DESIGNING HIGH PERFORMANCE AND SCALABLE
MPI OVER INFINIBAND

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University
By

Jiuxing Liu, B.S., M.S.

* ok k% %
The Ohio State University

2004

Dissertation Committee: Approved by

Professor Dhabaleswar K. Panda, Adviser

Professor Ponnuswamy Sadayappan '
Adviser
Graduate Program in
Computer and Information
Science

Professor Srinivasan Parthasarathy

© Copyright by
Jiuxing Liu

2004

ABSTRACT

Rapid technological advances in recent years have made powerful yet inexpensive
commodity PCs a reality. New interconnecting technologies that deliver very low
latency and very high bandwidth are also becoming available. These developments
lead to the trend of cluster computing, which combines the computational power of
commodity PCs and the communication performance of high speed interconnects to
provide cost-effective solutions for computational intensive applications, especially
for those grand challenge applications such as weather forecasting, air flow analysis,
protein searching, and ocean simulation.

InfiniBand was proposed recently as the next generation interconnect for I/O and
inter-process communication. Due to its open standard and high performance, In-
finiBand is becoming increasingly popular as an interconnect for building clusters.
However, since it is not designed specifically for high performance computing, there
exists a semantic gap between its functionalities and those required by high perfor-
mance computing software such as Message Passing Interface (MPI). In this disserta-
tion, we take on this challenge and address research issues in designing efficient and
scalable communication subsystems to bridge this gap. We focus on how to take ad-

vantage of the novel features offered by InfiniBand to design different components in

ii

the communication subsystems such as protocol design, flow control, buffer manage-
ment, communication progress, connection management, collective communication,
and multirail network support.

Our research has already made notable contributions in the areas of cluster com-
puting and InfiniBand. A large part of our research has been integrated into our
MVAPICH software, which is a high performance and scalable MPI implementation
over InfiniBand. Our software is currently used by more than 120 organizations world-
wide to build InfiniBand clusters, including both research testbeds and production
systems. Some of the fastest supercomputers in the world, including the 3rd ranked
Virginia Tech Apple G5 cluster, are currently powered by MVAPICH. Research in this
dissertation will also have impact on designing communication subsystems for systems

other than high performance computing and for other high speed interconnects.

iii

I dedicate this dissertation to my wife, my parents and my sister.

v

ACKNOWLEDGMENTS

I would like to thank my adviser Prof. D. K. Panda for his guidance during my
PhD study. I am grateful for his tremendous effort and time that he has dedicated
to my dissertation as well as his patience and understanding.

I would also like to thank the other members of my dissertation committee,
Prof. P. Sadayappan and Prof. S. Parthasarathy, for their valuable comments and
suggestions.

I gratefully acknowledge the financial support provided by The Ohio State Uni-
versity, National Science Foundation (NSF), and Department of Energy (DOE).

I am grateful to Jiesheng Wu for his help and friendship. I have learned a lot
from him on both technical and non-technical matters. It has always been a good
experience working with him.

I am grateful to Dr. Mohammad Banikazemi, Dr. Bulent Abali, and Dr. Craig
Stunkel of IBM T. J. Watson Research Center for their guidance and support during
my summer intern and afterwards. I am especially grateful to Mohammad, who was
also my senior student when he was at Ohio State. I would not have gone this far
without his help.

I would also like to thank Dr. Pete Wyckoff of the Ohio Supercomputer Center
and Prof. Jose Duato of the Universidad Politecnica de Valencia for their help and
support during the course of my PhD study.

A%

I am very fortunate to have worked with many excellent current and former mem-
bers of the NOWLARB: Dr. Darius Buntinas, Dr. Hyun-Wook Jin, Sushmitha Kini,
Balasubraman Chandrasekaran, Weikuan Yu, Weihang Jiang, Amith Mamidala, and
Abhinav Vishnu. I am grateful for their valuable suggestions, friendship, and support.

I am also grateful to many other members of the NOWLAB, especially, Pavan
Balaji, Lei Chai, Wei Huang, Sundeep Narravula, Ranjit Noronha, Gopalakrishn
Santhanaraman, Shuang Liang, Sayantan Sur, and Karthikeyan Vaidyanathan, for
their friendship and many helpful discussions on various technical and non-technical
topics.

Finally, I would like to thank my family: my wife, my parents, and my sister. It

is their love, understanding, and support that make my life worthwhile.

vi

VITA

107D Born — Chongqing, China
June 1997 B.S. Computer Science,
Shanghai Jiao Tong University,
China
June 1999 M.S. Computer Science,
Shanghai Jiao Tong University,
China
September 1999 — August 2000 University Fellow,
The Ohio State University
September 2000 — May 2001 Graduate Research Associate,
The Ohio State University
June 2001 — August 2001 Summer Intern,
IBM T. J. Watson Research Center
September 2001 — May 2002 Graduate Research Associate,
The Ohio State University
June 2002 — August 2002 Summer Intern,
IBM T. J. Watson Research Center
September 2002 — June 2003 Graduate Research Associate,
The Ohio State University
July 2003 — September 2003 Summer Intern,
IBM T. J. Watson Research Center
October 2003 — June 2004 Graduate Research Associate,
The Ohio State University
July 2004 — September 2004 Presidential Fellow,

The Ohio State University

vii

PUBLICATIONS

Research Publications

J. Liu, J. Wu, D. K. Panda, “High Performance RDMA-Based MPI Implementation
over InfiniBand”, International Journal of Parallel Programming, June, 2004.

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff, D. K.
Panda, “Micro-Benchmark Performance Comparison of High-Speed Cluster Intercon-
nects”, IEEE Micro, January/February, 2004.

J. Liu, A. Vishnu, D. K. Panda, “Building Multirail InfiniBand Clusters: MPI-Level
Designs and Performance Evaluation”, SuperComputing 2004 Conference (SC 04),
November, 2004, to be presented.

A. Mamidala, J. Liu, D. K. Panda, “Efficient Barrier and Allreduce over InfiniBand
using InfiniBand Multicast and Adaptive Algorithm”, 2004 IEEE International Con-
ference on Cluster Computing (Cluster 04), September, 2004, to be presented.

W. Jiang, J. Liu, H. Jin, D. K. Panda, D. Buntinas, R. Thakur, W. Gropp, “ Ef-
ficient Implementation of MPI-2 Passive One-Sided Communication over InfiniBand
Clusters”, Euro PVM/MPI 2004 Conference, September, 2004, to be presented.

J. Liu, A. Mamidala, A. Vishnu, D. K. Panda, “Performance Evaluation of InfiniBand
with PCI Express”, Hot Interconnect 12 (HOTI 04), August, 2004.

J. Liu, A. Mamidala, D. K. Panda, “ Fast and Scalable MPI-Level Broadcast using
InfiniBand’s Hardware Multicast Support”, Int’l Parallel and Distributed Processing
Symposium (IPDPS 04), April, 2004.

J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,
B. Toonen, “Design and Implementation of MPICH2 over InfiniBand with RDMA
Support”, Int’l Parallel and Distributed Processing Symposium (IPDPS 04), April,
2004.

J. Liu, D. K. Panda, “Implementing Efficient and Scalable Flow Control Schemes in
MPT over InfiniBand”, Workshop on Communication Architecture for Clusters (CAC
04), Held in Conjunction with Int’l Parallel and Distributed Processing Symposium
(IPDPS 04), April, 2004.

viii

W. Jiang, J. Liu, H. Jin, D. K. Panda, W. Gropp, R. Thakur, “High Performance
MPI-2 One-Sided Communication over InfiniBand”, 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 04), April, 2004.

J. Liu, D. K. Panda, M. Banikazemi, “Evaluating the Impact of RDMA on Storage
I/O over InfiniBand”, 8rd Annual Workshop on Novel Uses of System Area Networks
(SAN-3), Held in Conjunction with The 10th International Symposium on High Per-
formance Computer Architecture (HPCA-10), February, 2004.

J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas, P. Wyckoff,
D. K. Panda, “Performance Comparison of MPI Implementations over InfiniBand,
Myrinet and Quadrics”, SuperComputing 2003 Conference (SC 03), November, 2003.

S. Kini, J. Liu, J. Wu, P. Wyckoft, D. K. Panda, “Fast and Scalable Barrier using
RDMA and Multicast Mechanisms for InfiniBand-Based Clusters”, Euro PVM/MPI
2003 Conference, September, 2003.

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, P. Wyckoff, D.
K. Panda, “Micro-Benchmark Level Performance Comparison of High-Speed Cluster
Interconnects”, Hot Interconnect 11 (HOTI 03), August, 2003.

J. Liu, J. Wu, S. P. Kinis, P. Wyckoff, D. K. Panda, “High Performance RDMA-Based
MPI Implementation over InfiniBand”, 17th Annual ACM International Conference
on Supercomputing (ICS 03), June, 2003.

J. Liu, M. Banikazemi, B. Abali, D. K. Panda, “Design and Performance Evaluation of
A Portable Client/Server Communication Middleware over System Area Networks”,
2nd Annual Workshop on Nowvel Uses of System Area Networks (SAN-2), Held in
Conjunction with The 9th International Symposium on High Performance Computer
Architecture (HPCA-9), February, 2003.

J. Wu, J. Liu, P. Wyckoff, D. K. Panda, “Impact of On-Demand Connection Manage-
ment in MPI over VIA”, 2002 IEEE International Conference on Cluster Computing
(Cluster 02), September, 2002.

M. Banikazemi, J. Liu, D. K. Panda, and P. Sadayappan, “Implementing TreadMarks
over VIA on Myrinet and Gigabit Ethernet: Challenges, Design Experience, and Per-
formance Evaluation”, 2001 International Conference on Parallel Processing (ICPP
01), September 2001.

ix

M. Banikazemi, J. Liu, S. Kutlug, A. Ramakrishna, P. Sadayappan, H. Shah, and D.
K. Panda, “VIBe: A Micro-benchmark Suite for Evaluating Virtual Interface Archi-
tecture (VIA) Implementations”, Int’l Parallel and Distributed Processing Symposium
(IPDPS 01), April 2001.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Computer Architecture Prof. Dhabaleswar K. Panda
Software Systems Prof. Mario Lauria
Computer Networking Prof. Dong Xuan

TABLE OF CONTENTS

Page

Abstract e ii

Dedication iv

Acknowledgments v

VIta . . o e s vii

List of Tables o o XV

List of Figures L xvi
Chapters:

1. Introduction, 1

2. Backgroundo Lo 5

2.1 MPI Overview s 5

2.1.1 MPI Point-to-Point Communication 6

2.1.2 MPI Collective Communication 6

2.1.3 MPI One-Sided Communication 7

2.2 MPI Design Issues o000 8

2.2.1 Point-to-Point Communication 8

2.2.2 Collective Communication 11

2.3 InfiniBand Overview 11

2.3.1 Queue Pair Based Communication Model 12

2.3.2 Channel and Memory Semantics 14

2.3.3 Transport Services 15

2.3.4 Management Infrastructure 16

xi

2.3.5 Hardware Multicast 16

2.3.6 Atomic Operations 16
2.3.7 Completion and Event Handling Mechanisms 17
2.3.8 End-to-End Flow Control 17
2.3.9 Quality-of-Service Supporto 18
Problem Statement and Methodology 19
3.1 Problem Statement L. 19
3.2 Methodology oo 29
Basic Implementation00 o000 32
4.1 MPI Design Issues L. 32
41.1 Send/Receive vs RDMA 33
4.1.2 Handling Buffer Registration 34
4.1.3 Flow Control oo 35
4.2 Performance 35
4.3 Summary e 37
Designing Efficient and Scalable Flow Control 38
5.1 Flow Control in MPI over InfiniBand 38
5.2 Hardware-Based Flow Control 41
5.3 User-Level Static Flow Control 42
5.4 User-Level Dynamic Flow Control 44
5.5 Performance Evaluation 45
5.5.1 Latency 46
5.5.2 Bandwidth 46
5.5.3 NAS Parallel Benchmarks 47
5.5.4 TImpact of Number of Pre-Posted Buffers 51
5.6 Summary 52
RDMA-Based Design 54
6.1 Mapping MPI protocols 56
6.1.1 Send/Receive Based Approach 56
6.1.2 RDMA-Based Approach 58
6.1.3 Hybrid Approacho 59
6.2 Detailed Design Issues 62
6.2.1 Basic Structure of an RDMA Channel 62
6.2.2 Polling for a Single Connection 63
6.2.3 Reducing Sender Side Overhead 67

xii

6.2.4 Flow Control for RDMA Channels 68

6.2.5 Ensuring Message Order 69
6.2.6 Polling Set Management 69

6.3 Performance Evaluation 70
6.4 Summaryl 75
7. Fast and Scalable MPI Broadcast 7
7.1 MPI Bcast Overview 78
7.2 Designing MPI Bcast with InfiniBand Multicast 80
7.2.1 BasicDesign 0000 82
7.2.2 Sliding-Window Based Design 83
7.2.3 Avoiding ACK Implosion 85
7.2.4 Reducing ACK Traffic 88
7.2.5 Dealing with Large Messages 90

7.3 Detailed Design Issues oo 90
7.3.1 Buffer Management00 90
7.3.2 Handling Out-of-Order and Duplicate Messages 91
7.3.3 Timeout and Retransmission 92
7.3.4 Flow Controlo 93
7.3.5 RDMA Based ACK communication. 93

7.4 Performance Evaluation 0000, 94
7.4.1 Latency Test 95
7.4.2 Throughput Test 96
7.4.3 Impact of Process Skew 97

7.5 Analytical Modelo Lo 98
7.5.1 Modeling Broadcast Latency 98
7.5.2 Determining the Optimal Number of Co-Roots 98

7.6 Summary e e e 99
8. Supporting Multirail InfiniBand Clusters 101
8.1 InfiniBand Multirail Network Configurations 102
8.1.1 Multiple HCAs 103
8.1.2 Multiple Ports oo 104
8.1.3 Single Port with LID Mask Control (LMC) 104

8.2 Multirail MPI Design oL o 105
8.2.1 Basic Architectureo 106
8.2.2 Virtual Subchannel Abstraction 107
8.2.3 Integration with MPI protocols 108
8.2.4 Scheduling Policies 0oL 110
8.2.5 Adaptive Striping 111

8.3 Performance Evaluation 115

8.3.1 Experimental Testbed 116

8.3.2 Performance Benefits of Multirail Design 116

8.3.3 Evaluating the Adaptive Striping Scheme 122

8.4 Related Worko 125

85 Summary 127

9. MPI Performance Evaluation Framework 128
9.1 Micro-Benchmarks 130

9.1.1 Latency and Bandwidth 133

9.1.2 Host Overhead 133

9.1.3 Bi-Directional Performance 134

9.1.4 Communication/Computation Overlap 135

9.1.5 Impact of Buffer Reuse 136

9.1.6 Intra-Node Communication 137

9.1.7 Collective Communication 137

9.1.8° Memory Usage 138

9.2 Applications 139

9.2.1 Application Performance Results 141

9.2.2 Scalability with System Size 142

9.2.3 Impact of Computation/Communication Overlap 142

9.2.4 Impact of Buffer Reuse 144

9.2.5 Impact of Other Factors 145

9.3 Summary e 145

10. Open Source Software Release and its Impact 146
11. Conclusions and Future Research Directions 147
11.1 Summary of Research Contributions 147
11.1.1 MPI Communication Protocol handling over InfiniBand . . 148

11.1.2 Flow Control in MPI over InfiniBand 149

11.1.3 MPI Collective Communication over InfiniBand 150

11.1.4 MPI Level Support for Multirail InfiniBand Networks 151

11.1.5 Performance Evaluation Framework 152

11.2 Future Research Directions 154
Bibliography L 157

Xiv

LIST OF TABLES

Table Page
5.1 Explicit Credit Messages for User-Level Static Scheme 49
5.2 Maximum Number of Posted Buffers for User-Level Dynamic Scheme 49
6.1 Number of distinct sources per process 61
6.2 MPI Performance (Smallest Latency and Peak Bandwidth) 72
9.1 Message Size Distributiono 141
9.2 Scalability with System Sizes for Three Networks (Execution times are
inseconds.)l 143
9.3 Non-Blocking MPI Calls 143
94 Buffer Reuse Rate 144

XV

LIST OF FIGURES

Figure

2.1 Eager and Rendezvous Protocols
2.2 InfiniBand Architecture (Courtesy InfiniBand Trade Association)

2.3 InfiniBand Queue Pairs and Completion Queue
3.1 Design MPI Components Using InfiniBand Features
3.2 RDMA and Multicast Barrier Protocol
3.3 Research in Designing MPI Components over InfiniBand
4.1 Small Message Latency for MPI
4.2 Large Message Latency for MPI
4.3 Small Message Bandwidth for MPT
4.4 Large Message Bandwidth for MPI
5.1 MPI Latency
5.2 MPI Bandwidth (Pre-Post = 10, Blocking)
5.3 MPI Bandwidth (Pre-Post = 10, Non-Blocking)
5.4 MPI Bandwidth (Pre-Post = 10, Blocking)

5.5 MPI Bandwidth (Pre-Post = 10, Non-Blocking)

xvi

Page

2.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

7.1

7.2

7.3

NAS Benchmarks (Pre-Post = 100) 48

NAS Benchmarks (Performance Degradation from Pre-Post=100 to

Pre-Post=1) 48
CQ Polling time L o o7
Latency of One RDMA Write versus Two RDMA Writes 57
RDMA Polling Set 60
Basic Structure of an RDMA Channel 64
Latency of RDMA Write Gather 65
RDMA Buffer Structure for Polling 65
MPI Latency 71
MPI Bandwidth oL 71
MPI Latency Comparison 71
MPI Bandwidth Comparison (Small Messages) 71
MPI Bandwidth Comparison 72
Host Overhead in Latency Test 72
NAS Results on 4 Nodes (Class A) 72
NAS Results on 8 Nodes (Class B) 72
Polling Time of RDMA Channels 74

MPI_Bcast Latency in MVAPICH Using Point-to-Point Communication 79
Bridging the Gap between InfiniBand Multicast and MPI_Bcast . . . 82

Sliding Window Buffer Management 84

xvii

7.4

7.5

7.6

7.7

7.8

7.9

7.10

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

Co-Root Scheme L 87

MPI Bcast Latency for Small Messages Using Various Multicast Schemes(8
Nodes) o o o 96
MPI _Bcast Latency for Large Messages (8 Nodes) 96
Impact of Process Skew on MPI Beast (8 Nodes) 97
MPI_Bcast Throughput (8 Nodes) 97
Estimated MPI_Bcast Latency for Small Messages (1024 Nodes) . . . 99
Estimated MPI_Bcast Throughput for Different Number of Co-Roots
(1024 Nodes) . . .« v v v it e 99
Basic Architecture of Multirail MPI Design 106
Virtual Subchannel Abstraction 109
Feedback Loop in Adaptive Striping 113
MPI Latency (UP mode) 117
MPI Bandwidth (Small Messages, UP mode) 117
MPI Bandwidth (UP mode) 117
MPI Bidirectional Bandwidth (UP mode) 118
MPI Bandwidth (SMP mode) 118
MPIT Bidirectional Bandwidth (SMP mode) 118
MPI_Bcast Latency (UP mode) 121
MPI_Alltoall Latency (UP mode) 121
MPI_Beast Latency (SMP mode) 121
MPI_Alltoall Latency (SMP mode) 121

xXViii

8.14

8.15

8.16

8.17

8.18

8.19

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

Application Results (8 processes, UP mode) 122
Application Results (16 processes, SMP mode) 122
MPI Latency with Adaptive Striping (UP mode). 124
MPI Bandwidth with Adaptive Striping (UP mode) 124
MPI Bidirectional Bandwidth with Adaptive Striping (UP mode) . . 124
MPI Bandwidth with Adaptive Striping 124
MPI Latency 130
MPI Bandwidth 130
MPI Host Overhead 131
MPI Bi-Directional Latency 131
MPI Bi-Directional Bandwidth 131
Overlap Potential o o o000 131
MPI Latency with Buffer Reuse 131
MPI Bandwidth with Buffer Reuse 131
MPI Intra-Node Latency 132
MPI Intra-Node Bandwidth 132
MPI Alltoall 132
MPI Allreduce 132
MPI Memory Consumption 132
[Sand MGon8Nodes L. 139

Xix

9.15 SP and BT on 4 Nodes and LU on 8 Nodes 139

9.16 CGand FT on8 Nodes. 140
9.17 Sweep3D on 8 Nodes 140
9.18 Scalability with System Sizes for a 16-Node System at Topspin 140
9.19 SMP Performance (16 Processes on 8 Nodes at OSU) 140

XX

CHAPTER 1

INTRODUCTION

Today’s distributed and high performance applications require high computational
power as well as high communication performance. In the past few years, the com-
putational power of commodity PCs has been doubling about every eighteen months.
At the same time, network interconnects that provide very low latency and very high
bandwidth are also emerging [71, 77]. This trend makes it very promising to build
high performance computing environments by clustering, which combines the compu-
tational power of commodity PCs and the communication performance of high speed
network interconnects. However, performance of the underlying hardware is not de-
livered to applications in traditional communication protocols such as TCP/IP due
to their high protocol overhead, heavy kernel involvement and extra data copies in
the communication critical path [15, 64].

Recently, the research and industry communities have been proposing and im-
plementing many communication systems such AM [98], U-Net [97], VMMC [8] and
FM [74] to address some of the problems associated with the traditional networking
protocols. In these systems, the involvement of operating system kernel is minimized

and the number of data copies is reduced. As a result, they provide much higher

communication performance to the application layer. In the recent past, the Virtual
Interface Architecture (VIA) [20, 17, 4] was proposed to standardize these efforts.

More recently, InfiniBand Architecture [37] has been proposed as the next gener-
ation interconnect for I/O and inter-process communication. In InfiniBand Architec-
ture, computing nodes and I/O nodes are connected to the switched fabric through
Channel Adapters (CAs). InfiniBand provides a Verbs interface which is similar to
VIA. This interface is used by hosts to access communication functions provided by
Host Channel Adapters (HCAs).

In the area of high performance computing, Message Passing Interface (MPI) [90,
29] has been the de facto standard for writing parallel applications. To achieve op-
timal performance in a cluster, it is very important to implement MPI efficiently on
top of the cluster interconnect. High speed interconnects such as Myrinet [71] and
Quadrics [81] were designed for high performance computing environments. As a
result, their hardware and software were specially optimized to achieve better MPI
performance [44, 66, 77]. Unlike Myrinet and Quadrics, InfiniBand was initially pro-
posed as a generic interconnect for inter-process communication and I/O. Since it
was not designed specifically for high performance computing, there exists a semantic
gap between the communication interface of InfiniBand and that of MPI. However,
besides its high performance, InfiniBand provides many novel features that can poten-
tially benefit MPI design. These features include different communication semantics,
multiple transport services, hardware multicast, communication management infras-
tructure, flexible completion and event handling mechanisms, Quality-of-Service, etc.

In this dissertation, we focus on how to design a communication subsystem that

can bridge the gap between InfiniBand and high performance computing middleware

layers such as MPI. In designing our communication subsystem, we aim to achieve

the following goals:

1. High performance. Despite the semantics gap, our communication subsystem

needs to preserve the performance of the underlying InfiniBand layer.

2. High scalability. Our design needs to scale with system size, despite that certain

underlying components of InfiniBand may not be scalable.

Specifically, we investigate how to exploit different features in InfiniBand to ad-
dress design issues in MPI. These include designing MPI communication protocols,
flow control, collective communication, multirail network support, performance eval-
uation framework, as well as other issues such as buffer management, connection
management and communication progress,

The remaining part of this dissertation is organized as follows: In Chapter 2, we
provide background information of our research by introducing InfiniBand and MPI.
In Chapter 3, we present the problem statement and methodology of our research.
A basic MPI design over InfiniBand is described in Chapter 4. In Chapter 5, we
describe how to implement efficient and scalable MPI flow control mechanisms over
InfiniBand. In Chapter 6, we present a novel MPI design which is based on InfiniBand
Remote Direct Memory Access (RDMA) operations. In Chapter 7, we discuss how to
achieve fast and scalable MPI level broadcast over InfiniBand. We describe research
issues in supporting multirail InfiniBand networks at the MPI level in Chapter 8. In
Chapter 9, we present a comprehensive framework for evaluating the performance of

different MPI implementations. Our MPI software package derived from our research

and its impact are described in Chapter 10. In Chapter 11, we conclude and discuss

some of the future research directions.

CHAPTER 2

BACKGROUND

Before we get to the details of the design of our communication subsystem, we
provide some background information for both MPI and InfiniBand. In the following
sections, we will first introduce MPI and its design issues. Then we provide an

overview of the InfiniBand Architecture.

2.1 MPI Overview

Message Passing Interface (MPI) [90] was proposed as a standard communication
interface for parallel applications. It specifies an Application Programming Interface
(API) and its mapping to different programming languages such as Fortran, C and
C++. Since its introduction, MPI has been implemented in many different systems
and has become the de facto standard for writing parallel applications. The main
communication paradigm defined in MPI is message passing. However, MPI has
also been implemented in systems that supports shared memory [26, 36]. Therefore,
parallel applications written with MPI are highly portable. They can be used in

different systems as long as there are MPI implementations available.

2.1.1 MPI Point-to-Point Communication

In an MPI program, two processes can communicate using MPI point-to-point
communication functions. One process initiates the communication by using MPI_Send
function. The other process receives this message by issuing MPI_Recv function.
Source or destination process needs to be specified in the functions. In addition, both
sides specify a tag. A send function and a receive function match only if they have
compatible tags.

MPI_Send and MPI_Recv are the most frequently used MPI point-to-point func-
tions. However, they have many variations. MPI point-to-point communication
supports different modes for send and receive. The mode used in MPI_Send and
MPI_Recv is called standard mode. There are other MPI functions that support
other modes such as synchronous, buffered and ready modes. Communication buffers
specified in MPI_Send and MPI_Recv must be contiguous. However, there are also
variations of MPI_Send and MPI_Recv functions that support non-contiguous buffers.
Finally, any send or receive functions in MPI can be divided into two parts: one to
initiate the operation and the other one to finish the operation. These functions are
called non-blocking MPI functions. For example, MPI_Send function can be replaced
with two functions: MPI_Isend and MPI_Wait. By using MPI non-blocking func-
tions, MPI programmers can potentially overlap communication with computation,

and therefore increase performance of MPI applications.

2.1.2 MPI Collective Communication

In addition to point-to-point communication functions, MPI offers collective com-

munication functions that allow a group of processes to perform communication in

a coordinated manner. Examples of MPI collective functions include MPI_Barrier,
MPI_Bcast, MPI_Reduce, MPI_Alltoall, MPI_Allreduce, etc. The groups of processes
participating in collective communication functions are specified by communicators
in MPI. Collective communication functions not only provide simple and intuitive in-
terfaces to programmers for performing these operations, but also give MPI designers

and implementers more opportunity to optimize them.
2.1.3 MPI One-Sided Communication

Since its introduction, MPI has undergone many changes. The new MPI-2 stan-
dard [63, 28], which was proposed in 1996, brought many enhancements to the original
MPI standard. One of these enhancements is one-sided communication.

In MPI One-Sided communication, data transfer operations are carried out only
at one side, which specifies both data source and destination. Therefore, it looks
more like remote memory operations. To guarantee mutual exclusion and completion
of one-sided data transfer, MPI-2 also introduced synchronization operations. The
original Send/Receive based communication in MPI is also called two-sided commu-
nication.

There are two kinds of MPI one-sided communication: active target communica-
tion and passive target communication. In both cases, only one side is involved in data
transfer operations. However, in active target communication, both sides participate
in synchronization operations. In passive target communication, even synchronization

operations involve only one side.

We have carried out research on how to support MPI one-sided communication
efficiently over InfiniBand in [48, 40, 39]. However, in this dissertation, we focus on

two-sided communication in MPI.

2.2 MPI Design Issues

To support an efficient and scalable MPI implementation, the communication
subsystem must address many design issues related to point-to-point communication
and collective communication. In this section, we will provide general discussion of
these design issues. In later parts of this dissertation, we will present more details in

the context of InfiniBand Architecture.

2.2.1 Point-to-Point Communication

Eager Protocol Rendezvous Procotol

Send_ _ | _ Rendezvous
Send _ _ | art
ager Data

Rendezvo
M

~ Rendezvous
| __ Receive = Pata
RS

dezvous
\%qush\

| _ _ Receive

Figure 2.1: Eager and Rendezvous Protocols

Design issues in point-to-point communication include the following:

e Mapping MPI protocols to low level communication operations. MPI defines
four different communication modes: Standard, Synchronous, Buffered, and
Ready modes. Two internal protocols, Fager and Rendezvous, are usually used
to implement these four communication modes. In Eager protocol, the message
is pushed to the receiver side regardless of its state. In Rendezvous protocol,
a handshake happens between the sender and the receiver via control messages
before the data is sent to the receiver side. Eager and Rendezvous protocols
are shown in Figure 2.1. Usually, Eager protocol is used for small messages and
Rendezvous protocol is used for large messages. In these protocols, there are
both data transfer operations and control messages that must be implemented
by using low level communication operations. To obtain an efficient MPI imple-
mentation, two requirements must be met: First, the low level communication
operations must provide good communication performance. Second, the map-

ping must have very low overhead.

e Communication Buffer Management. The implementation of MPI makes use of
many internal communication buffers. These buffers serve multiple purposes.
Some buffers are used to send control messages. Other buffers are used to send
data messages. (In the latter case, the messages might need to be copied from
user buffer.) To achieve optimal communication performance, it is necessary to
manage these buffers efficiently. Specifically, the allocation and deallocation of
buffers must be very fast. Another important issue is that the total amount of
buffer space used. Ideally, the buffer space used should be small and increase

gracefully with the size of the applications.

e Flow control. In order to receive a message, a certain amount of resource needs
to be consumed at the receiver side. To prevent a fast sender from overwhelming
a receiver, a flow control mechanism is needed. This mechanism should be able
to slow down the sender when the receiver cannot keep up. However, in normal

cases, it should impose very little overhead.

e Connection management. MPI communication assumes a fully connected topol-
ogy. A process can send or receive messages from any other processes after
initialization. However, at the low level communication layer, an explicit con-
nection setup phase may need to be carried out before data transfer can happen.
How to handle connection setup in an efficient and scalable manner is very im-

portant for an MPI implementation.

e Communication progress. In typical parallel applications, processes need to
perform computation tasks in addition to communicating with other processes.
Ideally, after being initiated, a communication operation should make progress
independently without host intervention. In this way, the host can be freed from
communication and computation and communication can overlap, resulting in
better overall application performance. However, independent communication

progress is not easy to achieve, especially for collective operations.

e Taking advantage of multirail networks. In multirail networks, processing nodes
are connected with multiple separate networks. In large scale systems, network
congestion may create a bottleneck for parallel applications. One way to address

this issue is to use multiple communication connections which follow different

10

paths between processes and schedule communication traffic across these con-
nections. This can be regarded as a special type of multirail networks. By
using multiple connections, we can also achieve higher bandwidth by striping
large messages. In InfiniBand, multiple connections can be set up between a
single pair of ports. However, we can also set up them on different ports or
even different HCAs to avoid bottlenecks such as link bandwidth or I/O bus

bandwidth.
2.2.2 Collective Communication

Collective communication algorithms have been studied extensively in the liter-
ature [94]. To implement collective communication operations efficiently, we must
carefully design the communication protocols that map the algorithms to low level
communication operations. If possible, we should take advantage of collective commu-
nication support in the interconnects to achieve both high performance and scalability.

When implementing collective communication operations, their interaction with
point-to-point operations must also be considered. First, they should be implemented
carefully so that semantics of either collective communication or point-to-point com-
munication is not violated. Second, their implementation should not have an adverse

impact on the performance of point-to-point communication.

2.3 InfiniBand Overview

The InfiniBand Architecture (IBA) [37] defines a high speed network for intercon-
necting processing nodes and I/O nodes. It provides the communication and man-
agement infrastructure for inter-processor communication and I/O. In an InfiniBand

network, processing nodes and I/O nodes are connected to the fabric by Channel

11

Adapters (CA). Channel Adapters usually have programmable DMA engines with
protection features. They generate and consume IBA packets. There are two kinds
of channel adapters: Host Channel Adapter (HCA) and Target Channel Adapter
(TCA). HCAs sit on processing nodes. Their semantic interface to consumers is spec-
ified in the form of InfiniBand Verbs. The architecture of InfiniBand is shown in

Figure 2.2.

Haost Platform
[CR][SR ese Hast Platform
Hast Platform A U Mem L HCA TP TP == [TFU]

[(CPU [P] === [EPU]
[HCA H Mein H HCA |

e Fabric
“’ T - -, -—
o ! T . ‘“‘-r:’:f
e RAID Subsystem n ‘ N Other 1B Subnets
P} — ' r
! LA
S (] PN Ny
00 TCh L -
ulm ;
'l. — e OO
e T
, . I:-mlrl:lller_n_n
tl =0

| defessi N dnasi Subsystem-0D
Lieinill éééé i

5CHa

Elharrst Fibrs Channsl Graphics

miib & FE
i

Figure 2.2: InfiniBand Architecture (Courtesy InfiniBand Trade Association)

2.3.1 Queue Pair Based Communication Model

The InfiniBand communication stack consists of different layers. The interface
presented by channel adapters to consumers belongs to the transport layer. A queue

12

pair based model is used in this interface. A queue pair in InfiniBand Architecture
consists of two queues: a send queue and a receive queue. The send queue holds
instructions to transmit data and the receive queue holds instructions that describe
where received data is to be placed. Communication operations are described us-
ing Work Queue Requests (WQR), or descriptors, and submitted to the queue pairs.
Once submitted, a Work Queue Request becomes a Work Queue Element (WQE).
WQEs are executed by Channel Adapters. The completion of work queue elements is
reported through Completion Queues (CQs). Once a work queue element is finished,
a completion queue entry can be placed in the associated completion queue. Appli-
cations can check the completion queue to see if any work queue request has been

finished. This process is illustrated in Figure 2.3.

| Queue Pair il
e wee -
Queue Pair il
o Jwi | [wee
(Descriptor)
Queue Pair il
|weE | [wee | [woe kﬂ\‘
leti) i
e Completion Quee -
| cQE | [coE | [cqE | |cqE |- Adapter

Figure 2.3: InfiniBand Queue Pairs and Completion Queue

13

In InfiniBand, before a buffer can be used for communication, it must be registered.
After communication, the buffer can be de-registered. Buffer registration and de-

registration are usually expensive operations.
2.3.2 Channel and Memory Semantics

InfiniBand Architecture supports both channel and memory semantics. In channel
semantics, send /receive operations are used for communication. To receive a message,
the programmer posts a receive descriptor which describes where the message should
be put at the receiver side. At the sender side, the programmer initiates the send
operation by posting a send descriptor. The send descriptor describes where the
source data is but does not specify the destination address at the receiver side. When
the message arrives at the receiver side, the hardware uses the information in the
receive descriptor to put data in the destination buffer. Multiple send and receive
descriptors can be posted and they are consumed in FIFO order. The completion of
descriptors are reported through CQs.

In memory semantics, Remote Direct Memory Access (RDMA) operations are
used instead of send and receive operations. These operations are one-sided and do
not incur software overhead at the other side. The sender initiates RDMA operations
by posting RDMA descriptors. A descriptor contains both the local data source
addresses (multiple data segments can be specified at the source) and the remote
data destination address. At the sender side, the completion of an RDMA operation
can be reported through CQs. The operation is transparent to the software layer at

the receiver side.

14

2.3.3 Transport Services

InfiniBand Architecture supports multiple classes of communication services at the

transport layer. A queue pair can be configured for the following classes of services:

e Reliable Connection (RC)

Reliable Datagram (RD)

Unreliable Connection (UC)

e Unreliable Datagram (UD)

Raw Datagram

In the Reliable Connection service, each queue pair can only communicate with
one queue pair at each remote node. Before communication, a connection must
be established between the local queue pair and the remote queue pair. By using
mechanisms such as acknowledgment and retransmission, InfiniBand ensures that the
connection is reliable. Unreliable Connection is similar to the Reliable Connection
service. The difference is that reliability is not guaranteed.

Reliable Datagram and Unreliable Datagram both provide connectionless trans-
port services. Therefore, a single queue-pair can communicate with multiple queue-
pairs on remote nodes. In Reliable Datagram, reliability is provided by using End-
to-End Context. UD service does not guarantee any reliability. Another restriction
of UD is that the length of message size cannot exceed the Maximum Transfer Unit
(MTU) of the InfiniBand network.

The purpose of Raw Datagram service is to provide interoperability of InfiniBand
Architecture and other networks. Its usage is out of the scope of this dissertation.

15

2.3.4 Management Infrastructure

Unlike many other interconnects, InfiniBand Architecture has a comprehensive
management infrastructure. InfiniBand networks usually consist of smaller networks
called subnets. In each subnet, InfiniBand defines the methods for a subnet manager
to discover and configure the nodes and manage the fabric. InfiniBand also pro-
vides General Management Services, which handle tasks such as connection setup,

performance monitoring, configuration management, etc.
2.3.5 Hardware Multicast

InfiniBand provides hardware support for multicast. In some cases, this mecha-
nism can greatly reduce communication traffic as well as latency and host overhead.
InfiniBand also provides flexible mechanisms to manage multicast groups. However,
multicast is only available for the Unreliable Datagram service. Therefore, tasks such
as fragmentation, acknowledgment and retransmission may be needed on top of UD

to make multicast work reliably for large messages.
2.3.6 Atomic Operations

As we have mentioned, InfiniBand provides the ability to access a remote node’s
memory with RDMA operations. However, accesses to the same memory location may
lead to unpredicted results if they are not coordinated. Atomic operations provide
stronger consistency guarantee. Therefore they can be used in these cases. InfiniBand
supports two kinds of atomic operations: Fetch-and-Add and Compare-and-Swap.

These operations are initiated in a way similar to RDMA operations.

16

2.3.7 Completion and Event Handling Mechanisms

In InfiniBand Architecture, the Completion Queue (CQ) serves as an efficient and
scalable mechanism to report the completion of communication operations. However,
there is also overhead with the handling of CQs and generation of CQ entries. At
the sender side, InfiniBand provides a mechanism called Unsignalled Completion that
reduces the overhead of completion by forcing certain operations not to generate
completion entries.

In addition to generating C(Q) entries, InfiniBand can also invoke an event handler
upon the completion of a communication operation. Event handler invocation usu-
ally involves interrupts and context switches. Therefore it is a relatively expensive
operation. To give upper layer software more control over the invocation of event
handler at the remote side, InfiniBand provides a mechanism called Solicited Event.
In this mechanism, a send operation leads to the invocation of event handler at the
remote side for the matching receive only when a “solicited event” bit is set in the
request. By using this mechanism, the sender side can suppress many unnecessary

event invocation and improve the performance.
2.3.8 End-to-End Flow Control

In InfiniBand, send operations match with receive operations posted at the receiver
side in FIFO order. In cases where the sender is too fast, it may happen that there
are not enough receive operations posted to match all the send operations. In this
case, InfiniBand provides an End-to-End flow control mechanism which effectively
slows down the sender transmission rate to let the receiver catch up. In addition,

the sender can retry the send operations until corresponding receive operations are

17

posted. The upper layer software can control this behavior by specifying parameters

such as timeout value and retry delay for queue-pairs.

2.3.9 Quality-of-Service Support

InfiniBand has built-in Quality-of-Service (QoS) support that consists of three
components: Virtual Lanes (VLs), Service Levels (SLs), and Service Level to Virtual
Lane mapping. In an InfiniBand network, each physical link is divided into up to 16
Virtual Lanes. Each Virtual Lane has different QoS characteristics. At end-points,
Service Levels are assigned to communication and packets are marked with their
service levels. As packets travel through the network, they are assigned to different
Virtual Lanes on each link according to SL to VL. mapping. Researchers have shown

that this mechanism can accommodate different Quality-of-Service Schemes [3].

18

CHAPTER 3

PROBLEM STATEMENT AND METHODOLOGY

3.1 Problem Statement

In this dissertation we focus on efficient support of two-sided communication in
MPI. InfiniBand Architecture can provide high performance and scalability. However,
due to the semantic gap between MPI and InfiniBand, this performance and scalability
are not seen by MPI applications unless the communication subsystem that supports
MPI is designed in an efficient and scalable manner. For example, InfiniBand supports
both send /receive operations and RDMA operations. However, RDMA operations are
more efficient than send/receive operations. Thus, to achieve optimal performance,
it is desirable to take advantage of RDMA operations in InfiniBand. InfiniBand also
provides a rich set of other features. A carefully designed communication subsystem
should take advantage of these features to increase its performance and scalability.
Therefore, the question we address in this thesis is:

How can we design an efficient and scalable communication subsystem
to support MPI by taking advantage of the novel features of InfiniBand?
Given the MPI design components discussed in the previous chapter and the fea-

tures of InfiniBand, there are many ways to design each component by using different

19

features, as shown in Figure 3.1. However, there are also trade-offs in using many of
the features. For example, hardware supported multicast can potentially reduce traffic
volume and improve latency for MPI collective communication operations. However,
since multicast is only supported in the Unreliable Datagram service, extra effort is
needed to ensure reliability and in-order delivery. Thus, we need to understand these

features and selectively use them.

MPI Design Components

~
Flow Communication
,ﬁ’,{g})%?ﬁg Control Progress
Multirail
Support
Buffer Connection Collective
Management Management Communication
T
Mapping Layer H
U
I~
Communication Atomic Completion End-to-End
Semantics Operations & Event Flow Control
Transport Communication Multicast QoS
Services Management

InfiniBand Features

Figure 3.1: Design MPI Components Using InfiniBand Features

In this dissertation, We will investigate the benefits of InfiniBand features in each

MPI design component as outlined below:

e Implementing MPI communication protocols efficiently — InfiniBand

offers both send/receive and RDMA operations. For transferring large data

20

messages in Rendezvous protocol, RDMA can be used because the target buffer
addresses can be obtained through the handshake process. However, control
messages and eager data messages seem to match better with send/receive op-
erations because the message needs to be pushed to the other side even though
the destination address is not known yet. Another advantage of send/receive
operations is that the CQ mechanism provides an efficient and scalable mech-
anism for detecting incoming messages at the receiver side. In Chapter 4, we
present an MPI design which follows this idea. This design is also documented
in [56, 70]. However, as we will discuss, send/receive operations do not per-
form as well as RDMA operations. Furthermore, send/receive operations incur
overhead of managing receive descriptors at the receiver side. To achieve better
performance, we also explore using RDMA operations for eager data messages
and control messages. There are several challenges in this approach. First, we
need to know the target addresses of RDMA operations beforehand. Second,
since RDMA operations are transparent to the remote side, we need to provide a
scalable mechanism to detect the arrival of incoming messages. Some related is-
sues have been discussed in the literature for interconnects that support remote
memory access [87, 5, 36, 11]. However, by combining both send/receive and
RDMA operations, we have a larger design space and have more opportunities

to address the performance and scalability issues.

The two techniques we propose to address the above issues are persistent buffer
association and RDMA polling set. In persistent buffer association, we have a
buffer pool at the sender side and the receiver side respectively for each connec-

tion. Each buffer at the sender can only be RDMA written to its corresponding

21

buffer at the receiver side. We keep using the buffer in a fixed, circular order
so that the receiver always knows where to expect the next message. To detect
incoming messages, the receiver needs to poll on all connections. This leads
to scalability problems in applications with a large number of connections. To
address this problem, we introduce the concept of RDMA polling set. Each re-
ceiver maintains such a set which contains a subset of all incoming connections.
A sender uses RDMA operations only if the corresponding connection is in the
receiver’s RDMA polling set. Otherwise it falls back on send/receive operations.
Therefore, the receiver only needs to poll the connections in the RDMA polling
set for all incoming RDMA messages. For all other connections, it can poll the
CQ for incoming messages. Based on the research results in [95], the polling
set can be kept small to accommodate all connections for many MPI applica-
tions. Therefore, RDMA polling set combined with CQ can greatly reduce the
polling time and increase scalability for large MPI applications. In Chapter 6,
we present details of this RDMA based design and evaluate its performance.

The results are also presented in [55, 52]

Implementing effective flow control mechanisms with minimum over-
head — Flow control is an important issue in communication subsystems. In
InfiniBand Architecture, each send operation needs a receive to be posted at the
remote side. If there is no receive posted, InfiniBand provides an end-to-end
flow control mechanism that can reduce the rate of the sender and retry the

transmission.

Our MPI design can take advantage of this mechanism without implementing
our own flow control. For each connection, we pre-post a number of receives.

22

When a message comes, we process the message and re-post the receive as soon
as possible. In the case that the receiver cannot keep up with the rate of the
sender, the end-to-end flow control mechanism automatically comes into play
and makes sure all messages will eventually be reliably delivered. The above
scheme eliminates the overhead of flow control at the MPI level. However, since
we have very little control over the flow control behavior at the InfiniBand level,
the scheme may result in unnecessary communication traffic or long communi-
cation delay in some cases. An alternative is to develop our own credit-based
flow control mechanism. In this way, we have more flexibility. However, it may

incur more run-time overhead than the previous scheme.

Another issue we need to study is how to decide the number of receive buffers
pre-posted for each connections. In a static scheme, the number is the same for
all connections and never changes during run-time. If this number is too small
for a certain application, the flow control will be triggered frequently and reduce
the communication performance. If the number is too large, buffer space may
be wasted most of the time. Excessive buffer usage also significantly reduces
the scalability of MPI applications since the number of buffers increases with

the number of connections.

We will investigate the impact of different flow control schemes on MPI appli-
cations in Chapter 5. We show that dynamically deciding the number of buffer
pre-posted will improve both performance and efficiency of buffer usage. The

results of our research is also presented in [50].

23

e Designing high performance and scalable collective communication
protocols — By default, MPI collective communication is implemented using
MPI point-to-point communication. To improve the performance and scalabil-
ity of collective communication operations, we can implement them directly by
taking advantage of InfiniBand features. In particular, we study how to take
advantage of hardware multicast to design high performance and scalable col-
lective communication operations. We also study the use of RDMA operations
in designing collective communication. With RDMA operations, the receiver
overhead can be greatly reduced. In many cases, it can also reduce overhead by
avoiding message header and receiver side message matching in point-to-point
messages. Hardware multicast can greatly reduce the communication traffic and
latency for those operations in which identical messages are sent to multiple pro-
cesses. Our approach is to combine both of them to design high performance
and scalable collective communication. For example, in barrier operations, we
can use a two-phase approach as shown in Figure 3.2. In the first phase, RDMA
operations are used to wait for all processes (gather). In the second phase, a
multicast operation is used to inform all processes that the barrier operation is
finished. We should note that to increase scalability, the first step can be done

in a hierarchical manner if the number of processes is large.

____ Gather Stepl
.._ Gather Step2
___ Multicast Step 3

Figure 3.2: RDMA and Multicast Barrier Protocol

24

As a part of our previous work, we have already studied the use of RDMA opera-
tions and hardware multicast in designing efficient and scalable MPI_Barrier [43,
42]. In Chapter 7, we will extend this idea further and study how to support
another important MPI collective operations MPI_Bcast. We investigate differ-
ent multicast and RDMA based collective communication protocols and their
effectiveness in improving both performance and scalability. The results are

also presented in [49].

Taking advantage of multirail InfiniBand networks — The basic idea of
multirail networks is to have multiple independent networks (rails) to connect
nodes in a cluster. Using multirail networks helps us in several ways. First,
by carefully choosing the path or switching from one path to another, we can
possibly avoid congested area in the network and improve communication per-
formance. Second, by striping large messages across multiple connections, we
can dramatically improve bandwidth and avoid bottlenecks in the network, at
the link or at the host I/O bus. InfiniBand allows multiple connections which
follow different paths to be set up between processes on different nodes. These
connections can be on a single port, different ports on a single HCA, or differ-
ent ports on different HCAs. In Chapter 8, we present an MPI communication
framework that can support multirail InfiniBand networks. It supports multi-
ple paths for a single port, multiple ports and multiple HCAs. Our framework
is also policy-driven. Messages can be scheduled to be sent through multiple
connections based on the policy. We not only address design issues in the frame-
work, but also challenges in providing good policies based on information from

different components in the system. Our design is also presented in [54].

25

There are several other important issues we need to consider besides the above
designs. Although we do not have chapters dedicated to these issues, they are very
important for the performance and scalability of our MPI design. We will discuss

some of these issues in the context of different designs in Chapters 4, 5, 6, 7, and 8.

e Providing efficient buffer management — MPI internal communication
buffers are used for eager data messages and control messages. These buffers are
pre-registered to avoid the overhead of registration in the communication critical
path. To improve communication performance, it is desirable that these buffers
are aligned. However, aligned buffers tend to have worse cache performance
since the beginning blocks of the buffers need to compete for a less number of
cache blocks. Another issue we need to consider is the size of these buffers. If it
is too small, an eager message may need to be divided into multiple buffers and
sent out using multiple send/receive or RDMA operations, which increases the
communication overhead. However, if it is too large, more buffer space will be
wasted due to internal fragmentation. These trade-offs need to be considered

carefully in the context of real applications.

For transferring large messages in the Rendezvous protocol, extra copies can be
avoided by directly sending and receiving from user buffers. However, the user
buffers needs to be registered before they can be used for communication. To
reduce this overhead, the pin-down cache technique [32] can be used. We inves-
tigate how to efficiently implement this technique in the context of InfiniBand

Architecture and study its effectiveness in different applications.

26

e Designing scalable connection management schemes — InfiniBand Ar-
chitecture requires that a connection be setup between a sender and a receiver
before communication in its connection based transport services. Since MPI
applications assume a fully-connected topology, connection setup must be han-
dled in the MPI implementation. A simple scheme is to setup all connections at
the MPI initialization time. However, this leads to several problems for applica-
tions using a large number of processes. First, the connection setup may become
very time-consuming. Second, this may reduce the scalability of the applica-
tion because the resources allocated increase with the number of connections.
To improve the scalability, our previous study [100] introduces the concept of
on-demand connection. The work was done for VIA and we have shown that
on-demand connection increases the scalability of MPI applications. It can also

be used in a similar way in InfiniBand.

e Ensuring communication progress — To achieve better computation and
communication overlap, an MPI implementation needs to make communication
progress independent of the host processor. This issue is especially important
for collective communication. This is because slowing down one process may
lead to performance degradation of the entire operations since the processes are
usually dependent on each other to make progress. In general, the decoupling of
communication progress from the computation of application processes is called
application bypass [10]. Work in our group has shown that it is an effective
approach to ensure communication progress and tolerate process skew [12] in

collective communication.

27

Another important problem we have addressed is how to evaluate the perfor-
mance of an MPI implementation in a meaningful manner. There are many different
aspects of an MPI implementation. To provide a comprehensive performance evalua-
tion of MPI implementations, we have proposed a framework which consists a set of
micro-benchmarks and a set of application characteristics. These micro-benchmarks
include traditional measurements such as latency, bandwidth and host overhead. In
addition to those, we have also included the following micro-benchmarks: communi-
cation/computation overlap, buffer reuse, memory usage, intra-node communication
and collective communication. The objective behind this extended micro-benchmark
suite is to characterize different aspects of the MPI implementations and get more
insights into their communication behavior. We also use in-depth profiling to obtain
different communication characteristics for applications. By combining results from
micro-benchmarks and application profiling, we expect to achieve a much better un-
derstanding of the impact of MPI implementations on application performance. We
will discuss details of this performance evaluation framework in Chapter 9. It is also
presented in [53].

We use Figure 3.3 to summarize our research work to design efficient and scalable
MPI components by taking advantage of various InfiniBand feature. Please note
that certain InfiniBand features, such as Atomic Operations and QoS, are not used
in our current design. We will cover them when discussing future research topic in

Chapter 11.

28

MPI Design Components

Collective .
Communication|

Connection

Communicatio
Management

Progress
|
[

Flow Buffer
Control Management

‘ motocol ‘
apping

|

Multirail
Support
Z
|

\
[\ \

End-to-End
Flow Control

Communication
Management

Atomic
Operations

Communication
Semantics

Completion
& Event

Transport
Services

Multicast QoS

C

InfiniBand Features

Figure 3.3: Research in Designing MPI Components over InfiniBand

3.2 Methodology

Currently one of the most popular MPI implementations is MPICH [27] from
Argonne National Laboratory. MPICH uses a layered approach in its design. The
platform dependent part of MPICH is encapsulated in an interface called Abstract
Device Interface (ADI), which describes the communication functions used by the
MPI implementation. To port MPICH to a new communication architecture, only
the ADI functions need to be implemented. More sophisticated ADI functions, such
as collective communication calls, are usually implemented by using point-to-point
functions. However, the implementation architecture of ADI is very flexible. To
achieve optimal performance, collective functions can be implemented directly over
the messaging layer provided by the interconnect.

We have based our implementation on MPICH. Our MPI implements a new ADI

layer which uses InfiniBand as the underlying communication interconnect. However,

29

we have implemented collective communication operations directly on top of Infini-
Band instead of using point-to-point operations to achieve optimal performance. Our
implementation is also derived from MVICH [45], which is an ADI2 implementation
for VIA.

Currently, MPICH does not support features in the MPI-2 standard. Therefore,
there is no mechanism to support functionalities such as one-sided communication in
MPICH. MPICH2 [59] is the next generation MPI implementation being developed at
Argonne National Laboratory. MPICH2 will support full MPI and MPI-2 standards.
Similar to MPICH, MPICH2 uses a layered approach in its design. It also has an
ADI layer that makes it easy to be ported to other interconnects.

Our InfiniBand platform consists of InfiniHost HCAs and an InfiniScale switch
from Mellanox[60]. InfiniHost provides a programming interface called VAPI [61]. In-
finiScale is a full wire-speed switch with eight 10 Gbps ports. The InfiniHost MT23108
HCA connects to the host through PCI-X bus. It allows for a bandwidth of up to
10 Gbps over its ports. For most of our experiments, we use a cluster system con-
sisting of 8 SuperMicro SUPER P4DL6 nodes. Each node has dual Intel Xeon 2.40
GHz processors with a 512K L2 cache at a 400 MHz front side bus. The machines
were connected by Mellanox InfiniHost MT23108 DualPort 4X HCA adapter through
an InfiniScale MT43132 Eight 4x Port InfiniBand Switch. The HCA adapters work
under the PCI-X 64-bit 133MHz interfaces. We have two slightly different kinds of
InfiniHost HCAs called A0 and Al, respectively. Al cards are optimized and give
slightly better performance. The machines were also connected by Myrinet network
using NICs with 200MHz LLANai 9 processors through an 8-port Myrinet-2000 switch.

Myrinet adapters use 64-bit 66 MHz PCI bus for all experiments. The Quadrics Elan3

30

QM-400 cards were attached to these fours nodes. They were connected with each
other through an Elitel6 switch. The QM-400 card also uses a 64-bit 66 MHz PCI

slot. We used the Linux Red Hat 7.2 operating system.

31

CHAPTER 4

BASIC IMPLEMENTATION

First, we describe the design of a basic MPI implementation over InfiniBand. This
implementation is based on the MPI implementation over Virtual Interface Architec-
ture (VIA) [17] from the Lawrence Berkeley National Laboratory [45]. Although this
implementation is complete, many of its components are not necessarily optimized.
We will discuss the design choices we have made and some of the implementation

techniques. Then we evaluate its performance by using micro-benchmarks.

4.1 MPI Design Issues

As we have discussed, there are many design issues involved in putting an MPI
layer on top of InfiniBand. InfiniBand provides two kinds of communication seman-
tics: send/receive and RDMA. Although it is possible to implement MPI using only
one of them, it is better to combine them so that we can take advantage of both
semantics. MPI assumes that the underlying communication layer provides such
functionality as reliability, buffer management, and flow control. MPI applications
should not be involved in these issues. Since the Verbs Interface requires that com-
munication buffers should be registered and upper layer software should take care of

flow control, there is a functional mismatch between the MPI and the Verbs layer.

32

Thus, the most important task for implementing MPI on top of the Verbs layer is
to bridge this gap. InfiniBand provides different classes of services including reliable
connection (RC) and reliable datagram (RD). If these two services are used for MPI,
reliability can be guaranteed. However, buffer registration and flow control issues still
need to be handled explicitly by the MPI implementation.

In addition to basic communication operations, InfiniBand also offers advanced
features such as end-to-end flow control, atomic operations and QoS support. It is
possible to improve MPI performance by taking advantage of these advanced features.
However, for the basic implementation we do not focus on these features.

Next, we briefly discuss several components in this implementation.
4.1.1 Send/Receive vs RDMA

MPI implementations usually use two internal protocols to handle communica-
tion: Eager and Rendezvous. In Eager protocol, a message is sent to the receiver
even though the corresponding receive has not been issued. In this case, the message
is put into an unexpected queue and later copied to the receive buffer. In Rendezvous
protocol, the actual data transfer takes place only after both send and receive have
been issued. Eager protocol matches well with send/receive operations in Infini-
Band. For Rendezvous protocol, RDMA can also be used. This is because during
Rendezvous protocol, the sender and the receiver exchange information through con-
trol messages before the actual data transfer, and the destination address needed by
RDMA operation can be put into these control messages.

When to switch from one protocol to another depends on the messages size. Usu-

ally, small messages uses Eager protocol and large messages uses Rendezvous protocol.

33

The switch point is important and it must be carefully chosen to match the perfor-

mance characteristics of the underlying platform.
4.1.2 Handling Buffer Registration

Buffer registration and de-registration in InfiniBand Architecture are expensive
operations, because they not only involve the operating system kernel, but also need
some interaction between the NIC and the host. Therefore we would like to avoid
these operations on the communication critical path if possible.

One way to address this problem is to maintain a pre-registered buffer pool. When
the message is being sent, it is first copied to a buffer in the pool. Similarly, on the
receiver side, messages are first received into buffers in the pre-registered pool, and
then copied to the destination buffers. This method avoids the buffer registration
overhead completely at the cost of two extra copies for very messages.

Another way is to use a technique called Pin-down Cache which is first proposed
in [32]. The idea is to maintain a cache of registered buffers. When a buffer is
first registered, it is put into the cache. When the buffer is unregistered, the actual
unregister operation is not carried out and the buffer stays in the cache. Thus the next
time when the buffer needs to be registered, we need not to do anything because it is
already in the cache. A buffer is unregistered only when it is evicted from the cache.
The effectiveness of Pin-down Cache depends on how often the application reuses its
buffers. If the reuse rate is high, most of the buffer registration and de-registration

operations can be avoided.

34

4.1.3 Flow Control

For send /receive operations in InfiniBand, when a message is sent out and there is
no corresponding receive posted on the receiver side, a retry mechanism is triggered
and the performance may drop significantly. In order to avoid buffer overrun on the
receiver side, a flow control scheme is needed for the MPI implementation. Even when
we use RDMA operations, flow control is still needed because the control messages
may still use send/receive operations.

To deal with this problem, a credit-based flow control mechanism is used. When
a message is sent out, the sender’s credit is decremented. When the receiver reposts
receive requests, it can inform the sender that new credits are available. If the number
of credits is low, the sender will switch from Eager protocol to Rendezvous. If there
is no credit available, send operations will be blocked until enough credits arrive from
the receiver. In this scheme, the number of credits may be important as it may affect

the communication performance.

4.2 Performance

In this section we present performance evaluation for our basic MPI implementa-
tion using micro-benchmarks. We also compare our results with those from Myrinet/GM
and Quadrics.

Figures 4.1 and 4.2 show the latency for different MPI implementations. The
latency tests were carried out in a ping-pong fashion. In the bandwidth test, the
sender keeps sending 1000 messages to the receiver and then waits for a reply. Then
the sender calculates the bandwidth based on the elapsed time and number of bytes

it has sent. In the latency tests, blocking version of MPI functions (MPI_Send and

35

MPI Latency (small messages)

T T T T
MPI over VAPI —+—

40| MPlover Quadrics - !

Latency (us)

4 16 64 256 1024 4096
Message Size (Byte)

Figure 4.1: Small Message Latency for
MPI

MPI bandwidth (small messages)
300

MPI over VAPI —+—— i i i

MPI over Quadrics -

Bandwidth (Million Bytes/s)
" n
& 8
g 8
T T

.

5]

3
T

.
256 1024 4096
Message Size(Byte)

Figure 4.3: Small Message Bandwidth
for MPI

MPI Latency

1200 T T T T T T T
MPI over VAP| —+—
MP! over Quadrics -
1000 |
800

Latency (us)
@
2
S
T

200

n
8192 16384 32768 65536 131072 262144
Message Size(Byte)

o N - =5
1024 2048 4096

Figure 4.2: Large Message Latency for
MPI

MPI bandwidth
900

MPI over VAP ——

800 | MPIover Quadrics ----- 1

Bandwidth (Milion Bytes/s)

0
1024 2048 4096 8192 16384 32768 65536 131072 262144
Message Size(Byte)

Figure 4.4: Large Message Bandwidth
for MPI

MPI_Recv) were used. In the bandwidth tests, unblocking version of MPI functions
(MPI_Isend and MPI Irecv) were used. The smallest latency we have achieved is
around 9.5 microseconds for MPI over VAPI. Comparing our implementation with
MPI over GM, we find that the two perform comparably for messages up to 4 KBytes.
(GM performs better for messages smaller than 128 bytes.) However, for large mes-
sages MPI over VAPI performs much better. MPI over Quadrics performs best for
message range 0 to 16 KBytes and its smallest latency is around 4.3 microseconds.

The bandwidth graphs in Figure 4.3 and 4.4 show that our MPI implementation
is able to achieve over 844 Million Bytes/second (844 MB/s) peak bandwidth using
RDMA.

MPI over GM performs slightly better than MPI over VAPI in the message range

up to 1 KBytes. For all other message sizes, MPI over VAPI gives better performance.
4.3 Summary

In this chapter, we presented a basic implementation to support MPI on top of
InfiniBand’s verbs layer. Our implementation uses InfiniBand Send/Receive opera-
tions to transfer small messages. For large messages, we have implemented an RDMA
write based scheme that can achieve zero-copy. Our performance evaluation shows
that this design achieves very good performance. We also carried out performance
comparison with contemporary cluster interconnects such as Myrinet and Quadrics.
Our results show that current InfiniBand hardware is capable of delivering significant
performance benefits and in some cases even better than Myrinet and Quadrics. This
basic implementation also serves as the basis for our later research on optimizing MPI

performance over InfiniBand.

37

CHAPTER 5

DESIGNING EFFICIENT AND SCALABLE FLOW
CONTROL

One of the key issues in designing MPI over InfiniBand is flow control. Since
current MPI implementations are based on InfiniBand Reliable Connection (RC)
service, multiple receive buffers have to be posted for each connection in order for
the sender to have multiple outstanding messages. However, if the sender sends too
fast, these buffers can be exhausted. The flow control mechanism is to prevent a fast
sender from overwhelming a slow receiver and exhausting its resources such as buffer
space in this case. Flow control is an important issue in MPI design because it affects

both the performance and the scalability of an MPI implementation.

5.1 Flow Control in MPI over InfiniBand

We have shown different types of messages in MPI Eager and Rendezvous proto-
cols in Figure 2.1. Among these messages, Fager Data and Rendezvous Start messages
are sent to the receiver regardless of its current state. Therefore, these messages are
unexpected with respect to the receiver. Since the sender can potentially initiate a
large number of send operations in MPI, it is possible that the receiver can be over-

whelmed by too many unexpected messages because each of these messages consumes

38

resources such as buffer space at the receiver side. This issue is even more important
for InfiniBand because communication buffers must be pinned down and they cannot
be swapped out during communication.

To accommodate unexpected messages, every process can pre-post a number of
receiver buffers for each connection. Every message will be received into one of these
buffers. After the receiver finishes processing a buffer, it immediately re-posts the
buffer. As long as the number of outstanding unexpected messages for a connection
is less than the number of pre-posted buffers, these messages can always be received
safely. However, if the number of outstanding unexpected messages is too large, a
flow control mechanism needs to be implemented to stall or slow down the sender so
that the receiver can keep up.

Thus, there are two important problems in flow control. First, we need to study
the impact of the number of pre-posted receiver buffers. Using too many buffers
will adversely affect application performance and limit the scalability of the MPI
implementation. However, if the number is too small, senders may have to stall or
slow down frequently and wait for the remote process to re-post the buffers. As a
result, the sender and the receiver become tightly coupled in communication, leading
to degraded performance. Ideally, the number should be determined by application
communication pattern to achieve both performance and scalability. The second issue
is what mechanism we use to stall or slow down the sender when the receiver cannot
keep up. This mechanism should be effective and have negligible run-time overhead
during normal communication.

Based on the basic implementation, we propose several designs to address the flow

control issue. Flow control can be handled in the MPI implementation. In this case,

39

we call it a user-level scheme. However, since InfiniBand itself provides end-to-end
flow control, an alternative is to let InfiniBand hardware handle this task. We call
this a hardware-based scheme. Flow control schemes can also be classified by the
way they choose the number of pre-posted buffers. In a static scheme, this number
is determined at compilation or initialization time and remains unchanged during
execution of the application. On the other hand, in a dynamic scheme, this number
can be changed during program execution.

Flow control is an important issue in cluster computing and has been studied in
the literature. Similar to our schemes, Flow control in FM [74] is also credit-based. In
[7], a reliable multicast scheme is implemented by exploiting link-level flow control in
Myrinet. GM [65] is a messaging layer over Myrinet developed by Myricom. In GM, a
sender can only send a message when it owns a send token. This is essentially a credit-
based flow control scheme. Work in [22] proposed an automatic tuning mechanism for
TCP flow control. Unlike the above, our work concentrates on flow control schemes
in MPI over InfiniBand.

MVICH [45] is an MPI implementation over VIA [17]. It uses a user-level static
flow control scheme. Our original MPI implementation over InfiniBand [56] was based
on it and used a similar flow control scheme. In this work, we carry out a detailed
study and comparison of different flow control schemes.

In order to improve the scalability of MPI implementations, an on-demand con-
nection set-up scheme was proposed in [100]. In this scheme, connections are set up
between two processes when they communicate with each other for the first time. If
there is no communication between them, no connection will be set up and there-

fore no buffer space will be used. Our proposed dynamic flow control scheme can be

40

combined with on-demand connection setup to further improve the scalability of MPI

implementations.

5.2 Hardware-Based Flow Control

In hardware-based schemes, there is no flow control at the MPI level. All outgoing
messages are submitted immediately to the send queue. If too many send operations
are posted, the HCA at the sender side will reduce its sending rate because of the
InfiniBand end-to-end flow control. At the receiver side, when there is no posted
receive for an incoming message, this message will be dropped and RNR Nak will
be issued. The sender will then wait for a time-out and re-transmit the message.
To ensure reliability at the MPI level, the retry count can be set to infinite. Thus
eventually the message will be delivered to the receiver side when the receive buffer
is posted.

One of the advantages in using hardware-based flow control is that it incurs almost
no run-time overhead in normal communication when there are enough pre-posted
receiver buffers. This is because there is no need to keep track of flow control informa-
tion in the MPI implementation. This also means that flow control processing can be
done regardless of the communication progress of applications. Therefore, hardware-
based schemes also achieve better “application bypass” [10, 12]. However, InfiniBand
provides very little flexibility to adjust the behavior of hardware based flow control.
Since the flow control algorithm used by InfiniBand may not be optimal for every
MPI application, this lack of flexibility may result in performance degradation for
some applications. Further, the end-to-end flow control and transmission retries are

largely transparent to the software layer and there is no information feedback for the

41

MPI implementation to adjust its behavior. The lack of information feedback makes
it very hard to implement dynamic flow control schemes in which the MPI imple-
mentation can adjust the number of pre-posted buffers for each connection based on

application communication pattern.

5.3 User-Level Static Flow Control

In this subsection we discuss how to implement user-level flow control at the MPI
level. First we will describe static schemes currently used in [45] and [56].

The basic idea of user-level flow control is to use a credit-based scheme. During
MPI initialization, a fixed number of receive buffers are pre-posted for each con-
nection. Initially, the number of credits for each sender is equal to the number of
pre-posted buffers at the corresponding receiver. Whenever a sender sends out a
message that will consume a receiver buffer, its credit count will be decremented.
When the credit count reaches zero, the sender can no longer post send operations
that consume credits. Instead, these operations will be stored in a backlog queue. The
operations in the backlog queue will be processed later in FIFO order when credits
are available.

At the receiver side, the receiver will re-post a receive buffer after it has finished
processing it. The credit count for the corresponding sender will then be incremented.
However, since this information about new credits is only available at the receiver side,
we must have some kind of mechanism to transfer it to the sender side. Two methods
can be used for this purpose: piggybacking and explicit credit messages. To use
piggybacking, we add a credit information field to each message. An MPI process can

use this field to notify the other side about credit availability. If the communication

42

pattern is symmetric, each sender will get credit information updates frequently and
be able to make communication progress. Explicit credit messages can be used when
the communication pattern is asymmetric. When a process has accumulated a certain
number of credits and there is still no message sent by the MPI layer to the other
side, a special credit message can be sent to transfer the credit information. In the
MPI implementation, small messages are usually transferred using Eager protocol.
However, when there are no credits, only Rendezvous protocol is used. Because of
the handshaking process in Rendezvous protocol, credit information can be exchanged
through piggybacking, which can speed up the processing of the send operations in
the backlog queue.

Because of possible deadlock situation, explicit credit messages must be used
carefully. In [45] and [56], these messages themselves will consume credits because
they are implemented using send operations. To prevent deadlock, we proposed an
optimistic scheme for credit messages. Basically, we do not impose flow control for
explicit credit messages. Thus, explicit credit messages are not subject to user-level
flow control. These messages are always posted directly without going through the
backlog queue even though no credit is available. In this case, the hardware-level
flow control mechanism will ensure that the message will be delivered. Since credit
messages can always be sent, deadlock will not happen.

Using user-level flow control requires the MPI implementation to manage credit
information and take appropriate actions. Therefore, it may have larger run-time
overhead than hardware-based schemes. The use of explicit credit messages may in-
crease network traffic in some cases. (We should note that hardware-based schemes

may also increase network traffic because of NAK and re-transmission.) However,

43

these overheads can be reduced by an optimized implementation. Another disad-
vantage of user-level schemes is that flow control processing relies on communication
progress. Therefore, it achieves less “application bypass” compared with hardware-
based schemes. The major advantage of user-level flow control is that various informa-
tion regarding flow control is available to the MPI layer. Based on this information,
an MPI implementation can adjust its behavior to achieve better performance and
scalability. Next, we will discuss a dynamic user-level flow control scheme that takes

advantage of this information.

5.4 User-Level Dynamic Flow Control

To achieve both performance and scalability, we propose a dynamic user-level flow
control scheme. This scheme uses credit-based flow control at the MPI level, which
is similar to the static scheme. The difference is that each connection starts with a
small number of pre-posted buffers. During program execution, the number of pre-
posted buffers can be gradually increased based on the communication pattern using

a feedback-based control mechanism. In this scheme, two important issues must be

addressed:

e How to provide feedback information?

e What to do when feedback information is received?

The feedback mechanism should notify the receiver when more pre-posted buffers
are needed. We notice that if there are not enough credits, a message will enter the
backlog queue and be processed later. Therefore, this information can be used to

provide feedback. We add a field to each message indicating whether it has gone

44

through the backlog. When a process receives a message that has gone through the
backlog queue, it takes action to increase the number of pre-posted buffers for the
corresponding sender. The increase can be linear or exponential depending on the
application. If communication pattern changes are relatively slow compared with the
time to increase the number of pre-posted buffers, this mechanism can achieve both
good performance and buffer efficiency.

In addition to increasing the number of buffers, a dynamic scheme can also de-
crease the number of buffers when the application no longer needs so many buffers.
This may be beneficial to long-running, multi-phase MPI applications whose commu-
nication pattern changes in different phases. Currently we only allow increasing the

number of buffers. We plan to investigate more along this direction in the future.

5.5 Performance Evaluation

In this section, we present performance evaluation of different flow control schemes
using both micro-benchmarks and applications. The micro-benchmarks are latency
and bandwidth tests. The applications we use are the NAS Parallel Benchmarks [68].
In the performance evaluation, we concentrate on two aspects of different flow control
schemes: normal condition (with plenty of pre-posted buffers or credits) and flow
control condition (when the number of outstanding messages exceeds the number of
pre-posted buffers or there are not enough credits). Another issue we are interested
in is how many pre-posted buffers are generally needed by applications in order to

achieve best performance.

45

5.5.1 Latency

In the latency test, the communication pattern is very symmetric. Since the sender
and the receiver send back a message only after processing the previous one, there are
always enough receive buffers posted at both sides. For user-level schemes, the credit
information is always transferred in time through piggybacking. Therefore, this test
shows how different schemes perform under normal conditions.

In the latency test, the hardware-level scheme has the least overhead because
there is no need to keep track of information related to flow control. However, from
Figure 5.1 we can see that this bookkeeping overhead is negligible and all three

schemes perform comparably.
5.5.2 Bandwidth

The bandwidth tests are carried out by having the sender send out a number of
back-to-back messages to the receiver and then waiting for a reply from the receiver.
The number of back-to-back messages is referred to as window size. The receiver sends
the reply only after it has received all messages. The above procedure is repeated
multiple times and the bandwidth is calculated based on the elapsed time and the
number of bytes sent by the sender. We use two different versions of bandwidth tests.
In the blocking version, MPI_Send and MPI_Recv functions are used. MPI_Isend and
MPI_Irecv are used in the non-blocking version.

In the first group of our tests, we have chosen a fixed message size (4 bytes). The
tests are conducted for both blocking version and non-blocking version. The numbers
of pre-posted buffers we have chosen for the tests are 10 and 100. Different results

are obtained by varying the window size of the bandwidth tests.

46

When there are 100 pre-posted buffers, the window size does not exceed the num-
ber of pre-posted buffers. Thus with enough buffers or credits, all three schemes
perform comparably for both blocking and non-blocking version.

Figures 5.2 and 5.3 show the results with only 10 pre-posted buffers. We can
observe that when the window size exceeds the number of pre-posted buffers, the user-
level dynamic scheme achieves the best performance because it is able to adapt to the
communication pattern and increase the number of buffers. On the other hand, user-
level static scheme performs the worst because the communication is stalled when
there are not enough credits. We also notice that for user-level schemes, blocking
version of bandwidth tests achieve better performance. This is because in user-level
schemes, when there is no credit available, Rendezvous protocol will be used even
for small messages. In the blocking tests, the sender waits for the send operation to
finish and therefore is able to get more credits through the handshaking procedure of
Rendezvous protocol.

Figures 5.4 and 5.5 show the results with 10 pre-posted buffers for large mes-
sages (32K bytes). Since large messages always go through Rendezvous protocol,
the communication pattern in these tests becomes more symmetric because of the
handshaking procedure. As a result, all three schemes are able to perform well even
with less number of buffers. The non-blocking version performs much better than the

blocking version because it achieves better communication overlap.
5.5.3 NAS Parallel Benchmarks

To better understand the impact of different flow control schemes on application

performance, we have conducted experiments using the NAS Parallel Benchmarks

47

P Latency

P Bandwidth (4 Byte Messages)

P Bandwidth (4 Byte Messages)

Bandwidth (es)

Bandwidth (Mels)

128
Message Size(Byte)

256 512 102

Figure 5.1: MPI Latency

MPI Bandwidth (32K Byte Messages)
455 T

Figure 5.2: MPI
width (Pre-Post
Blocking)

Figure 5.3: MPI Band-
width (Pre-Post = 10, Non-
Blocking)

MPI Bandwidth (32K Byte Messages)

T T T T T T
Hardware-Based —+—
User-Level Static ---x---

450 - User-Level Dynamic -

700 T

T T
Hardware-Based —+—
E User-Level Static ---x--

User-Level Dynamic -+

445

440

435

430

425

Bandwidth (B/s)
Bandwidth (MB/s)

420

415

410

405 g

500 L L L L
20

400 L L L L

L
25
Window Size

L
25
Window Size

Figure 5.5: MPI Bandwidth (Pre-Post
10, Non-Blocking)

Figure 5.4: MPI Bandwidth (Pre-Post
10, Blocking)

100 180% 171%
O Hardware-Level O Hardware-Base]
B et ovel Dy 160% | mUser-Level Static ||
OUser-Level Dynamic
140% q
c
S
s 1] L g 120%
2 =3
o
'E é 100%
o
£ 2 80% A
E «©
& 5 oo
1 K] o
&
40%
20%
20% a
&%
2% 2% g, 0% 1% 0% 0% 2% o, I:Eﬂ% 0% 0% 1% 0% 0% 0%
0.1+ " = 0% == T T T
IS FT LU cG MG SP BT 1S FT LU CcG MG SP BT

Figure 5.6: NAS Benchmarks (Pre-
Post = 100)

Figure 5.7: NAS Benchmarks (Per-
formance Degradation from Pre-
Post=100 to Pre-Post=1)

48

Table 5.1: Explicit Credit Messages for User-Level Static Scheme

App | # ECM Msg | # Total Msg
IS 0 383
FT 0 193
LU 9002 48805
CG 0 4202
MG 1 1595
BT 0 28913
SP 0 14531

Table 5.2: Maximum Number of Posted Buffers for User-Level Dynamic Scheme

App | # Buffer
IS 4
FT 4
LU 63
CG 3
MG 6
BT 7
SP 7

49

(Class A). IS, FT, LU, CG and MG tests were carried out using 8 processes on
8 nodes. Since SP and BT tests require the number of processes to be a square
number, they were conducted using 16 processes on 8 nodes.

First, we study the impact of different flow control schemes on normal communica-
tion where there are always enough pre-posted buffers or credits. We carried out the
experiments with 100 pre-posted buffers, which are more than any of the application
will need. The results are shown in Figure 5.6. We notice that the three flow control
schemes perform comparably for almost all the applications, with at most 2%—3%
difference due to random fluctuation. One exception is the LU application. (There
are also some discrepancies in the running time of BT. We are currently investigating
this issue.) For LU, the hardware-based scheme is the best, which outperforms both
user-level schemes by around 5%-6%. The reason why user-level schemes performs
worse is that they use explicit credit messages. If the application communication
pattern is very asymmetric, these messages have to be generated frequently in order
to transfer credit information and the performance will be degraded. Table 5.1 shows
the average number of explicit credit messages (ECM) for each connection at each
process and the total number of messages (including data and control messages). We
can see that for LU, explicit credit messages make up for a significant percentage of
the total number of messages (18%). However, there are almost no explicit flow con-
trol messages for other applications. We should also note that the number of explicit
credit messages depends on a threshold credit value, which suppresses any explicit
credit messages if the number of credit to be transferred is below the threshold. Cur-
rently we use a relatively small threshold value of 5. Performance can be improved

by increasing this value for LU.

90

5.5.4 Impact of Number of Pre-Posted Buffers

As we have discussed, the number of pre-posted buffers has significant impact on
the scalability of applications. In this subsection, we consider an extreme case where
there is only one pre-posted buffer for every connection at each process. Figure 5.7
shows the percentage of performance drop when we change the pre-post value from
100 to 1. This case can serve as an “upper bound” of the impact of changing the
number of pre-posted buffers.

One surprising findings from Figure 5.7 is that most applications perform quite
well even in this extreme condition. For IS, FT, SP and BT, the maximum perfor-
mance degradation for all three schemes is only 2%. For the hardware-based scheme,
performance drops significantly for LU and MG. This drop is due to the large number
of time-out and re-transmission happening at the hardware level. For the user-level
static scheme, the largest performance drops are for LU (13%) and CG (6%). Since the
user-level dynamic scheme is able to adapt its behavior according to the application
communication pattern, there is almost no performance degradation. In Table 5.2,
we show the maximum number of posted buffers for every connection at every process
in the user-level dynamic scheme after program execution. We can see that for all
applications except LU, only a very small number of buffers (no more than 7) are
needed for each connection. Therefore, the user-level dynamic flow control scheme
can potentially achieve both performance and buffer efficiency. If this communication
pattern remains unchanged for large number of processes, buffer space will not be the
limitation of scalability. We plan to investigate this direction further in the future on

large-scale clusters.

ol

5.6 Summary

Flow control is an important issue in cluster computing and has been studied in
the literature. Similar to our schemes, Flow control in FM [74] is also credit-based. In
[7], a reliable multicast scheme is implemented by exploiting link-level flow control in
Myrinet. GM [65] is a messaging layer over Myrinet developed by Myricom. In GM, a
sender can only send a message when it owns a send token. This is essentially a credit-
based flow control scheme. Work in [22] proposed an automatic tuning mechanism for
TCP flow control. Unlike the above, our work concentrates on flow control schemes
in MPI over InfiniBand.

MVICH [45] is an MPI implementation over VIA [17]. It uses a user-level static
flow control scheme. Our original MPI implementation over InfiniBand [56] was based
on it and used a similar flow control scheme. In this work, we carry out a detailed
study and comparison of different flow control schemes.

In this work, we present a detailed study of the flow control issues in imple-
menting MPI over the InfiniBand Architecture with Reliable Connection service. We
categorize flow control schemes into three classes: hardware-based, user-level static
and user-level dynamic. These schemes differ in their run-time overhead and how
they decide the number of pre-posted buffers for each connection. The hardware-
based scheme has the least overhead under normal conditions. However, in user-level
schemes, MPI implementation can have more control over the system communica-
tion behavior when the receiver is overloaded. In particular, the user-level dynamic
scheme is able to adjust the number of pre-posted buffers according to the application
communication pattern. Therefore, it can potentially achieve both good performance

and high scalability in terms of buffer usage.

92

We have implemented all three schemes in our MPI implementation over Infini-
Band and conducted performance evaluation on our 8-node InfiniBand cluster. We
use both micro-benchmarks and the NAS Parallel Benchmarks for the evaluation.
We have shown that the overheads of user-level schemes are very small. Our results
have also shown that the user-level dynamic scheme can achieve both performance
and buffer efficiency by adapting to the communication pattern. Another finding in
our performance evaluation is that for most NAS applications, only a small number

of pre-posted buffers are required to achieve good performance.

93

CHAPTER 6

RDMA-BASED DESIGN

We now describe an enhancement of our previous MPI implementation. In this
implementation, we propose a method which brings the benefits of RDMA operations
to not only large messages, but also for small and control messages. By introducing
techniques such as persistent buffer association and RDMA polling set, we address
several challenging issues in the RDMA-based MPI design. Instead of using only
RDMA operations for communication, our design combines both send/receive and
RDMA. By taking advantage of send/receive operations and the Completion Queue
(CQ) mechanism offered by InfiniBand, we are able to simplify our design and achieve
both high performance and scalability.

Being the de facto standard of writing parallel applications, MPI has been im-
plemented for numerous interconnects, including those with remote memory access
abilities [87, 5, 36, 11]. [5] relies on the active message interface offered by LAPIL.
[36] uses PIO for small messages. Work done in [11] implemented MPI for Cray T3D
based on the SHMEM interface. [87] describes an MPI implementation over Sun Fire
Link Interconnect, which is based on PIO. MPI over Sun Fire Link uses a sender-
managed buffer scheme for transferring messages. In this approach, the sender can
choose any buffer at the receiver side for doing remote write. To let the receiver know

54

where the data has been written, another PIO is used to write the buffer address
to a pre-specified location. This extra PIO has very little overhead. However, the
RDMA operations in InfiniBand Architecture have larger overhead. Therefore, one
of our objectives is to use as few RDMA operations as possible. Another difference is
that InfiniBand offers both channel and memory semantics and we have shown that
it is possible to combine them to achieve scalability. However, none of the existing
implementations have information regarding the use of RDMA operations for small
data messages and control messages, nor are the scalability issues in RDMA discussed
in these references.

RDMA operations have been used to implement MPI collective operations. Work
in [82] focuses on how to construct efficient algorithms to implement collective oper-
ations by using RDMA operations. Our work can be used in conjunction with their
work to efficiently transfer short data messages and control messages.

RDMA operations have also been used to design communication subsystems for
databases and file systems [104, 57]. These studies do not address the issue of using
RDMA for control messages. [13] evaluated different communication schemes for
implementing a web server on a cluster connected by VIA. Some of their schemes
use RDMA write for transferring flow control messages and file data. However, their
schemes differ from ours in that they have used a sender-managed scheme which is

similar to [87].

95

6.1 Mapping MPI protocols

MPI defines four different communication modes: Standard, Synchronous, Buffered,
and Ready modes. Two internal protocols, Fager and Rendezvous, are usually used
to implement these four communication modes.

When we are transferring large data buffers, it is beneficial to avoid extra data
copies. A zero-copy Rendezvous protocol implementation can be achieved by using
RDMA write. In this implementation, the buffers are pinned down in memory and
the buffer addresses are exchanged via the control messages. After that, the data can
be written directly from the source buffer to the destination buffer by doing RDMA
write. Similar approaches have been widely used for implementing MPI over different
interconnects [45, 19, 5].

For small data transfer in Eager protocol and control messages, the overhead of
data copies is small. Therefore, we need to push messages eagerly toward the other
side to achieve better latency. This requirement matches well with the properties of
send /receive operations. However, as we have discussed, send/receive operations also
have their disadvantages such as lower performance and higher overhead. Next, we

discuss different approaches of handling small data transfer and control messages.

6.1.1 Send/Receive Based Approach

In this approach, Eager protocol messages and control messages are transfered
using send/receive operations. To achieve zero-copy, data transfer in Rendezvous
protocol uses RDMA write operation.

In the MPI initialization phase, a reliable connection is set up between every

two processes. For a single process, the send and receive queues of all connections are

o6

associated with a single CQ. Through this CQ, the completion of all send and RDMA
operations can be detected at the sender side. The completion of receive operations
(or arrival of incoming messages) can also be detected through the CQ.

InfiniBand Architecture requires that the buffers be pinned during communication.
For eager protocol, the buffer pinning and unpinning overhead is avoided by using a
pool of pre-pinned, fixed size buffers for communication. In Rendezvous protocol, data
buffers are pinned on-the-fly. However, the buffer pinning and unpinning overhead
can be reduced by using the pin-down cache technique [32].

In send/receive based approach, we only need to check the CQ for incoming mes-
sages. The CQ polling time usually does not increase with the number of connections.
Therefore, it provides us an efficient and scalable mechanism for detecting incoming
messages. Figure 6.1 shows the CQ polling time with respect to different number of

connections in our InfiniBand testbed.

12| _One ROMA write ———
Two RDMA Writes -

,,,,,,,,,,,,,,,

10 [RV S

1

Polling Time (Microsecond)
w
Latency (Microsecond)
[} oo

. 0
10 20 30 40 50 60 4 8 16 32 64 128 256 512 1024

Number of Connections in CQ Message Size(Byte)
Figure 6.1: CQ Polling time Figure 6.2: Latency of One RDMA

Write versus Two RDMA Writes

However, there are also disadvantages for using the send/receive based approach.
First, since the performance of send /receive is not as good as RDMA write, we cannot

o7

achieve the best latency for small data transfer and control messages. Second, we
have to handle tasks such as allocating and de-allocating buffers from the pre-pinned
buffer pool and re-posting receive descriptors. These tasks increase the overhead and

communication latency.

6.1.2 RDMA-Based Approach

To overcome the drawbacks of the send/receive based approach, we have designed
an RDMA write based approach for Eager protocol and control messages. In this ap-
proach, the communication of Eager protocol and control messages also goes through
RDMA write operations. Therefore, we can achieve lower latency and less overhead.
However, two difficulties must be addressed before we can use RDMA for data trans-

fer:

e The RDMA destination address must be known before the communication.

e The receiver side must detect the arrival of incoming messages.

In current generation InfiniBand hardware, RDMA operations have high starting
overhead. From Figure 6.2 we can see that the latency increases significantly if we
use two RDMA write operations instead of one. Thus, it is desirable that we use as
few RDMA operations as possible to transfer a message. Ideally, only one RDMA
operation should be used.

To address the first problem, we have introduced a technique called persistent
buffer association. Basically, for each direction of a connection we use two buffer
pools: one at the sender and one at the receiver. Unlike other approaches in which

the sender may use many buffers for an RDMA write operation, we have persistent

o8

correspondence between each buffer at the sender side and each buffer at the receiver
side. In other words, at any time each buffer at the sender side can only be RDMA
written to its corresponding buffer at the receiver side. These associations are estab-
lished during the initialization phase and last for the entire execution of the program.
Thus, the destination address is always known for each RDMA operation.

The second problem can be broken into two parts: First, we need to efficiently
detect incoming messages for a single connection. Second, we need to detect incoming
messages for all connections in a process.

For RDMA write operations, the C() mechanism cannot be used to report the
completion of communication at the receiver side. The basic idea of detecting message
arrival is to poll on the content of the destination buffer. We organize the buffers as
a ring. The sender uses buffers in a fixed, circular order so that the receiver always
knows exactly where to expect the next message. The details of our design will be
presented in the next section.

Once we know how to detect incoming messages for a single connection, multiple
connections can be checked by just polling them one by one. However, the polling
time increases with the number of connections. Therefore this approach may not

scale to large systems with hundreds or thousands of processes.
6.1.3 Hybrid Approach

As we can see, RDMA and send/receive operations both have their advantages
and disadvantages. To address the scalability problem in our previous design, we

have enhanced our previous design by combining both RDMA write and send/receive

99

[Completion Queue (CQ) I [RDMA Polling Set

Receiver

Figure 6.3: RDMA Polling Set

operations. It is based on the observation that in many MPI applications, a pro-
cess only communicates with a subset of all other processes. Even for this subset,
not all connections are used equally frequently. Table 6.1 lists the average number
of communication sources per process for several large-scale scientific MPI applica-
tions [95, 100] (values for 1024 processors are estimated from application algorithm
discussions in the literature). Therefore, we introduce the concept of RDMA polling
set at the receiver side. In our scheme, each sender has two communication channels
to every other process: a send/receive channel and an RDMA channel. A sender will
only use the RDMA channel for small messages if the corresponding connection is in
the RDMA polling set at the receiver side. If a connection is not in the polling set,
the sender will fall back on send/receive operations and the message can be detected
through the CQ at the receiver. The receiver side is responsible for managing the
RDMA polling set. The concept of RDMA polling set is illustrated in Figure 6.3.

Ideally, the receiver should put the most frequently used connections into the RDMA

60

polling set. On the other hand, the polling set should not be so large that the polling

time is hurting performance.

Table 6.1: Number of distinct sources per process

Application | # of processes | Average # of sources
64 5.5

sPPM 1024 6
64 0.98

Sphot 1024 1
64 3.5

Sweep3D 1024 4
64 4.94

Samraid 1024 10
64 6.36

CG 1024 11

By restricting the size of the RDMA polling set, the receiver can efficiently poll
all connections which use RDMA write for Eager protocol and control messages.
Messages from all other connections can be detected by polling the CQ. In this way,
we not only achieve scalability for polling but also get the performance benefit of
RDMA.

Having two communication channels also helps us to simplify our protocol design.
Instead of trying to handle everything through the RDMA channel, we can fall back

on the send/receive channel in some infrequent cases.

61

6.2 Detailed Design Issues

In this section, we discuss detailed issues involved in our design. First, we present
the basic data structure for an RDMA channel. After that we discuss the commu-
nication issues for a single RDMA channel, including polling algorithm, flow control,
reducing sender overhead and ensuring message order. Then we discuss how a receiver

manages the RDMA polling set.
6.2.1 Basic Structure of an RDMA Channel

Unlike send/receive channels, RDMA channels are uni-directional. One direction
of the connection can use an RDMA channel while the other direction cannot. Fig-
ure 6.4 shows the basic structure of an RDMA channel. For each RDMA channel,
there are a set of fixed size, pre-registered buffers at both the sender side and the
receiver side. Each buffer at the sender side is persistently associated with one buffer
at the receive side and its content can only be RDMA written to that buffer.

On both sides, buffers are organized as rings with the respective head pointers
and tail pointers. The buffers run out for a sender when the head pointer meets the
tail pointer. At the sender side, the head pointer is where the next outgoing message
should be copied and RDMA written to the remote side. After the message is written,
the head pointer is incremented. Later the receive side detects the incoming message
and processes it. Only after this processing, this buffer can be used again for another
RDMA write. The tail pointer at the sender side is to record those buffers that are
already processed at the receiver side. The sender side alone cannot decide when to

advance the tail pointer. This is done by a flow control mechanism discussed later.

62

At the receiver side, the head pointer is where the next incoming message should
go. In order to check incoming messages, it suffices to just examine the buffer pointed
by the head pointer. The head pointer is incremented after an incoming message is
detected. When we have got an incoming message, the processing begins. After the
processing finishes, the buffer is freed and it can be reused by the sender. However,
the order in which the buffers are freed may not be the same as the order in which
the messages arrive. Therefore we introduce the tail pointer and some control fields
at the receiver to keep track of these buffers. The tail pointer advances if and only if
the current buffer is ready for reuse.

One concern for the RDMA-based design is memory usage. For each connection,
we need to use two pools of pre-pinned buffers. Actually, the same problem exists
for the send/receive based scheme because the receiver has to pre-post a number of
buffers for each connection. However, we have found that memory consumption is not
large for the RDMA-based design (around 100 KBytes for each connection per node).
By limiting the number of connections in the RDMA polling set, we can effectively

reduce the memory consumption.
6.2.2 Polling for a Single Connection

In order to detect the arrival of incoming messages for a single RDMA channel, we
need to check the content of the buffer at the receiver side. In InfiniBand Architecture,
the destination buffers of RDMA operations must be contiguous. Therefore a simple
solution is to use two RDMA writes. The first one transfers the data and the second

one sets a flag. Please note that by using two RDMA writes, we can be sure that

63

when the flag is changed, the data must have been in the buffer because InfiniBand

ensures ordering for RDMA writes.

Sender Buffer Ring. Receiver Buffer Ring
‘ Tail

Tail I S .

Ry

Figure 6.4: Basic Structure of an RDMA Channel

The above scheme uses two RDMA writes, which increase the overhead as we have
seen in Figure 6.2. There are two ways to improve this scheme. First, we can use the
gather ability offered by InfiniBand to combine the two RDMA writes into one. The
second way is to put the flag and the data buffer together so that they can be sent
out by a single RDMA write. However, in both cases, we need to make sure that the
flag cannot be set before the data is delivered. And to do this we need to use some
knowledge about the implementation of hardware. In our current platform, gather
lists are processed one by one. And for each buffer, data is delivered in order (the
last byte is written last). Thus, we need to put the flag after the data in the gather

list, or to put the flag at the end of the data. Since using gather list complicates the

64

" RDMA Write with One Data Seghent A
107 RDMA Write with Two Data Segments "

-
c
o
(8}
Q
%]
o
S
2
Q
5

2 .

0 1 1 1 1 1 1 1

4 8 16 32 64 128 256 512 1024
Message Size(Byte)

Figure 6.5: Latency of RDMA Write Gather

Data Size)
Poll head flag first
Head Flag —
Data
Poll tail fl
Tail Flag -~ X
Unused

Figure 6.6: RDMA Buffer Structure for Polling

65

implementation and also degrades performance (more DMA operations needed) as
can been in Figure 6.5, we use the second approach: putting the flag at the end of the
data buffer. Although the approach uses the in-order implementation of hardware for
RDMA write which is not specified in the InfiniBand standard, this feature is very
likely to be kept by different hardware designers.

Putting the flag at the end of the data is slightly more complicated than it looks
because the data size is variable. The receiver side thus has to know where the end
of the message is and where the flag is. To do this, we organize the buffer as in
Figure 6.6. The sender side sets three fields: head flag, data size and tail flag before
doing the RDMA write. The receiver first polls on the head flag. Once it notices that
the head flag has been set, it reads the data size. Based on the data size, it calculates
the position of the tail flag and polls on it.

The above scheme has one problem. Since the receive buffer can be reused for
multiple RDMA writes, it may happen that the value at the tail flag position is the
same as the flag value. In this case, the send side should use two flag values and
switch to another value. But how does the sender side know the value of the buffer
at the receiver side? We notice that because of the persistent association between
buffers, the buffer on the sender side should have the same content as the receiver

side. Thus what we need to do at the sender side is the following!:

1. Set data size.

2. Check the position of the tail flag. If the value is the same as the primary flag
value, use the secondary value. Otherwise, use the primary value.

! Another approach called “bottom-fill” was used in [82].

66

3. Set the head and tail flags.

4. Use RDMA write operation to transfer the buffer.

Initially, the head flag at the receiver side is cleared. The receiver polls by per-

forming the following:
1. Check to see if the head flag is set. Return if not.
2. Read the size and calculate the position of the tail flag.
3. Poll on the tail flag until it is equal to the head flag.

After processing, the receive side clears the head flag.

6.2.3 Reducing Sender Side Overhead

Using RDMA write for small and control message can reduce the overhead at
the receiver side because the receiver no longer needs to manage and post receive
descriptors. In this section we describe how the overhead at the sender side can also
be reduced by using our scheme.

At the sender side, there are two kinds of overheads related to the management
of descriptors and buffers. First, before buffers can be sent out, descriptors must
be allocated and all the fields must be filled. Second, after the operations are done,
completion entries are generated for them in the CQ and the sender side must process
them and take proper actions such as free the descriptor and the buffer.

To reduce the overheads of allocating and freeing descriptors, we store them to-
gether with the buffer. Since we have persistent association between source and

destination buffers, all fields in the descriptors can be filled only once and reused

67

except for the data size field. To deal with the overhead of completion entries in the
CQ, we can use the unsignalled operations in the InfiniBand Architecture. These

operations will not generate CQ entries.
6.2.4 Flow Control for RDMA Channels

As we have mentioned in the previous subsection, before the sender can reuse
an RDMA buffer for another operation, it must make sure that the receiver has
already finished processing this buffer. To achieve this, a flow control mechanism is

implemented for the RDMA channel:

e At the sender side, the head pointer is incremented after each send in the RDMA

channel.

e At the receiver side, the head pointer is incremented after an incoming message

is received.

e An RDMA channel cannot be used if its head pointer is equal to its tail pointer

at the sender side. In this case, we fall back and use the send/receive channel.

e The receiver maintains a credit count for the RDMA channel. Each time a
receiver RDMA buffer is freed, the credit count is increased if the buffer is
pointed by the tail pointer. Then the receiver goes on and checks if the following
buffers were already freed. If they were, the credit count and the tail pointer
are incremented for each buffer. The checking is necessary because although

the arrival of messages is in order, the buffers can be freed out of order.

e For each message sent out (either RDMA channel or send/receive channel), the
receiver will piggyback the credit count.

68

e After the sender receives a message with a positive credit count, it increases its

tail pointer.

One thing we should note is that when we run out of RDMA buffers, we fall back
on the send/receive channel for communication because we have separate flow control
for the send/receive channel. However, these cases do not happen often and RDMA

channels are used most of the time.
6.2.5 Ensuring Message Order

Since we use Reliable Connection (RC) service provided by InfiniBand for our
design, messages will not be lost and they are delivered in order. However, in our
RDMA-based approach, there are two potential sources of incoming messages at
the receiver side for each sender: the RDMA channel and the send/receive channel.
The receiver has to poll on both channels to receive messages. Therefore it might
receive messages out of order. This is not desirable because in MPI it is necessary
to ensure the order of message delivery. To address this problem, we introduce a
Packet Sequence Number (PSN) field in every message. Each receiver also maintains
an Ezpected Sequence Number (ESN) for every connection. When an out-of-order
message arrives, the receiver just switches to the other channel and delays processing
of the current packet. It stays on the other channel until the PSN is equal to the

current ESN.
6.2.6 Polling Set Management

In this subsection we describe our mechanism to manage polling sets for RDMA
channels. Initially, all connections use send/receive channels. Each receiver is respon-
sible for adding or deleting connections to the RDMA polling set. When a receiver

69

decides to add or remove a connection, it tells the sender by piggybacking or explicitly
sending a control packet. The sender side takes corresponding actions after receiving
this information.

There are different policies that the receiver can use to manage the RDMA polling
set (add or remove a connection). For an application with only a small number of
processes, all connections can be put into the RDMA polling set because the polling
time is small. For large applications, we need to limit the size of RDMA polling
sets in order to reduce the polling time. A simple method is to put first N (N is
the size of the RDMA polling set) channels with incoming messages into the RDMA
polling set. As we can see from Table 6.1, this method works for many large scientific
applications. For those applications which have a large number of communication
destinations for each process, we can dynamically manage the RDMA polling sets by
monitoring the communication pattern. Another method is to take some hints from
the applications regarding the communication frequency of each connection. We plan
to investigate along some of these directions.

The order of polling in the RDMA polling set can be very flexible. Different algo-
rithms such as sequential, circular and prioritized polling can be used. Polling order
can have some impact on communication performance when the size of the polling

set is relatively large. We also plan to investigate along some of these directions.

6.3 Performance Evaluation

In this section we present performance evaluation for our RDMA-based MPI de-
sign. Unlike the basic implementation, A1l InfiniHost cards and Intel compilers are

used for the tests. Base MPI performance results are first given. Then we evaluate the

70

impact of using RDMA based design by comparing it with send/receive based design.
We use micro-benchmarks as well as applications (NAS Parallel Benchmarks [68]) to

carry out the comparison. Finally, we use simulation to study the impact of number

of RDMA channels on RDMA polling performance.

35 T T T T 900
< 800 |
3
g § 700
§ E% 600
_8 = 500 r
F; S 400
g £ 300 f
= S
4 = 200 -
=}
g 100
5 : : : : 0 ‘ : : : : :
4 16 64 256 1024 4096 4 16 64 256 1024 4096 16384 65536262144
Message Size(Byte) Message Size (Byte)
Figure 6.7: MPI Latency Figure 6.8: MPI Bandwidth
40 — : 60 —— .
RDMA Write —— - RDMA Write ——
Send/Receive - e Send/Receive -
35] S
8 $
g &
o c
S S
7 s
8 £
L 3
°
c
]
0
4 16 64 256 1024 4096 4 8 16 32 64 128
Message Size(Byte) Message Size (Byte)
Figure 6.9: MPI Latency Comparison Figure 6.10: MPI Bandwidth Compar-

ison (Small Messages)

71

900 : — ‘ 3 : . :
—~ RDMA Write —— g RDMA Write ——
g 800 - Send/Receive - = 1 Send/Receive -
& 700 g
2 600 | g
s, S
2 500 | 5
S =3
= 400 | =
= 8
£ 300 2
5 200t g o
& 100 |
06471/7» 256 10‘24 4696 16‘384 65“"':36 262144 ' 4 ;3 1‘6 3‘2 6;1 1‘28 256 512
Message Size (Byte) Message Size (Byte)
Figure 6.11: MPI Bandwidth Compar- Figure 6.12: Host Overhead in La-
ison tency Test
Table 6.2: MPI Performance (Smallest Latency and Peak Bandwidth)
Latency (us) | Bandwidth (MB/s)
This implementation 6.8 871
Quadrics 4.7 305
Myrinet/GM 7.3 242
Figure 6.13: NAS Results on 4 Nodes Figure 6.14: NAS Results on 8 Nodes
(Class A) (Class B)

72

Figures 6.7 and 6.8 show the latency and bandwidth of our RDMA-based MPI
implementation. We have achieved a 6.8 microseconds latency for small messages.
The peak bandwidth is around 871 Million Bytes (831 Mega Bytes)/second. We have
chosen 2K as the threshold for switching from Eager protocol to Rendezvous protocol.
Table 6.2 compares these numbers with the results we got from Quadrics Elan3 cards
and Myrinet Lanai 2000 cards in the same cluster. (Please note that Myrinet and
Quadrics cards use PCI-II 64x66 MHz interface while the InfiniHost HCAs use PCI-X
133 MHz interface.) From the table we see that our implementation performs quite
well compared with Quadrics and Myrinet.

The latency test was carried out in a ping-pong fashion and repeated for 1000
times. In Figure 6.9, we can see that RDMA-based design improves MPI latency. For
small messages the improvement is more than 2 microseconds, or 24% of the latency
time. For large messages which go through the Rendezvous protocol, we can still
reduce the latency by saving time for control messages. The improvement for large
messages is more than 6 microseconds.

The bandwidth test was conducted by letting the sender push 100 consecutive
messages to the receiver and wait for a reply. Figures 6.10 and 6.11 present the
bandwidth comparison. It can be seen that RDMA-based design improves bandwidth
for all message ranges. The impact is quite significant for small messages, whose
performance improves by more than 104%.

LogP model for parallel computing was introduced in [18], which uses four pa-
rameters delay, overhead, gap and processors to describe a parallel machine. The
overhead in communication can have significant impact on application performance,

as shown by previous studies [58]. In Figure 6.12 we present the host overhead for

73

the latency tests in Figure 6.9. We can see that the RDMA-based design can also
reduce the host overhead for communication. For small messages, the RDMA-based
approach can reduce the host overhead by up to 22%.

In Figures 6.13 and 6.14 we show the results for IS, MG, LU, CG, FT, SP and
BT programs from the NAS Parallel Benchmark Suite on 4 and 8 nodes. (Class A
results are shown for 4 nodes and class B results are shown for 8 nodes.) SP and BT
require the number of processes to be a square number. Therefore, their results are
not shown for 8 nodes. Program IS uses mostly large messages and the improvement
of the RDMA-based design is very small. For all other programs, the RDMA-based

design brings improvements as high as 7% in overall application performance.

1.4

12 r

0.8 r

0.6 |

0.4 |

Polling Time (Microsecond)

0.2 |

1 2 4 8 16 32 64 128
Number of RDMA Channels

Figure 6.15: Polling Time of RDMA Channels

In order to study the behavior of the RDMA-based design for large systems, we
have simulated the polling time with respect to different numbers of connections
in the RDMA polling set. Figure 6.15 shows the results. We can see that even
though the polling time increases with the number of connections, the time to poll a

connection is very small. Even with 128 connections, the polling time is only about 1.3

74

microseconds. This small polling time means that the size of an RDMA polling can be
relatively large without degrading performance. For applications shown in Table 6.1,
a polling set with 16 connections is enough even for 1024 processes. The polling time
for 16 connections is only 0.14 microseconds. Thus, our proposed design demonstrates

potential for being applied to large systems without performance degradation.

6.4 Summary

Being the de facto standard of writing parallel applications, MPI has been im-
plemented for numerous interconnects, including those with remote memory access
abilities [87, 5, 36, 11]. [5] relies on the active message interface offered by LAPI.
[36] uses PIO for small messages. Work done in [11] implemented MPT for Cray T3D
based on the SHMEM interface. [87] describes an MPI implementation over Sun Fire
Link Interconnect, which is also based on PIO.

RDMA operations have been used to implement MPI collective operations. Work
in [82] focuses on how to construct efficient algorithms to implement collective oper-
ations by using RDMA operations. Our work can be used in conjunction with their
work to efficiently transfer short data messages and control messages.

RDMA operations have also been used to design communication subsystems for
databases and file systems [104, 57]. These studies do not address the issue of using
RDMA for control messages. [13] evaluated different communication schemes for
implementing a web server on a cluster connected by VIA. Some of their schemes
use RDMA write for transferring flow control messages and file data. However, their
schemes differ from ours in that they have used a sender-managed scheme which is

similar to [87].

75

In this work, we have proposed a new design of MPI over InfiniBand which brings
the benefit of RDMA to not only large messages, but also to small and control mes-
sages. We have proposed designs to achieve better scalability by exploiting application
communication pattern and combining send/receive operations with RDMA opera-
tions. Our performance evaluation at the MPI level shows that for small messages,
our RDMA-based design can reduce the latency by 24%, increase the bandwidth by
over 104%, and reduce the host overhead by up to 22%. For large messages, perfor-
mance is also improved because the time for transferring control messages is reduced.
We have also shown that our new design benefits MPI collective communication and

NAS Parallel Benchmarks.

76

CHAPTER 7

FAST AND SCALABLE MPI BROADCAST

In this part, we focus on one of the commonly used MPI collective functions :
MPI_Bcast. This operation broadcasts a message to all the other nodes in a commu-
nication group. MPI_Bcast can be used alone or as building blocks for other collective
operations such as MPI_Alltoall.

One of the notable feature of InfiniBand is that it supports hardware multicast.
Thus, a message can be efficiently delivered to multiple receivers. Although they look
similar, the semantics of hardware multicast in InfiniBand do not match with those
of MPI_Bcast. For example, multicast in InfiniBand is supported only in Unreliable
Datagram (UD) service and does not guarantee reliable message delivery. This leads

to the following questions:

1. Can we take advantage of hardware multicast in InfiniBand to provide broadcast

support in MPI?

2. How can we bridge the semantic gap of InfiniBand multicast and MPI_Bcast in

an efficient and scalable manner?

In this work, we aim to provide answers to the above questions. To support
MPI_Bcast, InfiniBand multicast lacks features such as reliability, in-order delivery

7

and large message handling. We propose designing and using a substrate to enhance
InfiniBand multicast by providing these features. This substrate is an integrated
part of the MPI implementation and it exploits both multicast and point-to-point
communication in InfiniBand.

Providing new features on top of InfiniBand multicast inevitably brings extra
overhead. To achieve high performance and scalability, we have used two key design
strategies. The first one is to remove the overhead from communication critical path
so that it happens in the background. The second one is to balance and reduce this
background overhead so that it is not a performance bottleneck in most cases. Based
on the first strategy, we have proposed a sliding window based design which enables
the root of MPI_Bcast to proceed without waiting for other nodes to send ACKs.
Based on the second strategy, we have introduced a co-root scheme to balance back-
ground ACK traffic and various delayed ACK techniques to reduce the ACK traffic.
We have also addressed many detailed design issues such as buffer management, ef-
ficient handling of out-of-order and duplicate messages, timeout and retransmission,

flow control and RDMA based ACK communication.

7.1 MPI_Bcast Overview

MPI supports both point-to-point and collective communication functions. MPI_Bcast
is a commonly used collective function in writing parallel applications. It broad-
casts a message from a root process to other processes in a communication group,
which is specified by an MPI communicator. In many cases, this communicator is
MPI_COMM _WORLD, whose communication group includes all the processes par-

ticipating in the MPI application.

78

MPI Bcast is a blocking operation. For a root node, the operation does not re-
turn until the communication buffer can be reused. For a receiver node, the operation
returns only after the broadcast data has been delivered into the receive buffer. How-
ever, it is not necessary that the operation returns only after the broadcast is finished
at the root.

In many MPI implementations, MPI_Bcast is implemented with a tree-based al-
gorithm, which exploits point-to-point communication operations. This approach is
used in our MPI implementation over InfiniBand: MVAPICH [55, 53]. In the tree
based approach, the number of hops to reach leaf nodes increases with the total num-
ber nodes (typically in a logarithmic manner). Therefore, MPI Bcast latency also
increases. In Figure 7.1, we show MPI_Bcast performance in MVAPICH using point-
to-point communication. It can be seen that MPI_Bcast latency increases with the

number of nodes.

2nodes ——
45 + 4 nodes %
8 nodes ---x-

Time (us)
N
(&3]
*
*
x

4 8 16 32 64 128 256 512 1024 1836
Message Size (Bytes)

Figure 7.1: MPI_Bcast Latency in MVAPICH Using Point-to-Point Communication

79

Another drawback of tree based implementations is that if hosts are involved in
intermediate nodes to forward broadcast messages, skew between different processes
may significantly delay the forwarding [12]. This has adverse impact on the execu-
tion time of an application. Thus, the challenge is whether the hardware supported

multicast scheme can alleviate the impact of process skew.

7.2 Designing MPI Bcast with InfiniBand Multicast

There have been many studies about multicast and reliable multicast in the net-
working area [31, 23, 47]. A majority of the work done in this area focuses on net-
works based on TCP/IP protocol. Our work deals with implementing MPI Bcast
in InfiniBand. Compared with a general TCP/IP network, InfiniBand offers much
higher communication performance and hardware supported multicast. Also, group
membership in MPI is much more static than that in the dynamic environment of a
TCP/IP network.

Recently, different collective operations in MPI have been studied on intercon-
nects such as Virtual Interface Architecture (VIA) [30], Quadrics [79], Myrinet [103]
and IBM SP [93]. Compared with these interconnects, InfiniBand provides new chal-
lenges and opportunities for implementing MPI collective operations. Our previous
work [43] proposed an RDMA based scheme to implement efficient barrier operations
over InfiniBand. In this work, we continue our work in this direction by presenting
different broadcast designs while exploiting the hardware multicast support.

In the previous section, we have seen that MPI_Bcast implementations based
on point-to-point communication are not scalable with respect to the number of

processes. It also indicates that point-to-point implementations are susceptible to

80

process skew. InfiniBand multicast provides a more scalable way of delivering a
single message to multiple destinations. However, there are several major differences

between InfiniBand multicast and MPI_Bcast:

1. InfiniBand multicast does not guarantee reliability, while in MPI, communica-

tion must be reliable.

2. Since InfiniBand multicast uses connectionless UD service, there is no guarantee
regarding the ordering of multicast messages. However, MPI specifies that all

collective operations must be matched according to the order they are initiated.

3. In InfiniBand UD service, the size of a message cannot exceed the MTU (Max-
imum Transfer Unit), which is typically 2K Bytes. MPI does not limit the

message size in MPI_Bcast.

In other words, there exists a semantic gap between InfiniBand multicast and MPI_Bcast.
This issue must be addressed to take advantage of hardware multicast in an MPI im-
plementation. In this work, we propose a substrate which bridges this gap. As shown
in Figure 7.2, this substrate sits on top of the underlying InfiniBand layer, exploiting
multicast as well as other InfiniBand functionalities. It also interacts with other parts
of the MPI implementation. To achieve high performance and scalability, we need to
not only implement this substrate, but also do it in an efficient and scalable manner.

In designing the substrate, we need to address three issues: reliability, in-order
delivery, and handling of large messages. Previous study [95] has shown that data
sizes in MPI collective operations are typically quite small. Therefore, we will first
concentrate on efficient handling of small messages. We will deal with large messages
specifically at the end of this subsection.

81

MPI Interface

Collective Implementation Point—to—Point
(MPI_Bcast)]
Implementation
‘ Substrate H
: : IBA Interface
IBA Multicast w IBA Point-to—Point w

Figure 7.2: Bridging the Gap between InfiniBand Multicast and MPI_Bcast

In the following, we propose several designs used in the substrate. We first de-
scribe a basic design which is easy to understand and also straightforward to im-
plement. Then we present several new designs which deal with performance and
scalability issues of the basic design. Although reliability and ordering are two differ-
ent issues, they can be addressed together. In the following discussions, we primarily
focus on how to implement reliability. We have chosen ACK based approaches, in
which delivery is confirmed by acknowledgments and message loss is handled by time-
out/retransmission. In the proposed schemes, we also address how message ordering

can be ensured for MPI_Bcast.
7.2.1 Basic Design

In the basic design, the root node of MPI _Bcast sends out a message using mul-
ticast and other nodes wait for this message. If the message is received, an ACK is
sent back to the root node. The root blocks and waits for all ACKs to be received.

If not all ACKs arrive within a certain period of time, it times out and retransmits

82

the message using reliable point-to-point communication (using the RC service, as
defined by the InfiniBand standard).

The basic design uses ACKs and timeout/retransmission to provide reliability.
Two different broadcast messages from the same root are guaranteed to arrive in-
order because the root node blocks for ACKs of the first message before it can send
out the second one.

However, there are several major problems in this basic design. First, making the
root block for all the ACKs significantly increases the overhead of the MPI_Bcast call
at the root. Second, since all other nodes send back ACKs to a single root node, a
hot spot is created at the root, which becomes a performance bottleneck when the
total number of nodes in a system is large. This problem is also referred to as ACK

implosion [80]. In the following subsections, we will address these problems.

7.2.2 Sliding-Window Based Design

Our basic design leads to poor performance because the root has to wait for all
the ACKs to be received. MPI specifies that MPI_Bcast can return immediately after
the buffer can be reused. Therefore, it is not necessary for the root to wait for all the
ACKs to be received.

In order to alleviate this problem, we propose a solution which makes a copy of
the user buffer. After the multicast operation is initiated, we can immediately return
without waiting for all the ACKs to be received. To handle multiple outstanding
MPI_Bcast initiated from a single root, we use a number of pre-allocated buffers at
each root. These buffers are organized as a ring. A sliding-window based approach

is used to manage these buffers, as shown in Figure 7.3. A buffer is consumed for

83

each new MPI_Bcast operation. When all ACKs for this operation have arrived, this

buffer can be freed and reused for other MPI_Bcast operations.

tail head
Y

|

l

I
o 1 2 3 4 5 6 7 8
After sending messages 2 t

y tail head

o
IS

d 1 2 3 4 5 6 7 8
After sending 5

tail head

0 1 2 3 4 5 6 7 8

After receiving acksfor 2to 4

Figure 7.3: Sliding Window Buffer Management

Compared with the basic design, the sliding-window based design decouples ACK
processing from the multicast. In other words, ACK processing is no longer done in
the critical path of broadcast, but carried out in the “background”. If the window
size is sufficiently large such that all ACKs can arrive and be processed in time,
MPI_Bcast will not block due to running out of buffers. As a result, the performance
of MPI_Bcast can be significantly improved.

The window based design also has its drawbacks. First, the data in user buffers
has to be copied to buffers in the window, which increases processing overhead. For-

tunately, the typical size of MPI_Bcast is small and the copying overhead is negligible.

84

Another problem is that it consumes more buffer than the basic design. We can con-
trol the buffer space used by changing the total window size. The third issue is that
this design does not solve the ACK implosion problem. Although ACK processing is
now done in the background, it still happens that all ACKs arrive at the same root
node. Therefore, the root can become a performance bottleneck in this design for

large scale systems.
7.2.3 Avoiding ACK Implosion

To solve the ACK implosion problem, we should not let all the receivers send ACKs
to a single root node. The basic idea to deal with this problem is to use a hierarchical
structure for ACK collection and distribute the load to a number of nodes. One
solution is to use a tree based structure to collect ACKs. In this approach, all nodes
form a tree structure, with the root node being the root of the tree. Intermediate
nodes are responsible for collecting ACKs for its children. After all ACKs have come
from its children, an intermediate node sends an ACK to its parent node. The root
node only needs to collect ACKs from its direct children instead of all other nodes.

The drawback of the tree based ACK collection is that it depends on intermediate
nodes for ACK processing. Thus, ACK collection time depends on the communication
progress of intermediate nodes. (A similar problem has been discussed in [12].) In
a polling based MPI implementation such as MPICH, communication progress is
only made within MPI function calls. Therefore, if an intermediate node is doing
lengthy computation, ACK processing and forwarding could be delayed. The problem
becomes even more serious when the tree has multiple levels. As a result, it is very

hard to determine the timeout value for retransmission at the root. When ACK

85

processing at intermediate nodes are delayed, the tree based ACK collection is prone
to false retransmission, which is triggered by delayed ACKs instead of real message
loss. To make matters worse, a single delayed ACK will result in the root node
retransmitting the message to everyone in the same sub-tree, which can generate a
lot of network traffic and increase the overhead of the root node.

To solve the ACK implosion problem and also to address problems with the tree
based scheme, we propose a new ACK collection scheme called the co-root scheme.
In this scheme, in addition to the root node, we select a subset of other nodes as co-
roots. The remaining nodes are called leaf nodes. Each of the root and the co-roots
is responsible for a group of leaf nodes. The basic idea is to guarantee that co-roots
can get messages reliably and use them to help ACK processing. The co-root scheme

is illustrated in Figure 7.4 and it consists of the following steps:

1. The root uses multicast to transfer the message to every other node.

2. The root does a small scale “broadcast” to all co-roots. The broadcast is done
using reliable point-to-point communication. A tree based algorithm can be

used, just like that in the current MPI implementation.

3. Each of the root and the co-roots collects ACKs from all other nodes in its
sub-group. If timeout happens, the root or the appropriate co-root will do the

retransmission.

Similar to the tree based ACK collection, the co-root scheme also uses a hierarchi-
cal structure to delegate ACK collection and processing to other nodes. They both
aim to solve the ACK implosion problem. However, there are also major differences
between them. The co-root scheme is a two-level hierarchy. After the message is

86

Multicast to All the nodes

0 4 8 12

[6@3@][@@@@][@@@@]{@@@@]

UW

0 4 8 12

00000000 (@00 Q) (0000

Ack Transmission to respective coroots

Figure 7.4: Co-Root Scheme

delivered to a co-root, the co-root essentially plays the same role as the root and
ACK processing for its sub-group is completely decoupled from the root. In a tree
based scheme, intermediate nodes are responsible for ACK collection and forward-
ing, while the root is responsible for ACK collection and retransmission. The ACK
processing is not completely decoupled from the root because it has to handle all the
retransmissions.

The co-root scheme has several advantages over a tree based scheme. Since co-
roots now help with both ACK collection and retransmission, the load is more evenly
distributed. The co-root scheme does not depend on the progress of intermediate
nodes. As a result, it is easier to determine the timeout value for a given system
size. The co-root scheme also results in fewer false retransmissions. (Note that false
retransmission can still happen if an ACK from a leaf to its co-root is delayed.)

Another advantage of the co-root scheme is that each co-root keeps information of

87

all the leaf nodes in its sub-group. When an ACK is not received, retransmission is
done only to that particular node. In a tree based scheme, the root can only track
other nodes at the level of sub-trees. Therefore, retransmission must be done for all
nodes in that sub-tree, which increases overhead and network traffic.

The co-root scheme also has its disadvantages. First, delivering the message reli-
ably to every co-root introduces extra root processing overhead and network traffic.
However, it should be noted that usually the co-root scheme does not increase latency
of the broadcast. At any co-root, the broadcast can be completed when it receives
either the multicast message or the “reliable broadcast” message. It does not have to
wait for both messages. The second problem of the co-root scheme is that a copy of
the message is duplicated at all co-roots. Therefore, it consumes more buffer space
compared with a tree-based scheme. Another issue for co-root scheme is that we must
carefully determine the number of co-roots (or the sub-group size). We address this

issue (determining optimal number of co-roots) in Section 6.4.5.
7.2.4 Reducing ACK Traffic

ACK implosion avoiding schemes distribute ACK processing and retransmission
tasks from the root to other nodes, but they do not reduce the total number of
ACK messages. To improve utilization of the network resource and to avoid possible
network congestion, it is also desirable to reduce ACK traffic.

Our basic idea of reducing ACK traffic is to send ACKs in a lazy manner. We

propose two schemes:

1. Piggybacking. In this scheme, a node attaches the ACK with other messages

instead of sending it as a separate message. If there is no message sending out

88

to the ACK destination after a certain period of time, an explicit ACK message

1s sent.

2. Acknowledge every M broadcast messages. Instead of sending an ACK for every
broadcast message, we only send one ACK for every M broadcast messages.

Timeout and explicit ACK messages are also used.

Both schemes can reduce the total amount of ACK traffic. The effectiveness of pig-
gybacking is very dependent on the communication pattern of the application. In the
best case, all ACKs can be attached with other messages. In the worst case, timeout
happens and we have to send the ACK using an explicit message. However, even in
this worst case, we can still possibly reduce ACK traffic. This is because we wait for
the timeout before sending out the ACK messages. Therefore, if there are multiple
broadcast messages received from the same root, they can be acknowledged using a
single ACK message.

The second scheme effectively reduces the ACK traffic to 1/M of the original
amount if there are many back-to-back broadcasts. However, one problem with the
scheme is that after every M messages, the root will receive ACKs from all other nodes.
This leads to similar situations as ACK implosion. To solve this problem, we introduce
a technique called skewed ACK. In this technique, every node still acknowledges after
receiving every M messages. However, they now do the ACK in a more independent
way. For example, suppose there are n nodes in the broadcast group and every
broadcast message has a sequence number B, then node i can generate an ACK based
on the following condition: B mod M = i mod M.

We should note that schemes to avoid ACK implosion and to reduce ACK traffic
are complementary. By combining both schemes, we can achieve even more benefit.

89

For example, the schemes proposed in this subsection can be used to reduce ACK

traffic in the co-root scheme proposed in the previous subsection.
7.2.5 Dealing with Large Messages

In previous discussions, we dealt with small broadcast messages which can fit into
a single buffer. (The buffer size is no larger than InfiniBand MTU.) Large messages
can be divided into smaller chunks and sent out using multiple buffers. The techniques
we have discussed previously are still applicable in this case. However, the copying
cost may be significant because the message size is large.

Since large broadcast messages are relatively infrequent, an alternative way is to
fall back on schemes based on point-to-point communication. The advantage of this
approach is simplified design and implementation. Also the overhead of the root due
to the copy can be eliminated because zero-copy point-to-point communication can

be used for transferring the message.

7.3 Detailed Design Issues

In this part, we discuss some of the detailed design issues in our MPI_Bcast designs.
These issues include buffer management, out-of-order and duplicate message handling,

timeout and retransmission, flow control and RDMA based ACK communication.
7.3.1 Buffer Management

To ensure reliability of MPI_Bcast, we have to store broadcast messages in buffers
until we can be sure that every other node has received this message. Therefore,

buffer management is an important issue in our design.

90

For each node, a number of pre-allocated buffers are used for storing broadcast
messages sent by this node. Since InfiniBand requires that communication buffers
must be registered, we pre-register these buffers so as to save cost during communica-
tion. The buffers are organized as a ring and managed using a sliding window based
algorithm. For each new broadcast, the message is copied to the buffer at the head of
the window. For a buffer at the tail of the window, if we have collected all ACKs, we
free this buffer by incrementing the tail pointer. For the co-root scheme, a window of
buffers exist also in all co-roots and are managed in the same way.

One parameter we have to decide in buffer management is the window size. A
larger window size means that the application can issue a large number of back-to-
back broadcast without blocking because of delayed ACKs. However, using a large
window size also consumes more buffer space. This parameter is best decided by the
communication pattern of applications. Currently we use a static value for window
size which can be changed at compile time.

One issue we have to deal with is what to do if we run out of buffers. In the
current implementation, we treat this situation in the same way as timeout. Thus,

we will retransmit the message to all nodes from which the ACK has not come.
7.3.2 Handling Out-of-Order and Duplicate Messages

Multicast messages in InfiniBand use Unreliable Datagram transport service, which
does not maintain message order. Duplicate messages can also be sent to a receiver
due to false retransmission or algorithms used in co-root scheme. These situations

are handled by using sequence numbers attached with each broadcast message.

91

Each receiver maintains a counter which specifies the sequence number of the
next broadcast message it is expecting. If the sequence number of the next message
is equal to the counter, the message is processed and the counter is incremented. If the
sequence number is larger than the counter, the processing is delayed and the message
is put into a queue. If an arriving message is a duplicate, its sequence number is either
less than the counter value or equal to the sequence number of one of the messages

in the queue. In this case, the message is not processed but silently discarded.
7.3.3 Timeout and Retransmission

Whenever a root issues a multicast message, it sets a timeout value for this mes-
sage. For the co-root scheme, all the co-roots also set a timeout value after receiving
the message from the root. When we set or check the timeout value, the current time
value is obtained by reading the time stamp counter register provided by the Intel
Pentium architecture. This approach has very low overhead. To check if a timeout
value has been reached, we use a polling based approach. Therefore, timeout and
retransmission only happen inside MPI functions calls. An alternative is to use an
interrupt based method. However, this approach is not used because it brings many
race conditions and does not match well with the polling based implementation of
MPICH.

There are many factors which affect the timeout value, such as multicast and point-
to-point latency, process skew, window size at the root (or co-roots), the number of
co-roots and the system size. Currently, we use a static value which can be changed
at compile time. We plan to investigate these issues in future with the availability of

large-scale InfiniBand clusters.

92

Retransmission is always done using reliable point-to-point communication. After
retransmission, the message buffer can be freed because we are now sure that the
message can arrive at the receiver. In certain retransmission cases, such as those
when a large number of ACKs are not received, it may be more efficient to re-issue
the multicast operation. However, we decided not to use this approach because it

complicates the implementation and these cases are quite rare.
7.3.4 Flow Control

In UD service, a multicast send operation will consume one buffer at every receiver.
If there are not enough buffers posted at the receiver, incoming messages may be
dropped. The purpose of flow control is to keep the root from sending if the receivers
have not posted enough receive buffers.

We use a credit-based scheme for flow control. During initialization, a number
of buffers are pre-posted and each node has an array of credit values for every other
node which are equal to the number of pre-posted buffers. After receiving a broadcast
message, a node will decrement the credit count of all nodes because a multicast
operation will consume buffers at all receivers. After the message is processed and the
buffer is re-posted at a receiver, the credit count for this node should be incremented
at other nodes. This information is transferred using piggybacking. Both point-to-

point messages and multicast messages can carry piggybacked credit information.
7.3.5 RDMA Based ACK communication

In our previous study [55], we have shown that RDMA operations in InfiniBand
provide better performance than send/receive operations. Another advantage of

RDMA is that there is no descriptor posting or management overhead at the receiver.

93

To improve performance of ACK collection in MPI_Bcast, we have used RDMA write
operations for ACK collections. To send back an ACK, a receiver issues an RDMA
write to a memory location at the root (or its co-root). The root or co-root only
needs to check the memory location in order to find out if an ACK has come. Since

this check only involves memory read, it is very efficient.

7.4 Performance Evaluation

In this subsection, we evaluate performance of our MPI_Bcast designs based on In-
finiBand multicast. We present results for several different designs and compare them
with the original implementation in MVAPICH, which is a point-to-point implemen-
tation based on the binomial tree algorithm. We characterize broadcast performance
using two micro-benchmarks: latency and throughput. We also show how process skew
can affect different implementations. Since different ACK implosion avoiding tech-
niques and ACK traffic reducing techniques may be combined, we can have different
combinations for multicast based schemes.

We have chosen only a subset of all possible combinations in the performance

evaluation. All schemes used in our tests and their abbreviations are as follows:

Original: the original implementation based on point-to-point communication.

Basic: the basic design.

Window: sliding-window based design without ACK implosion avoiding or ACK

traffic reduction.

Co-root2: sliding-window based with one co-root.

Aggregatel0: sliding-window based with ACK for every 10 messages.

94

7.4.1 Latency Test

We define broadcast latency to be the time it takes for a broadcast message to
reach every receiver. The test consists of a loop, in which an MPI_Bcast is issued
from a root node and the receivers take turns to send back an acknowledgment using
MPI_Send. The broadcast latency is derived from the time to finish each iteration
and the MPI point-to-point latency.

Figure 7.5 shows the broadcast latency results for different designs. The buffer size
in the multicast window is 2K bytes, which is equal to the MTU. However, because
of the message header and other overhead (a portion of the buffer is used to store
descriptor.), currently we can send a payload of up to 1836 bytes in a single buffer.
We can see that our new implementations based on InfiniBand multicast performs
significantly better than the original broadcast implementation based on point-to-
point communication. In the broadcast latency test, most of the ACK processing is
carried out in the background. Thus, all the multicast based designs shown in the
figure perform comparably. For small messages, multicast based designs can perform
up to 58% better than the original design. (Using the co-root scheme introduces
around 2us overhead for messages larger than 32 bytes. We are currently investigating
this issue.)

Figure 7.6 compares one of the designs (Window) with the original design. We can
see that although handling large messages requires fragmentation and reassembly of
messages and extra copies, the performance can still be improved by using InfiniBand
multicast for message sizes up to 32K bytes. For example, the improvements are 210%

for 2K byte messages and 86% for 8K byte messages.

95

7.4.2 Throughput Test

We use broadcast throughput to measure how fast MPI_Bcast operations can be
issued and finished. In this test, a number of back-to-back MPI_Bcast operations
are issued from a root node. The throughput is simply the number of broadcast
operations finished divided by the total time.

Figure 7.8 presents the throughput results for a number of different designs. We
can see that the basic design performs the worst even though it uses InfiniBand mul-
ticast. This is because it always waits for all the ACKs before initiating the next
broadcast. However, if we use a sliding-window based design, we can perform sig-
nificantly better than the original design. By using ACK reducing technique, the
performance can be further improved because the overhead to process ACKs is re-
duced. We can see that Aggregatel0 scheme can perform up to 112% better than the

original scheme in terms of throughput.

100

240

Basic —— window ——
Window - 220 Original -
Co-root2 -
80 r Original
Aggregatel0 ---=--
o 60 ’§
r T
£ £
= 40 =
20 | i .
0 : : : : : : : : 20 : : :
4 8 16 32 64 128 256 512 10241836 2048 4096 8192 16384 32768
Message Size (Bytes) Message Size (Bytes)
Figure 7.5: MPI_Bcast Latency for Figure 7.6: MPI_Bcast Latency for
Small Messages Using Various Multi- Large Messages (8 Nodes)

cast Schemes(8 Nodes)

96

7.4.3 Impact of Process Skew

To measure the effect of process skew on broadcast performance, we use a test
similar to that in [12]. The test consists of a loop, in which a barrier operation
is performed before a broadcast. To emulate the effect of process skew, a random
delay is inserted between the barrier and the broadcast for all the receivers. We then
measure the average time spent in the MPI_Bcast function.

Figure 7.7 shows the impact of process skew on MPI_Bcast. Schemes Window
and Original are chosen for comparison. We can see that multicast based scheme is
not affected by process skew at all. This is because InfiniBand multicast is supported
by hardware and does not depend on intermediate nodes to make progress. In con-
trast, the original design relies on intermediate nodes to forward broadcast messages.
Therefore, as process skew increases, the receivers spend more time in MPI_Bcast.
When the process skew is 400us, the multicast based scheme performs 10 times better

than the original design in the process skew test.

w
a
o

al
o

Oriéinal —— Basic ——

50 Window - Window -
300 AggregatelQ -
,%? 45 5 Original
E‘ 40 é 250 *
8 35 E
< @ 200 T SR *
= 30 g T
?;,i 25 2 150 .
g 2L E: :
‘E 15 ¢ ;f 100
z =
w7 50 - .]
o
1 : : : : : : 0 : : : : : :
50 100 150 200 250 300 350 400 4 8 16 32 64 128 256 G512 1024
Avg Delay(us) Message Size (Bytes)
Figure 7.7: Impact of Process Skew on Figure 7.8: MPI_Bcast Throughput (8
MPI _Bcast (8 Nodes) Nodes)

97

7.5 Analytical Model

In this section, we use analytical models to characterize different MPI_Bcast im-
plementations. Since our experiments were done in a relatively small testbed, these
models help us to estimate the performance of different schemes in large scale systems.
Here we present main results derived from our model. Model details and validation

can be found in [49].
7.5.1 Modeling Broadcast Latency

Figure 7.9 shows the estimated results for the original implementation and the
sliding-window based schemes in a 1024 node cluster. (In our model, the number of
co-roots does not have significant impact on the results.) It should be noted that the
results presented here are for ideal cases. For the original implementation, we do not
take process skew into consideration. In the sliding-window based scheme, we assume
that ACK process can be overlapped without adding extra overhead. Therefore, the
results serve as a lower bound for both cases. From the figure we can see that in a
1024 node cluster where each node has similar configuration as those in our testbed,
using InfiniBand multicast can improve MPI_Bcast performance significantly. For

small message, the potential latency improvement can be as high as 3.86 times.
7.5.2 Determining the Optimal Number of Co-Roots

One of the important issues in the co-root scheme we proposed is to determine
the number of co-roots for a given system. Since in the broadcast latency test, most

of the processing overhead is in the background, different number of co-roots tend

98

to give similar performance. Therefore, we used broadcast throughput to help us
determine the optimal number of co-roots.

From Figure 7.10 we see that with 1024 nodes, performance degrades with too
many or too few number of co-roots. This is because that if the number of co-roots is
large, the root needs to spend a large amount of time to reliably deliver the message
co-roots. If the number of co-roots is too small, then each co-root needs to spend a
large amount of time processing ACKs because the sub-group size is large. From the

figure, 128 co-roots are the best choice for 1024 nodes.

180 Window —— 140 | 256 Co-roots ——
160 F Original - A 512 Co-roots -
120 & Corroots o

140 1 ’g 128 Co-roots ---=--

120 - L g 100 16 Co-roots -~
& a
% L g U
£ gQ e ()
= 5 60F e .

60 - S

w0l | £ 40t

20 +] 20 +

0 : : : : : : : : 0 : : : : : : :
4 8 16 32 64 128 256 512 10241836 4 8 16 32 64 128 256 512 1024
Message Size (Bytes) Message Size (Bytes)

Figure 7.9: Estimated MPI_Bcast La- Figure 7.10: Estimated MPI _Bcast
tency for Small Messages (1024 Nodes) Throughput for Different Number of

Co-Roots (1024 Nodes)

7.6 Summary

In this work, we described how to take advantage of hardware multicast in Infini-
Band to implement MPI_Bcast operation in MPI. To support MPI_Bcast, we proposed
a substrate on top of InfiniBand multicast which provides reliability, in-order deliv-

ery and handling of large messages. To improve performance of the substrate, we use

99

sliding window based design which removes much of the processing from communica-
tion critical path. To further balance and reduce processing overhead, we proposed
techniques such as the co-root scheme and delayed ACK.

Our performance evaluation on our 8-node cluster shows that our designs can
improve MPI_Bcast latency up to 58% and throughput up to 112% compared with
the current implementation. Our new designs also have much better tolerance to
process skew. Our measurements show that the new designs outperform the current
implementation by a factor of 10 when the average skew is 400us on 8 nodes. To
get more understanding of the performance of MPI_Bcast in large-scale clusters, we
use analytical modeling to estimate the performance of different designs. Our results
show that in a 1024 node cluster, our designs can perform 3.86 times better than the

current design.

100

CHAPTER 8

SUPPORTING MULTIRAIL INFINIBAND CLUSTERS

One of the notable features of InfiniBand is its high bandwidth. Currently, Infini-
Band 4x links support a peak bandwidth of 1GB/s in each direction. However, even
with InfiniBand, network bandwidth can still become the performance bottleneck for
some of today’s most demanding applications. This is especially the case for clusters
built with SMP machines, in which multiple processes may run on a single node and
must share the node bandwidth.

One important way to overcome the bandwidth bottleneck is to use multirail net-
works [16]. The basic idea is to have multiple independent, networks (rails) to connect
nodes in a cluster. With multirail networks, communication traffic can be distributed
to different rails. There are two ways of distributing communication traffic. In mul-
tiplering®, messages are sent through different rails in a round robin fashion. In
striping, messages are divided into several chunks and sent out simultaneously using
multiple rails. By using these techniques, the bandwidth bottleneck can be avoided
or alleviated.

In this chapter, we present a detailed study of designing high performance multi-
rail InfiniBand clusters. We discuss various ways of setting up multirail networks with

2Also called reverse multiplering in the networking community.

101

InfiniBand and propose a unified MPI design that can support all these approaches.
Our design achieves low overhead by taking advantage of RDMA operations in In-
finiBand and integrating the multirail design with MPI communication protocols.
Our design also features a very flexible architecture that supports different policies of
using multiple rails. We have provided in-depth discussions of different policies and
also proposed an adaptive striping policy that can dynamically change the striping
parameters based on the current available bandwidth of different rails.

We have implemented our design and evaluated it using both microbenchmarks
and applications using an 8-node InfiniBand testbed. Our performance results show
that multirail networks can significantly improve MPI communication performance.
With a two rail InfiniBand network, we have achieved almost twice the bandwidth and
half the latency for large messages compared with the original MPI. The peak uni-
directional bandwidth and bidirectional bandwidth we have achieved are 1723 MB/s
and 1877 MB/s, respectively. Depending on the communication pattern, multirail
MPI can significantly reduce communication time as well as running time for certain
applications. We have also shown that for rails with different bandwidth, the adap-
tive striping scheme can achieve excellent performance without a priori knowledge
of the bandwidth of each rail. It can even outperform static schemes with a prior:

knowledge of rail bandwidth in certain cases.

8.1 InfiniBand Multirail Network Configurations

InfiniBand multirail networks can be set up in different ways. In this section, we
discuss three types of possible multirail network configurations and their respective

benefits. In the first approach, multiple HCAs are used in each node. The second

102

approach exploits multiple ports in a single HCA. Finally, we describe how to set
up wvirtual multirail networks with only a single port by using the LID mask control

(LMC) mechanism in InfiniBand.
8.1.1 Multiple HCAs

Although InfiniBand Architecture specifies 12x links, current InfiniBand HCAs
in the market can support only up to 4x speed. A straightforward way to alleviate
the bandwidth bottleneck is to use multiple HCAs in each node and connect them to
the InfiniBand switch fabric. Through the support of communication software, users
can take advantage of the aggregated bandwidth of all HCAs in each node without
modifying applications. Another advantage of using multiple HCAs per node is that
possible bandwidth bottlenecks in local I/O buses can also be avoided. For example,
the PCI-X 133 MHz/64 bit bus (used by most 4x HCAs in the current market) can
only support around 1 GB/s aggregated bandwidth. Although a 4x HCA has a peak
aggregated bandwidth of 2 GB/s for both link directions, its performance is limited
by the PCI-X bus. These problems can be alleviated by connecting multiple HCAs
to different I/O buses in a system.

A multirail InfiniBand setup using multiple HCAs per node can connect each of
HCAs in a node to a separate switch. If a larger switch is available, all HCAs can also
be connected to this single physical network. Through the use of appropriate switch
configurations and routing algorithms, using a single network can be equivalent to a

multirail setup.

103

8.1.2 Multiple Ports

Currently, many InfiniBand HCAs in the market have multiple ports. For example,
InfiniHost HCAs [60] from Mellanox have two ports in each card. Therefore, multirail
InfiniBand networks can also be constructed by taking advantage of multiple ports
in a single HCA. This approach can be very attractive because compared with using
multiple HCAs, it only requires one HCA per node. Hence, the total cost of multirail
networks can be significantly reduced.

However, as we have discussed, the local I/O bus can be the performance bottle-
neck in such a configuration because all ports of an HCA have to share the I/O bus.
Hence, this approach will not achieve any performance benefit by using 4x HCAs with
PCI-X buses. However, benefits can be achieved by using future HCAs that support
PCI-X Double Data Rate (DDR) or Quad Data Rate (QDR) interfaces. Recently,
PCI Express [76] has been introduced as the next generation local I/O interconnect.
PCI Express uses a serial, point-to-point interface. It can deliver scalable bandwidth
by using multiple lanes in each point-to-point link. For example, an 8x PCI Express
link can achieve 2 GB/s bandwidth in each direction (4 GB/s total). Multiple port
InfiniBand HCAs that support PCI Express are already available in the market [62].
Therefore, this approach can be very useful in constructing multirail networks using

systems that have PCI Express interfaces.
8.1.3 Single Port with LID Mask Control (LMC)

In this subsection, we discuss another approach of setting up multirail InfiniBand
networks which does not require multiple ports or HCAs for each node. The basic

idea of this approach is to set up different paths between two ports on two nodes. By

104

using appropriate routing algorithms, it is possible to make the paths independent
of each other. Although a single network is used in this approach, we have multiple
logical networks (or logical rails). If the logical networks are independent of each
other, conceptually they are very similar to multirail networks. Therefore, we call
this approach as wvirtual multirail networks.

In InfiniBand, each port has a local identifier (LID). Usually, a path is determined
by the destination LID. Therefore, multiple LIDs need to be used in order to have
different paths. To address this issue, InfiniBand provides a mechanism called LID
Mask Control (LMC). Basically, LMC provides a way to associate multiple logical
LIDs with a single physical port. Hence, multiple paths can be constructed by using
LMC.

It should be noted that in virtual multirail networks, a port is shared by all the
logical rails. Hence, if the port link bandwidth or the local I/O bus is the performance
bottleneck, this approach cannot bring any performance benefit. It can only be used
for fault tolerance in this case. However, if the performance bottleneck is inside
the network, virtual multirail networks can improve communication performance by

utilizing multiple paths.
8.2 Multirail MPI Design

In this section, we present various high level design issues involved in supporting
multirail networks in MPI over InfiniBand. We first present the basic architecture
of our design. After that, we discuss how we can have a unified design to support
multirail networks using multiple HCAs, multiple ports, multiple connections for a

single port, or any combination of the above. Then we describe how we can achieve

105

low overhead by integrating our design with MPI and taking advantage of Infini-
Band RDMA operations. One important component in our architecture is Scheduling
Policies. In the last part of this section, we discuss several policies supported by
our architecture and also present an adaptive striping scheme that can dynamically

adjust striping parameters based on current system conditions.

8.2.1 Basic Architecture

The basic architecture of our design to support multirail networks is shown in
Figure 8.1. We focus on the architecture of the sender side. In the figure, we can
see that besides MPI Protocol Layer and InfiniBand Layer, our design consists of
three important components: Communication Scheduler, Scheduling Policies, and

Completion Filter.

MPI Protocol Layer

Eager Rendezvous c et
Protocol Protocol ompletion
Messages Messages Input from other system components Notification

Communication Scheduling Completion

Scheduler Policies Filter

Virtual Completion
Subchannels Notification

InfiniBand Layer

Figure 8.1: Basic Architecture of Multirail MPI Design

The Communication Scheduler is the central part of our design. Basically, it ac-

cepts protocol messages from the MPI Protocol Layer, and stripes (or multiplexes)

106

them across multiple wvirtual subchannels. (Details of virtual subchannels will be
described later.) In order to decide how to do striping or multiplexing, the Commu-
nication Scheduler uses information provided by the Scheduling Policies component.
Scheduling Policies can be static schemes that are determined at initialization time.
They can also be dynamic schemes that adjust themselves based on input from other
components of the system.

Since a single message may be striped and sent as multiple messages through
the InfiniBand Layer, we use the Completion Filter to filter completion notifications
and to inform the MPI Protocol Layer about completions only when necessary. The
Completion Filter can also gather information based on the completion notifications

and use it as input to adjust dynamic scheduling policies.
8.2.2 Virtual Subchannel Abstraction

As we have discussed, multirail networks can be built by using multiple HCAs in
a single node, or by using multiple ports in a single HCA. We have also seen that even
with a single port, it is possible to achieve performance benefits by allowing multiple
paths to be set up between two end-points. Therefore, it is desirable to have a single
implementation to handle all these cases instead of dealing with them separately.

In MPI applications, every two processes can communicate with each other. This
is implemented in many MPI designs by a data structure called virtual channel (or
virtual connection). A virtual channel can be regarded as an abstract communica-
tion channel between two processes. It does not have to correspond to a physical

connection of the underlying communication layer.

107

In this section, we use an enhanced virtual channel abstraction to provide a unified
solution to support multiple HCAs, multiple ports, and multiple paths for a single
port. In our design, a virtual channel can consist of multiple virtual subchannels
(called subchannels later). Since our MPI implementation mainly takes advantage of
the InfiniBand Reliable Connection (RC) service, each subchannel corresponds to a
reliable connection at the InfiniBand Layer. At the virtual channel level, we maintain
various data structures to coordinate all the subchannels.

It is easy to see how this enhanced abstraction can deal with all the multirail
configurations we have discussed. In the case of each node having multiple HCAs,
subchannels for a virtual channel correspond to connections that go through different
HCAs. If we would like to use multiple ports of the HCAs, we can set up sub-
channels so that there is one connection for each port. Similarly, different subchan-
nels/connections can be set up in a single port that follow different paths. Once all the
connections are initialized, the same subchannel abstraction is used for communica-
tion in all cases. Therefore, there is essentially no difference for all the configurations
except for the initialization phase. The subchannel abstraction can also easily deal
with cases in which we have a combination of multiple HCAs, multiple ports, and

multiple paths for a single port. This idea is further illustrated in Figure 8.2.
8.2.3 Integration with MPI protocols

In some MPI implementations, functionalities such as striping messages across
multiple network interfaces are part of a messaging layer. This messaging layer pro-
vides an interface to upper layer software such as MPI. One advantage of this approach

is high portability, as other upper layer software can also be benefited from multirail

108

Process 1 Process 2

Portl Subchannels Portl
L oo
Node 1 Node 2
Portl Portl
L oen
Process 1 Process 2
Portl Subchannels Portl
Node 1 HCA — o ____ HCA Node 2
Port2 Port2
Process 1 Process 2
Subchannels
Pcrtl/ ST T TT e AN . Portl
Node 1 HCA - ::(E Node 2

Figure 8.2: Virtual Subchannel Abstraction

networks. Our design is different because we have chosen to integrate these function-
alities more tightly with the MPI communication protocols. Instead of focusing on
portability, we aim to achieve high efficiency and flexibility in our implementation.
Since multirail support is integrated with MPI protocols, we can specifically tailor
its design to MPI to reduce overhead. This tightly coupled structure also gives us
more flexibility in controlling how messages are striped or multiplexed in different
MPI protocols.

One key design decision we have made is to allow message striping only for
RDMA messages, although all messages, including RDMA and send/receive, can
use multiplexing. This is not a serious restriction for MPI because MPI implementa-
tions over InfiniBand usually only use RDMA operations to transfer large messages.
Send /receive operations are often used only for transferring small messages. By using

striping with RDMA there is almost no overhead to reassemble messages because

109

data is directly put into the destination buffer. Zero-copy protocols in MPI, which
usually take advantage of RDMA, can be supported in a straightforward manner.
As an example, let’s take a look at the Eager and the Rendezvous protocols. In
the Eager protocol, the data message can be sent using either RDMA or send/receive
operations. However, since this message is small, striping is not necessary and only
multiplexing is used. In the Rendezvous protocol, control messages are not striped.

However, data messages can be striped since they can be very large.
8.2.4 Scheduling Policies

Different scheduling policies can be used by the Communication Scheduler to
decide which subchannels to use for transferring messages. We categorize different
policies into two classes: static schemes and dynamic schemes. In a static scheme, the
policy and its parameters are determined at initialization time and stay unchanged
during the execution of MPI applications. On the other hand, a dynamic scheme can
switch between different policies or change its parameters.

In our design, scheduling policies can also be classified into multiplexing schemes
and striping schemes. Multiplexing schemes are used for send/receive operations
and RDMA operations with small data, in which messages are not striped. Striping
schemes are used for large RDMA messages.

For multiplexing schemes, a simple solution is binding, in which only one sub-
channel is used for all messages. This scheme has the least overhead. It can take
advantage of multiple subchannels if there are multiple processes in a single node.
For utilizing multiple subchannels with a single process per node, schemes similar to

Weighted Fair Queuing (WFQ) and Generalized Processor Scheduling (GPS) have

110

been proposed in the networking area [2]. These schemes take into consideration the
length of a message. In InfiniBand, the per operation cost usually dominates for small
messages. Therefore, we choose to ignore the message size for small messages. As
a result, simple round robin or weighted round robin schemes can be used for mul-
tiplexing. In some cases, different subchannels may have different latencies. This
will result in many out-of-order messages for round robin schemes. A variation of
round robin called window based round robin can be used to address this issue. In
this scheme, a window size W is given and a subchannel is used to sent W messages
before the Communication Scheduler switches to another subchannel. Since W con-
secutive messages travels the same subchannel, the number of out-of-order messages
can be greatly reduced for subchannels with different latencies.

For striping schemes, the most important factor we need to consider is the band-
width of each subchannel. It should be noted that we should consider path bandwidth
instead of link bandwidth, although they can sometimes be the same depending on the
switch configuration and the communication pattern. Fven striping can be used for
subchannels with equal bandwidth, while weighted striping can be used for subchan-
nels with different bandwidths. Similar to multiplexing, binding can be used when

there are multiple processes in a single node.
8.2.5 Adaptive Striping

As we have discussed in the previous subsection, it is important to take into con-

sideration path bandwidth for striping schemes. A simple solution is to use weighted

111

striping and set the weights of different subchannels to their respective link band-
widths. However, this method fails to address the following problems: First, some-
times information such as link bandwidth is not available directly to MPI implemen-
tations. Second, in some cases, bottlenecks in the network or switches may make the
path bandwidth smaller than the link bandwidth. Finally, path bandwidth can also
be affected by other ongoing communication. Therefore, it may change over time. A
partial solution to these problems is to carry out small tests during the initialization
phase of MPI applications to determine the path bandwidth. However, in addition
to its high overhead (tests need to be done for every subchannel between every pair
of nodes), it still fails to solve the last problem.

In this subsection, we propose a dynamic scheme for striping large messages. Our
scheme, called adaptive striping scheme, is based on the weighted striping scheme.
However, instead of using a set of fixed weights that are set at initialization time, we
constantly monitor the progress of different stripes in each subchannel and exploit
feedback information from the InfiniBand Layer to adjust the weights to their optimal
values.

In designing the adaptive striping scheme, we assume the latencies of all subchan-
nels are about the same and focus on their bandwidth. In order to achieve optimal
performance for striping, a key insight is that the message must be striped in such a
way that transmission of each stripe will finish at about the same time. This results in
perfect load balancing and minimum message delivering time. Therefore, our scheme
constantly monitors the time each stripe spent in each subchannel and use this in-

formation to adjust the weight so that striping distribution becomes more and more

112

balanced and eventually reaches optimum. This feedback based control mechanism

is illustrated in Figure 8.3.

Rendezvous
RDMA Data
Messages

Weighted .
Striping Weight Completion

Communication Policy Scheduling Adjustments

Scheduler Policies Filter

Striped Completion of
M essages Different Stripes

InfiniBand Layer

Figure 8.3: Feedback Loop in Adaptive Striping

In InfiniBand, a completion notification will be generated after each message is
delivered to the destination and an acknowledgment is received. With the help of
Completion Filter, the progress engine of our MPI implementation uses polling to
check any new completion notification and take appropriate actions. In order to
calculate the delivering time of each stripe, we first record the start time of each
stripe when it is handed over to the InfiniBand Layer for transmission. When the
delivery is finished, a completion notification will be generated by the InfiniBand
Layer. The Completion Filter component will then record the finish time and derive
the delivering time by subtracting the start time from it. After delivering times for
all stripes of a message are collected, adjustment of weights is calculated and sent to
the Scheduling Policies component to adjust the policy. Later, the Communication

Scheduler will use the new policy for striping.

113

Next we will discuss the details of weight adjustment. Our basic idea is to have
a fixed number of total weights and redistribute it based on feedback information
obtained from different stripes of a single message. Suppose the total weight is W41,
the current weight of subchannel i is W;, the path bandwidth of subchannel i is BW,
the message size is S, and the stripe delivering time for subchannel ¢ is ¢;, we then

have the following:

S . Wi S - W,
BW,; = Wiotal _ { 8.1
ti ti : Wtotal ()
Since Wy and S are the same for all subchannels, we have the following:

Therefore, new weight distributions can be done based on Equation 8.2. Suppose
W/ is the new weight for subchannel 7, the following can be used to calculate W;:
w;

I/Vil = Wtotal) L (83)

|44
Zke subchannels ?k&

In Equation 8.3, weights are completely redistributed based on the feedback in-
formation. To make our scheme more robust to fluctuations in the system, we can
preserve part of the historical information. Suppose « is a constant between 0 and 1,
we can have the following equation:

w;

I/Vil = (1 — CY) : VVz +a- Wtotal : b W, (84)

k
Zk €subchannels K

In our implementation, the start times of all stripes are almost the same and

can be accurately measured. However, completion notification are generated by the

114

InfiniBand Layer asynchronously and we only record the finish time of a stripe as we
have found its completion notification. Since MPI progress engine processing can be
delayed due to application computation, we can only obtain an upper bound of the
actual finish time and the resulting delivering ¢; is also an upper bound. Therefore, one
question is how accurately we can estimate the delivering time ¢; for each subchannel.

To address this question, we consider three cases:

1. Progress engine is not delayed. In this case, accurate delivering time can be

obtained.

2. Progress engine is delayed and some of the delivering times are overestimated.
Based on Equation 8.4, in this case, weight redistribution will not be optimal,
but it will still improve performance compared with the original weight distri-

bution.

3. Progress engine is delayed for a long time and we find all completion notifications
at about the same time. Based on Equation 8.4, this will essentially result in

no change in the weight distribution.

We can see that in no case will the redistribution result in worse performance
than the original distribution. In practice, case 1 is the most common and accurate

estimation can be expected most of the time.

8.3 Performance Evaluation

In this section, we evaluate the performance of our multirail MPI design over
InfiniBand. Our evaluation consists of two parts. In the first part, we show the

performance benefit we can achieve compared with the original MPI implementation.

115

In the second part, we provide an evaluation of our adaptive striping scheme. Due to
the limitation of our testbed, we focus on multirail networks with multiple HCAs in

the section.
8.3.1 Experimental Testbed

Our testbed consists of a cluster of 8 SuperMicro SUPER X5DL8-GG nodes with
ServerWorks GC LE chipsets. Each node has dual Intel Xeon 3.0 GHz processors,
512 KB L2 cache, and PCI-X 64-bit 133 MHz bus. We have used InfiniHost MT23108
DualPort 4x HCAs from Mellanox. If both ports of an HCA are used, we can poten-
tially achieve one way peak bandwidth of 2 GB/s. However, the PCI-X bus can only
support around 1 GB/s maximum bandwidth. Therefore, for each node we have used
two HCAs and only one port of each HCA is connected to the switch. The Server-
Works GC LE chipsets have two separate I1/O bridges. To reduce the impact of I/O
bus, the two HCAs are connected to PCI-X buses connected to different I/O bridges.
All nodes are connected to a single Mellanox InfiniScale 24 port switch (MTS 2400),
which supports all 24 ports running at full 4x speed. Therefore, our configuration is
equivalent to a two-rail InfiniBand network built from multiple HCAs. The kernel
version we used is Linux 2.4.22smp. The InfiniHost SDK version is 3.0.1 and HCA
firmware version is 3.0.1. The Front Side Bus (FSB) of each node runs at 533MHz.

The physical memory is 1 GB of PC2100 DDR-SDRAM.
8.3.2 Performance Benefits of Multirail Design

To evaluate the performance benefit of using multirail networks, we compare our
new multirail MPI with our original MPI implementation. In the multirail MPI de-

sign, unless otherwise stated, even striping is used for large messages and round robin

116

350 TP w
Striping ——
300 | Original ~——
250 |
200 /]

150

Time (us)

100
50

16 64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

Figure 8.4: MPI Latency (UP mode)
600

Round Robin ——
500 Original —
400 r
300 r

200 r

Bandwidth (MB/s)

100

O ; - «’””"/"/’/ L) ‘ ‘
2 4 8 16 32 64 128256512 1K 2K

Message Size (Bytes)

Figure 8.5: MPI Bandwidth (Small Mes-
sages, UP mode)

1800 -— :
Striping ——

1600 r Original

1400

1200
1000
800 r
600
400
200 r

0

Bandwidth (MB/s)

4 64 1K 16K 256K 4M
Message Size (Bytes)

Figure 8.6: MPI Bandwidth (UP mode)

117

2000 Stribing -
1800 r Original —
1600 F

1400
1200
1000
800 r
600
400
200

Bandwidth (MB/s)

4 64 1K 16K 256K 4M
Message Size (Bytes)

Figure 8.7: MPI Bidirectional Bandwidth
(UP mode)

1000 Stribing -
900 r Binding — L .
800 - Original -~ e

700
600
500 r
400
300
200 r
100

0

Bandwidth (MB/s)

4 64 1K 16K 256K 4M
Message Size (Bytes)

Figure 8.8: MPI Bandwidth (SMP mode)

1000 Stribing —_—
900 F Binding - 4
800 | Original ~*-- 7 1

700
600
500 r
400
300
200 r
100

0

Bandwidth (MB/s)

4 64 1K 16K 256K 4M
Message Size (Bytes)

Figure 8.9: MPI Bidirectional Bandwidth
(SMP mode)

118

scheme is used for small messages. We first present performance comparisons us-
ing micro-benchmarks, including latency, bandwidth and bi-directional bandwidth.
We then present results for collective communication by using Pallas MPI bench-
marks [75]. Finally, we carry out application level evaluation by using some of the
NAS Parallel Benchmarks [68] and a visualization application. In many of the ex-
periments, we have considered two cases: UP mode (each node running one process)
and SMP mode (each node running two processes).

In Figures 8.4, 8.6 and 8.7, we show the latency, bandwidth and bidirectional
bandwidth results in UP mode. We also show bandwidth results for small messages
in Figure 8.5. (Note that in the x axis of the figures, unit K is an abbreviation
for 2! and M is an abbreviation for 22°.) From Figure 8.4 we can see that for
small messages, the original design and the multirail design perform comparably.
The smallest latency is around 6 us for both. However, as message size increases,
the multirail design outperforms the original design. For large messages, it achieves
about half the latency of the original design. In Figure 8.6, we can observe that
multirail design can achieve significantly higher bandwidth. The peak bandwidth for
the original design is around 884 MB/s. With the multirail design, we can achieve
around 1723 MB/s bandwidth, which is almost twice the bandwidth obtained with
the original design. Bidirectional bandwidth results in Figure 8.7 show a similar
trend. The peak bidirectional bandwidth is around 943 MB/s for the original design
and 1877 MB/s for the multirail design. In Figure 8.5 we can see that the round
robin scheme can slightly improve bandwidth for small messages compared with the

original scheme.

119

For Figures 8.8 and 8.9, we have used two processes on each node, each of them
sending or receiving data from a process on the other node. It should be noted that
in the bandwidth test, the two senders are on separate nodes. For the multirail
design, we have shown results using both even striping policy and binding policy for
large messages. Figure 8.8 shows that both striping and binding performs significantly
better than the original design. We can also see that striping does better than binding.
The reason is that striping can utilize both HCAs in both directions while binding
only uses one direction in each HCA. Since in the bidirectional bandwidth test in
SMP mode, both HCAs are utilized for both directions, striping and binding perform
comparably, as can be seen from Figure 8.9.

In Figures 8.10, 8.11, 8.12 and 8.13 we show results for MPI_Bcast and MPI_Alltoall
for 8 processes (UP mode) and 16 processes (SMP mode) using Pallas Benchmarks.
The trend is very similar to what we have observed in previous tests. With multi-
rail design, we can achieve significant performance improvement for large messages
compared with the original design.

In Figures 8.14 and 8.15 we show application results. We have chosen the IS
and FT applications (Class A and Class B) in the NAS Parallel Benchmarks because
compared with other applications, they are more bandwidth-bound. We have also
used a visualization application. This application is a modified version of the program
described in [24]. We show performance numbers for both UP and SMP modes.
However, due to the large data set size in the visualization application, we can only
run it in UP mode.

From the figures we can see that multirail design results in significant reduction

in communication time for all applications in both UP and SMP modes. For F'T, the

120

Time (us)

1200

1000

800

600 r

400 r

200 r

étripingj —
Original -

0
16

Figure 8.10:

Time (us)

Figure

Time (us)

Figure 8.12: MPI_Bcast Latency (SMP mode)

Time (us)

Figure 8.13: MPI_Alltoall Latency (SMP mode)

5000

64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

MPI_Bcast Latency (UP mode)

4500 r
4000 r
3500
3000
2500
2000
1500 r
1000

500 r

S‘triping‘—% ‘ ‘ ‘
Original -

0
16

8.11: MPI_Alltoall Latency (UP mode)

2000

64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

1800
1600
1400
1200
1000
800
600
400
200
0

S‘triping‘—% ‘ ‘ ‘
Original -

16

64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

25000

20000

15000

10000 r

5000

. L L

Stripiné—é ‘ ‘ ‘
Original -~

0

16 64 256 1K 4K 16K 64K 256K

Message Size (Bytes)

121

communication time is reduced almost by half. For IS, the communication time is
reduce by up to 38%, which results in up to 22% reduction in application running time.
For the visualization application, the communication time is reduced by 43% and the
application running time is reduced by 16%. Overall, we can see that multirail design

can bring significant performance improvement to bandwidth-bound applications.

3 25
W Communica tion ®Communic ation
B Computation B Computation
2.5
2
2
1.5
il T
] k|
2 2
5§v 1.5 8
T
£ E
= =
1
1
0.5 -
0.5
R T R S N o S Q N 2
& g & gV @ g @ @b R S S @ o
R - P - - G &

Figure 8.14: Application Results (8 pro- Figure 8.15: Application Results (16 pro-
cesses, UP mode) cesses, SMP mode)

8.3.3 Evaluating the Adaptive Striping Scheme

In this subsection, we show how our proposed adaptive striping scheme can pro-

vide good performance in cases each rail has different bandwidth. To simulate this

122

environment, for most of our experiments, we have forced the second HCA on each
node to run at 1x speed with a peak bandwidth of 250 MB/s. The first HCA on
each node still operates at the normal 4x speed (1 GB/s peak bandwidth). Without
a priori knowledge of this environment, our multirail MPI implementation will use
even striping. With this knowledge, it will use weighted striping and set the weights
to 4 and 1 respectively for each subchannel. We compare both of them with the
adaptive striping scheme, which assigns equal weights to both subchannels initially.
We focus on microbenchmarks and UP mode in this subsection.

Figures 8.16 and 8.17 show the latency and bandwidth results. We can see that
the adaptive striping scheme significantly outperforms even striping and achieves
comparable performance with weighted striping. In Figure 8.18, we show bidirectional
bandwidth results for the three schemes. An important finding is that our adaptive
scheme can significantly outperform weighted striping in this case. This is because
in the test, the communication traffic is assigned to the two subchannels as 4:1 based
on the link speed (4x vs. 1x). With bidirectional traffic, the aggregate link speeds
would be 8x and 2x respectively for each subchannel. However, the PCI-X bus can
only sustain a peak bandwidth of 1 GB/s, which is equivalent to 4x speed. Therefore,
if we take into account the I/O bus bottleneck, the speed should be 4x and 2x for
the two subchannels, respectively. Hence, the optimal weighted scheme should use
2:1 instead of 4:1. This also shows that even with a priori knowledge of link speed,
static schemes may fail to achieve optimal performance because of impact from other
system components and pattern of communication traffic. In contrast, the adaptive

striping scheme can easily adjust the policy to achieve optimal striping.

123

600 w

Adéptive ‘Stripin‘g 7
500 Weighted Striping -~ eme /
s Even Striping -
n H
I L i
s 400 ;
P
5 300 i
% B
c 200
5
o
100
O L L

16 64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

Figure 8.16: MPI Latency with Adaptive Striping (UP mode)

1400 | Adaptive Striping —— |
Weighted Striping - —
~ 1200 r Even Striping -~ 4
2
a r T 4
s 1000
£ 800 r i
k=
2 600t]
g [R—
S 400 t]
200 r i
0 s ‘ ‘
4 64 1K 16K 256K 4M

Message Size (Bytes)
Figure 8.17: MPI Bandwidth with Adaptive Striping (UP mode)
1800 ‘ Adéptive Sfriping -

1600 ¢ Weighted Striping - |
1400 | Even Striping ;-

1200
1000
800
600 r
400
200 r

0

Bandwidth (MB/s)

4 64 1K 16K 256K 4M
Message Size (Bytes)

Figure 8.18: MPI Bidirectional Bandwidth with Adaptive Striping (UP mode)

2000
w1500 f i
fos)
= | .
< : i
g 1000 ¢ | — i
=
=]

g
m 500 r i
Adaptive Striping ——
0 .. EvenStriping

5 10 15 20 25 30 35 40 45 50
Time Step(Seconds)

Figure 8.19: MPI Bandwidth with Adaptive Striping

124

In the following bandwidth tests, we let both HCAs operate at 4x speed. A
bandwidth program runs on the two nodes and prints out the peak bandwidth results
every one second. During the execution of the bandwidth program, we start another
program on the two nodes which use the second HCA to transfer large messages. This
program runs for around 10 seconds. We compare the adaptive striping scheme and
even striping in Figure 8.19. We can see that at the beginning both schemes perform
comparably. However, when the second program starts, one of the HCAs has to be
shared by both programs. Hence, even striping is no longer optimal. As we can
see, the adaptive scheme can achieve better performance by adjusting the weight of
each subchannel accordingly. After the second program finishes, the adaptive striping

scheme can again adjust the weights to achieve peak performance.

8.4 Related Work

Using multirail networks to build high performance clusters is discussed in [16].
The paper proposed different allocation schemes in order to eliminate conflicts at
end points or I/O buses. However, the main interconnect focused in the paper was
Quadrics [77] and the performance evaluation was done using simulation. In our
work, we focus on software support at the end points to build InfiniBand multirail
networks and present experimental performance data.

VMI2 [85] is a messaging layer developed by researchers at NCSA. An MPI imple-
mentation over VMI2 is also available [69]. VMI2 runs over multiple interconnects.
[85] briefly mentions VMI2’s ability to striping large messages across different network
interconnects. Instead of using a separate messaging layer, our design has integrated

the multirail support with MPI protocols.

125

LA-MPI [25] is an MPI implementation developed at Los Alamos National Labs.
LA-MPI was designed with the ability to stripe message across several network paths.
LA-MPI design includes a path scheduler, which determines which path a message will
travel. This design bears some similarity with our approach. However, in this work,
we focus on InfiniBand architecture and discuss different design issues and policies.
We have also proposed an adaptive striping scheme.

IBM has supported using multirail networks for its SP switches and adapters [21].
SGI's Message Passing Toolkit [86] and Sun’s MPI implementation over its SUN Fire
Link [87] also support the ability of striping message across multiple links. However,
details about how striping is implemented are not available in the literature. Recently,
Myricom announced its message passing layers called Myrinet Express and GM2 [67].
Both can stripe messages across two different ports on a single Myrinet NIC and
overcome the limitation of Myrinet link bandwidth. GM2 is now available. However,
Myrinet Express has not been released and its internal design are not yet available.

Striping in the network systems have been used for many years. [9] provides a
survey of how striping is used at different layers in the network subsystems. Work
done in [2] proposes an architecture to stripe packets across multiple links in order to
achieve fair load sharing. Striping across multiple TCP/IP connections has also been
studied in the literature. One example is PSockets [89]. PSockets presents to the
application layer the same socket interface as that used in TCP/IP. It transparently

stripes a message across multiple TCP/IP connections.

126

8.5 Summary

In this work, we present an in-depth study of designing high performance multirail
InfiniBand clusters. We discuss various ways of setting up multirail networks with
InfiniBand and propose a unified MPI design that can support all these approaches.
By taking advantage of RDMA operations in InfiniBand and integrating the multirail
design with MPI communication protocols, our design supports multirail networks
with very low overhead. Our design also supports different policies of using multiple
rails. Another contribution of this work is an adaptive striping scheme that can dy-
namically change the striping parameters based on the current available bandwidths
of different rails.

We have implemented our design and carried out detailed performance evaluation.
Our performance results show that the multirail MPI can significant improve MPI
communication performance. With a two rail InfiniBand network, we can achieve
almost twice the bandwidth and half the latency for large messages compared with the
original MPI. The multirail MPI design can also significantly reduce communication
time as well as running time for bandwidth-bound applications. We have also shown
that the adaptive striping scheme can achieve excellent performance without a prior:

knowledge of the bandwidth of each rail.

127

CHAPTER 9

MPI PERFORMANCE EVALUATION FRAMEWORK

In this work, we present a comprehensive performance evaluation framework and
compare the performance of our MPI with MPI implementations over Myrinet and
Quadrics. The MPI implementations we use for Myrinet and Quadrics are those
included in their respective software packages. For InfiniBand, we have used our
RDMA-based MVAPICH [56, 55] implementation.

Our performance evaluation consists of two major parts. The first part consists of
a set of MPI level micro-benchmarks. These benchmarks include traditional measure-
ments such as latency, bandwidth and host overhead. In addition to those, we have
also included the following micro-benchmarks: communication/computation overlap,
buffer reuse, memory usage, intra-node communication and collective communication.
The objective behind this extended micro-benchmark suite is to characterize different
aspects of the MPI implementations and get more insights into their communication

behavior.

128

The second part of the performance evaluation consists of application level bench-
marks. We have used the NAS Parallel Benchmarks [68] and the sweep3D bench-
mark [33]. We not only present the overall performance results, but also relate ap-
plication communication characteristics to the information we got from the micro-
benchmarks. We use in-depth profiling of these applications to measure their charac-
teristics. Using these profiled data and the results obtained from the micro-benchmarks,
we analyze the impact of the following factors: overlap of computation and communi-
cation, buffer reuse, collective communication, memory usage, SMP performance and
scalability with system sizes, and PCI-X bus. All the experiments were done with Al
InfiniHost cards and Intel compilers.

An interesting evaluation of current high performance networks was carried out
in [6]. The authors used LogP model to evaluate a wide variety of interconnects
at both the MPI level and the low level messaging software level. However, they
did not include InfiniBand and the tests were done only at micro-benchmark level.
The networks they studied were in different systems. We have done a performance
evaluation in a single cluster for different interconnects, which makes it possible to
compare them with minimum impact from other parts of the system.

Work done in [34] used both micro-benchmarks and the NAS Parallel Benchmarks
to study the performance of Giganet and Myrinet on clusters of SMP servers. Our
work follows a similar approach. However, we have greatly expanded the set of
micro-benchmarks and studied the relationship between application communication
characteristics and different performance aspects of MPI.

The LogP model was proposed in [18], and a study of application performance

sensitivity to LogP parameters were carried out in [58]. In our micro-benchmarks, we

129

120 — : : : : : 900
v R 800 |
100 stN ————— 700 |
80 | 600 |
500 |
400 |
300 |
200 |
100 |

60

Time (us)
Bandwidth (MB/s)

’ N . . . 0 T s S
4 16 64 256 1K 4K 16K 4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes) Message Size (Bytes)

Figure 9.1: MPI Latency Figure 9.2: MPI Bandwidth

include not only measurements similar to those in the LogP model, but also include
additional tests to characterize other performance aspects of MPI implementations.
There have also been many studies about communication patterns for parallel
applications. Studies of the NAS Parallel Benchmarks have done in [99, 91]. Another
excellent study on communication characteristics of large scale scientific applications
was conducted in [95]. The focus of our work is to compare the three different MPI
implementations. Therefore, we have used the communication pattern information

to study the impact of different MPI implementations on application performance.

9.1 Micro-Benchmarks

To provide more insights into communication behavior of the three MPI imple-
mentations, we have designed a set of micro-benchmarks. They include basic mea-
surements such as latency, bandwidth and host overhead. In addition, we use several
micro-benchmarks to characterize the other aspects of an MPI implementation. The

details for each micro-benchmark are presented below:

130

Time (us)

e 1

4 8 16 32 64 128 256 5121024
Message Size (Bytes)

Figure 9.3: MPI Host Overhead

1000

900 r

800
700
600
500
400
300
200
100

Bandwidth (MB/s)

% X
s

16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

Figure 9.5: MPI Bi-Directional Band-

width

250

200 r

Time (us)

100

50

150

IBAQ ——

IBA 50 -

IBA 100 < ,
MyriQ s

Myri 50 ---=---

IBA 100 ---o---

b

1K
Message Size (Bytes)

16K

Figure 9.7: MPI Latency with Buffer

Reuse

Time (us)

Figure
tency

450

400

350
300
250
200
150
100

50

Time (us)

Message Size (Bytes)

9.4: MPI Bi-Directional La-
IBA —— ‘ \ ‘ ‘

Myri - 1

| QSN =]

¥ i I X

4 16 64 256 1K 4K 16K 64K
Message Size (Bytes)

Figure 9.6: Overlap Potential

900 BAO —— 7
800 IBA5O]
- L IBA 100 - P
£ 700 MyriQ e I
g 600 [Myii50 = 1
S 5o - IBA10Q oo . 3
ES QSN Q e s
‘S 400 1 QSN50 -~ . Yy
% 300 | QSN 100 -+ ‘
@ 200 t
100 t
0 b ‘ ‘ ‘
4 16 64 256 1K 4K 16K 64K
Message Size (Bytes)
Figure 9.8: MPI Bandwidth with

Buffer Reuse

131

18 : ; ; ; ; 700
IBA
16 1 Myri T 600 r
14 | QSN o 1 -
N / g 500
2] ~—
;3: = 400 r
k=]
£ S 300 f
< 200 r
m
100
0 5.
4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes) Message Size (Bytes)
Figure 9.9: MPI Intra-Node Latency Figure 9.10: MPI Intra-Node Band-
width
| A N
300 QSyl(ll A||:82|| 250 strill Alleduce &
X
2 g % 30
() 2 =}
E E
E = g 20
=10
0 0
4 16 64 256 1K 4K 4 16 64 256 1K 4K 2 3 4 5 6 7 8
Message Size (Bytes) Message Size (Bytes) Number of nodes

Figure 9.11: MPI Alltoall Figure 9.12: MPI Allreduce Figure 9.13: MPI Memory
Consumption

132

9.1.1 Latency and Bandwidth

Figure 9.1 shows the MPI-level latency results. The test is conducted in a ping-
pong fashion and the latency is derived from round-trip time. For small messages,
Quadrics shows excellent latencies, which are under 5us. The smallest latencies for
InfiniBand and Myrinet are 6.8us and 7.3us, respectively. For large messages, Infini-
Band has a clear advantage because of its higher bandwidth and PCI-X interface.

The bandwidth test is used to determine the maximum sustained data rate that
can be achieved at the network level. Therefore, non-blocking MPI functions are
used. In this test, a sender keeps sending back-to-back messages to the receiver
until it has reached a pre-defined window size W. Then it waits for these messages
to finish and sends out another W messages. Figure 9.2 shows the uni-directional
bandwidth results for different W. For large messages and window size 16, InfiniBand
can achieve bandwidth of over 830MB/s. The peak bandwidths for Quadrics and
Myrinet are around 308MB/s and 233MB/s, respectively. The window size W also
affects the bandwidth achieved, especially for small messages. For InfiniBand and
Myrinet, their performance increases with the window size. Quadrics shows the same
behavior for window size less than 16. However, its performance drops when the

window size exceeds 16.
9.1.2 Host Overhead

Host overhead has been shown to have a significant impact on application perfor-
mance [58]. Figure 9.3 presents the host overhead results for small messages. The

overhead is obtained by measuring the time spent in communication. For Myrinet

133

and InfiniBand, the overheads are around 1us and 2us, respectively. And their over-
heads increase slightly with the message size. Although Quadrics has better latency,

it has higher overhead, which is over 3us. Its overhead drops slightly after 256 bytes.
9.1.3 Bi-Directional Performance

Compared with uni-directional tests, bi-directional latency and bandwidth tests
put more stress on the communication layer. Therefore they may be more helpful to
us to understand the bottleneck in communication. The tests are carried out in a
way similar to the uni-directional ones. The difference is that both sides send data
simultaneously.

Figure 9.4 shows the bi-directional latency results. We can see that both Quadrics
and Myrinet show worse performance compared with their uni-directional latencies,
which are 4.8us and 7.3us, respectively. For small messages, their respective bi-
directional latencies are 7.4us and 10.3us. The latency for MPI over InfiniBand is
also 7.4us. However, this number is only slightly worse than its uni-directional latency
(6.8us).

Figure 9.5 shows the bi-directional bandwidth results. The window size of the
bandwidth tests is 16. From the figure we notice that InfiniBand bandwidth in-
creases from 830MB/s uni-directional to 940MB/s. Then it is limited by the band-
width of the PCI-X bus. Quadrics bandwidth improves from 308 MB/s to 375MB/s.
Myrinet shows even more improvement. Its peak bandwidth increases from 233MB/s
to 413MB/s. However, Myrinet bandwidth drops to less than 300MB/s when the

message size is larger than 256KB.

134

9.1.4 Communication/Computation Overlap

To achieve better performance at the application level, one of the techniques MPI
programmers use is to overlap communication with computation. To measure the
ability to overlap computation with communication of each MPI implementation, we
have designed an overlapping test using MPI non-blocking functions. The test is
based on the latency test. At the sender, we use non-blocking MPI functions to start
receive and send operations. Then the program enters a computation loop. After
that it waits for the send and receive operations to finish. We define the potential of
overlapping to be the maximum time of the computation loop that does not increase
the latency.

We present the overlapping potential results in Figure 9.6. We can see that for
small messages, InfiniBand and Myrinet have better overlapping potential compared
with Quadrics because of their higher latencies and lower host overheads. However,
the amount of overlapping drops at a certain point and stays as a constant. For
Quadrics, the overlapping potential increases steadily with the message size.

MPI implementations usually use eager protocol for small messages and ren-
dezvous protocol for large messages. The rendezvous protocol needs a handshake
between the sender and the receiver. For MPI over InfiniBand and Myrinet, this
handshake needs host intervention. Therefore, their abilities for overlapping compu-
tation and communication are limited by the rendezvous protocol. MPI over Quadrics
is able to make communication progress asynchronously by taking advantages of the
programmable network interface card. Thus it shows much better overlapping poten-

tial for large messages.

135

9.1.5 Impact of Buffer Reuse

For interconnects using user-level mode communication, application buffer reuse
patterns can have significant impact on performance. This is due to the following

reasons:

e Interconnects such as InfiniBand and Myrinet require that communication buffers
be registered before communication. Therefore user buffers need to be registered
in order to achieve zero-copy communication. To reduce the number of registra-
tion and de-registration (events), MPI implementations usually use techniques
similar to pin-down cache [32] to de-register buffers in a lazy fashion. Thus,

application buffer reuse patterns directly affect the hit rate of pin-down cache.

e Modern high speed network interfaces such as those studied in this work usually
have DMA engines to access host memory. An address translation mechanism is
needed to translate user buffer virtual addresses to DMA addresses. Application
buffer reuse patterns also affect the performance of this address translation

process.

Our buffer reuse benchmark consists of N iterations of communication. We define
a buffer reuse percentage R. For the N iterations of the test, N*R iterations will use
the same buffer, while all other iterations will use completely different buffers. By
changing buffer reuse percentage R, we can see how communication performance is
affected by buffer reuse patterns. Figures 9.7 and 9.8 show the latency and band-
width results for different buffer reuse percentage, respectively. We can see that
all three MPI implementation are sensitive to the buffer reuse pattern. When the
reuse percentage decreases, their performance drops significantly. For message sizes

136

greater than 1KB, the InfiniBand latency suffers greatly when buffers are not reused.
Quadrics also sees a steep rise in latency with lack of buffer reuse starting for all

messages. Myrinet latency is not significantly affected until the message size reaches

16KB.

9.1.6 Intra-Node Communication

For SMP machines, it is possible to improve intra-node communication perfor-
mance by taking advantage of shared memory mechanism. In this section, we present
intra-node MPI performance for the three implementations. Figures 9.9 and 9.10
show the latency and bandwidth performance results. From the figures we can see
that Quadrics does not perform well in SMP mode. Its intra-node latency is even
higher than inter-node latency. The small message latencies for Myrinet and Infini-
Band are about 1us and 2us, respectively. Bandwidth for both Myrinet and Quadrics
drops for large messages because of cache thrashing. MPI over InfiniBand only uses

shared memory for small messages (less than 16KB). Its peak bandwidth is around

600MB}/s.
9.1.7 Collective Communication

MPI collective communications can be implemented by using point-to-point MPI
functions. However, to achieve optimal performance, we can also implement them
directly over the message passing layer. This is even more desirable when an inter-
connect has specially support for collective communications.

Two of the most frequently used MPI collective operations are MPI_Alltoall and
MPI_Allreduce [95]. Figures 9.11 and 9.12 shows the performance of MPI_Alltoall

and MPI_Allreduce for all three MPI implementations on 8 nodes. The Pallas MPI

137

Benchmarks [75] have been used for these tests. For MPI_Alltoall operations, Infini-
Band performs much better than Quadrics and Myrinet, with a latency of 31us for
small messages compared with 67us and 69us for Quadrics and Myrinet, respectively.
Quadrics achieves a latency of 28us for small message MPI_Allreduce operations,

which is better than Myrinet (44us) and InfiniBand (46us).
9.1.8 Memory Usage

One aspect of an MPI implementation often ignored by many micro-benchmarks
is memory usage. The more memory allocated by the MPI implementation, the more
likely it will adversely affect application performance. We run a simple MPI barrier
program and measure the amount of memory it consumes. The memory data is
obtained through the proc file systems in Linux.

The results are presented in Figure 9.13. We can see that MPI over Quadrics and
Myrinet consume relatively small amount of memory, which does not increase with
the number of nodes. Memory consumption for MPI over InfiniBand increases with
the number of nodes. The reason for this increase is that the current implementation
is built on top of InfiniBand Reliable Connection service. During initialization, a
connection is set up between every two nodes and a certain amount of memory is
reserved for each connection. Therefore, total memory consumption increases with
the number of connections. This problem can be alleviated by using InfiniBand

Reliable Datagram service or techniques like on-demand connection [100].

138

[

700 -

~

583.5
606.74
605.1

6.69 600 1

61 626

o

500 -

419.7
424.3
432.4

3}

N
S
S

HIBA
@ Quadrics
OoGM

HIBA
EQuadrics
OGM

IS

]
S
S

293

Time in seconds

w
Time in seconds

2.47

| o ._‘
0+ 1 [T T 1

IS MG SP BT LU

N
n
=3
1S3
168.1
168.3
179.6

Figure 9.14: IS and MG on 8 Nodes Figure 9.15: SP and BT on 4 Nodes
and LU on 8 Nodes

9.2 Applications

In this section, we compare the three MPI implementations using the NAS Parallel
Benchmarks [68] and the sweep3D [33] benchmark. Basic MPI performance param-
eters such as latency, bandwidth and overhead play an important role in determin-
ing application performance. However, depending on the application, other factors
in MPI implementation such as computation/communication overlapping, collective
communication, memory usage and buffer reuse can have great impact as well. To
better understand the relationship between application performance and MPI im-
plementations, we have done profiling for the applications under study. By relating
application communication characteristics and different aspects of MPI implementa-
tions, we can get much more insights into the communication behavior of these ap-
plications. The profiling data is obtained through the MPICH logging interface [27].

We modified its source code to log more information such as buffer reuse patterns.

139

92.84 9599 89.85

60 - 100 4
50 1
@
g
» 40 3
g k]
g miBA e mIBA
® 30 W Quadrics 2 10 B Quadrics
< oGM 8 oGM
£ c 4.38
5 £ .
20 4 g 3.64 3.58
=
10
04 1 e
$3d-50 $3d-150

Figure 9.16: CG and FT on 8 Nodes Figure 9.17: Sweep3D on 8 Nodes

1000 1000 4

oRg
froece]
5 8 g
@ w0t or2 &
B B T
F W BH @
2 o e © =
8 100 = 2 nis 2 100 o]
g] =] ~ eee]
£ S © @ Jigtio}
= < ©CaG = N
o & @ P mIBA
k- - red mMG ° 2] .
5 o) a oL € @ Quadrics
£ & 3 g oGM
& ESP 2
E -
E 10 @ =BT £ o]
E © £
8 oo
o
1 — I
2 4 5 FT 'SP BT S3D- S3D-
Number of nodes 50 150

Figure 9.18: Scalability with System Figure 9.19: SMP Performance (16
Sizes for a 16-Node System at Topspin Processes on 8 Nodes at OSU)

140

9.2.1 Application Performance Results

Figures 9.14, 9.15, 9.16 and 9.17 show the application running time for class B
NAS parallel benchmarks and sweep3D. We use two input sizes for sweep3D: 50 and
150. We present 8 nodes results for IS, CG, MG, LU and FT. SP and BT require
square number of nodes, therefore we only show results on 4 nodes for them. We can
see that MPI over InfiniBand performs better than the other two implementations for
all NAS benchmarks. The largest improvement comes from IS, which uses very large
messages, as shown in Table 9.1. The much higher bandwidth of InfiniBand gives
it a clear advantage. It performs 28% and 39% better than Quadrics and Myrinet,
respectively. For other applications which use many large messages, such as FT and
CG, InfiniBand also performs significantly better. For SP, BT and MG, MPI over
InfiniBand also performs better than the other two. For applications that mostly use
small messages, like LU, Quadrics and Myrinet performance is more comparable with

InfiniBand.

Table 9.1: Message Size Distribution

| Apps | <2K | 2K-16K | 16K-1M | >1M |
IS 14 11 0 11
CG 16113 0 11856 0
MG 1607 630 3702 0
LU 100021 0 1008 0
FT 24 0 0 22
SP 9 0 9636 0
BT 9 0 4836 0
S3d-50 19236 0 0 0
S3d-150 | 28836 | 28800 0 0

141

For the sweep3D benchmarks, Quadrics performs worse than InfiniBand and
Myrinet for input size 50. The three implementations perform comparably for in-

put size 150.
9.2.2 Scalability with System Size

To study the scalability of the MPI implementations, we have measured applica-
tion performance for 2, 4 and 8 processes in our 8 node cluster. (Due to the problem
size, FT and sweep3D with input 150 do not run on 2 nodes.) We also measure
performance of MPI over InfiniBand on a 16 node Topspin InfiniBand cluster [92],
which is connected through a Topspin 360 24 port 4x InfiniBand switch. The HCAs
are Topspin InfiniBand 4x HCAs. And the hosts are Microway dual 2.4GHz P4 Xeon
systems with 2GB of memory based on a Tyan 2721-533 motherboard. The results
are shown in Table 9.2 and Figure 9.18. We can observe that all three MPI imple-
mentations have good scalability, with some applications like MG and CG showing
super-linear speedup. For IS, which uses very large messages, MPI over InfiniBand
still shows almost linear speedup. However, Myrinet and Quadrics do not perform as

well as InfiniBand for IS.

9.2.3 Impact of Computation/Communication Overlap

The effect of computation and communication overlap in real applications is dif-
ficult to characterize. As an approximation, we have collected information for non-
blocking MPI calls in the applications. The results are shown in Table 9.3. (Average
sizes are in bytes.) We can see that different applications use non-blocking MPI func-

tions very differently. FT and sweep3D do not use them at all. MG, LU and CG only

142

Table 9.2: Scalability with System Sizes for Three Networks (Execution times are in

seconds.)
Apps IBA Myri QSN

2 | 4| 8 | 2 | 4 8 | 2 | 4 | 8
IS 6.82 3.28 1.78 8.06 5.18 2.93 6.96 4.25 2.47
CG 132.195 | 73.91 | 28.62 || 136.34 | 75.33 | 32.69 || 133.59 | 76.21 | 31.14
MG 24.10 13.4 6.1 26.14 | 15.42 6.69 23.96 | 13.94 6.26
LU 667.76 | 320.93 | 168.13 || 718.06 | 338.8 | 179.67 || 658.45 | 323.74 | 168.36
FT - | 7897 | 36.68 -1 90.76 | 49.33 - | 86.92 | 44.56
53d-50 13.89 7.20 3.64 14.67 7.03 3.58 14.94 7.37 4.38
53d-150 - | 179.61 | 92.84 - | 176.77 | 89.85 - | 177.66 | 95.99

use non-blocking receive functions. SP and BT use both non-blocking send and non-

blocking receive operations. We also noticed that the average sizes for non-blocking

functions are very large. Therefore, it gives an advantage to MPI over Quadrics,

which has better computation/communication overlap for large messages. As a re-

sult, for the applications with non-blocking operations, MPI over Quadrics performs

more comparably with MPI over InfiniBand, as seen in the plots for SP in Figure 9.15.

Table 9.3: Non-Blocking MPI Calls

Apps Isend Irecv

calls ‘ Avg Size | # calls ‘ Avg Size
IS 0 0 0 0
CG 0 0| 13984 63591
MG 0 0 2922 270400
LU 0 0 508 311692
FT 0 0 0 0
SP 4818 263970 4818 263970
BT 2418 293108 2418 293108
S3d-50 0 0 0 0
S3d-150 0 0 0 0

143

9.2.4 Impact of Buffer Reuse

In Figures 9.7 and 9.8, we have shown that buffer reuse patterns have a significant
impact on the performance of all the three MPI implementations. We define buffer
reuse rate to be the percentage of accesses to previously used buffers. Table 9.4 shows
buffer reuse rates and buffer reuse rates weighted by buffer sizes for all applications.
One conclusion we can draw from the table is that in these applications, buffer reuse
rates are very high. Therefore, although we have seen the MPI implementations
can have different performance for different buffer reuse patterns, its impact to these

applications is small. However, for other applications which have more dynamic

memory usage patterns, this conclusion might not hold.

Table 9.4: Buffer Reuse Rate

Apps Buffer Reuse

% Reuse ‘ Wt % Reuse
IS 99.26 99.19
CG 99.99 99.99
MG 99.92 99.99
LU 99.59 99.99
FT 99.48 99.72
SP 99.78 99.99
BT 99.78 99.99
S3d-50 99.52 99.93
S3d-150 99.52 99.98

144

9.2.5 Impact of Other Factors

We have also studied the impact of other factors on application performance.
These factors include: collective communication pattern, intra-node communication

pattern and PCI (PCI-X) bus speed. Details can be found in [53].

9.3 Summary

In this work, we have presented a detailed performance study of MPI over In-
finiBand, Myrinet and Quadrics, using both applications and micro-benchmarks. We
have shown that MPI communication performance is affected by many factors. There-
fore, to get more insights into different aspects of an MPI implementation, one has
to go beyond simple micro-benchmarks such as latency and bandwidth. For exam-
ple, we found that all the three MPI implementations are sensitive to buffer reuse
patterns. We also found that MPI over Quadrics has better ability for overlapping
computation and communication, and MPI over GM offers the best intra-node com-
munication performance. None of these can be revealed by simple inter-node latency
and bandwidth tests.

Our study also shows that although InfiniBand is relatively new in the HPC mar-
ket, it is able to deliver very good performance at the MPI level. Our application
results on the 8 node OSU cluster and 16 node Topspin cluster also show that Infini-

Band has very good scalability.

145

CHAPTER 10

OPEN SOURCE SOFTWARE RELEASE AND ITS
IMPACT

The work described in this dissertation has been integrated into our MVAPICH
package [70] and released as open source software to the public. The current version
of MVAPICH is 0.9.4. Our software supports different InfiniBand interfaces such as
VAPI [61], IBAL [1] and OpenlIB [73]. MVAPICH also supports different hardware
architectures, including 1A32, TA64, X86-64, EM64T and Apple G5.

Since its first release in November, 2002, our software has been adopted by more
than 120 organizations (national laboratories, research centers, industry, and uni-
versities) world-wide to build high performance InfiniBand cluster systems. These
clusters include both research testbeds and production systems. The software is also
being distributed by almost every InfiniBand company with its software package. Our
software has been used on some of the most powerful supercomputers in the world.
For example, three of the top 500 supercomputers [88] (23rd edition) are powered by
MVAPICH. They are 2200-processor Apple G5 cluster at Virginia Tech (ranked 3rd),
256-processor Intel Xeon cluster at Sandia National Lab (ranked 111th), and 512-
processor AMD Opteron cluster at Los Alamos National Lab (ranked 116th). More

information about our software release can be found at [70].

146

CHAPTER 11

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The research in this dissertation has demonstrated the feasibility of developing
high performance and scalable communication subsystems to support MPI by taking
advantage of novel InfiniBand features. We have described how we can use InfiniBand
features such as different communication semantics, multiple transport services, man-
agement infrastructure, hardware multicast, completion and event mechanism, and
end-to-end flow control to improve performance and scalability in different MPI com-
ponents in MPI point-to-point and collective communication. Our work has focused
on efficient handling of MPI communication protocols, MPI flow control mechanisms,
MPI collective communication, and MPI level support for multirail InfiniBand net-
works. We have also proposed an comprehensive framework for evaluating the per-

formance and scalability of MPI implementations.

11.1 Summary of Research Contributions

The expected contributions of the research are as follows: First, our research is
making impact on the cluster computing area. We have demonstrated that Infini-

Band is a promising cluster interconnect for high-end computing clusters. Second,

147

although we concentrate on MPI in this work, many of our research contributions are
also directly applicable to communication subsystem design in other areas such as
Distributed Shared Memory (DSM) systems [46, 72], parallel files systems [102, 101]
and storage system networks [96, 83]. Therefore, our work will also have an impact
on these areas. Finally, many of the salient features in InfiniBand are also present in
other high-speed interconnects such as Myrinet, Quadrics and 10-Gigabit Ethernet.
Therefore, some of our research results are also applicable to these interconnects and
will contribute to developing high performance and scalable communication subsys-
tem for them.

Below, we will describe our research contributions in detail.

11.1.1 MPI Communication Protocol handling over Infini-
Band

Most MPI communication is handled by two important MPI protocols: FEager
and Rendezvous. Therefore, it is very important to handle them in an efficient and
scalable manner. The Eager protocol is often used for small messages. Thus, it
is desirable to minimize message latency in this protocol. On the other hand, the
Rendezvous protocol is usually used for large messages. Hence, we need to maximize
delivered bandwidth.

Our basic MPI design described in Chapter 4 implements a zero-copy mechanism
based on RDMA for the Rendezvous protocol. Our evaluation has shown that this
design can achieve very good bandwidth for large messages. In fact, the MPI imple-
mentation can delivered the same peak bandwidth achieved at the hardware level.

However, this basic implementation handles small data and control messages using

148

InfiniBand send/receive operations, which have higher overhead and lower perfor-
mance than RDMA operations. As a result, message latency in the Eager protocol is
not optimized.

Our RDMA based MPI design presented in Chapter 6 addressed this inefficiency
in the basic design. In this design, we propose to use RDMA operations not only
for large data messages, but also for small data messages in the Eager protocol and
control messages in the Rendezvous protocol. The challenge of this design is how to
take advantage of RDMA operations in InfiniBand, which are one-sided in nature, to
meet the requirements of two-sided communication in MPI. We have proposed novel
techniques such as persistent buffer association and RDMA polling set. By using
these techniques, we not only delivered better performance, but also achieved good
scalability. Our performance evaluation shows that it compares favorably with the
basic design. With the latest hardware, this design can deliver less than 4.0 us latency
for small messages [51, 70]. This design also affected other MPI implementations [48,

69].
11.1.2 Flow Control in MPI over InfiniBand

Flow control is an important issue in communication sub-system design. Handling
of flow control control affects not only the performance of MPI applications, but also
their scalability.

Our work presented in Chapter 5 provides a detailed study of the flow control
issues in designing MPI over InfiniBand. Two of the central issues in flow control are
performance and scalability in terms of buffer usage. We have proposed three different

flow control schemes (hardware-based, user-level static and user-level dynamic) and

149

described their respective design issues. We have implemented all three schemes in
our MPT implementation over InfiniBand and conducted performance evaluation using
both micro-benchmarks and the NAS Parallel Benchmarks. Our performance analysis
shows that in our testbed, most NAS applications only require a very small number
of pre-posted buffers for every connection to achieve good performance. We also show
that the user-level dynamic scheme can achieve both performance and buffer efficiency
by adapting itself according to the application communication pattern. These results
have significant impact in designing large-scale clusters (in the order of 1,000 to 10,000

nodes) with InfiniBand.
11.1.3 MPI Collective Communication over InfiniBand

Modern high performance applications require efficient and scalable collective com-
munication operations. Currently, most collective operations are implemented based
on point-to-point operations. In Chapter 7, we propose to use hardware multicast
in InfiniBand to design fast and scalable broadcast operations in MPI. InfiniBand
supports multicast with Unreliable Datagram (UD) transport service. This makes
it hard to be directly used by an upper layer such as MPI. To bridge the semantic
gap between MPI_Bcast and InfiniBand hardware multicast, we have designed and
implemented a substrate on top of InfiniBand which provides functionalities such as
reliability, in-order delivery and large message handling. By using a sliding-window
based design, we improve MPI_Bcast latency by removing most of the overhead in
the substrate out of the communication critical path. By using optimizations such
as a new co-root based scheme and delayed ACK, we can further balance and reduce

the overhead. We have also addressed many detailed design issues such as buffer

150

management, efficient handling of out-of-order and duplicate messages, timeout and
retransmission, flow control and RDMA based ACK communication.

Our performance evaluation shows that in an 8 node cluster testbed, hardware
multicast based designs can improve MPI broadcast latency up to 58% and broadcast
throughput up to 112%. The proposed solutions are also much more tolerant to
process skew compared with the current point-to-point based implementation. We
have also developed analytical model for our multicast based schemes and validated
them with experimental numbers. Our analytical model shows that with the new
designs, one can achieve MPI broadcast latency of small messages with 20.0us and
of one MTU size message (around 1836 bytes of data payload) with 40.0us in a 1024

node cluster.
11.1.4 MPI Level Support for Multirail InfiniBand Networks

In the area of cluster computing, InfiniBand is becoming increasingly popular due
to its open standard and high performance. However, even with InfiniBand, network
bandwidth can still become the performance bottleneck for some of today’s most
demanding applications.

In Chapter 8, we study the problem of how to overcome the bandwidth bottleneck
by using multirail networks. We present different ways of setting up multirail net-
works with InfiniBand and propose a unified MPI design that can support all these
approaches. We have also discussed various important design issues and provided
in-depth discussions of different policies of using multirail networks, including an
adaptive striping scheme that can dynamically change the striping parameters based

on current system condition.

151

We have implemented our design and evaluated it using both microbenchmarks
and applications. Our performance results show that multirail networks can signifi-
cant improve MPI communication performance. With a two rail InfiniBand cluster,
we have achieved almost twice the bandwidth and half the latency for large messages
compared with the original MPI. At the application level, the multirail MPI can
significantly reduce communication time as well as running time depending on the
communication pattern. We have also shown that the adaptive striping scheme can
achieve excellent performance without a priori knowledge of the bandwidth of each
rail. Since many large-scale, high-end clusters are built with multirail configurations,

our design can be used in these systems to achieve better performance.
11.1.5 Performance Evaluation Framework

In Chapter 9, we present a comprehensive performance evaluation framework for
MPI implementations. We compare our MVAPICH implementation with MPI im-
plementations over two other popular high-speed interconnects: Myrinet [71, 66, 67]
and Quadrics [81, 78].

Our performance evaluation consists of two major parts. The first part consists of
a set of MPI level micro-benchmarks. These benchmarks include traditional measure-
ments such as latency, bandwidth and host overhead. In addition to those, we have
also included the following micro-benchmarks: communication/computation overlap,
buffer reuse, memory usage, intra-node communication and collective communication.
The objective behind this extended micro-benchmark suite is to characterize different
aspects of the MPI implementations and get more insights into their communication

behavior.

152

The second part of the performance evaluation consists of application level bench-
marks. We have used the NAS Parallel Benchmarks [68] and the sweep3D bench-
mark [33]. We not only present the overall performance results, but also relate ap-
plication communication characteristics to the information we got from the micro-
benchmarks. We use in-depth profiling of these applications to measure their charac-
teristics. Using these profiled data and the results obtained from the micro-benchmarks,
we analyze the impact of the following factors: overlap of computation and commu-
nication, buffer reuse, collective communication, memory usage, SMP performance
and scalability with system sizes.

The main contributions of this work are: First, we present a detailed performance
study of MPI over InfiniBand, Myrinet and Quadrics, using both applications and
micro-benchmarks. Second, we have shown that MPI communication performance is
affected by many factors. Therefore, to get more insights into different aspects of an
MPI implementation, one has to go beyond simple micro-benchmarks such as latency
and bandwidth. Third, our results show that for 8-node clusters, InfiniBand can
offer significant performance improvements for many bandwidth-bound applications
compared with Myrinet and Quadrics.

It should be noted that our evaluation is done in the year 2003. Currently, Myrinet
and Quadrics have released their next generation hardware which gives better perfor-
mance. Similar, InfiniBand hardware is also improving. Thus, some of our conclusions
might change. However, the same performance evaluation framework can be used to

compare MPI implementations over the latest hardware.

153

11.2 Future Research Directions

The high performance and rich features provided by the InfiniBand Architecture
make it an attractive interconnect for high performance computing. In this disserta-
tion, we have demonstrated that it is possible to implement an efficient and scalable
MPI layer over InfiniBand. We have discussed various design issues including MPI
protocol handling, flow control, collective communication, multirail network support
and MPI performance evaluation framework. However, there are still many interest-
ing research topics to pursue in this area. Below we describe some of these future

research topics:

Utilizing other InfiniBand features — In this dissertation, we have used many
features provided by InfiniBand. But there are still more for us to explore. For exam-
ple, InfiniBand recently introduced a feature called shared receive queues. By using
this feature, it is possible to allow multiple connections to share a single buffer pool
and thus achieve better buffer utilization and scalability. Another example is Infini-
Band atomic operations. Although we have not used InfiniBand atomic operations in
this dissertation, they are very important features and we have used them to design
high-performance MPI one-sided communication in [40, 39]. However, it is possible
to use atomic operations in two-sided communication also. For example, it is possible
to use atomic operations in designing flow control mechanisms when shared receive
queues are used.

InfiniBand also provides native QoS support. Researchers have studied various
QoS issues over InfiniBand [38, 41, 3]. It is also an interesting research topic to use

InfiniBand QoS mechanisms in implementing MPI. One possible scenario is to assign

154

different service levels to different kinds of messages. For example, some control
messages can be assigned a higher priority than other messages. The impact of
different QoS policies on application performance is also a very important topic.
Multirail network support and collective communication — In Chapter 9,
we have presented a unified MPI design to support different InfiniBand multirail net-
works. However, our design focused mostly on point-to-point communication. MPI
collective communication usually has very regular communication pattern. Thus, it is
possible to design multirail support more efficiently by directly considering the com-
munication pattern in MPI collective communication operations. Multirail networks
can not only improve communication bandwidth for operations such as MPI_Alltoall,
but also avoid hot spots in one-to-all and all-to-one patterns which are common in
collective communication.

MPI level support for fault tolerance over InfiniBand — In large scale systems,
it is vital that the system can continue to function even in case of various hardware
or software faults. Although, it is possible to mask some of these faults at a lower
level, MPI level fault tolerance is still necessary in order to achieve overall reliability.
In this dissertation, we have focused mostly on performance and scalability. It would
be interesting to study how to design fault tolerant MPI over InfiniBand also. For
example, it is possible to combine our multirail MPI design with reliability support
to tolerate network failures. To deal with node failures, checkpointing/restarting
is a very common technique. The high performance and various features offered
by InfiniBand provide many opportunities to design efficient checkpointing, process

migration and process restarting systems for MPI programs.

155

MPI support for 10-GigE networks — Recently, the next generation ethernet
network — 10-Gigabit Ethernet has been introduced. Although still in its early stage of
deployment, 10-GigE networks are already achieving quite high performance [35]. Al-
though current they are very expensive, their price may drop dramatically when they
are deployed in large scales. Traditionally, communication over ethernet is achieved
by using TCP/IP protocols with a socket-based interface. This interface is not a very
good match for high performance computing applications that use the MPI inter-
face. Recently, an RDMA based interface (RDMA over IP) has been proposed for
ethernet networks [84, 83]. This interface is quite similar to the interface provided
by InfiniBand. Therefore, many of designs are also applicable in this case. On the
other hand, RDMA over IP also provide some new features such as enhanced memory
registration [14] as well as the opportunities to combine it with socket based com-
munication. Therefore, further research is necessary to determine how to implement

MPI efficiently for the next generation 10-GigE networks.

156

1]

2]

3]

BIBLIOGRAPHY

IBAL: InfiniBand Linux SourceForge Project. http://-
infiniband.sourceforge.net /IAL/Access/IBAL.

Hari Adiseshu, Guru M. Parulkar, and George Varghese. A reliable and scalable
striping protocol. In SIGCOMM, pages 131-141, 1996.

Francisco J. Alfaro, Jose L. Sanchez, Jose Duato, and Chita R. Das. A Strategy
to Compute the Infiniband Arbitration Tables. In Int’l Parallel and Distributed
Processing Symposium (IPDPS ’02), April 2002.

M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda, and B. Abali. Efficient
Virtual Interface Architecture Support for the IBM SP Switch-Connected NT
Clusters. In Int’l Parallel and Distributed Processing Symposium (IPDPS ’00),
pages 33-42, May 2000.

Mohammad Banikazemi, Rama K. Govindaraju, Robert Blackmore, and Dha-
baleswar K. Panda. MPI-LAPI: An Efficient Implementation of MPI for IBM
RS/6000 SP Systems. IEEE Transactions on Parallel and Distributed Systems,
pages 1081-1093, October 2001.

Christian Bell, Dan Bonachea, Yannick Cote, Jason Duell, Paul Hargrove, Parry
Husbands, Costin Iancu, Michael Welcome, and Katherine Yelick. An evaluation

of current high-performance networks. In International Parallel and Distributed
Processing Symposium (IPDPS’03), April 2003.

Bhoedjang, Ruhl, and Bal. Efficient multicast on myrinet using link-level flow
control. In ICPP: 27th International Conference on Parallel Processing, 1998.

M. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R. Mesarina. Virtual-
Memory-Mapped Network Interfaces. In IEEE Micro, pages 21-28, Feb. 1995.

C. Brendan, S. Traw, and Jonathan M. Smith. Striping within the network
subsystem. IEEE Network, 9(4):22, 1995.

157

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Ron Brightwell, Rolf Riesen, Bill Lawry, and A. B. Maccabe. Portals 3.0:
Protocol Building Blocks for Low Overhead Communication. In Proceedings of
the 2002 Workshop on Communication Architecture for Clusters (CAC), April
2002.

Ron Brightwell and Anthony Skjellum. MPICH on the T3D: A Case Study of
High Performance Message Passing. In 1996 MPI Developers Conference, July
1996.

D. Buntinas, D. K. Panda, and R. Brightwell. Application-bypass broadcast
in mpich over gm. In International Symposium on Cluster Computing and the
Grid (CCGRID ’03), May 2003.

Enrique V. Carrera, Srinath Rao, Liviu Iftode, and Ricardo Bianchini. User-
Level Communication in Cluster-Based Servers. In Proceedings of the Eighth
Symposium on High-Performance Architecture (HPCA’02), pages 275286,
February 2002.

Mallikarjun Chadalapaka, Hemal Shah, Uri Elzur, Patricia Thaler, and Michael
Ko. A Study of iSCSI Extensions for RDMA (iSER). In ACM SIGCOMM work-

shop on Network-1/0 convergence: experience, lessons, implications, August
2003.

J. Chase, A. Gallatin, and K. Yocum. End System Optimizations for High-
Speed TCP. IEEE Communications Magazine, 39(4):68-74, 2001.

Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy Hoisie, and Leonid
Gurvits. Using Multirail Networks in High-Performance Clusters. Concurrency
and Computation: Practice and Experience, 15(7-8):625, 2003.

Compaq, Intel, and Microsoft. VI Architecture Specification V1.0, December
1997.

David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E.
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
LogP: Towards a Realistic Model of Parallel Computation. In Principles Prac-
tice of Parallel Programming, pages 1-12, 1993.

Rossen Dimitrov and Anthony Skjellum. An Efficient MPI Implemen-
tation for Virtual Interface (VI) Architecture-Enabled Cluster Computing.
http://www.mpi-softtech.com /publications/, 1998.

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A.M.
Merritt, E. Gronke, and C. Dodd. The Virtual Interface Architecture. IEEE
Micro, pages 66-76, March/April 1998.

158

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Abbas Farazdel, Gonzalo R. Archondo-Callao, Eva Hocks, Takaaki Sakachi, and
Federico Vagnini. IBM Red Book: Understanding and Using the SP Switch.
IBM, Poughkeepsie, NY, 1999.

W. Feng, M. Gardner, M. Fisk, and E. Weigle. Automatic Flow-Control Adap-
tation for Enhancing Network Performance in Computational Grids. Journal
of Grid Computing, 1(1):63-74, 2003.

Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A reliable multicast framework for light-weight sessions and application
level framing. IEEE/ACM Transactions on Networking, 5(6):784-803, 1997.

Jinzhu Gao and Han-Wei Shen. Parallel View-Dependent Isosurface Extraction
Using Multi-Pass Occlusion Culling. In Proceedings of 2001 IEEE Symposium
wn Parallel and Large Data Visualization and Graphics, pages 67—74, October
2001.

R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnichand C. E.
Rasmussen, L. D. Risinger, and M. W. Sukalski. A network failure tolerant mes-
sage passing system for terascale clusters. In 16th Annual ACM International
Conference on Supercomputing (ICS ’02), June 2002.

W. Gropp and E. Lusk. A High-Performance MPI Implementation on a Shared-
Memory Vector Supercomputer. Parallel Computing, 22(11):1513-1526, Jan-
uary 1997.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard. Parallel Com-
puting, 22(6):789-828, 1996.

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI - The Complete Reference:
Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, USA, 1998.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface, 2nd edition. MIT
Press, Cambridge, MA, 1999.

Rinku Gupta, Vinod Tipparaju, Jarek Nieplocha, and Dhabaleswar K. Panda.
Efficient Barrier using Remote Memory Operations on VIA-Based Clusters. In
Proceedings of the IEEE International Conference on Cluster Computing, 2002.

H. Eriksson. Mbone: the multicast backbone. Communications of the ACM,
August 1994.

159

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa. Pin-down Cache: A
Virtual Memory Management Technique for Zero-copy Communication. In In
Proceedings of 12th International Parallel Processing Symposium, pages 308—
315, 1998.

Adolfy Hoisie, Olaf Lubeck, Harvey Wasserman, Fabrizio Petrini, and Hank
Alme. A General Predictive Performance Model for Wavefront Algorithms on
Cluster of SMPs. In ICPP 2000, 2000.

Jenwei Hsieh, Tau Leng, Victor Mashayekhi, and Reza Rooholamini. Archi-
tectural and performance evaluation of giganet and myrinet interconnects on
clusters of small-scale SMP servers. In Supercomputing, 2000.

J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ethernet on
Commodity Systems. IEEE Micro, 24(1):10-22, 2004.

P. Husbands and J. C. Hoe. MPI-StarT: Delivering Network Performance to
Numerical Applications. In Proceedings of the Supercomputing, 1998.

InfiniBand Trade Association. InfiniBand Architecture Specification, Release
1.1. http://www.infinibandta.org, November 2002.

J. Pellissier. Providing Quality of Service over InfiniBand Architecture Fabrics.
In Hot Interconnect 8, August 2000.

W. Jiang, J. Liu, H. Jin, D. K. Panda, D. Buntinas, R. Thakur, and W. Gropp.
Efficient Implementation of MPI-2 Passive One-Sided Communication over In-
finiBand Clusters. In Euro PVM/MPI Conference, September 2004.

W. Jiang, J. Liu, H. Jin, D. K. Panda, W. Gropp, and R. Thakur. High
performance mpi-2 one-sided communication over infiniband. In International
Symposium on Cluster Computing and the Grid (CCGRID ’04), April 2004.

Eun Jung Kim, Ki Hwan Yum, Chita Das, Mazin Yousif, and Jose Duato. Per-
formance enhancement techniques for infiniband architecture. In International
Symposium on High Performance Computer Architecture, Feb. 2003.

Sushmitha P. Kini. Efficient Collective Communication using RDMA and Mul-
ticast Operations for InfiniBand-Based Clusters. Master Thesis, The Ohio State
University, June 2003.

Sushmitha P. Kini, Jiuxing Liu, Jiesheng Wu, Pete Wyckoff, and Dha-
baleswar K. Panda. Fast and Scalable Barrier using RDMA and Multicast
Mechanisms for InfiniBand-Based Clusters. In EuroPVM/MPI, Oct. 2003.

160

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Mario Lauria and Andrew Chien. MPI-FM: High performance MPI on work-
station clusters. Journal of Parallel and Distributed Computing, 40(1):4-18,
1997.

Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface
Architecture. http://www.nersc.gov/research/FTG/mvich/index.html, August
2001.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Sys-
tems. In Proceedings of the 5th ACM Symposium on Principles of Distributed
Computing (PODC), pages 229-239, New York, NY, 1986. ACM Press.

John C. Lin and Sanjoy Paul. RMTP: A reliable multicast transport protocol.
In INFOCOM, pages 1414-1424, San Francisco, CA, March 1996.

J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,
and B. Toonen. Design and Implementation of MPICH2 over InfiniBand

with RDMA Support. In Int’l Parallel and Distributed Processing Symposium
(IPDPS ’04), April 2004.

J. Liu, A. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broad-
cast using InfiniBand’s Hardware Multicast Support. In Int’l Parallel and Dis-
tributed Processing Symposium (IPDPS ’04), April 2004.

J. Liu and D. K. Panda. Implementing Efficient and Scalable Flow Control
Schemes in MPI over InfiniBand. In Proceedings of the 2004 Workshop on
Communication Architecture for Clusters (CAC ’04), April 2004.

J. Liu, A. Vishnu, and D. K. Pand. Performance Evaluation of InfiniBand with
PCI Express. In Hot Interconnect 12, August 2003.

J. Liu, J. Wu, and D. K. Panda. High Performance RDMA-Based MPI Im-
plementation over InfiniBand. International Journal of Parallel Programming,

32(3):167-198, June 2004.

Jiuxing Liu, Balasubramanian Chandrasekaran, Jiesheng Wu, Weihang Jiang,
Sushmitha Kini, Weikuan Yu, Darius Buntinas, Pete Wyckoff, and Dha-
baleswar K. Panda. Performance Comparison of MPI Implementations over
InfiniBand, Myrinet and Quadrics. In SuperComputing 2003 (SC ’03), Novem-
ber 2003.

Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K. Panda. Building Multi-
rail InfiniBand Clusters: MPI-Level Design and Performance Evaluation. In
SuperComputing 2004 (SC ’04), November 2004, to be presented.

161

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]
[66]

[67]
[68]

Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dha-
baleswar K. Panda. High Performance RDMA-Based MPI Implementation over

InfiniBand. In 17th Annual ACM International Conference on Supercomputing
(ICS ’03), June 2003.

Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kinis, Darius Buntinas, Weikuan
Yu, Balasubraman Chandrasekaran, Ranjit Noronha, Peter Wyckoff, and Dha-
baleswar K. Panda. MPI over InfiniBand: Early Experiences. Technical Report,
OSU-CISRC-10/02-TR25, Computer and Information Science, the Ohio State
University.

K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, A. Gallatin,
R. Kisley, R. Wickremesinghe, and E. Gabber. Structure and Performance
of the Direct Access File System. In Proceedings of USENIX 2002 Annual
Technical Conference, Monterey, CA, pages 1-14, June 2002.

R. Martin, A. Vahdat, D. Culler, and T. Anderson. Effects of Communication
Latency, Overhead, and Bandwidth in a Cluster Architecture. In Proceedings of
the International Symposium on Computer Architecture, pages 152-159, 1997.

Mathematics and Computer Science Division, Argonne National Laboratory.
MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich/, 2003.

Mellanox Technologies. Mellanox InfiniBand InfiniHost M'T23108 Adapters.
http://www.mellanox.com, July 2002.

Mellanox Technologies. Mellanox VAPI Interface, July 2002.

Mellanox Technologies. Mellanox InfiniBand InfiniHost III Ex MT25208
Adapters. http://www.mellanox.com, February 2004.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. Technical Report, University of Tennessee, Knoxville, 1996.

Jeffrey C. Mogul. TCP Offload Is a Dumb Idea whose Time Has Come. In 9th
Workshop on Hot Topics in Operating Systems (HotOS 1X), May 2003.

Myricom. GM Messaging Software. http://www.myri.com/scs/index.html.

Myricom. MPICH-GM. http://www.myri.com/myrinet /performance/ MPICH-
GM /index.html.

Myricom. Myrinet. http://www.myri.com/.
NASA. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/.

162

[69]
[70]

[71]

[72]

[73]
[74]

[75]
[76]
[77]

[78]

[79]

[80]

[81]
[82]

NCSA. MPICH over VMI2 Interface. http://vmi.ncsa.uiuc.edu/.

Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on
VAPI Layer. http://nowlab.cis.ohio-state.edu/projects/mpi-iba/index.html.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic,
and W. Su. Myrinet: A Gigabit-per-second Local Area Network. IEEE Micro,
15(1):29-36, February 1995.

Rajit M Noronha and D K Panda. Designing High Performance DSM Systems
using InfiniBand Features. In The 2004 International Workshop on Distributed
Shared Memory on Clusters (DSM ’04), April 2004.

OpenlB Alliance. OpenlB InfiniBand Software. http://www.openib.org.

S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Work-
stations: Illinois Fast Messages (FM). In Proceedings of the Supercomputing,
1995.

Pallas. Pallas MPI Benchmarks. http://www.pallas.com/e/products/pmb/.
PCI-SIG. PCI Express Architecture. http://www.pcisig.com.

F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics
Network: High-Performance Clustering Technology. IEEE Micro, 22(1):46-57,
2002.

Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-
enberg. The Quadrics Network: High Performance Clustering Technology. IEEE
Micro, 22(1):46-57, January-February 2002.

Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg, and Adolfy Hoisie.
Hardware- and Software-Based Collective Communication on the Quadrics Net-

work. In IEEFE International Symposium on Network Computing and Applica-
tions 2001 (NCA 2001), Boston, MA, February 2002.

Sridhar Pingali, Don Towsley, and James F. Kurose. A Comparison of Sender-
Initiated and Receiver-Initiated Reliable Multicast Protocols. In Proceedings of
the Sigmetrics Conference on Measurement and Modeling of Computer Systems,
pages 221-230, New York, NY, USA, 1994. ACM Press.

Quadrics. Quadrics, Ltd. http://www.quadrics.com.

R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha. Efficient Collective Op-
erations using Remote Memory Operations on VIA-Based Clusters. In Int’l
Parallel and Distributed Processing Symposium (IPDPS °03), April 2003.

163

[83] RDMA Consortium. iSCSI Extensions for RDMA (iSER) and Datamover Ar-
chitecture for iISCSI (DA) Specifications, 2003.

[84] RDMA Consortium. iWARP Protocol Suite Specifications, 2003.

[85] S. Pakin and A. Pant. VMI 2.0: A Dynamically Reconfigurable Messaging
Layer for Availability, Usability, and Management. In SAN-1 Workshop (in
conjunction with HPCA), Febuary 2002.

[86] SGI. SGI Message Passing Toolkit. http://www.sgi.com/software/mpt /overview.html.

[87] S. J. Sistare and C. J. Jackson. Ultra-High Performance Communication with
MPI and the Sun Fire Link Interconnect. In Proceedings of the Supercomputing,
2002.

[88] TOP500 SUPERCOMPUTER SITES. 23rd Edition of TOP500 List.
http://www.top500.org, November 2003.

[89] Harimath Sivakumar, Stuart Bailey, and Robert L. Grossman. PSockets: The
case for application-level network striping for data intensive applications using
high speed wide area networks. In Supercomputing, 2000.

[90] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack Don-
garra. MPI-The Complete Reference. Volume 1 - The MPI-1 Core, 2nd edition.
The MIT Press, 1998.

[91] Ted Tabe and Quentin F. Stout. The use of the MPI communication library in
the NAS parallel benchmarks. Technical Report CSE-TR-386-99, University of
Michgan, 1999.

[92] Topspin Communications, Inc. Topspin Communications, Inc.

[93] V. Tipparaju, J. Nieplocha, D.K. Panda. Fast Collective Operations Using
Shared and Remote Memory Access Protocols on Clusters. In Int’l Parallel and
Distributed Processing Symposium (IPDPS ’03), April 2003.

[94] Robert van de Geijn, David Payne, Lance Shuler, and Jerrell Watts.
A Streetguide to Collective Communication and its Application.
http://www.cs.utexas.edu/users/rvdg/pubs/streetguide.ps, Jan 1996.

[95] Jeffrey. S. Vetter and Frank Mueller. Communication Characteristics of Large-
Scale Scientific Applications for Contemporary Cluster Architectures. In Int’l
Parallel and Distributed Processing Symposium (IPDPS ’02), April 2002.

[96] Voltaire Inc. High Performance SAN Connectivity for InfiniBand Fabrics.
http://www.voltaire.com/pdf/-storage_wp_final.pdf.

164

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-level Net-
work Interface for Parallel and Distributed Computing. In ACM Symposium on
Operating Systems Principles, pages 40-53, 1995.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
Messages: A Mechanism for Integrated Communication and Computation. In
International Symposium on Computer Architecture, pages 256266, 1992.

Frederick C. Wong, Richard P. Martin, Remzi H. Arpaci-Dusseau, and David E.
Culler. Architectural requirements and scalability of the nas parallel bench-
marks. In In the Proceedings of Supercomputing’99, 1999.

Jiesheng Wu, Jiuxing Liu, Pete Wyckoff, and Dhabaleswar K. Panda. Impact of
On-Demand Connection Management in MPI over VIA. In Proceedings of the

IEEFE International Conference on Cluster Computing, pages 152-159, Septem-
ber 2002.

Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In Proceedings of the 2003 International
Conference on Parallel Processing (ICPP 03), Oct. 2003.

Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand. In Proceedings of the IEEE
International Conference on Cluster Computing, 2003.

Weikuan Yu, Darius Buntinas, and Dhabaleswar K. Panda. High Performance
and Reliable NIC-Based Multicast over Myrinet/GM-2. In Int’l Conference on
Parallel Processing, (ICPP 2003), Kaohsiung, Taiwan, October 2003.

Yuanyuan Zhou, Angelos Bilas, Suresh Jagannathan, Cezary Dubnicki,
James F. Philbin, and Kai Li. Expericences with VI Communication for
Database Storage. In Proceedings of International Symposium on Computer
Architecture’02, pages 257268, 2002.

165

