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ABSTRACT

Margin-based classifiers defined by functional margins are generally believed to

yield high performance in classification. In this thesis, a general theory that quan-

tifies the size of generalization error of a margin classifier is presented. The trade-

off between geometric margins and training errors is captured, in addition to the

complexity of a classification problem. The theory permits an investigation of the

generalization ability of convex and nonconvex margin classifiers, including support

vector machines (SVM), kernel logistic regression (KLR), and ψ-learning. Our theory

indicates that the generalization ability of a certain class of nonconvex losses may be

substantially faster than those for convex losses. Illustrative examples for both linear

and nonlinear classification are provided.
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CHAPTER 1

INTRODUCTION

Classification, as a tool to extract information from data, has played an important

role in science and engineering. There have been various methods for classification in

the literature including traditional ones such as discriminant analysis and logistic re-

gression and more modern ones such as classification trees and aggregating classifiers.

Hastie, Tibshirani, and Friedman (2001) provide a good introduction to different

classification techniques.

Let us briefly review some of recent classification techniques first.

• Classification trees

Classification trees; c.f., Breiman, Friedman, Olshen, and Stone (1984), are

constructed through recursive partitioning: splitting the feature space into par-

titions (nodes), and then splitting it up further on each of the partitions. Class

labels are assigned to each node. An attractive feature of a classification tree is

that it can be readily displayed in graphics. However, classification trees have

problems such as high variance and lack of smoothness in prediction.

• Aggregating classifiers

Boosting produces a composite classifier by combining simple base classifiers

1



in a greedy fashion; c.f., Freund and Schapire (1997). Recently, it was shown

that boosting can overfit (Jiang, 2004). To prevent overfitting, early stopping of

boosting is necessary. Zhang and Yu (2005) studied convergence and consistency

of boosting with early stopping. Bagging is another aggregating method that

reduces the variance by aggregating many trees via bootstrap; c.f., Breiman

(1996).

• Margin-based classifiers

Margin-based classification has seen significant developments in the past several

years, including many well-known classifiers such as support vector machine

(SVM, Cortes and Vapnik, 1995), kernel logistic regression (KLR, Zhu and

Hastie, 2005), and ψ-learning (Shen, Tseng, Zhang, and Wong, 2003) among

others.

In this thesis, we will focus on the generalization accuracy of margin-based clas-

sifiers. The central problem to be addressed is (1) the generalization accuracy of

various margin classifiers, obtained by minimizing a penalized margin cost function,

and (2) the optimal performance for any classifier.

There has been considerable interest on the generalization accuracy of margin

classifiers, in particular those delivering good numerical results, in the literature.

Zhang (2004a), and Lugosi and Vayatis (2004) obtained consistency for convex margin

losses. Lin (2000) studied the rates of convergence for SVM, based on a formulation

of the method of sieves, where the rates are the same as those in function estimation.

Shen, Zhang, Tseng, and Wong (2003) derived a learning theory for nonconvex ψ-

learning, where the rates are usually faster than those in function estimation. In fact,

they show that a fast rate of n−1 is attainable by ψ-learning in a linear nonseparable

2



example. Bartlett, Jordan, and McAuliffe (2003) obtained the rates of convergence

for convex margin losses, but did not cover SVM. It seems that treating margin

classification via penalization is most relevant to the present formulation.

Despite progress, several important issues remain yet unresolved. First, what is

the size of the generalization error of a general margin classifier, convex or nonconvex?

Second, what is the best performance that one anticipates for any classifier?

In this thesis, we derive a general upper bound theory for margin-based classifiers,

convex or nonconvex, obtained by minimizing a certain cost function via penalization,

in addition to a lower bound theory quantifying the optimal performance. Specifically,

we derive some probability as well as risk upper bounds of the generalization error of a

general loss. In nonseparable cases, a class of convex margin losses usually yields slow

nonparametric function estimation rates, whereas a class of nonconvex margin losses,

including ψ-learning losses, leads to sharper rates. In separable cases, both classes

yield sharp rates. Most importantly, our lower bound theory provides an insight

into the issue of attainment of the optimal rates by various classifiers. Through an

application of the lower bound theory, we show that the optimal performances are

achieved by the class of the nonconvex losses in classification examples.

This thesis is organized as follows. Chapter 2 discusses margin-based classifiers

with respect to the choice of losses. Chapter 3 establishes a general upper bound the-

ory concerning the generalization error of a general margin-based classifier, followed

by a general lower bound theory for any classifier. Chapter 4 presents some numerical

examples, followed by a discussion in Chapter 5. The appendix contains technical

proofs.

3



CHAPTER 2

MARGIN-BASED CLASSIFICATION

Classification can be characterized by four key components: an input space X , an

output space Y , a decision function f , and a training sample (Xi, Yi)
n
i=1. Let us confine

ourselves to binary classification only, i.e., Y is dyadic, with ±1 indicating positive

and negative classes A±. Classification is performed by constructing f , mapping

from X ⊂ Rd to R1, such that its sign, Sign(f), called a classifier, decides the

class assignment of an input x ∈ X . Throughout the thesis, f is assumed to be

measurable. A sample (Xi, Yi)
n
i=1 of n input/output pairs is used to train f , which

is independent and identically distributed according to an unknown joint probability

P (·, ·) on (X × {−1, 1}, σ(X )× 2{−1,1}) with σ(X ) a σ-field on X .

2.1 Concept of Margins

The concept of margins is important in the accuracy of generalization. The func-

tional margin of an instance (xi, yi) with respect to a decision function f is defined

as

γi = yif(xi),

indicating correct classification when γi > 0. This concept is directly related to

generalization in that the ratio of the number of negative margins to n for sample
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(Xi, Yi)
n
i=1 is the training error. Consequently, {γi}n

i=1 indicate the overall perfor-

mance of classification with respect to f .

For linearly separable cases, SVM maximizes a separation margin or the geometric

margin 2/‖w‖2 with respect to a linear decision function f subject to the constraints

yif(xi) ≥ 1; i = 1, · · · , n, enforcing zero training error where f(x) = 〈w, x〉 + b is a

hyperplane with 〈·, ·〉 the usual inner product in Rd and b ∈ R1. For non-separable

cases, a soft-margin SVM is introduced to minimize 1
2
‖w‖2 +C

∑n
i=1 ζi subject to the

constraints ζi ≥ 1− yi(〈w, xi〉 + b) and ζi ≥ 0; i = 1, · · · , n, where {ζi}n
i=1 are called

the slack variables. The equivalent unconstrained minimization problem is

1

2
‖w‖2 + C

n∑
i=1

[1− yif(xi)]+ (2.1)

with [z]+ = z if z ≥ 0 and [z]+ = 0 otherwise. This cost function is extended to a

general class of margin-based loss functions via penalization.

For nonlinear classification, the geometric margin becomes 2/‖g‖2
K when f has a

kernel representation of g(x) + b ≡ ∑n
i=1 αiK(x, xi) + b, where ‖g‖2

K =
∑n

i=1

∑n
j=1

αi αj K(xi, xj) is the reproducing kernel norm of g. Here K(·, ·) is a Mercer kernel

(Mercer, 1909) that maps from X ×X to R so that ‖g‖2
K is a proper norm. Then the

problem is minimizing

1

2
‖g‖2

K + C

n∑
i=1

[1− yif(xi)]+ (2.2)

The penalty term ‖g‖2
K is inversely proportional to the geometric margin.

2.2 Margin-based Losses

Note that direct minimization of the cost function defined by the misclassification

(or 0− 1) loss, requiring set estimation, is feasible only for some special classes such
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as monotone classes; c.f., Mammen and Tsybakov (1999). Furthermore, the solution

obtained by such a minimization is essentially zero in linear classification because

Sign function is scaling invariant (Shen et al., 2003). In practice, a surrogate loss as

an upper bound of the misclassification loss is often used in optimization.

The basic idea of margin classification is to construct a margin loss V (·) so that

it is a function of the functional margin of (x, y), i.e., V = V (yf(x)). To obtain

a classifier, it is natural to minimize a cost function
∑n

i=1 V (Yif(Xi)) defined by

a training sample (Xi, Yi)
n
i=1 with respect to f ∈ F , a class of candidate decision

functions. This mimics the minimization of EV (Y f(X)) with respect to f ∈ F . To

prevent overfitting from occurring, a nonnegative penalty J [f ] is added to yield a

penalized margin cost function:

J [f ] + C

n∑
i=1

V (Yif(Xi)), (2.3)

where C > 0 is a tuning parameter and J penalizes some undesirable properties of

f . Then C controls the trade-off between the training error and the penalty. The

minimizer of (2.3) with respect to f ∈ F yields an estimated decision function f̂ ,

and hence the classifier Sign(f̂). In the machine learning literature, J is often the

inverse of the geometric margin or the conditional Fisher information (Corduneanu

and Jaakola, 2003).

Different choices of V yield different classification methodologies. SVM uses the

hinge loss defined as V (z) = [1− z]+. Its variants are in a more general form V (z) =

[1 − z]q+ for q ≥ 1; c.f., Lin (2000). The kernel logistic regression (KLR) adopts the

logistic loss V (z) = log(1 + e−z), c.f., Zhu and Hastie (2005). The ψ-loss is of the

form of V (z) = ψ(z), defined as ψ(z) = 0 if z ≥ 1, ψ(z) = 1 − z if 0 ≤ z ≤ 1, and 2

otherwise, c.f., Shen et al. (2003). The normalized sigmoid loss V (z) = 1− tanh(cz)

6
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Figure 2.1: Examples of margin-based losses.
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is also margin-based; c.f., Mason, Baxter, Bartlett, and Frean (2000). The weighted

distance discriminant analysis uses a nonstandard loss function depending on margin.

However, their loss may not be compared directly with other margin-based losses

because their penalty term is different from the standard choice, c.f., Marron and

Todd (2002). Examples of margin-based losses such as logistic, hinge, and ψ are

given in Figure 2.1, where each loss is scaled so that it is the tight upper bound of

the misclassification loss. Throughout the thesis, we consider scaled margin losses so

that they are tight upper bounds of the misclassification loss.
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CHAPTER 3

STATISTICAL LEARNING THEORY

3.1 Generalization and Surrogate Errors

Let L be the misclassification loss defined as L(z) = 1
2
(1− Sign(z)). For classifi-

cation, a specific loss V rather than L is often used. Note that the minimization of

EV (Y f(X)), called the surrogate risk, over all measurable functions is not feasible

in practice. Instead, the minimization of EV (Y f(X)) is performed over some class

F with its minimizer f0. Throughout the thesis, F is assumed to be a linear space.

However, it should be noted that f0 may not belong to F . As is to be seen in illus-

trative examples in section 3.5, f0 may not be close to fg in terms of the surrogate

risk. In this situation, eV (f, f0) = EV (Y f(X))−EV (Y f0(X)) ≥ 0, called the excess

surrogate risk over F , is naturally introduced. Because f0 is the feasible minimizer

of EV (Y f(X)), a reasonable measure of performance for a classifier Sign(f) is the

excess risk over F defined as |e(f, f0)| = |EL(Y f(X))−EL(Y f0(X))|. Consequently,

we study the connection between |e(f, f0)| and eV (f, f0) in what follows.

In the literature, the excess risk defined as e(f, f̄) = EL(Y f(X))−EL(Y f̄(X)) ≥

0 has been commonly used to measure the performance of a classifier Sign(f). Here

f̄ = Sign(f ∗) is the Bayes classifier with f ∗(x) = p∗(x)−1/2, obtained by minimizing

9



EL(Y f(X)), called the misclassification risk, over all measurable functions where

p∗(x) = P (Y = 1|X = x) is the unknown conditional probability of the positive class

given X = x. Bartlett et al. (2003) established the connection between e(f, f̄) and

eV (f, fg) for convex losses where fg denotes the minimizer of EV (Y f(X)) over all

measurable functions. They obtained the rates of convergence in terms of e(f, f̄).

However, this formulation is appropriate only when the approximation error defined

by eV (f0, fg) = EV (Y f0(X))−EV (Y fg(X)) is zero (or tends to zero for F depending

on n.) The approximation error depends on the surrogate loss V , the size of F , and

the underlying distribution. For convex losses, the approximation may not be zero (or

tends to zero) in general unless F is sufficiently large and the underlying distribution

belongs to some restricted class of distributions.

The following conditions are used to characterize a general loss:

(C-1) (Behavior of loss) V (z) < V (−z) for all z > 0.

(C-2) (Strictly convex loss) V is strictly convex.

(C-3) (Nonstrictly convex loss) V (z) = [1− z]q+ for q ≥ 1.

(C-4) (Nonconvex loss) V is nonincreasing, bounded, continuous on (−∞, 1), V (−1)

= V (0−) ≥ L(0−), and V ≡ 0 on [1,∞).

Without loss of generality, we assume that V is nonnegative. Condition (C-1)

says that a wrongly classified instance should have a penalty higher than its counter-

part yielding a correct classification, which is commonly used; e.g., Lin (2002a), and

Bartlett et al. (2003). Condition (C-2) is satisfied by strictly convex losses such as

the logistic loss. Condition (C-3) specifies a general hinge loss, which is convex but

10



not strictly convex. Condition (C-4) describes a class of bounded losses, typically

nonconvex, and is satisfied by the ψ-losses.

Before proceeding, we need to clarify one important issue, that is, whether the

cost function (2.3) estimates f̄ . For any specific loss V , it is evident that it targets

directly at the excess risk when fg = f̄ , and it estimates fg when fg 6= f̄ . This

results in different types of classifiers behaving dramatically differently, due to the

choice of V . The classifiers of the first type, usually strictly convex, correspond to

the situation of fg 6= f̄ . They yield correct classification when Sign(fg) = Sign(f ∗)

a.s. The classifiers of the second type, normally nonconvex, estimate f̄ directly. A

general hinge loss with q ≥ 2 belongs to the first type. The hinge loss (q = 1) targets

at f̄ , but usually estimates f0 6= f̄ because the approximation error is not (or tends

to) zero in general. In this sense, nonstrictly convex losses do not belong to any of

these two types, which makes the situation complicated.

The following assumption, called the low noise assumption, is used in establishing

the connection; c.f. Bartlett et al. (2003), and Mammen and Tsybakov (1999). Here

the low noise assumption is for the class minimizer f0. For the special case when the

approximation error is zero (or tends to zero), this assumption can be imposed on

f ∗ with noise level 0 < α < ∞ and constant c1 > 0. The parameter β indicates the

noise level, and reflects the difficulty of classification with β = +∞ corresponding

to the easiest classification. Other equivalent conditions of the low noise assumption

can be found in Bousquet, Boucheron, and Lugosi (2004a). By restricting the class of

distributions via the low noise assumption, fast rates of convergence to the optimal

risk can be obtained; c.f., Mammen and Tsybakov (1999) and Shen et al. (2003).

Without any assumption on underlying distribution, the best possible rate for any

11



classifiers is n−1/2 for nonseparable cases as is suggested in Yang (1998). Our theory

in section 3.2 is based on empirical processes. The low noise assumption is also useful

in bounding the second moment of an empirical process by some power of its first

moment.

Assumption A. There exist some constant 0 < β < ∞ and c∗1 > 0 such that

P (x ∈ X : |f0(x)| ≤ δ) ≤ c∗1δ
β for sufficiently small δ > 0.

Lemma 1 describes a general situation for the classifiers of the first type, whereas

Lemma 2 concerns classifiers of the second type, targeting directly at the excess risk.

Also, note that the class minimizer may not belong to the class F . For the classifiers

of the first type, it is reasonable to assume that the class minimizer is unique because

the surrogate risk is strictly convex. However, for the second type or the hinge loss,

the class minimizer may not be unique.

Lemma 1. Assume that V satisfies (C-1) and (C-2). In addition, f0 satisfies Ass-

sumption A. If |f0| ≤ a a.s. on X for some a > 0, then

|e(f, f0)| ≤ cV ∗eV ∗(f, f0)
β

β+2 (3.1)

for a positive constant cV ∗ depending only on V ∗, where V ∗ is a truncated surrogate

loss at 0 ≤ T2 < T1 < ∞, defined as

V ∗(z) =





T1, if V (z) > T1

V (z), if T2 ≤ V (z) ≤ T1

T2, otherwise.

In Lemma 1, e(f, f0) may not be nonnegative because f0 is the class minimizer of

the surrogate risk not the misclassification risk, as noted in Bousquet, Boucheron, and

Lugosi (2004b). Under an additional assumption of consistency, e(f, f0) = e(f, f̄) ≥

0.

12



Proposition 1. In addition to the assumptions of Lemma 1, if e(f0, f̄) = 0,

e(f, f̄) ≤ cV ∗eV ∗(f, f0)
β

β+2 (3.2)

Lemma 1 yields exponent β
β+2

in (3.2), which leads to a higher generalization error,

as compared to exponent 1 in (3.3). The consistency defined in the literature such as

Lin (2002a), Zhang (2004a), or Bartlett et al. (2003) is basically Fisher-consistency

implying that e(fg, f̄) = 0. This is appropriate only when e(f0, fg) = 0 because f0 is

the feasible minimizer of EV (Y f(X)).

The assumption below states that eV (f0, fg), the approximation error, can be

arbitrarily small. With this assumption in place, the generalization error rate is not

impeded if the approximation tends to zero sufficiently fast.

Assumption B. For some positive sequence sn → 0 as n →∞, there exists f0 ∈ F

such that eV (f0, f̄) ≤ sn.

The following lemma follows from Proposition 1 in Shen et al. (2003) because

V ∗ = V for V satisfying (C-4). For V satisfying (C-3) with q = 1, the connection for

V can be found in Zhang (2004) and Bartlett et al. (2003).

Lemma 2. Suppose V satisfies either (C-3) with q = 1 or (C-4). Then,

e(f, f̄) ≤ cV ∗eV ∗(f, f̄) (3.3)

for some constant cV ∗ > 0 depending on a truncated loss V ∗.

A few remarks are necessary for Lemma 2. Any loss satisfying (C-4) is very close

to the misclassification loss in that it yields f0 ≈ f̄ . However, Assumption B may

not be satisfied by the hinge loss satisfying (C-3) with q = 1 unless the underlying

13



distribution is restricted in some fashion and F is sufficiently large. Although the

hinge loss targets at f̄ , it may not satisfy Assumption B. In that case, SVM estimates

f0 instead of f̄ .

3.2 Upper Bound Theory

We now develop a general theory for these two types of classifiers separately as

they behave differently in terms of the excess risk (over F). This, together with the

results in section 3.1 and the lower bound result in section 3.3, provides an insight

into why classifiers of the second type, defined by certain nonconvex losses, enable to

achieve sharper rates of convergence.

Our learning theory is derived via the metric entropy-based complexity measure

as well as the characteristics of V . In particular, the theory uses the metric entropy

for a class of functions. Note that the metric entropy for sets, which results in sharper

rates of convergence, can be applied only to the second type.

For a class of functions F , we define the L2-metric entropy with bracketing that

measures the massiveness of F . Given any ε > 0, the set {(f l
k, f

u
k )}nc

k=1 is called an

ε-bracketing function of F if for any f ∈ F , there is a k such that f l
k ≤ f ≤ fu

k

and ‖fu
k − f l

k‖2 ≤ ε for all k = 1, · · · , nc where ‖ · ‖2 is the L2-norm. The L2-metric

entropy HB(ε,F) of F with bracketing is defined as logarithm of the cardinality of

ε-bracketing function of F of the smallest size.

Let F(k) = {f ∈ F : J [f ] ≤ k} ⊂ F = {f ∈ F : J [f ] < ∞} and J0 =

max{J [f0], 1}. Denote FV (k) = {lV (f, z) − lV (f0, z) : f ∈ F(k)} where lV (f, Z) =

V (Y f(X)) and Z = (X, Y ) is an instance. The following assumption on the metric

entropy is made.

14



Assumption C. For some positive constants c2, c3, and c4, there exists some ε̄n > 0

such that

sup
k≥1

φ(ε̄n, k) ≤ c2n
1/2, (3.4)

where φ(ε̄n, k) =
∫ c

1/2
3 D1/2

c4D
H

1/2
B (u,FV (k))du/D and D = D(ε̄n, C, k) = min{ε̄2

n +

(Cn)−1J0(k/2− 1), 1}.

Two aspects govern the performance of a classifier. First, the size of F , described

by the metric entropy, determines ε̄n. Specifically, the smallest ε̄n satisfying Assump-

tion C yields the best upper bound of the generalization error rate for a classifier.

Second, there is a trade-off between the geometric margin and the training error,

which is controlled by the choice of C. The best error rate of a margin classifier is

realized when C strikes the balance of the trade-off, which can be summarized in

terms of the size of F , n, and C.

Theorem 1 and Corollary 1 provide some probability and risk bounds for strictly

convex losses in terms of V ∗, a truncated version of V . Since the convergence is in V ∗,

the metric entropy is for FV ∗(k) = {lV ∗(f, z) − lV ∗(f0, z) : f ∈ F(k)}. However, the

metric entropy for FV ∗(k) can be replaced by that for F(k) because HB(u,FV ∗(k)) ≤

HB(u,F(k)), which is shown in the proof.

Theorem 1. Assume that V satisfies (C-1) and (C-2). Suppose that Assumption A

and C are met with φ(ε̄n, k) defined by
∫ c

1/2
3 D1/2

c4D
H

1/2
B (u,F(k))du/D. For any margin

classifier Sign(f̂) defined in (2.3), there exists a constant c5 > 0 such that

P

(
|e(f̂ , f0)| ≥ δ

2β
β+2
n

)
≤ 3.5 exp

(−c5n(nC)−1J0

)

provided that Cn ≥ 2δ−2
n J0 where δ2

n = min{ε̄2
n, 1}.
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Corollary 1. Under the assumptions of Theorem 1,

|e(f̂ , f0)| = Op(δ
2β

β+2
n ) and E|e(f̂ , f0)| = O(δ

2β
β+2
n ).

Theorem 2 and Corollary 2 yield probability and risk bounds for SVM and ψ-

learning. The metric entropy for functions is adopted here. This result is useful for

ψ-learning when it is difficult to compute the metric entropy for sets although there

may be some loss of power in the rate. To simplify the metric entropy, we may assume

that ψ-loss satisfies Lipschitz condition :

|ψ(z1)− ψ(z2)| ≤ D|z1 − z2|, (3.5)

where D is a positive constant. However, (3.5) is irrelevant to Theorem 3 adopting

the metric entropy for sets.

Theorem 2. In addition to Assumptions A-C with φ(ε̄n, k) defined by
∫ c

1/2
3 D

α
2(α+1)

c4D

H
1/2
B (u2/2,F(k)) du/D, V satisfies (C-3) with q = 1 or (C-4). For any classifier

Sign(f̂) defined in (2.3), there exists a constant c5 > 0 such that

P
(
e(f̂ , f̄) ≥ δ2

n

)
≤ 3.5 exp

(
−c5n(nC)−

α+2
α+1 J

α+2
α+1

0

)

provided that Cn ≥ 2δ−2
n J0 where δ2

n = min{max{ε̄2
n, 2sn}, 1}.

Corollary 2. Under the assumptions of Theorem 2,

|e(f̂ , f̄)| = Op(δ
2
n) and E|e(f̂ , f̄)| = O(δ2

n),

provided that n−
1

α+1 (C−1J0)
α+2
α+1 is bounded away from zero.

To develop our theory for nonconvex losses, we now define the metric entropy with

bracketing for a class G of sets in X . Given any ε > 0, the set {(Gl
k, G

u
k)}nc

k=1 is called
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an ε-bracketing set of G if for any G ∈ G, there is a k such that Gl
k ⊂ G ⊂ Gu

k and

d∆(Gu
k , G

l
k) ≤ ε for all k = 1, · · · , nc where d∆(·, ·) : X ×X → R+ is a metric defined

by d∆(G1, G2) = P (G1∆G2) and G1∆G2 is the symmetric difference set of G1 and

G2. The metric entropy HB(ε,G) of G with bracketing is defined as logarithm of the

cardinality of ε-bracketing set of G of the smallest size.

Let G(k) = {Gf = {x : f(x) ≥ 0} : f ∈ F , J [f ] ≤ k} ⊂ G(F) = {Gf = {x :

f(x) ≥ 0} : f ∈ F , J [f ] < ∞}. Here the metric entropy for sets is adopted because

the convergence is in terms of L. For the second type, this yields a little sharper rates

than Theorem 2 and Corollary 2 using the metric entropy for functions.

Theorem 3. In addition to Assumptions A-C with φ(ε̄n, k) defined by
∫ c

1/2
3 D

α
2(α+1)

c4D

H
1/2
B (u2/2,G(k)) du/D, V satisfies (C-4). For any classifier Sign(f̂) defined in

(2.3), there exists a constant c5 > 0 such that

P
(
e(f̂ , f̄) ≥ δ2

n

)
≤ 3.5 exp

(
−c5n(nC)−

α+2
α+1 J

α+2
α+1

0

)

provided that Cn ≥ 2δ−2
n J0 where δ2

n = min{max{ε̄2
n, 2sn}, 1}.

Corollary 3. Under the assumptions of Theorem 3,

|e(f̂ , f̄)| = Op(δ
2
n) and E|e(f̂ , f̄)| = O(δ2

n),

provided that n−
1

α+1 (C−1J0)
α+2
α+1 is bounded away from zero.

Theorem 3 holds for ψ-learning with U ≥ ψ(z) > 0 for z ∈ (0, τ ] and ψ(z) =

V (1 − Sign(z)) for z /∈ (0, τ ], where 0 < τ ≤ 1, V ≥ max{U, 1/2} and U > 0.

Similarly, the smallest ε̄n satisfying (3.4) in Assumption C gives the best performance

for f̂ , and C needs to be suitably chosen to yield the best trade-off of the training

error and the margin.
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Remark 1. The result in Theorems 1-3 continue to hold if the “global” entropy

is replaced by a corresponding “local” version; c.f., Van de Geer (1993). That is,

F(k) is replaced by F1(k) = F(k) ∩ {|e(f, f0)| ≤ 2εn}, and G(k) is replaced by

G1(k) = G(k)∩{|e(f, f0)| ≤ 2ε2
n}. The proof requires only a trivial modification. The

local entropy allows us to avoid loss of factor of log(n) in a linear problem, although

it may not be useful for a nonlinear problem.

Remark 2. To illustrate the calculation of upper rates using the upper risk bounds in

Corollaries 1-3, suppose HB(ε,F(k))≤ A1ε
−κ1 and HB(ε,G(k))≤ A2ε

−κ2 for some 0 <

κ1, κ2 < 1 and positive constants A1 and A2. Intuitively, the metric entropy for sets

may not be larger than the metric entropy for functions, i.e., κ2 ≤ κ1, because G(k) is

induced by F(k). In our linear and polynomial kernel examples of section 3.5, κ2 = κ1.

The metric entropy for sets with smooth boundaries in Dudley (1974) is an example

that κ2 < κ1. Let s ∈ (0, 1] be the exponent of the sn. By solving entropy equations

using the metric entropy for functions, we have the rates n
− 2β

(β+2)(κ1+2) and n
− α+1

κ1(α+1)+α+2

for strictly convex losses and nonconvex losses, respectively. For nonconvex losses,

using HB(ε,G(k)) yields the rate n
− α+1

κ2(α+1)+α+2 , which may be faster than n
− α+1

κ1(α+1)+α+2 .

Usually, the rates for nonconvex losses are not impeded by the size of approximation

error because s = 1 in many cases. If Assumption B is satisfied for the hinge loss, the

rate for the hinge loss is given by n
−min{ α+1

κ1(α+1)+α+2
,s}

where 0 < s < 1. The rate for

SVM is expected to be impeded by the size of approximation error in many cases.

3.3 Lower Bound Theory

This section develops our lower bound theory. Mammen and Tsybakov (1999)

obtained a minimax lower bound for a class of boundary fragments with smooth
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boundaries and Scott and Nowak (2004) studied minimax rates of dyadic decision

trees for the box counting class, a natural class for image analysis. However, a general

lower bound for classification in terms of the excess risk has not been yet available

in the statistics literature, although other types of lower bounds were studied in the

machine learning literature. Most relevant work can be found in Yang (1999), where

a minimax lower bound for the excess risk is derived using a class of conditional

probability densities, yielding rates usually slower than n−1/2.

Our formulation uses a class of decision functions f ∈ F whose sign yields classi-

fication, as opposed to a class of conditional probability densities. As is to be seen,

the general lower bound for the excess risk can be faster than n−1/2 under the low

noise assumption.

To begin, let us first define ε-capacity of a class G of classification sets in metric d∆,

which is more natural measure of complexity than the metric entropy in quantifying

the lower bound. A finite subclass N of G is said to be ε-separated if

inf
Gi,Gj∈N ;Gi 6=Gj

d∆(Gi, Gj) ≥ ε

for ε > 0. The ε-capacity C(ε,G) of G is defined as the logarithm of the cardinality

of the maximal ε-separated set.

Under the assumption that G is totally bounded, Theorem 4 of Kolmogorov and

Tikhomirov (1959), that holds for a class of functions, can be extended to class of

sets in metric d∆, to yield the following relationship with the metric entropy:

C(2ε,G) ≤ H(ε,G) ≤ C(ε,G), for any ε > 0, (3.6)
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where H(ε,G) is the metric entropy without bracketing, which is no greater than the

corresponding entropy with bracketing HB(ε,G). This relation says that C(ε,G) and

H(ε,G) are of the same order in ε.

Let Gf∗ = {x : f ∗(x) ≥ 0} be the Bayes classification set, which may not belong

to G(F). Define a local version of G(F) as G(ε,F) = {Gf : f ∈ F , d∆(Gf , Gf∗) ≤ 2ε}

for any ε > 0.

Theorem 4 below provides a general lower bound for the excess risk, which can be

used to compare the upper bound results derived in Theorem 3.

Theorem 4. Assume that G(ε,F) has finite metric entropy. In addition, Assumption

A is met with εn satisfying

C(ε
2α

α+1
n ,G(εn,F)) ≥ nε2

n, (3.7)

where α is defined in Assumption A. Then,

sup
f∈F

P (e(f, f̄) ≥ ε2
n) ≥ 1

4
.

Corollary 4. If ε̄n = εn = εn,

sup
f∈F

Ee(f, f̄) = O(ε2
n).

The lower bound theory is formulated on the basis of the local capacity, which

allows to cover the result of n−1 in the linear case, which is in contrast to the upper

bound results.

3.4 Attainment: Upper and Lower Bounds

For the comparison of rates, let us define a few notations. If lim sup(an/bn) < ∞,

then an ¿ bn. We will use an ³ bn if an ¿ bn and an À bn.

20



Consider the optimal rate (lower bound) ε2
n defined by the relation:

C(ε
2α

α+1
n ,G(εn,F)) ³ H(ε

2α
α+1
n ,G(εn,F)) ³ nε2

n, (3.8)

obtained from Theorem 4 and (3.6). In view of the corresponding best attainable

upper bound for the second type of classifier, we note that

∫ ε̄
α

α+1
n

ε̄2
n

H
1/2
B (u2,G(ε̄n,F))du ³ nε̄2

n, (3.9)

obtained by suitably chosen C (Cn ∼ δ−2
n ) with δ2

n = min{max{ε̄2
n, 2sn}, 1} as defined

in Theorem 3. In contrast to the best attainable upper bound for the first type of

classifier, the corresponding rate is obtained by

∫ ε̄n

ε̄2
n

H
1/2
B (u,F1(ε̄n))du ³ nε̄2

n (3.10)

where F1(ε) = F ∩ {|e(f, f0)| ≤ 2ε} for strictly convex losses. In this case, the rate

is suboptimal.

When the size of G(ε̄n,F) is not large,
∫ ε̄

α
α+1
n

ε̄2
n

H
1/2
B (u2,G(ε̄n,F))du ³ H(ε̄

2α
α+1
n ,

G(εn,F)) in (3.9), ε̄n ³ εn. This is illustrated in the linear example of section 3.5.1,

where the optimal rate εn defined by (3.8) is achieved by the second class of nonconvex

margin classifiers.

When the size of G(ε̄n,F) is large, (3.8) and (3.9) yield that ε̄n À εn. This means

that the margin classifiers of any type, as defined in section 3.3, fail to attain the

optimal rates of convergence.

Theorem 4 and Corollary 4 say that the classification error rates, as measured

by the excess risk, can be as fast as n−1. Furthermore, an application of Theorem

3 to linear example of Shen et. al (2003) showed that the rate n−1 is achieved by

ψ-learning, which is in fact optimal for both separable and nonseparable cases. More
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generally, Theorem 4 says that the rates obtained in Theorem 3 are optimal. In view

of (3.10), classifiers of the first type converges slower than n−1/2 in the nonseparable

case.

3.5 Examples

This section applies our general theory to some specific learning examples to derive

the rates of convergence in terms of the excess risk (over F), for convex and nonconvex

margin classifiers in linear and nonlinear cases. Throughout learning examples in this

section, it is assumed that the underlying marginal distribution on X is uniform.

3.5.1 Linear classification : linear kernel

Consider classification with linear decision functions belonging to F = {f(x) =

〈w, x〉+b : w ∈ Rd}, with the input space X = {(x1, x2, · · · , xd) :
∑d

j=1 x2
j ≤ 1} a unit

sphere in Rd. Suppose that ft(x) = x1 is the true decision function. This example is

a generalization of the linear example in Shen et al. (2003) to a d-dimensional feature

space.

Suppose that the positive class label Y = +1 is assigned if x1 ≥ 0 and the negative

class label Y = −1 is assigned otherwise for any x ∈ X . Assume that class labels are

flipped at random with unknown probability 0 < r < 1
2
, so that the Bayes risk is r.

For ψ-learning, we apply Corollary 3. The losses are the same as those in Shen

et al. (2003) except for scaling constants. For a choice of f0 = nft, eV (f0, f̄) ≤ sn =

c1n
−1 for some constant c1 > 0. This implies Assumption B. For any sufficiently

small δ > 0, P (x ∈ X : |f ∗(x)| ≤ δ) = 0, implying Assumption A with α =

+∞. To check Assumption C, let us compute the local metric entropy of G1(k) =

G(k) ∩ {|e(f, f0)| ≤ 2u2}; see Remark 1. Note that |e(f, f0)| ≤ 2u2 implies that
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||w − w0|| ≤ c′u2 for some c′ > 0 where f0(x) = 〈w0, x〉. Moreover, min1≤i≤n |〈w −

w0, xi〉| ≤ |b − b0| ≤ max1≤i≤n |〈w − w0, xi〉| since b minimizes
∑n

i=1 V (yif(xi)) for

any given w. Hence |b − b0| ≤ ‖w − w0‖ and ‖w‖ ≤ (2k)1/2 for any f ∈ G1(k).

Then HB(u2,G1(k)) ≤ O(d log(min(k
1/2
1 , c′u2)/u2)) with k1 = (2k + ‖w0‖2)1/2. The

local metric entropy of G1(k) = G(k)∩ {|e(f, f0)| ≤ 2u2} is given by HB(u2,G1(k)) ≤

O(d log(min(k
1/2
1 , c′u2)/u2)) with k1 = (2k + ‖w0‖2)1/2.

Let φ(ε̄n, k) be (log(min(k
1/2
1 , c′ε̄2

n)/ε̄2
n))1/2/D1/2 where D = min(ε̄2

n+(Cn)−1(k/2−

1), 1). Easily, supk≥1 φ(ε̄n, k) ≤ φ(ε̄n, 1) = c/ε̄n for some constant c > 0. Solving (3.4)

in Assumption C yields a rate ε̄n = n−1/2 when C/ max(J [f0], 1) is sufficiently large.

By Corollary 3, we have e(f̂ , f̄) ≤ O(n−1 log(1/δ)) except for a set of probability less

than small δ > 0 and Ee(f̂ , f̄) = O(n−1). To obtain the corresponding lower bound,

we need to obtain a lower bound for C(ε,G(ε,F)). Because G(ε,F) sits within a

d-dimensional cube, then C(ε,G(ε,F)) ≥ c log

(
(2ε)d

εd

)
for some constant c > 0,

which yields a lower bound of εn = n−1/2 by solving εn in (3.7). By Corollary 4,

supf∈F Ee(f, f̄) = O(n−1). Consequently, the rate n−1 is optimal.

For the logistic loss, let f0 = nft. It can be shown that P (|f0| ≤ δ) ≤ c∗1δ for some

c∗1 > 0. This implies Assumption A for f0 with β = 1. To apply Corollary 1, we need

to compute the metric entropy. By the relation HB(2u,F1(k)) ≤ HB(u2,G1(k)),

we have HB(u,F1(k)) ≤ O(d log(min(4k
1/2
1 , c′u2)/u2)). Similarly, let φ(ε̄n, k) be

(log(min(4k
1/2
1 , c′ε̄2

n) /ε̄2
n))1/2 /D1/2, where D = min(ε̄2

n + (Cn)−1(k/2 − 1), 1) and

get ε̄n = n−1/2, when C / max(J [f0], 1) is sufficiently large. By Corollary 1, we have

|e(f̂ , f0)| ≤ O(n−1/3 log (1/δ)) except for a set of probability less than δ > 0 and

E|e(f̂ , f0)| = O(n−1/3).
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For the hinge loss satisfying (C-3) with q = 1, Assumption B is not satisfied. It

can be easily checked that the minimizer of EV (Y f(X)) over F is f0 =
√

1−r
r

ft.

Since eV (f0, f̄) =
√

r(1− r) > 0, Assumption B is not satisfied. Hence Corollary 2 is

not applicable. Obviously, SVM estimates f0 not f̄ in this example. In Proposition

2, the rate E|e(f̂ , f0)| = O(n−1/2) is obtained via direct calculations.

3.5.2 Nonlinear classification : polynomial kernel

Let K(x, y) = (〈x, y〉 + 1)mp for x, y ∈ X be a polynomial kernel of order mp,

where X = {x ∈ R : x1
1 + · · · + x2

d ≤ 1} for an integer d > 1. This kernel induces

a RKHS F that consists of all polynomials of order at most mp. Denote by F(k) =

{f ∈ F : J [f ] = ‖f‖K ≤ k2} and by the corresponding class G(k) of classification

sets induced by F(k).

Let the conditional densities of X given Y = ±1 be exp(pi(x)) /
∫
X exp(pi(x))dx;

i = 1, 2 where pi ∈ F ; i = 1, 2 such that p1, p2, and p1−p2 are polynomials of order at

least 1. Suppose that π1

π2
=

R
X exp(p1(x))dxR
X exp(p2(x))dx

where πi; i = 1, 2 are the prior probabilities

onA±, respectively. By Bayes’ Theorem, p∗ =
exp(p1 − p2)

1 + exp(p1 − p2)
. Denote true decision

function by ft = p1 − p2.

Consider ψ-learning with a class of ψ losses. For a choice of f0 = nft, eV (f0, f̄) ≤

sn = c1n
−1 for some constant c1 > 0. This implies Assumption B. For any sufficiently

small δ > 0,

P (x ∈ X : |f ∗(x)| ≤ δ) = P

(
x ∈ X : |ft(x)| ≤ log

(
1 + 2δ

1− 2δ

))

≤ P (x ∈ X : |ft(x)| ≤ cδ)

for some c > 0 using Taylor series expansion. Because ft is a non-constant polynomial,

P (|ft| ≤ cδ) ≤ c1δ for some c1 > 0. This implies Assumption A with α = 1. By
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Lemma 4, the metric entropy for G(k) is HB(u,G(u)) ≤ O(log(k/u)). For Assumption

C, let φ(ε̄n, k) be (log(k/ε̄2
n))1/2/D3/4 where D = min(ε̄2

n+(Cn)−1(k/2−1), 1). Easily,

supk≥1 φ(ε̄n, k)≤ φ(ε̄n, 1) =
c

ε̄
3/2
n

(
log

1

ε̄2
n

)1/2

for some constant c > 0. Solving (3.4) in

Assumption C yields a rate ε̄n = n−1/3(log n)1/3 when C/ max(J [f0], 1) is sufficiently

large. By Corollary 3, we have e(f̂ , f̄) ≤ O(n−2/3(log n)2/3 log(1/δ)) except for a set

of probability less than small δ > 0 and Ee(f̂ , f̄) = O(n−2/3 (log n)2/3).

Now let us consider the logistic loss. Since fg = ft/2 ∈ F , let f0 = ft/2. Then

Assumption A is satisfied for f0 with β = 1 and c∗1 = 2c because P (x ∈ X : |f0(x)| ≤

δ) ≤ 2c1δ for some c1 > 0. Note that HB(u,F(k)) ≤ O(log(2k/u)). Similarly, let

φ(ε̄n, k) be (log(2k/ε̄n))1/2/D1/2, where D = min(ε̄2
n + (Cn)−1 (k/2 − 1), 1). Then

ε̄n = n−1/2(log n)1/2, when C/ max(J [f0], 1) is sufficiently large. By Corollary 1, we

have |e(f̂ , f0)| ≤ O(n−1/3(log n)1/3 log(1/δ)) except for a set of probability less than

small δ > 0 and E|e(f̂ , f0)| = O(n−1/3(log n)1/3).

For the hinge loss satisfying (C-3) with q = 1, Assumption B is not satisfied

because f̄ has a jump discontinuity at the decision boundary and F is the class of

polynomial of fixed degree mp. Hence, Corollary 2 is not applicable.

3.5.3 Nonlinear classification : gaussian kernel

Let X be the unit sphere in Rd. Consider a Gaussian kernel defined as

K(x, y) = exp

(
−‖x− y‖2

2σ2

)
.

Let F be the RKHS induced by this kernel. Define F(k) = {f ∈ F : J [f ] = ‖f‖K ≤

k2}. The metric entropy of F(k) in sup-norm is given by H(ε,F(k)) ≤ O((log k
ε
)d+1)

by (4.8) of Zhou (2002). It is easy to show that HB(2ε,F(k)) ≤ O((log k
ε
)d+1).
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Assume that the underlying joint distribution P (·, ·) of (X, Y ) is the mixture

distribution of two normal distributions with mean vector µi; i = 1, 2 and covariance

matrix σ2I, where µ1 = (+1, 0, · · · , 0)′ and µ2 = (−1, 0, · · · , 0)′. Let θ ∈ (0, 1)

be the mixing parameter such that
∣∣log

(
θ

1−θ

)∣∣ < 2
σ2 . By Bayes’ Theorem, p∗ =

θ exp(−2x1/σ
2)

1− θ + θ exp(−2x1/σ2)
. Denote the true decision function as ft(x) = x1 − x∗1 where

x∗1 = σ2

2
ln

(
θ

1−θ

)
.

First, consider ψ-learning with a class of ψ losses. For a choice of f0 = nft,

eV (f0, f̄) ≤ sn = c1n
−1 for some constant c1 > 0. This implies Assumption B. For

any sufficiently small δ > 0 and some c1 > 0,

P (x ∈ X : |f ∗(x)| ≤ δ) ≤ P

(
x ∈ X :

σ2

2
|x1 − x∗1| ≤ ln

(
1 + 2δ

1− 2δ

))

≤ P (x ∈ X : |x1 − x∗1| ≤ cδ) ≤ cδ

for some generic c > 0 using Taylor series expansion. This implies Assumption A with

α = 1. For Assumption C, let φ(ε̄n, k) be (log(k/ε̄2
n))

d+1
2 /D3/4 where D = min(ε̄2

n +

(Cn)−1(k/2 − 1), 1). Easily, supk≥1 φ(ε̄n, k) ≤ φ(ε̄n, 1) = c

ε̄
2/3
n

(
log 1

ε̄2
n

) d+1
2

for some

constant c > 0. Solving (3.4) in Assumption C yields a rate ε̄n = n−1/3(log n)(d+1)/3

when C/ max(J [f0], 1) is sufficiently large. By Corollary 2, we have e(f̂ , f̄) ≤ O(n−2/3

(log n)2(d+1)/3 log(1/δ)) except for a set of probability less than small δ > 0 and

Ee(f̂ , f̄) = O(n−2/3(log n)2(d+1)/3).

For the hinge loss satisfying (C-3) with q = 1, let f0 ∈ F with ‖f0 − f1‖∞ =

inff∈F ‖f − f1‖∞ and |f0| ≤ 1 where f1 = tanh(nft) ∈ C∞. Assumption B is met

with f0. Because |f0| ≤ 1, we have eV (f0, f̄) ≤ E|V (Y f0(X)) − V (Y f̄(X))| =

E|f0(X) − f̄(X)| ≤ sn = c1n
−s for some 0 < s < 1. Although the size of the

approximation error is not available, it is expected to impede the rate for the hinge

loss. Hence the rate may be slower than n−2/3 (log n)2(d+1)/3. In this example, we
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applied Corollary 2 instead of Corollary 3 for ψ-learning because it may not be easy

to compute HB(u,G(k)). A tight upper bound of the metric entropy for sets may

eliminate the extra power of log n factor in the rate for ψ-learning.

Let us consider any convex loss satisfying (C-1) and (C-2). For KLR, it is easily

shown that fg = 1
σ2 ft ∈ F . Let f0 = 1

σ2 ft. It can be checked that Assumption

A is satisfied for f0 with β = 1 because P (x ∈ X : |f0(x)| ≤ δ) ≤ cδ for some

c > 0. Note that HB(u,FV ∗(k)) ≤ O((log(2k/u))d+1). Similarly, let φ(ε̄n, k) be

(log(2k/ε̄2
n))(d+1)/2/ D1/2, where D = min(ε̄2

n +(Cn)−1(k/2− 1), 1). Then ε̄n = n−1/2

(log n)(d+1)/2, when C/ max(J [f0], 1) is sufficiently large. By Corollary 1, we have

|e(f̂ , f0)| ≤ O(n−1/3 (log n)(d+1)/3 log(1/δ)) except for a set of probability less than

small δ > 0 and E|e(f̂ , f0)| = O(n−1/3 (log n)(d+1)/3).

It may be worthwhile to mention that Scovel and Steinwart (2004) obtained fast

rates for SVM using Gaussian kernels. In addition to the low noise assumption,

they imposed some kind of restriction, so-called the geometric noise condition, on the

underlying distribution. The geometric noise condition describes the concentration of

|2p∗− 1|dPX near the decision boundary where PX denotes the marginal distribution

of X. Their conditions seem to imply our Assumption B.
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CHAPTER 4

NUMERICAL EXAMPLES

4.1 Optimization

4.1.1 Support vector machine

The solution of (2.2) has a finite dimensional representation f(x) = g(x)+b, where

g(x) =
∑n

i=1 αiK(x, xi) by the property of RKHS (Wahba, 1990). The cost function

(2.2) can be minimized via a constrained quadratic minimization of

‖g‖2
K/2 + C

n∑
i=1

ξi (4.1)

subject to the constraints

ξi ≥ 1− yif(xi), and ξi ≥ 0; i = 1, · · · , n.

The coefficients ζi’s are determined by its dual problem

W (ζ) =
1

2

∑
1≤i,j≤n

ζiζjyiyjK(xi, xj)−
n∑

i=1

ζi (4.2)

subject to

0 ≤ ζi ≤ C, i = 1, · · · , n,

n∑
i=1

ζiyi = 0 (4.3)

where ζ = (ζ1, · · · , ζn). By minimizing (4.2) subject to (4.3), the solution ζ̂ of the

dual problem is obtained. Then the solution of αi’s are determined by α̂i = yiζ̂i/C;
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i = 1, · · · , n. The solution of b is determined by the instances with 0 < α̂i < 1, called

the support vectors. By Karush-Kuhn-Tucker (KKT) conditions,

b̂ =

∑n
i=1 ζ̂i(1− ζ̂i)(yi −

∑n
j=1 ζ̂jK(xi, xj))∑n

i=1 ζ̂i(1− ζ̂i)
.

For linear classification, K(xi, xj) is replaced by 〈xi, xj〉. For reference, see Vapnik

(1995, 1998), and Cristianini and Shawe-Taylor (2000).

4.1.2 Kernel logistic regression

KLR can be solved using the Newton-Raphson method. However, one drawback

of the Newton-Raphson method is that it involves inversion of n× n matrix at each

iteration. Zhu and Hastie (2005) suggested an algorithm, called import vector ma-

chine (IVM), that finds a submodel f(x) =
∑

xi∈S αiK(x, xi) approximating the full

model f(x) =
∑n

i=1 αiK(x, xi) where S is a subset of the training data {xi}n
i=1 and

the instances in S are called the import vectors.

The import vector machine (IVM) algorithm of Zhu and Hastie (2005) can be

described as follows:

1. For k = 1, start with S = φ and L = {xi}n
i=1.

2. For xl ∈ L, set fl(x) =
∑

xi∈S∪{xl} αiK(x, xi). Find α minimizing the cost

function s(xl) = 1
2
‖fl‖2

K + C
∑n

i=1 ln(1 + exp(−yifl(xi))) and set k = |S|+ 1.

3. Let xl∗ = arg minxl∈L s(xl). Set S = S ∪{xl∗}, L = L−{xl∗}, s(k) = s(xl∗), and

k = k + 1.

4. Iterate steps 2 and 3 until s(k) converges.

They also proposed the revised algorithm. Basically, it is a further approximation

to reduce the calculation in step 2 of the basic algorithm, where the Newton-Raphson
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method is adopted to find α. For the discussion of other issues in KLR, such as

stopping rule for adding points to S and the choice of tuning parameter, see Zhu and

Hastie (2005).

4.1.3 ψ-learning

The theory in Chapter 3 indicates that ψ losses achieve faster rates of conver-

gence than convex losses in terms of generalization error. Although the optimization

of ψ-learning is nonconvex, we can deal with the optimization problem via a global

optimization technique, called difference convex (DC) programming. DC program-

ming can solve the optimization problem using a sequential quadratic programming

(SQP) if a cost function has a DC representation (An and Tao, 1997).

For the computation of ψ-learning, two computational strategies, SQP and SQP

with the method of Branch-and-Bound (SQP-BB), were proposed in Liu, Shen, and

Wong (2004). In this chapter, ψ learning is implemented by using SQP. The advan-

tages of SQP are (i) it is simple to implement (ii) it yields reasonably good result in

a few iterations of quadratic program (usually 4 or 5 iterations). The other method,

SQP-BB, is more computationally intensive. However, this method seems to be able

to produce global optima whereas SQP usually yields suboptimal local minima. Here

we describe only the first method based on the simplified Differenced Convex algo-

rithm (DCA).

For presentational convenience, consider a linear classification problem where a

decision function f is a hyperplane defined by f(x̃) = 〈w̃, x̃〉 where w̃ = (w1, · · · , wd, b)

∈ Rd+1 and x̃ = (x1, · · · , xd, 1) ∈ X × {1}.
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Figure 4.1: DC decomposition of ψ loss into ψ1 and ψ2.

A ψ-loss ψ(z), defined by

ψ(z) =





1, if z < 0
1− z, if 0 ≤ z ≤ 1
0, otherwise,

has a DC decomposition of ψ(z) = ψ1(z)−ψ2(z) where ψ1(z) = [1− z]+ and ψ2(z) =

[z]+. Figure 4.1 shows the DC decomposition of this ψ-loss.

Let s be the cost function (2.3) with ψ as the surrogate loss. Then it can be

decomposed into

s(w̃) = s1(w̃)− s2(w̃) (4.4)

where s1(w̃) = 1
2
‖w̃‖2 + C

∑n
i=1 ψ1(yif(x̃i)) and s2(w̃) = C

∑n
i=1 ψ2(yif(x̃i)).
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Since a DC decomposition is available, we can construct nonincreasing upper

envelopes of s. DCA solves this problem by a series of primal and dual subproblems

by constructing (w̃(k), y(k)) iteratively; Given (w̃(k), y(k)), the k-th primal subproblem,

s1(w̃) − s2(w̃
(k)) − 〈w̃ − w̃(k), y(k)〉, is obtained by replacing s2(w̃) in (4.4) with its

affine minimizer s2(w̃
(k)) + 〈w̃ − w̃(k), y(k)〉. Then w̃(k+1) is obtained by minimizing

the k-th primal subproblem with respect to w̃. In a similar fashion, we may obtain

y(k+1) through the minimization of the k-th dual subproblem after obtaining w̃(k+1).

This corresponds to select an appropriate subgradient of s2 at w̃(k). The subgradient,

∇s2(w̃
k), is given by (v

(k)
1 , v

(k)
2 ) where v

(k)
1 = C

∑n
i=1∇ψ2(yif

(k)(x̃i))yixi and v
(k)
2 =

C
∑n

i=1∇ψ2(yif
(k)(x̃i))yi.

Hence we need to solve the primal subproblem

min
w̃

s1(w̃)− 〈w̃,∇s2(w̃
(k))〉

at each iteration k via quadratic programming. By KKT’s condition, it is equivalent

to the dual subproblem

max
ζ

W (ζ) =
n∑

i=1

ζi(1− yi〈v(k)
1 , xi〉)− 1

2

j∑
i=1

j∑
j=1

ζiξjyiyj〈xi, xj〉, (4.5)

subject to
∑n

i=1 ζiyi = −v
(k)
2 , 0 ≤ ζi ≤ 2C for i = 1, · · · , n where ζ = (ζ1, · · · , ζn).

Then the solution of the primal subproblem is given by w̃(k+1) = v
(k)
1 +

∑n
i=1 ζ

(k)
i yixi

where ζ(k) is the solution of the dual subproblem. Here w̃(k+1) satisfies KKT’s condi-

tion : yi〈w̃(k+1), x̃i〉 = 1 for any i such that 0 < ζ
(k)
i < 2C.

The following is the algorithm for SQP; Given initial value w(0) and tolerance

εtol > 0, we compute w(k+1) for each k by solving (4.5). If |s(w̃(k+1))− s(w̃(k))| ≤ εtol,

then stop the iteration. The final solution ŵ = (w
(k+1)
1 , · · · , w

(k+1)
d ) and b̂ = w

(k+1)
d+1

yield f̂(x) = 〈ŵ, x̃〉+ b̂.
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For a nonlinear classification, 〈xi, xj〉 and 〈v(k)
1 , xi〉 are replaced by K(xi, xj) and

C
∑n

j=1∇ψ2(yjf
(k)(x̃j))yjK(xi, xj) in (4.5). The solution ζ(k) yields the solution for

the primal subproblem given by w̃
(k+1)
j = yj(ζ

(k)
j +C∇ψ2(yjf

(k)(x̃j))) for j = 1, · · · , n.

Here w̃(k+1) satisfies KKT’s condition : yi〈w̃(k+1), x̃i〉 = 1 for any i such that 0 < ζ
(k)
i <

2C.

4.2 Simulated data

In this section, we compared the performance of KLR, SVM, and ψ-learning in

terms of the excess risk over F for the linear example in 3.5.1. Linear classification in

R2 uses decision functions f(x) = w1x1+w2x2+b. Data generation scheme for training

sample (X1,i, X2,i, Yi)
n
i=1 is as follows: First, (X1,i, X2,i)

n
i=1 are generated according to

the uniform distribution on X = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}. Since ft(x) = x1, the

class label is assigned by Yi = Sign(X1,i) for i = 1, · · · , n. Each Yi’s are randomly

flipped with probability r. This results in a nonseparable case with the Bayes risk r.

KLR, SVM, and ψ-learning were compared for three levels of r: .05, .10, and

.20. Grid search on [10−5, 105] was used to determine the optimal value of the

tuning parameter C for each classification method. The following is the expres-

sion of the excess risk from Shen et al. (2003). Let θ1 = Ψ − cos−1(|b|/‖w‖),

θ2 = Ψ + cos−1(|b|/‖w‖), and Ψ = |w1|/‖w‖. Because e(f0, f̄) = 0 in this exam-

ple, |e(f, f0)| = e(f, f̄) = (1− r)A where 2πA is the area between ft(x) and f(x) on

X and

A =

{
(|θ1 − π/2|/2 + |θ2 − π/2|/2 + |b/w2|(| cos(θ1)| − | cos(θ2)|)/(2π) if w2 6= 0,

(π/2− (θ2 − θ1 − sin(θ2 − θ1))/2)/π otherwise.

The average of the excess risk with its standard error in parenthesis for KLR,

SVM, and ψ-learning are summarized in Table 4.1 for sample sizes n = 50, 100, and
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r
n classifier .05 .10 .20

KLR .0283 (.0262) .0324 (.0240) .0352 (.0259)
50 SVM .0241 (.0192) .0264 (.0209) .0301 (.0251)

ψ .0195 (.0162) .0206 (.0205) .0232 (.0224)
KLR .0175 (.0119) .0238 (.0174) .0259 (.0211)

100 SVM .0163 (.0127) .0224 (.0166) .0232 (.0183)
ψ .0118 (.0103) .0145 (.0137) .0196 (.0185)

KLR .0128 (.0095) .0169 (.0118) .0161 (.0124)
200 SVM .0123 (.0095) .0157 (.0112) .0145 (.0103)

ψ .0074 (.0070) .0081 (.0081) .0098 (.0090)

Table 4.1: Average of the excess risk and the standard error in parenthesis for KLR,
SVM, and ψ-learning over 100 simulation replications for n = 50, 100, and 200 with
r = .05, .10, and .20.

200. The same seed was used for each n in generating random numbers. It seems

that ψ-learning outperforms KLR and SVM in terms of the excess risk for each level

of r as n increases. This is consistent with the linear example in section 3.5.1. The

error rate of SVM appears to be slightly better than that of KLR. This simulation

study confirms that ψ-learning has better generalization accuracy than classifiers with

convex losses if the sample size is reasonably large.

4.3 Benchmark data

We analyzed the following data sets from UC Irvine Machine Learning Repository

to compare the performance of KLR, SVM, and ψ-learning. Data sets and their

information are available at http://www.ics.uci.edu/∼mlearn/MLSummary.html.

• Shuttle landing control database

The database was used to generate rules for determining when an auto landing
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is better than a manual landing of a space shuttle. This database consists of

7 attributes including the class attribute denoting auto and manual landing.

The other attributes are stability, error, sign, wind, magnitude, and visibility.

Among 253 observations, 125 and 128 cases are automatic and manual landing,

respectively.

• Statlog heart disease database

Statlog heart disease database has 13 attributes: age, sex, chest pain type (4

values), resting blood pressure, serum cholestoral in mg/dl, fasting blood sugar

> 120 mg/dl, resting electrocardiographic results (values 0,1,2), maximum heart

rate achieved, exercise induced angina, oldpeak (ST depression induced by exer-

cise relative to rest), the slope of the peak exercise ST segment, number of major

vessels (0-3) colored by flourosopy, thal (3, 6, 7 denote normal, fixed defect, and

reversible defect, respectively.) These attributes are used to predict absence

or presence of heart disease. In this database, there are 270 observations; 150

patients do not have heart disease and 120 patients have heart disease.

• Promoter gene sequences database

The number of instances is 106 with 53 positive and 53 negative instances. The

database has 59 numerical attributes: class attribute (positive or negative),

instance name (non-promoters named by position in the 1500-long nucleotide

sequence), and 57 sequential nucleotide (“base-pair”) positions.

The performance of KLR, SVM, and ψ learning was compared using a linear

kernel in terms of testing error. To determine the optimal values of tuning parame-

ter for each classification method, grid search on [10−5, 105] was adopted. For each

35



data set classifier training error testing error (n,d)
KLR .0687 (.0152) .0658 (.0151)

shuttle landing SVM .0686 (.0150) .0658 (.0151) (253,6)
ψ .0686 (.0150) .0658 (.0151)

KLR .1410 (.0230) .1630 (.0232)
statlog heart disease SVM .1472 (.0241) .1614 (.0229) (270,13)

ψ .1479 (.0266) .1587 (.0259)
KLR .0545 (.0242) .2208 (.0470)

promoter gene SVM .0577 (.0276) .2194 (.0428) (106,57)
ψ .0049 (.0190) .0121 (.0444)

Table 4.2: Average of training and testing errors, and the standard error in parenthesis
for KLR, SVM, and ψ-learning over 100 random partitions.

databases, about half and half of data were used as training and testing data. For

each data set, the same partitions of training vs testing samples were used for these

classification methods. Table 4.2 shows the average of training and testing errors with

their standard errors in parentheses for KLR, SVM, and ψ-learning over 100 random

partitions of training and testing data. For shuttle landing database, KLR, SVM, and

ψ-learning show almost same performance in terms of testing error. The situation is

somewhat different in statlog heart disease example. In terms of testing error, SVM

seems to perform slightly better than KLR, and ψ-learning performs slightly better

than SVM. However, relative gain of ψ-learing is not clear for these two examples.

For promoter gene sequence database, the relative gain of ψ-learning appears to be

strikingly higher than the other classifiers. However, it should be noted that our

analysis was conducted using a linear kernel. For nonlinear kernels, situation may be

different as our Gaussian kernel example in section 3.5.3 indicates.
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Our result suggests that the ratio of n and d may have some effect in the perfor-

mance of classification methods. The gain in the performance for ψ and SVM may

increase as the dimension becomes large, implying that these classification methods

may be effective for microarray data. Theory in Chapter 3 can deal with the situation

of microarray data where d À n by computing metric entropy more accurately as a

function of n as well as d. Another situation where d → ∞ and n → ∞ is also

interesting in both practice and theory.
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CHAPTER 5

DISCUSSION

We have compared the generalization accuracy of margin-based classification meth-

ods with general losses, convex and nonconvex, in terms of the excess risk (over F).

Nonconvex losses such as ψ are shown to yield faster rates of convergence than convex

losses such as SVM and KLR, in both theory and numerical examples. Our results

suggest that ψ is recommendable when one is interested only in classification while

KLR seems to be more natural for obtaining probability estimates.

To make our contribution clear, let us compare our result with other relevant re-

cent work. Bartlett, Jordan, and McAuliffe (2003) obtained the rates of convergence

to the Bayes risk for convex losses. They adopted the low noise assumption as well as

the one that the margin is uniformly bounded, or equivalently, the function class is

uniformly bounded. As noted in Chapter 3, their formulation using the global min-

imizer is appropriate only when the approximation error is (or tends to) zero. Also,

their result may not be applicable to SVM. Our formulation is somewhat different in

that we use the class minimizer instead of the global minimizer. Because f0 is the fea-

sible minimizer in practice, our formulation seems to be more appropriate. Another

advantage is that we may avoid the approximation error under our formulation.
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In Bartlett, Bousquet, and Mendelson (2004), they obtained data dependent

bounds using local Rademacher averages. Data dependent bounds have the advantage

that no assumption on underlying distribution, for example, the low noise assump-

tion, is necessary. However, they assumed that the second moment of the empirical

process is bounded by some constant times its first moment. Because the rates of

convergence are determined by the first and second moments, this assumption may

be a restrictive one. Furthermore, the low noise assumption seems to be generally

accepted in statistical learning theory.

Scovel and Steinwart (2004) and Blanchard, Bousquet, and Massart (2005) studied

the rates for SVM using Gaussian kernels. The difference of these two studies is the

penalty term in the cost function. Blanchard et al. (2005) adopted L1 penalty in

their penalized cost function and obtained fast rates under the low noise assumption

with α = ∞. Because of the difference in penalty term, it may not be relevant to

compare their result with ours. Moreover, their result for SVM using Gaussian kernels

can be applicable only for the special when the noise level α = ∞. In Scovel and

Steinwart (2004), they adopted the low noise assumption as well as the geometric

noise assumption on the underlying distribution. As we pointed out, to make the

approximation error negligible, the class of functions should be sufficiently large and

the underlying distribution should be restricted in some fashion. The geometric noise

assumption may be regarded as a condition on the underlying distribution such that

an upper bound of the approximation error tends to zero.

In this thesis, there are some issues yet to be resolved. First, the rate of conver-

gence for SVM is not available when the approximation error does not tend to zero.
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It is expected that the approximation error may not be negligible when finite dimen-

sional kernels are used. Even when infinite dimensional kernels are adopted, it may

not be negligible depending on the size of F and the underlying distribution. To deal

with general situation, the connection between the excess and the excess surrogate

risk using the class minimizer should be established under mild conditions on the

underlying distribution. For this task, the low noise assumption, which enables us

to obtain fast rates by restricting the class of underlying distributions, may not be

sufficient. It may be necessary to restrict the class of underlying distributions further

by imposing some mild conditions.

Second, the choice of penalty term is limited to L2 penalties here. However, our

theory may be extended to cover other types of penalties such as L1 penalties. For

L1 type penalties, the metric entropy should be the L1 norm, which yields rougher

entropy bounds than L2 norm. This may result in slower rates of convergence.

Third, our lower bound needs to be sharpened. Unless α = ∞, the lower bound

may not be sharp. It appears that there is some loss of power in lower rates during

the conversion of the pseudo-metric for sets into that for functions. This requires

further investigation.

Aside from the issues mentioned above, there ia a gap in statistical learning theory

for multicategory classification. Zhang (2004b) extended his study on consistency for

margin-based classifiers to multicategory classification. Liu and Shen (2004) obtained

rates of convergence for multicategory ψ-learning. To our knowledge, these are the

only available theoretical results for multicategory classification. We expect that our

study in binary classification can give some insight into multicategory classification.
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The key is to understand the characteristics of multicategory classification that differ

from the binary situation.

41



APPENDIX A

PROOFS

Define fm, the truncated f at m1 and m2, as

fm =





m1, if f ≤ m1

f, if m1 < f < m2

m2, otherwise.

where m = (m1,m2) and m1 < 0 < m2. Let Fm = {fm : f ∈ F} be the class of trun-

cated functions. The truncation constants can be chosen so that V ∗-risk with respect

to F is equivalent to V -risk with respect to Fm, i.e., EV ∗(Y f(X)) = EV (Y fm(X))

for f ∈ F and fm ∈ Fm. Using the equivalence, we may work on derivatives on V

over Fm instead of V over F .

Proof of Lemma 1: We apply a truncation argument together with Taylor’s expan-

sion: First, we show that there is an appropriate truncation such that f0 remains the

risk minimizer defined by a truncated loss over F . Second, the term with first deriva-

tive of the truncated loss is shown to be zero by perturbing f around f0. Finally, the

inequality (3.1) is obtained by applying Assumption A.

Let us prove that there exists a truncation such that f0 is the minimizer of

EV ∗(Y f(X)) over F . To make f0 invariant with respect to the truncation, let us take

the truncation constant m = (m1,m2) so that m2 > a and m1 < −a. Suppose that

f0 is not the minimizer of EV ∗(Y f(X)) for any truncation constant m = (m1,m2)
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with m2 > a and m1 < −a. For each k > a, there exists f (k) ∈ F such that f (k) 6= f0

with positive probability and

EV ∗
k (Y f (k)(X)) < EV ∗

k (Y f0(X)) = EV (Y f0(X)) (A.1)

where V ∗
k is the truncated loss with m = (−k, k). Let f = lim supk→∞ f (k). Because F

is a linear space, f ∈ F . We have EV (Y f(X)) ≤ EV (Y f0(X)) by taking lim supk→∞

in (A.1) because lim supk→∞ EV ∗
k (Y f (k)(X)) ≤ EV (Y f(X)) and EV (Y f0(X)) does

not depend on k. Moreover, f ∈ F implies EV (Y f(X)) ≥ EV (Y f0(X)). Hence

EV (Y f(X)) = EV (Y f0(X)). Because strictly convex risk function has a unique

minimizer, f = lim supk→∞ f (k) = f0 a.s., which implies that f (l) = f0 a.s. for all

l ≥ k and sufficiently large k > a. This is a contradiction to our assumption that

f (k) 6= f0 with positive probability for any k > a.

It follows from (C-2) that V ′′ exists. Taylor’s expansion of V (Y fm) at Y f0 yields

0 ≤ eV ∗(f, f0) = E[V ′(Y f0)(Y fm − Y f0) +
1

2
V ′′(Y gm)(Y fm − Y f0)

2], (A.2)

where gm, an intermediate value in Taylor’s expansion, is between fm and f0. It then

follows from (A.2) that E[V ′(Y f0)(Y fm−Y f0)] = 0, by setting fm = f0 +h1 ∈ F for

sufficiently small h1 > 0 and fm = f0 − h2 ∈ F for sufficiently small h2 > 0.

Consequently, by Assumption A,

eV ∗(f, f0)

=
1

2
E

(
V ′′(Y gm(X))(fm(X)− f0(X))2

)

≥ 1

2
inf

m1≤z≤m2

V ′′(z)E(fm(X)− f0(X))2

≥ cE{(fm(X)− f0(X))2I(Sign(f) 6= Sign(f0), |f0| ≥ δ)}
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≥ cδ2(P (Sign(f) 6= Sign(f0))− P (|f0| ≤ δ))

≥ cδ2(P (Sign(f) 6= Sign(f0))− c∗1δ
β) ≥ c∗P (Sign(f) 6= Sign(f0))

β+2
β , (A.3)

with the choice of δ = (P (Sign(f) 6= Sign(f0))/2c
∗
1)

1
β , where c = 1

2
infm1≤z≤m2 V ′′(z) >

0 and c∗ = 2−1c(2c∗1)
−1/β. By triangle inequality,

|e(f, f0)| =
1

2
|E|Y − Sign(f)| − E|Y − Sign(f0)||

≤ 1

2
E|Sign(f)− Sign(f0)| = P (Sign(f) 6= Sign(f0)),

which yields the desired result together with (A.3). ¥

Proof of Lemma 2: For losses satisfying (C-4), let V ∗ = V . By Proposition 1 of

Shen et al. (2003), e(f, f̄) ≤ eV (f, f̄). Hence (3.3) follows.

Now, suppose V satisfies (C-3) with q = 1. Let T1 = 2 and T2 = 0. Since

|f̄ | ≤ 1, f̄ is the global minimizer of EV ∗(Y f(X)). For any given x, let AV ∗(f(x))

be E(V ∗(Y f(X))|X = x), where AV ∗(z) = p∗(x)V ∗(z)+ (1− p∗(x))V ∗(−z). Because

V ∗(f) + V ∗(−f) = 2, we have AV ∗(f) − AV ∗(f̄) = (2p∗(x) − 1)(V ∗(f) − V ∗(f̄)).

Consequently, AV ∗(f)− AV ∗(f̄) ≥ |2p∗(x)− 1| when Sign(f) 6= Sign(f ∗), implying

eV ∗(f, f̄) ≥ E{(AV ∗(f)− AV ∗(f̄))I(Sign(f) 6= Sign(f ∗))}

≥ E{|2p∗(X)− 1|I(Sign(f) 6= Sign(f ∗))}

= e(f, f̄).

The last equality is from Theorem 2.2 of Devryoe, Györfi, and Lugosi (1996). This

implies e(f, f̄) ≤ eV ∗(f, f̄). The desired result follows. ¥

Proof of Theorem 1: Let V ∗ be the truncated version of V defined in Lemma 1,

where 0 ≤ T2 ≤ V ∗(z) ≤ T1 < ∞ for all z and T1 and T2 are the truncation constants.

Let l̃V ∗(f, Zi) = lV ∗(f, Zi) + λJ [f ] be the cost function to be minimized, with

lV ∗(f, Zi) = V ∗(Yif(Xi)) and λ = 1/(Cn) where Zi = (Xi, Yi) is a training example.
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Let l̃(f, Zi) = l(f, Zi) + λJ [f ] be the corresponding cost function defined by the mis-

classification loss function where l(f, Zi) = L(Yif(Xi)). Define the scaled empirical

process En(l̃V ∗(f, Z)− l̃V ∗(f0, Z)) as

n−1

n∑
i=1

(l̃V ∗(f, Zi)− l̃V ∗(f0, Zi)− E(l̃V ∗(f, Zi)− l̃V ∗(f0, Zi)))

where Z = (X, Y ). Let Ai,j = {f ∈ F : 2i−1δ2
n ≤ eV ∗(f, f0) < 2iδ2

n, 2j−1 max

{J [f0], 1} ≤ J [f ] < 2j max{J [f0], 1}} and Ai,0 = {f ∈ F : 2i−1δ2
n ≤ eV ∗(f, f0) < 2iδ2

n,

J [f ] < max{J [f0], 1}}; j = 1, 2, · · · , i = 1, 2, · · · . Without loss of generality, assume

that J [f0] ≥ 1.

To bound P (|e(f̂ , f0)| ≥ δ
2β

β+2
n ), we apply Theorem 3 of Shen and Wong (1994), a

large deviation inequality for empirical processes, to P (Ai,j) by controlling the mean

and variance defined by lV ∗(f, Zi) and λ. First, let us establish the connection between

e(f̂ , f̄) and En(lV ∗(f, Z)− lV ∗(f0, Z)). By Lemma 1, we obtain that

{|e(f̂ , f0)| ≥ δ2β/(β+2)
n }

⊂ {eV ∗(f̂ , f0) ≥ c
−(β+2)/β
V ∗ δ2

n}

⊂ { sup
{f∈F :eV ∗ (f,f0)≥c

−(β+2)/β
V ∗ δ2

n}
n−1

n∑
i=1

(l̃V ∗(f0, Zi)− l̃V ∗(f, Zi)) ≥ 0}.

Hence

P (|e(f̂ , f0)| ≥ δ2β/(β+2)
n )

≤ P ∗


 sup
{f∈F :eV ∗ (f,f0)≥c

−(β+2)/β
V ∗ δ2

n}
n−1

n∑
i=1

(l̃V ∗(f0, Zi)− l̃V ∗(f, Zi)) ≥ 0


 = I

where P ∗ denotes the outer probability measure.

To bound I, it suffices to bound P (Ai,j) for each i, j = 1, · · · . To this end, we need

some inequalities regarding the first and second moments of l̃V ∗(f, Z)− l̃V ∗(f0, Z) for
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f ∈ Ai,j. Using the assumption that max{J [f0], 1}λ ≤ δ2
n, we have

inf
f∈Ai,j

E(l̃V ∗(f, Z)− l̃V ∗(f0, Z)) ≥ M(i, j) = 2i−1δ2
n + λ(2j−1 − 1)J [f0] (A.4)

for any integer i, j ≥ 1 and

inf
f∈Ai,0

E(l̃V ∗(f, Z)− l̃V ∗(f0, Z)) ≥ M(i, 0) = 2i−2δ2
n. (A.5)

We now compute the second moment. By the truncation argument in Lemma 1

and Taylor’s expansion to f0, we have

E(lV ∗(f, Z)− lV ∗(f0, Z))2 = E(V ′(Y fgm(X))(Y fm(X)− Y f0(X)))2

≤ sup
m1≤z≤m2

[V ′(z)]2E(fm(X)− f0(X))2

≤ c∗eV ∗(f, f0)

where gm is an intermediate value between fm and f0 and c∗ = 2 supm1≤z≤m2
[V ′(z)]2

/ infm1≤z≤m2 V ′′(z). The last inequality follows from Taylor’s expansion in (A.3).

Consequently,

sup
Ai,j

E(lV ∗(f, Z)− lV ∗(f0, Z))2 ≤ v(i, j)2 = c3M(i, j);

i = 1, 2, · · · , j = 0, 1, · · · , where c3 = c∗.

Using the assumption that max{J [f0], 1}λ ≤ δ2
n/2, (A.4) and (A.5), we have

I ≤
∑
i,j

P ∗
(

sup
Ai,j

En(lV ∗(f0, Z)− lV ∗(f, Z)) ≥ M(i, j)

)
+

∑
i

P ∗
(

sup
Ai,0

En(lV ∗(f0, Z)− lV ∗(f, Z)) ≥ M(i, 0)

)
= I1 + I2.

Next, we bound Ii separately. For I1, we verify the conditions (4.5)-(4.7) in

Theorem 3 of Shen and Wong (1994). To compute the metric entropy in (4.7), define
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a bracketing function of lV ∗(f0, Z) − lV ∗(f, Z). Denote {(f l
k, f

u
k )}k=1,··· ,nc as an ε-

bracketing function of F . Let z = (y, x). Because V is strictly convex, V ∗ is either

nonincreasing or not monotone with a minimum. If V ∗ is nonincreasing, let llk =

min{lV ∗(f l
k, z), lV ∗(f

u
k , z)} −lV ∗(f0, z) and luk = max{lV ∗(f l

k, z), lV ∗(f
u
k , z)}−lV ∗(f0, z).

If V ∗ is not monotone with a minimum at zmin, then let

llk = min{lV ∗(f l
k, z), lV ∗(f

u
k , z)}I((yf l

k − zmin)(yfu
k − zmin) ≥ 0)

+V ∗(zmin)I((yf l
k − zmin)(yfu

k − zmin) < 0)− lV ∗(f0, z)

and luk = max{lV ∗(f l
k, z), lV ∗(f

u
k , z)}− lV ∗(f0, z). For any f ∈ F with J [f ] ≤ 2j, there

is k = 1, · · · ,m such that f l
k ≤ f ≤ fu

k , which implies that llk ≤ lV ∗(f, z)−lV ∗(f0, z) ≤

luk . Hence {(llk, luk)}k=1,··· ,nc is an ε-bracketing function of lV ∗(f, z) − lV ∗(f0, z). By

Taylor’s expansion, ‖luk − llk‖2 = ‖V ′(Y gm(X))(Y fu
m − Y f l

m)‖2 ≤ c‖fu
m − f l

m‖2 ≤

c‖fu
k − f l

k‖2 for c = supm1≤z≤m2
[V ′(z)]2 > 0 where fu

m and f l
m denotes the truncated

fu
k and f l

k, respectively, and gm denotes an intermediate value between fu
m and f l

m.

Hence HB(u,FV ∗(2
j)) ≤ HB(cu,F(2j)).

Using the fact that
∫ v(i,j)

aM(i,j)
H

1/2
B (u,FV ∗(2

j))du/M(i, j) is nonincreasing in i and

M(1, j) for j = 1, 2, · · · , we have

∫ v(i,j)

aM(i,j)

H
1/2
B (u,FV ∗(2

j))du/M(i, j) ≤
∫ √

c3M(1,j)1/2

aM(1,j)

H
1/2
B (u,FV ∗(2

j))du/M(1, j)

≤ φ(ε̄n, 2j),

where a = ε/32. The metric entropy condition implies (4.7) with a choice of ε = 1/2

and ci for i = 3, 4. Moreover, (4.5)-(4.6) are satisfied with ε = 1/2 with the choice of

M(i, j) and v(i, j) in that M(i, j)/v2(i, j) ≤ 1/4c∗.
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Note that 0 < δn ≤ 1 and max{J [f0], 1} ≤ δ2
n/2. An application of Theorem 3 of

Shen and Wong (1994) with M = n1/2M(i, j), v = v2(i, j) and ε = 1/2 yields that

I1 ≤
∞∑

j=1

∞∑
i=1

3 exp

(
− (1− ε)nM(i, j)2

2(4v2(i, j) + M(i, j)T/3)

)

≤
∞∑

j=1

∞∑
i=1

3 exp (−c5nM(i, j))

≤
∞∑

j=1

∞∑
i=1

3 exp
(−c5n[(2i−1δ2

n) + ((2j−1 − 1)λJ [f0])]
)

≤ 3 exp (−c5nλJ [f0]) /[1− exp (−c5nλJ [f0])]
2,

where c5 > 0 is a generic constant. Similarly, I2 can be bounded. Finally, I ≤

6 exp(−c5nλ J [f0])/[1 − exp(−c5nλJ [f0])]
2. This implies that I1/2 ≤ (5/2 + I1/2)

exp(−c5n λJ [f0])). Since I ≤ I1/2 ≤ 1, I ≤ 3.5 exp (−c5nλJ [f0]) . ¥

Proof of Theorem 2: Because the proof for V satisfying (C-4) is essentially the

same for V satisfying (C-3) with q = 1, let us sketch the proof for V satisfying (C-3)

with q = 1. We may follow the proof of Theorem 1 except for orders of exponents

and constants.

Let V ∗ be the truncated version of V defined in the proof of Lemma 2, so that

T2 ≤ V ∗(z) ≤ T1 for all z where T2 = 0 and T1 = 2. Let m = (−1, 1). By Assumption

B, we have eV (f0, f̄) ≤ δ2
n.

Consider the empirical process En(l̃V ∗(f, Z) − l̃(f0, Z)). Let Ai,j = {f ∈ F :

2i−1δ2
n ≤ eV ∗(f, f0) < 2iδ2

n, 2j−1 max {J [f0], 1} ≤ J [f ] < 2j max{J [f0], 1}} and

Ai,0 = {f ∈ F : 2i−1δ2
n ≤ eV ∗(f, f0) < 2iδ2

n, J [f ] < max{J [f0], 1}}; j = 1, 2, · · · ,

i = 1, 2, · · · . By an analogous argument, we have

P (e(f̂ , f̄) ≥ δ2
n)

≤ P ∗
(

sup
{f∈F :eV ∗ (f,f0)≥c−1

V ∗δ2
n}

n−1

n∑
i=1

(l̃V ∗(f0, Zi)− l̃V ∗(f, Zi)) ≥ 0

)
= I.
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To bound I, it suffices to bound P (Ai,j) for each i, j = 1, · · · . For the first moment

of the empirical process, it can be shown that

inf
f∈Ai,j

E(l̃V ∗(f, Z)− l̃V ∗(f0, Z)) ≥ M(i, j) = 2i−1δ2
n + λ(2j−1 − 1)J [f0] (A.6)

for any integer i, j ≥ 1 and

inf
f∈Ai,0

E(l̃V ∗(f, Z)− l̃V ∗(f0, Z)) ≥ M(i, 0) = 2i−2δ2
n. (A.7)

We now compute the second moment. It follows from Assumption A that, for any

f ∈ F ,

eV ∗(f, f0) + δ2
n ≥ eV ∗(f, f̄)

= 2E|f ∗(X)||fm(X)− f̄(X)|

≥ δE|fm(X)− f̄(X)|I(|f ∗(X)| ≥ δ)

≥ δ(E|fm(X)− f̄(X)| − 4c1δ
α)

≥ 2−1(8c1)
−1/α(E|fm(X)− f̄(X)|)(α+1)/α

with a choice of δ = (E|fm(X)− f̄(X)|)1/α. Hence,

E(V ∗(Y f(X))− V ∗(Y f0(X)))2

= E
(
V (Y fm(X))− V (Y f 0

m(X))
)2

= E(fm(X)− f 0
m(X))2

≤ 2E|fm(X)− f 0
m(X)|

≤ 2(E|fm(X)− f̄(X)|+ E|f 0
m(X)− f̄(X)|)

≤ 4(4c1)
1/(α+1)((eV ∗(f, f0) + δ2

n)α/(α+1) + eV ∗(f0, f̄)α/(α+1))

≤ c∗(eV ∗(f, f0)
α/(α+1) + 2δ2α/(α+1)

n ) ≤ c∗eV ∗(f, f0)
α/(α+1)
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for a positive generic constant c∗ because δ2
n can be absorbed into eV ∗(f, f0). We have

proved that E(lV ∗(f, Z)− lV ∗(f0, Z))2 ≤ c∗eV ∗(f, f0)
α/(α+1) for some positive constant

c∗.

Denote {(f l
k, f

u
k )}k=1,··· ,nc an ε-bracketing function of F . For any z = (x, y) where

f ∈ Ai,j, let llk = min{lV ∗(f l
k, z), lV ∗(f

u
k , z)} − lV ∗(f0, z) and luk = max{lV ∗(f l

k, z)

, lV ∗(f
u
k , z)} −lV ∗(f0, z) because V ∗ is nonincreasing. Using the analogous argument in

Theorem 1, {(llk, luk)}k=1,··· ,nc is an ε-bracketing function of lV ∗(f, z)−lV ∗(f0, z) because

V ∗ is decreasing. Easily, we can show that ‖luk − llk‖2 = ‖fu
m − f l

m‖2 ≤ ‖fu
k − f l

k‖2

because V ∗ satisfies Lipschitz condition. Hence HB(u,FV ∗(2
j)) ≤ HB(cu,F(2j)).

Thus

sup
Ai,j

E(lV ∗(f, Z)− lV ∗(f0, Z))2 ≤ v(i, j)2 = c3M(i, j)α/(α+1)

for i = 1, 2, · · · and j = 0, 1, · · · where c3 = c∗. Following the proof of Theorem 1, we

obtain the desired result. ¥

Proof of Theorem 4: The main idea of the proof is to construct a least favorable

subfamily of F that is as difficult as the original problem. This yields the lower

bound by an application of Fano’s lemma; c.f., Ibragimov and Has’minskii (1981). In

our classification framework, only decision functions whose signs define classifiers are

specified, whereas the existence of conditional probabilities is not required.

Let p∗ be the true conditional density of Y = 1 given x. For any f ∈ F , let p̃(f)

represents an equivalence class of probability densities that yield the same decision

boundary in the sense that Sign(f) = Sign(p̃(f)−1/2). Note that the mapping from

f to p̃(f) is not unique but we can choose a representative without loss of generality.

This implies that classification based on f ∈ F is as difficult as that based on p̃(f)

for f ∈ F .
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We now construct a least favorable family of {p̃(f) : f ∈ F}. Our construction

uses truncation as well as the behavior of p̃(f) near the decision boundary, which

characterizes the most difficult situation for classification. For any f ∈ F and any

0 < δ < 1/4, define

p̄(f) =

{
p̃(f) if |(p̃(f)/p∗)1/2 − 1| ≤ δ1/2 and |p∗ − 1/2| ≤ δ,
(1 + Sign(f)δ1/2)2p∗ otherwise.

This in turn defines a density p(f) = p̄(f)/c(f) after normalization, where c(f) is a

normalizing constant. By construction, p̄(f) yields the same the decision boundary

as p̃(f), in addition that for any fi ∈ F ; i = 1, · · · , r, the likelihood ratio (1−δ1/2)2

(1+δ1/2)2
≤

p(fi)/p(fj) ≤ (1+δ1/2)2

(1−δ1/2)2
, but each p(fi) may not be bounded away from zero, depending

on p∗.

Next, we introduce a maximal ε2
n-separated subset of G(εn,F) N = {Gf1 , · · · , Gfr},

whose existence is implied by assumption. Denote Cn as an εn-covering of G(εn,F).

Because an ε2
n-separated set for G(εn,F) can also serve as an ε2

n-cover of G(εn,F),

we may take Cn so that C(ε2
n,G(εn,F)) = H(2ε2

n,G(εn,F)) in view of the relation in

(3.6). Define Gf̃ = arg min1≤i≤r d∆(Gfi
, Gf∗).

The likelihood of (Xi, Yi)
n
i=1 for any f ∈ F is

(
n∏

i=1

h(xi)

)
n∏

i=1

(
p(f(xi))

yi(1− p(f(xi)))
1−yi

)

where h is the marginal density of Xi.

For any fi and δ < 1/4; i = 1, · · · , r, define pi as above, so that the likelihood

ratio between pi and pj is uniformly bounded away from zero and infinity. Let Ai =

(|(p̃(fi)/p
∗)1/2 − 1| ≤ δ1/2) ∩ (|p∗ − 1/2| ≤ δ) for i = 1, · · · , r. By assumption, it can

be verified that pi satisfies the low noise condition on Ai. Furthermore, the Kullback-

Leibler (K-L) divergence between pi and pj is bounded above by the Hellinger distance
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between pi and pj:

K(pi, pj) ≤ ‖p1/2
i − p

1/2
j ‖2

≤ 1

c(fi)
‖p̄(fi)

1/2 − p̄(fj)
1/2‖2 +

(
1

c(fi)1/2
− 1

c(fj)1/2

)2

‖p̄(fj)
1/2‖2

≤ c‖p̄(fi)
1/2 − p̄(fj)

1/2‖2

≤ c(‖(p̄(fi)
1/2 − p̄(fj)

1/2)I(Ai ∪ Aj)‖2 + ‖(p̄(fi)
1/2 − p̄(fj)

1/2)I(AC
i ∩ AC

j )‖2)

≤ c
(‖2(p∗)1/2δ1/2IAi∪Aj

‖2 + ‖(p∗)1/2δ1/2(Sign(fi)− Sign(fj))I(AC
i ∩ AC

j )‖2
)

≤ cδ
(
P (Ai ∪ Aj) + d∆(Gfi

, Gfj
)
)

≤ cδ
(
P (|p∗ − 1/2| ≤ δ) + d∆(Gfi

, Gfj
)
)

≤ cδ1+α + δd∆(Gfi
, Gfj

) ≤ cd
α+1

α
∆ (Gfi

, Gfj
) ≤ cε

2(α+1)
α

n ,

by minimizing with respect to δ, with a choice of δ = d
1
α
∆(Gfi

, Gfj
)/4 ≥ ε

2
α
n /4, where

c > 0 is a generic constant.

To apply Fano’s Lemma, note that N is an εn-separated set, d∆(Gfi
, Gf∗) +

d∆(Gfj
, Gf∗) ≥ d∆(Gfi

, Gfj
) ≥ ε2

n. Thus d∆(Gf , Gf∗) ≥ ε2
n/2 if Gf 6= Gf̃ . Note

that (3.7) implies that max
1≤i,j≤r

nK(pi, pj) ≤ 1

2
log(r − 1) − log 2 for sufficiently small

εn > 0. It then follows from Fano’s Lemma that

max
1≤i≤r

P (d∆(Gfi
, Gf∗) ≥ ε2

n/2) ≥ max
1≤i≤r

P (Gfi
6= Gf̃ ) ≥

1

r

r∑
i=1

P (Gfi
6= Gf̃ ) ≥

1

2
.

To obtain the lower bound for G(εn,F), note that for Gf1 , · · · , Gfr , there exists

Gf̃1
, · · · , Gf̃r

∈ G(εn,F) such that d∆(Gf̃i
, Gfi

) ≤ εd
n by the definition of the metric

entropy for some sufficiently large d > 0 such that nε2d
n ≤ 1/4. This implies that

max
1≤i≤r

P (d∆(Gf̃i
, Gf∗) ≥ ε2

n/2) ≥ max
1≤i≤r

P (d∆(Gfi
, Gf∗) ≥ ε2

n/2)− nε2
n ≥ 1/4.

Hence

sup
Gf∈G(εn,F)

P (d∆(Gf , Gf∗) ≥ ε2
n/2) ≥ max

1≤i≤r
P (d∆(Gf̃i

, Gf∗) ≥ ε2
n/2) ≥ 1/4. (A.8)

52



Finally, by Assumption A

e(f, f̄) ≥ 2−1(4c1)
− 1

α d
α+1

α
∆ (Gf , Gf∗);

c.f., the proof of Theorem 1 in Shen et al. (2003) or Lemma 2 in Mammen and

Tsybakov (1999). Then

sup
f∈F

P (e(f, f̄) ≥ ε2
n/2) ≥ sup

Gf∈G(εn,F)

P (d∆(Gf , Gf∗) ≥ (4c1)
− 1

α ε
2α

α+1
n ). (A.9)

Hence, if

C(ε
2α

α+1
n ,G(εn,F)) ≥ c

′
n

(
ε

2α
α+1
n

)α+1
α

= nε2
n,

then, from (A.8) and (A.9),

sup
f∈F

P (e(f, f̄) ≥ ε2
n/2) ≥ 1/2.

¥

The following proposition provides the rate of convergence for SVM in the linear

example through direct calculations.

Proposition 2. Under the assumptions of section 3.5.1, if V satisfies (C-3) with

q = 1, then E|e(f̂ , f0)| = O(n−1/2).

Proof of Proposition 2: Because the proof is lengthy, we divide the proof into

three steps.

Step 1. We establish connection between the excess surrogate risk over F and the

excess risk over F :

|e(f, f0)| ≤ cV ∗eV ∗(f, f0)
1/2 (A.10)

for some truncated loss V ∗ of V with a positive constant cV ∗ depending on V ∗.
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The idea is to use a truncation argument together with Taylor’s expansion: First,

we show that f0 remains as the risk minimizer defined by a truncated loss. Second,

the risk of a decision rule defined by the truncated loss is shown to be strictly convex

as a function of a vector of coefficients corresponding to the decision rule. Then we

apply Taylor’s expansion argument to bound the excess risk over F defined by the

truncated loss by l2-norm of their vectors of coefficients. Finally, (A.10) is obtained.

We can show that there is a truncated loss V ∗ of V such that f0 is the minimizer

of the risk defined by the truncated loss. The truncations constants can be chosen so

that f0 is invariant with respect to the truncation.

Before proceeding, let us introduce a few notations. Define

W = {w ∈ Rd+1 : w is the vector of coefficients corresponding to f ∈ F}.

Because there is 1-1 correspondence between F and W , we may define v(w) =

EV ∗(Y f(X)) for any f ∈ F with the representation f(x) = a1x1 + · · · adxd + b where

(a1, · · · , ad, b) ∈ W is the vector of coefficients. Denote the vector of coefficients for

f0 by w0.

Now, let us show that w0 is the minimizer of v and v(w) is strictly convex around

w0. Note that w0 is a minimizer of v because EV ∗(Y f0(X)) ≤ EV ∗(Y f(X)) for all

f ∈ F implies that v(w0) ≤ v(w) for any w ∈ W . Easily, v(w) is a convex function

in w around w0. For f around f0, v(w) = 1 − b −∑d
i=1 aiE(Xi) + E(Y f(X) − 1)+.

If ‖f‖∞ ≤ 1, then v(w) is a linear function in w because E(Y f(X) − 1)+ vanishes.

Otherwise, v(w) is nonlinear in w. Through tedious calculations, E(Y f(X)−1)+ can

be shown to be smooth in w. Because v is globally convex, it is strictly convex in

some neighborhood of w0. This, together with ‖f0‖∞ =
√

1−r
r

> 1 for 0 < r < 1/2,
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imply that the risk is strictly convex around w0. Hence w0 is unique minimizer of

v(w).

Take a threshold 0 < tc <
√

1−r
r
− 1 of eV ∗(f, f0) so that f is invariant with

respect to the truncation for f satisfying eV ∗(f, f0) ≤ tc. If eV ∗(f, f0) > tc, then

1
tc

eV ∗(f, f0) > 1 ≥ e(f, f0)
2, which holds trivially because e(f, f0) ≤ 1. The solution

w0 does not belong to the region of f where eV ∗(f, f0) is bounded away from tc.

Hence eV ∗(f, f0) ≤ tc corresponds to the least favorable situation. The set of f ∈ F

satisfying eV ∗(f, f0) ≤ tc can be translated into some neighborhood of coefficients w0

defined by N(w0, tw) = {w ∈ Rd+1 : ‖w − w0‖ ≤ tw} for some positive constant tw.

Now restrict our attention to this neighborhood. On N(w0, tw), v(w) is a strictly

convex function in w. By Taylor’s expansion,

0 ≤ eV ∗(f, f0) = v(w)− v(w0) = ∇v(w0)
′(w − w0) +

1

2
(w − w0)

′Hv(w
∗)(w − w0)

where ∇v and Hv denote the gradient and the Jacobian of v, respectively, and w∗

is an intermediate value between w and w0. Note that w0 is the unique minimizer

of v in the expansion and v is a strictly convex function of w on the neighborhood

of w0. Thus Hv(w
∗) is positive definite for w in the neighborhood of w0. Using the

perturbation argument around w0 as before, the first term must be zero. Hence,

0 ≤ eV ∗(f, f0) =
1

2
(w − w0)

′Hv(w
∗)(w − w0).

Let λi(w); i = 1, · · · , d + 1 be the eigenvalues of Hv(w
∗). Because Hv(w

∗) is posi-

tive definite and v is smooth on N(w0, tw), we have infw∈N(w0,tw) min1≤i≤d+1 λi(w) ≥

c min1≤i≤d+1 λi(w0) > 0 for constant c > 0. Then

eV ∗(f, f0) =
1

2

d+1∑
i=1

λi(w)(wi − w0
i )

2 ≥ c

2
min

1≤i≤d+1
λi(w0)‖w − w0‖2. (A.11)
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To bound |e(f, f0)| by ‖w − w0‖, note that

|e(f, f0)| ≤ P (Sign(f) 6= Sign(f0))

= P (|f + f0| < |f − f0|)

≤ P

(
|f + f0| ≤ |b− b0 +

d∑
i=1

(ai − a0
i )Xi|

)

≤ P (|f + f0| ≤ c′‖w − w0‖1)

≤ min{c′‖w − w0‖, 1}

for a generic constant c′ > 0 where ‖ · ‖1 denotes the l1 norm. This, together with

(A.11), yields eV ∗(f, f0) ≥ c∗e(f, f0)
2 for some positive constant c∗ depending on

w0. Because |e(f, f0)| ≤ 1√
c∗ eV ∗(f, f0)

1/2 for the least favorable situation, |e(f, f0)| ≤

cV ∗eV ∗(f, f0)
1/2.

Step 2. Let us show that

E(lV ∗(f, Z)− lV ∗(f0, Z))2 ≤ c∗eV ∗(f, f0) (A.12)

for some constant c∗ > 0.

Define vw0(w) = E(V ∗(Y f(X))−V ∗(Y f0(X)))2 ≥ vw0(w0) = 0. We can apply the

argument of Step 1 for vw0(w). Since vw0(w) ≤ T 2, the threshold tc and the neighbor-

hood N(w0, tw) can be determined in a similar fashion. Obviously, vw0(w) is a strictly

convex function in w and it has the minimizer at w0. By Taylor’s expansion and the

perturbation argument around w0, vw0(w) = 1
2
(w−w0)

′Hvw0
(w∗)(w−w0) where Hvw0

denotes the Jacobian of vw0 and w∗ is an intermediate value between w and w0. Fol-

lowing the argument of Step 1, we have v(w, w0) ≤ c∗
2

max1≤l≤d+1 λl(w0)‖w−w0‖2 for

some positive constant c∗ where λl(w0);l = 1, · · · , d+1 are the eigenvalues of Hvw0
(w0).

By (A.11), E(lV ∗(f, Z)− lV ∗(f0, Z))2 ≤ c∗eV ∗(f, f0) for some positive constant c∗ de-

pending on max1≤l≤d+1 λl(w0) / min1≤l≤d+1 λ∗l (w0) where λ∗l (w0); l = 1, · · · , d+1 are
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the eigenvalues of the Jacobian matrix at w0 for v∗(w) = eV ∗(f, f0).

Step 3. Following the proof of Theorem 1, we obtain the probability bound, which

implies the risk bound. By solving entropy equations, ε̄n = n−1/2. Therefore,

E|e(f̂ , f0)| = O(n−1/2). ¥

Lemma 3. Let f and g be Lipschitz functions from Rd to R. For any t ∈ R, if

Ld(f ≥ t) < ∞ and Ld(g ≥ t) < ∞, then

Ld((f ≥ t)∆(g ≥ t)) =

∫ ∞

t

Ld−1((f = s)∆(g = s))ds

where Ld denotes the Lebesgue measure on Rd.

Proof of Lemma 3: By Theorem 1 (Coarea Formula) in Evans and Gariepy (1992),

we can prove Ld(f ≥ t) =
∫∞

t
Ld−1(f = s)ds. By applying this result to Ld((f ≥

t)∆(g ≥ t)) = Ld(f ≥ t) + Ld(g ≥ t)− Ld((f ≥ t) ∩ (g ≥ t), the result follows. ¥

In Theorem 1 of Belyakov (1986), the metric entropy for 0-level sets of polynomials

is provided. The following lemma bounds the metric entropy for classification sets

using that for level sets.

Lemma 4. Under the assumptions of section 3.5.2,

H(ε,G(k)) ≤ O(log(k/ε)).

Proof of Lemma 4: Let f, g ∈ F(k), polynomials of degree mp in X , such that f/k

and g/k satisfies the conditions of Lemma 2 in Belyakov (1986). Denote Γf (t) and

Γg(t) as t-level sets induced by polynomials f and g, respectively, and the sup-norm

distance in X as ω(·, ·).
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By Lemma 3, the volume of a symmetric difference of two classification sets can

be expressed as

P (Gf∆Gg) =

∫ k

0

Ld−1(Γf (t)∆Γg(t))dt/Ld(X ),

for some k > 0. Since levels sets are compact in a bounded space X , sup0≤t≤k

Ld−1(Γf (t)∆Γg(t)) is attained at some t0 ∈ [0, k]. Then the volume can be bounded

by a rectangle containing both the t0-level sets Γf (t0) and Γg(t0) with length ω (Γf (t0)

, Γg(t0)) multiplied by some constant. That is,

P (Gf∆Gg) ≤ Cmp,d,kω(Γf (t0), Γg(t0))
d,

where Cmp,d,k is a positive generic constant depending on mp, d, and k. Applying

Lemma 2 of Belyakov (1986), we have ω(Γf (t0), Γg(t0)) ≤ Cmp,d(ε/k)1/mp , implying

that

P (Gf∆Gg) ≤ Cmp,d,k(ε/k)d/mp .

Plugging this in the proof of Theorem 1 in Belyakov (1986), the result follows. ¥

The following lemma is useful in local entropy calculations for polynomial kernel.

Lemma 5. Let f and g be two polynomials of degree m on a compact and connected

set X in Rd defined by f(x) =
∑

l0+···+ld=mp
al0,··· ,ldx

l1
1 · · ·xld

d and g(x) =
∑

l0+···+ld=mp

bl0,··· ,ld xl1
1 · · · xld

d such that Sign(al0,··· ,ld) = Sign(bl0,··· ,ld) for each l0, · · · , ld with l1 +

· · ·+ ld = mp. If Ld(Gf∆Gg) ≤ ε, then |al0,··· ,ld − bl0,··· ,ld| < cε for any l0, · · · , ld with

l1 + · · ·+ ld = mp where c is a positive constant.

Proof of Lemma 5: First, consider the case polynomials in one variable. Without

loss of generality, we may put f(x) = xmp + amp−1x
mp−1 · · · + a0 and g(x) = xmp +

bl−1x
mp−1 · · ·+ b0. Denote roots of f and g as τi and τ ∗i ; i = 1, · · · ,mp, respectively.
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Assume that τ1 ≤ · · · ≤ τmp and τ ∗1 ≤ · · · ≤ τ ∗mp
. Since Gf∆Gg is a finite union

of disjoint intervals in X = [u, v] (−∞ < u < v < ∞) with end points τi or τ ∗i ;

i = 1, · · · , l, we can easily see that |τi − τ ∗i | ≤ cε; i = 1, · · · , l for some positive

generic constant c, which implies |a∗i − ai| ≤ cε for i = 0, · · · , l− 1 using the relation

between roots and coefficients.

Suppose that the assertion holds for polynomials in (d − 1)-variables. We may

rearrange the polynomials f and g as a polynomial of degree mp in x1, · · · , xd−1

for any fixed xd as follows: f(x1, · · · , xd) =
∑

l0+···+ld−1≤mp
a′l0,··· ,ld−1

xl1
1 · · · xld−1

d−1 and

g(x1, · · · , xd) =
∑

l0+···+ld−1≤mp
b′l0,··· ,ld−1

xl1
1 · · ·xld−1

d−1 where a′l0,··· ,ld−1
= al0,··· ,ldx

ld
d and

b′l0,··· ,ld−1
= bl0,··· ,ldx

ld
d for ld = mp − l0 − · · · − ld−1. Take x∗d so that xd − x∗d is

bounded away from zero. Denote the translation of set Gf with respect to d-th

coordinate by x∗d as Tx∗d(Gf ). The volume of Gf∆Gg can be expressed as Ld(Gf∆Gg)

=
∫ Ld−1(Gf∆Gg)(xd)dxd where Ld−1 (Gf∆Gg)(xd) =

∫ · · · ∫ IGf∆Gg (x1, · · · , xd)

dx1 · · · dxd−1. The volume condition on Gf∆Gg implies Ld(Gf∆Gg) ≤ ε. Since the

volume is invariant with respect to translations, Ld(Gf∆Gg) = Ld(Tx∗d(Gf∆Gg)) =

∫
Hd(Tx∗

d
(X ))

Ld−1(Gf∆Gg)(xd − x∗d)dxd where Hd : X → R is a projection map defined

by Hd(x1, · · · , xd) = xd. By Mean Value Theorem in calculus, there is x0
d such

that Ld−1(Gf∆Gg) (x0
d− x∗d) L1(Hd(Tx∗d(X ))) = Ld−1(Gf∆Gg)(x

0
d− x∗d)L1(Hd(X )) =

Ld(Gf∆Gg). Hence Ld−1 (Gf∆Gg) (x0
d − x∗d) < cε for some positive constant c. By

inductive assumption, |a′l0,··· ,ld−1
−b′l0,··· ,ld−1

| ≤ cε, which implies |al0,··· ,ld−bl0,··· ,ld | < cε.

¥
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