
IMPORTANCE-DRIVEN ALGORITHMS

FOR SCIENTIFIC VISUALIZATION

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Udeepta Dutta Bordoloi, M.S.

* * * * *

The Ohio State University

2005

Dissertation Committee:

Dr. Han-Wei Shen, Adviser

Dr. Roger Crawfis

Dr. Raghu Machiraju

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

ABSTRACT

Much progress has been made in the field of visualization over the past few

years; but in many situations, it is still possible that the available visualization

resources are overwhelmed by the amount of input data. The bottleneck may be

the available computational power, storage capacity or available manpower, or a

combination of these. In such situations, it is necessary to adapt the algorithms so

that they can be run efficiently with less computation, with less space requirements,

and with less time and effort from the human user.

In this thesis, we present three algorithms that work towards reducing the

resource constraints while maintaining the integrity of the visualizations. They

are bound by a common underlying theme that all data elements are not equal in

the particular visualization context– some are more important than others. We

use certain data properties to create “importance” measures for the data. These

measures allow us to control the distribution of resources – computational, storage

or human – to different portions of the data.

We present a space efficient algorithm for speeding up isosurface extraction.

Even though there exist algorithms that can achieve optimal search performance

to identify isosurface cells, they prove impractical for large datasets due to a high

storage overhead. With the dual goals of achieving fast isosurface extraction and

ii

simultaneously reducing the space requirement, we introduce an algorithm based

on transform coding.

We present a view selection method using a viewpoint goodness measure based

on the formulation of entropy from information theory. It can be used as a guide

which suggests good viewpoints for further exploration. We generate a view space

partitioning, and select one representative view for each partition. Together, this

set of views encapsulates the most important and distinct views of the data.

We present an interactive global visualization technique for dense vector fields

using levels of detail. It combines an error-controlled hierarchical approach and

hardware acceleration to produce high resolution visualizations at interactive rates.

Users can control the trade-off between computation time and image quality, pro-

ducing visualizations amenable for situations ranging from high frame-rate pre-

viewing to accurate analysis.

iii

Dedicated to ma-deuta, mom and dad.

iv

ACKNOWLEDGMENTS

I am grateful for the insightful advice and generous support that I received

from my adviser, Dr. Han-Wei Shen. I have been truly lucky to have had the

opportunity to work with him. He has been a great teacher and a good friend, in

times good and bad.

I thank Dr. Han-Wei Shen, the Ohio State University, NASA and the American

tax-payer for the financial support I received.

I appreciate the help and effort of the members of my dissertation committee-

Dr. Roger Crawfis and Dr. Raghu Machiraju. Many fruitful hours were spent in

discussions with Dr. David Kao, Dr. Jennifer Dungan and Dr. Alex Pang. And

a word of thanks also goes to my colleagues for the many illuminating discussions

that resulted over lunches and dinners, not to mention the emails. In addition, I

would like to specifically mention Guo-Shi Li and Antonio Garcia for their generous

help with some well written code.

I have had the privilege of studying under some exceptional teachers during my

long education. Most of what you taught has escaped my memory, but I remember

the excitement and still carry the inspiration.

And to my dearest friends, I say thank you, for the trust that I could place on

you. I can only hope that I have been able to repay in kind. Folks like you do not

come by often, and I am deeply grateful.

v

I have been blessed with unqualified love and support from my family– ma,

deuta, Bedi, Suodi. My late grandparents, my uncles and aunts– thank you for

caring. Truly, there is no joy like being at home with family.

Finally, I appreciate the fabulous hand that was dealt to me. It is my sincere

hope that, someday, we will get a better handle on this madness, and will be able

to make the game more equitable for everyone. Peace.

“And they soothed him and they said over and over, the elder son and
the second son, “Rest assured, our father, rest assured. The land is not
to be sold.”

But over the old man’s head they looked at each other and smiled.”

— from The Good Earth, by Pearl S. Buck.

vi

VITA

December 31, 1975 .Born - Namrup, Assam, India.

1997 . B.E. Instrumentation Engineering,
University of Delhi.

1999 .M.S. Electrical Engineering,
Washington University, St.Louis.

1999-present . Graduate Assistant,
The Ohio State University.

PUBLICATIONS

Research Publications

U.D. Bordoloi and H.-W. Shen. Automatic view selection for volume rendering.
Technical Report:OSU–CISRC–3/05–TR16, 2005.

U.D. Bordoloi, D.L. Kao, and H.-W. Shen. Visualization techniques for spatial
probability density function data. Data Science Journal, 3:153–162, 2004.

H.-W. Shen, G.-S. Li, and U.D. Bordoloi. Interactive visualization of three-
dimensional vector fields with flexible appearance control. IEEE Transactions
of Visualization and Computer Graphics, 10(4):434–445, 2004.

U.D. Bordoloi, D.L. Kao, and H.-W. Shen. Visualization and exploration of spatial
probability density functions: A clustering based approach. In Proceedings of SPIE
& IS&T Conference on Visualization and Data Analysis, pages 57–64, 2004.

U.D. Bordoloi and H.-W. Shen. Space efficient fast isosurface extraction for large
datasets. In Proceedings of Visualization ’03, pages 201–208. IEEE Computer
Society Press, 2003.

vii

G.-S. Li, U.D. Bordoloi, and H.-W. Shen. Chameleon: An interactive texture-
based rendering framework for visualizing three-dimensional vector fields. In Pro-
ceedings of Visualization ’03, pages 241–248. IEEE Computer Society Press, 2003.

U.D. Bordoloi, D.L. Kao, and H.-W. Shen. Interactive visualization of proba-
bility density functions using clustering and textures: A case study. Technical
Report:OSU–CISRC–5/03–TR23, 2003.

U.D. Bordoloi and H.-W. Shen. Hardware accelerated interactive vector field
visualization: A level of detail approach. Computer Graphics Forum, 21(3):605–
614, 2002.

U.D. Bordoloi, D.L. Kao, and H.-W. Shen. Understanding time-varying map
data using spatio-temporal clustering. Eos Transactions AGU, 83(47):Fall Meet.
Suppl., Abstract NG12A–1018, 2002.

U.D. Bordoloi and H.-W. Shen. Hierarchical lic for vector field visualization. In
Proceedings of NSF/DoE Lake Tahoe Workshop on Hierarchical Approximation
and Geometrical Methods for Scientific Visualization, 2000.

FIELDS OF STUDY

Major Field: Computer Science and Engineering.

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xii

List of Figures . xiii

Chapters:

1. Introduction . 1

1.1 Challenges . 2
1.2 Strategies . 4
1.3 Range-Search using Compressed data-structures 7
1.4 Automatic View Selection . 10
1.5 Level of Detail Vector Field Visualization 14
1.6 Organization . 16

2. Range-Search using Compressed data-structures 18

2.1 Previous Work . 19
2.1.1 Storage Requirements of Optimal Search Algorithms . . . 19
2.1.2 Existing Low Storage Solutions 21
2.1.3 Transform Coding . 22

2.2 Transform coding for intervals . 23

ix

2.2.1 Background . 24
2.2.2 Transform . 26
2.2.3 Quantization . 30

2.3 Search Algorithm . 36
2.3.1 Data Structures . 36
2.3.2 Search . 37
2.3.3 Errors . 40
2.3.4 Meta-Cells . 42

2.4 Results . 44
2.4.1 Compression and Errors 45
2.4.2 Performance . 47

3. Automated View Selection . 50

3.1 Introduction . 50
3.2 Related Work . 52
3.3 Viewpoint Evaluation . 54

3.3.1 Entropy and View Information 56
3.3.2 Noteworthiness . 58
3.3.3 A Simple Example . 60

3.4 Finding the Good View . 62
3.4.1 Hardware Implementation 63

3.5 View Space Partitioning . 64
3.5.1 View Similarity . 67
3.5.2 View Likelihood and Stability 69
3.5.3 Partitioning . 70

3.6 Time Varying Data . 72
3.6.1 View Information . 74

3.7 Results and Discussion . 76

4. Level of Detail Flow Visualization . 81

4.1 Flow Visualization . 82
4.1.1 Texture Based Methods 82
4.1.2 Level of Detail . 83

4.2 Level of Detail Overview . 84
4.2.1 Extension to 3D algorithm 85

4.3 Level-of-Detail Selection . 87
4.3.1 Error Measures . 87
4.3.2 Resolution dependent level-of-detail selection 90

4.4 Hardware Acceleration . 92

x

4.4.1 Resolution Independence 92
4.4.2 Blending Stream-patches 93
4.4.3 Reducing Streamline Redundancy 95

4.5 Results and Discussion . 97
4.5.1 Range of Image Quality and Speed 97
4.5.2 Interactive Exploration 102
4.5.3 Scalar Variable Information 102
4.5.4 Streamline Textures . 107
4.5.5 Animation . 107
4.5.6 Unsteady Flow . 109

5. Conclusion . 113

5.1 Range-Search using Compressed data-structures 113
5.2 Automatic View Selection . 114
5.3 Level of Detail Vector Field Visualization 116

Bibliography . 119

xi

LIST OF TABLES

Table Page

2.1 Search and space efficiency trade-off. 49

2.2 Search and extraction times for the visible woman dataset. 49

2.3 Comparison of search times. 49

4.1 Timing results for LoD . 98

xii

LIST OF FIGURES

Figure Page

2.1 Histogram of min-max values in visible woman dataset. 27

2.2 UV-Space. 29

2.3 Quantization of u-axis. 33

2.4 Quantization of v-axis. 35

2.5 Quantization Errors. 42

2.6 Effect of Quantization parameters M and L on data structure size. 46

2.7 Effect of Quantization parameters M and L on search error. 47

3.1 Entropy Function for probability vectors of dimension three. 57

3.2 An illustration of the change in view entropy with camera position
for a test dataset. 61

3.3 Entropy for 256-cube shockwave dataset. 65

3.4 High and low entropy views for tooth dataset. 66

3.5 Plot of I2 vs number of clusters. 71

3.6 Representative views for a 5-way partitioning of the view-sphere for
the tooth dataset. 73

3.7 View Evaluation results for a 128-cube vortex dataset. 77

xiii

3.8 View Evaluation for the time-varying vortex dataset. 78

3.9 View entropy results over 50 time-steps of the 256-cube shockwave
dataset- a high entropy view. 79

3.10 View entropy results over 50 time-steps of the 256-cube shockwave
dataset- a low entropy view. 80

4.1 Construction of the stream-patch 86

4.2 Multi-level error for vortices dataset 89

4.3 Multi-level error for ocean dataset 90

4.4 Opacity function . 95

4.5 LIC image of the vortices dataset 99

4.6 LIC image of the ocean wind dataset 99

4.7 LoD image of the vortices dataset 100

4.8 LoD image of the ocean wind dataset 101

4.9 Zoom out . 103

4.10 Zoom in . 103

4.11 Multiple textures for showing a scalar variable. 105

4.12 Multiple textures for curvilinear grids. 106

4.13 Example of different textures . 108

4.14 Example of voxel update. 110

4.15 Snapshots from Unsteady flow rendering. 112

xiv

CHAPTER 1

INTRODUCTION

Scientific visualization techniques are increasingly being used in a diverse array

of fields. In many such domains, the data acquisition technology has improved

over the past few years, which has enabled scientists to collect and record data at

higher spatial and temporal resolutions. In addition, the capacities of data storage

options are increasing at a rapid rate, and the storage costs are becoming lower.

As a consequence, in many visualization applications, the datasets that the users

want to visualize have grown larger and larger. And the trend is apt to continue

at the same pace, if not faster.

Even with the predicted advances in silicon technology [54], it is unlikely that

computing power and bandwidth will catch up with the data explosion in the

foreseeable future. The large data sizes have created new problems for the visu-

alization systems, and exacerbated existing ones. Larger datasets translate to a

greater amount of work required to produce the visualization, and hence to slower

response time of the computers. In addition, higher resolution displays are be-

coming more common, and are preferred for large datasets so that more detail

1

can be visualized. The extra pixels also contribute to slower response time of the

visualization system.

The visualization process frequently involves a hit and trial method of param-

eter tweaking in an effort to create better representations. This works well for

highly interactive visualization systems, but for large data and high resolutions,

the response time can become uncomfortably large. Many user studies have shown

that there is an inverse relationship between human productivity and the response

time of the systems [67]. Moreover, longer waiting times are known to significantly

increase the anxiety levels of users [30]. For complex tasks, there is evidence that

human errors increase when the response takes longer than an optimal time for

the given tasks [67][3]. These studies stress the need for maintaining a responsive

visualization environment. Large datasets are also responsible for another effect of

considerable concern— there is a lot more data for the users to study. Users need

a substantially large amount of time to browse through the data; and slow frame

rates make the situation worse.

1.1 Challenges

Together, the large dataset sizes and the need for high resolution renderings

have posed a lot of challenges to the visualization community. They have resulted

in increased workloads for all stages of the visualization pipeline, from the initial

data access to the final rendering. Although the specific problems that arise differ

from situation to situation, and depend on the visualization method being used,

there are some common issues that can be loosely grouped into the categories

below:

2

• Computation Time: As the datasets grow in size, the computation re-

quired to run any visualization algorithm on them increases. For very large

datasets, the time spent waiting before the first result is displayed can be-

come uncomfortably large.

• Interaction Frame-rates: Frequently, the users want to move the camera

around once the initial results are shown. For the visualization to be effective,

the frame-rates need to interactive. Large datasets and high resolution ren-

dering situations necessitate a greater amount of computation, thus reducing

the frame-rates that can be achieved during camera interactions.

• Storage: Because of the large sizes of the datasets, I/O and data storage

have become significant issues. Visualization algorithms often use auxiliary

data-structures for faster performance, which can be large for large datasets.

A non-trivially large amount of time is spent just on reading and writing the

data.

• Bandwidth: Large data sizes also create a bottleneck in remote visualization

scenarios with a limited bandwidth. Some remote visualization systems solve

this problem by not performing all the computations on the server, thus

avoiding any data transfer to the client. However, the problem remains for

high-resolution displays.

• Human Effort: Most of the visualization processes involve (and need) a

large amount of user interaction. However, having a human in the loop costs

a large amount of manpower, especially for large datasets. Not only are there

3

more data to explore, but it also takes more time to update each frame as

the user browses the data. As a result, the time and effort put in by the user

increases drastically with the data and rendering size.

All these issues are directly or indirectly effected by one another. For example,

a high storage requirement for an auxiliary data structure will result in a large

amount of time spent in I/O, which will drive up the response time of the visu-

alization process. This will in turn force the user to wait for longer periods of

time before getting the results back, thus decreasing the utilization of time and

increasing the effort. In another situation, if we can achieve even a partial degree

of automation in choosing the visualization parameters, the users will not have to

tweak the parameters and redo the calculations over and over again, saving them

time and freeing up the computational resources for other purposes.

1.2 Strategies

The visualization community has long been concerned with the challenges of

visualizing large data effectively. A wide variety of approaches have been proposed.

But there is a common theme among most of the approaches— they involve finding

one or more properties of the data that can help distinguish portions of the data

from the rest. These properties are then used to redistribute the computational and

visualization resources. For example, level of detail algorithms use some form of

cost function to control the amount of computation spent on different parts of the

data. Transfer function design algorithms provide candidate transfer functions that

4

can be further tweaked by the user, helping focus the human effort on interesting

regions in the transfer function space.

With the goal of increasing the interactiveness and effectiveness of the visual-

ization systems, we present three algorithms with a similar underlying theme– all

data elements are not equal, some are more important than others. For each of

our algorithms, we use certain data properties to create “importance” measures

for the data. These measures capture the effect of using lesser resources – com-

putational, storage or human – for our algorithms. They are defined either on

the spatial domain, or in the value space, or on the viewing angles. Instead of

using our resources equally for all portions of the data, we use the “importance”

measures as guides for a heterogenous distribution of resources. More resources

are devoted to the data regions whose representations will otherwise loose fidelity

to a relatively large degree. Portions of the data which are faithfully reproduced

even with lesser resources will carry relatively smaller “importance” values. The

main ideas behind our measures and associated algorithms are listed below:

1. Level of Detail: By spending less computational resources on the less “im-

portant” parts of the data, we can produce results faster and also make them

easier to comprehend.

When dealing with large datasets, users frequently face the problem of too

much information. Instead of presenting all the detail to the viewer (possibly

resulting in a cluttered view), Level of Detail (LoD) algorithms selectively

reduce the detail in uninteresting regions. This also creates an opportunity

5

to increase the speed of the visualization technique by reducing the required

amount of computation. (Chapter 4).

2. Compression: By using less storage for the less “important” values of the

data, we can achieve a higher compression rate for a given reliability.

During the visualization of large datasets, a substantial amount of time is

spent in I/O. It involves the transfer of the data (either the original dataset

or preprocessed data-structures) from disks, or over the network or bus. By

compressing the data, both the time spent in this transfer, and the storage

required can be reduced. (Chapter 2).

3. Automation: By guiding the user to the more “important” parts of the data,

we can save time otherwise spent on searching through the less “important”

parts.

As mentioned in the previous item, the user can get inundated by all the data

that he needs to go through to extract the desired information. Instead of

presenting all the data, we can intelligently cull away the uninteresting data.

This reduces the amount of work expected of the user during the visualization

process, yet at the same time preserves the usefulness of the visualization to

a great extent. (Chapter 3).

In the following sections, we give an overview of our research which makes use

of the above strategies to increase the effectiveness of the visualization process.

We have applied our research to visualization of both scalar and vector data types.

6

Large datasets for both types pose a problem because the generation of visual-

izations can be slow enough to discourage interactivity during the visualization

process.

1.3 Range-Search using Compressed data-structures

Isosurfacing is one of the most popular methods for visually representing volu-

metric scalar fields. The size and shape of the surface components give us informa-

tion about the distribution of the scalar values in the volume. As we have discussed

earlier, the effectiveness of isosurface visualization is limited to a large extent by

the interactivity of the visualization environment. The scope for interaction lies in

two orthogonal components: tweaking the isovalue (isosurface extraction phase),

and changing the view parameters (rendering phase). The usefulness of the visu-

alization system is severely restricted if either one of them cannot be changed at

interactive speeds.

Due to the increase in the sizes of the datasets, achieving interactive speeds for

the isosurface extraction phase has become progressively more and more challeng-

ing. Researchers have taken a variety of approaches to expedite the process of iso-

surface extraction. One group of such methods comprise the isosurface-containing-

cell search techniques. In this document, we will use the term cell to refer to the

smallest volumetric element in a three-dimensional grid. For regular grids, a cell

represents the same entity as a voxel. For unstructured grids, a cell may be a tetra-

hedron, prism, or any other polyhedron. Our method can be used for datasets on

either structured or unstructured grids. The [minimum,maximum] range of a cell

will be referred to as its interval.

7

These isosurface-containing-cell search algorithms are motivated by the fact

that given an isovalue, the volume needs to be searched only for the cells that

contain the isosurface. By pre-computing search-friendly data structures, these

techniques reduce the time needed to search for those cells at run-time. Some

techniques approach the problem as a search in geometric-space. Others, com-

monly known as value-space methods, search the space of intervals. In chapter 2,

we present our research on a new value-space algorithm.

A number of algorithms have been designed based the concept of value-space.

These algorithms achieve nearly optimal [50] or optimal [16] speeds for the cell

search phase. However, they suffer from one significant disadvantage: the storage

requirement for the pre-computed search data structures. With very large datasets

(such as the visible human dataset) becoming commonplace, the high storage over-

head associated with these search structures is a serious deterrent to their use. In

[16], for example, the authors state that the space requirement of Interval trees is

four times the number of cells in the dataset. The Interval tree [16] data struc-

ture for a 5123 floating point dataset (512MB) will need more than 2036MB for

storage. The large space complexity renders these techniques ([26][63][50][62][16])

practically unusable without out-of-core modifications. Moreover, the algorithms

are slowed down considerably because a large amount of time is spent on file I/O.

With the primary objective of fast isosurface extraction, we have proposed a

compression-based solution intended to alleviate the above-mentioned problem of

bloated search data structures. We have developed a data-structure that com-

presses the extremal information by exploiting the spatial coherence present in the

8

data. The coherence implies that, for most of the cells, the cell minimum has a

value close to the cell maximum (for example, see figure 2.1). In the span-space,

this translates to most of the cells lying close to the minimum = maximum

line. From a compression point of view, the region near this line is important—

it needs a much higher storage compared to other parts of the value space. If

the same compression level is used everywhere in the value space, this region will

produce a disproportionately large amount of errors. To put it another way, to

achieve the same level of error everywhere in the value space, this region must

be subjected to a small compression rate. The (min-max) information of cells

is compacted using a form of compression referred to as transform coding. The

conventional [minimum,maximum] representation of intervals is transformed to

a more compression friendly representation, and then passed through a dataset

optimized non-uniform quantization stage. The effect of the transform and the

non-uniform quantizer is that different sizes of quantization bins are used in ac-

cordance with the importance of the different regions of the value space.

In our search structures, we store, for each cell, the extrema (min-max) values,

and the cell identification tag. The isosurface search is carried out directly on

the transformed representation, which eliminates a decoding step for reverting the

data to their original values. This method can achieve a reduction, of almost

four-fold, in the size of the search data structures compared to those used by

ISSUE and Interval trees. The compression technique presented provides a storage

friendly yet efficient solution for isosurface extraction in large datasets. Our search

algorithm can achieve search speeds that are comparable to the existing techniques.

9

The transform coding method presented is computationally inexpensive, and can

be implemented using only additions, subtractions and value comparisons (for

sorting). There is a trade-off between storage requirements and search efficiency

(see figures 2.6 and 2.7). The trade-off between storage requirements and the speed

of the search process can be exploited to suit the available storage resources and the

performance demands of the visualization environment. Although our algorithm is

most useful for isosurface extraction, the data-structures also provide speedups for

volume-rendering situations with isosurface like transfer functions, which are very

common in fields like medical visualization. The data-structures and the search

can be used in out-of-core implementations without any significant changes.

1.4 Automatic View Selection

Along with isosurface visualization, volume rendering is another popular method

for visualizing volumetric data. With the advent of faster hardware and better al-

gorithms, the traditional challenge of speeding up the volume rendering to achieve

interactive frame-rates has been overcome for small datasets. But large datasets

still pose problems for users who do not have access to supercomputing facilities.

In such situations, the adverse effects due to the non-interactive nature of the vi-

sualization can be somewhat compensated by other means. We can guide the user

to more informative regions of the data, or interesting parts of the visualization

parameter space, thus saving time the user would have otherwise spent in a trial-

and-error search. The other option would be to show more information on the

screen without having a negative effect (e.g., due to occlusion or cluttering). For

example, various alternative rendering techniques can be used to provide a more

10

understandable picture to the user [19][31]. Users can be guided to interesting

features, isosurfaces and transfer functions by methods that suggest such candi-

dates [42][72]. In our research, we have proposed a different path to improve the

effectiveness of visualization— that of guiding the user to views that convey more

information. In chapter 3, we present a novel view selection method for volume

rendering. Such interesting viewpoints are helpful both for the purposes of data

exploration and data presentation.

In case of complex datasets, it is very difficult to manually find a view that

maximizes the visibility of the relevant part of the data and minimizes occlusion.

Currently, users can only use subjective judgment to evaluate and compare views.

To remedy this situation, our view selection technique introduces a measure to

evaluate a view based on the amount of information displayed (and not displayed).

It gives the users the ability to objectively compare two different views. The algo-

rithm can be used to generate viewing positions to be used as starting viewpoints

for browsing. Such suggested starting camera positions prove very beneficial in

rendering situations with non-interactive frame-rates. Because of the time-lag be-

tween frames, users do not want to, and should not be made to [67][30][3], search

the whole view-space for desirable views. The algorithm can also be used when

presenting data in a non-interactive setting. It creates a smart partitioning of the

view space, and selects the most representative views from each view group for

rendering.

To evaluate and compare viewpoints, we define three viewpoint characteristics

associated with each view:

11

• View “goodness”: The view-goodness measure tries to capture how closely

the voxel visibilities for a given view match a user-input importance function.

We define a view to be good if more important voxels in the volume are

highly visible, and vice versa. It is maximized when the voxel visibilities are

proportional to their importance. When selecting viewpoints, it is desirable

that they have high “goodness” scores.

• View likelihood : Intuitively, the view likelihood of a given view is the

number of other viewpoints on the view sphere which yield a view that is

similar (defined by a threshold) to the given view. We define the view simi-

larities in terms of voxel visibilities and importances that are used for view

“goodness”. A highly likely view is a good candidate for representing the

dataset from different views. On the other hand, low likelihood views are

interesting because they display information that is not seen from most other

viewpoints, and hence is likely to be missed by users during an interactive

search.

• View stability : View stability of a view denotes the maximal change

in view that can occur when the camera position is shifted within a small

neighborhood (defined by a threshold). A small change implies a stable view,

and a large change would make a view unstable. Unstable views make good

starting viewpoints during interactive visualization, because the user can see

a large change in view with a small mouse movement.

In the chapter on view selection, we introduce a ‘goodness’ measure of view-

points based on the information theory concept of entropy, also called average

12

information. We propose that good viewpoints are ones which provide higher visi-

bilities to the more important voxels, the importance being judged by the opacities

assigned by the transfer function. This interpretation leads us to the formulation

of viewpoint information presented in section 3.3.1. We utilize a property of our

entropy definition which indicates that when the visibilities are close to their de-

sired values, the viewpoint information is maximized. This measure allows us to

compare different viewpoints and suggest the best ones to the user. Given a de-

sired number N of views, our algorithm can be used to find the best N viewpoints

over the view space. A GPU-based algorithm is used to find the visibilities at the

exact voxel centers of the volume. The most time-consuming part of our algorithm

is finding the voxel visibilities, and this shear-warp based algorithm reduces this

time to a few minutes. We also use the entropy to find similarity between views,

which is then used to create a view space partitioning and find the likelihood and

stability of views. Representative views for each partition can be chosen either

by taking the highly likely or highly unlikely views. In interactive situations, our

method suggests unstable viewpoints, so that a small change in the camera po-

sition will yield a large change in view. For time-dependent data, we present a

modification of the ‘goodness’ measure of a viewpoint by taking into account not

only the static information but also the change in each time-step. While this al-

gorithm is targeted for volume-rendering applications, it can be also be used with

isosurface visualizations.

There have been different approaches to view selection in the case of geometric

scenes, including using the entropy function [79]. However, we know of no literature

13

related to the problem in a volume rendering scenario. Although we use the entropy

function, the formulation is quite different from that used in [79]. We use the voxel

visibilities and user-defined voxel importances, and we show that our formulation

indeed leads to viewpoints that provide higher visibilities to voxels with more

important voxels.

1.5 Level of Detail Vector Field Visualization

Slow computation is a problem in the case of vector data too, as the user

needs to interact with the visualization system by changing different rendering

parameters (for example, texture properties, advection parameters etc.). Global

techniques, such as line integral convolution(LIC)[10] and spot noise[77], are able to

show the directional information of the field at every pixel, and the only limitation

is the resolution of the display. The price for the rich information content of

such methods, however, is their high computational cost, which makes interactive

exploration difficult.

In Chapter 4, we discuss the problem of interactive visualization of very dense

two and three-dimensional vector fields with flexible level of detail controls. Our

goal is to achieve interactive frame-rates when rendering large vector fields for large

format graphics displays that consist of tens of millions of pixels. Until recently

[78], there were no algorithms that could achieve interactive rates in such cases.

Furthermore, currently very few global vector field visualization techniques allow

the user to freely zoom into the field at various levels of detail. This capability is

often needed when the size of the original vector field exceeds the graphics display

resolution. In addition, most of the existing global techniques do not allow a flexible

14

control of the output quality to facilitate either a fast preview or a detailed analysis

of the underlying vector field. Finally, if the user wants to change the appearance

of the vector field, most existing algorithms have to redo all the calculations from

start, thus increasing the response time. A valuable side-effect of our approach is

that the streamline advection stage has been decoupled with the texture mapping

stage, which enables us to reuse the advection calculations while creating a variety

of appearances.

We introduce a level-of-detail based interactive global vector field visualization

technique aiming to tackle the above problems. The idea is similar in spirit to

PLIC [81], but we use a hardware based rendering together with a quadtree-based

hierarchical approximation of the vector dataset. For two-dimensional vector fields,

we have proposed a primitive called streampatch, which stores the geometry of flow

advection. Once the streampatches are extracted, we can control the appearance of

the visualization by simply changing the textures and texture mapping parameters.

The primitives can be rendered at different levels of detail. We also propose an

error metric which allows us to draw more important regions of the vector field in

finer detail, and use less detail for other regions. It is computed directly as the

directional error that would be produced by the simplification at the particular

quadtree level. The error is also used as a guide to generating visualizations which

attract the users attention to the more important regions. The 2D texture mapping

primitive was later extended to 3D streamtubes in Li et. al[48], and to time-varying

datasets in Shen et. al[66].

15

The performance goal of our method is set to produce dense LIC-like visu-

alizations with resolutions in the order of a million pixels within a fraction of

second. This is accomplished in part by utilizing graphics hardware acceleration,

which allows us to increase the output resolution without linearly increasing the

computation time. Additionally, our algorithm takes into account both a user-

specified error tolerance and image resolution dependent criteria to adaptively

select different levels of detail for different regions of the vector field. Moreover,

the texture-based nature of our algorithm allows the user to configure various tex-

ture properties to control the final appearance of the visualization. This feature

provides extra flexibility to represent the directional information, as well as other

quantities in various visual forms. Other effects like multi-texturing for adjusting

on-screen frequency for curvilinear grids, changing texture frequency to show a

scalar variable on the flow field etc. are also presented for this algorithm. We also

present hardware based optimizations to reduce redundant rendering of the vector

field that is produced by overlapping geometry.

1.6 Organization

In the rest of this document, we present the details of each algorithm and the

importance measures used. Chapter 2 presents our research on compression based

search data-structures for fast range search. We explain the two steps involved

in transform coding– the transformation and the non-linear quantization. Then

the preprocessing and search algorithms are introduced, followed by a discussion

of the errors created by quantization. Our work on automated view selection for

volume rendering is presented in chapter 3. We give the intuition behind our

16

view-goodness measure, and show examples of its dependence on view. A view-

space partitioning scheme is discussed, and an extension to time-varying data is

presented. Chapter 4 deals with our work on interactive flow visualization using

level of detail techniques and spatial data structures. The error measure used as a

basis for the level of detail scheme is presented. We present the geometric primitive

and the rendering algorithm that is used to seamlessly integrate regions of different

detail. Various computational optimizations and modifications to achieve different

visual results are also presented.

“All animals are equal, but some animals are more equal than others.”

— from Animal Farm, by George Orwell.

17

CHAPTER 2

RANGE-SEARCH USING COMPRESSED

DATA-STRUCTURES

One approach taken by visualization researchers to speed up isosurface extrac-

tion is improving the search speed for isosurface containing cells. Even though

there exist algorithms that can achieve optimal search performance to identify

isosurface cells, they prove impractical for large datasets due to a high storage

overhead. With the dual goals of achieving fast isosurface extraction and simulta-

neously reducing the space requirement, we propose a fast search algorithm which

uses compressed data structures. The algorithm exploits the spatial coherency

present in the data, and is based on transform coding to compress the interval in-

formation of the cells in a dataset. Compression is achieved by first transforming

the cell intervals (minima, maxima) into a form that allows more efficient com-

paction. It is followed by a dataset optimized non-uniform quantization stage. The

compressed data is stored in a data structure that allows fast searches in the com-

pression domain, thus eliminating the need to retrieve the original representation

of intervals at run-time. The space requirement of our search data structure is

the mandatory cost of storing every cell id once, plus an overhead for quantization

18

information. The overhead is typically in the order of a few hundredths of the

dataset size.

This chapter is organized as follows. In section 2.1, we discuss the previous work

in isosurface search. The transform coding based compression method for intervals

is explained in section 2.2, followed by the preprocessing and search algorithms in

section 2.3. Finally, the results are presented in section 2.4.

2.1 Previous Work

Since Lorensen and Cline[51] proposed the Marching Cubes algorithm for con-

structing isosurfaces in 1987, a number of techniques have been proposed to speed

up the search for isosurface containing cells. Active list[26] by Giles and Haimes,

Span Filter[23] by Gallagher, Sweeping Simplices[63] by Shen and Johnson, and

Octrees[87] by Wilhelms and Van Gelder are a few of the early methods. The first

three are value-space based methods, while the ever popular octree is a geometric-

space technique utilizing hierarchical spatial subdivision. Itoh and Koyamada (ex-

trema graphs)[36][37] and Bajaj et al. (seed cell set)[2][76] use isosurface propaga-

tion techniques to avoid the need to search all the cells intersected by the isosurface.

Propagation in unstructured grids needs adjacency information to be stored, which

increases the storage. Below, we mention three value-space algorithms which are

most related to the technique proposed in this chapter.

2.1.1 Storage Requirements of Optimal Search Algorithms

In 1996, Livnat et al.[50] introduced the span space representation for intervals

in a near optimal algorithm (NOISE). The span space is a two-dimensional space

19

of intervals with the x-axis and y-axis representing minima and maxima respec-

tively. Each cell can be depicted as a point in the span space with the coordinates

(minimum,maximum). The span space is subdivided using a kd-tree, where each

node divides the space into two partitions. The subdivision is alternated between

a partitioning of the minima-axis and the maxima-axis at even and odd levels.

The ISSUE algorithm by Shen et al.[62] employs a lattice-based subdivision of

the span-space. Sequential and parallel algorithms are presented for performing a

search over the lattice elements. Cignoni et al.[16] proposed an optimal search al-

gorithm using Interval trees. Each node of the tree divides the intervals into three

groups: the intervals whose maxima are less than the value of the node, those

whose minima are greater than the node value, and the third set which contain

the node value in between their extrema. The first group of intervals are passed

onto the left child, the second to the right child, and the third group is put into two

sorted lists associated with the node. Next, we discuss the storage requirements

of NOISE, ISSUE and Interval trees.

Let us assume that there are N cells in the dataset, and the identity of each

cell (cell id) is stored as a number that requires c bytes. Also, suppose that each

data value requires d bytes. A pointer-less kd-tree, as used in NOISE, stores

the information {cell id, minimum, maximum} once for each cell. The space

requirement is thus (c + 2d)N . In ISSUE, all the lattice elements (except those

intersected by the minimum = maximum line) store two data structures. Row

is a list of {cell id, maximum} pairs sorted by the cell maxima. The Column

list comprises of {cell id, minimum} sorted by cell minima. Each cell in a lattice

20

element contributes once to both Row and Column structures. So, the space needed

is (c + d)2N , plus overhead. Each node of Interval trees stores two sorted lists:

AL and DR. AL is an ascending list of left extremes, i.e., of {cell id, minimum}

pairs, and DR is a descending list of right extremes, i.e., of {cell id, maximum}

pairs. Ignoring the tree overhead, the space needed is (c + d)2N . If cell ids are

stored as 4-byte (one word) integers and data values as 4-byte floats, then the

space requirement of NOISE, ISSUE, and Interval trees is respectively 3N , 4N

and 4N words. For a 5123 floating point dataset (512MB), for instance, N = 5113

and 4N words occupy 2036MB.

2.1.2 Existing Low Storage Solutions

In the case of large datasets, which are common nowadays, the high storage

requirement severely restricts the usability of these algorithms. This has prompted

researchers to propose modifications so that large datasets can be used with these

algorithms. Cignoni et al.[16] present a 3D chess-board arrangement for regular

grids to reduce the number of cells the interval tree stores. Cells are colored us-

ing a chess-board pattern, and only cells having black color are used to construct

the interval tree. Chiang and Silva[14] proposed the first out-of core isosurfac-

ing technique in the form of an I/O optimal implementation of the interval tree.

Later, Chiang et al.[15] introduced a method to efficiently group individual cells

into meta-cells. They construct an interval tree using the meta-cells instead of in-

dividual cells. Both the chess-board and the meta-cell techniques lower the space

requirement by reducing the number of cells stored in the search data structures. In

this chapter, we present an algorithm which achieves the same goal through efficient

21

space utilization combined with compression of cell [maximum,minimum] infor-

mation. The compression method used is based on transform coding. If desired,

the cell reduction techniques mentioned above (chess-board and/or meta-cell) can

be incorporated into our algorithm to further decrease the search structure size.

Let the effective number of cells (individual cells, or black cells in the chess-board

pattern, or meta-cells) be N . In an uncompressed form, the {cell id, minimum,

maximum} information requires 3N words. Using transform coding, we compress

the {minimum, maximum} information to a few hundredths of N words. The

total space requirement of our method is thus one and a few hundredths of N

words, as opposed to 4N words ISSUE[62] and Interval trees[16], and 3N words in

NOISE[50].

2.1.3 Transform Coding

Transform coding is a well known data compression approach, and has an ex-

tensive body of literature. The basic principle utilized by transform coding is that

multiple dimensions of vector data are often correlated to a lesser or higher de-

gree. (If the input data is scalar, multiple samples are collected to form a vector.)

The redundancy of data values (due to correlation) is exploited for compression

by transforming the vector data and then quantizing each scalar dimension. The

transformation allows a better compaction of the data compared to the untrans-

formed values. The best compression ratios are achieved if the transformed data

dimensions are not statistically correlated. Hotelling [34] presented the first trans-

form to decorrelate discrete data in the method of principal components. Karhunen

and Loéve derived the analogous transform for continuous functions, which is now

22

popularly known as the K-L transform [60][27]. One of the most widely used trans-

form coding applications today is the discrete cosine transform (DCT), which is

a part of many image and video coding standards, e.g., JPEG, MPEG etc. For a

more detailed review of transform coding and quantization, the reader is referred

to [60] and [27].

In the ensuing sections, we present our compression based algorithm for fast

isosurface extraction.

2.2 Transform coding for intervals

A number of isosurface extraction algorithms have been developed to perform

the search for cells in the value space, i.e., the space of [minimum,maximum]

intervals of cells. The minima-maxima space, however, is not suitable for compres-

sion due to the high statistical dependence between the minimum and maximum

values of cells (see figure 2.1). To reduce this dependence, we use a linear transform

to transform this space into a new space (which we will refer to as the UV-space).

This transformation is the first stage of our compression algorithm. Sections 2.2.1

and 2.2.1 discuss this step in greater detail. In the UV-space, each cell (or equiva-

lently, each interval) is represented by its u- and v-coordinates. These coordinates

are quantized using a dataset distribution optimized non-uniform quantizer. We

use a companded quantizer, which simulates the non-uniform quantization process

using a uniform quantizer. While choosing the output values of the quantizer,

quantization errors are taken into account. This ensures that the isosurface search

does not miss any cell that contains the isosurface. The quantization process

23

is described in section 2.2.3. The compressed information (in the form of uv-

coordinates) is then stored in a search friendly data structure, which is presented

in section 2.3.1. At run-time, the search algorithm finds the cells for isosurface ex-

traction based on the supplied isovalue. The search process is explained in section

2.3.2.

In the following sections, we give some background on transform coding, fol-

lowed by details of the transform and quantization phases of our algorithm.

2.2.1 Background

The central theme of transform coding is that the input data is modified, us-

ing a reversible transform, to another form which can be better quantized. The

quantized data can then be converted back to the original form using the reverse

transform. For the following discussion, we represent a multi-dimensional input

data sample as the vector x. There are three stages in transform coding:

1. Transform: The input data x is transformed into y using a reversible trans-

form A, where y = Ax. The transformation A is selected such that y has

better compression characteristics than x, i.e., given a fixed distortion, com-

pressing y yields a smaller output than that of x. Or, given a fixed compres-

sion rate, y has lower distortion compared to x. The best compression results

are achieved when the data dimensions are decorrelated. This suggests that

the ideal transform for compaction is the method of principal components.

This step by itself does not result in any compaction of the data, which is

achieved by the next two steps.

24

2. Quantization: The transformed data y is then quantized to a finite number

of levels. Each dimension of the data can be quantized independently using

different quantization strategies. The number of quantization levels depends

on the desired amount of compaction. The statistics of the data y influence

the design of the quantizer. For example, appropriate uniform or non-uniform

quantizers can be chosen depending on input data properties and desired

output statistics.

3. Encoding: The quantized data is then passed through a binary encoding

stage (e.g., Huffman or arithmetic coding). This results is the final com-

pressed form of the data.

Constructing a compression scheme thus boils down to three tasks: finding an ap-

propriate transform, designing quantizers based on the desired compression ratio

and error limit constraints, and selecting a proper binary encoder. The data de-

coding process consists of inverting the effects of the first and third stages above.

The second stage is lossy, and that information cannot be recovered. The com-

pressed data is passed through a matching binary decoder, and then an inverse

transform A−1 is applied to recover the data in the original form.

For the problem we are concerned with, the input data is a set of two-dimensional

points which represent the [minimum,maximum] intervals of cells. In the rest of

section 2.2, we propose a suitable transformation for the intervals, and then design

a quantization scheme for the two transformed axes. Since our ultimate goal is

fast isosurface extraction, as opposed to achieving the best possible compression,

do not use any binary encoding stage. Such a stage would necessitate a decoder

25

during the cell search phase, which would slow it down and defeat the primary

purpose of this research. However, if the situation so demands, a binary encoder

can be easily applied as the third stage of encoding.

2.2.2 Transform

The best compression rates can be attained if we use a transformation which

statistically decorrelates the minima and the maxima [60]. Hence, the ideal choice

for a transformation is the method of principal components. However, it is very ex-

pensive to compute, specially for large datasets, which makes it a very impractical

choice. Instead, we use a simpler transformation based on the following observa-

tion: it is usual for the minima and maxima of the cells to be highly correlated.

That is, cells with higher maxima tend to have higher minima and vice versa. Fig-

ure 2.1 shows a histogram plot of the difference between maximum and minimum

values in the visible woman dataset. As can be expected, the vast majority of cells

have a very small difference between their maxima and minima.

Consider a two-dimensional space in which the x-axis represents the cell min-

ima and the y-axis represents the maxima (this is the span space in [50]). Since

the cells tend to distribute themselves along the minimum = maximum line,

the principal component of any dataset will have an orientation close to the

minimum = maximum line. So, instead of the exact principal component trans-

formation, we use a transformation to the 45◦ line. (Note that the transformation

can be interpreted as rotation of the coordinate frame). Each interval is represented

as a vector

x =

[

minimum
maximum

]

(2.1)

26

Figure 2.1: A histogram plot of the difference between maximum and minimum
values in the visible woman dataset. The x-axis represents the difference, and the
y-axis shows the number of cells which have that difference. The y-axis is shown
in a log10 scale. In this dataset, the largest difference is 2978, but 90% of cells have
a difference less than 163.

The transformation is given by

A =

[

cosθ sinθ
−sinθ cosθ

]

(2.2)

where θ = 45◦. After the transformation, each interval is represented by the vector

y =

[

u
v

]

= Ax (2.3)

Or,
[

u
v

]

=
1√
2

[

1 1
−1 1

] [

minimum
maximum

]

(2.4)

Adding a scaling factor to the transform does not affect the compression results in

any way. We reduce the computational expense of the transform by removing the

multiplication present in equation (2.4). Defining

y = Bx = (
√

2A)x (2.5)

27

We get

u = maximum + minimum (2.6)

v = maximum − minimum (2.7)

Each cell is represented as a point with coordinates (u, v) in the u-v frame, which

is obtained by a counter-clockwise rotation of the original min-max frame by 45◦,

followed by a scaling with
√

2 (figure 2.2). We will refer to the two-dimensional

space represented by the u-v frame as the UV-Space. Alternatively, u can be

thought of as twice the mid-point of the interval, and v is the range of the inter-

val. While the minimum and maximum values of an interval have high statistical

correlation, the mid-point and range of an interval have a low correlation.

Using the equations (2.6) and (2.7), the interval minimum and maximum can

be expressed as

minimum = (u − v)/2 (2.8)

maximum = (u + v)/2 (2.9)

The cells which contain the isosurface satisfy the following condition:

minimum < isovalue < maximum (2.10)

For simplicity, we have assumed minimum 6= isovalue 6= maximum. From equa-

tions (2.8), (2.9) and (2.10), we can derive the following condition for a cell which

intersects the isosurface

v > | u − isovalue × 2 | (2.11)

28

v > | u − isovalue*2 |

u−axisminima−axis

ma
xi
ma
−a
xi
s

v−axis

isovalue*2

Figure 2.2: UV-Space. The UV-space is a two-dimensional space of intervals.
Each cell is represented as a point with coordinates (u, v) defined by the equations
(2.6) and (2.7). The u-v frame is obtained by a counter-clockwise rotation of the
original min-max frame by 45◦, followed by a scaling by

√
2. The isosurface passes

through the cells in the shaded region.

In figure 2.2, any cell lying inside the shaded region (defined by equation (2.11))

will be intersected by the isosurface.

In addition to permitting better compression rates, the transformation given

by equations (2.6) and (2.7) also has other advantages. First, it requires very

little computation in the form of a couple of additive operations. An inverse

transformation is not needed: the isosurface test can be done in the transform

domain using equation (2.11). Moreover, the transformed space lends itself to a

simple and efficient search data structure, which we will present in section 2.3. As

will be evident, we will need to store only one sorted list of cells, as opposed to

two sorted lists in most algorithms ([26][63][62][16]).

29

2.2.3 Quantization

Quantization of the UV-space is performed in two phases: first, the u-axis is

quantized, followed by a quantization of the v-axis. For both axes, we use data

distribution optimized non-uniform quantization.

Companded Quantization

After the transformations given by equations (2.6) and (2.7), let the minimum

u value for the dataset be uL, and the maximum u value be uR. We want to

quantize the range [uL, uR] into M intervals, where M is input by the user. The

design of the quantizer involves deciding the following two sets of values:

• Decision Boundaries : The M + 1 endpoints {bi}M
i=0 of the M intervals. We

already have b0 = uL, and bM = uR.

• Reconstruction Levels : The M representative values {ri}M
i=1 for each interval.

The quantizer function, Q(·), is given by

Q(u) = ri iff bi−1 < u ≤ bi (2.12)

Since the distribution of cells in along the u-axis can be (and usually is) non-

uniform, we will use a non-uniform quantization strategy. Specifically, we will use

an approach called Companded Quantization [27][60], which simulates a distribu-

tion optimized non-uniform quantizer. A compander has three stages:

1. Compressor : The input values (u coordinates of cells) are mapped into an-

other value (say, u′) such that the output (u′) is uniformly distributed. The

regions of the input which have high density are stretched, while regions with

30

low density are compressed. The mapping conserves the ordering of the input

values, i.e., if ui < uj, then u′

i < u′

j. The concept is the same as that used

in image equalization.

2. Uniform Quantizer : The output of the compressor stage (u′) is quantized

into M levels using a uniform quantizer. The decision boundaries of this

quantizer are {b′i}M
i=0, and the reconstruction values are {r′i}M

i=1.

3. Expander : The quantized u′ values are mapped back to the u-axis using an

expander function, which inverts the warping introduced by the compressor

function. The compander decision bounds {bi}M
i=0 are derived from {b′i}M

i=0,

and the reconstruction levels {ri}M
i=1 are obtained from {r′i}M

i=1.

Quantization of u-axis

For the first phase, the user specifies the number of quantization intervals, M ,

of the u-coordinates. We implement the compressor stage by sorting the cells by

their u-coordinates. If the u-values of two cells are equal, we break the tie using

cell ids. The position of a cell in the sorted sequence is used as its u′ value for the

uniform quantizer. The first nM = N/M cells are quantized into the first interval,

the next nM cells in the second interval and so on. The decision boundaries, {b′i}M
i=0,

of the uniform quantizer are the sequence positions of the extreme (the first, and

the last) cells of the intervals. The expander stage involves mapping the {b′i}M
i=0

values to the u-axis using an inverse of the compressor stage. Let the u-value of

the jth cell (in the sorted sequence) be uj, and let η = nM . Then the compander

31

decision boundaries, {bi}M
i=0, are defined as

b0 = uL

b1 = (uη + uη+1)/2
b2 = (u2η + u2η+1)/2
...

...
...

bM = uR

(2.13)

We have assumed that {ui·η 6= ui·η+1}M−1
i=1 . If that does not hold, we take bi as

the average of the u-values of the next two satisfying cells. Figure 2.3 shows the

quantization of u-coordinates with M = 11. The vertical lines at the decision

boundaries {bi}11
i=0 divide the UV-space into M = 11 partitions {Pi}11

i=1, which we

will refer to as the U-partitions.

Unlike usual quantization procedures, the definition of the reconstruction values

{ri}M
i=1 is deferred till run-time. To avoid holes in the isosurface due to quantization

errors, we need to incorporate the isovalue into the assignment of {ri}M
i=1. Consider

the cells A and B in the U-partition P4 in figure 2.3, where the value uiso =

2×isovalue lies in U-partition P7. Both will have the same quantized u-coordinate

r4, which will be used at run-time for the isosurface test in equation (2.11). If cell B

fails the test, the resulting isosurface will have a hole in it. To prevent any potential

isosurface cell from failing the test, we have to ensure that the right-hand side of

the inequality (v >| u−isovalue×2 |) does not increase as a result of quantization.

Hence, we choose the reconstruction level to be the greatest u-coordinate any cell

in partition P4 can take. This happens to be the right decision boundary of P4, and

so we take r4 to be equal to b4. For the same reasons, cells C and D in partition

P11 are assigned the reconstruction value r11 = b10. Note that cells A and D will

satisfy equation (2.11) and will be sent to the geometry extraction phase, which

32

b10 b11b5b4b3b1

P10P8 P9P7P6P5P4P3P2P1

u−axis

b0 b2

P11

isovalue*2

v−axis

A
B

C

D

b9b6 b7 b8

Figure 2.3: Quantization of u-axis. The u-axis is divided into M = 11 levels. The
decision boundaries {bi}11

i=0 are given by equation (2.13). For the given isovalue, the
reconstruction levels are given by equation (2.14): r1 = b1,..., r6 = b6, r8 = b7,...,
r11 = b10. r7 is not used by the search algorithm. The M = 11 partitions of the
UV-space will be referred to as U-partitions.

will simply ignore them. For the partition P7, which contains the value uiso, all the

cells are presumed to have passed the test. We define the reconstruction levels in

terms of the stored decision boundaries and the given isovalue using the following

formula: assuming biso−1 < isovalue × 2 ≤ biso

r1 = b1
...

...
...

riso−1 = biso−1

riso = not required
riso+1 = biso

...
...

...
rM = bM−1

(2.14)

33

Quantization of v-axis

After the quantization of the u-axis, we proceed to the second phase of our

algorithm. We quantize the v-axis in each partition {Pi}M
i=1 of the UV-space

separately. The quantization strategy is similar to that used for the u-coordinates.

The user specifies the number of quantization levels, L, for each U-partition. The

following actions are then performed for each partition Pi (i = 1...M). The cells

are initially sorted by their v-values, breaking ties by cell ids. The first nL = nM/L

cells are put in the first interval, the next nL cells in the second interval and so

on. Unlike the quantization stage of u-axis, we do not prevent cells with the same

v-values from being put into different intervals. We do so to ensure that each

interval contains the same number (nL) of cells. As a result, we do not have to

explicitly store the number of cells in each interval in our data structure.

In the previous discussion on quantizing the u-axis, we argued the need to

prevent quantization errors which might result in holes due to isosurface-containing

cells being indicated otherwise. In the isosurface test (v >| u − isovalue × 2 |,

equation (2.11)), this translates to the requirement that the v-value should not

decrease after quantization. Accordingly, for each interval, the highest v-value of

its member cells is used as the reconstruction level for that interval. Let the v-

value of the kth cell (in the sorted sequence) in the U-partition Pi be vik. Then,

the reconstruction values, {sil}L
l=1 are given by

si1 = vi(nL)

si2 = vi(2nL)
...

...
...

siL = vi(LnL)

(2.15)

34

b1

P11P9 P10P8P7P6P5P4P3P2

u−axis isovalue*2

v−axis

P1

b0 b2 b11b10b9b8b7b6b5b4b3

s16

s15

s13
s12

s17

s11

s14

Figure 2.4: Quantization of v-axis. After the u-axis has been quantized using
M = 11, the v-axis is quantized separately into L = 7 levels for each U-partition
{Pi}11

i=1. The v-axis reconstruction levels, which are also the decision boundaries,
are shown as the horizontal lines, and the values are calculated from equation
(2.15). The L = 7 intervals of each U-partition will be referred to as UV-partitions.

Figure 2.4 shows the quantization of v-coordinates after the u-axis has been

quantized (with M = 11, as shown in figure 2.3). Each U-partition has been further

divided by L(= 7) horizontal lines, which represent the reconstruction levels (also

the decision boundaries) of the v-values within the U-partition. We will call the

resulting rectangular regions UV-partitions. The UV-partitions which are to the

left of the U-partition P7 are represented by the uv-coordinates of their top-right

corners. Similarly, those to the right of P7 are represented by the uv-values of

their top-left corners. For the given isovalue, the shaded UV-partitions pass the

isosurface test as their representative corners satisfy equation (2.11).

35

2.3 Search Algorithm

Following the transform coding steps outlined in the previous section, we con-

struct data structures which store the information of the UV-space in a compressed

form (section 2.3.1). These can then be used for fast isosurface extraction searches

(section 2.3.2).

2.3.1 Data Structures

The preprocessing stage of our algorithm consists of the transformation and

quantization steps that have been mentioned in sections 2.2.2 and 2.2.3 respec-

tively. The results of the preprocessing stage are stored in appropriate data struc-

tures that enable a fast run time search for isosurface containing cells. The in-

formation that needs to be stored is: the user-specified quantization parameters

M and L, the reconstruction levels for the u- and v-axes, and the cell ids in each

UV-partition. We use the data structures given below to store that information:

1. U-Array : The decision boundaries {bi}M
i=0 for the u-axis, given by equation

(2.13). These values are required at run time to derive the reconstruction

levels for u-coordinates according to equation (2.14). The storage required

is the space for M + 1 values.

2. V-Array : A two-dimensional array {dij}M,L
i=1,j=1 with each element storing

the v-axis reconstruction levels of the corresponding UV-partition given by

equation (2.15). For example, dij stores the decision boundary of the jth

UV-partition of the ith U-partition. This needs a storage of ML values.

36

3. ID-Array : A two-dimensional array {Aij}M,L
i=1,j=1 with each element storing

the ids of cells in the corresponding UV-partition. A(i, j) stores the cells

within the jth UV-partition of the ith U-partition. The storage needed is

that for N cell ids.

The total storage requirement is the space needed for N cell ids and ML + M +

1 quantization levels, where ML + M + 1 is typically of the order of a hun-

dredth of N . This offers significant space reduction compared to most algorithms

([26][63][62][16]), which store 2N cell ids and 2N min-max values. During prepro-

cessing, the three arrays are filled simultaneously through the quantization process

described in section 2.2.3. To recap, each cell is transformed to uv-coordinates us-

ing equations (2.6) and (2.7). They are then sorted by their u-coordinates and the

quantization interval endpoints {bi}M
i=0 derived using equation (2.13). The cells are

then grouped into M U-partitions. The cells in each U-partition are now sorted

by their v-values. For each U-partition i, the V-array elements (v-axis decision

bounds) are filled in according to equation (2.15). Simultaneously, ids of cells in

each UV-partition are stored in the ID-Array.

2.3.2 Search

Given an isovalue, the search for isosurface containing cells over the UV-space

can be decomposed into separate searches over each U-partition. For a given U-

partition, the search can be thought of as a search for satisfying UV-partitions (be-

cause all the cells within a given UV-partition have the same quantized uv-values).

The U-partition is traversed in order of decreasing v-coordinates, beginning with

37

the topmost UV-partition (the one with highest v-value). The reconstruction val-

ues of the UV-partition are read from the U-Array and the V-Array, and tested

in equation (2.11). If the UV-partition satisfies the isosurface test, all the cells

in the corresponding ID-Array position are selected for geometry extraction, and

the search moves to the next UV-partition (the one below). When a UV-partition

is reached whose uv-coordinates fail equation (2.11), the traversal for the current

U-partition is terminated and the another U-partition is taken up for traversal.

The search is complete when all the U-partitions have been individually searched.

Incremental Search

If the isovalue is changed by a small amount from the previous isovalue, it is

advantageous to do an incremental update to the results of the previous search.

We assume that the previous isovalue search results for each U-partition are stored.

For each U-partition, we also need to remember the position of last UV-partition

accessed before the traversal was terminated. Let the previous isovalue be isop.

Without any loss of generality, let us assume that the isovalue has increased to

a new value ison. Let the corresponding u-axis points be up = 2 × isop and

un = 2 × ison respectively. Then the addition of new cells and removal of cells no

longer intersecting the isosurface are handled as follows:

1. Addition: New cells will be added to U-partitions that are to the right of

umid = (up + un)/2. For these U-partitions, we start an incremental search

from the previous terminating UV-partition. The current traversal is con-

tinued till a UV-partition is reached which does not satisfy the isosurface

38

condition (equation (2.11)). The cells of the newly traversed UV-partitions

are added to the isosurface extraction list.

2. Removal : For U-partitions to the left of umid, we will need to potentially

remove cells which were selected for isosurfacing for the previous isovalue.

Each U-partition is traversed upwards (towards increasing v-values), start-

ing from the terminating UV-partition of the previous traversal. The upward

traversal is stopped when a UV-partition is reached which satisfies the iso-

surface test. The UV-partitions encountered during this reverse traversal no

longer contain the isosurface and are removed.

The U-partition which contains umid can belongs to the addition category if the

previous terminating UV-partition satisfies the isovalue. Otherwise, it is in the

removal set. As in any incremental update search, this is more beneficial in case of

small datasets, for which the intermediate results can be stored in main memory.

Empty Space Culling

Our algorithm can also be used for empty space culling in volume rendering

applications. When an isosurface-like transfer function is used, a large proportion

of the voxels will be classified as empty space. Instead of doing an exhaustive

search, object order algorithms (like splatting and object-order ray-casting[55])

can use a range search algorithm and achieve speedups much like the isosurfacing

algorithms.

In this context, the main difference between searching for an isosurface applica-

tion and a volume rendering one is that transfer functions usually specify non-zero

opacities over a range of values, instead of a single value (as in the isovalue). This

39

fact can be reinterpreted as searching for a range of isovalues in our data struc-

tures. Doing such a search is straight-forward using our algorithm. Suppose the

non-zero opacities lie in the range [isoleft, isoright]. Let the points on the U -axis

corresponding to these two values be uleft = 2 × isoleft and uright = 2 × isoright.

Then, all the cells in the U -partitions that fully or partially overlap the range

[uleft, uright] are assumed to be non-empty. For the U -partitions that are to the

left of uleft, we do a regular search assuming the isovalue to be isoleft. For those

to the right of uright, we use isoright.

2.3.3 Errors

The quantization of the UV-space introduces errors which may result in false

conclusions for some cells in the isosurface test (equation (2.11)). We have de-

signed our quantizer (section 2.2.3) such that the search does not miss any cell

that contains the isosurface. Instead, some cells that do not truly intersect the iso-

surface will satisfy equation (2.11). The errors are the combined effect of u-value

quantization error and the v-axis quantization error. Below, we give an empiri-

cal discussion on the average effect of the u-axis quantization on the number of

such erroneous cells. For this discussion, we first assume that the v-values are not

quantized. Later, we will extend the error analysis to include the v-coordinate

quantization.

Consider the U-partition Pi in figure 2.5(a), which is to the left of uiso = 2 ×

isovalue. In other words, bi < 2× isovalue. Due to quantization of u-coordinates,

all the cells within the shaded triangular region will satisfy the isosurface test, and

will constitute the error for this U-partition. Each U-partition that is searched will

40

contribute a similar group of erroneous cells. It should be noted that if the top-

most UV-partition of a U-partition fails the isosurface test, it will not be traversed

at all and hence will not contribute any error. For instance, in figure 2.4, the U-

partitions P1, P2 and P3 will not have any error since the topmost UV-partitions

lie outside the isosurface region. In practice, the dynamic range of u-values is

usually much higher than the spread of v-values. As a result, a large number of

U-partitions will not be traversed and so will not contribute any error. For this

discussion, we assume that on an average, a fraction h of the total number M of

U-partitions is traversed. Let the average width of a U-partition be uave, and the

mean concentration of cells be cave. Then, on an average, each U-partition will

contribute (u2
ave/2)cave false cells. If the u-value limits for the dataset are [uL, uR],

then the average number of cells which falsely satisfy equation (2.11) is

Average U-Error = hM(
u2

ave

2
· cave) =

(uR − uL)2hcave

2M
(2.16)

where nM(= N/M) is the number of cells per U-partition. The expected number

of non-isosurface cells satisfying equation (2.11) is inversely related to M .

Next, the additional effect of v-coordinate quantization is considered. In fig-

ure 2.5(b), all the cells in the UV-partition Vij have the same uv-coordinates

(bi, si(j+1)), and thus all satisfy equation (2.11). The triangular region contains

cells which incorrectly satisfy the isosurface test due to u-axis quantization errors.

The error added by v-axis quantization are those cells in the UV-partition Vij

whose v-coordinates are less than vi = 2 × isovalue − bi. If the total number of

cells in the dataset is N , and M and L are the number of quantization levels for

u- and v-axes respectively, then each UV-partition has nL = N/ML cells. On an

41

(a) (b)

Figure 2.5: Quantization Errors. All the cells in the shaded triangular region in
figure (a) satisfy the isosurface test and contribute to the error due to quantization
of u-axis. The additional error due to v-axis quantization is shown in figure (b).

average, the total number of erroneous cells due to v-coordinate quantization is

Average V-Error = hM · nL

2
=

hN

2L
(2.17)

The expected error is directly related to the number of cells nL in each UV-

partition. As the value of L is increased, nL decreases, driving the average v-error

down.

2.3.4 Meta-Cells

It is straight-forward to use meta-cells[15] in our data structure. The min-max

values of a meta-cell would come from the extremal values of the group of cells it

represents. Any preferred technique can be used to combine multiple cells into a

meta-cell. In a regular grid dataset, for example, we can represent a 2×2×2 block

of cells by one meta-cell. The minimal (maximal) value among these eight cells

42

will be the minima (maxima) for the meta-cell. If our search algorithm returns

positive for a particular meta-cell, then we have to search for the isosurface in each

of the individual cells that is contained within the meta-cell.

Now, we will briefly discuss the errors that can result when merging cells into

meta-cells. Suppose a cells A1 and A2 have minima minA1
and minA2

respectively.

Without any loss of generality, lets assume that minA1
< minA2

. If we merge

both the cells together into a single meta-cell, then we have to use the smaller

minima value minA1
for the meta-cell to ensure correctness. (Similarly, we have

to use the larger of the two maxima values as the meta-cell maxima.) The meta-

cell will return a false positive for cell A2 for all isovalues that lie between minA1

and minA2
. Assuming that all isovalues are equally likely, the probability of false

positive error due to the merged minima of this meta-cell will be proportional to

(minA2
− minA1

). In fact, if the values in the particular dataset lie in the range

[minDataset,maxDataset], then the probability of false positive error for cell A2 is

Error = (minA2
− minA1

)/(maxDataset − minDataset) (2.18)

A similar effect occurs due to the maxima values. Then, the overall probability of

error due to this meta-cell is proportional to

Error ∝ Distance(cellA1
, cellA2

) (2.19)

= |minA1
− minA2

| + |maxA1
− maxA2

| (2.20)

which is the Manhattan distance between the min-max values of the two cells.

This is the probability, due to merging, that either cell A1 or cell A2 will return a

false positive error.

43

Lets now suppose that the cell information is merged for the cells {A1, A2, . . . , Ak}.

Then, this particular meta-cell is represented by the smallest minima and the

greatest maxima of the set {A1, A2, . . . , Ak}. We will denote these by minmeta and

maxmeta. The error introduced by this meta-cell is

Error ∝
k

∑

i=1

Distance(cellmeta, celli) (2.21)

=
k

∑

i=1

(|minmeta − minAi
| + |maxmeta − maxAi

|) (2.22)

While we have assumed that all isovalues are equally probable, that is not

always true. We can use domain specific knowledge of datasets to assign different

probabilities to different isovalue regions. Equation (2.21) can then be tweaked

to include the effect of non-uniform probability in the error. In such cases, terms

like |minA1
− minA2

| will be replaced with the area under the probability density

function in the range [minA1
,minA2

]. Given a user-defined error threshold, min-

max information of cells can now be merged into meta-cells. This method of

merging cells to create meta-cells can also be used for time-varying datasets.

2.4 Results

In this section, we present results of the compression algorithm on static data.

We discuss the effect of the quantization parameters M and L on the size and search

efficiency of the search data structures. We then present out-of-core results from

our algorithm and also compare the performance with that of the interval tree. We

have tested our algorithm on the UNC MR-brain dataset (256 × 256 × 109 2-byte

integer), a Rayleigh-Taylor hydrodynamic instability dataset (2563 floating-point)

44

which we will refer to as Rage256, and the visible woman dataset (512×512×1728

2-byte integer).

2.4.1 Compression and Errors

We have mentioned before that either the meta-cell technique [15] or the chess-

board method [16] can be used with our algorithm. For the following discussion,

we will denote the number of effective cells (single cells, meta-cells, or black cells

in the chess-board pattern) by N . Let M be the number of U-partitions and L

the number of UV-partitions per U-partition. The space requirement of our search

data structure is the storage for N cell ids (ID-Array) and ML+M+1 quantization

levels (U-Array and V-Array). Since we are not compressing the cell ids, the space

required to store the ID-Array will remain constant for all quantization parameters.

We present the compression results as the ratio of the size of the U-Array and V-

Array to the space required for storing the min-max values for every cell. Figure

2.6 shows the compression ratios for the MR-brain dataset. Interval trees and

ISSUE data structures store 2N cell ids and N min-max pairs. Compared to

these, the storage required by our search data structure is 37.1% for MR-brain,

27.4% for Rage256, and 33.4% for visible woman dataset for a (M = 4000, L = 400)

quantization.

Figure 2.7 shows the variation of error with L and M . The error is due to

cells which are selected by the search algorithm but do not contain the isosurface.

Please note that there is no error in the isosurface itself. The error is defined as

the ratio of the erroneous cells to the number of isosurface containing cells. As

expected, the error decreases with increase in both L and M . Note that the rate

45

Figure 2.6: Effect of Quantization parameters M and L on data structure size.
The size of the quantization data structures (U-Array and V-Array) remain within
1% of the size of the uncompressed min-max information for the MR-brain. The
total size of our data structure is approximately 30% of the size of data structures
generated by Interval Trees, ISSUE etc.

of decrease falls as L or M get larger. Keeping in mind the trade-off between

search and space efficiencies, users can choose an (M ,L) combination suitable for

their requirements. For instance, the very little difference between performance of

the M = 2000 and M = 4000 graphs may not justify the associated increase in

storage space. Table 2.1 gives the preprocessing, search and extraction times for

the MR-brain dataset for a subset of quantization parameters from figures 2.6 and

2.7.

46

Figure 2.7: Effect of Quantization parameters M and L on search error for the
MR-brain (isovalue = 1070.5, number of isosurface cells = 4352196). The number
of cells erroneously identified as containing the isosurface grows when M and/or
L is decreased.

2.4.2 Performance

In case of large datasets, the search data structures may not fit into main

memory and out-of-core techniques have to be implemented. Because we store

the min-max information and the cell ids in separate data structures, we do not

need to modify our search algorithm for large datasets. Only the U-Array and the

V-Array need to be kept in-core. During the search phase, the V-Array is scanned

as described in the search algorithm (sec.2.3.2). If the uv-coordinates stored at a

V-Array position pass the isosurface test, the corresponding ID-Array entry is read

from the disk and the cells passed to the extraction stage. Table 2.2 shows the

47

search and extraction times for the visible woman dataset. For this experiment,

we have used a 2 × 2 × 2 meta-cell for constructing our data structure. The error

(number of meta-cells selected due to quantization error) is given as a percentage

of the isosurface meta-cells, given in the second column. The data-structure I/O

times are included in the extraction times. The compression ratio of min-max

information is 3.27% for the data structures used. The size of the search data

structure is 34.5% of the size of the ISSUE/Interval-Tree data structures.

Table 2.3 compares the size and performance of our algorithm to an in-core

interval tree implementation on a MIPS R10000 Processor. We present results for

a floating-point MR-brain dataset and the Rage256 dataset for both methods. The

interval tree search performs marginally better than the search using compressed

min-max values. The search data structures of our algorithm are smaller by a

factor of four or more compared to the interval tree.

“I’ve seen a dying eye
Run round and round a room
In search of something, as it seemed,
Then cloudier become;”

— from Time and Eternity, by Emily Dickinson.

48

M ,L Comp- Error Pre- Search Extract
ression process

500, 50 0.18% 2.33% 11.03s 0.04s 7.48s
2000, 200 2.86% 0.66% 11.40s 0.03s 7.44s
4000, 400 11.42% 0.44% 11.50s 0.03s 7.43s

Table 2.1: Search and space efficiency trade-off. Processing times on a 600MHz
PIII for different (M ,L) combinations are shown (isovalue = 1070.5). The extrac-
tion time for a zero search error is 7.41s. The associated compression and errors
are shown in figures 2.6 and 2.7.

Isovalue Cells Error Search Extraction
600.5 2,066,710 4.39% 0.05s 13.0s
1100.5 4,433,023 4.28% 0.12s 27.7s
1400.5 809,193 9.47% 0.04s 6.1s

Table 2.2: Search and extraction times for the visible woman dataset using a
compression of 3.27% of the min-max values. The size of the search data structure
is 34.5% of the size of the ISSUE/Interval-Tree data structures. 2×2×2 meta-cells
are used while constructing the search data structures. The number of isosurface
containing meta-cells are given, along with the error introduced by quantization.

Dataset Search Search Search
Method structure size Time

MR-brain QS (2.5%) 20.8MB 0.18s
MR-brain I-Tree 93.8MB 0.13s
Rage256 QS (1.3%) 49.0MB 0.09s
Rage256 I-Tree 221.4MB 0.07s

Table 2.3: Comparison of search times for the quantized search (QS) and the
interval tree (I-Tree). The compression ratios for the min-max data is given in
parentheses.

49

CHAPTER 3

AUTOMATED VIEW SELECTION

3.1 Introduction

In visualizations of three-dimensional datasets, the insights gained are often

dependent on what is seen and what is occluded. The visualization process fre-

quently involves a trial-and-error method of parameter tweaking in an effort to

create better representations- that is, better arrangements of visible and occluded

regions. This works well for smaller datasets, but for large data, the response times

of the visualization system can become uncomfortably large. Larger datasets also

translate to a greater amount of work required from the person. While this prob-

lem can be tackled by creating more interactive systems [68], we take the approach

of reducing the trial-and-error tweaking the user has to go through to create a

desirable visualization. Automatic (or semi-automatic) methods for generating

transfer functions [52][42] or selecting isosurfaces[72] can be thought of as efforts

in this direction. In this paper, we focus on helping the user with one specific

component of interaction— view selection. Suggestions for interesting viewpoints

can improve both the speed and efficiency of data understanding.

50

In a typical volume rendering scenario, the user starts with a default viewpoint.

After the first image is rendered, he changes the view to look at parts of the dataset

that are occluded in the current view. This process continues till he is satisfied. The

longer he has to wait for the rendering at the new viewpoint, the less efficient and

more frustrated he becomes. The problem is exacerbated in highly non-interactive

situations, and it is desirable that he quickly find a satisfactory view. This manual

view selection method can be especially tricky and time consuming in the case of

volume rendering of a time-varying dataset. The user tries to get a better view

based on a few time steps, but it is very difficult for him to imagine how the image

will change with the viewpoint for all the time steps in the sequence. Our algorithm

makes the manual view selection faster by suggesting good viewpoints to the user.

These viewpoints can then be used as a starting point for further exploration. Once

the user finishes exploration in the neighborhood of one suggested viewpoint, he

can pick another suggested viewpoint to explore.

The viewpoints suggested by our technique can also be used to improve image-

based volume rendering algorithms [56][12]. Frequently, IBR methods use the

scene properties to create a non-uniform camera placement for the pre-rendered

views based on the scene. Our formulation can be used to quantify the change

between two volume-rendered views. An adaptive sampling of the view space can

be generated by creating more pre-rendered samples in neighborhoods of large view

changes and vice-versa. This can help the IBR system achieve better rendering

quality with less storage.

51

This chapter presents a view selection method designed for volume visualiza-

tion. It can be used to find informative views for a given scene, or to find a minimal

set of representative views which capture the entire scene. It becomes particu-

larly useful when the visualization process is non-interactive— for example, when

visualizing large datasets or time-varying sequences. We introduce a viewpoint

“goodness measure” based on the formulation of entropy from information theory.

The measure takes into account the transfer function, the data distribution and

the view-dependent visibility of the voxels. Combined with viewpoint properties

like view-likelihood and view-stability, this technique can be used as a guide which

suggests “interesting” viewpoints for further exploration. Domain knowledge is

incorporated into the algorithm via an importance transfer function or importance

volume. The view selections can thus be easily configured to obtain behaviors tai-

lored to very specific situations. We generate a view space partitioning, and select

one representative view for each partition. Together, this set of views encapsulates

the most important and distinct views of the data. Viewpoints in this set can be

used as starting points for interactive exploration of the data, thus reducing the

human effort in visualization. In fully non-interactive situations, such a set can be

used as a representative visualization of the dataset from all directions. We present

a hardware based solution to performing the view calculations. This algorithm can

also be used with isosurface visualizations.

3.2 Related Work

The idea of comparing different views developed much before computer graphics

and visualization matured. As early as 1976, Koenderink and van Doors [44][45]

52

had studied singularities in 2D projections of smooth bodies. They showed that for

most views (called stable views), the topology of the projection does not change for

small changes in the viewpoint. The topological changes between viewpoints can

be stored in an aspect graph. Each node in the graph represents a region of stable

views, and each edge represents a transition from one such region to an adjacent

one. These regions form a partitioning of the view space, which is typically a sphere

of a fixed radius with the object of interest at its center. The aspect graph (or its

dual, the view space partition) defines the minimal number of views required to

represent all the topologically different projections of the object. A lot of research

has been done since the early papers, mainly in the field of computer vision, which

extended the ideas to more complex objects. In the case of volume rendering,

a similar topology based partitioning can not be constructed. Instead, we find

a visibility based partitioning by comparing visibilities of voxels in neighboring

views, and clustering together viewpoints that are similar.

Viewpoint selection has been an active topic of research in many fields. For

instance, viewpoint selection solutions have been proposed for the problem of mod-

elling a three-dimensional object from range data [89] and from images [21], and

also for object recognition [1]. However, the topic has not been well investigated

in the fields of computer graphics and visualization, possibly because applications

in these domains have relied heavily on human control. Recently, Vázquez et al.

[79][80] have presented an entropy based technique to find good views of polygo-

nal scenes. They define an entropy for any given view, which is derived from the

projected area of the faces of the geometric models in the scene. Their motivation

53

is to achieve a balance between the number of faces visible and their projection

areas. The entropy value is maximized when all the faces project to an equal area

on the screen. The viewpoint measure presented in this paper is based on the

entropy function, but is designed for volumetric data. Each voxel is assigned a

visual significance, and the entropy is maximized when the visibilities of the voxels

approach the respective significance values. Entropy based methods have been

used in a variety of problems, e.g., for calculating scene complexity in radiosity

algorithms [20], for object recognition [1] and for aiding light source placement

[28].

3.3 Viewpoint Evaluation

The essential goal of this chapter is to have a computer suggest ‘good’ view-

point(s) to the user. This naturally leads us to the question: “what is a good

viewpoint?”, or, “what makes a viewpoint better than another?”. The answer will

depend greatly on the viewing context and the desired outcome. For example, a

photographer will choose the view which best contributes to the chosen mood and

visual effect. For this paper, the context is the process of volume rendering, which

is being used to obtain visual information from the data. Hence, for our purposes,

a viewpoint is better than another if it conveys more information about the dataset.

In this section, we present a method for quantifying the information contained in

a view using properties of the entropy function from information theory.

The information that is transferred from a volumetric dataset to the two-

dimensional screen is governed by the optical model which is used for the pro-

jection. In this paper, we assume the popular absorption plus emission model [53].

54

The intensity Y at a pixel D is given by

Y (D) = Y0T (0) +
∫ D

0
g(s)T (s)ds (3.1)

where, T (s) is the transparency of the material between the pixel D and the point

s. We will refer to T (s) as the visibility of the location s. The first term in the

equation represents the contribution of the background, Y0 being its intensity. The

second term adds the contributions of all the voxels along the viewing ray passing

through D. A voxel at point s has an emission factor of g(s), and its effect on the

pixel intensity is scaled by its visibility T (s). If two voxels have the same emission

factor, then the one with a higher visibility will contribute more toward the final

image.

The emission factors of voxels are usually defined by the users. They set the

transfer function to highlight the group of voxels they want to see, and to make

the others more transparent. We use this fact to define a noteworthiness factor for

each voxel (section 3.3.2), which captures, among other things, the importance of

the voxel as defined by the transfer function. Based on the preceding discussion,

we have the following two (not necessarily disjoint) guidelines for defining a good

viewpoint:

1. A viewpoint is good if voxels with high noteworthiness factors have high

visibilities.

2. A viewpoint is good if the projection of the volumetric dataset contains a

high amount of information.

55

In the following section, we present the details of our view information function

and its properties.

3.3.1 Entropy and View Information

Consider any information source X which outputs a random sequence of sym-

bols taken from the alphabet set {a0, a1, . . . , aJ−1}. Suppose the symbols occur

with the probabilities p = {p0, p1, . . . , pJ−1}. Alternatively, we can think of it as

the random variable X which gets the value aj with probability pj. The infor-

mation associated with a single occurrence of aj is defined in information theory

as I(aj) = − log pj. The logarithm can be taken with base 2 or e, and the unit

of information is bits or nats respectively. In a sequence of length n, the symbol

aj will occur npj times, and will carry −npj log pj units of information. Then the

average information of the sequence, also called its entropy, is defined as

H(X) ≡ H(p) = −
J−1
∑

j=0

pj · log2 pj bits/symbol (3.2)

with 0 · log2 0 defined as zero [5]. Even though the entropy is frequently expressed

as a function of the random variable X, it is actually a function of the probability

distribution p of the variable X. We will use the following two properties of the

entropy function in constructing our viewpoint evaluation measure:

1. For a given number of symbols J , the maximum entropy occurs for the dis-

tribution peq, where {p0 = p1 = . . . = pJ−1 = 1/J}. (See figure 3.1, which

gives an example of the entropy values for a three dimensional distribution.)

2. Entropy is a concave function, which implies that the local maximum at peq

is also the global maximum. It also implies that as we move away from the

56

Figure 3.1: Entropy Function for probability vectors of dimension three: p =
{p0, p1, p2}. The function is defined only over the plane p0 + p1 + p2 = 1, within
the triangular region specified by 0 ≤ p1, p2, p3 ≤ 1. The maximum occurs at the
point p0 = p1 = p2 = 1/3, and the value falls as we move away from that point in
any direction. So, increasing the entropy has the effect of making the probabilities
more uniform.

equal distribution peq, along a straight line in any direction, the value of

entropy decreases (or remains the same, but does not increase).

We will use probability distributions associated with views to calculate their

entropy (average information). For each voxel j, we define an importance factor

Wj. We will call it the noteworthiness of the voxel, and it indicates the visual

significance of the voxel. (More details about Wj are given in section 3.3.2). Sup-

pose, for a given view V , the visibility of the voxel is vj(V). We are using the term

‘visibility’ to denote the transparency of the material between the camera and the

voxel. It is typically equivalent to T (s) in equation (3.1). Then, for the view V ,

we define the visual probability, qj, of the voxel as

qj ≡ qj(V) =
1

σ
· vj(V)

Wj

where, σ =
J−1
∑

j=0

vj(V)

Wj

(3.3)

57

where the summation is taken over all voxels in the data. The division by σ is

required to make all probabilities add up to unity. Thus, for any view V , we have

a visual probability distribution q ≡ {q0, q1, . . . , qJ−1}, where J is the number of

voxels in the dataset. Then, we define the entropy (average information) of the

view to be

H(V) ≡ H(q) = −
J−1
∑

j=0

qj · log2 qj (3.4)

The view with the highest entropy is then chosen as the best view. This satisfies

the two guidelines presented earlier in section 3.3:

1. The best view has the highest information content (averaged over all voxels).

2. The visual probability distribution of the voxels is the closest (of all the

given views) to the equal distribution {q0 = q1 = . . . = qJ−1 = 1/J}, which

implies that the voxel visibilities are closest to being proportional to their

noteworthiness.

To calculate the view entropy, we need to know the voxel visibilities and the

noteworthiness factors. Visibilities can be queried through any standard volume

rendering technique such as ray casting. The noteworthiness, described in the

next section, is view independent, and needs to be calculated only once for a given

transfer function.

3.3.2 Noteworthiness

The noteworthiness factor of each voxel denotes the significance of the voxel

to the visualization. It should be high for voxels which are desired to be seen,

and vice versa. Considering the diverse array of situations volume rendering is

58

used in, it is practically impossible to give a single definition of noteworthiness

that satisfies expectations of all users. Instead, we can rely on the user-specified

transfer functions to deliver us a definition which is tailor-made for the particular

situation. The opacity of a voxel, as assigned by the transfer function, is part

of the emission factor g(s) in equation (3.1), and controls the contribution of the

voxel to the final image. We use opacity as one element of the noteworthiness of

the voxel. Another consideration is that some voxels are more visually meaningful

to the viewer than other voxels. Consider a simple example: suppose the dataset

has a small region of yellow voxels and the rest of the voxels are blue. When the

yellow region occludes part of the blue region, Gestalt principles [58] suggest that

the human mind extrapolates the larger object (called ground) behind the smaller

one (called figure). If, on the other hand, the yellow region is occluded, the viewer

will have no idea of knowing it even exists. In this case, the visibility of the yellow

region is more important than that of a similar number of blue voxels.

Based on these observations, we construct the noteworthiness Wj of the jth

voxel as follows. We assign probabilities to voxels in our dataset by constructing

a histogram of the data. All the voxels are assigned to bins of the histogram

according to their value, and each voxel gets a probability from the frequency of

its bin. The information Ij carried by the jth voxel is then − log fj, where fj is its

probability (bin frequency). Then, Wj for the voxel is αjIj, where αj is its opacity.

We ignore voxels whose opacities are zero or close to zero. These voxels are not

included in the evaluation of equation (3.4).

59

The answer to what is interesting and what is not is very subjective. Our

algorithm can be made to suit the goals of any particular visualization situation just

by changing the noteworthiness factors. Domain specific knowledge can be readily

incorporated into the framework by adapting the noteworthiness. Irrespective

of the method used to specify the interestingness of the voxels, maximizing the

entropy serves to give better visibility to the more interesting voxels.

3.3.3 A Simple Example

To demonstrate our concept of view information, we constructed the test dataset

shown in figure 3.2. The voxel opacities of the cube dataset increase linearly with

distance from the boundary of the cube. Figure 3.2(a) shows a volume rendering

of the dataset when the camera is looking directly at one of its faces. Next, we

revolve the camera about the vertical axis of the dataset, (or, equivalently, rotate

the dataset in the opposite direction about the vertical axis) at 1◦ increments. The

view entropy steadily increases (figure 3.2(b)) as more and more voxels on the side

face start becoming visible. It reaches a maximum when the camera has moved

by 45◦, which is the view that shows the two faces equally (figure 3.2(c)). Further

movement of the camera results in greater occlusion of voxels near the first face,

and the entropy begins to drop again. Upon evaluating the entropies for all cam-

era positions around the dataset, the view in figure 3.2(d) results in the highest

entropy. Clearly, this is one of the more informative views about the cube dataset

for a human observer.

60

Entropy vs Viewing-angle

11.60

11.80

12.00

12.20

0 10 20 30 40 50 60 70 80 90

Viewing-angle

E
n

tr
o

p
y

(a) (b)

(c) (d)

Figure 3.2: An illustration of the change in view entropy (equation 3.4) with
camera position for a test dataset. Figure (a) shows the initial position of the
camera. Figure (b) shows the behavior of entropy as the camera revolves around
the dataset (around the vertical axis in the figure) at 1◦ increments. The entropy
increases steadily and reaches a maximum for a movement of 45◦ (figure (c)), and
then begins to decrease again. The maximum entropy for the whole view space is
obtained for the view in figure (d).

61

3.4 Finding the Good View

The view selection proceeds as follows. The dataset is centered at the origin,

and the camera is restricted to be at a suitable fixed distance from the origin. This

spherical set of all possible camera positions defines the view sphere, and represents

all the view directions. The view space is then sampled by placing the camera at

sample points on this sphere. We create a uniform triangular tessellation of the

sphere and place the viewpoints at the triangle centroids. The camera position and

the origin specify the eye and the center points for the modelview transformation.

Since the roll of the camera does not affect the visibilities, the up vector can be

arbitrarily chosen.

Next, the voxel visibilities are calculated for each sample view position. Our

technique is not dependent on any particular volume rendering method, and both

software and hardware renderers can be used by modifying them to output voxel

visibilities. (Please note that the transparency or voxel visibility as given in equa-

tion (3.1) is numerically the same as the accumulated opacity subtracted from

unity.) Most renderers, however, do not perform the opacity calculations exactly

at the voxel centers. Ray-casters accumulate opacities along the rays, and texture

based renderers accumulate opacities at frame-buffer pixel locations, neither of

which are necessarily aligned with voxel centers. We use the GPU to calculate the

visibilities at the exact voxel centers by rendering the volume slices in a front-to-

back manner using a modified shear-warp algorithm. We give a brief description

of our implementation below.

62

3.4.1 Hardware Implementation

The object-aligned slicing direction is taken along the axis which is most per-

pendicular to the viewing plane. The slices are rendered perpendicular to the

screen, with a relative displacement given by the shear factors[46]. A floating

point p-buffer with the same resolution as the volume slices is used. 32-bit floating

point precision is used for both the p-buffer and the textures that store visibility.

The first slice has no occlusion, so all the voxels in this slice have their visibilities

set to unity. We loop through the rest of the slices in a front-to-back order, cal-

culating the visibilities of one slice in each loop. The input in each loop iteration

is the data and the visibilities of the previous slice. The following actions are

performed during each iteration:

The frame-buffer (p-buffer) is cleared, and the camera is set such that the

current slice aligns perfectly with the frame-buffer. Then, the previous slice is

rendered with a relative shear, and with two sets of multi-texture coordinates- one

corresponding to the data texture, and the other to its visibility (which is also

stored as a texture). A fragment program looks up the data opacity according

to the transfer function, and combines it with the slice visibility texture. The

frame-buffer now contains the visibilities of the current slice, which is read back

for further processing. Render to texture techniques are used to speed up the

texture initialization for the next loop iteration, in which the visibilities of the

current texture will be used. Once the visibilities for all the slices are retrieved,

the entropy for the given view direction is calculated by using the visibilities and the

noteworthiness factor. Voxels with opacities close to zero (defined by a threshold)

63

are classified as empty space and are not used in the evaluation of equation (3.4).

This reduces the computational and memory requirements for the entropy and also

the similarity calculations (section 3.5.1).

Figure 3.3 shows a time-step of a 256-cube shockwave dataset. The camera

was rotated about the vertical axis in a complete circle, with the dataset centered

at the origin. Entropy was evaluated at 5◦ increments. The first figure shows the

view at 55◦ rotation which was the view with the highest entropy. Figure(b) shows

the worst view, which occurred at 180◦. Figure 3.4 shows a 128 × 128 × 80 tooth

dataset. The view sphere was sampled at 128 points. Figures (a) and (b) have the

highest view entropy values. Figures (c) and (d) have the lowest entropy, and not

surprisingly, are highly occluded views. It is notable that the viewpoints for (c)

and (d) are not very far apart, and that (a) and (b) show much of the same voxels.

This shows that if the user wants a few (say, N) good views from the algorithm,

returning the N highest entropy views might not be the best option. Instead we

can try to find a set of good views whose view samples are well distributed over

the view sphere. The next section presents such a solution.

3.5 View Space Partitioning

The goodness measure presented in the previous section can be used as a yard-

stick to measure the information captured by different volume rendering views and

select the best view. But the calculation of goodness considers information from

only the given view, and ignores the information that might be contained in other

views. In particular, neighboring viewpoints tend to have similar visibilities, and

comparing a viewpoint with its neighbors can provide additional properties of the

64

(a) (b)

Entropy vs Viewing Angle

11.6

11.8

12

12.2

12.4

12.6

12.8

0 45 90 135 180 225 270 315 360

Viewing-angle

E
nt

ro
py

(c)

Figure 3.3: The figure shows a time-step of a 256-cube shockwave dataset. The
camera was rotated about the vertical axis in a complete circle, with the dataset
centered at the origin. Entropy was evaluated at 5◦ increments. Figure (a) shows
the view at a 55◦ rotation which was the view with the highest entropy. Figure(b)
shows the worst view, which occurred at 180◦. Figure (c) plots the change of
entropy with change in angle.

65

(a) (b)

(c) (d)

Figure 3.4: The two highest entropy views for the tooth dataset are shown in (a)
and (b), and the two worst ones in (c) and (d).

66

viewpoint. Also, for most datasets, a single view does not give enough informa-

tion to the user. The user will almost certainly want to look at the dataset from

another angle. Instead of a single view, it is desirable to present to the user a

set of views such that, together, all the views in the set provide a complete visual

description of the dataset. This can also be thought of as a solution to the best

N views problem: given a positive number N , we want to find the best N views

which together give the best visual representation of the dataset.

We propose to find the N views by partitioning the view sphere into N dis-

joint partitions, and selecting a representative view for each partition. A similar

partitioning is defined by aspect graphs [44][45], where each node (aspect) of the

graph represents a set of stable views. Each set shows the same group of features

on the surface of the object. However, the aspect graph creation methods deal

mostly with algebraic and polygonal models and their topology, and cannot be

applied in a straightforward manner to volume rendering. Instead, we compute

the partitioning by grouping similar viewpoints together.

3.5.1 View Similarity

To find the (dis)similarity of viewpoints, we use the visual probability dis-

tributions associated with each viewpoint (section 3.3.1). Popular measures for

computing the dissimilarity between two distributions p and p′ are the relative

entropy (also known as the Kullback-Leibler (KL) distance), and its symmetric

form (known as divergence) which is a true metric [5]. (Please note that some

67

texts refer to the KL distance as divergence instead.):

D(p‖p′) =
J−1
∑

j=0

pj log
pj

p′j
(3.5)

Ds(p,p′) = D(p‖p′) + D(p′‖p) (3.6)

Although these measures have some nice properties, there are some issues with

these measures that make them less than ideal. If p′

j = 0 and pj 6= 0 for any j, then

D(p‖p′) is undefined. In our case, any voxel which is fully occluded (zero visibility)

will get a visual probability qj of zero (equation (3.3)). If it is visible in one view

but occluded in the other, we cannot evaluate equation 3.5 for these views. Also,

D(p‖p′) and Ds(p,p′) do not offer any nice upper-bounds. To overcome these

problems, we instead use the Jensen-Shannon divergence measure [49]:

JS(p,p′) = JS(p′,p) = K(p,p′) + K(p′,p) (3.7)

where, K(p,p′) = D(p‖(1
2
p +

1

2
p′)) (3.8)

The distance between two views V1 and V2, with distributions q1 and q2, is then

defined as JS(q1,q2). This measure does not have the zero visual probability

problem, since the denominator of the log term is zero iff the numerator is zero.

It is also nicely bounded by 0 < JS(q1,q2) < 2. Moreover, it can be expressed in

terms of entropy [49], which allows us to reuse the view information calculations

given in equation (3.4):

JS(q1,q2) = 2H(
1

2
q1 +

1

2
q2) − H(q1) − H(q2) (3.9)

68

3.5.2 View Likelihood and Stability

We can now use the definition of view-distance given by equation 3.9 to define

two additional characteristics of viewpoints- view likelihood and view-stability.

View likelihood of a view V is defined as the probability of finding another view

anywhere on the view-sphere whose view-distance to V is less than a threshold. In

our scenario, it is given as the number of view samples on the view sphere that are

within the threshold of V . If a view has a (relatively) high likelihood, it implies

that the object or dataset projects a similar image for a (relatively) large number

of views. On the other hand, a view with low likelihood provides information

that is unique to a few views. This property is indirectly taken into consideration

when we partition the set of all the view samples (that is, the view sphere). Large

partitions have views with high likelihoods.

Sometimes it is not the view itself but the change in view that provides impor-

tant information. If the view is changed from one viewpoint to another very similar

view, the user does not see much new information. But, if the rendering changes

by a large amount, the user sees not just the new information in the visualization

but also derives knowledge from the change that has occurred. Occlusion is one of

the most important depth cues that is available to the user when visualizing three-

dimensional renderings on a two-dimensional surface. A large change in occlusion

implies a large change in visibilities, which results in a large JS distance between

two viewpoints. This concept is captured by view-stability, which is another view

property that can be used to select viewpoints during interaction. It is defined as

the maximal change that occurs when the viewpoint is moved anywhere within a

69

given radius from its original position. The greater the change, the more unstable

a viewpoint is. We calculate the (un)stability as the maximum view-distance be-

tween a view sample and its neighboring view samples in the triangular tessellation

of the view-sphere. The 180◦ viewpoint in figure 3.3(b) is an unstable viewpoint

for this particular viewpoint sequence.

3.5.3 Partitioning

Once the visual probability functions (q) and their entropies (H) are calculated

as described in section 3.3, we use the JS-divergence to find the (dis)similarities

between all pairs of view samples. We then cluster the samples to create a disjoint

partition of view sphere. The number of desired clusters can be specified by the

user. Each partition represents a set of similar views, i.e., these views show the

voxels at similar visibilities. If desired, the JS-measure can be weighted using the

physical distance between the view samples to yield tight regional clusters.

The best (highest entropy) views within each partition are selected as represen-

tatives of the cluster and displayed to the user. Together, this set of images give

a good visualization of the dataset from many different viewpoints. Sometimes,

it might happen that the selected representatives of two neighboring partitions lie

on the common boundary and next to each other. If the view distance between

two selected view samples is less than a threshold, we use a greedy approach and

select the next best sample.

We have used the clustering package CLUTO [41] to perform clustering. It is

designed to work with both low and high dimensional datasets. A direct clustering

method was used, as opposed to partitioning or agglomeration algorithms. Ten

70

I2 vs # of Clusters

90.00

95.00

100.00

105.00

110.00

115.00

120.00

1 2 3 4 5 6 7 8 9 10 11

of Clusters

I2

Figure 3.5: Plot of I2 vs number of clusters.

different clustering trials were performed, each using different seed points, and the

best clustering was selected. We used the I2 criterion function [91]. I2 captures

the cumulative similarities between the cluster members and the centroids of the

clusters. Maximizing I2 thus maximizes intra-cluster similarity. If k is the total

number of clusters, Si is the set of objects assigned to the i th cluster, ni is the

number of objects in the i th cluster, v and u represent two objects, and sim(v, u)

is the similarity between two objects, then I2 can also be found using the following

formula:

I2 =
k

∑

i=1

√

∑

v,uεSi

sim(v, u) (3.10)

Figure 3.5 shows the values of I2 clustering performed on the tooth dataset. It

can be seen that the slope of the graph decreases when we move from 5 clusters

71

to 6 clusters. Figure 3.6 shows the results of a 5-way partitioning of the view

space for the dataset. 128 view samples were used with a JS-divergence measure.

The largest partition contains 39 samples, while the smallest one has 18. The

representative views from four of the partitions are shown. The view for the fifth

partition is figure 3.4(a). Figures 3.4(a) and 3.4(b) both lie in the same partition.

In fact, the top ten high entropy viewpoints fall in the same partition. They show

the same voxels and capture similar information. Although they are good views

when considered individually, they contain a lot of redundant information as a

group. This illustrates the need for selecting representative views from different

partitions.

3.6 Time Varying Data

Suggestion of good views becomes all the more useful in the case of time de-

pendent data. The time required to compute a volume rendering animation of the

dataset grows with the number of time steps. In an interactive setting, this cre-

ates a large lag between a viewpoint update and the completion of all the frames.

Moreover, it takes more tries by the user to find the desired viewpoint because the

data changes with time, and the user has to consider not only the current time

step but also the previous and future ones. The user’s job is made harder by cases

where an interesting view in a few time steps turns out to be a dull view in the

rest.

In section 3.3, we discussed the notion of a good view and presented a measure

of view information for a volume dataset. For time-dependent data, using equa-

tion (3.4) separately for each time-step is not the desired solution— it can yield

72

(a) (b)

(c) (d)

Figure 3.6: Representative views for a 5-way partitioning of the view-sphere for
the tooth dataset. The view for the fifth partition is figure 3.4(a).

73

viewpoints in adjacent time-steps that are far from each other, thus resulting in

abrupt jumps of the camera during the animation. A natural solution is to con-

strain the camera, but it still does not guarantee the most informative viewpoint.

For instance, it can result in a viewpoint which has a high information value for

each individual time-step, but does not show any time-varying changes. It is con-

trary to what is expected from an animation— it should show both the data at

each time-step, and also the changes occurring from one frame to the next. In

the next section, we present an alternate version of viewpoint information tailored

to capture the view information present in one time-step, taking into account the

information present in the previous step.

3.6.1 View Information

Consider two random variables X and Y with probability distributions r and

s respectively. If X and Y are related (not independent), then an observation of

X gives us some information about Y . As a result, the information carried by Y ,

conditional on observing X, becomes H(Y |X) ≡ H(s|r). Then the information

carried together by X and Y is H(X,Y) = H(Y,X) = H(X) + H(Y |X), as

opposed to H(X)+H(Y). We will use this concept to create a modified viewpoint

goodness measure for time dependent data.

Suppose there are n time-steps {t1, t2, . . . , tn} in the dataset. For a given view

V , we denote the entropy for time-step ti as H(V, ti) ≡ HV (ti). The view entropy

for all the time-steps together is HV (t1, t2, . . . , tn). We will assume a Markov

sequence model for the data, i.e., the data in any time-step ti is dependent on

the data of the time-step ti−1, but independent of older time-steps. Then the

74

information measure for the view, for all the time-steps taken together, is given

by equation (3.12). (3.11) is a standard relation [5], and (3.12) follows from the

independence assumption.

H(V) = HV (t1, t2, . . . , tn)

= H(t1) + H(t2|t1) + . . . + H(tn|t1, . . . , tn−1) (3.11)

= H(t1) + H(t2|t1) + . . . + H(tn|tn−1) (3.12)

The conditional entropies will be defined following the same principles outlined

in section 3.3. We consider a view to be good when the visibilities of the voxels are

in proportion to their noteworthiness. But in the time-varying case, the significance

of a voxel is derived not only from its opacity, but also from the change in its opacity

from the previous time-step. For the time-step ti, we then define the noteworthiness

factor of the jth voxel as Wj(ti|ti−1) =

{k · |αj(ti) − αj(ti−1)| + (1 − k) · αj(ti)} · Ij(ti) (3.13)

where, 0 < k < 1 is used to weight the effects of voxel opacities and the change in

their opacities. A high value of k will highlight the changes in the dataset. Suppose

the visibility of the voxel for the view V is vj(V, ti). Then, the conditional visual

probability, qj(ti|ti−1), of the voxel is

qj(ti|ti−1) ≡ qj(V, ti|ti−1) =
1

σ
· vj(V)

Wj(ti|ti−1)
(3.14)

where, σ is the normalizing factor as in equation (3.3). The entropy of the view V

is then calculated using equations (3.12) and (3.14). Voxels with both low opacities

and small changes (as defined by thresholds) are ignored for these calculations.

75

3.7 Results and Discussion

We have implemented our technique using a hardware-based visibility calcula-

tion which uses the shear-warp method of rendering. 128 sample views were used

for each dataset. The camera positions were obtained by a regular triangular tes-

sellation of a sphere with the dataset place at its center. View selection results for

the 128 × 128 × 80 tooth dataset have been shown in figure 3.4. Figure 3.6 shows

the results of a 5-way view space partitioning for the dataset using the JS diver-

gence measure. The partitioning helps to avoid selection of a set of good views

which happen to be similar to each other. Even though we have not considered the

physical distance between the viewpoints during partitioning, it forces the selected

viewpoints to be well distributed over the view sphere. Figure 3.7 shows view

evaluation results for a 128-cube vortex dataset. Both high and low quality views

are shown for comparison.

For time-varying data, we used the view information measure presented in sec-

tion 3.6. A sequence of 14 time-steps of the 128-cube vortex data was used. The

entropy for each view was summed over all the time-steps, as given by equation

(3.12). The conditional entropy for each time-step was calculated with k = 0.9 in

equation (3.13). A high value of k gives more weight to the voxels which are chang-

ing their values with time compared to high opacity voxels which remain relatively

unaltered. Figure 3.8(a) shows the view with the best cumulative entropy for the

time-series. Although the summed entropy gives a good overall view for the whole

time-series, there might be other views which are better for particular segments of

the time-series. Figure 3.8(b) plots the conditional entropies (H(tn|tn−1)) for four

76

(a) (b)

Figure 3.7: View Evaluation results for a 128-cube vortex dataset. Figure (a)
shows the recommended view with a high entropy value, (b) shows a bad view for
comparison.

selected views of the vortex dataset. The best overall view (figure 3.8(a)), which

is represented by the blue curve (highest curve on the right boundary), is not the

best choice for the first half of the series. For long time sequences, it might be

beneficial to consider different good views for different segments of time.

We calculated the time-varying view entropy over fifty time-steps of the 256-

cube shockwave dataset with 128 view samples. Figure 3.9 shows four time-steps

from a viewpoint which had a good entropy using the time-varying criteria, and

figure 3.10 shows the corresponding time-steps for a viewpoint which resulted in a

bad score.

“Out through the fields and the woods
And over the walls I have wended;
I have climbed the hills of view
And looked at the world, and descended;”

— from Reluctance, by Robert Frost.

77

 2 3 4 5 6 7 8 9 10 11 12 13 14
10.8

10.85

10.9

10.95

11

11.05

Time Series

E
nt

ro
py

(a) (b)

Figure 3.8: View Evaluation for the time-varying vortex dataset. (a) The best
overall view for 14 time-steps. (b) The conditional entropies of four selected views
for each of the 14 time-steps. The view in (a) is represented by the blue plot
(highest curve, top-right corner).

78

(a) (b)

(c) (d)

Figure 3.9: View entropy results over 50 time-steps of the 256-cube shockwave
dataset. Time steps 1, 16, 31 and 46 for a good view.

79

(a) (b)

(c) (d)

Figure 3.10: Low entropy viewpoint for 50 time-steps of the 256-cube shockwave
dataset. Time steps 1, 16, 31 and 46 are shown.

80

CHAPTER 4

LEVEL OF DETAIL FLOW VISUALIZATION

Visualization techniques for vector fields can be classified into local techniques

and global ones. Examples of local techniques include particle traces, stream-

lines, pathlines, and streaklines, which are primarily used for interactive data ex-

ploration. Global techniques such as line integral convolution(LIC)[10] and spot

noise[77], on the other hand, are effective in providing global views of very dense

vector fields. These techniques are classified as global techniques because direc-

tional information is displayed at every point of the field, and the only limitation is

the pixel resolution. The price for the rich information content of the global meth-

ods, however, is their high computational cost, which makes interactive exploration

difficult. These global methods allow users to interact not only by changing the

camera, but also by changing texture properties, advection parameters etc. For

example, users might want to zoom in/out, change the noise frequency, or modify

the advection methods. But every time a parameter is changed, the visualization

has to be re-created again from scratch. For high resolution renderings and large

datasets, the visualizations cannot be updated at interactive rates.

81

We have developed a level-of-detail based global vector field visualization tech-

nique aiming to tackle the above problems. Our algorithm uses a primitive called

streampatch, which stores the geometry of flow advection. These primitives can

be rendered at different levels of detail, thus allowing a trade-off between accu-

racy and rendering speed. An error metric is used to find the appropriate detail

level. Our framework decouples the advection and the rendering stages, and as a

consequence increases user interactivity by reusing the advection calculations and

giving the user greater flexibility in choosing input textures. The error can also be

used as a guide for generating visualizations which attract the users attention to

the more important regions.

This chapter is organized as follows. In section 4.1, we mention the previous

research in flow visualization. We then present the level-of-detail algorithm for 2D

steady state flow (section 4.2). We then discuss the level of detail selection process

(section 4.3). The hardware acceleration issues are presented next (section 4.4),

followed by the results and examples of use of LoD in 2D fields(section 4.5).

4.1 Flow Visualization

4.1.1 Texture Based Methods

Texture based methods are the most popular techniques for visualization of

dense vector fields. Spot noise, proposed by Van Wijk[77], convolved a random

texture along straight lines parallel to the vector field. Another popular tech-

nique is the Line Integral Convolution (LIC). Originally developed by Cabral and

Leedom[10], it uses a white noise texture and a vector field as its input, and results

in an output image which is of the same dimensions as the vector field. Stalling and

82

Hege[69] introduced an optimized version by exploiting coherency along stream-

lines. Their method, called ‘Fast LIC’, uses cubic Hermite-interpolation of the

advected streamlines, and optionally uses a directional gradient filter to increase

image contrast. Forssell[22] applied the LIC algorithm to curvilinear grids. Okada

and Kao[57] used post-filtering to increase image contrast and highlight flow fea-

tures. Forssell[22] and Shen et. al[65] extended the technique to unsteady flow

fields. Verma et. al[81] developed an algorithm called ‘Pseudo LIC’ (PLIC) which

uses texture mapping of streamlines to produce LIC-like images of a vector field.

They start with a regular grid overlaying the vector field grid, but they compute

streamlines only over grid points uniformly sub-sampled from the original grid.

Jobard and Lefer[40] applied texture mapping techniques to create animations of

arbitrary density for unsteady flow.

4.1.2 Level of Detail

Level-of-detail algorithms have been applied in various forms to almost all areas

of visualization, including flow visualization[25],[73]. Cabral and Leedom[11] used

an adaptive quad-subdivision meshing scheme in which the quads are recursively

subdivided if the integral of the local vector field curvature is greater than a given

threshold. We use a similar subdivision for our level-of-detail approach. Depend-

ing on the error-threshold, our algorithm can produce visualizations spanning the

whole range from high-fidelity images to preview-quality (high frame-rate) images.

Being resolution independent, it allows the user to freely zoom in and out of the

vector field at interactive rates. Unlike many variations of LIC which require post-

processing steps like equalization, a second pass of LIC, or high-pass filtering[57],

83

our method does not need any extra steps. Moreover, changing textures and/or

the texture-mapping parameters can allow us to produce a wide range of static

representations and animations.

4.2 Level of Detail Overview

In this section we present an interactive algorithm for global visualization of

dense vector fields. The interactivity is achieved by level-of-detail computations

and hardware acceleration. Level-of-detail approximations make it possible to

save varying amounts of processing time in different regions based on the local

complexity of the underlying vector field, thus providing a flexible run-time user-

controlled trade-off between quality and execution time. Hardware acceleration

allows us to compute dense LIC-like textures more efficiently than line integral

convolution. Use of graphics hardware makes it possible to display the vector field

at very high resolutions while maintaining the high texture frequency and low

computation times.

To perform level-of-detail estimation, we define an error measure over the vector

field domain (section 4.3.1). As a preprocessing step, we then construct a branch-

on-need (BONO)[87] quadtree which serves as a hierarchical data structure for the

error measure. The error associated with a node of the quadtree represents the

error when only one representative streamline is computed for all the points within

the entire region corresponding to the node. At run time, the quadtree is traversed

and the error measure stored in each node is compared against a user-specified

tolerance. Using the level-of-detail traversal we are able to selectively reduce the

number of streamlines required to generate the flow textures. In section 4.3.2,

84

we discuss how the quadtree traversal is controlled based on the resolution of the

display.

Hardware accelerated texture mapping is used to generate a dense image from

the scattered streamlines output by the traversal phase of the algorithm. During

the above mentioned quadtree traversal, quad blocks of different levels correspond-

ing to different spatial sizes are generated. For each region, a streamline is orig-

inated from its center. A quadrilateral strip, with a width equal to the diagonal

of the region, is constructed following the streamline. This ensures that the entire

region is covered. Henceforth we will refer to this quadrilateral strip as a ‘stream-

patch’ and to the streamline as the ‘medial streamline’. The stream-patch is then

texture mapped with precomputed LIC images of a straight vector field. The tex-

ture coordinates for the quad-strip are derived by constructing a corresponding

quad-strip at a random position in texture space. Figure 4.1 shows the construc-

tion and texture mapping of a stream-patch, and details are presented in section

4.4.1. The stream-patches for different regions are blended together (section 4.4.2).

Each stream-patch extends beyond the originating region, covering many regions

lying on its path. If a region has already been drawn over by one or more adjacent

regions’ stream-patches, it is no longer necessary to render the stream-patch for

the region. In section 4.4.3, we discuss the use of the stencil buffer in graphics

hardware to skip such regions.

4.2.1 Extension to 3D algorithm

Li et. al[48] extended the 2D primitives presented in the previous sections to

3D. They use streamtubes, a 3D structure corresponding to streampatches in 2D.

85

(a) (b) (c) (d)

Figure 4.1: Construction of the stream-patch: (a) the medial streamline, (b) the
quadrilateral strip constructed on the streamline, (c) texture coordinates corre-
sponding to the vertices of the quad-strip, and the texture parameters a, b, (d) the
quad-strip after it has been texture mapped.

The streamtubes are voxelized, and each voxel stores the texture coordinates to

be used in texture mapping. By dynamically changing the input texture, they are

able to achieve flexible appearance control. The volume output by voxelization of

the streamtubes is rendered on the fly using hardware. Since the current hardware

can support, at a maximum, only 256-cube volumes, the level-of-detail algorithm

cannot offer substantial savings in computation time for this algorithm.

In the following sections, we first explain the level-of-detail selection criteria,

and then the hardware acceleration features of the algorithm.

86

4.3 Level-of-Detail Selection

The level-of-detail selection process involves two distinct phases: (1) construc-

tion of a quadtree (for level-of-detail errors) as a preprocessing step, and (2) resolu-

tion dependent traversal of the quadtree at run-time with user-specified thresholds.

Below, we elaborate on each of these stages.

4.3.1 Error Measures

An ‘ideal’ error metric for a level-of-detail representation should give a measure

of how (in)correct the vector field approximation will be compared to the original

field data. The textures produced by the algorithm provide information through

unquantifiable visual stimulus. Therefore it is difficult to formally define the ‘cor-

rectness’ of the visualization produced. The fidelity of illustration of the vector

field should be measured not from the values of the pixels of the image produced,

but from the visual effect that the texture pattern has on the user. We use an

error measure which tries to capture the difference between the texture direction

at a point, which is the approximated vector direction, and the actual vector field

direction at the point.

Consider the texture pattern at a point which is not on the medial streamline,

but falls within the stream-patch. For each quad of the quad-strip, the texture

direction is parallel to the medial-streamline segment within that quad. So, within

each quad, we are approximating the vector field as a field parallel to the medial-

streamline. The error can thus be quantified by the angular difference between the

directions of the medial streamline and the actual vector field at the sample point.

87

Since each quadtree node originates a stream-patch that will travel outside

the node boundary, the error measure associated with a particular quadtree node

should consider all the points that are within the footprint of the stream-patch.

To do this, for each quad in the quad-strip, we find the angular difference between

the directions of the medial streamline segment and each of the vector field’s grid

points within the quad. The error for a stream-patch originated from a quadtree

node is then defined as the maximum angular difference for the grid points across

all quads of that stream-patch. Since the error would depend on the length of the

stream-patch (which is user-configurable), we take a conservative approach and

calculate the errors assuming large values of length. Note that since taking the

maximum angular deviation as the error always keeps the error below the user-

specified tolerances, it can be very sensitive to noise. For noisy data, taking a

weighted average might prove helpful. The level-of-detail approximation errors for

a particular level are computed by constructing stream-patches for all the quadtree

nodes for that level and then computing the errors for each stream-patch. The error

values for the vector field in figure 4.7 are shown in figure 4.2, and those for the

vector field in figure 4.8 are in figure 4.3. The error values are normalized to the

range [0.0,1.0] to make them user friendly.

It can be seen from the images in figure 4.2 that in any particular level, the

regions around the critical points (the three vortices and two saddle points) have

the highest error values. The critical points do not need any special handling as

they would be represented by stream-patches of the finest level-of-detail allowed

by the display resolution (section 4.3.2). Because of high curvature around critical

88

Figure 4.2: Multi-level error for the vector field shown in figure 4.7. The images
shown correspond to the following three levels of the error quadtree: 16x16 (top-
left), 8x8 (bottom-left) and 4x4 (right) square regions. The error value range is
mapped to [0.0,1.0], with 0.0 being the darkest and 1.0 the brightest.

points, use of thicker stream-patches would have resulted in artifacts due to self-

intersections. The errors gradually fall off as we move away from the critical points,

and hence would result in progressively coarser level-of-detail stream-patches. Also,

errors for any particular region increase across levels. So, a high error threshold

will permit a coarse level-of-detail approximation. Similarly, in figure 4.3, the

regions near the vortices have the highest errors. Since no run-time parameters

are required for the error calculations, this error quadtree needs to be generated

only once for the entire life of the dataset. At run-time, it can be read in along

with the dataset.

89

Figure 4.3: Multi-level error for the vector field shown in figure 4.8. The images
shown correspond to the levels 8x8 (top-left), 4x4 (top-right) and 2x2 (bottom) of
the error quadtree. The error value range is mapped to [0.0,1.0], with 0.0 being
the darkest and 1.0 the brightest.

4.3.2 Resolution dependent level-of-detail selection

In this section we describe the run-time aspects of the level-of-detail selection

phase, which requires the user to input a threshold for acceptable error. We shall

call the ratio of the vector field resolution to the display resolution the resolution

ratio, k. Consider, for example, an xv × yv vector field dataset, and suppose our

visualization window resolution is xw × yw. Let

xv = k × xw; yv = k × yw (4.1)

Note that in an interactive setting, the value of k changes if the user zooms in/out.

If the display window has a resolution not smaller than that of the vector field, i.e,

90

k ≤ 1, the quadtree is traversed in a depth first manner, and stream-patches are

rendered for quad blocks satisfying the error condition. In cases the display reso-

lution is smaller, i.e., k > 1, the quadtree traversal is performed using resolution

dependent tests in addition to the error threshold test. The resolution dependent

controls in traversal are motivated by two goals: (1)we want to limit the quadtree

traversal to the minimum block size which occupies more than one pixel on the

display, and (2)we want to avoid a potential popping effect caused by a changing

k which causes the above mentioned minimum block size to go up (or down) by

one level.

For the discussion below, let us assume that at a particular instant m > k > m
2
,

where m
2

= 2i, i = {1, 2, ...}. Since m
2
× m

2
blocks occupy a display area less than

the size of one pixel, we limit the quadtree traversal to the m×m block level. Now,

if the user zooms in, k becomes progressively smaller, and at some point of time

we will have k = m
2
. At this instant, the minimum displayable block size becomes

m
2
. A lot of m × m blocks (those that do not satisfy the error threshold) will be

eligible to change the level-of-detail to m
2
× m

2
. If allowed to do so, it will result

in a popping effect. To avoid this, we allow only a very small number of m × m

blocks to change their level-of-detail to m
2
× m

2
. As the user keeps zooming in, k

continues to decrease, and we gradually allow more and more blocks to change

their level-of-detail. If the user continues to zoom in, by the time k becomes equal

to m
4
, all the m × m blocks will have changed into m

2
× m

2
blocks. This gradual

change in the level-of-detail is achieved by modifying the error threshold test for

m × m blocks. The user supplied error threshold is scaled to a high value when

91

k = m
2
. As k decreases, we decrease the scaled threshold, such that by the time

k = m
4
, the threshold reaches its original user supplied value.

4.4 Hardware Acceleration

After the quadtree traversal phase has resolved the levels-of-detail for different

parts of the vector field, stream-patches are constructed for each region corre-

sponding to its level-of-detail. They are then texture mapped and rendered using

graphics hardware (section 4.4.1). The different sized stream-patches need to be

blended together to construct a smooth image (section 4.4.2). An OpenGL stencil

buffer optimization is used to further reduce the number of medial streamlines

computed (section 4.4.3).

4.4.1 Resolution Independence

For each quadtree node that the traversal phase returns, a stream-patch is

constructed using the medial streamline for that node. The texture coordinates

for the stream-patch are derived by constructing a corresponding quad-strip at a

random position in the texture space (figure 4.1(c)). The parameters a (width) and

b (height) of the corresponding texture space quad-strip determine the frequency

of the texture on the texture mapped stream-patch.

Since we are essentially rendering textured polygons, the output image can

easily be rendered at any resolution. When the window size is the same as the

vector field size, that is, the resolution ratio k is unity (equation (4.1)), the stream-

patches have a width equal to the diagonal of the quadtree nodes they correspond

to. When k is changed (e.g., when the user interactively zooms in/out, or when

92

the window size is changed), the width of the stream-patches at each level-of-

detail is modulated by 1
k
. Simultaneously, a and b need to be changed to reflect

the change in k. Otherwise, when we zoom out, the texture shrinks leading to

severe aliasing (figure 4.9(b)). Note that we cannot use anti-aliasing techniques

like mipmaps as the texture will get blurred and all directional information will be

lost. Similarly, for zoom ins, the texture is stretched, and we lose the granularity

(figure 4.10(b)). For high zoom ins, or for high resolution large format displays,

the ‘constant texture frequency’ feature of our algorithm proves very useful. When

the display resolution is finer than the vector field resolution (k < 1), we are left

with sparsely distributed streamlines. But due to the high texture frequency, the

final image gives the perception of dense streamlines, which can be considered to

be interpolated from the sparse original streamlines.

4.4.2 Blending Stream-patches

To ensure that the final image shows no noticeable transition between adjacent

simplified regions, a smooth blending of neighboring stream-patches needs to be

performed. A uniform blending (averaging) will result in two undesirable prop-

erties. Firstly, the resultant image will loose contrast. If many stream-patches

are rendered over a pixel, its value tends to the middle of the gray scale range.

This is specially unsuitable for our algorithm, as the loss of contrast will be non-

uniform across the image due to the non-uniform nature of the level-of-detail de-

composition of the vector field. Secondly, the correctness of the final image (up

to the user-supplied threshold) will be compromised. This happens because a

93

stream-patch corresponding to a coarser level-of-detail will have a non-zero ef-

fect on its neighboring regions, some of which might correspond to finer level-of-

details. To prevent coarser level-of-detail stream-patches from affecting the pixel

values of nearby finer level-of-detail regions, we use a coarser-level-of-detail to

finer-level-of-detail rendering order, combined with the opacity function shown in

figure 4.4. The OpenGL blending function used is glBlendFunc(GL SRC ALPHA,

GL ONE MINUS SRC ALPHA). Because we use an opacity value of unity at the

central part of the stream-patch, the pixels covered by this part are completely

overwritten with texture values of this patch, thus erasing previous values due to

coarser level-of-detail stream-patches. Moreover, this opacity function results in

a uniform contrast across the image, even though the number of stream-patches

drawn and blended over different parts of the image varies a lot. To reduce aliasing

patterns, we jitter the advection length of medial streamlines in either direction

and adjust the opacity function accordingly.

To ensure a smooth transition between adjacent patches, we also vary the

stream-patch opacities in the direction perpendicular to the medial-streamline us-

ing a similar opacity function. This is done at a cost of increased rendering time

since we add one quad strip on each side of the stream-patch so that the opaci-

ties can be varied laterally. In our implementation, the user can turn the lateral

opacity variation off for high-frame rate preview quality requirements.

94

opacity (α)

0 1

Arc−length of
the medial
streamline,
reparametrized
to lie between
−1 and 1, with
the originating
point at 0.

−1

1

0

(a) (b) (c)

Figure 4.4: Opacity function: (a) the value of α over the length of the stream-
patch, (b) the patch without blending, and (c) the stream-patch after blending.

4.4.3 Reducing Streamline Redundancy

Because stream-patches continue beyond their originating regions, each stream-

patch would cover many pixels, albeit with different opacities. From our experi-

ments, we found that a pixel goes to an opacity value of unity with the first few

stream-patches that are rendered over it. Thus, if a pixel has been drawn over

by a few stream-patches, then we do not need to texture map any more stream-

patches for this pixel. We use this idea to reduce the number of stream-patches

that need to be rendered, and hence the number of medial streamlines that need

to be computed. However, among the many stream-patches that may have been

rendered over this pixel, only those which are of the same or finer level of detail

as this pixel’s level-of-detail should be counted.

We avoid doing this ‘minimum number of renderings’ test in software by using

the OpenGL Stencil buffer to keep track of how many stream-patches have been

95

drawn over a pixel. When GL STENCIL TEST is enabled, the stencil buffer com-

parison is performed for each pixel being rendered to. The stencil test is configured

using the following OpenGL functions:

• glStencilFunc(GL ALWAYS, 0, 0): Specifies the comparison function used

for the stencil test. For our purpose, every pixel needs to pass the stencil

test (GL ALWAYS).

• glStencilOp(GL KEEP, GL INCR, GL INCR): Sets the actions on the stencil

buffer for the following three scenarios: the stencil test fails, stencil test passes

but depth test fails, and both tests pass. In our case, the stencil test always

passes, so we increment (GL INCR) the value of the stencil buffer at the

pixel being tested by one.

Before starting to compute the stream-patch for a region, we read the stencil buffer

values for all the pixels corresponding to that region. If all the pixels have been

rendered to a minimum number of times, we skip the region. If not, we render the

stream-patch and the stencil buffer values of all the pixels which this patch covers

are updated by OpenGL. While going through our coarser-to-finer level drawing

order (as mentioned in section 4.4.2), we clear the stencil buffer each time we finish

one level. Otherwise, a finer level-of-detail region which has been drawn over by

coarser level-of-detail stream-patches might be skipped because each pixel in the

region has already satisfied the threshold of minimum number of renderings. This

will violate the error-criteria for the region.

The stencil buffer read operation is an expensive one in terms of time. If done

for every stream-patch, it would take so much time that we would be better off

96

not using it. For our implementation, we read the stencil-buffer once every few

hundred stream-patches. The values are reused till we read in the buffer once

again.

4.5 Results and Discussion

We present the performance and various visual results of our algorithm imple-

mented in C++ using FLTK for the GUI. The timings are taken on a 1.7 GHz

Pentium with an nVidia Quadro video card. The results show that the image qual-

ity remains reasonable even when error thresholds are increased to achieve high

speedups.

Moreover, various aspects of the visualizations are interactively configurable,

as shown by the different visuals presented. We describe how the algorithm can be

configured to achieve different effects– interactive zoom-in or zoom-out, embedding

scalar information, animation, unsteady flow, multiple textures etc.

4.5.1 Range of Image Quality and Speed

We present results for a simulated dataset of vortices (and saddles) with di-

mensions of 1000x1000, and for a real 573x288 dataset of ocean winds. The error

calculation times for the vortices dataset was 148 seconds, and the ocean dataset

required 20 seconds. For each dataset, two images are shown: one with tight error

limits, and the other with relaxed bounds. For comparison, the images produced

by FastLIC are shown in figures 4.5,4.6. A fourth order adaptive Runge-Kutte

integration is used with the same parameters for both FastLIC and our algorithm.

97

dataset FastLIC LOD(low error) LOD(high error)

V ortices 12.32s 0.81s(15.2) 0.39s(31.6)

Ocean 1.9s 0.32s(5.9) 0.16s(11.9)

Table 4.1: Timing results for the 1000x1000 Vortices dataset and the 573x288
ocean winds dataset. The timings reported are for FastLIC, and our algorithm for
two level-of-detail error thresholds. The speed-ups for the level-of-detail algorithm
with respect to FastLIC are shown in parentheses. No post-processing has been
done in any of these runs. The images for these runs are in figures 4.5, 4.6, 4.7
and 4.8.

The medial streamlines in our algorithm were advected to the same length as the

convolution length used for FastLIC.

Figures 4.7 show the results of our level-of-detail algorithm for the vortices

dataset rendered for an 1000x1000 display window. Figure 4.7(a) was generated

using a low error threshold in 0.81 seconds, while figure 4.7(b) was produced using

a high error threshold in 0.39 seconds. Compared to FastLIC, we achieve speed-

ups of 15-30 depending on the error threshold for level-of-detail selection. Figures

4.8(a) and (b) are outputs for the ocean dataset, rendered for a display window of

same dimensions. A low error threshold was used for figure 4.8(a); it was relaxed for

figure 4.8(b). The times taken were 0.32 and 0.16 seconds respectively, for speed-

ups of 5.9-11.9 compared to FastLIC. There is no visible difference in image quality

in either dataset for the low error thresholds. For the higher thresholds (figure

4.7(b) and 4.8(b)), the differences are very minute and not readily noticeable.

98

Figure 4.5: LIC image of the 1000x1000 vortices dataset in 12.32s, using convolu-
tion length of 60

Figure 4.6: LIC image of the 573x288 ocean wind dataset in 1.9s, using convolution
length 30.

99

(a)

(b)

Figure 4.7: Vortices dataset using: (a)low error threshold in 0.81s, (b)high error
threshold in 0.39s. The image quality remains good even for high error thresholds.

100

(a)

(b)

Figure 4.8: Ocean dataset using: (a)low error threshold in 0.32s, (b)high error
threshold in 0.19s. The image quality remains good even for high error thresholds.

101

4.5.2 Interactive Exploration

The level-of-detail features allow users to visualize the vector field at a wide

range of resolutions. The algorithm automatically adjusts the display parameters

to render an unaliased image of a large dataset for display on a small screen.

Figures 4.9 (a) and (b) show the results for visualizations on low resolution displays,

with and without resolution adjusted parameters. At the other extreme, the vector

data can be rendered at very high resolutions when displayed on large format

graphics displays, or when viewed at high zoom factors. The hardware texture

mapping allows us to change resolutions at interactive frame rates, thus allowing

the user to freely zoom into and out of the dataset. Figure 4.10(a) shows the

central vortex of the vortices dataset at a magnification factor of 20x. The texture

mapping parameters are changed dynamically, so that the texture does not get

stretched. For comparison, figure 4.10(b) shows the same rendering when the

texture parameters are not adjusted.

4.5.3 Scalar Variable Information

Information about a scalar variable defined on the vector field can be superim-

posed on the directional representation of the vector field. One technique for that

is to modulate the texture frequency of the final image based on the local values

of the scalar. Kiu and Banks[43] applied this scheme to LIC images by using noise

textures of different frequencies. We follow a different approach of using multiple

textures to achieve the same goal.

We start with an ordered set of precomputed textures, in which some texture

property varies monotonically from one extreme of the set to the other. For the

102

(a) (b)

Figure 4.9: Zoom out: The vortices dataset rendered for a display window one-
fourth its size: (a)The texture coordinates are adjusted to prevent aliasing, and the
finest displayable level-of-detail is adjusted to match display resolution. (b)aliasing
results if the image is scaled down without adjusting the texture parameters.

(a) (b)

Figure 4.10: Zoom in: The central vortex of the dataset in figure 4.7 is shown at a
magnification factor of 20x: (a)The texture coordinates are adjusted automatically
to compensate for the magnification factor, thus maintaining the original texture
frequency, (b)the texture loses granularity if the coordinates are not adjusted.

103

example presented in figure 4.11, the property is the length of the LIC directional

pattern. That is, textures of short LIC patterns (produced by small convolution

lengths) are at one end of the set and those with long patterns (large convolution

lengths) are at the other. For each quad in a stream-patch, different textures

are selected as the source for texture mapping based on the value of the scalar,

much like mipmaps are used depending on screen area. However, use of different

textures in adjacent quads of the quad-strip destroys the directional continuity

of the texture mapped strip. As a way around this, in a process analogous to

blending two adjacent levels of mipmaps, each quad is rendered twice using textures

adjacent to each other in the ordered set of textures. The opacities of the two

textures rendered are weighted so that the resultant texture smoothly varies as the

scalar value changes. The net effect is a texture property which varies smoothly

relative to a scalar value. The detail of the scalar representation in a particular

image is limited to the level-of-detail approximation that is used for generating the

image. In some situations it may be desired to control the error in the scalar value

illustration. Then the quadtree of errors would need to be constructed using both

the angular error (section 4.3.1) and the error in the scalar value. Figure 4.11 is

generated using the multi-texturing method to show the magnitude of the velocity

of the vortices dataset. The short patterns indicate lower velocity, whereas the

LIC pattern is long in areas of high velocity.

We can also apply the multiple texture technique to preserve constant texture

frequency for vector fields on grids which are not regular. Using the method

presented by Forsell[22], a vector field representation is generated on a regular

104

Figure 4.11: Illustration of use of multiple textures to show a scalar variable on
the vector field, velocity in this example. The velocity is high in parts around the
vortices, and is low at the lower left and upper right corners.

grid. This image is then texture mapped onto the actual surface in physical space.

During this mapping, the regular grid cells used for computation are transformed

to different sizes in physical space, which can result in the stretching or pinching of

the texture. To prevent this, we use textures of varying frequencies for each quad

subject to the area the quad occupies in physical space. Figure 4.12(a) shows the

result when a constant frequency texture is mapped on a grid in which the cells

grow progressively smaller from bottom to top, resulting in aliasing. Figure 4.12(b)

is the image generated by our algorithm using multiple frequency textures subject

to the grid cell area. The texture frequency decreases from bottom to top, so that

when it is mapped to the grid (figure 4.12(c)), there is no aliasing.

105

(a) (b)

(c)

Figure 4.12: Multiple texture rendering to show antialiasing for a grid which has
small cells at the top and large ones at the bottom: (a)constant frequency image
mapped to the grid, showing aliasing, (b)multi-frequency texture generated using
multiple textures, (c)the texture in (b) mapped to the grid, without aliasing.

106

4.5.4 Streamline Textures

The level-of-detail technique can be applied with a variety of textures to get

diverse visualizations. If we use a sparse texture, it gives the output an appear-

ance of streamline representation. This is a popular method of flow visualization

[74],[38], [83].

Figures 4.13(a-c) are generated using a stroke-like texture to give the image a

hand drawn feeling. The stroke in the texture is oriented by making the tail wider

than the head. This adds directional information to the image. Unlike previous

textures, this texture has an alpha component which is non-zero only over the

oriented stroke. Figure 4.13(a) is generated by constraining the level-of-detail

approximation to a single level-of-detail. This creates an uniform distribution of

streamlines. The stencil buffer option (section 4.4.3) is turned on to limit the

streamlines from crowding one another. Figures 4.13(b-c) have been rendered

using the level-of-detail approximations. Since the level-of-detail is finer near the

saddle points and the vortices, more streamlines are drawn near these parts. Due

to the relative lack of streamlines in the parts of the vector field which have low

errors, the more complex parts of the vector field stand out to the viewer.

4.5.5 Animation

Animation of the vector field images is achieved by translating the texture co-

ordinates of each stream-patch from one frame to another. The only additional

constraint is that a cyclic texture be used for texture mapping the stream-patches.

For example, the texture in figure 4.1(c) needs to be cyclic along the vertical direc-

tion. For each time step, the image is rendered by vertically shifting (downwards)

107

(a) (b)

(c)

Figure 4.13: Stroke-like textures used to generate streamline representation: (a)
Uniform placement of streamlines using constant level-of-detail, (b),(c) streamlines
generated using the error quadtree traversal. The level-of-detail algorithm gener-
ates a non-uniform distribution of streamlines, giving more detail to higher error
regions and vice versa.

108

the texture coordinates compared to the previous frame. Since the texture is cyclic,

if the texture coordinates move past the bottom edge of the texture, they reappear

at the top edge. To show different speeds, the texture coordinates for each stream-

patch are moved by an amount proportional to the velocity of the seed-point of

the patch.

4.5.6 Unsteady Flow

The main benefit of the 2D geometry primitives (and their 3D extension in

[48]) is the decoupling of the advection stage and the rendering stage. Since time-

varying flow datasets require a lot of calculations in the advection stage, these

algorithms are particularly suited for unsteady flow applications.

We have added unsteady flow visualization capability to three-dimensional flow

visualization algorithm by Li et. al[48]. As mentioned in section 4.2.1, the algo-

rithm creates 3D geometry primitives from the flow streamlines, and stores them

in a volumetric form. Each voxel stores the texture coordinates inherited from

the geometry (streamtube) passing through the voxel. The volume is rendered

using hardware to generate the final image. The main difference between the pro-

cessing of steady state and unsteady flows comes from the fact that pathlines can

intersect with themselves or each other, while streamlines do not. As a result, for

time-varying datasets, there can be voxels in the volume that intersect pathlines

more than once, and thus need to store more than one set of texture coordinates.

We will explain this situation with the help of an example, shown in figure 4.14(a).

The pathlines starting from both A and B pass through the voxel shown. The

pathline with coordinates (u1, v1) passes through the voxel at time t = 3, while

109

(a) (b)

Figure 4.14: Example of voxel update for unsteady flow. (a) Two pathlines pass
through the voxel shown, at t = 3, and t = 10. (b) The texture coordinates
corresponding to the pathlines should be written to the voxel before the voxel is
rendered using those values. (u1,v1,3) is written when initially creating the volume,
and (u2,v2,10) is written after rendering the frame for t = 3, but before rendering
t = 10.

the pathline (u2, v2) intersects the voxel at time t = 10. Thus the voxel needs to

store both (u1, v1, 3) and (u2, v2, 10). For a correct rendering, the voxel should

contain the first coordinates at the time step t = 3, and then switch to the second

one when the time step equals to 10. To achieve this, the time-varying algorithm

will need to perform interactive updates of these coordinates during rendering.

Initially, this voxel contains the set with the smallest time-stamp, i.e., (u1, v1, 3).

At t = 3, the voxel is rendered with these values. This set is not needed after t = 3,

and the voxel should contain the newer coordinates (u2, v2, 10) while rendering the

frame for t = 10. So, the voxel is updated with the second trace tuple information

after rendering t = 3, but before t = 10.

110

The issue of multiple texture coordinates in a single voxel is handled in the

following manner: in a preprocessing stage, pathlines are advected and the voxel

contention information (i.e., which voxel to replace at what time-step) is collected.

A book-keeping operation is performed to organize the voxels that will intersect

the pathlines multiple times. Since those voxels require run-time updates during

rendering, if neighboring voxels need to be updated at the same time step, then it

is more efficient to update all of them in one go instead of using multiple texture

writes for each individual voxel. To do this, the book-keeping operation stores each

group of such neighboring voxels into a single update volume. Each such volume

is generated and stored separately, and there can be multiple update volumes for

each time step. After the preprocessing stages complete, the data is visualized by

rendering the current volume for each time-step, and dynamically updating the

volume with update volumes for every new time-step. Figure 4.5.6 shows four

snapshots from an animation of the time-varying algorithm.

“Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;”

— from The Road Not Taken, by Robert Frost.

111

(a) (b)

(c) (d)

Figure 4.15: Four snapshots from an animation of the vortices data set using the
time-varying Chameleon algorithm. The images were generated using a line bundle
texture with lighting.

112

CHAPTER 5

CONCLUSION

In this thesis, we have introduced three algorithms that use importance mea-

sures defined on the data to redistribute our resources– compute power, storage,

and manpower. These help improve the utility of the visualization techniques in

difficult situations, such as when large datasets are used. We outline our contri-

butions below.

5.1 Range-Search using Compressed data-structures

We have presented a data structure for speeding up isosurface extraction using

transform coding techniques. We use the spatial coherence present in the data to

transform the [minimum,maximum] information of cells into a more compression

friendly representation. This information is then quantized in a non-uniform man-

ner, with more storage dedicated to regions of the span-space that have cells with

a small difference between their maximum and minimum values. In this scenario,

the importance exists in the span-space, where the denser regions (that is, regions

with more cells) are given more quantization levels.

Our contributions are as follows:

113

• We have presented a data structure for speeding up isosurface search. Sig-

nificant reduction is achieved in terms of the space requirement of the search

structures, without compromising the search speed. We achieve compres-

sion levels of about 22%. These search structures do not require high pre-

computation costs, and the implementation is very simple. The only compu-

tations involved are additions and subtractions, and sorting.

• We have also presented a search algorithm suitable for large datasets. We

achieve search times comparable to the interval trees (see table 2.3). The

search algorithm does not need to be modified for out-of-core implemen-

tations. We also discuss an incremental search algorithm using our data

structure.

• We have presented an analysis of the errors involved in quantization, and

have showed the trade-off between search errors and data-structure size as a

function of the number of quantization levels.

• The search algorithm can work with both structured and unstructured grid

datasets, and can readily incorporate existing methods for reducing the

search data-structure size (like using meta-cells and the checker-board pat-

terns).

5.2 Automatic View Selection

We have presented a measure for finding the goodness of a view for volume

rendering. We have used the properties of the entropy function to satisfy the

intuition that good views show the important voxels more prominently. The user

114

sets the noteworthiness of the voxels by specifying the transfer function. Our

algorithm can be used both as an aid for human interaction in not-so-interactive

systems, and also as an oracle to present multiple good views in less interactive

contexts. Furthermore, view sampling methods such as IBR can use the sample

similarity information to create a better distribution of samples.

Our contributions are as follows:

• We have presented measures for finding different view properties such as

view goodness, view stability and view likelihood. We use voxel importances

and the view-dependent visibilities in an entropy function form to define the

goodness of a view.

• The users are allowed to define the voxel noteworthiness (the voxel impor-

tance). Our algorithm can hence easily incorporate domain knowledge. The

users are not required to have any visualization expertise to use this method.

• We use the JS-metric to compare the probability vectors for two viewpoints.

This is used to compare and contrast two viewpoints using the view stability

and view likelihood definitions.

• A view space partitioning scheme is introduced. We partition the viewpoints

into different clusters, and select a representative from each cluster. Such a

set of representative views captures most of what can be seen of the dataset

from all angles, and thus can prove useful in non-interactive situations.

• A GPU-based algorithm for visibility calculation is presented. It is based on

the shear-warp algorithm. It speeds up the most time-consuming part our

115

view selection method, and now the view selection can be done in a matter

of few minutes.

• We also present a modification to our entropy definition to incorporate time-

varying data.

• Our visibility calculation method is independent of the rotation, translation

and scaling parameters of the camera, as long as the camera viewing direction

is maintained. In the future, we hope to utilize this fact to relax the camera

position from the current restriction of having it lie on view sphere.

5.3 Level of Detail Vector Field Visualization

Using a level-of-detail framework, we have reduced the computation times for

creating a dense visualization of vector fields. We have presented an error measure

which can discriminate between regions of the vector field based on their suscep-

tibility to errors introduced by simplification. This measure is then used to focus

the computational resources on regions which produce greater errors. Coupled

with hardware acceleration, the algorithm generates high quality visualizations at

interactive rates for large datasets and large displays. The advection and the ren-

dering stages are decoupled, which allows the user to change the textures and other

display properties interactively. The resolution independence and user-controlled

image quality features make this algorithm extremely useful for vector data explo-

ration.

Our contributions are as follows:

116

• We have presented a simplification method that can be used to reduce com-

putations required to create a dense visualization of the vector field. Stream-

lines are used to warp a geometric object, which is the texture mapped to

create the appropriate visualization.

• We have presented an error measure which can discriminate between regions

of the vector field. It controls the amount of simplification in different regions

of the dataset by limiting the errors produced. The error cut-off is input

by the user, thus allowing a trade-off between representation accuracy and

rendering speed which is controlled by the users.

• We present hardware based techniques to limit redundancy due to overlap of

the rendered geometry, and speeding up the process even more.

• By using texture mapped geometry to create the visualization, we decou-

ple the advection and rendering parts of the algorithm. Once the advection

is done, we can interactively change the input texture without redoing the

advection. This gives us a great deal of flexibility in terms of controlling

the final appearance of the visualization. The textures can also be adjusted

dynamically to adjust of zoom-in or zoom-out situations, or to reduce an-

tialiasing in curvilinear grids. We have also presented results showing use of

multi-texturing, and of alternative textures.

117

We hope that our research will help, in a small way at least, our users get

insights from their data. We also hope that this research will contribute to new

ideas and visualization methods.

“The lights begin to twinkle from the rocks:
The long day wanes: the slow moon climbs: the deep
Moans round with many voices. Come, my friends,
’Tis not too late to seek a newer world.”

— from Ulysses, by Alfred Lord Tennyson.

118

BIBLIOGRAPHY

[1] T. Arbel and F. Ferrie. Viewpoint selection by navigation through entropy
maps. In Proc. of the 7th IEEE International Conf. on Computer Vision
(ICCV-99), volume I, pages 248–254. IEEE, 1999.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for improved
interactivity. In 1996 Symposium for Volume Visualization, pages 39–46. IEEE
Computer Society Press, Los Alamitos, CA, Oct. 1996.

[3] Raymond E. Barber and Jr. Henry C. Lucas. System response time operator
productivity, and job satisfaction. Comm. of the ACM, 26(11):972–986, 1983.

[4] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in higher dimensions.
In Proceedings of Visualization ’00, pages 267–273. IEEE Computer Society
Press, Los Alamitos, CA, 2000.

[5] Richard E. Blahut. Principles and practice of information theory. Addison-
Wesley Publ. Co., 1987.

[6] U.D. Bordoloi and H.-W. Shen. Hierarchical lic for vector field visualization.
In Proceedings of NSF/DoE Lake Tahoe Workshop on Hierarchical Approxi-
mation and Geometrical Methods for Scientific Visualization, 2000.

[7] U.D. Bordoloi and H.-W. Shen. Hardware accelerated interactive vector
field visualization: A level of detail approach. Computer Graphics Forum,
21(3):605–614, 2002.

[8] U.D. Bordoloi and H.-W. Shen. Space efficient fast isosurface extraction for
large datasets. In Proceedings of Visualization ’03, pages 201–208. IEEE Com-
puter Society Press, 2003.

[9] U.D. Bordoloi and H.-W. Shen. Automatic view selection for volume render-
ing. Technical Report:OSU–CISRC–3/05–TR16, 2005.

[10] B. Cabral and C. Leedom. Imaging vector fields using line integral convolution.
In Proceedings of SIGGRAPH 93, pages 263–270. ACM SIGGRAPH, 1993.

119

[11] B. Cabral and C. Leedom. Highly parallel vector visualization using line
integral convolution. In Proceedings of Seventh Siam Conference On Parallel
Processing for Scientific Computing, pages 803–807, 1995.

[12] B. Chen, A. Kaufman, and Q. Tang. Image-based rendering of surfaces from
volume data. In Proc. of IEEE Workshop on Volume Graphics. IEEE, 2001.

[13] Y.-J. Chiang. Out-of-core isosurface extraction of time-varying fields over
irregular grids. In Proceedings of Visualization ’03, pages 217–224, 2003.

[14] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proceedings
of Visualization ’97, pages 293–300, 1997.

[15] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core iso-
surface extraction. In Proceedings of Visualization ’98, pages 293–300, 1998.

[16] P. Cignoni, P. Marino, E. Montani, E. Puppo, and R. Scopigno. Speeding up
isosurface extraction using interval trees. IEEE Transactions on Visualization
and Computer Graphics, 3(2):158–170, 1997.

[17] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-
core visualization. In Proceedings of Visualization ’97, pages 235–244. IEEE
Computer Society Press, Los Alamitos, CA, 1997.

[18] David E DeMarle, Steven Parker, Mark Hartner, Christiaan Gribble, and
Charles Hansen. Distributed interactive ray tracing for large volume visual-
ization. In Proc. of IEEE Symposium on Parallel and Large-Data Visualization
and Graphics ’03, pages 505–512, 2003.

[19] David Ebert and Penny Rheingans. Volume illustration: Non-photorealistic
rendering of volume models. In Proceedings IEEE Visualization 2000. IEEE,
2000.

[20] M. Feixas, E. Acebo, P. Bekaert, and M. Sbert. An information theory frame-
work for the analysis of scene complexity. Computer Graphics Forum (Euro-
graphics’99 Proc.), 18(3):95–106, 1999.

[21] S. Fleishman, D. Cohen-Or, and D. Lischinski. Automatic camera placement
for image-based modeling. Computer Graphics Forum, 19(2):101–110, 2000.

[22] L.K. Forssell and S.D. Cohen. Using line integral convolution for flow vi-
sualization: Curvilinear grids, variable-speed animation, and unsteady flows.
IEEE Transactions on Visualization and Computer Graphics, 1(2):133–141,
1995.

120

[23] R. S. Gallagher. Span filter: An optimization scheme for volume visualization
of large finite element models. In Proceedings of Visualization ’91, pages 68–
75, 1991.

[24] J. Gao, J. Huang, H.-W. Shen, and J.A. Kohl. Visibility culling using plenoptic
opacity functions for large volume visualization. In Proc. of IEEE Visualiza-
tion ’03, pages 341–348, 2003.

[25] H. Garcke, T. Preußer, M. Rumpf, A. Telea, U. Weikard, and J. van Wijk. A
continuous clustering method for vector fields. In Proceedings of Visualization
’00, pages 351–358. IEEE Computer Society Press, 2000.

[26] M. Giles and R. Haimes. Advanced interactive visualization for CFD. Com-
puting Systems in Engineering, 1(1):51–62, 1990.

[27] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on Infor-
mation Theory, 44(6):2325–2383, 1998.

[28] Stefan Gumhold. Maximum entropy light source placement. In Proc. of IEEE
Visualization ’02, pages 215–222, 2002.

[29] Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interac-
tive rendering of large volume data sets. In Proc. of IEEE Visualization ’02,
pages 53–60, 2002.

[30] Jan L. Guynes. Impact of system response time on state anxiety. Comm. of
the ACM, 31(3):342–347, 1988.

[31] Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-
level volume rendering of segmented data sets on consumer graphics hardware.
In Proc. of IEEE Visualization ’03, 2003.

[32] B. Heckel, G. Weber, B Hamann, and K. Joy. Construction of vector field
hierarchies. In Proceedings of Visualization ’99, pages 19–25. IEEE Computer
Society Press, 1999.

[33] Matthias Hopf and Thomas Ertl. Hierarchical splatting of scattered data. In
Proc. of IEEE Visualization ’03, pages 433–440, 2003.

[34] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psycology, 24:417–441,498–520, 1933.

[35] V. Interrante and C. Grosch. Strategies for effectively visualizing 3d flow
with volume lic. In Proceedings of Visualization ’97, pages 421–424. IEEE
Computer Society Press, 1997.

121

[36] T. Itoh and K. Koyamada. Automatic isosurface propagation using an extrema
graph and sorted boundary cell lists. IEEE Transactions on Visualization and
Computer Graphics, 1(4):319–327, 1995.

[37] T. Itoh, Y. Yamaguchi, and K. Koyamada. Volume thinning for automatic
isosurface propagation. In Proceedings of Visualization ’96, pages 303–310,
1996.

[38] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary
density. In Proceedings of the eight Eurographics Workshop on visualization
in scientific computing, pages 57–66, 1997.

[39] B. Jobard and W. Lefer. The motion map: Efficient computation of steady
flow animations. In Proceedings of Visualization ’97, pages 323–328. IEEE
Computer Society Press, 1997.

[40] B. Jobard and W. Lefer. Unsteady flow visualization by animating evenly-
spaced streamlines. Computer Graphics Forum (Proceedings of Eurographics
2000), 19(3), 2000.

[41] G. Karypis. Software package for clustering high-dimensional datasets. In
http://www-users.cs.umn.edu/ karypis/cluto/, 2003.

[42] G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer func-
tions for direct volume rendering. In Proc. of IEEE Symposium on Volume
Visualization ’98, pages 79–86, 1998.

[43] M.-H. Kiu and D. Banks. Multi-frequency noise for LIC. In Proceedings of
Visualization ’96, pages 121–126. IEEE Computer Society Press, 1996.

[44] J. J. Koenderink and A. J. van Doorn. The singularities of the visual mapping.
Biological Cybernetics, 24:51–59, 1976.

[45] J. J. Koenderink and A. J. van Doorn. The internal representation of solid
shape with respect to vision. Biological Cybernetics, 32:211–216, 1979.

[46] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proc. of SIGGRAPH 1994,
pages 451–458. ACM, 1994.

[47] Tommer Leyvand, Olga Sorkine, and Daniel Cohen-Or. Ray space factoriza-
tion for from-region visibility. In Proc. of SIGGRAPH 2003. ACM, 2003.

122

[48] G.-S. Li, U.D. Bordoloi, and H.-W. Shen. Chameleon: An interactive texture-
based rendering framework for visualizing three-dimensional vector fields.
In Proceedings of Visualization ’03, pages 241–248. IEEE Computer Society
Press, 2003.

[49] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans.
on Information Theory, 37(1):145–151, January 1991.

[50] Y. Livnat, H.-W. Shen, and C. R. Johnson. A near optimal isosurface extrac-
tion algorithm using the span space. IEEE Transactions on Visualization and
Computer Graphics, 2(1):201–227, March 1996.

[51] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics, 21(4):163–169, July 1987.

[52] J. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proc. of SIGGRAPH 1997. ACM, 1997.

[53] Nelson Max. Optical models for direct volume rendering. IEEE Trans. on
Visualization and Computer Graphics, 1(2):99–108, June 1995.

[54] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[55] B. Mora, J.-P. Jessel, and R. Caubet. A new object-order ray-casting algo-
rithm. In Proceedings of Visualization ’02, Washington, DC, USA, 2002. IEEE
Computer Society.

[56] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. Ibr-assisted volume ren-
dering. In Late Breaking Hot Topics, IEEE Visualization Conf. IEEE, 1999.

[57] A. Okada and D. L. Kao. Enhanced line integral convolution with flow feature
detection. In Proceedings of IS&T/SPIE Electronic Imaging ’97, pages 206–
217, 1997.

[58] L. Pessoa, E. Thompson, and A. Noë. Finding out about filling-in: A guide
to perceptual completion for visual science and the philosophy of perception.
Behavioral and Brain Sciences, 21(6):723–748, 1998.

[59] GE Medical Systems Press Release. http://www.gehealthcare.com/company/
pressroom/releases/pr release 6600.html. GE, 2002.

123

[60] K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers,
Inc., 2000.

[61] H.-W. Shen. Isosurface extraction in time-varying fields using a temporal
hierarchical index tree. In Proceedings of Visualization ’98, pages 159–166,
1998.

[62] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing in
span space with utmost efficiency (ISSUE). In Proceedings of Visualization
’96, pages 287–294, 1996.

[63] H.-W. Shen and C. R. Johnson. Sweeping simplices: A fast isosurface ex-
traction algorithm for unstructured grids. In Proceedings of Visualization ’95,
pages 143–151, 1995.

[64] H.-W. Shen, C.R. Johnson, and K.-L. Ma. Visualizing vector fields using line
integral convolution and dye advection. In Proceedings of 1996 Symposium on
Volume Visualization, pages 63–70. IEEE Computer Society Press, 1996.

[65] H.-W. Shen and D.L Kao. A new line integral convolution algorithm for
visualizing time-varying flow fields. IEEE Transactions on Visualization and
Computer Graphics, 4(2), 1998.

[66] H.-W. Shen, G.-S. Li, and U.D. Bordoloi. Interactive visualization of three-
dimensional vector fields with flexible appearance control. IEEE Transactions
of Visualization and Computer Graphics, 10(4):434–445, 2004.

[67] Ben Shneiderman. Response time and display rate in human performance
with computers. ACM Computing Surveys, 16(3):265–285, 1984.

[68] C. Silva, D. Bartz, P. Lindstrom, J. Klosowski, and W. Shroeder. High-
performance visualization of large and complex scientific datasets. Tutorial
M9, Super Computing 2002, Baltimore, 2002.

[69] D. Stalling and H.-C. Hege. Fast and resolution independent line integral
convolution. In Proceedings of SIGGRAPH ’95, pages 249–256. ACM SIG-
GRAPH, 1995.

[70] P. Sutton, C. Hansen, H.-W. Shen, and D. Schikore. A case study of isosurface
extraction algorithm performance. In Proceedings of Joint EUROGRAPHICS-
IEEE TCCG Symposium on Visualization, 2000.

[71] A. Telea and J. van Wijk. Simplified representation of vector fields. In Pro-
ceedings of Visualization ’99, pages 35–42. IEEE Computer Society Press,
1999.

124

[72] Shivaraj Tenginakai, Jinho Lee, and Raghu Machiraju. Salient iso-surface de-
tection with model-independent statistical signatures. In IEEE Visualization
2001, pages 231–238, 2001.

[73] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplifica-
tion of planar vector fields. In Proceedings of Visualization ’01, pages 159–166.
IEEE Computer Society Press, 2001.

[74] G. Turk and D. Banks. Image-guided streamline placement. In Proceedings
of SIGGRAPH ’96, pages 453–460. ACM SIGGRAPH, 1996.

[75] F.-Y. Tzeng, E.B. Lum, and K.-L. Ma. A novel interface for higher-
dimensional classification of volume data. In Proc. of IEEE Visualization
’03, pages 87–94, 2003.

[76] M. van Kreveld, R. van Oostrum, C. L. Bajaj, D. R. Schikore, and V. Pascucci.
Contour trees and small seed sets for isosurface traversal. In Proceedings of
13th ACM Symposium on Comp. Geom., pages 212–219, 1997.

[77] J. van Wijk. Spot noise: Texture synthesis for data visualization. Computer
Graphics, 25(4):309–318, 1991.

[78] J. J. van Wijk. Image based flow visualization. In Proceedings of SIGGRAPH
2002, Computer Graphics Proceedings, Annual Conference Series, pages 745–
754. ACM, ACM Press / ACM SIGGRAPH, 2002.

[79] P. P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selection
using viewpoint entropy. In Proc. of Vision, Modelling, and Visualization ’01,
pages 273–280, 2001.

[80] P. P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Automatic view se-
lection using viewpoint entropy and its application to image-based modeling.
Computer Graphics Forum, 22(4):689–700, 2003.

[81] V. Verma, D. Kao, and A. Pang. Plic: Bridging the gap between streamlines
and lic. In Proceedings of Visualization ’99, pages 341–348. IEEE Computer
Society Press, 1999.

[82] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding strategy.
In Proceedings of Visualization ’00, pages 163–170. IEEE Computer Society
Press, 2000.

[83] R. Wegenkittl and E. Gröller. Fast oriented line integral convolution for vector
field visualization via the internet. In Proceedings of Visualization ’97, pages
309–316, 1997.

125

[84] C. Weigle and D. Banks. Complex-valued contour meshing. In Proceedings of
Visualization ’96, pages 173–180. IEEE Computer Society Press, Los Alami-
tos, CA, 1996.

[85] D. Weinshall and M. Werman. On view likelihood and stability. IEEE Trans-
actions on Pattern Analysis and Machince Intelligence, 19(2):97–108, 1997.

[86] D. Weinshall, M. Werman, and N. Tishby. Stability and likelihood of views
of three dimensional objects. In Proceedings of Third European Conference of
Computer Vision, 1994.

[87] J. Wilhelm and A. Van Gelder. Octrees for faster isosurface generation. ACM
Transactions on Graphics, 11(3):201–227, July 1992.

[88] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM
Transactions on Graphics, 11(3):201–227, 1992.

[89] L. Wong, C. Dumont, and M. Abidi. Next best view system in a 3-d modeling
task. In Proc. of International Symposium on Computational Intelligence in
Robotics and Automation (CIRA), pages 306–311, 1999.

[90] Eugene Zhang and Greg Turk. Visibility-guided simplification. In Proc. of
IEEE Visualization ’02, pages 215–222, 2002.

[91] Y. Zhao and G. Karypis. Criterion functions for document clustering: Ex-
periments and analysis. Technical Report:TR 0140, Department of Computer
Science, University of Minnesota, Minneapolis, MN, 2001.

[92] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel line integral convolution. In
Proceedings of First Eurographics Workshop on Parallel Graphics and Visu-
alisation, pages 111–128, 1996.

126

