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ABSTRACT

Planar spiral waves are rotating waves that rotate withteahsngular velocity and
behave like Archimedean spirals in their far field. Suchalpiarise in many experiments
as well as in reaction- diffusion models. In this thesis, pleesistence of planar spiral
waves is investigated upon excising a small hole from thealomear the core region of
the spiral.

Before treating 2D patterns, we investigate the persistehtD pulses upon truncating
the real line to large but bounded intervals, supplemenygooindary conditions at their
end points. Under appropriate transversality assumpbartie boundary conditions, the
persistence of pulses is established and their stabilily kespect to the reaction-diffusion
system on the bounded interval is determined. It turns aattttie stability properties of
the truncated pulses depends on the choice of boundarytmordi These results are then
applied to the front of the Nagumo equation and the fast pofighe FitzHugh-Nagumo
equation.

In the second part of the thesis, we analyse the persistérii2 spiral waves by pos-
ing the elliptic partial differential equation as an ill-geEd dynamical system in which the
radius serves as the time- like variable. In this setting abproach via Lyapunov-Schmidt
reduction and Lin’s method utilized in the one-dimensioteade carries over to systems
posed on the plane. Upon establishing suitable a-priames¢s for the dynamics on the

center eigenspace, we prove the persistence of core-regi@is that satisfy the boundary



conditions, and afterwards match with far-field spiralsbtain a unique planar spiral that

obeys the boundary conditions.
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CHAPTER 1

INTRODUCTION

Historical Perspective

Spiral waves provide one of the most striking examples dfepatformation in non-
linear active media. In 1946, Wiener and Rosenblueth [58ppsed a simple model that
allows one to analyze various regimes of excitation propagan a homogeneous neuron
network or in heart tissue. In the framework of their modetytdescribed the phenomenon
of a spiral wave circulating around a hole in an excitableiomd In the late 1960’s, Zaikin
and Zhabotinsky [64] observed target patterns in the Beldhabotinsky (BZ) reaction
in a thin unstirred layer of reacting solution of ferroin amdlonic acid. This observation
was regarded as the first recorded spatio-temporal patiemmafion in chemical systems.
Later Winfree [60] found self-sustained rotating spiraM@s in thin layers of BZ reagent
(See [7] for more experiment results on the BZ reaction). riSuece, these examples of
pattern formation have fascinated researchers in appletiematics, physics, chemistry,
cardiology, and several branches of biology. Spiral wauss appear in several other
chemical and biological systems, for instance, during ttigagion of carbon-monoxide on
platinum surfaces [38], during the aggregation stage oslinee modeDictyostelium dis-

coideum32] or the intracellular calcium wave signaling in immatdenopusocytes [1].



Spiral waves are mainly, though not exclusively [41], cdesed as spatio-temporal
patterns generated by reaction-diffusion systems in aslgtmedia (For the study of de-
fects in the oscillatory media, see e.g. [51]). The compseteeme in the application is
usually complicated, but qualitatively it can be broken dawto much simpler building
blocks. For instance, the BZ reaction involves more thamB€rimediate stages, but it can

essentially be described by the followidgcomponent model [58]:

ou 0?u v(u—a)
o0 = Dugg tel—w - =,
v Pv 1

o = Digm -t

Hereu, v represent the normalized concentration of the activatdi@mbitor, ande < 1,

b andr > 1 are positive control parameters.

The Existence of Spiral Waves

The existence problem has been a long-standing issue intudg ef spiral waves.
Cohen, Neu and Rosales [12] were the first to construct al syasge solution for reaction-
diffusion equations, and over the past three decades, Geeg[19], Kopell and Howard [30],
Keener and Tyson [28], Karma [26], Sandstede and Scheed4@l8, 49, 50, 52, 55], and
among others, have investigated the existence and syatil$piral waves in reaction-
diffusion systems. There are two approaches (Section 4), {d6his problem: One ishe
kinematic theory of spirajshat is, a direct geometric description of the spatio-terajdy-
namics of the appearing sharp wave fronts; another one kseadthematical description
derived from experimentally observed spirals. For exampléhis thesis, we assume that
the spirals are rigidly rotating and of Archimedean shageesE features can be observed

in many spiral waves.



Spiral Instabilities

One of the most interesting parts in the studies of pattemdtion is the investigation
of different states and the transition from one to anothdifierent parameter regimes. For
generic spiral waves, there are two types of transitionssiabilities that have been studied
intensively: Spirals may begin to meander or drift inste&dotating rigidly [62]; they
may also breakup either in the core or the farfield. These@hena have been observed
both experimentally and numerically [2]. The following pices are variant snapshots of
numerical simulation of the FitzHugh-Nagumo equation, bp@&tede and Scheel, based

on Barkley’s code EZSpiral.

=

Figure 1.1: Meandering (left) and drifting (right) of th@ tinotion: The transition are near
Hopf bifurcations of the original pattern. The drifting iscansequence of the resonance
between the Hopf frequency and the frequency of the rigiollgting spiral waves, see [52].
The superimposed spirals can be observed in the farfield éanatering cases.

Truncation Problem: Small Hole Near the Core

In this thesis, instead of investigating instabilities dfukcations of spiral waves, we

are interested in the persistence of spiral waves.



Figure 1.2: Farfield (left) and core (right) breakup: Thetahdity is caused by the ab-

solute spectrum of the spiral wave. The wavetrains tratsperlocal perturbation to the

farfield/core region. For the farfield (left), the paramstare in the regime of absolute
instability. The subcritical nature of the instability alifips the compression and expan-
sion of the wavetrains until they collide and breakup, s& $9]. Thus, breakup can, to
some extent, be described by instabilities of the asynptote-dimensional wave trains
that then carry over to the full two-dimensional spiral. Ewailar idea can be applied in

the studies on defects, see [51].

In early studies of spiral waves, it was realized that anyadipg pattern would neces-
sarily entail a phase singularity at its core (For exampae,[61]). It has also been known
that the creation of spiral patterns does not require thegoiee of an inhomogeneity. For
example, as observed in BZ reactions [60, 65], spiral waveseeated by breaking the
continuous front of an excitation wave, which does not regjany impurities or gas bub-
bles. However, the presence of inhomogeneities will leagnttore complicated dynamics
of the spirals. For example, in the low-voltage defibrithatiof heart tissue, the repeated
low-voltage perturbation with the same phase would difeetdrift of spiraling pattern to
the boundary of the cardiac tissue, at which the spiral caexbieguished due to the non-
excitability of the boundary. Issues can now arise from teal inhomogeneities, which

can interact with the spiraling pattern, and might preveatdpiral to drift away.



In this thesis, we consider two issues arising from the aloonsideration, namely, the
existence of the spiral wave after excising a small hole tteacore region, and the effect
of the boundary condition imposed at the boundaries of tie tnoon the dynamic of the

spiral. The main result (Theorem 3.6.1) that we obtain igeHewing:

Theorem 1.0.1.Consider the reaction-diffusion equation on the plane
uy = DAu+ f(u), u = u(z,t),r € R (1.1)
Assume that there is a generic spiral wave solutigrof (1.1) with temporal frequency
w, # 0and positive group velocity,. (The group velocity describes the change of temporal
frequency with respect to the wave number, see (1.7) fordfieition). Also, assume that
u, satisfies a certain transversality hypothesis (Hypoth8si$. Then the spiral is robust
with respect to the Dirichlet or Neumann boundary conditam = ¢ for e small enough.
More precisely, there existg > 0 such that for all0 < € < ¢, the following is true.
Consider the new domain

Q= R*\ B.(0)
with the boundaryy)Q? = 9B.(0). Then there exist two families of spiral waves;, =
upir(€) and une, = uneu(€) ON Q with frequencyw = w(e) such thatu satisfies the
Dirichlet boundary condition

Upir|loo = 1«(0)
or Neumann boundary condition

auNeu o
on lon =0




atr = e. Moreover,up; anduy., depend smoothly oa Furthermore, up to some

normalization (Hypothesis 3.4), we have the following exgien forw nearw,:

€ € .. -
W o= ws+t m(u*)r(o) + O(E), (Dirichlet condition)
w = w,+ %(u*)r(o) + O(€%), (Neumann condition)

Here M is an Melnikov-type integral with respect 49 which is assumed to be non-zero

(see Hypothesis 3.2).

Methodology: Lin’s Method

Instead of embarking directly on an analysis of the two-disienal case, we first study
the corresponding one-dimensional situation to gain hitsigo the relevant issues. After-
wards, using radial dynamics we shall see that the main idaayg over from the one-
dimensional to the two-dimensional situation, even thottgh details will be far more
complicated.

The scheme we use to study the one-dimensional situati@tiégit.in’s method In his
paper [33], X.-B. Lin demonstrated that a functional-atialframework can be applied to
the problem of the bifurcation of periodic solutions neateheclinic or homoclinic orbits
of the following autonomous equation:

T = f(x,pn), r=uxz(t) € R™ (1.2)

Suppose that (1.2) possesses a homoclinic afbjtto a hyperbolic equilibriunp when
1 = 0 and the tangent spaces of stable and unstable manifglth@afe a one-dimensional
intersection along(t¢). Sincep is hyperbolic, the linearized equation

@(t) = Dy f(h(t),0)z (1.3)



has an exponential dichotomy (see Definition 2.4.1)-e#, 0], and [0, L], respectively.
That is, the phase space can be decomposed into invarisspards so that solutions in
these subspaces decay exponentially in forward or backiivaed

Let ¥ > h(0) be a(n — 1)-dimensional hyperplane which is transverseht().
Since the tangent spa@g,, M (p) of the center-unstable manifold and the tangent space
ThoyM(p) of the center-stable manifold &t0) intersect along a one-dimensional sub-
space, there is a one-dimensional subsg®aee (M/*(p) + M<“(p))*+ of 3, which is given
by span{(0)}. Herey = «(t) is the unique, up to a scalar multiple, bounded nontrivial

solution of the adjoint variational equation to (1.3):

y(t) = —(Dof(h(1),0))"y(t). (1.4)
Suppose that we are interested @Vaperiodic solution:(t) = (., ) (t) of the equation
(1.2), such that:(¢) is nearh(t) for t € [—L, L] with L > 1 and satisfies(—L) = x(L).
With possible phase shift, we set (Figure 1.3)

z(0+) — z(0—) = 11\r%x(t) — 11}%x(t) €.

The mismatchim, o z(t) — lim; - () may not vanish due to the boundary condition
x(—L) = x(L). Therefore, if we consider that= xz, ., parametrized the stable manifold
for t > 0 and the unstable manifold far < 0, with a discontinuity at = 0, then we
can varyu to match, at = 0, two pieces of the solution(t), ¢t > 0 ort < 0, for
all L large in the following heuristic sense: First, accordingtie geometry o®: and
the existence of exponential dichotomies, we can decompas® mutually orthogonal
subspaces correspondinghtg b andA, in which A is one-dimensional and the solution
in b, (b_) decays exponentially in forward (backward) time (see F@gli4). Then we

can match in the directions other thanby solving forb, andb_ in terms of; and the

parameter provided by the boundary conditiofl.) = x(—L). Lastly, we match two

7



h(0)

Figure 1.3: Lin’s method: seeking periodic solutioft) accompanying the homoclinic
solutionh(t).

solutions in the direction oA by adjustingu. It turns out that the solvability of the last

matching is equivalent to the solvability of the followinguation

whose solvability is implied by the assumptioh := [ (y(¢), 0, f (h(t), 0))dt # 0.

Throughout the above argument, the nonlinearity only douties to the higher order
terms, for which we formulate our version more rigorouslygmma 2.6.1, 2.6.2 and 2.6.3,
Theorem 2.7.1 and 2.7.2.

In Lin’s method, the bifurcation function

[e.e]

G(L, p) = ($(L), (L)) = (¥(=L), h(L)) +u/ (W(t), Duf (h(t),0))dt + h.ot.

generalizes the bifurcation function

oo

Gloo. ) = |~ ((E), Duf(h(2). 0) et + O(Juf).

— 00

for the homoclinic orbit.



x(t), t <0

z(t), t >0

Figure 1.4: Lin’s method: near the matching secttanHereb, andb_ may be linearly
independent, despite the way they are depicted. We needtthm@), ¢ > 0 andt < 0 at
t = 0 in the directions ob_, b, andA.

Later Lin’s method was further developed by various authiorghe study of multiple

pulses, homoclinic bifurcations, see, for example, [8,48},43, 46, 53, 54], etc..



In Chapter 1, we consider the truncation problem of a homaxkolutionh on R
to a solution on a large but finite intervll_, 7, |, with -7, 7', > 1 and the boundary
conditions imposed &t areseparatedWe prove that the truncation boundary value prob-
lem is solvable (Theorem 2.7.1) if the boundary conditiaiisfias a certain transversality
assumption (Hypothesis 2.4). Furthermore, the truncatéstroys the translational invari-
ance, then an eigenvalie= )\, ~ 0is created to replace the critical eigenvalue 0. The
sign of the eigenvalue is determined by the leading ordensef ((¢/(7-), P*1'(T-)) —

(Y(T), P*K(T,))), where

M= [0, Dat (h(0). 01
is the Melnikov integral associated with(Theorem 2.7.2). Since¢ andh’ decay expo-
nentially, the eigenvalug,, is actually exponentially small ih. For a finer estimate with
an exponentially weighted norm, see the super-convergescst in [43]. Afterward, we
also show the application of our method to the truncated daynvalue problem of the

fast pulse for the FitzHugh-Nagumo equation and the frontife Nagumo equation.

Methodology: Radial Dynamics

The main idea is to reformulate the elliptic PDE’s that gongethe existence and the
linear stability of the spiral wave as an ill-posed dynarhsystem in the radial direction.
The idea of posing elliptic problems as ill-posed dynamgyatem can be traced back as
early as [29].

The spiral wave we consider Aschimedeanthat is, asymptotically periodic along the
radial direction in the plane. More precisely, far away frtm rotation center, along the
radial direction, the spiral wave converges to a one-dinoeaswave train.., with period

21, wave numbek,,, and temporal frequencay,, (see (3.9)). Furthermore, consider the

10



formal limit r — oo, we find that the wave train satisfies the travelling wave &godor
the one-dimensional reaction-diffusion equation. Thanefve refer the wave train to the
asymptotic wave traiof the spiral wave solution.

Spiral waves can then be captured as heteroclinic orbitsexiimg homogeneous steady
states at the core at= 0 and the asymptotic wave trainsrat co. This viewpoint, which
we refer to aspatial dynamicswas first used in [55].

Now if the spiral wave is truncated near the core region,espondingly we would
have a one-dimensional truncation problem (along the raliiection) for the travelling
wave.

Consider that the linearization of the reaction-diffuseguation at a spiral in a co-
rotating frame

u = DAu — w.pu + f'(ue(r,))u = L.
In spirit of relating the spiral wave with its asymptotic veatrainu.., we consider the

one-dimensional reaction-diffusion equation
uy = Dug, + f(u), reR,ueRY. (1.5)
Upon using the co-moving coordinatés¢ = kx — w), the spatial operator in the reaction-

diffusion equation (1.5) possesses the following linesdtion about.,:
L= ]{,‘ZD@& + wag + f’(uoo(f)),
which we consider as an unbounded operatol.&(R, C"). Write the associated eigen-

value problemCu = A\u as the ordinary differential equation
kue = v (1.6)

kve = —D7'ev + f(uoo(€))u — M.

11



Note that the coefficients arer-periodic. Let®(\) be the associated period map,
mapping an initial value to the solution evaluated¢at= 27w. By Floquet theory (for
example, Theorem 6.1 in [21]), the ODE (1.6) has a boundedtisal if and only if the
Evans function

E(\, v) = det[®(\) — *™/*] =0
for somer € iR. Note that~(0,0) = 0.
We assume that
E(0,0) # 0,
which guarantees that the generalized kernel & one-dimensional and spanned:ddy.
The kernel of the formal adjoint operat6f? is spanned by a functian,; with (u.g, u’_) #
0. Now apply Lyapunov-Schmidt reduction, then we obtain #tkiced equatioh(w, k) =
0. The derivative),, h(wu, koo) = (uaq, ul,) # 0, then we can solvé(w, k) = 0 forw as a
function of & by using the implicit function theorem and denote the solubyw(k).
The group velocityc, is defined by the derivative of the nonlinear dispersiontieta

w = w(k) with respect to the wave numbeitk = k..:

Ow
Cy 1= %(km) (1.7)

Definition 1.0.1. We say that the spiral emits the wave train if the group véyagi of the

asymptotic wave train is positive.

Then we restrict our studies to a generic class of Archimedpaal waves. Define the

exponentially weighted spaces

loc

12 = {u € L, fulfy = [ @) < oo,

with weight~ € R in the radial directionr.

12



Definition 1.0.2. An Archimedean spiral wave, = u.(r, %) is transverse if it emits a
spectrally stable wave train and the generalized kerneheflinearizationZ, aboutu, in

L% is one-dimensional for some smalt> 0.

Then for reaction-diffusion systems with analytic kinsti&andstede and Scheel [49]
proved that transverse Archimedean spirals are robustregibect to perturbations of the
diffusion coefficients and/or the reaction kinetics. Alkey proved that if the kinetics de-

pends smoothly on a parametgithen transverse Archimedean spirals are also robust [47].

Approach for the Main Result

In Chapter 2, as we turn to the problem of truncation of th@alapiral wave in the
core region, extra complications appear. First, obseraettte Laplacian on the plane
1 1
AQ = &Em + 8$2m2 == 87«7« -+ ;67« -+ ﬁaww
is singular at- = 0 in the polar coordinates. This motivates us to introduceva tirae
scaler = Inr in order to perform a blow-up analysis nea& 0 [47, 55].
Secondly, one extra feature we can observe for the resaakst lequation is the pres-
ence of extra center directions: Taking the formal limit- —oo in the equation
Ur = W
w, = —Opyu— "D N wpu + f'(u(T,0))u) (1.8)
—e" D7 [(w — wi )9y (s + 1) + fus +u) = fu) = f'(ue)ul,
we have the asymptotic equation

U, = AU, (1.9)

o0

where

13



which can be solved by using Fourier seriestifh = H*(S*, CY) x L(S', CY). Observe
that in the solution space, there i3&-dimensional subspade” on which solutions do not
decay in either forward or backward time: ONedimensional subspade“” (see Section
3.3.1) corresponds to steady states at —oo and its N-dimensional orthogonal com-

plementE7 "

corresponds to the space of the linearly growing solutidrieelinearized
equation. By applying standard perturbation tools (fornegke, the results in [40]), we
learn that the equation (1.8) exhibits similar dynamicdddeor on the rayr € (—oo, s.),
for any fixed constant.. Thus, those correspondifd© (7) : 7 € (—o0, s.)} need to be
accounted near the core.

In order to prove the existence of the truncated core spir@lconsider the core spi-

ral, along with its derivative with respect tq as a solution of the variation-of-constants

formula:

wk’er

U(T) = (I)c— (7-7 R*) < wg_k:er ) + (bs_s(Ty _L)ws_s + (I)qiu(T, R*)wﬁ“ (110)

T

+ /T [®%5(7, 5) + ®° (7, 5)]e**G(U, 5)ds + / O (1, 5)e**G(U, 5)ds.

L R
with appropriate boundary condition (for more details, Seetion 3.2.3)

U(—~L) € E* 4 d.
Here®® are various evolution operators fot= ss, uu ande. The parameters® are taken
either atr = —L orT = R,, i = ker, gker, ss anduu. Among them (w*", w?*") are
the center components takenrat= R,. E is the boundary condition subspace ahd
specified as a boundary condition parameter.
Observe that this fixed point equation (1.10) cannot be siatvev*e”, w?*" wss w™* d)

by using the Implicit Function Theorem, for the right handiesbf (1.10) is no€!-bounded

in the initial conditionw?*“" corresponding to the linear growing solutions. The key to

14



overcome this difficulty is to develop a-priori estimatesudf*" in terms of the other pa-
rameters, exploiting transversality conditions which \gswane to hold.

After obtaining the existence result of spiral waves in theeaegion, we would like
to match the core region spiral waves with the farfield spi@auring the matching, we
find that if we consider the temporal frequencyas an extra parameter, then the other
parameters)™*", w** andw?* (a parameter provided by the farfield spiral) can be exptesse
in terms ofw (Lemma 3.6.4). On the other hand, to match along the dineatifothe
bounded nontrivial solution of the adjoint equation, wedhieadjustv. Thus, we see that
U = (u,u,) is parametrized by, and we also obtain the expansionofiearw, (Theorem

3.6.1).
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CHAPTER 2

TRUNCATION OF ONE-DIMENSIONAL PULSES

2.1 Motivation

Consider the following one-dimensiorrelaction-diffusiorequation
U, = DUy, + cU, + F(U), ve [T, T.],UecR"Y, (2.1)
in which the nonlinearity is at leastC? and D is a diagonal matrix with positive entries.
The N-dimensional vectot/ may describe a set of chemical concentrations, depending on
timet € R and the space variabte The termcU, models advection of chemicals.
We are interested in stationary solutions to (2.1) of thenfor
Uz, t) = U.(x), x e [T-,T,].
Thus,U = U, satisfies
0="U; = DI,,U + ¢d,U + F(U), rve [T, T.],U(xr) € RY. (2.2)
Suppose that there exists a stationary solution, then wasoénterested in the stability
of such a solution. Consider the linearization of the rigimdh side of (2.2) around.
L := D0y, + 0, + Fy(Uy).
Then the spectral stability of the stationary solution itedmined by the following eigen-

value problem

LU = \U (2.3)
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posed on the Banach spac§,,,([T-, 7], R") of bounded, uniformly continuous func-
tions.

Note that the steady-state equation (2.2) and the eigemaloblem (2.3) are both
ordinary differential equations (ODE’s), which can be rigign as systems of first order

ODE's. So the steady-state equation (2.2) reads

% . < ‘(2 ) - ( —D‘l(d‘//+ F(U)) ) =: f(u,¢), (2.4)

whereu = (U, V) € R*", z € R. On the other hand, for the eigenvalue problem (2.3), we

have

()= (omamrwn o ) (V) @9

Rewrite (2.5) to single out the coefficieht This yields

( % )= K D‘laUFO(U*(x))) <o ) + AB] (v

00
B=(p- o)

We say that\ is aneigenvalueof U, if (2.6) has a nontrivial bounded solution.

) , (2.6)

with

In the following sections of this chapter, we concentratéh@nODE formulations (2.4)

and (2.6).

2.2 Set-up

Consider a system of ODE’s with a control parameter R?:

%:f(u,,u), (u,p) € R" x RP z € R, (2.7)
wheref is at leasC? such that: = 0 is an equilibrium for anyy, that is, f(0, ) = 0 for
all . For example, for the ODE’s derived from the reaction-diftun system, we have that
n = 2N, whereN is the number of species and the paramgter given by the advection

parameter: € R.
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In this chapter we consider the case that, o 0, the systen(2.7) admits apulse
h = h(z), which is a homoclinic orbit of (2.7) withim,_, 1., A(x) = 0. We also assume
thath is stable for the PDE (2.1): Observe that due to the tramslativariance\ = 0 is
always an eigenvalue for pulses. The stabilityaaheans that the complement i} in
the spectrum of the linearization arouhdies in the left half plane and is strictly bounded
away from the imaginary axis.

Assuming the existence @f, we are interested, either for numerical computations or
theoretical interest [8, 53, 54, 43, 46, 49], in tinencated boundary value problerie
want to find a solutiorfu, ;1) = (ur, ur) of equation (2.7) on a large but bounded interval

[1_,T4], T < 0 < Ty with |T_

, T’y > 1, that approximates in some function space,
say, C'([T_,T.],R"), and satisfies appropriate boundary conditions assignéd aind
T,. We are also interested in determining the stability of #®iftingu, on [7_, 7], as a
solution to the PDE (2.1) posed ¢f_, 77, |.

The boundary conditions we use here aeparated boundary conditionthat is, u
satisfies the boundary conditions if and onlyuif(7_) andur(7.) belong to two sep-
arately prescribed closed subspaces, respectively. Tispaoes should satisfy certain
transversality conditions, which will be stated later.

Note that (2.7) igranslation invariant That is, leth(z) = h(z + x,) for any fixed

zo € R, thenh also satisfies (2.7). Consider the linearization
v' = fu(h(x),0)v, xR, (2.8)
of the equatiorf2.7) abouth. Then we have the following characterization of the tratnste

invariance.

Lemma 2.2.1.//(x) is a solution to the linearization (2.8).
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Proof. Differentiate the equation (2.7) with respectitathen we have

(h/>/ = fu(u7 'u>|“:h,ﬂ=0 k.

0

Suppose that arises as a steady state of the reaction-diffusion equatidine real line.
Then Lemma 2.2.1 implies th&l/, V') = &’ is an eigenfunction for the eigenvalue problem
(2.6) with the eigenvalug = 0. Now upon the truncation dk to [7"_, 7', ], the translation
invariance of (2.7) is destroyed; therefore, the critiaggeavalue\ = 0 for the pulseh on
the real line is no longer an eigenvalue fgr. On the other hand, ifur, ur) is close to
(h,0), we expect that there are discrete eigenvalues of the eigenproblem (2.6) near
A =0, for (u, ) = (ur, ur). The number of the eigenvalues nea# 0 should be equal to
the multiplicity of the eigenvalué for the pulseh. Therefore, more pictorially, the action
of truncation moves the eigenvalue)around and the stability/instability is determined

by whether any eigenvalue moves into the open right halfeglaee Figure 2.2.

(@) (b) () ‘

A=0 A<O A>0

Figure 2.1: A single critical eigenvalue= 0 for the pulsé: is depicted in (a). A truncation
of the pulse to a large but finite interval with separated lolauy conditions may move the
eigenvalue to the left-half plane (in (b)) or the right-haléne (in (c)). In the latter case,
the pulse is destabilized.

19



In comparison, suppose that, instead of affine separatendlaoy conditions, periodic
boundary conditions are applied [46]. Notice that the tia@itn invariance is preserved in
this case: Consider that the solution is a solution of thetiea-diffusion equation, then
the translation invariance is implied by the periodicitytted boundary points. Therefore,
there will still be an eigenvalue at= 0. If the solution with periodic boundary conditions
is extended to aulse trainon R [42, 16], then the resulting pulse train will have a small
circle containing) as a part of the spectrum, and the tangency of the circleveduld

determine the stability (Figure 2.2).

@ | (d) € |

Figure 2.2: A single critical eigenvalue = 0 for the pulseh is depicted in (a). A wave
train can be created by periodic extensions of a truncatidneopulse to a large but finite
interval with periodic boundary conditions. The singldical eigenvalue will turn into a
circle in (e)) and (f). In the latter case, the wave train istable.

2.3 Hypotheses

We now collect the assumptions under which we solve the &t@gcboundary value
problem.

First, in order to conduct a perturbation analysis, we negsome information on the
spectrum of the linearizatiofi, (u, ;1) about the asymptotic steady state- 0 andu = 0.

We assume that
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Hypothesis 2.1. f,(0,0) is hyperbolic.

That is, there ar@®* andn* > 0, such that
spec(f,(0,0)) C{A € C: R < —n° orRA > n"}.
In other words, the spectrum ¢f(0, 0) is bounded away from the imaginary axis. Write
1 :=min{n®, n"}.
Denote the spectral projections associated with the stahdeunstable eigenvalues of
1.(0,0) by P and B}, with corresponding generalized eigenspaggsand E{/, respec-

tively. Then hyperbolicity characterizes the dynamicdidgor of the solutions to

du _ fu(0,0)u

dr
in the following sense: Any solution with initial conditidn £ exists and decays expo-
nentially with raten in forward time, while any solution with initial conditiomiE exists
and decays exponentially with rajen backward time.
Secondly, we require some transversality condition onohéisn space of the equation
(2.7). In the phase space, the pulge), = € R, is a homoclinic orbit tq2.7) at u = 0,
which is in the intersection of the stable and unstable noédsfof the equilibrium; = 0.

We assume that the stable and unstable manifold ef 0 intersect as transversally as

possible in the following sense:
Hypothesis 2.2.4/(z) is the only bounded solution t@.8), up to constant multiples.

Geometrically, the hypothesis can be interpreted as tleahtiersection of the tangent
spaces ak(0) of the unstable and stable manifoldwat= 0 is spanned by the vectaf(0).
In particular,A = 0 has geometric multiplicity one as an eigenvalue of (2.6).
Let
w' = —f,(h(z),0)'w, xR (2.9)
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bethe adjoint variational equatioof (2.7), wheref, (h(zx),0)* is the (formal) adjoint op-
erator with respect to the standard scalar producRdn By Hypothesis 2.2, the adjoint
variational equatiori2.9) admits, up to constant multiples, exactly one bounded iswlut
¥ (x) which decays exponentially as| — oo (see, for example, [42]). Since the scalar
product between solutions of the variational equation)(@rgl its adjoint (2.9) is indepen-
dent ofz (see Appendix)y(x) is orthogonal to every solution of (2.8) that is bounded on
eitherR* or R~. In other wordsy(z) lies in the orthogonal complement of the tangent
spaces to stable and unstable manifolds at the homoclibit/drz).

Thirdly, we introduce a more technical hypothesis: We asstinat the following

Melnikov-type integral is non-vanishing:

Hypothesis 2.3.
M= [ (0l), (o), 0)do £ 0.

Lastly, we consider the boundary conditions. In the spfrémproximation, an intuitive
choice for the boundary condition would be that the solutoontained in some linear
or nonlinear approximation of the invariant manifoldsuat= 0, towards which the pulse
converges [8, 43]. In this thesis, we concentrate on segghtaiundary conditions at =
Ty, that is, we require that there are two specified closed lisebspace®® and E% of
R™ and P! projections onto a complement &, with null spacesV (P) = E%, such

that the boundary pointsy(7..) satisfy:

ur(T-) € B*, urp(Ty) € EY, (2.10)
or in other words,
Prup(Ty) = 0. (2.11)
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Observe that the number of the boundary conditioris.ais equal to the codimension of
B,

We assume that
Hypothesis 2.4.R" = E% @ E} = E™ ® Ej.

Depending on the application, the choice of the complemehtbe rangesr (P)
can be an important issue. However, by Hypothesis 2.4, ieexe&anonical isomorphism

R(PY) = EY andR(P) = Ej. Therefore, we can choose the range of the projections
R(P*) = E!,  R(P¥)=E;. (2.12)
We fix these choices throughout the chapter. Also conselya@ have

dim E* + dim Ef’f =n.

Ebc

|\ YT

ur(T}) h

be
E-‘r

Figure 2.3: A generic picture for the inhomogeneous boundandition: u(7_) € Eg,
andur(7}) € E§, in whichuy, accompanying the pulde is a solution to the truncated
boundary value problem. Compare this to [43], where theeahd® and E°* are taken to
be £} and E, respectively.
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2.4 The Variational Equation and Exponential Dichotomies

In this section we study the non-autonomous variationaatqo

dv

dx

about the homoclinic orbit = h(z).

= fu(h(z),0)v, z€R, (2.13)

In connection with the variational equation we introduce fillowing concept:

Definition 2.4.1. (Exponential Dichotomy)Let /J C R be an unbounded interval{ =
R~,R*,R). The equation

d

é = A(z)v, v(x)€eR", (2.14)
with evolution operator®(z, y), z,y € J, is said to have an exponential dichotomy.bn

if there are projectiong”*(x), defined forz € J and positive constantg’, n* and K with

the following properties:

(Stability) : Let ®*(z,y) := ®(z,y)P*(y), then||®*(z,y)|| < Ke @) foraz,y € J

andx > y.

(Instability) : Let P*(z) := id—P*(z), and®"(z,y) := ®(z,y) P (y), then||d*(y, z)|| <

Ke™ @Y forz,y € Jandz > v.

(Invariance) : The projectionsP*(x) are continuous inz € J and commute with the
evolutions
P (z)®(x,y) = ©(z,y)P*(y).
The last property implies that
O (z,y)vy € R(P*(x)), x>y,v,yeJ

O (z,y)vy € N (P*(x)), r<y,x,y€J
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That s, (2.14) has an exponential dichotomyJoiiwe can decompose the phase space
into a direct sum ofwo subspaces:
R" = R(P*(x0)) & N (P*(x0)),
such that the set of initial conditiongx,) leading to solutions(x) that decayexponen-
tially in x for x > ¢, with z, xy € J, is given by the rang®& (P*(z()) of the projection
P*(z0); The set of initial conditions.(x,) leading to solutions(x) that decayexponen-
tially in x for x < xq, with x, xy € J, is given by the kerneN (P*(z,)) of the projection

PS(ZIZ'Q).

Remark 2.4.1. Observe that a solution decaying in backward (forward) tim&, (R_)
may not decay in backward (forward) timelRy so generically the existence of exponen-
tial dichotomies on/ = R~ andJ = R* does not imply the existence of exponential

dichotomies oy = R.

One of the main properties of exponential dichotomies isttiney persist under small
perturbations of the equation. This property is often reféto as the robustness of expo-

nential dichotomies. Here we have a version of the robustihe®rem, given by Coppel[13]:

Theorem 2.4.1.Let.J beR™ or R™. Suppose thatl(-) € C°(7, C"*") and the equation

dv
e A(x)v, (2.15)

has an exponential dichotomy ohwith constantsk’, »* andn* as in Definition 2.4.1.

There are positive constanfs and x such that the following is true. B(-) € C°(I, C"*")

such that
)
sup |B(z)| < —
zed,|z|>M R
for somey < &, and somél/ > 0, then a constank’ > 0 exists such that the equation
d
% = (A(z) + B(2))v, (2.16)
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has an exponential dichotomy ohwith constantsk’, n° — § and n* — §. Moreover,
the projectionsP*(z) and evolutiond®*(t, s) associated with{2.16) are j-close to those

associated witti2.15) for all t, s € J with |s|, [t| > M.

Remark 2.4.2. If the perturbationB(x) in (2.16) converges t0, then the projections of
(2.16) converge to those of (2.15) in norm. Bb= R, if sup, | B(¢)] is sufficiently small,
then the evolution* (¢, ¢) and d“(¢, ¢) of (2.16) can be found as the unique solution of

the integral equation [40, 44, 42]

B(£,0) — B°(¢.C) = /ﬁ 0, 1) B)# (1. Odr

13 B ¢ -
- / (€, 7)B(r) 8 (1, O)dr + / O (6, 1B (r.Odr,  0<(<é

¢ 0

N ¢ N
U(E.C) — () = /5 (¢, 7)B(r)8" (1. )dr
3 5 00 5
- / (€, 7) B(r)®" (7, )dr + /C OU(E, T BB (1, Odr,  0<E<C

whered*(¢, () and ®“(¢, () are evolutions of (2.15). Therefore, in Lemma 2.4.1, the evo

lutions of (2.16) converge to those of (2.15) &nd( are uniformly large.
Proposition 2.4.1. The equatior{2.13) has an exponential dichotomy &1 andR ™.

Proof. By Hypothesis 2.1, the asymptotic matyfix0, 0) is hyperbolic, thug? = £,(0,0)v
possesses an exponential dichotomy on bothR~ and.J = R*. Take

A(z) = £.(0,0),  B(z) = f(h(z),0) = f(0,0).
Since f is of C* andh converges td) asz — +oo, B(x) converges td as|z| — oo.
Then by Theorem 2.4.1, the equation (2.13) has exponentiabtbmiesP; (x) on R,
and P (z) = id — P*(z) onR_, with the rates)® — 6 andn" — §, respectively, for any

0<iK 1. 0
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Remark 2.4.3. Exponential dichotomies are not unique. Suppose that tiests an ex-
ponential dichotomy of®*. Then the rang& (P*(x)) is uniquely determined, but not the
kernel. Define [44]

I N(P*(0)) = R(P*(0))

to be a linear map and the new projection

Pi(z) := P*(x) — ®(x,0) o I" 0 &(0, x) P* (). (2.17)

ThenP*(z) is also an exponential dichotomy & .

Due to the presence of bolr - andR*-dichotomies for the equation (2.13), we con-
sider the decomposition of the tangent spégg R", which is canonically als®", with
respect to botfR ~- andR " -dichotomies.

Write

Y = span{h/'(0)}.
By Hypothesis 2.2Y ¢ is the subspace of initial data that lead to bounded solsitain
(2.13) onR. LetY* andY™ be the orthogonal complements Bf in the subspaces of
Th)R" that consist of initial data that lead to solutions that gaogforward or backward
time, respectively. Led(z) be the unique, up to scalars, nontrivial bounded solutidh®f
adjoint variational equation (2.9). Writé* := span{¢(0)}. ThenY+ L (Y*®Y*@Y*).

Therefore we have a decomposition of the tangent spad@ awvith respect to a chosen
exponential dichotomy:

R'=Y‘@Y* @Y @Y™, (2.18)
in which
R(P:(0) =Y aY", R(PH0)=Y"®Y",

R(P“(0)) =Y @YY, R(P:(0)=Y* Y™ (2.19)
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Note that Remark 2.4.3 allows us to choose the rafe3;'(0)) andR(F*(0)).
Geometrically, in the phase spaRé of the equationq.13), the ranges of the projec-
tions P; (0) andP*(0) are the tangent spaces to stable and unstable manifolds ofitjin
at the homoclinic orbit(0):
R(P{(0)) = ThopW?(0),  R(P(0)) = ThoyW*(0),

Y¢ = Th(o)WS(O) N Th(o) W“(O)

Remark 2.4.4. From now on, we use the subscriptand + to indicate whether < 0 or
z > 0. SodY(t,s) and P’ (s,t) are the same ad"(t,s) and (s, t), respectively, but

only fors >t > 0, and®* (¢, s) and ®* (s, t) for “(¢, s) andd*(t, s) fort < s < 0.

2.5 Formulation of the Existence and Eigenvalue Problem

By the existence problem, we mean the following truncatachbary value problem:

u = f(u, p), xe [T ,Ty], (2.20)
with
Pru(T,) =0, Pu(T_) =0, (2.21)

foru e CY([T_,T,],R").
Now suppose that we have a solution-, pi1) of (2.20), then the eigenvalue problem,
given by (2.6), is formulated as
v' = (fulur, pr) + AB)v, x € [T-,T4], (2.22)
with the boundary conditions
Pru(Ty) =0, (2.23)

forv e CY([T_,T.],R").
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In the following we concentrate first on the eigenvalue peabl(2.22) and (2.23). (We
can use the same approach for the existence problem witlowdbwodifications which
are explained later.) The philosophy of solving such thedated boundary value prob-
lem is as follows: We treat the truncated boundary value Iprakas two sub-problems
defined on7"_, 0] and[0, 7';] respectively. On eitheb, T, ] or [T_, 0], with the existence
of exponential dichotomies, we can solve the the correspgreigenvalue problem (2.22).
Afterwards, match the two pieces of solutions:at 0. During the matching, the sign of
will be brought out, which then determines the (in)stapidif « .

So we write the above eigenvalue problem (2.22) and (2.28)rquivalent form
v = (fulur, pr) + AB)v_, z € (1-,0),
v = (fulur, pr) + AB)vy, z € (0,T4),
v_(0) = wvy(0), (2.24)
Pty(T) = 0,
P*y(Ty) = 0.
Since(u/., ur) solves £.22) and (2.23), write the perturbed solution as
vs(2) = wp(z) + w(2). (2.25)
Considering that the solution. is the perturbation for/., instead oft’, the original co-
ordinate system (2.18) should be modified accordingly. @ediprojection) : R™ — R"
by
R(Q) = spar{u/(0)}, NQ=YaoY' @Y
Now if uy is d-close to the homoclinic orbit(x), R(Q) is close to the spacg®, which is
a complement taV (Q). HenceQ is well defined and its norm depends only ®and not

onur. Since(u/, ur) satisfies the equation (2.22) far= 0, the equivalent formulation of
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(2.22) forw. will be
(1) wi= fulh(z),0)ws + (fulur, pr) — fu(h(x),0) + AB)ws + ABuy(z),
(1)  Quwx(0) =0, (2.26)
(i) we(0) —w-_(0) € Y,
(iv)  PYws(T:) = —Piu/(T:),
together with the condition
§ = (¥(0), wi(0) —w_(0)) = 0. (2.27)
Observe thatii) — (zii) in (2.26), along with (2.27), is equivalentta (0) = v (0).
As we suggest i2.26)(i), the linear term is split into two parts: the principal part
fu(h(x),0)ws and a perturbation tertty., (ur, ur) — fu(h(x),0) + AB)w. Write
Dy = —Pup(Ty), (2.28)
H(z) = fulur,pr) = fu(h(z),0) + AB,  g(z) := ABuz(z),
Gi(wy,z) = H(z)ws + g(2).
AlsoletG := (G_,G;)andD := (D_, D) € R(P*) ® R(P¥) = E5 @ EY.
Note thatG defined in (2.28) isv.-dependent. We shall first consider the system:
(1) wh = fu(h(z),0)ws + Ge(x),
(1)  Qus(0) =0, (2.29)
(i) we(0) —w-_(0) € Y,
(iv)  PYws(T:) = Dy,
where G is an arbitrary but fixed function, independentwf. After we solvew, =

W(D,G) with G = G(x) for somell/, we will substitute backy = G(w., z) and solve

wy = W(D,G(wy,-)) for wy using the Implicit Function Theorem.
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For the existence problem, with the substitution= w,. + h, we obtain the system
wy = f(ws+h,pu)— f(h,0)
= fulh, 0)ws + fu(h, 0)p + O(Jwal® + Jwel|u| + |1]?))-
Therefore,

Dy =—Prh(Ts),  Gi(ws,z) = 0uf(h, pw)lu=o - 1+ Olwel® + |we|lul + [uf).

2.6 Solving the Reduced Problem

Define the spaces

Vu) : - CO([T_’O])’RH)@CO([O’T+])’R7L>’
Vo: = E}®ES,
V,: = YSpY“

We claim that the general solution of (i)-(ii) o2.@9) is given by the variation-of-

constant formula:
wile) = (e Ta+ @0+ [ @4 (@1)G(0)dy
0
+ [ et Gy (2.30)
Ty

w_(z) = & (2,7 )a_ + ®"(x,0)b_ + /Ox D (z,y)G_(y)dy

- "8 (0, )G (y)dy.

where the elemenis= (a;,a_) € V, andb = (by,b_) € V, are arbitrary.
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Indeed, forw., the right hand side dfi) in (2.29) is
Lhs. = wl
= (P4 (z, T} )as + @5 (z,0)b1)
+([[#enc.war [ ot o)
= fulh(z),0)(®Y (z, T )ay 4+ @7 (x,0)by) +P8( )G () + Pi(x)G ()
/ Fll(2).0)% .Gy + [ £ (), 000 (2. 5)G )y
i
= fu(h(2),0)w; + Gy (z) = r.h.s.
Observe thatv (0) € Y @ Y, thusQw.(0) = 0. Similarly forw_(x).
Since botha andb are free in (2.30), we can chooggin terms ofa and G, to meet

(2.29) (iii).

Lemma 2.6.1.Let the linear operator defined by the right hand sid¢2$0) be
Wi:VyxVyxV, —V,.
There are constants’ and L, > 0 such that the following is true for all”_ and 7", with
|T_|, Ty > L,. There is a linear operatoB; : V, x V,, — V, such thatw satisfieq2.29)
(i)-(iii) if and only if
b= (bs,b-) = Bi(a,G), w = Wi(a, B(a, G), Q).
Furthermore, we have the estimates
br] < Cle™™ M oo +1G-]),  [b-] < Cle7 T ay| + |G ).
Write

L :=min{|T_|, T}, (2.31)
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then
|Bi(a,G)| < C(e ™ a] +|G)),
Wi(a,b,G)] < C(la| + |b] +]G]), (2.32)

[Wila, Bi(a, G), G)| < C(la] +[G]).

Proof. Evaluating atr = 0, we get
wy(0) —w_(0) =by —b_ +4(0, T} )ay — P2 (0,7 )a-
- /OT+ 4 (0, y)G o (y)dy — /0 P2 (0,y)G-(y)dy, (2.33)
with ®% (0,0)b; = by and®“ (0,0)b_ = b_. 7
To solve(2.29) (iii), it is sufficient to solve
PY" Y @Y @Y™ (wy —w_)(0) =0,
PY: Y @Y"@Y)(wy —w_)(0)=0.
Now project(2.33) ontoY* & Y. Note that sincéb_,b,) € Y* ¢ Y™,
PYS Y QY @Y )by =b,, PY“Y@Y QY )b =b_.
Thenw,(0) —w_(0) € Y* holds if, and only if,

by = PYs,Y'@Y'@Y?) (CDS_(O,T_)CL_ + /0 @i(O,y)G_(y)dy) ,

Ty
b = PY“Y@Y @Y™t (@1(0,T+)a+ +/ @1(0,y)G+(y)dy) . (2.34)
0
Observe that the right-hand side of the equations definesiadeal linear operataB; in

(a, G) which satisfies the desired estimate. O

Next we solve (iv) in (2.29)
Plwy (Ty) = Dy (2.35)
As the componeni is free, we would like to choosein terms ofG = G(z) and D such
that (2.35) is satisfied. We formulate our claim as the follayv
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Lemma 2.6.2. There are constants' and L, > 0 such that the following is true for every

T_andT, with |T"_|, T, > L,. There are linear operators
Ay R x Vi = Vi, By :R'xVy—Vy,  Wo:R"xV, —V,.
such thatw satisfies (2.29) if, and only ify is given by
a = AyD,G)
b = By(D,G):= Bi(As(D,G),G)
w = Wi(D,G):=Wi(As(D,G), Bs(D,G),G)
whereB; andW; are given in Lemma 2.6.1. Moreover,
a=(ay,a_)=Ay(D,G)=(Dy,D_)+ Ry(D, G), (2.36)
for a certain bounded operatdk,, and we have the estimates
[R2(D,G)| < C(e7"|D| +]G)),
[Bo(D,G)| < C(e™™|D| +G]), (2.37)
(Wa(D,G)| < C(ID[+]G]).
Remark 2.6.1. The expression (2.36) only makes seng®if, D) € E; & E{, which is

true due to our choices (2.12) of the ranges of the projestidfi.

Proof. Evaluate £.30) atz = T4,
wy(Ty) = ay + (PYTY) — P)ag + @3 (T, 0)by
v [ oG, (2.3
w_(T_) = a_+ (P*(T_) — P)a_ + & (T_,0)b_
+ /0 U (T )G (), (2.39)

with Pla; = ay andPja_ = a_. Hereb = (by,b_) = Bi(a,G).
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From Lemma 1.2 (ii) in [44], we obtain
PUT,) — PY < Ce™ T |PY(TL) — | < Ce 1T,
and from Lemma 2.6.1,
bl = |Bi(a, G)| < Cle™|al +|G]),
then from (2.35), we reach

Dy =PrD, = P’y +0( " ay)+O0(e " (e7a_ + G)) + O(GL))

= P*((140(e7"™))ay + O(e*")a_ + O(G)), (2.40)
and
D_=P*D_ = P*a_+0(e""la_) + O(e " "=l(e7"a, + G,)) + O(GY))

= P*((1+0(e™™))a + Oe > )as + O(G)).

For sake of convenience, we concentrate on the equatio®for On R", the pro-
jection P is not invertible due to the presence of the kernel. Recait thue to our
choice of R(E"), the mapP!‘|z: = id|g:. Define the coefficient operatdk, :=
P((14 O(e™™F)) of ay in (2.40) . Thenky is also an isomorphism for large, with
|K7Y =1+ 0(e ).

Thus we can inverf(, :

ay =Dy +0(e™™)Dy + O(e ™ )a_ + O(G_) (2.41)
Similarly, we have
a_=D_+0(e™)D_+0(e*)ay + O(Gy) (2.42)

Substitutez ;. from (2.41) into (2.42), we have

(1+0(e*™))a_ = D_+ 0(e™)D; + O(G).
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Then

a_=D_+0( ™D, +0(e™)D_+O(1)G4 + O(e™2™)G_,
and

ay =Dy +0(e™™)D_ +0(e?™)D, + O(1)G_ + O(e™*"™)G,.
We conclude that

a=(ar,a_)=(Ds,D_)+ Ry(D,G) =: Ay(D,G), (2.43)
whereR, is a bounded operator with
|Ro(D, G)| < C(e7"| D]+ |G)).

The other two estimates fds, andW¥, follow from the estimates in Lemma 2.6.1. 0O

Lastly, we need to solve (2.27) which reads

€ = (1(0), w4 (0) — w_(0)) = 0.

We give an expansion @fin terms of D andG.

Lemma 2.6.3. There are constants and L, > 0 such that the following is true for all”

and7 with |T_|, T, > L,. Letw = W5(D, G) be given in Lemma 2.6.2. Then
Ty
€ = (T, = (). D) = [ (). Guta)da

—/ (W(x),G_(x))dx + R(D, G), (2.44)

with

|R(D,G)| < Ce™(e7"|D| + |G).
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Proof. Observe thaf is linear inD andG and, by the decomposition (2.18),(0), b+) =

0. We obtain
(1(0), w1(0) —w-(0))
= (¥(0), 24 (0, T} )ay) — (¥(0), 22(0, T} )a—)

0

—/O +<¢(0),®i(0,x)G+(x))dx—/ ((0),®* (0,2)G_(x))dx

0

Ty
= ((Ty),a4) — (W(T-),a-) — / (¥(z), G (2))dz - / (¥(z), G_(z))dx.
0 -
Here we use that the evolution operator of the adjoint vianal equation is given by
(@4 (z,y))~1)*, see Proposition A.1.1, (2) in Appendix A.1. Substitutet®.into the

last expression, then
§ = (U(T4), Dy) — (W(I-), D) + R(D, G)
- [, on@nir - [ .6 @)
with |R(D,G)| < Ce " (e~"E|D| + |G|). Here wc; use the fact thab(x)| < Ce "l
which follows from Proposition A.1.1, (2) in Appendix A.1 @rhe fact thatf,(0,0) is

hyperbolic. 0J

2.7 Solving of the Existence and Eigenvalue Problems

The existence problem of the truncated boundary value enollad been investigated
by various authors, both numerically and analytically [8, 83, 54, 43]. Recall that the
boundary projection operatofd* and P* in the following theorems are chosen subject to

(2.12).

Theorem 2.7.1.Assume that the hypotheses (2.1) - (2.4) are satisfied. Bnenstants
C > 0andL, > 0, such that the following is true. Defire= Li For all 7_ andT’, with

|T_|, Ty > L, andp with |u| < 4§, there exists a solutiofur, pr) of the equation (2.20)
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which satisfies the boundary conditions (2.21) and

sup |ur(z) — h(z)| < C6, \pr| < CO. (2.45)

ze(T-,T4)

Moreover, we have the estimates:

ur(T-)] + Jur(Ty)| +  sup  Jur(z) — h(z)| < Ce™™, (2.46)
ze[T-,T]
\pr| < Ce™ 21k, (2.47)
In particular,
|PYR(Ty)| + | PY¥R(T-)] < Ce " . (2.48)

Remark 2.7.1. The uniqueness of the solution above can be obtained by ingpas ad-

ditional phase condition [43].

Proof. From Lemma 2.6.2, a substitution férgives the following fixed point equation:
w=Wa(D,G) = Wa(D, dyl,co f (), ) - 11+ Ofwsl* + [we ||l + ),
in V,, or equivalently,
w = Wa(0,0((Jwsl* + hwillp)) + Wa(D, 0, f (7, 0) -+ O(| )

= (Wa(p))(w) + Wa(D, ). (2.49)

Since|d, (W3(p))(0)| < C|u|, we can solve (2.49) faw:
w = (id — Wa(u)) ™' Wa(D, p) =: W5(D, ),

for || uniformly small. ThenWs| < C(|D| + |u|).

The expansion for the jumpin Lemma 2.6.3 gives the equation:

€ = (0(T4), Dy) — ($(T), D_) - / "(0(2), Ge(2))dz + R(D, G) =0,

which we need to solve. For the existence problem, we have

Dy =-Pyh(Ty),  Gi(ws,x) = 9uf (h(@), 0)-p+O(lwel*+|wel|u|+]pl*). (2.50)
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It remains to solve
€ = &(u, G, W5(D, ) =0,
with
9l (u0)=00) = =M + 9cR(D, G)9,G|(p)=0.0) = =M + O(e™"").

1

Therefore there exists, > 0 such that for al| 7" I

, T > L, and|u| < 0,£ is non-

vanishing. By the Implicit Function Theorem, we can safve 0 for . = u(D) in terms
of D . Thus, we obtain the existence, and the estimate (2.455hold

In order to establish the estimates (2.46) and (2.47), wd teease the exponentially
weighted norm orC°([7"_, 7' ], R™). This can be done as in [33, 43]. We omit the details.

0

In the following lemma, we will develop a finer estimatewgf(7.) by giving an ex-

pansion ofur(T4) up toO (e~ 7).

Lemma 2.7.1.Letur be the solution of the truncated boundary value problem i@ofém

2.7.1. Then
ur(Ty) = (id = PE)R(Ty) + O(e?1),
ur(T-) = (id — P*)h(T_) + O(e™215).
Proof. Recall equations (2.38), (2.39) and Lemmata 2.6.1, 2.6.2,
ur(Th) — h(Ty) = wi(Ty)
= a, +0(e™)ay +O0(e (e "a+|G])+O0(1)G

= D+ + O(e_nL)D+ -+ O(l)G
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As D and(G are defined as in (2.50), we obtain that
up(Ty) = h(Ty) — P*h(Ty) + O(e ™)h(T}) + O(1)p + O(Jur — h|?)
= (id — P*)h(Ty) + O(e™™).
In the last equation, we use the estimates (2.46) and (2ZT4é)proof foru(7_) is similar.

0

Next, we consider the eigenvalue problem (2.22) with (2f@aBywhich we impose the

following assumption:

Hypothesis 2.5.
M ::/ (¢(x), Bh (x))dx # 0.

—00

Recall that, for the eigenvalue problem,
Di - - :II):CUIT(Ti)a
Gi(UJ,l') - H()‘)w:t +g

= (fu(uTy/iT) - fu(h<x)7 O) + )‘B>w:|:(x) + )\BU/T(CL’)

Theorem 2.7.2.Assume that the hypotheses (2.1) - (2.4) and (2.5) are satisfhere are
constantg”, § > 0 such that the following is true. Suppose that, ;1) is the solution to

the truncated boundary value problem (2.20) with boundamydition (2.21), such that

1
sup |ur(x) — h(z)] < 0, lpr| <9, L :=min{|T_|, T} > 5
ze(T-,T4)
There exists bounded nontrivial= v(\) and A , with |\| < §, which satisfy the equation
(2.22) and the boundary conditions (2.23) if, and onlyif\) = 0, where
EQ\) = ($(T-), P*A(d — PX)I(T-)) — ((Ty), PyA(Gd — PY)A(T,))
-\ / ((x), BW (z))dx + R(\) (2.51)

—0o0
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whereA := £,(0,0) and R satisfies the error estimate

RO < Cle ™A + AP+ e721)

Proof. From Lemma 2.6.2, we have the solution operdtar= W,(D, G) for w. Substi-
tuting G gives the following fixed point equation:
w=Wy(D,G) =Wy(D, HAN)w + ABufy(x)).
Thus,
w = W(0, H(Mw) + Wa(D, g) =: (Ws(A))(w) + Wa(D, ABuy()).

Observe thatH (\)| < C9, for |up — hlw, |ur| @and|A| < 4, therefore|IWs(\)| < C6.
SinceC is independent of, choose) small enough and we can solve tor

w = (id = Wy(X) "' Wa(D, ABul(z)) =: Wy(D, \) (2.52)
with the estimate

(Wa(D, N)] < C(ID] + [A]).-

Substitute backs = W, (D, \) into the expansion (2.44), we obtain

€ = (W(T.),Dy) — ($(T_), D) — A / " (0(2), Bulp(z))dz

- / "(0(x), HOVWA(D ) (@) dz + R(D, \) (2.53)

where

R(D,\) :==R(D,G(D,\) = R(D, HNWy(D, \) + g). (2.54)
Comparing (2.53) with our desired result (2.51), we arerggied in estimating the

term

/ "), HOWA(D, ) (a))d,

the differences

| / " (0(), Bulp(z))dz — / " (), B (2))dz),

— 00
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and
[(O(Ty), PY(AGd = PEYR(Ty) =o' (T))) |+ (0 (T2), PX(A(d = PX)R(T-) —u/(T-)))].

We collect these estimates and the estimatdfam the following lemma.

Lemma 2.7.2.

() D] <Ce
@ | ) HOWAD. N @)ds| £ Ol + e + AP);
(i) / " (0(x), Bulp(z))dz — / " (), BH (x))dz| < Ce”

(V) [((T}), PIA(d — PX)R(T,) — Pr/(T}))]

+((T2), P*¥A(id — P*)h(T_) — P*u/(T.))| < Ce™ 3.

Proof. (i) By (2.46) and (2.47), and sing&0,0) = 0,
|Dac| = [P(up(T))| < Clf (ur(Te), pr)| < Clur(Te)| + |pr|) < Ce™.
(ii) In
/ N ((x), HO)Wa(D, \)(z))da, (2.55)

the first order term ir\ is given by

A [ @ EO WD) @ b (2.56)
Observe that 7
AHNWi(D, N))|x=0 = B-Wi(D,0) + (fulur, pr) — fu(h(2),0)) - 3Wa(D, 0).
From (2.30), we see that the integral terms vanishidet W (a, B(a,0),0) so that,
by definition (2.52) ofi,, we have
(Wa(D,0)(2)] < Ce™ (I |D|, e [T, 0];

[Wi(D,0)(z)| < Ce™™T+=2|D|,  x€[0,T,].
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Therefore

T, Ty
/ ((x), B - WD, 0)(x))dz| < c/ e =)= D\ dg < Ce | D).
0 0

(2.57)

and, similarly,
0 0
| (Y(x), B-Wy(D,0)(x))dz| < C/ e_"S|T*_x|e_"|x||D|dx < Ce "™|D].
T

(2.58)
Sincef € C?,
| fulur, pr) — fu(h,0)] (2.59)
S |fu(uT7 ,UT) - fu(uTa 0)| + |fu(uT7 0) - fu(h> 0)|
< Cprl+ sup Jur(e) — h(z)]) < Ce™™.
ze[T-,T]
Also, |0yW4(D,0)| < C. Therefore, (2.56) is bounded laye " |\|. With a similar

argument, we find that the constant term\iof (2.55) is

/ "0 (@), HO)W(D, 0)(x))dz = O(e~ M) D).

Substitute Part (iDL = —P¥u/(T) = O(e ") and the estimates (2.57), (2.58),
(2.59) into (2.56), then we have (ii).

(iii)

| (¢(x), Buy(z )>dw—/_ (Y(x), BN (x))dz|

IN

|/ ) BE )l + | [ (), B (2))dl
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(iv) Sincef(0,0) =0,
up = flur, pr) = fu(0, wur + O(|lurl?) + £u(0, pr)pr + O(|ur|?)
= fu(0,0)ur + O(|pr||ug] + |ur|* + |pr|)
= Aur + O(e "),
By Lemma 2.7.1,
Prulp(Ty) = PrA(d — PY¥)A(T,) + O(e ™),

Pulp(T) = P™A(id — P*)h(T_) 4+ O(e™2™).

Therefore,
[((T%), PA(>d — PYR(T,) — Py (T )|
+|(p(T2), PP A(id — P*)h(T_) — Pu/(T_))| < Ce .
O
Since
IGD,N| = [(fulur, pr) = fu(h(x),0) + AB)W4(D, A) + ABuy(z)|
< O((e™™ + AP+ e A) < Cle™™™ + e N+ AP),
and
[R(D,N)| < Cle™ (e [D| +|G(D,A)]) < Ce™ + e |\ + e (A]?),
we have
£ = (Y(T4), —PrA(d — PER(TL)) — (Y(T1), —PXA(id — PX)h(T-))
+0(e73) — A(/OO (1(z), BE (z))dx + O(e™ ™)) + O(|A]%). (2.60)
Combining the error terms in Ezeo), we have the result (2.51 O
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Due to Theorem 2.7.2, with the Melnikov assumption, we ha\g D, 0) # 0 for all
|D| uniformly small. Thus, we can invoke the Implicit Functiomé&orem to solve for

A= \(D).

2.8 Applications

In this section, we will apply the results to the eigenvalughem associated with the
FitzHugh-Nagumo and the Nagumo equation. In both cases,ilvnvestigate the given
pulseh and verify that the hypotheses 2.1 - 2.4 and 2.5 are satisBgdlheorem 2.7.1,
there is then a unique truncated pulseon [T, 7', |. By Theorem 2.7.2, up to higher order

termsR(\) = O(e=" + e~"F|\| 4 | A|?), the persisting eigenvalue near= 0 is given by

A / T (), BE(2)dr = ((T), PEA(id — P<)h(T))
—(W(T), PEAGd = PER(TL)).  (2.61)
If the sign of the Melnikov-type integrall in Hypothesis 2.5 is determined, then the sign
of \is determined by the tery (7 ), P¥u/(T-)) — (¢ ('), P/ (T)). The significance
of this is that we can investigate some local dynamic featofghe equilibriumu = 0 of
the ODE (2.20), or equilibria for heteroclinic orbits, tady the dynamic behavior near the

steady state, of the PDE (2.1).

The following lemma will help to simplify the calculations.

Lemma 2.8.1.Suppose that the linear operatdr: E5® E — E5® E has the following

matrix representation

_(—A* 0
A=(Tg )
in whichR" = Ej & EY. ThenP¥A(id — Pb) have the following matrix representations:

be A (s be = 0 0
PEAGA=PY) = (g 4oy avp, 0)
0 —A*B_ — B_A* )
0 0
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for some linear boundeB_ : EY ¥ R* — E; 2R *andB, : B 2 R"* — Ey = RF
such that
E* = graphB_ ={a+B_a;a € E}}

EY = graphB, = {a+ Bya;a € Ej}
Remark 2.8.1. From Lemma A.2.1 and Hypothesis 2.4, sudB,aand B_ exist.

Proof. By the hypothesis 2.48" = E' & EY. TakingE = E andA = E{ in Lemma
A.2.1, we obtain that

EY ={a* + Bya’ : a* € Ej}, for some linear bounde, : E; — EJ.
SinceP| gy = idgy and P¥| e = 0, P} has the following representation

ProBeR —BeR, Pr=(_p 1)

Therefore,
peaa-rey = (_p 1) (50 A6 Y) - (m 1)
:<B&SEJ(5+8>
= (payas o)

Similarly, we have

PriB e R Ber,  Pr=(0 "0,

- 0 O
and
be g1 phey (0 —A B — B_A )
Pt A(id P_)_<0 ; ,
for some linear boundeB_ : EY &~ R* — Ej &~ R, O

2.8.1 Fronts of the Nagumo Equation

We consider th&lagumo equation
Ut = Ugz +u(l —u)(u—a), zeR. (2.62)
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For eacha € (0, ), there exists a unique frort,(£), up to z-translations, with unique
speedc = c¢,, that connects = 0 tou = 1. Equation (2.62) is related to the FitzHugh-
Nagumo model for nerve action potentials. Here 0 corresponds to the resting state and
u = 1 to the excited state of the nerve, and they are both stable.

More generally, we may consider thestable Nagumo equatiagiven by:

Ut = Ugy + f(u>7

f(0) = f(1) = f(a) =0, (2.63)
f<0on(0,a); f>0o0n(a,l)
1(0), /(1) < /f )z > 0.

Observe thaf (u) is cubic-like. Again, there is a unique front connecting steble states
u = 0 andu = 1. Furthermore, we have a global stability result: one cangyrasing the
comparison principle, that for a large class of initial da@alutions converge uniformly to
a translation of the front with an exponential rate [17].

The Nagumo equation (2.62) possesses the following tiagdhonts connectingo, 0)

and(1,0):

S

(u, ue) = ha(€) == (0(6),0'(€)), (€)= ——. (2.64)
evz 41

with wave speed, = \/5(% —a). We have the following expansion of the homoclinic orbit

£ v
(L)% + 0 "), £ — —oo.

Furthermorey (&) = (¢”(£), —o'(€)) is a nontrivial bounded solution to the adjoint equa-

;Ma—{“®+m )OI, 6o,

tion.

The eigenvalue problem associated Wiet62) is

L = uge — catig + fu(ha)u = M,
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or, written as a system of ODEs,

<Z§>:<2<a+1>o<§>0—3a2(5>—a ia)”f)“((f 0)(3),

where the coefficient matrix is hyperbolic far= 0 when{ — +oc.

B2 = spar{(1, —v/2a)} Ey = spar{(1,v2 — v2a)}

S

Eg)L = Spar{(L 22)}
B = spar{(1, —2)}

Figure 2.4: The front of the Nagumo equation. The eigenspaee be calculated by
invoking phase space analysig@t0) and(1,0).

Theorem 2.8.1.Suppose that
E*®FE;=R?  E"@FE'=R?
where
E3 = span{(1, —v2)a}, B = span{(1,V2 — V2a)}.

Then we have (Figure 2.5):
(1) If E* C I, E% C I, then the truncated front is stable.

(2) If B C 11, E* C 1V, then the truncated front is unstable.
+
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In particular, if both boundary conditions are Dirichletyeén the truncated front is stable;

if both conditions are Neumann, then the truncated frontistable.

v v
Ly B
S
0.8 u 1PN U
1V 1V
17 1 \
E3 £y

Figure 2.5: Regions foE™ (left) and E%¢ (right)

Proof. In comparison to equation (2.61),

1 . c c . c B,
A= = (0(I0), PEAGd = PR)h(T0) = (0(T%), P AL (id = Pha(T2))) + ROV
holds in the front case, in which

M = /_OO ((x), Bh())dz,  A_=£u((0,0),0), Ay = fu((1,0),0),

o0

and

R(A) = O(e™™ + e[ + AP
Sinceh!, = (¢’, ") and) is chosen to bés”, —o’), the Melnikov integral becomes

| wennreds= [ ~@rac<o. B=(] 0
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Neu = u — axis

W

7

Figure 2.6: Dirichlet boundary condition @t : Observe that in comparison with Figure
2.5, in this picture, we rotate the coordinate system toinlatdetter view. For larggl”|,
h.(T-) is almost parallel t& andv) (1) to £;.

In the following we would like to prove the theorem in the caé®irichlet conditions
at both end points. The proof for the general case is almestiichl.
In Figure 2.6, choose the orientationsigf and E;, such that ilR? = Ej & EY,
((0,1),ha(T-)) >0, ((1,0),9(T-)) > 0.
ThenDir = E* for the Dirichlet condition af’_, can be written as a grappan{(1, B_)}
over E', with B_ < 0; Similarly, in Figure 2.7, choose the orientationsiffand £}/, such
thatinR? = E; & Fj,
((1,0), =ha(T4)) >0 {(0,1),9(T%)) > 0.
ThenDir = E' for the Dirichlet condition af’;, can be written as a grappan{(1, B;)}

over £}, with B < 0.
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Figure 2.7: Dirichlet boundary condition &t : Similar to Figure 2.6.

Since
1
A= 0 . A = —V2a (1] ’
0 V2a 0 V2
and
1
Pea(d—pry — (0 ~(5+ V208
0 0
PrAL(id - PY) = y ’
A =PE) = (2 vaa)B, 0 )
Therefore,

(p(T-), P*A_(id — P*)h,(T_)) < 0
(W(T4), PA, (id — P*)h(T)) > 0.
Therefore \ < 0.

In general, ifE* C I andE% C 111, then (2.65) holds andl < 0.
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For the Neumann boundary conditions we have
(Wh(T-), P*A_(id — P*)h(T.)) > 0 (2.66)
((T4), PAL(id — P*)h(T2)) < 0.

Then) > 0, which also holds for the general caB& C 77 andE’ C IV.

]
2.8.2 Pulses of the FitzHugh-Nagumo Equation
Consider the FitzHugh-Nagumo equation (FHN) [37]:
Up = Ugyp + fu) —w (2.67)

wy = 0(u—yw),
in which we assume thaft(u) = u(1 — u)(u — a), witha € (0, 3). Usuallyy > 0 is small
and0 < § < 1. The FHN(2.67) is a simplified model of the Hodgkin-Huxley equation,
which was first used as a model for the propagation of elesigitals along the giant nerve
axon of squids. Instead a&fpace-clampedynamics [37], we consider the system with
spatial diffusion inu without externally applied current.

In the co-moving framéé = « + ct, t), wherec > 0, (2.67) becomes:
w = Uge — cug + f(u) —w, (2.68)
wy = —cue+6(u—yw).
A travelling wave solution with speedis a stationary solution, = w, = 0 of (2.68). Let

c= d%, then a travelling wave is a bounded solutions of the follaWODEs:

U = v,
0 = cv— f(u)+w, (2.69)
w = €(lu—~yw)
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with0 < e:= 2 < L.

There are two types of pulse solutions we are interestedom and fast pulses. Slow
pulses are perturbed solutions of the fast orbits in the dgstem. Fast pulses, on the
other hand, are perturbations of singular orbits congjstio pieces of slow manifolds and
the connections between them [31]. "Fast" (pulse) and "s(pwise) are referred to the
different time scales in the corresponding systems. Foexisence of such slow and fast
pulses parametrized by the propagation spesde [22]. Also see [31] for more references
and a brief survey. Typically, slow pulses are unstable,fastipulses are exponentially
stable for smally > 0 and marginally stable foy = 0 [63]. Therefore, we investigate the

truncated boundary value problem of the fast pulses.

w= f(u)

Figure 2.8: The fast pulse of the FitzHugh-Nagumo equation

Before stating our result, we discuss the spectral pragsedi the fast pulse. The lin-

earized stability of the fast pulde:, w) of (2.68) is determined by the spectrum of the
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linear operator

o ﬂ&—cﬂg—Ffu(u)ﬁ_w
c@uw)—-< —ctbe + 6( — ) )'

The associated eigenvalue problenj2@8) for A near0 is given by:
V 4+ ABV := F;V + ABV,

0 10
V' = (—f’(U) c 1 )
€ 0 —€7 / lwow)©)=h()

00 0
B=[10 0
00 -1

whereh(¢) = (u, v, w)(§) is the fast pulse solution. The spectrum of the asymptatic li

earization

0 —ey
about the equilibriungu, v, w) = (0,0,0) = 0 consists of three eigenvalues

01 0
V' = Fy(0)V = ( a ¢ 1 ) \% (2.70)
€

(< =0() <0< "> > ¢ (2.71)

Remark 2.8.2. Here we would like to emphasize that the set’ofi = s, ss,u, as the
eigenvalues of the linearization about the equilibriumaitcal dynamic feature of the
travelling wave ODE, while\, as the eigenvalue of the linearization about the pulse, de-
scribes the stability/instability of the truncated pulsesasolution to the FitzHugh-Nagumo

PDE.

The parametersanda can be expressed as follows:
¢ = C+C+C+ey,

a = —(¢7¢C+ "¢+ "0 +exc)

54



in terms of eigenvalues. Also we can find the eigenvectors

1
e v &),
(¢ +ey)(¢" +e)
1
Ve = g,V Ve :z( ¢ ),
(C* + en)(¢* + ey),

1
Vs = ,7_88‘7337 ‘N/ss — ( CSS ) :
(€ + e (" +ev)

corresponding t@*, ¢* and(** respectively, such that the pulse satisfies [11]:
e = { Ve Ot T
Vuets 4 O(eC" 8 ¢ — —o0,
for somev > 0. Herer; > 0, fori = u, s andss [31].

(2.72)

Furthermore, there are eigenvectors

~ —ce + (e B —ce + (e
W .= ( € ) , W .= ( € ) , (2.73)
(€ +en(C" +ey) (€ +en)(¢*+€v)

to eigenvalueg® and(", respectively, for the transpo$é (0) of the matrixFy(0).

Lemma 2.8.2.For fixeda € (0, 3), there exists, = ¢,(a) > 0 such thatforall < € < e,,
¢° < —e.
Proof. The characteristic polynomial of the asymptotic matrix2t7Q) is given by:
p(z) = —2® + (c — ey)2® + (a + cey)z + aey + e
Thenp(—ey) = € > 0. Choose) < ¢, < a, such that(** < —ev, which implies

(° < —ey. O

Observe that
(VW) = (¢ + )’ (¢ + en)? +e(C" = ¢ = (¢ + 7)) > 0.
(V2 W) = (¢*¢")* + O(e) > 0.
On the other hand, choo$E" € span{IW*}, such that
(Ve W =1, (2.74)
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L
- \y_w ¢ v

Figure 2.9: The graph of

then there exists 8¢ € span{IW*} with (IW*,V*) > 0 so that the bounded nontrivial

solutiony(¢) to the adjoint variational equation satisfies [31]
(e) = { Wee™ + 0(e” %), £~ oo,
W e O(em ) € - —o0.
With this choice ofit’* (and consequently d¥¢), the Melnikov integral becomes [45]
M= [ (@) BN = [ (O, b e > .

We summarize the existence and stability result of the atettfast pulse in the fol-

(2.75)

lowing:
Theorem 2.8.2.Let the fast pulsé = K (&) be the stationary solution of the FHN equation
(2.67). Consider the following truncated boundary valueljpem
up = Uge — cug + f(u) —w
wy = 0(u — yw), e (T-,Ty), (2.76)
(u,v,w)(t,T_) € B*, (u,v,w)(t,T}) € EY.
in which f(u) = u(1 — u)(u — a) anda € (0, ;). Assume that Hypothesis 2.4 is satisfied.

Then for any fixed: € (0, 5), there exists a positive. = ¢,(a) such that the following
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holds. For all0 < € < e,, there existd., = L,(e) > 1 such that for any7_, 7", | with
T <0< T,and|T_|, Ty > L., there exists a stationary solution of (2.76) near the
fast pulseh. Moreover, the PDE stability of the truncated solution candescribed as the
following: Let

V= §lir£10 e " Ch(8), V= . lim e S"Ch(8),
and

W= dim COU(E), W= Tim O (E),

with the normalization (2.74). Consider
I = [(T.,Ty)
= T (s PR A — PV — e T (W PR A(d — PR VE).

Then if] < 0, the truncated pulse is stable;if> 0, then the truncated pulse is unstable.

Proof. The proof directly follows from Theorem 2.7.1, 2.7.2 and #s¢imates (2.72) and

(2.75) forh andv), respectively, a§ — +oo. O
Now we apply our result to Dirichlet and Neumann conditions.
Example 2.8.1.Suppose that the boundary conditions are as follows:

1. Dirichlet at both ends:

B = v-axis= {(u,w) = (0,0)}, E" = (v, w)-plane= {u = 0}.

In the coordinates ofV**) @ (V*) @ (V") = E5 © EY = R,

TSS O O
ce(8) =) ()
0 0 Ty
Recall that from Lemma A.2.1, there exists a bounded linparaior B_ : Ej =
- - - B! 0
(V"y — Ey = (V**)a(V?®), B_ = ( B; ) such thal< 8 ) € E* has coordinates
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Figure 2.10: A truncated pulse, for the FitzHugh-Nagumo equation and in this special
case, the boundary points-(7-) € Ej andur(7,) € E{. For a generic picture, the
boundary points can move freely in the corresponding affulesgaces associated with
E®, respectively.

Bla ~ ~ ~
< B2q ) inV*= @ V@ V" Then

a
L Bla 0
<Vss Ve Vu><32a>:<v) (277)
0 0
Solving (2.77) yields

Bla (€ =N+ en) (" + +ev)
Bla | =V (€ =)+ &) :
a Cu _ Css
Then
5o BEY_ [~ Hren ¢ ey
o\ B ¢ +ey

Similarly, there exists a bounded linear operafdy : £ = (V) @ (V) — E“ =

- 0
(V"y,By = ( BL B?% )such that< v ) € E* has coordmate(

w

B a1+Bza2 >
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inV>=@ Ve V" Then
- a1
( s s ) a _ <
B}ral + Biag

det (V™" V" V") = (0= ¢)(CT = ¢ (¢ = ) <0,

( Ve vy ) is non-singular. Then for any, as), there is a unique paifv, w)

0 ) . (2.78)

Since

that satisfies (2.78). Taking any pdii;, as) = (0, az) with as # 0 in (2.78) yields
B? = —1 and taking any paifa;,az) = (a1,0) with a; # 0 in (2.78) yieldsB. =
—1. Therefore,

By=(B. Bl)=(-1 -1).

Then in the coordinates ¢i/**) @ (V*) @ (V*) = ES @ B¢ = R3,

0 0 (CSS Cu)Bl 0
P*AGd— PV = [ o 0 (¢ - gU)B2 <o)
0 0 “
Cu CSS Cs_i_G,y)(Cu Css‘i“f’}/)
= ( — ("¢ +e) )
0

0 0 0
PrA(d — PYY)V* = < 0 0 ) ( Ts )
(¢" Css)Bi (¢*=¢)BY 0 0

( ; )
= T 0
Cs_gu

Since(V*, W7y = 0ifi # j,4,j = s, ssoruwand (V' W > 0, if i = s or u,

Tu

(PAGd = PR)YV", W) = Z5(C" = ¢ B2V, )
= =N NV > 0
(PFAG = PRV WY = ("= ¢) BV, W)
TS

= Ly <o

Thus,/ > 0 and the truncated pulse is unstable.

The calculations in the following examples are similar.
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2. Dirichletaté =7 and Neumann &t’, :

B = w-axis= {(u,v) = (0,0)}, E" = (u,w)-plane= {v = 0}.

A calculation shows that

B ( B ) _ ( —(C" + e (¢ + ¢+ ey) )

B? "+ ey
and
Bo=(BL B )= (% -&)
Then
(P A(id — PV, We) = :—:(gs —CYBE(VE, W)
= - V) <0
(PEAGd = PE)V", W) = (¢ = ¢ BV W)
= I -G >0

We conclude that < 0, and the truncated pulse is stable.

3. Neumann at both ends:
B = {(u,w) =(0,0)} = {(u,v,w)|v =0,u = yw},

EY = (u,w)-plane= {v = 0}.

We have

g2 o 2+ en(@ = &) = (" + )¢ — ()
) (¢ =¢) + (¢ =¢*) ’

and
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Then
(P*A(id — P*) V" W*) =

(Gt = ¢ B2V, W)
Tu ) s V(C”HV)(( ¢ CC) (C“+67)(C”—CS)<VS’WS><O’

A N (e O R ()
(PrAGd - PV, W) = ( — ()BL(V, W)
Ts CS u U
= _E(C C)C (Ve we) >0,
for0 < v < 1.

We conclude that < 0, and the truncated pulse is stable.

4. Dirichletat¢é = 7 and Neumann &t’, :

EY = v-axis= {(u,w) = (0,0)},  E% = (u,w)-plane= {v = 0}.

A calculation shows that

B — ( B ) _ ( —(C* + e (¢ +C + ) )

B? ¢S+ ey
and
B.=(BL B )=(-& -&).
Then
(P A(id — P*)V* W*) = :“(g — CYB2 (VW)
= HC = C)C V) >0,
(PEAGd = PRV, W) = (¢ = C)BLV W)
= I -G >0
Therefore,
I = cle(cu_CS)T* — cze_(cu_cs)ﬂ, c1,co > 0.
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If we fix7, and takeT_ such that7"| is large, then the truncated pulse will be sta-
bilized; On the other hand, if we fiX_, we can findl", large such that the truncated

pulse is destabilized.
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CHAPTER 3

TRUNCATION OF SPIRAL WAVES

3.1 Introduction

In this chapter, we investigate planar spiral waves thakdrn reaction-diffusion equa-
tions with generic kinetic. More precisely, we study thegiEence of spiral waves upon
boring a small hole in the plane near the core region.

In polar coordinate$r, ), a rigidly rotating spiral wave., (r, ¢) is an equilibrium to
the governing reaction-diffusion equation

0= Au+wu, + f(u),
in the co-rotating frame. We take the view thatr, ) is a function of the angle for each
fixed value of the radius. Our viewpoint therefore is to treatas an evolution variable . In
particular, spiral waves converge to constant functiong aér — 0. On the other hand,
Archimedian spiral waves approach asymptotic wavetrairnty possible minor angular
modifications, as: — oco. In this sense, Archimedian spiral waves can be regarded as
heteroclinic orbits in some function space of functionsetefing ony that connect an
equilibrium (constant function) in the core regior= 0 to a periodic orbit (wave train) in
the far fieldr — oc.

Observe that the Laplacian operator
1 1
AZ = aa:lan + axng - arr + ;ar + ﬁaww
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is singular at- = 0 in the polar coordinates. This motivates a new rescaledbks = In r
in order to perform a blow-up analysis nea# 0 [47, 55].

In this new radial time, there exist exponential dichotarfe the linear equation on
any ray (—oo, s,|, for each fixeds, € R. In the farfield, the perturbation term is not
bounded, but upon some change of coordinates, we can alsekpwnential dichotomies
on the ray[R., +oo) for some largeR., see [47]. Then we can solve the linearized equa-
tions on the intervak = Inr € [—L,In R.] andr € [R.,+oc0), where the choice oR.
is subject to the existence of the exponential dichotormabe farfield. After applying
the variation-of-constants formula, we can formally esgréne solution to the nonlinear
equation as a fixed-point equation on the rayso, R.| and|[R., +c0), respectively.

One of the issues concerning the fixed-point equation is ¢hathe ray(—oo, R.],
besides the exponentially decaying solutions, we also haweV-dimensional (ovefC)
subspaces, consisting of initial conditions that corresipo constant and logarithmically
growing solutions ag — 0, respectively. When the boundary conditions satisfy a cer-
tain transversality condition, we can solve for the compoé the initial conditions cor-
responding to logarithmically growing solutions and obtappropriate a-priori estimate
from which we can conclude that the general solutiofiisbounded neafu.., d,u.). Then
we can invoke the Implicit Function Theorem to establishdkistence result of the core
region spiral.

Once we have the existence of the core spiral and the farfiéldl sthen the existence
problem is reduced to matching core region and farfield Epik&e shall see that the two
solutions can be matchedat= R, provided we adjust the temporal frequengyappro-

priately.
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3.2 Set-up

Consider the reaction-diffusion equation on the plane
ur = DAu+ f(u), r€R? ueRY. (3.1)
Here D is a diagonal matrix with positive entries, afids at least’?.
Suppose that the reaction-diffusion equation (3.1) adanitgidly rotating wavesolu-
tion
u(r,p,t) = udr, ), =9 -wd
with nonzero temporal frequency.. In the co-rotating frameér, v), u.(r, ¢) is an equilib-
rium of
u = DAu + wiyu + f(u), reR?ueRY (3.2)
for w = w,. Thatis,u.(r,v) is a solution of the elliptic PDE
DAu + wdyu + f(u) =0, reR*ueRY, (3.3)
forw = w,.
In polar coordinates, the equation (3.3) becomes
D (&r + %& + %@M,) U+ woypu + f(u) = 0. (3.4)
If we treatr as the time, then we can rewrite (3.4) as a system of ODE’s cana&h space
of 2r-periodic functions in). More precisely, we obtain

U = v (3.5)

1 1 .
U= U T—28Wu — D7 Mwdypu + f(u)]

defined on the Banach spa&e= H'(S!,C") x L*(SY,CY) > U = (u,v).
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We are interested in solutionsof (3.4) nearu, for w nearw,. Thus, we writeu =
u, + U, SO thatiz needs to satisfy

U, = 0 (3.6)
. 1.1 - 1 o -
U= o0 T—28Wu — D7 w0yt + f'(ui(r,v))d]
D7 (w = wi) Oy (s + @) + fun +a) = f(@) = f'(w.)al.
For convenience, we now drop the tilde, and consider
U = v (3.7)
1 1 —1 /
U = U= T—Zﬁw,u — D wiOypu + (w1, ))ul
D7 (W = wi) Oy (e + 1) + f o +u) = flus) = f'(w)u].
Observe that
—D7 (W = wi) Oy (e +u) + flus +u) = flus) = f(wu] = O(lw — wa| + [uf?).
Therefore, we can treat equation (3.7) as a perturbation to
U, = v (3.8)

1 1
v o= o0 ﬁ&wu — D Mw.Opu + f(ua(r, 1))l
which is the linearization of (3.5) about. As in Chapter 1, we would like to stud$y.7)
and(3.8) forr € (0, R,] andr € [R., o), which we refer to as theoreandfarfieldregions

respectively. First, however, we explain our assumptions,o

3.2.1 Main Hypotheses

We introduce the hypotheses on the underlying spiral

First, we only consider spiral waves that are rotating, Angdian and transverse:

Definition 3.2.1. A rotating waveu.(r, ¢ — w.t) is an Archimedean spiral wave if there

exists a smootRr-periodic functionu..(¢), a smooth functiod(r) with ¢'(r) — 0 as
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r — 00, and a non-zero constaht such that

[t (7, - — Wit) = Uoo(kur 4+ 0(1) + - — wit)| 151y — 0 as r— oo. (3.9)

In other words, Archimedean spiral waves can be approxinasgmptotically, along

the radial direction, by wave trains.

Remark 3.2.1. Note that the conditiod’(r) — 0 asr — oo on the derivative of angular
modification implies thaf@ — 0 asr — oo. One typical example i8(r) = Inr: We

allow 6 to be slowly growing but slower than the radius.

Recall that an Archimedean spiral wanve = u.(r, 1) is transverse if it emits a spec-
trally stable wave train (see (1.7) and 1.0.1) and the géinedskernel of the linearization
L, aboutu, in L% is one-dimensional for some smalt> 0.

If we regard the spiral wave, as a heteroclinic orbit connecting the steady state)
at the rotation center and the wave trains at the farfieldy the, 0,u.) is contained in
the intersection of the center-stable manifdltf*(w.) of wave trains in the farfield and
the center-unstable manifold *“(w,) of the asymptotic steady states at the core. Due to
the rotational invariance of the spiral wave, the intelisecof the tangent spaces of the

manifolds contains the subspace spannehy.., d,0,u.) due to the following lemma:
Lemma 3.2.1. Suppose that, (r, 1) satisfieq3.4) with w = w,, thend,u.(r, ) satisfies
1 1
D(0,r + ;& + T—zﬁw)u + w.Opu + f'(u)u = 0.
Proof. Differentiate (3.4) with respect to. 0J

Therefore(0,u., 0,0, u.) satisfieg3.8). Now we would like to have the intersection of
M (w,) andM¢*(w,) as transverse as possible by requiring that the interseistgpanned
by (&Z}u*, %&u*):
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Hypothesis 3.1.The subspace of bounded solutions to the variational eqnad.8) is

spanned byo,u., 0,0, u.).

One useful consequence of Hypothesis 3.1 is related to {benadariational equation.
Similar to the one-dimensional case, due to the invariaftieeoinner productA.1.1)(1),
bounded solutions of the adjoint equation are orthogonaléoy solution of the variational
equation that is bounded as either» 0 or r — +o00. Therefore, bounded solution of the
adjoint variational equation must lie in the orthogonal pdement of the tangent space of
the unstable manifold at the core and the stable manifoldeofarfield.

We also assume that the Melnikov integral associated @ithnon-vanishing. That is,
Hypothesis 3.2.M := [">(4(7), DuG(U,,w.)(7))dT # 0,

in which
. { eGU_,w), U = (u,u,),—L <71 =logr < logR,
GUy,w), Uy, = (u,u,), 7 =1r> R,

Y

0
it = ( —D7M(w = w0y (U +u) + f w4 u) = f(u) = f(u)ul ) '
3.2.2 Main Result

With the assumptions in Section 3.2.1, our main result iedtas the following:

Theorem 3.2.1.Suppose that there is a spiral wave solutionof (3.1) with temporal
frequencyw, # 0 and positive group velocity,. Assume that., satisfies Hypotheses
3.1 and 3.2. Then the spiral is robust with respect to thedbigt or Neumann boundary
condition atr = ¢ for e small enough. More precisely, there exigfs> 0 such that for all

0 < € < €, the following is true.
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Consider the new domain
Q0 := R*\ B.(0)
with the boundary)Q? = 0B.(0). Then there exist two families of spiral waves;, =
upir(€) and uye, = upneu(€) 0N Q with frequencyw = w(e) such thatu satisfies the
Dirichlet boundary condition
upir|an = u+(0)

or Neumann boundary condition

auNeu
=0
on o0

atr = e. Moreoveru p;,. andu ., depend smoothly an Furthermore, up to some normal-
ization (Hypothesis 3.4, which will be explained later),vee the following expansion for

w Nearw,.:

w o= wot (u*)r(0)+0(liz), (Dirichlet condition)
n

€

M -Ine

W o= wet %(u*)r(o) + O(é?), (Neumann condition)

Here M is the Melnikov integral with respect to, which is assumed to be non-zero by

Hypothesis 3.2.

The proof is divided into two parts: First, we prove that thexist a unique core region
spiral subject to the boundary condition. By Propositiadhii. [47], there exists a farfield
spiral. Then we match the farfield spiral with the core regipmal at some- = R,. The
group velocity assumption is only needed for the farfieldapi Also in the proof, we
see that the Dirichlet boundary conditions can be genedlia arbitrary (T1) boundary

conditions.
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3.2.3 Boundary Conditions

Recall thatu, is the presumed spiral wave solution, while= v, + u is a perturbed
solution, corresponding to another equilibrium of the tesediffusion equation neai,
whereu € H'(S!, CY) is an appropriate, small perturbation.

For the truncated boundary value problem, we need to impmsedary condition o

at the circler = ry. For example,

i(ro) =d  (Dirichlet boundary condition)
d,i(ro) =d,  (Neumann boundary condition)
or

(i +8,a)(ro) =d  a€R,a#0  (Robin boundary condition)

Then consider

U= (0,0,) =U. +U = (u+ U, uy + Opi).
Correspondingly, the boundary condition f@ris an affine boundary condition at= 7.
That is,
U(re) = U, (o) +U(ro) € E* +d.
Here E™ is a closed linear subspace &f= H'!(S',CN) x L?(S',CN) andd = ( %1 )
in the orthogonal complemeni®)~ is fixed.

For example, by Dirichlet or Neumann condition, we mean thewing:

% . y be CZ be 0 2/Ql N\ -
(Dirichlet) :  U(r)|r—p, € B> + ( 01 ) , WhereE> = {( ¢ ) L e L2(SYCY) L
(Neumann) : U(r)|,—, € E*, whereE" = {( g ) &€ HY(SYH CM)L.

Note that since the boundary condition is for the perturlmdt®n/, and with respect

to the original radial time-, we need to translate the boundary conditionZfoat r = r,
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into the boundary condition for the perturbatinat - = Inry, =: —L in the logarithmic

rescaled time. In this section, write
a(r) = a(e”) =: (7).
Similarly, u(r) =: u(r) andu,(r) =: u.(7). Observe that it/(r,) € E* +d, then inr, we

have

That is,

u(—=L) e (dy ) _ [ u(=L)
(e () - (el ) e
In short, we have
< u”((__LL)) ) € E" +d. (3.11)
where
_(di\ . di—us(ro)
a=( o )= < —el_Laru*(OrO) ) (3.12)
In the last equality, we use that
(u*)r(_L) = aru*(r()) : % = 6_L&,u*(7’0).

In case of Dirichlet and Neumann conditions, we choose diffel’'s as in the follow-

ings:

(Dirichlet)’ :
U(—~L) € E* +d,
with

d= ( dy — u.(ro), ) . Et= {( ) L€ € LA(SY,CV)).

m O
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(Neumann)’:
U(—L) € E* +d,

with

1= (s ) B U(f) e mEey

Motivated by Dirichlet conditions, we consider the followgitransversality assumption:
(T1): B> @ E* @ Bk = X.

Remark 3.2.2. Although we need to solve the boundary conditior-at we still assume
the transversality of the boundary space and the corresipgndsymptotic subspaces at
7 = —oo. The reason for this is two-fold: Firstly, it is easier to ifgrthis transversality
assumption since we have the explicit expression for thepi®fic subspaces; secondly,

these conditions allow us to solve for any lamge
Lemma 3.2.2. The Dirichlet condition satisfies the assumption (T1).

Proof. Foru =, uge™™ € HY(S',CV), Opu = X, kupe™ € L*(S',CV).

Zk ukeikw

U
Xa(v) = <Zkvkeikw>
_ 0 N[ Zwwome™ ) (%)
S (v + kuy)e™? > iso —kuy etV 0
€ E* @ E* @ E*"

0

Remark 3.2.3. Neumann boundary conditions do not satisfit ), due to the fact that

Erern Bbe = Eher, (3.13)

Recall that the linear boundary value spde c X is closed. Thus, the graph lemma
(Lemma A.2.1) gives an equivalent formulation for boundaoyditions that satisfy the
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transversality assumptiafi’l):
E' = graphWV = {v™ + W™ v™ = e + " € B™ @ B9},
On the other hand, Neumann boundary conditions satisfyotlmfing modified transver-
sality assumption:

(T2): Eb @ E* @ B9 = X.

Lemma 3.2.3.Neumann conditions satisfy (T2).

xs(h) = (B

Zk Vg 6ikw

. 1 ik
[y (P (k) o (8)
0 0 ket ve™ Yo
€ E* @ E* @ E9%

For sake of convenience, we introduce the following
Definition 3.2.2. A boundary condition i§'1 if it satisfies the transversality assumption
(T1).

3.3 Inthe Core Region

In this section, we study equation (3.7) in the core area.s@en the logarithmic time
s = 1Inr,orr = e, thenr — 0 corresponds te — —oo. Thus we obtain the following
system which is equivalent {8.7) in the core region-oco < s < s,:
Us =: W
wy, = —Oppu— D Nw,dpu + f'(u.(1,9))u) (3.14)
—e* D7 [(w = w.) Oy (us + u) + fus +u) = flu) = f'(u)y]
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where
Us = €U =:W
w, = (ev)s = e*v + e*v,
Thus, the linearized equatigf.8) becomes
Us = W (3.15)
wy = —Oppu — > D N w,Dpu + f(u.(e®,0))u).
Remark 3.3.1. For sake of consistency, instead of usingr), v(r)) and (u(s), w(s)) for

different time scales, we use, v) for (u(7), u.(7)), with the spatial time- as defined as

in [55]:

7__{1og7’ r<r,
L r> 27

and any smooth interpolation for € (7, 27).

We can write the linear equatiai3.15) as an abstract differential equation &h =
H(S',CY) x L2(St,CY) in the more compact form:
Up = AcreOlh, U= (), (3.16)
which can also be written as

. — 2T 0 0
Ur = A+ (—D‘l(w*awf’(u*(e%b)))u o)“’ (3:17)

(0
°°_<—5’ww 0>'

Observe that the principal part has constant coefficientsfzat the principal equation

where

v

U = AU, U= ( ¢ ) (3.18)
coincides with the asymptotic equation obtained by foryn#dking - = —oo. Since
Oylmeicvy « H'(S',CY) — L*(S',C") is bounded, the perturbation term decays to
0 exponentially in norm.
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3.3.1 Exponential Dichotomies

First, we solve the asymptotic equation (3.18)Xnby using Fourier series. Write
u = > upe’*. The equation for,, is
(ug)rr = k.
which has the solutiong, ; = €™, u; 5 = e for k # 0 andug; = 1 andug, = 7 for
k = 0. Therefore we can decompogeinto the strong stable, strong unstable and center

subspaces:

B = span{(ue®™, —kue™);k #0,u e CN} = Z EZ,

k40
E" = span{(ue®, kue™);k #0,u € CN} =: Z B, (3.19)
k£0
E¢ = span{(u,v) € CN x CNY =: Eker g poFer,
with
P (w0puec),  ET—{0uwec)  (320)

Then solutions of (3.18) with initial conditions if** exist and decay exponentially with
ratel in forward time; solutions with initial conditions if** exist and decay exponentially
with rate1 in backward time. Lastly, solutions with the initial condits in £ are given
by (u + Tv,v). Forv # 0, they grow linearly while they are constantinfor v = 0.
In conclusion, the asymptotic linear equation admits amitegfidimensional strong stable
subspacé’®, an infinite-dimensional strong unstable subspateand a2 N -dimensional
center subspace°.

We return to the variational equation (3.16) and introdueefollowing definition of

exponential dichotomyvhich is similar to Definition 2.4.1 in the previous chapter

75



Definition 3.3.1. [48] Let J beR*, R~ or R and X a Banach space. A non-autonomous
linear equation

d

—U = U U e X

TU=ATU, UG E X,
is said to have an exponential dichotomy.0if there exist positive constants, n» and a

strongly continuous family of projectiod¥’ : J — L(X) such that the following is true:

e Stability: There exist operatoré® (s, o) defined fors > o with s, ¢ € J and
differentiable in(s, o) for s > o, such that®® (s, o)l is a solution of(3.14) for

eachi/, € X, which decays exponentially in forward time:

D% (s, 0)Up|x < Ke "N Uy|x, og<s,s,0¢€J

¢ Instability: There exist operatod“ (s, o) for s < o with s, o € J and differentiable
in (s,0) for s < o, such thatd“(s, o)l is a solution of(3.14) for eachif, € X,

which decays exponentially in backward time:

D" (s, 0)Up|x < Ke =N Uy|x, s<o,s,0€J.

e Compatibility: ®*(c,0) = P'(o) for i = u, s for all o € J, and projections are

bounded in norm uniformly ip.

e Invariance: The solution®?(s, o)y and ®"(s, o)U, satisfy
O*(s,0)Uy € R(P°(s)) forall s>o,s,0€J;

" (s,0)Uy € N(P°(s)) forall s<o,s0€l

Note that the asymptotic equation (3.18) has an exponatitihbtomy, since the pro-
jections onto the subspaces defined in (3.19) are boundeéiyria A.3.2. The following
theorem states that solutions of the perturbed linear equéB.17) behave in a similar
fashion as those of the asymptotic equation (3.18).
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Theorem 3.3.1.[47] For any fixeds, € R, the following is true. There exist a constant
C' > 0 and strongly continuous familig3“*(s), P**(s) and P¢(s) of complementary pro-
jections, all defined for-oo < s < s,, as well as linear evolution operatep® (s, o),

o (g, s) and ®° (s,0) of equation (3.17) which are strongly continuous (ifyo) for
—00 < 0 < s < s, and strongly differentiable iffs, o) for —oo < ¢ < s < s, such

that the following is true :

e Compatibility: ®* (o,0) = P’ (o) for all o andi = uu, ss andc, and the projections

are bounded in norm im uniformly.

e Stability: For anylf, € X, ®““(s,o)U, is a solution of(3.14) which decays expo-
nentially in backward time:

|(I)TL(S7U)UO‘X < Ce—‘s_"‘\uo\x, s <o < s,.

e Instability: For anyl, € X, ®* (s, o)l is a solution of(3.14) which decays expo-
nentially in forward time:

|(I>S_S(S’U)UO|X S Ce—‘3—0‘|u0|x7 o S S S Sx.

e Central directions: The range of the center projectiBf(s) is finite-dimensional,
anddim(R(P<(s)) = 2N. Foranyl, € R(P<(s)), ®° (s, 0)U, is a solution that
grows at most linearly.

| D€ (s,0)Up|x < C(1+|s—al])|Uo|x, s,0 < 8.
Moreover, we can decompose
Pi(s) = PET(s) + P2(s),

IPEr ()] + P2 ()]l < C(ls] +1).
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For anyuo € X, let Ulier — PEGT(O‘)UO andugiker _ nger(o_)uo’ then
‘(I)C_(Sj O.)uker . Pkeruker‘x S O<e—2min{|s\,\o\})‘ulierb(7

— —oo W —

|BC (5, 0)u"" — eAlels=o) pokerygher) < O(|s — o] 2mindlshlol}y | ke

Proof. For the proof, please see [47]. O

In Theorem3.3.1, for any fixedo the error terms for the evolutiob® (s, o) of the cen-
ter components are of ordér(u ") andO(|s|u?"*"), respectively. The following lemma

shows that the error term actually decay exponentially wiwth s ando are large.

Lemma 3.3.1.Consider a non-autonomous linear system

d
U = (A+B(O))HU (3.21)

defined on a Banach spacg, where the linear operatod : X — X satisfies
R(specAa)) C (—oo, —1+ ) U {0} U (1 —d,00)
for some positivé < 1 and has the following decomposition

A:AESS®A

ge © Alguu,

inwhichX = E* @ E°® E"" is the spectral decomposition with respecttavith £°¢, ¢
and £** the stable, center, and unstable generalized eigenspeesgzectively, and(t) is
a small perturbation that decays exponentially, that is,

IB()|| < Ce?1,

uniformly for¢ large. Then there exist, > 0 and0 < ¢ < 1, such that for any. > L,
andt < s < —L, the following is true: There exists a unique evolutidh(z, s) of (3.21)
on the center subspace with

D° (t,5) = M7 1 O(eFm9)iFes o pttsy = A=) L O(e7F). (3.22)
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Proof. The proof is an application of Banach fixed point theorem.t&\(8.21) as

d
—U = A B(t)U.
dtu U+ B(t)U

d° (¢, s) can be obtained as a solution to

t
P (t,5) = e 4 / A" B(1)®C (1, 5), s)dr + (3.23)

t
/ eAFANET) B(1)DC (1, 5), 5)dT.

[e.e]

We claim that the sum of two integral terms defines a contagti ¢ (¢, s) fort < s

andt ands uniformly large. First, we choose a constant ¢ < 1 such that
|6Ac(t_8)|X < Celt=sl, t<s<—L,.
Then we introduce the following norm fdr (-, s):

19 (ys)lle = sup e |l (1, 5)|x

t<s<—L

The estimates of the two integral terms yield
| [ B i,

= sup - s|/ A B (1)@ (1, 8)dT|x

t<s<—Lx

= sup |/ e B(1) et e 90 (1, 5)dr|x

t<s<—Lx

VAN

sup |/ eAuu(t_T)B(T)eE(t_T)d7'|- sup  sup e TI|DC (7, 5)|x
t<s<—Lx« t<s<—L4 t<7<s

< sup C| [ s e dr| - || (-, 8)]|.
t<s<—Lx s

< sup C(€3t—s - (1+e)t+ (1—e s)H(I)c ( )He
t<s<—Lx

IN

Ce |02, 5)|le,
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in which C'is independent of.,., and writeA*® := A¢
| [ e B s,

= sup (7Y / AT B(1)®C (1, 5)dr|x
t

Be @ ASS

t<s<—L,
= sup \/ eAcs(t_T)B(T)eﬁ(t_T)ee(T_s)CI)‘i(7', s)dr|x
t<s<—L.
< sup |/ AT =) gelt=7) B(r)dr|- sup sup 6€(T_S)|®C_(7', s)|x
t<s<—L. t<s<—L, t<7<s
< sup C| 2TOZTl [P (-, 8)le
t<s<—Lx t
<  sup 062t||®6_(-,$)||5
t<s<—Lx

< Ce?M (-, 9)]le,
in which C' is independent of.,.

ChooseL, > 1 such thatC'e?* < £, for0 < x < 1. Hence the right hand side of the
equation(3.23) defines a uniform contraction d’((—oo, —L.), X), || - ||). By Banach
fixed point theorem, there exists a unique solutiér(-, s) which satisfies (3.23).

Therefore, for < s < —L,,

1D (£, 5)|x < (1 —k)|eX 9|5 < Cecltl,
Then

t
< C / (r— t)62766(s T)dT
X S X

t
_ Cet-{—ss/ 6(1—5)Td7_ _ C(e(Z—G)t—i-es + et—l—s)’

t
/ eAuu(t_T)B(T)(I)c_(T, s)dr

and

/ AT B (1, 8)dr
t

which yield the estimate (3.22).

<C/ e(t T) 27- e(T sdT<Ce2t e(s— t)
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3.4 Exponential Dichotomies in the Farfield Region

In this section, we briefly describe the problem of existesfa@xponential dichotomies
in the farfield and the related result given in [47]. Recadittim the farfield the governing
equation is

Up = U (3.24)

1 1 /
b= == O DY w.Opu + f'(u.(r,))ul

D7 (w = wi) Dy (e + 1) + f (e +u) = fu) = f'(u.)u]
and the linearization of the governing equation (3.24) is:

" (3.25)
1 1 1 /
v, = —;U — ﬁ&l’wu - D [w*ﬁwu +f (u*(’l“, W)U]

Casting(3.25) in the Archimedean coordinatés v), we have

u, = —(ke+0(r))0su+v (3.26)
v, = —(ke+0'(r))opv — 1v - %8,9,9u + DN w,0gu + f'(uy(r,9 — kyr — 0(r))u)
rooor

on the Banach spac€ = H*(S!,CY) x L3(SY,CY) s U = (u,v).

Since the Archimedean spira] is approximated by the radial wave traig, = u..(9)
in the farfield, we are interested in comparing solutions324) with solutions of the
asymptotic equation

U, = v (3.27)

v, = —D Nw.Opu + (oo (bt + 1))l
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for the wave trainu., with i/ = (u,v) € H2(S',CN) x L*(S',CV). Again, we introduce
the Archimedean coordinate= k.r + 0(r) + 1, then the equation (3.27) becomes
u, = —kOgpu+v (3.28)
v, = —k.Ogv — D Hw.Opu + f(Uso(9))u].

Then we have the following theorem from [47]:

Theorem 3.4.1.Assume that the asymptotic equation (3.28) has an expahdiinotomy.
For everye > 0, there is anR > 0 such that the equation (3.26) has an exponential
dichotomy on R, oo) so that the projections of (3.28) and (3.26) arelose in norm for

r > R.

3.5 The Nonlinear Equation in the Core Region
3.5.1 Reduction

We now turn to the nonlinear equation:
Uy = Acore(TU + ¥ GU(T),w), U= (u,v) € H(S', CY) x L*(S',CY) (3.29)

in the core region, where

0 1
-Acore(T) = ( _81/”/) — D_1€27(w*8¢ -+ f’(u*(T, ¢))) 0 )

0
0104 = D1 ) )+ ) ) = ] )

In order to solve the nonlinear equation, we describe itatgwis via the variation-
of-constants formula. Theorem 3.4.1 states that the fdrégponential dichotomies can
only exist for someR, > 1. On the other hand, exponential dichotomies exist in the

core region(—oo, R,| for any R, € R, therefore we have the decomposition %f =
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HY(S',CV) x L?(S!,C") neard,(R,) as:

X=Y'oY'aY' =Y"0oVv* oY 0Y" (3.30)
HereY™, Y=, Y*r andY 9" are subspaces of the tangent Sp&ggr, )X, consisting of
initial conditions that lead to exponentially decayingugmins in backward time, exponen-
tially decaying solutions in forward time, almost constaalutions and linearly growing
solutions overr € (—oo, R,], respectively. Moreovel *, Y*, Y*e andY"" are given
by the ranges of projection8“*, P**(R,), P*" and P9 of a core region exponential

dichotomy, respectively. We prescribe the strong unstetmeponenty® and both center

gker

components**” andw?"" atT = R, and the strong stable componestt atT = —L.

In conclusion, we consider the variation-of-constantsiiaia over the intervgl-L, R.]:

ker

Uur) = <I>‘i(T,R*)< " )+<I>i8(7,—L)wi8+<1>z“(T,R*)wE“ (3.31)

gker

+ /T [®%5(7, 5) + ®° (7, 8)|e**G(U(s), 5)ds + /T O (1, 5)e*G(U(s), s)ds.

—L R
with

ker

w® e E*®,  w™eY, < oker ) e Yk g yoker,
Observe that the variation-of-constants formula (3.3 fxed-point equation. The ob-
stacle that prevents us from applying the Implicit Funcfldveorem is the presence of the
parameter,?*", whose evolution gives linearly growing solution with respto L.

In order to resolve this difficulty, we assume temporarilgtithe nonlinearity
GU(T),w,T) depends only om, i.e. G(U(7),w,T) = G(7) whereG € C°([-L, R.], X)
so that

1G]l = sup [IG(T)Ilx < oo. (3.32)
T€[~L,R.]

Equation (3.31) then gives solutionstip = A....(7)U + G(7). Evaluating{ atT = —L

and substituting into the boundary condition imposed at — L, we can solve for both
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w* andw?!™" in terms ofw**", w**, G. Upon solving, we shall see that is uniformly

bounded inw**", w**, G andd. Now if G(U, ) is C''-small with respect té/ ati/ = 0,
then we can substitute bagki/, 7) and invoke the Implicit Function Theorem to solve the

full nonlinear equation.

3.5.2 Solving Boundary Condition

Under the assumption (3.32) , the general solution (3.31th® perturbation reads:

ker
Uur) = <I>i(r,R*)< " )+<I>i8(7,—L)wi8+<1>zU(r,R*)wzu (3.33)
w

gker

T

+ /T [®%5(7, 5) + ®° (7, 5)]e**G(s)ds + / O (7, 5)e**G(s)ds.

L R
TakingT = —L in the variation-of-constants equatigh33), we obtain

ker

U-L) = <I>C_(—L,R*)< . >+PiS(—L)wis+4>71“(—L,R*)w3“

gker

+/_L dU(—L, 5)e**G(s)ds.
We expandb® (—L, R,) in terms ofL: Consider that the evolutioh® (— L., R.) is an
isomorphismY’ betweenC?"’s given by
B (R) — B (L), ( e ) - ( ;” ) = (~L,R.) ( e )
with EDF (s) .= Rg(PY*(s)), E° (s) := Rg(P<(s)), andEe (s) = E*r(s)®E%" (s).
SinceT is an isomorphism, choose the coordinateRii P (— L)) such that we have
the following matrix representation 4f:
ker ker
(e )= S () ass

with both~,; and~,, invertible. From Lemma 3.3.1, we have

ker ker ker
®° (—L,—L,) < . ) _ A% (—LHL) < w= ) n ( w= )O(Q—L)’
gker gker gker
w wZ w=
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forall L > L,. Then
ker ker
(I)c_(_La R*) ( wg_ker ) = (I)c_(_L7 _L*> © (I)C—(_L*’ R*> ( wg_ker )
w? w_

ker gker ker
Y11w= -+ <—L -+ L )’}/2211) w_ _
- ( gker + wgker 0(6 L>

Yoo W

Observe that setting= s = —L in (3.22) yieldsP°(—L) = P° +O(e™*), L > L,. Thus,
ker —L L gker ker L L gker

( YW + (=L + Ly )yw? ) _pe ( YW + (=L + Ly )yew? O by,

Vo wgker Yo wgker

ker

Therefore, up to exponentially small termis;, (—L, R,) ( ) isin B¢ = Eker @

wgker
Egker

In conclusion, we have
—L

U-L) = o“(—L, R)w"™ + P*(—L)w** +/ d“(—L,7)e* G (1)dT (3.35)
R,

,wk‘er_l_ L+ 1L, wgker wlier
i ( Y11 ( )722 n O(e_L)

Yoo wgk;er wgkeT

Remark 3.5.1. We emphasize that the components of
< A whe + (=L + L) yoow? " )

722wgker

are in E*er @ poker,

Theorem 3.5.1.Let the linear operator defined on the right hand sid¢385) be
Lk W w w™ G)(~L).
There are constantS' and L, > 0 such that the following is true for evedy > L,. There
are linear operatorgVoker (wker w . G d) and W (w* w™, G, d) such that
wgker _ nger(wker w g d)
ws = Wss( ker f“,g,d),
if and only if
E(wlier7 w™, G, d) ( ker nger(wlierngujg’d) Wss( ker Eujg’d)ngu’g)
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satisfies eithef'1 boundary condition or Neumann boundary condition. Furthere, we
have the estimate
[Woker (wher e G d)| < %(|w’i‘”‘| +e Hw™ + e Gl + d]),  (3.36)
(W (wh w™, G, d)| < Cle ™ w |+ e |w™| + e |Gl + |d). (3.37)
for T'1 boundary conditions. For Neumann boundary conditions,
[WIRer (wker ™ G| < Ce ™ (|wF| + [w™| + ||G|loe + |0rus(ro)]), (3.38)
(W w, G)| < Cem ™ (Jwh| + [w] + (1G]l e + [9rus(r0)])-  (3.39)
Moreover, in both cases, #f satisfies eitheffl’l or Neumann boundary condition and the
variation-of-constants formula f@ = G(7), then we have the estimate
Ul := sup ]||U(T)||XT = [[L(w" w, G, d)||oe < O [+ [w|+[|Gloc+]d])).-

TG[—L,R*

(3.40)

Proof. We prove the theorem fdf'1 boundary conditions first. Any element that satisfies

the boundary condition is of the forrh+- e, with
b = et 4 ek et 4 eIhe ¢ B @y BT @ B @ B9
By Lemma A.2.1, we have
% 4 eher — W(euu + egkzer)
for some linear bounded’. Therefore,
d+e* = (P™d+ e™) + (Pd + e*) + (P¥d 4 ¢9%") + (PFerd + eFer)
= (P"™d+ ") + (P*d + P*W (" + ed%em)) (3.41)

+(P€kerd+ 6gker) + (Pferd_i_ PESTW((?““ 4 egker)).
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On the other hand,
—L

U(-L) = O"(—L, R)w™ + P*(—L)w™ + / U (—L, 7)e¥ G(1)dr (3.42)
R*
ker gker ker
+ _L+L* — w_
[ = ( . )y + o™,
Yoow " w?

We have the following estimates for the summands in the abrpeession:
P5(—L)yw* = w* + (P*(—L) — P¥)w* = (14 O(e *))w*, (3.43)

where we refer to Corollarg in [40] for the second equality;

O (—L, R,)w"™ = O(e H)w"; (3.44)

I R_L ®U(—L,7)e* G(r)dr| < C/R_L e AT - [|Glloo < Ce7H |Gl (3.45)
Com;aring the strong unstable comp*oner(BiJztl) and(3.42), we obtain

e = O(e"M)w"™ 4+ O(e )G + O(e*F)w* + < 55; ) O(e™") — P*™d, (3.46)

Similarly, _
e = P (e"™ + edher) (3.47)
— O Y 1 O(e=)G + (1 4+ O(e=2L) ) + ( s’fk ) O(c1) — P*d
edker = O(e 3P w™ + 0(e 3G 4 O(e 2 )w*s + ’}/nggkeridEgker (3.48)
+ < w; ) O(e™F) — po*erq,
oker PE@TW@W + egker) (3.49)

= O(e*M)w"™ +0(e*)G + O(e 2 )w* + ’}/QQUJ‘ZkeTidEgker +

ker
[yw* + (=L + L*)'VQZ'UJgker]idEﬁer + ( gker ) O(e %) — Pkerq,
w_
In the following, we would like to substitute (3.46) and (8)4nto (3.49) and solve for

w?*" in terms ofw*e”, w™*, G andd.
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Define the linear operatdr, : E%*" =~ CN — X by
Tpw™" = (—(L — L.)ya2id grer + PE"Wrpagid porer + Oe™))uw?™. (3.50)
Lemma 3.5.1. There are constants > L, andC > 0 such that7}, is invertible for any

L > L, and the inverse is uniformly bounded witfi, || < <.

Proof. Write
L, . L rer . 1
TL - L [_ (1 - f) 7221dEE€7‘ + EPE W’y221dEgke7‘ + O (Ze L)} .
Sinceid gk is invertible, so isidgr (1 + O(1)) + O(1)for large L. ThenTy, is an iso-
morphism and|7; || = 1(idger (1 + O(1)) + O(1))~" = O(4) uniformly for large

L. 0

Therefore,
w = T (w4 O(e )Ry (wh”, w™, G) — PFd) (3.51)
nger(,wlier’ W™, G, d)
with
| < %(Iw’i‘”l +e Pl + Gl + |d]). (3.52)
Solving (3.47) for the strong stable componerit yields
w* = (14+0(e5)(P*d + P*W (™ + e*") + O(e*H)w™ + O(e )G
+0 (e Bywker + O(e HYWIrer (wher w™ G, d)) (3.53)
= (140 ) (P = PEWP")d + O(e ")d + O(e H)R4(w**", w™, G)).
= W (W w" G, d)
with
| < Cle™ [ | + e~ || + e7*||G | + |d]). (3.54)

Then we have the desired estimates (3.36) and (3.37).
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Thus, we obtain the following

Ur) = &(7, R.) ( Wsker (1 k;ﬁu,gm,d) )

O LW 0 Gl )+ [ 88 G (s)ds

+ / 105 (r, 5) + B (. 8)]G(s)ds + B, Ru)w™
L

in which
. 0
|(I)_(7'7 R*) nger( ker Wi g d) ‘ (355)
< ([l =TI PEE| 4 Oe _L)|ng”( T w™, G, d)
0
1 7—R,
S |( 0 T 1 ) ( ngengk;er( ker wWh g d) ) ‘
‘l‘ ( —L)|nger( ker gu’g’d”
S CL|ngengker( ker W g d)|H1_|_|nger( ker Zu’g’d)h/2
< Ot + e lw| + e7|Gllo + d)),
and

0% (7, — L)W (w*"  w™, G(7),d)|| (3.56)
< Ol k] + e w| + e7||Glloo + |d])
< O]+ [w| + |Gl + |d]).

Therefore, (3.40) follows from the estimates (3.43)-(3.48.55) and (3.56).

This finishes the proof fof'1 boundary conditions. Next, we turn to Neumann bound-

ary conditions. The only difference for Neumann boundamnditions lies in the evaluation

of thew?*“” component. Since the Neumann condition satisfies the teasefity condition
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(T2), we have:
d+e* = (P™d+e™)+ (Pd+e”) + (P9d + %) 4 (PF7d 4 )
= (P™d+ ")+ (P*d+ P*W (" + ")) (3.57)

_i_(Pferd_i_eker) + (ngerd_'_ngm‘w(vuu_'_eker»’

0
e (Oru.(ro))

obtain similar expressions as for Dirichlet conditions s@tve that in the case of Neumann

whered = ( ) Comparing the components of (3.42) and (3.57), we

conditions, the graph dl corresponds ta.(—L) = 0 and thereforelV| ;.. = 0. Hence,
we have

(Yazid parer + R30(e™5))w?™" = P97 d + P& W (@™ (—L, R, )w™"

+ /_L " (—L,7)e* G(T)dr — P""d — Ry(w™")O(e™") + Rs(w"™,G)O(e™*F)

with Rz, R, and R; bounded uniformly in. and R, and R5 linear. ForL large, we can

solve forw?"":
W = (ygid gorer + O(e7H)) HO(e M) Dyu(rg) + O(e™Yu™
+0(e™)G + O(e Hywhery
. nger(wlier’ w™, G)
with
W] < Cem (Jwke| + [w| + (|G |c + |0u (0)]),
and

w® = (1+0(e*){0(e ")du.(ro) + Ole H)w™ + O(e )G + O(e F)whrer}
—. Wss(wlier’ wgu’ g)7
with

W] < Ce™  (Jw| + [w| + [|Glloc + 10,1 (0)]).
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That concludes the proof of Theorem 3.5.1.

3.5.3 The Substitution

LetV_beC°([—L, R.], X) equipped with sup-norm
[Ullow = sup [[U(7)]]
T€[—L,R4]
Now we return to the original full nonlinear equatith31) onV_ together with the bound-
ary condition, that is, we substitu® = G(U,w) for G inU = L(w*", w™ G, d). Thus,
we consider the following fixed point equation:

U = L(wk w™, GU,w),d)

on V_ with parametersw®* w**, w, d). Explicitly, we have

U(T) = 0 (7-7 R*) ( nger( ker w, ( ,w)(T ,d) ) (I)uu(T R, )
LB (r, — L)W (W w, G(U )+ /R (7, 5)e=G (U, w)(5)ds
+ /_TL [D%(7, 5) + D (T, s)]ezsg(u, w)(s)ds. (3.58)

inwhichg : V_ xR — V_ and

0
010) = (| {0 — )0y )+ o+ 10— f) — Pl )

In order to invoke the Implicit Function Theorem, see, el§]]we need’*-smallness

of G(U,w) with respect téd{. We formulate this property as the following

Lemma 3.5.2.G is continuously differentiable and, for amy> 0, there exist$ > 0 such
that, for anyl/ andw with ||| + |w — w.| < 6, we have

1GC,w)ller = [1G( @)oo + 1DuG (- w)lloo <€

Proof. Write

t4.) = (=) (_p g, )+ M+ M),
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in which
0
Nt = @=w) (_phau ).

0
M) = ( D (4 ) — () — f(w)) ) |

We claim that the linear operatéyf; (w) is bounded and hence continuous:

M@)o = sup [M(w)U]l = sup [(Ni(w)Uh)(7)|x

U] <o TE€[—L,R4]
=  sup |- D Yw—w)Opulpe
TG[—L,R*]
-1 2 2 \2
< D7 lw—wd sup  (Julzz + [Opuli:)?
TE€[—L,Rx]

< Clw —wlltd]]so-

For anyW = ( %; ) € V_\0, define

o 0
W= (s 1) fayun )
Then
1GU+W,w) — GU,w) — (Ni(w) + )W - W[
< DY osup | f(us Futwy) — f(u +w)wr — f(us +u)| W

- T€[—L,Ry]

< |D7Y sup  sup |f'(u. +u+Ewy) — f(ue +u)|p2 — 0, asWw — 0.
T€|—L,Rx] £€[0,1]
Therefore,Dy G (-, w) = Ni(w) + T. In particular,D,,G(0,w) = N;(w). Similarly, define
MU):R — V_ by
0
MU)w = ( — D7 Wiy (u + u.) ) '
We have that
IMU)|| < Cldy(u+ u)|2 < C < oo,
with

GU,w+)—GU,w) — MU)w = 0.
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Therefore,D,G(U,-) = M(U). Thereforeg is continuously differentiable. Observe that
GU,w) =O0(w—w.) +O(|lul*),  DuGU,w) = O(lw — wi| + [U]|),

the second part of the lemma follows. O

Theorem 3.5.2.There exist, p > 0, such that for anyl > 1, (w*, w™) € Y*r @ v,

w € Randd € (E*)* with [wke"| +|w™|+|w—w.|+|d| < §, there exists a unique solution
U = F(wker w™ w,d; L) € B,(0) of the nonlinear equatiofi3.58) which satisfies (T1)
or Neumann boundary condition. Moreové&rdepends smoothly da*e”, w"*, w, d) with

1Flloe < CWET| + [w] + |w — wi] + 1d]). (3.59)

Proof. Write the fixed point equation as
ﬁ(u, W W w,d) = U — Lwr W™, G(U,w),d) =0,
in which
L:CY[-L,R,),X)x (Y* x V" xR x (E*)*) — C°([-L, R,), X),
and
L:YF x V" x C%[-L,R,), X) x (E*)* — C°([~L,R,), X)
defined as
E(wlier’wiu’g’d) — E(wlier’ nger(wlier’wiu’g’d)’ Wss(,wlier’wgu’ G, d), w"™, G).
First, observe that(0,0,0,0,w,,0) = 0. Then we need to prove that is C'-

bounded in(w*e", w*, U, w, d) near (U, w* w*™ w,d) = (0,0,0,0,w,,0) for L large:

—

From Theorem 3.5.1 and Lemma 3.5.2, there exists=a0, such that for all. > % and
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[wker| + |w™| + |w — wi| + U]l + |d] < 6,
LU Wb, w™, w, d)]o
< oo + £(wET w0, G, d) |
< [Ulloe + O + [0 + [|Glloo + 1d]) < C((lw" + [w| + G (-, w) | + |d])
< [Ulloo + O]+ Jw] + |w — wu| + |d] + |5, + o — w]?)
< O]+ [w| + |Ulloo + | — wil + 1)
Secondly, we claim thaZDuﬁ(w’ie", w" U, w,d) has a bounded inverse near
(wker w™ U, w,d) = (0,0,0,0,w,,0): For anye > 0, by Theorem 3.5.1, there exist
constants”, 9 > 0 such that
| DgL(w**", w™,G,d)|| < C,  G=G(r) e C-L,R.], X), (3.60)
and ||G(-,w)||er < ¢, for [wke| + || + U]l + |w — wi| + |d| < 6. In particular,
G(-,w) € C°([-L, R,], X). Then by Lemma 3.5.2,
Dy L0 w0, GU, w),d) [l < [[DgL(w", w™, G, d)os - [ DuGU, @)l
< Ce
for [wker| + |w*| + |U||oe + |w — w.| + |d| < 8. Then in particularD;,£(0,0,0,w,, 0) has
a bounded inverse. Hence we can then apply the Implicit kemdtheorem to solve faw

in terms ofw”e", w"*, w andd and obtain the estimate (3.59). O

3.6 Matching

In this section, we denote the two perturbed solutions irctre region and the farfield,
byU, + U_ andU, + U,. Hereld = U, for T > R, andU = U_ for 7 < R,. Our goal is

to match these solutions at= R,.
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We organize this section as follows: In Section 3.6.1 an®3we set up an appropriate
coordinate system at = R, in which we can matc/_ andi/, nearl/.(R.) in Section

3.6.3.

3.6.1 Exponential Dichotomies and Fredholm Properties

In the previous sections, we have that the existence of exp@i dichotomies on the
ray (—oo, R,] for someR, > 1. In this section, we prove certain Fredholm properties
implied by exponential dichotomies.

Due to Hypothesis 3.1, when = w,, the tangent spacg,(z.)M$* (u.,w) of the local
center-stable manifold/$*(u.,w) of the wave trains and the tangent space of the local
center-unstable manifoldl/““(u.,w) of the asymptotic states &t.( R, ) intersect along a
one-dimensional subspace generatedfy, (R.). (From now on, we include the angu-
lar velocityw as an extra parameter.) Denote the one-dimensional subbgdc From
the following lemma, we conclude that the complement of th& %z, ) M (u., w.) +
To(r) M (u,, w,) is one-dimensional and given by the unique nontrivial bashsblution

of the adjoint variational equation.

Lemma 3.6.1.([47]) The map
. : Rg(P**(R,) + PT"(R,)) x Rg(P(R.)) — X, (u,v) — u+ v,

is Fredholm, and its index i8.

Proof. The tool we shall use here is a bordering lemma ( e.g., Lem&&a351]). Note
that the map is defined differently from the map,., in [47], in which the domain of
contains different center directions. From [47],

topirat * Rg(P*(R,) + PE7(R.)) x Rg(PY"(R.)) — X, (u,v) = u+v,
is Fredholm with index.
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Define
[:Rg(P*(R.)+ PS(R,)) x Rg(P"(R.)) — X, (u,v) — u+v.
This is an enlarged map by attaching the other center dirediy(P?*"(R,)) to the map
Lspiral- FTOM the bordering lemmajs Fredholm with indexvV.
On the other hand,can be obtained by attachirty(P**"(R.)) to the map. Observe

that Rg(P**"(R,)) is transverse to botRg(P**(R,)) and Rg(P?*"(R.)). Suppose that
dim(Rg(P*"(R.) N Rg(P"(R.)) = k,
then
dim coker(t) — (N — k) = dim coker (i), dimker(¢) + k = dim ker(7).
Thus we conclude thatis Fredholm with index. O

3.6.2 Frames of Matching

In order to match, we decompose the tangent space aifi/, (R.) into subspaces and
match in each subspace.

From the decomposition (3.30),

X=Y*"av"e (YY" oY),
Also atw = w,, the tangent space af “* ati/, (R, ) is given by
Toto (ry M (U, w,) = Y @ T @ Y™
From the farfield, we have
X =X!® X,
in which X7 and X} are the subspaces of initial conditions that lead to expimin
decaying solutions in forward and backward time, respeltiv The tangent space of
M$* (uy, w,) is given by [47]
Tu.(roy M (s, wi) = T © X
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Combining these two frames together, we have the followespdhposition:
X=IaY"aY'® X0 Z
in which 7 is spanned by the unique (up to a scalar) nontrivial boundédisn of the
adjoint variational equation. The transversalitytdf"(or Y**) with X* comes from Hy-
pothesis3.1, since otherwise the variational equation about the spiradmits a second
linearly independent bounded nontrivial solution in aidaitto 0,/ (R.). We know from

the Fredholm property in the last section thah Z = 1.
Definition 3.6.1. Define
P :X—-Y*goY'aZ
be the orthogonal projection onti**" & Y & Z with kernelX$ and
P :X—-XiaZ
be the orthogonal projection ont&s ¢ Z with kernelY**" ¢ Y.

3.6.3 Matching

To match/_ andl/. at R, means to find solutiofw"*", w**, w3*, w, ) of the following
equation:
H(wke, w™, wi,w,d) =0,

whereH : (Y* @ Y* @ X35) x R x (E¥)+ — X/I,

PYFrr Xs @ ZeY"dI)(U-(R,) — U (R,))

(wker w™ W w d) A P(Yu XS @Z@Yker @])(u—(R*) —Z/{+(R*))
T P(X?, Yke"eazeaw@])(u (R.) —U.(R,))
P(Z,Xs®Yr oY " ® I)(U-(R.) —UL(R.))

(3.61)
For sake of convenience, write the projections in (3.61y,as = 1,2, 3 and4 in a sequen-
tial order. Note that we do not need to match in théirection. Indeed, since the reaction-
diffusion equation oriR?\ B,(0) is equivariant with respect to rotations$h. Due to the
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St-symmetry of the underlying PDE with respect to rotatiar(s, 6 +1) is a solution if and
only if u(r, 1) is. Therefore, we can always match in the directioh ef span{0,U.(R.)}
generated b§' by rotatingl/_(R,) andi{, (R,) appropriately.

From [47], we have the following variation-of-constantsnfwila fori/, :

U(r) = 2 Rl + (@ —w.) / o3 (r,7) ( D1, + 1) ) ar

R

- w.) /OO 2 (r, 7) ( D1y 4 ) ) dr (3.62)
+ /R B (TN (U (7)) + / B, N (U (7)) d,
where N> (i) = O(JU|?). Observe that (3.62) is parameterized doyand w?* and the
estimate
[t floo < CjwF ] + |w — wi)
holds fori/, .

Evaluating both variation-of-constants formulae (3.58) €3.62) atR,, we have

ker

U (R,) = <w‘ >+w3“+<1>i8(R*,—L)ws_S

gker
R
FHw—w.) /_L (@ (R, 7) + O (R., 7)]e*" ( —D‘lﬁwo(u* ‘u) ) dr
R
+ /_L [®%(R,, T) + ®° (R., 7)]e*" No(U_(7))dr (3.63)

and
R

UAR) = 0t (w-w) [

[e.9]

uu 0
oY (Re,7) ( —D_la¢(u* + ) ) dr
R
+ / B (R, PN (U, )dr (3.64)

Recall that in Hypothesis 3.1, we assume thét' (u,, w) intersectsV$* (u.,, w) trans-

versely atv = w,. We claim in the following lemma that

MYk w™ w,, d)(L) = U, +U_ (0" w"™ w,, d)(L)
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is ofO(%) or O(e~t)-close toM*(u,,w,) atT = R,, depending on whether (T1) or (T2)

are met. The distance is given By U_(R.) (see Definition (3.6.1)).

Lemma 3.6.2. There existd., such that for allL > L.,

IPUC (R < S (k| + e+ [d)
for T'1 boundary conditions, and

IP-U-(R.)|| < Ce(Jwk| + [w| + |d])

for Neumann boundary conditions.

Proof. Recall that from (3.63),

ker

Uu_ (R*) = < g_ker ) + ,wgu + (I)ig(R*, _L)ws_s
w_

FHw—w.) /_R* [ (R,,T) + D (R., 7)]e™ ( _D—lﬁwo(u* +u) ) i

L

n /_ [ (Ray 7) + 0 (Ra, 1)) eX No(U_(7))dr

L
The estimate for the integral gives

| /_ L* [@%5(R., 7) + O (R, )] No(U_(7))dr|x

< C’/}z*(eT_R* + e BN dr - | No (U)o
< Ol | + [ + |w — w.] + [d])%.
with 0 < e < 1.
Settingw = w,, we see that the relevant linear part/ofli/_(R,) is given by

w4+ (R, —L)w*|x

IA

C
f(|wlier\ + e Hw™| + e F|| F(w w, w, d)||1, + |d])
C
+C’e‘L(z\wﬁeT| + e Hw™| + e | F (ke w, w, d)||% + |d|)

¢
L

IN

(leoker| + e~ Ffu| + |d] + (w7 ] + [w| + |d])?)
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for T'1 boundary conditions; and

| gker (I)ss(R L>ws_s|X

IN

Tt | 4 (| F (bt w., )12+ (d])
+Ce 2L (|we | + Jw™| 4 e & || F (w*, w™, w,, d)||2, + |d|)
< Ce E(lwke| 4+ |w™| + |d| + (Jw*e| + [w™| + |d])?)
for Neumann conditions. Also we have similar estimate ferdlrivatives with respect to

wker andw.

]
Define
- eTGU_,w), U- = (u,u,),—L <71 =logr <logR,
L (3.65)
GUy,w), Uy = (u,u,.), 7 =r> R,
in which

0
gl = < —DH(w = w)y (s +u) + flus +u) = f(u) = f'(w)u] ) '

Lemma 3.6.3. There exis{ B*", B“*, B¥) € Y’ ¢ Y" @ X3, C%° : (E*)t — X and
operatorsRy.,, R.., and R, such that
P(U_(R,) —U(R,)) =0, 1=1,2,3

is equivalent to

W = (W — w) BFT + R (WP 0 w0 dyw — w,),
W = (W= we) B 4 Ry (0F 0™ wi d,w — w,), (3.66)
w¥ = (0= w)BY 4 OFd + Ry (wh, w™, wi, d,w — w,),
where
Ri = O(Jw*|? + [w™|? + [0 + |w — w.]> +|d|?), i = ker,uu, ss.

100



In addition,C® satisfies the following estimate:

C .
1CF| < I for T'1 boundary conditions
|c| < Cet, for Neumann conditions

Proof. Let
P(U_(R,) —U,(R.) =0,

then we reach

R
er ) er T 0
O — wli + (w — w*) /;L (Dli (R*7 7—)62 < _D_law(u* + u) ) dT
R, 0
R* R*
+/ Or" (R, ) No(U_(7))dr — Pl/ O (R., )N (U (7)) dT,
—L o0
which yields
’wlier _ _(w o w*)Bﬁer + Rker(wliw, ,wgu’ ,wiS’ d’ w — w*)’ (367)
in which
. R. ) 0
B¥™ = P (/_L (R, 7)e” < —D~'0yu. )dT
R. 0
_/OO O(R., 7) ( Doy, )dT)
= 7 [T o DGt
L
and

ker uu ss
Rk@r(w— y W_ ,’LU+ ) da W — w*)

R ) 0
= —(w—wy) (/_ O (R., )™ ( —D ™ oyu ) i

R - 0
_Pl/ (I):L_“(R*,T) < _D—lawu ) dT)
e R.
—/ dker(R,, T)e* No(U_(7))dr + P1/ QU R, T)N (U (7))dT,
—L [e'e)
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where

P=PY'" Xs@ZoY"®I),

o(R.,r) = | Orlfte7) = (03 + OL)(R., 7), 7> R,
ST)T\ (R, 1) = (0% + OW 4 ke 4 ITY(R, 7), T<R,

0 _
1 _p g ) I < 1070,

and
|0 (R, 7) || ix), |9 (Re, )l Lixy = O(e7),  asT — —oo,
| Rier (W, w0 w052, dyw — w)| < Clw = wul[[U]|oo + [N () ]|o)
ClA))Z, + lw = wa?) < CU™ P + [ + + w3 + w — w.]? + [d]?).

Similarly, Py(U_(R.) — U (R. yields

uu uu 0
0 = w" — (w—w)P /oo (R, T) (—D‘law(u*—i-u))dT

+P, / U (R, T)Na (U ) dr.

Then
W' = (W — W) B 4 Ry (0 0™ wi d,w — w,),
with
R* 0 [e.9] ~
Bﬁu = P2 L (I)(R*,T)€2T ( _D—lawu* ) dTPZ /OO (I)(R*,T)Dwg(u*,u)*)dT,
and

Ry (wher ™ Jwid,w — w,)

= ww) / " err.n ( Do ) dr — Py / " (R NG ()

o0 o0

where

P=PY" . Xi®ZoY* &I,

(I)(R ) _ (I)-l-(R*»T) - (@f + qyj—u)(R*aT)a T> R,
STV T L @ (R.,7) = (95 + O™ 4 BFer 4 OTTY (R, 1), T <R,
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Since

0 _
1 _p gy ) I < 1070,

and
QL (R, T) |l Lx) = O(e™), asT — oo,
| Ry (W 0w dyw — w,)] < C(lw = wu[[U]| oo + N2 (U) ]l )
< O(Ull% +lw = wil’]) < CwE P + [0 + +HwP P + |w — wil + |d]).
Lastly, P5(U_(R.) — U (R.) = 0 yields
0 = ws® — Py(**(R., —L)w* + w)

R ss er T 0
—(w —w,)Ps /_L [@%(R,, ) + " (R,, 7)]e? < — D19, (u, + 1) )dT

R
_p, / (@ (R., 7) + B% (R, 7)|e No (U ) dr-
)
Then

Wi = Py(®%(R,, —L)w* + w™")

Ry ss er T 0
+ (@-w)Py /_ [0 T) + 8 (R T (—D—la¢<u*+u> )‘”

R

P, / O (R, 7) + 0% Ry 7 N (U )dr
—L

Py (Re — L)W (0, w™, oo, d) + WO (b i o d)

R. . o - 0
+ ((U _ w*)ng [(I)_ (R*,T> + q)‘[ik (R*,T)]e2 ( —D_10¢U* ) dr

-L
0

R.
+ P /_L [®*°(R.,T) + @g_ker(R*,T)]ezT ( D '0u ) dr

R*
+ Pg/ [@%(R,,7) + (R, 7)|e* No(Uy )dr
~L
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Define
B¥(w—w,) = P[W»(B* (w - w,), B"(w — w.),w — w,, 0)
+ OF(R,, —L)W*(BY(u.)(w — wi), B ( = wi),w — wy, 0)]

R o5 er T 0
+ (w—w*)'P:a/_ [©2(R., 7) + @8 (R, 7)]e? ( —D~ 0y u. )dT’

L

k
Ry (w™ w"™, wi, d,w — w,)

-

R
T s er T 0
- P3/ [@%(R,,T) + 9" (R,, T)]e? ( _D'0,u ) dr

—L

R
+ P / DR, 7) + BX (R, 7| No (U, )dr

L
and
C35d == P3(W9(0,0,0,d) + ®**(R., —L)W?(0,0,0,d)).
Since
0 < |D YU
I{ _p-ra,u ) lIx < 1D7IUlx,
and

195 (Re, )20, 2 1975 (Re, 7)) = Oe ™), @ST — —oc,

- —

| Ros (w0, w3, d,w — w,)] < Clw — wu [U oo + [N2(U) [l o0)
< CUNE + o = wil’]) < O + [w P + +Hwi P + |w — wil* + [d]?).

The estimate ofs* follows from the estimates d#/9*" and¥*¢ in Theorem 3.5.1.
We now assert that we can solve can (3.66)f6t", w"* andws’.

Lemma 3.6.4.There exist$ > 0 such that for any. > 1/6 and any(w, d) with |d| + |w —

w,| < &, there exists a unique solutign**", w**, w3*) of (3.66), that depends smoothly on

104



(w,d) and
wher — (w . w*)Bﬁer(w _ w*,d) + O(|d‘2)7
W = (- w) B (w — w.,d) + O(dP?),

WP = (W—w)B¥ (W —w,, d) + CFd+ O(|d]?),
Proof. Apply the Implicit Function Theorem to equation (3.66). 0J
The following lemmata (Lemma 3.6.5, 3.6.2 and 3.6.6) arerfatching inZ.

Lemma 3.6.5.For any fixed nontrivial bounded solutianof the adjoint variational equa-

tion, there exist)_ € R?Y = F¢ and L, > 0 such that for any. > L.,
U(=L) =4 +0(e").

Proof. Recall that from Lemma 3.3.1, for aw*" € E*"(—L), there exists a unique

wrer(—L,) € E*(—L,) such that

( W(%er ) ==L =L) ( w]i”(O—L*) ) +0(e™") = < wﬁer(O_L*) ) +0(eh);

and for anyw?*“" € E%“"(—L), there exists a unique?**'(—L,) € E*"(—L,) such that
0 0 _
( Wi ) - ke ( wh (=L.) ) Hoe
—L L* gker —L*
_ ( + kezw— ( ) 4 O(e_L).
Therefore,

= (V(R), ¥°(Ry, —L)wt" (= L)) + ((=L.),0(e™")) = O(e™")

with (R,) L Y*r atr = R,. Also,

w0 (7 )=tz (R,
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Then

0 0
Similarly
B 0 o (=L + L)w?* (-L,) -
((=L.), ( woker )> (W( L*)>< W (L) >+0( )
= WL (g ) + O

Then

In conclusion, we have
PE(=L)(=L) = PE(=L)(=L.) + O(e™") = PP (=L)ip(~L.) + O(e™").
For anyw®® € E**(—L) with ||w®||x = 1,
(PH(=L)(=L),w™) = (¢ (=L),w) (3.68)
= (Y(R.), o2 (Re, ~L)W=) = O(e ") ¥ (R.) || = O(e™™).
For anyw™ € E"(—L), there existsv"* € Y such thatw" = ®u(—L, R,)w"".
Therefore,
(PH(=L)(=L),w") = (Y (R.),w™) = 0. (3.69)

From (3.68) and (3.69), we conclude thalt(—L)y(—L) = O(e~1).

106



Define_ := P9**"y)(—L,), then by Lemma 3.3.1,
W(=L) = P™(=L)d(=L) + PH(~L)(~L)
= [(PF" + 0(e™"))(=L.) + O(e™")] + P (= L)y (L)
= PPY(~L,) +O0(e ™)

= Y_+0(eh)

Recall that from Definition 3.6.1,

(V(R.),U-(R.)) = (Y(R.), P-(U-(R.)).
whenw = w,. Therefore, as a by-product, Lemma 3.6.2 gives an estinidtg &..), U (R.))

with w = w,. Forw nearw,, we derive a more precise expansion for the mismatch

(Y(R.), U (R.) — Uy (R.)).

We assume that the Melnikov integral associated with non-vanishing. That is,
Hypothesis 3.3.M := [">(4(7), DuG(U,,w.)(7))dT # 0.

The Melnikov integrall/ is the jump of M (u,,w) and M$*(u,,w) in the direction of
the unique bounded solutianof the adjoint atr = R,,, which describes the transversality

of the intersection ot/ (u,, w) and M {*(u.., w) with respect tav.
Lemma 3.6.6. The mismatch in th&-direction is given by
§ = (V(R.),U(R.) —U(R.))
= (R, w”) + (P(R.), (Rey —L)w*) + (M + O(e™"))(w — wy)
+Rz(w — w., d)
in which the remaindeR ; satisfies the following estimate:
IRzl = O(lw — w.|* + [d]?).
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Proof. We collect the principal term @b — w, in (U_(R.) —U.(R.)) as the following

Jo= (w—w) /_R* (@ (R, 7) + O (R, 7)]e>" ( Do, ) ir

L
R* O
—(w —wy) [roo Y (R,, T) ( —D'9yu, ) dr,
The higher order ternd,,; given in the following arises from the dependencevdf", w?**

andu onw — w,:

Sy = ((w—w*)/_R*[@S_S(R*,T)+<1>C_(R*,7)]62T < —D‘Olawu ) dr

L

—l—/_L* [®%%(R,, T) + ®° (R., 7)]e*" No(U_(7))dT)

~w-wa [ e (pS., )i

“+oo

b [ @R AU (7))

[e.e]

We projectJ; on the direction ofZ, which yields

wowiwr, [ e (i

R* uu O
_/ oU(R,, 7) ( Dy, )d¢>

+oo
Ry

= e [ et (S

L

e [Cwmperw.n (pl,, Y

—+00

= e [ et ) (S, Y

L

e [weranrur (ply, Y

= w-w(f jf:w),ezf (oS, Pir= [ wn(pts., Pin
= - [0 DU, amssiol D
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Observe that
_L 5
| / (7). DuGU, ) si(T))

—L
< Wl [ ENDGU ) il (3.70)
= O0(e™H)|D,GUW), W)|wmwn zi=0]lso- (3.71)
Next, we would like to project/,,; along the direction ofZ: From Theorem 3.5.2 and

Lemma 3.6.3,

(R, w0 -w.) |

oo

R

uu O
P (R, T) ( —D_l&pu ) dr)|

IN

R
Clw = wu [ (R (1w + |w = wil + Id\)/ e Tdr

< O(lw = wul® + [w]? +1dP)
< O(lw = wul? +1d]%);
R
(R, (w — w. /L (@ (R, 7) + O (R, 7)]e ( lawu)dm
R
< Clw = @i [PRI[([wke] + [w] + | — w.| + |d]) /L — R.)e*"]dr
S (|w w*|2_'_‘wker|2_'_‘wuu2_'_‘d|2)

IN

C(lw = wil* + |dI*);

W(R.), / "B (R, ) Na(Uy (7)) dr)

o0
R

Clly(R|(Jw]* + Jw — wi]* + |d|2)/ T g

[e.e]

IN

IA

Cllw = w.|* + [w]* + [d])

IN

C(lw = wil? + [d]);

109



(6(R,). /_ O (Ro, 1)+ OF (Ra 1) No(U (7))

L

< CllRN(wE + [w? + | — w.]* + |d]) /_i [ + (7 — R.)e*)dr
< Clw — w4+ [ 4 Jwi)? + 1d]?)
< COjw —wif* +1d]?).
In conclusion, we have
§ = ((R.),U(R,) —UL(R.))
= (O(R), w™ ") + ((R.), &% (R., —L)w*)
HM +0(e™")(w = w,) + (V(R.), Tu)
= ($(R.), ") + ($(R.), ®*(R., —L)w?)
+(M 4+ O(e ")) (w — w.) + Rz(w — w., d)
with
IRzl = O(lw — w.]* + [d]*).

0

Before we state our main result, we consider a generic assamphich we will use

for the derivation of thes--expansion: We assume that
Hypothesis 3.4.¢)_ # 0.

Sincey_ € {0} x RN C E°,

0
ker
<P3 'QD, ( 722pferidEi )> 7é 0.
with the inner product taken if°. Therefore, if Hypothesis 3.4 is satisfied, then we can

always normalize) such that
0
<¢7 < ,ympiﬁeridEi )) = 1. (372)
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Then we state our main result as the following:

Theorem 3.6.1 (T1 and Neumann boundary conditions)Assume that Hypotheses 3.1,
3.2 and 3.4 are satisfied. There exisisé, > 0, such that for any., > 1/4; and any
(wker, w™, ws, w) with [wke| + |w*™| + |w$| + |w — w,| < &1, then there exists a unique
solution

U = U (d), w™(d), ws*(d),w(d),d) € Bs,(0) ¢ H'(S',CY) x L*(S',C")

of the truncated boundary value problem in which the boupdaindition reads

U(~L) € E*+d (3.73)
where either
—L
d—= ( d ) - < us(0) = u(e™) ) (T1 condition) (3.74)
0 0
or
d=(9) .= 0 N dit 3.75
= < d ) =\ e u)n(eh)) (Neumann condition)  (3.75)
at —L. Moreover,(w*e" w"", w**, w) depends smoothly ahand
ker uu ss Ce_L HY
w4 |w| + |wi’] + |w — w,] < 7 10,1 (0)] (T1 condition)
[wFer| + |w™] + W] + |w — w.| < Ce ?|9,u.(0)].  (Neumann condition)

Furthermore, using the normalization (3.72), themas the expansion

1 u,(0) — uy (et .
W= w,+ Mu ©) Lu () + R, (T1 condition)

e~ L 2L

nearw, whereR = O()[0,u.(0)| + O(<)|8,u.(0))|?, and

1 "
w=w,+ Me_Lﬁru*(e_L) +R, (Neumann condition)

whereR = O(e25))|0,u. (e72L)|.
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Proof. From Lemma 3.6.3, we can solug“", w** andw3?® in terms ofw —w, andd. Next,

we need to investigate the expressfon- ((R.),U_(R.)

—U, (R,)) provided in Lemma

3.6.6 in the case of Dirichlet and Neumann conditions.

First, we consider the case of Dirichlet conditions.

linear,

(V(R.), W)

Rettadt 7, defined in (3.50) is

_ ’(I)c L R ) gker>
— L+L gziiwgker ) —|—0( L) gker>
O ’YQngker —L\_ gker
- ( e ) #e LD, (=0 )) s ot
— ( s £gker ) 4 O(Le—L>wgker + O(e—L)wgiker
0
- < Yoo I (v wke — Prerd + O(e 1) Ry (wher, w™, w — w,, d) )>
L L) gker
B 0 0
- <7vb(_L)7 ( 722TL (,ynwker) )> - <¢(_L>7 ( ’)/QQTEIPEGTCZ )>
0
HOEEDD) oyt gy )+ O = ] 4 1)

From Lemma 3.6.3p"" = (w — w,) B*" 4+ Ry (whe, w

0
(¥(=L), ( Yoo Iyt (a1 0kem) )>
(Y- +0(™h), ( 1(1+0()22lm
1 0
—(w—w){y-, ( Yooy11 BF"

0

7(

in which Ry, = Rier(wFe", w

uu
YWt w — wy,

RN w — w,, d)

6_L

+O( ) - wnidee
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(W — wy

Ol z5)w =)0yt i )1+ O

Yoo y11 BEE"

, WP w —wy, d). Then

)BT + Rier] )>

)> + RN w — w,, d)

d) and the higher order terms

|w — w|* + |d]”
L

)
0

)



Similarly,

0 ( pritpierg )= 10 (o pherg )1+ R0

in which the higher order term

1 0
$,2
REd) = O 15) (0, (i )
On the other hand, from Theorem 3.5.1, we have

(U (R.), @2(Ry, ~L)w™)| < Ce™ (7wt | + e |w| + e7*[|Gl| + |d])

IN

Ce ™ (e Lwr | + e L w™| + e L (Jw — w| + [w™ |2 + |w™* + |w — w,|?
+|d|*) + |d])
< Cle|w—w | +efld + e |w — w. > + e72E|d?)

Therefore, setting = 0 yields

0 = (M+0E )+ Ll (e ) 0= = o (L pierg )

+Rz(w — w,, d).
with
R — wa,d) = O 7)o — ]+ Jdl) + O(1) (ko — w4 [d?).
Then withd = ( Cél ) = ( us(0) _O“*(Q_L) ),We reach
0
v, er [ u.(0) — u*(e_L) >
(e (rmpen )
T ety M+O(%)
+0(33 ! ) (|lw —wil +]d]) + O(+ )(|w—w*|2+ |dJ?).
0
<¢_’ ( Yoo PEeTid e )> .
= w+ Y (u*(O) —u,(e ™)) (3.76)

+0 (1)(Iw w.| +[d]) + O(= )(Iw w.* + d]?)

_ w+“m§f§e)+0<>Wwwm+ww+o<xw—mﬁ+wm
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For Neumann conditions, with the identical argument extiepestimate forv?*" and

w**, we have that
lw — w,| < Ce |0, ()| < Ce™*|0,u,(0)]. (3.77)

Then the estimates far*", w** andws:* follow from Lemma 3.6.1 and (3.77).
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APPENDIX A

SUPPLEMENTARY NOTES

A.1 Adjoint equation

Suppose thatX, (-, -)) is a Hilbert space and consider &nhthe linear equation

Sveamv,  vex, (A1)
inwhich A(t) is closed and densely defined. Then there is a unique maxpeehtorA(t)*
adjoint to A(t), see [27]. Define the adjoint variational equation with extgo the inner
product to be

%W = —(AQ))*'W, W eX. (A-2)
Suppose thatA — 1) and(A — 2) possess evolution operatcobgs, t) and ¥ (s, t) respec-
tively.

We collect useful properties about the adjoint equatioménfollowing proposition.

Proposition A.1.1. (1) Suppose that (¢) andWW (t) satisfy(A — 1) and (A — 2) respec-

tively. Thenr{WW (¢), V'(¢)) is constant with respect to
(2) W(t,s) = (2(s,1))".
Proof. For (1), we have

dt

(W), V(1) = (W), V() +(WHV (D) = (—AD) W (), V(¢)) + (W(2), AV (1))



For (2), by definition,®(¢, s) o (s, t) = id. Differentiating yields
(D®(t, ) 0 B(s,t) + B(t, 5) 0 D;B(s,t) = 0
A(t)D(t,s) o D(s,t) + D(t,5) o DyP(s,t) = 0
D®(s,t) = —P(s,t)A(t)
Taking adjoint on both side, we reaéh(® (s, t))* = —A(t)*(®(s, t))*. By the uniqueness,

we have(2).

A.2 A Graph Lemma

Lemma A.2.1. Suppose thatX, (-, -)) is a Hilbert space, and”, A C X are closed linear
subspaces. Theh satisfies

X=FE®dA
if and only if £ can be written as a graph over the orthogonal complemenpf A, that
is, if there exists a linear and bounded operator

WAt — A
such thatt = graphW = {at + Wat;a € AL},
Proof. SinceX = A@At, foranye € E C X, there exists a unique pdit, a™) € A A+
such that

e=a+a’. (A-3)

Suppose thak = ' ¢ A, then

ot =é+a (A-4)
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for a unique pairfée, a) € £ @ A. Comparing (A-3) and (A-4) yieldé = ¢, anda = —a.
Define the projectior® : X — A on A along A+ by Pa* := —a. Therefore,
e=at4+a=a"—Pat = at +Wa't.

The boundedness éfis given as an application of the closed graph theorem (sgd2&]).

Conversely, ifE = graphW = {at + Wat;a € At} with W : AL — A bounded,
then

Xecrx=a+a" =(a—Wat)+(a-+Wa')c ADE.
On the other hand, if = @+ ¢ = a+ (a- + Wal), for somee € E, @ € Aanda' € AL,
then
a—a—Wat=a-—a"c An At = {0}.

Thena* = o' ande = é. Thus, X = E & A.

A.3 Operator A_

Lemma A.3.1. The equation

Us =AU, U = (u,w) (A-5)
is closed onX = HY(S,CY)x L*(S,CY) and with dense domaifi?(S!, CV)x H'(S!, C¥).
Proof. U, € Ty X = X, the tangent space of ati/. Then we havev € H*(S*,CV) and

—Oypyu € L*(S',CN). Also the boundedness 6f,u is from the integration by parts and

the fact tha$S' has no boundary:

<8¢u, 8¢U>L2(81,CN) = —<u, 8¢¢U>L2(Sl7cz\r) < Q.

Henceu € H*(S*,CV) x H'(S',CV).
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Suppose tha{z, } is a sequence iX andz, — x in X; also{A_z,} is a Cauchy
sequence itX. That is,{z, } is A -convergent ta:. By definition, we need to prove that
x € D(AZ), the domain of the operatot_ and Az = lim A z,,.

x € D(A,): First, since{.A__z,} is Cauchy inX, it converges to somgin X. Write
Ty = < s ),:c: (% )andy = ( ¢} )in X, we have

A2 = yllx = | = pwann = y2llZo + 202 — nillzn — 0.
Secondly, we also have that — = in X, that gives
lzn — 2l = 2y — 21ll3p + llzn2 — 22)172 — 0
Combining the above two facts, we have that converges inf? andx,, » converges in

H'. Thatis,z, converges ta € H? x H'. Now
[z = 2llx <lzn —2|x + lzn — 2llx < [l2n — zllx + llzn — 2|l 525 — 0.
Sozx = z.
A x=limA_x,:
Ascn = ( —8ww 0 ) ( T ) - ( —3%52%1 ) - ( Oy ) = A
Note that the convergence in the previous expression iglix L? and is due to the fact

thatz, — xin H?> x H'. O
Lemma A.3.2. The asymptotic spectral projectio¥" and P** are bounded.

Proof. In order to study the (un)stable projectioR%’(P“*) and the center projectioR¢,
we first study the behavior of the projections onto a singleleno
Let us first introduce some notation. Let
P X =H'xI*?—-E"CE,CX
to be theunstable projection onto the k-th modeX? with the null space to be the com-
plement of thek-th mode. Here the norm ix° is inherited fromX and the null space is
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(Ef)+in X. Then
P = @0 P |, -
and P mapskE) to E* C Ej. Similarly for P*; also letE), to be the k-th mode ok,
i.e. By, = span{(ue™¥ ve*¥) € X;u,v e CN}.
For (ure™, ve™) € X, k # 0, the affine subspadguc™?, (—k(u — ug) + vy, )e*?);
u,v € CV} is parallel toE;* and passing through the poifit,e™*?, vye™*¥). It intersects

B at $((ug + 1oi)e®™, (kuy, + vy)e™). Hence we have the following:

. . 1 1
P g, (ukelkw,vkelkw) 2((uk + kvk) , (kug, + vy )e’ w).

with the norm|| (uge™”, vpe™ )|, = (1 + |k|2)|uel® + |v|2)2. Now since the projection
P" is the direct sum of?}", P!"|g,, is zero fork # m. Hence we can suppress the
restriction to£, if no confusion caused.
1B = sup 12 (ure™ vge™) |11 (A-6)
[l (uget™ vtk x <1

1
— sup (14 k) Jue + Evkﬁ + kg + v ]?)?

1
(1412 g |2+ o 2) <1 2
The term(1 + [k|*)[us + top* < (1+ k) (o + £)? and|kug + vy < iz + 1.

HenceP/" is bounded for fixed:.

Now let us consider the norm ét**. For (u,v) € X\ E°, write

- (Z upet?, Z Ukeiw’),
k0 k0
then

[PX = sup [P (u,v)[lk
(o)l x <1

< s O P e ve™) )2
o)l x <1 %z

1 1
=  sup —Z((1+|k|2)|uk+Evk|2+|kuk+vk|2).
lI(ww)lx <14 375
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Recall that]| (u, v)||x < 1implies thaty", ((1 + |k|?)|ur* + |vg|*) < 1. Write

1
D (U R s+ ol + R+ o)

k#£0
1
< 2) (L RP)(fuil® + p\kaQ) + [P Jugl® + |ve]?)
k0
<6 (L [EP)|ul® + [uel?) < 6.
k0
HenceP*" is bounded as well. O

A.4 Equivariance of the reaction-diffusion equation

Consider the Euclidean symmetry grotig(2) = S* x R? [15] with the multiplication

(0,a)-(0,a) = (0+6,a+ e_iéa), 0,0 € S' ~¥R/Z,a,a € R? = C.
Observe thatSE(2), -) is a non-abelian group with
(0,a)7" = (=0, —e"?a).
Recall the reaction-diffusion equation on the plane
uy = DAu+ f(u), reR%ueRY, (A-7)

Suppose that = u(x, t) satisfies (A-7), then consider

((0,a) ou)(z,t) == i(x,t) = ule (x — a),t), (0,a) € S' x R? = SE(2). (A-8)
For sake of convenience, we would like to reformulate (A§)raa ODE in some ap-

propriate Banach space of functions:

%U = FU := DAU + f(U) (A-9)

forU =U(t) = u(-,1).

Lemma A.4.1. Equation (A-9) is equivariant under the action of the Euelid symmetry

groupSFE(2) = S x R,
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Proof. We can verify that A — 9) is SE(2)-equivariant that is,
(0,a) o FU = F((8,a) o U) (0,a) € SE(2). (A-10)
It is sufficient to verify(A — 10) for the generators: translatiofi «) and rotationgé, 0)

due to the linearity of the groupF(2). For the Laplacian, the equivariance is implied by

the translation and rotation invariance of the Laplacian:
A((0,a) o U)(z) = AU(z —a)) = (AU)(z — a) = ((0,a) o AU)(z)
A((0,0) 0 U)(x) = A(U(e ")) = tr(D*(U(e™"x)))
= tr((e™)™"- DU - (e7))(x)
= tr((e7)" - DU - (e7))(x)
= (tr(D*U))(e "x)
= (AU)(e™"x) = ((0,0) 0 AU)(x)
The equivariance of is implied by the fact tha is not explicitly depending on.
Then if U solves (A-9), then
8,((6,a) o U) = (8,a) 0 ,U = (8,a) o FU = F((6,a) o U).

Therefore (6, a) o U solves (A-9). Then the result follows.
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