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ABSTRACT

In the present thesis, we study a particular 3-D map with a parameter ¢ > 0, which
has two fixed points. One fixed point has a 1-D unstable manifold, while the other
has a 1-D stable manifold. The main result is that we prove the smallest distance
between the two manifolds is exponentially small in ¢ for small €. We first prove in
the limit of ¢ — 0%, bounded away from 400 or —oo, both the stable and unstable
manifolds asymptotes to a heteroclinic orbit for a differential equation. Then we show
there exists a parameterization of the manifolds so that they differ exponentially in
¢. By examining the inner region around the nearest complex singularity of the
limiting solution, and using Borel analysis, we relate the constant multiplying the

exponentially small term to the Stokes constant of the leading order inner equation.
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CHAPTER 1
INTRODUCTION

In the present thesis we prove that the splitting of stable manifold at w; = 0 and
unstable manifold at w; = 1 is exponentially small in terms of the parameter ¢ for
the discrete map

wiys = wj +eg(wj42) (1.1)
where g(w) =w—w* and k€N, k> 2.

Discrete maps arise in many applications. Discrete maps arise naturally in nu-
merical calculation of differential equations in a finite difference scheme. The result
here is interesting in that it shows that a discretized system may behave significantly
differently from the continuous system when j — oo or j — —o0. As we shall see,
the heteroclinic connection in the continuous system may break up after discretiza-
tion and the corresponding manifold in the discrete map does not stay close to the
limiting flow uniformly in time. Discrete maps also arises in the study of continuous
dynamical system through Poincare maps.

The interest in this particular map is due to a model for ABC [2] flow in fluid
dynamics, in which particle trajectories are observed after a discrete interval in time.

The incompressibility of fluid is reflected in the volume preserving nature of the map



written in the vector form

Wy Wj+1 Wj+1
Wit | 7| wite | T Wjt2 (1.2)
W42 Wj+3 w; + £9(wj+2)

(1.2) has two fixed points 0 = (0,0,0) and 1 = (1,1,1). Linear analysis shows that
0 and 1 have a one dimensional unstable and stable manifolds respectively. In the
formal limit ¢ — 0%, these two manifolds are the same. The objective here is to
calculate the splitting of the manifolds for € > 0 but small.

Calculation of splitting of stable and unstable manifolds of fixed points of dynam-
ical system is usually done through a method due to Melnikov [13]. However, this
method does not apply if the splitting is exponentially small, as is the case here.

There are presently a few studies in literature for exponentially small splitting for
particular discrete maps. These include the standard map which is an area-preserving

diffeomorphism of the two dimensional torus T? = R/(27Z)? and is defined by
SM: (z,y) — (z+y+esinz,y+ esinz). (1.3)

SM has been studied by Lazutkin [12] , Hakim and Malllick [14] through formal
asymptotic methods and later their result has been rigorously proved by Gelfreich
[11], following a method originally proposed by Lazutkin. In 2-D, stable and un-
stable manifolds of discrete area preserving maps generically intersect at a set of
homoclinic points. Homoclinic invariance introduced by Lazutkin provide a coordi-
nate free description of the splitting which is also independent of the particular choice

of homoclinic point in one homoclinic trajectory. To be precise, let (z*(t),y*(t)) be
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parameterization of the stable and unstable separatrices respectively, and let P be a

homoclinic point. The homoclinic invariant is defined by
2 (
w = det (1.4)

However, for generic three dimensional maps, there are no obvious generalization
of the concept of homoclinic invariant. While in two dimensional area preserving
maps we have a theorem stating that the stable and unstable manifolds intersect
infinitely many times, in three dimensional volume preserving maps by contrast,
two one dimensional manifolds generically do not intersect. As a consequence no
homoclinic point exists and homoclinic invariant does not make sense. Instead, we
estimate the nearest distance between the two curves.

The problem in the present thesis was previously studied by V. Rom-Kedar, et al
[3]. In their paper, they formally showed that as ¢ — 0% | there exists a heteroclinic
limiting flow, and then argued that the splitting is exponentially small in terms of
¢ by comparing the size of the terms near the complex singularity of the limiting
flow. The exponentially small term together with algebraic prefactor is determined
by linearization about the limiting flow. While no rigorous proofs were given, they
support their conclusion by numerical calculations.

Recent rigorous development in the general area of exponential asymptotics in-
clude a general theory for generic behavior of solution to nonlinear ordinary differen-

tial equations for large values of the independent variable. Costin [1] considered

1
y' — fo(m) — Ay — ;By + g(m,y) (1.5)
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where f(x) = O(z72), for large z and g(z,y) = O(Jy|*,z™%y). A and B are matrices
with constant coefficients satisfying some nonresonance condition. Later Braaksma

[8] extended the theory to generic difference equation

y(z +1) = Az)y(2) + g(z,y) (1.6)
where
A(z) := diag(e ™™ (1 4+ ™1™, Je7 (14 271)™) (1.7)
and g(z,y) is analytic C* valued function of (1,y) in a neighborhood of (0,0).
tm, @y € C are constants with wu,, # k - u mod 2mi for m € {1,--- ,n}, k € N*,
except for k = e,,.

g(z,y) = Z gi(z)y' with gi(z) = O(z7?)if [I| < 1 as z — oo (1.8)
leNn

These theories involve behavior of solutions for large independent variable . The
study in the thesis involves asymptotics for small parameter €. While the two seem
unrelated, they are actually connected in the study of inner region near the singularity
of the limiting flow.

Our contribution has several aspects. In the present thesis, the leading order
equation in the inner variable is degenerate, so Braaksma’s analysis does not apply
immediately. Nevertheless, the methods can be adapted to the inner problem for
large value of the independent variable .

In this thesis, we provide the only rigorous proof of exponentially small splitting
of separatrices for three dimensional volume preserving map that we know of. As in
many other problems of nonlinear analysis, many of the proofs rely on contraction

arguments. The choice of the proper Banach space is usually the key.
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There is another property of the discrete map which adds to the difficulty of
the problem. In the case of autonomous differential equations, the nearest distance
between two one dimensional manifolds described by solutions u;(z) and ug(z) can
be characterized by

glcf lui(z + ¢) — uz(z)| (1.9)

for all possible constants c. However, the expression of manifold separation for so-
lution to difference equation is much more complicated. In our case we had to look
for

inf |u;(z + a(z)) — uz(z)| (1.10)

2,a(z)
where z + a(z) is a general parametrization of one of the manifolds. a(z) need not
be a constant and is, generally, a periodic function of z. This is part of the difficulty.
We used the fact that ui(z 4+ a(z)) = @(z) also satisfies the same nonlinear difference
equation and asymptotically approaches one of the fixed points to find the general
representation of the manifolds.

The main result of the thesis is given at the end of chapter 4 (Theorem 4.43) .
The outline of the thesis is the following: The original results are all contained in
chapter 3 and chapter 4. However, to familiarize the reader, we describe eyponen-
tial asymptotics and its applications as well as how to solve linear inhomogeneous
difference equation in Chapter 2. We also describe Borel summation and illustrate
through a simple study of difference equation and how its asymptotics can be recov-
ered rigorously through this technique.

In chapter 3, we first prove the limiting flow is close to both the stable and unstable



manifold in certain regions, then establish that there exists a reparameterization of
the stable manifold that differs from the unstable manifold by exponentially small
term and we argue that this is the closest distance between the two manifolds.

In chapter 4, we prove the Borel transform of the leading order inner equation
has unique solution in certain region and this solution is Laplace transformable. We
also give the ramified analytic structure of this solution at zero. By studying the
singularity structure of the nearest singularity of the solution, we show that the
leading order inner equation has two solutions that differs only eyponentially. Then
we show that the full inner equation has solutions that is asymptotic to the solutions
of the leading order equation. By matching the inner and outer solution, we relate
the constant multiplying the exponentially small term in the difference of stable and
unstable manifolds to the Stoke constant of the leading order inner equation. This

leads to the main theorem 4.43.



CHAPTER 2
EXPONENTIAL ASYMPTOTICS AND DIFFERENCE

EQUATION

2.1 Exponential Asymptotics

This section is adapted from [5].

Classical asymptotics as Poincare considered is formally defined as the follows.

Definition 2.1. Given a function ¢(g), the series Y . dpne™ is said to be an asymp-

totic expansion of ¢(g) as € — 01 if for every nonnegative integer N,

i = 2.1
L ’ 2
and we write
$le) ~ D ne™ (2.2)
n=0

Note ¢ might also depends on other parameter, say in the form of ¢(z,¢).

Definition 2.2. We say ¢(z, ) asymptotic to Y . ¢n(x)e™ on a closed interval D,

as € — 07 if for any x € D, and every nonnegative integer N, we have

$(2;€) = Yopo Gal2)e”

=0 (2.3)

lim
e—=0t



and we write

oo

d(z;e) ~ Z bn(z)e™. (2.4)

n=0

Remark 2.1. .

e The endpoints of closed interval D can be made to depend on ¢.

o [nstead of simple power series in €, more generally, we can approximate ¢ by

aid of an asymptotic series {(;(€)}32, where (;(€) > (j41(€) as € = 0.
o Asymptotic sequence is not unique.

An asymptotic series need not converge for ¢ # 0. However, one can accurately
approximate the value of a function by using first a few terms from its divergent

asymptotic series. For example, Copson mentions a series due to FEuler:

Y1 1 & B
Lot M L o T 2.5
nz;:n " +7+2M+;(2k)M2k’ (2:5)

where v = 0.5772 - - is the Euler’s constant, { By} are Bernoulli numbers, and the
small parameter () is 7. For every finite M, the infinite series in (2.5) diverges. But
Euler used the series with M = 10 to calculate < correctly to 15 decimal places.

It is to be noted that asymptotic series like (2.2) only capture terms algebraic in
¢, and exponentially small terms like e~1/¢ are smaller than any of the terms in the
series as ¢ — 0F; hence they will not be represented. If (2.2) is true, then ¢(c) +e~1/¢
will also have the same asymptotic expansion. Such transcendentally small terms are

said to lie beyond all orders of the asymptotic expansion.



In most of the applications, exponentially small terms are insignificant and can
be ignored. However, exceptional problems in which these small terms have great
practical interest are known in many branches of science, including dendritic crystal
growth, viscous fingering [6], quantum tunnelling, KAM Theory, etc (see [5]).

We mention two ways in which the exponentially small term can have practical
interest. First, transcendentally small terms can be important since they can change
a qualitative feature of the function. Second, when we use an asymptotic series to
approximate the function value for fixed (small) ¢ , the transcendentally small terms

can be numerically important in practice.

2.2 Difference equation

In this section we will discuss the general methods of solving difference equations,

which are similar to solving differential equations.

2.2.1 First Order Linear Difference Equation
Given h > 0, define operator Ay as
Anlfl(z) == f(z +h) — f(z) (2.6)
First consider the simplest difference equation
Aplf](z) =0 (2.7)

Obviously any solution of (2.7) is of the type f(z) = c¢(z) where ¢(z) is periodic

function of period h.



Now consider methods for solving the inhomogeneous difference equation

Direct substitution shows that both
f(z)=— Z g(z+nh), and f(z)= Z g(z — nh) (2.9)
n=0 n=1

satisfies (2.8), provided the infinite sum converges. This motivates us to define two
inversions A,:l_ in a left infinity region and A;::_ in a right infinity region defined

below.

Definition 2.3. A region D_ is left infinity type, if it is open and if s € D_ = s—t €

D_ fort € Rt.

In a left infinity type region D_, for y > 0, define norm
9]l := sup |e™*"g(z)]. (2.10)
z€D_

Let S,,(D-) be the function space of complex valued analytic function defined in D_
continuous in D_ with | - ||z < oo . It is easy to see that S, equipped with || - ||, is a

Banach space. Let

A;’l_ :8u(D-) — S,.(D_) defined by A,:,l_g(x) = Zg(m —nh) (2.11)

n=1

Remark 2.2. Later, we extend definition of A;’l_ on space of algebraically decaying

continuous functions g(z) = O(z™") as z — —oo in D_ withv > 1.

-1
Proposition 2.4. The induced operator norm ||A,:’1_|| = SUPycs,(p_) W has
the bound
AL < — (212)
h==1_e-nh ’

10



Proof.

le=re Z g(z —nh)| < Z |e_"(z_"h)g(m — nh)e™#mh|
n=1 n=1

— N, 1
< lgllp Y e < lolluy— = (2.13)

n=1

Therefore we get (2.12). O

Remark 2.3. A,:l_[g] is a particular solution of (2.8). The following lemma gives
the structure of general solution to (2.8) as sum of a particular plus a general solution

to homogenous equation, analogous to differential equations.

Lemma 2.5. For g € S,(D-) with u > 0, any solution of (2.8) in D_ can be written

as

f(z) = c(z) + A, L[g](z) (2.14)
where ¢(z) is periodic with period h in D_.

Proof. Let c(z) = f(x) — Ay Z[g](z), then c(x) satisfies Ay[c|(z) = 0. Therefore ¢(z)

is a periodic function with period h in D_. O
Similarly, we define a right infinity region:

Definition 2.6. D, is right infinity type, if it is open and if s € Dy = s+t € D,

fort € RY.

Define S, (D4 ) similar with S,(D_) with D_ replaced by D;. S,(D) is equipped

with norm || - ||+ for u > 0.

19]l+ == sup [e"g(z)]. (2.15)
z€D4

11



is a Banach space. Let

[e o]

ALY 1 8u(Dy) = Su(Dy) Aphg(z) == g(z +nh) (2.16)

n=0
We also have a bound on the norm of A,:h_ proved in a manner similar to Proposition
)

2.4.

12, 9t has the bound

Proposition 2.7. The induced norm ||A;L || = SUDges,(Dy) .y
’ My

_ 1
||Ah1+|| < 1_ e—rh

(2.17)

In the present thesis, we sometimes need to solve (2.8) where g is only defined in a
finite region D, which is neither left infinity type nor right infinity type. Here we use
a method adapted from Gelfreich [11]. The idea is that if D is intersection of a left
infinity region and a right infinity region, then we project g into two functions that
have analytic continuation in a left infinity and a right infinity region with appropriate
decay as © — Foo respectively. Then we can apply the methods developed above.

Consider a finite rectangular open region D = (—a,a) X (—b,b): , where a > 1,
0 <h<1landb>0. Then D can be represented as D = D_ N D, where D_ =
(—00,a) x (=b,b)i, Dy = (—a,00) x (—=b,b)i .

Assume that a > 1. Take a C* monotonically increasing real function y which
has the property x(¢) = 0 for ¢t < —1 and x(¢) = 1 for t > 1. We extend x onto

complex domain C by x(t + si) = x(¢), where t,s € R.

Remark 2.4. The extended x(x) ts Lipschitz continuous in 0D . It is not difficult
to see that |x(z) — x(y)| < Kolz — y| , =,y € D, for some constant K, independent
of z,y.

12



Remark 2.5. Ifa < 1 depends on a small parameter &, for instance a = Ké,, where

K is a fized constant and &y is small, we will use X(t) := x(g55;) instead of x(t).

Lemma 2.8. For any function g analytic in D and continuous in D, let

ho(z) = %/@Xf (2.18)
ho(z) = — /w gf)dg (2.19)

Then h_(z), hy(z) are analytic functions in D which have analytic continuation onto

D_ and D, that are continuous in D_ and D, respectively.

Proof. Let h,, h_,; denote the two distinct analytic function defined by formulae

27” [ oD E)g (6) d¢ when z is inside D and outside D respectively. By Plemelj formulae

[20], for any 2 on the left side edge of rectangle 9D, we have

Rt (20) — heye(20) = Xx(20)9(20) = 0 (2.20)

which implies h; , and h_, are analytic continuation of each other in D_, we denote

it by h_(z).

Similarly, since 1 — x(zp) = 0 on right edge of 9D, we get 5= [, (1—9(5(_51)9(5)(15

defined inside D can be analytic continued to D¥. O
Let

So(D) :={g : g analytic in D, continuous in D} (2.21)

It is obvious that once equipped with || - ||o norm in D, Sy(P) forms a Banach space.

13



Define

P_: So(D) = So(D-) P_[g] = he; (2.22)

Pi :8o(D) = So(Dy) Pilg] = hy (2.23)
where h¥ is defined in (2.18) and (2.19) respectively.

Lemma 2.9. For any g € Sy(D), and z € D we have

ox) = Plol(=) + P_lo](z) (2.21)
Proof.
Pulal(e) + P_Loe) = o) +ha(o) = 5= T —ga)  229)

O

Lemma 2.10. If D is subset of a square with size R > 1, ||P+|| < C'ln R where C is

a constant depending on x alone and independent of R.

Proof. Let g € Sy(D), to estimate the norm of corresponding h_, noticing that an-
alytic function can only has maximal value on the boundary, and since 9D is finite,
we have as z — oo, h_(z) — 0, we only need to estimate h_ on 9D~. For z that has

distance greater than 1 away from 0D, we have for R > 1,

d
@I <lol [ HEL <l (2.26)

For z € 9D, or z € 9D~ \ 9D and distance between z and 9D is less than or equal

to 1,

1 / x(§) — x(=)

h-(z) = x(z)9(z) + 5 . g9(&)d¢ (2:27)

14



Break up the second integral into two, one on [ := {£ € 9D : | — 2| < 1} and
the other on 9D \ [. The second integral can be bounded by C||g|/In R. By Remark
2.4, there exists o > 0 and constant K > 0 such that |x(¢) — x(z)| < K|¢ — z|* for

z,y € C, so we have that

o[22 g0l < o) [

< Cllgll (2.28)

Therefore the second term in (2.27) is bounded by C'ln R ||g|| for R goes to infinity.

The first term is clearly bounded by ||g||. Hence the lemma follows. O

Under the assumption that the region D has a smallest distance of d; > 0 from

+7;. define A7! as
pn? h

AN 8y (D) So(D) AN = AGLITIPLT 4+ AL I VP_T, (2.29)

where
Ty : S(D) = So(D),  Tolgl(z) = (" + e7"")g(); (2.30)
Ty : Su(Dy) = So(Da), Zilgl(z) = (" +e7"")g(x) (2.31)

Remark 2.6. (e* 4+ e #*) is chosen to insure the decaying rate that A,:’li requires.

We can avoid zeros of this factor by choose p < 7.

Lemma 2.11. Given g € Sy(D) then A;'g is a solution of (2.8) for z € D.

15



Proof. Proposition 2.9 shows that for z € D, we have (P.Zy + P-TIy)[g](z) = (" +

e ")g(z) Apply Aj, to A;'[g] we get

A gl(z) = AW(ALLIIIPLTo+ A LITVP_To)[g) ()

- L (PiT + P_T)[gl(a) = g(a) (2.32)

elt 4 e—pe

O

Lemma 2.12. If D is subset of a square with size R > 1, then A;l : So(D) = So(D)

in Lemma 2.11 has the bound on its norm
C
-1
where C 1s a constant .
Proof.
TAGHE < AL IZEH 1P IZoll + AL LI IZZH Pl 1ol (2.34)

It is easy to see that ||Z|| < C, and ||Z;'|| < C;. Using these bounds and Proposition

2.4, Proposition 2.7 and Lemma 2.10, we get (2.33). U
Now consider equation
Af =g where A[f](s):= f(s+1)— f(s) (2.35)
where g is algebraically decreasing. g € T, where

T,(D(B,+)):={g : g analyticin D(B, =) continuous in D(B, %),
with ||g||, < oo} (2.36)

16



D(B,+) :={s : Ss< —B,+Rs < B} (2.37)

lglly = sup |s7g(s)] (2.38)
s€D(B,t)

For v > 0, A > 0, define

ATV Yo (D(B,—)) = TA(D(B,—)) AZlg(s) =S gls—n) (2.39)

NE

AT T an(D(B,+) = TAD(B, +)) ATg(s) = =3 g(s +n) (2.40)

(=]

n=

Lemma 2.13. For g € Y. 4x1(D(B,4))), Ai'[g] € TA(D(B,=£)) are solutions to
(2.35).

K
AT < =B~ (2.41)
Y
where A > 0, v > 0 and K s a constant independent of B, .

Proof. Substituting A;'[g] into (2.35), we can easily see that they are solutions.

A

S/\|A_1[9](5)| < ally E : |s — n|7+1 |s — n|*
n=1

N

Cilglllol ™ [ it < € gl (2.42)
B ! o lgg—th* = v !
Therefore ||AZ!]| < £B~7 Similarly, ||A7!]] < £B77. O
v v
For D(B) = D(B,—) N D(B, +), let

AT To(D(B)) = Yo(D(B)) AT'=AJNIIPLT A AZNTIPLT (2.43)

where
J :Yo(D) = To(D) JTlgl(s) = sl+7g(s); (2.44)

Tz : To(D(B, %)) = T14y(D(B, %)) Jxlgl(s) = s""7g(s) (2.45)

17



Lemma 2.14. If D(B) is subset of a square with size R > 1, then A~ : T¢(D(B)) —

Yo(D(B)) has the bound on its norm
|IA7Y| < CB™(B+ R)*"InR. (2.46)

where C' 1s a constant depending on 7.

Proof.
IATH < AT IPA Tl + NAZITZH PN (2.47)

It is easy to see that ||7y]| < C(B+ R)'*7, and || Ji'|| < C. Using these bounds and

Lemma 2.13, and Lemma 2.10, we get (2.33). O

2.2.2 Higher Order linear Inhomogeneous Difference Equa-
tion

In this subsection, we will consider solving higher order linear inhomogeneous differ-

ence equation

Llv] =g (2.48)

where g is a given function and £ is a linear difference operator . Here, for illustrative
purpose, we will take £ to an linear operator of third order.

Analogous to differential equations, the general solution to inhomogeneous differ-
ence equation can be represented as a general solution to the homogeneous equation

added to a particular solution.

18



General solutions of the homogeneous equation where all the coefficients in the
linear operator £ are constant in some simple non-resonance case can be found by
plugging f = a” into L[f] = 0, where a is an undetermined constant, and then solving
for a. However, in the general case, finding the general solutions of the homogeneous
equation explicitly is difficult.

Suppose we get 3 solutions {V, }4=12,3 to the third order difference equation L[v] =
0, we say they form a fundamental set of solutions if the discrete Wronskian W (z) is

nonzero , where W(z) = det(D(z)), and

Vi(z+h) Va(z+h) Vi(z+h)
D(z) = | Vi(z +2h) Va(z+2h) Vi(z + 2h) (2.49)
Vi(z +3h) Va(x+3h) Vs(z+ 3h)
Notice
Vi(z + h) Va(z + h) Va(z + h)
W(z)=| AVi(z+h) ApVa(z+h)  ApVa(z+ h) (2.50)

ApVi(z 4+ 2h) ApVa(z +2h) ALVs(z + 2h)
Lemma 2.15. If {V,}a=123 is a fundamental set of solutions to L[v] = 0 and coeffi-
cient of v(z +3h) is 1, then for any solution v(x) of the equation , there exists c,(x)
for oo =1,2,3 that are pertodic with period h such that

v(z) = an(x)va(a:) (2.51)

a=1
The proof is standard; so it is omitted here.
Now we will concentrate on the problem of given the fundamental set of solutions

{Vi}a=123 of the homogeneous equation L[v] = 0, how to find solutions to (2.48).
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We will assume V,(z) to be analytic in D*. The method used here is variation
of parameter, which reduces the problem to solving first order difference equations
whose solutions are explained in section 2.2.1.

Suppose
v(z) = Z Co(z)Vy(2) (2.52)
where C,(z)’s are undetermined as yet. In the expression

vie+h)= Y Cal@)Valz+h)+ > AuCu(z)Valz + h), (2.53)

a=-—1,0,1 a=1,23

we choose C,(z) in such a way that the second term vanishes. So,

(+2h)= > Colx)Valz+2h)+ D AyCu(z)Valz +2h) (2.54)

a=1,2,3 a=-1,0,1

Again, choose C,(z) so that the second term vanishes. These equations implies

Lpl(x)= > ACa (z + 3h)

a=-1,0,1

A Cy(z) satisfies the following equation:

ARCy(x) 0
D(z) ARCy(z) | = 0
ARCs(x) Ly[v](=)

Then A,C,(z) can be solved in terms of C,.

Ma(z)

ARC,(z) g(z) (2.55)

where M, is the cofactor of the last element in the a column of D(z). So we reduced

the problem to one already solved.
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Lemma 2.16. For g, such that %29 € S,(Dy), a = 1,2,3, let
M
= Y Vaeanieg) e (2.56)
a=-—1,0,1 w
Then the most general solution of (2.48) is given by
)= Y da(e)Vale) + L300 (2.57)
a=-1,0,1
where d,(z) is periodic with period h. v(z) is analytic in Dy if and only if dn(z) is

analytic in D4.

Proof. Let Cy(z) := A;i%’(?g( ). Then C,(z) satisfies (2.55). But in the above,
we already showed that C, satisfies (2.55) is equivalent to vy(z) := Zi:l Co(2)Va(z)
satisfying (2.48). The lemma follows from Lemma 2.15, noting that analyticity of

L3'[g] implies that Yo Va is analytic if and only if v is analytic. From analyticity of
Vo and W(z) # 0, it follows d(z) is analytic iff v is. O

Lemma 2.17. For g € Sy(D),let
_1Ma
RACINEE (2:5%)
a=—1,0,1
Then the most general solution of (2.48) is given by
= > daf z) + L7g] (2.59)
a=-1,0,1
where d,(z) is periodic with period h. v(z) is analytic in D if and only if d,(z) is

analytic in D.

Proof. The proof is similar to the proof of Lemma 2.16. O
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For nonlinear equation, we have the following lemmas.

Lemma 2.18. Let v be an analytic solution to
L[] = Ny (2.60)

in Dy (or D) , where N is an operator N : S,(D+) — Su(D+) (or N : §y(D) —
So(D)). If LN T]] (or L7YNv]]) exists, then there exzists d,, a = 1,2,3 analytic
in Dy (D), periodic with period h, such that d,(z) satisfying

v(z) = Z do(2)Va(z) + L7 NV]] (2.61)

a=-1,0,1

Proof. Using v satisfies (2.60), we get
Llo— LYND]]] = £Jo] — LL VT = £[o] — No] = 0 (2.62)

By Lemma 2.15, there exists d,, @ = 1,2, 3 analytic in Dy (D), periodic with period
h, such that d,(z) satisfies (2.61). O

Remark 2.7. Lemma 2.16 also hold for h =1 and %g €T, (D(B,t)), a =1,2,3.
Lemma 2.17 also hold for g € Yo(D(B)). Lemma 2.18 holds for N : Y.,(D(B, £)) —
T.,(D(B,+£)) and z € D(B,+£); or N : To(D(B)) — To(D(B)), z € D(B)

Remark 2.8. Sometimes the exponential growth along imaginary direction V,(x)
introduces difficulty in finding suitable bounds for the operator L' . In such cases
we can first divide D into horizontal strips with given width h (except that the lowest
strip may have width less than h): D = Uﬂg) D™ where N(h) = [2], by := b,
b, :=b,_1—hmn €N, and

D™ =Dn {z :by41 < Sz < b} (2.63)
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In each strip D™ | define L(_nl) based on A" = A;’%n), where A;’}n) as in (2.29) with

region D replaced by D™. Clearly, for g € So(D), L:(_nl) [g](z) thus defined is analytic

inside D™ and continuous in ﬁ(n).

Remark 2.9. Lemma 2.18 also holds for E(_nl) in corresponding D™ | where the
periodic function 6, are different for different n, denoted by (5&"). However, they are

related.

Let L(_Tl) be the inversion of £ based on A;l_ where the integration path is 0D.
Let v be an analytic solution to equation (2.60) such that Nv] € So(D). By Lemma

2.18 and Remark 2.9, there exists

o' = Y dD@Va(z), oY= Y dV(@)Vale), n=1,-- ,N(h),

a=-1,0,1 a=—1,0,1
(2.64)
where dgT)(x), dg")(m) are analytic and periodic with period h, such that
v=o" + LN (2.65)
v =" + L} N (2.66)

2.3 Borel Transform and Laplace Transform

This section is an introduction to Borel and Laplace Transform and is adapted from
[7].
Definition 2.19. Define Borel transform of =" for any f > 0 in terms of a dual

variable p:
_r

Blz](p) = @ (2.67)

—
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where I'(B) is the Gamma function.

Applying Laplace transform L to the right hand side of (2.67) we get

L {%} (z) = ﬁ /0 " o lemtds — g (2.68)

More generally, Borel transform transforms one series

flz)y=2"" E apz” " with o, f > 0 (2.69)
k=0
into another series:
s ak+pB-1
= agp
F =B = i 2.70
(p) = Bfl(p) 2 T(ka + ) (2.70)

Because of division by I'(ka + f3), it is clear that if f is divergent for large k, with
aj growing at a factorial rate comparable or less than I'(ka + ), then F(p) will be
convergent. Generally, an asymptotic series f~ is rarely convergent. In the case when
f (z) is convergent, from term by term application of inverse Laplace transform, we
get for Rp > 0,

L~'f=Bf (2.71)
However, the Borel and inverse Laplace transform are not the same because for
fp <0, L1 f = 0, while B f is defined by the analytic continuation of the series

representation (2.70), which is nonzero except for the trivial case of f =0.

Definition 2.20. If the Borel transform Bf satisfies the following two conditions

o [ The series for F(p) = [Bf](p) is convergent in a neighborhood of p = 0.

e 2 Analytical continuation of F(p) along a ray argp = 0 results in e“clplF(p) €

L1(0, ce') for some ¢ > 0.
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then we say f 18 Borel summable.

Suppose f is Borel summable, then

f(z) = [LoF](z) = [LsBf](x) (2.72)

exists for argz € (=% — 6,% — 0) for large enough |z| and by Watson’s Lemma, we

2 2

have
ka+p—1 00
i0 QkP . Z angp k=B — r
Z P = f(a) (2.73)
/ 5 + ka) k=0

The association of f with an actual function f given by (2.72) is not unique
because different values of § may result in different f. However, we can make the

association unique by choosing § = —argz := —¢.

Definition 2.21. [ff 1s Borel transformable, Bf(p) s analytic along argp = —argzx =

—¢, and exponentially bounded, then Borel-sum ZB f is defined as

Y J(@) = [L_yBJ]() (2.74)

In general, B f~ will have singularities. However, it is possible [1] to modify the
definition and use a process called ”"balanced averaging” involving weighting over
different possible paths of integration avoiding singularities that yields good algebraic
properties of the association between f and its Borel sum f.

The ray in the complex-z-domain characterized by argx = ¢ for which argp = —¢
is a singular direction of [B f] in the p-plane will be referred to as Stokes line. If ¢,
is a Stokes line, its associated anti-Stokes lines is defined as argz = ¢, = 7. Stokes

and anti-Stokes lines play a crucial role in asymptotics , as will be seen later.
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We define the Borel Transform of the product of series f and g through the relation
B[f3] = [Bf] » [Bg] (2.75)

where the convolution operation x is defined as

F x G(p) = /0 " Fp — 5)G(s)ds (2.76)

It is not difficult to prove that if f and § are Borel summable, so is the product f3§.

2.3.1 Borel Analysis for a Difference Equation

One way to use Borel Transform to solve some differential or difference equation is to
find a formal power series solution f () =>"", apz ", prove it is Borel summable by
considering the rate of growth of a;, then we may find f(z) through (2.72). However,
this way is very difficult. Instead, we can apply the Borel Transform on the equation

itself and study the analytic properties of the transform, assuming a prior: that it

exists. We will illustrate this analysis through an simple nonlinear difference equation.

y(z+ 1) + y(z) = % 2 (2.77)

1

We seek for a solution that behaves as 55 in half plane —5 — 0 < argz < 5 — 0 for

o an

n=2 gn

some 6 € (—7, 5). Suppose that y has a formal series representation §(z) = >
that is Borel transformable. Let B[§](p) = Y (p). Borel transforming both sides of

(2.77), we get Y (p) satisfies

ePY+Y =p+Y Y (2.78)
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therefore

P Y xY
Y =NYp) = e+ 1 + e?+1

(2.79)
If we can show Y (p) is locally integrable and exponentially bounded at infinity along
some direction argp = 6, then we know that Y(p) is Laplace transformable and
y(z) = Lg[Y](z) solves (2.77). If further we can show Y (p) is analytic at the origin,
then by Watson’s lemma from asymptotic behavior of Y (p) for small p, we can get the
asymptotic behavior of Ly[Y](z) for large z, and thereby prove y(z) has the desired
asymptotic behavior.

To accomplish the above two tasks, we prove that A is a contraction in some ball

of A, the space of analytic functions in region D and continuous in D, with finite

|| - ||p norm , where

D = {p :p| <7 —6or argp € (—g+5,72—r—5) or argp € (g—f—&%r—é)}
(2.80)
1Y lls = Mosup(1 + [pl*)e= [y (p)], (2.81)
p€D

and
M, — sup {2(1 + 52){111(;:2— fl)—l— s arctan S}} 376 (2.82)
b > 4 will be chosen sufficiently large later. Then A equipped with norm || - || is a
Banach space. It is to be noted that restricted on p < 1, || - || is equivalent to the

uniform norm, and for any Y that ||Y||, is finite, we have Y is exponentially bounded
at oo for argp € (=27 + 6, —9).

We will first prove a few lemmas to establish property of the norm.
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Proposition 2.22. For any Y € A with the property sup,¢p lp~"e=PlY (p)| < K for
some p > 0, some integer r > 0 and constant K, then we have Y|, < C%D(r + 1),

for b large enough, where C depends on'Y , but not on b, p and r.
Proof. For |p| < § < 1, we have

sup(1+ [p|*)e Y (p)] < 2K(b—p) " sup e”C=AWPl|p|"(b — p)"
lp|<é [p|<é

QKT(T + 1)
(b—p)r

where the last step follows from the maximum value of function e *z" occurs at = = 7.

2’!‘
<CZI(r+1) (2.83)

For |p| > 6, (14 |p|?)e *?I|Y (p)| is exponentially decaying for b large. O

Corollary 2.23. There exists a constant K independent of b, such that

K
P <= (2.84)
e?+ 1|, b
Proposition 2.24. For any Y1,Ys € A, we have Y1 x Yy € A, and
Y15 Yoy < [[Ya][sl|Yzllo (2.85)
Proof.
P 1
[Y1 % Ya|(p) = / Yi(s)Ya(p — s)ds = p/ Yi(ps)Ya(p(1 — s))ds (2.86)
0 0

In the latter integral the integrand is analytic in p and L! in s, therefore Y; * Y5 is

analytic in p. Since Y7, Y5 are continuous in D, we have so is Y7 * Y.

Y1+ Y5)(p)| <

/Op Yi(p — t)Yg(t)dt‘

P dt
< eblpl Yl b Yé bM_Q/ = =
AT 7
< 2.8
< o Mk (2.87)
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Proposition 2.25. ForY,,Y, € A,

Y7 = Y52l < (I1Yallo + 1Y I)IY2 = Yallo (2.88)
Proof.

VeV = Vi (Yi - V) 4 Vax (Vi - i) (2.89)
By Proposition 2.24, take || - ||, of both sides we get (2.88). O

The following lemma shows the existence and uniqueness of the solution to equa-

tion (2.79).

Lemma 2.26. For b large enough, N is a contraction in the ball By where By is ball

of size 2K /b in A centered at zero. Thus (2.79) has a unique solution in By.

Proof. For p € D, |

T +i_p| < C for some constant C' > 0. Using Corollary 2.23 and

Proposition 2.24 for large enough b, we have

P K 4CK? 2K
Yl < || —— C(lY|=|Y < — < — 2.90
W < |25 | +ieaisvnn < 5+ 455 < (2:90)
Therefore N' maps B, back to itself for large enough b.
For Y;,Y5 € By, using Proposition 2.25, we get
2CK
W] = N2l < GV = Y52l < —— V2 = Yalls (2.91)
Therefore N is a contraction in By, and the lemma follows. U

Remark 2.10. Since 6 > 0 can be arbitrarily small, Y (p) is analytic in |p| < m or
argp € (=5, %) orargp € (5,7).
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Lemma 2.27. For fized arg(z) € (—m,m) (‘arg € (—27,0)),

4

wol(@) = Ly (z) = /0 = ey (p)p (2.92)

is a solution to (2.77), where § € (=5,%) (6 € (5, 37")) 1s chosen so that 8 + argx €

(=%,%) . Furthermore, for large |z,

wle) ~ o5+, (2.93)

Proof. By Lemma 2.26, Y (p) is analytic in the origin, hence so is [Y % Y|(p). Let

Y(p) = i App" (2.94)

be the Taylor expansion of Y. Then

Y «Y](p) =p ) Bup" (2.95)
n=0
where b, are related to Ag,---,A,. Expanding ;5 +‘Z — into Taylor series, plugging

(2.94) and (2.95) into (2.79), comparing coefficient, we get A4y = 0, By = A3 = 0, and
Ar=1andY(p) =Y, A.p"
Y is exponentially bounded and the choice of § implies the integral in (2.92) is

convergent for sufficiently large |z|. By Watson’s Lemma

oo

A, T(n+1) 1 an
n=1 n=3

The proof that yo () satisfies the difference equation (2.77) follows from that Le[e ?Y] =
y(z+1) and Ly[Y *Y] = ¢ as follows from using Fubini’s theorem in the convolution,

knowing a priori that the functions are integrable. O
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2.3.2 Singularity Analysis of Y (p) at p = mi and Stokes Phe-

nomena

Let argz € (—m,7), and let yo(z) = L¢Y () where § € (—%,%) is chosen so that
arg(pz) € (—%,%)- Now if instead we choose 0 suitably in (3, 37”), Jo(z) = LsY () is
also a solution to (2.77), and go(z) ~ g(z) for argz € (—2m,0). Though y,(z) and
Jo(z) are both Laplace transforms of the same function Y'(p), they are not analytic
continuation of each other due to the singularities of Y (p) at p = wi, p = 3mi, etc.
For argz € (—m,0) ,

(o) = io(@) = [ ¥ (e (2.97)
where C' is the deformed contour in Figure 2.1.

From the Watson’s Lemma, the leading order asymptotic contribution from [, c
for large |z| in this sector is of the type Sz7e ™ for some constant vy and S (called
Stokes constant). 7 depends on the nature of leading order singularity of Y'(p) at
p = mi. If Y(p) has a simple pole at p = 77, then v = 0.

Relation (2.97) provides the analytic continuation of y, for argz € (—2m,—7).
Therefore as argz decreases to —m, the anti-Stokes line is approached, and yy(z) ~
(z) is no longer true because e~™® term is no longer small compared to §(z). The
phenomenon that a single analytic function has different asymptotics in different
sectors of the complex plane is called Stokes phenomenon.

Next, we will find the ramified structure of Y (p) at the singularity p = mi. We

recall the Borel plane equation for Y (p) is

(1+e_p)Y:p—|—Y*Y (2.98)
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h Im(p)

T

Re(p)

Figure 2.1: Integration path C

The dashed line is the original integration path. The thick line is the deformed one.

It is convenient to define

Hp) = Y(p) iflpl<m—v (2.09)

0 otherwise.

h(p) := Y (p) — H(p). Consider

3
D, :={p:|p—m7i| <v, arg(ni —p) € (—g, g)} (2.100)
For p € D,, equation (2.98) becomes:
(14+eP)h(p)=p+H+xH+2H*h+hxh (2.101)
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Proposition 2.28. For p € i(m — v,7), and v < T, we have h x h(p) = 0 and it

47

analytically extends to the zero analytic function in D,.

Proof.
D p—mi+v1
hx h(p) = /._ (s)h(p — 5)ds = /0 h(s)h(p — s)ds = 0

The last step is due to v — (7 — v) < v < m — v hence h(s) = 0.

Proposition 2.29. Forp € (1 — v, )i with v < 7 /4

TI—V1

H*H(p):/m Y(s)Y(p—s)ds-I—/ Y ()Y (p — s)ds

i—(mi—p) 2u1

and the above expression extends to an analytic function for any p € D,,.

Proof. For p € (71 — vi, 1),

Heme) = [T HOHE =i = [T H)HE- 9

1—(7i—p)

_ / T oY (p— 5)ds

i—(mi—p)

= [ v [ e s

vi—(mi—p) 2uv1

(2.102)

(2.103)

(2.104)

Since Y (p — s) is analytic for p € D,, and s in the range of integration, the right

hand side of (2.103) extends to an analytic function for any p € D,.

Proposition 2.30. For anyp € (7 —v,7)i, and v < 7/4,

p p

Tehp)= [ He-shslds= [ V(o= s)h(s)ds

Ti—V1 TI—V1

The right side of (2.105) extends to an analytic function for any p € D,,.
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Proof. First consider p € (71 — vi, 71), we have

[H * h)(p) = /H 5)ds =/M " H(s)h(p— )ds

_ /p_mm-H( ) ds_/m H(p = s)h(s)ds
_ /:, Y (p— s)h(s)ds (2.106)

Since Y (p — s) is analytic for p € D,, and s in the range of integration and h(s)

is known to be integrable on any ray that avoids s = ¢, it follows that the above

provides analytic continuation for [H * h](p) for any p € D,. O

Lemma 2.31. Forp € D,, Y(p) has the ramified representation
Ai(1-p)

m—p

Y(p) =— — In(ni — p) A} (7i — p) — A5(wi — p) (2.107)

where A1(z) and As(z) are analytic for |z| < v.

Proof. For p € D,, it is convenient to define Q(p) := fﬁ._yi h(s)ds. Using integration

by parts and Y (0) = 0, we get
P
[H *h](p) = [ .H'(p — 3)Q(s)ds (2.108)

Hence for p € D,, (2.98) can be written as

el

(L+e™Qp) = p+[HxHlp)+2 [  H(p—s)Q(s)ds

42 / " H(p— 5)Q(s)ds (2.109)

We define z := mt — p and Q(p) = Z(mi — p). Then replacing s = 2(1 — t) in the

above integration, we obtain
1
C2Z(2) = A(2) + 2Ag(2)Z(2) + 22 / H'(2(t — 1)) Z(t)dt (2.110)
0
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where A(z) = (mi—z)+[HxH|(mi—2)+2 [™

Ti—v1

H'(p—s)Q(s)ds and Ay(z) := “=1==,

Hence 271A3(z) is analytic at z = 0. Dividing both sides of (2.110) by —z and

integrating from z = vi to z, noticing Z(vi) = 0, we get

Z(z) = JZ|(z) := —A(0)(In z — In(vi)) — /Z wdz'

_/°MdZ_A3 g ([ ) oo
([ + [ [ e z<zt>dt}dz "

We now claim that Z(z) is a ramified analytic function for |z| < v, with the unique
decomposition,

Z(z) = A1(2) In z + As(2) (2.112)

where A;(z), A2(z) are analytic in |z| < v.

To show this first note that

/Oz [/1 Y'(2'(t — 1))[A1(2"t) In(2"t) + Az(z’t)]dt}

0

-~ /0 dr { /0 Y’(ZT(t—1))[A1(z7't)[l11(z7't)-|—A2(z7't)]dt}
= zA(2)Inz 4 2zAy(z) (2.113)

/Oz Ag(z')Z(z')dz' = z/o Ag(ZT)[Al(ZT) 111(27') + AQ(ZT)]dT

= zA;(2)In(z2) + zfiz(z) (2.114)

for some analytic functions Al ,A~2, Al, and Ag related to A; and A,. Thus, the
linear operator J preserves the ramified analytic structure of Z(z). If we introduce

the norm

121l := Nl Avlloc + [| A2l (2.115)
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Then since |z| < v, we find

1T712]l[r < Kel|Z|[ (2.116)

Therefore, Z(z) has a unique solution in this ramified analytic space. Since the
solution to (2.98) is unique, we get
P
/ Y (p')dp' = Ai(mi — p) In(ni — p) + As(mi — p) (2.117)
for p near 7i. Thus, the ramified analytic structure of Y (p) at p = mi is given by

(2.107). 0

Remark 2.11. Lemma 2.81 shows that the leading order singularity of Y (p) is a
simple pole with residue S = A;(0), however the presence of logarithmic term implies
p = mi is also a branch point. Therefore in the choice of contour fC wn Figure 2.1,

we have a branch cut along the imaginary axis from p = mi to p = oo1.

Lemma 2.32.
Yo(x) — Jo(z) ~ Se™™ as z — oo, —m < argz < 0 (2.118)

Proof. From (2.97), (2.107) and by Watson’s Lemma

(Al(m' —p)

vo(z) — Yo(z) ~ /C + In(mi — p) A} (71 — p)) e P*dp

~ A;(0)e™™ (2.119)

T — P

d
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CHAPTER 3
OUTER EXPANSION

3.1 Formal Separatrix

Consider a discrete map

wiyz = wj +eg9(wj42) (3.1)
where g(w) = w — w**! and k > 1 . In terms of W, := (w;, w;41,w;42), equation
(3.1) reads as

Wi = G(Wj) (3.2)
where G(w;, wjt1,wjt2) = (W41, Wit2,w; + €g(w;4+2)). In this form, the map is

clearly volume preserving and is one to one. The inverse of map G is
-1
G (wj, wigr, wi2) = (Wig2 — £9(Wjs1), Wy, wjt1) (3-3)

This equation has two fixed points 0 = (0,0,0), and 1 = (1,1,1). Near 0, linearizing

equation(3.2) for small W gives
Vi1 = DG(0)V; = (vj41,vj42,vj + €Vj42)- (3.4)

Similarly, near 1, decomposing W; =1 + V] and linearizing the inverse of map G for

small Vj, we get
Visr = DGV, = (8542 — £9'(1)9141, 95, B541)- (3.5)
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The characteristic equation of DG(0) is
A2 =1+¢eA2, (3.6)

and for DG71(1) it is
I3 =14 kely, (3.7)

where and A,,T', are the three roots of the equation (3.6) and (3.7) respectively
indexed by @ = —1,0,1. For 0 < ¢ <« 1, the three distinct roots A, and I',, are

asymptotically given by
1
Ay =Q%(1 + §592a) + O(e?%), (3.8)

and
1
T, = Q™1+ §/-ch—Of) + O(&?) (3.9)

where Q = ¢27/3

is a cubic root of unity.
It is convenient to define A := Ag and I := I'y. Clearly for ¢ > 0, A > 1 and
|A+1| < 1. By the unstable manifold theorem [15], there is an analytic one dimensional

unstable manifold of map G corresponding to eigenvalue A, denoted by u~(t), and

the equation of the unstable manifold at 0 in scalar form is

u” (A%) = u(t) + eg(u™ (A%t)) (3.10)
with initial condition
I . uT(t)
w(0)=0, lim—==1. (3.11)

The solution = (t) to (3.10 ) satisfying «~(0) = 0 does not uniquely determine the

parameterization, since the equations are invariant under the change of independent
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variable ¢ — a(t)t, where a(t) is an arbitrary nonzero smooth function that satisfies
a(At) = a(t) for any t. The second relation in (3.11) is used to determine the solution
and therefore the parameterization uniquely. Following arguments given by Costin[1]
in a more general context, it is easily shown using contraction argument, u~(t) is
analytic in a neighborhood at ¢t = 0.

Similar analysis shows I' > 1 and |I'x;| < 1. There exists a smooth one dimen-
sional unstable manifold of map G~! at v = 1 corresponding to eigenvalue I', denoted

by v*(t), and the equation of the unstable manifold in scalar form is

v_(F37') =v (r)—eg(v™(Ir)) (3.12)
with initial condition
~(r) — v=(0
(@) =1, Lm0 (3.13)
r—0 r

The latter condition in (3.13) fixes the parameterization of the unstable manifold.
To get a parameterization u~ (t) of stable manifold of map G at 1, we reparameterize
by r =7r(t) = %t_¥, which satisfies r(At) = £7(t). Define u*(t) := v=(r(t)). Then

ut(t) satisfies the same equation (3.10) with superscript ” — ” replaced by ”+”, but

with different initial condition

+(t) -1
lim ut(t) =1, lim — ®) 1 (3.14)
t—o0 t—o0 fr(t)
It is convenient to rewrite equation in terms of z = Int. Let ¥*(z) := u®(¢(z))

respectively. Using (3.6) and (3.8) we obtain for some set {a,, }o_,
6 - m
h:=InA = 3t mz=2ame . (3.15)
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We will use z(z) as a generic symbol to represent either Z_(z) or Z;(z). Then z(z)

satisfies
z(z 4+ 3h) = z(z) + €g(z(z + 2h)).
To find the limiting flow as ¢ — 0 we write equation (3.16) as

z(z + 3h) — z(z)

= g(2(z + 2h))

From (3.11), we obtain from initial conditions:

N

(@) _,

Iim z_ (m) =0 im
T——00 z——0co0 e7T

We obtain from (3.13) the conditions for %, (z),

z -1
lim 2,(z)=1 lim % =—1.

Formally by letting &€ — 0 in equation (3.17), we find

z(z) = 9(20())

Initial condition (3.18) gives rise to the unique solution to (3.20)

eZE

ZO(-I) = —(1 n ekz)l/k’

Noticing that as ¢ — 0, the second relation in (3.19) becomes

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

we get that zo(z) also satisfies ( 3.22 ).So the two manifolds are the same in the

formal limit € — 0%. In fact the splitting of separatrices is exponentially small in

in the real domain, as will be proved later.
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To the leading order as ¢ — 07, the closest complex singularity (from the real
domain) of the leading order outer asymptotic expansion zy(z) is at 7/ki, but in fact
the singularity of higher order terms depends on ¢, which will become clear when we
match the outer solution with inner solution. It is convenient to consider a shift of

the independent variable of ¥* such that the singularities are fixed with respect to «.

Define
ze(z) = Z4(z + ocln h) (3.23)
where o := ’“6%1. Then z_(z) satisfies initial condition
lim z_(:v) =0 lim Z_(m) = e ®lmh 9 oelnh + (9(5 In h)2 (3.24)
T——00 T——00 e’
Plugging
z_(z) = p(z) + v(z), where p(z):= zo(z) + elnh 21 (z) + e22(x) (3.25)

into (3.16) and expanding in terms of ¢ and ¢ In h, then setting coefficient of ¢, € In A,

2 to match both in (3.16) and in (3.24), we obtain zy(z) is as in (3.21), and

T T

e €

— _ kx

From (3.23) and (3.19) we get

zp(z) =1 B
exp{—zL — pcInh} B

lim z4(z) =1, lim —1. (3.27)

r—00 r—00

1
k
Similarly, plugging z,(z) = zf(z) + (elnh) 2 (z) + ez (z) + v*(z) into (3.16), we
get 2§ = zi(z) for i = 0,1, 2.

We expect z_(z) ~ p(z), as € = 0 in some complex region adjoining real axis that

is bounded away from the nearest complex singularities of p(z), z = :I:%. We expect
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to show v(z) = O(e?) in a certain region mentioned earlier. To get an equation for
v(z), we substitute (3.25) into (3.16) to obtain

v(z) satisfies

Lo[v] = La[v] + Mi[v] — f (3.28)
where
Lo)(2) = v(x + 38) — v(z) — £¢'[z0(z + 28)]o( + 2R) (3.20)
L1[v](z) := e(p*(z + 2h) — 2§ (z + 2h))v(z + 2h) (3.30)
Nil(e) =3 (’“ ¥ 1) o' ( + 2h) (p(a) o+ (3.31)
F(5) =l + 34) — p(o) — ealple + 21) (3.32)

where p(z) is defined in (3.25).

As 2 — —o00, 29(z) = 0 and ¢'(zo(z + 2h)) — 1, Lo[v](z) formally simplifies to
L_[v)(z) = v(z+ 3h) — v(z) — ev(z + 2h). (3.33)

Equation £_.[v] = 0 has three independent solutions e”, exp{mhii\xl} , exp{m% i

We define three independent solution to Ly[v](z) by 79 (z), for & = —1,0,1 so that

InAy

as & — —oo , Tu(x) ~ e* & . For arbitrary z, we will prove in Lemma 3.11 that

To.a(2) ~ Teo(z) where

ln Aa ~ 02

Tea(z) = V() exp{z b Val@) = (9(z20(2))e™) " = (1+e) (3.34)

where (3, := —(%)Qza, o = —1,0,1. The choice of V,, is made so that Te,a COMES

close to satisfying £y[7] = 0. To see this, we follow argument in Rom-Kedar et al
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3] and let 7y q(z) = Wy(z)exp{z28a} be the exact solution of the homogeneous

equation Lo[7](z) = 0, then W, satisfies
A3Wo(z 4 3h) = Wo(z) + ed'[20](z + 2R) A2 W4 (z + 2h) (3.35)

On taking the formal limit ¢ — 0% and using (3.8) , it is expected that W, ~ V,

where Va satisfies
3ay7 d - 1 2ay7
UV, (z) + %Va(:c) = ¢'[20](2) 2"V, (). (3.36)

With normalization condition lim,_, _., V,(z) = 1, we obtain (3.34). We will prove

rigorously later on that indeed, as expected from formal argument here, 79, ~ 7. 4.

Define D~ (&) to be the region (See Figure 3.1 )

D (5)={z€C : |%m|<%, Rz < A,

. 50
- - 7 _6a1
T < arg{z T 5a} <

. 50
) — .
o < arg{z + e + o 5a} < m} (3.37)

for some fixed positive A and §,.
Let D*(8) be the reflection of D~(8y) about the imaginary axis. Later, we will

show the §, dependence in D* only when needed. We define
Dy :={z € D~ ND*:|Iz| < |%_SO|} (3.38)
where & := bo(secd, + ngtané,) , and ny > 4 is a fixed constant.

Remark 3.1. We chose D~ so that z_(z) is expected to be close to zy(z) in D~. So

R(z) — oo is avoided as are singularities of z.
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Im(z)

ik

) Ogq 8o

—mi/k

Figure 3.1: Region D~

Next, we are going to establish that the formal approximation p(z) is close to
z_(z) in D~ and is close to z4(z) in D*. The main result of this section is the

following Lemma.
Lemma 3.1. There ezxists unique z_(z) satisfying (3.16) and (3.24).
z_(z) = zo(z) + (elnh)zi(z) + e22(z) + v_(2) (3.39)

and we have |e""v_(z)| < K€250_2_1/k ln2(50/h) forx € D™ and 8y > ¢ where K 1is a

constant independent of &g, .
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Similarly, there exists unique z,(x) satisfying (3.16) and (3.27),
z4(z) = 20(z) + (elnh)zi(z) + e22(z) + vy (2) (3.40)

and |e~*v, (z)] < Ke2652 7Y 1n2(8y/R) for x € D and 6y > «.

3.1.1 Preliminary Lemmas

In this section, we prove some of the preliminary lemmas needed later for proof of

Lemma 3.1.
S8,.(D7) := {v(z) : v(z) analytic in D™, continuous inD~} (3.41)

Equipped with norm

[v[], = sup [e7*v(z)] (3.42)
z€D—

where > 2+ R(InA;)/h > 1. S, forms a Banach space.
If £ is a linear operator of third order and Ljw] = 0 has a fundamental set of

solution
Toa = Tea(l + O(ek(b))), 2 = —1,0,1 (3.43)

for € D™, where k(6) is some function of &, 7 is defined in (3.34). Define the

inverse of L as:

L' :8,(D7) — S.(D7) (3.44)

)= 3 L3l L) = nat [ @) ()

a=—1,0,1

45



where W (z) is the difference Wronskian of {7,}s=—101 and M,(z) is the cofactor of
the last element in the o column of D(z).

In the class of continuous functions g, it is convenient to define operator

Mo

r—1 . -1
z— [g] - Z |/7—Ot|A ,— W

a=-1,0,1

g/ (x) (3.46)

The following Proposition is helpful in proving £-! is well defined and bounded.
Let Xt = +7i. So X are the two singularities of p(z) that is closest to the real

axis. For dy > 4, define
D; (do, 60, %) :=DEN{z € C: |z — XF| < dy} (3.47)
D5 (do, &) = D* \ (D (do, &, +) U Dy (do, 60, —)) (3.48)

Proposition 3.2. Suppose |g(z)| < K|z — X,|™ for z € Dy (do, 0, %), if ¥ > 1 then

we have o
N(z
KKq(6
1> g(z—nh)| < #Ix — X, (3.49)
n=1

where N (z) is the largest integer satisfying |t —Xs— N (z)h| < dy, K1(6,) is a constant
depending on y and 6,. (6, is defined in (3.87)).
If vy =1, then we have

N(z)
KK;(64) dy
E —nh)| < 1 .
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Proof. We will only show for the ”—" case since the other case is similar. For v > 1,

T € Dl_(do,50, —)

N(z) N(z)
|Zg(m—nh)| < K|z — X, — nh|™"
n=1 n=1
O K 2dy
< = / |z — X, —t|77dt
hJo
K 1 =l o
< 01F|x—Xs|_7+ / e — ¢|7Vdt (3.51)
0

where ¢ := arg(z — X,). For v > 1, the integral in (3.51) can be bounded by
I |e?® —t|~7dt. Since z € D~ (dy, b, —), by (3.37), we have —1 < ¢ < —&,, therefore

le’? — t| > sin(8,) for ¢ in the integration path of (3.51). Hence,

> gz —nh)| < K1(8a) -l — X, |7+ (3.52)
n=1

, where K(6,) is a constant depending on §, and 7.

For v = 1, the integral in (3.51) into two: (0,1) and (1, |z_2§28|7) we have the

integral is bounded by C'In <|12—d)0(3|)' O

Lemma 3.3. For small enough ¢, the induced norm of operator L' has the following
bound

1250 < Cogt e, a = —1,0,1 (3.53)

where C' 1s a constant independent of €.

If g € §,.(D™) satisfies the following two conditions

5 Y
o) < Klall ([ 5) + @ € Daldonfu, ) (3.50)
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5 Y
wwMSK(i)nmm 2 € Dy (do, )

where v > 0, K s a constant, then

_ 5 ,
1225000l < C'K||9||u;0a ify>2+1/k

6o 1n 4 )
1£2% 19l < CK|lg]l,.— . S, ify=2+1/k

-1 53_1_1/k In & )
ekl < OKll "%, o<y <241k

Proof. (3.43) implies that for z € D5 (dy, dp)(defined in (3.48)),

Ma nAg 20 _ 14k
wﬁ?:e”fﬂw%“wm(m+m%%¢WW)

14+ k
= T Ka+O(edy F en(do)))

where K, is a constant. For n € N and () << 1, we have using

M,(z — nh)

f/a(x)
7a(2) W(z — nh) ¥

V) < o,
Va(z — nh)

<anr-

where n € N and C' only depends on a. By above inequality,

e L7, [ol(x)] =

W(z — nh)

n=1
k1 >

< CiKdy Flglle Y 1Al e
n=1

_ktl
< CKdy * &g,

— [My(z — nh
e_/”"’ra(m) Z [ a(m n )e—ll(a}—nh)g(l‘ _ nh)e—[lnh}

(3.55)

(3.56)
(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

where C1, C' are constants. In the last step we used that for > 2+ R(In A1) /h,a =

_1’0: 17
|Age ™| < JAATAT?] < JAATE = AL <1 — Kie
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where K; > 0 is a constant.
By replacing dy by 8y in above proof, we get (3.53). If g(z) satisfies (3.55), then
llg|l,, in (3.61) can be replaced by C(do/dy)||9]| .-

For z € Dy (dy, 0, %) , we have

M (.’L‘) _ . InAgy R

a < Cyle @ — X, |®(B=) 3.63
] < et o - x, (3.63)
Ira(@)| < Cale ™ 2| |z — X,|R6) (3.64)

If g(x) satisfies |g(x)| < K&||g||.|z — Xs|77, for @ € Dy (do,do,—), let N(z) be
the largest integer such that Z := z — N(z)h € Dy (do,déy,—). Breaking up the
summation in A~', using Proposition 3.2, for v > 2 + 1/k, noticing (3.63), we find

for € Dy (dy, b0, —),

=)
-1 Ta(T)| 1 /- M,(z — nh)
< () —nh .
Ll < || ) + X [mle) g et~ 065
k41
™ %)’ C:K 5]
<% 1% 2K 5illll, _
< GoTxent <d0> gl +— X (3.66)
c
< K—dllgll (3.67)

Therefore we have (3.53).
For v = 2 + 1/k, using (3.50) of Proposition 3.2 in (3.65) we get (3.57).

If v < 2+ 1/k, noticing (3.54) implies |g(z)| < K||g||u$, similar with
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(3.65), we get

e L7 L [g](x)]

k41 r 2dg
otk Gt 8] lgl, n(22)
< O (d—o) ol + ST (308)
CK ., _4_ 1
< (1) (3.69)
0
O

Remark 3.2. In the proof of Lemma 3.3, (3.66), (3.68) show that stronger results:
If g satisfies (3.54) and (3.55), and x € D1(dy, by, =), we have

5 In 6 In™(1/60)
|z — X,|7

Cpw e K
L2, 9]l < € llgl (3.70)

where if y < 2+ 1/k, theny =1+ 1/k andn =1; if y>2+1/k theny =~y —1 and

n = 0.

Remark 3.3. Clearly Lemma 3.3 and Remark 3.2 hold for L= replaced by L7 as

well.
Consider w analytic in D~ satisfying equation
Llw] = Qw], (3.71)
by Lemma 2.18, w satisfies
w = wy + £ [Q[u] (3.72)

with wy(z) := >, ;01 Ca(Z)7a, where c,(z) are periodic with period h and analytic

in D .
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If Q is small, we expect that w to be close to wy. To be precise, suppose wy(z) # 0

for z € D™, let n(z) = “2l=200) then n(z) satisfies

wo ()
1
wo(2)

Let B be a ball of size § centered at zero in So(D™).

n(z) = J-nl(z) := L2 [Q[wo(1 +n)]] (=) (3.73)

Lemma 3.4. Suppose operator Q : So(D~) — So(D~) satisfies the following two
conditions: for n,( € B and z € Dy (dy, 8o, %),

‘ Qlwo(1 +n)l(z — y)

wo() ‘ < K(z,y)e™ (1 + [|nll); (3.74)

wo(z) wo(z)
< K(z,y)ele™|ln = (Il (3.75)

‘ Qlwo(1 +n)l(z —y)  Llwo(l + (= — y)

where K (z,y) = Ko|le—X,| 7|z —y — X,|™" forz € Dy (do, b, £) and K (z,y) = K
for @ € Da(dy,60); 70 >1, 71> —-1—1/k, andra >0, u > 2+ % are constants.
Then (3.73) has an unique solution n(z) of (3.78) in B for small enough ¢, and
n(z) = O(Koe™ 165" In"(8/R)), = € D~ where ' = 71 + 15— 1 and n = 0 if
ro>241/k; " =ri+14+1/kandn=14i 0<ry; <2+ 1/k.

Proof. We will show that J is a contraction in B for small enough ¢ with § =
Cem~165" In"(8y/h) for some constant C.

Suppose K (z,y) satisfies the assumption in the lemma. Let V(z) := |[z—X,|™e!?,
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then clearly |V (z)| < C6?||V |||z — Xs|7"* for = € D7 (dy, by, ) By Lemma 3.3 and

Remark 3.2, 3.3, using (3.74)for € D~ we have

0@

= 1 T N —Ma(m—nh) w T—n

= a2 @D iy el + h)H

< G (1t all)ele - X IE Ve

< K™ In™(66/h) (1 + ||7]lee) (3.76)

where K is a constant. Choose
§ = 2Ke™ 15, In™(80/h), (3.77)
then for ¢ small enough, we have |J[n](z)| < §. Similarly, using (3.75),
|7 n)(2) = TIC()] < € a5 I (8o/B)ln = (i (3.78)

Hence J is a contraction in B. Therefore there exists a unique solution of (3.73) in

B. The estimate n(z) = O(K6T0_150_T/ In"(80/h)) follows from (3.77). a

Now consider solving (3.71) in Dy. This is necessary when Q[w] defined only in

this region.

Define the inverse of £ as L7 : Sy(Dy) — So(Dy),for = € Dy

L_l[g](:v) = Z L[g], where £'[g] := TQA;_}X [%g} (z). (3.79)

a=—1,0,1

where A;’i[g](x) is defined on region Dy as (2.29) with Zy, Zy replaced by Zy ,, and

1,  defined as following:
oo : So(Do) = So(Dy), Tolg](z) = (e"” + e ") 1o(z)w(z)g(z); (3.80)
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Zia:Su(Ds,) = So(Dz), ZLilgl(z) = (" + e )1a(z)w(z)g(2) (3.81)
w(z) = (s + 12(8) + [ro + P+ ) + [ + 1P (e +20) 72, (3.82)

By Remark 2.8 on horizontal strips of width h covering

N(h)
Dy = |J D™ (3.83)

n=0
D™ .= Dy N (—00,00) X (b, bpy1)i (3.84)

where b,41 = b, + h. Define the inverse of £ as ﬁ(_nl) : SO(D(")) — SO(D(”)),for
z € D™

Let 6, be the smallest distance between D™ and +X,.

Lemma 3.5. For ¢ small enough, we have

L2l < €8t et a=—1,0,1 (3.85)
Il < catitet (3.86)

where C' s a constant. In particular, we have
I£5H < oo™ (3.87)

Proof. By (3.59), we have that for z € D),

‘AV/‘[V“((;))TQ(:,;)‘ <C (3.88)

Similar with Lemma 2.12, we have

Cllwllnllw=" [l llgl]

1 — 6_”h

-1 | M,
I7afe {Wg] | < (3.89)
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By (3.79) and Lemma 2.12, we have

Cllwllallw™la|lgl]
1 — e—rh

£, mlgll << (3.90)
Noticing (3.43),we get
I7alln = lI7ealln(1 + O(er(8n))  and |l 2l = lIrcalla(1 + O(ex(6,)))  (3.91)
But for z € D™ and small enough e,
ITeallallmoalls < CL8, e < 05 1E, (3.92)

where Cy, C are constants independent of ¢ , and n. (3.86) follows from (3.85). [

For L',(_t)l defined in D®| that is the strip closest to 7/ki, we have special estimate

in Lemma 3.8. The following proposition is a preparation of Lemma 3.8.

Proposition 3.6. If ¢ € So(D") satisfying

5
(o)) < K=" lall. = € D (3.93)

for some constant v > 1, then
Pia()] < O&f |z — X4l (3.94)

for some constant C' independent of &y.

Proof. By the definition of P~ (2.22), similar with proof of Lemma 2.8, using (2.27)

K&

m”flﬂ (3.95)

[x(z)q(z)] <

[ =S eae) <ol [ mide-xa < calal - (296)
oD f— ty) D)

(2.27), (3.95) and (3.96) imply (3.94). O
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Corollary 3.7. If ¢(z) satisfies conditions (3.93) in Proposition 3.6 withy > 1, then
1A% (oIl < Cdoe™"lqll (3.97)

where C 1s a constant independent of €,q and .

Proof. This a consequence of Proposition 3.2, 3.6 and 2.29. U

Lemma 3.8. If ¢ € So(Dy) satisfying the two conditions (3.93) with some constant
r> 2+ 1/k, then
1£Gyalls < Cdoe™ gl (3.98)

where || - || is the sup norm on D).

Proof. If q satisfies (3.93) , then 7, satisfies condition of Proposition 3.6 with » > 1,

hence by Corollary 3.7, ||A;1Ta_1q||1 < 01505_1||7'aq||1. By 3.88

13l < Nmalli AR 72 gl < Collmallados ™ |75 gl
< CdpeM|qllx (3.99)
In the last step, we used ||7.||1||73* | < C. a

3.1.2 Proof of Lemma 3.1

Proposition 3.9. There exist a third order difference operator L, such that

InA, . -~
Sy, a=-1,0,1 (3.100)

Teo := exp{z

are exact solutions of

L[r](z) =0 (3.101)
where L, is gen in (8.114).
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. . ApTea A1 o
Proof. It is convenient to define mo, = :T’ , M3q = j; and
£0 T
R, .= LolTeal (3.102)
Te,a

Note that mq g, m39 = O(e) and mg 41, m3 41 = O(t) as ¢ — 0. Estimating residual

Lo[Te.o](z) for small ¢, z € D7, it is seen for Taylor expansion for small ¢ that

E e, —_3—=
|Ra| = Lolreal(z) < Ce®leM 655 * 2 (6, /R) (3.103)
Te,a
for x € D~. Define
Te,—1 Te,0 Te,1 1 1 1 Tee—1 0 0
M = ApTe 1 ApTeo ApTei| = |Mmo—1 Moo Mo 0 7o O
A%Te,—l A%Te,o A%Te,l m3_1 M30 M3;1 0 0 Te,1
(3.104)
Q1 := (AWM — QoMM ™ (3.105)
where
0 1 0
Q=10 0 1]; (3.106)
Q1 92 q3
g3 := =3+ eg'[z0(x + 2Rh)], g2 :==2¢3 + 3, ¢1 := —1 4 g2 — q3. Hence the elements of

last row of A,M — QoM are Ly[7,] , a = —1,0,1.

Using (3.102) , (3.105) and (3.106), we get that

QM =AM—-Q:M=|0 0 0 0 7o O (3.107)



Thus,

0 0 O
Q=10 0 O (3.108)

by by b3

where

bg = [(R_l — Ro)(mg’o — mg’l) — (RQ — Rl)(mg’_l — mg’o)]/T, (3109)
bg = —[(R_l — Ro)(mz,o — mz’l) — (R() — Rl)(mz,_l — mg,o)]/T (3110)
bl = Rl - bgmg’l — b3m3,1 (3111)
T = (m2,—1 - mz,o)(m3,0 - m3,1) - (mz,o - m2,1)(m3,—1 - m3,1) (3-112)

Notice that 7= O(1) as ¢ = 0 or z — —oo. It follows from (3.105) that the matrix

M satisfies the difference equation
ApM — (Qo+ Q1)M =0 (3.113)

In particular, the third row of the equation reads that 7, satisfies the same third

order homogeneous difference equation:
LT, = A?LTQ — (b3 + q;;,)AiTa — (b2 + @) ApTa — (b1 + ¢1)7a (3.114)
a

Remark 3.4. It is to be noted that L. is formally close to Ly for small ¢ since
bu(z)| < C|e’”|5350_3_1/k ln2(50/h) forx € D7, n = 1,2,3 and Ly corresponds to

b, = 0.
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In order to find fundamental set of solutions to Ly[v] = 0, for « = £1 we rewrite
L[r|(z) = {Lc — Lo} [Jtau](z) (3.115)

Using fundamental set of solutions {7, o }a=—1,01 to define E;i, we get

M,
9] == QAT =2 11
Lloli= 30 meadT%) (3.116)

a=—1,0,1

where W, (z) is the difference Wronskian of {7, 4 }a=—101 and M., is the cofactor of

the last element in the o column of D.(z).

T0.a(2) = Tea(@) + L7 [{Le — Lo}moal] (¥) (3.117)

We will apply Lemma 3.4 to the above equation and the following Proposition is useful

to show that the conditions (3.74) and (3.75) holds. Let 7 () := me(@)=rea(z)

Tc,a(z)

Proposition 3.10. Forn,{ € B, x € D~, y > 0, we have

rea(@{Le = Lo}[rea(l +m))(z — )] < K(z,9)(1+ [|nllc)e®[e” 1 A/MY] (3.118)

rea(@)({Le = Lo}rea() (L +n)l(z — y) — {Le = Lo}Tea(l + O]z — )|

< K(z,y)(1+ [nllo)e’lln — Clloce™ A7) (3.119)

where K(z,y) = Clz — X,| % |z —y — X, |73 kR yf o € D1 (dy, 89, +) and

K(z,y) :=C if x € Da(dy, é). C is a constant in dependent of € and 8.

Proof. (3.103), (3.105) and (3.109)-(3.112) imply that for € D™, we have |b,(z)| <
K(z)le*|, n = 1,2,3, where K(z) = |z — X,|>"Y* 2 if 2 € Di(dy, b, +), and
K(z) = Cif 2 € Dy(dy, ).

|(£e = Lo)[7](=)] = —bs(2) AR[r)(w) — ba()Anlr](z) — ba()7(2). (3.120)
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Noticing that

1 _|7(z+h) B 7(z) max 7(z + mh)
|77 (@) Ax[r](z)] = @) @) < 2 max e ‘ : (3.121)
we get
rea(@){Le = LoYrea(l +m)](z — y)]
3 max Te.a(T + mh — y)
< (4ol (pmpg e = 1) (ug, |0
< K (@, y)(1 A+ [[nlloc)e?]e”tHm A/ (3.122)
Since both £, and L, are linear, we have
{Le = Lo}rea(l +m)(z) = {Le = Lo}Tea(l + ()(z))
= {Le = LoHrea(n — O)=). (3.123)
from which (3.119) follows. O

Lemma 3.11. There exists a fundamental set of solution {7y a}a=-101 to the linear

homogenous difference equation
L[] =0, (3.124)
such that

Tow = Teall + 026,77 % 12(6, /1)) (3.125)

Proof. Proposition 3.10 shows that condition of Lemma 3.4 holds. Applying the

Lemma, we get the existence and the estimate for 7 ,. U

Remark 3.5.

T0,-1(2) = 70,1(%) (3.126)
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Now we are ready to invert the operator £, on the left of Equation (3.28). Define

LMl i= 3 mad [t (3.127)

where Wy(z) is the difference Wronskian of 7, and M, is the cofactor of the last

element in the o column of Wronskian matrix Dy(z).
Proposition 3.12. v = z_(z) — p(z) satisfies
v = 01700 + Lo [f] 4+ L5 [Lafv] + M[o] (3.128)
where 01 := e ™" — 1 4 pelnh = O(*In” h) (3.129)
Proof. By Lemma 2.16, general solution to Ly[v] = g is represented by
v=uo(z) + L5 [f]+ L5 [£a[v] + M[v]] (3.130)

where vy(z) := >_,_ 101 Ca()T0a, and cu(z),a = —1,0,1 are periodic function of

period h. Since z_(z) satisfies initial condition (3.24), we get v(z) satisfies

im 22 _ (3.131)

z——oco0 e7T

Hence v € S, (D7), where p; = 1. By definition of Aj[v], it is easy to see Ni[v] €
S, (D7), with po = k 4+ 1 > 1 therefore £5'[N;[v]] € S, (D).
By Taylor expansion for large |z| and small € we get for z € D™, [e=*+1e f(z)| <

Ce?, which implies f € S,,,(D™), therefore Lal[f] € S,,(D7). Dividing by e” and

letting © — oo on both sides of (3.130), we get

01 = lim e “vy(z) (3.132)

r——00
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(c_1(2), co(2), er(2))T = D3 (z)(vo(), vo(x + k), vo(z + 2R))T (3.133)

where Do_l(a:) is the inverse of matrix Wronskian of {7y 4 }a=—1,01. Estimating Do_l(a:)
shows c,(z) ~ K%i) as ¢ — oo where K is a constant. Using (3.132), we get
lim, o cs1(z) = 0, and lim,,_, ¢o(z) = C where C' is a constant. But ¢,(z) are
periodic functions, hence cy; = 0 and ¢y(z) = C is a constant. From (3.132) we get

co(z) = o1 and the lemma follows. O

Let n(z) := % It is to be noted that zy(z) # 0 for & € C. 7 satisfies

1= Joln] = o125 100 + 25 L5 [f + La20m] + Ni[z0]] (3.134)
Let Bs be a ball of size § in So(D™).

Proposition 3.13. 7, is a contraction in By with § = 06250_2_1/k In? (‘%0), for €

small enough and &y > ¢ where C is some constant independent of dy, <.

Proof. We estimate each term in (3.134). Obviously, ||012) 00l < C(eln k)55t
By Taylor expansion for small ¢ with care taken to estimate a lower bound to

distance from complex singularity of zo(z) , we get for = € Da(dy, dy)

_3_ d
|e_(k+1)zf(x)| < Cs3d03 k12 (f) (3.135)

and f(z) satisfies (3.54) and (3.55) with y = —3 — 1/k, K = C'In® (%). For z €

Ds(do, &), we have

calm\ <o

1 _1—
—e—f“zal[fl\ < Cody TG f ]l < CE* (3.136)

b
20(z) zo()
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where o = k+ 1, k > 1. For z € D1(dy, 8y, £), by Remark 3.2,

In? (‘50) 53+1/k
W“fnﬂz

-m\ < Co— X

< C55%n’ (%) (3.137)

We used || f][, < C6;° V%, Let q(z) := (Inh)z(z) + 25(z). From (3.30), we get
k
L1[20m] = Zsl"'l[qk"'l_lzé“n](x + 2h) (3.138)
=1
For z € Ds(dy, bo)

e [q' 2 )(z + 20)] < Cle™"q(z + 2R)|'le™"2(z + 2h) 7|

< Cllnlls (3.139)

q’“"’l_l,zé"'1 satisfies (3.54) and (3.55) with vy = l+1+1/k > 2+1//<: and K = C'ln’ (70)
Hence for « € Ds(dy, dp), we have

1

20

ﬁal[6l+l[qk+1 lz(l)+17]](93+2h)]‘ S l+1||£ 1 _k+1-1 l+1,,7||p2

< CeYnlleo (3.140)

For z € D1(dy, 8o, =), we have

ATy Sy
LA+ 2n)

5l+1+1/k1 1(50)
|z — X, |+1/k

< Ce'éy! It (%) 17l oo (3.141)

(3.138),(3.141) and (3.140) imply

§ C€l|x—X |1/k || k+1-1 l+1||#2

[17]]oo

1A _ )
a5 ol < e85 107 () (3.142)
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Since L, is linear, for 7 € B, we have
—1p-1 —1p-17, = 2¢-27.2 50 ~
20" Lo [zom] — 207 £y [207][| 0 < CE76 7 In 7 7= il (3.143)
Expanding terms in N;[27] and similar with the proof of (3.142) and (3.143), we get

25 N7 [zom]l| < €8 In(55) |11, (3.144)

75 £ zom) — 25 £ zwlloe < €8 In(857)81m — 7l (3.145)
From (3.136), (3.137), (3.143), (3.142), (3.144) and (3.145), we get J» is a con-
traction in B, with § = Ce?§;%In* (2). O

h

Proof. (Proof of Lemma 3.1) As a corollary of Proposition 3.13, v(z) = z¢(z)n(z)
satisfies the bound |e~"v(z)| < Ke28;2"/* In? (%).

(3.12) is essentially the same type of equation with (3.10). Starting from (3.12),
follow the same procedure as we did for proving the assertions for z_, we get the

result for z,(z). O

3.2 Difference between Stable and Unstable Man-

ifolds

In the outer region, consider the difference between 2_(z) and 2z, ()
7(z) := z_(z) — 24 (). (3.146)

Lemma 3.1 implies that 7(z) = (9(6250_2_1/k In*(8o/R)) for z € Dy. However, we will

show that there exists a reparametrization of the unstable manifold Z_(z) for which
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the closest distance between Z_(z) = (2_(z),2_(x + k), 2_(z + 2h)) and Z,(z) =

(z4(z), 24(z + h), z4(z + 2h)) is exponentially small. 7(z) satisfies a homogenous

equation:
L[r](z) = N|7](z) (3.147)
where
LI7)(z) = 7(z + 3h) — 7(z) — eq'[z_(z + 2h)7(z + 2h) (3.148)
N7](z) = e’:i; (k Jl’ 1) 'z + 2h) 25 (2 4 2h) (3.149)

Remark 3.6. In (3.147) we linearized the equation about z_. The advantage of this

is that Y(z) = 2_(z) — 2_(z) satisfies the same equation as 7(z).

To find solution to (3.147), we need a set of fundamental solutions to the linear
equation

Llr]=0 (3.150)

Since Lemma 3.1 states that z_(z) is close to zy(z) in D7, in the following lemma,
we will prove that there exists a fundamental set of solutions of (3.147) 7, close to

70, for a = —1,0,1

Lemma 3.14. There exists a fundamental set of solution 1, to the linear homogenous

difference equation (3.150), such that
Ta(2) = To.u(2) (1 + O(£8; 7 * n(8y/h))) (3.151)
Proof. Rewrite equation (3.150) as

Lo[ra](z) = {Lo — L}[7a] () (3.152)
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ral@) 1= Toa(e) + £5" [ T2 {Lo — L}lra]| (@) (3.153)

where ﬁal is defined in (3.127) . Let

) . Ta(2) —T0a(2)
Na(z) = ole) (3.154)

{Ly— LYra] = elk+1){z{(z +2h) — 2 (z + 2h)} 7a(z + 2h), (3.155)
By Lemma 3.1, for z € D,
e|(k +1)2k(z + 2n) — (k + 1)2% (& 4 2R)| < 2K (x)]e*). (3.156)

where K (z) = C if & € Dy(dy,8y); K(z) = Clz — X,|"2In(8/R) if & € D1(dy, 8o, £).

It follows that

|70 (2){ Lo = L} (1 +m](z — y)|

InAy

< EK(z,y)le” (Il + 1), (3.157)

|76 (2) ({Lo = L}[r0a(1 + 0)](z —y) = {Lo — L}0.a(L +O)](x — )|

In

Aqy,
< EK(z,y)|e® TR (|l — Cllo) (3.158)

where K (z,y) = Cifz € Dy(dy, &); K(z,y) = Clz—X,| % |z—y— X, |72t % In(8,/h)

if z € D4(dp, b, £). (3.151) follows from Lemma 3.4. O
Define
—1 1 Ma
ol= D b3 (3.159)
a=-1,0,1

where A7 is defined on strips D™, and W (z) is the difference Wronskian of {74 4 }a=—1,0.1

and M, is the cofactor of the last element in the a column of D(z).
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By Lemma 2.18 and Remark 2.9, for 2 € D™ there exist ¢(z)

6™ (z) = Z b ()7, (), (3.160)

a=-1,0,1

where bfxn)(x) are analytic in D~ periodic with period h, bfln)(:c) == b, exp{Zmmiz},

m=—0o0

such that 7(z) satisfies
7(z) = Jar] == ¢™ + L7 N7])(=) (3.161)
For simplicity of symbols, we drop the superscripts (n).
Proposition 3.15. ¢(z) = (9(525;4_1/k) for 1> 6> ¢.
Proof. By Lemma 3.5, and (3.149), we have

LW < LTIV < eag e e 26y
< Cesy M It (80/R) (3.162)
Using £26;2In*(8/h) < 1 for 1> & > ¢, we get
d(z) = 7(z) — LNTF]](z) = O(26;*1H). (3.163)

a

Now consider a reparameterization of the unstable manifold 2_(z) = z_({(z)),

where £(z) is a analytic function and Z_ also satisfies (3.148).

P(z):=2_ — 2_(x) (3.164)
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We seek for Z_ such that |Z_ — Z,| < |Z_ — Z,|, therefore we require (z) =
O(£267> /% 1n%(8,/h)). Again by Lemma 2.18, there exist ¢(z) such that 7(z) satisfies
(3.161) with 7 replaced by % and ¢ replace by b, where

dz) = > bal(2)7al), (3.165)

a=—1,0,1

bo(z) are analytic in D~ with period h. Similar to Proposition 3.15, we have

d(z) = 0(e28, > 1In%(8y /1)) (3.166)
Let B be a ball of size & centered at ¢ in Sy(D™).

Lemma 3.16. Given ¢(z) = Zaz_lolba(w)Ta(m), where b, analytic in Dy with
period h, and ¢ satisfying
[¢lln = sup [¢(z)] < K26, 4" (3.167)
,rED(")
where K 1s a constant , then for € small enough there exists a unique solution of

(8.161) in B for small enough 6, and it satisfies

I7(z) = ¢(@)lln < C52 16117, (3.168)

where || - ||, is sup norm in D™ defined in (3.84), C is a constant independent of
B,é’, (So.

Proof. (3.149) and (3.167) implies that for small enough §,

WTr)(2)] < Cu8; e e (|| + 6) (3.169)
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for some constant C; > 0. By Lemma 3.5,

|Tslr] = ¢l < NLTHIW )@l < C185 (16l + 6)° (3.170)

For ¢ small enough, choose § = 2C;6,2||¢||2, then we have || J3[7]—¢||» < 8. Similarly,

for 7,7 € B, we have

Wr)(z) = N7)(2)| < O848 |r — 7. (3.171)

175[7] = FslFlln < CO70]|7 = 7]l (3.172)

Therefore J3 is a contraction in B for small enough ¢ with § = 2C6,?||¢||2. Therefore

the lemma follows. a
Remark 3.7. Since L2_(z) = e®(14eh=) 171k 4 O(e8," 7", and 7o(z) = Teo(l+
2672k In(éo/h)), bo(z) in decomposing T(x) = D ,__; o1 ba(2)7a(z) describes ‘tan-
gential’ difference between z_(x) and z4(x). In the following Lemmas, we will show
that if two solutions of (3.168) have different ¢, but with the same by(z), (the co-

efficient of To(x) in the decomposition (3.160)), then the difference between the two

solutions is exponentially small in the real domain.
Define p(z) := ¢(z) — 7(z).

Proposition 3.17. p(z) satisfies

p(z) = Jalp)(z) := po(z) + LT Na[p](2), (3.173)
where po(z) = D (ba(z) — ba(z))7a(), (3.174)
Nolp,7](z) :=¢ [p Z (k -; 1) ZEHi-t 2_:['0 + 77 | (2 4 2h) (3.175)
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Proof.
N7 + pl(z) = Nrl(z) = Mlp, 7](x) (3.176)

Since both 7 and ¥ = 7 + p satisfies (3.161), we have that
o(z) = po(z) + LN Tr + () — L Nr(z). (3177)
Noticing that operator £~ is linear, after explicit calculation we get that
px) = po(x) + LTHNTI + p] = N7} (2) = po(2) + L7 Nafp, 7](z)  (3.178)
O

Remark 3.8. The py in (3.174) depends on the particular inversion, and it is dif-

ferent for each D™, denote it by pén). However, they are related.

Lemma 3.18. If py satisfies

leolln = sup lpo(a)] < Ke?674 1k (3.179)
zeDn

where K is a constant independent of €, then in region Dy we have that in each D™

with sup norm on D™,
llp = polln < C2647* | pol 1 (3.180)

Proof. The proof is similar to proof of Lemma 3.16. Let B4 be a ball of size § centered

at pg in So(D™). (3.175) and (3.179) implies that for p, p; € By,

- k
Nzlp, 7] < Cedy 5 (117 |ln + llolla) o]l
< Ciedy TSP (80 /h) + ||polln + 8)(lpolla +6)  (3.181)
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1Tale] = polln < [1£7 N2 Lo, 7]l

< K678, (80 /R) + ||polln + 8) (|| polln + 8)) (3.182)

Walo, 7] = Nalor, 7]l < Cey ™ I llullo = pulln

< CE3573 % (8/R)|lp — pilln (3.183)

41
| 74l6] — Filoallln < Ce27 "~ E W20 /h) 1o — ol (3.184)
So we have J is a contraction in By for § = 2K€250_6_1/k||p0|| and ¢ small enough. [
Lemma 3.19. Suppose ¢_(z) = do(z)70(z), and with sup norm in D~ , ||¢p_|le =
(’)(5250_4_1/k) and ¢_ 1is analytic in D™, periodic with period h and v satisfies
b(z) = T[] = ¢-(2) + LN [Y] (3.185)
Then ¢_ € S,,(D™) with uy = 1, Let B be a ball of size § = O(8;>||¢—]| 1) in S, (D7)
centered at ¢_, then there is a unique solution ¥(z) in B and
—4-1/k
[ = 6=l = 085"l (3.186)
Proof. ||¢-||e = 0(625()_4_1/k). since dy(z) is periodic, and 7o(z) = O(1) for 1 <
R(z) < 14h, we have ||dy(z)||o = 0(52564_1/k). Therefore |e " ¢_(z)| = 0(525()_4_1/k).
That is , ||¢_|[,, < Ke25;**.

Let u = 2. Recall that £Z' : S, — S,. By (3.149), for ¢y € B and = € D™, we
have that [e=2N[y]| < C6; T/ *e|j||., which implies N, < 8 Ees2,

#1?
For ¢ € B
e 22 (N[ =N < Celltr = Dl (1[9]] + 1] (3.187)
INTY] = N[l < Cedy 55810 — )| (3.188)
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By Lemma 3.3 , we have

eI (TN ) = o= (2)] < e[| L2 N < €05 (1l8-ll + 8)13.189)
e |TW] = T[] < Cr85%61e" v = Pl < C67%801% = Pl (3.190)

Therefore, for ¢ small enough, choosing § = 2055 >||¢_||%,, we have J is a contraction

in B. d

Lemma 3.20. For any ¢ analytic in D™, continuous in D~ , and satisfying (3.185)
with ¢ = ¢_ = do(z)10(z) where do(z) = O(e), are analytic in D™, periodic with
period h, then 2_(z) := z_(x) + ¥(z) is a reparametrization of the unstable manifold

z_(z).

Proof. 1(z)satisfies (3.185) implies that z_ satisfies (3.16).

lim Z_(z)= lim (2_(z) + ¥(z)) = lim ¢ (z) + LI NY]] (3.191)

Tr——00 T——00

By definition of £, it is clear that the limit of second term in the last equation

equals 0, while for the first term,

lim ¢_(z)= lm dy(z)re(z) =0 (3.192)

r——00 r——00

Therefore lim, ,_ ., 2_(z) = 0. Hence Z_(z) is a reparametrization of the unstable

manifold z_(z). O

Lemma 3.21. For any 2_(z), reparametrization of the unstable manifold that satis-

fies (3.16) , there exists po(z) periodic with period h, such that 2_(z) = z_(z + po(z))
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Proof. 2_(z) is a reparametrization of the unstable manifold. So there exists ¢(z)

such that z_(q(z)) = 2_(z) where z € R.
(= (6(2)), =_(a(2) + B), = (a(z) + 20) = (5_(2),3(z + B), 2 (x +2h))  (3.199)

Hence z_ (q(m) + h) =Z_ (x + h). On the other hand, z_ (a: + h) = z_(q(:l: + h)) Since
by Lemma 3.1, z_(z) is monotonically increasing function for z < A and ¢ small
enough , we get g(z + h) = g(z) + h. Therefore there exists py(z), periodic with

period h, such that ¢(z) — z = po(z). O

Lemma 3.22. For any py(z) = 0(5250_4_1/k) analytic in D™, periodic with period h,
the reparametrization of the unstable manifold z_(x) = z(z + co()) satisfies (3.16).
P =Zi_(x)— z_(x) satisfies (3.185) with ¢ = dy(x)m(x) where dy(z) is some analytic

function in D™, periodic with period h.

Proof. Substituting 2_(z) = z(z + py(z)) into (3.16) we can easily see it is a solution.
To show that £Z'[N[¢]] exists, noticing Lemma 3.1 implies that |e”z_(z)| < K for

x € D™, we have
e~ (z)| = |er?@e ) (2 + py(z)) — e™"2_(2)| < C (3.194)
since py(z) is periodic. Therefore Ny] € S, with p = 2. So LZ'[A[¢]] exists and
LT'NTY]] € Su(D™)  where pu = 2. (3.195)

By Lemma 2.18, there exists d,(z), @ = —1,0, 1, analytic D™, periodic with period

h such that 9 satisfying (3.185) with ¢ = > __; ;; da(%)7a(z). Since z_(z) satisfies

72



2z)

initial conditions (3.24), we have 2(z) = 2_(z + po(z)) satisfies lim,,_. =57 =

e~enh Hence

i O D B+ W) _ o

T——00 ez"'PO(m)

(3.195) and po(.r) = (9(5) implies lim,_, e_(m"'p"(z))ﬁ:l[./\/'['tﬁ]](m) = 0. Since da(m)

are periodic and 74, grows exponentially as  — —oo, we get diq1(z) = 0. O

Y(z) = 2_(z) — 2_(z) satisfies two equations

Y =¢_+ LN  where ¢_ = dy(z)7o() (3.197)
Y =¢+ LT NY]] where ¢ = Z Ba(m)'ra(m) (3.198)

Consider the above two equations where z restricted to D3 =, where
Dy := D(by,, k), where D™ contains the real axis (3.199)
It is convenient to define
Dy :={zx €D : by <SSz <bpys1} (3.200)

Given by(z) from decomposition of 7(z), next we want to show there exist a 9
that satisfies both (3.197) and (3.198) with BO(I) = by(z) as given, and for some d,
l;il to be determined.

It follows from Lemma 3.19 and 3.16 that (3.197) and (3.198) define unique 9
determined by ¢_ and ¢ respectively, denoted by ¥_(z;¢_) and 9(z; ).
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Proposition 3.23. There exists a constant C such that restricted in D3 or D3 re-

spectively, we have

[9(2;8) = ¢llne < Cel|@llng
19— (5 6-) = ¢-ll2 < Cedg*llp—la

Proof. (3.201) and (3.202) follows from Lemma 3.16 and 3.19 respectively.

Let U := (b_y,do, by )(z),and F = (0, by(z),0). Then U satisfies
U = R[U] := F + Ry[U],
where
Ro[Ula := Ra[Ula = R2[Ula
Ra[Ula = (—1)*7 LT N [Y- (256-)]
Ro[Ula = (1)1 LN Y- (25 6-)])-

Proposition 3.24. For g € 8,(Dj) then we have that 7' (LZ1[g] — £

periodic with period h.

(3.201)

(3.202)

0

(3.203)

(3.204)
(3.205)

(3.206)

a'lg]) is

Proof. Since for g € S,(D3) , g must have finite sup norm on Dy, hence g € Sy(Ds).

It is easy to see that A[A,;l_ [9] — A '[g]](z) = g(z) — g(z) = 0. Hence the A,:,l_ [g] —

Aj;'[g] is periodic with period h. Then proposition follows from definition of £;! and

-1
Loy

Consider vector function space

d

S :={V(z):= (v_1,v0,v1)(z) | v, analytic in D3, continuous in Dj

va(z) periodic with period h}

74

(3.207)



Equipped with the norm || - ||,, where

V], := Z sup |va(z)7a(z)|, (3.208)

a=—1,0,1%€Ds

S forms a Banach space. Let B be a ball of size § in S centered at F.

Proposition 3.25. There is a constant C independent of n such that

sup le ™ vo(z)m0(2z)| < C|| Vo (3.209)
z€D3

Proof. Noticing that lim,,_ e~ "7o(z) = 14 O(e), there exists D independent of V,

such that ®(z) < —D,
e un(@)m(e)] < 2fun()] < 26Vl (3210)

The last step follows from v is periodic and 7y is O(1) in some vertical strip of width h.
For —D < R(z) < A it is clear that e~ is bounded, hence |e™*vy(z)7o(z)| < C||V||»

Therefore, the lemma follows. O

Lemma 3.26. For ||F||, = O(g?), R is a contraction in B for § = 2||F||, and ¢ small

enough.

Proof. By Proposition 3.23 and 3.25, noticing D is constant away from XF, for

U € B we have

e NY-(z;6-)]] < Cuele™ (56
< Cigle ™ ¢ (2)](1 4 €%)
< Csele™®d3(z)m5(x)] < Cuel|U|2 (3.211)
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For U := (b_y,dy, b1 )(z) € B,
|2 (VY- (3 6-)] = NY-(2;6-))| = ele™Na[do — do, do](2))]
< Cie|U =T, [[ull, (3.212)

Hence from Lemma 3.3, with ¢ = 2 we have

IVl 0-)l < Y 1L IV T- (23 6-)]I
a=-10,1
< C|U) < ¢, (3.213)
For « € D(by, h), we have R(z) < A, hence

Ta(@)Ra[Ula(2)] < D0 | IILZLNTY- (230l < C6° (3.214)

a=—1,0,1

o) (R[ULu(2) = Re[OLu(@))| < 3

LN (w3 6-)]] — £ T (3 2]

< C_5_||I’f — 0. (3.215)
Similarly,
WTp- (25 ¢-)](2)] < eCul|@lI*(1 + Cae) (3.216)
N (2;6-))(z) — NTip(a; 6-)]| < Cedlid — ¢ | (3.217)

Ta(@)Ro[Ula| = L NVIY-(50)II < D0 NIV T (25 6]

a=-1,0,1
< c|uf <o (3.218)

rol@)(RAUL ~ R[TL)] < 32 (1162 Wi 6)] — Mol 6 )1

a=-1,0,1

< C§|u -1, (3.219)
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(3.213),(3.215),(3.218) and (3.219) implies that R is a contraction for small enough

8. O
Let by(z) be the periodic function determined by 7(z) through (3.160),(3.161).

Corollary 3.27. Given by(z) = O(e?) analytic in D~ with period of h, there ezists
unique Z_ such that ¥(z) = zZ_(z) — z_(z) satisfies (3.198) with l;o(m) = by(z), for
some b_pm ()72 = O(£2) and it satisfies (3.197) with some dy(z) = O(e?)

Let 2_(z) := 2_(z) +¢(z) where () is the unique function determined in Corol-

lary 3.27. The estimate in Proposition 3.28 is useful also in matching in chapter

4.
Proposition 3.28. Z_(z) satisfies
~ 2¢—2-1/kq_2 50
Z_(z) = 2o(z) + (eInh)z1(z) + e20(z) + O(76, In (E)) (3.220)
Proof. Z_(z) = z_(z) + ¢(z) satisfies
Lo AE)

Jm e = | (8.221)
where w(z) = —In(1 + do(z)/e?). It is to be noted that ¢(z) is analytic in D~ and
periodic with period h.

Let 9(z) = Z_(z) — p(z), then ¥ satisfies

#(x) = [do(z) + o]mo0(x) + LG [f + L1[3] + No[7]](2) (3.222)

Follow the proof of Lemma 3.1, noticing |do(z)7 0(z)| < Cldo(z)70(z)| = 0(525()_1_1/k),
we get there exists a unique solution of (3.222) in (9(6250_2_1/k In*(%2)). Hence the

lemma follows. O
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Now we show that the difference between Z_(z) and z,(z) is exponentially small
in the real domain.

Let p:=1 — 7, where ¢y := Z_—2_, and 7 = 2, — z_. By Lemma 3.17, p satisfies

(3.173) with pgn) = Za=_1,0’1 cgn)(:l:)’ra(:c), where c,(ln) are analytic in D™ and periodic
with period h, hence
cM(z) = Z c(OL’TT)neQ"’””/h (3.223)

By Corollary 3.27, céo)(x) = 0. p satisfies the following equation:

p = Tlp] = o + L7 [Ne[p, 7]] (3.224)

where

Po = c(_t)l'r_l + cgb)Tl + ZTada[p] (3.225)

dy,a = —1,0, 1 are analytic periodic function with period h defined first in D, D®) D)

then analytically extended to D,.

d-ilpl = (LN o, = 23 ) Walp, ), @ € DO (3.226)
dlpli= (L7 Walp, ] = £y Walp, 7)), @ €D® (3.220)
dalp) = (L Walpy 7] - Loy Malp, 7Y, 0 €D (3.228)

For s € R, define

[7_1 + 7'1](% — doi)

)= S PO + [+ P+ B + s+ P+ 2mye 02
7]l = sup [v(32)(z)] (3.230)

x€Do
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Let S, be the space of functions analytic in Dy, continuous up to the boundary and

has finite || - || norm, and B. be a ball of size § in S. center at py where
— Z — B — )
o = CaTay, C_1:=C_j, C:=0¢ T (3.231)
a=%1

Proposition 3.29. 7, is a contraction in B, with 6 = K&? for ¢ small enough where

K 1is a constant.

Proof. By Lemma 3.1, 7(z) = 2_(z) — 24(z) = (9(5250_2_1/k In*(8y/R)). From (3.175)

and (3.79), for p € B,, we have

M,
P(S2) 7o TN, 71 < Crlldnll+ 120D lelle < C2lolle (3.232)

[¥(S2) €24, Wl 7]]l < O]l (3.233)
Similarly, for p € B,,
v\szc :1,(1 210 T)| — :1,(1 215)7- > Le p_ﬁ e .
v(S2)(L71 o[Nalp, 7] — L3 4 N2[B, 7] < CE%]lp — A (3.234)
Hence,
1£7 pl7alle < CE%[lplle (3.235)
From (3.233) we also get
V(o) radalsl] < C . (3.236)

for z € DO, DO DO respectively when o = —1,0,1. Noticing that by symmetry
da(:l:) = d_a(f), we get
ITadalpllle < Ce*[lole (3.237)
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(3.235) and (3.237) implies

| TZelollle < Ce2llplle (3.238)

Similarly,
1Telp)7a = TelplTalle < Ce?llp — Al (3.239)
Hence 7. is a contraction in B,. ]

Corollary 3.30. |po(z)| < Ce267 2" In*(8y/h) for x € Dy.

Proof. Noticing |v(Sz)| < C for z € Dy, we get this corollary from (3.224) and

Proposition 3.29 0]
Lemma 3.31.
cat = 02574 12 (80 /h) exp{go—}exp{_Qi}) (3.240)
cam = 05 102(5 ) xp I 20T 22 g oy
(3.241)
Proof. By Corollary 3.30, po(z) = Yy ca(@)alz) = O(25,° " In?(60/h)) as

e — 0 for z € Dy. Let r = =2 — 1/k, po(z) = O(£%8;In*(8y/h)) for z € Dy,
therefore

—Ra(z + h)po(z) + po(z + R)
Ri(z+h) — R_i(z+ h)

ca(2)Ta(z) = = O(e25;" In*(8y/h)) (3.242)

where R,(z) = T‘”T(z(“;)h ) = ©(1). By Fourier expansion

1 [ 4
|Can| = ‘—/ colz + t)e?m =+ h gy
h 0
K h y2mn+Iln Ay . ¢ o
- / | o6y me~ (AR (1 g k(e H0)) =R gy (3.243)
0
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where 2 € D,. Using (3.15), we get
2 272
lcao| < C£285™ n%(80/h) exp{dy—1 exp{_kl} (3.244)
€ €

n al?r w2 n
(6|n| + 2 n) }eXp{_2k—g(3|n|+a|n_|)} (3.245)

|cam| < Ce2657In*(80/h) exp{dy
for n # 0. O

Theorem 3.32. There exist a parameterization of the unstable manifold Z_(z) such

that as ¢ — 0%, z € R,

2 (2) = 24(2) = po(2) + O(po(2) (3.246)

where

po(z) = Y calz)Tal), (3.247)

a=%£1

cy1(z) are analytic in Dy and period with period h, and the Fourier coefficients sat-
1sfies
2¢—2-1/kq. 2 2T 271'2
a0 = O(e%4, In“(8o/h) exp{50—}exp{—k—}) (3.248)
€ €

(6]n] + 2al2) i

Cam = 028577 In%(8y /1) exp{8y

9 2
yexp{—"—(3n| + o

2hy)

(3.249)

Proof. Lemma 3.27 implies that there exists Z_(z) such that p(z) := ¥(z) — 7(z)
satisfies (3.173)where ¥(z) := 2_(z) — z_(z),7(2) := 24 (z) — 2_(=z).

By Lemma 3.1 we have 7(z) = O(26;>"/*In?(6,/R)). By Corollary 3.30, we have
po(z) = O(e26, 2 ¥ 1n(80/h)). (3.246) follows (3.230), and Lemma 3.29. (3.248) and
(3.249) follows from Lemma 3.31. O
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CHAPTER 4

INNER PROBLEM ANALYSIS

4.1 Leading Order Equation

As shown earlier in Chapter 3, zo(z) fails to approximate the unstable separatrix z, (z)

for the values of = close to the singularities %m’ of zp(z). Near the singularity

X, = Zi, that is closest ! to the real axis,we consider the inner equation. We introduce
ko )

scaled variables

=" w.(s) = ek 2(x(s + 2)) (4.1)

, then the equation (3.28) becomes
we(s+1) = we(s — 2) — we(s)" + ew(s + 2) (4.2)
As ¢ — 07, the leading order inner equation is given by
wo(s 4+ 1) = wo(s — 2) — wp(s)**. (4.3)
Let 7(s) be a formal series solution that satisfies

G(s +1) = (s —2) — F(s)F** (4.4)

!There are actually two closest singularities to the real axis at +71. However, since the solution
is real valued for z real, it suffices to consider only the region around 7 .
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In order that the behavior of §(s) for large s is consistent with leading order outer
solution zy(z), it is necessary for g(s) ~ ‘:% for —m < arg(s) < —4, for matching with
z%(z), or —m + 6, < arg(s) < 0 for matching with 2~ (z), where agy := (%)% This
is consistent with a dominant balance argument. Continuing the dominant balance
argument we find formally

~ 20 ZZamn ljl )% (4.5)

Sk
m=1 n=0

for m > 1, @, » are uniquely determined in term of a1y by substituting the right hand
side of equation (4.5) into Equation (4.4) and equate like power of In(s) and . Only
a1 remains undetermined at this stage. As shall be seen later, matching with outer

solution determines ajg. The main result of this section is the following lemma.
Lemma 4.1. Given ay, there exists wy (s) and wi (s) satisfying the following con-
ditions:

o wi(s) satisfy leading order inner equation (4.3).

o w(s) are Borel transformable

[ ]
_ ano a1 ln S aio
wy (8) ~ T + S + g 058 00,args € (—2m,0) (4.6)
apo ail Ins aio
w(')"(s) ~ S—% + g, + STHE as s — co,arg s € (—m,m) (4.7)

Proof of Lemma 4.1 is at the end of this section.

Remark 4.1. In fact, w(ﬂf(s) satisfying the three conditions in Lemma 4.1 is unique.
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It is convenient to define

f(s) = Z Z amn%, (4.8)

and y(s) = §(s) — f(s). By subtracting out the first few terms of f(s), it is now possi-
ble to look for solution y(s) whose Borel transform has nice properties. Equation(4.4)

is transformed into

y(s+1) = y(s—2)— (k+1)f(s)"y(s)

SR st - ot (49)

=2

where

g(s)=f(s+1)—f(s—=2)— f(s)k"'1 (4.10)

Remark 4.2. Since a,,, are determined to cancel out powers of %, by construction,

we have that g(s) = 0(3_4_%) as s — 0o .
Formally applying Borel transform B to Equation (4.9) , we have
1
(=Y ()+3 (14 1) 1Y = Glp) + MiYI) + MY I). (41

where Y (p) := B[y|(p), where B is the Borel transform G(p) := Blg](p), F(p) :=

B[f](p) and

M[Y] = —(k + 1)(F* — ag) * Y (4.12)
Y (k+1
Mo[Y]:==>" ( l )F*<k+1—l> x Y 4y (4.13)
=2

84



Remark 4.3. Since simple calculations shows

1 -
Lip"(Inp)"] = SmTP"m(ln s) (4.14)

for some nth order polynomaial By, it follows that

1
Sm+1

L7 Ins] =p™P,.(Inp) (4.15)

for some other nth order polynomial P,,,. Hence (4.8) implies that

3 m
F(p) =D Fuup™ 5 (Inp)", (4.16)

m=0 n=0

where F,,, are determined by a;; withi < m and j < n.

F* —ayy = ﬁ_l[fk] — Qoo
a 2 & (Ins)
_ 00
= £ ' T + Z Z sm Z H aiq’jq — Qoo

= Z Z _ﬁ’mnpm(lnp)n, (4.17)

m=1 n=0

Similarly, F**+1=0 js finite double series:

3(k+1-1) m
Frk+1-1) _ p(—l+1)/k Z Z Fm,n,k+1—lpm In" p (4.18)
m=0 n=0

Remark 4.4. Applying above results to (4.10), we get G(p) = Dk Gi(p,plnp) where

G1(p, &) 1s analytic in both variables with Gy(p, &) = o(p?, £3).

Differentiating both sides of (4.11), after some manipulation, we derived

Yi(p) — kl—pY(p) = - (3 i ze_—pe__;; G é) Y(p)
s (G0 M)+ M) (a9
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Multiply by integrating factor on both sides, integrating and using Y (p) = o(p

p — 0, we have

Y =P[Y] = G+UY] +U[Y],

where
~ G P Y
- 0
~ L P _1 Ml[y](p)
aly] = ot [ ety @+ 2T
L [P
+ ot [ty ode
0
- MY |(p 1 [P s
U[Y] = % + p¥ / q % Ax(q)Ma[Y](q)dq
0
34+ 3 —eP—2e% 1
A = — k - —
1(p) eP — e kp’
(e7P + 2e?P) 1
A = .
2(p) (e—p _ er)Q kp(e—P — e2p)
Let
2 s 3m
Dp:={peC : |p|<?—yand —5<arg(p)< ?},

D;'::{pE(C : —72—r+51<arg(p)<g—51}

and let D be the reflection of D, about the imaginary axis,
- m 3w
D, :={peC: §-|—51<arg(p)<7—51}

where v, 61 > 0. Let region D), := Dp U D, U D;’. See Figure 4.1.
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Figure 4.1: Region D,

: : + + ;
Dp is the disk. D and D, are angular region.

Remark 4.5. A;(p) is analytic at p = 0 and bounded in D,,
[A1(p)| < Ky; (4.29)

But As(p) has a double pole at p = 0 and there exists some constant Ky such that for
p € D,
|p”As(p)| < K> (4.30)
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Proposition 4.2. é’(p) =o0 (pz"'%) as p — 0 and polynomaially bounded as p — oo.
é(p) 1s polynomaally bounded as p — oo in complex plane excluding imaginary

axis.

Proof. Equation ( 0) and Remark 4.2 implies that G(p) = o (pj_Q"'%). Noticing

that s G(p) = (pQ"T) as p — 0. follows easily from (4.33). Since

W
G(p) = pr Gy (p, pln p) where G is a polynomial and —=—; is bounded in a complex
plane domain that excludes a compact neighborhood of @ the conclusion about

bounds at infinity follows.

O
Let V := p_%Y(p), then V' satisfies
V =P[V]:= G+ UV]+UY], (4.31)
where

G=p*G  UV]:=p *UprV] i=12 (4.32)
60 =28+ [t Gd (433

I b Mu[pV](p)
T /0 ¢ As(Q) MulptV](q)dg (4.34)
wiv) = LD o mvion @)

pr(e?—e?) Jo
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Consider the function space S defined as

S, := {W : W analytic for p € D,, continuous inﬁp} (4.36)
Here we consider a norm || - ||, introduced in [4], where
[Wlls = Mo sup (1 + [p*)e™"|W (p)], (4.37)
PEDp
and
M, = sup {2(1 + 32){111(1 -|2— ,92) + sarctan 8}} _ 376,
5>0 S(S +4)
then S, equipped with norm || - || is a Banach space.

Let Bs be a ball of radius 6 in S, Bs := {W € S, : ||[W|, < 6}. We have the

following lemma.
Lemma 4.3. The norm || - ||s has the following property.

e 1. For any w € S, with the property sup,cp, lp~"e~"Plw(p)| < K for some
p >0, somer > 0 and constant K, then we have ||w||, < C2.T(r + 1), for b

large enough, where C depends on w, but not b, p and r.
e 2. For any T, Ty € S,, we have ||Ty x To||s < ||T1|[o]| 72 |]s-

e 3. For anyT € S,, we have ||T x (p*~'1In" p)||, < C%HTHI) where a > 0,

n > 0 s an integer, 0 < v < a .

e 4. For anyTy,T5 € S, 71,72 > 0, we have
lp= "2 ((p" ) * (" T2l < [[1T3] * [Tllls (4.38)
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o 5.For anym € N,y > 0, we have ||p"(Inp)™||, < CZT(r — v + 1) for some

smallv > 0.

Proof. Proof of (1). For |p| < é < 1, we have

sup(1 + [p*)e |w(p)| < 2K(b— p)™" sup e=E=Pl|p|"(b — p)"
[p|<s [p|<é

2KD(r+1) _ 2
= 5€ I(r +1) (4.39)

b
where the last step follows from the maximum value of function e " occurs at z = r.
For |p| > 6, (14 |p|?)e~*Pljw(p)| is exponentially decaying for b large.
Proof of (2).

(11 x To](p)| <

/0 "Tp— t)Tz(t)dt‘
i
1+ (Ip] = 9)?) (1 + )

IN

P
wwﬂwmmmﬁé(

eblpl

RO & 4.40
= My(1+ |p|2)|| 1lo]| T2][o ( )
Therefore we have (2).

Proof of (3). First prove for n = 0 case.
P

1+ e [T - )0
0

) Pl o-oltl .
< Ci(1+ T / ——t|*7d|t 4.41
< G HBOITIL | sl (4.41)

For |p| <1 <1

1
"THp—P

(14 [p|)e T 5 p*1| < C’2||T||bb“"/ e~ (bs)*~1d(bs)
0

I'(e)
pa

IN

Cs VAP (4.42)
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For |p| > 1, by Watson’s Lemma, as b — oo,

/oo e—b|t|
o 1+ |p -

Therefore there exists constant

| T * p*~

el ~

C, such that

1
1+ |p|?

T (a)

I(a)
T
iy

(4.43)

(4.44)

If n > 0, noticing for |p| < 1, [p~*™In(p)| < Kip~*+t* and for |p| > 1, [p~**In(p)| <

Kip~*™t" we get (3).

Proof of (4). Noticing that

‘ —m+rv) t”Tl(t)(p— £ To(p — t)dt

IN

< /|T1 | T2(p 1) ] = |3 ¢ T2,

we have that (4.38 ) holds.

Proof of (5). Since there exist a constant K and v, 0 < v < r such that

sup
P€EDyp

By 1 of Lemma 4.3, we have

[p"(Inp)™ |l < Cey

" ne |\—

Ta(p —t)] [dt]

|p—r+ue—u|p|pr(lnp)7n| S K

r—v+1

pr—v+1

I'(r—v+1)

Proposition 4.4. For Vi,V, € Bs and | > 2, we have that

Vi =

V'l < C6H IV -
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Proof.

Vil(p) — V' ()| < [Va(p) anl““) V3" (4.49)
Therefore
V') = V5 o)l < [IValp) ||62||v1“" Vo
< C8YVa(p) - (>||b (4.50)
O

Proposition 4.5. ForV € S, 2 <[ <k, we have

—1-1lr 1 C
[Pttt vy =0 < VI (4.51)
where C' s a constant independent of V and b.
V1o (4.52)

||p—2—1/k|:phln( )*pl/kv]“b < bl .

wheren = 0,1, and 0 < v < 1.

Proof.
I(p) = ‘p pkv)*l *p(l—l)/k‘ < ‘p%—luw*l x [p=0/k]
< [ SR sl - snas
< Vet /01 - |;|;b(|ils_ 8)28%6{5 (4.53)

If |p| < 1, then for large enough b, we have

: eblpl 1 . eblpl
1) <2Vl [ <oVl (4.5)
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By Watson’s lemma, for large |p|, we have

1 —blp|s
/ e s ds ~ 1 b‘H%F(l _i=t 1)
o 1+ |p]2(1—s)? 1+ |p|? k

Therefore we get (4.51). Proof of (4.52) is similar.

Proposition 4.6. ForV € S, 2 <1 < k, we have

< |V
b

P 1 1
/ t72 R [t V) w170/ R g
0

< |V
b

P 1 1
/ t72k [(tR V) % t DR £ dt
0

where C' s a constant independent of V and b.

Proof.

P 1
| / £ E (V) w400/
0

P P .
< ([T 1) eyt g0,
0 b

~_ _ p
where p = max{1,[p[}

The first integral can be bounded by

/'P |t|_2+(l_1)/k[t(t_1v*l) * t(l_l)/k]dt‘
0

< C VH(t) P ar(1)/k (1-1)/k] 4
< Gosup {|l———=1}) [ [ [[¢] = [¢] Jdt
|t|5ﬁat€DP 0
V*(t
o (70
H<pieD, |
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But

V*lt 1 |t|
) < 02H [ - s
=D, [V el
< LIV
[t[ Jo (L+[sP) A+t —s]?)
ellil
V
=~ ” ||b1+|t|2
eblpl
< ||V||b P for large enough b

For |p| < 1, the second integral is zero, otherwise

P [p| ‘
|t|—2+”-1>/'“[|V|*l*|t|“—”/’“]|dt|\ < [Tt e
p 0
S 1*|V|*l*|t|(1—l)/k
C . etlpl
<

b(k+1—l)/k|| ||b1_|_|p|2

Combining (4.60) and (4.61) we get (4.56).

Lemma 4.7. For V,V € Bs, for some small v > 0, we have that

RATV]Ils <

S

laV]=thV]lle < 5 IV = Viis

—blu

where C' is a constant. The proof of (4.57) is similar.

(4.60)

(4.61)

(4.62)

(4.63)

Proof. By Remark 4.5, the norm of the first term in #;[V] defined in (4.62) can be

bounded by K;||1 % |V]||, = %”V”b'
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Noticing that ——%—; is bounded by some constant K for p € D,, using remark

4.3 and Lemma 4.3 for some small v > 0, we get

3

< KZZIFMI |~ * p™ ()" * [pl ¥ V]l

m=1 n=0

3

< > Z [ | W11 2™ (i p)"] % [V (]l

m=1 n=0

C
=V (464)

My [p*V]

p%(e—P — 6217) b

<

Using 4.30 of Remark 4.5, we get

" - (( £2e0)  1/(ke)

(e77 —e20)2 o771 — e

e

) MibrtVi(a)dg

|p|
< K[ S5 ol [0 e n" 0 5 HV1(0) dld
m=1 n=0
Ip|
< K SO 3 fol 6"l = V] (0)da
m=1 n=0
2
= 5 ,,||V||b+KQZZFm+1n L [p" = I p| = V)
m=1 n=1
2 m+1
= y||V||b-|—K2 (ZZF"”H“ (1 ]p™ '™ p|)) x |V
m=1 n=0
2 m+1
2™t (m + v) Vs
S bl u||V||b+ O“V”bz Z b1n+l v < Obl—u (465)
m=1 n=0

for some small v > 0. Therefore, for large b we have (4.62). Noticing that 2/ is linear,

we get (4.62) implies (4.63). O

Lemma 4.8. For V,V € Bs, we have that

lLl[V]|ls < €& (4.66)
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leolV] = U V]|ls < CS|IV —V]s (4.67)
Proof. For 2 <[ < k, by Remark 4.3, Lemma 4.3 Proposition 4.5 , we have that

lp™ = [F D (o V)l
3(k+1-1) m

< Gl TE(pE V) p MO + Z Z|ank+1 o 1™ n® pf % [Vl

3(k+1=1) m

CIVIL+ Do D1 Fmass- zlbm+V||V*’||

m=1 n=0

IN

< ClIVI; (4.68)

Therefore, by Equation (4.13), Remark 4.3, we have that
Ms[piV](p)

p%(e—P - 6211) b

k

T o

< KQZ( l )Ilp SHF D RV s + Kallp™ R pt v
1=2

< Clvl; (4.69)

for some constant C.

p 1 1
| / g 2R [FHD 4 g V] dg|
0

3 m
- — —— — n 1 *
< O3 wrrcd | [l 0010 g ¢ gtV 6l
m=0 n=0 0 b
I —2—Lr —(I-1)/k Larxl
< Gl i g™ [lq |+ gV ["[(a)d]qlle
3 m .
+Co > N Fngsra] 1% g™ I g [V,
m=1 n=0
m 9gm— 1+u .
< C3||V||b+C4ZZ g L(m =1+ v)|[V]];
m=1 n=0
< OVl (4.70)
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o=

" () | Y

(e77—e20)2  e71— e

IpI k
< o [ (M7 ettt vdg

+K2/ Tk |t v D gl g
0

) Ma[pFV](q)dg

b

< CIvIiE+ —||V||’“+1<CIIVI|§ (4.71)

Combining (4.69) and (4.71), we get (4.66). Using Proposition 4.4 the proof of
(4.67) is similar.
U

Lemma 4.9. For large enough b, equation (4.81) has a unique solution V(p) in Bs.

Proof. Using definition of G (4.32), Proposition 4.2, we have that
1G]l = O~ 5= (4.72)

for small ;- > 0, and in particular, G € Bs. This conclusion together with (4.62) and
(4.66) imply for V € B;,
1PVl < C(b +6)6 (4.73)

By (4.63) and (4.67) we have for V3,1, € B,
[P[Vi] = PVa]|ls < O( +0)[[Vi = Vally (4.74)

Thus P is a contraction in Bs, and the lemma follows.
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Lemma 4.10. V(p) = o(p) asp — 0, where V(p) is the unique solution of Equation(4.31)

found in Lemma 4.9.

Proof. Consider the linear operator P Svp — Svp deduced from P by replacing all but
one unknown function V’s, in the nonlinear convolution terms of P[V] by the unique
solution of (4.31) found in Lemma 4.9, which is denoted here by V;. For example,

V*l is replace by V * V=Y Hence in terms of R, Equation (4.31) becomes
V =PV]=UV]+d, (4.75)

where U[V] = U[V] + Us[V], and U, is deduced from U, by the same procedure

mentioned above, where Uy[V], G are defined in (4.32).

Noticing that convergence in || - ||, implies convergence in || - ||, Where
[V]looe := sup [V(p)], (4.76)
pEDe‘
we get ||Vi|lowe — 0 as € — 0. Using the property of the uniform norm || - || on D.

171515 ||ue < €||T1||uel|Z2]|ue- Similar with proof of Lemma 4.9, we have ||U[V]||oc <
C¢||V||cce;where C is a constant independent of ¢, therefore |[{|| — 0 as ¢ — 0.
Equation (4.75) has a unique solution in Bj for small enough 6§ and ¢. Since V; is a

solution in l§5, it is the unique solution. We conclude that the linear operator (Z;—)

is invertible, where Z; is the identity map. Further, we have that

1 v y
Vv 0o,& S — |G 00,& S 2|G 00,E 4.77
Vlloee < T 1€ G (4.77)

for sufficiently small ¢, and Equation (4.75) has a unique solution in B; for small
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enough & and ¢. Since V, is a solution in Bj, it is the unique solution. (4.10), (4.32)

imply
G
lim (Sl

e—0 I

== =0 (4.78)

Since this argument can be repeated for any ¢ on a ball of radius |p| =¢, V =V, =

o(p).
U

Proof. (Proof of Lemma 4.1) ||V (p)||s is finite implies that V(p) is exponentially
bounded and in D,, which in turn implies that Y (p) = p*/*V(p) is Laplace trans-
formable. By Lemma 4.10, Y (p) = p**V(p) = o(p**'/*). By Watson’s Lemma, we

have

Lo[Y](s) = o(s~2"1/%) (4.79)

where 0 € (—g + 01,5 — 51) or 6 € (% + 41, %7( — 51) . Since 4, is arbitrary, (4.79) is

trueforﬂe( 3 )a11d9€(— —7r).

U
2 272

Let wy (s) := f(s) + Le¢-Y (p) where = € (—%,%), f(s) is defined in (4.8) and
wi (s) := f(s) + Lg+ Y (p) where 67 € (%, 37) . Hence w (s) satisfies the asymptotic

relation (4.6) and (4.6) respectively.
The proof that woi (z) satisfies the difference equation (4.3) follows from that
Ly[e?Y] = y(z + 1) and Ly[Y x Y] = 42 as follows from using Fubini’s theorem in

the convolution, knowing a priori that the functions are integrable. O
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4.2 Ramified Analytic Structure at Zero

V(p) is not analytic at p = 0 since the inhomogeneous term G in (4.31) involves
powers of € p. Next we will state the ramified analytic structure of V(p) at p = 0.
Let &7 be the function space of complex function of two variables p and £, analytic

in the open set
Dy = {(p,€) € C | |p| < pr and €] < p» } (4.80)

where we choose p; = ps/3,and continuous on S;. Define function space Ss as

Sz :={ v(p) | Jw € &; s.t. v(p) = w(p,plnp)}. (4.81)

Remark 4.6. It is clear that for v € Sa, there is a unique w € 8y such that v(p) =

w(p,plnp) for p € D;.

Consider projection

T:8—=8 v—w, (4.82)
where v, w satisfies v(p) = w(p, pln p). Definition of S1, S» and Proposition 4.6 imply

that 7 is bijection.

Define norm || - ||, of v as

[ollu:= sup  [TTv](p,&)| (4.83)

[pl<p1,|é]<p2

recall that we choose p; = p2/3. S, equipped with sup norm ||v||, forms a Banach
space. Let By be a ball of size d, centered at 0 in Ss.
Let W(p) := pV (p). Rewrite Equation (4.31) in terms of W, we get
W(p) = QW](p) := p G(p) +p Uh[p”'W](p) + p Ualp™ ' W](p) (4.84)
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Define B, as
By :={veS; :||v||.<dv(p)=o0(p)as p — 0} (4.85)

Lemma 4.11. Let V(p) be the unique solution of equation (4.31) found in Lemma
4.9, then pV (p) € Ss.

We will prove the lemma by showing that Q is contraction in By at the end of
this section. The following propositions and lemmas are preparation for proof of the

above lemma.
Proposition 4.12. If v1,vs € Sz, then vy x va € Sa and ||v1 * val|u < di||vi||u ||v2||u-

Proof. Considering |p| < p; then

o 02)) = [ t), vl — e
— [ Tt Tl 1 ) o — )
= 5 [ Torls, (59) (o) Tl = 1,001 = 5) n(o(1 = 5))e
= p/ol T[v1](ps, psln s + s€)
Tloal(p(1 - ),p(1 — 5)In(1 — 5) + £(1 — ))ds (456)

where ¢ = plnp.

For t = sp, 0 < s < 1, we want to show that |pslns + s&| < ps. Since |sln s
has maximal value of 1/e for 0 < s < 1, so for 0 < s < 1/2, we have |psln s + s¢| <
pi/e+ p2/2 < ps for di < do/2. For 1/2 < s < 1, noticing that then |in(s)| =

lIn(l1 —(1—1s))| <2(1—s), we get
IpsIn s + s€| < p12(1 — s) + pas < po. (4.87)
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The right hand side of the last equation of (4.86), viewed as function of two
variable (p,¢), is an integral of analytic function in p and ¢, integrating with respect
to an ! measure, therefore is analytic in p and ¢ for (p,&) € D;. Thus we showed

V1 * Vg € 82.

osule = s (Touroleels s | [ ool
[pl<p1,[€1<p2 [pl<p1,[€l<p2

S Pl”UIHu”'UQ”u (488)
O

Proposition 4.13. For vy,vs € S, 71 > —1 and ro > 0,we have
p_(”+’"2)[p”vl *p 2] € S, (4.89)

and

lp™ 2 [p" vy % p™ 2w < Clloalfu - [[valfu- (4.90)

More generally, form € Nn > 2, v, € S wheret =1---n,r, >0 and r; > 0

where 1 = 2 ---n, we have

p— ST [prlvl *p—1+1“2,02 % .- *p—1+7'nvn] € 82 (491)
and
||p—2?=1 rz[p vy % p 1+rz o % - —1+rn ||u S CH ||1} ||u, (4.92)
where C' only depends on r;, not onv;, 1 =1,2,--- ,n.
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Proof.
p—(r1+rz)[prlvl *p—1+rzvz]
= 5 [ - -
= [ 0Tl potn s + 50
.;[UQ](p(l —5),p(1 —s)In(1 — s) + &(1 — s))ds (4.93)

where ¢ = plnp. Similar with proof of (4.12), we have that p~("+72)[pr1y; xp~1+724,] €

Ss. For [p| < p1 and |plnp| < po,

P
s p | < ol el [l -
0

IN

1
fonll - all | 571 = 5)71*ds
0

< Cloal - [oall. (4.94)

Noticing that if we define & := p~("+72)[priyy x p~1+729,] then & € S, and p™tv; *

p~1*"2uy can be written as p" 1724, we can easily get(4.91) and (4.92) by induction

on n.
0
Proposition 4.14. For m,n € Z, and m > —2, n > 0, m +n > 0 we have
P n . .
/ q"(qlng)"dg = Z bm’n,]-pm"'”"'l_] (plnp)’ (4.95)
where by ;| <1 form > =1, and by j| < 2 for m = —2.
Proof. It is trivial to verify (4.95) holds for n = 0 case. Noticing
/P ¢™Inq dg = Lpﬁ""1 Inp — #pﬁ”'l (4.96)
0 m+ 1 (M 4+ 1)2 ' '
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and

/'p 'ﬁzl n d 1 'ﬁz+11 n n /p ﬁLl n—1 d (4 97)
n = —— n — n .
. q q aq ﬁz+1p p a1/, q q aqg,

by induction on n we get that
P ~ _ ,
/ ¢"(Ing)" dg = bnm o I’ p. (4.98)
0

and bl <1 when n < 7 + 1; and by, | < =27 <2 when n =m +2. (4.95) is

get by let m = m + n and l;,;,,’n’j = by O

Lemma 4.15. Ifv € Sy and v(p) = o(p) as p — 0, has the ezpansion

TP, ) =D ) Wmap™é" (4.99)
m=2 n=0
then we have pf(f g *v(q)dq € Sy and
Yo s
Io [ *oa)dall < Clupuol (4.100)
0

where C s a constant.

Proof. Let w(p,&) = Tv](p,€) , v(p) = o(p) as p — 0 and w(p,§) is analytic in

(p,€) € D; imply that w(p, ) has the expansion

wp,d) = Y, Wpap™E" (4.101)

m>0,n>0,m+n>2

104



for any small positive -y there exist a C K, such that |w,, .| < K(p; —v)~ ™+ where

0 < v < p1. Using Proposition 4.14, we have
P
p / q "v(q) dg
0
i 2
= Z wm,n/ ¢" “(qlnq)"dq

m>0,n>0,m+n>2 0

n

_ m+n—j—1 ]

- E Wm,n E bm,n,jp ! (p lnp)]
m>0,n>0,m+n>2 7=0

oo oo

ity
= pl(p hlp)] (Z w1n,i+j—1nbm—2,i+j—m,]‘> (4102)

Let @, ; := anzl Win it j—mOm—2,i4+j—m,j, then
i+
i ;| <Y K(pr =) < 2K (i + §)(p2 — 7)) (4.103)
m=1
Therefore the righthand side of 4.102 converges in both p, and £ = plnp for (p,&) €
D;.Hence we have pf(f g *v(q)dq € Ss.
To show (4.100), break up the integral ,

P p/2 P
p/ g *v(q)dq Zp/ q_ZU(Q)dQ‘l‘p// g *v(q)dgq (4.104)
0 0 p/2

The absolute value of the second term can be bounded by C|v||, where C is a
constant. To bound the first term, let w(p,&) = T[v](p,€) is analytic in Dy, for

p < p1/2, |€| < p2/2, by Cauchy’s integral,

|wy(p, )] =

1 w(g, §) _
omi /|P|=p1 (q— p)qu‘ < 4p7 [0 (4.105)

Similarly, we have the following bounds on partial derivative of w,

Cllv|l. Clloflu. Cllv| Cllv|
2 |wpf| < |’LU§§| < 2

P1 P1p2 03

|we| < |wpp| < (4.106)
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where C' is a constant. Hence using integration by parts, we have for p < p;/2,

& < p2/2, and py, p2 small enough.
£
P / ¢ *v(q)dg
0

= @-{—p/{)g

P
v(p) P, P 2lng
= T+§111§{wp+w£}|g+17/0 wadq

1
g{wp +(1+1n q)wg}dq

2

—p/ In g{wy, + (2 + In q)wey + (1 4 In q)wee }dg
0

2
1
= %p) + +gln§{wp + wete + 5%11122 we |z —p/o2 In® g{we, + (1 + In q)wee }dg

4

2
—p/ In g{wy, + (2 + In ¢)wey + (1 4 1n q)wee }dg (4.107)
0

Estimate absolute value of each term in (4.107) using (4.105) and (4.106), noticing

p1 = p2/3, for example

Ip

2 9] T
Ip In qu,,dg| < Ci 5 |p| |1In g|d|q|
0 P1 0

p

Vllu
< allpupi+pp <l @y
1
Similar calculation shows that all other terms in (4.107) can be bounded by C||v||,
except for £1n*(2) welg < Clnpr|v]]u
Therefore the first term in (4.104) can be bounded by C'lnp||v||,. Hence the

(4.100) holds. O

Lemma 4.16. Ifv € S, satisfies v(0) = 0, then we have p [ ¢~'v(q)dq € S and
P
||P/ ¢~ v(q)dgllu < Cpalv]lu- (4.109)
0
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Proof. v € § — 2 and v(0) = 0 implies pv(p) satisfies condition of Lemma 4.15,

therefore

p / " o(q)dg = p / " avla)}da € S (4.110)

0

To show (4.109), similar with proof of Lemma 4.15, we break up the integral

p/op g 'v(g)dg = p (/Og- +[:> g "v(q)dg (4.111)

The second term can be bounded by C/||v||, using integration by parts, (4.106), (4.105),

we get (4.109). O

Proposition 4.17. For W,W € Bs, and p1 small enough, we have pUi[p~*W| € B

and there exist a constant C , such that
o[ W] = sl W]l < Cpu|W — W] (1.112)

Proof. By (4.29) of Remark 4.5, A;(p) is analytic and bounded in D,, hence || A4;]|., <
Ki. By Lemma 4.16, p [ ¢"'A1(q)W(q) dg € S, and

P
o [ )™ Wia) dal < W < 91 (4113)
0
For the second term in Uy [ps W], by (4.12) we have
[P EMUpE W) = 57 (k4 1T (P = agd)} < pE W] (4114)

Remark 4.3 shows that (k + 1)p~'(F** — a¢0) € S,, by Proposition 4.13 with r; =

1,70 = &, we get

Pl EM[pE W] € S, (4.115)
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Since —;*—; is analytic and bounded in D,, we get
My[pE='W
S L ] €S, (4.116)
pE (e—p — 621))

and

M [pE W]

pE(er =)

< CillpT T EM T W(p)

< Copr||(k+ 1)p (F** — ag0)][u||W]|u

< Cpl|Wll (4.117)

Using Remark 4.29, ¢> A5(q) is analytic and bounded in D,, by (4.116 ) and Lemma

4.16 we have

p/OP g~ F As(q)Mi[gF ' W](q) dg
- /0 " As(g)g E Mg W](g)} dg € S (4.118)

Furthermore,

Hp [ Al W) d

u

< K

"’/ L e T MG W)} da

0

u

Mi[gF =1 W](q)
q%(e—‘l — 62‘1)

< Cipy < Cpa|[W]la (4.119)

u

It is easy to check that if W = o(p) then plds[p~'] = o(p) as p — 0. Together with
(4.113), (4.117) and (4.119), we getpldi[p~*W] € B, for p; small enough. Since U is

linear, (4.112) follows immediately.
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Proposition 4.18. For VV,W € By, and p; small enough, we have pls[p™*W] € S,

;and there exist a constant C' , such that

lpta[p™ W]|l < C'ln pa| W (4.120)

|pUo[p™ W] — pUa[p™ W] ||w < C'ln p18o||W — W || (4.121)

Proof. By (4.18), p~(-HU/kpx(k+1-l) ¢ G, Using Lemma 4.13, with r, = (I —

1)/k,ro =73 =+ =141 = 1, we get that
pTE{FI o (pE W)Y € S, (4.122)
and

Iy (W)

< Cl||W||L||p—(—l+1)/kF*(k+1—l)||u < CHW“L (4.123)

Again by Lemma 4.13 with r, = —1 + %,7’2 =73 = - = Tpy; = %, we get

p# (pi~W)**+D) € §) and
lp=* (p* W) ¢, < Cw i+ (4.124)
Therefore by (4.13), we get
P EM[pFT W] (p) € S, (4.125)
and

lp™F Ma[pr W[l < Cln py | W12 (4.126)
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It follows from (4.125 ), (4.126), Remark 4.5 and Lemma 4.15 that

P 1 1
p / 0t Aa(g) Mulpt W )(g)dg € S, (4.127)
0
and
p 1 1
Hp/ q_EAQ(q)Mg[pTlW](q)qu < Clnp|W|2 (4.128)
0
Using
W — W = (W - W)Y W, (4.129)
=0
similar with above we get (4.121). O

Proof. [Proof of Lemma 4.11 ]

Then Q is contraction in B,. To show this, first we will show that for v € B,, we
have T[v] € Bs.

Remark 4.4 implies that p_%G(p) € Ss, by Proposition 4.13, we have that p é(p) €
So.

Then by Proposition 4.17 and 4.18 , we get that
||Q[W]||u < 0(51 + P2)52 (4.130)
and for Wy, W, € By,

[1QIWA] — Q[Wa]llu < C(b1 + p2)[Wr — Wallu (4.131)

Therefore Q is a contraction in B;. The uniqueness of solution of (4.31) and (4.84)
implies that pV(p) = W(p) € S. O
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4.3 Singularity Analysis of Leading Order Equa-
tion

2

To determine the behavior of Y near the singular points P = =

7, here we use a
method analogous to the one used before by Costin [1]. For v € (0, |P|/3), define a

truncation of Y'(p),

Y(p) ifp€D,and |p| <ir—v
H(p) = ' ’ (4.132)

0 otherwise.

Let h(P —p) :=Y(p) — H(p). Let z := P — p For z € D,, where
U 3m
D,:={z€C| |7 <v,—5 <argz < 7} (4.133)
In terms of h(z), equation (4.11) reads:

(P2 — 2P=)p(z) — 3(1 + 2 / h(s)ds

k™ )i
= Gi(2) + My[H + h)(P — z) + Mo[H + h](P — 2), (4.134)

where '
Gr(2) = O(P —2) 31+ 1) / T H(s)ds (4.135)

Lemma 4.19. For [ € N, H*(P — 2) can be extended from a function of z from
(0, P—v] to a holomorphic function in the region D, with continuous boundary values

on the circle |z2| = v. The same holds for Di(P — z). and G1(z).
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Proof. Prove by induction on [. For [ = 1, by definition, H(p) extend to zero analytic
function. Suppose that H*!(p) extends to analytic function in P + D,, first consider
purely imaginary p , |p| € (|P| —v,|P| + v).

H(p) is analytic in an v neighborhood of [v,|P| — 2v]i, therefore so is H*!(p).
1 p—(P—vi) .
) = [T HOE -t
0

_ / T 0 — 1)t + / T B — ) (s) 6 136)
0 p—(P—vi)

For ¢t € (0,p — (P — vt)), we have p — ¢t € (P — vi, P + vi), therefore H*(p — t) as a
function of p is analytic in a neighborhood of (P —wvi, P4vi) by induction assumption.
H(p — (P — vt)) is analytic in (P — vi, P + vi) Hence the first integral in (4.136) is
analytic in (P — vi, P+ vi). For the second integral, since s € (p — (P — vi), P — vi)
we have p — s € (0, P — v1), therefore H(p — s) is analytic in (P — vi, P 4 vi). Since
p— (P —vi) € (0,2v7), so H*(p— (P —v1)) is analytic in (P — vi, P + vi). Therefore
the second integral in (4.136) is also analytic in a neighborhood of (P — vi, P + vi).

For p = [ple",
P—vetf
H*(H'l)(p) = / H(s)H*(p — s)ds (4.137)
0

Breaking up the integral into (0, p— (P —ve)) and (p—(P—ve?), P—ve®). Following
the same argument, we get the lemma.

This completes the induction.

O

Lemma 4.20. For p € (P — vi,P), and v < |P|/4, we have h x h(p) = 0 and

analytically extends to the zero analytic function in D,.
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Proof.

hx h(p) = / " h($)h(p— s)ds = /0 T () h(p— $)ds = 0

P—uvi

(4.138)

The last step is because p — P 4+ vi € (0,vi) so |p — P + vi| < v < |P| — v hence

h(s) = 0 for s on the integration path.

Lemma 4.21. Equation(4.134) can be written as

h(z) — (14 e / h(s)ds

7

= Ga(z) — Di(2)h(z) — | Da(s — z)h(s)ds

where
o—2P
Di(z) := —T(e_(P_z) — 272 _ 3)
e—2P k e~2P
Da(z) = — S FHED G D) (2) 4 (k + 1) H(2)
1=2

=(k + 1)(F*" = a00)(2)

and

Gr(2) = 3¢ {Ga(=) + M[H](P — 2) + M[H](P — 2))

O

(4.139)

(4.140)

(4.141)

(4.142)

Proof. Noticing Lemma 4.19 and Lemma 4.20, equation (4.139) is straight forward

calculation from (4.134).

Remark 4.7. D;(z) = 22D:(z) where Dy is an analytic function.

113

O



Let Q(z) := [ h(v)dv. Using integration by parts, Equation(4.139) is trans-

formed into a linear first order differential equation:

2Q(2)+8Q(z) = Di(2)Q(2) + Dalvi — 2)Q(2)

+ [ QWDho - 2)dv+ Gl (4.143)
where
Bi=—(1+ %)e—”’. (4.144)

Multiplying both sides by the integration factor for the operator on the left hand side

of the above equation, integrating both sides and using integration by parts, we get

Q(2) = Ra[Q](2) := Qu(2) + Ga(2) + R[Q](2) (4.145)

where
Qo(2) := Spz7P, Sy := /0 P71 Gy (v)dv (4.146)
Gs(z) := 27 /z vﬁ_ng(v)dv (4.147)

RIQI(:) = = 'Di(2)Q(e) — = /;%[sﬁ—lpl(s)} Q(s)ds

+z_ﬂ/ sP1Dy(vi — 5)Q(s)ds
+2_ﬂ/ st (/ Dy(w — s)Q(w)dw) ds (4.148)
Proposition 4.22. For a > 0, and l,n € N | we have
P—z
/ (P—2—3s)*In™(P — z— s)H"(s)ds (4.149)
0

1 analytic in z € D,,.
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Proof.
P—=z
/ (P —z— s)a ln”(P —z— s)H*l(s)ds
OP—Vi
= / (P—2z—5)"In"(P—2z— S)H*l(s)ds
0
—1—/ s* ln"(s)H*l(P —z—s)ds (4.150)
0

The first integral in righthand side of (4.150) is an integral of a function analytic in z €
D, and ! in s, therefore analytic in z. In the second term, take the integration path
to be the line segment, by Lemma 4.19, H* (P — z — s) is analytic in a neighborhood
of integration path, while and the upper limit depends analytically on z, therefore

the integral is analytic in D,,. O
Proposition 4.23. G5(z) are analytic in D,.

Proof. It is clear that G1(z) is analytic in D,. Ga(z) analytic follows from Proposition
4.22, (4.12),(4.13) and (4.142). O

Proposition 4.24. Ds(z) is analytic in D, where u = 2v,

Dy(2) =O(zlnz) as p—0 (4.151)
/ M‘ dls| < Cv|Inv| (4.152)
C1UC2 S

where the integration path Cy U Cy, C1 := {|s| = v : =% < arg(s) < arg(z)},

Co:={s= tetara(z) . |z| <t <wv}.

Proof. By Remark 4.3, F** — aq is analytic in D, and [F** — ag](p) = O(pInp).
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Since H(p)*, F(p) are analytic in p € D, we get Dy(z) is analytic there. By Lemma

4.10 , for p € D,
H(p) =Y (p) = ptV (p) = o(p'*¥) (4.153)

Remark 4.3 indicates that F*k+1=0 = O(p(1=0/k) therefore [F*(k+1=0 y [*(=1)](p) =

o(p). By (4.141) we get Dy(z) = O(zlnz) as z — 0. So for s € D,, we have

D2(s—2z)

G=2)n(s—2) < K for some constant K.

/ Ds(s — 2) ds| < / Dy(s—z) (s—2z)In(s— z) s
C1UC> S C1UC2 ('S o Z) ln('s - Z) §
— Nnls —
< K (s = 2)In(s — 2) dis|] <vlnv  (4.154)
C1UC5 S
U
Define norm
lqll, := sup{|2"q(2)[} (4.155)
z€D,
Consider function space
83 := {q(2) | a(z) analytic in D3 continuous in D3} (4.156)

equipped with norm || - ||,. Let Bs be a ball of size ¢ centered at the @, in S;. Define

norm || - || as
| flloc := sup |f]. (4.157)
2€D,
Lemma 4.25. For Q(z) € S3 and A bounded in D,, we have

< C-v]Qll Al (4.158)

2 F /Z s7Q(s)A(s)ds

{2

T
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Proof. For z € D,

/y " P q(s)A(s)ds

7

< [ lallJAG)dls) < 2vlal Al

Proposition 4.26. For Q € B3, we have

< Cvllnv] Q]

2 F /Z s771Dy(s — 2)Q(s)ds

z_ﬂ/ st (/ Doy(w — s)Q(w)dw) ds|| < Cv|Q|-
Proof. For z € D, applying
" Dy(s — z)
#1Dy(s— 2)Qs)ds| < floll [ |22 gy
vi C1UC, S

< Cvllnv ||Q]»

Hence (4.160) follows. By (4.151) Dy is bounded in D,,, therefore

[ ([ -}

IN

IN

LI QIR+ / T / )[s#1) |ds|
< Covl|Q]»

Lemma 4.27. For small enough 6, Ry ts a contraction in Bs.
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Proof. By proposition 4.23, for z € D,, |Ga(z)| < K for some constant K.
P Ga(2)] < K / 1771 |ds| < CvRO) (4.165)
0

For Q € 83, |2#7'D1(2)Q(2)| < ||27' D1/ ||Q||» By Remark 4.7, there exist a C

K, such that |[27'D1||o < Kyv. Hence
127 D1(2)Q() I < C - vI|Ql: (4.166)

By Remark 4.7, £[s°~1D,(s)] = s° Dy, where D; is analytic in D,. Lemma 4.25

implies
*d .
Z_ﬁ/, - 7 D(s)] Q(s)ds|| < vl Di]l Il (4.167)
(4.166),(4.167) and Proposition 4.26 implies that
IR[Q]ll» < C - v|Inv| ||Q (4.168)

Since R, is linear, (4.165) and (4.168) R, is a contraction in B; and the ball size

can be choose as § = O(ym(ﬁ)). ]
Lemma 4.28.

Y(P—2)=81(P—2)"F"1 4 o(z7F), (4.169)
where

Si: = So+ /Odi [s"7*Di(s)] Q(s)ds + /0 sP1Dy(vi — 5)Q(s)ds

. aAS

[ (] )

(]

where (B is given by (4.144).
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Proof. Let @) be the unique solution in B; implies by Lemma 4.27. @) € B3 implies
that Qs := 27Q(z) is continuous at z = 0 for 2 € D,. It is easy to check that
S1 = Qp(0). Therefore,

w = lim Q(2) — Qp(0) = 0 (4.171)

lim
z—0

Hence Q(z) = S127? + o(27#). For 2z € D,,,
Y(P—2)=h(z)=Q'(2) = S1z77 ' + o(z7F 1) (4.172)
U

Remark 4.8. The dependence of Si1 on the v from the expression (4.170) is an
illusion. We showed that there is a unique Y (p) analytic in D For any v choosing 6;
small enough, we have an overlapping region between D and D, + P. The uniqueness
and analyticity of Y (p) in D guarantees h(z) is the same for different v. Hence the

singularity cannot depends on v.

Y (p) has a singularity at p = P = 2Z%i, therefore Equation(4.9) has Stokes line

at args = 7. We seek for the exponential small term on the Stokes line. Let 6~ €
(—%,%),and % € (3, 3n).
Lemma 4.29.

wy (8) — wy (8) = Lo+ [Y](s) — Lo-[Y](s) ~ —2i sin(BW)SlF(—B)sﬂe_szé_ﬂ (4.173)

as s — oo in the sector args € (=5, %).
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wi (s) — wy(s) = Lot [V](5) — Lo [V](s) = (/m -/ h )wp)e-wdp

- / Y (p)edp (4.174)
C
where C is the deformed contour in figure 4.2.
A Im(p)
P/
C
. | S
et 0"
\ A o -
?Z
Re(p)

Figure 4.2: Deformed integration path C.

The dashed line is the original integration path. The thick line is the deformed one.
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By Lemma 4.28 and Watson’s Lemma,

i

/ Y(p)e ®dp ~ —2i sin(ﬁﬂ)SlF(—B)sﬁe_szé_ (4.175)
c
as s — oo, and args € (—3,%). O

Remark 4.9. S is related to the stokes constant o by o = —2isin(f7)S;

4.4 Full Inner Problem Analysis

4.4.1 Operator H

In this subsection, we will establish some property of the leading order equation for
preparation of the next section.

Given aj, let the unique solution of (4.3) in D(B, £) that satisfies conditions of
Lemma 4.1 be w3 (s; ay) respectively.

Let w(s) be any solution of (4.3), and let v(s) := w(s)—wg (s). Then v(s) satisfies

Hv] = No[v] (4.176)

where
’H[U](S) = U(S + 1) — ’U(S — 2) — (k + l)wo_(s; alo)kv(s). (4.177)
No[v] := Z (k 7 1) vl(s)wg(s; alo)k+1_l (4.178)

1=2
We omit the dependence on a1y when there is no confusion.

Similar with the outer equation case, we first seek a fundament set of solutions to

H[v] =0 (4.179)
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by aids of approximate solutions.
Noticing wy (s) ~ %% as s — oo in region D(B, —), substituting ¢(s) = s’Q* into
sk
(4.179), expanding terms as power series in terms of %, then setting the constant term

and coefficient of 1/s to 0, we get that there are 3 independent formal approximate

solutions to (4.179):

Peals) =570,  a=-1,0,1 (4.180)
WheI‘e ﬂa = —(%)Qi a].ld Qa — 627;'(1'

Proposition 4.30. There exist an linear operator H. such that {¢ea}ta=—1,01 5 @

fundamental set of solutions to He[¢] =0 and if ¢p(s) # 0, s € D(B,—), we have

67 (5 B0 — ) — Hll(s — ) < TRy 2y )
|S - n| s€D(B,+),neN ¢(3 - n)
Proof. Define mo, = Aqf:", M3 = % and
R, = HPeal (4.182)

Pea

Using the same procedure as in proof of Proposition 3.9, with A = 1, we can show

the existence of .. Estimating residual H[¢. () for large s, it is seen that

R,=0 (ln_s) : (4.183)

g2

(3.105), (4.182) , and (3.109)-(3.112) imply that b, = O(s™2In s).

[He[](s) — H[¢l(s)| = —bsA* — b2A¢ — b1 4. (4.184)
Noticing that

AB]()] = [6(s + 1)~ #(s) <2_sup [g(t)] (4.185)
from (4.184) we get the estimate (4.181). o O
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Lemma 4.31.

H[p] = 0 (4.186)

has a fundamental set of solutions ¢,(s), a« = —1,0,1 such that
Ba(8) = deal(s)(1 +O(s7'7)) for s € D(B, +) (4.187)

where 0 < r < 1 is a constant.

Proof. It is easy to check that ¢, := —kaaoliwo_(s) is a solution to (4.186), and
$o(s) = deo(1 + O(22)) follows from wy(s) = agos % + O(s ¥ ns) for s €
D(B,—). Hence the assertion is true for a = 0.

For o = 1, rewrite (4.179) as

Helg] = Help] — H[4] (4.188)

Using ¢, to invert the operator H., we define

H o= Y, dealdT 5 Mea ). (4.189)

a=-1,0,1 We
where W,(s) is the difference Wronskian of ¢, , and M., is the cofactor of the last

element in the o column of W,(s).

Let ( = ¢1 ¢e L. ( satisfies

¢ =Tl = o I {He = H}en (1 + Q)] (4.190)

Let By be a ball of size § in To(D(B,+)) with radius & centered at zero. For
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¢ € By, direct calculation shows that %‘Z‘}% = ¢.o(s)(1+O(s7h)). By (4.181), there

exists a constant K, such that

M. o(3)

Per()8a(s) iy {He = H}Bea (14 Qs =)
|111 S — n)' ¢e,a(s)¢e,1(s - ’I’L)
A TET =1 0 o P oot )
By (4.31), for z € D(B, —),
bea(8)Per(s —n) ~Rp1+Rba
Gon(s —1)or(s) <Gl — <C (4.192)
We get that
623 (s)AZH{He — H} e (1 + O)](s)] < CBTH7(1+ |¢]|0) (4.193)
Hence
ITI()] < [eaDTH{He = HY[Bea (1 + O(5)]]
< C BT (14l (4.194)
Since J is linear, we also have that for {; € By,
17 = TGl = 1T = Gillloe < CBTHIC = Gille (4.195)

Therefore J is a contraction in By for any B large enough and the ball size
§ = O(B7™T). Therefore there is a unique solution of (4.190) in By, which implies
that the assertion in the Lemma 4.31 is true for @« = 1. The proof for a = —1 is

similar. O
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4.4.2 Full inner equation and matching of inner and outer

solutions

In this subsection we will show in terms of the inner variable the difference between
the stable and unstable manifolds turns to difference of solution of leading order inner
equation w, — wy in certain region.

Let wy(s) := eiz_(z(s 4+ 2)) and w}(s) := e 24 (2(s + 2)). By Lemma 3.1 and
Proposition 3.28, z4(z) = 20(z) + (elnh)z () + eza(x) + O(e28, 21" In*(%)) for
z € Dt and Z_(z) = 20(z) + (eInh)z(z) + e22(z) + (9(5250_2_1/k In*(%)) for z € D~.

Rewritten in terms of the inner variable s, for 0 < r < 1,

s o\ 2HL/K 5 — i
£ K o K 1, ;0 s K [(—) In (—0)] and s € e71/2, (4.196)

o h
we have
/0 _ o  oaulns ayp 1=1/k —1—1/k=r
wh(s) = P+ ST + g +O(es 5T (4.197)
where s € D(B, £) and
1 1
ago = (3/k)"*, an := g(k + DEVF, ay = g(k + 1)k In(—k). (4.198)

where In(—k) = Ink + 7. Since (4.197) holds for ¢ € &y < 1 uniformly, we get
(4.197) is true for 1 € s € ¢~ 1/2,

The main result in this subsection is the following Lemma.
Lemma 4.32. Ase — 0,
w(s) ~wy (s) + O(s"e™5"), ase— 0T, s € D(B,-),[Ss| e (4.199)
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wt(s) ~ wi(s) + O(sﬂle_MTﬂ), ase — 07, s € D(B,+),|Ss| < e (4.200)

wh(s) — wZ (s) = wi(s) — wy (s) + O(sPre™57) (4.201)

for s € D(B,+) N D(B, —) where 1 K |Is| € ™ and w(ﬂf(s) = wat(s; ai), and ag

is given by (4.198), k is a constant satisfying 0 < kK < 1/2.

The proof is at the end of this subsection. The idea of the proof is that we
will show that w>(s) ~ wy(s) as € — 0% in some region depending on &, away
from the origin respectively, then in a region that contains s = O(1), we show
wo ~ w, + qi:l,od)—la where ¢, , is constants depending on ¢ . By comparing to the
two asymptotic relation, we conclude lim, o+ g_190 = 0 and thereby prove Lemma
4.32. The proof of the + case is similar.

Define

D(B,—) ={se€C:Rs < By,¥s < —B} (4.202)
where B = §, /h; By is a constant independent of ¢.
Dy ={seC:—-B—-—R<SQs<—-B,-R<Rs< -W} (4.203)

We choose B large but independent of ¢; R(¢) = ™%, where 0 < k < 1/2 is a constant;

W(e) = e~ where 0 < k1 < k. It is to be noted that Dy C D(B,+). Define
Dy :={se€D(B,—): —B—R<Ss< —B,—R < Rs < By}, (4.204)

(See Figure 4.3).
D(B,+), D, DF are the reflection of D(B, —) Dy and D about the imaginary

axis respectively. Clearly for any W > 0, D; C Dy .
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A im(s)

Re?s)

S\

-
e

A
AN

R CREE R e S BO rrrrrrr >

Figure 4.3: Dy and Dy

Dy is the shaded region. Dy is the region bounded by thick lines. Dy C Dy

Remark 4.10. [t is to be noted that for s € Dy we have

_ Qoo ajplns a10
wo () = =7 1+1/k 1+1/k
sl/ sl+1/ sl+1/

+O(s7 ¥ n s) (4.205)

We consider ¢™(s;¢) := w7 (s;¢) — wq (s) in Dy and <™ (s;¢) := wZ (s5¢) — wy ()
in Dy . Since many of the lemmas for ¢~ and ¢~ are similar and in parallel, we present

those lemmas together using ¢ to represent any of them and point out the difference
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if there is any. We also drop — in the representation of the region in such case. But
for those lemmas that has significant difference between ¢ and ¢, we specify clearly.

By Remark 4.10 and (4.197),
5(s) = O(es' Mk, s7174/E) (4.206)

for s € D(B,—), and 1 < s < ¢~Y/2. By (4.2) and (4.3), we have ¢(s) satisfies

H[s] = NC[d] (4.207)
where H is defined in (4.177), and
< (k1
./\/'E[g] = Ewo(s) + sg(s) - Z ( ] )wo(s)k"'l_lg(s)l (4.208)
=2

By Remark 2.8, we define inverse of H in region Dj; using horizontal strips of
width 1 (except the lowest strip may have width less than 1) D5(B,) := Ds N R X

(-B,—1,-B,)i,n=1,---[R], where B; := B, and B,,;; = B, +1n=1,---[R].

K0 05) W) = Yl ] ) (a2

a=-10,1
where
A=A TP Ta+ ATV T AP T (4.210)
where
Ja: To(D) = To(D)  Jolgl(s) = s "a(s)g(s); (4.211)

Te: To(D(B,£)) o Tian(D(B, 1) Jalgl(s) = s™+7u(s)gls)  (4.212)

Lemma 4.33.

|H' < KRB "InR (4.213)
where K 1is a constant independent of B,,, R.

128



Proof. By definition of D5 and (4.180), for s € Ds(B,),

1

||¢e,a|| < CBf(ﬁa)ea%ﬂBn ’ < OlB;%(,Ba)e—agﬂBn (4214)

where C, C; are constants independent of B,, and the norm is the sup norm in D5(B,,).

Proposition 4.30 implies that || || < Ci||@e.q| and

AI/;[;(’)“ = A;[V"‘ (1+0(s7)) = ¢, o(Ka+ O(sh) (4.215)

So |J\$ao «(s)| < C. By (4.209) and Lemma 2.14,
|H7Y| < C%ln(l’%) (4.216)
By definition of region D5, B, < R. So the proposition follows. O

Proposition 4.34. For ¢(s) satisfying (4.207) and (4.206), there exists q(s), such

that for s in Dy (Dg ), <(s) satisfies
s =J[¢] == g+ H N (4.217)

where q(s) = Za:—l,o,l 4a(8)Pa(s) and q4(s), a = —1,0,1 are analytic in Dy ( Dg )

and periodic with period 1.

Proof. Since ¢(s) satisfies (4.206), H'N_[c] is well defined. The existence of g follows

from Lemma 2.18. O

Remark 4.11. Lemma 4.33, Proposition 4.34 also hold for H™' defined on strips of
D;t.
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Proposition 4.35. ¢(s) found in Proposition 4.3/ satisfies
als) = O((|Ss] + W(e)) -4, &) (1.218)
for s € Dy, ¢ small enough, where A > 1/2 is a constant.
Proof. From (4.206), using 1 € R(e) < ¢™" and 1 < W, we get
sl < C(Bp+W)™' "7 4 Ce(B,+ W 4+ R)'F < C((By + W)™ 175" 4 &) (4.219)
where we choose A > 1 — k(1 — 1) > 1/2.

wy (8) ~ *®, s — oo for s € D(B,—) , we have |wy (s)| < C(B, + W)~k for

Sk

s € Ds(B, R(e), W (¢)).
By (4.208),

NC[<)(9)] < Ce(Ba + W) +ells] + [I<]?) (4.220)

By Lemma 4.33,

la(s;€)] < ls(s;e)] + [HTNE[S]]

< lsll + C(Ba + R)* In R(e(By + W)~ +elcl| + [l<l|*)

< 2|fs]| + Cie? (4.221)
Hence from (4.219) we get (4.218). O

Remark 4.12. Proposition 4.35 is also true for ¢ replaced by <, p replace by p and
W replaced by 0 in (4.218).
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By definition, g(s;€) = >0, 101 9a(5;€)9a(s), Where g, (s;¢) are periodic func-
tion with period 1. Let the Fourier expansion of ¢, (s; ) be ga(s;€) = > 00 ___ qan(€)e?™™*
Let

p(s;e) == Z bals) Z Gam(€)€X™™ ) 1(s;e) = q(s;€) —p(s;e)  (4.222)

a=-1,0,1 a+3n>0
so for ¢ fixed, r(s;¢) = q_10(¢)p_1(5) + O(¢1(s)e >™*. Next we will use the bound on
lq(s; €)| to show that the coefficients of exponentially large terms are small as ¢ — 0%

and so is qq 0.

Proposition 4.36. For € small enough there exists constant p, K > 0, independent
of € and s, such that

psi¢)] < Ker (4223)
for p~(s;e) where s € Dy .
Proof. Let W(s) be the matrix Wronskian of {@4 }a=—1,01, and W™1(s) be inverse of
W(s), by (4.187), we have that W[z, j](s) = A; ;¢ 1(s)(1 + O(1)), where A; ; # 0

are constants. Therefore

0= 3 et IW il = o) B als+i)1+0 (1)) (2220

j=-1,0,1 7=-1,0,1
1 .
anl = [ laals + e
0
1
< /C(S+t)—ﬂae—i2aj:36n7r(s+t) Z la(s + )| dt (4.225)
0

j=—1,0,1

For a 4+ 3n > 0, using the bound (4.218), at s = —™"1, we get

|qa,'n,| = O(Ep exp{—%}’g\) (4226)
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where p:=(14+1/k+r+RBu)k >rk >0 (4.227)

The bounds given on ¢, , implies (4.223), for s € Dj . O
Remark 4.13. Lemma 4.36 also holds for p replaced by p and Dy by Dy respectively.

Proposition 4.37. For s € Dy, there exist a constant p; and C independent of s

and ¢, such that |r~(s;e)| < Cef*. In particular,
91 0(e) < Ce™ (4.228)

Proof. For a4 3n < 0, using the bound (4.218), estimating the integral in (4.225) at

s =—W —4 — Bi, we get
| g5 | < KW PelPattmnb/s (4.229)
Recall we choose W(e) = 71, 0 < k1 < K, let p; := pk; we get the proposition. [
Let go(s;¢€), o(s;e) satisfies
so(s;€) = Trlol(s;€) :=r(s;€) + H ™ Nolso(s;€)]] (4.230)

we have the following lemma showing ¢, is exponentially small in s.

Define region D; as D; C Dy is a region satisfying s € D; =
VSs' = s, {|p_1(s)] < €M} and [Ss| > 1 (4.231)
where A1 , A2 are constants satisfying % < A1 < Ao

D C Dy is the region satisfying s € Dy = (4.231).
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Proposition 4.38.

so(s;€) = g-10(e)p-1(s) + O(p1(s)e 2™, a’\z) (4.232)

for s € D7

(4.232) also holds for s € Dy .

Proof. We will only show for D; case since the other case are similar. Let B7 be a
ball of size § centered at r(s;¢) in So(D7 ). We will show J7 is a contraction in By for
§ = Ke*? where K is some constant.

By (4.231), |[r|| := sup,ep- [r(s;¢€)| < Ce™ By (4.230) for § small enough, we

have

[o(s;€) = r(s3e)] < [HT Mol
< GUR™B I R(||r|* + 26]r|| + 67)]
< Coe™ (M 4 eM§ + 62) (4.233)

where 1/2 > A3 > k(1 + 7). Therefore we choose Ay such that A\; < Ay < 2A; — A3,

then for £ small enough, || J ]| < 4. Similarly for ¢; € By,
T[] = T[aa] < Cae™ l6o — u|6 (4.234)

Hence J is a contraction in B; for § = Ke*2. Noticing that 7(s;¢) = g_10(¢)d_1(s) +
O(p1e72™), we get the proposition.
Lemma 4.39.

wZ (s5€) = wy (s) + O(e" ¢_1(5), p1(s)e™ 2™ e*),s € D7 (4.235)
wh(s;€) ~ w(s) + O(e” d_1(s), pr(s)e™ ™, &™), ase — 0T, s € DFf  (4.236)

€
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Proof. As an immediate consequence of Proposition 4.37, and 4.38, we have
sT(s56) = O d_1(s), 9% (5),€™2) (4.237)
for s € D; By similarly with proof of — case, we get (4.236). O

The following lemma shows that for fixed s the difference between ¢(s;¢) and

so(s;€) goes to zero as € — 0. Let n(s;¢) 1= ¢(s;¢) — so(s;¢)

Proposition 4.40. n(s;g) = O(&*) where A > 1/2 is a constant, and s € Dy or

s € Dy

Proof. Then n(s;¢) satisfies

n(s;e) = Jolnl(s;€) == p(s;e) + H ' [ec] + HHM[n, <]] (4.238)
where
Mn,¢](s;e) = — Z (k —ll_ 1) wy ()1 n(s; ) (2_: s (n + g)") (s;¢) (4.239)

By Proposition 4.36, |p(s;¢)| < Ce?, where p > 0 for s € D7 or s € Dg . Similar with

proof of Proposition , we can show Js is a contraction in ball of size O(&*). O

Proof. (Proof of Lemma 4.32). For s € Dy, restricted in a region where s/1e~47is/3 >

£’ by Proposition 4.38, 4.40, and (4.231), we get
WE(5) = wp + 4T 0(€)6r0(s) + O =471 (4.240)
For s € Dy, restricted in a region where sPre=4mis/3 > X2 Proposition 4.39 we have

4mis

) (4.241)

w;(s) =w, + O(sﬂle_
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Comparing (4.240) and (4.241) in Ds, by Lemma 4.29 we get

lim ¢~ 10( )=20 (4.242)

=0t

Similarly compare w} with wg in corresponding region gives lim,_,+ qi’l’o = 0 Since

qﬂ_tl,0 is independent of s, for s € Dg N Dy, we find

lim (w; — wj) =o¢d_1+ 0(5516_4?3) (4.243)

e—0t

0

4.5 Matching of Z_(z) — z,(z) to w_(s) — w,(s)
Lemma 4.41.
11€1£|Z ( ) +($)| ~ |0| V6O e gs e — 0t (4.244)

where o is the Stokes constant of the leading order equation (4.3).

3 1
— ox?/k =31 4.24
Y Q / ) Y1 2% + 9’ ( 5)
@ = |~ (nk=mfoy |gRA-1 (] 4 1 /k) "5 /(20 (4.246)

Proof. By Theorem 3.32, for € D(by, h), 5_(x) — 24 (z) = po(z) + O(e65 ™ * po(x))
where po(z) =Y _ 44 ca(z)Ta(z) , ca(z) is analytic in D and periodic with period 1.
In the inner variable s, we get >°,_ ;1 ca(%)7a(2)

wy (s) — = Y Z &0 ma(2(s)) + O /46 M (g)l)  (4.247)

a=%31n=—oco
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where ¢, := c(t) ) (—k)Paghatlf/hegmlatdniXs o — 41 (4.248)

Comparing (4.247) and (4.201), we get

lim ¢ =0 (4.249)
lim, ¢ =0, a=+£l,a+3n>0 (4.250)
Therefore
c(_t)l,o = 03ﬂ‘1e‘“““’”')ﬂ‘la_ﬂ‘l_%e_%(1 +0o(1)) (4.251)
We get
() ) = o3P-remtnktmIiac—pamt =3 (1 1 (1)) (4.252)

Since the solution 2_(z), z4(z) are real on the real axis, and c(lt,z) is the complex

(b)

conjugate of c_19, We get

li1n+ cgl’)()) = 5—3516—(111 k_m)ﬁlg_ﬂl_%e—

= (1+0(1)) (4.253)

Therefore as ¢ — 07,

Z-(2) = Z4(a)] ~ 1), (Z{2|T_1<x+nh>|cose<z>}2) (4.254)

n=0,1,2

where 0(z) := arg(cg’o) +arg(7_1,0(z)). Since arg(7_10(z)) = Z=£(1+ O(h)), we get

~ 1 o2
|Z_(z) — Z4(z)] ~ |0|f®5‘5_ﬁ6_ ke (4.255)
where
© 1= 3R |em(nk=miioa|(1 4 1 /)55 1/ W) (4.256)
O
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Lemma 4.42. If 0 # 0 then

mli)l}loo zp(z) #0 (4.257)
0611_1)130 z_(z) #£1 (4.258)

Proof. We prove (4.257) by contradiction. Suppose o # 0, and lim,,_., 24 (z) = 0
Let 2_(z) = z4(x), then 2_(z) is a reparameterization of the unstable manifold. Since
zp(z) —2—(z) = 2_(2) — 2_(z) = (9(62(50_2_1/k In(é9/h)), by Lemma 3.27 there exists
unique Z_(z) such that Z_ satisfies 3.198 with given by(z) and Z_ satisfies 3.197. Z_(z)
satisfies the above two conditions, therefore Z_(z) = 2_(z) = z4(2) contradict with
Lemma 4.32 if o # 0.

Uniqueness of the stable manifolds at 1 and (4.257) imply (4.258). U

Theorem 4.43. Let 2_(z) be any reparameterization of z_(z)

inf |Z_(z) — Zy(z)| ~ |o|@c™ e as e — 0F (4.259)

z€ER,Z

where
3 1
= 2n° [k =4 = 4.260
Y Q / ) Y1 2k + 2) ( )
Bl (Ink—mi)B_1 B+l 1/(2k) k+1 —47i/3

©:=372 |e (14+1/k) = k . Por = —— ¢ (4.261)

and o 1is the Stokes constant of the leading order equation (4.3), hence o is parameter

free number which can be obtained, and estimated numerically.

Proof. We seek for z_(z), reparameterization of z_(z), such that

inf [Z_(2) ~ Z4(2)| < inf |2 (x) — Z(2) (4.262)
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[ 3

2_(#) — 2 (2) = (5_(2) — 5_(2)) - (5_(2) — 24 (=) (4263)
By Lemma 3.19, there exists ¢_(z) := do(z)7(z), such that ¢(z) := 5_(z) — z_(z)
satisfies (3.185) and || — ¢_||, = O(e85?)||$ |4, Where 3 = 1; and there exists
é_(z) := do(z)7o(x), such that ¥(z) := 3_(z) — z_(z) satisfies (3.185) and ||¢) —
6Nl = 06516

Hence ||(2- — 2-) — (¢ — 9)[| < €656 — |-

So the task of seeking desired Z is simplified to seeking <;A5 that minimizes ||(ZA5 - & +
7_ — Z,||. Let do(z) := do(z) — do(z), then dy(z) is periodic. To the leading order,

we have 7'0(:0 + nh) = To(x)(l + (’)(5)), n=12

2nniz/h h

] while

Since for z € R, aAlo,n are multiplied to e which has period of
7o(z 4+ nh) = 7(z)(1+ O(h)) for n small, it suffice to consider dy(z) = d is a constant
independent of z. Similarly, for real z, Jo(m) — d is a constant independent of x.

By Lemma 4.41, Z_(z) — z4(z) = O(eme?) forz € R . If d — d is chosen to be
higher order in ¢ than Z_(z) — z;(z), then the smallest distance will not change in
the leading order of €. If it is chosen to be lower order in ¢, then the smallest distance

will change to lower order in ¢. Hence we choose d—d= K|o|®&"e?. Plugging into

(4.263),we get

inf |Z_(z) — Zo(z)] > |o|@ee? Z [K7o(z + nh) + 2|7_1(z 4+ nh)| cos(8(z))]?

R
€ n=0,1,2

~ lolOcmer {[Ky(z) + 247 (@) + 2K () — 7 (@)}
~ |o|@eM e {2[KTo(2)]? + 6[|7_1(z)|]*}/? (4.264)
7o(z) is real for real z. Clearly, the righthand of (4.264) get the minimum at K = 0.

Hence the theorem follows. O
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