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ABSTRACT 
 

 

In spite of theoretical background, technical simplicity and popularity in 

application, contingent valuation studies have several issues remained in debating among 

environmental economists. This dissertation aims to provide answers to some of issues in 

dichotomous choice contingent valuation: the temporal structure of willingness to pay, 

practical guideline for survey design and generalized estimation method.  

The first essay entitled “Temporal Insensitivity of Willingness to Pay and Implied 

Discount Rates” proposes the temporal willingness to pay (TWTP) as an alternative 

definition of the present value of willingness to pay. In the survey of contingent valuation, 

a respondent compares TWTP with the present value of randomly assigned cost. TWTP 

enables the test for consistency of respondent’s valuation with respect to payment 

schemes. Using a sequential test suggested by Haab et al (1999), the insensitivity of 

TWTP is tested on the data of oyster reef restoration programs in the Chesapeake Bay. 

The test result shows that TWTP is insensitive to the offered payment schedule or on the 

length of the stream of benefits of the project, which implies consistent willingness to pay 

for the environmental project. However, discount rates estimated from the data vary 

significantly across project lengths and time span between offered payment schedules. 
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The second essay, “Optimal, Robust kk and Uniform Experimental Designs in 

Binary Choice Model: Analytical and Empirical Comparison of Efficiency and Bias” 

suggests a practical alternative design named a uniform design, to existing optimal or 

robust bid designs in contingent valuation. The uniform design draws cost assigned to 

respondent from a predetermined uniform distribution. Analytics and simulations show 

that the uniform design has lower bound of efficiency at 84 percent of D-optimum. 

Simulations demonstrate that the uniform design outperforms optimal designs when 

initial information is poor and outperforms robust designs when true values of parameters 

are known. 

The third essay, “Generalized Estimation Methods and Implication of the Result 

in Dichotomous Choice Contingent Valuation Model” challenges the theoretical and 

technical background of the simple logit model. Standard logit model in contingent 

valuation assumes i.i.d error distribution between initial and proposed states. Relaxing the 

restrictive assumption in the simple logit model requires a generalized estimation 

technique that utilizes a Gumbel mixed model. Estimation results show that correlation 

between two states is usually minimal, but homoskedastic errors are rejected in many 

cases. Heteroskedasticity or correlation provides willingness to pay estimate different 

from estimate of the simple logit, thus different policy implication in benefit-cost analysis. 
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ESSAY 1 

 

TEMPORAL INSENSITIVITY OF WILLINGNESS TO PAY AND IMPLIED 
DISCOUNT RATES 

 

 

ABSTRACT 

 

Two interrelated anomalies associated with eliciting willingness to pay for 

environmental change over time have been reported: insensitivity of willingness to pay to 

payment schedules and variation in discount rates over time. This essay proposes an 

alternative definition of the temporal insensitivity with respect to the temporal 

willingness to pay (TWTP) rather than the present value of willingness to pay (PVWTP). 

Insensitivity of TWTP implies that subject in the survey responds consistently to value 

elicitation questions regardless of payment schedule. Using a sequential test provided by 

Haab et al (1999), the insensitivity of TWTP is tested on the data of oyster reef restoration 

programs in the Chesapeake Bay. The test result shows that for this case, TWTP is 

insensitive to the offered payment schedule or to the length of the stream of benefits of 

the project, which provides consistent willingness to pay for the environmental project. 

However, discount rates estimated from the response vary significantly across project 

lengths and time span between offered payment schedules. 



 

 
 
 
 

2

1.1 INTRODUCTION 

Two interrelated anomalies associated with elicited willingness to pay for public 

goods over time have been noted: insensitivity of willingness to pay (WTP) to payment 

schedules and variation in discount rates over time. Insensitivity of willingness to pay to 

payment schedules is also known as temporal embedding. Temporal embedding effect 

has been argued to depend on situation and commodity specifics (Crocker and Shogren 

1993), money specifics (Thaler 1981), or respondents specifics (Stevens et al. 1997)1.  

Stevens et al. (1997) define two types of temporal embedding effects: strong 

insensitivity and weak insensitivity to payment schedule. Strong insensitivity to payment 

schedule indicates the inability of respondents to differentiate between a series of 

payments and a lump sum payment on the project. Let LWTP  be the lump sum WTP for a 

project, and tWTP  be the annual payment of t-th year in an annual payment scheme, then 

strong insensitivity is defined as 1 2L TWTP WTP WTP WTP= = = =" , where T is the 

terminal period of the temporal payment scheme. Alternatively, weak insensitivity 

implies the inequality of individual WTP between two temporally differentiated payment 

schemes but with abnormally high implied discount rates2. Following the above notation, 

weak insensitivity is defined as L tWTP WTP≠  and ( ) ( )1

1
1T t

L tt
WTP WTP r − −

=
= +∑ , where r 

                                                 
1 In addition to the temporal embedding effect, scope and scale embedding effects have been reported in the 
contingent valuation studies. Moral satisfaction (Kahneman and Knetsch 1992; Diamond and Hausman 
1994), symbolic bias (Mitchell and Carson 1989), or design and analysis product (Smith 1992; Hanemann 
1994) are known to be responsible for scope and scale embedding effects. 
2 In fact, “high” discount rate is still questionable in the sense how high is high.  For example, the discount 
rate in the market varies from 1% for savings accounts to over 30% for some types of credit card debt.  In 
some developing or under developed countries, more than 100% discount rates have been reported. 
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is the discount rate implied in the equality of lump sum WTP and the discounted sum of 

annual WTP. Note that strong insensitivity algebraically implies an infinite discount rate. 

Kahneman and Knetsch (1992) find evidence of strong insensitivity of median 

WTP wherein respondents showed the same median LWTP  and tWTP  of five-year 

payment for funding a toxic waste treatment facility. Strong insensitivity may represent 

inconsistency in respondents’ behavior or misunderstanding the survey questions. On the 

other hand, a series of papers (Rowe et al. 1992, Stevens et al. 1997, Ibáñez and 

McConnell 2001, Bond et al. 2002) find weak insensitivity of WTP with discount rates 

ranging from two digits to several thousand percent3. For example, Ibáñez and 

McConnell (2001) estimated WTP for reduction in pathogen discharge in Columbia using 

an intertemporal random utility model with assumption of constant discount rate. In the 

survey, either a lump sum payment or three monthly installments were randomly 

assigned to respondents. The estimation results showed a wide range of mean WTP and 

the discount rate was as high as 5,102%. Bond et al. (2002) also argued that the implicit 

discount rates were high relative to the market discount rate and the explicit discount 

rates were generally insignificant in the study of a federal Steller sea lion recovery 

program in Alaska using three temporal treatments of one, five, and fifteen years. 

Generally, strong insensitivity has been rejected in empirical tests but weak insensitivity 

has been widely observed. 

                                                 
3 Relatively high implicit discount rates have been reported in experimental research as well. Harrison and 
Johnson (2002) and Harrison et al. (2002) report 28.1 percent individual discount rates in average over all 
subjects in a field experiment in Denmark. Coller, Harrison and Rutström (2002) provide a similar 
experimental result.  
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Previous studies, however, have imposed strong assumptions on the underlying 

decision process of a subject valuing a proposed environmental project, which should be 

tested before eliciting WTP and deriving discount rates from dichotomous choice CV 

studies with a temporal dimension. Specifically, the typical temporal CV study assumes 

that the present value of willingness to pay (PVWTP) is constant across all offered 

payment schemes (i.e. consistent PVWTP) and that the variance of the conditional 

distribution of PVWTP is invariant to the payment schedule (i.e. homoskedasticity of 

PVWTP function)4. If the distribution is homoskedastic and the mean of PVWTP is 

consistent, the simply pooled data enables the researcher to estimate the implied discount 

rate directly from parameter estimates of payment scheme variables by taking the ratio of 

them. However, if PVWTP is not consistent, then we cannot compare two different 

present values, and if the distribution of conditional PVWTP is heteroskedastic across 

different payment schedules, the variance is unidentified because the parameter is the 

product of the heteroskedastic variance and discount factor. Identification and estimation 

of the discount rate by varying the payment scheme relies critically on the assumption of 

a consistent and homoskedastic PVWTP independent of payment context.  

To provide context for the following methodological development, section 1.2 

briefly describe the application utilizing a unique mail survey about a proposed oyster 

reef restoration program encompassing several states around Chesapeake Bay. Section 

1.3 defines an alternative temporal-dimensioned valuation process of environmental 
                                                 
4 Haab et al. (1999) test the consistency of WTP under real and hypothetical formats, reporting that if the 
heteroskedasticity due to different question format is corrected, the estimated WTP is consistent across 
different question formats. On the other hand, Huhtala (2000) investigates the heterogeneous preference in 
the contingent valuation method by distinguishing preferences according to the respondent’s attitude on 
environmental policy. Heterogeneity in preference explains the inconsistent WTP 
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project, named as temporal willingness to pay (TWTP), to alleviate restrictive 

assumptions about the PVWTP. Based on TWTP, the temporal insensitivity of WTP to 

payment scheme implies that respondent consistently evaluates the environmental project 

regardless of payment scheme. In spite of different definition of willingness to pay, value 

of cost stream follows the typical definition of present value, which simplifies the 

derivation of implicit discount rate from value elicitation response. Section 1.4 explains 

the present value of cost and implied discount rates. Section 1.5 describes the basic 

estimation model and reports initial estimation result. Section 1.6 explains the test 

procedure for the consistency and homoskedasticity of TWTP following the sequential 

method proposed by Haab et al. (1999). According to the test and estimation result, 

TWTP of a value elicitation survey on oyster reef restoration programs in the Chesapeake 

Bay does not depend on the payment scheme (consistent TWTP across the payment 

scheme) or the benefit stream offered in the survey (indifferent TWTP to the build-up 

phase). Based on the homoskedasticity test of the conditional distribution, estimation 

results show that implied discount rates vary significantly across the length of project life 

and time span between offered payment schedules. 

 

1.2 THE OYSTER REEF RESTORATION PROGRAM IN THE CHESAPEAKE 
BAY 

 

The tall reefs in the Chesapeake Bay are the main habitat for Bay oysters, the 

most harvested seafood species in the Chesapeake Bay. Due to intense harvest over more 

than one hundred years, however, very few reefs remain in the Bay and the Chesapeake’s 
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oyster population has fallen to less than one percent of their historic maximum levels. In 

2002, as part of the Marine Recreational Fisheries Statistics Survey, the National Marine 

Fisheries Service conducted a random digit dial (RDD) telephone survey over several 

states around Chesapeake Bay to assess respondents’ attitudes toward oysters and oyster 

reef restoration in the Chesapeake Bay. Among 8,077 people contacted in the RDD 

survey, a follow-up mail survey sponsored by the Chesapeake Bay Foundation was sent 

to 1,710 respondents who agreed to participate in a follow-up mail survey. The mail 

survey provided a brief explanation of the role and benefits of oysters in the Bay, and 

then asked referendum question about willingness to pay as well as attitude and 

preference towards the Chesapeake Bay, general knowledge of oyster reefs and socio-

demographic questions (for details, refer to the appendix A) 5. 

The follow-up mail survey consisted of two temporal versions of the hypothetical 

oyster reef restoration project which were randomly assigned to respondents (A for five 

year and B for ten year). Both projects aim to restore 10,000 acres of oyster habitat and 

1,000 acres of artificial reef until the terminal period of the project at a constant rate. 

Thus, the ten-year (five-year) restoration program accumulates at a rate of 100 (200) 

acres of reef restoration and 1,000 (2,000) acres of habitat preservation per year. For each 

restoration program, one of three temporal payment schemes was randomly offered to 

respondents: a one-time (lump sum) payment on the next year’s state tax return (payment 

schedule 1), an annual payment on state tax returns over the life of the project (payment 

                                                 
5 The referendum type question was adapted for eliciting the value of the oyster reef restoration instead of 
open-ended question because data from open-ended question has incentive compatible problem against 
other advantages. 
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schedule 2) and a permanent annual payment on the state tax return (payment schedule 3). 

The final survey consisted of a 2x3 design (2 project lengths and 3 payment schemes). 

Figure 1.1 shows the whole structure of the survey design and Appendix A provides the 

actual questionnaire in the survey. 

A hypothetical referendum question for the randomly assigned restoration project 

and payment scheme was asked of respondents. For example, the question for the five-

year project scenario with one-time payment reads as follows;  

The restoration program is estimated to cost your household a total of $___. Your household 
would pay this as a special one time tax added to next year’s State income tax.  If an election 
were to be held today and the total cost to your household was $___ would you vote for 
or against the 5 year restoration program (Check one)? 

 
 I would vote for the program 
 I would vote against the program 
 I do not know whether I would vote for or against the program 

 

For annual and perpetuity payment types, the questions were worded appropriately for 

the value of cost and payment type. Each design of the payment type had a set of three 

bid points, one of which was randomly assigned to each respondent. The payment values 

used in one-time payment were selected from the set of {50, 150, 300}. A 25% discount 

rate was applied to calculate annual value of cost in both annual and perpetuity payment 

types as in Figure 1.1. If there is no starting point bias or anchoring effect, the discount 

rate used in the survey design does not affect the decision mechanism by the property of 

dichotomous choice contingent valuation model6. Survey result of response and some of 

demographic variables are provided in the section 1.3.4. 

                                                 
6 Since the discount rate changes the actual value of cost per year thus the range of bid set, different set of 
payment affects the bias and efficiency of parameter estimates (See Essay 2). 
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1.3 VALUES OF BENEFIT STREAM AND COST STREAM 

1.3.1 Present Value of Willingness to Pay vs. Temporal Willingness to Pay 

Environmental projects, by their nature, include temporal dimension of benefits 

and costs which may or may not be considered by researcher. When a respondent is asked 

the valuation question in the form of dichotomous choice, he or she will compare the 

benefit stream from the project with the cost stream required for the project. Suppose that 

a proposed project consists of a stream of annual benefits tB ,  t = 1, 2,…, BT  and an 

associated stream of annual costs, tC , t = 1, 2,…, CT , where BT  represents the life of the 

benefits of the project and CT  is the life of the costs. The project is fully described by the 

benefit-cost pairing ( tB , tC ). The benefit is subjective due to respondent’s experience and 

reliability of the program, uncertainty of the future, different cognizance about the benefit 

stream, etc. The cost is of monetary value and implicit because respondents have their 

own discount factor consisting of interest rate, uncertainty, etc. The basic assumption is 

that respondents have a well defined value of tB  with which they can compare the 

monetary value of costs7. The binary response to the value elicitation question will be one 

if the WTP for the benefit stream of the project exceeds the value of cost stream and zero 

otherwise.  

In the previous literature, PVWTP has represented the value of the benefit stream 

based on the time separable annual WTP. The assumption of time-separability, however, 

                                                 
7 A well-defined range of value is enough for comparison. Moreover, the value of benefit does not have to 
be a monetary unit. The decision, then, will be made by comparing the benefit and cost in terms of the same 
but any plausible unit from a respondent. For convenience and simplicity, respondents are assumed to have 
well defined monetary value of benefit stream since we only observe the monetary value of cost. 
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requires more serious assumptions to simplify the model, the problem which has not 

received enough attention from researchers in contingent valuation studies. To see the 

problem in more detail, suppose that respondent i has a stream of WTP in each period as a 

function of the benefit and individual specific covariates ( ,i tx ); , , ,i t i t t i tWTP x β ε′= + , where 

,i tε  is an additive error term of respondent i at period t which is unknown to researcher. 

Then, PVWTP can be expressed as the discounted sum of WTP;  

( ) ( )
, ,

1 11 1
i t t i t

i t t
t t

x
PVWTP

r r

β ε
− −

′
= +

+ +
∑ ∑ . 

Two temporal structures are detected in this formulation. First, WTP at each 

period varies depending on the perceived benefit stream and individual specific 

covariates that may or may not vary over time. Representing the individual specific 

variables by the current value generates more uncertainty in the error term since they are 

not realized at the moment of survey. Second, the temporal structure in the error term has 

classical issues in time series data. Even if the respondents are assumed to have constant 

covariates, such a formulation requires strong assumptions about the temporal relation of 

error terms. Furthermore, unless the life of benefit from the project ( BT ) is constant 

across respondent, the estimation model does not have i.i.d. error distribution8.  

The complexity of the temporal structure of PVWTP motivates an alternative 

definition of the valuation process such that respondents have a value for the whole 

benefit stream (i.e. WTP for the full benefit stream) rather than a value stream for each 

                                                 
8 

BT  can be given in the survey explicitly by the researcher. However, a respondent perceives implicitly 
the terminal period of the benefit stream, which can be seriously different across individuals. PVWTP has 
different time-span of discounting for each respondent. 
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period (i.e. WTP of each period). Let π be the value of the benefit stream that respondent 

may have at the moment of survey. The value of the benefit stream, named as a temporal 

willingness to pay (TWTP), is a function of the benefit stream and current individual 

specific covariates, 

( ), ,i i iTWTP f xπ β ε= +     (1.1) 

where ( )f ⋅  is a systematic component observed by researcher and iε  is an unobserved 

random error with mean zero. The error term can be conditional on the project type and 

payment schemes but is invariant across individuals. TWTP is time-dependent in the 

sense that it could be different in the different moment of the survey due to information, 

uncertainty, time-varying covariates, etc9. The error term in the TWTP function, however, 

is independent of time since the structure of TWTP is static at the moment of survey.  

In summary, since TWTP is a lump-sum value that an individual may have for the 

environmental project at decision moment, TWTP model does not require researcher to 

sum the discounted errors across time or impose restrictions on the temporal relation of 

multi-period error terms. Individual specific covariates are not discounted but affect the 

implied discount rate through the estimation. TWTP provides a reasonable and realistic 

valuation structure about how an individual thinks of the environmental project proposed 

in the survey, without assuming the time-separable WTP stream at each period. 

The benefit stream of the oyster reef restoration program includes explicitly a 

multi-period build-up phase for the five- and ten-year versions and constant benefit 

                                                 
9 However, Carson et al. (1997) showed that CV estimates exhibited no significant sensitivity to the timing 
of interviews. 
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stream with the assumption of no degradation after the completion of the project. Let the 

terminal period of the project be L and the accumulation rate of the benefit be b over the 

life of the project, then the benefit stream is tB bt= if t L≤  and tB bL=  after L. Note 

that L is not the life of benefit but the terminal period of project. The expected benefit at 

the choice moment is a discounted sum of benefit stream with the implicit discount rate 

of benefit such that 

( ) 1
1

( , , )
1

BT
t

b t
t b

BB L r
r

π −
=

≡
+

∑  

where br  is a discount rate for the benefit stream and tB  is a measure of the benefits in 

period t. For simplicity, assume an infinite benefit stream ( BT = ∞ ). Summing over the 

infinite time horizon, the discounted benefit stream becomes 

( ) ( ) 11 1
1 1

1( , , )
1 1

L

b Lt t
t t Lb b

tB L r b B b B
r r

π γ γ
∞

− −
= = +

= + = +
+ +

∑ ∑� �   (1.2) 

where 
( ) ( )1 1 12 2

1

(1 ) 1
(1 )1 1

LL
b

t LL
t b bb b b

rt L
r rr r r

γ − −−
=

⎛ ⎞+ −
⎜ ⎟= = −
⎜ ⎟++ +⎝ ⎠

∑ , 
( ) 1 2

1

1 1
(1 )1

L t L
t L b bb

r rr
γ

∞

− −
= +

= =
++

∑  

and LbB ⋅=
~ .   

With an alternative definition of the willingness to pay for the benefit from 

environmental change, the insensitivity of WTP is defined such that TWTP does not 

change due to the payment schedules. Insensitivity of TWTP to payment schedule implies 

the consistency of respondent’s valuation of environmental project. Therefore, the 

assumption in the existing literature that PVWTP is same across payment schemes can be 

tested by comparing TWTP in different payment schedules. The classical definition of 
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(strong or weak) insensitivity of WTP depends on the consistency test explained in the 

section 1.4.  

 

1.3.2 Present Value of Cost and Implicit Discount Rates 

The value of the cost stream is typically derived in terms of the present value. 

Since the annual amount of cost is constant over payment schedule ( ,t j jC C= ), the 

general form of present value of cost (PVC) is 

( ) 1
1 1

CT
j j

j Ct
t C

C
PVC C

r
β−

=

= =
+

∑  

where j represents the payment schedule, CT  is the terminal period of the cost and Cr  is 

discount rate of the cost stream. The discount rate or discount factor of the cost stream 

can be different from the discount rate of benefit stream since it depends on different 

factor such as market discount rate, belief on the financial market, uncertainty, etc. PVC 

has parameter values specific to the payment schedule. For a lump sum payment scheme 

with 1C  in period 1, PVC becomes 

1 1PVC C= .                (1.3) 

implying that 11 =Cβ . PVC of annual payments with 2C  over CT  years is 

( )2 2
1 11

1 C

C
T

C C

rPVC C
r r

⎛ ⎞⎛ ⎞+
= −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

.         (1.4) 

and ( ) ( )( )2 1 1 1 /CT
C C C Cr r rβ −= + − + . Finally, PVC of perpetual payment of 3C  is 
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3 3
1 C

C

rPVC C
r

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
.          (1.5) 

with ( )3 1 /C C Cr rβ = +  when the discount rate is positive. When the coefficients of (1.3), 

(1.4) and (1.5) are identified, then the discount rate of cost stream is estimated by the 

ratio of any pair of coefficient estimates. Abnormally high discount rate implies the 

conventional weak insensitivity of WTP. 

 

1.4 ESTIMATION MODELS 

1.4.1 Linear TWTP Model 

Unlike PVWTP, TWTP is flexible in the functional form of systematic 

component10. The simplest case is assuming a linear function of ( )f ⋅  in equation (1.1) 

such as  

( , , )i B b i iTWTP B L r xβ π β ε′= + + . 

With a linear TWTP function and a normal error distribution with mean zero, the 

probability that a respondent i will vote for a program k given the payment version j is 

( ) ( )
( )
( )

, ,

, , ,

,

 vote for | i k i j

j
B k i k k i k j j C

j
B k i k k j C

P i k j P TWTP PVC

P x C

x C

β π β ε β

β π β β

= ≥

′= + + ≥

′= Φ + −� � �

            (1.6) 

where Bβ�  and kβ�  are parameters normalized by the standard error, ,k jσ , and ( )⋅Φ  is the 

standard normal cumulative distribution function. Equation (1.6) is the standard 

probability of a vote for the project in a probit referendum model and the probability of 
                                                 
10 Due to the discounted summation, PVWTP model cannot be estimated except the case of linear function. 
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vote against is defined as the complement to the probability of vote for.11 Generally, the 

variance of the error term is conditional on the project version (k) and payment scheme 

(j). Note that the probability in (1.6) cannot identify Bβ�  because the variable of benefit 

stream is invariant to project length and payment scheme.  

To identify the coefficient of benefit streams, it is necessary to pool data across 

project versions and use a dummy variable to capture the difference of benefit stream 

across the different projects. Using a dummy variable for project version ( kd ), the 

probability conditional on payment schedule is  

( )
1

 vote for |
K

j
k k i j C

k
P i j d x Cβ β β

=

⎛ ⎞′= Φ + −⎜ ⎟
⎝ ⎠
∑ � � � .       (1.7) 

The estimation model assumes that TWTP varies in the mean across the project version 

but the error term may have different variance across payment schemes. Pooling data 

over payment schedules provide conditional probabilities that vary over project and 

payment scheme: 

( )
1

 vote for|
J

j
B k i j j C

j
P i k x d Cβ π β β

=

⎛ ⎞
′= Φ + −⎜ ⎟

⎝ ⎠
∑� � � .         (1.8) 

where jd  is a dummy indicator for payment type j. Parameter Bβ�  is not identified in 

equation (1.6) but j
Cβ�  provides information about the discount rate of cost stream. If the 

model is homoskedastic across project and payment scheme and if TWTP is different 

only in the mean across the project version, then the data can be pooled over all project 

versions and payment types, and probability function of equation (1.6) is simplified to be 

                                                 
11 See Haab and McConnell (2002) for details. 
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( )
1 1

 vote for
K J

j
k k i j j C

k j
P i d x d Cβ β β

= =

⎛ ⎞
′= Φ + −⎜ ⎟

⎝ ⎠
∑ ∑� � �           (1.9) 

The consistency of TWTP in (1.7), (1.8) and (1.9) and constant variance in (1.8) and (1.9) 

are strong assumptions that will be subsequently relaxed and tested. 

If the survey design includes more than three different benefit streams with the 

same final level, the discount rate of benefit stream can be estimated from the ratio of 

parameter estimates of the dummies for the project. Some primary conditions are; the 

data should be homoskedastic across different project version, the difference of benefit 

stream among projects is measurable and the discount rate of benefit stream is constant. 

Let 1t  and 2t  be terminal periods of two projects. The ratio of two parameter estimates 

for dummies of project version provides the information of the discount rate of benefit 

stream such as 

( ) ( )

( ) ( )( )
( ) ( )( )

( )

1 2
1 1

1 21 2

22

1

2 1

2

1

1 2
1 12 22 2

1
1

1
2

(1 ) 1 (1 ) 1
(1 ) (1 )1 1

1 1 1
1

1 1 1

t t
t t b b

t tt t
t b b b bt b b b b

t
t tb b

bt
b b

r rt t
r r r rr r r r

r t r
r

r t r

β γ
γβ

−

− −− −

+
−

+

⎛ ⎞ ⎛ ⎞+ − + −
⎜ ⎟ ⎜ ⎟= = − ⋅ −
⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠ ⎝ ⎠

⎛ ⎞+ − + +
⎜ ⎟= +
⎜ ⎟+ − + +⎝ ⎠

�
�

.  (1.10) 

The discount rate of benefit stream is solution of nonlinear equation (1.10). Unfortunately, 

the oyster reef restoration data does not have enough project versions to apply the 

equation (1.10) for estimation of discount rate of benefit stream.  
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1.4.2 Exponential TWTP Model 

An exponential WTP has been widely used for modeling positive WTP.  

Assuming a log normal error distribution, the functional expression for exponential 

TWTP is ( ), , , ,expi k B k i k k i k jTWTP xβ π β ε′= + + , where , ,i k jε  is a normal error distribution 

with mean zero and variance 2
,k jσ . By taking the natural log on both of TWTP and PVC, 

the binary response variable is one if ( ), , , lnB k i k k i k j jx PVCβ π β ε′+ + ≥ , and zero 

otherwise. The probability of vote for in the exponential TWTP is 

( ) ( )( ) ( ) ( ), , , ,
1 vote for | ln ln lnj j

i k j j C i k k i k k j C
kj

P i k j P C x x Cε β β β β
σ

⎛ ⎞
⎡ ⎤′ ′= ≥ − = Φ − +⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
� . 

The parameter estimate of ln jC  is the inverse of standard deviation of error term as in 

the conventional probit model. Since j
Cβ  is invariant to project length and payment 

scheme, the split sample model cannot identify the discount factor of cost stream. Thus, 

except TWTP of one-time payment scheme for which the discount factor j
Cβ  is one, 

TWTP are not identified across different payment schedules. Nonidentification problem 

arises in the conditional probability corresponding to (1.7), which is expressed as  

( ) ( ) ( )
1

1 vote for | ln ln
K

j
k k i j C

k j

P i j d x Cβ β β
σ=

⎛ ⎞
⎡ ⎤′= Φ + − +⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑ � �  

where jσ  is assumed to be homoskedastic across different project version. 

With the assumption of consistent TWTP, a pooled model can identify the 

discount factor of the cost stream. Consider the exponential TWTP substituted into the 

equation (1.9), 
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( ) ( ) ( )
1 1

1 vote for ln ln
K J

j
k k i j j C

k jj

P i d x d Cβ β β
σ= =

⎛ ⎞
⎡ ⎤′= Φ + − +⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑� � .        (1.11) 

Since 1ln 0j
Cβ
= = , it is natural to use dummies for j = 2 and 3 in the model by dropping 

1jd = .  The pooled model can identify the discount factor without further assumption of 

jσ .  If the error term is homoskedastic across payment scheme, then the equation (1.11) 

is simplified to 

( ) ( ) ( )
1 1

1 1 vote for ln ln
K J

j
k k i j C

k j
P i d x C dβ β β

σ σ= =

⎛ ⎞
′= Φ + − −⎜ ⎟

⎝ ⎠
∑ ∑� � . 

Again, without 1 1j
Cβ
= = , i.e. lump-sum payment schedule, the model cannot estimate 

TWTP.  

 

1.4.3 Initial Estimation 

Table 1.1 reports the response in each scenario and each cost amount shown in 

Figure 1.1. A and B indicate the project versions of 5- and 10-year and 1, 2 and 3 

represent payment schemes of one-time, annual payment and perpetuity, respectively. 

Among 1,710 who participated in the mail survey, 577 respondents replied to the survey 

questionnaire resulting in a 33.7 percent response rate. After dropping incomplete 

responses, 519 observations were used for the estimation and tests of insensitivity. For a 

conservative estimate of TWTP, the ‘I don’t know’ response is assumed to be ‘vote 

against’ response (Carson et al. 1998, Groothuis and Whitehead 1998).  

As can be seen in Table 1.1, the proportion of respondents voting for the project 

violates the monotonicity of probability distribution in two cases: from A1a to A1b (case 
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1) and from B3b to B3c (case 2). These problematic features of data may distort 

estimation result and temporal insensitivity test because they arise in the potential tail of 

the distribution. In nonparametric estimation, the pooled adjacent violators algorithm 

(PAVA) has been suggested by Kriström (1990) and Haab and McConnell (1997) to 

provide a self-consistent bounded estimator such as Turnbull estimator for the 

inconsistent data. In parametric estimation, however, the violation of monotonic 

probability distribution may distort estimation result and temporal sensitivity test because 

the violation arises in the potential tail of the distribution12.  

Table 1.2 shows the summary of demographic variables of respondents. SEX is a 

dummy variable that is one for female. HS, AGE and EDUC are the size of household, 

age and education variables. RE is an ordinal variable for ranking the role of oysters 

among food, economy, environment and fish habitat. RE = 1 represents that respondent 

thinks environment is the most important role oysters play in the Chesapeake Bay and RE 

= 4 shows that environment is the least important.  

The estimation model utilizes the linear function of TWTP such that, for instance, 

the conditional probability on the payment schedule (equation 1.7) is 

( )
( )1 2 3 4 5 6 7

i votes for |
j

j j j j j j j C j

P j

FIVE RE HS SEX AGE EDUC Cβ β β β β β β β= Φ + + + + + + −� � � � � � � �  

where FIVE is a dummy indicator that equals one if individual i receives the five year 

restoration plan and zero otherwise. The model was estimated using Gauss 5.0. 

                                                 
12 Since the estimate of mean WTP is sensitive to the design of payment set (Cooper and Loomis 1992, 
Kanninen, 1995, Roach et al. 2002), Kanninen (1995) recommends to avoid obviously excessive payment 
amount. Illogical response to the excessive payment generates seriously biased estimate of WTP. 
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Table 1.3 shows the estimation results of split and pooled data corresponding to 

the estimation model of equations (1.6) and (1.7). The first six columns show the 

estimates of split sample for each project and payment type with potential 

heteroskedasticity and different TWTP in each scenario. The last three columns are 

estimation results of pooled data with assumption that TWTP between five and ten-year 

projects is different in the mean of TWTP. FEE1, FEE2A, FEE2B and FEE3 represent 

payment vectors for one-time, annual payment for five years, annual payment for ten 

years and perpetuity-type payment, respectively. At the bottom of the table is reported the 

mean of log likelihood value of each estimation. As explained before, due to the violation 

of the monotonicity of probability function in the response of B3 category, parameter 

estimate of FEE3 has a negative sign. Note that the parameter estimates of FIVE, a 

dummy for project A, are insignificant across all payment types in the last three columns 

of Table 1.3. Statistically, willingness to pay for ten-year project are same to that of five-

year project which has faster provision of the identical final target quality. 

Table 1.4 and 1.5 report the estimation results of equation (1.8) pooling all 

possible combination of payment types in five and ten-year project, respectively. Table 

1.6 shows the estimation result of same combination for the data pooled over two project 

versions, i.e. equation (1.9). Note that, in Table 1.5 and 1.6, estimates of FEE3 are 

smaller than that of FEE2B. The scaled model and estimation result of the model are 

explained in the next section. 
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 Average Std. Dev. Minimum Maximum 

Size of Household 2.7553 1.3768 1 12 

Age 49.7919 14.4101 15 90 

Education 14.9075 2.6797 8 20 
     

 Female Male   

Sex 273 (52.6) 246 (47.4)   
     

 1 2 3 4 

Ranking of Environment 399 (76.9) 65 (12.5) 36 (6.9) 19 (3.7) 

Parenthesis reports percentage. 

 

 

Table 1.2: Demographic Variables of the Chesapeake Bay Study 
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1.5 TEMPORAL SENSITIVITY TEST OF TWTP AND IMPLICIT DISCOUNT 
RATES 
 

1.5.1 Sequential Test 

PVWTP model recovers the mean of annual WTP’s for each payment schedules 

and derives implicit discount rate by equalizing PVWTP of annual payment to WTP of 

lump-sum payment scheme. The procedure assumes that PVWTP’s are consistent and 

error terms are invariant across payment schemes13. This essay relaxes the assumption of 

consistency and homoskedasticity and tests them using a sequential test proposed by 

Swait and Louviere (1993) and adapted by Haab, Huang and Whitehead (1999) to a 

contingent valuation framework. Implicit discount rate is calculated based on the test 

result.  

The null hypothesis of a sequential test consists of two steps of separate tests:  

0

l m
B B

l m

H
β β
σ σ

⎧ ⎫=⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

. 

where l and m indicate different payment schedules. In the first stage, the composite 

hypothesis tests the consistency of TWTP ( { }0
A l m

B BH β β= = ), without restriction on 

variances across payment schemes. Note that parameters in the first stage are coefficients 

of TWTP with different payment schedules. The second stage tests the hypothesis of 

invariance of the error term across payment schemes ( { }0
B

l mH σ σ= = ). In both stages, 

LR (Likelihood ratio) provides simple test statistics. 

                                                 
13 Violation of consistency causes unidentification of PVWTP and discount rates, and violation of 
homoskedasticity leads to unidentification of PVWTP. For example, the result reported in Bond et al (2002) 
does not seem to be consistent. 
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The testing procedure can be conducted as follows. To test the consistency 

hypothesis 0
AH , the unconstrained model is split sample data reported in Table 1.3. The 

restricted model constrains parameters of TWTP to be equal across payment schemes 

without restriction on the variance. Following Haab, Huang and Whitehead (1999), the 

restricted model, named as rescaled model, can be estimated by normalizing the variance 

of one sub-sample (lump-sum payment scenario) to be one and estimating the relative 

variances of the other two sub-samples. The positive standard deviation for the pooled 

data is defined as  

( ) ( )2 2 3 3exp expj jw d dσ σ δ σ δ δ′= = +             (1.12) 

where σ is the standard error of lump-sum payment scenario. A straightforward method to 

estimate the restricted model is a probit model with heteroskedasticity (Limdep 7.0 

provides such a model). Estimation result is reported in the column titled rescaled of 

Tables 1.4, 1.5 and 1.6. 

If the first stage hypothesis is rejected in the LR test, then stop the procedure. 

Rejection of the first hypothesis indicates that TWTP is sensitive to the payment scheme, 

i.e. inconsistency of TWTP. Respondent changes his or her value of the environmental 

project depending on the payment scheme. 

Conditional on the failure to reject the first hypothesis, the second step is to test 

heteroskedasticity across payment schedules. The unrestricted conditional model in the 

second stage is the rescaled model used as the restricted model in the first stage. The 

restricted conditional model is the pooled data model stacking all samples with equal 
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parameters in TWTP and dummies for payment scheme. Tables 1.4, 1.5 and 1.6 also 

reports the estimation results of restricted conditional model under the title of pooled. 

Parameter estimates of payment schedule imply the information of the discount 

rate of cost stream. With failure to reject the second stage of the sequential test, the 

discount rate is easily derived from the ratio of parameters. Recall the normalized 

parameters of PVC defined in equations (1.3), (1.4) and (1.5) such that 1 1
Cβ σ
=� , 

( )
2 1 11

1 C

C
C T

C C

r
r r

β
σ

⎡ ⎤+
= −⎢ ⎥

+⎢ ⎥⎣ ⎦

� , and 3 1 C
C

C

r
r

β
σ
+

=� . If the error variance is constant across 

payment type, then an implicit discount rate is 

1

3 1
C

C
C C

r β
β β

=
−

�
� �        (1.13) 

or the solution to the nonlinear function of 

( )

2

1

1 11
1 C

C C
T

CC C

r
r r

β
β

⎡ ⎤⎛ ⎞+
= −⎢ ⎥⎜ ⎟

+⎢ ⎥⎝ ⎠ ⎣ ⎦

�
� .     (1.14) 

If the discount rate varies on time intervals, 2
Cβ�  and 3

Cβ�  provide different implicit 

estimates of the discount rate. 

The rejection of the second hypothesis, however, shows the heteroskedasticity of 

TWTP across payment version although TWTP is time-consistent. Since the structure of 

the standard deviation is defined to be ( )2 2 3 3expj d dσ σ δ δ= + , ratios of parameter 

estimates are 
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( )
3

1
1

3 3 3

1 11
ˆexp

C C C

C CC

r r
r rd

β σ
σβ δ

⎛ ⎞ ⎛ ⎞+ +
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

�
�  

and 

( ) ( ) ( )

2
1

1
2 2 2

1 11 1 11 1
ˆ1 1expC C

C C C
T T

C CC C C

r r
r rr rd

β σ
σβ δ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
= − = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

�
� . 

Using estimation result of the rescale factor, ( )2 2 3 3exp d dδ δ+ , implied discount rates can 

be calculated. 

 

1.5.2 Sequential Test Results 

Each project version (A and B) has been tested for consistency and 

homoskedasticity of data pooling all three payment schemes (one time vs. annual 

payment vs. perpetuity) and through pairwise comparisons of each of the payment 

schemes (one time vs. annual; one time vs. perpetuity; annual vs. perpetuity). The 

composite hypothesis was also tested with data pooled over five and ten-year projects 

using a dummy variable (FIVE).  

Table 1.3 provides the split sample estimates for each project version A, B, and 

AB (5 year, 10 year, and 5-10 year combined). The log likelihood of the unrestricted 

model is ( ) ( )1
ln lnJ

u j jj
L n L

=
= ⋅∑ , where jn  is the number of observations and ( )ln jL  is 

the mean of log likelihood in payment scenario j. For instance, the unrestricted log 

likelihood of A1 (5-year one-time payment) versus A2 (5-year annual payment) is (-

.564*101-.585*83=-105.52). The restricted log likelihood are the log likelihood of 
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rescaled model for relevant combination of payment schedules in Table 1.4, 1.5 and 1.6. 

For A1 versus A2, the restricted log-likelihood value is -.591*184 = -108.74. The LR test 

statistic for the hypothesis of A1 and A2 is ( ) ( )( ) 44.6lnln2 =−−= ur LLLR . The 

likelihood ratio statistics is distributed as 2χ  with degrees of freedom (df) equal to the 

number of restrictions (in A1 versus A2, df = 7). With 95% confidence level, the 

consistency hypothesis of A1 and A2 fails to be rejected. 

Conditional on failure to reject the hypothesis of consistent TWTP, the scaled 

model represents the unrestricted conditional model for the test of homoskedastic errors 

distribution across payment schemes. The restricted conditional model is the estimation 

result of pooled data in Table 1.4, 1.5 and 1.6. For A1 and A2, the restricted conditional 

log likelihood value is -.595*184 = -109.51, thus the LR statistic is 1.43 with df = 1. The 

test for A1 and A2 shows that respondents value the oyster reef restoration project 

consistently and the error term unobservable to researcher is identically distributed. 

Table 1.7 reports results of the sequential test for all possible combinations. LR1 

is the test statistics for the first stage, consistency of TWTP across payment schemes, and 

LR2 is for the homoskedasticity conditional on the first stage. Except AB1+3, all 

combinations of payment schedules fail to reject the consistency hypothesis, k
B

j
B ββ = . 

Except AB1+3 for which the second stage test is not necessary, the test results of the 

second hypothesis shows that the variance of TWTP is not statistically different across the 

payment type. Consequently, test results demonstrate that the value of oyster reef 

restoration program depends only on the benefit stream and individual specific variables 
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but not on the payment schedule determined by researcher and that discount rate of cost 

stream can be derived from pooling data across payment schedules. 

Based on the result of sequential test, Table 1.8 reports various implied discount 

rates from all possible combinations using equation (1.13) and (1.14). Due to the 

violation of monotonic probability in B3 scenario, the long term discount rate 13r  in ten 

year project is problematically high (5,647%). Furthermore, the ill defined data generates 

larger parameter estimate of FEE3 than FEE2B, which means that we are unable to 

calculate the discount rate for this case. Except the case in which estimates are 

insignificant or cannot be calculated due to negative coefficients, the numerical solutions 

for implied discount rates range from 20% to more than 100%14. Discount rates are still 

relatively high but much lower than previous studies. Interestingly, for the five year 

project, the long term discount rate, 13r , is much lower than short term discount rate, 1Ar , 

implying that data shows hyperbolic discount rates15. 

Finally, Table 1.9 shows the result of average and 95 percent interval of expected 

TWTP estimated through Krinsky-Robb (K-R) procedure (Haab and McConnell 2002). 

The first column is TWTP of one-time payment scheme using the estimation result in 

Table 1.3. TWTP’s of other model are estimated based on consistency and 

homoskedasticity of TWTP, except the combination annual and perpetuity payments. In 

Table 1.9, TWTP ranges between $263 and $277 for the five-year project and between 

$159 and $177 for ten-year project. The difference of TWTP between two project 

                                                 
14 Note that the discount factor defined in equation (1.5) is derived under the restriction that 0r > .   
15 The hyperbolic discount rate implies that larger discount rate is applied to near-term returns than to 
distant-term returns (Cropper and Laibson 1999). 
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versions is approximately $100. The result is expected because five-year project provides 

the benefit with faster rate than ten-year project does. When the data is pooled over five 

and ten-year projects, the difference reduces to approximately $30 and is statistically 

insignificant.  

 

 

 

 

 

 1+2+3 1+3 1+2 2+3 

A     

LR1 15.75 10.23 6.61 6.57 

LR2 1.16 1.02 1.43 0.60 

B     

LR1 10.12 8.79 1.72 4.81 

LR2 1.12 0.58 1.25 0.02 

AB     

LR1 17.84 13.75* 5.95 5.07 

LR2 1.93 — 2.49 0.05 

* Rejected in 90% confidence interval in Chi-squared distribution with d.o.f of seven. 
 

 

Table 1.7: Test Result of Insensitivity to Temporal Payment Schedules 
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 1+2+3 1+3 1+2 2+3 

A     
†r13 0.46 0.45 — — 
‡r1A 0.94 — 0.98* — 
§r3A 0.22 — — 0.20 

B     
†r13 56.47* N/A — — 
‡r1B 1.62 — 1.14 — 
§r3B N/A — — N/A 

AB     
†r13 1.20 — — — 
‡r1A 1.29 — 1.02 — 
‡r1B 0.96 — 1.05 — 
§r3A 0.87 — — 0.38* 
§r3B N/A — — N/A 

††rAB 0.43 — 1.31 0.12* 
N/A indicates that coefficient of Perpetuity is less than that of other payment schedule. 
* One of coefficients of FEE is not significantly different from zero. 
† Calculated using coefficients of One time and Perpetuity in pooled data.  
‡ Calculated using coefficients of One time and Annual in pooled data. 
§ Calculated using coefficients of Annual and Perpetuity in pooled data. 
†† Calculated using coefficients of 5 and 10 year Annual payments in pooled data. 

 

 

Table 1.8: Implicit Discount Rates 
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 One Time Project 1+2+3 1+3 1+2 

A 

TWTP 263.98 268.50 263.28 276.70 

95% KR (170.48    629.97) (186.81    517.92) (184.53    510.33) (182.52    645.28) 

B 

TWTP 176.47 163.91 159.92 176.03 

95% KR (135.35    223.47) (122.99    221.41) (115.46    215.18) (134.99    231.88) 

AB 

TWTP* 233.49 218.68 216.99 233.82 

95% KR (177.78    318.74) (167.45    296.22) (165.13    294.56) (175.86    324.17) 

TWTP** 181.82 198.22 189.01 194.98 

95% KR (126.74    249.03) (148.86    270.05) (139.13    257.57) (139.71    271.92) 
*  Temporal willingness to pay for five-year project 
** Temporal willingness to pay for ten-year project 

 

 

Table 1.9: Mean of PVWTP and 95% Interval by Krinsky-Robb Procedure 
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1.6 CONCLUSIONS  

Previous studies have defined and tested the insensitivity of willingness to pay to 

temporal payment schedules in terms of the present value of willingness to pay. In spite 

of the simple concept of insensitivity, those studies have imposed restrictive assumption 

that the willingness to pay is time-separable and the present value of willingness to pay is 

identical across different payment schemes. The simple and widely used concept of 

present value may not be suitable in the binary decision process of CV studies. In this 

essay, the insensitivity to payment schedule is redefined in terms of the temporal 

willingness to pay. Different from the classical definition of the temporal embedding 

effect, the insensitivity of temporal willingness to pay to payment schedule demonstrates 

the consistency of valuing behavior. Using a sequential test proposed by Haab et al. 

(1999), assumptions such as consistency and homoskedasticity of willingness to pay are 

tested before deriving implied discount rate.   

The sequential test with oyster reef restoration program in Chesapeake Bay shows 

that holding the length of the project constant, temporal willingness to pay is statistically 

identical across the payment types. In holding the payment scheme constant, however, 

temporal willingness to pay does not vary significantly across project versions. That is, in 

spite of fast supply of environmental benefit, temporal willingness to pay for five-year 

project is statistically same with that of ten-year project. Respondents may consider the 

change in the environment but do not care how fast the benefit is supplied once the 

project is implemented.  
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Homoskedasticity of the error distribution across payment types confirms using 

the pooled data to derive implied discount rate of the cost stream. Estimated discount 

rates shows relatively high and significantly varying across payment schemes and project 

versions. However, five-year project show consistently high discount rate in short term 

and low discount rate in long term. Unfortunately, the response rate of vote for in ten-

year project with perpetuity payment scheme violates the monotonicity of probability 

function. Due to small number of payment points, the violation could harm the estimation 

result seriously.  

The benefit stream scenario was not enough to identify the discount rate of the 

benefit stream. Elaborate design of the benefit stream and payment schedule will provide 

more informative and exact result about the temporal structure and discount rate of 

benefit and cost streams. For example, more than three scenarios of the benefit stream 

enable researcher to estimate the discount rate of the benefit stream based on the 

sequential test. Individual discount rate with covariates for discount function can be 

estimated with more observations. Other functional form of willingness to pay or 

distribution is also recommended for future study with careful application of test 

procedures. 
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ESSAY 2 

 

OPTIMAL, ROBUST kk AND UNIFORM EXPERIMENTAL DESIGNS IN 
BINARY CHOICE MODEL: ANALYTICAL AND EMPIRICAL COMPARISON 

OF EFFICIENCY AND BIAS 
 

 

ABSTRACT 

 

While bid (payment) design affects the efficiency and bias of parameter and 

welfare estimates in dichotomous choice contingent data, the contingent valuation 

literature does not provide well-established guidelines for practical bid design. In this 

essay, bid design utilizing a predetermined uniform distribution is proposed as a practical 

and robust alternative to existing optimal or naïve bid designs. Analytics and simulations 

show that the uniform design has lower bound of efficiency at 84 percent of D-optimum. 

The uniform design outperforms optimal designs when initial information is poor and 

outperforms naïve designs when true values of parameters are known. Simulation based 

on the existing data demonstrates that the uniform design provides higher efficiency and 

less bias than other designs even under flexible model specification such as exponential 

willingness to pay function. 
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2.1 INTRODUCTION 

Binary response experiments have been widely used in fields as different as 

biology and economics.  For example, in biological assay studies, clinical trial 

participants receive a randomly assigned ‘dose,’ and then observed at some point in the 

future for their ‘response’. In many cases, the response variable takes the form of a binary 

indicator:  alive or not, cancer-free or not.  The varying dose information combined with 

the binary response variable form the necessary information to estimate the dose-

response function.  In economics, the contingent valuation method (CVM) closely 

mimics the biological assay framework.  CVM measures consumer willingness to pay 

(WTP) for goods or services for which traditional markets do not exist: these are often 

public goods.  Hypothetical markets, in which survey participants must decide whether to 

purchase a good or service (binary response) at a randomly offered bid (dose), act as a 

proxy for market based decisions.  The dose-response function estimated from the survey 

responses gives a measure of WTP (or demand) for the good or service.   

A pressing question in such dichotomous choice contingent valuation studies 

becomes, what is the optimal set of bids from which offered prices should be drawn and 

offered to subjects to get the most information about the population willingness to pay for 

the good or service of interest? Similarly, biological assay researchers must choose the 

optimal set of ‘doses’ to apply to the sample of participants to provide the most 

information about the population response function.  

Such examples of experimental studies and environmental economics describe the 

unique statistical problem of designing the experiment. In the linear regression, the 
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optimal design is to establish the limits of the support of the covariate and choose an 

equal number of observations from both of endpoints of the support (Casella and Berger 

2002 pp 547 - 8). However, the simple design in the linear regression case cannot be 

applied to binary data since estimation result from binary data hinge critically on 

experimental design and unknown true parameters.  

Experimental design points are often chosen based on an ad hoc design or based 

on an optimal design rule that requires prior knowledge of the true response function. The 

bias of parameter estimates is analytically a function of experimental points and unknown 

true parameters (Copas 1988), and the choice of experimental points results in 

dramatically different point estimate (Cameron and Huppert 1991, Cooper and Loomis, 

1992, Kanninen 1995). Although parameter estimates converge asymptotically to the true 

parameter, the standard deviation of parameter estimates still depend on both 

experimental design points and unknown true parameters (e.g. Abdelbasit and Plackett 

1983, Sitter 1992). 

This essay proposes a practical and viable alternative to existing experimental 

designs. While the proposed design has applications to many fields, the essay focuses on 

the problem of designing the optimal bid set in dichotomous choice contingent valuation. 

The new experimental design, named the uniform design, draws upon the work of 

Lewbel et al. (2003) which assumes a continuous bid distribution to solve an 

identification problem in nonparametric estimation of willingness to pay in contingent 

valuation.   
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Boyle et al. (1988) suggest a similar continuous bid design known as the “method 

of complementary random numbers,” that constructs an empirical cumulative distribution 

function by utilizing prior information on the distribution of WTP. The difference 

between the uniform design and the method of complementary random numbers is that 

the uniform design selects random bid points from a predetermined uniform distribution 

not from the empirical distribution. Researchers can implement the bid design simply by 

deciding the range of the uniform distribution based on prior information of the mean and 

variance of willingness to pay.   

The primary goal of the new design is to overcome the serious dependence of 

optimal designs on the true parameters. Efficacy of the proposed design is measured by 

the relative size of information matrix. For analytical reason, we assume that the true 

distribution is a logistic distribution. Compared with other designs, including optimal 

designs, the uniform design dramatically reduces the risk from poor information and the 

cost of deriving an extensive optimal design. 

 

2.2 OVERVIEW OF EXISTING OPTIMAL DESIGNS 

Suppose that a public project (G) enhances the environmental quality and an 

individual has willingness to pay ( iWTP ) for implementing the project. Contingent 

valuation study draws the information of welfare change from the project by directly 

asking questions about the willingness to pay to the individual. Due to incentive 

compatibility, a dichotomous choice question stylized as “Would you be willing to pay 

$ ib  for G?” is a typical form in the study, rather than an open-ended question such as 
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“How much would you be willing to pay for G?” Therefore, to implement a CV study, a 

researcher needs to design the set of ib : the value ( ib ) of bid (payment) points, the 

number of observations at each point ( in ) and total number (J) of bids16. For randomly 

assigned cost, ib , a subject indicates whether ib  is acceptable or not. The binary response 

for the dichotomous choice question is one if iWTP  is greater than ib , and zero otherwise. 

For tractable analysis, assume that iWTP  for G has a constant mean (µ) and an 

additive i.i.d. error component ( iε ) with zero mean and constant variance ( 2σ ): 

i iWTP µ ε= + . Let ( )F ⋅  be a logistic distribution function and ( )f ⋅  be a logistic 

probability function of the error term ε. Then, the probability of binary response of one is 

( ) [ ] ( )( ) ( )Pr Pri i i i i iyes b F b F bµ ε β µ α β= + > = − = −   (2.1) 

where ( ) ( ) ( ) 1
exp 1 expF z z z

−
⎡ ⎤= +⎣ ⎦  and { },µ β  or { },α β are parameters of interest. 

Usually, parameterization of the model by either of { },µ β  or { },α β  does not change 

properties of estimate, so this essay keeps parameters { },µ β  for analysis. Note that 

logistic distribution has unique property which simplifies the analysis, 

[ ]/ 1i i i iF f F Fθ∂ ∂ = = − .  

The log likelihood of probability (2.1) is expressed as 

                                                 
16 The final number of observation at each point, in  could not be decided in prior of the survey of CV 
studies by researcher when the survey is in the mail format. Instead, the researcher can decide how many 
survey letters will be distributed with each bid point. In other survey formats such as in-person interview, 

in  can be optimally designed. 



 

 
 
 
 

43

( ) ( )( ) ( )( ){ }log 1 ln 1 lni i i i
i

L y F b y F bβ µ β µ⎡ ⎤= − − − + −⎣ ⎦∑        (2.2) 

where iy  is binary response vector. The maximum likelihood estimate (MLE) is a 

solution to the set of nonlinear equations of the first derivative of the log likelihood 

function (the score function) set to zero. From equation (2.2) and the property of logistic 

distribution, the score function becomes 

( ) ( ), i i
i i

S y F
b

β
µ β

µ
⎛ ⎞

= − ⎜ ⎟−⎝ ⎠
∑ .        (2.3) 

Define the weight iw  as 

( )
( ){ }2

exp

1 exp

i
i i

i

b
w f

b

β µ

β µ

⎡ ⎤−⎣ ⎦≡ =
⎡ ⎤+ −⎣ ⎦

, 

then, the Hessian matrix of the logit model, the second derivative of (2.2), simplifies to 

be ( ) ( ), i i
i i

H w b
b

β
µ β β µ

µ
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
∑ . The Fisher’s information matrix is the 

negative of Hessian matrix such that 

( )
( )

( ) ( )

2

2,
i i i

i i

i i i i
i i

w w b
I

w b w b

β β µ
µ β

β µ µ

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
− −⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑
       (2.4) 

and the asymptotic variance-covariance matrix of estimates is the inverse of the 

information matrix.  

ML estimate from (2.3) is a consistent estimate when the model is specified 

correctly. Thus, the main concern of optimal designs is to choose J, ib  and in  to get the 

most efficient estimate under some statistical criteria. Since the Fisher information matrix 
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is the lower bound of variance-covariance matrix, the optimality of design derives from 

some properties of information matrix. For instance, A-optimal design minimizes the 

trace of the inverse of information matrix, i.e., trace of variance-covariance matrix. Since 

the trace of the variance-covariance matrix is the summation of its diagonal entries that 

are variances of corresponding parameter estimate, A-optimal design minimizes the 

summation of the variance of all parameter estimates. A-optimal design results in a two-

point symmetric design in the class of symmetric designs (Sitter and Wu 1993a, Mathew 

and Sinha 2001).  

C-optimal and Fiducial designs minimize the variance or the asymptotic variance 

of the summary statistic of interest, such as mean or median of willingness to pay. Using 

Slutsky’s theorem and the delta method, the asymptotic variance of estimated median is17 

( ) ( ) ( )
2 2

2

ˆ ˆ ˆ1 ˆ ˆˆ ˆˆvar var var 2 cov ,ˆ ˆ ˆ ˆ
α α αµ α β α β
β β β β

⎛ ⎞ ⎛ ⎞ ⎧ ⎫
= = + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎩ ⎭
. 

C-optimality suggests a single optimal design point that is equal to the true mean or 

median (Wu 1988, Ford et al. 1992). However, when WTP function consists of a constant 

term and covariates, the single point is merged into the constant and the variance cannot 

be estimated. C-optimal design cannot identify parameter estimates of WTP function.  

Instead of the asymptotic confidence interval, Fiducial design minimizes the 

length of the fiducial interval proposed by Finney (1971) using Fieller’s theorem. 

Fieller’s theorem shows the exact confidence set (parabola) of the ratio of normal random 

variables given desired confidence level and the roots of the parabola are the endpoints of 

                                                 
17 The asymptotic variance of estimated mean is same with that of median when the model is linear. 
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the confidence set (See Appendix B). Fiducial interval is generally superior to the 

asymptotic confidence interval (Sitter and Wu 1993b). Alberini (1995) provides the 

expression of the square of the length of the fiducial interval as 

( ) ( ) ( ) ( ) ( ) ( )
( )

2
2 2

2

cov ,4 ˆ ˆ1 var 2 cov , var varˆ var
tg g

α β
α µ α β µ β α

ββ
− ⎡ ⎤⎛ ⎞

− − + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

where ( )2 2ˆvar /g t β β=  and t is the value of the standard normal variate for the 

corresponding probability mass. Fiducial design consists of two or three points depending 

on the sample size and confidence level (Abdelbasit and Plackett 1983, Alberini 1995). 

D-optimality minimizes the volume of the confidence ellipsoid of parameter 

estimates. Since the determinant of a matrix represents the volume of the matrix in k-

dimensional space, the volume of the confidence ellipsoid, i.e. the volume of variance-

covariance matrix, is inversely proportional to the determinant of Fisher’s information 

matrix. From the equation (2.4), the determinant of information matrix becomes 

( ) ( ) ( )
2

22

1 1 1
det ,

N N N

i i i i i
i i i

I w w b w bµ β β µ µ
= = =

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤ = − − −⎨ ⎬⎢ ⎥⎣ ⎦
⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑ ∑       (2.5) 

where N is the total number of observations. D-optimality turns out to maximize the 

determinant of the information matrix in equation (2.5). Note that D-optimality considers 

the entire volume of variance-covariance matrix including off-diagonal elements while 

A-optimal designs focus only on the summation of diagonal elements of variance-

covariance matrix. D-optimal design has two design points symmetric with respect to µ 

(Rosenberger and Kalish Technical Report 33 Department of Statistics Pennsylvania 
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State University 1978, Abdelbasit and Plackett 1983, Minkin 1987, Ford et al. 1992, 

Nyquist 1992, Mathew and Sinha 2001). 

Optimal designs, except the MSE-based design, typically consist of one, two or 

three bid values that depend on the correct model specification and true parameters of the 

underlying response function. The fundamental paradox of the optimal bid design 

literature is that to achieve optimality requires knowledge of the true parameters and 

distribution.  If such information is available, estimation is unnecessary (Haab and 

McConnell 2002). The information required for the design is exactly the information to 

be estimated.  Because all existing designs require some initial information about the 

parameters, the efficacy of each design hinges on the quality of that prior information.  

Poor initial information about the true parameter values results in a loss of efficiency18 

relative to the efficiency obtained from the optimal design applied with perfect 

information19 (Abdelbasit and Plackett 1983).  

An obvious solution for efficiency loss due to poor initial estimate is a sequential 

design using the consistency of estimates (Abdelbasit and Plackett 1983, Minkin 1987, 

Nyquist 1992). Sequential designs divide the experiments into a series of sub-

experiments. The bid design is updated after each iteration based on estimates of the 

parameters garnered from the previous stage. Consequently, sequential designs have 

more design points than optimal designs. The total efficiency of a sequential design is the 

summation of efficiencies at all stages. Successive updates improve the efficiency of the 

                                                 
18 Efficiency is defined to be a ratio of the determinant of the information matrix with poor information to 
the optimal determinant. This is defined and discussed in detail in section 2.3. 
19 See for example Abdelbasit and Plackett (1983) who derive the efficiency losses for D-optimal and 
Fiducial designs with less than perfect information. 
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design for poor initial estimates as Abdelbasit and Plackett (1983) argue “increasing the 

number of subjects at each level of the stimulus does not necessarily compensate for a 

poor initial estimate, but is more likely to do so if the number of design points in 

increased”. The procedure can be designed more efficiently by considering how good the 

initial estimates turns out to be once the previous estimation is conducted (Minkin 1987). 

In spite of intuitive appeal, however, the practicality of a sequential method is still in 

question in contingent valuation applications. 

Alternatively, Sitter (1992) introduces a minimax procedure to obtain robust 

designs to prevent the efficiency loss due to the uncertainty of the initial parameter values. 

The minimax procedure minimizes over possible design, the maximum of some 

optimality function over a region of the parameter space. Restricting the possible designs 

to the set of kk-designs, Sitter reports several tables under Fieller, C- and D-optimal 

criteria, of robust design points and the space between adjacent design points for 

rectangular region of µ and β representing the experimenter’s uncertainty about the initial 

estimates20. For instance, Table 2.1 from Sitter’s Table 1 shows optimal bid points and 

space between points under D-optimality21. The robust design has more design points 

over a wider range than other optimal design criteria. Sitter (1992) argues that “the less 

knowledge of the parameter values one has prior to the experiment, the more spread out 

the design should be and the more design points should be used.” Although Sitter’s 

design is robust to poor initial parameter estimates and the implementation for a specific 

                                                 
20 A kk-design has k design points symmetric around µ and allocates an equal number of observations to 
each point. 
21 The efficiency of the robust design is calculated assuming that true parameters are known in both robust 
and D-optimal designs while the original table includes the ‘worst’ situation.  
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application is straightforward, the robust design relies heavily on the initial information 

and more seriously on the experimenter’s confidence about information. 

Usually, optimal designs assume an unbounded symmetric error distribution for 

the population. A series of articles provide some optimal design schemes under 

asymmetric error distributions. Ford et al. (1992) derive C- and D-optimal points in the 

case of complementary log-log and skewed logit models as well as the case in which the 

design region is bounded. Cooper (1993) shows optimal bid designs in the case of gamma 

or log-normal error distributions using MSE criterion. However, properties of optimal 

designs with asymmetric error distributions are not known well yet. Furthermore, MSE 

designs vary seriously depending on the underlying distribution and need intensive 

calculation over all possible bundles of bid values and observations in each bid. In other 

literature, Crooker and Herriges (2004) show the simulation result that the semi-

nonparametric (SNP) technique estimates the model better in terms of MSE as the range 

of number of bids becomes wider, while the generalized maximum entropy (GME) 

technique does better with much fewer bids. 

In addition to the minimum variance (optimal efficiency) of estimate, bias of 

estimate with small sample has been another issue in optimal designs. Note that although 

the ML estimator from equation (2.2) is consistent, the finite sample properties of the 

estimate are usually unknown. In specific application to CV studies, Cooper and Loomis 

(1992) demonstrates that the estimate of mean WTP is sensitive to sample design through 

simulation using the bid points grouped into upper, middle and lower values. The 

simulation results also shows that an incorrect assumption about the underlying 
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distribution exacerbates the sensitivity of WTP to bid design in small samples. Due to 

sensitivity of estimate to bid values, Kanninen (1995) suggests a general rule-of-thumb 

placing bids within 15th and 85th percentiles of true WTP to avoid obviously excessive 

bids. Alberini (1995) shows that an optimal design better for estimating the median tends 

to perform worse for the mean or vice versa if the distribution is asymmetric. 

As a special case of the small sample, Copas (1988) derives the closed form of 

bias for logit estimate. By expanding the score function (2.3) to the proper order of 

Taylor series, the bias of sth parameter is  

1
2

sj kl
s jkl

j k l
bias H H L∑∑∑�         (2.6) 

where the bias is defined as ( )ˆbias E θ θ≡ − , jkH  is the inverse of { }jkH H=  and jklL  is 

the element of the Hessian matrix of the score function22. In a simple case of single 

covariate in logistic regression, the bias of estimate is 

( )
( )

3

22

2 1

2
i i i

i i

x w p
bias

x w

−
= ∑

∑
               (2.7) 

where ip  is the probability of bid point i (Copas 1988).  The choice of bid points affects 

the bias of estimates through H and L. The bias is decreasing as the number of 

observation increases.  

                                                 
22 The exact expressions for H and L are provided in Copas (1988) or Kanninen (1995), and also in 
Appendix B. 
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 µ∆  

/U Lβ β  0 .5 1.0 1.5 2.0 2.5 3.0 3.5 

J 2 2 2 3 3 3 4 4 

h 3.09 3.15 3.35 2.53 2.99 3.46 2.99 3.17 

1.0 

Eff 1 .9993 .9883 .7500 .6165 .4847 .4907 .4075 

J 2 2 3 3 3 4 4 4 

h 2.75 2.67 1.86 2.30 2.77 2.31 2.68 3.03 

1.2
5 

Eff .9789 .9673 .8638 .8074 .6815 .6291 .5216 .4369 

J 2 2 3 3 4 4 4 5 

h 2.50 2.41 1.69 2.15 1.86 2.23 2.57 2.23 

1.5 

Eff .9342 .9119 .8544 .8368 .7702 .6543 .5518 .4724 

J 2 2 3 4 4 5 5 6 

h 2.12 2.02 1.50 1.40 1.76 1.61 1.85 1.72 

2.0 

Eff .8187 .7795 .8158 .8547 .7979 .7134 .6149 .5321 

 

 

Table 2.1: Efficiency of Equi-spaced kk-Designs (Sitter’s Robust Design) 
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2.3 DETERMINANT AND EFFICIENCY OF D-OPTIMAL AND kk-DESIGNS 

2.3.1 Determinant of General J-points Design 

In this section are analytically derived the determinant and efficiency of the D-

optimal design and robust design as special cases of general kk-design. WTP and 

underlying error distribution follow the same assumptions in the previous section; a 

constant mean µ of WTP and an i.i.d. additive error term of logistic distribution with 

mean zero and a constant variance of 2σ . From equation (2.5), the general expression of 

the determinant of information matrix is 

( ) ( ) ( )
2

2

1 1
det ,

2

J J

i j i jJ
i j

n
I w w b b

β
µ β

= =

⎡ ⎤ = −⎣ ⎦ ∑∑  

where J is the number of design points and observations are equally allocated in each 

point by n (= N/J). Obviously, the determinant depends on the relationship of each pair of 

two bid points; the squared distance and the weight evaluated at each point. Intuitively, 

increasing the distance between two points increases the determinant but due to product 

of weights iw  and jw  the full effect will be mixed.  

Define ( )i it bβ µ= −  as the normalized point of i-th observation. By substituting 

it  into the equation, the determinant becomes 

( ) ( )
2 2

1 1
det ,

2

J J

i j i jJ
i j

nI w w t tµ β
= =

⎡ ⎤ = −⎣ ⎦ ∑∑ .    (2.8) 
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Suppose the researcher chooses actual bid points by selecting normalized design points 

id  from a standard logistic distribution and then calculates the actual bid points based on 

the design points and the prior information about the true parameter values23: 

0 0/i ib dµ β= +          (2.9) 

where 0µ  is the initial information of the population mean and 0β  is the initial 

information of the inverse of standard deviation. Note that id  is equivalent to 

( )ln / 1i ip p⎡ ⎤−⎣ ⎦  in Abdelbasit and Plackett (1983). By substituting (2.9) into it , the 

normalized point it  becomes 

( ) ( )0 0/i it dβ µ µ β β= − − .           (2.10) 

Note that id  is in fact the design point by researcher and initial information, 0µ  and 0β , 

distorts the design points through ( )0β µ µ−  and 0/β β . From equations (2.8) and (2.10), 

0µ  does not affect the squared distance, ( ) ( ){ }0

22

i j i jt t d dβ
β− = − . Furthermore, since iw  

is symmetric in terms of it , the deviation of 0µ  from µ affects the determinant 

symmetrically if the design is symmetric. However, poor information of β ( 0/β β ) affects 

the determinant through either of inward or outward deviation of design point id .  

Substitute equation (2.10) into (2.8), then the determinant of J points design is 

( ){ } ( ) ( ) 2
2

0

1 1 0 0

exp 2
det exp

2

J J
i j

J i j
i j i j

d dn
d d

A A
β µ µ β β

β β= =

⎧ ⎫−− ⎧ ⎫⎪ ⎪= +⎨ ⎬⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

∑∑      (2.11) 

                                                 
23 Most practitioners directly choose bi when implementing a CVM survey.  For generality in design, the 
optimal design literature focuses on choosing the normalized bid points, di.  Conditional on the prior 
information, there is a one-to-one mapping between normalized bid points and actual bid points. 
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where { } ( ){ }
0 0exp expk kA dβ

β β µ µ= + − . Holding i jd d−  constant, only one pair of id  

and jd  which is symmetric around ( )0β µ µ− , maximizes the summation component in 

the determinant. Given true information of µ and β, the optimal distance is 3.09i jd d− = , 

which is D-optimal design point. If the mean is known correctly ( 0µ = µ), the symmetric 

design, 0i jd d+ = , always yields greater determinant than asymmetric ones given the 

distance24. Holding i jd d+  constant, expanding the distance increases the determinant 

first but decrease it after the critical point of distance.  

 

2.3.2 D-optimal Design and Efficiency 

Suppose that 0d±  are two symmetric design points and observations are equally 

assigned to them. From equation (2.11), the determinant of 2-point symmetric design 

becomes  

( ) ( ){ }
2

0
0

0

det , expNdI
AB

βµ β β µ µ
β

⎡ ⎤⎛ ⎞
⎡ ⎤ = −⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

     (2.12) 

where ( ) ( ){ }
0 0 0exp expA dβ

β β µ µ= + − and ( ) ( ){ }
0 0 0exp expB dβ

β β µ µ= − + − . 

Equation (2.12) is identical with the determinant in Abdelbasit and Plackett (1983) by 

substituting 0d  with 0p . The determinant of two-point bid design is maximized when 

initial estimates are correct as 0µ µ=  and 0β β=  and two points are placed optimally at 

                                                 
24 This is consistent result with previous literatures showing that 2-point symmetric design is optimal under 
several criteria including D-optimality (Rosenberger and Kalish 1978, Ford et al. 1992). However, when 
the initial estimate of µ is not correct, some of 0i jd d+ ≠  increase the determinant. 



 

 
 
 
 

54

0 1.54d = . The optimal distance 0d±  corresponds to the probability mass of 0 0.824p =  

and 01 0.176p− = . Optimal design point, i.e. optimal probability mass p, maximizing the 

determinant differs depending on the underlying distribution, for example, 0 0.872p =  

when the underlying distribution is normal. See Ford et al. (1992) for the optimal 

probability mass point of various distributions. The maximum value of determinant is  

( ) [ ]
0 0

2 2 2
0,

det , 5.01 10I N C d N
µ µ β β

µ β −

= =
⎡ ⎤ = ⋅ ⋅ = ⋅⎣ ⎦          (2.13) 

where ( ) ( )1
0 01 exp 1 expC d d− ⎡ ⎤ ⎡ ⎤= + ⋅ + −⎣ ⎦ ⎣ ⎦ . Using the notation 0p  of Abdelbasit and 

Plackett (1983), the maximum determinant in the equation (2.13) is expressed as  

( )
2

0
0 0

0

1 ln
1

pNp p
p

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

. 

Following Abdelbasit and Plackett (1983), the efficiency of a design is defined as 

the ratio of the determinant of a design at 0µ  and 0β  to the maximum determinant of D-

optimal design. Therefore, from equations (2.11) and (2.13), the general expression of the 

efficiency of J-point design becomes 

( ){ } ( ) ( ) 22

0

1 10 0 0

exp1 exp
2

J J
i j

J i j
i j i j

d dn
Eff d d

N C d A A
β µ µ β β

β β= =

⎧ ⎫⎛ ⎞ −− ⎧ ⎫⎪ ⎪= +⎜ ⎟ ⎨ ⎬⎨ ⎬⎜ ⎟⋅ ⋅ ⎩ ⎭⎪ ⎪⎝ ⎠ ⎩ ⎭
∑∑ . (2.14) 

From equations (2.11) and (2.12), the efficiency of D-optimal design is 

( ){ } 2

0

0

exp
DEff

A B C
β µ µβ

β

⎡ ⎤−⎛ ⎞
= ⎢ ⎥⎜ ⎟ ⋅ ⋅⎢ ⎥⎝ ⎠⎣ ⎦

.       (2.15) 

The efficiency shows relative increase of confidence volume of parameter estimates due 

to poor information. 
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Figure 2.1: The Efficiency of D-optimal Design at Poor Initial Estimates 
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Figure 2.1 shows graphically the efficiency of D-optimal design under poor initial 

estimates. The efficiency is a function of ( )0β µ µ−  and 0/β β . As can be seen in Figure 

2.1, the effect of poor estimates of mean is symmetric. Overestimating β, i.e. 0β  is larger 

than true β, is more serious to efficiency than underestimating. Note that the efficiency is 

calculated using 0/β β  while Abdelbasit and Plackett (1983) uses 0 /β β  in the Table 5 

of their paper. In other expression, underestimating σ is serious problem to efficiency 

than overestimating σ. As the size of β is larger, i.e., the true variance is smaller, the 

effect of poor information is more serious. Parameterization the model by α and β does 

not change those properties.  

In addition to efficiency, this essay defines the relative efficiency of a design as 

the ratio of the determinant of a design with 0µ  and 0β  to the determinant of D-optimal 

design evaluated at the same 0µ  and 0β  such that 

det
det

J J
J

D D

EffRff
Eff

= = . 

The relative efficiency shows how slow a design loses the efficiency compared with D-

optimal design. Using equations (2.14) and (2.15), the relative efficiency of J-point 

design becomes 

( ) ( ) 22 2

1 10 0 0 0

1 exp
2

J J
i j

J i j
i j i j

d dnABRff d d
N d A A

β β β
β β β

−

= =

⎧ ⎫−⎛ ⎞ ⎛ ⎞ ⎧ ⎫⎪ ⎪= +⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠ ⎩ ⎭⎪ ⎪⎩ ⎭
∑∑ .       (2.16) 
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The equations (2.11), (2.14) and (2.16) are the general forms of determinant, efficiency 

and relative efficiency of J-point designs which include 2-point D-optimal design, kk- 

and robust designs in the below as special cases. 

 

2.3.3 Equi-spaced kk-Designs (Sitter’s Robust Design) 

As noted, the determinant depends on the absolute distance between points. In the 

case of equally spaced kk-design, the distance between adjacent points except out of the 

lowest and highest is of the same length, which simplifies the analysis further. The 

determinant and efficiency of the equally spaced kk-designs are derived from the general 

forms of equation (2.11), (2.14) and (2.16). Let Jh  be the distance between adjacent 

points and suppose that design points are arranged in the order from the lowest. Then, the 

relationship between any two design points can be expressed using the distance and the 

orders of two points such that ( )i j Jd d i j h− = − , ( )1i j Jd d i j J h+ = + − − , and 

( )1 / 2i Jd i J h⎡ ⎤= − +⎣ ⎦ . Plugging them into equations (2.11) and (2.14), the determinant 

and efficiency of equi-spaced kk-design are 

( ){ } ( ) ( )
22

0

1 1 0 0

exp 2
det exp 1

2

J J
J

J J
i j i j

n i j h
i j J h

A A
β µ µ β β

β β= =

⎧ ⎫− −⎧ ⎫⎪ ⎪= + − −⎨ ⎬⎨ ⎬
⎪ ⎪⎩ ⎭⎩ ⎭

∑∑ � �  (2.17) 

and  

( ) ( )
2

1 1 0 0

exp 1
J J

J
J J

i j i j

i j h
Eff D i j J h

A A
β β
β β= =

⎧ ⎫−⎧ ⎫⎪ ⎪= + − −⎨ ⎬⎨ ⎬
⎪ ⎪⎩ ⎭⎩ ⎭

∑∑ � � ,            (2.18) 
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respectively, where ( ){ } ( ){ }
0 0exp 1 / 2 expi JA i J hβ

β β µ µ⎡ ⎤= − + + −⎣ ⎦
� and 

( ){ } 2

0

0

exp1
2

n
D

N C d
β µ µ⎛ ⎞−

= ⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠
. 

Table 2.1 in section 2.2 shows J and h of equi-spaced kk-design suggested by 

Sitter’s robust design at various /U Lβ β  and µ∆
25. The efficiency, however, is calculated 

as the ratio of determinant of the robust design with correct initial estimates against the 

maximum determinant of D-optimal design using equation (2.18). Considering that D-

optimal design is the simplest and optimal robust design, the efficiency implies the 

efficiency loss by employing more design points with different length. Efficiency loss 

from more design points in Table 2.1 is not too serious. As explained in the general 

model, there is an optimal length between design points given the number of points. For 

example, when the total number of design points is three, the efficiency is maximized at h 

= 1.86 and is decreasing as the length between two points is either longer or shorter. 

Similarly, in Abdelbasit and Plackett (1983), the three-point D-optimal design has the 

point at -1.85, 0 and 1.85 and the maximum efficiency is 86 percent. 

To facilitate the comparison of robust design with D-optimal design, one example 

from the Table 2.1 are randomly chosen; the design with length (h) of 2.23 and design 

points (J) of 4, which is robust at / 1.5U Lβ β =  and 2.0µ∆ = . Figure 2.2 shows the 

efficiency defined in equation (2.18) of the sample robust design with poor initial 

information. As can be seen in Figure 2.2 and Table 2.1, the efficiency of robust design 

                                                 
25 /U Lβ β  and µ ∆

 are allowance level of errors in initial estimates when they are nor reliable. For the 
minimax design and notations, see Sitter (1992). 
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with J = 4 and h = 2.23 is 65.4 percent if initial estimates are correct. The efficiency of 

robust design is not unimodal such as that of D-optimal design but shows the symmetric 

effect of 0µ  given 0/β β . Furthermore, the efficiency increases when 0/β β  is smaller 

than one and 0µ  is correct to µ.  

The relative efficiency of equi-spaced kk-design is just the ratio of equation (2.17) 

to equation (2.12) or the ratio of (2.18) to (2.15). Figure 2.3 shows the relative efficiency 

of the robust design with J = 4 and h = 2.23. The robust design has relative advantage 

over D-optimal design as the initial estimate is poor except when 0/β β  is large. 

Especially, if the initial estimate of the mean is too far from the true mean, the robust 

design always provide greater determinant than D-optimal design, which is also 

symmetric. Other robust designs have the same properties of efficiency and relative 

efficiency. 
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Figure 2.2: Efficiency of a Robust Design with h = 2.23 and J = 4 against D-optimum 
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Figure 2.3: Relative Efficiency of a Robust Design with h = 2.23 and J = 4 
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2.4 DETERMINANT AND EFFICIENCY OF CONTINUOUS UNIFORM DESIGN 

The uniform design randomly draws design points from a predetermined 

continuous uniform distribution. Due to the randomness of b, the uniform design does not 

have the closed form of the determinant of information matrix. Let the asymptotic 

distribution of b be ( )h b  and take the limit on the information matrix as J →∞  so that 

the summation is replaced by the integral and jn  by ( )h b db . Then, using dt dbβ= −  and 

assuming a uniform distribution for ( )h b , the asymptotic information matrix becomes 

( )
( ) ( )

( ) ( ) 2
3

1

,
1 1

w t dt w t tdt
I

w t tdt w t t dt

β
β

µ β

β β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
. 

The asymptotic determinant of information matrix is 

( ) ( ){ } ( ){ } ( ){ }2
2

2

1det ,I w t dt w t t dt w t tdtµ β
β

⎡ ⎤= −⎢ ⎥⎣ ⎦∫ ∫ ∫ .  (2.19) 

The asymptotic value of determinant depends on true variance and the range of uniform 

distribution. As the true variance is greater (β is smaller), the determinant becomes larger. 

That is, as the true willingness to pay is distributed widely, the uniform design provides 

more information.  

Let the range of bid distribution be ,  b b⎡ ⎤⎣ ⎦ . The typical way of choosing the 

range is to utilize initial information such as 0 0 0/b rµ β= −  and 0 0 0/b rµ β= +  where r 

is researcher’s choice of the range. Note that the last term in the right hand side of the 

equation (2.19) is 
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( ) ( ) ( )ln 1 exp
1 exp

b
b

b
t b

tw t tdt t t
t

=

⎧ ⎫⎪ ⎪⎡ ⎤= − − +⎨ ⎬⎣ ⎦+⎪ ⎪⎩ ⎭
∫ .     (2.20) 

By the definition of ( )w t , equation (2.20) is zero if the range is symmetric around the 

mean of t. The other two integration terms in the right hand side of the equation (2.19) 

also becomes algebraically 

( ) ( )
1

1 exp

b
b

b
t b

w t dt
t

=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

∫  

and 

( ) ( )
( ) ( )

( )2
2

1

expexp
2log 1 exp 2

1 exp

b

b

b

t b

tt t
w t t dt t t

t

η

η η

∞

=
=

⎧ ⎫⎡ ⎤−⎧ ⎫⎪ ⎪ ⎪ ⎪⎣ ⎦⎡ ⎤= − + −⎨ ⎨ ⎬ ⎬⎣ ⎦+⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∑∫ . 

Note that ( )w t  and ( ) 2w t t  are symmetric around zero. 

For comparability, determinant of D-optimal design is also transformed into 

asymptotic expression. The exact determinant of D-optimum is the square of the 

rectangular area with the height of ( ) ( ){ }0 0 0 01 log 1p p p p− −  and the width of N. By 

taking the limit as N →∞  and normalizing to the same range of the uniform distribution 

of uniform design, the asymptotic determinant of D-optimum becomes 

( ) ( ) ( )
2 2

20 0
0 0 0 0

0 0

1 log 1 log 0.1
1 1

b

b

p pNp p p p dt b
p p

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪− − =⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦
∫�   (2.21) 

because 0 .824p = . As the exact value of determinant depends only on the sample size N, 

the asymptotic determinant of D-optimum depends only on the range.  
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The asymptotic efficiency of uniform design is defined as a ratio of the 

asymptotic determinant of uniform design in equation (2.19) to the asymptotic 

determinant of D-optimal in equation (2.21) such as 

 ( ){ } ( ){ } ( ){ }
2 2

21
0.1

b b b

U b b b
Eff w t dt w t t dt w t tdt

bβ
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫ ∫ .   (2.22) 

Computational examination in the personal computer shows that the asymptotic 

efficiency of the uniform design increases as the range becomes wide but decreases after 

the critical point. The maximum efficiency is 84 percent of the D-optimum and the 

optimal range of the uniform distribution is approximately [ ]2.72,  2.72− . The optimal 

range is between 6.2th and 93.8th percentiles in the logistic distribution. Note that D-

optimal design has design points at 17.6th and 82.4th percentiles. When the uniform 

design has the range of two D-optimal points, the efficiency is 60 percent of D-

optimum26. In addition, simulation also demonstrates that given the range, the symmetric 

design is always optimal. 

Since the optimal range of the uniform design given true information is 

[ ]2.72,  2.72− , the best choice of the uniform design is 0 0 02.72 /b µ β= −  and 

0 0 02.72 /b µ β= + . Then, the normalized term of two endpoints of uniform distribution is  

( )0
0

2.72t ββ µ µ
β

= − +  and ( )0
0

2.72t ββ µ µ
β

= − − . 

                                                 
26 The result that uniform design has wide range of bid is consistent with previous literatures suggesting 
wider range for the robust estimate. However, the uniform design provides much wider than others; see, for 
example, Kanninen (1995) and Alberini (1995).  
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Plugging two normalized endpoints into equation (2.22) provides the efficiency of 

optimal uniform design depending on initial information. Figure 2.4 shows the effects of 

poor initial information on the asymptotic efficiency of optimal uniform design. The 

efficiency of the uniform design is maximized to be 84 percent with correct initial 

information where D-optimal design has the maximum determinant. Reminding the 

efficiency of D-optimal design in Figure 2.1, the asymptotic efficiency of the optimal 

uniform design is relatively flat. Thus, poor initial information is not as serious in the 

uniform design as in the D-optimal design.  

The asymptotic relative efficiency of optimal uniform design is derived from the 

asymptotic expression of the determinant of D-optimal design in equation (2.12) and the 

asymptotic determinant of uniform design in equation (2.19). Equivalently, the relative 

efficiency can be derived using the asymptotic efficiency of D-optimal design and 

uniform design. This essay, however, demonstrates the asymptotic relative efficiency of 

optimal uniform design graphically in Figure 2.5 by comparing Figure 2.1 and Figure 2.4. 

According to the relative efficiency, the uniform design outperforms D-optimal design 

especially when the initial information of µ is poor. The minimum relative efficiency of 

the uniform design is 84 percent at the point of 0µ µ=  and 0β β=  where efficiency of 

the design has the maximum value. The uniform design has less relative efficiency than 

robust design when initial information is too much poor. However, uniform design 

guarantees the lower bound of relative efficiency at 84 percent while the robust design 

loses the efficiency more if 0/β β  is great.  
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Figure 2.4: The Asymptotic Efficiency of Optimal Uniform Design 
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Figure 2.5: The Relative Asymptotic Efficiency of Optimal Uniform Design 
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2.5 BIAS OF β IN D-OPTIMAL, kk AND UNIFORM DESIGNS WITH KNOWN µ 

The bias of ML estimate in the logit model is a function of the second and third 

derivatives of the log likelihood (See the function 2.6 and 2.7). In this section is analyzed 

simply the bias of single covariate case assuming that the true mean µ is known. Consider 

the bid point, 0/i ib dµ β= −   and normalized point ( ) ( )0/i i it b dβ µ β β= − =  with true 

mean of µ. By substituting the bid points into the equation (2.7), the bias with single 

covariate becomes 

( )
( )

3
0

22

2 1

2
i i i

i i

d w p
bias

d w

β −
= ∑

∑
    (2.23) 

since 0/i i ix b dµ β= − =  with 0µ µ= .  

Suppose an equi-spaced kk-design with J points. By substituting design point, 

( )1 / 2i Jd i J h⎡ ⎤= − +⎣ ⎦ , into equation (2.23), the bias of β becomes 

( ) ( )
( )

0
2

1 / 2 2 1

2
i J i

J

i

h i J p
bias

n

β ⎡ ⎤Ψ − + −⎣ ⎦=
Ψ

∑
∑

.   (2.24) 

where ( ){ }2
1 / 2i i Jw i J h⎡ ⎤Ψ = − +⎣ ⎦ . The bias of J-point design is hardly simplified 

further, but the property of the bias from the design can be found through simulation. The 

size of the bias in J-point design is inversely related with the sample size. Simply, points 

far from zero may bias the estimate while those close to zero have opposite contribution. 

Since the uniform design depends on the random sampling from the uniform distribution, 

the asymptotic bias of uniform design with small sample is simulated. 
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Figure 2.6 shows the bias from the uniform design and kk-designs with k = 2 and 

4 with N = 100. The uniform design implements 100 iterations of the 100 random draws 

from the uniform distribution. The x-axis represents the range of the support for the 

uniform distribution in the uniform design and the kk-design with k = 2. For the kk-design 

with k = 4, outer two points are allocated at x±  and the inner two points are at / 3x±  to 

make distance between two adjacent points to be equal. In all designs, bias of β increases 

as the support of the bid widens, specifically, the bias of the kk-design with k = 2 

increases faster than other designs. The bias of the uniform design is always smaller than 

the bias of kk-design with k = 4 within the specified range of the simulation. Interestingly, 

beyond the point of 2.5, the uniform design has smaller bias than even D-optimal design.  

For the special case of two symmetric bid points such as 0/d β±  with 0d > , the 

bias of 2-point design can be simplified to be 

0
2

0 0

exp exp
2

bias d d
Nd
β β β

β β
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

   (2.25) 

since ( ) ( )w t w t= − , ( ) ( )1p t p t= − − , and ( ) ( )2 1 2 1p t p t⎡ ⎤− = − − −⎣ ⎦  from properties of 

the logistic probability and weight function. By substituting D-optimal design points, 

equation (2.25) represents the bias of β in the D-optimal design when the true µ is known. 

In 2-point design case, the bias of β can be shown to be of the order of ( )1O n− . The bias 

of β is always overestimated since β is positive and the bias has the same sign as β (Copas 

1988). Furthermore, since 
( )

2

0

0
/

bias
d β
∂

>
∂

, the bias of β is an increasing function of 0/d β . 

The bias is also bounded below by 2 / 2 /bias n Nβ β> =  by L’Hopital’s theorem. This is 
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graphically shown in Figure 2.6 such that the bound of the bias for the kk-design with k = 

2 is 0.01. The bound of the bias depends on the true variance of willingness to pay and 

sample size. Intuitively, as β is larger, i.e. as the variance is smaller, precise estimation is 

more difficult.  

Figure 2.7 presents the bias of β in D-optimal design, robust design with J = 4 and 

h = 2.23, and the optimal uniform with various sample size. The design points are 

allocated at the optimal point of each design with correct information. The sample size 

differs from 50 representing the small sample to 1,000 for the large sample size. As 

shown algebraically, bias in all designs decreases as the samples size increases. The 

magnitude of the bias is in the order of kk-design, the uniform and D-optimal design. 

Figure 2.8 shows the effect of poor initial information on bias of β in D-optimal design, 

robust design with J = 4 and h = 2.23, and the optimal uniform. True β is set to be one 

and the x-axis represents poor initial estimate of 0β . At 0 1β = , the bias of the uniform 

design corresponds the bias at x = 2.72 of uniform design in the Figure 2.6 and the bias of 

the D-optimal design responds to the bias at x = 1.54 of two-point design. Usually, 

uniform design has larger bias than D-optimal design but smaller than robust design 

except that 0β  is extremely small.  
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Figure 2.6: Bias of β in kk (k = 2 and 4) and Uniform Designs, N = 100 
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Figure 2.7: Bias of β in D-optimal, Robust with J = 4 and h = 2.23, and Uniform Designs 
with Different Sample Size 
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Figure 2.8: Bias of β in D-optimal, Robust with J = 4 and h = 2.23, and Uniform Designs 
with Poor Initial Estimate, N = 100 
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2.6 MONTE CARLO SIMULATIONS 

In this section, a series of Monte Carlo simulation compares the relative 

performance of D-optimal, equi-spaced kk, and uniform designs. The simulation 

scenarios cover the optimal uniform range (scenario 1), asymptotic properties with a 

large sample (scenario 2), various sample size (scenario 3), poor initial estimates of µ and 

β (scenario 4 and 5, respectively) and flexible error distributions such as beta distribution 

(scenario 6). Scenarios 1, 2 and 3 assume that the true parameters are known in allocating 

bid points in D-optimal, kk- and uniform designs. 

The basic model is a constant willingness to pay; i iWTP µ ε= + , where 100µ =  

and iε  is logistically distributed with zero mean and the standard deviation (σ) of 30. The 

parameters in estimation are µ and β (= 1/σ) as in equation (2.1). D-optimal design 

consists of two points at 0 01.54 /µ β± . Sitter’s robust design with J = 4 and h = 2.23 

represents the equi-spaced kk-design by allocating bids at 0 03.345 /µ β±  and 

0 01.115 /µ β± . With random number seed of 710602, the simulation is conducted using 

Gauss 5.0 of Aptech Systems Inc. and CML Version 1.0.35 for maximum likelihood 

calculation. 

Scenario 1 reported in Table 2.2 estimates binary model with uniform design by 

drawing bids from a uniform distribution with various ranges. The range of the uniform 

distribution differs from 1.71/ β±  to 3.72 / β± . Table 2.2 shows the result of 100 

iterations with the sample size of 320. The sample averages of µ and σ are 100.0989 and 

29.9176, respectively. The parenthesis reports the standard error in 100 iterations and Eff 
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represents the efficiency calculated as the ratio of the determinant of uniform design to 

D-optimum. RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) of µ are 

also reported for comparison. The efficiency is maximized to be 83.95 percent when the 

bid points are drawn within the range of [ ]2.72 / , 2.72 /µ β µ β− + , the result which is 

consistent with analytical demonstration and confirms the optimal uniform design. The 

narrow range of the uniform distribution is more serious to the efficiency than the wide 

range. Interestingly, the standard error of µ increases with range while the standard error 

of σ decreases.  

 

 

 

d  1.72 2.22 2.72 3.22 3.72 

µ 100.4421 
(4.1466) 

99.9719 
(4.2302) 

99.9065 
(4.3130) 

99.6234 
(4.6786) 

99.7744 
(4.7611) 

σ 30.4492 
(5.1925) 

30.0612 
(3.6852) 

30.2802 
(3.2124) 

30.1802 
(3.2274) 

29.7865 
(3.1162) 

Eff 66.9283 80.3383 83.9492 81.3053 74.5273 

RMSE 54.3148 54.3250 54.3360 54.3784 54.3729 

MAE 41.5063 41.5022 41.5266 41.5581 41.5661 

* Results of D-optimal are µ = 100.0832 (4.3723), σ = 29.7660 (2.5358), RMSE = 54.3474 and MAE = 
41.5301, and kk-design are µ = 99.8898 (4.9126), σ = 30.0528 (3.3509), RMSE = 54.3878 and MAE = 
41.5965. 
 

 

Table 2.2: Different Range of Uniform Distribution with 100 Iterations, N = 320 
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Table 2.3 shows the results of all designs with 1000 observations. Based on 

analytics and simulation result in scenario 1, the optimal uniform design draws bid points 

from the optimal uniform distribution of [ ]2.72 / , 2.72 /µ β µ β− + . The second column 

titled “Actual” reports the sample mean and inverse of the standard deviation (β). 

Parentheses show the standard error of estimates reported by the Gauss program. Since 

the scenario assumes that true parameters are known, the determinant of D-optimal 

design is the maximum value of the determinant. The efficiency of the uniform and kk-

designs are 83.2300 and 62.8604 percent of D-optimal design, respectively, all being 

consistent to but slightly lower than analytical solutions.  

For parameter estimate of mean willingness to pay (µ), the result of uniform 

design is closest to the true or actual value of µ, and furthermore, uniform design has the 

smallest the standard error of parameter estimate. Since the uniform design provides the 

minimum bias and standard error of µ, both RMSE and MAE are the lowest in the uniform 

design among three designs. Interestingly, the simple simulation provides counter-result 

of A- and C-optimalities when considering the variance of both parameter estimates of µ 

and β 27. Although the standard error of β estimate in the uniform design is largest, the 

difference in magnitude is still ignorable and consequently the summation of variances is 

minimized in the uniform design. 

 

                                                 
27 In fact, the uniform design is posited in the opposite side of the design spectrum from the optimal designs 
in the sense that the uniform design consists of bid points as many as the number of observations but 
optimal designs allocate all of them at one or two design points. Although the simulation draws the sample 
observation without iterations, the uniform design with a large sample provides potential superiority under 
A- and C-optimalities 
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 Actual D-optimal kk Uniform 

µ 99.3460 97.9300 (2.5669) 97.2631 (2.8061) 98.9095 (2.3491) 

β 0.0333 0.0314 (0.0017) 0.0348 (0.0020) 0.0331 (0.0021) 

Eff  100 62.8604 83.2300 

RMSE  54.4952 54.5166 54.4786 

MAE  41.2281 41.2599 41.1967 

 

 

Table 2.3: Estimation Results of D-optimal, kk and Uniform Designs with N = 1000 
 

 

 

Table 2.4 reports estimation results of the scenario 3 varying the sample size from 

80 to 640 with 100 iterations. Hereafter, the parenthesis reports the standard error in 100 

iterations. The efficiency is measured from the average of the determinant in iterations. 

The simulation result shows 65.26 ~ 66.91 percent of efficiency for kk-design with h = 

2.23 and J = 4, which is around the analytical solution of 65.43 percent. The efficiency of 

kk-design, analytically, does not depend on the sample size but is inversely related with 

the number of different bids (See the equation 2.18). The efficiency of the uniform design 

is 83.38 ~ 86.28 percent around the asymptotic efficiency of 84 percent, the result which 

is independent of the sample size.  
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 Actual D-optimal kk Uniform 
 N = 80 
µ 99.4097 99.1955 (9.1829) 99.2402 (10.8442) 98.6798 (8.5866) 

σ 30.2086 31.2072 (6.4858) 29.3343 (5.9843) 29.2926 (6.2882) 

Eff  100 66.9077 83.3844 

RMSE  55.1554 55.3460 55.0535 

MAE  42.0547 42.3707 41.9465 

 N = 160 
µ 99.7602 99.9925 (5.9714) 99.1349 (7.0857) 99.5768 (5.8555) 

σ 30.1389 30.3131 (4.9260) 29.5214 (4.0622) 29.6650 (4.3637) 

Eff  100 66.1130 85.6703 

RMSE  54.8221 54.9164 54.7977 

MAE  41.9145 42.0114 41.8692 

 N = 320 
µ 99.9744 99.9537 (4.7597) 99.8970 (4.8828) 100.1410 (4.7288) 

σ 29.9883 30.6379 (3.3750) 29.5047 (2.9103) 29.9610 (3.0482) 

Eff  100 65.2646 86.2760 

RMSE  54.4653 54.4988 54.4770 

MAE  41.6550 41.6558 41.6691 

 N = 640 
µ 100.0564 100.0261 (3.1681) 100.2129 (3.3033) 100.1940 (3.0738) 

σ 29.8866 29.9448 (1.9328) 29.8000 (1.8732) 29.9058 (2.3439) 

Eff  100 65.3181 85.0355 

RMSE  54.2470 54.2615 54.2374 

MAE  41.5070 41.5275 41.4963 

 

 

Table 2.4: 100 Iterations of Scenario 1 with N = 80, 160, 320 and 640 
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While the efficiency is independent of the sample size, the simulated standard 

error of estimates, however, decreases in all designs as the sample size increases. 

Furthermore, uniform design provides the minimum variance of the mean estimate and of 

the sum of standard errors of both parameter estimates confirming the counter-evidence 

in Table 2.3 except one case of N = 640. Therefore, the simulation results varying the 

sample size with 100 iterations support the potential usefulness of the uniform design 

under even C-, Fiducial interval and A-optimality criteria. Under RMSE and MAE criteria, 

the results uphold the outperformance of the uniform design at least in estimating µ, 

except only one case of N = 320. Table 2.4 roughly shows decreasing tendency of the 

bias of estimate σ in all bid designs as the number of observations increases as shown in 

Figure 2.7. The decreasing tendency of the bias is also detected in the estimate of µ but 

not clear.  

Scenarios 4 and 5 investigate the performance of bid designs with poor initial 

information of µ and β holding the sample size at 320. The initial information of µ varies 

from 55 to 145 corresponding to [1.5, -1.5] of ( )0β µ µ− . Rather than information of β, 

for convenience, information of σ varies between 10 and 60 which also corresponds 0.3 

and 2 of 0/β β . Rff represents the relative efficiency in terms of percentage. By definition, 

Rff of D-optimal design is always 100 percent. 

Table 2.5 shows the effect of poor information of µ assuming known standard 

deviation. Sample mean of willingness to pay (µ) in the simulation is 100.0989 and 

standard deviation is 29.9176. Among 100 iterations, one iteration step with 0µ =145 

reports failure in calculating function of D-optimal design. Information of µ has 
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symmetric effect on the relative efficiency of kk- and uniform designs, consistent to the 

analytical comparison. Uniform design provides the acceptable efficiency with good 

initial information and superior relative efficiency at the relatively extreme circumstance.  

Table 2.6 provides estimation result with poor information of σ. Sample value of 

µ is 100.2090 and actual σ is 30.0047. Analytically, poor information of σ affects the 

relative efficiency asymmetrically (see Figure 2.3 and 2.5). For kk-design with J = 4 and 

h = 2.23, the relative efficiency decreases as 0/β β  increases, i.e. 0σ  becomes larger. The 

uniform design has the lowest relative efficiency at correct initial estimate of 0σ  and the 

relative efficiency increases as the poorness increases to any direction.  

Unfortunately, properties of estimation bias are not clearly found in poor initial 

estimates scenario as in the analytical comparison. However, RMSE and MAE show that 

the uniform design performs fairly well with poor information of µ and σ. Except 0µ = 

125, uniform design yields the non-worst, usually best estimation result in terms of 

RMSE and MAE in Table 2.5 and outperforms D-optimal and kk-designs when 0σ  is 

larger than the true in Table 2.6. Uniform design also provides the best result under A- 

and C-optimality when the initial estimate of σ is poor.  
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 D-optimal kk Uniform 
 µ0 = 55 

µ 100.3421 (4.3694) 100.3697 (5.8708) 100.2821 (5.2056) 
σ 29.2950 (4.0077) 30.1820 (3.0038) 29.9249 (4.0637) 
Rff 100 113.7679 110.5209 
RMSE 54.3777 54.4384 54.4259 
MAE 41.5198 41.6233 41.5847 

 µ0 = 75 

µ 100.5234 (4.2747) 100.0102 (5.3408) 100.1249 (4.2405) 
σ 29.7526 (2.9618) 29.9169 (3.4280) 30.1654 (3.1692) 
Rff 100 76.6577 92.2807 
RMSE 54.3500 54.4036 54.3387 
MAE 41.5370 41.5892 41.5148 

 µ0 = 100 

µ 100.0832 (4.3723) 99.8898 (4.9126) 99.9065 (4.3130) 
σ 29.7660 (2.5358) 30.0528 (3.3509) 30.2802 (3.2124) 
Rff 100 65.9432 83.9492 
RMSE 54.3474 54.3878 54.3360 
MAE 41.5301 41.5965 41.5266 

 µ0 = 125 

µ 100.4928 (4.6248) 100.2123 (4.4947) 98.9705 (4.8026) 
σ 29.9357 (2.9464) 30.2059 (3.5096) 30.2015 (3.6458) 
Rff 100 76.2574 89.3220 
RMSE 54.3433 54.3787 54.3811 
MAE 41.5363 41.5666 41.5526 

 µ0 = 145* 

µ 98.4429 (10.9916) 99.6627 (5.0660) 100.1229 (5.2359) 
σ 30.9991 (15.0630) 30.0419 (3.5605) 29.8914 (3.3762) 
Rff 100 113.6570 113.0370 
RMSE 55.2745 54.4147 54.4067 
MAE 42.1239 41.6157 41.5679 

* 1 function calculations failed in the D-optimal design 
 

 

Table 2.5: Poor Initial Estimates of µ with 100 iterations 
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 D-optimal kk Uniform 
 σ0 = 10 
µ 99.9413 (3.5821) 100.1924 (3.2139) 100.2011 (3.3338) 
σ 31.0174 (7.4705) 30.2099 (4.6208) 29.9297 (7.7508) 
Rff 100 188.2141 102.9199 
RMSE 54.4542 54.4497 54.4528 
MAE 41.5098 41.5051 41.4916 
 σ0 = 20 
µ 100.2520 (3.7448) 100.0511 (3.9763) 100.2147 (3.8841) 
σ 30.0553 (3.6172) 29.7537 (2.9083) 30.1323 (4.5760) 
Rff 100 106.0529 88.1675 
RMSE 54.4621 54.4779 54.4660 
MAE 41.5331 41.5537 41.5404 
 σ0 = 30 
µ 100.4169 (4.1858) 99.8175 (5.3151) 100.0356 (3.4741) 
σ 29.9782 (2.9953) 29.6584 (3.0420) 29.9387 (3.4376) 
Rff 100 65.2806 84.1582 
RMSE 54.5028 54.5577 54.4695 
MAE 41.5942 41.6461 41.5504 
 σ0 = 40  
µ 100.5465 (4.9207) 99.6000 (6.4361) 99.7180 (3.9807) 
σ 30.0485 (2.6084) 29.4623 (3.3248) 29.9082 (3.0037) 
Rff 100 51.8393 89.4349 
RMSE 54.5438 54.6527 54.5005 
MAE 41.6851 41.7485 41.5897 
 σ0 = 50  
µ 100.5412 (5.8683) 99.3532 (7.4830) 100.5217 (5.3780) 
σ 30.0761 (2.5784) 29.1542 (3.3584) 29.8827 (3.0294) 
Rff 100 51.4139 106.9764 
RMSE 54.6406 54.7920 54.5640 
MAE 41.7976 41.8727 41.6712 
 σ0 = 60 
µ 99.9107 (8.0184) 99.2053 (8.2823) 99.7317 (5.1448) 
σ 29.6054 (2.7518) 29.2356 (3.7721) 30.0000 (3.4945) 
Rff 100 63.6623 150.8424 
RMSE 54.8710 54.9194 54.6104 
MAE 42.0027 42.0048 41.6670 

 

 
Table 2.6: Poor Initial Estimates of σ with 100 iterations 
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 One of interesting questions about the existing designs is how they perform if the 

true distribution is unknown and asymmetric because optimal bid designs can be optimal 

only when the underlying assumptions are correct. Optimal bid points are hardly known 

in the asymmetric distribution. The reliance on the prior assumption is also serious in the 

kk-design. Scenario 6 assumes that true error distribution is a beta distribution with 

various shape parameters to compare the performance of bid design in the case of 

unknown asymmetric error distribution. The beta distribution is either right- or left-

skewed depending on shape parameters, a and b. However, since the estimation model is 

specified as logit, the scenario represents misspecification of the error distribution. The 

true mean and standard error are assumed to be known for bid design.  

Table 2.7 shows the simulation result with shape parameters (2, 3), (2.5, 2.5) and 

(3, 2). In this simple simulation, surprisingly, D-optimal design has the largest 

determinant no matter what the shape of distribution is in terms of relative efficiency. 

The relative efficiency of the uniform design shows almost 87 percent of D-optimal 

design and that of kk-design is slightly higher than 72 percent. D-optimal and uniform 

designs show a tendency that when the distribution is left- (right-) skewed, they under- 

(over-) estimate the mean, while kk-design shows the result in the opposite way. Uniform 

design is superior in terms of C-optimality but the kk-design yields better result in terms 

of A-optimality. The properties of estimation result from asymmetric error distribution 

are analyzed more in detail using log-normal distribution and the actual survey data in the 

next section. 
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 Actual D-optimal kk Uniform 
 *(2, 3)  (120, 33.0797**) 
µ 120.3063 119.0280 (5.1557) 121.1151 (5.4924) 118.6580 (5.0230) 

σ 33.1084 41.3910 (4.4445) 33.6435 (3.0979) 39.4347 (4.5767) 

Rff  100 72.2039 87.1280 

RMSE  60.1123 60.1492 60.1171 

MAE  49.8730 50.0022 49.8346 

 *(2.5, 2.5)  (150, 33.7618**) 
µ 150.1951 150.3924 (5.4428) 150.8241 (6.0330) 150.1364 (5.2994) 

σ 33.6002 41.7015 (4.8726) 34.6713 (3.0551) 39.3621 (5.0721) 

Rff  100 72.4775 87.2118 

RMSE  60.9814 60.0449 60.9943 

MAE  50.5794 50.6072 50.5687 

 *(3, 2)  (180, 33.0797**) 
µ 179.8880 180.2808 (5.2549) 179.6522 (5.0183) 182.1175 (5.1080) 

σ 33.1867 40.2857 (4.0691) 34.4068 (3.0565) 38.8170 (4.4010) 

Rff  100 72.8120 86.3334 

RMSE  60.2527 60.2417 60.2774 

MAE  50.0462 50.0626 49.9507 
* The first parenthesis represents the shape parameter (a, b) of beta distribution and the second shows the 
true mean and standard error. 
** The standard error is normalized as that of logistic distribution by multiplying 3 /π  to the standard 
error of beta distribution. 
 

 

Table 2.7: Flexible Beta for Error Distribution 
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2.7 AN APPLICATION TO ALBEMARLE AND PAMLICO SOUNDS DATA 

While previous results provide insight into the potential usefulness of the uniform 

design, analytical and simulation results in previous sections depend on a known 

distributional form and simple parametric specification. This section compares D-optimal, 

kk- and uniform designs as well as the original design by simulating true willingness to 

pay from the actual survey data. The focus of comparison is on the performance of 

different designs when nonnegative willingness to pay function has covariates and the 

error distribution is asymmetric.  

Huang, Haab and Whitehead (1997) studied the willingness to pay for the water 

quality improvement in the Albemarle and Pamlico Sounds in eastern North Carolina. 

The original data consisted of double bounded dichotomous questions. However, in this 

section, only responses to the first question were considered for design comparison. True 

willingness to pay was simulated as follows. First, under the assumption of exponential 

willingness to pay function and log normal error distribution, a probit model was 

implemented to estimate parameters of willingness to pay28. Willingness to pay for the 

water quality improvement in Albemarle and Pamlico Sounds was 

( )ln 3.8623 0.1034 0.3580WTP INC D ε= + ⋅ − ⋅ +  and ( )2~ 0,0.3047Nε −  

where INC is income level and D is a dummy variable for Pamlico sound only. The 

expected willingness to pay, ( ) ( )2exp .5E WTP x β σ′= + , was $12340.51 in the sample. 

The median of willingness to pay was $56.60 and the mean of the expected log 

                                                 
28 To facilitate kk design of J = 4 in design comparison, first two observations were dropped since the 
original data includes 726 observations. 
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willingness to pay, ( )E x β′ , was $3.99. Next, the true individual willingness to pay was 

simulated by adding a random error from normal distribution to the deterministic log 

willingness to pay assuming that the estimation result in the first step is true parameters. 

The sample average of willingness to pay, ( )Average WTP , was $4682.27. Finally, the 

simulated true willingness to pay was used to generate the sample dichotomous response 

for each bid design. The simulated response is one if ( ) ( )ln lnWTP bid> , and zero, 

otherwise.   

Bid set of D-optimal, kk with J = 4 and h = 2.23, and uniform designs were 

constructed assuming that the true parameters were known. Initial information used in 

designs was the mean and standard error of log willingness to pay; ( ) 3.9941E x β µ′ = =  

and 10.3047σ −= . Also, to adjust the analytical solution of the logit model for the normal 

distribution, the standard logit variates of kk-design and the uniform design in the 

previous section were multiplied by 3 /π . Thus, kk-design had bid points of 0.61µ σ±  

and 1.84µ σ± , and the support of optimal uniform design was [ ]1.50 ,  1.50µ σ µ σ− + . 

The D-optimal bid points were 1.14µ σ±  following previous studies. Optimal points and 

range of uniform design were transformed to nonnegative dollar amount by taking 

exponential. Finally, the dollar value of bids in the D-optimal design was {$1.29, 

$2288.12} and bid amount of kk-design were randomly selected from {$0.13, $7.22, 

$408.14, $23077.07}. The optimal uniform design had a uniform distribution of [$0.40, 

$7448.07]. In addition, the original design in Huang, Haab and Whitehead (1992) 

consisted of {$100, $200, $300, $400}, which corresponded from 4.6052 to 5.9915 of the 
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expected log willingness to pay. Note that log value of bids in the original design is 

higher than the mean of the expected log willingness to pay. 

Table 2.8 shows the estimation results of the Albemarle and Pamlico Sounds data. 

Since the log willingness to pay is a linear model and error term is symmetric in terms of 

log value, D-optimal design was expected to provide the maximum determinant of 

information matrix. However, uniform design yields the largest determinant followed by 

the D-optimal, the original and kk-designs. The original design has also the determinant 

larger than the kk-design although the original design is a one-sided design (i.e., all bids 

are greater than the mean of expected log willingness to pay). The result strongly 

supports that uniform design outperforms other designs under D-optimal criterion when 

the error distribution is asymmetric.  

The uniform design also outperforms other bid designs in terms of variance of 

estimate, median willingness to pay and RMSE. The summation of the individual 

variance of estimates is minimized in uniform design demonstrating that the uniform 

design yields the best result under the A-optimality. The simulated confidence interval of 

the median willingness to pay shows that the uniform design still performs well under the 

C-optimality. The uniform design provides the second best result of the expected 

willingness to pay following the kk-design, the result which is, in fact, the closest value to 

the sample average.  
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 True D-optimal kk Original Uniform 

Constant 3.8623 4.1112 
(.3951)* 

3.4456 
(.4700)* 

4.0511 
(.3660)* 

4.1953 
(.3483)* 

INC 0.1034 -0.0458 
(.0893) 

0.0511 
(.1028) 

0.0877 
(.0579) 

-0.0266 
(.0793) 

D -0.3580 -0.2909 
(.3708) 

-0.1640 
(.4117) 

-0.1708 
(.2361) 

-0.4584 
(.3320) 

ln(Bid) 0.3047 0.3424 
(.0174)* 

0.2968 
(.0182)* 

0.4179 
(.0896)* 

0.3249 
(.0218)* 

det(I)  9.1766e+7 4.2038e+7 5.4386e+7 11.2556e+7 

Mean 12340.51 
(4682.27)** 3256.79 9943.71 1235.81 5576.14 

Median 56.60 45.80 
(31.56  64.61)

34.03 
(22.49  50.52)

70.59 
(41.72 112.59) 

48.94 
(34.36  66.30)

RMSE  46946.28 47209.22 47040.18 46943.93 

MAE  6909.15 12881.86 5307.73 8909.99 

* Estimates are statistically significant with 95% confidence level. 
** The sample average of WTP 
 

 

Table 2.8: Estimation Result with Albemarle and Pamlico Sounds Data 
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2.8 CONCLUSIONS 

This essay introduces a new bid design utilizing a predetermined uniform 

distribution. The new design assumes continuity and randomness of bid points. Both 

analytically and through Monte Carlo simulations, this essay compares the efficiency and 

relative efficiency of the uniform design with D-optimal design and one of Sitter’s robust 

designs. D-optimality is chosen to represent optimal criterion because of its popularity 

and usefulness. Sitter’s robust design is a member of symmetric designs, in which design 

points are selected depending on researcher’s belief about the correctness of information. 

Uniform design assumes continuity and randomness of bid points. 

By construction, optimal bid designs provide optimal efficiency under the ideal 

situation that the underlying true distribution and parameters are known. Optimal design 

consisting usually of one, two or three design points, however, depends too seriously on 

the knowledge about true information that is in fact to be estimated. Unknown true 

parameter values and uncontrollable response rate of the survey make it difficult to 

employ optimal designs in the study.  

In contrast, robust or ad hoc designs in the actual studies reduce the risk from 

their reliance on initial information by dispersing optimal design points into more points. 

Uniform design goes further by randomizing all design points. Analytics and simulations 

show that uniform bid design provides higher efficiency than the robust designs under 

ideal conditions, and outperforms the optimal design with poor initial information. In 

simulation results, uniform design also outperforms other designs under the A- and C-
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optimalities. Ultimately, uniform design reduces the dependence of optimal designs on 

design structure and poor information. 

It is easy for researcher to implement uniform design in any specific application. 

Since a design independent of the poor initial information is unavailable, the uniform bid 

design offers a practical and robust alternative to existing bid designs for researchers 

facing strict budget constraints, or performing a pre-survey to gather better information 

for the next stage. Uniform design provides binary data continuously sorted by bid value, 

enabling the researcher to apply more flexible non- and semi-parametric estimation 

techniques (Lewbel et al. 2003). Although we focus on design problem in dichotomous 

choice contingent valuation, the adjustments of the design for other studies are straight 

forward and in most cases simply notational. 
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ESSAY 3 

 

GENERALIZED ESTIMATION METHODS AND IMPLICATION OF THE 
RESULT IN DICHOTOMOUS CHOICE CONTINGENT VALUATION MODEL 

 

 

ABSTRACT 

 

This essay challenges the theoretical and technical background of the simple logit 

model often used for estimating willingness to pay from dichotomous choice contingent 

valuation. The simple logit model assumes that the respondent’s evaluations of the two 

states are stochastically independent and homoskedastic. Relaxing restrictive assumptions 

suggests a generalized estimation technique that utilizes a Gumbel mixed model. Nested 

within this generalized model are the heteroskedastic logit model and the simple logit. 

The nesting structure allows for straightforward tests of the homoskedastic-independent 

error assumptions. Estimation results show that correlation between two states is usually 

minimal, but homoskedastic errors are rejected in many cases, i.e. logistic distribution for 

the difference of error terms, may not be a suitable distribution. Heteroskedasticity or 

correlation provides willingness to pay estimate different from estimate of the simple 

logit, thus different policy implication in benefit-cost analysis. 
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3.1 INTRODUCTION 

Dichotomous choice contingent valuation (CV) has been most widely used in 

eliciting welfare measures (willingness to pay) from environmental projects, thus 

enabling benefit-cost analysis. Value elicitation questions ask respondent to show his or 

her utility or willingness to pay in the binary choice setting. Given a specific cost, a 

subject’s binary response will be one if the utility after environmental change is still 

greater than that of the current state, and zero otherwise. Equivalently, a binary response 

is one if the willingness to pay is greater than the cost offered, and zero otherwise.  

The decision models consistent with economic theory are, among others, the 

random utility model and the willingness to pay model. The random utility and 

willingness to pay function consist of a systematic part observable to the researcher and 

an unobservable error component. With appropriate assumptions about the distribution of 

the unobserved term, the random utility and willingness to pay models can be simply 

estimated by logit or probit. For instance, the standard additive random utility model 

assumes a constant variance between the initial and the proposed states. Using i.i.d. type I 

extreme value (or normal) distribution for each state, the standard additive random utility 

is estimated through a simple logit (or probit) model. Nice properties and theoretical 

backgrounds of those models have helped researchers to easily conduct the task of 

estimation and to focus on other valuable issues. 

The simplicity and robustness of the estimation model, however, are the result of 

strong assumptions or constraints on the decision model rather than the natural outcome 

of correct specification of the model. The main problem arising against the advantage in 
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estimation is the possibility of losing the realism of actual choice situation. Suppose that 

we want to estimate the welfare change from enhancing environmental quality. First, the 

state after environmental change is uncertain to the respondent although the 

environmental quality is surely increased, which illustrates the possibility that the 

additive error term in the proposed state may be different from that in the current random 

utility in terms of variance. Second, if the environmental project is a debated issue in the 

relevant population, there could be several alternatives that respondents may prefer but 

the researcher does not consider in the CV survey. The unknown (to the researcher) 

alternatives can lead the respondent to refuse the proposed project although respondent 

agrees with the change in environmental quality. Consequently, the simple logit or probit 

may not be suitable in some situations of decision and yield an incorrect measure of 

parameters or welfare change.  

Undoubtedly, there has been a series of studies to relax the i.i.d. assumption in the 

logit model. For example, the heteroskedastic extreme value model has been suggested in 

the transportation (Bhat 1995) and marketing literatures (Allenby and Ginter 1995) to 

incorporate heteroskedasticity across alternatives into the multinomial or conditional logit 

models. However, no literature in CV has paid attention to the strict assumption of 

identical error distributions across alternatives in the choice set. CV studies have usually 

assumed and tested heteroskedasticity only across individuals or different groups. 

Unfortunately, generalized logit models such as nested logit or paired combinatorial logit 

are not applicable to the contingent valuation since the choice set in CV consists of only 
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two alternatives, the case which reduces some of generalized logit models to the simple 

logit. 

Therefore, this essay relaxes the constant disturbance assumption of the random 

utility and willingness to pay models in standard contingent valuation after reviewing the 

value elicitation questions of CV studies. Additive error terms in initial and proposed 

states can be independent and identical, independent but not identical, dependent but 

identical, or dependent and not identical. For all possible relations of error terms, a 

generalized estimation model is suggested by utilizing Gumbel mixed bivariate extreme 

value distribution (Gumbel 1960, 1961, Gumbel and Mustafi 1967, Tiago de Oliveira 

1980, 1983). The generalized model, named as a bivariate extreme value model, covers a 

heteroskedastic logit (Bhat 1995, Allenby and Ginter 1995), correlated alternatives case 

and the simple logit. This essay also introduces a mixed logit model with extreme value 

distributions as an alternative model to cover all specific cases. In addition, unknown 

alternative case is directly estimated by assuming that different policies for the same 

target of environmental quality have constant effect on random utility or expenditure. 

The generalized estimation models (bivariate extreme value and mixed logit 

models) show interesting results under various constraints when they are applied to 

several existing CV data. Error terms of two states are, in most cases, independent but not 

identical. The extremely different scale factor may imply that the extreme value 

distribution, i.e. logistic distribution for the difference of two random utilities or 

expenditures, is not suitable distribution although it provides similar result to probit 

model. More importantly, heteroskedasticity or correlation provides welfare measures 
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(willingness to pay) different from the estimate of the simple logit. Although parameter 

estimates are not much different in magnitude, the expected willingness to pay of 

generalized estimation model can draw opposite conclusion in benefit-cost analysis of 

environmental project.  

 

3.2 CHOICE MODELS AND WELFARE MEASURE IN CONTINGENT 
VALUATION 
 

3.2.1 Environmental Issues and Choice Scenarios 

Dichotomous choice contingent valuation (CV) study addresses a binary choice 

question to respondent with randomly assigned cost, i.e. to vote for and to vote against, or 

to accept and to reject29. Alternatives in the choice set consist of the proposed state 

representing to accept the policy and the current state without change indicating to reject 

the policy. The following example shows the environmental issues and choice sets in 

previous CV study.  

 

Example: In 1994, Carson et al. estimated the welfare measure from the 

environmental damage due to the deposition of PCB and DDT on the 

ocean floor off the coast of Los Angeles through several outfall pipes. 

Chemical sediment does not harm humans but endangers some species of 

fish. After explaining the problem extensively with instruments including 

maps and cards, the survey asked a binary choice question about a speed-

up program to recover two species of fish earlier than natural processes. 

                                                 
29 To be uncertain or unsure is also a recommended option in addition to yes and no options. This essay 
assumes that ‘to be uncertain’ responses are grouped as ‘no’ response for conservative reason. For details 
of ‘uncertain’ response issue, see Carson et al. 1998; Groothuis and Whitehead 1998. 
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The payment vehicle for the randomly assigned cost was one time 

additional amount on the state income tax. 

 

If respondents have no alternative except the speed-up program to recover fast 

species of fish, it may be reasonable to assume that utilities in the proposed and current 

states are independent and identical. Alternatively, choice set in the example can 

represents different state of nature. Uncertainty in the future, reliability on the 

implementation and result of the project, etc, may cause the difference between the 

distribution of utilities in the proposed and current states. The proposed state is random 

and has unobservable part even from the perspective of respondent itself. More 

uncertainty in the proposed state introduces larger variance of the distribution. 

The example shows not only the possibility of heteroskedasticity but also the 

potential misspecification of binary choice model. If recovering endangered species of 

fish is a serious issue to residents in Los Angeles, respondents may consider other options 

to speed up recovering them that may be unknown to researcher, rather than speed-up 

program proposed in the survey30. Consequently, the response of reject in the contingent 

valuation survey, by nature, represents either staying without change or changing through 

other process (or possibly in different level). By this reason, the current state is named as 

the reference state against the proposed state to avoid misinterpretation. Although 

                                                 
30 Train (2003) defined three characteristics that alternatives in the choice set should satisfy: exclusiveness, 
exhaustiveness and countable finiteness. To vote for and vote against are mutually exclusive and finite. For 
exhaustiveness, the current state without change includes not only the state without change but also all 
possible changes except the policy proposed in the survey. Furthermore, NOAA panel report (Arrow et al. 
1993) recommends the reminder of substitute commodities among guideline for designing contingent 
valuation questions, such as other comparable natural resources or the future state of the same resource to 
assure that respondents have the alternatives clearly in mind (Haab and McConnell, 2002). Haab and Hicks 
(1999) has broadly surveyed the choice set issues in recreation demand modeling. 



 

 
 
 
 

97

unknown alternative is not always the case, the possibility of existence increases when 

the project is suggested for the local and debated environmental issues. 

Unknown alternative introduces at least two possible cases. First, although 

distributions of the random utility with alternatives are independent and identical, the 

variance of the reference state can be greater than that of the proposed state since the 

reference state includes stochastic component of random utility with unknown alternative. 

Second, since the unknown alternative may be a competing process for the same goal of 

the environmental project proposed in the survey, the error term of the random utility 

with unknown alternative can be correlated with that of the utility at the proposed state.  

 

3.2.2 Choice Probability of Random Utility Model 

Hanemann (1984) introduced the theory-consistent random utility model into the 

dichotomous choice contingent valuation using the framework originally developed by 

McFadden (See Haab and McConnell 2002). Given two alternatives (accept or reject) in 

CV, respondent chooses the alternative providing maximum utility under the relevant 

constraints. The resulting indirect utility function is well defined by a random utility 

function. Since the conventional random utility is assumed random to the investigator, a 

standard random utility consists of two parts; a systematic component observable to 

researcher and an error component which may be known to respondent but not 

necessarily. 

Let the random utility of individual n at the state i be 

( ),in i n n inU V I z ε= +  
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where iV  is the systematic component, iε  is the error component, the subscript i = 0 

represents the reference state and i = 1 represents the proposed state. The systematic part 

is a function of the respondent’s income ( nI ) and vector of respondent’s characteristics 

and choice attributes ( nz ). The income at the proposed state is the amount that is 

detracted by the assigned cost, nb . Karlström (1999) summarizes assumptions defining 

the standard additive random utility model for a discrete choice case. 

 

Definition: A discrete choice random utility model that satisfies the following 

assumptions is a standard additive random utility model; 

A1. weak complementarity, i.e. only own prices and qualities affect the 

conditional utility associated with alternative i, 

A2. additive disturbances, 

A3. identical distribution in the initial state and the proposed state, and 

A4. a finite amount of money for restoring utilities for any finite change. 

 

Note that i.i.d. assumption is imposed not only across individual but also between states.  

The probability of choosing the proposed state is the probability that the random 

utility in the state one is greater than that of the state zero; 

( ) ( ) ( )1 0 1 0 0 1 1 0 1n n n n n n n n n nP P U U P V V P vε ε ε ε= < = + < + = < +               (3.1) 

where 1 0n n nv V V= − . Further progress in estimation is feasible by specifying a parametric 

form for both of the systematic component and the error distribution in equation (3.1). 

The systematic component is usually assumed linear in parameters although only 

linearity in income is sufficient. In addition, a typical estimation model of the random 
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utility assumes the i.i.d. error distribution in equation (3.1) such as i.i.d. type I extreme 

value (or Gumbel) distribution or normal distribution, resulting the choice probability to 

be a logistic or normal distribution. The derivation of the logistic distribution from 

difference of two identical extreme values is straightforward. In addition to the relation of 

extreme value distribution to the logit formula, McFadden (1974) also shows the analysis 

that the logit formula for the choice probabilities implies extreme value distribution for 

the random utility.  

The choice probability in equation (3.1) also can be expressed using the mixed 

logit model that is initially applied into recreation model by Train (1998, 1999). A mixed 

logit can be derived from a random coefficients model (RCM) or error-component model. 

Let the true random utility to be in in inU zς ′= , where ( ),in in iz x d′ ′=  and ( ),in in inς β ε′ ′= . 

Respondent will accept the proposed policy when 1 0 1 1 0 0n n n n n nU U z zς ς′ ′> = > . By 

rescaling the utility upward sufficiently (s) and adding an i.i.d. extreme value terms on 

both sides, the resulting choice probability is expressed such as 

( )
( )

( )1 1
1

0,1

exp /

exp /
n n

n
jn jnj

s z
P f d

s z

ς
ς ς

ς
=

⎛ ⎞′⎡ ⎤⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤′⎣ ⎦⎝ ⎠
∫ ∑

 

where ( )f ς  is a joint density of jnβ  and jnε 31. Note that the innocuous scale factor s 

does not affect the choice probability. Rescaling procedure is solely used for attaining the 

                                                 
31 The mixed logit model, usually, has employed a joint distribution of parameters β in the systematic 

component of random utility. The probability function of the random parameter is defined to be 
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∫ ∑
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approximation of the true model or for the degree of smoothing (as in a smoothed AR 

simulator). The mixed logit model approximates any random utility model to any degree 

of accuracy (Train 2003, McFadden and Train 2000). 

Suppose that coefficients of systematic part of utility are invariant across 

individual ( in iβ β= ) and the joint density of ( )f ς  is a bivariate distribution of 0nε  and 

1nε . Then the mixed logit model becomes 

( ) ( )1 1 0 1 0 1, ,n nP L f dς ε ε ε ε= ∫          (3.2)  

where  

( )
( )
( )
1 0

1
1 0

exp / /
1 exp / /

n n n
n

n n n

v s s
L

v s s
ε ε

ς
ε ε

⎡ ⎤+ −⎣ ⎦=
⎡ ⎤+ + −⎣ ⎦

.             (3.3) 

The choice probability of the mixed logit model is exactly same to the logit-smoothed AR 

simulator with two alternatives, the model which has been suggested by McFadden 

(1989). Ben-Akiva and Bolduc (1996) named the model by ‘logit-kernel probit’ applying 

to the probit. In fact, the logit-smoothed AR simulator can be applied to any choice 

model by assuming appropriate distribution about error terms (Train 2003).  

The mixed logit model (3.2) is equivalent to the choice probability (3.1) when we 

assume the same error distribution. Either of choice probability in equation (3.1) or (3.2) 

is estimated by maximizing the likelihood function, 

                                                                                                                                                 
where ( )φ ⋅  is the distribution function of parameters which can be flexibly assumed such as a normal 

(Provencher and Bishop 2004), lognormal (Bhat 2000), uniform or triangular (Train 2001) distribution. The 

logit probability in the integral is derived conditional on β. By assuming that parameters have an individual 

and alternative specific randomness, the mixed model relaxes the IIA assumption and represents any 

pattern of substitution among alternatives. 
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( ) ( )1 1
1

log log 1 log 1
N

n n n n
n

L y P y P
=

= + − −∑ .    (3.4) 

If i.i.d. assumption is violated, a simple logistic distribution cannot be applied to (3.4). 

The choice probability of (3.1) and mixed logit model of (3.2), however, allow the 

flexible error distribution for estimation. Two differences from previous models deserve 

to be noted. While previous literatures have considered heteroskedasticity only across 

individuals or group, equation (3.1) can estimate the model with heteroskedasticity across 

alternatives, including simple logit model as a special case. The mixed logit probability 

has been applied for random parameters of systematic component in the multinomial case 

such as mode choice in transportation or site choice in recreation. By allowing 

randomness in the error term like equation (3.2), contingent valuation study can get the 

benefit of flexible mixed logit model. However, note that the correlation between 

different states arises in the estimation model rather than in the behavioral model. If 

choice set is well defined and the random utility is specified well enough to capture all 

sources of correlation among alternative explicitly, the simple logit model will provide 

consistent estimate of random utility difference and welfare measure. 

 

3.2.3 Welfare Measure 

In welfare measure, three definitions of the hicksian variation induced from 

environmental change are proposed (Karlström 1999); 

 

D1. the expected amount of money to keep the random utility constant for 

each individual, 
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D2. the expected amount of money to keep utility at the expected utility 

for each individual, and 

D3. the (deterministic) amount of money to keep the expected utility 

constant. 

 

A series of papers has investigated the correct welfare measure consistent with the 

microeconomic theory. However, the welfare measurement is incorrect if we estimate the 

models using the incorrect choice set (Kaoru et al. 1995). More seriously, a large 

difference of amount of money in a cost-benefit analysis has been found although the 

welfare estimates from different model are similar (Hau 1986, Herriges and Kling 1999, 

Karlström 1999).  

In spite of the importance of investigating different welfare estimate from 

different definition, this essay adapts the conventional definition of willingness to pay to 

calculate the welfare change in the random utility. The expected willingness to pay for 

the environmental change is defined as the expected maximum income that equates the 

expected random utility in two states. Although individual is assumed to have a 

deterministic utility known at the time of decision, at least the utility level of the 

proposed state is stochastic not only to researcher but also to the respondent due to the 

nature of the CV scenario. If the alternative at the state zero represents the reference 

utility including all other possibilities, then the reference state is also stochastic to the 

respondent.  

Assume that the systematic component of the random utility is linear in the 

income and the marginal utility of income is constant (α) across individuals and states, i.e. 
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no income effect, to derive the welfare change for the representative individual. The 

willingness to pay that equates the expected random utilities in both states is 

[ ] [ ] ( ) ( ){ }1 0 1 0
1

n n n n n nWTP E U E U v E Eε ε
α

= − = + −  

where the income variable is not included in nv 32. Note that the expectation is conditional 

expectation. By taking an unconditional expectation to the willingness to pay, the welfare 

measure of individual n owing to the environmental change can be expressed as 

( ) ( )1 0
1 1

n n n nE WTP v E ε ε
α α

= + −           (3.5) 

In previous literatures using symmetric distributions such as logistic or normal, the 

expected mean of error terms is zero by including a constant term in the systematic 

component. However, as explained in the next section, the expected value of error terms 

is not zero but it is much easier to remain the expectation term in equation (3.5) if 

asymmetric distributions are employed. 

 

3.3 GUMBEL MIXED MODEL OF BIVARIATE EXTREME VALUES 
DISTRIBUTION 
 

Including Gumbel (1960, 1961), Gumbel and Mustafi (1967) and Tiago de 

Oliveira (1980, 1983), a series of papers has introduced several bivariate extreme value 

                                                 
32 A typical specification of the systematic component in the random utility assumes a linear function as 

in n i nV x Iβ α′= + , where 
nI  is the income of individual n. Let the systematic utility of the reference state be 

0 0n n nV x Iβ α′= + , and ( )1 1n n n nV x I bβ α′= + −  be for the proposed state, where nb  is bid value offered to 

individual n. Then, the utility difference in the logistic distribution is ( )1 0 1 0n n n nV V x bβ β α′− = − − . 
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distributions including the Gumbel mixed model which is one of differentiable bivariate 

extreme value distributions (for examples of parametric families of bivariate extreme 

value distributions, see Kotz and Nadarajah, 2000). Applications of Gumbel mixed model 

can be found in the hydrological engineering studies (Yue 2000, Yue et al. 1999).  

Let ( )0 1,F ε ε  be a asymptotic distribution of bivariate extreme values of maxima 

for 0ε  and 1ε  with Gumbel margins, ( )F z . The probability density function and the 

cumulative distribution function of Gumbel margin are, respectively, 

( ) 1 exp exp expi i
i

i i i

f ε εε
θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

     (3.6) 

and 

( ) ( ) exp exp
i

i

z

i i
i

zF z f dε ε
ε ε

θ=−∞

⎛ ⎞⎛ ⎞
= = − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ .        (3.7) 

The expected value and the variance of iε  are  

( ) 0.57722i iE ε θ≈  and ( )
2 2

6
i

iVar θ πε = . 

The asymptotic distribution of bivariate maxima is defined as 

( ) ( ) ( ) ( ) ( )0 1
0 1 0 1

0 1

, exp exp exp
k

F F F k
τ ε εε ε ε ε τ

θ θ

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎡ ⎤= = − − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦
⎪ ⎪⎢ ⎥⎝ ⎠⎝ ⎠⎩ ⎭⎣ ⎦

 

where ( )k ⋅  is called the dependence function representing the asymptotic connection 

between 0ε  and 1ε . iθ  is a scale factor and the location factor is assumed to be equal to 

zero. The reduced difference τ is defined as 0 0 1 1/ /ε θ ε θ− . 
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Different bivariate distributions are derived using different dependence functions, 

of which the Gumbel mixed model has 

( ) ( )
( )( )2

exp
| 1

1 exp
k

λ τ
τ λ

τ
= −

+
      (3.8) 

where λ is an association parameter33. The parameter λ indicates the association between 

the two extremes. By plugging (3.8) into the asymptotic distribution, the Gumbel mixed 

logit model becomes 

( ) ( ) ( )
0 1

0 1
0 1 0 0 1 1

, | exp exp exp
exp / exp /

F ε ε λε ε
θ θ ε θ ε θ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
Γ = − − + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

    (3.9) 

where Γ is a parameter set of scale factor ( 0 1,θ θ ) and association factor (λ). Figure 3.1 

shows the contour of the Gumbel mixed bivariate distribution function with λ = 0.5. The 

probability density function is derived by differentiating (3.9) with respect to 0ε  and 1ε  

such that  

( )

( )
( ) ( ) ( )

1 2 1 2
1 2

1 2 1 2 1 2

/ / / /
/ /

3 2 2/ / / / / /
1 2

,

, 2 x y x y
x y

x y x y x y

f x y

F x y e e ee e
e e e e e e

θ θ θ θ
θ θ

θ θ θ θ θ θ

λ λ λ
θ θ

+
− −

⎡ ⎤⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪⎢ ⎥= + − −⎨ ⎬⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎪ ⎪⎢ ⎥⎩ ⎭⎩ ⎭⎣ ⎦

. (3.10) 

The contour of probability function is shown in Figure 3.2. As can be seen, the bivariate 

extreme value distribution is upper-right skewed. 

                                                 
33 The logistic model, one of differentiable bivariate extreme value distribution, is derived using the 

difference function of ( ) ( )( ) ( )
1

| 1 exp / 1 / 1 expk
λ

τ λ τ λ τ
−

⎡ ⎤ ⎡ ⎤= + − − + −⎣ ⎦⎣ ⎦
. The logistic model is the simple version of 

the generalized extreme value distribution widely used in the transportation and recreational site choice 

literatures. Unfortunately, the logit model, i.e. the generalized extreme value with two alternatives, cannot 

identify the association factor λ (See the Appendix C). 
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Figure 3.1: Distribution Function of Gumbel Mixed Model of Maxima with λ = 0.5 
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Figure 3.2: Probability Function of Gumbel Mixed Model of Maxima with λ = 0.5 
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For 0λ = , the joint distribution is independent such that ( ) ( ) ( )0 1 0 1,F F Fε ε ε ε= , 

and generally, the inequality ( ) ( ) ( )0 1 0 1,F F Fε ε ε ε>  holds for dependent case 0λ > . 

The correlation coefficient is a function of the association parameter λ; 

( )
2

2

6 arccos 1
2
λρ λ

π
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  ( 0 2 / 3ρ≤ ≤ ). 

When the correlation coefficient is greater than 2/3, the mixed model can not be used. If 

both random variables are available, the association parameter is estimated from the 

correlation coefficient such that ( )( )ˆ ˆ2 1 cos / 6λ π ρ= − ⋅  where ρ̂  is the estimated 

correlation from data. Since binary data cannot provide the correlation coefficient, the 

association parameter is directly estimated from data. 

From the Gumbel mixed distribution, several important distributions are derived; 

among others conditional distribution and distribution of reduced difference. The 

conditional cumulative distribution function of the Gumbel mixed model is 

( ) ( )
0 1

1 1

1 11
| 0 0 1 2

1 0 1

0 1

exp 2 exp
, exp exp

exp exp

F Fε ε

ε ε
θ θεε ε ε λ

θ ε ε
θ θ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪+ −⎢ ⎥⎜ ⎟⎡ ⎤⎪ ⎪⎛ ⎞ ⎝ ⎠⎣ ⎦= − −⎨ ⎬⎢ ⎥⎜ ⎟
⎡ ⎤⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎣ ⎦⎪ ⎪

+⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪
⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭

        (3.11) 

from ( ) ( )
0 1 1| 0 1 1, /f f fε ε εε ε ε=   (Yue 2000). The distribution function of reduced 

difference is derived to be (Tiago de Oliveira 1980) 

( ) ( )
( )

( )( )
( )( ) ( )

2

2

1 expexp
|

1 exp 1 exp exp
D

τ λτ
τ λ

τ τ λ τ

+ −
=

+ + −
.        (3.12) 
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For 0λ = , i.e. independent case, the conditional distribution (3.11) reduces to be a 

univariate type I extreme value and the difference distribution (3.12) becomes a logistic 

distribution. Since the argument in the difference distribution function is a reduced 

difference, equation (3.12) can be applied to the estimation model only if utilities have 

the same variance. The probability density function of (3.12) is  

( ) ( )
( )

( )( ) ( ) ( )( )
( )( ) ( )

4 22

2 22

1 exp exp 2 1 exp 2exp

1 exp 1 exp exp

τ λ τ λ ττ
ζ τ

τ τ λ τ

⎧ ⎫
+ − − −⎪ ⎪

= ⎨ ⎬
⎡ ⎤ ⎡ ⎤+ ⎪ ⎪+ −⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭

. 

Figure 3.3 and 3.4 show the cumulative distribution and probability function of the 

reduced difference with various λ. The probability density function of reduced difference 

is symmetric, ( ) ( )ζ τ ζ τ= −  with zero mean. Note that the independence condition 

reduces the difference distribution function to be a logistic function. 
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Figure 3.3: Distribution Function of Reduced Difference of Extreme Values 
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Figure 3.4: Probability Function of Reduced Difference of Extreme Values 
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3.4 ESTIMATION OF RANDOM UTILITIES WITH BINARY DATA 

3.4.1 Bivariate Extreme Value Model 

The choice probability in the equation (3.1), ( )1 0 1n nP P vε ε= < + , can be 

expressed as an integration of the conditional distribution over marginal distribution. 

From equations (3.11) and (3.6), the choice probability becomes  

( ) ( )1

0 1
1

1 | 1 1 1n nP F v f d
ε

ε εε
ε ε ε

=+∞

=−∞
= +∫ .         (3.13) 

Since the model estimates only the difference of two random utilities, one of them should 

be normalized such that parameters in systematic component of utility at the reference 

state are set to be zero and the scale factor of error term to be one ( 0 1θ = ). Equivalently, 

parameters in systematic component are estimated as difference of functions normalized 

by the standard deviation of the reference state and the scale factor of the proposed state 

is estimated as a relative scale term.  

The bivariate extreme value model of (3.13), unfortunately, does not have the 

closed form for the integration, thus requiring approximation or simulation techniques for 

estimation of the choice probability. Gaussian quadrature approximates the choice 

probability with high accuracy and implements estimation with fast speed34. A simulation 

method also provides intuitively easy way for estimating the choice probability. Both of 

methods are explained in detail at the section IV. Let the choice probability of choosing 

proposed state be 1̂nP  from either of approximation or simulation method. The probability 

                                                 
34 In heteroskedastic extreme values, Bhat (1995) shows that Gaussian quadrature generates a highly 
accurate estimates for integrals rather than simulation. Alternatively, Allenby and Ginter (1995) also 
suggest the Bayesian estimation procedure for heteroskedastic extreme values. 
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of choosing the reference state is the complementary probability of 1nP  such that 

0 1
ˆ ˆ1n nP P= − . Therefore, the log likelihood function simply becomes  

( ) ( )1 1
1

ˆ ˆlog log 1 log 1
N

n n n n
n

L y P y P
=

= + − −∑ .   (3.14) 

The willingness to pay is estimated using equation (3.5). Following assumptions 

of a linear random utility and constant marginal utility of income, the expected 

willingness to pay is 

( ) ( )1 0
1

n n n nE WTP x Eβ ε ε
α α
′= + −
�
�

 

where ( )1 0 0/β β β θ= −�  and 0/α α θ=� . The expectation of 1 0n nε ε−  is not easy to 

calculate because the mean of error terms are not zero and they are correlated. Rather 

than deriving the expected value of error terms, this essay estimates the expectation of 

error differences through a simulation procedure with estimated relative scale and 

association parameters. 

Correlated extreme values 

Suppose that the error components are homoskedastic but correlated. Restriction 

of identical variance on Gumbel mixed model transforms bivariate distribution into a 

reduced difference distribution in equation (3.12). By substituting the equation (3.12) into 

the decision model, the probability of choosing the proposed state becomes 

( )
( )

( )
( ) ( )

2

1 2

1 exp /exp /
1 exp / 1 exp / exp /

nn
n

n n n

vv
P

v v v

θ λθ
θ θ λ θ

⎡ ⎤+ −⎣ ⎦=
+ ⎡ ⎤+ −⎣ ⎦

          (3.15) 
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where θ is the common scale factor. The log likelihood function for the mixed model 

with constant variance is obtained by substituting equation (3.15) into the log likelihood 

(3.4). Since the mean of the difference is zero, the willingness to pay is, unsurprisingly, 

the same with the simple formula in the logit model; ( ) /n nE WTP x β α′= � � . 

Heteroskedastic extreme values 

The choice probability with Gumbel mixed model nests the heteroskedastic 

extreme values and simple logit models which assume independent error terms. When 

two error terms are independent ( 0λ = ), the conditional distribution (3.11) becomes a 

marginal extreme value distribution; ( ) ( )
0 1| 0 0F Fε ε ε ε= . Therefore, from the equation 

(3.13), the choice probability with heteroskedasticity can be simplified to be 

( ) ( )1

1
1 1 1 1n nP F v f d

ε

ε
ε ε ε

=+∞

=−∞
= +∫ .                 (3.16) 

Substitute equations (3.6) and (3.7) into (3.16) and define 1 1/w ε θ=  and 1 0/γ θ θ= , then 

the probability function becomes 

( ) ( ) ( )1 0exp exp / exp exp exp
w

n nw
P v w w w dwθ γ

=+∞

=−∞
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ .      (3.17) 

The equation (3.17) is the simplest version of the heteroskedastic extreme values model 

of Bhat (1995) and Allenby and Ginter (1995). In the independent but non-identical 

extreme value distribution, the heteroskedasticity extreme value model outperforms the 

multinomial logit and other generalized logit models (Bhat 1995). The equation (3.17), 

however, does not have the closed form of solution for the integral, requiring us to 

implement the approximation or simulation of the choice probability.  
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Note that J – 1 scale parameters are identified due to normalization in the 

heteroskedastic extreme values where J is the total number of alternatives, while other 

generalized logit models identify only ( )1 / 2 1J J − −  scale parameters35. Since the 

contingent valuation study has only two alternatives, the choice probabilities of (3.13) 

and (3.17) can identify the relative scale and association parameters, but other 

generalized models have the identification problem. The scale parameter is estimated as a 

relative scale, γ. More uncertainty in the future, i.e. more variance of random utility, is a 

reasonable nature in decision process, implying that γ is possibly greater than one but not 

necessarily. 

As shown in the previous section, when bivariate extreme value distribution is 

independent, the expectation of a random variable is ( ) 0.57722i iE ε θ≈ . Thus, the 

expectation of 1 0n nε ε−  is approximately ( )1 00.57722 θ θ⋅ − , providing the final 

expression of the expected willingness to pay as 

( ) ( )10.57722 1n nE WTP x β γ
α α
′≈ + −
�
� �

. 

i.i.d extreme values 

Now assume identical disturbance of random utility in both states in addition to 

independence. By substituting the distribution (3.7) and density (3.6) functions into the 

choice probability (3.16), the choice probability with i.i.d error distributions becomes 

( ) 1 1
1 1 1

1 1exp exp exp exp expn ns
P v dε εε ε

θ θ θ θ
∞

=−∞

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎧ ⎫= − − + − − −⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ . 

                                                 
35 In general, multinomial probit identifies J – 2 free standard deviations and (J – 1)(J – 2)/2 free 
correlations., therefore a total of J(J – 1)/2 – 1 covariance parameters (Greene 2002, Train 2003).  
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Let ( )1exp /t ε θ= −  and ( )1 1exp / /dt dε θ ε θ= − − , then the choice probability can be 

expressed as a logistic distribution such that 

{ }( )( ) { } 1
1 0

exp 1 exp / 1 exp /n n nt
P t v dt vθ θ

∞ −

=
⎡ ⎤= − + − = + −⎣ ⎦∫ .    (3.18) 

The logistic distribution can be derived by constraining 0λ =  in the reduced difference 

distribution of Gumbel mixed model in equation (3.12). Since 1P  is the standard 

cumulative density function of the logistic distribution, the variance of wε θ=  is 

2 2 / 3θ π . Note that when error terms are homoskedastic the choice probability always has 

a closed form of distribution as in equations (3.15) and (3.18). 

The estimation technique for this simple case is straightforward and the 

estimation result is consistent under the correct model specification. All parameters are 

identified up to the normalized difference such that ( )1 0 /β β β θ= −�  and /α α θ=� , but 

the scale factor cannot be identified. With linear specification of random utility, the 

willingness to pay is the difference between systematic terms of the random utility except 

the income, multiplied by the inverse of the marginal utility of income because the 

expected value of difference between two identical errors is zero; ( ) /n nE WTP x β α′= � �  

 

3.4.2 Approximating Log Likelihood of Bivariate Extreme Value Model 

The bivariate extreme value model in equation (3.14) integrates a conditional 

distribution over one-dimensional random variable, ( ) ( )1

0 1
1

| 1 1 1nF v f d
ε

ε εε
ε ε ε

=+∞

=−∞
+∫ . As 

Bhat (1995) already showed that a Gaussian-Laguerre quadrature outperforms a 
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simulation in multinomial heteroskedastic case, Gaussian quadrature can provide a fast 

and highly accurate likelihood function even in this bivariate case by appropriately 

transforming the function. Define a transformation such that ( )( )exp expu w= − − , thus 

( )ln lnw u= − −  and ( ) ( )( )exp exp expdu w w dw= − − − 36. The new variable u is the form 

of cumulative distribution of extreme value and has the support of [ ]0,1 . This 

transformation enables the approximation much easier through Gaussian-Legendre 

quadrature.  

Let 1 1 1wε θ=  and 1 0/γ θ θ= , then the conditional density and marginal probability 

functions are ( ) ( )
0 1 0 1| 1 | 1 1n nF v F v wε ε ε εε θ+ = +  and ( ) ( )1 1 1/f f wε θ= . The arguments in 

the conditional probability is normalized by the standard deviation of 0θ . Plugging the 

new variable u into the function and defining  

( ) ( )( )
0 1|, ln lnn nG v u F v uε ε γ= − − , 

the choice probability is expressed as 

( )
1

1 0
,

u

n nu
P G v u du

=

=
= ∫ . 

since 1 1 1d dwε θ= . The integration is approximated by Gaussian-Legendre quadrature 

such as 

( ) ( )
1

110
ˆ, ,

u L
n l n l nlu

G v u du G v u Pξ
=

==
≈ =∑∫  

                                                 
36 Bhat (1995) uses the transformation of ( )expu w= −  and applies a Gaussian-Laguerre quadrature with the 

support of [ ]0,∞ .  
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where lξ  and lu  are L weights and support points (abscissas) of Gaussian-Legendre 

quadrature. The points and weights for approximation are reported in Straud and Secrest 

(1966). Using L = 40 which is the maximum points provided in Gauss 5.0 program, the 

log likelihood function is approximated as 

( ) ( ) ( ){ }1 1
1

log log , 1 log 1 ,
N

L L
n l n l n l n ll l

n
L y G v u y G v uξ ξ

= =
=

= + − −∑ ∑ ∑ . 

 

3.4.3 Mixed Logit Model with Gumbel Mixed Extreme Value Distribution 

Recall the choice probability of mixed logit model in equation (3.2),  

( ) ( )1 1 0 1 0 1, ,n nP L f dς ε ε ε ε= ∫  

where the probability density function ( )0 1,f ε ε  is joint density function of bivariate 

extreme values in equation (3.10). By construction, the mixed logit model is equivalent to 

the choice probability in equation (3.1) and consequently the mixed logit model nests all 

three simple cases; the correlated extreme values ( 0λ ≠  but 0 1θ θ= ), the heteroskedastic 

extreme values ( 0λ =  but 0 1θ θ≠ ) and simple logit models ( 0λ =  and 0 1θ θ= ). The 

mixed model for choice probability (3.2), however, is different from the typical random 

coefficients model in the sense that the model allows the flexibility only in the original 

error component, thus captures the heterogeneity or correlation of utility across 

alternatives in CV.  

Owing to equivalence to the logit smoothed-AR simulator, the estimation of the 

mixed model follows the simulation procedure of ‘logit kernel probit’ adjusted simply for 
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the bivariate extreme values. Following Train (2003), the simulation procedure is 

generally: (1) Draw a 2-dimensional random vector of ε from a Gumbel mixed bivariate 

extreme values. Label the draw as 0 1,r r r
n n nε ε ε= . (2) Using this draw, calculate the utility 

difference 1 0 1 0
r r r r
n n n n nU U v ε ε− = + − . (3) The logit formula of equation (3.3) in the mixed 

logit model is calculated from the utility difference and with a scale factor s specified by 

the researcher. (4) Repeat steps (1)-(3) many times (r = R), and then the simulated 

probability is the average of them, ( )1 11

1ˆ |R r
n nr

P L
R

ε β
=

= ∑ . The simulated log likelihood 

function is ( ) ( )1 11
ˆ ˆlog log 1 log 1N

n n n nn
L y P y P

=
= + − −∑ . However, since random drawing 

from a bivariate extreme value distribution in the step (1) is unavailable, this essay 

employs an importance sampling procedure with Halton sequence to simulate the random 

draw from bivariate extreme values. 

The expected willingness to pay in the mixed logit model can be estimated by the 

same formula of bivariate extreme value model. When the variance is identical across 

states, the expected willingness to pay is simply the difference of systematic component 

divided by the income parameters. When there exists heteroskedasticity, the expected 

difference of error terms is added into the expected value of the systematic part. In 

general case, the expected difference of error term is simulated using parameter estimates 

of relative scale and association. Note that rescale process for deriving logit formula does 

not change the willingness to pay since the welfare measure is estimated by the ratio of 

parameter estimates.  
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3.4.4 Simulating Log Likelihood of Mixed Logit Model 

In spite of intuitively simple procedure in simulation, it is not easy to draw 

random variables 0ε  and 1ε  from the Gumbel mixed distribution. Alternatively, the 

importance sampling provides simulated random variables with correlation and 

heteroskedasticity by transforming the original density, named target density, into a 

density from which it is easy to draw, named a proposal density. Suppose that there is a 

density, ( )g ε , that can be handled easily. Since multiplying the integrand of equation 

(3.2) by ( ) ( )/g gε ε  does not change the original choice probability, the choice 

probability of mixed logit model becomes  

( ) ( )
( ) ( )1 1n n

f
P L g d

g
ε

ς ε ε
ε

= ∫ . 

The choice probability is simulated by random drawing from ( )g ε , calculating the logit 

formula with a weight ( ) ( )/f gε ε  for each draw.  

Let ( )ig ε  be a univariate extreme value distribution. Using the joint density of 

Gumbel mixed model given in equation (3.10), the weight ( ) ( )/f gε ε  is calculated as 

( )
( ) ( ) ( ) ( ) ( ) ( )

0 1
0 1 0 0 1 1

0 1 0 0 1 1

,
, exp / /

exp / exp /
f

g g
ε ε λε ε ε θ ε θ

ε ε ε θ ε θ
⎧ ⎫⎪ ⎪= Ψ + +⎨ ⎬+⎪ ⎪⎩ ⎭

   (3.19) 

where  

( )
( ) ( ) ( )

0 1 0 1
0 1

0 0 01 1 1

/ / / /
/ /

3 2 2/ / // / /

2,
x y x y

x y

x x xy y y

e e ex y e e
e e e e e e

θ θ θ θ
θ θ

θ θ θθ θ θ

λ λ λ+
− −

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪Ψ = + − −⎨ ⎬⎨ ⎬

+ + +⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

. 
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Normalizing 0 1θ =  and using the fact that i i iwε θ=  and ( ) ( ) ( )1/i i ig g wε θ= , the choice 

probability of mixed logit model is simulated as  

( ) ( ) ( ) ( ) ( )1 1 0 1 0 1 0 1
0 1

ˆ , exp ,
exp expn nP L w w w w d w w

w w
λς

⎧ ⎫⎪ ⎪= Ψ + +⎨ ⎬+⎪ ⎪⎩ ⎭
∫ . 

Application of importance sampling to the mixed logit model in this essay is as 

follows: (1) Take draws for 0w  and 1w  from a standard extreme value distribution and 

construct two-dimensional independent random variables. In this first step and through 

the repetition, Halton sequence is useful to draw standard extreme values37. Using Halton 

draws for the given sample size, the standard extreme value distribution is recovered 

from the inverse of cumulative distribution of extreme value. (2) For this draw, calculate 

the logit formula, 1nL , and the weight function of equation (3.19) with prespecified 

scaling factor in the logit formula (s). (3) Repeat two steps enough times and average the 

result, 1 1
1ˆ

n nr
P P

R
= ∑ , which is an unbiased estimate of the choice probability with 

correlation and heteroskedasticity. Note that by construction, R repetition is equivalent 

with R Halton draws. The probability of choosing the alternative zero is 0 1
ˆ ˆ1n nP P= − . The 

simulated log likelihood function becomes  

( ) ( )1 1
1

ˆ ˆlog log 1 log 1
N

n n n n
n

L y P y P
=

= + − −∑ . 

 

                                                 
37 Halton sequence reduces the number of draws and the simulation error associated with a given number of 
draws. The simulation error with 125 Halton draws is smaller than even with 2000 random draws. See Bhat 
(1999), Train (1999, 2003) and Greene (2002). 
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3.4.5 Simulating Expected Willingness to Pay 

In both of bivariate extreme value and mixed logit models, the expected 

difference of error terms is not zero if error variables are heteroskedastic. The expected 

difference is approximately ( )1 00.57722 θ θ⋅ − . However, it is not easy to take 

expectation on error difference if error terms are heteroskedastic and correlated. 

Importance sampling can be easily reapplied to simulate the expected willingness to pay.  

Since ( )1 0 /n nE ε ε α−  is equivalently ( )1 0 /n nE w wγ α− � , the expected value of 

error difference is the integration of random variables over Gumbel mixed bivariate 

probability; 

( ) ( ) ( )1 0 1 0 1 0 1 0, ,n n n n n n n nE w w w w f w w d w wγ γ− = −∫ . 

By applying importance sampling procedure with Halton sequence to the expected error 

difference, the expected willingness to pay becomes  

( ) ( )1 0
1 ˆ

n n n nE WTP x E w wβ γ
α α
′= + −
�
� �

. 

Note that, except the case of heteroskedasticity, the expected error difference can be 

exactly calculated without relying on the simulation. 

 

3.5 EXPENDITURE DIFFERENCE AND GUMBEL MIXED MODEL 

3.5.1 Expenditure Difference Model 

An alternative model of the random utility is based on the willingness to pay 

function derived from the expenditure functions. Expenditure function is a dual function 

of the indirect utility function. Let the minimum expenditure of individual n be 
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( )0 0
0 ,n nm m q u=  at the reference state and ( )1 0

1 ,n nm m q u=  at the proposed state given the 

same utility level ( 0
nu ) where iq  is the environmental quality at state i. As a random 

utility, the expenditure function consists of a systematic component ( *
nm ) and an 

unobservable random component ( nη ); *
n n nm m η= + .  The willingness to pay function is 

defined to be 

( ) ( ) ( )0 0 0 1 0, ,WTP u m q u m q u= − . 

The binary response to the dichotomous choice question is one if the willingness to pay is 

greater than bid amount, and zero otherwise. Alternatively, the response of accept implies 

that the respondent agrees to pay the cost when the expenditure at the proposed state plus 

the bid amount is still less than the expenditure at the reference state. Typically, the 

willingness to pay function is estimated by first assuming an appropriate distribution for 

the unobserved component and then applying a form of probit or logit model.  

The logistic distribution of the willingness to pay function implies that the 

underlying distribution of expenditure functions is the i.i.d. type I extreme value 

distribution. However, unlike the random utility model, the expenditure function is 

derived from a minimization problem implying that extreme value of the expenditure 

function is the smallest value such as the type I smallest extreme value distribution. As 

can be recognized, the exactly same problems of random utility model arise in the 

willingness to pay function model if we assume a logistic distribution. The general form 

of choice probability in expenditure difference model is 
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( )
( )

1 0 1

* *
1 0 1 0

n n n n

n n n

P P b m m

P m m bη η

= < −

= < − − +
. 

Error terms 0η  and 1η  may have heteroskedastic variance or be correlated.  

 

3.5.2 Gumbel Mixed Model of Minima 

From the dual relation of ( ) ( )min maxi iZ Z= − − , the joint distribution function 

for minima with Gumbel reduced margins is 

( ) ( ) ( ) ( )0 1 0 1 0 1, 1 ,F F Fη η η η η ηΩ = − − − − + − − ,          (3.20) 

where ( )F ⋅  and ( ),F ⋅ ⋅  are marginal and joint distributions of maxima defined in 

equation (3.7) and (3.9) (Tiago de Oliveira, 1983). From the relation between maxima 

and minima in equation (3.20), the probability density function of bivariate extreme 

values of minima is defined as  

( ) ( ) ( ) ( )
2 2

0 1 0 1
0 1 0 1

0 1 0 1

, ,
, ,

F
f

η η η η
ω η η η η

η η η η
∂ Ω ∂ − −

≡ = = − −
∂ ∂ ∂ ∂

.  (3.21) 

Figure 3.5 and 3.6 show the joint distribution and probability function of minima, 

respectively. Note that the probability function of minima is symmetric function of 

probability of maxima around zero, thus the tail of minima is lower-left skewed. 

Since a bivariate distribution of maxima satisfies the boundary conditions 

( ) ( ) ( ), , , 0F y F x F−∞ = −∞ = −∞ −∞ = , the bivariate distribution of minima also 

satisfies the boundary conditions, ( ) ( )1 0, , 0η ηΩ −∞ = Ω −∞ = . From the definition of 

marginal distribution of maxima, ( ) ( ),F x F x∞ =  and ( ) ( ),F y F y∞ = , the marginal 
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distribution of minima is defined as ( ) ( ) ( )0 0 0, 1 Fη η ηΩ = Ω ∞ = − −  and 

( ) ( )1 11 Fη ηΩ = − −  such that 

( ) 1 exp exp
i

zz
θ

⎛ ⎞⎛ ⎞
Ω = − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 

The probability density function of marginal distribution is also easily derived as  

( ) ( ) ( ) ( )F
f

η η
ω η η

η η
∂Ω ∂ −

= = − = −
∂ ∂

.    (3.22) 

Owing to the relation between maxima and minima, the expected value of η is easily 

derived to be ( ) 0.57722i iE η θ≈ − . 

The conditional distribution of minima is derived from the conditional distribution 

of maxima in equation (3.11). Since the conditional probability function of minima is 

expressed as  

( ) ( )
( )

( )
( ) ( )0 1 0 1

1 0 1 0
0 0

, ,
| |

f
f

f
ω η η η η

ω η η η η
ω η η

− −
= = = − −

−
, 

the conditional distribution of minima is 

( ) ( ) ( ) ( )1 1

1 0 0 0 1 0| | | 1 |d F F
η η η η

ηη
η η ω η η η η η η η

= =

=−∞=−∞
Ω = = − − − = − − −∫ .      (3.23) 

Note that the distribution and probability functions of reduced difference of minima are 

identical to that of maxima. 
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Figure 3.5: Distribution Function of Gumbel Mixed Model of Minima with λ = 0.5 
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Figure 3.6: Probability Function of Gumbel Mixed Model of Minima with λ = 0.5 
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 3.5.3 Bivariate Extreme Value and Mixed Logit Models of Expenditure Difference 

Note that the respondent accepts to pay the cost when the expenditure plus bid 

amount at the proposed state is still smaller than the expenditure at the reference state. 

Following the same logic in random utility model, the choice probability of expenditure 

difference is expressed as  

( ) ( ) ( )0

0

* * *
1 1 1 0 0 0 0 0 0|n n n n n nP P m b m m b d

η

η
η η η η ω η η

=+∞

=−∞
= + + < + = Ω − +∫ . 

where * * *
0 1n n nm m m= − . By substituting equation (3.23) into the choice probability 

function, the choice probability of expenditure difference is  

( )( ){ } ( )0

0

*
1 0 0 0 01 |n n nP F m b f d

η

η
η η η η

=+∞

=−∞
= − − − + − −∫ . 

The choice probability can be approximated by Gaussian quadrature. Define a 

transformation such that ( )( )1 exp expu w− = − , thus ( )( )ln ln 1w u= − −  and 

( ) ( )( )exp exp expdu w w dw= − . Let 0 0 0wη θ=  and 0 1/γ θ θ= , thus 0 0 0d dwη θ= . 

Plugging new variables into the function and defining  

( ) ( )( )( )* *
0, 1 ln ln 1 |n n nH m u F m b uγ η= − − − − − − − , 

the approximated choice probability is 

( )*
1 1
ˆ ,L

n l n ll
P H m uξ

=
= ∑ . 

Expenditure difference model has an estimation model corresponding to each case 

of random utility model. The choice probability of i.i.d error distribution is 

( ) ( ) ( )0

0

*
1 0 1 0 0 0n n n n n nP P b m m m b d

η

η
η ω η η

=+∞

=−∞
= < − = Ω − +∫ . 
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Recalling the cumulative distribution function and probability density function of the 

type I smallest extreme value are, respectively, ( ) ( )1z F zΩ = − −  and ( ) ( )fω η η= − , 

the probability function with homoskedastic variance is  

( )0

0

*
0

1 0 01 n n
n

m bP F f d
η

η

η η η
θ

=+∞

=−∞

⎡ ⎤⎛ ⎞− +
= − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ .  (3.24) 

By substituting ( )0exp /t η θ=  and ( )0 0exp / /dt dη θ θ η= , the probability function can 

be further simplified to 

( )
( )

*

1 *

exp /

1 exp /

n n

n

n n

m b
P

m b

θ

θ

⎡ ⎤−⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

, 

which is a simple logit model. In the heteroskedastic case, define again 0 0/w η θ= , then 

from the equation (3.24), heteroskedastic expenditure model can be expressed such as  

( )
*

0
1

1

1
w n n

n w

m b w
P F f w dw

θ
θ

=+∞

=−∞

⎡ ⎤⎛ ⎞− +
= − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫ . 

The choice probability of heteroskedastic expenditure is approximated using Gaussian 

quadrature.  

The general expression equivalent to the mixed logit model (3.2) is 

( ) ( )1 1n nP L dς ω η η= ∫  

where ( ) ( ){ } 1
*

1 0 11 exp / /n n n n nL m b s sη η
−

⎡ ⎤= + − − − −⎣ ⎦  and 0 1,η η η= . The bivariate 

probability of minima is simulated by the same way of bivariate probability of maxima. 

In importance sampling, the target density is joint density of minima and the proposal 
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densities are standard extreme value densities. From (3.21) and (3.22), importance 

sampling is implemented by 

( )
( ) ( )

( )
( ) ( )

0 1 0 1

0 1 0 1

, ,f
f f

ω η η η η
ω η ω η η η

− −
=

− −
. 

The consistent estimate of the parameter in the expenditure function is estimated 

by ML with approximated or simulated log likelihood function  

( ) { }1 1
1

ˆ ˆlog log 1 log 1
N

n n n n
n

L y P y P
=

= + − −∑ . 

Assume further that the expenditure function is linear in parameters;  *
in n im x β′= . Then, as 

in the random utility model, parameters are identified up to the difference of two 

expenditure functions. The parameter estimates are ( )0 1 1/β β β θ= −�  for the systematic 

part, 11/bβ θ=�  for the minus bid value and 0 1/γ θ θ=�  for the relative scale factor. Note 

that all parameters are normalized by 1θ  rather than by 0θ . Owing to the bid variable, the 

expenditure difference model is able to identify both scale parameters. The willingness to 

pay is defined as 

( ) ( )*
0 1n nE WTP m E η η= + −  

which is estimated through the same simulation method of the random utility model. 

Since the expected univariate extreme value of minima is ( ) 0.57722i iE η θ≈ − , the 

willingness to pay of heteroskedasticity is estimated as follows 

( ) ( )10.57722 1n n
b b

E WTP x β γ
β β

′≈ + −
�

�� � . 
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3.6 APPLICATIONS OF RANDOM UTILITIES AND EXPENDITURE 
DIFFERENCE MODELS 

 

Gumbel mixed distribution of bivariate extreme values has been applied to the 

random utility model and expenditure difference model. The data used in the estimation 

includes wastewater disposal system in Montevideo, Uruguay, and the sewage treatment 

in Barbados (McConnell and Ducci, 1989)38. In Barbados study, the households were 

asked through in-person interview, if they would be willing to pay the given amount of 

money in increased water bill for the installation of a sewage system. Observations in 

each data were 1276 for Montevideo and 426 for Barbados data. 

Log likelihood function is approximated in the bivariate extreme value model and 

is simulated in the mixed logit model using Gauss program version 5.0 with CML library. 

For mixed logit model, the rescaling factor s is set to be 0.3 and the simulation is repeated 

125 times. In both of random utility and expenditure difference models, the association 

parameter (λ) is constrained to be between zero and one. For the relative scale factor (γ), 

CML procedure in Gauss assigned nonnegative constraint although it is positive in 

theory39. Also, to make the results to be comparable, the inverse of relative scale, 1 0/θ θ , 

was estimated in expenditure difference model rather than 0 1/θ θ .  

Tables 3.1 and 3.2 show the estimation results of random utility model with 

Barbados and Montevideo data, respectively. The results consist of three sets; simple 

logit model in the second column, the result of bivariate extreme values in the third to 
                                                 
38 The data is available in Haab and McConnell (2002).  
39 The positive constraint can be assigned in the model by transforming the parameter such as exponential 
term. However, the estimation results for other parameters are not different and zero estimate of relative 
scale implies extreme difference of scale terms. 
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sixth column and the result of mixed logit in the last four columns. The first part of 

results in bivariate extreme values and mixed logit is estimation result with constraints of 

independent and identical error ( 1γ = , 0λ = ). These general models with constraints of 

1γ = and 0λ =  are theoretically equivalent to the simple logit model. In the following 

columns are estimation results with heteroskedastic only ( 0λ = ), correlation only ( 1γ = ), 

and without constraint for full flexibility.  

In Table 3.1, constrained bivariate extreme value model with 1γ =  and 0λ =  

provides exactly same parameter estimates with the simple logit model. The constrained 

mixed logit model with 1γ =  and 0λ = , however, has estimates different from the 

simple logit model. Unfortunately, both of estimation models fail to estimate parameters 

due to too large relative scale estimate when the association parameter is fixed to be one 

and only heteroskedasticity is allowed. When the correlation is allowed in estimation, i.e. 

in general model and constrained model with 1γ = , the association parameter is different 

from zero but not statistically significant in both of bivariate extreme value and mixed 

logit models. In addition, relative scale parameter is not statistically different from one. 

LR statistics for homoskedasticity or independence fail to reject the constraints. Barbados 

data shows that the assumption of independent and identical distribution is suitable for 

estimation of random utility. 

Table 3.2 shows the estimation result of random utility model with Montevideo 

data. Like the Barbados data, bivariate extreme value model with constraints of 1γ =  and 

0λ =  shows the estimation result closer to logit model than mixed logit model does. 

Both of bivariate extreme value and mixed logit models provide association parameter 
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estimate statistically indifferent from zero except one case of mixed logit model. The 

relative scale estimate at convergence is zero implying that the scale of reference state is 

extremely larger than that of proposed state. Bivariate model with constraint of 1γ =  

shows that dependence between error terms is not statistically significant. LR statistics 

fails to reject the constraint of independence ( 0λ = ), but heteroskedasticity is 

statistically significant in both of bivariate extreme value and mixed logit models.  

Table 3.3 and Table 3.4 report the estimation results of expenditure difference 

model with the same data set. Note that the relative scale factor γ is estimated as 1 0/θ θ  

rather than 0 1/θ θ  to enable the comparison with random utility model. By construction, 

however, parameters of systematic part of expenditure difference are normalized by 1θ  

not by 0θ . Thus, the parameter of bid value in expenditure difference model represents 

the inverse of standard error 1θ  while that of random utility model implies the marginal 

utility of income normalized by 0θ . As random utility model, the expenditure difference 

model reports the estimation result with constraints of i.i.d. ( 1γ =  and 0λ = ), 

independence ( 0λ = ), and homoskedasticity ( 1γ = ).  

Table 3.3 presents the estimation result of expenditure difference model with 

Barbados data. When the relative scale parameter is estimated, the result shows that the 

inverse of relative scale is greater than one, implying 1 0θ θ> , but statistically indifferent 

from one except the constrained bivariate extreme value model with 0λ = . The estimate 

of association parameter is not statistically different from zero. The results of expenditure 
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difference model with Barbados data show that Barbados study satisfies the classical 

assumption of logit model in terms of parameter estimates and LR test statistics. 

Table 3.4 reports the estimation result of expenditure difference model with 

Montevideo data. Unfortunately, the estimation fails in the general bivariate extreme 

value model and constrained bivariate with 0λ =  due to extremely large 0θ . LR test fails 

to reject the independence constraint in both estimation models. However, LR statistics 

are 5.48 for homoskedasticity constraint in the mixed logit model, which is significant 

with 95% confidence. Note that the heteroskedasticity is statistically significant in the 

corresponding bivariate models of the random utility model (Table 3.2). Consequently, 

Montevideo data demonstrates statistically insignificant dependence but significant 

heteroskedasticity. However, although the relative scale estimate is statistically 

significantly less than one, parameter estimates of systematic component of expenditure 

difference are seemly equivalent with that of the random utility model. Remind that the 

expenditure difference model is normalized by 1θ  while the random utility model is 

normalized by 0θ . When 1 0/ 1γ θ θ= < , parameter estimates in the expenditure difference 

model should be greater than that of the random utility model. The parameter estimates in 

the mixed logit model, however, does not show decreasing tendency from the result of 

bivariate extreme value model. 

Interestingly, the parameter estimates of the expenditure difference model are 

statistically duplicates of the random utility model, i.e. assumption of underlying 

distribution such as maxima or minima does not affect the estimation result. When error 

components between two states are independent and identical, parameter estimates are 
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almost similar in both of bivariate extreme values and mixed models since two models 

are different only in interpretation of choice probability but indistinguishable in 

estimation. Although estimation results present independence of error components in 

both data, the variance of the reference state of Montevideo data is greater than that of the 

proposed state.  

In spite of similar parameter estimates, the welfare measure from the change of 

environmental quality varies enormously depending on the relation in error terms. Table 

3.5 shows the sample average of the expected willingness to pay from Table 3.1 to Table 

3.440. Unfortunately, due to estimation failure, the willingness to pay cannot be estimated 

in two heteroskedastic models of random utility with Barbados data and in two cases of 

the bivariate extreme value model for the expenditure difference with Montevideo data. 

Approximation method (the bivariate extreme value model) generally provides better 

estimation result than simulation method (the mixed logit model) when the error terms 

are constrained with 1γ =  and 0λ = . Furthermore, expected willingness to pay with 

homoskedasticity constraint ( 1γ = ) is also similar to logit model since independence has 

been found in most cases. However, the sample average of the expected willingness to 

pay with heteroskedasticity is quite different from the sample average of the expected 

willingness to pay under homoskedasticity. For instance, the sample average of the 

expected willingness to pay in Montevideo is estimated around -28 ~ -26 when 1γ =  is 

imposed, but it is estimated -81 ~ -65 without the constraint of 1γ = . 

                                                 
40 Since the purpose of reporting willingness to pay is to compare the result from each estimation and 
decision model, monetary units are ignored in the table. Furthermore, by the assumption of linear function 
and infinite range of error distribution, the expected willingness to pay can be negative value. 
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3.7 UNKNOWN ALTERNATIVES (MISSING ALTERNATIVE IN THE 
MULTINOMIAL LOGIT MODEL) 

 

Now suppose the choice situation that individual considers three alternatives, one 

of which is the current state (i = 0), the second is the proposed state (i = 1) and the last is 

another alternative for the same environmental improvement (i = A). Alternative A which 

is unknown to researcher implies that respondent agrees the environmental change but 

through different way. If the alternative A turns out to be impossible to implement, i.e. if 

no other options are available except the proposed one, it may be reasonable to think that 

more respondent would accept the proposed project rather than still remain in the current 

state. The random utility from the unknown alternative consists of the individual specific 

components that are same across all alternatives, the alternative specific components that 

may be similar with the proposed alternative but different with respect to at least the 

process, and unobservable random error term. 

If error terms of random utility are i.i.d. type I extreme values across alternatives, 

the probability to accept the proposed state becomes a multinomial logit, 

( ) ( )
( ) ( )

1
1 1 0 1

1 0,

exp /
,

exp / exp /n n n n An
jj A

V
P P U U U U

V V
θ

θ θ
=

= > > =
+∑

. 

Without further assumption, the probability function cannot be useful in the estimation 

because choice of the alternative A is unknown to researcher. Since the unknown 

alternative is supposed to have the same target of environmental change but through a 

different process, assume that the random utility from the unknown alternative is same 

with that of the proposed state with respect to the marginal effect of parameters but 
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different only in the expected value of random utilities, i.e. constant term41. Then the 

systematic part of the random utility of alternative A is expressed as 1AV Vφ= + . The 

probability function of response of “yes” becomes 

( ) ( )1
1

1 exp / exp /n
n

P
vφ θ θ

=
+ + −

 

and finally the log likelihood function for the unknown alternative model is 

( ) ( ) ( ) ( ) ( )
( ) ( )1

exp / exp /1ln ln 1 ln
1 exp / exp / 1 exp / exp /

N
n

n n
n n n

v
L y y

v v
φ θ θ

φ θ θ φ θ θ=

⎧ ⎫ ⎧ ⎫+ −⎪ ⎪ ⎪ ⎪= + −⎨ ⎬ ⎨ ⎬+ + − + + −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑  

where θ is common standard deviation of error terms and /φ φ θ=�  is the normalized 

difference of the expected random utility between the proposed policy and the unknown 

alternative.  

As φ  goes to negative infinity, the probability of accepting the proposed state 

becomes the typical logit model. When 0φ = , i.e. the unknown alternative provides the 

same utility as the proposed project, the probability becomes ( ) 1
1 2 exp /n nP v θ

−
⎡ ⎤= + −⎣ ⎦ . If 

the unknown alternative provides much higher utility, the proposed project will be rarely 

accepted, i.e. the probability choosing the proposed policy becomes lower as the 

unknown alternative provides higher utility. Interestingly, the unknown alternative model 

has some similarities with the misclassification model in the sense that some portion of 

the response is classified into wrong category. However, the unknown alternative model 

is different from the misclassification model in that the unknown alternative model 

                                                 
41 Although the assumption of the same marginal effect but different expected value is surely restrictive to 
the model, the assumption is similar with the constant treatment effect, which has been widely used in labor 
economics for unconfoundedness condition (for details, see Imbens 2004). 
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corrects the misclassification with strong assumption while the typical misclassification 

model estimates the probability of misclassification directly by plugging it in the log 

likelihood function. Misclassification in the unknown alternative model implies the 

unidentification of utilities in no response.  

 The willingness to pay can easily but also carefully be calculated. Note that 

alternative in the contingent valuation study is the state itself while typical multinomial 

logit model has alternatives in the given state42. Since there exist two alternatives after 

the change in the unknown alternative model, three kinds of welfare measure arise from 

the model. The first and traditional willingness to pay is 

( ) ( )1 0
1| 1n n nE WTP i x x ββ β
α α

′ ′= = − =
�
�

, 

which is interpreted as the willingness to pay for the environmental change conditional 

on the project proposed in the survey, i.e. willingness to pay for the project. In fact, this is 

the typical interpretation of the willingness to pay in previous CV literatures. The second, 

also conditional definition is the willingness to pay for the unknown alternative; 

( ) ( )1 0
1|n n nE WTP i A x xφ φ ββ β

α α α α
′ ′= = + − = +

� �
� �

. 

By definition, if the estimate of φ�  is positive, then the unknown alternative provide 

higher expected random utility, suggesting that policy maker needs to consider another 

                                                 
42 Alternatively, given the current state (before change), respondent has to make a choice between proposed 
state and unknown state (after change). In this way of interpretation, the willingness to pay can be 
estimated as difference between the log sum of after change and of before change. With i.i.d type I extreme 
values, the log sum formula is well known for calculating the willingness to pay in the multinomial logit 
(Ben Akiva 1973, McFadden 1973, 1978, 1981, Domencich and McFadden 1975). 
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process of achieving the goal. The final definition of welfare measure is the willingness 

to pay for the environmental change itself such that 

( ) ( ) ( )1 |1, |1,| 1 |n n A n An A nE WTP P E WTP i P E WTP i A= ⋅ = + ⋅ = . 

Since the probability of choosing the proposed state given the environmental change is 

( ) 1
1 |1, 1 exp /n AP φ θ

−
⎡ ⎤= +⎣ ⎦ , the unconditional willingness to pay becomes 

( ) ( ) 1
1 expn nE WTP x β φ φ

α α

−
⎡ ⎤′= + + −⎣ ⎦

� � �
� �

. 

Note that ( ) 1
1 exp φ

−
⎡ ⎤+ −⎣ ⎦

�  is the conditional logistic probability of choosing unknown 

alternative and /φ α� �  is the constant difference of willingness to pay of unknown 

alternative from the proposed policy. Therefore, unconditional willingness to pay is the 

conditional willingness to pay for the project plus the weighted constant estimate. 

Table 3.6 reports the estimation result of unknown alternative model with 

Barbados and Montevideo data sets. The parameter estimate of /φ α� � , constant2, is 

extremely small and insignificant in Barbados data, the result which is consistent with the 

result in Table 3.1 and 3.3 that show i.i.d extreme value distribution. Barbados data 

implies that respondent may not consider other alternatives thus the decision model 

becomes a simple logit. However, the estimation result from Montevideo data is quite 

different from the results in Table 3.2 and 3.4 since the general models do not impose the 

strong assumption on the functional form and parameter estimates are normalized by 

different standard deviation. The estimate of willingness to pay in Montevideo, therefore, 

provides different result from the general model.
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Barbados Montevideo 

Parameter Estimate Parameter Estimate 

Constant 0.6789 
0.5261 Constant -0.8614 

0.2357 

Income 0.0549 
0.0210 Income 0.3334 

0.0905 

Bid 0.0387 
0.0063 Bid 0.0125 

0.0022 

City 0.4099 
0.2929  - 

Age -0.0285 
0.0090  - 

Constant2 -13.2911 
550.4758 Constant2 -0.4415 

0.3100 

Log likelihood -160.841  -714.887 

Sample Average of 
WTP** 

-2.0701  29.1442 

* Parameter estimates are reported followed by standard error of estimate. 
** Willingness to pay for the proposed state 

 

 

Table 3.6: Estimation Result of Unknown Alternatives Model* 
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3.8 CONCLUSIONS 

This essay challenges the theoretical and technical background of the simple logit 

model often used for estimating willingness to pay from dichotomous choice contingent 

valuation applications. The survey questionnaire in a dichotomous choice contingent 

valuation asks a respondent to compare two states of the world: the proposed state and 

reference state. The proposed state represents the future with environmental change by 

the proposed policy and the reference state represents the future with all other 

possibilities including current state. The simple logit model assumes that the respondent’s 

evaluations of the two states are stochastically independent and homoskedastic. However, 

it is possible and in many cases likely, that uncertainty on the part of the respondent, poor 

questionnaire design or simple inherent heterogeneity across states of the world may lead 

to heteroskedastic and correlated errors across states of a given individual. For instance, 

respondent has some degree of uncertainty about the proposed policy while the current 

state is deterministic. In addition, the reference state consists not only of the no-change-

state but also of all other possibilities including change under unknown alternatives.  

By relaxing restrictive assumptions of the standard random utility model, this 

essay suggests a generalized estimation technique that includes a number of existing 

models as special cases. To identify heteroskedasticity and correlation between the 

reference and proposed states, a Gumbel mixed model of maxima, a member of the class 

of bivariate extreme value distributions, has been employed into the random utilities. 

Nested within this generalized model are the heteroskedastic logit model and the simple 

logit. In addition to the random utility model, the essay also develops an expenditure 
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difference model estimated with a Gumbel mixed bivariate distribution of minima. Again, 

this model has nested within it a number of standard logit-expenditure difference models. 

The nesting structure allows for straightforward tests of the homoskedastic-independent 

error assumptions.   

Estimation results from several existing data including Barbados and Montevideo 

data show that correlation between two states is usually minimal, but homoskedastic 

errors are rejected in many cases. Montevideo data presents extremely different scale of 

error terms across states implying that the extreme value distribution, i.e. logistic 

distribution for the difference of error terms, may not be a suitable distribution. Serious 

problem arises in estimation of welfare measure. Heteroskedasticity or correlation 

provides willingness to pay estimate different from estimate of the simple logit, thus 

different policy implication in benefit-cost analysis. 

In spite of the simplicity and profound theory of binary choice logit model, much 

careful consideration is required to refine the choice situation and to apply the model into 

contingent valuation studies. Various estimation models do not suggest different decision 

process but indicate that due to the nature of decision process, the estimation result from 

simple logit model could be incorrect. Decision of which estimation model should be 

used in practice is solely in the researcher on the basis how he or she defines the choice 

situation and choice set.  
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A: Survey Questionnaire for Five-year Project (One-time Payment) 
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Survey Questionnaire for Five-year Project (Annual Payment) 
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Survey Questionnaire for Five-year Project (Perpetuity Payment) 
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B: Technical Note on Some Useful Results 

B.1 Fieller’s Theorem (Casella G. and R.L. Berger, 2002)  

Fieller’s theorem (Fieller 1954) is to get an exact confidence set on a ratio of 

normal means. Given a random sample ( ),i ix y  from a bivariate normal distribution with 

parameter ( )2 2, , , ,x y x yµ µ σ σ ρ , a confidence set on /y xθ µ µ=  can be formed as follows. 

Define Z y xθ θ= − , then Zθ  is normal with mean zero and variance 

( )2 2 21 2y y x xV
nθ σ θρσ σ θ σ= − + . 

It can be shown that 1
ˆ/ ~ nZ V tθ θ −  and the set 

2
2

1, / 2:
ˆ n
z t
v
θ

α
θ

θ −

⎧ ⎫
≤⎨ ⎬

⎩ ⎭
 

defines a 1-α confidence set for θ. This set defines a parabola in θ and the roots of the 

parabola give the endpoints of the confidence set. 

 

B.2 Determinant and efficiency of J-point kk-design and D-optimal design 

When the number of bid points is J and observations are equally distributed in J 

points of bid, the determinant of information matrix is 

( ) ( ) ( )

( )

2
22 2

1 1 1

1 22 2

1 1

det ,
J J J

j j j j jJ
j j j

J J i

i i j i i j
i j

I n w w b w b

n w w b b

µ β β µ µ

β

= = =

− −

+ +
= =

⎡ ⎤⎧ ⎫
⎢ ⎥⎡ ⎤ = − − −⎨ ⎬⎣ ⎦ ⎢ ⎥⎩ ⎭⎣ ⎦

= −

∑ ∑ ∑

∑∑
 

Through simple manipulation, the double summation can be expressed as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2
2 1 1 1 1 1 2 1 2 1 1

2 2 2
1 1 2 2

2
2

1 1

det ,
2

.
2

J J

J

J J J J J J J J

J J

i j i j
i j

w w b b w w b b w w b b
n

I

w w b b w w b b w w b b

n
w w b b

β
µ β

β

= =

⎡ ⎤− + − + + − +
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
+ − + − + + −⎢ ⎥⎣ ⎦

= −∑∑

…
# % #

…  

Using ( )i it bβ µ= − , the determinant becomes 

( ) ( )
2 2

1 1
det ,

2

J J

i j i jJ
i j

nI w w t tµ β
= =

⎡ ⎤ = −⎣ ⎦ ∑∑ . 

Let the design point be 0 0/i ib dµ β= − . Then, since ( )0 0/i it dβ µ µ β β= − + , the 

contribution of a pair of any two points to the determinant in the double summation is 

( ) { }{ }
{ } { }{ }

( ) ( ) ( ){ }

2
2

2

2

0

0 0

exp

1 exp 1 exp

exp
exp

i j i j
i j i j

i j

i j
i j

i j

t t t t
w w t t

t t

d d
d d

A A
β µ µβ β

β β

+ −
− =

⎡ ⎤⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

⎧ ⎫− −⎧ ⎫⎪ ⎪= +⎨ ⎬⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

. 

where { } ( ){ }
0 0exp expi iA dβ

β β µ µ= + − . Thus, the determinant J-point kk-design 

becomes 

( ) ( ) ( ) ( ){ } 2
2

0

1 1 0 0

exp
det , exp

2

J J
i j

i jJ
i j i j

d dnI d d
A A

β µ µβ βµ β
β β= =

⎧ ⎫− −⎧ ⎫⎪ ⎪⎡ ⎤ = +⎨ ⎬⎨ ⎬⎣ ⎦
⎩ ⎭⎪ ⎪⎩ ⎭

∑∑ . 

When the design points are two and allocated at the D-optimal points such as 

{ }0 0,d d−  where ( )( )0 0 0ln 1d p p= −  and 0 0.824p = , the determinant of the information 

matrix is simplified to be 
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( ) ( ){ }
2

0
0

0

det , expNdI
AB

βµ β β µ µ
β

⎡ ⎤⎛ ⎞
⎡ ⎤ = −⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

 

where ( ) ( ){ }
0 0 0exp expA dβ

β β µ µ= + − and ( ) ( ){ }
0 0 0exp expB dβ

β β µ µ= − + − . The 

result can be derived by substituting two optimal points ( )( )1
0 0 0 0ln 1b p pµ β −= ± −  into 

the determinant expression (Abdelbasit and Plackett 1983). The determinant of D-optimal 

design is maximized when 0µ µ=  and 0β β= . The maximum value of determinant is  

( ) ( )
0 0

2

0
0 02, ,

0

det , 1 ln
1

pI Np p
pµ µ β β

µ β
= =

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤ = −⎢ ⎥⎨ ⎬⎜ ⎟⎣ ⎦ −⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦
. 

The efficiency of D-optimal design with poor information is, 

( ){ }
( )

2

0
,

0 0 0

exp
1

Eff
p p ABµ β

β µ µβ
β

⎡ ⎤−⎛ ⎞
= ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠⎣ ⎦

. 

For the J-point kk-design, the efficiency is 

( ){ }
( ) ( ) ( ) 22

0

1 1 0 00 0 0

exp
exp

2 1

J J
i j

J i j
i j i j

d dn
Eff d d

A ANp p d

β µ µ β β
β β= =

⎧ ⎫⎛ ⎞ −− ⎧ ⎫⎪ ⎪= +⎜ ⎟ ⎨ ⎬⎨ ⎬⎜ ⎟− ⎩ ⎭⎪ ⎪⎝ ⎠ ⎩ ⎭
∑∑ . 

The general expression of determinant and efficiency of J-point kk-design can be applied 

for the equi-spaced kk-design such as Sitter’s robust design. Assume that the bids are 

designed to be equi-spaced. Let Jh  be the distance between adjacent bid points and 

suppose that bids are numbered by size from low to high. Then, 1
2

0Jd + = , 

( )i j Jd d i j h− = − , ( )( )1i j Jd d i j J h+ = + − + , and ( )1 / 2i Jd i J h⎡ ⎤= − +⎣ ⎦ , the 

determinant is 
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( ) ( ) ( ) ( ){ } 2
2

0

1 1 0 0

exp
det , exp 1

2

J J
J

JJ
i j i j

i j hnI i j J h
A A

β µ µβ βµ β
β β= =

⎧ ⎫− −⎧ ⎫⎪ ⎪⎡ ⎤ = + − −⎨ ⎬⎨ ⎬⎣ ⎦
⎩ ⎭⎪ ⎪⎩ ⎭

∑∑ � �  

where ( ){ } ( ){ }
0 0exp 1 / 2 expi JA i J hβ

β β µ µ⎡ ⎤= − + + −⎣ ⎦
� . 

 

B.3 The general form of bias in the logit regression (Copas 1988) 

Taylor expansion of the score function is 

( ) ( ) ( ) ( ) ( )1
2

ˆ ˆ ˆ ˆ0 j j j jS S H Lθ θ θ θ θ θ θ θ′ ′= = + − + − − . 

where jS  is jth component of the score, jH  is the jth column of the Hessian matrix, and 

jL  is third derivative of the log-likelihood. The expectation of the above equation gives 

( )11
2j j jbias H tr H L h−′ =�  

since ( ) 0jE S θ⎡ ⎤ =⎣ ⎦  and ( ) ( ) ( ) 1ˆ ˆ ˆE Var Hθ θ θ θ θ −⎡ ⎤′− − = = −⎢ ⎥
⎣ ⎦

, where ˆbias E θ θ⎡ ⎤≡ −⎣ ⎦ . 

An approximate expression for the bias of maximum likelihood estimate is 

1bias H h−�  

where h is the vector of jh . The sth element of bias is 

1
2

sj kl
s jkl

j k l
bias H H L∑∑∑�  

where jkH  is the inverse of { }jkH H= . For the single-bound logit model, each element 

is calculated as 

( )1jk ij ik i i ij ik i
i i

H x x p p x x w X X′= − − = − = − Ω∑ ∑  
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and 

( )1 2jkl ij ik il i i
i

L x x x w p= − −∑ . 

As a simple example with single covariate, the bias is 

( )
( )

3

22

2 1

2
i i i

i i

x w p
bias

x w

−
= ∑

∑
. 

The bias of β in the symmetric two-point design with known mean can be derived 

as follows. Suppose that two-point design is symmetric around known mean and 

observations are equally assigned into each bid. Two design points are 0/b dµ β= ∓  

where 0d > . Let 0/x b dµ β± = − = ± . The bias of two-point symmetric designs, now, 

can be expressed as 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

33

2 222

2 1 2 1

2

n x w x p x x w x p x
bias

n x w x x w x

β β β β

β β

⎡ ⎤ ⎡ ⎤− + − − − −⎣ ⎦ ⎣ ⎦
=

⎡ ⎤+ − −⎣ ⎦

. 

Using that ( ) ( )w x w xβ β= − , ( ) ( ) ( ) 1
1 1 expp x p x xβ β β

−
⎡ ⎤− = − = +⎣ ⎦  and 

( ) ( )2 1 2 1p x p xβ β⎡ ⎤− = − − −⎣ ⎦ , the bias reduces to be 

( ) ( )
( )

( ) ( )
2

exp 1 exp 1 exp exp
2 exp 2
x x x x

bias
Nx x Nx

β β β β
β

⎡ ⎤ ⎡ ⎤− + − −⎣ ⎦ ⎣ ⎦= = . 

The bias of the two-point symmetric design is an increasing function of x. The 

first derivative of bias with respect to x is  

( ) ( ) ( )
( )

2
2

1 exp 2 1
2 exp

x x xbias
x Nx x

β β β
β

− + +∂
=

∂
. 
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By construction, 0x >  and 0β > , the first derivative of bias is positive since 

( ) ( )1 exp 2 1x xβ β− > − . Furthermore, since both of the numerator and denominator go to 

zero as 0x → , using L’Hopital’s theorem, the bias is bounded below by 2 /bias Nβ> . 

However, the bias is unbounded when x →∞ .  

For the equi-spaced J-point kk-design, the bias can be expressed as 

( ){ } ( )

( ){ }( )
3

0

22

1 / 2 2 1

2 1 / 2

J i i
J

J i

h i J w p
bias

h i J w

β ⎡ ⎤− + −⎣ ⎦=
⎡ ⎤− +⎣ ⎦

∑
∑

, 

using ( )1 / 2i Jd i J h⎡ ⎤= − +⎣ ⎦ . Let ( ){ }22 1 / 2i i i i Jd w w h i J⎡ ⎤Ψ ≡ = − +⎣ ⎦ , then the numerator 

is 

( )
( )( )
( )( )

0

0

exp 1 / 2 1
1 / 2

exp 1 / 2 1
J

J i
J

h i J
h i J

h i J

β
β

β
β

⎧ ⎫⎡ ⎤− + −⎪ ⎪⎣ ⎦⎡ ⎤Ψ − + ⎨ ⎬⎣ ⎦ ⎡ ⎤− + +⎪ ⎪⎣ ⎦⎩ ⎭
∑ . 

The denominator is simply 

( ) ( )2 22
i i id w = Ψ∑ ∑  

The bias of the equi-spaced J-point kk-design is  

( )
( )

( )( )
( )( )

0

0

0
2

exp 1 / 2 1
1 / 2

exp 1 / 2 12

JJ
J i

Ji

h i Jhbias i J
h i Jn

β
β

β
β

β ⎧ ⎫⎡ ⎤− + −⎪ ⎪⎣ ⎦⎡ ⎤= Ψ − + ⎨ ⎬⎣ ⎦ ⎡ ⎤− + +Ψ ⎪ ⎪⎣ ⎦⎩ ⎭
∑

∑
. 
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C: Gumbel Mixed Model and GEV 

C.1 Gumbel mixed bivariate extreme values and reduced extreme values difference 

Suppose a sequence of i.i.d. pair of random utilities ( ){ }0 1,i iU U′ ′ , i' = 1, 2, …, m. 

Then the bivariate extreme value distribution ( )0 1,m
m m m mv vτ θ τ θ′ ′Ψ + +  is an 

asymptotically approximated distribution of the pair of 

( )0 0 1 1max , maxi m m i m mU v U vτ θ τ θ′ ′ ′ ′≤ + ≤ +  with the margins of the Gumbel distribution, 

where mτ , mτ ′ , mθ  and mθ ′  are location and dispersion sequences. By uniform 

convergence of a continuous function, ( )0 1,m v vΨ  is approximated by  

0 1,v vF τ τ
θ θ

′− −⎛ ⎞
⎜ ⎟′⎝ ⎠

. 

The asymptotic distribution function is  

( ) ( ) ( ) ( ) ( ) ( ){ } ( )1 0

0 1 0 1 0 1 1 0, exp exp exp
k v v

F v v F v F v v v k v v
− ⎡ ⎤⎡ ⎤= = − − + − −⎣ ⎦ ⎣ ⎦ , 

where ( )k ⋅  is the dependence function representing the asymptotic connection between 

0max iU ′  and 1max iU ′ . For details of derivation and analytical properties, see Gumbel 

and Mustafi (1967) and Tiago De Oliveira (1975). Some useful relationships in a 

bivariate distribution are the boundary conditions ( ) ( ) ( ), , , 0F y F x F−∞ = −∞ = −∞ −∞ =  

and the definition of the margins as ( ) ( ),F x F x∞ =  and ( ) ( ),F y F y∞ = . 

The mixed model, one of differentiable bivariate extreme value distributions, has 

the dependence function defined as 



 

 
 
 
 

169

( ) ( )
( )( )2

exp
| 1

1 exp
k

λ τ
τ λ

τ
= −

+
 

where τ is reduced difference 0 1v v− . The distribution function of Gumbel mixed model is 

( ) ( ) ( ) ( ) ( )

1

0 1 0 1
0 1

1 1, exp
ln ln

F v v F v F v
F v F v

λ
−⎧ ⎫⎡ ⎤⎪ ⎪= ⋅ − +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 

where the marginal distribution is ( ) ( )exp expF z z⎡ ⎤= − −⎣ ⎦ . The exchangeable 

distribution, ( ) ( )0 1 1 0, ,F v v F v v= , such as the mixed model or logistic model has the 

symmetric dependence function, ( ) ( )k kτ τ− = . The parameter λ indicates the association 

between the two extremes. For 0λ = , the joint distribution is independent such that 

( ) ( ) ( )0 1 0 1,F v v F v F v= , and generally, the inequality ( ) ( ) ( )0 1 0 1,F v v F v F v>  holds for 

dependent case 0λ > . The correlation coefficient can be expressed as a function of the 

association parameter λ; 

( )
2

2

6 arccos 1
2
λρ λ

π
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  ( 0 2 / 3ρ≤ ≤ ). 

When the correlation coefficient is greater than 2/3, the mixed model can not be used. 

The reduced difference distribution function is derived using the fact 

( ) ( )
( )

( )
( )

exp
|

1 exp
k

D w
k

τ τ
λ

τ τ
′

= +
+

. 

From the dependence function of Gumbel mixed model, the second term in the right-hand 

side of difference function becomes 
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( )
( )

( ) ( )
( )( ) ( ) ( ){ }2

exp exp 1

1 exp exp 1 exp

k
k

λ τ ττ
τ τ τ λ τ

⎡ ⎤−′ ⎣ ⎦=
⎡ ⎤+ + −⎣ ⎦

. 

Therefore, the distribution function of the difference can be simplified as 

( ) ( )
( )

( )
( ) ( )

2

2

exp 1exp
|

1 exp exp 1 exp
D

τ λτ
τ λ

τ τ λ τ

⎡ ⎤+ −⎣ ⎦=
+ ⎡ ⎤+ −⎣ ⎦

. 

The probability density function of reduced difference can be derived by 

differentiating the difference distribution with respect to τ,  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2

2 2

exp

1 exp

k k kD

k

τ τ ττ τ
ζ τ

τ τ τ

′′ ′⎡ ⎤−∂ ⎣ ⎦= = +
∂ ⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

. 

Since ( )k τ  is symmetric and differentiable, dependence function satisfies 

( ) ( )k kτ τ= − , ( ) ( )2 2
k kτ τ′ ′⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  and ( ) ( )k kτ τ′′ ′′= − . 

This implies the second part of the probability function of reduced difference is 

symmetric, thus the probability density function is symmetric, ( ) ( )ζ τ ζ τ= − . Algebraic 

description of the probability density function of reduced difference is as follows. Since 

the last term of the right-hand side is 

( ) ( ) ( )
( )

( )
( )( )

( ) ( ) ( )[ ]
( )( ) ( )

2

2

2

2 22

exp 2 1 exp 1 2exp 2 4exp
            

1 exp 1 exp exp

k k k

k

τ τ τ

τ

τ τ τ λλ τ

τ τ λ τ

′′ ′⎡ ⎤− ⎣ ⎦
⎡ ⎤⎣ ⎦

⎧ ⎫
⎡ ⎤ ⎡ ⎤+ − − −⎪ ⎪⎣ ⎦ ⎣ ⎦= − ⎨ ⎬

⎡ ⎤+ ⎪ ⎪+ −⎢ ⎥⎣ ⎦⎩ ⎭

, 

by rearranging terms, the probability density function becomes  
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( ) ( )
( )

( )( ) ( ) ( )( )
( )( ) ( )

4 22

2 22

1 exp exp 2 1 exp 2exp

1 exp 1 exp exp

τ λ τ λ ττ
ζ τ

τ τ λ τ

⎧ ⎫
+ − − −⎪ ⎪

= ⎨ ⎬
⎡ ⎤ ⎡ ⎤+ ⎪ ⎪+ −⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭

. 

Bivariate distribution function of the logistic model is 

( )
1

, | exp exp exp
1 1

x yF x y
λ

λ
λ λ

−⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − − + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 for 0 1λ≤ ≤ , 

since the dependence function is defined as 

( )
( )( )
( )

1
1 exp / 1

|
1 exp

k

λ
τ λ

τ λ
τ

−
⎡ ⎤+ − −⎣ ⎦=

+ −
. 

The distribution of the difference is 

( )
1

| 1 exp
1

D ττ λ
λ

−
⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

. 

The logistic model is independent for 0λ =  and dependent for 1λ =  with diagonal case. 

As can be seen, the logistic model is the simple version of the generalized extreme value 

distribution that has been widely used in the transportation and recreational site choice 

literatures.  

Since the mixed and logistic models converge in the same independent case, they 

are called nonseparated models. The choice of the appropriate model is statistically 

important and also affects the estimation result. Tiago de Oliveira (1983) suggests the 

decision rule using the rejection region of independence test in each model. So far, the 

logistic model of the multivariate case has been used in the environmental economics but 

there is no application of the mixed model.  
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C.2 Nested logit and paired combinatorial models with GEV distribution 

The nested logit model is obtained by assuming the error term (the vector of 

unobserved utility) has a type of generalized extreme value distribution  

( ) ( )( )1
exp exp /

k

k

K
jn jn kk j B

F
λ

ε ε λ
= ∈

⎛ ⎞= − −⎜ ⎟
⎝ ⎠
∑ ∑ . 

As well known, for this generalized extreme value distribution, any two alternatives in 

the same nest are correlated but these in different nests are uncorrelated. The choice 

probability for alternative i is  

( ) ( )
( )

1

1

exp / exp /

exp /

k

k

l

l

in k jn kj B
in K

jn ll j B

V V
P

V

λ

λ

λ λ

λ

−

∈

= ∈

⎡ ⎤
⎣ ⎦=

⎡ ⎤
⎣ ⎦

∑
∑ ∑

. 

Parameter kλ  is a measure of the degree of independence in unobserved utility among the 

alternatives in the nest k. 

Now suppose that the current state and the proposed change of the environment 

can be recognized either of in the same nest or different nests. In the case of recognizing 

them in the same nest, there exists only one nest and the probability of choosing one 

collapses to 

( )
( )

( )
( ) ( )

1 1
1

1 0

exp / exp /
exp / exp /exp /

k

n k n k
n

n k n kjn kj B

V V
P

V VV
λ λ

λ λλ
∈

= =
+∑

. 

When they are in different nests, the probability is 

( )
( )

( )
( ) ( )

1 1
1 2

1 0
1

exp / exp
exp expexp /

k

l

n k n
n

n njn ll

V V
P

V VV

λ

λ

λ

λ
=

⎡ ⎤⎣ ⎦= =
+⎡ ⎤⎣ ⎦∑

. 
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Therefore, kλ  is not identified and the parameters are indistinguishable between two 

cases. 

The general paired combinatorial model with J alternatives is proposed by Chu 

(1981, 1989) as follows 

( ) ( ) ( )
( ) ( )

1

1

1 1

exp / exp / exp /

exp / exp /

ij

kl

in ij in ij jn ijj i
in J J

kn kl ln klk l k

V V V
P

V V

λ

λ

λ λ λ

λ λ

−

≠

−

= = +

⎡ ⎤+⎣ ⎦=
⎡ ⎤+⎣ ⎦

∑
∑ ∑

. 

where a parameter ijλ  indicates the degree of independence between alternatives i and j. 

For the contingent valuation, since only two alternatives explicitly exist, the general 

model can be simplified to be  

( ) ( ) ( )
( ) ( )
( )

( ) ( )

12

12

1
1 12 1 12 2 12

1

1 12 2 12

1 12

1 12 2 12

exp / exp / exp /

exp / exp /

exp /
exp / exp /

n n n
n

n n

n

n n

V V V
P

V V

V
V V

λ

λ

λ λ λ

λ λ

λ
λ λ

−
⎡ ⎤+⎣ ⎦=

⎡ ⎤+⎣ ⎦

=
⎡ ⎤+⎣ ⎦

. 

The probability of paired combinatorial model with J = 2 is equivalent to the generalized 

nested logit with two alternatives, resulting the simple logit model. Since alternatives are 

only two and the scale and level of the utility is immaterial, no covariance parameter can 

be estimated for the dichotomous choice contingent valuation in the generalized model 

such as nested logit and paired combinatorial model. Note that these models have only 

( )1 / 2 1J J − −  covariance parameters after normalization. 

 


