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ABSTRACT

The identification of active factors, both in terms of location effects and dispersion

effects, is a goal of experimental design. The research presented has two components:

(i) the classification and ranking of designs for estimation of location effects, and (ii)

the discovery of an improved method for the identification of dispersion effects in

replicated experiments.

Combinatorially non-isomorphic projection designs (for qualitative factors) are

often evaluated by the generalized wordlength pattern. In the first component of my

research, I propose an alternative criterion. This criterion is based on the average

squared correlations of complete sets of orthonormal contrasts and it will be shown

that the criterion is independent of the contrasts selected. Examples demonstrate that

the criterion is better able to rank order and distinguish projections from three-level

orthogonal arrays than the generalized wordlength pattern.

This average squared correlations criterion is further extended to the case of dis-

tinguishing and ranking geometrically non-isomorphic designs. Examples will demon-

strate the capability of the criterion to distinguish and rank order projection designs

from three-level orthogonal arrays with quantitative factors.

In replicated experiments, the treatment replicates are used to compute a measure

of the variability of response for that treatment. Using traditional methods of analysis,

summary statistics are calculated for the within-treatment replicates and are used to

ii



test for a dispersion effect. The disadvantage of this approach is the loss of degrees of

freedom. In the second component of my research, I present an alternative method

of analysis. This method transforms each observation into an individual measure

of variability. This method preserves all original degrees of freedom, and thereby

increases power over the traditional method. A comparison of the new method to the

traditional approach, based on computer simulation, is presented.
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ln(|yij − ȳi(−1)|), and ln(|yij − ȳi|) with data from randomly generated
second-order location models (12.2) and first-order dispersion models
(12.3) using empirical critical values, r = 4 replicates, and normal error
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xv



20.2 Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
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CHAPTER 1

INTRODUCTION

Why do researchers conduct experiments? One answer is that researchers want

to identify and estimate factors that significantly affect a measurement, called a

response, of interest. How can factors affect a response? There are two types of

effects: location effects and dispersion effects. A location effect is the change in the

mean of the response at different levels of the factor, while a dispersion effect is the

change in the variability of the response at different levels of the factor. Figure 1.1

shows each of the two types of effect. Figure 1.1 (a) shows a location effect: the factor

set at the high level produces higher response values than the factor set at the low

level, but the variability of the response is the same for each setting. In contrast, in

Figure 1.1 (b), the factor set at the high level produces a more variable response than

the factor set at the low level, showing a dispersion effect of the factor; the mean of

the response at each level of the factor is equal in (b).

Effects, both location and dispersion, can result from either a single factor or from

a combination of factors. A main effect is the effect of a single factor average over all

other factors; if a change in the level setting of a given factor has a significant impact

on the response, the factor is said to have a main effect. In contrast, if the change in

the effect on the response of settings of one factor is dependent upon the level setting
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Figure 1.1: Example of (a) location effect and (b) dispersion effect

of a second factor, then the joint effect of the two factors is a two-factor interaction

effect.

Different experimental designs possess different properties for the estimation of

effects. For example, all main effects and two-factor interactions may be estimated

independently of each other using one design, while main effect estimates may be

independent of two-factor interaction estimates but two-factor interaction estimates

correlated with each other using a different design. In evaluating two designs, the

first question is whether the two designs are fundamentally the same, or equivalent ;

equivalent designs are also called isomorphic.

If two designs are equivalent, then the designs possess the same properties and,

subject to practical considerations, either design is an equally good choice. If classes of

equivalent designs can be identified, then properties of the class can be described and

used to characterize the individual designs in the class. By studying classes of designs
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instead of individual designs, the amount of work is reduced. Thus, determination of

design equivalence is an important problem.

Numerous criteria exist for determining the non-equivalence of two designs. These

criteria provide varying degrees of accuracy in determining non-equivalence. In Part

I of this work, a new criterion, called the average squared correlation criterion, is

proposed for the ranking of inequivalent designs. As a consequence of the ranking,

the criterion is useful for the determination of non-equivalence. The new criterion

can be modified for use with either qualitative or quantitative factors, for which

the definition of equivalence differs (see Chapter 2). The proposed criterion will be

shown to be more effective for ranking and for determining non-equivalence than

certain existing criteria in at least some special cases.

The outline of Part I is as follows. Chapter 2 provides basic information necessary

for the definition of the average squared correlation criterion. Description of the

special case of evaluation of projection designs is also included in Chapter 2. The

E(s2) criterion for two-level supersaturated designs is discussed briefly in Chapter 3;

the average squared correlation criterion is similar to the E(s2) criterion but for

factors with more than two levels. The average squared correlation criterion for

evaluating designs with qualitative factors is described and an example is given in

Chapter 4. Additionally, in Section 4.3 of Chapter 4 an important theorem is proved

showing invariance to the selection of contrasts used in the criterion. The ranking

criteria for the average squared correlation is defined and compared to two other

criteria in Chapter 5; a discussion of estimation capacity is included in Section 5.3

of Chapter 5. The average squared correlation criterion is extended to designs with

quantitative factors in Chapter 6. Chapter 7 provides a brief description of competing
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methods of rank ordering designs with quantitative factors. A counterexample to

the stated interpretation of one of the competing methods is given in Section 7.2

of Chapter 7. The relationship between this same method and the average squared

correlation criterion is described in Chapter 8. Chapter 9 examines use of the average

squared correlation criterion for ranking designs with quantitative factors. Finally, a

summary of findings is provided in Chapter 10.

Methods for the identification of dispersion effects are somewhat less advanced

than the methods for location effects. However, with the increased emphasis on

quality in manufacturing and other industries, methods for detecting dispersion effects

are gaining more attention. In industry, the ability to identify even a small dispersion

effect and select a production setting to minimize the variability of the response can

result in significant financial benefits for a company.

In studying location effects, replication provides additional power for the detec-

tion of significant effects. Replication also provides for an independent estimate of

the error variance when fitting a full model, that is, a model in which all independent

main effects and interaction effects are included. These same properties of replicated

designs should exist for the detection of dispersion effects as well. Therefore, repli-

cated fractional factorial experiments may be more advantageous than unreplicated

full factorial experiments when the number of available runs is limited.

When replicated observations are available, these are commonly summarized by

a function of the variance, reducing the experiment to a single replicate design, and

potentially reducing the power for effect detection. Part II of this work examines dif-

ferent functions of the data that measure dispersion without aggregating the replicate

observations into a single measurement. A simulation study is used to compare the
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effect detection power of the new functions of the data and the summary statistics.

This work shows that measures preserving replicate data provide increased power for

detecting significant effects as compared to traditional methods. Empirical critical

values for the proposed measures are provided. Finally, a recommendation as to a

best measure for use in applied settings is made.

The outline of Part II is as follows. Chapter 11 provides an introduction to the

problem and a brief review of previous research. In Chapter 12, the model is intro-

duced. The measures examined in Phase I of the current work are described in Chap-

ter 13. The Phase I simulation study which replicates and extends recent research

of Mackertich, Benneyan and Kraus (2003) is described in Chapter 14. Chapter 15

provides a discussion of the results and selects the best measures based on the pre-

liminary findings. A revised list of measures to be examined in Phase II of this work

is presented in Chapter 16. The simulation for Phase II is described in Chapter 17.

Empirical critical values for the selected measures are derived and provided in Chap-

ter 18. Chapter 19 gives a test of the stability of observed Type I error based on these

empirical critical values for various location and dispersion models. Based on the test

results, the list of measures is further reduced. Chapter 20 examines the power of the

measures of interest. A final recommendation is made in Chapter 21.
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PART I

AVERAGE SQUARED
CORRELATION
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CHAPTER 2

INTRODUCTION TO AVERAGE SQUARED
CORRELATION

2.1 Orthogonal Arrays

An orthogonal array, OA(n, p, k, t), is an n×p array with elements taken from a set

of k distinct symbols, and strength t, where strength is the property that for any set

of t columns of the array each of the kt possible sets of symbols appear equally often.

In this definition, n is equal to the number of design runs and must be a multiple of

kt, p is equal to the number of design factors, and k is equal to the number of levels

of each factor.

When an orthogonal array is used as a design matrix, D, the columns represent

the factors to be studied and the rows represent the treatment combinations observed

in the runs of the experiment. The design D is called a factorial design if the (i, j)th

element of D is the level of the jth factor in the ith run. In this work, three-level

factors will be considered. The factors levels will be coded (0,1,2); when factors are

treated as quantitative, 2 represents the high level, 1 represents the middle level, and

0 represents the low level.

7



2.2 Screening Experiments and Projection Designs

Orthogonal arrays are useful as screening designs in which a large number of

factors are to be studied in a relatively small number of runs. For a fixed number of

factors, orthogonal arrays provide designs with fewer runs than other types of designs.

For example, a resolution III fractional factorial design for seven factors, each at three

levels, requires at least n = 27 runs, while an orthogonal array of strength 2 can be

found with only n = 18 runs. Orthogonal arrays can be found via Sloane’s library of

orthogonal arrays (Sloane 2005).

Use of orthogonal arrays for screening relies on the idea of factor sparsity (cf. Box

and Meyer (1986)). Factor sparsity is the belief that, of a large number of factors

studied, only a small number of the factors are active. A factor is defined to be active

if its effect on the response is non-negligible. In screening experiments, it is expected

that only a few of the many factors studied will induce a large effect on the response.

In screening experiments two situations can arise. First, it may be the case that

only a subset of the columns of the array are needed for the design matrix (Xu and

Wu 2001, Ma and Fang 2001, Lin and Draper 1992). For example, it may be known

that only four factors are to be studied when an array with seven columns (allowing

for seven factors) exists. If only a subset of columns is needed, the design columns

can be selected in advance. The question is then which subset of columns to select.

Does a design composed of columns (1,2,3,4) possess better properties than a design

composed of columns (1,3,5,7)? The second situation arises when a large number of

factors is screened and a main effects analysis is used to identify the active factors

(Cheng and Wu 2001). Once the active factors are identified, the original design

can be projected onto the smaller space of the active factor columns (by deleting the
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columns of the design corresponding to the inactive factors) in order to clarify the

effects on the response. In this situation, for example, seven factors may be screened,

but three (corresponding to columns 1, 4, and 5) are found to have a negligible

effect on the response. The design array is then projected onto the active effects

space (corresponding to columns 2, 3, 6, and 7) by deleting columns 1, 4, and 5.

In designing the experiment, it is unknown which subset of columns will be needed.

If, in the example, the inactive factors had been assigned to columns 1, 2, and 3,

then the projection onto columns 4, 5, 6, and 7 would have been needed instead of

the projection onto columns 2, 3, 6, and 7. Therefore, a starting array with a large

number of “good” sub-designs is desired. In both of these situations, a subset of

columns of the original array is ultimately selected. The resulting sub-design is called

a projection design.

Clearly, there exists more than one projection design from a given starting array.

In fact, there are

(
p
p′

)
possible projection designs, where p is the number of columns

of the original array and p′ is the selected number of columns. In order either to iden-

tify and select the optimal projection or to ensure there are many good projections,

all possible projections must be studied. Study of all possible projections quickly

becomes expensive in terms of time and computation: for p = 13 factors and p′ = 3

columns, the total number of possible projections is 286.

The number of projections to study can be reduced by examination of only the

inequivalent (i.e. non-isomorphic) designs. The reduction is possible since all equiv-

alent designs possess the same properties. Thus, by identifying and ranking all the

inequivalent classes, all possible projection designs are effectively being ranked. Pre-

cise definitions of equivalence for designs with qualitative factors or with quantitative
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factors are given in Section 2.5. The use of the proposed average squared correlation

pattern criterion for the identification and classification of projection designs is a

special case and will be discussed in Section 5.2.2 for designs with qualitative factors

and Section 9.2 for designs with quantitative factors.

2.3 Contrasts and Contrast Matrices

A factor with k levels has k − 1 degrees of freedom for measuring its the main

effect. The k−1 degrees of freedom allow for comparison of the effects on the response

of the different levels of the factor. Then the main effect of a factor can be measured

by means of k − 1 orthogonal contrasts. (See Dean and Voss (1999) page 170.)

Consider the model

Yij = µ + τi + εij,

where Yij is the jth replicated observation of the ith treatment combination, µ is the

general mean, and τi is the effect of treatment combination i on the response. In the

case of a single factor model, τi denotes the effect of the ith level of the factor; for

multi-factor models, τi represents the effect of the ith combination of the factors at

their respective levels.

A contrast is a linear combination of the parameters τ1, τ2, . . . , τv of the form

∑
ciτi with

∑
ci = 0. (See Dean and Voss (1999) Section 4.2.) A contrast can be

represented as a column vector by listing the contrast coefficients c1, c2, . . . , cv; the

contrast c1τ1 + c2τ2 + . . . cvτv would be represented by
[

c1 c2 . . . cv

]′
. A set of

k−1 orthogonal contrasts used to describe the main effect of a k-level factor is called

a complete set of orthogonal contrasts (Dean and Voss 1999).
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For a quantitative factor with k = 3 levels, the complete set of k − 1 = 2 orthog-

onal contrasts selected to measure the main effect is generally selected to be the set

containing a linear effect contrast and a quadratic effect contrast; such polynomial

trend contrasts have no physical interpretation for qualitative factors. The linear

and quadratic contrasts provide information about whether the response increases or

decreases as the factor levels increase, and whether the rate of increase or decrease

remains constant. For example, if the factor is temperature, the response may in-

crease as temperature increases across the levels of temperature studied, leading to a

non-zero estimate of the linear contrast. However, the response may increase from the

low level of temperature to the middle level of temperature, then decrease from the

middle level to the high level of temperature. This second response trend would result

in a non-zero estimate of the quadratic contrast. The set of orthogonal polynomial

trend contrasts can be expanded to include cubic and higher order effect contrasts

for factors with more than three levels, although the presence of higher order trends

is rare in practice and experiments involving factors with more than three levels are

uncommon.

In this work, because each factor is at three levels, two orthogonal contrasts form

the complete set of orthogonal contrasts. The standard linear and standard quadratic

contrast coefficient vectors are given by

l =



−1
0
1


 (2.1)

and

q =




1
−2
1


 (2.2)
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respectively (see, for example, Dean and Voss (1999), Table A.2). Use of these con-

trasts assumes that the levels of the factor are equally spaced and that the same

number of observations will be taken at each level.

Each contrast coefficient vector contains only three elements, one element corre-

sponding to each level of the factor. The contrast vector is constructed by setting

the ith element equal to the contrast coefficient corresponding to the factor level set-

ting of the ith element of the design. In constructing the linear contrast vector, the

ith element of the contrast vector is set equal to 1.0 if the factor is set at the high

level for the ith run of the design, 0.0 if the factor is set the middle level, and -1.0

is the factor is set at the low level. Similarly, the the ith element of the quadratic

contrast vector is set equal to 1.0 if the factor is set at either the high level or the

low level for the ith run of the design and -2.0 if the factor is set at the middle level.

For example, the linear and quadratic contrasts vectors corresponding to the de-

sign column
[

0 1 2 1 0 2 2 0 1
]′

are
[
−1 0 1 0 −1 1 1 −1 0

]′

and
[

1 −2 1 −2 1 1 1 1 −2
]′

respectively.

The main effect contrasts can then be used to construct interaction contrasts

in the following way. The set of interaction contrasts is constructed by element-

wise product of the elements of the contrasts of every main effect included in the

interaction. The element-wise product of two vectors ci =
[

c1i c2i . . . cni

]′
and

dj =
[

d1j d2j . . . dnj

]′
denoted ·, is given by

ci · dj =




c1id1j

c2id2j
...

cnidnj




. (2.3)

For example, if the interaction effect is between two factors, and the main effect of

each factor is described by a linear and quadratic contrast, then the set of contrasts
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describing the interaction effect would be constructed as the element-wise product of

the linear with linear contrasts, the linear with quadratic contrasts, the quadratic with

linear contrasts, and the quadratic with quadratic contrasts. For two factors, each

with three levels, four orthogonal contrasts are needed to described the interaction

effect. In general, if an interaction is composed of i main effects with k1, k2, . . . , ki

levels, then the interaction effect is described by
∏i

j=1(kj − 1) contrasts.

The contrast matrix, denoted C, contains two contrasts measuring each main effect

and four contrasts measuring each two-factor interaction with the coefficients defined

as above.

Each factor represented by a column of the OA(n, p, k, t) is described by a com-

plete set of orthogonal contrasts that is orthogonal to every other set of main effect

contrasts in the contrast matrix, C. Therefore, every main effect contrast is estimated

independently of every other main effect contrast. The interaction effect contrasts,

calculated from the main effect contrasts, are not necessarily orthogonal to the con-

trasts measuring other effects; the interaction contrasts can be correlated with main

effect contrasts or other interaction effect contrasts.

2.4 Factor Aliasing and Correlation

Two factors are said to be completely aliased if the two factors cannot be estimated

independently. For example, if factors A and B are aliased, then the design is not

capable of distinguishing the estimate of A from the estimate of B. If two factors are

completely aliased, and the effect is found to be significant, then it is not possible

to determine whether it is factor A, factor B, or both factors producing the non-

negligible effect. It is desirable, then, to minimize the number of aliased factors; if
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not all factors can be made independent, then it is desirable also to minimize the

degree of aliasing between aliased factors.

The degree of aliasing between contrasts can be described by the correlation be-

tween the contrasts. Complete aliasing of two contrasts corresponds to a correlation

equal to one, and complete independence of two contrasts corresponds to a correla-

tion equal to zero. The smaller the correlation the less aliased the contrasts and the

greater the information that is available about the individual effects.

For regular three-level designs, (i.e. designs constructed through defining relations

among factor labels), any two factorial effects are either independent or fully aliased.

Orthogonal arrays can be either regular or non-regular. If an orthogonal array is

regular, the strength of the array is equal to the resolution of the design minus one.

(For a definition of resolution, see for example, Wu and Hamada (2000) page 159.)

In the case of non-regular designs with factors, partial aliasing of contrasts is

possible. Partial aliasing of two contrasts exits when the correlation is greater than

zero and less than one. For example, if a factor has three levels, then it is possible

that a linear orthogonal contrast is independent of all other effect contrasts and only

the quadratic orthogonal contrast is aliased (either completely or partially) with one

or more interaction effect contrasts. It is also possible that both the linear and

quadratic orthogonal contrasts are partially aliased with other contrasts. In either

case, the factorial effect is partially aliased with another factorial effect.

Geometrically, the correlation between two contrasts is equal to the cosine of the

angle between the two contrasts. For contrasts ci and cj, the correlation between the

contrasts is

ρi,j =
c′icj√

(c′ici)(c′jcj)
(2.4)
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(see Johnson and Wichern (1998) page 122).

In examining the aliasing of effects, only the size (magnitude) of the correlation

is important, while the sign of the correlation (i.e. positive or negative) is irrelevant.

Therefore, in this work the square of the correlation is used. In addition to removing

the sign, squaring the correlation magnifies the differences between correlations as

large correlations are reduced less than are small correlations.

2.5 Equivalence

The definition of design equivalence depends upon the type of factors studied. For

designs with qualitative factors, two designs are said to be combinatorially equivalent,

or combinatorially isomorphic, if one design matrix can be obtained from the other

by

(1) a sequence of row permutations, corresponding to a change in the run order,

(2) a sequence of columns permutations, corresponding to a change in the factor

labels, and

(3a) a series of symbol permutations within columns, corresponding to changes in

level labels within one or more factors.

For qualitative factors, there is no meaningful order to the levels of the factors, and

the assignment of symbols to levels within a factor is completely arbitrary since the

symbol assigned to a level has no interpretation. As a result, any permutation can

be applied to symbols within a column. For example, for a color factor, the symbols

can be assigned so that red = 0, blue = 1, and green = 2. For this factor, any

permutation of the symbols 0, 1, and 2, can be applied and is equally appropriate;
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Figure 2.1: Example of change to interpretation of trend due to different factor level
labeling for quantitative factors

there is no change in the interpretation of the effects if the symbols are assigned so

that red = 1, blue = 0, and green = 2.

In the case of quantitative factors, there exists a true ordering of the levels. For

example, there exists an inherent order to temperature levels of 100◦ C, 50◦ C, and

0◦ C. Based on the order, the levels can be labeled such that 100◦ C is 2 (high), 50◦

C is “1” (middle), and 0◦ C is “0” (low). These symbol assignments can be reversed,

so that 100◦ C is 0, 50◦ C is 1, and 0◦ C is 2, without changing the intrinsic structure

of the order. However, the order structure would change if 1 is assigned to 100◦ C,

0 is assigned to 50◦ C, and 2 is assigned to 0◦ C. In this last case, the pattern of

the response over the factor levels can change. The plots in Figure 2.1 present this

simple, one-factor example. In each of the plots in Figure 2.1, the data are:
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Temperature Response
100◦ C 100
50◦ C 50
0◦ C 0

The difference between the plots is the labeling of the factor levels:

Left (a) : 100◦ C = 2 (high)
: 50◦ C = 1 (middle)
: 0◦ C = 0 (low)

Center (b) : 100◦ C = 0 (low)
: 50◦ C = 1 (middle)
: 0◦ C = 2 (high)

Right (c) : 100◦ C = 1 (middle)
: 50◦ C = 0 (low)
: 0◦ C = 2 (high)

The plots in Figure 2.1 (a) and Figure 2.1 (b) preserve the natural ordering of the

levels; the plot in Figure 2.1 (c) disrupts the level order. Figure 2.1 (a) and (b)

suggest a linear pattern when the inherent order is maintained, but Figure 2.1 (c)

suggests a quadratic since the original ordering is neglected.

As stated above, the symbol order can be reversed, so long as the inherent order

is preserved. This order requirement restricts the allowable symbol exchanges within

a column. And this restriction on the exchange of symbols necessarily restricts the

possible permutations that result in isomorphic designs with quantitative factors.

For designs with quantitative factors, two designs are isomorphic if one design can

be obtained from the other through

(1) a sequence of row permutations, corresponding to a change in the run order,

(2) a sequence of columns permutations, corresponding to a change in the factor

labels, and
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(3b) a sequence of level order reversals for one or more factors (which require that

the order is preserved).

This type of isomorphism is called geometric isomorphism (Cheng and Ye 2004).

From a geometric viewpoint, with design points viewed as points in IRk, Cheng and

Ye (2004) define two designs as geometrically isomorphic if one geometric design

object can be obtained from the other by rotating and/or reflecting the design with

respect to a super-plane, where rotating corresponds to factor label permutations and

reflecting corresponds to level order reversal. This geometric interpretation can be

seen in the reflection of Figure 2.1 (a) about level 1 (middle) to obtain Figure 2.1 (b).

Similar to geometric isomorphism, Cheng and Wu (2001) defined model isomor-

phism. Two designs are equivalent in terms of model isomorphism if the model matrix

of one design can be obtained from the other by

(1) a sequence of row permutations, corresponding to a change in the run order,

(2) a sequence of columns permutations, corresponding to a change in the factor

labels, and

(3c) a sequence of sign changes within columns.

The model matrix for a design with n runs and p factors is a coded matrix for the

design with columns for each of the factorial contrasts. Notice that model isomor-

phism is defined with respect to the model matrix. As a result, two designs may be

model isomorphic with respect to one model but model non-isomorphic with respect

to a different model. Therefore, in determining model isomorphism, the model must

be specified. In contrast, combinatorial and geometric equivalence are defined with

respect to the design matrix, and invariant to the fitted model.

18



For two-level designs, combinatorial isomorphism and geometric isomorphism are

equivalent since only one symbol permutation exists and necessarily preserves the

order of the factor levels. For designs with factors having more than two levels,

because of the additional level order restriction, designs which are combinatorially

isomorphic may not be geometrically isomorphic. However, all designs which are

geometrically isomorphic must also be combinatorially isomorphic.
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CHAPTER 3

E(s2) CRITERION AND SUPERSATURATED DESIGNS

The contrast matrix constructed from an orthogonal array, in which each main

effect and each two-factor interaction is represented by a complete set of orthogonal

contrasts, can be viewed as a supersaturated design. A two-level supersaturated design

is usually defined to be a factorial design in which the number of main effect param-

eters to be estimated, p + 1 (equal to the number of factors plus one for the overall

mean), is greater than the number of runs, n. (See Wu and Hamada (2000), Section

8.6.) In the case of a contrast matrix involving interactions and/or factors at more

than two levels, each contrast represents a factorial effect to be estimated. If the num-

ber of contrasts (columns) is greater that the number of runs (rows), then the same

estimation problems arise as for two-level supersaturated main effects. For example,

for the OA(18, 7, 3, 2), the number of columns in the complete contrast matrix is 98

(= (7×2)+(

(
7
2

)
×4), while the number of rows is 18. A projection of OA(18, 7, 3, 2)

onto p′ = 3 columns results in a “saturated” design with eighteen contrast columns

and eighteen runs, while a projection onto p′ = 4 columns is supersaturated.

Orthogonality of design columns and contrast matrix columns is a desirable prop-

erty. True effects can be hidden and spurious effects exhibited as a result of the

correlation structure integral to supersaturated designs (Abraham, Chipman and
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Vijayan 1999). Assuming interaction effects are negligible, efficient estimation of main

effects is attained in the case when every pair of columns is orthogonal (Plackett and

Burman 1946).

The condition that every pair of columns is orthogonal cannot be satisfied if the

number of columns is greater than the number of rows minus 1; there are at most

n orthogonal columns, including a column of ones, in n-dimensional space. For two-

level factors, each factorial effect is described by a single contrast, and the condition

can be satisfied if p > n − 1. For three-level factors, in which each factorial effect is

described by two orthogonal contrasts, the orthogonality condition can be attained for

an orthogonal array if interaction contrasts are not included. However, if interaction

contrasts are included in the contrast matrix, the number of contrasts is greater than

n and the orthogonality condition cannot be satisfied.

In the case when orthogonality of all columns cannot be achieved, it is desired

to have all pairs of columns as nearly orthogonal as possible. That is, it is desired

to have c′icj, (i 6= j), as small as possible for all contrast columns ci and cj; c′icj

is the numerator of the correlation between two contrasts given in Equation (2.4).

Additionally, it is desired to have a minimum value of the maximum c′icj 6= 0, and

a smaller number of pairs of columns attaining this maximum value (Booth and

Cox 1962).

In order to compare two-level supersaturated designs under a main effects model,

Booth and Cox (1962) proposed the E(s2) criterion as a measure of non-orthogonality.

The criterion is to minimize E(s2), where

E(s2) =
∑ s2

i,j(
p
2

) (3.1)
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and

si,j = x′
ixj (3.2)

for two columns, xi and xj, of the design matrix (Lin 1993). Booth and Cox (1962)

show that the average variance of an estimated main effect is a function of the variance

of s = {sij}, where each sij is the sum of products x′
ixj of two randomly selected

columns of the design matrix (i.e. for a design matrix X, sij is the (i, j)th element of

X′X). Smaller var(s) produces smaller average variance of the estimate.

A two-level factor has only a single contrast to measure its main effect, so xi ≡ ci

when x is coded (-1,1) for the low and high levels. Also, for two-level designs, c′
ici = n

for all i, and so n × ρi,j = si,j. Similarly, when ci and cj are normalized, the inner

product c′icj is equal to the correlation between the two contrasts (see Equation (2.4)),

and ρi,j = si,j. Thus, minimizing E(s2) is equivalent to minimizing to the average

squared correlation, ρ2, for two-level factor designs.

The current work focuses on three-level factors, which are described by two or-

thogonal contrasts. Thus, the E(s2) criterion is not directly applicable. However,

the basic idea of E(s2) can be extended, and provides the foundation for the average

squared correlation criterion proposed and developed in Chapter 4 and Chapter 6.

The average squared correlation combines information from individual contrasts of

equal importance in order to acquire information about the main effect or two-factor

interaction. Equal importance of contrasts will be defined differently for qualitative

factors and quantitative factors. Minimizing the correlation will be analogous to

minimizing E(s2). Chapter 4 presents the average squared correlation criterion for

qualitative factors; average squared correlations for quantitative factors are discussed

in Chapter 6.
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CHAPTER 4

AVERAGE SQUARED CORRELATION FOR
QUALITATIVE FACTORS

As described in Section 2.4, the correlation between two contrasts represents the

degree of aliasing of the contrasts. Correlations are the fundamental components of

the proposed criterion used to evaluate designs; the average squared correlation cri-

terion is formed from the correlations between main effect and two-factor interaction

contrasts and the correlations between pairs of two-factor interaction contrasts given

in the contrast matrix, C.

In the case of two-level factors, each main effect and each interaction effect is

described by a single contrast. The correlation between contrasts measures the degree

of aliasing between the factor main effects and interactions. For three-level factors,

two orthogonal contrasts describe each main effect and four orthogonal contrasts

describe each two-factor interaction. The correlation between a single pair of contrasts

does not provide complete information about the aliasing of the factorial effects;

correlations from complete sets of orthogonal contrasts must be combined to provide

a complete description of the aliasing of effects.

According the hierarchical ordering principle, lower order effects are more likely

to be important than higher order effects and effects of the same order are equally
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likely to be important (see, for example, Wu and Hamada (2000), Section 3.5). When

the factors are qualitative, the order of the effect is determined only by the number

of factors included in the effect and not by any interpretation of the contrasts being

measured. For example, a main effect would be of order 1 while a two-factor interac-

tion would be of order 2. Based on this definition of order, the hierarchical ordering

principle generates an effect hierarchy for the contrasts labeled ci1 and ci2 as

ca1 == ca2

� ca1cb1 == ca1cb2 == ca2cb1 == ca2cb2

� ca1cb1cc1 == ca1cb1cc2 == . . . == ca1cb2cc2 == . . . == ca2cb2cc2

� ca1cb1cc1cd1 == ca1cb1cc1cd2 == . . . == ca2cb2cc2cd2 � . . . (4.1)

where == represents equal importance (e.g. ca1 == ca2 indicates that the ca1 contrast

and the ca2 contrast are equally important) and � represents greater importance

(e.g. ca2 � ca1cb1 indicates that the ca2 contrast is more important than the ca1 × cb1

interaction contrast). From the effect hierarchy (4.1), the main effects contrasts

are more important than the two-factor interaction contrasts; all of the main effect

contrasts are equally important and all of the two-factor interaction contrasts are

equally important according to (4.1).

Based on a given effect hierarchy, the individual contrast correlations within a

given level can be averaged because all contrasts within a given level are equally

important. The resulting averages will provide information about the aliasing of

main effects with interaction effects and information about aliasing of interaction

effects with other interaction effects.
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The hierarchical ordering principle and effect hierarchy (4.1) are used as the basis

for ranking designs as described in Section 5.2.

4.1 Average Squared Correlations of Order 3 and Order 4

Based on the equation for the correlation between two contrasts given in (2.4), for

a given contrast matrix, C, the correlation matrix, R, is

R = D−1/2C′CD−1/2 (4.2)

where D is the diagonal matrix composed of the diagonal elements of C′C and D−1/2 is

the inverse of the square-root matrix of D. The (i, j)th element of R is the correlation

between the ith and jth columns (contrasts) of C. The correlation matrix is used to

calculate the average squared correlations of order 3 and order 4.

Correlations between main effects and two-factor interactions are called correla-

tions of order 3 ; the average square correlation of order 3 for designs with qualitative

factors is defined as the arithmetic mean of the squared correlations of any complete

set of orthogonal contrasts of a given main effect with any complete set of orthog-

onal contrasts for a given two-factor interaction. For a given factor, A, with three

levels, two orthogonal contrasts that span the space are selected for the main effect

and labeled A1 and A2. For a two-factor interaction effect, BC, where both B and

C are three-level factors, four orthogonal contrasts are needed. The four orthogo-

nal contrasts are taken to be the element-wise products of each combination of the

orthogonal main effect contrasts for the two factors B and C: B1C1, B1C2, B2C1,

and B2C2. Then, given a main effect, A, and a two-factor interaction effect, BC, the

average squared correlation of order 3 between these two effects is given by

Ave ρ2
3(A,BC) =

1

8

[
ρ2(A1, B1C1) + ρ2(A1, B1C2) + ρ2(A1, B2C1)
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+ ρ2(A1, B2C2) + ρ2(A2, B1C1) + ρ2(A2, B1C2)

+ ρ2(A2, B2C1) + ρ2(A2, B2C2)
]

(4.3)

The subscript on ρ2
3(A,BC) represents the order of the correlations.

Correlations between two-factor main effects and other two-factor interactions are

called correlations of order 4, with the average squared correlation of order 4 for de-

signs with qualitative factors defined as the arithmetic mean of the correlations of a

complete set of orthogonal contrasts for a two-factor interaction effect with a complete

set of orthogonal contrasts for a different two-factor interaction effect. For example,

given the AB and CD interaction effects, all combinations of the four orthogonal con-

trasts that form the AB interaction effect and the four orthogonal contrasts that form

the CD interaction effect are averaged to calculate the average squared correlation of

order 4:

Ave ρ2
4(AB,CD) =

1

16

[
ρ2(A1B1, C1D1) + ρ2(A1B1, C1D2) + ρ2(A1B1, C2D1)

+ ρ2(A1B1, C2D2) + ρ2(A1B2, C1D1) + ρ2(A1B2, C1D2)

+ ρ2(A1B2, C2D1) + ρ2(A1B2, C2D2) + ρ2(A2B1, C1D1)

+ ρ2(A2B1, C1D2) + ρ2(A2B1, C2D1) + ρ2(A2B1, C2D2)

+ ρ2(A2B2, C1D1) + ρ2(A2B2, C1D2) + ρ2(A2B2, C2D1)

+ ρ2(A2B2, C2D2)
]

(4.4)

Again, the subscript on ρ2
4(AB,CD) represents the order of the correlations.
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4.1.1 Average Squared Correlation Pattern for Designs with
Qualitative Factors

The values of the average squared correlations of order 3 and order 4 and the num-

ber correlations with each distinct value can be used to construct the average squared

correlation pattern (ASCP). The ASCP can be used to rank classes of combinatori-

ally equivalent designs. As a consequence of the ranking, the ASCP can also help to

identify the classes. Since Ave ρ2
3(A,BC) = Ave ρ2

3(BC,A), only one of these values

needs to be included in the pattern. Then, for a three-factor design with factors A,

B, and C, the complete set of average squared correlations of order 3 included in the

ASCP is

(A,AB) (B,AB) (C,AB)
(A,AC) (B,AC) (C,AC)
(A,BC) (B,BC) (C,BC)

In the case that the design matrix is an orthogonal array of strength two or greater,

the ASCP can be simplified. From the definition of an orthogonal array, it follows that

the correlation between a main effect and a two-factor interaction effect that includes

that main effect is equal to zero. In this example, then, ρ3(A,AB) = ρ3(A,AC) =

ρ3(B,AB) = ρ3(B,BC) = ρ3(C,AC) = ρ3(C,BC) = 0. Thus, only three average

squared correlations of order 3 need to be included in the ASCP:

(A,BC) (B,AC) (C,AB)

In general, for a p-factor design, there are p×
(
p
2

)
total average squared correlations

of order 3, with p × (p − 1) average squared correlations of order 3 known to equal

zeros. The ASCP consists of p × (p − 1) × (p/2 − 1) average squared correlations.

Again, for the same three-factor design, the complete set of average squared cor-

relations of order 4 included in the ASCP is
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(AB,AC) (AB,BC) (AC,BC)

For a p-factor design, there is a total of

1

2

[(
p
2

)
×
((

p
2

)
− 1

)]
=

p(p2 − 1)(p − 2)

8

average squared correlations of order 4 included in the ASCP. (There are a to-

tal of

(
p
2

)
×
((

p
2

)
− 1

)
contrast pairs, not including a contrast with itself. Of

these, half are redundant, i.e. ρ(AB,CD) and ρ(CD,AB) are equal. Thus, only

1
2

[(
p
2

)
×
((

p
2

)
− 1

)]
average squared correlations are included in the ASCP.) There

are no average squared correlations of order 4 that are known always to be equal to

zero in the case of orthogonal arrays of strength two; for orthogonal arrays of strength

three or greater, simplification of the ASCP is possible.

The complete sets of distinct, non-zero average squared correlations of order 3 and

order 4 are summarized into the ASCP. The ASCP is a two-row array,

Ave ρ2
3(1) Ave ρ2

3(2) . . . Ave ρ2
3(k) Ave ρ2

4(1) Ave ρ2
4(2) . . . Ave ρ2

4(m)

r3(1) r3(2) . . . r3(k) r4(1) r4(2) . . . r4(m)
(4.5)

where

Ave ρ2
3(1) < Ave ρ2

3(2) < . . . < Ave ρ2
3(k),

Ave ρ2
4(1) < Ave ρ2

4(2) < . . . < Ave ρ2
4(m),

ri(j) is the number of Ave ρ2
i = Ave ρ2

i(j),

k is the number of distinct values of Ave ρ2
3, and m is the number of distinct values

of Ave ρ2
4.
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1 2 3 7
A B C D
1 1 1 1
2 2 2 1
0 0 0 1
1 1 2 1
2 2 0 1
0 0 1 1
1 2 1 2
2 0 2 2
0 1 0 2
1 0 0 2
2 1 1 2
0 2 2 2
1 2 0 0
2 0 1 0
0 1 2 0
1 0 2 0
2 1 0 0
0 2 1 0

Table 4.1: Projection design composed of columns 1, 2, 3, and 7, from OA(18, 7, 3, 2)
in Table A.1

4.2 Example: Calculation of Average Squared Correlations
of Order 3 and Order 4

Consider the OA(18, 7, 3, 2) presented in Table A.1. Suppose, as an example, we

select the projection formed by the first, second, third, and seventh columns of the

array and label the columns A, B, C, and D, respectively. Table 4.1 gives the design.

Corresponding to this design, the contrast matrix, C, is constructed. In this

example, the contrast matrix utilizes the following pair of orthogonal contrasts for
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each factor main effect:

c1 =



−1
0
1


 (4.6)

and

c2 =




1
−2
1


 . (4.7)

The contrast c1 is a comparison of the high and low levels of the factor; the middle

level of the factor is compared to the average of the high and low levels of the factor by

contrast c2. A set of four contrasts is computed by element-wise multiplication of the

main effect contrast columns for each two-factor interaction. The complete contrast

matrix, C, for this design is given in Table 4.2, where for ease of presentation C is

divided into the first eight columns, the middle twelve columns and the last twelve

columns.

From the contrast matrix, C, given in Table 4.2, the correlation matrix is com-

puted using (4.2). The complete correlation matrix for the projection design in this

example is given in Table 4.3. The correlation matrix is again divided for ease of

presentation.
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A1 A2 B1 B2 C1 C2 D1 D2

0 -2 0 -2 0 -2 0 -2
1 1 1 1 1 1 0 -2
-1 1 -1 1 -1 1 0 -2
0 -2 0 -2 1 1 0 -2
1 1 1 1 -1 1 0 -2
-1 1 -1 1 0 -2 0 -2
0 -2 1 1 0 -2 1 1
1 1 -1 1 1 1 1 1
-1 1 0 -2 -1 1 1 1
0 -2 -1 1 -1 1 1 1
1 1 0 -2 0 -2 1 1
-1 1 1 1 1 1 1 1
0 -2 1 1 -1 1 -1 1
1 1 -1 1 0 -2 -1 1
-1 1 0 -2 1 1 -1 1
0 -2 -1 1 1 1 -1 1
1 1 0 -2 -1 1 -1 1
-1 1 1 1 0 -2 -1 1

A1B1 A1B2 A2B1 A2B2 A1C1 A1C2 A2C1 A2C2 A1D1 A1D2 A2D1 A2D2

0 0 0 4 0 0 0 4 0 0 0 4
1 1 1 1 1 1 1 1 0 -2 0 -2
1 -1 -1 1 1 -1 -1 1 0 2 0 -2
0 0 0 4 0 0 -2 -2 0 0 0 4
1 1 1 1 -1 1 -1 1 0 -2 0 -2
1 -1 -1 1 0 2 0 -2 0 2 0 -2
0 0 -2 -2 0 0 0 4 0 0 -2 -2

-1 1 -1 1 1 1 1 1 1 1 1 1
0 2 0 -2 1 -1 -1 1 -1 -1 1 1
0 0 2 -2 0 0 2 -2 0 0 -2 -2
0 -2 0 -2 0 -2 0 -2 1 1 1 1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1
0 0 -2 -2 0 0 2 -2 0 0 2 -2

-1 1 -1 1 0 -2 0 -2 -1 1 -1 1
0 2 0 -2 -1 -1 1 1 1 -1 -1 1
0 0 2 -2 0 0 -2 -2 0 0 2 -2
0 -2 0 -2 -1 1 -1 1 -1 1 -1 1

-1 -1 1 1 0 2 0 -2 1 -1 -1 1

B1C1 B1C2 B2C1 B2C2 B1D1 B1D2 B2D1 B2D2 C1D1 C1D2 C2D1 C2D2

0 0 0 4 0 0 0 4 0 0 0 4
1 1 1 1 0 -2 0 -2 0 -2 0 -2
1 -1 -1 1 0 2 0 -2 0 2 0 -2
0 0 -2 -2 0 0 0 4 0 -2 0 -2

-1 1 -1 1 0 -2 0 -2 0 2 0 -2
0 2 0 -2 0 2 0 -2 0 0 0 4
0 -2 0 -2 1 1 1 1 0 0 -2 -2

-1 -1 1 1 -1 -1 1 1 1 1 1 1
0 0 2 -2 0 0 -2 -2 -1 -1 1 1
1 -1 -1 1 -1 -1 1 1 -1 -1 1 1
0 0 0 4 0 0 -2 -2 0 0 -2 -2
1 1 1 1 1 1 1 1 1 1 1 1

-1 1 -1 1 -1 1 -1 1 1 -1 -1 1
0 2 0 -2 1 -1 -1 1 0 0 2 -2
0 0 -2 -2 0 0 2 -2 -1 1 -1 1

-1 -1 1 1 1 -1 -1 1 -1 1 -1 1
0 0 2 -2 0 0 2 -2 1 -1 -1 1
0 -2 0 -2 -1 1 -1 1 0 0 2 -2

Table 4.2: Complete contrast matrix for example projection design in Table 4.1
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A1 A2 B1 B2 C1 C2 D1 D2

A1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B2 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
C1 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
C2 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
D1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
D2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

A1B1 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.0000 -0.7071
A1B2 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
A2B1 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
A2B2 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.0000 -0.7071

A1C1 0.0000 0.0000 -0.3062 0.1768 0.0000 0.0000 0.3062 -0.1768
A1C2 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000 -0.1768 -0.3062
A2C1 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000 0.1768 0.3062
A2C2 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000 0.3062 -0.1768

A1D1 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000
A1D2 0.0000 0.0000 -0.7071 0.0000 -0.1768 -0.3062 0.0000 0.0000
A2D1 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
A2D2 0.0000 0.0000 0.0000 -0.7071 0.3062 -0.1768 0.0000 0.0000

B1C1 -0.3062 0.1768 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768
B1C2 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 -0.1768 -0.3062
B2C1 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062
B2C2 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768

B1D1 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000
B1D2 -0.7071 0.0000 0.0000 0.0000 -0.1768 -0.3062 0.0000 0.0000
B2D1 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
B2D2 0.0000 -0.7071 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000

C1D1 0.3062 0.1768 0.3062 0.1768 0.0000 0.0000 0.0000 0.0000
C1D2 -0.1768 0.3062 -0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
C2D1 -0.1768 0.3062 -0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
C2D2 -0.3062 -0.1768 -0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000

Continued

Table 4.3: Complete correlation matrix for example projection design in Table 4.1
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Table 4.3 Continued

A1B1 A1B2 A2B1 A2B2 A1C1 A1C2 A2C1 A2C2 A1D1 A1D2 A2D1 A2D2

A1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B1 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.1768 0.3062 0.0000 -0.7071 0.0000 0.0000
B2 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 -0.7071
C1 -0.3062 0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.1768 0.3062
C2 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 -0.1768 -0.3062 0.3062 -0.1768
D1 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
D2 -0.7071 0.0000 0.0000 -0.7071 -0.1768 -0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000

A1B1 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 -0.5000
A1B2 0.0000 1.0000 0.0000 0.0000 0.2165 -0.1250 0.1250 0.2165 0.0000 -0.5000 0.0000 0.0000
A2B1 0.0000 0.0000 1.0000 0.0000 -0.2165 0.1250 -0.1250 -0.2165 0.0000 -0.5000 0.0000 0.0000
A2B2 0.0000 0.0000 0.0000 1.0000 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 0.5000

A1C1 0.1250 0.2165 -0.2165 0.1250 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 0.2165 -0.1250
A1C2 0.2165 -0.1250 0.1250 0.2165 0.0000 1.0000 0.0000 0.0000 0.2165 -0.1250 -0.1250 -0.2165
A2C1 -0.2165 0.1250 -0.1250 -0.2165 0.0000 0.0000 1.0000 0.0000 0.2165 -0.1250 -0.1250 -0.2165
A2C2 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 1.0000 -0.1250 -0.2165 -0.2165 0.1250

A1D1 0.0000 0.0000 0.0000 0.0000 0.1250 0.2165 0.2165 -0.1250 1.0000 0.0000 0.0000 0.0000
A1D2 0.0000 -0.5000 -0.5000 0.0000 0.2165 -0.1250 -0.1250 -0.2165 0.0000 1.0000 0.0000 0.0000
A2D1 0.0000 0.0000 0.0000 0.0000 0.2165 -0.1250 -0.1250 -0.2165 0.0000 0.0000 1.0000 0.0000
A2D2 -0.5000 0.0000 0.0000 0.5000 -0.1250 -0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 1.0000

B1C1 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 -0.2500 0.0000 -0.4330 0.0000
B1C2 0.2165 0.1250 -0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165 -0.4330 0.0000 0.2500 0.0000
B2C1 -0.2165 -0.1250 0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 -0.4330 0.0000 0.2500 0.0000
B2C2 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.2500 0.0000 0.4330 0.0000

B1D1 0.0000 0.0000 0.0000 0.0000 -0.2500 -0.4330 -0.4330 0.2500 -0.5000 0.0000 0.0000 0.0000
B1D2 0.0000 -0.5000 -0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000
B2D1 0.0000 0.0000 0.0000 0.0000 -0.4330 0.2500 0.2500 0.4330 0.0000 0.0000 -0.5000 0.0000
B2D2 -0.5000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000

C1D1 -0.2500 -0.4330 -0.4330 0.2500 -0.1250 0.2165 0.2165 0.1250 -0.1250 0.2165 0.2165 0.1250
C1D2 0.0000 0.0000 0.0000 0.0000 -0.2165 -0.1250 -0.1250 0.2165 0.2165 0.1250 0.1250 -0.2165
C2D1 -0.4330 0.2500 0.2500 0.4330 0.2165 0.1250 0.1250 -0.2165 -0.2165 -0.1250 -0.1250 0.2165
C2D2 0.0000 0.0000 0.0000 0.0000 -0.1250 0.2165 0.2165 0.1250 -0.1250 0.2165 0.2165 0.1250

Continued
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Table 4.3 Continued

B1C1 B1C2 B2C1 B2C2 B1D1 B1D2 B2D1 B2D2 C1D1 C1D2 C2D1 C2D2

A1 -0.3062 0.1768 0.1768 0.3062 0.0000 -0.7071 0.0000 0.0000 0.3062 -0.1768 -0.1768 -0.3062
A2 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 -0.7071 0.1768 0.3062 0.3062 -0.1768
B1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 -0.1768 -0.3062
B2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.3062 -0.1768
C1 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
C2 0.0000 0.0000 0.0000 0.0000 -0.1768 -0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000
D1 0.3062 -0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D2 -0.1768 -0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

A1B1 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 -0.5000 -0.2500 0.0000 -0.4330 0.0000
A1B2 -0.2165 0.1250 -0.1250 -0.2165 0.0000 -0.5000 0.0000 0.0000 -0.4330 0.0000 0.2500 0.0000
A2B1 0.2165 -0.1250 0.1250 0.2165 0.0000 -0.5000 0.0000 0.0000 -0.4330 0.0000 0.2500 0.0000
A2B2 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 0.5000 0.2500 0.0000 0.4330 0.0000

A1C1 0.1250 -0.2165 0.2165 0.1250 -0.2500 0.0000 -0.4330 0.0000 -0.1250 -0.2165 0.2165 -0.1250
A1C2 -0.2165 -0.1250 0.1250 -0.2165 -0.4330 0.0000 0.2500 0.0000 0.2165 -0.1250 0.1250 0.2165
A2C1 0.2165 0.1250 -0.1250 0.2165 -0.4330 0.0000 0.2500 0.0000 0.2165 -0.1250 0.1250 0.2165
A2C2 0.1250 -0.2165 0.2165 0.1250 0.2500 0.0000 0.4330 0.0000 0.1250 0.2165 -0.2165 0.1250

A1D1 -0.2500 -0.4330 -0.4330 0.2500 -0.5000 0.0000 0.0000 0.0000 -0.1250 0.2165 -0.2165 -0.1250
A1D2 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.2165 0.1250 -0.1250 0.2165
A2D1 -0.4330 0.2500 0.2500 0.4330 0.0000 0.0000 -0.5000 0.0000 0.2165 0.1250 -0.1250 0.2165
A2D2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.1250 -0.2165 0.2165 0.1250

B1C1 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 0.2165 -0.1250 -0.1250 -0.2165 0.2165 -0.1250
B1C2 0.0000 1.0000 0.0000 0.0000 0.2165 -0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165
B2C1 0.0000 0.0000 1.0000 0.0000 0.2165 -0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165
B2C2 0.0000 0.0000 0.0000 1.0000 -0.1250 -0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250

B1D1 0.1250 0.2165 0.2165 -0.1250 1.0000 0.0000 0.0000 0.0000 -0.1250 0.2165 -0.2165 -0.1250
B1D2 0.2165 -0.1250 -0.1250 -0.2165 0.0000 1.0000 0.0000 0.0000 0.2165 0.1250 -0.1250 0.2165
B2D1 0.2165 -0.1250 -0.1250 -0.2165 0.0000 0.0000 1.0000 0.0000 0.2165 0.1250 -0.1250 0.2165
B2D2 -0.1250 -0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 1.0000 0.1250 -0.2165 0.2165 0.1250

C1D1 -0.1250 0.2165 0.2165 0.1250 -0.1250 0.2165 0.2165 0.1250 1.0000 0.0000 0.0000 0.0000
C1D2 -0.2165 -0.1250 -0.1250 0.2165 0.2165 0.1250 0.1250 -0.2165 0.0000 1.0000 0.0000 0.0000
C2D1 0.2165 0.1250 0.1250 -0.2165 -0.2165 -0.1250 -0.1250 0.2165 0.0000 0.0000 1.0000 0.0000
C2D2 -0.1250 0.2165 0.2165 0.1250 0.0000 -0.1250 0.2165 0.2165 0.1250 0.0000 0.0000 1.0000
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From the complete correlation matrix, the correlation matrix for the A × BC inter-

action is extracted:

A1 A2 B1C1 B1C2 B2C1 B2C2

A1 1.0000 0.0000 −0.3062 0.1768 0.1768 0.3062
A2 0.0000 1.0000 0.1768 0.3062 0.3062 −0.1768

B1C1 −0.3062 0.1768 1.0000 0.0000 0.0000 0.0000
B1C2 0.1768 0.3062 0.0000 1.0000 0.0000 0.0000
B2C1 0.1768 0.3062 0.0000 0.0000 1.0000 0.0000
B2C2 0.3062 −0.1768 0.0000 0.0000 0.0000 1.0000

The average squared correlation of order 3 for the A×BC interaction is computed

as

Ave ρ2
3(A,BC) =

1

8

[
ρ2(A1, B1C1) + ρ2(A1, B1C2) + ρ2(A1, B2C1)

+ ρ2(A1, B2C2) + ρ2(A2, B1C1) + ρ2(A2, B1C2)

+ ρ2(A2, B2C1) + ρ2(A2, B2C2)
]

=
1

8

[
(−0.3062)2 + 0.17682 + 0.17682 + 0.30622

+ 0.17682 + 0.30622 + 0.30622 + (−0.17682)
]

= 0.0625

By similar calculations, the average squared correlations of order 3 for the other main

effect with two-factor interaction pairs are:

Ave ρ2
3(A,BD) = 0.1250

Ave ρ2
3(A,CD) = 0.0625

Ave ρ2
3(B,AC) = 0.0625

Ave ρ2
3(B,AD) = 0.1250

Ave ρ2
3(B,CD) = 0.0625

Ave ρ2
3(C,AB) = 0.0625
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Ave ρ2
3(C,AD) = 0.0625

Ave ρ2
3(C,BD) = 0.0625

Ave ρ2
3(D,AB) = 0.1250

Ave ρ2
3(D,AC) = 0.0625

Ave ρ2
3(D,BC) = 0.0625

Next, the correlation matrix for the AB × AC interaction is extracted:

A1B1 A1B2 A2B1 A2B2 A1C1 A1C2 A2C1 A2C2

A1B1 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 −0.2165 0.1250
A1B2 0.0000 1.0000 0.0000 0.0000 0.2165 −0.1250 0.1250 0.2165
A2B1 0.0000 0.0000 1.0000 0.0000 −0.2165 0.1250 −0.1250 −0.2165
A2B2 0.0000 0.0000 0.0000 1.0000 0.1250 0.2165 −0.2165 0.1250
A1C1 0.1250 0.2165 −0.2165 0.1250 1.0000 0.0000 0.0000 0.0000
A1C2 0.2165 −0.1250 0.1250 0.2165 0.0000 1.0000 0.0000 0.0000
A2C1 −0.2165 0.1250 −0.1250 −0.2165 0.0000 0.0000 1.0000 0.0000
A2C2 0.1250 0.2165 −0.2165 0.1250 0.0000 0.0000 0.0000 1.0000

The average squared correlation of order 4 for the AB×AC interaction is computed

as

Ave ρ2
4(AB,AC) =

1

16

[
ρ2(A1B1, A1C1) + ρ2(A1B1, A1C2) + ρ2(A1B1, A2C1)

+ ρ2(A1B1, A2C2) + ρ2(A1B2, A1C1) + ρ2(A1B2, A1C2)

+ ρ2(A1B2, A2C1) + ρ2(A1B2, A2C2) + ρ2(A2B1, A1C1)

+ ρ2(A2B1, A1C2) + ρ2(A2B1, A2C1) + ρ2(A2B1, A2C2)

+ ρ2(A2B2, A1C1) + ρ2(A2B2, A1C2) + ρ2(A2B2, A2C1)

+ ρ2(A2B2, A2C2)
]

=
1

16

[
0.12502 + 0.21652 + (−0.2165)2 + 0.12502

+ 0.21652 + (−0.1250)2 + 0.12502 + 0.21652

+ (−0.2165)2 + 0.12502 + (−0.1250)2 + (−0.2165)2
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+ 0.125020.21652 + (−0.2165)2 + 0.12502
]

= 0.0312

By similar calculations, the distinct average squared correlations of order 4 for the

other two-factor interaction with two-factor interaction pairs are:

Ave ρ2
4(AB,AD) = 0.0625

Ave ρ2
4(AB,BC) = 0.0312

Ave ρ2
4(AB,BD) = 0.0625

Ave ρ2
4(AB,CD) = 0.0625

Ave ρ2
4(AC,AD) = 0.0312

Ave ρ2
4(AC,BC) = 0.0312

Ave ρ2
4(AC,BD) = 0.0625

Ave ρ2
4(AC,CD) = 0.0312

Ave ρ2
4(AD,BC) = 0.0625

Ave ρ2
4(AD,BD) = 0.0625

Ave ρ2
4(AD,CD) = 0.0312

Ave ρ2
4(BC,BD) = 0.0312

Ave ρ2
4(BC,CD) = 0.0312

Ave ρ2
4(BD,CD) = 0.0312

The distinct values of Ave (ρ2
3) and Ave (ρ2

4) and the number of each distinct value

are indexed to create the ASCP and used to describe a property of the projection of

the OA(18, 7, 3, 2) onto these four columns. Following the format of (4.5), for this

example, the ASCP is given in Table 4.4.
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Number of Number of
Ave (ρ2

3) Ave (ρ2
4)

Projection 0.0625 0.1250 0.0312 0.0625
(1,2,3,7) 9 3 9 6

Table 4.4: ASCP for design in Table 4.1 treating factors as qualitative

The average squared correlations of order 3 and order 4 can be computed to

describe every possible projection design of the OA(18, 7, 3, 2) in Table A.1. The

ASCP for all combinatorially inequivalent three-, four-, and five-factor projection

designs (as given by Evangelaras, Koukouvinos, Dean and Dingus (2005b)) are given

in Table 4.5.

Class Number of Ave ρ2
3 Number of Ave ρ2

4
.0312 .0625 .0938 .1250 .2500 0.0000 .0312 .0625 .0938 .1250 .2500

18.3.1 0 3 0 0 0 0 3 0 0 0 0
18.3.2 0 0 0 3 0 0 0 3 0 0 0
18.3.3 0 0 0 0 3 0 0 0 0 3 0
18.4.1 0 12 0 0 0 0 12 0 3 0 0
18.4.2 0 9 0 3 0 0 9 6 0 0 0
18.4.3 0 3 0 9 0 3 3 9 0 0 0
18.4.4 0 9 0 0 3 3 9 0 0 3 0
18.5.1 0 30 0 0 0 0 30 0 15 0 0
18.5.2 0 21 0 9 0 3 21 18 3 0 0
18.5.3 0 24 0 3 3 6 24 9 3 3 0
18.5.4 0 12 0 18 0 12 12 18 3 0 0

Table 4.5: Average squared correlations of order 3 and order 4 values for the com-
binatorially inequivalent three-factor , four-factor, and five-factor projection designs
from OA(18, 7, 3, 2)

38



4.3 Independence from Choice of Orthogonal Contrast Set

The definitions of average squared correlations of order 3 and order 4 in Section 4.1

and the example calculations in Section 4.2 use the standard linear and quadratic

contrast coefficients. For qualitative factors, the linear and quadratic contrasts have

no physical interpretation. Theorem 4.3.1 shows that the average squared correlations

of order 3 and order 4 do not depend on the choice of orthogonal contrast set; the

proof of Theorem 4.3.1 is found on page 44, following Lemma 4.3.3 and proof.

Theorem 4.3.1

(a) The average squared correlation of order 3 for any main effect and any two-

factor interaction does not depend on the specific choice of complete sets of

orthonormal contrasts.

(b) The average squared correlation of order 4 for any pair of two-factor interactions

does not depend on the specific choice of complete sets of orthonormal contrasts.

The average of squared correlations between all pairs of contrasts measuring the

effects of factors A and B is denoted Ave ρ2(CA,CB). If the factorial effect of A is

measured by J orthogonal contrasts and the factorial effect of B is measured by K

orthogonal contrasts, then

Ave ρ2(CA,CB) =
1

JK

J∑

j=1

K∑

k=1

ρ2(aj,bk)

where aj is the jth contrast measuring the effect of A, bk is the kth contrast measuring

the effect of B, and ρ2(aj,bk) is equal to the squared correlation between contrasts

ai and bj. For a main effect of factor A and a two-factor interaction B = C × D
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effect, the average squared correlation of order 3 is denoted Ave ρ2
3(CA,CB); the

average squared correlation of order 4 for a two-factor interaction A = E × F effect

and a two-factor interaction B = C ×D effect is denoted Ave ρ2
4(CA,CB). Similarly,

the sum of squared correlations between all pairs of contrasts measuring the factorial

effects of A and B, denoted sum ρ2(CA,CB), is

sum ρ2(CA,CB) =
J∑

j=1

K∑

k=1

ρ2(aj,bk).

Before proving Theorem 4.3.1, the following claim is needed.

Lemma 4.3.2 Let CA denote the contrast sub-matrix consisting of J orthogonal con-

trasts (a1, a2, . . . , aJ) that describe the factorial effect of A, and CB denote the con-

trast sub-matrix consisting of K orthogonal contrasts (b1,b2, . . . ,bK) that describe

the factorial effect B. Then

1

JK
sum ρ2(CA,CB) =

1

JK

J∑

j=1

K∑

k=1

ρ2(aj,bk) =
1

JK
trace(CB

′CACA
′CB) (4.8)

where ρ2(aj,bk) is equal to the squared correlation between contrasts ai and bj.

Proof of Lemma 4.3.2

Let CA denote the contrast sub-matrix consisting of J orthogonal contrasts (a1, a2, . . . , aJ)

that describe the factorial effect of A and CB denote the contrast sub-matrix con-

sisting of K orthogonal contrasts (b1,b2, . . . ,bK) that describe the factorial effect

B.

Let the contrasts be normalized so that

a∗
j =

aj√
a′

jaj
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and

b∗
k =

bk√
b′

kbk

Then (a∗
1, a

∗
2, . . . , a

∗
J) is also a complete set of orthonormal contrasts corresponding

to the factorial effect A and (b∗
1,b

∗
2, . . . ,b

∗
J) is also a complete set of orthonormal

contrasts corresponding to the factorial effect B.

For given contrasts, aj, 1 ≤ j ≤ J , and bk, 1 ≤ k ≤ K, from Equation (2.4) in

Section 2.4, the correlation between aj and bk is

ρ(aj,bk) =
a′

jbk√
(a′

jaj)(b
′
kbk)

= a∗
j
′b∗

k (4.9)

Squaring (4.9) gives

ρ2(a∗
j ,b

∗
k) = (a∗

j
′b∗

k)
′(a∗

j
′b∗

k)

= b∗
k
′a∗

ja
∗
j
′b∗

k (4.10)

The sum of the squared correlations between A and B is

sum ρ2(CA,CB) =
J∑

j=1

K∑

k=1

ρ2(aj,bk)

=
J∑

j=1

K∑

k=1

b∗
k
′a∗

ja
∗
j
′b∗

k (4.11)

Next, calculate CB
′CACA

′CB:

CB
′CACA

′CB =




b∗
1
′

b∗
2
′

...
b∗

K
′




[
a∗

1 a∗
2 · · · a∗

J

]




a∗
1
′

a∗
2
′

...
a∗

J
′




[
b∗

1 b∗
2 · · · b∗

K

]
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=




b∗
1
′a∗

1 b∗
1
′a∗

2 · · · b∗
1
′a∗

J

b∗
2
′a∗

1 b∗
2
′a∗

2 · · · b∗
2
′a∗

J
...

b∗
K

′a∗
1 b∗

K
′a∗

2 · · · b∗
K

′a∗
J







a∗
1
′b∗

1 a∗
1
′b∗

2 · · · a∗
1
′b∗

K

a∗
2
′b∗

1 a∗
2
′b∗

2 · · · a∗
2
′b∗

K
...

a∗
J
′b∗

1 a∗
J
′b∗

2 · · · a∗
J
′b∗

K




=




∑J
j=1 b∗

1
′a∗

ja
∗
j
′b∗

1 ∑J
j=1 b∗

2
′a∗

ja
∗
j
′b∗

2
. . .

∑J
j=1 b∗

K
′a∗

ja
∗
j
′b∗

K




(4.12)

The diagonal elements of the matrix CB
′CACA

′CB in (4.12) are the summands

of equation (4.11).

Thus,

sum ρ2(CA,CB) =
J∑

j=1

K∑

k=1

b∗
k
′a∗

ja
∗
j
′b∗

k = trace(CB
′CACA

′CB).

2

Suppose the effect of B is the two-factor interaction C×D. Let CC = (c1, c2, . . . , cKc
)

and CD = (d1,d2, . . . ,dKd
) be the complete sets of orthogonal contrasts for the

main effects of factors C and D, respectively. As described in Section 2.3, the

complete set of orthogonal contrasts (b1,b2, . . . ,bK) is constructed by element-wise

product of all pairs of contrasts (ci,dj), i = 1, 2, . . . , Kc and j = 1, 2, . . . , Kd. So

CB =
[

c1 · d1 c2 · d1 . . . cKc
· d1 c1 · d2 . . . cKc

· dKd

]
. Define

CC · dj =
[

c1 · dj c2 · dj . . . cKc
· dj

]
(4.13)

and

CC · CD =
[

CC · d1 CC · d2 . . . CC · dKd

]
(4.14)

Then B = C · D.

The following lemma will also be needed to prove Theorem 4.3.1.
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Lemma 4.3.3 For a matrix, Q,

(CCQ) · dj = (CC · dj)Q.

Proof of Lemma 4.3.3

Let (c1, c2, . . . , cKc
) be a complete set of orthogonal contrasts corresponding to a

factorial effect C and let (d1,d2, . . . ,dKd
) be a complete set of orthogonal contrasts

corresponding to a factorial effect D. Let B be the C × D interaction.

Let Q be a Kc × Kc matrix.

Then

(CCQ) · dj =







c11 c12 . . . c1Kc

c21 c22 . . . c2Kc

...
cn1 cn2 . . . cnKc







q11 q12 . . . q1Kc

q21 q22 . . . q2Kc

...
qKc1 qKc2 . . . qKcKc






·




d1j

d2j
...

dnj




=




∑Kc

i=1 c1iqi1
∑J

p=1 c1iqi2 . . .
∑Kc

i=1 c1iqiKc∑Kc

i=1 c2iqi1
∑Kc

i=1 c2iqi2 . . .
∑Kc

i=1 c2iqiKc

...∑Kc

i=1 cniqi1
∑J

i=1 cniqi2 . . .
∑Kc

i=1 cniqiKc



·




d1j

d2j
...

dnj




=




∑Kc

i=1 d1jc1iqi1
∑Kc

i=1 d1jc1iqi2 . . .
∑Kc

i=1 d1jc1iqiKc∑Kc

i=1 d2jc2iqi1
∑Kc

i=1 d2jc2iqi2 . . .
∑Kc

i=1 d2jc2iqiKc

...∑Kc

i=1 dnjcniqi1
∑Kc

i=1 dnjcniqi2 . . .
∑Kc

i=1 dn1cniqiKc




=




c11d1j c12d1j . . . c1Kc
d1j

c21d2j c22d2j . . . c2Kc
d2j

...
cn1dnj cn2dnj . . . cnKc

dnj







q11 q12 . . . q1Kc

q21 q22 . . . q2Kc

...
qKc1 qKc2 . . . qKcKc




= (CC · dj)Q

2

The following corollary follows from Lemma 4.3.3.
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Corollary 4.3.4

CB
∗ = (CCQ) · CD = (CC · CD)Q.

Proof of Corollary 4.3.4

(CCQ) · CD =
[

(CCQ) · d1 (CCQ) · d2 . . . (CCQ) · dKd

]

=
[

(CC · d1)Q (CC · d2)Q . . . (CC · dKd
)Q

]

= (CCCD)Q

2

Now we can prove Theorem 4.3.1.

Proof of Theorem 4.3.1 (a)

Let CA =
[

a1 a2 . . . aJ

]
be a complete set of orthogonal contrasts for a main

effect A with J + 1 levels.

Let B represent the C × D two-factor interaction, where C and D have Kc + 1

levels and Kd + 1 levels, respectively, and Kc × Kd = K. So CB = CC · CD.

From Lemma 4.3.2, sum ρ2(CA,CB) = trace(CB
′CACA

′CB), and so

Ave ρ2
3(CA,CB) =

1

JK
trace(CB

′CACA
′CB) (4.15)

Next, let Q1 be a J × J orthogonal matrix. That is, let Q1 be a square J × J

matrix such that Q1Q
′
1 = Q′

1Q1 = IJ .

Then AQ1 has the same dimensions as A. And the columns of AQ1 are orthogo-

nal, since the columns of both A and Q1 are orthogonal. Thus, AQ1 is a (possibly)

different set of orthonormal contrasts for the main effect A. Every orthonormal basis
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for the main effect of A is related by an orthogonal transformation to every other

orthonormal basis for the main effect of A (see Lemma 8 of Appendix II, Scheffé

(1959)).

Then

Ave ρ2
3(CAQ1,CB) =

1

JK
trace(CB

′(CAQ1)(CAQ1)
′CB)

=
1

JK
trace(CB

′CAQ1Q
′
1CA

′CB)

=
1

JK
trace(CB

′CAICA
′CB)

=
1

JK
trace(CB

′CACA
′CB)

= Ave ρ2
3(CA,CB) (4.16)

and the average squared correlation of order 3 is independent of the set of orthogonal

contrasts selected for the main effect of A.

Next, let Q2 be a Kc×Kc orthogonal matrix. That is, let Q2 be a square Kc×Kc

matrix such that Q2Q
′
2 = Q′

2Q2 = IKc
.

Then CQ2 has the same dimensions as C. And the columns of CQ2 are orthog-

onal, since the columns of both C and Q2 are orthogonal. Thus, CQ2 is a (possibly)

different set of orthonormal contrasts for the main effect C. Every orthonormal basis

for the main effect of C is related by an orthogonal transformation to every other

orthonormal basis for the main effect of C (see Lemma 8 of Appendix II, Scheffé

(1959)).

Let B∗ = (CCQ2) · CD.

From Corollary 4.3.4,

CB∗ = (CCQ2) · CD

= (CC · CD)Q2 (4.17)
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So

CB∗

′ = ((CC · CD)Q2)
′

=
[

(CC · d1)Q2 (CC · d2)Q2 . . . (CC · dKd
)Q2

]

=




((CC · d1)Q2)
′

((CC · d2)Q2)
′

...
((CC · dKd

)Q2)
′




=




Q′
2(CC · d1)

′

Q′
2(CC · d2)

′

...
Q′

2(CC · dKd
)′




=




Q2(CC · d1)
′

Q2(CC · d2)
′

...
Q2(CC · dKd

)′




= Q2(CC · CD)′

Then the average squared correlation of order 3 between A and the new set of

orthogonal interaction contrasts CB∗ is

Ave ρ2
3(CA,CB∗) =

1

JK
trace((CA)′CBCB∗

′(CA))

=
1

JK
trace(CA

′(CC · CD)Q2Q
′
2(CC · CD)′CA

=
1

JK
trace(CA

′(CC · CD)I(CC · CD)′CA

(4.18)
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=
1

JK
trace(CA

′(CC · CD)(CC · CD)′CA

=
1

JK
trace(CA

′CBCB
′CA)

= Ave ρ2
3(CA,CB) (4.19)

and the average squared correlation of order 3 is independent of the set of orthogonal

contrasts selected for the main effect component of the two-factor interaction.

Also, the average squared correlation of order 3 between the set of orthogonal

contrasts, AQ1, and the new set of orthogonal interaction contrasts CB∗ is

Ave ρ2
3(CAQ1,CB∗) = Ave ρ2

3(CA,CB∗)

= Ave ρ2
3(CA,CB) (4.20)

and the average squared correlation of order 3 is independent of the set of orthogonal

contrasts selected for the main effect and the set of orthogonal contrasts selected for

the main effect component of the two-factor interaction.

The proof of Theorem 4.3.1 (b) follows similarly.

2

Because the average squared correlations are independent of the choice of a com-

plete set of orthogonal contrasts in the case of qualitative factors, the rank ordering

of designs based on the ASCP will be identical for all such choices. Even though the

standard linear and quadratic orthogonal contrasts do not have a physical interpre-

tation for qualitative factors, these contrast provide the same ranking of designs as

all other complete sets of orthogonal contrasts.
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4.4 Conditions for Use of the Average Squared Correlation
Criterion

The average square correlation criterion is developed to describe properties of

orthogonal arrays of strength two and their projections. For orthogonal arrays of

strength three, all average squared correlations of order three are equal zero; in this

case, the average squared correlations of order four are still useful for rank ordering

designs.

As discussed in Section 2.3, a factorial effect with k levels can be measured by

means of k−1 orthogonal contrasts. Otherwise the columns do not fully describe the

effect as shown in the example below, where the two-factor interaction columns do

not completely measure the two-factor interaction effects.

As was proven in Section 4.3, the average squared correlations of order 3 and

order 4 are independent of the choice of orthogonal contrast set. If the design is

an orthogonal array of strength two, for any choice of complete set of orthogonal

contrasts the element-wise product of the main effect contrasts will produce columns

for the two-factor interaction effect that are contrasts. However, if the design is not

an orthogonal array, the columns resulting from element-wise product of the main

effect contrasts are not necessarily contrasts. For example, consider the design in

Table 4.6 with three factors and twelve runs.

For the design in Table 4.6, the main effects are not pairwise orthogonal. As a

result of this non-orthogonality, the interaction effect columns produced by element-

wise products of the column pairs are not contrasts (i.e. does not sum to zero). The

full matrix, including main effect contrasts and two-factor interaction columns, is

given in Table 4.7, where for ease of presentation the matrix is divided into the first
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A B C
0 0 0
0 0 1
0 1 2
0 1 2
1 2 0
1 2 0
1 2 1
1 2 1
2 0 0
2 0 1
2 1 2
2 1 2

Table 4.6: Example of non-orthogonal design

six columns and the last twelve columns. From Table 4.7 it is clear that each column

corresponding to a two-factor interaction is not a contrast and is not orthogonal to

the other columns for the same two-factor interaction effect.

While the average squared correlation criterion is developed for orthogonal arrays

of strength two, the criterion can be extended to other classes of designs. The ex-

tension requires identification of the correct set of orthogonal contrasts to be used.

Dean and Draper (1999) provides a method for constructing orthogonal contrasts in

a special case. The extension of the average squared correlation criterion to general

classes of designs is not undertaken in this work.
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A1 A2 B1 B2 C1 C2

-1 1 -1 1 -1 1
-1 1 -1 1 0 -2
-1 1 0 -2 1 1
-1 1 0 -2 -1 1
0 -2 1 1 0 -2
0 -2 1 1 1 1
0 -2 1 1 -1 1
0 -2 1 1 0 -2
1 1 0 -2 1 1
1 1 0 -2 -1 1
1 1 -1 1 0 -2
1 1 -1 1 1 1

A1B1 A1B2 A2B1 A2B2 A1C1 A1C2 A2C1 A2C2 B1C1 B1C2 B2C1 B2C2

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 0 2 0 -2 0 2 0 -2
0 2 0 -2 -1 -1 1 1 0 0 -2 -2
0 2 0 -2 1 -1 -1 1 0 0 2 -2
0 0 -2 -2 0 0 0 4 0 -2 0 -2
0 0 -2 -2 0 0 -2 -2 1 1 1 1
0 0 -2 -2 0 0 2 -2 -1 1 -1 1
0 0 -2 -2 0 0 0 4 0 -2 0 -2
0 -2 0 -2 1 1 1 1 0 0 -2 -2
0 -2 0 -2 -1 1 -1 1 0 0 2 -2
-1 1 -1 1 0 -2 0 -2 0 2 0 -2
-1 1 -1 1 1 1 1 1 -1 -1 1 1

Table 4.7: Complete contrast matrix for example projection design in Table 4.1
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CHAPTER 5

RANKING AND NON-EQUIVALENCE OF DESIGNS
WITH QUALITATIVE FACTORS

5.1 Competing Methods

Numerous methods for ranking and determining non-equivalence of two designs

have been proposed. If two designs are determined to be equivalent, the two designs

possess the same properties and are assigned the same rank order. Many methods

(Ma and Fang 2001, Xu and Wu 2001, Evangelaras et al. 2005b) have been developed

primarily to rank designs with qualitative factors. Additionally, if two designs are

ranked differentially, then the two designs are not equivalent. This chapter provides a

brief review of the methods that will be compared to the average squared correlation

criterion in Chapter 5.

Ma and Fang (2001) and Xu and Wu (2001) independently proposed a general-

ized wordlength pattern (GWP) and a generalized minimum aberration criterion for

ranking both regular and non-regular designs. The proposed criterion is independent

of the complete set of orthogonal contrasts used to measure the main effects and is,

therefore, appropriate for designs with qualitative factors. The GWP of a design D
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is defined as

W g(D) = {Ag
1(D), . . . , Ag

j (D)} (5.1)

for

Ag
m(D) =

1

n(k − 1)

j∑

i=0

Pm(i; j)Ei(D) (5.2)

where k is the number of levels of the factors,

Pm(i; j) =
m∑

r=0

(−1)r(s − 1)m−r(j
r)(

j−i
m−r) (5.3)

and Em(D) is the distance distribution of D defined as

Em(D) =
1

n
#{(a,b)|a,b ∈ D, dH(a,b) = m} (5.4)

where dH(a,b) is the Hamming distance between rows c and d of the design matrix

D for the design D. The Hamming distance counts the number of dimensions in

which two points do not match; if the Hamming distance is equal to zero, the two

points are the same.

The GWP is an extension of the wordlength pattern (WP) for regular designs,

W (D) = {A1(D), . . . , Aj(D)}, where Am(D) is equal to the number of distinct words

in the defining relation with length equal to i (see Wu and Hamada (2000) Section

4.2). The GWP reduces to the WP for regular designs (see Ma and Fang (2001)).

Like the WP, the GWP describes the aliasing of effects: the greater the value of

Ag
m(D), the greater the total aliasing of all j-factor and (m − j)-factor effect pairs.

Ma and Fang (2001) stated the theorem that two combinatorially isomorphic

designs have the same GWP. Thus, GWP provides a necessary condition for com-

binatorial equivalence. However, GWP does not provide a sufficient condition for

equivalence; two inequivalent designs can have the same GWP.
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The GWP can be used to rank both regular and non-regular designs in terms

of generalized resolution and generalized aberration (Xu and Wu 2001). Each entry,

Ai(D), in the generalized wordlength pattern represents the degree of aliasing between

all i-factor interactions and the overall mean. Designs are ranked by sequentially

minimizing Ai(D) for i = 1, 2, . . . , p. The generalized resolution of a design D is

defined as the smallest value of i for which Ai(D) > 0. For designs D1 and D2, D1 is

said to have less generalized aberration than D2 if At(D1) < At(D2) for the smallest

value of t such that At(D1) 6= At(D2); D1 is said to have minimum generalized

aberration if no other design (with the same number of levels) has less generalized

aberration than D1 (Xu and Wu 2001).

The α wordlength pattern given by Cheng and Ye (2004) is a redefinition of the

GWP of Xu and Wu (2001). The α wordlength pattern is calculated from the coef-

ficients of an indicator function developed to determine non-equivalence and equiv-

alence of designs with quantitative factors. The indicator function will be described

in detail in Chapter 7. The relationship between the α wordlength pattern and the

current work is examined in Chapter 8.

The α wordlength pattern of Cheng and Ye (2004) (defined in Section 8.2) is a

redefinition of the GWP of Xu and Wu (2001). Each entry, αi(D), in the α wordlength

pattern is equal to the corresponding entry, Ai(D), in the GWP. Computationally,

the α wordlength pattern is simpler and, therefore, will be used here for comparison.

As discussed in Chapter 4, in this work the average squared correlation pattern

criterion is proposed to rank order designs and evaluate non-equivalence. Two equiv-

alent designs must have the same ASCP. This follows from Theorem 4.3.1 since two

combinatorially equivalent designs are related by an orthogonal transformation. Also,
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two designs that have different ASCPs must be non-equivalent. Equality of ASCPs

is a necessary but not a sufficient condition for combinatorial equivalence.

5.2 Ranking and Equivalence

The ASCPs of designs can be used to rank order designs. Smaller correlations

represent less aliasing between effects; less aliasing indicates greater information for

estimation of effects independent from other effects. Smaller average squared cor-

relations of order 3 correspond to better estimation of main effects (independent of

two-factor interactions) and smaller average squared correlations of both order 3 and

order 4 correspond to better estimation of two-factor interactions (independent of

main effects and other two-factor interactions). Thus, average squared correlations of

order 3 are considered more important than average squared correlations of order 4,

since in this work estimation of main effects independently of two-factor interactions

is considered more important than estimation of two-factor interactions. Based on

the average squared correlation values, designs can be ranked by sequentially maxi-

mizing the r3(1), r3(2), . . ., r3(k), r4(1), r4(2), . . ., r4(m) in Array (4.5). By maximizing

the ri(j) in this order, the design with the greatest number of the smallest average

squared correlations of order 3 is ranked as the best.

5.2.1 Example: Rank Ordering of Combinatorially Inequiv-
alent Design Classes from OA(18, 7, 3, 2)

The ASCP and α wordlength patterns for each inequivalent projection design class

from the OA(18, 7, 3, 2) in Table A.1 are shown in Table 5.1 in order to examine the

optimal design choices based on each ranking method. In general, ranking of designs

requires examination of both Ave (ρ2
3) and Ave (ρ2

4). However, for projections of all
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Class Number of Ave ρ2
3 Number of Ave ρ2

4 α Wordlength
.03 .06 .09 .12 .25 0.00 .03 .06 .09 .12 .25

18.3.1 0 3 0 0 0 0 3 0 0 0 0 (0.0,0.0,0.5)
18.3.2 0 0 0 3 0 0 0 3 0 0 0 (0.0,0.0,1.0)
18.3.3 0 0 0 0 3 0 0 0 0 3 0 (0.0,0.0,2.0)
18.4.1 0 12 0 0 0 0 12 0 3 0 0 (0.0,0.0,2.0,1.5)
18.4.2 0 9 0 3 0 0 9 6 0 0 0 (0.0,0.0,2.5,1.0)
18.4.3 0 3 0 9 0 3 3 9 0 0 0 (0.0,0.0,3.5,0.0)
18.4.4 0 9 0 0 3 3 9 0 0 3 0 (0.0,0.0,3.5,0.0)
18.5.1 0 30 0 0 0 0 30 0 15 0 0 (0.0,0.0,5.0,7.5,0.0)
18.5.2 0 21 0 9 0 3 21 18 3 0 0 (0.0,0.0,6.5,4.5,1.5)
18.5.3 0 24 0 3 3 6 24 9 3 3 0 (0.0,0.0,7.0,3.5,2.0)
18.5.4 0 12 0 18 0 12 12 18 3 0 0 (0.0,0.0,8.0,1.5,3.0)

Table 5.1: ASCP and α wordlength patterns for inequivalent projection classes from
OA(18, 7, 3, 2)

sizes from the OA(18, 7, 3, 2) design ranking is based solely on Ave (ρ2
3). According

to the ASCP, the design classes 18.3.1, 18.4.1, and 18.5.1, would be ranked as the

best projection designs of three-, four-, and five-factors, respectively. Sequentially

minimizing the elements αi(D) of the α wordlength gives the same ranking.

The ASCP and α wordlength pattern do not provide identical rank orderings of the

designs in the case of the four-factor projections. Ranking the designs in decreasing

order of quality, the ASCP ranks the designs in the order of 18.4.1 � 18.4.2 �

18.4.4 � 18.4.3, where � represents better than. In comparison, the α wordlength

pattern of Section 8.2 would rank the designs in order 18.4.1 � 18.4.2 � 18.4.4 ==

18.4.3, where == represents is equally as good as. In this example, the ASCP is able

to provide a more detailed rank ordering than the α wordlength pattern.

It is also possible that the ASCP provides a “reversed” ranking compared to the

α wordlength pattern. For example, the α wordlength pattern ranks 18.5.3 higher

than 18.5.4 while ASCP ranks 18.5.4 higher than 18.5.3. The rank reversal is the

result of a few large average squared correlations of order 3 (i.e. the average squared
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p = 3 p = 4 p = 5
Ave ρ2 3 4 4
α Wordlength/GWP 3 3 4
Actual 3 4 4

Table 5.2: Number of combinatorially inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(18, 7, 3, 2) in Table A.1

correlations of order 3 equal to 0.09 and 0.12); these large average squared correlations

are included in the α wordlength pattern but do not affect the ASCP ranking since

18.5.3 has more average squared correlations of order 3 equal to the smaller value

0.06 than does 18.5.4.

5.2.2 Combinatorial Non-equivalence of Projection Designs
from Orthogonal Arrays

Table 5.1 indicates that the ASCP is able to distinguish all inequivalent classes

of three-, four-, and five-factor projection designs from the OA(18, 7, 3, 2) while the

α wordlength pattern is not able to distinguish all four-factor projections. Table 5.2,

Table 5.3, and Table 5.4 provide the numbers of inequivalent classes identified by the

ASCP and the α wordlength pattern for three-, four-, and five-factor projections from

the OA(18, 7, 3, 2), OA(27, 13, 3, 2), and OA(36, 13, 3, 2) in Tables A.1, A.2, and A.3,

respectively. The actual numbers of inequivalent classes for each design, as presented

by Evangelaras et al. (2005b), are also provided for comparison.

Again, from Table 5.2, the ASCP is able to identify all classes for each of the

projection sizes for the OA(18, 7, 3, 2); the α wordlength pattern fails to differentiate
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p = 3 p = 4 p = 5
Ave ρ2 2 3 3
α Wordlength/GWP 2 3 3
Actual 2 3 3

Table 5.3: Number of combinatorially inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(27, 13, 3, 2) in Table A.2

two of the inequivalent classes of four-factor projections, identifying three classes and

not four.

For the OA(27, 13, 3, 2), both criteria are able to identify correctly each of the com-

binatorially equivalent design classes (Table 5.3). However, neither algorithm is able

to distinguish all the equivalence classes for the OA(36, 13, 3, 2) (Table 5.4). For the

OA(36, 13, 3, 2), each criterion can identify all classes of three-factor projections. The

ASCP performs considerably better than the wordlength pattern for both four- and

five-factor projections: ASCP is 93% and 92% correct for four- and five-factor projec-

tions, respectively, while wordlength pattern is only 74% and 42% correct. Thus, the

proposed ASCP provides a substantial improvement for determining combinatorially

inequivalent design classes of projection designs as compared to the α wordlength pat-

tern/GWP. The superior performance in determining inequivalent classes exemplifies

a superior capability to rank order the projection designs.

5.3 Estimation Capacity of Projection Designs

Different designs allow different models to be fit to the data. The size of the model

fit and the number of parameters that can be estimated are necessarily restricted by

the number of experimental runs. In general, for an experiment with n runs, at most

57



p = 3 p = 4 p = 5
Ave ρ2 6 25 77
α Wordlength/GWP 6 20 35
Actual 6 27 84

Table 5.4: Number of combinatorially inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(36, 13, 3, 2) in Table A.3

n − 1 factorial contrasts can be estimated in addition to the overall mean. Thus, it

is informative to consider which main effect and interaction effect contrasts can be

estimated from the projection designs studied in addition to the correlation between

contrasts.

As pointed out by Evangelaras et al. (2005b) all projections of the OA(27, 13, 3, 2)

in Table A.2 are regular fractional factorial designs. Thus, the estimable effects

are known via the defining relations, which are also provided by Evangelaras et al.

(2005b).

Given the OA(18, 7, 3, 2) in Table A.1, at most seventeen factorial contrasts can

be estimated. Recall that each main effect requires two contrasts and each two-factor

interaction effect requires four contrasts. Therefore, if all main effect contrasts are

fitted, at most two of the three two-factor interactions can also be fitted for three-

and four-factor projections, and at most one of the three two-factor interactions can

be fitted for the five-factor projections.

In Appendix B, Tables B.1–B.5 give the degrees of freedom for estimating each

main effect and two-factor interaction effect for each of the possible models that can

be fitted. In the tables, if a main effect has two degrees of freedom, then that main

effect can be estimated independently from all other effects in the model; a two-factor
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Class Number of Ave ρ2
3 Number of Ave ρ2

4
0.016 0.031 0.062 0.078 0.109 0.250 0.008 0.016 0.031 0.039 0.055 0.125

36.3.1 3 0 0 0 0 0 3 0 0 0 0 0
36.3.2 0 0 0 0 3 0 0 0 0 0 3 0
36.3.3 0 0 0 0 0 3 0 0 0 0 0 3
36.3.4 0 0 3 0 0 0 0 0 3 0 0 0
36.3.5 0 3 0 0 0 0 0 3 0 0 0 0
36.3.6 0 0 0 3 0 0 0 0 0 3 0 0

Table 5.5: ASCP for inequivalent three-factor projection classes from OA(36, 13, 3, 2)

interaction effect can be estimated independently from all other effects in the model if

it has four degrees of freedom. For example, in Table B.1, designs in class 18.3.1 allow

independent estimation of all main effects and any pair of two-factor interactions. In

contrast, only a single main effect can be estimated using designs in class 18.3.3. For

the OA(18, 7, 3, 2), the rank ordering of the design classes based on the ASCP and α

wordlength pattern/GWP is the same as the rank ordering based on the estimation

capacity.

At most thirty-five factorial contrasts can be estimated using the OA(36, 13, 3, 2)

in Table A.3. At most six two-factor interactions can be fit in addition to the main

effects for five-factor projections, while all two-factor interactions can be fit for three-

and four-factor projections.

Tables B.6–B.14 of Appendix B give the degrees of freedom for estimating each

main effect and two-factor interaction effect for each of the possible models that can

be fitted. The numbers of models capable of estimating all main effects and i two-

factor interactions, for i = 1, 2, 3, 4, 5, 6, for each five-factor projection class are given

in Tables B.15 – B.20.
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For three-factor projections, the three design classes 36.3.1, 36.3.5, and 36.3.6

allow for the independent estimation of all main effects and two-factor interaction

effects. In contrast, no main effect or two-factor interaction is estimable using designs

in class 36.3.3. The ASCP would similarly rank order the class 36.3.1 as the best

design and class 36.3.3 as the least good design; the ASCPs for three-factor projections

from the OA(36, 13, 3, 2) are given in Table 5.5. However, the ASCP would rank class

36.3.1 as better than either class 36.3.5 or class 36.3.6. In fact, the ASCP ranks class

36.3.4 as better than class 36.3.6 as well. Thus, it appears that the rank ordering of

the poor designs is consistent between the ASCP and the estimation capacity criteria

but differs for the optimal designs. This pattern holds for both four- and five-factor

projection designs from the OA(36, 13, 3, 2).

Additional discussion of the estimation capacity of the various projection designs

is given in (Evangelaras et al. 2005b).
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CHAPTER 6

AVERAGE SQUARED CORRELATION FOR
QUANTITATIVE FACTORS

In Section 4.1, average squared correlations of order 3 (Equation (4.3)) and order 4

(Equation (4.4)) are defined for qualitative factors. These definitions are based on the

effect hierarchy (4.1) in which the order of the effect is defined by the number of factors

included in the effect and the two orthogonal contrasts for each main effect are treated

as equally important. In the case of quantitative factors, however, the two orthogonal

contrasts are specified as linear and quadratic contrasts and are meaningful; when

the factor levels possess a natural ordering as with quantitative factors, the existence

of a linear or quadratic effect can be important to identify. Also, the linear and

quadratic contrasts are not equally important as the linear trend is more likely than

the quadratic trend to be non-negligible. Therefore, the contrasts should be grouped

differently for quantitative factors than they were for qualitative factors, producing a

different effect hierarchy. If the order of the effect is defined as equal to the polynomial

degree of the effect contrasts, with a linear contrast having polynomial degree 1 and

a quadratic contrast having polynomial degree 2, the effect hierarchy is

l

� q == ll
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� lq == ql == lll

� qq == llq == lql == qll == llll

� lqq == qlq == qql == lllq == llql == lqll == qlll == lllll � . . . (6.1)

This effect hierarchy is the basis of the β wordlength pattern of Cheng and Ye (2004),

which will be described in Chapter 7 and which will be compared to the average

squared correlation criterion in Chapter 9.

The problem with the effect hierarchy (6.1) is that some correlations of order 3

are regarded as equally important as some correlations of order 4. For example, the

Al ×BlCq, Al ×BqCl, and Aq ×BlCl correlations of order 3 are included in the same

group with the AlBl × BlCl and AlCl × BlCl correlations of order 4. As a result, it

is not possible to differentiate the average squared correlations of order 3 from the

average squared correlations of order 4.

If both the number of factors and the polynomial degree of the contrasts are

considered to be important, the effect hierarchy (4.1) used for qualitative factors

(see Section 4.1) and the effect hierarchy (6.1) can be combined into a single effect

hierarchy. The resulting hierarchy ranks first by the number of factors included in the

effect and then by the polynomial order of the contrasts of the effect. The resulting

effect hierarchy is as follows

l � q

� ll � lq == ql � qq

� lll � llq == lql == qll � lqq == qlq == qql � qqq

� llll � lllq == . . . == qlll � llqq == . . . == qqll

� lqqq == . . . == qqql � qqqq � . . . (6.2)
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The effect hierarchy (6.2) was suggested by Cheng and Ye (2004) as an alternative to

(6.1), but was not examined by these researchers. The effect hierarchy (6.2) will be

the foundation for the ASCP for designs with quantitative factors.

6.1 Average Squared Correlations of Order 3 and Order 4

The average squared correlations of order 3 and order 4 are calculated from the

correlation matrix as defined in Equation (4.2) of Section 4.1. Based on the effect

hierarchy (6.2), the average squared correlations of order 3 (representing correlations

between a main effect and a two-factor interaction) are summarized into four values

representing polynomial orders 3, 4, 5, and 6. The set of four average squared corre-

lations for a main effect and a two-factor interactions are called the complete set of

average squared correlations of order 3. For example, for the A×BC interaction, the

complete set of average squared correlations of order 3 is

Ave ρ2
3,3(A,BC) = ρ2(Al, BlCl)

Ave ρ2
3,4(A,BC) =

1

3
[ρ2(Al, BlCq) + ρ2(Al, BqCl) + ρ2(Aq, BlCl)]

Ave ρ2
3,5(A,BC) =

1

3
[ρ2(Al, BqCq) + ρ2(Aq, BlCq) + ρ2(Aq, BqCl)]

Ave ρ2
3,6(A,BC) = ρ2(Aq, BqCq) (6.3)

For each average squared correlation, Ave ρ2
i,j , the subscript i represents the factorial

order (i = 3, 4) and the subscript j represents the polynomial degree of the corre-

lation (j = 3, 4, 5, 6, 7, 8). Similarly, the average squared correlations of order 4 are

summarized into five values representing polynomial orders 4, 5, 6, 7, and 8. The set

of five average squared correlations for a pair of two-factor interactions are called the

complete set of average squared correlations of order 4. For example, the complete
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set of average squared correlations of order 4 for the AB × CD interaction is

Ave ρ2
4,4(AB,CD) = ρ2(AlBl, ClDl)

Ave ρ2
4,5(AB,CD) =

1

4
[ρ2(AlBl, ClDq) + ρ2(AlBl, CqDl) + ρ2(AlBq, ClDl)

+ ρ2(AqBl, ClDl)]

Ave ρ2
4,6(AB,CD) =

1

6
[ρ2(AlBl, CqDq) + ρ2(AlBq, ClDq) + ρ2(AqBl, ClDq)

+ ρ2(AlBq, CqDl) + ρ2(AqBl, CqDl) + ρ2(AqBq, ClDl)]

Ave ρ2
4,7(AB,CD) =

1

4
[ρ2(AlBq, CqDq) + ρ2(AqBl, CqDq) + ρ2(AqBq, ClDq)

+ ρ2(AqBq, CqDl)]

Ave ρ2
4,8(AB,CD) = ρ2(AqBq, CqDq) (6.4)

where, again, the subscripts represent factorial order and polynomial degree. Thus,

each design is represented by sets of four average squared correlations of order 3 and

five average squared correlations of order 4.

While it is not assumed that the correlation matrix is symmetric, it is true that

the complete set of average squared correlations of order 3 for A with BC is the same

as the set of average squared correlations of order 3 for BC with A. This equivalence

is clear from (6.3), since

ρ2(Ai, BjCk) = ρ2(BjCk, Ai) (6.5)

so that, for example,

Ave ρ2
4(A,BC) =

1

3
[ρ2(Al, BlCq) + ρ2(Al, BqCl) + ρ2(Aq, BlCl)]

=
1

3
[ρ2(BlCq, Al) + ρ2(BqCl, Al) + ρ2(BlCl, Aq)]

= Ave ρ2
4(BC,A) (6.6)
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For the same reason, from (6.4) it follows that the complete set of average squared

correlations of order 4 for AB with CD is the same as the complete set of average

squared correlations of order 4 for CD with AB. Therefore, only one of each of these

pairs needs to be included in the average squared correlation pattern.

6.1.1 Average Squared Correlation Pattern for Designs with
Quantitative Factors

The ASCP defined in Section 4.1.1 can be extended for designs with quantitative

factors. For designs with quantitative factors, the ASCP is based on the values of the

average squared correlations of order 3 and order 4 and the number of each distinct

value.

The correlation between any main effect contrast for a factor and any contrast for

a two-factor interaction involving that factor is equal to zero and such complete sets

of average squared correlations of order 3 do not need to be included in the ASCP. For

designs with quantitative factors, the numbers of complete sets of average squared

correlations of order 3 and of order 4 are the same as the corresponding numbers of

average squared correlations for designs with qualitative factors. (See Section 4.1 for

details.)

The distinct, non-zero complete sets of average squared correlations of order 3 and

order 4 are summarized into the ASCP. The ASCP is a two-row array,

Ave ρ2
3,3(1) Ave ρ2

3,3(2) . . . Ave ρ2
3,3(k3) Ave ρ2

3,4(1) Ave ρ2
3,4(2) . . . Ave ρ2

3,4(k4)

r3,3(1) r3,3(2) . . . r3,3(k3) r3,4(1) r3,4(2) . . . r3,4(k4)

Ave ρ2
3,5(1) Ave ρ2

3,5(2) . . . Ave ρ2
3,5(k5) Ave ρ2

3,6(1) Ave ρ2
3,6(2) . . . Ave ρ2

3,6(k6)

r3,5(1) r3,5(2) . . . r3,5(k5) r3,6(1) r3,6(2) . . . r3,6(k6)
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Ave ρ2
4,4(1) Ave ρ2

4,4(2) . . . Ave ρ2
4,4(m4) Ave ρ2

4,5(1) Ave ρ2
4,5(2) . . . Ave ρ2

4,5(m5)

r4,4(1) r4,4(2) . . . r4,4(m4) r4,5(1) r4,5(2) . . . r4,5(m5)

Ave ρ2
4,6(1) Ave ρ2

4,6(2) . . . Ave ρ2
4,6(m6) Ave ρ2

4,7(1) Ave ρ2
4,7(2) . . . Ave ρ2

4,7(m7)

r4,6(1) r4,6(2) . . . r4,6(m6) r4,7(1) r4,7(2) . . . r4,7(m7)

Ave ρ2
4,8(1) Ave ρ2

4,8(2) . . . Ave ρ2
4,8(m8)

r4,8(1) r4,8(2) . . . r4,8(m8)
(6.7)

where

Ave ρ2
3,i(1) < Ave ρ2

3,i(2) < . . . < Ave ρ2
3,i(ki)

,

for i = 3, 4, 5, 6,

Ave ρ2
4,j(1) < Ave ρ2

4,j(2) < . . . < Ave ρ2
4,j(mj)

,

for j = 4, 5, 6, 7, 8,

ri,j(n) is the number of Ave ρ2
i,j = Ave ρ2

i,j(n),

ki is the number of distinct values of Ave ρ2
3,i, and mj is the number of distinct values

of Ave ρ2
4,j.

The conditions for use of the average squared correlation criterion discussed in

Section 4.4 for designs with qualitative factors also apply to designs with quantitative

factors.

6.2 Example: Calculation of Average Squared Correlations
of Order 3 and Order 4

Consider the OA(18, 7, 3, 2) presented in Table A.1. Suppose, as an example, we

select the projection formed by the first, second, third, and seventh columns of the

array, and label the columns A, B, C, and D, respectively. This is the same example
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considered in Section 4.2 and will utilize many of the same tables. The design is given

in Table 4.1, and corresponding contrasts and correlation matrices in Tables 4.2 and

4.3.

From the complete correlation matrix, the correlation matrix for the A × BC

interaction can be extracted as in the the Example 4.2; that is:

Al Aq BlCl BlCq BqCl BqCq

Al 1.0000 0.0000 −0.3062 0.1768 0.1768 0.3062
Aq 0.0000 1.0000 0.1768 0.3062 0.3062 −0.1768

BlCl −0.3062 0.1768 1.0000 0.0000 0.0000 0.0000
BlCq 0.1768 0.3062 0.0000 1.0000 0.0000 0.0000
BqCl 0.1768 0.3062 0.0000 0.0000 1.0000 0.0000
BqCq 0.3062 −0.1768 0.0000 0.0000 0.0000 1.0000

Treating the factors as quantitative, the complete set of average squared correla-

tions of order 3 for the A × BC interaction is computed as

Ave ρ2
3,3(A,BC) = ρ2(Al, BlCl)

= (−0.3062)2

= 0.0938

Ave ρ2
3,4(A,BC) =

1

3

[
ρ2(Al, BlCq) + ρ2(Al, BqCl) + ρ2(Aq, BlCl)

]

=
1

3

[
0.17682 + 0.17682 + 0.17682

]

= 0.0312

Ave ρ2
3,5(A,BC) =

1

3

[
ρ2(Al, BqCq) + ρ2(Aq, BlCq) + ρ2(Aq, BqCl)

]

=
1

3

[
0.30622 + 0.30622 + 0.30622

]

= 0.0938

Ave ρ2
3,6(A,BC) = ρ2(Aq, BqCq)

= (−0.1768)2

= 0.0312
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By similar calculations, the complete set of average squared correlations of order 3

for A with BD is

Ave ρ2
3,3(A,BD) = 0.000

Ave ρ2
3,4(A,BD) = 0.1667

Ave ρ2
3,5(A,BD) = 0.000

Ave ρ2
3,6(A,BD) = 0.5000

The complete set of average squared correlations of order 3 for A with CD is

Ave ρ2
3,3(A,CD) = 0.0938

Ave ρ2
3,4(A,CD) = 0.0312

Ave ρ2
3,5(A,CD) = 0.0938

Ave ρ2
3,6(A,CD) = 0.0312

The complete sets of average squared correlations of order 3 for the B, C, and D

main effects are calculated similarly.

Next, the correlation matrix for the AB × AC interaction can be extracted:

AlBl AlBq AqBl AqBq AlCl AlCq AqCl AqCq

AlBl 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 −0.2165 0.1250
AlBq 0.0000 1.0000 0.0000 0.0000 0.2165 −0.1250 0.1250 0.2165
AqBl 0.0000 0.0000 1.0000 0.0000 −0.2165 0.1250 −0.1250 −0.2165
AqBq 0.0000 0.0000 0.0000 1.0000 0.1250 0.2165 −0.2165 0.1250
AlCl 0.1250 0.2165 −0.2165 0.1250 1.0000 0.0000 0.0000 0.0000
AlCq 0.2165 −0.1250 0.1250 0.2165 0.0000 1.0000 0.0000 0.0000
AqCl −0.2165 0.1250 −0.1250 −0.2165 0.0000 0.0000 1.0000 0.0000
AqCq 0.1250 0.2165 −0.2165 0.1250 0.0000 0.0000 0.0000 1.0000

The complete set of average squared correlations of order 4 for the AB × AC inter-

action is computed as

Ave ρ2
4,4(AB,AC) = ρ2(AlBl, AlCl)
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= 0.12502

= 0.0156

Ave ρ2
4,5(AB,AC) =

1

4

[
ρ2(AlBl, AlCq) + ρ2(AlBl, AqCl) + ρ2(AlBq, AlCl)

+ ρ2(AqBl, AlCl)
]

=
1

4

[
0.21652 + (−0.2165)2 + 0.21652 + (−0.2165)2

]

= 0.0469

Ave ρ2
4,6(AB,AC) =

1

6

[
ρ2(AlBl, AqCq) + ρ2(AlBq, AlCq) + ρ2(AqBl, AlCq)

+ ρ2(AlBq, AqCl) + ρ2(AqBl, AqCl) + ρ2(AqBq, AlCl)
]

=
1

6

[
0.12502 + (−0.1250)2 + 0.12502 + 0.12502

+ (−0.1250)2 + 0.12502
]

= 0.0156

Ave ρ2
4,7(AB,AC) =

1

4

[
ρ2(AlBq, AqCq) + ρ2(AqBl, AqCq) + ρ2(AqBq, AlCq)

+ ρ2(AqBq, AqCl)
]

=
1

4

[
0.21652 + (−0.2165)2 + 0.21652 + (−0.2165)2

]

= 0.0469

Ave ρ2
4,8(AB,AC) = ρ2(AqBq, AqCq)

= 0.12502

= 0.0156

By similar calculations, the complete set of average squared correlations of order 4

for AB with AD is

Ave ρ2
4,4(AB,AD) = 0.0000

Ave ρ2
4,5(AB,AD) = 0.0000
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Ave ρ2
4,6(AB,AD) = 0.1250

Ave ρ2
4,7(AB,AD) = 0.0000

Ave ρ2
4,8(AB,AD) = 0.2500

The complete set of average squared correlations of order 4 for AB with BC is

Ave ρ2
4,4(AB,BC) = 0.0156

Ave ρ2
4,5(AB,BC) = 0.0469

Ave ρ2
4,6(AB,BC) = 0.0156

Ave ρ2
4,7(AB,BC) = 0.0469

Ave ρ2
4,8(AB,BC) = 0.0156

For AB with BD, the complete set of average squared correlations of order 4 is

Ave ρ2
4,4(AB,BD) = 0.0000

Ave ρ2
4,5(AB,BD) = 0.0000

Ave ρ2
4,6(AB,BD) = 0.1250

Ave ρ2
4,7(AB,BD) = 0.0000

Ave ρ2
4,8(AB,BD) = 0.2500

Finally, the complete set of average squared correlations of order 4 for AB with CD

is

Ave ρ2
4,4(AB,CD) = 0.0625

Ave ρ2
4,5(AB,CD) = 0.1406

Ave ρ2
4,6(AB,CD) = 0.0312

Ave ρ2
4,7(AB,CD) = 0.0469
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Number of Number of Number of Number of
Ave (ρ2

3,3) Ave (ρ2
3,4) Ave (ρ2

3,5) Ave (ρ2
3,6)

Projection 0.0000 0.0938 0.0000 0.0312 0.1667 0.0000 0.0938 0.0000 0.0312 0.5000
(1,2,3,7) 15 9 12 9 3 15 9 12 9 3

Number of Number of
Ave (ρ2

4,4) Ave (ρ2
4,5)

Projection 0.0000 0.0156 0.0625 0.2500 0.0000 0.0469 0.1406
(1,2,3,7) 2 9 3 1 3 9 3

Number of Number of Number of
Ave (ρ2

4,6) Ave (ρ2
4,4) Ave (ρ2

4,5)

Projection 0.0156 0.0312 0.0833 0.1250 0.0000 0.0469 0.0000 0.0156 0.2500
(1,2,3,7) 9 3 1 2 3 12 3 9 3

Table 6.1: ASCP for design in Table 4.1 treating factors as quantitative and using
the standard linear and quadratic contrasts

Ave ρ2
4,8(AB,CD) = 0.0000

The complete sets of average squared correlations of order 4 for the other pairs of

two-factor interactions are calculated in a similar way.

The distinct values of Ave (ρ2
3,3), Ave (ρ2

3,4), Ave (ρ2
3,5), Ave (ρ2

3,6), Ave (ρ2
4,4),

Ave (ρ2
4,5), Ave (ρ2

4,6), Ave (ρ2
4,7), and Ave (ρ2

4,8) and the number of each distinct value

can be indexed to form the ASCP and used to describe a property of the projection

of the OA(18, 7, 3, 2) onto these four columns. For this example, the ASCP is given

in Table 6.1, where for ease of presentation the ASCP is divided into the complete

sets of average squared correlations of 3 and the complete sets of average squared

correlations of order 4.

A complete set of average squared correlations of order 3 and a complete set of

average squared correlations of order 4 can be computed to describe every possible

projection design of the OA(18, 7, 3, 2) in Table A.1. The ASCP of order 3 for all

geometrically inequivalent three-, four-, and five-factor projections are given in Ta-

ble 6.2; Table 6.3 gives the average squared correlations of order 4. Representatives of
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Number of Number of
Ave (ρ2

3,3) Ave (ρ2
3,4)

Class 0.0000 0.0938 0.0000 0.0312 0.1667 0.1979 0.5000
18.3.1 6 3 6 3 0 0 0
18.3.2 9 0 6 0 3 0 0
18.3.3 9 0 6 0 0 0 3
18.3.4 6 3 6 0 0 3 0
18.4.1 15 9 12 9 3 0 0
18.4.2 15 9 12 9 0 0 3
18.4.3 12 12 12 12 0 0 0
18.4.4 12 12 12 9 0 3 0
18.4.5 15 9 12 3 3 6 0
18.5.1 26 24 20 24 3 0 3
18.5.2 23 27 20 21 3 6 0
18.5.3 23 27 20 24 0 3 3
18.5.4 20 30 20 30 0 0 0
18.5.5 26 24 20 12 6 12 0

Number of Number of
Ave (ρ2

3,5) Ave (ρ2
3,6)

Class 0.0000 0.0938 0.0000 0.0312 0.5000
18.3.1 6 3 6 3 0
18.3.2 9 0 6 0 3
18.3.3 9 0 6 0 3
18.3.4 6 3 6 3 0
18.4.1 15 9 12 9 3
18.4.2 15 9 12 9 3
18.4.3 12 12 12 12 0
18.4.4 12 12 12 12 0
18.4.5 15 9 12 9 3
18.5.1 26 24 20 24 6
18.5.2 23 27 20 27 3
18.5.3 23 27 20 27 3
18.5.4 20 30 20 30 0
18.5.5 26 24 20 24 6

Table 6.2: Average squared correlations of order 3 values for the geometrically inequiv-
alent three-factor , four-factor, and five-factor projection designs from OA(18, 7, 3, 2)

each geometrically inequivalent design class are taken from Evangelaras, Kolaiti and

Koukouvinos (2005a). The ASCPs presented are used to rank order the projection

designs in Chapter 9.
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Number of Number of
Ave (ρ2

4,4) Ave (ρ2
4,5)

Class 0.0000 0.0156 0.0625 0.1406 0.2500 0.0000 0.0469 0.1406
18.3.1 0 3 0 0 0 0 3 0
18.3.2 2 0 0 0 1 3 0 0
18.3.3 0 0 0 0 3 3 0 0
18.3.4 0 1 0 2 0 0 3 0
18.4.1 2 9 3 0 1 3 9 3
18.4.2 3 9 0 0 3 6 9 0
18.4.3 0 12 0 3 0 0 15 0
18.4.4 0 13 0 2 0 0 15 0
18.4.5 5 5 0 4 1 6 9 0
18.5.1 8 24 6 3 4 12 27 6
18.5.2 5 29 3 7 1 6 36 3
18.5.3 6 31 0 5 3 9 36 0
18.5.4 0 30 0 15 0 0 45 0
18.5.5 16 16 0 11 2 18 27 0

Number of
Ave (ρ2

4,6)

Class 0.0000 0.0156 0.0312 0.0781 0.0833 0.0990 0.1250 0.1406 0.2500
18.3.1 0 3 0 0 0 0 0 0 0
18.3.2 0 0 0 0 1 0 2 0 0
18.3.3 0 0 0 0 0 0 0 0 3
18.3.4 0 0 0 2 0 1 0 0 0
18.4.1 0 9 3 0 1 0 2 0 0
18.4.2 3 9 0 0 0 0 0 0 3
18.4.3 0 12 0 0 0 0 0 3 0
18.4.4 0 9 0 5 0 1 0 0 0
18.4.5 3 3 0 4 1 2 2 0 0
18.5.1 6 24 6 0 1 0 2 3 3
18.5.2 3 21 3 10 1 2 2 3 0
18.5.3 6 24 0 8 0 1 0 3 3
18.5.4 0 30 0 0 0 0 0 15 0
18.5.5 12 12 0 8 2 4 4 3 0

Number of Number of
Ave (ρ2

4,7) Ave (ρ2
4,8)

Class 0.0000 0.0469 0.0000 0.0156 0.1406 0.2500
18.3.1 0 3 0 3 0 0
18.3.2 3 0 0 0 0 3
18.3.3 3 0 0 0 0 3
18.3.4 0 3 0 3 0 0
18.4.1 3 12 3 9 0 3
18.4.2 6 9 3 9 0 3
18.4.3 0 15 0 12 3 0
18.4.4 0 15 0 12 3 0
18.4.5 6 9 3 9 0 3
18.5.1 12 33 12 24 3 6
18.5.2 6 39 6 27 9 3
18.5.3 9 36 6 27 9 3
18.5.4 0 45 0 30 15 0
18.5.5 18 27 12 24 3 6

Table 6.3: Average squared correlations of order 4 values for the geometrically inequiv-
alent three-factor , four-factor, and five-factor projection designs from OA(18, 7, 3, 2)
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6.3 Non-Independence from Choice of Orthogonal Contrast
Set

In Section 4.3, Theorem 4.3.1 shows that, for qualitative factors, the averaged

squared correlation of order 3 and average squared correlation of order 4 are indepen-

dent of the choice of the complete set of orthogonal contrasts. This theorem results

from the fact that the sum ρ2(CA,CB) = trace(CB
′CACA

′CB) (Lemma 4.3.2) and

that trace(CB
′CACA

′CB) is constant for orthogonal rotations of A and B. In the

case of quantitative factors, the average squared correlations are not single values

averaged over all contrast pairs for a main effect and two-factor interaction or pair

of two-factor interactions. As a result, neither the complete set of average squared

correlations of order 3 nor the complete set of average squared correlations of order

4 is equal to trace(CB
′CACA

′CB). Thus, Theorem 4.3.1 does not apply to designs

with quantitative factors.

Though the average squared correlations of order 3 and order 4, and as a result the

ASCPs, are dependent upon the choice of the complete set of orthogonal contrasts,

only the standard linear and quadratic contrasts ((2.1) and (2.2), respectively) will

be examined in Chapter 9 for ranking. Because the linear and quadratic contrasts

possess a physical interpretation for quantitative factors and are commonly used in

applications, these contrasts are used in this work.
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CHAPTER 7

COMPETING METHODS FOR RANKING AND
NON-EQUIVALENCE OF DESIGNS WITH

QUANTITATIVE FACTORS

The distinction between combinatorially isomorphic and geometrically isomorphic

designs has not always been prominent. While numerous methods (Ma and Fang

2001, Xu and Wu 2001, Evangelaras et al. 2005b) have been proposed for ranking

and determining non-equivalence of two designs with respect to qualitative factors,

fewer methods have been considered for examination of designs with quantitative

factors. This chapter provides a brief review of some of the methods for ranking

determining geometric non-equivalence.

Cheng and Wu (2001) examined the special case of evaluating projection designs,

though the projection-efficiency criteria they proposed can be used to evaluate gen-

eral designs as well. The projection-efficiency criteria provide two components for

evaluating and ranking designs (Cheng and Wu 2001). The broader criterion is called

eligible projection. A projection design is called eligible if it is a second order design;

a design is a second order design if all (n+1)(n+2)/2 parameters of the second-order

model y = µ+
∑n

i=1 βixi +
∑n

i=1 βiix
2
i +

∑n
1=i<j βijxixj + ε are estimable in the design.

Eligible designs are preferred to ineligible designs, and a design with more eligible
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projections is ranked as better than a design with fewer eligible projections. Also,

eligible projections onto smaller numbers of factors are more important than eligi-

ble projections onto larger numbers of factors based on the factor sparsity principle.

Within the set of eligible projection designs, D- and G- efficiencies can be used to

rank design classes, with designs having higher estimation efficiency ranked as better.

A design is D-optimal if the design minimizes volume of the confidence ellipsoid for all

possible contrasts (i.e. minimizes the generalized variance of the parameter estimates

based on a pre-selected model); a design that minimizes the maximum prediction

variance is G-optimal (Kiefer 1974, Silvey 1980). Cheng and Wu (2001) utilized a

complete computer search to identify the classes of both combinatorially isomorphic

and model isomorphic designs (see Section 2.5 for definitions) from several regular

and non-regular designs. Every identified model non-isomorphic class of designs is

evaluated using the projection-efficiency criteria.

Tsai, Gilmour and Mead (2000) proposed an evaluation criterion, denoted by

Q(Γ(p)), that is an approximation to the average As-efficiency criterion; averaging

A-efficiency over multiple models was first suggested by Wu (1993). A design is A-

optimal if the design minimizes the average variance of the parameter estimates based

on a pre-selected model (Kiefer 1974). If a design minimizes the average variance of

the parameter estimates over a model including only a subset of the parameters of

the maximal model, then the design is As-optimal.

The goal of the criterion Q(Γ(p)) is to identify designs that have many efficient

projections onto multiple lower-dimensional designs. In order to identify designs with

projections that are efficient for estimation over a wide range of models and not just

for main effects models, the proposed Q(Γ(p)) criterion averages the As-efficiency over
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all eligible models whose number of parameters is not greater than the number of

runs and which include the marginal terms of all terms. (For example, if a model

includes x1x2, then the model also includes x1 and x2.) The overall design criterion

Q(Γ(p)) is the average of the sums of the approximate variances of the parameter

estimates in each model (i.e. the As efficiencies) over all estimable models from the

design. Smaller values of Q(Γ(p)) indicate better effect estimation over a wide range

of possible models. To compare designs with respect to projections, Q(Γ(p)) can be

averaged over all possible k-factor projections for a given number of factors, k. Then

smaller values of Ave Q(Γ(p)) indicate a larger number of k-factor projections which

are more efficient over a wide range of possible models.

Both the projection-efficiency criteria of Cheng and Wu (2001) and the Q(Γ(p))

criterion of Tsai et al. (2000) were developed for rank ordering designs, with non-

equivalence determined when two designs are ranked individually. In contrast, Cheng

and Ye (2004) developed the indicator function to determine equivalence of designs

and then provide secondary criteria, the α and β wordlength patterns, for rank or-

dering.

Viewing the design as a set of points in IRp, the geometric structure of the design is

unique and can be uniquely represented in polynomial form by its indicator function.

The use of polynomial systems to characterize designs was first proposed by Pistone

and Wynn (1996). Using polynomial systems to describe designs, algebraic geometry

methods were used to study the properties of the designs. Fontana, Pistone and

Rogantin (2000) developed the use of indicator functions for study of the design

properties of two-level unreplicated fractional factorial designs; Ye (2003) extended

the definition to include replicated designs. Use of the indicator function to determine
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equivalence of designs was extended to general factorial designs by Cheng and Ye

(2004).

As described by Cheng and Ye (2004), for a design D with p factors, the indicator

function FD(x) is defined as the number of times the design point x appears in D.

(A design point x is a specific combination of factor levels to be run.) Alternatively,

the indicator function FD(x) can be expressed as a polynomial expansion of a set

of orthogonal contrasts that define each factor. For a factor i with ki levels, define

a complete set of orthogonal contrasts (C i
0(x), C i

1(x), . . . , C i
ki−1(x)) such that, for all

u, v = 0, 1, . . . , ki − 1,

∑

x∈{0,1,...,si−1}
C i

u(x)C i
v(x) =

{
0, if u 6= v,
ki, if u = v,

(7.1)

where the superscript i represents which factor the contrasts measure. From the

complete set of orthogonal contrasts, define a statistical orthonormal contrast basis

(SOCB) for the design space of D to be

Ct(x) =
p∏

i=1

C i
ti
(xi), (7.2)

where C i
0(x) = 1 for all i (i.e. for all factors). When C i

j(x) is a polynomial of degree

j for j = 0, 1, . . . , ki − 1 and i = 1, 2, . . . , p then the SOCB is called an orthogonal

polynomial basis (OPB) (see Draper and Smith (1998), Chapter 22).

The polynomial expansion of the indicator function, FD(x), is

FD(x) =
∑

t∈T
btCt(x) (7.3)

where T = G1 × G2 × . . . × Gp for Gi = (0, 1, . . . , ki − 1) ⊂ IR and the coefficients, bt,

of FD(x) are defined as

bt =
1

N

∑

x∈D

Ct(x) (7.4)
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(Cheng and Ye 2004). For an SOCB, b0 = n/N , where n is the number of design

points (runs) in D and N is the number of design points (runs) in the full factorial

design containing D. In their work, Cheng and Ye (2004) placed no restrictions on

the number of design points in D and allowed for replicate runs.

The unique coefficients of the indicator function, FD(x), provide information about

the aliasing of factors. Theorem 7.1 describes the relationship between the indicator

function coefficient and the correlation between contrasts.

Theorem 7.1 (Cheng and Ye (2004), Corollary 2.2) Let {Ct(x), t ∈ T } be an

SOCB. For disjoint Cu and Cv,

bu+v =
1

N

∑

x∈D

Cu(x)Cv(x). (7.5)

Furthermore, the correlation of Cu and Cv in D is bu+v/b0.

Cheng and Ye (2004) claim that this corollary follows directly from (7.2) and (7.4).

However, this interpretation of ratios of the indicator function coefficients as correla-

tions is not always correct. A discussion of this issue and an example are presented

in Section 7.2. When the interpretation of the ratio of indicator function coefficients

as correlations is correct, there exists a direct link between the indicator function

of Cheng and Ye (2004) and the average squared correlation criterion developed in

this work; the relationship between these two criteria will be described in detail in

Chapter 8.

The indicator function was developed specifically for the purpose of determining

whether two designs are geometrically equivalent. Cheng and Ye (2004) provide

the necessary and sufficient condition for geometric isomorphism using the indicator

function.
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Cheng and Ye (2004) construct two different wordlength patterns from the indica-

tor function coefficients for the purpose of rank ordering designs. The α wordlength

pattern is a redefinition of the GWP of Xu and Wu (2001) defined in Section 5.1.

As with the GWP, the α wordlength pattern is appropriate for use with qualitative

factors. The β wordlength pattern is based on the effect hierarchy (6.1), and is used

with quantitative factors. The α and β wordlength patterns will be described in more

detail in Section 8.2. Like the indicator function itself, there is a link between the α

and β wordlength patterns and the average squared correlation criterion that will be

discussed in Section 8.2.

7.2 Counterexample to the Interpretation of Indicator Func-
tion Coefficients as Correlations

Theorem 7.1 (Cheng and Ye (2004), Corollary 2.2) states that, for disjoint Cu and

Cv, the correlation of contrasts Cu and Cv is equal to bu+v/b0:

ρ(Cu, Cv) = bu+v/b0. (7.6)

The contrasts Cu and Cv are disjoint if the elements in the positions of v correspond-

ing to the positions of non-zero elements of u are equal to zero. For example, if

u = 0111, then Cu and Cv are disjoint if v = i000 for some i = 1, 2, . . . , k − 1, where

k is the number of levels of the first factor in the design. In particular, Cheng and

Ye (2004) interpret bt/b0 as the correlation between the contrast Ct and the overall

mean, represented by C0. In this section, a counterexample will be provided in which

the bu+v/b0 is not equal to the correlation between contrasts Cu and Cv.

Since the indicator function necessarily requires contrasts to be scaled so that

they satisfy the constraint (7.1), the linear and quadratic contrasts, (2.1) and (2.2),
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must be re-scaled. The linear contrasts (7.7) is scaled by a factor of
√

3/2 and the

quadratic contrast (7.8) is scaled by a factor of 1
√

2; the scaled linear and quadratic

contrasts are given by Cheng and Ye (2004)

ls =




−
√

3/2

0√
3/2


 (7.7)

and

qs =




1/
√

2

−
√

2

1/
√

2


 . (7.8)

In addition to these two contrasts, a constant vector, C0(x) = 1 is required for the

indicator function calculations.

Consider the design given in Table 7.1. Table 7.2 gives the contrast correlation

matrix based on contrasts (7.7) and (7.8).
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A B C D
1 1 1 1
2 2 2 2
0 0 0 0
1 1 2 0
2 2 0 1
0 0 1 2
1 2 1 0
2 0 2 1
0 1 0 2
1 0 0 1
2 1 1 2
0 2 2 0
1 2 0 2
2 0 1 0
0 1 2 1
1 0 2 2
2 1 0 0
0 2 1 1

Table 7.1: Design used to illustrate relationship between indicator function coefficients
and average squared correlations
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C1000 C2000 C0100 C0200 C0010 C0020 C0001 C0002

Al Aq Bl Bq Cl Cq Dl Dq

Al 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aq 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Bl 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Bq 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Cl 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
Cq 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
Dl 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
Dq 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

AlBl 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.3062 0.1768
AlBq 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.1768 -0.3062
AqBl 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.1768 -0.3062
AqBq 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768 -0.3062 -0.1768

AlCl 0.0000 0.0000 -0.3062 0.1768 0.0000 0.0000 0.3062 0.1768
AlCq 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000 0.1768 -0.3062
AqCl 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000 0.1768 -0.3062
AqCq 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000 -0.3062 -0.1768

AlDl 0.0000 0.0000 0.3062 0.1768 0.3062 0.1768 0.0000 0.0000
AlDq 0.0000 0.0000 0.1768 -0.3062 0.1768 -0.3062 0.0000 0.0000
AqDl 0.0000 0.0000 0.1768 -0.3062 0.1768 -0.3062 0.0000 0.0000
AqDq 0.0000 0.0000 -0.3062 -0.1768 -0.3062 -0.1768 0.0000 0.0000

BlCl -0.3062 0.1768 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768
BlCq 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062
BqCl 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062
BqCq 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 0.3062 -0.1768

BlDl 0.3062 0.1768 0.0000 0.0000 -0.3062 0.1768 0.0000 0.0000
BlDq 0.1768 -0.3062 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
BqDl 0.1768 -0.3062 0.0000 0.0000 0.1768 0.3062 0.0000 0.0000
BqDq -0.3062 -0.1768 0.0000 0.0000 0.3062 -0.1768 0.0000 0.0000

ClDl 0.3062 0.1768 -0.3062 0.1768 0.0000 0.0000 0.0000 0.0000
ClDq 0.1768 -0.3062 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
CqDl 0.1768 -0.3062 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
CqDq -0.3062 -0.1768 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000

Continued

Table 7.2: Complete correlation matrix based on contrasts (7.7) and (7.8) for example design in Table 7.1
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Table 7.2 Continued

C1100 C1200 C2100 C2200 C1010 C1020 C2010 C2020 C1001 C1002 C2001 C2002

AlBl AlBq AqBl AqBq AlCl AlCq AqCl AqCq AlDl AlDq AqDl AqDq

Al 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Aq 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Bl 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.1768 0.3062 0.3062 0.1768 0.1768 -0.3062
Bq 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.3062 -0.1768 0.1768 -0.3062 -0.3062 -0.1768
Cl -0.3062 0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.3062 0.1768 0.1768 -0.3062
Cq 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 0.1768 -0.3062 -0.3062 -0.1768
Dl 0.3062 0.1768 0.1768 -0.3062 0.3062 0.1768 0.1768 -0.3062 0.0000 0.0000 0.0000 0.0000
Dq 0.1768 -0.3062 -0.3062 -0.1768 0.1768 -0.3062 -0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000

AlBl 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 -0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250
AlBq 0.0000 1.0000 0.0000 0.0000 0.2165 -0.1250 0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165
AqBl 0.0000 0.0000 1.0000 0.0000 -0.2165 0.1250 -0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165
AqBq 0.0000 0.0000 0.0000 1.0000 0.1250 0.2165 -0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250

AlCl 0.1250 0.2165 -0.2165 0.1250 1.0000 0.0000 0.0000 0.0000 0.1250 -0.2165 0.2165 0.1250
AlCq 0.2165 -0.1250 0.1250 0.2165 0.0000 1.0000 0.0000 0.0000 -0.2165 -0.1250 0.1250 -0.2165
AqCl -0.2165 0.1250 -0.1250 -0.2165 0.0000 0.0000 1.0000 0.0000 0.2165 0.1250 -0.1250 0.2165
AqCq 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 1.0000 0.1250 -0.2165 0.2165 0.1250

AlDl 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 1.0000 0.0000 0.0000 0.0000
AlDq -0.2165 -0.1250 0.1250 -0.2165 -0.2165 -0.1250 0.1250 -0.2165 0.0000 1.0000 0.0000 0.0000
AqDl 0.2165 0.1250 -0.1250 0.2165 0.2165 0.1250 -0.1250 0.2165 0.0000 0.0000 1.0000 0.0000
AqDq 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.0000 0.0000 0.0000 1.0000

BlCl 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.3750 0.2165 0.2165 0.6250
BlCq 0.2165 0.1250 -0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165 -0.2165 -0.1250 -0.1250 0.2165
BqCl -0.2165 -0.1250 0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 -0.2165 -0.1250 -0.1250 0.2165
BqCq 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.6250 -0.2165 -0.2165 0.3750

BlDl 0.1250 0.2165 -0.2165 0.1250 0.3750 -0.2165 0.2165 -0.1250 0.1250 0.2165 -0.2165 0.1250
BlDq -0.2165 0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.6250 0.2165 0.2165 -0.1250 0.1250 0.2165
BqDl 0.2165 -0.1250 0.1250 0.2165 -0.2165 0.6250 -0.1250 -0.2165 -0.2165 0.1250 -0.1250 -0.2165
BqDq 0.1250 0.2165 -0.2165 0.1250 -0.1250 -0.2165 0.2165 0.3750 0.1250 0.2165 -0.2165 0.1250

ClDl 0.3750 -0.2165 0.2165 -0.1250 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250
ClDq 0.2165 -0.1250 0.6250 0.2165 -0.2165 0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165
CqDl -0.2165 0.6250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165 -0.2165 0.1250 -0.1250 -0.2165
CqDq -0.1250 -0.2165 0.2165 0.3750 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250

Continued
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Table 7.2 Continued

C0110 C0120 C0210 C0220 C0101 C0102 C0201 C0202 C0011 C0012 C0021 C0022

BlCl BlCq BqCl BqCq BlDl BlDq BqDl BqDq ClDl ClDq CqDl CqDq

Al -0.3062 0.1768 0.1768 0.3062 0.3062 0.1768 0.1768 -0.3062 0.3062 0.1768 0.1768 -0.3062
Aq 0.1768 0.3062 0.3062 -0.1768 0.1768 -0.3062 -0.3062 -0.1768 0.1768 -0.3062 -0.3062 -0.1768
Bl 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.1768 0.3062
Bq 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.3062 -0.1768
Cl 0.0000 0.0000 0.0000 0.0000 -0.3062 0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000
Cq 0.0000 0.0000 0.0000 0.0000 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000
Dl -0.3062 0.1768 0.1768 0.3062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Dq 0.1768 0.3062 0.3062 -0.1768 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AlBl 0.1250 0.2165 -0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.3750 0.2165 -0.2165 -0.1250
AlBq -0.2165 0.1250 -0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 -0.2165 -0.1250 0.6250 -0.2165
AqBl 0.2165 -0.1250 0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165 0.2165 0.6250 -0.1250 0.2165
AqBq 0.1250 0.2165 -0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 -0.2165 0.3750

AlCl 0.1250 -0.2165 0.2165 0.1250 0.3750 0.2165 -0.2165 -0.1250 0.1250 -0.2165 0.2165 0.1250
AlCq -0.2165 -0.1250 0.1250 -0.2165 -0.2165 -0.1250 0.6250 -0.2165 0.2165 0.1250 -0.1250 0.2165
AqCl 0.2165 0.1250 -0.1250 0.2165 0.2165 0.6250 -0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165
AqCq 0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 -0.2165 0.3750 0.1250 -0.2165 0.2165 0.1250

AlDl 0.3750 -0.2165 -0.2165 0.6250 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250
AlDq 0.2165 -0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165 0.2165 -0.1250 0.1250 0.2165
AqDl 0.2165 -0.1250 -0.1250 -0.2165 -0.2165 0.1250 -0.1250 -0.2165 -0.2165 0.1250 -0.1250 -0.2165
AqDq 0.6250 0.2165 0.2165 0.3750 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250

BlCl 1.0000 0.0000 0.0000 0.0000 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250
BlCq 0.0000 1.0000 0.0000 0.0000 0.2165 -0.1250 0.1250 0.2165 -0.2165 0.1250 -0.1250 -0.2165
BqCl 0.0000 0.0000 1.0000 0.0000 -0.2165 0.1250 -0.1250 -0.2165 0.2165 -0.1250 0.1250 0.2165
BqCq 0.0000 0.0000 0.0000 1.0000 0.1250 0.2165 -0.2165 0.1250 0.1250 0.2165 -0.2165 0.1250

BlDl 0.1250 0.2165 -0.2165 0.1250 1.0000 0.0000 0.0000 0.0000 0.1250 -0.2165 0.2165 0.1250
BlDq 0.2165 -0.1250 0.1250 0.2165 0.0000 1.0000 0.0000 0.0000 -0.2165 -0.1250 0.1250 -0.2165
BqDl -0.2165 0.1250 -0.1250 -0.2165 0.0000 0.0000 1.0000 0.0000 0.2165 0.1250 -0.1250 0.2165
BqDq 0.1250 0.2165 -0.2165 0.1250 0.0000 0.0000 0.0000 1.0000 0.1250 -0.2165 0.2165 0.1250

ClDl 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 1.0000 0.0000 0.0000 0.0000
ClDq 0.2165 0.1250 -0.1250 0.2165 -0.2165 -0.1250 0.1250 -0.2165 0.0000 1.0000 0.0000 0.0000
CqDl -0.2165 -0.1250 0.1250 -0.2165 0.2165 0.1250 -0.1250 0.2165 0.0000 0.0000 1.0000 0.0000
CqDq 0.1250 -0.2165 0.2165 0.1250 0.1250 -0.2165 0.2165 0.1250 0.0000 0.0000 0.0000 1.0000
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b0000 = 0.2222 b1000 = 0.0000 b2000 = 0.0000
b0001 = 0.0000 b1001 = 0.0000 b2001 = 0.0000
b0002 = 0.0000 b1002 = 0.0000 b2002 = 0.0000
b0010 = 0.0000 b1010 = 0.0000 b2010 = 0.0000
b0011 = 0.0000 b1011 = 0.0680 b2011 = 0.0393
b0012 = 0.0000 b1012 = 0.0393 b2012 = -0.0680
b0020 = 0.0000 b1020 = 0.0000 b2020 = 0.0000
b0021 = 0.0000 b1021 = 0.0393 b2021 = -0.0680
b0022 = 0.0000 b1022 = -0.0680 b2022 = -0.0393
b0100 = 0.0000 b1100 = 0.0000 b2100 = 0.0000
b0101 = 0.0000 b1101 = 0.0680 b2101 = 0.0393
b0102 = 0.0000 b1102 = 0.0393 b2102 = -0.0680
b0110 = 0.0000 b1110 = -0.0680 b2110 = 0.0393
b0111 = -0.0680 b1111 = 0.0833 b2111 = 0.0481
b0112 = 0.0393 b1112 = 0.0481 b2112 = 0.1389
b0120 = 0.0000 b1120 = 0.0393 b2120 = 0.0680
b0121 = 0.0393 b1121 = -0.0481 b2121 = -0.0278
b0122 = 0.0680 b1122 = -0.0278 b2122 = 0.0481
b0200 = 0.0000 b1200 = 0.0000 b2200 = 0.0000
b0201 = 0.0000 b1201 = 0.0393 b2201 = -0.0680
b0202 = 0.0000 b1202 = -0.0680 b2202 = -0.0393
b0210 = 0.0000 b1210 = 0.0393 b2210 = 0.0680
b0211 = 0.0393 b1211 = -0.0481 b2211 = -0.0278
b0212 = 0.0680 b1212 = -0.0278 b2212 = 0.0481
b0220 = 0.0000 b1220 = 0.0680 b2220 = -0.0393
b0221 = 0.0680 b1221 = 0.1389 b2221 = -0.0481
b0222 = -0.0393 b1222 = -0.0481 b2222 = 0.0833

Table 7.3: Indicator function coefficients for the design in Table 7.1

The indicator function coefficients for this design are given in Table 7.3. Using the

definition of the indicator function coefficients (7.4) from Cheng and Ye (2004), the

coefficients are calculated from the complete contrast matrix (including all i-factor

interactions, i = 2, 3, 4).

According to (7.6), bu+v/b0 is equal to the correlation between contrasts Cu and

Cv. The values of bu+v/b0 are given in Table 7.4. From the correlation matrix

(Table 7.2), it can be seen that the bu+v/b0 ratios given in Table 7.5 are equal to the

correlations between Cu and Cv

The correlation of C0000 and C1111 should also equal b1111/b0000 = 0.3750 since

u = 0000 and v = 1111 are disjoint and u + v = 1111. However, given that, by
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b0000/b0000 = 1.0000 b1000/b0000 = 0.0000 b2000/b0000 = 0.0000
b0001/b0000 = 0.0000 b1001/b0000 = 0.0000 b2001/b0000 = 0.0000
b0002/b0000 = 0.0000 b1002/b0000 = 0.0000 b2002/b0000 = 0.0000
b0010/b0000 = 0.0000 b1010/b0000 = 0.0000 b2010/b0000 = 0.0000
b0011/b0000 = 0.0000 b1011/b0000 = 0.3062 b2011/b0000 = 0.1768
b0012/b0000 = 0.0000 b1012/b0000 = 0.1768 b2012/b0000 = -0.3062
b0020/b0000 = 0.0000 b1020/b0000 = 0.0000 b2020/b0000 = 0.0000
b0021/b0000 = 0.0000 b1021/b0000 = 0.1768 b2021/b0000 = -0.3062
b0022/b0000 = 0.0000 b1022/b0000 = -0.3062 b2022/b0000 = -0.1768
b0100/b0000 = 0.0000 b1100/b0000 = 0.0000 b2100/b0000 = 0.0000
b0101/b0000 = 0.0000 b1101/b0000 = 0.3062 b2101/b0000 = 0.1768
b0102/b0000 = 0.0000 b1102/b0000 = 0.1768 b2102/b0000 = -0.3062
b0110/b0000 = 0.0000 b1110/b0000 = -0.3062 b2110/b0000 = 0.1768
b0111/b0000 = -0.3062 b1111/b0000 = 0.3750 b2111/b0000 = 0.2165
b0112/b0000 = 0.1768 b1112/b0000 = 0.2165 b2112/b0000 = 0.6250
b0120/b0000 = 0.0000 b1120/b0000 = 0.1768 b2120/b0000 = 0.3062
b0121/b0000 = 0.1768 b1121/b0000 = -0.2165 b2121/b0000 = -0.1250
b0122/b0000 = 0.3062 b1122/b0000 = -0.1250 b2122/b0000 = 0.2165
b0200/b0000 = 0.0000 b1200/b0000 = 0.0000 b2200/b0000 = 0.0000
b0201/b0000 = 0.0000 b1201/b0000 = 0.1768 b2201/b0000 = -0.3062
b0202/b0000 = 0.0000 b1202/b0000 = -0.3062 b2202/b0000 = -0.1768
b0210/b0000 = 0.0000 b1210/b0000 = 0.1768 b2210/b0000 = 0.3062
b0211/b0000 = 0.1768 b1211/b0000 = -0.2165 b2211/b0000 = -0.1250
b0212/b0000 = 0.3062 b1212/b0000 = -0.1250 b2212/b0000 = 0.2165
b0220/b0000 = 0.0000 b1220/b0000 = 0.3062 b2220/b0000 = -0.1768
b0221/b0000 = 0.3062 b1221/b0000 = 0.6250 b2221/b0000 = -0.2165
b0222/b0000 = -0.1768 b1222/b0000 = -0.2165 b2222/b0000 = 0.3750

Table 7.4: Values of bu+v/b0 using the indicator coefficients bt from Table 7.3 for the
design in Table 7.1

definition,

C0000 =
[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
]′

and, from (7.7),

C1111 = 2.25 ×
[

0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
]′

,

using equation (2.4), the correlation between C0000 and C1111 is

ρ(C0000, C1111) = 6.75√
273.375

= 0.4082 6= 0.3750

By a similar argument, the correlation of C1000 and C0111 should equal b1111/b0000 =

0.3750. Again, from (7.7)

C1000 =
√

3/2×
[

0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1
]′
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b0111/b0000 = -0.3062 = ρ(C0100, C0011) = ρ(C0010, C0101) = ρ(C0001, C0110)
b0112/b0000 = 0.1768 = ρ(C0100, C0012) = ρ(C0010, C0102) = ρ(C0002, C0110)
b0121/b0000 = 0.1768 = ρ(C0100, C0021) = ρ(C0020, C0101) = ρ(C0001, C0120)
b0122/b0000 = 0.3062 = ρ(C0100, C0022) = ρ(C0020, C0102) = ρ(C0002, C0120)
b0211/b0000 = 0.1768 = ρ(C0200, C0011) = ρ(C0010, C0201) = ρ(C0001, C0210)
b0212/b0000 = 0.3062 = ρ(C0200, C0012) = ρ(C0010, C0202) = ρ(C0002, C0210)
b0221/b0000 = 0.3062 = ρ(C0200, C0021) = ρ(C0020, C0201) = ρ(C0001, C0220)
b0222/b0000 = -0.1768 = ρ(C0200, C0022) = ρ(C0020, C0202) = ρ(C0002, C0220)
b1011/b0000 = 0.3062 = ρ(C1000, C0011) = ρ(C0010, C1001) = ρ(C0001, C1010)
b1012/b0000 = 0.1768 = ρ(C1000, C0012) = ρ(C0010, C1002) = ρ(C0002, C1010)
b1021/b0000 = 0.1768 = ρ(C1000, C0021) = ρ(C0020, C1001) = ρ(C0001, C1020)
b1022/b0000 = -0.3062 = ρ(C1000, C0022) = ρ(C0020, C1002) = ρ(C0002, C1020)
b1101/b0000 = 0.3062 = ρ(C1000, C0101) = ρ(C0100, C1001) = ρ(C0001, C1100)
b1102/b0000 = 0.1768 = ρ(C1000, C0102) = ρ(C0100, C1002) = ρ(C0002, C1100)
b1110/b0000 = -0.3062 = ρ(C1000, C0110) = ρ(C0100, C1010) = ρ(C0010, C1100)
b1111/b0000 = 0.375 = ρ(C1000, C0111) = ρ(C0100, C1011) = ρ(C0010, C1101) = ρ(C0001, C1110)
b1112/b0000 = 0.2165 = ρ(C1000, C0112) = ρ(C0100, C1012) = ρ(C0010, C1102) = ρ(C0002, C1110)
b1120/b0000 = 0.1768 = ρ(C1000, C0120) = ρ(C0100, C1020) = ρ(C0020, C1100)
b1121/b0000 = -0.2165 = ρ(C1000, C0121) = ρ(C0100, C1021) = ρ(C0020, C1101) = ρ(C0001, C1120)
b1122/b0000 = -0.125 = ρ(C1000, C0122) = ρ(C0100, C1022) = ρ(C0020, C1102) = ρ(C0002, C1120)
b1201/b0000 = 0.1768 = ρ(C1000, C0201) = ρ(C0200, C1001) = ρ(C0001, C1200)
b1202/b0000 = -0.3062 = ρ(C1000, C0202) = ρ(C0200, C1002) = ρ(C0002, C1200)
b1210/b0000 = 0.1768 = ρ(C1000, C0210) = ρ(C0200, C1010) = ρ(C0010, C1200)
b1211/b0000 = -0.2165 = ρ(C1000, C0211) = ρ(C0200, C1011) = ρ(C0010, C1201) = ρ(C0001, C1210)
b1212/b0000 = -0.125 = ρ(C1000, C0212) = ρ(C0200, C1012) = ρ(C0010, C1202) = ρ(C0002, C1210)
b1220/b0000 = 0.3062 = ρ(C1000, C0220) = ρ(C0200, C1020) = ρ(C0020, C1200)
b1221/b0000 = 0.625 = ρ(C1000, C0221) = ρ(C0200, C1021) = ρ(C0020, C1201) = ρ(C0001, C1220)
b1222/b0000 = -0.2165 = ρ(C1000, C0222) = ρ(C0200, C1022) = ρ(C0020, C1202) = ρ(C0002, C1220)
b2011/b0000 = 0.1768 = ρ(C2000, C0011) = ρ(C0010, C2001) = ρ(C0001, C2010)
b2012/b0000 = -0.3062 = ρ(C2000, C0012) = ρ(C0010, C2002) = ρ(C0002, C2010)
b2021/b0000 = -0.3062 = ρ(C2000, C0021) = ρ(C0020, C2001) = ρ(C0001, C2020)
b2022/b0000 = -0.1768 = ρ(C2000, C0022) = ρ(C0020, C2002) = ρ(C0002, C2020)
b2101/b0000 = 0.1768 = ρ(C2000, C0101) = ρ(C0100, C2001) = ρ(C0001, C2100)
b2102/b0000 = -0.3062 = ρ(C2000, C0102) = ρ(C0100, C2002) = ρ(C0002, C2100)
b2110/b0000 = 0.1768 = ρ(C2000, C0110) = ρ(C0100, C2010) = ρ(C0010, C2100)
b2111/b0000 = 0.2165 = ρ(C2000, C0111) = ρ(C0100, C2011) = ρ(C0010, C2101) = ρ(C0001, C2110)
b2112/b0000 = 0.625 = ρ(C2000, C0112) = ρ(C0100, C2012) = ρ(C0010, C2102) = ρ(C0002, C2110)
b2120/b0000 = 0.3062 = ρ(C2000, C0120) = ρ(C0100, C2020) = ρ(C0020, C2100)
b2121/b0000 = -0.125 = ρ(C2000, C0121) = ρ(C0100, C2021) = ρ(C0020, C2101) = ρ(C0001, C2120)
b2122/b0000 = 0.2165 = ρ(C2000, C0122) = ρ(C0100, C2022) = ρ(C0020, C2102) = ρ(C0002, C2120)
b2201/b0000 = -0.3062 = ρ(C2000, C0201) = ρ(C0200, C2001) = ρ(C0001, C2200)
b2202/b0000 = -0.1768 = ρ(C2000, C0202) = ρ(C0200, C2002) = ρ(C0002, C2200)
b2210/b0000 = 0.3062 = ρ(C2000, C0210) = ρ(C0200, C2010) = ρ(C0010, C2200)
b2211/b0000 = -0.125 = ρ(C2000, C0211) = ρ(C0200, C2011) = ρ(C0010, C2201) = ρ(C0001, C2210)
b2212/b0000 = 0.2165 = ρ(C2000, C0212) = ρ(C0200, C2012) = ρ(C0010, C2202) = ρ(C0002, C2210)
b2220/b0000 = -0.1768 = ρ(C2000, C0220) = ρ(C0200, C2020) = ρ(C0020, C2200)
b2221/b0000 = -0.2165 = ρ(C2000, C0221) = ρ(C0200, C2021) = ρ(C0020, C2201) = ρ(C0001, C2220)
b2222/b0000 = 0.375 = ρ(C2000, C0222) = ρ(C0200, C2022) = ρ(C0020, C2202) = ρ(C0002, C2220)

Table 7.5: Ratios bu+v/b0 that are equal to the correlations between Cu and Cv
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and

C0111 =
√

27/8 ×
[

0 1 −1 0 0 0 0 0 0 0 0 −1 −1 0 0 −1 0 0
]′

,

using Equation 2.4 gives that the correlation between C1000 and C0111 is

ρ(C1000, C0111) = 6.75√
303.75

= 0.3873 6= 0.3750

Thus, it is clear that,

ρ(C0000, C1111) = 0.4082 6= 0.3750 = b1111/b0000

and
ρ(C1000, C0111) = 0.3873 6= 0.3750 = b1111/b0000

and the claim that the correlation of Cu and Cv is equal to bu+v/b0 is not true for all

disjoint Cu and Cv.

Cheng and Ye (2004) do not provide a formal proof of Theorem 7.1, but state that

it “follows immediately ” from (7.4) and the definition of an orthonormal contrast

basis (7.2). From (7.1) and (7.2), it follows that

∑

x∈D
Cu(x)Cv(x) =

{
0, if u 6= v,
N, if u = v,

(7.9)

where D is the full factorial design. Equation (7.9) is true since the sum is taken over

the full factorial design D. However, when a fraction of D is taken, equation (7.9)

does not necessarily hold. In the example above,
∑

x∈D C1111(x)C1111(x) = 15.1875

and
∑

x∈D C0111(x)C0111(x) = 16.8750.

By definition, bu+v = 1
N

∑
x∈D Cu+v(x); by (7.2),

∑
x∈D Cu+v(x) = 1

N
C ′

u
Cv, so

bu+v is 1
N

times the numerator of (2.4). Then (7.6) and (2.4) are equivalent if b0 =

1
N

√
C ′

u
CuC ′

v
Cv. The denominator of (2.4) can be written as

√
C ′

u
CuC ′

v
Cv ≡

√√√√
(
∑

x∈D

Cu(x)Cu(x)

)(
∑

x∈D

Cv(x)Cv(x)

)
. (7.10)
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Notice in equation (7.10) that the sum is taken over D and not D. If

∑

x∈D

Ct(x)Ct(x) = n for t = u, v, (7.11)

then

1

N

√∑

x∈D

C ′
u
Cu

∑

x∈D

C ′
v
Cv =

1

N

√
n ∗ n

=
n

N

= b0.

In this case,

ρ(Cu, Cv) =
C ′

u
Cv√

C ′
u
CuC ′

v
Cv

=
Nbu+v

Nb0

=
bu+v

b0
,

and Corollary 2.2 is true. As a special case, if D = D, then
√

C ′
u
CuC ′

v
Cv = N and

the corollary is true.

As stated above, Equation (7.11) is not necessarily true when D 6= D. In the case

that
∑

x∈D Cu(x)Cu(x) = U and
∑

x∈D Cv(x)Cv(x) = V with at least one of U or V

not equal to n,

ρ(Cu, Cv) =
C ′

u
Cv√

C ′
u
CuC ′

v
Cv

=
Nbu+v√
U ∗ V

=
bu+v√

U ∗ V /N

6= bu+v

b0
,
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since
√

U ∗ V /N 6= n/N = b0. Thus, in such a case, the interpretation of bu+v/b0 as

the correlation of Cu and Cv is not correct.

The incorrect interpretation of bu+v/b0 leads to an incorrect interpretation of the

elements of the α wordlength pattern. Cheng and Ye (2004) interpret αi(D), defined

in Section 8.2, as a measure of overall aliasing of all i-factor interactions with the

overall mean. As shown above, for ‖t‖0 = i, bt/b0 is not necessarily equal to the

correlation between the i-factor interaction and the overall mean, so this interpreta-

tion is incorrect. However, a smaller α3(D) does indicate a lesser degree of aliasing of

main effects with two-factor interactions and a smaller α4(D) does indicate a lesser

degree of aliasing of two-factor interactions.
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CHAPTER 8

RELATIONSHIP BETWEEN AVERAGE SQUARED
CORRELATIONS AND INDICATOR FUNCTION

Despite the fact that the ratio of indicator function coefficients bu+v/b0 cannot

always be interpreted as the correlation between contrasts (Cu and Cv), ρ(Cu, Cv),

there exists a direct relationship between the indicator function coefficients and a

subset of the average squared correlations. The relationship exists provided that the

design is of strength at least two (see Section 4.4 for design properties required for

use of the average squared correlation criterion); for all orthogonal arrays of strength

at least two, the condition (7.11) holds for all main effect and two-factor interaction

effect contrasts. Because bu+v/b0 = ρ(Cu, Cv) only for disjoint Cu and Cv, only

average squared correlations for disjoint effects can be computed from the indicator

function coefficients.

8.1 Example: Relationship Between Average Squared Cor-
relations and Indicator Function Coefficients

It is helpful to examine a simple example, using the same set of orthogonal con-

trasts for the calculation of each criterion. From Section 6.3, the average squared

correlation criterion for quantitative factors is dependent upon the choice of orthog-

onal contrasts.
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Consider the design given in Table 7.1 of Section 7.2. The indicator function

coefficients, calculated from the complete contrast matrix (including all i-factor in-

teractions, i = 2, 3, 4) using the re-scaled linear and quadratic contrasts (7.7) and

(7.8), for this design are given in Table 7.3.

Average Squared Correlations of Order 3

In the case of a four-factor projection with qualitative factors, the average squared

correlations of order 3 for A with BC, A with BD, and A with CD can be calculated

as follows:

Ave ρ2
3(A,BC) =

1

8



(

b1110

b0000

)2

+

(
b1120

b0000

)2

+

(
b1210

b0000

)2

+

(
b1220

b0000

)2

+

(
b2110

b0000

)2

+

(
b2120

b0000

)2

+

(
b2210

b0000

)2

+

(
b2220

b0000

)2

 (8.1)

Ave ρ2
3(A,BD) =

1

8



(

b1101

b0000

)2

+

(
b1102

b0000

)2

+

(
b1201

b0000

)2

+

(
b1202

b0000

)2

+

(
b2101

b0000

)2

+

(
b2102

b0000

)2

+

(
b2201

b0000

)2

+

(
b2202

b0000

)2

 (8.2)

Ave ρ2
3(A,CD) =

1

8



(

b1011

b0000

)2

+

(
b1012

b0000

)2

+

(
b1021

b0000

)2

+

(
b1022

b0000

)2

+

(
b2011

b0000

)2

+

(
b2012

b0000

)2

+

(
b2021

b0000

)2

+

(
b2022

b0000

)2

 (8.3)

If the factors are treated as quantitative, the sets of average squared correlations of

order 3 are:

Ave ρ2
3,3(A,BC) =

(
b1110

b0000

)2

Ave ρ2
3,4(A,BC) =

1

3



(

b1120

b0000

)2

+

(
b1210

b0000

)2

+

(
b2110

b0000

)2
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Ave ρ2
3,5(A,BC) =

1

3



(

b1220

b0000

)2

+

(
b2120

b0000

)2

+

(
b2210

b0000

)2



Ave ρ2
3,6(A,BC) =

(
b2220

b0000

)2

(8.4)

Ave ρ2
3,3(A,BD) =

(
b1101

b0000

)2

Ave ρ2
3,4(A,BD) =

1

3



(

b1102

b0000

)2

+

(
b1201

b0000

)2

+

(
b2101

b0000

)2



Ave ρ2
3,5(A,BD) =

1

3



(

b1202

b0000

)2

+

(
b2102

b0000

)2

+

(
b2201

b0000

)2



Ave ρ2
3,6(A,BD) =

(
b2202

b0000

)2

(8.5)

Ave ρ2
3,3(A,CD) =

(
b1011

b0000

)2

Ave ρ2
3,4(A,CD) =

1

3



(

b1012

b0000

)2

+

(
b1021

b0000

)2

+

(
b2011

b0000

)2



Ave ρ2
3,5(A,CD) =

1

3



(

b1022

b0000

)2

+

(
b2012

b0000

)2

+

(
b2021

b0000

)2



Ave ρ2
3,6(A,CD) =

(
b2022

b0000

)2

(8.6)

The average squared correlations of order 3 for the other main effects with disjoint

two-factor interactions can be calculated similarly.

The average squared correlations of order 3 for A with AB, A with AC, A with

AD, B with AB, B with BC, B with BD, C with AC, C with BC, C with CD,

D with AD, D with BD, and D with CD cannot be calculated from the indicator

function coefficients since for this interpretation the contrasts Cu and Cv must be

disjoint (see Theorem 7.1). For example, ρ(Al, AlBl) = ρ(C1000, C1100) 6= b2100/b0000.

Also, ρ(Aq, AlBl) = ρ(C2000, C1100) = b3100/b0000, but b3100 is not defined by Cheng
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and Ye (2004) as part of the indicator function. Thus, average squared correlations

of order 3 provide a broader description of the lower order correlations than do the

indicator function coefficients.

Using the indicator function coefficients from Table 7.3, for this example, Equa-

tions (8.1) – (8.3), give

Ave ρ2
3(A,BC) =

1

8

[(−0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0680

0.2222

)2

+
(

0.0680

0.2222

)2

+
(−0.0393

0.2222

)2
]

= 0.0625

Ave ρ2
3(A,BD) =

1

8

[(
0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(−0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0393

0.2222

)2
]

= 0.0625

Ave ρ2
3(A,CD) =

1

8

[(
0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(−0.0680

0.2222

)2

+
(

0.0393

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0393

0.2222

)2
]

= 0.0625

Equations (8.4) – (8.6) give

Ave ρ2
3,3(A,BC) =

(−0.0680

0.2222

)2

= 0.0938
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Ave ρ2
3,4(A,BC) =

1

3

[(
0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2
]

= 0.0313

Ave ρ2
3,5(A,BC) =

1

3

[(
0.0680

0.2222

)2

+
(

0.0680

0.2222

)2

+
(

0.0680

0.2222

)2
]

= 0.0938

Ave ρ2
3,6(A,BC) =

(−0.0393

0.2222

)2

= 0.0313

Ave ρ2
3,3(A,BD) =

(
0.0680

0.2222

)2

= 0.0938

Ave ρ2
3,4(A,BD) =

1

3

[(
0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2
]

= 0.0313

Ave ρ2
3,5(A,BD) =

1

3

[(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2
]

= 0.0938

Ave ρ2
3,6(A,BD) =

(−0.0393

0.2222

)2

= 0.0313
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Ave ρ2
3,3(A,CD) =

(
0.0680

0.2222

)2

= 0.0938

Ave ρ2
3,4(A,CD) =

1

3

[(
0.0393

0.2222

)2

+
(

0.0393

0.2222

)2

+
(

0.0393

0.2222

)2
]

= 0.0313

Ave ρ2
3,5(A,CD) =

1

3

[(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2

+
(−0.0680

0.2222

)2
]

= 0.0938

Ave ρ2
3,6(A,CD) =

(−0.0393

0.2222

)2

= 0.0313

These numbers match the average squared correlations of order 3 calculated di-

rectly from the correlation matrix (given for design class 18.4.1 in Table 6.2 of Sec-

tion 6.2). In general, the following lemma holds.

Lemma 8.1.1 Given an orthogonal array of strength at least two, for a main effect,

A, and a disjoint two-factor interaction effect, BC,

(a) Qualitative Factors: The average squared correlation of order 3 calculated

from the indicator function coefficients is equal to the average squared correla-

tion of order 3 calculated directly from the correlation matrix.

(b) Quantitative Factors: The the complete set of average squared correlations

of order 3 calculated from the indicator function coefficients is equal to the
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complete set of the average squared correlations of order 3 calculated directly

from the correlation matrix.

Average Squared Correlations of Order 4

Because of the constraint that Cu and Cv must be disjoint (Theorem 7.1), it is

not possible to calculate any of average squared correlations of order 4 for projections

with p < 4 factors. Thus, when p < 4, average squared correlations of order 4 provide

a description of correlations between two-factor interactions and other two-factor

interactions when the indicator function coefficients do not.

For p ≥ 4 factors, only a subset of the set of average squared correlations of order

4 can be calculated from the indicator function coefficients. For a design with p = 4

qualitative factors, the indicator function coefficients can be used to calculate the

following average squared correlations of order 4:

Ave ρ2
4(AB,CD) =

1

16



(

b1111

b0000

)2

+

(
b1112

b0000

)2

+

(
b1121

b0000

)2

+

(
b1122

b0000

)2

+

(
b1211

b0000

)2

+

(
b1212

b0000

)2

+

(
b1221

b0000

)2

+

(
b1222

b0000

)2

+

(
b2111

b0000

)2

+

(
b2112

b0000

)2

+

(
b2121

b0000

)2

+

(
b2122

b0000

)2

+

(
b2211

b0000

)2

+

(
b2212

b0000

)2

+

(
b2221

b0000

)2

+

(
b2222

b0000

)2

 (8.7)

Ave ρ2
4(AC,BD) =

1

16



(

b1111

b0000

)2

+

(
b1112

b0000

)2

+

(
b1211

b0000

)2

+

(
b1212

b0000

)2

+

(
b1121

b0000

)2

+

(
b1122

b0000

)2

+

(
b1221

b0000

)2

+

(
b1222

b0000

)2

+

(
b2111

b0000

)2

+

(
b2112

b0000

)2

+

(
b2211

b0000

)2

+

(
b2212

b0000

)2
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+

(
b2121

b0000

)2

+

(
b2122

b0000

)2

+

(
b2221

b0000

)2

+

(
b2222

b0000

)2

 (8.8)

Ave ρ2
4(AD,BC) =

1

16



(

b1111

b0000

)2

+

(
b1121

b0000

)2

+

(
b1211

b0000

)2

+

(
b1221

b0000

)2

+

(
b1112

b0000

)2

+

(
b1122

b0000

)2

+

(
b1212

b0000

)2

+

(
b1222

b0000

)2

+

(
b2111

b0000

)2

+

(
b2121

b0000

)2

+

(
b2211

b0000

)2

+

(
b2221

b0000

)2

+

(
b2112

b0000

)2

+

(
b2122

b0000

)2

+

(
b2212

b0000

)2

+

(
b2222

b0000

)2

 (8.9)

If the factors are treated as quantitative, the complete sets of average squared

correlations of order 4 in terms of indicator function coefficients are:

Ave ρ2
4,4(AB,CD) =

(
b1111

b0000

)2

Ave ρ2
4,5(AB,CD) =

1

4



(

b1112

b0000

)2

+

(
b1121

b0000

)2

+

(
b1211

b0000

)2

+

(
b2111

b0000

)2



Ave ρ2
4,6(AB,CD) =

1

6



(

b1122

b0000

)2

+

(
b1212

b0000

)2

+

(
b1221

b0000

)2

+

(
b2112

b0000

)2

+

(
b2121

b0000

)2

+

(
b2211

b0000

)2



Ave ρ2
4,7(AB,CD) =

1

4



(

b1222

b0000

)2

+

(
b2122

b0000

)2

+

(
b2212

b0000

)2

+

(
b2221

b0000

)2



Ave ρ2
4,8(AB,CD) =

(
b2222

b0000

)2

(8.10)

Ave ρ2
4,4(AC,BD) =

(
b1111

b0000

)2

Ave ρ2
4,5(AC,BD) =

1

4



(

b1112

b0000

)2

+

(
b1211

b0000

)2

+

(
b1121

b0000

)2

+

(
b2111

b0000

)2



Ave ρ2
4,6(AC,BD) =

1

6



(

b1212

b0000

)2

+

(
b1122

b0000

)2

+

(
b1221

b0000

)2

+

(
b2112

b0000

)2
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+

(
b2211

b0000

)2

+

(
b2121

b0000

)2



Ave ρ2
4,7(AC,BD) =

1

4



(

b1222

b0000

)2

+

(
b2212

b0000

)2

+

(
b2122

b0000

)2

+

(
b2221

b0000

)2



Ave ρ2
4,8(AC,BD) =

(
b2222

b0000

)2

(8.11)

Ave ρ2
4,4(AD,BC) =

(
b1111

b0000

)2

Ave ρ2
4,5(AD,BC) =

1

4



(

b1121

b0000

)2

+

(
b1211

b0000

)2

+

(
b1112

b0000

)2

+

(
b2111

b0000

)2



Ave ρ2
4,6(AD,BC) =

1

6



(

b1221

b0000

)2

+

(
b1122

b0000

)2

+

(
b1212

b0000

)2

+

(
b2121

b0000

)2

+

(
b2211

b0000

)2

+

(
b2112

b0000

)2



Ave ρ2
4,7(AD,BC) =

1

4



(

b1222

b0000

)2

+

(
b2221

b0000

)2

+

(
b2122

b0000

)2

+

(
b2212

b0000

)2



Ave ρ2
4,8(AD,BC) =

(
b2222

b0000

)2

(8.12)

For both qualitative and quantitative factors, the average squared correlations of

order 4 for AB with AC, AB with AD, AB with BC, AB with BD, AC with

AD, AC with BC, AC with CD, AD with BC, AD with CD, BC with BD,

BC with CD, and BD with CD cannot be calculated from the indicator func-

tion coefficients since the two interaction effects are not disjoint. Similar to or-

der 3, ρ(AlBl, AlCl) = ρ(C1100, C1010) 6= b2110/b0000. Also b3110, needed to calculate

ρ(AqBl, AlCl) = ρ(C2100, C1010) = b3110/b0000, is not defined by Cheng and Ye (2004)

as part of the indicator function. Thus, average squared correlations of order 4 provide

a broader description of the lower order correlations than do the indicator function

coefficients.
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For this example, Equations (8.7) – (8.9), give

Ave ρ2
4(AB,CD) =

1

16

[(
0.0833

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.1389

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(

0.1389

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0833

0.2222

)2
]

= 0.0938

Ave ρ2
4(AC,BD) =

1

16

[(
0.0833

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.1389

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(

0.1389

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0833

0.2222

)2
]

= 0.0938

Ave ρ2
4(AD,BC) =

1

16

[(
0.0833

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.1389

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.1389

0.2222

)2

+
(

0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(

0.0833

0.2222

)2
]

= 0.0938
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Equations (8.10) gives

Ave ρ2
4,4(AB,CD) =

(
0.0833

0.2222

)2

= 0.1406

Ave ρ2
4,5(AB,CD) =

1

4

[(
0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(−0.0481

0.2222

)2

+
(

0.0481

0.2222

)2
]

= 0.0469

Ave ρ2
4,6(AB,CD) =

1

6

[(−0.0278

0.2222

)2

+
(−0.0278

0.2222

)2

+
(

0.1389

0.2222

)2

+
(

0.1389

0.2222

)2

+
(−0.0278

0.2222

)2

+
(−0.0278

0.2222

)2
]

= 0.1406

Ave ρ2
4,7(AB,CD) =

1

4

[(−0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(

0.0481

0.2222

)2

+
(−0.0481

0.2222

)2
]

= 0.0469

Ave ρ2
4,8(AB,CD) =

(
0.0833

0.2222

)2

= 0.1406

The calculation of the average squared correlations of order 4 for the other two-factor

interaction pairs follows similarly.

Again, these numbers match the average squared correlations of order 4 calculated

directly from the correlation matrix (given for design class 18.4.1 in Table 6.3 of

Section 6.2). In general, the following results holds.
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Lemma 8.1.2 Given an orthogonal array of strength at least two with at least four

factors, for a two-factor interaction, AB, and a disjoint two-factor interaction effect,

CD,

(a) Qualitative Factors: The average squared correlation of order 4 calculated

from the indicator function coefficients is equal to the average squared correla-

tion of order 4 calculated directly from the correlation matrix.

(b) Quantitative Factors: The the complete set of average squared correlations

of order 4 calculated from the indicator function coefficients is equal to the

complete set of the average squared correlation of order 4 calculated directly

from the correlation matrix.

8.2 Relationship Between Average Squared Correlation and
Wordlength Patterns

α Wordlength Pattern

The α wordlength pattern of Cheng and Ye (2004) is a redefinition of the GWP

of Xu and Wu (2001) based on the indicator function. For ‖t‖0 equal to the number

of nonzero elements in t and a design D, αi(D) is defined as

αi(D) =
∑

‖t‖0=i

(
bt
b0

)2

(8.13)

and the α wordlength pattern is (α1(D), α2(D), . . . , αp(D)).

If D is an orthogonal array of strength two (or greater), for any given t satisfying

‖t‖0 = 3, (bt/b0)
2 is the squared correlation of a main effect with a disjoint two-

factor interaction, and α3(D) is the sum of these squared correlations. In general,

for a three-level factor, α3(D) is equal to the sum of eight times a subset of average
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squared correlations of order 3, where the subset is subject to the constraint that each

of the

(
p
3

)
factors involved in the main effect and two-factor interaction is included

once. For example, for p = 4,

α3(D) = 8×
(
Ave ρ2

3(A,BC) + Ave ρ2
3(A,BD) + Ave ρ2

3(A,CD) + Ave ρ2
3(B,CD)

)
.

(8.14)

Equally,

α3(D) = 8×
(
Ave ρ2

3(B,AC) + Ave ρ2
3(B,AD) + Ave ρ2

3(C,AD) + Ave ρ2
3(C,BD)

)
.

(8.15)

Various other combinations also exist; the constraint is that each combination of three

factors must appear exactly once.

In this example, Ave ρ2
3(B,AC) = Ave ρ2

3(B,AD) = Ave ρ2
3(C,AD) = Ave ρ2

3(C,BD).

When all average squared correlations of order 3 are equal, then Ave ρ2
3 = α3(D)/8p.

However, this equality for Ave ρ2
3 is a special case and is not true in general.

Similarly, if D is an orthogonal array of strength two (or greater), for a given t

satisfying ‖t‖0 = 4, (bt/b0)
2 is the squared correlation of a two-factor interaction with

a disjoint two-factor interaction, and α4(D) is the sum of these squared correlations.

In general, for a three-level factor, α4(D) is equal to sixteen times the sum of a

subset of average squared correlations or order 4, where the subset is subject to the

constraint that each of the

(
p
4

)
factors involved in the pair of two-factor interactions

is included once. For example, for p = 4,

α4(D) = 16 × (Ave ρ2
4(AB,CD)). (8.16)

Equally,

α4(D) = 16 × (Ave ρ2
4(AC,BD)) (8.17)
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or

α4(D) = 16 × (Ave ρ2
4(AD,BC)). (8.18)

For the example of Section 8.1, using the average squared correlations of order 3,

equation (8.14) gives

α3(D) = 8 ×
(
Ave ρ2

3(A,BC) + Ave ρ2
3(A,BD) + Ave ρ2

3(A,CD) + Ave ρ2
3(B,CD)

)

= 8 × (0.0625 + 0.0625 + 0.0625 + 0.0625)

= 2.0

which is equal to the value of α3(D) calculated directly from the indicator function

(given in Table 4.5 of Section 5.2). Using Equation (8.15) gives

α3(D) = 8 ×
(
Ave ρ2

3(B,AC) + Ave ρ2
3(B,AD) + Ave ρ2

3(C,AD) + Ave ρ2
3(C,BD)

)

= 8 × (0.0625 + 0.0625 + 0.0625 + 0.0625)

= 2.0

which is again equal to the value of α3(D) calculated directly from the indicator

function. For α4(D), equations (8.16), (8.17), and (8.18)

α4(D) = 16 × (Ave ρ2
4(AB,CD))

= 16 × (Ave ρ2
4(AC,BD))

= 16 × (Ave ρ2
4(AD,BC))

= 16 × 0.0938

= 1.5

and α4(D) calculated from the average squared correlations of order 4 is equal to

α4(D) calculated directly from the indicator function given in Table 5.1. Thus, there
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is a direct link between the average squared correlations of order 3 and order 4 and

the α wordlength pattern of Cheng and Ye (2004).

Because α3(D) and α4(D) sum over individual average squared correlations of

order 3 and order 4, respectively, the α wordlength pattern provides less information

about the aliasing pattern than the ASCP. Two different sets of averaged squared cor-

relations may produce the same value of either α3(D) or α4(D). For example, for both

the set Ave ρ2(A,BC) = 0.0625, Ave ρ2(A,BD) = 0.1250, Ave ρ2(A,CD) = 0.1250

and Ave ρ2(B,CD) = 0.1250 and the set Ave ρ2(A,BC) = 0.0625, Ave ρ2(A,BD) =

0.0625, Ave ρ2(A,CD) = 0.0625 and Ave ρ2(B,CD) = 0.2500, the value of α3(D) =

3.5. Thus, it is expected that the α wordlength pattern will be less able to differentiate

combinatorially inequivalent designs.

β Wordlength Pattern

Because all contrast interactions are not equally important when factors are quan-

titative, the β wordlength pattern based on the polynomial degree of the interaction

(i.e. effect hierarchy (6.1)) was proposed by Cheng and Ye (2004). For ‖t‖1 equal to

the sum of the polynomial degrees of the contrasts included in t and a design D,

βi(D) =
∑

‖t‖1=i

(
bt
b0

)2

. (8.19)

and the β wordlength pattern is (β1(D), β2(D), . . . , βP (D)), P =
∑p

i=1(ki − 1).

Since the summands of βi(D) are again squared correlations, the βi(D) are again

sums of average squared correlations of order 3 and order 4. While α3(D) and α4(D)

maintain separation of the average squared correlations of order 3 and order 4, re-

spectively, the βi(D) combine the average squared correlations of order 3 and order
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4. For example, for p = 4, the βi(D) can be calculated as

β3(D) = (Ave ρ2
3,3(A,BC)) + (Ave ρ2

3,3(A,BD)) + (Ave ρ2
3,3(A,CD))

+ (Ave ρ2
3,3(B,CD))

β4(D) = 3 × (Ave ρ2
3,4(A,BC)) + 3 × (Ave ρ2

3,4(A,BD)) + 3 × (Ave ρ2
3,4(A,CD))

+ 3 × (Ave ρ2
3,4(B,CD)) + (Ave ρ2

4,4(AB,CD))

β5(D) = 3 × (Ave ρ2
3,5(A,BC)) + 3 × (Ave ρ2

3,5(A,BD)) + 3 × (Ave ρ2
3,5(A,CD))

+ 3 × (Ave ρ2
3,5(B,CD)) + 4 × (Ave ρ2

4,5(AB,CD))

β6(D) = (Ave ρ2
3,6(A,BC)) + (Ave ρ2

3,6(A,BD)) + (Ave ρ2
3,6(A,CD))

+ (Ave ρ2
3,6(B,CD)) + 6 × (Ave ρ2

4,6(AB,CD))

β7(D) = 4 × (Ave ρ2
4,7(AB,CD))

β8(D) = (Ave ρ2
4,8(AB,CD)) (8.20)

As with the αi(D) for i = 3, 4, in general, for a three-level factor, the sums are taken

over the set of contrasts subject to the constraint that each of the

(
p
3

)
combinations

of factors involved in the main effect and two-factor interaction is included exactly

once (for β3(D), β4(D), β5(D), β6(D)) and each of the

(
p
4

)
combinations of factors

involved in the pair of two-factor interactions is included exactly once (for β4(D),

β5(D), β6(D), β7(D), β8(D)).

For the example of Section 8.1, using the average squared correlations of order 3

and order 4, Equations (8.20) give

β3(D) = ρ2
3,3(A,BC) + ρ2

3,3(A,BD) + ρ2
3,3(A,CD) + ρ2

3,3(B,CD)

= 0.0938 + 0.0938 + 0.0938 + 0.0938

= 0.375
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β4(D) = 3 × ρ2
3,4(A,BC) + 3 × ρ2

3,4(A,BD) + 3 × ρ2
3,4(A,CD)

+ 3 × ρ2
3,4(B,CD) + ρ2

4,4(AB,CD)

= 3 × 0.0313 + 3 × 0.0313 + 3 × 0.0313 + 3 × 0.0313 + 0.1406

= 0.5162

β5(D) = 3 × ρ2
3,5(A,BC) + 3 × ρ2

3,5(A,BD) + 3 × ρ2
3,5(A,CD)

+ 3 × ρ2
3,5(B,CD) + 4 × ρ2

4,5(AB,CD)

= 3 × 0.0938 + 3 × 0.0938 + 3 × 0.0938 + 3 × 0.0938 + 4 × 0.0469

= 1.3132

β6(D) = ρ2
3,6(A,BC) + ρ2

3,6(A,BD) + ρ2
3,6(A,CD) + ρ2

3,6(B,CD)

+ 6 × ρ2
4,6(AB,CD)

= 0.0313 + 0.0313 + 0.0313 + 0.0313 + 6 × 0.1406

= 0.9688

β7(D) = 4 × ρ2
4,7(AB,CD)

= 4 × 0.0469

= 0.1876

β8(D) = ρ2
4,8(AB,CD)

= 0.1406

The values of β3(D), β4(D), β5(D), β6(D), β7(D), and β8(D) calculated from the

average squared correlation of order 3 and order 4 are equal (up to rounding) to the

values calculated directly from the indicator function given in Table 9.1. Thus, there
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is a direct link between the average squared correlations of order 3 and order 4 and

the β wordlength pattern of Cheng and Ye (2004).

Like the α wordlength pattern, because βi(D), i = 3, 4, 5, 6, 7, 8, sum over indi-

vidual average squared correlations of order 3 and order 4, the β wordlength pattern

provides less information about the aliasing pattern than the ASCP. Thus, it is ex-

pected that the β wordlength pattern will be less able than the ASCP to differentiate

geometrically inequivalent designs.
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CHAPTER 9

RANKING OF DESIGNS WITH QUANTITATIVE
FACTORS

9.1 Ranking and Equivalence

The ASCP can be used to rank order designs with quantitative factors similar

to the criterion used for rank ordering designs with qualitative factors described in

Section 5.2. Based on the complete sets of average squared correlations of order 3

and order 4, designs can be ranked by sequentially maximizing the r3,3(1), . . ., r3,3(k3),

r3,4(1), . . ., r3,4(k4), r3,5(1), . . ., r3,5(k5), r3,6(1), . . ., r3,6(k6), r4,4(1), . . ., r4,4(m4), r4,5(1), . . .,

r4,5(m5), r4,6(1), . . ., r4,6(m6), r4,7(1), . . ., r4,7(m7), r4,8(1), . . ., r4,8(m8) in Array (6.7). That

is, designs are ranked first by factorial order, then by polynomial degree, selecting

designs with a large number of smaller average squared correlations as better designs.

For example, using this criterion, a design with more small values of Ave ρ2
3,3 is better

than a design with more large values of Ave ρ2
3,3. By maximizing the ri(j) in this order,

designs are selected for which there is less aliasing of lower degree polynomials of main

effects and two-factor interactions.

The generalized minimum aberration criterion for designs with quantitative factors

sequentially minimizes the βi(D) for i = 1, 2, . . . , P , where P =
∑p

i=1(ki − 1) (Cheng
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and Ye 2004). The generalized resolution and minimum aberration design are defined

as in Section 5.2, replacing αi(D) with βi(D).

Another possible criterion for rank ordering designs with quantitative factors min-

imizes the value of Q(Γ(p)); as described in Chapter 7, lower Q(Γ(p)) indicates better

effect estimation over a wide range of possible models. An additional criterion (not

examined here) that can be used to compare designs with respect to projection is to

minimize Q(Γ(p)) averaged over all possible k-factor projections for a given number

of factors, k (Tsai et al. 2000).

9.1.1 Example: Rank Ordering of Geometrically Inequiva-
lent Design Classes from OA(18, 7, 3, 2)

Patterns of Ave ρ2
3,3 and Ave ρ2

3,4, β wordlength patterns, and Q(Γ(p)) values are

shown in Table 9.1 in order to examine optimal design choices for quantitative factors

based on each ranking method. Based on Ave (ρ2
3,3) and Ave (ρ2

3,4) (which in this case

are sufficient to differentiate and rank the projection designs from OA(18, 7, 3, 2)) the

design classes 18.3.2, 18.4.1, and 18.5.1, would be ranked as the best projection designs

of three-, four-, and five-factors, respectively. Sequentially minimizing the elements

βi(D) of the β wordlength, classes 18.3.2, 18.4.2, and 18.5.3, would be ranked as

optimal. Classes 18.3.1, 18.4.2, and 18.5.1, would be selected as optimal designs

based on minimizing the Q(Γ(p)) values. Thus, these three methods of projection

design ranking do not result in exactly the same rankings.

The difference in rankings is the result of the different values of the three criterion.

The ASCP assigns values according to the factorial order of the correlation followed by

the polynomial degree. In contrast, the β wordlength pattern assigns values according

to polynomial degree only. In the case when there are many small correlations with
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both low polynomial degree correlations and low factorial order, these two criteria

induce the same rank ordering; these two criteria induce different rank orderings

when the small correlations are of either low polynomial degree but higher factorial

order or high polynomial degree but low factorial order.

Both the ASCP and the β wordlength pattern are based on fitting a single model

to the data. In contrast, the Q(Γ(p)) considers a set of possible models to be fit to the

data; the set of models used for the Q(Γ(p)) includes the single models assumed by

the ASCP and the β wordlength pattern. If the design is optimal only for the single

model and poor for all other possible models, then the Q(Γ(p)) will select a different

optimal design than the ASCP and the β wordlength pattern criteria.

9.2 Geometric Non-equivalence of Projection Designs from
Orthogonal Arrays

From Table 9.1, the ASCP is able to distinguish all inequivalent design classes of

three-, four-, and five-factor projection designs from the OA(18, 7, 3, 2); Neither the β

wordlength pattern nor Q(Γ(p)) are able to distinguish all four-factor projection design

classes. Table 9.2, Table 9.3, and Table 9.4 provide the numbers of geometrically

inequivalent classes identified by the ASCP, the β wordlength pattern, and Q(Γ(p))

for three-, four-, and five-factor projections from the OA(18, 7, 3, 2), OA(27, 13, 3, 2),

and OA(36, 13, 3, 2) in Tables A.1, A.2, and A.3, respectively. The actual numbers of

inequivalent classes of projection designs are provided for reference; the true numbers

of classes are found using the indicator function (Cheng and Ye 2004), the only

necessary and sufficient condition for geometric equivalence studied.
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Number of Number of
Ave (ρ2

3,3) Ave (ρ2
3,4)

Class Columns 0.0000 0.9380 0.0000 0.0312 0.1667 0.1979 0.5000
18.3.1 (1,2,3) 6 3 6 3 0 0 0
18.3.2 (1,2,7) 9 0 6 0 3 0 0
18.3.3 (1,4,7) 9 0 6 0 0 0 3
18.3.4 (3,5,7) 6 3 6 0 0 3 0
18.4.1 (1,2,3,4) 15 9 12 9 3 0 0
18.4.2 (1,2,3,7) 15 9 12 9 0 0 3
18.4.3 (1,2,4,7) 12 12 12 12 0 0 0
18.4.4 (1,3,4,7) 12 12 12 9 0 3 0
18.4.5 (1,3,5,7) 15 9 12 3 3 6 0
18.5.1 (1,2,3,4,5) 26 24 20 24 3 0 3
18.5.2 (1,2,3,4,7) 23 27 20 21 3 6 0
18.5.3 (1,2,3,5,7) 23 27 20 24 0 3 3
18.5.4 (1,2,4,6,7) 20 30 20 30 0 0 0
18.5.5 (1,3,4,5,7) 26 24 20 12 6 12 0

β

Class Columns Wordlength Q(Γ(p))
18.3.1 (1,2,3) (0.0000,0.0000,0.0938,0.0937,0.2813,0.0312) 0.5328
18.3.2 (1,2,7) (0.0000,0.0000,0.0000,0.5000,0.0000,0.5000) 0.5378
18.3.3 (1,4,7) (0.0000,0.0000,0.0938,0.5938,0.2812,0.0312) 0.5635
18.3.4 (3,5,7) (0.0000,0.0000,0.0000,1.5000,0.0000,0.5000) 0.5993
18.4.1 (1,2,3,4) (0.0000,0.0000,0.3750,0.5156,1.3125,0.9688,0.1875,0.1406) 0.9853
18.4.2 (1,2,3,7) (0.0000,0.0000,0.2813,0.8438,1.4062,0.7812,0.1875,0.0000) 0.9801
18.4.3 (1,2,4,7) (0.0000,0.0000,0.2813,1.7813,0.8437,0.5937,0.0000,0.0000) 1.0446
18.4.4 (1,3,4,7) (0.0000,0.0000,0.3750,0.8906,1.3125,0.5938,0.1875,0.1406) 1.0041
18.4.5 (1,3,5,7) (0.0000,0.0000,0.2813,1.7813,0.8437,0.5937,0.0000,0.0000) 1.0446
18.5.1 (1,2,3,4,5) (0.0000,0.0000,0.9375,1.6406,3.7500,4.5313,0.9375,0.7031,0.0000,0.0000) 1.7055
18.5.2 (1,2,3,4,7) (0.0000,0.0000,0.8438,2.5781,3.6797,3.1016,0.9844,1.1250,0.1172,0.0703) 1.7166
18.5.3 (1,2,3,5,7) (0.0000,0.0000,0.7500,3.0156,3.5625,3.0000,0.9375,0.5781,0.3750,0.2813) 1.7282
18.5.4 (1,2,4,6,7) (0.0000,0.0000,0.7500,3.8906,2.4375,2.3750,2.0625,0.3281,0.3750,0.2813) 1.7888
18.5.5 (1,3,4,5,7) (0.0000,0.0000,0.8438,3.0156,3.1172,2.7891,1.5469,1.0000,0.1172,0.0703) 1.7469

Table 9.1: Partial average squared correlations of order 3 pattern, β wordlength
patterns, and Q(Γ(p)) for inequivalent projection classes from OA(18, 7, 3, 2)
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p = 3 p = 4 p = 5
Ave ρ2 4 5 5
β Wordlength 4 4 5
Q(Γ(p)) 4 4 5
Indicator Function 4 5 5

Table 9.2: Number of geometrically inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(18, 7, 3, 2) in Table A.1

While Cheng and Ye (2004) published the number of geometrically inequivalent

classes of projection designs from the OA(18, 7, 3, 2) for three- and four-factor pro-

jections, the numbers provided in Table 9.2 do not match these researchers’ numbers.

The reason for the difference is due to different sets of permutations considered. The

search conducted by Cheng and Ye (2004) included level label permutations within

each column that did not preserve the level ordering, in effect searching over a set of

non-isomorphic starting arrays; the search undertaken in this work examines a single

starting array with a given level labeling and does not include level label permutations

that do not preserve the level order.

Again, from Table 9.2, only the ASCP is able to identify all classes for each of the

projection sizes for the OA(18, 7, 3, 2) given. Both the β wordlength pattern and the

Q(Γ(p)) differentiate all three- and five-factor projections classes but fail to distinguish

between two of the five design classes for four-factor projections.

For the OA(27, 13, 3, 2), all three methods are able to identify correctly each of

the geometrically inequivalent design classes (Table 9.3). However, none of the three

criteria is able to distinguish all the equivalence classes for the OA(36, 13, 3, 2) (Ta-

ble 9.4). For the given starting design, Q(Γ(p)) cannot identify all classes of any
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p = 3 p = 4 p = 5
Ave ρ2 2 3 3
β Wordlength 2 3 3
Q(Γ(p)) 2 3 3
Indicator Function 2 3 3

Table 9.3: Number of geometrically inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(27, 13, 3, 2) in Table A.2

p = 3 p = 4 p = 5
Ave ρ2 13 111 439
β Wordlength 13 109 441
Q(Γ(p)) 10 34 75
Indicator Function 13 116 443

Table 9.4: Number of geometrically inequivalent projection design classes identified
for p = 3, 4, 5 columns from OA(36, 13, 3, 2) in Table A.3

projection size considered, with the proportion of classes identified decreasing as the

number of projection columns increases: Q(Γ(p)) identifies 77% of the three-factor

projection classes, 29% of the four-factor projection classes, and only 17% of the

five-factor projection classes. Both ASCP and β wordlength pattern identify 100%

of the three-factor projection classes from the given OA(36, 13, 3, 2). The ASCP per-

forms slightly better than the β wordlength pattern for p = 4 factors, while the β

wordlength pattern performs slightly better than the ASCP for p = 5 factors; in each

case, the difference between the number of classes identified by each method equal to

two.
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The more effective classification by the β wordlength pattern as compared to the

ASCP in the case of five-factor projections of the OA(36, 13, 3, 2) is unexpected. As

described in Section 8.2, the elements of the β wordlength pattern, βi(D), are sums

of the average squared correlations, Ave ρ2
i,j. The ASCP preserves more individual

information than the β wordlength pattern and, therefore, is expected to be more

sensitive to non-equivalence.
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CHAPTER 10

SUMMARY OF FINDINGS

The average squared correlation criterion is developed for rank ordering orthogo-

nal arrays of strength two and projection designs of these arrays. Because correlations

between contrasts represent the degree of aliasing between the contrasts, the average

squared correlation criterion can be used to select an optimal design with respect to

effect aliasing. As a consequence of the design ranking, two designs ranked individu-

ally can be declared non-equivalent.

In the case of qualitative factors, the average squared correlations are independent

of the choice of orthogonal contrast set (Section 4.3). Possible determination of non-

equivalence is a result of this theorem.

For designs with qualitative factors, the average squared correlations are grouped

by factorial order of the contrast pair. The ASCP for these designs is similar to

the GWP (Xu and Wu 2001, Ma and Fang 2001) and the α wordlength pattern

(Cheng and Ye 2004) which also group contrasts based on factorial order. However,

the ASCP provides a finer grouping than the other criteria. As a result, the ASCP

is more sensitive to the detection of non-equivalence and, thereby, the differential

ranking of designs. As shown in Chapter 5, the ASCP provides improved ranking as
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compared to the GWP and α wordlength pattern for projection designs from both

the OA(18, 7, 3, 2) and the OA(36, 13, 3, 2).

Contrast grouping by factorial order alone is not adequate for designs with quanti-

tative factors. The average squared correlation criterion, therefore, subdivides groups

with a given factorial order by polynomial degree. This methodology is in contrast

to the β wordlength pattern (Cheng and Ye 2004) which groups contrast correlations

by polynomial degree only. While both criteria are based on squared correlations, the

different groupings lead to different behavior under different conditions; in some cases

(e.g. four-factor projections of an OA(36, 13, 3, 2)) the ASCP provides a more detailed

ranking, while in other cases (e.g. five-factor projections of an OA(36, 13, 3, 2)) the

β wordlength pattern provides a more detailed ranking. Also, in some cases the

rankings of the two criteria are the same, while in other cases the ranking differ.

For designs with both qualitative factors and quantitative factors, the average

squared correlation pattern provides a meaningful description of the correlations be-

tween contrasts. This new criterion offers an alternative to current criteria for rank

ordering orthogonal arrays and their projections.
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PART II

IDENTIFICATION OF
DISPERSION EFFECTS IN

REPLICATED EXPERIMENTS
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CHAPTER 11

TESTS FOR DISPERSION EFFECTS AND
HOMOGENEITY OF VARIANCE

An effect on the variability of response is called a dispersion effect. A dispersion

effect acts on the variance of the response analogous to a location effect acting on

the mean of the response. When the variance of the response is larger at one level

of the factor than at the other level(s) of the factor, then a dispersion effect exists

(See Figure 1.1 (b)). For example, consider a factorial experiment with a factor A

having two levels labeled High and Low. Let the variance of the response, Y , be

σ2
High(Y ) when A is set at the High level, and σ2

Low(Y ) when A is set at the Low

level. If σ2
High(Y ) 6= σ2

Low(Y ), then there exists a dispersion effect of factor A; if

σ2
High(Y ) = σ2

Low(Y ), then no dispersion effect exists for factor A. For example,

Figure 1.1 (b) shows the case where σ2
High(Y ) > σ2

Low(Y )

A dispersion effect is measured as the difference between the variability of the

response when the factor is set at the different levels. In the example above, the

dispersion effect of A is measured as γ = σ2
High(Y ) − σ2

Low(Y ). In the case of a

replicated experiment, the dispersion effect can be estimated as the difference between

the observed sample variance when factor A is set at the High level and the observed

sample variance when factor A is set at the Low level, γ̂ = s2
High(Y ) − s2

Low(Y ).
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Methods for the identification of dispersion effects have been the focus of recent

research in industrial statistics. This shift from a concentration only on the mean

response to the study of dispersion is largely the result of emphasis on quality control

and quality improvement. The aim of such quality improvement is to select the

combination of factor levels that reduces the variability of the product; the reduction

in variability produces a significant financial benefit in cost savings as fewer units (or

batches) are rejected. Thus, it is necessary first to identify which factors are affecting

the variability.

11.1 Analysis of Homogeneity of Variance

The antecedent of the analysis of dispersion effects is the analysis of homogeneity

of variance. Analysis of homogeneity of variance questions whether the variances

of different samples are equal, not whether a specific factor induces differences in

variability. Also, tests of homogeneity of variance have been, and continue to be, used

to test the validity of the equal variances assumption required for many statistical

procedures (e.g. Analysis of Variance).

An early method for testing homogeneity of variance was the likelihood ratio test

proposed by Neyman and Pearson (Neyman and Pearson 1931). The likelihood ratio

test requires the assumption that the data are normally distributed; the likelihood ra-

tio test is extremely sensitive to violations of the normality assumption, exhibiting un-

controlled Type I error rates when the assumption is violated. The Neyman-Pearson

likelihood ratio test provides the foundation for numerous modifications including

Bartlett’s Test.
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The classical method for testing whether or not two samples have equal variances

is the F -test based on the ratio of the two sample variances (for example, see Box,

Hunter and Hunter (1978) page 121). This method was extended by Bartlett (1937)

to the case of more than two samples. Other early tests of homogeneity of variance

include Cochran’s Test (Cochran 1941) and Hartley’s Test (Hartley 1950), also known

as the F -max Test. As discussed in Seber (1977), each of these tests is sensitive to

departures from normality. The true level of significance can be very different from

the nominal level if the distribution of the sample data is not normal.

Work by Box (1953) emphasizes the extent of the sensitivity of Bartlett’s Test to

the normality assumptions. Box (1953) suggests a method of reducing this sensitivity

by using within-group information in the following way. The Box Test divides the

within-treatment replicates into groups of size k, computes log(s2) for each group,

and conducts an analysis of variance with the log(s2) data as the response variable.

However, the results of the Box Test are not unique, but depend on the division of

the data points into groups (Box 1953). A second disadvantage of the Box Test is the

reduction of the number of data points as a result of grouping. In general, grouping

of data leads to a loss of information.

An alternative method for testing equality of variances of two or more samples of

equal sizes was proposed by Levene (1960). Like the Box Test, Levene’s Test utilizes

the analysis of variance methodology. Unlike the Box Test, Levene’s Test transforms

each individual observation, keeping the original number of data points. Levene’s Test

is based on the construct E((Xij − µi)
2) = σ2

i for a random sample of observations

Xi1, . . . , XiNi
on a random variable Xi from a distribution with mean µi and variance

σ2
i . A one-way analysis of variance, therefore, can be performed using (Xij − µi)

2 as
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the response variable. Because in practice the µi are not known, Levene’s Test applies

the analysis of variance to Bij = (Xij − X̄i)
2. Though the Bij are not independent,

the correlation of Bij and Bik is of order n−2 (except where Xi assumes only two

values, each with equal probability). As suggested by Levene (1960), a correlation of

this order will not significantly affect the distribution of the F-statistic.

Levene (1960) further generalized his proposed methodology, allowing the use of

Wij = g(|Xij − X̄i|), where g(x) is any monotonically increasing function of x on

(0, inf). In particular, Levene (1960) studied zij = |Xij − X̄i|, Lij = log(|Xij − X̄i|),

tij = |Xij − X̄i|1/2, and sij = |Xij − X̄i|2. Monte Carlo methods were used to identify

the distributions of the F -test statistics. The simulation study found that tests based

on t and L provide poor power when the distribution of the data is normal and

uncontrolled Type I error when the distribution of the data is not normal. Tests

based on z are more powerful than tests based on s but with Type I error greater

than the nominal value (Levene 1960).

Because the mean is the best estimate of central tendency only when the under-

lying distribution is symmetric, zij = |Xij − X̄i| is likely to be significantly affected

when the underlying distribution is not symmetric. This led Brown and Forsythe

(1974) to consider other more robust measures of central tendency. In particular,

Brown and Forsythe (1974) examined the use of the within-treatment median, X̃,

and the 10% trimmed mean, X̄−10%. Similar to the work of Levene (1960), Brown

and Forsythe (1974) used a Monte Carlo study to compare Levene’s Test with the

proposed variations. Results of the study show that W10 = |Xij − X̄−10%| is the best

choice with respect to level (i.e. Type I error probability) in cases where the data
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are from a long-tailed, symmetric distribution. When data are from an asymmet-

ric distribution, W50 = |Xij − X̃i| is the best choice with respect to level (Brown

and Forsythe 1974). The difference in power between each variation and zij is small

relative to the difference in observed Type I error.

Miller (1968) conducted a Monte Carlo study to determine the power of jackknifing

in comparison to the classical F -test, Box Test, Levene’s Test, Box-Anderson Test

which adjusts the degrees of freedom for the classical F -test (Box and Andersen 1955),

and Moses Test (Moses 1963) which is the Wilcoxon two-sample rank sum test using

the log(s2) from subgroups of the within-treatment replicates for the comparison of

two sample variances. In considering Levene’s test, all four original variations (i.e.

zij, Lij, tij, and sij) were examined. The results of this study indicate that Levene’s

Test is robust but less powerful than the jackknife, Box-Andersen test, and Box Test

for long-tailed distributions. The Box Test is also shown to be robust, approximately

as powerful as the jackknife with groups of size k = 5, but less powerful than the Box-

Andersen Test and the jackknife with groups of size k = 1. This indicates that, in

fact, there is a significant loss of power due to dividing the within-treatment samples.

A thorough examination, comparison, and review of tests for homogeneity of vari-

ance was conducted by Conover, Johnson and Johnson (1981). In total, fifty-six

parametric and nonparametric tests were compared for robustness and power. Differ-

ent distributions, sample sizes (both equal and unequal), and variance combinations

were considered. All four variations of Levene’s Test (i.e. zij, Lij, tij, and sij), three

variations of Brown and Forsythe’s modification of Levene’s Test replacing the mean

with the median (i.e. z∗
ij = |Xij − X̃i|, t∗ij = |Xij − X̃i|1/2, and s∗ij = |Xij − X̃i|2), and

Box’s Test were included in the study. Based on the definition that a test is robust if
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the maximum Type I error rate is less than 0.10 for an α = 0.05 significance level test,

Conover et al. (1981) found that only five of the fifty-six tests are robust tests. Brown

and Forsythe’s variation of Levene’s Test using absolute deviation from the median,

z∗ij, and the square root of the absolute deviation from the median, t∗ij, were included

in the group of five robust tests. A variation of Bartlett’s test using the median and

two nonparametric tests were also determined to be robust. Additionally, Brown and

Forsythe’s modification of Levene’s Test using absolute deviation from the median,

z∗ij, and the two nonparametric tests were found to be more powerful than the other

robust tests. The researchers noted that the main benefit of using the median in place

of the mean is the reduction of the observed Type I error rates, but only for certain

of the tests (Conover et al. 1981). It is interesting but not surprising to note that all

of the robust tests use the median rather than the mean.

Although developed for a different purpose, the methods proposed by Levene

(1960) and Brown and Forsythe (1974) may provide a foundation for developing a test

for the identification of dispersion effects in replicated experiments. It is reasonable

to believe that the Levene (1960) and Brown and Forsythe (1974) methods would be

powerful for identifying dispersion effects, similar to the results for homogeneity of

variance. Extensions of these methods form the foundation for the current research.

11.2 Identification of Dispersion Effects in Unreplicated Ex-
periments

Replicated experiments generally require a large number of runs and, consequently,

most research on identification of dispersion effects has focused on unreplicated ex-

periments. In order to reduce further the required number of runs, fractional factorial

and other similar designs are most frequently investigated.
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Box and Meyer (1986) proposed a method for dispersion effect identification based

on the natural logarithm of the ratio of the sums of squared residuals associated with

the high and low levels of a factor. Sample variances are computed using the residuals

obtained from fitting an identified location model. Use of the residuals is required

to correct for the aliasing of location and dispersion effects; in order to eliminate

location-dispersion aliasing, “large” location effects, including the overall mean, must

be fit to the data. Box and Meyer (1986) conclude that using the residuals to calculate

the sample variances is sufficient for the purpose of dispersion effect identification.

Identification of the active dispersion effects using the Box-Meyer method is highly

subjective; the logarithm of the ratio of the variances of the sample residuals are plot-

ted and the “large” values are visually identified (Box and Meyer 1986). While normal

theory significance values can be marked for guidance, they are not valid critical val-

ues since the F -test assumptions are not satisfied. The Box-Meyer test statistic does

not possess a well-defined reference distribution since the statistic is based directly

on the residuals from fitting a location model identified by the researcher based on

the data. This disadvantage is true of all methods based on location model residuals.

Bergman and Hynén (1997) proposed an alternative method for dispersion effect

identification that produces a test statistic with a well-defined distribution. This

distribution then provides a critical value with which to conduct a formal significance

test, removing the subjectivity associated with the Box-Meyer method. To test for

a dispersion effect of factor i, the Bergman-Hynén statistic is equal to the natural

logarithm of the ratio of the sum of the squared residuals at the high level of the

factor to the sum of the squared residuals at the low level of the factor, where the

residuals are computed from fitting a location model including the identified active
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location effects, the effect of the factor i, and all interaction terms between the active

location effect factors and factor i. The idea of this expanded location model will

be the basis for the residuals studied as a possible measure in the second stage of

simulations in the current work (see Chapter 16).

In an unreplicated experiment, misidentification of the location model can have

a significant impact on the dispersion effects analysis. While misidentification of

nonexistent effects can decrease the efficiency of the the dispersion analysis, it will

not affect the validity of the method. The more serious issue arises from the non-

identification of small to moderate location effects. The impact of unidentified active

location effects on the methods of Box and Meyer (1986) and Bergman and Hynén

(1997) was examined by Pan (1999). Using computer simulation, Pan (1999) showed

that unidentified location effects can have a serious impact on both the power and

error probability of dispersion effect identification. Also, inclusion of borderline lo-

cation effects is not sufficient to prevent this problem. The impact of unidentified

location effects exists for both methods examined. Pan (1999) cites the cause of this

issue as the aliasing of location and dispersion effects in unreplicated experiments.

Bursztyn and Steinberg (2005) present a review of a number of methods for dis-

persion effect screening in unreplicated experiments including, among others, the

Box-Meyer and Bergman-Hynén methods as well as the following. Harvey’s method

(Harvey 1976) and Wang’s method (Wang 1989) both rely on fitting a location model

using least squares and constructing a test statistic from the model residuals. The

nonparametric method of McGrath and Lin (2002) for identifying dispersion effects

does not require the assumption that the data are normally distributed; the test in-

stead uses the rank of the location model regression coefficient. McGrath and Lin
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(2001) also developed a parametric method to deal with multiple dispersion effects

and interactions. Brenneman and Nair (2001) proposed a method combining a modi-

fied Wang method and a log-linear dispersion model for joint location and dispersion

modeling. Other methods for the identification of dispersion effects have been pro-

posed by researchers including Chowdhury and Fard (2001), Liao (2000), and Holm

and Wiklander (1999). Bursztyn and Steinberg (2005) concluded that screening of

dispersion effects from small unreplicated experiments should be undertaken with

caution. From their review, the Bergman-Hynén method is identified as a good quick

screen for large influential dispersion effects; modeling can be used to identify addi-

tional dispersion effects.

Ankenman and Dean (2003) also provide a review of various methods for the

identification of dispersion effects.

11.3 Identification of Dispersion Effects in Replicated Ex-
periments

The solution to the issue of location-dispersion aliasing is replication; through

replication, location and dispersion effects can be completely separated. Extension

of certain methods (e.g., Box and Meyer (1986) and Bergman and Hynén (1997)) to

replicated experiments was suggested by Pan (1999). The methods of Box and Meyer

(1986) and Bergman and Hynén (1997) for unreplicated experiments are extended by

Pan (1999) for use in replicated experiments by replacing the sum of squared location

model residuals with a measure of with within-treatment replicate variability. The

variability is measured by the sum of squared scaled differences between observations

for two replicates per treatment; for more than two replicates per treatment, the
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within-treatment variance can be used. Thus, the identification and fitting of a loca-

tion model is not required in replicated experiments. While the extension methods

proposed by Pan (1999) for replicated experiments eliminate the impact of misidenti-

fication of location effects, identification of dispersion effects is still effectively based

on a single dispersion measure at each design point.

The extension of the Box-Meyer method to replicated experiments was studied

by Nair and Pregibon (1988). The Box-Meyer method was extended by using the

sum of the squared residuals for all replicates at the high and low levels of the factor.

Nair and Pregibon (1988) found that the natural logarithm of the ratio of the sums

of squared residuals is generally biased and can lead to either failing to identify an

active dispersion effect or incorrectly “identifying” an inactive dispersion effect. Nair

and Pregibon (1988) also found that the method of probability plotting proposed by

Daniel (1959) is invalid since the bias and variance of the test statistic depend on

the true but unknown model; this dependence also makes it difficult to construct a

formal test.

In replicated experiments, a commonly used method for the identification of dis-

persion effects, based on the work of Bartlett and Kendall (1946), is a least squares

analysis of the logarithm of the sample variances or the sample standard deviations of

the within-treatment replicates. The natural logarithms of the sample variances have

approximate normal distributions with only the mean of the distribution dependent

upon the true population variance. Also, the logarithm converts multiplicative rela-

tionships into additive relationships. Based on a study of the distribution, Bartlett

and Kendall (1946) suggested that the natural logarithm of the variance produces

transformed variates which are appropriate for use as the response in a least squares
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analysis when the samples contain at least ten observations each; when samples con-

tain between five and nine observations, a least squares analysis using the transformed

variates of the response should be performed cautiously. Least squares analysis of the

natural logarithm of the variance should not be used when the samples contain fewer

than five observations each. The natural logarithmic transformation of the within-

treatment variances and least squares analysis of the transformed variates yields a test

statistic which is unbiased and independent of the error distribution. Nair and Preg-

ibon (1988) found this methodology to be useful for dispersion effect identification

but not estimation.

With respect to quality control, Taguchi (1986) proposed the use of a signal-

to-noise ratio for jointly studying location and dispersion in screening designs. As

discussed by Wu and Hamada (2000), the signal-to-noise ratio is a composite measure

combining the sample mean and sample variance into a single measure. The goal of

using a signal-to-noise ratio is to identify a factor-level combination that will produce

the smallest possible variance and a mean target value. Three main signal-to-noise

ratios were proposed by Taguchi (1986) to be used according to the mean response

target value: the nominal-the-best signal-to-noise ratio when the target value is spec-

ified; the smaller-the-better signal-to-noise ratio when the smallest possible target

value is desired; and the larger-the-better signal-to-noise ratio when the largest pos-

sible target value is desired. In using the nominal-the-best signal-to-noise ratio, the

mean and variance may or may not be confounded. As discussed in Box (1988), it

may be possible to divide the factors such that only a subset of the factors will have

a dispersion effect while a disjoint subset will have a location effect. In such cases,

the location and dispersion are not confounded by use of the signal-to-noise ratio. In
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contrast, the smaller-the-better and larger-the-better signal-to-noise ratios confound

the location and dispersion.

Recently, Mackertich et al. (2003) suggested an alternative method for detecting

dispersion effects in replicated experiments. This method is analogous to that of

Levene (1960) in that the authors proposed applying a function to each individual

observation such that each of the transformed observations provide a measure of

the dispersion. Analysis of variance is then performed on the modified data. The

advantage of this alternative method is that, for r replicate observations at each of v

treatment combinations, the total rv degrees of freedom is conserved since the total

rv modified observations are used. The intention is that preservation of the degrees

of freedom will increase the probability of detecting a dispersion effect.

One specific function proposed by Mackertich et al. (2003) is the absolute devia-

tion from the mean, which is the same transformation proposed by Levene (1960) for

testing homogeneity of variance. A second alternative function examined by Macker-

tich et al. (2003) is the absolute deviation from the mean raised to the 0.42 power. The

power transformation is based on the Kullback-Leibler information and is included

as a transformation of the function to achieve approximate normality.

Mackertich et al. (2003) used simulation to rank order the effectiveness of seven

traditional methods and their two proposed alternative methods for the detection of

dispersion effects. Phase I of the current work replicates and extends this simulation

work; see Chapter 13 and Chapter 14. Additional simulations are performed in Phase

II to determine empirical critical values and study the Type I error probabilities and

the power of selected measures based on the empirical critical values under varying
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models. The final result is a recommendation of robust and powerful dispersion

measures for identifying dispersion effects in replicated experiments.
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CHAPTER 12

MODEL

Throughout the current work, the observation for the j th replicate of the ith treat-

ment combination is generated according to the following location-dispersion model:

Yij = µi + εij
i = 1, 2, . . . , I
j = 1, 2, . . . , r

(12.1)

where

µi = x′
µ,iβ (12.2)

and x′
µ,i is the ith row of the location model matrix Xµ corresponding to treatment

level combination i. The error variables, εij, are assumed to be independent and to

have identical distributions with mean zero and variance σ2
i , where

σi = g(x′
σ,iγ). (12.3)

and x′
σ,i is the ith row of the dispersion model matrix Xσ corresponding to treatment

level combination i. Except where indicated, the normal distribution is the assumed

distribution for the εij (i.e., εij ∼ N(0, σ2
i )) . Two different forms of (12.3) are

studied in the current work: an additive dispersion model with g(x′
σ,iγ) = x′

σ,iγ and

a multiplicative dispersion model with g(x′
σ,iγ) = exp(x′

σ,iγ).
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12.1 Additive Dispersion Model, g(x′
σ,iγ) = x′

σ,iγ

The Phase I model is taken from Mackertich et al. (2003) and assumes an additive

dispersion model

σi = x′
iγ. (12.4)

In Phase I, values of γi are specified and fixed. (See Chapter 15 for the specific

location and dispersion models assumed.) The selected values of γi produce σi > 0

for all i in these simulations. In general, however, the additive dispersion model would

not guarantee positive σi for all i.

12.2 Multiplicative Dispersion Model, g(x′
σ,iγ) = exp(x′

σ,iγ)

For Phase II of the current work, the multiplicative dispersion model is assumed,

with

σi = exp(x′
iγ) (12.5)

(see for example Wolfinger and Tobias (1998)). One significant advantage of the

variance model (12.5) is that the standard deviations σij are necessarily positive. The

bounded nature of the likelihood function using (12.5) was cited by Harvey (1976)

as one of three reasons why this multiplicative variance model is attractive; Harvey

(1976) also cites the simpler form of the likelihood ratio test for the multiplicative

model and consistency of the dispersion effect estimators. The multiplicative variance

model has been supported and used by researchers including Harvey (1976), Cook and

Weisberg (1983), Aitkin (1987), Verbyla (1993), and Wolfinger and Tobias (1998).
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CHAPTER 13

MEASURES FOR PHASE I

Mackertich et al. (2003) examined a total of nine dispersion measures: seven

“traditional” measures and two proposed alternative measures. Let yi1, . . . , yini
be

a random sample of observations on a random variable Yi from a distribution with

mean µi and variance σ2
i . Except where indicated, the random variable Yi is assumed

to follow a normal distribution, N(µi, σ
2
i ). The seven traditional dispersion measures

studied were:

T1. Within-run sample standard deviation, s =
√

1
nj−1

∑nj

j=1(yij − ȳi·)2

T2. Within-run sample variance, s2 = 1
nj−1

∑nj

j=1(yij − ȳi·)
2

T3. Natural logarithm of the within-treatment sample standard deviation (plus 1.0),

ln(s + 1)

T4. Nominal-the-best signal-to-noise ratio, S/NN1 = 10log( ȳ2

s2 )

T5. Alternative nominal-the-best signal-to-noise ratio, S/NN2 = −10log(s2)

In this project, S/NN2 is modified to ln(s2 + 1)

T6. Smaller-the better signal-to-noise ratio, S/NS = −10log( 1
n

∑n
i=1

1
y2

i

)
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T7. Larger-the-better signal-to-noise ratio, S/NL = −10log( 1
n

∑n
i=1 y2

i )

The two proposed alternative dispersion measures studied were:

M1. Absolute deviation from the within-treatment mean, |yij − ȳi|

M2. Absolute deviation from the within-treatment mean raised to the 0.42 power,

|yij − ȳi|0.42

In Phase I of the current work, the same seven traditional dispersion measures are

examined (see Section 13.1) and, in addition, thirty alternative dispersion measures

are examined. The alternative dispersion measures are divided into four groups based

on:

1. absolute deviation from the mean, |yij − ȳi| (Section 13.2)

2. absolute deviation from the median, |yij − ỹi| (Section 13.3)

3. residuals, yi − x′
iβ̂ (Section 13.4)

4. absolute deviation from a trimmed mean, |yij − ȳi·−k |, where k is the number of

observations trimmed from each tail, for k = 1, 2 (Section 13.5)

13.1 The Traditional Measures

The sample variance, s2, provides an intuitive, unbiased estimate of the true vari-

ance, σ2. Similarly, the sample standard deviation, s, provides an intuitive estimate

of the true standard deviation, σ. Thus, these sample statistics are natural choices

for the identification of dispersion effects.

Even when the response variable follows a normal distribution, neither the sample

variance nor the sample standard deviation has a normal distribution. The violation
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of this assumption creates an issue with using the analysis of variance procedure

to analyze these two measures. Bartlett and Kendall (1946) showed that, when

the response variable follows a normal distribution, the natural logarithm of the

sample variance follows approximately a normal distribution. Therefore, analysis

of the natural logarithm of the standard deviation is preferred to analysis of the

standard deviation when testing for homogeneity of variance. Bartlett and Kendall

(1946) stated that “the transformation may be safely used of n = 10 and over, more

tentatively from n = 5 to n = 9, and probably not at all below n = 5.” Use of the

natural logarithm of the sample standard deviation is likewise an attempt to attain a

transformed observation which follows approximately a normal distribution. Before

taking the logarithm of both the sample variance and the sample standard deviation,

1.0 is added to each measure in order to prevent problems due to zero values resulting

from rounding.

The three signal-to-noise ratios T4, T6, and T7 were proposed by Taguchi (1986)

as a performance measure for quality improvement. Each ratio combines the measure-

ment of location and dispersion. The nominal-the-best signal-to-noise ratio is used

for cases when the goal is to achieve a specified target value while minimizing the

variability about the target. Generally, this is the goal of most experiments, including

the experiments simulated in this project. The smaller-the-better signal-to-noise ratio

and the larger-the-better signal-to-noise ratio are designed to achieve the smallest or

largest response, respectively, while minimizing variability. As neither of these is the

goal of the simulated experiments in this study, it is expected that neither of these

ratios will perform well. However, they are included in the simulations in order to

compare to the results of the present study with those of Mackertich et al. (2003).
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13.2 Measures Based on the Within-Treatment Mean

The absolute deviation from the mean, |yij − ȳi|, was proposed as a measure of

dispersion by Mackertich et al. (2003). The absolute deviation from the mean was the

original measure proposed by Levene (1960) for testing for homogeneity of variance.

The mean of the distribution is a measure of the center of the distribution and

distance from the mean provides a measure of the spread of the distribution. (By

definition, the variance of the distribution is the average of the squared distances

from the mean.) The greater the sum of the absolute values of the distances (i.e. the

magnitudes of the distances), the greater the variability of the distribution. Thus,

each individual deviation from the mean provides information about the variability.

The use of deviation from the mean in place of the variance to identify dispersion

effects is analogous to the use of individual observations in place of sample means to

identify location effects. In each case, the individual components are used for analysis.

If a full model (i.e. a model with the maximum number of estimable effect pa-

rameters included) is fit to the data, the fitted values, β̂′xj, are equal to the within-

treatment mean, ȳi·. The advantage in fitting the full location model is that all

location effects, both active and inactive, are fit and, thus, there is no confounding

effect of unidentified location effects. In this case, the issue raised by Pan (1999) with

respect to unidentified location effects does not apply. However, in this case, small

location effects are included in the model, leading to decreased efficiency of the test

(Pan 1999).

The disadvantage of using the absolute deviations from the within-treatment

means is that these measures are dependent; the rth deviation from the mean can

be derived from the other r − 1 deviations from the mean. In order to remove the

138



complete dependence, we could use r− 1 of the r absolute deviations from the mean,

where r is the number of replicates per treatment. The disadvantage of this method-

ology would be the loss of one degree of freedom. However, this loss would not be

as great as the loss using traditional measures. The question is whether the removal

of complete dependence or the preservation of one degree of freedom is the greater

advantage. To find an answer to this question, the set of r − 1 absolute deviations

from the mean was included in the simulations in addition to the complete set of r

absolute deviations from the mean.

Starting from the assumption of that the original observations, yij, come from a

normal distribution, it can be shown that the distribution of |yij − ȳi| is half-normal

with mean µ =
√

2(n − 1)σ2
Y /nπ and variance σ2 = ((n− 1)σ2

Y /n)(1− (2/π)), where

σ2
Y is the variance of the Yi. As stated above, the |yij − ȳi| are not independent.

However, Levene (1960) showed that the order of the correlation is n−2, and assumed

it to have little effect.

Various power transformations of |yij − ȳi|, especially |yij − ȳi|0.42 studied by Mack-

ertich et al. (2003), are included in the current study. It can be shown that the

distribution of Z = |yij − ȳi|a is

f(z) =
2√

2π
√

σ2

1

a
z

1
a
−1exp(− z

2
a

2σ2
). (13.1)

When a = 2,

f(z) =
1√

2π
√

σ2
z−

1
2 exp(− z

2σ2
) (13.2)

so that Z ∼ Gamma(1/2, 2σ2). The variance of the Gamma(1/2, 2σ2) distribution

is (1/2) × 22 = 2.0 (see Casella and Berger (1990) Section 3.2) which matches the
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variance calculated by Levene (1960) since the third moment γ2 = 0 for the normal

distribution.

13.2.1 Power Transformations

Six power transformations of the absolute deviation from the within-treatment

mean are examined in Phase I: 0.35, 0.42, 0.55, 1.5, 2, and 5.

The square of the function, |yij − ȳi|2, is proposed for several reasons. Squaring

will make large values larger while leaving small values relatively unchanged, thereby

magnifying the dispersion information in the transformed data.

The power 0.42 was originally proposed by Mackertich et al. (2003) as the opti-

mal power for |yij − ȳi|. The exponent value 0.42 is based on the Kullback-Leibler

information. The Kullback-Leibler information is a measure of the similarity of two

distributions, in this case the distribution of |yij − ȳi| and the normal distribution.

By raising data from one distribution to a power equal to the Kullback-Leibler in-

formation, the transformed data more closely approximate the second distribution

(Kullback and Leibler 1951).

The power values of 0.35 and 0.55 were given by Mackertich et al. (2003) as

the endpoints of the range of power transformations applied to the absolute deviation

from the mean in order to induce random variables that follow approximately a normal

distribution. The absolute deviation from the mean raised to the 0.35 and 0.55 powers

are included to test the sensitivity of the 0.42 power transformation to the choice of

power.

In order to extend the range of powers, the exponent values 1.5 and 5 are included

in the analysis.
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13.3 Measures Based on the Within-Treatment Median

The absolute deviation from the median, |yij − ỹi|, is similar to the variant of Lev-

ene’s Test proposed by Brown and Forsythe (1974) (see Section 11.1). Like the mean,

the median is a measure of the center of the distribution. If the distribution of the

responses, yij, is symmetric, then the mean and the median are equal. However, the

median is less affected than the mean by extreme observations. Thus, for extremely

skewed response distributions, the median may be a better estimate of the center of

the distribution and may lead to a more robust test for dispersion. The robustness in

testing for homogeneity of variance resulting from use of the median in place of the

mean is supported by the results of Conover et al. (1981).

The same six power transformations listed in Section 13.2.1 for the absolute de-

viation from the mean are applied to the absolute deviation from the median.

13.4 Measures Based on the Residuals and Absolute Resid-
uals

For the linear model discussed in Chapter 14 and x′
i the row of the model matrix

X corresponding to treatment level combination i, the residuals are equal to yi − x′
iβ̂.

The residuals, then, are a measure of the fit of the model to the data; the residuals

measure the difference between the observed data and the model predictions. Large

residuals indicate a large variability about the mean response. Differences between

the averages of the magnitudes of the residuals at the different level settings of the

factor would be an indicator of a possible dispersion effect.

With a replicated experiment, the residuals can be analyzed as individual obser-

vations of the dispersion. This methodology can be viewed as an extension of the
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methods of Box and Meyer (1986) and Bergman and Hynén (1997) to replicated

experiments, with the location-dispersion confounding eliminated as a result of the

replication.

Different location models can be fit to the data; each different model provides

different residuals for analysis. In applications, the true location model is not known.

The question is then which location model to fit to the data. It is this question

and the fact that it is not absolutely answered that lead to the warning of the effect

of unidentified location effects by Pan (1999). As with unreplicated experiments, if

the location model is selected based on an imperfect criterion, unidentified location

effects may not be included in the model. These unidentified location effects can affect

the subsequent dispersion analysis. Conversely, if misidentified nonexistent location

effects are included, the efficiency of dispersion detection is decreased (Pan 1999).

Because of the question associated with the selection of a location model and

the uncertainty of the impact of fitting the incorrect location model, residuals from

more than one model are examined in Phase I of this work. The first location model

fit corresponds to perfect knowledge of the true location effects (but not their size).

In application, it is possible that the exact location model might be fit as a result

of correct identification of the true location effects. The second location model fit

to the data is a main effects model, representing the simplest location model that

might realistically be fit in practice. The main effects location model may exclude

significant location effects and include small location effects. The saturated location

model (i.e. the location model including all main effects and two-factor interactions) is

also considered in the current work since residuals from fitting the saturated location

model are equivalent to absolute deviations from the mean.
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If the assumptions of the standard linear model are not violated, the residuals

follow a normal distribution with mean µRi
= 0 and variance σ2

Ri
= σ2

Y (1−pii), where

σ2
Y is the variance of the Yi and pii is the ith diagonal element of P = X(X′X)−1X′.

The residuals are not independent since they are based on the fitted values, which

are all based on the same fitted model. However, when the sample size is large with

respect to the number of parameters in the model, the dependence of the residuals is

nonsignificant and can be ignored (Neter, Wasserman and Kutner 1990).

The absolute values of the residuals, |yi − x′
iβ̂|, are also examined in this work. By

taking absolute value, both large positive residuals and large negative residuals will

represent large dispersion. The absolute value residual is equivalent to the absolute

deviation from the mean when a saturated location model is fit to the data.

Starting from the known distribution of the residuals, it can be shown that the

absolute residuals follow a half-normal distribution with mean µARi
=
√

π/2σ2
Ri

and

variance σ2
ARi

= σ2
Ri

(1 − 2/π) and are not independent. The probability density

function of Z = |yi − x′
iβ̂|

a
is equal to that of |yij − ȳi|, whose probability density

function given in 13.1, with σ2
i replaced by σ2

Ri
; in the case of a = 2, the probability

density function is equal to that of |yij − ȳi|2, whose probability density function is

given in 13.2, with σ2
i replaced by σ2

Ri
, giving Z ∼ Gamma(1/2, 2σ2

Ri
)

Similar to the case of the absolute deviations from the mean, the non-independence

of the transformed observations using a function of the residuals is a violation of the

most important assumption of the ANOVA procedure. Such a violation makes the

use of F -tests and F -distribution critical values invalid.

Again, the same six power transformations listed in Section 13.2.1 for the absolute

deviation from the mean are applied to the absolute residuals.
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13.5 Measures Based on the Within-Treatment Trimmed Mean

Results from pilot simulations for the current work indicated the absolute devia-

tion from the within-treatment median as a leading choice of dispersion measure. In

the case of r = 4 replicates per treatment, the median is equal to the mean of the two

middle observations, which is equal to the the trimmed mean with one observation

trimmed from each tail. It is, thus, unclear whether it is the properties of the median

or of the trimmed mean that are at work in providing a good dispersion measure.

The trimmed mean, |yj − ȳ−k|, is less influenced than the mean by extreme obser-

vations since it eliminates the most extreme observations from each tail. Because it

is the average of more than one central observation, the trimmed mean utilizes more

information than does the median. Therefore, deviation from the within-treatment

trimmed mean will be examined. This measure is similar to the variant of Levene’s

Test proposed by Brown and Forsythe (1974) as discussed in Section 11.1.

Similar to the other measures, the same six power transformations listed in Sec-

tion 13.2.1 are applied to the absolute deviation from the median.

13.6 Other Dispersion Measures

Two additional alternative dispersion measures are proposed and examined. The

within-treatment replicates are divided randomly into two approximately equal-sized

groups. The resulting measure is called [ln(s + 1)]HALF . The natural logarithm of

the standard deviation (plus one) is then calculated for each group and used as the

response measure. This measure is similar to the Box Test with k = 2 groups (Box

1953). By computing ln(s + 1) for each half, two independent statistics are calculated

from the r replicates within each treatment instead of only one. So [ln(s + 1)]HALF
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captures the good qualities of ln(s + 1) while hopefully increasing overall power of

the test by increasing the number of total observations. However, [ln(s + 1)]HALF

reduces the number of observations from the original r to two, thereby still reducing

degrees of freedom from the total possible. As with the Box Test, there is a loss of

information due to splitting the samples. Also similar to the Box Test, the results

from [ln(s + 1)]HALF are not unique depending on the division of the replicates into

groups.

To retain all original degrees of freedom, [ln(s + 1)]ALL is proposed. For [ln(s + 1)]ALL,

all groups of r − 1 within-treatment replicates are formed and ln(s + 1) is calculated

for each group. By calculating ln(s + 1) for all groups of r − 1 replicates, a total of

r dispersion observations are created. Thus, there is no loss of degrees of freedom.

However, since ln(s + 1) is computed for all groups of r−1, the r dispersion measures

are not independent.
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CHAPTER 14

PHASE I STUDY SIMULATION

For all simulations in the current study, a 25−1
V fractional factorial design was used.

The single replicate design matrix is shown in Table 14.1. This design supports a full

second-order model, allowing for the independent estimation of all main effects and

two-factor interaction effects (see, for example, Dean and Voss (1999) Chapter 15).

The procedure for simulating data is as follows. Values of µi are calculated ac-

cording to (12.2) with

β =
[

100 10 −5 7 0 0 0 0 5 0 −4 0 0 0 0 0
]′

(14.1)

for each i = 1, 2, . . . , 16 and the treatment combinations in Table 14.1. Similarly,

values for σi are generated according to (12.3) with g(x′
σ,iγ) = x′

σ,iγ,

γ =
[

10 1 1.5 −1 γ4 0.75 0 0 0.5 0 −0.75 0 0 0 0 0
]′

(14.2)

and the value of γ4 varying from zero to four in increments of 0.05. A vector of rv

random variates, εij, is then generated using a random N(0, 1) number data gener-

ator intrinsic to the IMSL library in FORTRAN. (See IMSL Fortran Library User’s

Guide: STAT/LIBRARY Volume 2 of 2 (1994-2003) Chapter 18 for more information

regarding data generators.) The vector of random variates, εij, is standardized so that
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X1 X2 X3 X4 X5

-1 -1 -1 -1 1
-1 -1 -1 1 -1
-1 -1 1 -1 -1
-1 -1 1 1 1
-1 1 -1 -1 -1
-1 1 -1 1 1
-1 1 1 -1 1
-1 1 1 1 -1
1 -1 -1 -1 -1
1 -1 -1 1 1
1 -1 1 -1 1
1 -1 1 1 -1
1 1 -1 -1 1
1 1 -1 1 -1
1 1 1 -1 -1
1 1 1 1 1

Table 14.1: Single replicate 25−1
V design matrix used for simulations

the mean is exactly zero and the variance exactly one; if the εij are not standardized,

the exact mean and variance of the within-treatment samples can vary considerably

about the intended values, affecting the simulation results. The simulated data value,

yij, is produced by multiplying σi by εij and adding µi. Once the data are simulated,

each dispersion measure is calculated.

The calculated dispersion measures described in Chapter 13 are used as the re-

sponse data for analysis. Following Mackertich et al. (2003), the model fit to the

dispersion measure data is the exact dispersion model used to generate the data,

(i.e. the model including effects of X1, X2, X3, X4, X5, X2X3, and X1X4), assuming

perfect knowledge of the effects in the model. As a result of fitting only the known

dispersion effects in the model, the power of the test should be high.
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A test of the null hypothesis

H0 : γ4 = 0 (14.3)

is completed using the test statistic

M =
(Aγ̂)′(A(X′X)−1A′)−1(Aγ̂)

(f(Y) − Xγ̂)′(f(Y) − Xγ̂)
(14.4)

(Scheffé 1959) where f(Y) is the vector of the transformed observations (e.g. |yij − ȳi|,

|yi − x′
iβ̂|, |yij − ỹi|, etc.) and A =

[
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]′
.

Each calculated M is compared to a critical value.

Independent sets of of data are generated 100,000 times for each value of γ4.

Based on each of the 100,000 simulations, the total number of times the test rejects is

counted. In the case that γ4 = 0, the proportion of times the test rejects is a measure

of the Type I error rate. In all other cases (i.e. γ4 6= 0), the proportion of times the

test rejects is a measure of the power to detect the active dispersion effect, γ4.

Two different critical values are used to conduct each test. First, each calculated

M is compared to a critical value from the F -distribution; the F -distribution with 1

and v − p = 16 − 8 = 8 degrees of freedom is used for tests based on the traditional

measures while the F -distribution with 1 and rv − p = (4 × 16) − 8 = 56 degrees

of freedom is used for tests based on the alternative measures. (For these tests,

v = 16 is the number of treatment combinations, r = 4 is the number of replicates

per treatment combination, and p = 8 is the number of parameters estimated in the

model. For Phase I, only the overall variance and dispersion effects known to be

active are included in the model.) Tests against the F -distribution critical values

are conducted to compare with the results of Mackertich et al. (2003); the results of
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these tests are not considered in this work, except with respect to the stability of the

simulations (see Section 15.2).

The test against the F -distribution critical value assumes that the calculated

dispersion data met the assumptions of the analysis of variance procedure. It is

known that some of the measures violate at least one of the analysis of variance

assumptions (see Chapter 13), and this test may not be exactly appropriate. In

addition to testing against the F -distribution, an empirical critical value is used.

An α = 0.05 significance level empirical critical value for each dispersion measure is

determined from the 100,000 calculated M values as the 95th percentile value of the

calculated test statistics with γ4 = 0 and N(0, σ2
i ) errors. For each Phase I simulation,

a unique critical value is determined for each measure.

Simulations are run for different numbers of replicates, r, and different distri-

butions of εij in Model (12.1). Generating from a normal error distribution, the

number of replicates at each treatment combination is varied over the range r = 2

to r = 10. With r = 4, four different error distribution are considered: Normal(0,1),

Beta(1/2,1/2), Cauchy(0,1), and Exponential(1). For each error distribution, the

random error variates are always standardized to guarantee that the mean is exactly

zero and the variance is exactly one to prevent additional, uncontrolled variability in

the generated observations.

Finally, with r = 4 and a normal error distribution, an active location effect of X4

is included in the location model for additional simulations. When the active location

effect is included in the location model, residuals are calculated based on the known

model excluding X4 in order to determine the effect on the residuals of an unidentified
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active location effect, as well as the exact known model, main effects model, and the

saturated model.

Plots of selected power curves will be presented in Section 15.1, where results will

be discussed. In Section 15.1, the Phase I simulation results will be used to rationalize

reduction of the list of measures for consideration in Phase II. Tables of results from

the Phase I simulations are available upon request.
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CHAPTER 15

PHASE I STUDY RESULTS

15.1 Phase I Results

The results of the Phase I simulations are used to identify promising dispersion

measures for further study in Phase II under less specific models. In this section, the

discussion of the selected results from Phase I focus on dividing the original list of

measures (given in Chapter 13) into two groups: one group to be studied in Phase II

and one group to be eliminated.

As the goal of this work is to identify dispersion measures that increase the power

of effect detection as compared to the current traditional measures, each alternative

measure is compared to a selected traditional measure. Results for the traditional

measures are, therefore, discussed first (Section 15.1.1). Discussion of the results for

the proposed alternative measures are then organized into the four basic measures

groups in order of power: residuals (Section 15.1.2), absolute deviation from the mean

(Section 15.1.3), absolute deviation from the median (Section 15.1.4), absolute devi-

ation from the trimmed mean (Section 15.1.5), and other measures (Section 15.1.6).

To compare the dispersion measures, the power to detect the dispersion effect of

interest, γ4, across the range of effect sizes using the test against the empirical critical
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Figure 15.1: Power curves for tests using traditional measures with data from sim-
ulation of model (12.1) with location effects (14.1), dispersion effects (14.2), and
g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error distribution, testing against the

empirical critical value to control Type I error equal to 0.05

values to achieve an α = 0.05 significance level is used as the standard for judgement.

The size of the error rate for tests against the F -distribution critical values is not

considered since tables of empirical critical values can be constructed based on Monte

Carlo simulation.

15.1.1 Traditional Measures

In this section the performance of the traditional measures is examined. The

power curves, based on empirical critical values, for the seven traditional measures

are given in Figure 15.1. These power curves are for simulations of a normal error

distribution with r = 4 replicates per treatment using the model and procedures

described in Chapter 14.

152



As discussed in Chapter 13, it is not expected that the smaller-the-better and

the larger-the-better signal-to-noise ratios will perform well in this simulation study.

Based on Figure 15.1, it is clear that these two signal-to-noise ratios provide extremely

low power for detecting the dispersion effect across all sizes of the effect. The poor

performance of these two measures is consistent across all numbers of replicates and

across all error distributions. The performance of the smaller-the-better and the

larger-the-better signal-to-noise ratios differs when a location effect of X4 is introduced

into the location effects; when β4 > 0, both signal-to-noise ratios are powerful to reject

the null hypothesis of γ4 = 0, even when in truth γ4 = 0. These results are, again,

not surprising as the signal-to-noise ratio confounds the location and dispersion effect.

When a location effect exists, the signal-to-noise ratios are identifying the location

effect as the dispersion effect. Therefore, the smaller-the-better signal-to-noise ratio

and the larger-the-better signal-to-noise ratio are eliminated from further study.

From Figure 15.1, the within-treatment variance, s2, has lower power to detect

the dispersion effect than the other traditional measures (i.e. s, ln(s2 + 1), ln(s + 1),

S/NN). The difference in performance between s2 and the other traditional mea-

sures increases as the size of the dispersion effect increases; for the largest effect

sizes examined, the difference in performance decreases as the number of replicates

per treatment increases. Therefore, the within-treatment variance, s2 is not studied

further.

Traditionally, ln(s + 1) is the measure of choice for the type of dispersion effect

analysis studied here (based on the work of Bartlett and Kendall (1946)). Based on

the current work, ln(s + 1) ranks among the best traditional measures for the Phase I

simulations. The within-treatment standard deviation, s, the natural logarithm of the
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Figure 15.2: Power curves for functions of the residuals fitting known location effects
with data from simulation of model (12.1) with location effects (14.1), dispersion
effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error distribution,

testing against the empirical critical value to control Type I error equal to 0.05

within-treatment variance, ln(s2 + 1), the natural logarithm of the within-treatment

standard deviation, ln(s + 1), and the nominal-the-better signal-to-noise ratio, S/NN ,

all perform similarly according to Figure 15.1. This pattern of similarity exists for

all r ≥ 4 replicates per treatment. For 4 ≤ r ≤ 8 replicates, s has the greatest

power among the traditional measures when γ4 = 1 and γ4 = 2; ln(s + 1) has the

greatest power when γ4 = 2 and γ4 ≥ 3 for r > 8. Because no traditional measure

clearly dominates, s, ln(s + 1), ln(s2 + 1), and S/NN are all studied in Phase II. For

comparison of Phase I results, ln(s + 1) is used as the standard for evaluation of the

alternative measures.
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Figure 15.3: Power curves for functions of the residuals fitting known location effects
with data from simulation of model (12.1) with location effects (14.1), dispersion
effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 7 replicates, and normal error distribution,

testing against the empirical critical value to control Type I error equal to 0.05

15.1.2 Absolute Residuals, |yi − x′
iβ̂|

Assuming the true location effects are known or can be identified exactly, Fig-

ure 15.2 shows the power curves for the residuals, yi − x′
iβ̂, the absolute residuals,

|yi − x′
iβ̂|, and the power transformations of |yi − x′

iβ̂|. The absolute residuals and

five of the six power transformations show increased power to detect the dispersion ef-

fect compared to ln(s + 1); only yi − x′
iβ̂ and |yi − x′

iβ̂|
5

show significantly decreased

power compared to ln(s + 1) and will be eliminated from further consideration.

The absolute residuals, |yi − x′
iβ̂|, and |yi − x′

iβ̂|
1.5

were found in the Phase I

simulations to have the greatest power for detecting the dispersion effect compared

to all other measures studied for r = 4; |yi − x′
iβ̂|

1.5
has greater power for smaller
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Figure 15.4: Power curves for functions of the residuals fitting known location effects
with data from simulation of model (12.1) with location effects (14.1), dispersion ef-
fects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and exponential error distribution,

testing against the empirical critical value to control Type I error equal to 0.05

values of γ4 while |yi − x′
iβ̂| has greater power for larger values of γ4. Both |yi − x′

iβ̂|

and |yi − x′
iβ̂|

1.5
will be examined in Phase II.

Figure 15.2 shows that |yi − x′
iβ̂|

2
, |yi − x′

iβ̂|
0.42

, |yi − x′
iβ̂|

0.35
, and |yi − x′

iβ̂|
0.55

also perform well, with power greater than ln(s + 1). However, already for r = 7,

ln(s + 1) shows greater power to detect the dispersion effect than both |yi − x′
iβ̂|

0.42

and |yi − x′
iβ̂|

0.35
(Figure 15.3). The change in the ranking of these measures indicates

that |yi − x′
iβ̂|

0.42
and |yi − x′

iβ̂|
0.35

are not inducing the same gains in power for each

additional replicate added to a treatment as are other measures. Though these two

measures provide close to the greatest power to detect the dispersion effect when the

error distribution is exponential (Figure 15.4), these two measures will be eliminated

from further study.
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Figure 15.5: Comparison of power curves for functions of the residuals fitting known
location effects with data from simulation of model (12.1) with location effects adding
β4 = k, k = 2, 6, 10, 20, to (14.1), dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4

replicates, and normal error distribution, testing against the empirical critical value
to control Type I error equal to 0.05

The |yi − x′
iβ̂|

0.55
is not studied in Phase II. Though the test using |yi − x′

iβ̂|
0.55

provides the greatest power when the error distribution is exponential (Figure 15.4),

the measure does not perform as well as other measures for other error distributions.

Because this measure does not provide any clear benefit compared with |yi − x′
iβ̂|,

|yi − x′
iβ̂|

1.5
, or |yi − x′

iβ̂|
2
, |yi − x′

iβ̂|
0.55

is eliminated from further consideration.

From Figure 15.5, when tests are based on empirical critical values to control Type

I error equal to 0.05, the power of the test using |yi − x′
iβ̂|

2
is not greatly affected

by failing to include the active location effect of X4 in the location effects; though

the test based on |yi − x′
iβ̂|

2
has less power to detect the dispersion effect than the

test based on |yi − x′
iβ̂| when the exact location effects is fit, the power of the test
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Figure 15.6: Comparison of power curves for functions of the residuals fitting the
two different location effects with data from simulation of model (12.1) with location
effects (14.1), dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and

normal error distribution, testing against the empirical critical value to control Type
I error equal to 0.05

using |yi − x′
iβ̂|

2
is almost constant whether or not the active effect of X4 is included

in the location effects. Due to the robustness of |yi − x′
iβ̂|

2
to exclusion of the active

location effect, this measure warrants further study in the next stage of simulations.

The preceding discussion is based on the assumption that the exact location effects

is known. The power can vary considerably if an incorrect location effects is fit to the

data to produce the residuals. Figure 15.6 shows the power curves for the |yi − x′
iβ̂|,

|yi − x′
iβ̂|

1.5
, and |yi − x′

iβ̂|
2

fitting the exact and main effects location models. It

is clear from Figure 15.6 that functions of |yi − x′
iβ̂| from fitting the exact model

provide greater power than the corresponding functions of |yi − x′
iβ̂| from fitting the

main effects model. While this issue of location model selection does not impact the
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Figure 15.7: Comparison of power curves for residuals fitting known location effects
and absolute deviation from the mean with data from simulation of model (12.1) with
location effects (14.1), dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates,

and normal error distribution, testing against the empirical critical value to control
Type I error equal to 0.05

selection of measures for study in Phase II, it is an important consideration in the

application of this measure. Identification of the location model for the residuals is

examined in Phase II as part of the study of residuals as a practical measure for

dispersion effect detection (see Chapter 16).

Based on the Phase I results as presented, |yi − x′
iβ̂|, |yi − x′

iβ̂|
1.5

, and |yi − x′
iβ̂|

2

are studied in Phase II.

15.1.3 Absolute Deviation from the Within-Treatment Mean,
|yij − ȳi|

Based on the Phase I simulation results for power of the test against the empirical

critical values, the absolute deviation from the within-treatment means, |yij − ȳi|, is
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Figure 15.8: Power curves for functions of the absolute deviation from the mean with
data from simulation of model (12.1) with location effects (14.1), dispersion effects
(14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error distribution, testing

against the empirical critical value to control Type I error equal to 0.05

found to have power close to the power exhibited by the absolute residuals, |yi − x′
iβ̂|

(Figure 15.7). From the power curves of the functions of |yij − ȳi| shown in Fig-

ure 15.8, the test based on |yij − ȳi| has greater power to detect the dispersion effect

than does ln(s + 1). Similar to |yi − x′
iβ̂|, five of the six power transformations of

|yij − ȳi| show increased power of detection compared to ln(s + 1), with |yij − ȳi|1.5

showing the greatest power among these. Only |yij − ȳi|5 is dominated by ln(s + 1),

and thus will not be considered further.

The absolute deviation from the mean is one of the measures proposed by Mack-

ertich et al. (2003). Mackertich et al. (2003) found that the probability of detecting

the dispersion effect of interest is consistently higher across all effect sizes for |yij − ȳi|

than for all of the traditional measures. The increased detection power was observed
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Figure 15.9: Power curves for functions of the absolute deviation from the mean with
data from simulation of model (12.1) with location effects (14.1), dispersion effects
(14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 7 replicates, and normal error distribution, testing

against the empirical critical value to control Type I error equal to 0.05

both for tests against the F -distribution critical value and for tests against the empir-

ical critical values. Consistent with the results of Mackertich et al. (2003), Figure 15.8

shows increased power of |yij − ȳi| compared to ln(s + 1). The |yij − ȳi| measure is

among the most powerful measures across all effect sizes for all numbers of replicates

studied. For tests against the F -distribution critical value, the (unadjusted) Type I

error rate for the test based on |yij − ȳi| decreases as the number of replicates per

treatment increases, consistent with the results of Mackertich et al. (2003).

Mackertich et al. (2003) also proposed |yij − ȳi|0.42, suggesting this power trans-

formation would make the distribution of the transformed data more closely approxi-

mate a normal distribution. In fact, |yij − ȳi|0.42 better controls the Type I error rate

when testing against the F -distribution critical value than does |yij − ȳi|, though still
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above the nominal α = 0.05 level. From the power curves shown in Figure 15.8,

|yij − ȳi|0.42 is less powerful than |yij − ȳi| for detecting the dispersion effect. As the

number of replicates per treatment increases, |yij − ȳi|0.42 loses the detection power

advantage over ln(s + 1) (Figure 15.9). While the results of the simulations indicate

that |yij − ȳi|0.42 is not the optimal measure for identification of dispersion effects,

this measure will be carried into Phase II mainly as a continuation of the previous

work.

Of the other power transformations of |yij − ȳi|, the measures |yij − ȳi|0.55 and

|yij − ȳi|1.5 show power close to |yij − ȳi| and greater than |yij − ȳi|0.42. From Fig-

ure 15.9, there is a greater increase in detection power for |yij − ȳi|1.5 with additional

replicates per treatment as compared to |yij − ȳi|0.55. Therefore, only |yij − ȳi|1.5 is

studied further, while |yij − ȳi|0.55 is eliminated.

Despite increased power compared to ln(s + 1), |yij − ȳi|0.35 and |yij − ȳi|2 are also

discarded due to decreased power relative to |yij − ȳi|. Only |yij − ȳi|, |yij − ȳi|0.42,

and |yij − ȳi|1.5 are examined further, both with respect to Phase I results and Phase

II.

The above results are based on use of all r within-treatment values of |yij − ȳi|.

As discussed in Chapter 13, the use of only r − 1 of the transformed observations,

randomly deleting one value, is examined. Figure 15.10 shows the power curves for

the selected functions of |yij − ȳi| for both r and r−1 of the transformed observations.

It is clear that the use of only r−1 of the transformed observations provides less power

than use of all r transformed observations, and less power than use of ln(s + 1). The

power when using only r − 1 of the |yij − ȳi| is lower across all numbers of replicates
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Figure 15.10: Comparison of power curves for r and r − 1 absolute deviations from
the mean with data from simulation of model (12.1) with location effects (14.1),
dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error

distribution, testing against the empirical critical value to control Type I error equal
to 0.05

and for all error distributions. Because of the reduction in power, the use of r − 1

values of the |yij − ȳi| is not studied in Phase II of this work.

Based on the Phase I results as presented, all r values of |yij − ȳi|, |yij − ȳi|0.42,

and |yij − ȳi|1.5 are studied in Phase II.

15.1.4 Absolute Deviation from the Within-Treatment Me-
dian, |yij − ỹi|

The absolute deviation from the within-treatment median, |yij − ỹi|, is shown in

Figure 15.11 to have increased power to detect the dispersion effect over the complete

range of effect sizes as compared to ln(s + 1); |yij − ỹi|1.5 shows increased power com-

pared to |yij − ỹi| over part of the range of effect sizes and increased power compared
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Figure 15.11: Power curves for functions of the absolute deviation from the median
with data from simulation of model (12.1) with location effects (14.1), dispersion
effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error distribution,

testing against the empirical critical value to control Type I error equal to 0.05

to ln(s + 1) over the complete range of effect sizes. From Figure 15.11 it is clear that

|yij − ỹi|0.42, |yij − ỹi|0.35, |yij − ỹi|0.55, and |yij − ỹi|5 provide less power to detect the

dispersion effect, and these are eliminated from further study. The performance of

the |yij − ỹi|2 measure is somewhat less clear, as it shows increased power compared

to ln(s + 1) for smaller effect sizes (γ4 ≤ 3.5) but decreased power for larger effect

sizes (γ4 ≥ 3.5). Due to this ambiguity and the relatively decreased power compared

to |yi − x′
iβ̂| and |yij − ȳi|, |yij − ỹi|2 is also eliminated from further study.

Because |yij − ỹi|1.5 does not provide a substantial advantage compared to |yij − ỹi|,

|yij − ȳi|1.5 is not studied further. Based on the Phase I results as presented, only

|yij − ỹi| is studied in Phase II.
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Figure 15.12: Power curves for functions of the absolute deviation from the trimmed
mean (-1) with data from simulation of model (12.1) with location effects (14.1),
dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 5 replicates, and normal error

distribution, testing against the empirical critical value to control Type I error equal
to 0.05

15.1.5 Absolute Deviation from the Within-Treatment Trimmed
Mean, |yj − ȳk|

The performance of |yij − ȳi(−1)| (Figure 15.12) with r = 5 replicates per treatment

combination and |yij − ȳi(−2)| (Figure 15.13) with r = 7 replicates per treatment

combination shows a similar pattern to the performance of |yij − ỹi|. For k = 1, 2,

the power functions |yij − ȳi(−k)|0.35, |yij − ȳi(−k)|0.42, and |yij − ȳi(−k)|0.55 provide less

power than ln(s + 1) to detect the dispersion effect. These measures are, therefore,

eliminated from further consideration. Also, for each measure, |yij − ȳi(−k)| and

|yij−ȳi(−k)|1.5 show almost equal power across the range of effect sizes and significantly

greater power than ln(s + 1). The difference in power between |yij − ȳi(−k)|2 and

|yij − ȳi(−k)| is minimal for small effect sizes (≈ γ4 ≤ 1.5) but increases for larger
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Figure 15.13: Power curves for functions of the absolute deviation from the trimmed
mean (-2)with data from simulation of model (12.1) with location effects (14.1), dis-
persion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 7 replicates, and normal error dis-

tribution, testing against the empirical critical value to control Type I error equal to
0.05

effect sizes; therefore, |yij − ȳi(−k)|2 is not examined further. Finally, |yij − ȳi(−k)|1.5 is

also eliminated from study based on the observed similarity in performance between

|yij − ȳi(−k)| and |yij − ỹi|. Only |yij − ȳi(−1)| and |yij − ȳi(−2)| are examined further.

The power curves for |yij − ỹi|, |yij − ȳi(−1)|, and |yij − ȳi(−2)| with r = 10 repli-

cates per treatment combination are plotted in Figure 15.14 for comparison. Fig-

ure 15.14 indicates that the three functions provide similar power for detecting the

dispersion effect. At least for r = 10 replicates per treatment combination the power

of the absolute deviation from the trimmed mean does not depend on the number of

observations trimmed from each tail, since |yij − ȳi(−1)| and |yij − ȳi(−2)| provide sim-

ilar power. Since it unlikely that an experiment will have enough replicates per treat-

ment combination to trim two observations per tail (without equivalence to |yij − ỹi|),
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Figure 15.14: Power curves for functions of absolute deviation from the median and
trimmed means (-1 and -2) with data from simulation of model (12.1) with location
effects (14.1), dispersion effects (14.2), and g(x′

σ,iγ) = x′
σ,iγ, r = 10 replicates, and

normal error distribution, testing against the empirical critical value to control Type
I error equal to 0.05

|yij − ȳi(−2)| is also eliminated from further consideration. Study of |yij − ȳi(−1)| fol-

lows the work of Brown and Forsythe (1974), who propose use of a 10% trimmed

mean; trimming one observation from each tail is equivalent to this proposal for

r = 10 and the least possible trimming for r < 10.

Based on the Phase I results as presented, only |yij − ȳi(−1)| is studied in Phase

II.

15.1.6 Grouped Measures, [ln(s + 1)]HALF and [ln(s + 1)]ALL

The two additional dispersion measures examined, the natural logarithm of the

standard deviations of replicates in two approximately equal groups ([ln(s + 1)]HALF )

and the natural logarithm of the standard deviations of replicates in all groups of r−1
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Figure 15.15: Power curves for sub-grouped standard deviations with data from sim-
ulation of model (12.1) with location effects (14.1), dispersion effects (14.2), and
g(x′

σ,iγ) = x′
σ,iγ, r = 4 replicates, and normal error distribution, testing against the

empirical critical value to control Type I error equal to 0.05

([ln(s + 1)]ALL), are both eliminated from further study based on Phase I results. It is

clear from the power curves shown in Figure 15.15 that dividing the within-treatment

replicates into two groups is considerably less powerful for detecting the dispersion

effect of interest than the traditional method of using the natural logarithm of the

standard deviation of the whole within-treatment sample. This result is similar to

the power decrease of the Box Test observed by Miller (1968). From Figure 15.15,

[ln(s + 1)]HALF has greatly decreased power to detect true active dispersion effects

(γ4 > 0).

Figure 15.15 shows that using the standard deviation of all groups of r−1 within-

treatment replicates is more powerful for detecting the dispersion effect of interest

than using the whole within-treatment sample using empirical critical values. As
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Figure 15.16: Power curves for ln(s + 1) and [ln(s + 1)]ALLwith data from simulation
of model (12.1) with location effects (14.1), dispersion effects (14.2), and g(x′

σ,iγ) =
x′

σ,iγ, r = 3, 4, 7, 10 replicates, and normal error distribution, testing against the
empirical critical value to control Type I error equal to 0.05

the number of replicates per treatment combination increases, the power difference

between [ln(s + 1)]ALL and ln(s + 1) decreases (Figure 15.16). At the same time, as

r increases the computational expense for [ln(s + 1)]ALL increases. The increase in

computation for lesser gains in power makes this measure undesirable.

Based on the Phase I results as presented, neither [ln(s + 1)]HALF nor [ln(s + 1)]ALL

are studied in Phase II.

15.2 Stability of Results

In order to address the issue of the stability of the simulation results, five replicate

simulations with r = 4 replicates per treatment combination and errors from a normal

distribution are conducted. These replicate simulations provide an opportunity to
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determine whether the observed effect detection probabilities are within an expected

range. If the 100,000 tests for a given measure within a single simulation are viewed as

100,000 independent Bernoulli trials with rejection of the null hypothesis considered

a success, then an approximate 100(1 − α)% confidence interval on each probability

can be constructed using the formula

p̂ ± zα/2

√
p̂(1 − p̂)

n
(15.1)

(see Hollander and Wolfe (1999) page 31). In this case, p̂ is the proportion of times

the test rejects using the F -distribution critical values. Confidence intervals for tests

using the empirical critical values cannot be constructed since the empirical critical

values are unique for each simulation and, therefore, the test is not identical across

simulations. Despite the fact that attention has focused on the tests using the em-

pirical critical values, an examination of the tests using the F -distribution critical

value provides relevant information with respect to the stability of the simulation

study. The probabilities of detection from the five replicate simulations can be com-

pared with the confidence interval; the calculated 100(1 − α)% confidence intervals

should include 100(1 − α)% of the probabilities of detection from the five replicate

simulations.

Confidence intervals are calculated based on the original simulation, labeled Run

0 in the tables. For example, the probability of detecting the dispersion effect using

|yij − ȳi| when γ4 = 1 is p̂ = 0.2106. Applying (15.1) to this case, the approximate

95% lower confidence limit is

p̂ − zα/2

√
p̂(1 − p̂)

n
= 0.2106 − 1.96

√
0.2106(1 − 0.2106)

100000

= 0.2106 − 1.96(0.0013)
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= 0.2081

and the approximate 95% upper confidence limit is

p̂ + zα/2

√
p̂(1 − p̂)

n
= 0.2106 + 1.96

√
0.2106(1 − 0.2106)

100000

= 0.2106 + 1.96(0.0013)

= 0.2131

The approximate 95% confidence intervals and probabilities of detection for the orig-

inal simulation and each replicate simulation are given in Table C.1, Table C.2, Ta-

ble C.3, Table C.4, and Table C.5 of Appendix C for γ4 = 0, γ4 = 1, γ4 = 2, γ4 = 3,

and γ4 = 4, respectively.

For each replicate simulation, the probability of detection for each measure is

compared to the corresponding confidence interval. The number of times the proba-

bility is within the confidence limit is counted and summed in two ways. First, the

number of values within the corresponding confidence interval are summed across

the measures and within the given effect size. By effect size, the percentage of de-

tection probabilities that are within the stated approximate 95% confidence interval

are: 83.33% for γ4 = 0; 96.67% for γ4 = 1; 100.00% for γ4 = 2; 88.33% for γ4 = 3;

and 95.00% for γ4 = 4. Second the number of values within the corresponding con-

fidence interval are summed across effect sizes and within measures. By measure,

the percentage of detection probability that are within the stated approximate 95%

confidence interval are: 100% for s; 100% for ln(s2 + 1); 100% for ln(s + 1); 92% for

S/NN ; 84% for |yi − x′
iβ̂|; 92% for |yi − x′

iβ̂|
2
; 88% for |yi − x′

iβ̂|
1.5

; 92% for |yij − ȳi|;

96% for |yij − ȳi|.42; 76% for |yij − ȳi|1.5; 96% for |yij − ỹi|; and 96% for |yij − ȳi(−1)|.

These results indicate that the simulation studies are relatively stable.
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CHAPTER 16

MEASURES FOR PHASE II

Based on the results from the Phase I simulations discussed in Chapter 15, the

original list of thirty-seven measures is cut to thirteen. The twelve measures selected

are:

T1. Within-run sample standard deviation, s

T2. Natural logarithm of the within-treatment sample variance (plus 1.0), ln(s2 + 1)

T3. Natural logarithm of the within-treatment sample standard deviation (plus 1.0),

ln(s + 1)

T4. Nominal-the-best signal-to-noise ratio, S/NN

A1. Absolute residuals, |yi − x′
iβ̂|

A2. |yi − x′
iβ̂|

1.5

A3. |yi − x′
iβ̂|

2

A4. Absolute deviation from the within-treatment mean, |yij − ȳi|

A5. |yij − ȳi|0.42
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A6. |yij − ȳi|1.5

A7. Absolute deviation from the within-treatment median, |yij − ỹi|

A8. Absolute deviation from the within-treatment trimmed mean (-1), |yij − ȳi(−1)|

Because of the variability in the performance of the residuals discussed in Sec-

tion 15.1.2, it is important to consider which location model to fit and to understand

that power to detect the dispersion effect is lost if an incorrect location model is se-

lected. Based on analytic techniques (e.g. F -tests, normal probability plots, etc.) the

active location effects can be identified. To test the use of the residuals for dispersion

effect identification in the more realistic setting of location model identification, in

Phase II a series of F -tests is performed to identify the active location effects. The

identified active location effects in addition to the intercept term are then fitted to

the data to obtain residuals for use as the response for the detection of the dispersion

effects.

Following the work of Bergman and Hynén (1997), a second expanded location

model is also fit to the data to calculate residuals in the second phase of study. This

second set of residuals is calculated after fitting the location model including all iden-

tified active location effects plus the location effect of the factor to be tested for a

dispersion effect and all interactions of the identified active location effects with the

factor to be tested for a dispersion effect. In Phase II, γ1 is considered the dispersion

effect of interest. Thus, the expanded location model includes all the factors with

identified active effects plus the first factor and all two-factor interactions involv-

ing the first factor and a factor with an active main effect. If all these factors are
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already identified as active, the expanded location model is identical to the first loca-

tion model. Analysis of residuals from the expanded location model should eliminate

location-dispersion effect aliasing for the factor of interest, however large or small,

and thus should improve the performance of the residuals as a measure for the iden-

tification of dispersion effects. The residuals calculated from the expanded location

model are denoted |yi − x′
iβ̂exp|.

A new measure is added to the list of measures for the second phase of this work.

The new measure is:

A9. Absolute deviation from the median, trimming the minimum value, |yij − ỹi|−1

Thus, the set of values of |yij − ỹi|−1 is a subset of the set of values of |yij − ỹi|. It is

logical to omit the minimum value of |yij − ỹi| since if r is even then min(|yij − ỹi|)

is duplicated and if r is odd then min(|yij − ỹi|) = 0.

In addition to adding the new measure, the natural logarithm of each measure

is included in the second stage of study. The natural logarithm of each measure is

studied due to the use of the multiplicative dispersion model (see Section 12.2) in

Phase II. The natural logarithm of the measures may perform better with respect to

the new multiplicative model since the natural logarithm converts the multiplicative

relationship to an additive relationship.

Note that because ln(xa) = a ∗ ln(x), the natural logarithm of powers of each

measure are proportional to the natural logarithm of each measure and, thus, will

lead to equivalent conclusions. Therefore, the natural logarithm of powers of each

measure were not included in the second stage of study.
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CHAPTER 17

PHASE II SIMULATION

The simulations for Phase II of the current work follow the same format as the

Phase I simulations described in Chapter 14 with the following exceptions. The dis-

persion effect γ1 is considered the effect of interest throughout Phase II. An additional

step is required in Phase II to identify the location model to be fit for calculating

residuals. For each data set, a series of F -tests is performed to identify the active

location effects; the residuals are then calculated after fitting a model including only

the identified location effects or the expanded location model described in Chapter 16.

In Phase II, no tests are based on the F -distribution critical values; all tests in Phase

II use a set of empirical critical values (described in Chapter 18).

Similar to Phase I, a test of the null hypothesis H0 : γ1 = 0 (14.3) is completed.

Because the values of the effect parameters are randomly generated (see Section 17.1),

and because the design (Table 14.1) allows for independent estimation of all main

effects and two-factor interactions in the model, the results for this test of H0 : γ1 = 0

is typical of all tests of the form H0 : γi = 0 for i = 1, 2, . . . , 16; the test examined

here is representative of tests of a single γi, whether γi represents a main effect or a

two-factor interaction effect.
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In performing the test, the model fit to the dispersion measure data is the full

model (i.e. the model including all main effects and all two-factor interaction ef-

fects). Because of the conservation of the original number of replicate observations,

calculation of the M statistic given in (14.4) is possible for the proposed alternative

measures, A1-A9. Fitting the full model creates a computational problem for the

traditional measures T1-T5. Using these summary measures, the replicated obser-

vations are reduced to single measurement. No degrees for freedom for estimating

σ2 are available from the unreplicated design and so Lenth’s method (Lenth 1989) is

used. Using Lenth’s method, the test statistic is computed as

tPSE,i =
γ̂i

PSE
(17.1)

for

PSE = 1.5 × median{|γ̂i|<2.5s0}|γ̂i| (17.2)

with

s0 = 1.5 × median|γ̂i| (17.3)

and where γ̂i is equal to estimate of effect i, the difference between the response

average at the high and low levels (See Wu and Hamada (2000) Section 3.13). Lenth’s

method produces a test statistic similar to the t-test statistic. In this work, |tPSE|

is used to simplify testing. Using Lenth’s method, all main effects and two-factor

interaction effects are estimated, similar to fitting the full model for tests based on

the alternative measures.

17.1 Model Generation

For each simulation, data are generated according to (12.1) with g(x) = exp(x)

(i.e. a multiplicative dispersion model, see Section 12.2). Except where indicated, the
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errors, εij, are generated from a normal distribution. Both first-order and second-order

dispersion models are studied with respect to data generation; all location models are

second-order. Values of βi and γi are generated randomly according to two scenarios:

a single model scenario and a multiple models scenario. For both the single model

and multiple model scenarios, the treatment combination means, µi = x′
iβ, are drawn

from a N(0, 3) distribution. From the results of Phase I (Section 15.1), all measures

are independent of the location model. (The residuals are not dependent upon the

specific location model as long as the correct location model is fit to the data. In

Phase II, the location model is identified via a sequence of tests and is assumed to

be correct.) The location means, therefore, do not affect the dispersion effect test

and can be generated as described. The overall variance parameter, γ0, is generated

according to a N(0, (1/2)ln2) distribution, while the remaining dispersion parameters

are generated according to

γi =

{
Zi with probability 0.4
0 with probability 0.6

where Zi ∼ N(0, (1/2)ln2), for i = 2, 3, . . . , 15. The dispersion effect γ1 is set to

specified values according to each simulation.

17.2 Single Model

For the single model scenario, a single random mean vector and set of dispersion

parameters, γi, are generated as described above. This single model is used to gener-

ate 100,000 data sets. In addition to generating observations according to a randomly

generated mean vector and set of dispersion parameters, observations are generated
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from the null distribution, (i.e. N(0, 1)). The single model scenario provides infor-

mation about the average performance of each measure over multiple experiments for

the same underlying model.

17.3 Multiple Models

For the multiple model scenario, a new random mean vector and set of dispersion

parameters, γi, are generated as described above for each of the 100,000 data sets.

In this case, the observed Type I error and power are averaged over a wide range

of location and dispersion models. Because a researcher does not know the truth of

the model he or she is studying, he or she is concerned with the performance of the

analysis method over a set of possible models. It is therefore logical to average the

performance over a varying set of models.

17.4 Phase II Simulations

Three sets of simulations are run in Phase II. The first set of simulations (Chap-

ter 18) follows the single model scenario, with data generated according to (12.1)

with µi = 0 for i = 1, 2, . . . , 16 and εij ∼ N(0, 1), in order to generate empirical dis-

tributions of the test statistics for each dispersion measure and to determine critical

values. In this set of simulations, test statistics are calculated but no test against a

critical value is performed. The stability of the Type I error rate using these empiri-

cal critical values is studied in the second set of simulations (Chapter 19). Both the

single model and multiple model scenarios are employed for the stability analysis. If

the Type I error is close to the nominal α = 0.05 significance level for data generated

from either a single or multiple random models, then these critical values are useful
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for application. In particular, the empirical critical values can be used to study the

power of the test to detect true dispersion effects. The size of γ1 is varied in the

third set of simulations (Chapter 20) to study the power of each measure. For the

power study, the empirical critical values from the first set of simulations (given in

Chapter 18) are used. All power simulations follow the multiple model scenario.
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CHAPTER 18

EMPIRICAL CRITICAL VALUES

Even when the original observations come from a normal distribution, the distri-

bution function for each of the dispersion measures is more complicated. As a result,

the test statistics (14.4) computed from the measures generally do not follow an F -

distribution, and the standard F -distribution critical values are not valid. Therefore,

a series of simulations is completed in order to obtain critical values for tests based

on each dispersion measure with varying numbers of replicates per treatment com-

bination using the design in Table 14.1. For consistency of methodology, empirical

critical values are generated for Lenth’s test statistics.

Critical values are obtained for testing the null hypothesis,

H0 : all γi = 0, i = 1, . . . , p − 1,

where p is the number of dispersion parameters in the model including the overall

variance. Data are generated from the N(0, 1) distribution (i.e. data from (12.1)

with g(x′
σ,iγ) = exp(x′

σ,iγ), βi = 0 for all i in (12.2) and γi = 0 for all i in (12.3))

100,000 times and the calculated test statistics, (14.4) for A1-A9 and (17.1) for T1-T5,

saved. Critical values are then extracted from the empirical distribution formed by the

simulated test statistics. The critical values are set equal to the 100(1−α) percentile

180



of the empirical distribution for significance levels α = 0.001, 0.005, 0.01, 0.05, 0.1. For

example, the 95, 000th largest calculated M -statistic value is selected as the α = 0.05

level critical value for the alternative dispersion measures. Similarly, the 95, 000th

largest calculated |tPSE| statistic value was selected as the α = 0.05 level critical

value for the traditional dispersion measures.

Empirical test statistic distributions are obtained for r = 3, 4, 5, 6, 7, 8, 9, 10, 249, 250

replicates per treatment combination and for measures T1-T5, A1-A9, and the natural

logarithm of A1-A9. Plots of the empirical cumulative distribution functions (CDFs)

for the test statistics calculated from each measures are given in Appendix E. For

functions of the median, the CDFs for even r are plotted separately from the CDFs

for odd r since the definition of the median is different for even numbers and odd

numbers of observations.

18.1 Empirical Distribution Critical Values

For each number of replicates, critical values are determined for α = 0.001, 0.005,

0.01, 0.05, 0.1. The critical values for each measure, each number of replicates, and

each significance level are given in Table 18.1 and Table 18.2; Table 18.1 provides

critical values for the |tPSE| statistics (T1-T5) and Table 18.2 provides critical values

for the M -test statistics (A1-A9 and natural logarithm of A1-A9). Table 18.2 also

provides the critical value from the F -distribution with 1 and rv − p = 64 − 16 = 48

degrees of freedom. This critical value corresponds to a design with r = 4 replicates

at each of the sixteen treatment combinations and estimating sixteen parameters (i.e.

the overall mean, all five main effects, and all ten two-factor interaction effects) . For
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most alternative measures, the empirical critical value is not very different from the

F -distribution critical value.

Test statistics and critical values for ln(|yij − ỹi|) are not available when r is odd

due to the fact that |yij − ỹi| = 0, and ln(|yij − ỹi|) = ∞, for some j. Similarly, when

r = 3, the trimmed mean with one observation trimmed from each tail is equal to the

median and |yij − ȳi(−1)| = 0, and |yij − ȳi(−1)| = ∞, for some j. Again, test statistics

and critical values are not available for ln(|yij − ȳi(−1)|) in this case. For ln(|yij − ỹi|)

the problem of missing critical values is avoided by use of ln(|yij − ỹi|−1), the natural

logarithm of the absolute deviations from the median excluding the minimum absolute

deviation value. Only ln(|yij − ỹi|−1) is studied in the rest of the current work;

ln(|yij − ỹi|) is not considered further. Despite the missing critical value for the

single case of r = 3, ln(|yij − ȳi(−1)|) is studied.

The critical values in Table 18.1 and Table 18.2 are used in the remaining simu-

lations to determine both Type I error rates (Chapter 19) and power (Chapter 20).
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Measures r α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001
s 3 1.6767 2.1118 3.3858 4.0427 5.8075
s 4 1.6767 2.1148 3.3949 4.0178 5.8473
s 5 1.6790 2.1218 3.4442 4.1298 5.9291
s 6 1.6743 2.1159 3.3801 4.0654 6.0676
s 7 1.6917 2.1272 3.4542 4.1723 6.2417
s 8 1.6792 2.1165 3.4460 4.1302 5.8667
s 9 1.6837 2.1091 3.3247 3.9679 5.8427
s 10 1.6734 2.1126 3.3660 4.0283 5.7315
s 249 1.6787 2.1165 3.4249 4.1152 6.0481
s 250 1.6725 2.1022 3.3774 4.0744 5.9081

ln(s2 + 1) 3 1.6800 2.1166 3.4228 4.0393 6.0945
ln(s2 + 1) 4 1.6805 2.1277 3.4096 4.0720 5.9006
ln(s2 + 1) 5 1.6874 2.1278 3.4692 4.1631 5.9829
ln(s2 + 1) 6 1.6786 2.1202 3.3886 4.1016 6.2355
ln(s2 + 1) 7 1.6981 2.1387 3.4671 4.1988 6.2946
ln(s2 + 1) 8 1.6851 2.1231 3.4506 4.1839 6.0204
ln(s2 + 1) 9 1.6888 2.1164 3.3442 3.9977 5.8238
ln(s2 + 1) 10 1.6759 2.1207 3.3922 4.0461 5.7758
ln(s2 + 1) 249 1.6784 2.1165 3.4252 4.1177 6.0442
ln(s2 + 1) 250 1.6729 2.1028 3.3749 4.0734 5.9184
ln(s + 1) 3 1.6955 2.1431 3.4759 4.1263 6.1317
ln(s + 1) 4 1.6833 2.1257 3.4536 4.0996 5.7824
ln(s + 1) 5 1.6891 2.1295 3.4814 4.1501 5.9068
ln(s + 1) 6 1.6784 2.1152 3.3881 4.0660 5.9898
ln(s + 1) 7 1.6924 2.1439 3.4442 4.1698 5.9821
ln(s + 1) 8 1.6824 2.1182 3.4796 4.1453 5.9798
ln(s + 1) 9 1.6874 2.1177 3.3616 3.9642 5.8531
ln(s + 1) 10 1.6759 2.1182 3.3972 4.0458 5.7861
ln(s + 1) 249 1.6786 2.1137 3.4091 4.0956 6.0173
ln(s + 1) 250 1.6733 2.1014 3.3786 4.0641 5.8701
S/NN 3 1.5871 2.0015 3.2208 3.8595 5.6745
S/NN 4 1.6225 2.0214 3.1807 3.8123 5.6690
S/NN 5 1.6181 2.0244 3.2082 3.8294 5.6031
S/NN 6 1.6212 2.0361 3.1801 3.8299 5.5643
S/NN 7 1.6175 2.0187 3.1975 3.8226 5.5797
S/NN 8 1.6204 2.0203 3.1978 3.8217 5.5486
S/NN 9 1.6184 2.0251 3.1682 3.7909 5.6098
S/NN 10 1.6190 2.0204 3.2107 3.8109 5.3835
S/NN 249 1.6150 2.0146 3.1800 3.7718 5.3571
S/NN 250 1.6132 2.0193 3.2270 3.8620 5.6433

Table 18.1: Critical values for Lenth’s test statistic (17.1) obtained from the empirical
distributions of test statistics based on traditional dispersion measures (T1-T5) under
H∗

0 : γ1 = 0 (14.3), design of Table 14.1, and N(0, 1) observations, for Type I error
rates 0.001, 0.005, 0.01, 0.05, 0.1
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Measure r α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001

|yij − ỹi| 3 1.2867 1.8079 3.1045 3.6570 4.9006

|yij − ỹi| 4 2.6987 3.9265 7.0883 8.5621 12.5738

|yij − ỹi| 5 1.7784 2.5103 4.3315 5.1044 6.8635

|yij − ỹi| 6 2.3964 3.4219 5.9610 7.1169 9.8937

|yij − ỹi| 7 2.0088 2.8436 4.9799 5.8658 8.1268

|yij − ỹi| 8 2.3915 3.4227 5.9186 7.0938 9.6414

|yij − ỹi| 9 2.1586 3.0520 5.1946 6.1529 8.4423

|yij − ỹi| 10 2.3996 3.4037 5.9355 7.0917 9.9660

|yij − ỹi| 249 2.6596 3.7789 6.5779 7.8334 10.6543

|yij − ỹi| 250 2.6939 3.7895 6.5618 7.7088 10.5827

|yij − ỹi|−1 3 2.2867 3.3408 6.3681 7.9299 11.8074

|yij − ỹi|−1 4 2.2371 3.2332 5.7728 6.9022 10.1493

|yij − ỹi|−1 5 2.5220 3.6065 6.3914 7.6496 10.5164

|yij − ỹi|−1 6 2.4375 3.4746 6.0167 7.2140 9.8941

|yij − ỹi|−1 7 2.5850 3.6728 6.5175 7.7453 10.7546

|yij − ỹi|−1 8 2.5528 3.6284 6.3235 7.5491 10.3101

|yij − ỹi|−1 9 2.6249 3.7194 6.3824 7.5742 10.5009

|yij − ỹi|−1 10 2.5714 3.6552 6.4078 7.6458 10.5851

|yij − ỹi|−1 249 2.6785 3.8060 6.6246 7.8880 10.7319

|yij − ỹi|−1 250 2.7131 3.8158 6.6042 7.7618 10.6541
|yij − ȳi(−1)| 3 1.2867 1.8079 3.1045 3.6570 4.9006
|yij − ȳi(−1)| 4 2.6987 3.9265 7.0883 8.5621 12.5738
|yij − ȳi(−1)| 5 2.8482 4.0758 7.1780 8.5364 11.5644
|yij − ȳi(−1)| 6 2.8707 4.0824 7.1091 8.5025 11.9141
|yij − ȳi(−1)| 7 2.9212 4.1547 7.3715 8.6616 12.0450
|yij − ȳi(−1)| 8 2.9195 4.1583 7.2555 8.6790 11.7418
|yij − ȳi(−1)| 9 2.9367 4.1357 7.1179 8.4246 11.4113
|yij − ȳi(−1)| 10 2.8840 4.0971 7.1900 8.5807 11.7597
|yij − ȳi(−1)| 249 2.6959 3.8321 6.6619 7.9326 10.7731
|yij − ȳi(−1)| 250 2.7303 3.8372 6.6129 7.8098 10.7605

|yij − ȳi| 3 5.1431 7.2507 12.3542 14.4767 19.2879
|yij − ȳi| 4 4.0225 5.7340 10.2916 12.1854 17.3935
|yij − ȳi| 5 3.6065 5.1783 9.0823 10.8087 14.6000
|yij − ȳi| 6 3.3494 4.7655 8.2691 9.8497 13.9972
|yij − ȳi| 7 3.2446 4.6176 8.1007 9.5849 13.2854
|yij − ȳi| 8 3.1651 4.4978 7.8140 9.3467 12.7258
|yij − ȳi| 9 3.1128 4.4048 7.5465 8.9887 12.0439
|yij − ȳi| 10 3.0223 4.2967 7.5245 8.9653 12.3861
|yij − ȳi| 249 2.6955 3.8339 6.6597 7.9261 10.7692
|yij − ȳi| 250 2.7307 3.8385 6.6171 7.8177 10.7620

|yij − ȳi|0.42 3 4.6425 6.7383 12.1823 14.8092 21.1371

|yij − ȳi|0.42 4 3.7301 5.4241 9.8657 11.8769 17.3913

|yij − ȳi|0.42 5 3.4225 4.8909 8.7192 10.5377 14.4881

|yij − ȳi|0.42 6 3.1952 4.5799 8.0579 9.6376 13.8236

|yij − ȳi|0.42 7 3.1296 4.4544 7.8396 9.3423 13.0290

|yij − ȳi|0.42 8 3.0486 4.3868 7.6936 9.1618 12.9306

|yij − ȳi|0.42 9 3.0249 4.3280 7.4463 8.7554 12.0696

|yij − ȳi|0.42 10 2.9452 4.1943 7.3336 8.8443 12.1842

|yij − ȳi|0.42 249 2.7074 3.8360 6.6954 8.0141 10.8450

|yij − ȳi|0.42 250 2.7237 3.8673 6.6532 7.7883 10.8192
F1,48 2.8131 4.0427 7.1942 8.6590 12.2855

Continued

Table 18.2: Critical values for the M -test statistic (14.4) obtained from the empirical
distributions of test statistics based on alternative dispersion measures (A1-A9 and
natural logarithm of A1-A9) under H∗

0 : γ1 = 0 (14.3), design of Table 14.1, and
N(0, 1) observations, for Type I error rates 0.001, 0.005, 0.01, 0.05, 0.1
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Table 18.2 Continued

Measure r α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001

|yij − ȳi|1.5 3 5.2477 7.1974 11.4198 13.0379 16.4498

|yij − ȳi|1.5 4 4.1150 5.7535 9.9037 11.7065 16.2960

|yij − ȳi|1.5 5 3.6716 5.2166 8.9178 10.4100 13.9025

|yij − ȳi|1.5 6 3.4000 4.7800 8.0898 9.6735 13.3854

|yij − ȳi|1.5 7 3.3028 4.6509 8.0437 9.5203 13.0998

|yij − ȳi|1.5 8 3.1939 4.5522 7.7646 9.1434 12.5516

|yij − ȳi|1.5 9 3.1396 4.4325 7.5012 8.7755 11.9713

|yij − ȳi|1.5 10 3.0509 4.3226 7.4896 8.8740 12.0759

|yij − ȳi|1.5 249 2.6927 3.8270 6.5950 7.8743 10.8422

|yij − ȳi|1.5 250 2.7183 3.8352 6.5775 7.8114 10.7354

|yi − x
′

i
β̂| 3 2.9322 4.2142 7.6037 9.3370 13.4514

|yi − x
′

i
β̂| 4 2.8916 4.1031 7.1883 8.7173 12.1966

|yi − x
′

i
β̂| 5 2.8543 4.1225 7.1745 8.4868 11.8456

|yi − x
′

i
β̂| 6 2.7861 3.9756 6.8976 8.2702 11.5330

|yi − x
′

i
β̂| 7 2.7895 3.9739 6.9697 8.2714 11.6540

|yi − x
′

i
β̂| 8 2.7692 3.9635 7.0104 8.2987 11.6617

|yi − x
′

i
β̂| 9 2.7835 3.9367 6.8317 8.1161 11.2245

|yi − x
′

i
β̂| 10 2.7312 3.8928 6.8398 8.1768 11.2795

|yi − x
′

i
β̂| 249 2.6824 3.8238 6.6494 7.9179 10.7387

|yi − x
′

i
β̂| 250 2.7171 3.8330 6.5920 7.8063 10.7173

|yi − x
′

i
β̂|2 3 2.9146 4.0716 7.0169 8.4496 12.2134

|yi − x
′

i
β̂|2 4 2.8682 4.0085 6.6714 7.9564 10.8021

|yi − x
′

i
β̂|2 5 2.8568 3.9910 6.7277 7.9353 10.8233

|yi − x
′

i
β̂|2 6 2.7829 3.8794 6.5431 7.7746 10.2177

|yi − x
′

i
β̂|2 7 2.7917 3.9141 6.6833 7.7992 10.7329

|yi − x
′

i
β̂|2 8 2.7839 3.9307 6.6553 7.8112 10.5386

|yi − x
′

i
β̂|2 9 2.7736 3.9034 6.5125 7.6054 10.3973

|yi − x
′

i
β̂|2 10 2.7624 3.9002 6.5877 7.7608 10.7863

|yi − x
′

i
β̂|2 249 2.6906 3.8325 6.5497 7.8473 10.7419

|yi − x
′

i
β̂|2 250 2.6985 3.8128 6.5804 7.6947 10.6788

|yi − x
′

i
β̂|1.5

3 2.9347 4.1705 7.3523 8.9218 12.9171

|yi − x
′

i
β̂|1.5

4 2.8938 4.0824 7.0064 8.3577 11.6468

|yi − x
′

i
β̂|1.5

5 2.8650 4.0710 7.0185 8.2807 11.2803

|yi − x
′

i
β̂|1.5

6 2.7808 3.9497 6.7564 8.0573 10.9322

|yi − x
′

i
β̂|1.5

7 2.8027 3.9557 6.8322 8.0831 11.1937

|yi − x
′

i
β̂|1.5

8 2.7759 3.9657 6.8368 8.0773 11.1679

|yi − x
′

i
β̂|1.5

9 2.7872 3.9139 6.6864 7.9161 10.9285

|yi − x
′

i
β̂|1.5

10 2.7566 3.8924 6.7566 7.9989 10.9503

|yi − x
′

i
β̂|1.5

249 2.6831 3.8234 6.5691 7.8319 10.8643

|yi − x
′

i
β̂|1.5

250 2.7093 3.8416 6.5415 7.7769 10.7061

|yi − x
′

i
β̂exp| 3 3.0749 4.4068 7.9230 9.8640 13.7963

|yi − x
′

i
β̂exp| 4 2.9725 4.2389 7.3943 8.9599 12.3604

|yi − x
′

i
β̂exp| 5 2.9209 4.2272 7.3356 8.7285 12.0613

|yi − x
′

i
β̂exp| 6 2.8386 4.0470 7.0215 8.4108 11.8031

|yi − x
′

i
β̂exp| 7 2.8372 4.0464 7.0909 8.3618 11.8212

|yi − x
′

i
β̂exp| 8 2.8070 4.0069 7.1078 8.4284 11.7479

|yi − x
′

i
β̂exp| 9 2.8143 3.9773 6.8993 8.2735 11.1222

|yi − x
′

i
β̂exp| 10 2.7603 3.9436 6.8795 8.2753 11.4634

|yi − x
′

i
β̂exp| 249 2.6827 3.8269 6.6390 7.9045 10.7727

|yi − x
′

i
β̂exp| 250 2.7195 3.8308 6.6059 7.8020 10.6612

F1,48 2.8131 4.0427 7.1942 8.6590 12.2855

Continued
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Table 18.2 Continued

Measure r α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001

|yi − x
′

i
β̂exp|

2
3 3.0519 4.2603 7.3199 8.8517 12.3962

|yi − x
′

i
β̂exp|

2
4 2.9591 4.1287 6.8642 8.1231 11.0632

|yi − x
′

i
β̂exp|

2
5 2.9225 4.0896 6.9259 8.0926 11.0578

|yi − x
′

i
β̂exp|

2
6 2.8425 3.9738 6.6911 7.8644 10.4899

|yi − x
′

i
β̂exp|

2
7 2.8387 3.9780 6.8042 7.9265 10.7515

|yi − x
′

i
β̂exp|

2
8 2.8261 3.9858 6.7571 7.8883 10.5953

|yi − x
′

i
β̂exp|

2
9 2.8132 3.9469 6.5808 7.6665 10.4839

|yi − x
′

i
β̂exp|

2
10 2.7938 3.9365 6.6705 7.8460 10.9224

|yi − x
′

i
β̂exp|

2
249 2.6916 3.8350 6.5528 7.8521 10.7440

|yi − x
′

i
β̂exp|

2
250 2.7000 3.8148 6.5796 7.6969 10.6861

|yi − x
′

i
β̂exp|

1.5
3 3.0729 4.3566 7.6596 9.3688 13.2226

|yi − x
′

i
β̂exp|

1.5
4 2.9790 4.2123 7.2459 8.6183 11.8168

|yi − x
′

i
β̂exp|

1.5
5 2.9383 4.1654 7.2077 8.4644 11.7161

|yi − x
′

i
β̂exp|

1.5
6 2.8393 4.0338 6.8940 8.1882 11.0578

|yi − x
′

i
β̂exp|

1.5
7 2.8430 4.0224 6.9800 8.1913 11.3464

|yi − x
′

i
β̂exp|

1.5
8 2.8125 4.0242 6.9736 8.2246 11.3714

|yi − x
′

i
β̂exp|

1.5
9 2.8268 3.9697 6.7974 8.0186 10.9607

|yi − x
′

i
β̂exp|

1.5
10 2.7899 3.9389 6.8394 8.0697 11.0462

|yi − x
′

i
β̂exp|

1.5
249 2.6836 3.8248 6.5708 7.8296 10.8573

|yi − x
′

i
β̂exp|

1.5
250 2.7099 3.8462 6.5440 7.7964 10.6879

ln(|yij − ỹi|) 3 N/A N/A N/A N/A N/A

ln(|yij − ỹi|) 4 4.7055 6.6028 11.2972 13.3300 19.2526

ln(|yij − ỹi|) 5 N/A N/A N/A N/A N/A

ln(|yij − ỹi|) 6 3.6561 5.1422 8.7226 10.2558 13.9139

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A

ln(|yij − ỹi|) 8 3.2476 4.5951 7.7938 9.2968 12.3049

ln(|yij − ỹi|) 9 N/A N/A N/A N/A N/A

ln(|yij − ỹi|) 10 3.0542 4.2993 7.4017 8.8224 11.8960

ln(|yij − ỹi|) 249 N/A N/A N/A N/A N/A

ln(|yij − ỹi|) 250 2.5888 3.6727 6.3178 7.4403 10.5150

ln(|yij − ỹi|−1) 3 2.4599 3.5675 6.7092 8.2898 12.6292

ln(|yij − ỹi|−1) 4 2.4319 3.4638 6.1225 7.2755 10.5691

ln(|yij − ỹi|−1) 5 2.5813 3.6552 6.3367 7.5782 10.4975

ln(|yij − ỹi|−1) 6 2.5297 3.6079 6.2353 7.3515 10.1599

ln(|yij − ỹi|−1) 7 2.6089 3.6955 6.4512 7.6237 10.2863

ln(|yij − ỹi|−1) 8 2.5710 3.6554 6.3898 7.5826 10.2672

ln(|yij − ỹi|−1) 9 2.6386 3.7398 6.5071 7.7018 10.6666

ln(|yij − ỹi|−1) 10 2.5936 3.7131 6.3687 7.6885 10.8176

ln(|yij − ỹi|−1) 249 2.7042 3.8417 6.6711 7.9406 10.7555

ln(|yij − ỹi|−1) 250 2.7153 3.8298 6.6084 7.7923 10.8915
ln(|yij − ȳi(−1)|) 3 N/A N/A N/A N/A N/A
ln(|yij − ȳi(−1)|) 4 4.7055 6.6028 11.2972 13.3300 19.2526
ln(|yij − ȳi(−1)|) 5 3.2561 4.6487 8.0162 9.5616 13.3910
ln(|yij − ȳi(−1)|) 6 3.1370 4.4614 7.7488 9.3124 12.8196
ln(|yij − ȳi(−1)|) 7 3.0365 4.3380 7.5664 9.0101 12.2842
ln(|yij − ȳi(−1)|) 8 3.0029 4.2610 7.4392 8.7907 12.0292
ln(|yij − ȳi(−1)|) 9 2.9730 4.1951 7.3095 8.5347 11.4839
ln(|yij − ȳi(−1)|) 10 2.8767 4.1247 7.1823 8.5079 11.6863
ln(|yij − ȳi(−1)|) 249 2.7062 3.8532 6.7160 7.8812 10.9219
ln(|yij − ȳi(−1)|) 250 2.7267 3.8514 6.6891 7.9009 10.8813

F1,48 2.8131 4.0427 7.1942 8.6590 12.2855
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Table 18.2 Continued

Measure r α = 0.1 α = 0.05 α = 0.01 α = 0.005 α = 0.001
ln(|yij − ȳi|) 3 4.0644 5.9312 10.9653 13.6479 20.8504
ln(|yij − ȳi|) 4 3.4294 4.8870 8.7635 10.5498 15.4510
ln(|yij − ȳi|) 5 3.1838 4.5170 7.9433 9.5013 13.2277
ln(|yij − ȳi|) 6 3.0431 4.3045 7.5266 9.0160 12.6400
ln(|yij − ȳi|) 7 2.9991 4.2595 7.4194 8.7313 11.9977
ln(|yij − ȳi|) 8 2.9461 4.1829 7.3094 8.6098 12.1211
ln(|yij − ȳi|) 9 2.9275 4.1808 7.1316 8.4074 11.6415
ln(|yij − ȳi|) 10 2.8628 4.0574 7.0417 8.4351 11.7971
ln(|yij − ȳi|) 249 2.7137 3.8453 6.7218 7.8871 11.1020
ln(|yij − ȳi|) 250 2.7132 3.8533 6.6895 7.8646 11.0238

ln(|yi − x
′

i
β̂|) 3 2.8898 4.1637 7.3255 8.8981 12.4561

ln(|yi − x
′

i
β̂|) 4 2.8268 4.0071 6.9016 8.3649 11.6307

ln(|yi − x
′

i
β̂|) 5 2.8160 4.0089 6.9817 8.2675 11.1966

ln(|yi − x
′

i
β̂|) 6 2.7678 3.9291 6.7065 8.0612 11.0207

ln(|yi − x
′

i
β̂|) 7 2.7603 3.9168 6.7860 8.0912 11.1541

ln(|yi − x
′

i
β̂|) 8 2.7750 3.9513 6.7570 7.9686 10.9720

ln(|yi − x
′

i
β̂|) 9 2.7546 3.9100 6.7812 8.0148 11.5115

ln(|yi − x
′

i
β̂|) 10 2.7161 3.8535 6.6279 7.8956 10.8691

ln(|yi − x
′

i
β̂|) 249 2.6986 3.8205 6.6690 7.9733 10.7694

ln(|yi − x
′

i
β̂|) 250 2.7154 3.8462 6.6822 7.8107 10.8805

ln(|yi − x
′

i
β̂exp|) 3 2.9603 4.2185 7.4918 9.0644 12.9161

ln(|yi − x
′

i
β̂exp|) 4 2.8624 4.0672 7.1827 8.5798 12.0492

ln(|yi − x
′

i
β̂exp|) 5 2.8693 4.0848 7.0599 8.4200 11.6221

ln(|yi − x
′

i
β̂exp|) 6 2.8143 3.9850 6.8521 8.1352 11.3235

ln(|yi − x
′

i
β̂exp|) 7 2.8001 3.9435 6.8627 8.1158 11.1792

ln(|yi − x
′

i
β̂exp|) 8 2.7769 3.9661 6.8027 8.0237 10.8977

ln(|yi − x
′

i
β̂exp|) 9 2.7611 3.9331 6.8330 8.1778 11.2759

ln(|yi − x
′

i
β̂exp|) 10 2.7250 3.8818 6.7021 7.9795 10.9376

ln(|yi − x
′

i
β̂exp|) 249 2.7012 3.8188 6.6833 7.8974 10.8175

ln(|yi − x
′

i
β̂exp|) 250 2.7186 3.8524 6.5955 7.7804 10.8427

F1,48 2.8131 4.0427 7.1942 8.6590 12.2855

Five replicate simulations (as described above) are performed for each of r =

4, 7, 10 replicates per treatment combination in order to check the precision of the

critical values. The critical values for α = 0.001, 0.005, 0.01, 0.05, 0.1 from each

replicate simulation are given in Tables D.1–tab:cv.r10.001 of Appendix app:rep.cv

along with the original critical values from Table 18.1 and Table 18.2. For α =

0.01, 0.05, 0.1, all critical values for a given measure are very close; the range of the

critical values is increased for α = 0.001, 0.005. As all tests in the current work are

conducted at the α = 0.05 significance level, the empirical critical values given in

Table 18.1 and Table 18.2 based on 100,000 values are sufficiently precise and can be

used; distributions with more than 100,000 values can be generated to increase the

precision of the critical values for α = 0.001, 0.005.
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18.2 Asymptotic Distribution of Test Statistics

For each alternative measure, the F -distribution with 1 and 48 degrees of freedom

appears to approximate the empirical distribution of the test statistic for large r.

The distributions of the test statistics from the natural logarithm of each measure

(Figures E.22 – E.26), except for ln(|yij − ỹi|) (Figure E.20), closely approximate the

F -distribution with 1 and 48 degrees of freedom for all values of r examined; in the

case of ln(|yij − ȳi(−1)|), r ≥ 5 replicates per treatment combination are needed to

achieve a good approximation. The F -distribution with 1 and 48 degrees of freedom

is closely approximated by the distribution of M using powers of the residuals, A1-A3

(Figures E.14 – E.19). For the absolute deviation from the median, the F -distribution

provides a better approximation to the distribution of tests based on an even number

of replicates (Figure E.7) than tests based on an odd number of replicates (Figure

E.6); for the absolute deviation from the median trimming the minimum deviation

value, no such differentiation between even and odd numbers of replicates exists

(Figure E.8).
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CHAPTER 19

STABILITY OF CRITICAL VALUES AND TYPE I
ERROR

In order to determine whether the Type I error rate for tests using each measure

are stable and close to the nominal α = 0.05 level, tests are performed on data

simulated according to model (12.1) with different means (12.2) and error variances

(12.3). For each simulated data set, the value of γ1 in (12.3) is set equal to zero to

represent a nonexistent dispersion effect of factor 1. The study of the observed Type

I error rates is conducted for r = 4, r = 7, and r = 10. Both the single model scenario

and the multiple model scenario (see Chapter 17) are utilized.

For each data set generated, the appropriate test statistic (either (17.1) or (14.4))

is calculated based for each dispersion measure. Each test statistic is compared to the

associated empirical critical value given in Table 18.1 or Table 18.2 and the number

of times the test rejects counted.

19.1 Single Model Scenario Results

Following the single model scenario, observations are generated from the N(0, 1)

distribution (i.e. null location and dispersion models) in order to validate the critical

values. Five additional models are randomly generated as described in Section 17.1.
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Model 4.1 Model 4.2 Model 4.3 Model 4.4 Model 4.5
x
′

1β -3.1562 -3.2868 1.4996 3.4623 4.0859
x
′

2β -1.8922 2.9029 2.6170 -0.7852 -1.0741
x
′

3β -0.7601 -0.9475 -2.6629 -3.5661 -4.1923
x
′

4β -1.6783 0.3157 2.9891 0.9612 1.3781
x
′

5β 3.4927 1.4805 2.9732 0.2246 -1.8942
x
′

6β -3.8018 2.4362 1.8551 -1.8688 1.4763
x
′

7β 5.5456 -6.1198 1.3102 3.4631 -1.0585
x
′

8β -4.4924 -1.8044 -0.8524 -0.0586 4.1173
x
′

9β 1.3371 1.9419 -0.6588 -1.0239 -5.8355
x
′

10β -0.7760 4.1899 -2.2487 0.7320 -3.6942
x
′

11β 5.1722 5.1685 -0.9034 2.2040 -0.1844
x
′

12β -1.4262 -2.1259 1.4566 -0.1420 -1.8032
x
′

13β 0.3954 -2.7120 -8.5254 -1.8871 3.6729
x
′

14β 2.8526 -1.5119 3.2986 1.5860 1.4523
x
′

15β -0.9872 -1.3303 -0.4210 -7.7837 2.4615
x
′

16β 0.1748 1.4032 -1.7269 4.4823 1.0922
γ0 -0.0201 0.4891 -0.5371 0.1088 -0.4170
γ1 0.0000 0.0000 0.0000 0.0000 0.0000
γ2 -0.1779 0.0000 0.0000 -0.3599 -0.1866
γ3 0.1699 0.0000 -0.2438 0.0000 0.0000
γ4 0.0101 -0.6218 0.0000 0.0000 0.2464
γ5 0.0000 0.0000 -0.0094 0.0000 0.4025
γ6 0.0000 0.0000 0.0000 -0.4626 0.0000
γ7 0.0000 0.6737 0.0000 -0.1252 0.0000
γ8 0.0000 0.4172 0.0000 0.0000 0.0000
γ9 0.0000 -0.2741 0.0000 0.1115 0.1122
γ10 0.0000 0.0000 0.0000 0.1835 0.0000
γ11 0.0625 0.0000 0.0000 0.0499 -0.3016
γ12 0.0000 0.0470 -0.4019 0.0000 0.4152
γ13 0.1608 -0.6101 0.1596 -0.2873 -0.1537
γ14 0.0000 -0.1352 0.0000 -0.0336 -0.0838
γ15 0.0000 0.0000 0.0000 0.0000 0.5470

Table 19.1: Treatment combination means and dispersion parameters for fixed models
simulated with r = 4 replicates per treatment combination to generate observed Type
I errors given in Table 19.4

The means and dispersion parameters for these five models are given in Tables 19.1,

19.2, and 19.3 for r = 4, r = 7, and r = 10 replicates per treatment combination

respectively, where the first digit of the model number is equal to r.

The observed Type I errors based on the single model simulations, including the

null model simulations, are given in Table 19.4 for r = 4 replicates per treatment

combination. Observed Type I error rates for data generated from the N(0, 1) dis-

tribution are approximately equal to the α = 0.05 nominal significance level for all
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Model 7.1 Model 7.2 Model 7.3 Model 7.4 Model 7.5
x
′

1β -1.7732 -1.7442 -3.1029 1.4396 -5.2996
x
′

2β -0.1837 5.9979 2.9354 2.4069 -2.6655
x
′

3β -2.6421 -2.0714 -3.6723 -4.9570 5.6097
x
′

4β 0.2659 0.2204 -2.5308 -0.2028 -1.5852
x
′

5β 7.1682 -3.5706 4.3505 -3.3541 2.6151
x
′

6β 1.7979 2.7260 4.7435 -1.3694 -3.8434
x
′

7β -0.3733 1.4189 -1.3281 2.4163 4.1002
x
′

8β 0.0300 2.6335 1.7429 -3.7713 -1.5534
x
′

9β -2.2024 4.8184 -1.8158 0.3615 0.8207
x
′

10β -1.6183 -4.8581 -0.7067 -0.7839 0.1038
x
′

11β -0.4702 -1.1339 -1.3273 -1.4159 -0.7880
x
′

12β 2.3907 -0.1024 -1.1277 -1.2050 3.1998
x
′

13β 0.7970 -2.8844 2.6023 2.0370 -0.6957
x
′

14β -0.1299 -0.4967 -4.0309 7.7110 1.6524
x
′

15β -6.5922 1.1633 4.4130 -0.4586 -2.9377
x
′

16β 3.5356 -2.1167 -1.1453 1.1457 1.2668
γ0 0.6068 0.2222 -0.7223 -0.2602 0.5224
γ1 0.0000 0.0000 0.0000 0.0000 0.0000
γ2 0.0000 0.0000 0.0000 -0.4711 0.0000
γ3 0.0000 0.0000 -0.0254 0.0000 0.0749
γ4 0.0000 0.0000 0.2535 -0.3345 0.0000
γ5 -0.2381 0.0000 0.0000 0.0000 0.0000
γ6 0.0000 0.0611 -0.1921 0.0000 0.0611
γ7 0.0000 -0.3410 0.1799 0.2604 0.0000
γ8 0.1235 -0.3790 0.0000 0.0000 0.0000
γ9 -0.3244 0.0000 0.0000 0.0000 0.0000
γ10 0.3581 0.0000 0.0000 -0.2744 -0.0450
γ11 0.3527 -0.0456 0.0000 0.0000 0.3631
γ12 0.0000 0.0000 0.2885 0.5773 -0.1935
γ13 0.3000 0.0000 0.0000 0.0000 0.0000
γ14 0.0000 -0.1480 0.0000 0.0000 0.0000
γ15 0.0000 0.0000 0.2786 0.0000 0.0000

Table 19.2: Treatment combination means and dispersion parameters for fixed models
simulated with r = 7 replicates per treatment combination to generate observed Type
I errors given in Table 19.5

measures (see column 2 of Tables 19.4–19.6). These results provide validation of the

empirical critical values.

For each location-dispersion model, s, ln(s2 + 1), and ln(s + 1) control the Type

I error rate below the nominal α = 0.05 level (see columns 3-7 of Tables 19.4).

The signal-to-noise ratio controls the Type I error rate for four of the five location-

dispersion models, the exception being Model 4.1. Under Model 4.1, the Type I error

rate for the test using S/NN is 0.1009, twice the nominal level. Because the Type I
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Model 10.1 Model 10.2 Model 10.3 Model 10.4 Model 10.5
x
′

1β -1.3653 0.1655 3.6214 -2.0814 1.0647
x
′

2β -2.8481 1.7179 -4.5440 -4.5947 -0.3825
x
′

3β 3.4755 -2.4649 -4.0949 -2.3685 -0.7441
x
′

4β -1.3433 0.3949 -2.0369 1.2834 -4.7194
x
′

5β 1.9524 0.2024 1.9016 0.2506 4.4987
x
′

6β 3.4318 -5.9878 -2.6037 2.3821 -4.1399
x
′

7β 0.3354 -1.2208 -0.8734 6.0272 1.0797
x
′

8β 1.6384 -0.8696 -2.1418 3.8963 1.7428
x
′

9β 4.0188 1.4523 4.3244 -1.0890 4.8221
x
′

10β 1.6178 0.0707 2.6437 -0.8118 -1.1066
x
′

11β -1.7915 1.6844 2.7347 0.0494 -1.6381
x
′

12β -5.3504 -1.6457 3.5349 -5.5191 4.6864
x
′

13β -4.3380 7.6956 0.6899 0.8110 -1.3056
x
′

14β -3.0503 -2.8208 -4.0540 2.4511 -4.1988
x
′

15β -0.1265 3.2096 1.3427 -2.0528 -0.4612
x
′

16β 3.7432 -1.5836 -0.4446 1.3662 0.8019
γ0 -0.0180 -0.4538 -0.3366 0.1422 0.2849
γ1 0.0000 0.0000 0.0000 0.0000 0.0000
γ2 0.0000 0.0000 0.0000 0.1418 0.0000
γ3 0.0000 0.2350 0.0000 0.0000 0.0000
γ4 0.4287 -0.3176 0.0000 0.0000 0.0000
γ5 0.0000 0.0000 0.0000 0.0000 0.0000
γ6 0.0000 0.0000 0.0423 -0.6052 -0.2481
γ7 0.0000 0.1772 0.0000 -0.5208 0.0000
γ8 -0.1695 0.0000 0.0000 -0.5279 0.3916
γ9 0.0000 -0.4534 0.4171 0.0000 0.0000
γ10 0.0000 0.0566 0.0000 0.0000 0.0000
γ11 0.0000 0.0000 0.0000 0.0000 0.0000
γ12 0.6937 0.7859 0.0000 0.0950 0.0000
γ13 0.0000 0.0000 -0.5894 -0.0287 -0.4263
γ14 0.0000 0.0630 -0.0373 0.2955 0.3703
γ15 0.0000 0.2746 0.0000 0.0000 0.0000

Table 19.3: Treatment combination means and dispersion parameters for fixed models
simulated with r = 10 replicates per treatment combination to generate observed
Type I errors given in Table 19.6

error cannot be guaranteed to be controlled to approximately the nominal level for

all models, S/NN is eliminated from consideration. The power of s2, s, ln(s2 + 1),

and ln(s + 1) is studied in Chapter 20.

The residuals and expanded residuals produce observed Type I error rates greater

than 0.065, and frequently greater than 0.10, for all non-null single models generated

(see columns 2-6 of Table 19.4). Similarly, the natural logarithm of the residuals

and expanded residuals produce Type I error rates greater than the nominal level
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Null Fixed Fixed Fixed Fixed Fixed
Measure Model Model 4.1 Model 4.2 Model 4.3 Model 4.4 Model 4.5

s 0.0500 0.0222 0.0057 0.0323 0.0162 0.0023
ln(s2 + 1) 0.0510 0.0220 0.0150 0.0358 0.0229 0.0030
ln(s + 1) 0.0504 0.0250 0.0127 0.0319 0.0159 0.0028
S/NN 0.0511 0.1009 0.0075 0.0064 0.0126 0.0000

|yij − ỹi| 0.0511 0.0513 0.0953 0.0775 0.1981 0.0734

|yij − ỹi|−1 0.0508 0.0507 0.0980 0.0786 0.2088 0.0711
|yij − ȳi(−1)| 0.0511 0.0513 0.0953 0.0775 0.1981 0.0734
|yij − ȳi| 0.0514 0.0518 0.0941 0.0759 0.1955 0.0666

|yij − ȳi|0.42 0.0513 0.0502 0.0881 0.0567 0.0870 0.0554

|yij − ȳi|1.5 0.0509 0.0509 0.0801 0.0837 0.2156 0.0655

|yi − x
′

i
β̂| 0.0500 0.0662 0.1202 0.1099 0.3390 0.0906

|yi − x
′

i
β̂|2 0.0498 0.0692 0.0845 0.1378 0.3336 0.0964

|yi − x
′

i
β̂|1.5

0.0497 0.0687 0.0973 0.1305 0.3579 0.0986

|yi − x
′

i
β̂exp| 0.0496 0.0655 0.1333 0.1041 0.3170 0.0943

|yi − x
′

i
β̂exp|

2
0.0496 0.0681 0.0888 0.1303 0.3303 0.0960

|yi − x
′

i
β̂exp|

1.5
0.0495 0.0680 0.1043 0.1241 0.3475 0.1003

ln(|yij − ỹi|−1) 0.0517 0.0498 0.0516 0.0504 0.0510 0.0519
ln(|yij − ȳi(−1)|) 0.0522 0.0500 0.0519 0.0509 0.0516 0.0522
ln(|yij − ȳi|) 0.0507 0.0503 0.0507 0.0510 0.0505 0.0512

ln(|yi − x
′

i
β̂|) 0.0509 0.0561 0.2124 0.0586 0.1580 0.1001

ln(|yi − x
′

i
β̂exp|) 0.0513 0.0558 0.2275 0.0570 0.1247 0.1039

Table 19.4: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α =

0.05 critical values from null distribution for 100,000 simulations of single randomly
generated second-order location and second-order dispersion models with r = 4 and
γ1 = 0

Null Fixed Fixed Fixed Fixed Fixed
Measure Model Model 7.1 Model 7.2 Model 7.3 Model 7.4 Model 7.5

s 0.0486 0.0037 0.0116 0.0015 0.0003 0.0203
ln(s2 + 1) 0.0489 0.0147 0.0155 0.0005 0.0003 0.0242
ln(s + 1) 0.0482 0.0093 0.0218 0.0032 0.0014 0.0254

ln(|yij − ỹi|−1) 0.0501 0.0505 0.0516 0.0502 0.0500 0.0506
ln(|yij − ȳi(−1)|) 0.0501 0.0510 0.0501 0.0501 0.0500 0.0494
ln(|yij − ȳi|) 0.0487 0.0495 0.0495 0.0500 0.0494 0.0490

Table 19.5: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α =

0.05 critical values from null distribution for 100,000 simulations of single randomly
generated second-order location and second-order dispersion models with r = 7 and
γ1 = 0
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Null Fixed Fixed Fixed Fixed Fixed
Measure Model Model 10.1 Model 10.2 Model 10.3 Model 10.4 Model 10.5

s 0.0514 0.0439 0.0000 0.0251 0.0001 0.0007
ln(s2 + 1) 0.0507 0.0361 0.0000 0.0265 0.0002 0.0033
ln(s + 1) 0.0507 0.0320 0.0002 0.0283 0.0019 0.0127

ln(|yij − ỹi|−1) 0.0502 0.0502 0.0508 0.0496 0.0499 0.0489
ln(|yij − ȳi(−1)|) 0.0503 0.0499 0.0519 0.0510 0.0512 0.0506
ln(|yij − ȳi|) 0.0506 0.0503 0.0514 0.0509 0.0513 0.0514

Table 19.6: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α =

0.05 critical values from null distribution for 100,000 simulations of single randomly
generated second-order location and second-order dispersion models with r = 10 and
γ1 = 0

in most of the single non-null model simulations with r = 4. These results indicate

that the empirical critical values for the test statistics from these dispersion measures

are unstable and cannot be validated across different models. Lacking valid critical

values, the location model residuals and the natural logarithm of the location model

residuals are not considered further.

For all models, the natural logarithm of the absolute deviation from the median

minus the minimum observation, absolute deviation from the trimmed mean, and

absolute deviation from the mean produce Type I error rates controlled to close to

the nominal α = 0.05. The power of each of these four dispersion measures is studied

(Chapter 20).

The original alternative measures (described in Chapter 13) studied in Phase I as

well as the new alternative measure, |yij − ỹi|−1 (described in Chapter 16), produce

observed Type I error rates greater than 0.065 for most simulations (see columns 2-6

of Table 19.4). These results are not surprising due to the multiplicative nature of

the dispersion effects from model 12.1 with g(x) = exp(x). Because these dispersion
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measures fail to control the observed Type I error rate in general, these measures are

eliminated from study.

For s, ln(s2 + 1), ln(s + 1), S/NN , ln(|yij − ỹi|−1), ln(|yij − ȳi(−1)|) and ln(|yij − ȳi|),

the observed Type I errors based on the single model simulations for r = 7 and r = 10

replicates per treatment combination are given in Table 19.5 and Table 19.6, respec-

tively. The results for these simulations are similar to the results for r = 4. For

the single model scenario, the Type I error rate using the empirical critical values is

stable and controlled. indicating the critical values can be applied to study the power

of the tests.

19.2 Multiple Models Scenario Results

Five sets of multiple models simulations are completed for each of r = 4, r = 7,

and r = 10; Table 19.7, Table 19.8, and Table 19.9 give the results for these multiple

model simulations for s2, s, ln(s2 + 1), ln(s + 1), ln(|yij − ỹi|−1), ln(|yij − ȳi(−1)|) and

ln(|yij − ȳi|). The results from the multiple model simulations for these seven disper-

sion measures are similar to the results from the single model scenario simulations;

tests using each of the nine dispersion measures provide control of the observed Type

I error close to or below the nominal α = 0.05.
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Random Random Random Random Random
Measure Models 1 Models 2 Models 3 Models 4 Models 5

s 0.0181 0.0182 0.0184 0.0182 0.0175
ln(s2 + 1) 0.0206 0.0202 0.0207 0.0212 0.0205
ln(s + 1) 0.0192 0.0192 0.0198 0.0199 0.0188

ln(|yij − ỹi|−1) 0.0508 0.0508 0.0513 0.0512 0.0498
ln(|yij − ȳi(−1)|) 0.0510 0.0509 0.0517 0.0517 0.0495
ln(|yij − ȳi|) 0.0507 0.0507 0.0508 0.0511 0.0502

Table 19.7: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α = 0.05

critical values from null distribution for 100,000 simulations of multiple randomly
generated second-order location and second-order dispersion models with r = 4 and
γ1 = 0

Random Random Random Random Random
Measure Models 1 Models 2 Models 3 Models 4 Models 5

s 0.0198 0.0199 0.0206 0.0211 0.0201
ln(s2 + 1) 0.0225 0.0226 0.0232 0.0229 0.0237
ln(s + 1) 0.0191 0.0193 0.0203 0.0202 0.0206

ln(|yij − ỹi|−1) 0.0490 0.0509 0.0502 0.0503 0.0501
ln(|yij − ȳi(−1)|) 0.0498 0.0514 0.0501 0.0498 0.0505
ln(|yij − ȳi|) 0.0498 0.0509 0.0507 0.0501 0.0496

Table 19.8: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α = 0.05

critical values from null distribution for 100,000 simulations of multiple randomly
generated second-order location and second-order dispersion models with r = 7 and
γ1 = 0

Random Random Random Random Random
Measure Models 1 Models 2 Models 3 Models 4 Models 5

s 0.0240 0.0236 0.0242 0.0227 0.0235
ln(s2 + 1) 0.0266 0.0256 0.0267 0.0252 0.0266
ln(s + 1) 0.0218 0.0218 0.0226 0.0212 0.0221

ln(|yij − ỹi|−1) 0.0487 0.0514 0.0497 0.0498 0.0494
ln(|yij − ȳi(−1)|) 0.0497 0.0516 0.0520 0.0501 0.0506
ln(|yij − ȳi|) 0.0509 0.0515 0.0525 0.0507 0.0515

Table 19.9: Observed Type I error for testing H∗
0 : γ1 = 0 (14.3) using level α = 0.05

critical values from null distribution for 100,000 simulations of multiple randomly
generated second-order location and second-order dispersion models with r = 10 and
γ1 = 0
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CHAPTER 20

POWER

In Chapter 19, seven measures are found to have stable observed Type I error

using the empirical critical values:

T1. Within-run sample standard deviation, s

T2. Natural logarithm of the within-treatment sample variance (plus 1.0), ln(s2 + 1)

T3. Natural logarithm of the within-treatment sample standard deviation (plus 1.0),

ln(s + 1)

A1. Natural logarithm of the absolute deviation from the median trimmed the min-

imum value, ln(|yij − ỹi|−1)

A2. Natural logarithm of the absolute deviation from the trimmed mean, ln(|yij − ȳi(−1)|)

A3. Natural logarithm of the absolute deviation from the mean, ln(|yij − ȳi|).

These seven measures are next compared with respect to power.

Power to detect a single dispersion effect of interest is studied over a set of ran-

domly generated location-dispersion models. All studies of power follow the multiple

models scenario, with a new location-dispersion model used to generate each data set
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(see Section 17.3). By using the multiple models scenario, the power of the test to

detect the dispersion effect is averaged over a range of models.

In the model (12.5), (1/2)ln(2) corresponds to a standard deviation ratio of two

for the high and low levels of X1; the standard deviation of the observations when

factor 1 is set at the high level (s+) and the standard deviation of the observations

when factor 1 is set at the low level (s−), the ratio is

s+

s−
=

exp(γ0 + γ1 + γ2 + . . .)

exp(γ0 − γ1 + γ2 + . . .)

= exp([γ0 + γ1 + γ2 + . . .] − [γ0 − γ1 + γ2 + . . .])

= exp(2γ1). (20.1)

Then for γ1 = (1/2)ln(2),

s+

s−
= exp(2γ1)

= exp(2
[
1

2
ln(2)

]
)

= 2.

The dispersion effect when the standard deviation is twice as large at one factor

setting as compared to the other should be detectable. Detection of this ratio of

two provides a reasonable performance criterion. Power to detect dispersion effects

inducing standard deviation ratios greater than two should be considerably greater,

and ideally should approach 1.00. In the current work, the value of γ1 is incremented

from γ1 = 0 to γ1 = (1/2)ln(5) (corresponding to a standard deviation ratio equal to

five) in fifty steps.

From equation (20.1), it can be seen that the ratio of the standard deviations at

the high and low level of the factor of interest are independent of all other dispersion
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parameters in the model, including the overall variance γ0. This independence is not

seen in the additive model. In the additive dispersion model, for example, for γ1 = 2

and assuming all other γi = 0 for i 6= 0, 1, if γ0 = 4 then s+/s− = 3 while if γ0 = 10

then s+/s = 1.5. In this case, although γ1 is constant, the power to detect γ1 is

dependent upon the value of γ0.

The remaining model parameters are generated as described in Section 17.1. Two

sets of simulations are conducted: (i.) first order dispersion models (i.e. dispersion

models with only main effects) and (ii.) second order dispersion models (i.e. disper-

sion models with main effects and two-factor interaction effects). For all simulations,

data are generated according to a second-order location model. Finally, all errors, εij

are generated from a N(0, 1) distribution.

For each value of γ1, 100,000 data sets are generated. For each data set, the

parameters are generated as described above. The location-dispersion model (12.1)

including all main effects and two-factor interaction effects is fit to the data (as

described in Chapter 17) for both sets of simulations. Lenth’s test statistic, tPSE, is

used to conduct tests for s2, s, ln(s2 + 1), and ln(s + 1); the M -test statistic is used

for ln(|yij − ỹi|−1), ln(|yij − ȳi(−1)|), and ln(|yij − ȳi|). The proportion of times a test

rejects the null hypothesis H0 : γ1 = 0 is a measure of the power of the measure to

detect a dispersion effect of the given size. Detection powers are found over the range

of γ1 stated above, and power curves are plotted and compared in Sections 20.1–20.6.

20.1 First-Order Dispersion Model with r = 4 Replicates

Figure 20.1 shows the power curves for tests based on each of the seven dispersion

measures when data are generated from first-order dispersion models with r = 4
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Figure 20.1: Power curves for tests using s, ln(s2 + 1), ln(s + 1), ln(|yij − ỹi|−1),
ln(|yij − ȳi(−1)|), and ln(|yij − ȳi|) with data from randomly generated second-order
location models (12.2) and first-order dispersion models (12.3) using empirical critical
values, r = 4 replicates, and normal error distribution

replicates. Based on these power curves, the test based on the natural logarithm of

the absolute deviation from the mean provides greater power to detect the dispersion

effect across all effect sizes than all other measures. At the same time, this test (using

the empirical critical value given in Table 18.2) controls the Type I error rate close to

the nominal α = 0.05 significance level. The tests based on the natural logarithm of

the standard deviation and the natural logarithm of the absolute deviation from the

median trimming the minimum observation provide power close to the test based on

ln(|yij − ȳi|); all other tests provide power less than the test based on ln(|yij − ȳi|).

Going forward, only tests based on ln(|yij − ȳi|), ln(|yij − ỹi|−1), and ln(s + 1) will

be studied.
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Figure 20.2: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated second-order location models (12.2) and second-
order dispersion models (12.3) using empirical critical values, r = 4 replicates, and
normal error distribution

20.2 Second-Order Dispersion Model with r = 4 Replicates

The power curves for test based on ln(|yij − ȳi|), ln(|yij − ỹi|−1), and ln(s + 1) for

data with r = 4 replicates per treatment combination from second-order dispersion

models are shown in Figure 20.2. Similar to the power for data from first-order

dispersion models, the test based on ln(|yij − ȳi|) provides the greatest power to

detect the dispersion effect; power of the test based on ln(|yij − ỹi|−1) is again close to

the power of the test based on ln(|yij − ȳi|). Comparing, Figure 20.2 and Figure 20.1,

the power of the test based on ln(s + 1) is greatly decreased when data are generated

according to a second-order dispersion model. While the power of the test based

on ln(s + 1) is close to the power of the test based on ln(|yij − ȳi|) when data are

generated according to a first-order dispersion model, a large difference between the
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power of these two tests exists when data are generated according to a second-order

dispersion model.

20.3 Power of Tests for Varying Numbers of Replicates Per
Treatment Combination

Figures F.1 – F.8 in Appendix F show the power curves for tests based on

ln(|yij − ȳi|), ln(|yij − ỹi|−1), and ln(s + 1) for both first- and second-order dispersion

model data for numbers of replicates from r = 3 up to r = 10, with power for first-

order model data represented by solid lines and power for second-order model data

represented by dashed lines. In each case, the power of the test based on ln(|yij − ȳi|)

and ln(|yij − ỹi|−1) show consistent power whether the data are generated from ei-

ther first- or second-order models. This consistency is not seen for the test based

on ln(s + 1); a significant difference in power for this test based on ln(s + 1) exists

between data generated from first-order models as compared to second-order models

(Figures F.1 – F.8). For these two measures, while the power may be good in one

case (i.e. for first-order data), the power is significantly decreased for the second case

(i.e. for second-order data). The reason for this disparity is considered later in Sec-

tion 20.4. As both types of models will occur in applications, this significant power

differential is undesirable.

For 3 ≤ r ≤ 6, the test based on ln(|yij − ȳi|) provides the greatest power for both

first- and second-order data. The test based on ln(|yij − ȳi|) provides the greatest

power among the tests studied, also, for second-order data for all numbers of repli-

cates, r, examined. The observed Type I error rate for the natural logarithm of the

absolute deviation from the mean is close to the nominal α = 0.05 significance level

for all numbers of replicates, r, considered.
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Figure 20.3: Power curves for tests using ln(s + 1) and ln(|yij − ȳi|) with data from
randomly generated second-order location models (12.2) and first-order dispersion
models (12.3) using empirical critical values, r = 3, 4, 7, 10 replicates, and normal
error distribution

In the case of r > 6 and data generated from first-order models, the test based on

ln(s + 1) gives the greatest detection power over part of the range of effect sizes. Fig-

ure 20.3 shows the power curves for ln(s + 1) and ln(|yij − ȳi|) for r = 3, 4, 7, 10 repli-

cates per treatment combination. The power of both tests increases as the number of

replicates increases, but at different rates. For all r, the test based on ln(|yij − ȳi|)

shows greater power than the test based on ln(s + 1) for smaller effect sizes. For the

largest effect sizes, the power of the two tests is similar. The test based on ln(s + 1)

dominates only over the middle range of effect sizes, and the difference is not great.

In application, the number of replications per treatment combination is usually

limited. The use of r = 3 or r = 4 replicates per treatment combination is more likely

to occur in practice than the use of r ≥ 7 replicates. The superior performance of
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the test based on ln(|yij − ȳi|) is of greater interest and impact; the smaller increase

in power of the natural logarithm of the standard deviation for larger numbers of

replicates is of less value. Thus, the use of the natural logarithm of the absolute

deviation from the mean is still preferred over the natural logarithm of the standard

deviation.

The detection power of the test based on ln(|yij − ỹi|−1) is greater than the power

of the test based on ln(s + 1) when data are generated from second-order models.

This relationship is reversed for data generated from first-order models.

The power curves for ln(s + 1) and ln(|yij − ỹi|−1) for r = 3, 4, 7, 10 replicates

per treatment combination and first-order data are shown in Figure 20.4. For all

numbers of replicates per treatment combination examined, the power of the test

based on ln(s + 1) is greater than the power of the test based on ln(|yij − ỹi|−1). The

difference in power between the two tests is not great for r = 3 and r = 4, the numbers

of replicates more likely to occur in practice; the difference in power increases as r

increases.

As the number of replicates per treatment combination, r, increases, the detection

power of the test based on ln(|yij − ỹi|−1) increases. However, up to the number of

replicates examined here, the power is never as great as that of the test based on

ln(|yij − ȳi|).

20.4 Power of Test Based on Natural Logarithm of the Stan-
dard Deviation for First-Order vs. Second-Order Dis-
persion Models

As noted, the power changes significantly for the test based on ln(s + 1) depending

on whether data are generated from first- or second-order models, with significantly
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Figure 20.4: Power curves for tests using ln(s + 1) and ln(|yij − ỹi|−1) with data from
randomly generated second-order location models (12.2) and first-order dispersion
models (12.3) using empirical critical values, r = 3, 4, 7, 10 replicates, and normal
error distribution

greater power for data generated from first-order models. This power difference is

likely the result of calculation of the pseudo standard error of Lenth’s method. From

equation (17.2), the pseudo standard error is a scalar times the median of the esti-

mated effects. When data are generated from second-order dispersion models, it is

possible that all effects in the fitted model are non-zero. If the median estimated

effect is roughly equal to or greater than the effect, γ1, of interest, then the pseudo

standard error will be greater than the effect of interest. In this case, the test statistic,

tPSE, given in equation (17.1) will be less than or equal to one. Thus, the power to

detect the effect will be decreased.

In order to test the above conjecture that the low power of the test based on

ln(s + 1) is the result of the possibility of all non-zero effect estimates in the fitted
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Figure 20.5: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
from full factorial design with data from randomly generated mean vectors and first-
and second-order variance models using empirical critical values from Tables 18.1 and
18.2, r = 4 replicates, and normal error distribution

model, the simulation (see Chapter 17) is repeated using a 25 full factorial design.

Data are again generated from both first- and second-order random dispersion models.

Because the full factorial design is used, the full model fit to the data includes three-,

four-, and five-factor interaction effects. These higher order effects are known to be

zero. As a result of the zero effects, the pseudo standard error should be smaller than

previous simulations; the smaller pseudo standard error should provide for increased

power to detect the dispersion effect. The power curves from these simulations are

shown in Figure 20.5. As can be seen in Figure 20.5, the power of the test based on

ln(s + 1) is close to the power of the tests based on ln(|yij − ȳi|) and ln(|yij − ỹi|−1)

for second-order dispersion model data. These results indicate that the addition of
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inactive effects to the model does increase the power of the test, providing evidence

of the given explanation.

The power of the test based on ln(s + 1) is again greater for first-order dispersion

model data compared to second-order dispersion model data (Figure 20.5). Though

both the first- and second-order dispersion models include effects known to be zero,

the number of effects known to be zero is different between the two models. The

greater the number of effects equal to zero, the smaller the median estimated effect

and the smaller the pseudo standard error in the denominator of tPSE. The value of

the test statistic, tPSE, is thereby increased, resulting in increased power of the test

to reject the null hypothesis.

As before, the power of ln(|yij − ȳi|) and ln(|yij − ỹi|−1) is similar for both types

of data.

20.5 Non-normal Error Distributions

Based on control of the observed Type I error (Chapter 19) and the observed

power (Chapter 20), the tests based on ln(|yij − ȳi|) and ln(|yij − ỹi|−1) appear to be

the best for detecting a dispersion effect while controlling the Type I error rate. At

this point, it is advantageous to examine how these two tests perform under different

model assumptions.

In order to study the effect of non-normal error distributions, additional simu-

lations are run assuming either a Cauchy(0,1) or exponential(1) error distribution;

simulations are run with r = 4 replicates per treatment combination. These non-

normal simulations are run following the power simulations described in Chapter 20,
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Figure 20.6: Power curves for tests based on ln(s + 1), ln(|yij − ỹi|−1), and
ln(|yij − ȳi|) with data from randomly generated second-order location models (12.2)
and second-order dispersion models (12.3) using empirical critical values based on
normally distributed errors, r = 4 replicates, and a Cauchy(0,1) error distribution

generating data from second-order location models and second-order dispersion mod-

els. For all tests of the null hypothesis H0 : γ1 = 0, the critical values based on errors

following a normal distribution given in Table 18.2 are used. The power curves based

on the results from these simulations are shown in Figure 20.6 and Figure 20.7.

From Figure 20.6 and Figure 20.7, the observed Type I error rates for the test

based on ln(|yij − ȳi|) are 0.3762 and 0.1520 for the Cauchy and exponential error

distributions, respectively. The test based on ln(|yij − ȳi|) is clearly not a robust

test to violations of the normal distribution assumption. If the observed data do not

follow approximately a normal distribution, the proposed test should not be used.

The test based on ln(s + 1) controls the Type I error rate to below the nominal

α = 0.05 significance level for data following a Cauchy or exponential distribution.
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Figure 20.7: Power curves for tests based on ln(s + 1), ln(|yij − ỹi|−1), and
ln(|yij − ȳi|) with data from randomly generated second-order location models (12.2)
and second-order dispersion models (12.3) using empirical critical values based on
normally distributed errors, r = 4 replicates, and an exponential(1) error distribution

The low error rate for this test is at the cost of power; the power of the test based

on ln(s + 1) is extremely low across the full range of effect sizes for both non-normal

error distributions considered.

The observed Type I error rates for the test based on ln(|yij − ỹi|−1) are 0.0855

and 0.0898 when the errors follow a Cauchy or exponential distribution, respectively;

these Type I error rates for the test based on ln(|yij − ỹi|−1) are not as great as for

the test based on ln(|yij − ȳi|). Using the definition from Conover et al. (1981) that

a test is robust if the maximum Type I error rate is less than 0.10 for an α = 0.05

significance level test, the test based on ln(|yij − ỹi|−1) qualifies as a robust test in

these cases. The power of this test is much greater than the power of the test based on

ln(s + 1) and approaches the power of the test based on ln(|yij − ȳi|). For detecting
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a dispersion effect when the distribution cannot be assumed to normal, a test based

on ln(|yij − ỹi|−1) is preferred to a test based on either ln(|yij − ȳi|) or ln(s + 1).

20.6 Additive Dispersion Models

The use of the natural logarithm of either the absolute deviation from the mean of

the absolute deviation from the median trimmed the minimum observation is proposed

based on the multiplicative model (see Chapter 12). However, in application, the

dispersion model may be either multiplicative, as in Phase II, or additive, as in Phase

I. The question is then how well these tests perform with respect to the additive

model. In order to answer this question, additional simulations are run generating

data from random second-order location models and second-order additive dispersion

models, i.e. model (12.1) with g(x′
σ,iγ) = x′

σ,iγ. The mean vector, µi = x′
µ,iβ, for each

data set is generated according to N(0, 10). For these simulations, γ0 = 10 and γ1 is

increased from γ1 = 0 to γ1 = 5 in increments of 0.1. For each model, γi, i 6= 0, 1, are

generated according to

γi =

{
Zi with probability 0.4
0 with probability 0.6

where Zi ∼ N(0, 2). For each randomly generated vector of γi, the standard deviation

of each treatment combination is checked to verify that σi > 0 for all i; if σi ≤ 0,

then the vector of dispersion effects is discarded and a new vector generated. All

errors, εij, are generated from a N(0, 1) distribution. The power curves from these

simulations are presented in Figure 20.8.

The observed Type I error for tests based on ln(|yij − ȳi|) and ln(|yij − ỹi|−1)

when the dispersion model is additive is greater than the nominal α = 0.05 signifi-

cance level but less than 0.075. Both tests are considered robust using the definition
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Figure 20.8: Power curves for tests based on ln(s + 1), ln(|yij − ỹi|−1), and
ln(|yij − ȳi|) with data from randomly generated second-order location models (12.2)
and second-order additive dispersion models (12.3) using empirical critical values,
r = 4 replicates, and normal error distribution

from Conover et al. (1981). As with the multiplicative dispersion model, the test

based on ln(|yij − ȳi|) provides greater power to detect the dispersion effect than the

test based on ln(|yij − ỹi|−1); the test based on ln(s + 1) provides less power than the

test based on either alternative dispersion measure. From these results, ln(|yij − ȳi|)

and ln(|yij − ỹi|−1) can be used whether the dispersion model is additive or multi-

plicative.
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CHAPTER 21

RECOMMENDATION

Two competing goals must be balanced in recommending a dispersion measure

to use for the identification of dispersion effects when experiments are replicated:

power to detect a true dispersion effect and control of the Type I error rate. Ideally

the same dispersion measure will prove to be both powerful and robust for varying

models (e.g. different error distributions, both additive and multiplicative dispersion

models). Based on the current work, this is not the case and the recommendation

must be qualified by the type of data observed.

From Chapter 19, both the natural logarithm of the absolute deviation from the

mean, ln(|yij − ȳi|), and the natural logarithm of the absolute deviation from the

median trimmed the minimum observation, ln(|yij − ỹi|−1), lead to tests that control

the Type I error rate close to the nominal α = 0.05 significance level for data follow-

ing a normal distribution with a multiplicative dispersion model (Tables 19.4–19.9).

Of these two dispersion measures, the test based on ln(|yij − ȳi|) is shown in Chap-

ter 20 to provide greater power to detect the dispersion effect than the test based

on ln(|yij − ỹi|−1), assuming normally distributed data with a multiplicative disper-

sion model (Figures F.1–F.8); the power of the test based on ln(|yij − ȳi|) is similar
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whether data are generated from a first- or second-order dispersion model. Addition-

ally, the test based on ln(|yij − ȳi|) controls the Type I error rate and provides greater

power than the test based on ln(|yij − ỹi|−1) when the dispersion model is assumed to

be additive (Figure 20.8). Figures 20.6 and 20.7 show, however, that the test based

on ln(|yij − ȳi|) has Type I error much greater than the nominal α = 0.05 significance

level when the data follow either a Cauchy(0,1) or exponential(1) distribution. From

these results, the recommendation based on the current work is to use the M -test

statistic (14.4) based on the natural logarithm of the absolute deviation from the

mean, ln(|yij − ȳi|), with critical values from Table 18.2 when there is evidence that

the data follow a normal distribution; if the distribution of the data is known to

be non-normal or is not known, ln(|yij − ȳi|) should not be used as the dispersion

measure response for the test.

For both the Cauchy and exponential error distributions the test based on the

measure ln(|yij − ỹi|−1) is robust according to the definition given by Conover et

al. (1981) with Type I error rate less than 2α. The test based on ln(|yij − ỹi|−1)

provides high power for detecting the dispersion effect as well as controls the Type I

error. While the power of the test based onln(|yij − ỹi|−1) is exceeded by the power

of the test based on ln(|yij − ȳi|) when the data follow a normal distribution (Figures

F.1–F.8 and Figure 20.8), the difference in power between the two tests is not large.

Therefore, when there is little or no evidence that the data follow a normal distribution

the recommendation based on the current work is to use the M -test statistic based

on the natural logarithm of the absolute deviation from the median trimmed the

minimum observation, ln(|yij − ỹi|−1), with critical values from Table 18.2.
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Empirical critical values are needed for the implementation of the test methodol-

ogy using either ln(|yij − ȳi|) or ln(|yij − ỹi|−1). A table of empirical critical values

for a limited number of error degrees of freedom is given in Table 18.2 of the current

work; additional critical values can be generated via Monte Carlo simulation.

Whether ln(|yij − ȳi|) is used for data known to follow a normal distribution or

ln(|yij − ỹi|−1) is used for data not known to follow a normal distribution, the power of

the test based of these alternative measures is greater than the power of the tests based

on traditional measures such as ln(s + 1) while controlling the Type I error rate. For

experimental designs in which effects can be estimated independently, the dispersion

effect test methodology proposed in the current work provides a beneficial alternative

to traditional dispersion test methodologies for data from replicated experiments.
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APPENDIX A

ORTHOGONAL ARRAYS
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1 1 1 1 1 1 1
2 2 2 2 2 2 1
0 0 0 0 0 0 1
1 1 2 0 2 0 1
2 2 0 1 0 1 1
0 0 1 2 1 2 1
1 2 1 0 0 2 2
2 0 2 1 1 0 2
0 1 0 2 2 1 2
1 0 0 1 2 2 2
2 1 1 2 0 0 2
0 2 2 0 1 1 2
1 2 0 2 1 0 0
2 0 1 0 2 1 0
0 1 2 1 0 2 0
1 0 2 2 0 1 0
2 1 0 0 1 2 0
0 2 1 1 2 0 0

Table A.1: OA(18, 7, 3, 2)
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1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 2 0 0 1 2 0 2 1 1
0 1 0 0 0 2 2 1 0 2 0 1 1
1 2 1 2 2 2 0 0 1 2 0 2 1
2 2 2 0 0 1 2 0 2 1 1 2 1
0 2 0 1 1 0 1 0 0 0 2 2 1
1 0 1 0 0 0 2 2 1 0 2 0 1
2 0 2 1 1 2 1 2 2 2 0 0 1
0 0 0 2 2 1 0 2 0 1 1 0 1
1 1 2 1 2 2 2 0 0 1 2 0 2
2 1 0 2 0 1 1 0 1 0 0 0 2
0 1 1 0 1 0 0 0 2 2 1 0 2
1 2 2 2 0 0 1 2 0 2 1 1 2
2 2 0 0 1 2 0 2 1 1 2 1 2
0 2 1 1 2 1 2 2 2 0 0 1 2
1 0 2 0 1 1 0 1 0 0 0 2 2
2 0 0 1 2 0 2 1 1 2 1 2 2
0 0 1 2 0 2 1 1 2 1 2 2 2
1 1 0 1 0 0 0 2 2 1 0 2 0
2 1 1 2 1 2 2 2 0 0 1 2 0
0 1 2 0 2 1 1 2 1 2 2 2 0
1 2 0 2 1 1 2 1 2 2 2 0 0
2 2 1 0 2 0 1 1 0 1 0 0 0
0 2 2 1 0 2 0 1 1 0 1 0 0
1 0 0 0 2 2 1 0 2 0 1 1 0
2 0 1 1 0 1 0 0 0 2 2 1 0
0 0 2 2 1 0 2 0 1 1 0 1 0

Table A.2: OA(27, 13, 3, 2)
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1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 2 2 2 2 0 0 0 0 1
2 2 2 2 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 2 2 2 2 1
1 1 2 0 1 2 0 0 1 2 2 0 1
2 2 0 1 2 0 1 1 2 0 0 1 1
0 0 1 2 0 1 2 2 0 1 1 2 1
1 1 0 2 1 0 2 0 2 1 0 2 1
2 2 1 0 2 1 0 1 0 2 1 0 1
0 0 2 1 0 2 1 2 1 0 2 1 1
1 2 0 1 0 2 1 0 0 2 1 2 2
2 0 1 2 1 0 2 1 1 0 2 0 2
0 1 2 0 2 1 0 2 2 1 0 1 2
1 2 0 2 1 1 0 2 0 0 2 1 2
2 0 1 0 2 2 1 0 1 1 0 2 2
0 1 2 1 0 0 2 1 2 2 1 0 2
1 2 1 0 0 0 1 2 2 1 2 0 2
2 0 2 1 1 1 2 0 0 2 0 1 2
0 1 0 2 2 2 0 1 1 0 1 2 2
1 2 2 0 0 1 2 1 1 0 0 2 2
2 0 0 1 1 2 0 2 2 1 1 0 2
0 1 1 2 2 0 1 0 0 2 2 1 2
1 0 2 1 2 0 0 1 0 1 2 2 0
2 1 0 2 0 1 1 2 1 2 0 0 0
0 2 1 0 1 2 2 0 2 0 1 1 0
1 0 2 2 2 1 1 0 2 0 1 0 0
2 1 0 0 0 2 2 1 0 1 2 1 0
0 2 1 1 1 0 0 2 1 2 0 2 0
1 0 0 0 2 0 2 2 1 2 1 1 0
2 1 1 1 0 1 0 0 2 0 2 2 0
0 2 2 2 1 2 1 1 0 1 0 0 0
1 0 1 2 0 2 0 1 2 2 0 1 0
2 1 2 0 1 0 1 2 0 0 1 2 0
0 2 0 1 2 1 2 0 1 1 2 0 0

Table A.3: OA(36, 13, 3, 2)
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APPENDIX B

ESTIMATION CAPACITY TABLES

Class A B C AB AC BC
18.3.1 2 2 2 4 4

2 2 2 4 4
2 2 2 4 4

18.3.2 2 2 1 1 2
2 2 1 1 2
2 2 2 2 2

18.3.3 2 0 0 0 0
0 2 0 0 0
0 0 2 0 0

Table B.1: Degrees of freedom for estimating all main effects and two two-factor
interaction effects for three-factor projections from OA(18, 7, 3, 2)

Class A B C AB AC BC
18.3.1 2 2 2 4

2 2 2 4
2 2 2 4

18.3.2 2 2 1 3
2 2 2 4
2 2 2 4

18.3.3 2 2 0 2
2 0 2 2
0 2 2 2

Table B.2: Degrees of freedom for estimating all main effects and one two-factor
interaction effect for three-factor projections from OA(18, 7, 3, 2)
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Class A B C D AB AC AD BC BD CD
18.4.1 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

18.4.2 2 2 2 1 3 4
2 2 2 1 1 2
2 2 2 1 3 4
2 2 2 1 1 2
2 2 2 1 1 2
2 2 2 2 4 4
2 2 2 1 3 3
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 2 2
2 0 2 2 2 2
2 2 2 2 4 4
2 2 2 2 4 4
0 2 2 2 2 2

18.4.3 2 2 2 0 3 3
2 2 2 1 1 2
2 2 2 0 3 3
2 2 2 1 1 2
2 2 2 1 3 4
2 2 2 1 1 2
2 2 2 0 3 3
2 2 2 1 3 4
2 2 2 1 1 2
2 2 2 1 4 3
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 1 1 2
2 2 2 1 1 2
2 2 2 2 2 2

18.4.4 2 2 2 0 2 2
2 2 0 2 2 2
2 2 2 0 4 2
2 2 0 2 4 2
2 0 2 2 4 2
2 0 2 2 2 2
2 2 2 0 4 2
2 2 0 2 4 2
2 0 2 2 4 2
2 2 2 0 4 2
2 2 0 2 4 2
2 0 2 2 4 2
2 2 0 0 0 0
2 0 2 0 0 0
2 0 0 2 0 0

Table B.3: Degrees of freedom for estimating all main effects and two two-factor
interaction effects for four-factor projections from OA(18, 7, 3, 2)220



Class A B C D AB AC AD BC BD CD
18.4.1 2 2 2 2 4

2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

18.4.2 2 2 2 1 3
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

18.4.3 2 2 2 1 3
2 2 2 1 3
2 2 2 2 4
2 2 2 1 3
2 2 2 2 4
2 2 2 2 4

18.4.4 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 0 2
2 2 0 2 2
2 0 2 2 2

Table B.4: Degrees of freedom for estimating all main effects and one two-factor
interaction effect for four-factor projections from OA(18, 7, 3, 2)

221



Class A B C D E AB AC AD AE BC BD BE CD CE DE
18.5.1 2 2 2 2 2 4

2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4

18.5.2 2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4

18.5.3 2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 2 4
2 2 2 2 0 2
2 2 2 0 2 2
2 2 0 2 2 2

18.5.4 2 2 2 2 1 3
2 2 2 2 1 3
2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 1 3
2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 1 3
2 2 2 2 2 4
2 2 2 2 2 4

Table B.5: Degrees of freedom for estimating all main effects and one two-factor
interaction effect for five-factor projections from OA(18, 7, 3, 2)
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Class A B C AB AC BC
36.3.1 2 2 2 4 4 4
36.3.2 2 2 2 2 2 2
36.3.3 0 0 0 0 0 0
36.3.4 2 2 2 2 2 2
36.3.5 2 2 2 4 4 4
36.3.6 2 2 2 4 4 4

Table B.6: Degrees of freedom for estimating all main effects and all two-factor in-
teraction effects for three-factor projections from OA(36, 13, 3, 2)

Class A B C AB AC BC
36.3.1 2 2 2 4 4

2 2 2 4 4
2 2 2 4 4

36.3.2 2 2 2 4 4
2 2 2 4 4
2 2 2 4 4

36.3.3 2 0 0 0 0
0 2 0 0 0
0 0 2 0 0

36.3.4 2 2 2 4 4
2 2 2 4 4
2 2 2 4 4

36.3.5 2 2 2 4 4
2 2 2 4 4
2 2 2 4 4

36.3.6 2 2 2 4 4
2 2 2 4 4
2 2 2 4 4

Table B.7: Degrees of freedom for estimating all main effects and two two-factor
interaction effects for three-factor projections from OA(36, 13, 3, 2)
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Class A B C AB AC BC
36.3.1 2 2 2 4

2 2 2 4
2 2 2 4

36.3.2 2 2 2 4
2 2 2 4
2 2 2 4

36.3.3 2 2 0 2
2 0 2 2
0 2 2 2

36.3.4 2 2 2 4
2 2 2 4
2 2 2 4

36.3.5 2 2 2 4
2 2 2 4
2 2 2 4

36.3.6 2 2 2 4
2 2 2 4
2 2 2 4

Table B.8: Degrees of freedom for estimating all main effects and one two-factor
interaction effect for three-factor projections from OA(36, 13, 3, 2)

Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4 4 4 2 2 2
36.4.2 2 2 2 2 3 4 3 3 4 3
36.4.3 2 2 2 2 4 2 2 4 4 2
36.4.4 2 2 2 2 3 2 3 3 2 3
36.4.5 0 0 2 0 0 4 0 4 0 4
36.4.6 0 0 2 0 0 0 0 0 0 0
36.4.7 2 2 2 2 2 2 2 2 2 2
36.4.8 2 2 2 2 4 2 2 4 4 2
36.4.9 2 2 2 2 4 4 4 4 4 4
36.4.10 0 0 0 0 0 0 0 0 0 0
36.4.11 2 2 2 2 2 2 4 2 4 4
36.4.12 2 2 2 2 4 4 2 2 2 2
36.4.13 2 2 2 2 4 4 4 4 4 4
36.4.14 2 2 2 2 0 0 2 0 2 2
36.4.15 2 2 2 2 4 4 4 4 4 4
36.4.16 2 2 2 2 4 4 4 4 4 4
36.4.17 2 2 2 2 2 2 2 2 2 2
36.4.18 2 2 2 2 2 2 0 2 0 0
36.4.19 2 2 2 2 4 4 4 4 4 4
36.4.20 2 2 2 1 1 1 2 1 2 2
36.4.21 2 2 2 2 2 2 0 2 0 0
36.4.22 2 2 2 2 4 2 2 2 2 2
36.4.23 2 2 2 2 0 0 0 0 0 0
36.4.24 2 2 2 2 0 0 0 0 0 0
36.4.25 2 2 2 2 0 0 2 0 2 2
36.4.26 2 2 2 2 0 0 0 0 0 0
36.4.27 2 2 2 2 0 0 0 0 0 0

Table B.9: Degrees of freedom for estimating all main effects and all two-factor in-
teraction effects for four-factor projections from OA(36, 13, 3, 2)
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Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4 4 4 4 4

2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 2
2 2 2 2 4 4 2 2 2
2 2 2 2 4 4 4 4 2

36.4.2 2 2 2 2 4 4 4 4 4
2 2 2 2 3 4 3 3 3
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 3 3 3 4 3
2 2 2 2 4 4 4 4 4

36.4.3 2 2 2 2 4 4 4 4 4
2 2 2 2 4 2 2 4 2
2 2 2 2 4 2 2 4 2
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 4 4 2

36.4.4 2 2 2 2 4 2 3 3 2
2 2 2 2 3 3 3 3 3
2 2 2 2 3 2 4 2 3
2 2 2 2 3 2 4 2 3
2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 2 4

36.4.5 0 0 2 0 0 4 0 4 0
2 0 2 0 0 4 0 4 4
0 0 2 0 0 4 0 0 4
0 2 2 0 0 4 4 0 4
0 0 2 0 0 0 4 0 4
0 0 2 2 4 0 4 0 4

36.4.6 0 0 2 0 0 2 0 2 0
0 0 2 0 0 0 0 0 0
0 0 2 0 0 2 0 0 2
0 0 2 0 0 0 0 0 0
0 0 2 0 0 0 2 0 2
0 0 2 0 0 0 0 0 0

36.4.7 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.8 2 2 2 2 4 4 4 4 4
2 2 2 2 4 2 2 4 2
2 2 2 2 4 2 2 4 2
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 4 4 2

36.4.9 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

Continued

Table B.10: Degrees of freedom for estimating all main effects and five two-factor
interaction effects for four-factor projections from OA(36, 13, 3, 2)
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Table B.10 Continued

Class A B C D AB AC AD BC BD CD
36.4.10 2 2 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0
2 0 0 2 0 0 0 0 0
0 2 2 0 0 0 0 0 0
0 2 0 2 0 0 0 0 0
0 0 2 2 0 0 0 0 0

36.4.11 2 2 2 2 2 2 4 2 4
2 2 2 2 2 2 4 2 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.12 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 2 2 2 2
2 2 2 2 4 2 2 2 2

36.4.13 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.14 2 2 2 2 2 2 4 2 4
2 2 2 2 2 2 4 2 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.15 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.16 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.17 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.18 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4 4
2 2 2 2 4 2 2 2 2
2 2 2 2 4 2 2 2 2

Continued
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Table B.10 Continued

Class A B C D AB AC AD BC BD CD
36.4.19 2 2 2 2 4 4 4 4 4

2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.20 2 2 2 1 3 3 4 3 4
2 2 2 4 3 3 4 3 4
2 2 2 2 4 4 4 4 4
2 2 2 1 3 3 3 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.21 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

36.4.22 2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 2 2

36.4.23 2 2 2 2 2 2 4 2 4
2 2 2 2 2 2 4 2 4
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 4 4
2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

36.4.24 2 2 2 2 0 0 0 0 0
2 2 2 2 0 0 0 0 0
2 2 2 2 2 2 0 0 0
2 2 2 2 0 0 0 0 0
2 2 2 2 2 0 2 0 0
2 2 2 2 2 0 2 0 0

36.4.25 2 2 2 2 2 2 4 2 4
2 2 2 2 2 2 4 2 4
2 2 2 2 4 4 4 4 4
2 2 2 2 2 2 2 4 4
2 2 2 2 4 4 4 4 4
2 2 2 2 4 4 4 4 4

36.4.26 2 2 2 2 0 0 2 0 2
2 2 2 2 0 0 2 0 2
2 2 2 2 2 2 0 0 0
2 2 2 2 0 0 0 2 2
2 2 2 2 2 0 2 0 0
2 2 2 2 2 0 2 0 0

36.4.27 2 2 2 2 0 0 2 0 2
2 2 2 2 0 0 2 0 2
2 2 2 2 2 2 0 0 0
2 2 2 2 0 0 0 2 2
2 2 2 2 2 0 2 0 0
2 2 2 2 2 0 2 0 0

Continued
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Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.2 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 3 3 3 3
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.3 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 4 2
2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.4 2 2 2 2 4 4 4 4

2 2 2 2 4 3 4 3
2 2 2 2 4 4 4 4
2 2 2 2 4 3 4 3
2 2 2 2 4 4 4 4
2 2 2 2 3 2 2 3
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 3 3 2
2 2 2 2 4 4 4 4
2 2 2 2 3 4 3 4
2 2 2 2 3 4 3 4
2 2 2 2 4 4 4 4

36.4.5 2 0 2 0 0 4 0 4
0 0 2 0 0 4 0 0
2 0 2 0 0 4 0 4
0 2 2 0 0 4 4 0
2 2 2 0 2 4 4 4
0 2 2 0 0 4 0 4
0 0 2 0 0 0 4 0
2 0 2 0 0 0 4 4
0 0 2 0 0 0 0 4
0 2 2 0 0 4 0 4
0 0 2 2 4 0 4 0
2 0 2 2 4 2 4 4
0 0 2 2 4 0 0 4
0 2 2 2 4 4 2 4
0 0 2 0 0 4 0 4

36.4.6 2 0 2 0 0 2 0 2
0 0 2 0 0 4 0 0
2 0 2 0 0 2 0 2
0 2 2 0 0 2 2 0
0 0 2 0 2 0 0 0
0 0 2 0 0 2 0 2
0 0 2 0 0 0 4 0
0 0 2 0 0 0 2 2
0 0 2 0 0 0 0 4
0 2 2 0 0 2 0 2
0 0 2 0 2 0 2 0
0 0 2 0 0 2 0 0
0 0 2 2 2 0 0 2
0 0 2 0 0 0 2 0
0 0 2 2 0 2 0 2

36.4.7 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.8 2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4
2 2 2 2 4 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 4 2
2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.9 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.10 2 2 2 0 0 0 1 0
2 2 0 2 0 1 0 0
2 0 2 2 1 0 0 0
2 2 2 0 0 0 0 1
2 2 2 0 0 0 0 1
2 2 2 2 0 0 0 0
2 2 0 2 0 0 1 0
2 2 2 2 0 0 0 0
2 2 0 2 0 0 0 1
0 2 2 2 1 0 0 0
2 2 2 2 0 0 0 0
2 0 2 2 0 0 1 0
2 0 2 2 0 0 1 0
0 2 2 2 1 0 0 0
0 2 2 2 1 0 0 0

36.4.11 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.12 2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2

36.4.13 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.14 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.15 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.16 2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.17 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.18 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2

36.4.19 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.20 2 2 2 1 3 3 4 3

2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 1 3 3 3 4
2 2 2 1 3 3 3 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.21 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.22 2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.23 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
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Table B.11 Continued

Class A B C D AB AC AD BC BD CD
36.4.24 2 2 2 2 2 2 4 2

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 4 0 0 0
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 4 0 0 0
2 2 2 2 2 2 2 2
2 2 2 2 0 4 0 0

36.4.25 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4

36.4.26 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2

36.4.27 2 2 2 2 2 2 4 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 4
2 2 2 2 2 2 2 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2
2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2
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Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 2 2 2

36.4.2 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

Continued

Table B.12: Degrees of freedom for estimating all main effects and three two-factor
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.3 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.4 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 3 3
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 3 4 3
2 2 2 2 4 4 4
2 2 2 2 3 4 3
2 2 2 2 4 4 4
2 2 2 2 3 3 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.5 2 0 2 0 0 4 0
2 2 2 0 2 4 4
0 2 2 0 0 4 0
2 2 2 0 2 4 4
2 0 2 0 0 0 4
0 0 2 0 0 0 0
2 0 2 0 0 0 4
0 2 2 0 0 4 0
2 2 2 0 2 4 4
0 2 2 0 0 0 4
2 0 2 2 4 2 4
0 0 2 2 4 0 0
2 0 2 2 4 2 4
0 2 2 2 4 4 2
2 2 2 2 4 4 4
0 2 2 2 4 2 4
0 0 2 2 0 4 0
2 0 2 2 2 4 4
0 0 2 2 0 0 4
0 2 2 2 4 2 4

Continued
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.6 2 0 2 0 0 4 0

2 2 2 0 2 2 2
0 2 2 0 0 4 0
2 0 2 0 2 2 2
2 0 2 0 0 0 4
0 0 2 0 0 0 0
2 0 2 0 0 0 4
0 2 2 0 0 4 0
0 2 2 0 2 2 2
0 2 2 0 0 0 4
2 0 2 0 2 2 2
0 0 2 2 4 0 0
2 0 2 2 2 2 2
0 2 2 0 2 2 2
0 0 2 0 0 0 0
0 0 2 2 2 2 2
0 0 2 2 0 4 0
0 0 2 2 2 2 2
0 0 2 2 0 0 4
0 2 2 2 2 2 2

36.4.7 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.8 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.9 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.10 2 2 2 2 1 1 1
2 2 2 0 0 0 0
2 2 2 2 4 1 1
2 2 2 2 1 4 1
2 2 2 2 4 1 1
2 2 0 2 0 0 0
2 2 2 2 1 4 1
2 2 2 2 1 1 1
2 2 2 2 1 4 1
2 2 2 2 1 4 1
2 2 2 2 4 1 1
2 2 2 2 1 4 1
2 0 2 2 0 0 0
2 2 2 2 1 4 1
2 2 2 2 1 1 1
2 2 2 2 1 1 4
2 2 2 2 1 1 4
2 2 2 2 1 1 4
2 2 2 2 1 1 1
0 2 2 2 0 0 0

36.4.11 2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.12 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.13 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.14 2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.15 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.16 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.17 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.18 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.19 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.20 2 2 2 2 4 4 4
2 2 2 1 3 3 3
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.21 2 2 2 2 4 4 4

2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.22 2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.23 2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.24 2 2 2 2 4 4 4

2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 0 0 0
2 2 2 2 4 4 4

36.4.25 2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

36.4.26 2 2 2 2 4 4 4
2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4

Continued
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Table B.12 Continued

Class A B C D AB AC AD BC BD CD
36.4.27 2 2 2 2 4 4 4

2 2 2 2 2 2 2
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
2 2 2 2 4 4 4
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Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.2 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.3 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued

Table B.13: Degrees of freedom for estimating all main effects and two two-factor
interaction effects for four-factor projections from OA(36, 13, 3, 2)
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.4 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 3 3
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.5 2 2 2 0 2 4
2 0 2 0 0 0
2 2 2 0 2 4
0 2 2 0 0 0
2 2 2 0 2 4
2 0 2 2 4 2
2 2 2 2 4 4
0 2 2 2 4 2
2 2 2 2 4 4
2 0 2 2 2 4
0 0 2 2 0 0
2 0 2 2 2 4
0 2 2 2 4 2
2 2 2 2 4 4
0 2 2 2 2 4

36.4.6 2 2 2 0 2 4
2 0 2 0 0 0
2 2 2 0 2 4
0 2 2 0 0 0
2 2 2 0 2 4
2 0 2 2 4 2
2 2 2 0 2 2
0 2 2 2 4 2
2 0 2 2 2 2
2 0 2 2 2 4
0 0 2 2 0 0
2 0 2 2 2 4
0 2 2 2 4 2
0 2 2 2 2 2
0 2 2 2 2 4

36.4.7 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.8 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.9 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.10 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 1 1
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.11 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.12 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.13 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.14 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.15 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.16 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.17 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.18 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.19 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.20 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.21 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.22 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.23 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

Continued
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Table B.13 Continued

Class A B C D AB AC AD BC BD CD
36.4.24 2 2 2 2 4 4

2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.25 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.26 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4

36.4.27 2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
2 2 2 2 4 4
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Class A B C D AB AC AD BC BD CD
36.4.1 2 2 2 2 4

2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.2 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.3 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.4 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.5 2 2 2 0 2
2 2 2 2 4
2 0 2 2 2
2 2 2 2 4
0 2 2 2 2
2 2 2 2 4

36.4.6 2 2 2 0 2
2 2 2 2 4
2 0 2 2 2
2 2 2 2 4
0 2 2 2 2
2 2 2 2 4

36.4.7 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.8 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.9 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

Continued

Table B.14: Degrees of freedom for estimating all main effects and one two-factor
interaction effects for four-factor projections from OA(36, 13, 3, 2)
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Table B.14 Continued

Class A B C D AB AC AD BC BD CD
36.4.10 2 2 2 2 4

2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.11 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.12 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.13 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.14 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.15 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.16 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.17 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.18 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.19 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

Continued
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Table B.14 Continued

Class A B C D AB AC AD BC BD CD
36.4.20 2 2 2 2 4

2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.21 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.22 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.23 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.24 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.25 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.26 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4

36.4.27 2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
2 2 2 2 4
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Class N Class N Class N
36.5.1 0 36.5.31 36 36.5.61 48
36.5.2 0 36.5.32 48 36.5.62 0
36.5.3 0 36.5.33 52 36.5.63 39
36.5.4 0 36.5.34 56 36.5.64 53
36.5.5 0 36.5.35 66 36.5.65 0
36.5.6 0 36.5.36 0 36.5.66 30
36.5.7 0 36.5.37 35 36.5.67 42
36.5.8 0 36.5.38 45 36.5.68 11
36.5.9 0 36.5.39 51 36.5.69 65
36.5.10 0 36.5.40 58 36.5.70 37
36.5.11 0 36.5.41 41 36.5.71 42
36.5.12 0 36.5.42 40 36.5.72 46
36.5.13 0 36.5.43 63 36.5.73 48
36.5.14 4 36.5.44 56 36.5.74 33
36.5.15 47 36.5.45 23 36.5.75 0
36.5.16 59 36.5.46 62 36.5.76 68
36.5.17 60 36.5.47 47 36.5.77 36
36.5.18 62 36.5.48 18 36.5.78 0
36.5.19 44 36.5.49 62 36.5.79 39
36.5.20 50 36.5.50 27 36.5.80 60
36.5.21 63 36.5.51 59 36.5.81 38
36.5.22 58 36.5.52 62 36.5.82 0
36.5.23 56 36.5.53 70 36.5.83 41
36.5.24 41 36.5.54 64 36.5.84 0
36.5.25 48 36.5.55 68
36.5.26 49 36.5.56 45
36.5.27 28 36.5.57 68
36.5.28 44 36.5.58 49
36.5.29 59 36.5.59 40
36.5.30 27 36.5.60 62

Table B.15: Number of models able to estimate all main effects and six two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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Class N Class N Class N
36.5.1 132 36.5.31 144 36.5.61 184
36.5.2 156 36.5.32 193 36.5.62 94
36.5.3 152 36.5.33 201 36.5.63 180
36.5.4 176 36.5.34 194 36.5.64 196
36.5.5 15 36.5.35 218 36.5.65 131
36.5.6 3 36.5.36 36 36.5.66 162
36.5.7 112 36.5.37 184 36.5.67 190
36.5.8 12 36.5.38 189 36.5.68 148
36.5.9 174 36.5.39 176 36.5.69 207
36.5.10 48 36.5.40 200 36.5.70 175
36.5.11 13 36.5.41 181 36.5.71 174
36.5.12 96 36.5.42 170 36.5.72 196
36.5.13 4 36.5.43 223 36.5.73 188
36.5.14 18 36.5.44 208 36.5.74 144
36.5.15 167 36.5.45 184 36.5.75 130
36.5.16 213 36.5.46 211 36.5.76 205
36.5.17 207 36.5.47 190 36.5.77 173
36.5.18 211 36.5.48 171 36.5.78 150
36.5.19 188 36.5.49 199 36.5.79 183
36.5.20 201 36.5.50 180 36.5.80 194
36.5.21 219 36.5.51 219 36.5.81 172
36.5.22 172 36.5.52 208 36.5.82 82
36.5.23 196 36.5.53 221 36.5.83 176
36.5.24 179 36.5.54 208 36.5.84 0
36.5.25 176 36.5.55 207
36.5.26 190 36.5.56 186
36.5.27 158 36.5.57 225
36.5.28 196 36.5.58 189
36.5.29 205 36.5.59 181
36.5.30 174 36.5.60 207

Table B.16: Number of models able to estimate all main effects and five two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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Class N Class N Class N
36.5.1 168 36.5.31 178 36.5.61 180
36.5.2 188 36.5.32 198 36.5.62 166
36.5.3 198 36.5.33 200 36.5.63 196
36.5.4 195 36.5.34 200 36.5.64 202
36.5.5 31 36.5.35 203 36.5.65 191
36.5.6 13 36.5.36 97 36.5.66 186
36.5.7 166 36.5.37 196 36.5.67 200
36.5.8 30 36.5.38 194 36.5.68 171
36.5.9 200 36.5.39 181 36.5.69 200
36.5.10 97 36.5.40 199 36.5.70 187
36.5.11 31 36.5.41 193 36.5.71 191
36.5.12 172 36.5.42 189 36.5.72 199
36.5.13 22 36.5.43 206 36.5.73 198
36.5.14 34 36.5.44 201 36.5.74 178
36.5.15 175 36.5.45 198 36.5.75 191
36.5.16 202 36.5.46 202 36.5.76 203
36.5.17 205 36.5.47 195 36.5.77 179
36.5.18 202 36.5.48 191 36.5.78 179
36.5.19 199 36.5.49 200 36.5.79 194
36.5.20 200 36.5.50 197 36.5.80 198
36.5.21 203 36.5.51 205 36.5.81 193
36.5.22 189 36.5.52 205 36.5.82 150
36.5.23 199 36.5.53 207 36.5.83 193
36.5.24 192 36.5.54 202 36.5.84 0
36.5.25 192 36.5.55 200
36.5.26 197 36.5.56 192
36.5.27 174 36.5.57 207
36.5.28 195 36.5.58 196
36.5.29 204 36.5.59 194
36.5.30 185 36.5.60 204

Table B.17: Number of models able to estimate all main effects and four two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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Class N Class N Class N
36.5.1 110 36.5.31 118 36.5.61 112
36.5.2 119 36.5.32 119 36.5.62 117
36.5.3 119 36.5.33 119 36.5.63 119
36.5.4 118 36.5.34 119 36.5.64 120
36.5.5 34 36.5.35 119 36.5.65 119
36.5.6 22 36.5.36 88 36.5.66 118
36.5.7 110 36.5.37 119 36.5.67 120
36.5.8 34 36.5.38 118 36.5.68 111
36.5.9 119 36.5.39 112 36.5.69 119
36.5.10 88 36.5.40 119 36.5.70 117
36.5.11 34 36.5.41 118 36.5.71 118
36.5.12 112 36.5.42 118 36.5.72 119
36.5.13 30 36.5.43 120 36.5.73 119
36.5.14 35 36.5.44 119 36.5.74 118
36.5.15 111 36.5.45 120 36.5.75 119
36.5.16 119 36.5.46 119 36.5.76 119
36.5.17 120 36.5.47 118 36.5.77 112
36.5.18 119 36.5.48 119 36.5.78 116
36.5.19 119 36.5.49 119 36.5.79 118
36.5.20 119 36.5.50 119 36.5.80 119
36.5.21 119 36.5.51 120 36.5.81 118
36.5.22 118 36.5.52 120 36.5.82 104
36.5.23 119 36.5.53 120 36.5.83 118
36.5.24 118 36.5.54 119 36.5.84 72
36.5.25 118 36.5.55 119
36.5.26 119 36.5.56 118
36.5.27 111 36.5.57 120
36.5.28 118 36.5.58 119
36.5.29 120 36.5.59 118
36.5.30 116 36.5.60 120

Table B.18: Number of models able to estimate all main effects and three two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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Class N Class N Class N
36.5.1 44 36.5.31 45 36.5.61 44
36.5.2 45 36.5.32 45 36.5.62 45
36.5.3 45 36.5.33 45 36.5.63 44
36.5.4 45 36.5.34 45 36.5.64 45
36.5.5 21 36.5.35 45 36.5.65 45
36.5.6 18 36.5.36 42 36.5.66 45
36.5.7 44 36.5.37 45 36.5.67 45
36.5.8 21 36.5.38 45 36.5.68 44
36.5.9 45 36.5.39 44 36.5.69 45
36.5.10 42 36.5.40 45 36.5.70 45
36.5.11 21 36.5.41 45 36.5.71 45
36.5.12 44 36.5.42 45 36.5.72 45
36.5.13 20 36.5.43 45 36.5.73 45
36.5.14 21 36.5.44 45 36.5.74 45
36.5.15 44 36.5.45 45 36.5.75 45
36.5.16 45 36.5.46 45 36.5.76 45
36.5.17 45 36.5.47 45 36.5.77 44
36.5.18 45 36.5.48 45 36.5.78 45
36.5.19 45 36.5.49 45 36.5.79 45
36.5.20 45 36.5.50 45 36.5.80 45
36.5.21 45 36.5.51 45 36.5.81 45
36.5.22 45 36.5.52 45 36.5.82 43
36.5.23 45 36.5.53 45 36.5.83 45
36.5.24 45 36.5.54 45 36.5.84 42
36.5.25 45 36.5.55 45
36.5.26 45 36.5.56 45
36.5.27 44 36.5.57 45
36.5.28 45 36.5.58 45
36.5.29 45 36.5.59 45
36.5.30 45 36.5.60 45

Table B.19: Number of models able to estimate all main effects and two two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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Class N Class N Class N
36.5.1 10 36.5.31 10 36.5.61 10
36.5.2 10 36.5.32 10 36.5.62 10
36.5.3 10 36.5.33 10 36.5.63 10
36.5.4 10 36.5.34 10 36.5.64 10
36.5.5 7 36.5.35 10 36.5.65 10
36.5.6 7 36.5.36 10 36.5.66 10
36.5.7 10 36.5.37 10 36.5.67 10
36.5.8 7 36.5.38 10 36.5.68 10
36.5.9 10 36.5.39 10 36.5.69 10
36.5.10 10 36.5.40 10 36.5.70 10
36.5.11 7 36.5.41 10 36.5.71 10
36.5.12 10 36.5.42 10 36.5.72 10
36.5.13 7 36.5.43 10 36.5.73 10
36.5.14 7 36.5.44 10 36.5.74 10
36.5.15 10 36.5.45 10 36.5.75 10
36.5.16 10 36.5.46 10 36.5.76 10
36.5.17 10 36.5.47 10 36.5.77 10
36.5.18 10 36.5.48 10 36.5.78 10
36.5.19 10 36.5.49 10 36.5.79 10
36.5.20 10 36.5.50 10 36.5.80 10
36.5.21 10 36.5.51 10 36.5.81 10
36.5.22 10 36.5.52 10 36.5.82 10
36.5.23 10 36.5.53 10 36.5.83 10
36.5.24 10 36.5.54 10 36.5.84 10
36.5.25 10 36.5.55 10
36.5.26 10 36.5.56 10
36.5.27 10 36.5.57 10
36.5.28 10 36.5.58 10
36.5.29 10 36.5.59 10
36.5.30 10 36.5.60 10

Table B.20: Number of models able to estimate all main effects and one two-factor
interaction effects for five-factor projections from OA(36, 13, 3, 2)
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APPENDIX C

TABLES OF PROBABILITY OF DISPERSION EFFECT
DETECTION AND CONFIDENCE INTERVALS

Dispersion Measure 95% Confidence Interval Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

s ( 0.0463 , 0.0489 ) 0.0476 0.0465 0.0468 0.0470 0.0475 0.0472
ln(s2 + 1) ( 0.0475 , 0.0501 ) 0.0488 0.0483 0.0478 0.0478 0.0485 0.0485
ln(s + 1) ( 0.0480 , 0.0506 ) 0.0493 0.0488 0.0481 0.0480 0.0489 0.0488
S/NN ( 0.0462 , 0.0488 ) 0.0475 0.0470 0.0465 0.0461 0.0473 0.0470

|yi − x
′

i
β̂| ( 0.0523 , 0.0551 ) 0.0537 0.0522 0.0521 0.0531 0.0539 0.0520

|yi − x
′

i
β̂|2 ( 0.0473 , 0.0499 ) 0.0486 0.0470 0.0476 0.0489 0.0485 0.0470

|yi − x
′

i
β̂|1.5

( 0.0512 , 0.0540 ) 0.0526 0.0506 0.0509 0.0516 0.0522 0.0504
|yij − ȳi| ( 0.0891 , 0.0927 ) 0.0909 0.0893 0.0900 0.0883 0.0915 0.0883

|yij − ȳi|.42 ( 0.0802 , 0.0836 ) 0.0819 0.0809 0.0807 0.0791 0.0809 0.0808

|yij − ȳi|1.5 ( 0.0903 , 0.0939 ) 0.0921 0.0897 0.0908 0.0896 0.0922 0.0900

|yij − ỹi| ( 0.0460 , 0.0486 ) 0.0473 0.0466 0.0472 0.0469 0.0471 0.0458
|yij − ȳi(−1)| ( 0.0460 , 0.0486 ) 0.0473 0.0466 0.0472 0.0469 0.0471 0.0458

Table C.1: Approximate 95% confidence intervals for probability of test rejection
using F -distribution critical value and probabilities of detection for the original sim-
ulation (Run 0) and each replicate simulation (Run 1 - Run 5) when γ4 = 0
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Dispersion Measure 95% Confidence Interval Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

s ( 0.1223 , 0.1263 ) 0.1243 0.1239 0.1243 0.1244 0.1243 0.1239
ln(s2 + 1) ( 0.1154 , 0.1194 ) 0.1174 0.1182 0.1190 0.1178 0.1189 0.1178
ln(s + 1) ( 0.1172 , 0.1212 ) 0.1192 0.1200 0.1203 0.1196 0.1208 0.1194
S/NN ( 0.1202 , 0.1242 ) 0.1222 0.1222 0.1229 0.1226 0.1227 0.1211

|yi − x
′

i
β̂| ( 0.1532 , 0.1576 ) 0.1554 0.1551 0.1557 0.1539 0.1563 0.1547

|yi − x
′

i
β̂|2 ( 0.1416 , 0.1460 ) 0.1438 0.1444 0.1449 0.1444 0.1444 0.1434

|yi − x
′

i
β̂|1.5

( 0.1533 , 0.1577 ) 0.1555 0.1558 0.1556 0.1550 0.1556 0.1544
|yij − ȳi| ( 0.2081 , 0.2131 ) 0.2106 0.2094 0.2104 0.2101 0.2113 0.2107

|yij − ȳi|.42 ( 0.1754 , 0.1802 ) 0.1778 0.1778 0.1790 0.1775 0.1788 0.1792

|yij − ȳi|1.5 ( 0.2133 , 0.2183 ) 0.2158 0.2137 0.2149 0.2147 0.2161 0.2148

|yij − ỹi| ( 0.1227 , 0.1267 ) 0.1247 0.1253 0.1271 0.1251 0.1248 0.1248
|yij − ȳi(−1)| ( 0.1227 , 0.1267 ) 0.1247 0.1253 0.1271 0.1251 0.1248 0.1248

Table C.2: Approximate 95% confidence intervals for probability of test rejection
using F -distribution critical value and probabilities of detection for the original sim-
ulation (Run 0) and each replicate simulation (Run 1 - Run 5) when γ4 = 1

Dispersion Measure 95% Confidence Interval Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

s ( 0.3520 , 0.3580 ) 0.3550 0.3562 0.3564 0.3562 0.3572 0.3571
ln(s2 + 1) ( 0.3455 , 0.3515 ) 0.3485 0.3473 0.3486 0.3468 0.3493 0.3486
ln(s + 1) ( 0.3497 , 0.3557 ) 0.3527 0.3511 0.3530 0.3507 0.3537 0.3526
S/NN ( 0.3491 , 0.3551 ) 0.3521 0.3525 0.3528 0.3520 0.3530 0.3523

|yi − x
′

i
β̂| ( 0.4537 , 0.4599 ) 0.4568 0.4563 0.4564 0.4575 0.4562 0.4581

|yi − x
′

i
β̂|2 ( 0.4167 , 0.4229 ) 0.4198 0.4192 0.4203 0.4205 0.4202 0.4212

|yi − x
′

i
β̂|1.5

( 0.4510 , 0.4572 ) 0.4541 0.4540 0.4541 0.4549 0.4548 0.4559
|yij − ȳi| ( 0.5274 , 0.5336 ) 0.5305 0.5313 0.5298 0.5304 0.5300 0.5309

|yij − ȳi|.42 ( 0.4605 , 0.4667 ) 0.4636 0.4646 0.4629 0.4645 0.4631 0.4626

|yij − ȳi|1.5 ( 0.5268 , 0.5330 ) 0.5299 0.5309 0.5311 0.5305 0.5323 0.5323

|yij − ỹi| ( 0.3727 , 0.3787 ) 0.3757 0.3760 0.3746 0.3752 0.3760 0.3742
|yij − ȳi(−1)| ( 0.3727 , 0.3787 ) 0.3757 0.3760 0.3746 0.3752 0.3760 0.3742

Table C.3: Approximate 95% confidence intervals for probability of test rejection
using F -distribution critical value and probabilities of detection for the original sim-
ulation (Run 0) and each replicate simulation (Run 1 - Run 5) when γ4 = 2
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Dispersion Measure 95% Confidence Interval Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

s ( 0.6544 , 0.6602 ) 0.6573 0.6584 0.6580 0.6559 0.6566 0.6547
ln(s2 + 1) ( 0.6516 , 0.6574 ) 0.6545 0.6572 0.6557 0.6543 0.6565 0.6539
ln(s + 1) ( 0.6568 , 0.6626 ) 0.6597 0.6621 0.6609 0.6595 0.6616 0.6591
S/NN ( 0.6512 , 0.6570 ) 0.6541 0.6573 0.6561 0.6543 0.6557 0.6546

|yi − x
′

i
β̂| ( 0.7850 , 0.7900 ) 0.7875 0.7894 0.7898 0.7890 0.7906 0.7876

|yi − x
′

i
β̂|2 ( 0.7335 , 0.7389 ) 0.7362 0.7352 0.7365 0.7372 0.7362 0.7357

|yi − x
′

i
β̂|1.5

( 0.7785 , 0.7837 ) 0.7811 0.7817 0.7825 0.7825 0.7823 0.7814
|yij − ȳi| ( 0.8347 , 0.8393 ) 0.8370 0.8390 0.8393 0.8389 0.8391 0.8385

|yij − ȳi|.42 ( 0.7785 , 0.7837 ) 0.7811 0.7822 0.7835 0.7818 0.7812 0.7819

|yij − ȳi|1.5 ( 0.8262 , 0.8308 ) 0.8285 0.8310 0.8323 0.8318 0.8317 0.8314

|yij − ỹi| ( 0.6997 , 0.7053 ) 0.7025 0.7037 0.7040 0.7045 0.7038 0.7030
|yij − ȳi(−1)| ( 0.6997 , 0.7053 ) 0.7025 0.7037 0.7040 0.7045 0.7038 0.7030

Table C.4: Approximate 95% confidence intervals for probability of test rejection
using F -distribution critical value and probabilities of detection for the original sim-
ulation (Run 0) and each replicate simulation (Run 1 - Run 5) when γ4 = 3

Dispersion Measure 95% Confidence Interval Run 0 Run 1 Run 2 Run 3 Run 4 Run 5

s ( 0.8719 , 0.8761 ) 0.8740 0.8753 0.8746 0.8753 0.8741 0.8765
ln(s2 + 1) ( 0.8797 , 0.8837 ) 0.8817 0.8828 0.8830 0.8833 0.8822 0.8843
ln(s + 1) ( 0.8826 , 0.8866 ) 0.8846 0.8858 0.8864 0.8859 0.8855 0.8870
S/NN ( 0.8760 , 0.8800 ) 0.8780 0.8796 0.8792 0.8794 0.8791 0.8801

|yi − x
′

i
β̂| ( 0.9556 , 0.9582 ) 0.9569 0.9573 0.9570 0.9573 0.9551 0.9567

|yi − x
′

i
β̂|2 ( 0.9194 , 0.9228 ) 0.9211 0.9207 0.9217 0.9224 0.9186 0.9215

|yi − x
′

i
β̂|1.5

( 0.9497 , 0.9523 ) 0.9510 0.9514 0.9513 0.9524 0.9500 0.9514
|yij − ȳi| ( 0.9721 , 0.9741 ) 0.9731 0.9733 0.9729 0.9734 0.9730 0.9729

|yij − ȳi|.42 ( 0.9548 , 0.9574 ) 0.9561 0.9562 0.9555 0.9563 0.9550 0.9549

|yij − ȳi|1.5 ( 0.9662 , 0.9684 ) 0.9673 0.9673 0.9674 0.9676 0.9669 0.9677

|yij − ỹi| ( 0.9198 , 0.9232 ) 0.9215 0.9214 0.9226 0.9222 0.9216 0.9223
|yij − ȳi(−1)| ( 0.9198 , 0.9232 ) 0.9215 0.9214 0.9226 0.9222 0.9216 0.9223

Table C.5: Approximate 95% confidence intervals for probability of test rejection
using F -distribution critical value and probabilities of detection for the original sim-
ulation (Run 0) and each replicate simulation (Run 1 - Run 5) when γ4 = 4
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APPENDIX D

TABLES OF SELECTED ORIGINAL CRITICAL VALUES
AND REPLICATIONS

D.1 r = 4
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Significance Level: α = 0.1
Measure r Original Replicates
s2 4 1.6022 1.6099 1.6043 1.6056 1.6004 1.5932
s 4 1.6767 1.6808 1.6804 1.6755 1.6734 1.6721
ln(s2 + 1) 4 1.6805 1.6892 1.6857 1.6831 1.6832 1.6784
ln(s + 1) 4 1.6833 1.6938 1.6909 1.6898 1.6846 1.6802
S/NN 4 1.6225 1.6124 1.6240 1.6309 1.6212 1.6127

|yij − ỹi| 4 2.6987 2.7186 2.7243 2.7029 2.6999 2.6922

|yij − ỹi|−1 4 2.2371 2.2549 2.2725 2.2552 2.2335 2.2437
|yij − ȳi(−1)| 4 2.6987 2.7186 2.7243 2.7029 2.6999 2.6922
|yij − ȳi| 4 4.0225 4.0352 4.0438 3.9882 3.9990 4.0018

|yij − ȳi|0.42 4 3.7301 3.7454 3.7636 3.7286 3.7486 3.7434

|yij − ȳi|1.5 4 4.1150 4.1209 4.1330 4.0867 4.0764 4.0852

|yi − x
′

i
β̂| 4 2.8916 2.8661 2.8917 2.8736 2.8814 2.8752

|yi − x
′

i
β̂|2 4 2.8682 2.8497 2.8749 2.8507 2.8600 2.8516

|yi − x
′

i
β̂|1.5

4 2.8938 2.8592 2.8892 2.8694 2.8748 2.8708

|yi − x
′

i
β̂exp| 4 2.9725 2.9491 2.9718 2.9581 2.9536 2.9442

|yi − x
′

i
β̂exp|

2
4 2.9591 2.9362 2.9606 2.9401 2.9466 2.9448

|yi − x
′

i
β̂exp|

1.5
4 2.9790 2.9576 2.9782 2.9592 2.9619 2.9714

ln(|yij − ỹi|) 4 4.7055 4.7040 4.7038 4.7133 4.6991 4.7026

ln(|yij − ỹi|−1) 4 2.4319 2.4496 2.4468 2.4326 2.4304 2.4376
ln(|yij − ȳi(−1)|) 4 4.7055 4.7040 4.7038 4.7133 4.6991 4.7026
ln(|yij − ȳi|) 4 3.4294 3.4244 3.4269 3.3820 3.4141 3.3946

ln(|yi − x
′

i
β̂|) 4 2.8268 2.8468 2.8674 2.8355 2.8297 2.8444

ln(|yi − x
′

i
β̂exp|) 4 2.8624 2.8794 2.9083 2.8834 2.8785 2.8743

Table D.1: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.1 for the original simulation and five replicate simulations with
r = 4
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Significance Level: α = 0.05
Measure r Original Replicates
s2 4 1.9985 2.0006 1.9987 2.0018 2.0031 2.0038
s 4 2.1148 2.1260 2.1079 2.1176 2.1193 2.1100
ln(s2 + 1) 4 2.1277 2.1327 2.1179 2.1311 2.1310 2.1207
ln(s + 1) 4 2.1257 2.1443 2.1275 2.1329 2.1277 2.1254
S/NN 4 2.0214 2.0141 2.0467 2.0407 2.0224 2.0152

|yij − ỹi| 4 3.9265 3.9400 3.9513 3.9368 3.8911 3.9123

|yij − ỹi|−1 4 3.2332 3.2537 3.2769 3.2427 3.2267 3.2382
|yij − ȳi(−1)| 4 3.9265 3.9400 3.9513 3.9368 3.8911 3.9123
|yij − ȳi| 4 5.7340 5.7734 5.7913 5.7399 5.7647 5.7548

|yij − ȳi|0.42 4 5.4241 5.4455 5.4115 5.3727 5.4428 5.3778

|yij − ȳi|1.5 4 5.7535 5.8087 5.8124 5.7455 5.7817 5.7760

|yi − x
′

i
β̂| 4 4.1031 4.1254 4.1142 4.0730 4.1043 4.0926

|yi − x
′

i
β̂|2 4 4.0085 3.9831 4.0102 3.9856 4.0302 3.9811

|yi − x
′

i
β̂|1.5

4 4.0824 4.0638 4.0822 4.0373 4.0807 4.0692

|yi − x
′

i
β̂exp| 4 4.2389 4.2569 4.2452 4.2070 4.2578 4.2247

|yi − x
′

i
β̂exp|

2
4 4.1287 4.1055 4.1540 4.1184 4.1466 4.1127

|yi − x
′

i
β̂exp|

1.5
4 4.2123 4.1956 4.2043 4.1746 4.2211 4.1878

ln(|yij − ỹi|) 4 6.6028 6.6359 6.6643 6.6231 6.6525 6.6436

ln(|yij − ỹi|−1) 4 3.4638 3.4653 3.4806 3.4783 3.4787 3.4692
ln(|yij − ȳi(−1)|) 4 6.6028 6.6359 6.6643 6.6231 6.6525 6.6436
ln(|yij − ȳi|) 4 4.8870 4.9166 4.9102 4.8813 4.9074 4.9068

ln(|yi − x
′

i
β̂|) 4 4.0071 4.0569 4.0731 4.0300 4.0408 4.0464

ln(|yi − x
′

i
β̂exp|) 4 4.0672 4.1309 4.1640 4.1082 4.1139 4.1181

Table D.2: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.05 for the original simulation and five replicate simulations with
r = 4
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Significance Level: α = 0.01
Measure r Original Replicates
s2 4 3.1765 3.1822 3.2198 3.1630 3.1956 3.1505
s 4 3.3949 3.4030 3.4401 3.4138 3.4282 3.4604
ln(s2 + 1) 4 3.4096 3.4161 3.4638 3.4255 3.4435 3.4597
ln(s + 1) 4 3.4536 3.4451 3.4975 3.4525 3.4943 3.4820
S/NN 4 3.1807 3.2038 3.2178 3.2199 3.2120 3.1733

|yij − ỹi| 4 7.0883 7.1019 7.0576 7.1198 7.2329 7.0841

|yij − ỹi|−1 4 5.7728 5.7893 5.7304 5.7941 5.8307 5.8194
|yij − ȳi(−1)| 4 7.0883 7.1019 7.0576 7.1198 7.2329 7.0841
|yij − ȳi| 4 10.2916 10.1283 10.0414 10.0739 10.2115 10.1285

|yij − ȳi|0.42 4 9.8657 9.7265 9.6506 9.6990 9.8229 9.8456

|yij − ȳi|1.5 4 9.9037 9.8005 9.7593 9.8148 9.9050 9.8659

|yi − x
′

i
β̂| 4 7.1883 7.3320 7.2961 7.3129 7.3096 7.2353

|yi − x
′

i
β̂|2 4 6.6714 6.7973 6.7925 6.7612 6.8058 6.7167

|yi − x
′

i
β̂|1.5

4 7.0064 7.1342 7.0633 7.1048 7.1571 7.0314

|yi − x
′

i
β̂exp| 4 7.3943 7.5475 7.5039 7.5180 7.5432 7.4921

|yi − x
′

i
β̂exp|

2
4 6.8642 7.0115 6.9503 6.9804 6.9829 6.9184

|yi − x
′

i
β̂exp|

1.5
4 7.2459 7.3389 7.2782 7.2933 7.3571 7.2679

ln(|yij − ỹi|) 4 11.2972 11.3329 11.3115 11.3952 11.3585 11.2403

ln(|yij − ỹi|−1) 4 6.1225 6.0922 6.1110 6.1158 6.1803 6.1193
ln(|yij − ȳi(−1)|) 4 11.2972 11.3329 11.3115 11.3952 11.3585 11.2403
ln(|yij − ȳi|) 4 8.7635 8.6839 8.6610 8.7523 8.8293 8.7826

ln(|yi − x
′

i
β̂|) 4 6.9016 7.1759 7.1295 7.0478 7.0758 7.0459

ln(|yi − x
′

i
β̂exp|) 4 7.1827 7.2844 7.1949 7.1883 7.1766 7.1786

Table D.3: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.01 for the original simulation and five replicate simulations with
r = 4
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Significance Level: α = 0.005
Measure r Original Replicates
s2 4 3.8377 3.7911 3.8375 3.8139 3.8163 3.7984
s 4 4.0178 4.0614 4.0825 4.0376 4.1108 4.1552
ln(s2 + 1) 4 4.0720 4.0671 4.1258 4.0789 4.1450 4.1540
ln(s + 1) 4 4.0996 4.1376 4.1648 4.1096 4.1372 4.1440
S/NN 4 3.8123 3.8668 3.8963 3.8496 3.8733 3.8379

|yij − ỹi| 4 8.5621 8.6259 8.5325 8.6034 8.7467 8.5494

|yij − ỹi|−1 4 6.9022 6.9925 6.8513 6.9531 7.0545 6.9126
|yij − ȳi(−1)| 4 8.5621 8.6259 8.5325 8.6034 8.7467 8.5494
|yij − ȳi| 4 12.1854 12.0845 12.1822 12.1785 12.2897 12.0447

|yij − ȳi|0.42 4 11.8769 11.9127 11.8714 11.8590 12.0076 11.8496

|yij − ȳi|1.5 4 11.7065 11.6346 11.5826 11.6457 11.6860 11.5436

|yi − x
′

i
β̂| 4 8.7173 8.8291 8.7393 8.7511 8.8013 8.6574

|yi − x
′

i
β̂|2 4 7.9564 8.0151 7.9864 7.9970 7.9943 7.9610

|yi − x
′

i
β̂|1.5

4 8.3577 8.4841 8.4324 8.4433 8.4016 8.3812

|yi − x
′

i
β̂exp| 4 8.9599 9.0725 9.0037 8.9570 9.0346 8.9576

|yi − x
′

i
β̂exp|

2
4 8.1231 8.2592 8.2497 8.2795 8.1971 8.1609

|yi − x
′

i
β̂exp|

1.5
4 8.6183 8.7275 8.7023 8.6757 8.6673 8.5602

ln(|yij − ỹi|) 4 13.3300 13.5154 13.5227 13.4241 13.5298 13.2278

ln(|yij − ỹi|−1) 4 7.2755 7.3455 7.3686 7.3707 7.3690 7.2543
ln(|yij − ȳi(−1)|) 4 13.3300 13.5154 13.5227 13.4241 13.5298 13.2278
ln(|yij − ȳi|) 4 10.5498 10.5127 10.4690 10.5682 10.7048 10.5613

ln(|yi − x
′

i
β̂|) 4 8.3649 8.4849 8.3449 8.5203 8.4732 8.4073

ln(|yi − x
′

i
β̂exp|) 4 8.5798 8.7278 8.5342 8.4718 8.6246 8.5959

Table D.4: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.005 for the original simulation and five replicate simulations with
r = 4
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Significance Level: α = 0.001
Measure r Original Replicates
s2 4 5.5838 5.6095 5.5899 5.6691 5.8013 5.5058
s 4 5.8473 5.8217 5.8586 5.9021 5.9823 6.0057
ln(s2 + 1) 4 5.9006 5.8672 5.9473 6.1821 6.0432 5.9605
ln(s + 1) 4 5.7824 5.8588 6.0022 5.8145 6.1387 6.0945
S/NN 4 5.6690 5.7732 5.7641 5.6715 5.5830 5.4858

|yij − ỹi| 4 12.5738 12.7475 12.6282 12.5286 12.3955 12.1122

|yij − ỹi|−1 4 10.1493 9.8498 10.1771 9.8410 9.9510 9.7070
|yij − ȳi(−1)| 4 12.5738 12.7475 12.6282 12.5286 12.3955 12.1122
|yij − ȳi| 4 17.3935 17.3590 17.8299 17.2304 17.4818 16.7948

|yij − ȳi|0.42 4 17.3913 17.0566 17.7045 16.9649 17.2842 16.6382

|yij − ȳi|1.5 4 16.2960 16.4582 16.5332 16.5459 16.6531 15.8093

|yi − x
′

i
β̂| 4 12.1966 12.8163 12.5051 12.8013 12.2011 12.3656

|yi − x
′

i
β̂|2 4 10.8021 11.3836 10.9327 11.2136 10.8874 10.8792

|yi − x
′

i
β̂|1.5

4 11.6468 12.0201 11.8865 12.1892 11.5386 11.5556

|yi − x
′

i
β̂exp| 4 12.3604 13.2621 12.9971 13.0759 12.4178 12.4123

|yi − x
′

i
β̂exp|

2
4 11.0632 11.5984 11.2532 11.6054 11.1238 11.1592

|yi − x
′

i
β̂exp|

1.5
4 11.8168 12.3590 12.2761 12.5943 11.6788 11.8111

ln(|yij − ỹi|) 4 19.2526 19.1265 18.6463 18.1021 18.6653 18.6053

ln(|yij − ỹi|−1) 4 10.5691 10.8458 10.5646 10.4260 10.6789 10.2215
ln(|yij − ȳi(−1)|) 4 19.2526 19.1265 18.6463 18.1021 18.6653 18.6053
ln(|yij − ȳi|) 4 15.4510 15.0414 15.6506 15.2165 15.2209 14.9670

ln(|yi − x
′

i
β̂|) 4 11.6307 11.7659 11.5579 11.8895 11.7746 11.8367

ln(|yi − x
′

i
β̂exp|) 4 12.0492 12.1129 11.4217 11.8105 12.2102 11.9729

Table D.5: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.001 for the original simulation and five replicate simulations with
r = 4
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Significance Level: α = 0.1
Measure r Original Replicates
s2 7 1.6521 1.6449 1.6518 1.6376 1.6304 1.6368
s 7 1.6917 1.6850 1.6861 1.6740 1.6797 1.6766
ln(s2 + 1) 7 1.6981 1.6888 1.6900 1.6790 1.6841 1.6805
ln(s + 1) 7 1.6924 1.6859 1.6915 1.6751 1.6835 1.6798
S/NN 7 1.6175 1.6265 1.6224 1.6184 1.6178 1.6300

|yij − ỹi| 7 2.0088 2.0120 2.0241 1.9936 2.0013 2.0081

|yij − ỹi|−1 7 2.5850 2.5843 2.5981 2.5651 2.5647 2.5791
|yij − ȳi(−1)| 7 2.9212 2.9286 2.9275 2.9003 2.9129 2.9413
|yij − ȳi| 7 3.2446 3.2605 3.2723 3.2403 3.2312 3.2734

|yij − ȳi|0.42 7 3.1296 3.1239 3.1634 3.1115 3.1011 3.1429

|yij − ȳi|1.5 7 3.3028 3.3139 3.3074 3.2743 3.2837 3.3031

|yi − x
′

i
β̂| 7 2.7895 2.8057 2.8217 2.7989 2.7890 2.8089

|yi − x
′

i
β̂|2 7 2.7917 2.8003 2.8139 2.7948 2.7993 2.8085

|yi − x
′

i
β̂|1.5

7 2.8027 2.7981 2.8202 2.7935 2.7967 2.8148

|yi − x
′

i
β̂exp| 7 2.8372 2.8520 2.8621 2.8437 2.8339 2.8483

|yi − x
′

i
β̂exp|

2
7 2.8387 2.8499 2.8647 2.8411 2.8484 2.8561

|yi − x
′

i
β̂exp|

1.5
7 2.8430 2.8443 2.8772 2.8415 2.8473 2.8666

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A N/A

ln(|yij − ỹi|−1) 7 2.6089 2.6206 2.6084 2.6067 2.5890 2.5995
ln(|yij − ȳi(−1)|) 7 3.0365 3.0467 3.0737 3.0588 3.0522 3.0638
ln(|yij − ȳi|) 7 2.9991 2.9855 2.9991 2.9844 2.9634 2.9957

ln(|yi − x
′

i
β̂|) 7 2.7603 2.7863 2.7904 2.7733 2.7813 2.7874

ln(|yi − x
′

i
β̂exp|) 7 2.8001 2.8175 2.8140 2.8117 2.7943 2.8180

Table D.6: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.1 for the original simulation and five replicate simulations with
r = 7

D.2 r = 7
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Significance Level: α = 0.05
Measure r Original Replicates
s2 7 2.0692 2.0584 2.0626 2.0655 2.0459 2.0571
s 7 2.1272 2.1142 2.1299 2.1227 2.1284 2.1224
ln(s2 + 1) 7 2.1387 2.1247 2.1348 2.1362 2.1387 2.1315
ln(s + 1) 7 2.1439 2.1207 2.1381 2.1264 2.1188 2.1349
S/NN 7 2.0187 2.0278 2.0242 2.0193 2.0288 2.0387

|yij − ỹi| 7 2.8436 2.8330 2.8586 2.8353 2.8538 2.8654

|yij − ỹi|−1 7 3.6728 3.6533 3.6931 3.6626 3.6803 3.6948
|yij − ȳi(−1)| 7 4.1547 4.1400 4.1891 4.1514 4.1568 4.1869
|yij − ȳi| 7 4.6176 4.6272 4.6594 4.5941 4.6065 4.6310

|yij − ȳi|0.42 7 4.4544 4.4784 4.4824 4.4677 4.4824 4.4796

|yij − ȳi|1.5 7 4.6509 4.6545 4.6744 4.6454 4.6322 4.6950

|yi − x
′

i
β̂| 7 3.9739 4.0087 4.0235 4.0050 3.9843 4.0061

|yi − x
′

i
β̂|2 7 3.9141 3.9533 3.9601 3.9241 3.9212 3.9188

|yi − x
′

i
β̂|1.5

7 3.9557 3.9793 4.0015 3.9716 3.9717 3.9711

|yi − x
′

i
β̂exp| 7 4.0464 4.0820 4.0903 4.0508 4.0442 4.0717

|yi − x
′

i
β̂exp|

2
7 3.9780 4.0292 4.0289 3.9796 3.9943 3.9826

|yi − x
′

i
β̂exp|

1.5
7 4.0224 4.0438 4.0709 4.0399 4.0372 4.0350

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A N/A

ln(|yij − ỹi|−1) 7 3.6955 3.6992 3.7262 3.6930 3.6969 3.6881
ln(|yij − ȳi(−1)|) 7 4.3380 4.3394 4.3565 4.3299 4.3354 4.3687
ln(|yij − ȳi|) 7 4.2595 4.2663 4.2696 4.2639 4.2477 4.2711

ln(|yi − x
′

i
β̂|) 7 3.9168 3.9323 3.9662 3.9490 3.9611 3.9752

ln(|yi − x
′

i
β̂exp|) 7 3.9435 3.9865 4.0119 3.9891 3.9856 4.0119

Table D.7: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.05 for the original simulation and five replicate simulations with
r = 7
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Significance Level: α = 0.01
Measure r Original Replicates
s2 7 3.3243 3.2913 3.2901 3.3229 3.2780 3.2756
s 7 3.4542 3.3695 3.4289 3.4775 3.4217 3.4306
ln(s2 + 1) 7 3.4671 3.3926 3.4619 3.4904 3.4396 3.4610
ln(s + 1) 7 3.4442 3.3848 3.4488 3.4925 3.4384 3.4334
S/NN 7 3.1975 3.2173 3.1933 3.2169 3.2383 3.2302

|yij − ỹi| 7 4.9799 4.8977 4.9352 4.9626 4.9263 4.9759

|yij − ỹi|−1 7 6.5175 6.3832 6.4334 6.4511 6.4406 6.4677
|yij − ȳi(−1)| 7 7.3715 7.2346 7.2599 7.2827 7.2672 7.3791
|yij − ȳi| 7 8.1007 8.0516 8.0358 8.1266 8.0751 8.1276

|yij − ȳi|0.42 7 7.8396 7.8229 7.8449 7.9432 7.8770 7.9648

|yij − ȳi|1.5 7 8.0437 7.9193 7.9077 8.0192 7.9132 8.0489

|yi − x
′

i
β̂| 7 6.9697 6.8853 7.0465 7.0457 6.9775 7.0528

|yi − x
′

i
β̂|2 7 6.6833 6.6637 6.6906 6.7293 6.6512 6.6118

|yi − x
′

i
β̂|1.5

7 6.8322 6.8256 6.8772 6.9313 6.8410 6.8282

|yi − x
′

i
β̂exp| 7 7.0909 7.0236 7.1778 7.1515 7.1064 7.1770

|yi − x
′

i
β̂exp|

2
7 6.8042 6.7815 6.7723 6.8354 6.7276 6.7013

|yi − x
′

i
β̂exp|

1.5
7 6.9800 6.9465 7.0166 7.0696 6.9237 6.9603

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A N/A

ln(|yij − ỹi|−1) 7 6.4512 6.3635 6.5054 6.3911 6.4674 6.3591
ln(|yij − ȳi(−1)|) 7 7.5664 7.4224 7.5887 7.6223 7.5923 7.6282
ln(|yij − ȳi|) 7 7.4194 7.3250 7.3715 7.5245 7.3051 7.3924

ln(|yi − x
′

i
β̂|) 7 6.7860 6.7806 6.7979 6.8733 6.8144 6.8987

ln(|yi − x
′

i
β̂exp|) 7 6.8627 6.8789 6.8704 6.9481 6.9059 6.9754

Table D.8: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.01 for the original simulation and five replicate simulations with
r = 7
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Significance Level: α = 0.005
Measure r Original Replicates
s2 7 3.9866 3.9297 3.9459 3.9209 3.8996 3.9323
s 7 4.1723 4.0532 4.0871 4.1438 4.0671 4.1338
ln(s2 + 1) 7 4.1988 4.1002 4.1558 4.2097 4.0989 4.1219
ln(s + 1) 7 4.1698 4.0197 4.1503 4.1236 4.0588 4.0937
S/NN 7 3.8226 3.8116 3.8402 3.8400 3.8483 3.8340

|yij − ỹi| 7 5.8658 5.7584 5.8588 5.8396 5.8494 5.9036

|yij − ỹi|−1 7 7.7453 7.5615 7.6724 7.6766 7.6705 7.7408
|yij − ȳi(−1)| 7 8.6616 8.5708 8.6153 8.6916 8.6872 8.8933
|yij − ȳi| 7 9.5849 9.4609 9.5852 9.6048 9.6535 9.8168

|yij − ȳi|0.42 7 9.3423 9.3848 9.3488 9.5754 9.5017 9.5064

|yij − ȳi|1.5 7 9.5203 9.2352 9.3592 9.4732 9.3899 9.6018

|yi − x
′

i
β̂| 7 8.2714 8.3000 8.2527 8.4272 8.3534 8.4501

|yi − x
′

i
β̂|2 7 7.7992 7.8467 7.8145 7.9437 7.7423 7.8529

|yi − x
′

i
β̂|1.5

7 8.0831 8.0906 8.1060 8.2540 8.0623 8.2591

|yi − x
′

i
β̂exp| 7 8.3618 8.3848 8.3964 8.6291 8.4443 8.5717

|yi − x
′

i
β̂exp|

2
7 7.9265 7.9747 7.9346 8.0892 7.9185 7.9698

|yi − x
′

i
β̂exp|

1.5
7 8.1913 8.1805 8.1902 8.3831 8.2102 8.3831

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A N/A

ln(|yij − ỹi|−1) 7 7.6237 7.6019 7.6095 7.5645 7.7632 7.6122
ln(|yij − ȳi(−1)|) 7 9.0101 8.8435 9.0276 8.9842 9.0533 9.0646
ln(|yij − ȳi|) 7 8.7313 8.7523 8.6766 8.9020 8.8036 8.8518

ln(|yi − x
′

i
β̂|) 7 8.0912 8.1126 8.0885 8.2336 8.1636 8.3169

ln(|yi − x
′

i
β̂exp|) 7 8.1158 8.1625 8.1379 8.2689 8.2611 8.3819

Table D.9: Critical values for the tPSE and M -test statistics obtained from the em-
pirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations, for
Type I error rates 0.005 for the original simulation and five replicate simulations with
r = 7
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Significance Level: α = 0.001
Measure r Original Replicates
s2 7 5.8185 5.6448 5.9119 5.9131 5.6124 5.6588
s 7 6.2417 5.7960 6.0112 5.8970 5.8588 6.0317
ln(s2 + 1) 7 6.2946 5.8483 6.1918 5.9786 5.8692 5.9159
ln(s + 1) 7 5.9821 5.8456 5.8489 5.8567 5.8738 5.8250
S/NN 7 5.5797 5.4733 5.6679 5.6590 5.6207 5.6675

|yij − ỹi| 7 8.1268 7.9324 8.0975 8.1079 8.0377 8.2434

|yij − ỹi|−1 7 10.7546 10.5893 10.6786 10.8327 10.7333 10.9089
|yij − ȳi(−1)| 7 12.0450 11.8509 12.0505 12.2354 12.3143 12.3327
|yij − ȳi| 7 13.2854 13.0228 13.3873 13.5373 13.5190 13.5813

|yij − ȳi|0.42 7 13.0290 12.7169 13.1347 13.1941 13.4427 13.5282

|yij − ȳi|1.5 7 13.0998 12.8232 13.1945 13.1043 12.8331 13.1833

|yi − x
′

i
β̂| 7 11.6540 11.2908 11.2690 11.6401 11.4115 12.0923

|yi − x
′

i
β̂|2 7 10.7329 10.7840 10.6523 10.5398 10.5985 10.8811

|yi − x
′

i
β̂|1.5

7 11.1937 11.1622 11.0283 11.1531 11.2437 11.5428

|yi − x
′

i
β̂exp| 7 11.8212 11.5069 11.5224 11.6376 11.6226 12.1260

|yi − x
′

i
β̂exp|

2
7 10.7515 10.9290 10.7190 10.6571 10.7448 11.1277

|yi − x
′

i
β̂exp|

1.5
7 11.3464 11.3651 11.2476 11.3290 11.3553 11.6827

ln(|yij − ỹi|) 7 N/A N/A N/A N/A N/A N/A

ln(|yij − ỹi|−1) 7 10.2863 10.5370 10.7322 10.5772 10.6960 10.4895
ln(|yij − ȳi(−1)|) 7 12.2842 12.3250 12.4656 12.3346 12.6137 12.5566
ln(|yij − ȳi|) 7 11.9977 12.0335 12.1039 12.1252 12.3055 12.5219

ln(|yi − x
′

i
β̂|) 7 11.1541 10.9305 10.8998 11.4243 11.2578 11.4224

ln(|yi − x
′

i
β̂exp|) 7 11.1792 11.0880 11.2975 11.1557 11.3157 11.6593

Table D.10: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.001 for the original simulation and five replicate simulations
with r = 7
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Significance Level: α = 0.1
Measure r Original Replicates
s2 10 1.6475 1.6593 1.6526 1.6570 1.6498 1.6484
s 10 1.6734 1.6917 1.6798 1.6855 1.6791 1.6834
ln(s2 + 1) 10 1.6759 1.6915 1.6827 1.6892 1.6844 1.6837
ln(s + 1) 10 1.6759 1.6940 1.6816 1.6916 1.6850 1.6863
S/NN 10 1.6190 1.6186 1.6217 1.6204 1.6221 1.6221

|yij − ỹi| 10 2.3996 2.4262 2.4109 2.4081 2.3912 2.4186

|yij − ỹi|−1 10 2.5714 2.6105 2.5908 2.5885 2.5758 2.6061
|yij − ȳi(−1)| 10 2.8840 2.9287 2.9126 2.9026 2.8878 2.9350
|yij − ȳi| 10 3.0223 3.0688 3.0585 3.0449 3.0227 3.0699

|yij − ȳi|0.42 10 2.9452 3.0073 2.9903 2.9758 2.9575 2.9696

|yij − ȳi|1.5 10 3.0509 3.0974 3.0770 3.0743 3.0620 3.0774

|yi − x
′

i
β̂| 10 2.7312 2.7885 2.7615 2.7787 2.7504 2.7757

|yi − x
′

i
β̂|2 10 2.7624 2.7832 2.7656 2.7757 2.7558 2.7752

|yi − x
′

i
β̂|1.5

10 2.7566 2.7844 2.7546 2.7711 2.7545 2.7764

|yi − x
′

i
β̂exp| 10 2.7603 2.8230 2.7865 2.8098 2.7850 2.8035

|yi − x
′

i
β̂exp|

2
10 2.7938 2.8199 2.8011 2.8073 2.7900 2.8071

|yi − x
′

i
β̂exp|

1.5
10 2.7899 2.8179 2.7863 2.8022 2.7834 2.8084

ln(|yij − ỹi|) 10 3.0542 3.0856 3.0681 3.0781 3.0700 3.0713

ln(|yij − ỹi|−1) 10 2.5936 2.6378 2.6118 2.6285 2.6179 2.6197
ln(|yij − ȳi(−1)|) 10 2.8767 2.9572 2.9345 2.9227 2.9201 2.9157
ln(|yij − ȳi|) 10 2.8628 2.9071 2.9020 2.9048 2.8825 2.8848

ln(|yi − x
′

i
β̂|) 10 2.7161 2.7676 2.7542 2.7549 2.7518 2.7473

ln(|yi − x
′

i
β̂exp|) 10 2.7250 2.7862 2.7865 2.7678 2.7822 2.7673

Table D.11: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.1 for the original simulation and five replicate simulations
with r = 10

D.3 r = 10

275



Significance Level: α = 0.05
Measure r Original Replicates
s2 10 2.0769 2.0848 2.0847 2.0800 2.0798 2.0714
s 10 2.1126 2.1302 2.1287 2.1223 2.1222 2.1217
ln(s2 + 1) 10 2.1207 2.1307 2.1338 2.1294 2.1259 2.1309
ln(s + 1) 10 2.1182 2.1338 2.1359 2.1301 2.1228 2.1284
S/NN 10 2.0204 2.0254 2.0348 2.0291 2.0279 2.0270

|yij − ỹi| 10 3.4037 3.4479 3.4474 3.4232 3.3935 3.4328

|yij − ỹi|−1 10 3.6552 3.7168 3.7009 3.6915 3.6691 3.6976
|yij − ȳi(−1)| 10 4.0971 4.1839 4.1424 4.1321 4.1032 4.1509
|yij − ȳi| 10 4.2967 4.3764 4.3539 4.3245 4.3077 4.3529

|yij − ȳi|0.42 10 4.1943 4.2580 4.2657 4.2574 4.2070 4.2501

|yij − ȳi|1.5 10 4.3226 4.3829 4.3554 4.3306 4.3195 4.3671

|yi − x
′

i
β̂| 10 3.8928 3.9482 3.9075 3.9479 3.9151 3.9545

|yi − x
′

i
β̂|2 10 3.9002 3.9176 3.8739 3.8979 3.8668 3.8932

|yi − x
′

i
β̂|1.5

10 3.8924 3.9524 3.8911 3.9169 3.8997 3.9203

|yi − x
′

i
β̂exp| 10 3.9436 3.9987 3.9552 3.9887 3.9465 4.0046

|yi − x
′

i
β̂exp|

2
10 3.9365 3.9657 3.9174 3.9371 3.9078 3.9336

|yi − x
′

i
β̂exp|

1.5
10 3.9389 4.0041 3.9478 3.9768 3.9426 3.9752

ln(|yij − ỹi|) 10 4.2993 4.3454 4.3328 4.3036 4.3337 4.3440

ln(|yij − ỹi|−1) 10 3.7131 3.7407 3.7040 3.7260 3.7031 3.7198
ln(|yij − ȳi(−1)|) 10 4.1247 4.2152 4.1502 4.1758 4.1171 4.1627
ln(|yij − ȳi|) 10 4.0574 4.1254 4.1242 4.1081 4.0957 4.1022

ln(|yi − x
′

i
β̂|) 10 3.8535 3.9345 3.8844 3.9152 3.8980 3.8913

ln(|yi − x
′

i
β̂exp|) 10 3.8818 3.9507 3.9313 3.9166 3.9324 3.9211

Table D.12: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.05 for the original simulation and five replicate simulations
with r = 10
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Significance Level: α = 0.01
Measure r Original Replicates
s2 10 3.2686 3.3421 3.3543 3.2914 3.2942 3.3102
s 10 3.3660 3.4477 3.4243 3.3733 3.3969 3.4522
ln(s2 + 1) 10 3.3922 3.4546 3.4396 3.3871 3.4149 3.4792
ln(s + 1) 10 3.3972 3.4551 3.4449 3.3700 3.4109 3.4707
S/NN 10 3.2107 3.1977 3.1822 3.2182 3.2089 3.2062

|yij − ỹi| 10 5.9355 5.9060 5.8926 5.9022 5.9100 5.9637

|yij − ỹi|−1 10 6.4078 6.3596 6.3213 6.4110 6.3580 6.4374
|yij − ȳi(−1)| 10 7.1900 7.1594 7.0963 7.1840 7.1429 7.1878
|yij − ȳi| 10 7.5245 7.5212 7.4301 7.4844 7.5105 7.5275

|yij − ȳi|0.42 10 7.3336 7.3810 7.3844 7.3614 7.3988 7.4376

|yij − ȳi|1.5 10 7.4896 7.4251 7.3508 7.4923 7.4077 7.5160

|yi − x
′

i
β̂| 10 6.8398 6.8346 6.8252 6.8757 6.8690 6.8585

|yi − x
′

i
β̂|2 10 6.5877 6.5570 6.5827 6.6164 6.5769 6.6010

|yi − x
′

i
β̂|1.5

10 6.7566 6.7521 6.7614 6.7387 6.7743 6.6973

|yi − x
′

i
β̂exp| 10 6.8795 6.9179 6.8913 6.9454 6.9713 6.9247

|yi − x
′

i
β̂exp|

2
10 6.6705 6.6400 6.6604 6.7127 6.6614 6.6554

|yi − x
′

i
β̂exp|

1.5
10 6.8394 6.8225 6.8233 6.8493 6.8482 6.8159

ln(|yij − ỹi|) 10 7.4017 7.3134 7.3456 7.3805 7.4956 7.3447

ln(|yij − ỹi|−1) 10 6.3687 6.4172 6.4082 6.4414 6.4229 6.3877
ln(|yij − ȳi(−1)|) 10 7.1823 7.2177 7.1343 7.2385 7.1359 7.1900
ln(|yij − ȳi|) 10 7.0417 7.0620 7.0435 7.1011 7.0426 7.1328

ln(|yi − x
′

i
β̂|) 10 6.6279 6.6665 6.6642 6.7293 6.7455 6.7714

ln(|yi − x
′

i
β̂exp|) 10 6.7021 6.7199 6.7524 6.8160 6.7421 6.7487

Table D.13: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.01 for the original simulation and five replicate simulations
with r = 10
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Significance Level: α = 0.005
Measure r Original Replicates
s2 10 3.9351 3.9361 4.0349 3.8995 3.9511 3.9837
s 10 4.0283 4.0741 4.1149 3.9986 4.0935 4.0813
ln(s2 + 1) 10 4.0461 4.1184 4.1340 4.0320 4.1198 4.1190
ln(s + 1) 10 4.0458 4.0780 4.1084 3.9873 4.0523 4.1607
S/NN 10 3.8109 3.8828 3.8157 3.8400 3.8269 3.8729

|yij − ỹi| 10 7.0917 7.0951 7.0650 7.0978 7.0980 7.1682

|yij − ỹi|−1 10 7.6458 7.6804 7.5817 7.7020 7.6151 7.7064
|yij − ȳi(−1)| 10 8.5807 8.5427 8.4559 8.6405 8.5951 8.6649
|yij − ȳi| 10 8.9653 8.9414 8.7902 9.0128 9.0286 9.0217

|yij − ȳi|0.42 10 8.8443 8.7772 8.7591 8.8265 8.9206 8.8287

|yij − ȳi|1.5 10 8.8740 8.8673 8.7598 8.9016 8.8802 9.0049

|yi − x
′

i
β̂| 10 8.1768 8.0634 8.1680 8.1769 8.2584 8.1074

|yi − x
′

i
β̂|2 10 7.7608 7.7428 7.7462 7.8391 7.7130 7.8394

|yi − x
′

i
β̂|1.5

10 7.9989 7.9378 8.0030 8.0415 8.0376 8.0235

|yi − x
′

i
β̂exp| 10 8.2753 8.1627 8.2918 8.3157 8.3119 8.2230

|yi − x
′

i
β̂exp|

2
10 7.8460 7.8127 7.8596 7.8988 7.8044 7.9022

|yi − x
′

i
β̂exp|

1.5
10 8.0697 7.9985 8.1876 8.1482 8.1038 8.1398

ln(|yij − ỹi|) 10 8.8224 8.7495 8.6764 8.8398 8.8561 8.6716

ln(|yij − ỹi|−1) 10 7.6885 7.6659 7.5287 7.7290 7.7263 7.5235
ln(|yij − ȳi(−1)|) 10 8.5079 8.5501 8.4877 8.5327 8.5621 8.5658
ln(|yij − ȳi|) 10 8.4351 8.4121 8.4063 8.3585 8.4127 8.5232

ln(|yi − x
′

i
β̂|) 10 7.8956 7.9372 7.9430 7.9517 8.0799 8.0426

ln(|yi − x
′

i
β̂exp|) 10 7.9795 8.0439 7.9439 8.0338 8.0592 8.2243

Table D.14: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.005 for the original simulation and five replicate simulations
with r = 10
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Significance Level: α = 0.001
Measure r Original Replicates
s2 10 5.7141 5.7929 6.0307 5.8142 5.6938 5.8201
s 10 5.7315 5.9010 6.0713 5.8788 5.7810 6.0462
ln(s2 + 1) 10 5.7758 6.0409 6.0595 5.9623 5.8478 6.0497
ln(s + 1) 10 5.7861 5.9234 5.9797 5.9231 5.7498 5.9143
S/NN 10 5.3835 5.7435 5.6844 5.6918 5.4250 5.5460

|yij − ỹi| 10 9.9660 9.8331 9.6069 9.8380 10.1370 9.8774

|yij − ỹi|−1 10 10.5851 10.5758 10.3927 10.5551 11.0345 10.6658
|yij − ȳi(−1)| 10 11.7597 11.6385 11.6891 11.6501 12.3083 12.2096
|yij − ȳi| 10 12.3861 12.2381 12.0870 12.2883 12.9280 12.7921

|yij − ȳi|0.42 10 12.1842 12.1031 12.2005 11.9213 12.3100 12.3370

|yij − ȳi|1.5 10 12.0759 12.0725 11.7393 11.9555 12.4593 12.3945

|yi − x
′

i
β̂| 10 11.2795 11.1449 11.0291 11.2163 11.4236 11.8848

|yi − x
′

i
β̂|2 10 10.7863 10.5132 10.2206 10.5449 10.7652 11.0480

|yi − x
′

i
β̂|1.5

10 10.9503 10.9424 10.6029 10.9603 11.2008 11.4551

|yi − x
′

i
β̂exp| 10 11.4634 11.2325 11.1565 11.3499 11.6261 11.8035

|yi − x
′

i
β̂exp|

2
10 10.9224 10.6574 10.2861 10.6327 10.8687 11.1591

|yi − x
′

i
β̂exp|

1.5
10 11.0462 11.1535 10.6615 11.1037 11.3522 11.6449

ln(|yij − ỹi|) 10 11.8960 12.1374 11.6839 11.9340 12.1245 11.7521

ln(|yij − ỹi|−1) 10 10.8176 10.5701 10.3253 10.5047 10.6614 10.3036
ln(|yij − ȳi(−1)|) 10 11.6863 11.7242 11.6249 11.7987 11.9694 11.8036
ln(|yij − ȳi|) 10 11.7971 11.4052 11.4294 11.3753 11.6869 11.4736

ln(|yi − x
′

i
β̂|) 10 10.8691 10.9908 10.7521 10.9279 10.9469 11.2102

ln(|yi − x
′

i
β̂exp|) 10 10.9376 11.1022 11.1668 11.1416 11.1126 11.0715

Table D.15: Critical values for the tPSE and M -test statistics obtained from the
empirical distributions of test statistics under H∗

0 : γ1 = 0 and N(0, 1) observations,
for Type I error rates 0.001 for the original simulation and five replicate simulations
with r = 10
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NULL DISTRIBUTION EMPIRICAL F CDF PLOTS
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Figure E.1: Empirical CDF for Lenth’s |tPSE| test statistic values from s2 for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.2: Empirical CDF for Lenth’s |tPSE| test statistic values from s for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.3: Empirical CDF for Lenth’s |tPSE| test statistic values from ln(s2 + 1) for
r = 3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Fn
(x

)

r = 3
r = 4
r = 5
r = 6
r = 7
r = 8
r = 9
r = 10
r = 249
r = 250

Figure E.4: Empirical CDF for Lenth’s |tPSE| test statistic values from ln(s + 1) for
r = 3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.5: Empirical CDF for Lenth’s |tPSE| test statistic values from S/NN for
r = 3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.6: Empirical CDF for M -test statistic values from |yij − ỹi| for odd numbers
of replicates, r = 3, 5, 7, 9, 251
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Figure E.7: Empirical CDF for M -test statistic values from |yij − ỹi| for even numbers
of replicates, r = 4, 6, 8, 10, 250
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Figure E.8: Empirical CDF for M -test statistic values from |yij − ỹi|−1 for odd num-
bers of replicates, r = 3, 5, 7, 9, 251

284



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Fn
(x

)

F(1,48)
r = 4
r = 6
r = 8
r = 10
r = 250

Figure E.9: Empirical CDF for M -test statistic values from |yij − ỹi|−1 for even num-
bers of replicates, r = 4, 6, 8, 10, 250
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Figure E.10: Empirical CDF for M -test statistic values from |yij − ȳi(−1)| for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.11: Empirical CDF for M -test statistic values from |yij − ȳi| for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.12: Empirical CDF for M -test statistic values from |yij − ȳi|0.42 for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.13: Empirical CDF for M -test statistic values from |yij − ȳi|1.5 for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.14: Empirical CDF for M -test statistic values from |yi − x′
iβ̂| for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.15: Empirical CDF for M -test statistic values from |yi − x′
iβ̂|

2
for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.16: Empirical CDF for M -test statistic values from |yi − x′
iβ̂|

1.5
for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.17: Empirical CDF for M -test statistic values from |yi − x′
iβ̂exp| for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.18: Empirical CDF for M -test statistic values from |yi − x′
iβ̂exp|

2
for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.19: Empirical CDF for M -test statistic values from |yi − x′
iβ̂exp|

1.5
for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.20: Empirical CDF for M -test statistic values from ln(|yij − ỹi|) for even
numbers of replicates, r = 4, 6, 8, 10, 250
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Figure E.21: Empirical CDF for M -test statistic values from ln(|yij − ỹi|−1) for odd
numbers of replicates, r = 3, 5, 7, 9, 251
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Figure E.22: Empirical CDF for M -test statistic values from ln(|yij − ỹi|−1) for even
numbers of replicates, r = 4, 6, 8, 10, 250
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Figure E.23: Empirical CDF for M -test statistic values from ln(|yij − ȳi(−1)|) for
r = 3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.24: Empirical CDF for M -test statistic values from ln(|yij − ȳi|) for r =
3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.25: Empirical CDF for M -test statistic values from ln(|yi − x′
iβ̂|) for r =

3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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Figure E.26: Empirical CDF for M -test statistic values from ln(|yi − x′
iβ̂exp|) for

r = 3, 4, 5, 6, 7, 8, 9, 10, 250, 251 replicates per treatment combination
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APPENDIX F

POWER CURVES FROM PHASE II POWER STUDY
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Figure F.1: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 3 replicates, and normal error distribution
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Figure F.2: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 4 replicates, and normal error distribution
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Figure F.3: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 5 replicates, and normal error distribution
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Figure F.4: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 6 replicates, and normal error distribution
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Figure F.5: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 7 replicates, and normal error distribution
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Figure F.6: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 8 replicates, and normal error distribution
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Figure F.7: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 9 replicates, and normal error distribution
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Figure F.8: Power curves for tests using ln(s + 1), ln(|yij − ỹi|−1), and ln(|yij − ȳi|)
with data from randomly generated mean vectors and first- and second-order variance
models using empirical critical values, r = 10 replicates, and normal error distribution

298



BIBLIOGRAPHY

Abraham, B., Chipman, H. and Vijayan, K. (1999). Some risks in the construction
and analysis of supersaturated designs. Technometrics 41, 135–141.

Aitkin, M. (1987). Modelling variance heterogeneity in normal regression using GLIM.
Applied Statistics 36, 332–339.

Ankenman, B. E. and Dean, A. M. (2003). Quality improvement and robustness
via design of experiments. In Handbook of Statistics, Vol. 22 (C. R. Rao and
R. Khattree (eds)), pp. 263–317, Elsevier.

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Journal of the
Royal Statistical Society, Series A 8, 268–282.

Bartlett, M. S. and Kendall, D. G. (1946). The statistical analysis of variance-
heterogeneity and the logarithmic transformation. Supplement to the Journal
of the Royal Statistical Society 8, 128–138.

Bergman, B. and Hynén, A. (1997). Dispersion effects from unreplicated designs in
the 2k−p series. Technometrics 39, 191–198.

Booth, K. H. V. and Cox, D. R. (1962). Some systematic supersatured designs.
Technometrics 4, 489–495.

Box, G. E. (1953). Non-normality and tests on variances. Biometrika 40, 318–335.

Box, G. E. (1988). Signal-to-noise ratios, performance criteria, and transformations.
Technometrics 30, 1–17.

Box, G. E. and Andersen, S. L. (1955). Permutation theory in the derivation of
robust criteria and the study of departures from assumption. Journal of the
Royal Statistical Society, Series B 17, 1–26.

Box, G. E. and Meyer, R. D. (1986). Dispersion effects from fractional designs.
Technometrics 28, 19–27.

299



Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Experimenters:
An Introduction to Design, Data Analysis, and Model Building. John Wiley &
Sons.

Brenneman, W. A. and Nair, V. N. (2001). Methods for identifying dispersion effects
in unreplicated factorial experiments. Technometrics 43, 388–405.

Brown, M. and Forsythe, A. (1974). Robust tests for the equality of variances. Journal
of the American Statistical Association 69, 364–367.

Bursztyn, D. and Steinberg, D. M. (2005). Screening: methods for experimentation
in industry, drug discovery and genetics. Springer Verlag. chapter Screening ex-
periments for dispersion effects.

Casella, G. and Berger, R. L. (1990). Statistical Inference. Duxbury Press.

Cheng, S. W. and Wu, C. F. J. (2001). Factor screening and response surface explo-
ration. Statistica Sinica 11, 553–604.

Cheng, S. W. and Ye, K. Q. (2004). Geometric isomorphism and minimum aberration
for factorial designs with quantitative factors. The Annals of Statistics 32, 2168–
2185.

Chowdhury, A. H. and Fard, N. S. (2001). Estimation of dispersion effects from
robust design experiments with censored response data. Quality and Reliability
Engineering International 17, 25–32.

Cochran, W. G. (1941). The distribution of the largest of a set of estimated variances
as a fraction of their total. Annals of Eugenics, London 11, 47–52.

Conover, W. J., Johnson, M. E. and Johnson, M. M. (1981). A comparative study of
tests for homoegeneity of variances, with applications to the outer continental
shelf bidding data. Technometrics 23, 351–361.

Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression.
Biometrika 70, 1–10.

Daniel, C. (1959). Use of half-normal plots in interpreting factorial two-level experi-
ments. Technometrics 1, 311–341.

Dean, A. and Voss, D. (1999). Design and Analysis of Experiments. Springer.

Dean, A. M. and Draper, N. R. (1999). Saturated main-effect designs for factorial
experiments. Statistics and Computing 9, 179–185.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd edn. Wiley.

300



Evangelaras, H., Kolaiti, E. and Koukouvinos, C. (2005a). Projection properties of
certain three level main effect plans with quantitative factors.

Evangelaras, H., Koukouvinos, C., Dean, A. M. and Dingus, C. A. (2005b). Projection
properties of certain three level orthogonal arrays. Metrika 62, 241–257.

Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of two-level
factorial fractions. Journal of Statistical Planning and Inference 87, 149–172.

Hartley, H. O. (1950). The maximum F-ratio as a short-cut test for heterogeneity of
variance. Biometrika 37, 187–194.

Harvey, A. C. (1976). Estimating Regression Models with Multiplicative Het-
eroscedasticity. Econometrica 44, 461–465.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Analysis, 2nd edn.
John Wiley & Sons.

Holm, S. and Wiklander, K. (1999). Simultaneous estimation of location and dis-
persion in two-level fractional factorial designs. Journal of Applied Statistics
26, 235–242.

IMSL Fortran Library User’s Guide: STAT/LIBRARY Volume 2 of 2 (1994-2003).
Visual Numerics, Inc.

Johnson, R. A. and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis,
4th edn. Prentice Hall.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate
theory. The Annals of Statistics 2, 849–879.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals
of Mathematical Statistics 22, 79–86.

Lenth, R. V. (1989). Quick and easy analysis of unreplicated factorials. Technometrics
31, 469–473.

Levene, H. (1960). Robust tests for equality of variances. In Contributions to Prob-
ability and Statistics: Essays in Honor of Harold Hotelling (I. O. et al. (ed.)),
Stanford University Press.

Liao, C. T. (2000). Identification of dispersion effects from unreplicated 2n−k fractional
factorial designs. Computational Statistics and Data Analysis 33, 291–298.

Lin, D., K. J. (1993). A new class of supersaturated designs. Technometrics 35, 28–31.

301



Lin, D. K. J. and Draper, N. R. (1992). Projection properties of Plackett and Burman
designs. Technometrics 34, 423–428.

Ma, C. and Fang, K. T. (2001). A note on generalized aberration in factorial designs.
Metrika 53, 85–93.

Mackertich, N. A., Benneyan, J. C. and Kraus, P. D. (2003). Alternate dispersion
measures in replicated factorial Experiments.

McGrath, R. N. and Lin, D. K. J. (2001). Testing multiple dispersion effects in
unreplicated two-level fractional factorial designs. Technometrics 43, 406–414.

McGrath, R. N. and Lin, D. K. J. (2002). A nonparametric dispersion test for unrepli-
cated two-level fractional factorial designs. Journal of Nonparametric Statistics
14, 699–714.

Miller, R.G., J. (1968). Jackknifing variances. The Annals of Mathematical Statistics
39, 567–582.

Moses, L. E. (1963). Rank tests of dispersion. The Annals of Mathematical Statistics
34, 973–983.

Nair, V. J. and Pregibon, D. (1988). Analyzing dispersion effects from replicated
factorial experiments. Technometrics 30, 247–257.

Neter, J., Wasserman, W. and Kutner, M. H. (1990). Applied Linear Statistical
Models: Regression, Analysis of Variance, and Experimental Designs. Richard
D. Irwin, Inc.

Neyman, J. and Pearson, E. S. (1931). On the problem of k samples. Bulletin
Académie Polonaise des Sciences et Lettres, A pp. 460–481.

Pan, G. (1999). The impact of unidentified location effects on dispersion- effects
identification from unreplicated designs. Technometrics 41, 313–326.

Pistone, G. and Wynn, H. P. (1996). Generalized confounding with Gröbner bases.
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