
REMOTE USER-DRIVEN EXPLORATION OF
LARGE SCALE VOLUME DATA

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Naeem O. Shareef, B.S., M.S.

The Ohio State University
2005

Dissertation Committee:
 Approved by

Professor Roger Crawfis, Adviser

Professor Richard Parent _______________________________

Professor Han-Wei Shen Adviser
 Computer Science and Engineering

 Graduate Program

ABSTRACT

No rendering pipeline exists to explore very large volume data, for example on the
order of terabytes or more. In the extreme case, the data is essentially “stuck” at the site of
creation. The consequence is that the utility of the dataset is greatly diminished since only
a very small number of users are able to explore the rich information contained within. We
address the challenge of how to provide access to such datasets to remote user’s equipped
with low-cost computational and display technology. Our work proposes a novel end-to-
end rendering pipeline that allows for effective data exploration. Our paradigm couples
view-dependent and image-based data structures along with novel rendering algorithms
that allow for fast spatial and transfer function browsing on the client side.

The view-dependent data structure, called a Pixel Ray Image (PRI), holds scalar infor-
mation on projection rays through the volume. The representations for the scalar data are
determined from the requirements of the particular projection equation. We present com-
pact representations that may be stored in texture form for interactive rendering on todays
PC graphics hardware. During spatial browsing, when the transfer functions do not
change, the Layered Slab Image (LSI) data structure holds pre-computed projections of
the data that are then used to quickly compute approximate renderings at nearby view-
points.

The PRI represents a compression of the volume along a single dimension. Sampling
planes placed orthogonal to the sampling direction of the PRI can be computed easily in
graphics hardware. Using an approach similar to the shear-warp algorithm, the volume
may be rendered directly from this compressed format at views within a 45 degree neigh-
borhood. The volume may be rendered from any view by placing three PRI at orthogonal
sampling directions to each other. We present a novel rendering algorithm to render the
volume directly from the compressed format on PC graphics hardware.

ii

Dedicated to my parents, Ghouse and Sameena,
and to my brothers, Saleem and Matheen.

Their support was invaluable towards the completion of this work.

iii

ACKNOWLEDGMENTS

In my overextended stay at The Ohio State University, there are many colleagues and

friends to thank. Please forgive me if I neglect to mention anyone. I wish to thank all of the

reviewing committee members, Roger Crawfis, Richard Parent, and Han-Wei Shen, who

offered their time and wisdom. Dr. Roni Yagel, technically my second advisor but my first

advisor in computer graphics, was the main impetus behind my persuit into the field. I

would not have been able to enter the dissertation program without his backing. My col-

laboration with Professor DeLiang Wang helped to shape my ability to perform research. I

was able to win a paper award and publish a journal paper in the area of Artifical

Intelligence under his tutelage. Professor Roger Crawfis became my second advisor in

computer graphics and introduced me to the problems that are addressed in this disserta-

tion. Professor Han-Wei Shen was a great motivator, provided invaluable advice, and

helped me through some tough times. Thanks go to the department administrative staff.

Most notably are Kathryn (“Kitty”) Reeves, who helped me to find teaching positions so

that this dissertation could be completed, Tom Fletcher, and Marty Marlatt. Thanks also go

to Dr. Brian Shelbourne at Wittenberg University, who allowed me to pay my living

iv

expenses as an adjunct professor and the opportunity to teach his class, COMP 370 Com-

puter Graphics, during the Spring semester.

The clique of former students who shared our mentor, Roni Yagel, provided lasting

support and an ongoing friendship. Our fraternity will hopefully never disappear: Yair

Kurzion, Asish Law, Raghu Machiraju, Torsten Moeller, Klaus Mueller, David Reed, Po-

Wen Shih, and Edward J Swan II. Everyone in this group has achieved success in their

careers since their graduations and it is now my turn being the last of the group,.

I would also like to thank current and former students at OSU with whom I have had

the pleasure to create a great friendship: Tahmina Ansari, Praveen Bhaniramka, Udeepta

Bordoloi, Jason Bryan, Shannon Campbell, Matthew Camuto, Erdogan Cesmeli, Sean

Chang, Eugene Fratkin, Jinzhu Gao, Antonio Garcia, Joachim Giesen, Samrat Goswami,

Brent Haley, Christa Hayes, Jian Huang, Ming Jiang, Yootai Kim, Scott King, Domin Lee,

Jinho Lee, Naveen Leekha, Guo-Shi Li, Liya Li, Sameep Mehta, Ethan Metsger, Luke

Molnar, Kovalan Muniandy, Johan Oestman, Tathagata Ray, John Rusnak, Wendy Rus-

nak, Nivedita Sahasrabudhe, Dennis Sessanna, Richard P. Sharp, Arunachalam Soma-

sundaram, Madhu Soundararajan, Don Stredney, Jian Sun, Shivaraj Tenginakai, Jenafer

Thomas, Chaoli Wang, Dr. Gregory Wiet, Jonathan Woodring, Lining Yang, and Amar

Zumkhawala.

v

I would also like to thank those outside the OSU sphere of influence: Dirk Bartz,

Lance Burton, Carrie Casillas, Perry Chappano, Joseph Heafitz, and Stephanie Kitchen.

vi

VITA

July 16, 1968 . Born - New Rochelle, NY

1990 . B.S. Applied Mathematics/Compuer Science,
 Carnegie Mellon University, Pittsburgh, PA

1992 . M.S. Computer And Information Science,
 The Ohio State University, Columbus, OH

1991 - 1993 . Graduate Teaching Assistant, The Ohio State
University

1993 - 1994 . Graduate Research Assistant, The Ohio State
University

1994 . Graduate Teaching Assistant, The Ohio State
University

1994 - 2000 . Graduate Research Assistant, The Ohio State
University

2001 - 2004 . Graduate Teaching Assistant, The Ohio State
University

2004 - present . Adjunct Professor, Wittenberg University,
 Springfield, OH

PUBLICATIONS

Research Publication

1. N. Shareef and R. Crawfis, “A View-dependent Approach to MIP for Very Large
Data,” Proc. SPIE EI ’02, Vol. 4665, pp. 13-21, 2002.

vii

2. J. Huang, K. Mueller, N. Shareef, and R. Crawfis, “FastSplats: Optimized Splat-
ting on Rectilinear Grids,” IEEE Visualization ’00, Salt Lake City, Utah.

3. J. Huang, N. Shareef, R. Crawfis, P. Sadayappan, and Klaus Mueller, “A Parallel
Splatting Algorithm with Occlusion Culling,” 3rd Eurographics Workshop on Parallel
Graphics and Visualization, 2000.

4. N. Shareef, “An Image-Based Approach to Scientific Visualization Using Layers,”
First Annual Biomedical Engineering Research Symposium, The Ohio State University,
OH, 2000.

5. D. Stredney, A. Agarwal, D. Barber, R. Crawfis, WC Feng, J. Hou, DK Panda, P.
Sadayappan, K. Powell, P. Schmalbrock, D. Sessanna, GJ Wiet, N. Shareef, J. Bryan,
“Interactive Medical Data on Demand: A High-Performance Image-based Approach
Across Heterogeneous Environments,” Proc. of Medicine Meets Virtual Reality 8, West-
wood et. al., (Eds), IOS Press Amsterdam, pp. 327-333, 2000.

6. K. Mueller, J. Huang, N. Shareef, and R. Crawfis, “High-Quality Splatting on Rec-
tilinear Grids With Efficient Culling of Occluded Voxels,” IEEE Transactions on Visual-
ization and Computer Graphics, Vol. 5, No. 2, pp. 116-143, 1999.

7. J. Huang, K. Mueller, N. Shareef, and R. Crawfis, “VOXBLT : An Efficient and
High Quality Splat Primitive,” IEEE Visualization ’99: Late Breaking Hot Topics, 1999.

8. K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “IBR-Assisted Volume Render-
ing,” IEEE Visualization ’99: Late Breaking Hot Topics, 1999.

9. D. Stredney, R. Crawfis, GJ Wiet, D.Sessanna, N. Shareef, and J. Bryan, “Interac-
tive Volume Visualization for Synchronous and Asynchronous Remote Collaboration,”
Proc. of Medicine Meets Virtual Reality 7, Westwood et. al., (Eds), IOS Press Amsterdam,
pp. 344-350, 1999.

10. J. E. Swan II, K. Mueller, T. Moller, N. Shareef, R. Crawfis, R. Yagel, “Perspective
Splatting,” Naval Research Laboratory Memorandum Report, NRL/MR/5580--99-8355,
1999.

viii

11. R. A. Crawfis, Po-Wen Shih, N. Shareef, “Visualizing Dual 3D Vector Fields
Using a Splatting Technique,” IEEE Visualization ’98 (Vector Field Visualization Work-
shop), Chapel Hill, NC, 1998.

12. K. Mueller, T. Moller, J. E. Swan II, R. Crawfis, N. Shareef, R. Yagel, “Splatting
Errors and Aliasing,” IEEE Transactions on Visualization and Computer Graphics
ITVCG, Vol. 4, No. 2, IEEE Computer Society: April-June, pp. 178-191, 1998.

13. C. Edmond, D. Heskamp, G. Mesaros, S. Weghorst, C. Airola, D. Stredney, D.
Sessanna, R. Crawfis, N. Shareef, G. Wiet, and J. Miller, “ENT SURGICAL SIMULA-
TOR,” (Final Report - Cooperative Agreement No. DAMD17-95-2-5023 - HITL Techni-
cal Report R-99-14). Fort Detrick, MD 21702-5012: U.S. Army Medical Research and
Materiel Command.

14. N. Shareef, D. L. Wang, R. Yagel, “Segmentation of Medical Images Using
LEGION,” IEEE Transactions on Medical Imaging, Vol. 18, No. 1, January 1999.

15. D. Stredney, G.J. Wiet, R. Yagel, D. Sessanna, Y. Kurzion, M. Fontana, N. Shareef,
M. Levin, K. Martin, A. Okamura, “A Comparative Analysis of Integrating Visual Repre-
sentations with Haptic Displays,” Proc. of Medicine Meets Virtual Reality 6, Art, Science,
Technology: Healthcare (R)evolution, San Diego, CA, pp. 20-26, 1998.

16. N. Shareef, D. L. Wang, R. Yagel, “Segmentation of Medical Images Using
LEGION,” OSU-CISRC-4/97-TR26, 1997.

17. J. E. Swan II, K. Mueller, T. Mo"ller, N. Shareef, R. A. Crawfis, R. Yagel, “An
Anti-Aliasing Technique for Splatting,” IEEE Visualization ’97, pp. 197-204, 1997.

18. N. Shareef, “Segmentation of MRI and CT Data Using Locally Excitatory Glo-
bally Inhibitory Oscillator Networks,” Midwest Artificial Intelligence and Cognitive Sci-
ence Conference, 1996.

19. N. Shareef, D. Wang, and R. Yagel, “Segmentation of Medical Data Using Locally
Excitatory Globally Inhibitory Oscillator Networks,” World Congress on Neural Networks
WCNN ’96, 1996.

ix

20. R. Yagel, D. M. Reed, A. Law, P. Shih, and N. Shareef, “Hardware Assisted Vol-
ume Rendering of Unstructured Grids by Incremental Slicing,” Proc. 1996 Symposium on
Volume Visualization, 1996.

21. R. Yagel, D. Stredney, G.J. Wiet, P. Schmalbrock, D.J. Sessanna, Y. Kurzion, E.
Swan, N. Shareef, J. Smith, and D.E. Schuller, “Cranial Base Tumor Visualization through
Multimodal Imaging Integration and Interactive Display,” 4th Annual Meeting of the Soci-
ety of Magnetic Resonance, 1996.

22. G.J. Wiet, D. Stredney, R. Yagel, E. Swan, N. Shareef, P. Schmalbrock, K. Right, J.
Smith, and D.E. Schuller, “Cranial Base Tumor Visualization through High Performance
Computing,” Proc. of Medicine Meets Virtual Reality 4, Health Care in the Information
Age, pp. 43-59, 1996.

23. N. Shareef and R. Yagel, “Rapid Previewing via Volume-based Solid Modeling,”
The 3rd Symposium on Solid Modeling and Applications, SOLID MODELING ‘95, pp.
281-292, 1995.

24. N. Shareef and R. Yagel, “Rapid Previewing via Volume-based Solid Modeling,”
OSU-CISRC-11/94-TR58, 1994.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

x

TABLE OF CONTENTS
Page

Abstract . ii
Dedication . iii
Acknowledgments . iv
Vita . vii

List of Tables . xiii
List of Figures . xiv

Chapters:

1. Introduction . 1

2. Volume Rendering . 11

2.1 Maximum Projection . 13
2.1.1 MIP . 13
2.1.2 Acceleration Approaches . 15
2.1.3 MIP Variants . 15

2.2 Volume Integration . 18
2.2.1 Optical Models .18
2.2.2 Riemann Sum Integration . 19
2.2.3 Higher Order Integration . 20

2.3 Classification .23

3. View-dependent Rendering . 25
3.1 Approaches to Volume Rendering . 25
3.2 Image-based Rendering . 27

3.2.1 Image-based Volume Rendering . 31

4. Remote Volume Rendering .32

5. A Novel End-To-End Pipeline . 37

6. PRI: A View-dependent Per-pixel Scalar Representation42
6.1 PRI Scalar Reconstruction . 44
6.2 Transfer Function Representations .45

xi

7. MM-PRI . 47

7.1 MM-PRI Construction . 51
7.2 Fast Maximum Projection .51

7.2.1 0-degree Spline Transfer Functions .51
7.2.1.1 Sample Table .52
7.2.1.2 Interval Table . 53
7.2.1.3 Interval Tree Table . 54

7.2.2 1-degree Spline Transfer Functions .55
7.2.3 Transfer Function Update . 56

7.3 Maximum Projection Rendering .57
7.3.1 On-sample Rendering . 57
7.3.2 Off-sample Rendering . 60

8. LS-PRI . 61

8.1 Linear Spline Data Structures .63
8.2 Variations To MIP .63

8.2.1 Simple Depth-shaded MIP .63
8.2.2 Depth-shaded MIP .65

8.2.2.1 0-degree Spline Transfer function66
8.2.2.2 1-degree Spline Transfer function69

8.2.3 Local MIP . 72
8.2.4 RLS-PRI .73

8.3 Volume Integration . 75
8.3.1 The Integral Equations .75

8.3.1.1 Emission Only .76
8.3.1.2 Absorption Only . 76
8.3.1.3 Absorption Plus Emission .77

8.4 Mapping Linear Splines to Textures .78
8.4.1 Tiled 2D Texture Stack . 79
8.4.2 2D Texture Map .80

8.5 Linear Spline Simplification .81

9. Volume Rendering From Compressed Data .89

9.1 Per-Slice Two Pass Rendering . 90
9.2 Axis-Aligned Slice Planes . 91
9.3 View-Aligned Slice Planes . 91

Bibliography .94

LIST OF TABLES

Table Page

1 Search costs and table sizes for piecewise constant transfer functions55

xiii

LIST OF FIGURES

Figure Page-

1 A user-driven data exploration framework for volume rendering. On-the-fly ren-
dering is embedded into a feedback loop where the user successively changes visu-
alization parameters and analyzes successive renderings .2

2 Five approaches to render large scale volume data in a remote visualization sce-
nario. The remote user can view a pre-computed movie (a). A view-dependent
construction holding scalar information, shown in (b), allows the user to change
the transfer function on-the-fly. The approach shown in (c) reduces the size of the
volume so that it can be rendered on the user’s desktop. A state-of-the-art renderer
can compute renderings at the host facility (d) and then send the final image to the
user for display. An image cache is used in (e) to store retrieved images from a
state-of-the-art renderer, where images are re-used to compute approximate ren-
derings at novel views .6

3 MIP renderings of an Aneurism dataset. (a) is a MIP image. (b) and (c) are depth
shaded rendeirngs . 14

4 (a) A MIP image of a CT scan of a human head shows bone structures and tubes
highlighted with a tracer. (b) An LMIP image is able to show material closer to the
viewer . 17

5 When the scalar field varies linearly within each volume cell, function f(z) can be
piecewise linear on a pixel ray. The endpoints of the segments are at the ray-cell
face intersections (top) shown at the bottom as t0, ..., t6 21

xiv

6 The remote visualization framework by Bethel called IBRAVR 35

7 A new remote visualization framework for direct volume rendering of large scale
data . 36

8 Two schemes to supply PRI to our volume browser. The server may run a state-of-
the-art volume renderer, above, which can typically support a single user viewing a
single dataset. A two-stage approach, bottom, pre-computes PRI using state-of-
the-art technology off-line and stores them in a database. This scheme supports
multiple datasets and multiple users simultaneously . 38

9 First three iterations of a midpoint subvision algorithm to compute a polygonal
mesh of same size equilateral triangles whose vertex locations are used to locate
view samples. The subdivision starts from the icosahedron, left, and progresses to
the right .40

10 A PRI is a view sample that holds a representation of a 1D scalar function per-
pixel on the image plane. Each function, an example is shown at the right, repre-
sents the scalar values that project to a particular pixel on the pixelized image
plane . 44

11 (a) A comparison between MIP rendering (left) and MIP rendering using a differ-
ent transfer function (right) that shows bone material from the Visible Female
dataset. (b) MOP rendering is able to assign color material48

12 We re-formulate the solution to the maximum projection equation by applying
searching in classification space rather than along the pixel ray. Figure (a) illus-
trates the redundant evaluations (red portions) on the transfer function when
searching on the pixel ray. It is most efficient to search in classification space (Fig-
ure (b)) on the domain subinterval obtained from the 1D scalar function50

13 (a) A linear segment of is partitioned into three intervals, or subsegments, [(tleft,
t1), (t1, t2), (t2, tright)] by the overlapping knots of the depth function, t1 and t2.
Additional knot locations are found on a subsegment according to the number of
transfer function table entries that overlap the subsegment’s scalar interval (s1,

xv

 s2).(b) shows the new knot values on the subsegment inside the ellipse shown in
(a) given that there are three transfer function table values within the subsegment’s
scalar range.The product of the depth function and the transfer function are com-
puted at these locations .66

14 A linear spline segment (a) is partitioned by overlapping knots from the transfer
function (b) and depth function (c). The resulting knot list, , partitions the segment
into subsegments (d). The maximum intensity of the entire segment is maximum
intenstity of the maxima computed for each subsegment71

15 There are four possible line segment orientations from the transfer and depth func-
tions on a subsegment of . The maximum of the product is computed at the line
endpoints for the two trivial cases, as illustrated by the red ellipses in (a) and (b).
When the line slopes are different, as shown in (c) and (d), the maximum product
is computed with a quadratic function . 72

16 The maximum product for the two non-trivial cases of Figure 15 are computed by
solving a quadratic parametric equation. The direction of the openness of the
parabola and the location of its vertex with respect to the normalized interval of the
subsegment determines where to compute the maximum. If the parabola is open
downward (a), then the maximum is computed at the endpoints of the line seg-
ments or at the vertex of the parabola. Otherwise, the maximum is computed at the
endpoints given the location of the vertex with respect to the midpoint of the inter-
val . 74

17 Two problems can occur if a spline simplification algorithm does not ensure that
the endpoints of a new linear spline segment coincides with knot locations from
the original spline. An “overshoot” case (a) may occur if an endpoint surpasses the
scalar bounds, [fmin, fmax], of the original linear segments it approximates. An
“undershoot” case (b) may occur if an endpoint is contained inside the scalar
bounds .82

18 Five iterations of our linear spline simplification algorithm on a trigonometric
function sampled at constant spacing and the error threshold set to .287

xvi

19 Results of our linear spline simplification algorithm on a pixel ray through real
data . 88

20 Our rendering pipeline for rendering from compressed data. The compression step
is shown in (a) and (b). The volume is sampled and in each LS-PRI (a). The splines
are compressed and mapped to 2D texture pairs (b). In the rendering step (c) the
volume is rendered with either axis-aligned slices (left) or view-aligned slices
(right) using the texure pairs . 93

xvii

CHAPTER 1

INTRODUCTION

A pervasive problem in scientific visualization is that compute power has always been

outpaced by an ever increasing data size. This is especially true for volume visualization

of scalar data, the focus of our work. At a minimum, large scale volume datasets hold bil-

lions of samples. New technology is already creating datasets on the order of tera- and

petabytes. State-of-the-art massively parallel supercomputers are now able to reduce the

time to create gigantic datasets of simulations from weeks to only days and hours. Also,

technological advances in sampling devices are facilitating high data resolutions, and

therefore, unprecedented detail. Many such datasets are already or will be available in the

near future. The Visible Human Project [1] provided the first high resolution scans of the

entire human body. The Ohio State University houses the strongest MRI magnet for medi-

cal applications in the world at 8-Tesla, and will be able to image the human body with

slice resolutions exceeding 1K x 1K pixels. The challenges that need to be addressed to

extract information from data of this magnitude is outlined by the DOE Accelerated Stra-

tegic Computing Initiative (ASCI) [1], which has identified visualization as a key tool to

understand these datasets. Important datasets already exist but the infrastructure and tools

are not available to effectively extract the wealth of information contained within. For data
DRAFT — please do not distribute 1 Draft Printed June 1, 2005

magnitudes at terabytes or more, an “end-to-end” rendering pipeline is nonexistent due to

insufficient technological infrastructure, including high speed data retrieval and manage-

ment, networks, and computational power.

The utility of any dataset is truly maximized when more users are able to study it.

Many of these users are located at remote sites, which are equipped with only modest

computing technology. Large scale datasets reside at well-funded facilities (usually gov-

ernment funding) with the technology and infrastructure to store, manage, and locally

Figure 1. A user-driven data exploration framework for volume ren-
dering. On-the-fly rendering is embedded into a feedback loop
where the user successively changes visualization parameters and
analyzes successive renderings.

 User

Domain
Knowledge

Rendering
Parameters

Volume
Rendering

Tweak
Parameters

User
Evaluation

User
Queries
DRAFT — please do not distribute 2 Draft Printed June 1, 2005

move the data. How to provide remote access to these datasets is a challenge that has not

been adequately addressed by the research community. There are bottlenecks all along the

data pipeline between the location where the data is stored and the remote site. Network

bandwidth limitations between the sites are a severe bottleneck. The time to download a

volume dataset on the order of gigabytes to a remote disk can take tens of minutes or

more. Local disk storage will be able to hold only a handful of datasets and lack adequate

data access speeds. Only parallel computing platforms will be able to provide the compu-

tational power needed to render the data. For gigantic datasets, the remote user will have

to try to visit the research facility since the data is essentially “stuck” at the site.

The purpose of volume visualization is not to simply compute a “pretty picture.”

Rather, it is a tool that could be used by researchers and scientists to help in understanding

the data and to glean new insight. Our work pursues a user-driven approach to data discov-

ery, which is both an effective means to data exploration and has already been proven to be

valuable in practice. This approach is touted by Will Schroeder in the “Transfer Function

Bake-Off” [73] for transfer function design, where the transfer function is an important

visualization parameter. A key underpinning of this approach is that human cognition is

tightly coupled with the human visual system, and so we are extremely good at detecting

and interpreting patterns and features. In fact, the participation of the end user is invalu-

able in any data understanding framework. We illustrate the essential steps of a user-driven

framework in Figure 1. It has two feedback loops where visualization is a key component.

The user comes to the task equipped with a set of personalized goals and initial queries

about the data. In many cases, the data was created by the user to study a particular prob-
DRAFT — please do not distribute 3 Draft Printed June 1, 2005

lem. First, an initial rendering is computed from chosen visualization parameters, e.g

viewpoint, transfer function, and shading, which may be set using a priori domain knowl-

edge or even with automated or semi-automated methods. The rendering provides a single

view and interpretation of the data which the user can then analyze. The information inter-

preted from the rendering may not be sufficient to satisfy all the user’s queries and may

even spawn new ones. The user can then enter the inner loop where the visualization

parameters are changed incrementally from the initial parameters to compute successive

renderings for further analysis. Alternatively, the user may enter the outer loop where a

new set of visualization parameters are chosen to explore a different set of queries. In this

manner, one is able to construct a mental model of the data, which is strengthened by a

“hands-on” approach.

Three essential components of a manual approach to volume exploration are interac-

tive feedback in terms of high frame rates, acceptable image quality, and the ability to

express parameter changes through the GUI interface. Recent work has focused on achiev-

ing high frame rates by leveraging hardware acceleration. Kniss [41] uses hardware accel-

eration in the form of volume rendering with 3D texture mapping in order to quickly

compute renderings using multi-dimensional transfer functions for classification. The user

uses a suite of widgets via the GUI to express the functions. Similarily, König [44] uses

the commercial product called VolumePro©, which is a volume renderer implemented in

specialized hardware. These approaches can only render from rectilinear volumes and

have been shown to be useful for medical datasets, which contain surface boundaries

between material. A main limitation of these hardware platforms is that multiple frame
DRAFT — please do not distribute 4 Draft Printed June 1, 2005

rates are only possible for small to medium size volume datasets. How to render large

scale volume data is an open area of research.
DRAFT — please do not distribute 5 Draft Printed June 1, 2005

A more challenging problem we address in this work is how a remote user can explore

large volume data in a user-driven paradigm. Providing access to the data at remote sites

Network
Image

Cache

Figure 2. Five approaches to render large scale volume data in a
remote visualization scenario. The remote user can view a pre-com-
puted movie (a). A view-dependent construction holding scalar
information, shown in (b), allows the user to change the transfer
function on-the-fly. The approach shown in (c) reduces the size of
the volume so that it can be rendered on the user’s desktop. A state-
of-the-art renderer can compute renderings at the host facility (d)
and then send the final image to the user for display. An image
cache is used in (e) to store retrieved images from a state-of-the-art
renderer, where images are re-used to compute approximate render-
ings at novel views.

Volume

Cache

Network

a b

c

d

e

DRAFT — please do not distribute 6 Draft Printed June 1, 2005

adds another bottleneck with its own unique challenges. This includes increased limita-

tions in network bandwidth, memory and storage space, and compute power of the low-

end client on the remote side. We illustrate in Figure 2 five possible approaches that could

be used in a remote user scenario. The first approach, shown in Figure 2a, is to pre-com-

pute a movie showing a fly-through animation of the data. The movie is easily downloaded

or streamed to the user’s desktop and played in realtime. The remote user does not need to

access the cumbersome large volume dataset at all. Instead, expensive rendering using a

high-end computing platform is done as a separate pre-process decoupled from display.

The problem is that the user is a passive participant and cannot change any of the visual-

ization parameters, except to forward and reverse the movie. A view-dependent approach

is shown in Figure 2b, where scalar information is pre-computed and stored at a chosen

view. The user’s view is kept fixed while other visualization parameters, such as classifica-

tion and shading, can be changed on-the-fly to compute new renderings. As with the first

approach, access to the original volume dataset is not needed during display after the view

is computed. A compression scheme may be needed to reduce the size of the representa-

tion. Many such view samples may be pre-computed, though the user is restricted to only

these camera locations.

The next three approaches render directly from the volume and thus allow changes to

any visualization parameter. If the volume is rendered on the user’s desktop, it must be

reduced in size, as shown in Figure 2c. An inevitable consequence is that much of the data

must be thrown away and/or smoothed out in order to fit into memory or local disk, and

thus image quality noticeably suffers. To ameliorate this, the volume may have to be ren-
DRAFT — please do not distribute 7 Draft Printed June 1, 2005

dered out-of-core, which adds an additional computational bottleneck. Hardware acceler-

ated rendering methods on the PC may be utilized to render these reduced volumes at high

frame rates for rectilinear volumes [11][72] that fit in video memory or moderate sized

unstructured grid volumes [77][26]. Alternatively, the volume may be rendered at the host

facility equipped with state-of-the art computing resources, for example supercomputer

technology or clusters of workstations, as shown in Figures 2d and 2e. The approach illus-

trated in Figure 2d shows a scenario where the back-end acts as a rendering server and the

remote user’s machine is simply a display client to show the resultant rendered image.

When the user changes any visualization parameter, a round-trip is required where the new

parameter is sent to the back-end and the client waits for a new rendering to be sent back

for display. The latency to render an image and transmit it over the network may be sub-

stantial. To overcome this, the approach shown in Figure 2e, augments the client-server

framework of Figure 2d by caching images and then re-using them using an image-based

rendering method. While the back-end is busy computing the next rendering, the client is

able to display an approximate rendering at interactive frame rates by re-projecting the

cached imagery. Bethel [6] implements this framework by caching layers of images at a

particular view and then uses 2D texture hardware blend the layers to display to the user.

The image-based construction was first presented by Brady [9] and extended by Mueller

[67]. These implementations show that image quality is not appreciably degraded in the

approximate rendering for a limited range of novel views.

We identify four key criteria that should be satisfied in a working remote visualization

framework for rendering large volume data that supports effective user-driven data explo-
DRAFT — please do not distribute 8 Draft Printed June 1, 2005

ration :

1. Quick visual feedback when changing any visualization parameter

2. Reduce or eliminate the dependence on expensive infrastructure

3. Display at high screen resolution on the remote user’s desktop

4. Preserve image quality

All of the approaches presented in Figure 2 fall short on one or more of these criteria. A

pre-computed movie does not allow the user to change any of the visualization parame-

ters. A pre-computed view-dependent scalar construction allows the user to easily change

parameters, such as the transfer function and lighting, but the user’s view remains fixed.

Methods to reduce the volume size usually result in poor image quality. A state-of-the-art

renderer at a host facility would only be accessible to a limited number of remote users. To

overcome the severe network bottleneck between the host facility and the remote user, it is

beneficial to try to move more of the rendering tasks to the client side. This is becoming a

realizable goal with advances in desktop technology in recent years including : faster

CPUs by an order of magnitude, larger and cheaper L1 and L2 cache, main memory, and

disk capacity, and PC graphics cards that have surpassed the speed of their graphics work-

stations predecessors. High resolution displays, e.g. plasma displays and even caves, are

becoming affordable for individual user’s and small research groups.

We present a novel end-to-end graphics pipeline where most of the rendering tasks are

done on the client side by combining the methods introduced in Figures 2b and 2e. We

present the Pixel Ray Image (PRI), a view-dependent construction holding per-pixel scalar

information. The representations are compact and in compressed form to efficiently solve
DRAFT — please do not distribute 9 Draft Printed June 1, 2005

the different volume projection equations. These view samples are cached on the client

side. The view-dependent data is organized into 2D texture maps, which are used to

quickly render the data by leveraging PC graphics hardware.
DRAFT — please do not distribute 10 Draft Printed June 1, 2005

CHAPTER 2

VOLUME RENDERING

The problem of how to visualize a field of values in a volume of space is called volume

rendering. Each field value may represent a variety of phenomena, such as temperature,

pressure, Hounsfield unit, direction vector, and tensor. We focus on the problem of how to

render a field of scalar values defined in 3D space. More formally, the field is defined as a

function that maps . The field may be defined analytically for all loca-

tions in the volume or in a discrete manner as a collection of data sample values. In the

former case, the volume is usually the result of a simulation, for example computational

fluid dynamics. In the latter case, the volume is sampled on a grid either with a finite ele-

ment method or acquired with a sampling device. The grid samples are organized so that

they are vertices to volume cells, which tessellate the volume. The two types of structures

are structured and unstructured grids. The structured grid consists of hexagonal cells that

are defined implicitly and includes uniform, rectilinear, and curvilinear grids. Medical

data is defined on structured grids obtained from sources such as Computed Tomography

(CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET).

Unstructured grids are usually constructed from tetrahedral cells, but can also include a

mixture of cell types. Thus, neighborhood information is explicitly defined in the unstruc-

tured grid.

f x y z, ,() ℜ 3 ℜ→
DRAFT — please do not distribute 11 Draft Printed June 1, 2005

There are three popular approaches to render a volume: isosurfaces, maximum projec-

tion, and volume integration. In isosurface rendering, an embedded surface is defined by a

particular scalar value, called an isovalue. Indirect approaches [55][13] construct a polyg-

onal mesh from the volume and render the mesh using traditional polygon rendering. A

popular algorithm is called Marching Cubes [55], which operates on rectilinear grids.

Parker [70] uses a raycasting approach to directly render the isosurface. The maximum

projection approach displays the largest classified scalar value along a viewing ray. This is

a “winner-take-all” scheme and requires a search along the viewing ray. Volume integra-

tion (also called volume summation) includes all scalar values in the volume projection to

visualize the entire volume. Our work focuses on the the latter two approaches, which are

considered to be direct volume rendering methods. The rendering pipeline consists of four

key steps: resampling, reconstruction, classification, and projection. Direct volume ren-

dering algorithms can be classified into the following methods: raycasting [48][10], splat-

ting [99][12], shear-warp [45][18], cell projection [100], and slice-based methods

[30][91][103]. Recent research has focused on implementations for the PC platform due to

the fast advances in graphics hardware technology. Earlier methods used standard poly-

gon-based and texture mapping graphics acceleration, such as[89][37][77][78], slice-

based methods [103], and 3D texture mapping [11][95][98][19]. Specialized graphics

hardware provides another rendering platform on the PC, such as Vizard [43] and Volume-

Pro [72].
DRAFT — please do not distribute 12 Draft Printed June 1, 2005

2.1 Maximum Projection

Maximum projection is a simple and yet very useful volume rendering approach. The

maximum classified scalar value along a pixel ray is assigned as the final pixel value.

Being a “winner-take-all” decision, the projection equation is usually solved as a search

along the pixel ray. The expensive operations of shading and compositing are not per-

formed here. The utility of this approach is its ability to filter the data in a view-dependent

manner in order to display values of highest importance. In this capacity, it has primarily

been used to visualize particular structures of interest in medical data, such as bone and

vasculature, which may be highlighted with a nuclear tracer in CT and MRI data. For

example, bone in CT data is usually associated with the high Hounsfield unit values. In

addition, surrounding soft tissue is still displayed and serves as a frame of reference, as

shown in a rendering of theVisible Female CT dataset in Figure 11. The most common

maximum projection method used in practice is Maximum Intensity Projection (MIP),

shown in Figure 3a, which linearly maps each scalar value to a grey level intensity. A

drawback of the MIP approach is that a MIP image lacks depth information. Both depth-

shaded and local maximum intensity MIP approaches try to overcome this deficiency. The

Maximum Opacity Projection (MOP) method maps scalars to color and opacity in order to

allow for better discrimination between different materials using color without the need to

compute the expensive volume integration equations.

2.1.1 MIP

In MIP rendering scalar values are mapped to grey level intensities in a classification
DRAFT — please do not distribute 13 Draft Printed June 1, 2005

step. In practice, the transfer function that is defined is a linear ramp where higher scalar

values map to brighter intensities, as shown in equation 1, where the function maps scalar

 to a normalized intensity value.

(1)

The maximum operator disregards depth information, which can make it difficult to inter-

pret MIP images. As an example, consider the image in Figure 3a that shows a MIP ren-

dering of an MRA dataset containing a network of vessels from an aneurism. Since

structures that have higher intensity values are projected over closer structures with lower

intensity, it is difficult to determine the connectedness of the vessel network. Other ambi-

guities are due to little or no intensity variation between different structures or within the

same structure where it may be difficult to discern its shape. How to resolve such ambigu-

ities in MIP images has been an active area of research. We identify five avenues that have

s smin smax,[]∈

T s() s smin–() smax smin–()⁄=

Figure 3. MIP renderings of an Aneurism dataset. (a) is a MIP
image. (b) and (c) are depth shaded rendeirngs.

(b)(a) (c)
DRAFT — please do not distribute 14 Draft Printed June 1, 2005

been taken to address these issues: 1) animate about the data, 2) re-classification, 3) color-

opacity classification, 4) volume clipping, 5) depth shading, and 6) local maximum inten-

sity projection. These approaches require the user to interact with visualization parameters

in order to improve interpretation of the maximum projection.

2.1.2 Acceleration Approaches

Animating about the volume can help to resolve some of the ambiguities due to the

maximum projection operator. Other views may be able to disambiguate depth ordering

between structures that a static MIP image is unable to show. This requires rendering at

interactive frame rates and so fast rendering algorithms. An early approach by Heidrich

[37] chooses a priori a limited number of isovalues, computes polygonal isosurfaces using

Marching Cubes, and renders the maximum value with standard polygon rendering hard-

ware using the z-test. Each mesh, which represents a particular isosurface, is mapped to a

unique z-value. Sakas [80] accelerates raycasting using a fast DDA approach to quickly

identify voxels along the sampling ray. Since tri-linear interpolation is expensive, they

reconstruct a sample using either nearest neighbor interpolation or a fast approximation to

the maximum value of a volume cell. Mroz [66] removes voxels that will not contribute to

the MIP as a pre-processing step to rendering. The remaining voxels are stored in a sorted

list by value, and then projected to the screen using splatting or shear-warp.

2.1.3 MIP Variants

The general form for the maximum projection operator applied to a pixel ray at pixel
DRAFT — please do not distribute 15 Draft Printed June 1, 2005

(x, y) is shown in equation 2. The transfer function T is defined as in equation 1 for MIP as

it is commonly used in practice. Transfer function mappings other than the linear mapping

to grey level can provide for different and useful renderings. The simple scheme by Mroz

[66] allows for “windowed” transfer functions so that only voxels with isovalues in a cho-

sen scalar range are displayed. Other mappings for function T can allow for improved con-

trast-enhancement and picking a subset of material to display from the classification

space. The Sliding-Thin-Slab [104] approach clips the volume between the near and far

clipping planes and only applies the maximum operator to a slab portion of the volume.

The user is allowed to determine the location and size of the slab by repositioning the near

and far clip planes. The MOP approach [96] uses a color-opacity transfer function. The

maximum operator is applied to the opacity transfer function and the associated color is

assigned as the final pixel value.

(2)

Depth shading weights the classified sample by its distance from the image plane. This

provides depth cues without the need for illumination. The images in Figure 3b and Figure

3c show depth-shading applied to the Aneurism dataset, which should be compared with

the MIP rendering shown in Figure 3a. It is clear to see that the depth-shaded renderings

show a better disambiguation of the vessel network. For example, portions of the network

that look to be connected in the MIP image are in fact disconnected. The depth function

may be defined arbitrarily by the user. The image in Figure 3b was computed with a linear

ramp depth function. The image in Figure 3c was computed with an exponential depth

color x y,() max
0 z D≤ ≤

T f z()()()=
DRAFT — please do not distribute 16 Draft Printed June 1, 2005

function, which emphasizes even more the vessels closer to the viewer. The image was

rendered with a hardware-accelerated approach by Shareef [88] using OpenGL’s glFog

function.

The local maximum intensity projection (LMIP) approach [81] searches for the first

intensity value along the pixel ray above a user-defined threshold that is a local maximum.

If no such local maximum is found, then the global maximum intensity is assigned as the

final pixel value. Figure 4 shows a comparison between MIP rendering (Figure 4a) and the

LMIP approach (Figure 4b) on a CT scan of the human head. Closer structures are shown

(Figure 4b) over higher intensities towards the back, such as the bright tubular structures

shown in Figure 4a.

Figure 4. (a) A MIP image of a CT scan of a human head shows
bone structures and tubes highlighted with a tracer. (b) An LMIP
image is able to show material closer to the viewer.

(b)(a)
DRAFT — please do not distribute 17 Draft Printed June 1, 2005

2.2 Volume Integration

Volume integration is able to incorporate all scalar values on a pixel ray into a final

pixel value, as opposed to isosurface or maximum projection rendering. Classification is a

mapping, called a transfer function, from scalar properties to optical properties. The most

commonly defined mapping is between the scalar value to color and opacity. The scalar

values are classified according to the chosen optical model, which describes how light

interacts with the material. The choice of an optical model is a key component because it

determines the nature of the material in the volume. A cloud model views the volume as a

collection of particles in space while a material model assumes a collection of objects each

with material properties. An example of the latter case is when scalar values represent

Hounsfield units, as in CT imaging, so that materials are easily identified by scalar ranges

[22]. The classified samples on the pixel ray are combined into a final pixel value with an

alpha compositing operator [74].

2.2.1 Optical Models

A number of optical models [7][39][79][100] have been proposed that describe how

light interacts with the scalar field. Sabella’s model, in its low-albedo form, is commonly

used in practice where the scalar field is assumed to be a cloud of particles that is both

self-emitting and light absorbing. Max [61] gives a comprehensive description for three

cases of the model: emission only, absorption only, and absorption plus emission. In the

emission only model, sometimes called summation rendering, the glow from transparent

particles along the pixel ray is accumulated towards the eye, as defined in the following
DRAFT — please do not distribute 18 Draft Printed June 1, 2005

equation:

(3)

The transfer function is the color emitted by the field and maps scalars to par-

ticle density. The light intensity can be separated into its component wavelengths, denoted

by . In the absorption only model, also called the x-ray model, light originating behind

the volume is absorbed as its passes through the volume on its way to the eye, as illus-

trated in the following equation:

(4)

Light intensity from the background is attenuated by the accumulation of ,

called the extinction coefficent, on the pixel ray. Both models are combined into the

absorption plus emission model, shown in equation 6. The second term describes the accu-

mulation of emitted light, but attenuated on its way to the eye.

(5)

There is no closed form solution to this equation for arbitrary forms for function f and

transfer functions and .

2.2.2 Riemann Sum Integration

When the function f is piecewise constant, which is computed by most volume render-

ing approaches, the integral equations can be solved with a Riemann Sum approximation

[48][61]. If resample locations are chosen at a constant sample spacing, , on the pixel

Iλ p() τλ cλ f z()()ρλ f z()() zd
0

D

∫=

cλ s() ρλ s()

λ

Iλ p() Iλ 0, e
τλ ρλ f z()() zd

0

D∫–
=

Iλ 0, ρλ s()

Iλ p() Iλ 0, e
τλ ρλ f z()() zd

0

D∫–
cλ f z()()ρ f z()()e

τλ ρλ f u()() ud
0

z∫–
zd

0
D∫+=

cλ s() ρλ s()

s∆
DRAFT — please do not distribute 19 Draft Printed June 1, 2005

ray, the absorption plus emission equation is solved with the following discrete solution:

(6)

The opacity for the ith segment is approximated using a Taylor’s series expansion

, where is a constant.

2.2.3 Higher Order Integration

When the function f has higher order than piecewise constant, then the volume integral

equation is more difficult to solve. Previous work has solved the volume integral equations

when function f has a piecewise linear form. The integral is solved by computing the inte-

gral independently over each linear segment and then combining the solutions. Each linear

segment is described by three parameter values (sf, sb, l). The value sf is the scalar value at

the front end of the segment, value sb is the scalar value at the back end of the segment,

and l is the length of the segment. When volume reconstruction is taken to be linear inter-

polation, as it usually is in practice, the intersection between the pixel ray and a volume

grid defines function f such that the endpoints of the linear segments are at the cell faces.

Figure 5 shows a pixel ray intersecting a tetrahedral grid. Cell projection rendering algo-

rithms [89][100] use this formulation by projecting volume cells in depth sorted order.

Iλ p() Iλ 0, α i s∆()
i 0=

n

∏ Cλ i s∆()α i s∆() 1 α j s∆()–()
j 0=

i 1–

∏⋅
i 0=

n

∑+=

α i s∆() 1 τλρλ i s∆() s∆–()exp– τλρλ i s∆() s∆()= = τλ
DRAFT — please do not distribute 20 Draft Printed June 1, 2005

Max [62] simplifies the volume integral of equation 6 by assuming constant color

across the segment. If is an integrable and non-negative function, then the approxi-

mation is used to compute alpha, where factor

and S’ is the integral of on the interval [sf, sb]. If is piecewise

linear, then S’ can be computed analytically using the trapezoid area formula [101]. If the

indefinite integral is computable, then can have a more general

form and .

The Projected Tetrahedra (PT) algorithm [89] projects each tetrahedral cell to the

screen and classifies the projection in cases. A segment color and opacity is computed at

the “thick” vertex, the projected vertex where the tetrahedron is thickest with respect to the

Figure 5. When the scalar field varies linearly within each volume
cell, the scalar function on a pixel ray, f(z), can be piecewise linear.
The endpoints of the segments are at the ray-cell face intersections
(top) shown at the bottom as distances t0, ..., and t6, from the eye.

f(z)

zt0 t1 t2 t3 t4 t5 t6

ρλ s()

l ρ 1 t–()s f tsb+() td
0
1∫ w S' s f sb,()⋅=

w l sb s f–⁄= ρλ s() ρλ s()

S t() ρ u() ud
0
t∫= ρλ s()

S' s f sb,() S sb() S s f()–=
DRAFT — please do not distribute 21 Draft Printed June 1, 2005

view, and then graphics hardware interpolates color and alpha across the triangles. Two

simple schemes are used to compute the integral at the thick vertex. The segment color is

computed as: 1) evaluated at the front endpoint only or 2) the average at both endpoints of

the segment. Alpha is approximated by the average of the extinction coefficients evaluated

at both endpoints. A drawback with Shirley’s approach is that linearly interpolating alpha

computed at the triangle vertices causes Mach Banding artifacts. Stein [94] improves on

this by computing alpha more accurately per-pixel across the triangles. The expression

is stored in a texture and texturing mapping is used to lookup alpha as the

segment length is linearly interpolated across the triangles. If is assumed to be constant

in the cell, then a 1D texture is constructed and l is interpolated linearly on the triangles by

setting the texture coordinate of the thick vertex to and zero at the thin vertices. If

varies linearly, a 2D texture is constructed and indexed by and l. Stein also improves on

the color approximation by assuming linear color in the cell and computes the color at the

thick vertex using the trapezoid area formula on a piecewise linear transfer function [101].

Roettger [77] allows for arbitrary transfer functions on programmable PC graphics hard-

ware. They construct a complete table for all possible linear segments that is indexed by

(sf, sb, l) using a 3D texture lookup table. Since texture memory size is still limited on

graphics boards, it is difficult to construct a high resolution table. Alternatively, they con-

struct a 2D texture table, indexed by (sf, sb), which holds color and alpha for a normalized

segment length . The retrieved texel value is multiplied by , which is assigned as the

polygon color and interpolated across the triangle. This approximation may suffer from

banding artifacts since alpha is interpolated linearly. Guthe [34] also uses programmable

1 ρl–()exp–

ρ

ρl ρ

ρ

l̃ l l̃⁄
DRAFT — please do not distribute 22 Draft Printed June 1, 2005

PC graphics hardware and improves on Roettger’s 2D texture solution. Alpha is computed

with two texture tables. A 2D texture holds the average density for each possible pair of

indices (sf, sb). This value is used in a dependent lookup on a 1D texture holding

. Chromaticity is computed with a quadratic approximation. Engl [26] applies

this formulation using 3D texture mapping and dependent texturing on programmable PC

graphics hardware. They compute segment color and alpha in two ways. The first method

stores color and alpha in a 2D texture indexed by (sf, sb) that is computed for a constant

segment length l representing the average of all possible cell widths in the volume grid.

The second approach stores the indefinite integrals and in a 2D texture

indexed by (sf, sb). The factor w is applied in the register combiners. The function is

allowed to be any integrable function except that the segment color does not include atten-

uation within the segment.

The volume integral equations become more difficult to solve when function f has

degree greater than one because more expensive methods are required. Williams [101]

solves the integral equations when both function f and the transfer functions are linear

splines. Williams et al [102] solve the integral equations when both function f and the

transfer functions are quadratic. The integration is computed over consecutive pairs of

knots in the transfer functions. Williams [102] uses a five point Gaussian quadrature rule

to approximate the integral.

2.3 Classification

The transfer function maps properties of the scalar field to optical properties. The most

1 x–()exp–

ρλ s() cλ s()

cλ s()
DRAFT — please do not distribute 23 Draft Printed June 1, 2005

commonly used mappings in practice associate scalar values to color and opacity, which

are the glow and extinction functions from Sabella’s particle model. Other properties of

the scalar field may be used in a mapping, such as the first derivative [47][41], to enhance

perceived surfaces in the volume. Mappings may define shading properties, including

ambient, diffuse, and specular.

The importance of classification is that transfer function instances can result in very

different and relevant visualizations of the data. Choosing one or more appropriate transfer

functions is not an easy task. In fact, it was called the “Holy Grail” of volume rendering by

Blinn well over a decade ago. The problem is that the space of transfer functions is infi-

nite. Searching this space for appropriate mappings that fit each user’s differing needs is

difficult. The approaches to search for transfer functions can be identified into three broad

classes: automatic [4][36], semi-automatic [60][27], and manual methods [8][41][44]. The

Transfer Function Bake-Off [73] surveys methods from classification. Automatic methods

presume certain properties of the scalar field to be important. Semi-automatic methods

present to the user a candidate set of mappings. The user judges the useful of the sug-

gested mappings. The Volume Design Gallery [60] displays in “thumb-nail” format

images of volume renderings from fixed viewpoints for automatically generated transfer

functions. The user then chooses from the visualizations in the collection. Manual meth-

ods give freedom to the user to set and tweak transfer functions on-the-fly. This requires

user-friendly interfaces and interactive rendering feedback. We present a user-driven

framework in our work, though automatic and semi-automatic approaches are useful to

guide the user in the search.
DRAFT — please do not distribute 24 Draft Printed June 1, 2005

CHAPTER 3

VIEW-DEPENDENT RENDERING

View-dependent approaches have been employed to try to reduce the workload when

rendering large data. These approaches are characterized by operations that reduce or sim-

plify the data with respect to the user’s current view parameters. Some approaches take

advantage of incremental changes in the user’s view such as zooming and frame-to-frame

coherence. At a particular viewpoint, much of the data may not be visible and so view

frustum and occlusion culling are key operations that may considerably reduce data size.

When the user is far away or zooms out from the data, then a more simplified version of

the data may be rendered with a much reduced cost. View-dependent approaches to render

polygonal scenes have used mesh simplification [38] and Level-of-Detail (LOD) represen-

tations of the polygonal mesh to choose an appropriate mesh size to reduce render time.

3.1 Approaches to Volume Rendering

View-dependent approaches have been used in the context of volume rendering. Much

focus has concentrated on the acceleration of isosurface rendering. Livnat [53] extracts a

polygonal isosurface by only processing volume cells containing the visible isosurface.

Both Livnat [53] and Gao [29] identify occluded portions of the isosurface. Parker [70]

identifies the visible isosurface using early ray termination via raycasting. In direct vol-
DRAFT — please do not distribute 25 Draft Printed June 1, 2005

ume rendering, Weiler [97] constructs an LOD representation of the volume to render

using 3D texturing. Meredith [64] renders irregular volume data using a multiresolution

approach and uses view-dependency to determine splat size. Gao [28] removes volume

cells from consideration due to occlusion for their parallel volume renderer apriori to ren-

dering using a collection of view samples that define a Plenoptic Opacity Function given

the opacity transfer function. The view samples are chosen to cover the view space well.

View-dependent approaches have been presented to allow the user to change classifi-

cation on-the-fly while keeping the user’s viewpoint at a chosen fixed location. These

approaches store per-pixel scalar information reconstructed on pixel rays. Botha [8] pre-

computes a histogram of the scalar values along a pixel ray. The user then picks a voxel-

thick image-aligned reconstructed slice of the volume. Given a transfer function instance,

simple segmentation is performed in the per-pixel histograms and the slice is color classi-

fied with a single homogeneous material and then blended with the grey level slice recon-

struction. The resulting image serves as a preview to full raycasting. Kaneda [40]

represents the scalar function along a pixel ray as a Fourier Series expansion. Per-pixel

basis functions are pre-computed and accumulated into an array of basis images. User-

specified color maps (changing opacity is not supported) determine the series coefficients.

The final image is computed by adding up the weighted basis images. Srivastava [92] pre-

compute equally spaced scalar samples along the pixel rays, as in volume raycasting. Sam-

ples are then classified, shaded, and alpha composited together using a fast CPU. Further-

more, scalars below a threshold, e.g. representing air, are thrown away and a depth is

stored with each sample. Early ray termination is possible if the transfer function values
DRAFT — please do not distribute 26 Draft Printed June 1, 2005

accumulate to full opacity.

3.2 Image-based Rendering

IBR encompasses both specialized data structures and methods that render from pre-

acquired scene projections at novel views. These methods may be used to render large and

complex scenes where traditional rendering directly from the scene primitives is too

expensive, e.g. rendering millions of polygons per frame. Instead, IBR methods use image

data structures as the main rendering primitive where rendering speedups by orders of

magnitude over conventional rendering have been reported in most instances. The basis

for this new rendering paradigm is that an image captures much detail using a simple data

structure. Early examples of image-based rendering are pre-computed movies and an

extension called Movie Maps [51], which allowed more freedom for user movement. The

rendering paradigm has its roots in texture mapping, which provides an inexpensive way

to add unmatched realism to objects without the need for complex geometric modelling.

An example is billboarding, which was used in flight simulators, games, and architectural

walkthrough applications. The projection of a complex object that is considered to be a

background object, e.g. trees, shrubs, furniture, etc., is texture mapped onto a quadrilateral

that is positioned at the center of the object’s location in the scene. The quad is rotated so

that it is always facing the viewer. The alpha component of the texture may be used to

show objects lying behind the billboard.

Image-based data structures have a number of advantages. Algorithms that operate on

these data structures are computationally bounded by image size and not by scene com-
DRAFT — please do not distribute 27 Draft Printed June 1, 2005

plexity. Expensive geometric transformations and shading operations can be avoided alto-

gether. Projection information contained within the image data may be mapped to novel

views as texture primitives where standard texture mapping on todays graphics hardware

on the PC is extremely fast. Only a small subset of the entire pre-acquired image set is

needed to render a novel view. In addition, images are amenable to compression and trans-

mission over a network.

Each IBR method can be described by how it approximates a theoretical framework

called the Plenoptic Function [65], , a 7-dimensional description of the

flow of light in a scene. The equation describes the light impinging on a point in

space in the direction with wavelength at time t. IBR is formulated as a two-step

problem. The first problem is how to sample the Plenoptic Function, also called Plenoptic

Modelling or View Sampling. Plenoptic samples, also called view samples, are located and

constructed to adequately cover the view space. A complete plenoptic sample is a full

spherical map about the view sample. An incomplete plenoptic sample captures a solid

angle subset of a spherical map. The environment map is a good example of a plenoptic

sample. The cube map [33][32][31] is an example of a construction for a complete plenop-

tic sample and a panoramic defined on a cylinder [15][65] is a construction for an incom-

plete plenoptic sample. A view sample has been also been called a reference view or key

view in the literature. The second problem is how to render at a novel view, also called an

off-sample view, from one or more view samples. This problem is concerned with how to

reconstruct the Plenoptic Function, also called view reconstruction. View reconstruction

algorithms typically employ pixel warping followed by image reconstruction on the target

P x y z θ σ λ t, , , , , ,()

x y z, ,()

θ σ,() λ
DRAFT — please do not distribute 28 Draft Printed June 1, 2005

pixel plane.

At a minimum, the information stored at a view sample is color information along with

the parameters of the camera. When the scene is assumed to consist of opaque objects

placed in free space, the color projected to a view sample represents a surface location.

Levoy [49] identifies augmented representations that may include depth (in the form of

range images) and opacity information. The following surveys [90][69][107] provide a

classification of most image-based representations and associated techniques. Most IBR

techniques assume a scene with opaque objects placed in free space. Early image-based

representations captured only color at a plenoptic sample. QuickTime VR [15] and Image

Mosaicking [65] warp pixels from panorama so that the user is immersed in the scene

while fixed at the center of projection. They allow only limited user view changes. Lumi-

graph [31] and Light Field Rendering [50] reduce the Plenoptic Function to 4D using a

parameterzation of the light rays on two 2D slices.

Depth information has been used to allow for motion parallax effects in the view

reconstruction. Image correspondences have been used to extract depth information using

optical flow [16], epipolar geometry [65], and view morphing [85]. Image-based represen-

tations that store depth explicitly [63][59][75] must capture this information using a range

scanner or extract it from a Z-buffer. Methods that use these representations need to

address the problem of occlusion/disocclusion artifacts. The Layered Depth Image (LDI)

[86] stores multiple samples per pixel sorted in depth order and is able to overcome these

artifacts. These methods must be able to fill holes at the target novel view since pixel

warping is a many-to-one mapping.
DRAFT — please do not distribute 29 Draft Printed June 1, 2005

A collection of image-based representations extend billboarding to representations

called image imposters [57][82] where image-based representations are constructed for

single or clusters of objects in the scene. Maciel [57] assumes that the user’s view is far

away from the object and pre-computes imposters at view directions on the spherical view

space surrounding the object. One set of imposters is acquired at the six faces of the

object’s bounding box. These are texture mapped onto the bounding box faces or used as

billboards. Another set is acquired at the intersections of longitude and latitude lines on

the sphere. Work in [82][3] construct imposters for groups of objects, called texture clus-

ters. Schaufler [82] places the imposter at the object or cluster center and rotates it to face

the viewer at successive viewpoints. An error metric is used to re-computed an imposter

on-the-fly when the user’s view changes too much. A multi-layered imposter [63][83][21]

is an array of billboards that hold projections of an object at different depth. They have

been used to provide improved motion parallax so that novel views further away from a

view sample may be reconstructed. The main idea is that pixels at similar depth move

together in the warp. Shade [86] augment a billboard with depth per-pixel to define a depth

sprite. Debevec [20] use projective texture mapping to texture proxy geometry that is a

much simplified approximation to the original geometry.

Two other issues that are important to image-based rendering systems are image cach-

ing and compression. Acquired imagery must be cached and re-used during rendering. A

number of image caching schemes [84][87][46]have been presented to hold image impost-

ers. The cache is refreshed with new imposters as the user’s view changes. Pre-acquired

imagery can be quite large, on the order of gigabytes or more. Compression schemes have
DRAFT — please do not distribute 30 Draft Printed June 1, 2005

been presented to reduce the size of the image database on disk.

3.2.1 Image-based Volume Rendering

Image-based data structures and methods have been developed for volume rendering.

Choi and Shin [17] store axis-aligned base plane projection images that result from the

shear-warp factorization at view samples. View reconstruction requires a warp from the

nearest view sample. Chen [14] determine proxy geometry by computing an outer shell

surface from the volume using the opacity transfer function. A volume rendering at each

view sample is texture mapped onto the proxy and projected to novel views. Raycasting is

used to fill holes. Brady [9] and Mueller [67] present a layered imposter representation

that stores a pre-integrated slab of the volume at each layer, which holds both color and

opacity. The opacity stored at each pixel layer is used to alpha blend the layers to novel

views for an approximate volume rendering. Brady allows for perspective projection for

inside views of the volume by constructing image layers with raycasting. Mueller com-

putes orthogonal projections for outside views of the volume using splatting and use non-

planar billboard geometry for improved motion parallax. Yoon [105] stores per-pixel

scalar information, called a “volume isomap”, where the isovalue is searched for in the

reference image when rendering an isosurface at a novel view. Shareef [88] stores the min-

imum and maximum scalar values per-pixel at a view sample to compute MIP with the

ability to render depth shaded MIP and arbitrary transfer functions. LaMar [46] and Yoon

[106] use an image cache to hold reference images.
DRAFT — please do not distribute 31 Draft Printed June 1, 2005

CHAPTER 4

REMOTE VOLUME RENDERING

The problem of how to render large scale volume data at interactive frame rates when

the volume contains on the order of billions, or more, of voxels has been a hot topic of

research for a number of years now. How to do this in a remote visualization setting has

been an active area of research only recently due to recent advances in technology related

to infrastructure and the advent of the internet. The client-server paradigm introduces

unique challenges to the problem where the main issue is how to assign the different tasks

in the rendering pipeline to both sides in order to optimally utilize available resources.

A classification of remote rendering frameworks is given by Luke [56] that is sepa-

rated into four possible scenarios. In the first, also referred to as render-remote, a thin cli-

ent simply displays the image received from the server. The volume data is stored and

rendered on the server side with state-of-the-art hardware. This may come in the form of a

supercomputer or a cluster of workstations for software rendering [70], or a more cheaper

alternative using a PC cluster equipped with graphics hardware [58][68]. A change in any

visualization parameter requires a round-trip to the server to compute a new rendering.

Some form of parallelization is necessary for one or more of the three main bottlenecks in

the rendering pipeline, i.e. compute power, I/O throughput, and network bandwith. Both

network and I/O still pose the most serious bottlenecks. A promising research direction
DRAFT — please do not distribute 32 Draft Printed June 1, 2005

that is being pursued today is to build a system from a PC cluster equipped with 3D tex-

ture hardware due its speedup and scalability advantages coupled with its low cost [42].

Though, it should be kept in mind that algorithms based on 3D texture hardware are lim-

ited to rendering rectilinear volume grids. The direct opposite of this scenario is to have

the client perform all the rendering tasks. The server functions to only store and send vol-

ume data to the client. This framework, also called render-local, comes in two flavors.

One is to download the entire volume dataset to the client, which is infeasible when deal-

ing with large scale data. The other has the server calculate over the data to send represen-

tations of the volume, e.g. a mipmap volume, octree subdivision, or wavelet

representation, that won’t overwhelm the client. Guthe [35] uses wavelets and an octree

subdivision to compute a level of detail representation of the volume. It is compressed on

the server and then decompressed in blocks and rendered on the client side using view-

dependent heuristics. In order to avoid extensive network traffic to transmit sizable

amounts of data, reported methods inevitably compress the volume in a lossy manner.

The remaining scenario is to divide the rendering tasks between the client and server.

Todays PC has experienced an order of magnitude increase in terms of processor speed,

memory size, disk storage, and commodity graphics hardware speed and functionality. In

addition, large display technology is available at an affordable price, e.g. plasma displays,

tiled displays, and virtual workbenches. Luke [56] describes a framework for isosurface

visualization where the server renders from a viewpoint with depth buffer writing turned

on. The server reads out the depth buffer and creates a mesh, similar to a height field. The

color buffer is also read out, and both the mesh and image are sent to the client. The client
DRAFT — please do not distribute 33 Draft Printed June 1, 2005

texture maps the image onto the mesh, called ZTex rendering, using 2D texture mapping

hardware for final display. The depth information encoded in the mesh provides motion

parallax information. Using the property of frame-to-frame coherence, the construction

can be re-projected to nearby viewpoints for fast approximate renderings. Bethel [5] also

leverages this coherence property for direct volume rendering with their Image-based

Rendering Assisted Volume Rendering (IBRAVR) framework. Using the Visipult [5][6]

rendering architecture on the server side, Bethel combines the capabilities of a state-of-

the-art parallel renderer with off-the-shelf PC texture mapping hardware found on the cli-

ent, as illustrated in Figure 6. The server side renderer partitions the volume into depth-

sorted view-aligned slabs and renders each slab into a separate image. These images are

sent through parallel I/O pipes to the client, which performs the remaining color-alpha

compositing step using 2D texture mapping hardware. The depth sorted images, a con-

struction presented by Brady [9] and Mueller [67], are re-projected quickly to nearby

views. Both the ZTex and IBRAVR methods hide rendering latency due to the back end

only when the user’s viewpoint changes. When non-viewpoint parameters change, a

round-trip is required to the server to update the meshes and textures.

Yoon [106] implements an image cache, an idea introduced by Shade [87], on the cli-

ent side to hold one or more computed view samples in their isosurface visualization sys-

tem. With many view samples in the cache, the user may browse a larger space of vantage

points at high frame rates without costly round-trip requests to the server. A view sample

holds both a color and depth value per pixel, which are the color and distance to the near-

est isosurface, respectively. A rendering is computed from a cached view sample to the
DRAFT — please do not distribute 34 Draft Printed June 1, 2005

nearby users view warping the pixel samples. A fast algorithm is used to search for the

isosurface in the view sample for every pixel in the final image. As is the case with most

image warping techniques, holes can occur in the final image. Volume raycasting is per-

formed at these pixels to fill them, which presumably will be a small number. If the user

decides to change non-viewpoint parameters, such as the isovalue, the images in the cache

are unusable. Yoon [105] introduces the isomap data structure to overcome this problem.

Each pixel in the isomap holds a piecewise linear approximation of the scalar function

along the pixel ray for only the potentially visible isovalues. The segments are monotoni-

cally increasing and so a binary search finds the distance to a user chosen isovalue along

the ray on-the-fly.

2D Texture
Hardware

camera

Figure 6. The remote visualization framework by Bethel called
IBRAVR.

visualization
parameters

I/ONetwork

Renderer

 High-end
Volume
DRAFT — please do not distribute 35 Draft Printed June 1, 2005

Figure 7. A new remote visualization framework for direct volume
rendering of large scale data.

Server

I/O

LSI
Cache

PC

View Sample
Cache

PRI
Cache

visualization

camera

Graphics
Card

Network

cameraparameters
DRAFT — please do not distribute 36 Draft Printed June 1, 2005

CHAPTER 5

A NOVEL END-TO-END PIPELINE

We present a novel end-to-end rendering pipeline for direct volume rendering that

builds upon previous work. Our framework, shown in Figure 7, allows for fast browsing,

both spatially and when changing visualization parameters. The client runs a volume

browser that maintains a cache of view samples and computes renderings on-the-fly. A

view sample holds its camera information and two view-dependent data structures. The

first data structure is a Pixel Ray Image (PRI), presented in chapter 6, which holds per-

pixel scalar information. As in raycasting, the intersection of a projected ray with the vol-

ume defines a 1D function. Associated with each PRI is a Layered Slab Image (LSI),

which is a depth-sorted array of images [9][67]. The view frustum of the PRI is divided

into image-aligned slabs and each array image holds the rendering of a single slab. When-

ever the viewpoint changes only, these images are projected to the nearby views using an

image-based approach that utilizes simple 2D texture mapping with alpha blending to

quickly display an approximate rendering of the data. When another visualization parame-

ter changes, such the transfer function, the cached LSI are invalid, so a new LSI set needs

to be computed, starting with the one nearest to the user’s viewpoint in the cache. In the

following chapters, we present the data structures for the PRI and LSI and associated ren-

dering algorithms.
DRAFT — please do not distribute 37 Draft Printed June 1, 2005

I

II

Network

Figure 8. Two schemes to supply PRI to our volume browser. The
server may run a state-of-the-art volume renderer, above, which can
typically support a single user viewing a single dataset. A two-stage
approach, bottom, pre-computes PRI using state-of-the-art technol-
ogy off-line and stores them in a database. This scheme supports
multiple datasets and multiple users simultaneously.

Renderer

 High-end
Volume Network

A

B

DRAFT — please do not distribute 38 Draft Printed June 1, 2005

It is the job of the server to replenish the view sample cache with PRI’s that are at or

close to the user’s current viewpoint. Two factors that will determine whether the cache

contains the most relevant view samples are the latency due to the back-end, coupled with

the user’s viewpoint changes. We propose two situations on how the server can supply

PRI, shown in Figure 8. In the first, the server is a high-end volume renderer that computes

PRI on-the-fly, shown in Figure 8a. Since the PRI only holds scalar information, the ren-

derer is configured to perform only volume resampling and reconstruction.

A second option is to decouple the volume renderer entirely from the volume browser.

A two step process is illustrated in Figure 8b. First, all PRI’s to be used in the rendering

are pre-computed off-line with a state-of-the-art volume renderer and stored in a database

placed on a fast data server. This may take days or even weeks for datasets on the order of

terabytes. During volume browsing, the PRI closest to the user’s current view are retrieved

from the server (bottom of Figure 8b). If the entire database can fit in secondary storage on

the client side, it can be downloaded first. By removing the dependence of the rendering

on both the original volume data and a state-of-the-art renderer, this scheme easily sup-

ports volume browsing by multiple users for multiple datasets simultaneously, see Figure

8b bottom.

The situation in Figure 8a allows the user to move freely in the view space. The stipu-

lation is that the back-end renderer is able to respond quick enough to replenish the cache

with nearby view samples. The situation in Figure 8b has computed view samples a priori,

so the workload on the server side is greatly reduced. The problem is how to sufficiently

populate the view space with view samples. This is not a straightforward problem and
DRAFT — please do not distribute 39 Draft Printed June 1, 2005

must be addressed by an image-based rendering solution. Since the user’s view will be

restricted to the portion of the view space where samples are found, it is clear that samples

should be available at the interesting portions of the scene. In a static and well known

scene, this is a much easier task. In a volume browsing application where transfer func-

tions are allowed to change, no information is known beforehand.

One of the most common ways to view and explore volume data is in an object-cen-

tered viewing mode. The user is allowed to reside on a sphere surrounding the volume and

to rotate and zoom, similar to a trackball interface. The problem becomes how to place

view samples on the sphere. One scheme is to locate samples at the intersections between

longitude and latitude lines defined on the sphere. The distribution of the samples is usu-

ally uneven and crowded at the poles. A geodesic sphere construction [24] locates vertices

evenly in a hierarchical triangle tessellation of the sphere. It is a triangle subdivision

approach that creates a tessellation using equilateral triangles of the same size. The algo-

Figure 9. First three iterations of a midpoint subvision algorithm to
compute a polygonal mesh of same size equilateral triangles whose
vertex locations are used to locate view samples. The subdivision
starts from the icosahedron, left, and progresses to the right.
DRAFT — please do not distribute 40 Draft Printed June 1, 2005

rithm starts the subdivision from one of the first three platonic solids, i.e. the tetrahedron,

octahedron, or icosahedron, since these are constructed from the same size equilateral tri-

angles. At each iteration, each triangle is subdivided into four smaller ones by inserting

new vertices at the midpoint of every edge. The vertices of the resulting mesh are pro-

jected to the sphere in a radial fashion. Figure 9 illustrates the first three subdivision steps

on the icosahedron. Vertex locations are denoted by white dots and are color coded with

red, green, blue, and and then yellow, respectively, to denote the iteration that the vertex

was inserted. At each iteration, the vertices tessellate the entire sphere and each successive

iteration adds more vertices. This provides a coarse to fine hierarchy of vertices that popu-

late the entire view space so that the sample count can vary. A particular hierarchy of PRI

that fit on the client side may be downloaded to the client.
DRAFT — please do not distribute 41 Draft Printed June 1, 2005

CHAPTER 6

PRI: A VIEW-DEPENDENT PER-PIXEL SCALAR REPRESENTATION

The Pixel Ray Image (PRI) is a view sample that holds view-dependent scalar infor-

mation at each pixel. It is defined with a virtual camera parameterization: projection point,

projection direction (we assume orthogonal projection), orientation, frustum, and image

plane. The image plane is pixelized where pixel locations lie on a cartesian grid formed by

two orthonormal basis vectors and , i.e. , where x and y are integers.

An infinite ray, called a sampling ray, is projected from every pixel center towards the pro-

jection direction. The intersection of a ray at pixel (x, y) with the volume defines a 1D sca-

lar function, call it . The parameter t is the distance along the ray from the image

plane in the projection direction, where . At the function is

evaluated at the pixel center. The values and are the distances where the ray enters

and leaves the volume, respectively. The distance D is placed behind the volume to termi-

nate all the infinite sampling rays. Only the scalar information defined on the portion of

the ray intersecting the volume is included in the PRI. Figure 10 illustrates the PRI and a

1D function associated with a pixel’s sampling ray. This is a parameterization similar to

the Plenoptic function. The main difference is that we store scene information per ray

rather than illumination information.

We need to choose a representation for function that can be stored and com-

i j p x y,() xi y j+=

f x y,() t()

0 t≤ in t tout D≤ ≤ ≤ t 0=

tin tout

f x y,() t()
DRAFT — please do not distribute 42 Draft Printed June 1, 2005

puted over, call it . One possible representation for is to define equidis-

tant spaced resample points along the sampling ray, as is done in volume raycasting. The

main drawback of this representation is that the sample distance needs to be chosen very

small to accurately represent the scalar field. The result is a revoxelization of the volume at

every PRI sample. We define two representations in the following sections based upon the

following two criteria: representation size and functional approximation accuracy. Our

goal is to render the data from the PRI samples. In order to accomplish this, the scalar

function is applied to a projection function P along with other visualization

parameters denoted by , as shown in equation (8). This function defines both the clas-

sification and projection steps in volume rendering. If the user’s camera is defined to coin-

cide with the PRI, then a color can be computed for each pixel by an evaluation of this

equation. To address the first criterion we use the fact that the size of a PRI sample

depends upon both the number of pixels in the sample and the representation size of each

per-pixel scalar function. Since we are caching PRI in main memory, which may contain

hundreds to thousands of samples, a PRI should have a small memory footprint size. In

addition, a PRI will have to be transmitted over low speed networks to the client side. The

size of the representation of the PRI also determines how fast a rendering can be computed

during browsing. The second criterion dictates the image quality of the rendering because

the accuracy when computing function P depends upon the accuracy of the input function

.

(7)

The representations for function , which we present in the following sections,

f̃ x y,() t() f̃ x y,() t()

f̃ x y,() t()

λ s()

f̃ x y,() t()

color x y,() P f̃ x y,() t() λ s(),()=

f̃ x y,() t()
DRAFT — please do not distribute 43 Draft Printed June 1, 2005

that we use satisfy both of these criteria. The representations are chosen based upon the

requirements of each of the projection equations. Our first representation is used to com-

pute the maximum projection equations. It stores a scalar value pair that represents the

minimum and maximum of function , call the pair . The other pro-

jection equations require a complete description of the scalar function along the sampling

ray. Our second representation is a linear spline representation for function .

6.1 PRI Scalar Reconstruction

Constructing either PRI type, MM or LS, requires resampling the volume along each

sampling ray. We identify two ways to collect samples in a volume that is defined either

analytically or on a sampling grid. The first approach is to define equidistant spaced resa-

f x y,() t() f min f max,()

f̃ x y,() t()

f t()

t

Figure 10. A PRI is a view sample that holds a representation of a
1D scalar function per-pixel on the image plane. Each function, an
example is shown at the right, represents the scalar values that
project to a particular pixel on the pixelized image plane.

tmin

tmax
DRAFT — please do not distribute 44 Draft Printed June 1, 2005

mple points along the sampling ray where the sample spacing ensures that the volume is

sampled above the Nyquist limit. The second approach is applied to volumes defined on a

sampling grid (structured or unstructured) where scalar interpolation within a volume cell

is assumed to be linear. In this case, resample points are located at ray-cell face intersec-

tions. Given a list of samples retrieved from either approach, we will assume that the sca-

lar function is linear between adjacent samples. The list of samples is a knot list that

defines a linear spline.

6.2 Transfer Function Representations

We compute a rendering from a PRI at each pixel from the stored function and

the transfer function , where s is a scalar value. The task becomes how to efficiently

evaluate the function in the projection equation. There are two representations

to store the transfer function in tabular form that are commonly used in practice. The first

representation stores equidistant spaced samples on the transfer function domain in a 1D

array, call it Tconst. A transfer function value is evaluated at a given scalar value using

either nearest neighbor or linear interpolation between two consecutive samples. A second

representation stores unevenly spaced samples on the transfer function domain, which are

knots in a linear spline approximation of the function, called Tlin. The list of knots are

stored in a 1D array that is sorted according to location of the knot on the transfer function

domain. Each table value holds a value pair, , where is the location of the knot on

the transfer function domain and is the function value. The function is evaluated at a

given scalar value with a binary search on the locations of the knots on the function

f̃ x y,()

T s()

T f̃ x y,()()

ti I i,() ti

I i
DRAFT — please do not distribute 45 Draft Printed June 1, 2005

domain. The Tlin representation will usually have much fewer samples than Tconst. Both

representations may be used to store a pre-integrated transfer function.
DRAFT — please do not distribute 46 Draft Printed June 1, 2005

CHAPTER 7

MM-PRI

The solution to the maximum projection equation requires a search for the maximal

value along the pixel ray, as shown in equation (2) (Section 2.1.3). This search is per-

formed on the portion of the ray generated at pixel (x, y) that intersects the volume:

(8)

where tin and tout are the distances along the pixel ray where it enters and leaves the vol-

ume. In MIP rendering, the transfer function T is defined as in equation (1) (Section 2.1.1)

and returns a grey level intensity. Other mapping functions can provide useful visualiza-

tions in a maximum projection. For instance, Drebin [22] uses a maximum likelihood clas-

sifier on CT data to distinguish material in a solution to volume integration. Figure 11a

shows a comparison between a MIP rendering and a MIP rendering using a different clas-

sification mapping that shows bone material from the CT data of the Visible Female

dataset. In Maximum Opacity Projection (MOP) rendering, the transfer function returns a

color that can provide an extra degree of freedom to distinguish material, as shown in Fig-

ure 11b.

color x y,() max
tin t tout≤ ≤

T f x y,() t()()()=
DRAFT — please do not distribute 47 Draft Printed June 1, 2005

Figure 11. (a) A comparison between MIP rendering (left) and MIP
rendering using a different transfer function (right) that shows bone
material from the Visible Female dataset. (b) MOP rendering is able
to assign color material.

(a) (b)
DRAFT — please do not distribute 48 Draft Printed June 1, 2005

We derive a compact representation for function from equation (9). A

straightforward way to solve this equation is to search on the pixel ray for the maximum

classified value. For each location t on the ray, where , the scalar function is

evaluated first followed by the transfer function since the final function value applied to

the maximum operator is the function , mathematically a composite func-

tion. There are two drawbacks to this procedure: 1) It requires a complete description of

the 1D function on the pixel ray and 2) the transfer function is evaluated multiple times for

the same scalar value. The consequence of the latter drawback is inefficiency because

redundant values are applied to the maximum operator. We illustrate these two drawbacks

in Figure 12a. Consider a 1D scalar function and traverse the function from left to right. If

we remove the subintervals of the function in its domain, denoted by the filled areas, that

evaluate to the same scalar values we encountered earlier in the traversal, only the remain-

ing function values are needed to solve equation (9). These function values define an inter-

val of scalar values between the global minimum and maximum function values, i.e.

. Equation (9) can be re-written using the observation that it can be alterna-

tively solved by a search in the transfer function space, as shown in the equation (10). A

search in the transfer function space is performed on the domain subinterval defined by the

scalar interval , as illustrated in Figure 12b. The MM-PRI only needs to store

this value pair per-pixel as the representation in order to solve the projection

equation.

(9)

f x y,() t()

tin t tout≤ ≤

H t() T f t()()=

f min f max,[]

f min f max,[]

f̃ x y,() t()

max
tin t tout≤ ≤

H t()() max
f min s f max≤ ≤

T s()()=
DRAFT — please do not distribute 49 Draft Printed June 1, 2005

Figure 12. We re-formulate the solution to the maximum projection
equation by applying searching in classification space rather than
along the pixel ray. Figure (a) illustrates the redundant evaluations
(red portions) on the transfer function when searching on the pixel
ray. It is most efficient to search in classification space (Figure (b))
on the domain subinterval obtained from the 1D scalar
function.

f min f max,[]

f(t)

t

fmax

fmin

T(s)

sfmaxfmin

(b)

(a)
DRAFT — please do not distribute 50 Draft Printed June 1, 2005

7.1 MM-PRI Construction

The value pair at each pixel is found by searching for the function

extrema on the knot list that is computed on the sampling ray using raycasting, cell projec-

tion, or a depth peeling approach. The function extrema will necessarily lie on knot loca-

tions with linear interpolation.

7.2 Fast Maximum Projection

Our re-formulation of the maximum projection equation solves the projection equation

as a search in classification space. The search is restricted to the function domain subinter-

val . We call this value pair an interval index because it will be used to evalu-

ate the maximum classified value from the transfer function table. The search procedure

should be done efficiently because the projection equation is solved at a million pixels or

more. We construct a transfer function table, call it , that returns the maxi-

mum transfer function value on the function domain subinterval [s1, s2], where .

7.2.1 0-degree Spline Transfer Functions

Consider the case in which the transfer function is represented as the form Tconst. In

the following sections, we present three ways to represent the transfer function table

., called the sample table, interval table, and the interval tree table. The tables

are compared with respect to table size and search time.

f min f max,[]

f min f max,[]

Tmax s1 s2,()

s1 s2≤

Tmax s1 s2,()
DRAFT — please do not distribute 51 Draft Printed June 1, 2005

7.2.1.1 Sample Table

The sample table stores two arrays of values. The first array holds the n function sam-

ples in a 1D array, called the sample array, which is arranged by increasing scalar value.

The function maximum may be found with a linear search on those entries in the sample

array that overlap the interval. The average search time may be reduced for large sample

sizes and interval ranges with a second 1D array, called the maxima array, that holds all

occurrences of local maxima arranged by increasing scalar value. This array will typically

be much smaller than the sample array.

The transfer function maximum value, given the interval index, is found with the fol-

lowing procedure. The interval is first applied to the maxima array. If the interval overlaps

at least one of the pre-computed local maxima found in this array, then the maximum

transfer function value is the largest between these overlapping maxima and the function

values at and . Otherwise, the maximum transfer function value is the larger of

the function values stored in the sample array at and . We identify local maxima

from the discrete samples in the sample array using the following three conditions. If any

one of these conditions holds, then the sample is a local maxima and inserted into the

maxima array. A sample i in the sample array is a local maxima if: 1) and

, 2) and , or 3) and

, where T is the transfer function value found in the sample array. The fol-

lowing procedure efficiently finds the maximum transfer function value:

f min f max

f min f max

T i 1–[] T i[]<

T i 1+[] T i[]< T i 1–[] T i[]< T i[] T i 1+[]= T i 1–[] T i[]=

T i[] T i 1+[]>

1. lmax = local maximum associated with smallest scalar value greater or equal to fmin.
2. If (no such local maximum exists or the scalar location of lmax is greater than fmax)

return max(T[fmin], T[fmax]);
3. return the maximum of T[fmin], T[fmax], and all local maxima between fmin and fmax.
DRAFT — please do not distribute 52 Draft Printed June 1, 2005

The local maximum lmax is found with a binary search on the maxima array using fmin as

the search key. In step 2, if no local maximum lies in the interval then the

larger of the transfer function evaluated at and at is returned. If a local maxi-

mum is found, then the largest local maximum in this scalar range is found by a linear

search in the maxima array in step 3.

7.2.1.2 Interval Table

The local maximum can be found in constant time with a construction we call the

interval table. This table will hold the maximum function values for every possible sub-

interval on the discretized transfer function domain. A subinterval is denoted by a scalar

pair where and its length is the number of scalar samples that fall

within the interval. The interval table is a 1D array where each entry represents a single

subinterval. The subintervals are arranged in sorted order in the array by interval length

and then by increasing value. The value stored in an array entry is the maximum

transfer function value over the represented scalar interval. To retrieve the maximum

transfer function value, a table index is constructed from the interval index using the inter-

val’s length and minimum scalar value, i.e. . When the number of sca-

lar samples in the transfer function domain is large, say for high precision datasets, the

interval table grows in size quickly. For example, if the scalar precision is 16-bits, the

interval table will require over 2 billion entries.

f min f max,()

f min f max

smin smax,() smin smax≤

smin

f max f min– f, min()
DRAFT — please do not distribute 53 Draft Printed June 1, 2005

7.2.1.3 Interval Tree Table

A compromise between the sample and interval tables for a large number of samples

of the transfer function is to use a binary tree data structure, called an interval tree [25].

The samples on the domain of the transfer function are successively split into half inter-

vals at the middle. A binary tree is constructed from this subdivision. The root node holds

the maximum function value over the entire function domain. An internal or leaf node

holds the maximum function value on a half interval of the interval represented in its par-

ent node. Every tree node holds the quadruple , where the interval repre-

sents a function domain interval and , m is the midpoint of this interval, and c is the

maximum transfer function value over the interval. The left child of an internal node rep-

resents the interval and the right child represents interval . A leaf node has

.

The maximum transfer function value is found with a top-down tree traversal given an

interval. A list, call it R, is maintained during the search that holds retrieved function val-

ues and is intially the empty list. At each node visited in the search, if the interval is equal

to the interval represented at the node, then c is added to list R and continued traversal

ends down this tree branch. If the interval is contained entirely within one of the two half

intervals of the node, then traversal continues down the corresponding left or right branch

with this interval. If the interval overlaps the midpoint, then the index is split at m and tra-

versal continues down both tree branches with two new interval indexes that result from a

split of the interval index at the midpoint. When all subtree traversals are terminated, the

function maximum is found in list R by a linear search. The value retrieved from list R is

l r m c, , ,() l r,[]

l r≤

l m,() m r,()

l r m= =
DRAFT — please do not distribute 54 Draft Printed June 1, 2005

the maximum function value over the original interval index at the start of the tree search

because the concatenation of the subintervals from which the values in list R were

retrieved is equal to the original the interval index. Table 1 shows the search time and table

sizes for each of the three types of transfer function tables and that the interval tree table is

a good compromise in terms of both search time and table size.

Table 1 Search costs and table sizes for piecewise constant transfer functions.

7.2.2 1-degree Spline Transfer Functions

Consider the case in which the transfer function has a linear spline form, which is

described by a list of knot values or Tlin format. The maximum transfer function value

over any domain subinterval is found at a knot or function interpolation between neighbor-

ing knots. Given an interval index (fmin, fmax), the maximum function value on the interval

is found with a binary search on the knots. Similar to the sample table, a sample array and

maxima array may be used here. The former holds the complete linear spline. That latter

holds local maxima, which will be a subset of the knots found in the sample array. A

binary search is done on the maxima array with . In the sample array, the scalars

and will lie on two segments of the spline, call them segmin and segmax, which

Type Search Cost Size

sample

interval

tree

O n() n

O 1() n2 n+() 2⁄

O nlog() 2n 1–

f min

f min f max
DRAFT — please do not distribute 55 Draft Printed June 1, 2005

are found with two binary searches. The transfer function is evaluated at and

using linear interpolation of the corresponding segment endpoints. Call these temporary

knots and , respectively. If segmin and segmax are the same segment, then the

maximum function value is the greater of and . Otherwise, the function maxi-

mum is found at knot , knot , or one of the knots in between these two. A linear

search is performed on all knots between and in the maxima array. Unneces-

sary interpolations can be avoided and the linear search made more efficient as follows. If

segmin and segmax are the same segment, then only a single linear interpolation is required

dependent upon the slope of the segment. If the slope is positive, then only is com-

puted, otherwise only is computed. If segmin and segmax are different segments, then

we can restrict the linear search as follows. If segmin has positive slope then is not

computed and the linear search starts from the knot at the right endpoint of this segment. If

segmax has negative slope, then is not computed and the linear search ends at the left

endpoint of this segment.

7.2.3 Transfer Function Update

The user will change the transfer function on-the-fly during the exploration phase in

our visualization pipeline via a GUI. At each change, the user will redefine a domain sub-

interval of the function. The transfer function table has to reflect this change for future

visualizations. Those table entries that represent values which overlap the indicated sub-

interval need to be identified and re-assigned with the new maximum function values.

The sample table is updated easily by first identifying those entries that overlap the

f min f max

k f min
k f max

k f min
k f max

k f min
k f max

k f min
k f max

k f max

k f min

k f min

k f max
DRAFT — please do not distribute 56 Draft Printed June 1, 2005

interval index and then reassigning these values to the new transfer function values. The

two interval tables are updated incrementally in a bottom-up fashion by propagating the

new function values. First, all entries that overlap the interval index and represent intervals

of size one are updated with the new function values. Note that these are the leaf nodes in

the interval tree table. The entries that represent intervals of size two are then reassigned

using the values stored at the entries representing the intervals of size one. At each step the

entries that represent the intervals of the next interval length are updated using the entries

that represent intervals of smaller length. In the case of the interval table, an entry that rep-

resents an interval of size k is assigned the maximum of the values at the two entries with

sizes one and , which when concatenated together span the interval of size k. In the

case of the interval tree, a value at an internal node is assigned the maximum of the values

found at its two child nodes, which contain up-to-date values.

7.3 Maximum Projection Rendering

7.3.1 On-sample Rendering

Let’s assume that the user’s view is coincident with the MM-PRI view sample. The

volume is rendered at or near an MM-PRI view sample location using current generation

PC graphics hardware. The 2D array of per-pixel scalar pairs that is associated with an

MM-PRI is stored in a 2D texture, call it MMtex2D, where each scalar pair occupies two of

the color channels. Float textures provide high precision and a texel format that holds

exactly two color channels. The transfer function table is stored in one or more 1D tex-

tures and function values may be stored with high precision in a float format as well. The

k 1–
DRAFT — please do not distribute 57 Draft Printed June 1, 2005

functionality of todays GPU allows for the implementation of all of the search procedures

on the transfer function tables presented in the previous section. Dependent texturing and

multitexturing are used to compute a rendering. A view-aligned quadrilateral is placed in

front of the viewer and rendered with the texture MMtex2D and the transfer function tex-

ture(s) mapped to it. The corners of the MMtex2D texture are mapped to the quad vertices.

A fragment program retrieves the scalar pair (fmin, fmax) from the MMtex2D texture and per-

forms the transfer function lookup on the transfer function table textures texture using the

pair as an interval index. The table sizes are passed to the fragment program as object col-

ors.

A different fragment program is executed to search on each table type. The procedures

presented in the last section are implemented in the fragment programs. The sample table

representation will consist of two 1D textures, i.e. one for each of the sample array and the

maxima array. The size of the tables are passed to the fragment program as primary and

secondary object colors. The entries of the interval table are stored in sorted order by

increasing interval length and then by increasing minimum scalar value in a single 1D tex-

ture. The table index is computed from fmin, the length of the interval represented by the

interval index, l, and the total number of entries in the table, n, as shown in the right-hand

side of equation 11. The values and are assumed to be normalized,

, , and . The entries of the interval

tree table are stored in breadth-first order in a single 1D texture. The texture has an RGBA

format, which can hold the four-tuple of values stored per tree node. The search procedure

starts from the root node, stored at the first texel. The left and right children of an internal

f min f max

f̂ min f min n⋅= f̂ max f max n⋅= l f̂ max f̂ min 1–+=
DRAFT — please do not distribute 58 Draft Printed June 1, 2005

node at texel i is easily found at and , respectively. The linear spline form of

the transfer function table is represented by two 1D texures (sample array and maxima

array). Linear interpolations are applied in the sample array when needed.

(10)

The transfer function tables must store both color and opacity to compute a MOP pro-

jection. The transfer function tables need to be augmented to store three color and one

opacity value instead of just one grey level intensity. The sample table will consist of three

1D textures. The first texture holds the sample array with an RGBA format. The second

texture holds just the locations of each local maxima in sorted order. The third texture

holds color and opacity values of the local maxima at each corresponding location speci-

fied in the second texture. The interval table is represented by a single 1D texture with an

RGBA format. The interval tree table is represented by two 1D textures. The first texture

holds the tree node values l, r, and m values per node. The second texture holds the RGBA

values per tree node. The search is performed on the first texture and the color and opacity

are retrieved from the second texture. The transfer function with the linear spline form

must hold the distance of the knot in addition to color and opacity. Here, we use four 1D

textures. The sample array is represented by two 1D textures where the first holds knot

locations and the second is a texture of the same size that holds corresponding color and

opacity values. The maxima array is represented by two 1D textures which hold knot loca-

tions and color and opacity as is with the sample array textures.

There is an ambiguous case in MOP rendering when two or more scalars map to the

2i 1+ 2i 2+

s n i–()
i 0=

l 2–()

∑ f̂ min+ l 1–() n
1
2
---l 1–+ 

  f̂ min+= =
DRAFT — please do not distribute 59 Draft Printed June 1, 2005

same maximum opacity and map to different colors. The ambiguity may be resolved by

choosing either the color associated with the smaller or the larger scalar value in the inter-

val. We allow the user to make this choice.

7.3.2 Off-sample Rendering

The MM-PRI may be represented by a layered slab construction to allow for approxi-

mate off-sample rendering with an image-based rendering approach. The view frustum is

partitioned into k image-aligned slabs. For each slab, a 2D array of per-pixel scalars is

computed. The pixel rays are paritioned at the boundaries of the slabs and each min/max

pair in a 2D array represents the range of scalar values within a slab only. Each 2D array is

represented as an MMtex2D texture holding min/max scalar values. These are each texture

mapped onto one of k view-aligned quads, each placed at the center of a slab. The slabs are

projected onto a render target and the fragement program is coded to write the maximum

value between the classified value assigned to the fragment and the framebuffer pixel

value.
DRAFT — please do not distribute 60 Draft Printed June 1, 2005

CHAPTER 8

LS-PRI

A full description of the function on the pixel ray is needed to solve the projection

equations described in this chapter. A number of function representations are possible, as

we know from Numerial Analysis. We chose a linear spline representation for based on

the following criteria: 1) approximation accuracy to the 1D scalar function, 2) efficient

evaluation of the transfer function and solution to the projection equation, 3) representa-

tion size, and 4) ease of implementation on graphics hardware.

Higher order polynomial and spline functions can more accurately approximate the

scalar function with a more compact representation than a linear spline form, but are more

difficult to fit the function and to solve the projection equations. A polynomial is com-

pletely described by its coefficients and a spline by its knot sequence. An example is to

solve volume integration with a higher order function representation. Max [62] and Will-

iams [101] show how to solve the integral equation when both the 1D pixel ray scalar

function and the transfer functions have linear spline forms, which requires a search in the

transfer function space. Williams [102] shows how to solve the integral when the 1D pixel

ray scalar function has a linear spline form and the transfer functions are quadratic with an

expensive 5-point Guassian quadrature rule.

The wavelet provides a level of detail representation and should be further explored

f t()

f̃

DRAFT — please do not distribute 61 Draft Printed June 1, 2005

further. The 0-degree spline function, which is calculated by most volume renderers in its

uniform sampled form, requires too many knot samples to accurately approximate the sca-

lar function over the Nyquist frequency. The result is a revoxelization of the volume where

at least one sample is needed per voxel. To ensure high image quality, Engel [26] states

that the sampling rate should exceed the product of the Nyquist frequencies of the scalar

field and the maximum frequency between the transfer functions. The value of a constant

spline segment in the 0-degree spline is used to evaluate the transfer function whose value

is applied to the entire segment. Thus, the frequency of the transfer function must be man-

ageable. Previous work [62][26] has shown that evaluating the transfer function over each

linear spline segment using pre-integrated transfer functions considerably improves image

quality. The question of whether the 0-degree spline with uniform sample spacing may be

represented more compactly has been addressed before. Consecutive runs of same valued

samples may be merged into longer constant pieces to create a 0-degree spline with vari-

able spacing. Though, this does not yield a considerable reduction in the number of sam-

ples, as shown by Srivastava [92] in their run-lengh encoding scheme. The reason is that a

constant functional piece is a poor approximating primitive. Srivastava [93] approximate

consecutive point samples that are nearly colinear with a single line segment to construct a

linear spline representation that reduces the knot count for storage purposes. The linear

spline is transformed back to a constant spline during volume integration using a Riemann

Sum solution.
DRAFT — please do not distribute 62 Draft Printed June 1, 2005

8.1 Linear Spline Data Structure

A linear spline is defined by a knot list where the function is linear between consecu-

tive pairs of knots. Thus, each linear segment has a pair of knots as its endpoints,

, where tk and tk+1 are the locations of the knots on the pixel ray, and a

and b are the respective scalar values. There are two possible ways to store the knot list.

One way stores the value pair for each knot, where tk is the distance of the knot

from the image plane and s is the scalar value at this knot location. Another way is to store

the value pair , where is the length of the linear segment along the

pixel ray and s is the scalar value at the knot location . In order to retrieve a particular

knot, the knot list must be traversed from the front and the segment lengths must be

summed together.

8.2 Variations To MIP

8.2.1 Simple Depth-shaded MIP

A simple way to apply depth shading to the MIP approach is to weight the maximum

intensity by its distance from the image plane on the pixel ray, as shown in equation (12).

The depth function d(t) may be an arbitrary function. There is an ambiguous case when

there are multiple occurences of the maximum intensity on the pixel ray. The convention

used is to set the pixel color to the the maximum intensity associated with the largest

weight factor. The solution to this equation requires a search for the maximum intensity

and then the application of the weight factor as the final pixel color.

tk a,() tk 1+ b,(),[]

tk s,()

l s,() l tk 1+ tk–=

tk
DRAFT — please do not distribute 63 Draft Printed June 1, 2005

(11)

The location of the maximum intensity on the pixel ray is found by a search on the lin-

ear spline segments. The local maximum intensity over a spline segment, denoted by its

endpoints (tk, ak) and (tk+1, ak+1), is found by using the scalar values of the endpoints as

indices to a transfer function . The location, call it tmax, of the returned local

maximum intensity, call it amax, is easily found by linear interpolation. A problem that the

search procedure must handle is the possibility that the maximum intensity may occur at

mulitple locations along the same segment and on different segments along the pixel ray.

We use a two-pass approach that quickly excludes segments from the search that do not

contain the global maximum intensity and thus avoid expensive linear interpolation calcu-

lations. The first pass uses the min/max per-pixel scalar value pairs of the MM-PRI to

quickly find the maximum intensity along the pixel ray, call it Iglobal. In the second pass,

the linear spline segments are traversed in order (the direction does not matter). A running

maximum weighted intensity value, call it Imax, is maintained and initialized to zero inten-

sity. For each spline segment, the local maximum intensity is retrieved from

and compared with the global maximum intensity found in the first pass. If it is less than

this value, then we move on to the next segment. If the segment contains the global maxi-

mum, then its location is found on the segment, tmax, and if then

value Imax is replaced with this new weighted intensity. A requirement is that the transfer

function return a list of scalar values that represent multiple occurences of

Iglobal within the same segment. All these values are compared with Iglobal and Imax one-

color i j,() d t() max
tmin t tmax≤ ≤

T f t()()()⋅=

Tmax s1 s2,()

Tmax s1 s2,()

d tmax() Iglobal⋅ Imax>

Tmax s1 s2,()
DRAFT — please do not distribute 64 Draft Printed June 1, 2005

by-one in our procedure.

The search over the linear spline segments may be terminated early if the function d(t)

is restricted to be a decreasing function. An example is a ramp function with negative

slope, which is a commonly used weighting function in practice. The weighted global

maximum intensity along the ray is necessarily the one closest to the image plane and so a

front-to-back traversal is used on the spline segments. The weighted value of the first

occurence of the global maximum is assigned as the pixel value.

8.2.2 Depth-shaded MIP

Heidrich [37] defines depth shaded MIP as first modulating the classified samples by

their associated depth weights and then applying the maximum operator on these values.

Heidrich uses a ramp depth weighting function with negative slope, whose slope and verti-

cal position can be changed by the user. Shareef [88] uses ramp and exponential depth

functions, which are applied in hardware using OpenGL’s glFog equations. General forms

of the depth weighting function can provide meaningful visualizations and can be used as

a tool for data exploration. The maximum projection equation for an arbitrary depth func-

tion is shown in equation (12). The difficulty in solving this equation is that the maximum

operator is applied on the product of two functions. If the functions d or T take general

forms, then the maximum weighted intensity must be searched on the pixel ray at point

samples chosen according to the frequency characteristics of both functions. We restrict

the depth function, d(t), to be a linear spline. In the following two sections, we restrict the

form of the transfer function and present efficient search algorithms to solve the projection
DRAFT — please do not distribute 65 Draft Printed June 1, 2005

equation.

(12)

8.2.2.1 0-degree Spline Transfer Function

First, we take the transfer function to be a 0-degree spline function and stored as the

table type Tconst. The projection equation is solved by a traversal on the linear segments of

. The maximum weighted intensity is found for each segment and the maximum of these

values is assigned as the pixel value. To find the maximum weighted intensity at any linear

segment of , the segment is subdivided into subsegments according to the knots from

color i j,() max
tmin t tmax≤ ≤

d t() T f t()()⋅()=

f, d

ttleft tright

Figure 13. (a) A linear segment of is partitioned into three inter-
vals, or subsegments, [(tleft, t1), (t1, t2), (t2, tright)] by the overlap-
ping knots of the depth function, t1 and t2. Additional knot locations
are found on a subsegment according to the number of transfer
function table entries that overlap the subsegment’s scalar interval
(s1, s2).(b) shows the new knot values on the subsegment inside the
ellipse shown in (a) given that there are three transfer function table
values within the subsegment’s scalar range.The product of the
depth function and the transfer function are computed at these loca-
tions.

f̃

(a)

t1 t2

d(t)

ttleft t1

(b)

s1

s2

s1 s2

a b c

a b c

Tconst

f̃

t∆

f̃

f̃

DRAFT — please do not distribute 66 Draft Printed June 1, 2005

function d(t) that overlap the segment. Figure 13a illustrates this subdivision on a linear

segment in with endpoint locations (tleft, tright). The portion of the depth function that

overlaps this pixel ray interval contains two overlapping knots located at t1 and t2 to define

three subsegments. The product of the depth function and the transfer function is com-

puted on each subsegment by locating transfer function samples that overlap the subseg-

ment and then evaluating both functions at these sample locations. If n is the number of

entries in the transfer function table that overlap a subsegment’s scalar bounds (s1, s2),

then new knots are located at a sample spacing of starting from

the subsegment’s left endpoint, where tj and tj+1 are the subsegment’s left and right end-

points, respectively. In the following pseudocode, the linear spline segments are traversed

and a special maximum operator is called for each subsegment:

f̃

t∆ t j 1+ t j–() n 1+()⁄=

maxCol= 0;

For k = 0 to numsegs
{

;
Partition the segment into m subsegments with end-

points at ;

For p = 0 to
{

;
;
;
;

;

;

n = number of entries in table T between and
;

m f f̃ tk 1+() f̃ tk()–() tk 1+ tk–()⁄=
tk tk 1+,()

tk0
tk=() tk1

… tkm 1–
, , ,

m 1–()

s1 f̃ tk p
()=

d1 d tk p
()=

s2 f̃ tk p
()=

d2 d tk p
()=

length tk p 1+
tk p

–=

md d tk p 1+
() d tk p

()–() length()⁄=

T f̃ tk p
()()

T f̃ tk p 1+
()()
DRAFT — please do not distribute 67 Draft Printed June 1, 2005

DRAFT — please do not distribute 68 Draft Printed June 1, 2005

The function getmax returns the maximum intensity found on a subsegment. The spac-

ing of the new knots, , is computed from the slope of the subsegment and n, the number

of overlapping table entries. The locations of the new knots are computed incrementally

starting from an endpoint and the product of the functions d and T is computed at the end-

points and these new knots. The maximum of these values is the maximum intensity over

the subsegment. The pseudocode for the algorithm follows:

;

;
;

col = ;
if (col > maxCol)

maxCol = col;
}

}
color(i, j) = maxCol;

t∆ length() n 1–()⁄=

s∆ m f t∆⋅=
d∆ md t∆⋅=

getmax s1 d1 s2 d2 s∆ d∆ d T n, , , , , , , ,()

t∆

{
maxProd = 0;
maxIntens = 0;

if ()
{

s = sl;
d = dl;
For i = 1 to n
{

;
if (I > maxIntens)
{

maxIntens = I;
;

if ()
;

}
;

;
}

getmax sl dl sr dr s∆ d∆ d T n, , , , , , , ,()

d∆ 0<

I T s()=

col d I⋅=
col maxProd>
maxProd col=

d d d∆+=
s s s∆+=

The function will avoid extraneous product computations using the slope of the linear seg-

ment from the depth function. If the slope is negative, then products with intensities less

than the current maximum intensity, maxIntens, are avoided. If the slope is positive, then

the subsegment knots are traversed in the opposite order.

8.2.2.2 1-degree Spline Transfer Function

Now we take function T to be a linear spline and stored in the table type Tlin. We use a

similar approach to compute the projection equation in that the knots of the transfer func-

tion that overlap a linear segment of are also used to partition the segment into subseg-

ments in addition to the overlapping knots from the depth function. The scalar values at

the endpoints of the linear segment define a domain subinterval in the transfer function

}
else
{

s = sr;
d = dr;
For i = n to 1
{

;
if (I > maxIntens)
{

maxIntens = I;
;

if ()
;

}
;

;
}

}

return I;
}

I T s()=

col d I⋅=
col maxProd>
maxProd col=

d d d∆+=
s s s∆+=

f̃

DRAFT — please do not distribute 69 Draft Printed June 1, 2005

space and the knots that lie within this interval are overlapping. The locations of these

knots on the pixel ray are easily found on the linear segment by linear interpolation. Figure

14 shows an example of a partition on a linear segment of (Figure 14a) using knots from

both the transfer and depth functions. If the number of overlapping knots in the transfer

function in the scalar range (a, b) is two (Figure 14b) and the number of overlapping knots

in the depth function along the pixel ray in (tk, tk+1) is one (Figure 14c), then the linear

segment is partitioned into four subsegments (Figure 14d). Along the extent of each sub-

segment, the functions d and T are linear. If the line segments cross each other, then a new

knot located at the intersection point is inserted into the knot list to further partition the

linear segment.

To compute the maximum product on a subsegment of , we consider the four possi-

ble ways that the line segments from functions T and d may be oriented with respect to

each other. The first two cases are when the slope of both line segments have the same

f̃

Figure 14. A linear spline segment (a) is partitioned by overlapping
knots from the transfer function (b) and depth function (c). The
resulting knot list, , partitions the segment into subseg-
ments (d). The maximum intensity of the entire segment is maxi-
mum intenstity of the maxima computed for each subsegment.

tT 1
td1

tT 2
, ,()

f(t)

t

a

b

T(s)

s

d(t)

t

f(t)

t

a

b

tk tk +1 tk tk +1a btT 1
tT 2

td1

td1

tT 1

tT 2

tk tk +1

(a) (b) (c) (d)

f̃

DRAFT — please do not distribute 70 Draft Printed June 1, 2005

sign. The maximum product over the subsegment is trivial to compute here because it is

simply the product of the function values at the two endpoints. If the lines are downward

sloping, then the product is computed at the left endpoint (Figure 15a). Otherwise, it is

computed at the right endpoint (Figuire 15b). When the sign of the slopes is different, then

the maximum product may lie anywhere along the subsegment. We construct a quadratic

function, which is the product of the two line segments, and solve for the maximum of this

function. Let the transfer function evaluated at the left and right endpoints be T1 and T2

and those of the depth function be d1 and d2, respectively. We describe the line segments

of both the transfer function and the depth function on the subsegment within the same

parametric and normalized space, . The product of the two functions is the qua-

dratic equation , where ,

, and , and is a parabola graphically. The maxi-

mum of the function on the subsegment can be calculated either at the line endpoints or at

the vertex of the parabola, which is computed as . We use the following

conditions to determine how to compute the function maximum. If the parabola is open

downward, i.e. , then the function maximum may be computed at one of three loca-

tions, as shown in Figure 16a. If , then the maximum is computed at the left end-

points. If , then it is computed at the right endpoints. Otherwise, the maximum lies at

the vertex, i.e. . If the parabola is open upward, i.e. , then the maximum is com-

puted at the left or right endpoints. If then it is computed at the right endpoints,

otherwise it is computed at the left endpoints (Figure 16b).

t 0 1,[]∈

D t() at2 bt c+ += a T 2 T 1–() d2 d1–()=

b T 2 T 1–()d1 d2 d1–()T 1+= c d1T 1=

v b–() 2a()⁄=

a 0<

v 0<

v 1>

D v() a 0≥

v 1 2⁄<
DRAFT — please do not distribute 71 Draft Printed June 1, 2005

8.2.3 Local MIP

The local MIP projects the first local maximum intensity above a user-defined thresh-

old. If no such local maximum exists, then the global maximum intensity on the pixel ray

is assigned as the pixel color. This projection equation can be computed with our per-pixel

linear spline data structure with a front-to-back traversal of the linear segments of and a

search in the transfer function space for each segment. The search is terminated early

when the first local maximum intensity above the threshold is found. Our approach has

two phases. First, the global maximum intensity is computed for each pixel using the MM-

PRI and the transfer function table type Tmax, presented in the previous chapter. Next, a

local maximum intensity is searched for in the transfer function space for each linear seg-

ment on a subinterval of the domain of the transfer function, which is defined by the scalar

values at the endpoints of a linear segment. Take the scalar pair (sl, sr) to be the scalar val-

Figure 15. There are four possible line segment orientations from
the transfer and depth functions on a subsegment of . The maxi-
mum of the product is computed at the line endpoints for the two
trivial cases, as illustrated by the red ellipses in (a) and (b). When
the line slopes are different, as shown in (c) and (d), the maximum
product is computed with a quadratic function.

f̃

(a) (c)

d1
d1

d2
d2

T2

T2T1

T1

(b)

d1

d2

T2

T1
(d)

d1

d2

T2

T1

f̃

DRAFT — please do not distribute 72 Draft Printed June 1, 2005

ues at the left and right segment endpoints. If the sl < sr, then a local maximum is searched

for on the domain subinterval [sl, sr] in the direction from sl to sr. Otherwise, the local

maximum is searched on this interval from sr to sl. This ensures that the local maximum

closest to the image plane is found. If a local maximum intensity is found, then the front-

to-back traversal is terminated and this value replaces the global maximum value assigned

to the pixel in the first phase.

8.2.4 RLS-PRI

The LS-PRI construction can be reduced in size when solving the local MIP equation

or when solving the depth shaded equations for the case that the depth function is assumed

to be decreasing. The scalar values on intervals along a pixel ray that represent redundant

scalar values encountered earlier in a front-to-back traversal of the scalar function (the

shaded portions shown in Figure 12a) will not contribute to the solution of the projection

equations in these two cases. Thus, they can be removed from the LS-PRI construction to

define a reduced version called the RLS-PRI. The per-pixel linear segments contained in

the RLS-PRI will be a subset of those found in the LS-PRI.

A linear spline at a pixel in the RLS-PRI is constructed from the linear spline found at

the corresponding pixel in the LS-PRI. The segments are traversed in front-to-back order

and the current range of scalar values encountered so far is updated when each segment is

processed. For each segment, if the scalar range denoted by the scalar values at its end-

points is does not overlap the current scalar range, then this segment is inserted into the

RLS-PRI. If the segment’s scalar range is completely contained within the bounds of the
DRAFT — please do not distribute 73 Draft Printed June 1, 2005

current scalar range, then the segment is not included into the RLS-PRI. If the segment’s

scalar range partially overlaps the current scalar range, then the segment is clipped, the

portion outside the clipped range is added to the RLS-PRI, and the current scalar range is

updated to incorporate this portion. The segments inserted into the RLS-PRI at a pixel are

collected into runs of contiguous segments. Thus the final construction contains a sorted

list of segment runs, where each run is disjoint from the other contiguous segments.

8.3 Volume Integration

Volume rendering by integration is a powerful visualization approach, where Sabella’s

Figure 16. The maximum product for the two non-trivial cases of
Figure 15 are computed by solving a quadratic parametric equation.
The direction of the openness of the parabola and the location of its
vertex with respect to the normalized interval of the subsegment
determines where to compute the maximum. If the parabola is open
downward (a), then the maximum is computed at the endpoints of
the line segments or at the vertex of the parabola. Otherwise, the
maximum is computed at the endpoints given the location of the
vertex with respect to the midpoint of the interval.

t = 0 t = 1

maxima

t = 0 t = 1

maxima

(a) (b)

t = .5
DRAFT — please do not distribute 74 Draft Printed June 1, 2005

low-albedo density emitter model [79] is widely used in practice. The absorption plus

emission form of the model leads to high quality renderings, but the simpler absorption

only and emission only models [61] also lead to useful renderings.

8.3.1 The Integral Equations

The integral equations for the density emmitter model were presented in Chapter 2.2,

where the transfer functions were the glow term and the extinction coefficient

.The integral equations are solved by computing a partial integration on each linear

segment of . A segment is described by the scalar values at its endpoints, sf and sb, and

its length, l, on the pixel ray. The three-tuple is input to the integral equation to

compute a color and possibly an opacity for the segment. The final integration combines

all the per-segment values from the linear spline.

The emission only, absorption only, and simplified forms of the absorption plus emis-

sion model [62][26] require an integration of the appropriate transfer function over a linear

segment. Equation 14 shows the generalized equation we need to solve and a solution that

only depends upon the parameters of the linear segment. Let the function

describe the scalar function defined on a single segment of

the linear spline, where . The last formula in equation 13 shows that the summa-

tion can be computed in classification space using the scalar bounds as indices on a trans-

fer function . This equation is easily solved if the transfer function is sampled with

uniform spacing with a pre-integrated transfer function [62][26] as long as the transfer

function is non-negative and integrable, i.e. . If the transfer

cλ s()

ρλ s()

f̃

s f sb l, ,()

g u() sb s f– l⁄() u× s+ f=

0 u l≤ ≤

σ

σ σ v() vd
s f

sb∫ σ sb() σ– s f()=
DRAFT — please do not distribute 75 Draft Printed June 1, 2005

function has form Tlin, then the summation is solved analytically using the trapezoid rule.

First, the linear segments that the scalar sf and sb overlap are found with a binary search on

the linear segments of the transfer function. The areas under the linear segments that lie

between these two values on the function domain are summed together.

(13)

8.3.1.1 Emission Only

The emission only model sums the glow of emitting particles along the ray to the eye.

If p is the total number of segments in the spline and I0 is the background color inten-

sity, this equation computes the sum of the glow term for all the spline segments. The vari-

able represent wavelength and variable q is an index for each spline segment.

(14)

8.3.1.2 Absorption Only

The absorption only model modulates the background intensity by the sum of the

extinction coefficient on the ray applied to an exponential function.

(15)

σ g u()() ud
0

l
∫ σ sb s f– l⁄() u× s+ f() ud

0

l
∫ σ v() vd

sb s f– l⁄() 0× s+ f

sb s f– l⁄() l× s+ f∫= =

l sb s f–⁄() σ v() vd
s f

sb∫= ws f sb l, , σ v() vd
s f

sb∫=

f̃

λ

Iλ Iλ 0, ws f q, sb q, lq, , c⋅ λ s f q, sb q,,()
q 1=

p

∑+=

Iλ Iλ 0, e

ws f q, sb q, lq, , ρλ s f q, sb q,,()⋅

q 1=

p

∑–
 
 
 
 

⋅=
DRAFT — please do not distribute 76 Draft Printed June 1, 2005

The summation is computed first and then the exponential is applied to it.

sum = 0;
q = 1;

For (q < p) do
sum += * ;
q++;

color = I0 * exp(-sum);

8.3.1.3 Absorption Plus Emission

The absorption plus emission equation models not only the glow of the material but

also the attenuation of the glow as it passes through material on the way towards the eye.

A number of methods have been presented to solve this equation when the scalar function

on the pixel ray is a linear spline. The solutions presented in the literature stem from

approaches addressing the problem of volume rendering of unstructured grids. A main dif-

ficulty encountered is how to compute self-attenuation within a linear segment. These

solutions make one or more simplifications to the absorption plus emission equation in

order to compute an approximate solution. Shirley [89], using graphics hardware available

over a decade ago that had only limited texturing capabilities, take the average of the

transfer functions evaluated at both ends of a linear segment at the thick vertex of a tetra-

hedral volume cell as the color and opacity of the segment. These values are interpolated

across the triangle in a Gouraud shading style interpolation. Stein et al [94] improve on

this with dependent texturing by computing color and alpha more accurately across the

tetra on a per-pixel basis. Max [62] simplifies the model by restricting the glow term to be

ws f q, sb q, lq, , ρλ s f q, sb q,,()
DRAFT — please do not distribute 77 Draft Printed June 1, 2005

constant (or piecewise constant) and allows the extinction coefficient to be any integrable

function, thereby preserving self-attenuation. Engel [26] allows both the emission and

extinction functions to be arbitrary, but neglects self-attenuation within the segment.

Color-alpha compositing [74] is used to combine the color and alpha values computed at

each segment. Recent hardware accelerated approaches have tried to address the self-

attenuation calculation problem. Guthe [34] store integrations with self-attenuation over

all possible segments, in a 3D texture table. Though, table size and re-computa-

tion of the table during transfer function changes are two problems to overcome. Guthe

[35] use a 2D table indexed by a pair of scalar values that holds pre-integrated values for a

representative, e.g. average, segment length. To compute a segment’s color and alpha, a

retrieved pre-integrated value from the table is scaled to the segment’s actual length.

The integral equation may be solved with a linear spline form using the Riemann Sum,

which is most commonly used in most volume rendering approaches. Srivastava [93] com-

pute evenly spaced point samples on the spline segments to compute a Riemann Sum over

their per-pixel linear splines.

8.4 Mapping Linear Splines to Textures

The projection equations may be computed fast using today’s graphics hardware

equipped with programmable GPU and dependent texturing technology. If the viewer is

coincident with an LS-PRI view sample, then a rendering is computed by projecting the

per-pixel splines to the viewer’s image plane. The spline knots are stored as texture data

and accessed by a fragment shader program, which solves the projection equations. An

s f sb l, ,()
DRAFT — please do not distribute 78 Draft Printed June 1, 2005

image-aligned quad that spans the area of the image plane area exactly is rendered to the

screen. Texture coordinates are assigned so that they may be used as indices into the x and

y directions of the LS-PRI image plane by the fragment shader. We discuss the problem of

how to map the per-pixel splines of the LS-PRI into textures. A straightforward approach

is to copy the knots into a 3D texture map where two of the dimensions coincide with the

pixel array of the LS-PRI and per-pixel splineknots are stored along the third dimension.

Since the knot counts may be different between pixels in the LS-PRI, many texels in the

3D texture may contain no data.

8.4.1 Tiled 2D Texture Stack

The knots may be stored in a 2D texture stack. Each 2D texture has a pixel resolution

that matches the LS-PRI. The spline knots are assigned to the textures as follows. For each

per-pixel spline, each knot is assigned a number starting from one and increased by one

according to its front-to-back order. If the spline with most number of knots has m knots,

then the texture stack will have m 2D textures. Each 2D texure is assigned a unique num-

ber between 1 to k according to its order in the stack. All knots labeled number one are

placed into the first 2D texture in the stack at their corresponding pixel locations. All knots

labeled two are placed into the second 2D texture at their corresponding pixel locations.

This continues for all knots to the label k. Many of the texels in the 2D texture stack that

were assigned with no knot data can be removed from the representation. We partition

each of the 2D textures into a tile grid of n x m tiles. The tiles that contain no knot data at

all are removed from the stack. The tiles that overlap the same region on the 2D texture are
DRAFT — please do not distribute 79 Draft Printed June 1, 2005

collected into a tile run for a total of n x m runs. The order of the tiles in the 2D texture

stack is preserved in the tile run. Since each spline must contain at least two knots, each

tile run will contain at least two tiles. The tile runs are stored into a 2D texture in consecu-

tive order by image order and then tile order. A second 2D texture with the same dimen-

sions as the pixel resolution of the LS-PRI stores indices into this texture. Each texel in the

second 2D texture indexes in to the corresponding texel that holds the first knot in the run

of knots in that tile run. In addition, each texel also holds the number of knots in the run

for this spline. An image aligned quad is rendered as before mapped with this second tex-

ture. The fragment program retrieves the index and traverses the corresponding knot list in

the tile run starting from the value referred to by the index using dependent texturing for

the specified number of knots in the list. The fragment program computes the projection

equation and outputs the final pixel color.

8.4.2 2D Texture Map

The tiled 2D textured stack will require storing texels that hold no data. The per-pixel

splines may be stored compactly into a 2D texture where the splines are placed one after

the other in pixel order. A secone 2D texture holds texture coordinates index to the loca-

tion of the first knot of a corresponding per-pixel spline in the 2D texture holding the

splines. In addition, it holds the number of knots in the spline. The fragment program will

traverse the spline from this starting point to compute the projection equation for the pixel.

8.5 Linear Spline Simplification

The total size of the LS-PRI is the total number of knots used to represent all the per-
DRAFT — please do not distribute 80 Draft Printed June 1, 2005

pixel linear splines. In addition, there are two values associated with each knot, i.e. its dis-

tance from the image plane and a scalar value. The volume data sizes we are considering

will require the LS-PRI to contain at least 1 million pixels at a minimum pixel resolution

of 1K x 1K. If the knots for a pixel’s linear spline are chosen as in volume raycasting,

where samples along the pixel ray are located with a uniform spacing, then the minimum

number of knots will be 1K for lower resolution data in order to satisfy the Nyquist limit

condition since more than one sample should be placed inside each volume cell. Since

each per-pixel spline will have an equal number of knots, the memory footprint of the LS-

PRI will be at least 1GB. This is essentially a revoxelization of the volume. If we assume

that the scalar function is reconstructed linearly, then knots may be located at the intersec-

tions between a pixel ray and the volume faces. Each spline segment exactly represents the

scalar function inside the volume cells. If volume reconstruction is nonlinear, then more

samples need to be taken within a volume cell. In either case, the number of knots per

spline will be on the order of the number of volume cells along a direction or at a mini-

mum over 1K cells. The size of the LS-PRI should be reduced in terms of the number of

knots to reduce the memory footprint of the data structure. In addition, the speed of the

rendering algorithms is proportional to the number of spline segments. Thus, we seek to

reduce the knot count of the splines in a lossy manner but with control over the inevitable

error that will be introduced in the approximation.
DRAFT — please do not distribute 81 Draft Printed June 1, 2005

We assume that the volume has been resampled along pixel rays with a high enough

sampling rate to construct an initial set of per-pixel linear splines for the LS-PRI. Our goal

is to reduce the number of knots in the representation to obtain a good approximation to

the original per-pixel splines. This is done independently for each per-pixel spline. A sim-

ple method to reduce the knot count is to replace consecutive runs of knots that are colin-

ear with only two knots. Even though no approximation error is introduced in the resulting

spline, the resultant knot count is a small reduction when applied to real data. In order to

obtain substantial reductions, a spline simplification method must replace near linear runs

of spline segments into a single linear segment and incur an approximation error, i.e. lossy

compression. The goal of any such method is to try to preserve the shape of the function.

f

t

fmin

fmax

f

t
(a) (b)

Figure 17. Two problems can occur if a spline simplification algorithm
does not ensure that the endpoints of a new linear spline segment coincides
with knot locations from the original spline. An “overshoot” case (a) may
occur if an endpoint surpasses the scalar bounds, [fmin, fmax], of the original
linear segments it approximates. An “undershoot” case (b) may occur if an
endpoint is contained inside the scalar bounds.

fmin

fmax
DRAFT — please do not distribute 82 Draft Printed June 1, 2005

This problem has been addressed for quite some time. The methods presented over the

years can be classified into knot removal, simulated annealing, and greedy algorithms,

which can output different resulting linear splines.

Lokovich [54] uses a greedy approach to reduce linear splines that represent visiblity

information in a shadow map. The approach fits new linear segments to consecutive runs

of knots such that every knot in the run is within a specified maximum vertical distance

from the new line segment. The algorithm initially assigns the first knot in the original lin-

ear spline as the left endpoint of the first new line segment. The right endpoint of this new

segment is calculated by visiting the original spline knots in order until a knot is encoun-

tered that violates the error threshold criterion. The right endpoint is placed with a vertical

offset from the last knot in the traversal that satisfied the criterion. This new knot is set as

the left endpoint of the second new linear segment and the same traversal is used on the

knots after this one to calculate this segment’s right endpoint. New line segments are com-

puted consecutively in this manner until all the knots or the the original spline have been

visited. Even though this algorithm provides a good curve fit, the resulting linear spline

may suffer from improper indexing into the transfer function [93]. The problem is illus-

trated in Figure 17 and may occur in two instances. The first instance, we call an overshoot

(Figure 17a), is where a new linear segment extends above or below the scalar bounds of a

run of consecutive linear segments it approximates. This will result in adding extra por-

tions of the transfer function when calculating a projection equation due to incorrect trans-

fer function indexing. As Srivastava [93] states, the error may become worse with higher

frequencies in the transfer function. The second instance, we call an undershoot (Figure
DRAFT — please do not distribute 83 Draft Printed June 1, 2005

17b), is where the new linear segment does not extend to the scalar bounds of the linear

segments it approximates. In this case, portions of the transfer function that should con-

tribute to the projection equation will not. To avoid this occurence, a simplification algo-

rithm should ensure that the endpoints of the new linear segments coincide with original

knot locations. Srivistava[93] presents an algorithm that operates the same as [54] and sat-

isfies the same error criterion, except that it ensures this desirable property on the location

of endpoints for new line segments.

A drawback of these greedy approaches is that the decisions made when locating a

new linear segment is based upon a limited look-ahead. This may lead to increased flatten-

ing where the function curves more. This introduced a second source into the projection

equation, besides incorrect transfer function indexing, where the slope of the new line seg-

ment deviates more from the slopes of the original line segments at a turn in the original

function. We use an approach that builds the new linear spline incrementally, but considers

the entire spline at each step. It is a modified version of the mesh simplification algorithm

for terrain data presented by Duchaineau [23] in its 1D form. The simplified spline is con-

structed in a bottom up fashion. At each iteration, consecutive pairs of linear segments are

possibly merged into single segments. The pairs are nonoverlapping with other pairs, i.e. if

the segments are numbered in order, say 0 to n, then a segment pair is denoted by the seg-

ments numbered as i and i + 1, where i is even. At iteration 0, the algorithm starts with the

original linear spline segments and tries to merge segment pairs in order starting from the

first pair. If n is odd, then the last segment is not considered in the current iteration, though

it may be considered in the next iteration. After all the segment pairs have been traversed
DRAFT — please do not distribute 84 Draft Printed June 1, 2005

and possibly merged into single segments, the next iteration starts from the beginning of

this new spline and repeats the process. To merge a segment pair into a single segment, we

apply the same error criterion used by [54][93]. A segment pair is defined by three consec-

utive knots, left, middle, and right. If it is merged, then the new segment will have its end-

points at the left and right knots of the segment pair. A merge is done only if all knots from

the original spline that lie between the left and right knots are within a specified vertical

distance threshold to the new candidate segment. This guarantees that the final simplified

spline will satisfy the error criterion. The algorithm stops when no segment pairs are

merged in an iteration. The algorithm is easy to implement and takes O(nlogn) time.

We show in Figure 18 six iterations (top to bottom) of our algorithm on a trigonomet-

ric function sampled at 128 equally spaced knots. The scalar range is normalized to [0, 1]

and the error threshold used is the vertical distance 0.2. The number of segments in suc-

cessive iterations are: 127, 63, 32, 16, 13, and 7. The parallelpipeds surrounding a segment

in the figure represents the vertical distance of the knot from the original spline that maxi-

mally deviates from the new segment it overlaps. Any of these intermediate splines may

be used for our purposes and so we typically would not choose the spline in the final itera-

tion. This decision could be based upon a second error criterion that chooses the new lin-

ear spline in an iteration that has a tolerable number of segments and whose segments have

slopes closer to the slopes of the original line segments. Figure 19 shows our algorithm

applied to a spline sampled from the the Richtmeyer-Meshkov dataset at time step 134.

The original spline has 2048 equally spaced knots, which is shown at the rightmost graph.

The graphs shown from top to bottom are the simplified splines in the final iterations when
DRAFT — please do not distribute 85 Draft Printed June 1, 2005

changing the error thresholds to be 0.01, 0.05, 0.1, 0.15, and 0.2, respectively. The table at

the bottom right displays the number of knots in the simplified spline and the number of

iterations for the algorithm to complete. The knot count falls below one thousand for a

tight threshold of 0.01 and much of the detail is preserved in the range of 200 ~ 400 knots.
DRAFT — please do not distribute 86 Draft Printed June 1, 2005

Figure 18. Five iterations of our linear spline simplification algo-
rithm on a trigonometric function sampled at constant spacing and
the error threshold set to .2.
DRAFT — please do not distribute 87 Draft Printed June 1, 2005

Error
Tolerance Knots Iterations

.01 890 6

.05 368 6

.1 205 9

.15 137 9

.2 86 9

Figure 19. Results of our linear spline simplification algorithm on a
pixel ray through real data.
DRAFT — please do not distribute 88 Draft Printed June 1, 2005

CHAPTER 9

Volume Rendering From Compressed Data

We present a novel volume rendering approach that uses only three LS-PRI. Three

such LS-PRI provide both a sufficient sampling and compression of the volume (struc-

tured or unstructured). This construction is similar to the Layered Depth Image (LDI)

[86], which is used to hold ray-object intersections in a polygonal scene of opaque sur-

faces. Lischinski [52] samples a polygonal scene with three LDIs positioned to point in

orthogonal directions to each other along the three coordinate axes, called a Layered

Depth Cube (LDC). In this way, all surfaces in the scene may be sampled regardless of

their orientation. We construct a similar scheme and place three LS-PRI’s in orthogonal

directions to sample the volume. Our rendering algorithm reconstructs the volume from a

single LS-PRI, which is determined by the angle between the user’s view angle and the

one of the three sampling directions. Our approach is similar to the shear-warp [45]

approach and Rezk-Salama’s [76] approach, which uses only 2D textures and the depen-

dent texturing facility to reconstruct the volume on intermediate data slices.

Our graphics pipeline consists of four steps, as shown in Figure 20. The first three

steps convert the volume into the compressed format, which is encoded into three 2D tex-

ture pairs. The fourth step renders the volume directly from this compressed format and

requires no decompression. In the compression phase, we resample the volume along the
DRAFT — please do not distribute 89 Draft Printed June 1, 2005

sampling rays in the three LS-PRIs. If the volume is assumed to be reconstructed linearly

within volume cells, then spline knots are located at the intersections between the sam-

pling ray and a cell face. Otherwise, samples are chosen using a uniform sample distance.

In the second step, the per-pixel splines of each of the three LS-PRI are compressed using

our linear spline simplification approach presented in Chapter 8.5. The third step creates a

pair of 2D textures for each LS-PRI, as presented in Chapter 8.4.2. The rendering phase

(step four) is a two-pass algorithm that reconstructs scalar slices of the volume in the first

pass and then classifies, projects, and blends the slice to the screen in the second pass. The

intersection of the bounds of each the image planes from the LS-PRI’s defines the smallest

bounding box that encloses the volume. Data slices that will hold sheets of reconstructed

scalar values will be defined within the bounds of this bounding box. The slices are pro-

jected in depth order, i.e. front-to-back or back-to-front.

9.1 Per-Slice Two-pass Rendering

After the compression phase, the volume is rendered from one of the three compressed

LS-PRIs. The choice is determined by the smallest angle between the user’s view direction

and each of the sampling directions of the LS-PRIs. The volume is reconstructed on data

slices that are oriented to be no more than 45 degrees from the sampling direction of the

chosen LS-PRI. Our algorithm supports both axis- and view-aligned slicing, as described

in the following sections. Each data slice is rendered in two-passes. In the first pass, the

proxy geometry representing the slice is rendered orthogonally to the LS-PRI’s image

plane. This projection is captured with the render-to-texture facility to a float pbuffer. The
DRAFT — please do not distribute 90 Draft Printed June 1, 2005

proxy geometry is multitextured with the 2D texture pair. A fragment shader program uses

the index retrieved from the index texture and the proxy’s distance from the image plane to

search for the linear segment in the linear spline texture and perform linear interpolation.

This search is performed efficiently using binary search. In the second pass, the float

buffer is mapped to the proxy geometry, which is now projected and blended into the

framebuffer, where classification is performed in a second fragment shader program.

9.2 Axis-aligned Slice Planes

In axis-aligned slicing, data slices are uniformly spaced quads that are oriented to be

perpendicular to the sampling direction of the LS-PRI. This is commonly used for 2D tex-

ture volume rendering. Rekz-Salama [76] computes trilinearly interpolated scalar values

from consecutive slices of a stack of 2D textures constructed from a rectilinear grid. Simi-

larily, we are able to do the same with our linear spline representation. Since each data

slice is located at some distance from this plane, this distance may be input to the fragment

program through the object color. Each quad is the same size as the LS-PRI’s image plane.

The index texture is mapped to fill the quad exactly so that the fragment shader program

can access each per-pixel linear spline correctly. The resulting scalar sheet is mapped to

the quad in the second pass and rendered with blending to the framebuffer.

9.3 View-aligned Slice Planes

View-aligned slices may be rendered using our approach without the need for a 3D

texture. This alignment avoids popping artifacts [45] at view boundaries where the axis-
DRAFT — please do not distribute 91 Draft Printed June 1, 2005

aligned slicing changes abruptly. View-aligned proxy geometry is defined as in 3D texture

volume rendering and clipped to the bounding box. A proxy may have a minimum of three

sides and maximum of 5 sides, if we ignore the degenerate cases when the data slice inter-

sects only at a bounding box vertex or edge. Scalar values are reconstructed across the

data slice as in axis-aligned slicing. The exception is that since the proxy geometry may

not be orthogonal with the sampling direction of the LS-PRI, the distance to each per-pixel

location on the proxy must be interpolated across the polygon. The fragment program will

use this interpolated distance value to perform a search and interpolation in each linear

spline. After the first pass, the pbuffer will contain the reconstructed scalar values in a por-

tion of the buffer. In the second pass, the pbuffer is texture mapped to the proxy and the

texture coordinates are easily computed from location vertices of the proxy on the bound-

inx box edges using a simple planar projection. This ensures that only the portion of the

pbuffer that was assigned scalar values will texture the proxy.
DRAFT — please do not distribute 92 Draft Printed June 1, 2005

Figure 20. Our rendering pipeline for rendering from compressed
data. The compression step is shown in (a) and (b). The volume is
sampled and in each LS-PRI (a). The splines are compressed and
mapped to 2D texture pairs (b). In the rendering step (c) the volume
is rendered with either axis-aligned slices (left) or view-aligned
slices (right) using the texure pairs.

Index Textures

Spline Textures

(a)

(b)

(c)

Bounding Box

Bounding Box
DRAFT — please do not distribute 93 Draft Printed June 1, 2005

BIBLIOGRAPHY

[1] Accelerated Strategic Computing Initiative (ASCI), http://www.llnl.gov/asci.

[2] M. J. Ackerman, “The Visible Human Project,” J. Biocomm., Vol. 18, p. 14, 1991.

[3] D. Aliaga, “Visualization of Complex Models Using Dynamic Texture-based Simplifi-
cation,” IEEE Visualization ‘96, pp. 101-106, 1996.

[4] C. Bajaj, V. Pascucci, and D. Schikore, “The Contour Spectrum,” IEEE Visualization
‘97, pp. 167-173, 1997.

[5] W. Bethel, "Visualization Dot Com," IEEE Computer Graphics and Applications,
May/June 2000.

[6] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau, “Using High-Speed WANs and
Network Data Caches to Enable Remote and Distributed Visualization,” Proc. of
Supercomputing ‘00, 2000.

[7] J. Blinn, “Light Reflection Functions for Simulation of Clouds and Dusty Surfaces,”
Proc. of SIGGRAPH ‘82, Vol. 16, No. 3, pp. 21-29, 1982.

[8] C. P. Botha and F. H. Post, “Interactive Previewing for Transfer Function Specification
in Volume Rendering,” Proc. of the Symposium on Data Visualization, pp. 71-, 2002.

[9] M. L. Brady, K. K. Jung, H.T. Nguyen, and T. PQ. Nguyen, “Interactive Volume Navi-
gation,” IEEE TVCG, Vol. 4, No. 3, pp. 243 - 256, 1998.

[10] P. Bunyk, A. Kaufman, and C. T. Silva, “Simple, fast and robust ray casting of irregu-
lar grids,” Scientific Visualization Conference (dagstuhl), pp. 30, 1997.
DRAFT — please do not distribute 94 Draft Printed June 1, 2005

[11] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering And Tomographic
Reconstruction Using Texture Mapping Hardware,” 1994 Symp. on Vol. Vis., pp. 91-
98, 1994.

[12] W. Cai and G. Sakas, “Maximum Intensity Projection Using Splatting in Sheared
Object Space,” Proc. EUROGRAPHICS ‘98, pp. C113-C124, 1998.

[13] B. Carneiro, C. Silva, and A. Kaufman, “Tetra-Cubes: An Algorithm to Generate 3D
Isosurfaces based upon Tetrahedra,” Anais do IX SIBGRAPI ‘96, pp. 205-210, 1996.

[14] B. Chen, A. Kaufman, and Q. Tang, “Image-Based Rendering of Surfaces from Vol-
ume Data,” IEEE Workshop on Volume Graphics, 2001.

[15] S. Chen, “QuickTime VR: An Image-based Approach to Virtual Environment Navi-
gation,” Proc. of The 22nd Annual Conference on Computer Graphics and Interactive
Techniques, pp. 29-38, 1995.

[16] E. Chen and L. Williams, “View Interpolation for Image Synthesis,” Proc. of the 20th
Annual Conference on Computer Graphics and Interactive Techniques, pp. 279-288,
1993.

[17] J-J Choi and Y. Shin, “Efficient Image-Based Rendering Of Volume Data,” Proc.
Pacific Graphics ‘98, pp. 70-78, 1998.

[18] B. Csebfalvi, A. Konig, and E. Groller, “Fast Maximum Intensity Projection Using
Binary Shearwarp Factorization,” TR-186-2-98-27 at the Institute of Computer Graph-
ics, Vienna University of Technology, 1998.

[19] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman, “High-Quality Volume
Rendering Using Texture Mapping Hardware,” Proc. SIGGRAPH/Eurographics
Graphics Hardware Workshop, 1998.

[20] P. Debevec, G. Borshukov, and Y. Yu, “Efficient View-Dependent Image-Based Ren-
dering with Projective Texture-Mapping,” Proc. 9th Eurographics Rendering Work-
shop, 1998.
DRAFT — please do not distribute 95 Draft Printed June 1, 2005

[21] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey, “Multi-layered imposters for
accelerated rendering,” Proc. Eurographics ‘99, pp. 145-156, 1999.

[22] R. Dreben, L. Carpenter, and P. Hanrahan, “Volume Rendering,” Proc. of SIGGRAPH
‘88, Vol. 22, No. 4, pp. 65-74, 1988.

[23] M. Duchaineau, M. Wolinsky, D. Sigeti, C. Aldrich, and M. Mineev, “ROAMing Ter-
rain: Real-time Optimally Adapting Mesh,” IEEE Visualization ‘97, pp. 81-88, 1997.

[24] G. Dutton, “Locational Properties of Quaternary Triangular Meshes,” Proc. of the
Fourth International Symp. Spatial Data Handling, pp. 901-910, 1990.

[25] H. Edelsbrunner, “Dynamic Data Structures For Orthogonal Intersection Queries,”
Technical Report F59, Inst. Informationsverarb, Tech. Univ. Graz, Graz, Austria,
1980.

[26] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated Volume Rendering
Using Hardware-Accelerated Pixel Shading,” Proc. ACM SIGGRAPH/EUROGRAPH-
ICS Workshop on Grahics Hardware, pp. 9-16, 2001.

[27] S. Fang, T. Biddlecome, and M. Tuceryan, “Image-based Transfer Function Design
for Data Exploration in Volume Visualization,” IEEE Visualization ‘98, pp. 319-326,
1998.

[28] J. Gao, J. Huang, H-W Shen, and J. Kohl, “Visibility Culling Using Plenoptic Opacity
Functions for Large Volume Visualization,” IEEE Visualization ‘03, pp. 341-348,
2003.

[29] J. Gao and H-W Shen, “Parallel View-dependent Isosurface Extraction Using Multi-
Pass Occlusion Culling,” Proc. IEEE Symposium On Parallel and Large-data Vis. and
Graphics 2001, pp. 67-74, 2001.

[30] C. Giertsen, “Volume Visualization of Sparse Irregular Meshes,” IEEE Computer
Graphics & Applications, Vol.12, No. 2, pp. 40-48, 1992.
DRAFT — please do not distribute 96 Draft Printed June 1, 2005

[31] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The Lumigraph,” Proc. of the
23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43-
54, 1996.

[32] N. Greene, “Environment Mapping and Other Applications of World Projections,”
IEEE Computer Graphics &Applications, Vol. 6, No. 11, pp. 21-29, 1986.

[33] N. Greene and M. Kass, “Approximating Visibility with Environment Maps,” Techni-
cal Report 41, Apple Computer, Inc., 1993.

[34] S. Guthe, S. Roettger, A. Schieber, W. Strasser, and Thomas Ertl, “High-Quality
Unstructured Volume Rendering on the PC Platform,” Eurographics/SIGGRAPH
Graphics Hardware Workshop, 2002.

[35] S. Guthe, M. Wand, J. Gonser, and W. Strasser, “Interactive rendering of large volume
data sets,” IEEE Visualization’02, pp 53-59, 2002.

[36] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of Transfer Functions With
Stochastic Search Techniques,” Proc. IEEE Vis. ‘96, pp. 227-234, 1996.

[37] W. Heidrich, M. McCool, and J. Stevens, “Interactive Maximum Projection Volume
Rendering,” Proc. IEEE Vis. ‘95, pp. 11-18, 1995.

[38] Hugues Hoppe, “Progressive Meshes,” Proc. SIGGRAPH ’96, pp. 99-108, 1996.

[39] J. Kajiya and B. Von Herzen, “Ray Tracing Volume Densities,” ACM SIGGRAPH
Comput. Gr., Vol. 18, No. 4, pp. 165-174, 1984.

[40] K. Kaneda, Y. Dobashi, K. Yamamoto, and H. Yamashita, “Fast Volume Rendering
with Adjustable Color Maps,” Proc. 1996 Symp. on Vol. Vis., pp. 7-14, 1996.

[41] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using Multi-
Dimensional Transfer Functions and Direct Manipulation Widgets,” IEEE Visualiza-
tion ‘01, pp. 255-262, 2001.
DRAFT — please do not distribute 97 Draft Printed June 1, 2005

[42] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, C. Hansen,
“Interactive Texture-Based Volume Rendering for Large Data Sets”, IEEE Computer
Graphics & Applications, Vol. 21, No. 4, pp. 52-61, 2001.

[43] G. Knittel and W. Strasser, “Vizard - Visualization Accelerator for Real-time Dis-
play,” Proc. SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp.
139-146, 1997.

[44] A. König and E. Gröller, “Mastering Transfer Function Specification by Using Vol-
umePro Technology,” IEEE Proc.of 17th Spring Conf. on Comp. Graphics (SCCG’01),
Budmerice, Slovakia, pp. 279-286, April 2001.

[45] P. Lacroute and M. Levoy, “Fast Volume Rendering Using A Shear-Warp Factoriza-
tion Of The Viewing Transformation,” Proc. of SIGGRAPH ‘94, pp. 451-458, 1994.

[46] E. LaMar and V. Pascucci, “A Multi-Layered Image Cache for Scientific Visualiza-
tion,” IEEE Symp. on Parallel and Large-Data Visualizatin and Graphics, pp. 61-68,
2003.

[47] M. Levoy, “Display Of Surface From Volume Data,” IEEE Comp. Graph. & Appl.,
Vol. 8, No. 5, pp. 29-37, 1988.

[48] M. Levoy, “Efficient Ray Tracing Of Volume Data,” ACM Trans. Comp. Graph., Vol.
9, No. 3, pp. 245-261, 1990.

[49] M. Levoy, “Expanding the Horizons of Image-Based Modeling and Rendering,”
Panel Presentation at Siggraph ‘97 on Image-Based Rendering, 1997.

[50] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. Siggraph ‘96, pp. 31-42,
1996.

[51] A. Lippman, “Movie-Maps: An Application of the Optical Videodisc to Computer
Graphics,” Proc. SIGGRAPH ‘80, pp. 32-42, 1980.
DRAFT — please do not distribute 98 Draft Printed June 1, 2005

[52] D. Lischinski and A. Rappaport, “Image-based Rendering for Non-Diffuse Synthetic
Scenes,” Rendering Techniques ‘98, pp. 301-314, Vienna, Austria, 1998.

[53] Y. Livnat and C. Hansen, “View Dependent Isosurface Extraction,” Proc. IEEE Vis.
‘98, pp. 175 - 180, 1998.

[54] T. Lokovich and E. Veach, “Deep Shadow Maps,” ACM SIGGRAPH ‘00, pp. 385-
392, 2000.

[55] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Suface
Construction Algorithm,” Proc. of SIGGRAPH ‘87, pp. 163-169, 1987.

[56] E. J. Luke, C. D. Hansen, “Semotus Visum: A Flexible Remote Visualization Frame-
work”, Proc. IEEE Visualization ‘02, pp., 2002.

[57] P. Maciel and P. Shirley, “Visual Navigation of Large Environments Using Textured
Clusters,” Proc. Symposium on Interactive 3D Graphics SIGGRAPH ‘95, 1995.

[58] M. Magallon, M Hopf, T. Ertl, “Parallel Volume Rendering Using PC Graphics Hard-
ware”, Ninth Pacific Conference on Computer Graphics and Applications ’01, Tokyo,
2001.

[59] W. R. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D Warping,” Proc. 1997
Symp. on Interactive 3D Graphics, pp. 7-16, 1997.

[60] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B.
Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. "Design Galleries: A
General Approach to Setting Parameters for Computer Graphics and Animation,"
Proc. of SIGGRAPH ‘97, pp. 389-400, 1997.

[61] N. Max, “Optical Models for Direct Volume Rendering,” IEEE TVCG, pp. 99-108,
1995.
DRAFT — please do not distribute 99 Draft Printed June 1, 2005

[62] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coherence For Efficient
Visualization of 3D Scalar Functions,” ACM SIGGRAPH Computer Graphics (San
Diego Workshop on Volume Visualization), Vol. 24, No. 5, pp. 27-33, 1990.

[63] N. Max and K. Ohsaki, “Rendering Trees From Precomputed Z-buffer View,” Proc.
Eurographics Workshop on Rendering, June 1995.

[64] J. Meredith and K-L Ma, “Multiresolution View-Dependent Splat Based Volume
Rendering of Large Irregular Data,” Parallel and Large Data Visualization Sympo-
sium, October 22-23, 2001.

[65] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based Rendering Sys-
tem,” Proc. SIGGRAPH ‘95, pp. 39 - 46, 1995.

[66] L. Mroz, A. Konig, and E. Groller, “Maximum Intensity Projection at Warp Speed,”
Technical Report TR-186-2-99-24 Institute of Computer Graphics and Algorithms
Vienna University of Technology: A-1040 Karlsplatz 13/186/2, 1999.

[67] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “IBR-Assisted Volume Rendering,”
LBHT Vis. ‘99, pp. 5-8, 1999.

[68] S. Muraki, M. Ogata, K-L Ma, K. Koshizuka, K. Kajihara, X. Liu, Y. Nagano, and K.
Shimokawa, “Next-Generation Visual Supercomputing using PC Clusters with Vol-
ume Graphics Hardware Devices,” Proc. ACM/IEEE Supercomputing 2001, 2001.

[69] M. Oliveira, “Image-Based Modeling and Rendering Techniques: A Survey,” RITA -
Revista de Informa’tica Teo’rica e Aplicada, Volume IX, Number 2, pp. 37-66, Octo-
ber 2002.

[70] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive Ray Tracing
for Isosurface Rendering,” Proc. IEE Vis. ‘98, pp. 233-238, 1998.

[71] S. Parker, P. Shirley, Y. Livnat, C. Hansen, P.-P. Sloan, and M. Parker, “Interacting
with Gigabyte Volume Datasets on the Origin 2000,” The 41st Annual Cray User’s
Group Conference, 1999.
DRAFT — please do not distribute 100 Draft Printed June 1, 2005

[72] H. Pfister, J. Hardenbergh, G. Knittel, H. Lauer, and L. Seiler, “The VolumePro Real-
Time Ray-Casting System,” Proc. of SIGGRAPH ‘99, pp. 251-260, 1999.

[73] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S. Avila, K. Mar-
tin, R. Machiraju, and J. Lee, “The Transfer Function Bake-Off,” IEEE Computer
Graphics and Applications, Vol. 21, No. 3, pp. 16-22, 2001.

[74] T. Porter and T. Duff, “Compositing Digital Images,” Proc. of SIGGRAPH ’84, pp.
253-259, 1984.

[75] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuetzle, “View-
based Rendering: Visualizing Real Objects from Scanned Range and Color Data,”
Proc. of 8th Eurographics Workshop on Rendering, pp. 23-34, 1997.

[76] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive Volume
Rendering On Standard PC Graphics Hardware Using Muti-textures and Multi-stage
Rasterization,” Proc. of Eurograhics Workshop on Graphics Hardware, pp. 109-118,
2000.

[77] S. Roettger, M. Kraus, and T. Ertl, “Hardware-Accelerated Volume And Isosurface
Rendering Based On Cell-Projection,” IEEE Visualization 2000, pp. 109-116, 2000.

[78] S. Roettger and T. Ertl, “A Two-Step Approach for Interactive Pre-Integrated Volume
Rendering of Unstructrued Grids,” Proc. 2002 Symposium on Volume Visualization,
2002.

[79] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,” Proc. of SIG-
GRAPH ‘88, Vol. 22, No. 4, pp. 51-55, 1988.

[80] G. Sakas, M. Grimm, and A. Savopoulos, “Optimized Maximum Intensity Projec-
tion,” Proc. of 5th EUROGRAPHICS Workshop on Rendering Techniques, pp.55-63,
1995.

[81] Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “LMIP: Local maximum
intensity projection - a new rendering method for vascular visualization,” Journal of
Computer Assisted Tomography, 22(6), 1998.
DRAFT — please do not distribute 101 Draft Printed June 1, 2005

[82] G. Schaufler, “Dynamically Generated Imposters,” MVD ‘95 Workshop ‘95, pp. 129-
136, 1995.

[83] G. Schaufler, “Per-Object Image Warping with Layered Imposters,” Rendering Techi-
niques, pp. 145-156, 1998.

[84] G. Schaufler and W. Sturzlinger, “A Three Dimensional Image Cache for Virtual
Reality,” Proc. of Eurographics ‘96, 1996.

[85] S. M. Seitz and C. R. Dyer, “View Morphing,” Proc. SIGGRAPH ‘96, pp. 21-30,
1996.

[86] J. Shade, S. Gortler, Li-Wei He, and R. Szeliski, “Layered Depth Images,” ACM SIG-
GRAPH ‘98, pp. 231-242, 1998.

[87] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder, “Hierarchical Image
Caching for Accelerated Walkthroughs of Complex Environments,” Proc. of Siggraph
‘96, pp. 75-82, 1996.

[88] N. Shareef and R. Crawfis, “A View-dependent Approach to MIP for Very Large
Data,” Proc. SPIE EI ‘02, Vol. 4665, pp. 13-21, 2002.

[89] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume
Rendering”, Proc. of SIGGRAPH ‘90, Vol. 24, No. 5, pp. 63-70, 1990.

[90] H-Y Shum and S. B. Kang, "A Review of Image-based Rendering Techniques",
IEEE/SPIE Visual Communications and Image Processing (VCIP) 2000, Perth, pp. 2-
13, 2000.

[91] C Silva and J. Mitchell, “ The Lazy Sweep Ray Casting Algorithm for Rendering
Irregular Grids,” IEEE Transactions on Visualization and Computer Graphics, Vol. 3,
No. 2, pp. 142-157, 1997.
DRAFT — please do not distribute 102 Draft Printed June 1, 2005

[92] V. Srivastava, U. Chebrolu, and K. Mueller, “Interactive Transfer Function Modifica-
tion For Volume Rendering Using Pre-shaded Sample Runs,” Pacific Graphics ‘02,
Beijing, China, Oct. 2002.

[93] V. Srivastava, U. Chebrolu, and K. Mueller, “Interactive Transfer Function Modifica-
tion For Volume Rendering Using Compressed Sample Runs,” 2003.

[94] C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted Rendering for Vol-
ume Visualization,” Proc. of Symposium on Volume Visualization ‘94, Washington,
D.C., 1994.

[95] A. Van Gelder and K. Kim, “Direct Volume Rendering via 3D Texture Mapping
Hardware,” Proc. 1996 Volume Rendering Sympiosium, pp. 23-30, 1996.

[96] The Visualization Toolkit (VTK), http://www.vtk.org/, function vtkVolumeRayCast-
MIPFunction.

[97] M. Weiler and R. Westermann, “Level-Of-Detail Volume Rendering via 3D Tex-
tures,” Proc. IEEE Vol. Vis. and Graphics Symp., 2000.

[98] R. Westermann and T. Ertl, “Efficiently Using Graphics Hardware in Volume Render-
ing Applications,” Proc. of SIGGRAPH ‘99, pp. 169-177, 1999.

[99] L. Westover, “Interactive Volume Rendering,” 1989 Chapel Hill Volume Visualization
Workshop, pp. 9-16, 1989.

[100] J. Wilhelms and A. Van Gelder, “A Coherent Projection Approach For Direct Vol-
ume Rendering,” Proc. of SIGGRAPH ‘91, pp. 275-284, 1991.

[101] P. L. Williams and N. Max, “A Volume Density Optical Model,” Proc. Workshop on
Volume Visualization, pp. 61-68, 1992.
DRAFT — please do not distribute 103 Draft Printed June 1, 2005

[102] P. L. Willams, N. Max, and C. Stein, “A High Accuracy Volume Renderer for
Unstructured Data,” IEEE Transactions on Visualization and Computer Graphics, Vol.
4, No.1, 1998.

[103] R. Yagel, D. M. Reed, A. Law, P. Shih, and N. Shareef, “Hardware Assisted Volume
Rendering of Unstructured Grids by Incremental Slicing,” Proc. Symposium on Vol-
ume Visualization, pp. 55-62, 1996.

[104] S. Y. Yen, S. Napel, and G. D. Rubin, “Fast Sliding Thin Slab Volume Visualiza-
tion,” Proc. IEEE Volvis. ‘96, pp. 79-86, 1996.

[105] I. Yoon, J. Demers, T. Y. Kim, and U. Neumann, "Accelerating Volume Visualiza-
tion by Exploiting Temporal Coherence," IEEE Visualization 97 LBHT, pp 21-24,
1997.

[106] I. Yoon and U. Neumann, "IBRAC: Image-Based Rendering Acceleration and Com-
pression", Journal of High Performance Computer Graphics, Multimedia, and Visual-
ization, 2002.

[107] C. Zhang and T. Chen, "A Survey on Image-Based Rendering - Representation,
Sampling and Compression", EURASIP Signal Processing: Image Communication,
pp. 1-28, Vol. 19, No.1, 2004.
DRAFT — please do not distribute 104 Draft Printed June 1, 2005

	1. Quick visual feedback when changing any visualization parameter
	2. Reduce or eliminate the dependence on expensive infrastructure
	3. Display at high screen resolution on the remote user’s desktop
	4. Preserve image quality
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)

	[1] Accelerated Strategic Computing Initiative (ASCI), http://www.llnl.gov/asci.
	[2] M. J. Ackerman, “The Visible Human Project,” J. Biocomm., Vol. 18, p. 14, 1991.
	[3] D. Aliaga, “Visualization of Complex Models Using Dynamic Texture-based Simplification,” IEEE...
	[4] C. Bajaj, V. Pascucci, and D. Schikore, “The Contour Spectrum,” IEEE Visualization ‘97, pp. 1...
	[5] W. Bethel, "Visualization Dot Com," IEEE Computer Graphics and Applications, May/June 2000.
	[6] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau, “Using High-Speed WANs and Network Data...
	[7] J. Blinn, “Light Reflection Functions for Simulation of Clouds and Dusty Surfaces,” Proc. of ...
	[8] C. P. Botha and F. H. Post, “Interactive Previewing for Transfer Function Specification in Vo...
	[9] M. L. Brady, K. K. Jung, H.T. Nguyen, and T. PQ. Nguyen, “Interactive Volume Navigation,” IEE...
	[10] P. Bunyk, A. Kaufman, and C. T. Silva, “Simple, fast and robust ray casting of irregular gri...
	[11] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering And Tomographic Reconstructio...
	[12] W. Cai and G. Sakas, “Maximum Intensity Projection Using Splatting in Sheared Object Space,”...
	[13] B. Carneiro, C. Silva, and A. Kaufman, “Tetra-Cubes: An Algorithm to Generate 3D Isosurfaces...
	[14] B. Chen, A. Kaufman, and Q. Tang, “Image-Based Rendering of Surfaces from Volume Data,” IEEE...
	[15] S. Chen, “QuickTime VR: An Image-based Approach to Virtual Environment Navigation,” Proc. of...
	[16] E. Chen and L. Williams, “View Interpolation for Image Synthesis,” Proc. of the 20th Annual ...
	[17] J-J Choi and Y. Shin, “Efficient Image-Based Rendering Of Volume Data,” Proc. Pacific Graphi...
	[18] B. Csebfalvi, A. Konig, and E. Groller, “Fast Maximum Intensity Projection Using Binary Shea...
	[19] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman, “High-Quality Volume Rendering ...
	[20] P. Debevec, G. Borshukov, and Y. Yu, “Efficient View-Dependent Image-Based Rendering with Pr...
	[21] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey, “Multi-layered imposters for accelerate...
	[22] R. Dreben, L. Carpenter, and P. Hanrahan, “Volume Rendering,” Proc. of SIGGRAPH ‘88, Vol. 22...
	[23] M. Duchaineau, M. Wolinsky, D. Sigeti, C. Aldrich, and M. Mineev, “ROAMing Terrain: Real-tim...
	[24] G. Dutton, “Locational Properties of Quaternary Triangular Meshes,” Proc. of the Fourth Inte...
	[25] H. Edelsbrunner, “Dynamic Data Structures For Orthogonal Intersection Queries,” Technical Re...
	[26] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated Volume Rendering Using Hardwar...
	[27] S. Fang, T. Biddlecome, and M. Tuceryan, “Image-based Transfer Function Design for Data Expl...
	[28] J. Gao, J. Huang, H-W Shen, and J. Kohl, “Visibility Culling Using Plenoptic Opacity Functio...
	[29] J. Gao and H-W Shen, “Parallel View-dependent Isosurface Extraction Using Multi- Pass Occlus...
	[30] C. Giertsen, “Volume Visualization of Sparse Irregular Meshes,” IEEE Computer Graphics & App...
	[31] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The Lumigraph,” Proc. of the 23rd Ann...
	[32] N. Greene, “Environment Mapping and Other Applications of World Projections,” IEEE Computer ...
	[33] N. Greene and M. Kass, “Approximating Visibility with Environment Maps,” Technical Report 41...
	[34] S. Guthe, S. Roettger, A. Schieber, W. Strasser, and Thomas Ertl, “High-Quality Unstructured...
	[35] S. Guthe, M. Wand, J. Gonser, and W. Strasser, “Interactive rendering of large volume data s...
	[36] T. He, L. Hong, A. Kaufman, and H. Pfister, “Generation of Transfer Functions With Stochasti...
	[37] W. Heidrich, M. McCool, and J. Stevens, “Interactive Maximum Projection Volume Rendering,” P...
	[38] Hugues Hoppe, “Progressive Meshes,” Proc. SIGGRAPH ’96, pp. 99-108, 1996.
	[39] J. Kajiya and B. Von Herzen, “Ray Tracing Volume Densities,” ACM SIGGRAPH Comput. Gr., Vol. ...
	[40] K. Kaneda, Y. Dobashi, K. Yamamoto, and H. Yamashita, “Fast Volume Rendering with Adjustable...
	[41] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using Multi- Dimensiona...
	[42] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, C. Hansen, “Interact...
	[43] G. Knittel and W. Strasser, “Vizard - Visualization Accelerator for Real-time Display,” Proc...
	[44] A. König and E. Gröller, “Mastering Transfer Function Specification by Using VolumePro Techn...
	[45] P. Lacroute and M. Levoy, “Fast Volume Rendering Using A Shear-Warp Factorization Of The Vie...
	[46] E. LaMar and V. Pascucci, “A Multi-Layered Image Cache for Scientific Visualization,” IEEE S...
	[47] M. Levoy, “Display Of Surface From Volume Data,” IEEE Comp. Graph. & Appl., Vol. 8, No. 5, p...
	[48] M. Levoy, “Efficient Ray Tracing Of Volume Data,” ACM Trans. Comp. Graph., Vol. 9, No. 3, pp...
	[49] M. Levoy, “Expanding the Horizons of Image-Based Modeling and Rendering,” Panel Presentation...
	[50] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. Siggraph ‘96, pp. 31-42, 1996.
	[51] A. Lippman, “Movie-Maps: An Application of the Optical Videodisc to Computer Graphics,” Proc...
	[52] D. Lischinski and A. Rappaport, “Image-based Rendering for Non-Diffuse Synthetic Scenes,” Re...
	[53] Y. Livnat and C. Hansen, “View Dependent Isosurface Extraction,” Proc. IEEE Vis. ‘98, pp. 17...
	[54] T. Lokovich and E. Veach, “Deep Shadow Maps,” ACM SIGGRAPH ‘00, pp. 385- 392, 2000.
	[55] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Suface Construction Al...
	[56] E. J. Luke, C. D. Hansen, “Semotus Visum: A Flexible Remote Visualization Framework”, Proc. ...
	[57] P. Maciel and P. Shirley, “Visual Navigation of Large Environments Using Textured Clusters,”...
	[58] M. Magallon, M Hopf, T. Ertl, “Parallel Volume Rendering Using PC Graphics Hardware”, Ninth ...
	[59] W. R. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D Warping,” Proc. 1997 Symp. on Int...
	[60] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich,...
	[61] N. Max, “Optical Models for Direct Volume Rendering,” IEEE TVCG, pp. 99-108, 1995.
	[62] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coherence For Efficient Visualization ...
	[63] N. Max and K. Ohsaki, “Rendering Trees From Precomputed Z-buffer View,” Proc. Eurographics W...
	[64] J. Meredith and K-L Ma, “Multiresolution View-Dependent Splat Based Volume Rendering of Larg...
	[65] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-Based Rendering System,” Proc. SIGG...
	[66] L. Mroz, A. Konig, and E. Groller, “Maximum Intensity Projection at Warp Speed,” Technical R...
	[67] K. Mueller, N. Shareef, J. Huang, and R. Crawfis, “IBR-Assisted Volume Rendering,” LBHT Vis....
	[68] S. Muraki, M. Ogata, K-L Ma, K. Koshizuka, K. Kajihara, X. Liu, Y. Nagano, and K. Shimokawa,...
	[69] M. Oliveira, “Image-Based Modeling and Rendering Techniques: A Survey,” RITA - Revista de In...
	[70] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive Ray Tracing for I...
	[71] S. Parker, P. Shirley, Y. Livnat, C. Hansen, P.-P. Sloan, and M. Parker, “Interacting with G...
	[72] H. Pfister, J. Hardenbergh, G. Knittel, H. Lauer, and L. Seiler, “The VolumePro Real- Time R...
	[73] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S. Avila, K. Martin, R. Ma...
	[74] T. Porter and T. Duff, “Compositing Digital Images,” Proc. of SIGGRAPH ’84, pp. 253-259, 1984.
	[75] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuetzle, “View- based Renderin...
	[76] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive Volume Rendering O...
	[77] S. Roettger, M. Kraus, and T. Ertl, “Hardware-Accelerated Volume And Isosurface Rendering Ba...
	[78] S. Roettger and T. Ertl, “A Two-Step Approach for Interactive Pre-Integrated Volume Renderin...
	[79] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar Fields,” Proc. of SIGGRAPH ‘88,...
	[80] G. Sakas, M. Grimm, and A. Savopoulos, “Optimized Maximum Intensity Projection,” Proc. of 5t...
	[81] Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “LMIP: Local maximum intensity ...
	[82] G. Schaufler, “Dynamically Generated Imposters,” MVD ‘95 Workshop ‘95, pp. 129- 136, 1995.
	[83] G. Schaufler, “Per-Object Image Warping with Layered Imposters,” Rendering Techiniques, pp. ...
	[84] G. Schaufler and W. Sturzlinger, “A Three Dimensional Image Cache for Virtual Reality,” Proc...
	[85] S. M. Seitz and C. R. Dyer, “View Morphing,” Proc. SIGGRAPH ‘96, pp. 21-30, 1996.
	[86] J. Shade, S. Gortler, Li-Wei He, and R. Szeliski, “Layered Depth Images,” ACM SIGGRAPH ‘98, ...
	[87] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder, “Hierarchical Image Cachin...
	[88] N. Shareef and R. Crawfis, “A View-dependent Approach to MIP for Very Large Data,” Proc. SPI...
	[89] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering”, Pr...
	[90] H-Y Shum and S. B. Kang, "A Review of Image-based Rendering Techniques", IEEE/SPIE Visual Co...
	[91] C Silva and J. Mitchell, “ The Lazy Sweep Ray Casting Algorithm for Rendering Irregular Grid...
	[92] V. Srivastava, U. Chebrolu, and K. Mueller, “Interactive Transfer Function Modification For ...
	[93] V. Srivastava, U. Chebrolu, and K. Mueller, “Interactive Transfer Function Modification For ...
	[94] C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted Rendering for Volume Visuali...
	[95] A. Van Gelder and K. Kim, “Direct Volume Rendering via 3D Texture Mapping Hardware,” Proc. 1...
	[96] The Visualization Toolkit (VTK), http://www.vtk.org/, function vtkVolumeRayCastMIPFunction.
	[97] M. Weiler and R. Westermann, “Level-Of-Detail Volume Rendering via 3D Textures,” Proc. IEEE ...
	[98] R. Westermann and T. Ertl, “Efficiently Using Graphics Hardware in Volume Rendering Applicat...
	[99] L. Westover, “Interactive Volume Rendering,” 1989 Chapel Hill Volume Visualization Workshop,...
	[100] J. Wilhelms and A. Van Gelder, “A Coherent Projection Approach For Direct Volume Rendering,...
	[101] P. L. Williams and N. Max, “A Volume Density Optical Model,” Proc. Workshop on Volume Visua...
	[102] P. L. Willams, N. Max, and C. Stein, “A High Accuracy Volume Renderer for Unstructured Data...
	[103] R. Yagel, D. M. Reed, A. Law, P. Shih, and N. Shareef, “Hardware Assisted Volume Rendering ...
	[104] S. Y. Yen, S. Napel, and G. D. Rubin, “Fast Sliding Thin Slab Volume Visualization,” Proc. ...
	[105] I. Yoon, J. Demers, T. Y. Kim, and U. Neumann, "Accelerating Volume Visualization by Exploi...
	[106] I. Yoon and U. Neumann, "IBRAC: Image-Based Rendering Acceleration and Compression", Journa...
	[107] C. Zhang and T. Chen, "A Survey on Image-Based Rendering - Representation, Sampling and Com...

