
NEW TECHNIQUES FOR EFFICIENTLY DISCOVERING
FREQUENT PATTERNS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Ruoming Jin, B.E., M.E., M.S.

* * * * *

The Ohio State University

2005

Dissertation Committee:

Gagan Agrawal, Adviser

Srinivasan Parthasarathy

Hakan Ferhatosmanoglu

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c
�

Copyright by

Ruoming Jin

2005

ABSTRACT

Because of its theoretical and practical importance, the field of frequent pattern mining

has been and remain to be one of the most active research area in KDD. In this dissertation,

we study three different problems in frequent pattern mining, mining multiple datasets,

mining streaming data, and mining large-scale structures from graph datasets. Our study

has not only extended the breadth of frequent pattern mining, but also brought new tech-

niques and algorithms into this field. Specifically, our contributions are as follows.

1. Mining Multiple Datasets: We develop a systematic approach to generate efficient

query plans for a single mining query across multiple datasets. We also propose

methods to simultaneously optimize multiple such queries and utilize the past mining

results in a query-intensive KDD environment. Our experimental results have shown

a speedup up to two-order of magnitude comparing with the naive methods without

these optimizations.

2. Mining Frequent Itemsets over Streaming Data: We propose a new algorithm Stream-

Mining to discover the frequent itemsets over streaming data. In a single pass,

StreamMining will guarantee to find a superset of frequent itemsets, but false posi-

tive may occur. If the second pass is allowed, StreamMining will be able to remove

the false positive and find the exact frequent itemsets. Our detailed evaluation using

both synthetic and real datasets has shown our one-pass algorithm is very accurate in

practice, and is also very memory efficient.

ii

3. Mining Frequent Large-Scale Structures from Graph Datasets: We develop a new

framework to discover the frequent large-scale structures from graph datasets. This

framework is derived from a mathematical concept, topological minor. In this frame-

work, we propose a new algorithm TSMiner, which efficiently enumerates all the fre-

quent large-scale structures in a graph dataset, and a new approach called relabeling

function to perform constraint mining. We apply our framework to protein structure

data and discover meaningful topological structures. Finally, we demonstrate the vi-

ability and scalability of the proposed algorithms on both real and synthetic datasets.

iii

To my parents,

Shiwei Jin and Jiuyun Zhu

iv

ACKNOWLEDGMENTS

Foremost, I wish to thank my thesis adviser, Professor Gagan Agrawal. His vision

and insight have led me into the field of data mining, and introduced me many interesting

research problems. Some of them eventually became the topics of this dissertation. His

patience, kindness, and encouragement have helped me to go through many difficulty times.

His advice and research experience have helped to shape my research skills. Without him,

this dissertation would not be possible.

I am also grateful to Professor Srinivasan Parthasarathy, who advised me and helped me

in many aspects of my research. I thank him for spending his valuable time to discussing

problems with me, carefully reading some of my papers, and providing valuable feedback.

I have greatly benefited from discussions with him. I will also give a special thank to

Professor Hakan Ferhatosmanoglu for providing useful feedback to improve the quality of

this dissertation.

I would also like to thank my collegues, Kaushik Sinha, Chao Wang, and Dmitrii Pol-

shakov. They have been collaborating with me and giving me great help in completing

this dissertation. Specifically, Kaushik has helped to implement the system prototype and

help with experimental evaluations for Chapter 3. Chao has helped with running experi-

ments and generating figures for Chapter 6. Dmitrii has provided the protein datasets and

analyzed the experimental results for Chapter 6.

v

I am also obliged to my friends and my collegues at the Ohio State University who have

given all kinds of help and supports. They are: Wenbin Ma, Zhuyu Liu, Matthew Otey, Leo

Glimcher, Wei Du, Xiaogang Li, Hui Yang, Liang Chen, and Xuan Zhang. Thank you very

much!

Finally, I would like to thank my parents, my brother, and all my relatives in China

for supporting me through all these years. Your love is the strength to keep me moving

forward!

vi

VITA

March 21, 1974 . Born - ChangChun, JiLin Province,
China

1996 . B.E. Computer Engineering

1999 . M.E. Computer Engineering

2001 . M.S. Computer Science

2003-present .Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

Research Publications

1. Fast and Exact Out-of-Core and Distributed K-Means Clustering, Ruoming Jin, An-
jan Goswami, and Gagan Agrawal, invited for publication in Knowledge and Infor-
mation System (KAIS journal).

2. Communication and Memory Optimal Parallel Data Cube Construction, Ruoming
Jin, Karthik Vaidyanathan, Ge Yang, and Gagan Agrawal, accepted in the IEEE trans-
actions on Parallel and Distributed Systems (TPDS).

3. A Methodology for Detailed Performance Modeling of Reduction Computations on
SMP Machines, Ruoming Jin and Gagan Agrawal, accepted in the special issue of
“Performance Evaluation: An International Journal” on Performance Modeling and
Evaluation of High-Performance Parallel and Distributed Systems.

4. Shared Memory Parallelization of Data Mining Algorithms: Techniques, Program-
ming Interface, and Performance, Ruoming Jin, Ge Yang, and Gagan Agrawal, in
the IEEE Transactions on Knowledge & Data Engineering (TKDE), Vol. 17, No. 1,
January, 2005

vii

5. Implementing Data Cube Construction Using a Cluster Middleware: Algorithms,
Implementation Experience, and Performance Evaluation, Ge Yang, Ruoming Jin,
and Gagan Agrawal, in Future Generation Computer Systems (FGCS), v. 19, i. 4, p.
533 - 550, 2003 .

6. Research on Static Prediction and Visual Analysis of Program Execution Time, Changai
Sun, Maozhong Jin, Chao Liu, and Ruoming Jin, Journal of Software (Chinese), Vol.
14, No. 1, 2003, p: 68-75.

7. Testing Technology of Real-time and Embedded Software, Changai Sun, Ruoming
Jin, Chao Liu, and Maozhong Jin, Journal of Mini Micro Systems (Chinese), Vol.
21, No. 9, 2000, p: 920-924.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in Data Intensive Computing: Prof. Gagan Agrawal

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xiii

List of Figures . xv

Chapters:

1. Introduction . 1

1.1 What is Frequent Pattern Mining? . 2
1.2 Background . 3
1.3 Thesis Contribution . 5

1.3.1 Mining Multiple Datasets . 5
1.3.2 Mining Frequent Itemsets over Data Stream 7
1.3.3 Mining Frequent Topological Structures from Graph Datasets . . 7

1.4 Organization of the thesis . 8

2. A Systematic Approach for Optimizing Complex Mining Tasks on Multiple
Databases . 9

2.1 Introduction . 9
2.2 Motivating Examples . 11
2.3 SQL Extensions and Algebra for Mining Across Multiple Datasets 13

2.3.1 SQL Extensions . 13

ix

2.3.2 Basic Algebra for Queries . 15
2.3.3 Mapping from SQL Queries to Basic Algebra 18

2.4 Query Optimization Overview . 19
2.4.1 Challenges in Mining Query Optimization 19
2.4.2 New Operators . 20
2.4.3 Containing Relation . 22
2.4.4 Overview of Query Plan Generation 23

2.5 Query Plan Generation . 24
2.5.1 A Unified Query Evaluation Scheme 24
2.5.2 New Query Plans . 28

Using Constraint Based Operator 29
Using the Group Operator . 32

2.6 Generalized Queries and Transformations 33
2.6.1 Generalized Queries . 34
2.6.2 Transformations for Query Optimization 35

2.7 Experimental Evaluation . 39
2.7.1 Implementation of Operators 40
2.7.2 Datasets . 41
2.7.3 Test Queries . 43
2.7.4 Experimental Results . 44

2.8 Mining Generalized Patterns on Multiple Datasets 46
2.8.1 SQL and Algebra for Mining Complex Patterns on Multiple Datasets 47
2.8.2 New Operators and Query Plans 48
2.8.3 Implementation . 49

2.9 Related Work . 50
2.10 Conclusions . 51

3. Simultaneous Optimization of Complex Mining Tasks with a Knowledgeable
Cache . 53

3.1 Introduction . 53
3.2 System Architecture and Optimization Overview 56
3.3 Properties of � -Table for Query Optimization 59

3.3.1 Containment Relationships of � -Tables 59
3.3.2 The Merge Operation for � -Tables 63

3.4 Multiple Query Optimization Approach 64
3.4.1 Single Query Plan Generation 64
3.4.2 Mapping Mining Operators to � -Tables 68
3.4.3 Optimizing Local Plans . 69
3.4.4 Global Query Plans . 72
3.4.5 Knowledgeable Cache Management and Utilization 73

3.5 System Implementation and Experimental Evaluation 75

x

3.5.1 Cache Implementation . 76
3.5.2 Datasets . 76
3.5.3 Test Queries . 77
3.5.4 Experimental Settings . 78
3.5.5 Experimental Results . 78

3.6 Related Work . 82
3.7 Conclusions . 84

4. An Algorithm for In-Core Frequent Itemset Mining on Streaming Data 85

4.1 Introduction . 85
4.2 Basic Ideas . 87

4.2.1 Finding Frequent Items . 88
4.2.2 Issues In Frequent Itemset Mining 90
4.2.3 Key Ideas . 91

4.3 Algorithm . 93
4.3.1 Mining Frequent Itemsets from Fixed Length Transactions 94
4.3.2 Providing an Accuracy Bound 98
4.3.3 Dealing with Variable Length Transactions 101

4.4 Implementation and Experimental Results 104
4.4.1 Implementation issues . 104
4.4.2 Experimental Evaluation . 105
4.4.3 Synthetic Datasets . 105
4.4.4 Real Dataset . 115

4.5 Related Work . 117
4.6 Conclusions . 119

5. Discovering Frequent Topological Structures from Graph Datasets 121

5.1 Introduction . 121
5.2 Topological Minors and Topological Structures 124

5.2.1 Topological Minors . 125
5.2.2 Topological Structures . 126
5.2.3 Labeled Graphs . 127

5.3 Algorithm for Mining Topological Structures 129
5.3.1 Counting Support for Topological Structures 130
5.3.2 Vertical Mining Approach . 137

5.4 Mining Topological Structures with Relabeling Functions 139
5.4.1 Relabeling Functions and Their Implementation 140
5.4.2 Mining Topological Structures with Constraint Conditions 141
5.4.3 Mining Fuzzy Chains using Relabeling Functions 142

5.5 Case study: Membrane Protein Structure Analysis 143

xi

5.6 Experimental Results . 145
5.6.1 Datasets Description . 145
5.6.2 Performance Evaluation . 146

5.7 Related Work . 148
5.8 Conclusions . 150

6. Contributions and Future Work . 155

Bibliography . 160

xii

LIST OF TABLES

Table Page

2.1 Datasets ��� and ��� . 13

2.2 � Table for the Datasets ��� and ��� . 14

2.3 Basic Operators on � Table . 17

2.4 Intersection and Union Operation . 17

2.5 M Table for the query � . 26

2.6 Colored M Table for the query � . 26

2.7 Test Query Templates for Our Experiments 40

2.8 Performance (in seconds) on IPUMS datasets 41

2.9 Performance (in seconds) on DARPA datasets 42

2.10 Performance (in seconds) on QUEST datasets with query parameters ���
	������
and ����	 ������

. 43

2.11 Performance (in seconds) on QUEST datasets with query parameters ���
	��������
and ����	 ��������

. 43

3.1 M-Tables with Containment Relationships 60

3.2 Merge Operation for M-Tables . 63

3.3 Colored M Table for the query � . 65

xiii

3.4 M-Tables of different mining operators 69

3.5 Merged M-Table for Query ��� and ��� � . 73

3.6 M Table for the Cache . 74

3.7 Pre-Colored M-Table for Query ��� and ��� � 74

3.8 Test Query Templates for Our Experiments 77

3.9 Group-I Results on Synthetic (Quest) Datasets (All Execution Times in
Seconds) . 79

3.10 Group-I Results on Real (IPUMS) Datasets (All Execution Times in Seconds) 80

3.11 Group-II Results on Synthetic (Quest) Datasets: (All Execution Times in
Seconds) . 80

3.12 Group-II Results from Real (IPUMS) Datasets (All Execution Times in
Seconds) . 80

3.13 Caching Effects: IPUMS(in Seconds) . 82

5.1 Number of Large Patterns Discovered by TSMiner 144

xiv

LIST OF FIGURES

Figure Page

2.1 Query � � . 25

2.2 Algorithms for Phase Two . 30

2.3 Using GF operator for Phase One . 31

3.1 System Framework . 58

3.2 Algorithm-CF for Query Plan Generation 67

3.3 Greedy Algorithm to Remove Containment in Multiple Query Plans 71

4.1 Karp et al. Algorithm for Frequent Items 89

4.2 Improving Algorithm with An Accuracy Bound 93

4.3 StreamMining-Fixed: Algorithm Assuming Fixed Length Transactions . . 95

4.4 Subroutines Description . 96

4.5 StreamMining-Bounded: Algorithm with a Bound on Accuracy 99

4.6 StreamMining: Final Algorithm . 102

4.7 Execution Time with Changing Support Level (T10.I4.N10K Dataset) . . . 108

4.8 Memory Requirements with Changing Support Level (T10.I4.N10K Dataset)
108

xv

4.9 Execution Time with Increasing Dataset Size (threshold=0.1%, T10.I4.N10K
Dataset) . 108

4.10 Execution Time with Increasing Dataset Size (threshold=0.4%, T10.I4.N10K
Dataset) . 109

4.11 Memory Requirements with Increasing Dataset Size (T10.I4.N10K Dataset)
109

4.12 Execution Time with Changing Support Level (T15.I6.N10K Dataset) . . . 109

4.13 Memory Requirements with Changing Support Level (T15.I6.N10K Dataset)
110

4.14 Execution Time with Increasing Dataset Size (threshold=0.1%, T15.I6.N10K
Dataset) . 110

4.15 Execution Time with Increasing Dataset Size (threshold=0.4%, T15.I6.N10K)
Dataset . 110

4.16 Memory Requirements with Increasing Dataset Size (T15.I6.N10K Dataset)
111

4.17 Execution Time with Changing Support Level (T25.I4.N100K Dataset) . . 111

4.18 Memory Requirements with Changing Support Level (T25.I4.N100K Dataset)
111

4.19 Execution Time with Increasing Dataset Size (threshold=0.08%, T10.I4.N10K
Dataset) . 112

4.20 Execution Time with Increasing Dataset Size (threshold=0.05%, T10.I4.N10K
Dataset) . 112

4.21 Memory Requirements with Increasing Dataset Size (T10.I4.N10K Dataset)
112

4.22 Execution Time with Changing Support Level (BMS-WebView-1 Dataset) 113

4.23 Memory Requirements with Changing Support Level (BMS-WebView-1
Dataset) . 113

xvi

5.1 Topological Minor . 125

5.2 Running Example . 129

5.3 Decomposition and Occurrence Lists . 132

5.4 Enumerate Independent Paths . 135

5.5 Support Counting Procedures for Mining Topological Structures 151

5.6 Algorithm Framework for Mining Topological Structures 152

5.7 Constraint Condition Table . 152

5.8 Frequent Topological Structures Discovered by TSMiner 153

5.9 (a) Varying Support(D10kV5) (b) Varying Dataset Size(D*kV5, Sup=40%))
(c)Varying Support (D10kV20) (d) Varying Dataset Size (D*kV20, Sup=20%)153

5.10 Chemical340 (a)No. of Patterns(Support=200) (b)Running Time(Support=200)
(c)No. of Patterns(Varying Support) (d)Running Time(Varying Support) . . 153

5.11 Relabeling with the Path Length on Chemical340 (Support=200) (a) No.
of Patterns (b) Running Time; DFA Constraints on Chemical340 (Sup-
port=200) (c)No. of Patterns (d)Running Time 154

xvii

CHAPTER 1

INTRODUCTION

Since its introduction in [6], frequent pattern mining has received a great deal of at-

tention. In the first several years, the research focused on mining frequent itemsets, or se-

quences from transaction datasets. More recently, many researchers have started to working

with more complex structured datasets, such as protein, chemical compounds, and XML

datasets. Mining frequent trees and graphs from such datasets has reinvigorated the field of

frequent pattern mining. In over a decade, frequent pattern mining has been and still is one

of the most popular research topics in KDD.

The significance of finding frequent patterns from datasets is two-folds. On one hand,

frequent patterns can effectively summarize the underlying datasets, and provide key in-

sights into the data. In many cases, such frequent patterns can even help the domain ex-

perts to gain knowledge of hidden mechanisms, which the data may represent. On the

other hand, frequent pattern mining serves as the basic tool for many other data mining

tasks, including association rule mining, classification, clustering, and change detection,

among others [59, 120, 53, 63].

1

1.1 What is Frequent Pattern Mining?

Let the dataset
�

be a collection of objects, i.e.
� 	���� ����������	
	
	����� ����� . Let � be the set

of all possible (interesting) patterns occurring in
�

. Usually, we can define the containing

(�) relation over � such that � satisfies the down-closure property: if ����� , and for any

� ��� , � ��� . Further, we can define a counting function �������! #" $, where is

the set of objects, and $ is the set of nonnegative integers. Given parameters �!�%� , and

�&�' , �)(*�+���-, returns the number of times � occurs in � . The support of a pattern �.�'� in

the dataset
�

is defined as

/�0 �-�1(*�2,
	
354 � ���6
37498;: (<�)(*�+��� 3 ,7,

where, : is an indicator function: if �)(*�=�>� 3 ,@? �
, : (<�)(A�=��� 3 ,7, 	

�
; otherwise, : (<�)(A�=��� 3 ,5,
	�

. Given a support level B , the frequent patterns of � in
�

is the set of patterns in � which

have support greater than or equal to the B . Note that the counting function usually has the

following property: given two patterns � and � , if � �C� , then for any � , �)(� ���D,FEG�)(*�=�>�-, .
Given the above conditions, we have the well-known down-closure property for fre-

quent pattern mining: if � is a frequent pattern, then for any pattern � �H� , � is also

a frequent pattern. Also, in most of the cases, the set � describes a class or a type of

patterns, and usually will not explicitly be given for a frequent pattern mining problem.

Let us look at two typical types of frequent pattern mining problems: frequent itemsets

and mining frequent patterns from graph datasets.

Frequent Itemsets Mining: In this setting, the objects in the dataset
�

are transactions or

sets of items. Let Item be the set of all possible items in the dataset
�

. Then the dataset
�

can be represented as
� 	I� : ����	
	
	�� : � ����� , where : 3KJ :MLON�P �OQSRT�

�VU R UXW � W
. The set of

all possible patterns � is the power-set of Item. Note that the set of all possible objects is

2

the same as � in this setting. The counting function � is defined upon on the set containing

(J) relationship. In other words, if the itemset � is contained in : 3 (� J : 3), the function

�)(*�=� : 3 , returns
�
; otherwise, it returns

�
.

For instance, given a dataset
�

= �M� A,B,D,E � , � B,C,E � , � A,B,E � , � A,B,C � , � A,C � ,
� B,C �M� , and a support level B 	 � ���

, the frequent patterns are ��� � ��� � � � ��� � , and

� � ��� � .
Mining Frequent Patterns from Graph Datasets (Graph Mining): In this setting, the

dataset
�

is a collection of (labeled) graphs, i.e.
� 	 ��� � ��� ����	
	
	 ��� � ��� � , where

� 3 � � U

R U W � W
are (labeled) graphs. Given a set of vertex labels, ��� and a set of edge labels �
	 ,

two types of frequent mined patterns are subtrees or subgraphs which are labeled by ��� and

��	 . The counting function � is defined upon the subgraph isomorphism test. In other words,

the function �)(A�=��� 3 , returns the number of distinct subgraphs (subtrees) of � 3 which are

isomorphism to the subgraph (or subtree) � .

Clearly, the down-closure property holds for both frequent itemset mining and graph

mining. The main factors in frequent pattern mining can be largely determined by the

complexity of objects in the dataset, and/or the complexity of the targeting patterns, the

size of the dataset, and/or the number of datasets targeting. In the following section, we

will give an overview of the existing research to deal with these issues.

1.2 Background

Frequent Pattern Mining Algorithms: One of the main efforts in this field has been to

develop efficient mining algorithms. Depending on the complexity of objects in the dataset

and the complexity of the targeting patterns, the mining algorithms can vary quite differ-

ently. However, the search strategies of these algorithms can be largely into two categories:

3

the level-wise approach and depth-first search (DFS) approach. For example, for frequent

itemsets mining, Apriori [5] uses the first method, Eclat [117] and FP-Tree [48] uses the

latter method; for graph mining, FSG [67] belongs the first category, gSpan citeYan02,

FFSM [53], and Gaston [78] belongs the second category.

Mining Maximal, Closed Patterns, or Pattern with Constraint Conditions: One of the

main issues in frequent pattern mining is the size of frequent patterns can often be very

large. Such huge number of patterns can not only slow the mining algorithms, but also

are very hard for data miners to analyze. Therefore, researchers have designed a cluster of

methods to reduce the number of pattern being generated. In particular, maximal frequent

patterns (MFP) are those patterns that are frequent but none of their supersets are frequent.

Closed frequent patterns (CFP) are patterns that are frequent but have higher frequency

than all of their supersets. (If pattern � is a subset of pattern � , � is called the superset of

� .) Another approach allows users to specify a subset of frequent patterns being generated

through constraint conditions. Many mining algorithms have been developed to mine MFP,

CFP, and frequent patterns with constraint conditions. Similarly, to enumerate all frequent

pattern, these algorithms perform either in the level-wise fashion [90, 84, 76] or the DFS

fashion [42, 17, 54, 108, 85].

Mining Very Large Datasets (Scalability): If the datasets are too large to fit in the main

memory, many mining algorithm will become very slow. This issue is often referred to as

the scalability issue, and several methods have been proposed to scale mining algorithms.

One type of methods use the small partitions of the datasets [95], or the sampling [100]

to find the potential frequent itemsets, then scan the entire datasets to count the frequency

of these patterns. Another type of methods design disk-resident data structured [31] or

indexing [104] to facilitate the mining process.

4

Database Support for Frequent Pattern Mining: Implementing frequent pattern mining

as a type of query in the database systems allow the users to perform the mining tasks

easily. Several research groups have proposed extensions of the database query languages

to support mining tasks, especially for frequent pattern mining [47, 57, 74]. Sarawagi

and Agrawal [93] have studied implementing Apriori association mining algorithm on a

database system. ATLas [112] applies user-defined functions (UDFs) to express the fre-

quent pattern mining tasks.

Mining Contrast Patterns Given two datasets, the difference between their frequent pat-

terns or the set of patterns having very different frequency (high contrast set) can be very

useful to summarize or represent the difference between two datasets. A number of re-

searchers have developed efficient algorithms for mining the difference or contrast sets

between two datasets [12, 29, 106].

There are many other research topics in this field, such as summarizing or pruning fre-

quent patterns to reduce the resulting patterns [61, 2], mining frequent patterns in parallel

computers or distributed environments [4, 21, 116], privacy-aware frequent pattern min-

ing [32, 103, 89], and the theoretical foundation of frequent pattern mining [15, 114, 110].

1.3 Thesis Contribution

In this thesis, we study the frequent pattern mining from three different perspectives,

namely, the number of datasets, streaming data, and complex topological patterns from

graph datasets.

1.3.1 Mining Multiple Datasets

Problems: In many real world situations, such as in data warehouse and scientific discov-

ery, users usually have a view of multiple datasets collected from different data source or at

5

different time. In such scenarios, comparing the patterns from multiple datasets and under-

standing their relationships can be an extremely important part of the data mining process.

Note that this problem can be looked as a generalization of finding the contrast or changing

patterns, where only two datasets are targeted.

The problems that we are interested in mining multiple datasets are as follows. Given a

single mining task on multiple datasets, what are the key optimization techniques? In other

words, how we can evaluate such a mining task efficiently? Further, consider a mining

intensive environment: a user analyze one or more datasets by issuing a sequence of related

complex mining queries, and several users may be analyzing a set of datasets concurrently,

and may issue related complex queries. In such an environment, how can we evaluate

mining queries efficiently?

Our Contributions: To deal with the first problem, we transform the problem of min-

ing frequent patterns across multiple datasets into a query evaluation problem. Then, we

present several heuristic algorithms for finding efficient query plans. Our query optimiza-

tion techniques demonstrate up to an order of magnitude performance gains as compared

to the naive execution on both real and synthetic datasets.

To deal with the second problem, we have developed a novel system architecture. In

particular, we have proposed new algorithms to perform multiple-query optimization for

frequent pattern mining queries which involve multiple datasets. We have also designed a

knowledgeable cache which can store the past query results from queries, and enable the

use of these results to further optimize multiple queries. We have demonstrated a speedup

of up to a factor of 9 on top of the optimized query plans for single query evaluation.

6

1.3.2 Mining Frequent Itemsets over Data Stream

Problem: Recently, a new data analysis model, streaming data, has received a lot of at-

tention. In this model, the data arrives continuously and may not be stored onto the disks.

Therefore, a mining algorithm can only scan the datasets once and get the mining results.

The streaming data model can be looked as an extreme case of very large datasets. Several

algorithms have been proposed to deal with this challenge. However, they either require

out-of-core data structure, or potentially miss some frequent patterns [70, 113].

Our Contribution: We propose a new algorithm StreamMining with a parameter of sup-

port B and a desired accuracy � : In a single pass, StreamMining will find a superset of

frequent itemsets with support B , and each itemset in the superset will appear more than

the frequency (��� �>,7B . If a second pass allowed, StreamMining will guarantee to find the

exactly all frequent itemsets by eliminating the false positive.

StreamMining has been the first in-core algorithm, meaning computation can be per-

formed without using disks, for frequent itemsets mining over data streams. In addition,

the detailed evaluation using both synthetic and real datasets has shown that our one pass

algorithm is very accurate in practice, and is very memory efficient.

1.3.3 Mining Frequent Topological Structures from Graph Datasets

Problem: Many objects, such as chemical compounds, proteins, web-logs, and XML can

be represented by graphs. In this problem, we study mining frequent large-scale structures

from graph datasets. Such frequent patterns are very important and useful in many real

world applications, such as biology, social networks, and telecommunication.

Our Contribution: The main contribution of our work is a framework to mine frequent

large-scale structures from graphs. In particular, we develop an efficient vertical mining

7

algorithm to mine such patterns, and propose a new approach to summarize and control the

discovery of constrained patterns. We also study the scalability and quality of the proposed

framework on several real and synthetic datasets, and demonstrate the use of the framework

for discovering novel and meaningful motifs in membrane protein structures.

1.4 Organization of the thesis

The rest of thesis is organized as follows. In Chapter 2, we will introduce the problem of

mining multiple datasets, and show the optimization techniques to evaluate a single mining

task. In Chapter 3, we study the approach to optimize multiple such mining tasks together,

and develop a knowledgeable cache to utilize the past mining results. Our new algorithm to

mine frequent itemsets from streaming data will be discussed in Chapter 4. We will present

our framework to mine frequent large-scale structures from graph datasets in Chapter 5.

Finally, in Chapter 6, we will conclude the thesis and discuss the future work.

8

CHAPTER 2

A SYSTEMATIC APPROACH FOR OPTIMIZING COMPLEX
MINING TASKS ON MULTIPLE DATABASES

2.1 Introduction

It has been well recognized that data mining is an interactive and iterative process, i.e.,

a data miner cannot expect to get interesting patterns and knowledge by a single execu-

tion of one algorithm. In order to support this process, one of the long-term goals of data

mining research has been to build a Knowledge Discovery and Data Mining System (KD-

DMS) [24, 49, 58]. The vision is that such a system will provide an integrated and user-

friendly environment for efficient execution of data mining tasks or queries. Along this

line, much research has been conducted to provide database support for mining operations.

This includes the work on query language extensions [47, 57, 74, 112] and implementing

mining algorithms in a database system [20, 93]. Logic and algebra based methods have

also been proposed to model the mining process [18, 37, 64]. The subfield of constraint

association mining allows mining of interesting association rules by taking of a variety of

constraint conditions as input [16, 68, 77, 98].

In the above research projects, the focus has typically been on mining a single dataset.

However, in many situations, such as in a data warehouse, the user usually has a view

9

of multiple datasets collected from different sources. In such scenarios, comparing the

patterns from different datasets and understanding their relationships can be an extremely

important part of the KDD process. This, however, requires support for complex queries

on multiple datasets in a KDDMS.

Such support involves significant and new optimization challenges. Suppose a user

needs to find patterns that frequent with a certain support in both � and
�

. While this can

be answered by taking intersection of the results from both � and
�

, this is likely to be

very expensive. Instead, we can compute patterns frequent in either of the two datasets, and

then simply find which of these are frequent in the other dataset. However, this leads to two

different evaluation plans, corresponding to using the dataset � and
�

, respectively, for the

initial evaluation. The two evaluation plans can have different costs, depending upon the

nature of the datasets � and
�

. Furthermore, as the number of datasets and the complexity

of the query condition increases, the number of possible evaluation plans can also grow.

Thus, there is a need for techniques for enumerating different query plans and choosing

the one with the least cost, similar to what have been developed for traditional database

queries [19]. However, compared with query optimization in traditional databases, the

problem we consider is quite different in the following ways. First, the basic operators

in our algebra are mining operators, which are more complex than the relational algebra

operations. Second, the search space of query plans can be very large in our case. Third,

the cost associated with a given mining operator is very hard to estimate.

In this chapter, we start with a simple mechanism for specifying mining queries across

multiple datasets. Then, by representing these queries through an algebra, and developing

a set of transformation and optimization techniques, we establish an approach for opti-

mizing these queries. Our work is specifically in the context of frequent pattern mining.

10

Algorithms for frequent pattern mining have formed the basis for a number of other mining

problems, including association mining, correlations mining, and mining sequential and

emerging patterns [48].

To summarize, this chapter makes the following contributions:

1. We present an SQL based mechanism and establish an algebra for querying frequent

patterns across multiple datasets.

2. We introduce several new operators and develop a number of transformations on this

algebra to enable aggressive optimizations.

3. We present several heuristic algorithms for finding efficient query plans.

4. We evaluate our query optimization techniques on both real and synthetic datasets,

and demonstrate up to an order of magnitude performance gains as compared to the

naive execution.

2.2 Motivating Examples

To further motivate and facilitate our study, we consider different scenarios and list

many examples of the kind of queries our framework targets.

Mining the Data Warehouse for a Nation-wide Store: Consider a store that has three

branches, in New Jersey, New York, and California, respectively. Each of them maintains

a database with last one week’s retail transactions. To understand how the geographical

factors impact shopping patterns, queries of the following type are likely to be asked:

Q1: Find the itemsets that are frequent with support level 0.1% in any of the stores.

Q2: Find the itemsets that are frequent with support level 0.1% in each store.

11

Q3: Find the itemsets that are frequent with support level 0.05% in both the stores on east

coast, but are very infrequent (support less than 0.01%) in the west coast store.

Finding Signature Itemsets for Network Intrusion: In a signature detection system, fre-

quent itemsets can serve as the patterns to signal well-known attacks [79]. Suppose a tcp-

dump dataset contains the TCP packet information of several different network intrusion

attacks. We can split the available data into several datasets, with one dataset corresponding

to each intrusion type and a normal dataset corresponding to the situation when no intru-

sion is occurring. Queries of the following type have been used to capture the signature

patterns [79]:

Q4: Find the itemsets that are frequent with a support level 80% in either of the intrusion

datasets, but are very infrequent (support less than 50%) in the normal dataset.

Q5: Find the itemsets that are frequent with a support level 70% in each of the intrusion

datasets, but are very infrequent (support less than 60%) in the normal dataset.

Q6: Find the itemsets that are frequent with a support level 85% in one of the intrusion

datasets, but are very infrequent (support less than 65%) in all other datasets.

Besides frequent items, mining other frequent patterns, including subgraphs, subtrees,

or topological patterns, is also very useful in many domains. Examples of domain where

such patterns have been shown to be useful are study of chemical compounds, protein

tertiary structure analysis, motifs discovery, among others [73, 53]. Again, comparing pat-

terns across multiple datasets is important in each of these areas. For example, a biologist

may be interested in finding sequences that are frequent in a human gene, but infrequent in

chicken gene, and/or, the sequences are frequent in both the species.

12

Dataset
���

Dataset
���

TransID Items TransID Items

1 � A,B,E � 1 � A B D E �
2 � B,D � 2 � B C E �
3 � A, B, E � 3 � A, B, E �
4 � A,C, D � 4 � A, B, C �
5 � B,C,D � 5 � A, C �
6 � A,C ,D � 6 � C, D �
7 � A, B �
8 � A, B, C, D, E �

Table 2.1: Datasets ��� and ���

In order to simplify our discussion, we will focus on frequent itemset mining tasks in

the rest of this chapter. In Section 2.8, we discuss how our method can be generalized to

frequent structure mining.

2.3 SQL Extensions and Algebra for Mining Across Multiple Datasets

In this section, we first introduce an SQL based mechanism for quering frequent item-

sets across multiple datasets (Subsection 2.3.1). Then, we establish an algebra for express-

ing the information required to answer such a mining query (Subsection 2.3.2). Finally,

we discuss the mapping from a mining query in its SQL format to an algebra expression

(Subsection 2.3.3).

2.3.1 SQL Extensions

Let ��� � � � ����	
	
	 � ��� � be the set of datasets we are targeting. Each of these comprises

transactions, which are set of items. The datasets are also homogeneous, i.e, an item has an

identical name across different datasets. Let :MLON�P be the set of all the possible items in all

datasets.

13

� � � � �
� A � 6/8 4/6
� B � 6/8 4/6
� C � 4/8 4/6
� D � 6/8 2/6
� E � 3/8 3/6
� A,B � 4/8 3/6
� A,C � 3/8 2/6

: : :
� A,B,C,D,E � 1/8 0

Table 2.2: � Table for the Datasets ��� and ���

We define the following schema,

��� N �D0 N ����� (: � � �>� � ����	
	
	�� ��� ,

For a table � of this schema, the column with attribute � � : stores all possible itemsets, i.e,

the power-set of :MLON�P . The column with attribute � � �	� stores the frequency of the itemsets

in the dataset �
� . For example, consider two transaction datasets � � and ��� , as shown in

Table 2.1. The set of distinct items in the two datasets, : LON�P , is ���K� � ��� � � ��� � . Table 2.2

contains a portion of the � table for the datasets � � and ��� .
Such a table can only be used as a virtual table or a logical view, as the total number

of itemsets is likely to be too large for the table � to be materialized and stored. In our

SQL extensions, a frequent itemset mining task on multiple datasets is expressed as an SQL

query to partially materialize this table. The following query � � is an example.

Query � � :
SELECT � � : � �

� � � � � � � � � � � � � �

FROM Frequency(: � �K�
� ��� � �) �

WHERE (� � � E ����
AND � � � E ����

AND � � � E ������
)

14

OR (� � � E ����
AND � � � E � � �

AND

(� � � E � �����
OR � � � E ������

))

Here, we want to find the itemsets that are either frequent with support level
����

in both

� and
�

, and frequent in
�

with support level
������

, or frequent (with support level
� � �

) in

both � and
�

, and also frequent in either � or
�

(with support level
� �����

).

2.3.2 Basic Algebra for Queries

Our algebra contains only one mining operator �
� and two operations, intersection (�)

and union (�). We begin with the definition of a view of the � table. A view of the � table

is a table with a subset of the rows and columns of the � table, which always contains the

column of the attributes : , and the exact frequency of an itemset can be replaced by a Null

value (denoted as �).

Given this, we define the basic mining operator �
� to generate above simple views

(containing only two columns) of � table.

The frequent itemset mining operator �
�V(� 3 � � , computes the frequent itemset from a

single dataset � 3 with support level � . It returns a two-column table, where the first column

contains itemsets in � 3 which have the support level � , and the second column contains

their corresponding frequency in the dataset � 3 .
Table 2.3 shows the results of �
� operator on the datasets � � and ��� (shown in Ta-

ble 2.1) with support level
�� �

and
����

, respectively.

15

Next, we define the two operations that can combine the views of the � table. Let � �
and � � be two views of the � table. Let ���� and ���� be the projections of � � and ��� on the

attribute : .

Intersection (� � � ���) returns a table whose first column contains the itemsets appearing

in the first columns of both � � and � � , and other columns contain frequency information

for these itemsets in the datasets appearing in � � and � � . Formally, � � � � � is defined as

(� �� � � �� ,�� � � ��� � � �

Note that � is the standard database join operation (over the attribute :), with one important

difference. Any column that is common between ��� and � � is merged. In merging the

columns, an actual count is preferred over a � (Null) value.

Union (� � � ���) returns a table whose first column contains the itemsets appearing in the

first columns of either � � or � � , and other columns contain the frequency of these itemsets

in the datasets appearing in � � or � � . Formally, � � � ��� is defined as

(� ���� � �� ,
�	�

� � �

�	�

� � �

Note that we take an outerjoin [102]. Null is inserted for entries for which values are not

available from either � � or � � .
Note that the results of the two operations are still views of the � table. Table 2.4

provides examples for each of these two operations.

Based upon the definitions of the above operations, we can easily prove the following:

Lemma 1 The operations, intersection (��, and union (��, , satisfy the associative, commu-

tative, and distributive properties.

16

����� � �����
	 �� ����� � �����
	 ��� ����� � ������	 ��� ������� � ���
I

� �
I

� �
I

� �
I

� �
� A � 6/8 � A � 4/6 � D � � � A � 6/8
� B � 6/8 � B � 4/6 � A,C � � � B � 6/8
� C � 4/8 � C � 4/6 � A,D � � � E � 3/8
� D � 6/8 � E � 3/6 � A,E � � A,B � 4/8
� A,B � 4/8 � A,B � 3/6 : : � A,E � 3/8
� C,D � 4/8 � A,B,C, � � B,E � 3/8

D,E �
� A,B,E � 3/8

Table 2.3: Basic Operators on � Table

����� � ������	������ ����� � ������	 ��� ����� � ������	�����! ����� � �����
	 ���
� � � � � � ��� ���
� A � 6/8 4/6 � A � 6/8 4/6
� B � 6/8 4/6 � B � 6/8 4/6
� C � 4/8 4/6 � C � 4/8 4/6
� A,B � 4/8 3/6 � D � 6/8 �

� E � � 3/6
� A,B � 4/8 3/6
� C,D � 4/8 �

Table 2.4: Intersection and Union Operation

17

2.3.3 Mapping from SQL Queries to Basic Algebra

In the following, we discuss how a restricted class of queries can be directly modeled

using the above operator and operations. This class of queries involves constraint condi-

tions (the WHERE clauses) which do not contain any negative predicates, i.e., a condition

which states that support in a certain dataset is below a specified threshold. We call this

class of queries positive queries. In Section 2.6, we will discuss how a more general class

of mining queries, which could involve negative conditions as well, can be expressed by

this algebra as well.

Let us consider a positive query � with the condition � . Clearly, the condition � can

be restated in the DNF form, with conjunctive clauses � ��� � � � ����� . Formally,

� 	 � ��� � � � � ����� � � 	 � � ��� � � � � � � � � � U�� U
	

where, � � 3 	 � � �
� 3 E � is a positive predicate, i.e., a condition which states that support in

a certain dataset (� � 3) is greater than or equal to a specified threshold (�). The correspond-

ing basic algebra expression is as follows. We replace � � 3 by the operator �
�V(� � 3 � ��, . We

can represent the query by

��� 	 ���� � 	
	
	 � ����
where, in each ���� , the corresponding �
� operator is connected using intersection op-

erations. Therefore, for query ��� , its corresponding basic algebra expression ����� is as

follows.

(�
�;(�K� ���� , � � �V(� � ���� ,5, � �
�;(� � ������ ,�� � �
�@(�
�V(� � ������ , � �
�V(�� � ���� , � � �V(� � ���� ,5,�� � �

�@(�
�;(� � ������� , � �
�V(�� � ���� , � � �V(� � ���� ,5,�� ���

18

2.4 Query Optimization Overview

This section gives an overview of the challenges in query optimization. The first impor-

tant observation is that the costs of the mining operators, such as �
� , are typically much

higher than those of union and intersection operations. Therefore, we need to focus on

mining operators in our optimization process.

Let us consider the naive evaluation of the basic algebra expression � ��� for the query

� � stated in the previous section. We need to invoke the �
� operator
�

times, including

mining frequent itemsets on datasets � ,
�

, and
�

with two different supports
� � �

and

������
, and on dataset � with support

� � �
. The important observation here is that in such a

naive evaluation, a large fraction of the computation is either repetitive or unnecessary. By

repetitive computation, we imply finding the frequency of an itemset on a dataset more than

once, because of different mining operators. For example, the computation of �
�;(�K� � � � , is

repetitive. This is because �
�V(� � ������ , is also evaluated and �
�V(� � ���� , J �
�V(� � ������ , .
By unnecessary computation, we imply finding the frequency of the itemsets which do not

appear in the generated view of the basic algebra expression. For example, the computation

of frequency for each itemset in the set �
� � (� � ���� , � � �� � on the dataset � is unnecessary.

2.4.1 Challenges in Mining Query Optimization

In view of the above example, the main challenges in optimizing evaluation of a given

query can be summarized as follows.

New Mining Operators: As discussed above, to reduce the cost of evaluating a basic alge-

bra expression, we need to reduce repetitive and unnecessary computations. In particular,

19

in the basic algebra, there is no easy way to remove unnecessary computations. There-

fore, new mining operators are needed to address this problem. Particularly, we will use

constraint and group mining operators in our work.

Query Plan Enumeration: Assume we have new mining operators. Now, the problem is

how to use them in an effective manner. For a given complicated mining query, a number

of different sequences of mining operators can be used to evaluate this query. Clearly, if we

can enumerate the different query plans, we can use a cost model to find the one with the

least cost. However, enumerating query plans for a given mining query is a very different

problem than the one for traditional database queries.

Algorithms for Finding Optimized Query Plans: The challenge of finding optimized

query plans is two-folds. On one hand, the search space of possible query plans can be

very large for a complicated query. Therefore, even if the costs associated with the different

query plans are known, we still need efficient algorithms to find the one with the least cost.

At the same time, the cost of a query plan is very hard to estimate. Though this cost can be

stated as the sum of the costs for each individual mining operator in the plan, the cost of a

mining operator can depend on the mining operators preceding it. Therefore, precise cost

models are almost impossible, and we find to find good heuristics.

In the following two subsections, we introduce the tools we use to address the problem

of repetitive and unnecessary computations. These are, the new mining operators, and

using containing relations.

2.4.2 New Operators

To reduce the unnecessary computation, two new operators, � � and ��� , are intro-

duced.

20

1. Frequent itemset mining operator with constraints � �V(� 3 � � ��� , finds the itemsets

that are frequent in the dataset � 3 with support � and also appears in the set � . � is a set

of itemsets that satisfies the down-closure property, i.e., if an itemset is frequent, then all

its subsets are also frequent. This operator also reports the frequency of these itemsets in

� 3 . Formally, � �;(� 3 � � ��� , computes the following view of the � table:

� � �
�V(� 3 � ��,

The typical scenario where this operator helps remove unnecessary computation is as fol-

lows. Suppose the frequent itemset operator intersects with some view of the � table, such

that the projection of this view on the attribute : is � . This operator pushes the set �

into the frequent itemset generation procedure, i.e., � serves as the search space for the

frequent itemset generation. Thus, the unnecessary computation for the itemsets that are

not in � can be saved.

2. Group frequent itemset mining operator ���V(��K, , where � 	 ��� � ��� � � ? ��	
	
	 ���
��� � �	� ? � , finds the itemsets that are frequent in each dataset � � with support � � , and

reports their frequency in each of these datasets. Formally, � �;(
�&, computes the following

view of the � table:

�
�;(� �>� �
�5, � 	
	
	 � �
�V(��� � �	�D,

The idea behind this operator is as follows. The frequency count for all datasets in � is

carried out in parallel. Thus, all supersets of an itemset that is determined to be infrequent

in any of the datasets is pruned.

We use the following example to illustrate the use of these operators. Consider the

following view of the � table (we need to find the itemsets with support
�� �

that are frequent

21

in � and are also either frequent in
�

or in �),

(�
�V(�K� �� � , � �
�;(� � ���� ,7, � (� �V(� � ���� , � �
�V(�� � ���� ,5,

Applying the � � operator, we can evaluate �
�V(� � ���� , first, and then intersect it with

(�� �V(� � � � � � � � � (�K� � � � ,7, � � �;(�� � �� � � �
� � (�K� �� � ,5,5,

Here, we first find the frequent itemsets in � , and then among them, find those are ei-

ther frequent in
�

or in � . Compared with the naive method where we find the fre-

quent itemsets on each dataset and them perform intersection, the cost of finding frequent

itemsets in
�

and � but infrequent in � is saved. Formally, this evaluation reduces the

unnecessary costs of � � � (� � �� � , � (�
�;(�K� ���� , � �
�V(� � � � � ,7, � on the dataset
�

and

�
� � (�� � ���� , � (�
�;(�K� � � � , � �
�V(�� � ���� ,5, � on the dataset � . However, the cost of find-

ing itemsets which are frequent in � but infrequent in either
�

and � ((�
� ��(� � ���� , �

(�
�V(� � �� � , � (� �V(�� � ���� ,7, �) is still unnecessary.

Applying the � � operator, this view can be evaluated as

���V(��� �K� ���� ? � � � � � � � ? �D, � � �;(��� � � ���� ? ��� � � �� � ? �D,

Here, we first find the itemsets which are frequent in both � and
�

, and then we find the

itemsets which are frequent in both � and � . No unnecessary computation is involved

now. However, the itemsets that are frequent in � , but also frequent in both
�

and � ,

are generated twice. Specifically, the computation of the itemsets in the set (�
�;(�K� ���� , �

�
�;(� � ���� , � � �V(�� � ���� ,7, � for dataset � has now become repetitive.

2.4.3 Containing Relation

An important tool to remove repetitive computation is based on the containing relation

for the sets of frequent itemsets. The containing relation is as follows:
� U � , �
�V(� 3 � � ,

22

contains all the frequent itemsets in �
�;(� 3 � � , . Therefore, if the first one is available, in-

vocation of the second can be avoided. Instead, a relatively inexpensive selection operator,

denoted as � , can be applied. Formally, for
� U � , we have,

�
�;(� 3 � ��,
	��������	� (�
�V(� 3 � � ,7,

This containing relations can be also extended to the our two new operators, � � and � � .

Let us revisit the query ��� . In view of this relation, at most one invocation of the mining

operator �
� on each dataset is required. Thus, we only need four invocations of the �
�
operator, i.e., mining frequent itemsets on datasets � ,

�
, and

�
with support

� �����
, and on

dataset � with support
����

. This method, which removes all repetitive computation due to

�
� operator, but does not use � � and � � operators, is referred to as the Optimization RR

(Remove Repetition). It should be noted that though the repetitive computation due to �
�
operator is removed here, much unnecessary computation is still involved.

2.4.4 Overview of Query Plan Generation

The discussion in the previous two subsections focused on removing unnecessary and

repetitive computations, respectively. Each was considered independently. In generating

an efficient plan for evaluating a query, it is important to consider both. As our example has

shown, removing unnecessary computation can introduce repetitive computation, and vice-

versa. Clearly, this makes query optimization a challenging task. In many cases, removing

both unnecessary and repetitive computation for a query evaluation is not possible.

In the next two sections, we present a systematic approach for finding efficient query

plans. Our approach includes the following three key elements:

M table Formulation: The basic algebra expression of a given query is encoded into an

� table. In the � table, each column represents a conjunctive-clause in the condition,

23

and each row represents a dataset. Each cell in the table contains a predicate that appears

in the condition and needs to be evaluated. Further, the query evaluation process can be

depicted as a coloring scheme of the � table. Therefore, � table provides an intuitive way

to enumerate possible query plans.

Query Plan Generation: The efficient query plans are generated with the help of the col-

oring scheme of the � table. We partition the query plan into two phases. The first phase

contains the mining operators that are independent of the mining results generated from the

mining operators evaluated before it. The second phase contains the mining operators that

are dependent on these results. Such partition allows us to derive good heuristics to reduce

the evaluation costs.

Transformations: Consider a query containing the negative predicates. To optimize such

queries, we will use a set of transformations. To express such queries in our algebra, we

introduce two additional mining operators. Then, we will show how these mining operators

can be removed, and therefore, the basic algebra expression is constructed. Among the

above three issues, we discuss the first two in Section 2.5, and the last in Section 2.6.

2.5 Query Plan Generation

2.5.1 A Unified Query Evaluation Scheme

This subsection describes a general representation, the � -table, for query evaluation

based on the basic algebra expression of a given query. As we will show, such a scheme

provides an intuitive way to describe the possible query plans.

Definition 1 Assume the basic algebra expression of a query � is

��� 	 � � ��	
	
	 � ���

24

where, each � � involves intersection among one or more �
� operators. Let P be the

number of distinct datasets that appear in � . Then, the � -table for the basic algebra

expression of this query is a table with P rows and L columns, where the row
�

corresponds

to the dataset � � , and the column R corresponds to the clause � 3 . If �
�V(�
� � ��, appears in

� 3 , the cell at R -th column and
�
-th row will have � , i.e., � ��� 3 	 � . Otherwise, the cell � ��� 3

is empty.

As an example, the � table for the query � � has
�

rows and
�

columns and is shown

in Table 2.1.

SELECT � � : � �
� � � � � � � � � � � � � �

FROM Frequency(: � �K�
� ��� � �) �

WHERE (� � � E ����
AND � � � E ����

)
OR (� � � E ����

AND � � � E � � �
AND

(� � � E � � �
OR � � � E ����

))

(a) SQL query for query � �
� � ��� � �

A 0.1 0.2
B 0.1 0.2
C 0.1 0.1
D 0.1 0.1

(b) M Table for the query � �
�������	��
���������������	��
������������� �

� �������	��
����� ���!������"#
���������������	$%
���������&��� �
� �������	��
����� �'�!������"#
���������������	$%
���������&��� �

(c) Necessary Information for the query � �

Figure 2.1: Query � �

25

� � � � ��� ��� ���
A 0.1 0.1 0.05
B 0.1 0.1 0.05
C 0 0 0.1 0.1 0.1
D 0.05 0.1 0.1 0.1

Table 2.5: M Table for the query �

� � � � ��� ��� ���
A 0.1 0.1 0.05
B 0.1 0.1 0.05
C 0.1 0.1 0.1
D 0.05 0.1 0.1 0.1

Table 2.6: Colored M Table for the query �

Note that the mapping between the � tables and the basic algebra expressions is one-

to-one. It is important to note that the � table representation can be used to answer more

complex queries, which could have negative predicates as well. This is discussed in Sub-

section 2.6.2.

Now, we focus on query plan generation using the � -table and the operators we have

defined so far. To facilitate our discussion, we will use the � table in Table 2.5 as our

running example. One of the most important features of � table is that it can capture the

evaluation process for a query by using a simple coloring scheme. Initially, all the cells are

black. The operators, �
� , � � , and ��� , can color a number of non-empty cells red. The

query evaluation process is complete when all non-empty cells are colored red.

26

As a running example, consider applying � �V(� � ������ , , ���V(� � �� � � �
� � (� � ���� ,5, ,and

� �;(��� � � � � � ��� � � ���� �D, consecutively on an initially black-colored table � of the query

� . Table 3.3 shows the resulting colored table. We now define how each operator colors

the table.

Frequent mining operator �
�V(� � � ��, : An invocation of the frequent mining operator on

the dataset �
� , with support � , will turn each non-empty cell at row
�

who is greater than

or equal to � red. In our example, the first operator, �
�;(�K� � ����� , , will turn the cells � ��� � ,
� ��� � , and � ��� � red.

Frequent mining operator with constraint � �;(� � � � ��� , : The coloring impacted by this

operator is dependent on the current coloring of the table � . Let � be the set of frequent

itemsets defined by all the red cells, and let � be the set of columns where these red cells

appear. Then, by applying this operator on dataset � � with support � , all cells on row
�

whose column is in the set � , and whose value is greater than or equal to � , will turn red.

In our running example, the third operator

� �;(� � ���� � �
� � (� � ���� ,5,

picks the red cells � ��� � and � ��� � by the parameter

� 	 �
� � (�K� � � � ,

The set � includes the first two columns. Therefore, this operator turns the cells � � � � and

� � � � red.

Group frequent itemset mining operator � �;(
�&, : The parameter � 	 ��� � ��� � � ?
��	
	
	���� ��� � �	� ? � , specifies the support level � � for the dataset �
� . Let the dataset � � � � � U
	 U 0 correspond to the row

� 	
. Let � � be the set of columns whose cells at row

� 	

are less than or equal to the correspond � � . Let � 	 � � ��� 3 � � 	
	
	 � � � � � 3 � . Invoking this

27

operator will turn every cell in the row defined by � � � ��	
	
	 � � 0 � � � red. In our example,

the operator � �;(��� � � � � � ��� � � ���� �D, , will turn the cells the right-bottom rectangle defined

by � � � � � � � � � � � � � red.

By the above formulation, the query evaluation problem has been converted into the

problem of coloring the table � . The possible query plans can be intuitively captured in

this framework. Note that different operators can be used, and in different order, to color the

entire table red. There are different costs associated with each of them. The next subsection

addresses the problem of finding efficient query evaluation plans.

2.5.2 New Query Plans

For a given � table with P rows and L columns, the total number of possilbe query

plans using only �
� and ��� operators can be up to (� � 4 �� 4 � R � ,�� � � � �������� � 3 � , where R � is the

number of different support levels in the row
�
. Clearly, using the � � operator will make

this number even higher. Furthermore, another difficulty in this optimization process is

that it is very hard to associate cost functions for the three operators. We are not aware any

research on predicting the running time for a specific mining algorithm on a given dataset.

The costs of ��� operator depends on the mining results from the operators preceeding

it. Though this is somewhat similar to the Join optimization problem in the traditional

databases [9], the cost from such a mining operator is even harder to estimate.

To deal with these challenges, we use a set of heuristics and greedy algorithms to help

find efficient query plans. Specifically, a basic idea of our approach is to paritition the

query plan into two phases. The first phase contains only the mining operators that are

independent of the mining results generated from the mining operators evaluated before

it. The second phase contains the mining operators that are dependent on these results. In

28

other words, only �
� and ��� can be used in the first phase, and � � can be used in the

second phase. Such partition allows us to derive good heuristics to reduce the evaluation

costs.

In the following, we first present two algorithms that are based upon the use of the

�
� and � � operators. Then, we describe another algorithm that further exploits the � �
operator.

Using Constraint Based Operator

The constraint based mining operator ���V(� 3 � � ��� , helps reduce the computational

cost as follows. At any stage � , suppose that we need to color the cell � ��� 3 . As long as

another red cell is available in the same column, � � operator can be used.

The algorithms we present here are based upon aggressively using the ��� operator. The

goals of each phase in a query plan is as follows. In the first phase, we use the �
�V(� 3 � ��,
operators so that each column has at least one red cell. In the second phase, we use the

� �;(� 3 � �F� � , operators to compute all other non-empty cells in the table.

Approach for Phase One: To understand the complexity of optimizing the cost for this

phase, let us assume that we know the cost for the operator �
�V(� 3 � � , . Our goal is to

find the set of operations which has the least cost for coloring all columns of the table.

This problem can be generalized and formulated as follows. For a set � 	 � �
��� 	
	
	 � ��� � ,
��� � 	
	
	 � ����	 � � � 	
	
	�� P � , where each set ��� has a cost function and corresponds to a set

of columns whose cells can be turned red by a �
� mining operator. we need to find the a

subset of � who can cover � � ��	
	
	 � L � with the least cost. This is a generalized set-covering

problem, and is NP-hard [23].

29

Note, in our case, each row only needs at most one invocation of the �
� operator, due

to the containing relation. Clearly, the search space in this phase is much smaller than the

entire search space for a query plan. Therfore, we can enumerate the coloring schemes and

find the one with the minimal cost in ;(R�� �%	
	
)� R �@, 	 (L � , time complexity. Here,

P and L are the number of rows and columns respectively in table � , and R � is the number

of different support levels in the row
�
. In practice, the above enumeration can be done

without a very high cost.

However, the problem still is that precise cost functions are not available. The heuristic

approach we use is based on the observation that no repetitive computation due to the �
�
operator is involved in the phase one. So, we can solely focus on reducing the unnecessary

computations. A natural heuristic for minimizing unnecessary computation is through the

support level. For a single dataset, higher support level for the �
� operator implies lower

unnecessary computation. We use this in our implementation.

Input: table
�

after phase-one coloring
Algorithm 1

Find datasets whose corresponding rows has black cells;
For each row, find the lowest support level among black cells;
On each row, we invoke the

" �
operator with the lowest

support level. Across the rows, this operator is invoked in the
decreasing order of support level used for the

" �
operator.

Algorithm 2
Remove all the red cells from each chain set

� ��� � ;
Find the non-empty chain set with the highest support

and invoke the
" �

operator to color the set;
Remove all new red cells from the chain set;
Repeat the above steps until all cells are colored.

Figure 2.2: Algorithms for Phase Two

30

Input: table
�

without coloring
Algorithm 3

Build a collection of candidate sets by running the enumeration
algorithm for

�����	� 3
���� operator;
For the candidate set

�
, let

�����	� 3
������ �
If there exists another mining operator

�����	� �
�� � � in
�

colors same columns as
�����	� 3
���� , transform

��� �	� 3
��'�
into � ������� � 3
��
	
�� � �
�� � 	� � .

Repeat the above step to see if any more set can be aggregated
into a � � operation;

Select a set from these transformed candidate sets based on
some heuristic, e.g., the average size of the parameter set �
for the � � operation.

Figure 2.3: Using GF operator for Phase One

Approach for Phase Two: We can use either of the two greedy algorithms, Algorithm 1

and Algorithm 2, which are listed in the Figure 2.2. The first algorithm tries to reduce the

repetitive computation by invoking � � operator for each dataset at most once. Therefore,

frequency of any itemset will be counted at most two times for a dataset: one from the �
�
operator in the phase one and second from the � � operator in the phase two. However,

much unnecessary computation is involved since � � operator always picks the lowest

support level for each dataset. The second algorithm targets the unnecessary computation,

since for each support level, � � operator will use the smallest possible set � to constraint

the itemset generation. However, much repetitive computation can be generated, since an

itemset can be computed several times for a dataset.

Let us consider the query � . Combining phase one and phase two, the first algorithm

gives the following query plan.

����� / N
� � �
�;(�K� ���� ,�� �
�;(�� � � � � ,��

31

����� / N
� � ���V(� � ������ � �
�V(�� � ���� , � ,��

� �V(� � � ����� � (�
�V(�K� �� � , � �
�V(�� � ���� ,5, � ,��
� �;(� � ������ � (7(�
�V(�K� �� � , � �
�V(� � �� � ,5, � � �V(�� � ���� ,7, � ,

� �;(�� � � � (�
�V(�K� �� � , � � �V(� � ���� ,5, � , �

The second algorithm gives the following query plan.

����� / N
� � �
�;(�K� ���� ,�� �
�;(�� � � � � ,��

����� / N
� � ���V(� � �� � � �
�;(�K� ���� , � , �

� �;(� � ���� � �
�V(�� � ���� , � , �
� �;(�K� � ����� � (�
�V(�� � ���� , � �
�;(� � ���� ,5, � , �
� �V(� � � ����� � (�
�V(�� � ���� , � �
�;(� � ���� ,5, � , �
���V(� � ������ � (� �V(� � ���� , � �
�;(� � ���� ,5, � , �

���V(�� � � � (7(�
�V(�K� �� � , � �
�V(� � �� � ,5, � , �

We can see that both query plans can reduce the costs by aggressively utilizing the

available information and the � � operator.

Using the Group Operator

The group mining operator ��� can help remove some unnecessary computation due to

�
� operator. In the above example, suppose that � �V(� � ���� , � �
�V(� � � � � , and �
�;(�� � �� � , �
�
�;(� � ���� , are generated in phase one. In this way, each column is also covered, and the

unnecessary computation of set �
� ��(�K� ���� , � (�
�V(� � ���� , � � �V(� � ���� ,5, � on dataset �
is also saved.

32

The use of � � operator only changes the phase one, i.e, our method for coloring at

least cell in each column. Instead of finding �
�V(� 3 � ��, operations to cover each column,

we now need to find ��� operations to meet the same goal. Algorithm 3, described in

Figure 2.3, uses the � � operator in a efficient way. It results in the following query plan

for our example query:

��� � / N
� � � �;(��� � � ���� ? ��� � � ���� ? �D, �

���V(��� � � �� � ? ��� � � ���� ? �D, �
� ��� / N

� � ���V(� � ������ � (�
�;(�� � � � � , � �
�V(� � � � � ,7, � , �
� �;(� � ������ � (�
�;(�� � � � � , � �
�V(� � � � � ,7, � , �
� �;(� � ������ �
(�
�;(�K� � � � , � �
�V(� � �� � ,5, � , �

� �;(�� � � � (5(�
�;(�K� ���� , � �
�;(� � ���� ,7, � ,��

2.6 Generalized Queries and Transformations

In this section, we describe how the approach presented in the previous two sections

can be applied to a more general class of queries. Specifically, we consider two additional

requirements for a mining query. The first is to allow negative predicates in the query. The

second is to allow users to specify conditions related with the Null values in the materi-

alized views. In Subsection 2.6.1, we introduce these two requirements, and the algebra

extensions to capture these requirements. In Subsection 2.6.2, we describe how we can

transform the extended algebra expression into the basic algebra expression, and thus use

the � -table and the algorithms from the previous section for query optimization.

33

2.6.1 Generalized Queries

Admissible Queries: We initially define a class of queries we consider admissible queries.

For a given query, we transform the constraints into the disjunctive normal form (DNF),

� 	 � � � � � �!	
	
	 ��� where, � � is a conjunctive-clause, i.e., it involves AND operation

on one or more predicates.

Definition 2 A query is considered admissible if each conjunctive-clause in the DNF for-

mat contains at least one positive predicate, i.e., � � � �1E � .

For example, a query involving the following condition is not admissible.

� � � � � �� �
OR (� � � � E ����

AND � � � ��� ������ ,)
This is because the first conjunctive-clause, � � � � � � � �

, contains only a negative pred-

icate. The significance of the admissible condition is that we are able to transform such a

query into a basic algebra expression (Subsection 2.6.2).

Counting Requirements: The views generated from a basic algebra expression can con-

tain Null values. In some cases, a user may be interested in removing the Null values in the

final query answers. We introduce a new notation, � , for this purpose. In the Select clause

of original query, replacing � � by �)(�
� , denotes that the null value needs to removed, i.e.

the actual frequency information is required. For simplicity, we denote the set of datasets

having � in the Select clause as � � � �
. We call this function � as counting requirement

since this can directly map into a counting operator discussed below.

Algebra Extensions: The two additional operators to help map an admissible query with

negative predicate and counting requirement are as follows.

The negative frequent itemset mining operator �
�;(� 3 � � , computes itemsets in � 3 with

support level less than � . Formally, assuming
�
� ��� � to be the power-set of :MLON�P , and

34

�
� � (� 3 � � , is the projection of �
�V(� 3 � � , on the column of attributes : , we have

�
�;(� 3 � ��,
	 (� � ��� � � �
� � (� 3 � ��,7, �!� � �

The counting operator �V(� � � 3 , counts the frequency for each itemset in the set � on

dataset � 3 . To simplify its evaluation, this operator is only defined on a set � that satisfies

the down-closure property.

Mapping to Extended Algebra: Consider mapping a admissible query with negative pred-

icates and/or counting requirements. For the DNF format of the query condition (SELECT

clauses), we replace the negative predicates with their corresponding infrequent itemsets

mining operator. Further, we map the datasets with � functions to the counting operator.

Therefore, we can build the extended algebra expression � for a given query � with the

condition � . Let � (�K, is the final answering set for � .

� (�K, 	 �� � � �;(
�
� � � �
� �7, � � 	
	
	 � � �;(

�
� � � � � � ,

where, � � � � 	 ���
� � � �
� � ��	
	
	�� �
� � � , and
�
� � is the minimal extension of � � which satis-

fies the down-closure property.

2.6.2 Transformations for Query Optimization

In the following, we introduce two transformations which can remove the the negative

frequent itemsets operator �
� and the counting operator � from � (�K, , and replace them

by �V(� 3 � � , operators.

To facilitate our discussion, we use the following query, denoted by � , as a running

example.

SELECT � � : � �
� � � � � � �5�)(� � � , � � � �

FROM Frequency(: � �K�
� � � � �) �

35

WHERE (� � ��E ����
AND � � � E ����

AND

NOT(� � � E ������
OR � � � E ������

))

OR (� � � E ����
AND � � � E � � �

AND

NOT(� � ��E ������
OR � � � E ������

))

The query involves finding the itemsets which are frequent with support level
� � �

in

both the datasets � and
�

, but infrequent (support less than
� �����

) in the datasets � and
�

,

or vise versa. The DNF form of the condition � is:

(��E �� � � � E ���� � � � ������ � � � ������ ,
� (�� E ���� � � E �� � � � � ������ � � � ������ ,

��� can be expressed as:

(�
�V(� � ���� , � �
�V(� � � � � , � �
�;(�� � ������ , � �
�V(� � ������ , ,
�@(�
�V(�� � ���� , � � �V(� � ���� , � �
�V(� � ������ , � �
�V(� � ������ , ,

The answering set of this query can be expressed as

� (� , 	 ��� � � �V(
�
� �� ��� ,

Now, we introduce the two transformations to remove the counting operator and negative

mining operator.

Transformation 1: (Removing Counting Operator) This transformation takes three steps.

In the first step, for any dataset � 3 � � � � �
, which suggests that a counting operator �

might be needed, we add the boolean clause � 3 E �
into every conjunctive-clause in the

DNF format of condition � . Thus, we generate a new condition, denoted as � � . Clearly,

in this new condition, two boolean clauses on the same dataset may appear in a single

36

conjunctive-clause. In the second step, we remove these redundant boolean clauses by

the following rule. If the boolean clause besides the new one is positive, the new one is

removed, and if the boolean clause besides the new one is negative, the negative boolean

clause is removed. Finally, we construct � �� corresponding to condition � � after the second

step, and apply the selection operator with condition � to get � (� , . Formally,

� (�K, 	��� (�� � ,

Let us illustrate this transformation on our running example. The set � � � �
includes only

the dataset � . In the first step, the new condition � � is

(� E � � � � � E ���� � � � ������ � � � � ����� � � E � ,��
(�� E ���� � � E �� � � � � ������ � � � ������ � � E � ,7,

In the second step, the condition � � becomes:

(��E ���� � � E �� � � � E � � � � ������ ,��
(�� E � � � � � E ���� � � � ������ � � � ������ ,7,

In the final step, we construct � � � ,

��� � 	 (� �V(� � ���� , � �
�V(� � �� � , � �
�V(�� � � , � � �V(� � ������ ,
�@(�
�V(�� � ���� , � �
�V(� � � � � , � �
�;(�K� � ����� , � �
�V(� � � ����� ,7,

The answering set � (� , becomes � �9(��� � , .
Transformation 2: (Removing Negative Frequent Itemset Operator) This transforma-

tion is based upon the following Lemma.

Lemma 2 Let � be any condition, and �� is the set satisfying this condition, then we have

�� � � �V(� 3 � ��,
	������� �����	�	�5(�� � (�� � �
�;(� 3 � ��,7,5,
37

Note that the $������ (�M, value is treated as
�
. The detailed proof is omitted here, but the

correctness of this lemma can be observed from the fact that

�� � �
�;(� 3 � � , J �� � (�� � �
�;(� 3 � ��,7,

This lemma suggests that the negative frequent itemset operator can be removed by apply-

ing the union(�), intersection(�), and selection operator.

By applying Lemma 2, all the negative frequent itemset operator can be removed from

��� � . Let

�� � 	 �
�;(�
� ��� �
�O, ��	
	
	 �
�V(� � � � � �D, �

�
�;(� � � ��� � � � � ��� �7, ��	
	
	 � �
�;(�
����� �	�5,

We denote � �
� to contain only the sets of frequent itemsets for � 3 , such as

� �
� 	 �
�V(� � ��� � �7, �'	
	
	 � �
�;(�
� � � �	�D,

Therefore, we have the following equality:

�� � 	��� �T(� �
� ��(� �
� � �
�V(� � � ��� � � � � ��� �O,5, �

	
	
	 � (� �
� � � �V(� ����� ��O,7,5,

Further, we can see that for each �� � , the selection operator (�) can be removed because

of the outside selection operator. In sum, this transformation removes all the negative

frequent itemset mining operator, such as �
�;(� 3 � ��, , in ���� by applying this equality and

removing the selection operator for each conjunctive clause � 3 .
After these two transformations, the entire computation cost to evaluate the query �

has been shifted to compute �� � . To simplify the discussion, we treat computing � � as an

38

instance of this generalized problem of evaluating expression � � , where, ��� 	 � � � 	
	
	 � ��� ,
and,

� 3 	 �
�;(� 3 ��� � 3 �O, �'	
	
	 � �
�V(� 3�� � � 3�� ,

Therefore, in our example, we have

� � 	 ��� � 	 (� �V(� � ���� , � � �V(� � ���� , � �
�V(�� � � ,5,�� �
�
� (�
�;(�K� ���� , � � �V(� � ���� , � �
�V(�� � � , � � �V(� � ������ ,5,�� ���

� (�
�;(�� � � � � , � �
�;(� � ���� ,5,�� � �
�@(� �V(�� � ���� , � �
�;(� � ���� , � � �V(� � ������ ,7, � ���
� (�
�;(�� � � � � , � �
�;(� � ���� , � �
�;(� � ������ ,7, � ���

Clearly, ��� uses only the �
� operator and two operations defined in the basic algebra.

For a given query � , the expression using only the basic algebra and generated through the

above two transformations is the basic algebra expression of � . Finally, we can see the �

table corresponding to � � is the table (Table 2.5) used in Section 2.5.

2.7 Experimental Evaluation

This section reports a series of experiments we conducted to demonstrate the efficacy of

the optimization and transformation techniques we have developed. Particularly, we were

interested in the following questions:

1. What are the performance gains from the use of new mining operators, � � and � � ,

and what are the key factors impacting the level of gain.

39

Query Conditions
� � ����� �����	��� �
� � � �
��� ��� �	�� � � ������� �
��� � �
��� �����	��� � ��� � �	��� �����
��� � �
��� � �
�� � ���	�� � ������� � ������� � ���

� ����� � ������ � � �
��� � ���	��� � �
�� �
��� �!���	�� ��������� �!������� �
��" � �
�� � ���	��� � ������� � ������� � ���

� �#�� � � ����� � ������� � ������� �����
� ����� � �
��� ���	��� " ������� " ���

Table 2.7: Test Query Templates for Our Experiments

2. Compared with the naive evaluation method, what performance gains are obtained

from the of different optimizations, and new query plans generated using the three

algorithms we have presented.

Initially, we briefly describe how the three new operators we introduced were imple-

mented.

2.7.1 Implementation of Operators

The operators used in our query evaluation are the frequent mining operator, the count-

ing operator, the frequent itemset with constraints operator, and the group frequent itemset

operator. For our experimental study, Borgelt’s implementation of the well-known Apri-

ori algorithm [14] is used as the frequent mining operator. The other three operators were

derived from it as follows:

Counting operator �V(� � � 3 , : Initially, the set of itemsets � is organized as a prefix tree,

where each node corresponds to an itemset. Then, a single pass on the dataset � 3 is taken

to project each transaction onto the prefix tree, using a depth-first traversal.

40

Query Naive ORR CF-1 CF-2 GF-1
� � ��� ����
�� �����

397 168 158
� � ��� ����
�� �����

626 352 158
� � ��� ����
�� �����

914 619 236 386 277
� � ��� ����
	�
�����

1024 279 265
� � ��� ����
	�
�����

1381 687 265
� � ��� ����
	�
�����

2206 1558 394 484 471

Table 2.8: Performance (in seconds) on IPUMS datasets

Frequent itemset mining operator with constraints: � �;(� 3 � �F� � , : Initially, the set of

itemsets � is put into a hash table. The processing of � � is similar to the frequent itemset

mining operator, with one exception in the candidate generation stage. While placing an

itemset in the candidate set, not only all its subsets need to be frequent, but the itemset

needs to be in the hash table as well.

Group frequent itemset mining operator � �;(
�&, : The parameter � 	 ��� � ��� � � ?
��	
	
	���� ��� � �	� ? � , specifies the support level � � for the dataset � � . There are three differ-

ences between the implementation of this operator and the implementation of the common

frequent mining operator. First, each node representing an itemset in the prefix tree has one

count field for each dataset in � . Second, the counts for each dataset are updated indepen-

dently. Finally, in the candidate generation stage, an itemset is treated as a candidate set if

all of its subsets are frequent in every dataset in � .

2.7.2 Datasets

Our experiments were conducted using three groups of data, each of them comprising

four different datasets.

41

Query Naive ORR CF-1 GF-1
�
�
���
����
	�
��� �

1229 1085
�
�
���
����
	�
��� �

1178 1032 301 218
��� ���
����
	�
��� �

2502 1350 1304
�
�
��� ����
�� ��� �

1525 1361
�
�
��� ����
�� ��� �

1313 1152 491 216
��� ��� ����
�� ��� �

2634 1392 1470

Table 2.9: Performance (in seconds) on DARPA datasets

IPUMS: The first group of datasets is derived from the IPUMS 1990-5% census micro-

data, which provides information about individuals and households [1]. The four datasets

each comprises 50,000 records, corresponding to New York, New Jersey, California, and

Washington states, respectively. Every record in the datasets has 57 attributes. After dis-

cretizing the numerical attributes, the datasets have a total of 2,886 distinct items.

DARPA’s Intrusion Detection: The second group of datasets is derived from the first

three weeks of tcpdump data from the DARPA data sets [79]. The three datasets include

the data for three most frequently occurring intrusions, Neptune, Smurf, and Satan. The

first two are Denial of Service attacks (DOS) and the last one is a type of Probe. Further, an

additional dataset includes the data of the normal situation (i.e., without intrusion). Each

transaction in the datasets has 40 attributes, corresponding to the fields in the TCP packets.

After discretizing the numerical attributes, there are a total of 343 distinct itemsets. The

neptune, smurf, satan, and normal datasets contain 107,201, 280,790, 1,589, and 97,277

records, respectively.

IBM’s Quest: The third group of datasets represents the market basket scenario, and is

derived from IBM Quest’s synthetic datasets [5]. The first two datasets, dataset-1 and

dataset-2, are generated from the
� � ��

:
�� $ � ��� �

dataset by some perturbation. Here, the

42

Query Naive ORR CF-1 CF-2 GF-1
� � 3825 727 338
� � 7048 3384 1138
� � 10369 7617 1344 1462 977
�
� 2828 1395

�
� 2753 1324 693 283

� �
10105 7368 1815

Table 2.10: Performance (in seconds) on QUEST datasets with query parameters � � 	������
and � � 	 �� � �

Query Naive ORR CF-1 CF-2 GF-1
� � 5120 971 351
� � 9016 4379 1599
� � 13285 9764 1743 1827 1042
�
� 3823 2039

�
� 3662 1876 904 364

� �
13034 9394 2511

Table 2.11: Performance (in seconds) on QUEST datasets with query parameters � � 	��������
and ��� 	 ��������

number of items per transactions is 20, the average size of large itemsets is 8, and the

number of distinct items is 2000. For perturbation, we randomly change a group of items

to other items with some probability. The other two datasets, dataset-3 and dataset-4, are

similarly generated from the
� � ��

:
� �� $ � �����

dataset. There are a total of 1943 distinct

items in the four datasets, and each of them contains 1,000,000 transactions.

2.7.3 Test Queries

Our experiments use six different queries, which are listed in the Table 3.8. The first

three queries, � ��� � � , and � � , are applicable on IPUMS datasets, and the New York, New

43

Jersey, California, and Washington datasets are labeled as the datasets � ,
�

, � , and
�

,

respectively. The other three queries, � �
� � � , and � � , correspond to the queries in the

motivating example on finding the signature itemsets for network intrusion, presented in

Section 2.2. The neptune, smurf, satan, and normal datasets are labeled as the datasets � ,

�
, � , and

�
, respectively. Further, in the Table 3.8, the � � � �

is specified. Finally, each

query requires two different support levels, � � and ��� . The evaluation using the IBM Quest

dataset used all six queries.

In our experiments, up to five different query plans were implemented for each query.

The exact number depended upon the applicability of specific optimization strategies on

the given query. The five query plans are as follows:

1. Naive: using the naive evaluation method.

2. ORR: applying Optimization RR and using Transformation 1 to remove the negative

predicate.

3. CF-1: applying the constraint frequent itemset mining operator � � and using the

Algorithm 1.

4. CF-2: applying the constraint frequent itemset mining operator � � and using the

Algorithm 2.

5. GF-1: applying the group frequent itemset mining operator � � and using the Algo-

rithm 3 (in Phase 1, and Algorithm 1 in Phase 2).

2.7.4 Experimental Results

This subsection reports the results we obtained. All experiments are performed on a

933MHZ Pentium III machine with 512 MB main memory.

44

Table 2.8 presents the running time for the first three queries on IPUMS datasets. Ta-

ble 2.9 shows the results from the other three queries, � � � � � , and � � , on DARPA datasets.

Also, all six queries were used with the QUEST synthetic datasets, and the results are pre-

sented in Tables 2.10 and 2.11. Each query is executed with two different pairs of support

levels.

The queries � � and � � mainly show how the ��� and ��� operators can reduce the

evaluation cost. The � � operator amounts to an average of more than 3 times speedup on

both real and synthetic datasets. The speedups are higher with Query � � than query � � ,

since the � � operator is applied three times in � � and only two times in � � . Further, the

� � operator performs better than � � operator for both the queries, and gains an average

of
�

times the speedup on the real datasets, and up to
� �

times speedup on the synthetic

datasets.

The queries � � , � � , � � , and � � benefit from the Optimization RR and are able to use the

� � operator. The ORR versions can achieve up to two times the speedup in these cases, and

CF-1 always performs better than ORR. The query plan CF-1 can achieve an additional

speedup of more than 5. Further, in all test cases, the versions CF-1 perform a little

better than the version CF-2. This suggests that in the phase two, reducing the repetitive

computation is more important. At last, the query � � can be optimized by removing the

negative predicate, but the � � and ��� operators cannot be applied.

The results from the query � � give rise to the following question: “Why does the GF-1

query plan perform better than the CF-1 plan on QUEST datasets, and CF-1 performs

better than GF-1 on IPUMS datasets”. A related issue is that depending on the datasets

and queries, the performance gains from the ��� and � � operators can vary significantly.

For example, the difference in speedup varies from 3 to 14 in our experiments. By further

45

analyzing the detailed cost of each query, we believe that one of the key factors impacting

the performance gains from both � � and ��� operators is the ratio of the size of the

intersection set with size of the set generated directly from the common frequent itemset

mining operator. The less the ratio is, the more gain we can get from the � � operator by

reducing the unnecessary computation and lesser repetitive computation is introduced. For

example, in the query � ��(� ��� � ����� , on IPUMS datasets, the size of intersection set is
���

times smaller than the total size of the four sets of frequent itemsets. However, in query

� � on QUEST synthetic datasets, the size of the intersection set is more than
� ��� �

times

smaller than the total size of the four sets of frequent itemsets.

To summarize, the new query plans CF-1 and GF-1 do result in improved perfor-

mance, provided they are applicable on a given query. In our experiments, they show an

improvement ranging from a factor of 2 to 15. Moreover, the size of intersection set is a

significant factor impacting the performance gains from the use of ��� and � � operators.

2.8 Mining Generalized Patterns on Multiple Datasets

In the past several years, the field of frequent pattern mining has gone beyond frequent

itemset mining. Algorithms have been developed to mine a very rich class of patterns

or structures, including sequential pattens, sub-graphs, sub-trees, and other topological

structures [105, 7, 118, 8]. Also, in order to discover interesting patterns, comparing and

analyzing interesting patterns from multiple datasets is often required. We refer to the

patterns mined by algorithms for frequent pattern mining (besides itemsets) as complex

patterns.

46

In this section, we briefly outline how our framework and techniques for optimizing op-

erations for frequent itemset mining can be extended to handle complex patterns. Specifi-

cally, we focus on the following three questions. First, can our SQL extensions and Algebra

be used for operations on complex patterns? Second, can our mining operators, the � -table

representation, and query plan generation algorithms still be used to optimize queries on

the complex patterns? Third, what are the key implementation issues in handling complex

patterns in our system?

2.8.1 SQL and Algebra for Mining Complex Patterns on Multiple Datasets

Let ��� ��� ���
��	
	
	 � ��� � be the set of datasets, which contain complex patterns that we

are interested in analyzing and comparing. The datasets are homogeneous, in the sense that

the same item, or the same vertex/edge label, has the same name across different datasets.

Let
�

be the set of all possible patterns in all datasets. We can then define the following

schema,

� � N ��0 N � � � (
� � � �>� ���
� 	
	
	�� � � ,

For a table � of this schema, the column with attribute � � � stores all possible patterns,

and the column with attribute � � � � holds the frequency of the patterns at their correspond-

ing rows on the dataset � � . Note that itemset mining has become a special case of this

definition, where the first column stores all the frequent itemsets (� � :).

As was the case for itemset mining, the table � usually cannot be materialized because

of the large number of potential patterns. It only serves as a virtual table or a logical view.

Similar to mining itemsets, an SQL query will be used to partially materialize the virtual

frequency table � , which has the following format.

SELECT � � � � � � �
� ��� � � �
� �
� 	
	
	�� � � �
���

47

FROM Frequency(
� � � �5��	
	
	 � � �) �

WHERE Condition �

where, ���
� ����	
	
	 � � ����� J ��� ����	
	
	 � ��� � , and Condition is defined the same as in item-

set mining.

To deal with the complex patterns, we can define the basic operator as �
� � (� 3 � ��, ,
which mines frequent complex patterns on the dataset � 3 with support level � . The basic

operations (� and �) will remain the same. Therefore, the above SQL queries can be

translated into the algebra format and then be normalized to the standard form.

2.8.2 New Operators and Query Plans

Recall that in mining itemsets on multiple datasets, the standard form of a query is

mapped to the � -table format. � -table captures the relationships among the basic oper-

ators and operations. Using the � -table representation, we can explore the search space

of query plans and find the efficient ones. However, efficient query plans often rely on the

additional mining operators, such as the � � operator. Therefore, the main challenge for

complex pattern mining using the approach presented in this chapter is, “Can new mining

operators similar to � � be defined for complex pattern mining? ”

We have an affirmative answer to this question. The reason is that the new frequent

complex pattern mining algorithms are all based on the down-closure property, i.e., if a

complex pattern is frequent, then all its sub-patterns are also frequent. Therefore, new

frequent pattern mining operator ��� �
can be defined in very similar ways to the operator

� � .

Frequent complex pattern mining operator with constraints

� � � (� 3 � �F����, finds the complex patterns that are frequent in the dataset � 3 with support

48

� and also appears in the set � . � is a set of complex patterns that satisfies the down-

closure property. This operator also reports the frequency of these patterns in � 3 . Formally,

� � � (� 3 � �F����, computes the following view of the � table:

� � � � � (� 3 � ��,

The efficiency of this operator comes from the fact that by deeply pushing the set � into

the frequent pattern generation procedure, where � can serve as the search space for the

frequent pattern generating, the extra computation for the itemsets not in � can be saved.

2.8.3 Implementation

There are two key issues in extending our system to work with the complex patterns.

The first issue is that we need efficient implementations of the new operator ��� �
for differ-

ent patterns. The second issue is to efficiently cache complex patterns in our knowledgeable

cache.

Implementation of the operator ��� �
(or other similar operators) is fairly straight-

forward. They can be implemented based on the frequent pattern mining operator (�
� �
),

for which algorithms and their implementations are available. For example, consider imple-

menting the frequent complex pattern mining operator with constraints, � � � (� 3 � �F��� , .
We can put the set of complex patterns � into a hash table. Then, in either vertical mining

or level-wise mining approach (for �
� �
), as we we try to generate a possible candidate

complex pattern, we will first test if the candidate pattern appears in the hash table. If it is

not in the set � , we will simply prune this candidate.

Similar to itemset mining, a prefix-tree like data structure can be used to cache mining

results from complex patterns. The reason is as follows. First, the results of these mining

operators satisfy the down-closure property. Further, since our cache is the union of all

49

mining results, it also satisfies the down-closure property. Therefore, all complex patterns

can actually be organized in a prefix-tree data structure. This prefix tree can be either stored

in the main memory or in the secondary memory. The basic operations on the cache can

also be easily implemented.

2.9 Related Work

Much research has been conducted to provide database support for mining operations.

Han, Meo, Imielinski, and their colleagues have proposed extensions of the database query

languages to support mining tasks [47, 57, 74]. Sarawagi and Agrawal [93] and Chaudhuri

and his colleagues [20] have studied implementing Apriori association mining algorithm

and decision tree construction, respectively, on a database system. ATLas [112] applies

user-defined functions (UDFs) to express data mining tasks. However, all of these efforts

focus on mining a single dataset with relatively simple conditions.

A number of constraint frequent itemset mining algorithms have been developed to

use additional conditions and prune the search space [16, 68, 77, 98]. However, these

algorithms cannot efficiently answer our queries, since the conditions in our queries corre-

sponds to a set of (in)frequent itemsets. These cannot be directly used to reduce the search

space with their methods. We have developed a systematic approach for finding efficient

query plans answering these queries.

Raedt and his colleagues have studied the generalized inductive query evaluation prob-

lem [66, 69]. Although their queries target multiple datasets, they focus on the algorithmic

aspects to apply version space tree and answer the queries with the generalized monotone

50

and anti-monotone predicates. In comparison, we are interested in answering queries in-

volving frequency predicates more efficiently. We have developed a table based approach

to generate efficient query plans.

Our research is also different from the work on Query flocks [101]. While they target

complex query conditions, they allow only a single predicate involving frequency, and on

a single dataset. The work on multi-relational data mining [30, 87, 111] has focused on

designing efficient algorithms to mine a single dataset materialized as a multi-relation in a

database system.

Finally, a number of researchers have developed techniques for mining the difference

or contrast sets between the datasets [12, 29, 106]. Their goal is to develop efficient al-

gorithms for finding such a difference, and they have primarily focused on analyzing two

datasets at a time. In comparison, we have provided a general framework for allowing

the users to compare and analyze the patterns in multiple datasets. Moreover, because our

techniques can be a part of a query optimization scheme, the users need not be aware of the

new algorithms or techniques which can speedup their tasks.

2.10 Conclusions

The work presented in this chapter is driven by two basic observations. First, analyzing

and comparing patterns across multiple datasets is critical for many applications of data

mining. Second, it is desirable to provide support for such tasks as part of a database or a

data warehouse, without requiring the users to be aware of specific algorithms that could

optimize their queries.

We have presented a systematic approach for expressing and optimizing frequent item-

set queries that involve complex conditions across multiple datasets. Specifically, we have

51

proposed an SQL-based mechanism and have established an algebra for such queries. We

have developed a number of new optimizations, new operators, transformations, and heuris-

tic algorithms for finding query plans with reduced execution costs. Our experiments have

demonstrated up to an order of magnitude performance gains on both real and synthetic

datasets. Thus, we believe that our work has provided an important step towards building

an integrated, powerful, and efficient KDDMS.

52

CHAPTER 3

SIMULTANEOUS OPTIMIZATION OF COMPLEX MINING
TASKS WITH A KNOWLEDGEABLE CACHE

3.1 Introduction

In the last chapter, we studied how to evaluate a single mining query on multiple

datasets efficiently. However, considering the iterative and exploratory nature of knowl-

edge discovery or data mining, especially in view of the need for interactive response to the

users, new techniques are needed to further improve the evaluation performance.

In this chapter, we study how to evaluate mining queries in a query intensive environ-

ment. Specifically, we envision the following scenarios that a Knowledge Discovery and

Data Mining System (KDDMS) will have to support and optimize for:

� Sequence of Queries: A user may analyze one or more datasets by issuing a sequence

of related complex mining queries. This may be due to the iterative and exploratory

nature of the process, where the mining parameters and constraints are modified till

desired insights are gained from the dataset(s).

� Multiple Simultaneous Queries: Several users may be analyzing a set of datasets

concurrently, and may issue related complex queries.

53

The need for supporting and optimizing such scenarios has been well recognized in

database and OLAP systems. Views have been used to optimize a sequence of database

operations [45], and similarly, techniques such as reducing common subexpressions [96,

91] have been used. However, because the nature of the mining operations is very different

from nature of database and OLAP operations, these techniques cannot apply to a KDDMS

system.

Some efforts have been made towards addressing these issues for mining environments.

Nag et al. have studied how a knowledgeable cache can be used to help to perform inter-

active discovery of association rules [75]. They maintain a cache to record (in)frequent

itemsets with their support levels, and then modify the frequent itemset mining algorithm

to utilize the itemsets in the cache. The focus of their research is on frequent itemset mining

without complex mining conditions. Ng et al. have studied constraint association rule min-

ing [77]. In their method, multiple queries can be merged as a single query for evaluation.

Hipp and Guntzer have argued that execution of data mining queries with constraints can

be very expensive [51]. Therefore, they have proposed to use pre-computation of frequent

itemsets of certain support levels to answer constraint itemset mining queries.

The above efforts have two important limitations. First, sequence of queries and mul-

tiple simultaneous queries have not been studied together. Second, the techniques involv-

ing the use of knowledgeable cache have been restricted to deal with simple data mining

queries.

In this chapter, we focus on the problem of efficiently evaluating frequent pattern min-

ing queries on multiple datasets in a query intensive environment, where one needs to opti-

mize multiple simultaneous queries, as well as a sequence of related queries. Particularly,

we show how multiple simultaneous queries can be optimized, and how the results from

54

past mining queries can be utilized to evaluate the current ones. Due to the complexity and

characteristics of such queries, simultaneous optimization of multiple queries and caching

of their query results is challenging, and quite different from the existing work in this area.

Overall, this chapter makes the following contributions:

1. We present a novel system architecture to deal with a query intensive environment

that needs to support and optimize both multiple simultaneous queries and a sequence

of queries.

2. We propose new algorithms to perform multiple-query optimization for frequent pat-

tern mining on multiple datasets.

3. We show the design of a knowledgeable cache which can store the past query results

from queries on multiple datasets. We present algorithms which enable the use of the

results stored in such a cache to further optimize multiple queries.

4. We have implemented and evaluated our system with both real and synthetic datasets.

Our experimental results show that our techniques can achieve a speedup of up to a

factor of 9, compared with the systems which do not support caching or optimize for

multiple queries.

The rest of the chapter is organized as follows. In Section 3.2, we present our frame-

work to deal with both multiple simultaneous queries and a sequence of queries. In Sec-

tion 3.3, we discuss the important properties of the � -table, which form the basis for our

multiple query optimizations and caching of query results. In Section 3.4, we present our

optimization algorithms. In Section 3.5, we discuss the major implementation issues for our

system, and present our experimental results. We compare our work with related research

efforts in Section 4.5, and conclude in Section 4.6.

55

3.2 System Architecture and Optimization Overview

Let us envision a KDDMS system in which there are multiple datasets and multiple

users. If different users issue queries each of which involves multiple datasets, it is quite

likely that the queries could have a significant overlap.

For example, consider the following two queries, � � and � � , which are issued simul-

taneously.

� � :SELECT � � : � �
� � � � � � � � � �

FROM Frequency(: � �K�
� ���) �

WHERE � � � E ����
AND � � � E ����

AND � � � � ����

� � :SELECT � � : � �
� � � � � � � � � � � � ���

FROM Frequency(: � �K�
� � � � �) �

WHERE (� � � E ����
AND � � � E ����

AND � � � E �� �
AND � ��� � � ����

)

OR (� ��� ? ����
AND � � � � �����

)

These two queries overlaps on the datasets � and
�

. The question for us is, “How can

we exploit the overlap in the two queries to generate query plans that are more efficient

than the independently generated query plans for each query?”.

Furthermore, we consider the following possibility. As we had described earlier, it is

very likely that a single user issues a sequence of related queries. For example, the system

might have evaluated the following query � , before it receives the queries � � and � � .

� : SELECT � � : � �
� � � � � � � � � � � � � �

56

FROM Frequency(: � �K�
� ��� � �) �

WHERE (� � � E ����
AND � � � E ����

)

OR (� � � E ����
AND � � � E � � �

AND

(� � � E � � �
OR � � � E ����

))

In such a case, we have the following two additional questions: “How can we effectively

store the results from the recent queries in a cache?”, and, “How can we efficiently utilize

such cached results to speedup computation of new queries?”.

Before discussing how we address these issues, we describe our system architecture.

This architecture is shown in Figure 3.1. Our system primarily contains four components,

a Query queue, a Query plan optimizer, a Query evaluation engine, and a Cache. The

queries issued by the users of the system are initially stored in the query queue. The query

plan optimizer receives all the queries appearing in the queue, and then generates efficient

query plans for all of them, simultaneously. In the process, the query plan optimizer utilizes

the information in the cache, which maintains the results from a set of recent queries. The

query evaluation engine evaluates the queries, based on the query plan that uses the mining

operators and the operations defined in the Algebra. This component is also responsible for

retrieving the necessary information from the cache. Finally, the query evaluation engine

updates the cache, based upon the results of the current queries.

As we discussed above, we have two major goals, which are simultaneous optimization

of multiple queries, and maintaining and exploiting a cache to optimize for a sequence of

queries. In this section, we give a brief overview of our work. The rest of this chapter

provides a more detailed account.

1. Simultaneous optimization of multiple queries: The basic idea here is to reduce the

common computations appearing in different queries. This is similar to what is done for

57

Figure 3.1: System Framework

database queries. However, our method for detecting and optimizing the common compu-

tations is quite different from the traditional database approach. Our method is based on

� -table. Each mining operator in the query plan is mapped to an � -table representation.

The containment relationships on the � -table are defined to capture the common or over-

lapping computations. Further, different � -tables can be merged together into one large

table and a global query plan can be generated for the large � -table.

Based on the characteristics of the � -table, we propose two different approaches. The

first approach utilizes the containment relationship of the � -tables to detect the overlap-

ping computations across multiple queries. Here, each mining query will generate its own

query evaluation plan. Then, we will detect and merge the common computations among

different evaluation plans. The second approach involves merging the � -tables of different

queries into a single � -table, and then generating an efficient global query plan.

2. Knowledgeable cache: Our cache stores the results of each mining operator. Compared

to the previous effort on the use of a cache for supporting knowledge discovery [75], an

58

interesting aspect of our cache is as follows. It not only stores the itemsets with their fre-

quency, but also maintains a high-level knowledge or summary of the information being

stored. Therefore, when a new query comes in, the cache can systematically determine

which part of the query can be directly answered from the cache. Such knowledge is main-

tained through the use of � -table. We show how we can use the � -table to summarize,

update, and utilize the information in the cache.

In the next two sections, we provide a detailed account of these two issues. Specifically,

in Section 3.3, we focus on the properties of the � -table which enable the above optimiza-

tions. In Section 3.4, we discuss the detailed optimizations and cache management.

3.3 Properties of � -Table for Query Optimization

In this section, we study the properties and operations of � -table, which form the basis

for optimizing multiple mining queries and caching their results.

3.3.1 Containment Relationships of � -Tables

We begin with a set of containment relationships defined on the � -tables. These re-

lationships provide a simple mechanism to detect common computations among different

queries.

For the next two definitions, we assume we have two � -tables, � � and � � , with the

same number of rows (�), and the same row in the two tables corresponds to the same

dataset.

Definition 3 If � � and � � are both single-column, � � is contained in � � if for each

corresponding pair of cells, � ��� ��� and � ��� ��� � � U�� U � , either both the cells are empty, or

both the cells are non-empty and � ��� ��� E � ��� ��� .

59

� � � � � � � � � �

A 0.1 0.08 0.1 0.2
B 0.1 0.05 0.05 0.05 0.05
C 0.1 0.1
D

Table 3.1: M-Tables with Containment Relationships

If � � is contained in � � , we denote this as � � J � � . For example, in Table 3.1, we

have � � J � � .
The intuition behind this definition is as follows. If the desired support levels are higher

for the column � � , then the answer set for the query corresponding to � � is a subset of the

answer set for the query corresponding to � � . Thus, the former can be computed from the

latter by relatively inexpensive selection operations.

Definition 4 If � � and � � are multi-column � -tables, � � is contained in � � if each

column in � � is contained by some column in � � .

Again, the intuition behind the definition is the same. If each column in � � is contained

by some column in � � , the answer set for the query corresponding to � � can be obtained

by the answer set for the query corresponding to � � , using relatively inexpensive selection

operations.

Given these definitions and the mapping between mining operators and � -tables, we

have the following lemma.

Lemma 3 Consider two mining queries � � and � � , and let their associated � -tables be

denoted as � � and � � , respectively. If the � -table � � is contained in � � , i.e., � � J � � ,

60

the necessary information of � � can be derived from the necessary information of � � by a

selection operation (�).

This lemma helps us detect the common computations among queries.

Next, we study a more generalized containment relationship among � -tables, which is

based on the cells of � -tables. The motivation for this is as follows. In many cases, the

results of a query cannot be completely answered by one or more of the past queries, but

part of its result can be derived from them. This containment helps answer these questions.

To facilitate our discussion, we first define the following inequalities for empty cells.

Let N be the empty cell and let � be a positive (non-zero) threshold. Then, our discussion

assumes the following inequalities, N E N , �&E N ,
� E N � � ��� � N E

�
.

For the following definition, we again assume that we have two � -tables, � � and � � ,
with the same number of rows (�), and the same row in the two tables corresponds to the

same dataset.

Definition 5 Consider a cell � , which is at the row
�

in the column � � of the � -table � � .
This cell is contained in � � if there exists a column in � � , denoted as � � , such that: 1)

� � � ��� and � � � ��� are both non-empty, and 2) � � � R � E � � � R � �OQSRT� � U R U � .

We denote such containment as � J � � . Intuitively, � is contained in � � if we can use

the corresponding cell in the column � � to color the cell � . The reason we require � � � R � E
� � � R � , for each pair of corresponding cells in the two columns, is that we need information

in � � to be a superset of the information required for the cell � .

As an example, in Table 3.4, the cell at the row three in the single-column � -table

corresponding to � , denoted as ��� � � , is contained in the � -table for � . Formally, we

say, ��� � � J � .

61

Based upon the above definition, we have the following definition to relate one � -table

to a set of � -tables.

Definition 6 An � -table, � � , is cell-contained in the group of � -tables, � � � 	
	
	 � � � , if

each non-empty cell in � � is contained by at least one � -table in the set � � ��	
	
	�� � � .

Formally, we denote this as

� � J�� � � � ��	
	
	 � � ���

As an example, in Table 3.1, we have � � J�� � � �
� � ��� .
Given this definition, we have the following lemma to detect if the necessary informa-

tion of a query can be derived from a group of other queries.

Lemma 4 Let � � be a query with an � -table, � � , and let � � ��	
	
	 � � � be a group of

queries with the corresponding � -tables � � � 	
	
	 � � � , respectively. If � � is cell-contained

in � � ��	
	
	 � � � , then the necessary information of � � can be derived from the necessary

information of � � ��	
	
	 � � � .

Our discussion in this subsection has so far assumed that the � -tables have the same

number of rows, and the same row in each table corresponds to the same dataset. However,

this is not a serious limitation. If two � -tables do not satisfy this condition, we can align

them to meet this condition. Briefly, this alignment procedure is as follows. First, we take

a union of the two sets of datasets. Then, we extend the two � -tables to have the same

number of rows, corresponding to the union of the set of datasets. This will involve adding

rows where each cell will be empty. Finally, we shuffle the rows in the two � -tables to let

each row represent the same dataset.

62

� � (� �) � � (� �)
A 0.2 0.2 A 0.1 0.1
B 0.1 0.1 B 0.1 0.1
X 0.1 Y 0.1 0.1 0.01

Z 0.01 0.2 0.2

� � � � �
A 0.2 0.2 0.1 0.1
B 0.1 0.1 0.1 0.1
X 0.1
Y 0.1 0.1 0.01
Z 0.01 0.2 0.2

Table 3.2: Merge Operation for M-Tables

3.3.2 The Merge Operation for � -Tables

We now define the merge operation for the � -Tables. This operation helps in replacing

multiple queries by a single large query, and also helps maintain a high-level summary of

the contents of the cache. Again, our definition assumes that the � -tables being merged

have been aligned, i.e., they have the same number of rows and the same row in each table

corresponds to the same dataset.

Definition 7 The merge operation, denoted as
�

, on two � -tables, � � and � � , results in

a table with the same rows, and a set of columns that is the union of the set of columns in

� � and � � .

As an example, Table 3.2 shows the merged table, � � � � � , where, � � and � � are

� -tables for the queries � � and � � , respectively.

Clearly, the original tables are contained in the merged table, that is

� � � � � J � � � � �
63

The implication of the above observation is as follows. For two � -tables � � and � � ,
corresponding to the queries, � � and � � , respectively, the answering set of both � � and

� � can be derived from the result of the merged � table, � � � � � . This fact will be used

to process multiple queries, as well as to update the knowledgeable cache with different

mining operators.

3.4 Multiple Query Optimization Approach

In this section, we present our optimization algorithms which are based on � -tables.

Specifically, in Subsection 3.4.1, we first review how the query plan for a single query is

generated from an � -table. In Subsection 3.4.2, we study how each mining operator can be

mapped to the � -table and how the redundant mining operators can be detected. In Sub-

section 3.4.3, we discuss how local plans from several queries can be optimized together.

In Subsection 3.4.4, we introduce another approach for optimizing multiple queries, which

involves merging multiple queries into one query, and then generating a global query plan.

Subsection 3.4.5 focuses on how � -table can be used to summarize and update the cache,

and how the cache can help us reduce the evaluation costs.

3.4.1 Single Query Plan Generation

We begin with introducing a new mining operator � � . We introduce this operator

because using only the �
� operator to evaluate queries can be very expensive.

Frequent itemset mining operator with constraints � �;(� 3 � � ��� , finds the itemsets that

are frequent in the dataset � 3 with support � and also appears in the set � . � is a set of

itemsets that satisfies the down-closure property, i.e., if an itemset is frequent, then all its

subsets are also frequent. This operator also reports the frequency of these itemsets in � 3 .

64

� � � � ��� ��� ���
A 0.1 0.1 0.05
B 0.1 0.1 0.05
C 0.1 0.1 0.1
D 0.05 0.1 0.1 0.1

Table 3.3: Colored M Table for the query �

Formally, � �;(� 3 � �F��� , computes the following view of the � table:

� � �
�V(� 3 � ��,

Note that we can also define and use other mining operators to speedup the evaluation

process [63]. For simplicity, we will only use � � and � � in this chapter. Our overall

approach can be easily extended to include other mining operators as well.

Now, we focus on query plan generation using the � -table. One of the important fea-

tures of � table is it can capture the evaluation process for a query by a simple coloring

scheme. This coloring scheme is as follows. Initially, all the cells are black. Each invo-

cation of a mining operator (like �
� and � �) can color a number of non-empty cells red.

This implies that the information corresponding to these cells has been computed. The

query evaluation process is complete when all non-empty cells are colored red.

As a running example, consider applying �
�;(�K� � ����� , , �
�V(�� � ���� , , ���V(� � ���� � �
� � (� � ���� ,5, ,
and ���V(� � ���� � �
� ��(�� � ���� ,5, consecutively on an initially black-colored table � of the

query � . Table 3.3 shows the resulting colored table (unshaded for black-colored, and

65

shaded for red-colored). In the following, we look at how the �
� and � � operators color

the table.

Frequent mining operator �
�;(� � � � , : An invocation of the frequent mining operator on

the dataset �
� , with support � , will turn each non-empty cell at row
�

who is greater than

or equal to � red. In our example, the first operator, �
�;(�K� � ����� , , will turn the cells � ��� � ,
� ��� � , and � ��� � red, and the second operator, �
�;(�� � � � � , , will turn the cells � � � � , � � � � , and

� � � � red.

Frequent mining operator with constraint � �;(�	� � � ��� , : The coloring impacted by this

operator is dependent on the current coloring of the table � . Let � be the set of frequent

itemsets defined by all the red cells, and let � be the set of columns where these red cells

appear. Then, by applying this operator on dataset � � with support � , all cells on row
�

whose column is in the set � , and whose value is less than or equal to � , will turn red.

In our running example, the third operator ���V(� � ���� � �
� �
(�K� ���� ,7,
picks the red cells � ��� � and � ��� � by the parameter

� 	 �
� � (�K� � � � ,

The set � includes the first two columns. Therefore, this operator turns the cells � � � � and

� � � � red. Similarly, the fourth operator turns the cells � � � � , � � � � , and � � � � red.

By the above formulation, the query evaluation problem has been converted into the

problem of coloring the table � . Different operators can be used, and in different order,

to color the entire table red. Generating optimal query plan is NP-hard, and a number of

heuristic algorithms have been developed to find efficient query plans [63]. Here, we will

only discuss one of the algorithms, the Algorithm-CF, which uses �
� and ��� operators to

optimize the query evaluation. Algorithm-CF splits the evaluation into two phases. In the

66

first phase, we use the �
�V(� 3 � � , operators so that each column has at least one red cell.

In the second phase, we use the � �;(� 3 � �F� � , operators to compute all other non-empty

cells in the table.

The sketch of Algorithm-CF is listed is in Figure 3.2. It involves minimizing costs for

each of the two phases. Since precise cost functions for each operator are not available, a

simple heuristic based on the support level is used to estimate the cost. In general, for a

single dataset, higher support level for the the �
� operator implies lower computation.

Input: table � without coloring
Phase 1

Enumeration of possible
���

operators to find the least cost
to cover at least one cell red for each column

Phase 2
Find datasets whose corresponding rows have black cells;
For each row, find the lowest support level among the black cells;
On each row, invoke the

� �
operator with

the lowest support level:
Across the rows, invoke the operator in the decreasing order
of support level used for the

� �
operator.

Figure 3.2: Algorithm-CF for Query Plan Generation

Algorithm-CF will generate the following query plan for the query � .

����� / N
� � �
�;(�K� ���� ,�� �
�;(�� � � � � ,��

����� / N
� � ���V(� � ������ � �
�V(�� � ���� , � , �

� �;(� � ������ �
(�
�;(�K� � � � , � �
�V(�� � ���� ,5, � , �
���V(� � ������ � (5(�
�;(�K� ���� , � �
�;(� � ���� ,7, � �
�V(�� � ���� ,5, � , �

67

Note that � � returns the first column of table � , i.e. the set of itemsets recored in � .

3.4.2 Mapping Mining Operators to � -Tables

Each mining operator in a query plan can be uniquely mapped to an � -table. This

mapping plays an important role in multiple query optimization and cache management.

This is because common computations among the mining operators can be easily captured

using � -table, and similarly, the result of each mining operator can be uniformly expressed

using � -tables.

We had earlier described how the two operators, �
� and � � , contribute to the coloring

of the table, and help generate query plans. Since part of our goal is to use an � -table to

capture the cache, we define rules to map each different mining operator in a query plan to

a unique � -table.

Frequent mining operator �
�;(� 3 � ��, : An invocation of this operator on dataset � 3 and

support � will generate a single column � -table whose row R is � , and other rows are

empty.

Frequent mining operator with constraint � �;(� 3 � �F��� , : Recall that the � � mining oper-

ator is used to color a set of columns, denoted as � , who have at least one cell to be colored

red, and the cell at the row R for each column in � is black. Then, the � -table generated by

the ��� operator is composed of these columns in the set � , with the following exception.

The cells which are still black after the � � mining operator will become empty in this new

� -table.

Consider the following incomplete query plan for the query � .

 �� � �
�;(�K� ���� ,��

68

 �� � � �
A 0.1 0.1
B 0.05 0.05 0.05
C 0.1 0.1 0.1
D 0.1

Table 3.4: M-Tables of different mining operators

 � � � �V(�� � ���� ,��
 � � ���V(� � ������ � (� �V(� � ���� , � �
�;(�� � � � � ,7, � , �

 � � ���V(� � ���� ��� � � (� � � � � � � � � (�� � �� � ,5, �

Table 3.4 shows the corresponding � -tables for the mining operators in the above query

plan.

The significance of associating an � -table with each mining operator is that the com-

mon computation among mining operators can be treated the same way as the query results.

In particular, Lemmas 3 4 can be modified to apply to mining operators, instead of mining

queries. In next subsection, we will use such methods to reduce the redundant computations

among different query plans.

3.4.3 Optimizing Local Plans

To optimize multiple simultaneous queries, this approach generates local query plans

for each query, and then tries to remove the common computations among the query plans.

The common computations are categorized into two groups. In the first group, a mining

operator in a query plan can be derived from another mining operator in one of the other

query plans. In the second group, a mining operator in a query plan can be derived from

69

a group of mining operators which are in other query plans, or are in the same query plan

but scheduled before this operator. As discussed in Subsection 3.3.1, we can detect these

common computations by the containment relationship defined on the � -tables.

The difficulty of this approach is that different query evaluation order will result in

different ways to remove the common computations. For example, assume one query plan

has the mining operator,

���V(� � ���� � (� �V(� � ���� , � � �V(� � ���� ,5, � ,

and another query plan includes

� �;(�K� ���� � �
�V(� � ���� , � , ��� �;(� � ���� � �
�V(� � ���� , � ,

Since the two sets of mining operators are equivalent, depending on which query plan is

evaluated first, we have different ways to eliminate the common computations. Note that in

order to simplify the above problem, we are not considering combining local plans together

into a global plan. This will be the topic of the next subsection.

To find the evaluation order for � queries to achieve the maximal savings from remov-

ing the common computations, a simple enumeration method will have the time complex-

ity ;(� � , . If � is large, this method is very expensive. Therefore, we propose a greedy

algorithm, which is sketched in Figure 3.3. This greedy algorithm utilizes the following

property. If a query plan, � , is scheduled after a set of query plans, � , then the contained

mining operators in � do not depend on how the contained mining operators are removed

within the set � . This is based on the transitive property of the containment relationships.

To utilize this property, our algorithm finds the query plan which has the maximal savings

when it is scheduled as the last one. Such a plan is then scheduled last, and then the order of

the remaining operations is determined. Note that since the exact savings cannot typically

70

Input: local query plans
� � ������� � � ���� � � � ������� � � � ;

While (
����	�

) Do
Foreach

��
� �
Eliminate Containment:

If any mining operator in
��

is contained in
��� � ��
 �

Eliminate Cell-Containment:
If any mining operator in

�

is cell-contained in

mining operators in
��� � �
 � or in

�

but

scheduled before this operator
Find the savings from the above eliminations;

Let
���

in
�

have the maximal savings;
Eliminate the contained mining operators from

���
;

Scheduled
���

after
��� ���

;��� ��� � ��� � .

Figure 3.3: Greedy Algorithm to Remove Containment in Multiple Query Plans

be determined, we use simple heuristics, such as the number of mining operators, as the

cost function.

Consider applying the greedy algorithm on the query plans of query � � and � � , which

are as follows:

� � � �
�V(� � ���� , �
� �V(� � � � � � � �V(� � ���� , � , �

���V(� � ���� � (� �V(� � ���� , � �
�;(� � ���� ,5, � , �
� � � �
�V(�K� �� � , � �
�V(� � � � � ,��

� �V(� � � � � � � �V(� � ���� , � , �
���V(�� � ����� � (7(�
�V(�K� �� � , � �
�V(� � �� � ,5, � � �V(� � ���� ,5, � , �
���V(� � ���� � � (5(�
�;(�K� ���� , � �
�V(� � � � � , � �
�;(�� � � � � ,7, � , �

The algorithm will schedule the query � � before � � , and the first two mining operators in

the query plan of � � will be eliminated.

71

3.4.4 Global Query Plans

A drawback of the above approach is that it is very sensitive to the local plans, and

often cannot find efficient query plans. For example, consider the new query � � � which is

created by replacing the sub-condition in the query � � , � � � E �� �
by � � � E ������

. The

query plan for � � � is as follows.

�
�V(� � � � ��� , � �
�V(� � � � � ,��
� �V(�K� �� � � �
�;(� � ������ , � , �

���V(�� � ����� � (7(�
�V(�K� �� � , � �
�V(� � �� � � ,5, � �
�;(� � ���� ,5, � , �
���V(� � ���� � � (5(�
�;(�K� ���� , � �
�;(� � ������ , � �
�;(�� � �� � ,5, � , �

If we are evaluating queries ��� and � � � together, the above approach can not find any

common computations between the two query plans, and the mining operators will be

invoked 8 times.

However, the � -table format of queries enables us to perform more aggressive op-

timizations. This new approach does not depend on the local query plans. Instead, this

approach combines the local � -tables from different queries into a single large � -table

by the merge operation (
�

). Then, it generates a global query plan based on this merged

� -table. Consider the merged � -tables for query � � and � � � in Table 3.5.

We can have the following global query plan which needs only 6 mining operators.

�
�V(�K� �� � , � �
�V(� � � � � ,��
���V(� � ���� � �
�;(� � ���� , � , �

� �;(� � � � � �
(5(�
�V(� � ���� , � �
�V(� � �� � ,5, � ,5, �
���V(�� � ����� � (7(�
�V(�K� �� � , � �
�V(� � �� � � ,5, � �
�;(� � ���� ,5, � , �

72

A 0.2 0.2 0.1 0.1
B 0.1 0.1 0.15 0.15
X 0.1
Y 0.1 0.1 0.01
Z 0.01 0.2 0.2

Table 3.5: Merged M-Table for Query ��� and � � �

���V(� � ���� � � (5(�
�;(�K� ���� , � �
�;(� � ������ , � �
�;(�� � �� � ,5, � , �

Compared with the first approach, this global query plan replaces the four mining oper-

ators �
�V(� � �� � � , , �
�V(� � ���� , , � �V(�K� �� � , � �V(� � ������ , � , , �
�V(� � �� � , � �V(� � ���� , � , by

two mining operators, �
�;(�K� ���� , , � �;(�K� ���� � �
�V(� � �� � , ��, . This is likely to be more

efficient.

3.4.5 Knowledgeable Cache Management and Utilization

We now discuss how the � -table can be used for summarizing our cache. Assume in

our system, there are a total of � distinct datasets. Then, our cache can use an � -table with

� rows, where each row corresponds to a dataset, to represent the past evaluation results

that are stored in the cache. The set of columns of the � -table are dynamically changed

after each invocation of a mining operator.

This update procedure is quite simple. Earlier, we had described how each mining

operator in a query plan is mapped to an � -table. After invocation of a mining operator,

besides inserting the mining results in the cache, the � -table for the mining operator will

be merged with the � -table that summarized the cache earlier.

73

A 0.1 0.05 0.1 0.1
B 0.05 0.05 0.1
C 0.1 0.1 0.1 0.1
D 0.05 0.05
E

Table 3.6: M Table for the Cache

A 0.2 0.2 0.1 0.1
B 0.1 0.1 0.15 0.15
X 0.1
Y 0.1 0.1 0.01
Z 0.01 0.2 0.2

Table 3.7: Pre-Colored M-Table for Query � � and ��� �

Consider the query plan for the query � described earlier, and assume the cache is

empty initially. Then, the � -table of the cache after the evaluation of this query plan is

shown in Table 3.6.

The high-level knowledge of our cache can be used to answer which part of a new query

can be answered directly from the cache. Further, to help with the query plan generation,

this information is represented by pre-coloring the � -table for the new queries. This is

done by using the generalized containment relationship of � -tables based on cells. For

each non-empty cell in the � -table for queries, we search the � -table of the cache to see

if a column contains it. If such a column exists, the cell will be turned red. As an example,

assume we have a cache with an � -table shown in Table 3.6. The pre-coloring of the

merged � -table for queries ��� and � � � is shown as Table 3.7.

74

After such pre-coloring, less cells need to be colored, and more efficient query plans

can be generated. For the first approach to optimize multiple queries (Subsection 3.4.3),

different local query plans are generated from the pre-colored � -tables, and then the com-

mon computations among them are removed. For the second approach (Subsection 3.4.4),

a global query plan is generated from the pre-colored merged � -tables. For queries � �
and ��� � , both approaches will generate the following query plan:

� �V(� � ���� , �
���V(� � ���� � (�
�V(� � ���� , � �
�V(� � �� � ,5, � ,5, �

���V(�� � ����� � (7(�
�V(�K� �� � , � �
�V(� � �� � � ,5, � �
�;(� � ���� ,5, � , �
���V(� � ���� � � (5(�
�;(�K� ���� , � �
�;(� � ������ , � �
�;(�� � �� � ,5, � , �

3.5 System Implementation and Experimental Evaluation

This section reports a series of experiments we conducted to demonstrate the efficacy

of the optimization techniques we have developed. 1 Particularly, we were interested in the

following questions:

1. What are the performance gains from two different approaches to simultaneously

optimize multiple mining queries ?

2. What are the performance gains from the knowledgeable cache, and/or from pre-

computation of frequent itemsets with certain threshold ?

1Thanks for Kaushik Sinha’s help with the implementaion and experimental evaluation.

75

Initially, we briefly describe how we have implemented our cache, and the datasets and the

queries used for our experiments.

3.5.1 Cache Implementation

In our current implementation of the cache, we use a memory-based hash-tree like data

structure to maintain the itemsets with their frequency counts. For each dataset, we main-

tain an independent hash-tree. We define three primitives to access the cache. These are:

the add operation, which adds a set of itemsets and their frequency in the cache, the get

operation, which takes as parameter the support level � , and gets the set of itemsets with

support level higher than or equal to � from the cache, and finally, the remove operation,

which removes the itemsets whose support is lower than the given parameter for the speci-

fied dataset.

3.5.2 Datasets

Our experiments were conducted on two groups of datasets, each of them comprising

four distinct datasets:

IPUMS: The first group of datasets is derived from the IPUMS 1990-5% census micro-

data, which provides information about individuals and households [1]. The four datasets

each comprises 50,000 records, corresponding to New York, New Jersey, California, and

Washington states, respectively. Every record in the datasets has 57 attributes.

IBM’s Quest: The second group of datasets represents the market basket scenario, and

is derived from IBM Quest’s synthetic datasets [5]. The first two datasets, dataset-1 and

dataset-2, are generated from the
� � ��

:
�� $ � ��� �

dataset by some perturbation. Here, the

number of items per transactions is 20, the average size of large itemsets is 8, and the num-

ber of distinct items is 2000. For perturbation, we randomly change a group of items to

76

Query Conditions
� � ����� �����	��� �
� � � �
��� ��� �	�� � � ������� �
��� � �
��� �����	��� � ��� � �	��� �����
��� � �
��� � �
�� � ���	�� � ������� � ������� � ���

� ����� � ������ � � �
��� � ���	��� � �
�� �
��� �!���	�� ��������� �!������� �
��" � �
�� � ���	��� � ������� � ������� � ���

� �#�� � � ����� � ������� � ������� �����
� ����� � �
��� ���	��� " ������� " ���

Table 3.8: Test Query Templates for Our Experiments

other items with some probability. The other two datasets, dataset-3 and dataset-4, are sim-

ilarly generated from the
� � ��

:
� �� $ � � ���

dataset. Each of four datasets contains 1,000,000

transactions.

3.5.3 Test Queries

We use a collection of query templates involving a different number of datasets, ranging

from one to four. Each template involves several different thresholds. For convenience, the

thresholds are classified into two groups. A threshold is positive if it is in a positive predi-

cate, and negative if it is in a negative predicate. Table 3.8 illustrates several templates used

in our experiment, where we use � and
�

to represent the positive and negative thresholds,

respectively. To generate a query from these query templates, we assign values to each

threshold in the query template. For IPUMPS datasets, a positive threshold ranges from

� ���
to

�����
, and a negative threshold from

�����
to � ��� . For Quest datasets, a positive

threshold ranges from
�� � �

to
�� ���

, and a negative threshold from
��������

to
�� � �

.

77

3.5.4 Experimental Settings

In our experiments, we evaluate three methods to deal with multiple mining queries.

The first is the naive method, which generates efficient query plan for each single query,

without considering their common computations. The second method is as described in

Subsection 3.4.3. It tries to remove the common computations among the local query

plans and greedily selects an evaluation order. The third method is as described in Subsec-

tion 3.4.4. It merges the local queries into one single query by using the � table format,

and then generates an efficient global query plan. For our discussion, we denote them as

� � (single query plan), � � (local query plan), and � � (global query plan), respectively.

In each of these methods, we use the Algorithm-CF to generate our query plans.

We also consider the following experimental settings to study the impact of pre-computation

and caching.

Setting-I: No pre-computation and caching,

Setting-II: Use pre-computation only,

Setting-III: Use Caching only, and

Setting-IV: Use both pre-computation and caching.

Note that in our experiments, we do not consider cache replacement. This is a topic for

future research.

3.5.5 Experimental Results

In the following, we first report two groups of experimental results. The first group,

(Group-1), assumes that queries are issued in a random fashion. Specifically, we randomly

78

Batch Setting-I Setting-II Setting-III Setting-IV
Size SQ LQ GQ LQ GQ LQ GQ LQ GQ
2 391 362 234 288 207 160 149 149 125
3 587 462 254 398 231 239 224 224 162
4 783 607 305 502 274 319 299 299 192
6 1175 798 339 684 316 479 448 448 232

Table 3.9: Group-I Results on Synthetic (Quest) Datasets (All Execution Times in Seconds)

generate 24 queries from the query templates, and put them in the query queue. Our system

will evaluate them in a batch fashion, where the batch size varies from
�

to � . The second

group, (Group-2), emulates a mining session. Each mining session is defined as a sequence

of queries with the same query template but different thresholds. This simulates the situa-

tion in which a user issues a sequence of related queries, in order to find the desired results.

Specifically, we randomly pick 24 query templates, and then randomly generate 6 queries

from each template. In our experiment, we vary the batch size to evaluate the total of 144

queries generated in this fashion. Each batch contains 2, 3, 4, or 6 queries from different

mining sessions.

Tables 3.9 and 3.10 show the Group-1 experimental results. Tables 3.11 and 3.12 show

the Group-2 experimental results. Each table contains four different experimental settings:

Setting-I, Setting-II, Setting-III, and Setting-IV, as described above. The number in the

table represents the average evaluation time for each batch of queries. Note that in each of

these these tables, for pre-computation, we select the frequent itemsets with support level

������
for the Quest datasets, and with support level � ��� for the IPUMS datasets.

From these tables, we can see that � � (global query plan) always performs better than

� � (local query plan). In the Setting-I (no pre-computation and caching), compared with

79

Batch Setting-I Setting-II Setting-III Setting-IV
Size SQ LQ GQ LQ GQ LQ GQ LQ GQ
2 83 71 58 44 40 29 25 24 21
3 126 101 80 66 59 43 32 36 26
4 167 112 79 71 65 58 40 47 41
6 250 171 109 121 88 88 55 72 48

Table 3.10: Group-I Results on Real (IPUMS) Datasets (All Execution Times in Seconds)

Batch Setting-I Setting-II Setting-III Setting-IV
Size SQ LQ GQ LQ GQ LQ GQ LQ GQ
2 412 365 263 273 202 84 53 81 51
3 619 523 301 389 237 126 77 120 75
4 825 638 333 497 250 168 90 163 87
6 1238 815 364 662 282 251 141 248 135

Table 3.11: Group-II Results on Synthetic (Quest) Datasets: (All Execution Times in Sec-
onds)

Batch Setting-I Setting-II Setting-III Setting-IV
Size SQ LQ GQ LQ GQ LQ GQ LQ GQ
2 88 76 69 57 52 13 11 10 10
3 132 98 89 78 72 20 17 16 14
4 175 118 102 93 82 26 20 22 18
6 260 146 123 126 111 39 29 32 29

Table 3.12: Group-II Results from Real (IPUMS) Datasets (All Execution Times in Sec-
onds)

80

� � , the average speedups of � � for all batch size in Tables 3.9, 3.10, 3.11, and 3.12

are 1.3, 1.3, 1.3, and 1.4, respectively. � � gains an average speedup of 2.5, 1.9, 2.4, and

��� �
, respectively. Also, as the batch size becomes larger, the gains from � � and � � also

become larger. For example, when the batch size is 6 in Table 3.9, the speedups of � �

and � � are 1.5 and 3.5, respectively. This is because with a larger number of queries in

a batch, more common computations can be removed. This observation also validates the

effectiveness of our methods to optimize multiple queries.

From the experimental results, we can see that pre-computation and caching also help

reduce the evaluation costs. In our experiments, Setting-IV which combines pre-computation

and caching is always the best. Setting-III (purely caching) is also quite effective, and

delivers a speedup quite close to Setting-IV. Compared with Setting-I (no caching and

pre-computation), Setting-II (Pre-computation) achieves an average speedup of 1.2, 1.4,

1.3,and 1.2, in Tables 3.9, 3.10, 3.11, and 3.12, respectively; The gains from the Setting-

III amount to a factor of 1.8, 2.2, 3.8,and 5.0, respectively. Finally, the Setting-IV achieves

the highest gains, with an average speedup of 1.9, 2.6, 4.0, and 5.9, respectively.

In the Setting-IV, caching and pre-computation maximize the gains for the both lo-

cal and global query plans. Specifically, compared with � � in the Setting-I, the average

speedups of � � in the Setting-IV are 2.6, 3.5, 5.1, and 8.3, in the Tables 3.9, 3.10, 3.11,

and 3.12, respectively. � � obtains an average speedup of 4.0, 4.5, 8.8, and 9.2, respec-

tively.

An interesting property of caching is if there is no cache replacement, as is the case in

our system, it reduces the average query evaluation time as more queries are being evalu-

ated. Table 3.13 shows this caching effect. Here, global query plans are used. Each row

of the table corresponds to a different batch size, ranging from 1 to 6. The columns in the

81

Batch Size 24 Queries 48 Queries 96 Queries 144 Queries
1 13 11 10 6
2 25 21 17 13
3 32 33 26 18
4 40 38 31 24
6 55 52 44 34

Table 3.13: Caching Effects: IPUMS(in Seconds)

table correspond to the number of queries being evaluated. We issued four sets of queries,

with a total of 24, 48, 96, and 144 queries, respectively, to the query queue in our system.

We can see that as more queries are processed by the system which is using the cache, the

average of the batch processing time is reduced. Specifically, the average evaluation time

has reduced from 9.2 seconds per query when there are 24 queries, to only 5.0 seconds per

query when there are a total of 144 queries.

3.6 Related Work

This section compares our work with related research efforts.

A number of constraint frequent itemset mining algorithms have been developed, with

the goal of using additional conditions and pruning the search space [16, 68, 77, 86, 98].

More recently, Yan et. al have studied the use of connectivity constraints to mine fre-

quent graphs [33]. However, these algorithms cannot efficiently answer our target class

of queries, since the conditions in our queries correspond to a set of (in)frequent patterns.

Moreover, they have not considered the multiple query optimization problem.

82

Raedt and his colleagues have studied the generalized inductive query evaluation prob-

lem [66, 69, 88]. Although their queries target multiple datasets, they focus on the algo-

rithmic aspects to apply version space tree and answer the queries with the generalized

monotone and anti-monotone predicates. In comparison, we are interested in answering

queries involving frequency predicates more efficiently.

Our research is also different from the work on Query flocks [101]. While they target

complex query conditions, they allow only a single predicate involving frequency, and on

a single dataset. The work on multi-relational data mining [13, 30, 87, 111] has focused on

designing efficient algorithms to mine a single dataset materialized as a multi-relation in a

database system.

A number of researchers have developed techniques for mining the difference or con-

trast sets between the datasets [12, 29, 106]. Their goal is to develop efficient algorithms

for finding such a difference, and they have primarily focused on analyzing two datasets

at a time. In comparison, we have provided a general framework for allowing the users to

compare and analyze the patterns in multiple datasets.

As discussed in Section 5.1, some efforts have been made toward addressing the issues

arising from sequence of queries and multiple simultaneous queries in mining environ-

ments. Nag et al. have studied how a knowledgeable cache can be used to help perform

interactive discovery of association rules [75]. Hipp and Guntzer have proposed to use

pre-computation of frequent itemsets of certain support levels to answer constraint itemset

mining queries [51]. Goethals and Bussche have developed methods to support an interac-

tive data mining session [40]. Compared with our work, these efforts have not addressed

both of the issues, sequence of queries and multiple simultaneous queries, together, and the

knowledgeable cache is restricted to simple data mining queries.

83

Multiple query optimization has been widely studied in database systems [96, 82, 91,

97]. Here, the focus has been on finding efficient query plans by dealing with the trade-offs

between materialization and re-computation of common subexpressions. Zhao et al. have

studied simultaneous optimization of a restricted kind of queries, called multi-dimensional

queries [121]. The main differences between their study and our approach is that we assume

that common computations will always be materialized, and we have developed an efficient

way to detect and utilize such common computations.

Andrade et al have studied how to simultaneously optimize a group of related scien-

tific data processing queries [10]. However, their methods are mainly based on the spatial

properties of the queries and cannot applied to the mining tasks we have focused on.

3.7 Conclusions

The work presented in this chapter is driven by the need to efficiently process a large

number of data mining queries, which are being issued by a number of users. To speedup

the evaluation of queries in such a scenario, we need to not only evaluate each single query

efficiently, but also need to optimize multiple queries simultaneously. Furthermore, we

need to be able to utilize mining results from past queries in a systematic fashion.

In this chapter, we have presented a novel system architecture to deal with such a query

intensive environment. We have proposed new algorithms to perform multiple-query op-

timization for frequent pattern mining queries which involve multiple datasets. We also

designed a knowledgeable cache which can store the past query results from queries, and

enable the use of these results to further optimize multiple queries. Finally, we have imple-

mented and evaluated our system with both real and synthetic datasets. Our experimental

results have demonstrated a speedup of up to a factor of 9.

84

CHAPTER 4

AN ALGORITHM FOR IN-CORE FREQUENT ITEMSET MINING
ON STREAMING DATA

4.1 Introduction

Frequent itemset mining is a core data mining operation and has been extensively stud-

ied over the last decade [3, 41, 46, 48, 115, 122]. Algorithms for frequent itemset mining

form the basis for algorithms for a number of other mining problems, including association

mining, correlations mining, and mining sequential and emerging patterns [48].

Algorithms for frequent itemset mining have typically been developed for datasets

stored in persistent storage and involve two or more passes over the dataset. Recently,

there has been much interest in data arriving in the form of continuous and infinite data

streams. In a streaming environment, a mining algorithm must take only a single pass over

the data [11]. Such algorithms can only guarantee an approximate result.

In this chapter, we present a new approach for frequent itemset mining. Our work has

two main contributions:

In-core Mining in Streaming Environment: We present a single pass algorithm for fre-

quent itemset mining in a streaming environment. Our algorithm has provable determin-

istic bounds on accuracy. Unlike the only other existing work in this area that we are

85

familiar with [71], our algorithm does not require any out-of-core summary structure. We

believe that this is a very desirable property, since stream mining algorithms may need to

be executed in small and mobile devices, which do not have attached disks for storing an

out-of-core summary structure.

Memory Efficient Accurate Mining: A key limitation of the existing work on frequent

itemset mining has been the high memory requirements when the number of distinct items

is large and/or the support level desired is quite low. Our single pass algorithm has a

property that it does not produce false negatives, i.e., all frequent itemsets with desired

support level are reported. The false positives reported by our algorithm can be easily

removed through a second pass on the dataset. Our two pass algorithm provides high

memory efficiency, while not compromising accuracy in any way.

Our work derives from the recent work by Karp et al. on determining frequent items (or

1-itemsets) [65]. They present a two pass algorithm for this purpose, which requires only

(��� BT, memory, where B is the desired support or frequency level. Their first pass computes

a superset of frequent items, and the second pass eliminates any false positives. Our work

addresses three major challenges in applying their ideas for frequent itemset mining in a

streaming environment. First, we have developed a method for finding frequent k-itemsets,

while still keeping the memory requirements limited. Second, we have developed a way

to have a bound on the superset computed after the first pass. Third, we have developed a

new data structure and a number of other implementation optimizations to support efficient

execution.

We have carried out a detailed evaluation using both synthetic and real datasets. Our

results can be summarized as follows.

� Our one pass algorithm is very accurate in practice.

86

� Our algorithm is very memory efficient. For example, using the T10.I4.N10K dataset

and a support level of 1%, we can consistently handle 4 million to 20 million trans-

actions with less than 2.5 MB main memory. In comparison, Manku and Motwani’s

algorithm [71] requires an out-of-core data-structures on top of a 44 MB buffer to

process 1 million transactions.

� The algorithm can handle large number of distinct items and small support levels

using a reasonable amount of memory. For example, a dataset with 100,000 distinct

items and a support level of 0.05% could be handled with less than 200 MB main

memory, a factor of 5 improvement over apriori.

Last year, a workshop on frequent itemset implementations was organized and a de-

tailed evaluation of algorithms was carried out [41]. The focus in this workshop was on

in-core datasets. In comparison, we are focusing on streaming data and the cases where

large number of distinct itemsets or very low support levels can lead to high memory re-

quirements for most algorithms.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the method

from Karp et al. to find frequent items, and explain the basic ideas to extend this method

for mining frequent itemsets. In Section 4.3, we present our new algorithm and its the-

oretical properties. Implementation and detailed experimental evaluation is discussed in

Section 4.4. We compare our work with related research efforts in Section 4.5 and con-

clude in Section 4.6.

4.2 Basic Ideas

This section describes the basic ideas that lead to our new algorithm. Initially, we

discuss a new approach for finding frequent items from Karp et al. [65]. We then discuss

87

the challenges in extending this idea to frequent itemset mining, and finally outline our

ideas for addressing these issues.

4.2.1 Finding Frequent Items

Our work is derived from the recent work by Karp, Papadimitriou and Shenker on

finding frequent elements (or 1-itemset) [65]. Formally, given a sequence of length $ and

a threshold B (
� � B � �

), the goal of their work is to determine the elements that occur

with frequency greater than $.B .
A trivial algorithm for this will involve counting the frequency of all distinct elements,

and checking if any of them has the desired frequency. If there are � distinct elements, this

will require ;(� , memory.

Their approach requires only ;(� � B-, memory. Their approach can be viewed as a gen-

eralization of the following simple algorithm for finding the majority element in a sequence.

A majority element is an element that appears more than half the time in an entire sequence.

We find two distinct elements and eliminate them from the sequence. We repeat this pro-

cess until only one distinct element remains in the sequence. If a majority element exists in

the sequence, it will be left after this elimination. At the same time, any element remaining

in the sequence is not necessarily the majority element. We can take another pass over the

original sequence and check if the frequency of the remaining element is greater than $ ���
.

The idea can be generalized to an arbitrary B . We can proceed as follows. We pick any

� � B distinct elements in the sequence and eliminate them together. This can be repeated

until no more than
� � B distinct elements remain in the sequence. It can be claimed that

any element appearing more than $ B times will be left in the sequence. The reason is

that the elimination can only be performed at most $ � (� � B-, 	 $ B times. During each

88

FindingFrequentItems
�
Sequence

�
, � �

global
�������	��
�
#���������������������������� �

�"!$#��
�
 �&%'��(*)+�����-,'����.0/
foreach

�1/ � � �2
�
3����465	�7�8��.9��� �
if

/ �:�
/ �;46�*)<����=>=?�

else�"! ��/ �A@B�	�
/ �;46�*)<���C �D�
if E � EGF9H �I
 �'J

foreach
�LK �9���

K �;46�*)<���NMOM&�
if

K �;46��)P����C �
�Q!R�SM ��K �'�

T)P�UKP)<� �V���W�

Figure 4.1: Karp et al. Algorithm for Frequent Items

such elimination, any distinct element is removed at most once. Hence, for each distinct

element, the total number of eliminations during the entire process is at most $.B . Any

element appearing more than $ B times will remain in the sequence. Note, however, the

elements left in the sequence do not necessarily appear with frequency greater than $.B .
Thus, this approach will provide a superset of the elements which occur more than $.B
times.

Such processing can be performed to take only a single pass on the sequence, as we

show in Figure 4.1. X is the set of potentially frequent items. We maintain a � � 0 � L for each

item in the set X . This set is initially empty. As we process a new item from a sequence,

we check if it is in the set X . If yes, its count is incremented, otherwise, it is inserted with

a count of 1. When the size of the set X becomes larger than Y � � B'Z , we decrement the

89

count of each item in X , and eliminate any item whose count has now become 0. This

processing is equivalent to the eliminations we described earlier. Note that this algorithm

requires only � (� � B-, space. It computes a superset of frequent items. To find the precise

set of frequent items, another pass can be taken on the sequence, and the frequency of all

remaining elements can be counted.

4.2.2 Issues In Frequent Itemset Mining

In this chapter, we build a frequent itemset mining algorithm using the above basic

idea. There are three main challenges when we apply this idea to mining frequent itemsets,

which we summarize below.

1. Dealing with Transaction Sequences: The algorithm from Karp et al. assumes that

a sequence is comprised of elements, i.e., each transaction in the sequence only con-

tains one-items. In frequent itemset mining, each transaction has a number of items,

and the length of every transaction can also be different.

2. Dealing with k-itemsets: Karp et al.’s algorithm only finds the frequent items, or

1-itemsets. In a frequent itemset mining algorithm, we need to find all k-itemsets,

	 E �
, in a single pass.

Note that their algorithm can be directly extended to find i-itemsets in the case where

each transaction has a fixed length, � . This can be done by eliminating a group of

(� � BT,&� (��� , different i-itemsets together. This, however, requires � (5(� � B-, � (��� ,7,
space, which becomes extremely high when � and

�
are large. Furthermore, in our

problem, we have to find all i-itemsets,
� E �

, in a single pass.

90

3. Providing an Accuracy Bound: Karp et al.’s algorithm can provably find a superset

of the frequent items. However, no accuracy bound is provided for the item(set)s in

the superset, which we call the potential frequent item(set)s. For example, even if an

item appears just a single time, it can still possibly appear in the superset reported by

the algorithm. In frequent itemset mining, we will like to improve above result, and

provide a bound on the frequency of the itemsets that are reported by the algorithm.

4.2.3 Key Ideas

We now outline how we can address the three challenges we listed above.

Dealing with k-itemsets in a Stream of Transactions: Compared with the problem of

finding frequent items, the challenges in finding frequent itemsets from a transaction se-

quence mainly arise due to the large number of potential frequent itemsets. This also results

in high memory costs. As we stated previously, a direct application of the idea from Karp

et al. will require � (7(� � B-,@� (�� ,5, space to find potential frequent i-itemsets, where � is the

length of each transaction. This approach is prohibitively expensive when � and
�

are large,

but can be feasible when
�

is small, such as
�

or
�
.

Recall that most of the existing work on frequent itemset mining uses the apriori prop-

erty [3], i.e., an
�
-itemset can be frequent only if all subsets of this itemset are frequent.

One of the drawbacks of this approach has been the large number of 2-itemsets, especially

when the number of distinct items is large, and B is small.

Our idea is to use a hybrid approach to mine frequent itemsets from a transaction stream.

We use the idea from Karp et al. to determine the potential frequent 2-itemsets. Then, we

use the set of potential frequent 2-itemsets and the apriori property to generate the potential

91

�
-itemsets, for

� ? �
. This approach finds a set of potential frequent itemsets, which is

guaranteed to contain all the true frequent itemsets, in a single pass of the stream.

Also, if a second pass of the data stream is allowed, we can eliminate all the false

frequent itemsets from our result set. The second pass is very easy to implement, and in

the rest of our discussion, we will only focus on the first pass of our algorithm.

Bounding False Positives: In order to have a accuracy bound, we propose the following

criteria for the reported potential frequent itemsets after the first pass. Besides reporting all

items or itemsets that occur with frequency more than $ B , we want to report only the items

or itemsets which appear with frequency at least $ BS(� � ��, , where
� � � U �

. This criteria

is similar to the one proposed by Manku and Motwani [71].

We can achieve this goal by modifying the algorithm as shown in Figure 4.2. In the first

step, we invoke the algorithm from Karp et al. with the frequency level B � . This will report

a superset of items occurring with frequency more than $ B � . We also record the number

of eliminations, � , that occur in this step. Clearly, � is bounded by $ B � . In the second step,

we remove all items whose reported frequency is less than $ B � � E $ BS(� � ��, .
We have two claims about the above process: 1) it reports all items that occur with

frequency more than $ B , and 2) it only reports items which appear with frequency more

than $ B9(� � ��, . The reason for this is as follows. Consider any element that appears with

frequency $ B . After the first step, it will be reported in the superset with a frequency

greater than � � � U $ B � . Therefore, it will remain in the set after the second step also.

Similarly, consider any item that appears with frequency less than $ BS(� � ��, . If this item

is present in the superset reported after the first step, it will be removed during the second

step since $ B � � E�$ BS(��� ��, . This idea can be used for frequent itemset mining also.

92

FindingFrequentItemsBounded
�
Sequence

�
, � , �

�
global

�������	�
�"!$#��
4 !��G�W
�
��)<.��6��% �D�����V�7.:�7��� �����*�
foreach

�1/ � � �
if

/ �:�
/ �;46�*)<����=>=?�

else�"! ��/ �A@B�	�
/ �;46�*)<���C �D�
if E � EGF9H �I
�� � � � J4�=>=?�W
�
 "&�*)<����� �V�7.:�7��� � ���*�-/

foreach
�LK �9���

K �;46�*)<���NMOM&�
if

K �;46��)P����C �
�Q!R�SM ��K �'�

foreach
�LK � ���

if
K �;46�*)<���	� �
� � M 4 �

�"!R�SM ��K �'�
T)P�UKP)<� �V���W�

Figure 4.2: Improving Algorithm with An Accuracy Bound

In the next Section, we introduce our algorithm for mining frequent itemsets from

streaming data based on the above two ideas.

4.3 Algorithm

In this section, we introduce our new algorithm in three steps. In Subsection 4.3.1,

we describe an algorithm for mining frequent itemsets from a data stream, which assumes

that each transaction has the same length. In Subsection 4.3.2, we extend this algorithm

to provide an accuracy bound on the potential frequent itemsets computed after one pass.

93

In Subsection 4.3.3, we further extend the algorithm to deal with transactions of variable

length.

Before detailing each algorithm, we first introduce some terminology. We are mining

a stream of transactions � . Each transaction L in this stream comprises a set of items, and

has the length
W
L
W
. Let the number of transactions in � be

W � W
. Each algorithm takes the

support level B as one parameter. An itemset in � to be considered frequent should occur

more than B W � W
times.

To store and manipulate the candidate frequent itemsets during any stage of every algo-

rithm, a lattice � is maintained.

� 	 � � � � � � � � �
� � �

where,
	

is largest frequent itemset, and � � � � U � U 	
comprises the potential frequent

�
-itemsets. Note that in mining frequent itemsets, the size of the set � � , which is bound by

the number of distinct items in the dataset, is typically not very large. Therefore, in order to

simplify our discussion, we will not consider � � in the following algorithms, and assume

we can find the exact frequent 1-itemsets in the stream � . Also, we will directly extend the

idea from Karp et al. to find the potential frequent
�
-itemsets.

As we stated in the previous section, we deal with all
	

-itemsets,
	 ? �

, using the

apriori property. To facilitate this, we keep a buffer � in each algorithm to store the re-

cently received transactions. The buffer will be accessed several times to find the potential

frequent
	
-itemsets,

	 ? �
.

4.3.1 Mining Frequent Itemsets from Fixed Length Transactions

The algorithm we present here mines frequent itemsets from a stream, under the as-

sumption that each transaction has the same length
W
L
W
. The algorithm has two interleaved

94

StreamMining-Fixed
�
Stream � , � �

global � � ��� ��4����3�
local

�?)+������%�� �
local � %�� �-/I��4 � ���*� � �
�>!$#����"! #��
f
! E � E	� � E � E M ����
 ���

foreach
�V� � � �

� !
� @ �����'�
� K� � �8� �V�
��
 � �W�
if E � � E�F H �I
 ��J�� f� ���')+4 �&%'��(���
 � �W�

� � $ �������3�7�85�� M �7����.0/*����/
�� 	 � � ��2!����
while

� ���C #
� =>=?�
foreach

�V�
��� �
� K�� � �8� �V�
��
�� �W�

� ���)P4 �&%'��(���
�� �W�
�"! #��

T)P�UKP)<� ��� �W�

Figure 4.3: StreamMining-Fixed: Algorithm Assuming Fixed Length Transactions

phases. The first phase deals with
�
-itemsets, and the second phase deals with

	
-itemsets,

	 ? �
. The main algorithm and the associated subroutines are shown in Figures 4.3 and 5.4,

respectively. Note that the two subroutines, Update and ReducFreq, are used by all the al-

gorithms discussed in this section.

The first phase extends the Karp et al.’s algorithm to deal with
�
-itemsets. As we

stated previously, the algorithm maintains a buffer � which stores the recently received

transactions. Initially, the buffer is empty. When a new transaction L arrives, we put it in � .

Next, we call the Update routine to increment counts in � � . This routine simply updates

95

Update
�
Transaction t, Lattice

�
, i

�
for

� ��� ��/I) �6/*����/
s

���
t

if s
��� �
s
�;46��)P����= =?�

else if
� � �

� � � �7�-/*��%D� �
s
�W�

else if
� ��� �2M � /�) � /*����/ ���

s
�

L ��� �� � � �7�-/*��%D� �
s
�W�

ReducFreq
�
Lattice

�
, i
�

foreach
� �7�8��.0/����8/

s
��� �

s
�;46�*)<����M>M&�

if s
�;46��)P����C �
� � � � �I�1����� �

s
�W�

Figure 4.4: Subroutines Description

the count of 2-itemsets that are already in � � . Other 2-itemsets that are in the transaction L
are inserted in the sets � � .

When the size of � � is beyond the threshold, Y � � B Z �
, where

�
is the number of

�
-

itemsets per transaction, we call the procedure ReducFreq to reduce the count of each

�
-itemsets in � � , and the itemsets whose count becomes zero are deleted. Invoking Re-

ducFreq on � � triggers the second phase.

The second phase of the algorithm deals with all
	

-itemsets,
	 ? �

. This process

is carried out level-wise, i.e, it proceeds from
�
-itemsets to the largest potential frequent

itemsets. For each transaction in the buffer � , we enumerate all
�
-subsets. For any

�
-subset

that is already in � , the process will be the same as for a
�
-itemset, i.e, we will simply

increment the count. However, an
�
-subset that is not in � will be inserted in � only if all

of its
� � �

subsets are in � as well. Thus, we use the apriori property.

96

After updating
�
-itemsets in � , we will invoke the ReducFreq routine. Thus, the itemsets

whose count is only 1 will be deleted from the lattice. This procedure will continue until

there are no frequent
	
-itemsets in � . At the end of this, we clear the buffer, and start

processing new transactions in the stream. This will restart the first phase of our algorithm

to deal with
�
-itemsets.

We next discuss the correctness and the memory costs of our algorithm. Let ���� be the

set of frequent i-itemsets with support level B in � , and � � be the set of potential frequent

i-itemsets provided by this algorithm.

Theorem 1 In using the algorithm StreamMining-Fixed on a set of transactions with a

fixed length, for any
	 E �

, ���� J ��� .

To prove this Theorem, we first consider the following lemma for
�
-itemsets computed

by the Algorithm StreamMining-Fixed.

Lemma 5 ���� J � � .

Proof:The lemma directly follows the fact that ReducFreq is called at most
� B W � W �

times

in the foreach loop. This can be observed from the following inequality

� B W � W � E W � W � Y � � B Z
�

Proof:(Theorem 1): Now, we prove this theorem inductively. The base case,
	 	 �

,

has been shown in the Lemma 13. Assume that the property holds true for � � � � . To show

that it is valid for ��� , we take two steps. First, assume that we do not check for subsets.

Then, any k-itemsets which appears in the buffer will be inserted in the lattice. In this case,

it is easy to see that the property holds for � � . Now let us see why checking for subsets

97

does not change the final results. Assume there is an
	

-itemset / appearing in a transaction

L , and one of its
	 � �

subset is not in ��� � � . We can deduce that / must appear only once in

the buffer, and it is not included in any other transactions besides L . Thus, we can see that / ,
if included in the lattice, would have been eliminated by the next invocation of ReducFreq.

�

Lemma 6 In using the algorithm StreamMining-Fixed on a set of transactions with a fixed

length, the size of � � is bounded by (�Y � � B'Z�� � , (� �<�� , .

Proof:This is based on the following observation. After processing each transaction,

we will check if the size of � � is larger than (�Y � � B'Z�, (� �<�� , . Also note that each transaction

can add at most (� �<�� , new
�
-itemsets into the set � � . �

Theorem 1 implies that any frequent
	

-itemset is guaranteed to be in the output of our

algorithm. Lemma 6 provides an estimate of the memory costs for � � .

4.3.2 Providing an Accuracy Bound

We now extend the algorithm from the previous subsection to provide a bound on the

accuracy of the reported results. As described in Subsection 4.2.3, the bound is described

by an user-defined parameter, � , where
� � � U �

. Based on this parameter, the algorithm

ensures that the frequent itemsets reported do occur more than (� �
��,7B W � W

times in the

dataset.

The basic idea for achieving such a bound on frequent items computation was illustrated

in Figure 4.2. We can extend this idea to finding frequent itemsets. Our new algorithm is

described in Figure 4.5. Note that we still assume that each transaction has the same length.

This algorithm provides the new bound on accuracy in two steps. In the first step, we

invoke the algorithm in Figure 4.3 with the frequency level B � . This will report a superset of

98

StreamMining-Bounded (Stream � , B , � ,
global � � L L

� � N � �
local

� 0 � �

N � � �
local

�
� � �+/ � � L

� � � L ���� � � ��� � �
f � W

L
W�� (W L

W � � , � � �
� � � � � � $ 0 P

�
N � �

�
� N �M0 � ��� N � : ��� � � � L

� � �=/
foreach (L � �V,

�	� � � � L � ��F� � � LON (L � � � � ,��
�F� � � LON (L � � � � ,��
if
W � � W E Y ��� B �WZ 	 f

� N �M0 � � � N � (� � � , �
c � � �� � � �
while � ��
	 ��

� � �
foreach (L � � ,

� � � � LON (L � � � � , �
� N �M0 � � � N � (� � � , �

��� � �
foreach / � �

if / � � � 0 � L
U B W � W � �

� � � � N � N LON (/ , � 0 L � 0 L (� ,��

Figure 4.5: StreamMining-Bounded: Algorithm with a Bound on Accuracy

99

itemsets occurring with frequency more than $ B � . We record the number of invocations of

ReducFreq, � , in the first step. Clearly, � is bounded by $ B � . In the second step, we remove

all items whose reported frequency is less than $ B � � E�$.B9(� � ��, . This is achieved by

the last foreach loop.

The new algorithm has the following property: 1) if an itemset has frequency more than

B , it will be reported. 2) if an itemset is reported as a potential frequent itemset, it must

have a frequency more than B9(� � ��, . Theorem 2 formally states this property.

Theorem 2 In using the algorithm StreamMining-Bounded on a set of transactions with a

fixed length, for any
	 E �

, ���� J ��� J � ��� ��� � �� .

To prove Theorem 2, we first prove the following lemmas for the algorithm StreamMining-

Bounded.

Lemma 7 ���� J � � .

Proof:The proof has two parts. First, we can see that ReducFreq is called at most

� B � W � W �
times in the foreach loop. Thus, any

�
-itemset that appears more than B � W � W

times

will stay in the set � � . Then, after the while loop, the total invocations of ReducFreq will

be at most B W � W
. Therefore, we have ���� J � � .

Lemma 8 For any
�
-itemset / � � � , / � � ��� ��� � �� . In other words, / will appear more than

(� � �>,7B W � W
times in � .

Proof:Note that ReducFreq is called � times, where � U B � W � W
. Suppose there is an

itemset appearing with a frequency less than (� � ��,7B W � W
in the stream

W � W
. It will be

removed from the � � in the last foreach loop because B W � W � � E (� � ��,7B W � W
.
�

Putting Lemmas 7 and 8 together, we have following result.
�

100

Lemma 9

� �� J � � J � ��� ��� � ��

Proof:(Theorem 2) This follows from applying an induction similar to the one in the

proof of Theorem 1, and using Lemma 9 as the base case.
�

Note that the number of invocations of ReducFreq, � , is usually much smaller than $ B �
after processing a data stream. Therefore, an interesting property of this approach is that it

produces a very small number of false frequent itemsets, even with relatively large � . The

experiments in Section 4.4 also support this observation.

The following lemma claims that the memory cost of � � is increased by a factor pro-

portional to
� �
� .

Lemma 10 In using the algorithm StreamMining-Bounded on a set of transactions with a

fixed length, the size of � � is bounded by ('Y � � B �WZ � � , (� �<�� , .

4.3.3 Dealing with Variable Length Transactions

In this subsection, we present our final algorithm, which improves upon the algorithm

from the previous subsection by dealing with variable length transactions. The algorithm

is referred to as StreamMining and is illustrated in Figure 4.6.

When each transaction has a different length, the number of
�
-itemsets in each trans-

action also becomes different. Therefore, we cannot simply maintain
�

, the number of

�
-itemsets per transaction, as a constant. Instead, we maintain

�
as a weighted average of

the number of 2-itemsets that each transaction processed so far. This weighted average is

computed by giving higher weightage to the recent transactions. The details are shown in

the pseudo-code for the routine TwoItemsetPerTransaction.

101

StreamMining (Stream � , B , � ,
global � � L L

� � N � �
local

� 0 � �

N � � �
local

�
� � �+/ � � L

� � � L ���� � � ��� � �
f � � � � � � � N � �T� N

� � �
LON�P / N L � N � L � � �=/ � � L

� � �
c � � �
foreach (L � �V,

�	� � � � L � ��F� � � LON (L � � � � ,��
�F� � � LON (L � � � � ,��
f � ��� � :MLON�P / N L � N � � � � �=/ � � L � � � (L ,��
if
W � � W E Y ��� B �WZ 	 f

� N �M0 � � � N � (� � � , �
c � � �� � � �
while � ��
	 ��

� � �
foreach (L � � ,

� � � � LON (L � � � � , �
� N �M0 � � � N � (� � � , �

��� � �
foreach / � �

if / � � � 0 � L
U B W � W � �

� � � � N � N LON (/ , � 0 L � 0 L (� ,��
TwoItemsetPerTransaction (Transaction t ,
global � � � � $ 0 P

�
N � �

� �
:MLON�P / N L

global $ � � � $ 0 P
�
N � �

� �
� � �+/ � � L

� � �=/
local

� �
$ � � �
� � � �

� W
L
W
��� �

f � Y � � $ Z �
if
W � � W E Y � � B �WZ 	 f
$ � $ � Y � � B �WZ �
� � � � Y � � B �WZ 	 f �

� N L 0 � � f �

Figure 4.6: StreamMining: Final Algorithm
102

To motivate the need for taking such a weighted average, consider the natural alterna-

tive, which will be maintaining
�

as the average number of
�
-itemsets that each transaction

seen so far has. This will not work correctly. For example, suppose there are 3 transac-

tions, which have the length 2, 2, and 3, respectively, and B is 0.5. The first two transactions

will have a total of two
�
-itemsets, and the third one has 6

�
-itemsets. We will preform an

elimination when the number of different
�
-itemsets is larger than or equal to (��� BT, � �

.

When the first two transactions arrive, an elimination will happen (assuming that the two

2-itemsets are different). When the third one arrives, the average number of 2-itemsets is

less than 3, so another elimination will be performed. Unfortunately, a frequent 2-itemset

that appears in both transactions 1 and 3 will be deleted in this way.

In our approach, the number of invocations of ReducFreq, � , is less than
W � W (B ��, , where

W � W
is the number of transactions processed so far in the algorithm. Lemma 11 formalizes

this.

Lemma 11 � � W � W (B �>, is an invariant in the algorithm StreamMining.

Proof:This can be proved inductively. Initially, � 	 �
after the condition

W � � W E
Y � � B �WZ � �

become true, where
�

is simply the average
�
-itemsets of the transactions

processed so far. Clearly, we need at least Y ��� B �WZ transactions to achieve this condition.

Then, assuming � E �
is true for the claim, we look at � � �

. Note that we maintain

$ to be the
W � W � � � Y � � B � Z after the invocation of ReducFreq. Therefore, following

this assumption, $ is larger than 0 at this point. Further, we maintain
W � � W as the number

of different
�
-itemsets in the set � � , and let � be the total number of

�
-itemsets stored in

� � , which counts the repetition of the same
�
-itemsets. Clearly, � E Y E W � � W . Thus, when

W ��� W E Y � � B �WZ 	 � � $ become true, $ E Y � � B �WZ . This suggests that
W � W 	 $ � � � Y � � B �WZ&?

(� � � , Y � � B �WZ . Therefore, � � � � W � W (B ��, .
103

Note that by using the Lemma 11, we can deduce that the property of the Theorem 2

still holds for mining a stream of transaction with variable transaction lengths. Formally,

Theorem 3 In using the algorithm StreamMining on a stream of transactions with variable

lengths, for any
	 E �

, ���� J ��� J � ��� ��� � �� .

An interesting property of our method is that in the situation where each transaction has

the same length, our final algorithm, StreamMining will work in the same fashion as the

algorithm previously shown in Figure 4.5.

Note, however, that unlike the case with fixed length transactions, the size of � � cannot

be bound by a closed formula. Also, in all the algorithms discussed in this section, the size

of sets ��� , 	 ? �
also cannot be bound in any way. Our algorithms use the apriori property

to reduce their sizes. In the next section, we evaluate the memory cost of our algorithm

experimentally.

4.4 Implementation and Experimental Results

In this section, we will first briefly introduce the important implementation issues, and

then we will focus on evaluating our new algorithm using a number of synthetic and real

datasets.

4.4.1 Implementation issues

One of the main difficulties to implement our algorithm is to maintain the set of po-

tential frequent itemsets, � , efficiently. As discussed in Section 4.3, our algorithm requires

frequently invoking Update and ReducFreq. This means a data structure to support efficient

insertion, deletion, and search operation. However, the traditional data structure, such as

prefix tree and hash tree, cannot meet these requirements. We have developed a new data

104

structure, which we refer to as TreeHash. Essentially, this data structure stores a prefix tree

using hash tables. It has the benefit of easy deletion that a hash table allows, but it is also

compact like a prefix tree. We omit the details of this data structure, interested readers can

look at [62]. Some other techniques are also used to speed-up of our algorithm, and are

described in [62].

4.4.2 Experimental Evaluation

In our experiment, we are interested in a number of different aspects of our algorithm.

� Comparing the execution time and memory requirements of our one pass and two

pass algorithm with those of apriori and fp-tree based algorithms.

� Evaluating the execution time and memory requirements of our new algorithms with

increasing dataset size and decreasing support levels.

� Evaluating the accuracy of our algorithm with different levels of � .

� Demonstrating the ability of our algorithm to handle very large number of distinct

items and very low support levels.

For comparing our algorithm against the Apriori algorithm, we used a well-known pub-

lic distribution from Borgelt [14]. Earlier versions of this code have been incorporated in

a commercial data mining tool called Clementine. For comparisons with FP-tree based

approach, the implementation we used is from Goethals [39]. All our experiments were

conducted on a 933 MHz Pentium III machine with 512 MB main memory.

4.4.3 Synthetic Datasets

The synthetic datasets we used were generated using a tool from IBM [5]. Datasets gen-

erated from this tool have been widely used for evaluating frequent itemset and association

mining implementations.

105

Initially, we focus on two datasets where conventional offline algorithm have performed

well. We show that our algorithm can still be competitive, while allowing high accuracy

on streaming data. Later, we show our algorithms ability to handle very large number of

distinct itemsets and very low support levels.

The first dataset we used is T10I4.N10K. The number of distinct itemsets is 10,000, the

average number of items per transaction is 10, and the average size of large itemsets is 4.

We used three different versions of our algorithm. Stream-e1 uses 1 as the value of �

and does not provide any theoretical bound on the accuracy. Stream-e.75 uses .75 as

the value of � to provide a theoretical bound on the accuracy. Stream+ is the two pass

implementation that gives the accurate set of frequent itemsets and their frequency counts.

Figure 4.7 shows the execution times of apriori, fp-tree and our three versions as the

support threshold is varied from 0.1% to 1.0%. The number of transactions is 12 million.

Because of high memory requirements, fp-tree could not be executed with support lev-

els lower than 0.4%. This limitation of the fp-tree appraoch has been identified by other

experimental studies also [31]. Up to the support level of 0.4%, the execution times of

all versions is quite similar. However, apriori’s execution time increases rapidly when the

support level is less than 0.4%. As expected, Stream-e1 has the lowest execution time

among all of our versions. The use of .75 as the value of � increases the execution time by

up to 25%. If a second pass is used, the total execution time is increased by up to 50%.

Figure 4.8 compares the memory requirements. Because the memory requirements of

Stream+ are identical to those of Stream-e1, this version is not shown separately in our

memory requirements charts. The important property of our algorithm is that the memory

requirements do not increase significantly as the support level is decreased.

106

Accuracy of an algorithm is defined as the fraction of reported frequent itemsets that

are actually frequent. Obviously, the accuracy of apriori, fp-tree and Stream+ is always

100%. With 12 million transactions, Stream-e1 and Stream-e.75 give accuracy

of 100% with thresholds at 1%, .8%, .6%, and .4%. With thresholds of .2% amd .1%,

Stream-e1 has an accuracy of 95.8% and 97.8%, respectively. However, in both these

cases, with .75 as the value of � , the accuracy again becomes 100%.

Figures 4.9 and 4.10 examine the execution times as the dataset is increased. The

threshold is kept at .4% and .1%, respectively. Because of the high memory requirements

of fp-tree, our algorithm is only compared against apriori. When the support level is 0.1%,

our algorithm is up to an order of magnitude faster. The relative difference is smaller when

the support level is 0.4%, but even our two pass version is faster than apriori. Even as the

dataset size is varied, our one pass algorithms always give an accuracy of 100% when the

threshold is .4%. With the threshold at .1%, the accuracy of Stream-e.75 is again 100%

in all cases. The accuracy of Stream-e1 varies between 94.3% and 98.6%.

Figure 4.11 focuses on memory requirements with support levels of .4% and .1%. At

the support level of .4%, apriori’s memory requirements are lower than our versions. How-

ever, with threshold at .1%, our versions require less than half the memory. Moreover, it is

important to note that with 10,000 distinct items and a support level of .1%, the total mem-

ory requirements are only around 17 MB. Thus, our algorithm is well suited for mining

streaming data using a small device with only a limited memory.

The second dataset we use is T15.I6.N10K. We repeated the same set of experiments

using this dataset. The results are shown in Figures 4.12, 4.13, 4.14, 4.15, and 4.16,

respectively. The key difference between this dataset and the previous dataset is the the

length of each transaction and each frequent itemset is higher. Because our algorithm needs

107

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Threshhold(%)

T
im

e(
S

ec
on

d)

Apriori
FP−Tree
Stream−e1
Stream−e.75
Stream+

Figure 4.7: Execution Time with Changing Support Level (T10.I4.N10K Dataset)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

5

Threshhold(%)

M
em

or
y(

K
B

)

Apriori
FP−Tree
Stream−e1
Stream−e.75

Figure 4.8: Memory Requirements with Changing Support Level (T10.I4.N10K Dataset)

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.9: Execution Time with Increasing Dataset Size (threshold=0.1%, T10.I4.N10K
Dataset)

108

4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

400

450

500

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.10: Execution Time with Increasing Dataset Size (threshold=0.4%, T10.I4.N10K
Dataset)

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of transactions (Million)

M
em

or
y(

K
B

)

Apriori−t.4
Stream−e1−t.4
Stream−e.75−t.4
Apriori−t.1
Stream−e1−t.1
Stream−e.75−t.1

Figure 4.11: Memory Requirements with Increasing Dataset Size (T10.I4.N10K Dataset)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

Threshhold(%)

T
im

e(
S

ec
on

d)

Apriori
FP−Tree
Stream−e1
Stream−e.75
Stream+

Figure 4.12: Execution Time with Changing Support Level (T15.I6.N10K Dataset)

109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Threshhold(%)

M
em

or
y(

K
B

)

Apriori
FP−Tree
Stream−e1
Stream−e.75

Figure 4.13: Memory Requirements with Changing Support Level (T15.I6.N10K Dataset)

4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.14: Execution Time with Increasing Dataset Size (threshold=0.1%, T15.I6.N10K
Dataset)

4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

800

900

1000

1100

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.15: Execution Time with Increasing Dataset Size (threshold=0.4%, T15.I6.N10K)
Dataset

110

4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of transactions (Million)

M
em

or
y(

K
B

)

Apriori−t.4
Stream−e1−t.4
Stream−e.75−t.4
Apriori−t.1
Stream−e1−t.1
Stream−e.75−t.1

Figure 4.16: Memory Requirements with Increasing Dataset Size (T15.I6.N10K Dataset)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200

1400

Threshhold(%)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.17: Execution Time with Changing Support Level (T25.I4.N100K Dataset)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9
x 10

5

Threshhold(%)

M
em

or
y(

K
B

)

Apriori
Stream−e1
Stream−e.75

Figure 4.18: Memory Requirements with Changing Support Level (T25.I4.N100K Dataset)

111

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.19: Execution Time with Increasing Dataset Size (threshold=0.08%, T10.I4.N10K
Dataset)

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 4.20: Execution Time with Increasing Dataset Size (threshold=0.05%, T10.I4.N10K
Dataset)

4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9
x 10

4

Number of transactions (Million)

M
em

or
y(

K
B

)

Apriori−t.08
Stream−e1−t.08
Stream−e.75−t.08
Apriori−t.05
Stream−e1−t.05
Stream−e.75−t.05

Figure 4.21: Memory Requirements with Increasing Dataset Size (T10.I4.N10K Dataset)

112

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Threshhold(%)

T
im

e(
S

ec
on

d)

Apriori
Stream−m*
Stream+m*
Stream−m6
Stream+m6
Stream
Stream+

Figure 4.22: Execution Time with Changing Support Level (BMS-WebView-1 Dataset)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

14000

Threshhold(%)

M
em

or
y(

K
B

)

Apriori
Stream−m*
Stream−m6
Stream

Figure 4.23: Memory Requirements with Changing Support Level (BMS-WebView-1
Dataset)

113

to generate fairly accurate results after one pass, its ability to prune large itemsets is limited.

As a result, our algorithm does not always outperform apriori with this dataset. However,

our algorithm does maintain very high accuracy of results after one pass on the dataset.

With 4 million, 8 million, 12 million, 16 million, or 20 million transactions, and with

support levels of 1%, .8%, .6%, or .4%, our Stream-e1 always produces 100% accuracy.

With support levels of .2% and .1%, the accuracy is still above 94%. The accuracy of
�

Stream-e.75 is always above 99% with these support levels.

When the support level is .1%, Stream-e1 is always significantly faster than apriori.

Stream-e.75 is also faster than apriori, but the difference is less significant. Stream+

is actually slower than apriori. With the support level of .1%, Stream-e1 also always

requires less memory than apriori. When the threshold is .4%, apriori is faster than all of

our versions.

As stated earlier, besides providing reasonably accurate results in one pass, the key

benefit of our algorithm is its ability to handle very large number of distinct items and/or

very low support levels. To demonstrate this, we first used the T25.I4.N100K dataset, which

has 100,000 distinct items. The number of transactions was 12 million. Note that the size

of each transaction is also quite large. Even in this case, the accuracy from Stream-e1

is above 99.5% and the accuracy from Stream-e.75 is above 99.8%. The execution

times and memory requirements from this dataset are shown in Figures 4.17 and 4.18,

respectively. With support levels below .4%, all of our versions are significantly faster than

apriori. With support levels of .1% and .05%, the memory requirements are also drastically

lower than those of apriori.

Next, we focus on the case when support levels are very low. The dataset we use is

T10.I4.N10K. We consider support levels of .05% and .08%. The accuracy achieved is still

114

very good. Stream-e1 has an accuracy of 97% or better, and Stream-e.75 has an

accuracy of 99.8% or better. The execution times are presented in Figures 4.19 and 4.20

and the memory requirements are shown in Figure 4.21. All of our versions are significantly

better both in terms of execution time and memory requirements.

4.4.4 Real Dataset

The real dataset we use is the BMS-WebView-1 dataset which contains several months

of click-stream data from one e-commerce website. A portion of it has been used in the

KDD-Cup 2000 competition and also used by Zhang et al. [122] to evaluate traditional

offline association mining algorithms.

The characteristics of the BMS-WebView-1 dataset are quite different from the IBM

Quest synthetic datasets. The original dataset has 59,602 transactions and contains 497

distinct items. The maximum transaction size is 267, while the average transaction size is

just 2.5. For our experiments, we duplicated and randomized the original dataset to obtain

1 million transactions.

Because of the small size of the dataset and the small number of distinct items, we

did not expect to outperform apriori on this dataset. However, we have still compared the

performance with apriori to show that the algorithm can give accurate results in one pass,

and can still be competitive.

In our experiments, we use ��	 � � � . Further, we provide another parameter P to repre-

sent the maximal frequent itemsets we are interested in. This is because if we have some

additional knowledge about the length of the maximal frequent itemsets, the performance

of our implementation can be improved. In this dataset, as the support level is 0.2%, 0.4%,

0.6%, 0.8% or 1%, the maximal frequent itemsets is 2, 3, 3, 4, and 6, respectively. For the

115

online checking optimization we had described earlier, the threshold we define is 10, i.e,

two transactions in the buffer will not have a common subset which contains more than
� �

items. Since we have only less than 500 distinct items, we maintain all of the 2-itemsets as

an array in the main memory.

Figure 4.22 compares the execution time. Stream-m* refers to StreamMining with

some knowledge of maximal frequent itemsets. For support level of 0.2%, we had P 	 �
,

and for others, we had P 	 �
. Stream-m6 refers to the version using P 	 � in all

cases. Stream refers to StreamMining having no knowledge about the maximal frequent

itemsets. Stream+m*, Stream+m6 and Stream+ refer to the corresponding two pass

versions.

The three versions have very similar results for accuracy. For threshold levels between

1% and 0.4%, they achieve 100% accuracy. For the threshold of 0.2%, the accuracy is

nearly 99%.

We can see that the performance of Stream-m* is quite similar to apriori. For the

Stream-m6 and Stream, we can see as the additional information on maximal frequent

itemsets is reduced, the algorithm performance becomes less competitive. For the two-pass

algorithm, we can see that the second pass just adds a fairly small and constant time.

Figure 4.23 compares the memory cost of apriori and StreamMining. Because the num-

ber of frequent itemset is relatively small, the memory cost of apriori is very low. Although

the cost of StreamMining is almost two orders higher than that of apriori, we can see

the absolute memory cost is just 11MB. It comes mostly from the initial hash table and the

2-itemset array.

116

4.5 Related Work

As stated through-out, our work has two implications. First, we have presented a one

pass algorithm for approximate frequent itemset mining on streaming data. Second, we

have presented a more memory efficient algorithm for two pass accurate frequent itemset

mining. In this section, we compare our work with related research efforts in each of the

areas.

Processing of streaming data has received a lot of attention within the last couple of

years [11, 27, 35, 38]. Within the area of data mining, significant work has been done on

the problem of classification [28, 56] and clustering [43]. More recently, attention has been

paid to the area of frequent itemset mining [36, 71].

The work closest to our work on handling streaming data is by Manku and Mot-

wani [71]. They have also presented a one pass algorithm that does not allow false neg-

atives, and has a provable bound on false positives. They achieve this through a very

different approach, called lossy counting. The differences in the two approaches are in

space requirements. For finding frequent items, the approach we use takes ;(� � B-, space.

Their approach requires ;(5(��� BT, � �
�)(BD$,5, space, where B is the desired support level and

$ is the length of the stream. Therefore, for frequent itemset mining, they require an

out-of-core data structure. In comparison, we do not need any such structure. On the

T10.I4.N10K dataset used in their chapter as well, we see that with 1 million transactions

and a support level of 1%, their algorithm requires an out-of-core data-structures on top of

even a 44 MB buffer. For datasets ranging from 4 million to 20 million transactions, our

algorithm only requires 2.5 MB main memory based summary. In addition, we believe that

there a number of advantages of an algorithm that does not require an out-of-core sum-

mary structure. Mining on streaming data may often be performed in mobile, hand-held,

117

or sensor devices, where processors do not have attached disks. It is also well known that

additional disk activity increases the power requirements, and battery life is an important

issue in mobile, hand-held, or sensor devices. Also, while their algorithm is shown to be

currently computation-bound, the disparity between processor speeds and disk speeds con-

tinues to grow rapidly. Thus, we can expect a clear advantage from an algorithm that does

not require frequent disk accesses.

Giannella et al. have developed a technique for dynamically updating frequent patterns

on streaming data [36]. They create a variation of FP-tree, called FP-stream, for time-

sensitive mining of frequent patterns. Because this approach gives additional weightage

to recent transactions, it can efficiently answer time-sensitive queries, which we do not

consider. However, for queries involving queries on an entire data stream, their approach

is not efficient.

As our experimental results have shown, the memory requirements of our approach are

significantly lower than those of FP-tree. However, we have not considered time-sensitive

queries.

Recently, Yu and his colleagues proposed a new approach to mine frequent itemsets,

which allows both false negatives and false positives [113]. Their approach is based on the

Chernoff Bound. In comparison, our algorithm finds a superset of frequent itemsets, and

therefore, only allows false positives. Further, if a second pass is allowed, our algorithm

can also eliminate false positives.

Now, we compare our work with accurate frequent itemset mining algorithms, which

require two or more passes. The classical work in this area is the Apriori algorithm [5, 3].

The basic idea in this algorithm has been extended by several others [117, 81]. Our ex-

perimental comparison has shown advantages of our approach when the number of distinct

118

itemsets is large and/or the support level desired is very low. Several algorithms since then

have required only two passes. This includes the FP-tree based approach by Han and co-

workers [48]. Again, as our experimental results have shown, the memory requirements

for maintaining the frequent patterns summary increase rapidly when the support levels

are low. Other two pass algorithms for association mining include those from Savarese et

al. [94] and Toivonen [100]. In each of these cases, the two pass algorithm does not extend

to a one pass algorithm with any guarantees on accuracy. Hidber has developed a technique

which guarantees that the results after the first pass do not include any false negatives, but

produces a large number of false positives [50]. A detailed comparison of frequent itemset

mining algorithms has been done by Goethals and Zaki, as part of the FIMI workshop [41].

Our focus has been on the cases when the number of distinct itemsets is very large or the

support levels are very low, which were not the emphasis of their evaluation.

4.6 Conclusions

In this chapter, we have developed a new approach for frequent itemset mining. We

have developed a new one pass algorithm for streaming environment, which has deter-

ministic bounds on the accuracy. Particularly, it is the first such algorithm which does not

require any out-of-core memory structure and is very memory efficient in practice. We have

developed a new data structure and several other optimizations to support this algorithm.

Our detailed experimental evaluation has shown the following. First, our one pass

algorithm is very accurate in practice. Though a tighter theoretical bound on accuracy

can be achieved by increasing memory requirements, it was not really required in practice.

Second, the memory efficiency of our one and two pass algorithms allowed us to deal

with large number of distinct items and/or very low support levels. For other cases, where

119

traditional multi-pass approaches have worked well in the past, our algorithms are still quite

competitive. One exception is datasets with the average length of an itemset is quite large.

In such case, some additional knowledge of maximal frequent itemsets helps efficiency of

our algorithms.

120

CHAPTER 5

DISCOVERING FREQUENT TOPOLOGICAL STRUCTURES
FROM GRAPH DATASETS

5.1 Introduction

Recently, there has been a lot of interest in mining frequent patterns from structured

datasets, such as chemical compounds, proteins, web-logs, and XML datasets. Such pat-

terns can effectively summarize the data, provide key insights and often serve as a prepro-

cessing step for further analysis. Since, such datasets can often be modeled as graphs, a

majority of research in this area has focused on developing efficient algorithms for mining

frequently occurring (connected) subgraphs [60, 67, 107, 78].

However, in many real world applications, such as biology, social networks, and telecom-

munication, large-scale structures, which provide high-level topological information of

graphs, may be equally or more important than discovering the basic components. For

instance, the discovery of non-local or tertiary structural information is an important prob-

lem in protein structure analysis. Similarly, in the analysis of social or communication

networks, the direct connection between a pair of nodes is often not the focus, instead, the

patterns where several nodes are connected through a set of independent paths are of greater

121

interest. Such frequent large-scale structures can be very hard to discover using current fre-

quent subgraph mining approaches. This is not only because the subgraphs sharing these

kind of structures can be infrequent (i.e. the traditional anti-monotone property leveraged

by most such algorithms does not hold), but also because the individual subgraphs are not

adequately abstracted or represented.

As an example of a large-scale structure we are focusing on, consider mining a pro-

tein dataset where each protein is represented as a graph. The vertexes of each graph are

protein secondary structures, and an edge is associated with two protein secondary struc-

tures if their distance in the three-dimensional space is within a certain range. A frequent

large-scale topological structure in such a dataset can be as follows: three � -helices that

are not direct neighbors of each other, but form a triangle in the three-dimensional space.

Specifically, in the graphs for different proteins, each pair of above � -helices is connected

through independent paths formed by other secondary structures, possibly including � -

helices,
�

-sheets, or loops. The triangle information can be useful for understanding the

functionalities of these proteins. For instance, two DNA-binding regulatory proteins (1ALI

and 1E31), though seemingly different from the local-structure perspective, share such a

� -helices triangle, and perform similar functionalities [34]. In fact, both belong to the class

of zinc finger proteins. However, because this kind of structure is hidden under the pair-

wise relationship, it is very unlikely to be identified using the existing frequent subgraph

mining approaches. In particular, even if some subgraphs which embed the three � -helices

may appear to be frequent, the triangle structure can easily be missed.

The main contribution of this chapter is a framework to mine frequent large-scale struc-

tures from graphs. Our work is inspired by a well-established mathematical concept, topo-

logical minor [26]. A topological minor of a graph is an abstraction that focuses on its

122

structural information. Intuitively, such an abstraction is achieved by replacing or contract-

ing independent paths in a subgraph with individual edges.

An important notion in our framework is that of a relabeling function. Since often real

datasets can be best represented as labeled graphs when we replace independent paths in a

subgraph with edges, the information labels on such paths are lost. However, in many ap-

plications, summarized information about the contracted paths can be useful to categorize

these topological structures. For example, we may prefer to distinguish the � -helix trian-

gles of different sizes, and the length of each independent path connecting these � -helices

can help to provide such measurement. Our framework supports this notion through user-

defined relabeling functions to recover some degree of information loss from the contracted

paths. Such a function maps an entire labeled path to a single edge label. In other words, an

edge label carries the desired information about its corresponding contracted path. For in-

stance, in the above example, the relabeling function can use the length of each contracted

path as their corresponding edge labels. An additional benefit of the relabeling function is

that it can be used to support the mining of constrained topological structures.

To summarize, the main contributions of this chapter are as follows:

1. We introduce a novel framework for discovering frequent topological structures from

graph datasets based on a vertical mining approach.

2. We study the basic properties of relabeling functions, and demonstrate their use for

summarization and discovery of constrained topological structures. Our algorithms

push the constraints deep into the mining process maximizing performance gains.

123

3. We evaluate the scalability and quality of the proposed framework on several real

and synthetic datasets. We also demonstrate the use of the framework for discovering

novel and meaningful motifs in membrane protein structures.

To the best of our knowledge, our work is the first to focus on the problem of mining

frequent (large-scale) topological structures. Overall, our framework is also very flexible.

It can be used for approximate pattern mining, where the support for a frequent pattern

does not depend on the exact matches, but instead relies on some form of a fuzzy match-

ing [52, 73]. The topological structures together with relabeling functions provide a pow-

erful mechanism to express various forms of fuzzy matches.

5.2 Topological Minors and Topological Structures

We begin with some basic notations. Let � 	 (� ���&, be a graph, where
�

is the set of

vertices, and � is the set of edges, and � J � � �
. The vertex set of a graph � is referred

to as
� (�� , , and its edge set as �;(�� , . A path � in a graph � is a sequence of vertices

� � � � � ��	
	
	�� � � , where � � � � (��K, and � � � � � � � � � (��K, . The vertices � � and � � are linked by

� and are called its ends, and � �
� � ����	
	
	 � � � � � are the inner vertices of � . A path is simple

if its vertices are all distinct, and we only consider simple paths in this chapter. Also, we

define the number of inner vertices in a path as its length. In particular, a group of paths

are independent if none of the paths have an inner vertex on another path. For simplicity,

we call a path intersecting with other paths only at its ends as an independent path. Note

that the independent paths are the key tools to study topological structures of a graph.

124

� �
�

����� ���	�
� ��
 ���������������������������! "�$#%��&'�)(�

Figure 5.1: Topological Minor

5.2.1 Topological Minors

Informally, a topological minor of a graph is obtained by contracting the independent

paths of one of its subgraphs into edges. For example, in Figure 5.1, � is a topological

minor of � since � can be obtained by contracting the independent paths of � , which is a

subgraph of � . Clearly, contracting independent paths helps simplify a (sub)graph without

compromising its topological information [26].

The formal definition of the topological minor of a graph is as follows. A subdivision

operation of a graph � , is to replace the edges of � with independent paths. A subdivision

graph of � is a graph obtained by performing a subdivision-operation of � . For example,

in Figure 5.1, the graph � is a subdivision graph of � . Note that the subdivision operation

is basically an “inverse” of the path contraction operation. Further, the topological space

of � ,
� (� , , is the collection of all its subdivisions graphs. If � has a subdivision graph

� (� � � (� ,) and � is a subgraph of another graph � , then � is a topological minor

of � . The vertices of � which corresponds to the original vertices of � are called branch

vertices.

125

5.2.2 Topological Structures

Topological structures of a graph are derived from topological minors. Given two pa-

rameters, � and �+� � U � U � , an (� ���)-subdivision of a graph � , involves replacing all

edges of � with independent paths whose lengths are between � and � . An (� ���) subdivi-

sion graph of � is a graph obtained by performing an (� � �)-subdivision operation of � .

For example, in Figure 5.1, � is a (
� � �)-subdivision graph of � . Similarly, we can define

the (� ���)-topological space of � ,
�

� �
� (��, , to be the collection of all its (� ���)-subdivisions

graphs. If � has an (� � �)-subdivision graph � (� � �

� �
� (� ,) and � is a subgraph of

another graph � , then � is a (� ���)-topological minor, or a topological structure of � .

Therefore, in Figure 5.1, � is a (
� � �)-topological minor of � .

The purpose of introducing the definition of topological structures of a graph is to con-

trol the compression ratio between a graph and its subdivision graph. In other words, when

later we discover the frequent topological patterns from a graph dataset, the embeddings

(subgraphs) that can contribute to the support of such a topological structure should be in a

controllable size. Specifically, the following lemma describes the size difference between

a graph and its subdivision graph in terms of vertex and edge number.

Lemma 12 If a graph � is obtained by a (� � �)-subdivision operation of � , the number of

vertices of � , (
W � (�� , W), and the number of edges of � , (

W � (�� , W), are bounded as follows:

W � (� , W � W � (� , W � � U W � (�� , W&U W � (� , W � W �;(� , W � �
W � (� , W ��(�� � � , U W �;(�� , W U W �;(� , W �C(� � � ,

The following two lemmas also describe important properties of topological structures

of a graph, and their proofs directly follow the above definitions.

126

Lemma 13 Assume � is a (� � ��� �)-topological minor of � , then for any � and � , where

� U � � and � � U � , � is (� ���)-topological minor.

Lemma 14 The number of graphs in the (� ���)-topological space of � (
W �

� �
� (� , W) is bounded

by (�� � � � � , � 	 ��� �<� .

In the following, we will mainly focus on the topological structures ((�� ��� , -topological

minors) of a graph.

5.2.3 Labeled Graphs

So far, our discussion has focused on unlabeled graphs. Data miners are often more in-

terested in labeled graphs. In the following, we extend the concept of topological structures

on labeled graphs. Note that unlabeled graphs can be treated as a special case of labeled

graphs, where all the vertices and edges have the same label.

We begin with the informal discussion of the topological structures on a labeled graph.

Intuitively, the way to simplify a labeled graph is to remove all the inner vertices and edges

of its independent labeled paths, and then connect their remaining labeled ends with an

unlabeled edge. Later, in Section 5.4, we will study how to use relabeling functions to add

labels to these edges. Clearly, the main difference between the topological structures on

labeled graphs and on unlabeled graphs is that the vertex labels for the ends of contracted

paths are still preserved. Similarly, in an unlabeled graph, such simplification maintains

the important topological information from the original graph.

To facilitate our formal discussion of topological structures on labeled graphs, we first

define a labeled graph. Let � 	�(� ���&, be an unlabeled graph. Let ��� and � � be two sets

of labels. A vertex labeling function, ��� � � " ��� , will assign a vertex � with a vertex label

���-(� , � ��� . Similarly, an edge labeling function, � � � � " � � , will assign an edge N with

127

an edge label � � (N , � � � . We refer to a graph � labeled by � � and � � as a labeled graph. A

graph � only labeled by the vertex labeling function (� �) is called a vertex labeled graph,

and similarly, a graph � only labeled by the edge labeling function (� �) is referred to as an

edge labeled graph.

To simplify our discussion, we will mainly focus on the vertex labeled graphs. For

example, all the graphs in Figure 5.2 are vertex labeled graphs. Note that our results and

methods can be easily extended to (edge) labeled graphs.

Given two parameters, � and � , the main difference between an (� ���)-topological minor

on labeled graph and unlabeled graph is the subdivision operation. An (� ���)-subdivision

operation of a vertex labeled graph � , involves replacing all edges of � with independent

paths satisfying the following conditions: 1) the path lengths are between � and � , 2) the

vertices (and edges) in the paths are labeled, and 3) the ends of these paths share the same

vertex label as the corresponding ends of their original edges.

The other concepts, including the (� � �)-subdivision graph, the (� ���)-topological space,

and (� ���)-topological minors, are the same as in unlabeled graphs. Therefore, in Figure 5.2,

the vertex labeled graph � � is a (
� � �)-topological minor of the graph � � , and a (

� � �)-

topological minor to the graph ��� and � � .

Assume we have a collection of graphs, denoted as
�

. Given two parameters � and � ,

and a graph � , the number of graphs in
�

which have � as a (� ���)-topological minor (also

topological structure) is referred to as the support of � .

Definition 8 Given a collection of graphs, two parameters � and � , and a threshold B , a

(� ���)-topological minor whose support is greater than or equal to B is called a frequent

topological structure.

128

� �
�

�

� �� ��
� �

�
�

� �� ��
� �
� �

�

� �
�

�
�
�

� �

��

��� �
	 ���
� �

��

�

��

�
�

�
�

��
���

�
� �

�
� �

���
���

�
�
�
� �

�
�

�
�
������

� �

��

Figure 5.2: Running Example

For example, in Figure 5.2, for � 	 �
and � 	 �

, the support of the graph � � is
�

in the

dataset composing of � � , � � , � � , however, for � 	 �
and � 	 �

, the support of the graph

� � is only
�
.

5.3 Algorithm for Mining Topological Structures

Frequent topological structure mining is a generalization of frequent graph mining.

Specifically, frequent sub-graphs for a vertex-labeled graph dataset can be mined as a spe-

cial case of frequent topological structures: the (
� � �)-topological minors. It should also

be noted that frequent topological structures are also graphs. Therefore, mining frequent

topological structures shares some similarities with mining frequent graphs.

However, mining frequent topological structures is also quite different from graph min-

ing. Given two parameters � and � , the support of a topological structure � depends on the

definition of (� ���)-topological minor. Specifically, if � is a (� ���)-topological minor of a

graph
� � in the graph dataset, we need to know if there is a subgraph � of

� � and � is a

129

(� ���)-subdivision graph of � . This potentially involves not only the subgraph isomorphism

testing, but also the (� � �)-subdivision operation. In particular, counting support of topolog-

ical structures is one of key issues in efficiently mining frequent topological structures.

In the following, we first present our approach to efficiently counting the support for

a topological structure (Subsection 5.3.1). Then, we show how we perform a depth-

first search to enumerate all the frequent patterns using the counting approach (Subsec-

tion 5.3.2).

5.3.1 Counting Support for Topological Structures

As mentioned before, compared with frequent subgraph mining, one of the main chal-

lenges for our mining algorithm is the need to handle the subdivision operation (path con-

traction) in addition to the subgraph isomorphism testing. To tackle this problem, we use

an incremental approach. Consider a topological structure � � that can be extended from

another topological structure � by adding a new edge N , denoted as � � 	 � � � N � . To test

if � � is a topological structure of a graph � , our approach utilizes the information derived

from � . In particular, such reuse is based on a uniform representation for a topological

structure � and its corresponding subgraph in � . In the following, we first establish such

representation, and then discuss the details of how we count the support of a topological

structure.

Decomposition-based Representation Given � and � , let � be an (� ���)-topological mi-

nor of � . This implies that there exists a subgraph � of � , where � is a (� ���)-subdivision

graph of � by a subdivision operation. To facilitate our discussion, we denote the subgraph

130

� together with an (� ���)-subdivision operation as an occurrence of � . Here, � is isomor-

phic to the graph obtained by performing the subdivision operation on � . In the following,

we consider how we can express the occurrences of � explicitly.

We first decompose � as a collection of edges, i.e., � 	 � N ��� � � N � � 	
	
	 � � N �D� . Based on

the definition of the subdivision operation, each edge N � corresponds to an independent path

in � , denoted as �N � . Therefore, we can also decompose � as a collection of independent

paths, i.e., ���N ��� � ���N � �F	
	
	 � ���N ��� . We denote this decomposition as �� . Clearly, the above

decomposition of � can be used to represent an occurrence of � in � . For example, in

Figure 5.3(a), we have � (� � � � � , � (� � � � �M,�� of � � to be an occurrence of the topological

structure, � �	 � (� � � ,�� (� � �K,�� .
The decomposition can be further represented in a very concise format. Consider � �

� N � which is also a (� ���)-topological minor of � . Let � � � � 	 � �� ��� �� ����	
	
	 � �� � � be all the

occurrences of � in � . We have the following lemma.

Lemma 15 The occurrences of � � � N � can be represented as �� �� � ���N � � 	
	
	�� �� �� � ���N � ,
where � �� � � � � � � � U � U

P . � �� is called the parent occurrence of �� �� � ���N � .

Given a topological structure � � , we can decompose it as � � � N � , where � is called

a parent of � � . For example, in Figure 5.3(b), we have � � 	 � � � (� � �K,�� , where

� 	 � (� � � ,�� . Lemma 15 suggests that occurrences of � � can be partially represented

by the occurrences of its parent. Naturally, for each topological structure, we can build

an occurrence list to concisely record all of its occurrences in the graph dataset by using

the occurrence list of its parent. Note that a topological structure can have many parents.

However, we only need one of its parents to build its occurrence list. The question of which

one of these parents is chosen will be addressed in Subsection 5.3.2).

131

Figure 5.3: Decomposition and Occurrence Lists

132

The concise representation of each occurrence in the occurrence list for a topological

structure � � � N � is as follows. Each occurrence has a unique ID in the occurrence list,

and the detailed information is a triple, (�F� � � �
). Here, � is the index of the graph in the

dataset
�

where this occurrence appears,
�

is the occurrence ID of this occurrence’s parent,

and
�

is an independent path, �N , corresponding to the edge N . For instance, Figure 5.3(c),

illustrates a portion of the occurrence lists for three (
� � �)-topological structures, � , � � , and

� � � .

Building the Occurrence Lists Clearly, the support of a topological structure can be

easily derived from its occurrence list. Therefore, the problem of efficiently counting the

support of a potential frequent topological structure becomes the one of how we build its

occurrence list efficiently. However, the straightforward solution can be very costly. For

example, suppose we already have the occurrence list for � and try to build the occurrence

lists for � � � N � and � � � N � � , where N and N � are adjacent to the same vertex � in � . The

straightforward method will build the occurrence lists for them independently. Specifically,

for each of them, we need to go through all the occurrences of � to find out all the indepen-

dent paths corresponding to edge N or N � (path contraction). This, however, involves a lot of

repetitive work, since each time we have to find all the independent paths starting from the

branch vertex corresponding to � in each occurrence. Note that the similar problem also

needs to be addressed in frequent subgraph mining algorithms. However, it is even more

costly in our algorithm because of the high cost of finding independent paths.

In order to build the occurrence lists efficiently for the topological structures, we try to

minimize the number of times the finding independent paths operation needs to be invoked.

133

We also build occurrence lists in parallel when we invoke such an operation. To formally

discuss our approach, we first introduce some notation.

Let us consider generating new frequent topological structures by extending an existing

frequent topological structure � with a new edge. We classify these new edges in two

categories: inner edges or outer edges. An inner edge connects two dis-adjacent vertices

in the graph � , and an outer edge adds a new vertex into
� (��K, , and connects an existing

vertex in
� (��K, with this new vertex. For a topological structure � , we denote � � � � � � � �

to be the set of all inner edges of � , and � � ��� � ��� � to be the set of all outer edges of � .

We use � � � � � to represent the union of � � � � � � � � and � � ��� � ��� � . The significance of these two

sets � � ��� � ��� � and � � � � � � � � is that they record all the potential extensions of � . Finally, for

an extended graph � � � N � from � , we denote its occurrence list as N
� � ��� 0 � � N ��� N �

� / L or

(�� � � N �D,
� � ����0 � � N � � N �

� / L .
The basic idea of our approach is as follows. For each topological structure � , we will

maintain the occurrence list for each extended graph � � � N � where N � � � � � � . We will

show an optimization in next subsection to reduce the number of recorded occurrence lists.

Here, we consider how we can build these lists for � � � N � . If N is an inner edge, we can

have � � � � N �
� � � J � � � � � . Therefore, we need to simply copy the occurrence lists for the

edges in � � � � � . Note that this is not a real copy since not all occurrences for � � � N � � ,

N �
	 N � N �&� � � � � � can be extended to � � � N � � � N � � . Essentially, this copy is a Join

operation, which will be discussed later. Further, if N is an outer edge, the new vertex

generated by N will be likely to bring some new outer edges. Also, the existing outer edges

of � may become inner edges for � � � N � . In this case, we will not only need to copy these

occurrence lists from � , but also need to build the occurrence lists for all the new outer

edges adjacent to the new vertex.

134

global � N L
� � / � LON � � � N L � � L � � N L �

IndependentPath (Graph G, Embedding emb, Vertex s ,
� � / � LON � � � � L � � � L � P

�
N � �

� � � �

N � LON � (N�P
� , �

� � L � � N L �
� �

� N ��0 � /
� � N � � L ��(�� � / � � / �D, � �

� � � � �D� P 	 / � �
� � � N L 0 � � � � � L � N

� � � N � N ��� N � L � � L � / � � � � N / � � ���
� � � L � � �� 0 LON � N � � N �

� � 0 ��� N �
� � � � ��� �+��� ��� / L � �

� � � �
�D� P / � �

� N L 0 � � ��� L � � N L �
RecursivePath (Graph G, Vertex v, Path p ,
if (W � W � � ? � ,�� � $ � � � � � ��� N � � N � L

� � N /
� �

� N L 0 � � �� � / � LON � �
� � / � LON � � � � � �

foreach (� �2�2(� � � � , � � and (� � �� � � / � LON � ,� � � � � � � � � � � � � L � 	 � �
� �

if (W � W � � E � ,
��� L � � N L � ��� L � � N L � ���)� �� N � 0 � /
� � N ��� L ��(�� � � � � �2, �� � � � � � � � �

� � / � LON � �
� � / � LON �

� � � � �

Figure 5.4: Enumerate Independent Paths

Finding Independent Paths The sketch of the algorithm for finding all independent

paths for an occurrence �� starting from a branch vertex / is illustrated in Figure 5.4. Let

� be the graph where this occurrence �� appears. We perform a depth-first search (DFS) to

enumerate these paths. There are two important issues we need to deal with. The first in-

volves maintaining the independent property, and the second involves bounding the length

of each path, specifically, the number of inner vertices, between � and � . To deal with the

first issue, we color the vertices in the occurrence of � (in IndependentPath). Then, as

we traverse the graph � starting from the branch vertex / , we keep coloring the visited

vertices. If we meet any colored vertex, we need to trace back since the path has become

135

not independent (the foreach loop in RecursivePath). When we found an independent path

(the number of inner vertices) bounded by � and � , we will record this path. Finally, our

traversal will trace back when the length of path is greater than the upper bound � . Note

that the tracing back operation is associated with uncoloring the visited vertex.

Operation Description In the following, we formally introduce the two key operations

mentioned earlier, which are the Join operation and the ExtendOuterEdge operation. The

two operations are sketched in Figure 5.5. Assume � is generated by adding an outer

edge N on its parent. The procedure ExtendOuterEdges will scan the entire list of occur-

rences of � (the first foreach loop in ExtendOuterEdges). For each occurrence, let � � L �
be its branch vertex corresponding to the newly added vertex for � . This procedure will

find all the independent paths beginning from this branch vertex (the second foreach loop

in ExtendOuterEdges). Specifically, such functionality is achieved by the subroutine In-

dependentPath just introduced. Each independent path generated above corresponds to a

new outer edge for the topological structure � , and the occurrence lists for these new outer

edges are built by adding these independent paths (implemented by insertOccurrence). Fi-

nally, ExtendOuterEdges will return all the new edges which are frequent with respect to

the given support level.

A new topological structure, � � � N � , will inherit more information from its parent �

through the procedure Join. The Join operation will filter the occurrence lists for each edge

in � � � � � to generate all the inner edges. It will also filter all the outer edges adjacent with

the vertices in
� (�� , for � � � N � (implemented by the nested foreach loops in Join). The

essential part of the Join operation is to test if, after extending the new edge N , the paths

136

in the occurrences are still independent. This is done by the routine (Independent invoked

from Join. For brevity, the deailts of its implementation are omitted.

Correctness One of the key properties of the topological structure is that all the paths

corresponding to the edges in the subdivision graph are independent. In our algorithm,

we explicitly maintain the paths corresponding to the edges for a topological structure � ,

by two operations, ExtendOuterEdges and Join. Therefore, the correctness of our algo-

rithm depends on whether these paths in an occurrence are independent. Formally, as-

sume that a graph-topological structure � is generated from the following edge sequence:

� N 8 � � � N �>� ��	
	
	 � � N � � . In our algorithm, an occurrence of � can be represented by the union

of the corresponding paths, i.e., ���N 8 � � ���N ��� ��	
	
	 � ���N � � . The following lemma states that the

independence property is maintained for these edges. Therefore, it implies that our algo-

rithm can correctly generate topological structures for a graph, and henceforth, correctly

discover frequent topological structures.

Lemma 16 The paths in any occurrence of � , i.e.,

���N 8 � � ���N �>� ��	
	
	 � ���N � � , are independent.

Proof:By induction.
�

5.3.2 Vertical Mining Approach

Our approach mines frequent topological structures in two phases. In the first phase, we

mine all the frequent topological structures which are trees, and are referred to as frequent

tree-topological structures. In the second phase, for each tree-topological structure
�

, we

mine frequent graph-topological structures which have
�

as their spanning tree. The tree-

topological structures are graphs without cycles, and the graph-topological structures are

137

graphs with at least one cycle. Note that the two-phase procedure has been proposed and

used for efficiently mining frequent subgraphs also [107, 55].

In the first phase of our algorithm, a candidate frequent tree-topological structure can be

generated by looking at edges in � � � � � ��� � . In the second phase, a candidate frequent graph-

topological structure can be generated through � � � � � � � � . Finally, if a topological structure

� � is generated by adding a new edge N on � , N � � � � � � , we call � as the parent graph of

� � . Note that the above treatment is very similar to the algorithms in mining (connected)

subgraphs since the frequent topological structures are also graphs.

A difficulty in enumerating frequent topological structures is that one frequent topolog-

ical structure can be derived from different parent graphs, i.e. � � � � N ��� 	 � � � � N � � ,
where � �
	 � � . Clearly, an efficient mining algorithm needs to avoid generating duplicate

frequent topological structures. This requires efficient topological structure isomorphism

tests. This is why we use a two-phase procedure to enumerate frequent tree and graph

topological structures separately. Basically, linear-time algorithms exist for enumerating

tree topological structures, and therefore, our first phase can efficiently deal with tree-

isomorphism. The complicated cases which require graph isomorphism testing arise only

in the second phase.

Our algorithm is sketched in Figure 5.6. The mining procedure VTreeTS corresponds

to the first phase, and the mining procedure VGraphTS corresponds to the second phase.

To generate frequent tree-topological structures, for each tree
�

, we use the mechanisms

introduced by Nijssen [78] to determine which edges in � � � � � ��� � are valid extensions. The

valid extensions can also help to enumerate all frequent tree-topological structures without

replication. Specifically, the procedure ValidExtension (invoked by VTreeTS in the fore-

ach loop) provides the above mechanism. The frequent graph-topological structures are

138

enumerated by adding a subset of inner edges in � � � � � � � � to each frequent tree-topological

structure
�

. In our algorithm, the procedure CanonicalExtension (invoked by VGraphTS

in the foreach loop) applies hashing and graph isomorphism test (nauty [72]) to avoid du-

plicating graph-topological structures.

The dominant computational time of our algorithm is in maintaining the edge sets,

� � � � � ��� � and � � � � � � � � , for each topological structure � . Note that when � is a graph-

topological structure, we only need to maintain its inner edge set. Our algorithm maintains

them in an incremental manner. For a new tree-topological structure,
�
� � N � , it can inherit

some of the inner and outer edges in � � � � � through a Join operation (the foreach loop in

VTreeTS). However, the new vertex (because of N) in the graph
�
� � N � brings new outer

edges, which do not appear in � � � � � ��� � . In our algorithm, the procedure ExtendOuterEdges

(invoked by VTreeTS) generates these new outer edges. For a new graph-topological struc-

ture, � � � N � , it only needs to inherit inner edges from its parent’s inner edge set � � � � � � � �

through the Join operation (the foreach loop in VGraphTS).

5.4 Mining Topological Structures with Relabeling Functions

As discussed before, topological structures of a subgraph are extracted through com-

pressing the inner vertices and edges of their independent paths into corresponding unla-

beled edges. Two paths that have a different set of inner vertices and edges can be treated as

the same, as long as the labels of their ends are the same. However, in many applications,

the labels for inner vertices (and the inner edges) can provide important additional infor-

mation. In order to reflect such information in the topological structures, we allow users

to define a relabeling function, which assign labels to the edge in topological structures

corresponding to the path that has been contracted.

139

In this section, we first formally introduce relabeling functions and briefly discuss their

efficient implementation in the mining process. Then, we discuss how we can use re-

labeling functions to perform constraint topological structure mining. Finally, we relate

relabeling functions with approximate pattern mining, and present how our framework can

handle fuzzy chains in molecular fragments [73].

5.4.1 Relabeling Functions and Their Implementation

Consider a path � 	 (� 8 � � ��� 	
	
	 � � ��, . Normally, when it is contracted in a topological

structure, the only information left is its ends, � 8 and � � , with their vertex labels. Relabeling

functions can preserve important additional information from these contracted paths, in the

form of labels for the corresponding edges in the topological structure.

Formally, a relabeling function
� �AX " � can be defined as a map from the set of

all possible paths X to the new edge-label set for the topological structure � . To facilitate

our discussion, the set � always contains a null symbol,
�
. Note that a given path � can

usually be expressed in two different formats, � and � , where � is the reverse of � , i.e.

� 	 (� �-� 	
	
	�� � � � � 8 , . Clearly, not any map between X and � is valid, because they have to

be consistent with respect to both � and � . Therefore, a valid relabeling function
�

needs

to satisfy the reverse symmetric property, i.e.
� (*� ,
	 � (� , , for a given path �.� X .

A common type of relabeling functions is derived from the length of each independent

path. For example, we can use the length of a contracted path to label its corresponding

edge. Formally, for a given path � 	 (� 8 � � ��� 	
	
	�� � �
, , � (A�2, 	 	 � �
. Clearly, it satisfies the

reverse symmetric property. Note that in this way, the edges in the topological structures

become labeled. In order to efficiently mine frequent topological structures utilizing these

relabeling functions, we need to push relabeling deeply into the support counting process.

140

In our mining algorithm, the ExtendOuterEdge scans these independent paths generated

by the routine IndependentPath, and contracts these paths into corresponding edges (e �
Edge(p.from,p.to) in Figure 5.5, � is an independent path). To implement a relabeling

function, we need to compute a new label using the relabeling function
�

,
� (A�2, , where �

is an independent path, and then use it to label the corresponding edge, Edge(p.from,p.to).

In particular, if it is the null symbol
�
, we simply remove this path. Otherwise, we put this

path into the occurrence list for the contracted edges with this new label
� (A�2, .

5.4.2 Mining Topological Structures with Constraint Conditions

In this subsection, we study a specific type of relabeling function: constraint conditions.

Such constraint conditions can help data miners focus only on certain types of independent

paths to be contracted. In this way, for the edges in a frequent topological structure, the

user can have an idea of what kind of paths (subgraphs) are contributing to them. In the

following, we consider a powerful mechanism to specify such constraint conditions, which

is based on regular expressions. For example, the following expression

��� � ��� W � W � � W � �S� � �

requires that an independent path in the graphs starting from a vertex with label � , ending

with a vertex with label
�

, either have length one with the inner vertices labeled as A,B,E

or have length two with the inner vertices both labeled with � .

Such constraint conditions can be transformed into a table format: a table � with
W ���

W

rows and
W � � W columns, where � � is the set of all the vertex labels. (The details of the

transformation procedure is omitted for simplicity.) Each row and each column corresponds

a label in � � ; and each cell has a regular expression. A cell � � �	� � � specifies a path starting

with a label � � , ending with a label � 3 , and with the inner path labeled as � � �	� � � , can be

141

contracted into an edge ��� � � � 3 � . Specifically, � � �	� � �
J � �� � 	
	
	 � � �

� since the length of each

contracted path needs to be bounded by � and � . For example, Figure 5.7 illustrates such

a table for the vertex label set ��� � � ��� � � ��� � in the table format. Note that an empty set

(
�
) in a cell � � � � � � suggests no path can be contracted as ��� � ��� 3 � ; the symbol (

�
) represents

the set � � . Finally, the table also satisfies the reverse symmetric property: � � � � � � 	 � � � � � � .

Mathematically, we can treat a regular-expression based condition as a type of relabel-

ing function. Specifically, we can define the new edge-label set � of topological structures

as � 	�� � � � � . The symbol
�

represents that a path is acceptable by the constraint condi-

tion, and the symbol
�

corresponds to the rejection of a path. Therefore, for a given path

� 	H(� 8 � � ����	
	
	 � � � , , if it satisfies the constraint condition, the relabeling function returns

�
, otherwise, it returns

�
(in other words, this path is simply removed). The detailed im-

plementation is as follows. Basically, for each candidate path, we will use its ends to find

the corresponding regular expression in the constraint table. To facilitate processing, we

will map the regular expressions in the constraint table into DFAs (Deterministic Finite Au-

tomaton). Then, we will test if the path is accepted or rejected by the DFA. If it is rejected

by the DFA, we will simply remove this path.

5.4.3 Mining Fuzzy Chains using Relabeling Functions

In the following, we study how we can use topological structure together with relabeling

functions to implement one type of approximate pattern mining, which is mining fuzzy

chains in chemical compounds [73].

We begin with the definitions of fuzzy chains. A chain in a chemical compound satisfies

the following conditions: 1) every vertex corresponding to an atom in a chain has the same

type, 2) every vertex in the chain must have exactly two edges (labeled with single bound

142

type) to other vertex, and 3) a chain always consists of the maximal possible number of

atoms satisfying the first two conditions and must have a minimum length of one. For a

biologist or a chemist, two chains are equivalent if both chains have the same atom type

and the lengths of the two chains can be different and are bounded by user-defined ranges.

Since such chains do not need an exact match, we call them fuzzy chains.

Let us consider the length of the fuzzy chains to be between two and four atoms (the

common case). Then, the frequent chemical fragments with such fuzzy chains can be mined

in our framework as (
� � �)-topological minors with the following relabeling function. For a

given independent path, 1) if the path has no inner vertex, use the original edge label as the

edge label for the new edge, 2) if the path has a number of inner vertices between
�

and
�
,

we check the following conditions for the path to see if it satisfies the chain condition, and

return the atom type in the chain to label the new edge for the true case, and 3) remove the

path in other conditions.

The method discussed in Subsection 5.4.1 can be used to implement this relabeling

function.

5.5 Case study: Membrane Protein Structure Analysis

Discovery of lipids binding sites has been long known as a very challenging, but im-

portant, task for the biologists [80]. In this study, we use our new tool to search potential

protein-lipid binding sites in an important class of proteins - membrane proteins, which are

believed to account for approximately 20-30% of all protein sequences.

The dataset we use is derived from the protein data bank (PDB). 2 We use a set of six

membrane proteins known to bind with cardiolipins (CL): 1KB1, 1KQF, 1M3X, 1OKC,

2Thanks for dmitrii polshakov’s help with providing the dataset and analyzing the experimental results.

143

Parameters No. of Large Topological Structures
Support l h Path Tree Graph

6 0 4 11 (E��BE C �
) 0 1 (E � E C �
 E�� E C �

)
5 0 3 1 (E�� E C �

) 4 (E�� E C �
) 4 (E��BE C �
 E � E C �

)
5 1 2 17 (E��BE C �

) 0 1 (E��BE C �
 E � E C �
)

4 0 0 0 (E�� E 	 �
) 0 0

4 0 1 11(E�� EGF �
) 5 (E�� EGF �

) 2 (E��BE C �
 E � E C �
)

4 1 2 27(E�� EGF �
) 2 (E�� EGF �

) 1 (E��BE C �
 E � E C �
)

4 0 2 24(E�� EGF �
) 10 (E�� E�F �

) 10 (E�� EGF �
 E � E F �
)

3 0 0 1 (E�� E C �
) 1 (E�� E C �

) 0
3 0 1 20 (E��BE�F �

) 34 (E�� E C��
) 19 (E�� EGF �
 E � E F �)

3 1 2 12 (E��BE C��
) 19 (E�� E C �

) 20 (E�� EGF �
 E � E F �)

Table 5.1: Number of Large Patterns Discovered by TSMiner

1V54, and 1OGV. Amino acids as nodes in the graph (20 labels) and edges between nodes

are drawn if two amino acids are within
� � �

Å . There are known to be 20 naturally oc-

curring amino acids and these serve as node labels. In order to find the structural motifs

that can serve as binding site for a CL head group, we used only the relevant parts of pro-

teins that are known to be local to CL molecule. Such a structure typically contains around

� ��� � ���
amino acids (number of nodes per graph). Note that several membrane proteins

we use contain more than one CL molecule. Therefore, the total number of CL binding

regions that we used to find protein-lipid binding sites is
� �

(number of graphs).

Table 5.1 summarizes the results on mining this dataset using our tool. Note that

TSMiner at � 	 �
and � 	 �

is simply a connected subgraph mining tool (same results

as with Gaston). For this parameter setting, one can only find patterns till the support level

is
�
, and the largest one found contains at most � vertexes. However, upon varying the value

of the parameters, we find large triangles with support 5 and 6, along with large rectangles,

and topological structures containing 5 or more vertexes. At support 3, with relaxed � and

144

� , we found a number of large topological structures, containing more than 9 vertexes, and

9 edges. Figure 5.8 shows two such large topological structures discovered by our toolkit.

The topological structures consist largely of polar (N, T, S), charged (K) and aromatic (W)

residues which is in agreement with recent advances in the understanding of such proteins

within the biophysics community[80]. The structure we find is larger than any known mo-

tifs for CL binding sites in such proteins and also seems to partially span the membrane

bridging components of the protein which seems quite novel according to domain experts.

5.6 Experimental Results

In this section, we will study the performance of our new algorithm, TSMiner, focusing

on the following three issues: the scalability of the algorithm, how the parameters, � , � ,

and the support level B , affect the performance, and how the relabeling functions affect

performance. 3 We have implemented TSMiner in C++. The evaluation studies were

conducted on a 2.66 GHz Pentium 4 machine with 1GB main memory, running Linux

Mandrake 10.1.

5.6.1 Datasets Description

Our experiments used both synthetic and real datasets, containing vertex labeled graphs,

i.e., the edge labels were not considered.

Synthetic Datasets: The synthetic datasets were generated from the graph generator pro-

vided by Kuramochi and Karypis at the University of Minnesota. Though this generator

was originally designed for evaluating frequent subgraph mining algorithms, we have used

it to study the performance and scalability of the algorithm for mining frequent topological

structures. In our experiments, the following parameters were used to generate datasets:

3Thanks for Chao Wang’s help with the experimental evaluation of TSMiner.

145

1)
W � W

, the total number of graphs to be generated, 2)
W � W

, the average number of edges

for the generated graphs, 3)
W � W , the total number of potentially frequent subgraphs, 4)

W
:
W
,

the average number of edges in each potentially frequent subgraph, and 5)
W � W

, the total

number of available labels for the vertices. In our experiments, we fixed
� 	 � �

, � 	 � ���
,

: 	
�
, and we vary

�
, the total of vertex labels, to be between 5 and 20.

Chemical Compound Dataset from PTE: This dataset was originally used for the Predic-

tive Toxicology Evaluation Challenge [99]. It contains a total of
� ���

chemical compounds.

For each compound, the atoms correspond to the vertices of the graph, and the bonds be-

tween the atoms are mapped to the edges of the graph. Overall, the entire dataset contains

a total of � � vertex labels. For simplicity, we refer this dataset as Chemical340.

5.6.2 Performance Evaluation

Scalability: For the scalability study, we rely on the synthetic datasets. Figure 5.9 shows

the performance of TSMiner under different conditions. In Figure 5.9(a) and (c), we vary

the support threshold from high to low, and run our algorithm on datasets containing
� � � ��� �

graphs. As we would expect, as the support level reduces, the running time increases.

Also, we can observe that as � increases (� kept the same), the running time increases.

This is also expected as the number of (potential) frequent topological patterns increases

as we relax the condition on the length of the independent paths. From Figures 5.9(b)

and (d), we see that TSMiner scales reasonably well (close to linear) as we increase the

size of the dataset. Note that the TSMiner with parameters � 	 �
, � 	 �

is essentially

a frequent connected subgraph mining tool for vertex labeled graphs. For such cases, we

did a comparison with the state-of-art subgraph mining tool gSpan [107]. Our results show

that our implementation is slower by a factor of 1.6. We believe this is a reasonable result,

146

given that we offer additional functionality and do not specifically optimize for subgraph

mining.

Number of Patterns and Running Time with respect to � and � In this study, we are

interested in the number of patterns being generated by our new algorithm and its running

time respect to the parameters � and � . Figure 5.10 presents the experimental results on

the real dataset Chemical340. Figure 5.10 (a) shows the number of path, tree, and graph

topological structures discovered by TSMiner at a support of
� ���

. The primary observations

of note here are: when using traditional graph mining algorithms (�
	 �
and � 	 �

in our

tool) no frequent graph patterns are found; upon increasing the value of � to
�
,
�
, and

�
,

we are able to identify frequent graph structures; and finally from Figure 5.10(b) we can

see that as the value of � is increased the running running time of our tool increases as it

has to evaluate more candidate patterns and the cost for generating each pattern increases

(the independent paths become longer). Figure 5.10 (c) and (d) show the total number of

patterns being discovered and the running time of TSMiner at different support levels, as

we increase � and keep � to be
�
.

The Effect of Relabeling Functions In this study, we focus on how relabeling functions

impact the performance of our algorithm. We study two types of relabeling functions.

The first uses the length of the contracted path to relabel the corresponding edge, and is

referred to as length-relabeling (see Subsection 5.4.1). The second involves constraining

each path with a regular expression, or DFA, and is referred to as DFA-relabeling (see

Subsection 5.4.2).

Figure 5.11(a) and (b) shows the number of patterns being generated by TSMiner with-

out length-relabeling and the corresponding running time. The result is quite interesting.

147

Using relabeling, more frequent patterns are being generated, however, the running time

decreases significantly. Basically, as we relax the condition for the length of independent

path for a given topological structure, many occurrences with independent paths of dif-

ferent length maps to it. As we perform length-relabeling, the topological structures will

be further categorized based on the size of its occurrences. This reduces the number of

occurrences, as the condition for a subgraph being the subdivision graph of a topological

structure becomes stricter. Therefore, such a relabeling function can improve the perfor-

mance of TSMiner.

Figure 5.11(c) and (d) show the number of patterns being generated by TSMiner without

DFA-relabeling and the corresponding running times. The constraint conditions are gener-

ated as follows. We first randomly generate a group of
� ���

DFAs to describe the conditions

of an independent path. In particular, we use a parameter � to control how likely it is that

an independent path can be accepted. In our experiment, for the independent paths having

length 1, 2, and 3, their possibilities to be accepted were 0.5, 0.25, and 0.125, respectively.

Then, each cell in the constraint condition table (defined in Subsection 5.4.2) is randomly

assigned with a generated
� � � . As shown in the figures, the DFA-relabeling reduces the

number of frequent topological patterns being generated, as well as the running time.

5.7 Related Work

The early efforts on discovering useful patterns from graph datasets include the SUB-

DUE system [22] and WARMER algorithm [25]. The SUBDUE system relies on the Mini-

mal Description Length (MDL) principle and a greedy strategy to find a subset of frequently

occurring subgraphs. The WARMER algorithm combines Inductive Logical Programming

148

(ILP) with Apriori’s level-wise search strategy [7] to find a wide class of frequent sub-

structures. However, it is well known that ILP-based approaches are still quite expensive

computationally, and do not scale very well to large datasets.

Recently, frequent subgraph mining approach has received much attention. This ap-

proach enumerates all frequent patterns defined by a class of subgraphs. The AGM algo-

rithm [60] was the first to be proposed in this category. It can find all frequent induced

subgraphs in a graph dataset. A subgraph � � of � is induced if the subgraph � � contains

all edges in � connecting its vertices. The more recent efforts focus on discovering all fre-

quent connected subgraphs. Several efficient algorithms, such as FSG [67], gSpan [107],

FFSM [53], and Gaston [78], have been proposed to mine these kind of patterns. Two dif-

ferent types of search strategies are used in these algorithms: apriori’s level-wise strategy

and Eclat’s [117] depth first search strategy. The experimental results show in most of the

cases, the latter is more computationally efficient, and the former is more memory efficient.

The framework proposed in this chapter enumerates a more generalized pattern in a graph

dataset. The connected subgraph mining is a special case for this new type of topologi-

cal structure mining. To efficiently enumerate these kind of patterns, our new algorithm,

TSMiner, also uses Eclat’s DFS strategy. However, the critical difference is that the new

algorithm has to use with the topological minor test, which is more complicated than the

subgraph isomorphism test.

Hofer et al. [52], as well as Parthasarathy and Coatney[83], make the observation that

in many real world applications, a fuzzy match is needed, and not an exact match. As

we demonstrate in our work, such fuzziness can be handled in our framework through the

design of suitable relabeling functions.

149

To reduce the computational costs associated with enumerating frequent subgraphs, re-

searchers have looked at generating closed [109], maximal [55] and free-tree based [92]

frequent subgraph patterns. Such concepts can be naturally extended to handle frequent

topological patterns as well. Further, several researchers have studied how to find efficient

patterns in the tree dataset, such as an XML dataset [119]. Frequent topological patterns

could be defined on tree datasets as well, and our algorithm is clearly capable of enumerat-

ing such patterns.

5.8 Conclusions

In this chapter, we have presented a novel framework for mining topological patterns

in graph datasets. Based on the well known notion of a topological minor, we have de-

signed efficient algorithms for mining such patterns. Additionally, our framework supports

the notion of a user-defined relabeling function, which can be used to specify constraints

and fuzzy matching criteria. We have demonstrated the effectiveness and scalability of

the proposed algorithms on real and synthetic datasets. We have also reported on a case

study where the framework has been used to identify topological structures from membrane

protein structure data.

150

ExtendOuterEdges
�
Graph T

�
� ��� ��/ � � �WKP�D����� ��46� � �2��%*)+4 �)P%�� � �
�"! #��
foreach

���*464� � �;�*464)<%D%'����4��I� ��/���
� ! � %���K 5 �	$%
 �*464 � ��� � �W�
foreach

�LKP� �853K �0,'� � ��K+��� �������8� � �85 � �
 �D4 4
 �D464 ��� � �8� ���
�3! � ����� �LK � �+%���.
�K � ��� �W�
if
�1�
� � �
�Q! � @ ��� �'�

,'�-/*��%D� T 464W)P%D%�����4�� �1�
 �
�K �W�
foreach

�1� � � �
if
�

not
�&%'��(*)+����� � � @ ��� � ���

�"! �"M ���
%'����)<%D��� �

Join
�
EdgeSet

� � , Edge
� � �

�"! #��
foreach

�1� � � � � �� �;�*464)<%D%'����4��I� ��/���!$#��
foreach

����� �
 � � ���'� � �0� � �;�*464)<%D%'����4��I� ��/��
and� � �0� � �;�D464)<%D%'����4����V� /I�

and� � � KP� %�������, $ C�C � � � KP� %'�����8, $!�
if
��,'� ���8K+��� � ����� ��� � � KP� �85
 � � � KP� �85 ���

,'�-/*��%D� T 464)<%D%'����4�� �1�
 � � � KP� �85 �W�
if
�	�&%'��(*)+����� �1� ���
�"! � @ ��� �'�

%'����)<%D��� �

Figure 5.5: Support Counting Procedures for Mining Topological Structures

151

VTSMining
�
Dataset D, Support � , Bound l, h

�
� � �&�7� � �&%'�I(�) ����� �2��� � �1� M � ����� � �WKP�D�V� � � 4 ��� �2� %D)+4W��)<%'��/ � �
�"! �&%'��(*)+����� � ����� � � �	$%
 �
 �
 5 �W�
foreach

�1� � � �
� � %'�I� � � �1� �W�

VTreeTS
�
Tree T

�
� � � ��� T)P�8��% � � ���I/ �D� � � �
�"! � � �8��� � T)P�8��% � ���G�I/ � � �W�
[�]

� � ��� �
!

[�]
� � ��� �

@ ���
� � � %'�I� � � K+�*��� � ��46��� �N� %D)P4 ��)<%'� � %�� � �7� � � �
foreach

�1� � � �
[�]

� � ��� � and
�

���V� � � � �����-/I���*��� � @ ��� � ���
� �

! � @ ��� �'�
[� �] � �

!����*�7���
[�] � �

 � �W�
� � %'�I� � � � � �

�W�
� � � ��)P.0��%�� � �7� � � %D�IK+5 � �WKP�D��� � ��46� � �2��%D)P4 �)P%'�I/ � �
� � %���K+5 � � � � �W�

VGraphTS
�
Graph G

�
foreach

�1� � � �
[�] � � � � � and"&� ���*����46� �
� � �����-/I���*��� � @ ��� � �

� �
! � @ ��� �'�

[� �] � � � � �
!����*�7���

[�] � � � � �

 � �W�

� � %���K 5 � � � � �
�W�

Figure 5.6: Algorithm Framework for Mining Topological Structures

� � � � 	

 �
� ��� ��� ����
� ��� ����� � ����� ��� � ��� � � ! "

�
� ��� �#�$� � �
%� �#� ��� ��� �&��� ���
���� �#��� � ����� �'�

� ���$� ��� ����� ��� �
�� �(� ��� ��� �#� ����� �'�

� � ��� �)
�� ����� � �
� �#� �$� ��� ����� �'�

� ��� � � "*! � � � � � � � � � � � � � � � �
�� �(� � � � �

Figure 5.7: Constraint Condition Table

152

Figure 5.8: Frequent Topological Structures Discovered by TSMiner

 0

 200

 400

 600

 800

 1000

 1200

 1400

4050607080

R
u
n
n
in

g
 T

im
e
(s

e
c
)

Support Threshold(%)

(l,h)=(1,1)
(l,h)=(1,2)
(l,h)=(1,3)
(l,h)=(1,4)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20 25

R
u
n
n
in

g
 T

im
e
(s

e
c
)

Dataset Size(Kb)

(l,h)=(1,1)
(l,h)=(1,2)
(l,h)=(1,3)
(l,h)=(1,4)

 0

 100

 200

 300

 400

 500

510152025
R

u
n
n
in

g
 T

im
e
(s

e
c
)

Support Threshold(%)

(l,h)=(1,1)
(l,h)=(1,2)
(l,h)=(1,3)
(l,h)=(1,4)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25

R
u
n
n
in

g
 T

im
e
(s

e
c
)

Dataset Size(Kb)

(l,h)=(0,0)
(l,h)=(0,1)
(l,h)=(0,2)
(l,h)=(0,3)

(a) (b) (c) (d)

Figure 5.9: (a) Varying Support(D10kV5) (b) Varying Dataset Size(D*kV5, Sup=40%))
(c)Varying Support (D10kV20) (d) Varying Dataset Size (D*kV20, Sup=20%)

0

5

10

15

20

25

(0,0) (0,1) (0,2) (0,3)
(l , h)

N
o
.

o
f

P
at

te
rn

s

Path# Tree# Graph#

0

50

100

150

200

250

(0,0) (0,1) (0,2) (0,3)

(l,h)

R
u

n
n

in
g

 T
im

e(
se

c)

 0

 20

 40

 60

 80

 100

 120

(1,5)(1,4)(1,3)(1,2)(1,1)

N
o
.
o
f
P

a
tt
e
rn

s

(l,h)

sup=20%
sup=30%
sup=40%
sup=50%

0

50

100

150

200

250

300

350

(1,1) (1,2) (1,3) (1,4) (1,5)

R
u
n
n
in

g
 T

im
e
(s

e
c
)

(l,h)

sup=20%
sup=30%
sup=40%
sup=50%

(a) (b) (c) (d)

Figure 5.10: Chemical340 (a)No. of Patterns(Support=200) (b)Running
Time(Support=200) (c)No. of Patterns(Varying Support) (d)Running Time(Varying
Support)

153

0

100

200

300

400

500

600

(1,2) (1,3) (1,4) (1,5)
(l,h)

N
o

.
o

f
P

at
te

rn
s.

Without Path Relabeling
With Path Relabeling

0

50

100

150

200

250

300

350

(1,2) (1,3) (1,4) (1,5)
(l,h)

R
u

n
n

in
g

 T
im

e
(s

e
c)

Without Path Relabeling
With Path Relabeling

0

10

20

30

40

50

60

(0,1) (0,2) (0,3)

(l,h)

N
o

.
o

f
P

at
te

rn
s.

Without Constraint With Constraint

0

50

100

150

200

250

(0,1) (0,2) (0,3)

(l,h)

R
u

n
n

in
g

 T
im

e(
se

c)

Without Constraint With Constraint

(a) (b) (c) (d)

Figure 5.11: Relabeling with the Path Length on Chemical340 (Support=200) (a) No. of
Patterns (b) Running Time; DFA Constraints on Chemical340 (Support=200) (c)No. of
Patterns (d)Running Time

154

CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

In this thesis, we have studied three different problems in the field of frequent pattern

mining, mining multiple datasets, mining data streams, and mining graph datasets. Our re-

search has introduced new techniques and new algorithms to solve these problems, and also

demonstrated their efficiency through detailed experimental evaluation as well as their ap-

plicability to real world problems. Specifically, our thesis contributions can be summarized

as follows.

1. Database Optimization for Mining Multiple Datasets: We have modeled the problem

of mining frequent patterns across multiple datasets to a query evaluation problem,

where a set of simple mining algorithm servers as the basic operators. In particu-

lar, we built an intuitive model – � -table to formulate the query evaluation process

and facilitate the query plan generation. Using the � -table, we have developed a

set of greedy algorithms to generate efficient query plans for a single mining query.

We were also able to utilize � -table to simultaneously optimize multiple queries

and summarize/reuse the mining results of past mining queries. Our experimental re-

sults shown approximately an order of two speedup comparing with the naive method

155

without our optimization (more than an order of speedup from single query optimiza-

tion and close to an order speedup from multiple query optimization together with a

knowledgeable cache.)

2. A New Algorithm for Mining Frequent Itemsets on Streaming Data: Our new al-

gorithm is inspired from Karp et. al.’s simple algorithm for finding frequent items

from a sequence of items (the length of itemsets is equal to one). We have not only

derived StreamMining to handle the frequent itemsets mining, but also developed a

new bound to improve the quality of the mining results. Our detailed experimental

evaluation has shown StreamMining is very accurate in practice, and is very memory

efficient.

3. A New Framework for Mining Topological Patterns on Graph Datasets: Inspired by

a mathematical concept Topological Minor, we have developed a new framework to

mine large-scale topological patterns from graph datasets. This framework contains

a new algorithm VTSMining to enumerate such patterns in a DFS fashion, and a

new approach called relabeling function to perform constraint pattern mining. Our

new framework has been successfully applied to a protein dataset and find active

motifs which seem novel according to domain experts. The performance of our new

framework has been validated on both real and synthetic datasets.

Many interesting problems have been raised in our research. Even though we are mak-

ing some progress to tackle them, some of them remain open.

1. Cost-based Mining Query Plan Generation: Our current methods rely on heuristic

and greedy algorithms to generate efficient mining query plans. However, in many

situations, such methods are likely to fail. For example, the support level serves

156

as the main heuristic to estimate the cost of mining operators. Clearly, many other

factors, such as the number of transactions, and the density of the datasets, also

play very significant roles in determining the performance of the mining operation.

Therefore, in order to generate the optimized mining-query plans, we need a cost-

based query plan generation approach. This is similar to the traditional database

query optimization. In particular, two difficult problems need to be answered for such

an approach: 1) how should we associate the costs with different mining operators?

2) how to use dynamic programming to find the optimized ones?

2. Approximate the Number of (Maximal) Frequent Itemsets: One of the problem closely

related with the cost estimation of a mining operator is to estimate the cardinality

of its result sets - the number of (maximal) frequent itemsets. In other words, can

we estimate the number of (maximal) frequent itemsets without enumerating them?

The computational complexity of computing the exact number of frequent itemsets

have been proved to be #P-hard [44], and computing the exact number of maximal

itemsets are #P-complete [110]. However, this does not exclude the possibility that

efficient polynomial-time algorithms exists to estimate the number of (maximal) fre-

quent itemsets. Clearly, this problem has both theoretical and practical importance.

3. Mining and Maintaining Maximal Frequent Itemsets over Data Streams: Even sev-

eral one-pass methods (including ours) have been proposed in mining frequent item-

sets over data streams, the computational complexity of these algorithms are still very

high and practically may not be efficient enough to handle very fast data streams.

One way to reduce the computational cost is to only mine and maintain the max-

imal frequent itemsets (MFI). However, the difficulty of this problem is that if we

157

just maintain the information for MFI, it will be very hard to find a good estimate of

the counts of the interior itemsets once the border of frequent itemsets shrinks. For

example, assume itemset � a,b,c � is a current maximal frequent itemset. Now, after

processing the new chunk, we know it becomes infrequent. Without loss of gener-

ality, we assume that � a,b � , � b,c � and � a,c � become potentially maximal frequent

itemsets. However, because we do not record any information about these itemsets,

it will be very hard to provide a reasonable estimation of how frequent these itemsets

are.

To address this difficulty, we propose to maintain a concise frequency contour over

frequent itemsets. In other words, we maintain the several MFI sets for different

support levels. We call them as contour sets. Therefore, once an itemset does not

appear in contour sets, it will be falling between two different MFI sets. In this

case, we will take the greater support level between the two MFI sets as a frequency

estimation. However, some technical issues arise when transforming this idea into an

efficient algorithm, such as how to efficiently query an itemset that does not appear

in the contour sets. and how many MFI sets should be built as well as how to build

them efficiently.

4. Efficiently Mining Frequent Large-Scale Structures from Structured Datasets: As one

of the first works to address mining frequent large-scale structures, we found many

interesting problems which need further pay attention to. For example, we need to

consider the combinatorial-explosion problem in enumerating frequent large-scale

structures. This is referred to as the fact that if a subgraph is frequent, then any

large-scale structure derived from such a subgraph is also frequent. Considering a

line-graph with
�

vertices and
�

edges is frequent, the possible number of large-scale

158

structures can be derived from such a graph is
� � if the vertices have different labels,

and the parameters of � and � to be
�

and
�
, respectively. Therefore, we need a good

strategy to deal with such combinatorial explosion problem. Another problem is that

in our current research, we use the model based on the topological minor to mine

large-scale structures. Therefore, a natural question to ask is whether such a model

is general enough to describe other types of large-scale structures. We believe new

models, consequently new algorithms, might be necessary to mine new families of

frequent large-scale structures.

We are planing to work on these problems in our future research.

159

BIBLIOGRAPHY

[1] Integrated public use microdata series. http://http://www.ipums.umn.edu/usa/index.html.

[2] Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximating a collection of
frequent sets. In KDD ’04: Proceedings of the 2004 ACM SIGKDD international
conference on Knowledge discovery and data mining, 2004.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonent, and A. Inkeri Verkamo. Fast dis-
covery of association rules. In U. Fayyad and et al, editors, Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA, 1996.

[4] R. Agrawal and J. Shafer. Parallel mining of association rules. IEEE Trans. on
Knowledge and Data Engg., 8(6):962–969, December 1996.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of Int. conf. Very Large DataBases (VLDB’94), pages 487–499, Santiago,Chile,
September 1994.

[6] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
Conference, pages 207–216, May 1993.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases, 1994.

[8] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Pro-
ceedings of the Eleventh International Conference on Data Engineering, 1995.

[9] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases.
ACM Trans. Database Syst., 4(3), 1979.

[10] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Multiple query optimization for data
analysis applications on clusters of smps. In In Proceedings of the 2nd International
Symposium on Cluster Computing and the Grid (CCGRID), 2002.

160

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in
Data Stream Systems. In Proceedings of the 2002 ACM Symposium on Principles of
Database Systems (PODS 2002) (Invited Paper). ACM Press, June 2002.

[12] Stephen D. Bay and Michael J. Pazzani. Detecting group differences: Mining con-
trast sets. Data Min. Knowl. Discov., 5(3):213–246, 2001.

[13] Hendrik Blockeel and Michĕle Sebag. Scalability and efficiency in multi-relational
data mining. SIGKDD Explor. Newsl., 5(1):17–30, 2003.

[14] Christan Borgelt. Apriori implementation. http://fuzzy.cs.Uni-
Magdeburg.de/ borgelt/Software. Version 4.08.

[15] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa Makino. On
the complexity of generating maximal frequent and minimal infrequent sets. In
Symposium on Theoretical Aspects of Computer Science, pages 133–141, 2002.

[16] Cristian Bucila, Johannes Gehrke, Daniel Kifer, and Walker White. Dualminer: a
dual-pruning algorithm for itemsets with constraints. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 42–51, 2002.

[17] Doug Burdick, Manuel Calimlim, and Johannes Gehrke. Mafia: A maximal frequent
itemset algorithm for transactional databases. In Proceedings of 17th ICDE, April
2001.

[18] T. Calders and J. Wijsen. On monotone data mining languages. In Proc. of Inter-
national Workshop on Database Programming Languages (DBPL), pages 119–132,
2001.

[19] Surajit Chaudhuri. An overview of query optimization in relational systems. In
PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems, 1998.

[20] Surajit Chaudhuri, Usama M. Fayyad, and Jeff Bernhardt. Scalable classification
over sql databases. In Proceedings of the 15th International Conference on Data
Engineering, 23-26 March 1999, Sydney, Austrialia, pages 470–479. IEEE Com-
puter Society, 1999.

[21] D. Cheung, J. Han, V. Ng, A. Fu, and Y.Fu. A fast distributed algorithm for mining
association rules. In 4th Intl. Conf. Parallel and Distributed Info. Systems, December
1996.

[22] Diane J. Cook and Lawrence B. Holder. Substructure discovery using minimum
description length and background knowledge. Journal of Artificial Intelligence
Research, 1:231–255, 1994.

161

[23] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw Hill, 1990.

[24] Luc De Raedt. A perspective on inductive databases. SIGKDD Explor. Newsl.,
4(2):69–77, 2002.

[25] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chem-
ical compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, editors, 4th
International Conference on Knowledge Discovery and Data Mining, pages 30–36.
AAAI Press., 1998.

[26] Reinhard Diestel. Graph Theory. Springer-Verlag, 2000.

[27] A. Dobra, J. Gehrke, M. Garofalakis, and R. Rastogi. Processing complex aggre-
gate queries over data streams. In Proc. of the 2002 ACM SIGMOD Intl. Conf. on
Management of Data, June 2002.

[28] P. Domingos and G. Hulten. In Proceedings of the ACM Conference on Knowledge
and Data Discovery (SIGKDD), TITLE = Mining High-Speed Data Streams, YEAR
= 2000, text = ”P. domingos and G. Hulten. Mining High-Speed Data Streams.
SIGKDD, 2000.”.

[29] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: discovering
trends and differences. In Proceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 43–52, 1999.

[30] Sas̆o Dz̆eroski. Multi-relational data mining: an introduction. SIGKDD Explor.
Newsl., 5(1):1–16, 2003.

[31] Mohammad El-Haji and Osmar R. Zaiane. Inverted Matrix: Efficient Discovery of
Frequent Items in Large Datasets in the Context of Interactive Mining. In Proceed-
ings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
ACM Press, 2003.

[32] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes
Gehrke. Privacy preserving mining of association rules. In KDD ’02: Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2002.

[33] feng Yan, X. Jasmine Zhou, and Jiawei Han. Mining closed relational graphs with
connectivity constraints. In ICDE, 2005.

[34] Leonard P. Freedman, Keith R. Yamamoto, Ben F. Luisi, and Paul B Sigler. More
fingers in hand. Cell, 54(4):444, 1988.

162

[35] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over
continual data streams. In In Proceedings of SIGMOD, 2001.

[36] C. Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and P. S. Yu. Mining Frequent
Patterns in Data Streams at Multiple Time Granularities. In Proceedings of the NSF
Workshop on Next Generation Data Mining, November 2002.

[37] F. Giannotti, G. Manco, D. Pedreschi, and F. Turini. Experiences with a logic-
based knowledge discovery support environment. In In Proc. 1999 ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD
1999).

[38] Phillip B. Gibbons and S. Tirthapura. Estimating simple functions on the union of
data streams. In Proc. of the 2001 ACM Symp. on Parallel Algorithms and Architec-
tures, pages 281–291. ACM Press, August 2001.

[39] Bart Goethals. Fp-tree implementation. http://www.cs.helsinki.fi/u/goethals/software/index.html.
Version Last Updated April 2003.

[40] Bart Goethals and Jan Van den Bussche. On supporting interactive association rule
mining. In Proceedings of the Second International Conference on Data Warehous-
ing and Knowledge Discovery, volume 1874 of Lecture Notes in Computer Science.
Springer, 2000.

[41] Bart Goethals and Mohammed J. Zaki. Workshop Report on Workshop on Frequent
Itemset Mining Implementations (FIMI). 2003.

[42] Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent
itemsets. In ICDM ’01: Proceedings of the 2001 IEEE International Conference on
Data Mining, 2001.

[43] S. Guha, N. Mishra, R. Motwani, and L. O’callaghan. Clustering data streams. In In
Proceedings of Foundations of Computer Science, 2000.

[44] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivo-
nen, and Ram Sewak Sharma. Discovering all most specific sentences. ACM Trans.
Database Syst., 28(2), 2003.

[45] Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4), 2001.

[46] E-H. Han, G. Karypis, and V. Kumar. Scalable parallel datamining for association
rules. IEEE Transactions on Data and Knowledge Engineering, 12(3), May / June
2000.

163

[47] J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. Dmql: A data mining
query language for relational databases. In In Proc. 1996 SIGMOD 96 Workshop
on Research Issues on Data Mining and Knowledge Discovery (DMKD 96), pages
27–33, Montreal, Canada, Jun 1996.

[48] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of the ACM SIGMOD Conference on Management of Data, 2000.

[49] Jiawei Han, Laks V. S. Lakshmanan, and Raymond T. Ng. Constraint-based, multi-
dimensional data mining. Computer, 32(8):46–50, 1999.

[50] C. Hidber. Online Association Rule Mining. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 145–156. ACM Press, 1999.

[51] Jochen Hipp and Ulrich Güntzer. Is pushing constraints deeply into the min-
ing algorithms really what we want?: an alternative approach for association rule
mining. SIGKDD Explor. Newsl., 4(1):50–55, 2002.

[52] H. Hofer, C. Borgelt, and M. R. Berthold. Large scale mining of molecular fragments
with wildcards. In Advances in Intelligent Data Analysis V, pages 380–389, 2003.

[53] Jun Huan, Wei Wang, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins, and
Alexander Tropsha. Mining protein family-specific residue packing patterns from
protein structure graphs. In Eighth International Conference on Research in Com-
putational Molecular Biology (RECOMB), pages 308–315, 2004.

[54] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal frequent
subgraphs from graph databases. In KDD ’04: Proceedings of the 2004 ACM
SIGKDD international conference on Knowledge discovery and data mining, 2004.

[55] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal frequent
subgraphs from graph databases. In KDD, pages 581–586, 2004.

[56] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proceedings of the ACM Conference on Knowledge and Data Discovery (SIGKDD),
2001.

[57] T. Imielinski and A. Virmani. Msql: a query language for database mining. In Data
Mining and Knowledge Discovery, pages 3:393–408, 1999.

[58] Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge dis-
covery. Commun. ACM, 39(11):58–64, 1996.

[59] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based algorithm
for mining frequent substructures from graph data. In Principles of Knowledge Dis-
covery and Data Mining (PKDD2000), pages 13–23, 2000.

164

[60] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining of fre-
quent patterns from graphs: Mining graph data. Mach. Learn., 50(3):321–354, 2003.

[61] Szymon Jaroszewicz and Dan A. Simovici. Interestingness of frequent itemsets
using bayesian networks as background knowledge. In KDD ’04: Proceedings of
the 2004 ACM SIGKDD international conference on Knowledge discovery and data
mining, 2004.

[62] Ruoming Jin and Gagan Agrawal. An algorithm for in-core frequent itemset mining
on streaming data. Technical Report OSU-CISRC-2/04-TR14, Ohio State Univer-
sity, 2004.

[63] Ruoming Jin and Gagan Agrawal. A systematic approach for optimizing complex
mining tasks on multiple datasets. Technical report, Department of Computer Sci-
ence and Engineering, OSU, 2004.

[64] T. Johnson, Laks V. S. Lakshmanan, and Raymond T. Ng. The 3w model and algebra
for unified data mining. In Proceedings of Interational Conference on Very Large
DataBases (VLDB), 2002.

[65] Richard M. Karp, Christos H. Papadimitrious, and Scott Shanker. A Simple Al-
gorithm for Finding Frequent Elements in Streams and Bags. Available from
http://www.cs.berkeley.edu/ christos/iceberg.ps, 2002.

[66] Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular feature mining in
hiv data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 136–143, 2001.

[67] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In ICDM
’01: Proceedings of the 2001 IEEE International Conference on Data Mining, pages
313–320, 2001.

[68] Laks V. S. Lakshmanan, Raymond Ng, Jiawei Han, and Alex Pang. Optimization
of constrained frequent set queries with 2-variable constraints. In Proceedings of
the 1999 ACM SIGMOD international conference on Management of data, pages
157–168, 1999.

[69] Sau Dan Lee and Luc De Raedt. An algebra for inductive query evaluation. In
Proc. The Third IEEE International Conference on Data Mining (ICDM’03), pages
147–154, Melbourne, Florida, USA, November 2003.

[70] G. S. Manku and R. Motwani. Approximate Frequency Counts Over Data Streams.
In Proceedings of International Conference on Very Large DataBases (VLDB), pages
346 – 357, September 2002.

165

[71] G. S. Manku and R. Motwani. Approximate Frequency Counts Over Data Streams.
In Proceedings of Conference on Very Large DataBases (VLDB), pages 346 – 357,
2002.

[72] Brendan McKay. Practical graph isomorphism. Congr. Numer., 30:45–87, 1981.

[73] Thorsen Meinl, Christian Borgelt, Michael R. Berthold, and Michael Philippsen.
Mining fragments with fuzzy chains in molecular databases. In Second International
Workshop on Mining Graphs, Trees and Sequences (MGTS2004), 2004.

[74] R. Meo, G. Psaila, and S. Ceri. A new sql-like operator for mining association rules.
In In Proc. of International Conference on Very Large Data Bases (VLDB), pages
122–133, Bombay, India, 1996.

[75] Biswadeep Nag, Prasad Deshpande, and David J. DeWitt. Using a knowledge cache
for interactive discovery of association rules. In Knowledge Discovery and Data
Mining, pages 244–253, 1999.

[76] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD international conference on Manage-
ment of data, 1998.

[77] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In Proceedings
of the 1998 ACM SIGMOD international conference on Management of data, pages
13–24, 1998.

[78] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining can
make a difference. In KDD, pages 647–652, 2004.

[79] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, and D. Panda. Towards
nic-based intrusion detection. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 723–728, 2003.

[80] H Palsdottir and C Hunte. Lipids in membrane protein structures. BBA, 1666:2–18,
2004.

[81] J. S. Park, M. Chen, and P. S. Yu. An effecitive hash based algorithm for mining
association rules. In ACM SIGMOD Intl. Conf. Management of Data, May 1995.

[82] Jooseok Park and Arie Segev. Using common subexpressions to optimize multiple
queries. In Proceedings of the Fourth International Conference on Data Engineer-
ing, 1988.

166

[83] S. Parthasarathy and M. Coatney. Efficient discovery of common substructures in
macromolecules. IEEE International Conference on Data Mining, pages 362–369,
2002.

[84] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-
quent closed itemsets for association rules. In ICDT ’99: Proceeding of the 7th
International Conference on Database Theory, 1999.

[85] Jian Pei and Jiawei Han. Constrained frequent pattern mining: a pattern-growth
view. SIGKDD Explor. Newsl., 4(1):31–39, 2002.

[86] Jian Pei, Jiawei Han, and Laks V. S. Lakshmanan. Mining frequent item sets with
convertible constraints. In Proceedings of the 17th International Conference on Data
Engineering, pages 433–442, 2001.

[87] Chang-Shing Perng, Haixun Wang, Sheng Ma, and Joseph L. Hellerstein. Discov-
ery in multi-attribute data with user-defined constraints. SIGKDD Explor. Newsl.,
4(1):56–64, 2002.

[88] Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila. A theory of
inductive query answering (extended abstract). In Proc. The 2002 IEEE Interna-
tional Conference on Data Mining (ICDM’02), pages 123–130, Maebashi, Japan,
December 2002.

[89] S. Rizvi and J. Haritsa. Maintaining data privacy in association rule mining. In
Proceedings of the 28th Conference on Very Large Data Base (VLDB’02),, 2002.

[90] Jr. Roberto J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD international conference on Manage-
ment of data, 1998.

[91] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible
algorithms for multi query optimization. SIGMOD Rec., 29(2), 2000.

[92] Ulrich Ruckert and Stefan Kramer. Frequent free tree discovery in graph data. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
564–570, 2004.

[93] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications. In Proceedings of the
1998 ACM SIGMOD international conference on Management of data, 1998.

[94] A. Savasere, E. Omiecinski, and S.Navathe. An efficient algorithm for mining asso-
ciation rules in large databases. In 21th VLDB Conf., 1995.

167

[95] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient al-
gorithm for mining association rules in large databases. In VLDB ’95: Proceedings
of the 21th International Conference on Very Large Data Bases, 1995.

[96] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1),
1988.

[97] Kyuseok Shim, Timos Sellis, and Dana Nau. Improvements on a heuristic algorithm
for multiple-query optimization. Data Knowl. Eng., 12(2), 1994.

[98] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association rules
with item constraints. In David Heckerman, Heikki Mannila, Daryl Pregibon, and
Ramasamy Uthurusamy, editors, Proc. 3rd Int. Conf. Knowledge Discovery and
Data Mining, KDD, pages 67–73, 1997.

[99] A. Srinivasan, R.D. King, S.H. Muggleton, and M. Sternberg. The predictive tox-
icology evaluation challenge. In the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-97), pages 1–6. Morgan-Kaufmann, 1997.

[100] H. Toivonen. Sampling large databases for association rules. In 22nd VLDB Conf.,
1996.

[101] Dick Tsur, Jeffrey D. Ullman, Serge Abiteboul, Chris Clifton, Rajeev Motwani,
Svetlozar Nestorov, and Arnon Rosenthal. Query flocks: a generalization of
association-rule mining. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 1–12, 1998.

[102] J.D. Ullman and J. Widom. A First Course in Database Systems. Prentice Hall,
Upper Saddle River, New Jersey, second edition, 2002.

[103] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, 2002.

[104] Chen Wang, Wei Wang, Jian Pei, Yongtai Zhu, and Baile Shi. Scalable mining of
large disk-based graph databases. In KDD, pages 316–325, 2004.

[105] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.
SIGKDD Explor. Newsl., 5(1):59–68, 2003.

[106] Geoffrey I. Webb, Shane Butler, and Douglas Newlands. On detecting differences
between groups. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 256–265, 2003.

168

[107] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
ICDM ’02: Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM’02), page 721, 2002.

[108] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns.
In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2003.

[109] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns.
In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 286–295, 2003.

[110] Guizhen Yang. The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In KDD ’04: Proceedings of the 2004 ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 2004.

[111] X. Yin, J. Han, J. Yang, and P. S. Yu. Crossmine: Efficient classification across mul-
tiple database relations. In Proc. 2004 Int. Conf. on Data Engineering (ICDE’04),
Boston,MA, March 2004.

[112] Y.N.Law, C.R.Luo, H.Wang, and C.Zaniol. Atlas: a turing complete extension of
sql for data mining applications and streams. In Posters of the 2003 ACM SIGMOD
international conference on Management of data, 2003.

[113] Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou. False positive or
false negative: Mining frequent itemsets from high speed transactional data streams.
In Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB), Toronto, Canada, Aug 2004.

[114] M. Zaki and M. Ogihara. Theoretical foundations of association rules. In Pro-
ceedings of 3 rd SIGMOD’98 Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’98), Seattle, Washington, USA, June 1998.

[115] M.J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency
(Special Issue on Data Mining), 1999.

[116] M.J. Zaki, M. Ogihara, S. Parthasarathy, and W.Li. Parallel data mining for as-
sociation rules on shared-memory multi-processors.esso. In Supercomputing’96,
November 1996.

[117] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W.Li. Parallel algorithms for fast dis-
covery of association rules. Data Mining and Knowledge Discovery: An Interna-
tional Journal, 1(4):343–373, December 1997.

169

[118] Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, 2002.

[119] Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 71–80, 2002.

[120] Mohammed J. Zaki and Charu C. Aggarwal. Xrules: an effective structural classifier
for xml data. In KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 316–325, 2003.

[121] Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton, and Amit Shukla. Si-
multaneous optimization and evaluation of multiple dimensional queries. SIGMOD
Rec., 27(2), 1998.

[122] Z. Zheng, R. Kohavi, and L. Mason. Real World Performance of Association Rule
Algorithms. In Proceedings of the ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 401–406. ACM Press, August 2001.

170

