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ABSTRACT

Relapsing remitting multiple sclerosis (RRMS) is a chronic and autoimmune dis-

ease where the disease states alternate between the relapse and remission. Magnetic

resonance imaging (MRI) is widely used to monitor the pathological progression of

this disease. The longitudinal T1-weighted Gadolinium-enhancing MRI lesion count

sequences provide information on the onset and sojourn time of the lesion enhance-

ment. We construct biologically interpretable queueing models for the longitudinal

data of these lesion counts that describe the natural evolution of the lesions. The

infinite-server queue with Poisson arrival process and exponential service (M/M/∞)

is proposed for this purpose. The rate of the Poisson arrival process can also be al-

lowed to be governed by a two-state hidden Markov chain. We describe the likelihood

function for each model based on appropriate assumptions and fit these models to

data from 9 RRMS patients. We obtain the maximum likelihood estimators of the pa-

rameters of interest arising from these models and study their asymptotic properties

through simulation. We discuss the validation of the assumptions for the proposed

models and examine the robustness of these estimators. We suggest the application

of the models for characterizing the disease progression and testing treatment effect

and discuss implication for planning of RRMS clinical trials.
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CHAPTER 1

Introduction

Multiple sclerosis (MS) is a well known progressive, autoimmune disease affecting

the human central nervous system. Relapsing remitting multiple sclerosis (RRMS) is

mostly seen among the MS patients in their early disease stages. In clinical studies,

other than clinical evidence such as the number of relapses or changes in Expanded

Disease Status Scale (EDSS) scores, magnetic resonance imaging (MRI) has been

applied to identify lesions in the brain and spinal cord. The MRI is also used to help

the diagnosis of MS and track the subclinical activity. Natural evolution history of

a lesion is a very complicated process. As the standard measures in clinical trials

in RRMS, gadolinium-enhancing (Gd-enhancing) lesion counts provide an index of

the inflammatory activity at the time of the MRI scan. Gd-enhancement occurs in

almost all new lesions and it lasts for a while. The serial monthly MRI study has

the information on the time course of the enhancement. The Gd-enhancing lesion

counts have become the primary endpoints in phase II studies and secondary outcome

measures in phase III studies for those treatments targeting the inflammatory aspects

of the disease.
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In Chapter 2, we introduce some basic knowledge about MS and MRI measure-

ments. For Gd-enhancing lesion count data, a statistical review of the models pro-

posed in the literature for the total lesion count sequence or the new lesion count

sequence is given. The review covers the negative binomial model for the cross-

sectional study proposed by Sormani et al. (1999) and the Markov regression model

as well as the hidden Markov models for the longitudinal study proposed by Albert

et al. (1994). As far as we know, no model in the literature has ever taken both the

new and total lesion counts into account even though such data have been available.

Since the newly enhancing lesions form a portion of the total enhancing lesions, we

propose to model the relationship between the new and the total counts across time

using a special queueing process as a possible approximation to the biological process.

This is done in Chapter 3. The patient is taken as the system, and the lesions are the

customers who come in and get service (enhancement). We make assumptions about

the arrival distribution and the service distribution. The likelihood functions are

derived thereafter. We fit the models to Gd-enhancing MRI lesion count sequences

from 9 RRMS patients. We discuss the estimation of the parameters in these models

as well as their interpretation. We suggest settings where a particular model may be

more appropriate than others.

In Chapter 4, we examine the long-run property for one of our proposed models.

Simulation results are provided to show the asymptotic normality of the maximum

likelihood estimators for the model parameters.

The validity of the model assumptions are addressed in Chapter 5. We provide

formal inference such as likelihood ratio test for nested models. Simulations are used

to illustrate the robustness of the model estimation when minor departures from the

2



assumptions exist. In Chapter 6, we discuss the application of the models. We illus-

trate how to test disease progression and how to take account of the heterogeneity

among RRMS patients using our proposed models. Some power studies are given

using simulation. Application issues related to sample size calculation for the experi-

mental design of a RRMS clinical trial are addressed. We summarize the thesis work

in Chapter 7 and discuss some potential future work.
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CHAPTER 2

Medical and Statistical Literature Review

2.1 Multiple Sclerosis (MS)

Multiple sclerosis (MS) is a common chronic and progressive disease of the white

matter in the central nervous system (CNS). In total there are about 1.1 to 2.5 million

of MS patients in the world. More than 50% of the cases have occurred in Canada,

North America, Australia, Russia and northern Europe. Approximately 250,000 to

350,000 patients are in the United States. This disease tends to be more prevalent in

higher latitudes (40 to 60 degrees south and north).

2.1.1 Clinical Characteristics of MS

In general, most of the MS patients start at a relapsing-remitting phase, expe-

riencing different combinations of symptoms occasionally. The symptoms include

problems with speech, walking, vision loss, bladder or bowel dysfunctions, dizziness,

seizures, etc. Acute attacks or exacerbations are called relapses. Here exacerbation

refers to increasing severity of previously observed symptoms. A relapse is defined as

the appearance of new symptoms or the reactivation of old ones lasting more than

24 hours in the absence of change in core body temperature or infection (information

4



from www.mssociety.org.uk). Patients can stay in the relapse period for hours, days,

even months. The recovery after the relapse is the remission, which may last for

years.

The course of MS is very unpredictable for any particular person. Some individuals

experience rapid progression to total disability and others may not be affected much

by the disease for years. Even within an individual patient, the disease activity varies

largely through time. Usually, younger patients with early onset will have a slower

disability progression . However, the disease continues with or without clinical attacks

as the disability becomes more visible and eventually the remission stops.

2.1.2 Types of MS

There are four basic types of MS which characterize the ongoing disease course:

1. Relapsing remitting multiple sclerosis (RRMS): Patients experience clearly de-

fined relapse episodes followed by a partial or complete recovery (remission).

The National MS Society Advisory Committee on Clinical Trials defined RRMS

as “clearly defined disease relapses with full recovery or with sequelae and resid-

ual deficit upon recovery; periods between disease relapses characterized by a

lack of disease progression” (Lublin and Reigold, 1996). For about 85% of MS

patients start out with this type.

2. Secondary progressive multiple sclerosis (SPMS): Patients experience an initial

period of RRMS followed by steadily worsening disease course with or without

occasional relapses or minor remissions. Usually RRMS patients evolve into

SPMS.
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3. Primary progressive multiple sclerosis (PPMS): Patients experience a slow but

nearly continuous worsening of the disease from the onset, with no distinct

relapses or remissions. The rate of the progression might be different. It occurs

only in about 10% of the MS patients and the patients tend to be older.

4. Progressive relapsing multiple sclerosis (PRMS): Patients experience a progres-

sion of the disease from the onset, with occasional clear relapses. About 5% of

the MS patients are in this category.

Our research work focuses on the study of RRMS.

2.1.3 Pathological Features of MS

Although MS is widely accepted as an autoimmune disease, the pathological mech-

anisms are rather complicated (Noseworthy et al., 2000). The CNS consists of the

brain and the spinal cord. It sends and receives communication signals through a

network of nerves. Both the components of CNS contain white matters, where nerve

fibers, also named as axons, are coated with myelin. Myelin is a substance made

up of proteins and lipid fats. It forms layers around the nerve fibers, and acts as

insulation. Normally, nerve impulses are transmitted as electronic signals through

the nerve fibers efficiently in a healthy CNS. Myelin cannot only protect the signals

from being lost by the insulation, but also speed up the transmission by containing

the signals in a small space surrounding the axon.

In MS patients, demyelination happens as the myelin sheath is stripped off and

leaves the axon unprotected. The natural immune cells, T cells, will bind with the

lost protein from the demyelination and become pro-inflammatory. These harmful T

cells will enter the CNS through the blood-brain barriers (BBBs). Then they start
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attacking myelin proteins and that leads to new myelin breakdowns. However, what

triggers the immune system to destroy its own myelin remains unknown. The damage

to the tissue structure from demyelination is called as a lesion. The MS plaque is

often seen randomly distributed in the CNS of the patients. Thus multiple sclerosis

is also known as a disease with ‘many scars’.

In the CNS, when inflammatory cells attack nerve fibers, edema (a fluid) will

collect around the nerve fibers and compress them, which could slow or block the

transmission of the signals. Specific functions related to the signals may not work

and some symptoms show up as a response. Thus the relapses in the early stage of the

disease may be the result of the axonal demyelination. However, the inflammation

may not necessarily cause demyelination. It can possibly damage the axons directly.

Even with the existence of the demyelination or axonal injury, the axons can regain

their conducting ability by redistributing the transmitted electrical current. Thus we

can see a lot of silent lesions in the patients. There is no clear-cut answer as to what

brings on the relapses in the early phase of the disease.

It is possible for the CNS to repair the broken nerves since the oligodendrocytes

(a kind of special cells) can produce myelin provided that they are not killed during

the remyelination. As a consequence, some lesions may disappear after the healing

process. It is uncertain whether demyelination or axonal injury occurs first. Frequent

attacks on myelin make the axon vulnerable. However, axonal injuries can be seen

in very early stages of MS patients, where demyelination is uncommon (Rammohan,

2003).
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2.1.4 Methods of Monitoring the Progression of MS

In clinical studies, methods such as clinical evaluation and some imaging tech-

niques to detect the subclinical activity have been used to monitor the disease pro-

gression of MS.

Clinical Evaluation

Several types of clinical evaluations are applied to monitor the progress of various

types of MS. They consist of the degree of disability, occurrences of relapses and time

to clinical deterioration. These have been used as the primary outcome measures in

the RRMS clinical trials.

Expanded Disability Status Scale (EDSS) score (Kurtzke, 1983) is an ordinal

(discontinuous and nonlinear) summary (0 to 10) from the standard neurological ex-

amination. It has been used to follow the progression of the MS disability at different

regions of the scale. Although it has been accepted as one of the primary measure-

ments in MS phase III clinical trials, the EDSS has some limitations. Firstly, it is

insensitive to changes in other neurological functions because of its strong emphasis

on ambulatory index. Secondly, it fails to detect the cognitive dysfunctions which

can be commonly seen in MS patients. Thirdly, since the measure is not linear in the

disease change, it is also relatively insensitive to the changes as the clinical disability

deteriorates over time.

The occurrences of relapses are also considered as another clinical manifestation

of the disease activity. Relapse rate is a common primary outcome measure in RRMS

studies. However, the quantification of relapses suffers from the large variability

among MS symptoms. Also, such a clinical manifestation is modest. In their paper,
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Cohen and Rudick (2003) summarized that in large RRMS clinical trials with usual

duration of 2 to 3 years, most of the patients experienced no relapses or only one

relapse.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique to monitor the patho-

logical progression of the disease. It has been increasingly used over the last 15 years

in the diagnosis and prognosis of MS.

This evolving tool can produce high quality images of the inside of the human

body. Patient is put into a tube of a scanning machine, where a huge magnet will

force the protons inside the water molecules in the body to line up and react to the

power with signals. The difference between the region-of-interest and the background

would be recognized by different signal intensities. For example, a diseased tissue,

such as an MS lesion, contains more water than normal tissue and thus gives stronger

signals. Technical issues such as how to increase the detectability can be found in the

review article by Miller et al. (1998). After the signal analysis based on the images,

the neurologists gather the information for the site and size of the lesions. The

recognition of the lesions is done manually. This may possibly introduce substantial

intra-observer or inter-observer variations because of the subjectivity. Calculating the

size or the total volume of the lesions is a semi-automated process. The delineation

could be done either by manually outlining the lesion area or by a computer software.

The MRI technology helps researchers make great progress in the exploration of

the pathogenesis and the treatment for MS. In 1986, the National Multiple Sclero-

sis Society (www.nmss.org) recommended the optional use of MRI in the diagnosis

procedure. It also contributes to the understanding of MS for its sensitivity and the
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reproducibility. The evolution of a lesion could be examined on serial MRI scans over

time. The round or oval-shaped lesion can extend along the small or medium-sized

vessels around them. During the disease course, the lesion appears, followed by sub-

sequent enhancement, enlarges or shrinks. It could disappear but with residual effect

left.

There are two common types of MRI scans, one is T1-weighted and the other is

T2-weighted. The term ‘weighted’ is related to the type of contrast that dominates

the image. New lesions are detected as bright spots on the enhanced image obtained

by using a contrast agent such as gadolinium, whereas the old lesions remain dark

in an ordinary T1 scan. In Figure 2.1, we present two T1-weighted MRI pictures

taken both before and after the injection of gadolinium. These new lesions reflect

(a) (b)

Figure 2.1: Two T1-weighted MRI scans; (a) without gadolinium (b) with gadolinium
(source: www.thjuland.tripod.com).

the breakdowns of the BBB, which may be the early abnormality associated with the

demyelination. Another type is the hypointense T1 lesions (‘black holes’), which may
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reveal the axon injury. Since it is suggested that axon loss plays a more important

role in the relationship with the clinical disability, the hypointense T1 lesions are

considered more harmful.

The standard T2-weighted images are very sensitive for the detection of the lesions.

However, the lesions related to edema, inflammation, demyelination, remyelination,

and axonal loss would appear to have similar hyperintensity on T2 images. This type

of conventional scan lacks of specificity with regard to the heterogeneous pathology

of the individual lesions. The T1-weighted images overcome this limitation partially

by using the contrast to detect the disruptions of BBB corresponding to the ongoing

inflammation.

It is well known that MRI can detect the subclinical activity 5 to 10 times more

than the relapses (Miller et al., 1998). Its measures have been used as the primary

outcome measures for phase II studies and the secondary outcome measures in phase

III studies. However, many studies find out that the MRI abnormalities correlate

weakly with the clinical disability. The reason may be that the conventional MRI

measures lack the detailed quantification and pathology of the tissue damage directly

related to the clinical manifestation.

2.1.5 MRI Data in RRMS Studies

The currently used MRI indices of disease activity include new or enlarging lesions

on T1-weighted, T2-weighted, and Gd-enhancing T1-weighted images. These tech-

niques can detect various active lesions and measure the size or volume of the lesion.

The common MRI indices are the number of lesions and the total lesion volume.
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In MS patients, the lesion activity changes over time. It is impossible to scan

the patients frequently considering the cost and scheduling convenience. In most

MRI-monitored studies, patients have the scans monthly or on a half-a-year basis.

The follow-up often lasts months or years. The two main approaches to MRI are

detecting active lesions, and measuring total lesion load. Data are often reported as

the following:

• number of lesions seen on sequential scans (e.g., number of new enhancing lesions

seen on T2-weighted scan), number of total lesions seen on T1-weighted scan.

• total volume of lesions seen on each scan (e.g., total volume of lesions on hy-

pointense T1-weighted images, total volume of new lesions seen on T2-weighted

images).

Here we need to clarify the definition of the new enhancing lesions. The Gd-

enhancing T1-weighted images can identify the areas of ‘leaky’ BBB by comparing

the images before and after the injection of the contrast agent. The recognition of

the enhancement depends not only on the presence of the disrupting BBB, but also

on the relationship between the timing of the scan and the flow of the contrast agent.

Different protocols may have been used to count the number of the new lesions

in different studies. In the PRISMS Study (Li et al., 1999), new Gd-enhancing T1-

weighted lesions are those that have never enhanced before. Recurrent enhancing

T1 lesions are those enhancing and reappearing at the site at which an earlier lesion

has disappeared. There are also persistent lesions that have enhanced on consecutive

scans. In the study by McFarland et al. (1992), the newly enhancing lesions are those

which have not enhanced on any of the previous scans and the recurrently enhancing
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lesions. The number of enhancing lesions are used to define the cohorts for entry

into clinical trials (Comi et al., 2001). The number of new enhancing lesions on Gd-

enhancing images is often used to calculate the sample size for different experiment

settings (McFarland et al., 1992; Sormani et al., 2000). The MRI parameters are also

very important tools in monitoring the efficacy of the new therapies. Many drugs

show their ability to reduce the rate of new lesions as well as the total volume of the

lesions (Comi et al., 2001).

The imaging results have played either the major role or a supporting role in

testing the drug efficacy in several clinical trials. For example, the total number of

enhancing lesions is used as the primary outcome measures in the European/Canadian

trial for the effects of GA (Glatiramer Acetate) (Comi et al., 2001). Other MRI results

such as the total volume of enhancing lesions and number of new enhancing lesions

are used as the secondary outcome endpoints in the PRISMS Study (Li et al., 1999).

Our research is mainly about the application of Gd-enhancing MRI lesion count data

on T1-weighted scans since RRMS patients show a high rate of inflammatory lesion

activity.

2.2 Statistical Literature on MRI Data Analysis for MS

Several modeling methods have been proposed for RRMS lesion count data. We

start our review with the methods for modeling cross-sectional lesion count data.

2.2.1 Stochastic Modeling of Cross-Sectional Lesion Count

Data

Various common approaches have been used in the statistical inferences based on

the lesion count data in cross-sectional studies. To test the drug efficacy, classical
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approaches such as the analysis of variance (ANOVA) and the analysis of covariance

(ANCOVA) with log or rank transformation are useful when the lesion counts are

studied (Li et al., 1999; Comi et al., 2001). In the PRISMS Study (Li et al. 1999),

an analysis of variance on the ranks model is used for the outcome of mean number

of newly enhancing T1-lesions per patient per scan, incorporating the terms of the

center and the treatment group as main effects. Covariates, such as the number of

lesions at the baseline scan, age and gender, are also included in the model.

Sormani et al. (1999) propose a negative binomial (NB) model for RRMS studies

with Gd-enhancing lesion counts. For illustration purposes, let Nt denote the number

of new lesions counted over the fixed time interval (0, t]. Different models have been

considered to describe the distribution of Nt across patients. The Poisson model is

the simplest. It assumes that Nt follows the Poisson distribution with the same mean

parameter µt for all the patients. Specifically, it requires that the occurrence of the

new lesions should follow a homogeneous Poisson process. However, Sormani et al.

(1999) argue that the Poisson assumption is most likely to be violated in the case of

the MS lesion count data. Since there is large variability across the RRMS patients,

it may not be the case that the observed counts from each individual patient follow

the same Poisson distribution. One way to take account of the extra variability is

to fit an over-dispersed Poisson model, where the variance of the Poisson variable

is adjusted to be proportional to the mean. The dispersion parameter involved in

the model produces more flexibility. However, it does not vary the model much

from a probabilistic point of view. Thus, Sormani et al. (1999) employ a model

where a random effect with a gamma distribution is used to describe the patient-

specific variation. Then the marginal distribution of Nt would be negative binomial.
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If necessary, an over-dispersed negative binomial model could be used by adding

another dispersion parameter in the mean-variance relationship. Both the Poisson

model and the negative binomial model (the NB model) are fitted to a cohort of 56

MS patients (36 RRMS and 18 SPMS). From the histogram of the distribution of the

number of new lesions, there are many patients having zero new lesion counts. The

probability distribution implied by the NB model seems to provide a better fit. It has

a smaller deviance from the observed data compared to the Poisson model and the

estimated variance for N , the total counts over time, is closer to the sample variance.

Thus the NB model is more capable of describing the extra-variability shown in the

data.

Sormani et al. (1999) apply their NB model in the sample size calculation for a

parallel group design and two-period cross-over design with different duration of the

follow-up. They fit the model to the dataset reported in the paper by Nauta et al.

(1994), where a nonparametric approach is proposed. Simulation results show that

the power estimated based on the NB model is less than the power estimated by the

nonparametric technique used by Nauta et al. (1994) for the same experimental set

up. This suggests that in order to achieve the same level of power and treatment

effect in the same type of design, more patients are needed for the NB model. The

nonparametric method shows an overestimation of the power where the lesion vari-

ability across subjects is ignored. Sormani et al. (2001) extend their work on sample

size calculation for another cohort of RRMS patients for three types of designs: par-

allel groups design, parallel group with a single baseline correction scan design, and a

baseline versus treatment design. The estimated sample size could be reduced when

including MRI activity at study entry as a patient selection criterion.
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Sormani et al. (2002) also assess the surrogacy of MRI-derived endpoints for the

clinical relapse rate in RRMS patients in the context of a clinical trial of Copaxone.

Their results suggest that the total number of new Gd-enhancing lesions over the

follow-up period and the percentage change in T2 lesion volume over the follow-up

period are valid surrogate markers of relapse rate when assessing some of the criteria

proposed by Prentice (1989). However, there is no definitive answer available at the

moment.

2.2.2 Stochastic Modeling of Longitudinal Lesion Count Data

Understanding the stochastic nature of the longitudinal T1-weighted Gd-enhancing

lesion count data is important for the investigation of the disease progression. Unlike

the models we reviewed for those cross sectional studies in the previous section, some

stochastic models have been provided to get a better understanding of the evolution

of the lesion activity, which may be related to the disease course. Albert et al. (1994)

apply two classes of models in their paper on the lesion count data of three RRMS

patients. Let Y1, Y2, . . . , Ym denote the sequence of total number of lesions.

The first model they consider is the Markov regression model. Hereafter we use

the abbreviation ALB1 as its name for convenience. Suppose µt is the Poisson mean

of Yt, ALB1 takes the form

log µt = β0 + β1f(t, ω, α) +

q
∑

i=1

θi(log (y∗
t−i) − β0 − β1f(t − i, ω, α))

where f(t, ω, α) = cos(2πtω+α) and y∗
t−i = max(c, yt−i) and 0 < c < 1. The number

c is used to adjust the count when yt is zero. The model is observation-driven in the

sense that the distribution for the observation at a given time is specified in terms

of earlier observations. It tries to model the autocorrelation structure present in the
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time series. This kind of model is an extension of the generalized linear model and

the quasi-likelihood approach in longitudinal data analysis. As we see from their

application, it has more flexibilities in terms of including covariates and temporal

dependence structure into the model.

A harmonic term with a cosine function is used to account for the cyclical trend in

the three time sequences. The two cycles may correspond to the relapsing and remit-

ting behavior of the the disease process. For the estimation of the model parameters,

they use a Taylor expansion to approximate the nonlinear function f . Some changes

have been made on the re-weighted least squares algorithm originally proposed by

Zeger and Qaqish (1988). A grid search over the parameter space is used to find

the global maxima. McFarland et al. (1992) have applied this model to the same

study but in a cross-sectional setting. They use parametric bootstrap to calculate

the sample size for various design schemes.

The second model proposed by Albert et al. (1994) is a parameter-driven model

(henceforth referred to by the abbreviation ALB2). This approach is more appropriate

in the sense of reflecting the relapsing remitting nature of the disease. In this model,

the lesion count follows a Poisson distribution where the rate is governed by an

underlying unobservable Markov chain (the parameter process), i.e., the total lesion

count follows a Poisson distribution where the mean increases or decreases by the

same constant from the previous total given the chain. The parameter process here is

assumed to be a two-state Markov chain. The Markov chain is an unobservable binary

time series. Since the patients were untreated and observed at arbitrary time points

in their disease process, it could be assumed that the chain starts in equilibrium.

To make the model simpler, the transition probability matrix is also assumed to
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be symmetric (i.e., the probability of transition from either state to the other is the

same). Thus, the chain starts with equal probability assigned to each state. The mean

µt can be expressed as a function of the baseline mean µ0 because of the definition

of the states. A modified EM algorithm is developed to find the maximum likelihood

estimates.

The ALB1 and ALB2 models are fitted to each sequence from the 3 RRMS pa-

tients. The independent Poisson model (referred to by IPOI), which assumes inde-

pendent Poisson distribution for Yt, is also fitted. The Akaike Information Criterion

(AIC) is used for comparing the models. It is defined as the following:

AIC = −2 log (L(θ̂|x)) + 2k (2.2.1)

where k is the number of estimated parameters in the model and L is the likelihood

function value under the given MLEs for the parameters θ. For one patient, ALB2 is

reduced to IPOI and IPOI is the best fit. Both ALB1 and ALB2 pick up the mean

fluctuation in the other two patients, where they are much better than IPOI. Among

them, ALB2 is the best for one. But, selecting the better-fitting model for the other

is not easy since the AIC values for ALB1 and ALB2 are so close.

Altman and Petkau (2005) visit the same dataset and discuss several extensions of

ALB2 in the setting of hidden Markov models (HMMs). In fact, as they state, ALB2 is

not a standard HMM since the conditional mean for total lesion count at time t given

the hidden state also depends on previous means. However, they suggest that the

model could be rewritten as the usual form of an HMM when they rewrite the Markov

chain into a two-dimensional Markov chain. The transition probabilities between the

states of the new Markov chain depend on time. So it is a non-homogeneous Markov

chain, which implies that ALB2 is a non-homogeneous HMM. It would be difficult
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to make inferences for the nonhomogeneous HMM using the results available for the

homogeneous HMM. They use the statistical analysis methods for homogeneous HMM

and mention it to be informal.

Altman and Petkau (2005) generalize ALB2 in several directions:

ALT1 : Generalization of the transition probabilities for the underlying Markov chain:

allow different transition probabilities between the two states.

ALT2 : Generalization of the mean structure: allow two different parameters for the

amplitude of increase and decrease in the mean.

ALT3 : Incorporating the extensions considered both in ALT1 and ALT2.

ALT4 : Increasing the number of hidden states from two to three where the additional

state represents the normal mode.

All the likelihood functions for HMM data can be expressed in a matrix form as

MacDonald and Zucchini (1997) explain in their book. This leads to a possibility of

direct maximization of the likelihood.

The likelihood ratio tests are implemented for the model comparison among the

first three extensions and the original ALB2, since the likelihood ratio test (LRT)

can be used when the models are nested. Testing the parameters on the boundary of

the parameter space would be a problem, since the regularity conditions for the nice

performance of MLE may not be satisfied.

When it concerns the decision of the number of states of the Markov chain (e.g.,

any comparison between the fit of ALT4 and the other three), LRT cannot be used.

Not only the use of AIC, but also the use of the Bayesian Information Criterion (BIC),
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which is defined as

BIC = −2 log (L(θ̂|x) + k(log m) (2.2.2)

where k is the number of parameters, L is the likelihood function and m is the length

of the sequence.

2.2.3 Limitations of the Current Models

The nonhomogeneous HMM for the total lesion count sequence proposed by Albert

et. al. (1994) and extensions by Altman and Petkau (2005), reviewed in the previous

section, have nice structures and good flexibilities. Nevertheless, the Gd-enhancing

lesion count data have a very special feature which should deserve our attention and

thus may lead to different modeling approaches.

The Gd-enhancing lesions reflect the breakdowns of the BBBs. The harmful T-

cells enter CNS through these breakdowns and become proinflammatory. It is well

accepted that there is association between the enhancing lesions and the inflammation

(Simon, 2003). The disruptions of the BBB are recognized as early events accom-

panying inflammatory demyelination. Thus the Gd-enhancing lesions are considered

to mark the early inflammatory status of the lesions. Their natural history and the

underlying pathology are important to the understanding of the subclinical disease

activity in the early disease years of an RRMS patient.

Once a lesion is observed enhancing using the contrast agent, it remains visible for

a period of time. In a series of weekly MRI scans (Lai et al., 1996), the enhancement
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was present for less than 4 weeks in 29% of the lesions and 5% was seen on only one

scan. In their monthly study, McFarland et al. (1992) reported that of all the new

lesions, 68% had only been observed on one scan, 28% seen on only two consecutive

scans, and there was no lesion lasting more than 3 months.

A lesion starts enhancing at some time point, stays in the status of enhancement

for a while, then stops being active. For some of the lesions, the damage could be per-

manent (i.e., the corresponding BBB may not be repaired ever since it is disrupted).

In the early stage of RRMS, patients may not expect such a severe damage since the

remission possibility is still high. Also, some of the lesions may not recover because of

frequent acute attacks. If such a lesion stays in the CNS permanently and is closely

related to a functional ability, the long-term symptom may show up as a consequence,

although it usually takes a long time before an RRMS patient has total disability.

Generally speaking, it is impossible to continuously monitor the evolution and

progression of these lesions. Information such as the exact time of the occurrences of

the enhancement and how long the enhancement persists are unknown. The observed

sequence of count data is just a discretized form of the true process. The total number

of lesions counted at a specific scan consist of two parts: one is the ‘leftovers’ from the

previous scan (i.e., lesions which have been observed enhancing at the previous scan

can still be seen enhancing on the current scan); and the other is the new lesions which

come between the two consecutive scans and continue their enhancement through.

The re-enhancement of a previously seen lesion can be observed if the follow up is

more than a year (McFarland et al., 1992) and thus counted as a newly enhancing

lesion. The percentage of the number of newly enhancing lesions to the number of

total lesions are reported for each patient.
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In McFarland et al. (1992), the mean number of the total lesions and the newly

enhancing lesions vary a lot among the patients, with a range of 0.5 to 8 and 0.2 to

5.9 respectively. Of the total counts over time, there is a substantial percentage of

the ‘leftovers’ in every patient. This poses a question: does it make sense to discard

this piece of information when modeling the stochastic process?

So far to our knowledge, no models have been proposed to take account of the

above special feature of the data. The models we have reviewed in Section 2.2.1

and 2.2.2 do not consider the enhancing duration information. Meanwhile, the HMM

proposed by Albert et al. (1994) needs some justification for their informal inference.

What would be the appropriate analysis methods? This is still an open problem.

The accumulation of the hidden states over time may cause the rate of the Poisson

distribution of the total count to be too large because µt = µ0θ
(2

Pt
i=1 zi−t) where the

zi’s are the underlying states of the Markov chain and θ is the change in the mean

according to the status of the chain. This accumulation effect would be magnified

when θ is moderately large, which appears very unlikely with the available MRI data.
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CHAPTER 3

Models With M/M/∞ Structure

When constructing stochastic models for the longitudinal MRI Gd-enhancing le-

sion count sequences, we want to find a reasonable way of describing the nature of

the process. The evolution process of the lesions suggests the following: a lesion first

appears enhancing, stays enhanced for a while (the duration of enhancement), and

then goes away. In this way, an individual sequence of the total and new lesion counts

of an RRMS patient can be viewed as a queueing process.

3.1 Queueing Theory

Queueing theory plays an important role in areas such as industrial engineering,

operational research and management science, as it forms mathematical idealizations

of systems and predicts systems behavior in the future. In a queueing system, cus-

tomers arrive, wait for service if it is not immediate, and leave the system after being

served. Such a system can be characterized by the following six elements:

• the arrival pattern of customers

• the service pattern

• the queue discipline
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• the number of service stages

• the number of servers

• the system capacity (the limitation on the queue length).

A well-known notation, which consists of the characteristics of the arrival pattern,

the service pattern and the number of servers, is widely used to describe the main

features of the queueing system (Gross, 1974). The following symbols are common in

the literature:

• M : the inter-arrival distribution/service distribution is exponential, which cor-

responds to Poisson arrival process and exponential service duration.

• G: general distribution.

• MX : batch arrival as a Poisson process where the batch size is denoted by X.

Here X could be random.

For example, the notation M/G/1 denotes a queue with homogeneous Poisson

arrival, general service distribution and only a single server in the system. The nota-

tion M/M/∞ represents a queueing system which has a Poisson arrival, exponential

service and infinite servers.

3.2 The Queueing Process Analogy

In the queueing systems terminology, our process can be described as follows:

• the patient: the service system

• the lesions: the customers
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• the patches of the white matters in CNS: the server location

• the lesion enhancement duration: the service time.

Each potential site of a coming lesion is taken as a server. When a new lesion occurs

in the Gd-enhancing scan, there is a corresponding patch in the CNS of the patient. If

we can divide the CNS into small evenly distributed blocks, any new lesion will have

roughly the same chance to fall into one of them. This makes sense when the RRMS

patient is in the early stages of the disease since there are many blocks available and

new lesions seem to occur randomly in the CNS. However, in reality it is difficult to

define such a block since lesion may occur across two blocks, or several lesions may be

crowded in the same block. Thus the definition of the server here is vague. However,

most of the new lesions will start enhancing upon the arrivals. The assumption of

infinite-server queue would be appropriate since there are abundant sites in the CNS

available for new lesions and the new lesions need no waiting period before being

served; that is, enhancement occurs immediately. In a monthly MRI Gd-enhancing

lesion count sequence, each month except for the first one, the MRI scans will report

the total number of Gd-enhancing lesions (i.e., how many ‘customers’ are in service

at the time). The subset of these ‘customers’ would be the newly-enhancing lesions.

It is obvious that the total lesion count is always bigger than the new lesion count.

The above discussion enables us to pursue an approach where the queueing processes

has infinite servers.

3.2.1 Infinite-Server Queues

Infinite-server queues play an important role in queueing theory since they could

be used to represent a mathematical idealization of systems with many servers. If
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the many-server system has a small fraction of time for all servers being busy, the

infinite-server queue provides a good approximation. The infinite-server queueing

models are well known for their application in the telecommunication environment,

where most of the systems have ample servers. Most of the customers enter service

upon their arrivals immediately. Therefore the chance of a waiting line for service is

rare. Many results for finite-server queues can be generalized to the infinite-server

queues (Gross, 1974). Newell (1982) considered an infinite-server queue as a stochas-

tic system and argued that the way to analyze it could be quite different from the

traditional methods used in queueing theory. However, his methods provide informa-

tion about different aspects of the system and do not conflict with others. Commonly

seen infinite-server queues are M/M/∞, M/G/∞ and MX/M/∞. The extension

includes MMPP/M/∞, where MMPP denotes the Markovian-modulated Poisson

process, where the arrival rate of the Poisson process varies according to a finite

state irreducible continuous time Markov chain. Statistical inference methods in-

clude method-of-moment and maximum likelihood method. Most of the time, the

properties of the queueing systems are explored by simulations. Bhat et al. (1997)

provide an overview of the applications of these methods in queueing literature.

3.2.2 Observations from the Queueing Process

How the queueing process is observed is important as it affects the statistical

inference procedures. For a queueing system, the data could be observed in the

following two ways: the event history data and the time slicing data. The former

refers to systems that are continuously observed. The inter-arrival time between the
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customers and the duration of each service are recorded. Parametric methods are

helpful in the search of the appropriate distributions for the inter-arrival time and

the service time. The time slicing datasets are more difficult to work with.

There are two types of time slicing depending on the observed time points. The

system could be observed at any arbitrary time point by an ‘outsider’ who is irrelevant

to the system. Or the system could be observed by an ‘insider’, i.e., at each arrival

or each departure time point. If the inter-arrival distribution is i.i.d. exponential,

which is the case of Poisson arrival process, these two time-slicing ways would have no

difference. The property of PASTA (Poisson arrivals see times average) is guaranteed

when the arrival process is a Poisson process. See Cooper (1981) for a good discussion

of this property.

Our Gd-enhancing MRI dataset is unique in terms of the way it is observed. It

falls into the category of time slicing data where the queueing process is observed at

regularly spaced time intervals (i.e., monthly MRI scans). Each time, the number of

lesions in the service is observed and each lesion is also identified as a newly enhancing

lesion or a persistently enhancing lesion when compared to the preceding scan.

3.2.3 System Size Distribution of the Queueing Process

In the application of the infinite-server queues, the system size process Q =

{Q(t), t > 0} is of utmost interest, where Q(t) is the number of busy servers (or

the number of customers in service) at time t. In telecommunication applications the

tail probability of Q is used to measure the performance of the system since such

a probability represents the chance of the loss of potential customers when all the

servers are busy.
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In our MRI Gd-enhancing lesion count sequence, the longitudinal total counts

denotes a discretized observation of Q. Thus the system size distribution is also rel-

evant to our setting. In the literature, there have been results available for some of

the queueing systems.

The System Size Distribution of the M/G/∞ System

The system size distribution of an M/G/∞ system is available in the queueing

theory literature.

Theorem 3.2.1. For an M/G/∞ queue, suppose the rate for the arrival process is

λ, G is the cumulative distribution function (CDF) for the service distribution, and

the queue is observed from when the system is empty. Then Q(t) follows a Poisson

distribution with mean λ
∫ t

0
Ḡ(s) ds, where Ḡ(s) = 1 − G(s).

The proof can be found in Medhi (2003; 314-316). The following comments are

made on the implications of Theorem 3.2.1.

Note 1: For M/M/∞, suppose the service rate is µ (i.e., the mean service time is 1
µ
).

Then Q(t) has a Poisson distribution with mean λ
µ
(1 − e−µt).

Note 2: As t → ∞, Q(t) has a steady-state distribution. It is Poisson with mean λ
µ
. It

seems that when the queue reaches its equilibrium state, only the mean of the

service distribution remains important, but not the distributional form of G.

Note 3: Although Q(t) has a Poisson distribution with mean depending on time t, Q

is not a nonhomogeneous Poisson process as Medhi (2003) stated in his book.

The process does not have independent increments, i.e., Q(t1) and Q(t2)−Q(t1)
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are not independent for t1 < t2. The covariance between these two random

variables is not zero. The theorem that characterizes the covariance structure

of the process Q for M/G/∞ queue can be found in Eick et al. (1993).

The System Size Distribution of the M/M/∞ System

For M/M/∞, the distribution for Q(t) has closed form even when the queue starts

at an arbitrary time point. The process {Q(t), t > 0} is a Markov process because of

the following: the service distribution is exponential henceforth it is memoryless as is

the arrival process. Suppose an individual customer is observed in service at time t,

the amount of remaining service time is independent of the elapsed service time so far.

The services for each customer are independent. The distribution of Q(t+4t) would

depend on the information from Q(t) as well as the arrival rate and the service rate.

The discretized form {Q(t), t ∈ Z+} is a Markov chain with countable state space

S = {0, 1, 2, . . .}. Here we use the notation Z+ for the set of all nonnegative integers.

The Markovian nature of the process is helpful when making inference because we

can write down the likelihood function based on the Markovian property.

If we start observing the queue when it is not empty, we still can get closed form

for the distribution of Q(t) in M/G/∞ queues. However, there is no Markovian

property in this case since the remaining service time distribution will depend on the

general service distribution G and thus affects the length of the customer’s stay in

the system.

In both cases of MMPP/M/∞ and MX/M/∞, the distribution of Q(t) is also

available but has more complicated forms. Since it is not easy to solve the set of

Chapman-Kolmogorov differential equations, the probability generating function has
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been used. The process Q does not have nice properties for such systems. Take

the MX/M/∞ for example. Although the batches of customers arrive as a Poisson

process, the distribution of the batch size will have an effect on the number of observed

customers, which is not Poisson. We expect that the customers from the same batch

will have similar activity compared to the customers from different batches. For the

customers observed at t, the independence between the services may not be true.

Without PASTA, methods based on embedded Markov chain or embedded Markov

renewal process have been applied when the queue size process is viewed at the

arrival or departure time points. For the distribution of Q(t) in MX/M/∞ and

MMPP/M/∞ queues, the results can be found in Medhi (2003) and Fischer and

Meier-Hellstern (1992), respectively.

3.2.4 Characterization of the Biological Queueing Process for
the Gd-enhancing MRI Lesion Count Data

In order to tailor the notion of infinite-server queue to our Gd-enhancing MRI

lesion count data, we have to specify the arrival process and the service pattern. Our

total lesion count dataset serves as an observed {Q(t), t ∈ Z+}. Thus our interest fo-

cuses on the transient behavior of the queue, the system size distribution. Practically,

it is unclear what type of queueing process would be appropriate for the biological

process. The exponential distribution has been used for telephone-call durations for

a long time not only because it is mathematically tractable, but also because real

data support its use. The way that new lesions get enhancing service upon their

arrivals is similar to the telephone-call setting. Thus it may be appropriate for us to

use exponential distribution to approximate the enhancement duration. The Poisson
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process is a viable model when the customers originate from a large population in-

dependently. The lesions can occur randomly in the white matter of the CNS. Thus

Poisson process is taken as the approximate input process for our queueing model.

On the one hand, the rate for the Poisson process could be constant over a period

of time since some RRMS patients would have a relatively mild and stable disease

courses with very low frequencies of relapse rate. During the 2-3 years of a large

clinical trial, most RRMS patients experienced no relapse or one relapse (Cohen and

Rudick, 2003). On the other hand, for the RRMS patients with a more active disease

course, the rate of the Poisson process could be governed by the alternating disease

status, remission and relapse.

Here, we make many idealizations (Poisson arrivals, exponential services) in the

mathematical formulations. Our goal is to construct a model that provides a reason-

ably good approximation to the biological process and allows tractable mathematical

computation. This sort of notion encourages us to adopt the idea of M/M/∞ queue.

3.3 Models with M/M/∞ Structure

In this section, we will develop the model which incorporates the M/M/∞ struc-

ture. There are two types of such models: one is the discretized version of the

M/M/∞ queue, the other is the process which has an M/M/∞ queue structure on

the Markov regime, where the arrival rate of the queue is governed by a finite state

space Markov chain. We write down the likelihood functions for each case. These

models are fitted to each of the Gd-enhancing MRI lesion count sequences taken from

9 RRMS patients. Maximum likelihood estimates of the parameters are calculated.

In Section 3.5, we provide a discussion of the model fitting results.
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3.3.1 Model Notations

For the monthly MRI data from an individual RRMS patient, suppose at time

k, k = 2, 3, . . . , m, we observe Yk = (Y
(1)
k , Y

(2)
k ), where

• Y
(1)
k : the number of lesions observed both at time k and k− 1 (i.e., the number

of ‘old’ lesions).

• Y
(2)
k : the number of ‘new’ lesions observed at time k (i.e., the lesions which

start enhancing after time k − 1 and are observed being enhancing at time k).

Also Yk = Y
(1)
k +Y

(2)
k denotes the total number of enhancing lesions observed at time

k. At the baseline, we only observe the total number of enhancing lesions Y1. Thus

the observed data would be (Y1,Y2, . . . ,Ym).

3.3.2 The M/M/∞ Model

As we discussed in Section 3.2.4, for those patients whose disease process is rel-

atively stable and mild, the M/M/∞ queue might be appropriate. we assume that

the arrival distribution for the queue input is Poisson with monthly rate λ and the

service distribution is exponential with monthly rate µ. We call this model Model 1.

we can view the structure of the observed stochastic process in the following diagram

(Figure 3.1).

From the diagram we can see that for each time, the number of new enhancing

lesions Y
(2)
k would be independent of the previous total number of enhancing lesions

Yk−1 and the number of ‘old’ lesions Y
(1)
k . However it will affect the following number

of ‘old’ lesions Y
(1)
k+1, since it is part of the total number of enhancing lesions at time k.

Each time point, the number of ‘old’ lesions depends on the total number of enhancing

lesions observed in the previous month.
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Figure 3.1: Diagram for the structure of the M/M/∞ model.

The Likelihood Function

For the M/M/∞ model, If we assume the process to be stationary at the beginning

of the observed sequence, that is, its steady-state distribution has been achieved, we

have the following:

Y1 v Poisson(
λ

µ
). (3.3.1)

This is a reasonable assumption as the starting time point of the disease process is

quite remote when compared to the time period during which the MRI scans are

taken. In addition, we have

Y
(1)
k |Yk−1 v Binomial(Yk−1, e

−µ) (3.3.2)

Y
(2)
k v Poisson(

λ

µ
(1 − e−µ)) (3.3.3)

where k = 2, 3, . . . , m, and these two random variables are independent. The binomial

distribution is obvious since the exponential service distribution allows us to ignore

the effect of previous service time on the remaining service duration. The probability

that the service duration will be longer than s is

P (X > s) = 1 − (1 − e−µs).
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All of the enhancing lesions have a probability e−µs being observed enhanced in the

next MRI scan. In our setting, s is 1 because the unit interval is 1 month. For the

new enhancing lesions we can observe the following:

P (a lesion arriving in (0, t) is still enhancing at time t)

=

∫ t

0

P (the service time > t − s|the lesion arrives at s)fT (s)ds

=

∫ t

0

1

t
P (service time ≥ t − s)ds

=

∫ t

0

1

t
e−µ(t−s)ds

=
1 − e−µt

µt
, (3.3.4)

where fT (s) is the is the density function for the arrival time of the lesion given that it

has arrived in (0, t). This random variable is uniform over (0, t) (See Medhi, 2003, p.

29). The number of lesions that arrive between the interval of two consecutive monthly

MRI scans and caught seen in the service will be Poisson with rate λ
µ
(1−e−µt). Thus,

with t = 1, we obtain (3.3.3).

Now we are ready to derive the loglikelihood:

logL(λ, µ|Y1,Y2,Y3, . . . ,Ym) (3.3.5)

= log P (Y2,Y3, . . . ,Ym|λ, µ, Y1)P (Y1|λ, µ)

= log{P (Y1)P (Y
(1)
k )P (Y

(2)
2 |Y1)

m
∏

k=3

[P (Y
(1)
k )P (Y

(2)
k |Yk−1)]}

=

m
∑

k=2

log
exp(−λ(1−e−µ)

µ
)(λ(1−e−µ)

µ
)Y

(2)
k

Y
(2)
k !

+

m
∑

k=2

log

(

Yk−1

Y
(1)
k

)

e−µY
(1)
k (1 − e−µ)

(Yk−1−Y
(1)
k

)

+ log
e−

λ
µ (λ

µ
)
Y1

Y1!
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Let

λ(1 − e−µ)

µ
= u

1 − e−µ = v,

where u > 0 and v ∈ (0, 1). It is obvious that

logL = log
e−

u
v (u

v
)Y1

Y1!
+

m
∑

k=2

log [

(

Yk−1

Y
(1)
k

)

(1 − v)Y
(1)
k vYk−1−Y

(1)
k ] +

m
∑

k=2

log
uY

(2)
k e−u

Y
(2)
k !

= −
u

v
+ Y1 log (

u

v
) + log (1 − v)

m
∑

k=2

Y
(1)
k + log v

m
∑

k=2

(Yk−1 − Y
(1)
k )+

log u
m
∑

k=2

Y
(2)
k − (m − 1)u − log Y1! +

m
∑

k=2

log

(

Yk−1

Y
(1)
k

)

−
m
∑

k=2

log Y
(2)
k !.

(3.3.6)

Parameter Estimation

We take the first derivative of the loglikelihood with respect to u and v to obtain

∂logL

∂u
= −

1

v
+

1

u
Y1 +

∑m

k=2 Y
(2)
k

u
− (m − 1)

∂logL

∂v
=

u

v2
−

Y1

v
−

∑m

k=2 Y
(1)
k

1 − v
+

∑m

k=2(Yk−1 − Y
(1)
k )

v
.

Upon setting these two expressions to 0, we will have:

−u + v(Y1 +
m
∑

k=2

Y
(2)
k ) = uv(m − 1) (3.3.7)

u + v[
m
∑

k=3

Yk−1 −
m
∑

k=2

Y
(1)
k ] =

v2

1 − v

m
∑

k=2

Y
(1)
k . (3.3.8)

Let

A = Y1 +

m
∑

k=2

Y
(2)
k

B =

m
∑

k=3

Yk−1 −

m
∑

k=2

Y
(1)
k =

m−1
∑

k=2

Y
(2)
k − Y

(1)
k

C =

m
∑

k=2

Y
(1)
k .
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From (3.3.7), we conclude

u =
Av

v(m − 1) + 1

and upon using this in (3.3.8), we obtain

(m − 1)(B + C)v2 − [B(m − 2) − (A + C)]v − (A + B) = 0. (3.3.9)

There are two roots for the above quadratic equation given by

v =
B(m − 2) − (A + C) ±

√

[B(m − 2) − (A + C)]2 + 4(m − 1)(B + C)(A + B)

2(m − 1)(B + C)
.

It is easy to choose the appropriate solution since v should be greater than 0. Note

that while B can be negative, A + B ≥ Y1 +
∑m−1

k=2 Y
(2)
k − Y

(1)
m ≥ 0 as the number of

old lesions at time m cannot exceed the total number of new lesions arrived by time

(m − 1). Clearly (B + C) > 0. Thus

|B(m − 2) − (A + C)| ≤ |

√

[B(m − 2) − (A + C)]2 + 4(m − 1)(B + C)(A + B)

and consequently the larger root is the only eligible solution. In other words,

û =
Av̂

(m − 1)v̂ + 1
(3.3.10)

and

v̂ =
B(m − 2) − (A + C) +

√

[B(m − 2) − (A + C)]2 + 4(m − 1)(B + C)(A + B)

2(m − 1)(B + C)

(3.3.11)

provide the solution to the likelihood equation.
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We will check the conditions to see if such a set of (û, v̂) is the local maxima.

From the following equations

∂log2 L

∂u2
= −

A

u2

∂log2 L

∂v2
= −

2u

v3
−

B

v2
−

C

(1 − v)2

∂log2 L

∂u∂v
=

1

v2
,

we can see that the second-order partial derivative with respect to u is negative. The

Jacobian of the second-order partial derivatives evaluated at (û, v̂) is

∣

∣

∣

∣

∣

− A
u2

1
v2

1
v2 −2u

v3 − B
v2 −

C

(1−v)2

∣

∣

∣

∣

∣

û,v̂

=
2A

uv3
+

AB

u2v2
+

AC

u2(1 − v)2
−

1

v4

=
v(m − 1) + 1

Av
·
2A

v3
+

(v(m − 1) + 1)2

A2v2
·
AB

v2
+

(v(m − 1) + 1)2

A2v2
·

AC

(1 − v)2 −
1

v4

=
1

v4
(2(v(m − 1) + 1) − 1) +

AB(v(m − 1) + 1)2

A2v4
+

AC(v(m − 1) + 1)2

A2v2(1 − v)2

> 0

since 2[v(m − 1) + 1] − 1 > 0 and all the other terms are nonnegative. Thus the

needed sufficient conditions are satisfied and we have found the maximum. Since λ

and µ are one-to-one transformations of u and v, the corresponding MLE for them

would be

λ̂ =
û

v̂
· log(1 − v̂) (3.3.12)

µ̂ = log (1 − v̂) (3.3.13)
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with û defined in (3.3.10) and v̂ defined in (3.3.11). The corresponding variance

covariance matrix Σ̂ would be approximated by MH−1MT where H is the observed

information matrix for the bivariate random variables (û, v̂), i.e.,

H = −

(

− A
u2

1
v2

1
v2 −2u

v3 − B
v2 −

C

(1−v)2

)

û,v̂

,

and

M =

(

∂λ̂
∂u

∂λ̂
∂v

∂µ̂

∂u

∂µ̂

∂v

)

û,v̂

=

( log (1−v)
v

− log (1−v)
v2 + 1

(1−v)v

0 − 1
(1−v)

)

û,v̂

. (3.3.14)

Under some circumstances, the estimator v̂ given in (3.3.11) will fall on the bound-

ary of the parameter space (0, 1). For example, when C = 0, there are two possi-

bilities. If B = 0, then the quadratic equation (3.3.9) reduces to a linear equation

Av = A. If B 6= 0, then (3.3.11) reduces to v̂ = 1. Thus the corresponding µ̂ would

be ∞ and λ̂ would be 0. These estimates are on the boundary of the parameter

space. But these extreme cases occur when C = 0 or the total number of old lesions

observed is 0. In other words the lesions are cleared very fast.

3.3.3 The Model with M/M/∞ Structure on the Markov Regime

Another way to incorporate the M/M/∞ structure in the model is motivated

from the hidden Markov models. The RRMS patients experience the relapse and

remission in the disease course. When a patient is experiencing a relapse, we may

expect more enhancing lesions. When he/she is in the remission, we may expect less

lesions. Enhancing brain lesions occur more often during clinical relapse (Miller and

Frank, 1998). Thus the lesion arrival rate may be governed by an unobserved Markov
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chain X = {Xk, k = 1, 2, . . . , m} with state space B = {0, 1}. Here we need to clarify

that this setting is different from the MMPP/M/∞ queue. It is very difficult to deal

with time-slicing data according to this specific type of queue compared to the event

history data. There is no information about when the switching between the states

for the Markov chain occurs and the Markov chain is hidden. We have to assume the

time of transition between the states matches with the observing time point. As long

as the changes between the states are not too frequent, we may still be able to get a

good approximation.

The graphical representation of the model is illustrated in Figure 3.2. It shows

that the underlying Markov chain X has a direct impact on the new lesions at the first

level. At the second level, the current old Y
(1)
t would be influenced by the previous

total Yt−1, which consists of the old Y
(1)
t−1 and the new Y

(2)
t−1.

Figure 3.2: Diagram for the structure of the M/M/∞ model with the Markov regime.
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The Likelihood Function

Suppose the hidden Markov chain X has the following transition probability ma-

trix (TPM):

P =

(

a 1 − a
1 − b b

)

. (3.3.15)

Since the model has the same loglikelihood values under the permutation of the states,

we restrict state 1 to be the state with higher arrival rate of the lesions and state 0

to have the lower arrival rate. Thus a is the probability from a ‘high’ to ‘high’ and b

is the probability from a ‘low’ to ‘low’. Conditional on this chain, we have

Y
(1)
k |Yk−1 v Binomial(Yk−1, e

−µ)

Y
(2)
k v Poisson(

λ(Xk)

µ
(1 − e−µ))

where

λ(Xk) =

{

λ1, Xk = 1

λ2, Xk = 0.

Here λ1 corresponds to the higher arrival rate and λ2 corresponds to the lower arrival

rate. The likelihood is

L(λ, µ|Y1,Y2,Y3, . . . ,Ym)

=
∑

X1∈B

∑

X2∈B
. . .

∑

Xm∈B
[P (Y1,Y2,Y3, . . . ,Ym, X1, X2, . . . , Xm|λ, θ,P)]

=
∑

X1∈B

∑

X2∈B
. . .

∑

Xm∈B
[P (X1)P (Y1|X1) ·

m
∏

k=2

P (Yk|Yk−1, Xk)·

m
∏

k=2

PXk−1,Xk
]

(3.3.16)
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=
∑

X1∈B

∑

X2∈B
. . .

∑

Xm∈B
[P (X1)

m
∏

k=2

PXk−1,Xk

e−
λ(X1)

µ (λ(X1)
µ

)
Y1

Y1!

m
∏

k=2

e−akak
Y

(2)
k

Y
(2)
k !

(

Yk−1

Y
(1)
k

)

e−µY
(1)
k (1 − e−µ)

(Yk−1−Y
(1)
k

)
] (3.3.17)

where

ak =
λ(Xk)(1 − e−µ)

µ
.

In fact, we can write the likelihood in the form of a matrix product. This provides

us a convenient way for the direct maximization of the loglikelihood. The matrix

product form is

L(λ, µ|Y1,Y2,Y3, . . . ,Ym) = πx1D(Y1)
m
∏

k=2

(PG(Yk|Yk−1))1. (3.3.18)

where πx1 = (π1, π2) is the row vector of the equilibrium distribution for the hidden

Markov chain which satisfies the following conditions:

πx1P = πx1

π1 + π2 = 1,

D(Y1) is a diagonal matrix of Poisson densities with mean parameters λ1

µ
and λ2

µ

and G(Yk|Yk−1) is a diagonal matrix with the diagonal elements g1(Yk|Yk−1) and

g2(Yk|Yk−1)) defined as the following:

g1(Yk|Yk−1) =
exp(−λ1(1−e−µ)

µ
)(λ1(1−e−µ)

µ
)
Y

(2)
k

Y
(2)
k !

(

Yk−1

Y
(1)
k

)

e−µY
(1)
k (1 − e−µ)

(Yk−1−Y
(1)
k

)

g2(Yk|Yk−1) =
exp(−λ2(1−e−µ)

µ
)(λ2(1−e−µ)

µ
)
Y

(2)
k

Y
(2)
k !

(

Yk−1

Y
(1)
k

)

e−µY
(1)
k (1 − e−µ)

(Yk−1−Y
(1)
k

)
.

In the above model setting, we can have several variations:
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• The TPM P of the two-state Markov chain, defined in (3.3.15), could be sym-

metric (i.e., a = b). It implies that on the average, the patient would stay in

relapse mode during half of the disease course. This could happen when the

RRMS patient is in a relatively stable alternating disease course for a while.

When Albert et al. (1994) fitted their Markov regression model to the individ-

ual total enhancing lesion count sequence, they identified the cyclical trend and

used a sine curve to model the trend. This also gives support to the use of

symmetric TPM.

• The state space B could have three components, 0,−1, 1 instead of two. The

three states correspond to three disease status: stable, remission and relapse re-

spectively. Here ‘stable’ is the intermediate state between remission and relapse.

The rate for the arrival process could be defined as the following:

λ(Xk) =











λθ, Xk = 1

λ, Xk = 0
λ
θ
, Xk = −1.

From here after we use Model 2 to denote the model with an underlying two-

state Markov chain with a symmetric TPM, and Model 3 to denote the one with an

underlying two-state Markov chain with a nonsymmetric TPM. We do not pursue the

model with an underlying three-state Markov chain which has more parameters and

the computation is more complicated.

3.4 The MRI Lesion Count Data from 9 RRMS Patients

Figure 3.3–3.5 provide the plots of new and total lesion counts for 9 RRMS patients

collected by National Institute of Neurological Disease and Stroke (NINDS) in the

early 1990s.
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Figure 3.3: Monthly lesion counts for RRMS patients, Patient 1, 2, and 3.
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Figure 3.4: Monthly lesion counts for RRMS patients, Patient 4, 5, and 6.
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Figure 3.5: Monthly lesion counts for RRMS patients, Patient 7, 8, and 9.
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These patients underwent the T1-weighted Gd-enhancing scans every month. Le-

sions were numbered sequentially, and new enhancing lesions were those that had

not enhanced the previous month. Re-enhancing lesions were noticed from patients

with long follow-up. Thus they were also considered as new lesions. Each monthly

MRI scan except the first one reported the number of total enhancing lesions and

new enhancing lesions. Accompanying the MRI lesion counts, the total volume of the

Gd-enhancing lesions were measured. Monthly EDSS scores were given. The datasets

are provided by Paul Albert (personal communication, 2005).

We present some summary measures of the lesion count data in Table 3.1. The

table show that the lengths of the follow-up for these patients are not short. The

average total enhancing lesion counts vary greatly across these patients. For some

patients, the average is high (more than 4). For some patients, the average is inter-

mediate (around 2 or 3). Patient 2 has a relatively low average (0.53). This patient

has many zero counts both in the total lesion sequence and the new lesion count

sequence. Patient 8 also has relatively more zero lesion counts. The maximum of the

total lesion counts is smaller for these two patients when compared to others.

3.5 Model Fitting Results

For each of the MRI Gd-enhancing lesion count data from 9 RRMS patients, we fit

both Model 1 and Model 2. For Model 1, we directly calculate the maximum likelihood

estimates for the parameters using the formulas in Section 3.3.2. The standard errors

are provided by taking the square root of the diagonal terms of the matrix Σ̂. When

fitting Model 2, since there is no analytical form available for the MLE, we use the

‘optim’ function in R as the procedure for the direct maximization of the loglikelihood
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months total counts new counts
Patient studied 0 count mean range 0 count mean range p1

1 35 0 2.89 (1, 8) 3 2.24 (0, 8) 77.5%
2 34 19 0.53 (0, 2) 23 0.36 (0, 2) 67.9%
3 36 3 2.19 (0, 7) 12 1.31 (0, 5) 59.8%
4 24 0 5.96 (1, 19) 1 4.52 (0, 13) 75.8%
5 37 0 4.30 (1, 13) 1 3.39 (0, 11) 78.8%
6 35 1 4.94 (0, 12) 3 2.91 (0, 11) 58.9%
7 28 0 4.93 (1, 17) 3 3.22 (0, 16) 65.3%
8 29 9 1.41 (0, 5) 11 1.07 (0, 4) 75.9%
9 29 0 2.90 (1, 7) 4 1.96 (0, 7) 67.6%

p1: percentage of the new to the total.

Table 3.1: Summary statistics of the Gd-enhancing lesion count sequences from 9
RRMS patients.

function. Multiple starting points are used to search for the MLE. The standard errors

associated with the estimates are calculated from the inverted approximated Hessian

matrix. We also give the negative loglikelihood function values, AIC (defined in

(2.2.1)) and BIC (defined in (2.2.2)) for the purpose of model selection. In Table 3.2

and 3.3, we summarize the model fitting results.

For Model 1, the estimates for the arrival rates for the 9 patients, displayed in

Table 3.2, are very different. This suggests the heterogeneity across the patients.

From the estimates for the service rate µ, we can see that the mean enhancing duration

time of the lesions is less than 1 month for most of the patients. Only Patient 3 and

Patient 6 have the mean duration time more than 1 month. These estimates provide

not only evidence to support the findings by McFarland et al. (1992), but also avoid

the vague meaning of ‘less than two months’ they claimed.
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Patient λ̂ (ŝe(λ̂)) µ̂ (ŝe(µ̂)) -log L AIC BIC
1 4.293 (0.576) 1.483 (0.187) 102.710 209.42 212.531
2 0.745 (0.237) 1.358 (0.428) 36.653 77.306 80.359
3 2.007 (0.316) 0.925 (0.138) 92.688 193.376 192.543
4 8.784 (1.000) 1.422 (0.161) 100.353 204.706 207.062
5 6.697 (0.718) 1.547 (0.156) 115.740 235.48 238.702
6 4.435 (0.472) 0.886 (0.092) 129.749 263.498 266.609
7 5.608 (0.649) 1.122 (0.126) 109.897 223.794 226.458
8 2.091 (0.441) 1.477 (0.291) 56.628 117.256 119.991
9 3.292(0.488) 1.135 (0.160) 80.612 165.224 167.959

Table 3.2: The model fitting results: Model 1.

The estimates for µ in Model 2, given in Table 3.3, are close to those obtained in

Model 1 and strikingly the standard errors for µ̂ are almost the same. This might

be due to the fact that the hidden Markov chain affects only the arrival process.

The constant λ in Model 1 is redistributed into two parts: λ1 and λ2 according to a

symmetric two-state Markov chain. Thus this may not have much influence on the

estimation of the service rate µ. We estimate the average service rate for this cohort

of RRMS patients. The arithmetic mean of the estimates is 1.21 and the harmonic

mean is 1.26. Since the difference is minor, we use the arithmetic mean to estimate the

average service rate. Based on the exponential distribution with rate 1.21, about 70%

of the lesions would finish the enhancement within one month, 8% would need more

than two months. McFarland et al. (1992) reported that only 5% of the new lesions

are seen enhancing in three consecutive monthly scans. Our estimate 8% is larger

than that. These results do not support the findings in Lai et al. (1996), however,

they were using a weekly study of the T1-weighted Gd-enhancing MRI scans from

one RRMS patient.
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Patient λ̂1 (ŝe(λ̂1)) µ̂ (ŝe(µ̂)) -log L AIC BIC

λ̂2 (ŝe(λ̂2)) â (ŝe(â))
1 5.579 (1.094) 1.481 (0.463) 102.175 212.35 218.571

3.033 (0.842) 0.297 (0.187)
2 0.745 (0.183) 1.358 (0.428) 36.653 81.306 87.414

0.745 (0.289) 0.266 (NA)
3 2.991 (0.649) 0.926 (0.139) 91.716 191.432 197.767

1.037 (0.462) 0.361 (0.253)
4 13.135 (1.948) 1.445 (0.161) 94.565 197.13 201.842

4.412 (1.262) 0.496 (0.155)
5 10.445 (1.533) 1.541 (0.156) 109.846 227.692 234.134

4.819 (0.717) 0.967 (0.034)
6 6.599 (0.965) 0.895 (0.093) 126.558 261.116 267.337

2.332 (0.637) 0.461 (0.271)
7 8.113 (1.223) 1.138 (0.126) 105.870 219.74 225.069

3.087 (0.777) 0.281 (0.262)
8 2.719 (0.684) 1.467 (0.291) 55.921 119.842 125.311

1.499 (0.473) 0 (NA)
9 4.659 (0.902) 1.126 (0.161) 79.043 166.086 171.555

1.964 (0.619) 0.146 (0.183)

Table 3.3: The model fitting results: Model 2.
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For some of the patients, the negative loglikelihood has not decreased much by

using the more complicated model. For example, the two λ parameters for Patient 2

are the same in Model 2. There is no gain in using Model 2 in such a case. Since the

two arrival rates are the same, the transition probability can be any value. Thus the

standard errors for â is not available (NA). When AIC is used as the model selection

criteria, we can see that the fit for Model 2 is much better than that of Model 1 in

Patient 3, 4, 5, 6 and 7. We also notice that the range for the new lesion counts

and the total lesion counts is much wider in these patients than others (Table 3.1).

This suggests that the M/M/∞ with the hidden Markov regime is more appropriate

taking account of the extra variability shown in the lesion counts. When BIC is used

to compare these two models, we can see that only Patient 4, 5, and 7 stands out

with a smaller BIC for Model 2 than Model 1. The criterion BIC tends to penalize

on the number of parameters in the model as well as the length of the follow-up.

Order estimation in HMM is an unsolved problem. Cappé et al. (2005) discuss about

several methods of the Markov order estimation and seem to recommend BIC. The

BIC estimator is consistent for any stationary irreducible Markov process under some

restrictions. However, the maximum likelihood in formal HMM is not well-behaved

compared to the Markov chain setting. Our situation is even more complicated than

the formal HMM. Thus it is not clear if BIC is a good model selection criterion.

We also fit Model 3 (with unequal transition probabilities) individually to all the

patients except for Patient 2 and Patient 8. These two patients are excluded here

because it is unnecessary to fit the more complicated model when there is little gain

using Model 2 than Model 1. The ‘optim’ function in R is used with multiple starting

points searching for the MLE. The model fitting results are summarized in Table
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3.4–3.6. The long-run probability for the patient being in a specific state can be

derived using the estimates for the transition probabilities in the TPM. For example,

for Patient 1, we can calculate the long run distribution for the hidden Markov chain.

The chance that the patient would stay in the ‘high’ state and the ‘low’ state would

respectively be:

1 − 0.868

2 − 0 − 0.868
= 0.117

1 − 0

2 − 0 − 0.868
= 0.883.

This means that given the patient’s data, he/she would stay in the state that produces

less new lesions longer than the other one. The data plot for Patient 1 in Figure 3.3

also supports this interpretation. Except for a few peaks, the number of total lesions

and the number of new lesions are low most of the time.

There are a few zeros for the transition probabilities in the TPM in Table 3.4–

3.6. This may suggest that the sequence is not long enough for us to accurately

estimate the transition probabilities between the states. Since the estimate of 0

(or 1) is on the boundary of the parameter space, the inference therefore may not be

informative. Thus we do not provide the standard errors of the estimates. Meanwhile,

the loglikelihood, AIC and BIC scores do not improve much compared to Model 2 in

most of the patients. Only Patient 7 shows a better fit using Model 3 compared to

Model 2 and Model 1. From the lesion counts plot in Figure 3.5, we can see that he

had a fairly stable period starting from Month 5. He has experienced 6.8 new lesions

on the average for the first 5 months compared to an average of 2.7 for the following

23 months. This might be the reason that there is little chance to observe transitions

from high to high in the underlying Markov chain. The estimate for a in Table 3.5 is

0.
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Model 3 Patient 1 Patient 3 Patient 4

(λ̂1, λ̂2, µ̂) (9.764, 3.573, 1.479) (4.003, 1.420, 0.922) (12.449, 3.724, 1.442)

P̂

(

0 1
0.132 0.868

) (

0 1
0.298 0.702

) (

0.590 0.410
0.575 0.425

)

− log L 101.354 91.563 94.542
AIC 212.708 193.126 199.084
BIC 220.484 201.044 204.974

Table 3.4: Model fitting results: Model 3, Patient 1, 3, and 4.

Model 3 Patient 5 Patient 6 Patient 7

(λ̂1, λ̂2, µ̂) (10.463, 4.826, 1.541) (8.138, 3.135, 0.895) (26.408, 4.831, 1.117)

P̂

(

0.958 0.042
0.030 0.970

) (

0.535 0.465
0.165 0.835

) (

0 1
0.038 0.962

)

− log L 109.814 126.091 100.969
AIC 229.628 262.182 211.938
BIC 237.683 269.959 215.267

Table 3.5: Model fitting results: Model 3, Patient 5, 6, and 7.

Model 3 Patient 9

(λ̂1, λ̂2, µ̂) (5.645, 2.084, 1.122)

P̂

(

0 1
0.524 0.477

)

− log L 78.753
AIC 167.506
BIC 174.342

Table 3.6: Model fitting results: Model 3, Patient 9.
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Since the RRMS patients usually present high variability in the lesion count se-

quences, longer follow-ups are needed to investigate if Model 3 would be better to

describe the evolution process than Model 2.

So our conclusion, based on BIC, is that Model 1 (the M/M/∞ model) is pre-

ferred for patients 1, 2, 3, 6, 8, and 9, and Model 2 (the M/M/∞ model with the

Markov regime and the equal transition probabilities between the two hidden states)

is preferred in the other three cases.
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CHAPTER 4

Asymptotic Normality of the MLE

In this chapter, we examine the asymptotic properties of the maximum likelihood

estimators for Model 1 and Model 2. Although Model 1 is a special case of Model

2 (i.e., there is only one state for the underlying Markov chain), we want to study

Model 1 separately for its special features.

4.1 Long Run Distribution of the Process {(Y
(1)
t , Y

(2)
t ), t =

1, 2, . . .}

In Model 1, the vector process {(Y
(1)
t , Y

(2)
t ), t = 1, 2, . . .} has the Markovian prop-

erty. The state space for the Markov chain is G = Z+ × Z+ where the notation Z+

is the set of all the nonnegative integers. This Markov chain is aperiodic and irre-

ducible. It is aperiodic since each state has positive probability to return in one step

transition. It is irreducible since each state needs at most two transitions to go to any

other state. If Y
(1)
k ≤ Yk−1, then one transition is enough. Otherwise, we need some

new lesions during the intermediate transition before we can have a larger number of

total lesions.

When the queue M/M/∞ starts with its equilibrium state, we can derive the

analytical result for the long run distribution of the process {(Y
(1)
t , Y

(2)
t ), t = 1, 2, . . .}.
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For any state (l, k) ∈ G, we want to find xl,k to satisfy the following equation

xl,k =
∑

(j,i)∈G

xj,iP(j,i)(l,k) (4.1.1)

where

P(j,i)(l,k) = P (Y
(1)
2 = l, Y

(2)
2 = k|Y

(1)
1 = j, Y

(2)
1 = i).

Take

xj,i =
e−λ1λ1

i

i!
·
e−λ2λ2

j

j!

where

λ1 =
λ

µ
(1 − e−µ) (4.1.2)

λ2 =
λ

µ
· e−µ. (4.1.3)

Consider the right hand side of (4.1.1),

R.H.S. =
∑

(j,i)∈S

e−λ1λ1
i

i!
·
e−λ2λ2

j

j!
· P (Y

(1)
2 = l, Y

(2)
2 = k|Y

(1)
1 = j, Y

(2)
1 = i)

=
∑

i+j≥l

e−λ1λ1
i

i!
·
e−λ2λ2

j

j!
· P (Y

(2)
2 = k) ·

(

i + j

l

)

pl(1 − p)i+j−l

where p = e−µ

= P (Y
(1)
2 = l)

∞
∑

t=l

e−(λ1+λ1)

(

t

l

)

pl(1 − p)t−l ·
t
∑

i=0

λi
1λ

t−i
2

i!(t − i)!

= P (Y
(2)
2 = k)

∞
∑

t=l

e−(λ1+λ2)

(

t

l

)

pl(1 − p)t−l ·
(λ1 + λ2)

t

t!

= P (Y
(2)
2 = k)

∞
∑

t=l

e−(λ1+λ2)
1

l!(t − l)!
pl(1 − p)t−l · (λ1 + λ2)

t

= P (Y
(2)
2 = k) ·

1

l!
[(λ1 + λ2)p]le−(λ1+λ2) ·

∞
∑

t=l

1

(t − l)!
[(1 − p)(λ1 + λ2)]

t−l

= P (Y
(1)
2 = k) ·

1

l!
[(λ1 + λ2)p]le−(λ1+λ2) ·

∞
∑

m=0

1

m!
[(1 − p)(λ1 + λ2)]

m

= P (Y
(1)
2 = k) ·

1

l!
[(λ1 + λ2)p]l · e−p(λ1+λ2).
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Since

P (Y
(2)
2 = k) =

e−λ1λ1
k

k!

and

p · (λ1 + λ2) =
λe−µ

µ

= λ2,

we show that the choice of xj,i satisfies (4.1.1). Since xj,i is the product of two Poisson

probabilities, we have
∑

(j,i)∈G |xj,i| < ∞. Then by Theorem 3.1 in Karlin (1966, p.

132), the Markov chain {(Y
(1)
t , Y

(2)
t ), t = 1, 2, . . .} is positive recurrent. Its long-run

distribution is given by

P (Y
(1)
2 = k, Y2(2) = l) =

e−λ1λ1
k

k!
·
e−λ2λ2

l

l!
(4.1.4)

with λ1 and λ2 defined by equation (4.1.2) and (4.1.3). Further, this Markov chain is

α-mixing because for a strictly stationary Markov chain with countable state space,

the irreducibility and aperiodicity are equivalent to α-mixing (Robert and Rosenthal,

2004).

Properties of the Process {Yk, k = 1, 2, . . .}

If the queue M/M/∞ starts without any server doing service at time 0, the total

lesion count Yt at time t is distributed as Poisson with mean λ(1−e−µt)
µ

. The process

{Yk, k = 1, 2, . . .} is an irreducible aperiodic Markov chain with Z+ as its countable

state space. The transitional probability from Yk−1 = i to Yk = j is:

P (Yk = i|Yk−1 = j) =

min(i,j)
∑

l=0

(

j

l

)

pl(1 − p)(j−l)λ∗(i − l)e−λ∗

(i − l)!
(4.1.5)
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with p = e−µt and λ∗ = λ(1−e−µt)
µt

. It is obvious that this Markov chain is irreducible

and aperiodic. Also, for n > 0, suppose the queue starts from its equilibrium distri-

bution, which is Poisson with mean λ
µ
. Then

cov(Yk, Yk+n) =
λ

µ
e−µn, (4.1.6)

since

cov(Yk, Yk+n) = E(YkYk+n) − E(Yk)E(Yk+n)

= E[E(YkYk+n)|Yk)] −
λ2

µ2

= E[Yk(Y
(2)
k+n + Yke

−µ)] −
λ2

µ2

= E(Yk)E(Y
(2)
k+n) + e−µE((Yk)

2) −
λ2

µ2

=
λ

µ
(1 − e−µ)

λ

µ
+ (

λ

µ
+

λ2

µ2
)e−µ −

λ2

µ2

=
λ

µ
e−µn.

As n goes to infinity, the covariance goes to zero. The derivation of the marginal

distribution and the covariance structure can be found in queueing theory literature.

See, for example, Eick et al. (1993).

The total count sequence cannot be used alone for the inference although we can

write down the likelihood function based on the Markovian structure. This is because

λ and µ are not identifiable when using only the total lesion count data. A different

set of λ and µ might give the same ratio and thus we are not able to tell the total

lesion count comes from which set unless we have the information about the new

lesion count.
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4.2 Numerical Results: Model 1

In this section, we study the asymptotic distribution of the MLE of parameters λ

and µ for Model 1 using simulation. The steps are:

1. For a fixed set of (λ, µ), using the likelihood function (3.3.5) for Model 1, we

simulate 100 sequences, each with the same specified length

2. Fit Model 1 to each simulated sequence to get MLEs (λ̂ and µ̂)

3. Draw the diagnostic plots to assess the asymptotic property.

Repeat the steps at various lengths of the sequences. For bivariate normality, we are

looking for the elliptical shape in the scatter plot of λ̂ versus µ̂. The mshapiro.test

procedure in the package of mvnormtest in R has been used to test the bivariate

normality. This package is the generalization of the Shapiro-Wilk test for multivariate

variables (see http://cran.r-project.org/doc/packages/mvnormtest.pdf for reference).

The quantile-quantile (Q-Q) plots are given to assess the marginal normality. The

p-value is calculated from the standard Shapiro-Wilk test procedure in R. Histograms

of λ̂ and µ̂ are also provided. For the likelihood ratio test statistics,

D(L) =2[(logL(λ̂, µ̂ | simulated data))−

(logL(λ, µ | simulated data))],

the histogram overlaid with a density curve of χ2 distribution with 2 degrees of

freedom is created. The p-value is reported by using the Kolmogorov-Smirnov test.

We select two sets of estimates as the fixed parameters in the simulation study.
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Simulation Results for (λ, µ) = (4.293, 1.483)

The first set comes from the estimates for Patient 1. The diagnostic plots are

shown in Figure 4.1–4.8. The lengths we use for the study are 10, 35, 96 and 180.

Included in these figures are the scatter plots, histograms, and Q-Q plots of the

estimators and the likelihood ration test statistic.

From these plots, we can see that (λ̂, µ̂) appears to converge to bivariate normal

as the length of the follow-up increases. The asymptotic χ2 distribution with two

degrees of freedom works well to approximate D(L). The marginal normality of λ̂

and µ̂ are both getting better as the sequence length increases. It takes longer for µ̂

to converge than for λ̂.

The parameter set we have used is a well separated set of λ and µ (i.e., λ is much

greater than µ). We have examined other well separated sets, the estimates from

other patients except for Patient 2. The results agree with what we have found in

the current case. The corresponding figures are not provided here.

Simulation Results for (λ, µ) = (0.745, 1.358)

The second set of fixed parameters are the estimates for Patient 2, (0.745, 1.358).

The diagnostic plots are given in Figure 4.9–4.16. The study lengths of the sequences

are 10, 35, 96 and 180.

The estimates for Patient 2 draw our attention since they are quite different from

the other estimates shown in Table 3.2. The arrival rate is fairly small compared to

the service rate. The mean inter-arrival time 1
0.745

= 1.342 is longer than the mean

service duration 1
1.358

= 0.736.
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Figure 4.1: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=10, (λ, µ) =
(4.293, 1.483).
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Figure 4.2: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=10,
(λ, µ) = (4.293, 1.483).
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Figure 4.3: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=35, (λ, µ) =
(4.293, 1.483).
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Figure 4.4: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=35,
(λ, µ) = (4.293, 1.483).
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Figure 4.5: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=96, (λ, µ) =
(4.293, 1.483).

64



−2 −1 0 1 2

3.
5

4.
0

4.
5

5.
0

Normal Q−Q Plot for λ̂, length=96

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

p−value:
0.726

Histogram of λ̂

λ̂
Fr

eq
ue

nc
y

3.5 4.0 4.5 5.0

0
5

10
15

20

−2 −1 0 1 2

1.
3

1.
5

1.
7

Normal Q−Q Plot for µ̂

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

p−value:
0.011

Histogram of µ̂

µ̂

Fr
eq

ue
nc

y

1.3 1.4 1.5 1.6 1.7 1.8

0
5

10
15

Figure 4.6: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=96,
(λ, µ) = (4.293, 1.483).
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Figure 4.7: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=180, (λ, µ) =
(4.293, 1.483).

66



−2 −1 0 1 2

3.
8

4.
2

4.
6

5.
0

Normal Q−Q Plot for λ̂, length=180

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s p−value:
0.565

Histogram of λ̂

λ̂
Fr

eq
ue

nc
y

4.0 4.5 5.0

0
5

15
25

−2 −1 0 1 2

1.
4

1.
5

1.
6

1.
7

Normal Q−Q Plot for µ̂

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s p−value:
0.084

Histogram of µ̂

µ̂

Fr
eq

ue
nc

y

1.3 1.4 1.5 1.6 1.7

0
5

10
20

Figure 4.8: Normal Q-Q plots and histrograms for estimators λ̂ and µ̂; length=180,
(λ, µ) = (4.293, 1.483).
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For Patient 2 the lesions arrive slowly and service can be done in a short time.

Henceforth, we would not observe many total lesions as well as the new from the

monthly MRI scans. Out of 34 scans, we have 19 zeros for the total counts. For the

number of new lesions, the situation is worse: 23 zeros out of 33 measurements. The

maximum total number we observe in this patient is only 2. Such a big proportion

of zeros may slow the convergence to normal distribution. Although the sequence for

Patient 2 is as long as the one for Patient 1, the convergence to bivariate normality

takes much longer. When the sequence length is 10, the estimates seem to concentrate

on part of the elliptical shape. We also find out that there is quite a number of the

simulated ‘old’ lesion count sequences having all zeros in it when sequence length is

10. First of all, the total lesion count would not be a big number because of the slow

arrival rate. Secondly, the lesions are gone fast since the service rate is relatively high.

Thus we hardly observe any old lesions left persistently enhancing.

The estimation encounters problems when the sum of the old lesion count is 0 as

we have discussed in Section 3.3.2. The estimate for µ would be ∞ and the estimate

for λ would be 0. This would bias the estimation. However, when we make the plots

for a sequence length of 10, we ignore these boundary values of the parameter space.

Thus the bias does not show up in the plots. It tells us that when the sequence

length is short in this case, the estimation is not reliable. As the sequence length

increases, the chance we have such a problem is smaller. The convergence for λ̂ and

µ̂ respectively are much slower compared to what we have observed from Patient 1.

When the sequence length is 180, the marginal normality and the bivariate normality

work much better than other shorter lengths. But one needs 15 years to collect such

data!
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Figure 4.9: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=10, (λ, µ) =
(0.745, 1.358).
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Figure 4.10: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=10,
(λ, µ) =(0.745, 1.358).
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Figure 4.11: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=35, (λ, µ) =
(0.745, 1.358).
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Figure 4.12: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=35,
(λ, µ) =(0.745, 1.358).
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Figure 4.13: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=96, (λ, µ) =
(0.745, 1.358).
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Figure 4.14: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=96,
(λ, µ) =(0.745, 1.358).
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Figure 4.15: (a) Scatter plot of λ̂ vs µ̂. (b) Histogram of D(L); length=180, (λ, µ) =
(0.745, 1.358).
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Figure 4.16: Normal Q-Q plots and histograms for estimators λ̂ and µ̂; length=180,
(λ, µ) = (0.745, 1.358).
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From the above two simulation studies, we can see that in the first case, λ̂ con-

verges to normal distribution faster than µ̂. When the length is not long enough to

achieve normality, log transformation can be done on the estimators. For example,

for the first case at length 10, µ̂ cannot be approximated by normal well. The log

transformation turns out to work better (Figure 4.17).
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Figure 4.17: Normal Q-Q plots and the histograms for log λ̂ and log µ̂; length=10,
(λ, µ) = (4.293, 1.483).
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For some of the RRMS patients, the disease course could be as long as 10-20

years before it gradually evolute to a worse situation: SPMS. However, as sequence

gets longer, the stationary assumption for the process may not hold since the RRMS

patient is more likely to develop into SPMS. Also, the patient may not feel comfortable

with frequent MRI scans. The cost of the study will increase as well. Therefore, if

we want to do analysis on the shorter sequence, the log transformation on the MLE

may work well.

4.3 The Process in Model 2

In Model 2, there is a hidden Markov chain which governs the rate of the Poisson

distribution for new lesions. However, as shown in Figure 3.2, this model is not a

standard HMM. The observed vector process (Y
(1)
t , Y

(2)
t ) has a Markovian structure

because the observed number of new lesions Y
(1)
t depends on the observed previous

total Yt−1. Generally, the HMMs have conditional independence between the observed

data given the hidden state. Model 2 seems similar to the so called autoregressive

model on the Markov regime (Douc et al., 2004). In contrast to the abundant theoret-

ical results for general state space hidden Markov models, much less is known about

the asymptotic properties of the MLE in autoregressive models with Markov regime.

Douc et al. (2004) develop a very rigorous proof of the consistency and asymptotic

normality of the MLE in such models. They try to show the geometrically decaying

bound on the mixing rate of the conditional chain, which is the hidden Markov chain

given the observations. Many assumptions are needed for the properties to hold.

There is one particular assumption that is of concern for us. They state that the

hidden Markov chain should be 1-small (i.e., for a chain with finite state space, all
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the entries in the TPM should be bounded away from zero). Thus, when we fit Model

3 to the lesion data, we do not calculate the standard errors for those zero estimates.

4.4 Numerical Results: Model 2

The situation is complicated when we examine the asymptotic normality for the

MLE of the parameters in Model 2. The dimension of the parameter space is much

higher. The multivariate normality should be checked for the MLE. At least the

marginal normal approximation is desired to hold for longer sequences. Simulation is

run according to the following scheme:

• For a fixed set of (λ1, λ2, µ, a), simulate 200 sequences following the way we

establish the likelihood function for Model 2.

• Fit Model 2 to each single sequence to get maximum likelihood estimates,

(λ̂1, λ̂2, â, µ̂).

• Draw the diagnostic plots and carry out tests to assess the asymptotic property.

• Repeat the steps at various lengths of the sequences.

The mshapiro.test procedure from the package mvnormtest in R has been used to

test the multivariate normality. The quantile-quantile (Q-Q) plots are given to assess

the marginal normality. P-value is calculated from Shapiro-Wilk test. Histograms of

all the estimates are also provided. For the likelihood ratio test statistics D(L), the

histogram overlaid with a density curve of χ2 distribution with 4 degrees of freedom

is created. The p-value is reported by using the Kolmogorov-Smirnov test.
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The parameter set we use is (λ1, λ2, a, µ) = (5.58, 3.03, 0.3, 1.48). This corresponds

to Patient 1. The sequence lengths used in this study are 10, 35, 96 and 180. The

plots are given in Figure 4.18–4.22.

Simulation Results for (λ1, λ2, a, µ) = (5.58, 3.03, 0.3, 1.48)

The p-values from the multivariate normality test procedure are all less than

0.001 for all these cases. From the plots, we find out that the estimates for arrival

rates (λ1, λ2) and the departure rate µ seem to achieve normality much faster than

the one for the transition probability a in the underlying Markov chain. The shape

in the Q-Q plot for â is highly right skewed even when the sequence length is 35

(Figure 4.18. However, as the sequence becomes longer, the shape gets back to a

more ‘familiar’ pattern compared to the other three components. The histogram of

D(L) shows some departure from the χ2 distribution with 4 degrees of freedom when

sequence is 10 or 35. This may imply that the distribution of the LRT statistic is

not well approximated by a χ2 distribution for shorter sequences. Also, compared

to the simulation results for Model 1, the length of the sequence required to achieve

a moderate asymptotic normality is higher in the multivariate situation. This may

be due to the existence of the additional hidden Markov chain. In application the

increased number of parameters, the addition of the hidden Markov model appear to

slow down the rate of convergence.
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Figure 4.18: Normal Q-Q plots and histograms for estimators λ̂1, λ̂2, â, and µ̂;
length=10, (λ1, λ2, a, µ) = (5.579, 3.033, 0.297, 1.481).
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â

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

−3 −2 −1 0 1 2 3

1.
2

1.
6

Normal Q−Q Plot for µ̂

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

p−value:
0.023

Histogram of µ̂

µ̂

Fr
eq

ue
nc

y

1.2 1.4 1.6 1.8 2.0

0
10

30
50

Figure 4.19: Normal Q-Q plots and histograms for estimators λ̂1, λ̂2, â, and µ̂;
length=35, (λ1, λ2, s, µ) = (5.579, 3.033, 0.297, 1.481).
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Figure 4.20: Normal Q-Q plots and histograms for estimators λ̂1, λ̂2, â, and µ̂;
length=96, (λ1, λ2, s, µ) = (5.579, 3.033, 0.297, 1.481).
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Figure 4.21: Normal Q-Q plots and histograms for estimators λ̂1, λ̂2, â, and µ̂;
length=180, (λ1, λ2, a, µ) = (5.579, 3.033, 0.297, 1.481).
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Histogram of D(L) versus χ2(4), length=10
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(c)

Histogram of D(L) versus χ2(4), length=96
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(b)

Histogram of D(L) versus χ2(4), length=35
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(d)

Histogram of D(L) versus χ2(4), length=180
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Figure 4.22: Histogram of D(L) with sequence lengths at (a) 10, (b) 35, (c) 96, (d)
180, (λ1, λ2, a, µ) = (5.579, 3.033, 0.297, 1.481).
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CHAPTER 5

Model Validation and Robustness Studies

In this chapter, we discuss model validation. The validity of a model has several

aspects. In the following sections, we talk about checking model assumptions for both

Model 1 and Model 2. This can be done using informal methods, such as graphical

representation or formal methods, such as goodness-of-fit hypothesis tests. Usually a

model is not a perfect match for the real process. However, if the proposed model is

a good approximation as to the reality, we expect that some minor departures from

the assumptions of the model would not influence the estimators greatly. In Section

5.1.1 and 5.1.2, we assess the robustness of the estimation through some simulation

studies.

5.1 Validation of Model 1

In Model 1, we have made several specific assumptions about the biological process

of the lesion evolution. For the M/M/∞ model, we have the following assumptions:

(C1) The process starts with the first total number of lesions having a Poisson dis-

tribution, i.e., the stationary distribution derived from an M/M/∞ queue.

(C2) The M/M/∞ queue assumption.
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The M/M/∞ structure we put in the model has fairly strong features. The arrival

process of the lesions is Poisson and the service distribution is exponential, which is

independent of the arrival process as well. The parameters of these two are constant

over time. The motivation of the proposed model we state in Chapter 3 is closely

related to our discussions here. It provides some justification of the approach we

adopt.

Were we able to measure the exact onset time and the service duration for each

lesion, we could have carried out appropriate hypothesis tests to check the above

two assumptions. However, the time-slicing data limit our ability to do that. We

anticipate that the estimates from fitting Model 1 to a single sequence would not be

affected greatly if minor deviations from the assumptions exist.

5.1.1 Assumptions for the Arrival Process

Assumption (C1) is plausible if we assume that the patient has the relapsing-

remitting disease for a while. Otherwise we have to turn to the conditional likelihood

which is conditioned on the first observed total Y1 without specifying its distribution.

Albert et al. (1994) compared the fitting results and found out that in one of the

three patients’ total count sequence, the hidden Markov model they proposed worked

worse than the independent Poisson model. When Sormani et al. (1999) dealt with

the new lesion counts, they also used Poisson distribution for the count of new lesions

over a fixed time period. The Poisson assumption has never been formally justified

or rejected. However, it might not be true that the arrival process is Poisson with

constant rate. For example, if we observe a lot of lesions in the patient’s MRI of the

brain, there may not be enough space to have new lesions coming in with the usual
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rate. Such a situation is very likely to happen when the arrival rate is much larger

than the service rate. In the long run, more ‘customers’ will be accumulating in the

system and others will be ‘turned down’ by the servers. Thus the lesion arrival rate

will be dragged down to a lower level, say λ1. On the other hand, if there are few

lesions, the arrival rate may be pulled up from the usual level by the system, say λ2,

since there is more space available for the lesions. However, we expect that, based on

our Model 1, the estimators for λ will not be far from the average of the high arrival

rate and the low arrival rate, λ1+λ2

2
. The estimator we acquire in Model 1 should be

capable of reflecting the average arrival rate. Also, the estimators for µ should not be

influenced much by the increasing and decreasing of the arrival rate, given a constant

average arrival rate.

In a small simulation study, we consider the following two schemes to generate

the data:

• Scheme 1: The M/M/∞ model with fixed arrival rate λ and service rate µ.

• Scheme 2: The choice of arrival rate λ1 or λ2 depends on the number of previous

total. If the total is below λ
µ
, we use the higher arrival rate λ1, otherwise, we

use the lower arrival rate λ2. Here λ is the simple average of λ1 and λ2.

For each of the two schemes, we generate 100 sequences with length 50. The

average arrival rate λ is fixed at 6 and the service rate is fixed at 1.3. Such a set of

parameters is chosen to ensure that the normal approximation for the MLE would

be appropriate. The higher rate λ1 and the lower rate λ2 are varied according to the
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fixed average. The misspecified loglikelihood function (3.3.6) is evaluated based on

each single sequence. The MLE for λ and µ are calculated as well as their standard

errors. The bias and MSE (mean squared error) are given. The corresponding 95%

confidence intervals are calculated assuming normality of the MLE. The proportion

that the confidence intervals cover the true parameter is reported under each scheme.

The results are listed in Table 5.1.

Cases λ µ

(λ1, λ2, µ) CP (λ) Bias(λ̂) MSE(λ̂) CP (µ) Bias(µ̂) MSE(µ̂)
(7, 5, 1.3) 97% -0.01 0.53 93% 0 0.11
(6, 6, 1.3) 94% 0.07 0.54 93% 0.03 0.11
(8, 4, 1.3) 95% 0.01 0.53 93% 0 0.11
(9, 3, 1.3) 97% 0.11 0.55 95% 0.01 0.11
(10, 2, 1.3) 93% 0.16 0.57 92% 0.01 0.11
(11, 1, 1.3) 95% 0.21 0.58 94% 0 0.11

CP (λ) and CP (µ): the proportion of confidence intervals which cover the
true parameters, λ = 6 and µ = 1.3.

Table 5.1: Proportion of confidence intervals which cover true λ and µ using Model
1, when the arrival process has average rate λ = (λ1 + λ2)/2.

We can see that the coverage proportions for both λ and µ are not far from the

desired confidence level 95%. The bias and the MSE for the estimators are moderate

in all the cases. The estimate µ̂ does not change much when the underlying arrival

process changes a lot (i.e., from constant rate to two different rates).

Also, in Chapter 3, when we compared the fitting results for Model 1 and Model

2 in Table 3.2 and 3.3, for each sequence, the estimates for µ seem to be stable. The
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estimated service rates for the 7 patients we analyzed using Model 3 are not that

different from what we get in Model 2. This suggests that the estimation for the

service rate is robust when the constant arrival rate is replaced by different Poisson

arrival rates which are governed by a Markov chain.

5.1.2 Assumptions for the Service Distribution

If it is possible to monitor the disease process more thoroughly, we would know

whether the true ‘service’ distribution for the lesion is exponential or not. In our

model, this assumption is very important since the memoryless property is crucial.

Otherwise we have to specify the remaining service time distribution for every lesion

observed at each MRI scan. Thus we want to see the changes in the properties of

the estimates if the exponential assumption is not satisfied. This is examined in the

following simulation.

The arrival rate for the Poisson process is fixed at 4. We select 6 Gamma al-

ternatives that have the same mean as the exponential distribution with mean 0.83

(rate 1.2). The shape parameters and the scale parameters are denoted by α and β

respectively. The density plots for three of them are given in Figure 5.1 to depict

the variation among these distributions. As the shape parameter α increases, the tail

of the density plot becomes heavier. When α is less than one, the density plot has

a convex shape. When α is greater than one, the density plot turns into a concave

shape.

Taking each of the gamma distributions as the service distribution, we generate

100 M/G/∞ queueing system datasets each with sequence length 50. For the first

observed total lesion count, exponential service is used such that we could ignore
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Figure 5.1: Density plots of Gamma(0.8,1.041), Gamma(1, 0.83), and Gamma(1.5,
0.553).

the remaining service time distribution in the simulation. The perturbation on the

service distribution is allowed to start after the first observed total. Then we calculate

the coverage proportions for the parameters by fitting the M/M/∞ model to the

simulated data. The results are listed in Table 5.2.

The coverage proportion for λ decreases from the nominal confidence level of

95% as the service distribution deviates further from the exponential distribution. A

similar result holds for the estimator for µ. We notice that the very low coverage

proportion when the service distribution is gamma with the shape and the scale
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(λ, α, β) λ µ
(4, 1, 0.833) 96% 94%
(4, 0.95, 0.877) 97% 93%
(4, 0.9, 0.926) 95% 91%
(4, 0.8, 1.041) 88% 74%
(4, 0.7, 1.19) 71% 61%
(4, 1.5, 0.553) 52% 62%
(4, 2, 0.417) 24% 17%

Table 5.2: Proportion of confidence intervals which cover true λ and µ using Model
1, with the Gamma service distribution.

parameters as 2 and 0.417. It seems that the model does not work well if the service

distribution has a form other than exponential. The applicability of our proposed

model may be limited because of this. More information for the onset time and the

duration of the lesions require a more precise measuring process. If it were possible

to track the evolution of each of the observed lesions, it will enable us to model with

better approximation to the true biological process.

5.2 Validation of Model 2

For Model 2, the assumptions are:

(D1) The Markov assumption for the process of the underlying states.

(D2) Stationarity of the transition probabilities and the same transition probabilities

between the two states (i.e., the symmetric TPM for the Markov chain).

(D3) Homogeneity of the Poisson rate parameters λ0 and λ1 and the service rate

parameter µ for the M/M/∞ queue.
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(D4) The assumption of the M/M/∞ structure.

It does not seem possible for us to check the Markovian assumption of the under-

lying chain and if it is a stationary Markov chain since the exact transition times are

not observable. Informally speaking, the biological process would be relatively stable

in the early years of the disease so that we are able to approximate the true process

with a much more idealistic one.

We can formulate a test on the equivalence of the transition probabilities between

two states. This can be done by comparing the model fitting results from Model 3 to

the fitting results from Model 2, since Model 2 is nested in Model 3. The likelihood

ratio test has been formulated for the nested standard hidden Markov models (Giudici

et al., 2000) with a common known number of the states for the underlying Markov

chain. We can follow this idea here.

Assuming that the LRT statistic for the two models has an asymptotic χ2 distri-

bution with 1 degree of freedom, we can test the validity of the assumption that a = b.

We calculate the LRT statistic −2(logL2 − logL3) (L2 and L3 are the loglikelihood

scores for Model 2 and Model 3 respectively) for all the patients who have been fitted

with both models in Section 3.5. It seems that that only Patient 7 has a significant

p-value 0 with the LRT statistic 9.82 = −2(100.96 − 105.870). The AIC and BIC

scores also show a better fit using Model 3. The first 5 months with a much higher

average new lesion counts may suggest that the symmetric assumption for the hidden

Markov chain is not appropriate.

The above comparison needs the assumption that D(L) (Chapter 4) for Model

3 should be approximately χ2 distribution with 5 degrees of freedom. We find out

through a simulation study that it is the case when the sequence is long. It takes
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much longer for the estimators to achieve asymptotic normality in Model 3 than in

Model 2. However, the approximation may not be good when the sequence is as 28

months long as for Patient 7. Thus the inference should be made with caution.

5.3 Goodness-of-fit

Methods have been proposed to assess the performance of stochastic models in the

literature. Usually for time series models, after computing the estimated conditional

mean based on the parameter estimates, we can create a diagnostic plot by overlaying

the expected mean response on the observed data. This provides a graphical view of

the fit. In both Model 1 and Model 2, we can calculate the conditional mean for the

total lesion count Yt and new lesion count Y
(2)
t given the past information.

In Model 1, the arrival of the new lesions is independent of the number of persistent

enhancing lesions. Thus

E(Y
(2)
t ) =

λ(1 − e−µ)

µ
(5.3.1)

and

E(Yt | Yt−1, Yt−2, . . . , Y1) = E(Y
(1)
t + Yt(2) | Yt−1, Yt−2, . . . , Y1)

= Yt−1e
−µ +

λ(1 − e−µ)

µ
. (5.3.2)

From (5.3.2) we can see a linear association between Yt and Yt−1. Since both AIC

and BIC scores support the use of Model 1 in Patient 1, 2, 3, 8 and 9, we plot Yt

versus Yt−1 in these patients. We can see the linear trend in all the plots although

sometimes it is moderate.
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Since E(Y1) = λ
µ
, we have constant mean λ

µ
for the marginal total lesion count. It

seems natural that we can fit a Poisson distribution with mean r1 to the total lesion

count sequence, and we can fit another independent Poisson distribution with mean

r2 to the new lesion count sequence. Model 1 considers to fit these two sequences

together in one model. We can calculate the corresponding estimates for λ
µ

and

λ(1−e−µ)
µ

respectively using the estimates for λ and µ we get by fitting Model 1 to the

data. The results are listed in Table 5.3.

Poisson Model Model 1
Patient r1 r2 r3 r4

1 2.89 2.24 2.895 2.238
2 0.53 0.36 0.549 0.408
3 2.19 1.32 2.170 1.309
4 5.96 4.73 6.177 4.687
5 4.30 3.40 4.329 3.407
6 4.94 2.79 5.006 2.942
7 4.93 3.15 4.998 3.371
8 1.41 1.04 1.416 1.092
9 2.90 1.78 2.90 1.968

r1: Poisson rate for the total lesion count.
r2: Poisson rate for the new lesion count.
r3: estimates for λ

µ
from Model 1.

r4: estimates for λ(1−e−µ)
µ

from Model 1.

Table 5.3: Comparisons of the estimated Poisson rates for the new and the total
lesions for Model 1 and the Poisson Model.

We notice that the rates for the total as well as for the new calculated from the two

model fitting situations do not differ substantially for all the patients. The biggest

difference resides in Patient 4 who has the widest range and the largest average for

the total and the new (Table 3.1). When we formulate the likelihood function for
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Model 1, the number of persistently enhancing lesions (as a part of the total counts)

is modeled by a binomial distribution. When we substitute the Poisson probabilities

for the binomial probabilities during the calculation, we found only small difference in

the loglikelihood value. Again, the biggest difference corresponds to Patient 4. There

is a possibility that the Poisson approximation for the binomial probabilities may

work well, which makes the correlation between Yt and Yt−1 weak. Although we can

derive the arrival rate and the service rate for the queueing process mathematically

from the two Poisson rates from fitting the independent Poisson distributions for the

total and the new, the interpretation is not as straightforward as the one from Model

1. Moreover, the MLE computation is fairly easy in Model 1.

For Model 2, the conditional mean of the new is given by

E(Y
(2)
t | Y

(2)
t−1, Xt−1, Y

(2)
t−2, Xt−2, . . . Y1, X1)

= E(E(Y
(2)
t | Xt, Xt−1, . . . , X1))

=
(1 − e−µ)

µ
· E(λ1

Xt + λ2
1−Xt | Xt−1, . . . , X1)

=
(1 − e−µ)

µ
· (λ1

Xt−1(1 − a)1−Xt−1aXt−1 + λ2
Xt−1(1 − a)Xt−1a1−Xt−1). (5.3.3)

The conditional mean of the total is given by:

E(Yt | Yt−1, Xt−1, Yt−2, Xt−2, . . . Y1, X1)

= Yt−1e
−µ + E(Y

(2)
t | Y

(2)
t−1, Xt−1, Y

(2)
t−2, Xt−2, . . . Y1, X1) (5.3.4)

where the second term is given by (5.3.3).

Other approaches such as qualitatively comparing the observed and expected fre-

quencies of each value can be applied here as well. However, the comparison can only

be done based on the total lesion counts or new lesion counts separately. Altman and
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Petkau (2002) indicate in their paper that the methods involving the expected mean

quantitatively or qualitatively focuse on means rather than on distributions, which

might not be appropriate to detect violations of the Poisson assumption.

Altman and Petkau develop a graphical method to evaluate the goodness-of-fit:

plot of the estimated univariate/bivariate distribution against the empirical univari-

ate/bivariate distribution. They state that the new method can detect a lack of

fit as sequence length gets longer, when the marginal distribution or the correlation

structure is misspecified. When fitted to the 3 RRMS total lesion count sequences,

the standard Poisson HMM seems to provide a good fit in terms of its marginal fea-

ture. However their plots of the estimated bivariate probabilities versus the empirical

bivariate probabilities suggest that the two-state HMM is unable to capture the corre-

lation structure. In our opinion, the standard Poisson HMM is not adequate perhaps

due to the correlation between the consecutive total lesion counts. The total lesion

counts at time t include those old lesions who have been seen enhancing at time t−1.

This feature has been incorporated by the M/M/∞ structure in our models.
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CHAPTER 6

Model Applications

In this chapter, we describe some of the possible applications for the model we

have developed here. The Gd-enhancing MRI lesion sequence from an individual

RRMS patient could be used to describe the lesion evolution with the enhancing

information. We set up hypothesis tests for the disease progression which could be

based on the MRI lesion counts using the proposed models. In Section 6.2, we talk

about taking into account the heterogeneity among the patients for cross-sectional

studies. Finally, in Section 6.3, we discuss how the models could be applied to the

planning of RRMS clinical trials.

6.1 Testing Disease Progression

Testing for the disease progression is an important application if a neurologist

would like to know how an individual patient is doing during the disease course.

Before we answer this question, it is important for us to have some idea about the

definition for disease progression in MS patients. Clinically, neurologists are using

acute measures such as the clinical relapse rate, number of relapses for disability

progression, while a chronic measure such as the change of the EDSS score has been

used. For example, in the trial for Avonex, the sustained disability progression is
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defined as deterioration from baseline evaluation by at least 1.0 point on the EDSS

persisting for at least six months. Survival analysis using time to the first clinical event

as the response is the common analytic technique in phase III studies. Many studies

suggest that either the enhancing new lesions or the total lesion volume correlates with

clinical impairment poorly despite the fact that MRI is useful for detecting sub-clinical

disease activity. However, the frequency of active scans and active lesions increases

shortly before and during clinical relapses (Comi et al., 1998). If a large number of

Gd-enhancing lesions are seen in a period, the patient might be going through more

severe inflammation, which may result in a higher chance of demyelination. However,

this can only be tested for patients with RRMS since the Gd-enhancing lesions are

less seen in other MS types (Comi et al., 1998).

In the following we describe an application of Model 1 to test the disease progres-

sion in a specific RRMS patient. Patient 5 is chosen for illustration. This patient

seems to have more lesions in the last 15 months than the first 15 months (see Fig-

ure 3.4). We can formulate a test to see whether the difference is significant. The

total follow-up is 37 months. Given the same patient, we assume that the estimates

from the first period is independent of the estimates from the second period. This

assumption may be appropriate when the 7-month interval between these two periods

is viewed as the washout time. Based on the derivations in Section 3.3.2, we find out

that the estimate for (λ, µ) using the first period data is (4.312, 1.306) with standard

error (0.839, 0.243). The estimate using the second period data is (10.054, 1.721)

with standard error (1.475, 0.232). The second-period lesion arrival rate is signifi-

cantly larger than the first-period rate. The one-sided p-value is 0.0004 when we

compare the observed standardized test statistic to a standard normal variable. Note
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that the test statistic here is to standardize λ̂11 − λ̂12 by its approximate standard

error:

λ̂11 − λ̂12
a
∼ N(λ11 − λ12, ˆse2(λ̂11) + ˆse2(λ̂12)). (6.1.1)

where λ11 and λ12 are the arrival rates corresponding to the two periods respectively.

On the other hand, there is no evidence that the service rates between these two

periods differ. The two-sided p-value here is 0.218.

If λ increases, it implies that on the average, there are more lesions enhancing

in the brain MRI, which makes the relapse more possible. This increase does have

support from the clinical point of view. We examine the monthly EDSS scores for

this patient in Figure 6.1. The EDSS scores for the second period is much higher

and more fluctuating compared to the first one. This might suggest that with more

inflammatory activity shown in MRI Gd-enhancing lesion counts, the neurological

examination findings are consistent.

Model 3 can also be used to test the disease progression in the following way. As

we discussed in Section 3.5, the estimates of for a and b can be used to calculate

the long-run probability of the Markov chain in the states (i.e., 1−b
2−a−b

for the higher

rate state and 1−a
2−a−b

for the lower rate state). Overall, If a is significantly bigger

than b, that means the patient stays longer in the higher rate state. For example,

from Patient 4, the estimate for a is 0.590, which is bigger than the estimate for b,

0.426. Using asymptotic normality, we can see that the test statistic has a value of

(0.590−0.426)√
0.1273+0.0818+2∗0.0568

= 0.288. The standard normal p-value is 0.39.
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There is no evidence that this patient stays longer in the state having more enhanc-

ing lesions for this patient. The comparison of the fitting results between Model 2 and

Model 3 also supports the claim. The LRT statistic is −2(94.452 − 94.565) = 0.046

and the χ2
1 p-value is 0.84. Thus there is not sufficient evidence that the patient

remains in the higher rate state longer given the observed lesion count sequence.

Since there are two arrival rates corresponding to the two underlying different

states in Model 2 and Model 3, the disease progression could be shown by the increase

of the two rates simultaneously. For example, when the patient has been followed

long enough and Model 2 or 3 are more appropriate to describe the lesion evolution

process. If there is suspicion that during one period this patient tends to have more

lesions than in another period, we can fit the models to these two periods’ sequences

separately and compare the estimates for λ’s. Tests regarding to the increase in λ1

and in λ2 can be done respectively and the Bonferroni correction can be made to

adjust for multiplicity.

Testing Drug Effect

The Gd-enhancing T1-weighted MRI lesion counts have been considered as an

outcome measure in the clinical trials to test the treatment efficacy. The enhance-

ment is more related to BBB damage associated with intense inflammation and it

may precede the onset of clinical symptoms although the inflammation may not di-

rectly be responsible for disease progression. In most RRMS clinical trials, a positive

treatment needs to have an effect on the clinical disease progression, such as relapse

rate. Subclinically, the therapeutic strategy that is targeting the inflammation should

demonstrate its strength in reducing the lesion arrival rate. When McFarland et al.
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(1992) illustrated the application of the Markov regression model they proposed, the

number of new lesions, in contrast to the number of total lesions was chosen as the

most appropriate measure because an effective treatment would more likely to stop

new lesion development than to shorten the duration of the lesion enhancement. Usu-

ally the anti-inflammatory drug may inhibit the occurrences of new enhancing lesions.

If a patient serves as his own control, the lesion count data under treatment

could be used to estimate the corresponding parameters. These estimates could

be compared with those calculated from his natural history data or from the con-

trolled/placebo period. If the drug is effective in reducing the newly enhancing lesion

counts, an approach similar to the one in Equation (6.1.1) can be used to do the

hypothesis test using Model 1. We illustrate the application in a simulation study.

To simulate the sequences under the null hypothesis, we set the parameters λ and

µ equal to 7 and 1.3 respectively, which may allow us to use a reasonably good normal

approximation for MLE even the sequence is not very long. We set different values

for λ where the treatment effect is demonstrated by the proportional reduction in

the arrival rate. The sequences under the alternative hypothesis are simulated using

those different λ’s and the same µ.

Under the specified treatment effect and the sequence length, we simulate 100

sequences under null hypothesis and another 100 sequences under the alternative.

Then these sequences are fitted by Model 1 and the MLEs are determined. Using

normal approximation, the rejection region for the test is {λ̂ : λ̂−λ0

ŝe(λ̂)
< −1.65}. Here we

use 1.65 for the desired type I error rate 0.05. We also calculate the percentage of the

MLE for λ falling in the rejection region based on the simulation under the alternative
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length (α0) length (α0) length (α0)
effect* 12 (0.06) 16 (0.04) 20 (0.03)
20% 29% 45% 49%
30% 54% 64% 82%
40% 78% 87% 97%

*: Proportional reduction in lesion arrival rate.
α0: Estimated significance level by simulation.

Table 6.1: Statistical power for a two-period cross-over study for one patient for a
reduction in the lesion arrival rate.

hypothesis. The results are listed in Table 6.1. We can see that ss the sequence length

gets longer, we are able to achieve higher power for the same treatment effect.

From the immunologic point of view, the mean duration time of the enhancement

may play an important role. Giovannoni et al. (1997) claimed that Gd enhancement

may not only detect lesions in their pro-inflammatory phase but also during regres-

sion, a phase in which production of ICAM-1 would be decreased. During a longitu-

dinal study, a hierarchy related to the inflammation has been constructed where new

enhancing lesions have higher ICAM levels than the persistently enhancing lesions.

The temporal profile of Gd-enhancing lesions was suggested for consideration when

attempting to correlate inflammatory markers with Gd-enhancement.

Currently there is not a drug targeting the healing rate or shortening the mean

duration of the enhancement. However, hypotheses related to the parameter µ can

be established using Model 1 as well. Following the same idea for the previous study,

we work on another simulation study to demonstrate the drug effect in µ. The same

pair of λ and µ is used for the null hypothesis. Since the drug effect is shown by the

increase of the µ values, the rejection region using normal approximation would be
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{µ̂ : µ̂−µ0

ŝe(µ̂)
≥ 1.65}. The desired type I error rate is still fixed at 0.05. Results are

reported in Table 6.2. We can see that in order to achieve larger power, longer study

is needed.

length (α0) length (α0) length (α0)
effect* 12 (0.03) 16 (0.04) 20 (0.04)
20% 15% 31% 38%
30% 32% 42% 55%
40% 39% 52% 69%

*: Proportional increase in healing rate.
α0: Estimated Significance level by simulation.

Table 6.2: Statistical power for a two-period cross-over study for one patient for an
increase in the lesion healing rate.

We can also test drug efficacy using Model 2 or Model 3. The formulation of

the hypothesis depends on where the treatment effect is demonstrated. As most of

the RRMS drugs do, the effect is to reduce the newly enhancing lesions no matter

the patient is in relapse or remission. Thus the estimate for λ1 would be expected

to decrease in the same degree as the one for λ2 when the patient takes the drug

compared to the estimates from the placebo period.

6.2 Heterogeneity Among Patients

On the one hand, each total lesion count sequence and the new lesion count

sequence from T1-weighted Gd-enhancing MRI scans could be used to describe the

lesion evolution process for an individual patient. On the other hand, all the patients

sequences can be considered together if we want to know characteristics about the
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patient population. From Table 3.2 and 3.3, we have noticed that estimates for lesion

arrival rates and the enhancing rates are highly variable among that RRMS cohort.

It is known that the rate of development of new lesions vary greatly between patients

and to a lesser extent, within the same patient over time. In our models, factors

which may take account of the patient variation can be included.

Models with Covariates

The number of disease years at the entry of the study may be a potential source for

the large patient-to-patient variation. The regional effect might be another relevant

factor. Our proposed models can be modified to allow for the influence of such

covariates. Borrowing the ideas from the generalized linear models (GLM), we can

formulate our parameters incorporating these covariates. For example, in Model 2 or

Model 3, the two arrival rates can be formulated as

log λi = λ0i + βici

′

, i = 1, 2

where ci is a row vector of the covariates. We can also formulate our parameter µ

in such a way that if we suspect some specific covariate may influence the enhancing

mean duration time. For a cross-sectional study, hypothesis tests could be applied

using the estimated coefficients to test the covariates effect.

Models with Random Effects

Another way to account for the heterogeneity in our models is to consider the

patients as a random sample from a population. There may great variability in the

number of new enhancing lesions and the number of total enhancing lesions within

RRMS patients over time. The magnitude of the peak number and the frequency
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of the peaks vary among patients. Some patients such as Patient 2 in our dataset

in Section 3.4 show little or no activity (usually one lesion or none) over the full

follow-up and others tending to have active lesions on most monthly MRI scans.

Those covariates we have mentioned above may partially explain the variability among

patients. However, the factors underlying the high variability are not well understood.

Since the disease course could be so heterogeneous across patients, random effects may

be added to the modeling of the cross-sectional data.

Suppose we have observed (Y1,i,Y2,i, . . . ,Ymi,i) where i = 1, 2, . . . , n, and mi is

the sequence length for Patient i. For example, in Model 1, we could assume that for

each Patient i, the observed lesion count sequences (Y1,i,Y2,i, . . . ,Ymi,i) follows the

M/M/∞ structure with arrival rate λi and enhancing rate µ. Here we can assume

that λi ∼ p0 where p0 is some informative prior distribution. For estimation, we have

to integrate the random effect out. As we have reviewed in Section 2.2.1, Sormani et

al. (1999) include the random effect for the rate of the Poisson distribution of the new

enhancing lesion counts over a fixed time period. The prior distribution they used for

the Poisson mean is Gamma. Since the resulting negative binomial distribution turns

out to give a better fit than the Poisson distribution in their study, a Gamma prior

may be one of our candidates. The prior could also be placed on the parameter µ

when the patient population has more heterogeneity where the enhancement pattern

varies among the patients. Or we can also put random effect both on the parameters

λ and µ using some joint prior distribution. Biological evidences are needed for a

specific choice. We also have to bear in mind that the more complicated prior we

choose, the more computational difficulty we may encounter in our analyses.
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6.3 Implications of the Models in the Design of Clinical Tri-
als for RRMS

Many therapeutic drugs have been developed to modify the disease course of

RRMS. Successful drugs include the beta-interferon (Betseron, Rebif, and Avonex),

anti-inflammatory agents that suppress cell migration into the central nervous system

(CNS); and Copaxone, a mixture of peptide fragments thought to act as a decoy for

the immune system to spare myelin from further attack. Clinical outcomes such as

relapse rate and EDSS score are the primary outcome measures used in phase III

clinical trials.

Although Sormani et al. (2002) implement a formal validation of MRI metrics as

surrogate markers for clinical outcome, which is the clinical relapse rate in their case,

the MRI measures they choose do not satisfy all the criteria for the surrogacy. Usually,

if a potential anti-inflammatory therapeutic agent fails to reduce MRI enhancing

lesions, it is not promising. Many drugs show their efficacy in the reduction or even

cessation of the lesions (Comi et al., 2001). The long term effect of those drugs to

control the disease progression is still unknown. Clinical improvement may not follow

and new lesions may show up again even after the treatment continues. However,

many trial studies still suggest the use of MRI. That is why we can see the MRI

outcomes as the primary endpoint in some clinical trials. Overall, the use of MRI

measures are limited.

Gd-enhancing MRI outcome measures such as lesion counts and lesion volume

are the primary endpoints in phase II studies. For the application of our models

in planning of RRMS trials, we also recommend its use in planning phase II studies.

Although the correlation between the MRI outcome measures and the clinical outcome
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measures is moderate, it is a fact that more frequent acute enhancing lesions are in

a patient, the more likely that one of these lesions will involve an area in the CNS

that will result in a clinical symptom. The pathology associated with Gd-enhancing

lesions is more specific about the inflammatory aspect of the disease, especially the

disruptions of the BBB. Those pharmaceutical agents with anti-inflammatory effects

such as beta-interferon products should decrease the number of enhancing lesions

(Simon, 2003).

We need to demonstrate how we can detect the treatment effect using our pro-

posed models before we start calculating the sample size with desired power. Let us

illustrate a possible approach using Model 1 when the treatment effect is to decrease

the lesion arrival rate. For a parallel group design, suppose there are n patients

in each group and they are followed for the same length m months. Denote the

observed sequences for Patient i in group j by Sij = (Yij1,Yij2, . . . , ,Yijm) where

Yijk = (Y
(1)
ijk , Y

(2)
ijk ). Notice that i = 1, 2, . . . , m, and j = 0, 1, which represent the

placebo and the treatment group, respectively. Assume that

Sij|λij, µ v M/M/∞ (λij, µ) (6.3.1)

λij = λ0jεij (6.3.2)

εij|θ v Γ(θ,
1

θ
). (6.3.3)

Now λij is the arrival rate for Patient i in group j. We put a random effect on this

parameter since the RRMS patients usually present large heterogeneity in the lesion

counts. Notice that λij follows a gamma distribution with mean λ0j . Our purpose of

the experiment is to test whether the absolute difference of the arrival rates between

the two groups, i.e., |λ00 − λ01|, is significant. The next step is to estimate these two
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λ’s based on the observed sequences. The likelihood function based on Sij is:

L(Sij|λ0j , µ, θ) (6.3.4)

=

∫

εij

L(Sij|λ0jεij, µ)dL(εij|θ). (6.3.5)

(6.3.6)

The computation could be more complicated due to the integraion regarded to eval-

uate the likelihood function. We can use the likelihood ratio test statistic. If the

asymptotic χ2 distribution works in this case, the rejection region is easy to locate.

We can simulate 2m observed data, with half of them from some fixed λ00 for the

placebo group and the other half from λ00(1− δ) where δ is the treatment effect. For

this experimental design 100 trials can be generated and the power is calculated as

the proportion of trials which yield a significant result based on the LRT statistic.

If Model 2 and Model 3 are considered to design RRMS trials, the effect from the

treatment (such as the anti-inflammatory drugs) could be demonstrated through the

reduction in both of the two arrival rates corresponding to the two underlying states

of the Markov chain. Suppose λijk is the arrival rate when the underlying state is k

for Patient i in group j. There are two values for k, 0 or 1. We can assume

λijk = τk + βkcj

where cj is the indicator for treatment. The coefficient β0 can represent the treatment

effect in the reduction of the lesion arrival rate associated with the lower state and

β1 with the higher state. A positive treatment may be expected to show the same

amount of decrease in both β’s. Following the same idea as presented above, for a

parallel group design, we can specify the length of the follow-up (same for the patients

in each group), and use simulation to find out the power for a given sample size. By
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fitting the model to a data from a natural history study or a pilot study, we can

estimate the parameters for the control group. Based on the estimates, the data for

the control group is simulated. The same thing can be done for the treatment group

by varying β’s associated with a specified treatment effect. Then the power would

be the proportion of significant tests reported by the LRT statistic, if the asymptotic

distribution works well. Or one can use simulation to determine a cut-off value under

the null hypothesis of no difference and estimate the power values.

If in future there is a therapeutic agent put to test to see if it has the effect to

reduce the duration of the enhancement of the lesions, our model could be the one

helping with the experimental design. If the drug can facilitate the service and thus

shorten the stay of the lesions, we may assume the treatment is able to increase the

service rate µ. And similarly, a fixed effect or a random effect can be included in this

parameter.

Above methods are just simple illustrations of how we are going to calculate the

sample size for RRMS trials using our proposed models. Many assumptions associated

with the drug efficacy have to be put on the design. The practical situation would

not be that easy. For the planning of clinical trials for RRMS, there are a lot of issues

going on, such as the constraints of time, patient toleration as well as the lack of

agent-free patients left from all the previous trials. Efficient use of the information

from the limited number of patients requires a judicious choice of appropriate MRI

outcome measures that are closely related to the clinical manifestations.
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CHAPTER 7

Conclusion and Future Work

In previous chapters we have explored a new modeling scheme for the total and

new Gd-enhancing MRI lesion count sequences at the same time. By incorporating

the M/M/∞ structure in the models, the lesion evolution at the early stage involving

inflammation is viewed as a whole process. Based on the assumptions of M/M/∞, we

are able to formulate the arrival rate and the service (enhancement) rate in our models

and estimate them with the MLE. The arrival rate could be constant or controlled

by a hidden Markov chain with states representing the disease status (relapse and

remission). We fit the models to the MRI lesion sequences from 9 RRMS patients

and discuss the model fitting results in Chapter 3. For those lesion count sequences

where substantial variability is present, the model with M/M/∞ structure on the

Markov regime is more appropriate on the basis of the AIC or BIC criteria for model

selection.

We have discussed the asymptotic properties of the MLE in Chapter 4. The long-

run distribution of the process with the new lesion counts and the persistent lesion

counts is derived. Simulation studies show that when the sequence length gets longer,

the MLE for the parameters will be asymptotically normal. In Chapter 5, we focus

on the model validation and robustness. Simulation results show that the estimators
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are robust to minor deviations from the assumptions for the arrival process. However,

this is not the case when the exponential service distribution assumption is violated.

In Chapter 6, we provide discussions about how the models can be used to test the

disease progression, to take the patient-to-patient variation, and to plan future RRMS

clinical trials.

Although we have described thoroughly the new modeling approach in this dis-

sertation, some interesting questions need to be considered in future work. Firstly,

we need more data to help with the model validation and application. For example,

the model with M/M/∞ structure on the Markov regime shows a better fit in some

of the patients when we compare the BIC and AIC scores. It seems that the un-

derlying Markov chain is more likely to account of the substantial variations in the

lesion counts. However, it is not clear whether the variation is striking in most of the

RRMS patients or not.

Secondly, the models we propose originally are motivated from the queueing the-

ory. For application, they have been adapted to approximate a biological process.

It is straightforward that the models could also be applied in the context of queue-

ing process. In fact, Gafarian and Ancker (1966) discussed the pros and cons of

observing a queueing process via the way of time-slicing and event-history. They

compared these two using the mean queue system size in various types of queues.

Our approach presents a parametric method to make inference when the underlying

process is M/M/∞ queue or the MMPP/M/∞ queue with transitions between the

underlying states happen at the regularly spaced time points. The M/M/∞ struc-

ture can also be used when the data are from unequally spaced observing time points.

The likelihood function in that case would be a little bit more complicated with the
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interval length in it. However, since our model depends heavily on the assumptions

of M/M/∞, determining how to model the time-slicing data from M/G/∞ queue

or G/G/∞ queue raises a tough question. By assuming that the service distribution

has a specified form other than exponential, it is important to figure out the remain-

ing service time in the system for the lesions. It would be interesting to examine

how these concerns can be included in the model and to propose relevant inference

procedures.

Thirdly, rigorous proof for the asymptotic normality of the MLE for the models

would be another challenging task. The conditions for the existing central limit

theorems in the setting of Markov chain (or mixing properties of the stochastic process

with countable state space) may provide insight into establishing the result in this

situation.

Fourthly, as we have mentioned in Section 3.5, it is not clear what is the best cri-

teria for the order selection among hidden Markov models. Our models are involved

in this topic. Unlike a general hidden Markov model, it has correlated observations

given the underlying Markov chain. It may not be straightforward to adopt the ap-

proach for HMM. Meanwhile, the graphical method to detect lack-of-fit we mentioned

in Section 5.3 could be explored in our models.

The lesion evolution process in RRMS patients is a very complicated biological

process. The MRI images have discovered many pathological features of the disease.

More advanced technology in the future will bring better understanding of this disease

process. To describe the process, stochastic modeling is still a very important tool

researchers should consider to work on.
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Appendix

A.1 The 9 RRMS MRI Gd-enhancing Lesion Count Sequences

The datasets we are analyzing are sequences of total lesion counts and new lesion

counts from nine RRMS patients in a study by NINDS (National Institute of Neuro-

logical Disorders and Stroke). These patients were followed for peroids of time for an

average of 30 months. Lesion counts were recorded during the MRI scans.

• Total lesion counts:

[Patient 1]: 3,5,4,3,2,2,7,3,2,1,1,2,4,7,2,4,2,1,3,2,1,1,3,8,3,3,1,1,3,1,5,2,3,2,4

[Patient 2]: 2,1,1,0,0,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,2,1,0,0,0,2,1,1

[Patient 3]: 2,2,2,4,0,4,2,5,1,0,1,1,1,1,2,1,1,1,2,1,1,2,2,3,5,7,4,5,1,2,3,2,0,2,5,1

[Patient 4]: 10,1,1,5,1,1,2,4,11,4,5,6,11,10,1,9,6,5,6,3,6,6,10,19

[Patient 5]: 5,4,3,4,4,5,5,3,2,2,2,3,3,1,3,3,1,2,7,4,3,2,2,3,5,7,4,8,6,2,6,7,7,13,3,7,8

[Patient 6]: 6,8,7,8,7,6,5,4,7,7,9,8,3,5,2,7,6,3,5,0,4,2,1,5,5,2,3,2,4,4,1,2,6,12,7

[Patient 7]: 9,6,4,17,8,4,7,6,3,1,3,3,5,4,5,3,5,1,7,6,3,6,3,3,3,6,2,5

[Patient 8]: 2,2,2,0,2,2,0,0,0,1,0,0,1,1,0,4,4,5,0,2,1,4,1,2,2,0,1,1,1

[Patient 9]: 3,7,4,1,2,3,2,6,1,5,2,2,1,4,2,3,5,5,4,1,2,1,4,2,1,4,2,2,3

• New lesion counts:

[Patient 1]: 3,5,4,3,0,1,6,1,2,1,1,2,4,3,2,3,2,0,2,1,1,1,2,8,2,2,1,0,3,1,5,1,3,1,2

[Patient 2]: 2,1,0,0,0,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,2,1,0,0,0,2,0,0
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[Patient 3]: 2,1,2,4,0,4,1,5,0,0,1,1,1,0,1,1,0,0,2,0,0,1,0,2,4,2,1,2,0,2,2,1,0,2,3,0

[patient 4]: 10,0,1,5,1,1,2,4,11,2,4,6,6,4,1,9,3,5,5,2,5,5,9,13

[Patient 5]: 5,3,2,3,2,5,3,2,1,2,2,2,2,1,2,3,0,2,6,3,2,1,2,2,4,6,2,8,5,2,5,6,6,11,2,6,6

[Patient 6]: 6,7,2,4,3,1,2,1,6,4,7,5,1,4,1,5,1,2,2,0,4,0,0,4,1,2,1,2,4,2,1,2,5,11,2

[Patient 7]: 9,5,1,16,3,0,6,2,2,1,3,2,3,3,3,2,2,0,6,5,3,3,2,3,2,6,0,3

[Patient 8]: 2,2,1,0,2,2,0,0,0,1,0,0,1,1,0,4,2,3,0,2,1,3,1,2,1,0,1,0,0

[Patient 9]: 3,7,2,0,1,2,1,5,0,4,0,1,0,4,2,1,3,2,2,1,2,1,4,1,1,4,1,1,2

A.2 Basic R Codes for Fitting the Models

The following are the R codes we have used for the model fitting.

1. Model 1:

#total is the total lesion count sequence

#new is the new lesion count sequence

m <- length(total)

a <- total[1]+sum(new[2:m])

b <- sum(total[2:(m-1)])-sum(total-new)

c <- sum(total-new)

rootup1 <- -(b*(m-2)-a-c)+sqrt((b*(m-2)-a-c)^2+4*(m-1)*(b+c)*(a+b))

rootup2 <- -(b*(m-2)-a-c)-sqrt((b*(m-2)-a-c)^2+4*(m-1)*(b+c)*(a+b))

rootdn <- -2*(m-1)*(b+c)

broot1 <- rootup1/rootdn

broot2 <- rootup2/rootdn

aroot1 <- a/((m-1)+1/broot1)

118



aroot2 <- a/((m-1)+1/broot2)

#now check the hessian matrix

hes <- jac <- matrix(0, ncol=2, nrow=2)

hes[1,1] <- -a/(aroot2)^2

hes[1,2] <- hes[2,1] <- 1/(broot2)^2

hes[2,2] <- -2*(aroot2)/(broot2)^3-b/(broot2)^2-c/(1-broot2)^2

sh <- solve(-hes)

jac[1,1] <- log(1-broot2)/broot2

jac[1,2] <- -aroot2*log(1-broot2)/(broot2)^2-aroot2/((1-broot2)

*broot2)

jac[2,2] <- -1/(1-broot2)

temp <- sqrt(diag(jac%*%sh%*%t(jac)))

mu2 <- -log(1-broot2)

lamda2 <- aroot2/broot2*mu2

2. Model 2:

floglk2 <- function(par)

{

l1 <- exp(par[1])

l2 <- exp(par[2])

a <- 1/(1+exp(par[3]))

mu <- exp(par[4])

pat1 <- c(0.5, 0.5)
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pat2 <- diag(c(exp(obs[1]*log(l1)-l1/mu), exp(obs[1]*log(l2)

-l2/mu)))

bt <- t(pat1)%*%pat2

bt2s <- mean(bt)

bt <- bt/bt2s

temp1 <- exp(-l1*(1-exp(-mu))/mu)

temp2 <- exp(-l2*(1-exp(-mu))/mu)

gmat <- c(a*temp1, (1-a)*temp1, (1-a)*temp2, a*temp2)

fac <- rep(1, m-1)

for (j in 2:m)

{

bt <- bt%*%matrix(c(gmat[1:2]*(l1^nobs[j]),

%*%gmat[3:4]*(l2^nobs[j])), nrow=2)

fac[j-1] <- sum(bt)/2

bt <- bt/fac[j-1]

}

logl <- log(bt2s) - log(factorial(obs[1])) -obs[1]*log(mu) +

sum(log(choose(obs[1:m-1], (obs[2:m]-nobs[2:m])))) -

sum(log(factorial(nobs[2:m]))) - log(mu)*sum(nobs[2:m]) -

mu*sum(obs[2:m]-nobs[2:m]) + log(1-exp(-mu))*sum(2*nobs[2:m]+

obs[1:m-1]-obs[2:m]) + log(bt%*%c(1,1)) + sum(log(fac))
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return(-log)

}

obs <- total

nobs <- new

m <- length(obs)

minf <- floglk2(sk22)

#sk22 is the starting point

resm2 <- optim(par=sk22, fn=floglk2, method = "L-BFGS-B",hessian=T,

control=list(maxit=6000, lmm=6,trace=0))

v <- resm2$par

fpar <- c(exp(v[1]), exp(v[2]), 1/(1+exp(v[3])), exp(v[4]))

est2[i, ] <- c(i,fpar, resm2$value, minf)
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[6] Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in Hidden Markov
Models., Springer, New York.

[7] Cohen, A. J. and Rudick, A. R. (2003). Aspects of multiple sclerosis that relate

to clinical trial design and treatment, 3-20 In: Cohen A. J. and Rudick A. R.,
eds., Multiple Sclerosis Therapeutics, 2nd ed., Martin Dunitz, Malden, MA.

[8] Comi, G., Filippi, M., Wolinsky, J. S., the European/Canadian Glatiramer Ac-
etate Study Group. (2001). European/Canadian multicenter, double-blind, ran-

domized, placebo-controlled study of the effects of Glatiramer Acetate on mag-
netic resonance imaging-measured disease activity and burden in patients with

relapsing multiple sclerosis. Annals of Neurology, 49, 290-297.

[9] Comi, G., Filippi, M., Rovaris, M., Leocani, L., Medaglini, S., Locatelli, T.

(1998). Clinical, neurophysiological, and magnetic resonance imaging correlations
in multiple sclerosis. Journal of Neurology, Neurosurgery, and psychiatry, 64,

(Supplement), s21-s25.

122



[10] Cooper, B. R. (1981). Introduction to Queueing Theory, Elsevier North Holland.

[11] Eick, S. G., Massey, W. A. and Whitt, W. (1993). The physics of the Mt/G/∞

queue. Operations Research, 41, 731-742.

[12] Fischer, W. and Meier-Hellstern, K. (1992). The Markov-modulated Poisson pro-

cess (MMPP) cookbook. Performance Evaluation, 18, 149-171.

[13] Gafarian, A. V. and Ancker Jr., C. J. (1966). Mean value estimation from digital

computer simulation. Operations Research, 14, 25-44.

[14] Giovannoni, G., Lai, M. H., Kidd, D., Chamoun, V., Thompson, A. J., Miller,

D. H., Feldmann, M., Thompson, E. J. (1997). Longitudinal study of soluble

adhesion molecules in multiple sclerosis: correlation with gadolinium enhanced
magnetic resonance imaging. Neurology, 48, 1557-1565.

[15] Giudici, P. L., Rydén, T., and Vandekerkhove, P. (2000). Likelihood-ratio tests
for hidden Markov models. Biometrics, 56, 742-747.

[16] Gross, D. and Harris, C. M. (1974). Fundamentals of Queueing Theory, John
Wiley and Sons, New York.

[17] Karlin, S. (1966). A First Course in Stochastic Processes, Academic Press, New
York and London.

[18] Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: an
expanded disability status scale (EDSS). Neurology, 33, 1444-1452.

[19] Lai, M. H., Hodgson, T.,and Gawne-Cain, M. (1996). A preliminary study into
the sensitivity of disease activity detection by serial weekly magnetic resonance

imaging in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry,

60, 339-341.

[20] Li, D. K. B., Paty, D. W., the UBC MS/MRI Analysis Research Group,

the PRISMS Study Group. (1999). Magnetic resonance imaging results of
the PRISMS trial: a randomized, double-blind, placebo-controlled study of

interferon-β1a in relapsing-remitting multiple sclerosis. Annals of Neurology, 46,
197-206.

[21] Lublin, F. D. and Reigold, S. C. (1996). Defining the clinical course of multiple
sclerosis: results of an international survey. Neurology, 46, 907-911.

[22] MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models
for Discrete-Valued Time Series, Chapman and Hall, New York.

123



[23] McFarland, H. F., Frank, J. A., Albert, P. S., Smith, M. E., Martin, R., Harris,
J. O., Patronas, N., Maloni, H., McFarlin, D. E. (1992). Using gadolinium-

enhanced magnetic resonance imaging to monitor disease activity in multiple
sclerosis. Annals of Neurology, 32, 758-766.

[24] Medhi, J. (2003). Stochastic Models in Queueing Theory, 2nd ed., Academic
Press, Amsterdam.

[25] Miller, D. H. and Frank, J. A. (1998) Magnetic resonance imaging techniques to
monitor short term evolution of multiple sclerosis and to use in preliminary trials.

Journal of Neurology, Neurosurgery and Psychiatry, 64, supplement, 44-46.

[26] Miller, D. H., Grossman, R. I., Reingold S. C., McFarland, H. F. (1998). The

role of magnetic resonance techniques in understanding and managing multiple

sclerosis. Brain, 121, 3-24.

[27] Molyneux, P. D., Filippi, M., Barkhof, F., Gasperini, C., Yousry, T. A., Truyen,

L., Lai, H. M., Rocca, M. A., Moseley, I. F., Miller, D. H. (1998). Correlations
between monthly enhanced MRI lesion rate and changes in T2 lesion volume in

multiple sclerosis. Annals of Neurology, 43, 332-339.

[28] Nauta, J. J. P., Thompson, A. J., Arkhof, F., Miller, D. H. (1994). Magnetic

resonance imaging in monitoring the treatment of multiple sclerosis patients,
statistical power of parallel-groups and crossover designs. Journal of Neurological

Science, 122, 6-14.

[29] Newell, G. F. (1982). Applications of Queueuing Theory, Chapman and Hall,

London.

[30] Noseworthy, J. H., Lucchinette, C., Rodriguez, M., Weinshenker, B. G. (2000).
Multiple sclerosis. New England Journal of Medicine, 343, 938-952.

[31] Prentice, R. L. (1989) Surrogate markers in clinical trials: definition and opera-
tional criteria. Statistics in Medicine, 8, 431-440.

[32] Robert, O. G. and Rosenthal, S. J. (2004), General state space Markov chains
and MCMC algorithms. Probability Surveys, 1, 20-71.

[33] Rammohan, K. W. (2003). Axonal injury in multiple sclerosis. Current Neurology
and Neuroscience Reports, 3, 231-237.

[34] Simon, J. H. (2003). Measures of gadolinium enhancement in multiple sclero-
sis, 97-124 In: Cohen, J. and Rudick, R., eds., Multiple Sclerosis Therapeutics,

Martin Dunitz, Malden, MA.

124



[35] Sormani, M. P., Bruzzi, P. and Miller, D. H. (1999). Modeling MRI enhancing
lesion counts in multiple sclerosis using a negative binomial model: implications

for clinical trials. Journal of the Neurological Sciences, 163, 74-80.

[36] Sormani, M. P., Miller, D. H., Comi, G., Barkhof, F., Rovaris, M., Bruzzi, P.,

Filippi, M. (2001). Clinical trials of multiple sclerosis monitored with enhanced
MRI: new sample size calculations based on large data sets. Journal of Neurology,

Neurosurgery and Psychiatry, 70, 494-499.

[37] Sormani, M. P., Bruzzi, P., Beckmann, K., Wagner, K., Miller, D. H., Kappos,

L., Filippi, M. (2002). MRI metrics as surrogate markers for clinical relapse rate
in relapsing-remitting MS patients. Neurology, 58, 417-421.

[38] Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: a

quasi-likelihood approach. Biometrics, 44, 1019-1031.

125


