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ABSTRACT

In spite of theoretical background, technical simplicity and popularity in
application, contingent valuation studies have several issues remained in debating among
environmental economists. This dissertation aims to provide answers to some of issues in
dichotomous choice contingent valuation: the temporal structure of willingness to pay,
practical guideline for survey design and generalized estimation method.

The first essay entitled “Temporal Insensitivity of Willingness to Pay and Implied
Discount Rates” proposes the temporal willingness to pay (TWTP) as an alternative
definition of the present value of willingness to pay. In the survey of contingent valuation,
a respondent compares TWTP with the present value of randomly assigned cost. TWTP
enables the test for consistency of respondent’s valuation with respect to payment
schemes. Using a sequential test suggested by Haab et al (1999), the insensitivity of
TWTP is tested on the data of oyster reef restoration programs in the Chesapeake Bay.
The test result shows that TWTP is insensitive to the offered payment schedule or on the
length of the stream of benefits of the project, which implies consistent willingness to pay
for the environmental project. However, discount rates estimated from the data vary

significantly across project lengths and time span between offered payment schedules.
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The second essay, “Optimal, Robust kk and Uniform Experimental Designs in
Binary Choice Model: Analytical and Empirical Comparison of Efficiency and Bias”
suggests a practical alternative design named a uniform design, to existing optimal or
robust bid designs in contingent valuation. The uniform design draws cost assigned to
respondent from a predetermined uniform distribution. Analytics and simulations show
that the uniform design has lower bound of efficiency at 84 percent of D-optimum.
Simulations demonstrate that the uniform design outperforms optimal designs when
initial information is poor and outperforms robust designs when true values of parameters
are known.

The third essay, “Generalized Estimation Methods and Implication of the Result
in Dichotomous Choice Contingent Valuation Model” challenges the theoretical and
technical background of the simple logit model. Standard logit model in contingent
valuation assumes i.i.d error distribution between initial and proposed states. Relaxing the
restrictive assumption in the simple logit model requires a generalized estimation
technique that utilizes a Gumbel mixed model. Estimation results show that correlation
between two states is usually minimal, but homoskedastic errors are rejected in many
cases. Heteroskedasticity or correlation provides willingness to pay estimate different

from estimate of the simple logit, thus different policy implication in benefit-cost analysis.
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ESSAY 1

TEMPORAL INSENSITIVITY OF WILLINGNESS TO PAY AND IMPLIED
DISCOUNT RATES

ABSTRACT

Two interrelated anomalies associated with eliciting willingness to pay for
environmental change over time have been reported: insensitivity of willingness to pay to
payment schedules and variation in discount rates over time. This essay proposes an
alternative definition of the temporal insensitivity with respect to the temporal
willingness to pay (TWTP) rather than the present value of willingness to pay (PVWTP).
Insensitivity of TWTP implies that subject in the survey responds consistently to value
elicitation questions regardless of payment schedule. Using a sequential test provided by
Haab et al (1999), the insensitivity of 7TWTP is tested on the data of oyster reef restoration
programs in the Chesapeake Bay. The test result shows that for this case, TWTP is
insensitive to the offered payment schedule or to the length of the stream of benefits of
the project, which provides consistent willingness to pay for the environmental project.
However, discount rates estimated from the response vary significantly across project

lengths and time span between offered payment schedules.



1.1 INTRODUCTION

Two interrelated anomalies associated with elicited willingness to pay for public
goods over time have been noted: insensitivity of willingness to pay (WTP) to payment
schedules and variation in discount rates over time. Insensitivity of willingness to pay to
payment schedules is also known as temporal embedding. Temporal embedding effect
has been argued to depend on situation and commodity specifics (Crocker and Shogren
1993), money specifics (Thaler 1981), or respondents specifics (Stevens et al. 1997)".

Stevens et al. (1997) define two types of temporal embedding effects: strong
insensitivity and weak insensitivity to payment schedule. Strong insensitivity to payment
schedule indicates the inability of respondents to differentiate between a series of

payments and a lump sum payment on the project. Let WTP, be the lump sum WTP for a
project, and WTP, be the annual payment of #-th year in an annual payment scheme, then
strong insensitivity is defined as WTP, = WTF, =WTP, =---=WTPF,, where T is the

terminal period of the temporal payment scheme. Alternatively, weak insensitivity
implies the inequality of individual WTP between two temporally differentiated payment

schemes but with abnormally high implied discount rates’. Following the above notation,

weak insensitivity is defined as WTP, = WTP, and WTP, = Z; WTP, (1+ r)f(H) , where r

" In addition to the temporal embedding effect, scope and scale embedding effects have been reported in the
contingent valuation studies. Moral satisfaction (Kahneman and Knetsch 1992; Diamond and Hausman
1994), symbolic bias (Mitchell and Carson 1989), or design and analysis product (Smith 1992; Hanemann
1994) are known to be responsible for scope and scale embedding effects.

* In fact, “high” discount rate is still questionable in the sense how high is high. For example, the discount
rate in the market varies from 1% for savings accounts to over 30% for some types of credit card debt. In
some developing or under developed countries, more than 100% discount rates have been reported.
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is the discount rate implied in the equality of lump sum WTP and the discounted sum of
annual WTP. Note that strong insensitivity algebraically implies an infinite discount rate.
Kahneman and Knetsch (1992) find evidence of strong insensitivity of median

WTP wherein respondents showed the same median WTP, and WTP of five-year

payment for funding a toxic waste treatment facility. Strong insensitivity may represent
inconsistency in respondents’ behavior or misunderstanding the survey questions. On the
other hand, a series of papers (Rowe et al. 1992, Stevens et al. 1997, Ibafiez and
McConnell 2001, Bond et al. 2002) find weak insensitivity of W7TP with discount rates
ranging from two digits to several thousand percent’. For example, Ibafiez and
McConnell (2001) estimated WTP for reduction in pathogen discharge in Columbia using
an intertemporal random utility model with assumption of constant discount rate. In the
survey, either a lump sum payment or three monthly installments were randomly
assigned to respondents. The estimation results showed a wide range of mean WTP and
the discount rate was as high as 5,102%. Bond et al. (2002) also argued that the implicit
discount rates were high relative to the market discount rate and the explicit discount
rates were generally insignificant in the study of a federal Steller sea lion recovery
program in Alaska using three temporal treatments of one, five, and fifteen years.
Generally, strong insensitivity has been rejected in empirical tests but weak insensitivity

has been widely observed.

? Relatively high implicit discount rates have been reported in experimental research as well. Harrison and
Johnson (2002) and Harrison et al. (2002) report 28.1 percent individual discount rates in average over all
subjects in a field experiment in Denmark. Coller, Harrison and Rutstrom (2002) provide a similar
experimental result.



Previous studies, however, have imposed strong assumptions on the underlying
decision process of a subject valuing a proposed environmental project, which should be
tested before eliciting WTP and deriving discount rates from dichotomous choice CV
studies with a temporal dimension. Specifically, the typical temporal CV study assumes
that the present value of willingness to pay (PVWTP) is constant across all offered
payment schemes (i.e. consistent PVWTP) and that the variance of the conditional
distribution of PVWTP is invariant to the payment schedule (i.e. homoskedasticity of
PVWTP function)®. If the distribution is homoskedastic and the mean of PVWTP is
consistent, the simply pooled data enables the researcher to estimate the implied discount
rate directly from parameter estimates of payment scheme variables by taking the ratio of
them. However, if PVWTP is not consistent, then we cannot compare two different
present values, and if the distribution of conditional PVWTP is heteroskedastic across
different payment schedules, the variance is unidentified because the parameter is the
product of the heteroskedastic variance and discount factor. Identification and estimation
of the discount rate by varying the payment scheme relies critically on the assumption of
a consistent and homoskedastic PVWTP independent of payment context.

To provide context for the following methodological development, section 1.2
briefly describe the application utilizing a unique mail survey about a proposed oyster
reef restoration program encompassing several states around Chesapeake Bay. Section

1.3 defines an alternative temporal-dimensioned valuation process of environmental

* Haab et al. (1999) test the consistency of WTP under real and hypothetical formats, reporting that if the
heteroskedasticity due to different question format is corrected, the estimated WTP is consistent across
different question formats. On the other hand, Huhtala (2000) investigates the heterogeneous preference in
the contingent valuation method by distinguishing preferences according to the respondent’s attitude on
environmental policy. Heterogeneity in preference explains the inconsistent WTP
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project, named as temporal willingness to pay (TWTP), to alleviate restrictive
assumptions about the PVWTP. Based on TWTP, the temporal insensitivity of WTP to
payment scheme implies that respondent consistently evaluates the environmental project
regardless of payment scheme. In spite of different definition of willingness to pay, value
of cost stream follows the typical definition of present value, which simplifies the
derivation of implicit discount rate from value elicitation response. Section 1.4 explains
the present value of cost and implied discount rates. Section 1.5 describes the basic
estimation model and reports initial estimation result. Section 1.6 explains the test
procedure for the consistency and homoskedasticity of TWTP following the sequential
method proposed by Haab et al. (1999). According to the test and estimation result,
TWTP of a value elicitation survey on oyster reef restoration programs in the Chesapeake
Bay does not depend on the payment scheme (consistent 7W7TP across the payment
scheme) or the benefit stream offered in the survey (indifferent TWTP to the build-up
phase). Based on the homoskedasticity test of the conditional distribution, estimation
results show that implied discount rates vary significantly across the length of project life

and time span between offered payment schedules.

1.2 THE OYSTER REEF RESTORATION PROGRAM IN THE CHESAPEAKE
BAY

The tall reefs in the Chesapeake Bay are the main habitat for Bay oysters, the
most harvested seafood species in the Chesapeake Bay. Due to intense harvest over more

than one hundred years, however, very few reefs remain in the Bay and the Chesapeake’s



oyster population has fallen to less than one percent of their historic maximum levels. In
2002, as part of the Marine Recreational Fisheries Statistics Survey, the National Marine
Fisheries Service conducted a random digit dial (RDD) telephone survey over several
states around Chesapeake Bay to assess respondents’ attitudes toward oysters and oyster
reef restoration in the Chesapeake Bay. Among 8,077 people contacted in the RDD
survey, a follow-up mail survey sponsored by the Chesapeake Bay Foundation was sent
to 1,710 respondents who agreed to participate in a follow-up mail survey. The mail
survey provided a brief explanation of the role and benefits of oysters in the Bay, and
then asked referendum question about willingness to pay as well as attitude and
preference towards the Chesapeake Bay, general knowledge of oyster reefs and socio-
demographic questions (for details, refer to the appendix A)°.

The follow-up mail survey consisted of two temporal versions of the hypothetical
oyster reef restoration project which were randomly assigned to respondents (A for five
year and B for ten year). Both projects aim to restore 10,000 acres of oyster habitat and
1,000 acres of artificial reef until the terminal period of the project at a constant rate.
Thus, the ten-year (five-year) restoration program accumulates at a rate of 100 (200)
acres of reef restoration and 1,000 (2,000) acres of habitat preservation per year. For each
restoration program, one of three temporal payment schemes was randomly offered to
respondents: a one-time (lump sum) payment on the next year’s state tax return (payment

schedule 1), an annual payment on state tax returns over the life of the project (payment

> The referendum type question was adapted for eliciting the value of the oyster reef restoration instead of
open-ended question because data from open-ended question has incentive compatible problem against
other advantages.



schedule 2) and a permanent annual payment on the state tax return (payment schedule 3).
The final survey consisted of a 2x3 design (2 project lengths and 3 payment schemes).
Figure 1.1 shows the whole structure of the survey design and Appendix A provides the
actual questionnaire in the survey.

A hypothetical referendum question for the randomly assigned restoration project
and payment scheme was asked of respondents. For example, the question for the five-

year project scenario with one-time payment reads as follows;

The restoration program is estimated to cost your household a total of $ . Your household
would pay this as a special one time tax added to next year’s State income tax. If an election
were to be held today and the total cost to your household was $  would you vote for
or against the 5 year restoration program (Check one)?

O 1 would vote for the program
U 1 would vote against the program
O 1 do not know whether I would vote for or against the program

For annual and perpetuity payment types, the questions were worded appropriately for
the value of cost and payment type. Each design of the payment type had a set of three
bid points, one of which was randomly assigned to each respondent. The payment values
used in one-time payment were selected from the set of {50, 150, 300}. A 25% discount
rate was applied to calculate annual value of cost in both annual and perpetuity payment
types as in Figure 1.1. If there is no starting point bias or anchoring effect, the discount
rate used in the survey design does not affect the decision mechanism by the property of
dichotomous choice contingent valuation model®. Survey result of response and some of

demographic variables are provided in the section 1.3.4.

% Since the discount rate changes the actual value of cost per year thus the range of bid set, different set of
payment affects the bias and efficiency of parameter estimates (See Essay 2).
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1.3 VALUES OF BENEFIT STREAM AND COST STREAM

1.3.1 Present Value of Willingness to Pay vs. Temporal Willingness to Pay
Environmental projects, by their nature, include temporal dimension of benefits

and costs which may or may not be considered by researcher. When a respondent is asked

the valuation question in the form of dichotomous choice, he or she will compare the

benefit stream from the project with the cost stream required for the project. Suppose that

a proposed project consists of a stream of annual benefits B, t=1,2,..., 7, and an
associated stream of annual costs, C,, t=1, 2,..., T, where T, represents the life of the
benefits of the project and 7. is the life of the costs. The project is fully described by the
benefit-cost pairing ( B,, C, ). The benefit is subjective due to respondent’s experience and

reliability of the program, uncertainty of the future, different cognizance about the benefit
stream, etc. The cost is of monetary value and implicit because respondents have their
own discount factor consisting of interest rate, uncertainty, etc. The basic assumption is

that respondents have a well defined value of B, with which they can compare the

monetary value of costs’. The binary response to the value elicitation question will be one
if the WTP for the benefit stream of the project exceeds the value of cost stream and zero
otherwise.

In the previous literature, PVWTP has represented the value of the benefit stream

based on the time separable annual WTP. The assumption of time-separability, however,

7 A well-defined range of value is enough for comparison. Moreover, the value of benefit does not have to
be a monetary unit. The decision, then, will be made by comparing the benefit and cost in terms of the same
but any plausible unit from a respondent. For convenience and simplicity, respondents are assumed to have
well defined monetary value of benefit stream since we only observe the monetary value of cost.



requires more serious assumptions to simplify the model, the problem which has not
received enough attention from researchers in contingent valuation studies. To see the
problem in more detail, suppose that respondent i has a stream of WTP in each period as a

function of the benefit and individual specific covariates (x;,,); WTF, = x; B, +¢,,, where

E.

., 1s an additive error term of respondent 7 at period # which is unknown to researcher.

Then, PVWTP can be expressed as the discounted sum of WTP;

x ., p &,
PVWIP = CLLAUN SL—
l Zt:(l‘f'l")t_l Zz:(l+r)t_1

Two temporal structures are detected in this formulation. First, WTP at each
period varies depending on the perceived benefit stream and individual specific
covariates that may or may not vary over time. Representing the individual specific
variables by the current value generates more uncertainty in the error term since they are
not realized at the moment of survey. Second, the temporal structure in the error term has
classical issues in time series data. Even if the respondents are assumed to have constant
covariates, such a formulation requires strong assumptions about the temporal relation of

error terms. Furthermore, unless the life of benefit from the project (7} ) is constant

across respondent, the estimation model does not have i.i.d. error distribution®.
The complexity of the temporal structure of PVWTP motivates an alternative
definition of the valuation process such that respondents have a value for the whole

benefit stream (i.e. WTP for the full benefit stream) rather than a value stream for each

§ T, can be given in the survey explicitly by the researcher. However, a respondent perceives implicitly

the terminal period of the benefit stream, which can be seriously different across individuals. PVWTP has
different time-span of discounting for each respondent.
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period (i.e. WTP of each period). Let 7 be the value of the benefit stream that respondent
may have at the moment of survey. The value of the benefit stream, named as a temporal
willingness to pay (TWTP), is a function of the benefit stream and current individual

specific covariates,

TWIP, = f (7,x,, B)+¢, (1.1)
where f(+) is a systematic component observed by researcher and ¢, is an unobserved

random error with mean zero. The error term can be conditional on the project type and
payment schemes but is invariant across individuals. TWTP is time-dependent in the
sense that it could be different in the different moment of the survey due to information,
uncertainty, time-varying covariates, etc’. The error term in the TWTP function, however,
is independent of time since the structure of TWTP is static at the moment of survey.

In summary, since TWTP is a lump-sum value that an individual may have for the
environmental project at decision moment, 7WTP model does not require researcher to
sum the discounted errors across time or impose restrictions on the temporal relation of
multi-period error terms. Individual specific covariates are not discounted but affect the
implied discount rate through the estimation. TWTP provides a reasonable and realistic
valuation structure about how an individual thinks of the environmental project proposed
in the survey, without assuming the time-separable WTP stream at each period.

The benefit stream of the oyster reef restoration program includes explicitly a

multi-period build-up phase for the five- and ten-year versions and constant benefit

? However, Carson et al. (1997) showed that CV estimates exhibited no significant sensitivity to the timing
of interviews.
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stream with the assumption of no degradation after the completion of the project. Let the
terminal period of the project be L and the accumulation rate of the benefit be b over the

life of the project, then the benefit stream is B, =btif t <L and B, =bL after L. Note

that L is not the life of benefit but the terminal period of project. The expected benefit at
the choice moment is a discounted sum of benefit stream with the implicit discount rate

of benefit such that

7(B,L r)zflL
S (14)”

where r, is a discount rate for the benefit stream and B, is a measure of the benefits in

period ¢. For simplicity, assume an infinite benefit stream (7, =co0 ). Summing over the

infinite time horizon, the discounted benefit stream becomes

L t - & 1 ~
7(B,L,1,)=bYy ———+BY ————=by,+By, (1.2)
=1 (1+rb) =L+ (1+rb)
Wherey_i t [ a+p) -1 L ) ‘i (I
LG (1+rb)H n+n)" (lJrrh)bl e t=L+1(1+rb)H n(1+n)"

and B=b-L.

With an alternative definition of the willingness to pay for the benefit from
environmental change, the insensitivity of WTP is defined such that 7TWTP does not
change due to the payment schedules. Insensitivity of TWTP to payment schedule implies
the consistency of respondent’s valuation of environmental project. Therefore, the
assumption in the existing literature that PVWTP is same across payment schemes can be

tested by comparing TWTP in different payment schedules. The classical definition of

12



(strong or weak) insensitivity of WTP depends on the consistency test explained in the

section 1.4.

1.3.2 Present Value of Cost and Implicit Discount Rates
The value of the cost stream is typically derived in terms of the present value.

Since the annual amount of cost is constant over payment schedule (C, ; =C)), the

general form of present value of cost (PVC) is

Ic

C. _
PVC = Z—’ —=C,f3!
=1 (1+I’C)

where j represents the payment schedule, 7. is the terminal period of the cost and 7. is

discount rate of the cost stream. The discount rate or discount factor of the cost stream
can be different from the discount rate of benefit stream since it depends on different
factor such as market discount rate, belief on the financial market, uncertainty, etc. PV'C
has parameter values specific to the payment schedule. For a lump sum payment scheme

with C, in period 1, PVC becomes
PVC, =C,. (1.3)

implying that 3. =1. PVC of annual payments with C, over 7, years is

PVC2:C2(1+VCJ{1— ITJ. (1.4)
rc (1+7’C)C

and B2 =(1+1, )(1 ~(1+r) " )/rc . Finally, PVC of perpetual payment of C, is

13



PVQzC{HFC]. (1.5)

Te
with . =(1+17.)/r. when the discount rate is positive. When the coefficients of (1.3),

(1.4) and (1.5) are identified, then the discount rate of cost stream is estimated by the
ratio of any pair of coefficient estimates. Abnormally high discount rate implies the

conventional weak insensitivity of WTP.

1.4 ESTIMATION MODELS
1.4.1 Linear TWTP Model

Unlike PVWTP, TWTP is flexible in the functional form of systematic

component'’. The simplest case is assuming a linear function of f () in equation (1.1)

such as
TWTP, = By7(B,L,1,)+xf+¢,.
With a linear TWTP function and a normal error distribution with mean zero, the
probability that a respondent i will vote for a program & given the payment version j is
P(ivote for k| j) = P(TWIP, = PVC,))

P(Bym, +x, B, +¢,,,2C,B) (1.6)
% (Bsﬂ'k + xi,,kﬁk - C/Bc/‘)

where :5)3 and ,[?k are parameters normalized by the standard error, o, ;, and CI)() is the

standard normal cumulative distribution function. Equation (1.6) is the standard

probability of a vote for the project in a probit referendum model and the probability of

' Duye to the discounted summation, PV TP model cannot be estimated except the case of linear function.
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vote against is defined as the complement to the probability of vote for.'" Generally, the

variance of the error term is conditional on the project version (k) and payment scheme
(/). Note that the probability in (1.6) cannot identify BB because the variable of benefit

stream is invariant to project length and payment scheme.
To identify the coefficient of benefit streams, it is necessary to pool data across
project versions and use a dummy variable to capture the difference of benefit stream

across the different projects. Using a dummy variable for project version (d, ), the

probability conditional on payment schedule is
K ~ ~ ~ .
P(i vote f0r|j)=CD(deﬂk+x,.'ﬂ—Cjﬂéj. (1.7)
k=1

The estimation model assumes that 7WTP varies in the mean across the project version
but the error term may have different variance across payment schemes. Pooling data
over payment schedules provide conditional probabilities that vary over project and

payment scheme:
P(i vote forlk) =®| Syr, +x.->.d .C,BL |. (1.8)
j=1

where d; is a dummy indicator for payment type j. Parameter f3, is not identified in

equation (1.6) but ﬁé provides information about the discount rate of cost stream. If the

model is homoskedastic across project and payment scheme and if TWTP is different
only in the mean across the project version, then the data can be pooled over all project

versions and payment types, and probability function of equation (1.6) is simplified to be

' See Haab and McConnell (2002) for details.
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P(i vote for):d)[idkﬁk +x;ﬁ—idjcjﬁg] (1.9)

The consistency of TWTP in (1.7), (1.8) and (1.9) and constant variance in (1.8) and (1.9)
are strong assumptions that will be subsequently relaxed and tested.

If the survey design includes more than three different benefit streams with the
same final level, the discount rate of benefit stream can be estimated from the ratio of
parameter estimates of the dummies for the project. Some primary conditions are; the
data should be homoskedastic across different project version, the difference of benefit
stream among projects is measurable and the discount rate of benefit stream is constant.

Let ¢, and ¢, be terminal periods of two projects. The ratio of two parameter estimates

for dummies of project version provides the information of the discount rate of benefit

stream such as

3 -1
i:ﬁz (I+7)" -1 _ g ) (1+7r)" -1 B t,
'sz I rbz (I+ rb)tliz 7, (1 +7, )1171 I’b2 (1+ rb)tf2 7, (1 " 7},)1271

_ (1+7,)"" =(1+ (6, +1)5,) oy
(1+5,)*" = (1+(6, +1)1,) (1+n)

The discount rate of benefit stream is solution of nonlinear equation (1.10). Unfortunately,

(1.10)

the oyster reef restoration data does not have enough project versions to apply the

equation (1.10) for estimation of discount rate of benefit stream.
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1.4.2 Exponential TWTP Model
An exponential WTP has been widely used for modeling positive WTP.

Assuming a log normal error distribution, the functional expression for exponential

TWTPis TWTFE,, = exp(ﬂgﬂk +X, B+ ) , where ¢, ; is a normal error distribution
with mean zero and variance O',i ;- By taking the natural log on both of TWTP and PVC,

the binary response variable is one if S,7, +x;, B, +¢, ;> ln(PVC_I. ) , and zero

otherwise. The probability of vote for in the exponential TWTP is

P(i vote for & | j):P(g,.’k)/ > ln(Cjﬂ'C/)—x;,kﬂk)Zq)[xi',kﬁk —L[ln(C,)+ln(ﬂ-C/)]j.
A o A

ki
The parameter estimate of InC; is the inverse of standard deviation of error term as in
the conventional probit model. Since f/. is invariant to project length and payment
scheme, the split sample model cannot identify the discount factor of cost stream. Thus,
except TWTP of one-time payment scheme for which the discount factor 3/ is one,

TWTP are not identified across different payment schedules. Nonidentification problem
arises in the conditional probability corresponding to (1.7), which is expressed as
K . o 1 )
P(ivote for| j)=®| > d, B, +x;ﬁ-—[1n(cj)+1n(ﬂg )}
k=1 Gj

where o; is assumed to be homoskedastic across different project version.

With the assumption of consistent 7TWTP, a pooled model can identify the
discount factor of the cost stream. Consider the exponential 7WTP substituted into the

equation (1.9),
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P(i vote for) = cp[f:dkﬁk wp-L3a [ln(C7)+ln(ﬁé)]]. (1.11)
2 2.4, In(C

j =l
Since In /™ =0, it is natural to use dummies for j = 2 and 3 in the model by dropping
d,_,. The pooled model can identify the discount factor without further assumption of
o;. If the error term is homoskedastic across payment scheme, then the equation (1.11)

is simplified to
LI ~ 1 1 < -
P(i vote for) =(I)(deﬂk +x{,b’——1n(C)——Zdj ln(ﬂé)J-
k=1 o O ja

Again, without B/~ =1, i.e. lump-sum payment schedule, the model cannot estimate

TWTP.

1.4.3 Initial Estimation

Table 1.1 reports the response in each scenario and each cost amount shown in
Figure 1.1. A and B indicate the project versions of 5- and 10-year and 1, 2 and 3
represent payment schemes of one-time, annual payment and perpetuity, respectively.
Among 1,710 who participated in the mail survey, 577 respondents replied to the survey
questionnaire resulting in a 33.7 percent response rate. After dropping incomplete
responses, 519 observations were used for the estimation and tests of insensitivity. For a
conservative estimate of TWTP, the ‘I don’t know’ response is assumed to be ‘vote
against’ response (Carson et al. 1998, Groothuis and Whitehead 1998).

As can be seen in Table 1.1, the proportion of respondents voting for the project

violates the monotonicity of probability distribution in two cases: from Ala to Alb (case
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1) and from B3b to B3c (case 2). These problematic features of data may distort
estimation result and temporal insensitivity test because they arise in the potential tail of
the distribution. In nonparametric estimation, the pooled adjacent violators algorithm
(PAVA) has been suggested by Kristrom (1990) and Haab and McConnell (1997) to
provide a self-consistent bounded estimator such as Turnbull estimator for the
inconsistent data. In parametric estimation, however, the violation of monotonic
probability distribution may distort estimation result and temporal sensitivity test because
the violation arises in the potential tail of the distribution'?.

Table 1.2 shows the summary of demographic variables of respondents. SEX is a
dummy variable that is one for female. HS, AGE and EDUC are the size of household,
age and education variables. RE is an ordinal variable for ranking the role of oysters
among food, economy, environment and fish habitat. RE = 1 represents that respondent
thinks environment is the most important role oysters play in the Chesapeake Bay and RE
= 4 shows that environment is the least important.

The estimation model utilizes the linear function of TWTP such that, for instance,
the conditional probability on the payment schedule (equation 1.7) is

P(i votes for |j)
=@ (B, + B ,FIVE+ B RE + B,,HS + 3 ;SEX + B, AGE + 3 ,EDUC - BC,)
where FIVE is a dummy indicator that equals one if individual i receives the five year

restoration plan and zero otherwise. The model was estimated using Gauss 5.0.

"2 Since the estimate of mean WTP is sensitive to the design of payment set (Cooper and Loomis 1992,
Kanninen, 1995, Roach et al. 2002), Kanninen (1995) recommends to avoid obviously excessive payment
amount. Illogical response to the excessive payment generates seriously biased estimate of WTP.
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Table 1.3 shows the estimation results of split and pooled data corresponding to
the estimation model of equations (1.6) and (1.7). The first six columns show the
estimates of split sample for each project and payment type with potential
heteroskedasticity and different TWTP in each scenario. The last three columns are
estimation results of pooled data with assumption that TWTP between five and ten-year
projects is different in the mean of TWTP. FEE1, FEE2A, FEE2B and FEE3 represent
payment vectors for one-time, annual payment for five years, annual payment for ten
years and perpetuity-type payment, respectively. At the bottom of the table is reported the
mean of log likelihood value of each estimation. As explained before, due to the violation
of the monotonicity of probability function in the response of B3 category, parameter
estimate of FEE3 has a negative sign. Note that the parameter estimates of FIVE, a
dummy for project A, are insignificant across all payment types in the last three columns
of Table 1.3. Statistically, willingness to pay for ten-year project are same to that of five-
year project which has faster provision of the identical final target quality.

Table 1.4 and 1.5 report the estimation results of equation (1.8) pooling all
possible combination of payment types in five and ten-year project, respectively. Table
1.6 shows the estimation result of same combination for the data pooled over two project
versions, i.e. equation (1.9). Note that, in Table 1.5 and 1.6, estimates of FEE3 are
smaller than that of FEE2B. The scaled model and estimation result of the model are

explained in the next section.
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Average Std. Dev. Minimum Maximum
Size of Household 2.7553 1.3768 1 12
Age 49.7919 14.4101 15 90
Education 14.9075 2.6797 8 20

Female Male
Sex 273 (52.6) 246 (47.4)

1 2 3 4

Ranking of Environment 399 (76.9) 65 (12.5) 36 (6.9) 19 (3.7)

Parenthesis reports percentage.
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1.5 TEMPORAL SENSITIVITY TEST OF TWTP AND IMPLICIT DISCOUNT
RATES
1.5.1 Sequential Test

PVWTP model recovers the mean of annual WTP’s for each payment schedules
and derives implicit discount rate by equalizing PVWTP of annual payment to WTP of
lump-sum payment scheme. The procedure assumes that PVWTP’s are consistent and
error terms are invariant across payment schemes'’. This essay relaxes the assumption of
consistency and homoskedasticity and tests them using a sequential test proposed by
Swait and Louviere (1993) and adapted by Haab, Huang and Whitehead (1999) to a
contingent valuation framework. Implicit discount rate is calculated based on the test
result.

The null hypothesis of a sequential test consists of two steps of separate tests:

YAl
GI = O-m
where / and m indicate different payment schedules. In the first stage, the composite

hypothesis tests the consistency of TWTP ( H;' = { Bi =P } ), without restriction on

variances across payment schemes. Note that parameters in the first stage are coefficients

of TWTP with different payment schedules. The second stage tests the hypothesis of

invariance of the error term across payment schemes ( H, = {0'1 = O'm} ). In both stages,

LR (Likelihood ratio) provides simple test statistics.

13 Violation of consistency causes unidentification of PVWTP and discount rates, and violation of
homoskedasticity leads to unidentification of PVWTP. For example, the result reported in Bond et al (2002)
does not seem to be consistent.
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The testing procedure can be conducted as follows. To test the consistency

hypothesis H;', the unconstrained model is split sample data reported in Table 1.3. The

restricted model constrains parameters of TWTP to be equal across payment schemes
without restriction on the variance. Following Haab, Huang and Whitehead (1999), the
restricted model, named as rescaled model, can be estimated by normalizing the variance
of one sub-sample (lump-sum payment scenario) to be one and estimating the relative
variances of the other two sub-samples. The positive standard deviation for the pooled

data is defined as
o, :aexp(5'wj):o-exp(§2d2+53d3) (1.12)

where o is the standard error of lump-sum payment scenario. A straightforward method to
estimate the restricted model is a probit model with heteroskedasticity (Limdep 7.0
provides such a model). Estimation result is reported in the column titled rescaled of
Tables 1.4, 1.5 and 1.6.

If the first stage hypothesis is rejected in the LR test, then stop the procedure.
Rejection of the first hypothesis indicates that TWTP is sensitive to the payment scheme,
i.e. inconsistency of 7WTP. Respondent changes his or her value of the environmental
project depending on the payment scheme.

Conditional on the failure to reject the first hypothesis, the second step is to test
heteroskedasticity across payment schedules. The unrestricted conditional model in the
second stage is the rescaled model used as the restricted model in the first stage. The

restricted conditional model is the pooled data model stacking all samples with equal
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parameters in 7WTP and dummies for payment scheme. Tables 1.4, 1.5 and 1.6 also

reports the estimation results of restricted conditional model under the title of pooled.
Parameter estimates of payment schedule imply the information of the discount

rate of cost stream. With failure to reject the second stage of the sequential test, the

discount rate is easily derived from the ratio of parameters. Recall the normalized

parameters of PV C defined in equations (1.3), (1.4) and (1.5) such that ﬁ’é = 1 ,
o

~ l+r 1 ~ 1+, . .
Br=—5C|1- — |, and B =—= . If the error variance is constant across
or, (1 +7.)¢ or,

payment type, then an implicit discount rate is

=—~'éé~ 1.13
“TR-R (1

or the solution to the nonlinear function of

i%:(”erl— L] (1.14)
AU )| (en )

If the discount rate varies on time intervals, 2 and S provide different implicit

estimates of the discount rate.
The rejection of the second hypothesis, however, shows the heteroskedasticity of

TWTP across payment version although TWTP is time-consistent. Since the structure of

the standard deviation is defined to be &, = oexp(8,d, +&,d; ) , ratios of parameter

estimates are
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and

@zﬁLHrCJI_ S (1+FC]1_ 1
Bé O, \ It (1+rc)rc eXp(éA‘zdz) Te (1+FC)TC |

Using estimation result of the rescale factor, exp(8,d, +&,d; ), implied discount rates can

be calculated.

1.5.2 Sequential Test Results

Each project version (A and B) has been tested for consistency and
homoskedasticity of data pooling all three payment schemes (one time vs. annual
payment vs. perpetuity) and through pairwise comparisons of each of the payment
schemes (one time vs. annual; one time vs. perpetuity; annual vs. perpetuity). The
composite hypothesis was also tested with data pooled over five and ten-year projects
using a dummy variable (FIVE).

Table 1.3 provides the split sample estimates for each project version A, B, and

AB (5 year, 10 year, and 5-10 year combined). The log likelihood of the unrestricted

model is In(L, )= zj n, -ln(L ; ) , where n, is the number of observations and ln(L j) is

j=1
the mean of log likelihood in payment scenario j. For instance, the unrestricted log
likelihood of A1 (5-year one-time payment) versus A2 (5-year annual payment) is (-

.564*%101-.585*83=-105.52). The restricted log likelihood are the log likelihood of
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rescaled model for relevant combination of payment schedules in Table 1.4, 1.5 and 1.6.
For A1 versus A2, the restricted log-likelihood value is -.591*184 =-108.74. The LR test

statistic for the hypothesis of Al and A2 is LR = —2(In(L, )—In(L, )) = 6.44 . The

likelihood ratio statistics is distributed as y> with degrees of freedom (df) equal to the

number of restrictions (in Al versus A2, df = 7). With 95% confidence level, the
consistency hypothesis of A1 and A2 fails to be rejected.

Conditional on failure to reject the hypothesis of consistent 7WTP, the scaled
model represents the unrestricted conditional model for the test of homoskedastic errors
distribution across payment schemes. The restricted conditional model is the estimation
result of pooled data in Table 1.4, 1.5 and 1.6. For A1 and A2, the restricted conditional
log likelihood value is -.595%184 = -109.51, thus the LR statistic is 1.43 with df = 1. The
test for A1 and A2 shows that respondents value the oyster reef restoration project
consistently and the error term unobservable to researcher is identically distributed.

Table 1.7 reports results of the sequential test for all possible combinations. LR1
is the test statistics for the first stage, consistency of TWTP across payment schemes, and

LR2 is for the homoskedasticity conditional on the first stage. Except AB1+3, all
combinations of payment schedules fail to reject the consistency hypothesis, £} = B .

Except AB1+3 for which the second stage test is not necessary, the test results of the
second hypothesis shows that the variance of TWTP is not statistically different across the
payment type. Consequently, test results demonstrate that the value of oyster reef

restoration program depends only on the benefit stream and individual specific variables
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but not on the payment schedule determined by researcher and that discount rate of cost
stream can be derived from pooling data across payment schedules.

Based on the result of sequential test, Table 1.8 reports various implied discount
rates from all possible combinations using equation (1.13) and (1.14). Due to the

violation of monotonic probability in B3 scenario, the long term discount rate 7, in ten

year project is problematically high (5,647%). Furthermore, the ill defined data generates
larger parameter estimate of FEE3 than FEE2B, which means that we are unable to
calculate the discount rate for this case. Except the case in which estimates are
insignificant or cannot be calculated due to negative coefficients, the numerical solutions
for implied discount rates range from 20% to more than 100%'*. Discount rates are still
relatively high but much lower than previous studies. Interestingly, for the five year

i1s much lower than short term discount rate, 7,

project, the long term discount rate, 7 A

3
implying that data shows hyperbolic discount rates'”.

Finally, Table 1.9 shows the result of average and 95 percent interval of expected
TWTP estimated through Krinsky-Robb (K-R) procedure (Haab and McConnell 2002).
The first column is TWTP of one-time payment scheme using the estimation result in
Table 1.3. TWTP’s of other model are estimated based on consistency and
homoskedasticity of TWTP, except the combination annual and perpetuity payments. In
Table 1.9, TWTP ranges between $263 and $277 for the five-year project and between

$159 and $177 for ten-year project. The difference of TWTP between two project

' Note that the discount factor defined in equation (1.5) is derived under the restriction that » >0 .
'> The hyperbolic discount rate implies that larger discount rate is applied to near-term returns than to
distant-term returns (Cropper and Laibson 1999).
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versions is approximately $100. The result is expected because five-year project provides
the benefit with faster rate than ten-year project does. When the data is pooled over five

and ten-year projects, the difference reduces to approximately $30 and is statistically

insignificant.
1+2+3 1+3 1+2 2+3

A

LR1 15.75 10.23 6.61 6.57

LR2 1.16 1.02 1.43 0.60
B

LR1 10.12 8.79 1.72 4.81

LR2 1.12 0.58 1.25 0.02
AB

LR1 17.84 13.75 5.95 5.07

LR2 1.93 — 2.49 0.05

* Rejected in 90% confidence interval in Chi-squared distribution with d.o.f of seven.

Table 1.7: Test Result of Insensitivity to Temporal Payment Schedules
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1+2+3 1+3 1+2 2+3

A
"rig 0.46 0.45 — —
ria 0.94 — 0.98" —
Sraa 0.22 — — 0.20

B
"ris 56.47" N/A — —
rs 1.62 — 1.14 —
rag N/A — — N/A

AB
s 1.20 — — —
ria 1.29 — 1.02 —
ris 0.96 — 1.05 —
Sran 0.87 — — 0.38"
Sras N/A — — N/A

"rag 0.43 — 1.31 0.12"

N/A indicates that coefficient of Perpetuity is less than that of other payment schedule.
* One of coefficients of FEE is not significantly different from zero.

t Calculated using coefficients of One time and Perpetuity in pooled data.

1 Calculated using coefficients of One time and Annual in pooled data.

§ Calculated using coefficients of Annual and Perpetuity in pooled data.

11 Calculated using coefficients of 5 and 10 year Annual payments in pooled data.

Table 1.8: Implicit Discount Rates
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One Time Project 1+2+3 1+3 1+2
A
TWTP 263.98 268.50 263.28 276.70
95% KR  (170.48 629.97)  (186.81 517.92)  (184.53 510.33)  (182.52 645.28)
B
TWTP 176.47 163.91 159.92 176.03
95% KR (135.35 223.47) (12299 221.41) (11546 215.18)  (134.99 231.88)
AB
TWTP" 233.49 218.68 216.99 233.82
95% KR (177.78 318.74)  (167.45 296.22)  (165.13 294.56)  (175.86 324.17)
TWTP" 181.82 198.22 189.01 194.98
95% KR (126.74 249.03)  (148.86 270.05)  (139.13 257.57)  (139.71 271.92)

" Temporal willingness to pay for five-year project
" Temporal willingness to pay for ten-year project

Table 1.9: Mean of PVWTP and 95% Interval by Krinsky-Robb Procedure
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1.6 CONCLUSIONS

Previous studies have defined and tested the insensitivity of willingness to pay to
temporal payment schedules in terms of the present value of willingness to pay. In spite
of the simple concept of insensitivity, those studies have imposed restrictive assumption
that the willingness to pay is time-separable and the present value of willingness to pay is
identical across different payment schemes. The simple and widely used concept of
present value may not be suitable in the binary decision process of CV studies. In this
essay, the insensitivity to payment schedule is redefined in terms of the temporal
willingness to pay. Different from the classical definition of the temporal embedding
effect, the insensitivity of temporal willingness to pay to payment schedule demonstrates
the consistency of valuing behavior. Using a sequential test proposed by Haab et al.
(1999), assumptions such as consistency and homoskedasticity of willingness to pay are
tested before deriving implied discount rate.

The sequential test with oyster reef restoration program in Chesapeake Bay shows
that holding the length of the project constant, temporal willingness to pay is statistically
identical across the payment types. In holding the payment scheme constant, however,
temporal willingness to pay does not vary significantly across project versions. That is, in
spite of fast supply of environmental benefit, temporal willingness to pay for five-year
project is statistically same with that of ten-year project. Respondents may consider the
change in the environment but do not care how fast the benefit is supplied once the

project is implemented.
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Homoskedasticity of the error distribution across payment types confirms using
the pooled data to derive implied discount rate of the cost stream. Estimated discount
rates shows relatively high and significantly varying across payment schemes and project
versions. However, five-year project show consistently high discount rate in short term
and low discount rate in long term. Unfortunately, the response rate of vote for in ten-
year project with perpetuity payment scheme violates the monotonicity of probability
function. Due to small number of payment points, the violation could harm the estimation
result seriously.

The benefit stream scenario was not enough to identify the discount rate of the
benefit stream. Elaborate design of the benefit stream and payment schedule will provide
more informative and exact result about the temporal structure and discount rate of
benefit and cost streams. For example, more than three scenarios of the benefit stream
enable researcher to estimate the discount rate of the benefit stream based on the
sequential test. Individual discount rate with covariates for discount function can be
estimated with more observations. Other functional form of willingness to pay or
distribution is also recommended for future study with careful application of test

procedures.
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ESSAY 2

OPTIMAL, ROBUST kk AND UNIFORM EXPERIMENTAL DESIGNS IN
BINARY CHOICE MODEL: ANALYTICAL AND EMPIRICAL COMPARISON
OF EFFICIENCY AND BIAS

ABSTRACT

While bid (payment) design affects the efficiency and bias of parameter and
welfare estimates in dichotomous choice contingent data, the contingent valuation
literature does not provide well-established guidelines for practical bid design. In this
essay, bid design utilizing a predetermined uniform distribution is proposed as a practical
and robust alternative to existing optimal or naive bid designs. Analytics and simulations
show that the uniform design has lower bound of efficiency at 84 percent of D-optimum.
The uniform design outperforms optimal designs when initial information is poor and
outperforms naive designs when true values of parameters are known. Simulation based
on the existing data demonstrates that the uniform design provides higher efficiency and
less bias than other designs even under flexible model specification such as exponential

willingness to pay function.
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2.1 INTRODUCTION

Binary response experiments have been widely used in fields as different as
biology and economics. For example, in biological assay studies, clinical trial
participants receive a randomly assigned ‘dose,” and then observed at some point in the
future for their ‘response’. In many cases, the response variable takes the form of a binary
indicator: alive or not, cancer-free or not. The varying dose information combined with
the binary response variable form the necessary information to estimate the dose-
response function. In economics, the contingent valuation method (CVM) closely
mimics the biological assay framework. CVM measures consumer willingness to pay
(WTP) for goods or services for which traditional markets do not exist: these are often
public goods. Hypothetical markets, in which survey participants must decide whether to
purchase a good or service (binary response) at a randomly offered bid (dose), act as a
proxy for market based decisions. The dose-response function estimated from the survey
responses gives a measure of WTP (or demand) for the good or service.

A pressing question in such dichotomous choice contingent valuation studies
becomes, what is the optimal set of bids from which offered prices should be drawn and
offered to subjects to get the most information about the population willingness to pay for
the good or service of interest? Similarly, biological assay researchers must choose the
optimal set of ‘doses’ to apply to the sample of participants to provide the most
information about the population response function.

Such examples of experimental studies and environmental economics describe the

unique statistical problem of designing the experiment. In the linear regression, the
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optimal design is to establish the limits of the support of the covariate and choose an
equal number of observations from both of endpoints of the support (Casella and Berger
2002 pp 547 - 8). However, the simple design in the linear regression case cannot be
applied to binary data since estimation result from binary data hinge critically on
experimental design and unknown true parameters.

Experimental design points are often chosen based on an ad hoc design or based
on an optimal design rule that requires prior knowledge of the true response function. The
bias of parameter estimates is analytically a function of experimental points and unknown
true parameters (Copas 1988), and the choice of experimental points results in
dramatically different point estimate (Cameron and Huppert 1991, Cooper and Loomis,
1992, Kanninen 1995). Although parameter estimates converge asymptotically to the true
parameter, the standard deviation of parameter estimates still depend on both
experimental design points and unknown true parameters (e.g. Abdelbasit and Plackett
1983, Sitter 1992).

This essay proposes a practical and viable alternative to existing experimental
designs. While the proposed design has applications to many fields, the essay focuses on
the problem of designing the optimal bid set in dichotomous choice contingent valuation.
The new experimental design, named the uniform design, draws upon the work of
Lewbel et al. (2003) which assumes a continuous bid distribution to solve an
identification problem in nonparametric estimation of willingness to pay in contingent

valuation.
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Boyle et al. (1988) suggest a similar continuous bid design known as the “method
of complementary random numbers,” that constructs an empirical cumulative distribution
function by utilizing prior information on the distribution of WTP. The difference
between the uniform design and the method of complementary random numbers is that
the uniform design selects random bid points from a predetermined uniform distribution
not from the empirical distribution. Researchers can implement the bid design simply by
deciding the range of the uniform distribution based on prior information of the mean and
variance of willingness to pay.

The primary goal of the new design is to overcome the serious dependence of
optimal designs on the true parameters. Efficacy of the proposed design is measured by
the relative size of information matrix. For analytical reason, we assume that the true
distribution is a logistic distribution. Compared with other designs, including optimal
designs, the uniform design dramatically reduces the risk from poor information and the

cost of deriving an extensive optimal design.

2.2 OVERVIEW OF EXISTING OPTIMAL DESIGNS

Suppose that a public project (G) enhances the environmental quality and an
individual has willingness to pay (WTP ) for implementing the project. Contingent
valuation study draws the information of welfare change from the project by directly
asking questions about the willingness to pay to the individual. Due to incentive
compatibility, a dichotomous choice question stylized as “Would you be willing to pay

$b, for G?” is a typical form in the study, rather than an open-ended question such as
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“How much would you be willing to pay for G?” Therefore, to implement a CV study, a

researcher needs to design the set of b, : the value (b,) of bid (payment) points, the
number of observations at each point ( #, ) and total number (J) of bids'®. For randomly
assigned cost, b,, a subject indicates whether b, is acceptable or not. The binary response
for the dichotomous choice question is one if WTP is greater than b,, and zero otherwise.
For tractable analysis, assume that WTP,. for G has a constant mean (1) and an
additive i.i.d. error component ( £,) with zero mean and constant variance (o ):
WTP = pi+¢,. Let F(-) be a logistic distribution function and f(-) be a logistic
probability function of the error term ¢. Then, the probability of binary response of one is
Pr, (yes) =Pr, [,u+g,. >bi] :F(,B(,u—bi))zF(a—,Bbi) (2.1)
where F(z) = exp(z)[l + exp(z)]_1 and {y,ﬂ} or {a, ﬁ’} are parameters of interest.
Usually, parameterization of the model by either of { up } or {a, p } does not change

properties of estimate, so this essay keeps parameters { uwp } for analysis. Note that
logistic distribution has unique property which simplifies the analysis,
OF, /00 = f,=F,[1-F].

The log likelihood of probability (2.1) is expressed as

' The final number of observation at each point, n, could not be decided in prior of the survey of CV

studies by researcher when the survey is in the mail format. Instead, the researcher can decide how many
survey letters will be distributed with each bid point. In other survey formats such as in-person interview,

n, can be optimally designed.

42



log L = Z{ ~y,)in[1- F(ﬁ’(,u—b,.))]+yilnF(,B(,u—bl.))} (2.2)

where y, is binary response vector. The maximum likelihood estimate (MLE) is a

solution to the set of nonlinear equations of the first derivative of the log likelihood
function (the score function) set to zero. From equation (2.2) and the property of logistic

distribution, the score function becomes

= 2 -F /
S(,u,ﬁ)— (yi J[u—b) (2.3)
Define the weightw, as

eXP[ﬁ(ﬂ_bi)]
{1+exp[ﬁ(,u—bi)}}2

w.

i i

then, the Hessian matrix of the logit model, the second derivative of (2.2), simplifies to

l

beH,u,[)’ ZW[

j £ u-— b) The Fisher’s information matrix is the

negative of Hessian matrix such that

zwz‘ﬂz Zwiﬂ(/u_bi)

I(u,B)= ! ' 2.4
WS b)) Son(uon) oY

and the asymptotic variance-covariance matrix of estimates is the inverse of the
information matrix.
ML estimate from (2.3) is a consistent estimate when the model is specified

correctly. Thus, the main concern of optimal designs is to choose J, b, and n, to get the

most efficient estimate under some statistical criteria. Since the Fisher information matrix
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is the lower bound of variance-covariance matrix, the optimality of design derives from
some properties of information matrix. For instance, A-optimal design minimizes the
trace of the inverse of information matrix, i.e., trace of variance-covariance matrix. Since
the trace of the variance-covariance matrix is the summation of its diagonal entries that
are variances of corresponding parameter estimate, A-optimal design minimizes the
summation of the variance of all parameter estimates. A-optimal design results in a two-
point symmetric design in the class of symmetric designs (Sitter and Wu 1993a, Mathew
and Sinha 2001).

C-optimal and Fiducial designs minimize the variance or the asymptotic variance
of the summary statistic of interest, such as mean or median of willingness to pay. Using

Slutsky’s theorem and the delta method, the asymptotic variance of estimated median is'’

A A

Var[[z =%j =[%J2 {Var(d)+ 22 Var(,é)—2%cov(d,[;’)}.

C-optimality suggests a single optimal design point that is equal to the true mean or

median (Wu 1988, Ford et al. 1992). However, when WTP function consists of a constant
term and covariates, the single point is merged into the constant and the variance cannot
be estimated. C-optimal design cannot identify parameter estimates of W7P function.
Instead of the asymptotic confidence interval, Fiducial design minimizes the
length of the fiducial interval proposed by Finney (1971) using Fieller’s theorem.
Fieller’s theorem shows the exact confidence set (parabola) of the ratio of normal random

variables given desired confidence level and the roots of the parabola are the endpoints of

' The asymptotic variance of estimated mean is same with that of median when the model is linear.
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the confidence set (See Appendix B). Fiducial interval is generally superior to the
asymptotic confidence interval (Sitter and Wu 1993b). Alberini (1995) provides the

expression of the square of the length of the fiducial interval as

(l—g)_2 ;Z var(a)-2/cov(a, )+ i’ Var(ﬂ)_g(var(a)_%&’f)ﬂ

where g =¢* var(f)/ /3* and ¢ is the value of the standard normal variate for the

corresponding probability mass. Fiducial design consists of two or three points depending
on the sample size and confidence level (Abdelbasit and Plackett 1983, Alberini 1995).

D-optimality minimizes the volume of the confidence ellipsoid of parameter
estimates. Since the determinant of a matrix represents the volume of the matrix in k-
dimensional space, the volume of the confidence ellipsoid, i.e. the volume of variance-
covariance matrix, is inversely proportional to the determinant of Fisher’s information
matrix. From the equation (2.4), the determinant of information matrix becomes

N N N 2
det[1(B)]=p {ZW[ZW[ (u—-b) —[Z‘Wi(y—b’.)} } (2.5)

where N is the total number of observations. D-optimality turns out to maximize the
determinant of the information matrix in equation (2.5). Note that D-optimality considers
the entire volume of variance-covariance matrix including off-diagonal elements while
A-optimal designs focus only on the summation of diagonal elements of variance-
covariance matrix. D-optimal design has two design points symmetric with respect to u

(Rosenberger and Kalish Technical Report 33 Department of Statistics Pennsylvania
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State University 1978, Abdelbasit and Plackett 1983, Minkin 1987, Ford et al. 1992,
Nyquist 1992, Mathew and Sinha 2001).

Optimal designs, except the MSE-based design, typically consist of one, two or
three bid values that depend on the correct model specification and true parameters of the
underlying response function. The fundamental paradox of the optimal bid design
literature is that to achieve optimality requires knowledge of the true parameters and
distribution. If such information is available, estimation is unnecessary (Haab and
McConnell 2002). The information required for the design is exactly the information to
be estimated. Because all existing designs require some initial information about the
parameters, the efficacy of each design hinges on the quality of that prior information.
Poor initial information about the true parameter values results in a loss of efficiency'®
relative to the efficiency obtained from the optimal design applied with perfect
information' (Abdelbasit and Plackett 1983).

An obvious solution for efficiency loss due to poor initial estimate is a sequential
design using the consistency of estimates (Abdelbasit and Plackett 1983, Minkin 1987,
Nyquist 1992). Sequential designs divide the experiments into a series of sub-
experiments. The bid design is updated after each iteration based on estimates of the
parameters garnered from the previous stage. Consequently, sequential designs have
more design points than optimal designs. The total efficiency of a sequential design is the

summation of efficiencies at all stages. Successive updates improve the efficiency of the

'8 Efficiency is defined to be a ratio of the determinant of the information matrix with poor information to
the optimal determinant. This is defined and discussed in detail in section 2.3.

19 See for example Abdelbasit and Plackett (1983) who derive the efficiency losses for D-optimal and
Fiducial designs with less than perfect information.
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design for poor initial estimates as Abdelbasit and Plackett (1983) argue “increasing the
number of subjects at each level of the stimulus does not necessarily compensate for a
poor initial estimate, but is more likely to do so if the number of design points in
increased”. The procedure can be designed more efficiently by considering how good the
initial estimates turns out to be once the previous estimation is conducted (Minkin 1987).
In spite of intuitive appeal, however, the practicality of a sequential method is still in
question in contingent valuation applications.

Alternatively, Sitter (1992) introduces a minimax procedure to obtain robust
designs to prevent the efficiency loss due to the uncertainty of the initial parameter values.
The minimax procedure minimizes over possible design, the maximum of some
optimality function over a region of the parameter space. Restricting the possible designs
to the set of kk-designs, Sitter reports several tables under Fieller, C- and D-optimal
criteria, of robust design points and the space between adjacent design points for
rectangular region of 4 and f representing the experimenter’s uncertainty about the initial
estimates™. For instance, Table 2.1 from Sitter’s Table 1 shows optimal bid points and
space between points under D-optimality®'. The robust design has more design points
over a wider range than other optimal design criteria. Sitter (1992) argues that “the less
knowledge of the parameter values one has prior to the experiment, the more spread out
the design should be and the more design points should be used.” Although Sitter’s

design is robust to poor initial parameter estimates and the implementation for a specific

% A kk-design has k design points symmetric around x and allocates an equal number of observations to
each point.

2! The efficiency of the robust design is calculated assuming that true parameters are known in both robust
and D-optimal designs while the original table includes the ‘worst’ situation.
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application is straightforward, the robust design relies heavily on the initial information
and more seriously on the experimenter’s confidence about information.

Usually, optimal designs assume an unbounded symmetric error distribution for
the population. A series of articles provide some optimal design schemes under
asymmetric error distributions. Ford et al. (1992) derive C- and D-optimal points in the
case of complementary log-log and skewed logit models as well as the case in which the
design region is bounded. Cooper (1993) shows optimal bid designs in the case of gamma
or log-normal error distributions using MSE criterion. However, properties of optimal
designs with asymmetric error distributions are not known well yet. Furthermore, MSE
designs vary seriously depending on the underlying distribution and need intensive
calculation over all possible bundles of bid values and observations in each bid. In other
literature, Crooker and Herriges (2004) show the simulation result that the semi-
nonparametric (SNP) technique estimates the model better in terms of MSE as the range
of number of bids becomes wider, while the generalized maximum entropy (GME)
technique does better with much fewer bids.

In addition to the minimum variance (optimal efficiency) of estimate, bias of
estimate with small sample has been another issue in optimal designs. Note that although
the ML estimator from equation (2.2) is consistent, the finite sample properties of the
estimate are usually unknown. In specific application to CV studies, Cooper and Loomis
(1992) demonstrates that the estimate of mean WTP is sensitive to sample design through
simulation using the bid points grouped into upper, middle and lower values. The

simulation results also shows that an incorrect assumption about the underlying
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distribution exacerbates the sensitivity of WTP to bid design in small samples. Due to
sensitivity of estimate to bid values, Kanninen (1995) suggests a general rule-of-thumb
placing bids within 15" and 85™ percentiles of true WTP to avoid obviously excessive
bids. Alberini (1995) shows that an optimal design better for estimating the median tends
to perform worse for the mean or vice versa if the distribution is asymmetric.

As a special case of the small sample, Copas (1988) derives the closed form of
bias for logit estimate. By expanding the score function (2.3) to the proper order of

Taylor series, the bias of s” parameter is
bias, = %ZZZH”H“L ” (2.6)
ik
where the bias is defined as bias = E(é—@) , H” is the inverse of H = {ij} and L, is

the element of the Hessian matrix of the score function?. In a simple case of single

covariate in logistic regression, the bias of estimate is

_ 2w (2 :1) 2.7)
2( x.zw.)

where p, is the probability of bid point i (Copas 1988). The choice of bid points affects

the bias of estimates through A and L. The bias is decreasing as the number of

observation increases.

22 The exact expressions for H and L are provided in Copas (1988) or Kanninen (1995), and also in
Appendix B.
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B, 1B, 0 5 1.0 1.5 2.0 2.5 3.0 35
1.0y 2 2 2 3 3 3 4 4
h 3.09 3.15 3.35 2.53 2.99 3.46 2.99 3.17
Eff 1 9993 9883 7500  .6165 4847 4907  .4075
12 g 2 2 3 3 3 4 4 4
h 2.75 2.67 1.86 2.30 2.77 231 2.68 3.03
Eff 9789 9673 8638 8074 6815 6291 5216 4369
L5 2 2 3 3 4 4 4 5
h 2.50 2.41 1.69 2.15 1.86 223 2.57 223
Eff 9342 9119 8544 8368 7702 6543 5518 4724
20 g 2 2 3 4 4 5 5 6
h 2.12 2.02 1.50 1.40 1.76 1.61 1.85 1.72
Eff 8187 7795 8158 8547 7979 7134 6149 5321

Table 2.1: Efficiency of Equi-spaced kk-Designs (Sitter’s Robust Design)
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2.3 DETERMINANT AND EFFICIENCY OF D-OPTIMAL AND kk-DESIGNS
2.3.1 Determinant of General J-points Design

In this section are analytically derived the determinant and efficiency of the D-
optimal design and robust design as special cases of general kk-design. WTP and
underlying error distribution follow the same assumptions in the previous section; a
constant mean u of WTP and an i.i.d. additive error term of logistic distribution with
mean zero and a constant variance of o . From equation (2.5), the general expression of

the determinant of information matrix is

SIS » R )

i=1 j=1
where J is the number of design points and observations are equally allocated in each
point by n (= N/J). Obviously, the determinant depends on the relationship of each pair of
two bid points; the squared distance and the weight evaluated at each point. Intuitively,
increasing the distance between two points increases the determinant but due to product

of weights w, and w; the full effect will be mixed.
Define ¢, = ( u—>b, ) as the normalized point of i-th observation. By substituting
¢, into the equation, the determinant becomes

n
9 4

1

inW/ (ti -t )2 . (2.8)

J=l

det [I(y,ﬂ)l =

2 J
=1
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Suppose the researcher chooses actual bid points by selecting normalized design points

d, from a standard logistic distribution and then calculates the actual bid points based on
the design points and the prior information about the true parameter values™:

b =u,+d. /B, (2.9)
where g, is the initial information of the population mean and f; is the initial
information of the inverse of standard deviation. Note that d; is equivalent to
In[ p, /(1= p,)] in Abdelbasit and Plackett (1983). By substituting (2.9) into ¢, the
normalized point ¢, becomes

t,=PB(u—w)—d,(B/p,). (2.10)
Note that d, is in fact the design point by researcher and initial information, x, and f,,

distorts the design points through S ( H— ,uo) and S/ f,. From equations (2.8) and (2.10),

2
U, does not affect the squared distance, (ti -1, )2 = {ﬂ%(a’i -d,; )} . Furthermore, since w,

is symmetric in terms of ¢,, the deviation of , from u affects the determinant
symmetrically if the design is symmetric. However, poor information of § ( #/ f3,) affects
the determinant through either of inward or outward deviation of design point d,.

Substitute equation (2.10) into (2.8), then the determinant of J points design is

2 o) _ J J d —d. ’
dot _n eXp{ ﬁ(ﬂ ﬂo)}ZZexp{ﬁ(d.+dj)} ﬂﬁo( 114iAj1) @2.11)

» Most practitioners directly choose b; when implementing a CVM survey. For generality in design, the
optimal design literature focuses on choosing the normalized bid points, d;. Conditional on the prior
information, there is a one-to-one mapping between normalized bid points and actual bid points.
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where 4, =exp {ﬁ% d, } +exp {ﬂ(,u — ly )} . Holding ‘d,- — dj‘ constant, only one pair of d,
and d; which is symmetric around /(4 — 44, ) , maximizes the summation component in
the determinant. Given true information of ¢ and f, the optimal distance is ‘a’ —d j‘ =3.09,
which is D-optimal design point. If the mean is known correctly ( z, = x), the symmetric
design, d, +d, =0, always yields greater determinant than asymmetric ones given the

distance™. Holding d, +d, constant, expanding the distance increases the determinant

first but decrease it after the critical point of distance.

2.3.2 D-optimal Design and Efficiency

Suppose that +d, are two symmetric design points and observations are equally

assigned to them. From equation (2.11), the determinant of 2-point symmetric design

becomes

a1 0] 2 2 o) | 2

where 4 = exp(ﬂ%do)+exp{,3(y—,uo)} and B = exp(—ﬁ%do)+exp{ﬂ(,u—,uo)} .
Equation (2.12) is identical with the determinant in Abdelbasit and Plackett (1983) by

substituting d, with p,. The determinant of two-point bid design is maximized when

initial estimates are correct as g, = ¢ and f, = # and two points are placed optimally at

** This is consistent result with previous literatures showing that 2-point symmetric design is optimal under
several criteria including D-optimality (Rosenberger and Kalish 1978, Ford et al. 1992). However, when
the initial estimate of u is not correct, some of d+d, 0 increase the determinant.
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d, =1.54 . The optimal distance +d,, corresponds to the probability mass of p, = 0.824
and 1- p, =0.176 . Optimal design point, i.e. optimal probability mass p, maximizing the
determinant differs depending on the underlying distribution, for example, p, =0.872

when the underlying distribution is normal. See Ford et al. (1992) for the optimal

probability mass point of various distributions. The maximum value of determinant is

det[ 7 (1. 5)] ﬂ:[N-c-d0]2=5.01-10*2N2 (2.13)

Ho=H,Bp=
where C™' = [1 +exp(d, )] : [1 +exp(—d, )] . Using the notation p, of Abdelbasit and

Plackett (1983), the maximum determinant in the equation (2.13) is expressed as

]

Following Abdelbasit and Plackett (1983), the efficiency of a design is defined as

the ratio of the determinant of a design at g, and f, to the maximum determinant of D-

optimal design. Therefore, from equations (2.11) and (2.13), the general expression of the

efficiency of J-point design becomes

57 Z%(nexp]i,.ﬁgld—oﬂo)}j iiexp{ﬁ(diwj)}{ﬁ%_df)} . (2.14)

:Bo iAj

From equations (2.11) and (2.12), the efficiency of D-optimal design is

o

The efficiency shows relative increase of confidence volume of parameter estimates due

to poor information.
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Figure 2.1: The Efficiency of D-optimal Design at Poor Initial Estimates
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Figure 2.1 shows graphically the efficiency of D-optimal design under poor initial

estimates. The efficiency is a function of S ( M= ,uo) and S/ f,. As can be seen in Figure

2.1, the effect of poor estimates of mean is symmetric. Overestimating S, i.e. f, is larger

than true f, is more serious to efficiency than underestimating. Note that the efficiency is

calculated using £/ 3, while Abdelbasit and Plackett (1983) uses £,/ in the Table 5

of their paper. In other expression, underestimating o is serious problem to efficiency
than overestimating o. As the size of £ is larger, i.e., the true variance is smaller, the
effect of poor information is more serious. Parameterization the model by a and £ does
not change those properties.

In addition to efficiency, this essay defines the relative efficiency of a design as

the ratio of the determinant of a design with gz, and £, to the determinant of D-optimal

design evaluated at the same g, and S, such that

3 det, 3 Eff,
det, Eff,

Rif,

The relative efficiency shows how slow a design loses the efficiency compared with D-
optimal design. Using equations (2.14) and (2.15), the relative efficiency of J-point

design becomes

1 AB ’ T L di_dj 2
RﬁJ:E(hJ (ﬂ%j ZZexp{ﬂﬁo(dﬁ—dj)}{ﬂii%} . (2.16)
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The equations (2.11), (2.14) and (2.16) are the general forms of determinant, efficiency
and relative efficiency of J-point designs which include 2-point D-optimal design, kk-

and robust designs in the below as special cases.

2.3.3 Equi-spaced kk-Designs (Sitter’s Robust Design)

As noted, the determinant depends on the absolute distance between points. In the
case of equally spaced kk-design, the distance between adjacent points except out of the
lowest and highest is of the same length, which simplifies the analysis further. The
determinant and efficiency of the equally spaced kk-designs are derived from the general

forms of equation (2.11), (2.14) and (2.16). Let 4, be the distance between adjacent

points and suppose that design points are arranged in the order from the lowest. Then, the

relationship between any two design points can be expressed using the distance and the

orders of two points such that d, —d, =(i— j)h,, d,+d, =(i+ j—J -1)h,, and
d, = [i - (J + 1)/2] h, . Plugging them into equations (2.11) and (2.14), the determinant

and efficiency of equi-spaced kk-design are

and

£, :Diiexp{ﬁ%(ﬂj—J—l)%}{ﬂﬁ(i;ﬂ} , (2.18)
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respectively, where 4, = exp{ﬂ%[i —(J+ 1)/2} hJ} + exp{ﬂ(y — )} and

N-C-d,

2£neXp{ﬁ(ﬂ Ho }] |

Table 2.1 in section 2.2 shows J and / of equi-spaced kk-design suggested by

Sitter’s robust design at various S, /S, and p, *_ The efficiency, however, is calculated

as the ratio of determinant of the robust design with correct initial estimates against the
maximum determinant of D-optimal design using equation (2.18). Considering that D-
optimal design is the simplest and optimal robust design, the efficiency implies the
efficiency loss by employing more design points with different length. Efficiency loss
from more design points in Table 2.1 is not too serious. As explained in the general
model, there is an optimal length between design points given the number of points. For
example, when the total number of design points is three, the efficiency is maximized at /
= 1.86 and is decreasing as the length between two points is either longer or shorter.
Similarly, in Abdelbasit and Plackett (1983), the three-point D-optimal design has the
point at -1.85, 0 and 1.85 and the maximum efficiency is 86 percent.

To facilitate the comparison of robust design with D-optimal design, one example
from the Table 2.1 are randomly chosen; the design with length (%) of 2.23 and design

points (J) of 4, which is robust at 5,/ 3, =1.5 and u, =2.0. Figure 2.2 shows the

efficiency defined in equation (2.18) of the sample robust design with poor initial

information. As can be seen in Figure 2.2 and Table 2.1, the efficiency of robust design

25 B,/p and 4, are allowance level of errors in initial estimates when they are nor reliable. For the

minimax design and notations, see Sitter (1992).
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with J=4 and & =2.23 is 65.4 percent if initial estimates are correct. The efficiency of
robust design is not unimodal such as that of D-optimal design but shows the symmetric

effect of y, given S/ f,. Furthermore, the efficiency increases when £/ S is smaller
than one and g, is correct to .

The relative efficiency of equi-spaced kk-design is just the ratio of equation (2.17)
to equation (2.12) or the ratio of (2.18) to (2.15). Figure 2.3 shows the relative efficiency
of the robust design with J =4 and 4 = 2.23. The robust design has relative advantage
over D-optimal design as the initial estimate is poor except when S/ f, is large.
Especially, if the initial estimate of the mean is too far from the true mean, the robust
design always provide greater determinant than D-optimal design, which is also
symmetric. Other robust designs have the same properties of efficiency and relative

efficiency.
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2.4 DETERMINANT AND EFFICIENCY OF CONTINUOUS UNIFORM DESIGN
The uniform design randomly draws design points from a predetermined
continuous uniform distribution. Due to the randomness of b, the uniform design does not

have the closed form of the determinant of information matrix. Let the asymptotic

distribution of b be & (b) and take the limit on the information matrix as J — o so that
the summation is replaced by the integral and n, by (b)db . Then, using dt =—fdb and

assuming a uniform distribution for 4 (b) , the asymptotic information matrix becomes

) ,[)’IW(t)dt %Iw(t)tdt

1(up)=| |

EJ.W(t)tdt %Iw(t)tzdt |
The asymptotic determinant of information matrix is
det(u, )= %[{Iw(i)dt}{fw(l)tzdt} —{J‘w(t)tdt}z] (2.19)

The asymptotic value of determinant depends on true variance and the range of uniform
distribution. As the true variance is greater (f is smaller), the determinant becomes larger.
That is, as the true willingness to pay is distributed widely, the uniform design provides

more information.

Let the range of bid distribution be [Z_), b ] . The typical way of choosing the

range is to utilize initial information such as b, = g, —#/ 8, and b, = g4, +r/ 3, where r

is researcher’s choice of the range. Note that the last term in the right hand side of the

equation (2.19) is
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b

.[:w(t)tdtz{t—mi—p(t)—ln[uexp(z)]} . (2.20)

By the definition of w(¢), equation (2.20) is zero if the range is symmetric around the

mean of . The other two integration terms in the right hand side of the equation (2.19)

also becomes algebraically

and

Lz? W(t)ﬂdt = t{tei(t))— 2 log[l + exp(t)]} — 22%

1+exp(s n’

Note thatw(¢) and w(¢)* are symmetric around zero.

For comparability, determinant of D-optimal design is also transformed into

asymptotic expression. The exact determinant of D-optimum is the square of the

rectangular area with the height of p, (1— p, )log { Py (1-p, )} and the width of N. By

taking the limit as N — oo and normalizing to the same range of the uniform distribution

of uniform design, the asymptotic determinant of D-optimum becomes

|:Np0 (1—p0){1og£lf—;JH2 ~ I:I:po (1—p0){1og(lf’;o ]}d{ =(0.15)" @21)

because p, =.824. As the exact value of determinant depends only on the sample size N,

the asymptotic determinant of D-optimum depends only on the range.
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The asymptotic efficiency of uniform design is defined as a ratio of the
asymptotic determinant of uniform design in equation (2.19) to the asymptotic

determinant of D-optimal in equation (2.21) such as

Eff, = (ﬁr {{ j:w(t)dt}{ f W(r)tzdt}— { ij(t)tdt}z}. (2.22)

Computational examination in the personal computer shows that the asymptotic
efficiency of the uniform design increases as the range becomes wide but decreases after

the critical point. The maximum efficiency is 84 percent of the D-optimum and the

optimal range of the uniform distribution is approximately [—2.72, 2.72] . The optimal

range is between 6.2 and 93.8" percentiles in the logistic distribution. Note that D-
optimal design has design points at 17.6™ and 82.4" percentiles. When the uniform
design has the range of two D-optimal points, the efficiency is 60 percent of D-
optimum?®. In addition, simulation also demonstrates that given the range, the symmetric
design is always optimal.

Since the optimal range of the uniform design given true information is

[-2.72, 2.72], the best choice of the uniform design is b, = 4, —2.72/ 3, and

b, = tty +2.72/ f3,. Then, the normalized term of two endpoints of uniform distribution is

t_=ﬂ(/¢—,u0)+2.72ﬂ% and g=ﬂ(,u—,uo)—2.72ﬂ%.

*6 The result that uniform design has wide range of bid is consistent with previous literatures suggesting
wider range for the robust estimate. However, the uniform design provides much wider than others; see, for
example, Kanninen (1995) and Alberini (1995).
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Plugging two normalized endpoints into equation (2.22) provides the efficiency of
optimal uniform design depending on initial information. Figure 2.4 shows the effects of
poor initial information on the asymptotic efficiency of optimal uniform design. The
efficiency of the uniform design is maximized to be 84 percent with correct initial
information where D-optimal design has the maximum determinant. Reminding the
efficiency of D-optimal design in Figure 2.1, the asymptotic efficiency of the optimal
uniform design is relatively flat. Thus, poor initial information is not as serious in the
uniform design as in the D-optimal design.

The asymptotic relative efficiency of optimal uniform design is derived from the
asymptotic expression of the determinant of D-optimal design in equation (2.12) and the
asymptotic determinant of uniform design in equation (2.19). Equivalently, the relative
efficiency can be derived using the asymptotic efficiency of D-optimal design and
uniform design. This essay, however, demonstrates the asymptotic relative efficiency of
optimal uniform design graphically in Figure 2.5 by comparing Figure 2.1 and Figure 2.4.
According to the relative efficiency, the uniform design outperforms D-optimal design
especially when the initial information of x is poor. The minimum relative efficiency of

the uniform design is 84 percent at the point of x4, = ¢ and f, = f where efficiency of

the design has the maximum value. The uniform design has less relative efficiency than
robust design when initial information is too much poor. However, uniform design
guarantees the lower bound of relative efficiency at 84 percent while the robust design

loses the efficiency more if S/ S, is great.
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2.5 BIAS OF g IN D-OPTIMAL, kk AND UNIFORM DESIGNS WITH KNOWN g
The bias of ML estimate in the logit model is a function of the second and third
derivatives of the log likelihood (See the function 2.6 and 2.7). In this section is analyzed

simply the bias of single covariate case assuming that the true mean x is known. Consider
the bid point, b, = #—d,/ 5, and normalized point ¢, = B(u—b,)=d,(S/B,) with true
mean of u. By substituting the bid points into the equation (2.7), the bias with single
covariate becomes

ﬂozd[3wi (2}7,- ~ 1)
2(Xdiw)

bias =

(2.23)

since x, = u—b, =d,/ B, with g, = 1.
Suppose an equi-spaced kk-design with J points. By substituting design point,

d, = [i —(J+ 1)/2] h, , into equation (2.23), the bias of  becomes

By ¥, [i-(J+1)/2](2p,-1) |
(3w,

where ¥, =w, {[z —(J+ 1)/2} h, }2 . The bias of J-point design is hardly simplified

bias, = (2.24)

further, but the property of the bias from the design can be found through simulation. The
size of the bias in J-point design is inversely related with the sample size. Simply, points
far from zero may bias the estimate while those close to zero have opposite contribution.
Since the uniform design depends on the random sampling from the uniform distribution,

the asymptotic bias of uniform design with small sample is simulated.
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Figure 2.6 shows the bias from the uniform design and kk-designs with £ =2 and
4 with N = 100. The uniform design implements 100 iterations of the 100 random draws
from the uniform distribution. The x-axis represents the range of the support for the
uniform distribution in the uniform design and the kk-design with & = 2. For the kk-design
with £ = 4, outer two points are allocated at +x and the inner two points are at £x/3 to
make distance between two adjacent points to be equal. In all designs, bias of S increases
as the support of the bid widens, specifically, the bias of the kk-design with £ =2
increases faster than other designs. The bias of the uniform design is always smaller than
the bias of kk-design with k£ = 4 within the specified range of the simulation. Interestingly,
beyond the point of 2.5, the uniform design has smaller bias than even D-optimal design.

For the special case of two symmetric bid points such as +d / £, with d >0, the

bias of 2-point design can be simplified to be

bias, = 2?\(;0, {exp[ﬁd]—exp{—ﬂﬁdﬂ (2.25)

Py 0
since w(t)=w(-t), p(r)=1-p(-t),and 2p(r)-1= —[2p(—t) - 1} from properties of
the logistic probability and weight function. By substituting D-optimal design points,
equation (2.25) represents the bias of £ in the D-optimal design when the true x is known.

In 2-point design case, the bias of § can be shown to be of the order of O(n’l) . The bias

of f is always overestimated since f is positive and the bias has the same sign as f (Copas

obias,

o(d/p,)

The bias is also bounded below by bias, > #/2n= /N by L’Hopital’s theorem. This is

1988). Furthermore, since >0, the bias of  is an increasing function of d/ f,.
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graphically shown in Figure 2.6 such that the bound of the bias for the kk-design with k=
2 is 0.01. The bound of the bias depends on the true variance of willingness to pay and
sample size. Intuitively, as f is larger, i.e. as the variance is smaller, precise estimation is
more difficult.

Figure 2.7 presents the bias of £ in D-optimal design, robust design with J = 4 and
h =2.23, and the optimal uniform with various sample size. The design points are
allocated at the optimal point of each design with correct information. The sample size
differs from 50 representing the small sample to 1,000 for the large sample size. As
shown algebraically, bias in all designs decreases as the samples size increases. The
magnitude of the bias is in the order of kk-design, the uniform and D-optimal design.
Figure 2.8 shows the effect of poor initial information on bias of £ in D-optimal design,
robust design with J =4 and /4 = 2.23, and the optimal uniform. True f is set to be one

and the x-axis represents poor initial estimate of . At S, =1, the bias of the uniform

design corresponds the bias at x = 2.72 of uniform design in the Figure 2.6 and the bias of
the D-optimal design responds to the bias at x = 1.54 of two-point design. Usually,
uniform design has larger bias than D-optimal design but smaller than robust design

except that S, is extremely small.
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2.6 MONTE CARLO SIMULATIONS

In this section, a series of Monte Carlo simulation compares the relative
performance of D-optimal, equi-spaced kk, and uniform designs. The simulation
scenarios cover the optimal uniform range (scenario 1), asymptotic properties with a
large sample (scenario 2), various sample size (scenario 3), poor initial estimates of x4 and
[ (scenario 4 and 5, respectively) and flexible error distributions such as beta distribution
(scenario 6). Scenarios 1, 2 and 3 assume that the true parameters are known in allocating
bid points in D-optimal, kk- and uniform designs.

The basic model is a constant willingness to pay; WTP, = u+¢,, where 1 =100
and ¢, is logistically distributed with zero mean and the standard deviation (o) of 30. The
parameters in estimation are x and f§ (= 1/0) as in equation (2.1). D-optimal design
consists of two points at g, +1.54/ f,. Sitter’s robust design with J=4 and 4 = 2.23
represents the equi-spaced kk-design by allocating bids at x4, +£3.345/ S, and
U, £1.115/ B,. With random number seed of 710602, the simulation is conducted using

Gauss 5.0 of Aptech Systems Inc. and CML Version 1.0.35 for maximum likelihood
calculation.

Scenario 1 reported in Table 2.2 estimates binary model with uniform design by
drawing bids from a uniform distribution with various ranges. The range of the uniform
distribution differs from *£1.71/ 4 to £3.72/ /. Table 2.2 shows the result of 100
iterations with the sample size of 320. The sample averages of u and ¢ are 100.0989 and

29.9176, respectively. The parenthesis reports the standard error in 100 iterations and Eff’
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represents the efficiency calculated as the ratio of the determinant of uniform design to
D-optimum. RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) of i are

also reported for comparison. The efficiency is maximized to be 83.95 percent when the

bid points are drawn within the range of [ £ —2.72/ 8, u+2.72/ 8], the result which is

consistent with analytical demonstration and confirms the optimal uniform design. The
narrow range of the uniform distribution is more serious to the efficiency than the wide
range. Interestingly, the standard error of  increases with range while the standard error

of o decreases.

d 1.72 2.22 2.72 322 3.72
100.4421 99.9719 99.9065 99.6234 99.7744
K (4.1466) (4.2302) (4.3130) (4.6786) (4.7611)
30.4492 30.0612 30.2802 30.1802 29.7865
o (5.1925) (3.6852) (3.2124) (3.2274) (3.1162)
Eff 66.9283 80.3383 83.9492 81.3053 74.5273
RMSE 543148 54.3250 54.3360 54.3784 54.3729
MAE 41.5063 41.5022 41.5266 41.5581 41.5661

* Results of D-optimal are = 100.0832 (4.3723), o = 29.7660 (2.5358), RMSE = 54.3474 and MAE =
41.5301, and kk-design are ;2 = 99.8898 (4.9126), o = 30.0528 (3.3509), RMSE = 54.3878 and MAE =
41.5965.

Table 2.2: Different Range of Uniform Distribution with 100 Iterations, N = 320
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Table 2.3 shows the results of all designs with 1000 observations. Based on

analytics and simulation result in scenario 1, the optimal uniform design draws bid points

from the optimal uniform distribution of [ u=2.72/ B, u+2.72/ B ] . The second column

titled “Actual” reports the sample mean and inverse of the standard deviation (5).
Parentheses show the standard error of estimates reported by the Gauss program. Since
the scenario assumes that true parameters are known, the determinant of D-optimal
design is the maximum value of the determinant. The efficiency of the uniform and kk-
designs are 83.2300 and 62.8604 percent of D-optimal design, respectively, all being
consistent to but slightly lower than analytical solutions.

For parameter estimate of mean willingness to pay (u), the result of uniform
design is closest to the true or actual value of x, and furthermore, uniform design has the
smallest the standard error of parameter estimate. Since the uniform design provides the
minimum bias and standard error of x, both RMSE and MAE are the lowest in the uniform
design among three designs. Interestingly, the simple simulation provides counter-result
of A- and C-optimalities when considering the variance of both parameter estimates of u
and 8 *’. Although the standard error of f estimate in the uniform design is largest, the
difference in magnitude is still ignorable and consequently the summation of variances is

minimized in the uniform design.

*7 In fact, the uniform design is posited in the opposite side of the design spectrum from the optimal designs
in the sense that the uniform design consists of bid points as many as the number of observations but
optimal designs allocate all of them at one or two design points. Although the simulation draws the sample
observation without iterations, the uniform design with a large sample provides potential superiority under
A- and C-optimalities
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Actual

D-optimal

kk

Uniform

p 99.3460
B 0.0333
Eff

RMSE

MAE

97.9300 (2.5669)

0.0314 (0.0017)

100

54.4952

41.2281

97.2631 (2.8061)

0.0348  (0.0020)

62.8604

54.5166

41.2599

98.9095 (2.3491)

0.0331 (0.0021)

83.2300

54.4786

41.1967

Table 2.3: Estimation Results of D-optimal, kk and Uniform Designs with N = 1000

Table 2.4 reports estimation results of the scenario 3 varying the sample size from

80 to 640 with 100 iterations. Hereafter, the parenthesis reports the standard error in 100

iterations. The efficiency is measured from the average of the determinant in iterations.

The simulation result shows 65.26 ~ 66.91 percent of efficiency for kk-design with 4 =

2.23 and J = 4, which is around the analytical solution of 65.43 percent. The efficiency of

kk-design, analytically, does not depend on the sample size but is inversely related with

the number of different bids (See the equation 2.18). The efficiency of the uniform design

is 83.38 ~ 86.28 percent around the asymptotic efficiency of 84 percent, the result which

is independent of the sample size.



Actual D-optimal kk Uniform

N =280
7 99.4097 99.1955 (9.1829) 99.2402 (10.8442) 98.6798 (8.5866)
o 30.2086 31.2072  (6.4858) 29.3343  (5.9843) 29.2926 (6.2882)
Eff 100 66.9077 83.3844
RMSE 55.1554 55.3460 55.0535
MAE 42.0547 42.3707 41.9465

N=160
U 99.7602 99.9925 (5.9714) 99.1349  (7.0857) 99.5768 (5.8555)
o 30.1389 30.3131 (4.9260) 29.5214 (4.0622) 29.6650 (4.3637)
Eff 100 66.1130 85.6703
RMSE 54.8221 549164 54.7977
MAE 41.9145 42.0114 41.8692

N =320
n 99.9744 99.9537 (4.7597) 99.8970 (4.8828) 100.1410 (4.7288)
o 29.9883 30.6379 (3.3750) 29.5047 (2.9103) 29.9610 (3.0482)
Eff 100 65.2646 86.2760
RMSE 54.4653 54.4988 54.4770
MAE 41.6550 41.6558 41.6691

N =640
7 100.0564 100.0261 (3.1681) 100.2129  (3.3033) 100.1940 (3.0738)
o 29.8866 29.9448 (1.9328) 29.8000 (1.8732) 29.9058 (2.3439)
Eff 100 65.3181 85.0355
RMSE 54.2470 54.2615 54.2374
MAE 41.5070 41.5275 41.4963

Table 2.4: 100 Iterations of Scenario 1 with N = 80, 160, 320 and 640



While the efficiency is independent of the sample size, the simulated standard
error of estimates, however, decreases in all designs as the sample size increases.
Furthermore, uniform design provides the minimum variance of the mean estimate and of
the sum of standard errors of both parameter estimates confirming the counter-evidence
in Table 2.3 except one case of N = 640. Therefore, the simulation results varying the
sample size with 100 iterations support the potential usefulness of the uniform design
under even C-, Fiducial interval and A-optimality criteria. Under RMSE and MAE criteria,
the results uphold the outperformance of the uniform design at least in estimating ,
except only one case of N =320. Table 2.4 roughly shows decreasing tendency of the
bias of estimate ¢ in all bid designs as the number of observations increases as shown in
Figure 2.7. The decreasing tendency of the bias is also detected in the estimate of u but
not clear.

Scenarios 4 and 5 investigate the performance of bid designs with poor initial

information of ¢ and f holding the sample size at 320. The initial information of u varies

from 55 to 145 corresponding to [1.5, -1.5] of S ( H— ,uo) . Rather than information of £,

for convenience, information of ¢ varies between 10 and 60 which also corresponds 0.3

and 2 of S/ f3,. Rff represents the relative efficiency in terms of percentage. By definition,

Rff of D-optimal design is always 100 percent.
Table 2.5 shows the effect of poor information of x assuming known standard
deviation. Sample mean of willingness to pay («) in the simulation is 100.0989 and

standard deviation is 29.9176. Among 100 iterations, one iteration step with g, =145

reports failure in calculating function of D-optimal design. Information of x has
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symmetric effect on the relative efficiency of kk- and uniform designs, consistent to the
analytical comparison. Uniform design provides the acceptable efficiency with good
initial information and superior relative efficiency at the relatively extreme circumstance.
Table 2.6 provides estimation result with poor information of ¢. Sample value of
1 1s 100.2090 and actual o is 30.0047. Analytically, poor information of ¢ affects the
relative efficiency asymmetrically (see Figure 2.3 and 2.5). For kk-design with J = 4 and

h =2.23, the relative efficiency decreases as £/ f3, increases, i.e. o, becomes larger. The
uniform design has the lowest relative efficiency at correct initial estimate of o, and the

relative efficiency increases as the poorness increases to any direction.

Unfortunately, properties of estimation bias are not clearly found in poor initial
estimates scenario as in the analytical comparison. However, RMSE and MAE show that
the uniform design performs fairly well with poor information of ¢ and 0. Except 1, =
125, uniform design yields the non-worst, usually best estimation result in terms of
RMSE and MAE in Table 2.5 and outperforms D-optimal and kk-designs when o, is

larger than the true in Table 2.6. Uniform design also provides the best result under A-

and C-optimality when the initial estimate of ¢ is poor.
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D-optimal

kk

Uniform

o =55

U 100.3421 (4.3694) 100.3697 (5.8708) 100.2821 (5.2056)
o 29.2950 (4.0077) 30.1820 (3.0038) 29.9249 (4.0637)
Rff 100 113.7679 110.5209
RMSE 543777 54.4384 54.4259
MAE 41.5198 41.6233 41.5847
to=175
u 100.5234 (4.2747) 100.0102  (5.3408) 100.1249  (4.2405)
o 29.7526 (2.9618) 29.9169 (3.4280) 30.1654 (3.1692)
Rff 100 76.6577 92.2807
RMSE 54.3500 54.4036 54.3387
MAE 41.5370 41.5892 41.5148
Ho=100
u 100.0832 (4.3723) 99.8898 (4.9126) 99.9065 (4.3130)
o 29.7660 (2.5358) 30.0528 (3.3509) 30.2802 (3.2124)
Rff 100 65.9432 83.9492
RMSE 54.3474 54.3878 54.3360
MAE 41.5301 41.5965 41.5266
o =125
U 100.4928 (4.6248) 100.2123  (4.4947) 98.9705 (4.8026)
o 29.9357 (2.9464) 30.2059 (3.5096) 30.2015 (3.6458)
Rff 100 76.2574 89.3220
RMSE 54.3433 54.3787 54.3811
MAE 41.5363 41.5666 41.5526
o = 145*
u 98.4429 (10.9916) 99.6627  (5.0660) 100.1229  (5.2359)
o 30.9991 (15.0630) 30.0419 (3.5605) 29.8914 (3.3762)
Rff 100 113.6570 113.0370
RMSE 55.2745 54.4147 54.4067
MAE 42.1239 41.6157 41.5679

* 1 function calculations failed in the D-optimal design

Table 2.5: Poor Initial Estimates of x with 100 iterations
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D-optimal

kk

Uniform

0'0:10

U 99.9413 (3.5821) 100.1924 (3.2139) 100.2011  (3.3338)
o 31.0174 (7.4705) 30.2099 (4.6208) 29.9297 (7.7508)
Rff 100 188.2141 102.9199
RMSE 54.4542 54.4497 54.4528
MAE 41.5098 41.5051 41.4916

o9 =20
U 100.2520 (3.7448) 100.0511 (3.9763) 100.2147 (3.8841)
o 30.0553 (3.6172) 29.7537 (2.9083) 30.1323 (4.5760)
Rff 100 106.0529 88.1675
RMSE 54.4621 54.4779 54.4660
MAE 41.5331 41.5537 41.5404

oo =30
u 100.4169 (4.1858) 99.8175 (5.3151) 100.0356 (3.4741)
o 29.9782 (2.9953) 29.6584 (3.0420) 29.9387 (3.4376)
Rff 100 65.2806 84.1582
RMSE 54.5028 54.5577 54.4695
MAE 41.5942 41.6461 41.5504

oo =40
U 100.5465 (4.9207) 99.6000 (6.4361) 99.7180 (3.9807)
o 30.0485 (2.6084) 29.4623 (3.3248) 29.9082 (3.0037)
Rff 100 51.8393 89.4349
RMSE 54.5438 54.6527 54.5005
MAE 41.6851 41.7485 41.5897

oo=50
u 100.5412  (5.8683) 99.3532  (7.4830) 100.5217 (5.3780)
o 30.0761 (2.5784) 29.1542 (3.3584) 29.8827 (3.0294)
Rff 100 51.4139 106.9764
RMSE 54.6406 54.7920 54.5640
MAE 41.7976 41.8727 41.6712

o9 =60
U 99.9107 (8.0184) 99.2053 (8.2823) 99.7317 (5.1448)
o 29.6054 (2.7518) 29.2356 (3.7721) 30.0000 (3.4945)
Rff 100 63.6623 150.8424
RMSE 54.8710 54.9194 54.6104
MAE 42.0027 42.0048 41.6670

Table 2.6: Poor Initial Estimates of ¢ with 100 iterations
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One of interesting questions about the existing designs is how they perform if the
true distribution is unknown and asymmetric because optimal bid designs can be optimal
only when the underlying assumptions are correct. Optimal bid points are hardly known
in the asymmetric distribution. The reliance on the prior assumption is also serious in the
kk-design. Scenario 6 assumes that true error distribution is a beta distribution with
various shape parameters to compare the performance of bid design in the case of
unknown asymmetric error distribution. The beta distribution is either right- or left-
skewed depending on shape parameters, a and . However, since the estimation model is
specified as logit, the scenario represents misspecification of the error distribution. The
true mean and standard error are assumed to be known for bid design.

Table 2.7 shows the simulation result with shape parameters (2, 3), (2.5, 2.5) and
(3, 2). In this simple simulation, surprisingly, D-optimal design has the largest
determinant no matter what the shape of distribution is in terms of relative efficiency.
The relative efficiency of the uniform design shows almost 87 percent of D-optimal
design and that of kk-design is slightly higher than 72 percent. D-optimal and uniform
designs show a tendency that when the distribution is left- (right-) skewed, they under-
(over-) estimate the mean, while kk-design shows the result in the opposite way. Uniform
design is superior in terms of C-optimality but the kk-design yields better result in terms
of A-optimality. The properties of estimation result from asymmetric error distribution
are analyzed more in detail using log-normal distribution and the actual survey data in the

next section.
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Actual D-optimal kk Uniform
*(2,3) (120, 33.0797%%)
7 120.3063 119.0280 (5.1557) 121.1151  (5.4924) 118.6580 (5.0230)
o 33.1084 41.3910 (4.4445) 33.6435 (3.0979) 39.4347 (4.5767)
Rff 100 72.2039 87.1280
RMSE 60.1123 60.1492 60.1171
MAE 49.8730 50.0022 49.8346
*(2.5,2.5) (150, 33.7618%%*)
U 150.1951 150.3924 (5.4428) 150.8241 (6.0330) 150.1364 (5.2994)
o 33.6002 41.7015 (4.8726) 34.6713 (3.0551) 39.3621 (5.0721)
Rff 100 724775 87.2118
RMSE 60.9814 60.0449 60.9943
MAE 50.5794 50.6072 50.5687
*(3,2) (180, 33.0797*%*)
U 179.8880 180.2808  (5.2549) 179.6522 (5.0183) 182.1175 (5.1080)
o 33.1867 40.2857 (4.0691) 34.4068 (3.0565) 38.8170 (4.4010)
Rff 100 72.8120 86.3334
RMSE 60.2527 60.2417 60.2774
MAE 50.0462 50.0626 49.9507

* The first parenthesis represents the shape parameter (a, b) of beta distribution and the second shows the
true mean and standard error.

** The standard error is normalized as that of logistic distribution by multiplying /3 /7 to the standard
error of beta distribution.

Table 2.7: Flexible Beta for Error Distribution
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2.7 AN APPLICATION TO ALBEMARLE AND PAMLICO SOUNDS DATA

While previous results provide insight into the potential usefulness of the uniform
design, analytical and simulation results in previous sections depend on a known
distributional form and simple parametric specification. This section compares D-optimal,
kk- and uniform designs as well as the original design by simulating true willingness to
pay from the actual survey data. The focus of comparison is on the performance of
different designs when nonnegative willingness to pay function has covariates and the
error distribution is asymmetric.

Huang, Haab and Whitehead (1997) studied the willingness to pay for the water
quality improvement in the Albemarle and Pamlico Sounds in eastern North Carolina.
The original data consisted of double bounded dichotomous questions. However, in this
section, only responses to the first question were considered for design comparison. True
willingness to pay was simulated as follows. First, under the assumption of exponential
willingness to pay function and log normal error distribution, a probit model was
implemented to estimate parameters of willingness to pay”®. Willingness to pay for the

water quality improvement in Albemarle and Pamlico Sounds was

In(WTP)=3.8623+0.1034- INC~0.3580- D+¢ and &~ N(0,0.3047°%)

where INC is income level and D is a dummy variable for Pamlico sound only. The

expected willingness to pay, E(WTP) = exp()_c'ﬂ +.50° ) , was $12340.51 in the sample.

The median of willingness to pay was $56.60 and the mean of the expected log

8 To facilitate kk design of J = 4 in design comparison, first two observations were dropped since the
original data includes 726 observations.
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willingness to pay, £ (x'ﬁ’ ) , was $3.99. Next, the true individual willingness to pay was
simulated by adding a random error from normal distribution to the deterministic log
willingness to pay assuming that the estimation result in the first step is true parameters.

The sample average of willingness to pay, Average(WT P) , was $4682.27. Finally, the

simulated true willingness to pay was used to generate the sample dichotomous response
for each bid design. The simulated response is one if In(W7TP) > In(bid ), and zero,
otherwise.

Bid set of D-optimal, kk with J =4 and 4 = 2.23, and uniform designs were

constructed assuming that the true parameters were known. Initial information used in
designs was the mean and standard error of log willingness to pay; £ (x',B ) =1 =3.9941
and o =0.3047"". Also, to adjust the analytical solution of the logit model for the normal
distribution, the standard logit variates of kk-design and the uniform design in the
previous section were multiplied by 3/ 7. Thus, kk-design had bid points of #+0.61c
and 4 *1.840 , and the support of optimal uniform design was [,u -1.500, u+ 1.500] .

The D-optimal bid points were x+1.14c following previous studies. Optimal points and
range of uniform design were transformed to nonnegative dollar amount by taking
exponential. Finally, the dollar value of bids in the D-optimal design was {$1.29,
$2288.12} and bid amount of kk-design were randomly selected from {$0.13, $7.22,
$408.14, $23077.07}. The optimal uniform design had a uniform distribution of [$0.40,
$7448.07]. In addition, the original design in Huang, Haab and Whitehead (1992)

consisted of {$100, $200, $300, $400}, which corresponded from 4.6052 to 5.9915 of the
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expected log willingness to pay. Note that log value of bids in the original design is
higher than the mean of the expected log willingness to pay.

Table 2.8 shows the estimation results of the Albemarle and Pamlico Sounds data.
Since the log willingness to pay is a linear model and error term is symmetric in terms of
log value, D-optimal design was expected to provide the maximum determinant of
information matrix. However, uniform design yields the largest determinant followed by
the D-optimal, the original and kk-designs. The original design has also the determinant
larger than the kk-design although the original design is a one-sided design (i.e., all bids
are greater than the mean of expected log willingness to pay). The result strongly
supports that uniform design outperforms other designs under D-optimal criterion when
the error distribution is asymmetric.

The uniform design also outperforms other bid designs in terms of variance of
estimate, median willingness to pay and RMSE. The summation of the individual
variance of estimates is minimized in uniform design demonstrating that the uniform
design yields the best result under the A-optimality. The simulated confidence interval of
the median willingness to pay shows that the uniform design still performs well under the
C-optimality. The uniform design provides the second best result of the expected
willingness to pay following the kk-design, the result which is, in fact, the closest value to

the sample average.
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True D-optimal kk Original Uniform
Cowan v B e e e
we o s e e o
P
R RN N O
det() 9.1766¢+7 4.2038¢+7 5.4386¢+7 11.2556¢+7
Mean (142638429'2571)** 3256.79 9943.71 1235.81 5576.14
Median 36.60 31 2824.61) (223‘;030.52) (41 773 15 192.59) (34?6.9?6.30)
RMSE 46946.28 47209.22 47040.18 46943.93
MAE 6909.15 12881.86 5307.73 8909.99

* Estimates are statistically significant with 95% confidence level.
** The sample average of WTP

Table 2.8: Estimation Result with Albemarle and Pamlico Sounds Data
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2.8 CONCLUSIONS

This essay introduces a new bid design utilizing a predetermined uniform
distribution. The new design assumes continuity and randomness of bid points. Both
analytically and through Monte Carlo simulations, this essay compares the efficiency and
relative efficiency of the uniform design with D-optimal design and one of Sitter’s robust
designs. D-optimality is chosen to represent optimal criterion because of its popularity
and usefulness. Sitter’s robust design is a member of symmetric designs, in which design
points are selected depending on researcher’s belief about the correctness of information.
Uniform design assumes continuity and randomness of bid points.

By construction, optimal bid designs provide optimal efficiency under the ideal
situation that the underlying true distribution and parameters are known. Optimal design
consisting usually of one, two or three design points, however, depends too seriously on
the knowledge about true information that is in fact to be estimated. Unknown true
parameter values and uncontrollable response rate of the survey make it difficult to
employ optimal designs in the study.

In contrast, robust or ad hoc designs in the actual studies reduce the risk from
their reliance on initial information by dispersing optimal design points into more points.
Uniform design goes further by randomizing all design points. Analytics and simulations
show that uniform bid design provides higher efficiency than the robust designs under
ideal conditions, and outperforms the optimal design with poor initial information. In

simulation results, uniform design also outperforms other designs under the A- and C-

89



optimalities. Ultimately, uniform design reduces the dependence of optimal designs on
design structure and poor information.

It is easy for researcher to implement uniform design in any specific application.
Since a design independent of the poor initial information is unavailable, the uniform bid
design offers a practical and robust alternative to existing bid designs for researchers
facing strict budget constraints, or performing a pre-survey to gather better information
for the next stage. Uniform design provides binary data continuously sorted by bid value,
enabling the researcher to apply more flexible non- and semi-parametric estimation
techniques (Lewbel et al. 2003). Although we focus on design problem in dichotomous
choice contingent valuation, the adjustments of the design for other studies are straight

forward and in most cases simply notational.
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ESSAY 3

GENERALIZED ESTIMATION METHODS AND IMPLICATION OF THE
RESULT IN DICHOTOMOUS CHOICE CONTINGENT VALUATION MODEL

ABSTRACT

This essay challenges the theoretical and technical background of the simple logit
model often used for estimating willingness to pay from dichotomous choice contingent
valuation. The simple logit model assumes that the respondent’s evaluations of the two
states are stochastically independent and homoskedastic. Relaxing restrictive assumptions
suggests a generalized estimation technique that utilizes a Gumbel mixed model. Nested
within this generalized model are the heteroskedastic logit model and the simple logit.
The nesting structure allows for straightforward tests of the homoskedastic-independent
error assumptions. Estimation results show that correlation between two states is usually
minimal, but homoskedastic errors are rejected in many cases, i.e. logistic distribution for
the difference of error terms, may not be a suitable distribution. Heteroskedasticity or
correlation provides willingness to pay estimate different from estimate of the simple

logit, thus different policy implication in benefit-cost analysis.
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3.1 INTRODUCTION

Dichotomous choice contingent valuation (CV) has been most widely used in
eliciting welfare measures (willingness to pay) from environmental projects, thus
enabling benefit-cost analysis. Value elicitation questions ask respondent to show his or
her utility or willingness to pay in the binary choice setting. Given a specific cost, a
subject’s binary response will be one if the utility after environmental change is still
greater than that of the current state, and zero otherwise. Equivalently, a binary response
is one if the willingness to pay is greater than the cost offered, and zero otherwise.

The decision models consistent with economic theory are, among others, the
random utility model and the willingness to pay model. The random utility and
willingness to pay function consist of a systematic part observable to the researcher and
an unobservable error component. With appropriate assumptions about the distribution of
the unobserved term, the random utility and willingness to pay models can be simply
estimated by logit or probit. For instance, the standard additive random utility model
assumes a constant variance between the initial and the proposed states. Using i.i.d. type I
extreme value (or normal) distribution for each state, the standard additive random utility
is estimated through a simple logit (or probit) model. Nice properties and theoretical
backgrounds of those models have helped researchers to easily conduct the task of
estimation and to focus on other valuable issues.

The simplicity and robustness of the estimation model, however, are the result of
strong assumptions or constraints on the decision model rather than the natural outcome

of correct specification of the model. The main problem arising against the advantage in
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estimation is the possibility of losing the realism of actual choice situation. Suppose that
we want to estimate the welfare change from enhancing environmental quality. First, the
state after environmental change is uncertain to the respondent although the
environmental quality is surely increased, which illustrates the possibility that the
additive error term in the proposed state may be different from that in the current random
utility in terms of variance. Second, if the environmental project is a debated issue in the
relevant population, there could be several alternatives that respondents may prefer but
the researcher does not consider in the CV survey. The unknown (to the researcher)
alternatives can lead the respondent to refuse the proposed project although respondent
agrees with the change in environmental quality. Consequently, the simple logit or probit
may not be suitable in some situations of decision and yield an incorrect measure of
parameters or welfare change.

Undoubtedly, there has been a series of studies to relax the i.i.d. assumption in the
logit model. For example, the heteroskedastic extreme value model has been suggested in
the transportation (Bhat 1995) and marketing literatures (Allenby and Ginter 1995) to
incorporate heteroskedasticity across alternatives into the multinomial or conditional logit
models. However, no literature in CV has paid attention to the strict assumption of
identical error distributions across alternatives in the choice set. CV studies have usually
assumed and tested heteroskedasticity only across individuals or different groups.
Unfortunately, generalized logit models such as nested logit or paired combinatorial logit

are not applicable to the contingent valuation since the choice set in CV consists of only
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two alternatives, the case which reduces some of generalized logit models to the simple
logit.

Therefore, this essay relaxes the constant disturbance assumption of the random
utility and willingness to pay models in standard contingent valuation after reviewing the
value elicitation questions of CV studies. Additive error terms in initial and proposed
states can be independent and identical, independent but not identical, dependent but
identical, or dependent and not identical. For all possible relations of error terms, a
generalized estimation model is suggested by utilizing Gumbel mixed bivariate extreme
value distribution (Gumbel 1960, 1961, Gumbel and Mustafi 1967, Tiago de Oliveira
1980, 1983). The generalized model, named as a bivariate extreme value model, covers a
heteroskedastic logit (Bhat 1995, Allenby and Ginter 1995), correlated alternatives case
and the simple logit. This essay also introduces a mixed logit model with extreme value
distributions as an alternative model to cover all specific cases. In addition, unknown
alternative case is directly estimated by assuming that different policies for the same
target of environmental quality have constant effect on random utility or expenditure.

The generalized estimation models (bivariate extreme value and mixed logit
models) show interesting results under various constraints when they are applied to
several existing CV data. Error terms of two states are, in most cases, independent but not
identical. The extremely different scale factor may imply that the extreme value
distribution, i.e. logistic distribution for the difference of two random utilities or
expenditures, is not suitable distribution although it provides similar result to probit

model. More importantly, heteroskedasticity or correlation provides welfare measures
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(willingness to pay) different from the estimate of the simple logit. Although parameter
estimates are not much different in magnitude, the expected willingness to pay of
generalized estimation model can draw opposite conclusion in benefit-cost analysis of

environmental project.

3.2 CHOICE MODELS AND WELFARE MEASURE IN CONTINGENT
VALUATION
3.2.1 Environmental Issues and Choice Scenarios

Dichotomous choice contingent valuation (CV) study addresses a binary choice
question to respondent with randomly assigned cost, i.e. to vote for and to vote against, or
to accept and to reject”’. Alternatives in the choice set consist of the proposed state
representing to accept the policy and the current state without change indicating to reject
the policy. The following example shows the environmental issues and choice sets in

previous CV study.

Example: In 1994, Carson et al. estimated the welfare measure from the
environmental damage due to the deposition of PCB and DDT on the
ocean floor off the coast of Los Angeles through several outfall pipes.
Chemical sediment does not harm humans but endangers some species of
fish. After explaining the problem extensively with instruments including
maps and cards, the survey asked a binary choice question about a speed-

up program to recover two species of fish earlier than natural processes.

* To be uncertain or unsure is also a recommended option in addition to yes and no options. This essay
assumes that ‘to be uncertain’ responses are grouped as ‘no’ response for conservative reason. For details
of ‘uncertain’ response issue, see Carson et al. 1998; Groothuis and Whitehead 1998.
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The payment vehicle for the randomly assigned cost was one time

additional amount on the state income tax.

If respondents have no alternative except the speed-up program to recover fast
species of fish, it may be reasonable to assume that utilities in the proposed and current
states are independent and identical. Alternatively, choice set in the example can
represents different state of nature. Uncertainty in the future, reliability on the
implementation and result of the project, etc, may cause the difference between the
distribution of utilities in the proposed and current states. The proposed state is random
and has unobservable part even from the perspective of respondent itself. More
uncertainty in the proposed state introduces larger variance of the distribution.

The example shows not only the possibility of heteroskedasticity but also the
potential misspecification of binary choice model. If recovering endangered species of
fish is a serious issue to residents in Los Angeles, respondents may consider other options
to speed up recovering them that may be unknown to researcher, rather than speed-up
program proposed in the survey’. Consequently, the response of reject in the contingent
valuation survey, by nature, represents either staying without change or changing through
other process (or possibly in different level). By this reason, the current state is named as

the reference state against the proposed state to avoid misinterpretation. Although

30 Train (2003) defined three characteristics that alternatives in the choice set should satisfy: exclusiveness,
exhaustiveness and countable finiteness. To vote for and vote against are mutually exclusive and finite. For
exhaustiveness, the current state without change includes not only the state without change but also all
possible changes except the policy proposed in the survey. Furthermore, NOAA panel report (Arrow et al.
1993) recommends the reminder of substitute commodities among guideline for designing contingent
valuation questions, such as other comparable natural resources or the future state of the same resource to
assure that respondents have the alternatives clearly in mind (Haab and McConnell, 2002). Haab and Hicks
(1999) has broadly surveyed the choice set issues in recreation demand modeling.
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unknown alternative is not always the case, the possibility of existence increases when
the project is suggested for the local and debated environmental issues.

Unknown alternative introduces at least two possible cases. First, although
distributions of the random utility with alternatives are independent and identical, the
variance of the reference state can be greater than that of the proposed state since the
reference state includes stochastic component of random utility with unknown alternative.
Second, since the unknown alternative may be a competing process for the same goal of
the environmental project proposed in the survey, the error term of the random utility

with unknown alternative can be correlated with that of the utility at the proposed state.

3.2.2 Choice Probability of Random Utility Model

Hanemann (1984) introduced the theory-consistent random utility model into the
dichotomous choice contingent valuation using the framework originally developed by
McFadden (See Haab and McConnell 2002). Given two alternatives (accept or reject) in
CV, respondent chooses the alternative providing maximum utility under the relevant
constraints. The resulting indirect utility function is well defined by a random utility
function. Since the conventional random utility is assumed random to the investigator, a
standard random utility consists of two parts; a systematic component observable to
researcher and an error component which may be known to respondent but not
necessarily.

Let the random utility of individual # at the state i be

U. =K([ z )+g,

mn
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where V is the systematic component, &, is the error component, the subscript i = 0

represents the reference state and i = 1 represents the proposed state. The systematic part

is a function of the respondent’s income (/) and vector of respondent’s characteristics
and choice attributes ( z, ). The income at the proposed state is the amount that is
detracted by the assigned cost, b, . Karlstrom (1999) summarizes assumptions defining

the standard additive random utility model for a discrete choice case.

Definition: A discrete choice random utility model that satisfies the following
assumptions is a standard additive random utility model;
Al. weak complementarity, i.e. only own prices and qualities affect the
conditional utility associated with alternative i,
A2. additive disturbances,
A3. identical distribution in the initial state and the proposed state, and

A4. a finite amount of money for restoring utilities for any finite change.

Note that i.i.d. assumption is imposed not only across individual but also between states.
The probability of choosing the proposed state is the probability that the random

utility in the state one is greater than that of the state zero;

Ijln :P(UOn <U1n)=P(I/0n+gOn <V

1n+gln)=P(80n <vn+gln) (31)
where v, =V, —V,, . Further progress in estimation is feasible by specifying a parametric

form for both of the systematic component and the error distribution in equation (3.1).
The systematic component is usually assumed linear in parameters although only

linearity in income is sufficient. In addition, a typical estimation model of the random
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utility assumes the i.i.d. error distribution in equation (3.1) such as i.i.d. type I extreme
value (or Gumbel) distribution or normal distribution, resulting the choice probability to
be a logistic or normal distribution. The derivation of the logistic distribution from
difference of two identical extreme values is straightforward. In addition to the relation of
extreme value distribution to the logit formula, McFadden (1974) also shows the analysis
that the logit formula for the choice probabilities implies extreme value distribution for
the random utility.

The choice probability in equation (3.1) also can be expressed using the mixed
logit model that is initially applied into recreation model by Train (1998, 1999). A mixed

logit can be derived from a random coefficients model (RCM) or error-component model.
Let the true random utility to be U,, =g}z, , where z,, =(x/.,d,) and ¢}, =(8,.¢, ).
Respondent will accept the proposed policy when U,, >U,, =¢],z,, > &, %0, - BY

rescaling the utility upward sufficiently (s) and adding an i.i.d. extreme value terms on

both sides, the resulting choice probability is expressed such as

exp [(an /s)z, ]

P =
! J. Z‘jzo,leXp[(g/"n/S)Zjn}

f(¢)ds

L . 31 :
where f (g) is a joint density of S, and ¢, °'. Note that the innocuous scale factor s

does not affect the choice probability. Rescaling procedure is solely used for attaining the

3! The mixed logit model, usually, has employed a joint distribution of parameters /8 in the systematic

component of random utility. The probability function of the random parameter is defined to be

B exp(B'x,)
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approximation of the true model or for the degree of smoothing (as in a smoothed AR
simulator). The mixed logit model approximates any random utility model to any degree
of accuracy (Train 2003, McFadden and Train 2000).

Suppose that coefficients of systematic part of utility are invariant across

individual ( S, = ) and the joint density of f (g) is a bivariate distribution of ¢,, and
g,,- Then the mixed logit model becomes

B, =[L,(c)f (205 )d e0,) (3.2)

where

L (c)- exp[vn/er(sln—gOn)/s]
s _1+exp[vn/s+(51n—80n)/s].

(3.3)
The choice probability of the mixed logit model is exactly same to the logit-smoothed AR
simulator with two alternatives, the model which has been suggested by McFadden
(1989). Ben-Akiva and Bolduc (1996) named the model by ‘logit-kernel probit” applying
to the probit. In fact, the logit-smoothed AR simulator can be applied to any choice
model by assuming appropriate distribution about error terms (Train 2003).

The mixed logit model (3.2) is equivalent to the choice probability (3.1) when we

assume the same error distribution. Either of choice probability in equation (3.1) or (3.2)

is estimated by maximizing the likelihood function,

where 4 () is the distribution function of parameters which can be flexibly assumed such as a normal

(Provencher and Bishop 2004), lognormal (Bhat 2000), uniform or triangular (Train 2001) distribution. The
logit probability in the integral is derived conditional on . By assuming that parameters have an individual
and alternative specific randomness, the mixed model relaxes the IIA assumption and represents any

pattern of substitution among alternatives.
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N
logL=> y,logR,+(1-y,)log(1-R,). (3.4)

n=1
Ifi.i.d. assumption is violated, a simple logistic distribution cannot be applied to (3.4).
The choice probability of (3.1) and mixed logit model of (3.2), however, allow the
flexible error distribution for estimation. Two differences from previous models deserve
to be noted. While previous literatures have considered heteroskedasticity only across
individuals or group, equation (3.1) can estimate the model with heteroskedasticity across
alternatives, including simple logit model as a special case. The mixed logit probability
has been applied for random parameters of systematic component in the multinomial case
such as mode choice in transportation or site choice in recreation. By allowing
randomness in the error term like equation (3.2), contingent valuation study can get the
benefit of flexible mixed logit model. However, note that the correlation between
different states arises in the estimation model rather than in the behavioral model. If
choice set is well defined and the random utility is specified well enough to capture all
sources of correlation among alternative explicitly, the simple logit model will provide

consistent estimate of random utility difference and welfare measure.

3.2.3 Welfare Measure
In welfare measure, three definitions of the hicksian variation induced from

environmental change are proposed (Karlstrom 1999);

D1. the expected amount of money to keep the random utility constant for

each individual,
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D2. the expected amount of money to keep utility at the expected utility
for each individual, and
D3. the (deterministic) amount of money to keep the expected utility

constant.

A series of papers has investigated the correct welfare measure consistent with the
microeconomic theory. However, the welfare measurement is incorrect if we estimate the
models using the incorrect choice set (Kaoru et al. 1995). More seriously, a large
difference of amount of money in a cost-benefit analysis has been found although the
welfare estimates from different model are similar (Hau 1986, Herriges and Kling 1999,
Karlstrom 1999).

In spite of the importance of investigating different welfare estimate from
different definition, this essay adapts the conventional definition of willingness to pay to
calculate the welfare change in the random utility. The expected willingness to pay for
the environmental change is defined as the expected maximum income that equates the
expected random utility in two states. Although individual is assumed to have a
deterministic utility known at the time of decision, at least the utility level of the
proposed state is stochastic not only to researcher but also to the respondent due to the
nature of the CV scenario. If the alternative at the state zero represents the reference
utility including all other possibilities, then the reference state is also stochastic to the
respondent.

Assume that the systematic component of the random utility is linear in the

income and the marginal utility of income is constant (&) across individuals and states, i.e.
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no income effect, to derive the welfare change for the representative individual. The

willingness to pay that equates the expected random utilities in both states is
1
WTRI = E[Uln]_E[UOn] = Z{Vn + E(gln)_E(SOH )}

where the income variable is not included in v, **. Note that the expectation is conditional

expectation. By taking an unconditional expectation to the willingness to pay, the welfare
measure of individual » owing to the environmental change can be expressed as

E(WTg):ivn +lE(gln —&,) (3.5)
o a

In previous literatures using symmetric distributions such as logistic or normal, the
expected mean of error terms is zero by including a constant term in the systematic
component. However, as explained in the next section, the expected value of error terms
is not zero but it is much easier to remain the expectation term in equation (3.5) if

asymmetric distributions are employed.

3.3 GUMBEL MIXED MODEL OF BIVARIATE EXTREME VALUES
DISTRIBUTION

Including Gumbel (1960, 1961), Gumbel and Mustafi (1967) and Tiago de

Oliveira (1980, 1983), a series of papers has introduced several bivariate extreme value

32 A typical specification of the systematic component in the random utility assumes a linear function as

vV, =x.p+al, where I, is the income of individual n. Let the systematic utility of the reference state be

Voo =x.By+al, andy -y g 4q (1,-b,) be for the proposed state, where 4 is bid value offered to

individual n. Then, the utility difference in the logistic distributionis . _p. = y/ (B, - B,)-ab,-
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distributions including the Gumbel mixed model which is one of differentiable bivariate
extreme value distributions (for examples of parametric families of bivariate extreme
value distributions, see Kotz and Nadarajah, 2000). Applications of Gumbel mixed model

can be found in the hydrological engineering studies (Yue 2000, Yue et al. 1999).

Let F (80, 81) be a asymptotic distribution of bivariate extreme values of maxima

for ¢, and ¢, with Gumbel margins, F (z) The probability density function and the

cumulative distribution function of Gumbel margin are, respectively,

f(gl.)=éexp(—%)exp(—exp(—%n (3.6)

and
z z
F,(z)=]__f(a)de =exp(—exp(—gjj- (3.7)
The expected value and the variance of ¢, are

6’ r*

E(&,)=0.577226, and Var(e,) ==

The asymptotic distribution of bivariate maxima is defined as

F(epe)=[F(2)F(a)]" = eXp{—{exp(—%J+eXp£—%J}k(T)]

0 1
where k() is called the dependence function representing the asymptotic connection
between g, and ¢&,. 6, is a scale factor and the location factor is assumed to be equal to

zero. The reduced difference 7 is defined as ¢,/6, —¢,/6, .
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Different bivariate distributions are derived using different dependence functions,
of which the Gumbel mixed model has

Aexp(7)

k(r|A1)=1- >
(e14) (1+exp(r))

(3.8)

where A is an association parameter””. The parameter A indicates the association between
the two extremes. By plugging (3.8) into the asymptotic distribution, the Gumbel mixed

logit model becomes

&, & A
- . B & & 3.9
(809‘91 | ) eXp [CXP[ 90]+exp{ o, JJ-’_ exp(so /90)+exp(gl /'91) G

where I is a parameter set of scale factor (6,,6,) and association factor (4). Figure 3.1

shows the contour of the Gumbel mixed bivariate distribution function with A = 0.5. The

probability density function is derived by differentiating (3.9) with respect to ¢, and ¢,

such that
f(x,)
CFGe)| 2 |, et || . e [ea0)
Bl 6,0, (ex/al pRID) )3 (ex/&1 I )2 (ex/a1 pRID) )2

The contour of probability function is shown in Figure 3.2. As can be seen, the bivariate

extreme value distribution is upper-right skewed.

33 The logistic model, one of differentiable bivariate extreme value distribution, is derived using the

difference function of k(e)2)= [1 vexp(e /(1 _l))]m I+ exp(—)]" The logistic model is the simple version of

the generalized extreme value distribution widely used in the transportation and recreational site choice
literatures. Unfortunately, the logit model, i.e. the generalized extreme value with two alternatives, cannot

identify the association factor 4 (See the Appendix C).
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Figure 3.1: Distribution Function of Gumbel Mixed Model of Maxima with 4 = 0.5
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For 4 =0, the joint distribution is independent such that F(&,,& )= F(&,)F (&),
and generally, the inequality F(&,,& ) > F(&,)F (&) holds for dependent case 4> 0.

The correlation coefficient is a function of the association parameter 4;

p(4) =%{arccos(l—%ﬂ (0<p<2/3).

T

When the correlation coefficient is greater than 2/3, the mixed model can not be used. If

both random variables are available, the association parameter is estimated from the

correlation coefficient such that A = 2(1 - COS(?T P16 )) where p is the estimated

correlation from data. Since binary data cannot provide the correlation coefficient, the
association parameter is directly estimated from data.

From the Gumbel mixed distribution, several important distributions are derived;
among others conditional distribution and distribution of reduced difference. The

conditional cumulative distribution function of the Gumbel mixed model is

F, . (&)=F(&.) ex

exp [2 fy exp (—glﬂ
p{exp(—iﬂ—ﬂ i f ; (3.11)
% ) &
eXp 970 +exp 51

from f, . = f(&.&)/ [, (&) (Yue2000). The distribution function of reduced

difference is derived to be (Tiago de Oliveira 1980)

exp(7) (1+exp(r))2—ﬂ,

D(z| /1) B 1+exp(f) (1+exp(r))2 —xlexp(r) .

(3.12)
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For 4 =0, i.e. independent case, the conditional distribution (3.11) reduces to be a
univariate type I extreme value and the difference distribution (3.12) becomes a logistic
distribution. Since the argument in the difference distribution function is a reduced
difference, equation (3.12) can be applied to the estimation model only if utilities have

the same variance. The probability density function of (3.12) is

exp(7) (1+exp(2'))4 -1 exp(2r)—/1(1—exp(21))2

) [l+exp(1):|2 [(1+exp(r))2 —/lexp(r)}2

¢(7)

Figure 3.3 and 3.4 show the cumulative distribution and probability function of the

reduced difference with various 4. The probability density function of reduced difference

is symmetric, {'(7)=¢ (—7) with zero mean. Note that the independence condition

reduces the difference distribution function to be a logistic function.
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3.4 ESTIMATION OF RANDOM UTILITIES WITH BINARY DATA

3.4.1 Bivariate Extreme Value Model
The choice probability in the equation (3.1), B, = P(&, <v, +¢,), can be

expressed as an integration of the conditional distribution over marginal distribution.

From equations (3.11) and (3.6), the choice probability becomes

B, =[""F,, (v+e)s(a)ds . (3.13)

&=—0
Since the model estimates only the difference of two random utilities, one of them should
be normalized such that parameters in systematic component of utility at the reference

state are set to be zero and the scale factor of error term to be one (6, =1). Equivalently,

parameters in systematic component are estimated as difference of functions normalized
by the standard deviation of the reference state and the scale factor of the proposed state
is estimated as a relative scale term.

The bivariate extreme value model of (3.13), unfortunately, does not have the
closed form for the integration, thus requiring approximation or simulation techniques for
estimation of the choice probability. Gaussian quadrature approximates the choice
probability with high accuracy and implements estimation with fast speed™. A simulation
method also provides intuitively easy way for estimating the choice probability. Both of

methods are explained in detail at the section I'V. Let the choice probability of choosing

proposed state be f}n from either of approximation or simulation method. The probability

3 In heteroskedastic extreme values, Bhat (1995) shows that Gaussian quadrature generates a highly
accurate estimates for integrals rather than simulation. Alternatively, Allenby and Ginter (1995) also
suggest the Bayesian estimation procedure for heteroskedastic extreme values.
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of choosing the reference state is the complementary probability of £ such that

n

A

P

2, =1- f’ln . Therefore, the log likelihood function simply becomes

N
logL=)"y,log R, +(1-y,)log(1-7,). (3.14)

n=1
The willingness to pay is estimated using equation (3.5). Following assumptions
of a linear random utility and constant marginal utility of income, the expected

willingness to pay is

™

B
E(WT])H)=)C’75+;E(€1H —6'0")

where f=( - ,)/6, and & = a/6,. The expectation of &, —&,, is not easy to

calculate because the mean of error terms are not zero and they are correlated. Rather
than deriving the expected value of error terms, this essay estimates the expectation of
error differences through a simulation procedure with estimated relative scale and
association parameters.
Correlated extreme values

Suppose that the error components are homoskedastic but correlated. Restriction
of identical variance on Gumbel mixed model transforms bivariate distribution into a
reduced difference distribution in equation (3.12). By substituting the equation (3.12) into
the decision model, the probability of choosing the proposed state becomes

_exp(v,/0) [1+exp(v, /9)]2 —A
1+exp(v,/0) [1 +exp(v, /6’)]2 —Aexp(v,/0)

(3.15)

1n
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where 6 is the common scale factor. The log likelihood function for the mixed model
with constant variance is obtained by substituting equation (3.15) into the log likelihood

(3.4). Since the mean of the difference is zero, the willingness to pay is, unsurprisingly,
the same with the simple formula in the logit model; £(WTP,)=x.5/a.

Heteroskedastic extreme values
The choice probability with Gumbel mixed model nests the heteroskedastic
extreme values and simple logit models which assume independent error terms. When

two error terms are independent (A =0 ), the conditional distribution (3.11) becomes a

marginal extreme value distribution; F

£olé

(&,)=F(&,) . Therefore, from the equation

(3.13), the choice probability with heteroskedasticity can be simplified to be

&=+

P, = F(v,+¢&)f(¢)de . (3.16)

& =—0

Substitute equations (3.6) and (3.7) into (3.16) and define w=¢,/6, and y =6,/6,, then

the probability function becomes

P, = J.:j: exp[—exp(—vn /6, + }/w)][exp(—w)] exp[—exp(—w)]dw . (3.17)
The equation (3.17) is the simplest version of the heteroskedastic extreme values model
of Bhat (1995) and Allenby and Ginter (1995). In the independent but non-identical
extreme value distribution, the heteroskedasticity extreme value model outperforms the
multinomial logit and other generalized logit models (Bhat 1995). The equation (3.17),
however, does not have the closed form of solution for the integral, requiring us to

implement the approximation or simulation of the choice probability.
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Note that J— 1 scale parameters are identified due to normalization in the

heteroskedastic extreme values where J is the total number of alternatives, while other

generalized logit models identify only J (J - 1) /2 -1 scale parameters™ . Since the

contingent valuation study has only two alternatives, the choice probabilities of (3.13)
and (3.17) can identify the relative scale and association parameters, but other
generalized models have the identification problem. The scale parameter is estimated as a
relative scale, y. More uncertainty in the future, i.e. more variance of random utility, is a
reasonable nature in decision process, implying that y is possibly greater than one but not
necessarily.

As shown in the previous section, when bivariate extreme value distribution is

independent, the expectation of a random variable is (¢, )~ 0.577226,. Thus, the

expectation of ¢, —¢,, is approximately 0.57722- (01 -0, ) , providing the final

n

expression of the expected willingness to pay as

b os1malr).
a a

E ( WTP, ) ~ X
i.i.d extreme values
Now assume identical disturbance of random utility in both states in addition to

independence. By substituting the distribution (3.7) and density (3.6) functions into the

choice probability (3.16), the choice probability with i.i.d error distributions becomes

P, = Kwéexp(—exp {—%(Vn té )}jexp(—%j eXPK—eXP(—%Ddﬂ :

3 In general, multinomial probit identifies J — 2 free standard deviations and (J— 1)(J — 2)/2 free
correlations., therefore a total of J(J — 1)/2 — 1 covariance parameters (Greene 2002, Train 2003).
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Let t =exp(—¢,/0) and dt =—exp(—¢,/0)de, /0, then the choice probability can be

expressed as a logistic distribution such that

o0 -1

B, = o exp(—t(l +exp {—vn /9}))dt = [1 +exp {—vn /9}] (3.18)

The logistic distribution can be derived by constraining 4 =0 in the reduced difference
distribution of Gumbel mixed model in equation (3.12). Since A is the standard
cumulative density function of the logistic distribution, the variance of ¢ = fw is
6*7* /3. Note that when error terms are homoskedastic the choice probability always has
a closed form of distribution as in equations (3.15) and (3.18).

The estimation technique for this simple case is straightforward and the

estimation result is consistent under the correct model specification. All parameters are

identified up to the normalized difference such that 5 =(5,~f3,)/0 and G=a/6, but

the scale factor cannot be identified. With linear specification of random utility, the
willingness to pay is the difference between systematic terms of the random utility except

the income, multiplied by the inverse of the marginal utility of income because the

expected value of difference between two identical errors is zero; E (WTP,) = x, pla

3.4.2 Approximating Log Likelihood of Bivariate Extreme Value Model

The bivariate extreme value model in equation (3.14) integrates a conditional

&=+

distribution over one-dimensional random variable, J. F

£=—0 &le

(v, +&)f(&)de, . As

Bhat (1995) already showed that a Gaussian-Laguerre quadrature outperforms a
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simulation in multinomial heteroskedastic case, Gaussian quadrature can provide a fast

and highly accurate likelihood function even in this bivariate case by appropriately

transforming the function. Define a transformation such that u = exp (— exp (—w)) , thus
w= —ln(—lnu) and du = exp(—w) exp(—exp(—w))dw %% The new variable u is the form

of cumulative distribution of extreme value and has the support of [O, 1] . This

transformation enables the approximation much easier through Gaussian-Legendre
quadrature.

Let & =0w, and y =6, /6,, then the conditional density and marginal probability

functions are F

£léy

(v, +&)=F

e (v, +6w) and f (&)= f(w)/6,. The arguments in
the conditional probability is normalized by the standard deviation of 6, . Plugging the
new variable u into the function and defining

G(vn,u) =F, . (vn - 71n(—1nu)) ,

the choice probability is expressed as

P =Iu:1G(v u)du .

since deg, = 6,dw,. The integration is approximated by Gaussian-Legendre quadrature

such as

36 Bhat (1995) uses the transformation of , — exp(—w) and applies a Gaussian-Laguerre quadrature with the

support of [0,00]-
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where &, and u, are L weights and support points (abscissas) of Gaussian-Legendre

quadrature. The points and weights for approximation are reported in Straud and Secrest
(1966). Using L = 40 which is the maximum points provided in Gauss 5.0 program, the

log likelihood function is approximated as

N
logL = Zyn log ZIL:l f]G(Vnaul) ~Wu IOg{ Zz 1§1 }
n=1

3.4.3 Mixed Logit Model with Gumbel Mixed Extreme Value Distribution

Recall the choice probability of mixed logit model in equation (3.2),
R, = J.Lln (g)f(go,gl)d<go,gl>
where the probability density function f (50 , 51) is joint density function of bivariate

extreme values in equation (3.10). By construction, the mixed logit model is equivalent to
the choice probability in equation (3.1) and consequently the mixed logit model nests all

three simple cases; the correlated extreme values (4 # 0 but 6, = 6,), the heteroskedastic
extreme values (4 =0 but 6, # 6,) and simple logit models (4 =0 and 6, =6,). The

mixed model for choice probability (3.2), however, is different from the typical random
coefficients model in the sense that the model allows the flexibility only in the original
error component, thus captures the heterogeneity or correlation of utility across
alternatives in CV.

Owing to equivalence to the logit smoothed-AR simulator, the estimation of the

mixed model follows the simulation procedure of ‘logit kernel probit’ adjusted simply for

118



the bivariate extreme values. Following Train (2003), the simulation procedure is

generally: (1) Draw a 2-dimensional random vector of ¢ from a Gumbel mixed bivariate

extreme values. Label the draw as ¢, = <ggn, &, > (2) Using this draw, calculate the utility

difference U, U, =v, + &/, — &, - (3) The logit formula of equation (3.3) in the mixed

logit model is calculated from the utility difference and with a scale factor s specified by
the researcher. (4) Repeat steps (1)-(3) many times (» = R), and then the simulated

probability is the average of them, 131,7 =% f=1 L, (gr | B ) The simulated log likelihood

function is log L = Zivzl v, log 131n +(1-y,)log (1 - 131n ) . However, since random drawing

from a bivariate extreme value distribution in the step (1) is unavailable, this essay
employs an importance sampling procedure with Halton sequence to simulate the random
draw from bivariate extreme values.

The expected willingness to pay in the mixed logit model can be estimated by the
same formula of bivariate extreme value model. When the variance is identical across
states, the expected willingness to pay is simply the difference of systematic component
divided by the income parameters. When there exists heteroskedasticity, the expected
difference of error terms is added into the expected value of the systematic part. In
general case, the expected difference of error term is simulated using parameter estimates
of relative scale and association. Note that rescale process for deriving logit formula does
not change the willingness to pay since the welfare measure is estimated by the ratio of

parameter estimates.
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3.4.4 Simulating Log Likelihood of Mixed Logit Model

In spite of intuitively simple procedure in simulation, it is not easy to draw
random variables &, and & from the Gumbel mixed distribution. Alternatively, the
importance sampling provides simulated random variables with correlation and
heteroskedasticity by transforming the original density, named target density, into a

density from which it is easy to draw, named a proposal density. Suppose that there is a
density, g (5) , that can be handled easily. Since multiplying the integrand of equation
(3.2) by g(&)/g (&) does not change the original choice probability, the choice

probability of mixed logit model becomes

f(¢)
g(e)

The choice probability is simulated by random drawing from g (5) , calculating the logit

P, =IL1,1(g) g(e)de.

formula with a weight f(&)/g(¢) for each draw.
Let g(gi) be a univariate extreme value distribution. Using the joint density of

Gumbel mixed model given in equation (3.10), the weight f(&)/g(¢) is calculated as

f(é:4) A
=Y¥(¢,, /6, /6, 3.19
g(&)e(s) (e0-e1)exps (60160 4 1)+exp(50/00)+exp(51/l91) (3-19)
where
¥ (x,y)= 20" W4 4 o0 Ae*'% : oo Ae”" :
(ex/HO +ey/¢91) (ex/HO +ey/€1) (ex/HO +ey/‘9‘)
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Normalizing 6, =1 and using the fact that &, =@ w, and g(&,)=(1/6,)g(w, ), the choice
probability of mixed logit model is simulated as

A

exp(w, )+exp(w

e

B, = ILM (g)‘{‘(wo,wl)exp{(w0 +w )+

Application of importance sampling to the mixed logit model in this essay is as

follows: (1) Take draws for w, and w, from a standard extreme value distribution and

construct two-dimensional independent random variables. In this first step and through
the repetition, Halton sequence is useful to draw standard extreme values®’. Using Halton
draws for the given sample size, the standard extreme value distribution is recovered
from the inverse of cumulative distribution of extreme value. (2) For this draw, calculate

the logit formula, Z,, , and the weight function of equation (3.19) with prespecified

scaling factor in the logit formula (s). (3) Repeat two steps enough times and average the
result, ﬁln = %ZVPM , which is an unbiased estimate of the choice probability with

correlation and heteroskedasticity. Note that by construction, R repetition is equivalent
with R Halton draws. The probability of choosing the alternative zero is f’w =1- f’ln . The

simulated log likelihood function becomes

logZ=3"y, log 7, +(1-y,)log(1-2,).

n=1

37 Halton sequence reduces the number of draws and the simulation error associated with a given number of
draws. The simulation error with 125 Halton draws is smaller than even with 2000 random draws. See Bhat
(1999), Train (1999, 2003) and Greene (2002).
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3.4.5 Simulating Expected Willingness to Pay
In both of bivariate extreme value and mixed logit models, the expected

difference of error terms is not zero if error variables are heteroskedastic. The expected
difference is approximately 0.57722- (01 -0, ) . However, it is not easy to take
expectation on error difference if error terms are heteroskedastic and correlated.
Importance sampling can be easily reapplied to simulate the expected willingness to pay.

Since E(¢,, —&,, )/ a is equivalently E(yw,, —w,,)/ &, the expected value of
error difference is the integration of random variables over Gumbel mixed bivariate
probability;

E()/Wln -W,, ) = I(;/Wln - W, )f(wln,WOn )d<wln,W0n> .

By applying importance sampling procedure with Halton sequence to the expected error

difference, the expected willingness to pay becomes

SHIECY

E(WIR)=x.=+—E(yw, —w,,)-

Q| —

Note that, except the case of heteroskedasticity, the expected error difference can be

exactly calculated without relying on the simulation.

3.5 EXPENDITURE DIFFERENCE AND GUMBEL MIXED MODEL
3.5.1 Expenditure Difference Model

An alternative model of the random utility is based on the willingness to pay
function derived from the expenditure functions. Expenditure function is a dual function

of the indirect utility function. Let the minimum expenditure of individual »n be
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m,, =m (qo,uf) at the reference state and m,, = m(ql,uf) at the proposed state given the

same utility level (u| ) where ¢' is the environmental quality at state i. As a random

*
I

utility, the expenditure function consists of a systematic component (7, ) and an

unobservable random component (77,); m, =m, +n7,. The willingness to pay function is
defined to be

WTP(uO) = m(qo,uo)—m(ql,uo) .
The binary response to the dichotomous choice question is one if the willingness to pay is
greater than bid amount, and zero otherwise. Alternatively, the response of accept implies
that the respondent agrees to pay the cost when the expenditure at the proposed state plus
the bid amount is still less than the expenditure at the reference state. Typically, the
willingness to pay function is estimated by first assuming an appropriate distribution for
the unobserved component and then applying a form of probit or logit model.

The logistic distribution of the willingness to pay function implies that the
underlying distribution of expenditure functions is the i.i.d. type I extreme value
distribution. However, unlike the random utility model, the expenditure function is
derived from a minimization problem implying that extreme value of the expenditure
function is the smallest value such as the type I smallest extreme value distribution. As
can be recognized, the exactly same problems of random utility model arise in the
willingness to pay function model if we assume a logistic distribution. The general form

of choice probability in expenditure difference model is

123



R :P(bn <m0n _mln)

n

:P(ﬂl < mg, —my, _bn+770).

Error terms 7, and 7, may have heteroskedastic variance or be correlated.

3.5.2 Gumbel Mixed Model of Minima

From the dual relation of min(Z, ) =—max(-Z,), the joint distribution function
for minima with Gumbel reduced margins is
Q(ny,m)=1=F (=n,)=F (=n,)+ F (—110,—11,) , (3.20)
where F(-) and F(-,-) are marginal and joint distributions of maxima defined in

equation (3.7) and (3.9) (Tiago de Oliveira, 1983). From the relation between maxima
and minima in equation (3.20), the probability density function of bivariate extreme

values of minima is defined as

629(770,771) _ 52F(—770,—771)
on,0mn, om0,

w(noaﬂl) =f(—770,—771)- (3.21)

Figure 3.5 and 3.6 show the joint distribution and probability function of minima,
respectively. Note that the probability function of minima is symmetric function of
probability of maxima around zero, thus the tail of minima is lower-left skewed.

Since a bivariate distribution of maxima satisfies the boundary conditions

F (—oo, y) =F (x, —oo) =F (—oo, —oo) =0, the bivariate distribution of minima also
satisfies the boundary conditions, Q(—o0,77,) = Q(#,,—%) = 0. From the definition of

marginal distribution of maxima, F (x,oo) =F (x) and F (oo, y) =F ( y) , the marginal
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distribution of minima is defined as Q(7, ) =Q(7,,%)=1-F(-7,) and

Q(n,)=1-F (-n,) such that

Q(z)=1 —exp(—exp[én .

The probability density function of marginal distribution is also easily derived as

_ ag;g”) =_8Fa(;’7) = 1 (-n). (3.22)

(1)

Owing to the relation between maxima and minima, the expected value of 7 is easily

derived to be E(1,) ~—0.577226,.

The conditional distribution of minima is derived from the conditional distribution
of maxima in equation (3.11). Since the conditional probability function of minima is

expressed as

_ w(770a771) _ f(_770a_771) Y
o(m, | 1,) = o) ) =f(=m1-m,),

the conditional distribution of minima is

=

Qn 1m)=["" @(nlny)dn==F(=n=n )" =1=F(=n |-1,)- (3.23)

n=
Note that the distribution and probability functions of reduced difference of minima are

identical to that of maxima.
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Figure 3.5: Distribution Function of Gumbel Mixed Model of Minima with 4 =0.5
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25

Figure 3.6: Probability Function of Gumbel Mixed Model of Minima with 4 = 0.5
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3.5.3 Bivariate Extreme Value and Mixed Logit Models of Expenditure Difference
Note that the respondent accepts to pay the cost when the expenditure plus bid

amount at the proposed state is still smaller than the expenditure at the reference state.

Following the same logic in random utility model, the choice probability of expenditure

difference is expressed as

B, =P(my, +b,+n <my,+n,)=["""

1o =—0 Q(m: _bn + o | 770)60(770)0'770 .
where m, =m, —m,, . By substituting equation (3.23) into the choice probability

function, the choice probability of expenditure difference is

o =+%
B, =]

1= F(=(m —b )} (=m0l
77:_00{ ( (mn n+770)| 770) f( 77()) 77()
The choice probability can be approximated by Gaussian quadrature. Define a

transformation such that 1 —u = exp (—exp(w)) ,thus w=In (— In(1- u)) and
du = exp(w) exp(—exp(w))dw. Let 1, = G,w, and y =6, /6,, thus dn, = 6,dw,.
Plugging new variables into the function and defining
H(m:,u) = l—F(—m: —b, —yIn(=In(1-u))| —170) ,
the approximated choice probability is

Ty L *
Rn = Zl:l élH(mn’ul) ‘
Expenditure difference model has an estimation model corresponding to each case

of random utility model. The choice probability of i.i.d error distribution is

1)] = P(bn < mOn _mln ) = J-%:Jroo

MTo=—*

Q(m, ~b,+n,)e(n,)dn, -

n
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Recalling the cumulative distribution function and probability density function of the

type I smallest extreme value are, respectively, Q(z)=1-F(-z) and o(n)= f(-7),

the probability function with homoskedastic variance is

Mo =+® m* —b +

R, :J. . {I_F[—Mﬂf(—%)d% : (3.24)
TTo=—* o

By substituting ¢ =exp(7,/60) and dr =exp(1,/0)/6dn,, the probability function can

be further simplified to

) exp| (m; ~b,)/0]
" lvexp|(m)-0,)/0]

which is a simple logit model. In the heteroskedastic case, define again w=1,/6,, then

from the equation (3.24), heteroskedastic expenditure model can be expressed such as

e [ e e

1
The choice probability of heteroskedastic expenditure is approximated using Gaussian

quadrature.

The general expression equivalent to the mixed logit model (3.2) is

B, = J-Lln (g)a)(ﬂ)dﬂ

where L, = {1 + exp[—(m: —b, )/s (1,0 =11 )/s]} " and 1 =(n,,m,) . The bivariate

probability of minima is simulated by the same way of bivariate probability of maxima.

In importance sampling, the target density is joint density of minima and the proposal
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densities are standard extreme value densities. From (3.21) and (3.22), importance

sampling is implemented by

(0(770,771) _ f(_770:_771)

w(ﬂo)a)(nl) f(—%)f(—fh)‘

The consistent estimate of the parameter in the expenditure function is estimated

by ML with approximated or simulated log likelihood function

logZ=3" 7, log , +(1-y,)log{1-£,}.

n=1
Assume further that the expenditure function is linear in parameters; m, = x' /3. Then, as
in the random utility model, parameters are identified up to the difference of two

expenditure functions. The parameter estimates are 3 = ( By - ,Bl)/e1 for the systematic

part, B3, =1/6, for the minus bid value and 7 =6, /6, for the relative scale factor. Note
that all parameters are normalized by 6, rather than by 6,. Owing to the bid variable, the
expenditure difference model is able to identify both scale parameters. The willingness to
pay is defined as

E(WTP,)=m, +E(n,-n,)
which is estimated through the same simulation method of the random utility model.

Since the expected univariate extreme value of minima is £ (771.) ~—0.577220,, the

willingness to pay of heteroskedasticity is estimated as follows

E(WTP,)~ x, ;+0.57722i(7—1) :

b b
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3.6 APPLICATIONS OF RANDOM UTILITIES AND EXPENDITURE
DIFFERENCE MODELS

Gumbel mixed distribution of bivariate extreme values has been applied to the
random utility model and expenditure difference model. The data used in the estimation
includes wastewater disposal system in Montevideo, Uruguay, and the sewage treatment
in Barbados (McConnell and Ducci, 1989)*®. In Barbados study, the households were
asked through in-person interview, if they would be willing to pay the given amount of
money in increased water bill for the installation of a sewage system. Observations in
each data were 1276 for Montevideo and 426 for Barbados data.

Log likelihood function is approximated in the bivariate extreme value model and
is simulated in the mixed logit model using Gauss program version 5.0 with CML library.
For mixed logit model, the rescaling factor s is set to be 0.3 and the simulation is repeated
125 times. In both of random utility and expenditure difference models, the association
parameter (4) is constrained to be between zero and one. For the relative scale factor (y),
CML procedure in Gauss assigned nonnegative constraint although it is positive in

theory3 ?. Also, to make the results to be comparable, the inverse of relative scale, 6,/6,,
was estimated in expenditure difference model rather than 6, /6, .

Tables 3.1 and 3.2 show the estimation results of random utility model with
Barbados and Montevideo data, respectively. The results consist of three sets; simple

logit model in the second column, the result of bivariate extreme values in the third to

3¥ The data is available in Haab and McConnell (2002).

3% The positive constraint can be assigned in the model by transforming the parameter such as exponential
term. However, the estimation results for other parameters are not different and zero estimate of relative
scale implies extreme difference of scale terms.
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sixth column and the result of mixed logit in the last four columns. The first part of
results in bivariate extreme values and mixed logit is estimation result with constraints of

independent and identical error (y =1, 4 =0). These general models with constraints of
y=1and A =0 are theoretically equivalent to the simple logit model. In the following
columns are estimation results with heteroskedastic only (A =0), correlation only (y =1),

and without constraint for full flexibility.

In Table 3.1, constrained bivariate extreme value model with y =1 and 1 =0

provides exactly same parameter estimates with the simple logit model. The constrained

mixed logit model with ¥ =1 and 4 =0, however, has estimates different from the

simple logit model. Unfortunately, both of estimation models fail to estimate parameters
due to too large relative scale estimate when the association parameter is fixed to be one
and only heteroskedasticity is allowed. When the correlation is allowed in estimation, i.e.

in general model and constrained model with y =1, the association parameter is different

from zero but not statistically significant in both of bivariate extreme value and mixed
logit models. In addition, relative scale parameter is not statistically different from one.
LR statistics for homoskedasticity or independence fail to reject the constraints. Barbados
data shows that the assumption of independent and identical distribution is suitable for
estimation of random utility.

Table 3.2 shows the estimation result of random utility model with Montevideo
data. Like the Barbados data, bivariate extreme value model with constraints of y =1 and
A =0 shows the estimation result closer to logit model than mixed logit model does.

Both of bivariate extreme value and mixed logit models provide association parameter
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estimate statistically indifferent from zero except one case of mixed logit model. The
relative scale estimate at convergence is zero implying that the scale of reference state is

extremely larger than that of proposed state. Bivariate model with constraint of y =1
shows that dependence between error terms is not statistically significant. LR statistics
fails to reject the constraint of independence (A = 0), but heteroskedasticity is
statistically significant in both of bivariate extreme value and mixed logit models.

Table 3.3 and Table 3.4 report the estimation results of expenditure difference
model with the same data set. Note that the relative scale factor y is estimated as 6, /6,
rather than 6, /6, to enable the comparison with random utility model. By construction,
however, parameters of systematic part of expenditure difference are normalized by 6,
not by 6,. Thus, the parameter of bid value in expenditure difference model represents
the inverse of standard error €, while that of random utility model implies the marginal
utility of income normalized by 6,. As random utility model, the expenditure difference
model reports the estimation result with constraints of i.i.d. (y =1 and A =0),
independence (A =0), and homoskedasticity (y =1).

Table 3.3 presents the estimation result of expenditure difference model with
Barbados data. When the relative scale parameter is estimated, the result shows that the

inverse of relative scale is greater than one, implying 6, > 6,, but statistically indifferent

from one except the constrained bivariate extreme value model with 4 =0. The estimate

of association parameter is not statistically different from zero. The results of expenditure

133



difference model with Barbados data show that Barbados study satisfies the classical

assumption of logit model in terms of parameter estimates and LR test statistics.
Table 3.4 reports the estimation result of expenditure difference model with

Montevideo data. Unfortunately, the estimation fails in the general bivariate extreme

value model and constrained bivariate with 4 =0 due to extremely large 6,. LR test fails

to reject the independence constraint in both estimation models. However, LR statistics
are 5.48 for homoskedasticity constraint in the mixed logit model, which is significant
with 95% confidence. Note that the heteroskedasticity is statistically significant in the
corresponding bivariate models of the random utility model (Table 3.2). Consequently,
Montevideo data demonstrates statistically insignificant dependence but significant
heteroskedasticity. However, although the relative scale estimate is statistically
significantly less than one, parameter estimates of systematic component of expenditure
difference are seemly equivalent with that of the random utility model. Remind that the

expenditure difference model is normalized by 6, while the random utility model is
normalized by 6,. When y =6,/6, <1, parameter estimates in the expenditure difference

model should be greater than that of the random utility model. The parameter estimates in
the mixed logit model, however, does not show decreasing tendency from the result of
bivariate extreme value model.

Interestingly, the parameter estimates of the expenditure difference model are
statistically duplicates of the random utility model, i.e. assumption of underlying
distribution such as maxima or minima does not affect the estimation result. When error

components between two states are independent and identical, parameter estimates are
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almost similar in both of bivariate extreme values and mixed models since two models
are different only in interpretation of choice probability but indistinguishable in
estimation. Although estimation results present independence of error components in
both data, the variance of the reference state of Montevideo data is greater than that of the
proposed state.

In spite of similar parameter estimates, the welfare measure from the change of
environmental quality varies enormously depending on the relation in error terms. Table
3.5 shows the sample average of the expected willingness to pay from Table 3.1 to Table
3.4* Unfortunately, due to estimation failure, the willingness to pay cannot be estimated
in two heteroskedastic models of random utility with Barbados data and in two cases of
the bivariate extreme value model for the expenditure difference with Montevideo data.
Approximation method (the bivariate extreme value model) generally provides better
estimation result than simulation method (the mixed logit model) when the error terms

are constrained with y =1 and A =0. Furthermore, expected willingness to pay with
homoskedasticity constraint ( =1) is also similar to logit model since independence has

been found in most cases. However, the sample average of the expected willingness to
pay with heteroskedasticity is quite different from the sample average of the expected
willingness to pay under homoskedasticity. For instance, the sample average of the

expected willingness to pay in Montevideo is estimated around -28 ~ -26 when y =1 is

imposed, but it is estimated -81 ~ -65 without the constraint of y =1.

0 Since the purpose of reporting willingness to pay is to compare the result from each estimation and
decision model, monetary units are ignored in the table. Furthermore, by the assumption of linear function
and infinite range of error distribution, the expected willingness to pay can be negative value.
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3.7 UNKNOWN ALTERNATIVES (MISSING ALTERNATIVE IN THE
MULTINOMIAL LOGIT MODEL)

Now suppose the choice situation that individual considers three alternatives, one
of which is the current state (i = 0), the second is the proposed state (i = 1) and the last is
another alternative for the same environmental improvement (i = A). Alternative A which
is unknown to researcher implies that respondent agrees the environmental change but
through different way. If the alternative A turns out to be impossible to implement, i.e. if
no other options are available except the proposed one, it may be reasonable to think that
more respondent would accept the proposed project rather than still remain in the current
state. The random utility from the unknown alternative consists of the individual specific
components that are same across all alternatives, the alternative specific components that
may be similar with the proposed alternative but different with respect to at least the
process, and unobservable random error term.

If error terms of random utility are i.i.d. type I extreme values across alternatives,
the probability to accept the proposed state becomes a multinomial logit,

exp(V,/6)
B, =P(U,>U, :
exp (¥, /9)4—2]:0)/1 exp(Vj /0)

On>

U

1n

>U,, )=

Without further assumption, the probability function cannot be useful in the estimation
because choice of the alternative A is unknown to researcher. Since the unknown
alternative is supposed to have the same target of environmental change but through a
different process, assume that the random utility from the unknown alternative is same

with that of the proposed state with respect to the marginal effect of parameters but
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different only in the expected value of random utilities, i.e. constant term*'. Then the
systematic part of the random utility of alternative A is expressed as V, =¢+V,. The

probability function of response of “yes” becomes

1
P =
" 1+exp(¢/0)+exp(-v,/0)

and finally the log likelihood function for the unknown alternative model is

2 | ) exp(¢/0)+exp(-v, /0)
nL=2, ln{1+exp(¢/9)+exp(_vn /9)}+(1 y")ln{“exp(cf’/@)”xp(‘vn /9)}

where 6 is common standard deviation of error terms and ¢ = ¢/ is the normalized

difference of the expected random utility between the proposed policy and the unknown
alternative.

As ¢ goes to negative infinity, the probability of accepting the proposed state

becomes the typical logit model. When ¢ =0, i.e. the unknown alternative provides the

same utility as the proposed project, the probability becomes B, = [2 +exp (—vn / G)T If

the unknown alternative provides much higher utility, the proposed project will be rarely
accepted, i.e. the probability choosing the proposed policy becomes lower as the
unknown alternative provides higher utility. Interestingly, the unknown alternative model
has some similarities with the misclassification model in the sense that some portion of
the response is classified into wrong category. However, the unknown alternative model

is different from the misclassification model in that the unknown alternative model

I Although the assumption of the same marginal effect but different expected value is surely restrictive to
the model, the assumption is similar with the constant treatment effect, which has been widely used in labor
economics for unconfoundedness condition (for details, see Imbens 2004).
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corrects the misclassification with strong assumption while the typical misclassification
model estimates the probability of misclassification directly by plugging it in the log
likelihood function. Misclassification in the unknown alternative model implies the
unidentification of utilities in no response.

The willingness to pay can easily but also carefully be calculated. Note that
alternative in the contingent valuation study is the state itself while typical multinomial
logit model has alternatives in the given state*. Since there exist two alternatives after
the change in the unknown alternative model, three kinds of welfare measure arise from

the model. The first and traditional willingness to pay is

b

SR

. 1 ' '
E(WTPn ’lzl)zg'xn(ﬂl_ﬂo):xn

which is interpreted as the willingness to pay for the environmental change conditional
on the project proposed in the survey, i.e. willingness to pay for the project. In fact, this is
the typical interpretation of the willingness to pay in previous CV literatures. The second,

also conditional definition is the willingness to pay for the unknown alternative;
! ~

B li=A)=2+ La(p-p)=L 1
a o o

By definition, if the estimate of ¢ is positive, then the unknown alternative provide

higher expected random utility, suggesting that policy maker needs to consider another

* Alternatively, given the current state (before change), respondent has to make a choice between proposed
state and unknown state (after change). In this way of interpretation, the willingness to pay can be
estimated as difference between the log sum of after change and of before change. With i.i.d type I extreme
values, the log sum formula is well known for calculating the willingness to pay in the multinomial logit
(Ben Akiva 1973, McFadden 1973, 1978, 1981, Domencich and McFadden 1975).
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process of achieving the goal. The final definition of welfare measure is the willingness
to pay for the environmental change itself such that
E(WTF,)=P,, ,-E(WIP,|i=1)+P,, ,-E(WIP,|i=A).

n|l,4 ’

Since the probability of choosing the proposed state given the environmental change is

B = [1 +exp(¢p/ 9)]71 , the unconditional willingness to pay becomes

E(WTP) =3,

[1 +exp (—&)]l .

+

SHAY
ISTEASE

~\ -1
Note that [1 + exp(—¢)} is the conditional logistic probability of choosing unknown

alternative and ¢~/0? is the constant difference of willingness to pay of unknown

alternative from the proposed policy. Therefore, unconditional willingness to pay is the
conditional willingness to pay for the project plus the weighted constant estimate.

Table 3.6 reports the estimation result of unknown alternative model with
Barbados and Montevideo data sets. The parameter estimate of ¢3/ a , constant2, is

extremely small and insignificant in Barbados data, the result which is consistent with the
result in Table 3.1 and 3.3 that show i.i.d extreme value distribution. Barbados data
implies that respondent may not consider other alternatives thus the decision model
becomes a simple logit. However, the estimation result from Montevideo data is quite
different from the results in Table 3.2 and 3.4 since the general models do not impose the
strong assumption on the functional form and parameter estimates are normalized by
different standard deviation. The estimate of willingness to pay in Montevideo, therefore,

provides different result from the general model.
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Barbados Montevideo

Parameter Estimate Parameter Estimate
Constant 8 g;g? Constant _8 ggé?
Income 00549 Income 0.3334

0.0210 0.0905

Bid 0.0065 Bid 0.0022
City 0,292 -
Age 020090 -

Constant2 gég i%; Constant2 _8 ‘31‘1%8

Log likelihood -160.841 -714.887

Sample Average of

o -2.0701 29.1442
WTP

" Parameter estimates are reported followed by standard error of estimate.
™ Willingness to pay for the proposed state

Table 3.6: Estimation Result of Unknown Alternatives Model”
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3.8 CONCLUSIONS

This essay challenges the theoretical and technical background of the simple logit
model often used for estimating willingness to pay from dichotomous choice contingent
valuation applications. The survey questionnaire in a dichotomous choice contingent
valuation asks a respondent to compare two states of the world: the proposed state and
reference state. The proposed state represents the future with environmental change by
the proposed policy and the reference state represents the future with all other
possibilities including current state. The simple logit model assumes that the respondent’s
evaluations of the two states are stochastically independent and homoskedastic. However,
it is possible and in many cases likely, that uncertainty on the part of the respondent, poor
questionnaire design or simple inherent heterogeneity across states of the world may lead
to heteroskedastic and correlated errors across states of a given individual. For instance,
respondent has some degree of uncertainty about the proposed policy while the current
state is deterministic. In addition, the reference state consists not only of the no-change-
state but also of all other possibilities including change under unknown alternatives.

By relaxing restrictive assumptions of the standard random utility model, this
essay suggests a generalized estimation technique that includes a number of existing
models as special cases. To identify heteroskedasticity and correlation between the
reference and proposed states, a Gumbel mixed model of maxima, a member of the class
of bivariate extreme value distributions, has been employed into the random utilities.
Nested within this generalized model are the heteroskedastic logit model and the simple

logit. In addition to the random utility model, the essay also develops an expenditure
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difference model estimated with a Gumbel mixed bivariate distribution of minima. Again,
this model has nested within it a number of standard logit-expenditure difference models.
The nesting structure allows for straightforward tests of the homoskedastic-independent
error assumptions.

Estimation results from several existing data including Barbados and Montevideo
data show that correlation between two states is usually minimal, but homoskedastic
errors are rejected in many cases. Montevideo data presents extremely different scale of
error terms across states implying that the extreme value distribution, i.e. logistic
distribution for the difference of error terms, may not be a suitable distribution. Serious
problem arises in estimation of welfare measure. Heteroskedasticity or correlation
provides willingness to pay estimate different from estimate of the simple logit, thus
different policy implication in benefit-cost analysis.

In spite of the simplicity and profound theory of binary choice logit model, much
careful consideration is required to refine the choice situation and to apply the model into
contingent valuation studies. Various estimation models do not suggest different decision
process but indicate that due to the nature of decision process, the estimation result from
simple logit model could be incorrect. Decision of which estimation model should be
used in practice is solely in the researcher on the basis how he or she defines the choice

situation and choice set.
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A: Survey Questionnaire for Five-year Project (One-time Payment)

Page 1 of 4

8) On a scale of 1 to 10, with 1 being that programs to
protect the Chesapeake Bay have gone too far and cost
more than they are worth and 10 being that that programs
to protect the Chesapeake Bay can never be too striet and
these programs should be made regardless of cost, how
would you rate cumrent protection programs in the
Chesapeake Bay region?

[1 [2T3[afs5]e6]7[8]910]

9) Over the past year, about how many times have you
participated in each of these activities on the Chesapeake
or its tributaries?

Activity MNumber of times participating in activity
(check the appropriate box)
0] 1]12|3/4|5|6|7|8| 92 More

than 10

Boating/Jet

Skiing/Skiing

Swimming

Fishing

Bird

Watching

Beach Going

Please list any other activities in or around Chesapeake Bay
waters you have participated in over the last year.

10)

Many different types of seafood are harvested from the
Chesapeake Bay. These include Striped Bass, Blue Crabs,
and Oysters. On a scale of 1 to 10, with 1 being not
important and 10 being extremely important, how
important do you think seafood harvested from the
Chesapeake Bay is to the economy of the Chesapeake
Bay region?

On a scale of 1 to 10, with 1 being not important and 10
being extremely important, how important do you think
seafood harvested from the Chesapeake Bay is to the
water quality in the Chesapeake Bay?

[T 9 10]

| Chesapeake Bay Attitude and Preference Survey:
1) Is a national goal of protecting nature and preventing
pollution very important, somewhat important, or not at
all important to you (Check one)?
QO Very Important
O  Somewhat Important
Q  Not Important
2) Ona scale of 1 to 10, with 1 being that pollution controls
have gone too far and cost more than they are worth and
10 being that that pollution controls can never be too strict
and improvements should be made regardless of cost,
how would you rate current pollution controls in the
United States (please circle one)?
[1 [2[3T4a]s5[6[7[8]910]
3) Do you belong to or contribute to any environmental
organizations on a regular basis (such as The Sierra Club,
The Nature Conservancy, The Chesapeake Bay
Foundation)? (please circle one)
Yes No
4) Do you consider yourself an environmentalist?
Yes No
5) How would you rate the overall quality of the Chesapeake
Bay (check one)?
O Excellent/Pristine
O Very Good
0O Good
Q  Fair
O Poor
6) Is a regional goal of protecting water quality in the
Chesapeake Bay very important, somewhat important, or
not at all important to you (check one)?
0O Very Important
0O  Somewhat Important
0  Not Important
7) Do you own a boat (circle one)?
Yes No
Al a
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Chesapeake Bay Attitude and Preference Survey:

Page 2 of 4

Some Information About Oysters and the Chesapeake
Bay: Please Read.

Oysters are a keystone species in Chesapeake Bay. An adult
oyster is capable of filtering 50 gallons of water a day. At its
peak, the Bay’s oyster population ¢ould filter in three to four
days as much water as is in the bay. Likewise, oyster reefs are
home to more than 300 species of Bay life. Oysters were once
the most valuable commercial fishery on the Bay. However,
overharvest, disease, and pollution diminished the population
to 1 percent of historic levels in little over a century.

During the 20t century, oysters were the most harvested
species in the Bay. Because heavy harvest, loss of reef habitat,
pollution, and disease the Chesapeake’s oyster population
today is thought to be only one percent of what it was just over
a century ago. Bay oysters used to grow in tall reefs that
elevated oysters from the silty bottom into food-rich currents
above., Reefs provided far more nooks and crannies for
creatures to hide in than flatter beds do .In the 19th century,
oyster reefs were so large that they were considered
navigational hazards. After 120 years of intense harvest, very
few reefs remain in the Bay.

What Role Do Opysters Play in the Chesapeake Bay
Region?

Food: Each year, more than 500,000 pounds each of oysters

and rockfish are consumed from the waters of the Chesapeake

Economic: Oystering was the most valuable commercial
fishery in the Bay until the mid-1980s, when it was overtaken
by crabbing.

Environmental: Oysters purify the Chesapeake Bay as they
filter the water for their food. Dirt, nutrients, and algae can
cause problems in Bay waters. Oysters filter these things, and
either eat them or shape them into small packets, which are
deposited on the bottom where they are not harmful. The
oysters in the Bay could once filter the entire Bay in three to
six days. Filtering now takes almost one full year.

Fish Habitat: Oyster bars (reefs) are among the best places to
fish. The hard surfaces of oyster shells and the noocks between
the shells provide places where a host of small animals can
live, Hundreds of animals use oyster bars: grass shrimp,
amphipods, bryozoans, anemones, barnacles, oyster drills,
hooked mussels, mud crabs, and red beard sponge to name a
few. Many of these serve as food for larger ammals including

striped bass, weakfish, black drum, Croakers, and blue crabs.

Al a

Questions About Oysters and the Chesapeake Bay

12) Do you find this information helpful in understanding the
role oysters play in the Bay (Circle One)?

Yes No
The information mentions four roles oysters play in the
Chesapeake Bay: Food, Economic, Environmental and
Fish Habitat. Please rank these four roles in order of
which you think is most important, with 1 being the most
important and 4 being the least important:

13

Food
Economic
Environmental
Fish Habitat
14) To the best of your knowledge, are there more, about the
same, or less oysters in the Chesapeake Bay as 10 years
ago?
a  More
QO Less

3 About the same

15) Over the course of a year, about how often do you eat
aysters or food containing oysters?

Omnce a week

Onee a month

Onee every two months
Onee a year

Less than once a year

cocooo

16) Many types of projects exist for the improvement of water
quality and habitat in the Chesapeake Bay. These include,
but are not limited to, reducing pollution in the Bay,
restoring habitat for Bay species, managing fisheries for
conservation, and developing policies to emsure the
sustainability of the Bay. On a scale of 1 to 10, with 1
being no support and 10 being strong support, how would
. rou_rtate your level of support for Chesapeake Bay
|‘I12_|345[6]‘?89[10]
17) How effective do you think programs have been to restore
the Chesapeake Bay (check one)?

Very Effective
Somewhat Effective
Not very effective
Mot effective at all

ocococo
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Chesapeake Bay Attitude and Preference Survey:

Page 3 of 4

Oyster reefs play an important ecological role in the
Chesapeake Bay. Oysters cluster together to create a hard
surface on the Bay bottom and a three-dimensional reef habitat.
for many species. Oyster reefs have declined in the
Chesapeake Bay due to harvest pressure, oyster diseases, and
pollution. Harvesting techniques have reduced many three-
dimensional reefs to flat surfaces.

18) On a scale of 1 to 10, with 1 being a miner problem and
10 being a major problem, how would you rate declining
oyster populations as a threat to the health of the
Chesapeake Bay (Circle one)?

(M [ 23 als5]6]7][8]9]10]

In 2000, the Bay’s scientific community agreed on a strategy
to jump-start the natural machinery that sustamns the Bay's
oysters. To restore the oyster population, the strategy calls for
rebuilding oyster habitat, stocking it with hardy oysters, and
establishing sanctuary areas that provide a continuous, long-
term supply of healthy oysters.

19) On a scale of 1 to 5, with 1 being no support and 5 being
strong support, how would you rate your level of support
for oyster sanctuary and reef creation programs (Circle
one)?

L1 [ 2 [ 3 [ 4 [ 5

Current proposals are to create and protect 10,000 acres of
new oyster sanctuary and 1,000 acres of new oyster reef
within these sanctuaries over the next 5 years. Oyster
sanctuaries will be established in 10-25 acre parcels spread
throughout the Bay and estuaries. These oyster sanctuaries are
protected regions in which the harvesting of oysters is not
allowed. Other types of fishing will be allowed in these
sanctuaries.

If the restoration project were started today, 10,000 acres of
oyster sanctuary and 1,000 acres of constructed reef would be
created over the next 5 years at a rate of 2,000 acres of
sanctuary and 200 acres of reef created per year. It is expected
that upon completion these 10,000 acres of sanctuary and
1,000 acres of artificial reef will increase oyster populations
ten-fold over current levels, and allow the water of the bay to
be filtered approximately once a month as opposed to the
current once per year. The benefits of the restoration:
increased water filtering and improved fish habitat would
begin with the first completed reef and continue to increase
until completion of the project. The benefits would then
continue at that level into the future.

Al a

20) Do you favor, oppose or are you indifferent to the use of
oyster sanctuaries (harvest-free areas) as a means of
increasing oyster population in the Bay?

Q Favor
a  Oppose
Q  Neither favor or oppose

21) Do you consider 10,000 acres of oyster sanctuary
including 1,000 acres of constructed reef over the next §
years to be (Check one):

O amajor improvement
O aminor improvement
O no improvement

We are now interviewing people to find out how they would
vote if this program were on the ballot in a statewide election.
The plan is to create 10,000 acres of oyster sanctuary
including 1,000 acres of constructed reef over the next 5 years.
Here's how it would be paid for, Each taxpayer would pay a
one-time additional amount on their next state income tax
return. This is the only payment that would be required, and
all payments would go into a special fund that could only be
used for the program to restore oyster reefs.

22) In general, do you think a special fund for oyster reef
restoration 1s:

a
a
a

agood idea
a bad idea

I don’t know

The program would only be carried out if pecple are willing to
pay this one time tax. There are reasons why you might vote
for the restoration program and reasons why you might vote
against it. Upon completion, the restoration program will
allow the waters of the Chesapeake to be filtered on a monthly
basis as opposed to the current annual basis. Further, fish
habitats will be enhanced. Your household might prefer to
spend the money to solve other social and environmental
problems instead. Or, the program might cost more money
than your household wants to spend for this.

23) The restoration program is estimated to cost your
household a total of $__. Your household would pay this
as a special one time tax added to next year's state income
tax. If an election were to be held today and the total
cost to your household was §__ would you vote for or
against the 5 year restoration program (Check one)?

I would vote for the program

I would vote against the program

I do not know whether I would vote for or against the
program

ooo
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Chesapeake Bay Attitude and Preference Survey:

Page 4 of 4

24) What is the maximum amount you would be willing to
pay for the Oyster Reef restoration project?

$

The next few questions are about you and your houschold.
The responses are for statistical purposes only. They will
not be associated with your name in any way. All
res| will be and confidential

v

25) How long have you lived in your current state?

Years Months

26) Do you plan to move from this location in the next 5
years?

Yes No
26) How long have you lived in your current county?

Years Months

27) Approximately how far do you live from the closest point
of access to the Chesapeake Bay?

Miles

28) What 15 your Zip Code?

29) How many people, including yourself, normally live in
your household?

30) How many are under the age of 187

31) Are you male or female? (circle one)
Male Female

32) What is your race or ethnic background?

White

Black

Hispanic
Other

ocooo

Al a

33) What is your political affiliation (check one)?

Republican
Demaocrat
Independent
Other

cooo

34

What year were you bomn?
19

35) What is the highest level of education you have
completed?

Some High School

High School

Some College/Tunior College
Associates Degree

Bachelors Degree

Master’s degree

Doctorate

Professional Degree

ooocpooo

36

Are you currently:

Employed full-time
Employed part-time
Retired
Unemployed

ccoo

37) To the best of your recollection, what was your total
household income over the past year?

Less than $15,000
$15,000-324,999
$25,000-334,999
$35,000-349,999
$50,000-374,999
£75,000-$99,999
$100,000-81 50,000
greater than $150,000

cooooooao

Thank you for completing this survey. To retum it,
place it in the stamped self-addressed envelope that
accompanied the survey and mail it back to us. If
for some reason you do not have the envelope,
please mail the survey to:

Chesapeake Bay Survey C/O Timothy C. Haab
AEDE, 2120 Fyffe Road

The Ohio State University

Columbus, Ohio, 43210




Survey Questionnaire for Five-year Project (Annual Payment)

Chesapeake Bay Attitude and Preference Survey:

Page 3 of 4

Oyster reefs play an important ecological role in the
Chesapeake Bay. Oysters cluster together to create a hard
surface on the Bay bottom and a three-dimensional reef habitat
for many species. Oyster reefs have declined in the
Chesapeake Bay due to harvest pressure, oyster diseases, and
pollution. Harvesting techniques have reduced many three-
dimensional reefs to flat surfaces.

18) On a scale of 1 to 10, with 1 being a minor problem and
10 being a major problem, how would you rate declining
oyster populations as a threat to the health of the
Chesapeake Bay (Circle one)?

[t T2[3[4[5]6[7[8[]9[10]

In 2000, the Bay's scientific community agreed on a strategy
to jump-start the natural machinery that sustains the Bay's
oysters. To restore the oyster population, the strategy calls for
rebuilding oyster habitat, stocking it with hardy oysters, and
establishing sanctuary areas that provide a continuous, long-
term supply of healthy oysters.

19) On a scale of 1 to 5, with 1 being no support and 5 being
strong support, how would you rate your level of support
for oyster sanctuary and reef creation programs (Circle
one)?

L+ [ =2 [ 3 [ 4 [ s

Current proposals are to create and protect 10,000 acres of
new oyster sanctuary and 1,000 acres of new oyster reef
within these sanctuaries over the next 5 years. Oyster
sanctuaries will be established in 10-25 acre parcels spread
throughout the Bay and estuaries. These oyster sanctuaries are
protected regions in which the harvesting of oysters is not
allowed. Other types of fishing will be allowed in these

sanctuaries.

If the restoration project were started today, 10,000 acres of
oyster sanctuary and 1,000 acres of constructed reef would be
created over the next 5 years at a rate of 2,000 acres of
sanctuary and 200 acres of reef created per year. It is expected
that upon completion these 10,000 acres of sanctuary and
1,000 acres of artificial reef will increase oyster populations
ten-fold over current levels, and allow the water of the bay to
be filtered approximately once a month as opposed to the
current once per year. The benefits of the restoration:
increased water filtering and improved fish habitat would
begin with the first completed reef and continue to increase
until completion of the project. The benefits would then
continue at that level into the future.

A2 a

20) Do you favor, oppose the use of oyster sanctuaries
(harvest-free areas) as a means of increasing oyster
population in the Bay?

a  Favor
a  Oppose
Q  Neither favor or oppose
21) Do you consider 10,000 acres of oyster sanctuary

including 1,000 acres of constructed reef over the next §
years to be (Check one):

O amajor improvement
O  a minor improvement
Q  no improvement
We are now interviewing people to find out how they would

vote if this program were on the ballot in a statewide election.
The plan is to create 10,000 acres of oyster sanctuary
including 1,000 acres of constructed reef over the next 5 years.
Here's how it would be paid for. Each taxpayer would pay
an additional amount on their state taxes over the next 5
years. This is the only payment that would be required, and
all payments would go into a special fund that could only be
used for the program to restore oyster reefs,

22) In general, do you think a special fund for oyster reef
restoration is:

a
a

a good idea
abad idea

The program would only be carried out if people are willing to
pay this annual tax. There are reasons why you might vote for
the restoration program and reasons why you might vote
against it. Upon completion, the restoration program will
allow the waters of the Chesapeake to be filtered on a monthly
basis as opposed to the current annual basis. Further, fish
habitats will be enhanced. Your household might prefer to
spend the money to solve other social and environmental
problems mstead. Or, the program might cost more money
than your household wants to spend for this.

23) The restoration program is estimated to cost your
household a total of § per year. Your household
would pay this as an annual tax over the next 5 years
added to your state income tax. If an election were to be
held today and the cost to your household was §
per year for the mext 5 years, would you vote for or
against the 5 year restoration program? (Check one)?

I would vote for the program

I would vote against the program

I do not know whether I would vote for or against the
program

ooo
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Survey Questionnaire for Five-year Project (Perpetuity Payment)

Chesapeake Bay Attitude and Preference Survey:

Page 3 of 4

Oyster reefs play an important ecological role in the
Chesapeake Bay. Oysters cluster together to create a hard
surface on the Bay bottom and a three-dimensional reef habitat
for many species. Oyster reefs have declined in the
Chesapeake Bay due to harvest pressure, oyster diseases, and
pollution. Harvesting techniques have reduced many three-
dimensional reefs to flat surfaces.

18) On a scale of 1 to 10, with 1 being a minor problem and
10 being a major problem, how would you rate declining
oyster populations as a threat to the health of the
Chesapeake Bay (Circle one)?

[t T2[3[4[5]6[7[8[]9[10]

In 2000, the Bay's scientific community agreed on a strategy
to jump-start the natural machinery that sustains the Bay's
oysters. To restore the oyster population, the strategy calls for
rebuilding oyster habitat, stocking it with hardy oysters, and
establishing sanctuary areas that provide a continuous, long-
term supply of healthy oysters.

19) On a scale of 1 to 5, with 1 being no support and 5 being
strong support, how would you rate your level of support
for oyster sanctuary and reef creation programs (Circle
one)?

L+ [ =2 [ 3 [ 4 [ s

Current proposals are to create and protect 10,000 acres of
new oyster sanctuary and 1,000 acres of new oyster reef
within these sanctuaries over the next 5 years. Oyster
sanctuaries will be established in 10-25 acre parcels spread
throughout the Bay and estuaries. These oyster sanctuaries are
protected regions in which the harvesting of oysters is not
allowed. Other types of fishing will be allowed in these

sanctuaries.

If the restoration project were started today, 10,000 acres of
oyster sanctuary and 1,000 acres of constructed reef would be
created over the next 5 years at a rate of 2,000 acres of
sanctuary and 200 acres of reef created per year. It is expected
that upon completion these 10,000 acres of sanctuary and
1,000 acres of artificial reef will increase oyster populations
ten-fold over current levels, and allow the water of the bay to
be filtered approximately once a month as opposed to the
current once per year. The benefits of the restoration:
increased water filtering and improved fish habitat would
begin with the first completed reef and continue to increase
until completion of the project. The benefits would then
continue at that level into the future.

A3 a

20) Do you favor, oppose the use of oyster sanctuaries
(harvest-free areas) as a means of increasing oyster
population in the Bay?

a  Favor
a  Oppose
Q  Neither favor or oppose
21) Do you consider 10,000 acres of oyster sanctuary

including 1,000 acres of constructed reef over the next §
years to be (Check one):

a
a
Q

a major improvement
a minor improvement
no improvement

We are now interviewing people to find out how they would
vote if this program were on the ballot in a statewide election.
The plan is to create 10,000 acres of oyster sanctuary
including 1,000 acres of constructed reef over the next 5 years.
Here's how it would be paid for. Each taxpayer would pay
an annual tax added to their state income taxes. This is the
only payment that would be required, and all payments would
go into a special fund that could only be used for the program
Lo restore oyster reefs.

22) In general, do you think a special fund for oyster reef
restoration is:

a
a

a good idea
abad idea

The program would only be carried out if people are willing to
pay this annual tax. There are reasons why you might vote for
the restoration program and reasons why you might vote
against it. Upon completion, the restoration program will
allow the waters of the Chesapeake to be filtered on a monthly
basis as opposed to the current annual basis. Further, fish
habitats will be enhanced. Your household might prefer to
spend the money to solve other social and environmental
problems mstead. Or, the program might cost more money
than your household wants to spend for this.

23) The restoration program is estimated to cost your
household a total of § per year. Your household
would pay this as an annual amount added to your state
tax return. If an election were to be held today and the
cost to your household was § per  year,
indefinitely, would you vote for or against the 5-year
restoration program (Check one)?

I would vote for the program

I would vote against the program

I do not know whether I would vote for or against the
program

ooo
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B: Technical Note on Some Useful Results
B.1 Fieller’s Theorem (Casella G. and R.L. Berger, 2002)

Fieller’s theorem (Fieller 1954) is to get an exact confidence set on a ratio of

normal means. Given a random sample (x,,y,) from a bivariate normal distribution with
parameter ( J78R ,uy,af,ayz, p) , a confidence seton & = /. can be formed as follows.

Define Z , =y —0x,then Z , 1s normal with mean zero and variance
1 2 2. 2
V,= ;(o-y —-20po o, +0°0, ) .
It can be shown that Z,, / \/VTH ~t, , and the set

—2
z
Zg _ 2
{H-T < tn—l,a/Z}
Vo

defines a 1-a confidence set for 0. This set defines a parabola in 0 and the roots of the

parabola give the endpoints of the confidence set.

B.2 Determinant and efficiency of J-point kk-design and D-optimal design
When the number of bid points is J and observations are equally distributed in J

points of bid, the determinant of information matrix is

Through simple manipulation, the double summation can be expressed as
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ww, (b1 —b, )2 +ww, (b1 —b2)2 + T A (bl -b, )2 +

o[ 1], <22
+ij1(bj—b1)2+ij2(bj—b2)2+ +ijJ(bJ—bJ)2
np P L 2
| 2) izljzz;wiwj(bi—bj).

Using ¢, = B(u—b,), the determinant becomes

2 J

det[[(,u,ﬁ)]J =L ZWiW_/(ti _t,f)z'

253
Let the design point be b, = 1, —d, / 3. Then, since t, = B(u— 4, )+d, B/ B, the

contribution of a pair of any two points to the determinant in the double summation is

ol o
{[1+exp{ti}}[l+exp{tj}}} .

o by A4,

L

ww; (t,- —tj)z =

where 4, =exp {ﬁ% d, } +exp { yij ( M= 1, )} . Thus, the determinant J-point kk-design

becomes

det[1(u, B)], n_;iieXp{ﬂﬁ(d'er«f)H%(didi)e)j/{lﬂ(ﬂ%)}} .

i
When the design points are two and allocated at the D-optimal points such as

{d,,—d,} where d,=In ( po(1=p, )) and p, =0.824, the determinant of the information

matrix is simplified to be
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a1 ]| " 2 o) |

where 4= exp(ﬂ%do)+exp{,3(u—,uo)} and B = exp(—ﬁ%do)+exp{ﬂ(y—,uo)} . The
result can be derived by substituting two optimal points b= g, + 3," In ( Po(1-p, )) into

the determinant expression (Abdelbasit and Plackett 1983). The determinant of D-optimal

design is maximized when =y, and f§ = f,. The maximum value of determinant is

det[1(up)],, . = l:NpO (1- po){ln(l f’;o J}T .

The efficiency of D-optimal design with poor information is,

57, = [[ i ]exp{ﬁ(ﬂﬂo)}}z.

B ) po(1-p,)A4B

For the J-point kk-design, the efficiency is

o :[nexp{mu—ﬂo)} J $ ool L1 +dj)HﬁM}2 |

\/ENPO (1 =D ) d, ) ‘3= B, 4.4,

The general expression of determinant and efficiency of J-point kk-design can be applied
for the equi-spaced kk-design such as Sitter’s robust design. Assume that the bids are

designed to be equi-spaced. Let 4, be the distance between adjacent bid points and

suppose that bids are numbered by size from low to high. Then, d,., =0,

1

d-d,=(i-j)h,, d,+d,=(i+j-(J+1))h,,and d, =[i—(J +1)/2]h,, the

determinant is
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i=l j=1 ﬂo /ai*’aj

det[[(,u,ﬂ)}]:n—;izj:exp{ 5 (i+j—J—1)h, }{_ i)h, exp{ M= Hy }}

where A4 =exp{%[i—(]+1)/2]hj}+exp{ﬂ(,u—,uo)}.

B.3 The general form of bias in the logit regression (Copas 1988)

Taylor expansion of the score function is
0=S5,(8)=s5,(0)+(0- 9) H,+4(6- 9) L,(6-0).
where S is /™ component of the score, H, is the /™ column of the Hessian matrix, and

L, is third derivative of the log-likelihood. The expectation of the above equation gives

bias'H , = %tr(Hle) =h,
since E[Sj (0)] =0 and E[(é— 49), (é— 9)} = Var(é) =—H"", where bias = E[é—@} .

An approximate expression for the bias of maximum likelihood estimate is
bias=H'h

where # is the vector of hj . The s™ element of bias is
bias, = %ZZZHVH"’LW
ik

where H’ is the inverse of H = {H jk} . For the single-bound logit model, each element

is calculated as

ij = _Z XX P; (1 - pi) = _Z XX Wy = —X'QX
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and
nyx,kxw (1-2p,).

As a simple example with single covariate, the bias is

fowi (2p,-1) '
2(fowl.)2

The bias of f in the symmetric two-point design with known mean can be derived

bias =

as follows. Suppose that two-point design is symmetric around known mean and

observations are equally assigned into each bid. Two design points are b= uxd/ f,
where d >0. Let £x = u—b==d/ f3,. The bias of two-point symmetric designs, now,
can be expressed as
n{x3w(ﬁx)[2p(ﬂx)—1]+(— ﬁx [2p ﬂx 1]}

2{n[ P w(Bx)+ () (- ﬂx)]}

bias, =

Using that w(Sx)=w(—px), p(-fx)=1-p(px) [1+exp ﬂx)] and

2p(px)-1= —[Zp(—ﬂx)—l] , the bias reduces to be

[exp ,Bx lj[exp ﬂx +1:| exp ﬂx) exp( ﬂx)
2Nx exp(ﬂx) 2Nx

bias, =

The bias of the two-point symmetric design is an increasing function of x. The

first derivative of bias with respect to x is

Obias, _(pBx—1)exp(2fx)+ (,Bx+l)

ox 2Nx* exp(fx)
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By construction, x >0 and £ >0, the first derivative of bias is positive since
(Bx—1)exp(2Bx)>—1. Furthermore, since both of the numerator and denominator go to
zero as x — 0, using L’Hopital’s theorem, the bias is bounded below by bias, > S/ N .

However, the bias is unbounded when x — 0.

For the equi-spaced J-point kk-design, the bias can be expressed as

B {h, [i-(J+1) /2]} (2p,-1)
2(2{/1][1'—(”1)/2}} w,.)

bias, =

using d, =[i—(J+1)/2]h,. Let ¥, =d’w, =w, {hJ [i—(J+1)/2]}2 , then the numerator

is

xp(fh,[1-(s+1)/2]) -t

h >V, J +1 /2 - .
Z [ ]{ exp ( ﬁ% [l :I)

The denominator is simply

(Xdw) =(Zw.)

The bias of the equi-spaced J-point kk-design is

. p(4h,[i-(7+1)/2])-1
bias, = Zn(Z‘P)Z\P [1 (J+1 /ZJ{GXP( J[Z(J+1)/2})+1}
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C: Gumbel Mixed Model and GEV

C.1 Gumbel mixed bivariate extreme values and reduced extreme values difference
Suppose a sequence of i.i.d. pair of random utilities {(UO;,U“, )} ,i'=1,2, ..., m.
Then the bivariate extreme value distribution ¥" (7, +6,v,,7., +6,v,) is an

asymptotically approximated distribution of the pair of

(maxU,, <7, +6,v,,maxU,, <z, +0,v,) with the margins of the Gumbel distribution,
where 7,, 7/, 0, and @, are location and dispersion sequences. By uniform
convergence of a continuous function, V" (vo,vl) is approximated by
F(u V= f'j,
6 0

The asymptotic distribution function is

F(vov)=[F () F ()] = exp[ ~{exp(—v, )+ exp (-0 )} K (n,—v,)].

where & () is the dependence function representing the asymptotic connection between
max U, and maxU,,. For details of derivation and analytical properties, see Gumbel
and Mustafi (1967) and Tiago De Oliveira (1975). Some useful relationships in a
bivariate distribution are the boundary conditions F (-0, y) = F (x,—0) = F (—0,-0) =0
and the definition of the margins as F (x,00)=F(x) and F(0,y)=F(y).

The mixed model, one of differentiable bivariate extreme value distributions, has

the dependence function defined as
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Aexp(7)

(1 + exp(r))2

where 7 is reduced difference v, —v,. The distribution function of Gumbel mixed model is

k(z]2)=1-

F(vo,vl)ZF(vo)'F(Vl)eXp _ﬂ{lnFl(vo) " lnFl(Vl)}

where the marginal distribution is F(z)= exp[—exp(—z)} . The exchangeable
distribution, F(v,,v,)=F(v,,v,), such as the mixed model or logistic model has the

symmetric dependence function, k(—z)=k(7). The parameter / indicates the association

between the two extremes. For A =0, the joint distribution is independent such that
F(vy,v,)=F(v,)F(v,), and generally, the inequality F (v,,v,)> F(v,)F (v,) holds for

dependent case A > 0. The correlation coefficient can be expressed as a function of the

association parameter /;

/a

p(4) :%{arccos(l—gﬂ (0<p<2/3).

When the correlation coefficient is greater than 2/3, the mixed model can not be used.

The reduced difference distribution function is derived using the fact

exp(7) .\ K'(7)

PO )= (0 R (D)

From the dependence function of Gumbel mixed model, the second term in the right-hand

side of difference function becomes
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K(z) ﬂexp(r)[exp(r)—l]

k(z) (l+ exp(r)){[exp(r)+ 1}2 _}LeXP(T)} :

Therefore, the distribution function of the difference can be simplified as

. exp(7) [exp(r)+1}2_/1
D(z]4) 1+exp(T)[exp(f)ﬂ]z_’le"p(f).

The probability density function of reduced difference can be derived by

differentiating the difference distribution with respect to z,

_op(z)___ew(r) K (2)k(r)-[¥ ()] .

or [1+exp(r)]2 [k(r)]

¢(7)

Since k(z') is symmetric and differentiable, dependence function satisfies

k(r)=k(~), [ ()] =[K ()] and &"(z)=k"(~7).
This implies the second part of the probability function of reduced difference is
symmetric, thus the probability density function is symmetric, ¢ (7)=¢(—7). Algebraic
description of the probability density function of reduced difference is as follows. Since

the last term of the right-hand side is

K(o)k()-[x ()]
(k)]
Aexp(7) [exp(Zr) - 1] [exp(z') —1}2 —2exp(27)[4—- 4]

(1+exp(2'))2 [(l+exp(r))2 _ﬁexp(f)}z

9

by rearranging terms, the probability density function becomes
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exp(7) (1+exp(2'))4 -A? exp(2r)—/”t(1—exp(27))2

¢(7)= ; .
[1+exp(f)] [(1+exp(r))2 —/lexp(r)]

Bivariate distribution function of the logistic model is

1-4
x y
F(x,v|2)=expd—| exp| ——— |+ exp| ——2— for 0<A<1,
(x,»]2) exp{ [exp( 1—1] eXp( 1—}1}} }

since the dependence function is defined as

[1 + exp(—z’/(l - Z))]H |

k(z12)= 1+exp(-7)

The distribution of the difference is

D(r|A) :[1+exp(—ﬁﬂl.

The logistic model is independent for 4 =0 and dependent for A =1 with diagonal case.
As can be seen, the logistic model is the simple version of the generalized extreme value
distribution that has been widely used in the transportation and recreational site choice
literatures.

Since the mixed and logistic models converge in the same independent case, they
are called nonseparated models. The choice of the appropriate model is statistically
important and also affects the estimation result. Tiago de Oliveira (1983) suggests the
decision rule using the rejection region of independence test in each model. So far, the
logistic model of the multivariate case has been used in the environmental economics but

there is no application of the mixed model.
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C.2 Nested logit and paired combinatorial models with GEV distribution
The nested logit model is obtained by assuming the error term (the vector of

unobserved utility) has a type of generalized extreme value distribution

F(e,)= eXp(_zfl (Z./eBk exp(~e, /4 ))lk j .

As well known, for this generalized extreme value distribution, any two alternatives in
the same nest are correlated but these in different nests are uncorrelated. The choice

probability for alternative i is

A1
) exp(V,, /4, )[ZjeBk exp (V_/.n /2 )}

ZIK:I [ZjGB, eXp (V./'n / /11 )TI

Parameter A, is a measure of the degree of independence in unobserved utility among the

alternatives in the nest .

Now suppose that the current state and the proposed change of the environment
can be recognized either of in the same nest or different nests. In the case of recognizing
them in the same nest, there exists only one nest and the probability of choosing one

collapses to

1) ~ exp(V,,/ 4 )
v zjeBkexp(an//lk) exp(V,, /A )+exp(V,, [ 4)

exp(V,

In

When they are in different nests, the probability is

_ [exp(Vln/ﬂ,{)]ﬂk _ exp(7;,) .
C X [ew(va)] () exe(t)
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Therefore, 4, is not identified and the parameters are indistinguishable between two

cases.
The general paired combinatorial model with J alternatives is proposed by Chu

(1981, 1989) as follows

5. oolt 3, orwlr ) ennlt 1))
z: Z;J:;m [exp (V! 20 )+ exp(V,, / Ay )TH

where a parameter 4, indicates the degree of independence between alternatives i and /.

For the contingent valuation, since only two alternatives explicitly exist, the general

model can be simplified to be

P, = exp(V, //112)|:exp(l/;n [ Ay)+exp(Vs, /ﬂﬂz)]ﬂml
" [exp(V,, / 2) +exp (Vs ) 20) |

_ exp(l/ln//llZ)
[exp(V,,/ A,)+exp(Vs, / A,) |

The probability of paired combinatorial model with J = 2 is equivalent to the generalized
nested logit with two alternatives, resulting the simple logit model. Since alternatives are
only two and the scale and level of the utility is immaterial, no covariance parameter can
be estimated for the dichotomous choice contingent valuation in the generalized model

such as nested logit and paired combinatorial model. Note that these models have only

J (J - 1) /2—1 covariance parameters after normalization.
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