
INFORMATION-THEORETIC MANAGEMENT OF

MOBILE SENSOR AGENTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Zhijun Tang, B.S., M.S.

* * * * *

The Ohio State University

2005

Dissertation Committee:

Prof. Ümit Özgüner, Adviser

Prof. Kevin M. Passino

Prof. Yuan F. Zheng

Approved by

Adviser

Graduate Program of
Electrical and Computer

Engineering

c© Copyright by

Zhijun Tang

2005

ABSTRACT

Sensor management (SM) is one of the key factors that determine the perfor-

mance of a multi-sensor system, which becomes even more crucial when the system

consists of mobile sensor agents (MSA). Due to the strong interconnection between

information processing and MSA motion control, a new set of theoretical foundations,

design principles and performance metrics are needed to develop a successful MSA

management approach. This dissertation presents a few attempts toward this goal by

jointly studying the target track maintenance problem and the MSA motion-planning

problem through the MSA-target scenario, which is motivated by the emerging appli-

cations of Unmanned Air Vehicles (UAV) in both military and civilian sensing tasks,

such as surveillance, reconnaissance and rescuing.

First, by analyzing the advantages and disadvantages of existing target tracking

approaches, a generic method for target track maintenance, the BF-HMap approach,

is proposed based on the Bayesian filtering method and the hospitability map. An

advanced version of this approach with much less computational and memory load

using a particle filter, the PF-HMap algorithm, is also introduced in this work. Due

to the flexible scheme of Bayesian inference inherent in both algorithms, BF-HMap

and PF-HMap are capable of exploiting non-analytic prior environmental knowledge

as well as handling intermittent and regional measurements caused by the coverage

and motion constraints on MSAs. Meanwhile, a generalized particle filter for both

ii

in-sequence and out-of-sequence measurements, the Universal Particle Filter (UPF),

is developed for possible extensions of the PF-HMap algorithm to distributed MSA

networks.

Secondly, the MSA motion-control problem is studied in such an information-

theoretic way that the conditional entropy (i.e. given the measurements) of the tar-

get state is chosen as a generic performance metric. The evolutions of the entropy

in both the linear and the non-linear case are analyzed, and several key properties

of the evolution of the entropy are identified. These properties are further exploited

to model the sensor management problem in two cases of studies: target search and

target surveillance, which are modeled as a stabilization problem of the entropy and

an optimization problem to minimize the average revisit time on each target, respec-

tively. Based on these information-theoretic formulations, a necessary condition and

a sufficient condition by means of the number of MSAs to perform a non-escape search

for a moving target are derived. Given a sufficient number of MSAs, a cooperative

search formation, called the Progressively-Spiral-In algorithm (PSI), is also developed

for the MSA team to find the target in finite time. In the meantime, a cooperative

motion-planning approach for multi-target surveillance by multiple non-holonomic

MSAs is proposed. In this approach, the targets are divided into disjoint groups

through on-line task decomposition. For each target group, a sub-optimal traversal

motion plan is generated for an MSA to periodically update the track information of

the targets in the shortest time.

The dissertation concludes with a summary of the current work and a discussion

on possible extensions of the proposed methodologies in future work.

iii

ACKNOWLEDGMENTS

My thanks go first and foremost to my wife, Yi, and my parents, who have sup-

ported me with love, patience, and understanding throughout my tenure as a graduate

student.

I also extend my gratitude to my advisor, Dr. Ümit Özgüner, who gave me

the inspiration, confidence, and freedom to explore in the challenging field of sensor

management.

My gratitude also goes to the entire committee, Dr. Kevin Passino and Dr. Yuan

F. Zheng, who provided the moral and technical support that carried this dissertation

through to completion.

Finally, special thanks go to my colleagues, Dr. Keith Redmill, Mr. Jone, Mr.

Hai Yu, Ms. Yiting Liu, Mr. Qi Chen, Ms. Lu Xu, Mr. Rong Xu, Mr. George

McWilliams, Mr. Yongling Zheng and all my friends, whom I have shared the journey

through the graduate school with. Their company in the good times and their advice

in times of trouble have been invaluable.

This work was supported in part by a TRC ITS Graduate Fellowship, a DAGSI

Graduate Fellowship, and by the grant from AFRL/VA and AFOSR Collaborative

Center of Control Science under contract F33615-01-2-3154.

iv

VITA

January 30, 1975 . Born - Jinzhou, China

1997 .B.S. E.E.
Zhejiang University, China.

2000 .M.S. E.E.
Zhejiang University, China.

PUBLICATIONS

Z. Tang and U. Ozguner, “Motion Planning for Multi-target Surveillance with Mul-

tiple Mobile Sensor Agents”, To appear in IEEE Trans. Robotics, 2005.

Z. Tang and U. Ozguner, “Sensor fusion for target track maintenance with multiple
UAVs based on the Bayesian filtering method and the hospitability map”, in Proc.

42th IEEE Conf. Decision and Control, vol.1 , pp. 19-24, 2003.

Z. Tang and U. Ozguner, “An adaptive motion correspondence algorithm for multiple

vehicle tracking by an airborne platform”, in Proc. IEEE International Conf. ITS,
pp. 49-54, 2002.

FIELDS OF STUDY

Major Field: Electrical and Computer Engineering

Studies in:

Computer Engineering
Signal Processing
Control
Intelligent Transportation Systems

v

TABLE OF CONTENTS

Page

Abstract . ii

Acknowledgments . iv

Vita . v

List of Figures . x

Chapters:

1. Introduction . 1

1.1 Motivations . 1

1.2 Problem Statement . 4
1.3 Contributions and the Outline of the Dissertation 6

2. Representation of Target Information and Its Maintenance 9

2.1 Representation of Target Information 9
2.2 Maintaining the Target Information 10

2.2.1 Kalman Filter/Entended Kalman Filter (KF/EKF) 11

2.2.2 Interacting Multiple Model (IMM) Filter 12
2.2.3 Bayesian Filter (BF) . 14

2.2.4 Particle Filter (PF) . 16
2.3 Target Track Maintenance by MSAs 19

2.3.1 Track Maintenance in Target Search 19
2.3.2 Track Maintenance in Target Tracking 20

vi

3. Target Track Maintenance with Regional and Intermittent Measurements 22

3.1 Introduction . 22
3.2 The BF-HMap Algorithm . 27

3.2.1 The Prediction Stage . 27
3.2.2 The Estimation Stage . 29

3.2.3 Extension to the MMMT case 31
3.2.4 Discrete-space-discrete-time (DSDT) Implementation of the

BF-HMap Algorithm . 32
3.2.5 An Illustrative Example . 33

3.3 The PF-HMap Algorithm . 35

3.3.1 The Prediction Stage . 35
3.3.2 The Estimation Stage . 37

3.3.3 Algorithm Summary . 38
3.4 A Relative-Entropy-Based Performance Measure For Non-Gaussian

Tracking Problems . 38
3.5 Simulations and Performance Evaluation 41

3.5.1 Scenario 1: Track Maintenance for an Out-of-Surveillance
Target . 43

3.5.2 Scenario 2: Track Maintenance for Moving Target Search . . 44
3.5.3 Scenario 3: Target Tracking with Intermittent and Regional

Measurements . 45
3.6 Conclusions . 47

4. Distributed Particle Filters for Networked Mobile Sensor Agents 51

4.1 Introduction . 51

4.2 Problem Statement . 52
4.3 Universal Particle Filter (UPF): A Particle Filter for the OOSM

Problem . 53
4.4 The Limited-memory UPF . 55

4.4.1 The effect of the sample size (N) on the tracking performance 56
4.4.2 The effect of the memory size (∆T) on the tracking performance 56

4.5 Distributed Sensor Fusion for Target Tracking based on the UPF . 57
4.6 Experiments and Results . 59

4.6.1 UPF vs. Standard PF without any Delay 59
4.6.2 UPF vs. Limited-memory UPF 60

4.7 Conclusions . 60

vii

5. Foundations of Entropy-based Management of MSAs 64

5.1 Introduction . 64
5.2 The Time Evolution of the Entropy 66

5.2.1 The Linear-Gaussian Case 66
5.2.2 The Non-linear Case . 69

5.3 The Measurement Evolution of the Entropy 70
5.3.1 The Linear-Gaussian Case 71

5.3.2 The Non-linear Case . 73
5.4 Entropy-based Formulations of the Sensor Management Problems

for MSAs . 80

5.4.1 Case of Study 1: Target Search 81
5.4.2 Case of Study 2: Target Surveillance 82

6. Cooperative Search for a Moving Target by Multiple Mobile Sensor Agents:

The Non-Escape Case . 85

6.1 Introduction . 85

6.2 Notations and Assumptions . 87
6.2.1 Notations . 87

6.2.2 The MSA Model . 88
6.2.3 The Target Model . 91

6.3 The Evolution of Plane Curves . 92
6.4 The Evolution of the Survival Zone S(t|t) and its Area A(S(t|t)) . 95

6.5 A Necessary Condition for Non-Escape Search 99
6.6 The Progressively-Spiral-In (PSI) Algorithm and a Sufficient Condi-

tion for Non-Escape Search . 102

6.6.1 Algorithm Overview . 102
6.6.2 The Construction of Csp

r (k) and Csp(k), k ≥ 1 103

6.6.3 Properties of Spiral-in Cycles 104
6.6.4 A Sufficient Condition for Non-Escape Search 116

6.7 Application Examples and Discussions 118
6.7.1 Task assessment and Search Strategy Selection 118

6.7.2 The PSI algorithm for limited number of MSAs 118
6.7.3 Multi-team search for disconnected S(t0|t0) 121

6.8 Conclusions . 123

7. Motion Planning for Multi-Target Surveillance with Mobile Sensor Agents 125

7.1 Introduction . 125

7.1.1 Related Work . 127

viii

7.1.2 Main Contributions . 130
7.2 Time-Optimal Motion Planning for Single Target Engagement (the

SMST Case) . 132
7.3 A Sub-optimal Motion Planning Approach for the SMMT Case (M =

1, N > 1) . 133
7.3.1 Determination of the Traverse Order 136

7.3.2 Motion Planning for the SMMT Case with a Given Traverse
Order by Approximated Gradient Decent 136

7.3.3 Optimization Improvement 139
7.4 A Decentralized Cooperative Motion Planning Approach for the

MMMT Case . 142
7.4.1 Task Decomposition . 143

7.4.2 Online Motion Planning . 145

7.5 Coverage Stability Analysis . 147
7.6 Experiments and Results . 150

7.6.1 Path Generation for the SMMT Case 150
7.6.2 Cooperative Online Motion Planning for the MMMT Case . 151

7.7 Conclusions . 152

8. Conclusions and Future Work . 159

Bibliography . 162

ix

LIST OF FIGURES

Figure Page

2.1 The IMM filter. 15

3.1 An example of an HMap. 24

3.2 Overview of the BF-HMap algorithm. 29

3.3 Track maintenance for a vehicle in a road network by 3 UAVs using

the BF-HMap algorithm . 34

3.4 The evolution of the predictive PDF maintained by the PF-HMap ap-

proach in scenario 1. 45

3.5 The PDF of the true system and the predictive PDF maintained by
other approaches (in scenario 1 after 3 min.). 46

3.6 Prediction performance comparison in scenario 1. 47

3.7 Online track maintenance for moving target search in scenario 2. . . . 48

3.8 Performance comparison in scenario 3. 49

4.1 Case 3 of the UPF: to generate a new sample set and insert them into

the previous particle sequences. 55

4.2 The diagram of distributed sensor fusion for target tracking using UPFs 58

4.3 Tracking errors of a standard PF without measurement delay (MSE)

and the UPF (MSE1) with a 1-step lag on every other measurement:
MSE and MSE1 are the tracking errors of the standard PF and the

UPF, respectively. 62

x

4.4 Performance comparison between a standard PF without measurement

delay (MSE) and the UPF (MSE1) with a 1-step lag on every other
measurement: MSE and MSE1 are the mean square errors of the

standard PF and the UPF (across 50 MC simulations). 62

4.5 Effect of delayed measurements on tracking performance (Err0 and
Err1 are the mean square errors of the standard PF and the UPF

(across 50 MC simulations). 63

5.1 A simple example against the maximum detection probability criterion. 80

5.2 An illustration of the evolution of the entropy. 81

5.3 The desired evolution pattern of the entropy in target search. 83

6.1 Examples of an MSA and its footprint. 90

6.2 Trajectories traveled by an MSA and two longitudinal ends of its foot-

print. 91

6.3 Expansion and contraction of a 2-D curve. 95

6.4 Illustration for Lemma 6.4.4. 97

6.5 The evolution of S(t|t) and A(S(t|t)) for the worst case. 100

6.6 Illustration of Lemma 6.6.1. 105

6.7 Illustration of Lemma 6.6.2. 107

6.8 Case 1 of Lemma 6.6.5 . 109

6.9 Case 2 of Lemma 6.6.5 . 110

6.10 Case 3 of Lemma 6.6.5 . 111

6.11 Illustration of Lemma 6.6.6. 112

6.12 The relationship between size of S(t0|t0) and Mmax/Mmin. 119

xi

6.13 The relationship between vs

vt
and Mmax

Mmin
. 120

6.14 Detection probability by applying the PSI algorithm with limited MSAs.121

6.15 An example of S(t0|t0) consisting of multiple disconnected regions. . . 122

6.16 A single-team search plan. 123

6.17 A two-team search plan. 123

7.1 An example of the MMMT scenario. 127

7.2 An example of finding the minimum-time trajectory. 134

7.3 An example of determining the traverse order. 135

7.4 An example for the SMMT case (N = 5): a) The sub-optimal path

without flipping; b) The sub-optimal path with flipping; c) Length
comparison. 140

7.5 Illustration of the check-and-flip procedure: a) before flipping; b) after

flipping. 141

7.6 Simulation 1: One MSA, 3 randomly-walking targets and one maneu-
vering target. 154

7.7 Simulation 2: One MSA and a moving convoy of 3 targets. 154

7.8 Performance evaluation for the geometrical method to determine the
traverse order (N = 6, 500 MC simulations). 155

7.9 Simulation 3: 4 MSAs and 18 targets (16 randomly-walking and 2

maneuvering targets). 156

7.10 The ATD of each target in simulation 3. 157

7.11 Disti: The distance between the ith target and its expected position
when it is observed in simulation 3. 157

7.12 The sufficient number of MSAs given by Theorem 7.5.3 with respect

to N and L (VM = 96m/s, vt = 1
20

VM , RM = 72m, D = 400m). 158

xii

7.13 Performance evaluation for task assignment by K-means clustering

(N = 12, M = 3, 100 MC simulations). 158

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivations

Modern information gathering tasks such as domestic traffic surveillance, environ-

ment monitoring, border patrol and battlefield reconnaissance often require multiple

sensor systems to work cooperatively to produce and maintain a high-level represen-

tation of the environment. Sensor management (SM), which has been referred as the

general process of controlling and using available sensor resources [1, 3, 4], is a key

factor in determining the overall sensing performance.

As pointed out by Johansson et al. [16], with the increasing complexity of sensor

platforms (as well as that of their applications), the sensor management problem has

been extended considerably beyond the scope of control. In particular, there is a

close coupling between information processing and sensor control in intelligent sensor

systems. Controlling the sensors is basically for the purpose of a better acquisition

of information, which will be processed to build up the sensors’ knowledge of what

is happening in the environment. At the same time, the knowledge built by a good

information processing approach can also help the sensors to make appropriate control

decisions, which will further lead to a better acquisition of information in the future.

1

In recent years, rapid advances in technology have made it possible to perform

complex sensing tasks using multiple inexpensive, intelligent, mobile sensor platforms

such as Unmanned Air Vehicles (UAVs). We denote this type of sensor platforms

with an integrated capability of sensing, processing, communication and locomotion

as mobile sensor agents (MSAs) in this study. This definition is adapted from the

term agent in the domain of artificial intelligence [18,19], which is defined as an entity

that is able to perceive the environment and react upon its perceptions.

The mobility of MSAs allows themselves to collect information in hostile or re-

mote environments such as battlefields, where stationary sensors are not available.

In addition, MSAs can also reconfigure their tasks, objectives and kinematic states

dynamic environments such as transportation systems and flow networks. All these

advantages of MSAs over traditional stationary sensors, however, do not come with-

out a price. Many MSA applications (e.g. target search) have a field of interest much

larger than the field of view (FOV) of each individual MSA. With a limited FOV, the

observations of an MSA is highly related to its kinematic status (e.g. position and

orientation). However, an MSA can only adjust its position, speed and orientation

through a continuous trajectory, possibly restricted by some other physical constraints

(e.g. minimum turning radius, minimum/maximum speed). The restricted FOV and

physical motion constraints of MSAs have brought new challenges to both information

processing and sensor management.

First, although problems in various sub-domains of sensor information processing

have been extensively studied by researchers, most of existing approaches either suit-

able to stationary sensors only, or neglect possible motion and coverage constraints

2

on MSAs. Consequently, the focus has always been on how to generate the best esti-

mate (usually by means of minimum mean square error (MMSE)), given a sequence of

measurements. However, due to a limited FOV, the measurements that an MSA can

obtain are directly affected by where it is and where it is looking at. Unfortunately,

to incorporate this factor with existing sensor information processing approaches is

not a trivial job. The highly non-linear sensor model brought by a limited FOV of

an MSA complicates the solution to the information processing problem, even in a

very simple (e.g. linear and Gaussian) setup. In addition, since a good observation

is not a given any longer, more pressure has been put on the information processing

module to provide the motion controller an effective, on-line representation of the

environment, both prediction-wise and estimation-wise.

Second, the majority of previous work in the area of sensor management treats the

sensor control problem as (or similar to) a scheduling problem [6–15]. The cooperation

of multiple sensors is often achieved by choosing different sensors (or sensor modes)

for different tasks (targets) at different time. Motion planning, on the other hand,

is seldom involved. Unfortunately, because of the physical motion constraints of

MSAs, the transition between assignments of an MSA has to satisfy a physically

feasible path. For the same reason, there may also be a non-trivial transition time

between assignments. As a result, many existing sensor-scheduling methods fall short

in solving the management problem for MSAs. Recently, more and more original work

dealing with sensing problems in the context of MSAs (e.g. target search or target

surveillance by UAVs/ground robots) has been reported in literature, especially in

the domain of control science [42,49,50,81,82,84,85,87,88], in which motion planning

has replaced scheduling/tasking in the formulation of sensor management problems.

3

However, very limited effort has been made to encode the evolution of information

into the modeling of the sensor management problem of MSAs. Instead, a variety

of heuristic assumptions have been used without rigorous mathematical justification.

Thus, it is very difficult to validate a control algorithm’s feasibility and quality, or

to compare different sensor management approaches. There also have been a few

pioneer attempts [17] to jointly consider the information processing problem and

sensor control problem for MSAs, which, almost without any exception, focus on

the linear-Gaussian case only. Consequently, the capability of these approaches in

handling non-linear sensor management problems for MSAs with restricted FOVs

and physically motion constraints is limited.

1.2 Problem Statement

In this work, we investigate the sensor management problem for MSAs through

the MSA-target scenario.

Each target here is modeled as a moving object on a 2-D plane, whose kinematic

state is denoted as xj(t) ∈ Rnx . Let N be the number of targets and x = {xj}j=1..N ∈
RN×nx . The motion of x(t) is assumed to be governed by the following Ito equation:

dx(t) = f(x, t) + g(x, t)dβ(t), t ≥ t0. (1.1)

Here f(·) models the deterministic part of the dynamics of x(t), which comes from

the prior knowledge of how x(t) evolves over time. β(t) is the process noise, and

g(x, t)dβ(t) stands for the random part of the dynamics of x(t).

Each MSA is simply modeled as a point mass moving at a constant speed on a 2-D

plane as follows, which has been widely used as the kinematic model for fixed-wing

4

UAVs in research [21, 38, 55, 86].⎧⎪⎨⎪⎩
ẋi

s = vi
s cos θi

s,
ẏi

s = vi
s sin θi

s,

θ̇i
s = ui.

(1.2)

Here si = [xi
s, y

i
s]

T ∈ R2 and θi
s denote the 2-D position and orientation of the ith

MSA, and ui stands for the controller on the ith MSA and vi
s is its the cruise speed. Let

M be the number of MSAs, We also use s = {si}i=1..M ∈ R2M , θ = {θi}i=1..M ∈ RM

and u = {ui}i=1..M ∈ RM as collection of the positions, orientations and controllers of

all the MSAs. Note that in reality, this model is subject to some motion constraints

such as a minimum turning radius.

Each MSA is assumed to be equipped with an on-board sensor system, which has

a restricted FOV (i.e a footprint) centered at si. The measurement y(t), which is

often taken by the MSAs at discrete time instants {t1, t2, ..., tk, ...} is modeled as:

y(tk) = H(x(tk), tk) + ν(tk), k = 1, 2, (1.3)

where ν(tk) is the measurement noise.

By periodically extracting target information from newly obtained measurements,

the MSAs are adding to their knowledge of the evolution of x(t). Although such an

information processing operation is commonly considered as a procedure of target

tracking, it actually takes place in almost all the information gathering problems.

Due to this reason, we use a more general term, target track maintenance, in this

work to denote the information processing problem in the MSA-target scenario.

Since target track maintenance is strongly coupled with sensor management here,

we study these two problems jointly in this work. Considering the lack of comprehen-

sive theories for the management of MSAs and the gap between contemporary studies

in target track maintenance and mobile sensor control, the main goal of this study

5

is to seek theoretical foundations for the management of MSAs from the point of

view of information evolution, and use them to develop practical sensor management

approaches in different MSA-target scenarios. More specifically, we want to

1. Develop a generic approach to represent and maintain the evolution of target

information for MSAs;

2. Seek a generic information metric to quantify the gain and loss of MSA control

decisions, and use it to develop strategic guidelines for MSA management;

3. Apply the theoretical results above to the development of sensor management

approaches in different MSA-target scenarios.

1.3 Contributions and the Outline of the Dissertation

The rest of this dissertation begins with a brief review of existing target-track

maintenance approaches along with discussions on their feasibilities in different MSA

applications in Chapter 2.

Considering the non-linear, terrain-dependent motion tendency of ground objects

and the non-linear, non-analytic sensor model due to a limited FOV of an MSA, a

generic approach for target track maintenance based on the Bayesian filtering method

[66,68,69] and the Hospitability Map [70], the BF-HMap algorithm, is introduced in

Chapter 3. An advanced version of this approach with much less computational and

memory load using a particle filter, the so-called PF-HMap algorithm, is proposed.

Due to the flexible scheme of Bayesian inference inherent in both algorithms, BF-

HMap and PF-HMap are capable of handling intermittent and regional measurements

caused by coverage and motion constraints on MSAs.

6

The study in target-track maintenance using particle filters is further extended to

distributed mobile sensor networks (DMSN) in Chapter 4. One fundamental prob-

lem in sensor fusion in DMSN is the out-of-sequence measurements (OOSM) due

to non-trivial communication delays. The Universal Particle Filter (UPF), which is

capable of dealing with both in-sequence and out-of-sequence measurements is pro-

posed. Some practical issues on the application of the UPF in real-world tracking

problems, such as how to budget the computational load and the memory cost, is

also discussed in Chapter 4.

Based on the research in target track maintenance outlined above, we model the

sensor management problem of MSAs in an information-theoretic way in Chapter

5. In this study, we choose the entropy of the posterior probability density func-

tion, p(x, t|Y (t)), as a generic measure of information, where Y (t) is the collection

of all the measurements obtained by the MSAs up to time t. By studying the evo-

lutions of entropy in both the linear and the non-linear cases, several key properties

of the evolution of the entropy are identified. These properties are then utilized to

model the sensor management problem in two cases of studies: target search and

target surveillance, which are further studied in detail in Chapter 6 and Chapter 7,

respectively.

Since the general goal of target search is to reduce the uncertainty of x(t) and the

entropy is essentially a measure of uncertainty, a target search problem can then be

interpreted as a stabilization problem of the entropy. Based on this consideration,

Chapter 6 presents a necessary condition and a sufficient condition (by means of the

number of MSAs) to fulfill a non-escape search for a moving target. A cooperative

search formation, called the Progressively-Spiral-In algorithm (PSI), is also introduced

7

in this chapter. Given a sufficient number of MSAs, the PSI algorithm can lead the

MSA team to find the target in finite time.

In the second case of study, the sensor management problem for target surveil-

lance is addressed in a multi-MSA-multi-target (MMMT) setup in Chapter 7. Based

on the fact that the entropy of each target track is proportional to the sampling rate

of effective measurements, the motion-planning problem here is modeled as an opti-

mization problem, for which the objective is to minimize the average revisit time for

each target. A cooperative motion-planning approach for multi-target surveillance by

multiple non-holonomic MSAs is proposed. In this approach, the targets are divided

into disjoint groups using a geometric clustering method. For each target group, a

sub-optimal traversal motion plan is generated for an MSA to periodically update

the track information of the targets in the shortest time. As the targets are moving

around, on-line re-planning is conducted asynchronously on each MSA in a decen-

tralized way. Target hand-off will be triggered among MSAs if a new target-grouping

result is obtained.

As the summary of this dissertation, Chapter 8 concludes the work presented in

this dissertation and discusses possible extensions of the proposed methodologies in

future work.

8

CHAPTER 2

REPRESENTATION OF TARGET INFORMATION AND
ITS MAINTENANCE

The subject of interest in many sensing problems is the kinematic state of one or

multiple objects, which can be described by a stochastic process x(t). The general

task of a sensor system then is to estimate the evolution of x(t) by extracting useful

information of x(t) from its observations (i.e. measurements). We call such an in-

formation processing procedure target track maintenance in this work to describe the

process of accumulating target information from measurements.

In this chapter, we start from a generic representation of target information (sec-

tion 2.1). Then, several representative approaches for target track maintenance are

reviewed in section 2.2. Based on that, we will discuss the feasibilities of these ap-

proaches in different MSA-target scenarios in section 2.3.

2.1 Representation of Target Information

Without loss of generality, let us assume that the evolution of x(t) is governed by

the following stochastic differential equation:

dx(t) = f(x, t)dt + g(x, t)dβ(t), t ≥ t0. (2.1)

9

Here f(·) models the deterministic part dynamics of x(t), which comes from the prior

knowledge of how x(t) evolves over time. β(t) is the process noise, which stands for

the random part of the dynamics of x(t).

In the case of discrete-time system, (2.1) becomes

x(tk) = F (x(tk−1), tk) + G(x(tk−1), tk)β(tk), k > 0. (2.2)

By moving around in the sensing space, the MSAs are taking measurements, which

usually come at discrete time instants as follows:

y(tk) = H(x(tk), tk) + ν(tk), k = 0, 1, 2, . . . , (2.3)

where y(tk) ∈ Rm is the measurement taken at time instant tk, H(·) is the sen-

sor model and ν(tk) denotes the measurement noise, which is often assumed to be

Gaussian.

Theoretically, the posterior probability density function (PDF) p(x, t|Y (tk)) pro-

vides us a complete online description of an MSA’s knowledge of x(t), where Y (tk) is

the collection of measurements up to time instant tk. Thus, we choose p(x, t|Y (tk)) in

this work as a generic representation of the target information. Clearly, one can get

any statistics of x(t) from p(x, t|Y (tk)), such as the expectation (i.e. the minimum-

mean-square-error (MMSE) estimate) and the variance. In most cases, we are only

interested in the current or future status of x(t) (i.e. t ≥ tk). In what follows, we

shall call p(x, t|Y (tk)) the predictive PDF if t > tk, and the estimative PDF if t = tk.

2.2 Maintaining the Target Information

Similar to x(t), p(x, t|Y (tk)) is a dynamic process as well, which evolves over time

following (2.1). In the meantime, p(x, t|Y (tk)) also changes as new measurements

10

are obtained by the MSAs. Depending on one’s prior knowledge and assumptions

on f(x, t), g(x, t), β(t), H(x, t) and ν(t), there have been a variety of theories and

approaches to maintain the evolution of p(x, t|Y (tk)), which are summarized briefly

in the next few subsections.

2.2.1 Kalman Filter/Entended Kalman Filter (KF/EKF)

When the whole system is linear and the noise is Gaussian, we have f(x, t) =

f(t)x(t), g(x, t) = g(t)x(t) in (2.1), F (x(tk−1), tk) = F (tk)x(tk−1), G(x(tk−1), tk) =

G(tk)x(tk−1) in (2.2), and H(x, tk) = H(tk)x(tk) in (2.3). In this case, both the

predictive and the estimative PDF are Gaussian, which can be concisely represented

by their first and second-order moments (i.e. mean vectors x̂(t|tk) = E[x(t)|Y (tk)]

and the co-variance matrices P (t|tk), t ≥ tk). With the help of further simplifications

(such as independent noises and etc.), the Kalman filter is able to provide the MMSE

prediction/estimate of x(t) based on previous estimates as follows

d

dt
x̂(t) = f(t)x̂ + K̄(t)[y(t)− h(t)x̂(t)], (2.4)

K̄(t) = P (t)HT (t)R−1(t), (2.5)

d

dt
P (t) = f(t)P (t) + P (t)fT (t)− K̄(t)R(t)K̄T (t) + g(t)Q(t)gT (t), (2.6)

where Q(t) and R(t) denote the covariance matrices of β(t) and ν(t), respectively.

The above is the continuous-time version of the Kalman filter. In practice, the

discrete-time version of the Kalman filter is more commonly used, which runs recur-

sively through a prediction stage and an estimation stage:

Prediction stage:{
x̂(tk|tk−1) = F (tk)x̂(tk−1|tk−1),
P (tk|tk−1) = F (tk)P (tk−1|tk−1)F

T (tk) + G(tk)Q(tk)F
T (tk).

(2.7)

11

Estimation stage:⎧⎪⎨⎪⎩
x̂(tk|tk) = x̂(tk|tk−1) + Ktk(yk −H(tk)x̂(tk|tk−1)),
Ktk = P (tk|tk−1)H

T (tk)[H(tk)P (tk|tk−1)H
T (tk) + R−1(tk)],

P (tk|tk) = [I −KtkH(tk)]P (tk|tk−1).
(2.8)

The EKF approach is basically an extension of the Kalman filter to non-linear

Gaussian systems, which are locally (i.e. at each step) linearizable. Usually, the first

term in the Taylor expansion of the non-linear part of a system is used as its linear

approximation. For instance, in the prediction stage of a discrete time EKF, F (tk)

in (2.7) will be replaced by F̄ = {Fi,j}n×n, where Fi,j = ∂2F
∂xixj

, and xi denotes the ith

component of x(t). For a more complete explanation of the KF/EKF method and

their applications, please see [62].

2.2.2 Interacting Multiple Model (IMM) Filter

One of the major limitations of KF/EKF-based methods is that only a single

analytic model F (·) can be consider in describing the evolution of x(t), which is often

inadequate in tracking maneuvering targets. In order to cope with this problem,

Blom [63] introduced a multiple-model formulation, in which the target model (2.1)

can switch among a finite set of analytic models Mode = {mode1, mode2, ...modeM}.
The transition between two modes is assumed to be governed by a Markovian chain

{mt0 , mt1 , ..., mtk}, where p(mtk = model|mtk−1
= model′) = πl/l′ , l, l′ = 1..m. Here

πl/l′ is a pre-known probability of x(t)’s switching from model l to model l′. Usually,

A Kalman filter (or EKF) is used for each model to track its mean vector (x̂l(tk|tk))
and covariance matrix (P l(tk|tk)). In addition, a probability factor µl(tk|tk),l = 1..M ,

is also maintained to record the evolution of the probability of each model.

One fundamental problem of the multiple-model method is that the number of

hypotheses (i.e. models) increases exponentially over time. To handle this problem,

12

Blom and Bar-Shalom [64] modified the original multi-model formulation and pro-

posed the Interacting Multiple Model (IMM) algorithm, which is illustrated in Fig.

2.1.

The IMM algorithm also runs in a recursive way with each recursion consisting

the following four steps:

1. To mix the previous estimates for each model: x̂l(tk−1|tk−1), P l(tk−1|tk−1), and

µl(tk−1|tk−1):

µl(tk|tk−1) =
m∑
l′

πl/l′µ
l′(tk−1|tk−1). (2.9)

x̄l(tk−1|tk−1) =
1

µl(tk|tk−1)

m∑
l′

πl/l′µ
l′(tk−1|tk−1)x̂

l′(tk−1|tk−1). (2.10)

P̄ l(tk|tk−1) =
1

µl(tk|tk−1)

m∑
l′

πl/l′µ
l′(tk−1|tk−1)[P

l′(tk−1|tk−1) + Ωl/l′], (2.11)

where

Ωl|l′ = [x̂l′(tk−1|tk−1)− x̄l(tk−1|tk−1)][x̂
l′(tk−1|tk−1)− x̄l(tk−1|tk−1)]

T . (2.12)

2. To run the Kalman filter for each model using x̄l(tk−1|tk−1) in (2.10) and

P l(tk−1|tk−1) in(2.11) as the previous estimates of the mean vector and the

co-variance matrix, respective. This step basically generates the new state es-

timate x̂l(tk|tk) and covariance matrix P l(tk|tk) for each model.

3. To update the probability of each model µl(tk|tk):

µl(tk|tk) =
1

C
µl(tk|tk−1)| detKl(tk)|−1/2 exp

(−1

2
δl(tk)

T Kl(tk)
−1δl(tk)

)
,(2.13)

13

where C is the normalization factor, δl(tk) = yl(tk) − H l(tk)x(tk), and Kl(tk)

can be obtained in a similar way as in the second row of (2.8).

4. To generate the global estimate by combining the results from all the models:

x̂(tk|tk) =
m∑
l

µl(tk|tk)x̂l(tk|tk). (2.14)

P (tk|tk)

=
m∑
l

µl(tk|tk){P l(tk|tk) + [x̂(tk|tk)− x̂l(tk|tk)][x̂(tk|tk)− x̂l(tk|tk)]T}.(2.15)

The IMM filter has been widely used in applications where the target dynamics is

very uncertain and non-deterministic [64]. It is worth noting that after merging the

outcomes of all the models in the end of each recursion, the IMM filter only produces

the global estimates of the first and second order moments of p(x, tk|Y (tk), although

multiple models are considered inside the IMM recursions.

2.2.3 Bayesian Filter (BF)

The Bayesian filtering method is a general tool to track non-linear system, in

which the whole predictive/estimative PDF is maintained.

The predictive PDF can be obtained via the Chapman-Kolmogorov equation [66,

104]:

p(x, t|Y (tk)) =
∫

p(x, t|χ, tk))p(χ, tk|Y (tk))dχ, t > tk, (2.16)

where p(x, t|χ, tk) is determined by (2.1).

The estimative PDF can be computed based on the Bayes’ rule as follows:

p(x, tk|Y (tk)) =
p(y(tk)|x(tk))p(x, tk|Y (tk−1))

p(y(tk)|Y (tk−1))
, (2.17)

14

)|(

)|(

11

11

kk
M

kk
M

ttP

ttx

)|(1kk
M tt

M

)(kty

)|(

)|(

11

11

kk
l

kk
l

ttP

ttx

)|(

)|(

11
1

11
1

kk

kk

ttP

ttx

l

)|(1
1

kk tt

)|(1kk
l tt

)|(

)|(ˆ

11

11

kk
l

kk
l

ttP

ttx

)|(11 kk
l tt

)|(

)|(ˆ

11
1

11
1

kk

kk

ttP

ttx

)|(11
1

kk tt

)|(

)|(ˆ

11

11

kk
M

kk
M

ttP

ttx

)|(11 kk
M tt

)|(

)|(ˆ

kk
M

kk
M

ttP

ttx

)|(

)|(ˆ

kk
l

kk
l

ttP

ttx

)|(kk
M tt

)|(kk
l tt

)|(

)|(ˆ
1

1

kk

kk

ttP

ttx

)|(1
kk tt

)|(
)|(ˆ

kk

kk

ttP
ttx

Figure 2.1: The IMM filter.

where

p(y(tk)|Y (tk−1)) =
∫

p(y(tk)|x)p(x|Y (tk−1))dx, (2.18)

The measurement PDF p(y(tk)|x(tk)) is determined by the sensor model, i.e. H(·)
and ν(t) in (2.3).

Theoretically, the Bayesian Filtering method outlined above applies to any target

and sensor models. In particular, a BF will reduce to a standard Kalman filter with

the linear-and-Gaussian assumption. Due to the difficulty in obtaining an analytic

15

form of p(x, t|Y (tk)) for a non-linear, non-Gaussian system. A Bayesian filter is usu-

ally implemented in a discrete-space way. The most straightforward approach is to

decompose the state space into discrete grids. The finite difference method or other

similar methods [68] are often used in to computer the track PDF numerically. As a

result, a large memory space is needed to store an accurate grid-based PDF. Mean-

while, it is also computationally costly (and sometimes even impossible) to update

p(x(tk)|x(tk−1)) and p(x(tk)|x(tk−1), y(tk)) in every grid in practice. In [69], Challa et

al. prune the grid-space by only considering the grids that are inside the 2σ-window

of the track PDF. A more comprehensive survey on the general Bayesian filter can

be found in [66–68].

2.2.4 Particle Filter (PF)

The particle filtering method is essentially an approximation of the Bayesian fil-

tering method, which approximates the posterior PDF of a target track by a set of

samples and their weights {X i
t1:tk

, wi(tk)}i=1..N :

p(X(tk)|Y (tk′)) ≈
N∑

i=1

wi(tk)δ(X(tk)−X i
t1:tk

), k ≥ k′, (2.19)

where X(tk) = {x(t0), x(t1), ..., x(tk)}; X i
t1:tk

= {xi
t0
, xi

t1
, ..., xi

tk
}; δ(X) = 0 for ∀X �= 0

and
∫+∞
−∞ δ(X)dX = 0. Note that

∑N
i=1 wi(tk) = 1.

By taking integrals on both sides of (4.1) with respect to X(tk−1), we can also get

an approximation of the marginal PDF p(x(tk)|Y (tk′)) as:

p(x(tk)|Y (tk′)) ≈
N∑

i=1

wi
tk

δ(x(tk)− xi
tk

). (2.20)

16

At each time instant tk, a set of new samples X i
tk

= {xi
tk
}i=1..N are drawn from a

proposal q(·) called the importance density:

X i
tk
∼ q(X(tk)|Y (tk)), i = 1..N. (2.21)

In order to guarantee that (4.1) converges to the true PDF as N →∞, the weights

wi
tk

should satisfy:

wi
tk
∝ p(X i

t1:tk
|Y (tk))

q(X i
t1:tk |Y (tk))

, i = 1..N. (2.22)

Based on the Bayes’ rule, we have:

p(X i
t1:tk
|Y (tk)) =

p(y(tk)|xi
tk

)p(xi
tk
|X i

t1:tk−1
)

p(y(tk)|Y (tk−1))
p(X i

t1:tk−1
|Y (tk−1))

∝ p(y(tk)|xi
tk

)p(x(tk)|X i
t1:tk−1

)p(X i
t1:tk−1

|Y (tk−1)) (2.23)

If we further choose the importance density in such a way that

q(X i
t1:tk
|Y (tk)) = q(xi

tk
|X i

t1:tk−1
, Y (tk))q(X

i
t1:tk−1

|Y (tk−1)), (2.24)

we can rewritten (2.22) as

wi
tk
∝ wi

tk−1

p(y(tk)|x(tk))p(xi
tk
|X i

t1:tk−1
)

q(xi
tk |X i

t1:tk−1
, Y (tk−1))

(2.25)

Therefore, we can update the samples and their weights in a recursive way as the

following (at time instant tk):

1. Draw new samples: xi
tk
∼ q(x(tk)|X i

t1:tk−1
, Y (tk)), i = 1..N ;

2. Update the new weights {wi
tk
}i=1..N according to (3.24).

The above describes a generic particle filter approach for target tracking. The-

oretically, the importance density can be arbitrarily chosen as long as (2.24) holds.

17

However, an appropriately selected importance density is very crucial for the track-

ing performance. Another common problem with PF-based methods is that after a

few iterations, most particles will have negligible weights except for a dominant one.

Doucet [102] has proved that the variance of the weights monotonically increases over

time. A commonly used measure of the degeneracy of a PF is the estimate of the

effective sample size N̂eff :

N̂eff(tk) =
1∑N

i=1(w
i
tk)

2
≤ N. (2.26)

Note that the equality holds if and only if wi
tk

= 1
N

for all i = 1..N .

Doucet [102] has also proved that the optimal importance density function q∗(xi
tk

)

that minimize N̂eff is:

q∗(x(tk)|X i
t1:tk−1

, Y (tk)) = p(y(tk)|X i
t1:tk−1

, Y (tk)), (2.27)

Unfortunately, it is very difficult to draw samples from the optimal importance

density q∗(·), except for some simple cases [104]. One practical choice of importance

density that is commonly used in applications is the prior:

q(x(tk)|X i
t1:tk−1

, Y (tk)) = p(x(tk)|X i
t1:tk−1

), (2.28)

which leads to

wi
tk
∝= p(y(tk)|xi

tk
)wi

tk−1
. (2.29)

For the target system described in (2.2), if we further assume that the process

noise (i.e. β(t)) is zero-mean and white Gaussian, we have

p(x(tk)|X i
t1:tk−1

) = p(x(tk)|xi
tk−1

), (2.30)

18

and

x(tk) ∼ N(F (xi
tk−1

, tk−1), G
T (tk−1))Q(tk)G(tk−1)), (2.31)

where Q(tk) is the co-variance matrix of β(tk). A more comprehensive review of

PF-based methods as its variations can be found in [102,104].

2.3 Target Track Maintenance by MSAs

The choice of target track maintenance approaches for in a specific problem is

basically determined by the characteristics of the target model (i.e. f(·) and g(·)
in (2.1)) and the sensor model (i.e. H(·) in (2.3)). In this section, we take the

target search problem and the target tracking problem as two typical MSA-target

scenarios to study how these factors affect the development of the corresponding

track maintenance method.

2.3.1 Track Maintenance in Target Search

In the case of target search, the track PDF usually spreads all over the search

space most of the time. Thus, the field of view (FOV) of an MSA can only cover a

small part of the track PDF. Before the target is detected, all an MSA can get are

non-detection reports, which leads to a highly non-linear measurement function H(·)
(see Chapter 3 for details). To maintain a target track base on this type of sensor

information, a KF-based method (including the IMM filter) is obviously inadequate.

A BF or PF-based approach is probably the only choice in this case. In fact, a great

deal of research work in the area of target search assumes that the target information

is stored in a map-like structure [73, 75, 79, 82, 83], which is similar to the track PDF

maintained by a discrete-space version of the Bayesian filter.

19

2.3.2 Track Maintenance in Target Tracking

In a conventional setup for target tracking, the measurement is always considered

as a given, and each recursion of prediction-and-estimation is activated only if there

is a positive sensor reading. The underline assumption is that the sensor has a global

coverage of the whole field of interest. With this assumption, the measurements from

many sensor system are linear or nearly-linear. Meanwhile, a global coverage also

allows the user to assume a high measurement sampling rate, which makes many tar-

get models locally linearizable (e.g. constant velocity, constant acceleration, constant

left/right-turn). As a result, the KF/EKF, the IMM filter and their variations have

been the most dominant tracking methods in the last several decades.

Recently, the BF and its Monte-Carlo alternative, the PF, become more and

more popular, especially in map-based or vision-based robot localization problems

[103]. The main reason is probably the highly non-linear measurement function H(·)
that appears in many robot localization problems, which can not be handled by a

KF-like scheme. In the case of MSAs, such a highly non-linear of H(·) is often

the case as well. Because of a limited field of view (FOV) and physical motion

constraints (e.g. a minimum turning radius) of an MSA, a target can be in and out

of surveillance frequently. As a result, the measurements become intermittent and

regional. Here by intermittent we mean that there can be a significant time duration

between consecutive observations of a target, and the term regional refers to the fact

that a sensor can only provide the target information inside its FOV. Such intermittent

and regional measurements make both the target model and the sensor model highly

nonlinear. In Chapter 3, we will address this problem in more detail and introduce a

20

pair of track maintenance methods based on the Bayesian filter and the particle filter

specifically for MSAs to handle intermittent and regional measurements.

21

CHAPTER 3

TARGET TRACK MAINTENANCE WITH REGIONAL
AND INTERMITTENT MEASUREMENTS

3.1 Introduction

Many prototype MSAs, such as Uninhabited Air Vehicles (UAVs), are character-

ized by their spatially-restricted sensing capability, such as a limited field of view

(FOV) and physical motion constraints. As a result, the measurements obtained by

MSAs become intermittent and regional, which brings new challenges to the track

maintenance problem. Because of a limited FOV, targets are not guaranteed to be

observed every time even with a perfect sensor. In order to attain good measurements,

a mobile sensor has to adjust its position/pose on-line according to its predictions of

the target state. The quality of measurements (as well as that of future estimates) re-

lies on the effectiveness of the predictive track information that an MSA keeps. Thus,

maintaining predictions before taking measurements is as important as generating

estimates when measurements are available.

Since measurements are not involved at the prediction stage, the quality of predic-

tive track information is mainly determined by how effectively the target dynamics

is modeled. It has been well known that the motion of a real-world maneuvering

22

target is non-linear, multi-modal, and environment-dependent. In order to accommo-

date such complex target systems, a non-linear and non-analytic dynamics is often

needed. Meanwhile, every measurement obtained by a mobile sensor is conditioned

by its FOV. As a result, the sensor model becomes a complex function as well, which

should treat the information inside and outside the FOV in different ways. In a word,

the nature of intermittent and regional measurements requires that the desired track

maintenance algorithm should have the capability of dealing with both non-linear,

environment-dependent target dynamics (i.e. f(x, t) in (2.1)) and non-analytic sen-

sor models (i.e. H(x, t) in (2.3)).

The requirement of the capability to handle non-linear, non-analytic f(x, t) and

H(x, t) first limits the applicability of the Kalman filter (KF) or the extended Kalman

filter (EKF) in the track maintenance problem addressed here. Although the IMM fil-

ter has been proved [64] to be able to tracking maneuvering targets with multi-modal

motion behavior, it is difficult to apply this method directly to the MSA-target sce-

nario here. The reason is twofold. First, the IMM algorithm is an estimation-centric

method, in which the prediction stage only runs right before a new measurement

comes. On the other hand, the nature of the IMM formulation requires a relatively

high measurement sampling rate. Thus, when there is a long time interval between

two consecutive measurements, estimation stages, the predictions generated by mul-

tiple KFs/EKFs in the IMM approach degrades quickly over time. Second, each

KF/EKF in the IMM approach requires a linear/linearizable sensor model (H(x, t)).

As a result, non-detection information cannot be utilized directly by the IMM method,

which will significantly degenerate the performance of track maintenance.

23

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9High

Low

Lake

Lake

Lake

Mountain

Mountain

Grassland

Grassland

Road

Figure 3.1: An example of an HMap.

A more general way to represent complex target model is the Bayesian filter (BF)

[66]. Since the Bayesian filter basically maintains the entire PDF of the target state

instead of the first and second order moments, it can provide a complete package of

predictive track information for mobile sensors to make their motion decisions. The

flexible scheme of Bayesian inference also makes it possible to exploit non-analytic

prior knowledge of the target system, the sensor, or the environment to improve both

the prediction and estimation performance. In [70], Layne et al. first use the concept

of a Hospitability Map (HMap) and combine it with a Bayesian filter to maintain

predictive track information of an out-of-surveillance target. The HMap is defined in

a gridded spatial domain as hosp(x), which is used to describe the effect of different

terrain surfaces on the localization and mobility of target objects. Fig. 3.1 shows an

24

example of an HMap for ground vehicles. In this example, the roads have the highest

(1.0) hospitability to the vehicle, and the lakes have the lowest (0.0) hospitability to

the vehicle.

In this chapter, we adapt the HMap concept introduced [70] and propose a generic

method for target track maintenance based on the Bayesian filtering method, which is

called the BF-HMap algorithm. The main part of the BF-HMap algorithm has been

published in [89]. Different from traditional tracking approaches both the prediction

stage of the BF-HMap approach consists of an analytic part and and a non-analytic

part, which allows itself to incorporate non-analytic environmental information with

standard kinematic models. In the meantime, each measurement from the sensor are

extended to a measurement report, which leads to a new non-linear sensor model even

if the measurement itself is linear. By doing so, non-detection information caused by

a limited sensor footprint is taken into account at the estimation stage. In addition,

the possibility of false alarm and miss detection is also consider in the Bf-HMap

algorithm.

In order to reduce the memory and computational load inherent in BF-based

methods, a new target track maintenance algorithm (PF-HMap) based on particle

filtering and the HMap is also introduced. Although the particle filter is essentially

an approximation of the Bayesian filter, the PF-HMap algorithm is not merely an

approximation of the BF-HMap algorithm. The incorporation of the HMap requires

a continuous predictive PDF of the target system to generate particle sets, which is not

available in the context of particle filters. In the PF-HMap approach, a local Monte

Carlo scheme is used to handle this problem. Instead of drawing new samples from the

predictive PDF directly, a set of sample candidates is generated first. Then, the new

25

sample for each particle sequence is drawn from this finite set of sample candidates.

With this local Monte Carlo method, the PF-HMap method does not require a single,

analytic f(x, t) as the BF-HMap approach does. Thus, more complex target models

such as the IMM scheme can be smoothly absorbed into the prediction stage of the

PF-HMap method to improve its performance. It is worth noting that the prediction

stage of the IMM version of the PF-HMap algorithm can also be considered as an

extension of the IMM-Bootstrap filter proposed in [105]. In fact, the prediction stage

of the PF-HMap algorithm will reduce to that of the IMM-Bootstrap filter when the

HMap is a constant across the field of interest.

For the purpose of comparing the proposed methods with other tracking ap-

proaches, several methodological issues in performance evaluation in non-linear track

maintenance problems are discussed. Since the combination of the mean and the

covariance is not a sufficient representation of a general non-Gaussian system, the

commonly used mean square error (MSE) criterion becomes inadequate as the per-

formance metric in this case. In this chapter, a new performance evaluation method

based on relative entropy (i.e. Kullback-Leibler Distance) [106] is proposed, which

can be regarded as a consentient criterion to compare the performance of different

track maintenance approaches for both Gaussian and non-Gaussian target systems.

The rest of the chapter is organized as follows: Section II and III give the details

of the BF-HMap and PF-HMap algorithm, respectively. Then, the relative-entropy-

based performance metric is introduced in Section IV, followed by experimental results

and performance analysis in Section V. Finally, conclusions are given in Section VI.

26

3.2 The BF-HMap Algorithm

Similar to most tracking methods, the BF-HMap algorithm runs recursively through

a prediction stage (or the time evolution stage) and a estimation stage (or the mea-

surement evolution stage), as illustrated in Fig. 3.2.

3.2.1 The Prediction Stage

The prediction stage here cosists of two parts: the analytic part and the non-

analytic part.

The Analytic Part:

The analytic part is a primitive model for the target, which is similar to most

other tracking methods:

ẋ(t) = f̄(x(t), t) + g(x(t), t)β(t), (3.1)

where x(t) = [x1(t), x2(t), ..., xN (t)] ∈ RN stands for the vector of target state at

time t; f̄(·) represents all of one’s prior knowledge on the dynamics x(t) that can be

explicitly by a mathematic function; β(t) denotes the process noise.

Derivations in [66] [68] have shown that, with appropriate assumptions (e.g. the

continuity and differentiability of p(x, t|Y (tk)), a Brownian process noise β(t)), the

time evolution of the posterior PDF p(x, t|Y (tk)) following (3.1) can be described by

the following Fokker-Planck equation (FPE):

∂p

∂t
= −

n∑
i=1

∂(f̄ip)

∂xi

+
1

2

n∑
i1=1

n∑
i2=1

∂[(gQgT)i1i2p]

∂xi1∂xi2

, tk < t < tk+1 (3.2)

where f̄i is the ith row of f̄(x, t); p is the short notation for p(x, t|Y (tk)); Q(t) stands

for the co-variance matrix of β(t).

27

Theoretically, the predictive PDF, p(x, t|Y (tk)), t > tk, can be obtained by solving

the FPE above. Although there is no general analytic solution to (3.2), we can get

the numerical solution using the finite difference method [68] or similar tools.

In the rest of this chapter, we will adapt the commonly used 2-D constant velocity

model (CV) as an example of the primitive model (3.1) for the analytic part of x(t).

Under the 2-D CV assumption, we have

x(t) = [x(t), ẋ(t),y(t), ẏ(t)]T , (3.3)

f̄(x, t) =
[
ẋ(t), 0, ˙y(t), 0

]T
, (3.4)

g(x, t) =

[
0 0 0 1
0 1 0 0

]T

, (3.5)

and

Q(t) =

[
qẋ(t) 0

0 qẏ(t)

]
, (3.6)

where qẋ(t) and qẏ(t) are the variances of the acceleration in x and y direction,

respectively.

Hence, the resulting FPE becomes:

∂p̄

∂t
= −ẋ

∂p̄

∂x
− ẏ

∂p̄

∂y
+

qẋ

2

∂2p̄

∂ẋ2
+

qẏ

2

∂2p̄

∂ẏ2
. (3.7)

The Non-analytic Part:

At this stage, the non-analytic information of the target’s motion is taken into

account. A typical example of such non-analytic information is the terrain-dependent

motion tendency of a ground target, which is described by the Hospitability Map. In

28

Figure 3.2: Overview of the BF-HMap algorithm.

this work, this type of non-analytic prior knowledge is absorbed into the predictive

PDF through Bayesian inference as follows:

p(x, t|Y (tk)) =
1

Ch

p̄(x, t|Y (tk))hosp(x), t > tk, (3.8)

where Ch =
∫

p(x, t|Y (tk))hosp(x)dx, which is the normalization factor; hosp(x) is

the hospitability map.

3.2.2 The Estimation Stage

In traditional track maintenance approaches, the estimation stage is involved only

if a new measurement y(tk) is obtained and the sensor coverage is assume to be global.

29

In reality, most sensors can only provide regional observations, which means each one

can only validate information from the inside of its FOV. If a global coverage is

assumed, non-detection reports are usually be discarded automatically or be treated

as a miss-detection event. Since a global coverage is often not true in the case of

MSAs, a non-detection reports from an MSA is not merely a miss-detection event

any more, which is also an important measurement result and should be utilized to

update the track PDF. Based on this consideration, we re-define the measurement

in a more general way as y(tk) ∈=
⋃{∅,Rm}, in which y(tk) = ∅ represents the

non-detection event.

Meanwhile, since the sensors are not perfect in reality [80], there are non-zero

possibilities of false alarm (P0) and miss detection (P1). Thus, considering the report

event only, the posterior probability of the measurement report y(tk), given the true

state of the target (x), is

p(y(tk) �= ∅|x) =

{
P0, if x �∈ F ;
1− P1, if x ∈ F .

(3.9)

and

p(y(tk) = ∅|x) =

{
P1, if x ∈ F ;
1− P0, if x �∈ F .

(3.10)

Here F is the FOV of an MSA, x ∈ F means that the positional components (x,y)

of target state x is inside F .

If we further assume that a false alarm is uniformly distributed inside the FOV of

the sensor, we can then get the measurement probability density function as follows:

p(y(tk)|x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P0

AF
, y(tk) �= ∅ and x �∈ F ;

(1− P1)p
∗(y(tk)|x), y(tk) �= ∅ and x ∈ F ;

P1, if y(tk) = ∅ and x ∈ F ;
1− P0, if y(tk) = ∅ and x �∈ F ;

(3.11)

30

where p∗(y(tk)|x) is the probability density function of a non-empty measurement

y(tk) given the true state of the target x(tk) = x, which is basically the distribution

of the measurement noise ν(tk).

By plugging (3.11) into the measurement update equation in the Bayesian filtering

method (2.17), we now have a new measurement update equation as:

p(x, tk|Y (tk)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P0

AF CD
p(x, tk|Y (tk−1)), if y(tk) �= ∅ and x �∈ F ;

(1−P1)
CD

p(x, tk|Y (tk−1)p(y(tk)|x), if y(tk) �= ∅ and x ∈ F ;
P1

CU
p(x, tk|Y (tk−1)), if y(tk) = ∅ and x ∈ F ;

1−P0

CU
p(x, tk|Y (tk−1)), if y(tk) = ∅ and x �∈ F ;

(3.12)

where

CD =
P0

AF
[1−

∫
F

p(x, tk|Y (tk−1))dx] + (1− P1)
∫

F
p(x, tk|Y (tk−1))p

∗(y(tk)|x)dx,

CU = P1

∫
F

p(x, tk|Y (tk−1))dx + (1− P0)[1−
∫

F
p(x, tk|Y (tk−1))dx]. (3.13)

Remark 3.2.1: It is worth noting that (3.12) reduces to the classical Bayesian

estimation equation when the sensor coverage is large enough that the whole track

PDF, p(x, tk|Y (tk−1)), falls inside the footprint F , which coincides with the assump-

tion made by most classical measurement updating methods.

3.2.3 Extension to the MMMT case

In this subsection, we extend our derivations above to the general multi-MSA-

multi-target sensor fusion problem. At this point, we simplify the situation by assum-

ing that the MSA’s can communicate with each other and share their measurement

reports with each other as global information.

Define Y i(tk) = {Y i(tk−1), y
i(tk)}, where yi(tk) = {yi

j(tk)}j=1..n denotes the detec-

tion report of the target i from the n different sensor agents at time instant tk. Under

the assumption that the detection of each sensor agent is independent of each other,

31

we have

p(Y i(tk)|X i(tk)) =
n∏

j=1

p(yi
j(tk)|X i(tk)), (3.14)

given the true state of target i, X i(tk). If there is no measurement report from MSA

j at time tk, we can just set p(yi
j(tk)|X i(tk)) to be a positive constant.

Combining (2.17) and (3.14), we obtain the measurement evolution equation for

the MMMT case as:

p(xi, tk|Y i(tk)) =
p(X i, tk|Y i(tk−1))p(yi(tk)|xi)∫
p(x, tk|Y i(tk−1)]p[yi(tk)|x)dx

=
p(xi, tk|Y i(tk−1))

∏n
j=1 p(yi

j(tk)|xi)∫
p(x, tk|Y i(tk−1))

∏n
j=1 p(yi

j(tk)|x)dx
. (3.15)

3.2.4 Discrete-space-discrete-time (DSDT) Implementation

of the BF-HMap Algorithm

Practically, we can only compute the whole target PDF in a discrete space and

discrete time version, which is derived as the following.

The Prediction Equation

Using the explicit forward-time-central-space finite difference method [68] [70], we

get the following numerical prediction equation for a target from (3.7):

P̄−(k + 1, s, u, v, w) = (1− ∆tqẋ

∆ẋ2
− ∆tqẏ

∆ẏ2
)Pi(k, s, u, v, w)

−∆tu∆ẋ

2∆x
[P̄ (k, s + 1, u, v, w)− P̄ (k, s− 1, u, v, w)]

−∆tw∆ẋ

2∆y
[P̄ (k, s, u, v + 1, w)− P̄ (k, s, u, v − 1, w)]

+
∆tqẋ

2∆ẋ2
[P̄ (k, s, u + 1, v, w) + P̄ (k, s, u− 1, v, w)]

+
∆tqẏ

2∆ẏ2
[P̄ (k, s, u, v, w + 1) + P̄ (k, s, u, v, w− 1)]

(3.16)

32

where

P̄ (k, s, u, v, w) = p(x, tk|Y (tk−1)) = [s∆x, u∆ẋ, v∆y, ∆ẏ]T |Y (tk)). (3.17)

Here ∆x, ∆ẋ, ∆y, and∆ẏ are the sizes of the grid. Note that according to [69], to

guarantee the finite difference method stable, we need:

0 < ∆t

(
1

∆x2
+

1

∆ẋ2
+

1

∆y2
+

1

∆ẏ2

)
≤ 1

2
. (3.18)

Similar to (3.8), we further incorporate the time evolution with the hospitability

map and modify the prediction as:

P−(k + 1, s, u, v, w) =
1

Ch
P̄−(k + 1, s, u, v, w)hosp(s, u, v, w)

where Ch is the normalization factor, and hosp(s, u, v, w) is the discretized hospitabil-

ity map.

The Estimation Equation

When new measurements are received, the DSDT version of measurement evolu-

tion equation (3.15) can be derived as:

P+
i (k + 1, s, u, v, w) =

1

C
P−(k + 1, s, u, v, w)

n∏
j=1

p
(
yi

j(tk+1)|k + 1, s, u, v, w
)
, (3.19)

where C is the normalization factor, and

p
(
yi

j(tk+1)|k + 1, s, u, v, w
)

= p
(
yi

j(tk+1)|xi(tk+1) = [s∆x, u∆ẋ, v∆y, w∆ẏ]T
)
,(3.20)

which can be determined by the characteristic of the measurement noise in (2.3).

3.2.5 An Illustrative Example

Fig. 3.3 shows one experiment that we simulated to demonstrate how our algo-

rithm works in maintaining target tracks, in which we have one moving target and

33

Foorprints of
the MSA’s

Scene #1

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Enlarged PDF of scene #1

2 4 6 8 10 12

2

4

6

8

10

12

Scene #14

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Enlarged PDF of scene #14

5 10 15 20 25 30

5

10

15

20

25

Scene #38

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Enlarged PDF of scene #38

10 20 30 40

1

2

3

4

5

6

7

8

9

10

11

(a)

Footprint

Track PDF

(b) (c)

Figure 3.3: Track maintenance for a vehicle in a road network by 3 UAVs using the
BF-HMap algorithm

three UAVs. The field of interest is a road network. Here we assume that the target

always moves on the road. In other words, the hospitability map of this scenario is

simplified as hosp(x, y, ẋ, ẏ) = 1 if (x, y) is on the road, and 0 otherwise. In each sence,

the three squares emulate the footprints of the UAVs, and the small circle indicates

the target. The size-variant rectangle around the target stands for the effective range

of the majority of the PDF. The PDF is enlarged and shown beside each scene. The

darker the pixels in the PDF figure, the larger the value of the PDF at that position.

Fig. 3.3.a shows the initial situation. Before any UAV re-capture the target, its track

34

PDF keeps growing along the direction of the road (Fig. 3.3.b). When two UAV’s

approach the target (Fig. 3.3.c), the PDF of the target track converges even though

it has not been detected by either UAV, because the “undetected” reports from the

UAV’s also help to narrow down the possible states of the target.

3.3 The PF-HMap Algorithm

The basic idea of the PF-HMap algorithm is to replace the Bayesian filter in the

BF-HMap algorithm by a particle filter, which approximates the track PDF by a set

of sample sequences and their weights {X i
t1:tk

, wi
tk
}i=1..N :

p(Xt1:tk |Yt1:tk) ≈
N∑

i=1

wi
tk

δ(Xt1:tk −X i
t1:tk

), (3.21)

where X i
t1:tk

= {xi
t1
, ..., xi

tk
} is a simulated sequence of x(t) from t1 to tk; δ(x) = 0 for

∀x �= 0 and
∫+∞
−∞ δ(x)dx = 1;

∑N
i=1 wi

tk
= 1.

Similar to other tracking approaches, the PF-HMap algorithm also consists of a

prediction stage (i.e. drawing new samples) and a estimation stage (i.e. updating

weights), which will be explained in detail in the following two sub-sections.

3.3.1 The Prediction Stage

At the prediction stage, a new set of particles are drawn from a user defined

distribution q(·), called the importance density [102]. A common choice of q(·) is

p(x, tk|Xt1:tk−1
), which is the predictive PDF of the target state from tk−1 to tk.

Unfortunately, because of the non-analytic part (i.e. the HMap) of the prediction

stage, the corresponding p(x, tk|Xt1:tk−1
) is a non-analytic distribution in general even

if the primitive model p̄(x, tk|Xt1:tk−1
) is linear and Gaussian. Thus, it is difficult

35

to draw new samples from the predictive PDF directly. In this work, we use the

following local Monte Carlo method to realize the sampling procedure.

Drawing New Samples by Local Monte Carlo

The basic idea of this approach is to generate a set of sample candidates {τ i
j}j=1..Nl

from the primitive model p̄(x, tk|X i
t1:tk−1

) first, and then approximate p(x, tk|X i
t1:tk−1

)

by:

p(x, tk|X i
t1:tk−1

) ≈
Nl∑

j=Nl

wi
j(tk)δ(x

−τ i
j (tk)), (3.22)

where

wi
j(tk) =

p(τ i
j , tk|X i

t1:tk−1
)hosp(τ i

j)∑M
j=M p(τ i

j , tk|X i
t1:tk−1

)hosp(τ i
j)

. (3.23)

Therefore, instead of drawing a new sample from p(x, tk|X i
t1:tk−1

) directly, we can

draw the new sample from a finite set {τ i
j (tk)}j=1..Nl

with respect to their weights

{wi
j(tk)}j=1..Nl

.

Remark 3.3.1: Unlike the IMM filter, the prediction stage of a particle filter is

a closed-form solution itself. Thus, when there is no measurement at tk, one can just

run the prediction stage and get an estimate of the track PDF.

Drawing New Samples though Interacting Multiple Models

With the help of (3.22), the PF-HMap approach does not need the whole profile of

p(x, tk|X i
t1:tk−1

) as the BF-HMap method does. Therefore, non-analytic models such

as a multi-modal structure are also acceptable as the primitive model in the PF-HMap

approach, as long as new sample candidates can be drawn from the primitive model

p̄(x, tk|X i
t1:tk−1

). In this subsection, we will incorporate the IMM structure into the

prediction stage of the PF-HMap algorithm.

36

According to the IMM method, a model code mi(tk) is added to each sample

sequence. Thus, to generate a new sample candidate, one has to choose a model code

mi with respect to {µjm

mi(tk)}jm=1..Nm first, and the generate a sample candidate based

on pmi(tk)(x, tk|X i
t1:tk−1

). Here µjm

mi(tk) is the switching probability from model mi(tk)

to model jm. pmi(tk)(x, tk|X i
t1:tk−1

) stands for the predictive PDF of the model mi(tk).

Remark 3.3.2: To reduce the computational cost introduced by the local Monte

Carlo method, a practical way to generate sample candidates is to produce one candi-

date from each model. Thus, the computational complexity of the PF-HMap method

is O(NmN), instead of O(NlN). A similar sampling strategy can be found in the

IMM-Bootstrap method proposed in [105]. In fact, the IMM-Bootstrap method can

be considered a special case (i.e. when the HMap is a constant) of this IMM version

of the PF-HMap algorithm at the prediction stage.

3.3.2 The Estimation Stage

Since the new sample set is drawn from the predictive PDF p(x, tk|X i
t1:tk−1

), the

weights can be simply updated as follows:

wi
tk
∝ wi

tk−1
p(y(tk)|x(tk)), (3.24)

where y(tk) is the extended measurement report that is defined in the BF-HMap

algorithm, which is capable of handling the effect of a limited sensor FOV as well as

the possibility of false alarms and miss detection

By combining (3.24) with (3.11), we then get the following weight updating equa-

tion for the PF-HMap algorithm:

wi(tk) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P0

AF
wi(k − 1)), if y(tk) �= ∅ and xi

tk
�∈ F ;

(1− P1)p(y(tk)|xi
tk

)wi(k − 1)), if y(tk) �= ∅ and xi
tk
∈ F ;

P1wi(k − 1)), if y(tk) = ∅ and xi
tk
∈ F ;

(1− P0)wi(k − 1)), if y(tk) = ∅ and xi
tk
�∈ F ;

(3.25)

37

Remark 3.3.3: With the measurement model above, we can run the estimation

stage even without a detection report. A prediction-only loop can be considered as a

special case here, in which y(tk) = ∅ and xi
tk
�∈ F for all i = 1..N .

3.3.3 Algorithm Summary

The whole procedure of the PF-HMap algorithm is summarized as the following

(at time instant tk):

1. For each sample {xi
tk

, wi
tk
}:

Generate Ml sample candidates {τ i
j} based on the primitive model p(x, tk|X i

t1:tk−1
)

Calculate the weight {wi
j(tk)} of each candidate according to (3.23);

Draw a new sample xi
tk

from {τ i
j} with respect to {wi

j(tk)}.

2. Update the new weights {wi(tk)}i=1..N according to (3.25).

3. Re-sample if the effective size of the sample set is below a pre-defined threshold

Neff .

3.4 A Relative-Entropy-Based Performance Measure For Non-
Gaussian Tracking Problems

Since the combination of the mean and the covariance is not a sufficient represen-

tation of non-Gaussian target systems, the commonly used mean square error (MSE)

becomes inappropriate in evaluating the the performance of non-Gaussian tracking

algorithms. It is necessary to have a more comprehensive measure of performance

that applies to both Gaussian and non-Gaussian systems.

Denote p(x, tk) as the true PDF of the target system described by (2.1) at tk.

One way to evaluate the performance of a track maintenance algorithm is to compare

38

the profile of the estimated posterior PDF p(x, tk|Y (tk)) with p(x, tk), where Y (tk)

stands for the collection of the measurements obtained by the sensor up to tk. Note

that the more similar the two PDFs are, the better a track maintenance algorithm’s

performance is.

According to information theory, the similarity of two PDFs can be measured by

their relative entropy [106]:

RE =
∫

p(x, tk) log (p(x, tk)/p(x, tk|Y (tk)))dx

= −
∫

p(x, tk) log p(x, tk|Y (tk))dx + C. (3.26)

We define the first term in the right side of (3.26) as the Relative Entropy Variance

(REV) of an estimated posterior PDF p(x, tk|Y (tk)):

REV = −
∫

p(x, tk) log p(x, tk|Y (tk))dx. (3.27)

Therefore, to compare the performance of two algorithms, we can just compare

their REV s. The smaller REV one has, the better. Unfortunately, the true PDF

p(x, tk) is not available for most systems. In this work, we use the following Monte

Carlo method to estimate the true PDF.

Assume that one randomly runs the stochastic system (2.1) M times, and get M

realizations of the target system at time tk: {x̄j
tk}j=1..M . The true PDF of the target

system at tk can then be approximated as:

p̄(x, tk) =
1

M

M∑
j=1

δ(x− x̄j
tk). (3.28)

By substituting p(x, tk) in (3.27) with p̄(x, tk), we get the approximate REV as:

REV (p(x, tk|Y (tk)))

39

≈ −
∫

p̄(x, tk)) log p(x, tk|Y (tk))dx

= − 1

M

M∑
j=1

log p(x̄j
tk , tk|Y (tk)). (3.29)

Here we further decompose the summation in (3.29) and define the following

individual relative entropy variance (iREV) for each individual realization x:

iREV (x) = − log p(x, tk|Y (tk)) (3.30)

Remark 3.4.1: By comparing (3.29) with (3.30), one can see that REV can also

be treated as the average iREV of multiple tests. We consider REV and iREV as

a pair of tracking performance metrics for both Gaussian and non-Gaussian target

systems. In fact, it can be easily shown that, for a Gaussian distribution, iREV is

proportional to the normalized (by the covariance matrix) square error.

In the case of particle filters, such as the proposed PF-HMap algorithm, the esti-

mated posterior PDF itself is a summation of pulse functions (i.e. δ(·)), which makes

it very difficult to quantify REV and iREV . A simple way to handle this problem

is to replace the δ(·) in (4.1) by a continuous Gaussian pulse as follows:

p(x, tk|Y (tk)) ≈
N∑

i=1

wi
tk

N(xi
tk

, Σi), (3.31)

where Σi = d2
i In×n, and di = min{‖xi

tk
− xl

tk
‖, l = 1..N, l �= i}, and In×n is the

n-dimensional identity matrix.

In the next section, we will compare the performance of the proposed PF-HMap

approach and other methods using the REV/iREV criterion.

Remark 3.4.2: Eq. (3.31) above is essentially a special case of various ways to

approximate a continuous PDF through multiple radial base functions. In practice,

it is possible to use a small number (less than N) of Gaussian pulses to approximate

40

a continuous function, and the centers of these base functions are not necessarily to

be the discrete samples. In fact, in the experiment shown in the next section, a single

Gaussian base function is used to calculate the iREV of the PF-HMap algorithm for

scenario 3.

3.5 Simulations and Performance Evaluation

We apply the PF-HMap approach to a series of benchmark scenarios as follows:

• Scenario 1: First, we assume that a ground vehicle was detected by some remote

sensor systems in the middle of a 3km×3km area described by the HMap in Fig

3.1. A UAV is assigned to validate this detection report and keep tracking the

target. Before the UAV arrives in this area, there is a significant period of time

that the target is out of the surveillance of any sensor system. The performance

of the PF-HMap approach in maintaining predictive track information is tested

in this scenario.

• Scenario 2: Then, when the UAV is approaching where the target was found,

it is actually doing a search job. Experiments at this stage will show how the

PF-HMap method is able to provide on-line target track information as the

UAV is searching for the target.

• Scenario 3: After the UAV find the target, it starts the tracking job by circling

around the target. Because of a limited FOV and physical motion constraints

on the UAV, the target may still be out of surveillance intermittently. The

performance of PF-HMap for tracking maneuvering target with intermittent

and regional measurements is then tested in this scenario.

41

The performance of the PF-HMap approach will be compared with three existing

representative methods, a Kalman filter, a IMM filter and the BF-HMap method

along in each scenario. A constant velocity model is used in the KF method, which is

also used as the primitive model in the BF-HMap approach. In the IMM filter, five

models are used, which are a random walk model (mode 0) and four constant speed

model toward east, south, west and north (mode 1 − 4). The same IMM structure

is used in the PF-HMap algorithm in this experiment. The sample size in PF-HMap

is N = 1000 in this experiment. The switching coefficients between different models

are chosen as

µi
j =

⎧⎪⎨⎪⎩
0.92, if i = j, i > 0;
0.02, if i �= j, i > 0;
0.2, if i = 0;

(3.32)

The UAV is modeled as a Dubins car:⎧⎪⎨⎪⎩
ẋu(t) = VMcosθu(t);
ẏu(t) = VMsinθu(t);

θ̇u(t) = u(t), |u(t)| ≤ VM/RM ;
(3.33)

where VM = 100m/sec, RM = 100meters. Each UAV is assumed to has an on-board

sensor system, which covers a local circular area (of radius R = 150meters) around

the UAV. For the purpose of simplicity, the measurement model (before considering

the effect of sensor FOV) is chosen as H(x, t) = [x(t),y(t)], where (x(t),y(t)) denotes

the horizontal position of the target on the ground. In addition, we assume that the

sensor is perfect (i.e. P0 = P1 = 0).

In initialization, each filter is given the same positional measurement [x0,y0] from

the remote sensor system with a Gaussian covariance matrix P0. The true trajectory

of the target in each simulation starts from [x0,y0] as well, with a speed randomly

picked from 0 to vmax = 10m/s. The initial heading of the target is also randomly

42

selected. After that, the true trajectory of the target generated by the five-model-

IMM scheme, except that the speed of the target is limited to vmax.

Remark 3.5.1: It is worth noting that PF-HMap is applicable to non-linear,

complex measurement model as well. In fact, using a non-linear measurement model

will only gives PF-HMap more advantages over the KF and the IMM approach.

3.5.1 Scenario 1: Track Maintenance for an Out-of-Surveillance
Target

Since the target vehicle is mobile, it will probably not stay where it was found. It

is important to maintain a good prediction of the positional information of the target

before the UAV arrives. Fig. 3.4 shows how the predicted PDF maintained by the

PF-HMap method evolves over time. The blue dots stands for the particles. For the

purpose of illustration, the particles have been re-sampled, so that the density of the

particles here is proportional to the predicted PDF. Through this example, we see

that the terrain information carried by the HMap is effectively exploited.

We also compare the prediction performance the PF-HMap approach with the

other three methods (i.e. KF, IMM and BF-HMap). 1000 Monte Carlo simulations

are run. The true system PDF approximated by the 1000 realizations after 3 minutes

is shown in Fig. 3.5.a. For comparison, the predicted PDFs maintained by the KF

and the IMM methods are also illustrated by randomly generated samples. Note that

in order to give the IMM filter a little bit more favor, we adjust the weights on the

Gaussian blobs predicted by the five models with respect to the HMap. Therefore,

the terrain information is used in all the four methods except for the Kalman filter.

Comparing Fig. 3.4.d with Fig. 3.5.b, 3.5.c and 3.5.d, we can find that PF-HMap

gives the best estimate of the true PDF of the target system. The evolutions of REV s

43

of the predictive PDF maintained by different methods are shown in Fig. 3.6. The

results show that the predictions from the Kalman filter quickly diverge from the

true target system. The IMM filter performs better than the Kalman filter initially,

but becomes over-fitting as time increases. The BF-HMap method generates a much

better predictive PDF, and the PF-HMap algorithm is the best in this experiment.

Remark 3.5.2: Since the PF-HMap approach approximates the predictive PDF

by samples, numerical errors will degenerate its performance. However, the PF-

HMap method still out-performs BF-HMap in this experiment. The reason behind

this phenomenon probably is that the primitive model in the PF-HMap approach

here (an IMM structure) is a better model than that of the BF-HMap (a constant

velocity model) for maneuvering targets.

3.5.2 Scenario 2: Track Maintenance for Moving Target Search

In this scenario, the UAV arrives at the area after 3 minutes. However, since the

vehicle has been out of surveillance for a long time. The UAV has to search around

for the vehicle to validate the previous detection report.

In this experiment, the motion control strategy on the UAV is simply chosen as

to drive the UAV toward the nearest particle. Experimental results in Fig. 3.7 show

that the PF-HMap successfully utilizes the non-detection information from the UAV

to update the PDF of the target state on-line, and thus helps the UAV to finds the

vehicle in the end. Here we remove the HMap background in Fig. 3.7 for a better

illustration.

Remark 3.5.3: The main purpose of this experiment is to show the capability of

BF/PF-HMap in providing on-line target track information for the motion controller

44

a) After 1 second b) After 1 minute

c) After 2 miniutes d) After 3 minutes

target

particles

Figure 3.4: The evolution of the predictive PDF maintained by the PF-HMap ap-
proach in scenario 1.

of a mobile sensor, rather than the motion control itself. A more sophisticate motion

control strategy is expected to get a better search/tracking result.

3.5.3 Scenario 3: Target Tracking with Intermittent and Re-
gional Measurements

After the UAV finds the vehicle, it starts to circle around the target. Due to the

motion constraints on the UAV, its FOV cannot cover the target all the time. The

measurements obtained by the sensor are still intermittent and regional. Fortunately,

45

a) Simulated ground truth b) KF

c) Five−model IMM d) BF−HMap

Figure 3.5: The PDF of the true system and the predictive PDF maintained by other
approaches (in scenario 1 after 3 min.).

the flexible scheme of the PF-HMap approach allows this type of incomplete mea-

surement information to be utilized. The same control strategy as in Scenario 2 is

applied here as well.

We also compare the performance of the PF-HMap algorithm with other methods

at this stage by varying the radius (Rs) of the sensor FOV from 20 meters to 300

meters. Fig. 3.8 shows the average REVs of different algorithms from 50 simulations.

As we expect, the REVs decrease as Rs increases, because it is easier for the UAV

to follow the target with a larger FOV. The performance of all the four methods are

46

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Time (sec.)

R
E

V
 in

cr
ea

se
 (

%
)

KF

IMM

BF−HMap

PF−HMap

Figure 3.6: Prediction performance comparison in scenario 1.

close with a large Rs. As Rs decreases, the target is not guaranteed to be observable

any longer, PF-HMap and BF-HMap then show a much better performance than the

KF and the IMM approach, because of their capability of exploiting non-detection

measurement information.

3.6 Conclusions

In this chapter, a generic framework (BF-HMap) for maintaining target track

information is proposed based the Bayesian filtering method and the hospitability map

concept. In the meantime, a computational efficient realization of this framework,

the PF-HMap algorithm based on particle filters is introduced. The BF/PF-HMap

algorithm have the following two key features:

47

a) After 3 min. 5 sec. b) After 3 min. 10 sec.

c) After 3 min. 13 sec. d) After 3 min. 15 sec.

UAV

FOV

UAV
trajecotry

target

Figure 3.7: Online track maintenance for moving target search in scenario 2.

• Both algorithms are not only applicable to non-linear, non-Gaussian, multi-

modal target systems, but also capable of using non-analytic terrain information

to improve prediction performance.

• Both approaches can also handle complex measurement models caused by the

limited view of a mobile sensor platform.

Due the above two features, the new Bf/PF-HMap method yields better perfor-

mance in comparison with other existing methods, especially in dealing with inter-

mittent and regional measurements obtained by MSAs. Meanwhile, Since the entire

48

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

A
ve

ra
ge

 r
ev

 th
ro

ug
h

50
 M

C
 s

im
ul

at
io

ns

R
s
 in meters

KF

IMM

BF−HMap

PF−HMap

Figure 3.8: Performance comparison in scenario 3.

PDF (in terms of particles) is maintained by the BF/PF-HMap, both algorithms can

be a very useful tool to provide online target information to the motion controller

of mobile sensors in various applications, such as target search and target following.

In particular, the PF-HMap approach has a much lower computational complexity

than the BF-HMap algorithm, which makes it more feasible to be applied to real-time

sensor systems.

Through the experiments shown in this chapter, we can see that there is not a dis-

tinct line between search and tracking when non-detection reports are also absorbed

into the track maintenance scheme. Target search can then be considered as a special

case of tracking. Thus, the BF/PF-HMap approach here can be further applied to

the scenarios with MSAs performing both search and tracking tasks at the same time.

49

This chapter also introduces a new performance measure based on relative entropy

for non-Gaussian tracking problems. Thus, the whole posterior PDF of the target

system is evaluated, which can then used as a general, consentient criterion to compare

KF-, BF-, PF-based and other tracking algorithms.

50

CHAPTER 4

DISTRIBUTED PARTICLE FILTERS FOR NETWORKED
MOBILE SENSOR AGENTS

4.1 Introduction

The previous chapter mainly focuses on the target track maintenance problem

in the single-MSA case. In many real world applications, however, one has to fuse

observations from multiple MSAs in order to effectively track the evolution of a track

system. Although a great amount of muli-sensor fusion approaches for target tracking

have been proposed in the last two decade, most of them assumes that the measure-

ments come in sequence, which requires instant sensor-to-senor or sensor-to-fusion-

center communication. However, in the case of networked MSAs, no matter the

sensor fusion procedure is achieved in a centralized way or a distributed way, com-

munication delays among different MSAs (or between a fusion center and MSAs) are

almost inevitable. As result, the corresponding track maintenance approach has to be

able to deal with measurements that do not come sequentially. Such a non-standard

tracking problem is also called the out-of-sequence measurements (OOSM) problem

in literature [99]. Recently, a few approaches dealing with OOSM problems have

51

been proposed be researchers [99–101], most of which are mainly designed for linear

systems.

In this chapter, we studied the OOSM problem in the context of tracking non-

linear target systems with a particle filter (PF), which is in accord with our choice

of PF over KF-based methods in the previous chapter. A generic statement of this

OOSM problem is given in section 4.2 first. Then, a novel target tracking algorithm for

that is capable of dealing with both in-sequence and out-of-sequence measurements,

called the Universal Particle Filter (UPF), is developed in section 4.3. After that,

some practical issues on the application of the UPF in real-world tracking problems is

discussed (section 4.3), along with experiment results and performance analysis being

presented (section 4.4). In the conclusion section of this chapter (section 4.5), possible

directions of future work on multi-sensor fusion in distributed sensor networks based

on the UPF method are discussed.

4.2 Problem Statement

The particle filtering method is essentially an approximation of the Bayesian fil-

tering method, which approximates the posterior PDF of a target track by a set of

samples and their weights {X i
t1:tk

, wi
tk
}i=1..N :

p(X(tk)|Y (tk)) ≈
N∑

i=1

wi
tk

δ(X(tk)−X i
t1:tk

), (4.1)

where X(tk) = {x(t1), ..., x(tk)}; Y (tk) = {y(t1), ..., y(tk)}, X i
t1:tk

= {xi
t1 , ..., x

i
tk
};

X(tk), X
i
t1:tk
∈ Rnx×(k) and Y (tk) ∈ Rm×k.

The general OOSM problem in the context of particle filters can be described as

the following:

52

Given a sequential particle set at time tk as {X i
t1:tk

, wi
tk
}i=1..N and a de-

layed measurement y(t′) where tl < t′ ≤ tl+1 ≤ tk, we want to get a new

particle set and the weights {X̃ i, w̃i}i=1..N such that

p(X(tk)|Y (tk), y(t′)) ≈
N∑

i=1

w̃iδ(X(tk)− X̃ i), (4.2)

where X̃ i =
⋃

(X i
t1:tk

, x̃i
t′) is the updated sample sequence; {x̃i

t′}i=1..N is the new

sample set for time t′; w̃i is the updated weight for the new sample sequence X̃ i.

Without loss of generality, let us assume that tl ≤ tm for all l < m. In other words,

we assume that the particles are stored sequentially before y(t′) comes.

4.3 Universal Particle Filter (UPF): A Particle Filter for the

OOSM Problem

The key procedures in a particle filter are drawing new samples and updating

weights. When the measurements come in an ideal time order, (2.31) provides us a

convenient way to draw new samples for a standard particle filter. However, in the

case of OOSM, (2.30) does not hold in general and either does (2.31). Therefore, a

different treatment has to be made in dealing with delayed measurements.

When a new measurement y(t′) comes, there are three possibilities:

Case 1: ∀l = 1..k, t′ > tl

In this case, y(t′) is the most recent measurement. We can just use the standard PF

(2.28) to draw new samples and update the weights (2.29).

Case 2: ∃l, such that t′ = tl and 1 ≤ l ≤ k

In this case, there are already a set of samples drawn at time tl, which means we do

not have to draw a new sample set x̃i
t′ for time t′. Therefore, we have X̃ i = X i

t1:tk
.

53

Based on the Bayes’s rule, we have:

p(X̃ i|Y (tk), y(t′)) = p(X i
t1:tk
|Y (tk), y(t′))

=
p(X i

t1:tk
, Y (tk), y(t′))

p(Y (tk), y(t′))

=
p(y(t′)|X i

t1:tk
, Y (tk))p(X i

t1:tk
|Y (tk))

p(y(t′)|Y (tk))

=
p(y(t′)|xi

tl
)p(X i

t1:tk
|Y (tk))

p(y(t′)|Y (tk))

∝ p(y(t′)|xi
tl
)p(X i

t1:tk
|Y (tk)) (4.3)

Here we assume that the measurement noises are independent of each other. Eq.

(4.3) indicates that, in order to satisfy (4.2), we only have to update the weights as:

w̃i ∝ p(y(t′)|xi
tl
)wi

tk
. (4.4)

Case 3: ∃l, such that tl < t′ < tl+1 and 1 ≤ l < k

In this case, no samples are available to utilize the information that the new measure-

ment y(t′) provides. It is necessary to draw an additional sample set x̃i
t′ for time t′.

By doing so, we can then insert x̃i
t′ into the previous particle sequences {X i

t1:tk
}i=1..N

to generate a new set of particle sequences X̃ i
i=1..N , as illustrated in Fig. 4.1.

Base on the Bayes’ rule, we have:

p(X̃ i|Y (tk), y(t′)) =
p(X i

t1:tk
, x̃i

t′ , y(t′)|Y (tk))

p(y(t′)|Y (tk))

=
p(x̃i

t′ , y(t′)|X i
t1:tk

, Y (tk))p(X i
t1:tk
|Y (tk))

p(y(t′)|Y (tk))

=
p(y(t′)|x̃i

t′)p(x̃i
t′ |X i

t1:tl
, X i

tl+1:tk
, Y (tk))p(X i

t1:tk
|Y (tk))

p(y(t′)|Y (tk))

∝ p(y(t′)|x̃i
t′)p(x̃i

t′ |xi
tl
)p(xi

tl+1
|x̃i

t′)

p(xi
tl+1
|xi

tl)
p(X i

t1:tk
|Y (tk)) (4.5)

Combining (3.24) with (4.5), we can obtain the new wights w̃i by:

w̃i ∝ p(y(t′)|x̃i
t′)p(x̃i

t′ |xi
tl
)p(xi

tl+1
|x̃i

t′)

q(xi
t′ |X i

t1:tk , Y (tk), y(t′))p(xi
tl+1
|xi

tl)
wi

tk
. (4.6)

54

t

tl+1

tl

tl-1

t1

t’
tl+1

t

tl

tl-1

t1

Figure 4.1: Case 3 of the UPF: to generate a new sample set and insert them into
the previous particle sequences.

In this approach, we choose the importance density as:

q(x̃i
t′ |X i

t1:tk
, Y (tk), y(t′)) = p(x̃i

t′ |X i
t1:tl

), (4.7)

the corresponding weights update equation is

w̃i ∝ p(y(t′)|x̃i
t′)p(xi

tl+1
|x̃i

t′)

p(xi
tl+1
|xi

tl)
wi

tk
. (4.8)

Eq. (4.7) and (4.8) imply that in order to deal with the OOSM problem, the track-

ing system has to be able to retrieve the particles in past time. If the communication

delay can be arbitrarily large, each MSA will need an infinite memory space to store

the particle sequences, which is impossible to achieve in real world implementation.

4.4 The Limited-memory UPF

The idea of the limited-memory UPF is very straightforward, which only keeps

most recent particles no elder than ∆T from the current time. Considering the fact

that the communication delay between sensor nodes is usually bounded in reality, it

55

is reasonable to store the most recent segments of each particle sequence only. The

question is how to choose such an appropriate ∆T in practice.

Denote the minimum sampling time unit as ∆t. The actually memory requirement

on each MSA for one target is of size O(N∆T
∆t

), where N is the size of the sample set.

Meanwhile, the computational load of each cycle of a particle filter is O(N). Thus,

the choice of ∆T and N is a tradeoff among system performance, the memory cost

and the computational load.

4.4.1 The effect of the sample size (N) on the tracking per-
formance

Investigations done by Geweke [107] have shown that as the sample size (i.e. N)

increases, the approximation error introduced by a particle filter is loosely decreasing

by a fact of 1
√

N as follows:

√
N(X̂t1:tk −Xt1:tk)→ N(0, σ2), (4.9)

where

X̂t1:tk =
1

N

N∑
i

X i
t1:tk

, (4.10)

and

σ2 = E

[
(Xt1:tk −E[Xt1:tk])

2p(Y (tk)|Xt1:tk)p(Xt1:tk)

q(Xt1:tk |Y (tk))

]
, (4.11)

where q(Xt1:tk |Y (tk)) is the importance density function.

4.4.2 The effect of the memory size (∆T) on the tracking
performance

The relationship between ∆T and the tracking performance is more complicated.

In KF-based methods, additional measurement information always leads to superior

56

estimation performance. However, it may not be the case in the context of particle

filters. As shown in (4.1), what a PF approximates is essentially the joint PDF of the

target states at a sequence of time instant from t1 to tk. Therefore, inserting a new

sample set at some past time instant will actually increase the dimensionality of the

joint space of X(tk) in (4.1) and thus increase the approximation uncertainty. In the

meantime, due to the re-sampling procedure, most of the particles at current time

instant may actually come from the same “parent particle”. In this case, the weights

as well as the estimates will not change at all when a delayed measurement that is

elder than the “parent particle” runs through the UPF algorithm.

4.5 Distributed Sensor Fusion for Target Tracking based on
the UPF

Based on the UPF technique developed above, we can build a framework of dis-

tributed sensor fusion for target tracking, as illustrated in Fig. 4.2. In this frame

work, each MSA has its own local sensor system. The measurements obtained by

the local sensor system are called internal measurements. Meanwhile, we assume

that there is a communication network among the MSAs, and the MSAs are shar-

ing their local measurements with each other trough the communication network.

The measurement reports that one MSA receives from other MSAs are called exter-

nal measurements. Thus, each MSA runs its own UPF based on both the internal

and external measurements. Thus, the sensor fusion here is a measurement-to-track

fusion.

When one MSA sends out its newly obtained measurement, the message package

also includes the following critical information besides the measurement.

57

YYa tak

wa tak Xa tak wb tbk Xb tbk

b tbk

Figure 4.2: The diagram of distributed sensor fusion for target tracking using UPFs

• The sender’s ID;

• The global time stamp of the measurement;

• The sensor model of the sender.

The global time stamps is used to align measurements from different sensor sources

into the same time frame, which can be easily obtained with the assumption that a

reliable GPS clock is available to each sensor node. The acknowledgement of sensor

model of the sender is also a prerequisite for successful sensor fusion. A convenient

way the transmit sensor models among MSA’s is to pre-code the type of sensors and

put a lookup table of sensor models at each MSA.

58

4.6 Experiments and Results

4.6.1 UPF vs. Standard PF without any Delay

To evaluate the performance of the proposed UPF, we choose the follow non-linear

discrete time system:

x(k + 1) =
x(k)

2
+

25x(k)

1 + x2(k)
+ 8 cos(1.2k) + v(k), (4.12)

where v(k) ∼ N(0, Q(k)).

The sensor model is also non-linear:

y(k) =
x2(k)

20
+ n(k), (4.13)

where n(k) ∼ N(0, R(k)).

The system above has been widely used as a benchmark example to compare the

performance of the PF and the conventional KF-based methods [102, 104]. Thus, in

this experiment, we only compare the performance of a standard PF without any

communication delay with the proposed UPF with communication delay.

Fig. 4.3 shows the result of one simulation, in which MSE and MSE1 are the

tracking errors of the standard PF and the UPF, respectively. In the case of UPF,

a 2-step delay is simulated on every other measurement. The result shows that the

performance of the UPF is pretty close to the ideal one (i.e. the standard PF without

any communication delay).

Fig. 4.4 shows the average tracking errors of 50 Monte Carlo simulations, MSE

and MSE1 are the mean square errors of the standard PF and the UPF. The results

demonstrate that the tracking performance of the UPF is very close to the standard

PF in spite of the presence of communication delays.

59

4.6.2 UPF vs. Limited-memory UPF

In this experiment, we study the contribution of delayed measurements to tracking

errors. Fig. 4.5 shows the performance comparison between the UPF and an LUPF

in tracking a simple random-walk target as the following:

x(k + 1) = x(k) + w(k), (4.14)

y(k) = x(k) + v(k). (4.15)

As Fig. 4.5 indicates, measurements being delayed more than one step is not that

helpful in this example. The reason probably is that the information gained by such

a delayed measurement is overwhelmed by additional variations introduced by new

particles.

4.7 Conclusions

In this chapter, a novel particle filtering method, the Universal Particle Filter

(UPF) is developed, which is capable of tracking non-linear target systems with out-of-

sequence measurements. Based on the UPF, a generic framework of distributed sensor

fusion for target tracking is also introduced. Some practical issues on the application

of the UPF in real-world tracking problems is also discussed. Since the UPF requires

historical information to generate new samples and update the weights, additional

memory space is needed. Fortunately, both theoretical analysis and experiments

show that a large memory load is often neither affordable nor necessary in practice.

It is worth mentioning that there are other technical issues in distributed mobile

sensor networks that are left for further investigations. For example, many practical

tasks require cooperations among multiple MSAs. Significant differences between

60

the target tracks maintained by different MSAs can easily lead to the collapse of

a cooperative sensing task. Unlike conventional KF-based methods, the estimation

difference between two particle filters is inevitable even under a perfect communication

condition, thanks to its simulation-based nature. Further theoretic analysis on the

relationship between the variance of estimation and the choice of key parameters such

as the size of the sample size N and the communication channel configurations has to

be conducted before the UPF and the PF-HMap approach proposed in the previous

chapter can be applied to fully distributed mobile sensor networks.

61

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

Time Index

T
ra

ck
in

g
E

rr
or

s

MSE
MSE

1

Figure 4.3: Tracking errors of a standard PF without measurement delay (MSE) and
the UPF (MSE1) with a 1-step lag on every other measurement: MSE and MSE1

are the tracking errors of the standard PF and the UPF, respectively.

0 5 10 15 20 25 30 35 40 45 50
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Simulation Index

A
ve

ra
ge

 T
ra

ck
in

g
E

rr
or

s

MSE
MSE

1

Figure 4.4: Performance comparison between a standard PF without measurement
delay (MSE) and the UPF (MSE1) with a 1-step lag on every other measurement:
MSE and MSE1 are the mean square errors of the standard PF and the UPF (across
50 MC simulations).

62

0 5 1 0 1 5
- 0 . 2

- 0 . 1 5

- 0 . 1

- 0 . 0 5

0

0 . 0 5

E r r
1

 - E r r
0

Figure 4.5: Effect of delayed measurements on tracking performance (Err0 and Err1

are the mean square errors of the standard PF and the UPF (across 50 MC simula-
tions).

63

CHAPTER 5

FOUNDATIONS OF ENTROPY-BASED MANAGEMENT
OF MSAS

5.1 Introduction

The main task of sensor management is to control the sensor resources to achieve

and maintain a good representation of the subject of interest, which is the kinematic

state of one or multiple moving objects in the MSA-target scenario. In other word,

sensor management shares the same system goal with the information processing

module. Thus, it is natural to consider the management problem of MSAs from the

perspective of information processing.

Perhaps the first attempt to modeling a sensor management problem in an information-

theoretic way is the optimal sensor-to-target assignment approach proposed by Nash

[5]. In this approach, the target state vector, x(t) ∈ Rnx , is assumed to be maintained

by a Kalman filter, and the objective function of sensor assignment is defined with

respect to the trace of the co-variance matrix of x(t). During the last two decades,

a more general information measure, has been widely used in information-theoretic

approaches for a variety of sensor scheduling problems [6,7,15], which is the entropy

64

of the posterior track PDF p(x, t|Y (t)) as follows:

ε(x, t|Y (t)) = −
∫

p(x, t|Y (t)) log p(x, t|Y (t))dx, (5.1)

where Y (t) = {y(t1), y(t2), ..., y(tk)}, t1 ≤ t2 ≤ ... ≤ tk ≤ t and y(t1) ∈ Rm. Note

that the integration in (5.1) will be replaced by a summation in the discrete-space

case.

Since the entropy above is essentially a measure of uncertainty x(t), by controlling

the evolution of the entropy, one can keep the uncertainty of x(t) from increasing, or

reduce it to a desired level. Among existing information-theoretic sensor management

approaches, many are devoted to a specific target/sensor model, mostly in a KF/EKF-

based framework [6, 7, 10, 12–15, 17]. As a result, there is very few theoretical study

on how the entropy evolves over time and how entropy changes with respect to sensor

actions, especially for the general non-linear case. However, due to the physical

constraints on the motion and coverage of MSAs, the evolution of the entropy along

with the motion of MSAs is a crucial factor in both modeling the MSA control problem

and developing the corresponding motion control algorithms.

The goal of this chapter is to develop general foundations for entropy-based MSA

management by studying the evolution of the entropy. Similar to p(x, t|Y (t)), the

dynamics of the entropy ε(x, t|Y (t)) is driven by the joint effect of x(t) and Y (t).

Thus, the evolution of ε(x, t|Y (t)) consists of two parts: the time evolution, which

is governed by (2.1), and the measurement evolution, which describes the change of

ε(x, t|Y (t)) with respect to newly obtained measurements. In what follows, we shall

study the time evolution and the measurement evolution of the entropy in section

5.2 and 5.3, respectively. Without loss of generality, let us assume that a discrete-

time Kalman filter is used to maintain the target information for the linear-Gaussian

65

case and the BF-HMap for the non-linear case. Some key properties of the evolution

of the entropy are identified along the study, and are used as strategic guidelines

to formulate the sensor management problem for different MSA-target scenarios in

section 5.4.

5.2 The Time Evolution of the Entropy

The time evolution basically takes place between two consecutive sensor observa-

tions (denoted as y(tk−1) and y(tk)). Since no measurement is involved at this stage,

Y (t) ≡ Y (tk−1), tk−1 ≤ t < tk. Thus, the entropy here can be directly computed from

the predictive PDF p(x, t|Y (tk−1)), which is determined by the characteristics of x(t)

(i.e. the target model (2.1)) only.

5.2.1 The Linear-Gaussian Case

In the case that both the target model and the sensor model are linear and Gaus-

sian, the Kalman filter is an efficient tool to maintain the target information. Since

the Kalman filter is often implemented in discrete time in practice, here we use the

discrete-time version of the Kalman filter to study the time evolution of the entropy

for the linear-Gaussian case.

Let the following equation be the target model in a discrete time Kalman filter:

x(tk) = F (tk)x(tk−1) + G(tk)β(tk), (5.2)

which is usually obtained by discretizing a continuous-time target model:

ẋ(t) = f(t)x(t) + g(t)β(t), tk−1 ≤ t < tk. (5.3)

, where F (tk) = f(tk)∆T + I, G(tk) = g(tk)∆T , and ∆T = tk − tk−1.

66

It has been known that for a linear Gaussian system, its entropy is linearly-

proportional to the log of the determination of the co-variance matrix [6]. Thus, we

have

ε(x, t|Y (tk−1)) ∝ log(det P (t|tk−1)), t ≥ tk−1, (5.4)

where P (t|tk−1) is the co-variance matrix of the predictive PDF p(x, t|Y (tk−1)) main-

tained by a Kalman filter.

According to (2.7), P (tk|tk−1) can be obtained from (5.3) as follows:

P (tk|tk−1) = F (tk)P (tk−1|tk−1)F
T (tk) + G(tk)Q(tk)G

T (tk). (5.5)

The linear algebra theory [97] indicates that for any matrix F ∈ Rnx×nx , there

exists an orthogonal matrix DRnx×nx such that

F = D−1ΛD, (5.6)

where ΛRnx×nx is a upper triangular matrix. Note that, the diagonal element (λi,i =

1..nx) of Λ are actually the eigenvalues of F .

Denote D(t) as the orthogonal matrix that transform f(t) to a upper triangular

matrix Λ(t) in (5.6). We then have

F (tk) = f(tk)∆T + I

= D−1(tk)Λ(tk)D(tk) + I

= D−1(tk)(Λ(tk) + I)D(tk), (5.7)

and

P (tk|tk−1) = D−1(tk)(Λ(tk)∆T + I)D(tk)P (tk−1|tk−1)D
−1(tk)(Λ

T (tk)∆T + I)D(tk)

+ g(tk)Q(tk)g
T (tk)∆T 2. (5.8)

67

Combining (5.8) with (5.4), we get

ε(x, tk|Y (tk−1))

∝ log(det P (tk|tk−1))

≥ log
[
det

(
D−1(tk)(Λ(tk)∆T + I)D(tk)P (tk−1|tk−1)D

−1(tk)(Λ
T (tk)∆T + I)D(tk)

)]
= log

[
nx∏
i

(λi(tk)∆T + 1)2 det P (tk−1|tk−1)

]
(5.9)

where λi(tk) is the ith eigenvalue of Λ(tk).

Eq. (5.9) above directly leads the following conclusion.

Theorem 5.2.1: If the transfer function f(t) in the continuous-time model (5.3)

is semi-positive definite for ∀t ≥ tk, we have

ε(x, t2|Y (tk)) > ε(x, t1|Y (tk)), ∀tk ≤ t1 < t2. (5.10)

(5.10) indicates that the entropy of the open-loop (i.e. without any measurement)

system (5.3) is monotonically increasing, which means that the status of x(t) becomes

more and more uncertain if there is no further measurements.

Remark 5.2.1: A positive definite f(t) also implies that the target model (5.3)

is a unstable system, which is totally make sense in a sensing problem. Otherwise, if

the target system is stable, there will be no need to use a sensor to monitor x(t) since

it will converge to some equilibrium point eventually no matter what happens. In

fact, many widely-used target models such as the random walk model, the constant

velocity model and the constant acceleration model have a semi-positive definite f(t).

Theorem 5.2.1 also leads to the following corollary.

Corollary 5.2.2: Consider two linear-Gaussian systems governed by the same

model (5.3). Denote ε1(x, t|Y (t)) and ε2(x, t|Y (t)) as the entropies of the two systems,

68

respectively. It is true that

ε1(x, t|Y (tk)) ≥ ε2(x, t|Y (tk)), ∀t ≥ tk, (5.11)

if f(t) in (5.3) in semi-positive definite and

det P1(tk|tk) ≥ det P2(tk|tk), (5.12)

where P1(tk|tk) and P2(tk|tk) are the initial covariance matrix of the two systems at

tk, respectively.

5.2.2 The Non-linear Case

For a non-linear target system, if the target information can be adequately main-

tained by an EKF or an IMM filter, then the result in the linear-Gaussian case

presented in the previous subsection can still be employed. The reason is that the

EKF assumes that x(t) is locally linearizable, and the IMM filter basically assumes

that x(t) is switching among multiple linear models. However, for the general non-

linear target track maintenance problems, the time evolution of the entropy is much

more complicated, especially when non-analytic environmental information (e.g. the

hospitability map in Chapter 3) is absorbed into the target model. Nevertheless, as

Remark 5.2.1 indicates, it is still true in most sensing problems to assume that the

entropy will keep increasing when there is no measurement input.

On the other hand, it is often true in real-world applications that the track PDF

is only distributed in a finite subset S(t) of the information space, which means

A(t) =
∫

x∈S(t)
dx <∞, (5.13)

where S(t) =
⋃{x; x ∈ Rnx , p(x, t|Y (t)) > 0}.

69

According to the definition of entropy, it can be easily shown that [106]

ε(x, t|Y (t)) ≤ log A(t). (5.14)

Note that the equality holds if and only if x(t) is uniformly distributed in S(t).

Remark 5.2.2: One can consider S(t) as a “cloud” of track PDF, which expands

and shrinks along with the evolution of the entropy. Since the extent of the PDF cloud

(i.e. A(t)) is an upper bound of the entropy, one can indirectly control the entropy

by controlling the evolution of S(t), which can possibly simplify the control design

problem in practice.

5.3 The Measurement Evolution of the Entropy

As the time evolution of the entropy being governed by the target system’s own

characteristics, the measure evolution of the entropy shows how sensor actions affect

the uncertainty of the target. Similar to other entropy-based sensor management

approaches, here we use the change in entropy to quantify the information gain of an

sensor action as follows.

Definition 5.3.1: The information gain (IG) of taking a sensor control action

u, which attains a measurement y(tk), is defined as:

∆ε(x, tk|u, Y (tk)) = ε(x, tk|Y (tk−1))− ε(x, tk|u, Y (tk)). (5.15)

Clearly, the measurement y(tk) is unknown until the control action u is taken.

To evaluate the expected performance of a sensor action, we further introduce the

Expected Information Gain as follows.

Definition 5.3.2: Let Y(u) ⊂ Rm be the set of all possible measurements

coming from a sensor action u. The expected information gain (EIG) of u is defined

70

as:

∆ε(x, t|u) =
∑

y∈Y(u)

p(y(tk) = y)∆ε(x, tk|Ȳ (tk))

= ε(x, tk|Y (tk−1))−
∑

y∈Y(u)

p(y(tk) = y)ε(x, tk|u, Ȳ (tk)). (5.16)

where Ȳ (tk) = {Y (tk−1), y(tk) = y}. The EIG is essentially the expectation of the

IG with respect to y(tk). Note that in the case of continuous detection results, the

summation in (5.16) should be replaced by an integration.

5.3.1 The Linear-Gaussian Case

The measurement model for the linear-Gaussian case can be simply described by

the following equation:

y(tk) = H(tk)x(tk) + ν(tk), (5.17)

where ν(tk) ∼ N(0, R(tk)).

Similar to the time evolution, the measurement evolution of the entropy of a linear-

Gaussian target system can also be represented by means of the covariance matrix

P (·) using the Kalman filter. In this case, (5.15) will simply reduce to

∆ε(x, tk|u, Y (tk)) = ε(x, tk|Y (tk−1))− ε(x, tk|u, Y (tk))

= log(det P (tk|tk−1))− log(det P (tk|tk)). (5.18)

Recall that [62]

P (tk|tk) = [I −KtkH(tk)]P (tk|tk−1), (5.19)

where Ktk = P (tk|tk−1)H
T (tk)[H(tk)P (tk|tk−1)H

T (tk) + R(tk)]
−1.

We then have

∆ε(x, tk|u, Y (tk)) = log(det (I −KtkH(tk))). (5.20)

71

Remark 5.3.1: It is worth noting that the information gain in the linear-

Gaussian case (5.20) is only determined by one’s prior knowledge of the target system

and the sensor, which is independent of the measurement y(tk).

Eq. (5.19) can also be re-written as [62]

P−1(tk|tk) = P−1(tk|tk−1) + H(tk)
T R−1(tk)H(tk), (5.21)

which lead to the following conclusion.

Theorem 5.3.1: Let a linear-Gaussian system (5.3) be tracked independently by

two sensor systems with the same configuration (i.e. identical H(·) and R(·) in (5.17)),

except for their measurement sampling rate. Denote ε1(x, t|Y (t)) and ε2(x, t|Y (t)) as

the entropies of the track PDFs maintained by two sensor systems. It is true that

sup
t0≤t≤∞

ε1(x, t|Y (t)) ≥ sup
t0≤t≤∞

ε2(x, t|Y (t)), (5.22)

if f(t) in (5.3) in semi-positive definite and

∆T1 ≤ ∆T2, (5.23)

where 1
∆T1

and 1
∆T2

are the measurement sampling rates of the two sensor systems,

respectively.

Proof: Let Y1(t)/Y2(t) be the sets of measurements obtained by the two sensor

systems, and P1(t|t)/P2(t|t) be the covariance matrices maintained by the two sensor

systems respectively.

Consider the first estimation cycle of the Kalman filter in each sensor system (i.e

k = 0). According to Theorem 5.2.1 and (5.23), we have

sup
t0+k∆T1≤t<t0+(k+1)∆T1

ε1(x, t|Y1(t))

72

= ε1(x, t0 + (k + 1)∆T1|Y1(t0 + k∆T1))

∝ log(det(P1(t0 + (k + 1)∆T1|t0 + k∆T1)))

≤ log(det(P2(t0 + (k + 1)∆T2|t0 + k∆T2)))

∝ ε2(x, t0 + (k + 1)∆T2|Y2(t0 + k∆T2))

= sup
t0+k∆T2≤t<t0+(k+1)∆T2

ε2(x, t|Y2(t)). (5.24)

Since the two sensor systems have the same measurement model H(·) and noise

model R(·), we have the following inequality based on (5.21):

det(P1(t0 + ∆T1|t0 + ∆T1)) ≤ det(P2(t0 + ∆T2|t0 + ∆T2)). (5.25)

Note that P1(t0 + ∆T1|t0 + ∆T1) and P2(t0 + ∆T2|t0 + ∆T2) are also the initial

co-variance matrices for the two system in the next estimation cycle. Combing the

result above with Corollary 5.2.2, we now know that if (5.24) holds for the kth, k ≥ 0

estimation cycle, it also holds for the (k + 1)th estimation cycle, which proves (5.22).

Remark 5.3.2: Theorem 5.3.1 indicates that the maximum entropy of a target

system is inversely proportional to the measurement sampling rate. It is worth noting

that in the MSA-target scenario, the measurement sampling rate is not merely a

intrinsic parameter of the on-board sensor system. Since there is possibly a non-

trivial transition time between two measurements duo to the physical constraints on

MSAs, the measurement sampling rate is dependent on how the MSAs move.

5.3.2 The Non-linear Case

Since the BF-HMap method introduced in Chapter 3 applies to general non-linear

target systems and MSAs, which also takes the effect of a limited FOV and false

73

alarm/miss detection into account, we use this method in this study to analyze the

measurement evolution of the entropy in the non-linear case.

Let p−(x, tk) and p+(x, tk) be the target track PDF before and after the arrival

of measurement y(tk). We can then rewrite the measurement update equation in the

BF-HMap algorithm derived in Chapter 3 as follows:

p+(x, tk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P0

AF CD
p−(x, tk), if y(tk) �= ∅ and x �∈ F (u);

(1−P1)
CD

p−(x, tk)p
∗(y(tk)|x), if y(tk) �= ∅ and x ∈ F (u);

P1

CU
p−(x, tk), if y(tk) = ∅ and x ∈ F (u);

1−P0

CU
p−(x, tk), if y(tk) = ∅ and x �∈ F (u);

(5.26)

where

CD =
P0

AF
[1−

∫
F

p−(x, tk)dx] + (1− P1)
∫

F
p−(x, tk)p

∗(y(tk)|x)dx, (5.27)

CU = P1

∫
F

p−(x, tk)dx + (1− P0)[1−
∫

F
p−(x, tk)dx], (5.28)

Here F (u) denotes region covered by the FOV of the MSA, which is resulted from

a motion-control decision u. x ∈ F (u) means that the positional components of the

target state vector x is inside F (u). AF is the area of F (u), which is a constant. P0

and P1 are the pre-known probabilities of false alarm and miss detection as defined

in (3.9) and (3.10), respectively. p∗(y(tk)|x) is the probability density function of a

non-empty measurement y(tk) given the true state of the target x(tk) = x, which is

basically the distribution of the measurement noise ν(tk).

Let ε−(x, tk|u, y(tk)) and ε+(x, tk|u, yk) be the entropy of the target track PDF

before and after the arrival of measurement y(tk) (which is resulted from sensor action

u). For the sake of simplification, we will use the discrete-space version of the BF-

HMap method here to calculate the change of the entropy. We will also omit the time

stamp tk in the rest of this section for the purpose of notation convenience.

74

Eq. (5.26) shows that p+(x) looks very different whether there is measurement is

an empty set or not. Thus, we treat these two cases separately as follows.

Case 1: y �= ∅

In this case, we can utilize the first two rows of (5.26) and get

ε+(x|u, y, y �= ∅)

= −
∫

P+(x) log P+(x)dx

= −
∫

F (u)

1− P1

p(y, y �= ∅)P
−(x)p(y|x) log

[
1− P1

p(y, y �= ∅)P
−(x)p(y|x)

]
dx

−
∫

¯F (u)

P0P
−(x)

p(y, y �= ∅)AF

log
P0P

−(x)

p(y, y �= ∅)AF

dx

= − 1− P1

p(y, y �= ∅)
∫

F
P−(x)p(y|x) log[P−(x)p(y|x)]dx

− 1− P1

p(y, y �= ∅) log
1− P1

p(y, y �= ∅)
∫

F (u)
P−(x)p(y|x)dx

− P0

p(y, y �= ∅)AF

∫
¯F (u)

P−(x) log P−(x)dx

−P0[1− PF (u)]

p(y, y �= ∅)AF
log

P0

p(y, y �= ∅)AF
. (5.29)

where PF (u) =
∫
F (u) P−(x).

Thus, we can further get the expected entropy resulted from a non-empty mea-

surement as follows.

ε+(x|u, y �= ∅)

= −
∫

p(y|y �= ∅)ε+(x|y, y �= ∅)dy

=
∫

F (u)

∫
F (u)

1− P1

PD
P−(x)p(y|x) log

[
1− P1

p(y, y �= ∅)P
−(x)p(y|x)

]
dxdy

−
∫

F (u)

∫
¯F (u)

P0P
−(x)

PDAF
log

P0P
−(x)

p(y, y �= ∅)AF
dxdy

= −1− P1

PD

∫
F (u)

∫
F (u)

P−(x)p(y|x) log p(y|x)dxdy

75

−1− P1

PD

∫
F (u)

P−(x) log P−(x)dx

+
1− P1

PD

∫
F (u)

∫
F (u)

P−(x)p(y|x) log p(y|D)dxdy

+
(1− P1)PF (u)

PD
log PD − PF (u)(1− P1)

PD
log (1− P1)

− P0

PD

∫
¯F (u)

P−(x) log P−(x)dx− P0[1− PF (u)]

PD

log
P0

AF

+
P0[1− PF (u)]

PDAF

∫
F (u)

log p(y|D)dy +
P0[1− PF (u)]

PD
log PD, (5.30)

where

PD ≡ p(y �= ∅) = P0[1− PF (u)] + (1− P1)PF (u). (5.31)

Case 2: y = ∅

In this case, we have to use the last two rows of (5.26) to compute ε+(x|u, y = ∅)
as follows:

ε+(x|u, y = ∅)

= −
∫

P+(x) log P+(x)dx

= −
∫

F (u)

P1

PU
P−(x) log

P1P
−(x)

PU
dx

−
∫

¯F (u)

1− P0

PU
P−(x) log

(1− P0)P
−(x)

PU
dx

= − P1

PU

∫
F (u)

P−(x) log P−(x)dx− P1PF (u)

PU
log

P1

PU

−1− P0

PU

∫
¯F (u)

P−(x) log P−(x)dx

−(1− P0)[1− PF (u)]

PU
log

1− P0

PU
, (5.32)

where

PU ≡ p(y = ∅) = 1− PD = P0[1− PF (u)] + (1− P1)PF (u). (5.33)

76

Based on (5.30) and (5.32), we can then obtain the EIG of control action u:

∆ε(x|u) = ε−(x)− PDε+(x|u, y �= ∅)− PUε+(x|y = ∅)

= (1− P1)
∫

F (u)

∫
F (u)

p−(x)p(y|x) log p(y|x)dxdy − P0[1− PF (u)] log AF

−PD

∫
F (u)

p(y|D) log p(y|D)dy

+E({PD, PU})− PF (u)E({P1, 1− P1}) + [1− PF (u)]E({P0, 1− P0})}

= ∆εm(u) + ∆εd(u)−∆εmiss(u)−∆εfalse(u). (5.34)

where E(·) stands for the entropy function, and

∆εm(u) = (1− P1)
∫

F (u)

∫
F (u)

p−(x)p(y|x) log p(y|x)dxdy

−P0[1− PF (u)] log AF − PD

∫
F (u)

p(y|D) log p(y|D)dy, (5.35)

∆εd(u) = E({PD, PU}), (5.36)

∆εmiss(u) = PF (u)E({P1, 1− P1})}, (5.37)

∆εfalse(u) = [1− PF (u)]E({P0, 1− P0})}. (5.38)

We call the above four components on the right side of (5.34) as the the information

gain from the measurement, the information gain from detection, and the information

losses due to miss-detection and false alarm, respectively.

In particular, if the sensor system is extremely noisy, the measurement probability

density function can be simplified as uniformly distributed in the FOV, i.e. p(y|x) =

1
AF

. In this case, it can be easily shown that εm(u) = 0, and (5.34) becomes

∆ε(x|u)

= ∆εd(u)−∆εmiss(u)−∆εfalse(u)

= E({PD, PU})− PF (u)E({P1, 1− P1}) + [1− PF (u)]E({P0, 1− P0})},(5.39)

77

Remark 5.3.3: Eq. (5.39) is essentially the EIG of a binary detection event,

in which the sensor can only tell whether a target is inside its FOV or not. This

simplified version of EIG can be used in applications that an accurate localization is

not the first priority of sensor management. For instance, in a target search problem,

the outcome of a sensor action is commonly simplified as a binary event, which means

the target is either found or not. Therefore, (5.39) is sufficient enough to quantify

the information gain in this case.

Another extreme case is that the sensor is perfect, which means there is no mea-

surement noise, no miss-detection or false alarm (i.e. P0 = P1 = 0). Thus, p(y|x) can

be simplified as a pulse function, i.e. p(y|x) = δ(y − x). The corresponding EIG in

this case will reduces to:

∆ε(x|u) = ∆εm(u) + ∆εd(u)

= −
∫

F (u)
p−(x) log p−(x)dx− (1− PF (s)) log(1− PF (s)). (5.40)

Remark 5.3.4: In reality, the sensor is neither extremely noisy, nor perfect,

which requires a huge computational load to compute the EIG of an sensor action.

Nevertheless, (5.39) and (5.40) can be considered as the lower bound and the upper

bound of the EIG for an MSA, which can be helpful in developing MSA control

methods in practice.

Eq. (5.34), (5.39) and (5.40) give us a general picture of how the EIG evolves

with respect to the control actions of an MSA. As one may expect, the EIG here is a

function of both the accuracy and coverage of the sensor (e.g. noise level, the size of

FOV) and the MSA’s kinematic state. Based on these results, one can mathematically

quantify the effect of both the intrinsic and the extrinsic configurations of the MSAs

the overall sensing performance, as well as evaluate the feasibility of the heuristics

78

that is used to formulate the objective function of MSA management. In fact, there

are some interesting properties of the EIG that can be derived from (5.34), (5.39) and

(5.40), which are not quite the same as one’s intuitions.

For instance, in a target search problem, the “gain” of a search action is often

formulated to be proportional to the probability of the existence of the target in

the FOV, i.e. PF (u). Many optimal search methodologies have been developed by

researchers based on this heuristic. However, this is not always the case in reality.

One simple counterexample is shown in Fig. 5.1. In this example, the target state

x(t) is assumed to be distributed in a one-dimensional, discrete space with

p−(x) =

⎧⎪⎨⎪⎩
0.08 x = 1, 2, 3, 4, 5;
0.3 x = 9, 10;
0 otherwise.

(5.41)

Assume that an MSA, equipped with a perfect sensor, is searching for the target

with a FOV of width 5.1. If we choose objective function as the detection probability

(PF (u)), the maximum detection probability that one can achieve through a one step

action is 0.6, which means that the FOV should be put somewhere around 9 and 10,

as shown in Fig. 5.1. Based on (5.40), the EIG of such an action is 0.085 in this

case. However, if the MSA put its FOV on top of region [1, 5] as shown Fig. 5.1,

the resulting EIG is 0.313, which is much larger than the previous one. This example

shows that even with a perfect sensor, the maximum detection probability criterion

does not necessary lead to the optimal sensing result. From the information-theoretic

point of view, this phenomenon does make sense. Although it is more likely to detect

target by looking at the region with a larger detection probability, the stake is that

if the target is not detected, the resulting uncertainty of the target state will still be

quite significant, which is uniformly distributed in region [1, 5] in this example. On

79

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

p−(x)

Figure 5.1: A simple example against the maximum detection probability criterion.

the other hand, by putting its FOV in region [1, 5], an MSA will be quite certain

about where the target is no matter the target is inside its FOV or not.

5.4 Entropy-based Formulations of the Sensor Management
Problems for MSAs

The analysis above shows that the evolution of the entropy in most cases follows

a saw-toothed pattern, which tends to increase over time until it is dragged down by

new measurements obtained by the MSAs as shown in Fig. 5.2. Since the entropy

here is essentially a measure of the uncertainty of a target system, by moving around

and collecting measurements, the MSAs can control the evolution of the entropy, and

thus to control the the uncertainty of the targets of interest.

80

t

t

t1 t2 t3 t4 t5 t6

x,t|Y t

Measurements

Figure 5.2: An illustration of the evolution of the entropy.

Therefore, we can interpret various MSA management problems into the language

of entropy evolution. In this section, we will take target search and target tracking

as two examples to study how to formulate the MSA motion control problem based

on the evolution of the entropy.

5.4.1 Case of Study 1: Target Search

The main task of target search is usually to locate the position of a target. If we

temporarily ignore the measurement noise of the sensor, p(x, t|Y (t)) becomes a pulse

function when the target is found by the MSAs. Consequently, eεx,t|Y (t) goes to zero

according to (5.1). Thus, from the control point of view, to search for a moving target

by a team of MSAs is equivalent to stabilizing the system eε(x,t|Y (t)). In a similar

way, the search problem in the discrete-space case can be translated to a stabilization

problem for ε(x, t|Y (t)).

81

As pointed out in Chapter 2, due to the effect of the limited FOVs of the MSAs,

the evolution of p(x, t|Y (t)) as well as that of the entropy ε(x, t|Y (t)) is non-linear

and non-Gaussian even both the target model and the measurements are linear and

Gaussian. As a result, it is almost impossible to solve the control problem for the

MSAs with respect to ε(x, t|Y (t)) directly. On the other hand, we have shown in

section 5.2 that the entropy is upper-bounded by the log of the area of the region with

non-zero p(x, t|Y (t)), which can be considered as an alternative metric of uncertainty

especially in the target search problem. Obviously, A(S(t|t)) also converges to zero

when eε(x,t|Y (t)) is stabilized. Therefore, we can further translate the search problem

to a stabilization problem of the system A(S(t|t)).
Now, let us take the imperfection of sensors into account. With sensor error and

noise, eεx,t|Y (t) (or εx, t|Y (t) for the discrete-space case) will not be zero when the

target is detected. Nevertheless, the objective of MSA control still is to reduce the

entropy as much as possible. The desired evolution pattern of the entropy is like a

diminishing saw-toothed curve, as shown in Fig. 5.3. If the measurement sampling

rate is high enough, the search problem can still be treated as a stabilization problem

of the entropy (the equilibrium is not zero, though).

In Chapter 6, we will study the target search problem based on this information-

theoretic formulation in more detail.

5.4.2 Case of Study 2: Target Surveillance

Unlike a target search task, the job of target surveillance does not end once the

target is detected. In addition to cut down the entropy as much as possible at each

prediction-and-estimation cycle, we often want to keep the entropy below a given

82

t

t

t1 t2 t3 t4 t5 t6

x,t|Y t

Figure 5.3: The desired evolution pattern of the entropy in target search.

threshold as well. Such a bounded entropy not only keeps the tracking errors at a

desired level, but also allows the motion controller of an MSA to simplify its mo-

tion planning strategies. For example, by keeping the extent of non-zero p(x, t|Y (t))

smaller than the FOV of an MSA (which also means ε(x, t|Y (t)) ≤ log AF), what

the motion controller has to do to take a non-empty measurement is just to drive

the MSA on top of the cloud of p(x, t|Y (t)). Thus, the motion planning problem in

between two measurement cycles reduces to a conventional point-to-point trajectory

design problem. It is worth noting that, if the the cloud of the target PDF is smaller

than the FOV of an MSA, ∆εb, ∆εmiss and ∆εfalse in (5.34) will cancel with other.

Thus, the EIG in the non-linear case will reduce to the information gain from the

measurement (∆εm) only, which is very similar to the linear-Gaussian case. As a

result, the argument that the maximums of the entropy (i.e. the peaks in Fig. 5.2)

are determined by the measurement sampling rate still holds for the non-linear case.

83

Thus, in order to keep the maximums of the entropy as low as possible, an MSA

has to make the measurement sampling rate as high as possible. Considering the

transition time between two consecutive measurements caused by motion and coverage

constraints on an MSA, the best motion plan is the one that generates the time-

optimal path for the MSA between two observations. In the case of monitoring

multiple targets, the desired motion plan becomes a time-optimal path that traverses

the targets. We will apply this entropy-based formulation to the more general multi-

MSA-multi-target (MMMT) case and study this multi-MSA motion planning problem

for multi-target surveillance in more detail in Chapter 7.

84

CHAPTER 6

COOPERATIVE SEARCH FOR A MOVING TARGET BY
MULTIPLE MOBILE SENSOR AGENTS: THE

NON-ESCAPE CASE

6.1 Introduction

Target search is a fundamental problem in automatic control and operations re-

search. The mathematical foundations of modern search theory originate from the

early work of Koopman [71], Stone [66], Brown [73], Tierney [74] Washburn [75] and

others. In these approaches, the search problem was formulated as an optimization

problem, whose objective is to maximize the payoff in a given finite period of time

by distributing the sensing effort across the field of interest. A major disadvantage of

search theory is that very few physical characteristics of the sensors have been taken

into consideration. The sensing effort was assumed to be both infinitely divisible and

arbitrarily allocatable in the space domain, which makes it very difficult to implement

those early search algorithms in practice. In particular, there has been increasing in-

terest to performing target search or other similar tasks using a group of mobile sensor

agents (MSA) such as Unmanned Air Vehicles (UAVs) in recent years. Because of

the physical constraints on the MSAs, the sensing effort is neither infinitely divisible,

nor arbitrarily allocatable in the space domain. As a result, the search problem is not

85

merely a mathematical optimization problem, but rather a motion control problem.

During the last few years, numerous cooperative control strategies and methods have

been reported by researchers for target search by multiple MSAs [23,24,77,78,81–88].

Most of these attempts are seeking optimal control solutions to variations of the

search problem addressed in search theory. In the meantime, there are several other

intriguing questions that have not been paid the attentions that they deserve. For

instance, it is often crucial to assess the load of a search task and the sufficiency of a

given amount of MSA resources first. Subsequently, one can then decide whether the

search strategy should be greedy or conservative, short-term or long-term.

In this chapter, we investigate the search problem from the resource management

point of view. Unlike most related work, which often focuses on maximizing a payoff

function (e.g. probability of detection) within a fixed amount of time, we seek theo-

retic boundaries for non-escape search with respect to the configuration of the search

problem and the characteristics of the MSAs.

The study in the previous chapter shows that searching for a moving target is

equivalent to stabilize the entropy of the target track PDF, or to stabilize the area

of the non-zero portion of the PDF in the case of perfect sensors. Based on this

consideration, a necessary condition in terms of the number of MSAs to possibly

fulfill a search task in finite time is derived. In other words, we provide a threshold

Mmin, such that there is always a non-zero probability of escape if the number of

MSAs is less than Mmin. Meanwhile, a sufficient condition in terms of the number of

MSAs 1to guarantee a non-escape search is also derived. In addition, a cooperative

search formation, the Progressively-Spiral-In (PSI) algorithm, for a multi-MSA team

86

to realize a non-escape search in finite time is presented. Both the upper bound and

the lower bound for a non-escape search are extended to heterogenous MSAs as well.

The rest of the chapter is organized as follows: section 6.2 lists the notation

that is used in this chapter and the assumptions that have been made. Then, some

basic concepts in curve expansion and curve contraction are introduced in section 6.3.

After that, an information-theoretic formulation of the search problem is proposed in

section 6.4. The major results of this chapter, a lower bound a team of MSAs to fulfill

a non-escape search task is presented in section 6.5, followed by the PSI algorithm

and a upper-bound of a non-escape search in section 6.6. Section 6.7 discusses the

applications of the main results of this paper in different search scenarios. Finally,

conclusions are given in section 6.8.

6.2 Notations and Assumptions

In this section, some basic notations and assumptions on the MSAs and the targets

that are frequently used throughout this chapter are introduced.

6.2.1 Notations

• R(R+): Set of real (positive real) numbers;

• Z: Set of integers;

• �·� : R→ Z: ∀r ∈ R, �r� = minz{z ≥ r, z ∈ Z};

• ‖ · ‖ : R2 → R: ∀o = [ox, oy]
T ∈ R2, ‖o‖ =

√
o2

x + o2
y;

• A(S): The area of S, S ⊂ R2;

• C(S): The boundary of S, S ⊂ R2;

87

• L(C): The length of curve C;

• d(x1, x2): The Euclid distance between two points x1, x2, where x1, x2 ∈ R2;

• d(x, S): The distance between a point x ∈ R2 and a point set S ⊂ R2, where

d(x, S) = min
x′∈S
{d(x, x′)}. (6.1)

• d̃C(x1, x2): The distance between two points along curve C. In other words, it

is the length of the segment of curve C between x1 and x2. In particular, if C is

a closed curve, the clockwise curve segment from x1 to x2 is taken into account.

• dC1(C2): The maximum of the minimum distance from C2 to C1:

dC1(C2) : max
x1∈C1

{min
x2∈C2

d(x1, C2)}, C1, C2 ⊂ R2. (6.2)

• φl(C, x)/φr(C, x): The left-hand/right-hand tangent vector of curve C, given

that C is at least directionally differentiable at x. Note that if C is smooth at

x, φl(C, x) = φr(C, x).

• κ(C, x): The curvature of curve C at point x, given that C is smooth at x.

• ⊥: Consider a straight line Ca ⊂ R2 and a curve Cb ⊂ R2, Ca⊥Cb if and

only if Ca and Cb only has one intersection x, where Cb is smooth and Ca is

perpendicular to the tangent of Cb at x.

6.2.2 The MSA Model

Denote si = [xi
s, y

i
s]

T ∈ R2 and θi
s as the 2-D position and heading of the ith MSA.

The kinematics of each MSA is simply modeled as :⎧⎪⎨⎪⎩
ẋi

s = vi
s cos θi

s

ẏi
s = vi

s sin θi
s

θ̇i
s = ui

(6.3)

88

where ui is the controller on ith MSA and vi
s is its the cruise speed.

Each MSA is assumed to be equipped with an on-board sensor. The sensor has a

limited field of view (i.e a footprint) centered at the MSA (Fig. 6.1). The following

notation is used to characterize the MSAs.

• F i(t): The closed region covered by the footprint of the ith MSA;

• F (t): The union of the footprints of all the MSAs, i.e. F (t) =
⋃

F i(t), i = 0..M − 1;

• Ai
s: The area of the footprint of the ith MSA;

• Li
s: The perimeter of the footprint of the ith MSA;

• vi
s: The cruise speed of the ith MSA;

• wi
s: The width of the sensor footprint, or the maximum span of the footprint

that is orthogonal to the heading of the ith MSA (Fig. 6.1).

• si
r(t) and si

l(t): The right-hand and left-hand ends of the longitudinal span of

the footprint of the ith MSA (Fig. 6.1).

For the purpose of simplicity, it is assumed that si(t), si
l(t) and si

l(t) are collinear

(Fig. 6.1). It is worth noting that the traveling distances of si(t), si
r(t) and si

l(t) have

the following relations.

Lemma 6.2.1: Denote C, Cr, and Cl as the trajectories of si(t), si
r(t) and si

l(t)

from ta to tb, respectively. If Cr is convex and
−−−−−−→
si

r(t)s
i
l(t) always points to its outward

normal directions (as shown in Fig. 6.2), then

L(C) = L(Cr) +
wi

s

2
(θi

s(ta)− θi
s(tb)), (6.4)

89

MSA

w
s

si
l

si
r

si

θi
s

(t)

(t)

(t)

(t)

Foorprint

(a) A circular footprint

MSA

w
s

si
l

si
r

si

θi
s

(t)

(t)

(t)

(t)

Foorprint

(b) A rectangular footprint

Figure 6.1: Examples of an MSA and its footprint.

and

L(Cl) = L(Cr) + wi
s(θ

i
s(ta)− θi

s(tb)). (6.5)

In particular, if Cr is a closed convex curve, we have

L(C) = L(Cr) + πwi
s, (6.6)

and

L(Cl) = L(Cr) + 2πwi
s. (6.7)

Proof: Consider an arbitrarily small segment of C and its counterparts on Cr,

which are denoted as δC and δCr, respectively (Fig. 6.2).

Since both segments are arbitrarily, they can be treated as two segments of arcs.

Thus, we have

L(δC) = rδθ = rrδθ +
wi

s

2
δθ = L(δCr) + wi

sδθ + o(δθ), (6.8)

90

where r and rr are the turning radius of arc δC and δCr, respectively.

By integrating both sides of (6.8) from ta to tb, we get (6.4). In a similar way, we

can get (6.5), (6.6) and (6.7).

Figure 6.2: Trajectories traveled by an MSA and two longitudinal ends of its footprint.

The sensor is assumed to be reliable, i.e. a target is detected by an MSA if and

only if it is inside the footprint of the MSA. In the majority of this chapter, it is

further assumed that the MSAs are homogeneous, which means Ai
s ≡ As, Li

s ≡ Ls,

wi
s ≡ ws, and vi

s ≡ vs for i = 0..M − 1.

6.2.3 The Target Model

Let xtgt = [x, y]T ∈ R2 stands for the 2-D position of the target. The motion of

the target is modeled as a plenary random process:

{
ẋ = υ(t) cosϑ(t)
ẏ = υ(t) sinϑ(t)

(6.9)

91

where υ(t) is uniformly distributed in [0, vt] and ϑ(t) is uniformly distributed in [0, 2π),

which means the target can move in any direction with speed up to vt.

We also use ptgt(x, t|Y (t′)) to represent the posterior probability density function

of xtgt(t) = x given Y (t′), where Y (t′) is the collection of all the observations of the

MSAs up to time instant t′ ≤ t.

Definition 6.2.1: The Survival Zone is a region S(t|t′) ⊂ R2 with non-zero

ptgt(x, t|Y (t′)):

S(t|t′) =
⋃{x; x ∈ R2, ptgt(x, t|Y (t′)) > 0}. (6.10)

Thus, according to the analysis in Chapter 5, to search for a moving target is

equivalent to stabilize the area of the survival zone of the target.

6.3 The Evolution of Plane Curves

The concept of curve expansion and contraction originates from the domain of

differential geometry, and has been used in various areas such as physics, biology,

chemical kinetics and computer vision [90–92, 94]. In this section, we will introduce

some basic concepts on the expansion and contraction of 2-D curves, which will be

useful in deriving the main results of this paper.

Definition 6.3.1: A continuous curve C ⊂ R2 is smooth almost everywhere if it is

smooth except for a finite number of points. These non-smooth points are called the

corners of C.

Note that a convex curve is at least smooth almost everywhere [95].

Definition 6.3.2: Consider a simple (i.e. no self-crossing), closed, continuous curve

C ⊂ R2, which is smooth almost everywhere. A curve C ′ ⊂ R2 is called an isotropic

92

expansion of C by d′, or C ′ = IE(C, d′), if

∀x ∈ C ′, d(x, S) = d′, (6.11)

where S is the region enclosed by C. In the meantime, a curve C ′′ ⊂ R2 is called an

isotropic contraction of C , or C ′′ = IC(c, d′′), if

∀x ∈ C ′′, d(x, S̄) = d′′, (6.12)

where S̄ is complement set of S in R2.

Definition 6.3.3: Consider a simple, closed continuous curve C ⊂ R2 and its

isotropic expansion C ′′ = IE(C, d). ∀q′′0 ∈ C ′′, a point q0 ∈ C is called an expansion

seed of q′′0 on C, or q0 = ρIE(q′′0 , C), if d(q0, q
′′
0) = d (Fig. 6.3). We also call q′′0 an

expanding point of q0 on C ′′.

Definition 6.3.4: Consider a simple, closed continuous curves C ⊂ R2 and its

isotropic contraction C ′ = IC(C, d). ∀q′0 ∈ C ′, a point q0 ∈ C is called a contraction

seed of q′0 on C, or q0 = ρIC(q′0, C), if d(q0, q
′
0) = min{d(x, q′0); x ∈ C} (Fig. 6.3). We

also call q′0 a contracting point of q0 on C ′.

In particular, an isotropic expansion or contraction of a closed, convex curve C

has the following properties:

• P1: Any isotropic extension of C is smooth and convex.

• P2: Any isotropic contraction of C is convex;

• P3: Let d = 1
2
min{d(q, C); ∀q ∈ S}, where S is the region enclosed by C.

C ′ = IE(C, d) is either a single point or a straight line segment.

93

• P4: Let C ′ = IE(C, d), ∀d ∈ R+. ∀q′ ∈ C ′ only has a unique expansion

seed q = ρIE(q′, C). In addition, we have qq′⊥C ′ and φr(q, C) ≤ φr(q
′, C ′) =

φl(q
′, C ′) ≤ φl(q, C).

• P5: Let C ′ = IE(C, d), ∀d ∈ R+. ∀q ∈ C, if q is not a corner, it only has a

unique expanding point on C ′. Denote this point as q′, it is true that qq′⊥C.

• P6: ∀q ∈ C, it has only one contracting point on any isotropic contraction of

C.

• P7: Let C ′ = IC(C, d), ∀d ∈ R+. ∀q′ ∈ C ′, φr(q
′, C ′) ≤ φr(q, C) ≤ φl(q, C) ≤

φl(q
′, C ′), where q = ρIC(q′, C).

• P8: Let C ′ = IC(C, d), ∀d ∈ R+. ∀q′ ∈ C ′, if q′ is not a corner of C ′, it only

has a unique contraction seed q = ρIC(q′, C), which is not a corner of C, either.

In addition, line qq′⊥C and qq′⊥C ′.

• P9: Let C ′ = IC(C, d), ∀d ∈ R+. ∀q′1 ∈ C ′ and ∀q1, q3 ∈ C, s.t. q1 and q3 are

both contraction seeds of q′1, it is true that ∀q2 ∈ ∆C is also a contraction seed

of q′1, where ∆C stands for the segment of C between q1 and q3 (Fig. 6.3).

• P10: Let C ′ = IC(C, d), ∀d ∈ R+. ∀q′1 ∈ C ′, let ql and q3 be the first and the

last contraction seed of q′1 on C in the clockwise order, respectively as shown in

Fig. 6.3. It is true that φl(C, q1) = φl(C
′, q′1) and φr(C, q3) = φr(C

′, q′1).

• P11: If C ′ = IE(C, d),

A(S ′) = A(S) +
L(C) + L(C ′)

2
d, (6.13)

where S and S ′ stand for the region enclosed by C and C ′, respectively.

94

Figure 6.3: Expansion and contraction of a 2-D curve.

6.4 The Evolution of the Survival Zone S(t|t) and its Area

A(S(t|t))

The analysis in Chapter 5 indicates that the target search problem is equivalent

to the stabilization problem of the area of the region with non-zero p(x, t|Y (t)), i.e.

the survival zone S(t|t) as defined in (6.10). In order to find an appropriate way to

stabilize A(S(t|t)), we study how S(t|t) and A(S(t|t)) evolves over time and changes

with respect to MSA’s motion in this section.

Compared with the entropy, A(S(t|t)) evolves in a much simpler way. Consider

the change of the S(t|t) of a target from any time instant t to t+ δt without any new

measurement information. As (6.9) indicates, the survival zone expends in such a way

that any x ∈ S(t|t) will lead to a non-zero ptgt(x
′, t+ δt|Yt), as long as d(x′, x) ≤ vtδt.

In other words, C(S(t + δt|t)) is an isotropic expansion of C(S(t|t)) by vtδt (Fig.

6.5(a)). Based on (P11) in Section 6.3, we have

A(S(t + δt|t)) = A(S(t|t)) +
L(C(S(t|t))) + L(C(S(t + δt|t)))

2
vtδt

95

= A(S(t|t)) + L(C(S(t|t))vtδt + o(δt). (6.14)

Now, let us take the new observations of the MSAs from t to t+δt into account. If

the target is detected, A(S(t+ δt)) = 0 and the search job is finished. Otherwise, the

non-detection observations of the MSAs will eliminate the possibility of the existence

of the target in the region covered by their footprints at current moment. In summary,

we have:

A(S(t + δt|t + δt))

=

{
0 if the target is detected;
A(S(t + δt|t))− A(F (t + δt) ∩ S(t + δt|t)) otherwise.

(6.15)

Since the focus of this paper is non-escape search, only the non-detection case (i.e.

the worst case) is considered here. The resulting update equation of the survival zone

then is

A(S(t + δt|t + δt))

= A(S(t|t)) + L(C(S(t|t)))vtδt−A(F (t + δt) ∩ IE(S(t|t), vtδt) + o(δt).(6.16)

Eq. (6.16) also lead to the following properties of S(t|t) directly.

Lemma 6.4.1: ∀t ≥ t0,

F (t) ∩ S(t|t) = ∅. (6.17)

Lemma 6.4.2: ∀x ∈ R2, if d(x, S(t|t)) > 0,

x �∈ S(t′|t) and x �∈ S(t′|t′), ∀t ≤ t′ < t +
d(x, S(t|t))

vt
. (6.18)

Lemma 6.4.3: ∀x ∈ R2, if x ∈ S(t|t)), it is true that ∀t′ ≤ t, ∀x′ ∈ S(t′|t′),
there exists a feasible trajectory of the target x∗(t) s.t. x∗(t′) = x′ and x∗(t) = x.

96

Remark 6.4.1: It is worth noting that A(S(t|t)) = 0 does not necessarily indicate

that the target is detected. A simple example for this extreme case is S(t|t)’s being

a curve segment. Fortunately, since F (t) is a closed set here, such a curve segment

will not be a stable equilibrium for S(t|t).
Lemma 6.4.4: Let an MSAs (denoted as MSA0) travels along curve C with

another MSA (denoted as MSA1) chasing him through another trajectory C ′, as

shown in Fig. 6.4. Denote x∗(t), t ∈ [ta, tb] as an arbitrary feasible trajectory of the

target that crosses C through the gap between MSA1 and MSA0 (i.e. x∗(t) intersects

the segment of C between line s1
r(t)s

1
l (t) and s0(t)). It is true that

∃τ ∈ [ta, tb], s.t. x∗(τ) ∈ F (τ),

if
d(s1(t), ŝ1(t))

vt
+

d̃C(ŝ1(t), s0(t))

vs
≤ ws

vt
, ∀t ∈ [ta, tb],

where ŝ1(t) is the intersection of C and line s1
r(t)s

1
l (t).

Figure 6.4: Illustration for Lemma 6.4.4.

97

Proof Let t′ be any one of the time instants that x∗(t) crosses C in between

MSA1 and MSA0. Also, let tc be the time instant that MSA0 passes x∗(t′) (i.e.

s0(tc) = x∗(t′) ∈ C).

According to Lemma 6.4.1 and Lemma 6.4.2, we know that

d(x∗(tc), x∗(t′)) ≥ ws

2
, (6.19)

i.e.

t′ − tc ≥ ws

2vt
. (6.20)

Denote td as the time instant that line s1
r(t)s

i
r(t) hits x∗(t′), i.e. ŝ1(td) = x∗(t′).

According to (6.19) and (6.20), we have

d(s1(td), ŝ
1(td))

vt

+ td − tc ≤ ws

vt

⇒ d(s1(td), ŝ
1(td))

vt

+ td − t′ ≤ ws

2vt

. (6.21)

Thus, we have

d(s1(td), x(td)) ≤ d(s1(td), ŝ
1(td)) + d(ŝ1(td), x(td))

= d(s1(td), ŝ
1(td)) + (td − t′)vt

≤ ws

2
, (6.22)

which means x∗(td) ∈ F 1(td).

In particular, when MSA1 follows the same trajectory as MSA0 (i.e. C ′ = C),

Lemma 6.4.4 reduces to the following:

Lemma 6.4.5: Let MSA1 travels along curve C following MSA0. For any

feasible target trajectory x∗(t) that crosses C between s1(t) and s0(t), t ∈ [ta, tb],

98

there exists a τ ∈ [ta, tb], s.t.

x∗(τ) ∈ F (τ), if
d̃C(s1(t), s0(t))

vs

≤ ws

vt

, ∀t ∈ [ta, tb]. (6.23)

Lemma 6.4.4 can also be easily extended to the case with heterogenous MSAs as

follows:

Lemma 6.4.6: Let MSA0 travels along curve C with MSA1 chasing him through

curve C ′. For any feasible target trajectory x∗(t) that crosses C between s1(t) and

s0(t), t ∈ [ta, tb], there exists a τ ∈ [ta, tb], s.t. x∗(τ) ∈ F (τ), if

d(s1(t), ŝ1(t))

vt
+

d̃Cc(ŝ
1(t), s0(t))

v1
s

≤ 1

2vt
(w1

s +
v0

s

v1
s

w0
s),

and d(s1(t), ŝ1(t)) ≤ w1
s

2
, ∀t ∈ [ta, tb]. (6.24)

Remark 6.4.2: Lemma 6.4.4 ∼ 6.4.6 indicate that any target that tries to cross

C through the gap between MSA1 and MSA0 will be detected by MSA1 at least

once if (6.19), (6.23) or (6.24) holds. In other words, S(t|t) will not propagate through

the gap between MSA1 and MSA0.

6.5 A Necessary Condition for Non-Escape Search

Theorem 6.5.1: There is always a non-zero probability of escape if the number

of MSAs is less than Mmin, where

Mmin =
2
√

πA(S(t0|t0))vt

wsvs + Lsvt

. (6.25)

Proof Consider the change of F (t) from t to t + δt, where δt is an arbitrarily

small time interval, as illustrated in Fig. 6.5(b).

F (t + δt) ⊂ F (t + δt) ∪ F (t)

99

(a) S(t + δt|t) (b) S(t + δt|t + δt)

Figure 6.5: The evolution of S(t|t) and A(S(t|t)) for the worst case.

= F (t) ∪∆F (6.26)

where ∆F =
⋃{x; x ∈ F (t + δt) and x �∈ F (t)}.

In addition, (6.17) implies that

A(F (t) ∩ S(t|t)) = 0, ∀t ≥ t0. (6.27)

Thus, we have

A (F (t + δt) ∩ S(t + δt|t))

≤ A (F (t) ∩ S(t + δt|t)) + A (∆F ∩ S(t + δt|t))

= A (F (t) ∩ S(t|t)) + A (F (t) ∩∆S) + A (∆F ∩ S(t + δt|t))

= A (F (t) ∩∆S) + A (∆F ∩ S(t + δt|t))

≤ MLsvtδt + Mwsvsδt + o(δt) (6.28)

where ∆S is the region enclosed by C(S(t + δt|t + δt)) and C(S(t + δt|t)).
Consequently, for the non-detection case in (6.15), we have

A(S(t + δt|t + δt))

100

= A(S(t + δt|t)−A(F (t + δt) ∩ S(t + δt|t))

≥ A(S(t|t)) + L(C(S(t|t)))vtδt−Mwsvsδt−MLsvtδt + o(δt). (6.29)

Recall that the perimeter of a 2-D region S and its area satisfies [96]:

L(C(S)) ≥ 2
√

πA(S). (6.30)

It is worth noting that (6.30) holds even if S consists of multiple disconnected

regions. The combination of (6.25) (6.30) and (6.29) will lead to

A(S(t0 + δt|t0 + δt))

≥ A(S(t0|t0)) + 2
√

π · A(S(t0|t0))vtδt−MLsvtδt−Mwsvsδt + o(δt)

> A(S(t0|t0)) + o(δt), (6.31)

and

A(S(t + δt|t + δt)) > A(S(t|t)) + o(δt), (6.32)

for any t > t0, if A(S(t)) ≥ A(S(t0)).

As δt→ 0, we then obtain that

A(S(t1|t1)) > A(S(t2|t2)), ∀t1 > t2 ≥ t0. (6.33)

In other words, A(S(t|t)) is unstablizable for the worst case.

The result in Theorem 6.5.1 can be easily extended to the case of heterogenous

MSAs as follows.

Theorem 6.5.2: There is always a non-zero probability of escape if

M−1∑
i=0

wi
sv

i
s + vt

M−1∑
i=0

Li
s < 2

√
πA(S(t0|t0))vt, (6.34)

101

6.6 The Progressively-Spiral-In (PSI) Algorithm and a Suf-
ficient Condition for Non-Escape Search

In this section, a multi-MSA search formation, called the Progressively-Spiral-In

algorithm (PSI), is introduced first. Then a sufficient condition in terms of the number

of MSAs to guarantee a non-escape search based on the PSI algorithm is presented.

Without loss of generality, the FOV of each MSA is assumed to be a disk centered

at si(t) with a radius of ws/2. It is worth noting that for MSAs with footprints of

other shapes, one can treat the maximum disk enclosed by the footprint as the pseudo

footprint. Thus, the results derived in this section can still be employed.

6.6.1 Algorithm Overview

Assume that the survival zone is a finite region initially (i.e. at t = t0, S(t0|t0)
is a finite subset of R2). Let C0 be the boundary of the convex hull of S(t0|t0). In

initialization, we arbitrarily pick one MSA (denoted as MSA0) as the leader, which

is placed at an arbitrary position along Ĉ0, where Ĉ0 = IE(C0, ws/2). The rest of

the MSAs (i.e the followers) also start from Ĉ0. Without loss of generality, we let

the followers be distributed counterclockwise along Ĉ0. The distances between two

consecutive MSAs satisfy

d̃Ĉ0
(si(t0), s

i−1(t0)) =
ws

vt

vs, i = 1..M − 1. (6.35)

All the initial headings of the MSAs are along the clockwise tangent direction of

Ĉ0 (i.e. θi(t0) = φl(Ĉ0, s
i(t0)),i = 0..M − 1).

When the search starts, MSA0 moves into the inside of C0, whose right-hand

end (i.e. s0
r(t)) shifts from C0 to its isotropic contractions by following a series of

102

clockwise spiral-in cycles, Csp
r (k). During each spiral-in cycle, MSA0 will complete a

360 degree turn, which will be explained in detail the next subsection.

As for the rest of the MSA team, MSAi (i > 0) will chase MSAi−1 Ĉ0 from si(t0)

to si−1(t0) first. Then it will follow the same trajectory that MSAi−1 passes. The

search ends when the target is detected.

In the rest of this section, we will use Csp(k) to stand for the corresponding

trajectory of s0(t) in the kth spiral-in cycle (k ≥ 1). In the meantime, the time

instant that MSA0 finish its Csp(k) is denoted as tk. In other words, Csp
r (k) (or

Csp(k)) starts at s0
r(tk−1) (or s0(tk−1)) and ends at s0

r(tk) (or s0(tk)).

6.6.2 The Construction of Csp
r (k) and Csp(k), k ≥ 1

Without loss of generality, let us assume that θ0
s(tk−1) = 2π. Each spiral-in cycle

Csp
r (k) starts from s0(tspk) and extends in the following way.

For any x ∈ Ccp
r (k), if x is not a corner of C ′,

κ(Ccp
r (k), x) =

{
µcκ(C ′, x) + κ0, if φl(C

cp
r (k), x) > (1− αk

2π
)φl(C

′, x);
0, if φl(C

cp
r (k), x) ≤ (1− αk

2π
)φl(C

′, x).
(6.36)

where

Ck = IC(Ck−1, d̃(s0
r(tk−1), Ck−1)) = IC(C0, d̃(s0

r(tk−1), C0)), (6.37)

C ′ = IC(Ck−1, d̃(x, Ck−1)) (6.38)

αk = arctan
dk

L(Ck−1)
. (6.39)

Here dk is a user chosen parameter, µc ≥ 1 and κ0 > 0 are predefined constants.

103

In the case that x is a corner of C ′, Ccp
r (k) will also make a sharp turn, whose

right-hand tangent direction is chosen as:

φr(C
cp
r (k), x) = (1− αk

2π
)φr(C

′, x). (6.40)

where C ′, αk are as defined in (6.38) and (6.39).

Based on (6.36) and (6.40), we can also get the corresponding controller on MSA0

to generate such a spiral-in cycle Ccp(k) as follows (for tk−1 ≤ t ≤ tk):

u0(t) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µcκ(C′,s0
r(t))+κ0

1+[µcκ(C′,s0
r(t))+κ0]ws/2

vs,
if s0

r(t) is not a corner of C ′

and φl(C
cp
r , s0

r(t)) > (1− αk

2π
)φl(C

′, s0
r(t));

2vs/ws,
if s0

r(t) is a corner of C ′

and θ0
s(t) ≥ (1− αk

2π
)φr(C

′, s0
r(t));

0, otherwise;

(6.41)

where C ′, αk are as defined in (6.38) and (6.39).

It is worth noting that (6.36) and (6.40) implies that both Csp
r (k) and Csp(k) only

make right turns. Thus, both of them are always convex.

6.6.3 Properties of Spiral-in Cycles

Lemma 6.6.1: For any x ∈ Csp
r (k),

d(x, Ck−1) ≤ dk, (6.42)

Proof Consider a very small segment ∆Csp
r of Csp

r (k) from q0 to q1 with its length

L(∆Csp
r) � 1 (as shown in Fig. 6.6). Let q′0 = ρE

r (q0, Ck−1) and q′0 = ρE
l (q1, Ck−1).

The segment of Ck−1 between q′0 and q′1 is then denoted as ∆Ck−1.

Since ∆Csp
r is arbitrarily small, we can guarantee that there is no corners of ∆Csp

r

in between q0(or q′0) and q1(or q′1). Thus, both ∆Csp
r and ∆Ck−1 can be treated as

104

straight line segments. According to the PSI algorithm, we have

∆d ≤ L(∆C ′) tanαk

=
L(∆C ′′)dk

L(Ck−1)

≤ L(∆Ck−1)dk

L(Ck−1)
(due to the convexity of Ck−1 and C ′), (6.43)

where ∆C ′ is the corresponding segment of ∆Csp
r on IC(Ck−1, d(q0, Ck−1)).

Let L(∆Csp
r) goes to zero and take integrations on both sides of (6.43) and we get

(6.42).

Figure 6.6: Illustration of Lemma 6.6.1.

Lemma 6.6.2: Consider a segment of a spiral-in cycle Csp(k) from s0(ta) to

s0(tb), tk−1 ≤ ta < tb ≤ tk, k ≥ 1. We have

d̃Csp(k)(s
0(ta), s

0(tb)) ≤ d̃Ĉk−1
(ŝ0(ta), ŝ

0(tb)), (6.44)

where Ĉk = IE(Ck, ws/2); ŝ0(ta) and ŝ0(tb) are the intersections of line s0
r(t)s

0
l (t) and

Ĉk−1 at ta and tb, respectively (as shown in Fig. 6.7).

105

Proof Consider an arbitrarily small segment δC of the Csp(k) from s0(t) = q0 to

s0(t+δt) = q1 as shown in Fig. 6.7. Let q′0 and q′1 as the intersections of line s0
r(t)s

0
l (t)

and Ĉk−1 at t and t + δt, respectively.

Because both Ĉk−1 and Csp(k) are isotropic expansions of convex curves, they are

both smooth. Thus, we can approximate δC and the segment of Ck−1 between q′0 and

q′1 by two line segments, as illustrated in Fig. 6.7. Due to the convexity of Ĉk−1 and

Csp(k), we know that � q′0q0q1 ≥ π/2 and � q′1q1q0 ≥ π/2. Without loss of generality,

let d(q0, q
′
0) ≥ d(q1, q

′
1). Thus, it is true that

L(δC) = d(q0, q1) + o(δt)

≤ d(q0, q
′′
1) + o(δt)

≤ d(q′0, q
′
1) + o(δt)

≤ d̃Ck−1
(q′0, q

′
1) + o(δt), (6.45)

where q′′1 is the intersection of line q1q′1 and the auxiliary line that is parallel to line

q′0q′1.

Letting δt goes to zero and integrating both sides of (6.45), we will get (6.44).

In a similar way, we can prove that

Lemma 6.6.3: ∀tk−1 ≤ ta < tb ≤ tk, k > 1,

d̃Csp(k)(s
0(ta), s

0(tb)) < d̃Csp(k−1)(ŝ
0(ta), ŝ

0(tb)), (6.46)

where ŝ0(ta) and ŝ0(tb) are the intersections of line s0
r(t)s

0
l (t) and Csp(k−1) at ta and

tb, respectively.

In particular, if we choose ta = tk−1 and tb = tk in (6.44) and (6.47), we will get

the following conclusion:

106

Figure 6.7: Illustration of Lemma 6.6.2.

Lemma 6.6.4: ∀k ≥ 1,

L(Csp(k + 1)) < L(Csp(k)) < L(Ck−1). (6.47)

Remark 6.6.1: Lemma 6.6.2 ∼ 6.6.4 indicates that the “gap” between MSA0

and MSAM−1 (i.e. the distance between ŝ0(t) and sM−1(t) along the spiral-in cycles)

is monotonically decreasing.

Lemma 6.6.5: During the first spiral-in cycle of the PSI algorithm,

d(s0(t), ŝ0(t) ≤ ws

2

⎡⎣
√√√√1 +

d̄2
1

L2(C0)
− 1

⎤⎦ + d̄1

√√√√1 +
d̄2

1

L2(C0)
, (6.48)

where d̄ = dIC(C0,dc)(C0) and ŝ0(t) is the intersection of line s0
r(t)s

0(t) and Ĉ0

Proof As the PSI algorithm indicates, the right-hand end of the footprint of

MSA0, s0
r(t) is shifting from C0 to its isotropic contractions. Depending on whether

s0
r(t) is a corner and MSA0’s heading, the status of s0

r(t) can be categorized into the

following three situations:

107

Case 1: s0
r(t) is not a corner of IC(C0, d̃(s0

r(t), C0)).

Denote q0
r as the contraction seed of s0

r(t) on C0 and q0 as the expanding point

of q0
r on Ĉ0, as shown in Fig. 6.8. Since s0

r(t) is not a corner, s0
r(t), q0

r and q0

are on the same straight line, which is perpendicular to both C0 and Ĉ0 (due to

(P5), (P6) and (P8) in section 6.3). According to the PSI algorithm, we know that

� s0(t)s0
r(t)q

0 ≤ α1 = arctan d1

L(C0)
. Meanwhile, due to the convexity of Ĉ0, one can

easily show that

d(s0
r(t), ŝ

0(t)) ≤ d(s0
r(t), q

1) =
1

cos α1

d(s0
r(t), q

0), (6.49)

where q1 is the intersection of line s0
r(t)s

0(t) and the tangent of Ĉ0 at q0, as illustrated

in Fig. 6.8.

Eq. (6.49) further leads to

d(s0(t), ŝ0(t)) = d(s0
r(t), ŝ

0(t))− ws

2

≤
√√√√1 +

d2
1

L2(C0)
d(s0

r(t), q
0)− ws

2

≤
√√√√1 +

d2
1

L2(C0)

(
ws

2
+ d1

)
− ws

2
. (6.50)

Clearly, the right side of (6.49) is monotonically increasing function of d1. Thus,

we can replace d1 by dIC(C0,d1)(C0) and the inequality still holds, which gives us (6.48).

Case 2: s0
r(t) is a corner of IC(C0, d̃(s0

r(t), C0)) and θ0
s(t) ≥ φr(C

′′, s0
r(t)), where

C ′′ = IC(C0, d̃(s0
r(t), C0)).

Denote q0
r as the expansion seed of ŝ0(t) on C0. According to (P7 and (P9) in

section 6.3, any q0
r in this case will be a contraction seed of s0

r(t), as illustrated in Fig.

108

Figure 6.8: Case 1 of Lemma 6.6.5

6.9. Therefore, we have

d(s0(t), ŝ0(t)) = d(s0
r(t), ŝ

0(t))− ws

2

≤ d(s0
r(t), q

0) + d(q0, ŝ0
r(t))−

ws

2

= d(s0
r(t), q

0)

≤ dIC(C0,d1)(C0). (6.51)

Comparing the right side of (6.51) with that of (6.48), we know that the inequality

in (6.48) holds in this case.

Case 3: s0
r(t) is a corner of IC(C0, d̃(s0

r(t), C0)) and θ0
s(t) < φr(C

′′, s0
r(t)), where

C ′′ = IC(C0, d̃(s0
r(t), C0)).

Denote q0
r as the last contracting seed of s0

r(t) on C0 (in a clockwise way). Ac-

cording to (P10) in section 6.3, we know that line s0
r(t)q

0
r is perpendicular to both

C0 and Ĉ0. Let q0 be the intersection of line s0
r(t)q

0
r and Ĉ0. Similar to Case 1, we

109

Figure 6.9: Case 2 of Lemma 6.6.5

have � s0(t)s0
r(t)q

0 ≤ α1 = arctan d1

L(C0)
, and

d(s0(t), ŝ0(t)) = d(s0
r(t), ŝ

0(t))− ws

2

≤ (1− 1

cos α1
d(s0

r(t), q
0)− ws

2
, (6.52)

which will lead to (6.48) in the same way as it does in case 1.

Lemma 6.6.6: In the rest spiral-in cycles in the PSI algorithm (i.e. k ≥ 1),

d(s0(t), ŝ0(t) ≤ ws

2

⎛⎝
√√√√1 +

d̄2
k+1

L2(Ck)
− 1

⎞⎠
+ (d̄k+1 + d̄k)

√√√√1 +
d̄2

k+1

L2(Ck)
, ∀tk ≤ t ≤ tk+1, (6.53)

where Ck is as defined in (6.37), d̄k = dIC(Ck−1,dk)(Ck−1) and ŝ0(t) is the intersection

of line s0
r(t)s

0(t) and Csp(k).

Proof Depending on whether s0
r(t) is a corner and its heading with respect to

the previous cycle, the status of MSA0 during the rest spiral-in cycles can also be

categorized into three cases as we did in the proof of Lemma 6.6.5. Here we only give

110

Figure 6.10: Case 3 of Lemma 6.6.5

the proof of (6.53) for Case 1 (i.e. s0
r(t) is not a corner). The proofs of the other two

cases are omitted since they can be achieved in a similar way.

Let q0 be the contraction seed of s0
r(t) on Ck, as illustrated in Fig. 6.11. Also, let

q1/q2 be the intersections of line s0
r(t)q0 and Csp

r (k)/Csp(k).

As illustrated in Fig. 6.11, it is clear that

d(s0
r(t), q2) ≤ ws

2
+ dk + dk+1. (6.54)

In the mean time, according to the PSI algorithm, we also know that

α ≤ αk+1, (6.55)

where α is as shown in Fig. 6.11).

Due to the convexity of Csp(k), it can be easily shown that

d(ŝ0(t), s0
r(t)) ≤

d(q2, s
0
r(t))

cos α
. (6.56)

111

Combining (6.54) (6.55) and (6.56), we get

d(ŝ0(t), s0
r(t)) ≤

ws/2 + dk + dk+1

cos αk+1
, (6.57)

which is equivalent to (6.53).

Figure 6.11: Illustration of Lemma 6.6.6.

Lemma 6.6.7: If the initial condition of the PSI algorithm satisfies that

d̃C0(s
0(t0), s

M−1(t0)) <
ws

vs

vt, (6.58)

there exists d1 > 0, s.t. any target that tries to move across the gap between MSA0

and MSA∗ during the first spiral-in cycle will be detected by at least one MSA, where

112

MSA∗ is the MSA that is ahead of MSA0. Note that MSA∗ is not necessarily to

be MSAM−1, since MSA0 may catch MSAM−1 and be ahead of MSAM−1 during

the first spiral-in cycle (in this case, MSAM−2 becomes MSA∗). Proof Let us first

consider the following function:

g(τ) =
ws

2

⎡⎣
√√√√1 +

τ 2

L2(C0)
− 1

⎤⎦+ τ

√√√√1 +
τ 2

L2(C0)
+

d̃C0(s
0(t0), s

M−1(t0))

vs
vt − ws.(6.59)

Obviously, g(0) < 0 < g(ws). Since g(τ) is a continuous function of τ , there exists

a d∗ ∈ (0, ws) s.t. g(d∗) = 0.

Consider C0 and its isotropic contraction IC(C0, d). Clearly, d̄(C0, IC(C0, v0t)) is

a continuous function of d. Therefore, there exists d∗
c > 0, s.t. d̄(C0, IC(C0, d

∗
c)) = d∗.

In the meantime, Lemma 6.6.3 indicates that

d̃C0(s
0(t0), ŝ

0(t)) ≥ d̃Csp(1)(s
0(t0), s

0(t)) (6.60)

Since MSA0 and MSAM−1 have the same cruise speed, we also have

d̃Csp(1)(s
0(t0), s

0(t)) = d̃C0(s
M−1(t0), s

M−1(t)) (6.61)

Combining (6.60) and (6.61), we can obtain

d̃C0(ŝ
0(t), sM−1(t)) ≤ d̃C0(s

0(t0), s
M−1(t0)). (6.62)

On the other hand, (6.48) indicates that d(s0(t), ŝ0(t)) is a monotonically-increasing

function of d1. Clearly, there exists a d∗
w, s.t. d(s0(t), ŝ0(t)) ≤ ws

2
, ∀d1 ≤ d∗

w and

∀t0 ≤ t ≤ t1.

Now, if we choose the constant d1 = min{d∗
c , d

∗
w} in the PSI algorithm, we have

d(s0
l (t), ŝ

0
l (t))

vt
+

d̃C0(ŝ
0(t), sM−1(t))

vs

113

≤ ws

2vt

⎡⎣
√√√√1 +

d̄2
1

L2(C0)
− 1

⎤⎦+ d̄1

√√√√1 +
d̄2

1

L2(C0)
+

d̃C0(s
0(t0), s

M−1(t0))

vs

=
ws

vt
, (6.63)

where d̄1 = d∗ = d̄(C0, IC(C0, d1)).

Based on Lemma 6.4.4, we get the conclusion that any target that tries to move

across the gap between MSA0 and MSA∗ during the first spiral-in cycle will be

detected either by MSA0 (before MSA0 catch MSAM−1), or by MSAM−1 (after

MSA0 goes ahead of MSAM−1).

In a similar way, one can also prove that

Lemma 6.6.8: In the PSI algorithm, if there exists dk−1 ≥ 0, s.t. any target

that tries to move across the gap between MSA0 and MSA∗ during the (k − 1)th

spiral-in cycle will be detected by at least one MSA, then there exists dk ≥ 0, s.t.

any target that tries to move across the gap between MSA0 and MSA∗ during the

kth spiral-in cycle will be detected by at least one MSA. Here MSA∗ stands for the

MSA that is ahead of MSA0 and k > 1.

Proof After MSA0 finishes the (k − 1)th spiral-in cycle. The MSA that is ahead

of him can be either MSAM−1 or others.

Case 1: MSAM−1 is ahead of MSA0 at tk−1:

Consider the following function:

g(τ) =
ws

2

⎡⎣
√√√√1 +

τ 2

L2(Ck)
− 1

⎤⎦
+ (τ + dk−1)

√√√√1 +
τ 2

L2(Ck)

+
d̃Csp(k−1)(s

0(tk−1), s
M−1(tk−1))

vs
vt − ws. (6.64)

114

Similar to Lemma 6.6.7, we know that there exists a d∗
c > 0, s.t. g(d∗) = 0, where

d∗ = d̄(Ck−1, IC(Ck−1, d
∗
c)).

Therefore, if we choose the dk = min{d∗
c , d

∗
w} in the kth spiral-in cycle (here d∗

w is

obtained in a similar way as we did in Lemma 6.6.7) we will have

d(s0
l (t), ŝ

0
l (t))

vt
+

d̃Csp(k−1)(ŝ
0(t), sM−1(t))

vs

≤ ws

2vt

⎡⎣
√√√√1 +

d̄2
k

L2(Ck−1)
− 1

⎤⎦
+(d̄k + d̄k−1)

√√√√1 +
d̄2

k

L2(Ck−1)

+
d̃Csp(k−1)(s

0(tk−1), s
M−1(tk−1))

vs

=
ws

vt
, (6.65)

where d̄k = d̄(Ck−1, IC(Ck−1, dk−1)).

Based on Lemma 6.4.4, we get the conclusion that any target that tries to move

across the gap between MSA0 and MSA∗ during the kth spiral-in cycle will be de-

tected either by MSA0 (before MSA0 catch MSAM−1), or by MSAM−1 (after MSA0

goes ahead of MSAM−1).

Case 2: MSAM−l is ahead of MSA0 at tk−1, l > 1:

Consider the gap between MSA0 and MSAM−l at tk−1. If d̃Csp(k−1)(ŝ0(tk−1),sM−l(tk−1) ≤
ws

2
, we can just use a smaller team of M − l + 1 MSAs (i.e. {MSAi}i=0..M−l) to

fulfill the rest search task. Similar to case 1 above, we have the conclusion that

there exist a dk > 0, s.t. any target that tries to move across the gap between

MSA0 and MSA∗ during the kth spiral-in cycle will be detected. In the case that

d̃Csp(k−1)(ŝ0(tk−1),sM−l(tk−1) > ws

2
, one can simply choose dk = 0. Note that the gap

between MSA0 and MSAM−l here will be covered by MSAM−l+1 instead of MSA0.

115

It is also worth noting that after such a “non-contracting” spiral-in cycle (i.e. dk = 0),

we will have d(ŝ0(tk), s
0(tk)) = 0, which leads to a similar situation as in the first

spiral-in cycle.

6.6.4 A Sufficient Condition for Non-Escape Search

Lemma 6.6.7 and Lemma 6.6.8 directly lead to the following theorem:

Theorem 6.6.9: Given a team of M homogenous MSAs and an initial probability

density function of the positional information of a target being distributed inside a

closed, convex curve C0 ⊂ R2, the MSAs team can perform a non-escape search in

finite time if

M > Mmax =
(L(C0) + πws)vt

wsvs

(6.66)

Proof In the PSI algorithm, every MSA except the leader (i.e. MSA0) is chas-

ing the one in front of him along the same path and with the same speed. Thus

d̃Csp(k)(s
i(t), si+1(t)) ≡ ws

vt
vs, i = 0..M − 2 all the time, which means there is no

chance that the target (or its survival zone S(t|t)) can leak out from the gap between

MSA i− 1 and MSA i, i = 1..M − 1. The only place one should look after is the gap

between MSAM−1 and the leader MSA0. According to Lemma 6.6.7 and Lemma

6.6.8, there exists a series of spiral-in cycles that can always prevent the target from

escaping from the gap between MSA0 and MSAM−1. Thus, S(t|t) will be maintained

inside the belt-shape zone enclosed by the trajectory of the right end of the footprint

of MSA0, s0
r(t). As implied by (6.59) and (6.64), dk will not converge to zero unless

L(Ck) goes to zero, which guarantees that S(t|t) will keep shrinking to its minimum

in finite time. As (P3) in section 6.3 indicates, Ck will contract to either a point or a

116

line segment, which means the target will be found by the MSAs in finite time even

for the worst case.

The result above as well as the PSI algorithm can also be extended to the case of

heterogenous MSAs with different width (but with the same cruise speed).

Theorem 6.6.10: Given a team of M MSAs with the sample cruise speed, and

an initial probability density function of the positional information of a target being

distributed inside a closed, convex curve C0 ⊂ R2, the MSAs team can perform a

non-escape search in finite time if

M−1∑
i=0

wi
s >

2(L(C0) + πw∗)vt

vs
, (6.67)

where w∗ = max{wi
s; i = 0..M − 1}.

Proof In this case, we can choose the MSA that has the maximum width w∗ as

the team leader. In the initialization stage of the PSI algorithm, we spread out the

MSA team along Ĉ0 = IE(C0, w
∗/2). The initial distance between each two MSAs is

chosen as d̃(si+1(t0), s
i(t0)) ≡ wi

s+wi+1
s

2vt
vs, i = 0..M − 2.

Similar to the case of homogenous MSAs, one can prove that there exist a set

of {dk}, s.t. S(t|t) will be maintained inside the belt-shape zone enclosed by the

trajectory of the left end of the footprint of MSA0, s0
l (t), which converges to a point

in finite time.

Remark 6.6.2: It is worth noting that the PSI algorithm is not limited to single-

target search only. By executing the PSI algorithm, any target that is inside S(t0|t0)
initially will be detected by at least one MSA. The PSI algorithm can also be helpful

in general information gathering problems. For instance, in applications such that

the MSAs only collect measurements (e.g. through an on-board camera) and send

them back (possibly to human operators) for off-line analysis, the PSI algorithm can

117

guarantee the appearance of all the moving targets that are initially inside the search

domain.

6.7 Application Examples and Discussions

6.7.1 Task assessment and Search Strategy Selection

The most straightforward application of the lower bound (i.e. Mmin) and the upper

bound (i.e. Mmax) is task assessment. Consider an L km by L km squareS(t0|t0) and

a team of M homogenous MSAs. For each MSA, we assume that its footprint is a

disk-shape footprint of radius 100m (i.e. ws = 200m), vs = 100m/s and wt = 20m/s.

The relationship between Mmax/Mmin and L is shown in Fig. 6.12. Thus, given a

specific search task, one can evaluate whether the MSA resource is sufficient or not.

If M is larger than Mmax (i.e. M falls in to zone S3 in Fig. 6.12), the PSI algorithm

is a good choice since it can guarantee a non-escape search. On the other hand, if

the M ≤ Mmin (i.e. M falls in to zone S1 in Fig. 6.12), an more aggressive and

short-term benefit oriented approach, such as the optimal search methods described

in [23, 24, 77, 78, 81–88], becomes a reasonable choice.

It is worth noting that the ratio between Mmax and Mmin decreases as the ratio

between vs and vt increases. In this experiment, Mmax

Mmin
converges to 1.5 as vs

vt
goes to

infinity (Fig. 6.13).

6.7.2 The PSI algorithm for limited number of MSAs

The PSI algorithm can still be useful even the MSA resource is not sufficient to

perform a non-escape search directly. For instance, given an M that falls into zone

S1 or S2 in Fig. 6.12, one can always find a smaller L = L′, which corresponds to

a smaller region that allows a non-escape search. Denote S ′(t0|t0) as such a subset

118

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

L (km)

M
min

M
max

S
3

S
2

S
1

M

L’

Figure 6.12: The relationship between size of S(t0|t0) and Mmax/Mmin.

of S(t0|t0) and let Psub =
∫
x∈S′(t0|t0) ptgt(x, t0)dx. By executing the PSI algorithm in

S ′(t0|t0), the MSA team will have at least a probability of Psub to find the target.

Consider a 10km × 10km square S(t0|t0), in which ptgt(x, t0) is uniformly dis-

tributed. Fig. 6.14 shows the relationship between Psub and M with ws = 200m,

vs = 100m/s and vt = 20m/s. In practice, the initial distribution of the target’s

state may not be uniform. In this case, Psub corresponds to the maximum probability

that S ′(t0|t0) can cover.

Thus, in the case the number of MSAs is not enough to realize a global non-escape

search, one can still use the PSI algorithm by concentrate on the main part of the

initial survival zone. In the meantime, we can also use Psub as a benchmark metric to

evaluate the performance of different search algorithms. Clearly, an aggressive search

119

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

4.5

5

v
s
/v

t

M
max

/M
min

Figure 6.13: The relationship between vs

vt
and Mmax

Mmin
.

120

algorithm that can not achieve an average detection probability of Psub is probably

not a better choice than the PSI algorithm.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Number of MSAs (M)

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

(P
sub

 in
 %

)

M
max

Figure 6.14: Detection probability by applying the PSI algorithm with limited MSAs.

6.7.3 Multi-team search for disconnected S(t0|t0)

The standard PSI algorithm starts from a convex hull of the initial survival zone.

In the case that the initial survival zone consists of multiple disconnected regions, we

may have more than one choice to realize a non-escape search.

For example, assume that S(t0|t0) consists of three convex regions, Sa, Sb and Sc,

as shown in Fig. 6.15. The simplest way to execute the PSI algorithm is to let an

121

MSA team start from the boundary of the convex hull of S(t0|t0) (denoted as Sabc in

Fig. 6.16). On the other hand, we can also divide S(t0|t0) into two subregions. One

is Sc, and the other is Sa ∪ Sb. Thus, we can separate the MSAs into 2 teams and let

each team execute the corresponding PSI algorithm with respect to its own search

region (i.e. Sc and Sab as shown in Fig. 6.17).

Obviously, different choices of tasking lead to different numbers of MSAs to fulfill

a non-escape job. In the example shown in Fig. 6.15, when Sa and Sb are much closer

to each other than they are to Sc, the 2-team search plan (Fig. 6.17) will require less

MSAs to guarantee a non-escape search than the single-team version (Fig. 6.16).

In practice, one can compare different tasking configurations and choose the one

that requires the minimum number of MSAs to fulfill a non-escape search. Clearly,

an S(t0|t0) that consists of N disconnected sub-regions will lead to 2N possible search

plans, either single-team or multi-team. Fortunately, such a task assessment proce-

dure takes place only once before the search starts, whose computational load is then

affordable in most applications.

Figure 6.15: An example of S(t0|t0) consisting of multiple disconnected regions.

122

Figure 6.16: A single-team search plan.

Figure 6.17: A two-team search plan.

6.8 Conclusions

In this chapter, the problem of searching for a moving target by multiple mo-

bile sensor agents (MSA) is studied. The search problem is formulated using an

123

information-theoretic approach, whose objective is to stabilize the entropy of the tar-

get system. An upper bound and a lower bound in terms of the number of MSAs for

the existence of a non-escape solution to the search problem are provided. In addition,

a multi-MSA search formation to find the target in finite time, the Progressively-

Spiral-In (PSI) algorithm, is proposed. The main result of this paper is further

extended to heterogeneous MSAs.

The PSI algorithm can be considered as a benchmark approach for performance

comparison among different target search methods. Future work in this area includes

the extension of the PSI algorithm to target search in inhomogeneous terrain surfaces.

The idea of survival zone control can also be applied to various sensing problems such

as border patrolling and region-based surveillance.

124

CHAPTER 7

MOTION PLANNING FOR MULTI-TARGET
SURVEILLANCE WITH MOBILE SENSOR AGENTS

7.1 Introduction

This chapter studies the cooperative motion-planning problem for monitoring N

targets by M mobile sensor agents (M < N). The work is motivated by the appli-

cation for Unmanned Air Vehicles (UAV) in both military [24,78,79,86] and civilian

surveillance systems [22]. The main part of this chapter has been published in [?].

Similar to the previous chapter, the MSA here is simplified as a point mass moving on

a 2-D plane at a constant speed, except that a non-holonomic constraint, a bounded

turning radius, is added to the model as follows:⎧⎪⎨⎪⎩
ẋj(t) = VMcosϑj(t);
ẏj(t) = VMsinϑj(t);

ϑ̇j(t) = uj(t), |uj(t)| ≤ VM/RM ;
(7.1)

where sj(t) = (xj(t), yj(t)) ∈ R2 and ϑj(t) ∈ [0, 2π] denote the horizontal position

and orientation of agent j (j = 1..M) at time instant t, respectively. VM is the speed

of the MSA; RM is the minimum turning radius; and uj(t) is the control input.

This model is also called the Dubins car in the literature [27,30,31,34,36,39], and

has been widely used as the kinematic model of UAV by researchers [21, 38, 55, 86].

125

Each MSA is assumed to have an onboard sensor with a restricted local field of view

around itself. In this work, the FOV of MSA j at time instant t is defined as a small

circle centered at sj(t), as shown in Fig. 6.1.a) in the previous chapter. However,

the general result developed here can be extended to other FOV shapes. It is also

assumed that the MSA’s move much faster than the targets, which agrees with reality

in UAV applications.

The task of the MSAs is to monitor a number of ground targets Q = {qi}, i = 1..N ,

where qi = (qix, qiy) denotes the expected ground position of target i. One can also

consider qi as the center of the cloud of the track PDF of the tth target. Without

further notice, we will use i and j as the indexes for the targets and the MSAs

respectively in the rest of this chapter. An example of the multi-MSA-multi-target

(MMMT) scenario is shown in Fig. 7.1. In order to keep the targets in surveillance

with limited MSA resources, the members of the MSA team have to move back

and forth to update the targets’ status. Therefore, the motion planning in such an

MMMT environment has to consider not only how each MSA goes from one point to

another, but also which target (or target set) each MSA should look after. This is

essentially a combination of the problems of sensor resource management and robot

motion planning. The main purpose of this research work is to seek a systematic

framework for designing a real-time implementable motion-planning approach for the

MMMT scenario.

126

Figure 7.1: An example of the MMMT scenario.

7.1.1 Related Work

Although both the problems of sensor resource management and robot motion

planning have been intensively studied for decades, very few available methods can

be directly applied to the MMMT scenario.

Most previous robot motion planning approaches assume that a simple, specific

origin-to-destination configuration is given to each agent, so that their main focus is

usually on the optimal path generation between two predefined positions [27–36, 39,

40, 42–45]. However, with limited resources of MSA’s, the task for each MSA often

covers more than one target, which cannot be interpreted as a simple end-to-end

configuration problem. Meanwhile, distinct from many traditional motion-planning

applications (e.g. target search [25, 26, 78, 79], and target engagement [41, 86]), the

surveillance job here does not end after each target is visited. The MSA’s have to

127

come back to the targets repetitively to update their status. The optimal path for a

given cycle is not necessarily optimal in the long run.

On the other hand, the majority of previous work in the area of sensor resource

management treats the sensor control problem as (or similar to) a sensor scheduling

problem [6–15], The management of sensors is used to be achieved by choosing differ-

ent sensors (or sensor modes) for different tasks (targets) at different time. Motion

planning is not involved in these approaches, which may not be a problem as these

approaches are applied to sensor platforms with large, global coverage. As for mobile

sensor platforms, however, controlling the sensors is not merely to assign them tasks

or schedules, but to find them motion plans.

Among the very few approaches in dealing with cooperative multi-sensor motion

planning, Parker et al. [49] formulated the motion planning problem as an optimiza-

tion problem, whose objective is to maximize the collective time during which each

target is monitored by at least one sensor agent. An approximation method based on

the ALLIANCE architecture has then been proposed in [49]. The motion control of

each agent is achieved in an implicit way by a force vector. The force vector is essen-

tially a tradeoff among different sub-goals to keep the agents within certain distance

to the targets as well as away from each other. Real-world experiments have demon-

strated the feasibility of this approach with sufficient sensor resources. Jung et al., on

the other hand, suggest a region-based approach for cooperative multi-target tracking

in a structured environment in [50], in which the whole area of interest is assumed

to be divided into topologically simple regions. The objective of individual motion

control is formulated to locate each agent a certain distance from the center of gravity

of targets that it is tracking. However, the cooperation among the robots within the

128

same region for multi-target tracking is not mentioned. Cortes et al. [51] studied

the multi-sensor localization problem in a polygonal environment, and developed a

gradient descent algorithm to realize optimal coverage and sensing policies. Each

sensor agent is expected to converge to its optimal location and stay there. Similar to

the other two methods mentioned previously, no motion constraints are considered,

which makes it very difficult to apply these approaches directly to non-holonomic

sensor agents with minimum-speed constraint, such as the Dubins car. Walker et.

al addressed the multi-agent-multi-target path-planning problem for the Dubins car

in [55]. In their approach, the coupled target assignment and path-planning problems

are solved at the same time by searching over a tree of step-wise feasible flying paths.

The real-time A∗ algorithm [46] is used to find a sub-optimal path for each agent.

By considering the effect of sensor footprint, this approach is capable of finding a

sub-optimal path for each agent which is not necessary to pass the targets as long

as they will be covered by the sensor footprint. Unfortunately, it is still difficult to

fit this method into the multi-target surveillance problem addressed here due to the

following reasons. First, although this method allows the targets to be visited multi-

ple times, the number of visits on each target has to be pre-determined before path

planning. Meanwhile, visiting a target multiple times does not necessarily lead to a

good tracking performance. It is how these multiple observations are made in the

time domain that determines the tracking performance. Furthermore, all the targets

are assumed to be strictly static in Walker’s approach [55]. Thus, the objective of

path-planning is to generate the shortest feasible paths for the MSA’s to traverse

the targets once or multiple times. There is no re-planning scheme in dealing with

a dynamic environment with moving targets. There are some other research work

129

that is related to the problem or a sub-problem of the problem addressed here, such

as [26, 37, 38].

7.1.2 Main Contributions

Studies in Chapter 5 has shown that the uncertainty of a target system, which is

represented by its entropy, is proportional to how frequently the target is observed.

Considering the transition time for an MSA’s switching from one target to another,

we model the MSA management problem here as an optimization problem, whose

objective is to minimize the average time duration (ATD) between two consecutive

observations of each target:

J =
1

N

N∑
i=1

ATDi, (7.2)

where ATDi is the ATD between two consecutive observations of the ith target over

a sufficiently large time period.

It is worth noting that the formulation above is distinct from previous approaches

[11,46,49–51,55], and can be applied to general surveillance and information gathering

problems with limited sensor resources, in which one target can be a building, an

intersection, a car under surveillance or a military unit.

Obviously, each components (i.e. ATDi) in (7.2) is a function of future states of

both the MSAs and the targets. As pointed out in [49], the general MMMT motion

planning problem is NP hard both in the number of targets and in the number

of sensor agents. Thus, looking for the global optimal solution is computationally

prohibitive. In addition, since the target are mobile, a long term optimal motion plan

is neither effective nor necessary. The desired MMMT motion-planning approach is

probably a combination of an appropriate short-term planning method and a timely

130

re-planning scheme. Based on these considerations above, a sub-optimal motion-

planning approach for the MMMT problem is proposed in this chapter.

The main contributions of this work are the following:

1. A computationally efficient gradient-based method is developed to determine a

sub-optimal loop path for a single MSA to traverse multiple target points (i.e.

the single-MSA-multi-target (SMMT) case). The core of this SMMT motion

planning approach is the idea of searching for the optimal path with respect to

the orientations of the MSA when it passes that targets. This method can also

be applied to the general multi-target engagement problem.

2. A decentralized on-line motion-planning algorithm for multi-target tracking by

multiple MSAs is proposed. In this algorithm, the targets are divided into

M (i.e. the number of MSAs) disjoint groups based on a simple geometric

clustering method. Each target group is assigned to a single MSA, and the

sub-optimal traversal path generated by the aforementioned SMMT motion-

planning method is considered as a short-term plan for each MSA. As the targets

are moving around, on-line re-planning is conducted asynchronously on each

MSA in a decentralized way. Target hand-off will be triggered among MSAs if

new target-grouping result is obtained.

The rest of the chapter is organized as follows. The existing methods for the sim-

plest single-MSA-single-target (SMST) case is briefly reviewed in section 7.2. Then,

a sub-optimal path generation approach for a MSA of type Dubins to traverse a set

of target points in minimum time (i.e. the SMMT case) is introduced in section 7.3.

After that, a target-based on-line motion-planning algorithm for the MMMT case is

131

proposed in section 7.3, followed by the coverage stability of the approach discussed

in section 7.5. Simulations and results are shown in section 7.6. Finally, conclusions

are given in section 7.7.

7.2 Time-Optimal Motion Planning for Single Target En-

gagement (the SMST Case)

When there is only one MSA and one target, the motion-planning problem (7.2)

is equivalent to the traditional single target engagement problem [27–36,39]:

Minimize J =
∫ tf
t0 dt, (7.3)

subject to equation (7.1),

with s(t0) = q0, ϑ(t0) = ϑ0, s(tf) = q1, ϑ(tf) = ϑ1.

Note that in different applications, the initial and final conditions (i.e. q0, ϑ0, q1

and ϑ1) can be either fixed or free. The earlier work of Dubins [27] has proved the

existence of a time-optimal path for a system of type (7.1). More recently, Reeds

and Shepps [28] have extended the work to the case that the robot can move both

forward and backward. Meanwhile, Sussmann [33] and Boissonnat [34] have solved the

problem using Pontryagin’s Maximum Principle, which coincides with the following

theorem given by Dubins in [27]:

Lemma 7.2.1: For the time optimal control problem described in (7.3) with

any initial and final configurations, there exists a minimum-time trajectory χ∗ for

system (7.1), which is a combination of arcs from circles (which we shall denote as

C) and straight line segments (which we shall denote as L). More specifically, the

time-optimal path χ∗ is a sub-path of a path of type Circle-Line-Circle (CLC) or of

type Circle-Circle-Circle (CCC).

132

Practically, the minimum-time trajectory as well as the corresponding control u∗

can be determined by simple geometric methods, which basically choose the shortest

path from a finite set of extremal trajectories. An example of seeking the optimal

trajectory is shown in Fig. 7.2. In this example, there are only 4 candidate paths that

satisfy Lemma 7.2.1, which are CLLCR (i.e. a left-turn arc followed by a straight line

and a right-turn arc), CLLCL, CRLCL and CRLCR. The minimum-time trajectory

in this case is CRLCR. More complete discussions on how to geometrically synthesize

the optimal trajectory can be found in [30–33].

Remark 7.2.1: The geometric method provides us a convenient way to spec-

ify the minimum-time trajectory for an end-to-end problem. This computationally

low-cost feature of the geometric solution to the SMST problem is very helpful in

developing our algorithm for the multi-target case.

7.3 A Sub-optimal Motion Planning Approach for the SMMT

Case (M = 1, N > 1)

In this section, we focus on the case of a single MSA (M = 1) monitoring multiple

targets (N > 1). Given a specific list of targets, a MSA has to move around and

update the status of the targets one after another. Here we further assume that the

targets are spread in the field of interest with considerable distance among each other.

In the case that several targets are very close to each other, we can merge them can

treat the group as a pseudo target. Thus, the corresponding motion plan for the MSA

is a traverse path. By traverse here we mean one MSA visiting each target once along

such a path. Since the surveillance job is not finished after one cycle, what we are

looking for is actually a loop path. To minimize (7.2), the MSA has to execute the

traverse loop as fast as possible. Similar to (7.3), we can rewrite (7.2) for this case as

133

−400 −350 −300 −250 −200 −150 −100 −50 0 50

−150

−100

−50

0

50

100

150

200

Origin
Destination

C
L
LC

L

C
L
LC

R
C

R
LC

R

C
R

LC
L

Figure 7.2: An example of finding the minimum-time trajectory.

the following time-optimal control problem:

arg min
Q′,u

J(Q′|Q′ = {q′i} ∈ Ω) =
1

N

N∑
i=1

Ti, (7.4)

subject to: equation (7.1),

with s(t0) = q′0, and s(t0 + Ti) = q′i,

where q′N = q′0, Ω is the collection of all permutations of the target set Q = {qi}, Ti

is the flying time between q′i−1 and q′i due to the controller u.

Although motion planning for the single target case is quite a mature area, the

extension of the available methods to the multi-target case is a non-trivial problem.

As (7.4) implies, to find the optimal motion plan, one has to search for the best

traverse order as well as the time-optimal trajectory for it. The number of possible

134

30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

α
0

α
1

q
1

q
0

q
2

q
3

q
4
 q

5

geomeric center

target points

Figure 7.3: An example of determining the traverse order.

sub-optimal trajectories in the search space increases exponentially as the number of

targets increases. For example, a set of N targets will lead to (N−1)! distinct traverse

order (rather than N ! due to the symmetry of a loop), which makes it very difficult

to achieve the optimal path since the search space is literally (N − 1)! times bigger.

Fortunately, since we are looking for a loop path in the MSA-target scenario, the

desired path is usually in a circle pattern around the geometric center of the targets.

Based on this heuristic observation, here we develop the following geometric method

with much less computational complexity (O(N log N)) to determine a sub-optimal

the traverse order first.

135

7.3.1 Determination of the Traverse Order

The geometric method to determine the traverse order consists of three steps:

1. Calculate the geo-center (q̄) of the target set Q = {qi};

2. Calculate the orientation (αi) of each target point (qi) with respect to the center

q̄, as shown in Fig 7.3;

3. Sort the target points by {αi} and the result is chosen as the traverse order.

After determining the traverse order, the motion-planning problem for the SMMT

case further reduces to a pre-ordered multi-target engagement problem.

7.3.2 Motion Planning for the SMMT Case with a Given

Traverse Order by Approximated Gradient Decent

Definition 7.3.1: Given a target set Q = {qi}i=0..N−1, an impact angle configu-

ration Θ is the set of impact angles Θ = {θi}i=0..N−1, where θi denotes the orientation

of the MSA as it passes target i.

Definition 7.3.2: A motion plan χ(Q, Θ) = {χi(Q, Θ)} is an admissible motion

trajectory for the MSA to traverse a pre-ordered target sequence Q = {qi}i=0..N−1,

where χi(Q, Θ) denotes the sub-path of χ(Q) from qi to qi+1. Note that in the case

of a loop path, qN = q0.

The time for the MSA to execute a motion plan χ is then denoted as J(χ).

Definition 7.3.3: A motion plan χ(Q, Θ) is a Dubins path if each sub-path

χi(Q, Θ) of χ(Q, Θ) is the time-optimal path between qi and qi+1 that satisfies (7.3).

According to Lemma 7.2.1, we know that for any given target set Q and its impact

angle configuration Θ, there exists a motion plan that is a Dubins path. We denote

this path as χ̄(Q, Θ).

136

Lemma 7.2.1 also leads to the following important properties of a Dubins path:

Property 7.3.1: Given two impact angle configurations (Θ, Θ′) and the corre-

sponding Dubins paths: χ̄(Q, Θ) and χ̄(Q, Θ′), if θi = θ′i for all i = 0..N−1 except for

i = i∗, then we have χ̄i(Q, Θ) = χ̄′
i(Q, Θ) for all i = 0..N − 1 except for i = i∗ − 1, i∗.

Property 7.3.2: Define Γ(Q) as the collection of Dubins paths for all possible

impact angle configurations: Γ(Q) =
⋃

Θ{χ̄(Q, Θ)}, where χ̄(Q, Θ) denotes the Dubins

path that traverses Q with impact angle configuration Θ. If a motion plan χ∗ is the

global minimum-time plan, it follows that χ∗ ∈ Γ(Q).

Remark 7.3.1: Property 7.3.2 tells us that given any impact angle configuration

Θ, the only candidate for the global time-optimal path is the Dubins path χ̄(Q, Θ).

Therefore, in order to obtain the time-optimal path, we can minimize J(χ̄(Q, Θ))

by searching in the space Γ(Q). An intuitive way to realize that is to use the gradient

method. However, the nature of the Dubins path is space-dependent, which can not

be formulated in a simple explicit way and so is J(χ̄(Q, Θ)). Meanwhile, the cost

function J(χ̄(Q, Θ)) may not even be differentiable as some sub-paths of χ̄ change

their types. To deal with this problem, we use the following gradient approximation

method.

Consider two different impact angle configuration Θ = {θ0, θ1, ..θi, ..θN−1}, and

Θ′ = {θ0, θ1, ..θ
′
i, ..θN−1}. Let χ = χ̄(Q, Θ) and χ′ = χ̄(Q, Θ′)) be the corresponding

Dubins paths. According to Corollary 1, we have:

J(χ)− J(χ′) = J(χi−1) + J(χi)− J(χ′
i−1)− J(χ′

i). (7.5)

Based on (7.5), we can approximate the gradient function Jθi
(χ) as:

∂J(χ)

∂θi
≈ J(χ+)− J(χ−)

2∆θ

137

=
J(χ+

i−1) + J(χ+
i)− J(χ−

i−1)− J(χ−
i)

2∆θ
, (7.6)

where χ+ = χ̄(Q, {θ0, ..θi+∆θ, θi+1, ..θN−1}) and χ− = χ̄(Q, {θ0, ..θi−∆θ, θi+1, ..θN−1}).
Remark 7.3.2: One important feature of (7.6) is that the change of the impact

angle of one target point qi only affects two sub-paths of χ̄: χ̄i−1 (from qi−1 to

qi) and χ̄i (from qi to qi+1). Thus, the computational complexity of calculating

the approximated gradients ∇J̃Θ is just O(N), which is equivalent to that of the

traditional gradient method, rather than O(N2).

With the help of (7.6), we can search for a sub-optimal path in a recursive way as

the traditional gradient method does. The corresponding update equation for Θ is:

Θ(k + 1) = Θ(k)− η∇J̃Θ, k ≥ 0 (7.7)

where η controls the convergence speed of the algorithm. The initial condition Θ(0)

can be randomly chosen.

The approximated gradient method provides us a fast way to find a optimum.

However, unlike the single target case, there are many local minima for the SMMT

traverse problem. Fig. 7.4.a shows an example of sub-optimal path obtained by the

approximated gradient method introduced above, while the global minimum-time

path in this example is shown in Fig. 7.4.b.

To get a better local optimum, Yang et al. [38] suggest a set of empirical initial

angular configurations that can preserve a good search performance. In this ap-

proach, we revise optimization procedure above by adding a check-and-flip procedure

as follows.

138

7.3.3 Optimization Improvement

By carefully investigating the sub-paths that pass each target (as shown in Fig.

7.5), it is noticed that most of the local minimal paths have at least one such sub-path

that is an arc larger than π (Fig. 7.5.a). For example, the sub-optimal path shown in

7.4.a has two large arcs as it passes the upper-left target and the bottom-right one.

For each of these sub-pathes (e.g. Fig. 7.5.a), a better configuration often comes

from a totally opposite impact angle (e.g. Fig. 7.5.b). Based on this observation,

here we revise the approximated gradient method by adding an extra step to check

the characteristics of a “sub-optimal” path when it converges to a local minimum.

According to Lemma 7.2.1, the sub-paths that comes into and goes out from one

target point qi are two arcs (ÂB and ÂC in Fig. 7.5). Denote the radians of the two

arcs as βin
i and βout

i , as shown in Fig. 7.5. We revise the search algorithm as:

1. Search the optimal path by the approximated gradient method until it converges

to a local minimum;

2. Calculate the radians of the arcs passing each target point: ρ(i) =| cin
i βin

i +

cout
i βout

i |;

3. i∗ = argmaxi{ρ(i)},where cin
i , cout

i = 1 if the arc is clockwise and −1 otherwise;

4. If ρ(i∗) ≤ π or k > Tk, quit, where k is the counter of the number of flips;

5. Flip the impact angle of target i∗ over: θi∗ ← θi∗ + π, k = k + 1, and go back to

step 1).

The additional steps 2)-5) in the algorithm above is called the procedure of check-

and-flip, which reverses the impact angle on a target when the sub-path that passes

139

0 400 800
0

500

1000

0

500

1000

0 50 100 150 200 250
4000

5000

6000

7000

8000

Iteration indexes

Le
ng

th
 o

f t
he

 p
at

he
s

0 400 800

0

500

1000

without flipping
with flipping

target points
sub−optimal path
impact angle

(a) (b)

(c)

Local minima

targets

impact angle

Figure 7.4: An example for the SMMT case (N = 5): a) The sub-optimal path
without flipping; b) The sub-optimal path with flipping; c) Length comparison.

it an arc larger than π. As the example illustrated in Fig. 7.4 shows, the revised

algorithm evolves exactly the same way as the approximated gradient method does

until a local minimum is found. Without the check-and-flip procedure, the search

will stop and a sub-optimal path is obtained (Fig. 7.4.a). Because of the flipping,

this revised algorithm is capable of escaping from this local optimum and another

one following that (Fig. 7.4.c), which helps the search converge to a shorter path as

shown in Fig. 7.4.b.

140

(a) before flipping (b) after flipping

impact angle

Figure 7.5: Illustration of the check-and-flip procedure: a) before flipping; b) after
flipping.

It is worth noting that in some extreme cases, a flip does not necessarily lead

to a better local optimum. Therefore, each local minimum is saved before flipping.

We also limit the number of check-and-flip procedures within a certain threshold Tk,

as indicated in step 4). The shortest path among the multiple local minima is then

selected as the search result.

Remark 7.3.3: The check-and-flip procedure here can help to improve the op-

timization performance, but still does not guarantee the convergence to the global

optimum. Especially, when two target points are close to each other, the effectiveness

of the check-and-flip procedure is limited. In fact, it is not very efficient to visit two

close targets individually. Taking advantage of the FOV of an MSA, a simple way to

deal with two close target is to merge them together and replace them by a pseudo

target. It is also worth noting that to merge the targets is not a trivial task if the

target density is high.

141

Remark 7.3.4: In the case that the FOV of an MSA is very small, another pos-

sible way to deal with close targets is to fix the sub-path between two close targets

by a straight line segment directly. By doing so, we actually fix the impact angles

of these two targets. Fortunately, the approximated gradient method still applies to

this situation, since the numerical gradient of each impact angle is computed inde-

pendently in this method. Note that due to the minimum turning radius constraint,

the straight line segment option can only be applied to every other pair of target

points. In the case that all the targets are close to each other, the resulting traversal

path is equivalent to that of the Alternating Algorithm introduced in [47].

Remark 7.3.5: Since the detail of the optimization process is not the main focus

of this study, a generic gradient decent formulation is chosen in (7.7). A lot of practical

methods can be applied to select a good step size, possibly in a dynamic fashion.

There are also many other more sophisticated optimization tools other than gradient-

based methods [98] that can be used to improve the optimization performance.

Remark 7.3.6: The path generation algorithm introduced here can be extended

to the general multi-target engagement scenario with a given order, which is not

necessarily to be a loop (i.e. qN �= q0). The geometric method to determine the

traverse order introduced earlier, however, is not suitable for the general multi-target

engagement problems without a pre-determined order.

7.4 A Decentralized Cooperative Motion Planning Approach

for the MMMT Case

The general MMMT motion planning problem is NP hard both in the number

of sensor agents (M) and the number of targets (N) [49]. It is computationally

prohibitive to find the optimal solution for motion planning. Furthermore, due to the

142

nondeterministic motion of the targets, it is even more difficult to make an optimal

long-term motion plan for the MSAs. In this section, we propose a sub-optimal on-line

motion planning approach with a lower computational load as follows.

In this scenario, the MSAs are the only sensor sources available. Without any

prior knowledge, the motion of the targets is un-predictable. Here we use the most

previous positional measurement of each target as its estimated position until it is

renewed by the MSAs. Since we assume the MSA moves much faster than the targets,

the possible movements of the targets are then regarded as system perturbations,

which are adapted by adjusting the motion plans through on-line re-planning.

At each time, the motion planning consists of two steps: Task Decomposition and

Individual Path Generation.

In Task Decomposition, the whole task of tracking N targets is divided into M

disjoint task assignments. Then, given a task assignment, each MSA makes its own

motion plan, which can be achieved by the approach introduced in the previous

section.

7.4.1 Task Decomposition

Given a set of N elements, the total number of ways to partition these elements

into M non-empty subsets is called the Stirling Set Number S(N, M). We shall use

this notion with the elements representing targets. The Stirling Set Number can be

obtained by the following equation [57]:

S(N, M) =
1

M !

M−1∑
j=0

(−1)jC(M, j)(M − j)N , (7.8)

where C(M, j) is a binomial coefficient.

143

Eq. (7.8) indicates that S(N, M) increases exponentially as N or M increases,

which makes the task decomposition an NP hard problem by itself. Since the desired

motion plan for each MSA is a traverse loop and the ultimate goal is to have the

MSAs execute their loop pathes in shortest time, it is more likely that the optimal

partitioning divides the targets into clusters. Based on this consideration, we use the

K-means clustering method here to realize the task decomposition in a recursive way.

The details of the K-means clustering method can be found in [61].

After the task decomposition, we still have to distribute the M tasks (i.e. target

groups) among the M MSAs. An optimal assignment is defined as the one that

requires the shortest total time for the MSAs to catch up their tasks. To achieve such

an optimal M-to-M assignment, we use Murty’s k-best algorithm [58].

Remark 7.4.1: Although the M-to-M assignment still yields a considerable com-

putational load, it only happens once in the initialization stage of the MMMT motion-

planning problem. With the assumption that the MSAs move much faster than the

targets, the majority of the new target assignments generated by on-line re-planning

(see to the next subsection) will be consistent to the previous ones. Most MSAs

will stay with their current target groups after re-planning, except that some targets

may be switched to other groups. In implementation, the cluster center q̄j from the

previous planning cycle can be used as the default initial cluster center for MSA j’s

new motion plan. No M-to-M assignment is needed in the re-planning. Therefore, as

far as the long-term performance is concerned, the cost of assignment initialization

can be neglected. There are also several approaches suggesting an efficient way to

implement the k-best assignment algorithm [59] [60].

144

7.4.2 Online Motion Planning

The motion plan for each MSAs is essentially a function of the expected positions

of the targets (Q). In reality, a target may move away from its previous spot. It

is necessary to have a corresponding re-planning scheme as the target information is

updated. In this approach the motion re-planning is achieved in a decentralized way.

Define Qj(k) = {qj
i (k)}, i = 1..nj as the task assignment for MSA j, at time tk.

Since the status of one target qj
i (k) can only be updated when it is observed by MSA

j, it is reasonable for the MSA to renew its traverse plan once the status of each target

in its task assignment is updated (from Qj(k) to Qj(k+1)). As one MSA re-considers

its motion plan, it may decide to change its task assignment, which means the MSA

may request some targets from or pass some targets to other MSAs. The exchange

of target assignment here is called a procedure of target hand-off. In summary, a

re-planning process is activated on one MSA by either one of the following events:

Event 1: A MSA finishes its current traverse loop

In this case, the MSA will reconsider it’s task assignment by re-grouping the targets

based on its own target information and the most recent information it obtained from

other MSAs. Here we assume that the target information is shared by the whole MSA

team. Note that to guarantee such a communication capability, the communication

channel among the MSAs has to have a bandwidth no less than O(MN) [49].

If there is no change in the task assignment (i.e. Qj(k+1) = Qj(k)), the MSA only

has to adjust its own traverse loop path. Otherwise, a target hand-off is triggered.

Event 2: A MSA is requested for a target hand-off

In this case, the MSA will renew its target list (Qj(k+1)), and then replan the optimal

path for the new task. Note that there will be no negotiation between the MSA in this

145

approach, a MSA involved in a target hand-off will unconditionally accept the change

request of its task assignment. There are several advantages of this non-negotiation

scheme. First of all, there will be no dead-lock in the decision making among MSAs.

Secondly, the task partitioning is always complete, since no target will be abandoned

accidently during the target hand-off.

Remark 7.4.2: It is worth noting that for Event 1, one MSA will go through

the whole motion-planning procedure, which including task re-decomposition (based

on its own global information) and its own path re-generation. As for the result of

Event 2, however, one MSA only has to update its own path. In summary, the on-

line re-planning is achieved asynchronously by the MSAs. One MSA re-considers its

motion plan only when either of the two events above happens.

Once a re-planning process is activated, the MSA will renew its traverse path

according to the new task assignment, and catch it up from its current configuration,

which is briefly summarized as follows:

1. Renew the traverse order from Qj(k) to Qj(k + 1):

In case of Event 1, keep qj
0(k) as the start point: qj

0(k + 1)← qj
0(k);

In case of Event 2, choose the next un-visited target point in the previous plan

as qj
0(k + 1),

2. Renew the traverse path χ̄(Qj(k + 1), Θj(k + 1));

3. Obtain the minimum-time path from the current configuration of the MSA {s(tk), ϑ(tk)}
to the start point of the new traverse loop {qj

0(k + 1), θj
0(k + 1)};

4. Execute the new traverse path χ̄(Qj(k+1), Θj(k+1)) from qj
0(k+1) to qj

nj−1(k+1)

until a new event is triggered.

146

7.5 Coverage Stability Analysis

Stability and robustness is very important to a motion plan, and show how re-

liable the motion plan is in response to system perturbations. Some perturbations

are caused by numerical errors when we generate the desired trajectory coordinates

from the motion plan, or by process noises as we realize the trajectory in physical

maneuvering. A good analysis on the stability and robustness of the time-optimal

trajectory generation for a Dubins car can be found in [36]. To deal with the high

sensitivity to modeling and measurement noises that a time-optimal path inherits,

Turnau et al. proposed a near time-optimal planning method in [54]. Our aim in

this section, on the other hand, is to investigate the stability in the sense of coverage,

which is motivated by the question of whether the motion plan is able to maintain

the target-tracking job as the targets are moving.

Without any prior knowledge, the motion of each target is un-predictable when it

is outside the footprints of the MSAs. When an MSA traverses the estimated target

positions (the previous positional measurements in this case), the hope is that each

target is not far away, and is still covered by the footprint of the MSA. Obviously, this

coverage is not un-conditionally guaranteed by any motion plan. The more frequently

the MSA comes back to renew the target track, the more likely the target is close to

the estimated position. If the target is not inside the sensor footprint, the MSA may

have to search around for the target, rather than just take a single look as planned.

As result, it will take more time to finish a traverse cycle for the MSA and lead to

more possibility of missing the target in the future, which means the motion plan is

unstable in this sense.

147

Definition 7.5.1: Assume that the on-board sensor system of an MSA is reliable

(i.e. no miss detection or false alarm). The coverage of an MSA’s motion plan is stable

if the targets are guaranteed to be observed by executing the motion plan.

Consider a target observed at q = (qx, qy). It obviously that the coverage is

guaranteed if the “cloud” of the track PDF (i.e. the survival zone S(t|t) defined in

the previous chapter) can be covered by the sensor footprint. In particular, when

there is no measurement noise, we have the following conclusion.

Lemma 7.5.1: The coverage of a motion plan is stable if

TDi ≤ D

2vt
, for all the i = 1..N, (7.9)

where TDi is the time duration between two consecutive observations of target i,

which is basically the length (in terms of time) of the traversal path that covers qi.

vt is the maximum speed of a target, and D is the minimal diameter of the footprint

of the MSA.

The proof of Lemma 7.5.1 is fairly straightforward. As long as (7.9) is hold, S(t|t)
will be inside a circle of radius vtTDi, centered at qi. Thus, no matter how the targets

move, they will always be covered by the MSAs. It is worth noting the actual TDi

will be smaller when the measurement noise is taken into account.

Remark 7.5.1: Obviously, the coverage stability is not preserved in an open

field as long as N > M , in which the targets can move in opposite dictions to break

the coverage. Nevertheless, Lemma 7.5.1 gives us a clue to evaluate the feasibility of

a motion plan. For instance, if the time to execute a traversal path does not satisfies

(7.9), an MSA has the option to reduce its surveillance load (e.g. to drop a few

targets), or to ask for more MSAs to help the situation.

148

In the case that the targets are moving inside a bounded square region, we have

the following conclusions for a stable motion plan:

Lemma 7.5.2: Given N targets moving inside a L×L square region, there exists

a traversal motion plan for a single MSA whose coverage is stable if

(
√

2N + 1.75)L +
1

2
κNπRM ≤ DVM

2vt
. (7.10)

Proof: As pointed out in [47], the SMMT motion planning problem is essentially

a generalized version of the famous traveling salesmen problem (TSP). In fact the

TSP can be considered as a special case of the SMMT motion planning problem

addressed here, in which RM = 0.

In the early work of Few [48], it has been shown that

ETSP (N, 2) ≤
√

2N + 1.75, (7.11)

where ETSP (N, 2) denotes the shortest TSP path for N point in a 2-D unit square.

Recently, Savla et al. [47] have proved that

ETSP (N, 2) ≤ DTSP (N, 2) ≤ ETSP (N, 2) +
1

2
κNπRM , (7.12)

where κ ≤ 2.658 and DTSP (N, 2) denotes the shortest Dubins path for the N-target

SMMT problem addressed in this chapter.

Combining (7.11), (7.12) and Lemma 7.5.1, we can get (7.10).

Consider the option that multiple MSAs move in a team formation along the same

loop path that traverses N targets. The result above can be easily extended to the

MMMT case as follows.

Theorem 7.5.3: Given N targets moving inside a L × L square region, there

exists a traversal motion plan for M MSAs whose coverage is stable if

M ≥ vt[2(
√

2N + 1.75)L + 2.658NπRM]

DVM
. (7.13)

149

Remark 7.5.2: (7.13) gives us a sufficient condition to perform a MMMT surveil-

lance task, which also implies the possibility of multiple MSAs’ looking after the same

group of targets. It is worth mentioning that the MMMT motion planning approach

introduced in this chapter can be extended to incorporate this option. However, such

extension will lead to more computational cost.

7.6 Experiments and Results

7.6.1 Path Generation for the SMMT Case

Two simulations for the SMMT case and their results are shown in Fig. 7.6, and

Fig. 7.7. In simulation 1 (Fig. 7.6), four targets are generated. Three of them (target

1, 2, 3) are modeled as random walks, while the other one (target 4) is a maneuvering

target. As (Fig. 7.6) shows, the MSA is able to smoothly adjust its motion plan

as the targets are moving around. Note that at some point, the MSA changes the

traverse order from 1− 3− 4− 2 to 1− 4− 3− 2 to achieve a shorter traverse loop.

Fig. 7.7 shows another example, in which there is a convoy of 3 moving targets. As

the convoy moves, a smooth trajectory is generated for the MSA to follow up the

convoy and keep updating the statuses of the targets.

The performance of the sub-optimal method has been examined by Monte Carlo

simulations. Fig. 7.8 shows the results of one experiment, in which we chose N =

6 and conducted 500 MC simulations. The histogram of approximation errors is

shown in Fig. 7.8. The actually minimum-time path for each simulation is achieved

by exhaustively searching over all the permutations of the target points. In this

experiment, most of the sub-optimal paths are no more than 10% longer than the

actual one. The average error is only 2.44%, which is quite satisfactory.

150

7.6.2 Cooperative Online Motion Planning for the MMMT
Case

In this experiment (Fig. 7.9), 4 MSAs, 16 randomly walking targets and 2 ma-

neuvering targets are generated. The parameters are chosen as RM = 72m, VM =

96m/s, vt = 1
20

VM . The MSAs all start from the center of the field for simplicity,

whose footprint is defined as a circle with a radius of 200m (i.e. D = 400m). As Fig.

7.9 shows, two target hand-off events are triggered as the two maneuvering targets

move across the field. Note that as a decentralized algorithm, each MSA will asyn-

chronously update its own motion plan if there is no target hand-off. When a target

hand-off happens, it only affects the motion plans the MSAs that are involved in this

hand-off.

The ATD between two consecutive observations of each target is shown in Fig.

7.11. The distance between each target and its expected position when the MSAs

are making observations of the target is shown in Fig. 7.10. The result shows that

the motion plan is successful in this example (i.e. TDi < D/2vt = 41.7sec and

Disti < D/2 = 200m, ∀i = 1..N). However, one can imagine that if target 17 and 18

keep moving froward, they will eventually break the coverage.

Given the configurations (i.e. D, RM , VM . vt) of the targets and the MSAs in this

experiment, the sufficient number of MSAs (given by Theorem 7.5.3) with respect to

the number of targets (N) and the size of a squared region (L) is shown in Fig. 7.12.

In particular, if the motion of all the targets in this experiment is limited inside the

2.2km × 2.2km square region shown in Fig. 7.9, (7.13) indicates that a team of 5

MSAs can guarantee the surveillance coverage.

151

The performance of the task partitioning method has also been evaluated by

Monte Carlo simulations. Fig. 7.13 shows the results of one experiment, in which

(N, M) = (12, 3) and 500 MC simulations are conducted. The results of the sub-

optimal method based on K-means clustering is compared with those of the actual

optimal partitions. The optimal partition is also achieved by exhaustive search. In

this experiment, most of the sub-optimal paths are no more than 15% longer than

the actual one. The average error is 11.21%.

7.7 Conclusions

This chapter addresses the motion-planning problem for multiple target surveil-

lance with limited resources of MSAs. The kinematics of the MSA is modeled as a

non-holonomic UAV of type Dubins. Based on the fact that the track information of

each target degrades over time until it is renewed by the MSAs, the motion-planning

problem here is formulated as an optimization problem, whose objective is to min-

imize the average time period between two consecutive observations of each target.

Since the general optimal motion-planning problem for the MMMT case is NP hard,

a computationally efficient sub-optimal approach is proposed in this paper.

The motion planning consists of two stages: Task Decomposition and Individual

Path Generation. In Task Decomposition, the whole task of tracking N targets is

divided into M disjoint task assignments, which is achieved by a heuristic method

based on K-mean clustering. Then, given a task assignment, each MSA makes its own

motion-plan, which is a SMMT motion-planning problem. The desired motion plan

the SMMT case is formulated as a time-optimal loop path to traverse the targets.

To find such a loop path, a particular family of trajectories is selected to compose a

152

reduced search space, in which we have proved that the optimal trajectory is always

contained. Based on that, a gradient-based sub-optimal path generation algorithm is

proposed for a mobile agent of type Dubins to traverse a sequence of target points.

Meanwhile, a check-and-flip procedure is introduced to reduce the possibility of local

minima. Furthermore, a decentralized online re-planning approach is also developed

to deal with the situation that the targets are moving.

Experiments and simulations have demonstrated the effectiveness and efficiency

of the proposed methods. The adoption of the proposed motion planning method to a

real world test bed consisting of UAV’s and ground robots that is under development

is part of our ongoing research work.

The major results of this paper are not limited to this application only. The

target-based motion-planning scheme can be extended to the cooperative control of

multiple MSAs in the general information gathering scenario, in which one target can

be a building, an intersection, a car under surveillance or a military unit. Meanwhile,

the motion-planning algorithm for the SMMT case can be applied to the general

multi-target engagement problem.

On the other hand, the extension of the proposed approach to more complicated

situations with heterogeneous sensor agents and heterogeneous targets are open for

further research. The discussions on coverage stability in this paper can also be

extended to related topics such as task assessment and high-level sensor resource

management.

153

−200 0 200 400 600 800 1000

−300

−200

−100

0

100

200

300

400

500

600

700

initial position of the MSA
trajectories of the targets
trajectory of the MSA

target 1

target 2

target 3

target 4

changing the
traverse order

Figure 7.6: Simulation 1: One MSA, 3 randomly-walking targets and one maneuvering
target.

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

1000

initial position of the MSA
trajectories of the targets
trajectory of the MSA

Target 1

Target 2

Target 3

Figure 7.7: Simulation 2: One MSA and a moving convoy of 3 targets.

154

0 100 200 300 400 500
0

10

20

30

40

50
Approximation errors in %

E
rr

or
s

in
 %

simulation index

0 10 20 30 40 50
0

100

200

300

400
Error histgram

Errors in %

N
ub

m
er

 o
f

M
C

 s
im

ul
at

io
ns

Figure 7.8: Performance evaluation for the geometrical method to determine the
traverse order (N = 6, 500 MC simulations).

155

−200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Target 6

Target
hand−off

MSAs

Target 16

Target 15

Target 14

Target 13

Target 18

Target 12

Target 11Target 10

Target 9Target 8

Target 7

Target 5

Target 4

Target 3

Target 17

Target 2

Target 1

Target
hand−off

Figure 7.9: Simulation 3: 4 MSAs and 18 targets (16 randomly-walking and 2 ma-
neuvering targets).

156

0 2 4 6 8 10 12 14 16 18
10

15

20

25

30

35

40

45

target index: i

D/2v
t
 (in sec.)ATD

i
 (in sec.)

max(TD
i
)

min(TD
i
)

Figure 7.10: The ATD of each target in simulation 3.

0 2 4 6 8 10 12 14 16 18

0

50

100

150

200

target index: i

max(Dist
i
)

min(Dist
i
)

Average Dist
i
 (in meters)

Figure 7.11: Disti: The distance between the ith target and its expected position
when it is observed in simulation 3.

157

10
15

20
25

30

1000

1500

2000

2500

3000
2

4

6

8

10

N: the number of the targetsL (in meters)

M: the sufficient
number of the MSAs

Figure 7.12: The sufficient number of MSAs given by Theorem 7.5.3 with respect to
N and L (VM = 96m/s, vt = 1

20
VM , RM = 72m, D = 400m).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
Approximation errors in %

E
rr

or
s

in
 %

MC simulation index

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25
Error histgram

Errors in %

N
ub

m
er

 o
f

M
C

 s
im

ul
at

io
ns

Figure 7.13: Performance evaluation for task assignment by K-means clustering (N =
12, M = 3, 100 MC simulations).

158

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this work, target track maintenance and MSA motion control, which are two

key issues in the management of MSAs are jointly studied.

First, the BF-HMap approach is proposed as a generic method for target track

maintenance based on the Bayesian filtering method and the hospitability map. To

reduce the computational and memory load, the PF-HMap algorithm, which replaces

the Bayesian filter in BF-HMap with a particle filter, is also introduced. Due to the

flexible scheme of Bayesian inference inherent in both algorithms, BF-HMap and PF-

HMap are capable of exploiting non-analytic prior environmental knowledge as well

as handling intermittent and regional measurements caused by coverage and motion

constraints of MSAs. In addition, a generalized particle filter for both in-sequence

and out-of-sequence measurements, the so-called Universal Particle Filter (UPF), is

developed for possible extensions of the PF-HMap algorithm to distributed sensor

fusion in MSA networks.

In the meantime, the MSA motion control problem is studied in an information-

theoretic way by choosing the conditional entropy (i.e. given the measurements)

of the target state as a generic performance metric. Based on the analysis on the

evolution of the entropy, strategic principles in modeling the MSA motion control

159

problem for two cases of studies, target search and target surveillance, are identified.

More specifically, the target search problem is formulated as a stabilization problem of

the entropy, and the target surveillance problem is modeled as to minimize the revisit

time on the target. Both problems are further studied based on the entropy-based

formulations above. A necessary condition and a sufficient condition by means of the

number of MSAs for a non-escape search are derived. Given a sufficient number of

MSAs, a cooperative search formation, called the Progressively-Spiral-In algorithm

(PSI), is also presented for the MSA team to find the target in finite time. In the

meantime, a cooperative motion-planning approach for multi-target surveillance by

multiple non-holonomic MSAs is proposed.

As experiment results have demonstrated the feasibility of the aforementioned

methodologies in various MSA-target applications, a comprehensive theoretical foun-

dation for MSA management is still far from established. The current work presented

in this dissertation just knocks on the door toward many other theoretical and prac-

tical issues in MSA management.

For instance, besides the OOSM problem, distributed particle filters also face a

consistency challenge in practice. Due to the simulation-based nature of particle fil-

ters, the target track maintained by two identical particle filters are different even

they share the same set of measurements without any communication delays. There-

fore, it is crucial to keep the variations in estimation at an appropriate level so that

multiple MSAs in a join task can make motion decisions that are compatible to each

other.

In addition, although the BF/PF-HMap approach allows us to handle target search

and target tracking problem in a universal way at the information processing end,

160

a similar treatment at the motion control end for jointly search and tracking is not

available, yet. The preliminary stability study in Chapter 7 gives a sufficient condition

keep the MSAs working in a “tracking” mode. However, how to recover from the loss

of a target track (probably by a search algorithm) is not addressed.

Another direction in future work is the extension of the theoretic boundaries

derived for non-escape search to non-homogeneous terrain surfaces, in which the evo-

lution of the entropy as well as that of the survival zone becomes more complicated.

In a word, the study in the management of MSAs is a very rich research topic.

A few pieces of this big puzzle are presented in this work, but more to be found,

which probably requires collaborations and contributions of researchers from different

domains.

161

BIBLIOGRAPHY

[1] R. Popoli, “The sensor management imperative”, Multitarget-Multisensor Track-
ing: Appications and Advances, vol. II, pp. 325-392, Artech House, 1992.

[2] D. M. Buede and E. L. Waltz, “Issues in sensor management”, in Proc. IEEE
5th International Stmposium on Intelligent Control, pp. 839-842, Sept. 1990.

[3] J. M. Manyika and H. F. Durrant-Whyte, Data Fusion and Sensor Management:
A Decentralized Information-Theorectic Approach, Ellis Horwood: New York,

1994

[4] G. W. Ng and K. H. Ng, “Sensor management - what, why and how”, Infomration
Fusion, vol 1, pp. 67-75, 2000.

[5] J. M. Nash, “Optimal allocation of tracking resources”, in Proc. IEEE Conf.
Decision and Control, vol. 1, pp. 1177-1180, New Orleans, LA, Dec. 1977.

[6] K. J. Hintz and E. S. McVey, “Multi-process constrained estimation”, IEEE
Trans. Systems, Man, and Cybernetics, vol. 21, no. 1, pp 434-442, Jan. 1991.

[7] G. A. McIntyre and K. J. Hintz, “An information theoretic approach to sen-
sor scheduling”, in Proc. SPIE on Signal Procssing, Sensor Fusion and Target

Recognition, vol. 2755, pp. 304-312, Orlando, FL, Apr. 1996.

[8] D. A. Castanon, “Approximated dynamic programming for sensor management”,

in Proc. IEEE conf. Decision and Control, pp. 1202-1207, San Diego, CA USA,
Dec. 1997.

[9] D. J. Cool, P. Gmytrasiewicz and L. B. Holder, “Decision-theoretic cooperative

sensor planning”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
18, no. 10, pp. 892-902, 1996.

[10] M. Kalandros, L. Y. Pao and Y. Ho, “Randomization and super-heuristics in
choosing sensor sets for target tracking applications”, in Proc. IEEE conf. De-

cision and Control, vol. 2, pp. 1803-1808, Pheonix, AZ USA, Dec. 1999.

162

[11] P. Vanheeghe, E. Duflos, P. E. Dumont and V. Nimier, “Sensor management with
respect to danger level of targets”, in Proc. IEEE conf. Decision and Control,

vol 5., pp. 4439-4444, Orlando, FL USA, 2001.

[12] R. Evans, V. Krishnamurthy, G. Nair, and L. Sciacca, “Networked sensor man-

agement and data rate control for tracking maneuvering targets”, IEEE Trans.
Signal Processing, vol 53, no. 6, pp. 1979-1991, June 2005.

[13] D. Vaidya, J. Peng, L. Yang and J. W. Rozenblit, ”A framework for sensor
management in wireless and heterogeneous sensor network”, in Proc. 12th IEEE

International Conference and Workshops on the Engineering of Computer-Based
Systems, pp. 155-162, April 2005.

[14] C. Kreucher, A. O. Hero, K. Kastella and D. Chang, “Efficient methods of non-

myopic sensor management for multitarget tracking”, in Proc. 43rd IEEE Conf.
Decision and Control, vol. 1, pp. 722-727, Dec. 2004.

[15] D. Lu, Y. Yao and F. He, “Sensor management based on cross-entropy in in-
teracting multiple model Kalman filter”, in Proc. American Control Conference

vol. 6, pp. 5381 - 5386, June 2004.

[16] R. Johansson and N. Xiong, “Perception management - an emerging concept for

information fusion”, Information Fusion, vol.4, no. 3, pp.241-245, July 2003.

[17] B. Grocholsky, A. Makarenko and H. Durrant-Whyte, “Information-theoretic

coordinated control for multiple sensor platform”, in Proc. IEEE International
Conf. Robotics and Automation, pp 1521-1526, Taipei, Taiwan, Step. 2003.

[18] S. Russell and P. Norvig, em Artificial Intelligence: A Modern Approach, Pren-

tice Hall, Englewood Cliffs, NJ, 1995.

[19] N. J. Nilsson, em Artificial Intelligence: A New Synthesis, Morgan Kaufmann,

San Francisco, CA, 1998.

[20] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson, “Coordi-

nated target assignment and intercept for unmanned air vehicles”, IEEE Trans.
Robotics and Automation, vol. 18, no. 6, pp. 911-922, 2002.

[21] S. Rathinam and R. Sengupta, “A Safe Flight Algorithm for Unmanned Aerial
Vehicles”, to be presented in IEEE Aerospace Conference, Montana, 2004.

[22] R. Kumar, H. Sawhney, S. Samarasekera, S. Hsu, H. Tao, Y. Guo, K. Hanna, A.
Pope, R. Wildes, D. Hirvonen, M. Hansen and P. Burt, “Aerial video surveillance

and exploitation”, in Proc. IEEE, vol 89., no.10, pp 1518-1539, 2001.

163

[23] T. W. McLain, P. R. Chandler and M. Pachter, “A decomposition strategy
for optimal coordination of unmanned air vehicles”, in Proc. American Control

Conference, vol. 1, no. 6, pp. 28-30, 2000.

[24] P. R. Chandler, M. Pachter and S. Rasmussen, “UAV cooperative control”, in

Proc. American Control Conference, vol. 1, pp. 50-55, 2001.

[25] K. E. Nygard, P. R. Chandler and M. Pachter, “Dynamic network flow opti-

mization models for air vehicle resource allocation”, in Proc. American Control
Conference, vol. 3, pp. 1853-1858, 2001.

[26] C. Schumacher, P. R. Chandler, and S. R. Rasmussen, “Task allocation for
wide area search munitions”, in Proc. American Control Conference, vol. 3, pp.

1917-1922, 2002.

[27] L. E. Dubins, “On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents”, American

Journal of Mathematics, vol. 79, no. 3, pp. 497-516, 1957.

[28] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards

and backwards”, Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367393,
1990.

[29] G. M. Siouris and A. P. Leros, “Minimum-time intercept guidance for tactical
missiles”, Control Theory and Advanced Thechnology, vol. 4, no. 2, pp. 251-263,

1988.

[30] P. Soueres and J.-P. Laumond, “Shortest paths synthesis for a car-like robot”,

IEEE Transactions on Automatic Control, vol. 41 no. 5, pp. 672688, 1996.

[31] A. M. Shkel and V. J. Lumelsky, “Classification of the Dubins set”, Robotics
and Autonomous Systems, vol. 34, pp. 179-202, 2001.

[32] G. Desaulniers and F. Soumis, “An effcient algorithm to find a shortest path for
a car-like robot”, IEEE Transactions on Robotics and Automation, vol. 11, pp.

819-828, 1995.

[33] H. J. Sussmann and W. Tang, “Shortest paths for the reeds-shepp car : A

worked out example of the use of geometric techniques in nonlinear optimal
control”, sycon-91-10, Rutgers Univs., 1991.

[34] J. D. Boissonnat, A. Cerezo and J. Leblond, “Shortest paths of bounded curva-
ture in the plane”, in Proc. IEEE International Conf. Robotics and Automation,

pp. 2315-2320, 1992.

164

[35] T. L. Song and S. J. Shin, “Time-Optimal Impact Angle Control for Vertical
Plan Engagement”, IEEE Trans. Aerospace and Electronic Systems, vol. 35, No.

2, pp. 738-742, 1999.

[36] A. Balluchi, A. Bicchi, B. Piccoli and P. Soueres, “Stability and robustness of
optimal synthesis for route tracking by Dubins’ vehicle”, in Proc. 39th IEEE

Conf. Decision and Control, pp. 581-586, 2000.

[37] G. Yang and V. Kapila, “A dynamic-programming-styled algorithm for time-
optimal multi-agent task assignment”, Proc. IEEE Conference on Decision and

Control, vol.2, pp. 1959-1964, 2001.

[38] G. Yang and V. Kapila, “Optimal path planning for unmanned air vehicles with
kinematic and tactical constraints”, in Proc. IEEE Conference on Decision and

Control, vol.2, pp. 1301-1306, 2002.

[39] J.-P. Laumond, Robot Motion Planning and Contorl Srpinger, 1998.

[40] J. Bellingham, A. Richard and J. P. How, “Receding horizon control of au-
tonomous aerial vehicle”, in Proc. American Control Conference, pp. 3741-3746,

Anchorage, AK, May, 2002.

[41] J. S. Bellingham, M. Tillerson, M. Alighanbari, and J. P. How, “Cooperative

path planning for multiple UAVs in dynamic and uncertain environments”, in
Proc. the 41st IEEE International Conf. Decision and Control, vol. 3 , pp. 2816-

2822, 2002.

[42] Y. Guo and L. E. Parker, “A distributed and optimal motion planning approach
for multiple mobile robots”, in Proc. IEEE International Conf. Robotics and

Automation, pp. 2619-2626, 2002.

[43] A. Bicchi and L. Pallottino, “On optimal cooperative conflict resolution for air
traffic management systmes”, IEEE Trans. Intelligent Transportation Systems,

vol. 1, no. 4, pp. 212-222, 2000.

[44] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for multiple
robots having independent goals”, IEEE Trans. Robotics and Automation, vol.

14, no. 6, pp. 912-925, 1998.

[45] I. K. Nikolos, K.P. Valavanis, N. C. Tsourveloudis and A. N. Kostaras, “ Evolu-
tionary algorithm based offline/online path planner for UAV navigation”, IEEE

Trans. System, Man, and Cybernetics - Part B, vol. 33, no. 6, pp. 898-912, 2003.

[46] J. Howlett, M. Goodrich and T. McLain, “Learning real-time A* path plan-
ner for sensing closely-spaced targets from an aircraft”, Proc. AIAA Guidance,

Navigation, and Control Conference, no. 2003-5338, Austin, TX, Aug. 2003.

165

[47] K. Savla, E. Frazzoli and F. Bullo, “On the point-to-point and traveling sales-
person problems for Dubins vehicle”, in Proc. American Control Conference, pp.

791-796, June, 2005.

[48] L. Few, ”The shortest path and shortest road through n points”, Mathematika,

vol. 2, no. 1, pp. 141-144, 1955.

[49] L. E. Parker and B. A. Emmons, “Cooperative multi-robot observation of mul-

tiple moving targets”, in Proc. IEEE International Conf. Robotics and Automa-
tion, pp. 2082-2089, 1997.

[50] B. Jung and G. S. Sukhatme, “A region-based approach for cooperative multi-
target tracking in a structured environment”, in Proc. IEEE International Con-

ference on Intelligent Robots and Systems, pp. 2764-2769, 2002.

[51] J. Cortes, S. Martinez, T. Karatas and F. Bullo, “Coverage control for mobile
sensing networks”, IEEE Trans. Robotics and Automation, vol. 20, no. 2, pp.243-

255, 2004.

[52] Z. Tang and U. Ozguner, “Motion Planning for Multi-target Surveillance with

Multiple Mobile Sensor Agents”, To appear in IEEE Trans. Robotics, 2005.

[53] R. Morselli and R. Zanasi, “Positioning trajectory generator with nonlinear

constraints”, in Proc. IEEE International Conference on Control Applications,
pp 1177-1182, Glasgow, Scotland, U.K., Sept. 2002.

[54] A. Turnau, M. Szymkat and A. Korytowski, “Robust near time-optimal trajec-
tory planning by intermediate targets assignment”, in Proc. IEEE International

Conference on Control Applications, pp. 1159-1164, Glasgow, Scotland, U.K.,

Sept. 2002.

[55] D. Walker, T. McLain and J. Howlett, “Cooperative UAV target assignment

using distributed calculation of target-task tours”, Theory and Algorithms for
Cooperative Control, World Scientific, 2004.

[56] M. Orlov, “Efficient generation of set partitions”, http://www.cs.bgu.ac.il/
∼orlovm/papers/partitions.pdf, 2002.

[57] M. Abramowitz and I. A. Stegun, “Stirling numbers of the second kind”, Hand-
book of Mathematical Functions with Formulas, Graphs, and Mathematical Ta-

bles, 9th printing, New York: Dover, pp. 824-825, 1972.

[58] K. G. Murty, “An algorithm for finding all the assignments in order of increasing

cost, Operations Research, vol. 16, pp. 682-687, 1968.

166

[59] M. L. Miller, H.S. Stone and I.J. Cox, “Optimizing Murty’s ranked assignment
method”, IEEE Trans. Aerospace and Electronic System, vol. 33, no. 3, pp.

851-86, 1997.

[60] D. Eppstein, “Finding the k shortest paths”, SIAM Journal of Computing, vol.

28, no. 2, pp. 652-673, 1999.

[61] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford, England: Ox-

ford University Press, 1995.

[62] M. S. Grewal, Kalman Filtering: Theory and Practice, Englewood Cliffs, NJ,

Prentice-Hall, 1993.

[63] H. A. P. Blom, “An efficient decision-making-free filter for processes with abrupt
changes”, IFAC Symp. Identification and System Parameter Estimation, York,

UK, July 1985.

[64] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for

system with Markovian switching coefficients”, IEEE Trans. Automatic Control,
vol. 33, No. 8, pp. 780-783, 1988.

[65] A. Satish, R. L. Kashyap, “Multiple target tracking using maximum likelihood
principle”, IEEE Trans. Signal Processing, vol. 43, no. 7, pp. 1677-1695, 1995.

[66] L. D. Stone, C. D. Barlow and T. L. Corwin, Bayesian Multiple Target Tracking,
Artech House, 1999.

[67] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems,
Artech House, Norwood, MA 1999.

[68] K. Kastella, “Finite difference methods for nonlinear filtering and automatic tar-

get recognition”, Multitarget-Multisensor Tracking: Appications and Advances,
vol. III, pp. 233-258, Artech House, 2000.

[69] S. Challa and Y. Bar-Shalom, “Nonlinear filter design using Fokker-Planck-
Kolmogorov probability density evolutions”, IEEE Trans. Aerospace and Elec-

tronic Systems, vol. 36, no. 1, pp. 309-315, 2000.

[70] J. R. Layne and M. J. Eilders, “Robust stochastic estimation: automated pre-

diction and search for UAV’s”, AFRL Tech. Report, LRIR 88SN01COR, 2002.

[71] B. O. Koopman, Search and Screening: General Principle with Historical Appli-

cations, Pergamon Press Inc., Elmsford, NY, 1979.

[72] L. D. Stone, Theory of Optimal Search (2nd ed.), Operations Research Society

of America, ORSA Books, Arlington, VA, 1989.

167

[73] S. S. Browm, “Optimal search for a moving target in discrete time and space”,
Operations Research, vol. 28, no. 6, pp. 1275-1289, Nov. 1980.

[74] L. Tierney and J. B. Kadane, “Surveillance search for a moving target”, Opera-
tions Research, vol. 31, no. 4, pp. 720-738, July 1983.

[75] A. R. Washburn, “Search for a moving target: the FAB algorithm”, Operations
Research, vol. 31, no. 4, pp. 739-751, July 1983.

[76] J. P. Le Cadre and G. Souris, “Searching Tracks”, IEEE Trans. Aerospace and
Electronic Systems, vol. 36, no. 4, Oct. 2000.

[77] V. V. Popovich, Y. A. Ivakin and S. S. Shaida, “Theory of search for moving

objects”, in Proc. Oceans’02 MTS/IEEE, vol. 3, pp. 1319-1329, Oct. 2002.

[78] M. M. Polycarpou, Y. Yang and K. M. Passino, “A cooperative search framework

for distributed agents”, in Proc IEEE International Symposium on Intelligent
Control, pp. 1-6, 2001.

[79] M. Baum and K. Passino, “A search-theoretic approach to cooperative control
for uninhabited air vehicles”, in Proc. AIAA GNC conf., Aug. 2002.

[80] L. D. Jacques, “Search, classification, and attack decisions for cooperative wide
area search munitions”, in Proc. Cooperative Control Workshop, Floria, Dec.

2001.

[81] D. Enns, D. Bugajski and S. Pratt, “Guidance and control for cooperative

search”, in Proc. American Control Conference, vol. 3, pp. 1923-1929, Anchor-
age, AK, May 2002.

[82] M. Flint, M. Polycarpou and E. Fernandez-Gaucherand, “Cooperative control

for multiple autonomous UAV’s searching for targets”, in Proc. the 41st IEEE
Conf. Decision and Control, vol.3, pp. 2823-2828, Dec. 2002.

[83] U. Y. Ogras, O. H. Dagci and U. Ozguner, “Cooperative control of mobile robots
for target search”, in Proc. the 41st IEEE Conf. Mechatronic, pp. 123-128, June

2003.

[84] D. J. Pack and B. E. Mullins, “Toward finding an universal search algorithm for

swarm robots”, in Proc. IEEE/RSJ Conf. Intelligent Robots and Systmes, vol.2,
pp. 1945-1950, Oct. 2003.

[85] M. Flint, E. Fernandez-Gaucherand and M. Polycarpou, “Cooperative control
for UAV’s searching risky environments for targets”, in Proc. the 41st IEEE

Conf. Decision and Control, vol.4, pp. 3567-3572, Dec. 2003.

168

[86] R. W. Beard and T. W. McLain, “Multiple UAV cooperative search under
collision avoidance and limited range communication constraints”, in Proc. the

41st IEEE Conf. Decision and Control, vol.1, pp. 25-30, Dec. 2003.

[87] C. K. Cheng and G. Leng, “Cooperative search algorithm for distributed au-

tonomous robots”, in Proc. IEEE/RSJ Conf. Intelligent Robots and Systmes,
vol.1, pp. 394-399, Oct. 2004.

[88] P. B. Sujit and D. Ghose, “Search using multiple UAVs with flight time con-
straints”, IEEE Trans. Aerospace and Electronic Systems, vol. 40, no. 2, Apr.

2004.

[89] Z. Tang and U. Ozguner, “Sensor fusion for target track maintenance with

multiple UAVs based on Bayesian filtering method and Hospitability Map”, in

Proc. the 41st IEEE Conf. Decision and Control, vol.1, pp. 19-24, Dec. 2003.

[90] M. Gage and R. S. Hamilton, “The heat equation shrinking convex plane curves”,

Journal of Differential Geometry, vol. 23, no. 1, pp. 6996, 1986.

[91] M. Grayson, “The heat equation shrinks embedded plane curves to round

points”, Journal of Differential Geometry, vol. 26, no. 2, pp. 285-314, 1987.

[92] B. Chow and D. Tsai, “Geometric expansion of convex plan curves”, Journal of

Differential Geometry, vol 44, no. 2, pp. 312-330, Sept. 1996.

[93] M. Spivak, A compredensive introduction to differential geometry, vols. I-V,

Second edition, Publish or perish, Inc., Wilmington, DE, 1979.

[94] G. Unal, D. Nain, G. Ben-Arous, N. Shimkin, A. Tannenbaum and O. Zeitouni,

“Algorithms for stochastic approximations of curvature flows”, in proc. Interna-

tional Conf. Image Processing, vol. 2, pp. 651-654, Sept. 2003

[95] G. G. Magaril-Ilyave and V. M. Tikhomirov, Convex Analysis: Theory and

Applications, American Mathematical Society, Providence, RI 2003.

[96] R.C. Yates, A Handbook on Curves and Their Properties, J. W. Edwards Ann

Arbor, MI, 1952.

[97] F. Jr. Ayres, Theory and Problems of Matrices, New York, Schaum, 1962.

[98] M. A. Bhati, Practical Optimization Methods with Mathematica Applications,
New York: Springer-Verlag, 2000.

[99] Y. Bar-Shalom, H. Chen and M, Mallick, “One-step solution for the multi-step
out-of-sequence-measurement problem in tracking”, IEEE Trans. Aerospace and

Electronic Systems, vol. 40, no. 1, 2004.

169

[100] M. Mallick, T. Kirubarajan and S. Arulampalam, “Out-of-sequence measure-
ment processing for tracking ground target using particle filters”, in Proc. IEEE

Conf. Aerospace Conference, vol. 4, pp. 1809-1818, 2002.

[101] L. Hong; S. Cong; D. Wicker, “Distributed multirate interacting multiple model

fusion (DMRIMMF) with application to out-of-sequence GMTI data”, IEEE
Trans. Automatic Control, vol. 49, no. 1, pp. 102-107, 2004.

[102] A. Doucet, N. de Freitas and N. Gordon (Eds.), “Sequential Monte Carlo
Methods in Practice”, Springer, New York, 2001.

[103] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson
and P. J. Nordlund, “Particle filters for positioning, navigation, and tracking”,

IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 425-437, 2002.

[104] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A tutorial on
particle filtering for online nonlinear/non-Gaussian Bayesian tracking”, IEEE

Trans. Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.

[105] S. McGinnity and G. W. Irwin, “Multiple model bootstrap filter for maneu-

vering target tracking”, IEEE Trans. Aerospace and Electronic Systems, vol. 36,
no. 3, pp. 1006-1012, 2000.

[106] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York:
Wiley, 1991.

[107] J. Geweke, “Bayesian inference in econometric models using Monte Carlo inte-
gration”, Econometrica, vol. 24, pp. 1317-1399, 1989.

[108] H. Chen, T. Kirubarajan and Y. Bar-Shalom, “Performance limits of track-to-

track fusion versus centralized estimation: theory and application, IEEE Trans.
Aerospace and Electronic Systems, vol. 39, no. 2, pp. 386-400, 2003.

[109] N. N. Okello and S. Challa, “Joint sensor registration and track-to-track fusion
for distributed trackers”, IEEE Trans. Aerospace and Electronic Systems, vol.

40, no. 3, pp. 808-823, 2004.

[110] C. Chong, S. Mori, W. H. Barker, and C. K. Chang, “Architectures and algo-

rithms for track association and fusion”, IEEE Aerospace and Electronic Systems
Magazine, vol. 15, no. 1, pp. 5-13, 2000.

[111] D. Schulz, W. Burgard, D. Fox and A. B. Cremers, “Tracking multiple moving
targets with a mobile robot using particle fitlers and statistical data association”,

in Proc. IEEE Conf. Robotics and Automation, pp. 1665-1670, 2001

170

