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ABSTRACT 

 
 

Annual Average Daily Traffic (AADT) is one of the most fundamental traffic 

statistics used for highway planning, design, and maintenance. State departments of 

transportation invest heavily in personnel and equipment to collect traffic counts 

supporting AADT estimation on all highway segments in their systems on a regular basis.  

Vehicles are detectable in air photos, high-resolution satellite images, and LiDAR 

data of highway segments, which are regularly collected for various purposes. A Bayesian 

approach is developed to incorporate the traffic data extracted from these images in the 

existing practice of AADT estimation. The uncertainty in the AADT on a segment is 

expressed by a probability distribution. In any year of interest, the approach begins with a 

prior AADT distribution that is updated to a posterior distribution when a traffic count is 

available. When incorporating the uncertainty in traffic growth, this approach can be 

applied year by year. Methods are developed to model the prior distribution of the AADT 

and the probability distribution of short-term traffic counts conditional on the AADT, 

which are two important components of this approach. Parameters are estimated to make 

the approach operational. 
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A numerical study is conducted to simulate AADT estimation during a typical cycle 

of traffic count collection on the ground. The results show that a small amount of 

image-based data could be exploited through the Bayesian approach to improve accuracy 

in AADT estimates while reducing the number of costly and dangerous ground counts. 

Sensitivity analysis indicates that the Bayesian approach would provide positive benefits 

for a large range of conditions. 

Operational issues are discussed for the Bayesian approach, and it appears that the 

method could be implemented in state DOTs if the institutional means are developed to 

extract image-based data and place them in a format that could be easily integrated with 

data presently used to estimate AADT. Additional areas are suggested for future study.
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CHAPTER 1 

INTRODUCTION 

 

Knowledge of vehicular traffic on highway segments is essential for highway 

planning, design, maintenance, and analysis. Annual average daily traffic (AADT) is a 

fundamental statistic of this traffic. Basically, AADT is the number of vehicles that would 

use a highway segment on a typical day of the year. A highway segment for the purpose 

of AADT estimation is a section of highway through which the traffic volume does not 

change (FHWA, 2001). In this work, a highway segment will be considered a section of 

highway between two consecutive interchanges. Because of its importance, Departments 

of Transportation (DOTs) in the 50 states estimate AADT on all their highway segments. 

The DOTs are also required to provide AADT estimates to the federal government to be 

eligible for the federal funding of state projects. Collecting traffic counts to estimate 

AADT is costly in terms of both equipment and personnel. Data collection involving the 

installment of traffic sensors on the surface of a busy highway also risks road crews’ 

safety and disrupts traffic. 
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While a large amount of resources are invested in collecting traffic data from the 

pavement or from the roadway vicinity, vehicles are actually detectable in high-resolution 

imagery obtained from airborne and space-based platforms. Air photos, high-resolution 

satellite images, and increasingly, LiDAR (light detection and ranging) data are regularly 

collected for various purposes. When the images contain highway segments, they can 

provide additional traffic observations at little marginal cost. Airborne and space-based 

platforms take images off the road, so such traffic data collection is neither dangerous to 

road crews nor disruptive to traffic. Airborne and space-based platforms can easily and 

quickly access segments of interest in remote areas, where it can be costly or difficult to 

collect traffic data on the ground. In addition, airborne and space-based platforms can 

cover a large spatial area in a much shorter time period, compared to ground-based data 

collection. Therefore, traffic data extracted from high-resolution imagery, called 

image-based data in this work, appear to be appealing for AADT estimation. 

However, a given image only provides an observation at an instant in time, which is 

equivalent to a very short duration observation on the ground. Using such short-duration 

observations would produce large errors when estimating long time-scale measures such 

as AADT. The major issue addressed in this work, then, is how to efficiently use the 

“snapshot” information in the current practice of AADT estimation. A theoretically 

justified and operational method is required to combine the image-based data with 

traditional ground-based data in AADT estimation. In addition, estimating the benefits of 
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adding the image-based data, in terms of improved accuracy in AADT estimation, would 

help determine the desirability of modifying existing practice. 

In the research work presented here, we develop a Bayesian approach that allows the 

combination of data traditionally collected on the ground with the “snapshot” information 

obtained from airborne and space-based platforms, demonstrate the practicality of the 

methodology, and quantify the improved accuracy in AADT estimation. Parameters are 

estimated to make the Bayesian approach operational. A numerical study shows that the 

image-based data could be exploited to improve accuracy in AADT estimates while 

reducing the number of costly and dangerous ground counts. Sensitivity analysis 

indicates that the Bayesian approach would provide positive benefits for a large range of 

conditions. 

In Chapter 2, the use of AADT is briefly discussed. Then, the practice and research 

related to AADT estimation are reviewed from the early 1900s through the present. The 

history of traffic data collection from airborne and space-based platforms is also 

introduced. Finally, the promising features of AADT estimation from the image-based 

data are discussed. 

In Chapter 3, an approach is developed based on Bayesian analysis for AADT 

estimation. Two important components of this approach are discussed: the prior 

distribution of AADT and the probability distribution of observing the number of vehicles 

in an image, conditional on a given segment AADT. Given the prior distribution and the 
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conditional distribution, algorithms are developed for the calculation of the posterior 

distribution, which is the direct output of the Bayesian approach. In addition, choosing a 

point estimate based on the posterior distribution is discussed. 

In Chapter 4, parameters required for the 3-stage model that characterizes the 

distribution of image-based counts conditional on the AADT are discussed in detail. 

Empirical data are used to evaluate the reasonableness of the 3-stage model. The 3-stage 

model outperforms two other potential models in terms of producing the greatest 

probability of observing the numbers of vehicles in 22 images of Ohio highway segments. 

The 3-stage model can also capture the impacts of imaged segment length and traffic 

volumes on the variability of image-based counts. The possibility of approximating the 

conditional distribution of image-based counts given the AADT by a lognormal 

distribution is investigated. It is seen that the approximation is reasonable for 

implementing the Bayesian approach while eliminating the need for extensive computer 

simulation.  

In Chapter 5, a numerical study is conducted to document the benefits of adding 

image-based data in AADT estimation by the Bayesian approach. Different quantities of 

image-based data available for AADT estimation on a segment are considered. It is seen 

that adding only a small amount of image-based data by the Bayesian approach could 

decrease the error in AADT estimation while reducing the amount of ground-based traffic 

data that need to be collected. Sensitivity analysis is also conducted. It is seen that adding 
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image-based data by the Bayesian approach could bring positive benefits for a large range 

of variations in the parameters required in the approach and even when the parameters are 

incorrectly quantified. 

In Chapter 6, the research is briefly summarized. Operational concerns are discussed 

for the Bayesian approach. Additional related research is suggested for future study. 

 



 6

CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, an extensive literature review and the background of the research are 

presented. In Section 2.1, the use of AADT is briefly introduced. In Sections 2.2 and 2.3, 

the literature reviews the studies and practice in AADT estimation from the early 1900s 

to present. In Section 2.4, the history of traffic data collection from airborne and 

space-based platforms is reviewed. In Section 2.5, the motivation of the research, adding 

image-based data in AADT estimation, is discussed. 

 

2.1 Use of AADT 

Annual Average Daily Traffic (AADT) is a summary measure of traffic volumes of 

special significance to the highway engineer (Wright and Dixon, 2004). AADT is the 

average daily traffic volume on a given road segment, where the average is taken over a 

full year (McShane et al., 1998). Assuming 365 days in the year to simplify notation, the 

AADT on segment i in year y can mathematically be expressed as: 

     ,365/),()(
365

1

24∑
=

=
δ

δ yVyAADT ii             (2.1.1)
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where Vi
24(δ,y) is the daily (24-hour) traffic volume on segment i on day δ of year y. 

According to Equation (2.1.1), AADT represents a typical daily traffic volume on a road 

segment for all days of the week, Sunday through Saturday, during the year (AASHTO, 

1992). In general, AADT is the volume in both directions, and usually expressed in terms 

of mixed traffic, i.e., all classes of passenger cars and trucks. Sometimes AADTs on 

divided highways only consist of one-direction volumes. 

A fundamental summary measure of traffic activity, AADT serves as a starting point 

for many other important traffic statistics. Its applications are wide-ranging in highway 

planning, design, maintenance, operations and research. AADT values in consecutive 

years measure and establish trends in traffic, which can be used to predict future traffic 

(FDOT, 2002). They also are integral components for calculation of another common 

summary statistic of traffic – Vehicle Distance Traveled (VDT) (or Vehicle Miles 

Traveled (VMT)). VDT (VMT) is the distance (miles) that vehicles are driven over a 

highway system during a period of time (e.g., a year). Since AADT on a segment is the 

number of vehicles that use the segment during an average day of the year, AADT 

vehicles would travel the distance of the length of the segment on the average day. That is, 

AADT on a segment multiplied by the length of the segment yields the “VDT” on the 

specific segment for an average day of the year. Therefore, the VDT of a highway system 

for a year can be calculated as 

VDTI = 365∑
∈

×
Ii

ii lengthAADT ,           (2.1.2) 
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where I represents the set of segments in the highway system considered, and AADTi and 

lengthi are, respectively, the AADT and length of segment i. There are many uses of VDT. 

For example, VDT is used for the development of highway financing and taxation 

schedules. Under TEA-21, Federal-aid Highway Funds are apportioned to each state 

based on its statewide VDT (FHWA, 2000). VDT is also used as the base for accident 

rates in the evaluation of traffic safety programs. In addition, VDT is used to estimate 

on-road vehicle fuel consumption by the Energy Information Administration (EIA) of the 

U.S. government (EIA, 1997). 

The design-hour volume (DHV) is an important concept for planning, design and 

operational purposes (Mannering et al., 2005). DHV is used in the determination of the 

number of lanes, ramp design, shoulder design, intersection design and other geometric 

design features. DHV is also used to determine deficiencies in capacity and develop 

traffic operation programs. In practice, DHV is typically derived from AADT. 

Specifically, AADT is converted to DHV by a K factor, which is defined as the 

proportion of AADT occurring in the peak hour (i.e., K = DHV/AADT) (TRB, 2000).   

AADT also plays a significant role in designing pavements to produce safe and 

comfortable roads in a cost-effective manner. The Equivalent Single Axle Load (ESAL) 

is the fundamental variable considered by AASHTO researchers in predicting pavement 

damage (Alberta Transportation and Utilities, 1997), and is an input to many current
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pavement design procedures. AADT is often needed to determine ESAL (Alberta 

Transportation and Utilities, 1997).  

AADT is used in many other ways, as well (AASHTO, 1992). Private sectors use 

AADT in determining businesses locations. Agencies use it in estimating aggregate 

vehicle emissions for air quality analysis. Traffic engineers use it in analyzing 

rail-crossing safety. AADT is also used in various research studies, for example, 

Kayhanian et al. (2003) studied the impact of AADT on storm water runoff pollutant 

concentrations generated from California Department of Transportation highway sites. 

The widespread uses of AADT have led to extensive data collection efforts and 

systematic methodologies for AADT estimation. In the following two sections, a review 

of practice and research in AADT estimation will be presented. 

 

2.2. Early Studies in AADT Estimation 

When traffic volumes on a segment are collected continuously during the year of 

interest, its AADT for the year can be calculated by using Equation (2.1.1). Automatic 

Traffic Recorders (ATRs) are mechanical devices that are able to automatically and 

continuously collect traffic volumes (Cleveland, 1964). However, because of 

considerable expenses, ATRs can be installed permanently on only a small portion of 

highway segments. For example, in Indiana, approximately 90 ATRs are installed 

permanently for about 11,000 miles of the state highway systems (Fricker and Whitford, 
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2004). If the typical highway segment length is 2 miles long, about 1 in every 60 

segments has a permanent ATR (PATR) installed. For all other segments (greater than 

95% of a highway system), AADTs must be estimated on the basis of a sample of traffic 

volumes. These sample volumes are obtained from coverage counts – traffic counts 

collected during short periods of time (i.e., limited parts of a year) to guarantee adequate 

geographic coverage for all segments of interest. Therefore, the accuracy of AADT 

estimates from a sample of traffic volumes would be a major concern in AADT 

estimation programs. 

Early procedures of estimating AADT from samples fell into two general categories 

(Shelton, 1936). One was to use a systematic sampling procedure to take a number of 

traffic counts at different times on the segment considered. For example, the Bureau of 

Public Roads (BPR) used the coverage of 16 8-hour counts taken 24 days apart through 

the year to estimate AADT in most of its traffic volume surveys before World War II. The 

second general early method for estimating AADT was the “short-count method”, which 

was the rudiment of the current AADT estimation method. This method depends largely 

on the successful establishment of temporal traffic patterns and the selection of the length 

of the short counting duration. 

Collecting traffic counts is the premise of AADT estimation. Traffic count collection 

efforts date back to the early 1900s when there were no automatic mechanical traffic- 

recording devices. Traffic counts at that time were taken manually. Observers recorded 
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volume data with tally marks on prepared field data sheets for light volumes or with 

mechanical hand counters for heavier volumes (Pignataro, 1973). For example, the State 

Roads Commission of Maryland began taking traffic counts manually over its entire state 

highway systems in 1917 (Johnson, 1929). 

Manual counts result in relatively high costs and are subject to the limitations of 

human factors, generally precluding 24-hour continuous counts. However, manual counts 

possess some advantages (e.g., obtaining vehicle classification and turning movement 

data) over automatic counts in urban areas (Pignataro, 1973). Therefore, before and even 

after the advent of ATRs, there were a number of research studies focusing on how to 

reduce the manual counting durations and identify the most cost-effective manual 

counting hours for obtaining average daily traffic volumes with desired precision. To 

address this issue, it was first necessary to recognize the temporal traffic patterns over 

different time scales – hours of the day, days of the week, and months of the year. The 

temporal traffic patterns of repetitive volumes and variation in these volumes through 

time were observed at different locations from early manual counts.  

Johnson (1929) presented an early analysis of monthly variation of traffic. He 

analyzed traffic counts that were taken manually one day per month from 6 am to 6 pm 

over the state highway system in three areas (Baltimore, Frederick, and Salisbury) of 

Maryland for the years 1917 to 1920, and 1926 to 1928. Average monthly factors of each 

area for each three-year period were estimated. Johnson claimed that the difference of 
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monthly traffic patterns between the two three-year periods might be caused by the 

improvement of vehicles and road surfaces during bad weather.  

There were also several unpublished studies on temporal traffic patterns. For 

example, according to Merrill (1934), Ohio was attempting to obtain traffic factors for 

both daily and seasonal variations to replace those that were produced in 1925. Ohio 

researchers had located 72 counting stations on the state highway system in Ohio and 

classified the stations into six groups based on their seasonal variations. These groups 

were determined according to land use patterns: industrial primary, industrial secondary, 

industrial tertiary, agricultural primary, agricultural secondary, and agricultural tertiary. 

Such groups would be the predecessors of the seasonal factor groups commonly used 

afterwards. 

Shelton (1934), an analyst of BPR, presented preliminary results of a study on the 

1933 traffic records of the Holland Tunnel connecting NJ and NYC. A detailed follow-up 

study was presented two years later (Shelton, 1936). He compared the accuracy of using 

1-hour and 8-hour observations in estimating average daily traffic volumes based on the 

known traffic volumes of the Holland Tunnel and the George Washington Bridge (also 

connecting NJ and NYC). The variability of the 1-hour and 8-hour volumes was 

investigated. Since the observations were scattered systematically throughout the year, 

Shelton claimed that any regular temporal variations (e.g., day-of-week, and month-of- 

year) might cancel out by averaging over enough number of observations. Detailed 
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expansion of 1-hour or 8-hour observations to an average daily volume was not 

mentioned. 

Of special interest to the work presented in later chapters, Shelton found that a 

number of independent observations in short durations could lead to a better average 

traffic estimate than fewer observations taken over longer durations. 

Cherniack (1936) presented methods of estimating traffic volumes that accounted 

for systematic temporal traffic patterns. Based on the vehicular traffic records of toll 

crossings scattered over the United States and Europe, he believed that traffic samples 

taken in certain hours of the day, days of the week, and months of the year could result in 

an average traffic volume with less dispersion compared to the traffic samples taken at 

random through the year. Three types of traffic temporal pattern cycles were studied: 

namely, monthly cycle within a year, daily cycle within a week, and hourly cycle within a 

day. He made several important observations that can still be considered guidelines for 

current practice: (1) May and October were found to be the months most representative of 

average daily traffic volume for a year; (2) weekday traffic volumes did not reflect 

weekend traffic, and weekend and holiday traffic must be given special consideration 

when estimating average daily traffic volumes; (3) traffic volumes on Wednesdays were 

usually a good average of the five weekdays; (4) hourly traffic patterns differed widely 

between weekdays and Sundays (the Saturday pattern largely depended on whether the 

Saturday half-holiday or the five-day week was adopted in the community at that time); 
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(5) hourly traffic patterns of any highway facility differed slightly from season to season, 

but remained stable year by year.   

Subsequently, Shelton investigated the dispersion of highway traffic by time periods 

for the Holland Tunnel and the George Washington Bridge (Shelton, 1937), two stations 

in farm areas in Iowa (Shelton, 1938), and nine stations in Michigan (Shelton, 1939). He 

found that the temporal variations of traffic might vary greatly among different sites. An 

important contribution of Shelton’s work was his approach to ensuring the integrity of 

data. This data integrity was violated in the following 40 years when data imputation 

became popular (BPR, 1965). Data imputation was criticized until the early 1990s 

(Albright, 1991, and AASHTO, 1992). 

The predominant studies of the 1930s on estimating AADT focused on averaging the 

short duration manual counts distributed either randomly or systematically throughout the 

year considered. The usefulness of the methodologies and findings, however, later 

diminished because of the widespread implementation of mechanical ATRs. 

Around 1940 mechanical ATRs began to replace the intensive manual counts and 

quickly established their value for economically counting vehicles (Petroff, 1946). The 

advent of mechanical ATRs responded to the need for large-scale traffic counting 

operations, especially in rural areas (Petroff and Blensly, 1954). Petroff (1956) estimated 

that 90 percent of the cost of an ATR traffic count was attributed to the wages of the 

person who installed and removed ATRs, and the associated travel costs. Correspondingly, 
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it became cost effective to operate ATRs at the same location for at least 24 hours, or in 

multiples of 24 hours (e.g., 48 or 72 hours). Since then, it was popular to estimate AADT 

from short counts taken over periods of 24 hours or multiples thereof. 

With the widespread use of ATRs, the research emphasis shifted to estimating 

AADT from mechanical short duration counts for a large-scale geographic area. Traffic 

data from segments equipped with PATRs facilitated the research. Petroff (1946) 

summarized the immediate results from one such study. In this study, 20 nationwide 

PATR-equipped segments on low-volume (less than 300 vpd) roads were selected to form 

two groups, northern and southern. Weekday traffic counts of 24-, 48-, and 72-hour 

duration from 1937 to 1940 collected at these PATR-equipped segments were studied. All 

volumes on Saturdays, Sundays, and important holidays were omitted. The accuracy of 

estimating average weekday traffic for each month by daily averaging traffic volumes of 

the three different durations was measured in terms of coefficients of variation (CVs) – 

standard deviation divided by mean. The empirical CVs ranged from 8.38% to 32.73%, 

depending on the length of duration, month, group, and to some extent, volume. It was 

found that marginal accuracy increased more when increasing the count duration from 24 

to 48 hours than when increasing the duration from 48 to 72 hours.  

Since there would be some errors in converting the average weekday traffic for each 

month to an AADT estimate by a corresponding monthly factor, Petroff’s CVs given 

above could be considered lower bounds for the CVs of AADT estimates developed from 



 
16

the weekday traffic volumes of 24-, 48-, and 72-hr durations. Petroff appears to be the 

first to imply a probability distribution of AADT estimation errors due to spatial and 

temporal sampling. His interpretation required two assumptions: the data used in the 

study were representative of the larger population, and the distribution of the errors was 

normal or approximately normal.  

By the end of 1947, the State of Ohio supplemented Petroff’s findings and produced 

a figure showing CVs as a function of annual average weekday traffic volumes for 

different lengths of counting periods (Figure 1 in Petroff and Blensly, 1954). The figure 

showed that the relative error of volume estimates from any length of count durations 

decreases with increasing volume at a much greater rate when the traffic volumes are less 

than 500 ADT, and then approximately converges to a constant when traffic volumes 

become much greater than 500 ADT. Although no methodology for producing the data 

graphed in the figure was found, the figure itself was used for a long time. For example, it 

appeared in the Traffic Monitoring Guide as recently as 1985 (see page 3-3-3 of FHWA, 

1985). 

A series of follow-up studies formed the framework of the first published manual for 

traffic counting procedure by the BPR in 1963. Petroff and Blensly (1954) introduced the 

first application of the newly improved BPR method in Oregon in 1951 for a rural road 

system of 8245 miles. The improved BPR method consisted of two steps: first averaging 

weekday coverage counts to yield an estimate of average weekday traffic volumes for the 
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month; then expanding the averaged weekday estimate to an AADT estimate by an 

appropriate month-of-year factor that represents the ratio of AADT to the average 

weekday traffic volume of the month. Petroff and Blensly believed that the sampling 

error involved in the first step had been quantified in Petroff’s previous work (1946). In 

the second step, Petroff and Blensly described that the segments with coverage counts 

were first assigned to different factor groups based on geographical locations and/or 

professional judgments, and then control counts (equally distributed over 18 to 20 

locations in one group) were used to develop the appropriate factors for coverage counts 

in the same group. The control counts were taken several times a year, for periods of time 

ranging from 24 hours to several weeks. They claimed that the BPR method allowed a 

determinable and controllable increment of error in the second step, and that the error 

was additive with the sampling error in the first step. A maximum 10-percent range of 

relative variations in factors within each month was suggested for each group. They 

asserted that all estimates except a few would have relative errors within ±20 percent 

when using this method, though there was no way of determining the size of the error for 

the count at a single location. Finally, they recommended PATR installations on segments 

that exhibited monthly variation patterns most similar to the mean of the control area so 

that the seasonal factors could be obtained in a more efficient way. 

Petroff (1956) presented a framework for using statistical methods to estimate 

AADT from 24- or 48-hr coverage counts. He showed that investigating PATR-equipped 
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segments in several states resulted in CVs of AADT estimates ranging from 8.3% to 

12.6% for 24-hr counts, and from 7.2% to 12.1% for 48-hr counts. He defended the 

10-percent range of relative variations in factors within each month for each factor group 

and found that the most cost-effective control count was approximately 1-week duration, 

equally spaced 6 times throughout the year. He finally indicated that the AADT estimates 

on low-volume roads (less than 500 vehicles per day) became rapidly less accurate, and a 

CV ranging from 20% to 25% might be expected. 

The BPR method originally focused on AADT estimation on rural roads. Petroff and 

Kancler (1958) extended this method to urban roads in Tennessee. Most of their results 

were comparable to the results of another study conducted by Darrell et al. (1958). It is 

worth mentioning that they used data from more than 30 PATR-equipped segments to 

simulate manual counts in urban areas. They showed that weekday manual counts of 4-hr 

duration during most daytime periods were able to produce satisfactory estimates of 24-hr 

weekday traffic volumes by appropriate expansion factors. They claimed that possible 

refinements of seasonal factor grouping might decrease the error of AADT estimates 

based on 24-hr counts, but by only about 1%.   

In parallel, the Highway Research Board Committee on Urban Volume 

Characteristics was establishing urban traffic volume characteristics for the varying needs 

and interests of cities and states (Adams, 1955). The Committee proposed five-minute- 

cluster sampling for determining urban traffic volumes. In this method, one person 
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consecutively took very short (e.g., 5 minutes) manual counts at four to six close 

counting stations (within a few minutes walk distance) per hour in CBDs, and repeated 

every hour for 12 hours. This cluster-count method was believed to be efficient and 

economical for reliably estimating AADT in urban areas. 

Based on Petroff et al.’s work, which covered the applications in over 30 states, the 

BPR issued the first Guide for Traffic Volume Counting Manual in 1963, and shortly 

followed with the 2nd edition in 1965. The procedures provided in the guide (BPR, 1965) 

were divided into two main categories: one for rural highways, and one for urban roads 

and streets. The guide proposed that the coverage counting on all roads of interest should 

be made in a cycle of length ranging from one year up to five years. 

For rural highways with AADT greater than 500, the AADT estimation procedure 

consisted of three major steps: 1) grouping PATR-equipped segments according to similar 

monthly factors; 2) assigning road segments to the groups (with the aid of seasonal 

control counts if available); 3) locating and operating short-duration coverage counts. The 

guide stated that the BPR method should result in AADT estimates with a CV not 

exceeding 10%. However, the coverage count durations required to obtain this 10% CV 

boundary were not clearly stated. Since few PATRs would be installed on the rural roads 

bearing less than 500 vehicles per day, seasonal control and coverage counts formed the 

traffic counting programs on roads with AADT between 25 and 500. The guide also 
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mentioned that much longer coverage count durations might be necessary to produce a 

desirable degree of accuracy in AADT estimation for rural roads with AADT less than 25. 

For urban roads and streets, the guide indicated that the normal traffic volumes on 

weekdays could be considered the same as the AADT without the application of 

adjustment factors. The guide stated that the resulting CV of AADT estimates from a 

normal 24-hr weekday coverage count was 10%, which satisfied the majority of the cities. 

The guide claimed that applying monthly adjustment factors as proposed for rural 

highways could reduce the CV to about 7%. Manual counts of six-minute duration 

repeated every hour for eight hours were also proposed for urban roads carrying AADT 

greater 2000. This type of manual count was believed to result in a CV approximately 

equal to 12%. The possibility of using origin-destination surveys and traffic assignment 

was also mentioned for very low volume urban areas, but no details were provided. 

There was a full section in the BPR guide concerning editing and smoothing data, 

especially data collected by ATRs. The guide suggested that all abnormal counts (e.g., 

counts differing by 30% or more from the record of the same location for the previous 

year) should be omitted. Regression techniques were also introduced to impute and 

smooth data based on historical data. The practice of data imputation and smoothing was 

common, although it violated the concept of “Truth-in-Data”. It might sometimes be 

necessary to edit data because of measurement errors introduced by ATRs, but one was 
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cautioned to be aware that studies based on edited data would overestimate the accuracy 

in AADT estimation by the BPR method. 

Drusch (1966) evaluated the BPR method in Missouri. He found that 

PATR-equipped segments could be grouped better by averaging monthly adjustment 

factors over several consecutive years. He recommended a 7-day coverage count program 

for the Missouri State Highway Department, where each coverage location would be 

counted once a year between March and November. 

Around the same time, Bodle (1967) specified three sources of error when using the 

BPR method to estimate AADT: 1) the monthly factor at a coverage-count location would 

not exactly equal the group mean; 2) the coverage count would differ from the average 

weekday traffic of the month; and 3) the coverage count may have been assigned to a 

wrong factor group. He explicitly formulated the CV of an AADT estimate (CVaadt) as a 

function of the CV of coverage counts (CVx) and the CV of the monthly adjustment 

factors (CVf). Assuming the two variables are uncorrelated, he derived aadtCV  = 

2
f

2
x CVCV + . He analyzed the data from 386 PATR-equipped segments in five states. 

The results strongly indicated that 24-hr counts taken Monday through Friday would not 

generally produce AADT estimates with CVaadt less than 10%. However, the results 

showed that 24-hr counts taken Monday through Thursday only would result in CVx less 

than 10%. The study also indicated that the common practice of excluding the winter 

months from coverage counts did not markedly decrease the error in AADT estimates.   
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In the 1960s and 1970s, the BPR method became common practice among state 

highway agencies. In 1970 the Bureau of Public Roads was replaced by the Federal 

Highway Administration (FHWA). FHWA continued many BPR programs and issued the 

Guide for Traffic Volume Counting Manual (FHWA, 1970). In 1975, FHWA published the 

Guide to Urban Traffic Volume Counting or (Urban Guide)(FHWA, 1975), which 

complemented the 1970 manual. The Urban Guide summarized most research that had 

been considered to date and provided the following broad guidelines: 

“Urban traffic follows daily and hourly variation patterns which are generally consistent and 

often predictable. Urban traffic volume patterns exhibit relatively little weekday and seasonal 

variation. The percent of total traffic occurring in any given period is approximately the same 

along any route. 

The more counts, even though of very short duration, the greater the reliability of the 

resulting estimates. Similarly, the heavier the traffic volume at a particular location, the greater 

the reliability of a given sample. 

The distribution of counts throughout a day is more significant than the total time during 

which the traffic is counted. The number of separate and independent observations is more 

important than the number of hours of each observation. 

… 

Low-volume roads and streets exhibit a higher day-to-day relative variation in traffic flow 

than high-volume streets and expressways. 
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Five-day clusters of weekday traffic counts reduce the amount of variation. The reduction, 

however, is more than offset by the costs of obtaining the counts.” (pp. 19, 20, and 30 of 

FHWA, 1975) 

Table 4 in the Urban Guide provided suggested CVs for weekday traffic volumes of 

1-day, 2-day, 3-day, and 5-day durations, as a function of the daily traffic volume. 

Therefore, one could use these values to determine the approximate sample size needed 

for a given precision in AADT estimation. Short counts of duration much less than 24 

hours (e.g., 5 or 10 minutes, and six or eight hours) were also discussed in the Urban 

Guide. The Poisson distribution was used as an a-priori approximation to derive the 

relationship between the variation of minute counts and the magnitude of hourly volume. 

We will use the Poisson distribution in a similar manner later in this work.  

The costs of manual and automatic counting programs were quantified for the first 

time in the Urban Guide. Based on the 1974 experiences in operating and maintaining 

traffic counters in urban areas, typical costs of automatic counts were listed: a 

single-location single-day count would cost about $15.00, a 48-hour count would cost 

about $20.00, and a five-day count would cost about $35.00. The decreasing marginal 

cost might be because the ATR only needed to be installed and picked up once for any 

length of counting duration. The figures are all in 1974 dollars. The comprehensive 

estimated costs for automatic counting programs were given in Table 18 (pp.82) of the 

Urban Guide. 
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Up to the early 1980s, different statewide traffic counting programs had been 

established for AADT estimation, since each state had its own needs, priorities, budgets, 

and geographic and organizational constraints (FHWA, 1985), Specifically, three types of 

traffic counts – continuous, control, and coverage – were most popular in the practice. 

Continuous counts are taken 24 hours a day, 365 days a year on a small portion of 

segments by PATRs. Continuous counts are the backbone of State traffic counting 

programs (FHWA, 1985). These counts can lead to a direct calculation of AADT. 

However, the main purpose of continuous count programs is to provide a cost-effective 

approach for the development of temporal adjustment factors that are used for converting 

coverage counts to AADT estimates.   

Control counts, also called seasonal counts, are taken several times a year, for 

periods of time ranging from 24 hours to several weeks. These counts can also be used to 

estimate AADTs, but their main purpose is to provide a seasonal assignment linkage for 

coverage counts. 

Coverage counts are short-duration counts, for periods of time ranging from several 

hours to several days. The purpose of these short-duration counts is to guarantee adequate 

geographic coverage for all roads under the jurisdiction of the state highway authority, 

providing point-specific AADT information. The coverage counts are converted to AADT 

estimates by applying factors obtained from either continuous or control counts. This 
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conversion is based on the premise that similar traffic temporal variation patterns exist for 

like facilities in a given area. 

 

2.3 Recent Practice and Research in AADT Estimation 

Since the 1980s, there has been renewed research interest in AADT estimation. The 

interest was motivated in part by the counting requirements of the Highway Performance 

Monitoring System (HPMS), which was originally developed in 1978. Most of the new 

studies in AADT estimation could be divided into two categories: (1) evaluation and 

improvement of the traditional methodology, and (2) new methodologies. FHWA also 

continued its efforts to provide improved methodologies for monitoring the use of 

America’s highways, and periodically updated the Traffic Monitoring Guide (TMG). The 

first edition of the TMG was published in 1985, and the most recent edition was 

published in 2001. 

 

Several studies investigated the accuracy of AADT estimates from short-duration 

coverage counts. Sharma (1983) investigated the error of AADT estimates from 

short-duration counts through the analysis of Alberta’s PATR data. He proposed a formula 

for estimating AADT from a traffic count of duration less than 1 day: 

 Estimated AADT = short-duration volume count ×H×D×S    (2.3.1) 

where H, D, and S represent corresponding hourly, day-of-week and seasonal factors, 
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respectively. He found that short-duration counts with a midpoint at 3 or 4 pm would lead 

to the most accurate AADT estimates. He identified three main sources of error in 

estimating AADT by using Equation (2.3.1): error in hourly factor, error in daily factor 

and error in seasonal factor. He claimed that “the magnitude of error due to the hourly 

factor is generally expected to be a function of the duration and schedule of a particular 

short survey… any variation in the duration and schedule of a short-period count will not 

affect the errors due to the daily (day-of-week) factor and the seasonal factors.” He 

finally concluded that the relative errors in AADT estimation were expected to be less for 

the roads that carry large volumes of traffic, and the errors were not likely to decrease 

significantly with further increase in traffic volume beyond a certain critical range. 

Albright (1991) provided a historical review of traffic volume estimation. In the 

review, he challenged data imputation commonly used in traffic counting practice, and 

cast doubts on the reported ranges of errors of AADT estimates resulting from the 

traditional method. The concept of “Truth-in-Data” was subsequently introduced in the 

“AASHTO Guidelines for Traffic Data Programs” (FHWA, 1992). 

Sharma et al. (1996) investigated the effects of various factors on AADT estimation 

errors from a short duration coverage count. He studied the data from a large number of 

PATR-equipped segments in Minnesota and found that the errors were much more 

sensitive to the factor group assignment than to the duration of counts. Davis (1997) 

presented a review concerning the accuracy of AADT estimates. He pointed out that 
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using incorrect seasonal or day-of-week factors would produce substantial increases in 

estimation errors.  

Hu et al. (1998) presented a study on the accuracy of AADT estimate from a 

24-hour count. In the study, AADT was estimated from each available 24-hr count for 

each PATR-equipped segment by using the corresponding averaged monthly and 

day-of-week factors for the group the PATR-equipped segment belongs to. The estimated 

precision in terms of CVs ranged from 5.7% to 15.7%, across the 20 studied 

PATR-equipped segments. 

 

As noted above, the accuracy of AADT estimation from short-duration counts 

largely relies on the correct assignment of the coverage counts to factor groups. There are 

a number of studies concerning seasonal factor group establishment and assignment. 

Sharma and Werner (1981) proposed an improved method for grouping 

PATR-equipped segments. This method consisted of two standard procedures: 

hierarchical grouping and the so-called Scheffe’s S-method of multiple group 

comparisons. The authors claimed that the proposed method was simple, objective, 

computer-oriented, and statistically credible, compared to existing grouping methods that 

were subjective and manual in nature. Sharma and Allipuram (1993) developed an index 

of assignment effectiveness to evaluate the duration and frequency of control (seasonal) 

counts. The authors concluded that a 1-week count repeated in 4 different months was 
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much more accurate than a 1-week count repeated twice, but repetition more than 4 times 

would contribute little additional improvement. Sharma and Leng (1994) investigated the 

problem of determining the duration and timing of a seasonal count given a specified 

precision. However, during the last decades, control counts became more and more 

unpopular in the United States and the newest edition of the TMG has left out the 

suggested use of control counts. 

Flaherty (1993) investigated the clustering methods for grouping PATR-equipped 

segments with similar temporal variation patterns, which was recommended by the TMG 

(FHWA, 1985). Data from 28 PATR-equipped segments throughout Arizona were used in 

this study. Two distinct groups were finally determined. Flaherty claimed that such 

grouping provided “best” estimates of AADT. 

 

 The TMG was updated four times during the last two decades, reflecting various 

developments in AADT estimation. The newest edition of the TMG (FHWA, 2001) only 

recommended two types of traffic counts, continuous and coverage counts, to combine 

system and point estimation in an efficient manner without use of control or seasonal 

count programs.  

The TMG (FHWA, 2001) recommends that factor groups be created by some 

combination of three techniques: cluster analysis, geographical/functional assignment of 

roads to groups, and same road factor application. In the process of cluster analysis, a 
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least-squares minimum distance algorithm is used to determine which PATR-equipped 

segments have the “most” similar factors. In the process of geographical/functional 

assignment of roads to groups, factor groups are initialized based on professional 

experience with traffic patterns, and finalized on the basis of results of analysis. In the 

process of same road factor application, the factors from a single PATR-equipped 

segment are assigned to all segments on the same road as the PATR-equipped segment 

within the influence of the PATR-equipped segment. The boundary of the influence zone 

is defined by a road junction that causes the traffic volume to change largely. 

Different types of temporal adjustment factors can be adopted according to the 

conditions of different states. The common types are separate month and day-of-week (19 

factors – 12 monthly factor and 7 day-of-week factors), combined month and average 

weekday (24 factors – one weekday and one weekend factors for each month of the year), 

separate week and day-of-week (59 factors – 52 weekly factors and 7 day-of-week 

factors), combined month and day-of-week (84 factors – 7 day-of-week factors for each 

month of the year). 

Since few PATRs function without error in any given year, the TMG also 

recommends an approach using the AASHTO method (AASHTO, 1992) to account for 

missing data when calculating AADT for continuous count locations: 
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where V24
ijk is the 24-hour traffic volume for the kth time that a 24-hour volume is 

available on day-of-week i and month j; and nij is the number of times that 24-hour 

volumes are available on day-of-week i and month j.  

The TMG (FHWA, 2001) provides arguments in support of the 48-hour 

recommendation for coverage counts. As stated, the recommendation of a 48-hour 

counting period is a compromise to maximize the AADT estimation accuracy subject to 

cost and equipment limitation constraints, given various alternatives. The marginal 

decrease of estimation error when increasing counting period from 24 hours to 48 hours 

is much more than that when increasing counting period from 48 hours to 72 hours. The 

moveable ATRs will not work reliably over longer periods of time, e.g., pneumatic tubes 

may not last longer than 48 hours without being reset. Another consideration is that 

48-hour volumes provide hourly volumes of two days, a comparison of which would 

assure the data quality and identify the “unusual” circumstances.  

Also the TMG (FHWA, 2001) recommends a 3-year cycle for coverage counts on 

the HPMS, and 6-year cycle for coverage counts on all other segments. The 3-year cycle 

for HPMS segments is determined to meet adequate accuracy in a cost-effective manner. 

A research study performed by FHWA showed that relative variability of daily volumes, 

at a vast majority of locations, ranged from 2 to 25 percent while annual growth ranged 

from 1 to 4 percent. The advantage of using a 3-year cycle instead of an annual cycle is 

that the annual coverage counting efforts are reduced by a factor of 3. The main 
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consideration for recommending a 6-year cycle for all other coverage counts is to provide 

a basic count on a periodic basis. However, more frequent counts are recommended for 

high growth areas. 

The TMG (FHWA, 2001) recommends the application of growth factors when using 

traffic counts collected in previous year to estimate contemporary AADT. The growth 

factors can be developed from either continuous counts or coverage counts. However, as 

the TMG stated, no “best” mechanism for growth factor estimation has been determined 

according to available research. 

The TMG (FHWA, 2001), unfortunately, does not provide discussions in depth about 

the possible range of error of AADT estimates by the recommended methodologies. It is 

only mentioned that, “For sites with higher levels of variability, if estimates of annual 

average daily traffic volumes are desired with better than 10 percent precision, a 

minimum of 48 hours must be counted. For sites with little traffic variability, a 24-hour 

count may be sufficient” (pp. 3-12 of FHWA, 2001).  

 

In addition to the traditional estimation methods, several research studies have been 

conducted that propose new approaches for estimating AADT from short coverage 

counts. 

Phillips and Blake (1980) proposed a pooled estimate of AADT in the case where 

two short duration counts were available. For a short count of length less than one day, 
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they used a method similar to the traditional one: expanding the short count to a daily 

volume estimate by a mean daily expansion factor (called E-factor) for the group, and 

then converting the daily estimate to an AADT estimate by a mean monthly factor (called 

M-factor) for the group. The variances of E- and M-factors were formulated for a 

particular road type, day type and month. By assuming that the two factors were normally 

distributed and independent with each other, they derived a formula to calculate the 

variance in the AADT estimates. They claimed that there were two ways of improving the 

accuracy in AADT estimates: one was to increase the length of short count; the other was 

to repeat the count on another day in the year. The latter way raised the issue of 

combining two short counts. They proposed a combined estimate by assigning weights to 

the AADT estimates obtained from the two counts. They indicated that the weights 

should be inversely proportional to the variance of the individual estimate, so that greater 

weight was given to the more accurate estimate. The weights summed up to 1. In the 

empirical study, however, the authors only focused on combining two counts collected in 

the same month. The results indicated that either May or June is the best month to collect 

counts in the U.K. 

Claiming the difficulty in determining the weights used in Phillips and Blake’s 

method, Erhunmwunsee (1991) proposed a multiple regression method for estimating 

AADT from two or more short-duration counts for periods of less than 24 hours. The 

regression method had the form 
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where iŶ  was the estimated AADT at a highway segment i; α was the constant 

coefficient; and βm was the coefficient for a specific short duration count jimX , on day j in 

month m. Erhunmwunsee believed that this method could provide a way to combine the 

short duration counts from different months to estimate AADT.  

Data from PATR-equipped segments were used to estimate the regression 

coefficients. Although the method was established for multiple counts from different 

count durations, Erhunmwunsee only considered the case where at most two counts were 

available to estimate the AADT in his numerical study. He claimed that the results 

showed that regression method worked better than the traditional method where 

expansion factors were used, but failed to provide the results. Most of his findings were 

consistent with previous research, such as Sharma (1983) and Phillips and Blake (1980). 

He failed to interpret the meaning of the regression coefficients in his method. These 

coefficients should not be considered a combination of the temporal expansion factors 

and the corresponding weights for different months. Possible high correlations of the 

coefficients were not discussed. However, he made that point that estimating AADT from 

short counts would save time and money in the long run, and was useful when limited 

staff was available.
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Aldrin (1998) developed a basic curve method for estimating AADT from short 

duration counts of length ranging from a few hours to days. The method was based on 

regression techniques. Hourly volume was the dependent variable, the logarithm of which 

was expressed as a linear combination of a set of basic curves (i.e., functions). The set of 

basic curves were developed based on data from PATR-equipped segments and assumed 

common for all highway segments. The coefficients of the basic curves could be 

estimated for the location of interest, based on the short duration counts available on the 

segment. According to the amount of data available, one could select the number of basic 

curves required in the model. With the estimated model (the chosen basic curves and 

corresponding estimated coefficients), all unobserved hourly volumes were estimated, 

and summed up with the observed hourly volumes to get the estimate of AADT. The 

author conducted a study based on data from 32 PATR-equipped segments. He claimed 

that the basic curve method reduced the error of AADT estimates to 7.2% compared to 

the traditional method that produced an error of 9.0%, averaged across the short duration 

counts of length randomly selected between two hours and two weeks. Unfortunately, the 

detailed procedure used and comparison results were not provided, and the type of error 

quantified in the study was not clearly stated. Except for the four basic curves (functions) 

related to growth trend, seasonal pattern, special days, and day-of-week patterns, all other 

basic curves appear less interpretable. More-refined basic curves appear to reflect specific 
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variation patterns on the PATR-equipped segments that would not be necessarily common 

for all other segments. 

Davis and Guan (1996) proposed a Bayesian assignment of coverage count locations 

to factor groups and the corresponding Bayes estimate of the AADT (called mean daily 

traffic in their paper). They expressed the daily traffic volumes as a lognormal linear 

regression model. Since the noise terms appeared autocorrelated in 7 days, a 

multiplicative autoregressive (MR) model was estimated based on the data from 

PATR-equipped segments. The authors claimed that all PATR-equipped segments showed 

similar autocorrelation patterns. The coefficients of MR model were assumed common 

for segments in the same factor groups. However, these autocorrelation patterns were 

likely caused by the implicit use of “averaged” day-of-week factors in the model. The 

authors showed that at least 14 daily volumes were required to reliably assign the 

coverage counts to the correct factor group. They also proposed a Bayes estimate of 

AADT by using the posterior probability of group assignment. The estimate performed 

credibly with 14-day volumes, but the 14-day volumes had to be distributed throughout 

the year, in an “optimal” pattern that was obtained by a “trail-and-error” method. It would 

seem very difficult to implement such an “optimal” sample design on coverage count 

locations.  

The authors also claimed that the optimal counts made during March and July were 

the most informative, as well as those made on Sundays. If one carefully checks the data 
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used in their study, one would find that the reason for the “optimal” sample design was 

because that the differences between the March and July factors were the greatest across 

different factor groups they considered, and the differences between Sunday and weekday 

factors were also the greatest. Such “optimal” sample design for coverage counts could 

likely lead to reliable group assignment by using simple methods rather than the 

complicated model proposed. For example, Sharma et al. (2001) claimed that a seasonal 

count consisting of two one-week counts made in different months could provide reliable 

assignment of a site to a factor group.  

Yang and Davis (2002) later extended the Bayesian method for classified AADT 

estimation. Similar comments can be made for this work. It is noteworthy that the above 

method used a Bayesian approach. It is similar to that proposed here in that it updates 

prior beliefs with new information. However, they addressed a problem with additional 

complexity because of the involved factor group assignment and autocorrelation in daily 

volumes. Also, our attention is on incorporating very short duration counts in AADT 

estimation, whereas they needed at least 14-day counts to get a reliable AADT estimate. 

Sharma et al. (1999) proposed a neural network approach for estimating AADT from 

48-hour coverage counts. The neural network did not need the establishment of factor 

groups and assignment of coverage count sites to the factor group. The authors carried 

out a detailed comparison between the neural network approach and the traditional 

method by using data from 63 PATR-equipped segments in Minnesota. The results 
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showed that the traditional method produced better AADT estimates than the neural 

network approach for a single 48-hour coverage count when it was correctly assigned to a 

factor group. The error for two 48-hour counts using the neural network approach was 

comparable to that for only a single 48-hour count using the traditional method. The two 

48-hour counts used by the neural network approach were from different months. The 

authors pointed out that the error could be much higher for coverage count locations 

assigned incorrectly to factor groups in practice when using the traditional method, and 

that their method did not depend on group assignment. However, they did not mention 

the increased possibility of correct group assignment in the traditional method when two 

48-hour counts are available. Sharma et al. (2001) extended the neural network approach 

to estimate AADT on low-volume roads. Similarly, two 48-hour counts were necessary to 

produce reliable AADT estimates by the neural network approach. 

 

There are also several studies on estimating AADT for roads by data other than 

traffic counts. Most of them adopted a multiple regression method, where the dependent 

variable was the AADT and the explanatory variables would consist of various factors 

that contributed to AADT on the road. For example, Mohamad et al. (1998) used four 

explanatory variables to estimate AADT – county population, location type (urban/rural), 

access to other roads, and total arterial mileage in a county. They achieved an R2 of 0.75 

using data from 89 sites in Indiana. Xie et al. (1999) included more variables in the 
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regression model – function classification, number of lanes, area type, auto ownership, 

presence of nonstate roads nearby, and service employment. The model had an adjusted 

R2 of 0.60 for nonstate roads in Broward County, Florida. Zhao and Chung (2001) 

continued Xie et al.’s study. They extended the study by using a larger data set that 

includes all state roads in Broward County. The function classification was updated, and 

land-use and accessibility variables were analyzed more extensively. They presented four 

models with different combinations of explanatory variables considered, which achieved 

R2 of 0.66 to 0.82. As Zhao and Chung pointed out, the method of estimating AADT by 

not using traffic counts might not be adequate to meet the need of engineering design and 

planning, but could be used for tasks that do not need a high level of accuracy.  

 

2.4 Traffic Data Collection from Airborne and Space-based Platforms 

The previous two sections were concerned with AADT estimation using traffic 

volumes collected manually or by ATRs on the ground, except for the methods that did 

not use traffic data at all. A substantial effort is required for State DOTs to collect traffic 

volumes across statewide highway systems from the ground. Airborne and space-based 

platforms are available for collecting traffic data by taking photos and imagery over the 

facilities of interest. They have some advantages over ground-based traffic data collection. 

For example, these platforms can easily access remote highway segments where it is 

difficult or costly to send ground crews to collect traffic data. Also, sensors on these 
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platforms are “off-the-road” so that traffic will not be disrupted and ground crews will 

not be exposed to danger.  

The image-based data collected from these platforms could potentially be used for 

AADT estimation, and such use will be the main issue of the work presented in the 

following chapters. Before going into more detail about the use of imagery for AADT 

estimation, we will briefly review the literature on traffic data collection through air 

photography, satellite imagery, and other airborne sensors.  

Aerial photography has been recognized as a useful tool for collecting traffic data 

for almost 80 years. One of the earliest applications of aerial photography in traffic 

studies dates back to an aerial survey of highway traffic conducted by the State Roads 

Commission of Maryland in 1927 (Johnson, 1928). In this survey, 127 photos were taken 

approximately 13 seconds apart from an aircraft at an altitude of about 3600 feet between 

4:30 and 5:00 P.M.. The photos covered nearly 29 miles of highway between the 

Baltimore City line and the District of Columbia line. Each photo had approximately 50% 

overlap with the succeeding one. In addition, traffic counts in both directions were made 

manually at four stations on the road from 3:00 to 6:00 P.M. on the same day. One of the 

four stations was located at the last 2 miles of the road near the District of Columbia line, 

where more traffic was observed due to a nearby junction of a major highway. The traffic 

volumes observed at the other stations were very uniform during each of the three hours, 

ranging from 739 to 940 vehicles per hour. Six spot cars were used during the aerial 
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survey to drive with the traffic, and the speeds of cars were recorded by observers in the 

cars. The recorded speeds ranged from 20 to 33 mph.  

From the 127 photos, the number of vehicles was obtained for each quarter mile of 

the 29 miles. The average number of vehicles per quarter mile was about 7, which led to 

about 800 vehicles per hour at a speed of 25 to 30 mph. The result of this study showed a 

satisfactory comparison between ground- and air-based traffic flow data collection. It was 

noted that the distribution of the traffic was very uneven along the road, from one vehicle 

in some quarter mile sections to 15 or 20 vehicles in others. The study also investigated 

the relationship between velocity, spacing, and flow by using the photos. 

Among the early proponents of aerial photography in traffic studies, Greenshields 

proposed the photographic method of studying traffic behavior (Greenshields, 1933), and 

discussed the potential use of air photos in traffic analysis based on experiments in which 

air photos were taken from a helicopter and a blimp (Greenshields, 1947). He believed 

that all implementation difficulties would be overshadowed by the complete and accurate 

traffic record within the area studied by air photos.  

Forbes and Reiss (1952) reported the study of driver behavior based on 35- 

millimeter time-lapse air photos. They concluded that air photos provided a practicable 

way of collecting information on driver behavior that would be very difficult to collect in 

other ways. 
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Wohl (1959) presented a collection of traffic volumes and vehicle speeds by Sonne 

stereo continuous-strip photography. The development of formulas for determining 

vehicle speeds and volumes were included. He indicated that both volume and speed data 

could be collected simultaneously over a large area during a short period of time. 

Wagner and May (1963) reported a successful study of obtaining time-lapse aerial 

photographs for studying traffic operation along a considerable length of freeway in Los 

Angeles. They thought that aerial photography would be useful in observing traffic 

operation problems that were isolated at locations. They developed a new method of 

presenting traffic flow data – the time-distance-density contour map, which could be used 

to determine the origin, duration, and extent of congestion.  

Rice (1963) described the use of aerial photography for traffic operations by the 

Washington D.C. Department of Highways and Traffic. He pointed out that an aircraft 

was an effective means of reaching trouble spots quickly, while congestion would make it 

difficult to reach the spots on the ground. He concluded that aerial photography was a 

powerful tool for research and study of traffic problems not otherwise approachable. 

Jordan (1963) described Project Sky Count, which was initiated by the Port of New 

York Authority. In two of the studies, photographs were taken every 5 seconds from a 

light airplane at altitudes of 6000 to 10000 feet over the study areas. Vehicle speeds were 

determined through three sequential photos (i.e., based on vehicle movement during a 

10-second period). Traffic speed was calculated by averaging all vehicle speeds. Traffic 
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density was determined by dividing the number of vehicles by the segment length. The 

product of density and speed led to the traffic volumes. Jordan concluded that aerial 

photography could serve as a basic medium for highway traffic data collection with great 

potential.  

McCasland (1965) presented a comparison of time-lapse and continuous-strip aerial 

photography for obtaining traffic data. The study showed that time-lapse photography 

was more costly for measuring density than continuous-strip photography, but could 

obtain the acceleration-deceleration data that could not be obtained by continuous-strip 

photography. However, the continuous-strip photography provided more coverage at the 

same cost.  

Treiterer and Taylor (1966) developed an aerial photogrammetric method 

appropriate for the test and validation of most of the present traffic flow theories at that 

time. The method consisted of placing a vehicle in the traffic stream and following it by a 

helicopter from which air photos were taken at fixed intervals of time. Vehicle spacings 

and speeds were determined for a platoon of vehicles at short intervals of time, and 

accurate vehicle trajectories were then obtained. Their analysis showed that the standard 

error in the velocity determinations was no more than 1.0 mph and the standard error of 

the spacing determination was no more than 1.0 ft. However, they indicated that the 

major bottleneck of this technique was the economic feasibility of extracting data from 

the photos. A thorough description of this study can be found in the dissertation of Taylor 
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(1965). Treiterer (1972) later presented the use of the aerial camera in the studies of 

intersection operations. He claimed that a camera mounted on a helicopter was the best 

alternative for studying traffic progression through several signalized intersections. 

Buhr et al. (1967) discussed gap acceptance in freeway operations. Time-lapse 

photography was used to investigate various factors affecting freeway merging operations. 

The resultant time-distance-density contour map effectively illustrated the operation of 

ramps studied on a continuous basis in both time and space.  

Syrakis and Platt (1969) reported the application of color aerial photographs in a 

parking study in Stark County, Ohio. An aircraft took photographs over the cities of 

Canton, Massillon, and North Canton every 15 minutes between 10am and 6pm on an 

average business day. At the same time, data were collected on the ground in an 8-block 

area in downtown Canton. The comparison indicated that aerial photography achieved a 

72% savings in cost and an 85% savings in time. 

Cyra (1971) reported a Wisconsin DOT study on traffic data collection through 

aerial photography. Vehicle accumulation (density) and speed data collected by aerial 

photographic techniques were compared to manually recorded volumes and speeds 

during peak periods. The study showed that the aerial method was less costly when 

collecting vehicle accumulation data but much more costly when collecting speed data 

than the manual method. 
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Munjal and Hsu (1973) used aerial photographic data to evaluate three lane 

changing models (linear, nonlinear, and stochastic), and Gazis and Szeto (1974) used 

aerial photographic data to test a Kalman filtering methodology for the estimation of 

traffic densities on multilane roadways.  

Makigami et al. (1985) used aerial photographs to investigate the causes of traffic 

congestion on an 800-m section of the Hanshin Expressway, Japan. Traffic in the study 

section was photographed every 5 seconds for one hour with a 35 mm still camera from a 

helicopter hovering at an altitude of 750 m. To check the accuracy of the data derived 

from the aerial photography, traffic was recorded by a video camera placed on the 

roadside. Based on the theory of 3-D representation of traffic flow, 3-minute traffic 

volume counts were computed from aerial photographs. The difference between these 

computed volumes and volumes from the video screen was at most ± 1 vehicle per 3 

minutes. The study successfully identified that traffic congestion was caused by merging 

traffic from another route and small disturbances (such as sudden lane changes) in the 

stable saturated flow. 

With the end of the cold war, high-resolution satellite imagery became available to 

the civilian community. Merry et al. (1995) investigated the feasibility of traffic data 

collection using satellite imagery. They used 0.4-0.7µm resolution aerial photography to 

simulate the performance of three spatial resolutions, 1.0 m, 2.1 m and 4.2 m. The result 

indicated that 1.0 m resolution was satisfactory for identifying two types of vehicles – 
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larger trucks and small vehicles. They also found that a 1-m resolution satellite could 

cover about 1% of the highways in the continental U.S. per day. Satellites with this 

resolution were still not available to civilian community when this study was conducted. 

This changed with the launch of IKONOS in September 1999, a satellite with a near polar, 

sun-synchronous orbit equipped with a 1 m panchromatic sensor and a 4 m multi-spectral 

sensor. 

 In June 1998, U.S. Congress passed the Transportation Efficiency Act for the 21st 

Century (TEA-21), which called for research in remote sensing and spatial information 

technologies. This led to new interest in collecting and analyzing traffic data from 

airborne and space-based platforms. For example, Angel and Hickman (2002) presented a 

method for measuring freeway level of service from airborne imagery. Toth et al. (2003) 

developed a method for using airborne LiDAR (light detection and ranging), which uses 

the same principle as RADAR, data to identify and classify vehicles into three categories: 

passenger cars, multi-purpose vehicles, and trucks. Toth and Brzezinska (2004) discussed 

technical aspects of using airborne photography, high-resolution satellite imagery and 

LiDAR data to support traffic flow monitoring and management. They believed that the 

great amount of LiDAR data and imagery collected for routine aerial mapping over 

highways provides an opportunity for obtaining traffic flow data at practically no extra 

effort.
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There is also an increasing international interest in this area. Ernst et al. (2003) 

described the LUMOS project conducted in Germany. This project conceptualized an 

airborne wide area traffic monitoring system. To validate the complete concept and its 

implementation, a flight was performed in Berlin in May 2003. Preliminary results of the 

comparison between the airborne and conventional traffic measurements were presented, 

and areas of future work were suggested.  

Schreuder et al. (2003) presented a traffic data collection from aerial imagery in the 

Netherlands. Sequences of digital aerial images were obtained from a helicopter over 

different motorway sites. They developed software to automatically detect and track 

vehicles from the digital images, and determine individual vehicle trajectories. They 

achieved a 98% success rate when weather conditions were reasonable. Stilla et al. (2004) 

described the possibilities of vehicle extraction by three different airborne sensors: visual, 

thermal infrared, and active synthetic aperture radar.  

In this section, we focused primarily on still imagery, which provides discrete time 

coverage rather than continuous time coverage. There are also several research studies 

involved with aerial videos. The reader can find a review of such studies in Angel (2002). 

 

2.5 Imagery and AADT 

In this section, we introduce the use of traffic data collected by sensors on airborne 

or space-based platforms for estimating AADT. For simplicity, we will refer to air photos, 
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satellite images, and LiDAR data as imagery, and the traffic data extracted from them 

will be called image-based data.  

In most of the previous studies, the image-based data were considered to represent 

traffic flow data during relatively short periods of time. In the work presented here, the 

image-based data will be used for estimating traffic volumes over a long-term period (e.g., 

a year). 

Imagery covers a segment at an instant in time, which can be considered a snapshot, 

while traditional ground-based traffic data (e.g., coverage counts) are collected at a 

specific point during a relatively much longer period. Compared to ground-based ATRs, 

airborne or space-based platforms can access a segment of interest more quickly and 

easily. Also, keeping in mind that much imagery taken for other purposes might likely 

cover highway segments, traffic information in imagery will already exist in archives or 

databases in many cases. Many research studies discussed in Section 2.2 indicated that 

more observations during short periods at different time points would provide better 

AADT estimation than fewer observations taken over longer period. Therefore, 

image-based data offer the potential to complement traditional ground-based data in 

AADT estimation with additional, useful information.  

 McCord et al. (2003b) estimated AADTs from several air photos and satellite 

images for several highway segments in Ohio. A sequential approach of five steps was 

proposed to produce the AADT estimate from a single image: 1) obtain the vehicle 
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density from the image; 2) covert the density to a volume, called “t-minute volume”, that 

would be obtained on the ground during a short period (“t minutes”); 3) expand the 

t-minute volume to an hourly volume; 4) expand the hourly volume to a daily volume; 5) 

de-seasonalize the daily volume to produce an image-based annual average daily volume. 

Mathematically, the sequential approach was expressed as  

);,(24);(]/[/ fdmFfhFLNUsLNAADT MDHimgimgimg ××××= ,   (2.5.1) 

where AADTimg is the image-based AADT estimate; Nimg is the number of vehicles 

appearing on the image of the highway segment considered; L is the length of the 

highway segment covered by the image; Us[Nimg/L] is the space-mean speed on the 

segment considered when the traffic density is Nimg/L; FH(h;f) is the corresponding hourly 

adjustment factor and FMD(m,d;f) is the corresponding monthly and day-of-week factor 

for segments in highway functional class f to which the segment considered belongs. 

Equation (2.5.1) is slightly simpler than Equation (4b) in McCord et al. (2003b), which 

divided the vehicles into trucks and passenger cars. 

The authors indicated that one satellite image or air photo provides information 

equivalent to traffic counts of very short duration. They, therefore, raised the possibility 

that the information would be too noisy to be of use in estimating AADT. They used the 

equivalent of Equation (2.5.1) to produce AADT estimates from air photos or satellite 

images of 14 different Ohio Interstate segments, where vehicles were observed under 

free-flow conditions. The errors in the 14 image-based AADT estimates were quantified 
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by calculating the differences between the image-based AADT estimates and the 

corresponding AADT estimates developed from traditional, ground-based data. (The 

authors noted that the ground-based AADT estimates were also subject to errors.)  

An earlier simulation study (McCord et al., 2002b) showed the overall error level in 

AADT estimation for segments across a highway network could be decreased when using 

imagery while also decreasing the ground-based sampling efforts. The simulation 

assumed error levels in image-based AADT estimates that were much larger than the 

error level found in the above study (McCord et al., 2003b). Therefore, the results of 

McCord et al. (2003b) indicated that the quantified errors in the 14 image-based AADT 

estimates seemed small enough that imagery could be considered as a useful resource of 

information for AADT estimation. The factors affecting the quality of image-based 

estimates were also discussed. 

McCord et al. (2003b) did not provide a way to integrate the image-based data with 

traditional data collected on the ground in the process of AADT estimation for a specific 

segment. This issue will be the primary topic of the work presented in later chapters. 

McCord et al. (2003b) suggested that obtaining air photos or satellite images only 

for the purpose of AADT estimation might not be cost-effective at present. However, they 

believed that these images could be used for AADT estimation at only marginal cost if a 

sufficiently large and reliable market could be established for the data. This belief is 

consistent with Paine and Kiser’s claim (2003) that it was increasingly important for all 
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agencies, whether county, state, federal, or private, to maximize the use of aerial 

photography and related imagery.  

The market for images from airborne and space-based platforms is actually much 

broader than the area of traffic data collection. For example (Paine and Kiser, 2003), 

topographic mapping was one of the earliest applications of aerial photography. Other 

uses of these images include land-use planning, area and corridor studies, and highway 

planning and design. In addition, aerial photography and satellite imagery are used in the 

fields of astronomy, architecture, archaeology, geomorphology, oceanography, hydrology 

and water resources, conservation, ecology, mineralogy, and national defense. 

Geographic information systems also have a large connection with the use of aerial 

photography and satellite imagery. 

Therefore, any image containing highway segments, originally obtained for other 

purposes, might be used in AADT estimation. Below, we will briefly introduce possible 

sources of the imagery. 

Existing aerial photography could cover nearly all the United States and Canada 

(Wolf and Dewitt, 2000). The Earth Resources Observation System (EROS) Data Center 

in Sioux Falls, South Dakota, has archived millions of air photos and satellite images 

(Wolf and Dewitt, 2000). Their archived coverage includes photos taken through the 

National Aerial Photography Program (NAPP) and the National High Altitude 

Photography program (NHAP). The EROS Data Center also archives photos taken by the 
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U.S. Geological Survey (for its topographic mapping projects) as well as other federal 

agencies such as the National Aeronautics and Space Administration (NASA), the Bureau 

of Reclamation, the Environmental Protection Agency (EPA), and the U. S. Army Corps 

of Engineers. The U.S. Department of Agriculture is another resource for aerial 

photography. 

The Departments of Transportation (DOT) of most states also obtain air photo 

coverage for use in highway planning and design. Thus their coverage typically follows 

state and federal highways. For example, the Aerial Engineering Office of Ohio DOT 

flies aerial survey missions about 150 times per year, and takes about 2000~3000 air 

photos containing highway segments each year (private communication with John Ray, 

Director of the Aerial Engineering Office of Ohio DOT).  

New imagery coverage is obtained routinely or upon demand. Many countries also 

have repeated periodic coverage. In addition, there are a number of survey companies 

that possess aircraft and have the ability to obtain imagery (Angel, 2002). Two companies 

– PAR Government Systems and Skycomp – have been engaged in aerial surveying of 

traffic flow (Murray, 2002). 

In summary, imagery is a potentially useful source for traffic flow data collection, 

and has been used in traffic flow studies, traffic operations, and many other areas in 

transportation. The imagery appears to have potential for AADT estimation, especially if 

imagery originally obtained for other purposes is used. However, a theoretically justified 
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and operational means of combining the image-based data with traditional ground-based 

data in AADT estimation is lacking. Also, the “benefits” in terms of improved accuracy 

in AADT estimation would need to be documented. This study proposes a methodology 

to address the above issues. In the next chapter, the proposed approach for AADT 

estimation will be developed. 
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CHAPTER 3 

ESTIMATING AADT BASED ON BAYESIAN ANALYSIS 

 

It is impracticable to collect traffic volumes 365 days a year on every segment of a 

highway system. AADT values for most segments are estimated based on traffic volume 

samples obtained from counts taken within some period much shorter than a year. 

Uncertainty in the AADT values based on this sampling procedure is therefore 

unavoidable. The profession has recognized the need to address the uncertainty in AADTs. 

The American Association of State Highway and Transportation Officials (AASHTO) 

suggests that the “precision and bias” of AADT estimates be assessed when providing 

them to users (AASHTO, 1992). Investigation of the accuracy of AADT estimates from 

traffic volume samples can be traced back many decades, as discussed in Chapter 2. 

One of the best languages to handle the uncertainty is probability (Berger, 1985). 

This chapter develops an approach for AADT estimation based on Bayesian analysis. The 

approach addresses the uncertainty in AADT by producing a probability distribution of 

the AADT on a given segment instead of a point estimate.  

Because of the limitation on funds, equipment and manpower, state DOTs usually 

take several years to cover all roadway segments with short-duration traffic counts (i.e.,



 54

coverage counts) in their jurisdiction. For example, the Traffic Monitoring Guide or TMG 

(FHWA, 2001) recommends a 6-year sampling cycle for covering the entire roadway 

system in a state. That is, a segment would actually be updated with new count data once 

every six years. The counts from previous years could provide useful information in 

determining the AADT for the contemporary year. However, there would be more 

uncertainty in AADT when the estimation is based on older counts than when it is based 

on more recent counts. To estimate AADT in the contemporary year (the year when 

AADT is to be estimated), the TMG recommends inflating count data collected in the 

most recent year by appropriate growth factors for segments without count data collected 

in the contemporary year. The TMG does not mention the use of previous data when 

count data are available in the contemporary year.  

No studies have been found that investigate the potential combination of previous 

and contemporary data. An approach based on Bayesian analysis provides an efficient 

way to combine prior information with newly observed data. The previous data form 

prior information about the AADT in the contemporary year, and the Bayesian approach 

provides a mean of updating the prior information based on the recently collected traffic 

counts. 

Detailed discussion on general Bayesian analysis can be found elsewhere (e.g., 

Berger, 1985). In the following sections, the Bayesian approach is developed for AADT 

estimation, and the components of the approach are discussed. The algorithms used to 
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implement the approach are then presented. Finally, the choice of point estimates based 

on the distribution is discussed. 

 

3.1 Framework of Bayesian AADT Estimation 

In general, the AADT on a segment of interest can be considered a population 

parameter (mean) of the daily traffic volumes on the segment in a year. For ease in 

exposition it will be assumed that there are 365 days in the year. Any traffic count taken 

within a time period shorter than a year would provide a traffic volume sample taken 

from this population. Probabilistic models can be used to characterize this traffic volume 

sample conditional on AADT. Let f(VT
i|AADTi) denote such a probabilistic model, i.e., the 

probability distribution of a traffic volume VT
i on segment i during a time period T, 

conditional on the segment’s true AADT being AADTi. When observing a sample 

described by a parameter, probabilistic models allow the deduction of an inference about 

the parameter from these observations (Berger, 1985).  

A prior distribution π for AADTi can be established based on prior information. The 

prior information might consist of traffic volume samples collected several years 

previously and volumes on other segments that allow one to estimate growth in traffic. 

After collecting new traffic counts, the Bayesian approach allows one to update the prior 

AADT distribution for a highway segment to a posterior distribution, conditional on 

newly observed traffic counts. This update is realized through Bayes’s Therom (Berger, 
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1985). Mathematically, it can be written as 
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where π(AADTi(y)|Vi
T(y)) is the posterior distribution of the AADT in year y on segment i 

– i.e., AADTi(y) – after the traffic volume Vi
T(y) is obtained from a count taken during 

time duration T in year y on segment i; f(Vi
T(y)|AADTi(y)) is defined above; π(AADTi(y)) 

is the prior distribution of AADTi(y) before any traffic data are collected in year y; and 

m(Vi
T(y)) is the marginal distribution of Vi

T(y). The marginal distribution can be obtained 

by the following integration: 
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There could be more than one traffic count taken for the same segment during 

different periods in a year. In such a case, the update can be implemented in two ways. 

One way is to consider a joint distribution of all the traffic volumes obtained from the 

counts conditional on AADT (or reduce the situation through a sufficient statistic). 

Equation (3.1.1a) can then be expressed as 
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where Vi
T(y) represents the vector of n traffic volumes, {Vi

T1(y)1, Vi
T2(y)2, …, Vi

Tn(y)n}, 

obtained from counts in year y on the segment i, each of which might cover a different 

duration Tj, j = 1, …n; f(Vi
T(y)|AADTi(y)) is the joint distribution of Vi

T(y) conditional on 

AADTi(y); and m(Vi
T(y)) is the marginal joint distribution of Vi

T(y), obtained by  
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A sequential analysis can also be adopted when more than one traffic volume is 

available. Using sequential analysis, the prior distribution of AADT can be updated to a 

“interim-posterior” distribution based on the first traffic volume collected. Then, when 

another new traffic volume is obtained, the interim-posterior distribution can be updated 

to another interim-posterior distribution. That is, the update becomes a dynamic 

procedure and is implemented at any moment when a new traffic volume is obtained. The 

posterior distribution is eventually obtained at the time when the last traffic volume is 

obtained in the year of interest.  

If all traffic volumes collected during different short-term periods in a year can be 

assumed mutually independent, updating through a joint distribution or sequential 

analysis would result in the same posterior distribution (Berger, 1985). Most of the 

temporal variations in the traffic volumes during different time periods can be explained 

by the temporal adjustment factors used in practice. No other factors would be expected 

to introduce correlation between traffic volumes collected far apart in the year, so this 

independence assumption appears good in such a case. However, traffic volumes 

collected in consecutive time periods, such as the consecutive days on which the two 

daily volumes are often collected in present practice, might have some correlation, even 

after the adjustment of the temporal factors. Such correlation would be difficult to model 

unless enough data were collected on the segment considered.  
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As a model approximation, the independence assumption will be considered 

appropriate in this work, and there will therefore be no difference in using either the 

sequential or joint distribution approach when updating the prior distribution with 

contemporary traffic counts. The sequential approach is adopted in this work, since it has 

the advantage of providing an updated AADT estimate as soon as new volume data 

become available and does not need to address the joint distribution. 

In summary, the Bayesian approach for updating the prior distribution based on 

contemporary traffic counts contains two components: a conditional probability 

distribution of traffic counts given the AADT f(Vi
T(y)|AADTi(y))), and a prior distribution 

on the AADT π(AADTi(y)). These two components will be discussed in Sections 3.2 and 

3.3. The algorithms for implementing the approach will be presented in Section 3.4. 

Finally, choosing a point estimate based on the posterior distribution will be discussed in 

Section 3.5.  

 

3.2 Probabilistic Model for Traffic Volumes conditional on AADT 

The Bayesian approach is intended to be used when updating a prior AADT 

distribution for a highway segment to a posterior distribution, conditional on newly 

observed traffic volumes. (Below we will use count and volume interchangeably except 

when needed for clarity.) The probability of observing a traffic volume conditional on the 

AADT plays a key role in this updating process, as shown in Equations (3.1.1).  
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Various traffic volume samples can be collected by different methods within periods 

of different lengths. This work only considers the traffic volumes collected within a 

period much shorter than one year. Specifically, this work will primarily concentrate on 

the probabilistic models for two types of volumes –– 48-hour ground-based traffic 

volumes and image-based volumes. In current practice, a short-duration traffic volume is 

collected on the ground usually during a consecutive 48-hour period (see more in Chapter 

2). The motivation for this work is the incorporation of traffic information contained in 

images in AADT estimation. The so-called “image-based” volume for segment i is 

derived from the number of vehicles on the segment appearing in the image, denoted as 

Nimg. The variable Nimg can be considered equivalent to a traffic volume collected on the 

ground during a period on the order of minutes (McCord et al., 2003b). Because of the 

characteristics of the probabilistic models proposed here, the concepts are mainly 

developed for modeling image-based volumes. The reason will be clarified at the end of 

this section. 

Assuming there is a sample of n image-based counts on a segment i in year y, the 

joint distribution density function of the n image-based counts conditional on the AADT 

in year y is denoted as 

 f(Ni
img(y)| AADTi(y)),              (3.2.1) 

where Ni
img(y) is the vector of n image-based volumes, {Ni

img
1, Ni

img
2, …Ni

img
n},taken at 

different times in year y. The indices y representing the year of interest and i representing 
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the segment will be omitted below unless required for clarity. Below an image-based 

volume will be denoted as Nimg(l,h,δ), where l represents the length of the segment 

covered in the image, and h and δ represent the hour and the day the image is taken.  

If the n image-based volumes can be assumed to be independent, their joint density 

would become the product of their individual marginal densities. Since images are often 

taken for a specific segment far apart during a year, the independence assumption seems 

appropriate in most cases for this work. Therefore, a method is developed to model the 

distribution of a single image-based volume conditional on AADT – f(Nimg(l,h,δ)| AADT). 

The following three additional distributions are introduced to model the distribution 

f(Nimg(l,h,δ)| AADT), which is called “3-stage model” in this work: 

1) f(V24(δ)|AADT): the density function of 24-hour daily volume V24(δ) on day δ 

when the image is taken, conditional on the AADT of the segment; 

2) f(VH(h,δ) |V24(δ), AADT): the density function of hourly volume VH(h,δ) in hour h 

of day δ when the image is taken, conditional on the daily volume V24(δ) on day 

δ and the AADT on the segment; 

3) f(Nimg(l,h,δ)|VH(h,δ), V24(δ), AADT): the density function of image-based volume 

Nimg(l,h,δ), conditional on the hourly volume VH(h,δ) in hour h of day δ, the daily 

volume V24(δ) on day δ and the AADT on the segment.  

 

The joint distribution of {Nimg(l,h,δ), VH(h,δ), V24(δ)} conditional on AADT is the 
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product of the above three distributions. Therefore, the distribution f(Nimg(h,δ)|AADT) can 

be obtained by integrating this joint distribution over VH(h,δ) and V24(δ) 

f(Nimg(l,h,δ)|AADT)  

= ∫∫
),(),(

2424

24
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                   (3.2.2) 

Modeling the three conditional distributions will be discussed next.  

 

The distribution f(V24(δ)|AADT) reflects the day-to-day variability of 24-hour traffic 

volumes around the AADT. As seen in Chapter 2, 24-hour daily traffic volumes show 

systematic monthly and day-of-week variations from the AADT, which can be captured 

by monthly and day-of-week adjustment factors. However, traffic flows are caused by 

human travel behavior that cannot be completely captured by monthly and day-of-week 

adjustment factors, so traffic volumes still show some additional “unexplained” 

variations. These unexplained variations would contribute most to the error in AADT 

estimates from short-term traffic counts when the systematic variations are accounted for, 

by monthly and day-of-week factors, for example. The magnitude of the “unexplained” 

variation would tend to increase with increased traffic volumes (BPR, 1965). Relative 

error is a popular measure for comparing the accuracy of the AADT estimates across 

segments with large differences in AADT values (Petroff, 1956). Relative error also has a 
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simple relationship with multiplicative error (Jiang et al., 2004). A multiplicative error 

term is, therefore, introduced to represent the “unexplained” part of the variation in a 

daily volume from the AADT. This error term will be denoted Noise(D), and defined as 

the ratio of the de-seasonalized daily volume to the true AADT:  

Noise(D(δ)) = V24(δ) × FM(m(δ)) × FD(d(δ)) / AADT,       (3.2.3a) 

where FM(m(δ)) and FD(d(δ)) are the monthly and day-of-week factors, respectively, for 

the month m(δ) and day-of-week d(δ) that are used to de-seasonalize the observed daily 

volume on the day. Given the monthly and day-of-week factors, a daily volume V24(δ) 

can therefore be modeled as a function of AADT: 

 V24(δ) = AADT × (1/FM(m(δ))) × (1/FD(d(δ))) × Noise(D(δ)).      (3.2.3b) 

In practice, highway segments are grouped into categories or groups considered 

homogeneous in terms of similar temporal variations (FHWA, 2001). A set of common 

adjustment factors is applied to all segments in the group. The common adjustment 

factors are estimated by averaging the factors developed from the PATR-equipped 

segments in that group. This work proposes to model one distribution of Noise(D) for one 

homogeneous group through the analysis of the continuous daily volumes collected on 

PATR-equipped segments in the group. Details are given in Chapter 4. Systematic 

temporal variations would not be identical for all segments in a homogeneous group. 

Therefore, the Noise(D) obtained by applying one set of common adjustment factors 

would result from two types of “unexplained” variations: one representing the 
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“unexplained” temporal variation on a specific segment; the other representing the 

“unexplained” spatial variation in systematic temporal variation across the segments in 

the group. After modeling the distribution of Noise(D), the distribution f(V24(δ)|AADT) 

can ultimately be modeled for a given segment through Equation (3.2.3b). 

 

The distribution f(VH(h,δ)|V24(δ), AADT) reflects the variability of the hourly volume 

VH(h,δ) around the average hourly volume in the day. The average hourly volume in day 

δ is defined as [V24(δ)/24]. On a typical day, knowing V24(δ) provides enough information 

to model VH(h,δ), and knowing the AADT does not provide much more information. 

Therefore, after excluding the holidays and days with special events or bad weather from 

the population, it appears reasonable to assume that VH(h,δ) conditional on V24(δ) is 

independent of AADT. That is 

 f(VH(h,δ) |V24(δ), AADT) = f(VH(h,δ) |V24(δ)).         (3.2.4) 

Similar to what was done with Noise(D), a multiplicative error term is introduced to 

represent the “unexplained” part of variation in the hourly volume in hour h of day δ. 

Denoted Noise(H), this error term is defined as the ratio of the adjusted hourly volume by 

the hourly factor to the average hourly volume in the day: 

Noise(H(h,δ)) = VH(h,δ)×FH(h)/ (V24(δ)/24),         (3.2.5a) 

where FH(h) is the hourly factor for hour h. FH(h) represents the average ratio of the 

average hourly volume in a day to the hourly volume expected in hour h of the day. 
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Therefore, given the independence in Relation (3.2.4), the hourly volume in hour h can be 

modeled as 

 VH(h,δ) = (V24(δ)/24)×(1/FH(h))×Noise(H(h,δ)),         (3.2.5b) 

The hourly factors would also be assumed common across all segments in the same 

homogeneous group. Again, this work proposes to model Noise(H) from the analysis of 

continuous hourly volumes on PATR-equipped segments. Details are given in Chapter 4. 

After modeling the distribution of Noise(H), the distribution f(VH(h,δ) |V24(δ)) can 

ultimately be modeled through Equation (3.2.5b). 

 

Since an image-based volume is actually a density measurement of traffic, rather 

than traffic flow passing a point on the segment, f(Nimg(l,h,δ)|VH(h,δ),V24(δ),AADT) is 

modeled differently than above. Consider an image-based volume Nimg(l,h,δ) taken on an 

imaged segment of length l in hour h of day δ. To develop the distribution of 

f(Nimg(l,h,δ)|VH(h,δ),V24(δ),AADT), we consider the VH(h,δ) vehicles using the segment 

during hour h to be scattered along a hypothetical, long segment at the instant time t 

when the image was taken. If traffic in hour h is not increasing towards or decreasing 

from a more congested state (i.e., if the traffic is non-transitioning) and operating under 

free-flow conditions (i.e., if the movement of a given vehicle is not generally affected by 

the movements of other vehicles), the vehicles can be considered to be scattered at 

random so that equal sections of the hypothetical segment would be equally likely to 
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contain the same number of vehicles, i.e., to be uniformly distributed along the 

hypothetical segment. Since traffic flow rate can be expressed as a product of traffic 

density and space-mean speed (FHWA, 2005), we assume, as a modeling approximation, 

that the length of the hypothetical segment containing the VH(h,δ) vehicles (more strictly, 

the same number of vehicles) is equal to the space-mean speed Us times one hour. Here, 

the space-mean speed Us is based on the conventional definition (Daganzo, 1997), 

namely, the average of the VH(h,δ) vehicles’ speeds along the hypothetical long segment 

at the instant time t: 

 Us = ∑
=

),(

1),(

1 δ

δ

hV

i
iH

H

u
hV

,             (3.2.6) 

where ui is the speed of vehicle i among the VH(h,δ) vehicles along the hypothetical long 

segment at the instant time t.  

Note that the hourly volume VH(h,δ) is observed at a specific point on the segment 

considered in the hour, while the VH(h,δ) vehicles distributed along the Us-mile-long 

segment correspond to an observation over space at an instant in time. We do not intend 

to argue that the vehicles observed at the specific point on the segment considered in the 

hour are exactly the vehicles distributed along the Us-mile-long segment at the instant 

time t. However, the number of vehicles obtained from these two different observations 

should be similar. 
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Since the traffic is non-transitioning and operating under free-flow conditions, the 

traffic would be steady, and the image-based volume Nimg(l,h,δ) would be independent of 

the instant time t. The image-based volume Nimg(l,h,δ) can, then, be considered to be the 

number of vehicles along an l-mile segment taken randomly from the Us-mile long 

segment along which the VH(h,δ) vehicles are distributed uniformly. Therefore, given 

VH(h,δ), Us and length l, the image-based volume Nimg(l,h,δ) would have a binomial 

distribution: 

 Nimg(l,h,δ)| VH(h,δ) ~ Binomial(n = VH(h,δ), p = l / Us).      (3.2.7) 

In the above analysis, Nimg(l,h,δ) results from the hourly volume VH(h,δ), and there 

is no mention of daily volume V24(δ) or AADT. Therefore, conditional on VH(h,δ), the 

image-based volume can be considered independent of both V24(δ) and AADT. That is 

 f(Nimg(h,δ)|VH(h,δ), V24(δ), AADT) = f(Nimg(h,δ)|VH(h,δ)).      (3.2.8) 

The length l of the segment in the image of Distribution (3.2.7) can be determined 

directly from the image. To incorporate the uncertainty in the space-mean speed Us into 

Distribution (3.2.7), a normal distribution is introduced to model Us as follows. The 

normal distribution is commonly used for modeling the distribution of vehicle speeds 

(McShane et al., 1998). So we model the speed of vehicle i in Equation (3.2.6) as 

 ui ~ N(ū, σu
2),                (3.2.9) 

where ū is the distribution mean and σu is the distribution standard deviation. As a first
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approximation, a plausible estimate of ū could be the speed limit for vehicles in urban 

areas, and the speed limit plus 5 mph for vehicles in rural areas. 

Under free-flow conditions, the speeds of vehicles can be considered mutually 

independent. Therefore, Us given in Equation (3.2.6) would be a sum of independent 

normal variables and also follow a normal distribution 

 Us ~ N(ū, σu
2/ VH(h,δ)).              (3.2.10) 

Several states post different speed limits for passenger cars and trucks on the same 

highway in their jurisdictions. For example, in Ohio, the speed limit on interstate 

highways is 55 mph for trucks, and 65 mph for cars. In this case, vehicles can be 

considered as being generated from two subpopulations – cars and trucks. Let Pk denote 

the truck proportion in the VH(h,δ) vehicles, and ūk and ūc denote the speed distribution 

means for trucks and cars, respectively. If it is assumed that the standard deviation of 

speed distribution remains the same for trucks and cars, the distribution of (3.2.10) would 

become 

 Us ~ N(Pkūk + (1- Pk)ūc, σu
2/ VH(h,δ)).              (3.2.11) 

Distributions (3.2.10) and (3.2.11) model the variability in the space-mean speed, 

conditional on the hourly volume VH(h,δ). Note from Distribution (3.2.11) that the truck 

proportion Pk is required for this model when considering different speed limits for cars 

and trucks. Various factors affect truck proportion on a segment, such as time-of-day, 
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functional class, geographic location (FHWA, 2001). Statistical distributions will be 

introduced to model the truck percentage in numerical studies presented later. 

 

Given the general distributions of (3.2.3) and (3.2.5), and the binomial distribution 

of (3.2.7), the distribution f(Nimg(l,h,δ)|AADT) cannot be derived analytically through the 

integration of (3.2.2). A numerical technique, such as Monte Carlo simulation, can be 

used to derive f(Nimg(l,h,δ)|AADT) numerically. The algorithm for the simulation 

procedure used in this work can be summarized as follows: 

 

Algorithm (3.1) 

1. Given AADT, FM(m(δ)), FD(d(δ)), FH(h), the length l of imaged segment, and 

distribution models for Noise(D), Noise(H), Pk and Us; 

2. (a) Generate a Noise(D) value from the Noise(D) distribution; (b) use this generated 

Noise(D) value in Equation (3.2.3) to produce a daily volume V24(δ); 

3. (a) Generate a Noise(H) value from the Noise(H) distribution; (b) use this generated 

Noise(H) value and the V24(δ) value generated in Step 2 in Equation (3.2.5) to 

produce an hourly volume VH(h,δ); 

4. Generate a truck proportion value from the Pk distribution; 

5. Generate a space-mean speed value from the Us distribution; 

6. Use the given length l of the imaged segment from Step 1, the VH(h,δ) value 
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generated in Step 3 and the Us value generated in Step 4 to generate an image-based 

volume Nimg(l,h,δ) from the binomial distribution of (3.2.7). 

7. Repeat Steps 2-6 M times to produce M values of Nimg(l,h,δ). 

 

The set of image-based volumes obtained by the above algorithm represents a 

numerical approximation of the distribution f(Nimg(l,h,δ)|AADT). Also, Steps (2)-(6) of the 

algorithm can be used to generate random samples of image-based volumes under 

specific circumstances given in Step (1), which will be used in the data generation part of 

the numerical study presented later.  

 

The approach described above can also be used to establish probabilistic models of 

hourly or 24-hour volumes, condition on AADT. For example, the probabilistic model of 

24-hour volumes conditional on AADT is the distribution f(V24(δ)|AADT) introduced 

above. The probabilistic model of hourly volumes conditional on the AADT, 

f(VH(h,δ)|AADT), can be obtained by integrating the product of distributions 

f(V24(δ)|AADT) and f(VH(h,δ)|V24(δ)) over all possible values of V24(δ). Alternatively, the 

two noise terms Noise(D) and Noise(H) can be aggregated into one noise term – 

Noise(DH) = Noise(D)×Noise(H). Then distributions f(V24(δ)|AADT) and f(VH(h,δ)|V24(δ)) 

can be reduced directly to one distribution f(VH(h,δ)|AADT), the probabilistic model of
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hourly volumes conditional on the AADT, by modeling the distribution of the noise term 

Noise(DH). 

A similar approach can also be used to produce the probabilistic model of volumes 

in intervals of various durations. For example, if one regards a 48-hour traffic volume as 

two independent 24-hour traffic volumes, the probability of observing the 48-hour traffic 

volume (i.e., two independent 24-hour traffic volumes) is just the product of probabilities 

of observing each of the two 24-hour traffic volumes. Otherwise, one might develop a 

temporal adjustment factor corresponding to the period of the 48-hour volume, and model 

the distribution of the 48-hour volumes conditional on the AADT. A probabilistic model 

of volumes in duration of several hours conditional on AADT can be modeled in a similar 

manner. 

 

3.3 Prior Distribution of AADT 

A prior distribution is based on prior information. In this section, two types of prior 

distributions are developed for a specific segment. The two distributions correspond to 

two types of prior information – one where there is “no prior information”; the other 

where the prior information is based on the posterior distribution in the previous year and 

the corresponding growth factors developed from other segments. 

This work considers consecutive application of the Bayesian approach in AADT 

estimation year by year. For a given segment, it is assumed that there is a beginning year 
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when the AADT estimation was of interest, and a traffic sample was collected for the first 

time on that segment. (Any year can be considered the “beginning” year when this 

approach is to be used for AADT estimation, even if traffic samples had been collected 

before that year and previous AADT estimates produced.) A non-informative prior 

distribution can be used for the prior distribution of the AADT in this “beginning” year. 

Non-informative priors are often used when insufficient prior information is available to 

implement a Bayesian analysis. It is assumed that there would not be available 

information for this “beginning” year. Various methods could be used to choose a 

non-informative prior. In this work, a uniform distribution will be used as the 

non-informative prior for the AADT on a segment of interest. The uniform distribution is 

one of the earliest adopted non-informative priors in Bayesian analysis (Robert, 1994). It 

is still commonly used because of its simplicity and reasonableness. The uniform 

distribution can be denoted 

π(AADT) ~ uniform(BL,BU) ,            (3.3.1) 

where BL and BU are the distribution lower and upper bounds, respectively. The selection 

of the bounds will be discussed in the numerical studies later. More thorough analysis of 

choosing a non-informative prior distribution of AADT could be a subject of future study. 

Based on the traffic volumes collected in the beginning year, the uniform prior of 

(3.3.1) can be updated to a posterior distribution by the Bayesian approach. The posterior 

distribution in the beginning year could be converted to a prior of the AADT in the 



 72

following year by incorporating the uncertainty in traffic growth. Then, this prior can be 

updated when traffic volumes are collected in this following year or remain the same 

until the end of this following year if no volumes are collected. That is, except for the 

beginning year, the prior distribution of the AADT in the following years would be 

obtained from the posterior distribution in the previous year. Therefore, the second prior 

distribution considered in this work is based on two types of information: one is the 

posterior distribution of AADT obtained in the previous year; the other is the distribution 

of growth factors on other PATR-equipped segments with AADT growth assumed to be 

similar to the growth of the segment considered. 

Consider a specific segment i. When the posterior distribution of AADT on segment 

i in year y is obtained, the prior distribution of AADT in following year y+1 would be 

derived from the year y posterior distribution and the growth in traffic on segment i from 

year y to year y+1. A growth factor GF is commonly used to represent the growth, and 

can be defined as 

GFi(y, y+1) = AADTi(y+1)/AADTi(y).            (3.3.2a) 

Rearranging Equation (3.3.2a) yields 

AADTi(y+1) = GFi(y, y+1)×AADTi(y).           (3.3.2b) 

Given the distributions of GFi(y, y+1) and AADTi(y), a distribution of AADTi(y+1) can be 

derived from Equation (3.3.2b) numerically. 
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Knowledge about growth factor GFi(y, y+1) can be obtained from growth factors of 

PATR-equipped segments whose growth in traffic is considered representative of AADT 

growth on segment i. Specifically, the growth factor GFi(y, y+1) for segment i could be 

considered a random variable following the distribution of growth factors across the 

segments with similar traffic growth patterns. The growth factors obtained from those 

PATR-equipped segments would produce an empirical distribution for GFi(y, y+1) and 

could be used to model this distribution. Therefore, a distribution of AADTi(y+1) can be 

produced from the distributions of GFi(y, y+1) and AADTi(y). This distribution is 

considered the prior distribution of AADT in year y+1. 

 

3.4 Calculation of Posterior Distributions 

In general, there is no closed-form representation for the probability model of 

image-based volumes conditional on the AADT. Therefore, a numerical technique, such 

as Monte Carlo simulation, is used to obtain the numerical posterior distribution.  

According to Equation (3.1.1a), a plausible straightforward way to produce the 

numerical posterior distribution is described as follows: first generate an AADT value 

from the prior distribution; then, conditional on the generated AADT value, generate a 

short-term traffic volume from the probabilistic model. After repeating the two steps a 

large number of times, a numerical joint distribution of AADT and short-term traffic 

volume is produced. The numerical marginal distribution of AADT, conditional on the 
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specific observed short-term traffic volume, can be produced from the joint distribution. 

However, this simple method is not computationally efficient, since most of the generated 

data are not used in the specific marginal distribution that targets the observed short-term 

traffic volume. Therefore, a more efficient numerical method is introduced. 

According to Equation (3.1.1a), the posterior distribution π(AADT|VT) is 

proportional to the product of the prior distribution and the conditional distribution, since 

the denominator of the right side in Equation (3.1.1a) does not depend on the AADT. This 

relation can be mathematically written as 

 π(AADT|VT) ∝ π(AADT) × f(VT|AADT).          (3.4.1) 

The right side of Relation (3.4.1), π(AADT) × f(VT|AADT), can be regarded as a pseudo 

density function for the posterior distribution π(AADT|VT), where f(VT|AADT) is just a 

weight for π(AADT). To take advantage of this observation, a large number of AADT 

values are first generated based on the prior distribution π(AADT); then, given the 

observed volume VT, the weight for each generated AADT value is evaluated based on 

the probabilistic function f(VT|AADT); finally these AADT values are re-sampled with 

replacement according to their weights. The AADT values resulting from the re-sampling 

process would be a numerical approximation of the posterior distribution π(AADT|VT) 

(Robert, 1994). The above is the basic idea of the so-called Sampling-Importance 

-Resampling method (Robert, 1994), which will be adopted in the work presented here. 

As mentioned before, two types of traffic volume samples are considered here: 24-hour 



 75

volumes and image-based volumes. Therefore, we present below algorithms for 

“calculating” posterior distributions conditional on a 24-hour volume and an image-based 

volume, respectively.  

 

Algorithm (3.2) – posterior distribution of AADT conditional on a 24-hour volume 

1. Given the prior distribution π(AADT), the observed 24-hour volume V24(δ), the 

corresponding monthly factor FM(m(δ))and day-of-week factor FD(d(δ)), and the 

Noise(D) distribution. 

2. Generate N values of AADT from the prior π(AADT), AADTn, n = 1, 2, …N. 

3. Evaluate the weight ω(n) for each AADTn as follows 

(i) Use V24(δ) and AADTn in Equation (3.2.3a) to calculate the “observed” Noise(D) 

value, Noise(D(δ))n; 

(ii) Calculate the probability distribution f(Noise(D(δ))n) based on the Noise(D) 

distribution; 

(iii) ω(n) = f(Noise(D(δ))n). 

4. Normalize the weights obtained in Step 3: ω'(n)= ω(n)/Σi=1,..N ω(i), n = 1, 2, …N. 

5. Resample the N values of AADT in Step 2 with replacement based on the weights in 

Step 4 to obtain N “new” AADT values, which is the numerical approximation of the 

posterior distribution π(AADT|V24(δ)). 
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Algorithm (3.3) – posterior distribution of AADT conditional on an image-based volume 

1. Given the prior distribution π(AADT), the observed image-based volume Nimg(l,h,δ), 

the corresponding monthly factor FM(m(δ)), day-of-week factor FD(d(δ)), hourly 

factor FH(h), the length of imaged segment l, and the distribution models for Noise(D), 

Noise(H), Pk and Us. 

2. Generate N values of AADT from the prior π(AADT), AADTn, n = 1, 2, …N. 

3. Evaluate the weight ω(n) for each AADTn as follows 

(i) Generate a Noise(D) values from the Noise(D) distribution, and then use the 

generated Noise(D) values in Equation (3.2.3) with the value AADTn to produce 

a daily volumes V24(δ); 

(ii) Generate a Noise(H) value from the Noise(H) distribution, and then use this 

generated Noise(H) value and the V24(δ) value generated in Step 3(i) in Equation 

(3.2.5) to produce an hourly volume VH(h,δ); 

(iii) Generate a truck proportion value Pk from the Pk distribution; 

(iv) Generate a space-mean speed value Us from the Us distribution; 

(v) Calculate f(Nimg(l,h,δ)|VH(h,δ)), the probability of observing the image-based 

volume Nimg(l,h,δ) conditional on the generated hourly volume VH(h,δ) in Step 

3(ii) based on the binomial distribution of (3.2.7), with the length l of the 

imaged segment, and the generated Us in Step 3(iv); 

(vi) Repeat Steps 3(i)-(v) nn times to produce nn probability values for AADTn, 
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f(Nimg(l,h,δ)|VH(h,δ))n,i, i = 1, 2, …nn; 

(vii) ω(n) = Σi=1,2…nn (f(N
img(l,h,δ)|VH(h,δ))n,i) /nn; 

4. Normalize the weights obtained in Step 3: ω'(n)= ω(n)/Σi=1,..N ω(i), n = 1, 2, …N. 

5. Resample the N values of AADT in Step 2 with replacement based on the weights in 

Step 4 to obtain N “new” AADT values, which is the numerical approximation of the 

posterior distribution π(AADT| f(Nimg(l,h,δ)). 

 

The above algorithms appear more complicated than the “straightforward” method 

mentioned at the beginning of this section. However, the generation part of the algorithms 

targets directly the observed traffic counts, and no wasteful data are generated. The size 

of the approximated distribution (i.e., N) is more controllable, compared to the 

“straightforward” method. Therefore, the proposed algorithms are more computationally 

efficient. One common problem for the numerical approximation of the posterior 

distribution is that the approximated distribution may degenerate to a few points after 

many updating procedures of the proposed approach (Doucet et al., 2001). This 

degeneration is unlikely to happen for AADT estimation, unless hundreds of traffic 

counts are available for a few years, which can rarely happen. In case that the 

degeneration happens, one more step (often called smoothing) could be added in the 

algorithm of calculating the posterior distribution. One can refer to Doucet et al. (2001) 

for details. 
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3.5 Point Estimates of AADT based on the Posterior Distribution 

When the prior distribution π(AADT) is available, the posterior distribution 

π(AADT|VT) can be produced based on the traffic count VT with distribution f(VT|AADT) 

using the procedure presented in Section 3.4. This posterior distribution is the direct 

result of the Bayesian approach for AADT estimation, integrating simultaneously prior 

information and information brought by the observed traffic count VT. The posterior 

distribution π(AADT|VT) can be used as a probability distribution to describe the 

properties of the uncertainty in the AADT. For example, the variance of the posterior 

distribution would reflect a measure of the variability in the AADT. 

In practice, a point AADT estimate would likely be required for many applications. 

In such cases, a point estimate of AADT could be selected based on π(AADT|VT). For 

example, the mean, the median, or the mode of the posterior distribution could be chosen 

as the point estimate. An explicit approach for choosing a point estimate is based on 

decision analysis. A loss function (or disutility function) is introduced as a criterion. Let 

L(AADT, AADTEst) denote the loss function, where AADTEst denotes the chosen point 

estimate. Given the posterior distribution π(AADT|VT), the expected loss of choosing 

AADTEst can be calculated as 

E[L(AADT, AADTEst)]= ∫
AADT

TEst dAADTVAADTAADTAADTL )|(),( π .  (3.5.1) 

In decision analysis, one would choose an estimate that minimizes the posterior 

expected loss shown in Equation (3.5.1). Therefore, the best point estimate would depend  
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Loss Function Chosen Estimates 
|AADT – AADTEst| Median of π(AADT|V) 
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Note: K0 and K1 are two constants reflecting the seriousness of underestimating and overestimating the 

AADT, respectively; ω(AADT) is the weight on the squared errors as a function of the AADT; and Eπ(*)[.] 

represents the expectation of [.] based on the distribution π(*).  

 

Table 3.1: Choice of Estimates associated with Common Loss Functions. 

 

on the choice of the loss function. Different loss functions result in different estimates. In 

Table 1, some common loss functions are listed associated with the corresponding “best” 

estimates in terms of minimizing the loss. One can refer to Berger (1985) for an extensive 

discussion of loss functions.  

In summary, an approach for AADT estimation has been developed based on 

Bayesian analysis. This approach produces a posterior distribution of AADT rather than a 

point estimate only, which is produced by the traditional approach. If a point estimate is 

desired, it can be obtained from the posterior distribution. Therefore, the Bayesian 

approach can be compared to the traditional approach in terms of “which leads to a better 

point estimate”. The numerical study of such a comparison will be presented in the 

following chapters.



80 

CHAPTER 4 

EVALUATION OF 3-STAGE MODEL 

 

In Chapter 3, a Bayesian approach for AADT estimation was proposed. As noted, 

the probability distribution of traffic counts conditional on the AADT is one of the two 

primary components in this approach. This conditional distribution is the means for 

taking advantage of information brought by newly collected traffic counts. A 3-stage 

model was developed to establish the probability distribution of image-based counts 

conditional on the AADT. In this chapter, parameters describing the 3-stage model are 

discussed. Also, the reasonableness of the 3-stage model is evaluated by comparing 

against other potential models using 22 empirical image-based counts. Finally, the 

distribution of image-based counts conditional on the AADT resulting from the 3-stage 

model is investigated as a function of traffic volume and imaged segment length and 

simplified to a lognormal distribution. Such a simplification would make it easier to 

implement the Bayesian approach and save computing time. 
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4.1 Parameters in the 3-stage Model 

The conditional distribution of short-term traffic count given the AADT of the 

segment considered can mathematically be expressed as the probability mass function 

(pmf) of an observed short-term traffic count conditional on the AADT. This section will 

focus on the pmf of image-based counts conditional on the AADT. Recall that the 

proposed conditional distribution is modeled through the 3-stage model, which introduces 

three additional probability distributions. The 3-stage model describes the “unexplained” 

(random) variation in traffic volumes at three stages: daily, hourly, and one-image 

short-term variations. As discussed in Chapter 3, distributions of Noise(D) and Noise(H) 

account for the “random” variations at the first two stages. At the third stage, a binomial 

distribution is used to capture the randomness of the image-based counts given the hourly 

volume. In addition to the hourly volume VH, the binomial distribution incorporates two 

more variables: space-mean speed Us, and truck proportion Pk in the hour the image is 

taken. If the length of segment included in the image is fixed, all systematic temporal 

variation patterns are assumed known, and the AADT is given, the distribution of 

image-based counts on a given segment during a specific time period would depend on 

Noise(D), Noise(H), Us, and Pk. Therefore, the distribution characteristics of the four 

variables would directly specify the pmf of image-based counts conditional on the 

segment’s AADT value. In this section, the distributions of the four variables are 

developed from either empirical data or assumptions. 
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4.1.1 Noise(D) 

Noise(D) represents the “unexplained” variation of a daily volume from the AADT, 

after the adjustment of monthly and day-of-week factors. Equation (3.2.3a) is repeated as 

Equation (4.1.1) for convenience 

 Noise(D(δ)) = [V24(δ)×FM(m(δ))×FD(d(δ))] / AADT.       (4.1.1) 

Traffic data collected on PATR-equipped segments can be analyzed to investigate 

the distribution of Noise(D). A large number of daily volumes collected on the 

PATR-equipped segments could lead to very good AADT estimates for these segments. In 

a homogeneous group, traffic data collected on PATR-equipped segments could provide a 

good understanding of the systematic temporal variation pattern in traffic, so monthly and 

day-of-week (as well as hourly factors) can be estimated for each PATR-equipped 

segment. Averaging these factors across these segments would yield the estimates of 

“common” temporal adjustment factors for all segments in the homogeneous group. 

Given the AADT and temporal adjustment factors, each daily volume on a 

PATR-equipped segment leads to an “observed” Noise(D) value by using Equation (4.1.1). 

Pooling all available “observed” Noise(D) values from a homogeneous group would 

produce an empirical distribution of Noise(D) for that group.   

Analysis of traffic data collected on 24 PATR-equipped segments in Ohio indicates 

that Noise(D) for segments in the same group can be reasonably modeled by a lognormal 
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distribution with mean equal to one (Appendix A). The resulting mathematical expression 

of the lognormal distribution of Noise(D) is  

 Ln[Noise(D)] ~ N(-σD
2/2, σD

2),            (4.1.2) 

where Ln[Noise(D)] is the natural logarithm of Noise(D), which according to (4.1.2) 

follows a normal distribution, and σD is the standard deviation of the normal distribution; 

In (4.1.2), the use of -σD
2/2 as the mean of the normal distribution ensures that the 

distribution mean of Noise(D) is equal to one (McCord et al., 2000). Therefore, σD is the 

only parameter specifying the distribution of Noise(D). Analysis indicates that σD might 

vary with different groups of homogeneous segments and with different years. It would 

be straightforward to estimate σD for a homogeneous group with the traffic data collected 

on PATR-equipped segments every year.  

Based on the data from 24 Ohio PATR-equipped segments across four functional 

classes (01, 02, 11, and 12) (Appendix A), a default σD will be set to 0.12 for Section 4.2 

and the work presented in Chapter 5. Sensitivity analysis to σD will also be conducted in 

Chapter 5. 

 

4.1.2 Noise(H) 

Noise(H) represents the “unexplained” variation of an hourly volume from the 

average hourly volume in the same day, after the adjustment of hourly factors. Equation 

(3.2.5a) is repeated as Equation (4.1.3) for convenience 
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 Noise(H(h,δ)) = [VH(h,δ)×FH(h)]/ [V24(δ)/24].        (4.1.3) 

Traffic data collected on PATR-equipped segments are usually stored as consecutive 

hourly volumes, which can be used for the investigation of Noise(H). Specifically, these 

hourly volumes can be used to produce daily volumes for days in which all hourly 

volumes are available. Similar to the monthly and day-of-week factors, a set of 

“common” hourly factors can be estimated for a homogeneous group (Appendix A). 

When the hourly factors are given, Equation (4.1.3) can be used to produce “observed” 

Noise(H) values for each hour-of-day from each available pair of hourly and daily 

volumes (i.e., VH(h,δ) and V24(δ)). A relatively large difference in the hourly traffic 

patterns between weekdays and weekends was noted in the empirical study conducted on 

24 Ohio segments (Appendix A). Therefore, it is proposed that at least two sets of hourly 

factors be used when implementing this method – one set for weekdays and another for 

weekends. Since images would be taken during the daytime, analysis in this work will be 

limited to daytime hours. In addition, the images obtained in McCord et al. (2002a), 

which will be used to evaluate the reasonableness of the proposed distribution of 

image-based counts conditional on the AADT, were all taken between 10:00am and 

1:00pm (which will be called “mid-day” hours). Therefore, this work only focuses on 

Noise(H) corresponding to mid-day hours. Determining the empirical results for images 

obtained in other than mid-day hours is a topic for future study.
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The analysis of hourly volumes obtained on the Ohio PATR-equipped segment 

indicates that Noise(H) can also be reasonably modeled by a lognormal distribution with 

mean equal to one (Appendix A). Similar to Noise(D), the mathematical expression of the 

lognormal distribution of Noise(H) is  

 Ln[Noise(H)] ~ N(-σH
2/2, σH

2),            (4.1.4) 

Once again the use of -σH
2/2 as the mean of the normal distribution ensures that the mean 

of Noise(H) is equal to one. It is proposed that σH be estimated every year for each 

homogeneous group of segments with the traffic data collected on PATR-equipped 

segments.  

Based on the data from 24 Ohio PATR-equipped segments across four functional 

classes (01, 02, 11, and 12) (Appendix A), a default σH will be set to 0.10 for Section 4.2 

and the work presented in Chapter 5. Sensitivity analysis to σH will also be conducted in 

Chapter 5. 

 

4.1.3 Space-mean speed distribution 

As noted in Chapter 3, space-mean speed Us is an input to the 3-stage model. The 

distribution of Us was modeled in Chapter 3 by the average of the independent normally 

distributed speeds of the VH(h,δ) vehicles passing the segment considered during the hour 

the image-based count was obtained. Since all images used in the following evaluation 

were taken in Ohio, where trucks and cars have different speed limits on the same 
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highway, distribution (3.2.11) is applied to model the space-mean speed Us. This 

distribution is rewritten here for convenience 

Us ~ N(Pkūk + (1- Pk)ūc, σu
2/ VH(h,δ)).                (4.1.5) 

In this work, the mean truck and car speeds, ūk and ūc, will be set to truck and car speed 

limits on the segment for urban areas, and truck and car speed limits on the segment plus 

5 mph for rural areas. A large value of σu means high variation in the space-mean speed, 

which would lead to large variability in image-based counts. Intuitively, the benefit when 

adding more “noisy” data would not be greater than that when adding less “noisy” data. 

As a conservative estimate, therefore, a default value of σu is set to 10 mph, which is 

higher than all values presented in McShane et al. (1998).   

 

4.1.4 Truck proportion distribution 

When considering different speed limits for cars and trucks on the same segment, Pk 

becomes an additional input to the 3-stage model. Ohio DOT provides a published truck 

proportion for each hour of the day by functional classification (i.e., a functional class as 

a homogeneous group) (Ohio DOT’s website, accessed July 2005). These proportions are 

calculated using short-term vehicle classification counts taken statewide. 

In this work, three different assumptions on truck proportion Pk distribution will be 

considered:
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1) Pk equals the published truck proportion p during the hour considered with 

probability one; 

2) Pk is normally distributed with mean p and standard deviation σk, truncated at 0 

and 1. For the numerical study, the standard deviation σk is set to 0.1 as a first 

approximation; 

3) Pk is uniformly distributed with mean p. The range of the distribution depends on 

the value of p. If p is less than 0.5, the range will be set as (0, 2p). If p is greater 

than 0.5, the range will be set as (2p-1, 1).  

Although we propose these three assumptions, we will see later that the distribution of 

image-based counts conditional on the AADT resulting from the 3-stage model does not 

appear to be sensitive to the distribution of Pk.  

 

4.2 Evaluation of the 3-stage Model using 22 Image-based Counts 

In this section, the probability of observing the 22 image-based counts given in 

McCord et al. (2002a) will be simulated to investigate the reasonableness of the 3-stage 

model compared to two other models. As noted in the previous chapter, the 3-stage model 

cannot provide a closed form for the distribution of image-based counts conditional on 

the AADT. However, the distribution of image-based counts conditional on the AADT 

can be simulated numerically by Algorithm (3.1) described in Chapter 3. That is, the pmf 

of image-based counts conditional on AADT can be approximated by simulation. Based 
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on the simulation, one possible way to determine the pmf value of an observed 

image-based count nimg given the AADT is to use 

f(Nimg=nimg|AADT)= 
M

nN imgimg    values simulated ofNumber =
    (4.2.1) 

where M is, as given in Algorithm (3.1), the total number of simulated Nimg values. The 

pmf value obtained by Equation (4.2.1) is subject to sampling error in the simulation. 

However, such error would be negligible when the size of the simulated distribution (i.e., 

M) is sufficiently large compared to the possible range of Nimg for a given AADT. An 

alternative is to use appropriately weighted average of the pmf values obtained by 

Equation (4.2.1) to obtain a smooth approximation to the pmf value (Hastie et al., 2001). 

In the following work, the former method of calculating the pmf value (i.e., Equation 

(4.2.1) will be adopted for simplicity.  

The characteristics of the 22 image-based counts used in the study are presented in 

Table 4.1. All 22 image-based counts were taken on Ohio highway segments. The first 

column of Table 4.1 gives the observation number of the 22 image-based counts. The 

imaged segment length and the functional class to which each imaged segment belongs 

are given in the second and third columns, respectively. The image-based count, i.e., the 

number of vehicles appearing in the image, is presented in the fourth columns. The 

combined monthly/day-of-week factor (which is denoted as Fm*Fd) published by the 

Ohio DOT (Ohio DOT’s website, Accessed July 2005a), corresponding to the day each 
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image-based count was taken, is listed in the fifth column. The published hourly factor 

(Ohio DOT’s website, Accessed July 2005), corresponding to the hour each image-based 

count was taken, is listed in sixth column. Table 4.1 also includes the truck proportion 

corresponding to the imaged hour, which is published by the Ohio DOT (Ohio DOT’s 

website, Accessed July 2005), and the assumed distribution means of speed for trucks and 

cars, which are determined using the approach described above. They are listed in the 

seventh, eighth and ninth columns, respectively. The last column gives the 

“ground-based” AADT in the year the image-based count was taken. These ground-based 

AADT values are obtained from the traffic data collected on the ground. When PATR 

data were available in the same year the image was taken, the AADT values were directly 

determined from the data. When sufficient PATR data were not available, the AADT 

values were obtained from the AADT values published on the Ohio DOT’s website 

(Accessed July 2005b) for the year in which the image was taken. If a published value 

was not available in the year the image was taken, the values were determined from a 

combination of published AADT values in previous years and corresponding published 

growth factors (Ohio DOT’s website, Accessed July 2005c). In this empirical study, these 

ground-based AADT values will be assumed to be the true AADT on the segment in the 

year the image was taken.  
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No. Length (mi) FC*

1 7.47 11 186 1 0.8681 0.1679 55 65 30178

2 3.07 11 176 1 0.8681 0.1679 55 65 77497

3 4.75 1 123 1.01 0.8013 0.32 60 70 45955

4 13.01 11 325 0.95 0.8681 0.1679 55 65 30112

5 3.82 11 244 0.95 0.8681 0.1679 55 65 78970

6 10.76 1 336 1.04 0.8013 0.32 60 70 47931

7 1.43 11 58 0.93 0.8333 0.1575 55 65 51604

8 2.85 11 134 0.93 0.8333 0.1575 55 65 47852

9 3.74 11 182 0.93 0.8333 0.1575 55 65 45288

10 1.80 11 132 0.94 0.8333 0.1575 55 65 67592

11 2.10 1 91 0.87 0.7440 0.3188 60 70 41920

12 3.45 1 147 0.87 0.7440 0.3188 60 70 42210

13 0.63 11 63 1.29 0.8333 0.1575 55 65 139460

14 2.24 11 182 1.29 0.8333 0.1575 55 65 145120

15 2.19 11 171 1.29 0.8333 0.1575 55 65 134020

16 1.46 11 63 1.29 0.8333 0.1575 55 65 91130

17 0.56 11 24 1.29 0.8333 0.1575 55 65 93490

18 0.63 11 29 1.29 0.8333 0.1575 55 65 102710

19 0.63 11 55 1.29 0.8333 0.1575 55 65 117810

20 1.87 11 87 0.97 0.8333 0.1575 55 65 60942

21 2.17 11 129 0.97 0.8333 0.1575 55 65 70722

22 4.33 11 305 0.97 0.8333 0.157 55 65 84844

ū c
Published 

F m *F d

Ground-
based 
AADT

Published 
P k

n img
Segment Published 

F h ū k

 

 

Table 4.1: Empirical Image-based Counts and Corresponding Information used in the 
Study. 
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Given the information in Table 4.1, the probability of observing each image-based 

count can be simulated based on the proposed 3-stage model. The simulation steps have 

been presented in Algorithm (3.1). Specifically, under the same condition that each 

image-based count was taken, the simulation generates a large number of “possible” 

image-based counts (i.e., M image-based counts) conditional on the “true” AADT (i.e., 

ground-based AADT listed in Table 4.1). The probability of observing the image-based 

count given in Table 1 can then be approximated by using Equation (4.2.1).   

The simulated probability of observing each of the 22 image-based counts is given 

in Table 4.2. In this study, M is set to 50,000. A simple simulation study indicates that M 

= 50,000 would result in a CV of simulated pmf values calculated by Equation (4.2.1) no 

more than 0.04 for the 22 image-based counts. As mentioned in the previous section, 

three assumptions of truck proportion variability are considered, so three different 

probabilities of observing each image-based count are obtained. 

As shown in Table 4.2, the three different assumptions of truck proportion variability 

result in small differences in the simulated probabilities of observing the image-based 

counts conditional on the “true” AADT. The products of the 22 simulated probabilities 

under different assumptions are given at the bottom of Table 4.2. The product will be 

used later as a criterion for the evaluation of the 3-stage model. The three products 

resulted from different assumptions on the distribution of Pk differ little, and are in the 

same order of magnitude. It appears that the distribution of image-based counts  
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No. Length (mi) FC*

1 7.47 11 186 0.0107 0.0105 0.0101

2 3.07 11 176 0.0132 0.0127 0.0131

3 4.75 1 123 0.0041 0.0042 0.0051

4 13.01 11 325 0.0071 0.0070 0.0067

5 3.82 11 244 0.0096 0.0095 0.0101

6 10.76 1 336 0.0051 0.0055 0.0060

7 1.43 11 58 0.0330 0.0315 0.0324

8 2.85 11 134 0.0113 0.0112 0.0106

9 3.74 11 182 0.0045 0.0045 0.0039

10 1.80 11 132 0.0057 0.0055 0.0056

11 2.10 1 91 0.0211 0.0217 0.0196

12 3.45 1 147 0.0146 0.0144 0.0142

13 0.63 11 63 0.0238 0.0231 0.0225

14 2.24 11 182 0.0115 0.0118 0.0110

15 2.19 11 171 0.0131 0.0123 0.0135

16 1.46 11 63 0.0148 0.0147 0.0159

17 0.56 11 24 0.0337 0.0331 0.0353

18 0.63 11 29 0.0254 0.0245 0.0267

19 0.63 11 55 0.0221 0.0222 0.0209

20 1.87 11 87 0.0229 0.0239 0.0237

21 2.17 11 129 0.0163 0.0166 0.0164

22 4.33 11 305 0.0076 0.0079 0.0074

Product of the 22 probabilites 1.69E-42 1.53E-42 1.67E-42

n img
Segment

(3)      
Uniform 

P k

(2)      
Normal 

P k

(1)       
Fixed at 

Published 
P k

 

 

Table 4.2: “Probabilities” of Observing the 22 Image-based Counts under Three Different 
Assumptions on Pk. 
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conditional on the AADT resulting from the 3-stage model is not sensitive to the 

distribution of Pk. 

The probabilities presented in Table 4.2, by themselves, are not useful in drawing 

any conclusion about the reasonableness of the 3-stage model. Therefore, two additional 

models for the distribution of image-based counts conditional on the AADT are 

introduced as comparison basis for the evaluation of the 3-stage model. 

The first model adopts the concept of “maximum density”. Maximum density is 

defined as the maximum number of passenger cars per mile per lane on a given segment 

at a given level of service (TRB, 2000). Level of service (LOS) is a qualitative measure 

that describes operational conditions of the traffic stream on a segment. As evident from 

the observed densities, all 22 image-based counts were taken at LOS A or B, which 

represents operational conditions at low traffic densities with no or slight restrictions of 

driver freedom. According to the Highway Capacity Manual (TRB, 2000), the density 

range for LOS A and B is 0-18 pc/mi/ln. Given the number of lanes and length of the 

imaged segment, the maximum number of possible passenger cars on the segment that 

could be present and still produce LOS A/B can be easily calculated. To convert the 

number of passenger cars to the number of vehicles, the heavy vehicle adjustment factor 

fHV is used to account for the effects of trucks in the traffic. In the 22 images used here, 

only trucks are identified as the heavy vehicles. Therefore, we simplify the equation used 

in the HCM for the calculation of fHV to 
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))1(1

1

−+
=

TT
HV EP

f ,              (4.2.2) 

where PT is the proportion of trucks in the traffic stream, and ET is the passenger car 

equivalent for trucks. In this study, the truck proportion in each image is obtained and 

shown in the fifth column of Table 4.3. ET for all 22 images is assumed to be 1.5, a value 

used for level terrains (TRB, 2000). Correspondingly, the factor fHV is calculated using 

Equation (4.2.2) and given in the sixth column. The seventh column gives the number of 

lanes of the imaged segment. Therefore, the maximum number of vehicles on the imaged 

segment can be determined by 

Nimg
max = 18 × [number of lanes] × [segment length] × fHV.     (4.2.3) 

When knowing only that the segment considered is operating at LOS A or B, any 

integer value between zero and Nimg
max would be equally likely to be the number of 

vehicles observed on the imaged segment. Therefore, the probability of observing any 

image-based count nimg would be 

f1(N
img=nimg) = 1/[Nimg

max +1].            (4.2.4) 

By using Equation (4.2.4), the probability of observing each of the 22 image-based 

counts by the “maximum-density” model is calculated and shown in the last column of 

Table 4.3. 
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No. Length (mi) FC*

1 7.47 11 186 0.4731 0.8087 5 544 0.0018

2 3.07 11 176 0.1875 0.9143 4 202 0.0049

3 4.75 1 123 0.4146 0.8283 6 425 0.0023

4 13.01 11 325 0.2831 0.8760 6 1230 0.0008

5 3.82 11 244 0.1025 0.9513 4 261 0.0038

6 10.76 1 336 0.3869 0.8379 6 974 0.0010

7 1.43 11 58 0.1724 0.9206 6 142 0.0070

8 2.85 11 134 0.1940 0.9116 6 281 0.0036

9 3.74 11 182 0.2473 0.8900 6 359 0.0028

10 1.80 11 132 0.1364 0.9362 5 152 0.0065

11 2.10 1 91 0.0879 0.9579 5 181 0.0055

12 3.45 1 147 0.0544 0.9735 4 242 0.0041

13 0.63 11 63 0.0476 0.9767 6 67 0.0147

14 2.24 11 182 0.0110 0.9945 7 280 0.0036

15 2.19 11 171 0.0000 1.0000 8 316 0.0032

16 1.46 11 63 0.0476 0.9767 4 103 0.0097

17 0.56 11 24 0.1250 0.9412 6 57 0.0172

18 0.63 11 29 0.0000 1.0000 6 68 0.0145

19 0.63 11 55 0.0545 0.9735 8 88 0.0112

20 1.87 11 87 0.0460 0.9775 4 132 0.0075

21 2.17 11 129 0.0155 0.9923 4 155 0.0064

22 4.33 11 305 0.0295 0.9855 4 307 0.0032

N img
max f 1(N

img =n img )n img
Segment

Heavy 
vehicle 

adjustment 
factor  f HV

Observed 
P k

Number 
of    

lanes

 

 

Table 4.3: “Probabilities” of Observing the 22 Image-based Counts by Using the 
“Maximum Density” Model. 
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The second model adopts a lognormal distribution for the distribution of 

image-based counts conditional on the AADT, which is based on the work in McCord et 

al. (2002a). It is assumed that an image-based count can, given the AADT, be modeled as 

Nimg|AADT = AADT/ [FM(m(δ))×FD(d(δ))] / [24×FH(h)]×[l/Us]×Noise(img),  

                    (4.2.5a) 

where  •  represents the closest integer to •; and Noise(img) follows a lognormal 

distribution 

Ln[Noise(img)] ~ N(-σimg
2/2, σimg

2).           (4.2.5b) 

The standard deviation was set at σimg = 0.17, based on the 22 image-based counts shown 

in Table 4.1. Details on determining σimg = 0.17 can be found elsewhere (Jiang et al., 

2004). The space-mean speed Us used in Equation (4.2.5a) is calculated using the truck 

proportion observed on the imaged segment 

 Us = [observed Pk]×ūk + [1- observed Pk]×ūc,          (4.2.5c) 

where ūk and ūc are defined before. 

By using the lognormal model (4.2.5), it is straightforward to simulate a large 

number of observed image-based counts (i.e., M image-based counts) conditional on the 

“true” AADT given in Table 4.1, under the conditions the image-based counts were taken. 

Then Equation (4.2.1) can be used to approximate the probability of observing each of 

the 22 image-based counts conditional on the AADT. Table 4.4 provides these simulated  
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No. Length (mi) FC*

1 7.47 11 186 30178 1 0.8681 0.4731 55 65 0.0133

2 3.07 11 176 77497 1 0.8681 0.1875 55 65 0.0132

3 4.75 1 123 45955 1.01 0.8013 0.4146 60 70 0.0033

4 13.01 11 325 30112 0.95 0.8681 0.2831 55 65 0.0074

5 3.82 11 244 78970 0.95 0.8681 0.1025 55 65 0.0091

6 10.76 1 336 47931 1.04 0.8013 0.3869 60 70 0.0051

7 1.43 11 58 51604 0.93 0.8333 0.1724 55 65 0.0378

8 2.85 11 134 47852 0.93 0.8333 0.1940 55 65 0.0120

9 3.74 11 182 45288 0.93 0.8333 0.2473 55 65 0.0050

10 1.80 11 132 67592 0.94 0.8333 0.1364 55 65 0.0054

11 2.10 1 91 41920 0.87 0.7440 0.0879 60 70 0.0211

12 3.45 1 147 42210 0.87 0.7440 0.0544 60 70 0.0129

13 0.63 11 63 139460 1.29 0.8333 0.0476 55 65 0.0215

14 2.24 11 182 145120 1.29 0.8333 0.0110 55 65 0.0128

15 2.19 11 171 134020 1.29 0.8333 0.0000 55 65 0.0135

16 1.46 11 63 91130 1.29 0.8333 0.0476 55 65 0.0168

17 0.56 11 24 93490 1.29 0.8333 0.1250 55 65 0.0267

18 0.63 11 29 102710 1.29 0.8333 0.0000 55 65 0.0215

19 0.63 11 55 117810 1.29 0.8333 0.0545 55 65 0.0182

20 1.87 11 87 60942 0.97 0.8333 0.0460 55 65 0.0264

21 2.17 11 129 70722 0.97 0.8333 0.0155 55 65 0.0167

22 4.33 11 305 84844 0.97 0.8333 0.0295 55 65 0.0078

lognormal-
based 

f 1(N
img =n img ) 

n img
Segment Published 

F h ū k ū c
Published 

F m *F d

Ground-
based 
AADT

Observed 
P k

 

 

Table 4.4: “Probabilities” of Observing the 22 Image-based Counts by Using the 
“Lognormal” Model. 
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“lognormal” probabilities in the last column. Each simulated probability is based on 

50,000 simulated possible observed image-based counts (i.e., M = 50,000). 

To compare the “maximum-density” and lognormal models to the 3-stage model, the 

product of probabilities of observing the 22 image-based counts conditional on the “true” 

AADTs is calculated for each of the three models. The results are given in Table 4.5. For 

the 3-stage model, the smallest product using the three different distributions of PK (i.e., 

normally distributed PK) is used in Table 4.5 for conservative purpose of comparison. 

Assuming independence among the 22 image-based counts, the products can be regarded 

as the simulated joint probability of observing the 22 image-based counts. As seen in 

Table 4.5, the 3-stage model produces a much larger joint probability than that produced 

by the “maximum-density” model, and slightly larger than that produced by the 

“lognormal” model. In terms of producing the maximum likelihood of observing the 22 

image-based counts conditional on the “true” AADT, the 3-stage model would 

outperform the other two models.  

 

 Max-Density Model Lognormal Model 3-Stage Model 

Probability 4.75E-52 1.47E-42 1.53E-42 

 

Table 4.5: Comparison of “Probability” of Observing 22 Image-based Counts using Three 
Different Models. 
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The 3-stage model produces a higher probability than the lognormal model but the 

difference is not great. The performance of the lognormal model, however, exploited 

some information directly from the 22 image-based counts, compared to the performance 

of the 3-stage model. The parameter σimg of the lognormal model was directly estimated 

from the same 22 image-based counts used to determine the probability. In addition, the 

truck proportions observed in the imaged segments were directly used in the lognormal 

model. On the other hand, no information in the 22 image-based counts was used to 

estimate the parameters (e.g., σD and σH) of the 3-stage model.   

The 3-stage model can also capture the impacts of imaged segment length and traffic 

volumes on the variability of image-based counts, while the σimg = 0.17 in the lognormal 

model is not necessarily transferable to a new image-based count. When the imaged 

segment length and AADT change drastically from the condition of the 22 image-based 

counts, the 3-stage model would show advantages over the lognormal model. In the next 

section, more details about this dependence will be discussed. 

 

4.3 Lognormal Approximation to the Distribution of Image-based Counts conditional on 

AADT 

The 3-stage model was able to capture the impacts of imaged segment length and 

traffic volume on the distribution of image-based counts conditional on the AADT. In 

section 4.1, the contribution of four variables (Noise(D), Noise(H), Us, and Pk) to the 
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distribution of image-based counts conditional on the AADT was represented by four 

statistical distributions. Given these distributions and corresponding temporal adjustment 

factors, the distribution of image-based counts conditional on the AADT would depend 

only on the imaged segment length l and the hourly volume through the Binomial 

distribution of (3.2.7), i.e., the third stage of the 3-stage model. In this section, the 

distribution of image-based counts conditional on the AADT resulting from the 3-stage 

model will be approximated by a lognormal distribution with parameters as a function of 

the imaged segment length and traffic volume. Such an approximation will make it much 

simple to implement the Bayesian approach, and a large amount of computing time could 

be saved. 

Recalling that no closed form is available for the proposed distribution of 

image-based counts conditional on the AADT resulting from the 3-stage model, the mean 

of the image-based counts conditional on the AADT (E[Nimg|AADT]), and the standard 

deviation of the natural logarithms of the image-based counts conditional on the AADT 

(sdimg|AADT), will be used to describe the probability distribution of image-based counts 

conditional on the AADT. E[Nimg|AADT] and sdimg|AADT are two parameters required in 

the lognormal approximation to the distribution. Since Noise(D) and Noise(H) were 

argued to be mutually independent and assumed not to depend on the traffic volumes, the 

expected hourly volume in the hour the image conditional on the AADT is taken can be 

used to represent the impact of traffic volume on the probability distribution of the 
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image-based count conditional on the AADT, rather than the AADT itself. The expected 

hourly volume conditional on the AADT can be shown to be 

E[VH(h,δ)|AADT] = AADT/[FM(m(δ))×FD(d(δ))]/[24×FH(h)].    (4.3.1) 

Equation (4.3.1) shows that the expected hourly volume in the hour the image is taken, 

conditional on the AADT, is the AADT adjusted by the corresponding temporal factors. 

All temporal factors used in Equation (4.3.1) are assumed known, so AADT and the 

expected hourly volume have a one-to-one relationship. 

This section investigates E[Nimg|AADT] and sdimg|AADT as a function of the imaged 

segment length l and the expected hourly volume in the hour the image is taken. Based on 

the law of total expectation (Rice, 1995), the mean of image-based counts conditional on 

the AADT can be approximated by 

E[Nimg|AADT] ≈  

AADT/[FM(m(δ))×FD(d(δ))]/[24×FH(h)] × l / (E[Pk] × ūk + (1- E[Pk]) ×ūc), 

(4.3.2a) 

where E[•] represents the mean of •. This approximation involves an assumption that the 

expectation of the reciprocal of Us is equal to the reciprocal of the expectation of Us, 

which would be reasonable when the variance of the normally distributed Us is not very 

large, compared to the mean of Us. Substituting Equation (4.3.1) into Equation (4.3.2a) 

yields 

E[Nimg|AADT] ≈ E[VH(h,δ)|AADT] × l / (E[Pk] × ūk + (1- E[Pk]) ×ūc),   (4.3.2b) 
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That is, the mean of the image-based counts conditional on the AADT can be expressed 

as the hourly volume E[VH(h,δ)|AADT] multiplied by the fraction of the time that would 

correspond to an “average” duration during which all Nimg vehicles passing the 

l-mile-long segment.  

Because of the complexity, it is difficult to derive analytically an approximation for 

the standard deviation of the natural logarithms of the image-based counts conditional on 

the AADT, sdimg|AADT. Simulation is used to investigate sdimg|AADT as a function of l 

and E[VH(h,δ)|AADT].  

Let us consider an example first. Assume that the AADT on a 1.5-mile highway 

segment of interest is 10,000. A numerical distribution of the image-based counts on the 

segment will be simulated for an hour of a day, when the monthly and day-of-week 

factors are equal to one, and the hourly factor is 0.8333 (0.8333 means that the hourly 

volume constitutes 5% of the daily volume). Truck and car speed limits are 55 and 65 

mph, respectively. The distributions of Noise(D) and Noise(H) would be the same as 

those described in Section 4.1. To investigate the impacts of Us and Pk distributions on 

the distribution of image-based counts conditional on the AADT, we set the σu for the 

normally distributed Us at three levels (0, 10, and 20), and consider three types of Pk 

distribution described in Section 4.1 assuming p equals 0.25.  

Totally there are 3×3 = 9 different combinations of Us and Pk distributions. We 

consider the combination of σu = 10 and (truncated) normally distributed Pk as the base  
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Figure 4.1: Simulated distribution of image-based counts for base case. 

 

 

case. By using Algorithm (3.1), 5000 image-based counts are simulated for this base case. 

The histogram of these counts (i.e., a numerical distribution) is plotted in Figure 4.1. 

 For the base case, the mean of the 5000 simulated image-based counts is 12.0026, 

which is almost exactly equal to 12, the number calculated by the approximation in 

Equation (4.3.2a). The sdimg|AADT of the 5000 simulated image-based counts is 0.3576. 

For comparison purposes, simulations are conducted for two other combinations of Us 

and Pk distributions: the “zero-variance” case, where there is no variation in Us and Pk 

(i.e., σu = 0 and Pk = 0.25 with probability one), and the “large-variance” case of σu = 20 

and uniformly distributed Pk. For the “zero-variance” case, the mean and sdimg|AADT 
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based on 5000 simulated image-based counts are 12.0028 and 0.3471, respectively. For 

the “large-variance” case, the mean and sdimg|AADT based on 5000 simulated 

image-based counts are 12.0682 and 0.3797, respectively. It can be seen that different 

assumptions on Us and Pk distributions lead to almost the same mean but slightly 

different sdimg|AADT. However, the relative difference in the sdimg|AADT is not greater 

than 9%. Therefore, the distribution of image-based counts conditional on the AADT 

does not appear sensitive to the variation in Us and Pk. In the following section, we will 

only consider the base case, where σu equals 10 and Pk is (truncated) normally 

distributed. 

 

 

 

Figure 4.2: Normal Q-Q plot for the natural logarithms of the 5000 simulated 
image-based counts. 
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The natural logarithms of the 5000 simulated image-based counts shown in Figure 

4.1 are checked in a Q-Q normal plot, as show in Figure 4.2. Except for the two tails and 

the step pattern that results because all simulated values are integers, the 5000 simulated 

values almost fall on a straight line. Therefore, we use the following closed-form function 

to approximate the non-closed-form distribution of image-based counts conditional on the 

AADT: 

Nimg|AADT =  E[Nimg|AADT]×εimg,           (4.3.3a) 

and log(εimg) ~ N(-(sdimg|AADT) 2/2, (sdimg|AADT) 2),         (4.3.3b) 

where  • , E[Nimg|AADT] and sdimg|AADT are as defined above. Given E[Nimg|AADT] 

and sdimg|AADT, the pmf value for an image-based count conditional on the AADT can 

be easily “calculated” by using (4.3.3). As mentioned above, the E[Nimg|AADT] can be 

approximated by Equations (4.3.2). The sdimg|AADT is a function of l and 

E[VH(h,δ)|AADT], and can be simulated for different combinations of l and 

E[VH(h,δ)|AADT] to represent different scenarios. For each combination, a large number 

of image-based counts are simulated so that sdimg|AADT can be estimated. The contour 

lines of sdimg|AADT can then be plotted on the plane of l vs. E[VH(h,δ)|AADT]. Figure 

4.3 plots the contour lines of sdimg|AADT over a portion of the plane l × 

E[VH(h,δ)|AADT]. 
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Figure 4.3: Contour lines of sdimg|AADT over the plane l × E[VH(h,δ)|AADT]. 

 

 

Figure 4.3 shows an obviously decreasing pattern of sdimg|AADT with increasing l 

and E[VH(h,δ)|AADT]. When E[VH(h,δ)|AADT] is greater than 2000, most levels of 

sdimg|AADT will be below 0.25. When l is greater than 2 miles, most levels of 

sdimg|AADT will be below 0.25. For any length l greater than 2 miles, the level of 

sdimg|AADT decreases rapidly with increasing E[VH(h,δ)|AADT], and goes into the large 

flat area, where sdimg|AADT is around 0.20, no matter how E[VH(h,δ)|AADT] increases. 

Also, for any E[VH(h,δ)|AADT] greater than 1000, the level of sdimg|AADT decreases 
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rapidly with increasing length l, and eventually enters the large flat area no matter how 

the length l increases. 

Such contour lines can be considered to produce “default” values of sdimg|AADT. If 

one does not want to conduct the entire algorithm (3.1) to simulate the distribution of 

image-based counts conditional on the AADT, this conditional distribution could be 

simplified by a lognormal distribution given in (4.3.3), with the value of sdimg|AADT 

“read” from a contour-line plot like Figure 4.3. The calculation of the posterior 

distribution of the AADT conditional on an image-based count would become much 

simpler, compared to the Algorithm (3.3) proposed in Chapter 3. Below is the 

corresponding simplified version of Algorithm (3.3) by using the lognormal 

approximation proposed in (4.3.3) to the distribution of image-based counts conditional 

on the AADT. 

 

Algorithm (4.1) –posterior distribution of AADT conditional on an image-based volume 

1. Given the prior distribution π(AADT), the observed image-based volume Nimg(l,h,δ), 

the corresponding monthly factor FM(m(δ)), day-of-week factor FD(d(δ)), hourly 

factor FH(h), the length of imaged segment l, and the Distribution (4.3.3). 

2. Generate N values of AADT from the prior π(AADT), AADTn, n = 1, 2, …N. 

3. Evaluate the weight ω(n) for each AADTn as follows 

(i) Use AADTn in Equation (4.3.1) to calculate E[VH(h,δ)|AADT]; 
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(ii) “Read” a value of sdimg|AADT from a contour line plot like Figure 4.3, based on 

l and the E[VH(h,δ)|AADT] calculated in Step 3(i); 

(iii) Use Nimg(l,h,δ) and E[Nimg|AADT] in Equation (4.3.3a) to calculate the 

“observed” noise term εimg; 

(iv) Calculate the value of f(εimg) based on the distribution of (4.3.3b); 

(v) ω(n) = f(εimg) obtained in Step 3(iv). 

4. Normalize the weights obtained in Step 3: ω'(n)= ω(n)/Σi=1,..N ω(i), n = 1, 2, …N. 

5. Resample the N values of AADT in Step 2 with replacement based on the weights in 

Step 4 to obtain N “new” AADT values, which is the numerical approximation of the 

posterior distribution π(AADT| Nimg(l,h,δ)). 

  

We will come back to the use of Algorithm (4.1) in Chapter 5. 
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CHAPTER 5 

NUMERICAL STUDY 

 

In this chapter, the value of adding image-based counts in AADT estimation will be 

evaluated by a numerical study. Chapter 3 developed a Bayesian approach to incorporate 

different types of short-duration traffic counts (including image-based counts) in AADT 

estimation. As noted, the approach introduces a dynamic process of updating the 

probability distribution of the AADT on a given segment. In the year of interest, the 

approach begins with a prior distribution that is updated when a traffic count is available. 

The final updated (or posterior) distribution of the AADT is used to derive the prior 

distribution of AADT in the following year after incorporating the uncertainty in traffic 

growth.   

Incorporating image-based counts with the Bayesian approach will be compared to 

the traditional ground-based AADT estimation through numerical examples under 

various assumptions. The sensitivity of the results will be investigated. Before conducting 

the numerical evaluation, several simple examples will be presented to illustrate the 

implementation of the Bayesian approach. 
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Non-informative prior Uniform between 2000 and 200000 
Fmd for the image day 1 
Fh for the image hour 0.8333 

σD 0.12 
ĝ y/y-1 1.05 

σf 0.05 
σH 0.10 
Pk Uniform between 0 and 0.5 
ūk  55 
ūc 65 
σu 10 

 

Table 5.1: Summary of Parameters/Distributions used in the Examples. 

 

 

5.1 Illustrative Examples 

In this section, three examples will be presented to illustrate the basic implementation of 

the Bayesian approach. A summary of parameters used in these examples is given in 

Table 5.1. 

 

5.1.1 Observing two ground-based daily volumes in the year of interest 

In this example, two ground-based daily volumes, V24(δ1) and V24(δ2), are collected 

on the segment considered in the year when the AADT estimate is produced. Assume that 

the two observed daily volumes are 
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 V24(δ1) = 48,395, 

 V24(δ2) = 46,980, 

and, without loss of generality, that the monthly and day-of-week factors corresponding 

to the two days all equal one. 

Assume that no information was available about the AADT on the segment before 

the two daily volumes are collected. As discussed in Chapter 3, a uniform distribution can 

be selected for the non-informative prior of the AADT. Given the range of the uniform 

distribution, any value in the range is equally likely to be the AADT. Here, the lower 

bound of the uniform distribution is set as 2000 vpd, and upper bound as 200,000 vpd. 

These two bounding values are selected based on the analysis of data on the CD of 

ODOT GIS-file 2002 (Ohio DOT, 2002). According to the CD, average daily traffic 

volumes on Ohio interstate highways ranged from 2910 to 169,640 vpd. Therefore, the 

uniform prior selected here covers the range of values on the CD. 

The Bayesian approach begins with this uniform prior distribution. According to 

Algorithm (3.2) described in Chapter 3, a large number of AADT values must be 

generated from the prior distribution to represent a numerical approximation of the prior. 

Since the prior distribution is uniform, sampling each integer once from 2000 to 200,000 

would faithfully represent the uniform prior. However, sampling every possible value 

once would lead to very large sample that appears not necessary. In this example, a 

sequence from 2000 to 200,000 with a step length of 10 is used as the sample from the  
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Figure 5.1: Numerical approximation of prior distribution of AADT – uniform between 
2000 and 200,000 with a step length of 10. 

 

 

prior uniform distribution. Figure 5.1 plots the histogram of the 19,801 (= 

(200000-2000)/10+1) AADT values. 

After observing the first daily volume V24(δ1) = 48,395, the prior shown in Figure 

5.1 can be updated as described in Chapter 3. The weight needs to be evaluated for each 

AADT value in Figure 5.1. That weight is proportional to the probability of observing 

V24(δ1) = 48,395 on that day conditional on the AADT value. For example, in order to 

evaluate the weight for AADT = 100,000, the probability of observing V24(δ1) = 48,395 
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on that day conditional on AADT = 100,000 needs to be obtained. According to Equation 

(3.2.3), observing V24(δ1) = 48,395 conditional on AADT = 100,000 is equivalent to 

observing a Noise(D(δ1)) = 48395 / 100000 = 0.48395. As suggested in (4.1.2), Noise(D) 

is modeled by a lognormal distribution with the parameter σD = 0.12. The probability 

density of Noise(D(δ1)) = 0.48395 is 1.1235e-007 (obtained by using software MATLAB). 

Therefore, a “rough” weight for AADT=100000 can be estimated as 1.1235e-007. After 

obtaining the weights for all 19,801 AADT values in Figure 5.1 in this way, these 

“rough” weights are normalized so that the sum of the resulting weights equals to one. 

Based on the weights obtained above, the 19,801 AADT values are then re-sampled 

with replacement. The re-sampled 19,801 AADT values plotted in Figure 5.2, form a 

numerical approximation of the posterior distribution of AADT after observing the first 

traffic volume V24(δ1). The mean and standard deviation of the numerical posterior 

distribution are calculated as 

Mean of the posterior after observing V24(δ1) = 50,510,       (5.1.1a) 

Standard deviation of the posterior after observing V24(δ1) = 6,090.    (5.1.1b) 
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Figure 5.2: Numerical approximation of the posterior distribution after observing the first 
daily volume V24(δ1) when using numerical prior distribution of Figure 5.1. 

 

 

As seen in Figure 5.2, the AADT values are clustered roughly around the observed 

daily traffic volume, i.e., 48,395. The variability of AADT is largely reduced from that of 

the prior distribution in Figure 5.1. That is, conditional on the first daily volume V24(δ1), 

the uncertainty in AADT is significantly reduced (σ = 6,090 for the posterior versus σ = 

57,162 for the prior). 

After observing the second daily volume V24(δ2) = 46,980, the distribution of AADT 

shown in Figure 5.2 can be updated in a similar manner. Weights are evaluated for all 
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Figure 5.3: Numerical approximation of posterior distribution after observing the second 
daily volume V24(δ2) by updating the distribution given in Figure 5.2. 

 

 

AADT values in Figure 5.2 by estimating the probability of observing the second daily 

volume V24(δ2) = 46980 conditional on each corresponding AADT value, and then these 

AADT values are re-sampled with replacement according to the weights. These newly 

re-sampled AADT values plotted in Figure 5.3, form a numerical approximation of the 

posterior distribution of AADT after observing the second traffic volume V24(δ2). The 

mean and standard deviation of the numerical posterior distribution are calculated as 

Mean of the posterior after observing V24(δ2) = 49,207,       (5.1.2a) 



116 

Standard deviation of the posterior after observing V24(δ2) = 4,211 .    (5.1.2b) 

Comparing (5.1.2b) with (5.1.1b), the uncertainty in AADT is reduced again after 

observing the second daily volume (σ is reduced from 6,090 to 4,211). 

This example illustrates the implementation of the Bayesian approach when two 

daily volumes are collected in the year of interest. The resultant AADT point estimate on 

the segment would be 49,207, if we choose the mean of the (final) posterior distribution 

as our default point estimate. 

 

In traditional practice, the two daily volumes would be first de-seasonalized and 

then averaged to get an annual average. Since the corresponding monthly and 

day-of-week factors all equal to one, the traditional AADT estimate would be (48395 + 

46980) / 2 = 47688. The estimate obtained by the Bayesian approach is 49207, a little 

(~3%) larger than the traditional estimate. The difference is mainly caused by the prior 

information considered in the estimation with the Bayesian approach. The estimate is 

shifted a little to the prior mean (101,000). However, one can see that the difference is 

small. That is, when a non-informative prior is used in the estimation, the Bayesian 

approach appears to produce a similar point estimate as the traditional method does. Also, 

the non-informative prior appears to have little impact on the estimation, in other words, 

the estimation does not appear sensitive to the choice of non-informative prior.
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The benefit of the Bayesian approach does not show up in this example. In a 

following example, we will see that the benefit of the Bayeisian approach is to 

incorporate the “useful” prior information into the estimation. 

 

5.1.2 Turning year y-1 posterior into year y prior 

Figure 5.3 shows the numerical approximation of posterior distribution of the AADT 

after the observing two daily volumes in the year of interest (say, year y-1). In this 

example, this posterior distribution will be converted to the prior distribution of AADT 

for the following year (year y) by incorporating the uncertainty in traffic growth. 

Analysis of PATR-based AADT values in Florida (McCord et al., 2003a) shows that 

the growth factors appear to follow a lognormal distribution for segments in an area that 

is believed to have similar growth pattern in traffic everywhere. Mathematically, the 

growth factor gi
y/y-1 of AADT on segment i from year y-1 to year y can therefore be 

modeled as 

 
 Log[gi

y/y-1] ~ N(ln[ĝ y/y-1] - σf
2/2, σf

2),          (5.1.3) 
 

where ĝ y/y-1 is the distribution mean of growth factors across the area from year y to year 

y-1, and σf represents the standard deviation of the logarithms of growth factors. Those 

values can be estimated from the distribution of paired AADT values in the two years y-1 

and y on the PATR-equipped segments across the group of similar segments. 



118 

 

 

Figure 5.4: Numerical approximation of prior distribution of the year following the year 
discussed in previous example. 

 

 

In this example, the distribution mean ĝ y/y-1 is assumed to be 1.05, and σf is assumed 

to be 0.05. One growth factor is randomly generated from the lognormal distribution 

shown in Distribution (5.1.3) for each of the 19801 AADT values given in Figure 5.3. As 

described in Equation (3.3.2b), the product of these growth factors and the AADT values 

shown in Figure 5.3 would lead to a numerical approximation of prior distribution of the 

AADT in the following year (year y), plotted in Figure 5.4. The mean and standard 

deviation of the numerical prior distribution in year y are calculated as 
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Mean of the year y prior = 51660,            (5.1.4a) 

Standard deviation of the year y prior = 5124.         (5.1.4b) 

Compared to Figure 5.3, the prior distribution shifted to the right, reflecting the 

belief in traffic growth during the two years. The standard deviation increases (from 4211 

to 5124) because of the added uncertainty of the traffic growth from year y-1 to year y. 

 

5.1.3 Observing an image-based count in the year of interest 

This example continues with the previous example. The numerical approximation of 

the prior distribution given in Figure 5.4 will be considered the prior distribution for the 

year (year y) when an image-based count is obtained. It is now assumed that the 

image-based count is obtained in year y from an image covering a 2-mile long section of 

the segment, with the number of imaged vehicles Nimg = 84. The monthly and 

day-of-week factors corresponding to the image day are assumed to equal one. The 

hourly factor corresponding to the image hour is assumed to be 0.8333. 

The AADT on the segment is estimated for year y when the image-based count is 

taken. With the Bayesian approach, the image-based count is used to update the prior 

distribution, a numerical approximation of which is shown in Figure 5.4. The weight for 

each AADT value in Figure 5.4 is evaluated based on Algorithm (3.3) described in 

Chapter 3. All parameters describing the distributions of Noise(D), Noise(H), truck 

percentage Pk, and space-mean speed Us are specified, as given in Table 5.1.   



120 

According to Algorithm (3.3), the number nn, which is the total simulation runs for 

calculating an “image-based” weight (as defined in Chapter 3), must be determined. The 

number nn must be sufficiently large to keep sampling errors in the simulation in an 

ngeligble level. However, it is impractical to select a very large nn to evaluate the 

“image-based” weight for each of the 19801 AADT values in Figure 5.4. This example 

sets nn at two different levels – 50 and 5000. Figures 5.5a and 5.5b plot the resultant 

numerical approximations of AADT posterior distributions for the two levels of nn=50 

and nn=5000, respectively. The means and standard deviations of the posterior 

distributions obtained at the two levels of nn are calculated as 

Mean at [ nn = 50 ] = 51886,             (5.1.5a) 

Standard deviation at [ nn = 50 ] = 4579.          (5.1.5b) 

Mean at [ nn = 5000 ] = 51920,            (5.1.5c) 

Standard deviation at [ nn = 5000 ] = 4546.         (5.1.5d) 

Based on Figures 5.5 and Equations (5.1.5), the two posterior distributions obtained 

at the two levels of nn are almost the same. That is, the result appears not sensitive to the 

level of nn. Therefore, nn=50 appears to be sufficiently large for the purpose of 

approximating the posterior distribution. 
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 (a) nn = 50 

 (b) nn = 5000 

 

 

Figure 5.5: Numerical approximations of posterior distributions after observing the 
image-based count: (a) nn = 50; and (b) nn = 5000. 
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Compared to the prior distribution, the standard deviation of the AADT distribution 

is reduced from 5124 to 4579. The uncertainty in the AADT has decreased because of the 

added information provided by the image-based count.  

 

5.2 Numerical Evaluation of Adding Image-Based Counts in AADT Estimation 

Monte Carlo simulation is used to investigate the benefit of adding image-based 

counts through the Bayesian approach, compared to two current practices in AADT 

estimation. The simulation considers AADT estimation on a specific segment not 

equipped with a permanent ATR over a 6-year cycle of ground-based sampling efforts. A 

6-year cycle means that the segment is sampled with ground-based counts once every six 

years, where the sample typically consists of 24-hour volumes taken on two consecutive 

days. Without loss of generality, the segment is assumed to be sampled on two 

consecutive days in year one. Then, no ground-based counts are taken for the next five 

years, that is, until the end of the 6-year cycle. Imagery is considered as a secondary 

source of sample data; that is, the segment can be imaged by air - or space-based sensors 

during the six years. 

At the beginning of each simulation run, a random segment is generated. An AADT 

value is randomly selected as the first-year true AADT on this segment. The true AADT 

values is generated from a uniform distribution 

AADT(y=1) ~ Uniform(3000, 160000).         (5.2.1) 
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Distribution (5.2.1) is selected to roughly reflect the fact that the average daily traffic 

volumes on Ohio interstate highways ranged from 2910 to 169640 vpd (Ohio DOT, 

2002). 

Then, five true growth factors (gi
y/y-1’s) are generated from Distribution (5.1.3) for 

the following five years (y = 2, 3, … and 6). Given AADT(y=1) and the five generated 

true growth factors, Equation (3.3.2b) is used to recursively calculate the true AADT 

values in the following five years, AADT(y), y = 2, 3, … and 6. This study assumes that 

the parameter σf in Distribution (5.1.3) does not vary over the years but remains σf = 0.05 

(McCord et al., 2003a). However, the distribution mean of growth factors, ĝy/y-1, does 

vary over the years and is generated through the following distribution 

 ĝy/y-1 ~ Uniform(1, 1.05), y = 2, 3, … and 6.         (5.2.2) 

Distribution (5.2.2) is selected because the analysis of 2003 Florida AADT data (FDOT, 

2003) showed that the distribution means of growth factors in a district was rarely ourside 

the range of 1 to 1.05. 

Next, the length l of this segment covered by the image is simulated. In this study, 

the length l is assumed to be exactly equal to the length of the segment, so all 

image-based counts for a given segment have the same coverage length of the segment. 

The length l is generated from a uniform distribution 

l ~ Uniform(0.5 mi, 10 mi).            (5.2.3)
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Distribution (5.2.3) reflects a rough guess of the possible distribution of the lengths of 

segments in a highway system. 

Finally, samples of traffic counts available for the AADT estimation on the segment 

must be generated. Two ground-based daily volumes in year one (y=1) are generated 

using Equation (3.2.3). Image-based counts are generated using the algorithm given in 

Chapter 3 for any year y when image-based counts are collected. The monthly, 

day-of-week and hourly factors are required for the generation of sampled traffic counts. 

For simplicity, both monthly and seasonal factors are assumed to equal one; and the 

hourly factor is 0.8333 (corresponding to the mid-day hours). All parameters required for 

generating ground- and image-based traffic counts are given in Table 5.2. 

 

 

Fmd  1 
Fh  0.8333 
σD 0.12 
σH 0.10 
Pk Uniform between 0 and 0.5 
ūk  55 
ūc 65 
σu 10 

 

Table 5.2: Summary of Parameters used in the Traffic Count Generation. 
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After generating all ground- and image-based traffic counts during the cycle 

considered, three different approaches are simulated for the AADT estimation in each 

year of the 6-year cycle for comparison purpose. The descriptions of the three approaches 

are given below 

• The Bayesian approach developed in the work: The prior distribution for year one 

is assumed non-informative and uniform as Distribution (3.3.1), with BL = 2000 and BU = 

200000, as in the previous example. In a given year y, its prior distribution is updated 

when any type of traffic count is available; otherwise the prior distribution turns into the 

posterior distribution directly. The final posterior in a year would be converted into the 

prior in the following year by incorporating the uncertainty in traffic growth. This 

approach produces a distribution of the AADT. As described in Chapter 3, the point 

estimate can be determined from the distribution based on the loss function selected. In 

this numerical study, Squared Relative Error (SRE) is used as a criterion of comparison 

between different approaches. Therefore, the point estimate from the posterior 

distribution is derived as shown in the last row of Table 3.1  
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= .           (5.2.4) 

• Ground counts only without growth factors: This approach first de-seasonalizes 

and then averages the two daily volumes collected in year one to estimate the AADT 

values in any year of the 6-year cycle. That is, the traffic growth on the segment during 
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the 6-year cycle is ignored in the AADT estimation. The obtained estimate is denoted 

as gDTAA ˆ . 

• Ground counts only with growth factors: This approach first de-seasonalizes and 

then averages the two daily volumes collected in year one to estimate the AADT value in 

year one. Then the year one estimate is inflated by the appropriate growth factors to 

estimate AADT values in the following years. In our study, the distribution mean of 

growth factors, ĝy/y-1, is considered to be the growth factors used for the inflation, since 

true growth factors on the segment considered are not available. The obtained estimate is 

denoted as gfDTAA ˆ . 

In each run of the simulation, the three AADT estimates are produced for each year 

of the 6-year cycle by using these three approaches. (Note that the estimate will be the 

same in every year when using the approach that considers “ground count only without 

growth factors”.) For comparison purposes, Squared Relative Error (SRE) is calculated 

for the three estimates, respectively: 
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where )(ˆ yDTAA r
M  is the AADT estimate produced by approach M in year y for run r; 

)( yAADTr  is the true AADT in year y for run r; and )(ySRE r
M  is the SRE of 

)(ˆ yDTAA r
M .
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After a large number of simulation runs (say, R runs), the SRE’s are averaged across 

all runs to obtain the mean SRE (MSRE) of AADT estimates obtained by each approach 

for each year of the cycle 

  ∑
=

=
R

r

r
MM ySRE

R
yMSRE

1

)(
1

)( , M = p, g, gf, y = 1, …6      (5.2.6) 

The MSRE would reflect the accuracy of the AADT estimates produced by the three 

approaches. 

The MSREs of the three estimates across 5000 runs versus each year of the cycle are 

plotted in Figure 5.6. The figures differ in the quantity of image-based data assumed to be 

available for AADT estimation. In Figure 5.6(a), the segment has exactly one 

image-based count in the year of AADT estimation. That is, no more image-based counts 

are available in either the estimation year or the previous years. In Figure 5.6(b), the 

segment has one image-based count every year of the cycle. That is, for any given year, 

one image-based count every year, back to year one, is available for AADT estimation. In 

Figure 5.6(c), the segment has 50% probability to have one image-based count every year. 

In Figure 5.6(d), the segment has 33% probability to have one image-based count every 

year. The latter two quantities are intended to simulate the scenario that the image-based 

data come from sources that are not completely scheduled and deterministic, for example, 

satellite images scheduled for other purposes that could also be affected by cloud cover  
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Figure 5.6: Comparison of MSRE in AADT estimates by three approaches during a 
6-year cycle: (a) one image-based count in the estimation year; (b) one image-based 
count every year; (c) 50% probability of one image-based count every year; (d) 33% 
probability of one image-based count every year. 

 

 

(Merry et al., 1995). Whether a segment was assumed to be imaged in any given year was 

determined by random generation with probability 0.5 and 0.33, respectively. 

In each sub-plot of Figure 5.6, the x-axis represents the year of the cycle, and the 

y-axis represents the MSRE in AADT estimates. The bold (“grd w/o growth”) curve 

represents the MSRE in AADT estimates produced by using ground counts only without 

growth factors. The dashed (“grd w. growth”) curve represents the MSRE in AADT 
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estimates produced by using ground counts only with growth factors. Since these two 

curves are not affected by the quantity of image-based data, the two curves remain the 

same in the four sub-plots, which only differ in the quantity of image-based data assumed 

to be available for AADT estimation. The dotted (“Bayesian approach”) curves in the 

four sub-plots represent the MSRE in AADT estimate produced by incorporating 

image-based counts with the Bayesian approach; each plot corresponds to a different 

quantity of available image-based data, as mentioned above.  

To illustrate how to read the graphs, consider first the AADT estimation in the fourth 

year of the six-year cycle (Year 4 on the x-axis), three years after the ground counts were 

taken (recall that the 48-hour coverage count was taken in Year 1). In Figure 5.6(a), when 

using the 48-hour coverage count to estimate the AADT in Year 4 without applying a 

growth factor, the “grd w/o growth” curve shows that the MSRE of AADT estimation in 

Year 4 would be about 0.0181; when applying an appropriate growth factor between Year 

1 and Year 4 to the above AADT estimate, the “grd w. growth” curve shows that the 

MSRE of AADT estimation in Year 4 would decrease to 0.0158. If a single image-based 

count obtained in Year 4 was incorporated in the AADT estimation with the Bayesian 

approach developed here (specifically, a prior distribution of AADT in Year 4 is 

developed from the 48-hour coverage count of Year 1 and growth factor distribution from 

Year 1 to Year 4, and then is updated to a posterior distribution of AADT in Year 4 based 

on the image-based count), the “Bayesian approach” curve shows that the MSRE in Year 
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4 would decrease to 0.0110. (In this case, there would have been no image-based counts 

available in Years 1, 2, or 3, and the MSREs of AADT estimation for these years would 

be read from the “grd w. growth” or “grd w. growth” curves, depending on whether 

growth factors were or were not applied.) Similarly, when using the 48-hour coverage 

count to estimate the AADT in Year 5 without applying a growth factor, the “grd w/o 

growth” curve shows that the MSRE in Year 5 would be 0.0233; when applying an 

appropriate growth factor between Year 1 and Year 5 to the above AADT estimate, the 

“grd w. growth” curve shows the MSRE in Year 5 would decrease to 0.0192. If a single 

image-based count obtained in Year 5 was used in the AADT estimation with the 

Bayesian approach developed here, the “Bayesian approach” curve shows that the MSRE 

in the Year 5 would decrease to 0.0122. Again, the assumption is that an image would be 

available in Year 5, but no images would have been available in Years 1, 2, 3, or 4, and so 

the MSRE would be read from the corresponding “ground-based” curves for these years.  

As mentioned above, the “grd w/o growth” and “grd w growth” curves of Figures 

5.6(b)-5.6(d) are identical to those of Figure 5.6(a). The differences in the “Bayesian 

approach” curves result from the different assumptions in the supply of image-based data. 

In Figure 5.6(b), the assumption is that an image-based count is available every year up 

to and including the estimation year. Specifically, an image-based count obtained in Year 

1 is combined with the 48-hour coverage count of Year 1 by the Bayesian approach to 

develop the posterior distribution of AADT in Year 1. The AADT point estimate (given in 



131 

Equation (5.2.4)) from this posterior distribution would result in an MSRE of 0.0068, as 

seen from the “Bayesian approach” curve at Year 1. The growth factor distribution from 

Year 1 to Year 2 would then be incorporated into the Year 1 posterior distribution to 

develop the prior distribution of AADT in Year 2. An additional image based-count 

obtained in Year 2 is used to update this prior distribution to the Year 2 posterior 

distribution. The AADT point estimate from this posterior distribution would result in an 

MSRE of 0.0076, as seen from the “Bayesian approach” curve at Year 2. The Year 2 

posterior distribution is combined with Year 2-to-Year 3 growth factor distribution to 

develop the Year 3 prior distribution. Yet another image-based count obtained in Year 3 is 

used to update the Year 3 prior distribution to the Year 3 posterior distribution, and so on 

through the six years of the cycle. 

In Figure 5.6(c) and Figure 5.6(d), the “Bayesian approach” curves are produced by 

randomly generating the available image-based count for each year, so that the segment 

would have an image-based count every year with probability 50% and 33%, respectively. 

For example, in Figure 5.6(c), an image-based count would be available with probability 

50% in Year 1. If an image-based count is obtained in Year 1, it will be combined with the 

48-hour coverage count to develop the posterior distribution of AADT in Year 1; if an 

image-based count is not obtained in Year 1, only the 48-hour coverage count is used to 

develop the posterior distribution of AADT in Year 1. The posterior distribution of either 

case could produce an AADT point estimate in Year 1, and the “Bayesian approach” 
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curve at Year 1 shows an MSRE of 0.0073, which is an average performance across the 

two cases. The appropriate Year 1 posterior distribution will be used to develop the Year 2 

prior distribution with the combination of Year 1-to-Year 2 growth factor distribution. 

Again, an image-based count would be available with probability 50% in Year 2. If an 

image-based count is obtained in Year 2, the Year 2 prior distribution will 

correspondingly be updated to the posterior distribution of AADT in Year 2; if an 

image-based count is not obtained in Year 2, the Year 2 prior distribution will be regarded 

as the Year 2 posterior distribution without any updating. The “Bayesian approach” curve 

at Year 2 shows an MSRE of 0.0087, which is an average performance across the two 

cases in Year 2. Figure 5.6(d) can be read similarly; and the only difference is that the 

segment is assumded to have an image-based count every year with probability 33%. 

From Figure 5.6, it can be seen that using ground-based data without growth factors 

would lead to a “greater-than-linear” increase in the MSRE of AADT estimates error 

when the ground-based counts become older. Applying growth factors would reduce the 

deterioration rate, but the MSREs of the AADT estimates still increase. However, when 

adding image-based data through the Bayesian approach, even a small amount – e.g., one 

image-based count only in the estimation year (Fig. 5.6(a)) or an average of one 

image-based count every three years (Fig. 5.6(d)) – would significantly decrease the 

deterioration rate. That is, adding image-based counts collected more recently would 

provide useful information for AADT estimation and improve the estimation accuracy. If 
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one image-based count every year is available (Figure 5.6(b)), the MSRE of AADT 

estimates would almost remain constant during the 6-year cycle.  

These figures also show that the marginal improvement of adding image-based data 

(even a small amount) through the Bayesian approach is greater than the marginal 

improvement of incorporating growth factors when using only ground-based data. That is, 

the additional accuracy, compared to the recommended practice of using growth factors, 

gained from adding a small amount of image-based data through the Bayesian approach 

is greater than the additional accuracy gained from following the recommended practice 

of using growth factors, compared to not using growth factors. For example, the Year 4 

MSREs of Figure 5.6(a) (when only one image-based count was available, and it was 

available in the year that the AADT was to be estimated) were seen to be 0.0181, 0.0158, 

and 0.0110. Using growth factors with only the ground-based count would reduce the 

MSRE by 0.0023 (from the “grd w/o growth” value of 0.0181 to the “grd w. growth” 

value of 0.0158). The incorporation of an image in Year 4 would reduce the MSRE from 

the better “grd w. growth” case by an even greater amount, namely, 0.0048 (from the “grd 

w. growth” value of 0.0158 to the “Bayesian approach” value of 0.0110).  

These figures can be interpreted in another way. For example, as shown in Figure 

5.6(b), when adding one image-based count every year through the Bayesian approach, 

the MSRE of the AADT estimate in year five of the 6-year cycle is 0.00760. This MSRE 

is almost as low as the MSRE produced by the ground-based estimate in the year when 
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the count is taken (i.e., the MSRE in year one), 0.00755. Therefore, if one image-based 

count were available every year for a segment, the need to conduct the ground-based 

count for that segment could be largely reduced, and the resources for ground-based 

counts collection could be used where the urgency is higher.  

Another finding can be seen in these figures. Using ground-based data without 

growth factors performs almost as well as using ground-based data with growth in the 

first two years of the cycle. This finding is consistent with the recommendation for using 

growth factors made in the TMG (FHWA, 2001). There, it was mentioned that when the 

ground-based data is not more than 3 years old, applying growth factors does not show 

much benefit compared to not applying growth factors.  

This section exhibits that image-based counts could decrease the error in AADT 

estimation while reducing the amount of ground-based data that needs to be collected. 

Since the results are based on 5000 simulation runs, each of which simulated a different 

segment with different AADT and imaged segment length, the results would reflect an 

“average” improvement across a large range of variation in AADT and imaged segment 

length. 

 

5.3 Sensitivity of Results to the Parameters used in the Bayesian Approach 

The simulation results shown in Section 5.2 indicated that AADT estimation errors 

could be largely reduced by incorporating image-based counts in the estimation. The 
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results, of course, depend on probability distributions of short-term traffic counts 

conditional on the AADT and prior distributions of the AADT used in the Bayesian 

approach. Specifically, the simulation involved two types of the conditional distributions: 

one for 24-hour volumes and one for image-based counts. Since the estimation was seen 

not to be sensitive to the non-informative prior, here we focus on the distribution of 

growth factors across a homogeneous group. In this section, we investigate the sensitivity 

of results to the parameters describing the two conditional distributions and the 

distribution of growth factors. Namely, these parameters are σD of the Noise(D) 

distribution, σH of the Noise(H) distribution, σU of the Us distribution, the standard 

deviation (denoted as σp) of the (truncated) normal Pk distribution, and σf of the growth 

factor distribution. In the sensitivity analyses presented below, one image-based count is 

considered available only in the AADT estimation year, i.e., the new simulation results 

obtained from new parameters would be compared to the results shown in Figure 5.6(a). 

 

5.3.1 Sensitivity to the σD of the Noise(D) distribution 

According to the 3-stage model, when the σD increases, the variability of both 

24-hour volumes and image-based counts will increase; when the σD decreases, the 

variability of both 24-hour volumes and image-based counts will decrease. In this 

subsection, we will investigate the impact of changing σD on the results given in Section 

5.2. Besides the base level of σD (σD = 0.12), two other levels are considered: one where  
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Figure 5.7: Sensitivity of results to σD : (a) σD =0.06; (b) σD =0.12; and (c) σD =0.24. 

 

 

the level of σD is halved (σD =0.06), and one where the level of σD is doubled (σD = 0.24). 

All other parameters remain the same as those leading to the results in Figure 5.6(a).  

Figures 5.7(a) and (c) plot the simulation results for the two levels of σD, σD =0.06 

and σD = 0.12, respectively. For comparison purpose, Figure 5.6(a) is re-plotted at the 

same scale of y-axis as Figures 5.7(a) and (c), and presented in Figure 5.7(b). As it would 

be expected, the level of AADT estimation errors decreases in Figure 5.7(a), since the 

variability of both ground- and image-based counts is reduced. Also, the level of AADT 

estimation errors increases in Figure 5.7(c), since the variability of both ground- and 
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image-based counts becomes larger. Nevertheless, it is still noticeable that the AADT 

estimation errors are largely reduced by incorporating image-based counts in the 

estimation for either of the two cases.  

One interesting finding is that the curves of ground-based AADT estimation error 

with and without the use of growth factors cross when the level of σD is doubled. A 

possible reason could be that the ground-based data were so noisy that the use of growth 

factor might bring some but not significant improvement, which was disguised by the 

randomness in the simulation. 

 

5.3.2 Sensitivity to the σH of the Noise(H) distribution 

According to the 3-stage model, the Noise(H) distribution only affects the 

distribution of image-based counts. When the σH increases, the variability of image-based 

counts will increase; when the σH decreases, the variability of image-based counts will 

decrease. Intuitively, if the variability of image-based count becomes smaller while the 

variability of ground-based count remains the same level, the improvement resulting by 

adding image-based counts would tend to increase. Therefore, in this subsection, we will 

only investigate the sensitivity of results to the increase of the level of σH. Two additional 

levels of σH are considered: one where the level of σH is doubled (σH =0.20), and one 

where the level of σH is tripled (σH = 0.30). All other parameters remain the same as 

those leading to the results shown in Figure 5.6(a). 
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Figure 5.8: Sensitivity of results to σH. 

 

 

Since the increase of σH does not affect the ground-based estimation, the curves of 

ground-based AADT estimation errors remain the same for different levels of σH. 

Therefore, the simulation results for different levels of σH are plotted in one figure 

(Figure 5.8) to facilitate the comparison. The AADT estimation errors resulting by adding 

one image-based count in the estimation year are plotted for the two increasing levels of 

σH, as well as the base level (σH = 0.10). It can be seen that the AADT estimation error 

resulting by adding one image-based count in the estimation year would increase slightly 

when increasing the level of σH. This increase is expected intuitively. However, even 
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tripling the level of σH (σH = 0.30, rather than the base case where σH = 0.10) can still 

improve the AADT estimation accuracy greatly when the ground-based data is more than 

one year old. In fact, as long as the level of σH is estimated correctly, adding the 

image-based counts by the Bayesian approach would not make the ground-based AADT 

estimation worse because of the intrinsic feature of Bayesian analysis. 

 

5.3.3 Sensitivity to the parameters describing the Pk and Us distributions 

Previously, we have shown that the Bayesian approach does not appear sensitive to 

the distributions of both Pk and Us. Therefore, it would be expected that the performance 

of results of Section 5.2 is not sensitive to them, either.  

In this subsection, we investigate the sensitivity of results to the parameters 

describing the Pk distribution, used in the 3-stage model. In the base case, the Pk is 

(truncated) normally distributed with the mean p equal 0.25 and standard deviation σp 

equal 0.1. Here, we consider two additional levels of p with fixed level of σp equal 0.1: p 

= 0.50 and p = 0.75; and two additional levels of σp at the fixed level of p equal 0.25: σp 

= 0.2 and σp = 0.3. The corresponding simulation results are plotted in Figures 5.9(a) and 

(b).  
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Figure 5.9: Sensitivity of results to (a) p and (b) σp of the Pk distribution. 
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In Figure 5.9(a), little difference can be found among the three curves of estimation 

errors resulting by adding one image-based count in the estimation year, each of which 

reflects a different truck proportion mean p. In Figure 5.9(b), little difference can be 

found among the three curves of estimation errors resulting by adding one image-based 

count in the estimation year, each of which reflects a different σp.  

Using the base case Pk distribution, we also investigate the sensitivity of results to 

the parameters describing the Us distribution. In the base case, the σu of the distribution 

Us is 10, and the car and truck speed limits (uc and uk) are 65 mph and 55, respectively. 

Two increasing levels of σu are considered when keeping the car and truck speed limits at 

the base case values: σu = 20 and σu = 30. Two additional sets of the car and truck speed 

limits are considered when keeping the level of σu as the base case value: one where uc = 

60 and uk = 50, and one where uc = 70 and uk = 60. The corresponding simulation results 

are plotted in Figures 5.10(a) and (b). As in Figure 5.9, little difference can be found 

either for different levels of σu, or for different sets of uc and uk.  

Therefore, we have shown again that both Pk and Us distributions seem to have little 

impact on the simulated results demonstrating the improved accuracy when incorporating 

image-based counts in the AADT estimation. In other words, adding image-based counts 

by the Bayesian approach appears to perform well for a large range of variation in Pk and 

Us values.  
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Figure 5.10: Sensitivity of results to the Us distribution: (a) σu; (b) uc and uk. 
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5.3.4 Sensitivity to the σf of the growth factor distribution 

When there is less variability in growth factors across a group, the growth factor on 

the segment considered can be estimated from the PATR-equipped segments in the same 

group with more accuracy. Old ground-based data can, therefore, produce better estimates 

by applying the growth factors. Consequently, the image-based counts collected would 

not be as valuable for AADT estimation in the contemporary year.  

In this subsection, we investigate the sensitivity of the accuracy results to the 

decrease of the variability in growth factors across a group. According to the growth 

factor distribution of (5.1.3), the parameter σf reflects the variability in the growth factors. 

Besides the base case where σf = 0.05, two lower levels – σf = 0.03 and σf =0.01 – are 

investigated. All other parameters remain the same as those leading to the results shown 

in Figure 5.6(a). The simulation results for the two lower levels of σf, are plotted in 

Figures 5.11(b) and (c), respectively. For comparison purpose, Figure 5.6(a) is re-plotted 

and presented in Figure 5.7(a).  

As shown in Figures 5.11, adding one image-based count in the estimation year by 

the Bayesian approach can still decrease the AADT estimation error, although the 

variability in the growth factors is reduced. Also, such decreases appear to become larger 

when the ground-based counts get older.  

However, as the variability of the growth factors decreases, the marginal 

improvement of adding image-based counts through the Bayesian approach would not be 



144 

greater than the marginal improvement of incorporating growth factors when only using 

ground-based data. That is because that the growth factor on a specific segment can be 

estimated more accurately from any other segment in the group if there is less variability 

in the growth factors. Inflating old ground-based data by the more accurately estimated 

growth factor would be almost equivalent to the contemporary data. That is why the 

MSRE curve of applying growth factors to ground-based counts is almost flat in Figure 

5.11(c) where σf is only 0.01, which is almost negligible.  

 

 

 

 

Figure 5.11: Sensitivity of results to the level of σf: (a) σf = 0.05;(b)σf = 0.03 ;(c)σf =0.01. 
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In this section, we saw that the AADT estimation accuracy was sensitive to the 

distributions of Noise(D), Noise(H) and growth factors. However, in most cases, the 

improvement by adding image-based counts was still remarkable. Therefore, we believe 

that the Bayesian approach is able to work well in a large range of variation in the 

parameters, which represent different scenarios.  

 

5.4 Sensitivity of Results to Incorrect Quantification of Parameters  

In the simulations of previous sections, we assumed that the parameters required in 

the Bayesian approach are well known. Therefore, the parameters used for the data 

generation are the same as those used for AADT estimation process. These parameters 

were obtained from either analysis of empirical data or assumptions. If they are poorly 

representative of the true ones, the accuracy results given in Section 5.2 could be 

questionable. That is, adding image-based counts might not be able to improve the AADT 

estimation accuracy as much as shown, and even probably make the AADT estimation 

worse. In this section, the sensitivity of results to incorrectly quantifying those parameters 

is investigated. 

Section 5.3 showed that the accuracy results are not sensitive to the distributions of 

Pk and Us. Thus it would be expected that incorrect quantification of the parameters 

describing the distributions of Pk and Us has little impact on the simulation results. Also, 

the growth factor distribution can be easily estimated from the data collected on 
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PATR-equipped segments in a homogeneous group. Assuming there are a sufficiently 

large number of PATR-equipped segments in a group, the estimation of the growth factor 

distribution would be fairly good.  

There are two major distributions left for the sensitivity analysis, Noise(D) and 

Noise(H). The distributions of Noise(D) and Noise(H) reflect the “quality” of the traffic 

counts. The Bayesian approach is established based on Bayesian analysis, which takes 

advantage of different information sources based on the beliefs on their quality. If the 

belief on quality is incorrect, one would inappropriately use the information contained in 

the traffic counts; this could be thought of as putting wrong “weights” on the different 

traffic counts in the estimation. The accuracy results of the Bayesian approach would 

largely depend on the relative quality of one type of traffic count to another. As 

mentioned before, the change of Noise(D) distribution would affect both ground- and 

image-based traffic counts simultaneously, which would impair the insights from the 

analysis results. Therefore, we focus here on analyzing the sensitivity of the results to 

incorrectly quantifying the Noise(H) distribution, namely, the level of σH.  

In this analysis, we use different values of σH for data generation and estimation in 

the simulation. Still using σH to denote the true value of this parameter (i.e. the value 

used in data generation), we use sH to denote the “estimated” value that is used in the 

estimation part of the simulation. Two scenarios are considered in the simulation: one 

where σH = 0.1 and sH = 0.3, and one where σH = 0.3 and sH = 0.1. In the former scenario, 
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the value of σH is overestimated. In the latter scenario, the value of σH is underestimated. 

All other parameters remain the same as those leading to the results shown in Figure 

5.6(a). 

The AADT estimation errors resulting from the simulation are plotted in Figure 5.12, 

for the two combinations of σH and sH: (σH = 0.1, sH = 0.3) and (σH = 0.3, sH = 0.1). In 

Figure 5.12, the AADT estimation errors for the correctly σH estimation cases (i.e., (σH = 

0.1, sH = 0.1) and (σH = 0.3, sH = 0.3)) are also plotted to serve as a reference. The errors 

resulting from using only ground-based data are also plotted to serve as a reference. 

 

 

 

 

Figure 5.12: Sensitivity of results to incorrectly quantification of σH. 



148 

As can be seen, a large overestimation of σH (σH = 0.1, sH = 0.3) reduces the AADT 

estimation accuracy improvement that would have been achieved by adding image-based 

counts. However, the improvement is still noticeable, which is almost at the same level of 

the improvement that could be achieved when the true value of σH equals to what we 

estimate (i.e., σH = 0.3, sH = 0.3). On the other hand, when underestimating the value of 

σH (σH = 0.3, sH = 0.1), adding image-based count would not improve the AADT 

estimation accuracy but worsen it, except for the last two years of the cycle compared to 

using ground-based count without the growth factors. That is, the benefits seem more 

sensitive to underestimation of σH than to overestimation. 

 

5.5 Lognormal Approximation 

All results in the previous sections are obtained by using the “entire” 3-stage model 

for the distribution of image-based counts conditional on the AADT. At the end of 

Chapter 4, a simple way of calculating the posterior distribution of AADT was introduced 

as Algorithm (4.1) by using a lognormal approximation to the distribution of image-based 

counts conditional on the AADT. Correspondingly, rather than going through the 

simulation of entire 3-stage model, the weights can be calculated easily from a 

close-formed lognormal distribution. It would be interesting to investigate the sensitivity 

of the accuracy results to replacing Algorithm (3.3) by Algorithm (4.1). A simulation is 

conducted to generate exactly the same data as those leading to Figure 5.6(a), but use 
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Algorithm (4.1) instead of Algorithm (3.3) in the estimation part. The results are plotted 

in Figure 5.13. 

As can be seen, using the lognormal approximation to the distribution of 

image-based counts conditional on the AADT in the calculation of posterior distribution 

slightly increase the estimation error. However, the error increase appears small, while 

the approximation saves a large amount of computing time and makes the Bayesian 

approach more easily implementable.  

 

 

 

 

Figure 5.13: Results using lognormal approximation. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

In this work, a Bayesian approach was developed for AADT estimation. This 

approach allows merging image-based data with ground-based data for AADT estimation 

on a given segment. Specifically, the uncertainty in the AADT is expressed by a 

probability distribution. In any year of interest, the approach begins with a prior 

distribution, which is then updated according to Bayes’ theorem when a traffic count is 

available. Sequential updating is conducted when a series of traffic counts are collected 

within different time periods or from different collection platforms in the year. The 

posterior distribution at the end of the year reflects the updated belief on the uncertainty 

in the segment AADT, conditional on all traffic counts collected in the year. If required, 

point estimates can be derived from the posterior distribution based on assumed or 

specified loss functions.  

The Bayesian approach contains two important components, the prior distribution of 

the AADT and the probability distribution of short-duration traffic counts conditional on 

the AADT. Methods were developed to model the two components, and data parameters
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required for the two components were estimated based on analysis of extensive empirical 

data. 

It was shown that a non-informative prior distribution could be used for a given year 

when it is assumed (or believed) that no “prior” information is available on the AADT of 

interest. Another type of the prior distribution was also developed from a combination of 

the previous-year posterior distribution and the growth factors estimated from other 

segments. The latter prior distribution provides a sufficient way to combine the 

information from traffic counts collected in different years.  

The probability distribution of short-duration counts conditional on the AADT plays 

a critical role in the Bayesian approach. This conditional distribution is the means for the 

Bayesian approach to take advantage of information brought by the short-duration counts. 

A 3-stage model was developed for modeling the probability distribution of image-based 

counts conditional on the AADT. This model is general and could be applied to any 

short-duration traffic counts, but the focus in this work was on incorporating image-based 

traffic data into AADT estimation. The 3-stage model is capable of capturing the impacts 

of the length of segment covered by the image and the magnitude of the traffic volume on 

the distribution of image-based counts conditional on the AADT. The 3-stage model was 

seen to perform well on 22 image-based counts, compared to two other potential models. 

Because of its complexity, the probability distribution of image-based counts conditional 

on the AADT was also approximated by a lognormal distribution. The two parameters 
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specifying the lognormal distribution can be obtained by approximate calculation (using 

Equation (4.3.2)) and from a look-up plot (as shown in Figure 4.3). Use of the lognormal 

approximation was seen to have little effect on the solution quality. Although AADT 

would be estimated off-line, the reduced need for extensive computer simulation and the 

greater transparency of the closed-form lognormal function could make the lognormal 

approximation more attractive for practical implementation. 

A numerical study was conducted, which showed that adding image-based data with 

the Bayesian approach could improve AADT estimation accuracy in current practice. 

Specifically, segments were assumed to be sampled by a 48-hour coverage count once 

every 6 years. The study simulated the scenarios of different quantities of image-based 

data available on the segment. The results showed that adding image-based data extracted 

from even a single image of the segment in the AADT estimation year could greatly 

improve the accuracy. The improvement increases as the most recent 48-hour coverage 

count becomes older. Adding image-based counts could lengthen the cycle of coverage 

count collection while maintaining the present accuracy level of AADT estimation. 

Sensitivity analysis showed that the Bayesian approach could bring positive benefits for a 

large range of conditions. 

Default values for the data parameters required for the approach have been provided 

in this dissertation. Otherwise, one can use data regularly collected by the state DOTs to 

estimate many of the parameters by using the methods introduced in this work. The 
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algorithms for implementing the Bayesian approach have been presented, and the 

corresponding programs are straightforward in any coding language. The Bayesian 

approach does not require any additional hardware investment or additional data 

collection. Therefore, the Bayesian approach appears implementable by the state DOTs. 

In this work, the Bayesian approach primarily showed advantages in AADT 

estimation because of its capability to add image-based counts to ground-based counts 

previously collected. The major operational concern would be to obtain the images from 

various sources in a form that can be easily interfaced with traffic monitoring units that 

estimate AADT in the state DOTs. The traffic information in the images must be 

extracted and put in a form (e.g., number of vehicles in the image, the length of the 

segment covered by the image, date and time the image is taken) that could be used for 

AADT estimation. Designing the databases, procedures, and institutional responsibilities 

that would allow the image-based data to be incorporated in AADT estimation on an 

ongoing basis is a topic for future study.  

When such a system is successfully established, existing practice could change 

correspondingly. The Bayesian approach produces a posterior distribution of the AADT 

on a given segment. If we use the coefficient of variation (CV) of the distribution to 

represent the uncertainty in the AADT, the value of CV could serve as a criterion for 

determining whether new traffic counts need to be collected for a given segment, either 

on the ground or from imagery. For example, if recently collected image-based data 
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produce a CV less than 0.1 (an assumed CV threshold value for data collection) for a 

segment, a new cycle of ground coverage counts for that segment might be skipped and 

the saved resources could be used for collecting traffic counts on other segments in the 

system with higher CVs. By using the system, the traditional approach of collecting 

coverage counts on an “n-year” cycle might be converted to a new strategy of coverage 

count collection that is based on the uncertainty in AADT estimates. In addition, the 

traffic monitoring unit could request the aerial engineering division of the DOT to obtain 

images as they fly over highway segments when flying other missions, especially over 

segments with highly uncertain AADT estimates. If the aircraft is already being used for 

other missions, the marginal cost of the data collection would be low. 

To implement the Bayesian approach, the Monte Carlo representation of the 

posterior distribution in each year needs to be stored. Otherwise, all previous traffic 

counts need to be stored. Although there are continuing developments in data storage 

devices, posterior distributions for all segments in a system would still be a large burden 

for data storage. An alternative might be to use a theoretical distribution to approximate 

the resultant posterior distribution. Addressing the storage issues is a left as a topic for 

future study.  

A major reason for the storage of posterior distributions is to provide prior 

information for the AADT estimation in the following year. One should be careful when 

using this type of prior information when the highway network or the trip pattern 
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distribution (origin-destination matrix) changes significantly during the period considered. 

When such changes occur, traffic volumes on a highway segment of interest might 

change greatly, and prior information obtained from the previous application of the 

method would not be appropriate for estimating AADT in the contemporary year. A 

non-informative prior might be an appropriate choice for this case. A more thorough 

analysis of this problem would be a topic for future study, but it is noted that a similar 

problem would exist with current practice when using old ground counts to estimate 

AADT on a segment when there have been recent changes to the network or 

origin-destination matrix. 

In this work, AADT was considered to be the total volume aggregated across all 

types of vehicles. Increasing attention is being given in practice to classifying traffic 

volumes according to vehicle type. In Appendix B, a Bayesian approach is sketched out 

for classified AADT estimation. For the sake of illustration, vehicles are grouped into two 

classes – large vehicles (called trucks) and small vehicles (called cars). The problem is 

two-dimensional, which makes the approach more complicated in terms of modeling the 

correlation between truck and car volumes and calculating the two-dimensional posterior 

distribution. Therefore, an alternative Bayesian approach is also sketched out in Appendix 

B that may be capable of turning the two-dimensional problem into two independent 

one-dimensional problems. Some issues related to the modeling and implemention of the 

approach are discussed. However, a thorough development requires more intensive 
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analysis of data collected from segments equipped with permanent classification traffic 

recorders, and such analysis is left for future study. 

This work only considered image-based data obtained during periods when traffic is 

non-transitioning and operating under free-flow conditions. Such traffic conditions 

facilitated the modeling of the probability distribution of image-based counts conditional 

on the hourly volume, the third stage of the 3-stage model for establishing the 

probabilistic model of image-based counts conditional on the AADT. When image-based 

data are obtained under congested or transitioning traffic conditions, the framework of the 

3-stage model might be adopted, but the third stage (i.e., the probability distribution of 

image-based counts conditional on the hourly volume) would likely need to be modified. 

Under congested conditions, the movement of a given vehicle would generally be 

affected by the movements of other vehicles. When traffic is transitioning, it is not 

reasonable to assume that equal sections of a given segment are equally likely to contain 

the same number of vehicles. Thus, the binomial distribution would appear inappropriate 

for the image-based data taken during transitioning or congested traffic conditions.  

For a given segment, there appears to be a maximum traffic volume that could be 

handled during one hour. When the hourly volume is close to this point, the traffic is 

more likely to be congested. Thus, whether traffic conditions are considered to be 

congested would mainly depend on the simulated hourly volume, the “output” of the 

second stage of the 3-stage model. Whether traffic conditions are transitioning would 
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mainly rely on the hour of the day; for example, traffic density of the segment tends to 

increase as the peak hour approaches and decrease after the peak hour. It would be tricky 

to model the third stage for periods that are typically either congested (e.g., peak hours) 

or transitioning (e.g., hours before and after peak hours). Accomplishing this task would 

rely on a solid understanding of transitioning and congested traffic phenomena that are 

justified by empirical data. Again, this is a topic for future study. At present, if 

image-based data are intended to be incorporated into the AADT estimation through the 

Bayesian approach, one might consider discarding the image-based data collected when 

congested or transitioning conditions are suspected.  

In summary, the Bayesian approach presented in this work appears ready for pilot 

tests of incorporating image-based data obtained under uncongested and 

non-transitioning traffic conditions when estimating unclassified AADT. More refined 

estimation of the data parameters could be achieved during the tests. The ultimate goal 

would be a well-established system for AADT estimation, in which all types of traffic 

counts available for every segment are stored and used in a systematic and theoretically 

acceptable procedure. 

 

 



 
158

REFERENCES 

 
 
 
Adams, Warren T., “Five-Minute-Cluster Sampling for Determining Urban Traffic 
Volumes.” Highway Research Board Proceedings, Vol. 34, pp. 502-507, (1955). 
 
Alberta Transportation and Utilities, Pavement Design Manual. (1997). 
 
Albright, David, “History of Estimating and Evaluating Annual Traffic Volume 
Statistics.” Transportation Research Record, No. 1305, TRB, National Research Council, 
Washington, D. C., pp. 103-107, (1991). 
 
Aldrin, Magne, “Traffic Volume Estimation from Short-Period Traffic Counts.” Traffic 
Engineering & Control, Vol.39, No. 12, pp. 656-660, (1998). 
 
American Association of State Highway and Transportation Officials (AASHTO), 
AASHTO Guidelines for Traffic Data Programs. Washington, D.C., (1992). 
 
Angel, Alejandro and Mark Hickman, “A Method for Measuring Freeway Level of 
Service from Airborne Imagery.” NCRST-F cookbook # 3, (2002). Accessed July 2005, 
http://www.ncrst.org/research/ncrst-f/library/cookbook_reports/cookbook-3.pdf. 
 
Angel, Alejandro, “Measuring Highway Level of Service from Airborne Platforms.” 
Thesis, the University of Arizona, (2000). 
 
Berger, James O., Statistical Decision Theory and Bayesian Analysis, 2nd Edition. 
Springer-Verlag, New York, NY, (1985). 
 
Bodle, R. R., “Evaluation of Rural Coverage Count Duration for Estimating Annual 
Average Daily Traffic.” Highway Research Record, No. 199, HRB, National Research 
Council, Washington, D. C., pp. 67-77, (1967). 



 
159

Buhr, Johann H., Donald R. Drew, Joseph A. Wattleworth, and Thomas G. Williams, “A 
Nationwide Study of Freeway Merging Operations.” Highway Research Record, No. 202, 
HRB, National Research Council, Washington, D. C., pp. 76-122, (1967). 
 
Bureau of Public Roads (BPR), Guide for Traffic Volume Counting Manual, Second 
Edition. U.S. Department of Commerce, (1965). 
 
Casella, George and Roger L. Berger, Statistical Inference, Second Edition. Duxbury 
Press, Pacific Grove, CA, (2002). 
 
Cherniack, Nathan, “Methods of Estimating Vehicular Traffic Volume with the Aid of 
Traffic Patterns.” Highway Research Board Proceedings, Vol.16, pp. 253-269, (1936). 
 
Cleveland, Donald E. (Ed), Manual of Traffic Engineering Studies, Third Edition. 
Institute of Traffic Engineers, Washington D.C., (1964). 
 

Cyra, David J., “Traffic Data Collection Through Aerial Photography.” Highway 
Research Record, No. 375, HRB, National Research Council, Washington, D. C., pp. 
28-39, (1971). 
 
Daganzo, Carlos F., Fundamentals of Transportation and Traffic Operations. Pergamon, 
New York, NY, (1997). 
 
Darrell, James E. P., Ralph Dale and William J. Hayne, “Minnesota Experience in 
Counting Traffic on Low-Volume Roads.” Highway Research Board Proceedings, Vol. 37, 
pp. 396-417, (1958). 
 

Davis, Gary A. and Yuzhe Guan, “Bayesian Assignment of Coverage Count Locations to 
Factor Groups and Estimation of Mean Daily Traffic.” Transportation Research Record, 
No. 1542, TRB, National Research Council, Washington, D. C., pp. 30-37, (1996). 
 
Davis, Gary A., “Accuracy of Estimating of Mean Daily Traffic: A Review.” 
Transportation Research Record, No. 1593, TRB, National Research Council, 
Washington, D. C., pp. 12-16, (1997). 
 
Doucet, Arnaud, Nando de Freitas, and Neil Gordon (Eds), Sequential Monte Carlo 
Methods in Practice. Springer-Verlag, New York, NY, (2001). 



 
160

Drusch, Robert L., “Estimating Annual Average Daily Traffic from Short-Term Traffic 
Counts.” Highway Research Record, No. 118, HRB, National Research Council, 
Washington, D. C., pp. 85-95, (1966). 
 
Energy Information Administration (EIA), Household Vehicles Energy Consumption 
1994. Office of Energy Markets and End Use, U.S. Department of Energy, Washington, 
D.C., (1997). 
 

Erhunmwunsee, Paul O., “Estimating Average Annual Daily Traffic Flow from Short 
Period Counts.” ITE Journal, 61(11), pp. 23-30, (1991). 
 
Ernst, I., S. Sujew, K.-U. Thiessenhusen, M. Hetscher, S. Rassmann, and M. Ruhe, 
“LUMOS-Airborne Traffic Monitoring System.” Intelligent Transportation Systems 
Proceedings (IEEE), Vol. 1, pp. 753-759, (2003). 
 
Federal Highway Administration (FHWA), Guide for Traffic Volume Counting Manual, 
Third Edition. U.S. Department of Transportation, (1970). 
 
Federal Highway Administration (FHWA), Guide to Urban Traffic Volume Counting. U.S. 
Department of Transportation, (1975). 
 
Federal Highway Administration (FHWA), Traffic Monitoring Guide. (1985). 
 
Federal Highway Administration (FHWA), Traffic Monitoring Guide. (2001). 
 
Federal Highway Administration (FHWA), HPMS Field Manual. (2000). 
 
Federal Highway Administration (FHWA), Revised Monograph on Traffic Flow Theory. 
http://www.tfhrc.gov/its/tft/tft.htm, Accessed July 2005. 
 
Flaherty, Joe, “Cluster Analysis of Arizona Automatic Traffic Recorder Data.” 
Transportation Research Record, No. 1410, TRB, National Research Council, 
Washington, D. C., pp. 93-99, (1993). 
 
Florida DOT, Transportation Statistics Office, Florida Traffic Information 2003 CD, 
(2003). 
 
Florida DOT, Transportation Statistics Office, Project Traffic Forecasting Handbook. 
(2002). 
 



 
161

Forbes, T. W. and R. J. Reiss, “35 Millimeter Airphotos for Study of Driver Behavior.” 
Highway Research Board Bulletin 60, pp. 59-66, (1952). 
 
Fricker, Jon D. and Robert K. Whitford, Fundamentals of Transportation Engineering - A 
Multimodal Systems Approach. Pearson Prentice Hall, Upper Saddle River, NJ, (2004). 
 
Gaver, D. (Chair), D. Draper, P. Goel, J. Greenhouse, L. Hedges, C. Morris, and C. 
Waternaux, “Panel Report on Combining Information: Statistical Issues and 
Opportunities for Research.” Committee on Theoretical and Applied Statistics, National 
Research Council. National Academy Press, Washington, D.C. Reprinted by The 
American Statistical Association, Alexandria, VA, (1992). 
 
Gazis, Denos C. and Michael W. Szeto, “Design of Density-Measuring Systems for 
Roadways.” Highway Research Record, No. 495, HRB, National Research Council, 
Washington, D. C., pp. 44-52, (1974). 
 
Gilks, W. R., S. Richardson, and D.J. Spiegelhalter (Eds), Markov Chain Monte Carlo in 
Practice. Chapman & Hall, Boca Raton, FL, (1998). 
 
Goel, P. K., M. R. McCord, and C. Park, “Exploiting Correlation to Improve AADT 
Estimation on Coverage Count Segments: Methodology and Numerical Results.” 
Transportation Research Record, No. 2701, TRB, National Research Council, 
Washington, D. C., (2005). 
 
Greenshields, Bruce D., “Photographic Method of Studying Traffic Behavior.” Highway 
Research Board Proceedings, Vol.13 part I, pp. 382-396, (1933). 
 
Greenshields, Bruce D., “The Potential Use of Aerial Photographs in Traffic Analysis.” 
Highway Research Board Proceedings, Vol.27, pp. 291-297, (1947). 
 
Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning - Data 
Mining, Inference and Prediction. Springer, New York, NY (2001). 
 
Hu, Patricia S., Tommy Wright, and Tony Esteve, “Traffic Count Estimates for 
Short-Term Traffic Monitoring Site: Simulation Study.” Transportation Research Record, 
No. 1625, TRB, National Research Council, Washington, D. C., pp. 26-34, (1998). 
 
Jiang, Zhuojun, M. McCord, P. Goel, and B. Coifman. “Empirical Errors in Converting 
Image-Based Traffic Counts to AADT Estimates.” Presented at 2004 Annual Meeting of 
Transportation Research Board, Washington, D.C., (2004). 



 
162

Johnson, A. N., “Maryland Aerial Survey of Highway Traffic between Baltimore and 
Washington.” Highway Research Board Proceedings, Vol.8, pp. 106-115, (1928). 
 
Johnson, A. N., “Seasonal Distribution of Traffic.” Highway Research Board Proceedings, 
Vol.9, pp. 117-122, (1929). 
 
Jordan, Thomas D., “Development of the Sky Count Technique for Highway Traffic 
Analysis.” Highway Research Record, No. 19, HRB, National Research Council, 
Washington, D. C., pp. 35-46, (1963). 
 
Kayhanian, Masoud, Amardeep Singh, Claus Suverkropp, and Steve Borroum, “Impact 
of Annual Average Daily Traffic on Highway Runoff Pollutant Concentrations.” Journal 
of Environmental Engineering, 129(11), pp. 975-990 (2003). 
 

Makigami, Yasuji, Hamao Sakamoto, and Masachika Hayashi, “An Analytical Method of 
Traffic Flow Using Aerial Photographs.” Journal of Transportation Engineering, Vol. 111, 
No. 4, pp. 377-394, (1985). 
 
Mannering, Fred L., Walter P. Kilareski, and Scott S. Washburn, Principles of Highway 
Engineering and Traffic Analysis, Third Edition. John Wiley & Sons, Inc., Hoboken, NJ, 
(2005). 
 
Martinez, Wendy L. and Angel R. Martinez, Computational Statistics Handbook with 
MATLAB. Chapman & Hall/CRC, Boca Raton, FL, (2002). 
 
McCasland, William, “Comparison of Two Techniques of Aerial Photography for 
Application in Freeway Traffic Operations Studies.” Highway Research Record, No. 65, 
HRB, National Research Council, Washington, D. C., pp. 95-115, (1965). 
 
McCord, M, P. Goel, B. Coifman, M. O’Kelly, Z. Jiang, and S. Ruan. “Use of 
Image-based Traffic Volumes in Regionwide Traffic Flow Estimation.” Project 02-01, 
Annual Report, National Consortium on Remote Sensing of Transportation-Flows, 
(2003a). 
 
McCord, M., P. Goel, B. Coifman, C. Merry, Z. Jiang, Y. Yang. “Combining 
High-Resolution Imagery and Ground-Based Data for Improved AADT and VMT 
Estimates.” Project 01-01, Annual Report, National Consortium on Remote Sensing of 
Transportation-Flows, (2002a). 
 

 



 
163

McCord, M.R., P.K. Goel, and C.J. Merry. “Traffic Monitoring Using Satellite and 
Ground Data: Preparation for Feasibility Tests and Operational System.” Final Report, 
Prepared for Ohio Department of Transportation, Columbus, OH, ODOT Agreement No. 
8494, (2000). 
 
McCord, Mark, P. Goel, Z. Jiang, and P. Bobbit, “Improving AADT and VMT Estimates 
with High-Resolution Satellite Imagery: Simulated Analytical Results.” Applications of 
Advance Technology in Transportation, Proceedings of the Seventh International 
Conference, C.P. Wang, S. Madanat, S. Nambisan, G. Spring (Eds), ASCE, Reston, VA, 
pp. 632-639, (2002b). 
 
McCord, Mark, Y. Yang, Z. Jiang, B. Coifman, and P. Goel, “Estimating AADT from 
Satellite Imagery and Air Photos: Empirical Results.” Transportation Research Record, 
No. 1855, TRB, National Research Council, Washington, D. C., pp. 136-142, (2003b). 
 
McShane,William R., Roger P. Roess, and Elena S. Prassas, Traffic Engineering, Second 
Edition. Pearson Prentice Hall, Upper Saddle River, NJ, (1998). 
 

Merrill, O. W., “Discussion - Toll Bridge Traffic Patterns.” Highway Research Board 
Proceedings, Vol.14, pp. 409, (1934). 
 
Merry, Carolyn J., Mark R. McCord, and John D. Bossler, “Commercial feasibility of 
traffic data collection using satellite imagery.” AIP Conference Proceedings, Vol. 325, 
Issue 1, pp. 361-366, (1995). 
 
Mohamad, D., K.C. Sinha, T. Kuczek, and C. F. Scholer, “Annual Average Daily Traffic 
Prediction Model for County Roads.” Presented at the 77th Annual Meeting of TRB, 
Washington D.C., 1998. 
 
Munjal, P. K. and Y. S. Hsu, “Experimental Validation of Lane-Changing Hypotheses 
from Aerial Data.” Highway Research Record, No. 456, HRB, National Research Council, 
Washington, D. C., pp. 8-19, (1973). 
 
Murray, Alan T., “Airborne techniques for estimating traffic flow in the private sector.” 
NCRST-F cookbook #1, (2002). Accessed July 2005, 
http://www.ncrst.org/research/ncrst-f/library/cookbook_reports/cookbook-1-1.pdf 
 
Ohio DOT, GIS-file 2002 CD, (2002). 
 
 



 
164

Ohio DOT’s website, 
http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/HrlyVehTpe/hrlyvehicle.
htm, Accessed July 2005. 
 
Ohio DOT’s website, 
http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/Seasonal/Sea_Adj_Fctrs.
htm, Accessed July 2005a. 
 
Ohio DOT’s website, 
http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/TSR_Report/default.htm, 
Accessed July 2005b. 
 
Ohio DOT’s website, 
http://www.dot.state.oh.us/techservsite/availpro/Traffic_Survey/Ann_Adj_Fctrs/Annual_
Adj_Fctrs.htm, Accessed July 2005c. 
 
Paine, David P. and James D. Kiser, Aerial Photography and Image Interpretation, 2nd 
Edition. John Wiley & Sons, Inc., Hoboken, NJ, (2003). 
 
Petroff, Boris B. and Anthony P. Kancler, “Urban Traffic Volume Patterns in Tennessee.” 
Highway Research Board Proceedings, Vol. 37, pp. 418-435, (1958). 
 
Petroff, Boris B. and Robert C. Blensly, “Improving Traffic-Count Procedures by 
Application of Statistical Method.” Highway Research Board Proceedings, Vol. 33, pp. 
362-375, (1954). 
 
Petroff, Boris B., “Experience in Application of Statistical Method to Traffic Counting.” 
Public Roads, Vol. 29, No. 5, pp. 110-117, (1956). 
 
Petroff, Boris B., “Some Criteria for Scheduling Mechanical Traffic Counts.”  Highway 
Research Board Proceedings, Vol. 26, pp. 389-396, (1946). 
 
Phillips, Garwyn and Philip Blake, “Estimating Total Annual Traffic Flow from Short 
Period Counts.” Transportation Planning and Technology, No. 6, pp. 169-174, (1980). 
 
Pignataro, Louis J. (Ed), Traffic Engineering - theory and Practice. Prentice-Hall, Inc., 
Englewood Cliffs, NJ, (1973). 
 
Rice, John A., Mathematical Statistics and Data Analysis, 2nd Edition. Duxbury Press, 
Belmont, CA, (1995). 



 
165

Rice, Joseph F., “Adoption of Aerial Survey Methods for Traffic Operations.” Highway 
Research Record, No. 19, HRB, National Research Council, Washington, D. C., pp. 
47-52, (1963). 
 
Robert, Christian P., The Bayesian Choice: A Decision-Theoretic Motivation. 
Springer-Verlag, New York, NY, (1994). 
 
Schreuder, M., S. P. Hoogendoorn, H. J. Van Zulyen, B. Gorte, and G. Vosselman, 
“Traffic Data Collection from Aerial Imagery.” Intelligent Transportation Systems 
Proceedings (IEEE), Vol. 1, pp. 779-783, (2003). 
 
Sharma, Satish C. and Al Werner, “Improved Method of Grouping Provincewide 
Permanent Traffic Counters.” Transportation Research Record, No. 815, TRB, National 
Research Council, Washington, D. C., pp. 12-18, (1981). 
 
Sharma, Satish C. and Reddy R. Allipuram, “Duration and Frequency of Seasonal Traffic 
Counts.” Journal of Transportation Engineering, 119(3), pp. 344-359, (1993). 
 
Sharma, Satish C. and Yongmei Leng, “Seasonal Traffic Counts for a Precise Estimation 
of AADT.”  ITE Journal, 64(9), pp. 21-28, (1994). 
 
Sharma, Satish C., “Minimizing Cost of Mannual Traffic Counts: Canadian Example.” 
Transportation Research Record, No. 905, TRB, National Research Council, Washington, 
D. C., pp. 1-7, (1983). 
 
Sharma, Satish C., Brij M. Gulati, and Samantha N. Rizak, “Statewide Traffic Volume 
Studies and Precision of AADT Estimates.” Journal of Transportation Engineering, 
122(6), pp. 430-439, (1996). 
 
Sharma, Satish C., Pawan Lingras, Fei Xu, and Guo Xin Liu, “Neural Networks as an 
Alternative to the Traditional Factor Approach of AADT Estimation from Traffic 
Counts.” Transportation Research Record, No. 1660, TRB, National Research Council, 
Washington, D. C., pp. 24-31, (1999). 
 
Sharma, Satish, Pawan Lingras, Fei Xu, and Peter Kilburn, “Application of Neural 
Networks to Estimate AADT on Low-Volume Roads.” Journal of Transportation 
Engineering, Vol. 127, No. 5, pp. 426-432, (2001). 
 
Shelton, W. Arthur, “Discussion - Toll Bridge Traffic Patterns.” Highway Research Board 
Proceedings, Vol.14, pp. 399-409, (1934). 



 
166

Shelton, W. Arthur, “Dispersion of Highway Traffic by Time Periods.” Highway 
Research Board Proceedings, Vol.17, pp. 413-419, (1937). 
 
Shelton, W. Arthur, “Dispersion of Highway Traffic by Time Periods - Medium and Small 
Stations in Farm Area.” Highway Research Board Proceedings, Vol.18 part I, pp. 347-358, 
(1938). 
 
Shelton, W. Arthur, “Dispersion of Highway Traffic by Time Periods - Nine Stations in 
Michigan.” Highway Research Board Proceedings, Vol.19, pp. 347-361, (1939). 
 
Shelton, W. Arthur, “Methods of Estimating Highway Traffic Volume”. Highway 
Research Board Proceedings, Vol.16, pp. 239-252, (1936). 
 
Stilla, U., E. Michaelsen, U. Soergel, S. Hinz, and J. Ender, “Airborne Monitoring of 
Vehicle Activity in Urban Areas.” International Archives of Photogrammetry and Remote 
Sensing, Vol. XXXV-B3, pp. 973-979, (2004). 
 
Syrakis, Thomas A. and John R. Platt, “Aerial Photographic Parking Study Techniques.” 
Highway Research Record, No. 267, HRB, National Research Council, Washington, D. 
C., pp. 15-28, (1969). 
 
Taylor, James Irvin, Photogrammetric Determination of Traffic Flow Parameters. 
Dissertation, The Ohio State University, (1965). 
 
Toth, C. K. and D. Grejner-Brzezinska, “Traffic Management with State-of-The-Art 
Airborne Imaging Sensors” International Archives of Photogrammetry and Remote 
Sensing, Vol. XXXV-B2, pp. 848-853, (2004). 
 
Toth, C. K., A. Barsi, T. Lovas, “Vehicle Recognition from LiDAR Data.” International 
Archives of Photogrammetry and Remote Sensing, Vol. XXXIV, part 3/W13, pp. 163-166, 
(2003). 
 
Transportation Research Board (TRB), Highway Capacity Manual. National Research 
Council,Washington, D.C., (2000). 
 

Treiterer, Joseph and James I. Taylor, “Traffic Flow Investigations by Photogrammetric 
Techniques.” Highway Research Record, No. 142, HRB, National Research Council, 
Washington, D. C., pp. 1-12, (1966). 
 
 



 
167

Treiterer, Joseph, “Development of New Intersection Techniques Using Photographic 
Instrumentation.” Society of Photo-Optical Instrumentation Engineers Proceedings, Vol. 
30, Society of Photo-Optical Instrumentation Engineers, Redondo Beach, CA, pp. 67-74, 
(1972). 
 
Wagner, F. A. JR., and Adolf D. May, JR., “Use of Aerial Photography in Freeway Traffic 
Operations Studies.” Highway Research Record, No. 19, HRB, National Research 
Council, Washington, D. C., pp. 24-34, (1963). 
 
Wohl, Martin, “Vehicle Speeds and Volumes Using Sonne Stereo Continuous Strip 
Photography.” Traffic Engineering, Vol. 29, (1959). 
 
Wolf, Paul R. and Bon A. Dewitt, Elements of Photogrammetry with Applications in GIS, 
3rd Edition, The McGraw-Hill Companies, Inc., Boston, MA, (2000). 
 
Wright, Paul H. and Karen K. Dixon, Highway Engineering, Seventh Edition. John Wiley 
& Sons, Inc., Hoboken, NJ, (2004). 
 
Xia, Q., F. Zhao, Z. Chen, L. D. Shen, and D. Ospina, “Estimation of Annual Average 
Daily Traffic for Nonstate Roads in a Florida County.” Transportation Research Record, 
No. 1660, TRB, National Research Council, Washington, D. C., pp. 32-40, (1999). 
 
Yang, Shimin and Gary A. Davis, “Bayesian Estimation of Classified Mean Daily 
Traffic.” Transportation Research Part A Vol. 36, pp. 365-382, (2002). 
 
Zhao, Fang and Soon Chung, “Contributing Factors of Annual Average Daily Traffic in a 
Florida County: Exploration with Geographic Information System and Regression 
Models.” Transportation Research Record, No. 1769, TRB, National Research Council, 
Washington, D. C., pp. 113-122, (2001). 
 
 



168 

APPENDIX A 

ANALYSIS OF DATA FROM 24 PATR-EQUIPPED  

HIGHWAY SEGMENTS IN OHIO 

 

In this appendix, we investigated Noise(D) and Noise(H) defined in Chapter 3 by 

analyzing one year’s worth of traffic data collected from 24 Ohio PATR-equipped 

highway segments across 4 functional classes (01-Rural Interstate, 02-Rural Other 

Principle Arterial, 11-Urban Interstate, 12-Urban Other Freeways and Expressways). The 

information of the 24 segments (their functional classes (FC), PATR numbers and AADT 

values) is given in Table A.1. The locations of the 24 PATRs are shown in Figure A.1. 

 

FC PATR AADT FC PATR AADT FC PATR AADT FC PATR AADT 

01 507 19984 02 058 4376 11 154 36523 12 704 35380 

01 553 27398 02 509 4595 11 737 49295 12 727 40769 

01 156 27723 02 021 6415 11 140 59520 12 554 41421 

01 531 42824 02 532 9920 11 535 59521 12 557 45507 

01 508 46641 02 136 12322 11 536 62642 12 105 68964 

01 506 48328 02 501 15802 11 157 110349    

   02 160 19725       

Note: AADT values are calculated by the AASHTO method, based on traffic data collected from March 

2003 to February 2004  

 

Table A.1: Information of 24 PATR-equipped Segments
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Figure A.1: Locations of 24 PATRs. 

 

 

A.1 Noise(D) across 4 functional classes 

Noise(D) represents the “unexplained” variation of a daily volume from the AADT 

after the adjustment of monthly and day-of-week factors. Equation (3.2.3a) is repeated as 

Equation (A.1) for convenience: 

 Noise(D(δ)) = [V24(δ)×FM(m(δ);f)×FD(d(δ);f)] / AADT.      (A.1) 
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The notation for monthly and day-of-week factors in Equation (A.1) differs slightly from 

the notation in Equation (3.2.3a) since Noise(D) is investigated by function class in this 

appendix. Here, “f” represents the functional class, and each functional class is 

considered a homogeneous group where the segments “share” a common set of monthly 

and day-of-week factors. According to Equation (A.1), Noise(D) can be regarded as a 

ratio of the estimated AADT to the true AADT on the segment, where the estimated 

AADT is developed from the daily volume by de-seasonalizing this daily volume with 

monthly and day-of-week factors. 

We determined the month-of-year and day-of-week factors for each PATR-equipped 

segment i as (McCord et al., 2002a): 

Fi
M(m) = AADTi/<Vi

24(δ) >m(δ)=m,  m = 1,2, …,12        (A.2a) 

Fi
D(d) = AADTi/< Vi

24(δ) >d(δ)=d,  d = 1,2, …,7        (A.2b) 

and the month-of-year and day-of-week factors for each functional class f as the 

harmonic mean of the individual factors: 

FM(m;f) = [Fi
M(m)]i∈I(f), m = 1,2, …,12,           (A.3a) 

FD(d;f) = [Fi
D(d)]i∈I(f),  d = 1,2, …7.            (A.3b) 

where <. >m(δ)=m and < . >d(δ)=d represent the arithmetic average over all days-of-the-year δ 

that are, respectively, in month m and on day-of-the-week d; [ . ]i∈I(f) represents the 

harmonic average over the segments that belong to functional class f; and AADTi is the 

AADT on the PATR-equipped segment i calculated by the AASHTO method. 
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f Number of “observed” Noise(D)’s Mean of Noise(D) Std. Dev. of Ln[Noise(D)] 
01 2070 1.0012 0.1165 
02 2361 1.0049 0.1287 
11 2015 0.9972 0.1166 
12 1721 1.0007 0.1278 

 

Table A.2: Statistical Characteristics of the “Observed” Noise(D)’s by Functional Class 

 

 

For each functional class, we use Equation (A.1) to produce the “observed” Noise(D) 

values according to the available daily volumes on all segments, with the “average” 

monthly and day-of-week factors given in Equation (A.3). Some statistical characteristics 

of these Noise(D) values are presented in Table A.2.  

The natural logarithms of these Noise(D) values are checked in a Q-Q normal plot 

by functional class, as shown in Figure A.2. We see that the distribution falls mostly 

along the 45o straight line, with some deviation in the tails. (It is possible that anomalies 

on holidays, which were not excluded from the analysis, account for some of the 

deviations from normality in the tails.) Although the deviation in the lower tail is marked, 

the proportion of observations in the portions of the tails that deviate from the 45o straight 

line is small. Therefore, as a modeling approximation, it appears that Noise(D) can be 

modeled by a lognormal distribution.  
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Figure A.2: Normal Q-Q plot for the natural logarithms of the “observed” Noise(D) 
values by functional class. 

 

 

It would be a desirable property that the expectation of Noise(D) is equal to 1, since 

a de-seasonalized daily volume is expected to be the AADT except for some “random” 

variation in that day. Also the sample mean of the “observed” Noise(D) values given in 

Table A.2 does not show a large deviation from one for each functional class. Therefore, 

the distribution of Noise(D) is mathematically expressed as 

 Ln[Noise(D)] ~ N(-σD
2/2, σD

2),           (A.4) 



173 

where Ln[Noise(D)] is the natural logarithm of Noise(D), which according to (A.4) 

follows a normal distribution, and σD is the standard deviation (Std. Dev.) of the normal 

distribution. In (A.4), the use of -σD
2/2 as the mean of the normal distribution ensures that 

the distribution mean of Noise(D) is equal to one (McCord et al., 2000). Based on the σD 

values of the four function classes presented in Table A.2, a default σD value is set at 0.12 

for the numerical studies described in the work. 

 

A.2 Noise(H) across 4 functional classes 

Noise(H) represents the “unexplained” variation of an hourly volume from the 

average hourly volume in the same day, after the adjustment of hourly factors. Equation 

(3.2.5a) is repeated as Equation (A.5) for convenience 

 Noise(H(h,δ)) = [VH(h,δ)×FH(h,d(δ);f))/ [V24(δ)/24].       (A.5) 

The notation for the hourly factor in Equation (A.5) also differs slightly from the 

notation in Equation (3.2.3a). Here, “f” represents the functional class, and each 

functional class is considered a homogeneous group where the segments “share” a 

common set of hourly factors. We noticed a fairly large amount of variability in the 

hourly patterns among different days-of-the-week. We, therefore, applied seven different 

sets of hourly factors, one set for each day of the week, as denoted by FH(h,d(δ);f). 

According to Equation (A.5), Noise(H) can be regarded as a ratio of the estimated daily 

volume to the true daily volume, where the estimated daily volume is developed from the 
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hourly volume expanded to account for all 24 hours in the day and the hourly variability 

as represented by the hourly factor.   

We determined the hourly factors for each PATR-equipped segment i as (McCord et 

al., 2002a): 

FH
i(h,d) = (<Vi

24(δ)>d(δ)=d/24)/<Vi
H(h,δ)>d(δ)=d,  d = 1,2, …,7; h = 1,2,…24;  

                      (A.6) 

and the hourly factors for each functional class f as the harmonic mean of these individual 

factors: 

FH(h,d;f) = [FH
i(h,d)]i∈I(f),  d = 1,2, …,7; h = 1,2,…24      (A.7) 

where < . >d(δ)=d represents the arithmetic average over all days-of-the-year δ that are on 

day-of-the-week d, and [ . ]i∈I(f) represents the harmonic average over the segments that 

belong to functional class f.  

Since images would be taken during the daytime, analysis should be limited to 

daytime hours. In addition, the images obtained in (McCord et al., 2002a), which were 

used to evaluate the 3-stage model, were all taken between 10:00am and 1:00pm. 

Therefore, we only considered the “observed” Noise(H) values from 10:00am and 

1:00pm. Specifically, for each functional class, we use Equation (A.5) to produce the 

Noise(H) values “observed” from 10:00am and 1:00pm, with the “average” hourly factors 

given in Equation (A.7). Some statistical characteristics of these Noise(H) values are 

presented in Table A.3. 
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f Number of “observed” Noise(H)’s Mean of Noise(H) Std. Dev. of Ln[Noise(H)] 
01 6207 0.9998 0.0925 
02 7077 1.0017 0.1059 
11 6042 1.0017 0.0847 
12 5160 1.0020 0.0877 

 

Table A.3: Statistical Characteristics of the Noise(H) Values “Observed” from 10:00am to 
1:00pm by Functional Class 

 

 

The natural logarithms of these Noise(H) values are checked in a Q-Q normal plot 

by functional class, as shown in Figure A.3. We see that the distribution falls mostly 

along the 45o straight line, with some deviation in the tails. (It is possible that anomalies 

on holidays, which were not excluded from the analysis, account for some of the 

deviations from normality in the tails.) Similar to the Ln[Noise(D)] values in Figure A.2, 

the proportion of observations in the tails is small. Therefore, as a modeling 

approximation, it appears that Noise(H) can be modeled by a lognormal distribution. 

Similar to Noise(D), it would be a desirable property that the expectation of Noise(H) 

is equal to 1. In addition, the sample mean of the “observed” Noise(H) values given in 

Table A.3 does not show a large deviation from one for each functional class. Therefore, 

the distribution of Noise(H) is mathematically expressed as 

Ln[Noise(H)] ~ N(-σH
2/2, σH

2),            ( A . 8 ) 

where Ln[Noise(H)] is the natural logarithm of Noise(H), which according to (A.8) 
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Figure A.3: Normal Q-Q plot for the natural logarithms of the Noise(H) values 
“observed” from 10:00am to 1:00pm by functional class. 

 

 

follows a normal distribution, and σH is the standard deviation (Std. Dev.) of the normal 

distribution. In (A.8), the use of -σH
2/2 as the mean of the normal distribution ensures that 

the distribution mean of Noise(H) is equal to one (McCord et al., 2000). Based on the σH 

values of the four function classes presented in Table A.3, a default σH value is set at 0.10 

for the numerical studies described in the work.
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APPENDIX B 

CLASSIFIED (TRUCK AND CAR) AADT ESTIMATION 

 

Increasing attention is being given in practice to classifying traffic volumes 

according to vehicle type. The TMG (FHWA, 2001) suggests a nationwide conversion 

from traditional total volume-emphasized data collection programs to such classification- 

based programs. In this appendix, an approach based on the Bayesian analysis is sketched 

out for classified AADT estimation, parallel to the one proposed in Chapter 3. For the 

sake of illustration, vehicles are grouped into two classes – large vehicles (called trucks) 

and small vehicles (called cars). Correspondingly, there are two classified AADTs – truck 

and car AADTs, denoted as KAADT and CAADT, respectively. 

This appendix considers the case that both truck and car volumes are collected 

during a short-term time period (including an equivalent short-term period corresponding 

to an image-based count) for the truck and car AADT estimation. As in the case of 

estimating total AADT, the problem here is to estimate the yearlong traffic average based 

on short-term observations. Specifically, KAADT and CAADT will be estimated based on 

short-term truck and car traffic volumes, respectively. It is assumed that the short-term 

truck and car volumes are observed during the same time period. To facilitate the
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following analysis, we denote the observed short-term truck and car volumes by a vector 

V
~

= [kV
T, cV

T]’, where the subscripts k and c represent truck and car, respectively; the 

superscript T stands for the length of the short-term period (or the length of imaged 

segment for image-based counts). In the same manner, we introduce the AADT vector A
~

= 

[KAADT, CAADT]’. This is now a 2-dimensional (bi-variate) problem. First, we 

mathematically express the approach as 

)
~

(

)
~

()
~

|
~

(
)

~
|

~
(

Vm

AAVf
VA

ππ = ,             (B.1) 

where )
~

|
~

( VAπ  is the posterior distribution of the paired truck and car AADTs 

A
~

conditional on the observed short-term paired truck and car volumesV
~

; )
~

|
~

( AVf  is 

the probability distribution of the short-term truck and car volumes conditional on the 

truck and car AADTs; )
~

(Aπ  is the prior distribution of the truck and car AADTs; )
~

(Vm  

is the marginal distribution of the short-term truck and car volumes, which can be 

obtained by integrating the numerator of the right side of Equation (B.1) over the space of 

A
~

. Equation (B.1) is similar to Equation (3.1.1a). It differs in that it represents bi-variate 

updating.  

The key issue involved with implementing Equation (B.1) is to model the 

conditional distribution )
~

|
~

( AVf and prior distribution )
~

(Aπ . Recalling the complexity 

of the conditional distribution in the one-dimensional problem, modeling the 

two-dimensional distribution )
~

|
~

( AVf  would not be less complicated.   
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If it is assumed that the truck and car traffic volumes are mutually independent, one 

could estimate KAADT and CAADT with two independent procedures. No information 

from the car AADT estimation is used for the truck AADT estimation, and vice-versa. 

The prior distribution of KAADT would be updated to a posterior distribution, conditional 

on the short-term truck volume kV
T, without the use of any information on the short-term 

car volume cV
T and the prior distribution of CAADT; similarly, the prior distribution of 

CAADT is updated to a posterior distribution, conditional on the short-term car volume 

cV
T, without the use of any information on the short-term truck volume kV

T and the prior 

distribution of KAADT. Mathematically, the conditional distribution )
~

|
~

( AVf  will 

become 

)
~

|
~

( AVf = )|( AADTVf K
T

k × )|( AADTVf C
T

c ,        (B.2) 

where )|( AADTVf K
T

k  is the distribution of the short-term truck volume kV
T conditional 

on the truck AADT, and )|( AADTVf C
T

c  is the distribution of the short-term car volume 

cV
T conditional on the car AADT. In the same way, the prior )

~
(Aπ  will become 

)
~

(Aπ = )( AADTKπ × )( AADTCπ ,           (B.3) 

where )( AADTKπ  and )( AADTCπ  are the priors of truck and car AADTs, respectively. 

Therefore, the two-dimensional problem given in Equation (B.1) would turn into two 

independent one-dimensional problems: 

Truck 
)(

)()|(
)|(

T
k

KK
T

kT
kK

Vm

AADTAADTVf
VAADT

ππ = ,       (B.4a) 
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Car 
)(

)()|(
)|(

T
c

CC
T

cT
cC

Vm

AADTAADTVf
VAADT

ππ = ,        (B.4b) 

where )|( T
kK VAADTπ  and )|( T

cC VAADTπ  are the posterior distributions for truck and 

car AADTs after the short-term observations kV
T and cV

T, respectively; )( T
kVm  and 

)( T
cVm  are the marginal distributions for kV

T and cV
T, respectively, and can be obtained 

by integrating each corresponding numerator over the related space. The conditional 

distributions and prior distributions in Equations (B.4) can be modeled in the same 

manner as proposed in Chapter 3. The systematic temporal patterns for truck and car 

volumes are critical for the modeling of the conditional distributions. 

The assumption above assumed independence in truck and car volumes. However, 

truck and car traffic volumes on the same roadway would likely have some dependence. 

For example, it is not likely that the one-day truck volume exceeds the one-day car 

volume for most highway segments. Therefore, knowledge of the car AADT could 

provide some useful information for the estimation of truck AADT. The difficulty in 

implementing Equation (B.1) lies largely in addressing the existence of inter-variable 

correlations. More data and assumptions would be required to model this correlation. 

How to do so is left for the future study.  

Since the sum of KAADT and CAADT is the total AADT, an alternative method might 

be considered for modeling truck and car AADT estimation. The truck and car AADTs 

can be uniquely determined from the total AADT and the truck proportion of the AADT 
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(TPA). Similarly, the short-term truck and car volumes can be replaced by a short-term 

total vehicle volume and a corresponding truck proportion. That is, the problem becomes 

one of estimating total AADT and TPA from observed short-term total volume and truck 

proportion. Similarly, one can think of two vectors: pV
~

= [VT, kp
T]’ and PA

~
 = [AADT, 

KP]’, where VT = kV
T + cV

T and kp
T = kV

T / VT; AADT and KP denote the AADT and the 

TPA. Then, the Bayesian approach can be expressed as 

)
~

(
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~
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|
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PPp
pP

Vm

AAVf
VA

π
π =             (B.5) 

where like Equation (B.1), )
~

|
~

( pP VAπ  is the posterior distribution, )
~

|
~

( Pp AVf  is the 

conditional distribution, )
~

( PAπ  is the prior distribution, and )
~

( pVm  is the marginal 

distribution. Rather than using car and truck volumes as in Equation (B.1), total volume 

and truck proportion are used in Equation (B.5).  

Transforming the truck and car volumes to a total volume associated with the 

corresponding truck proportion increases the possibility of the independence between the 

two variables of interest. Intuitively, given the functional class of the highway of interest, 

knowledge of total volume seems to provide little additional information on the truck 

proportion; similarly, knowledge of truck proportion seems to provide little additional 

information on the total volume. The observed truck proportion on the image might have 

some effects on the estimation of total volume, but such an effect is expected to be very 

small, as we saw in Chapter 4 and 5. Therefore, it seems reasonable to treat the estimation 
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of the AADT and the TPA as two independent procedures. The reasonableness of the 

independence and empirical grounds would be a topic for the future study. Corresponding 

to the conversion of Equation (B.1) to Equations (B.4), we convert Equation (B.5) to two 

independent equations: 

)(

)()|(
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T
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Vm

AADTAADTVf
VAADT

ππ = ,          (B.6a) 
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pm

PPpf
pP

ππ = ,            (B.6b) 

Equation (B.6a) is equivalent to Equation (3.3.1a), except for the slight difference in the 

notation. In Equation (B.6b), )|( T
kK pPπ  is the posterior distribution of the KP 

conditional on the observed short-term truck percentage kp
T; )|( Ppf K

T
k  is the 

distribution of the short-term truck percentage kp
T conditional on the KP; )( PKπ  is the 

prior distribution of the KP; )( T
k pm  is the marginal distribution of the short-term truck 

proportion kp
T, which can be obtained by integrating the numerator of the right side of 

Equation (B.6b) over the space of KP. 

Most of the work presented here has dealt with the total AADT estimation from 

short-term volumes based on the Bayesian approach. This work would extend directly to 

Equation (B.6a). To estimate the KP from the short-term truck proportion, we need to 

model the prior distribution )( PKπ  and the conditional distribution )|( Ppf K
T

k . Again 

the modeling could follow the approach proposed in Chapter 3. For example, the 

non-informative prior distribution )( PKπ can be modeled as a uniform distribution 
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between 0 and 1. The prior can also be empirically modeled based on the distribution of 

TPA’s across a set of highway segments equipped with permanent classification traffic 

recorders (PCTRs), which are believed to have a similar pattern as the segment of interest 

in terms of truck proportion. The Bayesian approach would again be implemented year 

after year, so the prior distribution in year y could be derived from the posterior 

distribution of year y-1 adjusted by the yearly change in truck proportion observed at the 

PCTR locations believed to exhibit the similar patterns as the segment of interest. Note 

we use the term of “yearly change in pattern,” rather than “growth pattern” because we 

do not want to confine changing patterns in truck proportion to increasing only. The 

conditional distribution )|( Ppf K
T

k  represents the probability of observing the kp
T 

conditional on the KP. The variations in the truck proportion for different time scales 

could be modeled through the investigation of traffic data collected at PCTR locations. 

The conditional distribution could then be developed in a manner similar to that used in 

Chapter 3.  

It would be interesting to compare the approaches proposed in Equations (B.1) and 

(B.5). If the approaches are modeled and implemented correctly, both approaches should 

produce the same result for the classified AADT estimation. 

Before concluding this appendix, a brief discussion is presented on the computation 

of the posterior distribution. If the independence assumption does not hold, the problem 

of the truck and car AADT estimation will be two-dimensional. Consequently, the 
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computation of the posterior distribution would be more difficult than that for 

one-dimensional problems. Fortunately, a large number of references are available for 

this subject. During the last decade, Markov Chain Monte Carlo (MCMC) methods have 

been used in the area of Bayesian inference, especially for high-dimensional problems 

(Martinez and Martinez, 2002). The MCMC method would be a good point to start when 

considering a way to numerically estimate the posterior distribution for truck and car 

AADT estimation. 

In this appendix, we sketched two alternative methods for the truck and car AADT 

estimation. The independence assumption would simplify the problem, but it might not 

be reasonable. Whatever the approach, the successful implementation of an approach for 

estimating truck and car AADT would largely depend on a good understanding of the 

patterns of truck and car traffic volumes across the highway system. Such an 

understanding would begin with analysis of the data at PCTR locations. 
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