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ABSTRACT

In this thesis, sliding mode controllers and observers are studied in terms of their
robustness properties and implementation concerns. First, a twofold discrete time
sliding mode control action is proposed defining a boundary layer which divides the
original state space fictitiously into two regions. QOutside the boundary layer, the
velocity vector of the state trajectories is directed towards the boundary layer with
a proper control action so as to achieve the outside stability. Inside the boundary
layer, a modified equivalent control law is applied for disturbance rejection. The
resulting controller eliminates the disturbance from the generalized control variable
completely if its dynamics are known. If the disturbance dynamics are not available,
a disturbance model is fitted using deviations from the sliding manifold and this
model is incorporated into the control law. Second, a continuous time sliding mode
observer design procedure is proposed for the reconstruction of the original state
vector in finite time. Equivalent control concept is exploited for this purpose. A
discrete time counterpart to the continuous time case is also provided using discrete
time sliding mode control theory. The resulting observer shows a deadbeat response
and is also robust to disturbances with known dynamics. The robustness properties
of the discrete time sliding mode controllers and finite time converging characteristics
of the sliding mode observers are verified on a truck-semitrailer system during typical

highway maneuvers in simulations.
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CHAPTER 1

INTRODUCTION

The robustness of control systems to parametric uncertainties and external dis-
turbances is one of the most considerable research interests of the today’s control
engineers. The theory of variable structure systems (VSS) has been studied in great
depth for this purpose beginning from the publication of the first paper [1] related to
this topic in 1977. The major reasons for variable structure control being of excep-

tional significance in recent control studies can be summarized as follows:

e The element which is used to induce sliding mode switches at high frequency in
sliding mode. Its input is approximately zero while the output takes finite values
and therefore resembles a high gain feedback controller which is considered as

the conventional method of disturbance rejection.

e In sliding mode, state trajectories are confined to a reduced order manifold.
Therefore, the effective system order reduces and the original control problem

can be decoupled into smaller order, independent subproblems.

e The original system dynamics are replaced by user-defined sliding mode dynam-
ics while in sliding mode. Therefore the system can be enforced to behave in a
desired manner whatever the complexity of the system is.
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e The usage of variable structure theory is not limited to just controller design
purposes. It’s general principles are successfully applicable for other control
problems such as linearization, finite time converging state observers, order

reduction and so on and so forth.
1.1 Overview

The variable structure theory and its applications have formed one of the most
attractive research areas of the last two decades. The main characteristic of a variable
structure controller is to switch the system structure so as to confine state trajectories
to a prespecified manifold and to create a new type of motion, so called sliding mode,
on this manifold. Any variable structure controller design procedure consists of two
independent steps in common.

First, a sliding manifold is constructed so that the system satisfies desired design
objectives (stability, optimality, order reduction, linearization, etc.) while in sliding
mode. There are several sliding manifold design methods for linear systems in the
literature. Utkin and Young proposed a manifold design procedure based on pole
placement and optimal control [3]. In this method, the original system is transformed
into a special canonical form and the design is carried out in the new coordinates.
This idea has been exploited from different perspectives and formed a basis for many
related work in the future [4], [5], [6]. In 1993, Young and Ozgiiner introduced a new
manifold design procedure in the frequency shaping technique and the optimal control
framework [7]. In this setting, the proposed manifold appears as a linear operator
on states rather than a static linear transformation of them. The resulting manifold

acts as a filter in the closed loop and prevents the excitation of the high frequency



vibrational modes of the system. Later on, W. Su, S. Drakunov and Ozgiiner have
approached to the manifold design problem from a Lyapunov point of view [9]. In
this approach, Lyapunov second method is used in the original state space realization
of the system. The system is not necessarily partitioned into a canonical form and
the proposed method is also applicable to nonlinear systems and linear systems with
time delays successfully.

Once a proper manifold which achieves the desired design objectives has been
chosen, a control law is found to generate a sliding mode on that manifold. The
variable structure controller takes different actions at the different locations of the
state space to direct the state trajectories towards the manifold and to keep them
continuously on it. Sliding mode takes place a finite time later and trajectories
slide to the origin along the manifold. The overall system motion consists of two
consecutive phases. In the first phase, trajectories are brought to the manifold from
an initial location which is usually referred to as the reaching phase. The second
phase describes the motion in sliding mode in which trajectories are confined to the
manifold and slide to the origin through it. However, the system motion is indefinite
just on the manifold, and some further analysis are required to analyze it [17]. To
keep the trajectories on the manifold, the controller switching frequency should be
theoretically infinite.

The problem of state estimation using variable structure control theory has also
been considered for several years and uses the same design theory and reasonings with
the variable structure controllers. However, different from the controller design, the

input variable which induces sliding mode on a proper manifold is not the real input



of the system anymore. The superiority of a sliding mode observer over a classical Lu-
enberger observer results from the finite time converging characteristic of the former.
A standard Luenberger observer reconstructs the original state vector asymptotically.
However, in sliding mode observers, a nonlinear auxiliary term is used to guarantee
the finite time convergence by deliberately introducing of sliding mode. Most of the
efforts for this subject have been concentrated on continuous time systems and the
first sliding mode observer has appeared as the sliding mode realization of a reduced
order asymptotic observer [2]. In this formulation, the original system is first trans-
formed into a canonical form in which the output variables form a part of the state
vector. Sliding mode is induced in the known output variables in finite time and
the remaining observer states converge to the associated plant states asymptotically.
Later, the equivalent control methodology has been exploited from different perspec-
tives and used in the observer design of a linear system transformed into the “block
observable form” using sequential application of the state transformations [12], [13],
[14].

For any sliding mode scheme, the closed loop system is insensitive to matched
parametric uncertainties and external disturbances because of the motion on a pre-
specified surface in sliding mode. However, unmatched portions of disturbances and
neglected actuator and sensor dynamics prevent the occurrence of the ideal sliding
mode and state trajectories cannot be kept continuously on the manifold. Instead,
they oscillate randomly around it. These oscillations are referred to as chattering
in the literature. Chattering is highly undesirable in practise, because these rapid

oscillations can excite the unmodeled high frequency dynamics of the system and



deteriorate the control accuracy. They may also decrease the life time of system el-
ements, wear moving mechanical parts and cause heat losses in power circuits [2].
When considering sliding mode observers, chattering phenomena is also problematic,
because high frequency terms in the reconstructed observer state variables may also
excite neglected system dynamics when these observer states are used for feedback
purposes. Chattering phenomena appears as an obstacle for implementation of the
theoretical sliding mode control techniques in practise and it should be overcome to
retain the benefits of sliding mode in practical applications.

In the past decades, several studies have been conducted to reduce chattering. One
of these approaches is to continuously approximate the original discontinuous control
law in the vicinity of the sliding manifold by an interpolation so that high control
activity around the manifold which is considered as the major reason of chattering is
already taken care of [23]. For this purpose, a boundary layer is defined around the
manifold and its attractiveness are guaranteed using the original discontinuous control
law outside the layer. Similar ideas have been researched in many related papers [26],
[22], [24]. However, this approach is nonadmissible for some applications especially
where the only actuator elements are on-off type. Another method to cope with
chattering is to use an asymptotic observer [2]. In this method, an asymptotic state
observer is inserted into the closed loop which bypasses the undesired high frequency
components acting as a low pass filter. Later on, these control law interpolation and
the state observation ideas have been brought together and generalized under the
title of prefiltering and postfiltering [24]. In this formulation, the prefiltering block
generalizes the control law interpolation whereas postfiltering block generalizes the

state observation idea. Frequency shaping technique of [7] also shows a filter-like



behavior in the closed loop and reduces chattering by suppressing high frequency
sliding mode dynamics. It is possible to extend the list of these types of methods.
However, for all of them, chattering reduction is achieved at the expense of robustness
and there is always a tradeoff between the robustness of the system and the amount
of chattering in the system.

Although the variable structure theory has first been built upon the continuous
time systemn theory, the application of a variable structure control law inevitably
requires a computer implementation. Designing a control law based on the continuous
time VSS theory and then implementing the same control law in discrete time is not
reasonable, because the sampling frequency cannot meet the theoretical requirements
of a VSS. Continuous time sliding mode control techniques loose their robustness
properties after discretization because of the sampled data nature of the system where
the control law takes a new action only at the sampling instances and holds the
same value during one sampling period. Discrete time sliding mode theory has been
constructed with this motivation as an attempt to fill in the gap between the theory
and the practical implementation requirements. However, most of the studies in
this area have concentrated on the development of discrete time counterparts to the
continuous time controllers and sliding mode conditions.

Sarptiirk et. al have chosen a set of sliding mode conditions [36], [37],
8%, — si] signst, < 0
st + st] signst, > 0 (1.1)

for each hypersurface s. In the above set, the first condition suffices for a switched

motion about the associated hyperplane whereas the second prevents oscillations of



trajectories with an increasing amplitude. Two conditions together produce upper
and lower bounds on the control input. As to controller design, Utkin and Drakunov
have introduced the discrete time equivalent control law which brings trajectories
to the manifold at one step [33], [34]. Discrete time equivalent control law is the
ideal solution of the discrete time sliding mode control and it does not lead to any
chattering phenomena since it is a non-switching type of control. However, there are
two problems with this control. First, it is not always possible to bring trajectories
to the manifold from an arbitrary position at one step because of the discrete time
nature of the system. Second, an uncertainty in the system makes the calculation
of the equivalent control law impossible. In 1990, Furuta et. al proposed a sliding
sector in which the closed loop system is stable without any control action instead
of defining a sliding manifold. A discrete time VSS controller has also been designed
to steer the state trajectories to the inside of the sliding sector. The idea of sliding
sector has been developed further and also extended for continuous time systems
[43], [44], [45], [46]. Kaynak and Denker incorporated the deviations from the sliding
manifold into the discrete time controller design and come up with a non-switching
type, robust and accurate control law in the presence of system uncertainties [38].
Zanasi et. al have modified the Discontinuous Integral Control (DIC) technique of
[40] properly for discrete time systems [41], [42]. In their setting, the derivative of
the controlled variable improves the disturbance estimation and therefore reduces
chattering. In 1995, Su and Ozgiiner have analyzed the chattering problem in a
sampled data system framework and proposed discrete time control laws to maintain
the states in the sampling time order vicinity of the sliding manifold in the presence

of unknown disturbances and parametric uncertainties 8], [50], [51]. The proposed



design methods have been investigated successfully for three types of sampled data

systems: linear, nonlinear and stochastic systems.

1.2 Thesis Organization

This thesis is organized into five chapters. Chapter 2 discusses the discrete time
sliding mode control theory from a robustness point of view. A twofold control action
is considered. First, the trajectories are brought to the sampling time vicinity of the
manifold in which the equivalent control is in the admissible control domain using
the first control law. Once the state trajectories fall into this region, this control law
is deactivated and the generalized equivalent control law is applied. A disturbance
corrective term is inserted to the original equivalent control law for disturbance rejec-
tion. This term removes the disturbance effects from the generalized control variable
completely in case of a disturbance with known dynamics. If the disturbance model is
unknown, a fictitious model is fitted for it examining the deviations of the trajectories
from the manifold and the robustness of the system is also satisfied with a sufficient
accuracy. The robustness properties of the proposed control laws are tested on a
truck-semitrailer system during highway maneuvers.

Chapter 3 focuses on continuous time sliding mode observers. Standard Luenberg-
type observers are also reviewed to illustrate the finite time convergence characteristics
of the sliding mode observers. The design procedure is summarized as a theorem under
some structural assumptions for the system. The estimation of the unmeasurable
states of a truck-semitrailer system during a maneuver illustrates the approach.

In Chapter 4, a discrete time counterpart to the continuous time sliding mode

observer of Chapter 3 is developed. The resulting discrete time sliding mode observer



consists of two layers. The first layer provides the discrete time equivalent control
law for the second layer where the actual state observation is done. The proposed
observer not only achieves the finite time state reconstruction aim but also decouples
the error motion into two smaller order motions while in sliding mode. The same
observer problem with Chapter 3 is considered and the simulation results verify the
validity and the effectiveness of the approach.

Chapter 5 summarizes the theoretical analysis and points out some ideas for fu-
ture directions. In Appendix A, the derivation of the linear continuous time truck-
semitrailer model is given starting from a two dimensional, nonlinear bicycle model

and a numerical model is also obtained using a default parameter set.



CHAPTER 2

DISCRETE TIME SLIDING MODE CONTROL

Variable structure systems (VSS) have been studied by many authors for several
decades. However, most of the efforts have concentrated on the continuous time case.
The continuous time sliding mode controller is robust to matched parametric uncer-
tainties and external disturbances because of the motion on a prescribed manifold.
However, due to practical considerations the trajectories cannot be kept exactly on
the manifold, instead they oscillate around it. Even if, we could have an infinite
. switching frequency, there would be again some oscillations in the presence of un-
certainties in the system. These high frequency oscillations have already been called
chattering. There are several approaches to deal with chattering as mentioned in
Chapter 1. However, full chattering rejection is impaossible unless we design a V5SS
control law in discrete time. Before going into the discrete time sliding mode theory
to alleviate the problem without loosing the robustness properties of the continuous
time VSS control, let us illustrate a typical continuous time VSS controller design

procedure for a linear time invariant system. Consider

& = Az + Bu (2.1)
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where z € R*, u € R™, A, B are constant matrices of appropriate dimensions and

the system is assumed to be controllable. Defining a sliding manifold
S = {z|s = Cz =0} (2.2)
where s € R™, C' € R™*™, we obtain the following sliding mode dynamics.
§=CAz +CBu (2.3)
Choosing the control law
u=—(CB) ' (CAz + Ksgns) (2.4)
and inserting (2.4) into (2.3) yield the sliding mode dynamics as follows:
$ = —Ksgns (2.5)

The generalized control variable s converges to the zero vector, choosing K as a

diagonal, positive define m x m matrix. After sliding mode takes place
s=Czr=0 (2.6)

and the stability of the sliding mode itself is guaranteed with a proper choice of C.
Outside the manifold, the trajectories should be steered to the manifold as soon as
possible. This could be assured choosing each entry of the matrix K larger. How-
ever, this is not a good solution because the magnitude of the chattering terms is
proportional to the magnitude of K as well.

In the rest of the chapter, we shall study the discrete time sliding mode design
theory as a solution to the chattering phenomena and design a full discrete time con-
troller rather than first deriving a continuous time control law in the continuous time

11



sliding mode framework and then discretizing it for a sampled data implementation.
In section 2.1, we present the basics and the definitions of the theory which will be
used throughout the chapter. Section 2.2 summarizes two sliding manifold design pro-
cedures. In section 2.3, we propose a discrete time sliding mode control law and state
it as a theorem for an ideal system. Section 2.4 is dedicated to the improvement of
the previously proposed control law to take care of external disturbances with known
dynamics. A corrective input term is added to the control law to eliminate the effect
of the disturbance in the generalized control variable. Finally, in section 2.5 practical
implementation concerns of the proposed control laws are discussed and simulation
results on a truck-semitrailer system in the presence of an external disturbance verify

the theoretical results.

2.1 Problem Statement

The discrete time state space representation of the system given in (2.1) is obtained

by passing the control input through a zero order hold as follows:
M (I).’L'k + Fuk (27)

where ® = ¢4T T = [T e”*Bds. It is assumed that the pair (®,T) is also controllable
after discretization. The control objective is to steer the states of (2.7) to zero using
‘c_ljsc:rete time sliding mode techniques. As in the continuous time case, the proposed
control design consists of two steps. First, a connected subspace of the original n
dimensional state space which has the same dimensionality with the control input is

found so that if the system trajectories are kept on this subspace at each sampling

instant, convergence of them to the origin is guaranteed. This subspace has been

12



called sliding manifold before and for a discrete time system it is formulated by
S= {mkISk = C(:L‘k) = 0} (28)

where z; and s, denote the value of the associated variable at ¢ = kT. For a linear

rather than an arbitrary function of them, i.e;
S = {:L‘k|8k = C.’L‘k = 0} (29)

where s € R™ and C is an m X n constant matrix. If the state trajectories are
kept on the manifold at each sampling instant, the system is said to be in discrete
time sliding mode. Note that, unlike the continuous time sliding mode definition,
:_'_gtates do not n(_&_c_e‘_s_sarily have to be on the manifold continuously,k insfuead they are
allowed to deviate from the manifold between two consecutive sampling instants in a
sampled data implementation. Second, a discrete time control law which enforces the
trajectories towards the manifold and keeps them on it is determined. If the manifold
is chosen properly to assure the stability of the system in sliding mode, the overall
problem turns into a regulation problem in the m dimensional generalized control

variable s. Before discussing the discrete time sliding mode controller design, we first

briefly mention two sliding manifold design procedures.

2.2 Constructing Sliding Manifold

In the previous section, the sliding manifold for a linear system has been defined
as

S = {xk|sk = Czp = 0} (2.10)

13



where s € R™ and C is m X n matrix. The dimension of the sliding manifold is the
same as that of the control input so that when the system trajectories travel along
the manifold, they satisfy some desired characteristics irrespective of the original
system dynamics. In other words, the system dynamics are completely replaced by
the reduced order sliding mode dynamics thereafter the system is in sliding mode.
According to the definition of (2.10), the manifold of a linear system is parameterized
by an m x n matrix C. Therefore, the manifold design problem hinges on choosing
a suitable C'. One of the ways of designing a manifold is eigenvalue assignment. In
this method, the C' matrix is calculated according to the desired eigenvalue locations
of the system in sliding mode. The design procedure is as follows:

Using controllability of the pair (®,T), the original system representation given
in (2.7) can be transformed into a controllable canonical form with an appropriate

similarity transformation matrix P, i.e;

FLps1 0 1 0 0 - 0 Fip 0
Fos1 0 0 1 0 - 0 T 0
: = : + | ¢ g (2.11)
Fri bt 0 0 0 0 - 1 || Zars 0
Tpnk+1 | | —@1 —02 —G3 -+ —Gp1 —Gn || Zngp | [ 1]
Tpy = Oz + f‘uk (2.12)

where T, = Pz, and a;’s are the coefficients of the characteristic equation of the sys-
tem. The generalized control variable s can be written in terms of the new coordinates

as follows:

S = CFixp+CTor+ -+ C1Tn_14 + CnTnx = CTy

171 o+ Ca1Zao1k + G X 2.13
S = [Cl + g+ 4 Cn—lqn 2 + qun 1]:1;111‘7 - E(Q):I;l’k ( )

In sliding mode, the motion of the state trajectories are characterized by the equation

E(q)Z1x =0 (2.14)

14



Therefore, the eigenvalues of the system in sliding mode are the roots of the polyno-
mial

E(Q=ci+0q+  +Ea1q" >+ =0 (2.15)

and the sliding mode stability is guaranteed choosing the ¢;’s so as to place the roots
of the polynomial F(q) inside the unit disc. Besides the stability, the manifold can
also be chosen to minimize a quadratic cost function and this is usually referred to as
the optimal sliding mode. For an (n — 1) dimensional optimization problem, one can
find the unique optimal state feedback solving the associated Riccatti equation. This
determines the prospective sliding mode eigenvalues of the optimal system. Matching
them with the roots of the polynomial (2.15), the optimal manifold design objective
is achieved. When C has been found, C' of the original representation follows from

the transformation

C=CP (2.16)

The previous design procedure can only be applied to single input systems. There-
fore, a more general approach becomes necessary. A different sliding manifold design
procedure which is applicable for both single-input and multi-input systems is given
as follows:

Assume that the original system is transformed into the following canonical form

Tikrr = Puzip+ Prazoy (2.17)
Zogtr = Por1Zip + Poozay + Bou '
with a transformation
Pz = [ o1 ] (2.18)
)

where z; € R"™ and z, € R™. The eigenvalues of sliding mode are those of
(@11 — ®12K) and they can be assigned arbitrarily provided that the pair (@11, ®;)

15



is controllable. However, this controllability requirement automatically holds since
(®,T') pair is assumed to be controllable. Once K has been chosen so as to have the

desired dynamics in sliding mode, C is calculated from
C =K In|P (2.19)
2.3 Sliding Mode Controller for a Discrete Time System

In this section, we design a discrete time sliding mode controller assuming that the
sliding manifold has been chosen properly to satisfy the given design specifications
(stability, optimality, - - - etc). If there are no external disturbances and parametric
uncertainties in the system, the following control law called discrete time equivalent
control which is the solution of s, = 0 steers the state trajectories onto the manifold
at the next step

u! = —(CT)~'Cdxy, (2.20)

provided that CT' is nonsingular. The equivalent control law is the ideal solution
of the regulation problem of s and does not lead to a chattering problem since it
does not contain a discontinuous term. However, there are two problems with this
control. First, if there is uncertainty in the system the equivalent control will contain
these unknown terms and cannot be calculated. Second, even if everything in the
system is ideal, the control law tends to infinity in magnitude when the sampling
time approaches zero. Therefore, unless the state trajectories are in the vicinity of
the origin, the equivalent control law may not be in the admissible control domain. For
the time being, let us assume that there are no external disturbances and parametric

uncertainties in the system so that the first problem may be skipped. We will first
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study the second problem and the discussion of the first one will be postponed to
section 2.4.
Incorporating ® = e4T into (2.20), the equivalent control is written as a linear

combination of the states and the generalized control variable s as follows:

upl = ~(CT)"'C®z

= —(CT)Ce* Ty

AT AkTH
= —(CD)'CU+AT + =+ oo+
A2T? AkTk
= —(CT)"ls, — (CT)'CIAT + o +t 7] + -]z (2.21)

Since T is in the order of T, the second term of (2.21) is in the order of the state
vector and it represents the admissible part of the equivalent control. However, the
first term has no elements to cancel the effect of I'~! unless s is in the sampling
time order. Therefore, the overall expression may not be in the admissible control
domain unless the trajectories are in the vicinity of the manifold. Note that, (2.20)
without considering that T" and ® have some structural properties because of the
discretization process would just give that the state trajectories should be in the
vicinity of the origin. This would make the equivalent control unworthy because
of being the state trajectories around the origin would be very unrealistic for the
objective of steering them to the origin. However, our analysis has revealed that it
is sufficient for trajectories to be in the vicinity of the manifold to make sure that
the equivalent control is in the admissible domain. Therefore, another control law is
necessary if the trajectories are far away from the manifold. The overall controller
consists of two subcontrollers where only one of them takes action according to the

location of the trajectories at any time. The second subcontroller should steer the

17



trajectories towards the manifold, and whenever they fall into the boundary layer,
the equivalent control is applied to induce sliding mode at the next step. When
sliding mode takes place, trajectories converge to the origin along the manifold with a
dynamic adopted by C as discussed before. To express the location of the trajectories,
we define a boundary layer which intuitively describes a subregion of the original state

space in which the equivalent control can be provided as follows:
B= {.’Ek|8k = C.’Ek o O(T)} (2.22)

This boundary layer does not have an analytical expression, because it is hard to dis-
tinguish the points of the state space where the equivalent control is admissible from
the others mathematically. This definition is introduced just for notational purposes
and it will be used to say that the equivalent control belongs to the admissible control

domain or not at a specific point of the state space.
2.3.1 Control Law off the Manifold

The control law off the manifold should be chosen so as to steer the state tra-
jectories to the manifold from a bounded initial location without exceeding control
limits. This can be achieved satisfying that the generalized control vector s and its
first order forward difference have different signs, componentwise. To this end, the

following control is chosen
u, = —(CT) " COzy — 55+ Msgnsy] (2.23)

where M is a positive definite diagonal matrix, ®, T" are the system parameters and

C characterizes the manifold as before. Manipulating (2.23) with (2.7) produces

Spr1 = CPxgx + CTuyg
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Skp1 = C®zp + CT(—~CT) OOz — 81, + Msgnsy]
Spy1 = Sk — Msgnsg (2.24)
and the control satisfies its objective
sk = —Msgnsg (2.25)

Inserting ® = e47 into (2.23), the control law is written as a weighted combination

of the state vector and the generalized control variable as follows:

up, = —(CT) Y CeTxy — 5 + Msgnsy)
. A?T? AkTE
= —(r)™ (C[AT + 5 Tt X + ok + Msgnsk)
2r2 Ak k
= —(CT)™'C[AT + A2f|F +- k’_'l" + -+ ]z — (CT) ' Msgnsy (2.26)

The first term of (2.26) is in the order of the state vector. Choosing M and C
such that M/ || C || is in the sampling time order where || C || denotes any matrix
norm of C, the overall control is also guaranteed to be in the admissible control
domain. When this control is applied to the system, each component of the s vector
approaches to the manifold by a fixed amount determined by the associated entry of
M. If each diagonal term of M is chosen in such a way that none of the entries of the
s vector overshoots the boundary layer, the state trajectories converge eventually to
the vicinity of the manifold from any bounded initial condition without exceeding the
control limits. However, around the manifold each component of the s vector starts to
oscillate and exact convergence onto the manifold cannot be guaranteed just with this
control. Therefore, after the trajectories fall inside the boundary layer, this control
is deactivated, equivalent control is applied and sliding mode takes place at the next
step. If there are no disturbances or uncertainties in the system state trajectories do
not leave the boundary layer and sliding mode exists at any time.
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2.3.2 Control Law around the Manifold

When the trajectories are in the vicinity of the manifold, the equivalent control
is applicable and induces sliding mode at-the next step. However, for the sake of

generality, we propose an alternative control law
Uy = —(CF)_I[C(I)CL‘]C - Q.S'k] (227)

where {2 is a stable diagonal matrix. Application of this control to the system yields

the following sliding mode dynamics:

Sk+1 = C(I)il?k + C’I‘uk
Spp1 = C®zp + CT(—(CT)[CPxy — Qsi))
spy1 = sy

The convergence rate of the states onto the sliding manifold is determined by the
eigenvalues of ). Any stable ! would satisfy the convergence, however we choose it
also a diagonal matrix just to make sure that the magnitude of the each component
of s also decreases monotonically. This prevents some of the s vector components to
make an overshoot before converging to zero. Note that, if {2 were a zero matrix the
control law would become exactly the equivalent control. In theory, the sliding mode
control law starts to stabilize the system in sliding mode. Therefore, €2 should be
chosen as zero to guarantee sliding mode in finite time. However, the sampled data
implementation of the discrete time control law keeps the trajectories on the manifold
only at each sampling instant and they can deviate from it between two consecutive
sampling instances anyhow. Exponential converge and this type of intersampling
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behavior do not differ so much in practise and therefore a small € also performs the
objective.

To sum up, the proposed discrete time sliding mode controller is twofold. First,
the trajectories are steered towards the manifold without exceeding control limits
using (2.23). After they reach the vicinity of the manifold, the first subcontroller is
deactivated and (2.27) guarantees sliding mode. Theorem 1 summarizes the complete

control law.
Theorem 1 The control law

Ukz{.4crrw0@m-wk+ﬂhmﬂ&ﬂ if sx & B (2.29)

—(CP)_l[CCI)LCk - Qb’k] if s, €8
guarantees the reachability and the existence of sliding mode satisfying the sliding

mode conditions:

Sk+1 — 5k = —Msgn(s) if sp € B
Sky41 = Q,Sk- Zf S € B (230)

choosing §2 as a stable diagonal matriz, and M as a diagonal positive definite matriz

whose entries are in the sampling time order.

2.4 Robustness of the Controller

In this section, we study the robustness issues of the discrete time sliding mode
control theory and improve the previously proposed control law to satisfy the robust-
ness of the system in the presence of uncertainties in the system. Consideration will

be given to the following uncertain discrete time system
Tyl = (I)iL'k- + P’LLk + de- (231)

where z € R" is the state vector, v € R™ is the input vector, d € R' is the disturbance
vector and @, I, F" are constant matrices of appropriate dimensions. The pair (®,T)
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is assumed to be controllable and the disturbance matching condition holds, i.e;
rank[l’ | F] = rank(T’] (2.32)

First, we consider the case where the trajectories are away from the manifold. Ap-

plying (2.23) to (2.31), the following sliding mode dynamic is produced:
Ske1 = Sp — Msgnsy, + Dy (2.33)
where Dy, £ CF di If each entry of M is chosen as
M; 2|| Dy Jloo (2.34)

the forward difference of s, and s itself are guaranteed to have different signs, com-
ponentwise, each sy component decreases monotonically and the state trajectories are
drawn to the sampling time order vicinity of the manifold in finite time. For imple-
mentation purposes, it has been previously found that each entry of M should be in
the sampling time order. This constraints the robustness of the controller only to
disturbances where Dy is also in the sampling time order. At first glance, this seems
very unrealistic. However, F' is in the sampling time order since it is also obtained by
discretizing its continuous time counterpart and so Dy = C'Fdy, is. Since the control
law off the manifold is itself robust to external disturbances, in the rest of the chapter
we assume that the initial condition is in the vicinity of the manifold without loss of
generality. It is further assumed that the disturbance does not throw the trajectories
to a point where the prospective robust control law is not in the admissible control
domain so that the initial condition assumption is also valid at any time.

If the ideal equivalent control were applied to the system, one would get

ske1 = CFdy, (2.35)
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and a linear transformed version of the disturbance would appear in the generalized
control variable s. However, the control objective has already been reduced to the
problem of regulating s at zero. If s can be kept at zero at each sampling instant, state
variables eventually converge zero no matter what the disturbance is. Therefore, the
question of whether one can eliminate the effect of the disturbance by somehow filter-
ing it from s becomes the major concern. Before giving an answer to this question,

we first assume that the disturbance dynamics are known, i.e;
E(@YD.=0 (2.36)

where

E@h)=e+eq + - +eqg” (2.37)

and Di represents the i entry of Dy. The proposed control law has the following

form:

U = —(CF)_I[C(DJ)k - Fk] (238)

where Iy, € R™ is inserted to the control law to filter out the disturbance and it is
given by

Fi = E((‘]]Tl)[me(q"l) —~ eo(Ipn — Qg7 )]sk (2.39)

where 0 is a stable diagonal matrix as before. Note that the orders of the denominator
and the numerator polynomials are the same and equal to the disturbance degree.

Applying (2.38) to the system provides

Sk4+1 = Fk -+ Dk (240)
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Since §) is diagonal, the transfer matrix from s to F' is also diagonal and each com-

ponent of Fy, is associated with only one of the entries of s as follows:

(e1 +eof¥) +epq + -+ e g™

Fi = B s} (2.41)
Multiplying each side of (2.42)
S, = Fi+ D (2.42)
by E(q') produces
E(g™) sk = [(e1 + eof¥) +eaq ™t + -+ - + 6,75} (2-43)

oSty + 18kt Sy, = sk sk Fegst |+ tepsi g, (2.44)
Some of the terms at the right and the left sides of the above expression are the same.
Before r steps, first (r — 1) values of F' are arbitrarily assigned and do not contain
information about the disturbance. Therefore, one has to shift both sides of (2.44
(r — 1)) steps forward in time before canceling these terms. With this analysis, we
obtain

Shatar = 'shyr (2.45)
and s, — 0 choosing each |Q*| < 1. Note that, for the first r steps s, behaves
arbitrarily but its convergence to zero is guaranteed after r steps. Choosing each (0
as zero, sliding mode can be induced at the (r + 1)** step and trajectories converge
to the origin through the manifold irrespective of the disturbance.

So far, it has been assumed that disturbance dynamics are known exactly. How-
ever, in most of the practical situations, the known information about the disturbance
is very little or even none. So, the robustness issue of the controller to an arbitrary dis-
turbance becomes the major concern. The rest of the section discusses the robustness
of the system for these type of disturbances within a deterministic framework.
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Disturbance dg, or alternatively Dy = CFdy, is not known at the present time.

However, the time history of Dy can be deducted from the equation
Dk—r = Sktl—7y — C(I)IL';C_,« - C].—"l,l/k_r (246)

for any r > 0 since all the terms at the right hand side are known. The previous
values of Dy, give an intuition about the structure of the disturbance and this intuition
can be used to fit a disturbance model and to estimate the present value of it. Note
that as the number of past values used for model fitting increases, the accuracy of the
model increases as well. However, this also makes the controller more complicated.
As a starting point, we assume that the disturbance does not vary too much between
two consecutive sampling instances so that its present value may be taken equal to
the one step previous value. This is the exact solution for a constant disturbance.
However even if the disturbance is not constant, it is predicted within an accuracy of
the sampling time order provided that the disturbance is first order differentiable. By
the n* order differentiability of a time sequence for an integer n, we mean that the
nt* order forward or backward difference of the associated sequence is in the sampling
time order vicinity of zero.

Manipulating (2.38) with Dy = Dy_; yields the following sliding mode dynamics:
Spy1 = Fo+ sy — Fp (247)

Since the objective is to satisfy spi; = (s, where Q2 is a stable diagonal matrix, F
should satisfy

Fk = Fk—l - (Im - Q)Sk (248)

(2.48) represents a first order difference equation for F and it can be used to update
uy, dynamically. Substituting (2.48) into (2.38), the final control law for constant or
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slowly varying disturbances is found to be
Up = —(CF)_I[C(I):L‘)C - (Im - Q) Z Sk] (249)

This control increases robustness of the controller to smooth disturbances. How-
ever, the estimation accuracy may be increased further using more than one past
value of the disturbance. Assuming that the first order difference of the disturbance
does not vary too much between two consecutive steps, the following relations for Dy

are obtained.

Dy—=Dry = Dy~ Doy

Dk ~ 2Dk_1—Dk_2 (250)

The increase in the estimation accuracy is obvious. The control law which has
been derived under the constant disturbance assumption gives the exact estimation
only for constant disturbances. However, the final estimation works perfect not only
for constant disturbances but also those whose first order differences are constant
as well. To increase the accuracy, it can be further assumed that the second order

difference of the disturbance does not change too much, i.e;

Dy —=2Dy 1 +Dy_3 = Dy_y—2Dp_g+ Di_3

Dk ~ 3Dk_1 e 3Dk_.2 + th3
This equivalent to saying that
=0 CB(=1VDej=0 & Ti,C(3,5)(~1)¢7Dp =0 (2.51)

where C(n,m) is given by
n!
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If this process is continued, the following disturbance model is eventually obtained
Y C(r,5)(—=1)q Dy =0 (2.53)
=0

at the r** step for an integer r > 0.

Choosing the control law again in the form of (2.38), the following relations are

produced.
Sk+1 = Fp+ Dy

p = F.1+D,_
oL T A7(q sk = A7)+ A7(q7)De (254)

Sk4i—r = Frep 4+ Dy

where

r

AT(g ) = Y Clr0)(-1)g7 = (1—g7') (2.55)
7=0

Inserting the desired s dynamic s, ; = Qsy into (2.54) and using A" Dy = 0 provide

Qs+ Y C(r, ) (=1) "7 =3 C(r, j)(-1) F* (2.56)
=1 =0
Q4+ I, ZC(T,J')(—l)jq_(j_l)} Sk = {Z C(r,5)(—=1)q7 | F (2.57)
=1 j=0
and the i entry of F}, can be related to that of s as follows:
B+ C(r, (=1 g
Fi= 4 i< C(r ) (=1)¢77 | (2.58)

8
A7 (™) ;
Note that, during the derivation of the filter equation from s to F', some properties

of the binomial expansion have been used. However, the same result would also be

obtained replacing E(g™') by A™(¢7") in (2.39), i.e;

Fe = gy l&7@™) = (I = 007 (2.59)
1 - N
= Tt e DO
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Y ‘\ Input term \—D control law
X (states)

Figure 2.1: Block diagram for the closed loop system

Note that, the orders of the denominator and the numerator polynomials are the same
and therefore the filter equation is realizable. With this control law, the trajectories
are kept around the manifold with an accuracy in the order of 7" and slide towards
to the origin while in sliding mode.

The complete control structure is shown in Figure 2.1 and Theorem 2 summarizes

the robust discrete time sliding mode control laws.
Theorem 2 The control law
uy = —(CT) " [CPz), — Fy] (2.60)

satisfies robustness of the controller to external disturbances which are at least r*

order differentiable choosing each component of Fy

q[E(g™") — eo(1 — Q'q7")] ;

Fi= E(¢g™Y) %
if E(g~ ') D=0,
_ -,
Fim )
L

Zf Dk = Dkul, and ﬁnally

i AT ) (1P
k= A"(q“l) Sk
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if the disturbance dynamic is unknown, but modeled as if A™(¢7')Di = 0 where

Q] < 1 and Dy, = CFdy.
2.5 Simulations

In this section, the robustness of the proposed discrete time sliding mode con-
trollers is tested on a truck-semitrailer system. The following linear truck-semitrailer

model is used for simulation purposes and its derivation is given in Appendix A.

~14.5045 12.2412  6.5102 10.2890 —110.8316
i —11.3014 -53.7688 3.2160  5.0828 ot 118.5998 5 (261)
2.6833 56393 —3.3453 —5.2011 1.0463 '
0 -1 1 0 0

where

V. Vi @ Lateral velocity of the tractor

Tl r1 : Yaw rate of the tractor
T = ! Ty Yaw rate of the semitrailer

7‘; ¥ : Articulation angle

) Steer angle on the front tires of the tractor

The problem considered here is to bring the articulated vehicle into a straight position
after a maneuver or a turn under the presence of an uncertainty in the system. The
angle on the front tires of the tractor is controlled usiug the information about the
lateral velocity of the tractor, yaw rates of both the tractor and the semitrailer and
the articulation angle for this purpose. Choosing the sampling time as 0.1 sec., the

following discrete time system parameters are calculated:

0.2016  0.0867  0.3236  0.4640 —4.1689
& = —0.0540 -0.0117 —0.0080 —-0.0156 r — 3.0130
0.0620  0.1028  0.7508 -0.3555 ' 0.5830
0.0141 —0.0081  0.0853  0.9785 -0.1977

using @ = 47 and T' = [ e Bd\. Figure 2.2 shows the external disturbance in
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Figure 2.2: Disturbance in the steer angle

the system. It has three poles at s = 0,~2 £ 10j and is added to the input of the

system. The overall uncertain system has the following representation

Tyl = (I).’Ek + F’U:k + de (262)

where F' =T, d; represents the value of the disturbance at ¢ = k7T and the objective
is to steer x to the origin from an initial condition. Note that, the input coefficient
matrix I' is not in the sampling time order. Therefore, a prospective problem of finding
a control law which may not be in the admissible control domain does not exist. The
following simulations compare the two robust discrete time sliding mode controllers
to the ideal equivalent control. For one of the robust controllers, the disturbance
dynamic is assumed to be known exactly, whereas for the other, a dynamical model

is fitted assuming that the second order difference of the disturbance is constant.
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Figure 2.3: Generalized control variable with ideal controller

Generalized control variable s
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Figure 2.4: Generalized control variable with robust controllers
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Figure 2.5: Generalized control variable with robust controllers
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Figure 2.6: Generalized control variable with robust controllers
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Figure 2.7: Control inputs with robust controllers

The ideal equivalent control law cannot regulate s to zero as shown in Figure
2.3. Figures 2.4, 2.5 and 2.6 all show the generalized control variable s in three
different scales in case of application of the robust controllers. Both control laws
successfully steer the trajectories to the manifold at each sampling instant. However,
the trajectories deviate from the manifold between two consecutive sampling instances
because of sampled data implementation of the control law, but the deviations are in
the sampling time order. Figure 2.6 presents the positions of the trajectories at each
sampling instant in a small scale. The superiority of the first robust control law which
uses the exact disturbance dynamics over the other where the disturbance model is
also estimated dynamically is obvious examining the approximity of the trajectories
to the manifold. Figure 2.7 compares the control inputs for both controllers. Note

that, the control law of known disturbance dynamics is smoother than the other,
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Figure 2.8: Tractor lateral velocity

because the former exactly learns the disturbance after a small transient whereas the
latter estimates it within an accuracy.

To sum up, both controllers achieve the control objective successfully in the pres-
ence of a disturbance. The filter-like structure of the control laws eliminates the
effect of the disturbance from the generalized control variable s almost completely.
The state trajectories are confined to the vicinity of the manifold with a sufficiently
high accuracy, discrete time sliding mode takes place and the trajectories eventually
converge to the origin with a dynamic adopted by C. Note that for both cases, the
desired eigenvalues of sliding mode has been located at z = 0.5,0.7,0.8 in discrete
time and € has been chosen as a zero matrix to resemble the ideal equivalent control.
Figures 2.8-2.11 show the states of the system for both control laws on top of each

other.
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Figure 2.9: Tractor yaw rate
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CHAPTER 3

CONTINUOUS TIME SLIDING MODE OBSERVERS

Many controllers in the multivariable system context are normally of the linear or
nonlinear state feedback type and they call for the complete information about the
the plant states if they are to be implemented. However, it is either impossible or
inappropriate to measure all the state variables because of some practical considera-
tions. Therefore, if we want to retain the benefits of state feedback type controllers,
this problem has to be overcome. The usage of an observer is the most feasible solu-
tion to the problem. An observer is simply an auxiliary dynamic system driven by the
available system inputs and the outputs which yields the original state vector at least
asymptotically under some structural assumptions on the system in consideration.
The reconstructed state vector can then be substituted for the real state vector in the
original feedback control law. Figure 3.1 illustrates an open loop state reconstruction
process.

The organization of the chapter is as follows: Section 3.1 reviews the fundamental
asymptotic observers and constructs the basics of an observer design process. In
section 3.2, first a reduced order observer is designed using the sliding mode theory
and then the possibility of designing an observer which reconstructs the original state
vector of the system in finite time is discussed. Equivalent control methodology is
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Figure 3.1: Open loop state observation

exploited for this purpose. Finally, the finite time convergence characteristics of the
proposed continuous time sliding mode observers are tested on a linearized truck-

semitrailer system during a lane change-type maneuver in section 3.3.
3.1 Asymptotic Observers

In this section, we review the classical observer design methods initiated by David
G. Luenberger. Two design methods are picked up to summarize the frequently used

observer design methods up to this time. Consider

i = Az+ Bu

.~ Ca (3.1)

where z € R*, u € RP, y € R™ and A, B, C are constant matrices of appropriate
dimensions. The (A, C) pair is assumed to be observable. We further assume that C
has full rank without loss of generality. The state vector of the system is unknown,
however a reduced order linear combination of the states is available in the form of
the output. The question is whether we can design a new dynamic system which
presumably generates the original state vector just using the output and the input

vectors of the system. This question is first answered by D.G. Luenberger. According
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to his method, an observer is built in the following form:
g = A% + Bu+ L(y — C%) (3.2)
Subtracting (3.2) from (3.1) yields
é(t) = (A - LC)e(t) (3.3)

where e(t) = z(t) — &(t) represents the difference between the actual and the observed
value of the state vector. Since the system considered is observable, eigenvalues of
the matrix (A — LC) can be assigned arbitrarily selecting the free observer parameter
properly such that e(t) — 0,x1 as ¢t — oo and the eigenvalues of (A — LC) determine
the convergence rate. In the literature, this observer is usually called full order
Luenberger observer since the observer order is equal to the system order.

However, since there are m outputs of the system, a proper static transformation
on y should yield m of the state variables directly. With this transformation the new
state equation appears as follows:

y = Any+ Aps + Bu

& = Any+ Anzi + B (3.4)

Because y is known, it does not need to be estimated and the original problem of
estimating the n-dimensional state vector can be replaced by a reduced order problem

of reconstructing only z;. Let the observer related to z; be
t1 = F#, + Gry + Gou + Ly (3.5)

Inserting the expression of ¢ into (3.5) and subtracting (3.5) from (3.4) yield the

following error dynamics
él = F61 + (A21 "' L,All “— Gl)y + (A22 — F - LA12).’]31 + (B2 - G2 - LBl)’lL (36)

where e; denotes the error in the variable z;. Choosing
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o F'= Ay — LAy
o Gy = Ay — LAy
LJ G2:B2_LB]_

the error dynamics related to z; become independent of the states and the inputs of

the system and can be guaranteed to decay to zero satisfying the relation
é1(t) = (A2 — LA)es(?) (3.7)

choosing the matrix (As; — LAj2) is stable. This necessitates an observability as-
sumption on the pair (Ass, A12). However, because the original system is observable,
this pair is also observable since the observability of the (A4, C) pair is sufficient for
this observability condition. Therefore eigenvalues of (A — LA;5) can arbitrarily
be placed and e; — Opm_m)x1 as t — o0o. To get rid of the y term in the observer

equation, a new variable is defined
n=24% — Ly (3.8)
which satisfies the following dynamical relation:
1= (A — LA1)n + (Aol — LAysL + A3 — LA )y + (By — LBy)u (3.9)

and Z; = 1+ Ly yields the final estimate. Note that the order of the observer has

reduced to (n —m) as desired and convergence takes place asymptotically.

3.2 Sliding Mode Observers Using Equivalent Control

In the previous section, we discussed two Luenberger-type observer design meth-
ods. In both of them, a dual system which has the same dynamics with those of the
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variable to be observed is formed with an additional linear term and the convergence
is guaranteed selecting this auxiliary term properly. However, the state reconstruction
takes place asymptotically. The eigenvalues of the associated error variable dynam-
ics can be chosen very far away from the jw-axis to increase the decay rate, but
asymptotic convergence characteristic of a Luenberger observer cannot be removed
completely. Therefore, these observers will be called asymptotic observers from now
on.

However, it would be more appropriate to reconstruct the state vector in finite
time for feedback control purposes. In the rest of the chapter we discuss the sliding
mode observer design theory using the equivalent control concept to satisfy this aim.
We first start with the sliding mode realization of a reduced order asymptotic observer
to construct the basics and the terminology of the sliding mode observer design theory

that will be used throughout the chapter.
3.2.1 Sliding Mode Realization of a Reduced Order Observer

In this section, the problem of state estimation of a linear system through the
information on the known variables is studied in the framework of the sliding mode

theory. Consideration will be given again to the system

Az + Bu
y = Cz

(3.10)

where z € R", w € RP, y € R™ and A, B, C are constant matrices with proper
dimensions. The system is observable and C' has full rank without loss of generality
as usual. For the problem of reconstructing the state vector at least asymptotically

using only the input and the output vectors of the system, we propose an observer in
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the following form

& = A% + Bu + Lsgn(y — §) (3.11)

where sgn function is defined as columnwise, i.e;

1 sgn(z)
T sgn(zs)
sgn : = :
Tn—1 Sgn(xn—l)
L Tn | L Sgn(xn)

with
1 ifz>0
sgn(2) =3 _y itz <0

and L € R™™ is the free observer parameter to be chosen so as to satisfy the

convergence of  to 2. Taking the difference between (3.11) and (3.10) yields
é; = Ae, — Lsgn e, (3.12)

where e; = x — & and e, =y — 9. Yet, the answer to the question of choosing L such
that e, — 0 at least as £ — 0o is not straightforward at this stage. To this end, the
system given in (3.10) is passed through a static transformation to obtain directly the
available m outputs of the system as a part of its n dimensional state vector. Using

a transformation which has the form below
™

¢
where R € R("~™)*" is arbitrary provided that T is invertible and defining z; = Rz,
the following representation is obtained

y = Any+Anpz+ Bu m

;’i;l = A21y + Aggl‘l + Byu h—-m (313)

where

TAT-! = [ﬁ;i ﬁu] and TB= [Bl].
22
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A sliding mode observer which will somehow reconstruct the state vector of the new

representation from y and u is described by

Augj -+ A125’31 + Blu -+ Llsgn ey
Aa1§ + Agoy + Bou + Lasgn €y

(3.14)

ISR~ 2]
I

1

where L1 € R™™ and L, € R(®""™*™ are the parameters of the observer.

Representing the mismatch in the process by the state reconstruction error

& = V=Y (3.15)
) 2R e,
u -Q.:ﬂ - N i
following error dynamics are obtained b ‘
" \,) 6] ,’.‘
!
(3.16)

= Ane, + Ajpey, — Ly sgney

- éy
Aoie, + Agoeg, — Lg sgn ey

- ea.‘l =

and the state reconstruction problem turns into a regulation problem in e, and eg,.

This problem is solved using sliding mode theory at two steps as follows: First, the

error trajectories are steered to a manifold defined by
8 = {egle, =y~ =0} (3.17)

Let
2
€y >0

b | =

V =
be a Lyapunov function for the the variable e,. Choosing L, as a diagonal matrix
where each entry is greater than || Ajiey + Ajoes, ||, We get

dv .
= ey = ey(Ariey + Aneg, — Ly sgney) <0

along the error trajectories so that e, decreases monotonically and eventually -be-
comes zero. Note that the equality signs hold only when e, is the zero vector, hence
the system is asymptotically stable indeed and an L; which ensures the asymptotic
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stability can always be found for a boun(ied initial state. Therefore, sliding mode

takes place on the manifold a finite time later. In sliding mode the equivalent value

of the first observer auxiliary input is calculated as follows:
[L1 sgn eyleq = A12€4, (3.18)

substituting e, = 0 and é,=0 into (3.16). In this setting, the equivalent control is
used to describe the average of the discontinuous control law when the associated
trajectories are on the manifold and it can be obtained by passing the discontinuous
input term through a low pass filter so as to eliminate the high frequency oscillations
resulted from imperfections without loosing the error dynamics. Inserting (3.18) into
(3.16) produces the error motion in sliding mode:

ér, = Amey+ Agper, — LaLTY[Ly sgneyleg

€, = Amey — Lyl Avsey, (3.19)

€r, = (An— LLi'Ap)es,
If the original system is observable, the pair (Ajs, A12) is also observable and the
eigenvalues of the matrix (Agy — L2L1‘1A12) can be assigned arbitrarily. With an
appropriate Ly, e,, decays exponentially and observer states converge to the actual
states. Therefore, the goal of state reconstruction using sliding modes is achieved.
Note that, this is exactly the sliding mode realization of a reduced order asymptotic
observer. A sliding mode is induced in the error associated with the output vector in
finite time and after that, the remaining (n —m) error variables die out exponentially.
Since the original state vector is simply a linear combination of the m dimensional
finite time converging and the (n — m) dimensional exponentially converging state
variables, the original state reconstruction takes place asymptotically. Theorem 1

summarizes the design procedure.
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Theorem 1 The sliding mode observer
i = A% + Bu + Lsgn(y — §)

reconstructs the state vector of the system given in (3.10) asymptotically choosing

| In
L=T [Lle ’

L, € R™*™ is a positive definite diagonal matriz whose each diagonal term is greater
than || Aiiey + Ai2es, ||oo, L2 € R=m)xm s the matriz which places the eigenvalues

of (Ao — LyAyy) at desired locations and T is the similarity transformation matriz

r= &

with an arbitrary (n —m) x n matriz R as long as T is nonsingular. The (A, C) pair

given by

is assumed to be observable and the eigenvalues of the matriz (A — LaAqs) determine

the reconstruction speed.
3.2.2 Finite Time Converging Sliding Mode Observers

In the previous section, we discussed the sliding mode realization of a reduced
order asyrmptotic observer using equivalent control concept. However, exact con-
vergence took place again at infinity. In this section the design algorithm will be
generalized to satisfy the finite time convergence of the all states.

We start from (3.13) which is repeated below for convenience.

y = Auy + Alg.’El + Byu m

1 .20
1 = Any+Apti+ B pem (3.20)

The corresponding sliding mode observer for the first equation of (3.20) is again
written as a replica of it with an additional nonlinear auxiliary input term as follows:
'Q = Ang + Ay + Biu + Lyisgn(y — §) (3.21)
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where L, is a positive definite, diagonal m x m matrix. Subtracting (3.21) from the

first equation of (3.20), one gets:
€y, = Aney + Apgey, — Ly sgney (3.22)

where e, = y — 4. With a sufficiently large Ly, e, and ¢, are guaranteed to have
different signs componentwise so that sliding mode takes place on the manifold defined
by

S = {esle, = 0} (3.23)

as before. So far, the same design procedure of the preceding section has been fol-
lowed. However, at this stage we define a new variable y, = L7 457, and combine

the second equation of (3.20) with this final equation to form a new system as follows:

i1 = Apzi+Any+Bu "M (3.24)
vy = LitApm \ i -
' mﬂ\'\'"‘.\

This system has exactly the same form with the one which we have started with,
where x; is the state of the system, y; is the output and y and u are the inputs.
Furthermore, the dimension of the system has reduced to (n — m) and the output
vector of the new system is m dimensional provided that A;, has full rank.

Note that, we originally started with a larger dimensional system and recon-

i

f._;
structed m of the observer states in finite time. Now, a valid question is whether

we can also use the same procedure to observe some states of the observer associated
with this reduced order system. If so, we will provide the finite time convergence of
more than m states and hopefully come up with a full finite time converging observer
sequentially applying this logic.

The answer of this question depends on some assumptions on the system. If
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e the pair (Ag, L' A;,) is observable
e the matrix L7 A, has full rank
e y; is available

then we can apply the same procedure. The first assumption automatically holds if
the original system is observable since observability of the pair (C, A) is sufficient for
observability of the pair (Ag, Aj2). The second assumption may or may not hold

since Ajp is a system matrix which cannot be adjusted. However, even if the rank

I
condition is not satisfied, a new variable y; = Ky, can be defined
Lt par [ -t}
’ -1 /
v = KLy Apx

v = Apm (3.25)

where rank(Ay,) = m for M < m so that the final system is rewritten with an output
vector of lower dimension. Therefore, the rank condition can also be assumed to be
satisfied without loss of generality. The third assumption looks very unrealistic at first
glance because y; is itself a linear combination of the unknown states of the system
and hence it is not available directly. However, this information can be extracted from
the system exploiting the equivalent control method. Before discussing the details of
how this method solves the problem, we need to give the basics of it for a continuous
time system.

In the literature, the equivalent control of a system is defined as the average value
of the discontinuous control in sliding mode which is itself enough to keep the state
trajectories on the manifold, thereafter they hit the manifold. Mathematically, it is
the solution of the dynamic equation associated with the generalized control variable

for the control input imposing the constraints of sliding mode. For example, for a
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linear continuous time system let & denote the manifold
S = {z|s = Cz = 0}. (3.26)
The sliding mode dynamics are
$=CAz + CBu (3.27)
and the equivalent control is found equating $ and s to zero as follows:
Ugg = —(CB) 'C Az (3.28)
Outside the manifold, the control law
u=—(CB) " (CAz + K sgn s) (3.29)

is sufficient to steer the state trajectories and to keep them on the manifold with a
positive K. With this control law, the trajectories converge to the manifold mono-
tonically and as soon as they reach the manifold, the control law starts to switch.
The switching frequency theoretically should be infinite to completely eliminate the
oscillations around the manifold. However, in real life the switching frequency is lim-
ited by some practical constraints. So, there will be always some oscillations around
the manifold. The magnitude of these oscillations is related to the magnitude of the
discontinuous term whereas the oscillation frequency is mainly determined by the
switching frequency. When the discontinuous control law is filtered by a low pass
filter whose cutoff frequency is less than the switching frequency but higher than the
maximum frequency of the system dynamics, the high frequency oscillations in the
input are eliminated and the filter output yields the equivalent control. This property
of the equivalent control can be used to extract some additional information from the
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system. When considering the prospective sliding mode observer, L; sgn e, term is
considered as the input which enforces sliding mode and its equivalent value should

be found. Solving (3.22) for Ly sgn e, after replacing e, and ¢, by zero produces
“Anh,

Lt
[L1 sgn eyleq, = Algezj; (3.30)

= Lie, LA
1€q, ‘%.t [2;;’+ j: .
Therefore, even though y; is not directly available, a linear transformed version of
>
the erl(roﬁf[in this variable can be obtained passing the first observer auxiliary input
through a low pass filter to yield its equivalent as discussed before.
Since all the assumptions have been satisfied, the original problem can be replaced

by a reduced order problem of reconstructing the state vector of the system given in

(3.24). Using the same steps, (3.24) is first transformed into

U = Az + Asazo + Assy + Bsu !

4 , 3.31
Iy = Auyr+ Awdy + Ay + Biu pm (3:31)
with an appropriate similarity transformation matrix given by
LB n-w
Lyt Ag e
n-| M MIRCROH
= Tadm)y () LI R L

where R, € E’,("_zm)’“:‘f7 is arbitrary as long as T} is invertible and zo = Rjx;. The

sliding mode observer for the first equation of (3.31) is built as follows:
331 = Az1fh + As2Z2 + As3§ + Bsu + Lo sgn(ys — §1) (3.32)

Subtracting (3.32) from the first equation of (3.31) provides

é'yl = A316y1 + A32e:1:2 + A33(’3y — Ly sgn Cyy (333)
where
€, = Y1 — % and (3.34)
€z, = Ty — To ’
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When sliding mode occurs on 8, e, becomes a zero vector and (3.33) turns into
€y, = Aziey, + Assez, — Lo sgn ey, (3.35)
At this stage, we define a new manifold &;
81 = {esle,, =0 N gy =0} (3.36)

and choose a proper L, to gnarantee that e,, and ¢é,, have different signs, componen-
twise. Sliding mode takes place after a finite time and m of the state variables of the
system in (3.31) converges zero.
Since .
Ly sgne, = Ljsgn(Li Ajpeg,)
= Ly sgn (LT'[Ly sgn eyle) (3.37)

Ly sgne,, = Lgsgn([sgneyle)
final observer equation for the reduced order system is rewritten as follows:

2.71 = A3101 + Aso@o + Ass§ + Bsu + Ly sgn ([ syn ey]eq) (3.38)

At the next step, we define a new variable y, = Ly A3,x, and form a new system as

follows:
T = Apzy+ Agy+ Auy + Bau
i 3.39
v = Ly 11432172 ( )
Assuming that Aj» has also full rank, one can transform (3.39) into
o = Asiyp+ Asews + Aszy + Asatn + Bsu (3.40)
3 = Agyz + Asars + Aesy + Assy1 + Beu )
and choose
Gy = Asif2 + Asadis + Asali + Asaih + Bsu + Ls sgn(ys — i) (3.41)

as the observer equation for the variable yo. Subtracting (3.41) from the first equation

of (3.40) provides

€yy = Asi€y, + Aszeq, + Asze, + Asse,, — L3 sgn ey, (3.42)
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and in sliding mode, (3.42) turns into
éyz = A518y2 + A526z3 — L3 sgn €y, (343)

replacing both e, and e,, by zero. We then choose L3 as a diagonal matrix with
sufficiently large diagonal terms to steer the error trajectories to a new manifold
defined by

Sy = {esle,, =0 Ney =0 N e, =0} (3.44)

and sliding mode takes place after a finite time.
To generalize the procedure, let us assume that, we have the following reduced
order system at k" step.

Uk—1 = Aop-1,1Yk—1 + Aok—12Tk + Aog-1,3Y + Agp—140%1 + - -
+Aok—1,k+1Yk-2 + Bop_1u (3.45)
Ty = Aog1Yk—1 + Aok 2Tk + Aok 3y + Aogays + - ]
+ Aok k+1Yk—2 + Bayu

The sliding mode observer for the first equation of (3.45) is chosen in the form

Tp_1 = Ask—1,10k—1 + Ask—128k + Aok—137 + Agk—1,491 + - (3.46)
+Aok—1 k+10k—2 + Bog—1u + Ly sgn ey, |

and the error in y_; is found to be

€y, = Ask—r1€y,_, + Asx_12€s, + Agk-136y + Aog_1,4€y, + - (3.47)
k -
+A2k—],k+leyk_2 - ‘C’ (ey)

where Lx(.) has been introduced as a new operator

L) =L sgn( - - - sgn| sign()egleq) (3.48)

e

k

just for notational purposes. Defining a new manifold S;_;
Sk—l = {em|eyk_1 =0nN Sk—l C Sk_z} (349)
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and choosing a sufficiently large L, the error trajectories are steered to it. At the
next step, a new variable y, = L;1A2k_1‘2.’L'k is defined, a new system of a lower
dimension than the one step before is formed, this system is transformed into a new
state space realization and so on and so forth.

Note that this process can be hopefully continued to satisfy the finite time con-
vergence of the all states. At each step, the dimension of the state vector of the new
system becomes less than that of the system of one step before. Therefore, this pro-
cess is presumed to terminate a finite step later. The termination of the procedure
depends on the number of states, the number of outputs and the (A, B, C) triple.
Figure 3.2 shows the structure of the observer and the possible termination ways can

be summed in two cases.

e The number of states of the system is an integer multiple of the number of out-
puts and all Ag;_, 5’s have full rank. If this is the case, the procedure terminates
at the k' step where k is n/m and n, m are the number of states and outputs

of the system, respectively.

For this case, the observer equations designed at each step can be gathered to-

gether to form the complete observer as follows:

Z? = Apg+ L + Biu+ Ll(e,)

g1 = Asfi+ Lafe + Ags§ + Bau + L2(ey)

Uo = Asifo+ Lalis + Ass + Asa? + Bsu + L3(e,) (3.50)
Jpo1 = Aok 11961+ Aok_130 + Agp_y a8t + -+

+Agk—1,k+2k—2 + Bar—1u + L (ey)
where each L; is an m X m, diagonal matrix with positive entries and the degree of

the ¢;’s is the same as that of the original output. Therefore, the observer and the
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Figure 3.2: State reconstruction with a full sliding mode observer
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system orders are the same. (3.50) can also be written as a state space equation as

follows:
Y = AV+Bu+u (3.51)
where
[ A L, 0 0o ... 0 0
Ass Az Ly 0o - 0 0
_ Ass Asy As Ly --- 0 0
A = ) . . S i ) ;
Agk—33 Aoks34 Am3s - -+ Aggsa Ly_4
LAzku1,3 A2k—1,4 A2k—1,5 A2k—1,k+2 Azk—1,1_
r Bl T
B3
B=| % |
Boy—3
| Box—1
0] " Lie,) ]
U1 Ez(ey)
. 7 L3 (e
and Y = y:z , U = (y)
G2 L5 (e,)
L Tk-1 ] L Lk(ey)

However, the state variables of the observer of (3.51) are very different from those of
the original system. If the original system is also brought to the same form with the

observer

Y = AY+Bu (3.52)

where
N
Y2

Yk—2

[ v |
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the error dynamics are obtained in the following matrix differential form

£ = AE-U (3.53)
where )
@
€y
. e
£ = Y-39 = Y2
€yp_2
| €yr_y |

subtracting (3.51) from (3.52).

To sum up, the error vector £ converges to zero selecting each L, large enough
to enforce sliding mode. Note that, initially the observer error vector is arbitrarily
located in the transformed state space. If the first observer parameter L, is chosen
properly, error trajectories are steered to the first manifold which has been defined as
S = {es|e, = 0} and sliding mode occurs on it. After that, the error trajectories are
also steered to a subset of the previous manifold called the second manifold which has
been defined as 8; = {e;|e, = 0N ey, = 0} passing the first observer input through a
low pass filter to get e,, and choosing L, sufficiently large. As the process continues,
error trajectories eventually converge to the origin of the state space traveling from
one manifold to the next manifold which is a subset of the previous one.

However, the observer state variables differ from those of the system considerably.
A and B should be computed for implementation purposes. Furthermore, the final
reconstructed observer state vector will be a transformed version of the original state
vector. However, it would be more appropriate to design the sliding mode observer
in the same state space realization with the system. This can be achieved by retrans-

forming every single observer equation into its original form before proceeding to the
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next step. It is a very straightforward process and Theorem 2 summarizes the result

without going into further detail.

Theorem 2 The continuous-time sliding mode observer for the system given in
(8.10) has the following form:

Lysgn(ey)

Ly sgn| sgn(ey)eq)

%= A% + Bu+ P! (3.54)

Pl et Ls sgn( sgn[ sign(ey)egleq)
3 P!
4
where e, =Yy —1{;
[c | An A
P = l: Ry } PlAPl N [ An A ]

h= [ R, } PZAQQP;I N [ Ay Agp

| L Assn
-Pl — [ Rl

where Azk—1,1 c Rmxm’ A2k—1,2 € Rmx(n—km)’ A2lc,1 c R(n—km)xm and A2k,2 c R(n—km)x(n—km);
Ly ’s are positive definite diagonal matrices and Ry’s are arbitrary with appropriate
dimensions as long as Py’s are invertible. It has been assumed that the matrices

L]:__l_lAgk._g’z have full rank, n/m =1 is an integer and the system is observable.

e Some Ajk_32’s do not have full rank. If the number of states of the given system
is not an integer multiple of the number of outputs, this situation is inevitable.
At each step the dimension of the new system is reduced by the degree of the
output vector up to facing a rank drop, so that at one step the number of the

output of the resulting system will definitely be more than the number of states
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of the system which means that rank at that stage cannot be full anymore. The
same situation can happen even if the number of states of the given system is

an integer multiple of the number of outputs.

If this is the case, the same design procedure is applicable. However, one has to
do some matrix operations at the level where rank drop has occurred to be able to
proceed to the next step. The order of the final sliding mode observer will be less
than the system order and Theorem 2 cannot be used. However, the original system
can be transformed into a new form as in (3.52) and the observer design is performed

based on this new realization.

3.3 Simulations

In this section, we test the performance of the proposed continuous time sliding
mode observers on a truck-semitrailer system whose linear model has already been
used in Chapter 2. The problem is to reconstruct the state vector of the system during
a maneuver with a constant longitudinal velocity of 15 m/s using the information on
the yaw rates of the tractor and the semitrailer. It is assumed that the sensor readings
are the actual values and the model exactly represents the system.

We first start with the design of a reduced order observer using equivalent control.
The number of outputs of the system for this case is two and there are four states of
the system. Therefore, sliding mode is induced on the known 2 states and the errors
in the remaining states decay asymptotically in sliding mode. In the simulations, the

eigenvalues of the observer have been located at —2 and ~4 and L has been chosen
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Figure 3.3: Tractor lateral velocity (Reduced order sliding mode)

as follows:
0.1074 —0.0653

0.1 0
0 0.1
—0.0591 -0.1588

Figures 3.3-3.6 show the reconstructed and the original state variables on top of each
other. Note that, the observer states which correspond to the yaw rates of the tractor
and the semitrailer converge immediately. After sliding mode takes place on these
variables the remaining observer states related to the lateral velocity of the tractor
and the articulation angle also converge to the actual values.

Second, we design a full sliding mode observer for the same scenario. The ratio
between the number of states and the outputs of the system is two and there has been
found no rank drop. Therefore, Theorem 2 is applicable and the design procedure

terminates at two steps. Note that, the matrices P, and P, are not unique since they
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Figure 3.4: Tractor yaw rate (Reduced order sliding mode)
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Figure 3.5: Semitrailer yaw rate (Reduced order sliding mode)
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Figure 3.6: Articulation angle (Reduced order sliding mode)

both have a random part. In the simulations, we have chosen them as follows:

0 1 0 0
0 0 1 0 -3.0632  0.5716

A= 0.0346 0.5297 0.0077 0.0688 o B= 0.8585 —0.2205 |’

0.0535 0.6771 0.3834 0.4175
L, = 0.1513, L, = 0.151, and the time constant of the filter through which the

discontinuous auxiliary observer input has been passed to obtain the equivalent value
of it has been 5 msec.

In simulations, the block which represents the continuous time truck-semitrailer
has been located between a sampler and a zero order hold and the discretized version
of the continuous time sliding mode observer with a sampling time of 0.01 sec. has
been implemented to resemble a real sampled data control system. Figures 3.7-3.10
show the observer and the system state variables on top of each other in case of
application of the full sliding mode observer. The convergence takes place in finite
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Figure 3.7: Tractor lateral velocity (Full sliding mode)

time and the convergence time is very small as expected. The zoomed version of
Figure 3.7 related to truck lateral velocity has also been presented to illustrate the
intersampling behavior of the observer motion around the manifold. The amplitude
of these oscillations could be reduced choosing L; and Ly smaller but in that case
the convergence rate would decrease as well. With the sampled data implementation,
observer takes corrective action only at the sampling instances and the motion is
arbitrary between them.

The comparison of the two simulation sets reveals the superiority of the full sliding
mode observer over the sliding mode implemented reduced order one in terms of their
convergence characteristics. The observer states related to the yaw rates of the tractor
and the semitrailer converge in finite time for both cases. However, the remaining

states of the reduced order observer converge asymptotically. Since the smallest
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Figure 3.8: Tractor yaw rate (Full sliding mode)
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Figure 3.9: Semitrailer yaw rate (Full sliding mode)
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Articulation angle between the units (deg)
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Figure 3.10: Articulation angle (Full sliding mode)
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Figure 3.11: Small scale tractor lateral velocity (Full sliding mode)
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observer eigenvalue is —2, the errors in these variables reach 2% of their initial values
at most at ¢ = 2.5 sec. so that just looking at the convergence times may not be
enough to understand the asymptotic convergence situation. However, examining
these states carefully, one can see that the error associated with each of those states
first goes to zero and then escapes but finally becomes zero again and remains there.
In case of the the full sliding mode observer these errors reach zero and thereafter
they remain at that value. This is the most feasible way of exploring the asymptotic
convergence or finite time converging characteristic of a variable.

In conclusion, the proposed full sliding mode observer has achieved the goal of
state reconstruction in finite time, however at the expense of small chattering terms
in the observer states because of the sampled data implementation. Sliding mode
implemented reduced order observer has also reconstructed the original state vector
in very short time, however the convergence has taken place asymptotically and its

states contain small magnitude, high frequency oscillations as well.

64



CHAPTER 4

DISCRETE TIME SLIDING MODE OBSERVERS

In the previous chapter, continuous time observer design methods have been dis-
cussed. We started with the review of standard Luenberger-type asymptotic state
observers and stated their asymptotic state convergence characteristics as their ma-
jor weakness. The convergence speed would be increased placing the observer poles
further left from the imaginary axis but this would decrease the bandwidth of the
observer. This gave us the motivation for studying the possible ways of designing
a finite time converging observer in the framework of the sliding mode theory. The
original system has been transformed sequentially into proper forms and the complete
observer structure showed a nested structure. The equivalent control methodology
has been exploited from different perspectives and used to extract information on the
unknown quantities. Simulations on a truck-semitrailer illustrated the effectiveness
of the design procedure over the standard asymptotic observers. However, discrete
time implementation of the continuous time observer caused the observer states to
chatter around the real states because of the discontinuous terms in the observer
equation. Theoretically, these high frequency oscillations can be removed with an

infinite switching frequency. However, practical implementation issues of computer
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control require the extension of the design procedure for a full discrete time observer
using the discrete time sliding mode theory.

In this chapter, we will first summarize some standard discrete time observer
design methods and build the terminology that will be used later in the discrete time
sliding mode observer discussion. Then the continuous time sliding mode observer
design procedure will be extended to discrete time systems and proposed observers
will be tested on the estimation of the unmeasurable states of the truck-semitrailer

system of the previous chapters in simulations as usual.

4.1 Standard Discrete Time Observers

In this section, discrete time versions of the continuous time Luenberger observers

will be summarized. Consideration is given to the following discrete time system

T+l = @zk-i—f‘uk

ye = Cz (4.1)

where z € R", u € RP, y € R™ and ®, I', C are constant matrices of appropriate di-
mensions. The pair (®, C) is assumed to be observable. State variables of the system
are unknown, but a linear combination of them as a vector of lower dimension in the
form of the output is available. The problem is to form a dynamical system which
admits the output and the input of the original system as its input and yields the es-
timated states such that its output tends to the system states at least asymptotically.
We further assume that there is no parametric uncertainties or external disturbances

and the model exactly represents the system.
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4.1.1 Full Order Asymptotic Observers

We build an observer
.f?k+1 = Ffﬁk + Glyk + Gguk (42)

and want to satisfy Zy — xx while k — oo properly choosing the observer parameters
F, Gy and (5. Defining

Cp = T — S%k (43)

the dynamical equation that the error variable e, satisfies is given by
err1 = Oxp +Tup — Fip — Ghyp — Goug
= <I>(ek + .’f?k) + Tuy — FIy, ~ GlC(ek + ka) — Gauy, (44)
= ((I) - GlC)ek + ((I) - F— Glc)fl\?k + (P - Gz)uk

Picking F' and G,

F = &-G.C
G, = T (4.5)

the error dynamics become independent of Z and
€yl = ((I) - GlC)ek (46)

Under the observability assumption for the pair (®,C), the eigenvalues of the
matrix (® — G1C) can be located inside the unit disc and the convergence of e to the
zero vector is guaranteed. After choosing 1 according to the desired convergence
dynamics, the other observer parameters F' and G, are calculated from (4.5) and the

final observer equation becomes

T = (@ = GiO)ak + Giyr + Gaug

= Oy + Tup + Gy (yx, — Cy) 47

and the observer structure is illustrated in Figure 4.1.
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Figure 4.1: Structure of a Full Order Asymptotic Observer

4.1.2 Reduced Order Asymptotic Observers

The full order observer designed in the previous section is a dynamic system of
order n. However, since the m linear combinations of the states are available in the
form of the output, m states can be obtained directly by a static transformation on
y. Therefore, a proper (n — m)® order observer would be enough for the full state

observation. Defining a new vector variable n € R®™™, we obtain

11151

If the matrix [ g } is invertible and 7 is known then z can be obtained directly.

Manipulating the definition for n with the system model given in (4.1), one obtains
Te+1 = T(I)SEk + TFuk (49)
Let the corresponding observer equation for 7 be

ﬁk+1 = F’ﬁk + Gl-uk + Gg’yk (410)
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where FF € Rm—m)x(n—m) 1« R=m)XP and G5 € R""™*™ are the observer pa-
rameters to be chosen so as to achieve the state estimation objective. Subtracting

(4.10) from (4.9) yields the error dynamics as follows:

enkt1 = TOxp+TTup — F(Txp — egp) — Grug — GoCy (4.11)
Enk+l = (T‘I) - FT - GgC)-’L‘k + Fe,,,k + (TF — G]_)‘U,k )
We want to have  — 0 as k¥ — oo independent of x and u. Picking
G] - TF
T® — FT = G,C, (4.12)
the error dynamics become
€ner = Feng (4.13)
If T is chosen as
T=3% &P (4.14)
i=1
where
P
.PT
:2 = Q_l = [QIQ2 Tt Qn]a
ot
g;’s are the right eigenvectors of @, the following identity is obtained

Since the observability of the pair (C,®) is sufficient for C¢; # 0, (\] — F) is
invertible if the poles of the system are different of those of the observer. Bearing

this in mind and choosing

e I such that A{F} N A{®}= 0 and F is stable
® Gy such that rank(Gy) = min(n — m, m)
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Original System

_____________________________

Figure 4.2: Structure of a Reduced Order Asymptotic Observer

e T and Gy such that they satisfy the constraints in (4.12) and the matrix
C
T

e, is guaranteed to converge zero and the convergence rate is determined by the

7)== 0

the estimated state vector is calculated by

(2] o

Note that the order of the observer equation given in (4.10) is (n — m) indeed and

has full rank,

eigenvalues of F'. Using

the observer structure is illustrated in Figure 4.2.

4.2 Discrete Time Sliding Mode Observers

In the previous section, we reviewed two standard discrete time observer design
methods. In both methods, the observer model simply has been a replication of
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the original model with an extra error term and the state convergence has been
provided assigning the poles of the closed loop error dynamics with a proper selection
of the observer parameters. Therefore, these design methods have exactly the same
rcasoning with the standard asymptotic continuous time observers of the previous
chapter. However, unlike the continuous time case, the finite time convergence of
these discrete time observers can be guaranteed placing the eigenvalues of the mgtrix

(® — G1C) at the origin. The solution to the difference equation of (4.6) is given by

ehar = (& — G1C) ey, (4.17)

However,

(@ = G1O)" = Onx H (4.18)

for r > n if all the eigenvalues of (® — G1C) are zero and so e converges to the zero
vector at finite steps independent of the initial error. This property of discrete time
systems is called‘deadbeat response.

In this section, we study the sliding mode realization of a reduced order discrete
time observer. As discussed in the previous chapter, a continuous time sliding mode
observer steers the observer error trajectories to the origin in finite time. However, a
standard discrete time observer can also do the same job because of the deadbeat re-
sponse property of a discrete time system. Therefore the finite time state convergence
characteristic of a sliding mode observer looses its importance for the discrete case at
first glance. However, besides the convergence property, the proposed sliding mode
observer of this section will also decompose the error motion into two independent

reduced order motions. Furthermore, these motions will be in the form of a zero input
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response and the error dynamics will be decoupled from any other dynamical effects
thereafter the system is in sliding mode.
We consider again the following discrete time system
P
Tpyr = Dxy + Ty
Yk = Cuy

m (4.19)
where 2 € R*, u € RP, y € R™ and ®, I', (' are constant matrices with appropriate
dimensions. The system is observable and C has full rank without loss of generality.
The problem is to design a discrete time observer in the framework of the discrete
time sliding mode theory using the p-dimensional input vector and the m-dimensional

output vector.

Let the observer equation for the system given in (4.19) be in the form
i’k—!—l = (I).’Ek + FU}C + T’Uk (420)

where I represents the observer state vector at time ¢ = kT, T is the sampling time

and Tw, is an arbitrary function of the known variables. Consider the error
ez =7T—% (4.21)

which satisfies the following difference equation

€xh+l = L1 — Tkt
egpt1 = Prp+Tup — @y — Tup — Yoy (4.22)
Eeprl = DPegp — Tug

We would like the error vector e to become zero in finite time. Choosing the observer
auxiliary input

T’Uk = @ew,k = (I)(ka - .’f?k)

ez would become zero and the estimated states would exactly match with the real
plant states at the next step. However, the auxiliary observer input contains itself
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the plant state vector which is being tried to find. Therefore, this iterative problem
needs to be solved using an alternative way.

First, the system given in (4.19) is transformed into the following form:

Yer1 = Puyr + ooz +Tiug m

4.23
Tierr = Porye + Doy + Toug n-m (4.23)
where
_ Q1 Do Iy
T(I)T 1 == 7 TF = 2
[ g1 Py Ty
using a proper similarity transformation of the states given by
C - ’ ) ’ ;( ( -; % - —{ x
T = T I
[R:| 5’/!.;‘3 L

where R is an arbitrary (n —m) X n matrix as long as T is invertible and ;5 = Rz
The corresponding sliding mode observer using the new realization of the system
is written as a replica of the system given in (4.23) with an additional innovative

auxiliary input term as follows:

Uerr = Pule + Pradipe + Tug ‘—Uk ( (4.24)
Zigr1 = Pk + Poody g + Doug + kai '
where vy € R™ and L € R(®»~™*™_The corresponding error dynamics can be found

by subtracting (4.24) from (4.23) as follows:

eyk+1 = Prieyp+ Pigen ko + vk

4.25
Bm,k_+1 = ‘1)216y,k + (1)2261-1,k — L ( )

where e, and e;, are defined as

€y = y—9
€y, = T1—I1

Examining the equation set (4.25), we can modify the problem of state observation
into an equivalent problem of finding an auxiliary observer input v in terms of the
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known quantities so that the observer error vector components e, and e,, are steered
to zero at finite steps.

As previously discussed, a general sliding mode design has two steps. First, a
manifold is designed so that while the associated system trajectories travel along the
manifold, the system satisfies desired design specifications. Second, a control law is
found to steer and keep the trajectories on the sliding manifold. When considering

sliding mode observer design, the manifold is defined as
S = {eyle, = 0} (4.26)

which is simply a subregion of the n-dimensional state space composed by the regions
from where the error trajectories possibly pass when the error in the output variable
y is kept at zero. If the error trajectories are on the manifold at each sampling
instance, we say that the observer is in discrete time sliding mode. Between the two

sampling instances, trajectories are allowed to deviate from the manifold, however

the deviations do not exceed the order of the sampling time. There are many possible
ways of choosing the sliding manifold other than the one previously defined. For
example, a linear combination of the error vector could also be chosen as a possible
manifold, however the new manifold would be just a transformed version of it, because
the degree of the manifold cannot be less than the degree of the variable that will be
used to enforce the sliding mode. Therefore, the dimension of the sliding manifold
_cannot be less thanm which is the output order of the original system and our
choice is very reasonable. After designing the manifold, the selection of the auxiliary
observer input so as to converge the trajectories to the manifold becomes the major
concern. Before further going into detail, we need to explain the equivalent control
concept for a discrete time system.
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As discussed before, the equivalent control is defined as the average value of the
variable which keeps the system trajectories on the sliding manifold after sliding
mode takes place. Therefore, the implementation of the equivalent control suffices
for the velocity vector of trajectories to be orthogonal to the gradient vector of the
manifold at any time provided that there is no parametric uncertainties or external
disturbances in the system. When considering continuous time systems, the real
control law is chosen as the equivalent control term with an additional discontinuous
term to take into account the reaching phase and to increase the robustness of the
system. As to discrete time sliding mode,_the definition of the equivalent control is
very similar to the continuous time case and it is defined as the control input which
b1j_ings the trajectories to the sliding manifold at one step [as discusscd_ _in_ Chapter 2.
The control input term which is used in the equivalent control definition does not
have to be the real input of the system, it might be just an auxiliary input as well.
According to the chosen sliding manifold, the equivalent control is found by solving

the auxiliary observer input with the constraint e, 1 = 0 as follows:
(4 25)
Vk,eq = —®y1¢, Jh @123371,1: ; (4-27)
If the equivalent control is applied to the system, sliding mode occurs at the next

step and e,, satisfies the following dynamical relation

Coihtt = (Dot L®r2)er, p + (Pon + LP1y)ey
o kvl = (Pao+ LPro)eq, k :

(4.28)
and converges to the zero vector choosing a proper L such that the matrix $og + LD
has the desired eigenvalues. Placing the eigenvalues of the matrix ®,5 + LP5 at the
desired locations requires observability of the pair (®,;, ®15). However, observability

of the pair (®,T") is sufficient for the previous observability requirement as discussed

75



before. This is exactly a sliding mode realization of the standard reduced order
asymptotic observer. After sliding mode takes place on the sliding manifold, the
observer error in the variable z, \‘also converges to zero and our control objective is
achievéq. Note that, unlike the discrete time sliding mode controller design where

the control law has been chosen different in the reaching phase and in the vicinity of

the manifold, we chooée a single observer input throughout the state space because
there is no restriction on the auxiliary observer input since it is just a fictitious input
to the system.

However, the equivalent observer auxiliary input cannot be provided since it con-
tains an unknown term, e,,. This is the main difference of the discrete time sliding
mode observer design procedure from the continuous one. In the continuous case, we
also do not know the values of some terms at the right hand side. However, since the
control aim at that stage is to steer the states towards the sliding manifold, observer
parameter L can be chosen large enough so as to suppress the effects of the unknown
terms so that the distance of the trajectories from the sliding manifold decreases
monotonically. As to the discrete time case, a discontinuous term is undesirable be-
cause of the finite switching frequency. Therefore, it becomes necessary to know all
the terms at the right hand side to compute the auxiliary input which brings error
trajectories to the sliding manifold.

To compute the equivalent auxiliary observer input, (4.25) can be combined into

"a single equation as follows:

eykt1 = Pueyr + Praey, k + Uk

Uk = eyktr1 — Prieyr — Proegy ,

o htt = Poreyr + Loy p — Leypr + LOPrieyr + LPrgey & (4.29)
Corhtr = (Do + Lio)ey, ks + (Poy + LPuy)eyp — Leyprr

€z1 .k = (DPyg + LP13)eq, j-1 + (Pa1 + LP11)ey k-1 — Leyp’
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and the unknown e,, ; term in the equivalent observer input can be replaced by 2z,
which is given by

o1 = Bz + T (4.30)

where ® = ®op + LP1; and [ = (Pa1 + LP11)eys1 — Leyp-

Note that, the dynamical equation of z is exactly the same as that of e, x and the
difference between z;;; and e, , goes to zero at most at n — m steps independent of
the initial error choosing all the eigenvalues of the matrix (@99 + L®15) at the origin.

Therefore, the equivalent observer 1nput can be updated as:
) 0/(‘f __(f)w;f..k fpw dh. ngl L[UK
VUkeqg — —‘I’uey,k - ‘1’12’»’5&_-_(_-1 (4 31)
Ukeqg = —(P11— PraLl)eyr — Pr2(Par + LPr1)ey p1 — P12(Poo + LP12) 2k
The estimated observer auxiliary input ¢, ., converges to the equivalent input ve,
after (n — m) steps later placing all the eigenvalues of the matrix (@5, + L®;2) at the
origin and the discrete time sliding mode takes place at the (n — m + 1) step. In

sliding mode, e,, which represents the rest of the composite error vector other than

e, converges zero satisfying the relation

wf@( W'H ) - €y ,k+1 = (‘1322 + L‘I’lz)ezl,k (4-32)

Since all the eigenvalues of (@9 + L®;2) have already been assigned as zero, e, also
converges in finite time and our control objective is achieved. Note that, in sliding
mode the total observer motion is decomposed into two independent motions and
these motions show a zero input _characterist_i_cj}Furthermore, the eigenvalues of these
submotions are controlled by the same parameter.

To sum up, the complete observer structure consists of two layers as shown in
Figure 4.3. The first layer is used to estimate the unknown error terms which are

necessary in the equivalent input calculation and the second layer is the layer where
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Figure 4.3: Structure of the Discrete Time Sliding Mode Observer

the state estimation is done. The second layer admits the output of the first layer
which is the estimated observer auxiliary input as its input and yields the estimated
states of the original system. Note that, the discrete time sliding mode observer
design is simpler and more straightforward than the continuous time sliding mode
observer design. The original system is only once transformed into another form and
there is no filtering block as in the continuous time case, instead shifting the discrete
time equations in time performs the dual task.

The following theorem summarizes the previous derivation for the design of a

sliding mode observer in the original state space realization of an observable plant.
Theorem 1 Given
Tp+1 = Py + Tuy,
yr = Czy,

where x € R*, u € RP, y € R™ , rank(C) = m and the (A, C) pair is observable. The

discrete-time sliding mode observer has the following form:

j;k:—i—l = (I)(i:k +FUk —'T-l |: fnll./ :I Vi
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where

(450
v = — (P11 — PraL)eyp — Pr2(Poy + LPyy)ey k-1 — Pr2(Pop + LP12) 24
oy P
T(I)T—-l = 11 12 ;
[ by Py

where &), € R™™ &, € Rmx(n—m)J Dy € Rr—m)xm on 4 By € R(n—m)x(""m);
eyk = Yk ~ Uk;

2, 15 the state of the following error driven system
Zpy1 = P+ T

where & = (‘1)22 + L(I)lz) s r= (@21 + L‘Pll)ey,k_l - Ley,k;

T is the similarity transformation matriz;

gt

where R € R"=X" is arbitrary provided that T is invertible and L is the observer

gain matriz which places all the eigenvalues of (Do + LP13) at the origin.

4.3 Discrete Time Sliding Mode Observers with Disturbance

In section 4.2, we have discussed a discrete time sliding mode observer based on an
ideal system representation assuming that there are no disturbances and uncertainties
in the system. In this section, this assumption is released and consideration is given

to the following uncertain discrete time system: )
Pl
v by

Tpy1 = x4+ Tuy, + Fuy n
Y = Cx+ Dhy M

1
il

(4.33)
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where £ € R", y € R™, u € RP are the state, the output and the input vectors,
respectively as before and w € R4, h € R“ denote the external disturbances to the
system. The pair (®,C) is assumed to be observable. It is further assumed that the

disturbance dynamics are known exactly, i.e;

w1 = Wy

4.34
hxyv = Hhy (4.:34)

If we attack to solve the problem directly using the design procedure of section 4.2,

the system is first transformed into:

Yk+1 = Quuyk + Pz + Dihy + Frwg + Ty (4.35)
Tret1r = Py + Pozip + Doy + Fowy + Tauy '
The corresponding sliding mode observer is given by
U1 = Pule + ProZip + Diwg — v (4.36)

Trp+1 = Pole + Poodix + Taug + Ly
Subtracting equation 4.36 from equation 4.35 yields the following error dynamics:

Eykrl = <I>lley,k + Pio€yy k + Dihy + Filwg + v

4.37
Eriht1 = Poeyr + Posegy ik + Dby + Fowy — Ly (4.37)

At this stage, vy should be chosen so as to induce a sliding mode on the manifold
S = {e,|e, = 0} according to the procedure used for an ideal system. However,
the observer equations now contain unknown disturbance terms. The elimination of
these disturbance terms by inserting a filter-like corrective term to the ideal equiva-
lent control law as discussed in Chapter 2 for a discrete time sliding mode controller
could be proposed as a solution. However, this can not solve the problem because the
unknown system and the disturbance states appear at the same side of the equation
and their dynamics cannot be separated from each other. However, since the distur-
bance dynamics are known, the variables w and h which represent the disturbance
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states can also be treated as unmeasurable system states. Incorporating them to the

original system dynamics, the following augmented system is obtained:

Ik
Yk+1 = Puiyk + [ b, D F ] hy | +Tiug
Wk
T k41 $yy Dy Fy Tk @3
hk+]_ = 0 H 0 hk + 0 Y + Fl'UJk (438)
W1 0 0o w Wy, 0

Assuming that, this augmented system is also observable, (4.38) is the counter-
part to (4.23) and Theorem 1 is directly applicable. Note that, the order of the z
dynamics increases by I; + I, which is the sum of the disturbance degrees, however

the disturbance states w and h are also estimated in finite time as well.

4.4 Simulations

In this section, the performance of the proposed discrete time sliding mode ob-
servers is tested on a truck-semitrailer system. First, it will be assumed that there
are no external disturbances and measurement errors in the system and Theorem 1
will be directly applied to the system. Second, the robustness of the proposed sliding
mode observer is illustrated in the presence of disturbances with known dynamics
and simulation results will be illustrated.

The state space representation of the linear model has already been given and used
in the previous chapters and our design will be based it. The problem is to estimate
the lateral velocity of the tractor and the articulation angle between the tractor and
the semitrailer using the measurements of the yaw rates and the steer angle input
as in the continuous time observer example. Before finding the observer parameters,

we need to obtain the discrete time representation of the model using the following
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identities

®=eAT T = [Te*Bd) (4.39)
where T is the sampling time, (A, B) is the continuous time system parameters and
the pair (®,T") represents the discrete time version of the parameters. Choosing the

sampling time as 0.1 sec., we get

0.2016  0.0867  0.3236  0.4640 —4.1689
& — —0.0540 —0.0117 -0.0080 —0.0156 r = 3.0130
0.0620 0.1028  0.7508 —0.3555 ’ 0.5830
0.0141 -0.0081  0.0853  0.9785 —0.1977

The discrete time sliding mode observer parameters 7" and L can be found using

these matrices. Note that 7" is not unique since it contains R which is arbitrary as
long as T is invertible. Once T has been chosen, ®;;’s are automatically obtained and
L is calculated so that the two eigenvalues of the matrix ®9 + LP5 are located at

the origin. Following this logic, a possible set of observer parameters is selected as

follows:
0 1 0 0
T — 0 0 1 0 [ = 2.1064 0.65H81
- 0.2190 0.6789 0.934 (.5194 ! - 2.2648 1.8354

0.0470 0.6793 0.3835 0.8310
The observer is used for the estimation of the previously mentioned unmeasurable
states of the truck-semitrailer during a lane change maneuver. The vehicle is driven
with a longitudinal speed of 15 m/sec. and the steer angle is adjusted during the
maneuver so as to do a lane change. Figures 4.4-4.8 show the simulation results
of the observer for the open loop system. In simulations, the model is chosen as a
continuous time system between a zero order hold and a sampler whereas the observer
equation is implemented as a discrete time system. Therefore, the overall system may
be called a sampled data system. The convergence speed is very high as expected
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Lateral velocity of the tractor (m/sec)

Figure 4.4: Tractor lateral velocity

since the overall motion shows a deadbeat characteristic. We have also presented
the zoomed version of Figure 4.4 associated with the real and the observed lateral
velocities to examine the small scale behavior of the error motion in Figure 4.8. It
has been observed that at each sampling instance the observed state exactly matches
with the real one, however the motion is arbitrary and in the order of the sampling
time between two consecutive sampling instances.

Note that no chattering phenomena has been observed in the estimated variables
as opposed to continuous time case since the observer equation does not contain a
discontinuous term and the system has no external disturbances and uncertainties.
However, since the observer is eventually supposed to be implemented in discrete
time even if it is designed in continuous time, the intersampling behaviors of the

observer states will be out of control in both cases. But, continuous time observer
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Truck yaw rate (deg/sec)
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Disturbance in the steer angle input (deg)
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Figure 4.9: Disturbance in the steer angle input

states are not exactly on the manifold even at each sampling instance as well, instead
they oscillate around the manifold. Therefore, in this setting, chattering is used to
describe the motion just at the sampling instances.

So far, it has been assumed that there are no external disturbances in the system.
From now on, this assumption is released and it is considered that there may be an
error in the steer angle input of the system. Therefore, the real input of the system
and the input which is used for the prospective observer will not be the same. For
simulation purposes, the poles of the disturbance are chosen at s = 0,—2 + 55 in
continuous time and its time plot is shown in Figure 4.9. Using the the location of

the disturbance and the information on its poles, it can be modeled as follows:

0 1 0
=0 0 1]|w (4.40)
0 —29 -4
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and

F=B[10 0] (4.41)

where B is the input coefficient matrix of the original continuous time system from
which the discrete time system given in (4.1) has been obtained by discretization.
Augmenting the discretized disturbance equation with the system and applying the
same design procedure, we end up with a robust 7*-order discrete time sliding mode
observer. It shows the same characteristics with the ideal discrete time sliding mode
observer, however it also estimates the disturbance and its order is greater than
the order of the system. Since, the same design procedure will be applied to the
augmented system and the details of the procedure have already been illustrated
for the ideal case, Figures 4.10- 4.14 are just attached to show the effectiveness of
the proposed robust discrete time sliding mode observer without going into further

discussion.
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Figure 4.10: Tractor lateral velocity with disturbance
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Figure 4.11: Tractor yaw rate with disturbance
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Figure 4.12: Semitrailer yaw rate with disturbance
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Figure 4.14: Disturbance and its estimate

90



CHAPTER 5

CONCLUSION

5.1 Summary of Study

In this thesis, sliding mode controllers and observers are examined. Most of the
study consider a discrete time system. Simulations on a truck-semitrailer system for
typical highway maneuvers verify the theoretical results.

In Chapter 2 discrete time sliding mode controller design theory is discussed. A
twofold control action is proposed for implementation purposes. The overall state
space are fictitiously divided into two parts defining a region, called boundary layer,
in the sampling time vicinity of the manifold. Inside the boundary layer, the equiv-
alent control can induce sliding mode without exceeding control limits. While the
trajectories are away from the manifold another control law is used to guarantee the
attractiveness of the layer and to steer the trajectories towards the manifold. The
equivalent control is generalized to increase the robustness of the system to exter-
nal disturbances. The deviations in the generalized control variable resulting from
disturbances are used to update the control law dynamically so as to suppress the dis-
turbance. Composite control law is tested successfully on a truck-semitrailer system

to bring the vehicle to a straight position after a turn or a maneuver in simulations.
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In Chapter 3, continuous time sliding mode observers are examined for the re-
construction of the state vector in finite time. Equivalent control methodology is
exploited for this purpose. Error trajectories are brought to the origin by making
them pass through a finite number of manifolds successively. Each manifold is a sub-
set of the previous manifold and shrinks to the origin in the final step. Equivalent
value of the auxiliary input is obtained passing the input through a low pass filter to
cut off the high frequency dynamics and this equivalent value is used to extract some
information from the system at the next step. Observer equations designed at each
step are gathered together to form the final observer equation and this final equation
is retransformed back into the original state space form of the system for implemen-
tation concerns. The finite time converging characteristics of the proposed observer
are illustrated on a truck-semitrailer system for the estimation of the unmeasurable
states during a maneuver.

Chapter 4 concentrates on the discrete time sliding mode observers. Discrete
time equivalent control concept is used to get a counterpart to the continuous time
case. The proposed observer consists of two layers. The first layer produces the
equivalent control for the second layer where the state estimation is done. Unlike
the continuous time case, a new error driven auxiliary system is formed to obtain
the equivalent control instead of filtering blocks. The observer design procedure is
also extended to take care of disturbances with known dynamics. The same observer
problem of Chapter 3 is considered to show the validity and the effectiveness of the
theoretical analysis. Simulation results show the superiority of the discrete time
sliding mode observer over the continuous one in terms of chattering phenomena.

However, because of the discrete time nature of the system error trajectories cannot
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be kept on the associated manifold between the sampling instances and therefore an
arbitrary intersampling behavior appears.

In Appendix A, a linearized truck-semitrailer model is derived from a nonlinear
bicycle model and the numerical model which has been used for simulation purposes

throughout the thesis is also obtained.

5.2 Future Directions

The proposed controllers and observers satisfy their objectives for a LTI system.
However, their robustness properties are confined to a limited class of external dis-
turbances. The robustness can further be assured not only for a larger class of distur-
bances but also for parametric uncertainties in a probabilistic framework. Further-
more, the whole design theory can also be generalized to time varying and nonlinear

systems.
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APPENDIX A

AN ARTICULATED MODEL

In Appendix, the derivation of the linear truck-semitrailer model which has been
used throughout the thesis for simulation purposes is presented. The articulated
system considered is formed by a tractor and a semitrailer connected to each other
by a fifth wheel. Our main motion for dealing with this system is not only the need
for an efficient articulated vehicle model which shows the interacting dynamics and
behaviors of the different modes of a generic vehicle for highway studies but also to

use the resulting model in the verification of the theoretical results of the thesis.

Figure A.1: Three-axle Truck-semitrailer Side View

Figure A.1 shows the side view of the three-axle truck-semitrailer. The vehicle
can be treated as a planar model composed of several lumped masses connected by
compliant linkages representing the suspensions. The tractor and the semitrailer
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bodies supported by suspension systems at each axle are the primary masses which
are referred to as “sprung masses”. The sprung mass is considered rigid with mass
properties concentrated at its center of gravity and moment of inertia about the
center of gravity. The additional masses such as axle, brakes, wheels are referred
to as “unsprung masses”’. The rocker arms connect the unsprung masses to sprung
masses. The suspension actuators are located between the corners of the vehicle and
the rocker arms.

The organization of the appendix is as follows: First, a nonlinear 5-state 2-D
model is derived neglecting the vertical dynamics of the vehicle. The model covers
the dynamics of the tractor and the semitrailer sprung masses having three degrees
of freedom along the following variables: longitudinal velocity, lateral velocity and
the angular velocity around the vertical axis, called yaw rate. Second, this nonlinear
model is linearized under the small steer angle and the constant longitudinal velocity
assumptions using the physical properties of the vehicle under these assumptions.
The resulting linear model has four states and a single input. The parameters of the
linear model are adjusted to match with the nonlinear model during a maneuver and

finally the numerical model of the previous chapters is obtained.

A.1 Nonlinear Planar Truck-Semitrailer Model

In this section, a 2-D nonlinear truck-semitrailer model is derived. Figure A.2
shows the top view of the vehicle. Steer angle and the longitudinal force on the front
tires of the tractor are the two inputs to the system.

Two local coordinate systems are fixed to the sprung mass CG’s of the tractor and

the semitrailer to describe the orientation of the vehicle and to write the differential
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Figure A.2: Bicycle Truck-semitrailer Model

motion equations which represent the dynamics of the sprung masses. The longitu-
dinal force on the front tires of the tractor is represented by T;/R; where T denotes
the torque on the tractor front axle and Ry is the tire radius. J represents the steer
angle on the tractor front tires and it is referenced as positive in the counter-clockwise
direction. Two more forces are attached to the tires to describe the force that will be
exerted on the tires by the road during turns. The fifth wheel is assumed to transmit
two linear action-reaction forces. The equations of motion of the tractor and the

semitrailer can be derived independently.
A.1.1 Dynamic Equations of the Tractor

The motion equations of the tractor in the longitudinal and lateral directions
and the rotational dynamics around the local vertical axis can be found by summing
the forces and the moments using the free body diagram of the tractor shown in

Figure A.3. Taking the summation of the forces in the local z axis yields (A.1)

. T
my (U — Viry) = A,UF — R_J; + Fy, (A.1)
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Figure A.3: Tractor Freebody Diagram

totaling the forces in the y direction produces (A.2)

T;

ml(Vl + U17'1) = Fy1 + Fyg — Rf

d+ F, (A.2)
and finally summing moments about the local z axis of the tractor provides (A.3)
. Ty
Izl’l'l = —alel + bleg + alﬁué + d]Fy (A3)
f

where the meanings of the variables and the parameters are listed in Table A.1.
Note that, the direction of motion is chosen as the negative x direction. Through
algebraic manipulations, the dynamical equations of the tractor can be gathered to-

gether:

. 1 T
U =Viri + m—(Apr S i +Fz)
1

Ry
- 1 T
Vi=~— —(F Fpo— =6+ F,
1 U17‘1+m1( w1 + Fyo Rf6+ )
: 1 Ty
i = (=a1Fy + b1 Fyp + a1 56 + di Fy) (A.4)
Izl R_f

A.1.2 Dynamic Equations of the Semitrailer

The top view of the semitrailer is shown in Figure A.4. Steer angles and longi-
tudinal tire forces are all assumed to be zero. The direction of travel is again in the
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Uy : Longitudinal velocity of the tractor
Vi ¢ Lateral velocity of the tractor
r1 @ Yaw velocity of the tractor
é : Steer angle on the front tires of the tractor
F, : Longitudinal force on the pin point wrt. local coordinate system of the tractor
F, . Lateral force on the pin point wrt. local coordinate system of the tractor
my,  Mass of the tractor
I,, : Moment of inertia of the tractor around the local z axis
F,; : Lateral force on the front tires of the tractor
Fy, : Lateral force on the rear tires of the tractor
A, : Aerodynamic drag force coefficient
a; : Distance from the tractor CG to the front tires of the tractor
b; : Distance from the tractor CG to the rear tires of the tractor
d, : Distance from the tractor CG to the pin point

Table A.1; Parameters of the tractor

negative x direction. The coupling point of the tractor and the semitrailer is repre-
sented by P. The dynamical equations of the semitrailer are written summing forces
and moments in the longitudinal, lateral directions and around the vertical axis, in
turn.

Taking the summation of the forces in the y direction produces (A.5)
mo(Us — Vara) = A,U2 ~ F, (A.5)
summing the forces in the z direction gives (A.6)
mao(Va + Upry) = Fy3 ~ F, + F, U (A.6)
and finally totaling the moments about the local z axis of the semitrailer, one obtains:
Lory = egFry + boFyg — e Fp ¥ (A7)

Table A.2 lists the meanings of the parameters which appear in ( A.5) -(A.7).
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Figure A.4: Semitrailer Freebody Diagram

After some trivial manipulations, semitrailer dynamics can be summarized as
follows:

. 1 .
Uy = Vory + —(ApUz2 - F)
mgy

1
Vo= =Usrg+ —(Fys — Fy + F,¥)

My

1
7':2 = I—(esz —+ bng3 — esz\I’) (AS)
z2

A.1.3 Coupling Dynamics at the Pinpoint

The tractor and the semitrailer are coupled at the pinpoint as shown in Figure A.2.
It is assumed that two linear forces are transmitted between the tractor and the semi-
trailer through the fifth wheel and the fifth wheel has no dynamical structure so that
these forces are considered as action-reaction forces. The longitudinal and the lateral
velocities of the semitrailer can be expressed in terms of the other variables exploiting
the physical limitations imposed by the interconnection and using the invariance of

the velocity at the pinpoint.
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U, : Longitudinal velocity of the semitrailer

Vo Lateral velocity of the semitrailer

e : Yaw velocity of the semitrailer

¥ : Articulation angle between the tractor and the semitrailer

F, : Longitudinal force on the pin point wrt. local coordinate system of the tractor
F, : Lateral force on the pin point wrt. local coordinate system of the tractor
me @ Mass of the semitrailer

I,, : Moment of inertia of the semitrailer around the local z axis

F,3 : Lateral force on the tires of the semitrailer

A, Aerodynamic drag force coefficient

b, : Distance from the semitrailer CG to the rear tires of the semitrailer

ea . Distance from the semitrailer CG to the pin point

Table A.2: Parameters of the semitrailer

The velocity vector Vi = (U}, V{) of the pinpoint is calculated in terms of the

local coordinate system of the tractor as follows:

U{’ = Ul
VW = Vi+nd

(A.9)
from the equation VP = V| + wy X r; where V; = (U, V4,0) is the linear velocity
vector of the tractor CG, r; = (0,0, 7,) is the angular velocity vector and r; = (d;,0, 0)
is the position vector of the pinpoint with respect to CG of the tractor.

Similarly, the velocity of the pinpoint can also be calculated in terms of the local

coordinate system of the semitrailer

Uk o= U,

VP = Vy— e (A.10)
using the equation V? =V, + wy x ry where V, = (Uy, V2,0) is the linear velocity
vector of the semitrailer CG, ry = (0,0,rq) is the angular velocity vector and r; =
(—es9,0,0) is the position vector of the pinpoint with respect to CG of the semitrailer.

However, at the pinpoint, these two velocities calculated in terms of the tractor

and the semitrailer local coordinate systems must be the same as shown in Figure A.5,
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Figure A.5: Velocity Transformation

ie;
Uy = Ufcos¥ + VPsinl (A.11)
V# = —UPsin¥+ VFcos¥ '
where ¥ satisfies
U=ry—m (A.12)

Through some trivial manipulations, the lateral and the longitudinal velocity of

the semitrailer are obtained in terms of those of the tractor as follows:

Uy = UpcosV+ (V; +dyry)sin¥

‘/2 = —U1 sin ¥ + (‘/1 +d1T1)COS‘I’+62T2 (A13)

Since the longitudinal and the lateral velocities of the tractor and the articulation
angle between the two bodies are enough to obtain the linear velocity vector of the
semitrailer, two dynamical equations of the semitrailer associated with these variables
become redundant and can be used to express the pinpoint forces in terms of the

independent variables, i.e;

Fw = _mQ(UQ - ‘/27'2) -+ APU22

. Al4
Fy = ~—m2(V2 + Uz’l"g) + Fyg + Fm\I’ ( )
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A.1.4 Lateral Tire Forces

The lateral tire forces are obtained by linearizing the dynamic equations of the

tires at the steady state and approximated as
Fyi = kiai (A15)

for 4 = 1,---,3 where o;’s denote the tire slip angles which represent the angles
between the longitudinal direction and the velocity vector of the ¢ tire assuming
that they are small and k;’s are constants of the tire models. Therefore, three lateral

tire forces can be written as

Fu =k [5 ~ arctan (M)}

Uy
Fyy = —ky arctan (M)
U,
F,3 = —ks arctan (%) (A.16)
2

A.2 Linearized Truck-semitrailer Model

In this section, a linear model is derived for the truck-semitrailer system based
on the nonlinear model of the previous section . The resulting system will have one

input and four states. We impose the following assumptions:
e The longitudinal velocity of the tractor is constant:

U =U

e The steer angle of the tractor is small enough so that the longitudinal velocity
of the semitrailer is equal to that of the tractor:
U r=U =U
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e The longitudinal force on the front tires of the tractor and the longitudinal pin
point force do not change during the maneuver and they can be approximated

as 24,U? and A,U?, respectively as follows:
. 1 )
Un = Vara + — (AmoU3 — Fy) = 0
my

F:z: ~ moVary + Arho[]22

2
s ArhoUZ

2 AppoU? (A.17)
Similarly,
1 T
Uy=Vin+—AU - L+ F)~0
1 Ry
T
Lox omVin+ AU+ F,
Ry
~ AU+ F,
~ 2A,U% (A.18)

Under these assumptions, the linear truck-semitrailer model is derived inserting
the lateral tire pinpoint force expressions into the dynamical equations associated with
the lateral velocity of the tractor, yaw rate of the tractor, yaw rate of the semitrailer
and the articulation angle as follows:

The pinpoint force in the lateral direction is given by
F, = —myVy — mylUsra + Fyy + F, 0 (A.19)

However, the lateral velocity of the semitrailer and its derivative can be rewritten as

‘_/2 = ——U\I’+Vi +d17‘1 + esrs
Vo = —U¥+ Vi +dify + ears (A.20)
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Inserting (A.20) into (A.19) produces (A.21)
Fy == mgU\I’ - mg‘lfl — m2d17'"1 - mgeg'f'g - mgUTz -+ Fy3 - FZ‘I’ (A21)

assuming that the articulation angle is also small so that the small angle assumptions
are valid, i.e; sin ¥ =~ ¥ and cos ¥ =~ 1.

Putting the equations of lateral tire forces and the lateral pinpoint force into
(A.2), (A.3), (A.7) and (A.12), we end up with the following equation set after some

straightforward manipulations:

(1 + T_Q_)‘/l + mgdlh + mzezf‘z _ mgU\I’ _
my my my my
(kl + ]CQ + k'3) (—k1a1 + kzbl + k3d1) meo k'3
M T R Ty Uy — ——2Ur,— )

mlU ' " mlU " mg "2 mlU(eﬁ- 2)T2

k‘3 Fw 1 Tf
— V4 —V+ —(k— =)o A.22
g g ml( 1 Rf) (A.22)

dlmz‘./l + (Izl + 77’7@(1%)7’1 + dlegmg'f'g — dlmQU\i’ =

(ar1ky — biky — dyks) (a2ky + B2ky + d2ks)

T
™ — dlsz'I‘g — al(kl—f)(S

U M- U R;
dy k3
- U (62 + by + (d1k3 + le,,,)\I’ (A23)
szg‘./l + (mgdleg)h + (Izz + mzeg)f'g - BgmgU‘i’ =
k k k.

—53(1)2 + 82)‘/1 — ﬁ3(b2 -+ 62)d17'1 - (§(b2 + 62)2 -+ mQEQU)Tg
+l€3(b2 + 82) (A24)
U=ry—m (A.25)
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From these equations, the linear truck-semitrailer model can be written in the

following state space form:

& = Az + BS (A.26)

where z is the state vector which is given by

Vi

Vi ™
N T2
T= T2 1]
v )

U

Lateral velocity of the tractor
Yaw rate of the tractor
Yaw rate of the semitrailer

Articulation angle
Steer angle on the front tires of the tractor

Longitudinal velocity of the vehicle

and its components are illustrated in Figure A.6.

vi

Figure A.6: Representations of the State Variables

The matrices A and B are given by

A = AI-IAQ
[1+4 22
mi
dims
A1 ==
€2y
| 0

B=A'B where

mad; maez _mall
m) ma mi
Izl + mzd% d162m2 —dl’l’ngU

eedimg Lo+ maed —eamyU

0 0 1
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_kitket+k _JT _ —kiaytkobi+kad; _ _ _k k3t F;
r 1.-—2-—3-m1U U a i ;—T:fU Hf[—](ez + b2) _"ar;rtTl
Lk ~bi ko —dy kg 2k1+bko+dik
ak b(}c ik _'a:‘]'_l:’—_]'(_'/’ihf——J_3 _dlUmZ - Q’Uﬁ(ez + bz) dl(k;; + Fz)
AQ =
_-};_]3-(1)2 + 82) —%a'(bZ + 82)d1 “"%(bQ + 82)2 - m282U k3(b2 + 82)
L 0 —1 1 0

I 0
where all the parameters which appear in the preceding equations are as defined as

before.

A.3 Numerical Model

In the previous sections, we first derived a nonlinear truck-semitrailer model and
then linearized it to obtain a linear model which depends on several truck parameters
related to its geometry and the longitudinal velocity of the tractor. However, we
need to have a numerical model for the simulation testings of the several sliding
mode controllers and observer design methods. To this end, the numerical linearized

truck-semitrailer model is obtained in the following state space form:

& = Az + BS (A.27)
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Parameter | Meaning of the Parameter Value
U Longitudinal velocity of the truck-semitrailer -15 m/sec
ai Distance btw. the tractor CG and the tractor front tires 1.7424 m
by Distance btw. the tractor CG and the tractor rear tires 2.0676 m
dy Distance btw. the pinpoint and the tractor front tires 0.8611 m
m Tractor mass 5450 kg
Mo Semitrailer mass 27800 kg
by Distance btw. the CG and the rear tires of the semitrailer 2.3886 m
€s Distance btw. the pinpoint to the semitrailer CG 7.3396 m
I Tractor moment of inertia around the vertical axis 9500 kg — m?
I, Semitrailer moment of inertia around the vertical axis 200000 kg — m?
A, Aerodrag force coefficient 0.5 Ns?/m?
ky Front axle tire parameter of the tractor -630000 N/rad
ko Rear axle tire parameter of the tractor -1848000 N/rad
k1 Rear axle tire parameter of the semitrailer -600000 N/rad

Table A.3: Numerical parameters

where x is the state vector which is defined as before and

—14.5045 12.2412  6.5102 10.2890 —110.8316
A= —11.3014 —53.7688 3.2160  5.0828 B— 118.5998
2.6833 5.6393 —3.3453 —5.2011 ’ 1.0463
0 -1 1 0 0

using default parameters of Table A.3.

This numerical model is also simulated on a typical scenario. The vehicle speed
is kept at 15 m/sec. through the maneuver and the steer angle command shown in
Figure A.7 is applied.

Note that, the area under the steer angle command is zero. Therefore, the average
steering effect is also zero and the vehicle shifts to a parallel road with respect to the

initial one at the end of the maneuver. Figure A.8 illustrates the trajectory which
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Figure A.7: Steer angle command to the vehicle

the tractor CG traces and Figures A.9-A.11 show the state variables of the truck-

semitrailer system during the maneuver.
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Figure A.8: CG trajectory of the tractor

Lateral velocity of the tractor (m/sec)
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Figure A.9: Tractor lateral velocity
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Figure A.10: Yaw rates of tractor and semitrailer
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Figure A.11: Articulation angle
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