
ENERGY-EFFICIENT COMPUTATION AND
COMMUNICATION SCHEDULING FOR

CLUSTER-BASED IN-NETWORK PROCESSING IN
LARGE-SCALE WIRELESS SENSOR NETWORKS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Yuan Tian, B.S., M.S.

* * * * *

The Ohio State University

2006

Dissertation Committee:
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ABSTRACT

Emerging Wireless Sensor Networks (WSN) applications demand considerable com-

putation capacity for in-network processing. To achieve the required processing capacity,

cross-layer collaborative in-network processing among sensors emerges as a promising so-

lution: Sensors not only process information at the application layer, but also synchronize

their communication activities to exchange partially processed data for parallel processing.

Task mapping and scheduling plays an important role in parallel processing. Though this

problem has been extensively studied in the high performance computing area, its coun-

terpart in WSNs remains largely unexplored. Scheduling computation and communication

events is a challenging problem in WSNs due to limited resource availability and shared

communication medium. This research investigates the energy-efficient task mapping and

scheduling problem in large-scale WSNs composed of homogeneous wireless sensors. A

hierarchical WSN architecture is assumed to be composed of sensor clusters, where ap-

plications are iteratively executed. Given this environment, task mapping and scheduling

in single-hop clustered WSNs is investigated for energy-constrained applications. Based

on the proposed Hyper-DAG model and single-hop channel model, the EcoMapS solution

minimizes schedule lengths subject to energy consumption constraints. Secondly, real-

time applications are also considered in single-hop clustered WSNs. Incorporating the

novel Dynamic Voltage Scaling (DVS) algorithm, the RT-MapSsolution provides dead-

line guarantee with the minimum balanced energy consumption. Next, the task mapping
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and scheduling problem is further addressed in its general form for multi-hop clustered

WSNs. A novel multi-hop channel model is developed, and a multi-hop communication

scheduling algorithm is presented, based on which the MTMS solution minimizes appli-

cation energy consumption subject to deadline constraints. Finally, low-complexity sensor

failure handling algorithms are developed to recover network functionality when sensors

failures occur in single-hop and multi-hop clustered WSNs.
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CHAPTER 1

INTRODUCTION

Wireless Sensor Networks (WSNs) are envisioned to observe large environments at

close range for extended periods of time. WSNs are generallycomposed of a large number

of sensors with relatively low computation capacity and limited energy supply [3]. One of

the fundamental challenges in Wireless Sensor Networks (WSN) is attaining energy effi-

ciency at all levels of design and operation. Many energy efficient communication solutions

have recently been proposed for WSNs [23] [29] [41] [43] [57]. In-network processing

emerges as an orthogonal approach to significantly decreasenetwork energy consumption

[3] [52] by eliminating redundancy and reducing communicated information volume. Ex-

ample applications include distributed data compression and aggregation [7] [13] [15] [36].

The benefits of in-network processing are especially pronounced in video sensor networks

[38] [24] composed of wireless sensors equipped with cameras, where data streams from

neighboring nodes can be highly correlated with considerable data volume. A simplified

motivating example of video sensor networks is shown in Fig.1.1, where four calibrated

camera sensors collaboratively detect an intruding vehicle’s features such as location, ve-

hicle type, and threat level. The sensors first estimate the intruder’s features by themselves,

then fuse the intermediate results to eliminate estimationerrors. Compared to the original

images, the resulting data volume can be reduced by several orders of magnitude. Thus, it is
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Figure 1.1: A Simplified Distributed Video Surveillance Example

more energy-efficient to send the processed data than delivering the raw data in large-scale

WSNs, where base stations can be multiple hops away.

However, such in-network processing applications may require computationally inten-

sive operations to be performed in the network subject to certain constraints. For instance,

in target tracking applications [42] [63], sensors collaboratively measure and estimate the

location of moving targets or classify targets. To conserveenergy and reduce commu-

nication load, operations such as Bayesian Estimation and data fusion must be executed

in the WSN. In the case of tracking or detecting multiple high-speed moving targets, these

operations must be finished in a timely manner with an eye toward limited energy consump-

tion. For video sensor networks, in-network processing such as image registration [72] and

distributed visual surveillance [62] may demand considerable computation power that is

beyond the capacity of each individual sensor. Thus, it is desirable to develop a general

solution to provide the computation capacity required by in-network processing. In WSNs
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with densely deployed nodes, a promising solution is to havesensors collaboratively pro-

cess information with distributed computation load among sensors. To achieve application-

independent parallel processing,task mapping and scheduling[21] is a problem that must

be solved. This dissertation addresses the task mapping andscheduling problem in WSNs

to provide the necessary computation power for collaborative in-network processing.

1.1 Task Mapping and Scheduling

Task mapping and scheduling has been intensively studied inthe high-performance

computing area [11] [10] [18] [21] [22] [27] [28] [53] [46], where applications are gener-

ally assumed to be already partitioned into inter-dependent tasks [10]. As such, applications

can be represented by Directed Acyclic Graphs (DAG), where the vertices denote the tasks

and the edges denote the dependency and communication between the tasks [22]. Two

important problems are addressed in many existing task mapping and scheduling solutions

for high-performance computing, namely, the assignment oftasks to processing units (task

mapping) and the execution sequence of tasks assigned to thesame processing units (task

scheduling) [19]. As DAG scheduling problems are NP-complete in general [25], these

proposed solutions are generally heuristic algorithms that make tradeoffs between sched-

ule performance and computational complexity. Existing task mapping and scheduling

solutions for wired networks consider processing units interconnected via different net-

work topologies including tree networks [20] [34] [35], hypercubes [48] [6] [71], and mesh

networks [18] [61]. In these networks, one processing unit may have dedicated connections

with several neighboring nodes.

However, wireless communication have different constraints than communication in

wired networks, which hinders direct implementation of existing solutions for
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high-performance computing in WSNs. Different from wired networks, nodes in wireless

networks generally share a common wireless channel, and communications of neighboring

nodes may interfere each other. In single-hop wireless networks without “hidden nodes”

or “exposed nodes” [31] [70], collision avoidance imposes astringent constraint on task

schedules. In such settings, the schedules must ensure thatthere are no simultaneous com-

munications in networks, which makes most task mapping and scheduling solutions for

wired networks impractical in wireless networks. For the case of multiple-hop wireless

networks where there can be multiple simultaneous data transmissions, collision avoidance

stands out as an even more challenging problem due to hidden and exposed nodes. Thus,

task mapping and scheduling solutions in wireless networksshould specifically schedule

wireless communications between processing units in addition to the aforementioned task

mapping and task scheduling problems in wired networks. Furthermore, most existing

task mapping and scheduling solutions for wired networks donot explicitly consider en-

ergy consumption during communication and task execution as required energy is always

available via wired connections. However, energy consumption efficiency is one of the

most critical considerations for any WSN solution [3], and should explicitly be considered

across all layers of WSNs.

The following problems must be solved to enable collaborative in-network processing

in WSNs while considering energy consumption:

• Assignment of tasks to sensors,

• Determining execution sequence of tasks assigned to sensors,

• Scheduling communication between sensors.
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1.2 Outline

In this dissertation, large-scale WSNs composed of a large number of homogeneous

wireless sensors are considered, where sensors can be multiple hops away from each other.

In large-scale WSNs, monitored events may occur in remote areas that can only be de-

tected by surrounding sensors. Thus, localized information collecting and processing are

preferred in large-scale WSNs. Furthermore, grouping sensors into clusters within which

sensors collaboratively process information has gained recognition to enhance network

scalability, increase network throughput, as well as to conserve energy consumption and

improve network lifetime in large-scale WSNs [3] [54] [68].Thus, we assume a hierarchi-

cal WSN architecture where sensors are grouped into clusters, and information collected

by sensors are first processed within clusters and then transmitted by cluster heads to base

stations. Consequently, cluster-based task mapping and scheduling solutions are desirable

to provide the demanded computation power for energy-efficient in-network processing

in large-scale WSNs. In this dissertation, applications are assumed to be executed within

clusters either periodically or upon the occurrence of triggering events. These applica-

tions are represented by DAGs which leads toapplication-independentsolutions. Since

cluster heads can easily collect cluster members’ information and play coordinating roles

among cluster members, our proposed task mapping and scheduling solutions arecentral-

izedscheduling solutions running on cluster heads. Considering that applications in WSNs

are iteratively executed for a relatively long period, and application execution loads are

fairly predictable for homogeneous sensor nodes, the developed task mapping and schedul-

ing solutions arestaticalgorithms: Schedules are first calculated offline by cluster heads.

At the beginning of each execution period or when triggeringevents occur, sensors collect

and process information according to the predetermined schedules.Schedule adaptivityis
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also addressed in the dissertation where schedules are adjusted based on previously calcu-

lated schedules when sensor failures occur. Four main components of this dissertation are

listed as follows:

1. A task mapping and scheduling solution for energy-constrained applications in single-

hop clusters is presented in Chapter 3. To guarantee networklifetime in energy-

scarce WSNs, a practical approach is to restrict the energy expenditure for certain

duration of network operation, which consequently imposesenergy constraints on ap-

plication executions. To enhance information processing capacity, the proposed so-

lution aims to minimize schedule lengths subject to energy consumption constraints.

The solution assumes a single-hop environment, and intendsto form a basis for the

following more general solutions in multi-hop network environments.

2. Real-time applications are considered in Chapter 4 for single-hop clustered WSNs. In

this chapter, the tradeoff between schedule length and energy consumption is tackled

with a different perspective from that in Chapter 3. Realizing that many applications

such as multimedia applications have inherent real-time requirements, the solution

in Chapter 4 is presented with the objective of providing deadline guarantees with

minimum balanced energy consumption.

3. Large-scale WSNs may be grouped into multi-hop clusters,which demands general

task mapping and scheduling solutions for multi-hop environments. In Chapter 5,

a task mapping and scheduling solution for multi-hop clustered WSNs is developed

based on the work presented in Chapter 3 and 4. The solution inChapter 5 aims to

minimize energy consumption subject to deadline constraints.
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4. In WSNs, sensors are prone to failures. In case of sensor failures, previously cal-

culated schedules may not be feasible solutions. In such cases, WSN functionality

needs to be recovered as soon as possible. Instead of rescheduling from scratch,

which can be time consuming, low-complexity recovery algorithms are desirable to

quickly recover from sensor and communication failures. InChapter 6, two sensor

failure handling algorithms are proposed for single-hop and multi-hop clusters.
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CHAPTER 2

BACKGROUND

In this chapter, prior work relevant to the research problems addressed in this disserta-

tion are presented.

2.1 Related Work

Depending on applications and network scale, task mapping and scheduling can be

achieved either network-wide or in a localized manner in WSNs. In small-scale WSNs, it

is plausible to take a global approach to optimize the systemperformance at the network

level. In [39], the DFuse framework is proposed to dynamically assign data fusion tasks

to sensors in a WSN. The design objective of DFuse is to find mapping from task graph

vertices to network nodes with balanced energy consumption. Task Allocation among

clusters inCluster-basedSensorNetworks (TACSN) is discussed in [66]. The objective

of TACSN is to maximize network lifetime via task allocation, which is modeled as a

nonlinear optimization problem with constraints such as application deadlines. However,

neither DFuse nor TACSN explicitly addresses communication scheduling in WSNs.

Local information processing is more scalable for large-scale WSNs, where events of

interest generally occur in remote areas that only local sensors can detect. Localized task

mapping and scheduling problems in WSNs have be studied in the literature recently. These
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solutions consider applications executed independently within clusters composed of geo-

graphically close nodes, following locally generated schedules. Through collective result

of local optimizations, these solutions aim to achieve system level optimization.

Collaborative Resource Allocation (CoRAl) is presented in[26] to dynamically allocate

resources such as bandwidth and CPU time among multiple periodic applications in fully-

connected WSNs. CoRAl considers end-to-end applications composed by a chain of tasks

assigned on different sensors. Tasks of an end-to-end application are executed in a pipelined

manner.

Subject to resource availability and temporal constraints, CoRAl aims to maximize net-

work utility by adjusting application execution frequencies. In CoRAl, the wireless channel

is modeled as a virtual node, and the network bandwidth is allocated in the same manner as

sensor CPU time allocation. CoRAl achieves its objective byiteratively executing the fol-

lowing steps until the schedule converges: First, the task execution frequencies on each sen-

sor are locally optimized subject to application executionfrequency upper-bounds, whose

initial values are set to be infinite. Then the execution frequency upper-bound of each ap-

plication is reevaluated based on the updated task frequencies and bandwidth allocation.

On each node, an extended version of the SLSS algorithm [50] is implemented to compute

local optimal frequencies subject to node utility constraints. Different from the original

SLSS algorithm, the extended SLSS algorithm in [26] takes each task’s application execu-

tion frequency upper-bound into consideration. After eachiteration of local optimization,

the upper-bound frequency of each application is calculated. Assume theleader ldi and

bottleneck bni of applicationTi are tasks whose frequencyf ld
i andf bn

i are highest and

lowest among all tasks ofTi, respectively. The frequency upper-bound ofTi is updated as

fmax
i = f bn

i + (f ld
i − f bn

i )σ, whereσ is the factor controls frequency convergence speed.
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The optimization procedure terminates when the weighted difference between leaders’ and

bottlenecks’ frequencies converges.

According to the simulation results, solutions provided byCoRAl are comparable to

the optimal solutions obtained by the non-linear optimization tool of Matlab. On the other

hand, CoRAl has a much higher execution speed than the Matlabtool. However, in CoRAl,

tasks of applications are assumed to be already assigned on sensors, and task mapping

remains an open problem. Furthermore, energy consumption is not explicitly considered in

[26], which is a fundamental problem in WSNs.

Distributed Computing Architectures (DCA) are proposed in[64] and [40], where low-

level tasks are executed on sensing sensors and high-level processing tasks are offloaded to

cluster heads. However, processing high level tasks can still exceed the computation capac-

ity of cluster heads. Even with more powerful sensors as cluster heads [40], overloading

“hot spot” sensors with extensive computation and communication events can quickly de-

plete the sensors’ battery supply, exposing the WSN to the single-point-failure problem and

shortening the network lifetime. Furthermore, application-specific design of these solutions

limit their implementation for generic applications.

Real-time task mapping and scheduling heuristics are presented in [53] for heteroge-

neous mobile ad hoc grid environments. Six static heuristics are presented to minimize

energy consumption subject to deadline constraints in an adhoc grid. The communica-

tion model adopted in [53] assumes individual channels for each node and concurrent data

transmission and reception capability for every node. However, in large-scale WSNs that

are composed of hundreds of sensors, there is not enough network resource to allocate an

individual channel for each sensor. Furthermore, concurrent data transmission and recep-

tion capacity requires two wireless transceivers working on different channels on a sensor,
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which requires even more network resources. Therefore, thecommunication model in [53]

is not well-suited for large-scale WSNs, and the algorithmspresented cannot be directly

applied in large-scale WSNs.

An Energy-balanced Task Allocation (EbTA) solution is presented in [69]. EbTA

assumes single-hop clustered homogeneous WSNs with multiple wireless channels, where

sensors are equipped with Dynamic Voltage Scaling (DVS) enabled processors. EbTA con-

siders real-time applications composed by inter-dependent tasks. The design objective of

EbTA is to map and schedule applications tasks to sensors with minimal balanced energy

consumption subject to deadline constraints. In [69], applications are represented with

DAGs, and scheduling is formulated as an Integer Linear Programming (ILP) problem.

The exclusive wireless channel access feature is incorporated as an additional constraint in

the ILP formulation.

As the formulated ILP problem is computationally costly to solve, a three-phase heuris-

tic is proposed in [69] to provide a practical solution. In Phase 1, tasks are grouped into

clusters to minimize overall application execution time assuming infinite number of sen-

sors. Each task first constitutes a cluster by itself. Then all communication tasks are exam-

ined in a non-increasing order of their data volume. For eachcommunication evente(i, j)

between computation taskTi andTj, the clusters containingTi andTj are merged if it leads

to shorter application execution time. When evaluating application execution time, com-

munication events are scheduled to the channel using the First Come First Served (FCFS)

policy. In Phase 2, the task clusters from Phase 1 are assigned to sensor nodes with the

objective of minimizing the maximum energy expenditure among all sensors. The task

clusters from Phase 1 are first sorted in a non-decreasing order of energy dissipation, and

stored in a queueΠ. The clusters inΠ are then assigned to the sensor with the minimum
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normalized energy consumption (task execution energy consumption normalized by sensor

residue energy,norm-energyfor short). Every time after a task cluster is assigned to a sen-

sor, the norm-energy of the sensor is updated. This procedure repeats until all task clusters

are assigned. Finally, a DVS heuristic is presented for Phase 3 to decrease energy consump-

tion by iteratively adjusting the CPU voltage level of each task. In each DVS adjustment

iteration, acritical nodethat has the highest norm-energyε is selected. Among the tasks

assigned on the critical node, a critical task is selected and its CPU speed is adjusted. For

a critical taskvc, ε is decreased the most by reducing the CPU speed of executingvc to the

next level. Every time when the CPU speed is adjusted, the application schedule will be

iteratively adjusted accordingly to meet inter-task dependency constraints.

EbTA is one of the first work that address task allocation in WSNs that considers both

communication and computation tasks. It is shown through simulations that the three-

phase heuristic achieves longer lifetime compared with thebaseline without DVS. The

performance of the three-phase heuristic is also found to becomparable to that of the ILP-

based approach via simulations. However, the broadcast feature of wireless communication

is not exploited in EbTA, which may lead to significant energyconsumption savings.

2.2 Wireless Sensor Network Assumptions

The following assumptions are made regarding the wireless sensor network:

• A wireless sensor network is composed of homogeneous sensors.

• Sensors are grouped into clusters with existing clusteringalgorithms such as [4] [9]

[30] [67].
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• Each cluster executes an application which is either assigned during the network

setup time or remotely distributed by base stations during the network operation.

Once assigned, applications are independently executed within each cluster unless

new applications arrive. With application arrivals, cluster heads create the schedules

for execution within clusters.

• Calculated schedules are used to run the associated applications according to the

application requirements.

• Sensors are synchronized with one of the time synchronization methods discussed in

[32] [55] [58]. The time synchronization is necessary for synchronizing scheduled

task executions within clusters. Thus, only local time synchronization within clusters

is required.

• Computation and communication can occur simultaneously onsensor nodes as sup-

ported by various platforms including MICA2DOT running TinyOS [2].

• Communication within a cluster is isolated from other clusters through time divi-

sion or channel hopping mechanisms such as described in [8] [56] with appropriate

hardware support, eg. Chipcon CC2420 transceiver [1].

It should be noted that while the intra-cluster communication is isolated from other

clusters, communication across clusters is assumed to be handled over common time slots

or channels orthogonal to those used inside a cluster. As such, information flow across the

network is not hindered by intra-cluster communication isolation.
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Figure 2.1: An Example DAG

2.3 Application Model

To develop an application-independent solution, we represent applications executed

in clusters with Directed Acyclic Graphs (DAG). A DAGT = (V,E) consists of a set of

verticesV representing the tasks to be executed and a set of directed edgesE representing

dependencies among tasks. The edge setE contains directed edgeseij for each taskvi ∈ V

that taskvj ∈ V depends on. The weight of a task is represented by the number of CPU

clock cycles to execute the task. Given an edgeeij , vi is called the immediate predecessor

of vj , andvj is called the immediate successor ofvi. An immediate successorvj depends

on its immediate predecessors such thatvj cannot start execution before it receives results

from all of it immediate predecessors. A task without immediate predecessors is called

anentry-taskand a task without immediate successors is called anexit-task. A DAG may

have multiple entry-tasks and one exit-task. If there is more than one exit-task, they will be

connected to a pseudo exit-task with zero computation cost.Fig. 2.1 shows an example of

a DAG, whereV 1, V 2 andV 3 are entry-tasks,V 8 is an exit-task, andV 5 is the immediate

successor and immediate predecessor ofV 1 andV 8, respectively.
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In the DAG scheduling problem, if a taskvj scheduled on one node depends on a task

vi scheduled on another node, a communication between these nodes is required. In such

a case,vj cannot start its execution until the communication is completed and the result

of vi is received. However, if both tasks are assigned on same node, the result delivery

latency is considered to be zero andvj can start to execute aftervi is finished. This exe-

cution dependency between tasks is referred to asDependency Constraintthroughout this

dissertation.

2.4 Energy Consumption Model

The energy consumption of transmitting and receivingl-bit data over a distanced are

defined asEtx(l, d) andErx(l), respectively:

Etx(l, d) = Eelec · l + εamp · l · d
2, d ≤ do (2.1)

Erx(l) = Eelec · l, (2.2)

wheredo is the distance threshold,Eelec andεamp are hardware related parameters [64]

[30].

In this dissertation, we assume that the sensors are equipped with the StrongArm SA1100

processor [64]. The energy consumption of executingN clock cycles with CPU clock fre-

quencyf of StrongArm SA1100 is given as:

f ≃ K(Vdd − c), (2.3)

Ecomp(Vdd, f) = NCV 2
dd + Vdd(Ioe

Vdd
nVT )(

N

f
), (2.4)

whereVT is the thermal voltage andC, Io, n, K andc are processor-dependent parameters

[52] [64]. The first term of Equation 2.4 denotes the switching energy consumption, which
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Figure 2.2: CPU Power Consumption vs CPU Speed

dominates the CPU energy consumption. The second term of Equation 2.4 represents the

CPU leakage energy consumption. Given Equation 2.3, we can derive from Equation 2.4

that the CPU power consumption (energy consumption per clock cycle) is approximately

proportional toV 2
dd. The relationship of the CPU power consumption and CPU speedis

demonstrated in Fig. 2.2.

It should be noted that the energy consumption model presented above only considers

the energy expenditure directly related with application execution. Thus, energy consump-

tion during idle time is not taken into account. However, ourcommunication and compu-

tation schedules may also be used to determine sleep schedules of sensors, where sensors

go to sleep when no communication and computation activities are scheduled for them.

2.5 Notation

The task mapping and scheduling problem is defined as finding aset of task assign-

ments and their execution sequences on a network such that anobjective function such
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as energy consumption or schedule length is minimized. LetHx = {hx
1 , h

x
2, ..., h

x
n} de-

note a task mapping and scheduling solution of an application DAG T on a networkG,

wherex is the solution space index. Each elementhx
i ∈ Hx is a tuple of the form

(vi, mk, si,mk
, ti,mk

, fi,mk
, ci,mk

), wheremk represents the node to which taskvi is assigned,

si,mk
andfi,mk

represent the start time and finish time ofvi, andti,mk
andci,mk

represent the

execution length and energy consumption ofvi on nodemk, respectively. The following

set of notations are used throughout this dissertation:

• pred(vi) andsucc(vi) denote the immediate predecessors and successors of taskvi,

respectively.

• m(vi) denotes the node on whichvi is assigned.

• T (mk) denotes the tasks assigned on nodemk, and

• T ft
st (mk) denotes the tasks assigned on nodemk during the time interval[st, ft].
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CHAPTER 3

ENERGY-CONSTRAINED TASK MAPPING AND SCHEDULING
IN SINGLE-HOP CLUSTERED WIRELESS SENSOR NETWORKS

As introduced in Chapter 1, in-network processing is essential for energy-efficiency

WSNs applications. On the other hand, the limited energy supply in WSNs [3] imposes

stringent energy consumption constraints on in-network processing. WSNs may expect a

lifetime ranging from months to years without replacing batteries. To guarantee network

lifetime, a practical approach is to restrict the energy expenditure of applications in WSNs.

Thus, it is desirable to develop a general solution to provide the computation capacity

required by in-network processing subject to energy consumption constraints.

In this chapter, we present a localized task mapping and scheduling solution for energy-

constrained applications in WSNs. We consider a single-hopclustered homogeneous WSN.

Our proposed solution,Energy-constrained TaskMapping andScheduling (EcoMapS),

aims to map and schedule the tasks of an application with the minimum schedule length

subject to energy consumption constraints.

Assume thatCommEng(mk) represents the communication energy consumption of

a nodemk including data transmitting, receiving and forwarding. The design objective

of EcoMapS is to finding a scheduleHo ∈ {Hx} that has the minimum schedule length

subject to energy consumption constraints, which can be formulated as follows:
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Find Ho = arg min length(H), (3.1)

where length(H) = max
i,k

fvi,mk
, (3.2)

subject toenergy(H) =
∑

i,k

cvi,mk
+

∑

k

CommEng(mk) ≤ EB, (3.3)

wherelength(H) andenergy(H) are the schedule length and overall energy consumption

of H, respectively, andEB is the energy consumption constraint (also referred to asEnergy

Budget). In EcoMapS, communication and computation are jointly scheduled. A network

model and communication scheduling algorithm are presented to exploit the broadcasting

nature of wireless networks. Schedules are computed by cluster heads for the entire cluster

using our proposed EcoMapS solution. EcoMapS is based on thehigh-level application

model that describes the task dependencies through DAGs. Therefore, EcoMapS can be

used with arbitrary applications.

Different from existing work, EcoMapS has the following salient properties:

• Task mapping and task scheduling are considered simultaneously.

• The single-hop wireless channel is modeled as a virtual node, and applications are

represented to reflect the broadcast nature of wireless communication.

• Communication and computation events are jointly scheduled.

• Based on realistic energy models, EcoMapS aims to provide energy consumption

guarantees with minimum schedule lengths.
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3.1 Outline of The Proposed EcoMapS Solution

In our proposed EcoMapS solution, tasks are assigned to sensors, the execution se-

quence of tasks are decided, and communications between sensors are scheduled with re-

spect to theDependency Constraint. EcoMapS aims to minimize schedule lengths subject

to energy consumption constraints. The scheduling algorithms are executed on cluster

heads when applications are assigned to clusters. In case ofa loss of a cluster head, a new

cluster head is selected via the clustering algorithm, and schedules will be regenerated by

the new cluster head.

In the following sections, the main components of our proposed EcoMapS solution,

namely, wireless channel modeling and Hyper-DAG extension, communication scheduling

algorithm, and the extended CNPT algorithm [28] and Min-Minalgorithm [53] (referred to

as E-CNPT and E-MinMin, respectively) are presented. For task mapping and scheduling,

eitherE-CNPT or E-MinMin is executed as the schedule search engine to find the opti-

mal schedule. The original CNPT and Min-Min algorithms are designed for traditional

parallel processing in wired networks. To extend CNPT and Min-Min for WSNs, we de-

veloped acommunication scheduling algorithmbased on thewireless channel modeland

theHyper-DAG representationof applications. The communication scheduling algorithm

is embedded in the execution of E-CNPT and E-MinMin to satisfy theDependency Con-

straint.

3.2 Wireless Channel Modeling and Hyper-DAG Extension

In a single-hop cluster, there can be only one transmission on the wireless channel at

a given time. Similar to that in [26], the wireless channel can be modeled as a virtual

nodeC that executes one communication task at any time instance. Hence, a cluster can be
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Figure 3.1: The Hyper-DAG Representation of the DAG in Fig. 2.1

modeled as a star-network where all sensors only have connections with the virtual node

C. The communication latency between sensor nodes andC can be considered zero since

all wireless communications are accounted for by the tasks executed onC. Assuming that

the cluster hasp sensors that are denoted asM = {mk} (0 ≤ k < p), a cluster can be

represented by a connected, undirected graphG = (M ′,N), where the setM ′ = M ∪ {C},

and the setN denotes the links between the nodes ofM ′. With the virtual node represen-

tation of C, communication contention can be effectively avoided by serially scheduling

communications onC. Another important advantage of the channel model is its suitabil-

ity to represent the broadcast nature of wireless communication. When a node in a single

hop cluster transmits information, it is potentially received by all nodes in the cluster. The

broadcast nature of the wireless channel can be leveraged torelay information generated

by a task to all its immediate successors in a single transmission rather than multiple, se-

quential transmissions. This approach reduces schedule lengths as well as communication

energy consumption.
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To implement this channel model, communication events between computation tasks

should be explicitly represented in task graphs. Thus, we extend a DAG as follows: For

a taskvi in a DAG, we replace the edges betweenvi and its immediate successors with

a net Ri. Ri represents the communication task to send the result ofvi to its immediate

successors in the DAG. The weight ofRi equals to the result data volume ofvi. This

extended DAG is a hypergraph and is referred to asHyper-DAG. With the Hyper-DAG

representation, exclusive channel access constraints andbroadcast delivery of results are

incorporated into task dependency in a compact way. A Hyper-DAG is represented as

T ′ = (V ′, E ′), whereV ′ = {γi} = V ∪R denotes the new set of tasks to be scheduled and

E ′ represents the dependencies between tasks. Here,V = {vi} = {Computation Tasks},

andR = {Ri} = {Communication Tasks}. The example of converting the DAG in Fig. 2.1

to a Hyper-DAG is shown in Fig. 3.1.

With Hyper-DAGs, communication events between computation tasks are explicitly

represented in task graphs. Based on the Hyper-DAG representation, Equation 3.3 is

rephrased as follows:

subject to
∑

vi∈V,k

cvi,mk
+

∑

vi∈R,k

cvi,mk
=

∑

vi∈V ′,k

cvi,mk
≤ EB, (3.4)

wherecvi,mk
of vi ∈ R is the energy consumption of nodemk for sending, receiving, or

forwarding communication taskvi through the wireless channel, and the
∑

vi∈R,k cvi,mk

equals the communication energy consumption of scheduleHo.

In the Hyper-DAG scheduling problem, theDependency Constraintis rephrased as

follows: If a computation taskvj scheduled on nodemk depends on a communication task

vi scheduled on another node, a copy ofvi needs to be scheduled tomk, andvj cannot start

to execute until all of its immediate predecessors are received on the same node.
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It should be noted that the channel model presented above assumes a single-hop clus-

tered environment. However, this model can be generalize tomulti-hop networks by re-

laxing the constraints and taking the inference avoidance into consideration. A general

solution in multi-hop clustered WSNs will be presented in Chapter 5.

3.3 Communication Scheduling Algorithm

To meet theDependency Constraintin Hyper-DAG scheduling, communication be-

tween nodes is required if a computation task depends on a communication task assigned

on another node. Thus, we present our communication scheduling algorithm in this sec-

tion. As we shall see in Section 3.4, the communication scheduling algorithm is integrated

into the execution of our Hyper-DAG task mapping and scheduling algorithms, E-CNPT

and E-MinMin.

Based on the Hyper-DAG and the channel model presented in Section 3.2, schedul-

ing communication between single-hop neighbors is equivalent to first duplicating a com-

munication task from the sender toC, and then fromC to the receiver. If the requested

communication task has been scheduled from the sender to another node before, the re-

ceiver will directly duplicate the communication task fromC. This process is equivalent to

receiving broadcast data, which can lead to significant energy saving compared with mul-

tiple unicasts between the sender and the multiple receivers. The detailed description of

the communication scheduling algorithm is shown in Fig. 3.2, where Step 2-15 stands for

originating a new communication fromms to mr, and Step 18-21 represents reception of a

broadcast data. Compared with originating a new communication, the broadcast reception

method leads to energy saving of one data transmission for each additional data reception.
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Input: Communication task:vi; sender ofvi: ms; receiver ofvi: mr

Output: Schedule of duplicatingvi from ms to mr

CommTaskSchedule(vi,ms,mr):

1. Find a copy ofvi: vc
i ∈ T (C) /*vi scheduled onC?*/

2. IF vc
i does not exist /*NO, schedulevi transmission from scratch*/

3. Findvi ∈ T (ms)
4. Find time interval [st,ft]:
5. T ft

st (C) = ∅
6. ft− st ≥ tvi,C

7. st ≥ fvi,ms
, st = min

8. Schedule a copy ofvi to C:
9. T (C)← T (C) ∪ {vc

i}
10. svc

i ,C ← st
11. Update the energy consumption ofms

12. Schedule a copy ofvc
i to mr:

13. T (mr)← T (mr) ∪ {v
r
i }

14. svr
i ,mr
← fvc

i ,C

15. Update the energy consumption ofmr

16. Return
17.ELSE /*YES, receive broadcast data*/
18. Schedule a copy ofvc

i to mr:
19. T (mr)← T (mr) ∪ {v

r
i }

20. svr
i ,mr
← fvc

i ,C

21. Update the energy consumption ofmr

22. Return

Figure 3.2: Communication Task Scheduling Algorithm

Under our communication scheduling algorithm, one data transmission may reach multiple

receivers.
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3.4 Task Mapping and Scheduling Algorithms

In EcoMapS, the tasks of Hyper-DAGs are mapped and scheduledon sensors. During

task mapping, several constraints have to be satisfied. These constraints together with the

Dependency Constraintare represented as follows.

• A computation task can be assigned only to sensor nodes, ie.,∀vi ∈ V : tvi,C =

∞, cvi,C =∞

• A communication task can be assigned to sensors orC

• A communication task assigned toC stands for an ongoing data communication. Its

execution time equals its communication length. The corresponding data transmis-

sion and reception energy consumption are accounted for by the sender and receivers

following Equation 2.1 and 2.2, respectively.

• A communication task assigned to a sensor denotes data stored in sensor memory,

and is ready for processing on the same node. Thus, its execution time and energy

length are zero.

• A non-entry computation task assigned on a sensor must have all its immediate pre-

decessors available before it can start execution, i.e., ifvi ∈ V andpred(vi) 6= ∅,

thenpred(vi) ⊂ T (m(vi)) andsvi,m(vi) ≥ max fpred(vi),m(vi)

To meet theDependency Constraintduring task mapping and scheduling, if a compu-

tation task depends on a communication task assigned on another sensor node, thecom-

munication scheduling algorithmwill be executed to duplicate the absent communication

task. With the Communication Scheduling Algorithm and the task mapping constraints pre-

sented above, task mapping and scheduling in single-hop wireless networks can be tackled
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as a generic task mapping and scheduling problem with additional constraints. This prob-

lem is NP-complete in general [25] and heuristic algorithmsare needed to obtain practical

solutions. In this section, E-CNPT and E-MinMin algorithmsare presented as the schedule

search engine of EcoMapS with the objective of minimizing schedule lengths subject to

energy constraints.

Before presenting the E-CNPT and E-MinMin algorithms, we first introduce a concept

of computing sensor: A computing sensor is a sensor that can execute non-entry tasks as

well as entry-tasks. The concept of computing sensor is an intuitive extension of DCA

in [64], where only one sensor in a cluster, i.e., the clusterhead, can execute high level

tasks. In EcoMapS, there can be more than one computing sensors to speed up execution.

However, this approach generally consumes more energy withmore computing sensors be-

cause of the increased volume of communication between the sensors. Thus, the increment

of number of computing sensors must be bounded by energy consumption constraints. In

our EcoMapS, E-CNPT and E-MinMin will iteratively search the optimal schedule with

different number of computing sensors subject to energy constraints.

3.4.1 E-CNPT Algorithm

The list-scheduling CNPT algorithm [28] is extended and implemented as one of the

schedule search engine in EcoMapS, and is denoted as E-CNPT.The objective of E-CNPT

is to minimize schedule lengths subject to energy consumption constraints. The strategy of

E-CNPT is to assign the tasks along the most critical path first to the nodes with earliest

execution start times. By adjusting the number of computingsensors in each scheduling

iteration and choosing the schedule with the minimum schedule length under the energy
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consumption constraint, the design objective of E-CNPT is achieved. Similar to CNPT, E-

CNPT also has two stages:listing stageandsensor assignment stage. In the listing stage,

tasks are sequentialized into a queueL such that the most critical path comes the first

and a task is always enqueued after its immediate predecessors. In thesensor assignment

stage, the tasks will be dequeued fromL and assigned to the sensors with the minimum

execution start time. Several scheduling iterations will be run in the sensor assignment

stage with different number of computing sensors, and only one schedule is chosen as the

solution according to the design objective. Thelisting stageandsensor assignment stage

of E-CNPT are introduced individually as follows.

Listing Stage: The Listing Stage of E-CNPT is similar to that of CNPT [28]. Inthe

Listing Stage of E-CNPT, the Earliest Start TimeEST (vi) of taskvi is first calculated for

each vertex by traversing the Hyper-DAG downward from the entry-tasks to the exit-task.

The Latest Start TimeLST (vi) of taskvi is then calculated in the reverse direction. During

the calculation, the entry-tasks haveEST= 0 and the exit-task hasLST = EST. The formulas

to calculateESTandLSTare as follows:

EST (vi) = max
vm∈pred(vi)

{EST (vm) + tm}, (3.5)

LST (vi) = min
vm∈succ(vi)

{LST (vm)} − ti, (3.6)

whereti equals to the execution length on sensor nodes ifvi ∈ V or to the execution length

onC if vi ∈ E. Then, the Critical Nodes (CN) are pushed into the stackS in the decreasing

order of theirLST. Here, a CN vertex is a vertex with the same value ofEST andLST.

Consequently, iftop(S)has un-stacked immediate predecessors, the immediate predecessor

with the minimumLST is pushed into the stack; otherwise,top(S)is popped and enqueued

into a queueL. The Listing Phase ends when the stack is empty. After the Listing Phase,
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the task graph is sequentialized intoL and is ready for the Sensor Assignment Phase. It

should be noted that the EST and LST are for the purpose of evaluating the critical path of

a Hyper-DAG, and EST and LST do not represent the actual execution start time of tasks.

Sensor Assignment Stage: The design objective of our algorithm is to minimize sched-

ule lengths subject to energy consumption constraints. Different from CNPT, E-CNPT it-

eratively searches the schedule space with different number of computing sensors in the

Sensor Assignment Stage. Among these schedules, the one with the minimum schedule

length under the energy consumption constraint is chosen asthe solution. If no schedule

meetings the energy constraint, the best effort is made by choosing the one with the mini-

mum energy consumption. The detailed description of the E-CNPT algorithm is shown in

Fig. 3.3.

In the E-CNPT algorithm, SingleCNPT(L,q) is a single round of task scheduling that

schedules the tasks inL with q computing sensors. It should be noted that the parameter

q is just the upper bound of the number of computing sensors that can be involved in the

schedule. The actual number of computing sensors can be smaller thanq depending on ap-

plications and scheduling algorithms. The core of SingleCNPT(L,q) is the extended CNPT

processor assignment algorithmembedded with our communication scheduling algorithm.

The basic strategy of the algorithm is to assign tasks to the sensor with the minimum Ear-

liest Execution Start Time (EEST). During task scheduling,Dependency Constrainthas

to be satisfied via communication scheduling. SingleCNPT(L,q) is described in Fig. 3.4,

whereEAT (mk) is the Earliest Available Time of nodemk, and EEST(vi, mk) is the Ear-

liest Execution Start Time ofvi on sensormk. Different from EST, EEST represents the

actual execution start time of a task if assigned on a sensor node.
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Input: Task queueL ; number of available sensors in the clusterp; energy budgetEB
Output: ScheduleHo of tasks inL with minimum schedule length under energy
budget constraint
E-CNPT Algorithm:

1. Lo ←∞ /*optimal schedule length*/
2. Emin ←∞ /*minimum energy consumption*/
3. FOR q = 1 top /* search computing sensor space*/
4. H = SingleCNPT(L,q)
6. IF energy(H) < Emin

7. Emin ← energy(H)
8. Hmin ← H /*eng(Hmin) = min*/
9. IF energy(H) ≤ EB andlength(H) < Lo

10. Lo ← length(H)
11. Ho ← H /*optimal schedule*/
12. IF Emin ≤ EB
13. ReturnHo

14. ELSE
15. ReturnHmin

Figure 3.3: EcoMapS: E-CNPT Algorithm
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Input: task queueL; number of computing sensorsq
Output: Schedule of tasks inL
SingleCNPT Algorithm:

while L is not empty
1. Dequeuevi from L
2. IF vi ∈ R /*communication task*/
3. Assignvi to nodem(pred(vi))
4. ELSE IF pred(vi) = ∅ /*entry-tasks*/
5. Assignvi to nodemo

i with min EAT (mo
i )

6. ELSE /* non-entry computation tasks*/
7. FOR all computing sensors{mk}
8. Calculate EEST(vi, mk):
9. IF pred(vi) ⊆ T (mk) /*dependency constraint satisfied*/
10. EEST(vi, mk)←max(EAT (mk), fpred(vi),mk

)
11. ELSE /*communication between sensors is needed*/
12. FOR vn ∈ pred(vi)− T (mk)
13. CommTaskSchedule(vn,m(vn),mk)
14. EEST(vi, mk)← max(EAT (mk), fpred(vi),mk

)
15. Keep the schedule with minimum (EEST(vi, m

o))
16. Schedulevi onmo: svi,mo ← EEST (vi, m

o)

Figure 3.4: EcoMapS: SingleCNPT Algorithm
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3.4.2 E-MinMin Algorithm

The Min-Min algorithm is reported of satisfying performance with relatively low com-

plexity [11] [53]. Thus, we extend and implement the Min-Minalgorithm in [53] as the

schedule search engine of EcoMapS. The extended Min-Min algorithm aims to minimize

scheduling lengths subject to energy consumption constraints, and is referred to as the E-

MinMin algorithm.

Similar to E-CNPT, E-MinMin also searches for a schedule with the optimal number of

computing sensors that has the smallest schedule length subject to the energy consumption

constraint. The E-MinMin’s algorithm of searching for the optimal number of computing

sensors is the same as theE-CNPT Algorithm in Section 3.4.1 except that the input of the

E-MinMin algorithm is the Hyper-DAG instead of the task queue L, and the core of the

searching algorithm is theSingleMinMin instead of theSingleCNPT.

We now introduce the procedure SingleMinMin(Hyper-DAG,q) that schedules the tasks

of the Hyper-DAG withq computing sensors. The core of the SingleMinMin algorithm is

the fitness function. For each task-node combination (v,m),the fitness functionfit(v, m, α)

indicates the combined cost in time and energy domain of assigning taskv to nodem, where

α is the weight parameter trading off the energy consumption cost for the time cost. In the

SingleMinMin algorithm, the task-node combination that gives the minimum fitness value

among all combinations is always assigned first. To extend and describe the fitness function

of the Min-Min Algorithm in [53], the following notations are introduced first:

• MFT (v, m) is the maximum finish time of the tasks assigned prior to taskv.

• fv,m is the scheduled finish time ofv onm.
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• PE(v, m) is the energy consumption of the application schedule afterassigningv to

m, which includes the computation energy consumption and communication energy

consumption on all nodes so far.

• NPT (v, m) is the normalized partial execution time of assigningv onm: NPT (v, m) =

fv,m

MFT (v,m)
.

• NPE(v, m) is the normalized energy consumption of assigningv onm: NPE(v, m) =

PE(v,m)
EB

.

Thus, the fitness function of assigningv onm is defined as:

fit(v, m, α) = α ·NPE(v, m) + (1− α) ·NPT (v, m). (3.7)

The SingleMinMin Algorithm is presented in Fig. 3.5. In the description of SingleM-

inMin, a “mappable” task is either an entry-task or a task that has all immediate predeces-

sors already been assigned, and the “mappable task list” is the list that contains currently

mappable tasks of the Hyper-DAG. We sweepα values in∆α increments to find the best

solution, where∆α is theα sampling step. For schedules with differentα values, the

schedule with the minimum schedule length under the energy consumption constraintEB

is chosen as the optimal solution among these candidate schedules. If none of the candidate

schedules meetsEB, the one with the smallest energy consumption is chosen (best-effort

solution).

3.5 Computational Complexity Analysis

Assume that the applicationT is represented asT = (V, E), |V | = v, |E| = e, the

number of entry-tasks isf , and the cluster hasp sensor nodes. Thus, the Hyper-DAG is

T ′ = (V ′, E ′), where|V ′| = 2v and|E ′| = 2e.
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Input: Hyper-DAG; number of computing sensors:q
Output: ScheduleHo of tasks in Hyper-DAG
SingleMinMin Algorithm:

1. FOR α = 0; α ≤ 1.0; α+ = ∆α /*scanα value*/
2. FOR entry-tasksvi /*First assign entry tasks*/
3. Assignvi on nodemo

i with min EAT (mo
i )

4. Assignsucc(vi) onmo
i

5. Initialize the mappable task listL
6. WHILE L is not empty
7. FOR taskvi ∈ L /*Search all task-sensor combinations*/
8. FOR all computing sensormk

9. IF pred(vi) 6⊆ T (mk)
10. FOR vn ∈ pred(vi)− T (mk)
11. CommTaskSchedule(vn,m(vn),mk)
12. Assignvi to mk, calculatefit(vi, mk, α)
13. Findmo

i : fit(vi, m
o
i , α) is minimum

14. Find task/sensor pair (v,m): fit(v, m, α) is minimum
15. Assignv to m, removev from L
16. Assignsucc(v) onm
17. UpdateL with new unassigned mappable tasks.
18. Among all schedules with different values ofα
19. IF ∃H : energy(H) ≤ EB with min length(H)
20. ReturnH /*optimal solution*/
21. ELSE
22. ReturnH : energy(H) is minimum /*best-effort solution*/

Figure 3.5: EcoMapS: SingleMin Algorithm
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3.5.1 Computational Complexity of EcoMapS with E-CNPT

The time complexity of EcoMapS with E-CNPT is analyzed as follows:

• Listing Stage of E-CNPT: similar to CNPT [28], the complexity is O(v + e).

• SingleCNPT: the communication tasks have complexity ofv · O(1) = O(v), the

entry-tasks have complexity off ·O(p) = O(fp), other non-entry computation tasks

have complexity of(v − f) · O(p) · O(e/v). Hence, the overall complexity of Sin-

gleMapSchedule isO(v) + O(fp) + (v − f) · O(p) · O(e/v). For the worst case,

e = O(v2) andf = O(v), thus the complexity of SingleMapSchedule isO(pv2) for

the worst case.

• EcoMapS with E-CNPT: the SingleCNPT algorithm will be called O(p) times. Thus,

the complexity of the whole algorithm isO(v + e)+O(p) ·O(v2p) = O(p2v2) for the

worst case.

3.5.2 Computational Complexity of EcoMapS with E-MinMin

The time complexity of EcoMapS with E-MinMin is analyzed as follows:

• SingleMinMin: the complexity of SingleMinMin is dominatedby the loop starting

from Step 5, which is executedO(v) times. Similarly to SingleCNPT, the complexity

of the loop starting from Step 6 has the complexity ofO(v) ·O(p) ·O(e/v) = O(pe).

Thus, SingleMinMin has the complexity ofO(pv3) for the worst case.

• EcoMapS with E-MinMin: Similar to the analysis of E-CNPT, the complexity is

O(p) ·O(pv3)/∆α = O(p2v3/∆α) for the worst case.

From the analysis above, the complexity of the EcoMapS with E-MinMin is higher than

that of the EcoMapS with E-CNPT with the order ofv for a fixed value of∆α.
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3.6 Simulation Results

The performance of our EcoMapS solution with E-CNPT and E-MinMin algorithms is

evaluated through simulations. The performance of an extended version of DCA [64] is

evaluated as a benchmark. DCA is extended with our proposed communication scheduling

algorithm to deliver the intermediate results of entry-tasks to the cluster head for further

processing. We first simulate simplified distributed video surveillance application exam-

ple. To further evaluate EcoMapS performance, simulationsare run on arbitrary applica-

tions with randomly generated DAGs. Our simulator is programmed in C++ language and

executed in Linux environment. Our simulations with randomDAGs study the following

scenarios:

• Effect of the∆α parameter of the E-MinMin algorithm

• Effect of energy consumption constraints

• Effect of number of tasks in applications

• Effect of inter-task dependency

• Effect of communication load

• Evaluation of energy consumption balance

• Comparison of the heuristic execution time

In these simulations, we observe energy consumption and schedule length metrics unless

otherwise stated. The energy consumption includes computation and communication en-

ergy expenditure of all sensors. The schedule length is defined as the finish time of the
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Figure 3.6: The Video Surveillance Example DAG

exit-task of an application. The simulation results presented in this section correspond to

the average of five hundred independent runs.

3.6.1 Simulation Parameters

In our simulation study, the bandwidth of the channel is set to 1Mb/s and the transmis-

sion ranger = 10 meters. We assume that there are 10 sensors in a cluster. The sensors are

equipped with the StrongARM SA-1100 microprocessor with the CPU frequency be 100

MHz. The parameters of Equation 2.1, 2.2, 2.4 are in coherence with [52], [64], [30] as

follows: Eelec = 50 nJ/b,εamp = 10 pJ/b/m2, VT = 26 mV,C = 0.67 nF,Io = 1.196 mA,n =

21.26,K = 239.28 MHz/V andc = 0.5 V.
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3.6.2 Simulation of an Example Application: Distributed Visual Surveil-
lance

To demonstrate in-network processing in WSNs, we consider the intrusion detection

system in Fig. 1.1. Here, we consider a simplified application that detects the location of

intruders. Rather than sending captured images to a base station, we locally process the

images and send the location information of the intruder. The in-network processing ap-

plication is abstracted as the DAG in Fig. 3.6, where tasksV0 − V3 represent background

subtracting and bounding box abstracting [62]. After thesesteps, the detected intruder is

approximated with rectangles (bounding boxes) in images from each camera. The vertex

coordinates of the bounding boxes and camera calibration data are passed to the next lo-

calization stage. Object locations are then estimated by “passing a viewing ray through

the bottom of the object in the image and intersecting it witha model representing the

terrain” [17] with data from each camera sensor. To evaluatethe estimation error range,

the locations of the points on the bounding boxes’s bottom lines are calculated, which are

represented by tasksV4 − V7. Then, the location estimation results from different cameras

are fused to eliminate estimation errors in tasksV8−V10. The edgesE04−E37 stand for the

communication of bounding boxes’ vertex coordinates and cameras’ calibration data, and

E48 − E9,10 denote the communication of the estimated object locationswith estimation

error ranges. AfterV10, the object’s location is recovered from 2D images and sent to a

base station.

In the simulation, we assume that there is one intruder at anytime instance, captured

images are128 × 128 8-bit gray images, the computation load ofV0 − V7 is 50 KCC, the

computation load ofV8 − V10 is 1 KCC, the communication volumes ofE04 − E37 are 20

bytes, and the communication volumes ofE48 − E9,10 are 40 bytes. Two scenarios with
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EB (uJ) Metrics DCA E-CNPTE-MinMin
300 Energy Consumption (uJ)315.4 299.3 299.3

Schedule Length (ms) 3.17 2.53 2.53
∞ Energy Consumption (uJ)315.4 331.6 347.7

Schedule Length (ms) 3.17 1.66 1.85

Table 3.1: EcoMapS: Simulation with the Visual Surveillance Example

energy budgetEB = 300uJ andEB = ∞ are simulated. As we will discuss in Section

3.6.3,∆α is set to be 0.1 during the simulations. According to the results shown in TABLE

3.1, both EcoMapS algorithms have better capacity to meet energy consumption constraints

than DCA. With small energy budgets, the performance of E-CNPT and E-MinMin con-

verges. When energy consumption budget is sufficiently large, E-CNPT performs the best

with less energy consumption than E-MinMin for this specificapplication.

In the example above, sending these four 16KByte-images will consume about 0.05 J

per hop. According to Table 3.1, even with infinite energy budget, the energy consump-

tion of processing these images with E-MinMin is 347.7 uJ, which is much smaller than

transmitting all images over one hop. After the in-network processing, the resulting data

volume is reduced to 40 bytes, which consumes only 32.32 uJ todeliver over one hop.

Thus, the overall energy consumption of processing information and transmitting the re-

sult is drastically reduced when compared with directly delivering original images over

one hop. In large-scale WSNs where base stations are locatedmultiple hops away, energy

savings through in-network processing become more pronounced.
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3.6.3 Simulation with Random DAGs

To evaluate EcoMapS performance for arbitrary applications, simulations are run on

randomly generated DAGs. Random DAGs are created based on three parameters: The

number of tasksnumTask, the number of entry-tasksnumEntry, and the maximum number

of predecessorsmaxPred. The number of each non-entry task’s immediate predecessors,

the computation load (in units of kilo-clock-cycle, KCC), and the resulting data volume (in

units of bit) of a task are uniformly distributed over [1,maxPred], [300K CC±10%], and

[800 bits±10%], respectively.

Effect of the ∆α parameter of the E-MinMin Algorithm

We investigate the effect of different values of∆α with ∆α = 0.2, ∆α = 0.1, and

∆α = 0.05. Simulations are run with randomly generated DAGs. The parameters of DAGs

considered for this set of simulations arenumTask= 25,numEntry= 6, andmaxPred= 3.

The energy consumption and schedule length are observed fordifferent available energy

levels (also referred to as Energy Budget).

As we can see from Fig. 3.7, E-MinMin with different values of∆α performs almost

the same with respect to meeting energy budget constraints.Regarding schedule lengths,

E-MinMin with ∆α = 0.05 performs the best while E-MinMin with∆α = 0.2 performs

the worst. This observation is reasonable because with smaller ∆α, E-MinMin can search

the schedule space in a more exhaustive manner and discover better solutions. However, a

smaller value of∆α also leads to longer heuristic execution time, as discussedin Section

3.5. The important observation from Fig. 3.7 is that the performance difference between

different∆α values is very small. We set the intermediate value∆α = 0.1 for E-MinMin

in all of the following simulations.
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Effect of Energy Consumption Constraints

The effect of the energy consumption constraints is evaluated with randomly generated

DAGs with numTask= 25,numEntry= 6, andmaxPred= 3.

As shown in Fig. 3.8, both EcoMapS algorithms have better capability to adjust their

schedules according to energy budget compared with DCA. When the energy budget is

small, EcoMapS algorithms converge to solutions that use one sensor for computation,

which is the default behavior for DCA. Instead of sending allsensed data to cluster heads,

the EcoMapS algorithms choose one of the sensing sensor for computation, which saves

energy and shortens schedule lengths. As the energy budget increases, the EcoMapS al-

gorithms have more sensors involved in computation, which decreases schedule lengths at

the cost of larger energy consumption. On the other hand, DCAcannot adjust its schedule

to higher availability of energy resources. Compared with DCA, the EcoMapS algorithms

can lead up to 67% schedule length improvement for this set ofsimulations.

Regarding the comparison of the EcoMapS algorithms themselves, both E-CNPT and

E-MinMin tend to use one computing sensor with small energy budget, which leads to

equal schedule lengths and energy consumption. When the energy budget is sufficiently

large, E-CNPT has a slightly shorter schedule length than E-MinMin because of its better

perspective of global optimization: The listing stage of E-CNPT enqueues the tasks ac-

cording to the critical paths of the Hyper-DAG, while E-MinMin just locally calculates the

cost of assigning a task. However, this improvement comes ata higher energy consump-

tion cost, as shown in Fig. 3.8(a). For the scenarios with intermediate energy budgets,

E-MinMin outperforms E-CNPT up to 39% in terms of schedule lengths, as shown in Fig.

3.8(b). This advantage of E-MinMin stems from its fitness function. Different from E-

CNPT, which just takes time cost into account when assigningtasks with the fixed number
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of computing sensors, the fitness function of E-MinMin considers time cost as well as en-

ergy consumption. Thus, E-MinMin is more likely to find a feasible schedule meeting

energy constraints with a larger number of computing sensors than E-CNPT, which leads

to shorter schedule lengths.

Effect of Number of Tasks in Applications

To test the effect of number of tasks in applications, three sets of simulations are run

on randomly generated DAGs with 20, 25 and 30 tasks (numEntry= 6, maxPred = 3). As

shown in Fig. 3.9, energy consumption and schedule lengths are dominated by the num-

ber of tasks. When the number of tasks increases, the energy consumption and schedule

length of DCA increase proportionally. The EcoMapS algorithms on the other hand adapt

themselves to the increasing energy budget. For the extremescenarios with small and

large energy budgets, the schedule lengths and energy consumption of the EcoMapS algo-

rithms increase in proportion to the increment of the numberof tasks. For the intermediate

scenarios, the EcoMapS algorithms adapt their schedule lengths and energy consumption

according to the available energy budget when the number of tasks increases. For all three

scenarios, the energy consumption of E-MinMin follows energy budgets closer than E-

CNPT, and the schedule length of E-MinMin is shorter than E-CNPT for the scenarios

with intermediate energy budgets.

Effect of Inter-task Dependency

The inter-task dependency is determined by the in/out degree of application DAGs.

Simulations with sets of DAGs withmaxPred = 3 andmaxPred = 6 (numTask = 25,

numEntry= 6) are executed.
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According to the simulation results of Fig. 3.10, the inter-task dependency has al-

most no effect on the performance of DCA. The robustness of DCA against inter-task

dependency changes stems from the fact that inter-task dependency affects communication

scheduling, and DCA has most of the tasks executed on the cluster head with less needs for

communication.

Regarding the EcoMapS algorithms, increasing the in/out degree of DAGs does not in-

troduce new communication task in the Hyper-DAG, but increases the dependency between

a communication task and its immediate successors. Greaterdependency degree between

tasks may lead to a higher number of communication tasks scheduled onC and less par-

allelism between sensors, which leads to more energy consumption and longer schedules.

Thus, when the energy budget is sufficiently large, the energy consumption of the EcoMapS

algorithms increases and the schedule lengths decrease. When the energy budget is rela-

tively tight, both of the EcoMapS algorithms use less computing sensors to meet energy

constrains when the inter-task dependency increases, which decreases energy consumption

and increases schedule lengths. As we can see from Fig. 3.10(b), although the performance

of the EcoMapS algorithms degrade with higher inter-task dependency, the EcoMapS algo-

rithms still outperform DCA with respect to schedule lengths subject to energy consump-

tion constraints.

Effect of Communication Load

In task mapping and scheduling, the relationship between communication and compu-

tation load may affect the overall performance. This factoris evaluated by changing the

average communication data volume with fixed average computation load. Simulations are

run with randomly generated DAGs withnumTask= 25,numEntry= 6, maxPred= 3. The

three different settings of DAGs have result data volume uniformly distributed in [600bit,
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±10%], [800bit,±10%], and [1000bit,±10%] with task computation load uniformly dis-

tributed in [300KCC,±10%].

As shown in Fig. 3.11, the performance of DCA and the EcoMapS algorithms are both

affected by the communication load. When communication load increases, the schedule

lengths increase. Compared to the EcoMapS algorithms, the performance of DCA degrades

less with increasing communication load. DCA’s robustnessagainst communication load

variation stems from the fact that DCA has most of its tasks executed on the cluster head.

Since the execution time and energy consumption of a communication task on a sensor

are zero, communication load changes will not affect these tasks’ execution. On the other

hand, the EcoMapS algorithms assign tasks on different sensors to speed up execution,

which leads to more communication tasks scheduled onC. Thus, the EcoMapS algorithms

are affected more by the communication load changes. However, even when communi-

cation load increases, the EcoMapS algorithms still significantly outperform DCA with

shorter schedule lengths subject to energy consumption constraints as shown in Fig. 3.11.

Compared with E-CNPT, E-MinMin more effectively utilizes the available energy budgets

(Fig. 3.11(a)), and is less affected by changes in communication load (Fig. 3.11(b)).

Evaluation of Energy Consumption Balance

The energy consumption balance is another important factorin the WSN design. In this

section, the energy consumption balance of the proposed EcoMapS algorithms are evalu-

ated and compared to the DCA algorithm. The random DAGs considered in the simula-

tions have the parameters ofnumTask= 25,numEntry= 6, andmaxPred= 3. The observed

metrics are theFairness Index (FI)and theMaximum of Sensor’ Energy Consumptionin

addition to the energy consumption of all sensors. Here, theFairness Index is a variation
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of Jain’s Fairness Index [49], and is defined as

FI =
(
∑n

k=1 Ek)
2

n
∑n

k=1 E2
k

, (3.8)

whereEk is the energy consumption of sensormk, andn is the number of active sensors.

The “active sensors” are the sensors that execute either entry-tasks or non-entry-tasks.FI

varies in [0,1], and the closer ofFI to 1 , the better the energy consumption balance of the

schedule.

As shown in Fig. 3.12, when the energy budget is small, the EcoMapS algorithms tend

to utilize a small number of computing sensors to reserve energy. Thus, computation ac-

tivities as well as energy consumption are burdened on thesesensors (Fig. 3.12(c)), which

leads to relatively inferior energy consumption balance (Fig. 3.12(b)). However, when

the energy budget increases, more sensors can be involved inthe application execution.

Though the overall energy consumption increases due to the increased communication vol-

ume, the maximum of each sensor’s energy consumption decreases (Fig. 3.12(c)) and the

energy consumption balance improves (Fig. 3.12(b)) because of the distributed computa-

tion load among sensors. Compared to E-CNPT, the energy consumption of E-MinMin

is more balanced for the scenarios with intermediate energybudgets. On the other hand,

DCA always overloads the cluster head with most computationtasks regardless of energy

availability, which causes poor energy consumption balance for all scenarios.

Comparison of Heuristic Execution Time

Execution time is also an important factor to evaluate heuristic algorithms. As we have

analyzed in Section 3.5, E-MinMin has a higher complexity than E-CNPT. In this section,

the relative execution time of E-MinMin over E-CNPT is tested with randomly generated

DAGs of different number of tasks withnumEntry= 6 andmaxPred= 3. As shown in
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Fig. 3.13, E-CNPT is more than 50 times faster than E-MinMin for tested scenarios. When

the number of tasks increases, the speed difference betweenE-CNPT and E-MinMin also

slightly increases.

As we have already seen in previous sections, the performance of E-CNPT and E-

MinMin are similar when the energy budget is small or sufficiently large. For these sce-

narios, E-CNPT is more preferable due to its shorter execution time. For the scenarios

with medium energy budgets, E-MinMin generally provides shorter schedule lengths with

better energy consumption balance than E-CNPT. However, taking the heuristic execution

time into account, the tradeoff between the schedule lengthand the heuristic execution time

should be considered. Both E-CNPT and E-MinMin are executedin the Initialization Phase

of EcoMapS, and schedules must be regenerated when new applications arrive. For WSNs

where applications are not updated frequently, a schedule is executed for a long term. For

these WSN applications, the overhead of schedule generations is negligible and E-MinMin

is preferred because of its shorter schedule lengths. For a WSN that updates its applica-

tions more frequently, E-CNPT can be favored over E-MinMin due to E-CNPT’s shorter

schedule computation time.
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Figure 3.7: EcoMapS: Effect of Different value of∆α
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Figure 3.9: EcoMapS: Effect of Number of Tasks
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Figure 3.10: EcoMapS: Effect of Inter-task Dependency
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Figure 3.11: EcoMapS: Effect of Communication Load
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Figure 3.12: EcoMapS: Energy Consumption Balance
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CHAPTER 4

REAL-TIME TASK MAPPING AND SCHEDULING IN
SINGLE-HOP CLUSTERED WIRELESS SENSOR NETWORKS

In Chapter 3, we discuss task mapping and scheduling in single-hop clustered WSNs for

energy-constrained applications. However, certain applications such as video surveillance

have inherent real-time requirements. For such applications, information processing must

be finished within certain deadlines. On the other hand, the stringent environment of WSNs

requires energy-efficiency at all layers of WSNs. Thus, it isdesirable to develop a solution

providing deadline guarantees in an energy-efficient manner. Minimization of overall ap-

plication energy consumption may lead to extensive execution loads of certain sensors than

others. Even though out-of-battery sensors can be replacedin densely deployed WSNs, the

consequent unbalanced lifetime of sensors may lead to frequent rescheduling and network

topology changes. Thus, energy-balanced solutions are desirable in WSNs.

In this chapter, we propose localized cross-layerReal-timeTaskMapping andScheduling

(RT-MapS) solutions for Dynamic Voltage Scaling (DVS) [47]enabled WSNs. We con-

sider deadline-constrained applications executed in a single-hop cluster of a homogeneous

WSN. To prolong network lifetime, the energy-balanced RT-MapS solution aims tomini-

mize the Maximum Energy Consumption per Node (MECpN) subject to application dead-

line constraints. The design objective of RT-MapS can be formulated as findinga schedule
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Ho that has the minimum MECpN under the deadline constraint:

Find Ho = arg min MECpN(H), (4.1)

where MECpN(H) = max
k

Ek, (4.2)

subject tolength(H) = max
i,k

fi,mk
≤ DL, (4.3)

wherelength(H) andMECpN(H) are theschedule lengthandmaximum energy con-

sumption per nodeof H, respectively,Ek is the energy consumption of nodemk, andDL

is the deadline of the application. The Hyper-DAG and wireless channel model presented

in Chapter 3.2, and the communication scheduling algorithmpresented in Chapter 3.3 are

implemented in RT-MapS. The communication scheduling algorithm is integrated as part of

RT-MapS with the collision avoidance feature. The resulting start and finish times of com-

munication events constitute the schedule used by the Medium Access Control (MAC). In

RT-MapS, communication and computation are jointly scheduled in two phases:Task map-

ping and scheduling phaseandDVS phase. In theTask Mapping and Scheduling Phase,

two low-complexity task mapping and scheduling algorithms, the CNPT and Min-Min al-

gorithm, are extended and implemented with the objective ofminimizing MECpN subject

to deadline constraints. A novel DVS algorithm is proposed and implemented in theDVS

phaseto further reduce energy consumption.

4.1 The Dynamic Voltage Scaling Problem

In this chapter, we consider sensors equipped with Dynamic Voltage Scaling (DVS)

enabled processors such as StrongArm SA1100 [64]. We assumethat such DVS-enabled

processors have finite number of CPU speeds and supply voltage levels. The delay of speed

and voltage adjustment for a DVS processor can be in the orderof 10 - 100µs [12] [45]
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[47]. Such DVS adjustment overhead can be accounted into theadjusted task execution

time. For the sake of simplicity, we assume the DVS adjustment overhead to be negligible

throughout this dissertation.

Due to the discrete nature of task mapping and scheduling, a schedule that meets a

deadline may do so with slack time before the deadline. The unbalanced load of sensors

and communication scheduling also result in CPU idle time. DVS is a technique to exploit

the CPU idle time by jointly decreasing CPU speed and supply voltage while still meeting

deadlines. According to Equation 2.4 and 2.3, a decrease in CPU supply voltage leads

to approximately proportional increase in execution time and approximately quadratic de-

crease in computation energy consumption. An example of DVSis shown in Fig. 4.1. The

relationship of the CPU speed and the unit energy consumption is approximately shown in

Fig. 2.2. Assuming that the execution load of taskvi is N clock cycles and its deadline is

t, the execution time ofvi with speedSmax is t′, and the corresponding energy consump-

tion is N · Pmax. As demonstrated in Fig. 4.1(a), the CPU slack time ist − t′ before the

deadlinet. By adjusting the CPU speed toSo, v′
is execution time increases tot and its

energy consumption decreases toN · Po (Fig. 4.1(b)), which leads to energy savings of

N · (Pmax − Po). Here,Pmax andPo stand for the original and the adjusted computation

energy consumption per clock cycle ofvi with CPU speed ofSmax andSo, respectively.

Task scheduling for DVS-enabled systems is under active research [5], [16], [44]. In [5],

a periodic real-time task scheduling mechanism is proposedfor DVS-enabled systems with

limited energy supplies. However, [5] only considers single-processor systems and does

not address task scheduling in multiprocessor networks. Task scheduling in DVS multipro-

cessor systems is discussed in [16] based on shaping of battery discharging profiles. The

discussed multiprocessor system is driven by a single battery, which is not applicable to
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(a) CPU Speed =Smax (b) CPU Speed =So

Figure 4.1: DVS Scheduling Example (Task withN Clock Cycles)

WSNs. A DVS-based energy management scheme is presented in [44] for distributed real-

time systems with consideration of communication and precedence constraints. However,

[44] focuses on parallel processing systems and does not extend to wireless communica-

tion systems. The DVS technique is implemented in [69] to save energy in WSNs. The

DVS algorithm is applied to a calculated schedule with the constraints of wireless commu-

nication events. To re-scale each task, application schedules need to be re-adjusted with

the scheduling algorithm in [69], which leads to a high computation complexity. In this

chapter, a low-complexity DVS algorithm is presented to optimize energy consumption in

WSN environments.

4.2 Outline of the Proposed RT-MapS Solution

The proposed RT-MapS sloution is demonstrated with the flowchart in Fig. 4.2. RT-

MapS has two phases:Task Mapping and Scheduling PhaseandDVS Phase. In theTask

Mapping and Scheduling Phase, communication and computation tasks are scheduled. Two
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low-complexity task mapping and scheduling algorithms, CNPT [28] and Min-Min [11]

[53] are extended and implemented with the objective of minimizing MECpN subject to the

deadline constraint. Our proposed communication scheduling algorithm is then embedded

in the execution of the extended CNPT and Min-Min algorithmsto satisfy theDependency

Constraint. The energy consumption is further reduced in theDVS Phase. In the following

sections, the main components of the RT-MapS solution, namely, Hyper-DAG based CNPT

and Min-Min algorithms (referred to as H-CNPT and H-MinMin), and DVS algorithm,

are presented in addition to the Hyper-DAG, wireless channel model, and communication

scheduling algorithm presented in Chapter 3.

4.3 Task Mapping and Scheduling with H-CNPT and H-MinMin Al-
gorithm

In theTask Mapping and Scheduling Phaseof RT-MapS, the tasks of Hyper-DAGs are

mapped and scheduled on sensors. To meet theDependency Constraintduring task map-

ping and scheduling, if a computation task depends on a communication task assigned on

another sensor node, thecommunication scheduling algorithmwill be executed to duplicate

the absent communication task. With the Communication Scheduling Algorithm in Chap-

ter 3.3, task mapping and scheduling in single-hop wirelessnetworks can be tackled as a

generic task mapping and scheduling problem with additional constraints. In this section,

two task mapping and scheduling algorithms, H-CNPT algorithm and H-MinMin algorithm

are presented with the objective of minimizing MECpN subject to deadline constraints. To

guarantee deadlines, sensors are scheduled with the maximum CPU speedfmax
cpu . The H-

CNPT and H-MinMin algorithms also employ the concept ofcomputing sensorpresented
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Figure 4.2: RT-MapS Flowchart
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in Chapter 3.4. In RT-MapS, H-CNPT and H-MinMin will iteratively search for the optimal

schedule with different number of computing sensors subject to deadline constraints.

4.3.1 H-CNPT Algorithm

H-CNPT’s strategy is to assign the tasks along the most critical path first to the nodes

with earliest execution start times. By adjusting the number of computing sensors in each

scheduling iteration and choosing the schedule with the minimum MECpN under the dead-

line constraint, the design objective of H-CNPT is achieved. Similar to CNPT [28], H-

CNPT also has two stages:listing stageandsensor assignment stage. In the listing stage,

tasks are sequentialized into a queueL such that the most critical path comes first and a

task is always enqueued after its immediate predecessors. In thesensor assignment stage,

the tasks will be dequeued fromL and assigned to the sensors with the minimum execu-

tion start time. Several scheduling iterations will be run in the sensor assignment stage

with different number of computing sensors, and only the most optimal schedule is chosen.

The listing stageandsensor assignment stageof H-CNPT are introduced individually as

follows.

Listing Stage: The Listing Stage of H-CNPT is similar to that of CNPT [28] except

that there are two types of tasks in H-CNPT: Computation tasks and communication tasks.

Thus, the formulas to calculate the Earliest Start TimeEST (vi) and the Latest Start Time

LST (vi) of taskvi are different from those of CNPT, and are presented as follows:

EST (vi) = max
vm∈pred(vi)

{EST (vm) + tm}, (4.4)

LST (vi) = min
vm∈succ(vi)

{LST (vm)} − ti, (4.5)
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Input: Task queueL; number of available sensors in the clusterp; deadlineDL
Output: ScheduleHo of tasks inL with the MECpN under the deadline constraint
H-CNPT Algorithm:

1. Lmin ←∞ /*minimum schedule length*/
2. MECpNo ←∞ /*optimal MECpN*/
3. FOR q = 1 top /*Search computing sensor space*/
4. H = SingleCNPT(L,q)
6. IF length(H) < Lmin /*shortest schedule*/
7. Lmin ← length(H)
8. Hmin ← H
9. IF length(H) ≤ DL andMECpN(H) < MECpNo /*optimal schedule*/
10. MECpNo ←MECpN(H)
11. Ho ← H
12. IF Lmin ≤ DL
13. ReturnHo

14. ELSE
15. ReturnHmin

Figure 4.3: RT-MapS: H-CNPT Algorithm

whereti equals to the execution length on sensor nodes ifvi ∈ V or to the execution length

onC if vi ∈ R. After the Listing Phase, the task graph is sequentialized intoL and is ready

for the Sensor Assignment Phase. The details of the Listing Stage can be found in [28].

Sensor Assignment Stage: In the Sensor Assignment Stage, H-CNPT will iteratively

search the schedule space with different number of computing sensors. Among these sched-

ules, the one with the minimum energy consumption under the deadline constraint is chosen

as the solution. If no schedule meets the deadline constraint, the schedule with the min-

imum schedule length is chosen. The detailed description ofthe H-CNPT algorithm is

presented in Fig. 4.3.
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Input: task queueL; number of computing sensorsq
Output: Schedule of tasks inL
SingleCNPT Algorithm:

while L is not empty
1. Dequeuevi from L
2. IF vi ∈ R /* communication task */
3. Assignvi to nodem(pred(vi))
4. ELSE IF pred(vi) = ∅ /*entry-tasks*/
5. Assignvi to nodemo

i with min EAT (mo
i )

6. ELSE /* non-entry computation tasks*/
7. FOR computing sensors{mk}
8. Calculate EEST(vi, mk) with a copy of current schedule:
9. IF pred(vi) ⊆ T (mk) /*meet dependency constraint*/
10. EEST(vi, mk)←max(EAT (mk), fpred(vi),mk

)
11. ELSE /*schedule communication to meet dependency constraint*/
12. FOR vn ∈ pred(vi)− T (mk)
13. CommTaskSchedule(vn,m(vn),mk)
14. EEST(vi, mk)← max(EAT (mk), fpred(vi),mk

)
15. Keep the schedule with minimum EEST(vi, m

o)
16. Schedulevi onmo: svi,mo ← EEST (vi, m

o)

Figure 4.4: RT-MapS: SingleCNPT Algorithm

In Fig. 4.3, SingleCNPT(L,q) is a single round of task scheduling that schedules the

tasks inL with q computing sensors, whereq is the total number of available computing

sensors. The actual number of computing sensors in use can besmaller thanq depending

on the application and the scheduling algorithm. The core ofSingleCNPT(L,q) is the ex-

tended CNPTprocessor assignment algorithm. The basic strategy of the algorithm is to

assign tasks to the sensor with the minimum Earliest Execution Start Time (EEST). During

task scheduling,Dependency Constraintmust be satisfied via communication scheduling.

SingleCNPT(L,q) is presented in Fig. 4.4.
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In Fig. 4.4,EAT (mk) is the Earliest Available Time of nodemk, and EEST(vi, mk) is

the Earliest Execution Start Time ofvi on sensormk. Different from EST, EEST represents

the actual execution start time of a task if assigned on a sensor node.

4.3.2 H-MinMin Algorithm

Similar to H-CNPT, H-MinMin also searches for a schedule with optimal number of

computing sensors that has the smallest MECpN subject to thedeadline constraint. The

H-MinMin’s optimal number of computing sensors searching algorithm is the same as the

H-CNPT Algorithm in Section 4.3.1, except that the input of the H-MinMin algorithm is

the Hyper-DAG instead of the task queueL, and the core of the searching algorithm is

theSingleMinMin instead of theSingleCNPT. In the following, we introduce the procedure

SingleMinMin(Hyper-DAG,q) that schedules the tasks of the Hyper-DAG withq comput-

ing sensors.

The core of the SingleMinMin algorithm is the fitness function. For each task-node

combination (v,m), the fitness functionfit(m, k, α) indicates the combined cost in time

and energy domain of assigning taskv to nodem, whereα is the weight parameter trading

off the time cost for the balanced energy consumption. To evaluate energy consumption

balance, we define the Fairness Index (FI), which is a variation of Jain’s Fairness Index

[49], as follows:

FI =
(
∑n

k=1 Ek)
2

n
∑n

k=1 E2
k

, (4.6)

wheren is the number of active sensors. The “active sensors” are thesensors that execute

either entry-tasks or non-entry-tasks.FI varies in [0,1], and the closer ofFI to 1 , the

better the energy consumption balance of the schedule. At each step of the SingleMin-

Min algorithm, the task-node combination that gives the minimum fitness value among all
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combinations is always assigned first. To extend and describe the fitness function of the

Min-Min Algorithm in [53], the following notations are introduced first:

• fv,m is the scheduled finish time ofv onm

• FI(v, m) is the FI of the schedule after assigningv onm

• NPT (v, m) is the normalized partial execution time of assigningv onm: NPT (v, m) =

fv,m/DL

Thus, the fitness of assigningv onm with α is defined as:

fit(v, m, α) = α ·NPT (v, m) + (1− α) · (1− FI(v, m)). (4.7)

The SingleMinMin Algorithm is presented in Fig. 4.5. In the description of

SingleMinMin, a “mappable” task is either an entry-task or atask that has all immedi-

ate predecessors already been assigned, and the “mappable task list” is the list that contains

currently mappable tasks of the Hyper-DAG. For each application, we compare its sched-

ules with differentα value ranging from 0 to 1 in 0.1 increments. The schedule withthe

minimum MECpN under the deadline constraint is chosen as theoptimal solution among

these candidate schedules. If none of the candidate schedules meets the deadline, the one

with the shortest schedule is chosen.

4.4 The DVS Algorithm

Due to the discrete nature of task mapping and scheduling, a schedule that meets a

deadline may do so with some more CPU idle time until the deadline, which is referred to

as “slack time”. The unbalanced load of sensors and the communication scheduling also

result in CPU idle time between computation and communication tasks, which is referred
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Input: Hyper-DAG; number of computing sensors:q
Output: ScheduleHo of tasks in Hyper-DAG
SingleMinMin Algorithm:

1. FOR α = 0; α ≤ 1.0; α+ = 0.1 /*scan differentα value*/
2. FOR entry-tasksvi /*first assign entry-tasks*/
3. Assignvi on nodemo

i with min EAT (mo
i )

4. Assignsucc(vi) onmo
i

5. Initialize the mappable task listL
6. WHILE L is not empty, with a copy of current schedule:
7. FOR taskvi ∈ L /*scan all task-sensor combinations*/
8. FOR all computing sensormk

9. IF pred(vi) 6⊆ T (mk)
10. FOR vn ∈ pred(vi)− T (mk)
11. CommTaskSchedule(vn,m(vn),mk)
12. Assignvi to mk, calculatefit(vi, mk, α)
13. Findmo

i : fit(vi, m
o
i , α) = min

14. Keep the schedule with (v,m): fit(v, m, α) = min
15. Assignv to m, removev from L
16. Assignsucc(v) onm /*assign communication task*/
17. UpdateL with any new unassigned mappable tasks
18. Among all schedules with different values ofα
19. IF ∃H : length(H) ≤ DL with min MECpN(H)
20. ReturnH /*optimal schedule*/
21. ELSE
22. ReturnH : length(H) = min /*best-effort schedule*/

Figure 4.5: RT-MapS: SingleMin Algorithm
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to as a “schedule hole”. In theDVS Phase, the CPU idle time is exploited by decreasing

the CPU speed to reduce computation energy consumption.

Our DVS algorithm is composed of two stages: Schedule LengthExtension (SLE)

Stage and Schedule Hole Elimination (SHE) Stage. In the SLE stage, the slack time be-

tween schedule lengthlength(H) and application deadlineDL is eliminated by propor-

tionally slowing down all sensors’ CPU speed. Letβ be defined asβ = length(H)
DL

< 1, and

the re-scale factorγ asγ = ⌈β · fmax
cpu ⌉/f

max
cpu . Here, the function⌈f⌉ is the ceiling function

that returns the minimum available CPU speed greater than orequal tof . All processors

are slowed down toγ · fmax
cpu , which increases computation tasks’ execution lengths. To

accomplish this, a computation task’s start time, execution time, and finish time are mul-

tiplied by γ−1. To match the start time of its immediate successors, a communication task

vi’s finish timefvi,mk
is also multiplied byγ−1. Since a communication taskvi’s execution

lengthtvi,mk
is independent of the CPU operation as assumed in Section 2.2, its start time

svi,mk
is adjusted toγ−1fvi,mk

− tvi,mk
.

An example of DVS adjustment is shown in Fig. 4.6. For the sakeof simplicity, we

only consider a partial schedule of a sensorS1 with two data receptionsR1 andR2 from

C, and one data transmissionR3 to C. It should be noted thatR1, R2 andR3 are assigned

to S1 with zero execution times, while their execution times onC are all 1 time units (tu).

Assume that the original schedule length is 8 tu with CPU speed fmax
cpu , the deadline DL =

12 tu, and the calculated re-scale factorγ−1 = 1.5. In the SLE Stage of Fig. 4.6, the CPU

speed is reduced tofmax
cpu /1.5. Consequently,v4’s start time and finish time are adjusted

from 5 tu and 8 tu to 7.5 tu and 12 tu, respectively. Therefore,the slack time before the

deadline is eliminated. On the other hand,v3’s start time and finish time are adjusted from

2 tu and 4 tu to 3 tu and 6 tu, respectively. Thus, the schedule hole betweenv3 andv4
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Figure 4.6: Demonstration of Partial DVS Adjustment

still exists, which is eliminated in the SHE stage. The time interval[ds, df ] that contains

the schedule hole is first decided as follows:v3 cannot start execution beforeR1 reception

finishes at 3 tu, which makesds = 3 tu. v3 must be finished beforev4 starts at 7.5 ut and

R3 is transmitted at 8 tu. Thus,df = min(7.5, 8) = 7.5 tu. The CPU speed in[ds, df ]

is further reduced. The schedule ofv3 is consequently adjusted to finish at 7.5 tu, and the

schedule hole is eliminated. It should be noted that due to the discrete nature of DVS,

smaller slack time and schedule holes may still exist after adjustment in general.

The SHE algorithm is presented in Fig. 4.7. The SHE algorithmiteratively scans each

sensor’s schedule to detect time intervals[ds, df ] that contain schedule holes. As demon-

strated in Fig. 4.6, a communication tasks’ reception finishtime is taken as the lower bound

of calculatingds, as a computation task cannot be executed before all of its immediate pre-

decessors (which are communication tasks) are available.ds equals the minimum of the
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Input: scheduleH from theMapping and Scheduling Phase, sensor setSS, application deadline
DL
Output: Adjusted scheduleHo

SHE Algorithm:

1. FOR sensormk ∈ SS
2. ds← 0, df ←∞ /*Initialization*/
3. Scan tasksvi ∈ T∞

ds (mk) in increasing order of start time
4. IF ∃ a copy ofvi ∈ R: vc

i ∈ T (C) /*Transmitted communication task */
5. Find the computation taskvj following vi

6. IF mk is the sender ofvc
i

7. df ← min(svc
i ,C, svj ,mk

) /*Computation must finish before transmitting*/
8. SpeedAdjust(mk,ds,df ,γ · fmax

cpu )
9. ds← df
10. ELSE /*mk is the receiver ofvc

i */
11. ds← max(ds, fvc

i ,mk
, svj ,mk

) /*Computation cannot start before reception*/
12. ELSE IF vi is exit-task andfvi

< DL /*Adjustment bounded by deadline*/
13. SpeedAdjust(mk,ds,DL,γ · fmax

cpu )

Figure 4.7: Rt-MapS: DVS SHE Algorithm
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start times of the following computation task and transmission event launched bymk. Once

a time interval[ds, df ] that contains a schedule hole is found,SpeedAdjust() is executed

to eliminate the schedule hole by reducing the CPU speed in[ds, df ]. TheSpeedAdjust()

algorithm is presented in Fig. 4.8. InSpeedAdjust(), the CPU utility η during a time

interval[ds, df ] is defined as:

η = edf
ds/(df − ds), (4.8)

whereedf
ds is the overall CPU execution time during[ds, df ]. We first reduce the CPU speed

in [ds, df ] to ⌈fcpu · η⌉. In Steps 6-10, execution times of computation tasks in[ds, df ] are

increased according to the updated CPU speed. Note that SpeedAdjust() does not change

the communication schedule onC.

4.5 Computational Complexity Analysis

Assume that the applicationT is represented asT = (V, E), |V | = v, |E| = e, the

number of entry-tasks isf , and the cluster hasp sensor nodes. Thus, the Hyper-DAG is

T ′ = (V ′, E ′), where|V ′| = 2v and|E ′| = 2e.

4.5.1 Computational Complexity of RT-MapS with H-CNPT

The time complexity of RT-MapS with H-CNPT is analyzed as follows:

• Listing Stage of H-CNPT: similar to CNPT [28], the complexity is O(v + e).

• SingleCNPT: the communication tasks have complexity ofv · O(1) = O(v), the

entry-tasks have complexity off · O(p) = O(fp), other non-entry computation

tasks have complexity of(v − f) · O(p) · O(e/v). Hence, the overall complexity of

SingleCNPT isO(v)+O(fp)+(v−f)·O(p)·O(e/v). For the worst case,e = O(v2)

andf = O(v), thus the complexity of SingleCNPT isO(pv2) for the worst case.
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Input: sensormk; time interval[ds, df ]; original CPU speedfcpu

Output: Adjusted CPU speedf o
cpu and task scheduling during[ds, df ]

SpeedAdjust(mk,ds,df ,fcpu):

1. edf
ds ← 0, tt← ds /*Initialization*/

2. FOR vi ∈ T ft
ds (mk) andvi ∈ V /*Calculate CPU execution timeedf

ds in [ds,df]*/

3. edf
ds ← edf

ds + tvi,mk

4. η ← edf
ds/(df − ds) /*CPU utility in [ds,df]*/

5. f o
cpu ← ⌈fcpu · η⌉ /*Adjusted CPU speed in [ds,df]*/

6. FOR vi ∈ T df
ds (mk) andvi ∈ V /*Adjust computation tasks*/

7. svi,mk
← tt

8. tvi,mk
← tvi,mk

· fcpu

fo
cpu

9. fvi,mk
← svi,mk

+ tvi,mk

10. tt← fvi,mk

11. FOR vi ∈ T ft
ds (mk) andvi ∈ R /*Locally assigned communication task*/

12. IF pred(vi) ∈ T (mk)
13. svi,mk

← fpred(vi),mk
, fvi,mk

← fpred(vi),mk

14. Update the energy consumption ofmk

Figure 4.8: RT-MapS: DVS Adjustment Algoithm for a Single Sensor in[ds, df ]
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• RT-MapS with H-CNPT: the SingleCNPT algorithm will be called O(p) times. Thus,

the complexity of the whole algorithm isO(v + e)+O(p) ·O(v2p) = O(p2v2) for the

worst case.

4.5.2 Computational Complexity of RT-MapS with H-MinMin

The time complexity of RT-MapS with H-MinMin is analyzed as follows:

• SingleMinMin: the complexity of SingleMinMin is dominatedby the loop starting

from Step 6, which is executedO(v) times. Similarly to SingleCNPT, the complexity

of the loop starting from Step 7 has the complexity ofO(v) ·O(p) ·O(e/v) = O(pe).

Thus, SingleMinMin has the complexity ofO(pv3) for the worst case.

• RT-MapS with H-MinMin: Similar to the analysis of H-CNPT, the complexity is

O(p) ·O(pv3) = O(p2v3) for the worst case.

Regarding the DVS algorithm, the SLE stage needs to adjust all tasks once, thus has

complexity ofO(v); theSpeedAdjust Algorithmof the SHE stage will only scan and adjust

tasks assigned on each sensors, thus has a complexity ofO(v
p
). The SHE Algorithm will

scan and adjust all unadjusted tasks at most once, thus has a complexity ofO(v · v
p
) = O(v2

p
).

Thus, the complexity of the DVS algorithm isO(v + v2/p).

4.6 Simulation Results

The performances of the RT-MapS with the H-CNPT algorithm and the RT-MapS with

the H-MinMin algorithm are evaluated through simulations,and denoted as H-CNPT and

H-MinMin in this section, respectively. The performance ofDCA and EbTA is also eval-

uated as benchmarks. DCA is extended with our proposed communication scheduling

algorithm to deliver the intermediate results of entry-tasks to the cluster head for further

70



processing. DCA algorithm is also implemented with DVS for fair comparison. We first

simulate the video surveillance application described in Chapter 3.6.2. To further eval-

uate RT-MapS performance, simulations are run on arbitraryapplications with randomly

generated DAGs. Our simulations with random DAGs study the following scenarios:

• The effect of application deadline constraints

• The effect of number of tasks in applications

• The effect of inter-task dependency

• The effect of communication load

In these simulations, we observe schedule length, deadlinemissing ratio (DMR), MECpN,

FI, and application energy consumption metrics. The schedule length is defined as the

finish time of the exit-task of an application, the DMR is defined as the ratio of the number

of the simulation runs whose schedule length is larger than the imposed deadline over the

number of the overall simulation runs, and MECpN and FI are asdefined in Equation 4.2

and Section 4.3.2, respectively. Application energy consumption includes computation and

communication energy expenditure of all sensors.

4.6.1 Simulation Parameters

In our simulation study, the bandwidth of the channel is set to 1Mb/s and the trans-

mission range to 10 meters. We assume that there are 10 sensors in a single-hop cluster.

Sensors are equipped with the StrongARM SA-1100 microprocessor, whose speed ranges

from 59 MHz to 206 MHz with 30 discrete levels. The parametersof Equation 2.1, 2.2, 2.3

are in coherence with [52], [64], [30] as follows:Eelec = 50 nJ/b,εamp = 10 pJ/b/m2, VT =

26 mV,C = 0.67 nF,Io = 1.196 mA,n = 21.26,K = 239.28 MHz/V andc = 0.5 V.
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DL Metrics H-CNPT H-MinMin EbTA DCA
Schedule Length (ms) 3.00 3.59 3.01 5.64

3 ms MECpN (uJ) 585.2 320.2 842.8 1138.9
Energy Consumption (uJ)2178.1 2145.2 2262.72238.4

Schedule Length (ms) 4.97 4.97 4.87 5.64
5 ms MECpN (uJ) 344.2 237.9 509.4 1138.9

Energy Consumption (uJ)1278.8 1587.3 1816.82238.4
Schedule Length (ms) 6.93 6.93 6.61 6.90

7 ms MECpN (uJ) 267.2 177.7 384.8 834.5
Energy Consumption (uJ)993.6 1196.4 1934.01594.4

Table 4.1: RT-MapS: Simulation with the Visual Surveillance Example

4.6.2 Simulation with a Real-life Example: Distributed Visual Surveil-
lance

In this section, we evaluate the performance of RT-MapS, DCA, and EbTA algorithms

with the real-life example of distributed visual surveillance presented in Fig. 1.1. The ap-

plication is as described in Section 3.6.2 and abstracted with the DAG in Fig. 3.6. In the

simulation, we consider a single intruder,256 × 256 gray-scale images, the task compu-

tation load of 200 KCC forV0 − V7, computation load of 10 KCC forV8 − V10, commu-

nication volume of 20 bytes forE04 − E37, and the communication volume of 40 bytes

for E48 − E9,10. As shown in Table 4.1, both RT-MapS algorithms have better capacity to

meet deadlines than DCA when deadlines are small. In this specific application where all

communications are unicast, EbTA outperforms H-MinMin in terms of meeting deadline

constraints, while H-CNPT still performs the best. Regarding energy consumption, both

RT-MapS algorithms have smaller MECpN than DCA and EbTA. Regarding the compari-

son of RT-MapS algorithms, H-MinMin achieves smaller MECpNwith the cost of higher

application energy consumption.
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4.6.3 Simulation with Random DAGs

Simulations are run on randomly generated DAGs, which are created based on three

parameters: The number of tasksnumTask, the number of entry-tasksnumEntry, and the

maximum number of predecessorsmaxPred. The number of each non-entry task’s prede-

cessors, the computation load, and the communication data volume of a task are uniformly

distributed over [1,maxPred], [300K CC,±10%], and [800 bits,±10%], respectively. The

simulation results presented in this section correspond tothe average of two hundred inde-

pendent runs.

Effect of Application Deadlines

The effect of application deadlines and DVS adjustment are investigated with randomly

generated DAGs asnumTask= 30, numEntry= 10, andmaxPred= 5. To evaluate the

effect of DVS, the performance of DCA, EbTA, H-CNPT and H-MinMin before the voltage

adjustment (denoted as DCA*, EbTA*, H-CNPT* and H-MinMin*,respectively) are also

investigated.

As shown in Fig. 4.9(a) and Fig. 4.9(b), both RT-MapS algorithms have better capabil-

ity to meet small deadlines than DCA and EbTA. Compared to DCA, RT-MapS can have

multiple computing sensors in parallel according to deadline constraints, while DCA has

only one sensor for high level computing. On the other hand, though EbTA also employs

multiple sensors for computing, it does not exploit the broadcast nature of wireless com-

munication like RT-MapS does. In EbTA, a task must send information individually to its

immediate successors with larger overall communication time. Such multi-communication
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feature also introduces higher dependency between tasks and weaken the parallelism be-

tween sensors, which leads to larger schedule lengths and lower energy balance level. Re-

garding the comparison of the RT-MapS algorithms themselves, H-CNPT outperforms H-

MinMin in term of schedule lengths and DMR when deadlines aresmall. The scheduling

criteria of H-CNPT is determined only by schedule lengths, while the fitness function of

H-MinMin is a combination of schedule length and energy consumption. The tradeoff be-

tween schedule length and energy consumption degrades the schedule length performance

of H-MinMin algorithm.

As shown in Fig. 4.10(a) and Fig. 4.10(b), the H-MinMin algorithm outperforms other

algorithms in terms of energy consumption balance for most simulated scenarios. In DCA,

most tasks are run on a single sensor while H-MinMin can evenly distribute tasks among

multiple sensors to obtain energy-balanced schedules. Themulti-communication feature of

EbTA decreases the parallelism between sensors and leads tounbalanced energy consump-

tion. Furthermore, the sensor with the most computational activities is burdened by higher

communication energy consumption in EbTA, which further decreases energy consumption

balance. On the other hand, the broadcast scheduling feature of RT-MapS conserves com-

munication energy consumption and eases parallel scheduling between sensors. Regarding

the comparison of H-CNPT and H-MinMin, H-MinMin still outperforms H-CNPT by tak-

ing energy consumption fairness into account when calculating fitness value and scheduling

tasks.

Regarding application energy consumption, when deadlinesare relatively large, com-

putation tasks in RT-MapS are distributed among multiple sensors to achieve energy bal-

ance, which leads to higher application energy consumptiondue to more communication

activities (Fig. 4.10(c)). However, after implementing the DVS algorithm, the application
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energy consumption of both RT-MapS algorithms are smaller than DCA and EbTA due to

the larger exploitable slack time before deadlines.

As we can see from Fig. 4.10(a) and Fig. 4.10(c), our DVS algorithm is an effective

approach for energy efficient solutions. When deadlines aresufficiently large, the DVS

adjustment results in about 50 % energy consumption savingsby “pushing” the schedule

length close to the deadline in RT-MapS. Even when deadlinesare relatively small and

there is little slack time before application deadlines, the DVS adjustment of RT-MapS

can still save about 15% energy compared with the scenarios without the DVS adjustment.

This energy saving stems from eliminating the schedule holes caused by the unbalanced

load of sensors and communication scheduling. On the other hand, the DVS algorithm

of EbTA cannot exploit the slack time of unbalanced sensors when schedule lengths are

over deadlines. It should be noted that though the DVS adjustment may increase schedule

lengths (Fig. 4.9(a)), the DMR is not affected (Fig. 4.9(b))for any of the simulated deadline

values.

Effect of Inter-task Dependency

The inter-task dependency is determined by the in/out degree of application DAGs.

Simulations with sets of DAGs withmaxPred = 5 andmaxPred = 10 (numTask = 30,

numEntry= 10) are executed.

According to the simulation results of Fig. 4.11 and 4.12, the inter-task dependency

barely affects the performance of DCA due to the fact that DCAhas most of the tasks

executed on the cluster head, and therefore has the least need for communication. On the

other hand, EbTA is significantly affected by the increment of inter-task dependency, as

more communication events are needed to deliver a task’s result to its immediate succes-

sors with higher inter-task dependency. Regarding the RT-MapS algorithms, increasing the
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in/out degree of DAGs only leads to higher dependency between a communication task

and its immediate successors without introducing new communication tasks, thus they are

less affected than EbTA. But greater dependency degree between tasks leads to less paral-

lelism between sensors and a larger number of communicationtasks scheduled onC, which

leads to more energy consumption and longer schedules. Thus, the RT-MapS algorithms

are affected more by inter-task dependency increase than DCA. Compared with H-CNPT,

H-MinMin is affected more and has a higher possibility of missing deadlines when the com-

munication load increase. However, in all simulated scenarios, both RT-MapS algorithms

outperforms DCA and EbTA in terms of guarantee deadline constraints with minimum

MECpN.

Effect of Number of Tasks

To investigate the effect of the number of tasks in applications, simulations are run on

randomly generated DAGs with 25, 30, 35 tasks (numEntry= 10,maxPred= 5).

According to Fig. 4.13 and 4.14, the performance of all algorithms degrade with the in-

crease of application scales, and energy consumption is dominated by the number of tasks.

When the number of tasks increases, the application energy consumption and MECpN of

all algorithms increase proportionally. However, the RT-MapS algorithms have smaller en-

ergy consumption than DCA and EbTA for all simulated scenarios. Regarding schedule

lengths and DMR, though all algorithms are affected when thenumber of tasks increases,

the RT-MapS algorithms are less affected due to their bettercapacity to meet deadline con-

straints by adjusting the number of computing sensors.
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Effect of Communication Load

For task mapping and scheduling in wireless networks, the relationship between com-

munication and computation load may affect the overall performance. This factor is evalu-

ated by changing the average communication data volume withfixed average computation

load. Simulations are run with randomly generated DAGs withnumTask= 30, numEntry

= 10,maxPred= 5. The two different settings of DAGs have communication data volume

uniformly distributed in [800bit,±10%], and [1000bit,±10%] with task computation load

uniformly distributed in [300KCC,±10%].

As shown in Fig. 4.15 and 4.16, the performance of all simulated algorithms are af-

fected by the communication load increment. Among all algorithms, EbTA is affected the

most by communication load increment in terms of schedule length, DMR, MECpN, and

application energy consumption. Since DCA has most of its tasks executed on the clus-

ter head, it has the least communication tasks scheduled on the channel. Thus, DCA is

affected the least regarding energy consumption and MECp when communication load is

increased. On the other hand, the RT-MapS algorithms assigntasks on different sensors to

speed up execution, which leads to more communication tasksscheduled onC. Thus, the

RT-MapS algorithms are affected more by the communication load increment than DCA.

On the other hand, due to their broadcast scheduling feature, the RT-MapS algorithms are

less affected by communication load changes compared with EbTA. It is observed that,

even when communication load increases, the RT-MapS algorithms still outperform DCA

and EbTA with smaller MECpN subject to deadline constraints.
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Figure 4.9: RT-MapS: Effect of Application Deadlines in theTime Domain
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Figure 4.10: RT-MapS: Effect of Application Deadlines in the Energy Domain
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Figure 4.11: RT-MapS: Effect of Inter-Task Dependency in the Time Domain
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Figure 4.12: RT-MapS: Effect of Inter-Task Dependency in the Energy Domain
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Figure 4.13: RT-MapS: Effect of Number of Tasks in the Time Domain
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Figure 4.14: RT-MapS: Effect of Number of Tasks in the EnergyDomain
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Figure 4.15: RT-MapS: Effect of Communication Load in the Time Domain
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Figure 4.16: RT-MapS: Effect of Communication Load in the Energy Domain
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CHAPTER 5

REAL-TIME TASK MAPPING AND SCHEDULING IN
MULTI-HOP CLUSTERED WIRELESS SENSOR NETWORKS

In Chapter 3 and 4, task mapping and scheduling solutions arepresented for single-

hop clustered WSNs. However, clustering sensors into single-hop groups leads to a large

number of clusters, and consequently comes with the cost of large communication and

routing overhead [9] [68] in large-scale WSNs. Many multi-hop clustering algorithms

have been proposed for large-scale WSNs [4] [9] [67], which provide better scalability

and energy-efficiency. Thus, it is desirable to develop moregeneral task mapping and

scheduling solutions for multi-hop clustered WSNs.

In this chapter, we proposeMulti-Hop Task Mapping and Scheduling (MTMS), which

provides the in-network computation capacity required by arbitrary real-time applications

in multi-hop WSNs. The following network assumptions in addition to those in Chapter

2.2 are made for multi-hop WSNs discussed in this chapter:

• Homogeneous sensors are grouped intok-hop clusters with a clustering algorithm

such as [4] [9] [67]. We define ak-hop network as a connected networkG with

diameterdiam(G) ≤ k, wherek is the hop count of the longest path connecting any

two nodes.
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• Location information is locally available within clustersthrough localization algo-

rithms such as [14] [51].

• Same as that in Chapter 4.1, we assume that sensors are equipped with DVS proces-

sors such as StrongARM SA-1100 [52], and DVS adjustment overhead is negligible.

MTMS aims to guarantee application deadlines with the minimum energy consump-

tion. LetCommEng(mk) represent the communication energy consumption of a nodemk

including data transmission, reception, and forwarding. The design objective of MTMS is

to find a scheduleHo ∈ {Hx} that has the minimum energy consumption under the delay

constraint:

FindHo = arg min energy(H), (5.1)

whereenergy(H) =
∑

i,k

cvi,mk
+

∑

k

CommEng(mk), (5.2)

subject tolength(H) = max
i,k

fvi,mk
≤ DL, (5.3)

whereenergy(H) and length(H) are the overall energy consumption and the schedule

length ofH, respectively, andDL is the deadline of the application. MTMS not only maps

and schedulescomputation tasksto sensors in parallel to accelerate execution, but also

addressescommunication schedulingamong sensors in amulti-hopcluster of WSNs. The

Hyper-DAG application model presented in Chapter 3.2 is employed in MTMS. A novel

model is developed to abstract multi-hop wireless channels. Based on this channel model,

multi-hop communication scheduling algorithm is integrated as part of MTMS with the

collision avoidance feature. The resulting start and finishtimes of communication events

constitute the schedule used by the MAC. As a cross-layer solution, MTMS schedules

computation tasks at the application layer as well as their associated communication at

Medium Access Control (MAC) and network layer.
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5.1 Outline of the Proposed MTMS Solution

Similar to RT-MapS in Chapter 4, the proposed MTMS solution also has two phases:

Task Mapping and Scheduling PhaseandDVS Phase. In theTask Mapping and Schedul-

ing Phase, communication and computation tasks are scheduled with the proposed task

schedule search engine (TSSE) algorithms. To guarantee deadline constraints, computa-

tion tasks are scheduled with the highest CPU speed in the Task Mapping and scheduling

Phase. Two low-complexity TSSE algorithms are developed with the objective to minimize

application energy consumption subject to deadline constraints. One TSSE algorithm is an

extended version of the Min-Min algorithm[11] [53] for multi-hop WSNs, Multi-hop Min-

Min (MMM). Another TSSE algorithm is the Dynamic Critical-path Task Mapping and

Scheduling (DCTMP). Our proposed communication scheduling algorithm is embedded

in the execution of the MMM and DCTMP algorithms to satisfy the Dependency Con-

straint. The DVS algorithm presented in Chapter 4.4 is implemented in theDVS phaseto

further reduce the energy consumption. In the following sections, the main components

of the MTMS solution, namely, communication scheduling algorithm, and the MMM and

DCTMP algorithms, are presented.

5.2 Multi-hop Network Channel Modeling

To properly schedule communication events, we model the multi-hop channel as a vir-

tual nodeC on which only communication tasks can be executed. Different from the virtual

node model in [26] and Chapter 3 and 4, where only single-hop channels are considered,

our multi-hop channel model takes potential interference between simultaneous communi-

cations into consideration.
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Unlike in single-hop networks, there can be multiple simultaneous communications in

multi-hop networks. Thus, the virtual nodeC in multi-hop channel model should be able

to execute multiple communication tasks simultaneously. To avoid interference between

scheduled communication tasks, a “penalty function” is introduced into the cost function of

communication scheduling. Under the unit disc graph model,the “penalty” of scheduling

a communication task is zero if it does not cause interference; otherwise, it is infinite. The

communication scheduling algorithms will only schedule a communication task with the

minimum finite cost. The penalty functionP ft
st (v) of assigning a communication taskv

ontoC during time interval[st, ft] is defined as:

P ft
st (v) =

{

∞,if ∃γ ∈ T ft
st (C) :S(γ) ∈ N(R(v)) or R(γ)∈N(S(v))

0, otherwise, (5.4)

whereS(γ) andR(γ) are the sender and receivers of communication taskγ, respectively,

andN(mk) is the set of sensorm′
ks one-hop neighbors. With the penalty function defined

above, the multi-hop channel model is presented as follows:

• The wireless channel of a cluster is modeled as a virtual nodeC. All cluster members

are considered to be directly connected withC.

• The channel nodeC executes communication tasks only. All communication tasks

exchanged between sensor nodes must be routed throughC. The available time, start

time, execution time, and finish time of a communication taskvi scheduled onC are

represented byatvi,C, svi,C, tvi,C, andfvi,C, respectively.

• A communication task assigned onC stands for an ongoing data communication. Its

execution time onC equals its communication length via the wireless channel. The

corresponding data transmission and reception energy consumption are accounted

for by the sender and receivers following Equation 2.1 and 2.2, respectively.
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• There can be multiple communication tasks scheduled onC in time interval[st, ft],

which are denoted asT ft
st (C).

• The cost of executing communication taskvi onC in time interval[st, ft] is cost(vi, st, ft)

= P ft
st (vi) + g(st − atvi,C), whereg(x), x ≥ 0, is a monotonically increasing func-

tion. The penalty functionP ft
st (vi) represents the scheduling feasibility in[st, ft]. If

a schedule causes interference, the cost function becomes infinite sinceP ft
st (vi) =∞.

For such scenarios, the communication scheduling algorithms search for another time

interval to avoid packet collisions. Otherwise, the cost function is determined by

g(st− atvi,C) asP ft
st (vi) = 0. Sincest− atvi,C denotes the delay betweenvi’s avail-

able time and scheduled start time, minimizingg(st − atvi,C) leads to the selection

of the earliest feasible execution ofvi onC.

It should be noted that the penalty function presented here just takes communication

interference into account. However, the penalty function can be further extended with

factors such as link quality. We defer the discussion of alternative penalty functions to our

future work.

5.3 Communication Scheduling Algorithm

To meet theCommunication Dependency Constraintin Hyper-DAG scheduling, com-

munication scheduling between nodes is required if a computation task depends on a com-

munication task assigned on another node. The communication scheduling algorithm pre-

sented in this section is used in conjunction with the task mapping and scheduling algo-

rithms described in Section 5.4.

In multi-hop clusters, the sender and the receiver of a communication task can be one

or more hops away from each other. We schedule multi-hop communication following the
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paths generated by a routing algorithm. In every hop, we use the one-hop communication

scheduling algorithm.

We first introduce the one-hop communication scheduling algorithm. With the Hyper-

DAG and the multi-hop channel models presented in Section 3.2, unicasting communica-

tion taskvi from sensorms to its single-hop neighbormr through the wireless channel can

be modeled as follows:vi is first duplicated fromms to C, which stands for originating

the data transmission. The duplicated copyvc
i is then executed onC for the duration of

the communication length, which denotes the procedure of the data transmission. After

vc
i is finished byC, vc

i is duplicated tomr, which represents the end of the data transmis-

sion. Aftervc
i is duplicated tomr, the transmitted data is available to computation tasks

assigned tomr. Any given transmission can potentially reach multiple receivers if they do

not interfere with neighboring communications. From the perspective of task scheduling,

broadcasting is similar to unicast communication except that vc
i will be duplicated to mul-

tiple receivers after it is finished onC. Broadcasting may lead to significant energy saving

compared with multiple unicasts between the sender and receivers. Thus, in communica-

tion scheduling, we always consider the possibility of receiving broadcast data first. The

detailed description of the single-hop communication scheduling algorithm is presented in

Fig. 5.1.

In Fig. 5.1, Steps 4-18 stand for originating a new communication from ms to mr.

If a communication task has multiple immediate successors to be scheduled on different

sensors, multiple receptions of the broadcast data withoutinterference can be scheduled

in Steps 21-27. Compared with originating a new communication for each recipient, the

broadcast reception method leads to energy saving of one data transmission for each addi-

tional data reception.
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Input: Communication task:vi; sender ofvi: ms; receiver ofvi: mr

Output: Schedule of duplicatingvi from ms to mr

OneHopSchedule(vi,ms,mr):

1. IF vi ∈ T (mr) /*No need to communicate ifvi already onmr*/
2. Return;
3. Find a copy ofvi: vc

i ∈ T (C), S(vc
i ) = ms /*ms sentvi before?*/

4. IF vc
i does not exist /*No, unicast scheduling from scratch*/

5. Findvi ∈ T (ms)
6. Find time interval [st,ft]:
7. cost(vi, st, f t) = min /*Find interval with minimum cost*/
8. st ≥ fvi,ms , ft− st = tvi,C /*Make surevi can be executed onC*/
9. Schedule a copy ofvi to C:
10. svc

i ,C ← st, fvc
i ,C ← ft

11. T (C)← T (C) ∪ {vc
i }

12. Update the energy consumption ofms

13. Schedule a copy ofvc
i to mr:

14. svr
i ,mr ← fvc

i ,C

15. fvr
i ,mr ← fvc

i ,C /*Communication tasks’ execution time is zero on sensors*/
16. T (mr)← T (mr) ∪ {v

r
i }

17. Update the energy consumption ofmr

18. Return
19.ELSE /*Yes, try broadcast reception first*/
20. st← svc

i ,C , ft← fvc
i ,C /*Considervc

i ’s transmission duration*/

21. IF 6 ∃γ ∈ T ft
st (C) : S(γ) ∈ N(mr) /*Receivingvc

i won’t be interfered*/
22. Schedule a copy ofvc

i to mr: /*Receive the broadcasted packet*/
23. svr

i ,mr ← fvc
i ,C

24. fvr
i ,mr ← fvc

i ,C /*Communication tasks’ execution time is zero on sensors*/
25. T (mr)← T (mr) ∪ {v

r
i }, R(vc

i )← R(vc
i ) ∪ {mr}

26. Update the energy consumption ofmr

27. Return
28. ELSE /*Within transmission range of ongoing transmission’s sender*/
29. Goto Step 5 /*Need to schedule another transmission ofvi from ms*/

Figure 5.1: MTMS: Communication Task Scheduling Algorithmbetween One-hop Neigh-
bors
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In our multi-hop communication scheduling algorithm, a routing algorithm is used to

obtain thepath = (m1, ..., mn) from senderms to receivermr, wherem1 = ms and

mn = mr. In this paper, we employ the low complexity stateless geographic routing

algorithm, GPSR [37]. After obtaining the path, the communication task will be iteratively

duplicated from the source to the destination following theOneHopSchedule() algorithm.

Similar to that of the one-hop communication scheduling, a communication task may

be requested by several destinations that are multiple hopsaway. Thus, multicasting is

desirable to shorten communication latencies as well as to decrease energy consumption.

The first time a communication taskvi is requested fromms to mr, unicast path is formed

from the source to the destination, which is a distribution tree with no branches. In the sub-

sequent scheduling steps, each timevi is requested by another sensormk, the distribution

tree branches and expands tomk by connectingmk with the nearest node on the existing

tree. The detailed description of the multi-hop communication scheduling is presented in

Fig. 5.2.

5.4 Multi-Hop Task Mapping and Scheduling Algorithms

In theTask Mapping and Scheduling Phase, tasks of a Hyper-DAG are assigned to sen-

sors andC. During task mapping, several constraints must be satisfied. These constraints

together with theCommunication Dependency Constraintare represented as follows:

• A computation task can be assigned only on sensor nodes ie.,∀γi ∈ V : tvi,C =

∞, cvi,C =∞

• A communication task can be assigned on sensors orC
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Input: Communication task:vi; receiver ofvi: mr; sensor setSS
Output: Schedule of duplicatingvi to mr

CommTaskSchedule(vi,mr):

1. Find a copy ofvi: /*Has vi been distributed before?*/
2. vc

i ∈ T (C)
3. IF vc

i does not exist: /*No, initialize a communication ofvi*/
4. Find the sensor nodems: vi ∈ T (ms) /*Find the sender ofvi*/
5. Find the path fromms to mr:
6. path = (m1, ...,mn), m1 = ms, mn = mr

7. Formk = m2 to mn /*Iteratively forwardvi to mr*/
8. OneHopSchedule(vi,ms,mk)
9. ms ← mk

10. Return
11. ELSE /*Yes, branching from the nearest node tomr*/
12. Find a copy ofvi:
13. vo

i ∈ T (C) s.t. distance betweenS(vo
i ) andmr is minimum

14. ms ← S(vo
i )

15. Goto Step 5

Figure 5.2: MTMS: Communication Task Scheduling Algorithm
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• A communication task assigned on a sensor denotes data stored in node memory,

and is ready for processing on the same node. Thus, its execution time and energy

consumption are zero.

• A non-entry computation task assigned on a sensor must have all its immediate pre-

decessors available before it can start execution, i.e., ifvi ∈ V andpred(vi) 6= ∅,

thenpred(vi) ⊂ T (m(vi)) andsvi,m(vi) ≥ max fpred(vi),m(vi)

With theHyper-DAG representation, multi-hop channel model, Communication Schedul-

ing Algorithm, and thetask mapping constraintspresented above, task mapping and schedul-

ing in multi-hop wireless networks can be tackled as a generic task mapping and schedul-

ing problem with additional constraints. This problem is NP-complete in general [25]

and heuristic algorithms are needed to obtain practical solutions. Two task mapping and

scheduling algorithms, Multi-hop MinMin (MMM) and DynamicCritical-path Task Map-

ping and Scheduling (DCTMS), are presented in this section.To guarantee deadline con-

straints, both MMM and DCTMS schedule computation tasks with the highest CPU speed.

5.4.1 The MMM Algorithm

Due to its satisfactory performance at relatively low complexity, Min-Min algorithm

[53] is modified and implemented in MTMS. The modified Min-Minalgorithm is devel-

oped for multi-hop environments, and is referred to as the MMM algorithm.

The core of the MMM algorithm is the fitness function. For eachtask-node combination

(vi, mk), the fitness functionfit(vi, mk, α) indicates the combined cost in time and energy

domain of assigning taskvi to nodemk, whereα is the weight parameter trading off the

time cost for the energy consumption cost. At each step of theMMM algorithm, the task-

node combination that gives the minimum fitness value among all combinations is always
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assigned first. To extend and describe the fitness function ofthe Min-Min Algorithm in

[53], the following notations are introduced first:

• DL is the application deadline relative to the application start time.

• fvi,mk
is the scheduled finish time ofvi on mk relative to the application start time.

fvi,mk
denotes the partial schedule length of the application after assigningvi.

• EPA(vi) is the amount of energy consumption on all nodes for the application so far

before the assignment ofvi.

• PE(vi, mk) represents the application energy consumption increase for assigningvi

to mk. A computation taskvi cannot be executed onmk unless all of its immediate

predecessors (which are communication tasks) are available onmk. Thus, a copy

of vi’s all immediate predecessor that are not stored inmk must be scheduled tomk.

PE(vi, mk) is the sum of communication energy consumption of sending all missing

data tomk and the computation energy consumption associated withvi’s execution

onmk.

• The tradeoff between schedule length and energy consumption is achieved by taking

a weighted sum of two unitless entities. The first one is the normalized partial sched-

ule lengthNPT (vi, mk) =
fvi,mk

DL
. We also normalizePE(vi, mk) by EPA(vi) and

use it as the second contributor to the fitness function:NPE(vi, mk) = PE(vi,mk)
EPA(vi)

.

Thus, the fitness function of assigningvi to mk is defined as:

fit(vi, mk, α) = α ·NPT (vi, mk) + (1− α) ·NPE(vi, mk). (5.5)

The MMM Algorithm is presented in Fig. 5.3. In the description of MMM, a “map-

pable” task is either an entry-task or a task that has all immediate predecessors already been

96



scheduled, and the “mappable task list” is the list that contains currently mappable tasks

of the Hyper-DAG. During the initial scheduling, sensors are scheduled with full speed

fmax
cpu . For each application, we compare schedules with differentα values ranging from

0 to 1 in 0.1 increments. The schedule with the minimum energyconsumption under the

deadline constraint is chosen as the optimal solution amongthese candidate schedules. If

none of the candidate schedules meets the deadline, the one with the shortest schedule is

chosen. Since different values ofα represent different tradeoffs between scheduling cost in

time and energy domains, theα value is kept unchanged in Steps 2-15. However, different

applications may find optimal schedules with differentα values.

In WSNs, sensors are prone to failures. In case of sensor failures, the former schedule

will not be a feasible solution. For such a situation, rescheduling with MMM is needed

to recover the functionality. To adjust the previous schedule is also a viable solution to

quickly recover sensor failures, which will be part of our future work.

5.4.2 The DCTMS Algorithm

Our proposed Dynamic Critical-path Task Mapping and Scheduling (DCTMS) algo-

rithm is composed by the following procedures:

• Dynamic critical-path evaluation and optimal task selection (DCEOTS)

• Optimal sensor searching and task assignment (OSSTA)

The DCEOTSprocedure calculates the critical-path of Hyper-DAGs, andfinds the most

critical task of the critical-path to be assigned in the OSSTA stage. Here, a “critical-path”

is a set of tasks in a DAG, along which tasks potentially have the largest execution time

and may determine schedule lengths. In theOSSTAprocedure, the selected task will then

be experimentally assigned to “active sensors”. Among these task-sensor combinations,
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Input: Hyper-DAG; sensor set:SS
Output: ScheduleHo of tasks inDAG with optimized energy consumption under deadline
constraints
The MMM Algorithm:

1. FOR α = 0; α ≤ 1.0; α+ = 0.1
2. Assign entry-tasks withEntry-task Assignment Constraint
3. Initialize the mappable task listL
4. WHILE L is not empty /*Repeat until all tasks assigned*/
5. FOR taskvi ∈ L /*Calculate with all (task,sensor) combinations*/
6. FOR all computing sensormk

7. IF pred(vi) 6⊆ T (mk) /*Ensurecommunication dependency constraint*/
8. FOR vn ∈ pred(vi)− T (mk)
9. CommTaskSchedule(vn,m(vn),mk)
10. Assignvi to mk, calculatefit(vi,mk, α)
11. Findmo

i : fit(vi,m
o
i , α) is minimum

12. Find the task-sensor pair (v,m): fit(v,m,α) is minimum
13. Assignv to m, removev from L
14. assignsucc(v) onm /*Locally assign communication task on sensor*/
15. UpdateL with any new unassigned mappable tasks
16. Among all schedules with different values ofα
17. IF ∃H : length(H) ≤ DL with min energy(H)
18. returnH
19. ELSE
20. returnH : length(H) = min

Figure 5.3: MTMS: MMM Algorithm
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the assignment that gives the shortest schedule length is chosen. Here, an “active sensor”

is a sensor that either runs computation tasks or participates in communication activities

by sending, receiving or forwarding communication tasks. The network topology is taken

into consideration when calculating critical-paths in theDCTMS procedure. The commu-

nication scheduling algorithms presented in Chapter 5.3 are embedded into the execution

of the DCEOTS procedure. Both of the DCTMS and DCEOTS procedures are iteratively

executed until all tasks are assigned. The details of the DCTMS algorithm are described in

the following sections.

The DCEOTS Procedure

The core of the DCTMS scheduling algorithm is theDCEOTS Procedurethat dynam-

ically evaluates critical paths. Unlike traditional dynamic critical path scheduling algo-

rithms that have wired connections between processors withfixed communication latency,

DCTMS is executed on Hyper-DAGs in multi-hop WSNs. Thus, thecommunication la-

tency of a communication task is not only determined by data volume but the assignment

of the communication task. Depending on locations of senders and receivers, communi-

cation tasks may travel various number of hops, which leads to various communication

latency of a same communication task in a Hyper-DAG. However, communication latency

is needed in evaluating critical paths. Since the selected task will be experimentally as-

signed to each active sensor, a natural estimation method ofcommunication latency is to

take its average across all active sensors. LetAV Ghop be the average hop-distance between

all active sensors, the average communication latency of a communication taskvi between

active sensors beAV Ghop · Rvi
/BW , whereRvi

is the data volume ofvi, andBW be the

channel bandwidth. Each time when an idle sensor is involvedin computation or commu-

nication activities, it becomes an active sensor, and theAV Ghop is updated accordingly.
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The details of the DCEOTS procedure is presented in Fig. 5.4.TheDCEOTS Procedure

dynamically calculates critical paths. Similar to the E-CNPT algorithm in [60], DCEOTS

first iteratively calculates the earliest start timeEST (vi) of task vi by traversing down

Hyper-DAGs. For tasks that have already been assigned, their EST equals their scheduled

start time. Otherwise, their EST is given by:

EST (vi) = max
v∈pred(vi)

{EST (v) + tv}, (5.6)

wheretv =
{

Cv/fmax
CPU ,v∈R

AV Ghop·Rv/BW,v∈R, (5.7)

whereCv is the the computation load ofv.

Similar to EST, the latest start time (LST) is calculated by traveling up Hyper-DAGs

from the exit task. For exit-tasks and assigned tasks, theirLST equals to their EST. Other-

wise, their LST is given by:

LST (vi) = min
v∈succ(vi)

{LST (v)} − tvi
, (5.8)

wheretvi
has the same definition astv in Equation 5.7.

Starting from the exit-task, the path along which tasks havethe same value of EST and

LST is the critical-path. A task already been assigned is notconsidered when calculating

critical-paths. Thus, a dynamic critical path ends when a task’s immediate predecessors are

scheduled tasks. Such an unscheduled “top” task that is closest to the scheduled tasks is

called a primary critical-node (PC). A “mappable” PC will bepassed to the OSSTA proce-

dure for further processing. Here, a mappable task is eitheran entry-task or a task whose

immediate predecessors are already scheduled. If the PC is not mappable, asecondary

critical-path will be found: Starting from the PC, a task’s immediate predecessor with the
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Input: Hyper-DAG; Partial schedule on Sensor set SS
Output: Mappable PC or SC
The DCEOTS Procedure:

1. Traverse down Hyper-DAG, calculate EST for each task
2. Traverse up Hyper-DAG, calculate LST for each task
3. vtop ← vexit /*search for PC/SC starting from the exit task*/
4. WHILE none ofpred(vtop) has been scheduled /*traverse up the primary critical-path*/
5. Findvi ∈ pred(vtop) :
6. EST (vi) = LST (vi)
7. vtop ← vi

8. IF vtop is mappable /*mappable PC is found*/
9. Returnvtop

10. ELSE /*search for mappable SC*/
11. WHILE vtop is not mappable /*traverse up the secondary critical-path*/
12. Findvi ∈ pred(vtop) :
13. LST (vi) is minimum
14. vtop ← vi

15. Returnvtop

Figure 5.4: MTMS: DCEOTS Procedure

minimum LST is iteratively added to the path until a mappabletask is found. Such a map-

pable task on the secondary critical-path is called a secondary critical-node (SC), and is

passed to the OSSTA procedure for further processing.

The OSSTA Procedure

The OSSTA procedure is presented in Fig. 5.5. In each iteration of Steps 3-14, the

mappable PC or SC found in the DCEOTS procedure is scheduled.For each taskvo, we

compare the schedules withvo assigned to different active sensors. Among all candidate

schedules, the schedule with the earliest finish time ofvo is chosen. When assigning a task

vo to mk, if any immediate predecessor ofvo is not available onmk, the communication
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Input: Hyper-DAG; sensor set:SS
Output: Schedule ofvo

The OSSTA Procedure:

1. Assign entry-tasks according toEntry-task Assignment Constraint
2. InitializeAV Ghop

3. WHILE not all tasks assigned
4. Find the next PC or SCvo with the DCEOTS procedure
5. IF vo ∈ R /*communication tasks locally assigned*/
6. Assignvo to m(pred(vo))
7. ELSE /*computation tasks*/
8. FOR all active sensorsmk /*schedule active sensor space*/
9. IF pred(vo) 6⊆ T (mk)
10. FOR vn ∈ pred(vo)− T (mk)
11. CommTaskSchedule(vn,m(vo),mk)
12. Assignvo to mk

13. Keep the schedule withmo: fvo,mo = min
14. UpdateAV Ghop if new active sensors involved

Figure 5.5: MTMS: OSSTA Procedure

scheduling algorithms are executed to duplicate a copy of the missing immediate predeces-

sor ontomk. This procedure repeats until all tasks are scheduled. During the scheduling,

sensors are scheduled with full speedfmax
cpu to guarantee deadlines.

5.5 Computational Complexity Analysis

We first assume that there ares sensors in ak− hop network, and the DAG hasn tasks

with e edges. Thus, the extended Hyper-DAG hasn computation task,n communication

tasks, and the average in-degree of computation tasks ise/n.
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5.5.1 Computational Complexity of MTMS with MMM

The computational complexity of the MTMS solution with the MMM algorithm is an-

alyzed as follows:

In the MMM Algorithm, the loop from Step 8 to Step 9 is executedin O( e
n
) time, the

loop from Step 6 to Step 10 is executed inO(s) time, and the loops starting from Step 5

and Step 4 are both executed inO(n) time. The communication scheduling algorithm has

a complexity determined by the routing algorithm. The geographic algorithm GPSR has

a complexity ofO(k). Thus, the complexity of thetask mapping and scheduling phaseis

O( e
n
· s · n2 · k) = O(ensk).

As discussed in Chapter 4.5, the complexity of the DVS algorithm is O(n + n2/s).

Taking both of thetask mapping and scheduling phaseand theDVS phaseinto account, the

overall complexity of MMM isO(ensk+n+ n2

s
). As we assume that sensors are uniformly

distributed in a network, we haves = O(k2) and the overall complexity isO(enk3 + n2

k2 ).

Sincee = O(n2) in general, we getO(n3k3 + n2

k2 ).

5.5.2 Computational Complexity of MTMS with DCTMS

The computational complexity of the MTMS solution with the DCTMS algorithm is

analyzed as follows.

The loop starting from Step 3 is executedO(n) times. Similar to the listing stage of

the listing stage of the E-CNPT algorithm in Chapter 3, DCEOTS has the computational

complexity ofO(n + e). The loop between Step 8 and 12 is executedO(s) times, the

loop of Step 10 and 11 is executedO(e/n) times. Since the communication scheduling

algorithm has complexity ofO(k), the overall computational complexity of DCTMS is

O(n · (O(n + e) + O(sek/n)) = O(nv + ne + sek).
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Taking the DVS algorithm into account, the computational complexity of the MTMS

solution with DCTMS isO(n + n2/s) + O(n2 + ne + sek) = O(n2 + ne + sek + n2/s).

As we assume that sensors are uniformly distributed in a network, we haves = O(k2) and

the overall complexity isO(n2 + ne + ek3 + n2

k2 ) = O(n3 + n2k3 + n2

k2 ) (e = O(n2)).

5.6 Simulation Results

The performances of the MTMS solution with the MMM algorithmand the DCTMS

algorithm are evaluated through simulations, and denoted as MMM and DCTMS in this

section, respectively. The performance of DCA and EbTA is also evaluated as benchmarks.

DCA is extended with our proposed multi-hop communication scheduling algorithm to

deliver the intermediate results of entry-tasks to the cluster head for further processing.

DCA algorithm is also implemented with DVS for fair comparison. Simulations are first

run on a real-life video surveillance application as a proofof concept. To further evaluate

MTMS performance, simulations are run on arbitrary applications with randomly generated

DAGs. Our simulations with random DAGs study the following scenarios:

• Effects of application deadline constraints and DVS adjustment

• Effect of number of tasks in applications

• Effect of cluster size

• Effect of communication load

• Comparison of algorithm execution times

• Comparison with EbTA [69] in single-hop clustered networks
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In these simulations, we observe schedule length, deadlinemissing ratio (DMR), and ap-

plication energy consumption metrics. The schedule lengthis defined as the finish time of

the exit-task of an application, the DMR is defined as the ratio of the number of the simu-

lation runs whose schedule length is larger than the imposeddeadline over the number of

the overall simulation runs, and application energy consumption includes computation and

communication energy expenditure of all sensors.

5.6.1 Simulation Parameters

In our simulation study, the bandwidth of the channel is set to 1Mb/s and the trans-

mission ranger = 10 meters. Sensors are equipped with the StrongARM SA-1100mi-

croprocessor, whose speed ranges from 59 MHz to 206 MHz with 30 discrete levels. The

parameters of Equation 2.1 - 2.3 are in coherence with [52], [64], [30] as follows:

Eelec = 50 nJ/b,εamp = 10 pJ/b/m2, VT = 26 mV,C = 0.67 nF,Io = 1.196 mA,n = 21.26,

K = 239.28 MHz/V andc = 0.5 V. The sensors are assumed to be uniformly distributed on

disc of radiusk · r to form ak − hop connected cluster. We assume that there aren = 5

sensors in a single-hop cluster. Thus there are5k2 sensors in ak − hop cluster.

5.6.2 The Real-life Example of Distributed Visual Surveillance

A simple visual data processing application as shown in Fig.1.1 is considered in this

section. Camera sensor nodes work collaboratively to monitor various objects in a given

area. Since information from neighboring camera sensor nodes is highly correlated, locally

processing information will significantly decrease data volume to be transmitted. In a dis-

tributed visual object recognition scenario, neighboringsensor nodes pair up to exchange

information for object recognition. The feature detectionalgorithms proposed in [59] and

[65] for realtime object recognition is exploited. With this approach, features are extracted
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locally, followed by the voting operation [65]. An edge detector is applied to extract inter-

est points for each images. For each point of interest, all captured features from different

images are fused. Voting is exercised for each interest points to classify features. The

final result of detected features and their votes are aggregated and delivered back to base

stations.

The collaborative visual object recognition application is abstracted as the DAG shown

in Fig. 5.6. Tasksv1 − v4 are entry tasks which convert original images to binary images

using edge detection and interest point detection [65]. Image size, hence, communicated

information volume is significantly reduced here. Tasksv5 − v8 extract features and fuse

the image data from neighboring sensor pairs to improve the feature recognition ratio [72].

The object recognition in each image is done by “comparing the extraction of feature points

and the interest points over edge detectors” [65]. The Hausdorff distances [33] are used as

the criteria for image matching and voting. Object information from different cameras are

fused to eliminate redundancy inv9 − v11.

We assume that data size generated at each camera sensor is 128 × 128 Bytes. We

further assume the task computation load ofv1− v4 to be 1000 KCC, the computation load

of v5− v8 is 40000 KCC, the computation load for matching inv9− v11 is 1 KCC. We also

assume the communication task forE1,5 −E4,8 are 500 Bytes, communication volumes of

E5,9−E8,10 are 40 Bytes. We compare the performance of our proposed MTMSalgorithms,

MMM and DCTMS, with the DCA and EbTA algorithm in Table 5.1. Since EbTA is a

scheduling algorithm for single hop cluster only, these algorithms are evaluated in single-

hop environment for fair comparison. The investigated metrics are the energy consumption

and schedule length.
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Figure 5.6: DAG for distributed feature extraction application

We compare the energy consumption and schedule length for all three algorithm under

two different deadline conditions:deadline = 0.4s anddeadline = 0.8s. In both sce-

nario, according to the simulation results, both MTMS and EbTA outperform DCA with

smaller energy consumption and better capacity to meet deadlines. Regarding the compar-

ison of EbTA, DCTMS and MMM, DCTMS performs the best while MMMdelivers the

poorest performance in the sense of minimizing energy consumption subject to deadline

constraints.

In the example above, sending these four 16K Byte-images will consume about 51 mJ

per hop. According to Table I, the energy consumption of processing these images with

deadline = 0.8s is about 73 mJ with DCTMS. After the in-network processing, the result-

ing data volume is reduced to 40 Bytes, which consumes only 0.032 mJ to delivery over

one hop. Thus, the overall energy consumption of processinginformation and transmitting

107



Deadline(s) Metrics DCA EbTA MMM DCTMS

0.4
Energy consumption (mJ)218.0 131.7 182.1 93.62
Schedule length (s) 0.798 0.334 0.400 0.400
Meet deadline no yes yes yes

0.8
Energy consumption (mJ)218.0 92.6 97.3 72.7
Schedule length (s) 0.798 0.703 0.800 0.751
Meet deadline yes yes yes yes

Table 5.1: MTMS: Simulation with the Object Recognition Example

the results is smaller than directly delivering original images as long as clusters are more

than two hops away from base stations, which is satisfied in most large-scale WSNs.

5.6.3 Simulation with Random DAGs

To evaluate MTMS performance for arbitrary applications, simulations are run on ran-

domly generated DAGs which are scheduled on randomly created multi-hop clusters. Ran-

dom DAGs are created based on three parameters: The number oftasksnumTask, the

number of entry-tasksnumEntry, and the maximum number of predecessorsmaxPred. Un-

less specifically stated, the number of each non-entry task’s predecessors, the computation

load (in units of kilo-clock-cycle, KCC), and the communication data volume (in units of

bit) of a task are uniformly distributed over [1,maxPred], [300K CC±10%], and [800 bits

±10%], respectively. The sensors are uniformly distributed on disc of radiusk · r to form

ak − hop connected cluster. During simulations, the entry-tasks are randomly assigned to

sensors. The simulation results presented in this section correspond to the average of 250

random (DAG, cluster) combinations. For each pair of DAG andcluster, different deadlines

are imposed to evaluate performances.
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Effect of Application Deadlines and DVS adjustment

We investigate the effect of application deadlines and DVS adjustment with 250 pairs

of randomly created DAGs and 3-hop clusters. The parametersof DAGs considered for this

set of simulations arenumTask= 40, numEntry= 10, andmaxPred= 10. To evaluate the

effect of DVS, the performance of DCA, MMM and DCTMS before the voltage adjustment

(denoted as DCA* , MTMS*, DCTMS*, respectively) are also investigated. In this section,

two more metrics evaluating energy consumption balance areinvestigated, namely, the

Maximum Energy Consumption per Node (MECpN) and the Node Energy Consumption

Fairness Index (FI) defined in Chapter 4.3.2.

The schedule length performance of investigated algorithms is shown in Fig. 5.7, while

the energy consumption performance is demonstrated in Fig.5.8.

As shown in Fig. 5.7(a) and Fig. 5.7(b), MTMS has better capability to meet small

deadlines compared with DCA. When deadlines are very small,even though deadline miss-

ing ratio of MTMS and DCA are both high, the average schedule length of MTMS is much

smaller and closer to deadlines compared with DCA. The superior performance of MTMS

over DCA is due to the fact that is that MTMS can have more sensors involved in parallel

to process information, while DCA has only one sensor for high-level data processing. Re-

garding the comparison of the MTMS algorithms themselves, MMM outperforms DCTMS

in term of meeting deadlines and providing smaller schedulelengths and DMR when dead-

lines are small. In each iteration of task scheduling in DCTMS (Fig. 5.5), the schedule

space with only one PC or SC task assigned to different activesensors is searched. On the

other hand, MMM experiments all possible task-sensor combinations and chooses the task-

sensor combination that delivers the minimum scheduling cost. Therefore, MMM searches
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Figure 5.7: MTMS: Effect of Application Deadlines in the Time Domain

a much larger schedule space than DCTMS, and more likely is able to find a feasible solu-

tion.

Regarding energy consumption balance, DCA performs the worst as most activities

are loaded on cluster heads. Compared with DCTMS, MMM delivers more unbalanced
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schedules as shown in Fig. 5.8(b) and Fig. 5.8(c), especially when deadline increases. In

MMM*, energy consumption efficiency is part of the objectivefunction. When deadlines

constraints are relaxed, MMM* tends to schedule tasks on fewer sensors to conserve com-

munication energy consumption, which leads to unbalanced energy consumption. On the

other hand, DCTMS* primarily aims to deliver the shortest schedule by evenly distributing

computation loads among sensors, which leads to more balanced schedules.

Regarding the DVS effect on energy consumption, DCA* has better energy consump-

tion performance than MMM* and DCTMS* for most scenarios according to Fig. 5.8(a).

However, by implementing DVS algorithm, the energy consumption of MMM and DCTMS

are significantly reduced, and are smaller than that of DCA. Our DVS algorithm is an ef-

fective approach for energy efficient solutions, as shown inFig. 5.8. Even when deadlines

are relatively small and there is very little slack time before application deadlines, the DVS

adjustment of MTMS can still save about 16-19% energy compared with the scenarios

without the DVS adjustment. This energy saving stems from eliminating “schedule holes”

caused by the unbalanced load of sensors and communication scheduling. When deadlines

increases and are sufficiently large, the DVS adjustment results in about 40 % energy con-

sumption savings by “pushing” the schedule length close to the deadline in MMM. Though

the DVS adjustment may increase schedule lengths (Fig. 5.7(a)), the deadline missing ra-

tio is not affected (Fig. 5.7(b)) for any of the simulated deadline values. Regarding the

comparison of the MTMS algorithms themselves, MMM slightlyoutperforms DCTMS in

terms of application energy consumption for most simulatedscenarios. This performance

stems from the factor that MMM* delivers shorter schedule lengths than DCTMS*, which

enable more aggressive DVS adjustment and consequently better energy conservation in

general. On the other hand, the unbalanced schedule of MMM may also compromise the
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ability of the DVS adjustment, which leads to the point that the energy consumption of

DCTMS is smaller than MMM in Fig. 5.8(a).

Effect of Number of Tasks

To investigate the effect of number of tasks in applications, simulations are run on

randomly generated DAGs with 40, 45, 50 tasks (numEntry= 10, maxPred= 10). For a

fair comparison, each set of 40, 45, 50 task DAGs are scheduled on the same randomly

created 3-hop cluster. The presented results are the average of 250 simulation runs, and

each simulation corresponds to one set of randomly generated 3-hop cluster and DAG.

According to the simulation results in Fig. 5.9(b), energy consumption is dominated

by the number of tasks. When the number of tasks increases, the energy consumption of

DCA and MTMS both increase proportionally, and MTMS has higher energy consump-

tion. However, when deadline is increasing, the energy consumption of MTMS decrease

faster than DCA by exploiting the available CPU slack time due to its better capacity to

meet deadlines. Regarding the deadline missing ratio, DCA is dramatically affected with

task volume increment while MTMS is less affected as shown inFig. 5.9(c). This property

is also reflected with schedule length presented in Fig. 5.9(a). Thus, MTMS has a bet-

ter scalability compared with DCA regarding schedule length and deadline missing ratio.

Regarding the comparison of MMM and DCTMS, they are equally affected by the task

number increase. In most simulated scenarios, MTMS outperforms DCTMS with smaller

energy consumption and DMR.

Effect of Cluster Size

In this section, the effect of the cluster size is evaluated with random DAGs sched-

uled on 2-hop, 3-hop, and 4-hop random clusters. Each resultrepresents the average
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of 250 simulation runs. In each simulation run, one random DAG with numTask= 40,

numEntry= 10maxPred= 10, and one set of 2-hop, 3-hop, and 4-hop random clusters are

generated.

The simulation results are shown in Figure 5.10. As the cluster size increases, the

performance of DCA degrades correspondingly, while the performance of MTMS is less

affected. Regarding the comparison of the MTMS algorithms themselves, when deadlines

are sufficiently larger, the schedule lengths of MMM and DCTMS are barely affected by

cluster size increase. When deadlines are small, the schedule lengths and energy con-

sumption of MMM and DCTMS increase when cluster size increases. In terms of energy

consumption, MMM is affected more than DCTMS by cluster sizeas shown in Fig. 5.10(a).

Comparison of Heuristic Execution Time

Execution time is also an important factor to evaluate heuristic algorithms. As we have

analyzed in Section 5.5, the number of tasks and cluster sizeboth have effect over the com-

putational complexity of MMM and DCTMS. In this section, therelative execution time of

MMM over DCTMS is tested. We run simulation with random DAGs of different number

of tasks (numTask= 40, 45, 50) over 2-hop, 3-hop and 4-hop clusters. Each result rep-

resents the average of 250 simulation runs. In both scenarios, we setnumEntry= 10 and

maxPred= 10. As shown in Table 5.2, the variation of the number of tasks and the cluster

size have almost the effect on the computation time of MMM andDCTMS. For all investi-

gated scenarios, DCTMS is about 24-25 times faster than MMM.Due to its better schedule

length performance, MMM is suitable for WSNs with critical real-time requirements. For

a WSN that updates its applications frequently, DCTMS can befavored over MMM due to

DCTMS’s shorter schedule computation time.
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Cluster Size Number of Tasks
40 45 50

2-Hop 24 24.1 24.4
3-Hop 24.2 24.4 24.7
4-Hop 23.9 24.1 24.3

Table 5.2: MTMS: Execution Time Ratio of MMM to DCTMS

Comparison with EbTA [69]

To further evaluate our proposed solution, we compare the performance of MTMS with

EbTA [69]. Since EbTA is not designed for multi-hop networks, we run simulations for

single-hop, single-channel clusters. Due to the small scale of a single-hop cluster (5 sen-

sors as assumed in Section 5.6.1), performances are evaluated with applications of less

computation load. The presented results are the average of 250 simulation runs of random

DAGs with numTask= 20, numEntry= 5 andmaxPred= 5. The metrics we observe are

schedule length, application energy consumption, deadline missing ratio, and MECpN.

As shown in Fig. 5.11 and 5.12, MTMS outperforms the energy-balanced solution,

EbTA, with smaller application energy consumption, MECpN,schedule length, and dead-

line missing ratio for all simulated scenarios. The superior performance of MTMS mainly

stems from the fact that MTMS exploits the broadcast featureof wireless channel when

scheduling communication events, while a task in EbTA must send information individu-

ally to its immediate successors. Another factor is that EbTA aims to balance sensor energy

consumption by evenly distributing computation tasks, which leads to more communica-

tion tasks scheduled on the channel and higher energy consumption. Thus, MTMS is less
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affected by the communication load between computation tasks of an application compared

with EbTA.
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Figure 5.8: MTMS: Effect of Application Deadlines in the Energy Domain
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Figure 5.9: MTMS: Effect of Number of Tasks (40 tasks vs 45 tasks vs 50 tasks)
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Figure 5.10: MTMS: Effect of Cluster Size
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Figure 5.11: MTMS: Performance Comparison with EbTA in the Time Domain
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Figure 5.12: MTMS: Performance Comparison with EbTA in the Energy Domain
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CHAPTER 6

ADAPTIVE SENSOR FAILURE HANDLING

In WSNs, sensors are prone to failures. In case of sensor failures, the current applica-

tion executing instance is stopped. Furthermore, the schedules previously created by the

scheduling algorithms may not be feasible solutions. In such cases, the WSN’s function-

ality needs to be recovered as soon as possible with a promptly generated schedule for the

subsequent application executing instances. Instead of rescheduling from scratch, which

can be time consuming, low-complexity recovery algorithmsare preferred.

Since energy-constrained applications are considered in Chapter 3 for single-hop clus-

tered WSNs, we first present a sensor failure recovery algorithm for the EcoMapS solution.

In Chapter 4 and Chapter 5, real-time task mapping and scheduling solutions are presented.

Thus, we also propose a sensor failure handling algorithm inits general form for real-time

applications in multi-hop clusters. It should be noted thatthe prompt network function-

ality recovery may come at the cost of degraded performance.Therefore, we check the

performance after sensor failure handling. If the performance degrades to a certain level,

the scheduling algorithm should be executed to find a schedule with better performance.
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6.1 Sensor Failure Handling for EcoMapS in Single-Hop Clustered
WSNs

In single-hop clusters where sensors are within each other’s transmission range, sensors

are identical from the perspective of network topology. Thus, as long as spared sensors ex-

ist, sensor failure handling is a trivial problem, which canbe solved by replacing failing

sensors with functioning idle sensors. Therefore, we mainly focus on sensor failure han-

dling when there is no idle sensors in this section.

6.1.1 The Proposed Single-Hop Sensor Failure Handling Algorithm

Let the original schedule beHo, and the failing sensor bemf . The strategy of the

quick recovery algorithm is to merge the tasks of themf onto the sensormo that has the

maximum idle time ratioIR(mk) to balance computation load among sensors. Here, the

idle time ratioIR(mk) = e
length(H)
0 (mk)/length(H) is the ratio ofmk’s CPU execution

time e
length(H)
0 to the schedule lengthlength(H). If there are more than one sensor fail-

ures, the quick recovery algorithm is iteratively executedto handle the failures one by one.

The rationale behind merging the tasks of the failing sensoronto another sensor instead

of re-distributing the tasks among all of the working sensors is to guarantee the energy

consumption constraint, as proved inTheorem 1. The quick recovery algorithm is shown

in Fig. 6.1, whereTH is the threshold of unacceptable schedule length degrade inquick

recovery.

Theorem 1. The recovered schemeHs still meets the energy consumption budget con-

straint, that is, ifenergy(Ho) ≤ EB, thenenergy(Hs) ≤ EB.

Proof. The energy consumption of a scheduleH is composed of computation energy

(compEng(H)) and communication energy (commEng(H)). SincecompEng(H) is fixed
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Input: Failing sensormf , original sensor setSS, original scheduleHo

Output: Recovered scheduleHs

Single-Hop QuickRecovery Algorithm:

1. IF ∃midle ∈ SS − {mf} : T (midle) = ∅ /*there are idle sensors*/
2. Reassign T(mf ) ontomidle

3. ELSE /*no free sensor, have to merge the tasks*/
4. Findmo ∈ SS − {mf}: IR(mo) is maximum
5. t← 0, ∆t← 0 /*initialize task adjustment parameters*/
6. FOR unadjusted taskvi ∈ S = T (mf ) ∪ T (mo) : svi

is minimum
7. IF vi ∈ V /*computation task*/
8. Schedulevi ontomo

9. ELSE /*communication task*/
10. IF there is a duplicated copy ofvi in S
11. Remove the duplicated copy
12. Find the copy ofvi onC: vc

i

13. IF mf/mo are the only sender/receiver ofvc
i

14. Removevc
i from C

15. ELSE IF pred(vi) ∈ S /*send result to other tasks*/
16. Schedulevi right afterpred(vi)
17. IF succ(vi) 6⊆ S /*affect tasks on other sensors*/
18. Find the copy ofvi onC: vc

i

19. IF fvi,mo > svc
i ,C

20. ∆t← max(∆t, fvi,mo − svc
i ,C)

21. t′ ← fvc
i
,C

22. FOR ml ∈ SS ∪ {C} − {mf ,mo}
23. Postpone unadjustedγj ∈ T t′

t (ml) by ∆t
24. t← t′

25. ELSE /*receive result from other sensors*/
26. Find the copy ofvi onC: vc

i

27. t′ ← fvc
i ,C

28. FOR ml ∈ SS ∪ {C} − {mf ,mo}
29. Postpone unadjustedγj ∈ T t′

t (ml) by ∆t
30. t← t′

31. Postpone all unadjusted tasks by∆t

32. IF length(Hs)
length(Ho) > TH

33. Run EcoMapS Scheduling Algorithm

Figure 6.1: Quick Recovery Algorithm for EcoMapS in Single-Hop Clusters
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for an application in homogeneous WSNs,compEng(Hs) = compEng(Ho) holds.

commEng(H) is determined by the communication tasks assigned onC. According to

Step 14, 23, and 29 of thequickRecoveryalgorithm, the only operations related with the

communication tasks onC are task removals and task shifting in time domain. In other

words, no new tasks are assigned toC and, therefore, no additional energy is consumed for

communication. Hence,commEng(Hs) ≤ commEng(Ho) holds. Ifenergy(Ho) ≤ EB,

thenenergy(Hs) = compEng(Hs)+commEng(Hs) ≤ compEng(Ho)+commEng(Ho) =

energy(Ho) ≤ EB holds, as well.

6.1.2 Simulation Results

The Quick Recovery Algorithm for EcoMapS is evaluated in this section. Since the re-

covery mechanism with idle sensors as backup is trivial, thetested scenarios only consider

task merging cases without idle sensors. The random DAGs considered in the simulations

have the parameters ofnumTask= 25,numEntry= 6, andmaxPred= 3. The simulated sce-

narios are generated by randomly selecting one failing sensor and merging its tasks onto

other working sensors using the quick recovery algorithm presented in Fig. 6.1. From Fig.

6.2(a), it can be observed that as long as the original schedule meets energy consumption

constraints, the recovered schedule satisfies the constraint as well. As we discussed in the

proof of Theorem 1, task merging leads to less energy consumption at the cost of longer

schedule lengths according to Fig. 6.2(b).

6.2 Sensor Failure Handling for Real-Time Applications in Multi-Hop
Clustered WSNs

In Chapter 6.1, we present the sensor failure handling algorithm for EcoMapS in single-

hops clustered WSNs. However, sensor failure handling is more complicated in multi-hop
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Figure 6.3: MTMS Recovery Demonstration

environments, where sensors have different locations withdifferent neighbors. Replacing a

failing sensor with an idle one is no longer a trivial problemin multi-hop clusters: Depend-

ing on the location of the failing and alternative sensors, apreviously one-hop transmission

may become a multi-hop communication, and a formerly collision-free data delivery may

cause interference if not properly adjusted. A simple demonstrative example is shown in

Fig. 6.3, where sensorF is the failing sensor, and sensorA is the alternative sensor of

F . WhenF is replaced byA, the previous transmissionR1 from S1 to F starting att1

must be re-routed through sensorB asA is two hops away fromS1. Such packet rerouting

with a longer path is referred to as “path extension” in this section. For the delivery of

communication taskR2 to sensorD2, it will still be a single-hop communication sinceA

is a single-hop neighbor ofD2. However,A’s 1-hop neighborD3 is previously scheduled

126



to receiveR4 starting att2. Thus, the delivery ofR2 by A must be adjusted to avoid inter-

feringD3’s reception. Therefore, potential communication interference and path extension

should be addressed when calculating alternative schedules in multi-hop clustered WSNs,

as demonstrated in Fig. 6.3. When there is no idle sensor to replace the failing sensor, the

tasks of the failing sensor should be merged to an alternative sensor in a similar procedure

as presented in Section 6.1. During the task merging procedure, potential path extension

and communication interference should also be handled.

6.2.1 The Proposed Multi-Hop Sensor Failure Handling Algorithm

When sensor failures occur, we select an idle sensor among the failing sensor’s one-hop

neighbors to replace its functionality if idle sensors exist among the failing sensor’s single-

hop neighbors. The tasks previously assigned to the failingsensor are then reassigned

to the alternative sensor. If there is no idle sensor among the failing sensor’s single-hop

neighbors, an alternative sensor is selected to which the failing sensor’s tasks are merged.

When reassigning and merging tasks, interference avoidance and packet rerouting must be

addressed. Since interference avoidance and packet rerouting may lead to larger schedule

lengths, a reverse procedure of the DVS algorithm presentedin Chapter 4.4 is developed,

which is referred to as theDV S−1 algorithm. TheDV S−1 algorithm is implemented be-

fore reassigning the failing sensor’s tasks, which increases CPU speed to guarantee dead-

line constraints. After the tasks of the failing sensor is reassigned, the DVS algorithm in

Chapter 4.4 is exercised to conserve energy consumption.
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Optimal Alternative Sensor Selection

We first introduce the alternative sensor selection algorithm in Fig. 6.4 when there are

idle sensors among the failing sensor’s one-hop neighbors.As discussed above, reassign-

ing failing sensors’ tasks may lead to path extension with larger schedule length and energy

consumption. Therefore, the primary objective of selecting alternative sensors is to min-

imize the number of path extension. To achieve this goal, we must select the alternative

sensorma that has the maximum“similarity factor (SF)” with the failing sensormf . Here,

SF is the measurement of the feasibility of replacingmf by ma: The higher SF is, the

shorter path extension becomes, and the better performanceis achieved by the alternative

schedule. The similarity factorSF (ma, mf) is defined as follows:

• Assume that the number of packets exchanged betweenmf and its one-hop neighbor

mk is d(mf , mk).

• mf ’s overall communication degree isDEG(mk) =
∑

d(mf , mk), wheremk ∈

N(mf ), andN(mf ) is the set ofmf ’s one-hop neighbors.

• A sensormk’s connectivity functionc(mk, ml) equals 1 if sensorml is mk’s one-hop

neighbor, and 0 otherwise.

• When replacingmf by ma, the number of packets that can still be exchanged within

one hop betweenma andmf ’s single-hop neighbors is
∑

d(mf , mk) · c(ma, mk),

wheremk ∈ N(mf ).

• Let SF (mf , ma) be defined as

SF (mf , ma) =

∑

d(mf , mk) · c(ma, mk)

DEG(mk)
, (6.1)
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Input: Failing sensormf , original sensor setSS, original scheduleHo

Output: Alternative sensorma to whichT (mf ) are reassigned
AlterSel()

1. DEG← 0 /*Initialization*/
2. FOR sensorsmk ∈ N(mf ) /*caculatemf ’s overall communication degree*/
3. DEG← DEG + d(mf ,mk)
4. FOR idle sensorsmk ∈ N(mf ) /*candidate alternative sensors*/
5. SF (mf ,mk)← 0
6. FOR sensorml ∈ N(mf ), ml 6= mk /*calculate SF of each candidate*/

7. SF (mf ,mk)← SF (mf ,mk) +
d(mf ,mk)·c(mk,ml)

DEG
8. Among these candidates, find sensorma:
9. SF (mf ,ma) is maximum.

Figure 6.4: Alternative Sensor Selection Algorithm for MTMS in Multi-hop Clusters

wheremk ∈ N(mf ). Here,SF (mf , ma) indicates the ratio ofmf ’s communication

that do not need path extension whenmf is replaced byma.

When there is no idle sensor among the failing sensor’s one-hop neighbors, the failing

sensor’s tasks must be merged to one of its neighbors that already have tasks assigned. To

balance workload among sensors, the sensor that has the minimum computation and com-

munication activities is selected. When a tie occurs, the sensor with the highest similarity

factor is favored to minimize path extension. The alternative merging sensor selection pro-

cedure is shown in Fig. 6.5.

The DV S−1 Algorithm

Since the task reassignment procedure may prolong schedulelengths, CPU speed should

be increased to compensate the delay. Different from the DVSalgorithm that is presented

in Chapter 4.4, theDV S−1 algorithm aims to maximize the CPU speed of task execution
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Input: Failing sensormf , original sensor setSS, original scheduleHo

Output: Alternative sensorma to whichT (mf ) are merged
MergeSel()

1. Amongmf ’s one-hop neighbors
2. FindS: Emk

is minimum formk ∈ S /*Emk
is the energy consumption ofmk*/

3. IF |S| > 1
4. Findmo ∈ S: SF (mf ,mk) is maximum
5. Returnmo

6. ELSE
7. Returnma: ma ∈ S

Figure 6.5: Merging Sensor Selection Algorithm for MTMS in Multi-hop Clusters

and minimize schedule lengths of a DVS-adjusted schedule. Similar to the DVS algorithm,

theDV S−1 is composed of two procedures, theSHE−1 procedure and theSLE−1 pro-

cedure, which are the inverse procedures of SHE and SLE in Chapter 4.4, respectively. In

ourDV S−1 algorithm, we assume that the CPU speed after the SLE procedure is available

asfSLE
cpu . We further assume that in the original schedule, the CPU speed of executing a

computation taskvi is known asfcpu(vi).

Based on these assumptions, we first present the inverse procedure of the SHE proce-

dure,SHE−1, in Fig. 6.6. TheSHE−1 procedure increases CPU speed tofSLE
cpu , and ad-

justs task schedules. TheSHE−1 procedure has the same structure as the SHE procedure,

and the Steps 8-15 and 20-27 are the inverse procedure of the SpeedAdjust() algorithm

in Fig. 4.8. The inverse procedure of theSLE procedure,SLE−1, is presented in Fig.

6.7. TheSLE−1 procedure increases the CPU speed tofmax
cpu , and adjust task schedule

accordingly.
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Input: original scheduleH, CPU speed after SLEfSLE
cpu , sensor setSS, application deadlineDL

Output: Adjusted scheduleHs

SHE−1 Algorithm:

1. FOR sensormk ∈ SS
2. ds← 0, df ←∞ /*Initialization*/
3. Scan tasksvi ∈ T∞

ds (mk) in increasing order of start time
4. IF ∃ a copy ofvi ∈ R: vc

i ∈ T (C) /*Transmitted communication task */
5. Find the computation taskvj following vi

6. IF mk is the sender ofvc
i

7. df ← min(svc
i
,C, svj ,mk

) /*Computation must finish before transmitting*/

8. FOR vj ∈ T df
ds (mk) /*Adjust schedule in[ds, df ] ∗ /

9. IF vj ∈ V /*Computation task*/

10. tvj ,mk
← tvj ,mk

· fcpu(vi)
fSLE

cpu

11. fvj ,mk
← svj ,mk

+ tvj ,mk

12. ELSE /*Communication task*/
13. svj ,mk

← fpred(vj),mk

14. fvj ,mk
← svj ,mk

15. Updatemk’s energy consumption
16. ds← df
17. ELSE /*mk is the receiver ofvc

i */
18. ds← max(ds, fvc

i ,mk
, svj ,mk

) /*Computation cannot start before reception*/
19. ELSE IF vi is exit-task andfvi

< DL /*Adjustment bounded by deadline*/
20. FOR vj ∈ T df

ds (mk) /*Adjust schedule in[ds, df ]
21. IF vj ∈ V /*Computation task*/

22. tvj ,mk
← tvj ,mk

· fcpu(vi)
fSLE

cpu

23. fvj ,mk
← svj ,mk

+ tvj ,mk

24. ELSE /*Communication task*/
25. svj ,mk

← fpred(vj),mk

26. fvj ,mk
← svj ,mk

27. Updatemk’s energy consumption

Figure 6.6:DV S−1: TheSHE−1 Algorithm
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Input: original scheduleH, CPU speed after SLEfSLE
cpu , sensor setSS, application deadlineDL

Output: Adjusted scheduleHs

SLE−1 Algorithm:

1. δ ←
fSLE

cpu

fmax
cpu

1. FOR mk ∈ SS ∪ {C} /*Scan all sensors andC*/
2. FOR vi ∈ T (mk)
3. IF vi ∈ V /*Computation task*/
4. svi,mk

← δ · svi,mk

5. tvi,mk
← δ · tvi,mk

6. fvi,mk
← δ · fvi,mk

7. ELSE /*Communication task*/
8. fvi,mk

← δ · fvi,mk

9. svi,mk
← fvi,mk

− tvi,mk

10. Updatemk’s energy consumption

Figure 6.7:DV S−1: TheSLE−1 Algorithm

Failing Sensor Task Reassignment

We first introduce the task reassigning algorithm when idle sensors exist among the

failing sensor’s one-hop neighbors. After the optimal alternative sensorma is chosen,

the tasks originally assigned tomf should be reassigned toma. Computation tasks and

communication tasks that are not transmitted over the wireless channel can be directly re-

assigned toma. However, communication tasks exchanged betweenmf and its neighbors

in original schedules should be carefully handled since they may cause path extension and

interference as demonstrated in Fig. 6.3. The algorithm of the multi-hop failure handling

algorithm with idle sensors for MTMS is presented in Fig. 6.8, whereSendPktHandler()

andRecvPktHandler() adjust each individual communication task sent and received by
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Input: Failing sensormf , alternative sensorma, original sensor setSS, original scheduleHo

Output: Recovered scheduleHr

Multi-hop sensor failure handling algorithm with idle sensor replacement

1. DV S−1(Ho) /*first increase CPU speed to maximum*/
2. FOR taskvi ∈ T (mf )
3. IF vi is a computation task
4. Reassignvi to ma:
5. svi,ma ← max(fpred(vi),ma

)
6. fvi,ma ← svi,ma + tvi,ma

7. ELSE /*communication task*/
8. IF vi is sent bymf

9. SendPktHandler(vi,mf ,ma, SS,Ho)
10. ELSE IF vi is received bymf

11. RecvPktHandler(vi,mf ,ma, SS,Ho)
12. ELSE IF vi is forwarded bymf

13. RecvPktHandler(vi,mf ,ma, SS,Ho)
14. SendPktHandler(vi,mf ,ma, SS,Ho)
15. ELSE /*locally processed data*/
16. Reassignvi to ma:
17. svi,ma ← max(fpred(vi),ma

)
18. fvi,ma ← svi,ma

19. SS ← SS − {mf} /*remove the failing sensor*/
20. Execute the DVS algorithm in Chapter 4.4

Figure 6.8: Multi-hop Sensor Failure Handling Algorithm with Idle Sensor Replacement

mf , respectively. A forwarded packet in an original schedule is first received, then trans-

mitted to the next-hop bymf . Therefore, reassigning a forwarded packet is handled by

consequent execution ofRecvPktHandler() andSendPktHandler().

TheSendPktHandler() algorithm is presented in Fig. 6.9. When reassigning a com-

munication taskvi originally sent by the failing sensormf , the receivers ofvi can either all

be the one-hop neighbors of the alternative sensorma, or some of them be multiple hops

away fromma. For the former scenario, the reassigned communication is still a single-hop
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communication event. However, the reassigned communication may interfere neighbor-

ing communications since the sender is changed frommf to ma: Within the transmission

range ofma, if there is a sensor previously scheduled to receive another packetvj at the

same time, the transmission ofvi collides withvj . To avoid such interference, eithervi’s

or the neighboring communication task’s schedule should bepostponed. As the successive

tasks ofvi on the receivers cannot start execution without receiving the data, the execu-

tion schedule of the successive tasks on the receiver must also be postponed accordingly.

To keep relative execution order among tasks assigned to different sensors, we also shift

tasks across all sensors andC that are originally scheduled after the inference occurrence

time. Given the potential interference time interval[st, ft], the task shifting algorithm is

presented in Fig. 6.10. The task rescheduling procedure when all receivers ofvi arema’s

one-hop neighbors is shown in Steps 2-6 in Fig. 6.9. If some ofthe receivers ofvi are

multiple hops away fromma, multi-hop paths fromma to the receivers are first obtained.

vi is then delivered hop-by-hop fromma to the receivers. If a sensor along the path al-

ready has the data ofvi, no data deliver ofvi to this sensor is scheduled to avoid duplicated

communication. Compared with the original single-hop communication, the available time

of vi on these receivers are delayed due to additional communication hops. To keep rela-

tive execution orders of tasks scheduled on all sensors, tasks originally scheduled after the

transmission finish time ofvi are postponed by the prolonged communication time. If there

are more than one path extensions, the task shifting offset is determined by the maximum

of path extension length. The task adjustment procedure forpath extension is shown in

Steps 8-14 in Fig. 6.9. For each hop of communication scheduling, if interference may

occur, it is handled in a similar way with the scenario where all receivers ofvi arema’s

one-hop neighbors.
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Input: Communication taskvi, failing sensormf , alternative sensorma, original sensor setSS,
original scheduleHo

Output: Partially adjusted scheduleH with vi reassigned
SendPktHandler()

1. Find the copy ofvi onC: vc
i is sent bymf

2. IF R(vc
i ) ⊂ N(ma) /*No path extension is needed*/

3. IF interference exists in[st, ft]
4. TaskShift(vc

i , st, f t) /*shift tasks to avoid interference*/
5. Reassignvi to ma:
6. svi,ma ← fvc

i ,C , fvi,ma ← svi,ma

7. ELSE /*path extension is needed*/
8. FOR mk ∈ R(vc

i )−N(ma) /*Calculate shifting offset*/
9. Find the path fromma to mk:
10. path = (m1,m2, ...,mn), m1 = ma, mn = mk

11. FindN : N is the maximum of allpath’s length
12. FOR taskvp ∈ T (ml): ml ∈ SS ∪ {C}, svp,ml

≥ fvc
i ,C

13. svp,ml
← svp,ml

+ (N − 2)tvc
i ,C

14. fvp,ml
← svp,ml

+ tvc
i ,ml

15. FOR mk ∈ R(vc
i )−N(ma) /*reroute the packet delivery*/

16. Find the path fromma to mk:
17. path = (m1,m2, ...,mn), m1 = ma, mn = mk

18. FOR j := 1 to n− 1
19. Schedule a copy ofvc

i from mj to mj+1 if vi 6∈ T (mj+1)
20. IF interference exists in[st, ft]
21. TaskShift(vc

i , st, f t) /*shift tasks to avoid interference*/

Figure 6.9: Adjust Packet Originally Sent by the Failing Sensor
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Input: Communication taskvi on C, interference time interval[st, ft], original sensor setSS,
original scheduleHo

Output: Adjusted scheduleH after task shifting
TaskShift(vi, st, f t)

1. IF svi,C ≤ st /*calculate shifting parameters*/
2. ss← st
3. ∆← fvi,C − st
4. ELSE
5. ss← svi,C

6. ∆← ft− svi,C

7. FOR mk ∈ SS ∪ {C}
8. FOR vp ∈ T (mk): svp,mk

≥ ss /*tasks starting afterss*/
9. svp,mk

← svp,mk
+ ∆ /* postpone tasks by∆*/

10. fvp,mk
← svp,mk

+ tvp,mk

Figure 6.10: Task Shifting Algorithm to Avoid Interference

TheRecvPktHandler() algorithm is presented in Fig. 6.11. TheRecvPktHandler()

algorithm is similar to theSendPktHandler() algorithm except that there is only one

receiver involved in the communication. If the alternativesensorma is a one-hop neighbor

of the sender, the communication taskvi can be directly reassigned toma, as shown in Steps

2-6. Possible interference is handled in the same way as thatin theSendPktHandler()

algorithm. Ifma is multiple hops away from the sender, an alternative path isfound from

the sender toma, and the prolonged communication time and potential interference are

handled as shown in Steps 8-16.

When there are no idle sensors among the failing sensor’s one-hop neighbors, the fail-

ing sensor’s tasks must be merged to an alternative sensor selected with the algorithm

presented in Fig. 6.5. The task merging algorithm has the similar structure with the algo-

rithm presented in Fig. 6.1. When reassigning a communication task, path extension and
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Input: Communication taskvi, failing sensormf , alternative sensorma, original sensor setSS,
original scheduleHo

Output: Partially adjusted scheduleH with vi reassigned
RecvPktHandler()

1. Find the copy ofvi onC: vc
i is sent bymf

2. IF S(vc
i ) ⊂ N(ma) /*No path extension is needed*/

3. IF interference exists in[st, ft]
4. TaskShift(vc

i , st, f t) /*shift tasks to avoid interference*/
5. Reassignvi to ma:
6. svi,ma ← svc

i
,C, fvi,ma ← svi,ma

7. ELSE /*path extension is needed*/
8. Find the path fromS(vc

i ) to ma:
9. path = (m1,m2, ...,mn), m1 = S(vc

i ), mn = ma

10. FOR taskvp ∈ T (ml): ml ∈ SS ∪ {C}, svp,ml
≥ fvc

i ,C

11. svp,ml
← svp,ml

+ (n− 2)tvc
i ,C

12. fvp,ml
← svp,ml

+ tvc
i ,ml

13. FOR j := 1 to n− 1
14. Schedule a copy ofvc

i from mj to mj+1 if vi 6∈ T (mj+1)
15. IF interference exists in[st, ft]
16. TaskShift(vc

i , st, f t) /*shift tasks to avoid interference*/

Figure 6.11: Adjust Packet Originally Received by the Failing Sensor
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communication interference may occur. Therefore, the communication task adjustment al-

gorithms presented in Fig. 6.9 6.11 are also implemented to handle path extension and

avoid communication interference.

6.2.2 Simulation Result

The Sensor Failing Handling Algorithm for MTMS in multi-hopenvironments is eval-

uated in this section. The simulation parameter is in coherence with those in Chapter 5.6.1.

We investigate the performance of sensor failure handling with 250 pairs of randomly cre-

ated DAGs and 3-hop clusters. The parameters of DAGs considered for this set of sim-

ulations arenumTask= 40, numEntry= 10, andmaxPred= 10. The simulated scenarios

are generated by randomly selecting one active sensor as a failing sensor, and reassigning

its computation tasks and communication events using the algorithms presented in Chapter

6.2.1. In these simulations, schedule recovery for both MMMand DCTMS algorithms is

evaluated.

As shown in Fig. 6.13, the sensor failure handling algorithmdelivers almost the same

performance when the deadline is sufficiently large regarding schedule lengths and dead-

line missing ratio (DMR). With large deadlines, slack time exists after increasing CPU

speed by executing theDV S−1 algorithm. Thus, the prolonged schedule length caused by

reassigning tasks to the alternative sensor is compensatedby the CPU speedup, which leads

to the same level of DMR. The recovered schedule is then further adjusted by the DVS al-

gorithm to conserve energy consumption, which produces thesame level of performance

in schedule lengths. When the deadline decreases, the CPU speed of the original schedules

increases to meet deadline constraints. Therefore, theDV S−1 algorithm brings no much

benefit in compensating the schedule length increase, whichsubsequently leads to larger
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Input: Failing sensormf , merging sensorma, original sensor setSS, original scheduleHo

Output: Recovered scheduleHs

Multi-hop sensor failure handling algorithm with task merging

1. FOR unadjusted taskvi ∈ S = T (mf ) ∪ T (ma) : svi,S is minimum
2. IF vi ∈ V /*computation task*/
3. Schedulevi ontoma

4. svi,ma ← max(fpred(vi),ma
)

5. fvi,ma ← svi,ma

6. ELSE /*communication task*/
7. IF there is a duplicated copy ofvi in S
8. Remove the duplicated copy
9. Find the copy ofvi onC: vc

i

10. IF mf/ma are the only sender/receiver ofvc
i

11. Removevc
i from C

11. ELSE IF pred(vi) ∈ S /*send result to other tasks*/
12. SendPktHandler(vi,mf ,ma, SS,Ho)
13. ELSE IF vi is received bymf

14. RecvPktHandler(vi,mf ,ma, SS,Ho)
15. ELSE IF vi is forwarded bymf

16. RecvPktHandler(vi,mf ,ma, SS,Ho)
17. SendPktHandler(vi,mf ,ma, SS,Ho)
18. ELSE /*locally processed data*/
19. Reassignvi to ma:
20. svi,ma ← max(fpred(vi),ma

)
21. fvi,ma ← svi,ma

22. SS ← SS − {mf} /*remove the failing sensor*/
23. Execute the DVS algorithm in Chapter 4.4

Figure 6.12: Multi-hop Sensor Failure Handling Algorithm with Task Merging
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Figure 6.13: Performance of Sensor Failure Handling for MTMS in the Time Domain

schedule lengths and DMR of the recovered schedules. However, by optimizing alternative

sensor selections, the performance only slightly degradesas shown in Fig. 6.13.
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Regarding energy consumption, when deadlines are small, the recovered schedules have

almost the same application energy consumption and MECpN, as shown in Fig. 6.14. This

behavior stems from the factor that by optimizing alternative sensor selection, path ex-

tensions are minimized. Consequently, additional energy expenditure in communication

is also minimized. When deadlines increase, application energy consumption is reduced

by exploiting CPU idle time with the DVS algorithm. In recovered schedules, schedule

lengths are increased due to the inference avoidance and path extension, which leads to

smaller CPU slack time for the DVS implementation. Such CPU slack time decrease re-

sults in the slightly larger application energy consumption and MECpN of DCTMS. For

the original schedules generated by the MMM algorithm, computation load converges to

fewer number of sensors when deadline increases. Such unbalanced schedules lead to less

number of schedule holes, which constrains the energy conservation of the DVS algorithm

in the original schedules. However, the recovered schedules have more and larger sched-

ule holes caused by task schedule shifting for interferenceavoidance and path extension.

Therefore, the recovered schedules of MMM have smaller application energy consumption

and MECpN when the deadlines increase, compared with their original schedules.
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Figure 6.14: Performance of Sensor Failure Handling for MTMS in the Energy Domain
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we address the task mapping and scheduling problem to enable col-

laborative in-network processing in large-scale WSNs. We consider WSNs composed of

homogeneous wireless sensors grouped into clusters, within which applications are itera-

tively executed. Since energy consumption efficiency is oneof the most critical consider-

ation for any WSN solution, our proposed solutions aim to achieve energy-efficiency from

different aspects. To enhance information processing capacity in WSNs, schedule length

optimization is also part of our design objectives. The contribution of this research can be

summarized as follows.

First, our solutions are application-independent that simultaneously address computa-

tion and communication scheduling. Different from traditional task mapping and schedul-

ing solutions for wired networks, we presented a Hyper-DAG application model that explic-

itly represents communication events between computationtasks. To reflect the wireless

communication features, we first model a single-hop wireless channel as a virtual node that

can only execute communication tasks. Based on this Hyper-DAG model and single-hop

channel model, we propose the EcoMapS solution for single-hop clustered homogeneous

WSN clusters in Chapter 3. EcoMapS aims to minimize schedulelengths of applications

under energy consumption constraints. Two variations of EcoMapS, the E-MinMin based
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EcoMapS and the E-CNPT based EcoMapS, are presented. Simulation results show that

both EcoMapS algorithms deliver superior performance thanexisting work. Regarding

comparison of the EcoMapS algorithms themselves, E-MinMinoutperforms E-CNPT with

respect to schedule lengths and energy consumption balancebut has a larger computation

overhead. Thus, the E-MinMin based EcoMapS algorithm is suitable for WSN applica-

tions that do not change frequently, while the E-CNPT based EcoMapS is preferable where

application updates occur more frequently.

We then further investigate energy consumption optimization in WSNs with the promis-

ing DVS technology. In Chapter 4, the schedule length and energy consumption optimiza-

tion problem is tackled with the objective of minimizing balanced energy consumption

subject to deadline constraints. To minimize energy consumption, a novel DVS algorithm

is developed in Chapter 4 that exploits CPU slack time by reducing CPU speed without

violating deadline constraints. Different from existing DVS algorithms, wireless communi-

cation between sensors is considered in our proposed DVS algorithm. Based on the Hyper-

DAG model and the single-hop channel model, the RT-MapS solution achieves its design

objectives. As demonstrated with the simulation results, RT-MapS outperforms existing

solutions with respect of minimizing energy consumption subject to deadline constraints.

Among the RT-MapS algorithms, H-CNPT has a higher capacity to meet deadline con-

straints, and thus is suitable for applications with strictreal-time requirements. H-MinMin

on the other hand provides better energy-balanced schedules, and is more plausible for

more energy-constrained applications with relatively lower real-time requirements.

Both Chapter 3 and 4 consider single-hop environments, which forms a basis for more

general solutions in multi-hop clustered WSNs. In Chapter 5, we propose a task mapping

and scheduling solution for multi-hop WSNs, MTMS. The design objective of MTMS
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is to map and schedule the tasks of an application with the minimum energy consump-

tion subject to delay constraints. The multi-hop wireless channel is modeled as a virtual

node to execute communication tasks, and a penalty functionis proposed to avoid com-

munication interference. Incorporating our communication scheduling algorithm, the task

scheduling algorithm schedules tasks with minimum energy consumption subject to dead-

line constraints. Two task mapping and scheduling algorithms, MMM and DCTMS, are

developed as part of the MTMS solutions. Simulation resultsshow significant performance

improvements of MTMS compared with existing solutions in terms of minimizing energy

consumption subject to delay constrains. Further analysisand simulation indicates the

MMM based MTMS algorithm is suitable for WSN applications that have strict real-time

requirements, while the DCTMS based MTMS is preferable where application updates

occur frequently with relatively relaxed deadline constraints.

The final contribution of this dissertation relates to the sensor failure handling. In

WSNs, sensors are prone to failures. In case of sensor failures, WSN functionality needs to

be recovered as soon as possible since the previously calculated schedules may no longer

be feasible solutions. Sensor failure handling is criticalfor reliable solutions in WSNs.

In Chapter 6, two low-complexity sensor failure handling algorithms are proposed for

single-hop and multi-hop clusters. We first present the sensor failure recovery algorithm

for EcoMapS in single-hop clustered WSNs. Simulation results show that the recovered

schedules provide the same level of energy consumption constraint guarantee as the origi-

nal schedules, though the schedule lengths are slightly larger. We then develop the sensor

failure handling algorithm for MTMS in multi-hop environments. By reassigning tasks of

failing sensors to optimally selected alternative sensors, the recovered schedules deliver
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slightly degraded but still satisfying performance as demonstrated with the simulation re-

sults.

In our future work, communication failure handling in WSNs should be further inves-

tigated. In Chapter 6, the sensor failure handling problem is solved, which enhance the

robustness of our solutions for WSN applications. On the other hand, communication fail-

ure may also disturb application executions. Packet lossescaused by interference are well

handled with the exclusive channel access approach in Chapter 3 and 4, as well as the

penalty function presented in Chapter 5. However, packet losses may also occur because

of channel conditions. Such packet losses can be handled by retransmitting the erroneous

packets. As packet retransmission may delay application finish time, sensors should com-

pensate the retransmission time by speeding up the subsequent task executions.

In the present definition of the penalty function in Chapter 5, only interference avoid-

ance is considered. However, the penalty function can be further extended with factors

such as link quality and traffic load. With this approach, thescheduled communication will

be able to adaptively choose reliable links, and balance communication load among cluster

nodes, which will increase the communication reliability and the network lifetime.

Integrating the joint effort of sensor failure handling, communication failure handling,

and adaptive communication scheduling with extended penalty functions, we expect to

form a basis of developing a reliable adaptive task mapping and scheduling solution for

collaborative in-network processing in WSNs. This adaptive solution should be able to de-

liver an optimal schedule in normal operation conditions. Upon network condition changes

such as network topology changes, sensor failures, channelcondition degrade, and new ap-

plication arrivals, the system can dynamically adapt itself to achieve network functionality

with satisfying performance.
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WSNs in the future are envisioned to observe different typesof events, which leads to

different information processing simultaneously executed in WSNs. Therefore, a general

solution to schedule multiple applications should be part of the future work. To map tasks

of multiple applications and allocate network resources, aviable solution can be developed

in an incremental method: We can first independently map and schedule each application

using the proposed solutions in the dissertation, then merge these schedules with optimal

network resource utilization.

Intra-sensor scheduling may also be a promising and challenging problem to investi-

gate in the future. In this dissertation, we only consider computation and communication

scheduling between sensors in WSNs. However, a wireless sensor itself has various re-

sources, such as CPU time, memory space, wireless bandwidth, and battery lifetime, which

need to be carefully managed. All scheduled computation andcommunication activities

must be executed subject to these resource constraints, which is not explicitly considered

in our present solutions. Furthermore, wireless sensor nodes may be equipped with mul-

tiple sensors detecting different events. Depending on applications, the detected events

may occur in an aperiodic pattern. Therefore, a dynamic intra-sensor scheduling algorithm

should be proposed to handle these events and efficiently allocate sensor resources.
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