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ABSTRACT

A new technique is proposed in the context of Supersymmetric Discrete Light

Cone Quantization (SDLCQ). SDLCQ is a well-established numerical technique to

solve supersymmetric theories non-perturbatively. However, it is difficult to apply

SDLCQ to theories in the space-time dimensions higher than 1+1 dimensions. This is

mainly because in many cases the size of the basis grows exponentially as we increase

the number of transverse directions, making it exponentially difficult to solve the

theories numerically. Our technique is to circumvent this difficulty by combining the

conventional transverse lattice formulation with SDLCQ. Within our formalism, with

the help of the large Nc limit, where Nc is the number of color, we treat the transverse

degrees of freedom as new 1+1 dimensional field degrees of freedom. This then allows

us to regard a theory in (n+1)+1 dimensions as a theory in 1+1 dimensions with

many more fields and some non-trivial interactions among them, where n is some

positive integer. Utilizing this technique, we successfully find the mass spectrum of

low-lying energy states for N = 1 Super Yang-Mills theory both in 2+1 dimensions

and 3+1 dimensions. Solving supersymmetric theories with SDLCQ in higher than

2+1 dimensions is done for the first time. It is shown that we are free from the

species doubling problem in this formulation, even though we have a transverse lattice.

Remaining issues and future possible applications of this technique are also discussed.
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CHAPTER 1

INTRODUCTION

When one is asked to explain what supersymmetry(SUSY) is, there are many

ways to answer the question. The most popular one, however, is that it is a symmetry

between bosons and fermions. Bosons are particles with integer spin, in particular the

ones which mediate the forces in the world of elementary particles, while fermions are

particles of half integer spin, and they make up the matter in nature. Interestingly,

however, when Golfand and Likhtman discovered SUSY for the first time in their

paper [1], they were not looking for the symmetry between bosons and fermions.

Rather the question they addressed was what happens if we extend the Poincaré

algebra by including some spinorial operators. The Poincaré algebra gives the relation

among the generators of translations, rotations and Lorentz boosts. By spinorial

operators we mean the ones which anticommute with one another in contrast to

the ordinary ones, which commute with one another. It was a few years after their

remarkable observation that Wess and Zumino independently constructed the theory

of a self-interacting chiral supermultiplet in their seminal paper [2]. For more detail

of the early history of how SUSY was discovered and how its formulation has been

developed since then, we would like to refer the reader to [3] and the references therein.
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Supersymmetric theories1 have some nice features; for instance, many are not

renormalized [4, 5], which means that theories are finite and get no quantum correc-

tions if they are finite at tree level. This feature is the one that plays the cental role

when we try to resolve the gauge hierarchy problem with SUSY. The gauge hierarchy

problem is the problem that we apparently have a huge difference in fundamental

energy scale in nature. To put it in another way, it is the problem that in order for

the mass of Higgs, which is the scalar (spinless) particle and thought to be responsible

for the origin of the mass, to be stable against some quantum corrections, we would

have to fine-tune the bare mass parameter to compensate for the quantum corrections

to about one part of 1017, which seems unnatural. Supersymmetry by virtue of the

non-renormalization theorem solves the problem because we know that Higgs mass

be stable if it exists2. In other words, it is because the mass of Higgs is finite at tree

level, and therefore we get no quantum corrections and have no need to fine-tune the

bare mass parameter.

One more attractive feature that SUSY provides is the following. Suppose there is

a unified theory that treats three out of the four forces between elementary particles,

the electromagnetic force, weak force, and strong force on an equal footing. Then it

is well-known that the unification of the forces does not quite occur without SUSY,

whereas it does with SUSY [10]. This fact is probably the most suggestive indirect

evidence for the existence of SUSY. Unfortunately we do not yet have any direct

evidence for it.

1There is ample literature on SUSY. See for instance [6] and the references therein for a formal
introduction. [7, 8] is more related to phenomenology. For more recent review, see for instance [9].

2Higgs particle has not been observed yet, although Large Hadron Collider is eagerly awaited to
discover it once it starts collecting data in a couple of years.
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Just like many other new ideas, SUSY solved some problems, but also caused some

new problems. For instance we must explain how to break SUSY since obviously

nature does not respect SUSY (at least) up to some energy scale, say the energy

scale that we have been able to explore with the current experiment. There are many

ways proposed for breaking SUSY; gauge-mediated, gravity-mediated, and anomaly-

mediated SUSY breaking mechanisms to name a few. Also since the Standard Model

for the elementary particles without SUSY explains the experiment very well, we

must come up with some mechanism to suppress contributions from SUSY in flavor

changing neutral current (FCNC) processes to be consistent with the experiment,

which is non-trivial. For more discussions of the constraints from the FCNC processes

on supersymmetric theories, see for example [11] and the references therein.

All those issues associated with SUSY should be settled once the results from

Large Hadron Collider (LHC) are in hand. LHC is an enormous accelerator being

built between the Jura mountain range in France and Lake Geneva in Switzerland

and is going to be able to generate head-on collisions between particles with enough

energies to prove or disprove SUSY. As LHC is expected to start operating in 2007,

now is the most exciting time without any doubt to investigate SUSY in full detail.

Enough about the motive to investigate SUSY from the phenomenological point of

view. Now let us turn our attention to the reasons why it is of great interest to study

supersymmetric theories from the pure theoretical point of view. With regard to this,

perhaps one of the greatest discoveries in particle physics in the past decade would be

that there appear to be the equivalence between some class of string theories and some

class of supersymmetric field theories in the large Nc limit, where Nc is the number of

color. This is called AdS/CFT correspondence in literature [12]. For direct numerical
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evidence for the AdS/CFT correspondence, see [13]. This correspondence is intriguing

because it connects apparently different two fields of study in physics; string theory

and field theory. It is well known that string theories have had little to do with any

practical application due to the energy scale that they are embedded in, the Planck

scale3. However, thanks to the correspondence, now it could be made possible to

draw some experimentally testable physical conclusions from the string theory side.

Also, understanding supersymmetric theories could help understand string theories as

well. This is welcome since the string theory has become one of the most promising

candidates for the fundamental theory in nature, with which all the four different

interactions among the elementary particles can be unified in a consistent way.

Furthermore, it has been conjectured recently by Armoni, Shifman and Veneziano

that in the large Nc limit a non-supersymmetric gauge theory with a Dirac fermion

in the antisymmetric tensor representation is equivalent, both perturbatively and

nonperturbatively, to N=1 super Yang-Mills (SYM) theory in its bosonic sector [14,

15], where N stands for the number of SUSYs in theory. Notice here that for Nc = 3

the non-supersymmetric gauge theory with a Dirac fermion is just one-flavor QCD.

Therefore, even though we have to keep in mind 1/Nc corrections, investigating N=1

SYM can be made contact with phenomenology once the conjecture is proven right.

The technique we use to investigate supersymmetric theories throughout in this

thesis is called Supersymmetric Discrete Light Cone Quantization (SDLCQ) [16, 17].

A brief review of SDLCQ is given in the following chapter. SDLCQ is a well-

established, powerful technique and has been used exclusively to solve SYM in 1+1

dimensions [17] and in 2+1 dimensions [18, 19, 20]. What is remarkable about SDLCQ

3The Planck scale MP ' 1019 GeV is of about 1017 orders of magnitude bigger than the energy
scale the current experiment can attain.
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is that it allows one to numerically explore the nonperturbative regime of supersym-

metric theories. When it comes to solving theories non-perturbatively, one would

probably first think of lattice calculations. Unfortunately, however, there are some

well-known obstacles that one has to overcome when trying to put SUSY on a lattice;

the lack of translational invariance on a lattice; the notorious doubling of fermion

states [21]; and the breakdown of the Leibniz rule [22]. Because of them, the progress

in putting supersymmetry on a lattice has been rather slow. This fact alone makes

the SDLCQ technique even more valuable since SDLCQ does not suffer from these

obstacles. Recently, however, some interesting new approaches have shed some light

on this issue [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]4. These approaches make

possible the restoration of supersymmetry in a continuum limit without fine-tuning

of parameters and even without introducing some “sophisticated” fermions such as

domain-wall [36] or overlap fermions [37, 38]. However, these techniques seem to be

applicable to only some subset of all supersymmetric theories.

Therefore, it is interesting to present some results using SDLCQ that can be

compared with lattice calculations that make use of these new lattice techniques.

This is done in chapter 3 for N=(2,2) SYM in 1+1 dimensions. The chapter 3 also

gives the reader a taste of what we can compute with SDLCQ, which include, but not

exhaustively, the calculation of mass spectrum, and two-point correlation function

of the stress energy tensor. In particular, we will see that the mass gap closes for

the theory as expected by Witten [39], and that there appear to be two different

representations in SDLCQ, which coincide in the continuum limit.

4These references are only for SYM formulation on a lattice. For other recent progress in an
effort to realize (non-gauged) SUSY on a lattice, see for example Ref. [34, 35].
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What makes this thesis unique is the development of a technique to apply SDLCQ

to theories in higher than 1+1 dimensions in the large Nc limit. Without this newly

developed technique, one had to introduce one numerical parameter for the case of

2+1 dimensions, two for 3+1 dimensions and n for (n+1)+1 dimensions in addition

to the one called K also known as “harmonic resolution” [40]. Then the continuum,

desired results are obtained by extrapolating the limit of all the parameters going to

infinity. However, there is a strong limitation inherent in the conventional approach

because the number of states increases exponentially in each of these parameters5,

making it difficult to get any sensible extrapolations. The breakthrough, however,

comes when we treat the transverse components as new field degrees of freedom and

thus regard a theory in (n + 1) + 1 dimensions as a theory in 1+1 dimensions with

many fields and some non-trivial interactions. Therefore, we have no need introducing

additional parameters besides the harmonic resolution K. This idea was motivated

by the notion dubbed “(de)construction” [42], and has been realized by combining

the conventional transverse lattice formulation [43, 44, 45] with SDLCQ and making

most use of the large Nc limit. The full detail of the technique is given in chapter 4

and 6 for the case of 2+1 dimensional SYM and 3+1 dimensional SYM, respectively.

In chapter 4, we will first derive some physical constraints for states to satisfy,

which along with partially conserved SUSY will be shown to be enough to resolve,

at least for the massive states, the problem associated with the “linearization” of

unitary link variables. We will also calculate the mass spectrum of low energy states

with different winding numbers. The winding number tells us how many times the

5For 1+1 dimensional cases, it turns out that the number of states grows as (1 + l)K , where l is
the number of types of particles [41].
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color flux of a bound state winds around in the transverse direction. The discussion

of the apparent similarity of our model and the model in [24] is also given.

Chapter 5 is devoted to dealing with a subtle issue of the species doubling associ-

ated with the new technique and we will show that there is no species doubling with

our formulation.

The last chapter consists of the generalization of our technique presented in chap-

ter 4 to 3+1 dimensional SYM. It is worthwhile to note that this is the first attempt

in literature to solve supersymmetric theories with SDLCQ in higher than 2+1 di-

mensions. We will find some similarities between 2+1 dimensional case and 3+1

dimensional case as well as some differences. For instance, as in 2+1 dimensions,

we partially preserve SUSY. What is different in 3+1 dimensions is that the mass

spectrum shows much richer behavior with varying the coupling; in fact we see bound

states go through some sort of “transition” as we vary the coupling. We will give a

toy model to explain the underlying reason for the behavior. The relation between

the mass spectrum and winding number is investigated and it appears that the rela-

tion can be better explained by considering the bound state as a string constrained

in the transverse direction. We end the chapter with discussions of future directions

of research regarding this new technique.
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CHAPTER 2

BRIEF REVIEW OF SDLCQ

2.1 SDLCQ = SUSY + DLCQ

In this chapter, we give a brief review of Supersymmetric Discrete Light Cone

Quantization (SDLCQ). For simplicity we constrain ourselves to 1+1 dimensions.

However, the generalization to arbitrary dimensions is straightforward. We write

P µ = (E, p) and Xµ = (t, x), where E, p, t, and x are the energy, momentum, usual

time coordinate, and space coordinate of a particle in consideration, respectively,

SDLCQ is very similar to the well-known technique called Discrete Light Cone

Quantization (DLCQ) first introduced by Pauli and Brodsky in 1985 [40]. As we will

see in some detail in the following section, DLCQ (and SDLCQ) is a technique to solve

the eigenvalue equation P 2|Ψ〉 = m2|Ψ〉 in quantum field theory. Here P 2 = E2 − p2

with m being the invariant mass of the particle, and |Ψ〉 is the state vector describing

the particle. The only difference between SDLCQ and DLCQ lies in the fact that,

when we try to solve the equation, we express P 2 in terms of the supercharges Q in

SDLCQ, while we do not in DLCQ. The relation between P and Q is given by the

super-algebra, which will be discussed in some detail later. Thus, roughly speaking,

one can say that SDLCQ is a supersymmetric version of DLCQ, or

SDLCQ = SUSY + DLCQ.
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2.2 What is DLCQ?

Here let us discuss DLCQ in some detail. For a complete review of DLCQ, we

would like the reader to refer to [46]. As we mentioned above, DLCQ is a technique

to solve the eigenvalue problem P 2|Ψ〉 = m2|Ψ〉 in quantum field theory. To this end,

we need

• Discrete =⇒ Discretization of momentum;

• Light Cone =⇒ Working in the light cone coordinates; and

• Quantization =⇒ Quantization of fields.

In the following let us take a closer look at each component of DLCQ.

2.2.1 Discretization of momentum

The way to discretize momentum is to impose a periodic or antiperiodic boundary

condition on the wave function, so that

Ψ(x) = ±Ψ(x + 2L), (2.1)

where the plus (minus) is for the periodic (antiperiodic) condition, x stands for the

spatial coordinate, and 2L is the period. For definiteness let us employ the periodic

condition here. Then, Eq. (2.1) means that the particle described by Ψ(x) has the

momentum

p =
π

L
n,

where n = 0, 1, 2, . . .. Note here that n is non-negative, which is true only because we

work in the light cone coordinates as we will see below.
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2.2.2 Light Cone coordinates

The light cone coordinates are defined in 1+1 dimensions as

x± ≡ t± x√
2

,

where x and t are the usual space and time coordinates, respectively. Similarly we

define the light cone momentum and energy as

p± ≡ E ± p√
2

. (2.2)

By convention x+ is to describe the light cone “time”, while x− the light cone “space”.

This convention then implies that p+ is the light cone “momentum” and p− the light

cone “energy” due to the identity

P ·X ≡ P µXµ = Et− px = p−x+ + p+x−, (2.3)

and the prevalent conception that when we dot P µ into Xµ, energy is multiplied by

time coordinate and momentum by space coordinate. It is a straightforward exercise

to find the metric in the light cone coordinates

gµν =

(
0 1
1 0

)
,

which is consistent with Eq. (2.3). With this metric we get

m2 ≡ P 2 = p+p− + p−p+ = 2p+p−.

Also, one should notice that since E ≥ |p|, we have p± ≥ 0 by construction

Eq. (2.2) as we noted in the previous section.
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2.2.3 Quantization of fields

There is nothing drastically different in the light cone coordinates as far as the

field quantization process is concerned. As usual, we upgrade fields to operators by

imposing commutation/anticommutation relation; for bosonic fields A(x) at x+ = 0

[Â(x+ = 0, x−), Π̂A(y+ = 0, y−)] =
i

2
δ(x− − y−), (2.4)

where the hat on top of fields is to remind us that we are now treating fields as

operators, and Π̂A is the conjugate momentum of Â. Similarly for fermionic fields

ψ̂(x) at x+ = 0, we have

{ψ̂(x+ = 0, x−), Π̂ψ(y+ = 0, y−)} =
i

2
δ(x− − y−). (2.5)

In order for us to proceed further to write A and ψ in terms of creation and

annihilation operators â, â†, b̂, b̂†, we need to know what the conjugate momenta

are. For instance consider the theory in Ref. [16], where we have SYM dimensionally

reduced from 2+1 to 1+1 dimensions. In this case we have6 Π̂A = ∂−Â and Π̂ψ = iψ̂.,

so that Eqs. (2.4,2.5) become

[Â(x−), ∂−Â(y−)] = {ψ̂(x−), iψ̂(y−)} =
i

2
δ(x− − y−). (2.6)

The mode expansion of Â and ψ̂ is then given, respectively, by

Â(x+ = 0, x−) =
1√
2π

∫ ∞

0

dk+

√
2k+

[â(k+)e−ik+x− + â†(k+)eik+x− ], (2.7)

ψ̂(x+ = 0, x−) =
1

2
√

π

∫ ∞

0

dk+[b̂(k+)e−ik+x− + b̂†(k+)eik+x− ] (2.8)

with

[â(k+), â†(p+)] = {b̂(k+), b̂†(p+)} = δ(k+ − p+). (2.9)

6Here and hereafter we have omitted the color indices from the fields for the sake of simplicity
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Note that the momentum k+ runs from 0 to infinity in the momentum integral above

and because of that we have somewhat different coefficients in front of the mode

expansion Eqs. (2.7,2.8) than usual. One can verify that Eqs. (2.7,2.8) with the help

of (2.9) satisfy (2.6).

As far as the gauge fixing is concerned, it is customary to choose the light cone

gauge where A+ = A− = 0.

2.2.4 Solving the eigenvalue problem

Now we are in a position to solve the eigenvalue problem

P 2|Ψ〉 = m2|Ψ〉 = 2p+p−|Ψ〉. (2.10)

We take Fock states as the basis states, so that all the states are obtained by act-

ing on the vacuum |0〉 with the creation operators a† and b†. Remember that each

operator carries some unit of momentum π/L. Then it is almost evident that any

Fock state is an eigenstate of the total momentum operator p+. For instance a state

a†(π/L)b†(π/L)|0〉 is an eigenstate of p+ with the eigenvalue of 2π/L. Thus, by con-

struction, p+ is diagonal in this basis, and the problem of finding the eigenvalues of

m2 = 2p+p− reduces to that of finding the eigenvalues of p− alone.

One more great feature in this formalism comes from the fact that the light cone

momentum is positive definite, that is, p+ ≥ 0. Suppose we wish to look for states

with a fixed momentum, say p+ = Kπ/L, where K is some positive integer. Then it is

not difficult to convince oneself that the number of possible states with the momentum

p+ = Kπ/L obtained by acting on the vacuum with the creation operators, each of

which carries some positive momentum, is finite. Therefore, when one writes the light
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cone energy operator p− in the matrix form, the matrix becomes finite, and thus can

be diagonalized in the usual way to find its eigenvalues.

2.3 What is super-algebra?

The super-algebra is an extension of the Poincaré algebra. The Poincaré algebra

gives the relation among the generators of the translations, rotations and Lorentz

boosts. We extend the Poincaré algebra by including some anticommuting generators

which we call supercharges Q. Since the energy-momentum is the generator of the

space-time translation, one would expect that the extended algebra would give rise

to some relations between the energy-momentum and supercharges. In fact, we have

such relations, that for N = 1 SUSY in 1+1 dimensional light cone coordinates turn

out to be

{Q±, Q±} = 2
√

2p±, {Q+, Q−} = 0.

See Appendix A for more detail of how to derive the relation. In particular, we have

(Q+)2 =
√

2p+, (Q−)2 =
√

2p−.

Thus, plugging p+ = Kπ/L and p− = (Q−)2/
√

2 into the eigenvalue equation

Eq. (2.10), we find

m2|Ψ〉 = 2p+p−|Ψ〉 =

√
2πK

L
(Q−)2|Ψ〉.

Hence, now instead of finding the eigenvalues of p−, we are to find the eigenvalues of

(Q−)2. This way of solving the eigenvalue problem is what we call Supersymmetric

Discrete Light Cone Quantization (SDLCQ).
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2.4 What can we do with SDLCQ?

One can calculate many physical quantities with SDLCQ. Most obvious one is

the mass spectrum, which is nothing but the solution of the eigenvalue problem

Eq. (2.10). Also, since we solve the theory completely by finding the wavefunctions,

we can compute the structure function[20], parton number distribution[47], two point

correlation function[19, 48, 49], some thermodynamic functions[50] and so forth. The

structure function is the probability of finding a parton with specific momentum in

a bound state of partons. The probability of finding a specific number of partons

in a bound state is called the parton number distribution. By some thermodynamic

functions, we mean for example the free energy, internal energy, and specific heat.

Thus, the applications of this technique has been proved extremely fruitful. We will

give the results of applying SDLCQ to N = (2, 2) SYM in 1+1 dimensions in the

following chapter so as to demonstrate the power of SDLCQ.

2.5 Summary

We reviewed briefly the formulation of SDLCQ in this chapter. SDLCQ is the

same as the well-established technique called DLCQ except for the fact that we ex-

press the light cone energy p− in terms of the supercharges Q in SDLCQ to solve

the eigenvalue problem Eq. (2.10). We imposed the (anti-)periodic condition in the

x− direction to have discrete momentum p+. The field quantization was done by

upgrading fields to operators in the usual manner. The advantage of working in the

light cone is that the momentum is positive definite and, therefore, the Fock space

spanned by Fock states with a fixed momentum becomes finite. This then reduces

the infinite dimensional eigenvalue problem to a finite dimensional one. Therefore in
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DLCQ (SDLCQ) formalism solving the Eq. (2.10) is to diagonalize the finite matrix

P−((Q−)2).
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CHAPTER 3

APPLICATION OF SDLCQ TO N = (2, 2) SYM

3.1 Introduction

After briefly reviewing the formulation of SDLCQ, we are going to give some

detailed results of the application of SDLCQ in this chapter. The theory we consider

is the N = (2, 2) Super Yang-Mills (SYM) theory in 1+1 dimensions in the large-Nc

limit, which is discussed in Ref. [51]. However, the published results are primitive

compared to what can be obtained today because of our greatly improved hardware

and software. In this chapter we are able to reach a resolution of K = 12, while in

Ref. [51] we could reach only K = 5. Here we will present new and more detailed

results on this theory against which the lattice community can compare the results

of their new techniques [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. The results given

here have been published in Ref.[52].

An interesting new result of the calculation we present here is that finite dimen-

sional representations of the SDLCQ with odd and even values of K result in very

distinct solutions of the N = (2, 2) SYM theory, which only become identical as K ap-

proaches infinity. One might initially think that this is a shortcoming of the SDLCQ

approach, but it turns out to be an advantage because it provides an internal measure

of convergence.
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We will give some numerical results of the low-energy spectrum. There we will see

that as we go to higher and higher resolutions, we find bound states with lower and

lower mass. We have seen this behavior in the N = (1, 1) theory where the lowest

mass state converges linearly to zero as a function of 1/K. This closing of the mass

gap as K → ∞ was predicted by Witten [39] for the N = (1, 1) and N = (2, 2)

theories. We find that in the latter case the convergence is not linear in 1
K

, and, while

our results are consistent with the mass gap going to zero, they are not conclusive.

We have also been able to solve analytically for the wave functions of some of

the pure bosonic massless states, and we will present the exact form of the wave

function for some cases. We will show that the states must have certain properties

to be massless, which then enable us to count the number of the states for a given

resolution K. In addition, we will present the formulae to count a minimum total

number of massless states.

Finally, we will look at the two-point correlation function of the stress-energy ten-

sor 〈T++(r)T++(0)〉. We see the expected 1/r4-behavior in the UV and IR regions,

and, interestingly, we find that the correlator behaves as 1/r4.75 in the intermedi-

ate region. We know of no predictions for this behavior; however, for N = (8, 8)

SYM theory there is a prediction that this correlator should behave like 1/r5 in the

intermediate region.

The structure of this chapter is the following. In Sec. 3.2 we focus our attention

on the low-energy states. After giving a quick review of N = (2, 2) SYM theory with

SDLCQ, we give some numerical results for the low-energy states, discuss analytically

some properties of pure bosonic massless states, and present the formulae to count a

minimum total number of massless states. We discuss the numerical results for the
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two-point correlation function of the stress-energy tensor in Sec. 3.3. A summary and

some additional discussion are given in Sec. 3.4.

3.2 Review of N=(2,2) SYM theory

3.2.1 N=(2,2) SYM theory and SDLCQ

Before giving the numerical results, let us quickly review some analytical work on

N=(2,2) SYM theory for the sake of completeness. For more details see Ref. [51]. This

theory is obtained by dimensionally reducing N=1 SYM theory from four dimensions

to two dimensions. In light cone gauge, where A− = 0, we find for the action

SLC
1+1 =

∫
dx+dx−tr

[
∂+XI∂−XI + iθT

R∂+θR + iθT
L∂−θL (3.1)

+
1

2
(∂−A+)2 + gA+J+ +

√
2gθT

Lε2βI [XI , θR] +
g2

4
[XI , XJ ]2

]
,

where x± are the light-cone coordinates in two dimensions, the trace is taken over the

color indices, XI with I = 1, 2 are the scalar fields and the remnants of the transverse

components of the four-dimensional gauge field Aµ, two-component spinor fields θR

and θL are remnants of the right-moving and left-moving projections of the four-

component spinor in the four-dimensional theory, and g is the coupling constant. We

also define the current J+ = i[XI , ∂−XI ]+2θT
RθR, and use the Pauli matrices β1 ≡ σ1,

β2 ≡ σ3, and ε2 ≡ −iσ2.

After eliminating all the non-dynamical fields using the equations of motion, we

find for Pα =
∫

dx−T+α

P+ =

∫
dx−tr(∂−XI∂−XI + iθT

R∂−θR), (3.2)
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and

P− = g2

∫
dx−tr

(
−1

2
J+ 1

∂2−
J+ − 1

4
[XI , XJ ]2 +

i

2
(ε2βI [XI , θR])T 1

∂−
ε2βJ [XJ , θR]

)
.

(3.3)

The supercharges are found by dimensionally reducing the supercurrent in the four-

dimensional theory. They are

Q+
α = 25/4

∫
dx−tr(∂−XIβIαηuη), (3.4)

Q−
α = g

∫
dx−tr

(
−23/4J+ 1

∂−
ε2αηuη + 2−1/4i[XI , XJ ](βIβJε2)αηuη

)
, (3.5)

where α, η = 1, 2 and uα are the components of θR.

We expand the dynamical fields XI and uα in Fourier modes as

XIpq(x
−) =

1√
2π

∫ ∞

0

dk+

√
2k+

[AIpq(k
+)e−ik+x− + A†

Iqp(k
+)eik+x− ], (3.6)

uαpq(x
−) =

1√
2π

∫ ∞

0

dk+

√
2

[Bαpq(k
+)e−ik+x− + B†

αqp(k
+)eik+x− ], (3.7)

where p, q = 1, 2, . . . , Nc stand for the color indices, and A,B satisfy the usual com-

mutation relations

[AIpq(k
+), A†

Jrs(k
′+)] = δIJδprδqsδ(k

+ − k
′+), (3.8)

{Bαpq(k
+), B†

βrs(k
′+)} = δαβδprδqsδ(k

+ − k
′+). (3.9)

We work in a compactified x− direction of length 2L and ignore zero modes. With

periodic boundary conditions we restrict to a discrete set of momenta [16]

k+ =
π

L
k, k = 1, 2, 3, . . . ,

∫
dk+ → π

L

∞∑

k=1

, δ(k+ − k′+) → L

π
δkk′ (3.10)

Relabeling the operator modes
√

L
π
a(k) = A(k+ = πk

L
) and

√
L
π
b(k) = B(k+ = πk

L
),

so that

[aIpq(k), a†Jrs(k
′)] = δIJδprδqsδkk′ , {bαpq(k), b†βrs(k

′)} = δαβδprδqsδkk′ . (3.11)
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the expansion is

XIpq(x
−) =

1√
2π

∞∑

k=1

1√
2k

[aIpq(k)e−i π
L

kx− + a†Iqp(k
+)ei π

L
kx− ], (3.12)

uαpq(x
−) =

1√
2L

∞∑

k=1

1√
2
[bαpq(k)e−i π

L
kx + b†αqp(k)ei π

L
kx− ]. (3.13)

In terms of a and b, the supercharges are given by

Q+
α = 21/4i

√
π

L

∞∑

k=1

√
kβIαη[a

†
Iij(k)bηij(k)− b†ηij(k)aIij(k)], (3.14)

and

Q−
α =

i2−1/4g

π

√
L

π

∞∑

k1,k2,k3=1

δ(k1+k2),k3

{
(ε2)αη (3.15)

×
[

1

2
√

k1k2

(
k2 − k1

k3

)
[b†ηij(k3)aIim(k1)aImj(k2)− a†Iim(k1)a

†
Imj(k2)bηij(k3)]

+
1

2
√

k1k3

(
k1 + k3

k2

)
[a†Iim(k1)b

†
ηmj(k2)aIij(k3)− a†Iij(k3)aIim(k1)bηmj(k2)]

+
1

2
√

k2k3

(
k2 + k3

k1

)
[a†Iij(k3)bηim(k1)aImj(k2)− b†ηim(k1)a

†
Imj(k2)aIij(k3)]

− 1

k1

[b†ηij(k3)bηim(k1)bηmj(k2) + b†ηim(k1)b
†
ηmj(k2)bηij(k3)]

− 1

k2

[b†ηij(k3)bηim(k1)bηmj(k2) + b†ηim(k1)b
†
ηmj(k2)bηij(k3)]

+
1

k3

[b†ηij(k3)bηim(k1)bηmj(k2) + b†ηim(k1)b
†
ηmj(k2)bηij(k3)]

]

+2(ε2)IJ

(
1

4
√

k1k2

[b†αij(k3)aIim(k1)aJmj(k2) + a†Jim(k1)a
†
Imj(k2)bαij(k3)]

+
1

4
√

k2k3

[a†Jij(k3)bαim(k1)aImj(k2) + b†αim(k1)a
†
Jmj(k2)aIij(k3)]

+
1

4
√

k3k1

[a†Iij(k3)aJim(k1)bαmj(k2) + a†Iim(k1)b
†
αmj(k2)aJij(k3)]

)}
.

using the relation ([βI , βJ ]ε2)αη = δαη(ε2)IJ .

They satisfy the superalgebra conditions for anticommutators involving Q+
α ,

{Q+
α , Q+

β } = δαβ2
√

2P+, {Q+
α , Q−

β } = 0. (3.16)
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but do not satisfy the condition {Q−
α , Q−

β } = δαβ2
√

2P−. Instead, in SDLCQ we find

{Q−
α , Q−

β } 6= 0 if α 6= β, (Q−
1 )2 =

√
2P−

1 6=
√

2P−
2 = (Q−

2 )2. (3.17)

Although we have different P−
α for different Q−

α , we can define a unitary, self-adjoint

transformation C, such that

Ca1ijC = a2ij, Cb1ijC = −b2ij. (3.18)

and find that CP−
1 C = P−

2 . Thus the eigenvalues of P−
α are the same. We may choose

either one of the two Q−
α ’s, at least for our purposes, and in what follows we will use

Q−
1 and will suppress the subscript unless it is needed for clarity.

The momentum, P+, is given by

P+ =
1√
2
(Q+

1 )2 =
π

L

∑

k

k
(
a†IijaIij + b†νijbνij

)
(3.19)

We work with a fixed value of momentum

P+ =
π

L
K, K = 1, 2, . . . (3.20)

We call K the resolution because larger values of K allow larger values of L while

leaving the momentum P+ fixed.

The next thing to note is that there are three Z2 symmetries of Q−
1 . The first one

is R1-symmetry, where Rα acts as follows

a1ij ↔ a2ij, bα → −bα (3.21)

The second is S-symmetry

aIij → −aIji, bαij → −bαji. (3.22)
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The third is what we call T -symmetry

aIij → −aIij, bα unchanged. (3.23)

It is easy to see that under these symmetries Q−
1 is invariant.

Using the relations,

R1Q
+
1 R1 = −Q+

2 , TQ+
αT = −Q+

α ,

we find

R1(Q
+
1 ±Q+

2 )R1 = ∓(Q+
1 ±Q+

2 ), T (Q+
1 ±Q+

2 )T = −(Q+
1 ±Q+

2 ). (3.24)

Also note that

{Q+
1 ±Q+

2 , Q+
1 ±Q+

2 } = {Q+
1 , Q+

1 }+ {Q+
2 , Q+

2 }+±2{Q+
1 , Q+

2 } = 4
√

2P+. (3.25)

We work in a subspace of definite momentum so (Q+
1 ± Q+

2 ) must have non zero

eigenvectors. Since Q+
α and Q−

α are fermionic operators we see that a bosonic energy

eigenstate |ΨB〉++ which is even under R and T -symmetry, can be transformed into

|ΨB〉∓− = Q−
1 (Q+

1 ±Q+
2 )|ΨB〉++, |ΨB〉−+ = (Q+

1 + Q+
2 )(Q+

1 −Q+
2 )|Ψ〉++ (3.26)

which are all degenerate with |ΨB〉++. One should notice here that we cannot use

Q−
1 and Q−

2 at the same time since they do not commute with each other. Thus,

including the supersymmetry, we have an 8-fold degeneracy. Utilizing the remain-

ing S-symmetry, which does not give us a mass degeneracy, we can divide the mass

spectrum into 16 independent sectors. This significantly reduces the size of the com-

putational problem. It will be convenient to refer to bound states of this theory as

having S, T , or R even or odd parity and to refer to a state as having even or odd

resolutions if K is an even or odd integer.
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K=3 4 5 6 7 8 9 10 11 12
1.308 4.009 0.0067 2.144 0.0040 1.415 0.0026 1.040 0.0018 0.8188
12.62 12.24 0.6304 2.514 0.0060 1.5999 0.0038 1.138 0.0026 0.8790
22.06 15.04 1.0813 2.645 0.4366 1.712 0.0048 1.212 0.0026 0.9312

15.28 1.1099 2.773 0.6016 1.729 0.3515 1.256 0.0039 0.9397
22.53 1.5732 2.807 0.6308 1.811 0.4372 1.347 0.3062 1.0072

Table 3.1: The mass squared M2 of the first few lowest massive states in the S-even
sector in units of g2Nc/π for a series of resolutions K.

3.2.2 Mass gap

Tables 3.1 and 3.2 show the first few low-mass states. We find anomalously light

states in the sectors with opposite K and S parity for K larger than 4. Furthermore,

the number of extremely light states increases by one as we increase K by two.

We believe that these anomalously light states should be exactly massless states,

but for some reason there is an impediment preventing SDLCQ from achieving this

result. Some of the evidence for this comes from a study of the average number of

partons 〈n〉 in the bound states. For example, in the sector with S and K even,

for each even integer r less than K, there is exactly one bosonic massless state with

〈n〉 = r. For K odd we do not see massless states of this type, but we do find 〈n〉 = r

for the anomalously light bound states in this sector. This is also the first sign

of the distinction between representations of the supersymmetry algebra in different

symmetry sectors, namely those with anomalously light states (with opposite S and K

parity) and those without anomalously light states (with matching S and K parity).

In our discussion of the mass gap we will not include the anomalously light states

as part of the massive spectrum for the reason given above. To study the mass gap
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K=4 5 6 7 8 9 10 11 12
1.2009 3.1876 0.00674 1.8427 0.00440 1.2687 0.00302 0.95786 0.00217
1.2009 3.1887 0.6402 1.9305 0.00538 1.3266 0.00317 0.99795 0.00218
12.296 3.3239 0.6747 2.0413 0.45529 1.4087 0.00431 1.0302 0.00219
12.296 11.489 0.9900 2.1415 0.48010 1.5107 0.36858 1.1036 0.00356
19.502 11.492 1.0313 2.3603 0.55873 1.5219 0.38647 1.1345 0.32053

Table 3.2: Same as Table 1 but for the S-odd sector.

we will look at the lowest massive state in each sector as a function of 1/K as shown

in Fig. 3.1. There we also show polynomial fits in all four sectors separately. The
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Figure 3.1: Plots of the mass squared in units of g2Nc/π for the lowest massive
states, excluding the anomalously light states, with a polynomial fit constrained to
go through the origin. The plot in (a) corresponds to the sector where S and K have
the same parity, and the plot in (b) to the sector where S and K have opposite parity.

fits are constrained to go through the origin. The quadratic fits look very good in

Fig. 3.1(a). but Fig. 3.1(b) required a cubic. The two fits with opposite S and K

parity look very similar as do the two fits with same S and K parity. In each case we

could have fit all the points with one curve if we were to include a small oscillatory
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function in the fit. We should note here that oscillatory behavior has been observed

before in different theories [53, 54]. The explanation given there is that those states

which show the oscillatory behavior comprise non-interacting two-body states. This,

however, does not seem applicable in our case since the states in Fig. 3.1 are the

lowest energy states; thus there are no lower energy states available to form two-body

states.

The distinct character of the mass gap serves as another piece of evidence that

we have two different classes of representations. The data is consistent with the mass

gap closing to 0 as K → ∞, especially for the case where S and K have the same

parity. The odd and even representations approach each other as K increases and

we hypothesize that they become identical in the continuum limit of K →∞. When

we present the correlation function in Sec. 3.3, we will see further evidence for this

claim.

3.2.3 Massless states

Pure bosonic massless states

Let us investigate the properties of pure bosonic massless states in full detail in

the Nc →∞ limit. This is done by generalizing the discussion of the bound states in

SDLCQ for N=(1,1) SYM theory, as given in Refs. [17, 55], to N=(2,2) SYM theory.

For simplicity, let us consider the states consisting of a fixed n number of partons

only. A pure bosonic massless state is given by

|Ψ, 0〉 = N
∑

q1,...,qn

∑
A

δ(q1+...+qn),K f̄
(0)
[A1...An](q1 . . . qn)tr[a†A1

(q1) . . . a†An
(qn)]|0〉,

where N is the normalization factor, qi = 1, 2, . . . is the unit of the light-cone momen-

tum pi = qiπ/L carried by the i-th parton, Ai = 1, 2 indicates the flavor index for each
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parton, the sum
∑

A is the summation over all possible permutations of the flavor

indices Ai’s, f̄ is the wave function, and the trace is taken over the color indices. Note

that we don’t have the symmetry factor coming from the cyclic property of the trace

in the above notation; one has to put in the symmetry factor by hand if one would

like it to be in there as we will do so for an example given later in this subsection. In

other words, Fock states with non-zero symmetry factor are not normalized.

Due to the cyclic property of the trace, we have

f̄[A1...An](q1, . . . , qn) = f̄[A2...AnA1](q2, . . . , qn, q1) = . . . = f̄[AnA1...An−1](qn, . . . , qn−1).

Since P− = (Q−)2/
√

2, all the massless states should vanish upon the action of

Q−. Thus, we must have Q−|Ψ, 0〉 = 0. This identity, however, can be simplified

somewhat for pure bosonic massless states. That is, the terms to consider in Q− are

those which annihilate one boson and create one boson and one fermion, and those

which annihilate two bosons and create one fermion. Both the former and latter class

of terms in Q− separately annihilates |Ψ, 0〉. In the large-Nc limit the former class

gives, writing f(q1, . . . , qn) ≡ √
q1 . . . qnf̄(q1, . . . , qn),

0 = (ε2)αβ

{ 2qn−1 + t

(qn−1 + t)t
f

(0)
[A1...An](q1, . . . , qn−1 + t, qn)

− 2qn + t

(qn + t)t
f

(0)
[A1...An](q1, . . . , qn−1, qn + t)

}

+
Mαβ

IAn

2(qn + t)
f

(0)
[A1...An−1,I](q1, . . . , , qn−1, qn + t)

− Mαβ
IAn−1

2(qn−1 + t)
f

(0)
[A1...An−2,I,An](q1, . . . , , qn−1 + t, qn), (3.27)

and the latter yields

0 =
∑

An−1,An

∑

k

(
(ε2)αβ

t− 2k

tk(t− k)
δAn−1,An +

Mαβ
An−1An

k(t− k)

)
f

(0)
[A1...An](q1, . . . , qn−2, k, t− k),

(3.28)
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where Mαβ
IJ ≡ [(βIβJ −βJβI)ε2]αβ, t is the momentum of the created fermion, and the

momentum conserving Kronecker’s delta δ(q1+...+qn),K is understood implicitly. These

are the necessary and sufficient conditions for a pure bosonic state to be massless.

One should notice that the above equations reduce to the corresponding equations

found in Ref. [17, 55] with (ε2)αβ = 1, Ai = 1 for all i’s, and Mαβ
IJ = 0, as expected.

In principle, we could find the properties of all kinds of pure bosonic massless states

using Eqs. (3.27) and (3.28). However, we limit ourselves here to the investigation of

only two special types. To simplify the notation, we omit the superscript (0) from

the wave function f hereafter.

The simplest case is where n = K, that is to say, all the partons have one unit of

momentum π/L and, thus, f = f̄ . In this case Eq. (3.27) is trivially satisfied since

we cannot have states with (K + 1) partons. From Eq. (3.28) we get

0 = f[A1...An−2,1,2] − f[A1...An−2,2,1], (3.29)

where we have omitted (q1, . . . , qn) = (1, . . . , 1). Eq. (3.29) means, with the help

of the cyclic property of f , that the wave function is unchanged after moving any

flavor index to any location in the list of indices. For instance, we find, writing

f[A1...An] ≡ [A1 . . . An],

[1212] = [1221] = [2121] = [2211] = [2112] = [1122].

It is clear that the state with the above six wave functions being the same and

all others zero satisfies (3.29), or equivalently Eqs. (3.27) and (3.28), the necessary

and sufficient conditions to be massless. Therefore, writing tr[a†A1
(1) . . . a†An

(1)]|0〉 ≡

A1 . . . An, we find the state

N [1212](1212 + 1221 + 2121 + 2211 + 2112 + 1122) = N [1212](2(1212) + 4(1122))
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is massless, where we used the cyclic property of f . In terms of the normalized Fock

states tr[a†A1
(1) . . . a†An

(1)]|0〉/(√sN
n/2
c ) ≡ A1 . . . An = A1 . . . An/(

√
sN

n/2
c ), where s

is the symmetry factor, we find, after normalizing properly, that

1√
3
(1212) +

√
2

3
(1122)

is massless since s for 1212 and 1122 equals two and one, respectively. Indeed we

have found the very same massless state in our numerical results.

As we have seen above, there is a one-to-one correspondence between a massless

state and a given set of flavor indices, which has a fixed number of 1’s and 2’s. This

means that every time we change the number of 1’s (or 2’s) in the flavor indices,

we find a new massless state. Since we can have K + 1 such different sets of flavor

indices, we have K + 1 massless states of this kind. As verification of our argument,

we enumerated all the massless states for K up to six and found all of them with the

correct coefficients in our numerical results.

The next case to consider is where n = K−1. In this case only one of the partons

has two units of momentum, so that f =
√

2f̄ . However, since all the f ’s have the

same factor of
√

2, we can absorb
√

2 into the normalization factor N and practically

can set f ≡ f̄ . We have t = 1 and qi = 1 with i = 1, . . . , n in Eq. (3.27) and find,

writing (q1, . . . , qn) = (1, . . . , 1, 1, 2) ≡ (1, 2) and so on,

0 = [A1 . . . An](2, 1)− [A1 . . . An](1, 2), (3.30)

0 = [A1 . . . An−2, An−1, An](1, 2)− [A1 . . . An−2, An, An−1](2, 1), (3.31)

0 = [A1 . . . An−2, An−1, An−1](1, 2) + [A1 . . . An−2, An, An](2, 1), (3.32)
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where An−1 6= An in Eqs. (3.31) and (3.32). For Eq. (3.28) we have t = 2, k = 1, 2

and qi = 1 with i = 1, . . . , n− 2, and we get

0 = [A1 . . . An−2, A, A](1, 2)− [A1 . . . An−2, A,A](2, 1), (3.33)

0 = [A1 . . . An−2, 1, 2](1, 2) + [A1 . . . An−2, 1, 2](2, 1)

−[A1 . . . An−2, 2, 1](1, 2)− [A1 . . . An−2, 2, 1](2, 1). (3.34)

Apparently, we have five equations for the massless states to satisfy, but it is easy to

see that Eq. (3.33) is incorporated into Eq. (3.30) and that if Eqs. (3.30) and (3.31)

are true, so is Eq. (3.34) automatically. Hence, the three equations Eqs. (3.30), (3.31),

and (3.32) are in fact the equations for massless states to satisfy for n = K − 1.

In order to see what the three equations allow us to do, let us first write

[A1, . . . , An](1, 2) ≡ [A1, . . . , A
′
n].

That is, let us put a prime on top of an index whose corresponding parton has two

units of momentum. Then, Eq. (3.30) allows us to move the “prime” to any index.

Eq. (3.31), along with this fact, then also allows us to move the index with a prime

to any location in the index list. For example, we have

[112′] = [11′2] = [1′12] = [12′1] = [1′21] = [121′] = [2′11] = [21′1] = [211′].

Furthermore, Eq. (3.32) allows us to replace 11′ by 2′2 (or 22′ using Eq. (3.30)) as

long as a minus sign is inserted. Thus, for the above example we get

[112′] = [11′2] = [1′12] = −[22′2],

where we have omitted the wave functions related by cyclic permutations. This means

that the state

(112′ + 11′2 + 1′12− 22′2)/2
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is massless. Note that the symmetry factor in this case is equal to one for all the Fock

states above.

Since Eqs. (3.30), (3.31), and (3.32) relate all the sets of flavor indices with an

even/odd number of 1’s to one another, we have only two independent sets of flavor

indices: the one with even numbers of 1’s and the other with an odd number. This

means that there are two massless states of this type. Again we have confirmed this

statement numerically for K up to six.

To summarize, we have found in the large-Nc limit the necessary and sufficient

conditions, Eqs. (3.27) and (3.28), that pure bosonic massless states are to satisfy.

As an application we considered two special cases and found that there are K + 1

massless states of the type

tr[a†A1
(1) . . . a†AK

(1)]

and two of the type

tr[a†A1
(1) . . . a†AK−2

(1)a†AK−1
(2)]

. Also, we gave a way to enumerate all such massless states for a given K.

Count of massless states

It is possible to predict a minimum number of massless states by comparing the

number of states in the different symmetry sectors. Since (Q−)2 takes a state from

one symmetry sector to another and then back it must have 0 eigenvalues if the

dimensionality of the intermediate sector is less than that of the original sector. It

is possible to create a simple recursive formula for the number of states in each

sector. For the case when K is prime and odd, the formula is particularly simple. We

present the results here but refer to the other publication for justification [41]. We
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define Abes+(K,n) as the number of states in the bosonic sector with an even number

of partons and even S symmetry, where n indicates how many types of particles we

have in a SYM theory, i.e. n = 4 for N = (2, 2) SYM. Then

Abes+(K, n) = Afes+(K,n) =
Af (K, n) + Af (K,−n) + W

2
(3.35)

Abes−(K, n) = Afes−(K,n) =
Af (K,n) + Af (K,−n)−W

2

Abos+(K,n) = Afos+(K,n) = Abos−(K, n) = Afos−(K,n)

=
Af (K,n)− Af (K,−n)

2
(3.36)

where

Af (K,n)prime =
1

2K
((1 + n)K − (1 + n)) (3.37)

W = (
n

2
)2(K − 1) (3.38)

Q− goes from bosonic to fermionic and from even to odd.

Afos+(K,n)− Abes+(K, n) = Abos+(K, n)− Afes+(K, n) = −Af (K,−n)− W

2
(3.39)

Afos−(K, n)− Abes−(K, n) = Abos−(K, n)− Afes−(K,n) = −Af (K,−n) +
W

2
(3.40)

The minimum total number of massless states must therefore be

−4Af (K,−n) = − 2

K
((1− n)K − (1− n)) =

2

K
(3K − 3) (3.41)

For K = 5, this comes to 96 states which is way more than the 8 purely bosonic

states with 4 or 5 partons that we have found in this section.

3.3 Correlation functions

One of the physical quantities we can calculate nonperturbatively is the two-point

function of the stress-energy tensor. Previous calculations of this correlator in this
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and other theories can be found in [48, 49, 19]. Ref. [48] gives results for the theory

considered here but only for resolutions K up to 6. We can now reach K = 12.

We will show that there is a distinct behavior for even and odd K in the correlation

function, just as in the energy spectrum. Then we will argue, by taking a closer look

at the data, that we have two different classes of representations at finite K, which

become identical as K →∞.

3.3.1 Correlation functions in supergravity

Let us first recall that there is a duality that relates the results for the two-

point function in N=(8,8) SYM theory to the results in string theory [49]. The

correlation function on the string-theory side, which can be calculated with use of the

supergravity approximation, was presented in [48], and we will only quote the result

here. The computation is essentially a generalization of that given in [56, 57]. The

main conclusion on the supergravity side was reported in [58]. Up to a numerical

coefficient of order one, which we have suppressed, it was found that

〈O(x)O(0)〉 =
N

3
2
c

gY Mx5
. (3.42)

This result passes the following important consistency test. The SYM theory in two

dimensions with 16 supercharges has conformal fixed points in both the UV and the

IR regions, with central charges of order N2
c and Nc, respectively. Therefore, we

expect the two-point function of the stress-energy tensor to scale like N2
c /x4 and

Nc/x
4 in the deep UV and IR regions, respectively. According to the analysis of [59],

we expect to deviate from these conformal behaviors and cross over to a regime where

the supergravity calculation can be trusted. The crossover occurs at x = 1/gY M

√
Nc
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and x =
√

Nc/gY M . At these points, the Nc scaling of (3.42) and the conformal result

match in the sense of the correspondence principle [60].

We should note here that this property for the correlation functions is expected

only for N=(8,8) SYM theory, not for the theory in consideration in this chapter.

However, it would be natural to expect some similarity betweenN=(8,8) andN=(2,2)

theories. Indeed, we will find numerically that (3.42) is almost true in N=(2,2) SYM

theory.

3.3.2 Correlation functions in SUSY with 4 supercharges

We wish to compute a general expression of the form

F (x−, x+) = 〈O(x−, x+)O(0, 0)〉

where O is T++. In DLCQ, where we fix the total momentum in the x− direction,

it is more natural to compute the Fourier transform and express the transform in a

spectral decomposed form [48, 49]

F̃ (P−, x+) =
1

2L
〈T++(P−, x+)T++(−P−, 0)〉

=
∑

i

1

2L
〈0|T++(P−, 0)|i〉e−iP i

+x+〈i|T++(−P−, 0)|0〉. (3.43)

The position-space form of the correlation function is recovered by Fourier transform-

ing with respect to P− = P+ = Kπ/L. We can continue to Euclidean space by taking

r =
√

2x+x− to be real. The result for the correlator of the stress-energy tensor was

presented in [48], and we only quote the result here:

F (x−, x+) ≡ 〈T++(x)T++(0)〉

=
∑

i

∣∣∣L
π
〈0|T++(K)|i〉

∣∣∣
2
(

x+

x−

)2
M4

i

8π2K3
K4(Mi

√
2x+x−), (3.44)
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where x has light cone coordinates x−, x+, Mi is a mass eigenvalue and K4(x) is the

modified Bessel function of order 4. In [51] we found that the momentum operator

T++(x) is given by

T++(x) = tr

[
(∂−XI)2 +

1

2
(iuα∂−uα − i(∂−uα)uα)

]
, I, α = 1, 2, (3.45)

where X and u are the physical adjoint scalars and fermions, respectively, following

the notation of [51]. When written in terms of the discretized operators, a and b,

(Eqs. (3.12,3.13)), we find

T++(K)|0〉 =
π

2L

K−1∑

k=1[
−

√
k(K − k)a†Iij(K − k)a†Iji(k) +

(
K

2
− k

)
b†αij(K − k)b†αji(k)

]
|0〉. (3.46)

The matrix element (L/π)〈0|T++(K)|i〉 is independent of L and can be substituted

directly to give an explicit expression for the two-point function. We see immediately

that the correlator behaves like 1/r4 at small r, for in that limit, it asymptotes to

(
x−

x+

)2

F (x−, x+) =
N2

c (2nb + nf )

4π2r4

(
1− 1

K

)
. (3.47)

On the other hand, the contribution to the correlator from strictly massless states is

given by (
x−

x+

)2

F (x−, x+) =
∑

i

∣∣∣L
π
〈0|T++(K)|i〉

∣∣∣
2

Mi=0

6

K3π2r4
. (3.48)

That is to say, we would expect the correlator to behave like 1/r4 at both small and

large r, assuming massless states have non-zero matrix elements.

3.3.3 Numerical results

To compute the correlator using Eq. (3.44), we approximate the sum over eigen-

states by a Lanczos [61] iteration technique, as described in [49, 19]. Only states with
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positive Rα, T and S parity contribute to the correlator. The results are shown in

Fig. 3.2, which includes a log-log plot of the scaled correlation function

f ≡ 〈T++(x)T++(0)〉
(

x−

x+

)2
4π2r4

N2
c (2nb + nf )

(3.49)

and a plot of d log10(f)
d log10(r)

versus log10(r), with r measured in units of
√

π/g2Nc. Let us

discuss the behavior of the correlator at small, large, and intermediate r, separately

in the following.

First, at small r, the graphs of f for different K approach 0 as K increases. This

follows Eq. (3.47) which gives the form f = log(1− 1
K

). Second, at large r, obviously,

the behavior is different for odd K, in Fig. 3.2(c) and (d), and even K, in (e) and

(f). However, the difference gets smaller as K gets bigger, as seen in Fig. 3.2(a). The

reason for this is as follows. Looking at the detailed information of the computation

of the correlator, we found that for even K there is exactly one massless state that

contributes to the correlator, while there is no massless state nor even an anomalously

light state that makes any contribution for odd K. Instead, it is the lowest massive

state that contributes the most for odd K. This observation serves as another piece

of evidence for the claim that we have two distinct classes of representations for odd

and even K.

In the intermediate-r region, for the N=(8,8) theory we expected from Eq. (3.42)

that the behavior is 1/r5, and in [49] we found that the correlator may be approaching

this behavior. We indicated in [49] that conclusive evidence would be a flat region in

the derivative of the scaled correlator at a value of −1. Our resolution was not high

enough to see this in the N=(8,8) case. Here we find such a flat region, indicating

that the correlator in fact behaves like 1/r−4.75 for N=(2,2) SYM theory. Also, note

that the region of flattening around −0.75 extends farther out as K gets bigger, for
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both odd and even K, implying again that the representations appear to agree as K

goes to infinity. For any fixed value of r the correlators for odd and even K approach

each other as K increases and the flat region extends further. This indicates that it

is only in the region of r where the correlators for even and odd K agree that we have

sufficient convergence for the results to be meaningful.

3.4 Discussion

To demonstrate the power of SDLCQ, and to respond to the increasing interest

in calculating supersymmetric theories on a lattice [24, 25, 27, 28], we have presented

detailed numerical results for the low-energy spectrum and the two-point correlation

function of the stress-energy tensor, using SDLCQ for N=(2,2) SYM theory in 1 + 1

dimensions in the large-Nc approximation. Our hope is that these results will serve

as benchmarks for others to compare and check their results.

In addition, we found an important new aspect of the SDLCQ approximation in

this calculation. There seem to be two distinct classes of representations for N=(2,2)

SYM theory, one where S and K have the same parity and one where S and K

have opposite parity; these representations become identical as K → ∞. We found

evidence for this feature of N=(2,2) SYM theory in both the mass spectrum and

the correlator. We also found that there are some anomalously light states that

appear only in the sectors where S and K have opposite parity. We argued that

the anomalously light states should be exactly massless, but have acquired a tiny

mass because of some impediment to having them exactly massless in the SDLCQ

approximation. In the calculation of the correlator where only positive S parity

contribute we found that there is exactly one massless state that contributes to the

36



correlator when K has positive parity and that no massless state or anomalously light

state contributes when K has negative parity. The lightest massive state in the sector

where K has negative parity does contribute to the correlator, but because the mass

gap appears to close at infinite resolution this state appears to become massless, as

expected [39].

The two-point correlator of the stress-energy tensor was found to show 1/r4-

behavior in the UV (small r) and IR (large r, K even) regions as expected. The

large r behavior for K odd, on the other hand, has an exponential decay. Surpris-

ingly, the correlator behaves like 1/r4.75 at intermediate values of r. In N=(8,8)

SYM theory in 1+1 dimensions, the correlator is expected to behave like 1/r5 in the

intermediate region, and it is interesting that N=(2,2) behaves similarly but with

a different exponent. We were able to confirm this power law behavior with a flat

region in the derivative of the scaled correlator.

Analytically, we investigated the properties of pure bosonic massless states and

found the necessary and sufficient conditions to determine their wave function. Then

we explored some special cases to find that there are K + 1 massless states of type

tr[a†A1
(1)a†A2

(1) . . . a†AK
(1)]|0〉,

where Ai is a flavor index and the number in the parentheses tells how many units of

momentum each parton carries, and that there are two massless states of the type

tr[a†A1
(1)a†A2

(1) . . . a†AK−1
(2)]|0〉.

We also gave the formulae to count a minimum total number of massless states for a

SYM theory which is dimensionally reduced to one spatial and one time dimensions.
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What prevents us from reaching even higher K is obviously the fact that, as

one can show [41], the total number of basis states grows like ∼ (1 + n)K , where

n is the total number of particle types and n = 4 for N=(2,2) SYM theory. Our

numerical results were obtained using one single PC with memory of 4 GB. The

problem that we now face is that we do not have enough memory to store all the

states in one PC. However, as we make use of a cluster of PCs and find ways to split

and share the information among them, we are able to reach even higher K. This

is the direction of our future work, with the ultimate goal being to achieve sufficient

numerical precision to detect the correspondence between N = (8, 8) SYM theory

and supergravity conjectured by Maldacena [12]7.

7Recently this correspondence for N = (8, 8) SYM theory has been confirmed numerically in
Ref. [13].

38



-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

lo
g 10

(f
)

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

dl
og

10
(f

)/
dl

og
10

(r
)

(a) (b)

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-2.5

-2

-1.5

-1

-0.5

0

lo
g 10

(f
)

K=3
K=5
K=7
K=9
K=11

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-2.5

-2

-1.5

-1

-0.5

0

dl
og

10
(f

)/
dl

og
10

(r
)

K=3
K=5
K=7
K=9
K=11

(c) (d)

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-1

-0.75

-0.5

-0.25

0

lo
g 10

(f
)

K=4
K=6
K=8
K=10
K=12

-2 -1.5 -1 -0.5 0 0.5 1
log

10
(r)

-1

-0.75

-0.5

-0.25

0

dl
og

10
(f

)/
dl

og
10

(r
)

K=4
K=6
K=8
K=10
K=12

(e) (f)

Figure 3.2: Plots of log of the scaled correlation function f as a function of log10(r)
for (a) K = 3, 4, . . . 12, (c) K odd, and (e) K even, and plots of d log10(f)/d log10(r)
as a function of log10(r) for (b) K = 3, 4, . . . 12, (d) K odd, and (f) K even.
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CHAPTER 4

SDLCQ MEETS TRANSVERSE LATTICE IN 2+1
DIMENSIONS

4.1 Introduction

As we have seen in the previous chapter, SDLCQ is a very powerful tool to solve

supersymmetric theories in the non-perturbative regime. However, it turns out that

going to higher than 1+1 dimensions is not an easy task. This is mainly because the

number of states increases exponentially [41] as we increase the numerical resolutions

and the number of parameters associated with the resolutions is typically n for n+1

dimensional theory. This chapter discusses a new technique to circumvent this diffi-

culty in SDLCQ formulation [62]. This approach is motivated by the newly developed

idea of ”(de)construction” [42] and the key idea is to introduce a transverse lattice

[43, 44, 63, 64, 65, 66] in the transverse spatial dimensions, and to fully utilize the

consequences of the large Nc limit. For a review of transverse lattice formulation see

[45].

To be more specific, in this chapter we will attempt to formulate a (2+1) dimen-

sional N = 1 Super Yang–Mills (SYM) theory as a SDLCQ theory in 1+1 dimensions

with a transverse spatial lattice in the one transverse direction. The challenge is to
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formulate it such that it is supersymmetric exactly at every order of the numerical

approximation.

We will not be able to fully realize this goal. There are several fundamental prob-

lems that prevent complete success. In formulating this theory with gauge invariance

in the one transverse dimension the gauge field is replaced by a complex unitary link

field. Within the context of DLCQ this field is quantized as a linear complex field.

This then disturbs the supersymmetry which usually requires the same number of

fundamental fermion and boson fields. In some sense this is a restatement of the

error we are making by treating a unitary field as a general complex field. There are

simply too many boson degrees of freedom relative to the number of fermion degrees

of freedom. Conventionally one adds a potential to a transverse lattice theory to

enforce the unitarity of this complex boson field, but this is not possible within the

context of an exactly supersymmetric theory. However, in the formulation of Gauss’s

law on the transverse lattice, one finds that color conservation must be enforced at

every lattice site. This greatly reduces the number of allowed boson degrees of free-

dom. It is unclear however if this constraint is sufficient to reduce the number of

boson degrees of freedom to the number required by unitarity.

We will be able to partially formulate SDLCQ for this theory and write the Hamil-

tonian as the square of a supercharge. Previously we considered this situation in a

different class of theories [69]. We will show that this produces a different and simpler

discrete Hamiltonian than the standard lagrangian formulation. When we solve this

theory using this partial formulation of SDLCQ we find that all of the massive states

have exact fermion-boson degeneracy as required by full supersymmetry. Our partial

SDLCQ does not require degeneracy between the massless fermion and boson states.
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We find however that they are nearly equal in number. The solution can be viewed

as a unitary transformation from the constrained basis to an unconstrained basis and

we see that in this new basis the number of fermion and boson degrees of freedom are

very nearly equal. In effect, the partial supersymmetry and Gauss’s law are sufficient

to approximately enforce the same symmetry in the spectrum that we would have

obtained had we been able to enforce unitarity. Recently Dalley and Van de Sande

[66, 70] have also pointed out the importance of Lorentz symmetry in enforcing the

constraint of unitarity.

Since color is conserved at every transverse lattice site, there are two fundamen-

tally different types of states. For one class of states the color flux winds around the

space one or more times. We refer to these as cyclic states and to the other class of

states as non-cyclic states. The spectrum for both classes of states are presented. For

the cyclic states we present the spectrum as a function of the number of windings.

In Section 4.2, we present the standard lagrangian formulation of this theory of

adjoint fermions and adjoint bosons. We show that Hamiltonian is sixth order in the

field. In Section 4.3, we present the SDLCQ formulation which turns out to be only

fourth order in the field. We show that there are two types of allowed states. One

type loops the entire transverse space, and we study these state in Section 4.4. The

states of the other type are localized, and we study these states in Section 4.5. In

Section 4.6 we discuss our conclusions
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4.2 Transverse lattice model in 2+1 dimensions

In this section we present the standard formulation of a transverse lattice model

in 2+1 dimensions of an N = (1, 1) supersymmetric SU(Nc) theory with both adjoint

bosons and adjoint fermions in the large–Nc limit.

We work in light cone coordinates so that x± ≡ (x0 ± x1)/
√

2. The metric is

specified by x± = x∓ and x2 = −x2. Suppose that there are Nsites sites in the

transverse direction x2 with lattice spacing a. With each site, i, we associate one

gauge boson field Aν,i(x
µ) and one spinor field Ψi(x

µ), where ν, µ = ±. Aν,i’s and

Ψi’s are in the adjoint representation. The adjacent sites, say i and i+1, are connected

by what we call the link variables Mi(x
µ) and M †

i (x
µ), where Mi(x

µ) stands for a link

which goes from the i-th site to the (i + 1)-th site and M †
i (x

µ) for a link from the

(i + 1)-th to the i-th site. We impose the periodic condition on the transverse sites

so that ANsites+1 = A1, ΨNsites+1 = Ψ1, MNsites+1 = M1 and M †
Nsites+1 = M †

1 . Under

the transverse gauge transformation [45] the fields transform as

gAµ
i −→ UigAµ

i U
†
i − iUi∂

µU †
i , Mi −→ UiMiU

†
i+1, Ψi −→ UiΨiU

†
i , (4.1)

where g is the coupling constant and Ui ≡ Ui(x
µ) is a Nc ×Nc unitary matrix. In all

earlier work on the transverse lattice [45] Ψi was in the fundamental representation.

The link variable can be written as

Mi(x
µ) = exp

(
iagAi+1/2,⊥(xµ)

)
, (4.2)
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where Ai,⊥ ≡ Ai,2 is the transverse component of the gauge potential at site i and as

a → 0 we can formally expand Eq. (4.2) in powers of a as follows:

Mi(x
µ) = 1 + iagAi+1/2,⊥(xµ)− 1

2

(
agAi+1/2,⊥(xµ)

)2
+ . . .

= 1 + iagAi,⊥(xµ) +
a2

2

[
ig∂⊥Ai,⊥(xµ)− g2 (Ai,⊥(xµ))2] + O(a3). (4.3)

In the limit a → 0, with the substitution of the expansion Eq. (4.3) for Mi, we expect

everything to coincide with its counterpart in continuum (2+1)–dimensional theory.

The discrete Lagrangian is then given by

L = tr
{
−1

4
F µν

i Fi,µν +
1

2a2g2
(DµMi) (DµMi)

†

+ Ψ̄iiγ
µDµΨi +

i

2a
Ψ̄iγ

⊥(MiΨi+1M
†
i −M †

i−1Ψi−1Mi−1)
}

, (4.4)

where the trace has been taken with respect to the color indices, Fi,µν = ∂µAi,ν −

∂νAi,µ + ig[Ai,µ, Ai,ν ], µ, ν = ± and γ’s are defined as follows

γ+ ≡ γ0 + γ1

√
2

≡ σ2 + iσ1√
2

, γ− ≡ γ0 − γ1

√
2

≡ σ2 − iσ1√
2

, γ⊥ ≡ iσ3,

and the covariant derivative Dµ is defined as

DµΨi = ∂µΨi + ig[Ai,µ, Ψi], (4.5)

DµMi = ∂µMi + igAi,µMi − igMiAi+1,µ
a→0−→ iagFµ⊥,

(DµMi)
† = ∂µM †

i − igM †
i A

µ
i + igAµ

i+1M
†
i

a→0−→ iagF µ⊥.

Thus, in the limit a → 0 one finds, as expected,

L a→0−→ tr

(
−1

4
FαβFαβ + iΨiγαDαΨ

)
,

where α, β = ±,⊥. Of course the form of this Lagrangian is slightly different from

that in Ref. [45] since the fermions are in the adjoint representation. This Lagrangian

is hermitian and invariant under the transformation in Eq. (4.1) as one would expect.
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The following Euler-Lagrange equations in the light cone gauge, Ai,− = 0, are

constraint equations.

∂2
−A−

i ≡ gJ+
i , ∂−χi =

1

2
√

2a
(Miψi+1M

†
i −M †

i−1ψi−1Mi−1)
a→0−→ 1√

2
D⊥ψ, (4.6)

where

J+
i ≡ i

2g2a2
(Mi

↔
∂− M †

i + M †
i−1

↔
∂− Mi−1) + 2ψiψi (4.7)

a→0−→ i[A⊥, ∂−A⊥] +
1

g
∂−∂⊥A⊥ + 2ψψ, (4.8)

Ψi ≡ 1

21/4

(
ψi

χi

)
. (4.9)

Since these equations only involve the spatial derivative we can solve them for A−
i

and χi, respectively. Thus the dynamical field degrees of freedom are Mi, M †
i and ψi.

The first of the equations in Eq. (4.6) gives a constraint on physical states |phys〉,

since the zero mode of J+
i acting on any physical state must vanish,

0

J+
i |phys〉 =

∫
dx−J+

i (xµ)|phys〉 = 0 for any i. (4.10)

The physical states must be color singlet at each site.

It is straightforward to derive P± ≡ ∫
dx−T+±, where T µν is the stress-energy

tensor. We have

P+ = a

Nsites∑
i=1

∫
dx−tr

(
1

a2g2
∂−M †

i ∂−Mi + iψi∂−ψi

)
(4.11)

a→0−→
∫

dx−dx⊥tr
(
(∂−A⊥)2 + iψ∂−ψ

)
, (4.12)
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and

P− = a

Nsites∑
i=1

∫
dx−tr

[
1

2
(∂−A−

i )2 + iχi∂−χi

]

= a

Nsites∑
i=1

∫
dx−tr

[
−g2

2
J+

i

1

∂2−
J+

i

− i

8a2
(Miψi+1M

†
i −M †

i−1ψi−1Mi−1)
1

∂−
(Miψi+1M

†
i −M †

i−1ψi−1Mi−1)
]

(4.13)

a→0−→
∫

dx−dx⊥tr
[
−g2

2
J+ 1

∂2−
J+ − i

2
D⊥ψ

1

∂−
D⊥ψ

]
. (4.14)

When one quantizes the dynamical fields, unitarity of Mi is lost and Mi becomes an

Nc ×Nc imaginary matrix [63, 64, 65, 66, 70, 45]. Some have suggested the addition

of an effective potential V (Mi) to force Mi to be a unitary matrix in the limit a → 0

[43, 44, 45]. We will approach this issue using supersymmetry.

Having linearized Mi, we can expand Mi and ψi in their Fourier modes as follows;

at x+ = 0

Mi,rs(x
−) =

ag√
2π

∫ ∞

0

dk+

√
k+

(di,rs(k
+)e−ik+x− + a†i,sr(k

+)eik+x−), (4.15)

ψi,rs(x
−) =

1

2
√

π

∫ ∞

0

dk+(bi,rs(k
+)e−ik+x− + b†i,sr(k

+)eik+x−), (4.16)

where r, s indicate the color indices, a†i,sr(k
+) creates a link variable with momentum

k+ which carries color r at site i to s at site (i + 1), d†i,sr(k
+) creates a link with k+

which carries color r at site (i + 1) to s at site i and b†i,sr creates a fermion at the

i-site which carries color r to s. Quantizing at x+ = 0 we have

[Mi,rs(x
−), πMj ,pq(y

−)] = [M †
i,rs(x

−), πM†
j ,pq(y

−)]

= {ψi,rs(x
−), πψj ,pq(y

−)} =
i

2
δ(x− − y−)

δij

a
δrpδsq. (4.17)
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Note that we divided δij by a because δij/a → δ(x⊥ − y⊥)as a → 0. The conjugate

momentum are

πMi
=

1

2a2g2
∂−M †

i , πM†
i

=
1

2a2g2
∂−Mi, πψi

= iψi.

Thus we must have

[Mi,rs(x
−), ∂−yM

†
j,pq(y

−)] = [M †
i,rs(x

−), ∂−yMj,pq(y
−)] = ia2g2δ(x− − y−)

δij

a
δrpδsq,

{ψi,rs(x
−), ψj,pq(y

−)} =
1

2
δ(x− − y−)

δij

a
δrpδsq. (4.18)

Then, one can easily see that these commutation relations are satisfied when a’s, d’s

and b’s satisfy the following:

[ai,rs(k
+), a†j,pq(p

+)] = [di,rs(k
+), d†j,pq(p

+)]

= {bi,rs(k
+), b†j,pq(p

+)} = δ(k+ − p+)
δij

a
δrpδsq, (4.19)

with others all being zero. Physical states can be generated by acting on the Fock

vacuum |0〉 with these a†’s, d† and b†’s in such a manner that the constraint Eq. (4.10)

is satisfied.

Let us complete this section by discussing the physical constraint (4.10) in more

detail. The states are all constructed in the large–Nc limit, and therefore we need

only consider single–trace states. In order for a state to be color singlet at each site,

each color index has to be contracted at the same site. As an example consider a state

represented by |phys 1〉 ≡ d†i,rs(k
+
1 )a†i,sr(k

+
2 )|0〉. For this state the color r at site i is

carried by a†i to s at site (i + 1) and then brought back by d†i to r at site i. The color

r is contracted at site i only and the color s at site (i + 1) only. Therefore, this is a

physical state satisfying Eq. (4.10). A picture to visualize this case is shown in Fig.
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(a) (b)

Figure 4.1: (a)The color charge for the state |phys 1〉 ≡ d†i,rs(k
+
1 )a†i,sr(k

+
2 )|0〉. The

planes represent the color space. ai carries color r at site i to s at site i + 1
and di carries it back to r at site i. (b) The color for the state |phys 2〉 ≡
a†i+Nsites−1,ru(k

+
Nsites

) · · · a†i+1,ts(k
+
2 ) ·a†i,sr(k+

1 )|0〉. The lines which intersect a circle rep-
resent the color planes at sites. The color goes all the way around the transverse
lattice.

4.1a. One also needs to be careful with operator ordering. One can show that the state

d†i,rs(k
+
1 )a†i,st(k

+
2 )b†i,tr(k

+
3 )|0〉 is physical, while the state b†i,rs(k

+
1 )a†i,st(k

+
2 )d†i,tr(k

+
3 )|0〉 is

unphysical.

We should, however, note that a true physical state be summed over all the trans-

verse sites since we have discrete translational symmetry in the transverse direction.

That is, for example, the states d†1,rs(k
+
1 )a†1,sr(k

+
2 )|0〉 and d†2,rs(k

+
1 )a†2,sr(k

+
2 )|0〉 are the

same up to a phase factor given by exp(iP⊥a). We set the phase factor to one

since we take physical state to have P⊥ = 0. The physical state |phys 1〉 is in

fact
∑Nsites

i=1 d†i,rs(k
+
1 )a†i,sr(k

+
2 )|0〉 with the appropriate normalization constant. From

a computational point of view this is a great simplification because we can drop the

site index i from the representation.
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Periodic conditions on the fields, allow for physical states of the form |phys 2〉 ≡
∑

i a
†
i+Nsites−1,ru(k

+
Nsites

) · · · a†i+1,ts(k
+
2 ) · a†i,sr(k+

1 )|0〉. The color for this state is carried

around the transverse lattice, as shown in Fig. 4.1b. We will refer to these states

as cyclic states. The states where the color flux does not go all the way around the

transverse lattice we will refer to as non-cyclic states. We characterize states by what

we call the winding number defined by W = n/Nsites, where n ≡ ∑
i(a

†
iai − d†idi).

Using the Eguchi–Kawai[71] reduction which applies in the large–Nc limit we can

always take Nsites = 1. The winding number simply gives us the excess number of a†

over d† in a state. We use the winding number to classify states since the winding

number is a good quantum number commuting with P−
SDLCQ. In the language of the

winding number the non-cyclic states are those states with W = 0 and cyclic states

have non-zero W .

It is straight forward to show that |phys〉 satisfies Eq. (4.10) but |unphys〉 does

not using

(
0

J+
i )pq =

∫
dk+a†i,rp(k

+)ai,rq(k
+)− di,pr(k

+)d†i,qr(k
+)− ai−1,pr(k

+)a†i−1,qr(k
+)

+d†i−1,rp(k
+)di−1,rq(k

+) + bi,pr(k
+)b†i,qr(k

+) + b†i,rp(k
+)bi,rq(k

+). (4.20)

Diagrammatically, one can say that at every point in color space at any site one has

to have either no lines or two lines, one of which goes into and the other of which

comes out of the point, so that the color indices are contracted at the same site.

4.3 SDLCQ of the transverse lattice model

The transverse lattice formulation of N = 1 SYM theory in 2+1 dimension pre-

sented in the previous section has several undesirable features. The supersymmetric
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structure of the theory is completely hidden and the resulting Hamiltonian is 6th or-

der in the fields. From the numerical point of view a 6th order interaction makes the

theory considerably more difficult to solve. Also the underlying (2+1)–dimensional

supersymmetric Hamiltonian is only 4th order making this discrete formulation of the

theory very different than the underlying theory. There can, of course, be many dis-

crete formulations that correspond to the same continuum theory and it is therefore

desirable to search for a better one. In the spirt of SDLCQ we will attempt a discrete

formulation based on the underlying super-algebra of this theory,

{Q±, Q±} = 2
√

2P±, {Q+, Q−} = 2P⊥. (4.21)

In this effort there are some fundamental limits to how far one can go. As we

discussed in the previous section the physical states of this theory must conserve

color at every point on the transverse lattice. Experience with other supersymmetric

theories indicates that each term in Q+ has to be either the product of one Mi and

one ψi or of one M †
i and one ψi therefore Q+ is unphysical, by which we mean that

Q+ transforms a physical state into an unphysical one, so that 〈phys|Q+|phys〉 = 0.

While this is not a theorem, it seems very difficult to have any other structure since

in light cone quantization P+ is a kinematic operator and therefore independent of

the coupling. There appears to be no way to make a physical P+ from Q+. We will

use P+ as given in Eq. (4.11) in what follows. Similarly, we are not able to generally

construct P⊥ from Q+ and Q−. In fact P⊥ is unphysical in our formalism, leading

to 〈phys|P⊥|phys〉 = 0. Formally we will work in the frame where total P⊥ is zero,

so it would appear consistent with this result. However, P⊥ = 0 was a choice and a

non-zero value is equally valid and not consistent with the matrix element.
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Despite these difficulties we find a physical Q− which gives us P−
SDLCQ

a→0−→ P−
cont.

The expression for Q− and P−
SDLCQ are, respectively,

Q− = 23/4g · a
Nsites∑
i=1

∫
dx−tr(J+

i ∂−1
− ψi) (4.22)

a→0−→ 23/4

∫
dx−dx⊥tr

[
∂⊥A⊥ψ + g

(
i[A⊥, ∂−A⊥] + 2ψψ

)
∂−1
− ψ

]
,

P−
SDLCQ ≡

{Q−, Q−}
2
√

2

= a
∑

i

∫
dx−tr[−g2

2
J+

i

1

∂2−
J+

i −
i

2a2
(ψi+1M

†
i −M †

i ψi)∂
−1(Miψi+1 − ψiMi)]

a→0−→
∫

dx−dx⊥tr
[
−g2

2
J+ 1

∂2−
J+ − i

2
D⊥ψ

1

∂−
D⊥ψ

]
≡ 2

√
2P−

cont. (4.23)

Notice that this Hamiltonian is only 4th order in the fields. Furthermore, one can

check that this Q− commutes with P+ obtained from L; [Q−, P+] = 0. Thus, it

follows that,

〈phys|[Q−,M2]|phys〉 = 〈phys|[Q−, 2P+P−
SDLCQ]|phys〉 = 0 (4.24)

in our SDLCQ formalism, where M2 ≡ 2P+P−
SDLCQ − (P⊥)2. The fact that the

Hamiltonian is the square of a supercharge will guarantee the usual supersymmetric

degeneracy of the massive spectrum, and our numerical solutions will substantiate

this. Unfortunately one needs a Q+ to guarantee the degeneracy of the massless

bound states.

The expression for Q− is
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: Q− : =
i2−1/4ag√

π

∑
i

∫
dk1 dk2 dk3δ(k1 + k2 − k3)

[

k2 − k1

k3

√
k1k2

(−b†idiai + d†ia
†
ibi − b†iai−1di−1 + a†i−1d

†
i−1bi)

+
k2 + k3

k1

√
k2k3

(−d†ibidi + b†id
†
idi − a†i−1biai−1 + b†ia

†
i−1ai−1)

+
k3 + k1

k2

√
k3k1

(a†iaibi − a†ib
†
iai + d†i−1di−1bi − d†i−1b

†
idi−1)

+

(
1

k1

+
1

k2

− 1

k3

)
(b†ib

†
ibi + b†ibibi)

]
, (4.25)

where k+ ≡ k, a†a ≡ Tr(a†(k1)a(k2)), a†aa ≡ Tr(a†(k3)a(k1)a(k2)), and a†a†a ≡

Tr(a†(k1)a
†(k2)a(k3)). Notice that from this explicit expression for Q− it is clear that

cyclic states do not get mixed with non-cyclic states under Q−, as advertised at the

end of Section 4.2. Notice also that the winding number introduced in the last section

evidently commutes with Q− and, thus, with P−
SDLCQ.

Now we are in a position to solve the eigenvalue problem 2P+P−
SDLCQ|phys〉 =

m2|phys〉. We impose the periodicity condition on Mi, M †
i and ψi in the x− direction

giving a discrete spectrum for k+:

k+ =
π

L
n (n = 1, 2, . . . .),

∫ ∞

0

dk+ → π

L

∞∑
n=1

.

We impose a cut-off on the total longitudinal momentum P+ i.e. P+ = πK/L, where

K is an integer also known as the ‘harmonic resolution’, which indicates the coarse-

ness of our numerical results. For a fixed P+ i.e. a fixed K, the number of partons

in a state is limited up to the maximum, that is K, so that the total number of

Fock states is finite, and, therefore, we have reduced the infinite dimensional eigen-

value problem to a finite dimensional one. We should note here that since the matrix

52



〈phys|P−
SDLCQ|phys〉 to be diagonalized does not depend on Nsites, the resulting spec-

trum does not depend on Nsites, either. This means there is no need to keep the

site index of operators even in numerical calculations; the sum over all the sites is

implicitly understood and when one needs to restore the site indices for some reason,

one should do so in such a way that physical constraint (4.10) is satisfied. Henceforth

we will suppress the sum and the site indices, unless otherwise noted.

In the following two sections we will give the numerical results for the cyclic

(W 6= 0) states and non-cyclic (W = 0) states separately.

4.4 Numerical results for the cyclic (W 6= 0) states

For the cyclic states, it is easy to see that K ≥ |W |. In fact if K = |W |, only two

states are possible and both are bosonic. They are tr(a†i+Nsites−1 · · · a†i+1a
†
i )|0〉 and

tr(d†id
†
i+1 · · · d†i+Nsites−1)|0〉, Therefore we will focus on K > |W |. Since there is an

exact Z2 symmetry between positive W and negative W , it suffices to consider the

case where W is positive. Table 4.1 shows the number of eigenstates with different K

and W for various types of states. Since the spectrum starts at K = W , it is natural

to take K − W as the independent variable. Therefore we tabulate the number of

eigenstates with W and K−W rather than W and K and we plotted m2 as a function

of 1/(K −W ) rather than of 1/K

The massive degenerate fermion and boson states are related by Q− |F 〉 ≡ |B〉.

The same is not true of massless states. There is no direct connection through Q−

between massless fermionic states and massless bosonic states, leading to a super-

symmetry breaking for massless states. Nevertheless, Table 4.1 shows that we have
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K–W 1 2 3 4 5 6 7
W massive fermion or boson states
1 0 1 5 18 62 208 706
2 0 2 10 38 138 492
3 0 3 17 68 268 1023
4 0 4 24 110 470
5 0 5 33 166 770

massless boson states
1 0 1 1 3 3 8 8
2 1 2 2 5 5 12
3 1 2 2 5 5 15
4 1 2 2 6 6
5 1 2 2 6 6

massless fermion states
1 1 1 2 2 4 4 9
2 1 1 2 2 5 5
3 1 1 2 2 5 5
4 1 1 2 2 6
5 1 1 2 2 6

Table 4.1: Number of massive and massless cyclic eigenstates.

the exact supersymmetry for massless states when K − |W | = 2n − 1 for n = 2, . . ..

The boson state with W = 1 is anomalous since tr(a†) = 0 in our formulation.

Also notice that there is a jump in the number of massless states with every

increment by two in K. This seems to be the case because we need to increase

K by two to allow for the addition of an operator like d†i (1)a†i (1), so as to make a

new physical massless state. The requirement that we add a pair of bosons relates

back to the Gauss’s law constraint. We see here that two bosons are behaving as a

single boson. This is additional evidence that Gauss’s law and supersymmetry are

working together to restrict the number of effective boson degrees of freedom. It is

particularly reassuring to see this effect in the massless bound states since it is in this
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(a) (b)

Figure 4.2: Plots of m2 in units of Ncg2

πa
of low energy cyclic states versus 1/(K −W )

with a linear fit for W=1(top diamond), 2(top star), 3(top square), 4(top triangle),
5(middle diamond), 6(bottom star), 7(bottom square), 8(bottom triangle), 9(bottom
diamond), (a) state A and, (b) state B.

sector where breaking of the supersymmetric spectrum occurs. We also notice some

other interesting properties of our massless states. We find that the Fock states that

occur in bosonic massless states have no fermionic operators, whereas the Fock states

that occur in fermionic massless states have only one fermionic operator, which seems

to explain the relative shift between the number of massless fermions and bosons.

In Fig. 4.2(a) and (b) we give plots of m2 for two low–energy states as a function

of 1/(K −W ) and extract m2
∞ as a K → ∞ limit of the linear fit. We identify an

energy eigenstate with different K’s according to dominant Fock states. Looking at

both bosonic and fermionic counterpart also helps distinguish states. We present two

states we could easily identify. For the state in (a) the dominant fock component has

the form b†(n)a†(1) · · · a†(1)b†(1) + b†(1)a†(1) · · · a†(1)b†(n) while the state in (b) has

the dominant component b†(n)a†(1) · · · a†(1)b†(1)− b†(1)a†(1) · · · a†(1)b†(n).

In Fig. 4.3 we present m2
∞, obtained in Fig.4.2(a) and (b), as a function of 1/W .

We see that state with larger W get lighter. From the discussion of the fock structure
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Figure 4.3: Plots of K → ∞ limit of m2 in units of Ncg2

πa
of low energy cyclic states

versus 1/W with a quadratic fit to the data. The diamonds correspond to state A
and squares correspond to the state B in Fig. 4.2

of these states in the previous paragraph, it is clear that the states with larger W

are also longer. Previously in SDLCQ calculations [55, 67] we have seen this unique

behavior in SYM theories. We have seen that as we increase K we uncover longer

states that have lower masses. Supersymmetric theories like to have light states with

long strings of gluons. In the full SDLCQ calculation of N = 1 SYM theory in 2+1

dimensions [20] we have seen these long, light states as well. Here these states of

different length are being identified as the same state because of their global fock

structure and the length of the fock chain translates to a large W. Therefore we see

that states with larger W are lighter.

We see in Fig. 4.3 that the data is fit very well with a quadratic fit in 1/W . A

possible physical argument that compliments the argument above follows if we think

of these states as a set of partons in a box of size 2πL in the transverse direction. The

expression for Q− in 2+1 continuum theory [20] is Q− = αiki,⊥ + gβ, where αi, β are

parton operators and ki,⊥ is the transverse momenta of the partons. In fact ki,⊥ ∝
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K = 3 4 5 6 7 8
massive fermion or boson states

2 6 22 72 238 792
massless boson states
1 3 3 7 7 17

massless fermion states
1 1 3 3 7 7

Table 4.2: Number of massive and massless non-cyclic eigenstates

1/L ∼ 1/W . Hence we would expect the energy m2 ∼ (Q−)2 = A + B/W + C/W 2.

This is the form of the fit we use in Fig.4.2(a) and (b).

4.5 Numerical results for the non-cyclic (W = 0) states

Let us now discuss numerical results for the non-cyclic states. Table 4.2 shows

the number of mass eigenstates of massive bosons or fermions, massless bosons, and

massless fermions with different K.

From the table we see once again that there are some differences in the number

of the massless bosonic and fermionic states and the same dependence on K that we

saw for the cyclic states. The reason for this behavior is the same as in the case of

the cyclic states. In Fig. 4.4 we show two states whose boson states with a large two

partons component. These states appear at the lowest resolution and are the easiest

to follow and identify as a function of the resolution K. The boson bound state

denoted by diamonds is composed primarily of two fermions, b†b†, while the boson

bound state denoted by squares is composed primarily of two bosons, d†a†. Again,

we see stringy states which appear as we go to higher K with more partons in their

dominant Fock state component.
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Figure 4.4: Plots of m2 of low–energy non-cyclic states against 1/K with a linear fit

in units of Ncg2

πa
.

We were able go up to K = 8 without making any approximations to the Fock

basis, so some of our bound states contained as many as eight partons. However, for

K = 9 we have truncated the number of partons at 6. We were able to justify this

approximation at K = 9 for this state by comparing the truncated results with the

exact result at K = 8. However we were not able to make this approximation for the

state denoted by squares.

4.6 Discussion

We have presented a formulation of N = (1, 1) SYM in 2+1 dimensions where the

transverse dimension is discretized on a spatial lattice while the longitudinal dimen-

sion x− is discretized on a momentum lattice. Both x− and x⊥ are compact. We are

able to retain some of the technology of SDLCQ, since this numerical approximation

retains one exact supersymmetry. In particular we are able to write the Hamilto-

nian as the square of a supercharge. Thus there is sufficient supersymmetry in this
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formulation to ensure that divergences that appear in this theory are automatically

canceled. Furthermore we show that this formulation leads to a fundamentally dif-

ferent and simpler discrete Hamiltonian than the standard Lagrangian approach to

the transverse lattice. Since we only have one exact supersymmetry, only the massive

fermion and boson bound states in our solution are exactly degenerate. We need

an additional supersymmetry to require that the numbers of massless bosons and

massless fermions be the same.

As in all transverse lattice approaches, the transverse gauge field is replaced by

a complex unitary field, and transverse gauge invariance is maintained. When this

complex unitary field is quantized as a general complex linear field, the number of

degrees of freedom in the transverse gauge field is improperly represented. In a

conventional transverse lattice calculation one tries to dynamically enforce the proper

number of degrees of freedom by adding a potential that is minimized by the unitarity

constraint. We conjecture that this is not necessary here. Gauss’s law requires that

color be conserved at every transverse lattice site. This greatly restricts the allowed

boson Fock states that can be part of the physical set of basis states and plays an

important role in the structure of all bound states. We assert that the combination

of the Gauss’s law constraint and the one exact supersymmetry are sufficient to

approximately enforce the full supersymmetry.

To further support this conjecture we note that in the massless spectrum the

number of states changes when we change the resolution by two units indicating that

it effectively requires two partons to represent one true degree of freedom. We view

solving the theory as a unitary transformation from the constrained basis to a basis

free of constraints and very nearly fully supersymmetric.
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We should note that this conjecture can not be general since we know of one

supersymmetric theory in 1+1 dimensions where the degrees of freedom at the parton

level are all fermions [72]. In this model one has to fix the coupling to be a particular

value for this miracle to occur. Generally in a supersymmetric theory the coupling is

a free parameter. Nevertheless this example provides of word of caution with regard

to our assertion.

We found two classes of bound states, cyclic and non-cyclic. The cyclic bound

states have color flux that is wrapped completely around the compact transverse

space. We were able to isolate two sequences of such states. Each sequence corre-

sponds to a given state with a different number of wrappings. As a function of the

winding number W the masses have the form m2 = A + B/W + C/W 2. In the non-

cyclic sector we find stringy states as we have in previous SDLCQ calculations. We

find good convergence for the bound states we present as a function of K.

Finally we would like to note that the symmetries of this approach and those of

Cohn, Kaplan, Katz and Unsal (CKKU)[24] appear to be similar. The formulations

are totally different, and these authors consider a two–dimensional discrete spatial

lattice as well as extended supersymmetry. Nevertheless there are some similarities.

As we have noted several times we have color conservation at each lattice site, thus

the symmetry group is U(Nc)
Nsites similar to CKKU. We have enforced translation

invariance for this discrete lattice with Nsites sites; therefore, there is a ZNsites
sym-

metry similar to one found by CKKU for their two dimensional lattice. Finally, in

this theory there is an orientation symmetry for the trace which is a Z2 symmetry

also similar to CKKU. In addition CKKU have some U(1) symmetries which we seem
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to be missing. This may be related to the fundamentally different way chiral sym-

metry is treated on the light cone[46]. Another similarity appears to be the relation

between the number of supersymmetries and the number of fermions on a site. Both

approaches have one fermion on a site and one supersymmetry.

Most of our numerical calculation was done using our Mathematica code on a

Linux workstation. This was very convenient for our first attempt at a supersym-

metric formulation of a transverse lattice problem. We have used our C + + code to

obtain results for a few of the cyclic states at higher resolution. We are also able to

handle the problem of two transverse dimensions with this code as we will do so in

chapter 6.
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CHAPTER 5

A SOLUTION TO FERMION DOUBLING PROBLEM

5.1 Introduction

When one formulates a theory with chiral fermions on a spatial lattice, one of

the most notorious obstacles is the Nielsen-Ninomiya theorem[21] which gives a set

of conditions that require species doubling. In our transverse lattice formulation of

field theory we use both a spatial lattice and a momentum lattice. The transverse

lattice formulations usually has some non-local interaction(s) which voids the Nielsen-

Ninomiya theorem however it still seems to have the species doubling problem [73].

In the previous chapter we introduced a super Yang-Mills (SYM) model in 2+1

dimensions on a transverse lattice with one exact supersymmetry [62]. It is well

known that in the standard Lagrangian formulation of SYM on the transverse lat-

tice one finds a fermion species doubling problem. We will show however that we

are free from species doubling when one uses Supersymmetric Discrete Light Cone

Quantization (SDLCQ). This is yet another demonstration of value of maintaining

an exact supersymmetry in the numerical approximation. Of course two popular

methods of dealing with the doubling, staggered fermions [74] and the Wilson term

[75], work for the lagrangian formulation of SYM theories on a transverse lattice. In

addition Chakrabarti, De and Harindranath recently proposed the use of the forward
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and backward derivatives to remove the species doubling on the light front transverse

lattice [76]. However those methods badly break the supersymmetry and it is unclear

how many of the unique properties of supersymmetry persist. While our approach

can only be used for the transverse lattice formulation of supersymmetric theories, it

resolves the doubling problem automatically.

This chapter is organized as follows. In Section 5.2 we will see that the species

doubling arises in the standard Lagrangian formulation of the transverse lattice, but

can be resolved when one applies the method proposed by Ref. [76]. In Section 5.3

we show that in the SDLCQ formulation of the transverse lattice we do not have any

species doubling. In Section 5.4 we discuss some general reasons for this result and

give the generalization to 3+1 dimensions. This chapter is based on Ref. [77]

5.2 Fermion species doubling problem on a transverse lattice

To focus on the fermion species doubling problem of the transverse lattice [62], let

us consider fermion fields only by setting the coupling g = 0 and the link variables

M,M † = 1. For this theory one spatial dimension is discretized on a spatial lattice.

We work in the light cone coordinates so that x± ≡ (x0 ± x1)/
√

2 with x± = x∓

and x⊥ ≡ x2 = −x2 is the dimension that is discretized on the spatial lattice. The

Lagrangian is given by

L =
∑

i

tr

[
Ψ̄iγ

µ∂µΨi +
i

2a
Ψ̄iγ

⊥(Ψi+1 −Ψi−1)

]
,

where i is the site index, the trace has been taken with respect to the color indices,

µ = ±, and a is the lattice spacing. The gamma matrices are defined to be γ0 = σ2,

γ1 = iσ1, and γ⊥ = iσ3 with γ± ≡ (γ0 ± γ1)/
√

2. For Ψi = 2−1/4

(
ψi

χi

)
we find the
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equation of motion

∂−χi =
1

2
√

2a
(ψi+1 − ψi−1).

Inverting the light cone spatial derivative, we eliminate the non-dynamical field χi

from L and get

L =
∑

i

tr

[
iψi∂+ψi +

i

8a2
(ψi+1 − ψi−1)∂

−1
− (ψi+1 − ψi−1)

]
.

Note that the second term is non-local. This is sufficient to avoid the Nielsen-

Ninomiya theorem. The equation of motion for ψi is

∂+ψi =
1

8a2
∂−1
− (ψi+2 − 2ψi + ψi−2). (5.1)

We substitute the Fourier transformed form of ψi,

ψj(x) =

∫ π/a

−π/a

dk⊥
∫ ∞

0

dk+dk−ei(k+x−+k−x+−k⊥(aj))ψ̃j(k),

into Eq. (5.1) to find a dispersion relation

k− =
1

2k+

(
sin k⊥a

a

)2

. (5.2)

Clearly, in the continuum limit where a → 0, we find finite energy not only at k⊥ ≈ 0,

but also at k⊥ ≈ ±π/a for −π/a < k⊥ < π/a, yielding extra unwanted fermion

species, that is, the notorious fermion species doubling problem.

Let us point out that the same equation of motion and thus the same dispersion

relation follow if one uses Heisenberg equation of motion i∂+ψi,rs(x) = [ψi,sr(x), P−].

This is the approach we will use in the next section. In this calculation we use

the equal (light cone) time anticommutation relation {ψi,rs(x
−), ψj,pq(y

−)} = δ(x− −

y−)δijδrpδsq/2a, where we’ve explicitly written out the color indices r, s, p, q and

P− ≡ a
∑

i

∫
dx−T+− = a

∑
i

∫
dx−tr

[
− i

8a2
(ψi+1 − ψi−1)∂

−1
− (ψi+1 − ψi−1)

]
.
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T µν is the stress-energy tensor.

One might wonder what happens if we tried another difference operator, for in-

stance, the forward/backward derivative in place of the symmetric derivative. An-

swering this question is instructive since the authors of Ref. [76] have found no fermion

doubling for chiral fermions if one uses forward and backward derivatives on the light

front transverse lattice. Following their procedure, we get in terms of ψi and χi

L =
∑

i

tr

[
iψi∂+ψi + iχi∂−χi − i√

2a
(χi(ψi+1 − ψi) + ψi(χi − χi−1))

]

=
∑

i

tr

[
iψi∂+ψi + iχi∂−χi −

√
2i

a
χi(ψi+1 − ψi)

]
.

This yields

∂−χi =
1√
2a

(ψi+1 − ψi)

and

L =
∑

i

tr

[
iψi∂+ψi +

i

2a2
(ψi+1 − ψi)∂

−1
− (ψi+1 − ψi)

]
.

From this we find a dispersion relation

k− =
1

2k+

(
sin k⊥a

2

a/2

)2

.

In the continuum limit we find a finite energy only at k⊥ ≈ 0, meaning that we do not

have the doubling problem. Hence, we found that the method to remove the doubling

proposed in Ref. [76] works even for adjoint fermions.

5.3 Transverse lattice with SDLCQ

In Ref. [62] we proposed a discrete transverse lattice formulation of the supercharge

Q−, which gives the correct continuum form. In this formulation the P− obtained

from SUSY algebra {Q−, Q−} = 2
√

2P− also gives the correct continuum form. With
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this P− in hand, following the same procedure we did in the previous section, we set

g = 0 and M,M † = 1 to see whether we suffer from the fermion doubling problem.

This P− is given by

P− = a
∑∫

dx−tr

[
− i

2a2
(ψi+1 − ψi)∂

−1
− (ψi+1 − ψi)

]
.

Heisenberg equation of motion yields

i∂+ψi,rs = [ψi,sr, P
−] =

i

2a2
∂−1
− (ψi+1 − 2ψi + ψi−1)rs.

Hence, it follows that

k− =
1

2k+

(
sin k⊥a

2

a/2

)2

.

Notice, remarkably, that we have a finite energy only at k⊥ ≈ 0, so that we are free

from the species doubling problem with SDLCQ.

A word of caution is due here. This P− happens to be the same as the one

obtained in Ref. [76], where the authors used the forward and backward derivatives

however we get P− in a completely different way.

5.4 Discussion

We reviewed the known result that one suffers from a species doubling problem

in the transverse lattice Lagrangian formalism with the symmetric derivative in spite

of the fact that our adjoint fermions interact non-locally. We applied the method

of removing the doubling proposed by the authors of Ref. [76] originally for chiral

fermions and found that it works as well even for adjoint fermions. We then showed

that we do not suffer from species doubling in the SDLCQ formulation of the trans-

verse lattice [62].
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While we did the calculation in 2+1 dimensions, we should note that this doubling

persists in 3+1 dimensions. As we will see in the next chapter [78], the standard

transverse Lagrangian formulation leads to the following dispersion relation,

k− =
1

2k+

[(
sin k⊥1 a

a

)2

+

(
sin k⊥2 a

a

)2
]

,

where k⊥i is the i-th transverse momentum. For a model with SDLCQ formulation of

the transverse lattice,

k− =
1

2k+




(
sin

k⊥1 a

2

a/2

)2

+

(
sin

k⊥2 a

2

a/2

)2

 .

Again, we do not have any species doubling with SDLCQ.

In Ref. [62] we found that the color of physical states must be contracted at each

site. However, this constraint was derived in the standard Lagrangian formalism,

which suffers from the doubling problem. Therefore, one might ask if there is any

change in the physical constraint due to the doubling problem. We believe the answer

is no. The reason is the following. The physical constraint we found in [62] comes

from the equation of motion δL
δA−i

− ∂+
δL

δ(∂+A−i )
= 0, where A−

i is the “–” component

of the gauge field Aµ
i residing at the i-th site. However, this equation of motion has

nothing to do with the terms involving the difference between fermions at different

sites, which are the cause of the doubling. Hence, even if we made some change(s) in

the standard Lagrangian e.g. by adding a Wilson term to fix the doubling problem,

we would not see any change in the equation of motion which leads to the physical

constraint.

It seems that SUSY algebra by itself resolves the species doubling problem. This

is indeed expected since we do not have any doubling problems in boson sector and

SUSY requires that the number of degrees of freedom be the same for bosons and
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fermions. In general it is difficult to maintain exact SUSY on a lattice, but it appears

that if it is achieved, then it automatically solves the species doubling problem.
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CHAPTER 6

SDLCQ AND TRANSVERSE LATTICE IN 3+1
DIMENSIONS

6.1 Introduction

We have introduced a new approach to solving N=1 SYM in 2+1 dimensions

non-perturbatively in Chapter 4. Here, we extend the approach to N=1 SYM in 3+1

dimensions and present a formulation for 3+1 dimensional N=1 SYM with a two

dimensional transverse lattice in the large Nc limit, which was the work presented in

Ref. [78].

At each site of the two dimensional lattice, we have one gauge boson and one

four-component Majorana spinor. Adjacent sites are connected by the link variables.

All these fields depend only on the light-cone time and spatial coordinates x± and

are associated with two site indices, say (i, j). In the large Nc limit, however, it turns

out that we are allowed to drop the site indices for our calculation. This is in some

sense the manifestation of the Eguchi-Kawai reduction [71]. However, it is well known

that the naive Eguchi-Kawai reduction encounters a problem due to the violation of

one of the assumptions made by Eguchi and Kawai [80]. That assumption is the

U(1)d symmetry. Since we do not have to assume the U(1)d symmetry to justify our

reduction of the transverse lattice degrees of freedom, we believe that we do not have
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to introduce quenching [80] or twisted [81] lattices, which were invented to overcome

the problem associated with the naive Eguchi-Kawai reduction at weak couplings.

For more complete and detailed discussion for this claim, see Sec. 6.7. With this

reduction of the transverse degrees of freedom, we can regard all the fields as 1+1

dimensional objects. That is to say that we have some complicated 1+1 dimensional

field theory with some highly non-trivial interactions of the fields. Furthermore, since

we can always work in the frame where we have zero transverse momenta P 1, P 2 = 0,

N=1 SUSY algebra in 3+1 dimensions becomes identical to N=2 SUSY algebra in

1+1 dimensions, which is sometimes referred to as N=(2,2) SUSY in literature, (2,2)

for two Q+’s and two Q−’s. We are able to maintain one of this underlying N=(2,2)

SUSY algebra in our formulation, meaning that we are able to preserve one exact

SUSY.

We discretize light-cone momentum p+ by imposing the periodic condition on

the light-cone spatial coordinate x−. Thus, we have two spatial lattices and one

momentum lattice in our model. Since we are dealing with spatial lattices, one has

to be concerned about the notorious fermion doubling problem. In fact it is well

known that the transverse lattice suffers from the doubling problem [73]. However,

as we have seen in Chapter 5, SDLCQ formulation of a transverse lattice model is

automatically free of the doubling problem [77].

There are some aspects of this calculation that are similar to the 2+1 dimensional

model [62] and there are others that are not. What is not the same is that the

supercharge Q−
α has terms which have different powers of the coupling g′ ≡ g

√
Nc,

where α = 1, 2. To be more precise, Q−
α consists of terms proportional to g′ and

terms proportional to g′3. The different powers of g′ give rise to a rich spectrum as
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one varies g′, and the wavefunctions depend on g′. This means that it is possible to

see wavefunctions which are almost vanishing at small couplings, but become very

large at strong couplings, and vice versa.

One more thing which is different from the previous case is that our Q−
α has terms

of third and fifth order in dynamical fields, while all of the terms in Q− are of third

order for 2+1 dimensional case. This leads to a hamiltonian of eighth order in fields,

which is of higher order than the hamiltonian of sixth order that we get from the

standard formulation of 3+1 dimensional N=1 SYM on the two transverse lattice.

We admit that this is a disadvantage of our formulation in 3+1 dimensions compared

to that in 2+1 dimensions. Nevertheless, we still think that our approach is more

advantageous because in the SDLCQ formulation we use Q−
α , not the hamiltonian,

and this Q−
α is still of lower order in fields than the hamiltonian obtained from the

standard formulation, and also because the standard formulation suffers from the

fermion doubling problem.

Similar to the 2+1 dimensional case we are not able to preserve the full super-

symmetry algebra. We are able to maintain one exact SUSY. This is attributed to

the fact that when quantizing the dynamical fields we have to make the link variable,

which is a unitary matrix, a linear complex matrix. One way to compensate for the

effects of this “linearization” is to make use of the “color-dielectric” formulation of

the lattice gauge theory [45, 64, 82, 63]. In this formulation we consider smeared

degrees of freedom M, which are obtained from the original link variable M by aver-

aging M over some finite volume, say
∑

av M . In order for this smeared theory to be

equivalent to the original one, we must have an effective potential for the M defined
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by integrating out M [64, 82]

exp[−Veff (M)] =

∫
DMδ(M−

∑
av

M) exp[−Scanonical(M)].

However, this Veff (M) can be very complicated and performing the path integral

above is extremely difficult, if not impossible. Thus, one makes some approximations

with ansatz to determine Veff . For more detail, we’d refer the reader to the Refs.

[45, 64, 82, 63].

To constrain the linearized fields, we require the model to exactly conserve one

SUSY as we did for our 2+1 dimensional calculation. That is, we present a physical

Q−
α that preserves one SUSY. By “physical” we mean a Q−

α which transforms one

physical state into another physical state. We are not able to fully recover SUSY due

to the absence of a physical Q+
α . This defect results in a different number of massless

states in the bosonic and fermionic sectors. However, we do see the mass degener-

acy among the massive bosonic and fermionic states. The linearization doubles the

bosonic degrees of freedom, leading to the SUSY breakdown. The partial recovery of

SUSY implies that we have cured some but not all of the problems associated with

the linearization.

We are numerically able to identify what we call the cyclic states and non-cyclic

states by examining the properties of the states. The cyclic states are those whose

color flux winds all the way around in one or two of the transverse directions. For

the non-cyclic states the color flux is localized in color space. The cyclic bound states

have a non-trivial spectrum as a function of the winding number. We find that m2

for the cyclic bound states can be fit by either b + c/WI + d/W 2
I or b + cW 2

I + d/W 2
I ,

where b, c, d are some constants and WI is the winding number in the xI-direction with

I = 1, 2. It could be interesting to know how the form of the m2 changes from weak
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coupling to strong coupling however the complicated spectrum for strong couplings

puts this beyond our reach at the present time.

The structure of this chapter is the following. In Sec. 6.2 we present a stan-

dard formulation of N=1 SYM with a two dimensional transverse lattice and derive

constraint equations on the physical states. We discuss the implications of those in

some detail. We give SDLCQ formulation of N=1 SYM in Sec. 6.3 and show that

this formulation is free from the doubling problem. The coupling dependence of the

mass spectrum is discussed in Sec. 6.4 followed by numerical results for cyclic bound

states in Sec. 6.5 and for non-cyclic bound states in Sec. 6.6. Sec. 6.7 is to show how

we justify the reduction of transverse degrees of freedom in the large Nc limit. The

summary and possible further directions of investigation are given in Sec. 6.8.

6.2 Transverse lattice model in 3+1 dimensions

In this section we present the standard formulation of a transverse lattice model

in 3+1 dimensions for an N=1 supersymmetric SU(Nc) theory with adjoint bosons

and adjoint fermions in the large–Nc limit. We work in light-cone coordinates so that

x± ≡ (x0±x3)/
√

2. The metric is specified by x± = x∓ and xI = −xI , where I = 1, 2.

Suppose that there are Nsites sites in both the transverse directions x1 and x2 with

lattice spacing a. With each site, say n = (i, j), we associate one gauge boson field

Aν,n(xµ) and one four-component Majorana spinor Ψn(xµ), where ν, µ = ±. Aν,n’s

and Ψn’s are in the adjoint representation. The adjacent sites, say n and n+iI , where

iI is a vector of length a in the direction xI , are connected by what we call the link

variables M I
n(xµ) and M I†

n (xµ). M I
n(xµ) stands for a link which goes from the site n

to the site (n + iI) and M I†
n (xµ) for a link from the site (n + iI) to n. We impose the
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periodic condition on the transverse sites so that ANsitesiI+n = An, ΨNsitesiI+n = Ψn,

M I
NsitesiI+n = M I

n and M I†
NsitesiI+n = M I†

n . Under the transverse gauge transformation

[45] the fields transform as

gAµ
n −→ UngAµ

nU †
n − iUn∂

µU †
n, M I

n −→ UnM
I
nU †

n+iI
, Ψn −→ UnΨnU

†
n, (6.1)

where g is the coupling constant and Un ≡ Un(xµ) is a Nc×Nc unitary matrix. In all

earlier work on the transverse lattice [45] Ψn was in the fundamental representation.

The link variable can be written as

M I
n(xµ) = exp

(
iagAn+iI/2,I(x

µ)
)
, (6.2)

where An,I is the transverse component of the gauge potential at site n and as a → 0

we can formally expand Eq. (6.2) in powers of a as follows:

M I
n(xµ) = 1 + iagAn,I(x

µ) +
a2

2

[
ig∂IAn,I(x

µ)− g2 (An,I(x
µ))2] + O(a3). (6.3)

In the limit a → 0, with the substitution of the expansion Eq. (6.3) for M I
n, we expect

everything to coincide with its counterpart in continuum (3+1)–dimensional theory.

The discrete Lagrangian is then given by

L = tr

{
− 1

4
F µν

n Fn,µν +
1

2a2g2
(DµM

I
n)(DµM I

n)†

+
1

4a4g2

∑

I 6=J

(M I
nMJ

n+iI
M I†

n+iJ
MJ†

n − 1) + Ψ̄niΓµDµΨn

+
i

2a
Ψ̄nΓI(M I

nΨn+iIM
I†
n −M I†

n−iI
Ψn−iIM

I
n−iI

)

}
,

where the trace has been taken with respect to the color indices, Fn,µν = ∂µAn,ν −

∂νAn,µ+ig[An,µ, An,ν ], µ, ν = ±. We choose Majorana representation where Majorana

spinors have real component fields and Γ’s are given by

Γ0 ≡
(

0 σ2

σ2 0

)
, Γ1 ≡

(
iσ1 0
0 iσ1

)
, Γ2 ≡

(
iσ3 0
0 iσ3

)
, Γ3 ≡

(
0 −σ2

σ2 0

)
,
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Γ+ ≡ Γ0 + Γ3

√
2

=

(
0 0√
2σ2 0

)
, Γ− ≡ Γ0 − Γ3

√
2

=

(
0
√

2σ2

0 0

)
.

The covariant derivative Dµ is defined by

DµΨn ≡ ∂µΨn + ig[An,µ, Ψn],

DµM
I
n ≡ ∂µM

I
n + igAn,IM

I
n − igM I

nAn+iI ,µ
a→0−→ iagFµI + O(a2),

(DµM I
n)† ≡ ∂µM I†

n − igM I†
n Aµ

n + igAµ
n+iI

M I†
n

a→0−→ iagF µI + O(a2).

In the limit a → 0 we recover the standard Lagrangian as expected. Of course the

form of this Lagrangian is slightly different from that in Ref. [45] since the fermions

are in the adjoint representation. This Lagrangian is hermitian and invariant under

the transformation in Eq. (6.1) as one would expect.

The following Euler-Lagrange equations in the light cone gauge, An,− = 0, are

constraint equations.

∂2
−A−

n ≡ gJ+
n

a→0−→ ig[AI , ∂−AI ] + ∂I∂−AI + 2gψRψR, (6.4)

∂−ψLn =
−i

2
√

2a
σ2βI(M

I
nψRn+iIM

I†
n −M I†

n−iI
ψRn−iIM

I
n−iI

)
a→0−→ −i√

2
σ2βIDIψR,

where

J+
n ≡ i

2g2a2
(M I

n

↔
∂− M I†

n + M I†
n−iI

↔
∂− M I

n−iI
) + 2ψnψn, Ψn ≡ 1

21/4

(
ψRn

ψLn

)
, (6.5)

β1 ≡ σ1, β2 = σ3 and ψL,R are the two-component left-moving, right-moving spinors.

Since these equations only involve the spatial derivative we can solve them for A−
n

and ψLn, respectively. Thus the dynamical field degrees of freedom are M I
n, M I†

n and

ψRn.

Eq. (6.4) gives a constraint on physical states |phys〉, since the zero mode of J+
n

acting on any physical state must vanish,

0

J+
n |phys〉 =

∫
dx−J+

n (xµ)|phys〉 = 0 for any n = (i, j). (6.6)
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This means that the physical states must be color singlet at each site.

It is straightforward to derive P± ≡ ∫
dx−T+±, where T µν is the stress-energy

tensor. We have

P+ = a2
∑

n

∫
dx−tr

(
1

a2g2
∂−M I†

n ∂−M I
n + iψRn∂−ψRn

)
, (6.7)

P− = a2
∑

n

∫
dx−tr

[
1

2
(∂−A−

n )2 + iψLn∂−ψLn

− 1

4a2g2
(M I

nMJ
n+iI

M I†
n+iJ

MJ†
n − 1)

]
, (6.8)

where one should notice that we’ve kept the non-dynamical fields in the expression

for P− to make it look simpler. When one quantizes the dynamical fields, unitarity

of M I
n is lost and M I

n becomes an Nc × Nc complex matrix [45]. One way to com-

pensate for the effects of this “linearization” is to make use of the “color dielectric”

formulation of the lattice gauge theory [45, 64, 82, 63]. We will approach this issue

using supersymmetry as we’ve done for the 2+1 dimensional case.

Having linearized M I
n, we can expand M I

n and ψRn in their Fourier modes as

follows; at x+ = 0

M I
n,rs(x

−) =
ag√
2π

∫ ∞

0

dk+

√
k+

(dI
n,rs(k

+)e−ik+x− + aI†
n,sr(k

+)eik+x−), (6.9)

uα
n,rs(x

−) =
1

2
√

π

∫ ∞

0

dk+(bα
n,rs(k

+)e−ik+x− + bα†
n,sr(k

+)eik+x−), (6.10)

where r, s indicate the color indices, ψRn ≡
(

u1
n

u2
n

)
, α = 1, 2, a†n,sr(k

+) creates a

link variable with momentum k+ which carries color r at site n to s at site (n + iI),

d†n,sr(k
+) creates a link with k+ which carries color r at site (n + iI) to s at site i and

bα†
n,sr creates a fermion at the site n which carries color r to s. Quantizing at x+ = 0

we have
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[M I
ij,rs(x

−), πJ
Mkl,pq(y

−)] =

[
M I

ij,rs(x
−),

∂−yM
J†
kl,pq(y

−)

2a2g2

]
=

i

2
δ(x−−y−)

δik

a

δjl

a
δrpδsqδIJ ,

(6.11)

{uα
ij,rs(x

−), πβ
ψkl,pq(y

−)} = {uα
ij,rs(x

−), iuβ
kl,pq(y

−)} =
i

2
δ(x− − y−)

δik

a

δjl

a
δrpδsqδαβ,

(6.12)

where πM , πψ are the conjugate momentum for M, ψ, respectively, and we wrote out

the site indices for clarity. Note that we divided δik and δjl by a because δik/a →

δ(x1 − y1) and δjl/a → δ(x2 − y2) as a → 0. Then, one can easily see that these

commutation relations are satisfied when a’s, d’s and b’s satisfy the following:

[aI
ij,rs(k

+), aJ†
kl,pq(p

+)] = [dI
ij,rs(k

+), dJ†
kl,pq(p

+)] = δ(k+ − p+)
δik

a

δjl

a
δrpδsqδIJ ,

{bα
ij,rs(k

+), bβ†
kl,pq(p

+)} = δ(k+ − p+)
δik

a

δjl

a
δrpδsqδαβ, (6.13)

with others all being zero. Physical states can be generated by acting on the Fock

vacuum |0〉 with these aI†’s, dI†’s and bα†’s in such a manner that the constraint

Eq. (6.6) is satisfied.

Before discussing the physical constraint in more detail, let us point out the fact

that this naive Lagrangian formulation is not free from the fermion species doubling

problem, while our SDLCQ formulation that we will introduce in the next section

actually is [77]. Nonetheless, the constraint equation would still be valid since the

constraint equation (6.4, 6.6) was derived from δL
δA−n

−∂+
δL

δ∂+A−n
= 0 in which we do not

have any problematic terms responsible for the doubling problem, i.e. the terms which

contains the difference between fermions at different sites. Therefore, we assume that
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this physical constraint is valid for our SDLCQ formulation in the next section and

we will fully utilize it when we carry out our numerical calculations.

With this subtlety in mind, let us complete this section by discussing the physical

constraint (6.6) in more detail. The states are all constructed in the large–Nc limit,

and therefore we need only consider single–trace states. In order for a state to be

color singlet at each site, each color index has to be contracted at the same site. As

an example consider a state represented by |phys 1〉 ≡ dI†
n,rsa

I†
n,sr|0〉, where we’ve

suppressed the momentum carried by aI† and dI† and we’ll do so hereafter unless it’s

necessary for clarity. For this state the color r at site n is carried by aI†
n to s at site

(n+ iI) and then brought back by dI†
n to r at site n. The color r is contracted at site n

only and the color s at site (n + iI) only. Therefore, this is a physical state satisfying

Eq. (6.6). A picture to visualize this case is shown in Fig. 6.1a. Diagrammatically,

one can say that at every point in color space one has to have either no lines or two

lines, one of which goes into and the other of which comes out of the point, so that

the color indices are contracted at the same site.

One also needs to be careful with operator ordering. One can show that the

state dI†
n,rsa

I†
n,stb

I†
n,tr|0〉 is physical, while the state bI†

n,rsa
I†
n,std

I†
n,tr|0〉 is unphysical. This

statement is almost obvious when one recalls what each creation operator does.

We should however note that a true physical state be summed over all the trans-

verse sites since we have discrete translational symmetry in the transverse direction.

That is, for example, the states dI†
11,rsa

I†
11,sr|0〉 and dI†

12,rsa
I†
12,sr|0〉 are the same up to a

phase factor given by exp(iP 2a). We set the phase factor to one since we take physical

states to have P 1 = P 2 = 0. The physical state |phys 1〉 is in fact
∑Nsites

i,j=1 dI†
ij,rsa

I†
ij,sr|0〉

with the appropriate normalization constant. From a computational point of view
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(a) (b)

Figure 6.1: (a)The color charge for the state |phys 1〉 ≡ dI†
n,rsa

I†
n,sr|0〉. The planes

represent the color space. aI†
n carries color r at site n to s at site n + iI and

dI†
n carries it back to r at site n. (b) The color charge for the state |phys 2〉 ≡

aI†
n+(Nsites−1)iI ,ru · · · aI†

n+iI ,tsa
I†
n,sr|0〉. The lines which intersect a circle represent the

color planes at sites. The color goes all the way around the transverse lattice.

this leads to a great simplification in the large Nc limit. Because as shown in Sec. 6.7

it turns out that in the large Nc limit we can drop the site index n from the expression

of the supercharges and thus can practically set Nsites = 1 for our calculation. This

is in some sense the manifestation of the Eguchi-Kawai reduction [71]. Eguchi-Kawai

reduction tells us in the usual lattice theory that the large Nc limit allows us to work

with only one site in each of the space-time directions in Euclidean space. However,

the way we justify this reduction in our transverse lattice formulation is quite differ-

ent from the way Eguchi and Kawai do in the usual lattice formulation. Therefore,

we believe that we do not have to introduce quenching [80] or twisted [81] lattices to

overcome the problem that the naive Eguchi-Kawai reduction comes across at weak

couplings [80]. See Sec. 6.7 for more detailed support for this claim.

Periodic conditions on the fields allow for physical states of the form |phys 2〉 ≡
∑

n aI†
n+(Nsites−1)iI ,ru · · · aI†

n+iI ,tsa
I†
n,sr|0〉. The color for this state is carried around the
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transverse lattice, as shown in Fig. 6.1b. We will refer to these states as cyclic states.

The states where the color flux does not go all the way around the transverse lattice

we will refer to as non-cyclic states. We characterize states by what we call the

winding number defined by WI = nI/Nsites, where nI ≡
∑

n(aI†
n aI

n − dI†
n dI

n). For

Nsites = 1, the winding number WI simply gives us the excess number of aI† over dI†

in a state. We use the winding number to classify states since the winding number is

a good quantum number commuting with P−
SDLCQ as we will see in the next section.

In the language of the winding number the non-cyclic states are those states with

WI = 0 and cyclic states have non-zero WI .

6.3 SDLCQ of the transverse lattice model

The transverse lattice formulation of N = 1 SYM theory in 3+1 dimension pre-

sented in the previous section has several undesirable features. First and foremost the

naive Lagrangian suffers from the fermion species doubling problem [77]. Second, the

supersymmetric structure of the theory is completely hidden. Lastly, the resulting

Hamiltonian is 6th order in the dynamical fields. From the numerical point of view a

6th order interaction makes the theory considerably more difficult to solve. In Ref. [62]

we found that the (2+1)–dimensional supersymmetric Hamiltonian is only 4th order

making this discrete formulation of the theory very different. Unfortunately, it seems

this is not the case for 3+1 dimensional model. Instead we seem to have supersym-

metric Hamiltonian of 8th order in fields. However, since this SDLCQ Hamiltonian

is free from the doubling problem [77] and since the supercharge Q−
α , where α = 1, 2,

is of 5th order and it is this Q−
α that we make use of for our calculations, we think
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that this SDLCQ formulation is still more advantageous than the naive DLCQ for-

mulation. There can, of course, be many discrete formulations that correspond to the

same continuum theory and it is therefore desirable to search for a better one.

In the spirit of SDLCQ we will attempt a discrete formulation based on the un-

derlying super-algebra of this theory,

{Q±
α , Q±

β } = 2
√

2P±δαβ, {Q+
α , Q−

β } = 0, (6.14)

where α, β = 1, 2 and the supercharge Q is given by

Q ≡
∑

n

∫
dx−j+

n ≡




Q+
1

Q+
2

Q−
1

Q−
2




with jµ
n being the supercurrent at the site n = (i, j), which is a Majorana spinor. For

the derivation of the super-algebra in Majorana representation Eq. (6.14), see Sec. 6.7.

We’ve set P I = 0 with I = 1, 2 since we’re considering the physical states only with

P I = 0. Note that this choice of P I has made Eq. (6.14) coincide with the N=2

super-algebra in 1+1 dimensions also known as N=(2,2) super-algebra although we

are considering N=1 SYM in 3+1 dimensions.

In this effort however there are some fundamental limits to how far one can go. As

we discussed in the previous section the physical states of this theory must conserve

the color charge at every point on the transverse lattice. Experience with other

supersymmetric theories indicates that each term in Q+
α has to be either the product

of one Mn and one ψn or of one M †
n and one ψn therefore Q+

α is unphysical, by

which we mean that Q+
α transforms a physical state into an unphysical one, so that

〈phys|Q+
α |phys〉 = 0. While this is not a theorem, it seems very difficult to have

any other structure since in light cone quantization P+ is a kinematic operator and
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therefore independent of the coupling. There appears to be no way to make a physical

P+ from Q+
α . We will use P+ as given in Eq. (6.7) in what follows. Similarly, we are

not able to generally construct physical P I from Q+
α and Q−

β . In fact P I is unphysical

in our formalism, leading to 〈phys|P I |phys〉 = 0. Formally we will work in the frame

where total P I is zero, so it would appear consistent with this result. We should

note, however, that this is not totally satisfying because P I = 0 was a choice and a

non-zero value is equally valid and not consistent with the matrix element.

Despite these difficulties we find a physical Q−
α which gives us P−

SDLCQ

a→0−→ P−
cont.

The expression for Q−
α is

Q−
α = i23/4a2

∑
n

∫
dx−tr

{[
−i

2ga2

(
M I

n

↔
∂− M I†

n + M I†
n−iI

↔
∂− M I

n−iI

)
− 2gψT

RnψRn

]

× 1

∂−
(σ2ψRn)α +

−i

2ga2
(M I

nMJ
n+iI

M I†
n+iJ

MJ†
n − 1)(βIβJσ2ψRn)α

}

a→0−→ i2−1/4

∫
d3x

{
−2gJ+ 1

∂−
(σ2ψR)α + FIJ(βIβJσ2ψR)α

}
,

where β1 ≡ σ1, β2 = σ3, gJ+ ≡ ig[AI , ∂−AI ] + ∂I∂−AI + 2gψRψR, and the last line is

the continuum form for Q−
α in 3+1 dimensions.

It is tedious but straightforward to check that {Q−
1 , Q−

1 } 6= {Q−
2 , Q−

2 }, while both

{Q−
1 , Q−

1 } and {Q−
2 , Q−

2 } give the same correct P− in the limit of a → 0. In addition,

one can show that {Q−
1 , Q−

2 } 6= 0 in the discrete form but becomes zero as a → 0.

This means that we preserve only one supersymmetry algebra, say {Q−
1 , Q−

1 } = P−,

in our discrete formalism. We cannot use both Q−
1 and Q−

2 at the same time to

construct physical states since they do not commute with each other. However, both

Q−
1 and Q−

2 separately give us the same mass spectrum when we perform SDLCQ
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calculations. Thus, it is sufficient to consider only one of the two and we take Q−
1 for

our calculations in the following sessions.

Notice that Q−
α above is fifth order and, thus, P−

SDLCQ obtained from it is eighth

order in fields as we mentioned at the beginning of this section. In fact we find
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P−
SDLCQ ≡

{Q−
1 , Q−

1 }
2
√

2

= a2
∑

n

∫
dxtr

{
− g2

2

i

2g2a2

[(
M I

n

↔
∂ M I†

n + M I†
n−iI

↔
∂ M I

n−iI

)
+ 2uα

nuα
n

]

× 1

∂2

i

2g2a2

[(
M I

n

↔
∂ M I†

n + M I†
n−iI

↔
∂ M I

n−iI

)
+ 2uα

nuα
n

]

− i

2a2
(u2

n+iI
M I†

n −M I†
n u2

n)∂−1(M I
nu2

n+iI
− u2

nM
I
n) +

i

2a2

{

(u2
n+i1+i2

M1†
n+i2

−M1†
n+i2

u2
n+i2

)∂−1(M2†
n u1

nM
1
nM2

n+i1
− u1

n+i2
M2

n+i2
M1

n+2i2
M2†

n+i1+i2
)

+ (u2
n+i2

M2†
n −M2†

n u2
n)∂−1(u1

nM1
nM2

n+i1
M1†

n+i2
−M1†

n−i1
u1

n−i1
M2

n−i1
M1

n−i1+i2
)

+ (u2
n+i1

M2
n+i1

−M2
n+i1

u2
n+i1+i2

)∂−1(M1†
n+i2

M2†
n u1

nM1
n −M1

n+i1+i2
M2†

n+2i1
M1†

n+i1
u1

n+i1
)

+ (u2
nM1

n −M1
nu2

n+i1
)∂−1(M2

n+i1
M1†

n+i2
M2†

n u1
n −M2†

n+i1−i2
M1†

n−i2
u1

n−i2
M2

n−i2
)
}

− i

4a2

{
(M2

n+i1
M1†

n+i2
M2†

n u1
n −M2†

n+i1−i2
M1†

n−i2
u1

n−i2
M2

n−i2
)

× ∂−1(u1
nM2

nM1
n+i2

M2†
n+i1

−M2†
n−i2

u1
n−i2

M1
n−i2

M2
n+i1−i2

)

+ (M2†
n u1

nM
1
nM2

n+i1
− u1

n+i2
M2

n+i2
M1

n+2i2
M2†

n+i1+i2
)

× ∂−1(M2†
n+i1

M1†
n u1

nM
2
n −M2

n+i1+i2
M1†

n+2i2
M2†

n+i2
u1

n+i2
)

+ (M1†
n+i2

M2†
n u1

nM1
n −M1

n+i1+i2
M2†

n+2i1
M1†

n+i1
u1

n+i1
)

× ∂−1(M1†
n u1

nM
2
nM1

n+i2
− u1

n+i1
M1

n+i1
M2

n+2i1
M1†

n+i1+i2
)

+ (u1
nM1

nM2
n+i1

M1†
n+i2

−M1†
n−i1

u1
n−i1

M2
n−i1

M1
n−i1+i2

× ∂−1(M1
n+i2

M2†
n+i1

M1†
n u1

n −M1†
n−i1+i2

M2†
n−i1

u1
n−i1

M1
n−i1

)
}

+
−1

8a2
(M1

nM2
n+i1

M1†
n+i2

M2†
n −M2

nM1
n+i2

M2†
n+i1

M1†
n )2

}
.
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One can show that by setting g = 0 and M, M † = 1 this P−
SDLCQ gives rise to a

dispersion relation

k− =
1

2k+




(
sin k1a

2

a/2

)2

+

(
sin k2a

2

a/2

)2

 ,

which is free from the fermion species doubling problem [77]. Furthermore, one can

check that this Q− commutes with P+ obtained from L; [Q−, P+] = 0. Thus, it

follows that,

〈phys|[Q−,M2]|phys〉 = 〈phys|[Q−, 2P+P−
SDLCQ]|phys〉 = 0 (6.15)

in our SDLCQ formalism, where M2 ≡ 2P+P−
SDLCQ−(P 1)2−(P 2)2. The fact that the

Hamiltonian is the square of a supercharge will guarantee the usual supersymmetric

degeneracy of the massive spectrum, and our numerical solutions will substantiate

this. Unfortunately one needs a Q+ to guarantee the degeneracy of the massless

bound states.

Recalling that we set Nsites = 1 in both transverse directions and that we are in

the large-Nc limit, we can write Q−
1 as

Q−
1 = Q−

11 +Q−
12 +Q−

13,

where

Q−
11 = −i2−1/4a2g√

π

∫ ∞

0

dk1dk2dk3δ(k1 + k2 − k3)

×
[ k2 − k1

k3

√
k1k2

(−b2†dIaI + dI†aI†b2 − b2†aIdI + aI†dI†b2)

+
k2 + k3

k1

√
k2k3

(−dI†b2dI + b2†dI†dI − aI†b2aI + b2†aI†aI)

+
k3 + k1

k2

√
k3k1

(aI†aIb2 − aI†b2†aI + dI†dIb2 − dI†b2†dI)

+

(
1

k1

+
1

k2

− 1

k3

)
(b2†b2†b2 + b2†b2b2)

]
, (6.16)
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Q−
12 = −i2−1/4a2g√

π

∫ ∞

0

dk1dk2dk3δ(k1 + k2 − k3)

×
[−1

k3

(b2†b1b1 + b1†b1†b2) +
1

k1

(b1†b2b1 + b2†b1†b1) +
1

k2

(b1†b2†b1 + b1†b1b2)
]
, (6.17)

Q−
13 = −i2−1/4a2g√

π

a2g2

4π

∫ ∞

0

dk1dk2dk3dk4dk5

{
δ(k1 + k2 + k3 + k4 − k5)

[

1√
k1k2k3k4

(b1†d1d2a1a2 + d2†d1†a2†a1†b1 − b1†d2d1a2a1 − d1†d2†a1†a2†b1)

+
1√

k2k3k4k5

(d2†b1d1d2a1 + b1†d2†d1†a2†d1 − d1†b1d2d1a2 − b1†d1†d2†a1†d2)

+
1√

k3k4k5k1

(d1†a2b1d1d2 + a1†b1†d2†d1†d2 − d2†a1b1d2d1 − a2†b1†d1†d2†d1)

+
1√

k4k5k1k2

(a2†a1a2b1d1 + a2†a1†b1†d2†a1 − a1†a2a1b1d2 − a1†a2†b1†d1†a2)

+
1√

k5k1k2k3

(a1†d2a1a2b1 + d1†a2†a1†b1†a2 − a2†d1a2a1b1 − d2†a1†a2†b1†a1)
]

+ δ(k1 + k2 + k3 − k4 − k5)

×
[ 1√

k1k2k3k4

(d1†a2†a1†a2b1 + a1†b1†d2a1a2 − d2†a1†a2†a1b1 − a2†b1†d1a2a1)

+
1√

k2k3k4k5

(b1†d2†d1†d1d2 + d2†d1†b1d1d2 − b1†d1†d2†d2d1 − d1†d2†b1d2d1)

+
1√

k3k4k5k1

(a1†b1†d2†d2a1 + d1†a2†a2b1d1 − a2†b1†d1†d1a2 − d2†a1†a1b1d2)

+
1√

k4k5k1k2

(a2†a1†b1†a1a2 + a2†a1†a1a2b1 − a1†a2†b1†a2a1 − a1†a2†a2a1b1)

+
1√

k5k1k2k3

(d2†d1†a2†b1d1 + b1†d2†d1d2a1 − d1†d2†a1†b1d2 − b1†d1†d2d1a2)
]}

, (6.18)

with k+ ≡ k, a1 ≡ a(k1),

a†aa ≡ tr(a†3a1a2), a†a†a ≡ tr(a†1a
†
2a3), a†aaaa ≡ tr(a†5a1a2a3a4),

a†a†a†a†a ≡ tr(a†1a
†
2a
†
3a
†
4a5), a†a†a†aa ≡ tr(a†1a

†
2a
†
3a4a5), a†a†aaa ≡ tr(a†4a

†
5a1a2a3).

Q11 is the part of Q−
1 which looks exactly like Q− in 2+1 dimensional model with the

difference being that here we have two types for each of the bosonic fields a and d.

Q12 is a new piece in 3+1 dimensions and mixes two different types of fermionic fields.
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Q13 is also new and composed of fields of fifth order. Note that for small couplings,

Q11 and Q12 dominate over Q13, while Q13 dominates in the strong coupling regime.

Notice that from this explicit expression for Q−
1 it is clear that the winding number

introduced in the last section evidently commutes with Q−
1 and, thus, with P−

SDLCQ.

Therefore, cyclic states do not mix with non-cyclic states.

It is always important to look for symmetries of Q− since the symmetries, if any,

will reduce the amount of the computational efforts considerably. To do this, let us

consider three cases separately: (i) the intermediate coupling where we have all the

three pieces together for Q−
1 ; (ii) the weak coupling limit where we can ignore Q13;

(iii) the strong coupling limit where we consider Q13 only. For the first case (i) we

find two Z2 symmetries,

• a1
ij ↔ −a2

ij, d1
ij ↔ −d2

ij, b1
ij ↔ −b1

ij, b2 unchanged,

• aI
ij ↔ −dI

ji, bα
ij ↔ −bα

ji.

The first symmetry implies that states with the winding numbers, say (W1,W2),

are equivalent to those with (W2,W1) up to the minus sign. On the other hand

the second symmetry implies that states with (W1,W2) are equivalent to those with

(−W1,−W2) up to the minus sign.

In the case of the weak coupling limit (ii), we find two more independent Z2

symmetries;

• aI
ij ↔ −aI

ji, dI
ij ↔ −dI

ji, bα
ij ↔ −bα

ji.

• a1
ij ↔ −d1

ji, a2
ij ↔ −a2

ji, d2
ij ↔ −d2

ji, bα
ij ↔ −bα

ji.

The second of these implies, with the help of the second Z2 symmetry we found in

the case of (i), the equivalence of states under (W1,W2) ↔ (−W1,W2) ↔ (W1,−W2).
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In the strong coupling limit (iii), we do not have any other Z2 symmetries besides

the two we found in the case of (i). However, it is easy to see that Q13 commutes

with b2†b2, thus the number of b2†’s is a good quantum number as well as the two

winding numbers.

It is interesting to see what we can find for each of the three different cases (i),

(ii) and (iii). However, in this our first attempt to formulate N = (2, 2) SYM in

3+1 dimensions with SDLCQ on a two dimensional transverse lattice, we constrain

ourselves to consider only the most generic case (i) where we have all the three pieces

together for Q−.

Now we are in a position to solve the eigenvalue problem 2P+P−
SDLCQ|phys〉 =

m2|phys〉. We impose the periodicity condition on M I
n, M I†

n and uα
n in the x− direction

giving a discrete spectrum for k+, and ignore the zero-mode:

k+ =
π

L
n (n = 1, 2, . . . .),

∫ ∞

0

dk+ → π

L

∞∑
n=1

.

We impose a cut-off on the total longitudinal momentum P+ i.e. P+ = πK/L, where

K is an integer also known as the ‘harmonic resolution’, which indicates the coarseness

of our numerical results. For a fixed P+ i.e. a fixed K, the number of partons in

a state is limited up to the maximum, that is K, so that the total number of Fock

states is finite, and, therefore, we have reduced the infinite dimensional eigenvalue

problem to a finite dimensional one.

For this initial study of the transverse lattice we consider resolution up to K = 8

for non-cyclic (W1 = W2 = 0) states and up to K = WI + 6 and K = WI + 5 for

states with |WI | = 1 and |WI | = 2, 3, 4, 5, respectively. We were able to handle these

calculations with our SDLCQ Mathematica code and C + + code.
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6.4 Coupling dependence of the mass spectrum

In this section we will discuss the mass spectrum as a function of g′ ≡ g
√

Nc for

K = 4, 5, 6.

It is instructive to see the dependence of m2 on the coupling since we have terms in

Q− that go like g′ and g′3. In Fig. 6.2 we show the entire mass spectrum of non-cyclic

states in units of g′2/πa2 for K = 4, 5, 6 as a function of g′ in a log-log plot. In order

to see the crossings in more detail we show Fig. 6.2(b), (d), and (f) on a different

scale from (a), (c) and (e), respectively. We’ve set 10−8 or less to the numerical zero

in our code.

As one can see from Fig. 6.2, there is a rich structure in the mass spectrum as a

function of g′, and the origin of this structure for the case where K = 4 in Fig. 6.2(a)

and (b) is rather easy to understand. We find four types of states; (i) those states

which are killed by Q13 and whose m2 in units of g′2
πa2 are independent of g′; (ii)

those states which vanish upon the action of Q11 +Q12 and thus whose m2 in units

of g′2
πa2 go like g′4; (iii) those states which survive upon the action of Q11 + Q12 and

of Q13 independently and whose m2 in units of g′2
πa2 go like (A + Bg′2)2, where A,B

are some constants; (iv) those massless states which become zero upon the action of

Q11 + Q12 + Q13. From Fig. 6.2(a) and (b) it is easy to identify one state each for

the second and third type because m2 of a state of the second type go like g′4, giving

rise to a straight line with a non-zero slope for all g′ in the log-log plot, while m2

for the third type is (A + Bg′2)2, leading to some flat, constant line at small g′ and

a (inclined) straight line at large g′. We should note that for the second kind one

should take into account the level crossing. The rest of the states clearly fall into

either the first kind or the fourth kind. States of the first type yield g′-independent
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m2, thus, a flat line in the log-log plot, while states of the fourth type are massless

represented by the “dots” below the line of log10 m2 = −8 since the numerical zero is

set to 10−8 in our code.

This discussion does not however seem to explain the dependence on g′ of the

mass spectrum with K = 5, 6. To get the full understanding of the behavior, we

made a toy model. In this model we have a 2 × 2 matrix R for the boson sector of

Q− given by

R =

(
b1 + c1g

′2 b2 + c2g
′2

b3 + c3g
′2 b4 + c4g

′2

)
,

where bi with i = 1, 2, 3, 4 is equal to either 0 or 1 and ci is equal to either 0 or 1/4π.

Here one should notice that we’ve factored out g′ from R or Q−, and therefore g′2

from P−. The Q− for this toy model is thus given by

Q−/g′ =
(

0 R
RT 0

)
,

where T stands for the transpose. Thus, the matrix to diagonalize is

(Q−/g′)2 =

(
RRT 0

0 RT R

)
,

or equivalently RRT . Among the 28 = 256 possible forms for Q−, we found sets

of parameters that lead to a level crossing, and non-trivial behaviors in the mass

spectrum. Some of those non-trivial ones look the same as some of those in Fig. 6.2,

while there are others which do not look like any of those in Fig. 6.2. For example see

Fig. 6.3, where Fig. 6.3(a) and (b) are the ones that we can see in the actual spectrum

in Fig. 6.2, while 6.3(c) and (d) are not. The sets of parameters we used are given in

Table 6.1. Of course there are ones which are seen in Fig. 6.2, but cannot be found

in our toy model. However, it is very likely that as we increase the size of the matrix
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R of our toy model, we would be able to identify those not-yet-seen behaviors in our

toy model as well.

b1 c1 b2 c2 b3 c3 b4 c4

Fig. 6.3(a) 0 1/4π 0 1/4π 1 0 0 0
Fig. 6.3(b) 0 0 1 1/4π 1 1/4π 0 1/4π
Fig. 6.3(c) 0 0 1 0 1 0 0 1/4π
Fig. 6.3(d) 0 1/4π 1 0 1 0 0 1/4π

Table 6.1: Parameter sets used for our toy model to get each of the spectra in Fig. 6.3.

Using this toy model, we can study wavefunction dependence on the coupling g′.

As the simplest example, consider the case of the level crossing shown in Fig. 6.3(a).

In this case we can think of a bound state |m2〉 as a linear combination of two different

states,

|m2〉 = f(g′)|1〉+ h(g′)|2〉,

where f(g′) and h(g′) are wavefunctions, which depend on g′. |1〉 is a state of the

first type of the four we considered above and responsible for the constant behavior

of the mass spectrum and |2〉 is a state of the second type responsible for the g′4-

behavior. In Fig. 6.3(a) the higher energy state stays constant for small g′, where

f(g′) À h(g′), and goes like g′4 for large g′, where h(g′) À f(g′). The opposite

behavior of the wavefunctions is true for the lower energy state. That is, the lower

energy state goes like g′4 for small g′, where h(g′) À f(g′), and stays flat for large

g′, with f(g′) À h(g′). This observation implies that for more general cases a bound

state is a linear combination of states of the four types associated with g′-dependent
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wavefunctions, and it is the non-trivial g′-dependence of the wavefunctions that gives

rise to such a rich, complicated spectrum in Fig. 6.2.

We expect that the structure of the mass spectrum as a function of g′ will persist

for the cyclic states and in fact we have numerically confirmed the similar structure

for them as well.

Note that since the dominant structure of a bound state changes as one changes g′,

there is some sort of “transition” as one goes from weak coupling to strong coupling.

It is of great interest to see if the winding number dependence of the mass spectrum

varies due to this transition. We are not able to identify any states in strong coupling

regime because of the rich and complicated behavior of the spectrum although we are

able to find some states in the intermediate region where g′ = 1.

We discuss the mass spectrum of the cyclic states as a function of the winding

number and the resolution with g′ = 1 in more detail in the next section. The

discussion of the mass spectrum of the non-cyclic states is in the following section.

6.5 Numerical results for the cyclic (WI 6= 0) bound states

In principle we can study the case where both of the winding numbers are non-

zero and the case where one of them equals zero. However, the size of the Fock basis

is much larger for the former case than for the latter. This means that we can reach

a higher resolution for the latter case. Thus, in order to get enough data to analyze

for our first attempt we restrict ourselves to the case where we set one of the winding

numbers to zero. Since we have two Z2 symmetries, (W1,W2) ↔ (W2,W1) and

(W1,W2) ↔ (−W1,−W2), we can set W2 = 0 without loss of generality and consider

only positive W1 when studying the winding number dependence of the bound states.
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As guaranteed by the super–algebra, we find numerically a degeneracy in the mass

spectrum between massive fermionic and bosonic states. However, this supersymme-

try is broken for the massless states since we do not preserve the entire set of super

symmetry algebra. In this section we only consider the massive bound states, and

therefore it suffices to consider only bosonic states.

In Fig. 6.4(a), (b), (c), and (d) we give plots of m2 with g′ = 1 for four low–energy

bound states as a function of 1/(K −W1) and extrapolate m2
∞ in the (K −W1) →

∞ limit using a linear fit b + c/(K − W1) for (a) through (c) and a quadratic fit

b + c/(K − W1) + d/(K − W1)
2 for (d), where b, c, d are fitting parameters. We

identify a bound state with different K’s from the properties of the bound state, such

as the averaged number of partons of a particular type etc. We present here four

bound states we could easily identify. The dominant fock component of the bound

state in (a) and (c) has the form b1†a1† · · · a1†b1†. For the bound state in (b) the

dominant component is of the form b1†a1† · · · a1†b2†. The bound state in (d) has the

dominant component of d2†a1† · · · a1†a2†.

In Fig. 6.5 we present m2
∞, obtained in Fig. 6.4(a), (b), (c), and (d), as a function

of W1. We show a fit to the data of the form b+cW 2
1 +d/W 2

1 in Fig. 6.5(a) and of the

form b + c/W1 + d/W 2
1 in Fig. 6.5(b). As can be seen, it is difficult to say which fit

is better from the graphs. The fit of the form b + cW 2
1 + d/W 2

1 appears a bit better.

The use of a fit of the form b+cW 2
1 +d/W 2

1 has a string theory justification. In the

string theory the energy of a string confined in one dimension with a period L is given

by the sum of its momentum mode and its winding mode, so that E = p2π/L+ qTL,

where p, q are integers and T is the string tension. Now if we consider our cyclic
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bound states as a string confined in the x1-direction with L = aW1, then it follows

that m2 = b + cW 2
1 + d/W 2

1 .

We should however remind the reader that we used a fit of the form b+c/W+d/W 2

in Ref. [62]. There we argued that the operator has the form Q− = b + ck⊥ in 2+1

continuous theory and m2 ∼ (Q−)2 = b + c/W + d/W 2 with k⊥ ∼ 1/L ∼ 1/W . This

behavior is consistent with the unique properties of SYM theories that we have seen

in previous SDLCQ calculations [55, 67]. We have seen that as we increase K we

uncover longer bound states that have lower masses. Supersymmetric theories like to

have light bound states with long strings of gluons. We call these bound states with

long strings of gluons, stringy bound states. In 3+1 dimensions with two transverse

lattices we have seen the stringy bound states as well, and we have Q− = b+ck1+dk2,

leading to the fit of the form b + c/W1 + d/W 2
1 in Fig. 6.5(b) for k1 ∼ 1/L ∼ 1/W1

and k2 = 0. Up to the numerical resolution we can correctly reach, we can not say for

sure which form of m2 describes N=(2,2) SYM in 3+1 dimensions. It appears that

the form b + cW 2
1 + d/W 2

1 is preferable, suggesting that the cyclic bound states in

3+1 dimensions are more like a string with the energy of the form E = p2π/L+ qTL.

6.6 Numerical results for the non-cyclic bound states (WI =
0)

Let us now discuss numerical results for the non-cyclic bound states. Again we

follow bound states that we can easily identify from the properties of the bound

states. In Fig. 6.6 we show m2 of three low-energy states in units of g′2
πa2 as a function

of 1/K with g′ ≡ g
√

Nc = 1. The state A denoted by circles is composed primarily

of two bosons and two fermions, b1†d1†a1†b1†. The state B and C denoted by squares

and diamonds are composed primarily of two fermions, b1†b2† and b1†b1†, respectively.
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b1†d1†a1†b1† b1†b2† b1†b1†

m2
∞ 1.764 4.744 8.204

Table 6.2: Extrapolated values for m2 in units of g′2
πa2 as K →∞ for State A, B, and

C in Fig. 6.6 represented by its dominant Fock state.

We show a linear fit to the data and see good conversion as K →∞ for all the three

states. The extrapolated values for m2 in the limit of K →∞ are given in Table 6.2.

We also find the stringy states for the non-cyclic states.

Recall that we found in Sec. 4 that a bound state would be a linear combination

of states of the four types we enumerated in Sec. 4. Hence, it is instructive to see

if we can identify the three bound states with any of the four types. For K = 4 we

can identify all the three bound states with those that are killed by Q13 and whose

mass in units of g′2
πa2 are independent of g′. However, as K increases, we are not able

to classify them into any particular type of the four. This is because as we increase

K the number of states becomes very large and the mass spectrum becomes dense.

It is likely that these states mix with other nearby states with the same coupling

dependence, giving rise to small changes in m2 but still the same general coupling

dependence. At this time however we are not able to resolve the spectrum in an

enough detail to study these effects.

6.7 Eguchi-Kawai Reduction

For our numerical calculation we’ve set Nsites = 1, in other words, we’ve dropped

the site indices. This reduction of the transverse degrees of freedom has brought a

great amount of simplification in our calculation and needs some detailed justification.
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Since it is only the supercharges that we need to do our calculation, if the supercharges

do not depend on the site indices in the large Nc limit, neither does any quantity that

can be computed from Q−
α , for instance m2 for our case. Therefore, in order to

justify the reduction of the degrees of freedom for our purposes, it suffices to show

the independence of Q−
α of the site indices in the large Nc limit. In this section,

in particular, we will show that in the large Nc limit the leading order terms of

the supercharges Q−
α with keeping all the site indices are the same as those with

setting Nsites = 1. We should note that this sort of arguments about the justification

of the reduction on a transverse lattice have already been given in literature, for

instance see Refs. [45, 64, 82, 63] and our arguments below closely parallel those in

the Refs. [45, 63].

In what follows we only consider Q−
1 , however the same arguments apply equally

well to Q−
2 . For definiteness let us first consider a Fock state denoted by

∑
n

tr[. . . d1†
n (k1)a

1†
n (k2)b

1†
n (k3)a

1†
n−i1

(k4) . . .]|0〉,

where we’ve written k+ ≡ k, n ≡ (i, j) is the transverse lattice site, i1 is the vector

of length a pointing the x1 direction, a is the lattice spacing, and the dots represent

some creation operators. When we act on this state with Q−
1 , we get for example

from one of the terms in Q−
1 , say b2†d1a1 ≡ ∑

n tr[b2†
n (p1 + p2)d

1
n(p1)a

1
n(p2)] on it

Nc

∑
n

tr[. . . b2†
n (k1 + k2)b

1†
n (k3)a

1†
n−i1

(k4) . . .]|0〉.

If we set Nsites = 1, then the Fock state now becomes

tr[. . . d1†(k1)a
1†(k2)b

1†(k3)a
1†(k4) . . .]|0〉,

and upon the action of Q−
1 we get from b2†d1a1 ≡ tr[b2†(p1 + p2)d

1(p1)a
1(p2)] on it

Nctr[. . . b
2†(k1 + k2)b

1†(k3)a
1†(k4) . . .]|0〉, (6.19)
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and one more term

tr[. . . b2†(k1 + k4) . . .]tr[a1†(k2)b
1†(k3)]|0〉. (6.20)

Notice that the extra term Eq. (6.20) we get by setting Nsites = 1 is down by 1/Nc

compared to the leading order term Eq. (6.19) and thus we can ignore it in the large

Nc limit. Of course, in the above example, we could and would have gotten many

more terms depending on what we have in those ’dots’ inside the trace of the Fock

state we considered. However, it is easy to see that our conclusion remains the same;

all the extra terms we get by having only one site are down by 1/Nc or more powers

of 1/Nc. This all comes down to the fact that we can have only single-traced states

in the large Nc limit. Therefore, we find that the leading order terms of Q−
α are the

same whether we keep track of the site indices or not. Although this proof is for finite

K, we suspect that the same result would persist at infinite K.

The way to justify the reduction here should be contrasted to the way exploited

by Eguchi and Kawai [71]. Eguchi and Kawai showed that in the large Nc limit we

can work with only one lattice site in each of the space-time directions in Euclidean

space. However, the proof was based on, among others, the assumption that U(1)d

symmetry is not spontaneously broken, where d is the number of the space-time

dimensions. This assumption was found to be wrong for d > 2 at weak couplings

by the authors of Ref.[80]. To resolve this problem, there have been many models

proposed, for instance quenching [80] and twisted [81] lattice formulations. Here in

our formulation, however, we believe that we do not have to introduce any of the

modified lattice formulation since the way we justify the reduction is quite different

the way Eguchi and Kawai do. Our proof stands on its own feet regardless of our

maintaining the U(1)d symmetry or not and, therefore, would not suffer from the
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problem associated with the naive Eguchi-Kawai reduction as we go from weak to

strong couplings.

A question, however, remains. That is the question of how well we’ve managed

to quantize the fields since all our arguments above rely on the fact that we have

the quantized fields and true vacuum. Put in another way, how good the reduction

procedure is depends on how good our quantization procedure is. Recall that to

quantize, we had to “linearize” the unitary link variables, which leads to the break-

down of SUSY. The authors of Refs. [45, 64, 82, 63] make use of the “color-dielectric”

formulation to resolve the problem for non-supersymmetric theories. Although this

formulation resolves the problem completely, it prevents one from going to small lat-

tice spacings. In our formulation we do not have that constraint on the lattice spacing.

However, the price we pay is that we resolve the problem of the linearization partially,

not completely. Thus, it is of great importance for one to see to what extent we’ve

resolved the problem and, if possible and necessary, to find a way to get around it

completely. Up to this point we are not able to answer this question, but this is one

of the crucial steps we should take towards a more sensible supersymmetric model on

a lattice within our formulation.

6.8 Discussion

We have presented the standard formulation of N=1 SYM in 3+1 dimensions

with a two spatial dimensional transverse lattice. Then we gave the SDLCQ formu-

lation of the theory. We found that the standard formulation suffers from a fermion

species doubling problem, while SDLCQ formulation does not. In the frame where

the transverse momenta equal to zero, N=1 SUSY in 3+1 dimensions is equivalent
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to N=2 SUSY in 1+1 dimensions also known as N=(2,2) SUSY. We were able to

present Q−
α which has the correct continuum form and yields by the SUSY algebra

a discrete form of P−, where α = 1, 2. This P− then coincides with its continuum

form in the continuum limit. Since Q−
1 and Q−

2 don’t commute with each other in our

formulation, we are to use only one of them to solve the mass eigenvalue problem,

preserving one exact SUSY.

We found that this Q−
α consists of terms which are proportional to g′ ≡ g

√
Nc and

terms which go like g′3. This led us to investigate in some detail the g′ dependence of

the mass spectrum. From a simple toy model we concluded that the rich, complicated

behavior of the mass spectrum with varying g′ is due to some non-trivial coupling

dependence of the wavefunctions. This is also responsible for a “transition” in the

structure of a bound state when going from weak coupling to strong coupling. Because

the dominant structure of a bound state changes with changing g′.

We classified the bound states into two types, the cyclic and non-cyclic as we

did in Ref. [62]. The cyclic bound states are those whose color flux goes all the way

around in one or two of the transverse directions. The bound states whose color flux

is localized and does not wind around are referred to as the non-cyclic bound states.

For each type of the bound states, we were able to identify some bound states in the

mass spectrum for g′ = 1 and found the K →∞ limit of m2.

For the cyclic bound states we were able to present m2 as a function of the winding

number WI in the xI direction with I = 1, 2. We found two very good fits to the data.

The first fit b + cW 2
I + d/W 2

I is motivated by the string theory, where the energy has

the form E = p2π/L + qTL, where p, q are some integers, T is the string tension and
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L is the period of the transverse lattice. The other fit b + c/WI + d/W 2
I is motivated

by the operator structure of Q−
α . It appeared that b + cW 2

I + d/W 2
I is preferable,

For the non-cyclic states as 1/K → 0 we saw good linear conversion of m2 of

low-energy bound states that we could identify and gave the extrapolated values for

m2. We could identify for K = 4 the bound states with a state whose m2 in units of

g′2
πa2 are independent of g′ though we were not able to do so for higher K’s because of

the dense, and complicated spectrum.

In summary, we were able to present a formulation of SYM in 3+1 dimensions with

one exact SUSY on a two dimensional transverse lattice and find the mass spectrum

nonperturbatively. There remain however a number of important questions to answer.

First and foremost it is of great importance to determine the form of m2 numerically

to better precision. It is interesting to see what the winding number dependence of

m2 is if both of the winding numbers are non-zero. We need to invent a method to

resolve the dense spectrum at strong couplings. This will help us see if there is any

“transition” in the form of m2 as one goes from weak coupling to strong coupling.

However, perhaps most importantly, as discussed in Sec. 6.7 we need to know to what

extent we’ve resolved the problem caused by the linearization of the link variables

that we needed to quantize the fields. Knowing this tells us how reliable our numerical

results are. Because one of our major simplifications in numerical calculation in the

large Nc limit comes about from the reduction of the transverse degrees of freedom

whose justification relies upon the presence of the quantized fields and the vacuum.

The restoration of SUSY for massive bound states, which has been broken by the

linearization gives us some confidence that our formulation indeed provides some

sensible results. However, we would still have to clarify the issue to be more certain
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and confident. To this end, we need to compare our numerical results with some well-

established theoretical predictions and with other numerical results obtained from

the usual lattice calculation. Hence, it is of importance to apply our formulation

to some other supersymmetric theories in higher than 1+1 dimensions, for instance,

Wess-Zumino model, lattice sigma model, and SQED. It appears that the application

is relatively straightforward. From more practical point of view, a next question to

ask is what happens if one includes scalars and their superpartners in theory. We did

not consider this case in here simply because this was the first attempt to formulate

SYM in 3+1 dimensions with one exact SUSY on a two dimensional transverse lattice

and, thus, we wanted to consider the simplest possible case. However, it is of great

interest to consider the question in the future. We believe that when we are able

to answer all those questions, we will also be able to test the predictions made by

Armoni, Shifman and Veneziano [14, 15].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Log-log plots of the mass spectrum m2 in units of g′2
πa2 versus g′ ≡ g

√
Nc

with K = 4, 5, 6 for (a),(c),(e), respectively. (b), (d), and (f) are the same as (a), (c)
and (e), respectively but on a different scale so that one can see the crossings in more
detail. 10−8 or less is the numerical zero in our code.
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Figure 6.3: Sample spectra obtained from our toy model. (a) and (b) can be seen in
the actual full spectrum in Fig. 6.2, while (c) and (d) cannot.
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Figure 6.4: Plots of m2 in units of g′2
πa2 of low-energy cyclic bound states versus

1/(K −W1) for W1=1(circle), 2(square), 3(diamond), 4(triangle up), 5(triangle left).
Also shown are a linear fit for (a), (b), and (c) and a quadratic fit for (d). The
coupling g′ ≡ g

√
Nc = 1.
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Figure 6.5: Plots of K → ∞ limit of m2 in units of g′2
πa2 of low energy cyclic bound

states versus W1 with a fit to the data of the form b + cW 2
1 + d/W 2

1 in (a) and of the
form b+c/W1+d/W 2

1 in (b). The circles correspond to the bound state in Fig. 6.4(a),
squares in 6.4(b), diamonds in 6.4(c), and triangles in 6.4(d).
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Figure 6.6: Plots of m2 in units of g′2
πa2 of low–energy non-cyclic bound states against

1/K with a linear fit to the data. The coupling g′ ≡ g
√

Nc = 1. The circles correspond
to bound state A, squares to the state B, diamonds to state C
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APPENDIX A

N=1 SUPER-ALGEBRA IN MAJORANA
REPRESENTATION

In this appendix we give the super-algebra in Majorana representation in D + 1

dimensional light-cone coordinates where D = 1, 2, 3.

In Majorana representation Majorana spinors have real component fields, and can

be written as

ΨM =

(
θL

θR

)
,

where θL, θR are left-moving, right-moving spinors with real components. This implies

that the supercharge Q is also a Majorana spinor with real components of the form

Q =

∫
dDxj+ =

(
QL

QR

)
≡

(
Q+

Q−

)
,

where the integration is taken over the D spatial dimensions, jµ is the supercurrent,

which is a Majorana spinor.

In terms of the Majorana super-charge, the super-algebra is given by

{Q, Q̄} = 2ΓµPµ, (A.1)

where Q̄ ≡ Q†Γ0 in any representation, and thus Q̄ = QT Γ0 in Majorana representa-

tion.
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A.1 D=1

For 1+1 dimensional case, we have Γ0 = σ2 and Γ1 = iσ1, so that

Γ+ ≡ Γ0 + Γ1

√
2

= i

(
0 0√
2 0

)
, Γ− ≡ Γ0 − Γ1

√
2

= i

(
0 −√2
0 0

)

and Q̄ = i(Q−,−Q+). Thus, Eq. (A.1) reads

{Q, Q̄} = 2ΓµPµ = i

(
0 −2

√
2P−

2
√

2P+ 0

)
= i

(
0 −2

√
2P+

2
√

2P− 0

)
,

or

{Q±, Q±} = 2
√

2P±, {Q+, Q−} = 0.

A.2 D=2

In this case Γ0 = σ2, Γ1 = iσ1 and Γ2 = Γ⊥ = iσ3. Therefore,

{Q, Q̄} = 2ΓµPµ = i

(
2P⊥ −2

√
2P−

2
√

2P+ −2P⊥

)
= i

( −2P⊥ −2
√

2P+

2
√

2P− 2P⊥

)
,

or

{Q±, Q±} = 2
√

2P±, {Q+, Q−} = −2P⊥.

A.3 D=3

In 3+1 dimensions Majorana spinors have four components and thus the super-

charge can be written as

Q =

(
Q+

Q−

)
≡




Q+
1

Q+
2

Q−
1

Q−
2


 , Q̄ = QT Γ0 = i(Q−

2 ,−Q−
1 , Q+

2 ,−Q+
1 ).

Gamma matrices are 4× 4 matrices given by

Γ0 ≡
(

0 σ2

σ2 0

)
, Γ1 ≡

(
iσ1 0
0 iσ1

)
, Γ2 ≡

(
iσ3 0
0 iσ3

)
, Γ3 ≡

(
0 −σ2

σ2 0

)
,
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Γ+ ≡ Γ0 + Γ3

√
2

=

(
0 0√
2σ2 0

)
, Γ− ≡ Γ0 − Γ3

√
2

=

(
0
√

2σ2

0 0

)
.

Then Eq. (A.1) yields

{Q, Q̄} = 2ΓµPµ = 2

(
iσ1P1 + iσ3P2

√
2σ2P−√

2σ2P+ iσ1P1 + iσ3P2

)

= 2i




−P 2 −P 1 0 −√2P+

−P 1 P 2
√

2P+ 0

0 −√2P− −P 2 −P 1√
2P− 0 −P 1 P 2


 .

Hence, we find

{Q±
α , Q±

β } = 2
√

2P±δαβ,

{Q+
1 , Q−

1 } = −{Q+
2 , Q−

2 } = 2P 1, {Q+
1 , Q−

2 } = {Q+
2 , Q−

1 } = −2P 2,

where α, β = 1, 2. Note that if P 1 = P 2 = 0, then this algebra coincides with the one

for N=2 SUSY in 1+1 dimensions also known as N=(2,2) SUSY.
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APPENDIX B

FORMULAS

Here we list some of the formulas we used to derive the anticummutation relations

among Q±
α with α = 1, 2 in Chapter 6.

{B1F1, B2F2} = B2B1{F1, F2}+ B1[F1, B2]F2 + B2[F2, B1]F1 + [B1, B2]F1F2

[F1, F2F3] = {F1, F2}F3 − F2{F1, F3}

[F1F2, F3F4] = F1{F2, F3}F4 − F1F3{F2, F4}+ {F1, F3}F4F2 − F3{F1, F4}F2

[M I
ij,rs(x), ∂yM

J†
kl,pq(y)] = [M I†

ij,rs(x), ∂yM
J
kl,pq(y)] = ia2g2δ(x− y)δIJ∆

[∂xM
I
ij,rs(x),MJ†

kl,pq(y)] = [∂xM
I†
ij,rs(x),MJ

kl,pq(y)] = −ia2g2δ(x− y)δIJ∆

[M I
ij,rs(x),MJ†

kl,pq(y)] = [M I†
ij,rs(x),MJ

kl,pq(y)] =

ia2g2 1

∂y

δ(x− y)δIJ∆ = −ia2g2 1

∂x

δ(x− y)δIJ∆

[∂xM
I
ij,rs(x), ∂yM

J†
kl,pq(y)] = [∂xM

I†
ij,rs(x), ∂yM

J
kl,pq(y)] =

ia2g2∂xδ(x− y)δIJ∆ = −ia2g2∂yδ(x− y)δIJ∆

{uα
ij,rs(x), uβ

kl,pq(y)} =
1

2
δ(x− y)δαβ∆

{uα
ij,rs(x),

1

∂y

uβ
kl,pq(y)} = −{ 1

∂x

uα
ij,rs(x), uβ

kl,pq(y)} =
1

2

1

∂y

δ(x− y)δαβ∆

{ 1

∂x

uα
ij,rs(x),

1

∂y

uβ
kl,pq(y)} =

1

2

1

∂x∂y

δ(x− y)δαβ∆ = −1

2

1

∂2
x

δ(x− y)δαβ∆
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where F ’s and B’s are fermionic and bosonic operators, respectively. i, j, k, l are site

indices, r, s, p, q color indices, α, β, I, J=1,2, a the lattice spacing, g the coupling, and

∆ ≡ δrqδsp
δik

a

δjl

a

110



BIBLIOGRAPHY

[1] Y. A. Golfand and E. P. Likhtman, JETP Lett. 13, 323 (1971) [Pisma Zh. Eksp.
Teor. Fiz. 13, 452 (1971)].

[2] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974).

[3] A. Salam and E. Sezgin, “Supergravities In Diverse Dimensions. Vol. 1, 2,”;
J. H. . Schwarz, “Superstrings. The First 15-Years Of Superstring Theory. Vol.
1,”.

[4] M. T. Grisaru, W. Siegel and M. Rocek, Nucl. Phys. B 159, 429 (1979);

[5] For a more intuitive proof of the non-renormalization theorem making use of
the holomorphy of the superpotential, see N. Seiberg, Phys. Lett. B 318, 469
(1993) [arXiv:hep-ph/9309335]; arXiv:hep-th/9408013.

[6] J. D. Lykken, arXiv:hep-th/9612114.

[7] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).

[8] S. P. Martin, arXiv:hep-ph/9709356.

[9] S. Raby, Rept. Prog. Phys. 67, 755 (2004) [arXiv:hep-ph/0401155].

[10] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D 24, 1681 (1981).

[11] J. S. Hagelin, S. Kelley and T. Tanaka, Nucl. Phys. B 415, 293 (1994); F. Gab-
biani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B 477, 321 (1996)
[arXiv:hep-ph/9604387]; A. Masiero and L. Silvestrini, arXiv:hep-ph/9711401.

[12] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys.
38, 1113 (1999)] [arXiv:hep-th/9711200].

[13] J. R. Hiller, S. S. Pinsky, N. Salwen and U. Trittmann, Phys. Lett. B 624, 105
(2005) [arXiv:hep-th/0506225].

[14] A. Armoni, M. Shifman and G. Veneziano, Nucl. Phys. B 667, 170 (2003)
[arXiv:hep-th/0302163].

111



[15] A. Armoni, M. Shifman and G. Veneziano, Phys. Rev. Lett. 91, 191601 (2003)
[arXiv:hep-th/0307097].

[16] Y. Matsumura, N. Sakai, and T. Sakai, Phys. Rev. D 52, 2446 (1995).

[17] O. Lunin and S. Pinsky, AIP Conf. Proc. 494, 140 (1999) [arXiv:hep-
th/9910222].

[18] P. Haney, J. R. Hiller, O. Lunin, S. Pinsky and U. Trittmann, Phys. Rev. D
62, 075002 (2000) [arXiv:hep-th/9911243].

[19] J. R. Hiller, S. Pinsky and U. Trittmann, Phys. Rev. D 63, 105017 (2001)
[arXiv:hep-th/0101120].

[20] J. R. Hiller, S. Pinsky and U. Trittmann, Phys. Rev. D 64, 105027 (2001)
[arXiv:hep-th/0106193].

[21] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981) [Erratum-ibid.
B 195, 541 (1982)].

[22] K. Fujikawa, Nucl. Phys. B 636, 80 (2002) [arXiv:hep-th/0205095].

[23] D. B. Kaplan, E. Katz and M. Unsal, JHEP 0305, 037 (2003) [arXiv:hep-
lat/0206019].

[24] A. G. Cohen, D. B. Kaplan, E. Katz, and M. Unsal, JHEP 0308, 024 (2003)
[arXiv:hep-lat/0302017].

[25] A. G. Cohen, D. B. Kaplan, E. Katz, and M. Unsal, JHEP 0312, 031 (2003)
[arXiv:hep-lat/0307012].

[26] J. Giedt, Nucl. Phys. B 668, 138 (2003) [arXiv:hep-lat/0304006]; Nucl. Phys.
B 674, 259 (2003) [arXiv:hep-lat/0307024]; arXiv:hep-lat/0405021.

[27] F. Sugino, JHEP 0401, 015 (2004) [arXiv:hep-lat/0311021].

[28] F. Sugino, JHEP 0403, 067 (2004) [arXiv:hep-lat/0401017].

[29] F. Sugino, Nucl. Phys. Proc. Suppl. 140, 763 (2005) [arXiv:hep-lat/0409036];
JHEP 0501, 016 (2005) [arXiv:hep-lat/0410035];

[30] F. Sugino, Phys. Lett. B 635, 218 (2006) [arXiv:hep-lat/0601024].

[31] S. Catterall, JHEP 0411, 006 (2004) [arXiv:hep-lat/0410052]; S. Catterall,
JHEP 0603, 032 (2006) [arXiv:hep-lat/0602004].

[32] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Phys. Lett. B 633, 645
(2006) [arXiv:hep-lat/0507029].

112



[33] For a review of the recent approaches and some new results from the decon-
struction approach, see J. Giedt, arXiv:hep-lat/0602007.

[34] W. Bietenholz, Mod. Phys. Lett. A 14, 51 (1999) [arXiv:hep-lat/9807010];
Y. Kikukawa and Y. Nakayama, Phys. Rev. D 66, 094508 (2002) [arXiv:hep-
lat/0207013]; K. Itoh, M. Kato, H. Sawanaka, H. So and N. Ukita, JHEP
0302, 033 (2003) [arXiv:hep-lat/0210049]; S. Catterall, JHEP 0305, 038 (2003)
[arXiv:hep-lat/0301028]; S. Catterall and S. Karamov, Phys. Rev. D 68, 014503
(2003) [arXiv:hep-lat/0305002]; S. Catterall and S. Ghadab, JHEP 0405, 044
(2004) [arXiv:hep-lat/0311042]; A. D’Adda, I. Kanamori, N. Kawamoto and
K. Nagata, Nucl. Phys. B 707, 100 (2005) [arXiv:hep-lat/0406029]; J. Giedt and
E. Poppitz, JHEP 0409, 029 (2004) [arXiv:hep-th/0407135]; J. Giedt, R. Ko-
niuk, E. Poppitz and T. Yavin, JHEP 0412, 033 (2004) [arXiv:hep-lat/0410041].

[35] For a brief but inclusive review on this subject, see for example A. Feo, Nucl.
Phys. Proc. Suppl. 119, 198 (2003) [arXiv:hep-lat/0210015]; Mod. Phys. Lett.
A 19, 2387 (2004) [arXiv:hep-lat/0410012].

[36] D. B. Kaplan, Phys. Lett. B 288, 342 (1992) [arXiv:hep-lat/9206013].

[37] R. Narayanan and H. Neuberger, Nucl. Phys. B 443, 305 (1995) [arXiv:hep-
th/9411108].

[38] H. Neuberger, Phys. Lett. B 417, 141 (1998) [arXiv:hep-lat/9707022].

[39] E. Witten, Nucl. Phys. B 460, 335 (1996) [arXiv:hep-th/9510135].

[40] H.-C. Pauli and S.J. Brodsky, Phys. Rev. D 32, 1993 (1985); Phys. Rev. D 32,
2001 (1985).

[41] J. R. Hiller, M. Harada, S. S. Pinsky, N. Salwen and U. Trittmann, Phys. Rev.
D 71, 085008 (2005) [arXiv:hep-th/0411220].

[42] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Rev. Lett.86, 4757 (2001)
arXiv:hep-th/0104005; C. T. Hill, S. Pokorski and J. Wang, Phys. Rev. D 64,
105005 (2001) arXiv:hep-th/0104035.

[43] W. A. Bardeen and R. B. Pearson, Phys. Rev. D14, 547 (1976).

[44] W. A. Bardeen, R. B. Pearson and E. Rabinocici, Phys. Rev. D 21, 1037 (1980).

[45] M. Burkardt and S. Dalley, Prog. Part. Nucl. Phys. 48, 317 (2002). arXiv:hep-
th/0112007.

[46] S.J. Brodsky, H.-C. Pauli, and S.S. Pinsky, Phys. Rep. 301, 299 (1998)
[arXiv:hep-ph/9705477].

113



[47] J. R. Hiller, S. S. Pinsky and U. Trittmann, Phys. Rev. D 65, 085046 (2002)
[arXiv:hep-th/0112151].

[48] F. Antonuccio, A. Hashimoto, O. Lunin, and S. Pinsky, JHEP 9907, 029 (1999)
[arXiv:hep-th/9906087].

[49] J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittmann, Phys. Lett. B 482, 409
(2000) [arXiv:hep-th/0003249].

[50] J. R. Hiller, Y. Proestos, S. Pinsky and N. Salwen, Phys. Rev. D 70, 065012
(2004) [arXiv:hep-th/0407076].

[51] F. Antonuccio, H. C. Pauli, S. Pinsky, and S. Tsujimaru, Phys. Rev. D 58,
125006 (1998) [arXiv:hep-th/9808120].

[52] M. Harada, J. R. Hiller, S. Pinsky and N. Salwen, Phys. Rev. D 70, 045015
(2004) [arXiv:hep-th/0404123].

[53] D. J. Gross, A. Hashimoto, and I. R. Klebanov, Phys. Rev. D 57, 6420 (1998)
[arXiv:hep-th/9710240].

[54] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Nucl. Phys. B 661, 99 (2003)
[arXiv:hep-ph/0302119].

[55] F. Antonuccio, O. Lunin, and S. S. Pinsky, Phys. Lett. B 429, 327 (1998)
[arXiv:hep-th/9803027].

[56] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105
(1998) [arXiv:hep-th/9802109].

[57] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[58] A. Hashimoto and N. Itzhaki, Phys. Lett. B 454, 235 (1999) [arXiv:hep-
th/9903067].

[59] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, Phys. Rev.
D 58, 046004 (1998) [arXiv:hep-th/9802042].

[60] G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189 (1997) [arXiv:hep-
th/9612146].

[61] C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950); J. Cullum and R. A.
Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computa-
tions, Vol. I and II, (Birkhauser, Boston, 1985).

[62] M. Harada and S. Pinsky, Phys. Lett. B 567, 277 (2003) [arXiv:hep-
lat/0303027].

114



[63] S. Dalley and B. van de Sande, Phys. Rev. D 56, 7917 (1997) [arXiv:hep-
ph/9704408].

[64] S. Dalley and B. van de Sande, Phys. Rev. D 59, 065008 (1999) [arXiv:hep-
th/9806231].

[65] S. Dalley and B. van de Sande, Phys. Rev. Lett. 82, 1088 (1999) [arXiv:hep-
th/9810236]; Phys. Rev. D 62, 014507 (2000) [arXiv:hep-lat/9911035]; Phys.
Rev. D 63, 076004 (2001) [arXiv:hep-lat/0010082].

[66] S. Dalley, Phys. Rev. D 64, 036006 (2001) [arXiv:hep-ph/0101318].

[67] F. Antonuccio, O. Lunin, and S. Pinsky, Phys. Rev. D 58, 085009 (1998),
arXiv:hep-th/9803170; F. Antonuccio, O. Lunin, S. Pinsky , and S. Tsujimaru,
Phys. Rev. D 60, 115006 (1999), arXiv:hep-th/9811254.

[68] F. Antonuccio, O. Lunin and S. Pinsky, Phys. Rev. D 59, 085001 (1999),
arXiv:hep-th/9811083; P. Haney, J. R. Hiller, O. Lunin, S. Pinsky and
U. Trittmann, Phys. Rev. D 62, 075002 (2000), arXiv:hep-th/9911243;

[69] O. Lunin and S. Pinsky, Phys. Rev. D 63, 045019 (2001) [arXiv:hep-
th/0005282].

[70] S. Dalley and B. van de Sande, arXiv:hep-ph/0212086.

[71] T. Eguchi and H. Kawai, Phys. Rev. Lett. 48 (1983) 1063.

[72] D. Kutasov, Phys. Rev. D48 (1993) 4980, arXiv:hep–th/9306013.

[73] M. Burkardt and H. El-Khozondar, Phys. Rev. D 60, 054504 (1999) [arXiv:hep-
ph/9805495];

[74] L. Susskind, Phys. Rev. D 16, 3031 (1977),

[75] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[76] D. Chakrabarti, A. K. De and A. Harindranath, Phys. Rev. D 67, 076004 (2003)
[arXiv:hep-th/0211145].

[77] M. Harada and S. Pinsky, Phys. Rev. D 70, 087701 (2004) [arXiv:hep-
lat/0408026].

[78] M. Harada and S. Pinsky, Phys. Rev. D 71, 065013 (2005) [arXiv:hep-
lat/0411024].

[79] S. Catterall, JHEP 0305, 038 (2003) [arXiv:hep-lat/0301028].

115



[80] G. Bhanot, U. M. Heller and H. Neuberger, Phys. Lett. B 113, 47 (1982).

[81] A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D 27, 2397 (1983); T. Eguchi
and R. Nakayama, Phys. Lett. B 122, 59 (1983).

[82] M. Burkardt, AIP Conf. Proc. 494, 239 (1999) [arXiv:hep-th/9908195].

116


