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ABSTRACT 

 

 

The realization in the statistical and geographical sciences that a relationship 

between an explanatory variable and a response variable in a linear regression model is 

not always constant across a study area has lead to the development of regression models 

that allow for spatially varying coefficients. Two competing models of this type are 

geographically weighted regression (GWR) and Bayesian regression models with 

spatially varying coefficient processes (SVCP). In the application of these spatially 

varying coefficient models, marginal inference on the regression coefficient spatial 

processes is typically of primary interest. In light of this fact, there is a need to assess the 

validity of such marginal inferences, since these inferences may be misleading in the 

presence of explanatory variable collinearity. The presence of local collinearity in the 

absence of global collinearity necessitates the use of diagnostic tools in the local 

regression model building process to highlight areas in which the results are not reliable 

for statistical inference. The method of ridge regression and the lasso can also be 

integrated into the GWR framework to constrain and stabilize regression coefficients and 

lower prediction error. This dissertation presents numerous diagnostic tools and remedial 

methods for GWR and demonstrates the utility of these techniques with example datasets. 

In addition, I present the results of simulation studies designed to evaluate the sensitivity 
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of the spatially varying coefficients in the competing models to various levels of 

collinearity. The results of the simulation studies show that the Bayesian regression 

model produces more accurate inferences overall on the regression coefficients than does 

GWR. In addition, the Bayesian regression model is fairly robust in terms of marginal 

coefficient inference to moderate levels of collinearity, while GWR degrades more 

substantially with strong collinearity. The simulation study results also show that 

penalized versions of GWR models produce lower prediction and estimation error of the 

response variable than does GWR. In addition, penalized versions of GWR also lower the 

estimation error of the regression coefficients compared to GWR, particularly in the 

presence of collinearity. 
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CHAPTER 1 

 

INTRODUCTION 

 

Research Area 

The realization in the statistical and geographical sciences that a relationship 

between an explanatory variable and a response variable in a regression model is not 

necessarily constant across a study area has lead to the development of linear regression 

models that allow for spatially varying coefficients. In the field of geography, the 

geographically weighted regression (GWR) model has become an increasingly popular 

tool in recent years (e.g., Fotheringham et al. 2002). GWR is similar in spirit and 

methodology to local linear regression models that were popularized in the statistics 

literature (see Loader 1999; Hastie et al. 2001), except that in GWR the weights applied 

to observations in a series of local weighted regression models across the study area are 

determined by a spatial kernel function instead of a kernel function in the variable space. 

GWR also differs from local regression in its focus, as it is concerned with measuring 

statistically significant variation in the regression coefficients and providing an 

interpretation of the coefficients, while local regression is concerned with fitting a curve 

to the data. When comparing local regression to traditional linear regression, Loader 

(1999, p. 19) states, “Instead of concentrating on the coefficients, we focus on the fitted 
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curve.” In contrast, the main motivation for GWR is to provide spatial data analysts with 

a method to visualize the spatial variation in relationships between a response variable 

and a set of explanatory variables via the estimated regression coefficients from each 

calibration location in a study area. Another link between local linear regression and 

GWR is found in the similarity of the estimation procedures for loess smoothing in 

Martinez and Martinez (2002, p. 292-293) and the GWR model in Fotheringham et al. 

(2002), which suggests viewing GWR is a local smoothing method. 
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In the statistics literature, Bayesian regression models with spatially varying 

coefficient processes have been introduced to model non-constant linear relationships 

between variables (Gelfand et al. 2003). For convenience, I will refer to this type of 

model as SVCP for spatially varying coefficient process model. As with GWR, the 

motivation for these models is that, in certain applications, regression coefficients may 

vary at the local or regional level. However, instead of fitting spatially local regression 

models, in the SVCP framework, the spatial varying coefficients are modeled as a 

multivariate spatial process. Such an approach fits naturally into the Bayesian paradigm, 

where parameters are treated as unknown random quantities. The SVCP and GWR 

models are similar in nature due to their same focus on the interpretation of the regression 

coefficient patterns and the overall fit to the response variable. The SVCP model differs 

from GWR in that it is a single statistical model specified in a hierarchical manner. In 

contrast, GWR is an ensemble of local spatial regression models, each fitted separately. 

Therefore, with the GWR model, there is an explicit disconnect between regression 

model coefficients locally; however, with the SVCP model, the dependence between 

regression coefficients is defined globally. I limit my focus in this dissertation on linear 

regression models with spatially varying coefficients to the models of GWR and 

Bayesian regression (SVCP). 

Research Topic 

 One topic that is understudied in the literature related to both types of spatial 

varying coefficient regression models is the validity of marginal inference on the 

regression coefficients, particularly in the presence of collinearity in the explanatory 

variables. The inherent assumption in the published papers that apply these models to 
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data is that the regression coefficients are free of artifacts and strong dependence and, 

therefore, useful for marginal interpretation. This is, of course, an important and 

questionable assumption. In fact, there is no published work that assesses the validity of 

inferences derived from the GWR and SVCP models. However, as Gelman and Price 

(1999) show, statistical techniques can introduce artifacts into the estimation of 

parameters, and different statistical techniques introduce different artifacts. The work of 

Gelman and Price focuses on estimating disease rates and the spatial artifacts in these 

rates that result from small sample variation or correcting for this variation, but the 

general notion that spatial statistical artifacts distort model interpretation applies here. In 

addition, it is well know that in linear regression models, strong collinearity in the 

explanatory variables can increase the variance of the estimated regression coefficients. 

Typically, this increased variance leads to insignificant t-tests and counter-intuitive signs 

for at least one regression coefficient (Neter et al. 1996). In the local linear regression 

setting, this can lead to imprecise coefficient patterns with counter-intuitive signs in 

significant portions of the study area. For example, Wheeler (2006) shows that 

collinearity can degrade coefficient precision in GWR and lead to counter-intuitive signs 

for some regression coefficients at some locations in the study area of interest. In general, 

however, this is not a well understood and appreciated phenomena in the literature, as 

numerous applied papers present analyses using local spatial regression models without 

mentioning any relevant diagnostics for collinearity. Huang and Leung (2002) apply 

GWR to study regional industrialization in China and Nakaya (2001) uses the GWR 

approach for spatial interaction modeling with accessibility parameters and local distance 

decay. Longley and Tobón (2004) present a comparative study of several local and global 
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spatial estimation procedures, including GWR, to examine patterns of heterogeneity in 

intra-urban hardship. In all these applications, the authors interpret the local parameter 

patterns without reporting the level of correlation in the explanatory variables or 

estimated regression coefficients, even though there appears to be suspicious coefficient 

correlation in some map patterns. Of course, in these applied papers, the authors do not 

know the true regression coefficients and assume that the estimated coefficients 

approximate the true ones throughout the study area. 

Fortunately, there are diagnostic tools one can use in the local spatial regression 

setting to highlight collinearity that may interfere with the interpretation of the estimated 

regression coefficients. These diagnostic tools are adapted from the traditional regression 

setting. Such methods to detect explanatory variable collinearity include variance-

decomposition using singular-value decomposition (SVD), as described in Belsley 

(1991), and variance inflation factors (VIF), as outlined in Neter et al (1996). In addition, 

there are methods in the statistical literature that attempt to circumvent collinearity in 

traditional linear regression models with constant coefficients. These methods include 

ridge regression, the lasso, principal components regression, and partial least squares. 

Hastie et al. (2001) and Frank and Friedman (1993) independently provide performance 

comparisons of these methods. Ridge regression and lasso are both penalization, or 

regularization, methods that place a constraint on the regression coefficients, and 

principal components regression and partial least squares are both variable subset 

selection methods that use linear combinations of the explanatory variables in the 

regression model. Ridge regression was designed specifically to reduce collinearity 

effects by penalizing the size of regression coefficients and decreasing the influence in 
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the model of variables with relatively small variance. The lasso is a more recent 

development that also shrinks the regression coefficients, but shrinks the least significant 

variable coefficients to zero, thereby simultaneously performing model selection and 

coefficient penalization. The name for the lasso technique is derived from its function as 

a “least absolute shrinkage and selection operator” (Tibshirani 1996). Ridge regression 

and the lasso are deemed as better candidates than principal components regression and 

partial least squares to address collinearity in local spatial regression models because they 

more directly reduce the variance in the regression coefficients, with the cost of adding 

bias in the coefficients. Therefore, ridge regression and the lasso will be the focus of 

corrective methods in this dissertation. Interestingly, neither of these remedial methods 

has been discussed previously in the context of spatially varying coefficient models, and 

neither has been implemented in GWR. Seifert and Gasser (1999) suggest using ridging 

to improve the performance of local polynomial regression models by shrinking the local 

polynomial estimate towards the origin when the estimation location is far from the 

mean. The Seifert and Gasser method strikes a compromise between the variance and 

bias of the local linear estimator. It is worth mentioning that Seifert and Gasser were 

working in the setting of local regression models, so their kernels are applied in variable 

space, and they are not concerned with the interpretation of the parameters in the local 

polynomial fitting. 

Research Goals 

There are numerous goals for this dissertation research. As described above, 

collinearity in explanatory variables in linear regression models can lead to regression 

coefficient correlation, which if severe, can make the marginal interpretation of 
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coefficients dubious and can result in misleading conclusions about relationships in the 

phenomenon under study. Preliminary research shows that moderate collinearity in 

explanatory variables can lead to strongly correlated regression coefficients in GWR. The 

first research goal is to describe numerous diagnostic tools for the presence of collinearity 

in GWR models, while simultaneously demonstrating the problem of collinearity in 

GWR models using numerous illustrative examples. I will first review the GWR and 

Bayesian SVCP model methodology before introducing the diagnostic tools. The second 

goal of this research is to introduce several regularized, or augmented, versions of GWR 

to improve the GWR model results in the presence of collinearity. The final goal of this 

research is to evaluate the effectiveness of these regularization methods compared to the 

GWR and Bayesian SVCP models in terms of model performance and coefficient 

accuracy. The end result of this research will be the recommendation of a spatially 

varying coefficient regression model that has more directly interpretable coefficients than 

the GWR model, and that is more robust in terms of coefficient inference in the presence 

of collinearity.  

To this end, I will evaluate coverage probabilities and accuracy of estimated 

regression coefficients, as well as the response error, for the GWR, augmented GWR, and 

SVCP models through simulation study, where the ‘true’ values of the regression 

coefficients are known. I will evaluate the coverage and accuracy of the regression 

coefficients both in the absence of collinearity and in the presence of various levels of 

collinearity using coverage probabilities and a measure of deviation from the true values 

of the coefficients used to simulate the data. I will compare the GWR, augmented GWR, 

and SVCP models based on these measures. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The area of research outlined in this dissertation is inferential modeling with 

linear regression models that have spatially varying coefficients. I focus on two types of 

such regression models, geographically weighted regression (GWR) and a specific 

Bayesian regression model with spatially varying coefficient processes (SVCP). The 

topic of this dissertation is whether the local regression coefficients are valid for 

inference on the relationships between the explanatory variables and the response 

variable. The goals of this dissertation, outlined in the Introduction, include 

characterizing the condition of apparent increased regression coefficient covariation and 

its causes, including local collinearity in explanatory variables, and presenting remedial 

efforts to reduce any artificial variation in the coefficients in attempts to make them more 

interpretable and useful for inference. In this section, I present a critical review of 

previous efforts by researchers that either address the research area or topic of the 

dissertation or make preparatory steps towards the research goals explained in Chapter 1. 

In this review, I consider both work published in geographic books and relevant journals, 

such as Geographical Analysis, Journal of Geographical Systems, Environment and 

Planning A, and research published in the statistics literature. For brevity, I will not 
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discuss previous Bayesian regression and GWR research works that are not related to my 

dissertation topic and goals in some meaningful way. 

 Given the relatively weak penetration of Bayesian methods in general in the 

geography literature, it is not surprising that there have been only a few efforts by 

geographers in the area of Bayesian regression models with spatially varying coefficients. 

In general, GWR is written about in the geography literature, and the Bayesian SVCP 

model is written about in the statistics literature, although to a lesser extent to that of 

GWR in the geography literature. The specific type of Bayesian model that I focus on in 

this dissertation has been introduced in the statistics literature only in recent years and has 

not received nearly the attention in the geography literature that GWR models have 

received. Regardless, there are examples worth noting in this research area. 

Gelfand et al. (2003) formally introduced the Bayesian SVCP model in a 

prominent statistics journal and applied it to an existing housing dataset. Gelfand and 

coauthors model the correlation between regression coefficients, but do not perform a 

simulation test to ensure that the model is estimating the true parameters correctly; they 

use only actual, not simulated, data. Therefore, the reader does not know whether the 

estimated coefficients are valid or confounded with artifacts. This is an important issue 

because two of the coefficients for the naturally negatively associated variables home 

living area and home other area in their model have a correlation of –0.84, and this may 

be an indication of enough collinearity in the model to affect inference on the parameters. 

It seems at least somewhat plausible that collinearity could have a systematic effect on 

the estimated regression coefficients in the Bayesian model. 
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Congdon (2003b) introduces a Bayesian regression model with spatially varying 

coefficients in a geography journal to model spatial heterogeneity in one integrated 

model, in contrast to the more typically used multi-models of GWR, and demonstrates 

the model with London suicide mortality data. Congdon (2004) presents various Bayesian 

regression models with coefficients that vary over space and time, some with and without 

spatially varying errors, and maps spatially varying coefficients related to suicide 

mortality. Congdon (2003a) also describes a Bayesian regression model with varying 

coefficients and presents an example using Scottish lip cancer data.  

What is missing in these works, and is lacking in the Bayesian spatially varying 

coefficient regression model literature in general, is analysis that evaluates whether the 

spatially varying coefficients are accurately portraying the relationships in the data or are 

suffering from collinearity effects or other artifact-inducing processes. Maps of the 

spatially varying coefficients are frequently displayed in the literature with no mention of 

diagnostic checks on the validity of the model. 

Due to the relative small amount of literature on Bayesian regression models with 

spatially varying coefficient processes, I now turn my discussion to GWR. There have 

been numerous papers in the geography literature regarding different versions of GWR 

and new statistical tests for different parameters in GWR. I will describe below ones that 

are relevant to the topic and goals of this dissertation.  

The development of GWR started from smoothing techniques and local regression 

(Brunsdon et al. 1996; Fotheringham et al. 1998) and became more sophisticated by 

considering, for example, generalized linear model specifications (Fotheringham et al. 

2002), spatial autocorrelation of the residuals (Leung et al. 2000b; Páez et al. 2002b), 
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maximum likelihood estimation of calibration location specific kernel bandwidths (Páez 

et al. 2002a), and a Bayesian approach to GWR that better accounts for the presence of 

outliers (LeSage 2004). There has also been the development of formal test statistics for 

spatial nonstationarity of the local regression coefficients (Leung et al. 2000a). Aside 

from coefficient maps associated with single exogenous variables and local t-values, 

however, none of the published GWR research developments at the time of this writing 

involve fundamental regression diagnostics, such as residual analysis or the precision of 

the regression coefficients. 

LeSage (2004) introduces a Bayesian GWR (BGWR) model that is similar in 

spirit to the GWR model, as LeSage claims the BGWR model can replicate the GWR 

model estimates given certain conditions. LeSage’s BGWR model includes variance 

scaling parameters to account for error variance heterogeneity. The model also has a scale 

parameter for smoothing the regression coefficients. When there is no spatial error 

heterogeneity and the smoothing parameter scale is very large, it appears the BGWR 

model should reproduce the GWR coefficient estimates. Based on results from presented 

experiments, BGWR is apparently more robust to the effects of outliers on regression 

coefficient estimates than is GWR, and this is due primarily to the error variance 

heterogeneity component. One criticism of LeSage’s work is that there is no mention of 

collinearity effects and the interpretation of regression coefficients. In his example with 

the Columbus crime dataset, there are regions with counterintuitive signs for either one of 

the two variable coefficients in the model, and in some areas the magnitude of the 

counterintuitive coefficient is more with the BGWR model than the GWR model. This is 

especially surprising given LeSage’s comments in the conclusions that the BGWR 
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coefficients are reliable for interpretation, and more interpretable than the GWR 

coefficients. In addition, the BGWR model adds numerous parameters for the variance 

heterogeneity to the original GWR model, which already has more parameters than 

observations. 

Páez et al. (2002a) also are concerned with error variance heterogeneity in GWR 

and choose to shift the theoretical focus from parametric nonstationarity (see 

Fotheringham et al. 2002) to variance heterogeneity. This shift allows these authors to 

estimate local kernel bandwidths using maximum likelihood estimation and treating the 

inverse spatial weights as variance components. An interesting result of this work is the 

finding that the variation in the local GWR coefficients is substantially larger with one 

global kernel bandwidth, as is typically used with GWR, than with one local kernel 

bandwidth at each model calibration location. The global kernel bandwidth resulted in 

smaller kernels overall than with the local kernel bandwidths. This finding indicates that 

actual parametric nonstationarity could be artificially exaggerated when using a global 

kernel bandwidth. One caveat is that Páez et al. use a fixed, not adaptive, kernel function, 

and this could be partially responsible for the result. It is unreported and unknown, 

however, if the local/global kernel property generalizes beyond the example dataset. 

Another possible criticism is that the model that Páez et al. recommend has ( 1)n −  more 

kernel bandwidth parameters than the basic GWR model, which some might argue is 

overparameterized. 

Páez et al. (2002b) report additional findings on the global versus local kernel 

bandwidths using the same data as in Páez et al. (2002a). Pseudo- 2R  calculations show 

that the GWR model with a global kernel bandwidth fits the data substantially better than 
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the GWR model with local kernel bandwidths (0.788 versus 0.527). They again use a 

fixed kernel function. The authors’ conclusion is that since the global bandwidth results 

in smaller kernels, the individual models are fitting more locally and hence produce better 

fit to the data. They make the point that the smoothing methods that GWR is sometimes 

compared to place the focus on fitting the data and not producing an interpretable model. 

Páez et al. (2002b) also find that adding a spatial lag to the dependent variable reduces 

the variance heterogeneity and improves the GWR model fit. In summary, the Páez 

results that are relevant to my dissertation indicate that the basic GWR model may be 

overfitting the data locally at the expense of increased variation in regression coefficients, 

which could lead to problems with model interpretation. 

There are also a few key papers that focus on statistical tests in GWR that are 

worth mentioning here. For example, Leung et al. (2000a) develop a distribution-based, 

statistical test in GWR for significant variation in a parameter from a constant level 

across a study area using the variance of the local coefficient variances. While this test of 

significant parametric stationarity is viewed as an improvement over the Monte Carlo 

simulation-based technique described in Fotheringham et al. (2002) because it is a formal 

statistical test, it does not consider or question the source of the parameter spatial 

variation. The spatial variation in the parameters could be real or greatly exaggerated 

from collinearity in the explanatory variables or from statistical artifacts added from the 

method itself, but this test will not distinguish between these situations. This could be an 

important difference because Wheeler and Tiefelsdorf (2005) show that the kernel 

weighting in GWR increases the effect of collinearity on the regression coefficients from 

what is found in traditional regression. Moreover, Wheeler (2006) shows that collinearity 
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can lead to increased estimated coefficient variances in the GWR models at some data 

locations. Leung et al. (2000a) also present a test of goodness of fit of the GWR model 

compared to the global ordinary least squares (OLS) model and use this test in a stepwise 

procedure for model building. There is an issue in the model building procedure, 

however, as they do not re-estimate the kernel bandwidth when variables are added and 

removed from the model. There is certainly a relationship between the kernel size and the 

nature of the relationships between the response variable and the explanatory variables. 

Presumably, the computational cost would be significant to re-estimate the bandwidth at 

each model-building step, especially with a large number of data points. 

Mei et al. (2004) adapt the statistical test of Leung et al. (2000a) for determining 

which variables to designate global and which to designate local in a mixed GWR model 

and use a simulation to test the effectiveness of their technique. The term ‘mixed GWR 

model’ refers to the combination of explanatory variables that are constant across the 

study area and those that spatially vary. Hence, the test determines which variables 

should enter the model globally or locally; the intercept is also tested for spatially 

variability. One of the cases in the simulation study of Mei and coauthors has one 

constant coefficient and two spatially varying coefficients and the test rejects the null 

hypothesis of no coefficient variation for the constant variable for 15 percent of the 500 

replications instead of the target of a 5 percent significance level for the largest sample 

size used, 256 observations. This rejection rate systematically decreases when the kernel 

size is decreased from the cross-validation kernel size and could suggest that GWR is 

adding artifacts to the estimated regression coefficients for the true constant coefficient 

and that the amount of artifact introduced depends on the kernel size. This result is 
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somewhat related to the simulation study results of Wheeler and Tiefelsdorf (2005) that 

show that GWR adds systematic artifacts to regression coefficients that are truly constant, 

and the strength of the artifacts increases as the correlation in the explanatory variables 

increases. The research of Mei et al. and Leung et al. is also noteworthy in relation to a 

goal in my dissertation, due to its emphasis on model selection in GWR, as I implement 

the lasso procedure in GWR to simultaneously constrain regression coefficients for 

collinearity effects and select significant variables in each local model. 

While there has been a lack of attention to collinearity effects in local spatial 

regression models in geography and statistics, there have been a few contributions that 

motivate this topic and facilitate its analysis. A contribution in the literature that makes 

preparatory steps toward my goal of characterizing collinearity effects in spatial 

regression models is by Brunsdon et al. (2002) and Fotheringham et al. (2002). These 

authors provide formulas for calculating geographically weighted summary statistics, 

such as the mean and variance, for spatially referenced variables. I use this idea to 

calculate variance inflation factors (VIFs) as a diagnostic tool for collinearity effects in 

GWR using a weighted correlation coefficient between two model explanatory variables. 

Anselin (2003) presents an exploratory spatial data analysis software package called 

GeoDa that provides convenient tools for exploring spatial associations that include 

bivariate local indicators of spatial association (LISA) scatter plots and bivariate cluster 

maps. These tools were used early in the exploratory stage of my research to investigate 

spatial relationships and correlation between GWR coefficients.  

One work that addresses collinearity effects in spatial models is by Tiefelsdorf 

(2003), who argues that correlation between origin-specific distance decay parameters 
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and origin population parameters in spatial interaction models interferes with the 

substantive interpretation of the distance decay parameters and makes the separation of 

spatial structure in the distance decay parameters and the regional attribute information 

problematic. The result of the collinearity in Tiefelsdorf’s example is a distorted 

systematic pattern of origin-specific distance decay parameters in a misspecified model. 

Even though this paper is clearly not dealing with GWR-type models, it does provide an 

example of some awareness of and interest in the potential difficulty with model 

interpretation when substantial collinearity is present in the model. While Tiefelsdorf 

draws attention to the problem, he recommends no remedial methods to correct 

collinearity effects in spatial interaction models. 

Interestingly, there have been no efforts by geographers to incorporate remedial 

methods in the vein of traditional regression for collinearity effects in local spatial 

regression models. There has also been no attention paid to identifiability issues in 

spatially varying coefficient regression models. There is, however, an established 

literature in statistics concerning remedial methods for collinearity in regression models 

using ridge regression. In the past few years, there has been a growing literature in 

computational statistics on the lasso as a remedial method for collinearity and a model 

selection tool. However, much like in the geography literature, there has been little 

attention to diagnostic tools and remedial efforts for collinearity in the statistics literature 

in the area of spatial local regression models. Therefore, the research goals outlined in 

Chapter 1 will make new contributes to the geography literature, and also to the statistics 

literature. 

 



 17 
 
 

 

 

 

CHAPTER 3 

 

LINEAR REGRESSION MODELS WITH SPATIALLY VARYING COEFFICIENTS 

 

Geographically Weighted Regression 

This section reviews the key equations used in fitting a GWR model. Portions of 

this chapter are taken from Wheeler and Calder (2006). The reader is referred to 

Fotheringham et al. (2002) for a more detailed introduction to the GWR framework. In 

GWR, the data are usually mean measures of aggregate data at fixed points with spatial 

coordinates; for example, see the Jiangsu province data in Huang and Leung (2002) and 

the numerous examples in Fotheringham et al. (2002). The spatial coordinates of the data 

are used to calculate distances that are used in a kernel function to determine weights of 

spatial dependence between observations. Typically, a separate regression model is fitted 

at each point location in the dataset, called model calibration locations. For each 

calibration location, 1, ,s n= K , the GWR model at location s  is 

 

( ) ( ) ( ) ( )y = +s X s β s ε s ,        (3.1) 

 

where ( )y s  is the dependent variable at location s , ( )sβ  is the column vector of 

regression coefficients at location s ,  ( )sX  is the row vector of explanatory variables at 
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location s , and ( )sε  is the random error at location s . The regression coefficients are 

estimated for each calibration location independently by weighted least squares. The 

vector of estimated regression coefficients at location s  is calculated by 

 

1ˆ ( ) [ ( ) ] ( ) ,T Ts s s−= ⋅ ⋅ ⋅ ⋅β X W X X W y        (3.2)  

 

where [ (1); (2); ; ( )]Tn=X X X XK  is the design matrix of explanatory variables, which 

typically includes a column of 1's  for the intercept; 1( ) [ ( ), , ( )]ns diag w s w s=W K  is the 

diagonal weights matrix that is calculated for each calibration location s ; y  is the 1n×  

vector of dependent variables; and ( )0 1
ˆ ˆ ˆ ˆ( ) , , ,

T

s s sps β β β=β K  is the vector of 1p +  local 

regression coefficients at location s  for p  explanatory variables and an intercept.  

The weights matrix, ( )sW , is calculated from a kernel function that places more 

weight on observations that are closer to the calibration location s . There are numerous 

choices for the kernel function, including the bi-square nearest neighbor function, the 

exponential function, and the Gaussian function. The bi-square nearest neighbor function 

is an adaptive kernel and has the form 

  

2 2[1 ( / ) ]   if  { }
( )

0                       if  { }
sj s

j
s

d b j N
w s

j N
⎧ − ∈

= ⎨ ∉⎩
,                                                                          (3.3) 
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where sjd  is the distance between the calibration location s  and location j , b  is the 

distance to the thN  nearest neighbor, and the set { }sN  contains the observations that are 

within the distance of the thN  nearest neighbor. The weights for observations beyond the 

thN  nearest neighbor distance are zero and the weight for observation s  is 1. This kernel 

is adaptive because its spatial bandwidth adjusts to the density of data points across a 

study area. The weights from the exponential kernel function are calculated as 

 

( ) exp( / )j sjw s d γ= − ,          (3.4) 

 

where sjd  is the distance between the calibration location s  and location j , and γ  is the 

kernel bandwidth parameter. The exponential function is a fixed kernel function, in that 

the kernel does not adjust to the density of data points across the study area. I use the 

exponential function for the kernel later in the simulation study section of this 

dissertation to match the spatial dependence function used in the SVCP model, although 

one could also use another type in the Bayesian model. 

To fit the GWR model, the kernel bandwidth is first estimated by cross-validation 

across all the calibration locations. Cross-validation (CV) is an iterative process that finds 

the kernel bandwidth with the lowest prediction error of all the ( )y s . For each location 

s , it removes data for observation s  in the model calibration at location s  and predicts 

the response ( )y s  using the other data points and the kernel weights associated with the 

current bandwidth. This is leave-one-out cross-validation because only one data point is 
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left out in each iteration of the cross-validation. For the bi-square nearest neighbor kernel, 

the kernel bandwidth estimate 0N  satisfies 

 

2
0 ( )

1

ˆarg min [ ( )]
n

s s
N s

N y y N
=

= −∑ ,       (3.5) 

 

where ( )ˆ sy  is the predicted value of observation s  with the calibration observation s  

removed from the estimation, and N  is the value of the kernel bandwidth that minimizes 

the cross-validation residual sum of squares. The summation term in the equation is the 

prediction squared error. After the kernel bandwidth is estimated, the kernel weights are 

calculated at each calibration location using the kernel function and the estimated 

bandwidth. Finally, the regression coefficients are estimated at each calibration location 

along with the response estimates by the expression ˆˆ( ) ( ) ( )y s s s= Χ β . These steps are 

similar to the steps in fitting local linear regression models (see Hastie et al, 2001). 

Bayesian Regression Model with Spatially Varying Coefficient Processes 

This section of the text reviews the Bayesian SVCP model and the methods used 

to estimate the model parameters. The Bayesian SVCP regression model is specified in a 

hierarchical manner. The distribution of the data is specified conditional on unknown 

parameters, whose distribution is in turn specified conditional on other parameters. 

Following Gelfand et al. (2003), the SVCP model is  

 

2 2| , ( , )TNτ τ⎡ ⎤ =⎣ ⎦Y β X β I ,        (3.6) 
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where the bracket notation [ | ]A B  denotes the distribution of A  conditional on B . Y  is 

a vector of responses assumed to be Gaussian conditional on the parameters β  and 2τ ; β  

is a 1np×  vector of regression coefficient parameters; and TX  is the n np×  block 

diagonal matrix of covariates where each row contains a row from the n p×  design 

matrix *X , along with zeros in the appropriate places (the covariates from *X  are shifted 

p  places in each subsequent row in TX ); I  is the n n×  identity matrix; and 2τ  is the 

error variance. 

In the second stage of the hierarchical model, the prior distribution for the 

regression coefficient parameters is specified as  

 

1| , ( , )nN ×⎡ ⎤ = ⊗⎣ ⎦β β β ββ μ Σ 1 μ Σ .       (3.7) 

 

The vector 
0

( , , )
p

T
β βμ μ=βμ K  contains the means of the regression coefficients 

corresponding to each of the p  explanatory variables. The prior on the regression 

coefficients in the SVCP model takes into account the possible spatial dependence in the 

coefficients through the covariance, βΣ . For 1[ , , ]p p pnβ β=β K , we can assume a priori 

that each pβ  follows an areal unit model (e.g., the CAR or SAR model; see Banerjee et 

al. 2004) or specify the prior on pβ  using a geostatistical approach, where a parametric 

distance-based covariance function is specified. I focus on a geostatistical prior 

specification of the regression coefficients and assume an exponential spatial dependence 
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function. The prior covariance matrix for the p  different types of  β 's at each of n  

locations, βΣ , can have either a separable or nonseparable form. The separable form has 

two distinct components, one for the spatial dependence in the regression coefficients and 

one for the within site dependence between coefficients of the same type. Following 

Gelfand et al. (2003), I assume a separable covariance matrix for β  of the form 

 

( )φ= ⊗βΣ H T ,          (3.8) 

 

where T  is a positive-definite pp ×  matrix for the covariance of the regression 

coefficients at any spatial location, ( )φH  is the nn ×  correlation matrix that captures the 

spatial association between the n  locations, φ  is an unknown spatial dependence 

parameter, and ⊗  denotes the Kronecker product operator, which is the multiplication of 

every element in ( )φH  by T . In the prior specification for β  (equation 3.7), the 

Kronecker product results in a np np×  positive definite covariance matrix, since ( )φH  

and T  are both positive definite. The elements of the correlation matrix ( )φH , 

( ) ( ; )ij i jH s sφ ρ φ= − , are calculated from the exponential function ( ; ) exp( / )h hρ φ φ= − .  

With the separable cross-covariance function, each of the p  coefficients 

represented in the covariance is assumed to have the same spatial dependence structure. 

The separable cross-covariance form also has the property that the covariance between 

β ’s of the same type is constant across space. While a separable assumption is restrictive, 

one advantage to the separable covariance is that it is more convenient computationally 

than a nonseparable one and reduces the number of operations needed for matrix 
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inversion in simulating from the posterior distribution of the parameters. An example of 

the use of a nonseparable covariance matrix in a Bayesian regression model is Banerjee 

and Johnson (2005), who use a linear model of coregionalization to specify the prior on 

β  (see also Banerjee et al. (2004) and Gelfand et al. (2004) for discussions of models of 

coregionalization). 

The specification of the Bayesian SVCP model in equations (3.6) and (3.7) is 

complete with the specification of the prior distributions of the parameters. The prior for 

the error variance is inverse gamma with hyperparameters a  and b , 2 ~ ( , )IG a bτ⎡ ⎤⎣ ⎦ . The 

prior for the coefficient means is normal with hyperparameters μ  and 2σ , 

2~ ( , )N σ⎡ ⎤⎣ ⎦βμ μ I . The prior for the covariance matrix T  is inverse Wishart with 

hyperparameters v  and Ω , [ ] 1~ ( )vIW −T Ω . These priors are conjugate priors, and are 

used for computational convenience. The prior for the spatial dependence parameter φ  is 

gamma with hyperparameters α  and λ , [ ] ~ ( , )Gφ α λ . The parameterization of the 

gamma distribution used in this dissertation is 

 

1[ ] exp( )αφ φ λφ−∝ − ,         (3.9) 

 

and the parameterization of the inverse Wishart distribution used in this dissertation is 

 

( 1) / 2 11[ ] | | exp( )
2

v p trace− + + −∝ −T T ΩT .      (3.10) 
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 Inference on the parameters in the SVCP model is based on the posterior 

distribution [ | ]θ y  of the parameters 2( , , , , )τ φ= βθ β μ T , which can be obtained using 

Bayes Theorem: 

 

[ | ] [ | ] [ ]∝ ⋅θ y y θ θ .         (3.11) 

 

In other words, the posterior distribution for the parameters θ , conditional on the data, is 

proportional to the likelihood of the data [ | ]y θ , also written as ( | )p y θ , and the prior 

[ ]θ , also written as ( )p θ , for all the parameters. In most situations, it is usually not 

possible to find an analytic solution for the posterior distribution in complex Bayesian 

models. Instead, it is common in Bayesian statistics to use simulation-based inference 

tools such as Markov chain Monte Carlo (MCMC) methods to sample from the posterior 

distribution of the parameter and base inferences on these samples. MCMC algorithms 

simulate a Markov chain that has for its stationary distribution the target posterior 

distribution. The algorithm is run for a sufficient time so that, after a number of “burn-in” 

iterations, the algorithm converges and the sample path of the Markov chain can be taken 

to be samples from the posterior distribution of the unknown parameters. The samples 

from the chain after the “burn-in” are used to summarize inferences on the unknown 

parameters, where the sample mean or median is typically used as a point estimate of the 

parameter.  

In order to check for convergence, it is common to run multiple MCMC 

algorithms with different starting values, where each is called a chain, and inspect that the 
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sampled posterior distributions are the same for the different chains. Another method to 

evaluate convergence is to use Gelman’s scale reduction statistic, R̂ , which has values 

near 1 for each parameter if the algorithm has converged (Gelman et al. 2004). 

 In fitting Bayesian models, MCMC algorithms are typically based on the Gibbs 

sampler (e.g. Casella and George 1992), which iteratively samples from the full 

conditional distribution for each parameter, conditioning on the current value of the other 

parameters. The full conditional distribution is the distribution for a parameter given the 

other parameters in the model. At iteration j , the Gibbs sampler for the SVCP model 

would simulate successively from the following full conditional distributions: 

 

2

2

2 2

2

2

( ) ~ [ | ( 1), ( 1), ( 1), ( 1), ]

( ) ~ [ | ( 1), ( 1), ( ), ( 1), ]

( ) ~ [ | ( 1), ( 1), ( ), ( ), ]

( ) ~ [ | ( 1), ( ), ( ), ( ), ]

( ) ~ [ | ( ), ( ), ( ), ( ), ].

j j j j j

j j j j j

j j j j j

j j j j j

j j j j j

φ φ τ

φ τ

τ τ φ

φ τ

φ τ

− − − −

− − −

− −

−

β

β

β

β β

β

β μ T Y

T T β μ Y

β μ T Y

μ μ β T Y

β β μ T Y

     (3.12) 
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Clearly, to use the Gibbs sampler, one must be able to derive the full conditional 

distribution for each parameter. The posterior can be expressed as the full conditional up 

to a normalizing constant. The full conditional distribution for each parameter is derived 

by taking the product of the appropriate likelihood function and the priors for all the 

parameters and then simplifying the expression for the parameter of interest by ignoring 

terms that do not include the parameter of interest. If the distribution of a full conditional 

for a parameter is recognizable, one can sample directly from it in a Gibbs sampler. 

However, if the distribution of the full conditional is not recognizable, one can sample 

from it using a Metropolis-Hastings algorithm or slice sampling.  

In order to perform inference on the model parameters, one must write the 

posterior distribution for each unknown parameter using the likelihood. The derivation of 

the full conditional distributions in this dissertation utilizes two versions of the 

likelihood. The likelihood for the SVCP model with Y  as defined in equation (3.6) is 

 

1 22 2 2 11( , , , , ; ) exp{ ( ) ( ) ( )}
2

TL τ φ τ τ
− −= × − − −βμ β T y I y Xβ I y Xβ .     (3.13) 

 

One can integrate this likelihood with respect to β  to reduce the autocorrelation in the 

Markov chain. The likelihood with integrating over β  is 

 

1 2* 2 * 1 *1( , , , ; ) exp{ ( ) ( ) ( )}
2

TL τ φ − −= × − − −β β βμ T y Ψ y X μ Ψ y X μ ,    (3.14) 
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where 2( ( ( ) ) )Tφ τ= ⊗ +Ψ X H T X I  and *X  is the n p×  matrix of covariates. As an 

example of the use of both likelihoods, the full conditional distribution for βμ  is derived 

using the likelihood integrated over β , *(.; )L y , and the full conditional distribution for 

2τ  is derived using the likelihood (.; )L y .  

I first derive the full conditionals that are recognizable distributions using the 

likelihood and priors. The full conditional distributions using conjugate priors are next 

listed for 2, , , andτ βT μ β . The full conditional for the error variance is 

 

2 2 1[ | ; ] ~ ( ) ( / 2, ( ) ( ))
2

TL p IG a n bτ τ× = + + − −β y y Xβ y Xβ .   (3.15) 

 

The full conditional for the coefficient covariance matrix at any location is 

 

1[ | , , ; ] ~ ( ) ( ) ( , ( ( )) ( ( ) )( ( ) ) )T
ij j i

i j

L p p IW v n s sφ φ−× × = + − − +∑∑β β βT μ β y T β H β μ β μ Ω ,  (3.16) 

 

where 1 2( ( ), ( ), , ( ))T
ns s sβ β β=β K  and 

1 2
( , , , )

p

T
β β βμ μ μ=βμ K . The full conditional for 

the coefficient means is 

 

2 *[ | , , ; ] ~ ( ) ( , )L p Nτ φ × =β βμ T y μ m S ,      (3.17) 
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where =S 2 1 * 1 * 1[( ) ]
T

σ − − −+I X Ψ X and * 1 2 1( ( ) )
T

σ− −= +m S X Ψ y I μ . The full conditional 

distribution for β  is 

 

2[ | , , , ; ] ~ ( ) ( , )L p Nφ τ × =ββ μ T y β AC A ,      (3.18) 

 

where 2 1 1 1( / ( ) )T τ φ− − −= + ⊗A X X H T  and 2 1 1/ ( ( ) )( )T τ φ− −= + ⊗ ⊗ βC X y H T 1 μ . Unlike 

the other parameters, the full conditional distribution of φ  cannot be found in closed 

form. 

 When a conditional distribution for a parameter can only be calculated up to a 

normalizing constant, as is the case with φ , a Metropolis-Hastings (M-H) step can be 

used to draw a sample from the full conditional distribution of a parameter (e.g. Chib and 

Greenberg 1995). In the M-H step, I use a normal random walk proposal density that is 

centered on the current value of φ  and has a variance 2s  that is tuned to produce an 

adequate acceptance rate of the proposed value of φ . The proposed value of φ  is 

accepted if the ratio of the unnormalized full conditional distribution with the proposed 

value over the unnormalized full conditional distribution with the current value of φ  is 

greater than 1 or greater than a randomly drawn uniform variable with a range of (0,1). 

The unnormalized full conditional distribution for φ  is not a recognizable distribution 

and is  

 

1 2 1

1

1( | , , ; ) ( ) ( ) ~ ( ) exp{ ( ( )) ( ( ) ) ( ( ))}
2

exp( ).

Tp L p pβ

α

φ φ φ φ

φ λφ

− −

−

∝ × × ⊗ × − − ⊗ ⊗ − ⊗

× −

β βT β μ y β H T β 1 μ H T β 1 μ  (3.19) 
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An alternative method for simulating the spatial dependence parameter φ  is slice 

sampling. Slice sampling does not require the proposal variance tuning of Metropolis-

Hastings or the explicit, recognizable full conditional distributions required in Gibbs 

sampling. Instead, slice sampling uses a constraint that the density with the current 

sampled parameter must be greater than a random uniform variable that is drawn from the 

range of 0 to the density with the previous parameter value. If the constraint is satisfied, 

the new point is in the slice of the density. Two useful slice sampling references are Neal 

(2003) and Agarwal and Gelfand (2005). The version of slice sampling proposed by Neal 

samples uniformly from the unnormalized full conditional distribution of the parameter 

of interest and accepts the new point if the unnormalized full conditional density with the 

new point is greater than the previously drawn uniform random variable. To implement 

the slice sampling method of Neal for inference in the SVCP model, one would use the 

unnormalized full conditional density of φ  in equation (3.19). 

The version of slice sampling by Agarwal and Gelfand (2005) samples from the 

prior distribution of the parameter of interest and accepts the new point if the likelihood 

with the new point is greater than the previously drawn uniform random variable. It 

makes use of an auxiliary uniformly distributed variable U  to sample from the posterior 

distribution of the parameters. The joint posterior distribution of the model parameters θ  

and U  is 

 

( , | ) ( )1( ( ; )f U U Lπ∝ <θ Y θ θ Y ,       (3.20) 
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where ( )π θ  is the prior for the parameters and 1(.) is an indicator function. The slice 

sampling algorithm of Agarwal and Gelfand is as follows: 

 

1 2 1 2

2 2 1

1 1 2

Steps
a) Partition ( , ) such that ( | ) is easy to sample from
b) Draw ~ Unif (0, ( ; ))
c) Draw  from ( | , )1( ( ; )) using shrinkage sampling
d) Draw  from ( | )
e) Iterate steps b) t

f
U L

f U U L Y
f

=

<

θ θ θ θ θ
θ Υ

θ θ θ θ
θ θ θ

hrough d) until appropriate number of samples drawn.

 

 

where 

 

2 1 2( | , ) ( )1( ( ; ))f U U Lπ∝ <θ θ θ θ Υ        (3.21) 

 

and 

 

1 2 1 2 1 2( | ) ( , ; ) ( | )f L π∝θ θ θ θ Υ θ θ        (3.22) 

 

is a standard distribution that is easy to sample from. In the SVCP model, 2θ  = φ  and 

1θ = 2( , , , )τβμ T β . 

Shrinkage sampling is used in slice sampling to increase the efficiency of the 

algorithm by reducing the number of samples needed to get an acceptable 2θ . The steps 

for shrinkage sampling in slice sampling are as follows: 
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To implement the Agarwal and Gelfand slice sampling method for inference in 

the SVCP model, one would employ the likelihood expression integrated over beta in 

equation (3.14). Gelfand et al. (2003) use slice sampling to fit all the parameters 

associated with the SVCP model, including φ . I instead sample from the full conditional 

distributions for the non-spatial dependence parameters because it is more efficient. 

However, preliminary analyses show that both the Neal and Agarwal and Gelfand slice 

sampling methods produce acceptable results for estimating φ . 

A feature of the SVCP model is that the correlation between explanatory variable 

coefficients is explicitly modeled. With the separable covariance matrix, the posterior 

correlation of the regression coefficients k  and l  across all locations is kl kk llT T T . 

Another expression for this correlation is 

 

cov( ( ), ( ))
cov( ( ), ( )) cov( ( ), ( ))

kl k l

kk ll k k l l

T s s h
T T s s h s s h

β β
β β β β

+=
+ +

,    (3.23) 

 

which does not depend on h , hence, the correlation of ( , )k lβ β  does not depend on 

distance ( h ) between locations and is the same across the study area (Gelfand et al. 
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2004). Figure 3.1 conveys graphically the formula in equation (3.23) for two coefficients, 

say 1β  and 2β  at two locations, s  and s h+ . The crossing lines under the coefficient pair 

labels show the covariance pairings in the denominator of the equation, while the line 

above the coefficient pair labels shows the covariance pair in the numerator of the 

equation. The numerator is the covariance between two different coefficients at different 

locations and the denominator is the product of the standard deviation for one coefficient 

at different locations and the standard deviation for another coefficient at different 

locations. I make use of the coefficient correlation in a later section when evaluating 

dependence in the coefficients in the simulation studies. 

 
 
 

 
 
 
Figure 3.1. Components of the regression coefficient correlation for two types of 
coefficients at two hypothetical locations. The crossing lines under the coefficient pair 
labels show the covariance pairings in the denominator of the equation. The line above 
the coefficient pair labels shows the covariance pair in the numerator of the equation. 
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 In the SVCP model, each of the p  coefficients represented in the within site 

covariance matrix T  has the same range in the exponential correlation function (Banerjee 

et al. 2004). The prior distribution specification for the regression coefficients imposes 

this structure, and there is naturally some question as to whether this structure will have 

an impact on the posterior distribution, in terms of possible influence on the correlation 

of the regression coefficients. Specifically, an open research question is: does the prior 

with the same range parameter for all variables induce dependence in the spatial process 

through what is in effect a constraint on the prior coefficient covariance? The extent and 

nature of what the impact could be is unclear at this time and is left for future research. 
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An extension of the Bayesian SVCP model that can address this issue uses the 

linear model of coregionalization (LMC), e.g. Gelfand et al. (2004). LMC allows one to 

use different spatial ranges in the spatial correlation function for each coefficient type, 

where type refers to the coefficients for one explanatory variable. Gelfand et al. (2004) 

use the LMC approach to have different spatial ranges for the joint response variables of 

selling price and income (rent) in a commercial real estate example in three cities. The 

LMC approach allows one to use a nonseparable covariance matrix for the regression 

coefficients in the SVCP model. A nonseparable covariance matrix for the regression 

coefficients can no longer be cleanly separated into a spatial dependence component and 

a within site variance component using the Kronecker product, and hence working with 

this type of covariance matrix usually increases computational time in finding matrix 

inverses. For instance, the inverse of the covariance matrix in the extended SVCP model 

would require 3(( ) )O np  time instead of 3 3( ) ( )O p O n+  time with the separable covariance 

matrix in the SVCP model (assuming the worst case scenario). Research is required to 

see if the additional computation time with the nonseparable covariance matrix is 

warranted by gains in model flexibility and improved inference. 

To estimate the Bayesian SVCP model parameters with a LMC prior for the 

covariance of the regression coefficients, the specification of the coefficient covariance 

matrix must be altered to the nonseparable form 

 

1
( ( ) )

p

k k
k

φ
=

= ⊗∑βΣ H T ,        (3.24) 
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where H  is a n n×  correlation matrix, T
k k ka a=T , ka  is the thk  column of a full rank 

p p×  matrix A , and kφ  is the spatial range parameter for the thk  type of regression 

coefficient. A  is the lower triangular matrix of the Cholesky decomposition of T . The 

index in the covariance expression for the regression coefficients starts at 1, regardless if 

there is an intercept or there is not. If there is an intercept, p  will be increased by one 

and a leading column of ones added to the design matrix *X .  

The simulation-based inference for this extended SVCP model requires relatively 

minor changes to the algorithm for the SVCP model. The within site covariance matrix 

T  can no longer be sampled from its full conditional distribution because it is not a 

recognizable distribution. In addition, the one Metropolis-Hastings step for the range 

parameter in the SVCP model must now be replaced with p  Metropolis-Hastings steps 

or slice sampling draws for the spatial range parameters 1( , , )pφ φK . The expression for 

the coefficient covariance matrix must also be changed in the full conditional 

distributions for β  and βμ . The subscript for the coefficient covariance matrix in this 

extension of the SVCP model implies that there is a different T  for each component of 

the covariance matrix, where the components here are regression coefficients. However, 

there would be only one T  sampled per MCMC iteration in estimating the model 

parameters, and then this matrix would be decomposed into p  kT  matrices using 

Cholesky decomposition. It is more convenient to work with the A  matrix when 

sampling T  because = TT AA  ensures positive definiteness (Gelfand et al. 2004). It is 

possible to sample A  with either a Metropolis-Hastings step or slice sampling. To 

investigate the potential impacts of the separable covariance specification in the SVCP 
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model, I would like to in the future compare fitted results from the SVCP model and the 

extended SVCP model with the nonseparable covariance matrix using LMC. 

Coregionalization can also be used to incorporate a temporal dimension to varying 

coefficient models. Gelfand et al. (2005) propose an extension of the spatially varying 

coefficient Bayesian regression model that accommodates temporal dependence and uses 

coregionalization for multivariate spatial processes. 



 37 
 
 

 

 

 

CHAPTER 4 

 

DIAGNOSTIC TOOLS FOR COLLINEARITY 

 

This chapter introduces numerous collinearity diagnostic tools for use with linear 

regression models with spatially varying coefficients, although many are specifically for 

GWR, and demonstrates their use with example datasets. Portions of the text in this 

chapter are taken from Wheeler and Tiefelsdorf (2005) and Wheeler (2006). Before 

describing the diagnostic tools, I will first briefly discuss the issue of collinearity in 

spatially varying coefficient regression models. 

One potential problem with spatially varying coefficient regression models is with 

correlation in the estimated coefficients, at least partly due to collinearity in the 

explanatory variables of each local model. Wheeler and Tiefelsdorf (2005) show that 

while GWR coefficients can be correlated when there is no explanatory variable 

collinearity, the coefficient correlation increases systematically with increasing variable 

collinearity, and moderate collinearity of locally weighted explanatory variables can lead 

to potentially strong dependence in the local estimated coefficients. Wheeler and 

Tiefelsdorf also show that a global regression model may have acceptable coefficient 

correlation levels and other diagnostic levels, while its GWR counterpart may have 

unacceptably high levels of correlation among the local GWR coefficients. This strong 
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dependence in estimated coefficients can make interpretation of individual coefficients 

tenuous at best, and highly misleading at worst. The collinearity in variables can be 

exacerbated by the kernel weights applied in the GWR framework. Intuitively speaking, 

one is using values of a variable for each local model that are similar because they are 

close in space, and then applying similar weights to these nearby observations, thus 

intensifying the similarity in these values.  

In general terms, regression model stability depends on the joint distribution of 

the explanatory variables, as demonstrated in the analysis by Longley (1967). In this 

analysis, regression coefficients changed signs depending on whether certain explanatory 

variables or specific observations were excluded from the model. The numerical 

instabilities and uncertainties in this analysis are caused by the collinearity among the 

explanatory variables that leads to correlation between the estimated regression 

coefficients. When discussing model interpretation in the face of collinearity Fox (1997, 

p 351) states, "collinearity deals fundamentally with the inability to separate the effects of 

highly correlated variables" and Greene (2000, p 256) discusses the identifiability issue 

of the regression coefficients by noting that "parameters are unidentified" and "different 

sets of parameters give the same ( )iE y ." 

In traditional regression, some commonly used exploratory tools to uncover 

potential collinearity among explanatory variables are bivariate scatter plots and 

correlation coefficients between pairs of explanatory variables, variance inflation factors 

(VIFs), and the correlation matrix of the estimated regression coefficients that includes 

the model intercept. Neter et al. (1996) provide a useful reference for these diagnostics. 

Belsley (1991) suggests another diagnostic tool for collinearity that uses singular value 
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decomposition (SVD) of the design matrix X  to form condition indexes of this matrix 

and variance-decomposition proportions of the coefficient covariance matrix. These tools 

have not been applied to GWR models systematically by other authors. Some commonly 

used indicators of collinearity in a regression model are a counterintuitive sign in a 

regression coefficient, relatively large parameter standard errors, and large changes in 

magnitude or sign in one or more regression coefficients after another explanatory 

variable is added to the model. Just as it is important to look at diagnostic tools in a 

global regression analysis before interpreting the parameters, it is essential to look at 

these and other diagnostic tools for these effects of collinearity in local spatial regression 

models before interpreting the patterns of regression coefficients. The effects of 

collinearity will be overlooked without a proper diagnostic analysis. 

Scatter Plots 

To address the issue of collinearity effects in GWR, it is possible to make use of 

bivariate scatter plots of estimated regression coefficients, Pearson’s correlation 

coefficient of estimated regression coefficients, and local parameter correlation maps to 

diagnose collinearity effects on the regression coefficients. These methods highlight both 

the collinearity effects on the global pattern of correlated regression coefficients across 

the study area and the correlated local estimated coefficients. Bivariate scatter plots show 

the relationship between the thk  and thl  sets of n local regression coefficients for the thk  

and thl  explanatory variables and are useful for showing any strong dependencies in the 

coefficients.  



 40 
 
 

Two Types of Coefficient Correlation 

To measure the correlation in these sets of estimated regression coefficients, one 

can easily calculate their correlation coefficients using 

 

{ } { }( ) 1
1 1

2 2

1 1
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where 1
1

ˆ ˆn
k skn s

β β
=

= ⋅∑ . This correlation is subsequently called the overall correlation 

coefficient of two sets of local regression coefficients and is indicated klC  for the 

correlation between variables k  and l  over all locations in the study area. Fotheringham 

et al. (2002) also present an equation for calculating what they refer to as the local 

regression coefficient covariance at each location. Technically, this equation is not 

correct because their version of GWR is not a formal statistical model with kernel 

weights that are part of the errors. I will, however, use this expression as an exploratory 

tool for correlation in the local coefficients. The equation is 

 

 2 1 2 1ˆ[ ( )] [ ( ) ] ( ) [ ( ) ] .T T TCov s s s sσ − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅β X W X X W X X W X    (4.2) 

 

A local parameter correlation matrix can be calculated from the local covariance matrix 

as  
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1 1
2 2ˆ ˆ ˆ( ) { [ ( )]} [ ( )] { [ ( )]}C s diag Cov s Cov s diag Cov s− −= ⋅ ⋅β β β ,    (4.3) 

 

where {}diag ⋅  extracts the diagonal from the covariance matrix. These two equations 

used for the local coefficient covariance and correlation are only approximate equations 

because the kernel weights are calculated from the data using cross-validation before the 

regression coefficients are estimated from the data. The weights are inherently a function 

of y , as are the regression coefficients, and the correct expression for the coefficient 

covariance would be non-linear. I will not attempt to derive the exact covariance formula 

here and instead will use the approximate formula throughout the dissertation. The 

correlation between coefficients for variables k  and l  at location s  is indicated s
klC  and 

comes from the ( k , l ) element of the ( )C s  correlation matrix. Subsequently, I refer to 

these correlations as the local coefficient correlations at model calibration location s . 

The pair-wise coefficient correlations can be mapped at each calibration location for each 

pair of estimated coefficients.  

The following matrices more clearly make the distinction between the correlations 

that are presented in this dissertation. The underlying ( 1)n p× +  design matrix at the n 

calibration locations is 
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with an intercept term in the model. The resulting matrix of local GWR coefficients at 

calibration locations becomes 
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The calculated local coefficient correlation matrix at one location provides the correlation 

among the estimated parameters in a row of the local GWR coefficient matrix 
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and these correlations are used in local coefficient correlation maps. The overall 

correlation among sets of local GWR coefficients provides the correlation of pairs of 

parameter estimates over all locations of the local GWR coefficient matrix 
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Diagnostic Tools Example 1 

I demonstrate the use of the scatter plot, overall correlation coefficient, and the 

local correlation coefficients in diagnosing collinearity effects in a simple model with an 

example dataset. The dataset comes from the Atlas of Cancer Mortality from the National 

Cancer Institute (Devesa et al. 1999) and contains age standardized mortality rates (per 

100,000 person-years). A model was built to explain white male bladder cancer mortality 

rates in the 508 State Economic Areas (SEA) of the United States for the years 1970 to 

1994. The model consists of the explanatory variables population density and lung cancer 

mortality rate, where the latter is used as a proxy for smoking, along with an intercept 

term. Population density is used as proxy for environmental and behavioral differences 

with respect to an urban/rural dichotomy. It is expected, as several studies point out, that 

with an increase in the population density there is an increase in the rate of bladder 

cancer. Lung cancer mortality rates are used as proxy for the risk factor smoking, which 

is a known risk factor for bladder cancer. There is epidemiological evidence that an 

increase in smoking elevates the risk of developing bladder cancer, thus we can expect a 

positive relationship between both variables. This approximation of smoking by lung 

cancer is reasonable, since the attributable risk of smoking for lung cancer is > 80% and 

the attributable risk of smoking for bladder cancer is > 55% (Mehnert et al. 1992).  

A traditional regression model was first built using bladder cancer mortality as the 

dependent variable with population density log transformed to linearize the relationship 

with the dependent variable. The risk factors are significantly positively related to the rate 

of bladder cancer, as expected. The variance inflation factors for the two global 

explanatory variable parameters are less than 2 and the correlation of the global 
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regression parameters is moderately negative at -0.59, whereas the correlation of the two 

variables is 0.59. These results suggest that collinearity is not a significant problem in the 

global model.  

The GWR model was then estimated using a bi-square nearest neighbor kernel 

function and I now show the previously mentioned diagnostics to check for collinearity 

effects in the estimated GWR coefficients. Figure 4.1 is a scatter plot of the GWR 

coefficient estimates for the two variables and it shows a strong negative relationship 

between the two sets of coefficients. The overall correlation coefficient for the sets of 

local coefficients is -0.85, which is much stronger than the correlation of the regression 

coefficients (-0.59) in the traditional regression model. The dashed reference lines are the 

global coefficient estimates and the plot shows that there is much variation around the 

global estimates. These results suggest that while collinearity is not a significant problem 

in the traditional regression model, it may be in the GWR model. 
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Figure 4.1. Relationship between the local GWR coefficients associated with the smoking 
variable and population density ( 12C  = -0.85). The dashed lines denote the levels of the 
related global regression coefficient estimates. 
 
 
 

It has been argued by some that one of the primary advantages of GWR is the 

ability to visualize the local regression coefficient estimates in order to identify local 

model heterogeneities. Figure 4.2 shows the map patterns for the GWR coefficients, 

which are associated with different explanatory variables. The two maps show a clear 

inverse map pattern correlation between the sets of local regression coefficients: in 

general, when the local smoking proxy parameter is high, the local population density 

parameter is low. This pattern is most noticeable in the West, Northeast, and portions of 

the Midwest immediately south of Lake Michigan.  
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Figure 4.2. Estimated GWR coefficients for the bladder cancer mortality model. The top 
map displays the spatial pattern of the local regression coefficients associated with the 
smoking proxy variable, while the bottom map displays the spatial pattern of the local 
regression coefficients associated with the log population density variable. 
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The important question is whether this complementary relationship in the 

parameters is real and interpretable or a result of difficulties in the estimation of the 

statistical method. If the analyst does not ask this question and attempts to interpret the 

parameters, a likely interpretation is that in the West and Northeast smoking has a 

positive (statistically) relationship with bladder cancer mortality while population density 

has a counter-intuitive negative relationship with bladder cancer mortality. In addition, in 

parts of the Midwest and Oklahoma smoking has a counter-intuitive negative relationship 

with bladder cancer while population density has a positive relationship. If the estimated 

GWR coefficients are substantially affected by collinearity, this would lead to a serious 

false interpretation in these areas that is in gross contradiction to well-established 

etiological knowledge that smoking is a risk factor for bladder cancer. 

Note that both choropleth map patterns of the local GWR coefficients must be 

cartographically symbolized by a bi-polar or diverging cartographic map theme (Brewer 

et al. 1997). In a bi-polar map theme a particular value denotes a common reference 

around which the observed values are diverging. In this case positive and negative local 

GWR coefficients have a substantive different interpretation. Since bi-polar map themes 

are difficult to display in achromatic maps, I have opted for a connotation of observations 

below the reference values by a light gray scale whereas observations above the reference 

value are encoded by a heavy gray. A noticeable gap in the middle section of the gray 

scale enables us to distinguish immediately between both branches of the scale. 

To further explore the correlation between the sets of GWR coefficients, the local 

coefficient correlations for the male bladder cancer GWR model are mapped in Figure 

4.3. It is clear that the strongest negative local parameter correlation is in the Midwest 
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and parts of the Northeast, and there are many locations in these areas with absolute 

magnitude correlation greater than 0.75. It is also clear from Figure 4.3 that the local 

coefficient correlation varies substantially over the study area and increases substantially 

when compared to the traditional regression coefficient correlation. 

 
 
 

Corr(B1, B2)
-0.85 - -0.75
-0.75 - -0.65
-0.65 - -0.59
-0.59 - -0.15

 
 
 
Figure 4.3. Local coefficient correlations for the GWR coefficients associated with the 
smoking proxy and population density variables. 
 
 
 

I also use bivariate scatter plots to show collinearity effects in an experiment with 

eigenvectors of the spatial link matrix of the 159 counties from the 1990 Census layout of 

Georgia as explanatory variables in a GWR model with two explanatory variables and an 

intercept. The spatial link, or connectivity, matrix captures the mutual adjacency 
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relationships among the counties and the eigenvectors exhibit particular spatial patterns 

and the spatial autocorrelation of these patterns with respect to Moran's I  is identical to 

the associated eigenvalue of the eigenvector. Details of the approach of generating 

uncorrelated spatial patterns with a given autocorrelation level can be found in Griffith 

(2003). The collinearity in the explanatory variables is systematically increased in the 

experiment, the GWR model is refitted, and then the explanatory variable coefficients are 

plotted. Figure 4.4 shows the estimated GWR coefficients scatter plots for four different 

levels of correlation in the two explanatory variables, from 0.00 to 0.72. The reference 

lines on the axes display the ‘true’ global parameters. The plots show the increasingly 

more negative relationship in the sets of coefficient estimates as the correlation in the 

explanatory variables increases. In addition, the variance of the local GWR coefficients 

also increases as the correlation in the explanatory variables increases. 
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Figure 4.4. GWR coefficient estimates for two explanatory variables in a model using 
simulated data with correlation between the two explanatory variables at levels of 0.00 
and 0.39 in the top plots (left to right) and 0.56 and 0.72 in the bottom plots. The values 
of theta generate the specified correlation in the explanatory variables. 
 
 
 

I again use the overall correlation coefficient to show the relationship between 

estimated GWR coefficient correlation and explanatory variable collinearity through 

another experiment using the eigenvectors of the spatial link matrix of the counties in 

Georgia as explanatory variables. I systematically increase the correlation in the 

explanatory variables and measure the overall correlation in the estimated GWR 

coefficients for two different models with a different pair of explanatory variables in each 
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model. Figure 4.5 shows the relationship between the correlation in two pairs of 

explanatory variables and the estimated GWR coefficient correlation. The figure shows a 

clear relationship between the amount of collinearity in the explanatory variables and the 

overall correlation between the sets of local GWR coefficients associated with both 

explanatory variable pairs. The overall correlation between the coefficients becomes 

consistently more negative as the correlation in the exogenous variables becomes more 

positive. The figure also shows that there can be a fairly rapid increase in the strength of 

the overall correlation among the GWR coefficients as the collinearity increases. 
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Figure 4.5. Relationship between the correlation in two pairs of explanatory variables and 
the overall correlation between the sets of associated GWR coefficients. There is a 
separate curve for each GWR model, where each model has two explanatory variables. 
 
 
 
Variance Inflation Factor 

In addition to scatter plots of GWR coefficients and maps of local coefficient 

correlations, it is feasible to use VIFs and variance-decomposition proportions with 

weighted design matrix condition numbers as diagnostic tools for collinearity in a GWR 

model. When using GWR models, it is possible to calculate VIF values for each 

explanatory variable in each local model. The VIF for a variable at location s  is 
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where 2 ( )kR i  is the coefficient of determination when kx  is regressed on the other 

explanatory variables at model calibration location s . The kernel size for these models is 

the same as in the GWR model to ensure we are diagnosing collinearity at the scale of the 

GWR model. For models with more than two explanatory variables, a weighted local 

regression of each variable on all the other variables would give the 2 ( )kR i  needed to 

calculate the VIFs for the p  variables. Naturally, a more efficient method to calculate the 

VIFs in this situation would be computationally beneficial. In a model with only two 

variables, the VIF is the same for both variables and is straightforward to calculate using 

the weighted correlation coefficient between the variables (see Fotheringham et al. 2002 

for a discussion of weighted moment-based statistics). The geographically weighted 

correlation coefficient for two variables is 
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is the weighted mean for explanatory variable l  at location s  (similarly for variable k ) 

and *
sjw  is the standardized kernel weight between locations s  and j , where the weights 

are standardized to sum to one. Setting 2 2
,( ) ( )k k lR s r s=  allows calculation of the VIF using 

equation (4.4). 

Variance Decomposition Proportions and Condition Index 

Two drawbacks of the VIF as a collinearity diagnostic are that it does not consider 

collinearity with the constant term and does not illuminate the nature of the collinearity, 

particularly if the collinearity is between more than two variables. Belsley (1991) 

suggests another diagnostic tool for collinearity that uses singular value decomposition 

(SVD) of the design matrix X  to form condition indexes of this matrix and variance-

decomposition proportions of the coefficient covariance matrix. It is possible to use the 

variance-decomposition approach in GWR by applying the GWR kernel weights to the 

explanatory variable design matrix. The SVD of the design matrix in the GWR 

framework naturally follows as 

 

1 2 ( ) Ts =W X UDV ,         (4.7) 

 

where U  and V  are orthogonal ( 1)n p× +  and ( 1) ( 1)p p+ × +  matrices respectively, D  

is a ( 1) ( 1)p p+ × +  diagonal matrix of singular values of decreasing value down the 

diagonal starting at position (1,1), X  is the column scaled matrix (by its norm) of 
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explanatory variables including the constant, and 1 2 ( )sW  is the square root of the 

diagonal weight matrix for calibration location s  calculated from the kernel function.  

The Páez et al. (2002a) version of GWR models variance heterogeneity over 

space and makes the weighted least squares (WLS) regression error assumption, which is 

2 1~ (0, )o oN σ −⋅ε W , where for convenience W  represents the kernel weight matrix at 

any location. Since the variance-decomposition diagnostic is to be applied at each model 

calibration location, it is natural to make this assumption on the errors here. I have 

followed the notation of Páez and added a subscript o  to the error and error variance to 

indicate that these are specific to the calibration location. Using this notation, the 

covariance of β̂  is derived as 
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where ( ) ( )2 1 T
o o on

σ = − −Y Xβ W Y Xβ . 

 

This is the same expression as the covariance matrix in WLS listed in Neter et al. (1996). 

As with equation (4.2), this equation for the local coefficient covariances is only 

approximate because the kernel weights are calculated from the data using cross-

validation before the regression coefficients are estimated from the data. I will not 
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attempt to derive the exact covariance formula here and instead will use the approximate 

formula throughout the dissertation.  

Using the SVD and matrix algebra, the variance-covariance matrix of the 

regression coefficients at one location can be represented as 

 

2 2ˆ( ) T
oVar σ −=β VD V .         (4.9) 

 

This expression is derived by: 
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The variance of the thk  regression coefficient is 
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where the jd ’s are the singular values and the kjv ’s are elements of the V  matrix. The 

variance-decomposition proportion is the proportion of the variance of the thk  regression 
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coefficient affiliated with the thj  component of its decomposition. Following from 

Belsley (1991), the variance-decomposition proportions are 

 

k

kj
jk φ

φ
π = ,          (4.12) 

 

where 
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and 
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kjk φφ .          (4.14) 

 

The condition index for column 1,..., 1j p= +  of 1 2 ( )sW X  is 

 

max
j

j

d
d

η = ,          (4.15) 

 

where jd  is the thj  singular value of 1 2 ( )sW X . Belsley suggests using condition 

indexes greater than or equal to 30, conservatively, for a column scaled X  and variance 
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proportions greater than 0.50 for two or more coefficients for each variance component as 

an indication of collinearity in a regression model. The larger the condition number, the 

stronger is the collinearity among the columns of X . The critical value of 30 is a general, 

and somewhat conservative, guideline from Belsley’s experimentation and different 

values may be more appropriate for certain datasets. For example, in some of his 

experiments, Belsley found substantial collinearity with a condition index of 10. The 

presence of more than two variance proportions greater than 0.50 in one component of 

the variance-decomposition indicates that collinearity exists between more than two 

regression terms, which could include the constant. Belsley also recommends including 

the intercept in X  and using uncentered explanatory variables in the SVD so as not to 

disguise any collinearity with the intercept. 

Diagnostic Tools Example 2 

I next demonstrate the utility of the VIF and variance-decomposition approach as 

diagnostic tools with a GWR model fitted to the Columbus crime dataset analyzed 

previously by Anselin (1988). This dataset contains crime rates in 49 planning 

neighborhoods, closely related to census tracts, in Columbus, OH. The data consist of 

variables for mean housing value, household income, x and y spatial coordinates of 

neighborhood centroids, and residential and vehicle thefts combined per thousand people 

for 1980. Figure 4.6 is a map of the study area with observation identifiers as labels. The 

dependent variable here is residential and vehicle thefts per one thousand people and is 

referred to as crime rate. The regression model is limited to two explanatory variables 

and an intercept term for ease of exposition and clarity of the methods and results. The 

two explanatory variables in the model are mean housing value and mean household 
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income, and they exhibit moderate positive correlation (r = 0.50) with one another and 

have clear intuitive and statistical negative relationships with crime rate (r = -0.57 and r = 

-0.70, respectively). One would naturally expect a negative relationship between income 

and crime and also housing value and crime, as more affluent neighborhoods generally 

have lower crime rates. 
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Figure 4.6. Columbus, OH 1980 crime rate neighborhood areas with identifiers. 
 
 
 

The traditional regression model was first fitted and the results are listed in Table 

4.1. The results show that collinearity is not a problem in the global model, as indicated 
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by the low VIF value (1.33) for the two variables, parameter correlation of –0.50 and the 

intuitive negative signs for the variable coefficients. The GWR model mean coefficient 

estimates and overall fit are listed in Table 4.2. One of the features of GWR models is 

typically a large increase in 2R  over the global regression model, and this is the case in 

Tables 4.1 and 4.2, as the 2R  increases from 0.55 to 0.92. Another noticeable difference 

in the two tables is the large increase in VIF values, from 1.33 to an average of 3.04 with 

GWR. Figure 4.7 displays the distribution of VIFs for the GWR model and shows that 

there are three local models with large VIFs over the conservative threshold value of 10, 

where VIFs greater than 10 correspond to variable correlation that considerably exceeds 

0.90. These local models are at observations 37, 38, and 39, with observation 38 as the 

spatially connecting neighbor between 37 and 39. The local regression coefficient 

correlation coefficients for income and housing value at observations 37, 38, and 39 are –

0.97, -0.99, and –0.98, respectively.  

 
 
 

Unstandardized Standardized 

Parameter Estimate 
Standard 

Error p-value VIF 
Coefficient 
Correlation Estimate 

Standard 
Error 

Intercept 68.619 4.735 0.000     0.000 0.000
Inc -1.597 0.334 0.000 1.333 -0.500 -0.544 0.114
Hoval -0.274 0.103 0.011 1.333 -0.500 -0.302 0.114
                
R-square 0.55             
 
 
Table 4.1. Traditional regression model summary for unstandardized and standardized 
variables. 
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Unstandardized Standardized 

Parameter 
Mean 

Estimate 
Mean 
VIF 

Mean 
Parameter 
Correlation 

Global 
Parameter 
Correlation 

Mean 
Estimate 

Intercept 62.670       0.000 
Inc -1.398 3.040 -0.582 -0.796 -0.477 
Hoval -0.153 3.040 -0.582 -0.796 -0.169 
            
R-square 0.92         
 
 
Table 4.2. GWR model summary for unstandardized and standardized variables. 
 
 
 

 
 
 
Figure 4.7. Distribution of GWR VIF values in a regression model with two explanatory 
variables. 
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The mean GWR coefficient estimates in Table 4.2 do not convey the amount of 

variation in the estimates and a scatter plot is beneficial to show this. Figure 4.8 shows 

the scatter of standardized GWR estimated coefficients for housing value versus income, 

along with observation identifiers, and clearly demonstrates a strong linear association 

between the coefficients across the study area. The correlation coefficient of the two sets 

of coefficients is –0.80. In Figure 4.8, it is clear that there are numerous estimated 

coefficients that are positive in sign, in contrast to the traditional regression model and 

intuition. This phenomenon is more pronounced for housing value ( 2β ) than for income 

( 1β ). The three observations (37, 38, 39) with the largest VIFs are also the three 

observations in Figure 4.8 that have the largest housing value regression coefficients and 

smallest income regression coefficients. The diagnostics imply that the collinearity in the 

data at these model locations is increasing the variance in the estimated regression 

coefficients. 
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Figure 4.8. GWR estimated coefficients for housing value 2( )β  versus income 1( )β  with 
observation identifiers. 
 
 
 

Moreover, the variance-decomposition proportions and condition indexes indicate 

collinearity trouble with numerous local models. Table 4.3 shows the condition index and 

variance-decomposition proportions for the largest variance component for all 

observations with a condition index greater than 25 or a VIF greater than 10. There are 

three observations (34, 35, 41) with a condition index over 30 and three observations (10, 

39, 40) with a condition index between 25 and 30. Five of these six observations have a 

VIF well over 3, with observation 10 having a VIF just below 3. In all six of the 

observations, the variance proportions greater than 0.90 for the second and third variance 
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proportion columns indicate that the collinearity is between the two explanatory variables 

(the intercept is the first variance proportion column). Observations 34 and 35 are among 

the observations with the smallest estimated regression coefficients for housing value and 

largest estimated regression coefficients for income in Figure 4.8. Using the VIF and 

variance-decomposition criteria outlined above, there are indications of collinearity in at 

least eight of the 49 observations in the study area. These results for the GWR model 

suggest that collinearity is a problem with these data in the local regression models even 

though it is not a problem in the global regression model. Based on experience, it appears 

to be a general result that lack of collinearity in the global regression model will be a 

poor indicator for absence of collinearity in GWR models. 

 
 
 

id jη  1jπ  2jπ  3jπ  VIF 
10 28.804 0.065 0.909 0.966 2.827
34 46.472 0.388 0.948 0.992 5.602
35 41.748 0.493 0.930 0.994 4.525
37 17.106 0.021 0.975 0.964 10.881
38 21.961 0.000 0.984 0.984 21.117
39 25.999 0.053 0.988 0.981 17.815
40 25.358 0.100 0.981 0.955 8.306
41 31.024 0.038 0.975 0.956 8.382

 
 
Table 4.3. The table lists the condition indexes, variance-decomposition proportions, and 
VIFs for observations with either a large condition index or large VIF. 
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CHAPTER 5 

 

REMEDIAL METHODS FOR COLLINEARITY 

 

This chapter reviews the structure of the ridge regression and the lasso solutions, 

and then describes an implementation of each method into the GWR framework. Portions 

of the text in this section are taken from Wheeler (2006).  

Ridge Regression 

Shrinkage methods such as ridge regression place a constraint on the regression 

coefficients. Hoerl and Kennard (1970) first introduced ridge regression to overcome ill 

conditioned design matrices. The ridge regression coefficients minimize the residual sum 

of squares along with a penalty on the size of the squared coefficients as 

 

2
2

0
1 1 1

ˆ arg min
p pn

R
i ik k k

i k k
y xβ β λ β

= = =

⎧ ⎫⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑
β

β ,     (5.1) 

 

where λ  is the ridge regression parameter that controls the amount of shrinkage in the 

regression coefficients. As Hastie et al (2001) point out, an equivalent way to write the 

ridge regression problem that explicitly defines the constraint is 
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where there is a one-to-one correspondence between the parameters λ  and s . The 

intercept is not constrained by the ridge parameter and the solutions are not invariant to 

scaling, so the input x  variables are typically standardized to have mean 0 and equal 

variance and the y  variable is centered before estimating λ . Hastie et al (2001) 

effectively remove the intercept from ridge regression by centering the x  variables and 

estimating 0β  by the mean of y, thereby leaving only the p  variable coefficients to 

constrain.  

The ridge regression solutions are 

 

( ) 1ˆ R T Tλ
−

= +β Χ Χ Ι Χ y ,        (5.3) 

 

where Ι  is the pxp  identity matrix. The ridge regression parameter can be estimated 

before estimating the ridge regression coefficients by cross-validation or generalized 

cross-validation (Golub et al, 1979; Welsh 2000) by minimizing the squared prediction 

error. 

Geographically Weighted Ridge Regression 

To include ridge regression in the GWR framework, it is necessary to remove or 

isolate the intercept term that is customarily included in these models. There are two 
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approaches considered here to remove the intercept using centering of the variables, one 

using global centering and one using local centering. Using global centering, one first 

centers the x  variables to remove the portion of the intercept when 0=x , leaving the 

global mean of y , and then scales the x  variables. Next, one centers the response 

variable to remove the global y  mean. Then, one removes the local x  and y  mean 

deviations from the global means to get an intercept of 0 for each local model. A 

convenient, albeit inefficient, way to do this is to fit a GWR model to the globally 

centered data and then subtract the fitted intercept from the local y  values. At this point, 

the intercept term is effectively removed from the ridge regression constraint and the 

penalized coefficients can be estimated. The approach allows one to compare the GWR 

estimates to the standardized traditional regression coefficients because the centering is 

the same, but the incremental estimation to remove the intercept results in additional bias 

in the ridge regression adjusted coefficients. It is advisable to scale the x  variables by 

their respective standard deviations because the ridge regression solutions are scale 

dependent. If one does not scale the x  variables, the ridge regression solution will be 

more influenced by variables with large variance. In other words, coefficients associated 

with variables of small scale should shrink more than those of larger scale.  

The formula to estimate the geographically weighted ridge regression (GWRR) 

coefficients with global centering is 

 

( ) 1* * * *ˆ ( ) ( ) ( )T Ts s sλ
−

= +β Χ W Χ Ι Χ W y ,      (5.4) 
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where *Χ  is the n p×  matrix of standardized explanatory variables, *y  is the 

standardized response variable, and other terms are as previously defined. Note that when 

the ridge parameter is 0, the estimated GWR and GWRR coefficients are the same. As 

with ridge regression, one first must estimate the ridge parameter λ  before calculating 

the regression coefficients for each model. If one elects to use only a single λ  for the 

entire study area, then there are now two global parameters to estimate before fitting the 

local models. Once the GWRR coefficients have been estimated, the response variable 

predictions are calculated after adjusting for the intercept term. To do so, the local mean 

deviation from the global y  must be added back to * *
( ) ( ) ( )

ˆˆ i i iy = Χ β . Bootstrapping can be 

used to perform inference on the regression coefficients. The bootstrap procedure to 

accomplish this is currently undeveloped and is left for future research. 

Alternatively, one can use locally centered and globally scaled x  and y  values to 

effectively remove the local intercept. The estimation procedure is more straightforward 

than with global centering, but it requires centering the data for each model. The x  

variables are first globally scaled to have equal (unit) variance and then for each local 

model the x  and y  variables are locally centered by first calculating the weighted mean 

for each variable using the square root of the kernel weights 1 2 ( )sW  and then subtracting 

the weighted mean from each variable. The square root of the weight is taken to 

correspond to the weighting of the x  and y  variables in equation (5.4). The weights 

1 2 ( )sW  are then applied to the centered values and this changes the coefficient 

estimation for the GWRR model in equation (5.4) to 
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( ) 1ˆ ( ) T T
w w w ws λ

−
= +β Χ Χ Ι Χ y ,        (5.5) 

 

where wΧ  is the matrix of weighted, locally centered explanatory variables, wy  is the 

vector of weighted, locally centered responses, and other terms are as previously defined. 

After estimating the coefficients, the response variable predictions are calculated by 

adding the local mean wy  to ˆˆ ( ) ( ) ( )w wy s s s= Χ β . The estimated coefficients from this 

approach are not as directly comparable to the standardized global regression model as 

the global centering results are due to the different variable centering, but the local 

centering should not produce coefficients that are largely dissimilar from the global 

centering. An advantage of this approach is that it introduces less bias in the coefficients 

than with the global centering approach. The local centering approach has the property 

that locally centered x  variables will not have exactly equal scale, which means not all 

local models will have equal impact in the estimation of one global ridge regression 

parameter. In the analysis presented later in this chapter, locally centered and globally 

scaled variables are primarily used for the ridge parameter estimation to reduce the 

estimation bias in the GWRR coefficients. It is recommended that one consider the global 

centering approach only if a direct comparison to the global standardized regression 

model and traditional GWR results is of concern. 

 It is also possible to use local scaling of the x  variables, in addition to the local 

centering of the variables and response. This is similar to what is done with the lasso 

method, which will be discussed later in this chapter, and that is why it is discussed here. 

With this approach, the explanatory variables are weighted, centered, and then scaled by 
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their norm at each model calibration location. The response variable is also weighted and 

centered at each model location. The ridge solutions are then calculated by equation (5.5). 

The solution coefficients are then scaled by the norm of the explanatory variables to 

rescale them to the original units so they can be used to calculate the response in the 

original units, using the explanatory variables in the original units. The algorithm to 

calculate the locally centered and scaled GWRR solutions and responses, assuming the 

kernel bandwidth φ  and the ridge parameter λ have already been estimated, is: 

 

• Calculate W  using φ . 

• For each location i  from 1, , nK  

o Set 1 2 ( )i=wX W X  and 1 2 ( )i=wy W y  using the square root of the kernel 

weights ( )iW  at location i . 

o Calculate the mean of wX  and set c
wX  equal to the centered wX . Set Xn  

equal to the norm of c
wX , and set s

wX  equal to c
wX  scaled by Xn . Calculate 

the mean of wy  and set c
wy  equal to the centered wy . 

o Calculate the regression coefficients by 1( )s sT s sT cλ −= +w w w wβ X X I X y . 

o Set β  equal to sβ  rescaled by Xn . 

o Calculate ˆ = ⋅y X β  
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The a priori thinking with the local scaling is that it may increase the model stability and, 

therefore, lower prediction error. The performance of local centering and scaling version 

of GWRR, particularly compared to the local centering and global scaling version of 

GWRR, will be evaluated empirically later in the simulation study chapter. 

There are numerous possible schemes for estimating the kernel and ridge 

parameters with cross-validation: 1) estimate the kernel bandwidth first and then the ridge 

parameter, 2) estimate the kernel bandwidth, then estimate the ridge parameter, and then 

repeat using previous values until the parameters converge, 3) perform a search for the 

kernel bandwidth and perform a search for the ridge parameter at each evaluated value of 

the kernel bandwidth, and 4) estimate the kernel bandwidth and ridge parameter 

simultaneously with constrained optimization techniques.  

Preliminary results show that there is interaction at times between the two 

parameters, although the kernel bandwidth dominates the squared prediction error, so 

scheme 1 will generally not produce optimal solutions. Scheme 2 also tends to result in a 

sub-optimal solution because the kernel bandwidth tends to dominate the solution and it 

is unlikely to move to another bandwidth in the solution by changing the ridge parameter. 

Scheme 3 is less efficient and scheme 4 is more complicated than the first two schemes, 

but these schemes will generally produce better solutions. Schemes 1 and 2 will generally 

produce similar solutions and schemes 3 and 4 should produce similar solutions if 

scheme 4 treats the kernel bandwidth as an integer variable when using the bi-square 

nearest neighbor kernel, as it is handled in scheme 3. While schemes 1 and 2 will not 

always find the minimum solution, they should yield good solutions that are almost as 

good as those from schemes 3 and 4 and will do so with less computational effort. 
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Scheme 3 is a compromise between the computational ease of schemes 1 and 2 and the 

complexity of scheme 4 and is therefore viewed as the best scheme for this research. 

Scheme 1 has some conceptual appeal in addition to its computational ease in that it takes 

the best kernel bandwidth found from the standard GWR estimation procedure and then 

effectively applies the ridge parameter to that solution. This makes the effect of the ridge 

parameter on GWR clearer, and for this reason the scheme 1 solution will at times be 

used in place of the scheme 3 solution in this dissertation. A golden section or bisection 

search can be used for schemes 1 and 2, while a constrained optimization algorithm is 

appropriate for scheme 4. A nested golden section or bisection search algorithm can be 

used for the two components of the estimation in scheme 3. Conveniently, Matlab 

software, among others, provides functions for constrained optimization and the golden 

section search. I also programmed the bisection search algorithm in an R implementation 

of GWRR. 
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One problem with the golden section search algorithm in Matlab is that it can 

terminate in a local optimum and may need to be adjusted when estimating the kernel 

bandwidth, as the squared prediction error function can flatten out and become stable as 

N  increases with some datasets. This was an issue in datasets analyzed in this research 

and was addressed by running the golden section search routine in Matlab twice and 

truncating the bounds of the search space in the second run using the solution from the 

first run as the upper bound. A more conservative approach is to evaluate all possible 

values of the kernel bandwidth in the cross-validation and then select the best bandwidth 

by inspection. This, however, is only possible for discrete kernel bandwidths, as in the bi-

square nearest neighbor kernel, and may be computationally expensive for large datasets. 

A faster alternative is to use a grid search, but the coarseness of the grid may miss the 

best bandwidth value. 

There are other possible methods to estimate the kernel bandwidth. Fotheringham 

et al (2002) describe a generalized cross-validation (GCV) criterion for GWR that is 

adapted from local linear regression and also define an Akaike information criterion 

(AIC) for the GWR framework. Páez et al (2002a) present an alternative GWR model 

that can estimate local kernel bandwidths at each model calibration location by using 

maximum likelihood estimation and calculating the spatial weights as part of a model for 

variance. More attention is needed to determine the most appropriate kernel bandwidth 

estimation method. It is worth mentioning that the type of cross-validation used here is 

leave-one-out because for local regression models it is not readily justifiable to remove 

more than one observation for each local model. Removing anything but the thi  

observation for the prediction at observation i  seems arbitrary. 
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There is a modest increase in computational complexity to include the ridge 

regression parameter in GWR. The main computational burden in the GWR version 

implemented here is the CV estimation of the kernel bandwidth. The number of 

calculations in the CV estimation is dominated by the calculation of the kernel weights 

and matrix inverse for the regression coefficients at each location, not the number of 

iterations of the golden section search routine. An estimate of the total time required for 

the CV estimation of the bandwidth in GWR is 2 3(log ( ))O n n np⋅ + , where the number of 

iterations of the search routine is on the order of log n  and there are n  calculations of the 

kernel weights and matrix inverse taking 3( )n p+  calculations. Under estimation scheme 

3, the CV estimation of λ  in GWRR is nested within the CV estimation of N  and this 

transfers the 2 3( )O n np+  time from the N  estimation to the λ  estimation. The only 

additional computation is with the number of golden section search iterations needed to 

find λ  at each value of N . GWRR model calibrations for four different sized datasets 

using the bi-square nearest neighbor kernel and the golden section search routine show 

that the number of search iterations needed for λ  is approximately the same as for N . 

Therefore, including the ridge parameter in GWR effectively doubles the number of 

iterations needed in the search routine to estimate the parameters and the computational 

complexity of the CV estimation in GWRR is 2 2 3((log ) ( ))O n n np⋅ + . GWR and GWRR 

are both polynomial-time algorithms. 

The Lasso 

The lasso takes the shrinkage of ridge regression a step further by shrinking the 

regression coefficients of some variables to zero. The lasso specification is similar to 
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ridge regression, but it has a 1L  coefficient penalty in place of the ridge 2L  penalty. The 

lasso is defined as 
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Tibshirani (1996) notes that the lasso constraint k
k

sβ ≤∑  is equivalent to adding the 

penalty term k
k

λ β∑  to the residual sum of squares, so there is a direct correspondence 

between the parameters s  and λ . The absolute value constraint on the regression 

coefficients makes the problem nonlinear and a typical way to solve this type of problem 

is with quadratic programming.  

There are, however, ways to estimate the lasso coefficients outside of the 

mathematical programming framework. Tibshirani (1996) provides an algorithm that 

finds the lasso solutions by treating the problem as a least squares problem with 2 p  

inequality constraints, one for each possible sign of the kβ ’s, and applying the constraints 

sequentially. An even more attractive way to solve the lasso problem is proposed by 

Efron et al. (2004a), who solve the lasso problem with a small modification to the least 

angle regression (LARS) algorithm, which is a variation of the classic forward selection 

algorithm in linear regression. The modification ensures that the sign of any non-zero 

estimated regression coefficient is the same as the sign of the correlation coefficient 
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between the corresponding explanatory variable and the current residuals. Grandvalet 

(1998) shows that the lasso is equivalent to adaptive ridge regression and develops an EM 

algorithm to compute the lasso solution.  

 It is worthwhile to describe in more detail the LARS and lasso algorithms of 

Efron et al. (2004a) because these methods have not been previously introduced in the 

geography literature at the time of this writing. The LARS algorithm is similar in spirit to 

forward stepwise regression, which I now describe. The forward stepwise regression 

algorithm is:  

 

(1) Start with all coefficients kβ  equal to zero and set =r y . 

(2) Find the predictor kx  most correlated with the residuals r  and add it to the model. 

(3) Calculate the residuals ˆ= −r y y . 

(4) Continue steps 2-3 until all predictors are in the model 

 

While the LARS algorithm is described in detail algebraically in Efron et al. 

(2004a), Efron et al. (2004b) restate the LARS algorithm as a purely statistical one with 

repeated fitting of the residuals, similar to the forward stepwise regression algorithm. The 

statistical statement of the LARS algorithm is: 

 

(1) Start with all coefficients kβ  equal to zero and set =r y . 

(2) Find the predictor kx  most correlated with the residuals r . 
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(3) Increase the coefficient kβ  in the direction of the sign of its correlation with r , 

calculating the residuals ˆ= −r y y  at each increase, and continue until some other 

predictor mx  has as much correlation with the current residual vector r  as does 

predictor kx . 

(4) Update the residuals and increase ( , )k mβ β  in the joint least squares direction for the 

regression of r  on ( , )k mx x  until some other predictor jx  has as much correlation 

with the current residual r . 

(5) Continue steps 2-4 until all predictors are in the model. Stop when corr( , ) 0jr x j= ∀ , 

the OLS solution. 

 

As with ridge regression, typically the response variable is centered and the 

explanatory variables are centered and scaled to have equal (unit) variance prior to 

starting the LARS algorithm. In other words, 
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1, ,j m= K . Efron et al. (2004a) show that a small modification to the LARS algorithm 

yields the lasso solutions. In a lasso solution, the sign of any nonzero coefficient kβ  must 

agree with the sign of the current correlation of kx  and the residual. The LARS algorithm 

does not enforce this, but Efron and coauthors modify the algorithm to do so by removing 

kβ  from the lasso solution if it changes in sign from the sign of the correlation of kx  and 

the current residual. This modification means that in the lasso solution, the active set of 

variables in the solution does not necessarily monotonically increase as the routine 

progresses. Therefore, the LARS algorithm typically takes less iterations than does the 
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lasso algorithm. The modified LARS algorithm produces the entire range of possible 

lasso solutions, from the initial solution with all coefficients equal to zero, to the final 

solution, which is also the OLS solution. 

In some of the lasso algorithms, such as the modified LARS algorithm and the 

algorithm Tibshirani describes, the shrinkage parameter s  (or t ) must be estimated 

before finding the lasso solutions. Hastie et al. (2001) estimate the parameter  
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           (5.7) 

 

through ten-fold cross-validation, where t  is some positive scalar that reduces the 

ordinary least squares coefficient estimates. Tibshirani (1996) uses five-fold cross-

validation, generalized cross-validation, and a risk minimizer to estimate the parameter t , 

with the computational cost of the three methods decreasing in the same order. Efron et 

al. (2004a) also recommend using cross-validation to estimate the lasso parameter. If t  is 

one or less, there is no shrinkage and the lasso solutions for the coefficients are the least 

squares solutions. One can also define the lasso shrinkage parameter as  
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and s  ranges from 0 to 1, where 0 corresponds to the initial lasso solution with all 

regression coefficients shrunk to 0 and 1 corresponds to the final lasso solution, which is 

also the OLS solution. Then, s  can be viewed as the fraction of the OLS solution that is 

the lasso solution. This is the definition of the lasso shrinkage parameter that I will use in 

the subsequent work in this dissertation. 

Geographically Weighted Lasso 

The lasso can be implemented in GWR relatively easily, and the result is here 

called the geographically weighted lasso (GWL). An efficient implementation of the 

GWL outlined here uses the lars function from the package of the same name written 

in the R language by Hastie and Efron (see the R Project web site: http://cran.r-

project.org/). The lars function implements the LARS and lasso methods, where the 

lasso is the default method, and details are described in Efron et al. (2004a; 2004b). To 

make use of the lars function in the GWR framework, the x  and y  variables input to 

the function must be weighted by the kernel weights at each model calibration location. 

The lars function must be run at each model calibration location. This can be done in 

one of two ways: separate models with local scaling of the explanatory variables or one 

model with global scaling of the explanatory variables. The first way, local scaling, 

requires n  calls of the lars function, one for each location, and the weighted x  and y  

are centered and the x  variables are scaled by the norm in the lars function. This 

effectively removes the intercept and equates the scales of the explanatory variables to 

avoid the problem of different scales (this problem is also avoided in GWRR). The local 

scaling version estimates the lasso parameter to control the amount of coefficient 

shrinkage at each calibration location, so there is a shrinkage parameter is  estimated at 
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each location i . Since I am working here in the GWR framework, I will estimate the 

model shrinkage and kernel bandwidth parameters using leave-one-out cross-validation 

while minimizing the RMSPE. Therefore, the n  is  parameters and the kernel bandwidth 

φ  must be estimated in GWL with CV before the final lasso coefficient solutions are 

estimated. I have chosen to estimate these parameters simultaneously, as the lasso 

solution will certainly depend on the kernel bandwidth. The algorithm to estimate the 

local scaling GWL parameters using cross-validation is: 

 

• For each attempted bandwidth φ  in the binary search for the lowest RMSPE 

o Calculate W  using φ . 

o For each location i  from 1, , nK  

 Set 1 2 ( ) 0iii =W , that is, set the ( , )i i  element of the diagonal weights 

matrix to 0 to effectively remove observation i  

 Set 1 2 ( )i=wX W X  and 1 2 ( )i=wy W y  using the square root of the 

kernel weights ( )iW  at location i . 

 Call lars( ,w wX y ), save the series of lasso solutions, find the lasso 

solution that minimizes the error for iy , and save this solution. 

• Stop when there is only a small change in the estimated φ . Save the estimated φ . 
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In the previous algorithm, saving the lasso solution entails saving the estimated shrinkage 

fraction is  at each location, as well as an indicator vector b  of which variable 

coefficients are shrunken to zero. The algorithm uses a binary search to find the φ  that 

minimizes the RMSPE. The small change in φ  is set exogenously. 

The algorithm to estimate the final local scaling GWL solutions after cross-

validation estimation of the shrinkage and kernel bandwidth parameters is: 

 

• Calculate W  using φ . 

• For each location i  from 1, , nK  

o Set 1 2 ( )i=wX W X  and 1 2 ( )i=wy W y  using the square root of the kernel 

weights ( )iW  at location i . 

o Call lars( ,w wX y ) and save the series of lasso solutions. 

o Select the lasso solution that matches the cross-validation solution according 

to the fraction is  and the indicator vector b . 

 

The second GWL method, global scaling, calls the lars function only one time, 

using specially structured input data matrices. This method fits all the local models at 

once, using global scaling of the x  variables. It also estimates only one lasso parameter 

to control the amount of coefficient shrinkage. The weighted design matrix for the global 

version is a ( ) ( )n n n p⋅ × ⋅  matrix and the weighted response vector is ( ) 1n n⋅ × . This 

results in a ( ) 1n p⋅ ×  vector of estimated regression coefficients, as was the case in the 

Bayesian SVCP model. The weighted design matrix is such that the design matrix is 
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repeated n  times, shifting p  columns in its starting position each time it is repeated. The 

kernel weights for the 1st location are applied to the first n  rows of the matrix, the 

weights for the 2nd location are applied to the next n  rows of the matrix, and so forth. 

The weighted response vector has the response vector repeated n  times, with the weights 

for the 1st location applied to the first n  elements of the vector, and so on. The algorithm 

to estimate the global scaling GWL parameters using cross-validation is: 

 

• For each attempted bandwidth φ  in the binary search for the lowest RMSPE 

o Calculate W  using φ . 

o Set 1 2 ( )G T= × ⋅wy W 1 y  using the square root of the kernel weights matrix W  

and the column unity vector 1  of length n . The operator ×  indicates element-

by-element multiplication here. Set 1k =  and 1m = . 

o For each location i  from 1, , nK  

 Set ( 1)j k n n= ⋅ − −  and ( 1)l m p p= ⋅ − − . 

 Set 1 2 ( )i=wX W X  using the square root of the kernel weights ( )iW  

at location i . Set ( : , : )G j n k l p m⋅ ⋅ =w wX X . 

 Set 1k k= +  and 1m m= + . 

o Call lars( , vec( )G G
w wX y ) and save the series of lasso solutions, where the 

vec() operator turns a matrix into a vector. 
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In the previous algorithm, saving the lasso solution entails saving the estimated overall 

shrinkage fraction s , as well as a vector b  that indicates which of the variable 

coefficients are shrunken to zero. The algorithm uses a binary search to find the φ  that 

minimizes the RMSPE. The small change in φ  is again set exogenously. 

The algorithm to estimate the final global scaling GWL solutions after cross-

validation estimation of the shrinkage and kernel bandwidth parameters is: 

 

• Calculate W  using φ . 

• Set 1 2 ( )G T= × ⋅wy W 1 y  using the square root of the kernel weights matrix W  and the 

column unity vector 1  of length n . The operator ×  indicates element-by-element 

multiplication here. Set 1k =  and 1m = . 

• For each location i  from 1, , nK  

o Set ( 1)j k n n= ⋅ − −  and ( 1)l m p p= ⋅ − − . 

o Set 1 2 ( )i=wX W X  using the square root of the kernel weights ( )iW  at 

location i . Set ( : , : )G j n k l p m⋅ ⋅ =w wX X . 

o Set 1k k= +  and 1m m= + . 

• Call lars( , vec( )G G
w wX y ) and save the series of lasso solutions, where vec() turns the 

matrix into a vector. 

• Select the lasso solution that matches the cross-validation solution according to the 

fraction s  and the indicator vector b . 
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In comparing the local and global scaling GWL algorithms, the global GWL 

algorithm requires more computational time due to the matrix inversion of a much larger 

matrix. The global GWR algorithm must invert a ( )n p n p⋅ × ⋅  matrix, while the local 

GWR algorithm must invert a ( )p p×  n  times, which is clearly faster. Considering that 

calculating the inverse of a general j j×  matrix takes between 2( )O j  and 3( )O j time 

(Banerjee et al. 2004), there can be quite a difference in the computation time for the two 

versions of GWR. Table 5.1 shows the number of computational units required for the 

global and local GWL methods for various values of n  and p . When n  is large, global 

GWL can take more than two times the computation time of local GWL. In comparing 

the expected performance of the global and local versions of GWL, the local GWL 

method should produce lower prediction errors than the global GWL method, as adding 

more shrinkage parameters generally increases model stability and hence lowers 

prediction error. In summary, the local GWL should be faster than the global GWL and 

should have lower prediction error. The benefit of global GWL may be in lower RMSE 

of the regression coefficients. The local and global versions of GWL will be compared 

empirically in the simulation studies of the next chapter. 

 
 
 

n p (np)2 n(p)2 (np)3 n(p)3 
100 2 4.0E+04 4.0E+02 8.0E+06 8.0E+02
100 10 1.0E+06 1.0E+04 1.0E+09 1.0E+05

1000 2 4.0E+06 4.0E+03 8.0E+09 8.0E+03
1000 10 1.0E+08 1.0E+05 1.0E+12 1.0E+06

10000 2 4.0E+08 4.0E+04 8.0E+12 8.0E+04
10000 10 1.0E+10 1.0E+06 1.0E+15 1.0E+07

 
 
Table 5.1. Number of operations to calculate the matrix inverse in global and local GWL. 
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Ridge Regression and the Lasso as Bayes Estimates 

Based on discussions in the literature, it is possible to view the ridge regression 

and lasso solutions as Bayes estimates. Works by Lindley and Smith (1972) and 

Goldstein (1976) show that ridge regression coefficient estimates may be viewed as 

Bayesian regression coefficient posterior means under specific vague priors. Hastie et al. 

(2001) view ridge regression and the lasso more generally as Bayes estimates with 

different prior distributions, where the lasso estimate uses independent double-

exponential priors for each kβ  and ridge regression uses independent normal 

distributions for each coefficient prior. Tibshirani (1996) also illustrates the differing 

priors for lasso and ridge regression. These authors acknowledge that the lasso solution is 

derived from the mode of the posterior distribution and the ridge regression solution is 

derived from the mean of the posterior distribution for the coefficient (it is also the mode 

because the posterior distribution is Gaussian).  

For ridge regression, Hastie et al. (2001) point out that if the prior for each 

regression coefficient kβ  is 2(0, )N σ , independent of the others, then the negative log 

posterior density of the regression coefficients β  is equal to the expression in the braces 

in the ridge regression coefficient equation (5.1), with 2 2λ τ σ= , where 2τ  is the error 

variance. This particular Gaussian prior does not depend on direction of the regression 

coefficient, but instead only length, which implies that ridge regression achieves 

coefficient shrinkage to counter correlation present in X , not through prior information 

that favors high-variance directions. In the Bayesian regression model with 
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2~ ( , )N τy Xβ I
 
and the independent prior 2~ (0, )Nβ σ

 
for each coefficient, the 

posterior for the coefficients can be expressed as 
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⎝ ⎠ ⎝ ⎠
∑ ∑ ∑β   (5.9) 

 

where for convenience of notation the variables have been centered. The negative log 

posterior density of β  up to a constant is then found through algebra to be 

 

2
2 2

2
1 1 1

( ) ,
p pn

i ik k k
i k k

y x τβ β
σ= = =

− +∑ ∑ ∑        (5.10) 

 

with the ridge shrinkage parameter 
2

2

τλ
σ

= . This illustrates that the ridge regression 

estimate is the mean of the posterior distribution with a Gaussian prior and Gaussian data 

model, and that the ridge shrinkage parameter is a ratio of the error variance and common 

regression coefficient variance. 
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The view of ridge regression solutions as Bayes estimates suggests that the 

Bayesian SVCP model coefficients can be viewed as ridge regression estimates because 

of the normal distribution prior for the regression coefficients in the SVCP model. 

Granted, the prior in the SVCP is more complicated than the independent normal prior in 

the traditional Bayesian regression model due to the spatial component in the covariance 

matrix, but it is a normal prior nonetheless. With the Bayesian SVCP model, assuming 

centering to remove the intercept for convenient notation, 

 

2~ ( , )
~ ( , )

( ) ,

y N
N

τ

φ
⊗

= ⊗
β β

β

Xβ I
β 1 μ Σ

Σ H T          (5.11) 

 

the posterior distribution for the coefficients can be expressed as 
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           (5.12) 

The negative log posterior density of β  up to a constant is then 

 

2 1( ) ( ) ( ( )) ( ( ) ) ( ( )),T Tτ φ −− − + − ⊗ ⊗ − ⊗β βy Xβ y Xβ β 1 μ H T β 1 μ    (5.13) 
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where the shrinkage term is unconventionally a matrix λ  that is calculated as  

 

2 1 2 1 1( ( ) ) ( )τ φ τ φ− − −⊗ = ⋅ ⊗H T H T .        (5.14) 

 

Therefore, the amount of shrinkage on β  towards the mean βμ  depends on 2τ , φ , and T  

in the SVCP model. 

With a modification to the Bayes SVCP model regression coefficient prior to have 

a mean of 0 for all coefficients, ~ ( , )N ββ 0 Σ , the negative log posterior density of β  up 

to a constant is  

 

2 1( ) ( ) ( ( ) )T Tτ φ −− − + ⊗y Xβ y Xβ β H T β .      (5.15) 

 

Therefore, the penalty on β  with shrinkage towards zero looks like a ridge regression 

penalty with shrinkage to zero and depends on 2τ , φ , and T . 

Bayesian SVCP Model Coefficient Shrinkage Example 

In Chapter 4, I fitted a GWR model for white male bladder cancer mortality in 

508 State Economic Areas (SEAs) in the United States for the years 1970 to 1994 using a 

smoking proxy and log population density as explanatory variables. As indicated in the 

discussion in that chapter, collinearity appears to be a problem with these data when used 

in a GWR model. The GWR estimated coefficients were first mapped in Figure 4.2. The 

GWR estimated coefficients for these bladder cancer data are negative for each of the 

explanatory variables in some parts of the study area and the coefficients for the two 
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variables exhibit moderate to strong overall correlation. The coefficients for population 

density are negative for most of the Northeast. These negative coefficients are counter to 

previous studies, intuition, and the traditional regression estimates. As Lindley and Smith 

(1972) point out, when data are correlated, least-squares regression can “produce 

regression estimates which are too large in absolute value, of incorrect sign and unstable 

with respect to small changes in the data.” The weighted least-squares estimation 

procedure of GWR likely suffers from the same condition. 

To illustrate the idea of the Bayesian SVCP model coefficients as ridge 

regression-type shrinkage solutions with a practical example, I use the same explanatory 

variables as earlier in a SVCP model to explain male bladder cancer mortality rates in the 

SEAs of the United States. The model consists of an intercept term and the explanatory 

variables log population density and lung cancer mortality rate as a smoking proxy. The 

model is 

 

0 1 2( ) ( ) ( ) SMOKE( ) LNPOP( ) ( )y s s s s s sβ β β ε= + ⋅ + ⋅ + .    (5.16) 
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To estimate the model parameters, I use 2000 iterations in the MCMC, with a 

“burn-in” of 1000 iterations. Based on trace plots and Gelman’s R̂  statistic (e.g. Gelman 

et al. 2003), the regression coefficients converged within 1000 iterations of the Gibbs 

sampler. The prior specification for this model is as follows. I use a vague normal, 

4( , 10 )N 0 I , for βμ , a four-dimensional inverse Wishart, (4, .1 )IW ⋅I , for T , and an 

inverse gamma, (1, .01)IG , for 2τ , where I  is the identity matrix of dimension p . For 

the spatial dependence parameter φ , I use a gamma, (.103, .01)G , which has a mean of 

10.37 and variance of 1037. 

The SVCP model coefficients are mapped in Figure 5.1 and are all non-negative 

for smoking and non-negative for population density for all but two of the 508 SEAs, 

where the two negative population density SEAs are very close to zero. In contrast to the 

GWR coefficients, the SVCP model estimated coefficients do not immediately indicate a 

considerable problem with collinearity. While there is some overall correlation in the 

SVCP model coefficients for the two variables, the complimentary pattern is not as strong 

as with the GWR coefficients. In addition, the variance of the coefficients is not as large 

with the SVCP model. The SVCP model here achieves a similar penalization effect to 

that of ridge regression, but has the advantage that the shrinkage parameters are estimated 

from the data and not through a separate estimation procedure such as cross-validation. 
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Figure 5.1. Estimated coefficients for smoking proxy (top) and population density 
(bottom) for the SVCP model 
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Geographically Weighted Ridge Regression Example 

 Since the VIFs and variance-decomposition proportions for the Columbus crime 

dataset in the previous chapter indicate problems with collinearity in parts of the study 

area, the dataset is a good candidate for applying the remedial method of GWRR. I now 

apply the GWRR model and emphasize some of its properties with the Columbus crime 

dataset. To fit the GWRR model using scheme 1, I first estimate the kernel bandwidth 

and then the ridge parameter. The estimated bi-square nearest neighbor kernel bandwidth 

N = 11 and the estimated ridge parameter λ  = 0.80 with estimation scheme 1. The 

scheme 3 solution is the same as the scheme 1 solution in this case. The prediction error, 

as measured by the root mean squared prediction error (RMSPE), and the estimation 

error, as measured by the root mean squared error (RMSE), are plotted for the GWRR 

model in Figure 5.2, along with the RMSPE for the GWR model, as functions of the 

kernel bandwidth. The prediction error is the error using cross-validation and the 

estimation error uses all the observations in the model calibration. The estimation error is 

a global measure in that it uses the squared deviation of only the )(ˆ iy  from )(iy  in each 

model at location i . The deviations from the )( jy  in each model at location i  are not 

utilized.  
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Figure 5.2. Prediction error (RMSPE) for the GWR ( λ  = 0) and GWRR ( λ  = 0.80) 
solutions and the estimation error (RMSE) for the GWRR solution as a function of N . 
 
 
 

Figure 5.2 demonstrates that the estimation error is lower than the prediction error 

for GWRR, and this is also true for GWR. The higher prediction error is due to removing 

the maximally weighted observation, i , in the cross-validation for observation i , for this 

observation always has a weight of 1. When this observation is added back into the data 

used for estimating the coefficients in the model at location i , the fit naturally improves. 

Note that the behavior of the prediction error as N  increases is stable in Figure 5.2. This 

behavior can be problematic for search routines and care is needed in the estimation of 

N  to make sure a local solution with a larger N  than is necessary is not selected. This is 



 94 
 
 

important because initial results show that the overall GWR model fit decreases with 

increasing N . Note that in general there will be a perfect fit if N p≤  because there are 

fewer observations than number of coefficients, and, for the bi-square nearest neighbor 

kernel function, the fit is perfect for 1N p≤ +  because the weight of the thN  observation 

is 0. Figure 5.2 also shows that the GWRR solution has a lower prediction error than the 

GWR solution. This is congruous with the idea in the statistical learning literature that 

prediction error can usually be improved in global models by introducing some bias to 

reduce variability in the predictions. 

Figure 5.3 shows the prediction error for a truncated range of kernel bandwidth 

values and four ridge parameter values. The value of λ  = 0.8 corresponds to the GWRR 

solution. A value of 1.4 for λ  serves as an upper bound reference, as no value larger than 

this for λ  produces an optimal solution. A value of 0.0 for λ  corresponds to the GWR 

model. The interaction of N  and λ  in the prediction error is apparent in the figure for λ  

= 0.8 and λ  = 1.4. This figure shows that various values of λ  improve on the GWR 

prediction error and that the best λ  depends on N . In general, this should be the case. 

This evidence provides an argument for generally using scheme 3 to estimate N  and λ  

simultaneously, however, as the scheme 1 and scheme 3 solutions are the same in this 

case, one might argue it is not always worth the additional computational cost. 
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Figure 5.3. Prediction error as a function of N and λ  for a truncated range of N  and 
selected values of λ . Lambda = 0 is the GWR solution and lambda = 0.80 is the GWRR 
solution. Two other lambda values (0.2 and 1.4) illustrate the function behavior. 
 
 
 

The GWRR model estimates from local centering are listed in Table 5.2. The 

results show a decrease in the mean local coefficient correlation and the global 

coefficient correlation from the GWR model. The overall correlation coefficient between 

the two sets of estimated regression coefficients decreases from –0.80 to -0.53 and the 

mean local coefficient correlation decreases from –0.58 to –0.01. The overall model fit as 

measured by 2R  decreases only mildly from 0.92 to 0.90. Table 5.2 also shows that for 

the GWRR solution, the mean coefficient estimate for housing value becomes more 
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negative and the mean coefficient estimate for income becomes less negative for income 

than with the GWR model. The Moran’s I statistic is 0.054 for the GWR residuals and is 

0.026 for the GWRR residuals. These statistics are not significant and indicate that there 

is no significant spatial autocorrelation in the GWR residuals in this case, and that the 

inclusion of the coefficient penalization does not significantly affect the spatial 

autocorrelation level in the model residuals. 

 
 
 

Unstandardized Standardized 

Parameter 
Mean 

Estimate 
Mean 
VIF 

Mean 
Parameter 
Correlation 

Global 
Parameter 
Correlation 

Mean 
Estimate 

Intercept 55.465       0.000 
Inc -0.745   -0.012 -0.530 -0.254 
Hoval -0.186   -0.012 -0.530 -0.205 
            
R-square 0.90         
 
 
Table 5.2. The table lists the GWRR model summary for the Columbus crime dataset. 
 
 
 

The regression coefficients for the GWRR models using local centering and 

global centering under estimation scheme 1 are plotted in Figure 5.4. The pattern of 

coefficients is similar for the two solutions, although there is overall more coefficient 

shrinkage in the local centering solution with a smaller ridge parameter value. The 

observations with the large VIFs and estimated GWR coefficients in the upper left corner 

of the corresponding figure in the previous chapter have been penalized in the GWRR 

solutions to now reside in the main grouping of observations that have intuitively signed 

coefficients. The regression coefficients for the GWR model and the GWRR local 
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centering model are plotted in Figure 5.5. The effect of the ridge parameter on the 

estimated coefficients is more clear in this figure. The coefficients have been reduced 

away from the positive values they had in the GWR model, especially for the housing 

value variable ( 2β ). The coefficients now have more intuitive signs considering the 

response variable of crime.  
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Figure 5.4. Estimated regression coefficients for the GWRR local centered (lambda = 
0.80) and global centered solutions (lambda = 0.97) with observation identifiers. 
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Figure 5.5. GWR (lambda = 0.0) and GWRR (lambda = 0.8) estimated regression 
coefficients using local centering. 
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The regression coefficients for the locally centered GWR model are mapped in 

Figure 5.6 and the corresponding GWRR coefficients are mapped in Figure 5.7. The 

dependence in the GWR regression coefficients in the form of negative association is 

clear in Figure 5.6. The areas with counter-intuitive positive regression coefficients for 

income are not the same areas with counter-intuitive positive regression coefficients for 

housing value. The two maps in Figure 5.7 show less of a complementary pattern as those 

in Figure 5.6, with fewer areas that have light-shaded values for the housing value 

parameter when the income parameter is dark-shaded (most negative), and vice-verse. 

The strong negative association in the GWR coefficients in the east-central portion of the 

study area in Figure 5.6 has been especially reduced in the GWRR coefficients in Figure 

5.7. 
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Figure 5.6. Estimated regression coefficients for the GWR model. 
 
 
 
 

 
 
 
 
Figure 5.7. Estimated regression coefficients for the GWRR model. 
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 A preliminary experiment to evaluate how the GWRR model responds to 

increasing collinearity in the explanatory variables shows the model to be quite robust to 

extremely collinear variables. The experiment involved increasing the level of 

collinearity in the Columbus crime model from the original level by replacing the 

standardized housing value variable in the model by a weighted combination of the 

standardized income and housing value variables. The new variable, '
2x , is calculated 

from the standardized variables *
1x  and *

2x  as 

 

' * *
2 1 2(1 )x ax a x= + − ,         (5.17) 

 

where a  is a weighting scalar between 0 and 1 that controls the amount of correlation in 

the standardized explanatory variables. Table 5.3 contains the summary results of the 

experiment. The correlation in the variables ranges from 0.50 to 0.99 and the results 

correspond to the GWR model when λ = 0 and correspond to the GWRR model for non-

zero λ . The kernel bandwidth is fixed at N = 11 for all values of λ  to eliminate a source 

of variation in the experiment even though the optimal N  would likely change with λ  at 

different levels of variable correlation. The table shows that for strongly collinear 

variables, the GWR model behaves in such a way that it pushes the coefficients apart 

from one another while the GWRR model properly reflects the relationship of the 

variables in that the mean coefficients that are still negative and are about equal, which 

reflects the association structure between the explanatory variables and the response 

variable. Naturally, λ  increases as the variable correlation increases to reduce the 
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coefficient variances. While the correlation levels at the bottom of the table are 

admittedly extreme, they are helpful in revealing the behavior of the two methods and 

showing the benefit of using GWRR with collinear variables, even when only two 

explanatory variables are included in the model. 

 
 
 

Weight 
Variable 

Correlation λ  

Mean 
Coefficient 
Correlation 

Global 
Coefficient 
Correlation Mean 1̂β  Mean 2β̂  

0.00 0.50 0.00 -0.58 -0.80 -0.48 -0.17 
  0.80 -0.01 -0.53 -0.25 -0.21 

0.40 0.63 0.00 -0.68 -0.86 -0.44 -0.19 
  0.84 -0.02 -0.55 -0.23 -0.22 

0.60 0.74 0.00 -0.76 -0.91 -0.40 -0.22 
  0.91 0.10 -0.57 -0.20 -0.24 

0.80 0.89 0.00 -0.88 -0.97 -0.27 -0.33 
  1.16 0.35 -0.48 -0.16 -0.24 

0.90 0.97 0.00 -0.96 -0.99 0.01 -0.57 
  1.51 0.68 0.05 -0.15 -0.21 

0.95 0.99 0.00 -0.99 -1.00 0.51 -1.08 
  1.77 0.89 0.72 -0.15 -0.18 

 
 
Table 5.3. The table lists the mean local regression coefficient correlation and global 
regression coefficient correlation in the GWRR and GWR models at various levels of 
correlation in the explanatory variables. The weight determines the amount of variable 
correlation and λ = 0 corresponds to the GWR model. 
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CHAPTER 6 

 

SIMULATION STUDY 

 

In this chapter, I use simulation studies to evaluate and compare the coverage 

probabilities and accuracy of the regression coefficients from multiple spatially varying 

coefficient models. I assess inferences on the coefficients both when there is no 

collinearity in the explanatory variables and when there is collinearity, expressed at 

various levels. The motivation for doing this is to explicitly test the assumption that the 

inferences on the coefficients from each model are valid, in the sense that the 95% 

confidence interval or credible interval for each estimated coefficient contains the true 

value 95 percent of the time. The Bayesian 95% credible interval for a parameter is the 

range from the 0.025 quantile to the 0.975 quantile of the sampled posterior distribution. 

If the estimated coefficient intervals do not contain the true values more than 5% of the 

time, then there is clearly a problem with interpreting the coefficients, and the problem is 

more severe as the percent of intervals not containing the true values increases from 5%.  

I first evaluate the assumption of acceptable coverage when there is no 

collinearity because this is the most favorable, although unlikely, situation. I next 

evaluate the assumption of acceptable coverage probabilities when there is collinearity in 

the model and specify systematic increases in collinearity to inspect its effect on both the 
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coverage probabilities and accuracy of the coefficients, as well as the strength of 

correlation in the estimated coefficients at each location and across the study area. 

The model to generate the data for the simulation studies is 

 

* *
1 1 2 2( ) ( ) ( ) ( ) ( ) ( )y s s x s s x s sβ β ε= + + ,      (6.1) 

 

where the 1x  and 2x  are the first two principal components from a random sample drawn 

from a multivariate normal distribution of dimension ten with a mean vector of zeros and 

an identity covariance matrix, and the errors ε  are sampled independently from a normal 

distribution with mean 0 and variance of 2*τ , which depends on the simulation study. 

The star notation denotes the true values of the parameters used to generate the data. Note 

that there is no true intercept in the model used to generate the data and I do not fit an 

intercept in the simulation study. The data points are equally spaced on a 10 10×  grid, for 

a total of 100 observations. The goal of the simulation studies is to use the model in 

equation (6.1) to generate the data and see if the regression coefficient estimates match 

*β  for the spatially varying coefficient models. 

For each simulation study, I generate a set number of realizations of the data 

process, where the number of realizations depends on the study. In the first simulation 

study, the explanatory variables and the error terms are simulated and the true regression 

coefficients are fixed for all realizations. The true regression coefficients used to simulate 

the data are based not on a model, but explicitly on the coordinates of the data points in 

the study area. In the rest of the simulation studies, the true regression coefficients are 
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simulated and thus vary from realization to realization. Another key difference between 

the first and other simulation studies is that there is no collinearity introduced into the 

explanatory variables in the first study and various levels of collinearity are used in the 

other simulation studies. An additional contrast is that there is only one level of spatial 

dependence in the regression coefficients in the first simulation study, and I consider 

three different levels of spatial dependence in other simulation studies. The second 

simulation study has a small true error variance and a small variance in the prior for the 

error variance. The third simulation study has a small true error variance and a larger 

variance in the prior for the error variance. The fourth simulation study uses a larger true 

error variance to generate the data. The fifth simulation study compares GWR, GWRR-

global scaling, GWRR-local scaling, GWL-local, GWL-global, and the SVCP model in 

terms of response variable prediction and estimation error and regression coefficient 

estimation error. The sixth simulation study also compares these methods, but it uses a 

larger set of explanatory variables in the model. 

Simulation Study 1 

The first simulation study has one fixed pattern of true coefficients that are used 

to generate the data, where there is strong spatial dependence in the coefficients within 

each explanatory variable parameter. To achieve this, the true coefficient *
1 ( )sβ  is equal 

to the x  coordinate at location s  and the true coefficient *
2 ( )sβ  is equal to the y  

coordinate at location s . This results in a clear, increasing trend in each parameter across 

space, as shown in Figure 6.1. The regression coefficients are fixed in this way to 

compare the GWR and SVCP models when the true coefficients are not based on either 

model, thereby eliminating any predisposition towards one of the models. This gives a 
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baseline performance for later simulation studies. In this simulation study, the error 

variance 2*τ = .000001. This yields a very small error and effectively makes this a 

deterministic model. This is done to simplify the simulation study and remove any 

complicating effect the error term may have. In the SVCP model, simulation-based 

inference is carried out with 4000 iterations in the MCMC routine, discarding the first 

2000 iterations as the “burn-in". Based on trace plots and Gelman’s R̂  statistic (e.g. 

Gelman et al. 2003), the regression coefficients converged within 2000 iterations of the 

Gibbs sampler. The GWR model is fitted to the same data, using cross-validation to 

estimate the kernel bandwidth. 
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Figure 6.1. Coefficient pattern for each *β  parameter in simulation study 1. The left plot 
is for *

1β  and the right plot is for *
2β . The parameter values range from 1 (lightest) to 10 

(darkest). 
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The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a three-dimensional inverse Wishart, 6(3, 10 )IW − I , for T , 

and an inverse gamma, 6(1, 10 )IG − , for 2τ , where I  is the identity matrix of dimension 

p . The inverse gamma prior has a small mean and variance. For the spatial dependence 

parameter φ , I use a gamma, (.021, .01)G , which has a mean of 2.12 and variance of 

212. The hyperparameters for this gamma prior are chosen to have a large variance and a 

mean that solves the spatial correlation function set equal to .05, where the spatial range 

is set to half the maximum inter-point distance from the distance matrix D . The spatial 

range is the distance beyond which the spatial association becomes negligible. 

Distributions that set prior mean spatial ranges to roughly half the maximum pairwise 

distance usually result in stable MCMC behavior (Banerjee and Johnson 2005). The 

calculation for the mean is found from solving exp( (1 2 max( )) / ) .05φ− ⋅ =D  for φ .  

In order to perform inference on the parameters in the SVCP model, starting 

values are required for the parameter estimates. The starting values for each SVCP model 

parameter estimate in each realization are assigned random values from certain 

distributions. The spatial dependence value is drawn from a uniform distribution over the 

range of pairwise distances in the study area. The coefficient means are drawn randomly 

from a multivariate normal distribution with zero means and the identity covariance 

matrix. To ensure that the starting value for the coefficient covariance matrix T  is 

positive definite, a matrix is sampled from a multivariate normal distribution with a mean 

of the identity matrix and a diagonal matrix of 0.00001 for the covariance matrix. This 

gives a starting value for T  that is close to the identity matrix. 
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To evaluate the coverage and accuracy of the regression coefficients, I calculate 

numerous summary statistics. For each realization of the process, I calculate the 95% 

credible intervals for each coefficient in the SVCP model and the 95% confidence 

intervals for each GWR coefficient. To calculate the 95% coverage probabilities, the true 

coefficients are compared to the 95% intervals obtained for the respective coefficient in 

each data realization and then the total number of realizations that contain the true values 

are summed and divided by the number of realizations. The means of the coverage 

probabilities are calculated for each explanatory variable from the corresponding 

coefficients to create a summary measure for all the realizations that is easy to present in 

a table. The accuracy of the regression coefficients is measured by calculating the root 

mean square error (RMSE) of all coefficients at each realization. The RMSE is the square 

root of the mean of the squared deviations of the estimates from the true values. The 

MSE is equal to the sum of the bias2 and variance of an estimate, and it should be small 

for an accurate estimator. The average RMSE for all realizations is then calculated by 

averaging the RMSE’s from all of the individual realizations. 

The mean RMSE of the regression coefficients and the 95% coverage 

probabilities for each explanatory variable coefficient in simulation study 1 are listed in 

Table 6.1 for the Bayesian SVCP model and the GWR model. The results show that the 

Bayesian regression model has substantially lower RMSE for the coefficients than does 

the GWR model. In fact, the GWR RMSE is more than three times that from the SVCP 

model. The Bayesian regression model also has nearly 100% coverage (rounded to the 

nearest integer) of the true regression coefficients in the 95% confidence intervals, while 

the GWR model has only about 63% coverage of the true coefficients. Ideally, the 
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coverage probabilities would be 95% for all coefficients using the 95% credible intervals 

for the Bayesian model and the 95% confidence intervals for the GWR model. For the 

GWR model, this means that, on average, 37% of the coefficient confidence intervals do 

not contain the true coefficient values. This is clearly an unfavorable result for the GWR 

model, and if the result generalizes, casts significant doubt on inferences from this model. 

The results for this simulation study are from only one level of spatial dependence in the 

coefficients. To summarize the results from this simulation study, the Bayesian model 

outperforms the GWR model in terms of both regression coefficient coverage of the true 

values and accuracy when the true coefficients are not based on any model, there is 

strong spatial dependence in the regression coefficients, and there is no substantial 

collinearity in the explanatory variables. 

 
 
 

Method RMSE(β) 
Mean CP 

(β1) 
Mean CP 

(β2)  
Bayesian 0.1097 100% 100%
GWR 0.4096 62% 63%

 
 
Table 6.1. Average root mean square error (RMSE) and average percent coverage of the 
95% confidence intervals of the regression coefficients with GWR and average percent 
coverage of the 95% credible intervals with the SVCP model in simulation study 1. 
 
 
 
Simulation Study 2 

 In the second simulation study, the true coefficients used to simulate the data are 

simulated from the fixed, true parameter values for the SVCP model. I fix the values for 

the parameters in the Bayesian model, other than the regression coefficients, and simulate 
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the true coefficients using the multivariate normal distribution and the fixed values for 

the coefficient means, covariances, and spatial dependence parameter. The coefficient 

covariance matrix at all locations is set to * 0.1 0.0
0.0 0.5
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

T  and the coefficient means are 

set to * (1, 5)β =μ . The error variance 2*τ = .000001 again to simplify the simulation 

study. The spatial dependence parameter is first set to * 1φ = , then * 5φ = , and finally 

* 10φ =  to make three different sets of 200 realizations of the coefficient process. This is 

done to evaluate the performance of the GWR and SVCP model under three different 

levels of spatial dependence in the regression coefficients. The spatial dependence in the 

regression coefficients was much higher in simulation study 1 than with these three levels 

of *φ . I use 2000 iterations in the MCMC routine for simulation-based inference of the 

SVCP model parameters, with a “burn-in” of 1000 iterations, and also fit the GWR model 

to the same data. Based on trace plots and Gelman’s R̂  statistic, the regression 

coefficients converged for individual realizations of the coefficient process within 1000 

iterations of the Gibbs sampler. 

The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a three-dimensional inverse Wishart, 6(3, 10 )IW − I , for T , 

and an inverse gamma, 6(1, 10 )IG − , for 2τ , where I  is the identity matrix of dimension 

p . The inverse gamma prior has a small mean and variance. For the spatial dependence 

parameter φ , I use a gamma, (.021, .01)G , which has a mean of 2.12 and variance of 

212. The same starting value distributions for the SVCP model parameter estimates are 

used as in simulation study 1. 
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Examples of the spatial pattern in individual realizations of the coefficient process 

are shown in Figure 6.2 for * 1φ = , Figure 6.3 for * 5φ = , and Figure 6.4 for * 10φ = . The 

figures show pattern in the coefficients for each variable, but the patterns are less clear 

and dramatic than those for the true coefficients in the first simulation study displayed in 

Figure 6.1, where there is more spatial dependence. In general, as *φ  increases there are 

more consistent and clear patterns in the true regression coefficients, and more global 

variation in the coefficients. Conversely, there is more local variation with smaller *φ , 

resulting in less smooth patterns in the coefficients. For this simulation study, I start with 

no substantial collinearity in the model and systematically increase it until the 

explanatory variables are nearly perfectly collinear. This is done by replacing one of the 

original explanatory variables with one created from a weighted linear combination of the 

original explanatory variables, where the weight determines the amount of correlation of 

the variables. The formula for the new weighted variable is 

 

2 1 2(1 )cx c x c x= ⋅ + − ⋅ ,         (6.2) 

 

where 2
cx  replaces 2x  in the model in equation (6.1) and c  is the weight between 0 and 1. 
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Figure 6.2. Coefficient pattern for each *β  parameter for one coefficient realization in 
simulation study 2 when * 1φ = . The left plot is for *

1β  and the right plot is for *
2β . 
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Figure 6.3. Coefficient pattern for each *β  parameter for one coefficient realization in 
simulation study 2 when * 5φ = . The left plot is for *

1β  and the right plot is for *
2β . 
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Figure 6.4. Coefficient pattern for each *β  parameter for one coefficient realization in 
simulation study 2 when * 10φ = . The left plot is for *

1β  and the right plot is for *
2β . 

 
 
 

To evaluate the coverage and accuracy of the regression coefficients from the 

GWR and SVCP model, I use the same coverage probability and RMSE calculations 

described for simulation study 1. In addition, I calculate the correlation in the estimated 

regression coefficients from both models. There are two types of correlation of interest in 

the estimate regression coefficients. One is the overall correlation coefficient ( 12C ) 

between the sets of estimated coefficients for two explanatory variables, and the other is 

the estimated local correlation coefficient ( 12
sC ) between two coefficients at any location 

s . The local coefficient correlation at each location is given by equation (3.23) in the 

SVCP model. The local coefficient correlation in the GWR model is calculated using the 

previously defined equation (4.3). The overall correlation between sets of coefficients is 

calculated for the SVCP and GWR models using previously defined equation (4.1). 
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 The results of this simulation study are listed in Table 6.2 for the Bayesian SVCP 

model and Table 6.3 for the GWR model. The tables show the mean statistics calculated 

from the 200 realizations of the coefficient process. The coverage probabilities generally 

increase in both the SVCP and GWR models as *φ  increases. The tables also show that 

the SVCP model has substantially larger mean coverage probabilities than does GWR 

when there is no collinearity in the data ( 0c = ), regardless of the level of *φ . As the 

collinearity in the explanatory variables increases, the coverage probabilities gradually 

decrease in the SVCP model and increase in the GWR model. The coverage probabilities 

for the SVCP model do not substantially decrease until there is moderate to strong 

collinearity in the variables. The coverage probabilities increase with increasing 

collinearity in the GWR model because the variances of the coefficients increase as well, 

as shown in the columns of coefficient variances in Table 6.3. It is a well-known result in 

statistics that regression coefficient variances increase in the presence of collinearity 

(Neter et al. 1996). The coverage probability increases with decreasing estimator bias and 

increases with increasing estimator variance. Therefore, looking only at the coverage 

probabilities for the GWR model is misleading because the increase in coverage 

probabilities is due directly to increasingly imprecise estimates.  
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*φ  = 1 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) 

0.0 0.000 0.85 0.91 0.018 -0.010 0.325 
0.1 0.127 0.87 0.90 0.130 0.072 0.332 
0.3 0.442 0.83 0.86 0.268 0.131 0.340 
0.5 0.755 0.80 0.85 0.341 0.133 0.351 
0.7 0.937 0.48 0.54 0.845 0.732 0.384 
0.9 0.995 0.47 0.46 0.780 0.780 0.429 

       
*φ  = 5 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) 

0.0 0.000 0.93 0.93 -0.036 -0.029 0.162 
0.1 0.127 0.93 0.94 0.060 0.008 0.164 
0.3 0.442 0.93 0.93 0.127 0.053 0.169 
0.5 0.755 0.93 0.93 0.188 0.055 0.172 
0.7 0.937 0.79 0.82 0.383 0.239 0.196 
0.9 0.995 0.40 0.41 0.627 0.622 0.273 

       
*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) 

0.0 0.000 0.94 0.94 -0.005 -0.003 0.115 
0.1 0.127 0.94 0.94 0.033 0.016 0.117 
0.3 0.442 0.93 0.94 0.070 0.028 0.118 
0.5 0.755 0.93 0.94 0.120 -0.018 0.123 
0.7 0.937 0.81 0.83 0.308 0.195 0.143 
0.9 0.995 0.42 0.44 0.549 0.534 0.206 

 
 
Table 6.2. Results of simulation study 2 for the Bayesian SVCP model. The columns 
listed in order are the correlation weight, explanatory variable correlation, average 
coverage probabilities for each explanatory variable coefficient, the mean overall 
correlation between the two sets of variable coefficients, the mean local coefficient 
correlation at each location, and the average RMSE of the coefficients. 
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*φ  = 1 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  Var(β1) Var(β2) RMSE(β)

0.0 0.000 0.51 0.35 -0.075 -0.020 0.013 0.017 0.459
0.1 0.127 0.51 0.39 -0.111 -0.142 0.013 0.021 0.457
0.3 0.442 0.51 0.42 -0.242 -0.447 0.013 0.027 0.463
0.5 0.755 0.58 0.49 -0.404 -0.754 0.021 0.047 0.492
0.7 0.937 0.75 0.63 -0.747 -0.937 0.078 0.138 0.597
0.9 0.995 0.85 0.83 -0.976 -0.995 1.332 1.627 1.529

         
*φ  = 5 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  Var(β1) Var(β2) RMSE(β)

0.0 0.000 0.65 0.54 -0.046 -0.019 0.007 0.010 0.226
0.1 0.127 0.64 0.55 -0.022 -0.135 0.006 0.010 0.226
0.3 0.442 0.64 0.59 -0.088 -0.425 0.007 0.014 0.235
0.5 0.755 0.70 0.67 -0.229 -0.737 0.012 0.027 0.266
0.7 0.937 0.77 0.74 -0.549 -0.932 0.046 0.082 0.407
0.9 0.995 0.82 0.82 -0.941 -0.995 0.819 1.002 1.345

         
*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  Var(β1) Var(β2) RMSE(β)

0.0 0.000 0.66 0.56 0.041 -0.019 0.004 0.005 0.164
0.1 0.127 0.64 0.57 -0.039 -0.135 0.004 0.006 0.162
0.3 0.442 0.65 0.61 -0.113 -0.422 0.004 0.008 0.165
0.5 0.755 0.69 0.65 -0.186 -0.736 0.006 0.013 0.194
0.7 0.937 0.78 0.75 -0.516 -0.932 0.024 0.043 0.289
0.9 0.995 0.81 0.81 -0.926 -0.995 0.420 0.514 0.977

 
 
Table 6.3. Results of simulation study 2 for the GWR model. The columns correspond to 
the correlation weight, explanatory variable correlation, average coverage probabilities 
for each explanatory variable coefficient, the mean overall correlation between the two 
sets of variable coefficients, the mean local coefficient correlation at each location, the 
variance of each explanatory variable coefficient, and the average RMSE of the 
coefficients. 
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The RMSE is a better measure of parameter estimate accuracy in the presence of 

collinearity because it increases with increasing bias and increasing estimator variance. 

Figure 6.5 shows the average RMSE values for the SVCP and GWR models at varying 

levels of collinearity for the three levels of *φ . The average RMSE values at each level of 

collinearity show that the coefficients from the SVCP model are closer to their true 

values than are those from GWR. Not surprisingly, the average RMSE increases with 

increasing collinearity for the SVCP model, showing that the estimated coefficients move 

away from their true values. Intuitively, the average RMSE values for both the GWR and 

SVCP models decrease as the spatial dependence increases because the models are more 

appropriate for data with more spatial dependence. The results show that the GWR model 

coefficients are more biased than the SVCP model coefficients because the average 

RMSE for the SVCP model is consistently less than for GWR and the coverage 

probabilities are larger for the SVCP model than for GWR when there is no collinearity. 
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Figure 6.5. Average RMSE for regression coefficients from the SVCP (dashed) and the 
GWR (solid) models at specific levels of collinearity in the explanatory variables and at 
different levels of *φ  in simulation study 2. 
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The average overall coefficient correlation and average local coefficient 

correlation calculated from all realizations for both types of correlation in the SVCP and 

GWR models are listed in Table 6.2 and Table 6.3. The results show that the Bayesian 

model better controls the correlation in the regression coefficients than does the GWR 

model. The GWR coefficients become almost perfectly negatively correlated across 

space with very strong explanatory variable collinearity, while the SVCP model 

coefficients demonstrate only moderate levels of positive correlation. Similarly, the 

average local coefficient correlation is strongly negative with strong collinearity in the 

GWR model, while the correlation is weakly to moderately positive with the SVCP 

model. Furthermore, it appears the SVCP model is self-tuning with regard to the level of 

collinearity in the model and its subsequent effect on the estimated coefficients. The 

variances of the coefficients do not increase dramatically with increasing collinearity in 

the SVCP model as they do in the GWR model, as is evident from the decreasing 

coverage probabilities in the SVCP model. 

 Another contrast between the GWR and SVCP models became apparent from the 

simulation study. As *φ  increases in the simulations, the estimated GWR kernel 

bandwidth decreases. With the stronger spatial dependence, and hence, trend, in the 

coefficients in this simulation study, the coefficients at more distant locations tend to be 

more different, and GWR places less emphasis on distant data points through the spatial 

weights when estimating the model at one location. With smaller spatial dependence, the 

coefficients tend to be less dissimilar at distant locations, and GWR places more 

emphasis on distant locations through the local spatial weights. 
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Simulation Study 3 

Simulation study 2 had a very small true error term in the data-generating model 

due to setting 2* .000001τ = , and also had a prior for the error variance with a small mean 

and variance. The reason for using a small true variance was to evaluate the SVCP model 

performance without the complication of the error term, and the prior with small mean 

and variance was meant to help achieve that objective. However, given the earlier details 

of Chapter 5 that the SVCP model parameters may be viewed as ridge regression 

solutions, restricting 2τ  through its prior could affect the amount of shrinkage in the 

estimated regression coefficients. For that reason, a simulation study is presented here 

that is similar to simulation study 2, but uses a prior for 2τ  that has a larger variance and 

is, hence, less informative about 2τ . As in simulation study 2, the coefficient covariance 

matrix at all locations is set to * 0.1 0.0
0.0 0.5
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

T , the coefficient means are set to 

* (1, 5)β =μ , and the error variance 2*τ = .000001. The spatial dependence parameter is set 

to only * 10φ =  in the interest of time. As with simulation study 2, there are 200 

realizations of the coefficient process used in this simulation study. 

The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a three-dimensional inverse Wishart, 6(3, 10 )IW − I , for T , 

and an inverse gamma, (1, .01)IG , for 2τ , where I  is the identity matrix of dimension 

p . For the spatial dependence parameter φ , I use a gamma, (.021, .01)G , which has a 

mean of 2.12 and variance of 212. The same starting value distributions for the SVCP 

model parameter estimates are used as in simulation study 1. 
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The results of the simulation study are listed in Table 6.4 for the Bayesian SVCP 

model and in Table 6.5 for the GWR model. The results strongly favor the SVCP model 

overall, and show that the SVCP model does much better at covering the true coefficient 

values used to generate the data than does GWR. For example, the SVCP model average 

coverage probabilities are at least 0.25 higher than the ones from GWR when there is no 

collinearity. In addition, the average coverage probabilities are always higher for the 

SVCP model when there is collinearity. The coverage probabilities for the SVCP model 

start near the goal of .95 and decrease only slightly when there is strong collinearity. The 

GWR coverage probabilities increase with increasing collinearity as a result of increased 

estimator variance but are still much less than those from the SVCP model when there is 

strong collinearity. In terms of accuracy, the average RMSE is considerably lower for the 

SVCP model compared to the GWR model for all levels of explanatory variable 

correlation. The SVCP model average RMSE jumps much less compared to GWR with 

strong collinearity. The SVCP model also does a better job than GWR at controlling the 

overall and local regression coefficient correlation. The GWR estimated coefficients 

become strongly negatively correlated locally and overall with strong collinearity, while 

the SVCP model coefficients exhibit weak positive correlation locally and moderate 

positive correlation with strong collinearity. The dramatically better performance in 

estimating the coefficients when there is strong collinearity with the SVCP model over 

GWR helps demonstrate the Bayesian SVCP model regression coefficients as ridge 

regression solutions. The average RMSE’s for the response variable also show that the 

SVCP model performs better than GWR in estimating the response. 
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Comparing the SVCP model results for simulation study 2 and simulation study 3 

indicates that the prior for 2τ  with the small variance had an impact in the estimation of 

the parameters in simulation study 2. The coverage probabilities in simulation study 2 are 

reduced much more then in simulation study 3 when there is strong collinearity. The 

amount of overall correlation in the estimated coefficients is also lower in simulation 

study 2 compared to simulation study 3. These results suggest that a smaller posterior 

mean for 2τ  produces more regression coefficient shrinkage towards the coefficient 

means. 

 
 
 

*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) RMSE(y)

0.0 0.000 0.94 0.96 0.018 -0.013 0.168 0.017
0.1 0.127 0.94 0.96 0.039 -0.007 0.170 0.017
0.3 0.442 0.94 0.95 0.098 0.015 0.176 0.017
0.5 0.755 0.93 0.94 0.206 0.069 0.188 0.018
0.7 0.937 0.90 0.92 0.399 0.165 0.211 0.018
0.9 0.995 0.92 0.91 0.744 0.271 0.282 0.016

 

Table 6.4. Results of simulation study 3 for the Bayesian SVCP model. The columns 
listed in order are the correlation weight, explanatory variable correlation, average 
coverage probabilities for each explanatory variable coefficient, the mean overall 
correlation between the variable coefficients, the mean local coefficient correlation at 
each location, the average RMSE of the coefficients, and RMSE of the response. 
 
 



 124 
 
 

 
*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) RMSE(y)

0.0 0.000 0.67 0.54 -0.003 0.054 0.235 0.069
0.1 0.127 0.66 0.54 -0.033 -0.043 0.234 0.070
0.3 0.442 0.64 0.56 -0.116 -0.324 0.244 0.073
0.5 0.755 0.66 0.62 -0.262 -0.671 0.286 0.078
0.7 0.937 0.72 0.72 -0.546 -0.910 0.430 0.086
0.9 0.995 0.78 0.79 -0.929 -0.994 1.371 0.095

 

Table 6.5. Results of simulation study 3 for the GWR model. The columns correspond to 
the correlation weight, explanatory variable correlation, average coverage probabilities 
for each explanatory variable coefficient, the mean overall correlation between the 
variable coefficients, the mean local coefficient correlation at each location, the average 
RMSE of the coefficients, and the RMSE of the response. 
 
 
 
Simulation Study 4 

 Simulation studies 1, 2, and 3 had a very small true error term in the data-

generating model, due to setting 2* .000001τ = . While the reason for doing so was to 

evaluate the SVCP model performance without the complication of the error term, it is 

likely that real data will have larger errors present. For that reason, a simulation study is 

presented here that is similar to simulation study 2, but has a 2* 1τ =  to represent a more 

likely signal to noise ratio. The coefficient covariance matrix at all locations is set to 

* 0.5 0.0
0.0 0.5
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

T  and the coefficient means are set to * (1, 5)β =μ . In the interest of time, 

this simulation study was only run for * 10φ = . As in simulation studies 2 and 3, there are 

200 realizations of the coefficient process used in this simulation study. 



 125 
 
 

The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a three-dimensional inverse Wishart, (3, .1 )IW ⋅I , for T , 

and an inverse gamma, (1, .01)IG , for 2τ , where I  is the identity matrix of dimension 

p . For the spatial dependence parameter φ , I use a gamma, (.021, .01)G , which has a 

mean of 2.12 and variance of 212. 

 The results of the simulation study are listed in Table 6.6 for the Bayesian SVCP 

model and in Table 6.7 for the GWR model. The results show that the SVCP model does 

much better at covering the true coefficient values used to generate the data than does 

GWR. For example, the SVCP model average coverage probabilities are about 0.20 

higher than the ones from GWR when there is no collinearity. The average coverage 

probabilities are approximately the same for the two models only when there is very 

strong collinearity, and the increase in the average coverage probabilities for GWR 

occurs as a direct result of increased estimate variance, which results in a degradation of 

estimate precision. Figure 6.6 and Figure 6.7 show the coverage probabilities for the 

regression coefficients in the SVCP and GWR models, respectively, when there is no 

correlation in the explanatory variables. The plots show that there is more variation in the 

coverage probabilities with the GWR model than with the SVCP model. GWR does 

slightly better at estimating the true regression coefficients than does SVCP for low 

levels of collinearity, however, the SVCP is much better at estimating the coefficients 

when there is strong collinearity. The dramatic improvement in estimating the 

coefficients when there is strong collinearity with the SVCP model helps demonstrate the 

Bayesian SVCP model regression coefficients as ridge regression solutions. In addition, 

the SVCP model also does a better job than GWR at controlling the overall and local 
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regression coefficient correlation. One area that GWR consistently does better in than the 

SVCP model is with estimating the response, although the differences are not 

overwhelming. This is not completely surprising, given the roots of GWR in local linear 

regression, which is designed for response prediction and not regression coefficient 

inference. Wheeler and Tiefelsdorf (2005) found that GWR performed better at 

estimating the response when there is more spatial dependence in the errors of a 

simulation study. The errors used in the present simulation study are not controlled to 

have a specific spatial dependence, and this suggests GWR appears to perform better at 

estimating the response when there are non-zero errors. 

 
 
 

*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) RMSE(y)

0.0 0.000 0.90 0.91 0.138 0.064 0.508 0.894
0.1 0.127 0.90 0.89 0.199 0.093 0.514 0.907
0.3 0.442 0.89 0.89 0.377 0.147 0.536 0.907
0.5 0.755 0.90 0.89 0.597 0.212 0.568 0.899
0.7 0.937 0.91 0.91 0.777 0.228 0.651 0.904
0.9 0.995 0.93 0.93 0.835 0.224 1.235 0.892

 

Table 6.6. Results of simulation study 4 for the Bayesian SVCP model. The columns 
listed in order are the correlation weight, explanatory variable correlation, average 
coverage probabilities for each explanatory variable coefficient, the mean overall 
correlation between the variable coefficients, the mean local coefficient correlation at 
each location, the average RMSE of the coefficients, and RMSE of the response. 
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*φ  = 10 

Weight X Corr 
Mean CP 

(β1) 
Mean CP 

(β2) 12C  12
sC  RMSE(β) RMSE(y)

0.0 0.000 0.70 0.70 0.058 0.019 0.487 0.884
0.1 0.127 0.69 0.72 0.011 -0.094 0.497 0.889
0.3 0.442 0.69 0.76 -0.126 -0.388 0.536 0.892
0.5 0.755 0.76 0.83 -0.365 -0.711 0.633 0.890
0.7 0.937 0.86 0.89 -0.719 -0.922 0.947 0.883
0.9 0.995 0.92 0.92 -0.973 -0.994 2.913 0.873

 

Table 6.7. Results of simulation study 4 for the GWR model. The columns correspond to 
the correlation weight, explanatory variable correlation, average coverage probabilities 
for each explanatory variable coefficient, the mean overall correlation between the 
variable coefficients, the mean local coefficient correlation at each location, the average 
RMSE of the coefficients, and the RMSE of the response. 
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Figure 6.6. Coverage probabilities for each *β  parameter when * 10φ =  in simulation 
study 4 for the SVCP model. The left plot is for *

1β  and the right plot is for *
2β . 

 
 
 

 
 
 
Figure 6.7. Coverage probabilities for each *β  parameter when * 10φ =  in simulation 
study 4 for the GWR model. The left plot is for *

1β  and the right plot is for *
2β . 
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Simulation Study 5 

 The previous simulation studies illuminated the differences in performance 

between the GWR and Bayesian SVCP models, in terms of marginal regression 

coefficient inference. In a sense, the comparison of the two methods is not entirely an 

even one, as the Bayesian regression coefficients can be viewed as ridge regression 

solutions, as discussed earlier in the dissertation. To make the comparison more even, and 

to judge the benefit of adding the regularization methods of ridge regression and the lasso 

to the GWR framework, a simulation study is presented now that measures the prediction 

and estimation error of the response and the estimation error of the regression coefficients 

for GWR, GWRR, GWL, and the SVCP model. This simulation study uses the same 

model to generate the data as simulation study 4. In other words, the coefficient means 

are set to * (1, 5)β =μ , *T = diag(.5, .5), and 2*τ = 1, where diag() creates a diagonal 

matrix with the input numbers on the diagonal. This simulation study is run for * 10φ =  

only in the interest of time. 

 The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a three-dimensional inverse Wishart, (3, .1 )IW ⋅I , for T , 

and an inverse gamma, (1, .01)IG , for 2τ , where I  is the identity matrix of dimension 

p . For the spatial dependence parameter φ , I use a gamma, (.021, .01)G , which has a 

mean of 2.12 and variance of 212. 

 In the interest of time, the simulation study is carried out with only four levels of 

explanatory variable collinearity. The weights used in equation (6.2) to create the 

collinearity are (0.0, 0.5, 0.7, 0.9)c = , which coincide with explanatory variable 
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correlation of (0.0, 0.74, 0.93, 0.99)r = . These levels of correlation correspond to no 

collinearity as a baseline, and then moderate, strong, and very strong collinearity. In this 

study, 100 realizations of the coefficient process are generated, and the model parameters 

and responses are estimated for each realization for each of the following models: GWR, 

GWRR–global scaling, GWRR–local scaling, GWL–global, GWL–local, and SVCP. In 

the interest of time, the GWRR solutions use estimation scheme 1, so the errors 

associated with the solutions in this study are upper bounds on the possible GWRR 

solution errors, where better solutions may be possible using estimation scheme 3. For 

each data realization, the RMSE is calculated for the responses y  and the coefficients β  

for each model. In addition, the RMSPE is calculated for the responses y  for GWR and 

the regularized GWR models. To provide summary measures for the simulation study, 

the RMSE’s and RMSPE’s are averaged over the 100 realizations of the coefficients. 
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The average RMSPE for y  for each model is listed in Table 6.8. The lowest 

RMSPE for each level of variable correlation (column) is in bold font. The results in the 

table show that the GWL-local model produces the lowest prediction error of the 

response and is clearly the best in this category. This is an expected result, as the GWL-

local model adds the most local penalization parameters to the GWR model, and a 

general result in penalization methods is that adding more shrinkage parameters lowers 

the prediction error by stabilizing the model. The next best performer in terms of RMSPE 

of the response is a tie between GWL-global and GWRR-local scaling, where GWL-

global does better with no or moderate collinearity and GWRR-local scaling does better 

with strong or very strong collinearity. It is no coincidence that GWR has the highest 

prediction error at each level of collinearity. These results show that adding penalization 

terms to GWR for the regression coefficients results in lower prediction error of the 

response than with GWR. 

 
 
 
  c = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSPE(y) RMSPE(y) RMSPE(y) RMSPE(y)
GWR 1.156 1.127 1.132 1.146
GWRR - global 1.155 1.126 1.130 1.134
GWRR - local 1.155 1.125 1.127 1.130
GWL - global 1.545 1.125 1.128 1.132
GWL - local 0.997 0.981 1.000 1.024
SVCP . . . . 
 

Table 6.8. RMSPE of the response for each model used in simulation study 5 at four 
levels of explanatory variable correlation. 
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The average RMSE for y  for each model is listed in Table 6.9. The lowest RMSE 

for each level of variable correlation (column) is in bold font. The results in the table 

show that the GWL model produces the lowest estimation error of the response, with the 

GWL-local model doing better for no or moderate collinearity and the GWL-global 

model doing better for strong or very strong collinearity. It is noteworthy that the 

Bayesian SVCP model is overall the worst performer for estimating the response. 

 
 
 
  c = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSE(y) RMSE(y) RMSE(y) RMSE(y)
GWR 0.870 0.875 0.875 0.872
GWRR - global 0.892 0.897 0.897 0.897
GWRR - local 0.871 0.879 0.884 0.908
GWL - global 0.868 0.869 0.863 0.831
GWL - local 0.785 0.813 0.886 1.064
SVCP 0.906 0.910 0.905 0.892
 

Table 6.9. RMSE of the response for each model used in simulation study 5 at four levels 
of explanatory variable correlation. 
 
 
 

The average RMSE for β  for each model is listed in Table 6.10. The lowest 

RMSE for each level of variable correlation (column) is in bold font. The results in the 

table show that the Bayesian SVCP model produces the lowest estimation error of the 

regression coefficients overall. The GWRR models perform the next best, with the 

GWRR-local scaling performing better than the global scaling version when there is 

strong or very strong collinearity. GWRR-global scaling produces the lowest average 

coefficient RMSE when there is no collinearity in the model, and the SVCP model 

produces the lowest average RMSE at all levels of collinearity. In fact, the SVCP model 
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is clearly the best when there is collinearity in the model, as the RMSE’s for this model 

are dramatically lower than with the other models when there is strong or very strong 

collinearity. An explanation for this is that not only can the Bayesian SVCP model 

coefficients be viewed as local ridge regression solutions, but the SVCP model also best 

captures the spatial structure of the regression coefficients through the prior covariance 

function. I refer to the SVCP coefficients as local ridge regression solutions because there 

is implicitly a matrix of shrinkage parameters in this model, in contrast to the one ridge 

parameter used in the implementation of GWRR introduced in this dissertation. These 

results suggest that one should use the Bayesian SVCP model when one is concerned 

with marginal inference on the regression coefficients in the presence of collinearity in 

the model.  

 
 
 
  c = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSE(β) RMSE(β) RMSE(β) RMSE(β)
GWR 0.487 0.653 0.994 3.047
GWRR - global 0.485 0.647 0.981 2.934
GWRR - local 0.489 0.656 0.974 2.307
GWL - global 0.490 0.656 0.989 2.817
GWL - local 0.929 1.083 1.340 3.065
SVCP 0.515 0.582 0.665 1.325
 
 
Table 6.10. RMSE of the regression coefficients for each model used in simulation study 
5 at four levels of explanatory variable correlation. 
 
 
 

Many times in traditional regression analyses, researchers only consider using 

penalization methods, such as ridge regression, when there are many more explanatory 

variables than two to include in the model. However, the results from this simulation 
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study show that one can improve on the GWR in terms of prediction and estimation of 

the response and estimation of the regression coefficients for even small models of two 

variables. The implication of this is that there appears to be no reason to continue to use 

GWR without penalization, as alternatives such as GWL and GWRR perform better in 

the same framework. I anticipate that the benefits of the penalization in GWR will only 

increase with an increasing number of potentially correlated explanatory variables. 

Simulation Study 6 

While simulation study 5 was a revealing comparison of the performance of the 

Bayesian SVCP model, GWR, and regularized versions of GWR, it used only two 

explanatory variables. Most regression problems with real data will involve more than 

two explanatory variables. For this reason, a simulation study similar to simulation study 

5 is presented here that has four explanatory variables, with one of the true coefficients 

used to generate the data set equal to nearly zero. The model for the data generation is 

now 

 

* * * *
1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y s s x s s x s s x s s x s sβ β β β ε= + + + +   (6.3) 

 

The true values used to generate the data are * (1, 5, 5, 0)β =μ , 2*τ = 1, and *T = diag(.1, 

.5, .5, .0000001), where diag() creates a diagonal matrix with the input numbers. The 

mean of 0 and the small variance for the fourth type of regression coefficient produce a 

variable effect that is effectively zero across the study area. This simulation study is run 

for * 10φ =  only, and uses 100 realizations of the coefficient process. In the interest of 
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time, the GWRR solutions use estimation scheme 1, so the errors associated with the 

solutions in this study are upper bounds on the possible GWRR solutions errors, where 

better solutions may be possible using estimation scheme 3. 

The prior specification for this simulation study is as follows. I use a vague 

normal, 4( , 10 )N 0 I , for βμ , a five-dimensional inverse Wishart, (5, .1 )IW ⋅I , for T , and 

an inverse gamma, (1, .01)IG , for 2τ , where I  is the identity matrix of dimension p . 

For the spatial dependence parameter φ , I use a gamma, (.021, .01)G . 

The average RMSPE for y  for each model is listed in Table 6.11. The lowest 

RMSPE for each level of variable correlation (column) is in bold font. The results in the 

table show that the GWL-local model produces the lowest prediction error of the 

response and is clearly the best in this category. This finding is consistent with the 

simulation study 5 results. The next best performer in terms of RMSPE of the response is 

the GWL-global model. The better performance of the two versions of GWL relative to 

the other versions of GWR is not unexpected, given that the GWL methods can shrink the 

regression coefficients to zero to match the true values for one of the variables. As in 

simulation study 5, GWR has the highest prediction error at each level of collinearity. 

These results again show that adding penalization terms for the regression coefficients in 

GWR results in lower prediction error of the response than with GWR. 
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  C = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSPE(y) RMSPE(y) RMSPE(y) RMSPE(y)
GWR 1.186 1.148 1.153 1.171
GWRR - global 1.185 1.147 1.151 1.160
GWRR - local 1.185 1.147 1.151 1.159
GWL - global 1.180 1.142 1.146 1.156
GWL - local 0.935 0.928 0.938 0.934
SVCP . . . . 
 
 
Table 6.11. RMSPE of the response for each model used in simulation study 6 at four 
levels of explanatory variable correlation. 
 
 
 

The average RMSE for y  for each model is listed in Table 6.12. The lowest 

RMSE for each level of variable correlation (column) is in bold font. The results in the 

table show that the GWL-local model produces the lowest estimation error of the 

response at all levels of collinearity. This is in contrast to simulation study 5, where the 

GWL-global model performed better than the GWL-local model for strong collinearity. 

Overall, the two simulation studies show that the GWL models perform better than the 

other models in explaining the response variable. Taken together, the results from Table 

6.11 and Table 6.12 indicate that the GWL-local model is the best for predicting and 

estimating the response variable in this simulation study. It is also noteworthy that the 

Bayesian SVCP model performs better than GWR in estimating the response at all levels 

of collinearity. This is a different result from simulation study 5, where GWR performed 

better than the Bayesian model. 
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  c = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSE(y) RMSE(y) RMSE(y) RMSE(y)
GWR 0.863 0.871 0.863 0.858
GWRR - global 0.875 0.882 0.877 0.877
GWRR - local 0.865 0.873 0.867 0.875
GWL - global 0.858 0.860 0.853 0.821
GWL - local 0.689 0.711 0.719 0.756
SVCP 0.853 0.852 0.852 0.855
 
 
Table 6.12. RMSE of the response for each model used in simulation study 6 at four 
levels of explanatory variable correlation. 
 
 
 

The average RMSE for β  for each model is listed in Table 6.13. The lowest 

RMSE for each level of variable correlation (column) is in bold font. The results in the 

table show that the Bayesian SVCP model produces the lowest estimation error of the 

regression coefficients overall. The SVCP model has the lowest RMSE when there is 

collinearity in the model, and the error for this model is noticeably lower than with the 

other models when there is strong collinearity. This finding is consistent with the results 

from simulation study 5. The GWL-global model performs the next best. This finding is 

in contrast to the finding in simulation study 5, where the GWRR models performed 

better than the GWL-global model. An explanation for this difference is that the GWL 

model can shrink the coefficients to zero for the variable with true coefficients set to zero 

to effectively remove its effect from the model, while the GWRR models cannot shrink 

these coefficients to zero as efficiently. The results in Table 6.13 suggest that one should 

use the Bayesian SVCP model when one is concerned with marginal inference on the 

regression coefficients in the presence of collinearity in the model. If analysts want to 

limit their modeling to the GWR framework, and they suspect there are insignificant 
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explanatory variables with no value in explaining the response variable, they should use 

the GWL-global model based on these findings. 

 
 
 
  c = 0.0 c = 0.5 c = 0.7 c = 0.9 

Method RMSE(β) RMSE(β) RMSE(β) RMSE(β)
GWR 0.538 0.601 0.756 1.745
GWRR - global 0.540 0.602 0.755 1.718
GWRR - local 0.539 0.604 0.763 1.597
GWL - global 0.534 0.597 0.754 1.596
GWL - local 1.487 1.625 1.754 2.794
SVCP 0.540 0.591 0.649 1.068
 
 
Table 6.13. RMSE of the regression coefficients for each model used in simulation study 
6 at four levels of explanatory variable correlation. 
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CHAPTER 7 

 

CONCLUSIONS 

 

There has been an increasing interest in spatially varying relationships between 

variables in recent years in both the statistics and geography literature. Recent attempts at 

modeling these relationships have resulted in geographically weighted regression (GWR) 

and Bayesian regression models with spatially varying coefficient processes (SVCP). 

While GWR models offer the potential of increased understanding of the nature of 

varying relationships between variables across space, collinearity in the weighted 

explanatory variables can produce dependence in the local regression coefficients that 

can distort and potentially invalidate conclusions about the relationships based on the 

estimated coefficients.  

This dissertation makes a contribution to the literature because it is the first work 

to both document the issue of collinearity in geographically weighted regression models 

using the diagnostic tools of scatter plots, correlation coefficients, variance inflation 

factors, and variance-decomposition proportions and also suggest a viable alternative 

while retaining the GWR framework. The analysis presented here shows that it is 

possible to use geographically weighted regression models with a ridge regression 

parameter (GWRR) to reduce the effect of local variable collinearity on the model while 
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producing more intuitively signed coefficients and surrendering only a modest amount of 

overall model fit. In addition, the GWRR model has lower prediction error through the 

stabilized variance of the parameters. The arguments presented here also show that it is 

possible to use the lasso in geographically weighted regression (GWL) to perform 

regression coefficient shrinkage, while simultaneously performing model selection. 

While these methods may not address all possible statistical artifacts in GWR, they are 

viable tools for spatial data analysts who wish to investigate spatially varying 

relationships between variables in a regression setting, and consider at the same time 

certain model complications arising from collinearity. There is natural appeal in 

explaining spatial variation in relationships through estimated regression coefficients, and 

the work presented here should contribute to making that a more reliable exercise. 

While the GWR and SVCP models have been applied to numerous real world 

datasets in the literature, there has been a conspicuous lack of attention to the validation 

of marginal inferences derived from these models. My work uses simulation study to 

evaluate the accuracy of the regression coefficients for both the Bayesian SVCP and 

GWR models, while considering the presence of collinearity. While a simulation study 

does not prove a general result, it does show a result for a particular situation, and that 

result may be generalized with additional simulation studies. 

Simulation study results in this dissertation show that the Bayesian regression 

model provides more accurate regression coefficient estimates than does GWR in both 

the absence and presence of explanatory variable collinearity and produces less correlated 

coefficients in the presence of moderate and strong positive variable correlation. It is not 

completely unexpected that the Bayesian SVCP model accommodates collinearity better 
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than GWR does, given that ridge regression coefficient estimates may be viewed as 

Bayesian regression coefficient estimates under specific vague priors, and ridge 

regression coefficients are constrained in size to counter increased estimator variance due 

to the presence of collinearity in the model. Moreover, the SVCP model better captures 

the spatial structure in the regression coefficients through the covariance matrix in the 

prior distribution for all the coefficients. The Bayesian regression model handles spatial 

dependence in the data through one statistical model, whereas GWR is essentially an 

ensemble of separate models using shared data. A benefit of using the Bayesian SVCP 

model is that it provides the posterior distribution for each parameter through the 

iteratively drawn samples, while the GWR model only gives a point estimate and 

corresponding standard error for each parameter. In summary, the Bayesian regression 

model offers the spatial analyst more flexibility in modeling spatially varying 

relationships, and produces more interpretable and accurate inferences than does GWR. 

There is additional complexity in implementing the Bayesian regression model compared 

to the GWR model; however, the simulation study results in this paper help to justify the 

benefits of the additional complexity of the Bayesian model.  

 Other simulation study results generated here show that the penalized versions of 

GWR introduced in this dissertation perform better than GWR in terms of response 

variable prediction and estimation and regression coefficient estimation, both when there 

is no collinearity and where there are various levels of collinearity in the model. The 

GWL-local model produces the lowest prediction error of the response variable among all 

the methods considered. The GWL-local and GWL-global methods produce the lowest 

average estimation error of the response variable. These methods also perform better than 
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the Bayesian SVCP model in response variable prediction and estimation. GWR also 

performs better than the SVCP in response variable estimation when all true regression 

coefficients used to simulate the data are non-zero, but not when there are true regression 

coefficients set to zero. One can explain the case when GWR is better because GWR is 

based on local linear regression methods that are good for prediction, but not model 

interpretation, whereas the Bayesian SVCP model specifically models the regression 

coefficient structure and is therefore better for interpretation of the coefficients. 

Considering the estimation of the regression coefficients, the SVCP model produces the 

lowest average estimation error overall, and is dramatically better than all the other 

methods when there is strong collinearity. The GWRR model is a distant second in terms 

of regression coefficient estimation error when there are no true coefficients set to zero; 

the GWL-global model is second best when there are true coefficients set to zero in 

generating the simulation data.  

The simulation study results of this research imply: 1) if researchers are interested 

in using a linear regression model with spatially varying coefficients for prediction of the 

response variable, then they should use GWL with local shrinkage parameters, 2) if 

researchers are interested in using a linear regression model with spatially varying 

coefficients for estimation of the response variable, then they should use GWL with 

either global or local shrinkage parameters, 3) if researchers are interested in using a 

linear regression model with spatially varying coefficients for marginal inference on the 

regression coefficients, then they should use the Bayesian SVCP model, and 4) if 

researchers are interested in using a linear regression model with spatially varying 

coefficients in the GWR framework for marginal inference on the regression coefficients, 
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then they should use the GWRR model with either local or global scaling of the 

explanatory variables when they expect all non-zero regression coefficients and use the 

GWL-global model when they expect some variables with no effect across the study area. 

In addition to attractive performance for regression coefficient estimation, another 

benefit of the Bayesian SVCP model is that it is possible to extend it to consider more 

complicated situations. For example, one can use a different spatial dependence 

parameter for each variable using the LMC, and one can also add varying temporal 

effects to the model. However, it is an open research question as to whether adding 

different spatial ranges for each variable has a positive effect on reducing estimated 

regression coefficient correlation. Also, it is unclear whether datasets of typical size can 

support estimation of numerous spatial dependence parameters. 

 While the results presented here for the GWR regularization methods are 

encouraging, more experimentation is needed to verify that they generalize for larger 

models and larger datasets. The GWRR model as presented here with one ridge 

parameter was adequate to substantially correct the collinearity present in the example 

dataset, but it may not be as corrective for large datasets. More research is possible to 

study the benefit of adding multiple ridge parameters. As many as one ridge parameter 

for each local model could be added, or a ridge parameter could be added for a group of 

observations, where the observation groups could be determined endogenously. Adding a 

ridge parameter for each local model would make the model more similar to the GWL-

local model. Clearly, formal statistical tests would be beneficial to determine the number 

of ridge parameters to include in the regression model. Generalized cross-validation and 

an Akaike information criterion could prove useful in estimating multiple ridge 
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parameters, as cross-validation could be computationally prohibitive for large datasets. 

Another area of required future research is the use of the bootstrap procedure to estimate 

the variances in the GWRR methods. 

One argument that has been used in the past against Bayesian models has been the 

difficulty in implementing them in practice. However, more general-purpose software for 

Bayesian inference is becoming available. At the forefront of the Bayesian software 

movement is WinBUGS (www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml), which 

uses Gibbs sampling and other simulation methods for inference in a wide variety of 

Bayesian models. GeoBUGS is available in WinBUGS and can be utilized for Bayesian 

spatial models commonly found in epidemiological studies and other spatial applications. 

There are also MCMC packages available for R. All of the packages mentioned are free 

and available on the Internet. Inconveniently, GeoBUGS cannot currently perform 

Bayesian inference on the jointly specified SVCP model used in this paper, but one can 

imagine that will be able to in the future, as it can currently handle the conditionally 

specified SVCP model. Regardless, I hope the exposition of the SVCP model provided in 

this dissertation makes the implementation of this type of Bayesian model more apparent. 
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