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ABSTRACT

In a natural environment, speech often occurs simultaneously with acoustic 

interference. Many applications, such as automatic speech recognition and 

telecommunication, require an effective system that segregates speech from interference 

in the monaural (one-microphone) situation. While this task of monaural speech 

segregation has proven to be very challenging, human listeners show a remarkable ability 

to segregate an acoustic mixture and attend to a target sound, even with one ear. This 

perceptual process is called auditory scene analysis (ASA). Research in ASA has inspired 

considerable effort in constructing computational ASA (CASA) based on ASA 

principles. Current CASA systems, however, face a number of challenges in monaural 

speech segregation.  

This dissertation presents a systematic and extensive effort in developing a CASA 

system for monaural speech segregation that addresses several major challenges. The 

proposed system consists of four stages: Peripheral analysis, feature extraction, 

segmentation, and grouping. In the first stage, the system decomposes the auditory scene 

into a time-frequency representation via bandpass filtering and time windowing. The 

second stage extracts auditory features corresponding to ASA cues, such as periodicity, 
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amplitude modulation, onset and offset. In the third stage, the system segments an 

auditory scene based on a multiscale analysis of onset and offset. The last stage includes 

an iterative algorithm that simultaneously estimates the pitch of a target utterance and 

segregates the voiced target based on a pitch estimate. Finally, our system sequentially 

groups voiced and unvoiced portions of the target speech for non-speech interference, 

and this grouping task is performed using feature-based classification.  

Systematic evaluation shows that the proposed system extracts a majority of target 

speech without including much interference. Extensive comparisons demonstrate that the 

system has substantially advanced the state-of-the-art performance in voiced speech 

segregation, and represents the first systematic study of unvoiced speech segregation. 
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pitch τ 

PEL Percentage of energy loss, which is used in segregation 
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CHAPTER 1  

INTRODUCTION

1.1 The problem of speech segregation 
One of my wife’s favorite daily routines is to walk with me in the evening. We walk 

on the small meadow around our apartment and talk to each other. Meanwhile, we often 

hear people shouting, yelling, and laughing in a playground nearby. When my wife talks, 

what reaches my ear is the mixture of her voice and all other sounds. Although they often 

get very loud, I can still hear her very well and hardly feel being interrupted. My auditory 

system seems to have little trouble in separating her voice from other sounds. 

Above is a typical situation we face daily: When someone is talking to us, what we 

hear is usually not just the utterance of that person, but a mixture with other interfering 

sounds. Interference can be any sound, such as wind noise, music, or another speech 

utterance. In such situations, we need to segregate the target utterance from the mixture 

and extract the information carried by the utterance.  

People with normal hearing are excellent at segregating target speech from various 

types of interference. In most situations, we do not feel bothered by interfering sounds. 
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However, interference is a serious problem for machines and there is a great need for an 

effective speech segregation system for many applications. For example, the performance 

of automatic speech recognition (ASR) is severely degraded by interfering sounds 

(Lippmann, 1997; Cooke, 2003). An automatic speech recognizer would greatly benefit 

from a good speech segregation system. Such a system is also very helpful in 

telecommunication by improving the speech quality and reducing the cost of transmitting 

non-speech signal. In addition, interfering sound is a serious problem for hearing 

impaired people, even assisted by a hearing aid, when listening to a target speaker (Dillon, 

2001). To help people with this problem, one needs to design a hearing aid that is able to 

extract target utterances from acoustic mixtures.  

There have been extensive efforts to develop computational systems that automatically 

separate target sound or attenuate background interference. Many of the efforts have 

focused on the situation that target and interference come from different spatial locations 

and multiple microphones are available. In such a situation, one may attenuate 

interference using spatial filtering (Krim and Viberg, 1996; Brandstein and Ward, 2001; 

Gannot et al., 2001) that extracts signals from the target direction or cancels signals from 

the interfering directions. This approach, unfortunately, does not apply to situations when 

target and interference originate from the same location or only mono-recordings are 

available. Blind source separation using independent component analysis (ICA) (Bell and 

Sejnowski, 1995; Lee et al., 1999; Hyvärinen et al., 2001) separates mixtures into 

components that are statistically independent. Currently, ICA works well when sound 

sources are from different directions and the number of microphones is greater than or 
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equal to the number of sources, but has difficulties in dealing with one-microphone 

recordings.  

Applications such as telecommunication and audio information retrieval need a 

monaural (one microphone) solution for speech segregation. To find such a solution, one 

must consider the intrinsic properties of target or interference in order to distinguish and 

separate them. Various algorithms have been proposed for monaural speech enhancement 

(Lim, 1983; Benesty et al., 2005; Ephraim et al., 2005), and they are generally based on 

some analysis of speech or interference and subsequent speech amplification or noise 

reduction. For example, methods have been proposed to estimate the short-time spectra of 

interference and then attenuate interference accordingly (McAulay and Malpass, 1980; 

Ephraim and Malah, 1984; Virag, 1999; Martin, 2001), or to extract speech based on 

speech modeling (Paliwal and Basu, 1987; Hansen and Clements, 1991; Jensen and 

Hansen, 2001). Another way to deal with interference is to perform eigen-decomposition 

on an acoustic mixture and then apply subspace analysis to remove interference (Ephraim 

and van Trees, 1995; Rezayee and Gazor, 2001). Hidden Markov models have been used 

to model both speech and interference and then separate them (Ephraim et al., 1989; 

Varga and Moore, 1990; Sameti et al., 1998). These methods usually assume certain 

properties of interference and lack the capacity for dealing with general acoustic 

interference, because the variety of interference makes it very difficult to model and 

predict (Ephraim et al., 2005). 
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1.2 Computational auditory scene analysis 

While monaural speech segregation by machines remains a great challenge, the human 

auditory system shows a remarkable capacity for this task. This observation has 

motivated a different approach to automatic monaural speech segregation – mimicking 

the auditory process of source separation. 

The auditory segregation process is termed by Bregman as auditory scene analysis 

(ASA) (Bregman, 1990), which is considered to take place in two main stages. The first 

stage, called segmentation (Wang and Brown, 1999), decomposes the auditory scene into 

sensory elements (or segments), each of which should originate from a single source. The 

second stage is called grouping, where the segments that likely arise from the same 

source are grouped together. Segmentation and grouping are guided by perceptual 

principles, or ASA cues, that determine how the auditory scene is organized (Bregman, 

1990; Darwin, 1997). These cues characterize intrinsic sound properties, including 

harmonicity, onset and offset, location, and prior knowledge of specific sounds.  

Research in ASA has inspired considerable work to build computational ASA (CASA) 

systems for sound segregation (for reviews see Rosenthal and Okuno, 1998; Brown and 

Wang, 2005; Wang and Brown, 2006). Many CASA systems are developed for binaural 

situations (Nakatani and Okuno, 1999; Liu et al., 2001; Shamsoddini and Denbigh, 2001; 

Roman et al., 2003) based on the observation that sound sources often originate from 

different spatial locations and human listeners use location cues to help separating sounds 

from different directions (Bregman, 1990; Hawleyb et al., 2003). A typical binaural 

system obtains directional cues by comparing signals from two ears (or two microphones) 



 5 

and then uses the directional cues to segregate target. In fact, binary CASA systems yield 

excellent result when the target and interference are from well-separated directions. 

However, they lack the capability to deal with the situation when sounds are from the 

same direction or only one-microphone recording is available.  

Many studies have attempted to develop a CASA system for monaural segregation 

(Weintraub, 1985; Mellinger, 1992; Cooke, 1993; Brown and Cooke, 1994; Ellis, 1996; 

Wang and Brown, 1999). These systems aim to segregate target sound without making 

many assumptions about interference and tend to have a wider scope of applicability than 

speech enhancement methods. A typical CASA system for monaural segregation is 

shown in Figure 1.1. It has four stages: Peripheral analysis, feature extraction, 

segmentation, and grouping. The peripheral processing decomposes the auditory scene 

into a time-frequency (T-F) representation via bandpass filtering and time windowing. 

The second stage extracts auditory features corresponding to ASA cues, which are used 

in subsequent segmentation and grouping. In segmentation and grouping, the system 

generates segments for both target and interference and then groups the segments 

originating from the same source into a stream. The waveform of the segregated target 

Segregated 
speech Peripheral 

analysis 

 

 
Mixture 

 
 

 
Feature 

extraction 

 
 

Segmentation 

 
 

Grouping 

 

Figure 1.1. Schematic diagram of a typical CASA system 
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Figure 1.2. Signal representation. (a) T-F decomposion of a female utterance, “That 
noise problem grows more annoying each day.” (b) Waveform of the utterance. (c) T-
F decomposition of the utterance mixed with a crowd noise. (d) Waveform of the 
mixture. (e) Target stream composed of all the T-F units (black regions) dominated by 
the target (ideal binary mask). (f) Waveform resynthesized from the target stream. 
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can then be resynthesized from the target stream (Weintraub, 1985; Brown and Cooke, 

1994). 

As an illustration, Figures 1.2(a) and 1.2(b) show a T-F decomposition and the 

waveform of a female utterance, “That noise problem grows more annoying each day,” 

from the TIMIT database (Garofolo et al., 1993). Figures 1.2(c) and 1.2(d) show a T-F 

decomposition and the waveform of the mixture of this utterance and crowd noise. The 

overall signal to noise ratio (SNR) of this mixture is 0 dB. For concision, we refer to this 

mixture as M1. Here the input is decomposed using a filterbank with 128 gammatone 

filters (Patterson et al., 1988) and 20-ms rectangular time windows with 10-ms window 

shift (see Section 3.1 for implementation details). We refer to a time window as a time 

frame and the T-F area in a filter channel and within a frame as a T-F unit. Figures 1.2(a) 

and 1.2(c) show the energy within each T-F unit, where a brighter pixel indicates stronger 

energy within the unit. Figure 1.2(e) shows an ideal target stream we aim to segregate, 

which contains all the T-F units with stronger target energy. To obtain this stream, a 

typical CASA system first merges neighboring T-F units into segments in the stage of 

segmentation. In this stage, the system generates segments for the target, shown as the 

contiguous black regions in the figure, as well as segments for the interference. Then in 

the stage of grouping, the system determines for each segment whether or not it belongs 

to the target and then groups it accordingly. Figure 1.2(f) shows the waveform 

resynthesized from the target stream in Figure 1.2(e).  
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1.3 Computational objective 

A critical issue in developing a CASA system is to determine its computational goal 

(Marr, 1982). Ideally, we would like to obtain the exact target signal from the mixture. In 

fact, most speech enhancement systems try to obtain an estimate of the target that is as 

close to the true target as possible. However, in practice this goal is probably unrealistic 

due to the nonstationary nature of interference.  

With the initial decomposition of an acoustic mixture into T-F units described in the 

previous section, we have suggested that the computational goal of a CASA system 

should be to retain the signals within the T-F units where target speech is more intense 

than interference and remove others (Hu and Wang, 2001; Hu and Wang, 2004a) (see 

also Roman et al., 2003). In other words, the goal is to identify a binary T-F mask, 

referred to as the ideal binary mask, where 1 indicates that target is stronger than 

interference in the corresponding T-F unit and 0 otherwise. Target speech can then be 

resynthesized with the ideal mask by retaining the signals within the T-F regions 

corresponding to 1’s and rejecting the remaining signals. Figure 1.2(e) shows, in fact, the 

ideal binary mask for the mixture M1 in Figure 1.2(d). As shown in Figure 1.2(f), the 

speech resynthesized from the ideal binary mask is very similar to the original clean 

utterance in Figure 1.2(b). 

The use of the ideal binary mask as our computational goal is supported by two 

important properties of the target utterance resynthesized from the mask. First, the 

interference in the resynthesized utterance is almost inaudible. Note that usually there is 

still some amount of interference in the T-F units labeled 1, i.e., with dominant target. 
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Therefore, the resynthesized utterance still contains interference. However, we usually 

cannot hear this part of interference because of the auditory masking phenomenon: 

Within a critical band, a weaker signal tends to be masked by a stronger one and 

therefore cannot be heard by a listener (Moore, 2003). Second, the resynthesized 

utterance gives excellent intelligibility unless SNR is extremely low. This is supported by 

considerable evidence from studies that use the utterances resynthesized from ideal 

binary masks for human speech intelligibility tests (Roman et al., 2003; Chang, 2004; 

Brungart et al., 2005). In addition, an ideal binary mask also yields excellent recognition 

performance in recent ASR studies (Cooke et al., 2001; Roman et al., 2003). The 

fundamental reason for such a phenomenon is that the speech energy and interference 

energy tend to distribute differently in the T-F domain. Therefore the T-F units with 

stronger target include substantial target energy in most situations. In addition, because 

speech signal has significant redundancy, the speech information is well preserved even 

when some speech signal is lost. For an extensive discussion on ideal binary mask as the 

computational goal for CASA, see (Wang, 2005).  

 

1.4 Challenges 

Natural speech contains both voiced and unvoiced portions (Stevens, 1998; 

Ladefoged, 2001). Voiced speech consists of portions that are mainly periodic (harmonic) 

or quasi-periodic. Harmonicity and temporal continuity are effective ASA cues for voiced 

speech segregation. Harmonicity refers to the fact that a periodic sound is composed of a 

group of harmonics, each of which is a frequency component whose frequency is an 



 10 

integer multiple of the fundamental frequency (F0). Temporal continuity refers to the fact 

that speech signal tends to last for a certain period of time and during this period the 

signal usually changes smoothly across time. Most previous CASA systems have focused 

on segregating voiced speech based on harmonicity and temporal continuity (Weintraub, 

1985; Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999). Specifically, they 

aim to extract the signal that has periodicity similar to that of the target. Although 

previous CASA systems have made significant progresses in segregating voiced speech, 

they face the following acute challenges:  

• Robust pitch estimation. In order to extract the signal that has similar periodicity to 

that of the target, one first needs to estimate the target pitch. Accurate pitch 

estimation is crucial for achieving good separation between target and interference. 

However, target pitch estimation is difficult when there is strong interference since 

interference corrupts target pitch information. Various methods for robust pitch 

estimation have been proposed (Hess, 1983; Wu et al., 2003; de Cheveigné, 2006). 

However, robust pitch estimation under low SNR situations remains a substantial 

challenge.  

• Segregation of voiced speech in the high-frequency range. Another key problem of 

previous CASA systems is that they do not segregate voiced speech well in the 

high-frequency range. In the high-frequency range, harmonics are generally 

unresolved since the corresponding auditory filters have wide passbands that 

respond to multiple harmonics. Psychophysical evidence suggests that the human 

auditory system processes resolved and unresolved harmonics differently (Carlyon 
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and Shackleton, 1994; Bird and Darwin, 1998). Hence, one should carefully 

consider the distinctions between resolved and unresolved harmonics. Most 

previous CASA systems employ the same strategy to segregate all the harmonics, 

which works reasonably well for resolved harmonics but poorly for unresolved 

ones.  

• Segregation of unvoiced speech. As previous CASA systems rely heavily on 

harmonicity to segregate target, they are not capable of segregating unvoiced 

portions of speech. Compared to voiced speech segregation, unvoiced speech 

segregation is a more difficult problem for two reasons. First, unvoiced speech 

lacks the harmonic cue and is often acoustically noise-like. Second, the energy of 

unvoiced speech is usually much weaker than that of voiced speech; as a result, 

unvoiced speech is more susceptible to interference. In fact, unvoiced speech 

segregation has not been systematically addressed at all in previous CASA 

systems.  

• Sequential grouping. The task of sequential grouping is to identify the source of 

each sound at different time points and then group sounds from the same source 

across time. It is a very challenging task and little attention was given to it in 

previous CASA studies. By far, there is no general solution for this task. 

 

1.5 Dissertation organization 

This dissertation presents a systematic and extensive effort in developing a CASA 

system for monaural speech segregation. Our endeavor is directly targeted to the 
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challenges listed in the previous section. The developed system estimates the ideal binary 

mask of a target utterance from an acoustic mixture, following the general stages of a 

typical CASA system as those shown in Figure 1.1. The remainder of the dissertation is 

organized as follows. 

In Chapter 2, we first survey previous monaural CASA systems, including a system of 

our own on voiced speech segregation that employs different methods to segregate 

resolved and unresolved harmonics (Hu and Wang, 2004a). We also explain CASA 

challenges and discuss the approaches we take to address some of them. Finally, we give 

an overview of our proposed system.  

In Chapter 3, we describe the auditory peripheral model of our system and the features 

extracted by the system. These features are response envelope, correlogram, onset and 

offset. They are used in the subsequent segmentation and grouping stages.  

In Chapter 4, we describe an auditory segmentation algorithm based on a multiscale 

analysis of onset and offset. Onsets and offsets are important ASA cues (Bregman, 1990) 

because different sound sources in an acoustic environment seldom start and end at the 

same time. In addition, there is strong evidence for onset detection by auditory neurons 

(Pickles, 1988). There are several advantages of applying onset and offset analysis to 

auditory segmentation. In the time domain, onsets and offsets form boundaries between 

sounds from different sources. Common onsets and offsets provide natural cues to 

integrate sounds from the same source across frequency. Because onset and offset are 

cues common to all the sounds, our algorithm handles both voiced and unvoiced speech. 
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Systematical evaluation shows that this algorithm segments voiced and unvoiced speech 

effectively. 

In Chapter 5, we describe an algorithm that estimates target pitch and performs voiced 

target segregation in an iterative loop. Specifically, our system yields an estimate of 

target pitch from the segregated voiced target, and then uses the newly estimated pitch to 

obtain a better estimate of voiced target, and so on. This algorithm combines features for 

both resolved and unresolved harmonics to estimate voiced target. The output of the 

algorithm is the estimated pitch contours and the associated T-F masks. Our evaluation 

shows that this algorithm performs substantially better than existing pitch determination 

algorithms as well as voiced speech segregation systems.  

In Chapter 6, we describe the process of grouping target signals sequentially. Since 

some pitch contours obtained with the iterative algorithm may correspond to interference, 

a sequential grouping process is needed to group voiced target together. Furthermore, we 

need to group the segments dominated by unvoiced target with the segregated voiced 

target. In this study, we consider only non-speech interference. Consequently, this 

grouping task becomes a classification task, i.e., to distinguish T-F regions dominated by 

speech utterances from those dominated by non-speech signals. The proposed system 

performs this task through a feature-based classifier. Systematic evaluation shows that 

our system extracts a majority of target speech without including much interference. It 

performs substantially better than previous systems in segregating unvoiced speech. 
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Chapter 7 summarizes the proposed system and outlines the major contributions of 

this dissertation. It also discusses the CASA challenges that still remain and the possible 

directions of future research. 
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CHAPTER 2  

BACKGROUND AND OVERVIEW

In this chapter, we first give a review of previous CASA systems for monaural 

segregation and a brief introduction of voiced and unvoiced speech. We then discuss the 

challenging problems in monaural speech segregation, and approaches that could deal 

with some of the challenges, which include our earlier effort on voiced speech 

segregation (Hu and Wang, 2004a). In this background, we provide an overview of the 

novel CASA system proposed in this dissertation for monaural speech segregation.  

 

2.1 Previous CASA research on monaural speech segregation 

Most CASA systems are developed for separating spoken utterances from 

interference, except for a few that aim to separate other types of sounds, such as 

Mellinger’s system (Mellinger, 1992) for separating ensemble music, and the system of 

Li and Wang for separating singing voice from music (Li and Wang, 2005). This section 

surveys previous CASA systems for monaural speech segregation.  
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As mentioned in Section 1.2, most monaural CASA systems apply an initial analysis 

of input signal that mimics auditory peripheral processing. Typically, the input is 

decomposed in the frequency domain through a bank of filters that have similar 

frequency responses as those of cochlear filtering. Several studies report that such 

auditory-based front-ends are more robust than traditional Fourier-based analysis in the 

presence of background interference (Ghitza, 1994; Jankowski et al., 1995). Some 

systems (Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999) further process 

the output of each filter to simulate auditory nerve transduction (Meddis, 1988).  

With the output from the initial analysis, CASA systems extract features representing 

ASA cues. Most previous CASA systems for monaural speech segregation focus on 

segregating voiced speech using periodicity as the primary cue. A well-established 

representation for periodicity analysis is a correlogram (Licklider, 1951; Lyon, 1984; 

Slaney and Lyons, 1990), which has been adopted by many CASA systems (Weintraub, 

1985; Brown and Cooke, 1994; Wang and Brown, 1999). The correlogram is a running 

autocorrelation of the signal within a certain period of time in each filter channel. The 

periodicity of the signal is represented by the corresponding autocorrelation function 

(ACF). 

An example of the correlogram is shown in Figure 2.1. The center panel shows the 

correlogram of the female utterance shown in Figure 1.2(b) within the time duration from 

0.79 second to 0.81 second. Each curve in the panel is the ACF of a bandpassed response 

with the passband centered at a particular frequency (see Section 3.3 for details on the 

calculation of the ACFs). The peaks of these ACFs indicate the periodicity of the 
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corresponding signal. Since the utterance is voiced within this time duration, all the ACFs 

exhibit peaks at the delay of 5.87 ms, which corresponds to the pitch period of the 

utterance. This observation has motivated a well-established pitch determination 

algorithm, namely, summary correlogram (Licklider, 1951). The summary correlogram is 

the summation over frequency of all the responses in the correlogram, which is shown in 

the bottom panel. A dominant peak in the summary correlogram corresponds to the pitch 

period of the utterance. 

50

363

1246

3255

8000

Fr
eq

ue
nc

y 
(H

z)

0 5 10
Delay (ms)

0.5 1

 

Figure 2.1. Correlogram at 0.8 second for the female utterance in Figure 1.2(b). For 
clarity, every third channel is displayed. The corresponding cross-channel correlation 
is given in the right panel, and the summary correlogram in the bottom panel. 
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Weintraub investigated the problem of separating two simultaneous speakers, one 

male and one female (Weintraub, 1985). He developed a system that first tracked the 

pitch contours of both utterances and then separated them by estimating the spectral 

amplitudes of each sound source based on periodicity and temporal continuity. His 

separation system contains four stages.  

In the first stage, his system tracks two pitch contours, one for each speaker. In this 

stage, the system first uses a smoothed coincidence function, a version of autocorrelation, 

to capture periodicity as well as amplitude modulation (AM). Based on these functions, 

the system determines a dominant pitch at each 10-ms time frame. The dominant pitch 

may correspond to either speaker. It is assigned to the correct speaker using the 

knowledge that one speaker is male and the other is female. With the dominant pitch, the 

system tracks the pitch contour for each speaker based on the temporal continuity of pitch 

contours. The outcome of this stage is two estimated pitch periods at every time frame, 

no matter whether the corresponding utterance is voiced, unvoiced, or silent. 

In the second stage, his system determines the actual state of the signal for each 

speaker. Weintraub considered seven states in this research: silence, periodic, 

nonperiodic, onset, offset, increasing-periodicity, and decreasing-periodicity. A Markov 

model (Rabiner, 1989; Rabiner and Juang, 1993) was trained to model the sequential 

relationship of these states for the situation when there are two simultaneous speakers, 

using the pitch and amplitude of an utterance as features. Based on the model, the system 

applies the Viterbi algorithm (Viterbi, 1967) to determine the state of each speaker at 

every time frame. The output of this stage gives a more accurate description of the signal 
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within each frame. As a result, some estimated pitch periods are removed if the system 

decides that the corresponding signal is not periodic. 

In the third stage, his system separates the two utterances by estimating the spectral 

amplitude of each sound source with the estimated pitch periods and states for each 

speaker. His system first has an initial estimate of each sound source. In particular, if at 

least one source is periodic, the system determines the best amplitude of each utterance 

according to the smoothed coincidence function. If both sources are nonperiodic, the 

system simply splits the energy evenly between them. Then the system improves the 

amplitude estimation iteratively by forcing good temporal continuity for each source. The 

estimated spectral amplitude is used to resynthesize the corresponding source in the last 

stage. 

Weintraub tested his system with a corpus of two simultaneous speakers and obtained 

a certain level of separation. However, since the test corpus was also used in training, it is 

not clear how well his system works for a more general situation. In particular, in the 

pitch tracking stage, his system assigns pitch points to different speakers based on the 

fact that the pitch periods of a male speaker are usually much longer than those of a 

female speaker. This scheme cannot deal with the mixture of two male speakers or two 

female speakers. In addition, many of the processes in his system may not be able to 

handle general interference since they were developed to handle acoustic mixtures of two 

utterances.  

Nevertheless, Weintraub made several important contributions in his dissertation. 

First, he proposed using temporal continuity to improve the estimation of target pitch and 
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target utterance. Second, he developed a method for resynthesizing the segregated signal 

from the initial T-F decomposition of input signal that mimics cochlear filtering. This 

resynthesis method has been adopted in several other CASA systems (Brown and Cooke, 

1994; Wang and Brown, 1999; Hu and Wang, 2004a) and will be employed in this 

dissertation as well. 

Subsequently, Cooke made the first systematic effort to segregate speech from various 

types of interference (Cooke, 1993). His system separates different sound sources as 

follows. After cochlear filtering, it computes the instantaneous frequency of each filter 

response. Then at every time step, his system combines neighboring channels into place 

groups such that each place group includes adjacent filter channels where the 

instantaneous frequencies change smoothly across these channels. An obtained place 

group tends to correspond to a single harmonic or several harmonics of a single source. 

Place groups at consecutive time steps are connected to form segments, referred to as 

strands by Cooke. His system then combines overlapping strands into groups if they have 

similar periods or similar AM patterns. A pitch contour is then obtained for each group, 

and groups with similar pitch contours are put into the same stream. Each stream 

corresponds to a separated source. 

Cooke collected a test corpus to evaluate his system. This corpus contains 100 samples 

composed of 10 target utterances mixed with 10 intrusions. Every target utterance is 

totally voiced and has only one pitch contour. The intrusions have a considerable variety; 

specifically they are: N0 – 1 kHz pure tone, N1 – white noise, N2 – noise bursts, N3 – 

“cocktail party” noise, N4 – rock music, N5 – siren, N6 – trill telephone, N7 – female 
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speech, N8 – male speech, and N9 – female speech. This corpus has been subsequently 

used in other studies for evaluating voiced speech segregation (Cooke, 1993; Brown and 

Cooke, 1994; Ellis, 1996; Wang and Brown, 1999; Drake, 2001).  

To evaluate the segregation performance, Cooke computed the strands of a clean 

utterance and compared them with the obtained stream. On average, the target segregated 

by his system includes more than 70% of target strands. In addition, about 10% of the 

segregated target corresponds to interference. Cooke’s system segregates voiced speech 

in the low-frequency range much better than in the high-frequency range. In fact, it fails 

to recover many target strands in the high-frequency range even when there is no 

interference. 

Extending Cooke’s system, Brown and Cooke proposed a model for monaural speech 

segregation (Brown and Cooke, 1994). Their model aims to estimate a binary T-F mask 

for target; the target utterance can be resynthesized from the mask by adopting 

Weintraub’s resynthesis method (Weintraub, 1985). Their system differs from Cooke’s 

system in several aspects. Specifically, their system computes the correlogram to 

represent periodicity. In segmentation their system merges neighboring filter channels 

based on cross-channel correlation, i.e., the cross correlation of ACFs in adjacent 

channels (see Section 3.3 for details in calculating cross-channel correlation). The cross-

channel correlation compares the similarity of ACFs in adjacent channels. A higher 

cross-channel correlation indicates more similar ACFs. An example of cross-channel 

correlation is shown in the right panel of Figure 2.1. As shown in the figure, neighboring 

channels corresponding to the same frequency component, such as a harmonic of the 
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utterance, have similar ACFs and therefore have high cross-channel correlations. By 

clustering based on cross-channel correlations, their system merges filter channels 

responding to the same frequency components. Merged channels in subsequent time 

frames are connected into segments, referred to as auditory objects by Brown and Cooke, 

based on temporal continuity. In grouping, their system estimates a pitch contour for each 

auditory object using the correlogram. Objects with similar contours are grouped into 

streams. In addition, they considered using common onset and offset as features to group 

objects. 

Brown and Cooke’s system was evaluated with Cooke’s test corpus and it yields 

performance similar to that of Cooke’s system. In particular, their system removes most 

interference energy from the target stream. However, a significant amount of target 

energy, especially in the high-frequency range, is missed from the segregated target. The 

evaluation also showed that their use of common onset and offset as additional features 

for grouping does not yield significant performance improvement.  

Wang and Brown proposed a CASA system similar to Brown and Cooke’s system. 

The major difference between these two systems is that Wang and Brown used a two-

layer oscillator network for speech segregation (Wang and Brown, 1999). In the first 

layer, segments are formed based on cross-channel correlation and temporal continuity. 

Specifically, in each time frame, neighboring T-F units are merged into segments if their 

cross-channel correlation is higher than a threshold. In addition, T-F units in the same 

channel and at consecutive frames are merged if both units have cross-channel 

correlations higher than the threshold. In the second layer of Wang and Brown’s network, 
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segments are grouped into two streams, one for target and the other for interference, 

using an estimated global pitch in each time frame as follows. First, their system finds the 

longest segment as a seed segment. Then for each segment, their system determines at 

each frame whether or not the segment has a period similar to that of the seed segment, 

according to the global pitch period. If a segment has periods similar to those of the seed 

segment at more than half of their overlapping frames, it is grouped with the seed 

segment into a seed stream. Otherwise, this segment is grouped into a competing stream. 

Overall, Wang and Brown’s system is computationally much simpler than Brown and 

Cooke’s system, but yields a similar performance on Cooke’s test corpus. 

The above systems can be characterized as data-driven approaches, i.e., they rely 

mainly on features derived from the data, such as target pitch, onset, and offset, to 

separate sound sources, though in Weintraub’s work, prior information of the temporal 

continuity of speech was used. Besides the data-driven CASA systems, some CASA 

systems depend primarily on prior information of sound sources to achieve sound 

separation, which may be characterized as model-based or top-down. Ellis developed a 

prediction-driven system for sound separation (Ellis, 1996). His system uses a world 

model to describe acoustic input. The world model includes three types of sound 

elements: Noise cloud, transient click, and harmonic sound. By decomposing the current 

input signal into different elements, the system generates predictions for future input. The 

optimal sound separation satisfies the condition that the model prediction best matches 

the actual input. Ellis tested his system on several intrusions, such as city-street ambient 

noise and a competing talker. The outcome of his system was assessed by human 
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listeners. Ellis reported that his system extracts major sound objects from the mixtures, 

but the extracted sounds have notable distortions. Also, his evaluation is not extensive. 

Roweis proposed to separate two speech utterances using trained models of utterances 

(Roweis, 2001). He first trained a hidden Markov model (HMM) for each speaker and 

then combined these trained models factorially to form a model for the mixture of two 

speakers. His system separates the mixtures by fitting the separated utterances with the 

combined model. Roweis extended his system to deal with mixtures of speech and babble 

noise in a later study (Roweis, 2003). Jang and Lee proposed to decompose a mixture 

using a priori sets of basis functions of individual sound sources (Jang and Lee, 2003). 

The separation between different sources is achieved by maximizing the likelihood of the 

decomposition coefficients. The prior sets of basis functions and the probability density 

functions of the associated coefficients are determined using ICA on each source 

separately. These above model-based CASA systems rely heavily on a priori information 

of sound sources. As a result, they lack the capacity to deal with novel interference. 

In addition to the above systems, there have been other CASA studies on monaural 

speech segregation. Many of these systems also explore the harmonicity cue. For 

example, Parson proposed to segregate two simultaneous utterances by tracking pitch 

contours of both utterances from the spectra of the mixture and selecting the harmonics of 

the desired voice according to the estimated pitch contours (Parsons, 1976). Several other 

studies use harmonicity to segregate two concurrent vowels (Meddis and Hewitt, 1992; 

Brown and Wang, 1997; de Cheveigné, 1997), aiming to model the behavior of human 

listeners in identifying double vowels (Assmann and Summerfield, 1990). Besides 
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harmonicity, other ASA cues have also been utilized. Abe and Ando proposed to 

segregate two harmonic sounds based on common frequency modulation and common 

AM (Abe and Ando, 1998). Masuda-Katsuse and Kawahara proposed a CASA system 

that generates streams for different sound sources by tracking the changes in spectral 

shapes (Masuda-Katsuse and Kawahara, 1999). Unoki and Akagi proposed a system that 

extracts harmonic signals from noise using the following cues: Common onset and offset, 

gradualness of change, harmonicity, and changes occurring in the acoustic event (Unoki 

and Akagi, 1999). These systems have been tested with only certain types of interference 

and it is not clear how well they handle general interference. 

 

2.2 Voiced and unvoiced speech 

Natural speech contains both voiced and unvoiced portions (Stevens, 1998; 

Ladefoged, 2001). Different ASA cues are involved in segregating voiced and unvoiced 

speech since they have distinctive acoustic-phonetic properties. In this section, we give a 

brief introduction to these properties.  

Voiced speech refers to the part of speech signal that is periodic (harmonic) or quasi-

periodic. In spoken English, voiced speech includes all vowels, approximants, and nasals, 

and certain stops, fricatives, and affricates (Stevens, 1998; Ladefoged, 2001). It 

comprises a majority of spoken English. Unvoiced speech refers to the part that is mainly 

aperiodic. In spoken English, unvoiced speech comprises a subset of stops, fricatives, and 

affricates. These three consonant categories contain the following phonemes: 
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• Stops: /t/, /d/, /p/, /b/, /k/, and /g/. 

• Fricatives: /s/, /z/, /f/, /v/, /�/, /�/, /�/, /ð/, and /h/. 

• Affricates: /t�/ and /d�/. 

In phonetics, all these phonemes except /h/ are called obstruents. For the sake of 

concision, we refer to the above phonemes as expanded obstruents. Eight of expanded 

obstruents, /t/, /p/, /k/, /s/, /f/, /�/, /�/, and /t�/, are categorically unvoiced. In addition, /h/ 

may be pronounced either in the voiced or the unvoiced manner. Other phonemes are 

categorized as voiced, although in practice they often contain unvoiced sounds. Note that 

an affricate can be treated as a composite phoneme, composed of a stop followed by a 

fricative. Hence, stops and fricatives are the two main phonetic categories comprising 

unvoiced speech. 

Dewey conducted an extensive analysis of the relative frequencies of individual 

phonemes in written English (Dewey, 1923) and concluded that unvoiced sounds account 

for 21.0% of the total phonemes. For spoken English, a similar analysis by French, Carter, 

and Koenig on 500 telephone conversations containing a total of about 80,000 words 

(Fletcher, 1953) concluded that unvoiced phonemes account for about 24.0% of the total 

phonemes. Another extensive, phonetically labeled corpus is the TIMIT database, which 

contains 6,300 sentences read by 630 different speakers from various dialect regions in 

America (Garofolo et al., 1993). Many of the same sentences in the TIMIT are read by 

multiple speakers and there are a total of 2,342 different sentences. We have performed 

an analysis of relative phoneme frequencies for distinct sentences in the TIMIT corpus, 

and found that unvoiced phonemes account for 23.1% of the total phonemes. Table 2.1 
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shows the occurrence percentages of six phoneme categories from these studies. It is 

remarkable that these percentages are quite comparable despite the fact that written, read, 

and conversational speech are different in many ways. In particular, the total percentages 

of the six consonant categories are nearly the same for the three different kinds of speech. 

Note that the TIMIT database is constructed to be phonetic balanced and it is not as 

indicative as the data used in the other two studies.  

A related question is the relative duration of unvoiced speech in spoken English. 

Unfortunately, the data reported on the telephone conversations (Fletcher, 1953) do not 

contain durational information. To get an estimate, we use the durations obtained from a 

phonetically transcribed subset of the Switchboard corpus (Greenberg et al., 1996), which 

also consists of phone conservations. The amount of labeled data in the switchboard 

corpus, i.e. seventy-two minutes of conversation, is much smaller than that in the 

Phoneme types Conversational 
(Fletcher, 1953) 

Written 
(Dewey, 1923) TIMIT 

Voiced Stop 6.7 6.9 7.9 

Unvoiced Stop 15.1 11.9 12.8 

Voiced Fricative 7.5 9.5 7.7 

Unvoiced Fricative 8.6 8.6 9.8 

Voiced Affricate 0.3 0.4 0.6 

Unvoiced Affricate 0.3 0.5 0.5 

Total 38.5 37.8 39.3 

Table 2.1. Occurrence percentages (by token count) of six consonant categories 
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telephone conservations (Fletcher, 1953). Hence we do not use the labeled Switchboard 

corpus for phoneme frequency analysis; instead we assign the median durations from the 

transcription to the occurrence frequency data in the telephone conservations (Fletcher, 

1953) to estimate the relative durations of unvoiced sounds. Table 2.2 shows the resulting 

duration percentages of six phoneme categories, along with those from the TIMIT corpus. 

Once again, the percentages from the conversational speech are comparable to those from 

the read speech. In terms of overall time duration, unvoiced speech accounts for 26.2% of 

the total duration in phone conversations and 25.6% in the TIMIT corpus. 

The above two tables show that unvoiced sounds account for more than 20% of 

spoken English in terms of both occurrence frequency and time duration. In addition, 

voiced obstruents are often not totally voiced. Therefore, unvoiced speech may occur 

more often than suggested by the data shown above.  

Phoneme types Conversational 
(Fletcher, 1953; Greenberg et al., 1996) TIMIT 

Voiced Stop 5.6 5.2 

Unvoiced Stop 16.2 12.9 

Voiced Fricative 5.3 5.8 

Unvoiced Fricative 9.6 12.0 

Voiced Affricate 0.3 0.6 

Unvoiced Affricate 0.4 0.7 

Total 37.4 37.2 

Table 2.2. Duration percentages of six consonant categories 
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Both voiced and unvoiced speech carry information crucial for human listeners to 

fully understand speech (Stevens, 1998), and therefore both need to be segregated from 

interference. As discussed in Section 1.4, unvoiced speech is much more difficult to 

segregate than voiced speech. In particular, unvoiced speech is often noise-like. It is 

difficult to distinguish some unvoiced speech from environmental noise. For example, the 

sound of a fricative /s/ is very similar to colored noise.  

 

2.3 Preliminary research on voiced speech segregation 

A common problem in early CASA systems that aim to segregate speech from various 

types of interference (Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999) is 

that they do not separate voiced speech well in the high-frequency range from broadband 

interference. This problem is closely related to the peripheral analysis of the input scene 

with a bank of auditory filters: The bandwidth of an auditory filter increases quasi-

logarithmically with its center frequency. These filters are derived from psychophysical 

data to mimic cochlear filtering (Patterson et al., 1988). An important observation is that 

the structure of cochlear filtering limits the ability of human listeners to resolve 

harmonics (Plomp, 1964; Plomp and Mimpen, 1968; Carlyon and Shackleton, 1994). In 

the low-frequency range, harmonics are resolved since the corresponding auditory filters 

have narrow passbands that include only one harmonic. In the high-frequency range, 

harmonics are generally unresolved since the corresponding auditory filters have wide 

passbands that include multiple harmonics. A basic fact of acoustic interaction is that the 

filter responses to multiple harmonics are amplitude-modulated and the response 
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envelopes fluctuate at the F0 of target speech (Helmholtz, 1863). Figure 2.2(a) shows the 

response and the response envelope of a gammatone filter centered at 2.5 kHz within a 

time frame (from 0.79 s to 0.81 s). The input is the clean utterance shown in Figure 

1.2(b). The response in Figure 2.2(a) is strongly amplitude-modulated, and its envelope 

fluctuates at the F0 rate at this frame.  

Psychophysical evidence suggests that the human auditory system processes resolved 

and unresolved harmonics differently and AM is an important cue for unresolved 
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Figure 2.2. AM of a filter response. (a) Response (solid line) of a filter centered at 2.5 
kHz to the female utterance shown in Figure 1.2(b) and the response envelope 
(dashed line). (b) Corresponding bandpass filtered envelope. 
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harmonics (Carlyon and Shackleton, 1994; Bird and Darwin, 1998). Based on this 

analysis, we have proposed a system that employs different methods to segregate 

resolved and unresolved harmonics of target speech (Hu and Wang, 2004a). More 

specifically, our system generates segments for resolved harmonics based on temporal 

continuity and cross-channel correlation, and groups them according to common 

periodicity among filter responses, similar to Brown and Cooke’s system (Brown and 

Cooke, 1994) and Wang and Brown’s system (Wang and Brown, 1999). Meanwhile, our 

system generates segments for unresolved harmonics based on common AM of filter 

responses in addition to temporal continuity. These segments are further grouped based 

on AM rates, which are obtained from the temporal fluctuations of the corresponding 

response envelopes. The AM cue was explored by Weintraub (1985) and Cooke (1993). 

Both of them used the AM cue primarily for grouping, whereas we used it to deal with 

unresolved harmonics in both segmentation and grouping. 
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Figure 2.3. Schematic diagram of a preliminary CASA system. 
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Our system contains multiple stages, as shown in Figure 2.3. In the first stage, our 

system decomposes the input mixture into T-F units, the same as the Wang-Brown 

system (Wang and Brown, 1999). Then the following features are extracted: correlogram 

of filter responses, correlogram of response envelopes, cross-channel correlation, and 

dominant pitch at each time frame. In the second stage, T-F units that respond to resolved 

harmonics are merged into segments and these segments are then grouped into an initial 

foreground stream and a background stream based on the dominant pitch extracted in the 

previous stage. The processing in this stage is essentially the same as that of the Wang-

Brown system. In the third stage, the pitch of target speech is estimated from the initial 

foreground stream, and is then used to label units as speech dominant or interference 

dominant. In the final segregation stage, according to unit labels, segments formed in the 

initial segregation stage are regrouped into foreground and background stream. This stage 

corrects some errors of initial grouping due to the inaccuracy of the dominant pitch. In 

addition, some T-F units are merged into segments that correspond to unresolved 

harmonics of target speech, and these segments are added to the foreground stream. Then 

the foreground stream expands to include neighboring T-F units labeled as speech 

dominant. Finally, a speech waveform is resynthesized from the resulting foreground 

stream using Weintraub’s method (Weintraub, 1985).  

Our system was evaluated with Cooke’s test corpus. Figure 2.4 shows the SNR of the 

segregated speech for each intrusion averaged across 10 utterances. The SNR is 

computed using the resynthesized speech from the ideal binary mask as ground truth. The 

figure also shows the SNR of the original mixtures and the result from the Wang-Brown 
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system. Our system yielded much better performance than the Wang-Brown system. In 

particular, it segregated much more target energy in the high-frequency range. We also 

compared our system with several speech enhancement techniques, including spectral 

subtraction (Huang et al., 2001) and comb filtering (Deller et al., 2000), and our system 

yielded the best performance (for more details, see Hu and Wang, 2004a). 
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Figure 2.4. SNR results for segregated speech and original mixtures. White bars show 
the results from our previous system, gray bars those from the Wang-Brown system, 
cross bars those from the spectral subtraction method, and black bars those of original 
mixtures. 
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This study shows that AM is an effective cue for segregating unresolved harmonics. A 

CASA system should use both periodicity and AM of filter responses to segregate the 

voiced portions of speech. In the above system, we first divide all the T-F units into two 

groups: those with high cross-channel correlations are considered as responding to 

resolved harmonics and others responding to unresolved harmonics. T-F units of the first 

group are segregated using the periodicity cue and others are segregated using the AM 

cue. Though the above method is simple and intuitive, it may not be the optimal way to 

utilize these cues. Later in this dissertation, we explore supervised learning to determine 

the optimal integration of these cues for voiced speech segregation. 

 

2.4 Challenges and proposed strategies 

As discussed in Section 2.1, model-based CASA systems rely on prior information or 

specific models of sound sources to achieve sound separation. However, in practice, 

interference is generally unknown or unpredictable. Therefore, these CASA systems are 

limited by an inability to model various types of interference. Although feature-based 

models have been proposed to deal with general interference (Weintraub, 1985; Cooke, 

1993; Brown and Cooke, 1994; Wang and Brown, 1999), they face the following 

challenges: voiced speech segregation in the high-frequency range, robust pitch 

estimation, unvoiced speech segregation, and sequential grouping. Our previous system 

(Hu and Wang, 2004a) presented in the previous section has addressed the problem of 

segregating voiced speech in the high-frequency range. In this section, we discuss the 

remaining challenges and ideas that would help to deal with these challenges. 
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A. Pitch estimation  

As discussed in Section 1.4, voiced speech is periodic or quasi-periodic. Harmonicity 

has proven to be a effective cue for segregating voiced target speech (Weintraub, 1985; 

Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999; Hu and Wang, 2004a). 

As shown by Hu and Wang (2004a), accurate pitch information helps to greatly improve 

the segregation result. 

In many situations one needs to estimate target pitch from the mixture, which is a 

difficult task because the interference often corrupts target pitch information. Various 

methods for robust pitch estimation have been proposed (Hess, 1983; Wu et al., 2003; de 

Cheveigné, 2006), including several CASA systems (Weintraub, 1985; Brown and 

Cooke, 1994; Hu and Wang, 2004a). However, robust pitch estimation under low SNR 

situations still poses a substantial challenge. Since the difficulty of robust pitch 

estimation stems from interfering sounds, it is desirable to remove or attenuate 

interference before pitch estimation (Weintraub, 1985; Rouat et al., 1997; Wu et al., 

2003). As a result, the problem of pitch estimation for sound separation becomes a 

“chicken and egg” problem: We want to segregate speech or remove interference using 

target pitch, but before estimating target pitch, we want to have speech segregated or 

interference attenuated (de Cheveigné, 2006).  

We believe that a key to resolve the above dilemma is the observation that one does 

not need the entire target signal to estimate target pitch. Usually, several harmonics are 

sufficient for pitch estimation. Conversely, without perfect target pitch, one is still able to 
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segregate some target. Therefore, we suggest a strategy that estimates target pitch and 

segregates targets in tandem. The idea is that we first obtain a rough estimate of target 

pitch, then use this estimate to segregate target. With the segregated target, we can 

generate a better estimate of target pitch, then a better segregation of target with better 

pitch information, and so on. This algorithm performs in an iterative manner. In each 

iteration, the algorithm estimates target pitch from the segregated target and then updates 

the segregated target with the current pitch estimate. We achieve both pitch estimation 

and speech segregation simultaneously when the iterative process converges. This 

iterative pitch estimation and speech segregation were present in rudimentary form in our 

previous system (Hu and Wang, 2004a) in which two iterations were used for pitch 

estimation and target segregation. In this dissertation, we develop this idea fully.  

 

B. Segmentation of unvoiced speech 

Previous CASA systems that aim to segregate speech rely mainly on harmonicity and 

therefore cannot handle unvoiced speech. As discussed in Section 2.2, unvoiced speech 

segregation must be addressed since unvoiced portions are essential for human listeners 

to understand speech. Yet, no systematic method has been proposed to either segment or 

group unvoiced speech. We discuss the general problem of segmentation, including 

unvoiced speech segmentation, in this subsection, and unvoiced speech grouping in the 

next subsection.  

Segmentation is recognized as an important conceptual stage in ASA. A segment as a 

region of T-F units contains more global information about the source, such as spectral 
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and temporal envelope, than that provided by individual T-F units. Such global 

information could be the key for distinguishing sounds from different sources. One may 

skip the stage of segmentation by grouping individual T-F units directly. However, 

grouping based on local information is unlikely very robust. We believe that auditory 

segmentation provides a useful foundation for grouping and is essential for successful 

CASA.  

Previous CASA systems generally form segments according to two assumptions 

(Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999; Hu and Wang, 2004a). 

First, signals from the same source likely generate responses with similar temporal or 

periodic structure in neighboring auditory filters. Second, signals with good continuity in 

time likely originate from the same source. The first assumption works well for harmonic 

sounds, but not for noise-like signals, such as unvoiced speech. The second assumption is 

problematic when target and interference have significant overlap in time.  

From a computational standpoint, auditory segmentation is analogous to image 

segmentation, which has been extensively studied in computer vision (Forsyth and Ponce, 

2002). In image segmentation, the main task is to find bounding contours of visual 

objects. These contours correspond to sudden changes of certain local image properties, 

such as luminance and color. In auditory segmentation, the corresponding task is to find 

onsets and offsets of individual auditory events, which correspond to sudden changes of 

acoustic energy. Therefore we approach the problem of auditory segmentation based on 

onset and offset analysis of auditory events (Hu and Wang, 2004b). As discussed in 
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Section 1.5, onsets and offsets are important ASA cues that can be used to segment both 

voiced and unvoiced speech. 

 

C. Sequential grouping 

As mentioned in Section 1.4, the task of sequential grouping is to group the T-F 

regions corresponding to the same sound source across time. Temporal continuity is an 

effective cue for grouping T-F regions neighboring in time. However, it cannot handle T-

F regions that do not overlap in time. Sequential grouping of such T-F regions is a very 

challenging problem. In CASA research, little attention was given to the problem of 

sequential grouping until recently. Barker et al. proposed to organize target segments 

from a mixture of speech and factory noise based on recognizing the phonetic content of 

the corresponding speech utterance (Barker et al., 2005). An alternative approach 

proposed by Shao and Wang groups temporal segments from a mixture of two utterances 

by recognizing the speaker of each T-F segment (Shao and Wang, 2005). Both studies 

targeted a specific type of interference and obtained some success. However, the general 

problem of sequential grouping is not solved.  

A systematic study of sequential grouping is beyond the scope of this dissertation. 

Instead of finding a general solution, we focus on a situation that is common in practice, 

i.e., when speech signal is corrupted by non-speech interference. In such a situation, we 

may formulate the problem of sequential grouping as a classification task, i.e., to classify 

T-F regions as speech or interference. A T-F region dominated by the speech signal likely 

has acoustic-phonetic characteristics similar to those of clean speech, whereas a T-F 
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region dominated by interference does not. Therefore, we investigate sequential grouping 

of T-F regions by classifying acoustic-phonetic features derived from each T-F region 

(Hu and Wang, 2005).  

 

2.5 Overview of the proposed system 

Based on the above discussion, we propose a system for monaural speech segregation 

that implements the strategies suggested in the previous section in order to address 

several CASA challenges. Our system adopts the typical stages of CASA, as shown in 

Figure 1.1. The details of the system are described in Chapter 3, 4, 5, and 6. Major 

innovations of our system are listed below. 

In the stage of auditory segmentation, we apply a multiscale analysis, motivated by 

scale-space theory widely used in image segmentation (Romeny et al., 1997). The 

advantage of using a multiscale analysis is to provide different levels of detail for an 

auditory scene. Many acoustic signals consist of auditory events with varied sizes in the 

T-F domain. For example, speech signal consists of a series of phonemes that have 

different durations. With a multiscale analysis, we can detect and localize auditory events 

at proper scales. Our multiscale segmentation takes place in three steps. First, an auditory 

scene is smoothed to different degrees (scales). Second, the system detects onsets and 

offsets at certain scales, and forms segments by matching individual onset and offset 

fronts. Third, the system generates segments by integrating analysis at different scales.  

In the stage of grouping, our system first segregates voiced speech with an iterative 

algorithm that estimates target utterance and target pitch simultaneously. We first 
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generate a rough estimate of target utterance and target pitch, and then improve the 

estimation in an iterative manner until the estimates converges. This iterative algorithm 

yields several pitch contours and a T-F region corresponding to each pitch contour. Note 

that some pitch contours may correspond to interference. Then our system groups target-

dominant T-F regions into a target stream as follows. It first classifies a T-F region 

associated with a pitch contour as speech or interference. Those T-F regions classified as 

speech are grouped into a target stream, which forms the segregated voiced target. 

Finally, our system segregates unvoiced target by identifying segments dominated by 

unvoiced speech. In the above two classification processes, our system distinguishes T-F 

regions dominated by speech from those dominated by interference with a Bayesian 

classifier using acoustic-phonetic features derived from individual T-F regions.     
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CHAPTER 3  

AUDITORY PERIPHERY AND FEATURE 

EXTRACTION

This chapter describes the first two stages of our proposed system. In the first stage, 

our system decomposes the input in the T-F domain. In the second stage, it extracts 

following auditory features corresponding to ASA cues: envelope, correlogram, cross-

channel correlation, onset, and offset. Most of the processes described here have been 

applied in previous CASA systems (see Wang, 2006, for a comprehensive review of 

auditory features and their extraction). 

 

3.1 Auditory periphery 

Our system first models cochlear filtering by decomposing the input in the frequency 

domain with a bank of gammatone filters. Gammatone filters are derived from 

psychophysical observations of the auditory periphery and the gammatone filterbank is a 
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standard model of cochlear filtering (Patterson et al., 1988). The impulse response of a 

gammatone filter centered at frequency f is: 
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where a = 4 is the order of the filter, and b is the equivalent rectangular bandwidth 

(ERB). According to Glasberg and Moore (1990), the general relationship between ERB 

and the center frequency f is described by the following equation: 
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The bandwidth increases as the center frequency f increases. For a fourth order 

gammatone filter, a bandwidth correction of 1.019 is suggested by Patterson et al. (1992): 

  )(019.1 fERBb =            (3.3) 

In addition, the gain of the filter is adjusted by a factor (2πb)4/3 so that the gain of the 

filter response at the center frequency is equal to 1.  

Our periphery model uses a bank of 128 gammatone filters with center frequencies 

ranging from 50 Hz to 8000 Hz. The center frequencies of these filters are equally 

distributed on the ERB scale. Figure 3.1(a) shows the individual frequency responses of 

these filters in decibels. It is clear from the figure that filters with higher center 

frequencies respond to wider frequency ranges. Figure 3.1(b) shows the frequency 

response of the entire filterbank, i.e., the summation of the frequency responses of 

individual filters. This filterbank has a fairly flat frequency response within the range of 

the passband. 
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Figure 3.1. Frequency response of a gammatone filterbank with 128 channels centered 
from 50 Hz to 8000 Hz. (a) Frequency response of individual filters. For clarity, every 
fourth filter is shown in the figure. (b) Frequency response of the entire filterbank. 
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Let x(t) be the input signal. The response from a filter channel c, x(c, t), is 

  ),()(),( tfgtxtcx c∗=                          (3.4) 

where “*” denotes convolution, and fc the center frequency of this filter. Because each 

filter introduces a delay to the filter response, the response is shifted backwards by 

)2/()1( ba π−  to compensate for the filter delay (Holdsworth et al., 1988), which aligns 

the peak of the impulse response of each filter at time point 0.  

 

3.2 Envelope extraction 

As discussed in Section 2.3, when the input contains a periodic signal, some filter 

channels respond to multiple harmonics. Such a filter response is amplitude-modulated 

and the response envelope fluctuates at the F0 of the periodic signal (Helmholtz, 1863). 

Therefore, such a response envelope carries important AM information. A general way to 

obtain the response envelope is to perform half-wave rectification and then lowpass 

filtering. Since we are interested in the envelope fluctuations corresponding to target 

pitch, we perform bandpass filtering instead, where the passband corresponds to the 

plausible F0 range of target speech, i.e., [70 Hz, 400 Hz], the typical pitch range for 

adults (Nooteboom, 1997). The resulting bandpassed envelope in channel c is represented 

by xE(c, t).   

As an illustration, Figure 2.2(a) shows the response and the response envelope of a 

gammatone filter centered at 2.5 kHz within a 20-ms time frame (from 790 ms to 810 

ms). The input is the female utterance shown in Figure 1.2(b). This response is strongly 
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amplitude-modulated, and the corresponding bandpass filtered envelope, shown in Figure 

2.2(b), fluctuates at the F0 rate of the input at this time frame.  

 

3.3 Correlogram and cross-channel correlation 

In each filter channel, the output is divided into 20-ms time frames with 10-ms overlap 

between consecutive frames.  

As discussed in Section 2.1, a correlogram is a commonly used periodicity 

representation, and it consists of ACFs of filter responses across all the filter channels. 

Let ucm denote a T-F unit for frequency channel c and time frame m, the corresponding 

ACF of the filter response is given by 
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n nnmnm
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mcA
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22 τ

τ
τ      (3.5) 

Here, τ is the delay and n denotes discrete time. Tm = 10 ms is the time shift from one 

frame to the next and Tn is the sampling time. The above summation is over 20 ms, the 

length of a time frame. The periodicity of the filter response is indicated by the peaks in 

the ACF, and the corresponding delays are the periods. Here we calculate the ACF within 

the following range: τTn∈[0, 15 ms]. As a result, the ACFs are able to indicate any period 

within this range. Note that the plausible pitch range is [70 Hz, 400 Hz], corresponding to 

the period within [2.5 ms, 14.29 ms]. Equation (3.5) computes a normalized version of 

ACF. The purpose of normalization is to remove the influence of intensity fluctuations of 

filter response so that the resulting ACF represents the periodicity of the filter response 

more accurately. 
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As shown by Brown and Cooke (1994) and Wang and Brown (1999), cross-channel 

correlation measures the similarity between the responses of two adjacent filter channels 

and indicates whether the filters are responding to the same sound component or not. For 

a T-F unit ucm, its cross-channel correlation with unit uc+1,m is given by 
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where A  denotes the average of A. 

Similar to Equations (3.5) and (3.6), our system computes a normalized envelope 

autocorrelation: 
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and cross-channel correlation of response envelopes, 
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Figures 3.2(a) and 3.2(b) illustrate the correlogram and the envelope correlogram as 

well as the cross-channel correlation at a time frame (from 790 ms to 810 ms) for the 

female utterance shown in Figure 1.2(b). Figure 3.2(a) is the same as Figure 2.1. As 

shown in the figure, in the low-frequency range where harmonics are resolved, the 

autocorrelation of filter response generally reflects the periodicity of a single harmonic. 

Channels corresponding to the same harmonic have high cross-channel correlations. In 

the high-frequency range where harmonics are unresolved, the autocorrelation of filter 

response is amplitude-modulated. Adjacent channels in the high-frequency range are not 
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Figure 3.2. Auditory features. (a) Correlogram at a time frame (from 790 ms to 810 
ms) for the female utterance show in Figure 1.2(b). For clarity, every third channel is 
displayed. The corresponding cross-channel correlation is given in the right panel, 
and the summary correlogram in the bottom panel. (b) Envelope correlogram for the 
utterance. The corresponding cross-channel envelope correlation is shown in the right 
panel. (c) Correlogram, cross-channel correlation, and summary correlogram for the 
mixture M1 shown in Figure 1.2(d). (d) Envelope correlogram and cross-channel 
envelope correlation for the mixture. 
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as highly correlated as those in the low-frequency range. On the other hand, the 

autocorrelations of the response envelopes in the high-frequency channels have similar 

fluctuation patterns that correspond to the pitch of the female utterance. Figures 3.2(c) 

and 3.3(d) show the correlograms for the mixture M1 shown in Figure 1.2(d). As shown 

in the figure, the interference corrupts the periodicity of ACFs, especially in the high-

frequency channels. The bottom panels of Figures 3.2(a) and 3.2(c) show the summary 

correlogram, which are the summation of ACFs across all the channels. As discussed in 

Section 2.1, a summary correlogram exhibits peaks at delays corresponding to the pitch 

period of the utterances. We will come back to this point in Chapter 5 when we discuss 

the problem of pitch estimation.  

 

3.4 Onset and offset 

Onsets and offsets correspond to sudden amplitude increases and decreases, 

respectively. In particular, the positions of onsets and offsets are indicated by the most 

significant relative changes of intensities (Klapuri, 1999). Since the relative change of 

intensity is measured by the first-order derivative of its logarithm with respect to time, a 

standard way to identify such intensity changes is to find the peaks and valleys of the 

derivative. We calculate the intensity of filter response as the square of the response 

envelope, which is extracted using half-wave rectification and low-pass filtering. The 

lowpass filter used here is a filter with a 74.5-ms Kaiser window and a transition band 

from 30 Hz to 50 Hz.  
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Because of the intensity fluctuation within individual events, many peaks and valleys 

of the derivative do not correspond to real onsets and offsets. We smooth the intensity 

over time before onset and offset detection to reduce such fluctuations. In addition, we 

perform smoothing over frequency. Since an acoustic event tends to have synchronized 

onset and offset across frequency, smoothing helps to enhance such synchronies of onsets 

and offsets in neighboring frequency channels. This procedure is similar to the standard 

Canny edge detector in image processing (Canny, 1986). In this study, we smooth the 

intensity over time with a lowpass filter and over frequency with a Gaussian kernel. Let 

v(c, t, 0, 0) denote the log-intensity at time t in filter channel c: 

)()0,0,,(),0,,( tt shtcvstcv ∗=               (3.9) 

),0(),0,,(),,,( cttc sGstcvsstcv ∗=        (3.10) 

where h(s t) is a low-pass filter with passband [0, 1/s t] in Hz, and G(0,sc) is a Gaussian 

function with zero mean and standard deviation sc. A lowpass filter with a 182.5-ms 

Kaiser window and a 10-Hz transition band is applied for smoothing over time. The 

parameter pair (sc, st) indicates the degree of smoothing and is referred to as the 2-

dimensional (2-D) scale. The larger the scale is, the smoother the intensity is. The 

smoothed intensities at different scales form the so-called scale space (Romeny et al., 

1997).  

As an example, Figure 3.3 shows the initial and smoothed intensities for the mixture 

M1 shown in Figure 1.2(d). Figure 3.3(a) shows the initial intensity. The smoothed 

intensities at three scales, (2, 1/14), (6, 1/14), and (6, 1/4) are shown in Figures 3.3(b), 

3.3(c), and 3.3(d), respectively. To display more details, Figures 3.3(e), 3.3(f), 3.3(g), and 
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Figure 3.3. Smoothed intensity values at different scales. (a) Initial intensity for all the 
channels. (b) Smoothed intensity at the scale (2, 1/14). (c) Smoothed intensity at the 
scale (6, 1/14). (d) Smoothed intensity at the scale (6, 1/4).  (e) Initial intensity for a 
channel centered at 600 Hz. (f) Smoothed intensity for the channel at the scale (2, 
1/14). (g) Smoothed intensity for the channel at the scale (6, 1/14). (h) Smoothed 
intensity for the channel at the scale (6, 1/4). The input is the mixture M1 shown in 
Figure 1.2(d). 
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3.3(h) show the initial and smoothed intensities at these three scales for a single 

frequency channel centered at 600 Hz, respectively. As shown in the figure, the 

smoothing process gradually reduces the intensity fluctuations. Local details at onsets and 

offsets also become blurred, but the major intensity changes are preserved.  

At a certain scale (sc, s t), onset and offset candidates are detected by marking peaks 

and valleys of the time derivative of the smoothed intensity: 

),,,( tc sstcv
dt
d

 = )],0()()0,0,,([ ct sGshtcv
dt
d ∗∗    

               = ),0()]([)0,0,,( ct sGsh
dt
d

tcv ∗∗       (3.11) 

Onsets correspond to the peaks of the derivative above a certain threshold, and offsets the 

valleys below a certain threshold. The purpose of thresholding is to remove peaks and 

valleys corresponding to insignificant intensity fluctuations. Figure 3.4 shows an example 

of the above onset and offset detection on the mixture M1 shown in Figure 1.2(d) in a 

filter channel centered at 600 Hz. As shown in the figure, most detected onsets and 

offsets correspond to the true onsets and offsets of the female utterance in the mixture. 

Some true onsets and offsets of the female utterance are not detected due to the strong 

coarticulation between neighboring phonemes, influence of the interference, and the 

smearing effect of smoothing. 
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Figure 3.4. Onset and offset detection. The input is the response of a gammatone filter 
(centered at 600 Hz) to the mixture M1 shown in Figure 1.2(d). The scale is (6, 1/4). 
The corresponding intensity is shown in Figure 3.3(h). The threshold for onset 
detection is 0.1 and for offset detection is -0.1, indicated by the two dash lines. 
Detected onsets are marked by downward arrows and offsets by upward arrows. 
Vertical dotted lines indicate the boundaries of the auditory events of the female 
utterance (see Section 4.1 for details in determining these boundaries). The time 
durations where the intrusion is stronger are indicated by grey. 
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CHAPTER 4  

AUDITORY SEGMENTATION

This chapter describes the second stage of our proposed system – auditory 

segmentation. In this chapter, we first discuss the computational goal of auditory 

segmentation. We then give a detailed description of this stage and a systematic 

evaluation of segmentation performance. Our preliminary studies of auditory 

segmentation have been published in the Proceeding of ISCA Tutorial and Research 

Workshop on Statistical & Perceptual Audio Processing (SAPA) (Hu and Wang, 2004b), 

and accepted by the IEEE Transactions on Audio, Speech, and Language Processing (Hu 

and Wang, 2006b). 

 

4.1 Computational goal of auditory segmentation 

The signal from one source, e.g., a speech utterance, contains a series of acoustic 

events, such as phonemes. One may consider that the computational goal of auditory 

segmentation is to find the onsets and offsets of individual acoustic events.  In practice, 

one must limit the focus of CASA to the local acoustic environment of a listener; in other 
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words, only acoustic events audible to a listener should be considered. Therefore, we set 

the task of auditory segmentation as to determine audible portions of each acoustic event 

instead of finding the physical onset and offset of the event. We refer to the collection of 

the audible portions of an acoustic event as an auditory event. 

To determine the audibility of a sound, two perceptual effects need to be considered. 

First, a sound must be audible on its own, i.e. its intensity must exceed a certain level, 

referred to as the absolute threshold in a frequency band (Moore, 2003). Second, when 

there are multiple sounds in the same environment, a weaker sound tends to be masked 

by a stronger one (Moore, 2003). Hence, we consider a sound to be audible in a small 

local T-F region if it satisfies the following two criteria: 

� Its intensity is above the absolute threshold.  

� Its intensity is higher than the summated intensity of all other signals in that 

region. Accordingly, a local T-F region can only have one audible event.  

The absolute threshold of a sound depends on frequency and varies among listeners 

(Moore, 2003). For young adults with normal hearing, the absolute threshold is about 15 

dB sound pressure level (SPL) within the frequency range of [300 Hz, 10 kHz] (Killion, 

1978). Therefore, we take 15 dB SPL as a constant absolute threshold for the sake of 

simplicity. To make this threshold meaningful, the overall intensity of any input signal is 

normalized to 60 dB SPL before being processed by our system.  

By applying the above criteria to individual T-F units, we specify an auditory event as 

the collection of all the T-F units where an acoustic event is audible. Thus the 

computational goal of auditory segmentation is to identify each contiguous T-F region of 
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an auditory event as a segment. We refer to such regions as ideal segments. This 

segmentation goal is consistent with our computational goal of segregation (see Section 

1.3), both assigning a T-F unit only to a single sound source. This consistency is 

important since the purpose of auditory segmentation is to provide a solid foundation for 

subsequent grouping.  

As a working definition, here we treat a phoneme, a basic phonetic unit of speech, as 

an acoustic event of speech. Based on this definition, we obtain the ideal segments of 

target utterances for evaluation. There are two issues for treating individual phonemes as 

events. First, two types of phonemes, stops and affricates, have clear boundaries between 

a closure and a subsequent burst in the middle of these phonemes. Therefore, we treat a 

closure in a stop or an affricate as an event on its own. This way, the acoustic signal 

within each event is generally stable. The second issue is that neighboring phonemes can 

be coarticulated, which may lead to unnatural boundaries between some consecutive ideal 

segments. In practice, these boundaries may not be detectable and the ideal segments 

separated by these boundaries are likely to be put together by a real segmentation system, 

creating a case of under-segmentation. Alternatively, one may define a syllable, a word, 

or even a whole utterance from the same speaker as an acoustic event. However, in such a 

definition many valid acoustic boundaries between phonemes are not taken into account. 

Consequently, some ideal segments are likely to be divided by a real segmentation 

system into smaller segments, creating a case of over-segmentation. We will come back 

to this issue in the evaluation section.  
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As an example, Figure 4.1 shows the bounding contours of the ideal segments of the 

utterance (black line) for the mixture M1 shown in Figure 1.2(d). Note that the target 

utterance is from the TIMIT database, which gives all the phoneme boundaries. In the 

figure, gray regions form the background corresponding to the entire interference. 

Because the passbands of gammatone filters are relatively wide, particularly in the high-

frequency range, adjacent harmonics may activate a number of adjacent filters. As a 

result, an ideal segment can combine several harmonics. 

 

4.2 Overview of the segmentation procedure 

As discussed in Section 2.4B, we have proposed to perform auditory segmentation via 

a multiscale analysis of event onset and offset. There are several advantages of using 
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Figure 4.1. Bounding contours (solid lines) of ideal segments for the mixture M1 
shown in Figure 1.2(d). The background is represented by gray.  
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onset and offset for segmentation. First, onsets and offsets, corresponding to sudden 

intensity changes, tend to delineate auditory events. Second, onset/offset times of a 

segment, which is a part of an event, usually vary smoothly across frequency. Such 

smooth variation is partly due to the fact that certain speech events, such as stops and 

fricatives, exhibit smooth-varying onset and offset boundaries in certain ranges of 

frequency. Also, the passbands of neighboring frequency channels have significant 

overlap. Hence, temporal alignment is an effective cue to group neighboring frequency 

channels. 

Figure 4.2 shows the diagram of the segmentation stage. It has three steps: Smoothing, 

onset/offset detection, and multiscale integration. In the first step, our system smoothes 
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Figure 4.2. Diagram of the proposed segmentation stage. In each stage, a rectangle 
represents the processing on the smoothed intensity at a particular scale. The scale 
increases from bottom to top. 
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the intensity of filter response as described in Section 3.4. In the second step, our system 

detects onsets and offsets in each filter channel and then merges simultaneous onsets and 

offsets in adjacent channels into onset and offset fronts. Onset and offset fronts are 

vertical contours connecting onset and offset candidates across frequency. Segments are 

obtained by matching individual onset and offset fronts. As a result of smoothing, event 

onsets and offsets of small T-F regions may be blurred at a larger (coarser) scale. 

Consequently, we may miss some true onsets and offset. On the other hand, at a smaller 

(finer) scale, the detection may be sensitive to insignificant intensity fluctuations within 

individual events. Consequently, false onsets and offsets may be generated and some 

ideal segments may be over-segmented. We find it difficult to obtain satisfactory 

segmentation with a single scale (see Section 4.6C for the detailed results of 

segmentation with a single scale). Our system handles this issue by integrating 

onset/offset information across different scales in an orderly manner in the last step, 

multiscale integration, which yields the final set of estimated segments. For details of the 

first step, see Section 3.4. A detailed description of the last two steps is given in the 

following sections.  

 

4.3 Onset/offset detection and matching 

A. Onset and offset detection 

At a certain scale of smoothing (see Section 3.4), onset and offset candidates are 

detected by marking peaks and valleys of the time derivative of the smoothed log-

intensity, as described in Section 3.4.  
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The offset time of each onset candidate is indicated by the following candidate. 

Similarly, the onset time of an offset candidate is indicated by the preceding candidate. 

To make this situation clear, we illustrate a simple case in Figure 4.3. In this figure, the 

horizontal dimension represents time and the vertical dimension represents frequency. 

Each square represents a T-F unit. Figure 4.3(a) shows the bounding contours of two 

events of a target sound source U and Figure 4.3(b) three events of an interfering sound 

source V. The ideal segments of target U when mixing U and V are shown in Figure 

4.3(c). In this example, we assume that the onsets and offsets of event U1, U2, V1, and 

V3 are all perfectly detected, whereas onsets and offsets of event V2 are masked by event 

U1 and U2 and therefore not detected. Detected onset and offset candidates are shown in 

Figure 4.3(d). As shown in the figure, interfering event V1 starts and ends in the middle 

of target event U1. The T-F region in the top 6 channels of U1 has two parts. One part 

starts from the onset of U1 to the onset of V1 and the other from the offset of V1 to the 

offset of U1. Therefore, in these channels the offset time of an onset candidate of U1 is 

an onset candidate of V1, and the onset time of an offset candidate of U1 is an offset 

candidate of V1. On the other hand, the T-F region in the bottom 4 channels of event U1 

starts at the onset and ends at the offset of this very event. The above example illustrates 

that because of interaction between different sound sources, the offset time of an onset 

candidate can be either an offset candidate from the same event, which suggests the 

ending of the current event, or an onset candidate from a different event, which suggests 

the beginning of a new event. Similarly, the onset time of an offset candidate can be 

either an onset candidate of the same event, or an offset candidate from a different event. 
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Figure 4.3. Illustration of the procedure of onset/offset detection and matching. In this figure, 

x-axis indicates time frames and y-axis indicates frequency channels. Each lattice point is a 

T-F unit. (a) Target source U with two events (white regions). (b) Interfering source V with 

three events (black regions). (c) Ideal segments for target U in the mixture of U and V. (d) 

Detected onset candidates (black dots) and offset candidates (white dots). (e) Obtained onset 

fronts (solid lines) and offset fronts (dotted lines). (f) Onset front for event U1 after onset and 

offset matching. The solid line is the onset front and dotted lines indicate the corresponding 

offset times. (g) Offset front for event U1 after onset and offset matching. The dotted line is 

the offset front and solid lines indicate the corresponding onset times. (h) Onset and offset 

fronts for event U2. The solid line is the onset front and the dotted line is the offset front. 

Note that the offset times of the onset front lie on the offset front and the onset times of the 

offset front lie on the onset front. (i) T-F region between the onset front of event U1 and the 

corresponding offset times. (j) T-F region between the offset front of event U1 and the 

corresponding onset times. (k) Obtained segment of event U1. (l) All obtained segments. 
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B. Onset and offset front 

Since frequency components with close onset or offset times are likely to arise from 

the same source, our system connects simultaneous onsets and offsets, which likely 

correspond to the same event, into onset and offset fronts. There are usually some onset 

time shifts in adjacent channels in response to the same event. This is because the onset 

times of the components of an acoustic event may vary across frequency. Masking by 

interference may further shift detected onset and offset times. Therefore, we allow a 

tolerance interval when connecting onset/offset candidates in neighboring frequency 

channels. Specifically, we consider onset candidates in adjacent channels to be 

simultaneous if the distance between their onset times is shorter than the tolerance 

interval. The same is for offset candidates. This interval should not be too short; 

otherwise onsets (or offsets) from the same event will be prevented from joining together. 

On the other hand, an interval that is too long will connect some onsets from different 

events together. As found by Darwin (1984) and Turgeon et al. (2002), human listeners 

start to segregate two sounds when their onset times differ by 20~30 ms. Therefore, we 

select 20 ms as the tolerance interval. 

Since events from different sources may either start or end at the same time, two 

simultaneous onset candidates may not correspond to the same event. Additional 

constraints are needed for connecting simultaneous onset candidates into onset fronts. 

Because it is unlikely that events from different sources both start and end at the same 

time, simultaneous onsets with simultaneous offset times likely correspond to the same 

event and are connected into onset fronts. Furthermore, signals in adjacent channels from 
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the same source likely have similar responses or response envelopes. The similarity 

between the responses or response envelopes is measured by their correlations. For a pair 

of simultaneous onsets in channel c and c+1, let (t1, t2) be the overlapping duration from 

these onsets to their corresponding offset times. We use 3 correlation measures, 

C(c, t1, t2), the similarity of responses, CE(c, t1, t2), the similarity of envelope fluctuations 

within the plausible pitch range, and CV(c, t1, t2, sc, s t), the similarity of smooth 

intensities, i.e., the low rate fluctuations of response envelopes. CV(c, t1, t2) is computed 

as: 

� =
+= 2

1
),,,1(ˆ),,,(ˆ),,,,( 21

t

tt tctctcV sstcvsstcvssttcC        (4.1) 

where v̂  indicates the normalized v with zero mean and unity variance within (t1, t2) and 

(sc, s t) is the scale. C(c, t1, t2) and CE(c, t1, t2) can be computed in a similar manner. Since 

in the previous stage, we have calculated the cross-channel correlation of the ACFs of 

filter responses and response envelopes within individual T-F units, here we simply use 

the average of these cross-channel correlations within the duration (t1, t2). These two 

simultaneous onsets are connected if one of the measures is higher than a threshold, that 

is, C(c, t1, t2) > 0.95, CE(c, t1, t2) > 0.95, or CV(c, t1, t2, sc, s t) > θV(sc, s t), a scale-

dependent threshold. Similarly, simultaneous offsets are connected into offset fronts if 

they have simultaneous onset times or the corresponding responses or response envelopes 

in adjacent channels are highly correlated. Among thus formed fronts, we discard those 

occupying fewer than 5 channels because they usually correspond to interfering noise. 

Figure 4.3(e) illustrates the onset and offset fronts of the mixture of source U and V. 
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C. Onset and offset matching 

As discussed in Section 3.4, to remove peaks and valleys corresponding to 

insignificant intensity fluctuations, we use thresholding in our onset and offset detection. 

The advantage of thresholding is that most onset and offset candidates thus obtained do 

correspond to true onsets and offsets. However, some true onsets and offsets may not be 

detected, which causes two problems. First, some T-F regions corresponding to target 

events may not be included into any segment. Second, the offset time of an onset 

candidate may not be the correct one, and the same for the onset time of an offset 

candidate. As a result, some segment will contain T-F regions from different events. The 

first problem is addressed in the next step, multiscale integration. The second one is 

caused by mismatching between onset candidates and their offset times. Therefore, we re-

estimate the offset times of each onset front and the onset times of each offset front by 

matching individual onset and offset fronts.  

The basic observation is that since offset times of an onset front tend to be smooth 

across frequency channels, they likely match one or more fronts. These fronts may be an 

offset front from the same event, or an onset front from a different event. Therefore, we 

can correct some mismatching errors between onset candidates and their offset times by 

matching the offset times of an onset front with other fronts and update the offset times 

according to the matching fronts. In order to recover missing offsets due to thresholding, 

we apply a two-threshold scheme, as proposed by Canny (1986). We first use stringent 

thresholds to obtain onset and offset fronts, referred to as reliable fronts. Then in the 

same manner we use loose thresholds to obtain onset and offset fronts, referred to as 
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possible fronts. These possible fronts are used to re-estimate the offset times of reliable 

onset fronts. Specifically, let (tOFF(c), tOFF(c+1), …, tOFF(c+m−1)) denote the offset times 

of a reliable onset front occupying m consecutive channels. Among all the possible 

fronts, we find the one that crosses the most of these offset times. Then the channels from 

c to c+m−1 occupied by this possible front are labeled as “matched”, and the 

corresponding offset times of the reliable front are updated to those of the matching 

possible front. If all the channels from c to c+m−1 are labeled as matched, the matching 

procedure is finished. Otherwise, the process repeats for the remaining unmatched 

channels. Similarly, each reliable offset front is matched with possible fronts and the 

corresponding onset times are updated.  

As an illustration, Figure 4.3(f) shows the onset front of target event U1 and the 

matching fronts. For each matching offset front, only the part in the “matched” channels 

is shown. This onset front matches two fronts; the corresponding offset front of the same 

event and the onset front of interfering event V1. Similarly, Figure 4.3(g) shows the 

offset front of U1 and the matching fronts. This offset front also matches two fronts, the 

corresponding onset front of the same event and the offset front of interfering event V1. 

In comparison, Figure 4.3(h) shows the onset front of target event U2, which is well 

matched by a single front, the offset front of the same event. Note the difference between 

event U1 and U2: Since interfering event V1 masks a significant part of target U1, the 

best matching front of the onset front of U1 is the onset front of V1; whereas since only a 

small part of target U2 is masked by interfering event V2, the best matching front of the 

onset front of U2 is the offset front of the same event. 
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4.4 Multiscale integration  

Our system integrates onset and offset analysis at different scales. It starts at a coarse 

scale, i.e., generating reliable onset and offset fronts as described in Section 4.3. Then, at 

a finer (smaller) scale, it locates more accurate positions for each front and detects new 

fronts from the current background.  

Specifically, let tON(c) be the time position for an onset candidate in channel c on an 

onset front. Among the onset candidates in channel c at the current scale, our system first 

finds the one that is nearest to tON(c). If the distance between this candidate and tON(c) is 

smaller than 20 ms, we consider that this candidate corresponds to tON(c) and update 

tON(c) to the position of this candidate. In this manner, our system updates the position of 

the offset times of each onset front. The same is for each offset front. Note it is possible 

that some onset candidates in an onset front do not have corresponding candidates at the 

current scale. If such a candidate is at an edge channel of an onset front, i.e., it is in the 

first channel or the last channel of the onset front, this candidate is likely to be a spurious 

one. Therefore, our system iteratively removes such onset candidates until both 

candidates in the edge channels of any onset front have corresponding candidates at the 

current scale. Similarly, some spurious offset candidates are removed from offset fronts. 

Then our system re-estimates the onset times of each onset front by matching it with the 

current possible fronts, and the same for each offset front. In addition, our system 

generates new fronts within the current background, i.e., all the T-F regions that are not 

covered by the T-F regions between the onset times and the offset times of any front. A 
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newly obtained onset front is connected with an existing onset front into one front if they 

occupy adjacent channels and the corresponding onset candidates and offset times in 

these channels are simultaneous. The same applies to offset fronts. 

Finally, our system generates segments from the obtained fronts as follows. For each 

onset front, the T-F region between its onset candidates and the corresponding offset 

times form a segment. Similarly, a segment is formed for each offset front. Such formed 

segments may overlap with each other. There are two types of overlaps. First, segments 

corresponding to a same event overlap and they need to be merged into one segment. 

Figures 4.3(i) and 4.4(j) illustrate such a case. Second, segments correspond to different 

events overlap and the overlapping region needs to be assigned to one segment. The 

second situation occurs when a later event happens in the middle of an earlier event and 

generally the overlapping T-F region corresponds to the later event. These two types of 

overlapping can be well distinguished since in the first case, two overlapping segments 

tend to have some identical onsets or offsets in the overlapping region, whereas in the 

second case, two overlapping segments are unlikely to have a common onset or offset in 

any frequency channel. Therefore, our system deals with overlapping segments as 

follows. Two overlapping segments are merged into one segment if they have the same 

onset or offset in at least one channel; otherwise our system assigns the overlapping 

region to the segment starting later. 

As an illustration, Figure 4.3(i) shows the obtained segment corresponding to the onset 

front of event U1, and Figure 4.3(j) that corresponding to the offset front of event U1. 

These two segments are not identical but have a significant overlap. Figure 4.3(k) shows 
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the obtained segment after merging the segment in Figure 4.3(i) and Figure 4.3(j). It 

matches the ideal segment of U1 shown in Figure 4.3(c). In addition, the segment 

corresponding to the onset front of target event U2 has a small overlap with the segment 

corresponding to interfering event V3. This overlapping region is assigned to event V3 

since V3 starts later than U2. Figure 4.3(l) illustrates the bounding contours of all the 

obtained segments for the mixture of source U and source V. These segments correspond 

to event U1, U2, V1, and V3. An interfering event V2 is buried in the background since 

its onset is masked by target event U1 and its offset is masked by target event U2 and 

therefore there is no onset and offset information that can be used to segment this event.  

In this study, we are interested in estimating T-F segments of speech. Since temporal 

envelope variations down to 4 Hz are essential for speech intelligibility (Drullman et al., 

1994a; Drullman et al., 1994b), our system starts segmentation at the time scale s t = 1/4. 

In addition, our system starts at the frequency scale sc =  6. We have also considered 

starting at sc =  8 and sc =  4. In both situations, the system performs slightly worse. In the 

results reported here, our system forms segments with four scales from coarse to fine: (sc,  

s t) = (6, 1/4), (6, 1/8), (6, 1/14), and (2, 1/14). At each scale, the threshold of onset and 

offset detection is determined by the smoothed intensity. Specifically, we use λσ as the 

onset threshold and -λσ as the offset threshold, where λ is a parameter and σ is the 

standard deviation of the derivative of v(c, t, sc,  s t), the smoothed intensity at the current 

scale. We set λ = 1 for the stringent thresholds and λ = 0 for the loose thresholds. The 

threshold θV is 0.999, 0.999, 0.999, and 0.99, respectively; a larger θV is used in the first 

three scales because smoothing over frequency increases the similarity of temporal 
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envelopes in adjacent channels. We set θV values close to 1 so that the connected onsets 

and offsets candidates in adjacent channels are likely from the same event. We have also 

considered segmentation using more scales and with different types and parameters for 

the lowpass filter, but did not obtain better results.   

As mentioned earlier, our multiscale integration starts at a coarse scale and move to 

finer scales. One could also start at a fine scale and then move to coarser scales. 

However, in this case, the chances of over-segmenting an input mixture are higher, which 

is less desirable than under-segmentation since in subsequent grouping larger segments 

are preferred (see Section 4.5). 

Figure 4.4 shows the bounding contours of segments at different scales for the mixture 

M1 shown in Figure 1.2(d). Figure 4.4(a) shows the segments formed with obtained onset 

and offset fronts at the beginning scale (6, 1/4), and Figures 4.4(b), 4.4(c), and 4.4(d) 

those from the multiscale integration of 2, 3, and 4 scales, respectively. The background 

is represented by gray. Compared with the ideal segments in Figure 4.1, our system 

already captures a majority of speech events at the largest scale, but misses some small 

segments. As the system integrates analysis at smaller scales, more speech segments are 

formed; at the same time, more segments from interference also appear. Note that the 

system does not specify the sound source for each segment, which is the task of 

sequential grouping and will be addressed in Chapter 6. 
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4.5 Evaluation metrics 

We compare estimated segments with ideal segments to evaluate the performance of 

our segmentation algorithm. Note that ultimately the performance of segmentation shall 

be measured according to its contribution to overall segregation performance. However, 

it is beneficial to evaluate the performance of segmentation separately. 
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Figure 4.4. Bounding contours of estimated segments from multiscale analysis. (a) 
One scale analysis at the scale of (6, 1/4). (b) Two-scale analysis at the scales of (6, 
1/4) and (6, 1/8). (c) Three-scale analysis at the scales of (6, 1/4), (6, 1/8), and (6, 
1/14). (d) Four-scale analysis at the scales of (6, 1/4), (6, 1/8), (6, 1/14), and (2, 1/14). 
The input is the mixture M1 shown in Figure 1.2(d). The background is represented 
by gray. 
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Only a few previous models have explicitly addressed the problem of auditory 

segmentation (Cooke, 1993; Brown and Cooke, 1994; Wang and Brown, 1999; Hu and 

Wang, 2004a) but none have separately evaluated the segmentation performance. How to 

quantitatively evaluate segmentation results is a complex issue, since one has to consider 

various types of mismatch between a collection of ideal segments and that of estimated 

segments. On the other hand, similar issues occur also in image segmentation, which has 

been extensively studied in computer vision and image analysis. So in this evaluation we 

adapt region-based metrics by Hoover et al. (1996), which have been widely used for 

evaluating image segmentation systems.  

Our region-based evaluation compares estimated segments with ideal segments of a 

target source since in many situations one is interested in only target extraction. In other 

words, how a system segments interference will not be considered in evaluation. Hence, 

we treat all the T-F regions dominated by interference as the ideal background. Note that 

this evaluation can be extended to situations where one is interested in evaluating 

segmentation of multiple sources, say, when interference is a competing talker, by 

evaluating how a system segments each source separately. 

The general idea is to examine the overlap between ideal segments and estimated 

segments. Based on the degree of overlapping, we label a T-F region as correct, under-

segmented, over-segmented, missing, or mismatch. Figure 4.5 illustrates these cases, 

where ovals represent ideal target segments (numbered with Arabic numerals) and 

rectangles estimated segments (numbered with Roman numerals). As shown in Figure 

4.5, estimated segment I well covers ideal segment 1, and we label the overlapping region 
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as correct. So is the overlap between segment 7 and VII. Segment III well covers two 

ideal segments, 3 and 4, and the overlapping regions are labeled as under-segmented. 

Segment IV and V are both well covered by an ideal segment 5, and the overlapping 

regions are labeled as over-segmented. All the remaining regions from ideal segments  

segments 2 and 6 and the parts of segments 5 and 7 marked by diagonal lines  are 

labeled as missing. The black region in segment I belongs to the ideal background, but 

since it is merged with ideal segment 1 into an estimated segment we label this black 

region as mismatch, as well as the black region in segment III. Note the major differences 

among under-segmentation, missing, and mismatch. Under-segmentation denotes the 

error of combining multiple T-F regions belonging to different ideal segments of the 

same source, whereas missing and mismatch denote the error of mixing T-F regions from 

different sources. Therefore, if an estimated segment combines T-F regions belonging to 
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Figure 4.5. Illustration of different matching situations between ideal and estimated 
segments: Correct segmentation (white regions within segments 1 and 7), under-
segmentation (white regions within segments 3 and 4), over-segmentation (white 
regions within segment 5), missing (regions marked by diagonal lines), and mismatch 
(black regions). Here an oval indicates an ideal segment and a rectangle an estimated 
one. The background is represented by gray. 
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different speakers, it is not under-segmentation, but missing or mismatch depending on 

the degree of overlapping. Segment II is well covered by the ideal background, which is 

not considered in the evaluation. Much of segment VI is covered by the ideal background 

and therefore we treat the white region of the segment the same as segment II (Note the 

difference between segment I and VI). This evaluation provides a comprehensive 

comparison between the ideal segments and estimated segments, though further research 

is needed to tell whether or not it has a good correlation with human perception. 

Quantitatively, let {rI[k]}, k=0,1,…, K, be the set of ideal segments, where rI[0] 

indicates the ideal background and others the ideal segments of target. Let {rS[l]}, 

l=0,1,…, L, be the estimated segments produced by our system, where rS[l], l>0, 

corresponds to an estimated segment and rS[0] the estimated background. Let r[k, l] be 

the overlapping region between rI[k] and rS[l]. Furthermore, let E[k, l], EI[k], and ES[l] 

denote the corresponding energy in these regions. Given a threshold, we define that an 

ideal segment rI[k] is well-covered by an estimated segment rS[l] if r[k, l] includes most 

of the energy of rI[k]. That is,  

][],[ kElkE IE ⋅> θ            (4.2) 

Similarly, rS[l] is well-covered by rI[k] if  

][],[ lElkE SE ⋅> θ            (4.3) 

For any θE∈[0.5, 1), the above definition of well-coveredness ensures that an ideal 

segment is well covered by at most one estimated segment, and vice versa.  
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Figure 4.6. Illustration of multiple labels for one overlapping region. Here an oval 
indicates an ideal segment and a rectangle an estimated one. The background is 
represented by gray. 

Then we label a non-empty overlapping region as follows: 

� A region r[k, l], k>0 and l>0, is labeled as correct if rI[k] and rS[l] are mutually 

well-covered.  

� Let {rI[k′]}, k ′=k1, k2 , … , kK′, and K ′>1, be all the ideal target segments that are 

well-covered by one estimated segment, rS[l], l>0. The corresponding 

overlapping regions, {r[k′, l]}, k ′=k1, k2 , …, kK′, are labeled as under-segmented 

if these regions combined include most of the energy of rS[l], that is: 

  KSEk
kkkklElkE ′′ =′⋅>′� ,,,],[],[ 21 �θ         (4.4) 

� Let {rS[l′]}, l ′=l1, l2 , …, lL′, and L ′>1 be all the estimated segments that are 

well-covered by one ideal segment, rI[k], k>0. The corresponding overlapping 

regions, {r[k, l′]}, l ′=l1, l2 , …, lL′, are labeled as over-segmented if these regions 

combined include most of the energy of rI[k], that is: 

  LIEl
llllkElkE ′′ =′⋅>′� ,,,],[],[ 21 �θ         (4.5) 
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� If a region r[k, l] is part of an ideal segment of target speech, i.e., k>0, but 

cannot be labeled as correct, under-segmented, or over-segmented, it is labeled 

as missing.  

� Region r[0, l], the overlap between the ideal background rI[0] and an estimated 

segment rS[l], is labeled as mismatch if rS[l] is not well-covered by the ideal 

background.   

According to the above definitions, some regions may be labeled as either correct or 

under-segmented. Figure 4.6 illustrates this situation, where estimated segment I and 

ideal segment 1 are mutually well-covered.  Hence, r[1, I] is labeled as correct. On the 

other hand, segment I also well covers ideal segments 2 and 3, and obviously ideal 

segments 1-3 together well cover segment I. According to the definition of under-

segmentation, r[1, I], r[2, I], and r[3, I] should all be labeled as under-segmented. 

Therefore, r[1, I] can be labeled as either correct or under-segmented. Similarly, some 

regions may be labeled as either correct or over-segmented. To avoid labeling a region 

more than once, we consider a region to be correctly labeled as long as it satisfies the 

definition of correctness.  

Let EC, EU, EO, EM, and EN be the summated energy in all the regions labeled as 

correct, under-segmented, over-segmented, missing, and mismatch, respectively. Further 

let EI be the total energy of all ideal segments of target, and ES that of all estimated 

segments, except for the estimated background. We use the following metrics for 

evaluation: 
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� The correct percentage: PC = EC/EI  × 100%.  

� The percentage of under-segmentation: PU = EU/EI  × 100%. 

� The percentage of over-segmentation: PO = EO/EI  × 100%. 

� The percentage of missing: PM = EM/EI  × 100%. 

� The percentage of mismatch: PN = EN/ES × 100%. 

Since EC + EU + EO + EM = EI, or PC + PU + PO + PM = 100%, only three out of these four 

percentages need to be measured.  

The advantage of evaluation according to each category is that it clearly shows 

different types of error. In the context of speech segregation, under-segmentation is not 

really an error since it basically produces larger segments for target speech, which is 

good for subsequent grouping. In image segmentation, the region size corresponding to 

each segment is used for evaluation literally. Here, we use the energy of each segment 

because for acoustic signals, T-F regions with strong energy are much more important to 

segment than those with weak energy.  

 

4.6 Evaluation results 

Our proposed segmentation process was evaluated with a test corpus containing 20 

target utterances from the test part of the TIMIT database (Garofolo et al., 1993) mixed 

with 20 intrusions. Target utterances and intrusions are listed in Tables 4.1 and 4.2 

accordingly. This set of intrusions represents a broad range of real sounds encountered in 

typical acoustic environments. Each target utterance is mixed with individual intrusions 
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Target Content 

S1 Put the butcher block table in the garage 
S2 Alice's ability to work without supervision is noteworthy 
S3 Barb burned paper and leaves in a big bonfire 
S4 Swing your arm as high as you can 
S5 Shaving cream is a popular item on Halloween 

S6 He then offered his own estimate of the weather, which was 
unenthusiastic 

S7 The morning dew on the spider web glistened in the sun 
S8 Her right hand aches whenever the barometric pressure changes 
S9 Why yell or worry over silly items 
S10 Aluminum silverware can often be flimsy 
S11 Guess the question from the answer 
S12 Medieval society was based on hierarchies 
S13 That noise problem grows more annoying each day 
S14 Don't ask me to carry an oily rag like that 

S15 Each untimely income loss coincided with the breakdown of a heating 
system part 

S16 Combine all the ingredients in a large bowl 
S17 Fuss, fuss, old man 
S18 Don't ask me to carry an oily rag like that 
S19 The fish began to leap frantically on the surface of the small lake 
S20 The redcoats ran like rabbits 

Table 4.1. Target utterances in the test corpus 
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Target Content 

N1 White noise 
N2 Rock Music 
N3 Siren 
N4 Telephone 
N5 Electric fan 
N6 Clock alarm 
N7 Traffic noise 
N8 Bird chirp with water flowing 
N9 Wind 
N10 Rain 
N11 Cocktail party noise 
N12 Crowd noise at a playground 
N13 Crowd noise with music 
N14 Crowd noise with clap 
N15 Babble noise (16 speakers) 
N16 Don't ask me to carry an oily rag like that 
N17 She had your dark suit in greasy wash water all year 
N18 Why were keen to use human w... 
N19 The local drugstore was charged with illegally dispensing tranquilizers 

N20 There are many such competently anonymous performances among 
the earlier poems  

Table 4.2. Intrusions in the test corpus 
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at -5 dB, 0 dB, 5 dB, 10 dB, and 15 dB SNR. This test corpus has 400 mixtures at each 

SNR level and 2000 mixtures altogether.  

To determine the ideal segments of a target utterance, we need to decide what 

constitutes the acoustic events of a speech utterance. Here we treat a phoneme as an 

acoustic event. As we discussed in Section 4.1, coarticulation between neighboring 

phonemes may create unnatural boundaries in ideal segments, a case of under-

segmentation. This problem is partly taken care of in our evaluation which does not 

consider under-segmentation as an error. To avoid the problem of coarticulation, one 

could define a larger unit (e.g. a syllable or a word) as an acoustic event. As discussed 

earlier, over-segmentation becomes an issue in such a definition. Because it is not clear 

whether an instance of over-segmentation is caused by a true boundary between two 

phonemes or a genuine error, over-segmentation is a more thorny issue. This 

consideration has led us to choose phonemes as event units. 

 

A. Overall performance 

Figure 4.7 shows the average PC, PU, PO, and PN for different θE  values at different 

SNR levels. The evaluation is more stringent for higher θE . Note that we limit θE  to be 

no smaller than 0.5 so that an ideal segment is well covered by at most one estimated 

segment, and vice versa (see Section 4.5). As shown in the figure, our system performs 

better as SNR increases. When θE  is 0.5, the correct percentage is 42.7% at -5 dB SNR 

and it increases to 67.0% as SNR increases to 15 dB. On the other hand, as θE  increases, 

the correct percentage gradually decreases to 0. A significant amount of speech is 
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Figure 4.7. Results of auditory segmentation at different SNR levels. (a) Average 
correct percentage. (b) Average percentage of under-segmentation. (c) Average 
percentage of over-segmentation. (d) Average percentage of mismatch. 
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under-segmented, which is due mainly to coarticulation of phonemes. As discussed in 

Section 4.5, under-segmentation is not really an error. By combining PC and PU together, 

when θE  is 0.5, our system correctly segments 59.4% of target speech at -5 dB SNR. This 

number increases to 89.2% at 15 dB SNR. In addition, we can see from the figure that 

over-segmentation is negligible. The main error comes from missing, which indicates that 

portions of target speech are buried in the background. The percentage of mismatch 

averaged over different θE  values shown in the figure is 12.0% at -5 dB SNR, and it 

drops to 0.96% when the SNR increases to 15 dB. Compared with the SNRs of mixtures, 

the percentage of mismatch is not high. This shows that most target and interference are 

well separated in the estimated segments.  

Since voiced speech is generally much stronger than unvoiced speech, the above result 

mainly reflects the performance of our system on voiced speech. To see how it performs 

on unvoiced speech, Figure 4.8 shows the average PC, PU, and PO for expanded 

obstruents, which include the majority of phonemes that contain unvoiced speech energy 

(see Section 2.2). As shown in the figure, much energy of these phonemes is under-

segmented. As expected, the overall performance on these phonemes is not as good as 

that for other phonemes since unvoiced speech is generally softer and more prone to 

interference. The average PC+PU is 54.1% at -5 dB SNR when θE is 0.5, and it increases 

to 77.0% when SNR increases to 15 dB. 

The proposed system is similar to our segmentation system described in Hu and Wang 

(2004b) and Hu and Wang (2006b), except for one major difference. In this proposed 

system we allow multiple onset and offset fronts to form one segment, whereas in the 
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Figure 4.8. Results of auditory segmentation for expanded obstruents at different SNR 
levels. (a) Average correct percentage. (b) Average percentage of under-
segmentation. (c) Average percentage of over-segmentation. 
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previous system we allowed a segment to have only one onset front. Compared with the 

previous system, the proposed system performs better on the test corpus. In particular, it 

yields a correct percentage similar to that of the previous system, but achieves an 

approximate 10% relative reduction in the percentage of mismatch.  

To put the performance of the proposed segmentation process in perspective, we now 

compare it with the segmentation algorithm described by Brown and Cooke (1994). Their 

algorithm first produces spectral peak tracks on a frequency transition map and then 

extends each track in frequency by clustering cross-channel correlation values. Figure 4.9 

shows the comparative results for mixtures at 0 dB SNR. Figure 4.9(a) shows the average 

PC+PU scores for all the phonemes. The Brown and Cooke algorithm yields much lower 

PC+PU scores compared with the proposed system. The primary reason is that their 

algorithm is based on cross-channel correlation of filter responses, which often fails to 

merge target speech across frequency because target speech may yield different responses 

in neighboring filter channels. Since their algorithm was mainly intended for segmenting 

voiced sound, a further comparison for only voiced speech in terms of PC+PU is given in 

Figure 4.9(b). In this case, the voiced portions of each utterance are determined using 

Praat, which has a standard pitch determination algorithm for clean speech (Boersma and 

Weenink, 2004). The performance gap in Figure 4.9(b) is not much different from that in 

Figure 4.9(a). Figure 4.9(c) shows the average PN. Their algorithm produces lower PN  

errors compared with the proposed process, because segmentation exploits harmonic 

structure and most intrusions in the evaluation corpus are noise-like. Taken together, the 

proposed algorithm performs much better than their algorithm for auditory segmentation. 
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Figure 4.9. Results of auditory segmentation for the proposed system and those from 
the Brown and Cooke algorithm. Target and interference are mixed at 0 dB SNR. (a) 
Average correct percentage plus that of under-segmentation for all the phonemes. (b) 
Average correct percentage plus that of under-segmentation for the voiced portions of 
utterance. (c) Average percentage of mismatch. 
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B. Pre-emphasis 

Because the low-frequency portion of speech is usually more intense than the high-

frequency portion, the above energy-based evaluation may be dominated by the speech 

energy in the low-frequency range. To present a more balanced picture, we apply a first-

order highpass filter with the coefficient 0.95 to the input mixture to pre-emphasize its 

high-frequency portion, which approximately equalizes the average energy of speech in 

each filter channel. The energy of each segment after pre-emphasis is used for evaluation.  

Figures 4.10 and 4.11 present the results with pre-emphasis for all the phonemes and 

for expanded obstruents, respectively. As shown in the figures, the PC  scores for all the 

phonemes with pre-emphasis are about 5% higher than those without pre-emphasis, 

whereas the PU scores are about 10% lower. This suggests that more voiced speech is 

under-segmented in the low-frequency range. The PC  scores for expanded obstruents 

with pre-emphasis are much higher than those without pre-emphasis, whereas the PU 

scores are much lower. The PC+PU scores together with pre-emphasis are about 8% 

higher than those without pre-emphasis. This suggests that our system under-segments 

most expanded obstruents in the low-frequency range, which is mainly voiced. On the 

other hand, it correctly separates most expanded obstruents in the high-frequency range, 

where the energy of unvoiced speech is more distributed, from neighboring phonemes as 

well as from interference. The average PN  with pre-emphasis is relatively more constant 

across different SNR levels than that without pre-emphasis. This is because more 

interference energy is distributed in the high-frequency range and pre-emphasis reduces 

the SNR variation. 
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Figure 4.10.  Results of auditory segmentation with pre-emphasis at different SNR 
levels for all the phonemes. (a) Average correct percentage. (b) Average percentage 
of under-segmentation. (c) Average percentage of over-segmentation. (d) Average 
percentage of mismatch. 
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Figure 4.11. Results of auditory segmentation with pre-emphasis for expanded 
obstruents at different SNR levels. (a) Average correct percentage. (b) Average 
percentage of under-segmentation. (c) Average percentage of over-segmentation. 



 87 

C. Advantages of multiscale analysis 

To gauge the advantages of the multiscale analysis over single-scale analysis, we 

segment with several single-scale analyses and compare with the proposed multiscale 

analysis. Figure 4.12 shows the average PC+PU, PO, and PN  scores obtained with single-

scale analyses by varying the parameter λ for the stringent threshold (see Section 4.4). 

These single scales are (6, 1/4), (6, 1/8), (6, 1/14), and (2, 1/14), corresponding to scales 

1, 2, 3, and 4 shown in the figure. Each value in the figure is the average score over 10 

different θE  values ranging from 0.5 to 0.95 with increment 0.05. Figure 4.12 also shows 

the PC+PU, PO, and PN  scores for the multiscale analysis of these 4 scales. As shown in 

the figure, the outcome of a single-scale analysis is strongly dependent on the scale value. 

When a larger scale is used, more target is correctly segmented and less target is over-

segmented. However, more target and interference are merged into the same segments 

and the percentage of mismatch is higher. On the other hand, when a smaller scale is 

used, target and interference are better separated into the estimated segments, but less 

target is correctly segmented and more target is over-segmented. The multiscale analysis 

correctly segments more target than any single scale analysis for λ values between 

[0.75, 1] and yields a moderate percentage of mismatch. In fact, the percentage of 

mismatch for the multiscale analysis is better than those of single scale analyses of scales 

1 and 2. Furthermore, a single-scale analysis is more sensitive to the threshold of onset 

and offset detection than the multiscale analysis. As shown in the figure, when the onset 

and offset thresholds deviate from the best values, the performance of a single scale 

analysis, especially for small scales, drops more significantly than that of the multiscale 
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Figure 4.12. A comparison between multiscale analysis and single scale analysis with 
different values of parameter λ. Scale 1, 2, 3, and 4 are (6, 1/4), (6, 1/8), (6, 1/14), and 
(2, 1/14), respectively. (a) Average percentage of correct plus that of under-
segmentation. (b) Average percentage of over-segmentation. (c) Average percentage 
of mismatch. 
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analysis. Therefore, using a multiscale analysis provides an additional advantage of 

simplifying parameter tuning. 

 

D. Error analysis 

There are two types of error in segmentation. The first comes from segmentation 

within individual channels, i.e., missing true onsets and offsets, falsely detected onsets 

and offsets, or inaccurate estimation of onset and offset position. The second comes from 

segmentation across frequency channels when we merge adjacent channels that are 

dominated by different sources, or when we divide adjacent channels that are dominated 

by the same source.  

To gain further insight into the performance of segmentation, we separate these two 

types of error by comparing estimated segments and ideal segments channel by channel, 

which only documents the first type of error. For convenience, we refer to a contiguous 

T-F region of a segment in a channel as a time-segment (T-segment). Figure 4.13 shows 

the PC, PU, PO, and PN scores for estimated T-segments compared with ideal T-segments. 

Each value is an average across all the channels weighted by the total energy of all ideal 

segments of target after pre-emphasis. Comparing this figure with Figure 4.10, we can 

see that the correct percentage of T-segments is much higher than that of entire estimated 

segments at low SNR levels and the percentage of mismatch for T-segments is much 

lower. This shows that a significant amount of the mismatch error stems from merging 

channels across frequency, i.e., from connecting onset and offset candidates into onset 

and offset fronts (see Section 4.3). 
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Figure 4.13. Results for estimated T-segments in individual channels at different SNR 
levels. (a) Average correct percentage. (b) Average percentage of under-
segmentation. (c) Average percentage of over-segmentation. (d) Average percentage 
of mismatch. 
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CHAPTER 5  

ITERATIVE PITCH DETERMINATION AND 

VOICED SPEECH SEGREGATION

 
Our computational goal of speech segregation is to obtain the ideal binary mask of a 

target utterance (see Section 1.3). In such a mask, T-F units dominated by the target are 

labeled 1 and others are labeled 0. In this chapter, we describe the process that estimates 

the ideal binary mask for the voiced portions of a target utterance.  

As discussed in Section 2.4A, accurate pitch estimation of a target utterance is crucial 

for segregating the voiced target. However, robust pitch estimation is a very challenging 

task because interference corrupts target pitch information. To deal with this problem, we 

propose an algorithm that estimates target pitch and segregates voiced target in an 

iterative manner. In particular, this algorithm first roughly estimates the pitch of a target 

utterance in an acoustic mixture and uses this estimate to segregate the voiced target, i.e., 

to estimate the ideal binary mask of the voiced target. From the estimated mask, our 

algorithm generates a better estimate of the target pitch and then a better estimate of the 
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mask using the newly estimated pitch, and so on. Our algorithm stops when the iterative 

process converges. The output of the algorithm is several estimated pitch contours and a 

binary mask associated with each pitch contour. Note that the algorithm does not specify 

whether an estimated pitch contour is from a target utterance or not. Determining which 

pitch contours are from a target utterance is a task of sequential grouping, which will be 

addressed in the next chapter. 

Our algorithm has two key steps: Estimating the ideal binary mask of a target 

utterance given an estimate of target pitch and estimating the target pitch given an 

estimate of the ideal binary mask. In the first two sections of this chapter, we first explore 

the solution to each of the two steps. The iterative algorithm is then presented in detail in 

Section 5.3. Evaluation results of this algorithm on pitch estimation and voiced speech 

segregation are given in Section 5.4. 

 

5.1 Ideal binary mask estimation given estimated target pitch 

In this section, we discuss the problem of estimating the ideal binary mask of a target 

utterance given an estimate of the target pitch. 

 

A. Labeling T-F units with information within individual T-F units  

We first consider a simple approach: a T-F unit is labeled 1 if and only if the 

corresponding response or response envelope has a periodicity similar to that of the 

target.  



 93 

As discussed in Section 2.3, in the low-frequency range, harmonics are resolved. A T-

F unit corresponding to a resolved harmonic can be labeled by comparing target pitch 

period with the period of the filter response within this unit. In the high-frequency range, 

harmonics are generally unresolved. A T-F unit corresponding to several unresolved 

harmonics can be labeled by comparing the target pitch with the AM rate of the filter 

response within this unit.  

We applied the above method in our previous study on voiced speech segregation (Hu 

and Wang, 2004a). There, we first distinguished T-F units responding to resolved 

harmonics from other units based on the cross-channel correlation of filter responses. As 

pointed out in this study, a resolved harmonic usually activates several adjacent channels 

and the corresponding responses are highly correlated with each other (see Figure 3.2 for 

an illustration), whereas channels responding to multiple harmonics are usually not as 

highly correlated. Therefore, we considered T-F units with sufficiently high cross-

channel correlations, i.e., C(c, m) > 0.985, as responding to individual resolved 

harmonics and others to multiple harmonics.  

We labeled a T-F unit corresponding to a resolved harmonic as follows. Since the 

periodicity of the filter response is indicated by the peaks in the corresponding ACF, a 

unit ucm is labeled as target if the corresponding ACF at the estimated pitch period is 

close to the maximum of the ACF within the plausible pitch range, i.e.: 

  T
S

mcA
mmcA θ
τ

τ

τ

>
Γ∈

),,(max
))(,,(

           (5.1) 
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where τS(m) is the estimated pitch period at frame m, � is [2.5 ms, 14.29 ms], the 

plausible pitch range (see Section 3.1), and θT is a threshold. In addition, we labeled a T-

F unit corresponding to multiple harmonics by comparing the AM fluctuation of the 

response within this unit with a sinusoidal function that has the period of target pitch. If 

the sinusoidal function fits the AM fluctuation well, this T-F unit is labeled as target.  

In a later study (Hu and Wang, 2006a), we used a method similar to Equation (5.1) to 

label a T-F unit responding to multiple harmonics since the AM rate of the response is 

indicated by the peaks in the ACF of the response envelope. In particular, a T-F unit is 

labeled as target if: 

  A
E

SE

mcA
mmcA θ
τ

τ

τ

>
Γ∈

),,(max
))(,,(

           (5.2)  

where θA is a threshold. This method is much simpler than that used in Hu and Wang 

(2004a), but yields a comparable result. 

We test the above labeling scheme, i.e., Equations (5.1) and (5.2), with the test corpus 

described in Section 4.6. This corpus contains 20 target utterances from the TIMIT 

database (Garofolo et al., 1993) and 20 intrusions (see Tables 4.1 and 4.2). The target 

pitch is obtained by applying Praat (Boersma and Weenink, 2004) to the clean target 

utterance. We use two error measures to evaluate the performance of labeling individual 

T-F units, the percentage of false acceptance, i.e., labeling an interference-dominant T-F 

unit as target, and the percentage of false rejection, i.e., labeling a target-dominant T-F 

unit as interference. Figure 5.1(a) shows the average percentage of false rejection versus 

the average percentage of false acceptance with different θT values for T-F units 
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corresponding to resolved harmonics, and Figure 5.1(b) that with different θA values for 

other units. Each value is the average of 2000 mixtures in the test corpus (see Section 

4.6). As shown in the figure, T-F units with high cross-channel correlations are labeled 

more accurately than other units. In particular, in Figure 5.1(a) an equal error rate of 

19.3% for both measures is obtained when θT = 0.55, while in Figure 5.1(b) an equal 

error rate of 28.1% is obtained when θA = 0.13.  

Equation (5.1) is not a direct comparison of the period of a filter response and the 

estimated pitch period, and therefore may be misleading sometime. For example, it is 

possible that A(c, m, τ) is quite flat within the plausible pitch range. In such a situation, 

although A(c, m, τ) does not have a period close to τS(m), A(c, m, τS(m))
Γ∈τ

max/ A(c, m, τ) 

may be high, and based on Equation (5.1) we will make a mistake. A more direct 

comparison is to compare the instantaneous frequency of the filter response with the 

estimated target pitch, which has been suggested by Cooke (1993). Similarly, we can 

directly compare the instantaneous frequency of the response envelope with the estimated 

target pitch instead of using Equation (5.2), which was implemented in our previous 

studies (Hu and Wang, 2002; Hu and Wang, 2004a). However, in practice, it is extremely 

difficult to accurately estimate the instantaneous frequency of a signal (Boashash, 1992a; 

Boashash, 1992b), and in most situations, we can only have a good approximation. We 

found that labeling T-F units by comparing the estimated instantaneous frequency with 

the target pitch period does not perform better than using the measures in Equation (5.1) 

and (5.2). Nevertheless, it is better to combine these two measures with instantaneous 
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frequencies to label T-F units. This observation will be clearer when we present some test 

results in the later part of this section. 

We construct a classifier to label T-F units using the corresponding ACFs at pitch 

points and instantaneous frequencies as features. Let ),( mcf  be the estimated average 

instantaneous frequency of the filter response within a T-F unit ucm. If the filter response 

has a period close to )(mSτ , then )(),( mmcf Sτ⋅  is close to an integer larger than or 

equal to 1. Similarly, let ),( mcf E  be the estimated average instantaneous frequency of 
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Figure 5.1. Results of labeling T-F units with the method of Hu and Wang (2006a). 
(a) Percentage of false rejection versus percentage of false acceptance by varying θT 
for T-F units responding to resolved harmonics. (b) Percentage of false rejection 
versus percentage of false acceptance by varying θA for T-F units responding to 
unresolved harmonics. 
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the response envelope within ucm. If the response envelope fluctuates at the period of 

)(mSτ , then )(),( mmcf SE τ⋅  is close to 1.  Let  

  
))),(int(),),(int(),(),,,(

),),(int(),),(int(),(),,,(()(

ττττ
τττττ

mcfmcfmcfmcA

mcfmcfmcfmcAr

EEEE

cm

−

−=
     (5.3) 

be a set of 6 features, where  
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� ��
�
� ≤−

=
elsex

xxifx
x

5.0)(
)int(          

Here �x�  is the ceiling function that returns the smallest integer greater than or equal to x 

and �x� the floor function. Let H0 be the hypothesis that a T-F unit is target dominant and 

H1 otherwise. ucm is labeled as target if and only if  

  )))((|()))((|( 10 mrHPmrHP ScmScm ττ >         (5.4) 

Since  

  )))((|(1)))((|( 10 mrHPmrHP ScmScm ττ −= ,       (5.5) 

Equation (5.4) becomes 

  5.0)))((|( 0 >mrHP Scm τ           (5.6) 

In the feature set we use A(c, m, τS(m)) instead of A(c, m, τS(m))/ ),,(max τ
τ

mcA
Γ∈

 since 

we found that these two yield similar performance in labeling T-F units and the first one 

is easier to compute. The same is for AE(c, m, τS(m)). In addition, we use 

))(),(int( mmcf Sτ⋅  and ))(),(int()(),( mmcfmmcf SS ττ ⋅−⋅  instead of )(),( mmcf Sτ⋅  

since the first two indicate the similarity between the response period and the estimated 
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pitch period more directly, hence simplifying the classifier. The same is for 

)(),( mmcf SE τ⋅ .  

In this study, we estimate the instantaneous frequency of the response within a T-F 

unit simply as half the inverse of the interval between zero-crossings of the response 

(Boashash, 1992b), assuming that the response is approximately a sinusoidal function. 

Note that a sinusoidal function crosses zero twice within a period. We have also 

considered calculating the instantaneous frequency with a more complex method 

(Kumaresan and Rao, 1999) and found that it yields similar performance in labeling T-F 

units but entails a much higher cost of computation. 

We construct a multilayer perceptron (MLP) (Principe et al., 2000) with one hidden 

layer to compute P(H0|rcm(τ)) for each filter channel. The desired output of the MLP is 1 

if the corresponding T-F unit is target dominant and 0 otherwise. When there are 

sufficient training samples, the trained MLP yields a good estimate of P(H0|rcm(τ)) 

(Bridle, 1989). In this study, the MLP for each channel is trained with a corpus that 

includes all the utterances from the training part of the TIMIT database and 100 

intrusions. These intrusions include crowd noise and environmental sounds, such as wind, 

bird chirp, and ambulance alarm. Utterances and intrusions are mixed at 0 dB SNR to 

generate training samples; target is one utterance and interference is either non-speech 

intrusion or another utterance. The ideal binary mask of each mixture is obtained from 

the corresponding premixing target and interference. We use Praat to estimate target 

pitch. The number of units in the hidden layer is determined using cross-validation. 

Specifically, we divide the training samples equally into two sets, one for training and the 
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other for validation. The number of units in the hidden layer is chosen to be the minimum 

number such that adding more units in the hidden layer will not yield any significant 

performance improvement on the validation set. Since most obtained MLPs have 5 units 

in their hidden layers, we let all the MLPs contain 5 units in their hidden layers and train 

them accordingly. 
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Figure 5.2. (a) ACF of the filter response within a T-F unit in a channel centered at 
2.5 kHz. (b) Corresponding ACF of the response envelope. (c) Probability of the unit 
being target dominant given target pitch period τ. The input is the female utterance 
shown in Figure 1.2(b). 
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As an example, Figure 5.2(c) shows the obtained P(H0|rcm(τ)) for different τ values of 

a T-F unit in a filter channel centered at 2.5 kHz and at a time frame (from 790 ms to 810 

ms). The input is the female utterance shown in Figure 1.2(b). The corresponding ACFs 

of the filter response and the response envelope are shown in Figures 5.2(a) and 5.2(b), 

respectively. As shown in the figure, the maximum of P(H0|rcm(τ)) is located at 5.87 ms, 

the pitch period of the utterance at this frame.  

The obtained MLPs are used to label individual T-F units according to Equation (5.6). 

Figure 5.3(a) shows the resulting error rate by channel for all the mixtures in the test 

corpus (see Section 4.6). The error rate is the average of false acceptance and false 

rejection. As shown in the figure, with features derived from individual T-F units, we 

could label about 70% – 90% of the units correctly across the whole frequency range. In 

general, T-F units in the low-frequency range are labeled more accurately than those in 

the high-frequency range. Figure 5.3 also shows the error rate by using only subsets of 

the features from the feature set, rcm(τ). As shown in Figures 5.3(b) and 5.3(c), the ACF 

values at the pitch point and instantaneous frequencies provide complementary 

information. The response envelope is more indicative than the response itself in the 

high-frequency range. Best results are obtained when all the 6 features are used, and they 

are much better than the previous method that labels T-F units based on Equations (5.1) 

and (5.2). In particular, for T-F units corresponding to resolved harmonics, the current 

method obtains a 9.1% false rejection and an 18.1% false acceptance. The average error 

rate is 13.6%, which is 6.1% lower than the equal error rate from the previous method 

(see Figure 5.1). For T-F units corresponding to multiple harmonics, the present method 
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Figure 5.3. Error percentage in labeling T-F units using different features given target 
pitch. Features 1, 2, 3, 4, 5, and 6 are A(c, m, τS(m)), )),(),(int( mmcf Sτ⋅  

)),(),(int()(),( mmcfmmcf SS ττ ⋅−⋅ AE(c, m, τS(m)), )),(),(int( mmcf SE τ⋅ and 

))(),(int()(),( mmcfmmcf SESE ττ ⋅−⋅ , respectively. 
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obtains a 37.7% false rejection and a 13.9% false acceptance. The average error rate is 

25.8%, which is 2.3% lower than the equal error rate from the previous method. These 

MLP classifiers perform better than the previous method because they are trained to 

optimally integrate information from all the features. 

Besides using MLPs, we have considered modeling the distribution of the feature set 

rcm(τ) for T-F units that are target dominant, i.e., p(rcm(τ)|H0), with a Gaussian mixture 

model (GMM) (Huang et al., 2001) and the same for T-F units that are interference 

dominant. We then use these models to label T-F units based on Equation (5.4). 

However, the obtained result is not as good as that from using MLPs since MLPs are 

trained to distinguish the situation when target is dominant from when interference is 

dominant and therefore have more discriminative power. We have also considered 

building a classifier using a support vector machine (SVM) (Vapnik, 1995). In this study, 

we train the SVM with the software SVMlight (Joachims, 1999) with the following kernels: 

Linear, polynomial, radial, and sigmoid. Among all these kernels, the sigmoid kernel 

yields the best performance, which is similar to that with MLPs. However, SVM requires 

much more computation in labeling a T-F unit than MLP. 

  

B. Multiple harmonic sources 

When interference contains one or several harmonic signals, there are time frames 

where both target and interference are pitched. In such a situation, it is more reliable to 

label a T-F unit by comparing the period of the signal within the unit with both the target 

pitch period and the interference pitch period. In particular, a unit ucm should be labeled 
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as target if the target pitch period not only matches the period of the signal within this 

unit but also matches it better than the interference pitch period does, i.e.,  
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        (5.7) 

where )(mSτ ′  is the pitch period of the interfering sound at frame m. We use Equation 

(5.7) to label T-F units for all the mixtures of two utterances in the test corpus (see 

Section 4.6). Both target pitch and interference pitch are obtained by applying Praat to 

clean utterances. Figure 5.4 shows the corresponding error rate by channel, compared 

with using only the target pitch to label T-F units. As shown in the figure, better 

performance is obtained by using pitch information of both speakers.  

50 187 408 747 1266 2061 3278 5143 8000
10

20

30

40

50

Channel center frequency (Hz)

E
rr

or
 p

er
ce

nt
ag

e

One Pitch
Two Pitch

 

Figure 5.4. Percentage of error in lableing T-F units for the mixtures of two utterances 
in the test corpus. Circle – labeling T-F units with target pitch. Line – labeling T-F 
units with both target pitch and interference pitch. 
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C. Labeling with information from a neighborhood of T-F units 

Labeling a T-F unit using only the local information within the unit still produces a 

significant amount of error. Since speech signal is wideband and exhibits good temporal 

continuity, neighboring T-F units potentially provide useful information for T-F unit 

labeling. For example, a T-F unit surrounded by target-dominant units is more likely 

target dominant. Therefore, we consider information from a local context. Specifically, 

we label ucm as target if 

 mcSmc NmmNccmrHPHP ≤−≤−>′ |'|,|'|,5.0)))})((|({|( ''00 τ       (5.8) 

where Nc and Nm define the size of the neighborhood along frequency and time, 

respectively, and )))}((|({ ''0 mrHP Smc ′τ  is the vector that contains the P(H0|rcm(τS(m))) 

values of T-F units within the neighborhood. Again, for each filter channel, we train an 

MLP with one hidden layer to calculate the probability )))})((|({|( ''00 mrHPHP Smc ′τ  

using the P(H0|rcm(τS(m))) values within the neighborhood as features. Since 

P(H0|rcm(τS(m))) is derived from rcm(τS(m)), we have also considered using rcm(τS(m)) 

directly as features. The resulting MLPs are much more complicated, but yield no 

performance gain. 

The key here is to determine the appropriate size of a neighborhood. Again, we divide 

the training samples equally into two sets, one for training and the other for validation, 

and use cross-validation to determine Nc and Nm. Since time and frequency are 

asymmetric dimensions, we consider them separately. First, we set Nm to 0. An MLP is 
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trained to calculate )))})((|({|( ''00 mrHPHP Smc ′τ  with a specific number of Nc for each 

filter channel. During the training, we set the desired output to 1 if the corresponding T-F 

unit is target dominant and 0 otherwise. Figures 5.5(a) and 5.5(b) show the average 

percentages of false rejection and false acceptance for the test corpus, using the obtained 

MLPs. Nc is from 0 to 10. The values shown in the figure are the average across all the 

frequency channels. As shown in the figure, the error rate drops significantly when we 

utilize information from neighboring channels, especially close neighbors. The cross-

validation suggests that Nc = 8 defines a neighborhood that is sufficient for integrating 

information across frequency. Therefore, we fix Nc = 8 and train an MLP to calculate 

)))})((|({|( ''00 mrHPHP Smc ′τ  with a specific number of Nm for each filter channel. 

Figures 5.5(c) and 5.5(d) show the average percentages of false rejection and false 

acceptance for the test corpus, using the obtained MLPs. Nm is from 0 to 5. Again, 

significant error reduction is obtained when we consider information from neighboring 

frames. As shown in the figure, by utilizing information from neighboring channels and 

frames, we reduce the average percentage of false rejection from 20.8% to 16.7% and the 

average percentage of false acceptance from 13.3% to 8.7% for the test corpus. The 

cross-validation suggests that Nc = 8 and Nm = 2 define the appropriate size of the 

neighborhood. The hidden layer of such a trained MLP has 2 units, which is determined 

by cross-validation. Note that when both target and interference are pitched, we label a T-

F unit according to Equation (5.7) using the probability )))}),((|({|( ''00 mrHPHP Smc ′τ  

and )))})((|({|( ''11 mrHPHP Smc ′′τ . 
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Figure 5.5. Labeling T-F units with information from varied sizes of a local T-F 
neighborhood. (a) Percentage of false rejection with Nc from 0 to 10 and Nm = 0. (b) 
Percentage of false acceptance with Nc from 0 to 10 and Nm = 0. (c) Percentage of 
false rejection with Nc = 8 and Nm from 0 to 5. (d) Percentage of false rejection with 
Nc = 8 and Nm from 0 to 5. 
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D. Labeling based on obtained segments 

With the segments obtained in the segmentation stage, we have considered labeling T-

F units within a segment as a whole instead of labeling them individually, i.e., all the T-F 

units in a segment are labeled as target if the segment is dominated by voiced target. In 

particular, we first label a segment as target if 

• More than half of its total energy is included in the voiced time frames of 

target, and 

• More than half of its energy in the voiced frames is included in the T-F units 

labeled as target according to (5.8).  

If a segment is labeled as target, all the T-F units within it are labeled as target; 

otherwise, we keep the labels of individual T-F units. When there are multiple 

overlapping pitch contours, a segment is attributed to the pitch contour that best matches 

the period of the signal within the segment.  

Figure 5.6 shows the result of labeling T-F units using the estimated segments by 

channel, compared with labeling T-F units individually with information from a 

neighborhood. As shown in the figure, using the estimated segments, we recover more 

target-dominant T-F units. In particular, the average percentage of false rejection is 

reduced from 16.7% to 12.3%. However, more interference-dominant T-F units are 

labeled as target at the same time, due to the mismatch error in segmentation. The 

average percentage of false acceptance increases from 8.7% to 20.0%. As discussed in 

Section 4.6D, a significant amount of mismatch in segmentation comes from merging 
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Figure 5.6. Results of labeling T-F units individually using a neighborhood and those 
using the estimated segments. (a) Percentage of false rejection. (b) Percentage of false 
acceptance. 
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channels across frequency. To reduce the false acceptance rate, we use the estimated T-

segments, i.e., estimated segments in individual channels (see Section 4.6D), instead of 

the entire estimated segments to label T-F units. Specifically, if a T-segment is dominated 

by a voiced target, all the T-F units within the T-segment are labeled as target. The 

corresponding result of labeling T-F units is shown in Figure 5.6. By using T-segments, 

we achieve a better balance between accepting target and rejecting interference. In 

particular, with T-segments, the average percentage of false rejection is 12.1% and the 

average percentage of false acceptance is 12.8%.  

 

5.2 Pitch determination given voiced target mask 

A. Integration across channels 

Assume we have an estimated mask of voiced target, i.e., all T-F units considered as 

target dominant in the voiced region of target are labeled 1 and others are labeled 0. The 

task here is to estimate target pitch. Let L(m) = {L(c, m), ∀c} be the set of mask labels at 

frame m, where 

  
�
�
�

=
else0

targetaslabeledis1
),( cmu

mcL         (5.9) 

A frequently-used method for pitch determination is to pool autocorrelations across all 

the channels and then identify a dominant peak in the summary correlogram (Licklider, 

1951; Meddis and Hewitt, 1992). When a harmonic sound is presented, the ACF of the 

activated filters in a correlogram all exhibit a peak at the delay corresponding to the pitch 

period (see Figure 3.2). Let A(m, τ) be the summary correlogram at frame m, that is, 
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  �=
c

mcAmA ),,(),( ττ         (5.10) 

The estimated pitch period at frame m, τS(m), is the lag corresponding to the maximum of 

A(m, τ) in the plausible pitch range of the target utterance. As shown in the bottom panel 

of Figure 3.2(a), there is a significant peak at 5.87 ms, corresponding to the target pitch 

period at this frame, in the summary correlogram. This method of pitch estimation is not 

very robust when interference is strong because the autocorrelations in many channels 

exhibit spurious peaks not corresponding to the target period. One may solve this 

problem by disregarding interference-dominant T-F units, i.e., calculating the summary 

correlogram only with T-F units labeled 1: 

  ),(),,(),( mcLmcAmA
c
�= ττ        (5.11) 

Again, the estimated pitch period is the lag of the global maximum of A(m, τ) in the 

plausible pitch range.  

Similar to the ACF of filter response, the profile of the probability that a T-F unit ucm 

being target dominant given pitch period τ, P(H0|rcm(τ)), also tends to have a significant 

peak at the target period when ucm is truly target dominant (see Figure 5.2(c)). One can 

use the corresponding summation of P(H0|rcm(τ)), 

   �=
c

cmm mcLrHPSP ),())(|()( 0 ττ ,       (5.12) 

to identify the pitch period at frame m as the maximum of the summation in the plausible 

pitch range.  
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We apply the above two methods for pitch estimation to two utterances from in test 

corpus listed in Table 4.1, one from a female speaker (S1) and the other from a male 

speaker (S2). These two utterances are mixed with the 20 intrusions listed in Table 4.2 at 

0 dB SNR. In this estimation, we use the ideal binary mask at the voiced frames of the 

target utterance to estimate a pitch period at each frame. The percentages of estimation 

error for both methods are shown in the first row of Table 5.1. We use the pitch contours 

obtained by applying Praat to the clean target as the ground truth of the target pitch. An 

error occurs when the estimated pitch period and the pitch period obtained from Praat 

differ by more than 5%. As shown in the table, using the summation of P(H0|rcm(τ)) 

performs much better than using the summary ACF for the female utterance.  

Both methods, especially the one using summary ACF, perform better on the male 

utterance than on the female utterance. This is because the ACF and P(H0|rcm(τ)) in 

target-dominant T-F units all exhibit peaks not only at the target pitch period, but also at 

Summary 
ACF 

Summary 
P(H0|rcm(τ)) 

Classifier 
Method 

F M F M F M 

Without temporal continuity 39.6 17.1 18.1 17.2 15.6 17.6 

With temporal continuity 31.8 16.3 14.8 15.8 12.7 16.8 

Table 5.1. Error rate of pitch estimation with ideal binary mask. Classifier – pitch 
estimation with a classifier that compares two pitch candidates using their relative 
locations and the summation of P(H0|rcm(τ)) as features. 
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its double, triple, or other multiples. As a result, their summations have a significant peak 

not only at the target pitch period, but also at its integer multiples. As shown in the 

bottom panel of Figure 3.2(a), there is a significant peak at 11.74 ms, corresponding to 

the double of the target period at this frame, in the summary correlogram. It is very 

likely, especially for a female utterance, that the plausible pitch range contains several 

integer multiples of the target pitch period. In this situation, the above methods will make 

a mistake when the highest peak does not correspond to target period, but some multiple 

of it. 

 

B. Differentiating true pitch period from its integer multiples 

To differentiate the target pitch period from its integer multiples in pitch estimation, 

we need to take the relative locations of possible pitch candidates into consideration. Let 

τ1 and τ2 be two pitch candidates. We train an MLP-based classifier that selects the better 

one from these two candidates using their relative locations and the summation of 

P(H0|rcm(τ)), SPm(τ), as features, i.e., (τ1/τ2,  SPm(τ1), SPm(τ2)). The training data from 

the mixtures combining the training part of the TIMIT database and the 100 

environmental sounds used in Section 5.1A. In constructing the training data, we obtain 

SPm(τ) at each time frame from all the target-dominant T-F units. In each training 

sample, the two pitch candidates are the true target pitch period and the lag of another 

peak of SPm(τ) within the plausible pitch range. Without loss of generality, we let τ1 < τ2. 

The desired output is 1 if τ1 is the true pitch period and 0 otherwise. The obtained MLP 

has 3 units in the hidden layer. We use the obtained MLP to select the better one from the 
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two candidates as follows: If the output of the MLP is higher than 0.5, we consider τ1 as 

the better candidate; otherwise, we consider τ2 as the better candidate.  

The target pitch is estimated with the classifier as follows:  

• Find all the local maxima in SPm(τ) within the plausible pitch range as 

pitch candidates. Sort these candidates according to their time lags from 

small to large and let the first candidate be the current estimated pitch 

period, τS(m). 

• Compare the current estimated pitch period with the next candidate using 

the obtained MLP and update the pitch estimate if necessary. 

The percentage of error for pitch estimation with the classifier is shown in the first row 

in Table 5.1. The classifier reduces the error rate on the female utterance but slightly 

increases the error rate on the male utterance. 

 

C. Pitch estimation using temporal continuity 

Speech signals have good temporal continuity, i.e., their structure, such as frequency 

partials, tends to last for a certain period of time and the signals change smoothly within 

that period. Consequently, the pitch and the ideal binary mask of a target utterance tend 

to have good temporal continuity as well. Figure 5.7 shows the histogram of the relative 

changes of pitch periods in consecutive frames for utterances in the training part of the 

TIMIT database (Wu et al., 2003). As shown in the figure, the pitch period changes 

slowly. In fact, less than 0.5% of consecutive frames have more than 20% relative pitch 
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changes. Thus we utilize pitch continuity to improve the accuracy of pitch estimation as 

follows:  

• First, we check the reliability of the estimated pitch based on temporal continuity. 

Specifically, for every three consecutive time frames, m−1, m, and m+1, if the pitch 

changes among these frames are all less than 20%, i.e.,   
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  (5.13) 

the estimated pitch periods in these three frames are all considered reliable. 

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
Relative change  

 

Figure 5.7. Histogram of relative pitch change of speech utterances between 
consecutive frames. 
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• Second, we re-estimate unreliable pitch points by limiting the plausible pitch range 

according to neighboring reliable pitch points. Specifically, for two consecutive time 

frames, m−1 and m, if τS(m) is reliable and τS(m−1) is unreliable, we re-estimate 

τS(m−1) by limiting the plausible pitch range for τS(m−1) to be [0.8τS(m), 1.2τS(m)]. 

On the other hand, if τS(m−1) is reliable and τS(m) is unreliable, we re-estimate 

τS(m) by limiting the plausible pitch range for τS(m) to be [0.8τS(m−1), 1.2τS(m−1)]. 

Another possible situation is that τS(m) is unreliable while both τS(m−1) and 

τS(m+1) are reliable. In this case, we use τS(m−1) to limit the plausible pitch range 

of τS(m) if the mask at frame m is more similar to the mask at frame m−1 than the 

mask at frame m+1, i.e., 

  �� +>−
cc

mcLmcLmcLmcL )1,(),()1,(),( ;    (5.14) 

otherwise, τS(m+1) is used to re-estimate τS(m). Then the re-estimated pitch points 

are considered as reliable and used to estimate unreliable pitch points in their 

neighboring frames. This re-estimation process stops when all the unreliable pitch 

points have been re-estimated. 

The second row in Table 5.1 shows the effect of incorporating temporal continuity in 

pitch estimation with the algorithms described above. Using temporal continuity yields 

consistent performance improvement, especially for the female utterance.  
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5.3 An iterative procedure for pitch estimation and voiced speech segregation 

The diagram of our iterative algorithm is shown in Figure 5.8. It contains three steps: 

Initial estimation, iterative estimation, and final estimation. In the first step, our algorithm 

generates an initial estimate of pitch contours and masks for up to two sources. In the 

second step, the algorithm improves the estimation of pitch contours and masks in an 

iteratively manner. Specifically, we apply the algorithm described in Section 5.2B and 

the re-estimation process described in Section 5.2C for pitch estimation. Masks are 

estimated by the algorithm described in Section 5.1C, which labels T-F units individually 

with a neighborhood. We choose not to use the algorithm for mask estimation with 

obtained segments described in Section 5.1D in this step since this algorithm is more 

liberal in labeling T-F units as target. As discussed before, we do not need all the target 

signals to estimate target pitch. Therefore, we prefer to be conservative in mask 

generation for pitch estimation, which tends to yield more accurate pitch estimation. 

Once the iteration stops, we use the obtained T-segments to improve mask estimation 

 

 
Initial 

estimation 

 
Pitch 

estimation 
given mask 

 
Mask 

estimation 
given pitch 

 
Final 

estimation 

Iterative estimation 

 

Figure 5.8. Diagram of the proposed iterative algorithm. 
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(see Section 5.1D) in the final estimation step. The details of the first two steps are given 

in the following subsections.  

 

A. Initial Estimation 

In this step, we first generate up to two estimated pitch periods in each time frame. 

Since T-F units dominated by a periodic signal tend to have high cross-channel 

correlations of the filter response or the response envelope, we only consider T-F units 

with high cross-channel correlations in this estimation. Let τS, 1(m) and τS , 2(m) represent 

the two estimated pitch periods at frame m, and L1(m) and L2(m) the corresponding labels 

of the estimated masks. We first treat all the T-F units with high cross-channel 

correlations as dominated by a single source. That is: 
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We then assign the time delay supported by most T-F units labeled 1 as the first estimated 

pitch period. A unit ucm is considered supporting a pitch candidate τ if the corresponding 

P(H0|rcm(τ)) is higher than a threshold. Accordingly we have: 

  � −⋅=
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and θP is a threshold. Intuitively, we can set θP to 0.5. However, such a threshold may not 

position the estimated pitch period close to the true pitch period because P(H0|rcm(τ)) 
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tends to be higher than 0.5 in a relatively wide range centered at the true pitch period (see 

Figure 5.2(c)). In general θP needs to be much higher than 0.5 so that we can position 

τS,1(m) more accurately. However, θP cannot be too high, otherwise most T-F units 

labeled 1 cannot contribute to this estimation. We found that 0.75 is a good threshold that 

allows us to accurately position τS,1(m) without ignoring many T-F units labeled 1.  

The above process yields an estimated pitch point at many time frames where the 

target is not pitched. The estimated pitch point at such a frame is usually supported by 

only a few T-F units unless the interference contains a strong harmonic signal at this 

frame. On the other hand, estimated pitch points corresponding to target pitch are usually 

supported by quite a few T-F units. In order to remove spurious pitch points, we discard a 

detected pitch point if the total number of channels supporting this pitch point is less than 

a threshold. We found that the appropriate value of this threshold is 7 from analyzing the 

training data described in Section 5.1A. Most spurious pitch points are thus removed. At 

the same time, some true pitch points are also removed, but most of them are recovered in 

the following iterative process.  

With the estimate pitch period τS,1(m), we re-estimate the mask L1(m) as: 
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Then we use the T-F units that do not support the first pitch period τS,1(m) to estimate the 

second pitch period, τS,2(m). Specifically,  
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We let  

  � −⋅=
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    (5.19) 

Again, if fewer than 7 T-F units support τS,2(m), we set it to 0. Otherwise, we re-estimate 

L2(m) as: 
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Here we estimate up to two pitch points at one frame. Nevertheless, one can easily extend 

the above algorithm to estimate pitch points of more sources if needed. 

After the above estimation, our algorithm combines the estimated pitch periods into 

pitch contours based on temporal continuity. Specifically, for estimated pitch periods in 

three consecutive frames, )1(
1, −mkSτ , )(

2, mkSτ , and )1(
3, +mkSτ , where k1, k2, and k3 are 

either 1 or 2, they are combined into one pitch contour if they have good temporal 

continuity and their masks also have good temporal continuity. That is, 
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 (5.21) 

The remaining isolated estimated pitch points are considered unreliable and set to 0. Note 

that requiring only the temporal continuity of pitch periods cannot prevent connecting 
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pitch points from different sources, since target and interference may have similar pitch 

periods at the same time. However, it is very unlikely that target and interference both 

have similar pitch periods and occupy the same frequency region at the same time. In 

most situations, pitch points that are connected according to Equation (5.21) do 

correspond to a single source. As a result of this step, we obtain multiple pitch contours 

and each pitch contour has an associated T-F mask. 

 

B. Iterative pitch estimation 

In this step, we first re-estimate each pitch contour from the associated mask. A key 

step in this estimation is to expand the estimated pitch contours based on temporal 

continuity, i.e., using reliable pitch points to estimate potential pitch points at neighboring 

frames. Specifically, let τk be a pitch contour and Lk(m) be the associated mask. Let m1 

and m2 be the first and the last frame of this pitch contour. To expand pitch contour τk, 

we first let Lk(m1−1) = Lk(m1) and Lk(m2+1) = Lk(m2). Then we re-estimate τk from this 

new mask using the algorithm described in Section 5.2B. The re-estimated pitch periods 

are further verified according to temporal continuity, as described in Section 5.2C except 

that, here, we use Equation (5.21) instead of Equation (5.13) for continuity verification. If 

the corresponding source of contour τk is pitched at frame m1−1, our algorithm likely 

yields an accurate pitch estimate at this frame. Otherwise, the re-estimated pitch period at 

this frame usually cannot pass the continuity check, and as a result it is discarded and τk 

still starts from frame m1. The same is for the estimated pitch period at frame m2+1.   
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After expansion and re-estimation, two pitch contours may have the same pitch period at 

the same frame and therefore they are combined into one pitch contour.  

Then we re-estimate the mask for each pitch contour as follows. First, we compute the 

probability of each T-F unit dominated by the corresponding source of a pitch contour k, 

)))}),((|({|( ''00 mrHPHP kmc ′τ  as described in Section 5.1C. Then we estimate the mask 

for contour k according to the obtained probabilities: 
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     (5.22) 

The iterative algorithm is stopped when the estimation of both pitch and mask 

converges or runs into a cycle, where there are slight cyclic changes for both estimated 

pitch and estimated mask after each iteration. Although we cannot guarantee this 

algorithm of stopping, in our evaluation this algorithm always stops after a small number 

of iterations, which is usually smaller than 20. 

Figure 5.9 shows the detected pitch contours for the mixture M1 shown in Figure 

1.2(d). We use the pitch points detected by Praat from the clean utterance as the ground 

truth of the target pitch. As shown in the figure, our algorithm correctly estimates most 

target pitch points. At the same time, it also yields one pitch contour for interference. 

Figure 5.10(a) shows the target mask obtained by labeling T-F units with information 

from a fixed neighborhood, i.e., the mask obtained right before the final estimation step. 

Comparing this mask with the ideal binary mask of the target shown in Figure 5.10(e), 

we can see that our system is able to segregate most voiced portions of the target without 
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including much interference. These two masks yield similar resynthesized targets, as 

shown in Figures 5.10(b) and 5.10(f). Figure 5.10(c) shows the target mask obtained by 

labeling T-F units with the estimated T-segments, which is the mask obtained in the final 

estimation step. With the estimated T-segments, the system is able to recover even more 

target energy, but at the expanse of adding a small amount of the interference. Note that 

the algorithm does not specify whether an estimated contour is from target or from 

interference. This is a task of sequential grouping to be discussed in the next chapter. The 

above masks are obtained by assuming perfect sequential grouping, i.e., we group all the 

masks corresponding to the target utterance to form the segregated target stream.  
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Figure 5.9. Estimated pitch contours for the mixture M1 shown in Figure 1.2(d). Solid 
lines indicate estimated target pitch contours. True pitch points are marked by circles. 
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Figure 5.10. Segregated voiced utterance from the mixture M1 shown in Figure 
1.2(d). Dark regions indicate T-F units labeled as target. (a) Mask of target segregated 
by labeling T-F units with information from a neighborhood. (b) Waveform of target 
resynthesized with the mask in (a). (c) Mask of target segregated using estimated T-
segments. (d) Waveform of target resynthesized with the mask in (c). (e) Ideal binary 
mask of target. (f) Waveform resynthesized from the ideal binary mask.  



 124 

5.4 Evaluation 

A. Pitch Estimation 

We first evaluate the above iterative algorithm on pitch determination with utterances 

from the FDA Evaluation Database (Bagshaw et al., 1993). This database is collected for 

evaluating pitch determination algorithms and it provides accurate target pitch contours 

derived from laryngograph data, which are used as the ground truth of target pitch. The 

database contains utterances from two speakers, one male and one female. We randomly 

select one sentence that is uttered by both speakers. These two utterances are mixed with 

the intrusions listed in Table 4.2, at different SNR levels. In order to test the performance 

of the iterative algorithm when two speakers utter the same sentence simultaneously, we 

mix the two selected utterances of the same written sentence at different SNR levels and 

replace the mixture of target and intrusion N20. Figure 5.11 shows the detected pitch 

contours for the 0 dB mixture of the two target utterances. Most target pitch contours of 

the utterances are correctly detected by the iterative algorithm. 

Figure 5.12(a) shows the average correct percentage of pitch determination with the 

iterative algorithm on the mixtures of these two target utterances and the 20 intrusions at 

different SNR levels. Here we compare the estimated pitch contours with only the true 

pitch contours of the target utterance. In calculating the correct detection percentage, we 

only consider estimated pitch contours that match the target pitch. An estimated pitch 

contour matches target pitch if at least half of its pitch points match the target pitch, i.e., 

the target are pitched at these corresponding frames and the estimated pitch periods differ 

from the true target pitch periods by less than 5%. As shown in the figure, the iterative 
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algorithm is able to detect 69.1% of target pitch even at -5 dB SNR. The correct detection 

rate increases to about 83.8% as the SNR increases to 15 dB. In comparison, Figure 12(a) 

also shows the results using Praat and that from a multiple pitch tracking algorithm 

proposed by Wu et al. (2003), which is a state-of-the-art algorithm for robust pitch 

tracking (Khurshid and Denham, 2004). Note that the Wu et al. algorithm does not yield 

continuous pitch contours. Therefore, the correct detection rate is computed by 

comparing estimated pitch with ground truth frame by frame. As shown in the figure, the 

iterative algorithm performs consistently better than the Wu et al. algorithm in detecting 

target pitch at all SNR levels. The iterative algorithm is more robust to interference 
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Figure 5.11. Estimated pitch contours for a mixture of one male utterance and one 
female utterance. Solid lines indicate estimated target pitch contours. True pitch 
points are marked by “o” and “x”. 
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Figure 5.12. Results of pitch determination. (a) Percentage of correct detection. (b) 
Percentage of mismatch. (c) Number of contours that match the target pitch. 
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compared to Praat, whose performance is good at an SNR level above 10 dB, but drops 

significantly as SNR decreases.  

Besides the detection rate, we also need to measure how well the system separates 

pitch points of different sources. Figure 5.12(b) shows the percentage of mismatch, which 

is the percentage of estimated pitch points that do not match target pitch among the 

contours matching the target pitch. An estimated pitch point is counted as mismatch if 

either target is not pitched at the corresponding frame or the difference between the 

estimated pitch period and the true target pitch period is more than 5%. As shown in the 

figure, the iterative algorithm yields a low percentage of mismatch, which is slightly 

lower than that of Praat when the SNR is above 5 dB SNR. In lower SNR levels, Praat 

has a lower percentage of mismatch, due to the fact that Praat detects fewer pitch points. 

Note that the Wu et al. algorithm does not generate pitch contours, and the mismatch rate 

is 0. In addition, Figure 5.12(c) shows the average number of estimated pitch contours 

that match the target pitch. The actual average number of target pitch contours is 5. The 

iterative algorithm yields an average of 5.6 pitch contours for each mixture. This shows 

that the iterative algorithm well separates target pitch and interference pitch without 

dividing target pitch into many short contours. Praat yields almost the same numbers of 

contours as the actual ones at 15 dB SNR. However, it detects fewer pitch contours when 

the mixture SNR drops. Overall, the iterative algorithm yields better performance than 

both Praat and the Wu et al. algorithm, especially at low SNR levels. 

To illustrate the advantage of the iterative process for pitch estimation, Table 5.2 

shows the average percentage of correct detection for the above mixtures at -5 dB with 
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respect to the number of iteration. In this table, the zero iteration corresponds to the result 

of initial estimation, and “converge” corresponds to the final output of the algorithm. As 

shown in the table, the initial estimation already gives a good estimate of target pitch. 

The iterative algorithm, however, is able to improve the detection rate, especially in the 

first iteration. Overall, the iterative algorithm improves the detection rate by 6.1% on 

average. This improvement is not large since the initial estimate is already good. 

However, the improvement varies considerably among different mixtures. The largest 

improvement of individual mixtures is 22.1% in our test.  

 

B. Voiced speech segregation 

The performance of the system on voiced speech segregation has been evaluated with 

the test corpus described in Section 4.6. The estimated target masks are obtained by 

assuming perfect sequential grouping, i.e., all the estimated masks corresponding to the 

target are grouped together to form the segregated target. 

 

 

Iteration 0 1 2 3 4 Converge 
Percentage of 
detection 63.0 66.3 67.8 68.8 68.9 69.1 

Table 5.2. Average percentage of correct pitch detection with respect to the number of 
iteration 
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Since our computational goal here is to estimate the ideal binary mask of target, we 

evaluate the performance of segregation by comparing the estimated mask to the ideal 

binary mask with two measures (Hu and Wang, 2004a).  

• The percentage of energy loss, PEL, which measures the amount of energy in the 

target-dominant T-F units that are labeled as interference among the total energy 

in target-dominant T-F units.  

• The percentage of noise residue, PNR, which measures the amount of energy in the 

interference-dominant T-F units that are labeled as target among the total energy 

in T-F units estimated as target dominant. 

PEL and PNR provide complementary error measures of a segregation system and a 

successful system needs to achieve low errors in both measures.  

In addition, to compare waveforms directly we measure the SNR of the segregated 

voiced target in decibels: 
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where s(n) is the target signal resynthesized from the ideal binary mask and �V(n) is the 

segregated voiced target. 

The results from our system are shown in Figure 5.13. Each point in the figure 

represents the average value of 400 mixtures in the test corpus at a particular SNR level 

(see Section 4.6). Figures 5.13(a) and 5.13(c) show the percentages of energy loss and 

noise residue. Note than since our goal here is to segregate voiced target, the PEL values 

shown in Figure 5.13(a) are only for the target energy at the voiced frames of the target. 
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Figure 5.13. Results of voiced speech segregation. (a) Percentage of energy loss on 
voiced target. (b) Percentage of energy loss on voiced target in the frequency range 
above 1 kHz. (c) Percentage of noise residue. (d) Percentage of noise residue in the 
frequency range above 1 kHz. (e) SNR of segregated voiced target. 
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As shown in the figure, our system segregates 78.3% of voiced target energy at -5 dB 

SNR and 99.2% at 15 dB SNR. At the same time, 11.2% of the segregated energy 

belongs to intrusion at -5 dB. This number drops to 0.6% at 15 dB SNR. Figures 5.13(b) 

and 5.13(d) show the percentage of energy loss and that of noise residue for T-F regions 

about 1 kHz. As shown in the figure, our system performs better in the low-frequency 

range than in the high-frequency. Nevertheless, it still captures a majority of target 

energy and rejects most interfering energy in the high-frequency range. 

Figure 5.13(e) shows the SNR of the segregated target. Our system obtains an average 

12.2 dB gain in SNR when the mixture SNR is -5 dB. This gain drops to 3.3 dB when the 

SNR of original mixtures is 10 dB. Note that at 15 dB, our system does not improve the 

SNR because most unvoiced speech is not segregated. Figure 5.13 also shows the result 

of the iterative algorithm without the final estimation step (“Neighborhood”), i.e., 

labeling T-F units individually without using estimated T-segments. As shown in the 

figure, the corresponding segregated target loses more target, but contains less 

interference. The SNR performance is better when using estimated T-segments.  

In comparison, Figure 5.13 also shows the performance using our previous voiced 

speech segregation system (Hu and Wang, 2004a; Section 2.3), which is the 

representative of CASA systems. Because the previous system can only track one pitch 

contour of the target, in this implementation we provide target pitch estimated by 

applying Praat to clean utterances. As shown in the figure, the previous system yields a 

lower percentage of noise residue, but has a much higher percentage of energy loss, 

especially in the high-frequency range. Even with provided target pitch, the previous 
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system does not perform as well as the iterative algorithm, especially at high SNR levels. 

Computationally, the current system is more complicated than our previous system. The 

additional computation mainly comes from the multiscale segmentation process and the 

iterative algorithm. Nevertheless, the additional computation is less than 10% of that 

needed in calculating the correlogram, which consumes the major portion of the overall 

computation.  

To illustrate the effect of the iterative estimation, Table 5.3 shows the average SNR 

for the mixtures of two utterances, S1 and S2 (see Table 4.1), and all the intrusions at -5 

dB SNR (see Table 4.2). Again, in this table, the zero iteration corresponds to the result 

of the initial estimation, and “converge” corresponds to the final output of the algorithm. 

On average, the iterative algorithm improves the SNR by 1.07 dB. Again, the SNR 

improvement varies considerably among different mixtures. The largest improvement of 

individual mixtures is 7.27 dB. 

As an additional benchmark, we have evaluated our algorithm on Cooke’s test corpus. 

The average SNR for each intrusion is shown in Figure 5.14, compared with those of the 

original mixtures and our previous system (Hu and Wang, 2004a). The proposed system 

obtains results comparable to our previous system for most intrusions, except for N0, N2, 

Iteration 0 1 2 3 4 Converge 

SNR (dB) 6.97 7.44 7.62 7.77 7.89 8.04 

Table 5.3. Average SNR of segregated target utterances with different number of 
iterations 
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and N5, in which the proposed system has at least 4 dB more in SNR improvement than 

our previous system. On average, the proposed system obtains a 13.4 dB SNR gain, 

which is about 2.0 dB better than our previous system. 
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Figure 5.14. SNR results for segregated speech and original mixtures. 
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CHAPTER 6  

SEQUENTIAL GROUPING USING  

FEATURE-BASED CLASSIFICATION

In the previous chapter, we presented our iterative algorithm for estimating target pitch 

and segregating voiced targets. For an acoustic mixture, the outcome of the algorithm is 

several estimated pitch contours and estimated binary masks associated with individual 

pitch contours. An obtained mask labels the T-F units within the time interval of the 

corresponding estimated pitch contour, where a T-F unit is labeled 1 if it is dominated by 

the source of the corresponding pitch contour and 0 otherwise. This mask is used to 

resynthesize a segregated voiced sound from the mixture. Since interfering sounds often 

contain periodic signals, a segregated voiced sound may correspond to interference. The 

iterative algorithm does not determine whether or not this segregated sound is part of a 

target utterance, which is a problem of sequential grouping as discussed in Section 2.4C. 

A systematic study of sequential grouping is beyond the scope of this dissertation. Here 

we focus on a common situation encountered in practice: Target utterances corrupted by 
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non-speech interference. In this situation, we propose to handle the sequential 

organization problem by first classifying whether a segregated voiced sound is speech or 

non-speech and then grouping all the sounds that are classified as speech. In addition, we 

apply the above procedure for segregating unvoiced speech. In the segmentation stage, 

we have obtained segments for voiced target, unvoiced target, and interference. The task 

here is to identify those segments corresponding to unvoiced target and group them 

together with the segregated voiced target. Again, with the assumption that interference is 

non-speech, we handle this problem by classifying a segment as dominated by either 

unvoiced speech or interference and grouping it accordingly.  

This chapter gives a detailed description of the above procedures that sequentially 

group voiced and unvoiced speech. In Section 6.1, we discuss the features used for 

distinguishing speech from non-speech interference. In the next two sections, we describe 

the sequential grouping method for voiced speech and that for unvoiced speech. Section 

6.4 presents a systematic evaluation of the overall system. Our preliminary results on 

unvoiced speech segregation have been published in three ICASSP papers (Hu and Wang, 

2003; Hu and Wang, 2005; Wang and Hu, 2006). 

 

6.1 Features for classification 

Our task is to classify a T-F region, which is either a mask yielded by our iterative 

algorithm or a segment obtained in the segmentation stage, as speech dominant or 

interference dominant. Since the signal within such a region is mainly from one source, it 

should have similar acoustic-phonetic properties to those of clean speech if it is 
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dominated by speech, and otherwise if it is dominated by interference. Therefore, we 

propose to classify a T-F region as either speech or interference using acoustic-phonetic 

features.  

A basic speech sound is characterized by the following acoustic-phonetic properties: 

Short-term spectrum, formant transition, voicing, and phoneme duration (Stevens, 1998; 

Ladefoged, 2001). These features have been proven useful in recognizing speech, e.g., to 

distinguish different phonemes or words (Rabiner and Juang, 1993; Ali and Van der 

Spiegel, 2001a; Ali and Van der Spiegel, 2001b). These properties may also be useful in 

distinguishing speech from interference. However, it is important to treat these properties 

appropriately considering that we are dealing with speech corrupted by interference and 

our task here is to distinguish speech from interference. In particular, we give the 

following considerations. 

• Spectrum. The short-term spectrum of an acoustic mixture at a particular time 

may be quite different from that of the target utterance or that of the interference 

in the mixture. Therefore, features representing the overall shape of a short-term 

spectrum may not be appropriate for this task. Such features include Mel-

frequency cepstral coefficients (MFCC) (Rabiner and Juang, 1993) and linear 

predictive coding (LPC) (Rabiner and Juang, 1993), which are commonly used in 

ASR. Nevertheless, the short-term spectra in the T-F regions dominated by speech 

are expected to be similar to those of clean utterances, while the short-term 

spectra of other T-F regions tend to be different. Therefore, we use the short-term 

spectrum within a T-F region as a feature to decide whether this region is 
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dominated by speech or interference. More specifically, we use the energy within 

individual T-F units as the feature to represent the short-term spectrum.   

• Formant transition. It is difficult to estimate the formant frequency of a target 

utterance when there is strong interference. In addition, formant transition is 

embodied in the corresponding short-term spectrum. Therefore, we do not 

explicitly use formant transition in this study.  

• Voicing. The pitch contours estimated by our system provide voicing information 

of a target utterance, which affords the opportunity to deal with voiced speech and 

unvoiced speech differently. In particular, one may build a single classifier that 

distinguishes any speech signal from non-speech signal. One may also build two 

classifiers, one for voiced speech and the other for unvoiced speech. The latter 

choice appears more advantageous since the type of interference that tends to 

confuse voiced speech is generally different from that which confuses unvoiced 

speech. In particular, the first type of interference is periodic or quasi-periodic and 

the second type aperiodic. This way, we may build a classifier that optimally 

distinguishes voiced speech from periodic or quasi-periodic interfering sounds 

instead of all interfering sounds. The same reasoning holds true for unvoiced 

speech. 

• Duration. The duration of an interfering sound should be random, whereas for 

speech, each phoneme has a specific range of durations. However, as discussed in 

Chapter 4, we may not be able to detect the boundaries of phonemes that are 

strongly coarticulated. Therefore it is difficult to find the accurate durations of 
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individual phonemes from an acoustic mixture, and the durations of individual 

phonemes are not utilized in this study.  

In summary, we use the signal energy within individual T-F units to derive the 

features for distinguishing speech from interference. Voiced speech and unvoiced speech 

are handled separately.  

 

6.2 Voiced speech classification 

Let H0 be the hypothesis that a T-F region is dominated by speech and H1 the 

hypothesis that it is dominated by interference. Let X(c, m) be the energy in a T-F unit ucm 

and X(m) = {X(c, m), ∀c} the vector of the energy in all the T-F units at time frame m. 

X(m) is referred to as the cochleagram at frame m (Wang and Brown, 2006). For an 

estimated pitch contour k, let Lk(c, m) be the corresponding mask label of ucm, i.e., 

Lk(c, m) is 1 if ucm is dominated by the source of pitch contour k and 0 otherwise (see 

Section 5.2 and Section 5.3), and Sk the corresponding segregated source. We use Xk(m) = 

{Xk(c, m), ∀c} to represent the cochleagram of Sk at frame m, where,  

  ),(),(),( mcLmcXmcX kk =               (6.1) 

Assuming that an estimated pitch contour k lasts from frame m1 to frame m2, let Xk be the 

cochleagram of Sk within these frames, i.e., Xk = {Xk(m1), Xk(m1+1), …, Xk(m2)}. We label 

Sk as speech if: 

  )|()|( 10 kk HPHP XX >               (6.2) 

Because estimated pitch contours have varied durations, directly estimating P(H0|Xk) and 

P(H1|Xk) for each possible duration is not computationally feasible. Therefore, we first 
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consider a simple approximation that assumes each time frame being independent. That 

is, 

  1,0,))(|()|( 2

1
== ∏ =

imXHPHP
m

mm kiki X         (6.3) 

and Equation (6.2) becomes 
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Since we do not know a priori P(H0|Xk(m)) and P(H1|Xk(m)), we need to estimate 

P(H0|Xk(m)) from training data. With the estimated P(H0|Xk(m)), P(H1|Xk(m)) can then be 

calculated since P(H1|Xk(m)) = 1 – P(H0|Xk(m)). In this study, the training samples are 

obtained from the mixtures of all the utterances in the training part of the TIMIT database 

and 100 intrusions used in Section 5.1A. The iterative algorithm presented in Chapter 5 is 

used to estimate pitch contours and the associated masks for each mixture. We label all 

the obtained masks by comparing them with the corresponding ideal binary masks. For a 

particular mask, if more than half of its energy comes from target-dominant T-F units, we 

label it as target; otherwise, we label it as interference. As in Section 5.1A, we use these 

labeled samples to train an MLP that yields the desired label given a cochleagram. As 

discussed in Section 5.1A, the trained MLP yields a good estimate of P(H0|Xk(m)). The 

number of units in the hidden layer of the MLP is determined to be 20 using cross-

validation.  

We have tested this classifier on the test corpus used in Section 5.3. In particular, for 

an acoustic mixture, we label each segregated voiced sound as either target or 
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interference according to Equation (6.4). All the segregated sounds classified as speech 

are grouped to form the segregated target.  

Figure 6.1 shows the average SNR of thus segregated targets (“Proposed system”). In 

this figure, each value is the average SNR of the segregated target over the 300 mixtures 

of individual targets (see Table 4.1) and intrusions N1-N15 (see Table 4.2); we do not use 

intrusions N16-N20 since they are speech utterances. In comparison, Figure 6.1 also 

shows the SNR of the segregated target with perfect sequential grouping, i.e., all the 

segregated voiced sounds that correspond to target are correctly grouped to form the 

segregated target. As shown in the figure, our system performs well when the mixture 

SNR is high. The average SNR of the segregated target obtained by our system is very 

close to that obtained with perfect sequential grouping when the mixture SNR is 5 dB or 

higher. The performance gap increases as the mixture SNR drops. Specifically, there is a 

−5 0 5 10 15
0

5

10

15

20

S
N

R
 o

f s
eg

re
ga

te
d 

ta
rg

et

Mixture SNR (dB)

Proposed system
Perfect sequential
Single frame

 

Figure 6.1. SNR of segregated voiced target after sequential grouping. 
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1.5 dB performance gap between our system and perfect sequential grouping when the 

mixture SNR is -5 dB. This gap mainly comes from classifying interference as target. 

Note that harmonic sounds within some intrusions, e.g. crowd noise and babble noise, are 

similar to speech signal.  

In our previous study (Hu and Wang, 2005), we considered an alternative method of 

classification. In that study, we first modeled the cochleagram of clean speech at each 

frame using a GMM (Huang et al., 2001); the same is done for interference. We then 

used these models to compute p(Xk(m)|H0) and p(Xk(m)|H1) using the marginal 

distributions in the channels where Lk(c, m) = 1. A segment is classified as target if 

∏∏ ==
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)()|)(()()|)(( 1100
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mm k
m

mm k HPHmXpHPHmXp      (6.5) 

where P(H0) is the prior probability of a segment to be target dominant and P(H1) 

interference dominant. We found that the performance is not as good as MLP-based 

classification. The main reason, we believe, is that GMM is trained to represent the 

distributions of speech and interference accurately, whereas MLP is trained to distinguish 

speech and interference and therefore has more discriminative power, as we have 

discussed in Section 5.1A. 

Instead of treating individual frames as independent, it is possible to consider the 

dependence between consecutive frames, as we did in our previous studies (Hu and 

Wang, 2005; Wang and Hu, 2006). More specifically, we have considered the case of the 

observation at a particular frame being dependent only on the pervious frame: 

1,0)),1(,|)(())1(,),2(),1(,|)(( =−=− imXHmXpmXXXHmXp kikkkkik �  (6.6) 

Consequently, Equation (6.2) becomes 
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Similar to the training used in the estimation of P(H0|Xk(m)), we train an MLP to 

estimate P(H0|Xk(m–1), Xk(m)) and use Equation (6.7) to distinguish speech and 

interference. The obtained result is similar to that obtained by assuming independence 

among frames. Hence for this task, it appears that considering dependence between 

consecutive frames does not help in performance, which may be due to the following 

reason. The advantage of considering the dependence between consecutive frames is the 

ability to incorporate the dynamics of signal across time. Since in the iterative algorithm 

described in the pervious chapter, masks are estimated with the constraint of temporal 

continuity (see Section 5.3), the signal within a mask tends to be stable for either speech 

or interference. Further considering the dynamics of a signal within a mask does not seem 

to provide more information for distinguishing speech and interference. In fact, the 

signals within many masks are so stable across time that by using only one frame for each 

mask, we can already distinguish speech and interference well. To illustrate this point, we 

classify each obtained mask by using the cochleagram at a single frame in the middle of 

the mask. The average SNR of such segregated target is shown in Figure 6.1, which is 

only slightly worse that those using information from all the frames.  
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6.3 Unvoiced speech classification 

The task here is to identify the segments dominated by unvoiced speech among the 

segments obtained in the segmentation stage. An obtained segment may be dominated by 

voiced speech, unvoiced speech, or non-speech interference. Segments dominated by 

voiced speech have been identified in the previous process of voiced speech segregation 

(see Section 5.3). Our task here is to distinguish the segments dominated by unvoiced 

speech from those dominated by non-speech interference. This is performed in two steps: 

Segment reduction and segment categorization. In segment reduction, we utilize the 

segregated voiced speech to remove some segments that do not correspond to unvoiced 

speech. In segment categorization, we identify the segments dominated by unvoiced 

speech among the remaining ones and group them into the segregated speech.  

 

A. Segment reduction 

Since our task here is to group segments for unvoiced speech, segments mainly 

contain periodic or quasi-periodic signals unlikely originate from unvoiced speech. A 

segment is removed if more than half of its total energy is included in the T-F units 

dominated by a periodic signal. We consider a T-F unit ucm dominated by a periodic 

signal if it is labeled 1 in the masks associated with an estimated pitch contour or has a 

high cross-channel correlation, i.e., C(c, m) > 0.985 or CE(c, m) > 0.985.  

Among the remaining segments, a segment dominated by unvoiced target is likely 

located in the unvoiced time frames of a target utterance, though it may contain some T-F 

units at the voiced time frames of the target speech since expanded obstruents often 
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contain both voiced and unvoiced signal (see Section 2). This property is, however, not 

shared by interference-dominant segments that may have significant energy in the voiced 

frames of the target. Such segments are removed as follows. 

We first label the voiced frames of a target utterance that unlikely contain an expanded 

obstruent, according to the segregated voiced target. Let LT(m) be the corresponding 

labels of T-F units of the segregated target at frame m and XT(m) the corresponding 

cochleagram, i.e. XT(m) = {XT(c, m), ∀c} where XT(c, m) = X(c, m)LT(c, m). Let H0,a be 

the hypothesis that the segment is dominated by an expanded obstruent and H0,b that the 

segment is dominated by any other phoneme. A voiced frame m is labeled as not 

dominated by an expanded obstruent if 

  ))(|())(|( ,0,0 mXHPmXHP TbTa <                 (6.8) 

Again, an MLP with one hidden layer of 20 units is trained to estimate P(H0,a|XT(m)) and 

P(H0,b|XT(m)).  

A segment is removed if its energy in these labeled frames is greater than 50% of its 

total energy. As a result of this step, many segments dominated by interference are 

removed. We find that this step increases the robustness of the system and greatly 

reduces the computational burden for the following segment categorization.  

 

B. Segment categorization 

In this step, we classify a remaining segment as being dominated by either unvoiced 

speech or interference. Let s be a remaining segment lasting from frame m1 to m2, and 

Xs(m) = {Xs(c, m), ∀c} be the corresponding cochleagram at frame m. That is, 
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Let Xs = [Xs(m1), Xs(m1+1), …, Xs(m2)]. s is classified as dominated by unvoiced speech 

if: 

 )|()|( 1,0 ssa HPHP XX >                   (6.10) 

Recall that H1 denotes the hypothesis that a T-F region is interference dominant. As 

discussed before, to simplify the computation of P(H0 ,a |Xs) and P(H1 |Xs), we assume 

that individual frames are statistically independent. Therefore, Equation (6.10) becomes: 
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mm sa mXHPmXHP        (6.11) 

The prior probabilities P(H0,a) and P(H1) depend on the SNR of acoustic mixtures. 

Figure 6.2 shows the observed logarithmic ratios between P(H0,a) and P(H1) from the 

training data at different mixture SNR levels. The relationship shown in the figure can be 

approximated with a linear function.  

  1.8962 SNR .11660
)(

)(
log

1

,0 −=
HP

HP a        (6.12) 

If we can estimate the mixture SNR by taking advantage of the segregated voiced target, 

we can estimate the log ratio of P(H0,a) and P(H1) and use it in Equation (6.11). This 

essentially allows us to be more stringent in identifying a segment as speech when the 

mixture SNR is low, which is beneficial since at lower SNR levels intrusion is more 

disruptive.  

We propose to estimate the SNR of an acoustic mixture using the voiced target 

segregated from the mixture, i.e., the target stream obtained after sequentially grouping 
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segregated voiced sounds. Let E1 be the total energy included in the T-F units labeled 1 at 

the voiced frames of the target. One may use E1 to approximate the target energy at 

voiced frames and estimate the total target energy as αE1. By analyzing the training part 

of the TIMIT database, we found that parameter α — the ratio between the total energy 

of a speech utterance and the total energy at the voiced frames of the utterance — varies 

substantially across individual utterances. In this study, we set α to 1.09, the average 

value of all the utterances in the training part of the TIMIT database. Let E2 be the total 

energy included in the T-F units labeled 0 at the voiced frames of the target, N1 the total 

number of these voiced frames, and N2
 the total number of other frames. We use E2/N1 to 

approximate the interference energy per frame and estimate the total interference energy 
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Figure 6.2. Ratio between the prior distribution of target and that of interference as a 
function of the mixture SNR. 
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as E2(N1+N2)/N1. Consequently, the estimated mixture SNR is: 
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Given α = 1.09, 10log10α = 0.37 dB. We have applied this SNR estimation to the test 

corpus. Figure 6.3(a) shows the mean and the standard deviation of the estimation error at 

each SNR level of the original mixtures; the estimation error equals to the estimated SNR 

subtracted by the true SNR. As shown in the figure, the system yields a reasonably good 

estimate when the mixture SNR is lower than 10 dB. When the mixture SNR is higher 

than 10 dB, Equation (6.13) tends to yield a value that is lower than the true SNR. As we 

discussed in Section 2.2, some voiced frames of the target, such as those corresponding to 

expanded obstruents, may contain some unvoiced target energy, which is not included in 

E1 but in E2. When the mixture SNR is low, this part of unvoiced target energy is much 

lower than the voiced target energy and the interference energy. Therefore, it is negligible 

and Equation (6.13) provides a good estimate of the mixture SNR. When the mixture 

SNR is high, this unvoiced target energy is comparable to interference energy and as a 

result the estimated SNR is systematically lower than the true SNR. 

Alternatively, since our task here is to group segments for unvoiced speech, we have 

considered estimating the mixture SNR at the unvoiced frames of the target and then 

using this estimated SNR to determine the corresponding P(H0,a) and P(H1) values in a 

manner similar to Equation (6.12). In particular, we approximate the target energy at 

unvoiced frames as (α−1)E1 and the interference energy at these frames as E2⋅N2/N1. The 

estimated SNR at unvoiced frames is then: 
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Given α = 1.09, 10log10(α −1) = -10.45 dB. We have applied this SNR estimate to the test 

corpus. Figure 6.3(b) shows the mean and the standard deviation of the estimation error at 

each SNR level of the original mixtures; here the estimation error equals to the estimated 

SNR at the unvoiced frames of the target subtracted by the true SNR at unvoiced frames. 

As shown in the figure, this estimate at unvoiced frames, not surprisingly, is not as good 
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Figure 6.3. Mean and standard deviation of the estimated SNRs of the mixtures in the 
test corpus. (a) Estimate of the overall mixture SNR using Equation (6.13). (b) 
Estimate of the mixture SNR at the unvoiced frames of the target using Equation 
(6.14). (c) Estimate of the overall mixture SNR using Equation (6.15). (d) Estimate of 
the mixture SNR at the unvoiced frames of the target using Equation (6.16). 
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as the estimate of the overall mixture SNR shown in Figure 6.3(a). In particular, the 

standard deviation is much larger. As we have previously discussed, α varies 

substantially across individual utterances. Since α  is close to 1, a small change of the α 

value causes a more significant change of 10log10(α−1) than that of 10log10(α). As a 

result, there is much higher variation in the error estimation from Equation (6.14) than 

Equation (6.13).  

The variation of the parameter α is partially from the variation of the relative durations 

of unvoiced speech across different utterances. To remove the influence of this duration 

variation in our SNR estimation, we have considered estimating the target energy at the 

unvoiced frames based on the frame-level ratio of the average energy of speech 

utterances at unvoiced frames and that at voiced frames. Let β be the ratio. We 

approximate the total target energy at the unvoiced frames as βE1⋅N2/N1. Therefore, we 

estimate the overall mixture SNR as: 
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and the SNR at the unvoiced frames of the target as:  
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Here we set β to 0.12, estimated from the training part of the TIMIT database. We have 

applied these two SNR estimates to the test corpus. Figures 6.3(c) and 6.3(d) show the 

means and the standard deviations of the corresponding estimation errors, respectively. 

From Figures 6.3(a) and 6.3(c), we can see that Equations (6.13) and (6.15) yield similar 

estimates of the overall mixture SNR on the test corpus. In particular, the standard 

deviations of both estimates are almost the same. On the other hand, as shown in Figures 

6.3(b) and 6.3(d), the SNR at the unvoiced frames estimated using Equation (6.14) is 

notably better than that using Equation (6.16). However, the standard deviations of both 

estimates are still quite similar. This suggests that the variation of all the above SNR 

estimates is caused mainly by the energy variation of phonemes in speech utterances. 

We have applied the above estimates to obtain the corresponding P(H0,a) and P(H1) 

values. These values are combined with the output of the obtained MLP to yield 

P(H0,a|Xs(m)) at the estimated SNR level. Then we label a segment as either speech or 

interference according to Equation (6.11). All the segments labeled as speech are added 

to the segregated voiced stream, which yields the final segregated stream. In our test, the 

above SNR estimates yield similar performance. The result reported here is using the 

SNR estimate of Equation (6.13).  

This method for segregating unvoiced speech is very similar to a previous version 

(Wang and Hu, 2006), except that here we use the estimated mixture SNR to determine 

an SNR-dependent prior probabilities while in the previous system we used fixed prior 

probabilities at all the SNR levels. We find that using SNR-dependent prior probabilities 

gives better performance, especially when the mixture SNR is high. In another 
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preliminary study (Hu and Wang, 2005), we used GMM to model both speech and 

interference and then classified a segment using the obtained models. The performance in 

that study is not as good as the present method for the reasons given in Section 6.2. In 

addition, we note that considering the dependence between consecutive frames yields 

similar performance, again for the same reasons as given in Section 6.2.  

We have also considered using SNR-dependent prior probabilities in the sequential 

grouping of segregated voiced sounds (see Section 6.2), but did not obtain a significant 

performance gain. This is presumably because our classifier already works well without 

knowing SNR levels, especially when the mixture SNR is high.  

 

6.4 Overall Evaluation 

We now evaluate the overall performance of the complete system on the test corpus 

described in Section 4.6. This test corpus contains 20 utterances randomly selected from 

the test part of the TIMIT database listed in Table 4.1 and 20 intrusions listed in Table 

4.2. These intrusions have a considerable variety. Some of them are noise-like, such as 

the wind (N9) and the cocktail party noise (N11), and some contain strong harmonic 

sounds, such as the siren (N3) and the electric fan (N5). They form a good corpus for 

testing the capacity of a CASA system in dealing with various types of interference. In 

this evaluation, we only use intrusions N1-N15 since intrusions N16-N20 are speech 

utterances. 

We evaluate our system by comparing the segregated target with the ideal binary mask 

— the stated computational goal. As in Section 5.4, two error measures are used here: 
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percentage of energy loss PEL and percentage of noise residue PNR (Hu and Wang, 

2004a).  

The PEL and PNR values at different input SNR levels are shown in Figures 6.4(a) and 

6.4(b). Each value in the figure is the average over the 300 mixtures of individual targets 

and intrusions N1-N15. As shown in the figure, for the final segregation, our system 

captures an average of 76.4% of target energy at -5 dB SNR. This value increases to 

97.6% when the mixture SNR increases to 15 dB. On average 22.9% of the segregated 

target belongs to interference at -5 dB. This value decreases to 0.7% when the mixture 

SNR increases to 15 dB. In summary, our system captures a majority of target without 

including much interference. 

To see the performance of our system on voiced speech and unvoiced speech 

separately, we measure PEL for the target in the voiced frames and that in the unvoiced 

frames. The average of these PEL values at different SNR levels are shown in Figures 

6.4(c) and 6.4(d). Note that since some voiced frames contain unvoiced target, these are 

not exactly the PEL values of voiced speech and unvoiced speech. Nevertheless, they are  

close to the real values. As shown in the figure, our system performs very well on voiced 

speech. In particular, our system captures 79.0% of the target energy at the voiced frames 

when the mixture SNR is -5 dB and 99.1% when the mixture SNR is 15 dB. As expected, 

the system does not perform nearly as well for unvoiced speech. It captures 30.3% of the 

target energy at the unvoiced frames when the mixture SNR is -5 dB and 78.6% when the 
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Figure 6.4. System performance. In this figure, “Final” refers to the final segregated 
target, “Voiced” refers to the segregated voiced target, “Voice neighborhood” refers to 
the segregated voiced target without using estimated T-segments, and “Perfect 
sequential” refers to segregated target with perfect sequential grouping of both voiced 
and unvoiced speech. (a) Average percentage of energy loss. (b) Average percentage 
of noise residue. (c) Average percentage of energy loss for voiced speech. (d) Average 
percentage of energy loss for unvoiced speech. (e) Average percentage of energy loss 
for stop consonants. (f) Average percentage of energy loss for fricatives and affricates. 
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mixture SNR is 15 dB. Overall, our system is able to capture more than 50% of target 

energy at the unvoiced frames when the mixture SNR is greater than or equal to 0 dB.  

As discussed in Section 2.2, expanded obstruents often contain voiced and unvoiced 

signals at the same time. Therefore, we measure PEL for these phonemes separately in 

order to gain more insight into system performance. Because affricates do not occur very 

often and they are similar to fricatives, we measure the PEL for fricatives and affricates 

together. The average of these PEL values at different SNR levels are shown in Figures 

6.4(e) and 6.4(f). As shown in the figure, our system performs somewhat better for stops 

when the mixture SNR is lower than 0 dB and somewhat better for fricatives and 

affricates when the mixture SNR is higher than 5 dB. On average, the system captures 

about 50% of these phonemes when the mixture SNR is -5 dB and about 90% of them 

when the mixture SNR is 15 dB.  

To see the advantages of segmentation, Figure 6.4 also show the PEL and PNR values 

for the segregated voiced target obtained by sequentially grouping masks generated by 

our system with the iterative algorithm described in Chapter 5. As discussed in Chapter 5, 

we consider two methods in labeling T-F units, one using information from a 

neighborhood of T-F units (“Voiced neighborhood”) and the other further using 

estimated T-segments (“Voiced”). Figure 6.4 shows the results for these methods. As 

shown in the figure, the second method captures about 3.2% more of target energy at the 

voiced time frames and 17.4% more at the unvoiced frames on average. This additional 

17.4% of target energy mainly corresponds to unvoiced phonemes that have strong 

coarticulation with neighboring voiced phonemes. By comparing these PEL and PNR 
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values with those of the final segregated target, we can see that grouping segments 

dominated by unvoiced speech helps to recover a significant amount of unvoiced target. 

It also includes a small amount of additional interference energy, especially when the 

mixture SNR is low. Overall, the performance clearly demonstrates that segmentation is 

important for segregating unvoiced speech. 

In addition, Figure 6.4 shows the PEL and PNR values for the segregated target obtained 

from perfect sequential grouping of masks for voiced speech and segments for unvoiced 

speech. As shown in the figure, there is a performance gap that can be narrowed with 

better sequential grouping, especially when the mixture SNR is low. 

We also measure the system performance in terms of SNR by treating the target 

resynthesized from the corresponding ideal binary mask as signal (see Section 5.4B). 

Figures 6.5(a) and 6.5(b) show the overall average SNR values at different levels of 

mixture SNR and the corresponding SNR gain. Our system improves SNR in all input 

conditions. In particular, the average SNR gain is 10.7 dB when the mixture SNR is -5 

dB and 2.8 dB when the mixture SNR is 15 dB.  

As in the evaluation of our previous system (Hu and Wang, 2004a), to see the ability 

of our system in dealing with various types of intrusions, we show in Figure 6.6 the 

average SNR improvement obtained by our system for each intrusion when the mixture 

SNR is 0 dB. These intrusions are listed in Table 4.2. As shown in the figure, our system 

obtains significant SNR improvement for all the intrusions. The best performance is 

obtained for three types of intrusions: N1 (white noise), N6 (clock alarm), and N12 

(crowd noise from a playground). Our system does not perform as well on three 
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Figure 6.5. (a) SNR of segregated target. (b) SNR gain of segregated target. (c) SNR 
of segregated target at unvoiced frames. (d) SNR gain of segregated target at 
unvoiced frames.  
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intrusions, N2 (rock music), N5 (electrical fan), and N15 (babble noise), as others. The 

errors for these three intrusions are mainly caused by erroneous sequential grouping, in 

which our system misclassifies some sounds from these intrusions as target signal. In 

addition, Figure 6.6 also shows the SNR improvement of the voiced targets segregated 

with and without obtained T-segments, referred to as “Voiced” and “Voiced 

neighborhood”, respectively. In most conditions, using obtained T-segments helps to 
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Figure 6.6. SNR of segregated target for each intrusion. The input SNR is 0 dB. In 
this figure, “Final” refers to the final segregated target, “Voiced” refers to the 
segregated voiced target, and “Voice neighborhood” refers to the segregated voiced 
target without using estimated T-segments. 
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improve the performance, except for intrusions N3 (siren) and N15 (babble noise), where 

the performance degradation is caused by the mismatch error in segmentation. Further 

sequential grouping of unvoiced segments improves SNR for most intrusions, but not for 

intrusions N4 (telephone), N5 (electric fan), N8 (bird chirp and water flowing), and N10 

(rain), especially for N8. The performance degradation is caused by labeling interference-

dominant segments as target during the sequential grouping of unvoiced segments. On 

average, we obtain a 9.1 dB gain of SNR for the proposed system (“Final”), a 9.3 dB gain 

for the voiced targets segregated using obtained T-segments (“Voiced”), and an 8.8 dB 

gain for those without using obtained T-segments (“Voiced neighborhood”). The final 

version performs the best overall if the results for N8 are excluded. 

To put our performance in perspective, we have compared it with spectral subtraction, 

a standard method for speech enhancement (Huang et al., 2001). The method is applied 

as follows. For each acoustic mixture, we assume that the time positions of the silent 

portions of a target utterance are known and use the short-term spectra of interference in 

these portions as the estimates of interference. Interference is attenuated by subtracting 

the most recent interference estimate from the mixture spectrum at every time frame. 

Figure 6.5(a) shows the SNR obtained by spectral subtraction, and Figure 6.5(b) the SNR 

at unvoiced frames of the target utterance. As shown in the figure, both methods obtain 

SNR improvement in all the SNR levels. Our system performs substantially better than 

the spectral subtraction method for both voiced and unvoiced speech except for unvoiced 

speech at the input SNR of 15 dB. The improvement is more pronounced when the 

mixture SNR is low. 
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As an example, Figures 6.7(e) and 6.7(f) show the mask and the waveform of the 

target segregated from the mixture M1 shown in Figure 1.2(d). Compared with the ideal 

mask in Figure 6.7(g) and the corresponding resynthesized waveform in Figure 6.7(h), 

our system segregates most target energy and rejects most interfering energy. The SNR of 

this segregated target is 15.1 dB. In addition, Figures 6.7(a) and 6.7(b) show the mask 

and the waveform of the voiced target segregated by labeling individual T-F units using 

information from a neighborhood of T-F units. Figures 6.7(c) and 6.7(d) show the mask 

and the waveform of the voiced target segregated using T-segments. The target utterance, 

“That noise problem grows more annoying each day,” includes 5 stops (/t/ in “that”, /p/ 

and /b/ in “problem”, /g/ in “grows”, and /d/ in “day”), 3 fricatives (/�/ in “that”, /z/ in 

“noise”, and /z/ in “grows”), and 1 affricate (/t�/ in “each”). The unvoiced part of some 

consonants that have strong coarticulation with the voiced speech, such as /�/ and /t/ in 

“that” and /d/ in “day”, are segregated by using T-segments. The unvoiced part of /z/ in 

“noise” and /t�/ in “each” are segregated by grouping the corresponding segments. Except 

for a significant loss of energy of /p/ in “problem” and some energy loss of /g/ in 

“grows”, our system segregates most energy of the above consonants. 
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Figure 6.7. Segregated target of the mixture M1 shown in Figure 1.2(d). (a) Mask of 
the voiced target segregated by labeling individual T-F units using information from a 
neighborhood of T-F units. (b) Waveform resynthesized from the mask in (a). (c) 
Mask of the voiced target segregated using estimated T-segments. (d) Waveform 
resynthesized from the mask in (c). (e) Mask of segregated target, including both 
voiced and unvoiced portions of target. (f) Waveform resynthesized from to the mask 
in (e). (g) Ideal binary mask of target. (h) Waveform resynthesized from the ideal 
binary mask.  
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CHAPTER 7  

CONTRIBUTIONS AND FUTURE WORK

 
7.1 Summary 

In this dissertation, we have proposed a CASA system for monaural speech 

segregation. The proposed system segregates a target utterance from an acoustic mixture 

in four stages: Peripheral analysis, feature extraction, segmentation, and grouping. In the 

first stage, the system decomposes the acoustic mixture into T-F units with bandpass 

filtering and subsequent time windowing. Each T-F unit corresponds to a small T-F area 

within a filter channel and a time frame. In the second stage, our system extracts auditory 

features corresponding to ASA cues, including harmonicity, AM rates, onset and offset. 

In the third stage, our system segments the input mixture via a multiscale analysis of 

onset and offset. In particular, segments for both voiced and unvoiced speech are 

generated by our system. In the last stage, our system groups T-F units dominated by the 

target utterance. It first estimates pitch contours of the target utterance and segregates 

sounds corresponding to the estimated pitch contours in an iterative manner. Our system 
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then sequentially groups the segregated voiced sounds from a target utterance. In this 

study, we consider the situation when interference is non-speech signal and sequentially 

group voiced speech using a feature-based classifier that distinguishes speech signal from 

non-speech signal. Similarly, our system segregates unvoiced speech by classifying the 

segments obtained in the third stage as either target or interference and grouping speech 

segments with the segregated voiced target.  

Our proposed system has been systematically and extensively evaluated with mixtures 

of speech utterances and various types of intrusions. The evaluation shows that our 

system captures most energy of a target utterance without including much interference. 

The performance of our system is substantially better than previous CASA systems and 

the spectral subtraction method for speech enhancement. Our research has advanced the 

state-of-the-art in speech segregation by a considerable margin. 

 

7.2 Contributions 

Our study on monaural speech segregation makes several novel contributions.  

First, we have proposed segregation of voiced speech in the high-frequency range 

based on the AM of unresolved harmonics. In addition, we use supervised learning to 

optimally combine the periodicity cue and the AM cue to segregate voiced speech. As a 

result, our system is able to segregate a majority of voiced speech in the high-frequency 

range. Recall that voiced speech segregation in the high-frequency range has been a 

serious problem for previous CASA systems. 



 163 

Second, we have proposed an algorithm that estimates target pitch and segregates 

voiced target in tandem. This algorithm iteratively improves the estimation of both target 

pitch and voiced target. Our algorithm is robust to interference and produces a good 

estimate of both the pitch and the voiced utterance even in the presence of strong 

interfering sound.  

Third, we have proposed a method of segmenting an acoustic scene via a multiscale 

analysis of onset and offset of auditory events. This analysis provides a general 

framework for auditory segmentation since onsets and offsets are common cues to all 

sounds – voiced speech, unvoiced speech, and non-speech sounds. Consequently, our 

system is able to segment both voiced and unvoiced speech. Our study shows that event 

onsets and offsets can play a fundamental role in sound organization (Turgeon et al., 

2002). Although it is well known that onset and offset are important ASA cues, few 

computational studies have previously explored their usage. Brown and Cooke 

incorporated common onset and common offset as grouping cues in their CASA system 

but did not find any significant performance improvement (Brown and Cooke, 1994).  

Fourth, we have proposed segregating unvoiced speech by onset/offset-based 

segmentation and subsequent feature-based classification. This is the first systematic 

study of unvoiced speech segregation. Our system segregates unvoiced speech well. In 

particular, the system captures more than 50% of unvoiced speech even when the mixture 

SNR is at 0 dB.  
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7.3 Insights gained  

There are several important insights gained during this dissertation study. Our first 

observation is that the temporal properties of acoustic signals are very useful for 

segregation. Our system includes extensive usage of temporal properties. In particular, 

the system groups target sounds in consecutive frames based on the temporal continuity 

of speech signal. It uses temporal continuity to improve the estimation of target pitch. 

Furthermore, our system generates segments based on analyzing sound intensity across 

time, i.e., onset and offset detection. The importance of temporal properties of speech for 

human speech recognition has been demonstrated by Shannon et al. (1995; 1998). In 

addition, several studies in ASR suggest that long-term temporal information helps to 

improve the recognition rate (Hermansky and Sharma, 1999; Sharma et al., 2000). All 

these observations show that temporal information plays a critical role in sound 

organization and recognition. 

We also find that it may be advantageous to segregate voiced speech first and then use 

the segregated voiced speech to aid the segregation of unvoiced speech. As discussed 

before, unvoiced speech is more vulnerable to interference and more difficult to 

segregate. Segregation of voiced speech is more reliable and can be used to improve the 

segregation of unvoiced speech. Our system shows that the unvoiced speech having 

strong coarticulation with voiced speech can be readily segregated based on segregated 

voiced speech and estimated T-segments. Segregated voiced speech is also used to 

specify the possible T-F locations of unvoiced speech. As a result, our system need not 

search the entire T-F region for segments dominated by unvoiced speech and is less likely 
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to identify an interference-dominant segment as target. In addition, we have proposed a 

method of using an estimate of the mixture SNR using segregated voiced speech that 

helps the system to adapt the prior probabilities in identifying segments of unvoiced 

speech. 

In addition, segment formation is important for unvoiced speech segregation. In our 

system, the segmentation stage provides T-segments that help to segregate unvoiced 

speech having strong coarticulation with voiced speech. As shown by Cole et al. (Cole et 

al., 1996), such portions of speech are important for speech intelligibility. Furthermore, 

most unvoiced speech is segregated by grouping the estimated segments that are 

dominated by unvoiced speech. 

Finally, we have introduced the notion of a time-segment (T-segment) in a filter 

channel. A T-segment defines a period of time within a narrow passband which contains 

signal mainly from one source. Our study shows that one can accurately determine T-

segments based on onset and offset analysis. In addition, our study includes two methods 

of grouping T-segments across frequency channels. First, T-segments are merged across 

frequency based on common onset and offset in the segmentation stage. This method 

works for both voiced and unvoiced speech. Second, in grouping voiced speech, our 

system integrates T-segments across frequency based on the estimated pitch. We find that 

the second method works better for voiced speech than the first one, which suggests that 

periodicity is a more reliable cue for organizing signal across frequency. 
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7.4 Remaining challenges and future work 

We should point out that our approach is primarily feature-based. Features such as 

periodicity, AM, and onset, are general properties of all types of sounds. Our system does 

not employ specific prior knowledge of target or interference, except in sequential 

grouping, where we have utilized the acoustic and phonetic properties of speech and 

interference. Prior knowledge helps human ASA in the form of schema-based, or model-

based, grouping (Bregman, 1990). As discussed before, model-based sound organization 

has been studied (Ellis, 1996; Roweis, 2001; Roweis, 2003). In particular, Barker et al. 

coupled segmentation with explicit speech models (Barker et al., 2005). Srinivasan and 

Wang used word models to restore phonemes that are masked by interference (Srinivasan 

and Wang, 2005). In general, feature-based approaches have broader applicability, 

whereas model-based approaches work better when the models fit the real situation. An 

important issue for future research in CASA is how to integrate feature-based and model-

based approaches. 

A natural speech utterance contains silent gaps and other sections masked by 

interference. In practice, one needs to group the utterance across such time intervals. This 

is the problem of sequential grouping. In this study, we handle this problem in a limited 

way by applying feature-based classification assuming non-speech interference. 

Systematic evaluation shows that although our system yields good performance, it is still 

far from perfect with regard to sequential grouping. The assumption of non-speech 

interference is obviously not applicable to mixtures of multiple speakers. As discussed in 

Section 2.3, sequentially grouping segments or masks may be achieved by using speech 
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recognition in a top-down manner (Barker et al., 2005) or by speaker recognition using 

trained speaker models (Shao and Wang, 2005). Nevertheless, these studies on sequential 

grouping are still not mature. Substantial effort is needed to develop a general approach 

for sequential grouping.  

In this study, we use the term target to refer to the target utterance we aim to 

segregate. In practice, which sound source should be considered as target is task-

dependent. Even when the target is known in advance, it is not a trivial problem for a 

CASA system to decide which segregated sounds belong to the target. This problem is 

closely related to the problem of sequential grouping and in many situations one can deal 

with them at the same time. For example, if our goal is to segregate utterances from a 

particular speaker, we could solve both problems by recognizing the speaker of a 

segregated stream and grouping streams accordingly. In other situations, one may 

approach these two problems differently.  

Room reverberation is another important issue that must be addressed before speech 

segregation systems can be deployed in real world environments. Reverberation raises 

several challenges for CASA. First, it smears temporal information, such as onset and 

particularly offset, within a sound. Second, it corrupts periodic information of a harmonic 

source. Since both temporal and periodicity cues are important for our system, we expect 

segregation performance to drop in a reverberant condition. A few previous studies have 

addressed the problem of speech segregation with room reverberation. Kingsbury et al. 

suggested using the modulation spectrogram to remove reverberation and extract robust 

features for speech recognition (Kingsbury et al., 1998). Palomaki et al. proposed to 
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separate reverberant speech from interference based on an onset analysis of target speech 

using the modulation spectrogram (Palomaki et al., 2004). Roman and Wang recently 

conducted a study on pitch-based segregation of reverberant speech (Roman and Wang, 

2005). Despite these studies, room reverberation remains a considerable challenge for 

future research. 

Finally, we remark that CASA is a highly promising approach to the speech 

segregation problem. Although there is still a significant gap between the performance of 

speech segregation systems and that of a human listener with normal hearing, we believe 

that further advances along the CASA path will eventually bridge this gap.  
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