergence corresponds to a ferromagnetic phase transition in the

magnet. Hence, from a bridge law that relates the partition function per site to the

Helmholtz free energy per site, along with the idealization of the thermodynamic limit

and non-nomological assumptions about the microscopic constitution of ferromagnets,

the Ising model allows for a derivation of the explanandum statement, to the effect

that there can be ferromagnetic phase transitions in ferromagnets.

4.3.4 Avoiding the Paradox of Irreversibility

Recall now the Boltzmannian explanation of irreversibility. The Boltzmannian ac-

count begins with a theorem of classical mechanics known as Liouville’s theorem and

derives Liouville’s equation. Given certain assumptions about a system, concerning its
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interaction potentials and the like, one derives the BBGKY hierarchy from Liouville’s

equation. The BBGKY hierarchy yields the Boltzmann equation, under the statistical

assumption that molecular chaos is present in the system initially, the Boltzmann-

Grad limiting idealization, and other less important assumptions. By appealing to

properties of the Boltzmann equation, it is possible to prove Boltzmann’s H-theorem,

which shows that there is an overwhelming likelihood for a non-equilibrium system

irreversibly to approach an equilibrium state. The appeal to the Boltzmann-Grad

limit is essential to this account of irreversibility. It renders the irreversible behav-

ior predicted by the Boltzmann equation consistent with Poincaré’s theorem. For

this reason, the Boltzmannian account of irreversibility is an ineliminably idealized

explanation.

The ineliminability of the Boltzmann-Grad limit raises the paradox of irreversibil-

ity. Every real system has only finitely many particles; and some of these systems

exhibit irreversible behavior. Yet, according to the Boltzmannian account, a system

exhibits irreversible behavior only if it exists in the Boltzmann-Grad limit. If systems

in the Boltzmann-Grad limit have infinitely many particles, no real systems behave

irreversibly.

It is possible to avoid the paradox of irreversibility by interpreting the Boltzmann-

Grad limit as an abstraction rather than as a distortion, because such an interpreta-

tion does not entail that systems in the Boltzmann-Grad limit have infinitely many

particles. Prior to interpreting this idealization as an abstraction, it will be useful to

provide further information about what is accomplished, from a mathematical point

of view, by taking the Boltzmann-Grad limit.75

75My discussion here would be improved if I were to find some discussion of the usual sense in
which the Boltzmann-Grad limit is taken. The literature that appeals to the Boltzmann-Grad limit
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Systems in the Boltzmann-Grad limit have the following mathematical properties:

• The particle number N → ∞ while each particle’s diameter d → 0, in such a

way that the quantity Nd2 remains finite and non-zero.

• Each particle’s mass m → 0, but the system’s total mass M = Nm remains

finite and non-zero.

• The volume of the container occupied by the system’s particles Nd3 → 0 (since

Nd2 remains finite and non-zero but d → 0).

• The average inter-particle distance (V/N)
1
3 → 0 (since N →∞ and V remains

finite and non-zero).

• The system’s volume V and mean free path (average distance particles travel

between collisions, roughly equal to V/Nd2) remains finite and non-zero (since

both V and Nd2 remain finite and non-zero).

• The number of collisions per unit time remains finite and non-zero (since Nd2

remains finite and non-zero and, at least for a system of hard spheres, the

number of collisions per unit time is given by Nd2π.)

• For a finite interval of time, the total number of collisions remains finite and

non-zero (since the number of collisions per unit time remains finite and non-

zero).

• The probability of an arbitrarily selected particle undergoing a collision “Prob(single

collision)” → 0 (since, if it were not the case that “Prob(single collision)” → 0,

in accounting for irreversibility tends to state that the limit is taken in some sense, without giving
the details.
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the total number of collisions over a finite period of time would not remain finite

and non-zero).

If the Boltzmann-Grad limit is a distortion, then systems in the Boltzmann-Grad

limit are systems that have infinitely many particles. Each particle of such a system

has a vanishingly small mass and diameter. There are two important consequences of

these distortions. The first is that the average distance between particles is vanishingly

small; such a system is a sort of continuum, since a continuum is a system in which

there is no distance between any of the system’s components. The second consequence

is that there is a vanishingly small probability for each particle to undergo a collision.

These are all properties that real systems do not have: in real systems, there is a finite

inter-particle distance and a finite probability for each particle to undergo a collision.

If the Boltzmann-Grad limit is a distortion, systems in the Boltzmann-Grad limit are

not real systems.

If the Boltzmann-Grad limit is an abstraction rather than a distortion, then a

description of a system in the Boltzmann-Grad limit is a partial description of the

system. This partial description does not attribute to the system a finite inter-

particle distance and a finite probability for each particle to undergo a collision (or,

at least, does not attribute to the system values for these properties). Taking the

Boltzmann-Grad limit has the effect of ignoring these properties of real systems (or,

at least, ignoring the values of these properties). And as an abstraction rather than a

distortion, taking the Boltzmann-Grad limit does not have the effect of attributing to

systems properties that real systems do not have, because ignoring finite inter-particle

distances and single particle collision probabilities does not entail claiming that such

distances and probabilities are arbitrarily close to zero.
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If the Boltzmann-Grad limit is an abstracting idealization, then real systems can

be in the Boltzmann-Grad limit: to say that a system is in the Boltzmann-Grad

limit is to say that the system is described in a way that ignores the average inter-

particle distance and the probability of a particle undergoing a collision. Since real

systems can be described in this way, via partial descriptions, real systems can be

in the Boltzmann-Grad limit if that limit is an abstracting idealization. This is all

the same as saying that, as an abstracting idealization, the Boltzmann-Grad limit

does not attribute properties to real systems that real systems do not have. Hence,

the paradox of irreversibility is blocked by treating the Boltzmann-Grad limit as

an abstraction rather than a distortion, because this interpretation of the limiting

idealization does not make it the case that systems in the Boltzmann-Grad limit have

properties that real systems do not have – i.e., the interpretation falsifies the fourth

premise in the paradox, according to which systems in the Boltzmann-Grad limit

have infinitely many particles.

This result may be illustrated through a comparison of the equations of the

BBGKY hierarchy to the equations of the Boltzmann hierarchy (obtained by ap-

plying the Boltzmann-Grad limit to each equation of the BBGKY hierarchy).76 I

introduce the following symbols. Let
−→
ξi represent the velocity of the i-th particle

prior to its collision with some other particle and
−→
Vij represent the velocity of the

i-th particle relative to an arbitrary j-th particle (i 6= j). Let f ′s+1 be the function

obtained from fs+1 by replacing
−→
ξi and

−→
ξj in the latter (velocities after collision) with

−→
ξi
′ and

−→
ξj
′ in the former (velocities before collision), respectively. Let qi represent

76These equations are given by [20], pp. 49-53.

165



the center of the i-th particle and qj the center of an arbitrary j-th particle; −→nij is the

unit vector directed along the line that joins the centers of the i-th and j-th particles.

For an N -particle system, the generic equation for each member of the BBGKY

hierarchy is:

∂fs

∂t
+

s∑
i=1

−→
ξi · ∂fs−→qi

= (N − s)σ2

s∑
i=1

∫
[f ′s+1 − fs+1]|−→Vij · −→nij|d−→nijd

−→
ξj ,

for s = 1, . . . N . The term ∂fs

∂t
gives the time variation of fs; the drift term

−→
ξi · ∂fs−→qi

gives

the spatial variation of fs for particle i. The term on the right hand side, known as

the collision term, gives the effect of collisions between particles. This collision term is

a sum of the effect of collisions between two particles, the effect of collisions between

three particles, and so on, up to the effect of collisions between all N particles. Note

that the collision term for the s-particle partial probability distribution function of the

BBGKY hierarchy depends upon the s + 1-particle partial probability distribution

function. This is why the equations of the BBGKY hierarchy are open equations

(except for the case where s = N).

The generic equation for each member of the Boltzmann hierarchy is obtained

from the generic equation for each member of the BBGKY hierarchy by applying the

Boltzmann-Grad limit to each of the latter equations. To do this, we transform the

right-hand side of the previous equation so that it has two terms and is equal to:

Nσ2

s∑
i=1

∫
[f ′s+1 − fs+1]|−→Vij · −→nij|d−→nijd

−→
ξj

−sσ2

s∑
i=1

∫
[f ′s+1 − fs+1]|−→Vij · −→nij|d−→nijd

−→
ξj .

Since the quantity sσ2 → 0 as d → 0 but the quantity Nσ2 remains finite and non-

zero in the Boltzmann-Grad limit, the second term of this equation vanishes in the
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Boltzmann-Grad limit. Hence, the result of applying the Boltzmann-Grad limit to

each equation in the BBGKY hierarchy is:

∂fs

∂t
+

s∑
i=1

−→
ξi · ∂fs−→qi

= (Nσ2)
s∑

i=1

∫
[f ′s+1 − fs+1]|−→Vij · −→nij|d−→nijd

−→
ξj ,

for s = 1, . . . N .

As an abstracting idealization, the Boltzmann-Grad limit removes some of the

details about the effect of collisions between particles. This may be observed by

comparing the right-hand sides of the generic equations for members of the BBGKY

hierarchy and the Boltzmann hierarchy, respectively. The Boltzmann equation itself,

which characterizes irreversible behavior, is subsequently obtained from the equations

of the Boltzmann hierarchy by invoking the assumption of initial molecular chaos. A

secondary role of the Boltzmann-Grad limit is to ensure that this initial molecular

chaos propagates; that is, the Boltzmann-Grad limit also functions to ignore details

about correlations that come to exist between particles when they collide.

4.3.5 Mathematics in the Account of Irreversibility

The Boltzmann equation remains well-defined in the Boltzmann-Grad limit under

the interpretation that treats that limit as an abstraction. Recall that the Boltzmann

equation describes the time evolution of a 1-particle partial probability density func-

tion f1. This function gives the probability density of finding one randomly chosen

particle, of an N particle system, in some subregion of µ-space, without regard to

the locations of the other N − 1 particles in that phase space. Specifically, where

x1 represents, in µ-space, the generalized coordinates and conjugate momentum of a

particle randomly chosen from an N -particle system, f1(x1, t)dx1 gives the probability

density of finding that particle in the volume of µ-space between x1 and x1 + dx1 at
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time t. An important fact about the 1-particle partial probability density function of

an N -particle system, yet to be noted, is that it is equal to a function f ∗ divided by

the total mass M of the system:

f1 =
f ∗

M
.

The function f ∗ is the expected mass density in µ-space, the expected mass per unit

volume in Γ-space (see [20], p. 57). There is a normalization condition on f ∗, to the

effect that its integral over µ-space be equal to the total mass of the system. The

total mass of the system, of course, is equal to the sum of the masses of each particle

in the system.

The only way for the total mass to remain finite in the N → ∞ limit is to take

the limit in which each particle’s mass m → 0, requiring that, in this combined limit

N →∞ and m → 0, M remains a finite and non-zero constant (see [20], p. 43). This

requirement can be met for the interpretation of the idealizing limit m → 0 as an

abstraction, by noting that it is possible to ignore a feature of the parts of a system

without ignoring a feature that the system has as a whole. For instance, it is possible

to ignore the amount of weight of each marble in a bag of marbles without ignoring

the amount of weight of the entire bag of marbles. Similarly, it is possible to ignore

the amount of mass of each particle of a system without ignoring the amount of total

mass of the system.

Since M remains finite in the Boltzmann-Grad limit, the function f ∗ is well-defined

in that limit. Since the 1-particle partial probability density function is equal to the

expected mass density f ∗ divided by the total mass of the system, the 1-particle partial

probability density function also remains well-defined in the Boltzmann-Grad limit.
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And since the Boltzmann equation describes the time evolution of the 1-particle par-

tial probability density function, the Boltzmann equation itself remains well-defined

in the Boltzmann-Grad limit. These claims are true even if the Boltzmann-Grad limit

is an abstraction.

4.3.6 The Account of Irreversibility as Explanatory

If the Boltzmann-Grad limit is an abstracting idealization, then the Boltzmann

equation is a partial description of real systems, a description obtained (in effect) by

ignoring some of the effects of collisions between particles. This incomplete description

happens to describe irreversible behavior. The effect of the collisions not described

by the equations of the Boltzmann hierarchy, and subsequently not represented by

the Boltzmann equation, is given as

−(sσ2)
s∑

i=1

∫
[f ′s+1 − fs+1]|−→Vij · −→nij|d−→nijd

−→
ξj .

Having shown that the Boltzmann-Grad limit can be interpreted as an abstraction,

that this interpretation avoids the paradox of irreversibility, and that the Boltzmann

equation remains well-defined under this interpretation of the Boltzmann-Grad limit,

it remains to show that it is plausible to construe the Boltzmannian account of irre-

versibility as explanatory, despite that account’s being ineliminably idealized.

With respect to the Boltzmannian account of irreversibility, the relevance require-

ment on idealized explanations entails that the size and particle diameter of systems

that exhibit irreversibility (or, at least, the values of these properties) must be irrel-

evant to the occurrence of irreversible behavior. Since idealizing the size and particle

diameter of a system is tantamount to idealizing away some of the effects of collisions

between particles, the relevance requirement entails that these effects are irrelevant
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to the occurrence of irreversible behavior.77 The relevance of these effects to irre-

versibility may be determined by an appeal to the preceding account of relevance.

Consider a system that exhibits irreversible behavior. Step 1: Consider the nomic

web in which this system is embedded. A veridical nomic model for the irreversible

behavior in this system is a representation of some portion of the nomic web in which

the system is embedded that suffices to nomically produce the irreversible behavior;

this representation is given by the equations of the BBGKY hierarchy. Step 2: Even

when details about the effects of collisions between particles are removed from this

model (e.g., by an abstracting idealization such as the Boltzmann-Grad limit), the

resultant model (represented by the Boltzmann equation) entails that the system ex-

hibits irreversible behavior. Hence, these effects due to inter-particle collisions are

irrelevant to the occurrence of irreversibility, according to the preceding account of

relevance. Given the plausibility of that account, it seems to be permissible to con-

clude that, at least sometimes, those properties of real systems that are idealized by

the Boltzmann-Grad limit are irrelevant to the occurrence of irreversible behavior.

In addition to satisfying the relevance requirement, the statistical mechanical ac-

count otherwise seems to be explanatory. The explanandum is that a real system

can exhibit irreversible behavior. Generically, the Boltzmannian account of this ex-

planandum proceeds according to the following steps:

1. Hamilton’s equations of motion can be used to obtain the Liouville equation

for the system of interest, which governs the time evolution of the probability

density function for the system.

77Situations in which these effects are irrelevant include the behavior of a moderately rarefied gas
such as the upper atmosphere; this behavior is important in planning space shuttle re-entries.
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2. Under certain assumptions (about interaction potentials, etc), the Liouville

equation entails a set of N integro-differential equations; these equations form

the BBGKY hierarchy.

3. The Boltzmann-Grad limit is applied to each equation of the BBGKY hierarchy,

yielding a set of equations known as the Boltzmann hierarchy.

4. The Boltzmann equation is obtained from the Boltzmann hierarchy by appealing

to the assumption of initial molecular chaos and the result that initial molecular

chaos propagates in the Boltzmann-Grad limit.

5. The H-theorem is obtained from analysis of the Boltzmann equation. This the-

orem shows that the entropy of virtually every system increases monotonically

in time until the system obtains a state of equilibrium.

The Boltzmann equation is obtained from the law-like equations of classical mechanics

as well as various modelling assumptions and idealizations, and the H-theorem is a

consequence of the Boltzmann equation. The derivation of this equation instantiates

a common argument pattern within statistical mechanics. And the equation itself

traces the causal interactions that produce irreversible behavior.

4.4 Conclusion

James Woodward suggests five desiderata for any satisfactory philosophical ac-

count of explanation ([123], p. 23):78

1. Descriptive adequacy: The account should capture relevant features of paradig-

matic instances.

78These desiderata are similar to those given by Michael Friedman ([35]), Philip Kitcher ([56],
p. 508), and R.I.G. Hughes ([47]).
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2. Philosophical Adequacy: The account should provide insight into the features

of explanations that allow them to convey information.

3. Dialectical Superiority: The account should solve problems not adequately dealt

with by previous accounts.

4. Epistemic Accessibility: The account should give a plausible story about how

people who use such explanations can learn information given by them.

5. Normative Guidance: The account should allow for an evaluation of different

explanations.

The partial account of idealized explanation provided in this chapter, which treats

idealizations as abstractions, satisfies the first three of these desiderata, at least with

regard to the conditions on explanation that pertain specifically to idealizations.

(Showing how the account satisfies the other two desiderata is a project for some

other time.)

The account appears to be descriptively adequate. It accommodates idealized

explanations involving the simple pendulum, a paradigmatic idealized system. The

account can also claim success with respect to the statistical mechanical explanation

of phase transitions and the Boltzmannian explanation of irreversibility. These cases

not only further support the claim that the account is descriptively adequate, but

also render the account dialectically superior to other philosophical accounts of ideal-

ized explanation, because other accounts cannot accommodate ineliminably idealized

explanations (see Chapter Three for details). Finally, the account is philosophically
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adequate, because it shows that idealized explanations convey explanatory informa-

tion in virtue of being partial descriptions that satisfy various explanatory conditions.

Idealized explanations explain in the same way that incomplete explanations explain.

The descriptive and philosophical adequacy of the above account of idealized ex-

planation, and its dialectical superiority over rival philosophical accounts of idealized

explanation, are strong evidence in favor of the account. Since interpreting idealiza-

tions as abstractions forms the core of this new account of idealized explanation, the

evidence in favor of the account is also evidence in favor of interpreting idealizations

as abstractions. And since this account succeeds where the accounts surveyed in

Chapter Two fail, such an account of idealized explanation is better than those from

Chapter Two.

The moral of Chapter One was that any successful account of idealized explana-

tion must either abandon the interpretation of idealizations as distortions or allow

some falsehoods to be explanatory. Chapter Two outlined accounts of idealized ex-

planation that retain the interpretation of idealizations as distortions. Chapter Three

showed that such an interpretation is incompatible with the existence of ineliminably

idealized explanations. This chapter provides an account of idealized explanation that

abandons the interpretation of idealizations as distortions, in favor of an interpreta-

tion of idealizations as abstractions. On this account, idealized explanations are a

species of incomplete explanation, in which the incompleteness is, in some sense, sim-

plifying. Such an account accommodates paradigmatic cases of idealized explanation,

as well as cases of ineliminably idealized explanation. This favors an interpretation

of ineliminably idealizations as abstractions rather than distortions, and undermines
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the necessity of showing how idealized descriptions can be explanatory despite being

false.
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CHAPTER 5

ERROR THEORIES, EARMAN’S PRINCIPLE, AND
EMERGENCE

Sometimes only partial (incomplete) descriptions correctly describe systems. This

is a consequence of the presumption that there are ineliminably idealized explanations

and the interpretation of idealizations as abstractions. If P is the explanandum of an

ineliminably idealized explanation, then P must occur in some real system, given the

presumption that every explanandum obtains (every explanandum is true). Let one of

the real systems in which P occurs be system S. Then, since P is the explanandum

of some ineliminably idealized explanation, S must exist in some idealizing limit.

Hence, some real systems must be systems in idealizing limits – that is, sometimes

the correct description of a system requires the omission of details about the system.

To put this as a slogan: completeness does not guarantee correctness.

This corollary conflicts with what Robert Batterman dubs the “traditional” view

about models in the physical and applied mathematical sciences, according to which

“a model is better the more details of the real phenomenon it is actually able to

represent mathematically” ([5], p. 21). Batterman argues that this traditional view

is mistaken, because sometimes the explanation of why different systems exhibit the

same pattern requires an appeal to minimal models, models that do not represent
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every detail of the systems of interest. The preceding argument concurs with Batter-

man’s conclusion, holding that the traditional view is mistaken because some expla-

nations are ineliminably idealized, and the explananda of such explanations require

descriptions (or models) that are incomplete. Moreover, the preceding argument ex-

tends Batterman’s objection to the traditional view. Batterman’s argument concerns

multiply realized patterns such as the fact that struts buckle upon reaching a critical

load. The argument from Chapters Three and Four, however, concerns individual

events (or classes of events) such as the occurrence of phase transitions in individual

systems. So the traditional view is mistaken not only for multiply realized patterns,

but also for some individual (classes of) events.

This result depends upon the presupposition that there are ineliminably idealized

explanations, a presupposition which is by no means uncontroversial; in fact, there

are several arguments that purport to establish its falsity. One aim of this chapter is

to show these arguments to be ineffectual. A further aim is to show that the reasons

invoked by the arguments against the presumption of ineliminably idealized explana-

tions are less plausible than the reasons invoked in its favor, thereby legitimizing the

appeal to the presumption on grounds of reflective equilibrium.

5.1 Error-Theoretic Objections

5.1.1 Two Arguments

Statistical mechanics represents the phase transitions of a system by mathemat-

ical singularities in the partition function for that system, and it accounts for the
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occurrence of a phase transition in a system by showing that the partition func-

tion for that system contains a singularity.79 Roughly, the explanandum in this case

is ‘System S undergoes a phase transition’, and statistical mechanics takes this to

mean the same thing as ‘The partition function for S develops a singularity’. The

Boltzmannian account of irreversibility characterizes the tendency of non-equilibrium

states of a system to approach equilibrium states as a tendency for the entropy of

that system to increase irreversibly, and it accounts for this irreversibility by showing

that the H-theorem holds of the system. Roughly, the explanandum in this case is

‘The non-equilibrium states of system S have a tendency to irreversibly approach an

equilibrium state’, and the Boltzmannian approach takes this to mean the same thing

as ‘When S is in a non-equilibrium state, its H-function decreases monotonically (i.e.,

its entropy increases monotonically)’. In both cases, the systems of interest are real

systems.

If these accounts of phase transitions and irreversibility are explanatory, then the

explanandum of each account must be true of real systems; for it is a requirement on

every explanation that its explanandum be true. Craig Callender provides arguments

that purport to show these explananda to be false of real systems.

Callender argues that the statement ‘The partition function for system S devel-

ops a singularity’ cannot be true of any real system. For singularities in the partition

79This is not exactly correct. Statistical mechanics represents phase transitions as singularities
in the partition function per particle, as shown in Chapter Three. But philosophers who write
about phase transitions tend to overlook this detail and speak as if the partition function, rather
than the partition function per particle, is the function relevant for identifying phase transitions.
Instead of correcting this way of speaking through the chapter, I acquiesce in it, leaving the reader
the responsibility of understanding that the “partition function” being discussed is, in fact, the
partition function per particle.
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function of any system can only occur in the thermodynamic limit, yet no real sys-

tem exists in the thermodynamic limit because real systems only have finitely many

particles ([16], pp. 548-550; see also [73], [125]). Moreover, this statement cannot

be true of any real system, because the partition function for any system contains

singularities only if there are no fluctuations in the system; yet real systems have

fluctuations ([16], p. 550). This argument purports to show that partition functions

for real systems cannot contain singularities. Since statistical mechanics represents

phase transitions as singularities in partition functions, this argument further seems

to show that, according to statistical mechanics, there are no phase transitions.

Callender further argues that the statement ‘The entropy of a system increases

monotonically unless that system is in equilibrium’ cannot be true of real systems. For

the entropy of any real system is a time-reversal invariant function of the dynamical

variables of that system. Since any closed real system has a bounded phase space,

the time-reversal invariance of the entropy function entails that a system’s entropy

cannot monotonically increase: “In short, if [entropy] is a function of the dynamical

variables of an individual system, then [entropy] cannot exhibit monotonic behaviour”

([16], p. 543). Since the Boltzmannian account characterizes the tendency of non-

equilibrium states of a system to approach equilibrium as a tendency for the entropy

of the system to increase monotonically, this argument seems to show that, according

to the Boltzmannian account, real systems in non-equilibrium lack a tendency to

approach equilibrium.
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5.1.2 Callender’s Eliminativism

Callender does not take these arguments to show that statistical mechanics does

not account for phase transitions or irreversibility. Rather, he takes the arguments

to show that statistical mechanics mischaracterizes the explanandum. Rather than

representing phase transitions as singularities in partition functions, Callender sug-

gests that statistical mechanics should represent them as non-singular solutions that,

in some sense, approximate singularities. He writes,

Presumably, there are non-singular solutions to the partition function de-
scribing real systems that give rise to the macroscopic transitions called
phase transitions. . . . Analytic partition functions must govern the phase
transition and in some sense approximate a singularity” ([16], p. 550).

This method of representing phase transitions does not require that systems be in

the thermodynamic limit in order to undergo phase transitions.

Callender’s position is not the isolated remark of a philosopher; physicists espouse

it as well. Consider the extended remarks of the physicist J.E. Mayer:

There is probably no other inclusive field of science in which it is more
tempting to expect complete mathematical rigor from beginning to end
than in equilibrium statistical mechanics. The axioms are the laws of
mechanics, which, for molecular systems at least, can be put in concise
mathematical form. The end product is an equally concise set of a very
few (2 or 3) mathematically formulated laws, those of thermodynamics.
It appears to this author, however, that a search for complete rigor in the
usual mathematical form is illusory, and, when pursued too industriously,
has more often led to obscurantism than to clarity.

The first difficulty that arises is that the conciseness and precision of math-
ematical formulation of the laws of thermodynamics are actually invalid
for real systems of finite size; average values are not identical with the most
probable, the probability of a spontaneous measurable decrease in entropy
is infinitesimal but not zero, and phase changes are not singularities but
merely finite changes in derivatives within an inobservably infinitesimal,
but non-zero, range of variables. The demand that one treats only infinite
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systems obviates these difficulties, but leaves precious little applicability
of thermodynamics to the real world ([78], pp. 236-237, emphasis added).

Like Callender, Mayer suggests that the representation of phase transitions as singu-

larities is an artifact of an over-reliance on mathematical rigor. A proper explanation

of phase transitions requires an account that is less precise and thereby able to avoid

an appeal to the thermodynamic limit.

Callender adopts a similar strategy as regards irreversibility. Rather than charac-

terize the entropy of non-equilibrium systems as a monotonically increasing function,

statistical mechanics should hold that the entropy of non-equilibrium systems does not

decrease for very long observational time scales ([16], p. 544). This re-characterization

of the behavior of real systems in non-equilibrium is compatible with their time-

reversal invariance and the Poincaré recurrence theorem, because a system’s entropy

not decreasing for very long observational time scales is consistent with the system’s

entropy decreasing over an even longer cosmic time scale. This consistency is bought

at the price of precision, however, since what counts as “very long” is somewhat

vague.80

The physicist Paul Davies espouses a position similar to Callender’s. According

to Davies,

there can be no true ‘equilibrium’ state for [an isolated box of gas]. The
state that we have called equilibrium is only the most frequented state,
and does not satisfy the usual criterion of equilibrium because the system
will leave it eventually (though only appreciably after vast periods of
time). For this reason, all statements about equilibrium and irreversibility

80Nonetheless, Callender takes the re-characterization to be preferable to abandoning the Boltz-
mannian approach in favor of a Gibbsian approach, because even if the Gibbsian approach shows
that some function of an ensemble of systems changes monotonically over time, such a function
does not explain the thermal behavior of individual real systems because it is not a function of the
dynamical variables of individual real systems ([16], p. 544).
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. . . should be interpreted as meaning on time scales much less than the
Poincaré recurrence times ([28], pp. 59-60).

Like Callender, Davies suggests that a proper characterization of the behavior of

non-equilibrium systems must allow for their entropy occasionally to decrease.

Callender’s response to the arguments for the falsity of the explananda of the

statistical mechanical account of phase transitions and the Boltzmannian account of

irreversibility is to reject both the statistical mechanical analysis of what it is for

a system to undergo a phase transition and the Boltzmannian characterization of

the behavior of non-equilibrium systems. In their place, Callender advocates the

substitution of a less specific, and thereby less mathematically precise, analysis of

what it is for a system to undergo a phase transition, as well as a less specific, less

precise characterization of the behavior of non-equilibrium systems, respectively.

5.1.3 Liu’s Instrumentalism

Not everyone who accepts the cogency of Callender’s arguments agrees with his

response.81 For instance, Chuang Liu agrees with Callender that the explanandum of

the statistical mechanical account of phase transitions is false, and for essentially the

same reasons. Liu further agrees that a system undergoes a phase transition when

the partition function for the system approximates a singularity:

. . . the singularities which represent [phase transitions] . . . should be re-
garded as mere artifacts or fictions of [the thermodynamic limit] that do
not exist in reality. [Phase transitions] are just places where rather dra-
matic changes of thermo-variables take place so that their derivatives make

81According to Sang Wook Yi, the argument shows that “[thermodynamics] ‘corrects’ [statistical
mechanics] so that [statistical mechanics] can accommodate certain experimentally verified phenom-
ena” ([125], p. 1031). I am inclined to agree with this claim; one aim of this dissertation has been
to show how statistical mechanics can accommodate such phenomena despite giving ineliminably
idealized accounts of them.
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sharp, but not discontinuous, changes ([73], p. S336; brackets replace Liu’s
abbreviations with appropriate phrases).

However, Liu advocates the retention of the statistical mechanical analysis of what

it is for a system to undergo a phase transition, due to the theoretical utility of the

analysis. Rather than replace the analysis with a less precise one, Liu suggests a

relaxation of the criteria for applying the analysis to real systems. He writes,

Predicates we use to describe [phase transitions] and [critical points] in
[the thermodynamic limit] of infinite systems in [statistical mechanics]
are mathematical ones that result from an accentuation or exaggeration of
the corresponding physical properties by neglecting or filling out negligible
differences. With such predicates, scientists must demand strict exactness
among their relations . . . . But when such predicates are applied to actual
physical systems, estimates of approximation are brought back in so that
the right kind of systems are picked out by the predicates. For instance,
being a critical point as a mathematical predicate is defined by a singular
point on an isotherm; but when using it to pick out a physical critical
point a certain range of approximation to the singular point should be
understood so that it picks out the right set of systems. This is similar
to our use of most exact magnitudes, such as ‘weighing 100 kg’. We are
justified to use it to pick out objects whose weight is not exactly 100 kg
but very close to it ([73], p. S340).

Liu is not alone in his position. R.A. Minlos, a mathematical physicist, expresses

a similar attitude:

. . . several important notions of statistical physics can be rigorously de-
fined only in the framework of the thermodynamic limit (for example, the
important notion of phase transition). Of course, one has to remember
that real physical systems are finite and the thermodynamic limit means
some idealized discription [sic] of reality, but that can be said about any
mathematical (or theoretical) method in physics ([82], p. 22).

Minlos and Liu agree that the representation of phase transitions as singularities is

an idealization of reality. Their solution to this problem is not to revise the theo-

retical criteria for the representation of phase transitions, as Callender and Mayer
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advise. This is because such a representation is an inevitable result of representing

the world with mathematics. Instead, allowance should be made for representing a

complicated world with mathematical exactitude. This is an allowance made in the

application of statistical mechanics to real systems, not an allowance made within

the representational schemes of statistical mechanics.

Although Liu only applies his view to the statistical mechanical account of phase

transitions, his position can be extended to the Boltzmannian account of irreversibil-

ity. According to such a position, the entropy of real systems does not increase mono-

tonically in time. Nonetheless, this characterization of the approach to equilibrium,

as a monotonic process, should be retained owing to its theoretical utility. Moreover,

the criteria for applying this characterization to real systems should be relaxed, to

allow for the inevitable discrepancies that arise from characterizing a complicated

world with mathematical exactitude.

5.1.4 Callender and Liu as Error Theorists

Despite their differences, both Callender and Liu essentially advocate an error-

theory about the predicates ‘undergoes a phase transition’ and ‘exhibits irreversibil-

ity’.82 According to Paul Boghossian, an error theory about a fragment of a discourse

is a theory according to which, although the predicates of that fragment denote prop-

erties and thereby equip declarative sentences that contain those predicates with truth

conditions, nothing actually exemplifies the properties denoted by those predicates, so

that declarative sentences in the fragment of discourse are systematically false ([11],

82Callender and Liu’s thesis may also be categorized as a version of what Kevin Davey calls the
liberal view of mathematical rigor in physics, “according to which it is inappropriate to demand
that even the most mature areas of physics traffic exclusively in mathematically rigorous concepts
and arguments” ([27], p. 441).
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p. 159). The discourse of statistical mechanics takes the predicate ‘undergoes a phase

transition’ to be best explicated as ‘develops a singularity in the partition function’.

(This interpretation of the predicate ‘undergoes a phase transition’ is neutral as to

whether real systems instantiate the predicate.) For instance, according to statistical

mechanics, saying that a system undergoes a phase transition is the same as saying

that the system develops a singularity in its partition function. Furthermore, the

discourse of statistical mechanics takes the predicate ‘exhibits irreversibility’ to be

best explicated as ‘does not return to any previous state’. For instance, according

to statistical mechanics (or, at least, the Boltzmannian approach), saying that the

behavior of a system is irreversible is the same as saying that the system never returns

to any of its previous states. An error theory about the declarative sentences of statis-

tical mechanics that contain either the predicate ‘undergoes a phase transition’ or the

predicate ‘exhibits irreversibility’ is, accordingly, a theory according to which those

predicates denote properties that happen never to be exemplified by real systems – it

is a theory according to which declarative sentences containing those predicates are

systematically false.

Both Callender and Liu are error theorists about this fragment of statistical me-

chanics. Both maintain that, for any real system S, the sentence ‘S undergoes a phase

transition’ is false; and both maintain that, for any real system S, the sentence ‘S

exhibits irreversible behavior’ is false. Callender and Liu are, however, different kinds

of error theorists. Liu is what Boghossian calls an instrumentalist. An instrumen-

talist grants that sentences containing certain predicates are systematically false, but

maintains that the continued use of those sentences “serves an instrumental purpose

that will not easily be discharged in some other way” ([11], p. 159). This is precisely
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the position Liu takes with respect to the predicate ‘undergoes a phase transition’:

although its extension is empty, its theoretical utility counsels its retention.

Callender, in contrast, is what Boghossian calls an eliminativist. An eliminativist

takes the systematic falsity of sentences involving certain predicates to be sufficient

grounds for eliminating and replacing those predicates. This is precisely the position

Callender takes with respect to the predicates ‘undergoes a phase transition’ and ‘ex-

hibits irreversibility’. In effect, Callender’s proposal is that the former predicate be

replaced with a new (albeit homophonic) predicate ‘undergoes a phase transition∗’,

where ‘undergoes a phase transition∗’ is to be explicated as ‘develops an approxi-

mation to a singularity in the partition function’. Likewise, Callender’s proposal is

that ‘exhibits irreversibility’ be replaced with a new (albeit homophonic) predicate

‘exhibits irreversibility∗’, where ‘exhibits irreversibility∗’ is to be explicated as ‘does

not return to any of its previous states for very long observational time scales’.

If either Callender’s eliminativism or Liu’s instrumentalism is correct, then the

statistical mechanical account of phase transitions and the Boltzmannian account of

irreversibility are not explanatory. For, if either of these error-theories is correct,

the putative explanandum of each account is false, thereby disqualifying from be-

ing explanatory any account that purports to show why the explanandum is true.83

Moreover, if those accounts are not explanatory, there is no evidence that some expla-

nations are ineliminably idealized (at least, no evidence provided within this disser-

tation). This would undermine the argument in favor of interpreting idealizations as

abstractions (see Chapter Four), as well as the criticisms of the philosophical accounts

83Perhaps this result can be avoided, if there is an error-theoretic account of scientific explanation
that does not require an explanandum to be true in order to be explained. But I am unaware of any
such account.
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of idealized explanation that allow idealizations to be explanatory despite being false

(see Chapters Two and Three).

5.2 Responses to Error-Theories

There are two ways to respond to an error-theory. A direct approach contests

one of the premises of the argument that establishes the error theory; an indirect

approach contests the internal coherence of the error-theory itself (see [81], p. 98).

Within the philosophical literature, Robert Batterman provides an indirect response

to an error-theory about the predicate ‘undergoes a phase transition’. The aim of

this section is to assess the adequacy of Batterman’s response, and to develop a direct

response to the error-theories of Callender and Liu. The assessment of Batterman’s

response is that, if cogent, it establishes an incoherence in Callender’s eliminativism

but not in Liu’s instrumentalism. (This is a limitation, but not a criticism, of Bat-

terman’s argument, since the argument is only directed at Callender’s position on

phase transitions to begin with.) The direct response to be developed, as a supple-

ment to Batterman’s indirect response about phase transitions, is that the arguments

in favor of either kind of error-theory succeed only if idealizations are distortions

– and fail if idealizations are abstractions. This direct response undercuts the mo-

tivation for both Callender’s eliminativism and Liu’s instrumentalism, and applies

to error-theories about the predicates ‘undergoes a phase transition’ and ‘exhibits

irreversibility’.

5.2.1 Batterman’s Indirect Response

In responding to Callender’s eliminativism about the predicate ‘undergoes a phase

transition’, Batterman distinguishes two kinds of discontinuities, mathematical and
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physical. Mathematical discontinuities are singularities in mathematical equations.

For example, a singularity in the partition function is a mathematical discontinuity.

Physical discontinuities in a system are qualitative changes in the system. For exam-

ple, a drop of water breaking off from a stream of water is a physical discontinuity.

According to Batterman, phase transitions are also physical discontinuities. For the

phases of a system are differentiated by their qualitative features, and this strongly

suggests that the different phases of a system are, in fact, qualitatively distinct from

each other. This is corroborated by observations and by typical definitions of a phase.

For instance, according to Bimalendu Roy, a phase is “defined as any homogeneous

and physically distinct part of a system which is separated from other parts of the

system by a definite boundary” ([98], p. 421). This definition suggests that phases are

qualitatively distinct from each other, because it requires definite boundaries between

different phases. Moreover, solid phases of systems sometimes have a lattice structure

that is absent in non-solid phases of systems, and systems in a solid phase tend to

occupy different volumes than the same systems in a liquid or gaseous phase.

From the claim that phase transitions are physical discontinuities, Batterman

infers that phase transitions should be represented as mathematical discontinuities.

The inference is licensed by Batterman’s thesis about representation, to the effect

that all physical discontinuities are to be represented as mathematical discontinuities.

This thesis finds corroboration with the case of breaking streams of water, which are

represented as mathematical discontinuities within the Navier-Stokes equations (see

[8]).

Liu and Emch provide further reasons in favor of this thesis. They write,

The difference between two phases, e.g., solid and liquid, is better captured
by a singularity. Even before Gibbs, Maxwell had complemented the van
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der Waals model of real fluids by a construction, known as the ‘Maxwell
plateau,’ the effect of which is to make the isotherms only piecewise an-
alytic [i.e., discontinuous]. Should we regard this idealization as no more
than an ad hoc construction? The construction was not only supported
later by entirely rigorous mathematical arguments, it was also, first by
Andrews, observed by successively cleaner and more precise experiments
that the isotherms are better described as piece-wise analytic [i.e., math-
ematically discontinuous] rather than as having arbitrarily sharp corners”
([74], p. 155).

Liu and Emch seem to suggest that if one were not to represent physical disconti-

nuities as mathematical discontinuities, one’s system of mathematical representation

would fail to distinguish, in the most perspicuous way possible, phenomena that are

physically discontinuous from those that are continuous.

Batterman’s argument may be summarized as follows. Since phase transitions

are physical discontinuities, and since all physical discontinuities should be repre-

sented as mathematical discontinuities, phase transitions should be represented as

mathematical discontinuities. Specifically, phase transitions should be represented as

singularities in partition functions. Hence, Callender’s suggestion, that phase tran-

sitions be represented as approximations to singularities in partition functions, is

mistaken: it fails to represent phase transitions in the most perspicuous way possible,

namely, as mathematical discontinuities.

Although Batterman’s conclusion, if correct, shows that Callender’s eliminativism

is mistaken, it does not show that Liu’s instrumentalism is mistaken. (Nor is it in-

tended to.) For Liu’s instrumentalism agrees that phase transitions should be rep-

resented as singularities in partition functions, on the grounds that this method of

representation is theoretically useful. So Liu can agree with Batterman that phase

transitions should be represented as mathematical discontinuities. Nonetheless, Liu
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cannot agree with Batterman that phase transitions are physical discontinuities; for,

like Callender, Liu motivates his error-theory by appealing to an argument according

to which, if phase transitions are represented as singularities in partition functions,

there cannot be phase transitions in real systems, because partition functions for real

systems cannot contain singularities.

If either Callender or Liu were to respond to Batterman’s argument, they would

probably challenge the claim that phase transitions are physical discontinuities.84 For

they have an independent argument to the effect that only systems in the thermody-

namic limit could develop physical discontinuities.

Callender, as an error-theorist, would most likely take Batterman’s argument to

show that the term ‘phase’ needs to be redefined (or replaced with a new term,

‘phase∗’), so that a phase (or ‘phase∗’) is “any homogeneous and approximately phys-

ically distinct part of a system which is separated from other parts of the system by

a drastic but indefinite boundary.” This modified definition does not treat different

phases as qualitatively distinct. Accordingly, the modified definition is compatible

with transitions between phases not being transitions between qualitatively distinct

phases, and thereby compatible with phase transitions not being physical discontinu-

ities.

Liu, as an instrumentalist, would more conservatively take Batterman’s argument

to show only that phases are not in fact qualitatively distinct from each other, even

though it is useful, for theoretical purposes, to speak as if they are. And if phases are

not qualitatively distinct from each other, there is no reason to suppose that phase

84There is evidence that both Callender and Liu would make this response. In a footnote, Callender
assents to a statement made by Liu, that “Actual systems are finite and phase transitions in them
are never real singularities” ([16], p. 550 fn. 8; [72], p. S102).
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transitions are physical discontinuities, since phase transitions might just as well be

sharp – albeit continuous – transitions between phases that are only quantitatively

distinct from each other. If either Callender or Liu’s response were correct, so that

phase transitions are not physical discontinuities, Batterman’s argument would be

unsound.

5.2.2 A Direct Response

The dialectic between Callender and Liu, on the one hand, and Batterman, on

the other, is indecisive. Batterman maintains that phase transitions are physical dis-

continuities, whereas Callender and Liu would most likely deny this. The grounds for

their denial are the same as their initial grounds for advancing an error-theory about

the predicate ‘undergoes a phase transition’. For, if one grants that phase transitions

are to be represented as singularities in partition functions, there is the purely math-

ematical result that only partition functions for systems in the thermodynamic limit

contain singularities. And if, as Callender and Liu maintain, real systems do not exist

in the thermodynamic limit because real systems have only finitely many particles,

then partition functions for real systems do not contain singularities. If, as Batterman

maintains, physical discontinuities are to be represented as mathematical discontinu-

ities, then phase transitions in real systems must not be physical discontinuities; for

only systems in the thermodynamic limit contain mathematical discontinuities that

could represent phase transitions as physical discontinuities.85

85Batterman maintains, nonetheless, that there is something deeply correct about the thermo-
dynamic limit. For, according to Batterman, “despite the fact that real systems are finite, our
understanding of them and their behavior requires, in a very strong sense, the idealization of infinite
systems and the thermodynamic limit” ([7], p. 9).
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Giovanni Gallavotti suggests two constraints on any explication of ‘phase transi-

tion’ ([36], p. 184). First, the definition should reflect what is physically expected.

For instance, one should be able to prove the existence of phase transitions for cases in

which one expects phase transitions. Second, it should (hopefully) provide the tools

for a closer description of typical phenomena, such as phase separation. Gallavotti’s

constraints illuminate the tension between Callender and Liu, on the one hand, and

Batterman, on the other. The error theories proposed by Callender and Liu are de-

signed to satisfy Gallavotti’s first constraint: since the singularity-based criterion for

phase transitions appears to yield the result that there are no phase transitions in

real systems, and since this result does not reflect what is physically expected (contra

Gallavotti’s first constraint), Callender and Liu reject the singularity-based criterion.

Yet, as Batterman argues, this replacement of the singularity-based criterion with a

criterion about approximate singularities is not heuristically fruitful: the criteria for

what counts as an approximation to a singularity are vague at best and ill-defined

at worst. Moreover, if either Callender or Liu’s error theory demands that phases be

only approximately physically distinct from each other, it is not clear that the new

criterion for phase transitions allows for a closer description of phenomena such as

phase separation (contra Gallavotti’s second constraint).

One way to advance the dialectic is to provide a direct response to Callender and

Liu’s error theories, a response that contests the soundness of the arguments used to

establish the error theories. Their argument for an error theory regarding the pred-

icate ‘undergoes a phase transition’ assumes that idealizations are false, because the

argument takes the thermodynamic limit to be the limit in which a system’s num-

ber of particles becomes infinite. This assumption is not mandatory. Indeed, it is
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possible to replace this assumption with the assumption that idealizations – and es-

pecially the thermodynamic limit – are abstractions. As the discussion from Chapter

Four demonstrates, treating the thermodynamic limit as an abstracting idealization

blocks the paradox of phase transitions. Since Callender and Liu’s argument in favor

of an error theory about ‘undergoes a phase transition’ is a version of that paradox,

interpreting the thermodynamic limit as an abstraction also renders their argument

unsound.

Since the error-theoretic arguments against the explanatory success of the statis-

tical mechanical account of phase transitions are unsound if the thermodynamic limit

is an abstraction, the burden of proof shifts to advocates of error theories. Prior to

error-theoretic worries, the statistical mechanical account of phase transitions seems

to be explanatory. Error theories about ‘undergoes a phase transition’ cast doubt

upon this appearance by arguing that the account’s explanandum is false. But that

argument is unsound if the thermodynamic limit is an abstraction. And if the limit

is an abstraction, a prima-facie case can be made to restore the plausibility of sup-

posing that the statistical mechanical account of phase transitions is explanatory (see

Chapter Four for details). The burden of proof for error theorists is to defeat that

prima-facie case, without appealing to the assumption that the thermodynamic limit

is a distorting idealization.

Having disposed of error theories about the predicate ‘undergoes a phase transi-

tion’, it remains to address error theories about the predicate ‘exhibits irreversibility’.

Callender’s argument in favor of an error theory about this predicate assumes that

any closed real system has a bounded phase space. The discussion in the previous

two chapters challenges this assumption. The rigorous derivation of the Boltzmann
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equation shows that systems governed by the Boltzmann equation, systems that ex-

hibit irreversible behavior, have a non-compact phase space, because the Boltzmann

equation holds only of systems that are in the Boltzmann-Grad limit (see Chapter

Three). Hence, if the Boltzmannian account of irreversibility is correct, some systems

that exhibit irreversible behavior do not have a bounded phase space.

This alone does not challenge Callender’s argument; he can still claim that the

systems governed by the Boltzmann equation, the systems which exhibit irreversible

behavior, are not real systems. And his claim seems to be supported by the following

argument. Grant that a system exhibits irreversible behavior only if it exists in the

Boltzmann-Grad limit. This is the limit in which a system’s number of particles

is infinite. Hence, only systems with infinitely many particles exhibit irreversible

behavior. Since every real system has only finitely many particles, no real systems

exhibit irreversibility.

This argument is a version of the paradox of irreversibility (see Chapter Three).

The argument depends upon an interpretation of idealizations as distortions, because

it treats the ineliminable idealizations that appear in the Boltzmannian account of

irreversibility as distorting idealizations. This assumption is not mandatory. If the

ineliminable idealizations that appear in the Boltzmannian account are abstractions,

then some systems that exhibit irreversible behavior and do not have a bounded phase

space are real systems (see Chapter Four). Treating the Boltzmann-Grad limit as an

abstraction blocks the paradox of irreversibility; it also block’s Callender’s argument.

Hence, Callender’s argument in favor of an error theory about the predicate ‘exhibits

irreversibility’ is unsound.
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Since the error-theoretic arguments against the Boltzmannian account of irre-

versibility being explanatory are unsound if the Boltzmann-Grad limit is an abstrac-

tion, the burden of proof shifts to advocates of error theories. Prior to error-theoretic

worries, the Boltzmannian account of irreversibility seems explanatory. Error theo-

ries about ‘exhibits irreversibility’ cast doubt upon this appearance by arguing that

the account’s explanandum is false. But that argument is unsound if the Boltzmann-

Grad limit is an abstraction. And if the limit is an abstraction, a prima-facie case can

be made to restore the plausibility of supposing that the Boltzmannian account of

irreversibility is explanatory (see Chapter Four for details). The burden of proof for

error theorists is to defeat that prima-facie case, without appealing to the assumption

that the Boltzmann-Grad limit is a distorting idealization.

5.3 Earman’s Principle

Not all criticisms of the presupposition that some explanations are ineliminably

idealized are arguments in favor of some sort of error-theory about the predicates

‘undergoes a phase transition’ and ‘exhibits irreversibility’. Nor do all such criticisms

assume that idealizations are distortions. For example, John Earman claims that

a condition of adequacy on any acceptable account of the role of idealiza-
tions [is] that it imply no effect is to be deemed a genuine physical effect
if it is an artifact of idealizations in the sense that the effect disappears
when the idealizations are removed ([30]).

Call this Earman’s Principle. Earman’s Principle is a plausible claim both under the

interpretation of idealizations as distortions, and under the interpretation of idealiza-

tions as abstractions. If idealizations are distortions, then they incorrectly represent

features of real systems. It seems reasonable to hold that an effect that only appears

within a distorted model of a real system is merely an artifact of that model, rather
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than a feature of the real system. If idealizations are abstractions, then idealized

descriptions only partially characterize real systems. Again, it seems reasonable to

hold that an effect that only appears within a partial model of a system is merely an

artifact of that model rather than a feature of the real system.

If Earman’s Principle is correct, there are no ineliminably idealized explanations

of genuine physical phenomena. For if there were such an explanation, then its ex-

planandum is a phenomenon that disappears when certain idealizations are removed.

Hence, according to Earman’s Principle, such a phenomenon is not a genuine physical

phenomenon. This is just to say that such a phenomenon does not obtain in real sys-

tems. Since there can be no explanation of a phenomenon that does not obtain in real

systems, there are no explanations of phenomena that disappear upon the removal

of idealizations. Consequently, there are no ineliminably idealized explanations of

genuine physical phenomena.

Liu and Emch, discussing what is here called Earman’s Principle in the context

of explanations of quantum spontaneous symmetry breaking, argue that the princi-

ple is false. According to Liu and Emch, an important function of idealization is

“to help discover (or create) – via introducing new predicates – qualitatively distinct

properties or kinds out of ones that differ only quantitatively, more or less, prior to

the idealization” ([74], p. 155). Liu and Emch claim that the different phases of a

system are qualitatively distinct from each other – for example, there is a qualitative

difference between the paramagnetic phase and ferromagnetic phase of a metal. This

qualitative difference is best captured by appealing to the idealization of the ther-

modynamic limit: without that idealization, phases are represented as only quanti-

tatively distinct. Hence, although the qualitative difference between different phases
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of a system disappears upon removal of the thermodynamic limit, the difference is

genuine. So Earman’s Principle is false.

Liu and Emch’s argument against Earman’s Principle is reminiscent of Batter-

man’s argument against error-theories about the predicate ‘undergoes a phase tran-

sition’. For both arguments appeal to the purported fact that the different phases of

a system are qualitatively (and not merely quantitatively) distinct from each other.

The advocate of Earman’s Principle is thus sure to insist, with error-theorists, that

the different phases of a system are not qualitatively distinct from each other. This

can be insisted upon even if one agrees, with Liu and Emch, that the “difference

between two phases, e.g. solid and liquid, is better captured by a singularity” ([74],

p. 155), because one might hold an instrumentalist error-theory according to which,

although the difference between phases is not qualitative, it is nonetheless best repre-

sented as a qualitative difference for various theoretical reasons. So, for instance, an

error-theorist of an instrumentalist bent can agree with Liu and Emch that “taking

the macroscopic [thermodynamic] limit is no more radical or implausible than taking

space and/or time as continua; without these idealizations, the usual real analysis

would not be applicable and hence many physical situations can neither be rigorously

described nor inferred” ([74], p. 156). These reasons given by Liu and Emch are

reasons in favor of representing phase transitions as singularities, rather than reasons

in favor of there being a qualitative difference between different phases of a system.

Liu and Emch’s argument against Earman’s Principle has the same limitations

as Batterman’s argument against error-theories. Both arguments require the premise

that differences between phases are qualitative; yet there appears to be a cogent

argument that such differences cannot be qualitative for real systems, because real
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systems do not exist in the thermodynamic limit and only systems in the thermo-

dynamic limit are capable of developing qualitatively different phases (because only

systems in the thermodynamic limit can have singularities in their partition func-

tions). If the Liu-Emch argument is to succeed, it must interpret the thermodynamic

limit as an abstraction, in order to avoid this argument.

Although the argument against Earman’s Principle given by Emch and Liu is

intriguing, it is also contentious, since an advocate of Earman’s Principle most likely

would respond by advocating some sort of error theory about the predicate ‘undergoes

a phase transition’. There is a way to diffuse the force of Earman’s Principle without

entering into that debate. For, as a premise in an argument against the existence of

ineliminably idealized explanations, Earman’s Principle is question-begging.

Both advocates and opponents of the existence of ineliminably idealized explana-

tions grant that every explanation requires that its explanandum phenomenon obtain

in some real system. If P is the explanandum phenomenon of an explanation, then

P occurs in some real system; and if that explanation is ineliminably idealized, ex-

plaining the occurrence of P in that real system requires an appeal to an idealization.

Yet if Earman’s Principle is correct, no explanation of a phenomenon that occurs in

a real system requires an appeal to an idealization. For if no genuine physical effect

disappears when idealizations are removed, then no genuine physical effect requires

an appeal to idealization in order to be explained.

For example, according to the Boltzmannian account of irreversibility, irreversible

behavior “disappears” for systems not in the Boltzmann-Grad limit. Hence, according

to Earman’s Principle, irreversible behavior is not a feature of real systems. Yet if

the Boltzmannian account is explanatory despite being ineliminably idealized, then
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irreversible behavior is a feature of some real systems. For, given the assumption that

the account is explanatory, and the common assumption that explanandum events

obtain in some real systems, it follows that irreversibility obtains in some real systems.

Moreover, claims about the reasonableness of taking features that only appear in

idealized versions of systems to be non-genuine seem to be trumped by the prima-

facie case that the Boltzmannian account of irreversibility is explanatory. Hence,

Earman’s Principle lacks dialectical force against the claim that some explanations

are ineliminably idealized, because it turns out to be a straightforward denial of that

claim and there is no further independent motivation for Earman’s Principle.

Moreover, it is reasonable to reject Earman’s Principle rather than reject the claim

that some explanations are ineliminably idealized. There is a prima-facie case that

the statistical mechanical account of phase transitions and the Boltzmannian account

of irreversibility are explanatory. There is no extant defeater to this case. Earman’s

Principle seems to be motivated by the requirement that the explanans of any gen-

uine explanation must be true; but this requirement of factual correctness can be

met despite there being a violation of Earman’s Principle, if idealizations are abstrac-

tions: if the description of a genuine physical effect is ineliminably idealized and the

idealizations used to obtain that description are abstractions, then the description is

true (albeit incomplete) even though the effect cannot be described without appeal-

ing to idealizations. Since (apparently) there is no further motivation for Earman’s

Principle, its threat is defused.
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5.4 Emergence

Although the appeal to Earman’s Principle fails to refute the presupposition that

some explanations are ineliminably idealized, there remains the mystery of why there

are ineliminably idealized explanations. For instance, if the free energy function

that takes into account boundary and surface effects in a system cannot describe the

occurrence of phase transitions in that system, why should ignoring (or otherwise

idealizing) those effects allow for a description of phase transitions in the system?

What is it about such phenomena that makes them immune, in principle, to non-

idealized description? The short answer to this question is that phenomena like

phase transitions and irreversible behavior are emergent. This section of the chapter

elaborates upon this answer.

5.4.1 Constructionism

Phase transitions and irreversible behavior are phenomena that supervene upon

certain facts about the systems in which they occur. For instance, the phenomenon

of a system undergoing a phase transition supervenes upon facts that determine the

free energy per particle for the system, such as facts about the arrangement and

interactions among the constituents of the system. Likewise, the phenomenon of a

system exhibiting irreversible behavior supervenes upon facts about the positions and

momenta of the constituents of the system, the interactions among these constituents,

and so on. These facts – the supervenience bases for the phenomena – are, in some

sense, more fundamental than the phenomena that supervene upon them. Whether

a system undergoes a phase transition or exhibits irreversible behavior is determined
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by the facts in the supervenience base for such phenomena. But the reverse is not

the case; the determination relation is asymmetric.

This supervenience relation between phenomena that require an appeal to ide-

alization for their explanation, on the one hand, and the facts that constitute the

supervenience bases for these phenomena, on the other hand, generates a puzzle.

The conviction that it is possible to begin from the laws and entities postulated

by some fundamental theory and reconstruct the entire universe might lead one to

assume the correctness of what P.W. Anderson calls Constructionism (see [3]):

Constructionism: Any correct description of the facts that constitute a super-

venience base for a phenomenon is thereby a correct description of the phe-

nomenon itself.

According to Constructionism, a correct description of a supervenience base for a

system suffices for a correct description of every property of the system.

Constructionism is inconsistent with the claim that the explanations (and correct

descriptions) of some phenomena are ineliminably idealized. Since correct descrip-

tions of such phenomena must be idealized, and since these idealizations pertain to

facts about the supervenience bases of the phenomena, correct descriptions of these

phenomena fail describe at least one fact in the supervenience base for each phenom-

ena. The failure to describe correctly all of these facts might be due to the idealization

resulting in an incorrect description of some of those facts (if idealizations are dis-

tortions); or the failure might be due to the ineliminable idealization resulting in an

incomplete description of those facts (if idealizations are abstractions). For instance,

a correct description of the occurrence of a phase transition in some system must be

idealized. Since the required idealizations pertain to facts that determine the free

200



energy per particle of the system (e.g., facts about what happens near the bound-

aries and surface(s) of the system), a correct description of the occurrence of a phase

transition does not correctly describe all of the facts in the supervenience base for the

occurrence of phase transitions in that system. A correct description of the occur-

rence of a phase transition in a system either incorrectly describes the boundary and

surface effects in the system (if idealizations are distortions) or else does not describe

those effects at all (if idealizations are abstractions).

According to Constructionism, if a phenomenon supervenes upon certain facts

about the system in which it occurs, then any correct description of the superve-

nience base for the phenomenon suffices for a correct description of the phenomenon

itself. However, if the only way to describe a phenomenon correctly is to appeal to

some idealization of the supervenience base for that phenomenon, then any correct

description of that phenomenon does not correctly describe the supervenience base for

the phenomenon. Hence, if the correct description of a phenomenon is ineliminably

idealized, a correct description of the supervenience base for the phenomenon does

not suffice for a correct description of the phenomenon itself, contra Constructionism.

There are several ways to avoid this inconsistency. First, one might deny that

phenomena like phase transitions and irreversible behavior supervene upon certain

facts about the systems in which they occur. Secondly, one might deny the possibility

of there being a correct description of the supervenience base for such phenomena.

Thirdly, one might deny the existence of phenomena like phase transitions and irre-

versible behavior. Fourthly, one might deny Constructionism.

The first two of these options – denying that phenomena like phase transitions and

irreversible behavior supervene upon certain facts about the systems in which they
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occur or denying that it is possible for there to be a correct description of the super-

venience base for such phenomena – are implausible. For there is a general agreement

that such a supervenience relation obtains; and, as Elliot Sober argues ([112], p. 167),

the thesis that such a supervenience relation exists fits available data well enough

for it to be a mistake to adopt a more complex thesis that denies supervenience.86

Moreover, there is a general agreement that a description of a supervenience base for

these phenomena is possible in principle even if impossible in practice. Given the

implausibility of these two options, one must either deny the existence of phenomena

like phase transitions and irreversible behavior or reject Constructionism.

To deny the existence of phenomena like phase transitions and irreversible behav-

ior is, in effect, to adopt some sort of error theory about the predicates ‘undergoes

a phase transition’ and ‘exhibits irreversible behavior’. For if there are no such phe-

nomena, no real system exemplifies the properties denoted by these predicates. An

appeal to Constructionism thereby provides another argument in favor of an error

theory about these predicates; unlike the arguments given by Callender and Liu, this

argument does not assume that idealizations are distortions. Nonetheless, an appeal

to Constructionism does not defeat the prima-facie case in favor of supposing that

the ineliminably idealized accounts of phase transitions and irreversibility are gen-

uinely explanatory, because the assumption that Constructionism is true is no more

86Michael Silberstein and John McGeever hold that emergent properties are properties of whole
systems that fail to supervene upon the system constituents; they think this is “the most interest-
ing and important kind of emergence” ([107], p. 183). Silberstein and McGeever thereby disagree
with Jaegwon Kim, who “expects most emergentists to accept mereological supervenience”, i.e., the
supervenience of emergent properties upon their system constituents ([55], p. 7). If Silberstein and
McGeever are correct and mereological supervenience fails for emergent properties, then there is no
inconsistency between Constructionism and the claim that the explanations (and correct descrip-
tions) of some phenomena are ineliminably idealized, because these phenomena fail to supervene
upon their supervenience bases.
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plausible than the assumption that phase transitions and irreversible behavior are

emergent.

Constructionism is false if these phenomena are emergent, because a correct de-

scription of the supervenience base for emergent phenomena does not suffice for a

correct description of the emergent phenomena themselves. The remainder of this

section elaborates upon what it means to say that phenomena like phase transitions

and irreversibility are emergent, and rebuts various objections to the possibility of

there being emergent properties. If there are no plausible objections to the claim that

phenomena like phase transitions and irreversibility are emergent, then the appeal to

Constructionism fails to show that such phenomena do not obtain in real systems.

5.4.2 Ontological and Epistemological Emergence

There is no dearth of definitions for the notion of emergence. For the purposes

of this chapter, it suffices to focus on two broad kinds of emergence, ontological and

epistemological. Drawing this distinction requires first introducing the notion of an

emergent predicate. Following this is a presentation of the case in favor of supposing

that predicates like ‘undergoes a phase transition’ and ‘exhibits irreversible behavior’

– predicates used to describe the explananda for ineliminably idealized explanations

– are emergent predicates in the ontological sense of emergence. (The discussion to

follow relies heavily upon [42], pp. 55-56.)

An emergent predicate has two distinctive properties. First, it is predicable only

of a system as a whole. For instance, the predicate ‘undergoes a phase transition’ is

predicable only of a whole system; it makes no sense to say that an individual particle

in a pot of water is undergoing a phase transition. (This is so, even though it does
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make sense to say that the Helmholtz free energy per particle for a system exhibits a

singularity.) Likewise, the predicate ‘exhibits irreversible behavior’ is predicable only

of whole systems; it makes no sense to say that an individual molecule in a gas is

behaving irreversibly.

Second, the correct use of an emergent predicate allows for predictions that are

impossible to derive from the relevant laws plus initial and boundary conditions alone.

For instance, (proper) use of the predicate ‘undergoes a phase transition’ allows for

predictions that are impossible to derive from a microscopic description of, say, a

ferromagnet and the laws that govern ferromagnets, because correctly using the pred-

icate ‘undergoes a phase transition’ requires that one consider the ferromagnet in the

thermodynamic limit and the only way to predict that a ferromagnet will undergo

a phase transition at a certain temperature is to consider the ferromagnet in that

limit. Likewise, (proper) use of the predicate ‘exhibits irreversible behavior’ allows

for predictions that are impossible to derive from a microscopic description of, say,

a rarefied gas, because (properly) using the predicate requires that one consider the

gas in the Boltzmann-Grad limit and the only way to predict that a gas behaves

irreversibly is to consider the gas in that limit (due to the recurrence paradox).

Predicates like ‘undergoes a phase transition’ and ‘exhibits irreversible behavior’

are emergent predicates. There are two broad explanations for why emergent pred-

icates are distinct from non-emergent predicates like ‘has mass’ and ‘is in uniform

motion’. The ontological explanation is that emergent predicates pick out emergent

properties. This sort of explanation results in an ontological notion of emergence, ac-

cording to which there are emergent properties that are just as real as non-emergent

properties such as mass.
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This ontological sense of emergence accords with Jaegwon Kim’s contrast between

emergent properties and merely resultant ones. According to Kim,

. . . resultant properties are . . . those that are predictable from a system’s
total microstructural property [i.e., the intrinsic properties of a system’s
particles and relations that configure those particles into a structure that
is united and stable as a system], but emergent properties are those that
are not so predictable ([55], pp. 7-8).

In saying that an emergent properties is not predictable from a system’s total mi-

crostructural property, Kim means that “we may know all that can be known about

[the supervenience base for the emergent property] – in particular, the laws that gov-

ern the entities, properties and relations constitutive of [that supervenience basis] –

but this knowledge does not suffice to yield a prediction [of the emergent property]”

([55], p. 8). If emergent predicates refer to emergent properties, properties that are

not predictable from total knowledge of their supervenience bases, then it is to be

expected that the correct use of emergent predicates allows for predictions that are

impossible to derive from the laws that govern such supervenience bases plus initial

and boundary conditions alone.

In contrast to the ontological explanation for why emergent predicates differ from

non-emergent ones, an epistemological explanation of this difference is that emer-

gent predicates indicate something about our epistemic status with respect to the

world. For instance, instrumentalism about the predicate ‘undergoes a phase tran-

sition’ distinguishes this predicate from others on the grounds that its use serves an

instrumental purpose that is not readily discharged in some other way. This sort

of explanation results in an epistemological notion of emergence, a notion which is

non-committal about whether there are emergent properties.
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There is a prima-facie case that phase transitions and irreversible behavior are

emergent properties. The accounts of these phenomena appear to be explanatory

despite being ineliminably idealized. Our observations seem to confirm that, at least

sometimes, phase transitions occur and systems behave irreversibly. And the objec-

tions to there being such properties, based upon Callender and Liu’s arguments, an

appeal to Earman’s Principle, or an appeal to Constructionism, are inconclusive.

5.4.3 A Defense of Ontological Emergence

Although there is a prima-facie case in favor of supposing that phase transitions

and irreversible behavior are emergent properties of some real systems, there are also

general philosophical objections to the effect that there are no emergent properties.

The two main objections to the existence of emergent properties are due to Stephen

Pepper ([91]) and Jaegwon Kim ([55]). The gist of both arguments is that emer-

gent properties are metaphysically otiose and thereby dispensable, because they are

epiphenomenal.87 Lest the prima-facie case for the emergence of phase transitions

87There is a third and more recent criticism, due to Daniel Heard([42]), according to which the
claim that some properties are emergent entails a highly implausible ontology. Heard’s argument
depends upon emergent predicates being predicates that are predicable only of systems as a whole and
that yield predictions that would be very different or impossible to derive from relevant dynamical
laws plus boundary conditions. Since this chapter’s characterization of emergent predicates is more
stringent than Heard’s characterization, his arguments fail against an ontological explanation of
the difference between emergent and non-emergent predicates. For instance, according to Heard’s
notion of an emergent predicate, the predicate ‘instantiates the Central Limit Theorem’ counts
as an emergent predicate. This predicate does not refer to an emergent property, because it is
defined as a mathematical operation on properties in the supervenience base of various samples.
(If, for example, the noise voltages in a set of communication circuits are normally distributed,
the set of circuits instantiates the central limit theorem.) However, the predicate ‘instantiates
the Central Limit Theorem’ does not count as an emergent predicate according to this chapter’s
characterization of emergent predicates, because predictions using this predicate can be derived from
relevant laws and the definition of the predicate. (For instance, one can analyze the distribution of
noise voltages in a set of circuits to determine whether the distribution is normal.) Heard’s argument
thereby fails to apply to this chapter’s claim that emergent predicates refer to emergent properties,
owing to the discrepancy between this chapter’s characterization of emergent predicates and Heard’s
characterization.
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and irreversible behavior be defeated, it is necessary to show that these objections

can be met. (Although I show how responses to these objections might go, I leave a

proper development of the details as a further project.)

Pepper on Emergent Properties

Pepper’s argument against the existence of emergent properties begins with the

observation that, if an emergent property is genuine rather than merely epiphenom-

enal, then there must be a difference between situations in which such a property

obtains and situations in which the property does not obtain. This difference must

be more than a difference between the presence or absence of the emergent property

itself. Hence, assuming that emergent properties are law-governed, the difference be-

tween situations in which an emergent property obtains and situations in which it

does not must amount to a difference in the laws that govern such situations. This

result accords well with the difference between situations that exhibit irreversible be-

havior and those that do not: the former are governed by something like the second

law of thermodynamics, the latter are not.

Pepper’s argument takes the form of a dilemma. Consider a law that governs

systems in which a putatively emergent property obtains. Either this law is a prim-

itive law, governing the behavior of the elements of the supervenience base for the

emergent property; or the law is derivable from such primitive laws; or the law is

a law for an epiphenomenon. There is no fourth alternative: if the law is neither

primitive, derivable from primitive laws, nor a law for an epiphenomenon – if the law

is “going to step down out of an epiphenomenal heaven” – then it is “bound soon

to get into conflict with” the primitive laws ([91], p. 244). For there is bound to

be a situation in which the emergent property obtains, such that the primitive laws
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governing the situation predict one behavior but the law for the emergent property

predicts a different behavior.

Given these three alternatives for the kind of law the emergent law might be, it

follows that either the putative emergent property governed by the law in question is

not emergent or the putative emergent property governed by the law is emergent but

epiphenomenal. For if the law that governs systems in which the putative emergent

property obtains is primitive or derivable from primitive laws, then the property it

governs is not emergent, in virtue of being predictable from the supervenience base

for the property. And if the law that governs systems in which the putative emergent

property obtains is a law for an epiphenomenon, then of course the emergent property

is an epiphenomenal property.

Pepper takes his argument to refute the existence of emergent properties, because

he assumes that “a theory of wholesale epiphenomenalism is metaphysically unsat-

isfactory” ([91], p. 241). A quick response to Pepper’s argument would be to bite

the bullet or deny his metaphysical intuitions, accepting that emergent properties are

epiphenomenal. But there is a better response available. Pepper overlooks a way to

ensure consistency between primitive laws and laws for genuine, non-epiphenomenal

emergent properties. For, in addition to the alternatives he considers, there is the

possibility that the primitive laws have a restricted range of validity, that the laws

“break down” when applied to systems in which genuinely emergent properties obtain.

(Paul Meehl and Wilfrid Sellars raise this possibility in [80].)

If the primitive laws break down when applied to systems in which genuinely

emergent properties obtain, then there is no situation in which emergent laws get

into conflict with the primitive laws. And a case can be made that the primitive laws
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do break down in this way. In a different context, Alexander Rueger suggests that the

relation between instances of emergent properties and their supervenience bases is a

part-whole relation: an instance of an emergent property in some system is “part” of

instances of the properties of the supervenience base for that instance in that system

(see [100], p. 13). Following this line of thought, the difference between primitive

laws and emergent laws is that primitive laws apply to systems as a whole, whereas

emergent laws apply to mere “parts” of those systems. And the reason why primitive

laws break down when applied to systems in which genuinely emergent properties

obtain, is that the primitive laws account for “too much other stuff”, stuff that is

irrelevant to the obtaining of the emergent properties. This other stuff “obscures”

the emergent properties. The emergent laws ignore this excess baggage, which is why

they are able to account for the obtaining of emergent properties.

Admittedly, this response to Pepper’s argument raises many issues: what is a

“part” of a system? how can properties be “obscured” by laws that take into account

too much detail? to what extent is this obscuring a pragmatic function of our interests,

and to what extent is the obscuring metaphysical? Satisfactorily resolving these

issues is a project in itself. Here it suffices to indicate that Pepper’s argument can be

avoided, without providing all of the minute details for the way in which this can be

accomplished.

Kim on Emergent Properties

Jaegwon Kim provides a second argument to the effect that emergent properties

must be epiphenomenal. Kim’s argument shows the inconsistency of the claim that

emergent properties are not epiphenomenal with five other plausible claims. These

other claims are:
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1. Supervenience: Emergent properties supervene upon primitively physical (non-

emergent) properties.

2. Distinctness: Emergent properties are wholly distinct from primitively physical

properties.

3. Causal Closure: Every primitively physical event (involving only primitively

physical properties) that has a sufficient cause at a time t has a sufficient prim-

itively physical cause at t.

4. Downwards Causation: If an event e2 supervenes on an event e3 and if e1 is a

sufficient cause of e2 at time t, then e1 causes e2 in virtue of being a sufficient

cause of e3 at t.

5. Causal Exclusion: If an event e2 has a sufficient cause e1 at t, then there is no

other event wholly distinct from e1 that is also a sufficient cause of e2 at t.

Causal Exclusion entails that if the collision of a brick with a window is a sufficient

cause of the window’s breaking, there is no other event that is also a sufficient cause

of the window’s breaking.

Kim’s argument proceeds as follows. For reductio, suppose that some emergent

event E1 is a sufficient cause of an emergent event E2 at time t. Since the emergent

supervenes on the primitively physical, E2 supervenes on some primitively physical

event P2. The event E1 causes E2 at t in virtue of being a sufficient cause of P2 at

t, via Downward Causation. Since the primitively physical is causally closed, there

is also a sufficient primitively physical cause of P2 at t (say, P1). This primitively

physical cause is wholly distinct from E1, since the emergent and the primitively
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physical are distinct. Hence, via Causal Exclusion, E1 is not a sufficient cause of E2

at t. Contradiction.

If one assumes the metaphysical unsatisfactoriness of any theory according to

which emergent properties are epiphenomenal, Kim’s argument refutes the existence

of emergent properties. A quick response to this argument would be to bite the

bullet and deny the metaphysical intuition, accepting that emergent properties are

epiphenomenal. One might also defend the view according to which emergent events

are systematically overdetermined, in which case Causal Exclusion is false and Kim’s

argument is unsound. Or, following the response to Pepper’s argument, one might

hold that instances of emergent properties are “parts” of instances of the properties

of the supervenience base for those instances. In this case, the Distinctness premise

is false and Kim’s argument is unsound (see [100], p. 13).

5.5 Conclusion

There are three kinds of objection to the presumption that some explanations

are ineliminably idealized: error-theoretic; those based upon Earman’s Principle; and

those based upon an appeal to Constructionism. All of these objections can be

met. The error-theoretic objections fail if idealizations are abstractions. Objections

based upon Earman’s Principle can be shown to be question-begging. And objections

based upon Constructionism can be avoided by taking the explananda of ineliminably

idealized explanations to be ontologically emergent phenomena.
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CHAPTER 6

IDEALIZED EXPLANATIONS AS ONTOLOGICAL
GUIDES

Inference to the best explanation is a scheme of inference for selecting which hy-

pothesis, from a set of incompatible hypotheses, is most probably true. When cogent,

inference to the best explanation is also a route that connects explanation and ontol-

ogy. Most scientific hypotheses, however, happen to be idealized; and if idealizations

are false, inference to the best explanation is not a cogent form of inference. The

question thus arises: if two idealized hypotheses, both explanatory, are incompatible

with each other, which – if either – is a guide to what the world is like?

This chapter has two aims. The first is critically to discuss two philosophical ac-

counts of the connection between idealized hypotheses and ontology. These accounts

are due to Lawrence Sklar and Paul Teller, and they share the assumption that

idealizations are false. One thesis of this chapter is that neither of these accounts

adequately characterizes the connection between idealized hypotheses and ontology.

The second aim of this chapter is to present an alternative account of this connection.

The account to be presented rejects the assumption that idealizations are false, in

favor of the assumption that idealizations are abstractions (in the sense discussed in

Chapter Four). The second thesis of this chapter is that the resulting account more
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adequately characterizes the connection between idealized hypotheses and ontology,

than do extant accounts that take idealizations to be false. This provides further

support for an interpretation of idealizations as abstractions, by showing that the

distinction between distortions and abstractions can solve a problem other than the

one of how ineliminably idealized accounts can be explanatory. This chapter shows

that treating idealizations as abstractions rather than as distortions is also useful in

cases that involve eliminable idealizations, since the idealized hypotheses discussed

herein are eliminably idealized.

6.1 Explanation, Ontology, and Idealization

Science is rife with hypotheses that, although potentially explanatory, are in-

compatible with each other. There is the incompatibility between Darwin’s theory

of evolution and a once-accepted natural theology, two hypotheses that seek to ex-

plain the origin and diversity of species. There is also the incompatibility between

Lavoisier’s theory of oxygen and a once-accepted theory postulating the existence

of phlogiston, two theories that seek to explain combustion and the calcination of

metals. Thirdly, there is the incompatibility between the wave theory and particle

theory, two hypotheses that seek to explain the behavior of light. Again, there is the

incompatibility between Newtonian mechanics and the general theory of relativity,

two hypotheses that seek to explain the behavior of celestial objects.88

Within physics, often one finds idealized hypotheses about the structure or consti-

tution of a physical system that, while potentially explanatory, are incompatible with

each other. For example, the gross dynamical behavior of a metal object spinning in

88These examples are taken from [119].

213



a force field can be explained by characterizing the object as a perfectly rigid (non-

distortable) body, while the way in which changes in the force field distort this same

object can be explained by characterizing the object as a body of discrete elements

joined with binding forces (see [110], p. 430). For another example, consider the liquid

drop model of the nucleus, which treats the nucleus as an incompressible liquid and

explains nuclear deformation and fission, while the shell model of the nucleus treats

the nucleus as a collection of discrete nucleons and explains nuclear binding energies

and phenomena for which spin is important.

It is clear that most of our hypotheses about the world are idealized in some way.

Hence, although idealized hypotheses are not entirely true of the systems they char-

acterize, they are our best guides to what those systems are like. (In saying that an

hypothesis is a guide to what a system is like, I mean that the hypothesis provides

a characterization of the system that is to be endorsed as true until a better one is

available.) However, if a physical system is usefully characterized by different and

incompatible idealized hypotheses, at most one can be treated as a guide to the on-

tology of the system. For example, if a metal object is usefully characterized as both

a perfectly rigid body and a collection of discrete elements joined by binding forces,

at most one of these characterizations can be taken as a guide to what the object is

actually like, lest the object be taken to be both rigid and non-rigid. Eschewing such

absurdity, either apparently incompatible idealized hypotheses about the same sys-

tem are not actually incompatible, or only some idealized hypotheses are ontological

guides.
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A natural way to decide which idealized hypothesis, from a set of competing ex-

planatory hypotheses, is an ontological guide, is to invoke inference to the best expla-

nation.89 Inference to the best explanation is a scheme of inference for selecting which

hypothesis, from a set of incompatible hypotheses, is most probably true. Accord-

ing to inference to the best explanation, that hypothesis with the most explanatory

power is to be taken as the hypothesis that is most probably true.90 Superiority in

explanatory power is, arguably, the reason why Darwin’s theory is to be accepted

rather than natural theology, and why the oxygen theory is to be accepted rather

than the phlogiston theory.91

On the supposition that inference to the best explanation is a cogent form of

inference,92 it sometimes connects explanation and ontology. Inferences to the best

explanation conform to a general pattern:

1. Hypothesis H is a potential explanation of a set of data D about some set of

phenomena: if H were true, it would explain D.

2. H is the best potential explanation of D from among the currently available

explanations.

89Another way is to appeal to Bayesian confirmation theory, taking the hypothesis with the
highest probability to be an ontological guide. Michael Shaffer has argued that Bayesianism cannot
accommodate hypotheses that are idealized; see [105]. So it is far from clear that a Bayesian strategy
is applicable here.

90The assumption throughout this chapter will be that if an hypothesis is potentially explanatory,
the potential explanation it provides is ”good enough” for it to be at least a potential guide to what
the world is like.

91Of course, there is also the fact that there is no evidence for the existence of phlogiston. But the
superior explanatory power of oxygen theory over phlogiston theory is at least part of the reason for
preferring oxygen theory to phlogiston theory: even without evidence for the existence of oxygen,
its superior explanatory power privileges it as the hypothesis to be accepted (rather than phlogiston
theory).

92This is a contestable – and contested – supposition. For criticism, see [122]. For a reply, see
[94]. Addressing this issue is beyond the scope of this chapter.
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3. Therefore, H is probably true.

When the hypothesis involved in an inference to the best explanation concerns the

structure or constitution of a physical system, inference to the best explanation is a

way of inferring an ontology of the world: if the hypothesis is the best explanation,

then the world is probably structured or constituted the way the hypothesis says it is.

For instance, if the wave theory is a better explanation of optical phenomena than the

particle theory (and otherwise a “good enough” explanation), then light is probably

wave-like rather than particle-like. Similarly, if the shell model is a better explanation

of nuclear phenomena than the liquid drop model (and otherwise a “good enough”

explanation), then the nucleus is probably a collection of discrete nucleons rather than

an incompressible liquid. Since only one of multiple incompatible idealized hypotheses

about a system can be the best explanation of a set of phenomena, privileging the

best explanation as ontological guide guarantees a consistent theory of what the world

is like. (Of course, two hypotheses might tie for having the most explanatory power

with respect to some set of phenomena; in this case, I prefer to say that neither is

the best explanation and that neither serves as an ontological guide. In saying that

an hypothesis is the best explanation of some set of phenomena, I mean that it has

more explanatory power than any of its current competitors.)

The problem with using inference to the best explanation to select an ontological

guide from a set of competing idealized hypotheses is that the cogency of this inference

depends upon the way in which idealizations are interpreted. As a distortion, an

idealization of some property is a false characterization of that property; and an

idealized hypothesis about a system is an hypothesis that is false of the system. If

idealizations are distortions, then since any idealized hypothesis that furnishes an
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idealized explanation is known to be false, any inference to the conclusion that the

hypothesis is probably true is not a cogent inference. Inference to the best idealized

explanation is not cogent if idealizations are distortions.

A putative aim of science is to discover what the world is like. Since most scientific

hypotheses are idealized, idealized hypotheses are often the only route available for

inferring an ontology that suffices until something better comes along. Given the

assumption that idealizations are distortions, there must be a way to decide which

hypothesis, from a group of incompatible idealized hypotheses, is an ontological guide

in a way that does not appeal to explanatory considerations but nonetheless avoids

ontological inconsistency.

There are two extant accounts of the connection between idealized explanations

and ontology, both of which interpret idealizations as distortions. According to

Lawrence Sklar, explanatory idealized hypotheses that are “on the road to truth”

are guides to ontology, while others are “convenient fictions.” According to Paul

Teller, every explanatory idealized hypothesis is a guide to ontology, but this does

not result in an inconsistent theory of what the world is like because incompatible

idealized hypotheses about the same system characterize different aspects of the sys-

tem – each hypothesis provides a different perspective on the same system. The aim

of this chapter is to show that both of these accounts are unsuccessful, and to show

that an account that rejects the interpretation of idealizations as distortions is able to

provide a satisfactory account of the connection between idealized explanations and

ontology.
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6.2 Distorted Hypotheses as Ontological Guides

If idealizations are distortions, then idealized hypotheses are known to be false.

In virtue of their being idealized, it can be known that idealized hypotheses provide

an incorrect description of what the world is like. Nonetheless, since most of our

hypotheses are idealized, these incorrect descriptions are the only route available

for inferring a provisional ontology, an ontology that suffices until something better

comes along. But what is it about some idealized hypotheses that privileges them as

ontological guides?

This question is especially pertinent when there are incompatible idealized hy-

potheses that characterize the same system. Consider, for instance, the incompatible

idealized hypotheses about nuclear structure. If the shell model is taken to be an

ontological guide, then the nucleus is (provisionally) a collection of discrete nucleons.

If the liquid drop model is taken to be an ontological guide, then the nucleus is (provi-

sionally) an incompressible liquid continuum. But nothing can be both discrete and a

continuum at the same time, in the same respect. Since both models are idealized and

idealizations are being interpreted as distortions, inference to the best explanation

cannot decide which model (if either) to privilege as the ontological guide.

6.2.1 Alethic Trajectories and Interest-Relativity

According to Lawrence Sklar, what privileges an idealized hypothesis as a guide to

ontology is its being “on the road to truth.” Sklar distinguishes between hypotheses

that are “on the road to truth” and those that are merely “convenient fictions” and

hence ontologically erroneous. According to Sklar,

Multiple incompatible schemes applied to one and the same system, each
one of which has a legitimate and explanatory use, cannot all be intended
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to be genuinely “true” of the system. We must allow for “convenient
fictions” . . . ([110], p. 438).

Idealized hypotheses that are “convenient fictions” might be explanatory, but they are

not guides to inferring what the world is like. Being an ontological guide is a privilege

for those hypotheses which, although false and known to be so, are nonetheless “on

the right track”. (Sklar does not develop his metaphors; but what he says seems to

entail that at most one hypothesis, from amongst a group of competing hypotheses,

can be “on the right track”, because at most one can be an ontological guide.)

Whether an hypothesis is “on the right track” or “on the road to truth” is to be

decided by attention to the details of scientific practice ([110], pp. 431, 439). Evidence

that “there is at least some domain of physical situations for which [an hypothesis]

will remain a reliable predictor of observational outcomes into the perpetual future”

is evidence that the hypothesis is on the right track (see [109], p. 89). For example,

there is something very different between characterizing an atomic nu-
cleus as a complex system of neutrons and protons, with these compounds
composed of quarks bound by gluons, and with the neutrons and protons
bound by a van der Waals residual effect of the quark-quark binding [shell
model], and a characterization of a fissionable nucleus as a “liquid drop”
held together by a “surface tension” [liquid drop model] ([110], p. 439).

Sklar takes the shell model to be “at least a part of a structure ‘on the road’ to our

desired ultimate theory”, and the liquid drop model to be a convenient fiction, “a

weak model adequate only in the most restricted ways to characterizing what is really

going on.” Presumably this is because the shell model hypothesizes a nuclear structure

that tightly coheres with the ontology postulated by the Standard Model, while the

ontology of the liquid drop model coheres less tightly. Although the Standard Model

is itself idealized, its predictive success ensures that, in the future, it will remain a
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reliable theory in some appropriately restricted (but as yet unknown) domain. Hence,

although both the shell model and the liquid drop model are known to be false, the

shell model is “on the right track.” The shell model is an ontological guide while the

liquid drop model, as a merely convenient fiction, is not.

Paul Teller objects to Sklar’s account, on the grounds that Sklar’s distinction,

between hypotheses that are on the right track and those that are convenient fictions,

is irrelevant to privileging the former as ontological guides rather than the latter.

Teller points out that the entities postulated by the Standard Model, quarks and

gluons, are excitations of the positive and negative frequency solutions of a wave

equation. Since the most accurate models of the structure of space-time hypothesize

that space-time is irregularly curved, and since there are no positive and negative

frequency solutions of the field equations in these models, quarks and gluons are

“idealizations every bit as much as the idealization of a liquid as a continuous medium”

and, one might add, every bit as much as the idealization of a nucleus as a liquid drop

([117], p. 433). So the current state of science fails to provide evidence to support

the claim that the Standard Model, rather than the liquid drop model, is on the right

track.

Teller further argues that any difference between two hypotheses, both of which

are known to be false, must be a matter of degree. Every false hypothesis, insofar

as it is explanatory, is “on the road to truth” to some degree. For, in virtue of its

being explanatory, the hypothesis is getting something right, even if the hypothesis is

false overall. There is something right about the liquid drop model, since it explains

nuclear deformation and fission; but there is also something right about the shell

model, since it explains nuclear binding energies. Likewise, there is something right
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about taking a spinning metal body to be perfectly rigid; but there is also something

right about taking the same body to be a set of discrete elements joined by binding

forces.

Moreover, Teller continues, the degree to which a false hypothesis is “on the right

track” depends upon contextual interests.

. . . “closer to the truth,” “more accurate,” and the like make perfectly
good sense, but only in a relational way, relative to things like aspects
and features that in turn may be variously evaluated in relation to our
interests ([117], p. 438).

For instance, perhaps the liquid drop model is “farther down the road to truth” than

the shell model for those concerned with the creation of energy via nuclear fission,

while other concerns reverse the situation.93 Since nothing privileges some interests

as more important than others, there is no objective measure of the degree to which

two competing idealized hypotheses are on the right track, of how far down the road

to truth two false hypotheses happen to be. Any such measure is interest-relative.

Yet, according to Teller, no interest-relative difference between two false hypothe-

ses is relevant to privileging one hypothesis as an ontological guide rather than the

other. For what the world is like is not interest-relative. Since the distinction between

false hypotheses that are on the road to truth and those that are merely convenient

fictions is interest-relative, Sklar’s distinction is irrelevant to privileging the former

as ontological guides rather than the latter: “the metaphor of ‘farther down the

93Teller makes a similar point in his discussion of quantum mechanical and hydrodynamical charac-
terizations of fluids: “. . . when it is the fluid properties of water that are of interest, a hydrodynamic
characterization of water may be fairly evaluated as much more ‘truth-like’ than a quantum me-
chanical description, let alone any humanly accessible characterization in terms of quantum field
theory” (2004, 440). Obviously, with respect to different interests, quantum mechanics provides a
better characterization of certain systems than hydrodynamics.
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road to truth’ won’t help with driving a wedge between acceptable and unacceptable

ontologies” ([117], p. 434).

Perhaps it is possible to distinguish false hypotheses that are on the right track

from those that are not, in a way that is not interest-relative. Certainly Teller’s

criticism does not rule out this possibility. Still, the burden of proof rests squarely

with those who suppose that such a distinction is possible. Meeting this burden is

made more difficult by the exclusion of explanatory qualities that might differentiate

some hypotheses from others. For, as has been noted, inference to the best explanation

is not cogent under the assumption that idealizations are distortions. Moreover, the

appeal to the truthlikeness or approximate truth of a false hypothesis will not do,

because, as Teller convincingly argues elsewhere ([116]), the degree to which a false

hypothesis is truthlike is interest-relative.

On Sklar’s behalf, one might attempt to understand what it is for an hypothesis to

be “on the right track” in terms of a modified form of inference to the best explanation,

arguing that the false hypothesis with the most explanatory power is the guide to what

the world is like, and that such an hypothesis can serve as an ontological guide without

our inferring that it is true. This would allow explanatory qualities to differentiate

some false hypotheses from others without requiring an illicit appeal to inference to

the best explanation.

However, such an approach will face the following sort of problem. Taking the

false hypothesis to be an ontological guide, without inferring that the hypothesis is

probably true, requires an attitude other than belief towards the hypothesis, since

one cannot believe an hypothesis that one knows to be false. Acceptance, which is

generally taken to be weaker than belief, seems to be an inappropriate attitude to
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have towards an hypothesis one knows to be false, because accepting an hypothesis

as an ontological guide at least seems to require not knowing (or believing) that it

is false.94 And there does not seem to be any attitude one might have towards an

hypothesis one knows to be false that allows one to consistently maintain that the

world is the way the hypothesis characterizes it.

6.2.2 Ontological Pluralism

Sklar’s account of what privileges some false hypotheses as ontological guides

rather than others faces an apparently insurmountable problem of finding a criterion

that is not interest-relative and that does not appeal to explanatory qualities of

such hypotheses. This poses a dilemma: on the one hand, sometimes at least one

hypothesis is a guide to what the system is like, since there is a presumed (albeit

provisional) connection between explanatory idealized hypotheses and ontology; on

the other hand, incompatible false hypotheses about the same system cannot all be

guides to what the system is like. Since not every hypothesis can be an ontological

guide, then there must be a non-interest-relative criterion that privileges one over the

others as a guide to ontology; but there does not appear to be such a criterion. As a

result, it seems that no idealized hypotheses can be ontological guides.

Teller escapes this conclusion by rejecting the assumption that two false hypothe-

ses about the same system cannot both be guides to what that system is like. Ac-

cording to Teller,

When we give up this presumption we see that we can embrace ‘conflict-
ing’ ontologies, being careful not to invoke them ‘at the same time,’ or,
more carefully, not to take them to represent the same aspects of the not

94Of course, if one is an anti-realist about the hypothesis in question, one might accept the
hypothesis despite knowing that it is false. But, as an anti-realist, one does not maintain that the
hypothesis characterizes the way the world is.
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completely accurately represented objects of our representations” (2004,
441).

That is, when there are at least two false but explanatory hypotheses that characterize

the same system, both are to be taken as ontological guides; but only if the hypotheses

are guides to the nature of different aspects of the system. As Teller puts it, “we may

take a pluralist ontology to consist of a collection of idealized descriptions that, when

deployed with care in cognizance of their limitations, can be consistently applied as

complementary rather than conflicting” ([117], p. 441).95

For example, since the shell model and liquid drop model of the nucleus are both

explanatory of nuclear phenomena despite being false, both are guides to aspects

of what the nucleus is like. One aspect of the nucleus is its discrete structure of

nucleons; this is the aspect of the nucleus that is relevant to nuclear binding energies.

A different aspect of the nucleus is its incompressibility as a liquid; this aspect is

relevant to nuclear fission. There is one aspect of the nucleus according to which it is

very much like a collection of discrete nucleons, there is a different aspect according

to which it is very much like a continuum, and since these are different aspects of the

same nucleus there is no inconsistency in the theory of what the nucleus is like. The

shell and liquid drop models are complementary rather than incompatible, because

they characterize different aspects of the same system.

Again, in studying a fluid it is sometimes useful to model the fluid as a continuum,

in which case thermodynamics can be brought to bear upon the study. In other cases

it is useful to model the fluid as a collection of discrete particles, in which case

statistical mechanics can be invoked. The fluid itself, according to Teller, has one

95For a similar account of apparent incompatibility, in the context of biological explanations and
the ontology of biological systems, see [83].
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aspect that is continuum-like and a different aspect that is nicely approximated as a

collection of discrete particles. The different explanatory hypotheses yield a pluralist

ontology of what a fluid is like. They are complementary rather than incompatible,

because they characterize different aspects of the same system.

According to Teller, if an idealized hypothesis is explanatory, it is also a guide

to ontology. On this view, every idealized model that is explanatory has an equal

right to be a guide to what the world is like, because there is no way to privilege

some false hypotheses over others in a way that is not interest-relative. Potential

conflicts among apparently incompatible hypotheses are to be avoided by taking each

hypothesis to characterize a different aspect of the system of interest.

Teller claims that ontological pluralism is what we should expect from using, as

ontological guides, hypotheses that are known to be deficient.

Our representations are intended as a guide to the world. But our guides
are imperfect – they speak to us fallibly. So their virtues as guides to the
world cannot be simply evaluated in terms of the dichotomy, true or false.
Rather a sensible objective is degree of fit in respects that are of current
interest ([117], p. 439).

That is, although idealized hypotheses are explanatory, they are also limited in virtue

of their being idealized; they get something right, but not everything. This is an-

other way of saying that idealized hypotheses characterize aspects of systems, but not

systems in their entirety.

One consequence of Teller’s ontological pluralism is that idealized explanations

are not guides to what the world is like per se. Rather, each is a guide to what the

world is like from some perspective, each perspective providing access to a different

aspect of the world. There is no “getting behind” the various perspectives, so to

speak, because idealized hypotheses, in virtue of being false, at best characterize
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aspects of systems. Hence, idealized explanations provide no access to a non-aspectual

characterization of what a system is like. In this respect, Teller’s ontological pluralism

is reminiscent of Bohr’s notion of complementarity as a tool in an early quantum

mechanical interpretation of the nature of light: light has particle-like aspects and

wave-like aspects, and nothing more can be said.

The thesis of ontological plurality revises the original assumption of there be-

ing a connection between idealized explanations and what the world is like without

reference to anything else. To accept ontological pluralism is to accept that every

characterization of what the world is like is relative to a perspective. This is no crit-

icism of the thesis, of course. But the consequence is worth pointing out, since an

account of the connection between idealized hypotheses and ontology that does not

have this consequence, but is nonetheless at least as adequate as Teller’s ontological

pluralism, is thereby preferable, on the basis of its being less apparently anthropocen-

tric than Teller’s account. (In relativizing ontology to perspectives, Teller seems to

introduce a human-centered relativism into our ontology of the world.)96

There is, moreover, an additional problem with Teller’s account: it presumes that

whenever incompatible idealized hypotheses explain some feature of the same physi-

cal system, each characterizes a different aspect of that system. There are common

violations of this presumption. Consider, for example, two incompatible idealized

explanations of the rough, qualitative proportionality between a pendulum’s length

and its period. The simplest explanation of this proportionality is provided by appeal

to the simple pendulum. Taking idealizations to be false, the simple pendulum has a

point-mass bob, massless and rigid rod, frictionless pivot, etc. A different explanation

96I thank Bob Batterman for suggesting this point.
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of the proportionality between a pendulum’s period and its length is provided by ap-

peal to an extended-bob pendulum. Taking idealizations to be false, an extended-bob

pendulum has an extended bob, rigid but not necessarily massless rod, frictionless

pivot, etc. If idealizations are distortions, no pendulum can be both a simple pen-

dulum and an extended-bob pendulum; so these characterizations are incompatible

if taken to apply to a pendulum in its entirety. Yet the simple pendulum is used

to characterize the same aspect of real pendula as is the extended-bob pendulum,

namely, the qualitative proportionality between period and length. Hence, these ide-

alized hypotheses do not characterize different aspects of the same pendulum system.

Teller’s ontological pluralism provides no guidance on the connection between these

idealized hypotheses about pendulum behavior and what real pendula are like.

Again, the gross dynamical behavior of a metal object spinning in a force field

can be explained by characterizing the object as a perfectly rigid body. This same

behavior can also explained, albeit with more complications, by characterizing the

object as a body of discrete elements joined by binding forces. These two hypotheses

characterize the same aspect of the spinning metal object, namely, its gross dynamical

behavior. Hence they do not characterize different aspects of the object. Nonetheless,

they are incompatible with each other: no object can be both perfectly rigid and

also non-rigid. Teller’s ontological pluralism provides no guidance on the connection

between these idealized explanations and what the metal object is like.

6.3 Abstract Hypotheses as Ontological Guides

The preceding discussion suggests two constraints on a satisfactory account of the

connection between idealized hypotheses and ontology. (1) If, following Sklar, the
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account treats some explanatory idealized hypotheses as ontological guides but treats

others as merely “convenient fictions”, the criteria it uses to distinguish between the

guides and the fictions should not depend upon contextual interests. (Sklar’s account

fails to provide such criteria.) (2) Whether the account differentiates ontological

guides from merely convenient fictions or – like Teller’s account – does not, it should

permit privileging some hypotheses over others as ontological guides when both per-

tain to the same aspect of the same system. (Teller’s account fails to provide such

permission.)

Both of these constraints can be met by treating idealized hypotheses as abstract

descriptions and treating idealizations as abstractions rather than as distortions. (The

notion of an abstraction is presented in Chapter Four.) If an idealization is an abstrac-

tion, it replaces one description of a system with a description that fails to attribute

to the system at least one feature that the system has, without thereby attributing to

the system a feature it does not have. The resultant description, an abstract descrip-

tion, merely omits mention of some feature that the system has; it is an incomplete

description of the system. If idealizations are abstractions rather than distortions,

then idealized hypotheses are incomplete but they need not be false.

The incompleteness of idealized hypotheses is compatible with the cogency of

inference to the best explanation, since the incompleteness of an hypothesis is com-

patible with its (probable) truth. This section shows how inference to the best expla-

nation can provide a connection between idealized hypotheses and ontology, under

the assumptions that idealizations are abstractions and that inference to the best

explanation is cogent.
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6.3.1 Inference to the Best Idealized Explanation

If one accepts the cogency of inference to the best explanation, then not every

idealized hypothesis is an ontological guide in virtue of its being explanatory: only

those idealized hypotheses that provide the best explanations are guides to ontology.97

Schematically, inference to the best idealized explanation takes the following form:

1. Idealized hypothesis H is an idealized potential explanation of data D.

2. H is the best idealized potential explanation of D.

3. Therefore, H is probably true.

The best idealized explanation is the one, from amongst a group of competing ex-

planations, that has the most explanatory power. (Of course, the conclusion of an

inference to the best explanation is defeasible.)

There is, at present, no consensus on how to judge the comparative explanatory

power of competing idealized hypotheses. Nonetheless, it might be helpful to list

several criteria that seem to be plausible. These criteria usually are not taken to

pertain to idealized explanations; but they adapt readily to such a purpose. They

are:

97Sklar writes that “Our inferences to ‘best explanations,’ whatever such inferences are like, is [sic],
surely, our optimal inferential route for inferring our believed ontology of the world” ([110], p. 425).
It is surprising that, rather than pursuing this claim, Sklar turns his attention to a distinction among
alethic trajectories of models. Perhaps the reason for this is that Sklar is thinking of the data set
for each inference as restricted to one phenomenon. Given this restriction, it is certainly possible to
end up with an inconsistent ontology. The way to avoid this, however, is not to abandon reliance
on inference to the best explanation, but rather to expand the data set to cover all phenomena for
which there is some sort of explanation. (Alternatively, one might take the discussion to follow to be
the proper fleshing out of Sklar’s metaphoric distinction between hypotheses “on the road to truth”
and merely convenient fictions.)
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1. Consilience: If two idealized hypotheses explain the same data, but background

knowledge favors one over the other and there is no specific reason to challenge

the background knowledge, then the former hypothesis has more explanatory

power than the latter.

2. Completeness : If only one idealized hypothesis, from amongst a group of ide-

alized hypotheses, explains all the data that the hypotheses taken together

explain, then it has more explanatory power than the other hypotheses.

3. Importance: If one idealized hypothesis explains data that are more salient than

the data explained by a different idealized hypothesis, then the former has more

explanatory power than the latter.

4. Parsimony : If two idealized hypotheses explain the same data, but one invokes

auxiliary assumptions that form a proper subset of the auxiliary assumptions

invoked by the other, then the former idealized hypothesis has more explanatory

power than the latter.

5. Precision: If two idealized hypotheses explain the same data, but the idealized

explanations given by one are more precise than those given by the other (in

the sense that the former appeal to causal-nomological mechanisms whereas the

latter do not), then the former hypothesis has more explanatory power than the

latter.

These criteria are adapted from those provided by Stathis Psillos ([96]). Oftentimes,

it is not clear how to rank the relative explanatory power of competing idealized

hypotheses; and sometimes hypotheses are ranked differently by different criteria.
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But addressing these problems is a project for some other time. The important point

here is that these criteria provide a way to privilege some idealized hypotheses as

ontological guides rather than others.

Unlike Sklar’s distinction between idealized hypotheses “on the road to truth” and

those that are merely “convenient fictions”, rankings of the relative explanatory power

of idealized hypotheses are not interest relative. The criteria for ranking explanatory

power are intended to either preserve or enhance the explanatory coherence of the

corpus of scientific beliefs. The degree to which a set of beliefs is explanatorily

coherent is not interest-relative, at least according to some accounts of explanatory

coherence.98 And since explanatory coherence is not interest-relative, criteria that

preserve or enhance explanatory coherence are not interest relative.

This line of argumentation entails that at least some of the preceding criteria

for ranking explanatory power can be characterized in a manner that is not interest

relative. No argument has been given to substantiate this corollary. Doing so is a

project for some other time, especially since I am not endorsing the correctness of

the preceding criteria. Nonetheless, it seems to be fairly obvious that rankings of

explanatory power according to the criteria of Consilience and Completeness are not

interest-relative. And these are the only criteria that play a role in the remainder of

this chapter.

6.3.2 Partiality without Plurality

Given these criteria for ranking the relative explanatory power of idealized hy-

potheses, it is possible to connect idealized explanations and ontology in a way that

avoids the interest-relativity that besets Sklar’s account and in a way that avoids

98One such account is given by Paul Thagard; see [120].
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Teller’s ontological pluralism. If two or more idealized hypotheses are explanatory

and yet characterize the same system, then the hypothesis that provides the best ide-

alized explanation is the one to be privileged as an ontological guide, in accordance

with inference to the best explanation.

Which hypothesis provides the best idealized explanation is a matter of which has

the most explanatory power relative to its competitors. For instance, the shell model

ignores features of the nucleus that are relevant to nuclear fission but not features

relevant to nuclear binding energies; the liquid drop model ignores features relevant

to nuclear binding energies but not relevant to nuclear fission. Although each model

ignores some features of the nucleus that are relevant to some nuclear phenomena,

one might argue that the shell model is a better explanation of nuclear phenomena

than the liquid drop model because the shell model is more closely integrated with

the Standard Model (Consilience). Hence, the shell model rather than the liquid drop

model would be the guide to what the nucleus is like. Again, one might argue that

characterizing a metal object as a collection of discrete elements provides a better

explanation of the properties of that object than does characterizing it as a perfectly

rigid body, because the former characterization can explain everything covered by

the latter characterization, and more besides (Completeness). Inference to the best

explanation is cogent in these cases, because the idealized hypotheses are treated as

incomplete rather than false.

This account of the connection between idealized explanations and ontology re-

spects Teller’s observation that idealized hypotheses serve as guides to what the world

is like only in an imperfect way. In virtue of being idealized, every idealized hypoth-

esis is incomplete in some way or another. Yet some idealized hypotheses are less
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imperfect than others, in virtue of their being less idealized and thereby representing

more features of the systems they characterize. (Of course, the results from preced-

ing chapters of this dissertation show that hypotheses that represent more features

of the systems they characterize are not always less imperfect than more idealized

hypotheses. Rankings of the degree of imperfection of a set of hypotheses do not

always correspond to rankings of the degree to which those hypotheses are ideal-

ized, because some idealizations are ineliminable to any correct description of certain

phenomena. However, since the idealized hypotheses discussed in this chapter are

eliminably idealized, the less idealized hypotheses are less imperfect.)

This account also avoids the problems raised for Teller’s account. As noted, both

the simple pendulum and the extended-bob pendulum can be used to provide an

idealized explanation of the qualitative proportionality between a pendulum’s length

and its period. Taking idealizations to be abstractions, the simple pendulum does not

represent the amounts for the extension of the pendulum bob, the mass or flexibility

of the pendulum rod, the friction at the pivot, etc. Unlike the simple pendulum, the

extended-bob pendulum represents the amount of extension of the pendulum bob; but

like the simple pendulum, it does not represent amounts for the mass or flexibility of

the pendulum rod, the friction at the pivot, etc.

There is no inconsistency in saying that the simple pendulum and the extended-

bob pendulum characterize the same system, because if idealizations are abstractions

they both can provide a partial characterization of the same real pendulum. An

analogous case illustrates this point. Suppose that Melissa and Barry are describing

a car’s features. Melissa says that the car has four doors, a nice shine, and a moon

roof; but that’s all she says. Barry says the car has four doors, a nice shine, a moon
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roof, a V6 engine, low mileage, anti-lock breaks, etc. Barry’s description is more

detailed than Melissa’s more partial characterization, but not thereby inconsistent

with it.

Likewise, the simple and extended-bob pendula provide different characterizations

of the same aspect of a real pendulum, namely, the qualitative proportionality between

its period and length. The characterization by the simple pendulum ignores some

features of the real pendulum. The characterization by the extended-bob pendulum

ignores fewer of those features – it is more detailed than the one given by the simple

pendulum but not thereby inconsistent with it. There is no need to privilege one

characterization as a guide to what pendula are like rather than the other, since

the characterizations are compatible. Nonetheless, the characterizations are both

imperfect, in virtue of their being incomplete; and the extended-bob pendulum is less

imperfect than the simple pendulum, in virtue of representing a feature of pendula

not represented by the simple pendulum.

6.4 Conclusion

Most scientific hypotheses are idealized. When these hypotheses are explanatory,

they have a claim to be guides to what the world is like. But not every explanatory

idealized hypotheses can be a guide to ontology, because sometimes such hypotheses

are incompatible with each other. The chapter argues that treating idealizations as

abstractions rather than distortions provides an account of the connection between

idealized hypotheses and ontology superior to the ones suggested by Sklar and Teller.

Hence, insofar as idealized hypotheses can be guides to what the world is like, and

insofar as inference to the best explanation is a cogent form of inference, this chapter
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provides a further motivation for interpreting idealizations as abstractions rather than

as distortions.
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CHAPTER 7

RESOLVING THE BAYESIAN PROBLEM OF
IDEALIZATION

Although the preceding chapter provides some support for treating eliminable

idealizations as abstractions rather than distortions, it is open to two objections.

First, one might argue that the chapter only shows that idealizations involved in

hypotheses that are candidate ontological guides are abstractions; and one might deny

altogether that any idealized hypotheses are candidate ontological guides. Second,

one might note that the argument from the previous chapter shows some eliminable

idealizations to be abstractions only under the supposition that inference to the best

explanation is cogent; denying the cogency of this inference, one might object that

the argument fails to establish that any eliminable idealizations are abstractions.

Rather than rebut these potential objections, this chapter provides one further

argument in favor of treating eliminable idealizations as abstractions rather than dis-

tortions, by showing that such an interpretation solves another problem concerning

the role of idealization in science. This problem does not presume that some idealized

hypotheses are candidate ontological guides; and the proposed solution does not de-

pend upon the cogency of inference to the best explanation. The problem originates

from the intuition that some idealized hypotheses can be confirmed at least to some
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degree. The widespread belief that scientific hypotheses can be confirmed, and the

fact that most scientific hypotheses are idealized, lends a high degree of plausibility

to this intuition. Moreover, since the problem to be addressed in this chapter lies

within the province of confirmation theory, the proposed solution shows the useful-

ness of treating idealizations as abstractions for issues not concerned with scientific

explanation.

The focus of this chapter is a problem due to Michael Shaffer, who challenges

Bayesian confirmation theorists to show how at least some idealized hypotheses have

at least some degree of confirmation ([105]). He argues that, in order to accom-

plish this task, one must either develop a coherent proposal for how to assign prior

probabilities to counterfactual conditionals or abandon Bayesianism. This chapter

develops a Bayesian reply to Shaffer’s challenge that avoids the issue of how to as-

sign prior probabilities to counterfactuals by treating idealized hypotheses as abstract

descriptions and idealizations as abstractions. The reply allows Bayesians to assign

non-zero degrees of confirmation to idealized hypotheses and to capture the intuition

that less idealized hypotheses tend to be better confirmed than their more idealized

counterparts.

7.1 The Bayesian Problem of Idealization

According to Bayesian confirmation theory (hereafter: Bayesianism), the posterior

probability of an hypothesis H given evidence E, Pr(H | E), determines how well

E confirms H. (Bayesians typically interpret the function Pr(−) as a subjective

probability.) And one hypothesis H1 is better supported by evidence E than rival

hypothesis H2 just if E confirms H1 more than H2. That said, there is no general
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agreement among Bayesians on how to measure the degree to which evidence supports

an hypothesis. Some Bayesians favor a difference measure, according to which the

degree that E confirms H is equal to Pr(H | E) - Pr(H). Others favor a normalized

difference measure, according to which the degree that E confirms H is equal to

Pr(H | E) - Pr(H | not-E). Some favor a ratio measure: Pr(H | E) / Pr(H). And

some favor a likelihood measure: Pr(H | E)*[1 - Pr(H)] / [1 - Pr(H | E)]*Pr(H).

Despite these differences, all Bayesian measures involve the quantity Pr(H | E).

This is the fact that is relevant to what Shaffer calls the Bayesian problem of idealiza-

tion. The problem, in a nutshell, is this: Bayesian confirmation theory seems to entail

that the posterior probability of every idealized hypothesis is undefined; this entails

that Bayesianism is unable to account for the fact that some idealized hypotheses can

be confirmed at least to some degree; and this entails that Bayesianism is unable to

make sense of the intuition that less idealized hypotheses tend to be better confirmed

than their more idealized counterparts.99

These unpleasant consequences result from the assumption that every idealized

hypothesis is a counterfactual conditional in which the antecedent is a set of idealizing

conditions – such as “Each particle’s radius r → 0” – and the consequent is a set

of claims that are true under those conditions – such as the ideal gas equation PV

= NkT. (More on this assumption in the next section.) If idealized hypotheses have

the form A > C (where ’>’ is the symbol for counterfactual conditionals), then

the posterior probability of an idealized hypothesis relative to evidence E has the

99Shaffer further argues that since most scientific hypotheses are idealized, Bayesianism entails
that “few, if any, scientific theories have ever been confirmed to any extent whatsoever” (p. 45).
This corollary makes Shaffer’s argument more interesting. But I ignore it as incidental to the prior
issue of whether Bayesianism can accommodate the fact that at least some idealized hypotheses are
confirmed to at least some degree.
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form Pr(A > C | E). According to Bayes’ Theorem, the posterior probability

Pr(A > C | E) is equal to Pr(E | A > C)*Pr(A > C) / Pr(E). The problem

for Bayesians is that there is no extant, coherent suggestion for how to assign prior

probabilities to counterfactuals – that is, for how to assign values to Pr(A > C).100

Since the posterior probability Pr(A > C | E) is defined only if the prior probability

Pr(A > C) is defined, it seems that the posterior probabilities of idealized hypotheses

are undefined. And, at least for Bayesians, this entails that the degree to which any

given idealized hypothesis is confirmed by evidence is undefined. Given that most

scientific hypotheses are idealized in some way, Bayesianism seems to entail that

most scientific hypotheses cannot be confirmed.

Bayesians thus confront an apparent trilemma: either develop a coherent proposal

for how to assign prior probabilities to counterfactuals; or embrace the counterintu-

itive result that idealized hypotheses cannot be confirmed; or reject Bayesianism.

There is also a fourth option, developed in the remainder of this paper: reject the

assumption that idealized hypotheses are counterfactual conditionals.

7.2 Motivating the Appeal to Counterfactuals

According to Shaffer, “When we claim that a theory holds in some idealized model,

or under some idealizing conditions, we are claiming that a theory is true only on the

basis of one or more counterfactual simplifying assumptions or conditions” (p. 41).

He insists that “theories incorporating idealizing conditions ought to be construed as

counterfactuals” (p. 43), adding that “this thesis is not open to question”. Among

100Shaffer considers and rejects three suggestions. I endorse those considerations. Shaffer does
not consider treating idealized hypotheses as counterdoxastic conditionals. Since I am unaware of
anyone who has developed this proposal, I leave an evaluation of the proposal as a project for some
other time.
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others, Frederick Suppe ([115]) and Ilkka Niiniluoto ([87]) also claim that idealized

hypotheses are counterfactuals. None of these authors motivates this claim. Perhaps

it is worth pausing to fill the lacuna. The motivation seems to come in two stages: the

first stage motivates treating idealized hypotheses as conditionals; the second stage

motivates treating these conditionals as counterfactuals.

Stage One. Claims obtained through appeal to idealizations tend to be false of

real systems (despite sometimes being “close enough” to the truth for various pur-

poses). The equation for the simple pendulum is false of most real pendula, the ideal

gas equation is false of most real gases, etc. If idealized hypotheses are the claims ob-

tained through appeal to idealizations rather than conditionals in which such claims

are the consequents, then most idealized hypotheses have a null posterior probabil-

ity, in virtue of being inconsistent with available evidence. This result violates the

intuitions that less idealized hypotheses tend to be better confirmed than their more

idealized counterparts and that some idealized hypotheses have non-zero posterior

probabilities relative to available evidence. Treating idealized hypotheses as condi-

tionals rather than the claims obtained through appeal to idealizations allows them

to be consistent with available evidence despite their consequents being inconsistent

with that evidence.

Stage Two. If idealized hypotheses are conditionals (in which the antecedent is

a set of idealizing conditions), then it is better to treat such conditionals as coun-

terfactual rather than material. Since idealizing conditions typically are taken to

be false, idealized hypotheses would be trivially true in virtue of the falsity of their
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antecedents if such hypotheses were material conditionals.101 This result is unsatis-

factory insofar as intuitions suggest that such hypotheses might be false. Moreover,

saying that all idealized hypotheses are vacuously true in virtue of having false an-

tecedents entails that the posterior probability of every idealized hypothesis is unity

relative to any evidence whatsoever. For most measures of degree of confirmation,

this means that differences in the degree to which competing idealized hypotheses

are confirmed depends entirely upon the prior probabilities of those hypotheses – a

counterintuitive result insofar as one expects evidence to play at least some role in

determining rankings of the degrees to which competing hypotheses are confirmed.

7.3 Solving the Problem

Until Bayesians develop a coherent proposal for how to assign prior probabilities

to counterfactuals, and unless Bayesians want to deny that at least some idealized

hypotheses can be confirmed, they should reject the treatment of such hypotheses as

counterfactual conditionals. So, for example, they should reject treating the ideal gas

law as an hypothesis of the form “If such and such idealizing conditions were to obtain,

then the ideal gas equation would be true”. They should reject treating the law of

motion for simple pendula as an hypothesis of the form “If such and such idealizing

conditions were to obtain, then the equation of motion for the simple pendulum would

be true”. And so on.

At the same time, a Bayesian treatment of idealized hypotheses should not run

afoul of the considerations raised in the previous section. A satisfactory Bayesian

101Leszek Nowak ([88], p. 136) recommends that, faced with the potential of idealized hypotheses
being trivially true, we should continue to treat idealized hypotheses as material conditionals and
revise the usual definition of truth.

241



treatment should not entail that most idealized hypotheses have a null posterior

probability. Nor should it entail that they are vacuously true. (This latter desider-

atum seems to require not treating idealized hypotheses as conditionals, in which

case the ideal gas law just is the ideal gas equation and the law of motion for simple

pendula just is the equation of motion for the simple pendulum.)

All of these constraints can be met by treating idealized hypotheses as abstract

descriptions and idealizations as abstractions. This solution abandons the problem

of how to assign prior probabilities to counterfactual conditionals, because it rejects

the assumption that idealized hypotheses are counterfactuals.

If idealizations are abstractions, then idealized hypotheses are not conditionals

in which the antecedent is a set of idealizing conditions. For the antecedent of a

conditional must be a set of statements; but idealizations are not statements if they

are abstractions. Instead, they are more like “inference tickets” that transform one

description of a system into a (more idealized) description that ignores certain features

of the system. So treating idealizations as abstractions allows Bayesians to avoid

worries about how to assign prior probabilities to counterfactual conditionals.

Moreover, if idealized hypotheses are abstract descriptions, there is nothing myste-

rious about how to determine their posterior probabilities via Bayes’ Theorem. Prior

probabilities are to be assigned to idealized hypotheses in the same way that such

probabilities are assigned to incomplete or partial descriptions. And the conditional

probability of the evidence given an idealized hypothesis (abstract description) will

depend upon whether the features ignored by the hypothesis are relevant to the ev-

idence (because the truth of an abstract description depends upon the relevance of

the details it ignores). For instance, if the evidence shows only that there is a rough,
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qualitative proportionality between a specific real pendulum’s period and the distance

between its pivot and center of mass, then the conditional probability of this evidence

given the law of motion for the simple pendulum is unity, since that law entails such

a proportionality. But if the evidence also includes data about the exact period of a

particular real pendulum, the conditional probability of this evidence given the law

of motion for the simple pendulum is probably null, since most likely the equation for

the simple pendulum predicts an incorrect period: it is probably false with respect to

the exact period of the real pendulum in virtue of ignoring features that are relevant

to the exact period.

Bayesians can avoid assigning zero as the conditional probability of the evidence

given an idealized hypotheses by calculating this probability relative to a subset of all

available evidence, such as evidence for which the features ignored by the idealized

hypothesis are irrelevant. This selective attention to the evidence seems to accord

with scientific practice. For instance, there is good reason to think that the current

best scientific theories – general relativity and quantum field theory – are idealized.

General relativity ignores quantum effects with the idealization that Planck’s constant

h → 0, so that the Compton wavelength λC = h/mc → 0. (The Compton wavelength

is roughly the distance scale at which quantum field theory becomes important for

understanding the behavior of objects with mass m.) Quantum field theory ignores

gravitational effects with the idealization that Newton’s gravitational constant G → 0,

so that the Schwarzschild radius rS = 2GM/c2 → 0. (The Schwarzschild radius is

roughly the distance scale at which general relativity becomes important for under-

standing the behavior of objects with mass M .) But the failures of general relativity

243



to accommodate quantum effects and of quantum field theory to accommodate grav-

itational effects are not taken to disconfirm those theories. Instead, the range of

each theory is restricted to phenomena for which quantum or gravitational effects

are irrelevant, respectively. And this restriction permits a restriction of the range of

phenomena – or sources of evidence – that are eligible for confirming or disconfirming

each theory. Similar restrictions occur with effective field theories, such as the Euler-

Heisenberg theory for photon-photon scattering. This theory’s range is restricted

to phenomena in which the electron field is irrelevant to photon interactions (i.e.,

phenomena that occur at energy scales below the threshold for electron production),

so that the theory is not disconfirmed by phenomena in which the electron field is

relevant to photon interactions.

Finally, if idealized hypotheses are abstract descriptions, it is possible to make

sense of the intuition that less idealized hypotheses tend to be better confirmed than

their more idealized counterparts. Consider the law of motion for the (undamped)

simple pendulum and the law of motion for the damped pendulum. The latter is less

idealized than the former, in virtue of taking into account the amount of damping on

pendula. So it is to be expected that set of evidence for which the features ignored

by the law of motion for the damped pendulum are irrelevant is larger than the set of

evidence for which the features ignored by the law of motion for the simple pendulum

are irrelevant: the former set contains the latter plus evidence about phenomena in

which damping is relevant. Relative to this larger set of evidence, Bayesians can

expect the law of motion for the damped pendulum to be better supported than the

law of motion for the simple pendulum, since the larger set of evidence is probably
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inconsistent with the predictions obtained from the law of motion for the simple

pendulum.
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CHAPTER 8

CONCLUDING REMARKS

The aim of this dissertation is to contribute to the philosophical literature on

explanation and the role of idealization. To this end, the dissertation focuses on

two putative explanations from statistical mechanics: the standard account of phase

transitions and the Boltzmannian account of irreversible behavior. Like many ex-

planatory accounts in physics, these accounts are idealized: the descriptions they

invoke are not entirely true of the systems in which their explananda occur. Un-

like most idealized explanations, however, certain idealizations that occur in these

accounts are ineliminable: the only way to obtain a description (let alone an expla-

nation) of phase transitions and irreversibility, according to the accounts, is to invoke

idealizing assumptions – namely, the thermodynamic limit and the Boltzmann-Grad

limit, respectively.

Ineliminably idealized explanations are not well-understood from a philosophical

point of view. Several philosophical accounts of idealized explanation fail to accom-

modate them. The dominant understanding of idealizations as falsehoods precludes

their existence. Moreover, there are powerful arguments, based upon Earman’s Princi-

ple and Constructionism, against the possibility of phenomena that require for their

description appeal to idealization. And there are error-theoretic approaches that
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suggest the statistical mechanical accounts of phase transitions and irreversibility

mischaracterize those phenomena by taking mathematical precision too seriously.

Despite the foregoing philosophical difficulties, the explanatory nature of the ac-

counts of phase transitions and irreversibility can be understood by taking their char-

acteristic idealizations to be abstractions and treating idealized explanations as a

kind of incomplete explanation. According to this approach, idealizations like the

thermodynamic limit are not false claims about the way the world really is. Rather,

they are devices for ignoring certain details about the world. This non-standard in-

terpretation of idealizations is consistent with the mathematical role served by the

thermodynamic and Boltzmann-Grad limits in their respective accounts. And it pro-

vides a response to those who deny the existence of phase transitions and genuinely

irreversible behavior on the grounds that their descriptions require, in principle, an

appeal to idealizations. An interesting corollary of this approach is that sometimes

the only way to describe a phenomenon correctly is to describe it incompletely –

sometimes microscopic details obscure what is to be explained.

Furthermore, the treatment of idealizations as abstractions rather than distortions

solves two independent problems regarding the role of idealization in science. The first

is the problem of how to select a guide to what the world is like from competing but

incompatible idealized hypotheses. If multiple competing hypotheses explanatorily

characterize the same system, at most one can be a guide to the nature of that

system. If idealizations are false, inference to the best explanation is not a cogent

method for privileging one explanatory idealized hypothesis over its competitors as a

guide to what the world is like; and extant proposals about when explanatory idealized

hypotheses are guides to what the world is like – proposals that do not appeal to
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explanatory considerations in privileging one hypothesis over its competitors – have

problems of their own. But if idealizations are abstractions, then inference to the

best explanation can be cogent when the hypotheses involved are idealized, because

idealized hypotheses need not be false if idealizations omit details without falsifying

them.

The second problem solved by treating idealizations as abstractions rather than

distortions is the Bayesian problem of idealization. Scientific hypotheses are capable of

being confirmed to at least some degree; and most scientific hypotheses are idealized.

If idealizations are distortions, however, it does not appear possible to assign any

posterior probability to any idealized hypothesis; and so it does not seem possible for

idealized hypotheses to be confirmed. If, in contrast, idealizations are abstractions,

then posterior probabilities can be assigned to idealized hypotheses in the same way

they are assigned to incomplete descriptions, thereby allowing non-zero degrees of

confirmation to be assigned to such hypotheses.

Steven Orszack suggests two questions relevant to assessing any methodological

thesis about science ([90], p. 479):

1. Is the claim conceptually coherent and empirically adequate?

2. Does the claim lead to normative procedures that improve the quality of science

and lead to a better understanding of nature?

A central methodological claim of this dissertation is that some scientific explanations

are ineliminably idealized. Granting that this claim has been shown to be coherent

and true, it has several normative consequences. First, certain research programs are

not defective on a priori grounds, merely in virtue of involving an ineliminable appeal
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to certain idealizations – and hence these programs need not be abandoned. Second,

one need not abandon mathematical precision to characterize the explananda for such

explanations. Third, the defense of this claim against objections provides a rationale

for why, sometimes, the explananda of such explanations are called emergent; and

the defense gives some sense to this way of speaking.
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