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ABSTRACT

Emerging Wireless Sensor Networks (WSN) applications aehwnsiderable com-
putation capacity for in-network processing. To achiewergguired processing capacity,
cross-layer collaborative in-network processing amomgses emerges as a promising so-
lution: Sensors not only process information at the appbodayer, but also synchronize
their communication activities to exchange partially geged data for parallel processing.
Task mapping and scheduling plays an important role in [galocessing. Though this
problem has been extensively studied in the high performa@oemputing area, its coun-
terpart in WSNs remains largely unexplored. Schedulingmaation and communication
events is a challenging problem in WSNs due to limited resoawvailability and shared
communication medium. This research investigates theggredficient task mapping and
scheduling problem in large-scale WSNs composed of honemgenwireless sensors. A
hierarchical WSN architecture is assumed to be composedrsfos clusters, where ap-
plications are iteratively executed. Given this environinéask mapping and scheduling
in single-hop clustered WSNSs is investigated for energyst@ined applications. Based
on the proposed Hyper-DAG model and single-hop channel mtiieEcoMapS solution
minimizes schedule lengths subject to energy consumptioistcaints. Secondly, real-
time applications are also considered in single-hop cledt&/SNs. Incorporating the
novel Dynamic Voltage Scaling (DVS) algorithm, the RT-Map&ution provides dead-
line guarantee with the minimum balanced energy consumpiNext, the task mapping



and scheduling problem is further addressed in its generai for multi-hop clustered
WSNs. A novel multi-hop channel model is developed, and airnop communication
scheduling algorithm is presented, based on which the MTM&isn minimizes appli-
cation energy consumption subject to deadline constratmsilly, low-complexity sensor
failure handling algorithms are developed to recover ndtvionctionality when sensors

failures occur in single-hop and multi-hop clustered WSNSs.
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CHAPTER 1

INTRODUCTION

Wireless Sensor Networks (WSNSs) are envisioned to obsainge lenvironments at
close range for extended periods of time. WSNs are genearafhposed of a large number
of sensors with relatively low computation capacity andtéd energy supply [3]. One of
the fundamental challenges in Wireless Sensor Networkd\)AN&attaining energy effi-
ciency at all levels of design and operation. Many energgiefit communication solutions
have recently been proposed for WSNs [23] [29] [41] [43] [ST)-network processing
emerges as an orthogonal approach to significantly decress@rk energy consumption
[3] [52] by eliminating redundancy and reducing commureckinformation volume. Ex-
ample applications include distributed data compressioleggregation [7] [13] [15] [36].
The benefits of in-network processing are especially prooed in video sensor networks
[38] [24] composed of wireless sensors equipped with cameavhere data streams from
neighboring nodes can be highly correlated with considerdata volume. A simplified
motivating example of video sensor networks is shown in Rid., where four calibrated
camera sensors collaboratively detect an intruding veBiétatures such as location, ve-
hicle type, and threat level. The sensors first estimatentineder’s features by themselves,
then fuse the intermediate results to eliminate estimatroors. Compared to the original
images, the resulting data volume can be reduced by sevdeakmf magnitude. Thus, itis
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Figure 1.1: A Simplified Distributed Video Surveillance Exgle

more energy-efficient to send the processed data than defiube raw data in large-scale
WSNs, where base stations can be multiple hops away.

However, such in-network processing applications mayireqeomputationally inten-
sive operations to be performed in the network subject ttaceconstraints. For instance,
in target tracking applications [42] [63], sensors colladtively measure and estimate the
location of moving targets or classify targets. To consesmergy and reduce commu-
nication load, operations such as Bayesian Estimation ata fdsion must be executed
in the WSN. In the case of tracking or detecting multiple kggleed moving targets, these
operations must be finished in a timely manner with an eyerliraited energy consump-
tion. For video sensor networks, in-network processindgpsiscimage registration [72] and
distributed visual surveillance [62] may demand considier@omputation power that is
beyond the capacity of each individual sensor. Thus, it @rdble to develop a general

solution to provide the computation capacity required bpétwork processing. In WSNs



with densely deployed nodes, a promising solution is to ls&resors collaboratively pro-
cess information with distributed computation load amogmgsers. To achieve application-
independent parallel processiigsk mapping and schedulifgl] is a problem that must
be solved. This dissertation addresses the task mappingcaeduling problem in WSNs

to provide the necessary computation power for collabegati-network processing.

1.1 Task Mapping and Scheduling

Task mapping and scheduling has been intensively studigdeirhigh-performance
computing area [11] [10] [18] [21] [22] [27] [28] [53] [46], tere applications are gener-
ally assumed to be already partitioned into inter-depetitasiks [10]. As such, applications
can be represented by Directed Acyclic Graphs (DAG), whegevertices denote the tasks
and the edges denote the dependency and communicationepetire tasks [22]. Two
important problems are addressed in many existing task mgapd scheduling solutions
for high-performance computing, namely, the assignmetdsks to processing units (task
mapping) and the execution sequence of tasks assigned sarme processing units (task
scheduling) [19]. As DAG scheduling problems are NP-congpie general [25], these
proposed solutions are generally heuristic algorithms tieke tradeoffs between sched-
ule performance and computational complexity. Existingktenapping and scheduling
solutions for wired networks consider processing unitercinnected via different net-
work topologies including tree networks [20] [34] [35], leneubes [48] [6] [71], and mesh
networks [18] [61]. In these networks, one processing uay imave dedicated connections
with several neighboring nodes.

However, wireless communication have different constsathan communication in

wired networks, which hinders direct implementation of sixig solutions for



high-performance computing in WSNs. Different from wirestwiorks, nodes in wireless
networks generally share a common wireless channel, anchomnations of neighboring
nodes may interfere each other. In single-hop wireless ar&swithout “hidden nodes”
or “exposed nodes” [31] [70], collision avoidance imposesrangent constraint on task
schedules. In such settings, the schedules must ensutbéhatre no simultaneous com-
munications in networks, which makes most task mapping ahdduling solutions for
wired networks impractical in wireless networks. For theecaf multiple-hop wireless
networks where there can be multiple simultaneous datarrasions, collision avoidance
stands out as an even more challenging problem due to hidakax@osed nodes. Thus,
task mapping and scheduling solutions in wireless netwshkaild specifically schedule
wireless communications between processing units in iatdio the aforementioned task
mapping and task scheduling problems in wired networks.theamore, most existing
task mapping and scheduling solutions for wired networksaloexplicitly consider en-
ergy consumption during communication and task executsorequired energy is always
available via wired connections. However, energy consiongfficiency is one of the
most critical considerations for any WSN solution [3], ahadsld explicitly be considered
across all layers of WSNSs.

The following problems must be solved to enable collabeeati-network processing

in WSNs while considering energy consumption:

e Assignment of tasks to sensors,

e Determining execution sequence of tasks assigned to sgnsor

e Scheduling communication between sensors.



1.2 Outline

In this dissertation, large-scale WSNs composed of a latgeber of homogeneous
wireless sensors are considered, where sensors can bplelntips away from each other.
In large-scale WSNs, monitored events may occur in remadasathat can only be de-
tected by surrounding sensors. Thus, localized informatimlecting and processing are
preferred in large-scale WSNs. Furthermore, groupingasnato clusters within which
sensors collaboratively process information has gainedgmtion to enhance network
scalability, increase network throughput, as well as toseove energy consumption and
improve network lifetime in large-scale WSNs [3] [54] [68]hus, we assume a hierarchi-
cal WSN architecture where sensors are grouped into cystad information collected
by sensors are first processed within clusters and themtitied by cluster heads to base
stations. Consequently, cluster-based task mapping dretistng solutions are desirable
to provide the demanded computation power for energy-efftcin-network processing
in large-scale WSNs. In this dissertation, applicatiorsagsumed to be executed within
clusters either periodically or upon the occurrence ofgeiing events. These applica-
tions are represented by DAGs which leadsapplication-independergolutions. Since
cluster heads can easily collect cluster members’ infaonand play coordinating roles
among cluster members, our proposed task mapping and stigeslolutions arecentral-
izedscheduling solutions running on cluster heads. Consigehniat applications in WSNs
are iteratively executed for a relatively long period, ampglecation execution loads are
fairly predictable for homogeneous sensor nodes, the dpedltask mapping and schedul-
ing solutions arestaticalgorithms: Schedules are first calculated offline by cluséads.
At the beginning of each execution period or when triggegwgnts occur, sensors collect

and process information according to the predetermineddsdbs.Schedule adaptivitis
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also addressed in the dissertation where schedules agtetijiased on previously calcu-
lated schedules when sensor failures occur. Four main coemp® of this dissertation are

listed as follows:

1. Atask mapping and scheduling solution for energy-caistd applications in single-
hop clusters is presented in Chapter 3. To guarantee netifetikne in energy-
scarce WSNSs, a practical approach is to restrict the eneqggneliture for certain
duration of network operation, which consequently imp@&sesgy constraints on ap-
plication executions. To enhance information processagacity, the proposed so-
lution aims to minimize schedule lengths subject to eneapysamption constraints.
The solution assumes a single-hop environment, and intenidsm a basis for the

following more general solutions in multi-hop network elviments.

2. Real-time applications are considered in Chapter 4 fgyisthop clustered WSNs. In
this chapter, the tradeoff between schedule length andgreensumption is tackled
with a different perspective from that in Chapter 3. Realizihat many applications
such as multimedia applications have inherent real-tingetirements, the solution
in Chapter 4 is presented with the objective of providingdliee guarantees with

minimum balanced energy consumption.

3. Large-scale WSNs may be grouped into multi-hop clusteingch demands general
task mapping and scheduling solutions for multi-hop emuinents. In Chapter 5,
a task mapping and scheduling solution for multi-hop clestaVSNs is developed
based on the work presented in Chapter 3 and 4. The solutiGhapter 5 aims to

minimize energy consumption subject to deadline condsain



4. In WSNs, sensors are prone to failures. In case of sensores previously cal-
culated schedules may not be feasible solutions. In suasc&#8SN functionality
needs to be recovered as soon as possible. Instead of raBobefdom scratch,
which can be time consuming, low-complexity recovery aitipons are desirable to
quickly recover from sensor and communication failuresChapter 6, two sensor

failure handling algorithms are proposed for single-hog aulti-hop clusters.



CHAPTER 2

BACKGROUND

In this chapter, prior work relevant to the research prolkleadressed in this disserta-

tion are presented.

2.1 Related Work

Depending on applications and network scale, task mappidgsaheduling can be
achieved either network-wide or in a localized manner in WSN small-scale WSNs, it
is plausible to take a global approach to optimize the sygterformance at the network
level. In [39], the DFuse framework is proposed to dynantycassign data fusion tasks
to sensors in a WSN. The design objective of DFuse is to findpmapirom task graph
vertices to network nodes with balanced energy consumpticesk Allocation among
clusters inCluster-base®ensorNetworks (TACSN) is discussed in [66]. The objective
of TACSN is to maximize network lifetime via task allocatiowhich is modeled as a
nonlinear optimization problem with constraints such gsliaption deadlines. However,
neither DFuse nor TACSN explicitly addresses communioaiheduling in WSNSs.

Local information processing is more scalable for largales®V/SNs, where events of
interest generally occur in remote areas that only locad@encan detect. Localized task
mapping and scheduling problems in WSNs have be studiee iité¢hature recently. These

8



solutions consider applications executed independeritlyimclusters composed of geo-
graphically close nodes, following locally generated stthes. Through collective result
of local optimizations, these solutions aim to achieveayslevel optimization.

Collaborative Resource Allocation (CoRAl) is presentef2®] to dynamically allocate
resources such as bandwidth and CPU time among multiplegepplications in fully-
connected WSNs. CoRAI considers end-to-end applicationgosed by a chain of tasks
assigned on different sensors. Tasks of an end-to-endcafiph are executed in a pipelined
manner.

Subject to resource availability and temporal constra@tdR Al aims to maximize net-
work utility by adjusting application execution frequeesi In CoRAl, the wireless channel
is modeled as a virtual node, and the network bandwidthaegaled in the same manner as
sensor CPU time allocation. CoRAIl achieves its objectivédratively executing the fol-
lowing steps until the schedule converges: First, the taskgion frequencies on each sen-
sor are locally optimized subject to application execufi@gquency upper-bounds, whose
initial values are set to be infinite. Then the executionderty upper-bound of each ap-
plication is reevaluated based on the updated task fregeeenod bandwidth allocation.
On each node, an extended version of the SLSS algorithmg¢508jplemented to compute
local optimal frequencies subject to node utility consttsi Different from the original
SLSS algorithm, the extended SLSS algorithm in [26] takes ¢éask’s application execu-
tion frequency upper-bound into consideration. After edetation of local optimization,
the upper-bound frequency of each application is calcdlatesssume theéeader (d; and
bottleneck bn; of applicationT; are tasks whose frequengy and f" are highest and
lowest among all tasks df;, respectively. The frequency upper-bound/bfs updated as

frmar = fin 4 (fld  fin)5 whereo is the factor controls frequency convergence speed.



The optimization procedure terminates when the weightterdnce between leaders’ and
bottlenecks’ frequencies converges.

According to the simulation results, solutions provided@gRAI are comparable to
the optimal solutions obtained by the non-linear optimaatool of Matlab. On the other
hand, CoRAIl has a much higher execution speed than the MatthliHowever, in CoRAl,
tasks of applications are assumed to be already assignednsors, and task mapping
remains an open problem. Furthermore, energy consumjgtioot iexplicitly considered in
[26], which is a fundamental problem in WSNSs.

Distributed Computing Architectures (DCA) are proposefbu] and [40], where low-
level tasks are executed on sensing sensors and high-leeelgsing tasks are offloaded to
cluster heads. However, processing high level tasks daaxsteed the computation capac-
ity of cluster heads. Even with more powerful sensors ag@luweads [40], overloading
“hot spot” sensors with extensive computation and comnatiun events can quickly de-
plete the sensors’ battery supply, exposing the WSN to tiggesipoint-failure problem and
shortening the network lifetime. Furthermore, applicatgpecific design of these solutions
limit their implementation for generic applications.

Real-time task mapping and scheduling heuristics are preden [53] for heteroge-
neous mobile ad hoc grid environments. Six static heusisie presented to minimize
energy consumption subject to deadline constraints in anoadgrid. The communica-
tion model adopted in [53] assumes individual channels &henode and concurrent data
transmission and reception capability for every node. Handn large-scale WSNs that
are composed of hundreds of sensors, there is not enougbnkawsource to allocate an
individual channel for each sensor. Furthermore, conatidata transmission and recep-

tion capacity requires two wireless transceivers workinglidferent channels on a sensor,
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which requires even more network resources. Thereforesdimmunication model in [53]
is not well-suited for large-scale WSNs, and the algorithpresented cannot be directly
applied in large-scale WSNSs.

An Energy-balanced Task Allocation (EbTA) solution is meted in [69]. EbTA
assumes single-hop clustered homogeneous WSNs with teudtieless channels, where
sensors are equipped with Dynamic Voltage Scaling (DVShkegprocessors. EbTA con-
siders real-time applications composed by inter-deperndsks. The design objective of
EbTA is to map and schedule applications tasks to sensonsmitimal balanced energy
consumption subject to deadline constraints. In [69], imppbns are represented with
DAGs, and scheduling is formulated as an Integer Linear raragiing (ILP) problem.
The exclusive wireless channel access feature is incagmbes an additional constraint in
the ILP formulation.

As the formulated ILP problem is computationally costly tdve, a three-phase heuris-
tic is proposed in [69] to provide a practical solution. InaBl 1, tasks are grouped into
clusters to minimize overall application execution timswsing infinite number of sen-
sors. Each task first constitutes a cluster by itself. Thiecoahmunication tasks are exam-
ined in a non-increasing order of their data volume. For eamchmunication event(i, j)
between computation tagk and7j, the clusters containirng; and’; are merged if it leads
to shorter application execution time. When evaluatingiagfion execution time, com-
munication events are scheduled to the channel using tee@Game First Served (FCFS)
policy. In Phase 2, the task clusters from Phase 1 are asstgreensor nodes with the
objective of minimizing the maximum energy expenditure amall sensors. The task
clusters from Phase 1 are first sorted in a non-decreasimgy ofetnergy dissipation, and

stored in a queuél. The clusters ifdl are then assigned to the sensor with the minimum
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normalized energy consumption (task execution energyuwropson normalized by sensor
residue energyjorm-energyor short). Every time after a task cluster is assigned tana se
sor, the norm-energy of the sensor is updated. This proegdpeats until all task clusters
are assigned. Finally, a DVS heuristic is presented for@Bas decrease energy consump-
tion by iteratively adjusting the CPU voltage level of eaakld In each DVS adjustment
iteration, acritical nodethat has the highest norm-energys selected. Among the tasks
assigned on the critical node, a critical task is selectetditsnCPU speed is adjusted. For
a critical taskv,,, ¢ is decreased the most by reducing the CPU speed of exeeytinghe
next level. Every time when the CPU speed is adjusted, thécapipn schedule will be
iteratively adjusted accordingly to meet inter-task dejgty constraints.

EbTA is one of the first work that address task allocation inN&$hat considers both
communication and computation tasks. It is shown throughukitions that the three-
phase heuristic achieves longer lifetime compared withbseline without DVS. The
performance of the three-phase heuristic is also found ttb#arable to that of the ILP-
based approach via simulations. However, the broadcdstéeaf wireless communication

is not exploited in EbTA, which may lead to significant enecgynsumption savings.
2.2 Wireless Sensor Network Assumptions

The following assumptions are made regarding the wireless@ network:

e A wireless sensor network is composed of homogeneous sensor

e Sensors are grouped into clusters with existing clustaalggrithms such as [4] [9]

[30] [67].
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e Each cluster executes an application which is either asdigluring the network
setup time or remotely distributed by base stations durmegrtetwork operation.
Once assigned, applications are independently executiihvaach cluster unless
new applications arrive. With application arrivals, ckrdteads create the schedules

for execution within clusters.

e Calculated schedules are used to run the associated dfpigaccording to the

application requirements.

e Sensors are synchronized with one of the time synchrooizatiethods discussed in
[32] [55] [58]. The time synchronization is necessary fonayronizing scheduled
task executions within clusters. Thus, only local time $ypaization within clusters

is required.

e Computation and communication can occur simultaneousBemsor nodes as sup-

ported by various platforms including MICA2DOT running y@S [2].

e Communication within a cluster is isolated from other ctustthrough time divi-
sion or channel hopping mechanisms such as described iB§B8Jith appropriate

hardware support, eg. Chipcon CC2420 transceiver [1].

It should be noted that while the intra-cluster communarais isolated from other
clusters, communication across clusters is assumed tortafdabover common time slots
or channels orthogonal to those used inside a cluster. Asg suiformation flow across the

network is not hindered by intra-cluster communicatiorason.
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Figure 2.1: An Example DAG

2.3 Application Model

To develop an application-independent solution, we repreapplications executed
in clusters with Directed Acyclic Graphs (DAG). A DAG = (V,E) consists of a set of
verticesV representing the tasks to be executed and a set of direaedEdepresenting
dependencies among tasks. The edgé/saintains directed edgeg for each task; € V'
that taskv; € V depends on. The weight of a task is represented by the nurhie? o
clock cycles to execute the task. Given an edggv; is called the immediate predecessor
of v;, andv, is called the immediate successorsaf An immediate successor depends
on its immediate predecessors such thatannot start execution before it receives results
from all of it immediate predecessors. A task without imnagelipredecessors is called
anentry-taskand a task without immediate successors is calleexitrtask A DAG may
have multiple entry-tasks and one exit-task. If there isariban one exit-task, they will be
connected to a pseudo exit-task with zero computation €agt.2.1 shows an example of
a DAG, wherel’'1, V2 andV'3 are entry-taskd,/ 8 is an exit-task, andl'5 is the immediate

successor and immediate predecessdrf bandV' 8, respectively.
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In the DAG scheduling problem, if a tagk scheduled on one node depends on a task
v; scheduled on another node, a communication between thdes irequired. In such
a casep; cannot start its execution until the communication is catgal and the result
of v; is received. However, if both tasks are assigned on same, tiogl@éesult delivery
latency is considered to be zero amdcan start to execute aftey is finished. This exe-
cution dependency between tasks is referred Desendency Constraitihroughout this

dissertation.

2.4 Energy Consumption Mode

The energy consumption of transmitting and receiviigt data over a distancéare

defined as?,,. (1, d) and E,..(1), respectively:

Eu(l,d) = Euee - 1+ camp - 1 - d*,d < d, (2.1)
Eo(l) = Euee - 1, (2.2)

whered, is the distance thresholdy,,.. ande,,,, are hardware related parameters [64]
[30].

In this dissertation, we assume that the sensors are eqliptiethe StrongArm SA1100
processor [64]. The energy consumption of execufihglock cycles with CPU clock fre-

guencyf of StrongArm SA1100 is given as:

f ~ K(‘/dd - C), (23)

Vaa N
Ecomp(‘/ddv f) = NCVYde + ‘/dd(]Oean )(7)7 (24)

whereV is the thermal voltage and, /,, n, K andc are processor-dependent parameters
[52] [64]. The first term of Equation 2.4 denotes the switghemergy consumption, which
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Figure 2.2: CPU Power Consumption vs CPU Speed

dominates the CPU energy consumption. The second term dtieqR.4 represents the
CPU leakage energy consumption. Given Equation 2.3, we eawedfrom Equation 2.4
that the CPU power consumption (energy consumption pekawgcle) is approximately
proportional toV?,. The relationship of the CPU power consumption and CPU sfeed
demonstrated in Fig. 2.2.

It should be noted that the energy consumption model predeatiove only considers
the energy expenditure directly related with applicatinecaition. Thus, energy consump-
tion during idle time is not taken into account. However, cammunication and compu-
tation schedules may also be used to determine sleep sekaufidensors, where sensors

go to sleep when no communication and computation actvétre scheduled for them.

2.5 Notation

The task mapping and scheduling problem is defined as findsg} af task assign-

ments and their execution sequences on a network such thatjective function such
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as energy consumption or schedule length is minimized. Het= {h{, h3,...,h’} de-
note a task mapping and scheduling solution of an applicddaG T on a networkG,
where z is the solution space index. Each elemeéfit ¢ H® is a tuple of the form
(Vi My Sismgs Loy s fimy» Cimy )» Wheremy, represents the node to which tasks assigned,
si.m, andf; ,,, represent the start time and finish timesgfandt; ,,,, andc; ,,,, represent the
execution length and energy consumptiornvpbn nodem,,, respectively. The following

set of notations are used throughout this dissertation:

pred(v;) andsucc(v;) denote the immediate predecessors and successors of task

respectively.

e m(v;) denotes the node on whiehis assigned.

T (my) denotes the tasks assigned on nodeand

T/!(my;) denotes the tasks assigned on nogeduring the time intervalst, f1].
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CHAPTER 3

ENERGY-CONSTRAINED TASK MAPPING AND SCHEDULING
IN SINGLE-HOP CLUSTERED WIRELESS SENSOR NETWORKS

As introduced in Chapter 1, in-network processing is esskefur energy-efficiency
WSNs applications. On the other hand, the limited energyplsup WSNs [3] imposes
stringent energy consumption constraints on in-netwodcg@ssing. WSNs may expect a
lifetime ranging from months to years without replacingteaes. To guarantee network
lifetime, a practical approach is to restrict the energyeexfiture of applications in WSNSs.
Thus, it is desirable to develop a general solution to p@vite computation capacity
required by in-network processing subject to energy copsiam constraints.

In this chapter, we present a localized task mapping andisding solution for energy-
constrained applications in WSNs. We consider a singleehagiered homogeneous WSN.
Our proposed solutior-nergy-<onstrained TaskM apping andScheduling (EcoMapS),
aims to map and schedule the tasks of an application with thearmam schedule length
subject to energy consumption constraints.

Assume thaCommEng(my) represents the communication energy consumption of
a nodem,, including data transmitting, receiving and forwarding. eTdesign objective
of EcoMaps is to finding a schedulé® € { H*} that has the minimum schedule length

subject to energy consumption constraints, which can badtated as follows:
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Find H° = argminlength(H), (3.1)
where length(H) = max Joimg (3.2)

subject toenergy(H) = Z Copomy T+ Z CommEng(my) < EB, (3.3)
ik k

wherelength(H) andenergy(H ) are the schedule length and overall energy consumption
of H, respectively, an@& B is the energy consumption constraint (also referred &Eresgy
Budge}. In EcoMapS, communication and computation are jointlyesttilled. A network
model and communication scheduling algorithm are pregeotexploit the broadcasting
nature of wireless networks. Schedules are computed bieclusads for the entire cluster
using our proposed EcoMapS solution. EcoMapS is based ohighelevel application
model that describes the task dependencies through DAGastefine, EcoMapS can be
used with arbitrary applications.

Different from existing work, EcoMapS has the followingisak properties:

Task mapping and task scheduling are considered simultaheo

The single-hop wireless channel is modeled as a virtual ,neae applications are

represented to reflect the broadcast nature of wireless concation.

Communication and computation events are jointly schetiule

Based on realistic energy models, EcoMapS aims to proviéeggnconsumption

guarantees with minimum schedule lengths.
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3.1 Outlineof The Proposed EcoM apS Solution

In our proposed EcoMapS solution, tasks are assigned t@isgribe execution se-
guence of tasks are decided, and communications betwesarsare scheduled with re-
spect to thddependency ConstrainEcoMapS aims to minimize schedule lengths subject
to energy consumption constraints. The scheduling alyostare executed on cluster
heads when applications are assigned to clusters. In caslws$ of a cluster head, a new
cluster head is selected via the clustering algorithm, ahédules will be regenerated by
the new cluster head.

In the following sections, the main components of our prepoEcoMapS solution,
namely, wireless channel modeling and Hyper-DAG extengiommunication scheduling
algorithm, and the extended CNPT algorithm [28] and Min-Migorithm [53] (referred to
as E-CNPT and E-MinMin, respectively) are presented. Fsk taapping and scheduling,
either E-CNPT or E-MinMin is executed as the schedule search engine to find the opti-
mal schedule. The original CNPT and Min-Min algorithms aesigned for traditional
parallel processing in wired networks. To extend CNPT and-Min for WSNs, we de-
veloped acommunication scheduling algorithbased on thavireless channel modaind
the Hyper-DAG representationf applications. The communication scheduling algorithm
is embedded in the execution of E-CNPT and E-MinMin to sgtise Dependency Con-

straint

3.2 Wireless Channel Modeling and Hyper-DAG Extension

In a single-hop cluster, there can be only one transmissiotn® wireless channel at
a given time. Similar to that in [26], the wireless channeah t® modeled as a virtual

nodeC that executes one communication task at any time instareece a cluster can be
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Figure 3.1: The Hyper-DAG Representation of the DAG in Figd. 2

modeled as a star-network where all sensors only have chongavith the virtual node
C. The communication latency between sensor nodesacah be considered zero since
all wireless communications are accounted for by the tas&swged orC. Assuming that
the cluster hag sensors that are denoted 85 = {m;} (0 < k < p), a cluster can be
represented by a connected, undirected gaph()M’,N), where the sed/” = M U {C},
and the seN denotes the links between the nodes\6f With the virtual node represen-
tation of C, communication contention can be effectively avoided hya#ig scheduling
communications o€. Another important advantage of the channel model is it&bik
ity to represent the broadcast nature of wireless commtiaicaWWhen a node in a single
hop cluster transmits information, it is potentially raea by all nodes in the cluster. The
broadcast nature of the wireless channel can be leveragetbipinformation generated
by a task to all its immediate successors in a single trarssomsather than multiple, se-
guential transmissions. This approach reduces scheddénkeas well as communication

energy consumption.
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To implement this channel model, communication events éetwcomputation tasks
should be explicitly represented in task graphs. Thus, wenexa DAG as follows: For
a taskuy; in a DAG, we replace the edges betwegrand its immediate successors with
anet R;. R; represents the communication task to send the resuit tof its immediate
successors in the DAG. The weight & equals to the result data volume @f This
extended DAG is a hypergraph and is referred tdHgper-DAG With the Hyper-DAG
representation, exclusive channel access constraintbraadcast delivery of results are
incorporated into task dependency in a compact way. A HIJ#E is represented as
T = (V' E"), whereV’ = {v;} = V U R denotes the new set of tasks to be scheduled and
E' represents the dependencies between tasks. Hete,{v;} = {Computation TasKks
andR = {R;} = {Communication Tasks The example of converting the DAG in Fig. 2.1
to a Hyper-DAG is shown in Fig. 3.1.

With Hyper-DAGs, communication events between computatasks are explicitly
represented in task graphs. Based on the Hyper-DAG repietgen Equation 3.3 is
rephrased as follows:

subject to Z Comy + Z Cormy, = Z Cormy, < EB, (3.4)
v eVik v €Rk v eV k
wherec,, ,,, of v; € R is the energy consumption of node, for sending, receiving, or
forwarding communication task; through the wireless channel, and tEvieR,k Coy i
equals the communication energy consumption of schedale

In the Hyper-DAG scheduling problem, tli2ependency Constraing rephrased as
follows: If a computation task; scheduled on node;, depends on a communication task
v; scheduled on another node, a copyofieeds to be scheduledne,, andv; cannot start

to execute until all of its immediate predecessors are vedein the same node.

22



It should be noted that the channel model presented abouenassa single-hop clus-
tered environment. However, this model can be generalizeuiti-hop networks by re-
laxing the constraints and taking the inference avoidante ¢onsideration. A general

solution in multi-hop clustered WSNs will be presented ira@ier 5.

3.3 Communication Scheduling Algorithm

To meet theDependency Constrainh Hyper-DAG scheduling, communication be-
tween nodes is required if a computation task depends on encomation task assigned
on another node. Thus, we present our communication sdhgdalgorithm in this sec-
tion. As we shall see in Section 3.4, the communication salvaglalgorithm is integrated
into the execution of our Hyper-DAG task mapping and schieduilgorithms, E-CNPT
and E-MinMin.

Based on the Hyper-DAG and the channel model presented 82, schedul-
ing communication between single-hop neighbors is eqeinab first duplicating a com-
munication task from the sender € and then fronC to the receiver. If the requested
communication task has been scheduled from the sender theanwde before, the re-
ceiver will directly duplicate the communication task frémThis process is equivalent to
receiving broadcast data, which can lead to significantggngsiving compared with mul-
tiple unicasts between the sender and the multiple receivEne detailed description of
the communication scheduling algorithm is shown in Fig., @/Bere Step 2-15 stands for
originating a new communication from, to m,, and Step 18-21 represents reception of a
broadcast data. Compared with originating a new communitahe broadcast reception

method leads to energy saving of one data transmission &bragditional data reception.
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Input: Communication tasky;; sender ofy;: m,; receiver ofv;: m,
Output: Schedule of duplicating; from m, to m..
CommTask Schedule(v;,m,,m..):

1. Find a copy ob;: vf € T(C) *v; scheduled 0G?*/

2. 1F vf does not exist /*NO, scheduletransmission from scratch*/
3.  Findv; € T'(my)

4.  Find time interval [st,ft]:

5 TiEC) =0

6. ft—st>t,c
7
8

st > fy.m., st = min

Schedule a copy af to C:
9. T(C) «— T(C)uU{vs}
10. Sve.c < St
11. Update the energy consumptionof

12. Schedule a copy of tom,.:
13.  T(m,) <~ T(m,)U{v]}

14. Sv{,mr — fvf,C

15. Update the energy consumptionof

16. Return

17ELSE [*YES, receive broadcast data*/

18. Schedule a copy of tom,.:

19.  T(m,) < T(m,)U{v!'}

20. Sv{,mr — fvf,C

21. Update the energy consumptionof
22. Return

Figure 3.2: Communication Task Scheduling Algorithm

Under our communication scheduling algorithm, one datsstrassion may reach multiple

receivers.
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3.4 Task Mapping and Scheduling Algorithms

In EcoMapsS, the tasks of Hyper-DAGs are mapped and schedulsénsors. During
task mapping, several constraints have to be satisfied.eTdwsstraints together with the

Dependency Constraimtre represented as follows.

e A computation task can be assigned only to sensor nodesfuies V : t,, ¢ =

0, Cy; ¢ = o0
e A communication task can be assigned to sensofs or

e A communication task assignedd@cstands for an ongoing data communication. Its
execution time equals its communication length. The cpoeding data transmis-
sion and reception energy consumption are accounted fdrebgender and receivers

following Equation 2.1 and 2.2, respectively.

e A communication task assigned to a sensor denotes datal stosensor memory,
and is ready for processing on the same node. Thus, its exeduhe and energy

length are zero.

e A non-entry computation task assigned on a sensor must fateimmmediate pre-
decessors available before it can start execution, i.e;, & V andpred(v;) # 0,

thenpred(v;) C T(m(v;)) ands,, ;m(v,) = MaX fpred(w;),m(v;)

To meet theDependency Constraimturing task mapping and scheduling, if a compu-
tation task depends on a communication task assigned ohearsgnsor node, theom-
munication scheduling algorithmill be executed to duplicate the absent communication
task. With the Communication Scheduling Algorithm and #ektmapping constraints pre-
sented above, task mapping and scheduling in single-hagess networks can be tackled
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as a generic task mapping and scheduling problem with additconstraints. This prob-
lem is NP-complete in general [25] and heuristic algorittaresneeded to obtain practical
solutions. In this section, E-CNPT and E-MinMin algorithars presented as the schedule
search engine of EcoMapS with the objective of minimizingextule lengths subject to
energy constraints.

Before presenting the E-CNPT and E-MinMin algorithms, wstfintroduce a concept
of computing sensorA computing sensor is a sensor that can execute non-esky tes
well as entry-tasks. The concept of computing sensor is auitire extension of DCA
in [64], where only one sensor in a cluster, i.e., the cluegsad, can execute high level
tasks. In EcoMapS, there can be more than one computingrseinsspeed up execution.
However, this approach generally consumes more energymatle computing sensors be-
cause of the increased volume of communication betweeretisoss. Thus, the increment
of number of computing sensors must be bounded by energyiogri®n constraints. In
our EcoMapS, E-CNPT and E-MinMin will iteratively searchetbptimal schedule with

different number of computing sensors subject to energgtcaimts.

3.4.1 E-CNPT Algorithm

The list-scheduling CNPT algorithm [28] is extended andlangented as one of the
schedule search engine in EcoMapsS, and is denoted as E-JIN@®bjective of E-CNPT
is to minimize schedule lengths subject to energy consumptnstraints. The strategy of
E-CNPT is to assign the tasks along the most critical pathtfirthe nodes with earliest
execution start times. By adjusting the number of compusieigsors in each scheduling

iteration and choosing the schedule with the minimum scleeldingth under the energy
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consumption constraint, the design objective of E-CNPTiseved. Similar to CNPT, E-
CNPT also has two stagebsting stageandsensor assignment stage thelisting stage
tasks are sequentialized into a qudueuch that the most critical path comes the first
and a task is always enqueued after its immediate predesessdhesensor assignment
stage the tasks will be dequeued fromand assigned to the sensors with the minimum
execution start time. Several scheduling iterations wallrbn in the sensor assignment
stage with different number of computing sensors, and ong/schedule is chosen as the
solution according to the design objective. Tisting stageandsensor assignment stage
of E-CNPT are introduced individually as follows.

Listing Stage: The Listing Stage of E-CNPT is similar to that of CNPT [28]. thre
Listing Stage of E-CNPT, the Earliest Start TirA&T (v;) of taskuw; is first calculated for
each vertex by traversing the Hyper-DAG downward from thieyetasks to the exit-task.
The Latest Start TiméST'(v;) of taskuv; is then calculated in the reverse direction. During
the calculation, the entry-tasks haw8T= 0 and the exit-task hdsST = EST The formulas

to calculateESTandLST are as follows:

EST(v;) = max {EST(vy)+tm}, (3.5)
vm Epred(v;)
LST(v;) = min {LST(vm)} —ti, (3.6)

v Esucc(v;)
wheret; equals to the execution length on sensor nodesdf V' or to the execution length
onC if v; € E. Then, the Critical Nodes (CN) are pushed into the staickthe decreasing
order of theirLST. Here, a CN vertex is a vertex with the same valu&8T andLST.
Consequently, ifop(S)has un-stacked immediate predecessors, the immediakecessbr
with the minimumLST is pushed into the stack; otherwisep(S)is popped and enqueued

into a queud.. The Listing Phase ends when the stack is empty. After thingishase,
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the task graph is sequentialized intaand is ready for the Sensor Assignment Phase. It
should be noted that the EST and LST are for the purpose aiawvad) the critical path of
a Hyper-DAG, and EST and LST do not represent the actual éxecstart time of tasks.

Sensor Assignment Stage: The design objective of our algorithm is to minimize sched-
ule lengths subject to energy consumption constraintdei@ifit from CNPT, E-CNPT it-
eratively searches the schedule space with different nuefbeomputing sensors in the
Sensor Assignment Stage. Among these schedules, the dmnéhe&itminimum schedule
length under the energy consumption constraint is choséimeasolution. If no schedule
meetings the energy constraint, the best effort is made bgsihg the one with the mini-
mum energy consumption. The detailed description of the\lE*C algorithm is shown in
Fig. 3.3.

In the E-CNPT algorithm, SingleCNPI(g) is a single round of task scheduling that
schedules the tasks i with ¢ computing sensors. It should be noted that the parameter
q is just the upper bound of the number of computing sensotsctrabe involved in the
schedule. The actual number of computing sensors can béesiiang depending on ap-
plications and scheduling algorithms. The core of SinglBCW ,q) is the extended CNPT
processor assignment algorithembedded with our communication scheduling algorithm.
The basic strategy of the algorithm is to assign tasks toghe@ with the minimum Ear-
liest Execution Start Time (EEST). During task scheduliDgpendency Constrairitas
to be satisfied via communication scheduling. SingleCNRj)(is described in Fig. 3.4,
where E AT (my) is the Earliest Available Time of node,, and EESTq;, m;) is the Ear-
liest Execution Start Time of; on sensorn,. Different from EST, EEST represents the

actual execution start time of a task if assigned on a sercsi®.n
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Input: Task queud. ; number of available sensors in the clugteenergy budget’ B
Output: ScheduleH? of tasks inZ with minimum schedule length under ener
budget constraint

E-CNPT Algorithm:

. L° — o0 [*optimal schedule length*/
B, — 00 [*minimum energy consumption*/
.FOR ¢=1top [*search computing sensor space*/
H = SingleCNPTL,q)
|F energy(H) < Enin
Epin < energy(H)
H,pm— H I*eng(H ypin) = min*/
|F energy(H) < EB andlength(H) < L°
10.  L° < length(H)
11. H°— H [*optimal schedule*/
12.IF E,,;, < EB
13. ReturnH?°
14.ELSE
15. ReturnH,,;,

©C®NOAWNE

Figure 3.3: EcoMapS: E-CNPT Algorithm
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Input: task queud.; number of computing sensaogs
Output: Schedule of tasks ifh
SingleCNPT Algorithm:

while L is not empty

1. Dequeue); from L

2.1Fv; € R [*communication task*/

3. Assign; to nodem(pred(v;))

4.ELSE IF pred(v;) = 0 [*entry-tasks*/

5. Assignu; to nodem? with min EAT (m?)

6. ELSE [* non-entry computation tasks*/

7. FOR all computing sensorgmy }

8. Calculate EEST{, my):

9. IFpred(v;) CT(my)  I*dependency constraint satisfied*/
10. EEST(}Z, mk) — max(EAT(mk), fpred(vi),mk>

11. ELSE [*communication between sensors is needed*/
12. FORuw, € pred(v;) — T (my)

13. CommTaskSchedulg(,m (v, ),mx)

14. EEST()w mk) N maX<EAT<mk>7 fpred(vi),mk>

15. Keep the schedule with minimum (EEST (.°))

16. Schedule; onm?®: s,, o «— EEST (v;, m°)

Figure 3.4: EcoMapS: SingleCNPT Algorithm
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3.4.2 E-MinMin Algorithm

The Min-Min algorithm is reported of satisfying performanwith relatively low com-
plexity [11] [53]. Thus, we extend and implement the Min-Milgorithm in [53] as the
schedule search engine of EcoMapS. The extended Min-Muoridhgn aims to minimize
scheduling lengths subject to energy consumption conssreand is referred to as the E-
MinMin algorithm.

Similar to E-CNPT, E-MinMin also searches for a scheduldnhie optimal number of
computing sensors that has the smallest schedule lenggtstinthe energy consumption
constraint. The E-MinMin’s algorithm of searching for thetional number of computing
sensors is the same as tBe&€NPT Algorithm in Section 3.4.1 except that the input of the
E-MinMin algorithm is the Hyper-DAG instead of the task qeely and the core of the
searching algorithm is th&ngleMinMin instead of theSingleCNPT.

We now introduce the procedure SingleMinMin(Hyper-DAfZhat schedules the tasks
of the Hyper-DAG withg computing sensors. The core of the SingleMinMin algoritlsm i
the fithess function. For each task-node combination (the)itness functiorfit(v, m, «)
indicates the combined cost in time and energy domain ofjasg] tasks to nodemn, where
« is the weight parameter trading off the energy consumptist for the time cost. In the
SingleMinMin algorithm, the task-node combination thatgg the minimum fitness value
among all combinations is always assigned first. To exteddlascribe the fithess function

of the Min-Min Algorithm in [53], the following notations arintroduced first:

e MFT(v,m) isthe maximum finish time of the tasks assigned prior to task

e f,m Is the scheduled finish time ofonm.
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e PE(v,m)is the energy consumption of the application schedule afigigning to
m, which includes the computation energy consumption andnconication energy

consumption on all nodes so far.

e NPT (v,m)isthe normalized partial execution time of assigniranm: NPT (v,m) =
fu,7rL
MFT(v,m)"
e NPE(v,m)isthe normalized energy consumption of assigniogm: N PE (v, m) =

PE(v,m)
EB

Thus, the fitness function of assigningnm is defined as:
fit(v,m,a) =a- NPE(v,m)+ (1 —«a)- NPT (v,m). (3.7)

The SingleMinMin Algorithm is presented in Fig. 3.5. In thesdription of SingleM-
inMin, a “mappable” task is either an entry-task or a task tzes all immediate predeces-
sors already been assigned, and the “mappable task ligigibst that contains currently
mappable tasks of the Hyper-DAG. We sweepalues inA« increments to find the best
solution, whereA« is the o sampling step. For schedules with differentvalues, the
schedule with the minimum schedule length under the eneyggumption constraint B
is chosen as the optimal solution among these candidatdwsielse If none of the candidate
schedules meetk B, the one with the smallest energy consumption is chosert-ébiest

solution).

3.5 Computational Complexity Analysis

Assume that the applicatidfi is represented &8 = (V, E), |V| = v, |E| = e, the
number of entry-tasks ig, and the cluster has sensor nodes. Thus, the Hyper-DAG is
T" = (V' E"), where|V'| = 2v and|E’| = 2e.
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Input: Hyper-DAG; number of computing sensots:
Output: ScheduleH? of tasks in Hyper-DAG
SingleMinMin Algorithm:

1.FORa=0;a <1.0; a+ = A« [*scana value*/

2. FOR entry-tasks; [*First assign entry tasks*/
3. Assignu; on nodemn? with min EAT (m?)

4.  Assignsucc(v;) onmg

5. Initialize the mappable task likt

6. WHILE L is not empty

7. FOR taskv; € L [*Search all task-sensor combinations*/
8. FOR all computing sensat,

9. |F pred(v;) € T (my)

10. FOR v, € pred(v;) — T'(my,)

11. CommTaskSchedule(v,,,m(v,,),my)

12. Assignu; to my, calculatefit(v;, my, «)

13. Findm¢: fit(v;, m¢, ) is minimum

14, Find task/sensor pair,(n): fit(v, m,«) is minimum
15. Assignw to m, removev from L

16.  Assignsucc(v) onm

17. Updatd. with new unassigned mappable tasks.
18. Among all schedules with different valuescof

19. |F 3H : energy(H) < EB with min length(H)

20. ReturnH [*optimal solution*/
21. ELSE
22. ReturnH : energy(H) is minimum /*best-effort solution*/

Figure 3.5: EcoMapS: SingleMin Algorithm
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3.5.1 Computational Complexity of EcoMapSwith E-CNPT

The time complexity of EcoMapS with E-CNPT is analyzed a®fes:

e Listing Stage of E-CNPT: similar to CNPT [28], the complgxi O(v + e).

e SingleCNPT: the communication tasks have complexity efO(1) = O(v), the
entry-tasks have complexity ¢f- O(p) = O(fp), other non-entry computation tasks
have complexity ofv — f) - O(p) - O(e/v). Hence, the overall complexity of Sin-
gleMapSchedule i©(v) + O(fp) + (v — f) - O(p) - O(e/v). For the worst case,
e = O(v?) and f = O(v), thus the complexity of SingleMapSchedule&ligpv?) for

the worst case.

e EcoMapS with E-CNPT: the SingleCNPT algorithm will be cdlie(p) times. Thus,
the complexity of the whole algorithm 8(v +¢) + O(p) - O(v?p) = O(p*v?) for the

Wworst case.
3.5.2 Computational Complexity of EcoMapSwith E-MinMin

The time complexity of EcoMapS with E-MinMin is analyzed afdws:

e SingleMinMin: the complexity of SingleMinMin is dominatda; the loop starting
from Step 5, which is executed(v) times. Similarly to SingleCNPT, the complexity
of the loop starting from Step 6 has the complexityxdb) - O(p) - O(e/v) = O(pe).

Thus, SingleMinMin has the complexity 6f(pv?) for the worst case.

e EcoMapS with E-MinMin: Similar to the analysis of E-CNPTgetlcomplexity is

O(p) - O(pv?®)/ Aa = O(p*v?/ Ac) for the worst case.

From the analysis above, the complexity of the EcoMapS wiligMin is higher than
that of the EcoMapS with E-CNPT with the orderwofor a fixed value ofA«.
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3.6 Simulation Results

The performance of our EcoMapS solution with E-CNPT and B algorithms is
evaluated through simulations. The performance of an eeversion of DCA [64] is
evaluated as a benchmark. DCA is extended with our propasadeinication scheduling
algorithm to deliver the intermediate results of entrykta® the cluster head for further
processing. We first simulate simplified distributed videovsillance application exam-
ple. To further evaluate EcoMapS performance, simulatesesrun on arbitrary applica-
tions with randomly generated DAGs. Our simulator is pragreed in C++ language and
executed in Linux environment. Our simulations with randoAGs study the following

scenarios:
o Effect of theA« parameter of the E-MinMin algorithm
e Effect of energy consumption constraints
e Effect of number of tasks in applications
e Effect of inter-task dependency
e Effect of communication load
e Evaluation of energy consumption balance
e Comparison of the heuristic execution time

In these simulations, we observe energy consumption aretlstd length metrics unless
otherwise stated. The energy consumption includes cormipatand communication en-

ergy expenditure of all sensors. The schedule length isetbfas the finish time of the
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Figure 3.6: The Video Surveillance Example DAG

exit-task of an application. The simulation results présenn this section correspond to

the average of five hundred independent runs.

3.6.1 Simulation Parameters

In our simulation study, the bandwidth of the channel is gétlb/s and the transmis-
sion range- = 10 meters. We assume that there are 10 sensors in a clustesemsors are
equipped with the StrongARM SA-1100 microprocessor with @PU frequency be 100
MHz. The parameters of Equation 2.1, 2.2, 2.4 are in coherenth [52], [64], [30] as
follows: E.i.. =50 nd/bg,y,, = 10 pd/bm?, Vi =26 mV,C = 0.67 nF,J, = 1.196 mAn =

21.26,K =239.28 MHz/V and:- = 0.5 V.
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3.6.2 Simulation of an Example Application: Distributed Visual Surveil-
lance

To demonstrate in-network processing in WSNs, we consluiirtrusion detection
system in Fig. 1.1. Here, we consider a simplified applicatiat detects the location of
intruders. Rather than sending captured images to a basenstae locally process the
images and send the location information of the intrudere iFAnetwork processing ap-
plication is abstracted as the DAG in Fig. 3.6, where tdgks V5 represent background
subtracting and bounding box abstracting [62]. After thete@s, the detected intruder is
approximated with rectangles (bounding boxes) in imagas feach camera. The vertex
coordinates of the bounding boxes and camera calibratitmata passed to the next lo-
calization stage. Object locations are then estimated lbgsing a viewing ray through
the bottom of the object in the image and intersecting it vaitmodel representing the
terrain” [17] with data from each camera sensor. To evaltlaesstimation error range,
the locations of the points on the bounding boxes’s bottomesliare calculated, which are
represented by task§ — V5. Then, the location estimation results from different ceame
are fused to eliminate estimation errors in tagks V. The edges’,, — E5; stand for the
communication of bounding boxes’ vertex coordinates amdezas’ calibration data, and
E.s — Ey 19 denote the communication of the estimated object locatwatts estimation
error ranges. Aftel/,, the object’s location is recovered from 2D images and seat t
base station.

In the simulation, we assume that there is one intruder atiamgy instance, captured
images ard 28 x 128 8-bit gray images, the computation loadlgf— V7 is 50 KCC, the
computation load oz — V;q is 1 KCC, the communication volumes 6f, — Fs5; are 20

bytes, and the communication volumesiof — Ey 1, are 40 bytes. Two scenarios with
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EB (uJ Metrics DCA [E-CNPT|E-MinMin
300 |Energy Consumption (uB15.4 299.3 | 299.3
Schedule Length (ms)| 3.17| 2.53 2.53
oo |Energy Consumption (uB15.4 331.6 | 347.7
Schedule Length (ms)| 3.17| 1.66 1.85

Table 3.1: EcoMapS: Simulation with the Visual Surveillartexample

energy budgeE' B = 300uJ and EB = oo are simulated. As we will discuss in Section
3.6.3,Aa is set to be 0.1 during the simulations. According to theltestnown in TABLE
3.1, both EcoMapS algorithms have better capacity to mesggrconsumption constraints
than DCA. With small energy budgets, the performance of ERTMNd E-MinMin con-
verges. When energy consumption budget is sufficientlyeldfEgCNPT performs the best
with less energy consumption than E-MinMin for this specafoplication.

In the example above, sending these four 16KByte-imagdsaiisume about 0.05 J
per hop. According to Table 3.1, even with infinite energy deidthe energy consump-
tion of processing these images with E-MinMin is 347.7 uJicwhs much smaller than
transmitting all images over one hop. After the in-networ&gessing, the resulting data
volume is reduced to 40 bytes, which consumes only 32.32 wléliver over one hop.
Thus, the overall energy consumption of processing inftionaand transmitting the re-
sult is drastically reduced when compared with directlyivéelng original images over
one hop. In large-scale WSNs where base stations are locatiigle hops away, energy

savings through in-network processing become more praresin
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3.6.3 Simulation with Random DAGS

To evaluate EcoMapS performance for arbitrary applicati@mulations are run on
randomly generated DAGs. Random DAGs are created basedem parameters: The
number of taskeaumTaskthe number of entry-tasksimEntry and the maximum number
of predecessomaxPred The number of each non-entry task’s immediate predecgssor
the computation load (in units of kilo-clock-cycle, KCChdithe resulting data volume (in
units of bit) of a task are uniformly distributed over phaxPred, [300K CC +10%], and

[800 bits+10%], respectively.

Effect of the A« parameter of the E-MinMin Algorithm

We investigate the effect of different values &ty with Ao = 0.2, Aa = 0.1, and
Aa = 0.05. Simulations are run with randomly generated DAGs. Therpatars of DAGs
considered for this set of simulations amemTask= 25, numEntry= 6, andmaxPred= 3.
The energy consumption and schedule length are observaetiffierent available energy
levels (also referred to as Energy Budget).

As we can see from Fig. 3.7, E-MinMin with different values®# performs almost
the same with respect to meeting energy budget constrdR@garding schedule lengths,
E-MinMin with Aa = 0.05 performs the best while E-MinMin witiha = 0.2 performs
the worst. This observation is reasonable because witHamal, E-MinMin can search
the schedule space in a more exhaustive manner and discster $olutions. However, a
smaller value ofA« also leads to longer heuristic execution time, as discuiss8éction
3.5. The important observation from Fig. 3.7 is that the grenfance difference between
different A« values is very small. We set the intermediate vakie = 0.1 for E-MinMin

in all of the following simulations.
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Effect of Energy Consumption Constraints

The effect of the energy consumption constraints is evatbaith randomly generated
DAGs withnumTask= 25, numEntry= 6, andmaxPred= 3.

As shown in Fig. 3.8, both EcoMapS algorithms have betteal#ipy to adjust their
schedules according to energy budget compared with DCA.nVhe energy budget is
small, EcoMap$S algorithms converge to solutions that use semsor for computation,
which is the default behavior for DCA. Instead of sendingsalised data to cluster heads,
the EcoMapS algorithms choose one of the sensing sensoofigpwtation, which saves
energy and shortens schedule lengths. As the energy budgetses, the EcoMapS al-
gorithms have more sensors involved in computation, whetdrehses schedule lengths at
the cost of larger energy consumption. On the other hand, B&ot adjust its schedule
to higher availability of energy resources. Compared wi@®)the EcoMapS algorithms
can lead up to 67% schedule length improvement for this s&tmilations.

Regarding the comparison of the EcoMapS algorithms themseboth E-CNPT and
E-MinMin tend to use one computing sensor with small energgiget, which leads to
equal schedule lengths and energy consumption. When thigyebedget is sufficiently
large, E-CNPT has a slightly shorter schedule length thamimidviin because of its better
perspective of global optimization: The listing stage o€CEPT enqueues the tasks ac-
cording to the critical paths of the Hyper-DAG, while E-MimMust locally calculates the
cost of assigning a task. However, this improvement comeshegher energy consump-
tion cost, as shown in Fig. 3.8(a). For the scenarios witbrinediate energy budgets,
E-MinMin outperforms E-CNPT up to 39% in terms of scheduleglias, as shown in Fig.
3.8(b). This advantage of E-MinMin stems from its fitnesschion. Different from E-

CNPT, which just takes time cost into account when assigtasks with the fixed number
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of computing sensors, the fithess function of E-MinMin cdess time cost as well as en-
ergy consumption. Thus, E-MinMin is more likely to find a fdds schedule meeting
energy constraints with a larger number of computing seng@n E-CNPT, which leads

to shorter schedule lengths.

Effect of Number of Tasksin Applications

To test the effect of number of tasks in applications, thegs sf simulations are run
on randomly generated DAGs with 20, 25 and 30 tasks (numEn@ymaxPred = 3). As
shown in Fig. 3.9, energy consumption and schedule lengthd@minated by the num-
ber of tasks. When the number of tasks increases, the enerngumption and schedule
length of DCA increase proportionally. The EcoMapS aldoris on the other hand adapt
themselves to the increasing energy budget. For the extssarios with small and
large energy budgets, the schedule lengths and energyroptisa of the EcoMapS algo-
rithms increase in proportion to the increment of the nunabéasks. For the intermediate
scenarios, the EcoMapS algorithms adapt their scheduighsmnd energy consumption
according to the available energy budget when the numbeasistincreases. For all three
scenarios, the energy consumption of E-MinMin follows ggebudgets closer than E-
CNPT, and the schedule length of E-MinMin is shorter than BT for the scenarios

with intermediate energy budgets.

Effect of Inter-task Dependency

The inter-task dependency is determined by the in/out @egfeapplication DAGS.
Simulations with sets of DAGs withmaxzPred = 3 andmaxzPred = 6 (numTask = 25

numEntry= 6) are executed.
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According to the simulation results of Fig. 3.10, the ini@sk dependency has al-
most no effect on the performance of DCA. The robustness of\ @Gainst inter-task
dependency changes stems from the fact that inter-taskidepey affects communication
scheduling, and DCA has most of the tasks executed on theechisad with less needs for
communication.

Regarding the EcoMapS algorithms, increasing the in/ogteeof DAGs does not in-
troduce new communication task in the Hyper-DAG, but insesahe dependency between
a communication task and its immediate successors. Gragpendency degree between
tasks may lead to a higher number of communication tasksisitde onC and less par-
allelism between sensors, which leads to more energy cqotsamand longer schedules.
Thus, when the energy budget is sufficiently large, the gnewgsumption of the EcoMapS
algorithms increases and the schedule lengths decreasen W& energy budget is rela-
tively tight, both of the EcoMapS algorithms use less conmgusensors to meet energy
constrains when the inter-task dependency increaseshwhbireases energy consumption
and increases schedule lengths. As we can see from Figb3.a0tough the performance
of the EcoMapS algorithms degrade with higher inter-tagledeency, the EcoMapS algo-
rithms still outperform DCA with respect to schedule lergglubject to energy consump-

tion constraints.

Effect of Communication L oad

In task mapping and scheduling, the relationship betweemuanication and compu-
tation load may affect the overall performance. This facsoevaluated by changing the
average communication data volume with fixed average caatipatioad. Simulations are
run with randomly generated DAGs wittumTask= 25, numEntry= 6, maxPred= 3. The
three different settings of DAGs have result data voluméoumily distributed in [600bit,
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+10%], [800bit, +10%)], and [1000bit,+10%)] with task computation load uniformly dis-
tributed in [300KCC £10%].

As shown in Fig. 3.11, the performance of DCA and the EcoMdg&rithms are both
affected by the communication load. When communication lioareases, the schedule
lengths increase. Compared to the EcoMapS algorithmsgitiermance of DCA degrades
less with increasing communication load. DCA's robustregsanst communication load
variation stems from the fact that DCA has most of its taslecated on the cluster head.
Since the execution time and energy consumption of a conuation task on a sensor
are zero, communication load changes will not affect thaskst execution. On the other
hand, the EcoMapS algorithms assign tasks on differentosens speed up execution,
which leads to more communication tasks schedule@.orhus, the EcoMapS algorithms
are affected more by the communication load changes. Haweven when communi-
cation load increases, the EcoMapS algorithms still sigauifily outperform DCA with
shorter schedule lengths subject to energy consumptiostreants as shown in Fig. 3.11.
Compared with E-CNPT, E-MinMin more effectively utilizésetavailable energy budgets

(Fig. 3.11(a)), and is less affected by changes in commtiarckbad (Fig. 3.11(b)).

Evaluation of Energy Consumption Balance

The energy consumption balance is another important factbe WSN design. In this
section, the energy consumption balance of the proposel&e® algorithms are evalu-
ated and compared to the DCA algorithm. The random DAGs densd in the simula-
tions have the parametersrmimTask= 25, numEntry= 6, andmaxPred= 3. The observed
metrics are thé-airness Index (Fland theMaximum of Sensor’ Energy Consumption

addition to the energy consumption of all sensors. HerefF#imess Index is a variation
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of Jain’s Fairness Index [49], and is defined as

FI (S ) (3.8)

a nZzzl E/? 7
whereFE), is the energy consumption of sensoy, andn is the number of active sensors.
The “active sensors” are the sensors that execute eithgrtaisks or non-entry-taskg./
varies in [0,1], and the closer @t/ to 1, the better the energy consumption balance of the
schedule.

As shown in Fig. 3.12, when the energy budget is small, théviagxs algorithms tend
to utilize a small number of computing sensors to reserveggnd hus, computation ac-
tivities as well as energy consumption are burdened on thexssors (Fig. 3.12(c)), which
leads to relatively inferior energy consumption balanceg.(R3.12(b)). However, when
the energy budget increases, more sensors can be involibd spplication execution.
Though the overall energy consumption increases due totiheased communication vol-
ume, the maximum of each sensor’s energy consumption das€hig. 3.12(c)) and the
energy consumption balance improves (Fig. 3.12(b)) becatithe distributed computa-
tion load among sensors. Compared to E-CNPT, the energyomion of E-MinMin
is more balanced for the scenarios with intermediate enleuglgets. On the other hand,
DCA always overloads the cluster head with most computdtieks regardless of energy

availability, which causes poor energy consumption baddacall scenarios.

Comparison of Heuristic Execution Time

Execution time is also an important factor to evaluate tstigralgorithms. As we have
analyzed in Section 3.5, E-MinMin has a higher complexigrttie-CNPT. In this section,
the relative execution time of E-MinMin over E-CNPT is tabteith randomly generated

DAGs of different number of tasks withumEntry= 6 andmaxPred= 3. As shown in
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Fig. 3.13, E-CNPT is more than 50 times faster than E-MinMintésted scenarios. When
the number of tasks increases, the speed difference be&&NPT and E-MinMin also
slightly increases.

As we have already seen in previous sections, the perfomah&-CNPT and E-
MinMin are similar when the energy budget is small or suffithe large. For these sce-
narios, E-CNPT is more preferable due to its shorter exegutme. For the scenarios
with medium energy budgets, E-MinMin generally providesrsér schedule lengths with
better energy consumption balance than E-CNPT. Howevengahe heuristic execution
time into account, the tradeoff between the schedule leagdithe heuristic execution time
should be considered. Both E-CNPT and E-MinMin are execatdte Initialization Phase
of EcoMapS, and schedules must be regenerated when newatis arrive. For WSNs
where applications are not updated frequently, a schedrecuted for a long term. For
these WSN applications, the overhead of schedule genesatimegligible and E-MinMin
is preferred because of its shorter schedule lengths. FoSH Wiat updates its applica-
tions more frequently, E-CNPT can be favored over E-MinMuedo E-CNPT’s shorter

schedule computation time.
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Figure 3.11: EcoMapS: Effect of Communication Load
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CHAPTER 4

REAL-TIME TASK MAPPING AND SCHEDULING IN
SINGLE-HOP CLUSTERED WIRELESS SENSOR NETWORKS

In Chapter 3, we discuss task mapping and scheduling inesimg clustered WSNSs for
energy-constrained applications. However, certain appbns such as video surveillance
have inherent real-time requirements. For such applicgtimformation processing must
be finished within certain deadlines. On the other hand,ttihegent environment of WSNs
requires energy-efficiency at all layers of WSNs. Thus, ddsirable to develop a solution
providing deadline guarantees in an energy-efficient mariviamimization of overall ap-
plication energy consumption may lead to extensive exenulbiads of certain sensors than
others. Even though out-of-battery sensors can be replachsely deployed WSNs, the
consequent unbalanced lifetime of sensors may lead todreqascheduling and network
topology changes. Thus, energy-balanced solutions anabksin WSNs.

In this chapter, we propose localized cross-ldyeal-timeT askM apping andScheduling
(RT-MapS) solutions for Dynamic Voltage Scaling (DVS) [4etjabled WSNs. We con-
sider deadline-constrained applications executed inglesimop cluster of a homogeneous
WSN. To prolong network lifetime, the energy-balanced Rag®8 solution aims tini-
mize the Maximum Energy Consumption per Node (MECpN) suoj@pplication dead-

line constraints The design objective of RT-MapS can be formulated as findiaghedule
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H° that has the minimum MECpN under the deadline constraint:

Find H° = arg min MECpN (H), (4.1)
where MECpN(H) = max Ey, 4.2)
subject tdlength(H) = max fime <DL, (4.3)

wherelength(H) and M ECpN(H) are theschedule lengtland maximum energy con-
sumption per nodef H, respectively L. is the energy consumption of node,, andD L

is the deadline of the application. The Hyper-DAG and wigslehannel model presented
in Chapter 3.2, and the communication scheduling algorjpnesented in Chapter 3.3 are
implemented in RT-MapS. The communication schedulingrélgm is integrated as part of
RT-MapS with the collision avoidance feature. The resglstart and finish times of com-
munication events constitute the schedule used by the Mediccess Control (MAC). In
RT-MapS, communication and computation are jointly sclhedlin two phasesTask map-
ping and scheduling phassndDVS phase In the Task Mapping and Scheduling Phase
two low-complexity task mapping and scheduling algoriththe CNPT and Min-Min al-
gorithm, are extended and implemented with the objectivaiofmizing MECpN subject
to deadline constraints. A novel DVS algorithm is proposed inplemented in th®VS

phaseto further reduce energy consumption.

4.1 TheDynamic Voltage Scaling Problem

In this chapter, we consider sensors equipped with Dynamitayye Scaling (DVS)
enabled processors such as StrongArm SA1100 [64]. We asthaihsuch DVS-enabled
processors have finite number of CPU speeds and supply edétegls. The delay of speed

and voltage adjustment for a DVS processor can be in the ofdEd - 100us [12] [45]
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[47]. Such DVS adjustment overhead can be accounted intadhested task execution
time. For the sake of simplicity, we assume the DVS adjustroeerhead to be negligible
throughout this dissertation.

Due to the discrete nature of task mapping and schedulinghedsile that meets a
deadline may do so with slack time before the deadline. Thralamced load of sensors
and communication scheduling also result in CPU idle timéSs a technique to exploit
the CPU idle time by jointly decreasing CPU speed and supphage while still meeting
deadlines. According to Equation 2.4 and 2.3, a decreasePlo €upply voltage leads
to approximately proportional increase in execution timé approximately quadratic de-
crease in computation energy consumption. An example of B\d8own in Fig. 4.1. The
relationship of the CPU speed and the unit energy consumigiapproximately shown in
Fig. 2.2. Assuming that the execution load of tasks N clock cycles and its deadline is
t, the execution time of; with speeds,,... is t’, and the corresponding energy consump-
tionis N - P,,... As demonstrated in Fig. 4.1(a), the CPU slack time-st’ before the
deadlinet. By adjusting the CPU speed 1%, v.s execution time increases taand its
energy consumption decreasesNo P, (Fig. 4.1(b)), which leads to energy savings of
N - (Ppa: — P,). Here,P,,.., and P, stand for the original and the adjusted computation
energy consumption per clock cyclegfwith CPU speed of,,,, andsS,, respectively.

Task scheduling for DVS-enabled systems is under activeareh [5], [16], [44]. In[5],

a periodic real-time task scheduling mechanism is propfigddVS-enabled systems with
limited energy supplies. However, [5] only considers stagtocessor systems and does
not address task scheduling in multiprocessor networksk Jeheduling in DVS multipro-
cessor systems is discussed in [16] based on shaping ofybdiseharging profiles. The

discussed multiprocessor system is driven by a singlergatidich is not applicable to
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Figure 4.1: DVS Scheduling Example (Task WNhClock Cycles)

WSNSs. A DVS-based energy management scheme is presentet] fiof distributed real-

time systems with consideration of communication and gtecee constraints. However,
[44] focuses on parallel processing systems and does nemexb wireless communica-
tion systems. The DVS technique is implemented in [69] teesavergy in WSNs. The
DVS algorithm is applied to a calculated schedule with thest@ints of wireless commu-
nication events. To re-scale each task, application sd¢bgdeed to be re-adjusted with
the scheduling algorithm in [69], which leads to a high cotagion complexity. In this

chapter, a low-complexity DVS algorithm is presented tdrojte energy consumption in

WSN environments.
4.2 Outline of the Proposed RT-M apS Solution

The proposed RT-MapS sloution is demonstrated with the thatan Fig. 4.2. RT-
MapS has two phase3ask Mapping and Scheduling Phaaed DVS PhaseIn the Task

Mapping and Scheduling Phgssommunication and computation tasks are scheduled. Two
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low-complexity task mapping and scheduling algorithms,RIN28] and Min-Min [11]
[53] are extended and implemented with the objective of mining MECpN subject to the
deadline constraint. Our proposed communication scheglaligorithm is then embedded
in the execution of the extended CNPT and Min-Min algorithmsatisfy theDependency
Constraint The energy consumption is further reduced inBWS Phaseln the following
sections, the main components of the RT-MapS solution, haidgper-DAG based CNPT
and Min-Min algorithms (referred to as H-CNPT and H-MinMi@nd DVS algorithm,
are presented in addition to the Hyper-DAG, wireless chemaelel, and communication

scheduling algorithm presented in Chapter 3.

4.3 Task Mapping and Scheduling with H-CNPT and H-MinMin Al-
gorithm

In the Task Mapping and Scheduling PhasfeRT-MapS, the tasks of Hyper-DAGs are
mapped and scheduled on sensors. To medd#pendency Constraimuring task map-
ping and scheduling, if a computation task depends on a comuation task assigned on
another sensor node, tbemmunication scheduling algorithmill be executed to duplicate
the absent communication task. With the Communication @divey Algorithm in Chap-
ter 3.3, task mapping and scheduling in single-hop wireheta/orks can be tackled as a
generic task mapping and scheduling problem with additicoastraints. In this section,
two task mapping and scheduling algorithms, H-CNPT algariand H-MinMin algorithm
are presented with the objective of minimizing MECpN subjedeadline constraints. To
guarantee deadlines, sensors are scheduled with the max@RW speed”**. The H-

cpu

CNPT and H-MinMin algorithms also employ the conceptomputing sensgpresented
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in Chapter 3.4. In RT-MapS, H-CNPT and H-MinMin will itere¢ily search for the optimal

schedule with different number of computing sensors stitbjedeadline constraints.

4.3.1 H-CNPT Algorithm

H-CNPT’s strategy is to assign the tasks along the mostatlitiath first to the nodes
with earliest execution start times. By adjusting the nundfeomputing sensors in each
scheduling iteration and choosing the schedule with thermim MECpN under the dead-
line constraint, the design objective of H-CNPT is achiev&imilar to CNPT [28], H-
CNPT also has two stagebsting stageandsensor assignment stage thelisting stage
tasks are sequentialized into a qudusuch that the most critical path comes first and a
task is always enqueued after its immediate predecessotise $ensor assignment stagge
the tasks will be dequeued fromand assigned to the sensors with the minimum execu-
tion start time. Several scheduling iterations will be rarthe sensor assignment stage
with different number of computing sensors, and only thetropimal schedule is chosen.
Thelisting stageandsensor assignment stagé H-CNPT are introduced individually as
follows.

Listing Stage: The Listing Stage of H-CNPT is similar to that of CNPT [28] ept
that there are two types of tasks in H-CNPT: Computationgaskl communication tasks.
Thus, the formulas to calculate the Earliest Start Tiirt€l'(v;) and the Latest Start Time

LST(v;) of taskw; are different from those of CNPT, and are presented as fsllow

EST(v;) = max {EST(vy)+tm}, (4.4)
vm Epred(v;)
LST(v;) = min {LST(vn)} —ti, (4.5)

Um Esuce(v;)
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Input: Task queud.; number of available sensors in the clustpdeadlineD L
Output: Scheduleff? of tasks inL with the MECpN under the deadline constraint
H-CNPT Algorithm:

. Lyyip, < 00 [*minimum schedule length*/
.MECpN° «— oo  [*optimal MECpN*/
.FOR¢=1top /*Search computing sensor space*/

H = SingleCNPTL,q)
|F length(H) < Ly,  [*shortest schedule*/
Lppin < length(H)
|F length(H) < DLandMECpN(H) < M ECpN° [*optimal schedule*/
10. MECpN°® «— MECpN(H)
11. H° — H
12.1F L,,;, < DL
13. ReturnH®
14. ELSE
15. ReturnH,,;,

©C®NOAWNPE

Figure 4.3: RT-MapS: H-CNPT Algorithm

wheret; equals to the execution length on sensor nodesdf V' or to the execution length
onC if v; € R. After the Listing Phase, the task graph is sequentialimxli and is ready
for the Sensor Assignment Phase. The details of the ListiageScan be found in [28].
Sensor Assignment Stage: In the Sensor Assignment Stage, H-CNPT will iteratively
search the schedule space with different number of compaénsors. Among these sched-
ules, the one with the minimum energy consumption underélaelihe constraint is chosen
as the solution. If no schedule meets the deadline constthi schedule with the min-
imum schedule length is chosen. The detailed descriptiaimeH-CNPT algorithm is

presented in Fig. 4.3.
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Input: task queud.; number of computing sensaofs
Output: Schedule of tasks in
SingleCNPT Algorithm:

while L is not empty

1. Dequeue); from L

2.1Fv; € R [* communication task */

3. Assignu; to nodem(pred(v;))

4.ELSE IF pred(v;) =0 [*entry-tasks*/

5. Assignu; to nodem? with min EAT (m?)

6. ELSE /* non-entry computation tasks*/
7. FOR computing sensorgmy }

8. Calculate EESTX, m;,) with a copy of current schedule:

9. |F pred(v;) € T'(my) [*meet dependency constraint*/
10. EEST(;, my) < max(EAT (mx), fpred(w:).ms)
11. ELSE /*schedule communication to meet dependency constraint*/

12. FORuw, € pred(v;) — T'(my,)

13. CommTaskSchedulg(,m (v,,),mx)

14. EEST(;, my) < max(EAT (mx), fpred(w:),ms)
15. Keep the schedule with minimum EES] (n°)
16. Schedule; onm?’: s,, o «— EEST(v;, m®)

Figure 4.4: RT-MapS: SingleCNPT Algorithm

In Fig. 4.3, SingleCNPTIL,q) is a single round of task scheduling that schedules the

tasks inL with ¢ computing sensors, whetgis the total number of available computing

sensors. The actual number of computing sensors in use cemdier than; depending

on the application and the scheduling algorithm. The cor8in§leCNPT(,q) is the ex-

tended CNPTprocessor assignment algorithnThe basic strategy of the algorithm is to

assign tasks to the sensor with the minimum Earliest Exec@tart Time (EEST). During

task schedulingDependency Constraimbust be satisfied via communication scheduling.

SingleCNPTL,q) is presented in Fig. 4.4.
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In Fig. 4.4,EAT (my) is the Earliest Available Time of node,,, and EESTY;, my) is
the Earliest Execution Start Time ofon sensorn,.. Different from EST, EEST represents

the actual execution start time of a task if assigned on aosensle.

4.3.2 H-MinMin Algorithm

Similar to H-CNPT, H-MinMin also searches for a schedulehvaptimal number of
computing sensors that has the smallest MECpN subject tdehdline constraint. The
H-MinMin’s optimal number of computing sensors searchilgpathm is the same as the
H-CNPT Algorithm in Section 4.3.1, except that the input of the H-MinMin aigfun is
the Hyper-DAG instead of the task quelie and the core of the searching algorithm is
theSingleMinMin instead of thesingleCNPT. In the following, we introduce the procedure
SingleMinMin(Hyper-DAGq) that schedules the tasks of the Hyper-DAG wjtbomput-
ing sensors.

The core of the SingleMinMin algorithm is the fitness funaotioFor each task-node
combination (v,m), the fitness functiofit(m, k, «) indicates the combined cost in time
and energy domain of assigning tasto nodem, whereax is the weight parameter trading
off the time cost for the balanced energy consumption. Tduet@ energy consumption
balance, we define the Fairness Index (FI), which is a vanatif Jain’s Fairness Index
[49], as follows:

FI Sk )" (4.6)

B nzzzl E/? 7

wheren is the number of active sensors. The “active sensors” areghsgors that execute
either entry-tasks or non-entry-tasks./ varies in [0,1], and the closer df/ to 1, the
better the energy consumption balance of the schedule. &k s@p of the SingleMin-

Min algorithm, the task-node combination that gives theimimm fitness value among all
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combinations is always assigned first. To extend and desthib fithess function of the

Min-Min Algorithm in [53], the following notations are intiduced first:

e f,m IS the scheduled finish time ofonm
e F'I(v,m) is the Fl of the schedule after assignimgnm

e NPT(v,m)isthe normalized partial execution time of assigniranm: NPT (v, m) =

fo.m/DL
Thus, the fitness of assignimgon m with « is defined as:
fit(tv,m,a) =a- NPT (v,m)+ (1 —a) - (1 — FI(v,m)). 4.7)

The SingleMinMin Algorithm is presented in Fig. 4.5. In thesdription of
SingleMinMin, a “mappable” task is either an entry-task aimaak that has all immedi-
ate predecessors already been assigned, and the “mapgeblist’ is the list that contains
currently mappable tasks of the Hyper-DAG. For each apjidinawe compare its sched-
ules with differentn value ranging from 0 to 1 in 0.1 increments. The schedule thi¢h
minimum MECpN under the deadline constraint is chosen agpiienal solution among
these candidate schedules. If none of the candidate s@seahglets the deadline, the one

with the shortest schedule is chosen.

4.4 TheDVSAlgorithm

Due to the discrete nature of task mapping and schedulinghedsile that meets a
deadline may do so with some more CPU idle time until the deagWhich is referred to
as “slack time”. The unbalanced load of sensors and the conwation scheduling also
result in CPU idle time between computation and commurooatasks, which is referred
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Input: Hyper-DAG; number of computing sensots:
Output: ScheduleH? of tasks in Hyper-DAG
SingleMinMin Algorithm:

1.FORa=0;a<1.0;a+=0.1  /[*scan differentn value*/
2. FOR entry-tasks; [*first assign entry-tasks*/
3. Assignu; on nodem? with min EAT (m?)

4.  Assignsucc(v;) onmy

5. Initialize the mappable task likt

6. WHILE L is not empty, with a copy of current schedule:
7. FOR taskv; € L [*scan all task-sensor combinations*/
8. FOR all computing sensat,,

9. |F pred(v;) € T (my)

10. FOR v, € pred(v;) — T'(my)

11. CommTask Schedule(v,,,m(v,,),my)

12. Assignu; to my, calculatefit(v;, my, «)

13. Findm¢: fit(v;, m¢, a) = min

14, Keep the schedule with,(n): fit(v,m,a) = min

15. Assignw to m, removev from L

16.  Assignsucc(v) onm [*assign communication task*/
17. Updatd. with any new unassigned mappable tasks

18. Among all schedules with different valuescof

19. |F 3H :length(H) < DL with min M ECpN(H)

20. ReturnH [*optimal schedule*/

21. ELSE

22. ReturnH : length(H) = min  [*best-effort schedule*/

Figure 4.5: RT-MapS: SingleMin Algorithm
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to as a “schedule hole”. In theVS Phasgthe CPU idle time is exploited by decreasing
the CPU speed to reduce computation energy consumption.

Our DVS algorithm is composed of two stages: Schedule Legxtension (SLE)
Stage and Schedule Hole Elimination (SHE) Stage. In the S&ges the slack time be-

tween schedule lengtlength(H) and application deadlin® L is eliminated by propor-

length(H)

5. < 1, and

tionally slowing down all sensors’ CPU speed. l5abe defined ag =
the re-scale factoy asy = [3- f2i%1/ fia” - Here, the functioni f1 is the ceiling function
that returns the minimum available CPU speed greater thagual tof. All processors
are slowed down te - 77", which increases computation tasks’ execution lengths. To
accomplish this, a computation task’s start time, exeauiime, and finish time are mul-
tiplied by y~!. To match the start time of its immediate successors, a canuation task
v;’s finish time £, ..., is also multiplied byy~'. Since a communication tasks execution
lengtht,, ,,,, is independent of the CPU operation as assumed in Sectipit2s?art time
Su;.m,, 1S @djusted toy ™ fo. o, — o, my. -

An example of DVS adjustment is shown in Fig. 4.6. For the sak&mplicity, we
only consider a partial schedule of a senSpwith two data reception®; and R, from
C, and one data transmissidiy to C. It should be noted thak,, R, and R; are assigned
to S1 with zero execution times, while their execution timesCoare all 1 time units (tu).
Assume that the original schedule length is 8 tu with CPU dpgki”, the deadline DL =
12 tu, and the calculated re-scale factof = 1.5. In the SLE Stage of Fig. 4.6, the CPU
speed is reduced 7" /1.5. Consequentlyy,’s start time and finish time are adjusted
from 5 tu and 8 tu to 7.5 tu and 12 tu, respectively. Thereftire,slack time before the

deadline is eliminated. On the other hangls start time and finish time are adjusted from

2 tu and 4 tu to 3 tu and 6 tu, respectively. Thus, the schedcule hetweens; and v,
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Figure 4.6: Demonstration of Partial DVS Adjustment

still exists, which is eliminated in the SHE stage. The tim&ival[ds, df] that contains
the schedule hole is first decided as followscannot start execution befofgy reception
finishes at 3 tu, which make& = 3 tu. v; must be finished before, starts at 7.5 ut and
R3 is transmitted at 8 tu. Thuglf = min(7.5,8) = 7.5 tu. The CPU speed ifils, df]

is further reduced. The schedulew@fis consequently adjusted to finish at 7.5 tu, and the
schedule hole is eliminated. It should be noted that due écdtscrete nature of DVS,
smaller slack time and schedule holes may still exist afigrsgment in general.

The SHE algorithm is presented in Fig. 4.7. The SHE algoritienatively scans each
sensor’s schedule to detect time intervals df] that contain schedule holes. As demon-
strated in Fig. 4.6, a communication tasks’ reception fitiigle is taken as the lower bound
of calculatingds, as a computation task cannot be executed before all of iteehiate pre-

decessors (which are communication tasks) are availaBlequals the minimum of the
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Input: scheduleHd from theMapping and Scheduling Phassensor seb'S, application deadline
DL

Output: Adjusted scheduld’®

SHE Algorithm:

1. FOR sensomy;, € SS

2. ds«+0,df «— [Initialization*/

3. Scan tasks; € T3°(my) in increasing order of start time

4. IF 3acopy ofv; € R: v§ € T(C) [*Transmitted communication task */

5. Find the computation task following v;

6. IF my, is the sender of{

7. df min(svfp, Sv;my) [*Computation must finish before transmitting*/
8. SpeedAdjust(my,ds,df v - fipu”

9. ds — df

10. ELSE *my, is the receiver ob§*/

11. ds < max(ds, fuemy, Sv;,my) [*Computation cannot start before reception*
12. ELSE IF v; is exit-task andf,, < DL  [*Adjustment bounded by deadline*/

13. SpeedAdjust(my,ds,D L,y - fopu”

Figure 4.7: Rt-MapS: DVS SHE Algorithm
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start times of the following computation task and transioissvent launched by:,. Once
a time intervalds, df] that contains a schedule hole is fousheed Adjust() is executed
to eliminate the schedule hole by reducing the CPU speétsinf|. The Speed Adjust()
algorithm is presented in Fig. 4.8. BpeedAdjust(), the CPU utility  during a time
interval[ds, df] is defined as:

n = ey /(df — ds), (4.8)

wheree? is the overall CPU execution time durifng, df]. We first reduce the CPU speed
in [ds,df] to | fu - m]. In Steps 6-10, execution times of computation taskgindf| are
increased according to the updated CPU speed. Note thatlSgest() does not change

the communication schedule én

4.5 Computational Complexity Analysis

Assume that the applicatidfi is represented &6 = (V, E),

V| = v, |[E|] = e, the
number of entry-tasks ig, and the cluster has sensor nodes. Thus, the Hyper-DAG is

T = (V' E"), where|V’'| = 2v and|E'| = 2e.

451 Computational Complexity of RT-MapSwith H-CNPT
The time complexity of RT-MapS with H-CNPT is analyzed asdofs:
e Listing Stage of H-CNPT: similar to CNPT [28], the complegxig O(v + e).

e SingleCNPT: the communication tasks have complexity ofO(1) = O(v), the
entry-tasks have complexity of - O(p) = O(fp), other non-entry computation
tasks have complexity abv — f) - O(p) - O(e/v). Hence, the overall complexity of
SingleCNPT i (v)+O(fp)+(v— f)-O(p)-O(e/v). For the worst case,= O(v?)
andf = O(v), thus the complexity of SingleCNPT 3(pv?) for the worst case.
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Input: sensonny; time interval(ds, df]; original CPU speed.,,,
Output: Adjusted CPU speedl,, and task scheduling duririgs, df]
SpeedAdJ us(mk’lds!df!fcpu):

¥ 0,1t —ds [nitialization*/
.FOR v; € TJ!(m;,) andv; € V' [*Calculate CPU execution time! in [ds,df]*/
df df
€ds < Cas + tvivmk
. — ¥ (df — ds) /*CPU tility in [ds,df]*/
pu < [ fepu -] /*Adjusted CPU speed in [ds,df]*/

.FORv; € Ti{(mk) andv; € V /*Adjust computation tasks*/
Sv;my, < T

fcpu
toimy, < togmy Fou

fvi7mk N SUivmk + tvi7mk

10. tt «— fu,my

11.FORw; € Tjst(mk) andv; € R [*Locally assigned communication task*/
12, IF pred(v;) € T(my)

13. Svismi < Spred(vi)myr foimi < Fpred(vi),my,

14. Update the energy consumptionof

© 0N UTAWNE

Figure 4.8: RT-MapS: DVS Adjustment Algoithm for a SinglenSer in[ds, df ]|
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e RT-MapS with H-CNPT: the SingleCNPT algorithm will be call@(p) times. Thus,
the complexity of the whole algorithm @(v +¢) + O(p) - O(v?p) = O(p*v?) for the

worst case.
45.2 Computational Complexity of RT-MapSwith H-MinMin
The time complexity of RT-MapS with H-MinMin is analyzed adldws:

e SingleMinMin: the complexity of SingleMinMin is dominatda; the loop starting
from Step 6, which is executed(v) times. Similarly to SingleCNPT, the complexity
of the loop starting from Step 7 has the complexityxdb) - O(p) - O(e/v) = O(pe).

Thus, SingleMinMin has the complexity 6f(pv?) for the worst case.

e RT-MapS with H-MinMin: Similar to the analysis of H-CNPT,dlcomplexity is

O(p) - O(pv?®) = O(p*v?) for the worst case.

Regarding the DVS algorithm, the SLE stage needs to adjusisds once, thus has
complexity ofO(v); the SpeedAdjust Algorithmf the SHE stage will only scan and adjust
tasks assigned on each sensors, thus has a complemy]%()f The SHE Algorithm will

scan and adjust all unadjusted tasks at most once, thus baspdexity ofO(v-7) = O(%).

Thus, the complexity of the DVS algorithm (v + v?/p).

4.6 Simulation Results

The performances of the RT-MapS with the H-CNPT algorithmh e RT-MapS with
the H-MinMin algorithm are evaluated through simulatioasd denoted as H-CNPT and
H-MinMin in this section, respectively. The performancelsfA and EbTA is also eval-
uated as benchmarks. DCA is extended with our proposed cocation scheduling
algorithm to deliver the intermediate results of entrykta® the cluster head for further
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processing. DCA algorithm is also implemented with DVS fair tomparison. We first
simulate the video surveillance application described la@er 3.6.2. To further eval-
uate RT-MapS performance, simulations are run on arbiaplications with randomly

generated DAGs. Our simulations with random DAGs study t¢ilewwing scenarios:
e The effect of application deadline constraints
e The effect of number of tasks in applications
e The effect of inter-task dependency
e The effect of communication load

In these simulations, we observe schedule length, deadllis&ng ratio (DMR), MECpN,
Fl, and application energy consumption metrics. The sdeeldmgth is defined as the
finish time of the exit-task of an application, the DMR is defiras the ratio of the number
of the simulation runs whose schedule length is larger thanmposed deadline over the
number of the overall simulation runs, and MECpN and Fl ardedsed in Equation 4.2
and Section 4.3.2, respectively. Application energy camgion includes computation and

communication energy expenditure of all sensors.

4.6.1 Smulation Parameters

In our simulation study, the bandwidth of the channel is eetMb/s and the trans-
mission range to 10 meters. We assume that there are 10 semsosingle-hop cluster.
Sensors are equipped with the StrongARM SA-1100 micromsme whose speed ranges
from 59 MHz to 206 MHz with 30 discrete levels. The parametéiisquation 2.1, 2.2, 2.3
are in coherence with [52], [64], [30] as followg,.. = 50 nJ/b g, = 10 pdibn?, Vi =
26 mV,C =0.67 nF,[,=1.196 mA,n = 21.26,K =239.28 MHz/V and: = 0.5 .
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DL Metrics H-CNPT|H-MinMin | EbTA | DCA
Schedule Length (ms) 3.00 3.59 3.01| 5.64
3ms MECPN (uJ) 585.2 320.2 |842.8|1138.9
Energy Consumption (uJ)2178.1| 2145.2 |2262.72238.4
Schedule Length (ms) 4.97 4.97 4.87 | 5.64
5ms MECPN (uJ) 344.2 237.9 |509.4|1138.9
Energy Consumption (uJ)1278.8| 1587.3 |1816.82238.4
Schedule Length (ms) 6.93 6.93 6.61 | 6.90
7 ms MECPN (uJ) 267.2 177.7 | 384.8| 834.5
Energy Consumption (uJ)993.6 | 1196.4 |1934.01594.

Table 4.1: RT-MapS: Simulation with the Visual Surveillartexample

4.6.2 Simulation with aReal-life Example: Distributed Visual Surveil-
lance

In this section, we evaluate the performance of RT-MapS, P& EbTA algorithms
with the real-life example of distributed visual surveilte presented in Fig. 1.1. The ap-
plication is as described in Section 3.6.2 and abstractddtive DAG in Fig. 3.6. In the
simulation, we consider a single intrud@f6 x 256 gray-scale images, the task compu-
tation load of 200 KCC fol;, — V4, computation load of 10 KCC forz — V35, commu-
nication volume of 20 bytes foFy, — Es5;, and the communication volume of 40 bytes
for E4s — Eg19. As shown in Table 4.1, both RT-MapS algorithms have betpacity to
meet deadlines than DCA when deadlines are small. In thisfgpapplication where all
communications are unicast, EbTA outperforms H-MinMinennis of meeting deadline
constraints, while H-CNPT still performs the best. Regagdenergy consumption, both
RT-MapS algorithms have smaller MECpN than DCA and EbTA.d&dmg the compari-
son of RT-MapS algorithms, H-MinMin achieves smaller MECywith the cost of higher

application energy consumption.
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4.6.3 Simulation with Random DAGS

Simulations are run on randomly generated DAGSs, which agated based on three
parameters: The number of tagksmTaskthe number of entry-tasksumEntry and the
maximum number of predecessonsaxPred The number of each non-entry task’s prede-
cessors, the computation load, and the communication détane of a task are uniformly
distributed over [LmaxPred, [300K CC,£10%], and [800 bits;£10%)], respectively. The
simulation results presented in this section correspotidg@verage of two hundred inde-

pendent runs.

Effect of Application Deadlines

The effect of application deadlines and DVS adjustmentrarestigated with randomly
generated DAGs asumTask= 30, numEntry= 10, andmaxPred= 5. To evaluate the
effect of DVS, the performance of DCA, EbTA, H-CNPT and H-Miim before the voltage
adjustment (denoted as DCA*, EbTA*, H-CNPT* and H-MinMirrgspectively) are also
investigated.

As shown in Fig. 4.9(a) and Fig. 4.9(b), both RT-MapS aldons have better capabil-
ity to meet small deadlines than DCA and EbTA. Compared to DRAMapS can have
multiple computing sensors in parallel according to desdtonstraints, while DCA has
only one sensor for high level computing. On the other hamoligh EbTA also employs
multiple sensors for computing, it does not exploit the diczest nature of wireless com-
munication like RT-MapS does. In EbTA, a task must send mftdion individually to its

immediate successors with larger overall communicatioe tiSuch multi-communication
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feature also introduces higher dependency between taska&/@aken the parallelism be-
tween sensors, which leads to larger schedule lengths armt nergy balance level. Re-
garding the comparison of the RT-MapS algorithms themseMeCNPT outperforms H-
MinMin in term of schedule lengths and DMR when deadlinessanall. The scheduling
criteria of H-CNPT is determined only by schedule lengthkilevthe fitness function of
H-MinMin is a combination of schedule length and energy comgtion. The tradeoff be-
tween schedule length and energy consumption degradesttedige length performance
of H-MinMin algorithm.

As shown in Fig. 4.10(a) and Fig. 4.10(b), the H-MinMin alglom outperforms other
algorithms in terms of energy consumption balance for maostileted scenarios. In DCA,
most tasks are run on a single sensor while H-MinMin can gveistribute tasks among
multiple sensors to obtain energy-balanced schedulesmtitte communication feature of
EbTA decreases the parallelism between sensors and leadbadtanced energy consump-
tion. Furthermore, the sensor with the most computatiocialidies is burdened by higher
communication energy consumption in EbTA, which furthesrdases energy consumption
balance. On the other hand, the broadcast scheduling éeattiRT-Map$S conserves com-
munication energy consumption and eases parallel scimgdoditween sensors. Regarding
the comparison of H-CNPT and H-MinMin, H-MinMin still outderms H-CNPT by tak-
ing energy consumption fairness into account when calcgjéitness value and scheduling
tasks.

Regarding application energy consumption, when deadhneselatively large, com-
putation tasks in RT-MapS are distributed among multiplesses to achieve energy bal-
ance, which leads to higher application energy consumptiento more communication

activities (Fig. 4.10(c)). However, after implementing thVS algorithm, the application
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energy consumption of both RT-MapS algorithms are smdilen DCA and EbTA due to
the larger exploitable slack time before deadlines.

As we can see from Fig. 4.10(a) and Fig. 4.10(c), our DVS d#lgoris an effective
approach for energy efficient solutions. When deadlinessaficiently large, the DVS
adjustment results in about 50 % energy consumption savingpushing” the schedule
length close to the deadline in RT-MapS. Even when deadkimnegelatively small and
there is little slack time before application deadlineg BVS adjustment of RT-MapS
can still save about 15% energy compared with the scenartbsut the DVS adjustment.
This energy saving stems from eliminating the scheduleshcéeised by the unbalanced
load of sensors and communication scheduling. On the otted,ithe DVS algorithm
of EbTA cannot exploit the slack time of unbalanced sensdrennschedule lengths are
over deadlines. It should be noted that though the DVS adjeist may increase schedule
lengths (Fig. 4.9(a)), the DMR is not affected (Fig. 4.9¢b))any of the simulated deadline

values.

Effect of Inter-task Dependency

The inter-task dependency is determined by the in/out @egfeapplication DAGSs.
Simulations with sets of DAGs withax Pred = 5 andmaxzPred = 10 (numTask = 30
numEntry= 10) are executed.

According to the simulation results of Fig. 4.11 and 4.12, ithter-task dependency
barely affects the performance of DCA due to the fact that Dita& most of the tasks
executed on the cluster head, and therefore has the leakfare®@mmunication. On the
other hand, EbTA is significantly affected by the incremehinter-task dependency, as
more communication events are needed to deliver a taski# tesits immediate succes-
sors with higher inter-task dependency. Regarding the Rp3/algorithms, increasing the
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in/out degree of DAGs only leads to higher dependency betveeeommunication task
and its immediate successors without introducing new comcation tasks, thus they are
less affected than EbTA. But greater dependency degreesbattasks leads to less paral-
lelism between sensors and a larger number of communidaisés scheduled afy which
leads to more energy consumption and longer schedules., THu&T-MapS algorithms
are affected more by inter-task dependency increase than BG@mpared with H-CNPT,
H-MinMin is affected more and has a higher possibility of siig deadlines when the com-
munication load increase. However, in all simulated sdgesaboth RT-MapS algorithms
outperforms DCA and EDbTA in terms of guarantee deadline tcaimés with minimum

MECPpN.

Effect of Number of Tasks

To investigate the effect of the number of tasks in applacetj simulations are run on
randomly generated DAGs with 25, 30, 35 tasksriEntry= 10, maxPred= 5).

According to Fig. 4.13 and 4.14, the performance of all athars degrade with the in-
crease of application scales, and energy consumption isndbed by the number of tasks.
When the number of tasks increases, the application enemgumption and MECpN of
all algorithms increase proportionally. However, the R&) algorithms have smaller en-
ergy consumption than DCA and EbTA for all simulated scesariRegarding schedule
lengths and DMR, though all algorithms are affected whemtimaber of tasks increases,
the RT-MapS algorithms are less affected due to their be#gacity to meet deadline con-

straints by adjusting the number of computing sensors.
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Effect of Communication Load

For task mapping and scheduling in wireless networks, tlaioaship between com-
munication and computation load may affect the overallgrenince. This factor is evalu-
ated by changing the average communication data volumefiwgti average computation
load. Simulations are run with randomly generated DAGs witmTask= 30, numEntry
=10,maxPred= 5. The two different settings of DAGs have communicatiotadelume
uniformly distributed in [800bit;+10%], and [1000bit£10%)] with task computation load
uniformly distributed in [300KCC;:10%].

As shown in Fig. 4.15 and 4.16, the performance of all sinedlatlgorithms are af-
fected by the communication load increment. Among all atgors, EbTA is affected the
most by communication load increment in terms of scheduigtle DMR, MECpN, and
application energy consumption. Since DCA has most of gkgaxecuted on the clus-
ter head, it has the least communication tasks scheduledeoohannel. Thus, DCA is
affected the least regarding energy consumption and MEGmwbmmunication load is
increased. On the other hand, the RT-MapS algorithms assss on different sensors to
speed up execution, which leads to more communication &dteduled o@. Thus, the
RT-MapS algorithms are affected more by the communicatan increment than DCA.
On the other hand, due to their broadcast scheduling feahedrT-MapS algorithms are
less affected by communication load changes compared VfAEIt is observed that,
even when communication load increases, the RT-MapS #hgasistill outperform DCA

and EbTA with smaller MECpN subject to deadline constraints
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CHAPTER 5

REAL-TIME TASK MAPPING AND SCHEDULING IN
MULTI-HOP CLUSTERED WIRELESS SENSOR NETWORKS

In Chapter 3 and 4, task mapping and scheduling solutionprasented for single-
hop clustered WSNs. However, clustering sensors intoaihgp groups leads to a large
number of clusters, and consequently comes with the cosirgélcommunication and
routing overhead [9] [68] in large-scale WSNs. Many mulbtiphclustering algorithms
have been proposed for large-scale WSNs [4] [9] [67], whiobviale better scalability
and energy-efficiency. Thus, it is desirable to develop ngmeeral task mapping and
scheduling solutions for multi-hop clustered WSNSs.

In this chapter, we propoddulti-Hop Task Mapping and Scheduling (MTM$®hich
provides the in-network computation capacity required tteary real-time applications
in multi-hop WSNs. The following network assumptions in #ida to those in Chapter

2.2 are made for multi-hop WSNs discussed in this chapter:

e Homogeneous sensors are grouped foop clusters with a clustering algorithm
such as [4] [9] [67]. We define &-hop network as a connected netwdrkwith
diameterdiam(G) < k, wherek is the hop count of the longest path connecting any

two nodes.
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e Location information is locally available within clustetfsrough localization algo-

rithms such as [14] [51].

e Same as that in Chapter 4.1, we assume that sensors areejuipip DVS proces-

sors such as StrongARM SA-1100 [52], and DVS adjustmentrmaat is negligible.

MTMS aims to guarantee application deadlines with the mimmenergy consump-
tion. LetCommEng(my) represent the communication energy consumption of a ngde
including data transmission, reception, and forwardinige @lesign objective of MTMS is

to find a schedulé/® € { H*} that has the minimum energy consumption under the delay

constraint:
Find H° = arg min energy(H), (5.1)
whereenergy(H) = Z Copmy, + Z CommEng(my), (5.2)
ik k
subject tdlength(H) = max Joime < DL, (5.3)

whereenergy(H) andlength(H) are the overall energy consumption and the schedule
length of H, respectively, and L is the deadline of the application. MTMS not only maps
and schedulesomputation task$o sensors in parallel to accelerate execution, but also
addressesommunication schedulirgmong sensors in@ulti-hopcluster of WSNs. The
Hyper-DAG application model presented in Chapter 3.2 isleyga in MTMS. A novel
model is developed to abstract multi-hop wireless chaniigdsed on this channel model,
multi-hop communication scheduling algorithm is integchtis part of MTMS with the
collision avoidance feature. The resulting start and fitiistes of communication events
constitute the schedule used by the MAC. As a cross-layertieal MTMS schedules
computation tasks at the application layer as well as thespeiated communication at
Medium Access Control (MAC) and network layer.
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5.1 Outline of the Proposed MTM S Solution

Similar to RT-MapS in Chapter 4, the proposed MTMS solutitso das two phases:
Task Mapping and Scheduling Phaaad DVS PhaseIn the Task Mapping and Schedul-
ing Phase communication and computation tasks are scheduled wétptbposed task
schedule search engine (TSSE) algorithms. To guaranteirdeaonstraints, computa-
tion tasks are scheduled with the highest CPU speed in tHeMapping and scheduling
Phase. Two low-complexity TSSE algorithms are developéh thie objective to minimize
application energy consumption subject to deadline caimgty. One TSSE algorithm is an
extended version of the Min-Min algorithm[11] [53] for muliop WSNs, Multi-hop Min-
Min (MMM). Another TSSE algorithm is the Dynamic Criticabth Task Mapping and
Scheduling (DCTMP). Our proposed communication schedudilgorithm is embedded
in the execution of the MMM and DCTMP algorithms to satisfe bependency Con-
straint The DVS algorithm presented in Chapter 4.4 is implememngtie DVS phasdo
further reduce the energy consumption. In the following¢ises, the main components
of the MTMS solution, namely, communication schedulingoaitnm, and the MMM and

DCTMP algorithms, are presented.

5.2 Multi-hop Network Channel M odeling

To properly schedule communication events, we model thei+hap channel as a vir-
tual nodeC on which only communication tasks can be executed. Diftgrem the virtual
node model in [26] and Chapter 3 and 4, where only single-th@muels are considered,
our multi-hop channel model takes potential interfereret@ben simultaneous communi-

cations into consideration.
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Unlike in single-hop networks, there can be multiple sirmnéous communications in
multi-hop networks. Thus, the virtual nodein multi-hop channel model should be able
to execute multiple communication tasks simultaneousty.avoid interference between
scheduled communication tasks mehalty functiohis introduced into the cost function of
communication scheduling. Under the unit disc graph matel;'penalty” of scheduling
a communication task is zero if it does not cause interfereotherwise, it is infinite. The
communication scheduling algorithms will only scheduleommmunication task with the
minimum finite cost. The penalty functioR/’(v) of assigning a communication task

ontoC during time intervalst, ft] is defined as:

; ft .
P(w) = {oo,Zf 3 € T1/(€) :S(7) € N(RW)) or RYEN(S()) (5.4)

0, otherwise,

whereS(vy) and R() are the sender and receivers of communication taskspectively,
and N (my) is the set of senson, s one-hop neighbors. With the penalty function defined

above, the multi-hop channel model is presented as follows:

e The wireless channel of a cluster is modeled as a virtual dodd! cluster members

are considered to be directly connected with

e The channel nodé executes communication tasks only. All communicationgask
exchanged between sensor nodes must be routed th€oudte available time, start
time, execution time, and finish time of a communication tgsécheduled o€ are

represented byt,, ¢, sy, ¢, ty, ¢, @andf,, ¢, respectively.

e A communication task assigned Grstands for an ongoing data communication. Its
execution time o equals its communication length via the wireless channeé T
corresponding data transmission and reception energyungiton are accounted
for by the sender and receivers following Equation 2.1 a@dr2spectively.
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e There can be multiple communication tasks scheduled ontime interval[st, ft],

which are denoted a&// (C).

e The cost of executing communication taslonC in time interval[st, ft] is cost(v;, st, ft)
= P (v;) + g(st — at,, ¢), whereg(z), z > 0, is a monotonically increasing func-
tion. The penalty functiod®//(v;) represents the scheduling feasibility{i, f¢]. If
a schedule causes interference, the cost function becafirgteisinceP?! (v;) = cc.

For such scenarios, the communication scheduling algostearch for another time
interval to avoid packet collisions. Otherwise, the costction is determined by
g(st —aty, ) asPsftt(vi) = 0. Sincest — at,, ¢ denotes the delay betweeys avail-

able time and scheduled start time, minimizi(@t — at,, ¢) leads to the selection

of the earliest feasible executiongfonC.

It should be noted that the penalty function presented hesetpkes communication
interference into account. However, the penalty functian be further extended with
factors such as link quality. We defer the discussion ofa#teve penalty functions to our

future work.

5.3 Communication Scheduling Algorithm

To meet theCommunication Dependency ConstraimtHyper-DAG scheduling, com-

munication scheduling between nodes is required if a coatjout task depends on a com
munication task assigned on another node. The commumicstireduling algorithm pre-
sented in this section is used in conjunction with the taskpimay and scheduling algo-
rithms described in Section 5.4.

In multi-hop clusters, the sender and the receiver of a comeation task can be one
or more hops away from each other. We schedule multi-hop aamgation following the
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paths generated by a routing algorithm. In every hop, we hus@ne-hop communication
scheduling algorithm.

We first introduce the one-hop communication schedulingrétym. With the Hyper-
DAG and the multi-hop channel models presented in Sectidnuhicasting communica-
tion taskv; from sensorn, to its single-hop neighbor,. through the wireless channel can
be modeled as followsy; is first duplicated frommn, to C, which stands for originating
the data transmission. The duplicated cegys then executed o@ for the duration of
the communication length, which denotes the procedure efldta transmission. After
v$ is finished byC, vf is duplicated tan,, which represents the end of the data transmis-
sion. Aftervf is duplicated tom,, the transmitted data is available to computation tasks
assigned ton,.. Any given transmission can potentially reach multiplesreers if they do
not interfere with neighboring communications. From thespective of task scheduling,
broadcasting is similar to unicast communication excegitdhwill be duplicated to mul-
tiple receivers after it is finished ah Broadcasting may lead to significant energy saving
compared with multiple unicasts between the sender andvegse Thus, in communica-
tion scheduling, we always consider the possibility of iéog broadcast data first. The
detailed description of the single-hop communication daktiag algorithm is presented in
Fig. 5.1.

In Fig. 5.1, Steps 4-18 stand for originating a new commuiaoafrom m, to m,.

If a communication task has multiple immediate successoisetscheduled on different
sensors, multiple receptions of the broadcast data witimbetference can be scheduled
in Steps 21-27. Compared with originating a new commurocafior each recipient, the

broadcast reception method leads to energy saving of oadrdaismission for each addi-

tional data reception.
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Input: Communication tasko;; sender ofv;: mg; receiver ofv;: m,.
Output: Schedule of duplicating; from m, to m,
OneHopSchedule(v;,mg,m;.):

1.IFv; € T(m,) /*No need to communicate if; already onn,.*/

2. Return;

3. Find a copy ob;: v§ € T'(C), S(v§) =ms [*ms sentv; before?*/

4. 1F v{ does not exist /*No, unicast scheduling from scratch*/
5. Findw; € T(my)

6. Find time interval [st,ft]:

7. cost(v;, st, ft) = min /*Find interval with minimum cost*/

8. st > fuimer [t — st =ty ¢ [*Make surev; can be executed aft/

9. Schedule a copy af; to C:

10.  syec < st, foee — ft
11.  T(C) « T(C) U {v§}

12. Update the energy consumptionnof

13. Schedule a copy of to m,.

14. Sv{,mr — fvf,C

15. form,. < foec [*Communication tasks’ execution time is zero on sensors*/
16. T(my) < T(m,) U {ov]'}

17. Update the energy consumptionmoef

18. Return

19ELSE [*Yes, try broadcast reception first*/

20. st spee, ft— fuec [*Considerv;’s transmission duration*/

21. IF Ay e Ts’;t(C) :S(y) € N(my,) [*Receivingvy won't be interfered*/

22. Schedule a copy of tom,: [*Receive the broadcasted packet*/

23. Svir,mr — fvic,C

24. form, — fuec /*Communication tasks’ execution time is zero on sensors*/
25. T(mg) — T(my) U{vi}, R(vf) < R(vf) U {m.}

26. Update the energy consumptionof

27. Return

28. ELSE [*Within transmission range of ongoing transmission’sdeaty

29. Goto Step 5 /*Need to schedule another transmissiaon fobm m*/

Figure 5.1: MTMS: Communication Task Scheduling Algoritbetween One-hop Neigh-
bors
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In our multi-hop communication scheduling algorithm, atnog algorithm is used to
obtain thepath = (my,...,m,) from senderm to receiverm,, wherem,; = m, and
m, = m,. In this paper, we employ the low complexity stateless gaplgic routing
algorithm, GPSR [37]. After obtaining the path, the comneation task will be iteratively
duplicated from the source to the destination following@he:H opSchedule() algorithm.

Similar to that of the one-hop communication schedulingp@munication task may
be requested by several destinations that are multiple aapy. Thus, multicasting is
desirable to shorten communication latencies as well agtoedse energy consumption.
The first time a communication taskis requested fromn, to m,., unicast path is formed
from the source to the destination, which is a distributiee with no branches. In the sub-
sequent scheduling steps, each titnes requested by another sensoy, the distribution
tree branches and expandst@ by connectingn, with the nearest node on the existing
tree. The detailed description of the multi-hop commumicascheduling is presented in

Fig. 5.2.

5.4 Multi-Hop Task Mapping and Scheduling Algorithms

In theTask Mapping and Scheduling Phatasks of a Hyper-DAG are assigned to sen-
sors andC. During task mapping, several constraints must be satisfiedse constraints

together with theCommunication Dependency Constraané represented as follows:

e A computation task can be assigned only on sensor nodegyies V : ¢, ¢ =

00, Cy; ¢ = OO

e A communication task can be assigned on sensafs or
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Input: Communication tasky;; receiver ofv;: m,.; sensor sef S
Output: Schedule of duplicating; to m,.
CommTask Schedule(v;,m,.):

1. Find a copy of;: [*Has v; been distributed before?*/

2. vweT(C)

3. IF v§ does not exist: /*No, initialize a communication gf/
4 Find the sensor node,: v; € T'(ms) [*Find the sender of;*/

5.  Find the path fromn, to m,.

6 path = (M1, ...,my), M1 = Mg, My = My

-

8
9

Form; = moy tom,, [*Iteratively forwardv; to m,.*/
OneHopSchedule(, mg, my)
. mg <— My
10. Return
11.ELSE /*Yes, branching from the nearest nodente*/
12.  Find a copy of);:
13. v € T'(C) s.t. distance betweef(v{) andm,. is minimum

14. mg — S(v?)
15. Goto Step 5

Figure 5.2: MTMS: Communication Task Scheduling Algorithm
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e A communication task assigned on a sensor denotes data stor@de memory,
and is ready for processing on the same node. Thus, its exeduhe and energy

consumption are zero.

e A non-entry computation task assigned on a sensor must fateimmmediate pre-
decessors available before it can start execution, i.e;, & V andpred(v;) # 0,

thenpred(v;) C T'(m(v;)) ands,, m(w,) = MaX fpred(v;)m(w;)

With theHyper-DAG representatigmulti-hop channel modgCommunication Schedul-
ing Algorithm and thdask mapping constrainfgesented above, task mapping and schedul-
ing in multi-hop wireless networks can be tackled as a geriask mapping and schedul-
ing problem with additional constraints. This problem is-b#nplete in general [25]
and heuristic algorithms are needed to obtain practicaitieols. Two task mapping and
scheduling algorithms, Multi-hop MinMin (MMM) and Dynam(@ritical-path Task Map-
ping and Scheduling (DCTMS), are presented in this secflonguarantee deadline con-

straints, both MMM and DCTMS schedule computation task e highest CPU speed.

541 TheMMM Algorithm

Due to its satisfactory performance at relatively low coexgly, Min-Min algorithm
[53] is modified and implemented in MTMS. The modified Min-Matgorithm is devel-
oped for multi-hop environments, and is referred to as theNWidigorithm.

The core of the MMM algorithm is the fithess function. For etagk-node combination
(v;, my), the fitness functiorfit(v;, my, «) indicates the combined cost in time and energy
domain of assigning task to nodem,, wherea is the weight parameter trading off the
time cost for the energy consumption cost. At each step oM algorithm, the task-
node combination that gives the minimum fitness value amdropmbinations is always
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assigned first. To extend and describe the fitness functidgheoMin-Min Algorithm in

[53], the following notations are introduced first:
e DL is the application deadline relative to the applicatiomtgtme.

e f...m, 1S the scheduled finish time of onm,, relative to the application start time.

fv:.m, denotes the partial schedule length of the applicatiom afisigning;.

e P A(v;) is the amount of energy consumption on all nodes for the egipdin so far

before the assignment of.

o PE(v;, my) represents the application energy consumption increasesfgningy;
to my. A computation task; cannot be executed on; unless all of its immediate
predecessors (which are communication tasks) are avaitabl,. Thus, a copy
of v;’s all immediate predecessor that are not stored jimmust be scheduled ta,..
PE(v;, my) is the sum of communication energy consumption of sendingiaking
data tom, and the computation energy consumption associateduwy#lexecution

onmyg.

e The tradeoff between schedule length and energy consumiptachieved by taking
a weighted sum of two unitless entities. The first one is thenatized partial sched-

ule lengthN PT (v;, my) = fume \We also normalizé’ E(v;, my) by EPA(v;) and

- DL *
use it as the second contributor to the fithess functhé®.E (v;, my,) = ]f]gﬁg’;).
Thus, the fitness function of assigningto m,, is defined as:
fit(vy, mg, o) = a- NPT (v;,my) + (1 — ) - NPE(v;, my,). (5.5)

The MMM Algorithm is presented in Fig. 5.3. In the descriptiof MMM, a “map-
pable” task is either an entry-task or a task that has all ichate predecessors already been
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scheduled, and the “mappable task list” is the list that @mst currently mappable tasks
of the Hyper-DAG. During the initial scheduling, sensore acheduled with full speed

o For each application, we compare schedules with differevlues ranging from
0to 1in 0.1 increments. The schedule with the minimum eneansumption under the
deadline constraint is chosen as the optimal solution antioege candidate schedules. If
none of the candidate schedules meets the deadline, theitmthesshortest schedule is
chosen. Since different values@ftepresent different tradeoffs between scheduling cost in
time and energy domains, thevalue is kept unchanged in Steps 2-15. However, different
applications may find optimal schedules with differantalues.

In WSNs, sensors are prone to failures. In case of sensardaijlthe former schedule

will not be a feasible solution. For such a situation, redciiag with MMM is needed

to recover the functionality. To adjust the previous schedsi also a viable solution to

quickly recover sensor failures, which will be part of outuke work.
542 TheDCTMSAIlgorithm

Our proposed Dynamic Critical-path Task Mapping and SclegyDCTMS) algo-

rithm is composed by the following procedures:

e Dynamic critical-path evaluation and optimal task setat{iDCEQOTS)

e Optimal sensor searching and task assignment (OSSTA)

The DCEOTSprocedure calculates the critical-path of Hyper-DAGs, &nds the most
critical task of the critical-path to be assigned in the O&8Sfage. Here, a “critical-path”
is a set of tasks in a DAG, along which tasks potentially hénelargest execution time
and may determine schedule lengths. In@®STAprocedure, the selected task will then
be experimentally assigned to “active sensors”. Amongehask-sensor combinations,
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Input: Hyper-DAG; sensor sefs'S

Output: ScheduleH*° of tasks in DAG with optimized energy consumption under deadli
constraints

The MMM Algorithm:

1.FORa=0;a<1.0;a+=0.1

2. Assign entry-tasks witkntry-task Assignment Constraint

3. Initialize the mappable task likt

4. WHILE L is not empty /*Repeat until all tasks assigned*
5 FOR taskv; € L [*Calculate with all (task,sensor) combinations*
6 FOR all computing senson,

7. |F pred(v;) € T'(mg) [*Ensurecommunication dependency constréint

8 FOR v, € pred(v;) — T (my,)

9. CommTask Schedule&(v,,,m (v, ),mx)

10. Assignu; to my, calculatefit(v;, my, )

11. Findm?: fit(v;, m¢, ) is minimum

12. Find the task-sensor pair,{n): fit(v, m,«) is minimum

13. Assignw to m, removev from L

14. assignsucc(v) onm /*Locally assign communication task on sensor?
15. Updatel with any new unassigned mappable tasks

16. Among all schedules with different valuescof
17. IF 3H :length(H) < DL with min energy(H)
18. returnd

19. ELSE

20. returnH : length(H) = min

Figure 5.3: MTMS: MMM Algorithm
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the assignment that gives the shortest schedule lengtlogenh Here, an “active sensor”
is a sensor that either runs computation tasks or partespat communication activities
by sending, receiving or forwarding communication taskise fietwork topology is taken
into consideration when calculating critical-paths in B@TMS procedure. The commu-
nication scheduling algorithms presented in Chapter Se3arbedded into the execution
of the DCEOTS procedure. Both of the DCTMS and DCEOTS proe=iare iteratively
executed until all tasks are assigned. The details of theNd&algorithm are described in

the following sections.

The DCEOTS Procedure

The core of the DCTMS scheduling algorithm is BEEOTS Proceduréhat dynam-
ically evaluates critical paths. Unlike traditional dynangritical path scheduling algo-
rithms that have wired connections between processorsfiwgti communication latency,
DCTMS is executed on Hyper-DAGs in multi-hop WSNs. Thus, ¢tbenmunication la-
tency of a communication task is not only determined by datanae but the assignment
of the communication task. Depending on locations of sended receivers, communi-
cation tasks may travel various number of hops, which leadgstious communication
latency of a same communication task in a Hyper-DAG. Howe@nmunication latency
is needed in evaluating critical paths. Since the seleask will be experimentally as-
signed to each active sensor, a natural estimation methodnomunication latency is to
take its average across all active sensors Alet,,, be the average hop-distance between
all active sensors, the average communication latency ofraraunication task; between
active sensors bdV Gy, - R,,/BW, whereR,, is the data volume of;, and BIW be the
channel bandwidth. Each time when an idle sensor is invalvedmputation or commu-
nication activities, it becomes an active sensor, andittiér,,, is updated accordingly.
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The details of the DCEOTS procedure is presented in Fig. ThéDCEQOTS Procedure
dynamically calculates critical paths. Similar to the E#Nalgorithm in [60], DCEOTS
first iteratively calculates the earliest start tim7'(v;) of task v; by traversing down
Hyper-DAGs. For tasks that have already been assigned,BEBdi equals their scheduled

start time. Otherwise, their EST is given by:

EST(v;) = max {EST(v)+t,}, (5.6)
vepred(v;)
C, ) fmax ) R
wheret, = { Av/éiif{Rf/ [ (5.7)

whereC, is the the computation load of
Similar to EST, the latest start time (LST) is calculated tawéling up Hyper-DAGs
from the exit task. For exit-tasks and assigned tasks, L&lrequals to their EST. Other-

wise, their LST is given by:

LST(v;) = min {LST(v)} —t,,, (5.8)

vesuce(v;)

wheret,, has the same definition &sin Equation 5.7.

Starting from the exit-task, the path along which tasks liaeesame value of EST and
LST is the critical-path. A task already been assigned isconasidered when calculating
critical-paths. Thus, a dynamic critical path ends whersk'sdmmediate predecessors are
scheduled tasks. Such an unscheduled “top” task that isstiég the scheduled tasks is
called a primary critical-node (PC). A “mappable” PC will passed to the OSSTA proce-
dure for further processing. Here, a mappable task is egthemntry-task or a task whose
immediate predecessors are already scheduled. If the P& imappable, aecondary

critical-pathwill be found: Starting from the PC, a task’s immediate predsor with the
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Input: Hyper-DAG; Partial schedule on Sensor set SS
Output: Mappable PC or SC
The DCEOTS Procedure:

1. Traverse down Hyper-DAG, calculate EST for each task

2. Traverse up Hyper-DAG, calculate LST for each task

3. Vtop “— Vegit [*search for PC/SC starting from the exit task*
4. WHILE none ofpred(v:p) has been scheduled [*traverse up the primary critical*path
5. Findv; € pred(viep) :

6. EST(v;) = LST (v;)
7.

Vtop < Vi
8. IF vy, is mappable [*mappable PC is found*/
9. Returnuy,,
10.ELSE [*search for mappable SC*/
11.  WHILE vy, is not mappable /*traverse up the secondary critical-gath*
12. Findv; € pred(viep) :
13. LST(v;) is minimum
14. Vtop < Vj

15.  Returnu,,

Figure 5.4: MTMS: DCEQOTS Procedure

minimum LST is iteratively added to the path until a mappdagk is found. Such a map-
pable task on the secondary critical-path is called a sengnatitical-node (SC), and is

passed to the OSSTA procedure for further processing.

The OSSTA Procedure

The OSSTA procedure is presented in Fig. 5.5. In each iteraif Steps 3-14, the
mappable PC or SC found in the DCEOTS procedure is schedBlmdeach task?’, we
compare the schedules witH assigned to different active sensors. Among all candidate
schedules, the schedule with the earliest finish time & chosen. When assigning a task

v° to my, if any immediate predecessor of is not available onn,, the communication
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Input: Hyper-DAG; sensor sefs'S
Output: Schedule ob°
The OSSTA Procedure:

1. Assign entry-tasks according Emtry-task Assignment Constraint
2. Initialize AV Gy,

3. WHILE not all tasks assigned

4.  Find the next PC or S&’ with the DCEOTS procedure

5 IFv e R [*communication tasks locally assigned*/
6 Assignu® to m(pred(v?))

7. ELSE [*computation tasks*/

8 FOR all active sensorsiy, /*schedule active sensor space*/

9 IF pred(v®) < T(my)

10. FOR v,, € pred(v°®) — T'(my,)

11. CommTask Schedule(v,,,m(v°),my)

12. Assignu® to my,

13. Keep the schedule with°: f,o ;0 = min

14. UpdateAV G, if new active sensors involved

Figure 5.5: MTMS: OSSTA Procedure

scheduling algorithms are executed to duplicate a copyeofitissing immediate predeces-
sor ontomy. This procedure repeats until all tasks are scheduled.nQuhe scheduling,

sensors are scheduled with full speff® to guarantee deadlines.

5.5 Computational Complexity Analysis

We first assume that there argensors in & — hop network, and the DAG has tasks
with e edges. Thus, the extended Hyper-DAG hasomputation tasky communication

tasks, and the average in-degree of computation tagksis
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5.5.1 Computational Complexity of MTM Swith MMM

The computational complexity of the MTMS solution with thev¥ algorithm is an-
alyzed as follows:

In the MMM Algorithm, the loop from Step 8 to Step 9 is executed) (<) time, the
loop from Step 6 to Step 10 is executed(ris) time, and the loops starting from Step 5
and Step 4 are both executed(xn) time. The communication scheduling algorithm has
a complexity determined by the routing algorithm. The gapgic algorithm GPSR has
a complexity ofO(k). Thus, the complexity of theask mapping and scheduling phase
O(%-s-n*-k)=0O(ensk).

As discussed in Chapter 4.5, the complexity of the DVS atgoriis O(n + n?/s).
Taking both of théask mapping and scheduling phas&l theDVS phasénto account, the
overall complexity of MMM isO (ensk +n+ %2). As we assume that sensors are uniformly

distributed in a network, we have= O(k?) and the overall complexity i®(enk?® + Z—i).

Sincee = O(n?) in general, we ged (n*k* + ).
5.5.2 Computational Complexity of MTM Swith DCTMS

The computational complexity of the MTMS solution with th€€DMS algorithm is
analyzed as follows.

The loop starting from Step 3 is executédn) times. Similar to the listing stage of
the listing stage of the E-CNPT algorithm in Chapter 3, DCEBOias the computational
complexity of O(n + e). The loop between Step 8 and 12 is executdd) times, the
loop of Step 10 and 11 is executéde/n) times. Since the communication scheduling
algorithm has complexity of)(k), the overall computational complexity of DCTMS is

O(n-(O(n+e)+ O(sek/n)) = O(nv + ne + sek).
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Taking the DVS algorithm into account, the computationahptexity of the MTMS
solution with DCTMS isO(n + n?/s) + O(n? + ne + sek) = O(n* + ne + sek + n?/s).
As we assume that sensors are uniformly distributed in agré&twe haves = O(k?) and

the overall complexity i) (n? + ne + ek + %5) = O(n® + n?k* + ) (e = O(n?)).
5.6 Simulation Results

The performances of the MTMS solution with the MMM algorittand the DCTMS
algorithm are evaluated through simulations, and dencselddM and DCTMS in this
section, respectively. The performance of DCA and EbTASs avaluated as benchmarks.
DCA is extended with our proposed multi-hop communicatiohesluling algorithm to
deliver the intermediate results of entry-tasks to thetelukead for further processing.
DCA algorithm is also implemented with DVS for fair companis Simulations are first
run on a real-life video surveillance application as a pmfotoncept. To further evaluate
MTMS performance, simulations are run on arbitrary appiices with randomly generated

DAGs. Our simulations with random DAGs study the followiragrarios:

o Effects of application deadline constraints and DVS adjesit

Effect of number of tasks in applications

Effect of cluster size

Effect of communication load

Comparison of algorithm execution times

Comparison with EbTA [69] in single-hop clustered networks

104



In these simulations, we observe schedule length, deadllisging ratio (DMR), and ap-
plication energy consumption metrics. The schedule lersytiefined as the finish time of
the exit-task of an application, the DMR is defined as theratithe number of the simu-
lation runs whose schedule length is larger than the impdeadline over the number of
the overall simulation runs, and application energy corsion includes computation and

communication energy expenditure of all sensors.
5.6.1 Simulation Parameters

In our simulation study, the bandwidth of the channel is eet¥Mb/s and the trans-
mission ranger = 10 meters. Sensors are equipped with the StrongARM SA-1ii00
croprocessor, whose speed ranges from 59 MHz to 206 MHz Wittt rete levels. The
parameters of Equation 2.1 - 2.3 are in coherence with [62], [30] as follows:

FEelee =50 nd/b gy, = 10 pd/bi?, Vi =26 mV,C = 0.67 nF,I, = 1.196 mA,n = 21.26,
K =239.28 MHz/V and: = 0.5 V. The sensors are assumed to be uniformly distributed o
disc of radiusk - r to form ak — hop connected cluster. We assume that therenate 5

sensors in a single-hop cluster. Thus theresafesensors in & — hop cluster.
5.6.2 TheReal-life Example of Distributed Visual Surveillance

A simple visual data processing application as shown in Eid.is considered in this
section. Camera sensor nodes work collaboratively to rapmérious objects in a given
area. Since information from neighboring camera sensoesischighly correlated, locally
processing information will significantly decrease dathukte to be transmitted. In a dis-
tributed visual object recognition scenario, neighbosegsor nodes pair up to exchange
information for object recognition. The feature detectadgorithms proposed in [59] and

[65] for realtime object recognition is exploited. With shapproach, features are extracted
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locally, followed by the voting operation [65]. An edge dete is applied to extract inter-

est points for each images. For each point of interest, piucad features from different

images are fused. Voting is exercised for each interesttpainclassify features. The

final result of detected features and their votes are agtgegad delivered back to base
stations.

The collaborative visual object recognition applicatie@bstracted as the DAG shown
in Fig. 5.6. Tasks; — v, are entry tasks which convert original images to binary iesag
using edge detection and interest point detection [65].gk&ize, hence, communicated
information volume is significantly reduced here. Tasks- vg extract features and fuse
the image data from neighboring sensor pairs to improvedatife recognition ratio [72].
The object recognition in each image is done by “compariegttiraction of feature points
and the interest points over edge detectors” [65]. The Hatisdistances [33] are used as
the criteria for image matching and voting. Object inforimatfrom different cameras are
fused to eliminate redundancy i — v1;.

We assume that data size generated at each camera sens8rxs1PB Bytes. We
further assume the task computation loadof v, to be 1000 KCC, the computation load
of v — vg is 40000 KCC, the computation load for matchingin-v;1 is 1 KCC. We also
assume the communication task f6y; — £, s are 500 Bytes, communication volumes of
Es g—Ejs 1o are 40 Bytes. We compare the performance of our proposed Malytfsithms,
MMM and DCTMS, with the DCA and EbTA algorithm in Table 5.1.n8e EbTA is a
scheduling algorithm for single hop cluster only, theseathms are evaluated in single-
hop environment for fair comparison. The investigated rog#ire the energy consumption

and schedule length.
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Figure 5.6: DAG for distributed feature extraction apptica

We compare the energy consumption and schedule lengthl threé¢ algorithm under
two different deadline conditionsieadline = 0.4s anddeadline = 0.8s. In both sce-
nario, according to the simulation results, both MTMS andZ&butperform DCA with
smaller energy consumption and better capacity to meetideadRegarding the compar-
ison of EbTA, DCTMS and MMM, DCTMS performs the best while MMdlivers the
poorest performance in the sense of minimizing energy copsion subject to deadline
constraints.

In the example above, sending these four 16K Byte-imagdsanisume about 51 mJ
per hop. According to Table I, the energy consumption of @ssing these images with
deadline = 0.8s is about 73 mJ with DCTMS. After the in-network processifng tesult-
ing data volume is reduced to 40 Bytes, which consumes o0§20mJ to delivery over

one hop. Thus, the overall energy consumption of processfognation and transmitting
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| Deadline(s)| Metrics | DCA | EbTA| MMM | DCTMS |

Energy consumption (mJ)218.0| 131.7 | 182.1 | 93.62
0.4 Schedule length (s) 0.798| 0.334 | 0.400 | 0.400
Meet deadline no yes |yes yes
Energy consumption (mJ)218.0| 92.6 | 97.3 | 72.7
0.8 Schedule length (s) 0.798| 0.703 | 0.800 | 0.751
Meet deadline yes |yes |yes yes

Table 5.1: MTMS: Simulation with the Object Recognition Exale

the results is smaller than directly delivering originabiges as long as clusters are more

than two hops away from base stations, which is satisfied ist tacge-scale WSNs.

5.6.3 Simulation with Random DAGs

To evaluate MTMS performance for arbitrary applicatiomsyigations are run on ran-
domly generated DAGs which are scheduled on randomly ateatdti-hop clusters. Ran-
dom DAGs are created based on three parameters: The numbeskshumTask the
number of entry-tasksumEntry and the maximum number of predecessoexPred Un-
less specifically stated, the number of each non-entrysaslk’decessors, the computation
load (in units of kilo-clock-cycle, KCC), and the commurtica data volume (in units of
bit) of a task are uniformly distributed over [haxPred, [300K CC+10%], and [800 bits
+10%], respectively. The sensors are uniformly distributed e of radiusk - r to form
ak — hop connected cluster. During simulations, the entry-taskga@andomly assigned to
sensors. The simulation results presented in this sectimespond to the average of 250
random (DAG, cluster) combinations. For each pair of DAG elndter, different deadlines

are imposed to evaluate performances.
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Effect of Application Deadlines and DV S adjustment

We investigate the effect of application deadlines and D¥fasiment with 250 pairs
of randomly created DAGs and 3-hop clusters. The paramet&AGs considered for this
set of simulations araumTask= 40, numEntry= 10, andmaxPred= 10. To evaluate the
effect of DVS, the performance of DCA, MMM and DCTMS before tfoltage adjustment
(denoted as DCA* , MTMS*, DCTMS?*, respectively) are alsoéstigated. In this section,
two more metrics evaluating energy consumption balancenaestigated, namely, the
Maximum Energy Consumption per Node (MECpN) and the Nodedgn€onsumption
Fairness Index (FI) defined in Chapter 4.3.2.

The schedule length performance of investigated algostisrshown in Fig. 5.7, while
the energy consumption performance is demonstrated irbFsg.

As shown in Fig. 5.7(a) and Fig. 5.7(b), MTMS has better céipalto meet small
deadlines compared with DCA. When deadlines are very seadh though deadline miss-
ing ratio of MTMS and DCA are both high, the average schederigth of MTMS is much
smaller and closer to deadlines compared with DCA. The supeerformance of MTMS
over DCA is due to the fact that is that MTMS can have more sarnsgolved in parallel
to process information, while DCA has only one sensor fohHayel data processing. Re-
garding the comparison of the MTMS algorithms themselvdgNVoutperforms DCTMS
in term of meeting deadlines and providing smaller scheldumgths and DMR when dead-
lines are small. In each iteration of task scheduling in DG #ig. 5.5), the schedule
space with only one PC or SC task assigned to different aséasors is searched. On the
other hand, MMM experiments all possible task-sensor caatlins and chooses the task-

sensor combination that delivers the minimum schedulirsg. ctherefore, MMM searches
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Figure 5.7: MTMS: Effect of Application Deadlines in the Tenbomain

a much larger schedule space than DCTMS, and more likelyéstallind a feasible solu-

tion.

Regarding energy consumption balance, DCA performs thetwas most activities

are loaded on cluster heads. Compared with DCTMS, MMM diveore unbalanced
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schedules as shown in Fig. 5.8(b) and Fig. 5.8(c), espgaidlen deadline increases. In
MMM*, energy consumption efficiency is part of the objectiumction. When deadlines

constraints are relaxed, MMM* tends to schedule tasks oefensors to conserve com-
munication energy consumption, which leads to unbalanoedyy consumption. On the

other hand, DCTMS* primarily aims to deliver the shortestextule by evenly distributing

computation loads among sensors, which leads to more lelanhedules.

Regarding the DVS effect on energy consumption, DCA* hatebenergy consump-
tion performance than MMM* and DCTMS* for most scenarios@ding to Fig. 5.8(a).
However, by implementing DVS algorithm, the energy constiomof MMM and DCTMS
are significantly reduced, and are smaller than that of DCd. VS algorithm is an ef-
fective approach for energy efficient solutions, as showfign 5.8. Even when deadlines
are relatively small and there is very little slack time biefapplication deadlines, the DVS
adjustment of MTMS can still save about 16-19% energy coegpavith the scenarios
without the DVS adjustment. This energy saving stems framiehting “schedule holes”
caused by the unbalanced load of sensors and communicetiediding. When deadlines
increases and are sufficiently large, the DVS adjustmentteeis about 40 % energy con-
sumption savings by “pushing” the schedule length closkeaeadline in MMM. Though
the DVS adjustment may increase schedule lengths (Figa)y, Tbe deadline missing ra-
tio is not affected (Fig. 5.7(b)) for any of the simulated dleze values. Regarding the
comparison of the MTMS algorithms themselves, MMM slighilytperforms DCTMS in
terms of application energy consumption for most simulatharios. This performance
stems from the factor that MMM* delivers shorter schedutegkas than DCTMS*, which
enable more aggressive DVS adjustment and consequentdr lkeeergy conservation in

general. On the other hand, the unbalanced schedule of MMatsa compromise the
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ability of the DVS adjustment, which leads to the point tHe £nergy consumption of

DCTMS is smaller than MMM in Fig. 5.8(a).

Effect of Number of Tasks

To investigate the effect of number of tasks in applicatiasismulations are run on
randomly generated DAGs with 40, 45, 50 taskarGEntry= 10, maxPred= 10). For a
fair comparison, each set of 40, 45, 50 task DAGs are scheédwighe same randomly
created 3-hop cluster. The presented results are the avef&p0 simulation runs, and
each simulation corresponds to one set of randomly genkBat®p cluster and DAG.

According to the simulation results in Fig. 5.9(b), energnsumption is dominated
by the number of tasks. When the number of tasks increasegniergy consumption of
DCA and MTMS both increase proportionally, and MTMS has leiginergy consump-
tion. However, when deadline is increasing, the energy woipsion of MTMS decrease
faster than DCA by exploiting the available CPU slack time doi its better capacity to
meet deadlines. Regarding the deadline missing ratio, DXC#&amatically affected with
task volume increment while MTMS is less affected as showkign 5.9(c). This property
is also reflected with schedule length presented in Fig.ah.9(hus, MTMS has a bet-
ter scalability compared with DCA regarding schedule lareytd deadline missing ratio.
Regarding the comparison of MMM and DCTMS, they are equdligcéed by the task
number increase. In most simulated scenarios, MTMS ouwped DCTMS with smaller

energy consumption and DMR.
Effect of Cluster Size

In this section, the effect of the cluster size is evaluatdéth vandom DAGs sched-

uled on 2-hop, 3-hop, and 4-hop random clusters. Each respifesents the average
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of 250 simulation runs. In each simulation run, one randonGDAith numTask= 40,
numEntry= 10 maxPred= 10, and one set of 2-hop, 3-hop, and 4-hop random clusters ar
generated.

The simulation results are shown in Figure 5.10. As the elusize increases, the
performance of DCA degrades correspondingly, while théoperance of MTMS is less
affected. Regarding the comparison of the MTMS algorithinesitselves, when deadlines
are sufficiently larger, the schedule lengths of MMM and DC3 sre barely affected by
cluster size increase. When deadlines are small, the skehkhgths and energy con-
sumption of MMM and DCTMS increase when cluster size inaesas$n terms of energy

consumption, MMM is affected more than DCTMS by cluster sigshown in Fig. 5.10(a).

Comparison of Heuristic Execution Time

Execution time is also an important factor to evaluate tstigralgorithms. As we have
analyzed in Section 5.5, the number of tasks and clustebsitehave effect over the com-
putational complexity of MMM and DCTMS. In this section, tredative execution time of
MMM over DCTMS is tested. We run simulation with random DAGgdferent number
of tasks fumTask= 40, 45, 50) over 2-hop, 3-hop and 4-hop clusters. Eachtrespd
resents the average of 250 simulation runs. In both scenawi® senumEntry= 10 and
maxPred= 10. As shown in Table 5.2, the variation of the number of $aakd the cluster
size have almost the effect on the computation time of MMM BRI MS. For all investi-
gated scenarios, DCTMS is about 24-25 times faster than MBI to its better schedule
length performance, MMM is suitable for WSNs with criticabi-time requirements. For
a WSN that updates its applications frequently, DCTMS cafabered over MMM due to

DCTMS'’s shorter schedule computation time.
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Cluster Size Number of Tasks

40| 45| 50
2-Hop 24| 24.1| 244
3-Hop 24.2| 24.4| 24.7
4-Hop 23.9| 24.1| 24.3

Table 5.2: MTMS: Execution Time Ratio of MMM to DCTMS

Comparison with EbTA [69]

To further evaluate our proposed solution, we compare tHeqeance of MTMS with
EbTA [69]. Since EbTA is not designed for multi-hop netwaqrige run simulations for
single-hop, single-channel clusters. Due to the smallksgih single-hop cluster (5 sen-
sors as assumed in Section 5.6.1), performances are adlwéh applications of less
computation load. The presented results are the averaggdithulation runs of random
DAGs with numTask= 20, numEntry= 5 andmaxPred= 5. The metrics we observe are
schedule length, application energy consumption, deadtissing ratio, and MECpN.

As shown in Fig. 5.11 and 5.12, MTMS outperforms the energiatced solution,
EbTA, with smaller application energy consumption, MECghkhedule length, and dead-
line missing ratio for all simulated scenarios. The supgraxformance of MTMS mainly
stems from the fact that MTMS exploits the broadcast featdireireless channel when
scheduling communication events, while a task in EbTA mastisnformation individu-
ally to its immediate successors. Another factor is that4&aims to balance sensor energy
consumption by evenly distributing computation tasks,chHeads to more communica-

tion tasks scheduled on the channel and higher energy catgumThus, MTMS is less
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affected by the communication load between computatidstaan application compared

with EbTA.
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CHAPTER 6

ADAPTIVE SENSOR FAILURE HANDLING

In WSNSs, sensors are prone to failures. In case of sensardaijlthe current applica-
tion executing instance is stopped. Furthermore, the steggreviously created by the
scheduling algorithms may not be feasible solutions. Imsases, the WSN's function-
ality needs to be recovered as soon as possible with a prpgmgatierated schedule for the
subsequent application executing instances. Insteadsoheeluling from scratch, which
can be time consuming, low-complexity recovery algorittarespreferred.

Since energy-constrained applications are considerethaptér 3 for single-hop clus-
tered WSNs, we first present a sensor failure recovery dlgotior the EcoMapS solution.
In Chapter 4 and Chapter 5, real-time task mapping and sthgdwlutions are presented.
Thus, we also propose a sensor failure handling algorithits ieneral form for real-time
applications in multi-hop clusters. It should be noted tinat prompt network function-
ality recovery may come at the cost of degraded performaiterefore, we check the
performance after sensor failure handling. If the perfaroeadegrades to a certain level,

the scheduling algorithm should be executed to find a schediitih better performance.
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6.1 Sensor Failure Handling for EcoMapS in Single-Hop Clustered
WSNs

In single-hop clusters where sensors are within each atlrarismission range, sensors
are identical from the perspective of network topology. ias long as spared sensors ex-
ist, sensor failure handling is a trivial problem, which dansolved by replacing failing
sensors with functioning idle sensors. Therefore, we mgddus on sensor failure han-

dling when there is no idle sensors in this section.
6.1.1 TheProposed Single-Hop Sensor Failure Handling Algorithm

Let the original schedule b&°, and the failing sensor be.;. The strategy of the
quick recovery algorithm is to merge the tasks of the onto the sensom’ that has the
maximum idle time ratid R(m,,) to balance computation load among sensors. Here, the
idle time ratio/R(my,) = """ (m,) /length(H) is the ratio ofm;,’s CPU execution
time """ to the schedule lengtlength(H). If there are more than one sensor fail-
ures, the quick recovery algorithm is iteratively executetandle the failures one by one.
The rationale behind merging the tasks of the failing sewsbo another sensor instead
of re-distributing the tasks among all of the working sesssrto guarantee the energy
consumption constraint, as provedTliheorem 1 The quick recovery algorithm is shown

in Fig. 6.1, wherel'H is the threshold of unacceptable schedule length degrageick

recovery.

Theorem 1. The recovered schemié® still meets the energy consumption budget con-

straint, that is, ifenergy(H°) < EB, thenenergy(H®) < EB.

Proof. The energy consumption of a scheduleis composed of computation energy
(compEng(H))and communication energydmmFEng(H)). SincecompEng(H) is fixed
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Input: Failing sensoin , original sensor sef.S, original schedulg?®
Output: Recovered schedulg*®
Single-Hop QuickRecovery Algorithm:

LIF 3mige € SS — {my} : T(mige) =0 [*there are idle sensors*/

2. Reassign T ) ontomge

3.ELSE /*no free sensor, have to merge the tasks*/
4. Findm? € SS — {my}: IR(m?) is maximum

5 t—0,At—0 [*initialize task adjustment parameters*/
6. FOR unadjusted task; € S = T'(my) U T (m°) : s,, iS minimum

7. IFvy; eV [*computation task*/

8. Schedule; ontom?°

9. ELSE [*communication task*/

10. IF thereis a duplicated copy of in S

11. Remove the duplicated copy

12. Find the copy of; onC: vy

13. IF my/m? are the only sender/receiver ¢f

14. Removey; from C

15. ELSEIF pred(v;) € S *send result to other tasks*/

16. Schedule; right afterpred(v;)

17. IF succ(v;) € S [*affect tasks on other sensors*/

18. Find the copy of; onC: v{

19. IF foime > Svec

20. At — max(At, fo, me — Sve.c)

21. t/ — fvac

22. FORm; € SSU{C} — {m,m°}

23. Postpone unadjusted € T} (m;) by At

24, te—t

25. ELSE [*receive result from other sensors*/
26. Find the copy of; onC: vy

27. t— fvf,C

28. FORm; € SSU{C} — {m,m°}

29. Postpone unadjusted € T} (m;) by At

30. te— ¢t/

31. Postpone all unadjusted taskstby

length(H*®)
32.IF lnsthli) 1

33. Run EcoMapS Scheduling Algorithm

Figure 6.1: Quick Recovery Algorithm for EcoMapS in Singdep Clusters
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for an application in homogeneous WSNsynpEng(H*®) = compEng(H?) holds.
commFEng(H) is determined by the communication tasks assigned.oiccording to
Step 14, 23, and 29 of thguickRecovenralgorithm, the only operations related with the
communication tasks ofi are task removals and task shifting in time domain. In other
words, no new tasks are assigned’tand, therefore, no additional energy is consumed for
communication. HencepmmEng(H®) < commEng(H?) holds. Ifenergy(H®) < EB,
thenenergy(H?®) = compEng(H?®)+commEng(H?®) < compEng(H®)+commEng(H®) =

energy(H°) < EB holds, as well. O
6.1.2 Simulation Results

The Quick Recovery Algorithm for EcoMapsS is evaluated irs thection. Since the re-
covery mechanism with idle sensors as backup is trivialielted scenarios only consider
task merging cases without idle sensors. The random DAGsdered in the simulations
have the parameters ntimTask= 25,numEntry= 6, andmaxPred= 3. The simulated sce-
narios are generated by randomly selecting one failingaesnsd merging its tasks onto
other working sensors using the quick recovery algorithesented in Fig. 6.1. From Fig.
6.2(a), it can be observed that as long as the original sébedkeets energy consumption
constraints, the recovered schedule satisfies the camsaisaivell. As we discussed in the
proof of Theorem 1, task merging leads to less energy consomat the cost of longer

schedule lengths according to Fig. 6.2(b).

6.2 Sensor FailureHandlingfor Real-TimeApplicationsin Multi-Hop
Clustered WSNs

In Chapter 6.1, we present the sensor failure handling gtgofor EcoMapS in single-

hops clustered WSNs. However, sensor failure handling iereomplicated in multi-hop
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environments, where sensors have different locationsdiftbrent neighbors. Replacing a
failing sensor with an idle one is no longer a trivial problemmulti-hop clusters: Depend-
ing on the location of the failing and alternative sensoggg&iously one-hop transmission
may become a multi-hop communication, and a formerly dolidree data delivery may
cause interference if not properly adjusted. A simple destrative example is shown in
Fig. 6.3, where sensdr is the failing sensor, and sensdris the alternative sensor of
F. WhenF is replaced byA, the previous transmissioRl from S1 to £ starting att1
must be re-routed through sendpas A is two hops away frony'1. Such packet rerouting
with a longer path is referred to as “path extension” in th@st®n. For the delivery of
communication taskk?2 to sensorD?2, it will still be a single-hop communication sincé

is a single-hop neighbor dP2. However,A’s 1-hop neighbotD3 is previously scheduled
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to receiveR4 starting at2. Thus, the delivery of?2 by A must be adjusted to avoid inter-
fering D3’s reception. Therefore, potential communication intesfeee and path extension
should be addressed when calculating alternative scheduhaulti-hop clustered WSNs,
as demonstrated in Fig. 6.3. When there is no idle sensoptacae the failing sensor, the
tasks of the failing sensor should be merged to an altema@nsor in a similar procedure
as presented in Section 6.1. During the task merging proeeg@otential path extension

and communication interference should also be handled.
6.2.1 TheProposed Multi-Hop Sensor Failure Handling Algorithm

When sensor failures occur, we select an idle sensor amerfgiting sensor’s one-hop
neighbors to replace its functionality if idle sensors eaimong the failing sensor’s single-
hop neighbors. The tasks previously assigned to the fademgsor are then reassigned
to the alternative sensor. If there is no idle sensor amoeaddiing sensor’s single-hop
neighbors, an alternative sensor is selected to which thegaensor’s tasks are merged.
When reassigning and merging tasks, interference avoedamd packet rerouting must be
addressed. Since interference avoidance and packetireyoody lead to larger schedule
lengths, a reverse procedure of the DVS algorithm presant€thapter 4.4 is developed,
which is referred to as th®V S~! algorithm. TheDV S~ algorithm is implemented be-
fore reassigning the failing sensor’s tasks, which in@ed3PU speed to guarantee dead-
line constraints. After the tasks of the failing sensor esgegned, the DVS algorithm in

Chapter 4.4 is exercised to conserve energy consumption.
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Optimal Alternative Sensor Selection

We first introduce the alternative sensor selection algoriin Fig. 6.4 when there are
idle sensors among the failing sensor’s one-hop neight#ssliscussed above, reassign-
ing failing sensors’ tasks may lead to path extension witpdaschedule length and energy
consumption. Therefore, the primary objective of selecaiternative sensors is to min-
imize the number of path extension. To achieve this goal, wetreelect the alternative
sensorn, that has the maximurisimilarity factor (SF)” with the failing sensom . Here,
SF is the measurement of the feasibility of replacing by m,: The higher SF is, the
shorter path extension becomes, and the better perfornimaciieved by the alternative

schedule. The similarity facta# F'(m,, m) is defined as follows:

e Assume that the number of packets exchanged betwgemd its one-hop neighbor

my is d(mf, mk)

e my's overall communication degree BEG(my) = ) d(myg, my), Wherem;, €

N(my), andN (my) is the set ofn;’s one-hop neighbors.

e A sensormn;'s connectivity functionc(my, m;) equals 1 if sensam, is m;’s one-hop

neighbor, and 0 otherwise.

e When replacingn by m,, the number of packets that can still be exchanged within
one hop betweem, andm ’s single-hop neighbors i§_ d(m, my) - c(ma, my),

wherem;, € N(my).

e Let SF(my,m,) be defined as

o dmy,my) - e(mg, my)

SF(myg,mg) = DEG(my) : (6.1)
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Input: Failing sensoin , original sensor se&f.S, original schedulg?®
Output: Alternative sensorn,, to whichT'(m ) are reassigned
Alter Sel()
1. DEG — 0 MInitialization*/
2. FOR sensorsn;, € N(my) [*caculatem ¢'s overall communication degree*/
3. DEG+«— DEG +d(my,my)
4. FOR idle sensorsn;, € N(my) [*candidate alternative sensors*/
5. SF(mys,my) 0
6. FORsensom; € N(my), m; # my, [*calculate SF of each candidate*/
7. SF(mg,my) < SF(my,my) + dlm g m)-clm mu)
Ik o'k DEG
8. Among these candidates, find sensgyr.
9.  SF(my,mg)is maximum.

Figure 6.4: Alternative Sensor Selection Algorithm for MB\h Multi-hop Clusters

wherem;, € N(my). Here,SF(my, m,) indicates the ratio ofi.;’'s communication

that do not need path extension when is replaced byn,.

When there is no idle sensor among the failing sensor’s apeakighbors, the failing
sensor’s tasks must be merged to one of its neighbors tleatdyihave tasks assigned. To
balance workload among sensors, the sensor that has th@unmcomputation and com-
munication activities is selected. When a tie occurs, tims@ewith the highest similarity
factor is favored to minimize path extension. The altexatnerging sensor selection pro-

cedure is shown in Fig. 6.5.

The DV S—! Algorithm

Since the task reassignment procedure may prolong schedgtés, CPU speed should
be increased to compensate the delay. Different from the 8lg&rithm that is presented

in Chapter 4.4, thé>V' S~ algorithm aims to maximize the CPU speed of task execution
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Input: Failing sensoin , original sensor se&f.S, original schedulg?®
Output: Alternative sensorn,, to whichT'(m ) are merged
MergeSel()

1. Amongm s's one-hop neighbors

2. FindS: E,,, is minimum form; € S /[*E,,, isthe energy consumption of,*/
3.1F|S|>1

4. Findm® € S: SF(my, my) is maximum

5.  Returnm?

6. ELSE

7. Returnmg,: mg € S

Figure 6.5: Merging Sensor Selection Algorithm for MTMS iruM-hop Clusters

and minimize schedule lengths of a DVS-adjusted schedutgles to the DVS algorithm,
the DV'S~! is composed of two procedures, tié/ £~ procedure and th6 LE~! pro-
cedure, which are the inverse procedures of SHE and SLE ipt€hd.4, respectively. In
our DV S~ algorithm, we assume that the CPU speed after the SLE proeédavailable
asfcf,ﬁE. We further assume that in the original schedule, the CPldpé executing a
computation task; is known asf.,.(v;).

Based on these assumptions, we first present the inverseduiacof the SHE proce-
dure,SHE™', in Fig. 6.6. TheSHE~" procedure increases CPU speed 9", and ad-
justs task schedules. T8 £~ procedure has the same structure as the SHE procedure,
and the Steps 8-15 and 20-27 are the inverse procedure ofpgedAdjust() algorithm
in Fig. 4.8. The inverse procedure of tSd £ procedure,SLE~!, is presented in Fig.

6.7. TheSLE~! procedure increases the CPU speedJg”, and adjust task schedule

accordingly.
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Input: original schedulel?, CPU speed after SLESL”, sensor se$'S, application deadlind L
Output: Adjusted scheduléf®
SHE™! Algorithm:

1. FOR sensomy; € SS

2 ds « 0, df « oo [*Initialization*/

3. Scan tasks; € T77°(my) in increasing order of start time

4 IF 3acopy ofv; € R: vf € T(C) [*Transmitted communication task */
5. Find the computation task following v;

6 IF my, is the sender ofy

7 df < min(sye ¢, Sv;,my,) [*Computation must finish before transmitting*/
8 FORv; € Ti{(mk) *Adjust schedule irjds, df] = /

9 IFv; eV [*Computation task*/

10. bojmy, < tojmy, f}is}ié%)

11. fvj,mk  Svj,my + tvj,mk

12. ELSE *Communication task*/

13. Svs,my < Jpred(v;).my

14. fvj,mk = Sv;my

15. Updatemn;,’s energy consumption

16. ds — df

17. ELSE *my, is the receiver ob§*/

18. ds « max(ds, fue my s Sv;my,) [*Computation cannot start before reception*
19. ELSE IF v; is exit-task andf,, < DL  [*Adjustment bounded by deadline*/
20. FORv; € ij(mk) I*Adjust schedule ifds, df|

21. IFv; eV [*Computation task*/

22. tvj,mk — tvj,mk : f}i%é%)

23. fvj,mk = Sv;,my + tvj,mk

24, ELSE *Communication task*/

25. Svjmy, < fpred(vj),m;C

26. fvj,mk  Svj,my

27. Updaten;’s energy consumption

Figure 6.6:DV S~': The SHE~! Algorithm
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Input: original scheduld?, CPU speed after SL@%E, sensor seb'S, application deadlind L
Output: Adjusted scheduléf?
SLE~! Algorithm:

FoEE
1.0 « f,gaz
1. FOR my € SSU{C} [*Scan all sensors andt/
2. FOR v; € T(mk)

IFv, eV [*Computation task*/

Svimy, 0 Svi,my,
bogmy < 0 Loy my
fvi,mk —0- fvi,mk
ELSE [*Communication task*/
fvi,mk —0- fvi,mk

Svimy, fvivmk - tviymk

10. Updaten,'s energy consumption

©CeN O

Figure 6.7:DV S~': The SLE~! Algorithm

Failing Sensor Task Reassignment

We first introduce the task reassigning algorithm when iélessrs exist among the
failing sensor’s one-hop neighbors. After the optimal ralégive sensorn, is chosen,
the tasks originally assigned ta, should be reassigned ta,. Computation tasks and
communication tasks that are not transmitted over the @sgethannel can be directly re-
assigned ton,. However, communication tasks exchanged betwegrmand its neighbors
in original schedules should be carefully handled sincg thay cause path extension and
interference as demonstrated in Fig. 6.3. The algorithnh@ulti-hop failure handling
algorithm with idle sensors for MTMS is presented in Fig.,&vBereSend Pkt Handler()

and Recv PktHandler() adjust each individual communication task sent and reddiye
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Input: Failing sensoim , alternative senson,,, original sensor se4.5, original schedule?
Output: Recovered schedul#”
Multi-hop sensor failure handling algorithm with idle sensor replacement

1. DVS~L(H°) [first increase CPU speed to maximum?/
2. FOR taskwv; € T(mf)

3 IF v; is a computation task

4 Reassign; to m,:

5 Svi,ma max(fpred(vi),ma)

6. fvi,ma “— Suima T tu,ma

7. ELSE [*communication task*/

8 IF v; is sent bym ¢

9. SendPktHandler(vi, mg,mg, SS, H?)

10. ELSE IF v; is received bymn

11. RecvPktHandler(vi,mys, mq, SS, H°)

12. ELSE IF v; is forwarded bym

13. RecvPktHandler(vi, mys, mq, SS, H°)

14. SendPktHandler(vi, myg,mg, SS, H°)

15. ELSE *locally processed data*/
16. Reassigmw; to m,:

17. Svima < max(fpred(vi),ma)

18. fvi,ma — Svi,me

19.55 — SS — {my} I*remove the failing sensor*/

20. Execute the DVS algorithm in Chapter 4.4

Figure 6.8: Multi-hop Sensor Failure Handling Algorithmtividle Sensor Replacement

my, respectively. A forwarded packet in an original schedslérst received, then trans-
mitted to the next-hop byn;. Therefore, reassigning a forwarded packet is handled by
consequent execution &fecv Pkt Handler () andSend Pkt Handler ().

The Send Pkt Handler() algorithm is presented in Fig. 6.9. When reassigning a com-
munication task; originally sent by the failing sensot , the receivers of; can either all
be the one-hop neighbors of the alternative senggror some of them be multiple hops

away fromm,,. For the former scenario, the reassigned communicatidiilia single-hop

133



communication event. However, the reassigned commuaitatiay interfere neighbor-
ing communications since the sender is changed fronmo m,: Within the transmission
range ofm,, if there is a sensor previously scheduled to receive anq@heketv; at the
same time, the transmission afcollides withv;. To avoid such interference, eithers

or the neighboring communication task’s schedule shoulddstponed. As the successive
tasks ofv; on the receivers cannot start execution without receiviregdata, the execu-
tion schedule of the successive tasks on the receiver masbal postponed accordingly.
To keep relative execution order among tasks assigned feretit sensors, we also shift
tasks across all sensors andhat are originally scheduled after the inference occusen
time. Given the potential interference time interjdl ft|, the task shifting algorithm is
presented in Fig. 6.10. The task rescheduling procedure atheeceivers ob; arem,’s
one-hop neighbors is shown in Steps 2-6 in Fig. 6.9. If somiefreceivers of); are
multiple hops away fromn,,, multi-hop paths fromn,, to the receivers are first obtained.
v; is then delivered hop-by-hop from, to the receivers. If a sensor along the path al-
ready has the data of, no data deliver of; to this sensor is scheduled to avoid duplicated
communication. Compared with the original single-hop camivation, the available time
of v; on these receivers are delayed due to additional commiondabps. To keep rela-
tive execution orders of tasks scheduled on all sensokss tagyinally scheduled after the
transmission finish time af; are postponed by the prolonged communication time. If there
are more than one path extensions, the task shifting os#gtermined by the maximum
of path extension length. The task adjustment proceduredtr extension is shown in
Steps 8-14 in Fig. 6.9. For each hop of communication scleglulf interference may
occur, it is handled in a similar way with the scenario whdteegeivers ofv; arem,’s

one-hop neighbors.
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Input: Communication task;, failing senson ¢, alternative sensan,,, original sensor sef.S,
original scheduleg{®

Output: Partially adjusted schedulé with v; reassigned

SendPktHandler ()

1. Find the copy of; onC: v§ is sent bym

2.1F R(v§) C N(my) /*No path extension is needed*/

3. IFinterference exists ifst, ft]

4. TaskShift(vf, st, ft) [*shift tasks to avoid interference*/
5. Reassigmw; to my:

6. Sv;me S fvf,C1 fvi,ma  Sv;mg

7.

8.

9.

ELSE [*path extension is needed*/
FOR my € R(v§) — N(my) [*Calculate shifting offset*/
Find the path frommn, to my:
10. path = (my1, ma, ..., my), M1 = Mg, My, = My,
11. FindN: N is the maximum of alpath’s length

12. FORtaskv, € T(m;): my € SSU{C}, su,m; > foec
13. Sup,my < Svp,my T (N — 2)tvf,C
14. fvp,ml  Sup,my + tvf,ml

15. FOR my € R(vf) — N(my) I*reroute the packet delivery*/

16. Find the path fromn,, to my:

17. path = (my, ma, ..., my), My = Mg, My, = My,

18. FORj =1ton—1

19. Schedule a copy ef fromm; tom;q if v; € T'(mj41)

20. IF interference exists ifst, ft]

21. TaskShift(vS, st, ft) [*shift tasks to avoid interference*/

Figure 6.9: Adjust Packet Originally Sent by the Failing S&m
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Input: Communication task; on C, interference time intervdkt, ft], original sensor se$'S,
original scheduleg{®

Output: Adjusted schedulé! after task shifting

TaskShift(v;, st, ft)

LIF sy, ¢c <st [*calculate shifting parameters*/
2. ss« st
A — fyc—st
.ELSE
8S «— Sy, C
A — ft — Sy;,C
.FORm;, € SSU{C}
FOR v, € T'(my): Su,m; > 55 [*tasks starting aftess*/
Sup,my, < Svpmy T A /* postpone tasks by\*/

10. fvp,mk  Svp,my + tvp,mk

© NG A®

Figure 6.10: Task Shifting Algorithm to Avoid Interference

The Recv Pkt Handler() algorithm is presented in Fig. 6.11. Thecv Pkt Handler()

algorithm is similar to theSend Pkt Handler() algorithm except that there is only one

receiver involved in the communication. If the alternasemsorn, is a one-hop neighbor
of the sender, the communication tagkan be directly reassignedita,, as shown in Steps
2-6. Possible interference is handled in the same way asrthiae Send Pkt Handler()
algorithm. Ifm, is multiple hops away from the sender, an alternative patbusd from
the sender ton,, and the prolonged communication time and potential iaterice are
handled as shown in Steps 8-16.
When there are no idle sensors among the failing sensor$opaeighbors, the fail-
ing sensor’s tasks must be merged to an alternative senksmtexk with the algorithm
presented in Fig. 6.5. The task merging algorithm has thdasistructure with the algo-

rithm presented in Fig. 6.1. When reassigning a commuicd#sk, path extension and
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Input: Communication task;, failing sensonmn ¢, alternative sensan,,, original sensor sef.S,
original scheduleg{®

Output: Partially adjusted schedulé with v; reassigned

RecvPktHandler ()

1. Find the copy of; onC: v is sent bym

2.1F S(v§) € N(my) /*No path extension is needed*/
3. IFinterference exists ifst, ft]

4. TaskShift(vg, st, ft) [*shift tasks to avoid interference*/
5. Reassigmw; to m,:

6. Svi,ma < Sv§,Co fvi,ma  Svima

7.ELSE [*path extension is needed*/

8.  Find the path fron® (v{) to my:

9. path = (my,ma, ...,my), mi = S(v§), my = mg

10.  FORtaskv, € T'(my): m; € SSU{CY, su,m, = fuoec

11. Sopmy < Svpmy + (N — 2)%;,0

12. fvp,ml — Sy,my T tvic,ml

13. FORj =1ton—1

14. Schedule a copy ef fromm,; tom;q if v; € T'(mj41)

15. IF interference exists ifst, ft]

16. TaskShift(vS, st, ft) [*shift tasks to avoid interference*/

Figure 6.11: Adjust Packet Originally Received by the FgjlEensor
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communication interference may occur. Therefore, the camaoation task adjustment al-
gorithms presented in Fig. 6.9 6.11 are also implementedctalle path extension and

avoid communication interference.
6.2.2 Simulation Result

The Sensor Failing Handling Algorithm for MTMS in multi-h@mvironments is eval-
uated in this section. The simulation parameter is in cateevith those in Chapter 5.6.1.
We investigate the performance of sensor failure handlirily 250 pairs of randomly cre-
ated DAGs and 3-hop clusters. The parameters of DAGs camsider this set of sim-
ulations arenumTask= 40, numEntry= 10, andmaxPred= 10. The simulated scenarios
are generated by randomly selecting one active sensor dsg tensor, and reassigning
its computation tasks and communication events using gwighms presented in Chapter
6.2.1. In these simulations, schedule recovery for both M DCTMS algorithms is
evaluated.

As shown in Fig. 6.13, the sensor failure handling algorithetivers almost the same
performance when the deadline is sufficiently large regaydichedule lengths and dead-
line missing ratio (DMR). With large deadlines, slack timasts after increasing CPU
speed by executing theV S—! algorithm. Thus, the prolonged schedule length caused by
reassigning tasks to the alternative sensor is compernisated CPU speedup, which leads
to the same level of DMR. The recovered schedule is thendugtjusted by the DVS al-
gorithm to conserve energy consumption, which producesanee level of performance
in schedule lengths. When the deadline decreases, the G¥d spthe original schedules
increases to meet deadline constraints. ThereforeDii& ! algorithm brings no much

benefit in compensating the schedule length increase, vauibkequently leads to larger
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Input: Failing sensorn s, merging sensoin,, original sensor sef S, original scheduleé?®
Output: Recovered schedulg*®
Multi-hop sensor failure handling algorithm with task merging

1. FOR unadjusted task; € S = T'(my) UT(mq) : Sy;,5 IS minimum

2 IFv, eV [*computation task*/

3 Schedule; ontom,,

4. Svima max(fpred(vi),ma)

S. fvi,ma = Swi,mg

6. ELSE [*communication task*/
7 IF there is a duplicated copy of in S

8 Remove the duplicated copy

9. Find the copy of; onC: v

10. IF my/m, are the only sender/receiver ¢f

11. Remove; from C

11. ELSEIF pred(v;) € S *send result to other tasks*/

12. SendPktHandler(vi, my,mg, SS, H?)
13. ELSEIF v; is received byn

14, RecvPktHandler(vi, mys, mq, SS, H®)
15. ELSEIF v; is forwarded bym

16. RecvPktHandler(vi, mys, mq, SS, H®)
17. SendPktHandler(vi, m¢, mg, SS, H?)

18. ELSE [*locally processed data*/
19. Reassigm; to m,:

20. Svimae max(fpred(vi),ma)

21. fvi,ma — Svi,me

22.58 — S8 —{my} I*remove the failing sensor*/

23. Execute the DVS algorithm in Chapter 4.4

Figure 6.12: Multi-hop Sensor Failure Handling AlgorithntlwTask Merging
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Figure 6.13: Performance of Sensor Failure Handling for N8kl the Time Domain

schedule lengths and DMR of the recovered schedules. Howsveptimizing alternative

sensor selections, the performance only slightly degradefiown in Fig. 6.13.

Deadline (ms)

(b) Deadline Missing Ratio
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Regarding energy consumption, when deadlines are smatetiovered schedules have
almost the same application energy consumption and MECpbshawn in Fig. 6.14. This
behavior stems from the factor that by optimizing altene&tensor selection, path ex-
tensions are minimized. Consequently, additional enexpgrditure in communication
is also minimized. When deadlines increase, applicati@rggnconsumption is reduced
by exploiting CPU idle time with the DVS algorithm. In recaed schedules, schedule
lengths are increased due to the inference avoidance ahcepiEnsion, which leads to
smaller CPU slack time for the DVS implementation. Such CRidkstime decrease re-
sults in the slightly larger application energy consumpt@md MECpN of DCTMS. For
the original schedules generated by the MMM algorithm, cotaton load converges to
fewer number of sensors when deadline increases. Suchamaeal schedules lead to less
number of schedule holes, which constrains the energy caatgen of the DVS algorithm
in the original schedules. However, the recovered schecddge more and larger sched-
ule holes caused by task schedule shifting for interferewvogdance and path extension.
Therefore, the recovered schedules of MMM have smalleriegin energy consumption

and MECpN when the deadlines increase, compared with thiginal schedules.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we address the task mapping and sthggwoblem to enable col-
laborative in-network processing in large-scale WSNs. Wesider WSNs composed of
homogeneous wireless sensors grouped into clustersnwithich applications are itera-
tively executed. Since energy consumption efficiency isafrtbe most critical consider-
ation for any WSN solution, our proposed solutions aim taaahenergy-efficiency from
different aspects. To enhance information processingaigpa WSNs, schedule length
optimization is also part of our design objectives. The gbation of this research can be
summarized as follows.

First, our solutions are application-independent thauimmeously address computa-
tion and communication scheduling. Different from traafital task mapping and schedul-
ing solutions for wired networks, we presented a Hyper-DA@liaation model that explic-
itly represents communication events between computadisks. To reflect the wireless
communication features, we first model a single-hop wisetdgnnel as a virtual node that
can only execute communication tasks. Based on this Hyp&-mBodel and single-hop
channel model, we propose the EcoMapS solution for singfedtustered homogeneous
WSN clusters in Chapter 3. EcoMapS aims to minimize scheléunlgths of applications
under energy consumption constraints. Two variations oM&pS, the E-MinMin based
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EcoMapS and the E-CNPT based EcoMapS, are presented. Sonukesults show that
both EcoMap$S algorithms deliver superior performance #westing work. Regarding
comparison of the EcoMapS algorithms themselves, E-Mindlitperforms E-CNPT with
respect to schedule lengths and energy consumption bataméas a larger computation
overhead. Thus, the E-MinMin based EcoMapS algorithm itabile for WSN applica-
tions that do not change frequently, while the E-CNPT bassxMapS is preferable where
application updates occur more frequently.

We then further investigate energy consumption optimiraitn WSNs with the promis-
ing DVS technology. In Chapter 4, the schedule length andygreonsumption optimiza-
tion problem is tackled with the objective of minimizing bated energy consumption
subject to deadline constraints. To minimize energy compdiam, a novel DVS algorithm
is developed in Chapter 4 that exploits CPU slack time by ceduCPU speed without
violating deadline constraints. Different from existiny® algorithms, wireless communi-
cation between sensors is considered in our proposed D\d&thign. Based on the Hyper-
DAG model and the single-hop channel model, the RT-MapStisolachieves its design
objectives. As demonstrated with the simulation resull&MRpS outperforms existing
solutions with respect of minimizing energy consumptiohjeat to deadline constraints.
Among the RT-MapS algorithms, H-CNPT has a higher capaoitynéet deadline con-
straints, and thus is suitable for applications with stetl-time requirements. H-MinMin
on the other hand provides better energy-balanced scrsecanid is more plausible for
more energy-constrained applications with relativelydoweal-time requirements.

Both Chapter 3 and 4 consider single-hop environments,wloions a basis for more
general solutions in multi-hop clustered WSNs. In Chaptevé propose a task mapping

and scheduling solution for multi-hop WSNs, MTMS. The desapjective of MTMS
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is to map and schedule the tasks of an application with thenmim energy consump-
tion subject to delay constraints. The multi-hop wirelelsarmel is modeled as a virtual
node to execute communication tasks, and a penalty funipnoposed to avoid com-
munication interference. Incorporating our communigagsoheduling algorithm, the task
scheduling algorithm schedules tasks with minimum eneamgsomption subject to dead-
line constraints. Two task mapping and scheduling algorghMMM and DCTMS, are
developed as part of the MTMS solutions. Simulation reshitsv significant performance
improvements of MTMS compared with existing solutions imrte of minimizing energy
consumption subject to delay constrains. Further anabysis simulation indicates the
MMM based MTMS algorithm is suitable for WSN applicationsitihave strict real-time
requirements, while the DCTMS based MTMS is preferable etagplication updates
occur frequently with relatively relaxed deadline conistig

The final contribution of this dissertation relates to thasse failure handling. In
WSNs, sensors are prone to failures. In case of sensordajIWSN functionality needs to
be recovered as soon as possible since the previously adwchedules may no longer
be feasible solutions. Sensor failure handling is critfcalreliable solutions in WSNSs.
In Chapter 6, two low-complexity sensor failure handlingalthms are proposed for
single-hop and multi-hop clusters. We first present the@eiasdlure recovery algorithm
for EcoMapS in single-hop clustered WSNs. Simulation rsssthow that the recovered
schedules provide the same level of energy consumptiortreamisguarantee as the origi-
nal schedules, though the schedule lengths are slightgiakVe then develop the sensor
failure handling algorithm for MTMS in multi-hop environmes. By reassigning tasks of

failing sensors to optimally selected alternative sensthis recovered schedules deliver
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slightly degraded but still satisfying performance as desti@ted with the simulation re-
sults.

In our future work, communication failure handling in WSNwsld be further inves-
tigated. In Chapter 6, the sensor failure handling problersolved, which enhance the
robustness of our solutions for WSN applications. On themfland, communication fail-
ure may also disturb application executions. Packet losmesed by interference are well
handled with the exclusive channel access approach in €h3dpand 4, as well as the
penalty function presented in Chapter 5. However, paclssds may also occur because
of channel conditions. Such packet losses can be handlegtiansmitting the erroneous
packets. As packet retransmission may delay applicatisshfinme, sensors should com-
pensate the retransmission time by speeding up the subddgak executions.

In the present definition of the penalty function in Chapteofly interference avoid-
ance is considered. However, the penalty function can bhbduextended with factors
such as link quality and traffic load. With this approach,gblkeeduled communication will
be able to adaptively choose reliable links, and balancenwamication load among cluster
nodes, which will increase the communication reliabilingahe network lifetime.

Integrating the joint effort of sensor failure handlingnmmunication failure handling,
and adaptive communication scheduling with extended pemahctions, we expect to
form a basis of developing a reliable adaptive task mappimyscheduling solution for
collaborative in-network processing in WSNs. This adagpsielution should be able to de-
liver an optimal schedule in normal operation conditionpold network condition changes
such as network topology changes, sensor failures, chaandltion degrade, and new ap-
plication arrivals, the system can dynamically adaptftseachieve network functionality

with satisfying performance.
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WSNs in the future are envisioned to observe different tygdes/ents, which leads to
different information processing simultaneously exeduteWSNs. Therefore, a general
solution to schedule multiple applications should be pathe future work. To map tasks
of multiple applications and allocate network resourcesable solution can be developed
in an incremental method: We can first independently map ahddsile each application
using the proposed solutions in the dissertation, then engrgse schedules with optimal
network resource utilization.

Intra-sensor scheduling may also be a promising and clgatigrproblem to investi-
gate in the future. In this dissertation, we only considenpatation and communication
scheduling between sensors in WSNs. However, a wirelesoséself has various re-
sources, such as CPU time, memory space, wireless bangarttiattery lifetime, which
need to be carefully managed. All scheduled computationcantmunication activities
must be executed subject to these resource constraintsh wghinot explicitly considered
in our present solutions. Furthermore, wireless sensoesiathy be equipped with mul-
tiple sensors detecting different events. Depending onicgijpns, the detected events
may occur in an aperiodic pattern. Therefore, a dynamiaisémsor scheduling algorithm

should be proposed to handle these events and efficientlyedd sensor resources.
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